

## MULTIMODES - MULTICHOICE



ICOM IC 260E

25 $\quad$ inc. VAT \&


FDK MULTI 750E

4-9 $\begin{gathered}\text { inc. VAT \& } \\ \text { CARRIAGE }\end{gathered}$


TRY OUR
MAIL ORDER
SERVICE


VISIT OUR
RETAIL PREMISES MON-SAT 9-5.30

BUDGET ACCOUNT - ACCESS - BARCLAYCARD - PART EXCHANGE
MID SUSSEX HOUSE • HIGH ST. • HANDCROSS • WEST SUSSEX RH17 6BW
MAIL ORDER
TEL: 0444400786 9am-5.30pm
RETAIL CALLERS
TO ORDER ANY OF THE ABOVE ITEMS SIMPLY WRITE, ENCLOSING A CHEQUE OR PHONE YOUR CREDIT CARD NUMBER
EDITORIAL OFFICES
Practical Wireless
Westover House
West Quay Road
Poole, Dorset BH15 1JG
\& Poole 71191
Geoff Arnold G3GSR
Editor

Dick Ganderton C.Eng., MIERE,G8VFH Assistant Editor
Peter Metalli
Art Editor

John Fell G8MCP
Technical Editor
Alan Martin G8ZPW News \& Production Editor

Elaine Howard Technical Sub-Editor

Rob Mackie
Technical Artist
Keith Woodruff Assistant Art Editor

Sylvia Barrett, Sharron Breeze
Secretarial
ADVERTISEMENT OFFICES
Practical Wireless King's Reach Tower Stamford Street London SE1 9LS
Telex: 915748 MAGDIV-G
Dennis Brough Advertisement Manager f 01-261 6636

Roger Hall G8TNT (Sam) Ad. Sales Executive C 01-261 6807

Claire Gerrish Secretary
801-261 6636
Colin R, Brown Classified Advertisements - 01-261 5762

Dave Kerindi Make-up \& Copy (01-261 6570

COPYRIGHT
C) IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to our readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

Roirivirolesso

22 Linear Scale Resistance Meter
R. A. Penfold

27 Introducing RTTY-3
Jeff Maynard G4EJA
32 Model Radio Control-8 Field Test Set
J. Burchell \& W. S. Poel

36 PW Survey
2m Mobile Multi-mode Transceivers

41 Slim Jim for 28MHz
Fred Judd G2BCX
43 PW "Helford" HF SSB Transceiver-1
Vic Goom G4AMW
52 PW "Sherborne" Synthesised Tuner-2
W. S. Poel

64 PW "Nimbus' Follow-up
M. Tooley G8CKT \& D. Whitfield G8FTB

67 Air Test
MML432/50 Linear. AR-22 Monitor
69 IC of the Month-SG3524
Brian Dance
72 Our Gift
Lead Bending Gauge

| 104 | Advert Index | 51 | Next Month |
| ---: | :--- | :--- | :--- |
| 67 | Air Test | 75 | On the Air |
| 19 | Comment | 63 | Out of Thin Air |
| 69 | IC of the Month | 21 | Production Lines |
| 65 | Mods | 78 | RAE Reprint |
| 20 | News | 19 | Services |




| accringion <br> 37 Union Street <br> $\stackrel{\text { ald ROIDGE }}{ }$ <br> ${ }^{15}$ Central Area Development <br> 5 MMarker <br> BuSINGSTOKE <br> 22 london Street <br> BIRKENHEND <br> Kmik Save Centre, Prenton <br> BRIDFORD COMPUTER CENTRE <br> 2/4, Forster Square. | PERRY BARR <br> 20 Lynton Square SHELDON <br> 2268 Coventry Road <br> SMETHWICK <br> $44 / 46$ Cape H WARD END <br> 887 Washwood Heath Road <br> WEDNESBJRY <br> Bilston Road | BROMSGROVE <br> $6 / 8 \mathrm{St}$ John Street BROWNOHIL <br> 680 WNMALLS <br> BURY (Lancs) <br> 91 The Rock <br> CARDIFF <br> 9 Wood Street <br> 31 Cambray Place <br> CHESTER <br> Kwik Save Centre <br> Seaiand Rowd COVENTRY <br> 4 Holes Street <br> CREWE <br> DARLNGTON <br> 15/16 Priestgate <br> DERBY <br> 33 victorna Street DoncasiER <br> 3224 Kingerate <br> Trindle Road Roundabout <br> ELSTBOURNE <br> Largley Shopping Centre <br> ${ }^{13}$ Paris Street <br> GRimsBy <br> Riverhead Centre <br> 34 Orford Street | hudotrsfield <br> Pachnorse Shopping Centre HULL <br> Status City Clougen Rand <br> EEMANGION SPA <br> 83 Werwick Street LEEDS <br> LEEDS <br> ${ }^{7} 2$ Merrion Centre <br> LeEDS <br> 3 Eastrate EICESTER <br> Market Street <br> LETCHWORTH <br> 25 Commerce Way <br> Uncoun <br> High Street | BECKENHAM <br> CATFOhStr at <br> CAIFORD <br> CHESHUNT <br> 92 Turners Hill <br> 3 Hall Lane <br> CLAPHAM <br> 84 Clampham High Street COLLIER ROW <br> 27. Collor Row <br> CROUCH END <br> DAGENHAM <br> 297 Heathway EDGWARE <br> 128 Burnt Oak <br> EDMONTON 23 Noth Mall <br> ENFIELD <br> 10 Colman Parade HAMMERSMITH <br> $142 / 4$ King Street <br> 24 Sentinel Square <br> ORPINGTON <br> PALMERS GREEN <br> 379 Green Lanes <br> ROMFORD <br> SEACOAL LANE <br> 1.2. Seacoal Lane | STREATHA: <br> 254 Streatham High Road <br> TOTTENEHAM <br> W5L HFthRold WALTHAMSTOW <br> 123 High Street <br> 239 Walworth Road <br> WANDSWORTH <br> 1079 Hogh Street <br> 7 Embassy Court <br> WIMBLEDON <br> 124 . 6 The Sroadway | CITY CENTRE <br> Andala Centre <br> STREIFORD <br> Arndale Centre <br> NEWBURY <br> ${ }^{1} 4$ A Barthoiomew Street <br> NORTHAMPTON <br> Weston Favel Shopping Centre <br> NOTTINGHAM AREA <br> ARNOLD <br> $126 / 8$ Front Street <br> BEESTON <br> 30 The Square <br> NUNEATON <br> 1 Church Street <br> OXFORD <br> ${ }^{9} 10$ St Ciements <br> ${ }_{35} 35 \mathrm{HIT}$ R <br> 35 Hyderand PLYMOUTH <br> 64 Royal Parade <br> PORTTALBOT <br> Aberatinc <br> ${ }^{18}$ The Butts Shopping Centre <br> RUGGY <br> 25 Church Street RUNGORN <br> RUNCORN <br> ${ }^{120 \text { Runcorn Shloging City }}$ <br> 140 Hen Street <br> 140 Heh Street | SHREWSBURY <br> SITINGBOURNE <br> 20 The Forum Shopping Centre <br> slough <br> 203HMgh Street <br> Eaxt St Colit <br> STAFFORD <br> 6 Sheridan Shopping Centre ST. HELENS <br> ST. HELENS <br> Fingerpost Centre SIOKE-ON-TRENT <br> Hanie, 16 Charies Street <br> sunderilino <br> 4 Fawcett Street SURREY <br> 206 High Street <br> SUTTON (Suriey) <br> 206 High Street <br> TORQUAY <br> 134 Union Streel | TYNE AND WEAR <br> AREA <br> NEWGATE <br> 23 Nempate Centre SHEFFIELD <br> 19-20. Hullsborcugh Shopping Centre. <br> SHIELOS ROAD <br> 1846 Shuelds Road WASHINGTON NEW <br> WaSHINGTON NEW TOWN <br> SHOPPING CENTRE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{\text {BOLTON }}$ boscombe S48 Christchurch Row BOURNEMOUTH $132 / 4$ Commercial Roso RMADFORD 9 Petergate BriGifon <br> 70 London Ravd |  |  |  |  |  |  |  |
| BIRMINGHAM AREA <br> BULL RING <br> 528 Bridge Lunk <br> CAPEMILL <br> 44.46. Cape Hill <br> CITY CENTRE <br> 57/58 Dale End <br> CORPORATION STREET <br> 80. Corporation Street <br> DALE ENO <br> 57.58. Dale End <br> EGBASTON COMPUTER CENTRE <br> Eqgraston Shopping Centre <br> 218 High Street <br> HALESOWEN <br> 5. NORTHFIELD <br> 749 Bristol Road South |  |  |  |  |  |  |  | WUKEFIELD Kirkgate Shopoing Ce walsall |
|  |  |  | LIVERPOOL AREA ALLERTON sonterion Rasd BOOTLE |  | MANCHESTER AREA ARNDALE <br> Unit 71. Arndale Centre |  |  | WALLUSEY The Precinct 8 St Nicholas Street |
|  | BRISTOL AREA Bishopsion 13 Gioucester Raxd Bristo computer centre |  |  |  |  |  |  |  |
|  | CLIFION <br> 146 Whiteladies Road <br> DOWNEND <br> 5 Badminton Road <br> KNOWLE <br> Groadwaik Shopping Centre <br> Yale <br> 4 North Parade |  | LONDON AREA <br> BARKING <br> 810 North Street <br> BAYSWATER <br> Pochester Road |  |  |  | Prices may va | card and ane. Deders. Loo gninyour |

#  


high performance electronic ignition,to add power, economy, reliability, sustained smooth peak performance, instant all weather starting, to your car.
Surefire has sold in its thousands in ready made form from big name accessory firms, but it is now available in quality kit form to fit all vehicles with coil ignition up to 8 cylinders.
ES200. A high performance inductive discharge ignition incorporating a power integrated circuit (special selection): electronic variable dwell circuit (maximises spark energy at all speeds): pulse processor (overcomes contact breaker problems). Coil governor (protects coil). Long burn output. Negative earth only. Compatible with all rev. counters. C300. In it's ready built form (C3000) it came top of all systems tested by an independent national authority July' 79. A high energy capacitive discharge ignition incorporating a high output short circuit proof inverter, top grade Swedish output capacitor, pulse processor circuit, transcient overload protection. Fast rise bidirectional output ideal for fuel injection, sports carburation, oily engines. Compatible with most rev. counters. (Low cost adaptors available for rare cases. Application list enclosed with each kit. Note: Vehicles with Smiths Jaeger rev. counters code RVI on dial will require adaptor type TCI). What's in the kits. Surefire's own precision anodised aluminium extruded case. P.C. mounted security changeover switch. static timing light. Special selection Motorola semi-conductors. Capacitors, resistors etc. selected after 5 years experience. Glass fibre pcb, solder. complete down to last washer,
Fully illustrated comprehensive instructions and full technical back up service.

Suretron Systems (UK) Ltd.
Dept. PW5 Bayer Buildings, Lower Bris Tel: Bath (0225) 332317

[^0]
## Address

| ES200: Neg | £53.96. 111.95 |  |
| :---: | :---: | :---: |
| C300: Pos | £1795 $£ 15.95$ |  |
| C300: Neg | £1795 $£ 15.95$ |  |
| Tacho Adapt. TCl | £3.90 |  |



## Wilmslow

 Audio
## THE firm for speakers!

## SEND 50p FOR THE WORLD'S BEST

 CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.
## AUDAX - AUDIOMASTER - BAKER BOWER \& WILKINS - CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE GAUSS GOODMANS HARBETH ISOPHON I.M.F. JORDAN - JORDAN WATTS - KEF - LOWTHER - McKENZIE MISSION - MONITOR AUDIO - MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY - VIDEOTONE WHARFEDALE - <br> WILMSLOW AUDIO (Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Tel: 0625529599
FOR MAIL ORDER \& EXPORT OF DRIVE UNITS, KITS ETC.
Tel: 0625526213
(SWIFT OF WILMSLOW) FOR HI-FI \& COMPLETE SPEAKERS

## DONT BUY A QUARTZ WATCH

Until you have seen our incredible new collection of probably THE MOST TECHNICALLY ADVANCED WATCHES IN THE WORLD!
So you thought there was nothing else they could possibly incorporate in an electronic watch? You will be absolutely amazed at all the desirable features packed into these incredible watches.
At the time of going to press these watches have not been officially released so we cannot reveal the name of this world famous manufacturer or publish full specifications, but to whet your appetite we can tell you that they all have: AN ALARM, AN HOURLY TIME SIGNAL, A COUNTDOWN ALARM TIMER AND A FULL STOPWATCH FUNCTION plus many other unique features.


How about a 100 metre water resistant watch you can swim in - from around $£ 20$ ? How about a built-in orchestra playing a selection of tunes and three date memories? How about our incredible LCD ANALOGUE watch with much much more? Probably THE ULTIMATE WATCH.
SEND A 12p STAMP FOR FULL DETAILS TODAY - AND START SAVING!
As soon as these watches are released we will send you full details. Please ORDER QUICKLY - demand will far exceed supply this year. Don't risk disappointment.
We also have the SEIKO DUO DISPLAY WATCH from $\mathbf{5 9 . 9 5}$ and two Seiko 100 m water resistant alarm chronographs - one solar powered.

THMTPUS ${ }^{\text {Tempus (Dept. PW) }}$ FREPSTT, 164
Cambridge, 164-167 East Road
Cambridge CB1 1BR. Tel. 0223312866




| NICKEL CADMIUM BATTERIE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | supar |  | 2.0ARt ${ }^{\text {che }}$ | R:OAHP21 | ${ }_{\text {diatr }}^{\text {p.a }}$ |
|  |  |  |  |  |  |  |

All cells are brand new full spec devices from reputable mnfrs. All Nickel Cadmium cells (except
PP3) are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. PP3) are supplied complete with solder tags and are 'VENTED' devices suitable for fast charge. CHARGERS - single or dual O/P to charge PP3. AA or SUB 'C' cells in $12-14 \mathrm{hrs}$ (chargers will charge ' $C$ ' and ' $D$ ' cells but with longer charging time). Units supplied complete in plug top case
with filying leads. Number of cells (10 max) in series and type must be specified for each required $O / P$ when ordering.

SINGLE O/P CHARGER $£ 5.04$
DUAL O/P CHARGER $£ 5.72$
TRANSFORMERS - as used in chargers, $2 \times 12$ volt 0.25 amp secondarys 240 v primary, tag connections $£ 1.57$ each.

Cheques, P.O.'s Mail Order to:-

Data and charging circuits free with orders over E 10 otherwise 30p post. order over £10. Prices DO NOT INCLUDE VAT and this should be added to the total order.

SOLID STATE SECURITY Dept. (PW), Bradshaw Lane Parbold, Wigan, Lancs.
Telephone 02576-3018.


PRIME COMPONENTS, LOW PRICES
All our micro chipa aro ot micro prices. Don't be fooled by low pricoe. Wo do
not offer for saile sub-spec or rebranded devices. All our parts are guiranteoa not offer for salo aub-spec or robrandod devices. All our parts are guarantood
new, first quality , tactory prime, full spece devices. It is also our policy to offer new, first quality, factory prime, full spec devices. It is also our policy to offer
you the best of new dovices that become available and these are featured regularly. Prices are exclusive of p\&p and VAT - please refer to "Ordering In-
formation" before ordering. Off
and Gov. Authorities accepted.
 끈

740
7400


## SPECIAL OFFER! <br> 4K CMOS RAM $(1 K \times 4) 450$ NS

 ONLY £6.95 (8 for $£ 45$ ).The TC 5514P from Toshiba, CMOS equivalent of the 2114

using CMOS technology. Ultra low power dissipation
means it can be used as battery-operated memory system and also as a non-volatile portable with battery back-up. Operates from a single 5 V periods and a much simplified design. Three state outputs simplify memory expansion for minimum data retention voltage is 2 V , the battery back-up system needs only simple circuit. Toshiba's
original C ${ }^{2}$ MOS technology also means wide operating original $\mathrm{C}^{2} \mathrm{MOS}$ technology also means wide operating
and noise margins. The TC 5514 P is moulded in a dualand noise margins. The TC 5514 P is moulded in

## 74C 

## S100 SOUND COMPUTER BOARD!

At last, an S-100 Board that unleashes the full power of two unbelievable General
instrumentsd AY-3-8910 NMOS Computer sound IC's. Allows you under total computer instrumentsd AY-3-8910 NMM control to generate an infinite number of special sound effects for games or any other program. Sounds can be called in BASIC, ASSEMBLY LANGUAGE etc.
KIT FEATURES

- Two GI Sound computer IC's (AY-3-8910)
- Four parallel I/O ports on Board.
- Uses on Board audio Amps or your STERO.
- On Board proto typing area.
- All sockets, parts and hardware are included.
- PC Board is soldermasked, silk screened with gold contacts.
- Easy, quick and fun to build, with full instructions.
- Both BASIC and ASSEMBLY language programming examples are included.

COMPLETE KIT . . Only $£ 59.96$ includes 60 page data manual.
AY-3-8910 chip special price with purchase of BARE BOARD (2 chips) £15

## SOFTWARE

SCL is now available! Our Sound Command language makes writing Sound Effects programs a SNAPI SCL also in cludes routines for Register-Examine-Modify, Memory-Examine-Modify and Play-Memory. SCL is available on CP/M
compatible diskette or 2708/2716. Diskette - $£ 19.95,2708-£ 14.95,2716-£ 24.95$. Diskette includes the compatible diskette or $2708 / 2716$. Diskette - $£ 19.95,2708-£ 14.95,2716-£ 24.95$. Diskette includes the
source. EPROM'S are ORG at EOOOH.

## BOOKS



## A Y-3. 8910 <br> THE NEW GI COMPUTER

SOUND CHIP
CMO

## The amazing AY-3-8910 is a fantastically

 powerful sound and music generatoperfect for use with any 8 -bit micro pro cessor. Contains 3 tone channels, noise
generator, 3 channeis of amplitude con
rols. 16 -bit envelope period control, parallel I/O, 3D/A converters plus muc interface to the S-100 or other Busses.
ONLY £8.50. VAT including FRE reprint of BYYE 79 articlel
E2.25 for 60 -page data manual. Perhaps the next famous composer will
not direct a 150 -piece orchestra $\begin{aligned} & \text { rather, a trio of microcomputers controlling } \\ & \text { a bank of AY-3-8910s." BYTE July ' } 79 \text {. }\end{aligned}$
The XR2266 Decoder/Sense 8
Drive Chip for toy cars that
Drive Chip for toy cars
DRIVE LIKE
ONLY $£ 5.45$ !
This versatile 18 -pin dual in-line IC combines both the decoder and the sense and
drive functions to cut remote control circuitry by at least a factor of twol Steering.
drive functions
lights, indicators, speed control - all from the new XR2266 at only $£ 5.45$ !

Active Filter Cookbook
Audio IC Op Amp Applications 2nd Ed.
The Cheap Video Cookbook
Design of Active Filters with Experiments
The Design of Phased-Locked Loop Circuits with Experiments
Design of VMOS Circuits with Experiments NEWI Electronic Telephone Projects
How to Use Integrated Circuits Logic Elements 3rd Ed. IC OpAmp Cookbook 2nd Ed.
Instrumentation: Transducers and Applications
Learn Electronics Thru Troubleshooting 2nd Ed
Logic and Memory Experiments Using TTL. Integrated Circuits - Book 1
Logic and Memory Experiments Using TTL Integrated Circuits - Book 2
Linear IC Principles, Experiments and Projects 2nd Ed.
Oscilloscope Applications \& Experiments
99 Practical Electronics Projects 2nd Ed.
$£ 10.95$
$£ 6.75$
$£ 5.95$
$£ 4.50$
$£ 7.75$
$£ 5.95$
$£ 5.95$
$£ 6.75$
$£ 5.95$
$£ 4.95$
$£ 4.25$
$£ 4.50$
$£ 10.50$
$\mathbf{£ 1 1 . 2 5}$
$£ 8.50$
$£ 8.95$
$£ 8.25$
$£ 4.46$
$£ 7.50$
$£ 7.50$
$£ 7.50$
$£ 6.75$
$\mathbf{£ 3 . 7 5}$
Practical Low-Cost IC Projects
Practical RF Communication Data for Engineers and
Regulated Power Supplies 2nd Ed.
Security Electronics 2nd Ed.

## Security Electronics 2nd Ed. <br> $\begin{array}{lc}21419 & \text { Security Electronics 2nd Ed } \\ 21621 & \text { Solar Heating } \\ 21035 & \text { TLL Cookbook } \\ 21103 & \text { Troubleshooting with the }\end{array}$

$\begin{array}{ll}21313 & \text { Oscilloscope 3rd Ed. } \\ 21339 & \text { VV Typewriter Cookbook }\end{array}$ $\begin{array}{ll}21339 & \text { Video Security Systems } \\ 21521 & \text { Video Tape Recorders }\end{array}$



Automatic Timed Rese
120 Hz Rejection

The most SOPHISTICATED MOTION DETECTOR available! | Matc |
| :--- | :--- |
| Data |

NEW FROM : Long Range Operation
Visible or Infra-red Response
14 -pin Dual In-line Clear Plastic Package
Combining $I^{2} L$ and Bipolar circuity, the ULN- 2232 A Motion Detector is a complex optolinear IC which includes an on-
chip photodiode, high-gain logarithmic and linear amps, extensive digital circuitry for sound generation and timing, and
chip photodiode, high-gain logatithmic and linear amps, extensive digital circuitry for sound generation and timing, and
high-curtent output drivers. Add on five small capacitors. a speaker and power source and you turn this state-ot-the art
device into a complete Motion Detector sensitive to small changes in light level as a function of time. DETAILED DEviCE
MUSIC FOR YOUR EARS
Bullet's Electronic Music Maker TM Kit has a single 28 Pin Microprocessor Chip with ROM that has been programmed to play the first 6 to 10 notes of the $\mathbf{2 5}$ popular tunes listed below. Each
tune can easily be addressed individually or played sequentially at the push of a button. The 3 chime sequences are activated at any time by separate switch closures, so when used as a doorbell. one door can play songs while two others, wil play different chimes. The unit has a 5 watt audio Amp
anid will run on aither 12 VAC or 12 VDC. Construction is very simple, works with any 8 or 16 ohm speaker, or horn speaker (not included). Tunes can be remotely programmed using a single Complete Kit £9.95. 240 V Transformer optional.
Tunes: Toreador \& William Tell $\star$ Hallelujah Chorus $\star$ Star Spangled Banner $\star$ Yankee Doodle ${ }^{\text {a }}$

 Ordering information. Unless otherwise
stated. for orders under $£ 50$ add 50 p stated. for orders under $\mathrm{f50}$ add 50 p
p\&p. Add $15 \%$ VAT to total (no VAT on books). All devices are brand new, fac-
tory prime and full spec and subject to
prior sales and availeilty. tory prime and full spec and subject to
prior sales and availability. Prices subject to change without notice. Minimum
telephone order using ACCESS is E 10 . elephone order using AC
If ordering by post with
ACCESS, include ACCESS, include name.
address and card no.
written
allow


Dept. PW2, 4 Meeting Street, Appledore, Nr. Bideford, North Devon EX39 1RY Tel: Bideford (02372) 79507 Telex: 8953084

# Britain's first com computer kit. The Sinclair ZX80. <br> Price breakdown ZX80 and manual: £69.52 <br> VAT: $£ 10.43$ <br> Post and packing FREE <br> Please note: many kit makers quote VAT-exclusive prices. <br> You've seen the reviews...you've heard the excitement...now make the kit! <br> This is the ZX80. 'Personal Computer World' gave it 5 stars for 'excellent value.' Benchmark tests say it's faster than all previous personal computers. And the response from kit enthusiasts has been tremendous. <br> To help you appreciate its value, the price is shown above with and without VAT. This is so you can compare the ZX80 with competitive kits that don't appear with inclusive prices. <br> For just $£ 79.95$ (including VAT and $p \& p$ ) you get everything you need to build a personal computer at home ...PCB, with IC sockets for valuable components of the Sinclair ZX80. <br> The Sinclair ZX80 is not just another 

## 'Excellent value' indeed!

## 'Excellent value' indeed!

 all ICs: case; leads for direct connection to a cassette recorder and television (black and white or colour): everything!Yet the ZX80 really is a complete, powerful. full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX80 is programmed in BASIC, the world's most popular computer language for beginners and experts alike.

The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. It immediately proves what a good job you've done; connect it to your TV... link it to an appropriate power source*... and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for allICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touch sensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder (Programs can be SAVEd and LOADed on to a portable cassette recorder.)
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately-see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available-see coupon).

[^1]
## The unique and

## The unique and

 personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.The unique Sinclair BASIC interpreter offers remarkable programming advantages:

- Unique 'one-touch' key word entry: the

ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.

- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability-takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string inputto request a line of text when necessary Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.
- Lines of unlimited length.

Fewer chips, compact design, volume productionmore power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter, the character set, operating system, and monitor. And the $Z X 80$ 's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines. And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.


## The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair ZX80 mean little to you-don't worry. They're all explained in the specially-written 128-page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming-from first principles to complex programs. (Available separately-purchase price refunded if you buy a ZX80 later.) A hardware manual is also included with every kit.
The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!
The ZX80 kit costs a mere £79.95. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled and complete with mains adaptor, for only £99.95.
Demand for the ZX 80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your ZX80 will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt-and we have no doubt that you will be. Tel: 0223311488.




LATEST SOLID STATE TECHNOLOGY - DESIGNED \& MADE IN THE U.K.
DETAILED STAGE BY STAGE BUILDING INSTRUCTIONS
FREE ADVISORY SERVICE THROUGHOUT THE BUILDING

## LK1 OSCILLOSCOPE

Solid state circuitry; D.C. coupled; 7 cm . dia. tube; $Y$ input $0.3 \mathrm{v} / \mathrm{cm}$. to $50 \mathrm{v} / \mathrm{cm} . ;$ X input $1 \mathrm{volt} / \mathrm{cm}$.; 1 v . and 10v. cal. signals; response to 1 MHz ; Time base ranges to $8 \mu \mathrm{~S}$ per cm .; Size $230 \times 130 \times 190 \mathrm{~mm}$. Wt. $\mathbf{2 K g}$. Operates from 110 volt or 220/240 volt A.C. High quality kit complete with carrying case.
£130.00

## LK3 HOME COMPUTER

Ideal simple computer for beginners. Microprocessor has 8 bit data bus and 12 bit address bus. Ready programmed ROM has 4 K bits. RAM of $0.5 \times 8 \mathrm{k}$ bits fully addressable. 8 digit LED display. Hexadecimal read out. Hexadecimal keyboard. Re-set switch and single shot facility. Power supply kit included. Provision for cassette and V.D.U. operation. $£ 190.00$


LK5 DIGITAL ELECTRONIC TECHNIQUES
Experiments carried out on a P.C. board, size $190 \times 150 \mathrm{~mm}$ covering operational amplifiers; integrators; basic logic circuits; NAND, NOR gates; Flip-Flops; Multivibrators; clock generator; 4 bit comparitor feed back; analoque switching; building simple digital meter circuits; Timer.
Note:- for full benefit with this kit a C.R.O. is desirable although circuits can be built without one.

## LK7 ANALOGUE TEST METER

Basic multi range test meter kit with 20,000 ohm/volt sensitivity. Ranges Ranges: D.C. and A.C. volts $0-5,0-25$, $0-100,0-500 ; 2.5 \mathrm{kV}$.
D.C. $0.5 \mathrm{~mA}, 0.500 \mathrm{~mA}, 0.50 \mu \mathrm{~A}$

Resistance $0-50 \mathrm{~K} ; \mathbf{0} 5 \mathrm{M}$. Size $150 \times 75$ $\times 50 \mathrm{~mm}$.
£17.00


£35.00


LK2 DIGITAL MULTIMETER Solid state circuitry with large digital display. Ranges are up to 1000v. D.C. and A.C. and current D.C. to $\mathbf{1 0 0 m A}$. Resistance ranges 100 K ohms. Battery operated. Size $185 \times 110 \times 60 \mathrm{~mm}$.
Digital display: $\mathbf{3 7} \times \mathbf{1 6} \mathbf{m m}$
£40.00

LK4 AUDIO GENERATOR
Covers $\mathbf{1 0 H z}$ to 100 kHz in four switched stages. Variable voltage output.
Distortion below 0.02\%. Sine and square wave output. Ideal for HI-FI work and as signal tracer.
$£ 40.00$

## LK6 LOGIC DEMONSTRATION PANEL

Basic introduction to computer technology; AND and OR gates; NOR and NAND; Data line selector; Truth tables; AND and INVERT gate; Half and Full Adder; Latches; Flip-Flops; Shift register; Binary coded decimal counter. Over 16 experiments are performed with panel. Battery operated.

$$
£ 70.00
$$



LK8 SHORT WAVE RECEIVER
A simple 3 stage short wave only radio receiver for the amateur. Very good selectivity and sensitivity and will give hours of enjoyment. Simple to construct by people of any age.
£25.00



To:- LERNAKITS, 4 Cleveland Road, Jersey, Channel Islands. (Est. 40 years)



PLEASE ADD 15\% VAT TO ALL ORDERS except where items marked "VAT Included". CALLERS WELCOME.
We are open 9 a.m.-6 p.m. Monday-Saturdays. We carry a very large selection of electronic components and electro-mechanical items. Special quotations on quantities.

| ELECTRO-TECH COMPONENTS 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-7235667 |  |
| :---: | :---: |
|  |  |

## P.W. KITS

## P. W. NIMBUS

Transceiver (PCB \& all components except channel xtals)
$£ 46.00$
Modulator (PCB \& all components)
$£ 4.50$
General Assembly (Aerial, mike, box, speakers
etc.)
$£ 32.50$
Complete Kit (if all parts purchased)
£80.00

## ADD ON BASE UNIT

Complete Kit
£38.00
Many other P.W. Kits including:
Transceiver Power Unit Tamar
Linear Frequency Meter Beginners 2 m Converter
Tone Burst \& Timer Module High Impedance Voltmeter
Model Railway Controller
We also stock Kits for projects published in most magazines.
Personal callers welcome - but please phone first to check availability
All Prices include post and VAT.
T. POWELL 306 St. Paul's Road, Highbury Corner, London N1. Telephone: 01-226 1489.
ACCESS/VISA ACCEPTED
Shop open: Mon. to Fri. 9-5.30. Sat. 9-4.30.

DIGITAL VOLTMETER
 MODULE

Fully built and tested, ONLY $\mathrm{f}^{11.95}$.vat $^{\text {vat }}$

- Reads positive and negative voltages with a sensitivity of $0-+999 \mathrm{mV}$ and $0--99 \mathrm{mV}$
- Requires only single supply between 7 \& 12 volts (220mA)
* High accuracy $+\mathbf{0 . 1} \%+1$ digit
- Large bright 0.43 " high efficiency displays
* 4 readings per second sampling rate
* Size only $41 \times 95 \times 10 \mathrm{~mm}$
* Supplied with full data \& applications information

This brand new, quality module manufactured by Autona Limited (who are one of the U.K's largest module manufacturers) means you can build accurate test equipment, multimeters, thermometers, etc. easily and at a fraction of the cost of ready-made equipment. Full details are provided showing how to measure A.C. voltage, current, resistance and temperature.
Send your cheque or P.O. $(£ 11.95+£ 1.79$ V.A.T. +50 pp. \& p. $=£ 14.24$ ) now to:-
Dept. P W. 1
RISCOMP LIMITED
21 Duke Street
Princes Risborough
Bucks. HP17 0AT
BUCKINGHAMSHIRE'S NEW ELECTRONICS CENTRE
8 miles off the M4O
50 minutes from London
Telephone:(084 44) 6326

## AND THERE'S MORE WHERE THIS CAME FROM

It's a long time since one of our adverts was presented in 'list' form - but simply because we do not try to squeeze this lot in every time doesn't mean that it's not available. Our new style price list (now some 40 pages long) includes all this and more, including quantity prices and a brief description. The kits, modules and specialized RF components - such as TOKO coils, filters etc. are covered in the general price
list - so send now for a free copy (with an SAE please). Part 4 of the catalogue is due out now (incorporating a revised version of pt.1).

LINEARICS NUMERIC LISTINGS


| LINEAR ICs. NUMERIC LISTINGS |  |  |  | ITL N and LSN |  | 7443 N | 1.15 | 74 LS112 | 0.38 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| teal 20 S | 1.00 | KB4413 | 1.95 |  |  | 7444 N | 1.12 | 74 LS113 | 0.38 |
| 1200 | 1.95 | KB4417 | 1.80 | 7400 N | 0.13 | 7445 N | 0.94 | 74 LS114 | 0.38 |
| U2378 | 1.28 | TDA4420 | 2.25 | 74LS00 | 0.20 | 7446 N | 0.94 | 74118 N | 0.83 |
| U2478 | 1.28 | KB44208 | 1.09 | 74015 | 0.13 | 74.547 | 0.89 | 74120 N | 1.15 |
| U2578 | 1.28 | kB4423 | 2.30 | 74LS01 | 0.20 | 7448 N | 0.56 | 74121 N | 0.42 |
| U2678 | 1.28 | KB4424 | 1.65 | 7402N | 0.14 | 74.548 | 0.99 | 74122s | 0.46 |
| LM301H | 0.67 | KB4431 | 1.95 | 74LS02 | 0.20 | 74.549 | 0.99 | 741238 | 0.73 |
| LM301N | 0.30 | KB4432 | 1.95 | 7403 N | 0.14 | 7451 N | 0.17 | 7415124 | 1.75 |
| [м3084 | 0.96 | KB4433 | 1.52 | 74.503 | 0.20 | 74LS51 | 0.24 | 74125 N | 0.38 |
| LM308N | 0.65 | KB4436 | 2.53 | 7404 N | 0.14 | 7453 N | 0.17 | 74LS125 | 0.44 |
| LM339N | 0.66 | KB4437 | 1.75 | 74LS04 | 0.24 | 7454 N | 0.17 | 74126 N | 0.57 |
| [M348N | 1.86 | KB4438 | 2.22 | 7405 N | 0.18 | 74.554 | 0.24 | 7415126 | 0.44 |
| LF351N | 0.38 | KB4441 | 1.35 | 74LS05 | 0.26 | 74.555 | 0.24 | 74128 N | 0.74 |
| Le35 2 N | 0.76 | KB4445 | 1.29 | 7406 N | 0.28 | 7460N | 0.17 | 74132N | 0.73 |
| [19374N | 3.75 | KB4446 | 2.75 | 7407N | 0.38 | 74.563 | 1.24 | 7415132 | 0.78 |
| [13380N-14 | 1.00 | кB4448 | 1.65 | 7408 N | 0.17 | 7470 N | 0.28 | 74 IS136 | 0.40 |
| [M380N-8 | 1.00 | NE5044N | 2.26 | 74LS08 | 0.24 | 7472 N | 0.28 | 74 LS138 | 0.60 |
| [M381N | 1.81 | NES532N | 1.85 | 7409N | 0.17 | 7473 N | 0.32 | 74141N | 0.56 |
| 2N419CE | 1.95 | SD6000 | 3.75 | 74LS09 | 0.24 | 74.513 | 0.38 | 74142N | 2.65 |
| NE544N | 1.80 | SL6270 | 2.03 | 7410 N | 0.15 | 7474 N | 0.27 | 74143 N | 3.12 |
| NES55N | 0.30 | SL6310 | 2.03 | 74LS10 | 0.24 | 74LS74 | 0.28 | 74144 N | 3.12 |
| NES56N | 0.50 | SL6600 | 3.75 | 7411 N | 0.20 | 7475N | 0.38 | 74 LS145 | 0.97 |
| NES60N | 3.50 | SL6640 | 2.75 | 74.511 | 0.24 | 7476 N | 0.37 | 74147N | 1.75 |
| NES62N | 4.05 | SL6690 | 3.20 | 7412 N | 0.17 | 74.575 | 0.38 | 74148 N | 1.09 |
| NE564N | 4.29 | SL6700 | 2.35 | 7413 N | 0.30 | 74.578 | 0.38 | 7415148 | 1.19 |
| NE565N | 1.00 | ICL8038CC | 4.50 | ${ }_{7414 \mathrm{~N}}$ | 0.51 | 7480 N | 0.48 | 74150 N | 0.99 |
| NE566N | 1.60 | MSL9362 | 1.75 | 74.515 | 0.24 | 7481N | 0.86 | 74151 N | 0.55 |
| NES70N | 3.85 | MSL9363 | 1.75 | 7416 N | 0.30 | 7482 N | 0.69 | 74.5151 | 0.84 |
| SL624 | 3.28 | HA11211 | 1.95 | 7417 N | 0.30 | 7485 N | 1.04 | 74153 N | 0.64 |
| tea651 | 1.81 | HA11223 | 2.15 | 7420N | 0.16 | 74.585 | 0.99 | ${ }_{7415153}$ | ${ }_{0} 0.54$ |
| UA709HC | 0.64 | HA11225 | 1.45 | 741520 | 0.24 | 74.586 | 0.40 | 7415 ¢N | 0.96 |
| UA709PC | 0.36 | HAL2002 | 1.45 | 7421 N | 0.29 | 7489 N | 2.05 | 74155 N | 0.54 |
| UA710日C | 0.65 | HA12017 | 0.80 | 74.521 | 0.24 | 7490 N | 0.33 | 74LS155 | 1.10 |
| UA710PC | 0.59 | HA12402 | 1.95 | 74238 | 0.27 | 74 LS90 | 0.90 | 74156 N | 0.80 |
| UA741CH | 0.66 | HA12411 | 1.20 | 7425 N | 0.27 | 7491 N | 0.76 | 74157 N | 0.67 |
| UA7410N | 0.27 | HA12412 | 1.55 | 7427N | 0.27 | 74.591 | 1.10 | 74 LS 157 | 0.55 |
| UA7470N | 0.70 | LF13741 | 0.33 | 74 LS27 | 0.44 | 7492 N | 0.38 | 74 SLS 58 | 0.60 |
| UA7488 | 0.36 | SN76660N | 0.80 | 7428 N | 0.35 | 74.592 | 0.78 | 74159 N | 2.10 |
| UA753 | 2.44 |  |  | 74.528 | 0.32 | 7493 N | 0.32 | 74160 N | 0.82 |
| LA758 | 2.35 | FREQUENC | C display | 7430 N | 0.17 | 74.593 | $0.99{ }^{-}$ | 74 LS160 | ${ }_{1.30}$ |
| TBAB10AS | 1.09 | \& SYNTHES | SISERICS | 74LS30 | 0.24 | 7494 N | 0.78 | 74161 N | 0.92 |
| TBAB20M | 0.75 | \& SYNTHES | Stics | 7432N | 0.25 | 7495 N | 0.65 | ${ }_{7415161}$ | ${ }_{0} 0.78$ |
| TCA940E | 1.80 | SAAL056 | 3.75 | 74LS32 | 0.24 | $74 \mathrm{LS95}$ | 1.14 | 7415162 | 1.30 |
| TDA1028 | 2.11 | SAALO58 | 3.35 | 7437N | 0.40 | 7496 N | 0.58 | 74163 N | 0.92 |
| tdaloz9 | 2.11 | SAALO59 | 3.35 | 7438 N | 0.33 | 74 LS96 | 1.20 | 74 LSS163 |  |
| tDal 054 | 1.45 | 11C90DC | 14.00 | 74LS38 | 0.24 | 7497 N | 1.85 | 74164 N | 1.04 |
| TDA1062 | 1.95 | LN1232 | 19.00 | 7440 N | 0.17 | 74 LS107 | 0.38 | 74LS164 | 1.30 |
| TDA1072 | 2.69 | L N1242 | 19.00 | 74 LS40 | 0.24 | 74109 N | 0.63 | 74165 N | 1.05 |
| TDA1074A | 5.04 | MSL2318 | 3.84 | 7441 N | 0.74 | 74LS109 | 0.70 | ${ }_{7415165}$ | 1.05 |
| TDA1083 | 1.95 | MMM5523 | 11.30 | 7442N | 0.70 | 74110 N | 0.54 | 74167 N | 2.50 |
| TDA1090 | 3.05 | MSM5524 | 11.30 | 74.542 | 0.99 | 74111 N | 0.68 |  |  |

 HA1
HAL
HNA M

430

ITLL Nand LSN $\quad 7443 \mathrm{~N} \quad 1.15 \quad 74 \mathrm{LS} 1120.38$
(

## VOLTAGE REGULATORS

| 74LS169 2.00 |
| :--- |
| 74170 N |
| 2.30 | $\begin{array}{ll}74170 \mathrm{~N} & 2.30 \\ 74 \mathrm{LS} 170 & 2.00\end{array}$ 74 LS170 2.00

74 IS 174 | 74 IS 174 C |
| :--- |
| 74175 N | $\begin{array}{ll}74175 N & 0.87 \\ 74 \mathrm{LS} 175 & 1.10\end{array}$ $\begin{array}{lll}74 \mathrm{LSL} 175 & 1.10 \\ 74176 \mathrm{~N} & 0.75\end{array}$ $\begin{array}{ll}74176 \mathrm{~N} & 0.75 \\ 74177 \mathrm{~N} & 0.78\end{array}$ $\begin{array}{ll}74177 \mathrm{~N} & 0.78 \\ 74181 \mathrm{~N} & 1.65\end{array}$ 74181 N

74 LS 181
74.50 $\begin{array}{ll}7445183 \\ 74.5183 \\ 74184 \mathrm{~N} & 1.35\end{array}$ $\begin{array}{ll}74184 \mathrm{~N} & 1.35 \\ 74185 \mathrm{~N} & 1.34\end{array}$ $\begin{array}{ll}74185 \mathrm{~N} & 1.34 \\ 74 \mathrm{LS} 190 & 0.92\end{array}$ $74192 \mathrm{~N} \quad 1.05$ $74 \mathrm{LS192} 1.80$ $74193 \mathrm{~N} \quad 1.05$ $\begin{array}{ll}74 \mathrm{LS} 193 & 1.80 \\ 74194 \mathrm{~N} & 1.05\end{array}$ $\begin{array}{ll}74194 \mathrm{~N} & 1.05 \\ 74196 \mathrm{~N} & 0.99\end{array}$ $\begin{array}{ll}74196 \mathrm{~N} & 0.99 \\ 74 \mathrm{LS} 196 & 1.10\end{array}$ 74LS196 1.10
74LS197 1.10 74LS197 1.10

74198N 1.50 $\begin{array}{ll}74198 \mathrm{~N} & 1.50 \\ 74199 \mathrm{~N} & 1.60\end{array}$ $\begin{array}{ll}74 \text { LS247 } & 0.93 \\ 74 L S 257 & 1.08\end{array}$ $\begin{array}{ll}74 L S 257 & 1.08 \\ 74 L S 260 & 1.53\end{array}$ | 74LS260 |
| :--- |
| 74LS279 | 74LS279 0.52

74LS283 1.20
7415293 $\begin{array}{ll}74 L S 293 & 0.95 \\ 74 L S 365 & 0.49\end{array}$ $74 L S 3650.49$
$74 L S 36600.49$
74453670.4 $\begin{array}{lll}74 L S 366 & 0.49 \\ 74 L S 367 & 0.43 \\ 74 L S 368 & 0.49\end{array}$ $\begin{array}{lll}74 L S 368 & 0.49 \\ 74 L S 374 & 1.80\end{array}$ 74LL374
74LS377 1.80
1.95 $\begin{array}{ll}74 L S 379 & 1.30 \\ 74 L S 393 & 1.40\end{array}$

TUNING DIODES

| TUNING DIODES |
| :---: |
| BA102 0.30 |
| EA121 0.30 |
| ITT210 0.30 |
| BB2048 0.36 |
| B81058 0.36 |
| B8109 0.27 |
| MMM125 1.05 |
| BB212 1.95 |
| KV1210 2.45 |
| KV1211 1.75 |
| KV1226 1.95 |
| KV1225 2.75 |
| KV1215 2.55 |
| KV1225 2.75 |
| SWITCHING AN |
| PIN DIODES |
| SHOTTKY DIODES |
| IN6263 0.62 |
| BA182 0.19 |
| BA244 0.17 |
| BA379 0.35 |
| TDA1061 0.95 |
| SIGNAL DIODES |
| 8 RECTIFIERS |
| IN4148 0.06 |
| 1N4001 0.06 |
| 1N4002 0.07 |
| 1N5402 0.15 |
| OA91 0.07 |
| AAll2 0.25 |
| BRIDEES: |
| 1A/50V 0.35 |
| 6A/200N 0.75 |

TRANSISTORS AUDIO DEVICES $\begin{array}{ll}\text { BC237 } \\ \text { BC238 } & 0.08 \\ & \end{array}$ \begin{tabular}{ll|l}
BC238 \& 0.08 \& CERAMIC 50 V <br>
BC239 \& 0.08 \& 2P2,3P3,4P7, <br>
BC307 \& 0.08 \& $2 P, 178,15 P$,

 

BC239 \& 0.08 \& $2 \mathrm{P} 2,3 \mathrm{P} 3,4 \mathrm{P} 7,6 \mathrm{FY}$ <br>
BC307 \& 0.08 \& $8 P 2,10 \mathrm{P}, 15 \mathrm{~F}, 18 \mathrm{P}$. <br>
BC 308 \& 0.08 \& $22 \mathrm{P}, 27 \mathrm{P}, 33 \mathrm{P}, 47 \mathrm{P}$
\end{tabular} 8P2,10P,15F,18P.. 0.04

22P, 27P,33F,47P 22P, 27P,33P,47P

56P,68P,82P,100P .0 .04 | BC 308 | 0.08 | $56 \mathrm{P}, 68 \mathrm{P}, 82 \mathrm{P}, 100 \mathrm{P}$ |
| :--- | :--- | :--- |
| BC 309 | 0.08 | $150 \mathrm{P}, 220 \mathrm{P}, 70 \mathrm{P}$ | OP. 0.05

$\ldots .0 .055$ 150P, 220p, 270P
$330 \mathrm{P}, 390 \mathrm{p}, 470 \mathrm{P}$. ... 0.055 330P,390P, 470P...0.05
1NO, 2N2, 3N3,4N7..0.06 10 N (0.01uF)..... 0.05 100N,220N. ............ 0.09 MONOLITHIC CERAMIC 1ON,100N. . . . ...... 0.16 FEEDTHRU
1NO SOLDER IN. . . 0.09 POLYESTER (SIEMENS)
10rm LEAD SPACING
$10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . \ldots . .0 .17$
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N}, \ldots .0 .19$
220N, 470N. .......... 0.22
luF.......................2
POLYESTER (GENERAL)
10nm LEAD SPACING
$10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . .0 .06$
$10 \mathrm{~N}, 15 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . .0 .06$
$47 \mathrm{~N}, 68 \mathrm{~N}, 100 \mathrm{~N} . . .0 .08$
$220 \mathrm{~N} . . . . . . . . . . . .$.
20 mm IEAD SPACING
20nm IEAD SPACING
$220 \mathrm{~N}, 330 \mathrm{~N}, 470 \mathrm{~N} . \ldots 0.1$ MYIAR
MYIAR
$5 m$ IEAD SPACING
$1 \mathrm{NO}, 10 \mathrm{~N}, 22 \mathrm{~N}, 33 \mathrm{~N} . .0 .08$
$100 \mathrm{~N} . . . . . . . . . . .$.
$100 \mathrm{~N} . . . . . . . . . . . . .$.
20 mm LEAD SPACING
20mm LEAD SPACING
22ON, 470N....... 0.1
POLYSTYRENE
TOKO COILS AND FILTERS IN OUR NEW P
CATALOGUE $100 \mathrm{uH}-33 \mathrm{~mA}$
10 RB series
10 RB series
$33 \mathrm{nH}-120 \mathrm{mH}$
10 REH serie

\section*{CRYSTAL FILTER PRODUCTS} 10.7 MHZ 2 POLE TYPES: ${ }^{2}$ LMM RED | $10 M 15 A$ | 15 KHZ EW | 2.49 | $3 M M$ | RED CIEAR |
| :--- | :--- | :--- | :--- | :--- |
| 0.12 |  |  |  |  | 10.7 MHZ 8 POLE TYPES: 10 M 4 Bl 15 kHz BW 14.50 $\begin{array}{lll}\text { H4402 } & 7.5 \mathrm{KHz} \text { BW } 15.50 \\ 15.50\end{array}$ 10 M 22 D 2.4KHZ SSB 17.20

HF FIRST FTLTER: HF FIRST FILTER:
B34F8A 34.5 MHz HF 32.00
RADIO CONTROL CRYSTALS (No spl $\begin{array}{ll}\text { AM TX:- } \\ \text { 3rd OT } 30 \mathrm{pF} & \text { HC25U } \\ 1.65\end{array}$ AM/FM RX:3rd or 30pF HC25U 1.65 FM TX :t- HC25 1.85 Pairs FM Pairs MM

## CRYSTALS

$\frac{32}{32.768} \mathrm{kHz} 2$.

| 32.768 kHz | 2.70 |
| :--- | ---: |
| 100 kHz | 3.85 |
| 155 kHz | 5.00 |

455 kHz
1.0 MHz
3.2768 NHz
4.000 NHz 2.00
4.19439 MHz 2.30
$6.5536 \mathrm{MHz} \quad 2.10$ 10.0 NHz
10.6985 MHz 2.50
10.7015 MHz 2.50
10.7015 MHz 2.50
$10.245 \mathrm{MHzz} \quad 2.50$
$\begin{array}{ll}10.7 \mathrm{MHz} & 3.00 \\ 11.52 \mathrm{Hzz} & 2.50\end{array}$
$\begin{array}{ll}11.52 \mathrm{Miz} & 2.50 \\ 100 \mathrm{MHz} & 3.00\end{array}$

SEE THE EXTENSIVE SECTION
IN OUR NEW PRICE LISTS AND

LF/HF FIXED INDUCTORS
-FULL E12 RANGE
$\begin{array}{ll}\text { 7EA series luH-1mH } & 0.16 \\ \text { 8R8 series } & \\ 100 \mathrm{uH}-33 \mathrm{mH} & 0.19\end{array}$
0.19
0.33

PIEZO SOUNDER
PB2720
0.55
$10 \mathrm{P}, 15 \mathrm{P}, 18 \mathrm{P}, 22 \mathrm{P}$
27P,47P,56P,68P..0.08 100P,180P,220P,
270P,330P,390P...0.09 $470 \mathrm{P}, 680 \mathrm{P}, 820 \mathrm{P} \ldots 0.10$ 1N0,1N2,1N5,1N8..0.11 2N2,2N7,3N3,3N9..0.12
$4 \mathrm{~N} 7,5 \mathrm{~N} 6,6 \mathrm{~N} 8,10 \mathrm{~N} \ldots 0.13$ TANTALUM BEAD CAPS 16v: 0.22,0.33,
$0.68,1.0 \ldots \ldots .0 .18$ $6 \mathrm{v} 3: 22,47 \ldots \ldots .0 .30$
$10 \mathrm{v}: 22,100 \ldots \ldots 0.35$

ALUMIN ELECTROLYTICS RADIAL (VERT. MOUNT)
(uF/voltage)
$1 / 63,2.2 / 50,4.7 / 35$
$10 / 16,15 / 16,22 / 10$
$10 / 16,15 / 16,22 / 10$
$33 / 6.3 \ldots \ldots \ldots \ldots .0 .08$
$33 / 6.3, \ldots \ldots$,
$22 / 16,33 / 10$,
47/10.............. 0.09 10/63,22/50,33/50, 47/16,100/16.....0.10
$47 / 63,100 / 25,220 / 16$ 470/6.3............. 12 470/6.3........
100/63,470/16, 1000/10............... 18 1000/16,470/63...0.23 1000/63,2200/16..0.30 3300/25................69 $1000 / 100 \ldots \ldots . . . .0 .88$ 10000/70...
AXIAL (HORIZ. MOUNT)
$1 / 25,4.7 / 16,6.4 / 25$
 $33 / 16 \ldots, 17 . . . .0 .09$
$47 / 25,100 / 16 . .0 .10$ 100/25..................11 2200/16, 1000/25...0.36 $1000 / 35,4700 / 16 \ldots 0.45$ SCHOTIKY DIOCE BAL $\begin{array}{ll}\text { SBLI } \\ \text { 1-500 MHz } & 4.25 \quad \text { LCD Module }\end{array}$ RESISTORS
0.25 W , 58 El2 CARBON $10 \mathrm{~cm}-10 \mathrm{M} . . . . . . .0 .02$
0.25 W 18 EL2 METAL FIL 1.1 chmm-1M..........0.05 HORIZ CARBON PRESETS 10 mm TYPE 100chms 2 2M5...... 0.12 HORIZ CERMET PRESETS
$1 \mathrm{k}, 10 \mathrm{k} . \ldots . \ldots \ldots .0 .27$

Please send an
SAE with all enquiries.
Access/Barclayod ( $\min £ 5$ please)
 delighted and amazed they will be to hear the musical Chroma-Chime play when they press your button!
The Chroma-Chime uses a microcomputer to play 24 well-known tunes. The kit is simplicity itself for ease of construction. Absolutely everything needed is supplied, including:
$\star$ Resistors, Capacitors,
Diodes, Transistors,
I.C. Socket and all hardware
$\star$ Texas Instruments TMS 1000 microcomputer

* Comprehensive kit manual with full circuit details
$\star$ Ready drilled and legended PCB included
ays 24 well-known tunes including:
Star Spangled Banner, William Tell Overture, Greensleeves, Rule Britannia, Colonel Bogey, Oh come all ye faithful, plus many other popular tunes.
$\star$ No previous microcomputer experience necessary
$\star$ All programming retained is on chip ROM $\star$ Fully guaranteed
$\star$ Ideal present any time


## TMS 1000N (M) miver

-MP0027A Micro-computer chip available separately required. Full 24 tune spec device fully guaranteed. This unnque chip can be used not only for electronic door chimes but for other projects requiring musical output Car Horns Musical Boxes Alinms Amusement Machines Public Addres


ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALLOW 7-21 DAYS FOR DELIVERY
O. CHROMATRONICS, RIVER WAY, HARLOW, ESSEX Telephone(0279)418611
NAME
ADDRESS

I enclose cheque/PO value $\mathcal{E}$ or debit my ACCESS/BARCLAYCARD account no

Signature

|  |  | VALVE MAIL ORDER CO. <br> Climax House <br> 159 Fallsbrook Road, London SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AZ31 | ${ }_{1 / 10}$ | $\begin{aligned} & \text { EM87 } \\ & \text { EN91 } \end{aligned}$ | 1.50 3.50 | $\begin{aligned} & \text { PY81 } \\ & \text { PY82 } \end{aligned}$ |  |  | 4.74 3.45 | 607 |  |
| CL33 | 1.10 2.00 | $\begin{aligned} & \text { EN91 } \\ & \text { EY51 } \end{aligned}$ | 1.60 1.75 | $\begin{aligned} & \text { PY82 } \\ & \text { PY83 } \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.70 \end{aligned}$ | 6ANBA <br> 6AO5 | 3.45 0.96 | 6SA7 | $\begin{aligned} & 1.45 \\ & 1.50 \end{aligned}$ |
| DY86/7 | 0.84 | EY86 | 0.84 | PY88 | 0.88 | 6AR5 | 1.98 | 6S. 7 | 1.60 |
| DY802 | 0.84 | EY88 | 1.75 | PY500A | 1.80 | 6AS6 | 4.98 | 6SK7 | 1.30 |
| E88CC | 3.36 | EY500A | 1.94 | PY800 | 0.84 | 6AS7GA | 6.75 | 6SL7GT | 2.68 |
| E180F | 8.40 | EZ80 | 0.84 | PY801 | 0.84 | 6AT6 | 0.85 | 6SN7GT | 1.60 |
| E810F | 14.47 | EZ81 | 0.84 | Qavo2-61 | 12.56 | 6AU5GT | 4.32 | 6SS7 | 1.80 |
| EABC80 | 1.20 | GY501 | 2.75 | QQVo3-10 |  | 6AU6 | 1.08 | 6SG7M | 2.50 |
| E891 | 0.82 | Gz32 | 1.25 |  | 5.80 | 6AW8A | 3.39 | $6 \cup 8$ | 0.80 |
| EBF80 | 0.50 | Gz33 | 4.00 | Qavo3-20 | 17.50 | 687 | 1.50 | ${ }_{6 \times 6 \mathrm{GT}}$ | 1.60 |
| E8F89 | 0.85 | G234 | 2.50 | - 1 | 17.50 | 688 | 1.75 | $6 \times 4$ | 1.20 |
| EC91 | 7.56 | G237 | 4.00 | QQvo6-40 |  | 68A6 | 1.00 | $6 \times 5 \mathrm{GT}$ | 0.88 |
| ECC33 | 3.50 3.50 | KT61 | 3.50 10.00 | ovo3-12 | 36.34 4.46 | 6BA7 | 5.12 | $7 \mathrm{7C5}$ | 2.98 |
| ECC35 | 3.50 0.88 | KT66 | 10.00 8.00 | Qvo3-12 | 4.46 4.25 | $68 \mathrm{E6}$ 68 H | 1.08 1.52 | $7 \mathrm{7C6}$ | 2.25 |
| ECC82 | 0.72 | KT88 | 8.00 12.00 | R18 | 4.25 1.20 | $68 \mathrm{H6}$ 68 J | 1.52 | 7S7 ${ }^{\text {12AT6 }}$ | 2.25 1.20 |
| ECC83 | 0.88 | N78 | 9.00 | SP41 | 6.00 | 6BN6 | 1.65 | 12 AT7 | 0.88 |
| ECC85 | 1.20 | OA2 | 1.60 | SP61 | 2.00 | 6BQ7A | 3.72 | $12 \mathrm{AU7}$ | 0.72 |
| ECC88 | 1.90 | OB2 | 2.55 | U19 | 13.75 | 6BR7 | 4.00 | $12 \mathrm{AX7}$ | 0.88 |
| ECC91 | 8.93 | OC3 | 1.92 | U25 | 1.16 | 68R8 | 1.75 | 12 BAG | 2.19 |
| ECF80 | 1.08 | 0 O 3 | 1.92 | U26 | 1.44 | 68S7 | 4.00 | $12 \mathrm{BE6}$ | 2.43 |
| ECH35 | 2.00 | PC86 | 1.40 | U37 | 9.00 | 68W6 | 4.00 | 12 BY 7 | 2.70 |
| ECH42 | 1.15 | PC88 | 1.40 | UABC8O | 1.25 | $68 W 7$ | 1.52 | 12BY7A | 2.70 |
| ECH81 | 1.20 | PC92 | 1.28 | UBF89 | 1.20 | 6826 | 2.37 | $12 \mathrm{HG7}$ | 4.17 |
| ECL80 | 1.00 | PC97 | 1.20 | UCH42 | 1.20 | 6C4 | 0.88 | 30FL1/2 | 1.12 |
| ECL82 | 1.00 | PC900 | 1.20 | UCH81 | 2.32 | 6C6 | 1.75 | 30 P 4 | 1.20 |
| ECL83 | 1.50 | PCF80 | 1.00 | UCL82 | 1.04 | 6CB6A | 2.49 | 30 P 19 | 1.20 |
| ECL86 | 1.20 | PCF82 | 1.00 | UCL83 | 1.44 | 6CD6GA | 5.07 | 30 PL 13 | 1.80 |
| EF37A | 3.50 | PCF86 | 1.60 | UF89 | 1.44 | $6 \mathrm{CH6}$ | 8.50 | 30 PL 14 | 1.88 |
| EF39 | 2.75 | PCF801 | 1.60 | UL41 | 2.50 | 6CL6 | 3.72 | 75 Cl | 2.35 |
| EF41 | 2.00 | PCF802 | 1.90 | UL84 | 1.20 | 6 CW 4 | 7.68 | 85A2 | 2.10 |
| EF42 | 2.00 | PCF805 | 1.60 | UY41 | 1.25 | 6D6 | 1.75 | 90 Cl | 2.35 |
| EF50 | 1.50 | PCF808 | 1.60 | UY85 | 1.04 | $6 \mathrm{DO5}$ | 5.94 | 15082 | 2.90 |
| EF54 | 5.00 | PCH200 | 1.60 | VR105/30 | 1.92 | 6EAB | 2.94 | 150 C 2 | 1.85 |
| EF55 | 2.50 | PCL182 | 1.00 | VR150/30 | 1.92 | 6EH5 | 1.85 | 150 C 4 | 2.30 |
| EF80 | 0.80 | PCL83 | 2.00 | 2759 | 16.80 | $6 F 6$ | 1.75 | 5728 | 27.50 |
| EF86 | 1.52 | PCL184 | 1.00 | 28034 | 7.90 | 6Gk6 | 2.67 | 805 | 20.00 |
| EF91 | 1.80 | PCL85 | 1.08 | 2 D 21 | 3.50 | 6 H 6 | 1.50 | 807 | 3.75 |
| EF92 | 5.81 | PCL86 | 1.08 | 3828 | 16.80 | 6HS6 | 3.77 | 811 A | 15.93 |
| EF183 | 0.80 | PCL805 | 1.08 | 4 CX 250 B |  | $6{ }^{6} 5$ | 2.50 | 812 A | 15.88 |
| EF184 | 0.84 | PD500 | 3.60 |  | 27.50 | $6 \mathrm{6J}$ | 3.50 | 813 | 74.67 |
| EH90 | 1.40 | PFL200 | 1.80 | 5R4GY | 2.00 | $6 J 7$ | 2.50 | 866A |  |
| EL32 | 1.50 3.50 | PL36 | 1.20 | 5 U 4 G | 1.52 | ${ }^{6 J 186 A}$ | 4.56 | 872 A | 18.67 |
| EL33 | 3.50 | PL81 | 1.20 | 5 V 4 G | 1.52 | 6JJ6C | 5.58 | 931 A | 14.76 |
| EL34 | 2.20 | PL82 | 1.20 | 5 F 3 GT | 0.85 | 6 K 4 N | 1.25 | 2050 |  |
| EL36 | 1.60 | PL83 | 2.22 | 523 | 1.50 | 6K6GT | 1.30 | 5763 | 3.75 |
| EL81 | 2.50 | PL84 | 1.08 | 524 GT | 1.50 | $6 \mathrm{K7} 7$ | 1.50 | 5814 A | 3.72 |
| EL84 | 1.00 | PL504 | 1.40 | $6 / 3 \mathrm{DL2}$ | 1.56 | $6 \mathrm{6K8}$ | 1.75 6.36 | 5842 | 12.09 6.85 |
| EL86 | 7.14 | PL508 | 1.80 3.20 | $64 B 7$ $64 H 6$ | 1.50 4.71 | 6KD6 $6 \mathrm{6LGG}$ | 6.36 2.50 | 6146A |  |
| EL95 | 1.32 | PL519 | 3.20 | 6AK5 | 3.60 | ${ }^{6 L 6 G C}$ | 2.50 | 61468 | 7.08 |
| EL360 | 8.50 | PL802 | 2.96 | 6AL5 | 0.82 | 6 L 7 | 2.00 | 6883B | 11.19 |
| EM81 | 1.00 | PY33 | 1.10 | GAM6 | 1.80 | 6La6 | 6.72 |  |  |
|  |  | en daily s, Tub | to call and T | on-Fri 9 a.m ors Close | $\text { m. }-5$ |  |  | $\begin{array}{r} 780 \\ 7586 \\ 7587 \end{array}$ | $\begin{array}{r} 10.14 \\ 17.49 \\ \hline \end{array}$ |
| Prices ex VAT add | uding 5\% | erms C. <br> Quotatio <br> Post |  |  | 2424 order |  | Telex 46708 | Prices when to pr | correct going ess |

## L.B. ELECTRONICS

SPECIAL OFFER: $5^{n \prime}$ LED displays. FND500 Full spec. 50p each, larger quantities P.O.A. P/P 25p
ASTEC UM1111 E36 Modulators (Pull Outs) 65p each, P/P 25 p
JUST ARRIVED: Battery eliminator 6V 200 mA , brand new 95p each. P/P 35 p . 5 K Multi turn trim pots, PCB Mounting, pack of $14 £ 2.50$. P/P 25 p. CAPACITOR SCOOP: 1600uf at $10 \mathrm{~V}, 160$ uf at 25 V axial lead 24 at $\mathbf{£ 1 . 0 0}$ (mixed). P/P 25p
GIVE AWAY: 22 pin low profile Dil socket, gold plated 12p each. 10 at £1.00. P/P 25 p.
PEWEC: Mini fans $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ approx. $115 \mathrm{~V} £ 4.50$. P/P £1.00.
TANTULUM CAPACITORS: 4.7 uf at 25 V 14 for $£ 1.00$. P/P 25 p .
LEDS: $2^{\prime \prime}$ Red 12p, TIL209 10p, OCP70 25p, 2114 (450NS) £4.50, 2526 Character Generator) £2.95. 2716 Eprom (single rail full spec.) $\mathbf{£ 9 . 9 5}$ P/P 25p.
*ALLI.C's POSTAGE AND PACKING 25p* *ALL PRICES INCLUSIVE OF V.A.T. $\star$ *MANY SURPLUS COMPUTER BARGAINS* ACCESS AND BARCLAYCARD ACCEPTED
L.B. ELECTRONICS

11 Hercies Road, Hillingdon, Middlesex UB10 9LS. Telephone: (89) 55399.

## £2 BARGAIN CAPACITOR PACKS

100-Mullard C280/C281 from $.01 \mu \mathrm{~F}$ to $1.5 \mu \mathrm{~F}$ at $250 \mathrm{~V} / \mathrm{W}$ : Good mixed selection and 25 mixed electrolytics from $10 \mu \mathrm{~F}$ to above $500 \mu \mathrm{~F}$. Mixed voltage working.

All for $£ \mathbf{£} .00$
plus P\&P.

## AERIAL BOOSTERS

Aerial amplifiers can produce remarkable improvement on the picture and sound in fringe or difficult areas.
B45 - For Mono or Colour this is tunable over complete UHF television band.
311 - For stereo or standard VHF/FM radio.

Next to the set fitting. Price £6.70 each.

Signal Injectors with (pre-set) variable AF, which emits RF harmonics into the UHF band. Protected up to 300 volts DC. Complete with leads $£ 5.70$ each.

All Prices include VAT at 15\%. P \& P per Order 30p. S. A.E. for Leaflets. Access Cards.
ELECTRONIC MAILORDER LTD,
62 Bridge St, Ramsbottom, via Bury, Lancs. BLO 9AGW.
Tel Rams (070 682) 3036.


Economy pack for general non-electrical use. Replaces solid wire and stick solder. (B.S. 219 GradeL). Econopak 200greel of 3 mm dia. Size 16A $£ 4.14$ per reel.


Toolbox Reels.
Multicore 5 -coresolder for general use. Suitablefor electrical joints (B.S. 219 Grade C). $40 / 60$ tin/lead. 1.6 mm dia. Size 3 . $£ 3.91$ per reel. Savbit.
Multicore 5 -core solder for radio, TV. and similar work Reduces copper erosion. Suitablefor service engineers and manufacturers using small quantities of solder. 1.2 mm dia. Size 12 . $£ 3.91$ per reel.


BibHi-Fi Accessories Ltd., (Solder Division),
Kelsey House, Wood Lane End,
Hemel Hempstead, Hertfordshire HP2 4RQ.
Telephone: (0442) 61291.

## Products that help you make a better job of it.



Metal Soldering.
Arax Multicore 4-acid-coresolderformetal fabrication (not aluminium) and repairs.
$40 / 60 \mathrm{tin}$ /lead. 1.6 mm dia. Size $11 . £ 3.91$ per reel.


Tip Kleen.
Multicore Tip Kleen. Soldering-iron tip wiping pad. Replaces wet sponges. (Should not beusedabove $350^{\circ} \mathrm{C}$ ). 81p per pack.


Soldering Flux Pastes.
Multicore soldering flux paste. Extra fast, noncorrosive, rosin-flux for electrical and general purpose soldering.
Rosin R.F10. 35 g net. 69 p per pack.
Multicore soldering flux paste for soft metals (except aluminium) and stainless steel. Non electrical.
Arax A.F14.35g.69p per pack.

All recommended retail prices shown are inclusive of VAT. If you have difficulty in obtaining any of these products send direct with 40 p for postage and packing. For free colour brochure send S.A.E.

BI-PAK Audio Modules are famous for their variety, quality of design and ruggedness. For over 10 years BI-PAK have been suppliers to manufacturers of high quality audio equipment throughout the world - to date, well over 100,000 modules have been sold - this is why discerning amateur enthusiasts insist on using BI-PAK modules in their equipment. They know that every item is designed and tested to do the job for which it is intended before it leaves the factory. Whatever you are building, there is a kit or module in the BI-PAK range to suit your every need from 5 watts to 125 watts, from amplifiers to equalisers. AND if you cannot see what you require in this advertisement, just write or phone us - we are waiting to help you!


## PHITS

STA5. 5 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL2O amplifiers, $1 \times$ PA 12 pre-amplifier, $1 \times$ PS 12 power supply, $1 \times 2036$ transformer and necessary wiring diagram
STA10. 10 watts per channel Stereo Amplifier Kit consisting of $2 \times$ AL30 amplifiers, $1 \times$ PA12 pre-amplifier, $1 \times$ PS12 power supply, $1 \times 2036$ transformer and necessary wiring diagrams

STA15. 15 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL60 amplifiers, $1 \times$ PA100 pre-amplifier, $1 \times$ SPM 80 power supply, $1 \times 2034$ transformer, $2 \times$ coupling capacitors for 8 ohms 470 mfd 30 v and necessary wiring diagram
£42.27


MONO PRE-AMPLIFIERS
MM100. Supply voltage $40-65 \mathrm{v}$ inputs: Tape Mag P.U. Microphone Max output 500 mv
£14.29
MM100G. Supply voltage $40-65 v$ inputs:
2 Guitars, Microphones Max output 500 mv
£14.29

## POWER SUPPLIES

PS12. 24v Supply. Suit: $2 \times$ AL10, $2 \times$ AL20, $2 \times$ AL30 \& PA $12 / \mathrm{S} .450$
£1.90
SPM80. 33 v Stabilised supply. Suit: $2 \times$ AL60, PA100 to 15 watts
SPM 120/45. 45 v Stabilised supply. Suit: $2 \times$ AL60, PA 100 to 25 watts
SPM120/55. 55v Stabilised supply. Suit: $2 \times$ AL80, PA200
SPM $120 / 65.65 \mathrm{v}$ Stabilised supply. Suit: $2 \times$ AL120, PA200, $1 \times$ AL250 $£ 7.34$
SG30. 15-0-15 Stabilised power supply for
$2 \times$ GE100MK 11
MPA30. Stereo Magnetic Cartridge Pre-Amplifier - input 3.5 mv Output 100 mv
S.450. Stereo FM Tuner Supply Voltage 20-30v - Varicap tuned
£29.40
STEREO 30. Complete 7 watt per channel Stereo Amplifier Board - includes amps, pre-amp. power supply, front panel, knobs etc requires 2050 Transformer
£24.25

## BHKTTS

STA25. 25 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL60 amplifiers, $1 \times$ PA100 pre-amplifier, $1 \times$ SPM120/45 power supply, $1 \times 2040$ transformer, coupling capacitors for 8 ohms 470 mfd 45 v , $1 \times$ reservoir capacitor 2200 mfd 100 v and necessary wiring diagram
STA35. 35 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL80 amplifiers, $1 \times$ PA100 pre-amplifier, $1 \times 2035$ transformer, $2 \times$ coupling capacitors 470 mfd at 50 v for 8 ohms, $1 \times$ reservoir capacitor 2200 mfd 100 v and necessary wiring diagram $\quad \mathbf{5 2 . 6 2}$

STA50. 50 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL120 amplifiers, $1 \times$ PA200 pre-amplifier, $1 \times 2041$ transformer, $2 \times$ coupling capacitors 1000 mfd 63 v ,
$1 \times$ reservoir capacitor 3300 mfd 100 v and necessary wiring diagram
£68.87
STA100. 100 watts per channel Stereo Amplifier Kit consisting of: $2 \times$ AL250 amplifiers, $1 \times$ PA200 pre-amplifier, $2 \times$ SPM120/65 power supplies, $2 \times 2041$ transformers, $2 \times$ coupling capacitors 1000 mfd 100 v and necessary wiring diagram $£ 97.38$
2041. 2 amp 0-55v-65v. Suit: SPM 120/55, SPM $120 / 65 \mathrm{v}$

## ACCESSORIES

139. Teak Cabinet. Suit: Stereo 30, $320 \times 235 \times 81 \mathrm{~mm}$
140. Teak Cabinet. Suit: STA15,
$425 \times 290 \times 95 \mathrm{~mm}$ BP100. Back Panel for PA100 \& PA200 £1.60 GE100FP. Front Panel for one GE100MK11
$£ 1.75$
141. Kit of parts including Teak Cabinet,
chassis sockets, knobs, to build 15 watt stereo amplifier
142. 1.7 amp 35 v . Suit SPM80
143. 2 mp 55 v .
144. 750 mA 17 v . Suit PS 12
145. $1.5 \mathrm{amp} 0-45 \mathrm{v}-55 \mathrm{v}$. Suit: SPM120/45, SPM 120/55v

Full data sheets are available FREE on request, please enclose a S.A.E.
Access and Barclaycards accepted - just telephone our Orderline - Ware (STD 0920) 3182. All prices include V.A.T., add 50p. postage per order. Terms: C.W.O., cheques,
Postal Orders payable to Bi -Pak at address below.


PACLINCAD
VSA

SEMICONDUCTORS
Dept. PW11, P.O. BOX 6, WARE, HERTS.
Tel: Ware (STD 0920) 3442. Telex: 817861.
Giro No. 388006.
Visit our shop at: 3, Baldock St, Ware, Herts.

## PRACTICAL ELECTRONICS PROJECT 125 WATT POWER AMP KIT



DIY STEREO BARGAIN PACKS FEATURING FAMOUS BUILT MULLARD PREAMP MODULES


## MULLARD STEREO PREAMP MODULES AND TWO 12 WATT POWER AMP KITS.

## BUILD A 12 WATTS PER CHANNEL STEREO AMPLIFIER $\mathbf{f 6} 00$ ACCESSORIES AND L.S. KIT EXTRA (not available separately) 00

In easy to build form
P.C.B.s backprinted, etched and drilled ready to use.

DIY PACK $12 \times$ power amp kits LP1182/preamp module, suitable for ceramic and auxiliary inputs.

DIY PACK $22 \times$ power amp kits LPI184 preamp module suitable for magnetic ceramic and auxiliary inputs.
f6.00
plus $f 1.10 \mathrm{p} \& \mathrm{p}$
f8.50
plus $f 1.15 \mathrm{p} \& \mathrm{p}$
DIY SPEAKER KIT Two $8^{\prime \prime} \times 5^{\prime \prime}$ approx 4 ohm bass.
£3.50
plus $\mathrm{f1} .70 \mathrm{p} \& \mathrm{p}$

## 12 + 12 WATT AMPLIFIER

KIT NOTE: tor use with 4108 ohms speakers.
With up-to-the-minute features. To complete you just supply screws. connecting wire and solder. Features include din input sockets for ceramic cartridge, microphone, tape or tuner
Outputs-lape, speakers and headphones. By the press of a button it transforms into a 24 watt mono disco amplifier with twin deck mixing. The kit incorporates a Mullard LP 183 pre-amp module, plus 2 power amplifier assembly kits and mains power upply. Also 6 push button switches. Silver finish fascia panel with atching knobs. Easy to assemble teak simulate cabinet and readr matching knobs Eas forter information instructions are made metal work. For further information instructions are available price 50 p . Free with kit

NOTE:
for use with 4108 ohms speakers.
f13.95
plus $£ 2.55 \mathrm{p} \& \mathrm{p}$

BSR chassis record player dec with manual set down and return complete with stereo ceramic
 purchased with amplifier available separately $\mathbf{£ 1 0 . 5 0}$ plus $£ 2.75$ p\&p. TWO WAY SPEAKER KIT. 2 Phillips $8^{\prime \prime}$ approx speakers $\mathbf{f 4 . 7 5}$ per stereo pair plus $\mathrm{f} 1.50 \mathrm{p} \& \mathrm{p}$ when purchased with amplifier available separately $\mathbf{f 6 . 7 5}$ plus f 1.50 p\&p.

ALSO AVAILABLE Stereo magnetic pre-amp conversion kit all components including P.C.B. to convert your ceramic input on the $12+12$ amp to magnetic. $\mathbf{f} \mathbf{2 . 0 0}$ when purchased with kit featured above. $\mathbf{£ 4 . 0 0}$ separately inc. p\&p.

OFFER!
SAVE MONEY by purchasing $12+12 \mathrm{amp}$ kit. BSR record deck and speaker kit together for only
£25.50 $p \& p f 4.50$

## PRACTICAL ELECTRONICS

 CAR RADIO KIT(Constructors pack 7)
f10.50


- Modern styling design * All new unused components - 6 watt output "Ready etched $\&$ punched P.C.B. - Incerporates suppression circuits *Now with tape input socket

All the electronic components to build the radio, you supply only the wire and solder as featured in the Practical Electronics March issue. Features: Pre-set tuning with five push button options. black illuminated tuning scale, with matching rotary control knobs. one, combining on/off volume and tone control, the other for manual tuning, each set on wood simulated fascia The P.E. Traveller has a 6 watts output, neg ground and incorporates an integrated circuit output stage. a Mullard IF module LP1181 ceramic filter type, pre-aligned and assembled and a Bird pre-aligned push button tuning unit. The radio fits easily in or under dashboards.
Complete with instructions.

## CONSTRUCTORS PACK 7A

Suitable stainless steel fully retractable locking aerial and speaker (approx. $6^{\prime \prime} \times 4^{\prime \prime}$ ) is $\mathbf{f} \mathbf{9 5}$ per pack pvailable aki cor NOTE: Constructor's pack 7A
sold complete with radio kit $\mathbf{£ 1 5 . 2 0}$ including p\&p. featured project in practical electronics.


## $30+30$ WATT STEREO AMPLIFIER

 BUILT AND TESTEDViscount IV unit in teak simulate cabinet silver finished rotary controls and pushbuttons with matching fascia, red mains indicator and stereo jack socket. Functions switch for mic magnetic and crystal pickups, tape and auxiliary. Rear panel features fuse holder. DIN speaker and input socket $30+30$ watts. RMS $60+60$ watts peak for use with 4 to 8 ohm speakers. Size $14 \% \times 10^{\prime \prime}$ approx.
READY TO PLAY $\mathbf{£ 3 2 . 9 0}$ plus
F3.30


323 EDGWARE ROAD, LONDON W2 2IC HIGH STREET. ACTON W3 6NG ACTON: Mail Order only. No callers ALL PRICES INCLUDE VAT AT $15 \%$ All items subject to availability. Price correct at 1.9.80 and subject to change without notice.

For further information send for instruction booklet. NOTE: $\quad 20 \mathrm{p}$ plus stamped addressed enveiope.
Persons under 16 years not served without parent's authorisation

BSR Manual single play record deck with auto return and cueing lever. Fitted with stereo ceramic cartridge 2 speeds with 45 rpm spindle adaptor ideally suited for home or disco use.
f12.25 PHILLIPS RECORD PLAYER

## DECK GCO37

Size approx $15 \%^{\prime \prime} \times 12 \%^{\prime \prime}$
player deck 2 spe damped cueing, auto shut-off, belt

BARGAIN OFFER!!


## ARISTON PICK UP

Ariston pick-up arm manufactured in Japan.
Complete with headshell.


Size approx $13^{\prime \prime} \times 11^{\prime \prime}$


Listed price over $f 30.00$
OUR PRICE plus $62.50 \mathrm{p} \& \mathrm{p}$

## 100 WATT

 MONO DISCO
## AMPLIFIER

Brushed aluminiou fascia and rotary controls. Size approx $14^{\prime \prime} \times 4^{\prime \prime} \times 10 \%$. Five vertical slide controls, master volume, tape leverl, mic level, deck level, PLUS INTER DECK FADER for perfect graduated change from record deck No. 1 to No. 2. or vice versa. Pre fade level controls (PRL) lets YOU hear next disc before fading it in. VU meter monitors output level. Output 100 watts RMS 200 watts peak.

## 50 WATT MONO DISCO AMPLIFIER

Size appox $13 \%^{\prime \prime} \times 5 \% 4^{\prime \prime} \times 634^{\prime \prime} .50$ watts rms. 100 watts peak output. Big features include two disc inputs, both for ceramic cartridges, tape input and microphone input. Level mixing controls fitted with integral push-pull switches Independent bass and treble controls and master volume.
£30.60
plus f 3.20 p\&

Parsonal Shoppers EDGWARE ROAD LONDON W2 Tel: $01-723$ 8432. 9.30am-5.30pm. Closed all day Thursday ACTON: Mail Order only. No callers goods despatcheo to mumumo amo m. ineund onty

THE long-awaited Home Office Green Paper on the UK version of Citizens' Band-Open Channel, a Discussion Document-has proved to be something of a non-event. It devotes fourteen pages to saying what could equally well be said in about four, the sum total of which is:

1. To minimise interference with domestic radio and TV, a frequency just above 928 MHz is favourite. It says that some other countries are looking at CB in the same band, but neglects to point out that they are also looking at the effects on the human body of radiation at those frequencies. There appears to be a definite link with cataracts of the eye, a significant point when considering the use of hand-portable transceivers with integral microphones. 2. An ultimate allocation of 40 channels at 25 kHz spacing is envisaged, though the question of what modulation mode should be used is ignored completely.
2. A range of 15 km (just over 9 miles) is thought adequate and desirable. However, the paper then goes on to quote test results from several sources to prove that in practice, ranges are likely to be between 10 and 50 per cent of this distance.
3. The Home Office intends to wash its hands of any involvement whatsoever in trying to control in-band interference, so the jammers, the music players, the heavy breathers, etc., etc., will have a free rein!

Send for your copy of Open Channel to: Officer in Charge, Home Office, Supply and Transport Branch, Royston Road, Cambridge CB2 8PN, and get your comments in to the Radio Regulatory Department of the Home Office by November 30 at the latest.

THIS month we are introducing several changes and new features to Practical Wireless, largely as a result of suggestions and requests from our readers. And there will be more new features coming into the magazine over the next few months. We hope that they will turn out to be just what you wanted, and would like to say a big thank you to all who took the trouble to send us their views.

For an explanation of the new "Rating" system for constructional articles, see below.

I AM sorry that some readers writing to us with queries in the past few months have had a very long wait for answers. Two of our technical staff recently decided that journalism was not for them, and have left us to resume their careers in industry, leaving us very short-staffed. We have now filled the gaps, and hope that we shall be well on the way to clearing the backlog of letters by the time this issue is published.

$\rho$


## QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components for our projects are usually available from advertisers. For more difficult items, a source will be suggested in the "Buying Guide" box included in each constructional article.

## SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 11.80$ per annum, from "Practical Wireless" Subscription Department, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS. Airmail rates for overseas subscriptions can be quoted on request.

## BACK NUMBERS AND BINDERS

Limited stocks of some recent issues ci PW are available at 95 p each, including post and packing to addresses at home and overseas.

Binders are available (Price $£ 4.30$ to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

## PROJECT COST

The approximate cost quoted in each constructional article includes the box or case used for the prototype. For some projects the type of case may be critical; if so this point will be mentioned in the Buying Guide.

## CONSTRUCTION RATING

Each constructional project will in future be given a rating, to guide readers as to its complexity:

## Beginner

A project that can be tackled by a beginner who is able to identify components and handle a soldering iron fairly competently. Generally this category will be used for simple projects, but sometimes for more complicated ones of wide appeal. In this case, construction and wiring will be dealt with in some detail.

## Intermediate

A project likely to appeal to a wide range of constructors, and requiring only basic test equipment to complete any tests and adjustments. A fair degree of experience in building electronic or radio projects is assumed.

## Advanced

A project likely to appeal to an experienced constructor, and often requiring access to workshop facilities and test equipment for construction, testing and alignment. Constructional information will generally be limited to the more critical aspects of the project. Definitely not recommended for a beginner to tackle on his own.


## Amateur Radio Supplies

As from 1 August 1980, a new amateur radio communications shop has been opened at Kempston near Bedford.

The new company, named Bedford Audiocom, at present hold agencies for Yaesu, FDK, Jaybeam and Bantex, and others will follow. Bedford Audiocom intend to specialise in mobile and portable rigs and a wide range of aerials and accessories.

Further information from: Bedford Audiocom, 76 Bedford Road, Kempston, Beds. MK42 8BB. Tel: Bedford (0234) 854133.

## New Component Centre

A new component shop has recently been opened by Riscomp Ltd. in order to supply a wide range of components, test equipment and books to the amateur and enthusiast.

In addition, the full range of audio modules from Autona Ltd. will be stocked.

Opening hours are, Monday to Saturday 9.00am to 5.00 pm , closed all day Wednesday.

Riscomp Ltd., 21 Duke Street, Princes Risborough, Bucks. Tel: 1084 44) 6326 .

## Solent Audio 80

Hamilton Electronics Ltd. of Southampton are the host exhibitor at Solent Audio 80. which is being held on 25 and 26 October.

Solent Audio is now established as a major regional Hi-Fi show and this year is supported by thirty leading manufacturers.

Three complete floors have been booked at the Post House Hotel, Southampton, and each exhibitor will have an individual demonstration room. Representatives of the manufacturers will be in attendance throughout the show.

Further details from: Hamilton Electronics 'Ltd., 35 London Road, Southampton SO1 2AD. Tel: (0703) 28622.


## Bandstand Monthly

"Bandstand", the monthly publication of a group promoting the legalisation of CB Radio, is having to increase its cover price.
I understand from its Editor, Mike Evans, that the circulation of "Bandstand" is increasing very nicely.

The new price for "Bandstand" is 25 p per copy, or a 12 -month subscription for $£ 4.44$ (1st Class Post) and $£ 4.20$ (2nd Class Post). Applications should be sent to: B.M. Bandstand, London WC1V 6XX.

## Special Event

Ormskirk Amateur Radio Club will be operating a special amateur radio station GB2MS, for the Jamboree on the Air, to be held on 18 and 19 October 1980, from the 8th Sefton East Scout Group HQ, United Reformed Church, Horthway, Maghull, Nr Liverpool.

Operation will be on all h.f. bands between 1300 and 1700, on both days. It is hoped to interest the scouts in the hobby with various constructional projects, demonstrations and to run a course for the Scout "Communications" badge.

Further details from: P. J. Kay G4GCB, "Norin", 6 Shireoaks, Belper, Derbyshire.

## Diary Date

The British Amateur Television Club are holding their "BATC Convention $80^{\prime \prime}$ on 5 October 1980 at the Post House Hotel, Braunston Way, Leicester.

The hotel is located off the A46 about one mile from the M1 motorway.

There will be many attractions for the amateur TV buff.

Details from: Mike Cox GBHUA, 16 Woodclose Road, Scunthorpe, South Humberside DN17 1 RU.

## Nascom Exercise Programs

A booklet of BASIC games programs for the Nascom 1 and 2 microcomputers entitled "BASIC Programs Book $1^{\prime \prime}$ has been produced by the International Nascom Microcomputer Club priced $£ 2.50$ plus 40 p postage.

Ten programs have been "LISTed" from programs running in a Nascom using the 8 K BASIC and are primarily intended as exercises in learning how to use the machines. Although they all run, the INMC recommends users to enter the programs and not only to make them work but also to study how they work.

The booklet, additionally, lists a number of sub-routines and a complete table of HEX codes for reserved words and graphics, and offers guidance on overcoming two minor bugs and dealing with "Listening to Tape" in BASIC using NAS-SYS 1 and NAS-BUG.

The booklet is available from the: INMC, clo Oakfield Corner, Sycamore Road, Amersham, Bucks.

## Disco D.I.Y. Centre

Roger Squire's have recently opened their sixth outlet in Ilford, Essex.

As usual with all Squire's shops a big range of spares and d.i.y. products will be available for the Disco operator.

The product range will include, speaker chassis, turntables, cartridges and stylli, plugs, sockets, bulbs, spots of many different types, and all types of cable for Discos and lighting rigs.

The new Roger Squire's shop is at: 415 Ilford Lane, Ilford, Essex. Tel: 014781153.

##  Laree

## ALAN IMARTIN GBZPW

## New Scanning Receiver

The SX-200 Scanner covers the bands $26-88 \mathrm{MHz}, 108-180 \mathrm{MHz}$ and $380-514 \mathrm{MHz}$ on both a.m. and f.m. modes, and incorporates a digital clock.

Frequency entry is by keyboard, and the SX-200 will scan the channels stored in its 16 memories or search any band between user-programmed limits. Two-speed scanning or searching, and optional scan delay are featured.

Either the integral whip or external $50-75 \Omega$ antennas may be used, and there is a switched 20 dB attenuator for local reception. The power supply is 12 V d.c., or a.c. mains via an external adaptor.

## Portable Cap. Meter

The recently introduced Model 820 portable capacitance meter from Havant Instruments Ltd., is an economical multi-range instrument combining digital accuracy with complete portability. Its ten ranges cover capacitances from $0 \cdot 1 \mathrm{pF}$ to 1 farad.


The SX-200 measures just $75 \times$ $210 \times 235 \mathrm{~mm}$ and weighs around 2.8 kg . It is priced at $£ 241.50$ which includes VAT and $p \& p$, and is available from: Gareth Electronics, 7 Norvic Road, Marsworth, Tring, Herts. HP23 4LS. Tel: Cheddington (0296) 668684.


Accuracy is $0.5 \%$ or $1 \%$ of full scale, and resolution down to 0.1 pF according to range.

In use, the capacitor leads are simply inserted into a pair of slots and the capacitance is indicated on the clear 4-digit l.e.d. display. A flashing display provides overrange indication. Provision is also made for using jack plugs when measuring in-circuit capacitances.

Housed in a robust moulded case, the 820 weighs only $675 \mathrm{~g}(1.51 \mathrm{lb})$ and is powered by either rechargeable or disposable cells, facilities for using a charger are provided. A tilt stand, spare fuse and 26 -page operating manual are also supplied.

Costing $£ 80$ plus VAT, the unit is obtainable from: Havant Instruments Ltd., Unit 3, Westfields, Portsmouth Road, Horndean, Hants. Tel: (0705) 596020.

## If you please

Please mention "Production Lines", when applying to manufacturers or suppliers featured on this page.

More on pages 73 and 74

## Cassette Eraser

S.G.I. Ltd. is marketing a video eraser which will erase video and audio cassettes and tapes in seconds.

Called the Videoraser, it is used instead of the recorders own internal mechanism and leads to a reduction of wear on the video head and consequently their costly replacement.

It is claimed to erase 100 times better than a recorder thus enabling higher re-recording standards to be achieved and prolong the usable life of the tape. The Videoraser measures $120 \times$ 114 mm , weighs 2 kilos, is powered by a.c. mains and provides a magnetic flux of 1400 gauss which makes it possibly the most powerful eraser of its type and can erase a two inch cassette.

Costing $£ 56.93$, VAT included, it is a worthwhile investment for the domestic user and can be obtained on a cash-with-order basis from: S.G.I. Ltd., Fircroft Way, Edenbridge, Kent TN6 6HA. Tel: (0732) 864111.


## Safety Tape

An increasing number of yachts and small boats are being fitted by their owners with v.h.f radiotelephone equipment, as a means of keeping in touch and of summoning help in an emergency. As the marine v.h.f. band gets busier, it is more important than ever that the correct operating procedure is used. In fact, life could depend on it.

A novel way of learning that procedure is from a pre-recorded stereo tape cassette, part of a package called the "VHF Guide". The cassette covers just about every eventuality, including making a link telephone call, talking to coastguards, marinas and port operations stations, listening to weather and navigation warning broadcasts, and, most important, making emergency and distress (Mayday) calls. There is also
information on licensing the station and operators.

A handy reference booklet and a Mayday "prompt" card complete the package, which was prepared in close co-operation with HM Coastguard, the British Post Office and the Royal Yachting Association.

The VHF Guide costs $£ 5.95$ plus $45 p$ postage and packing from: Double-Tee Productions, 35 Mall Road, London W6 9DG.

No doubt most readers are already equipped to measure resistance since resistance measuring ranges are a feature of every multimeter. However, analogue test meters normally use a very simple form of resistance meter circuit which basically just consists of adding the meter, a battery, a variable resistor, and the test resistor in series. The variable resistor is adjusted for full-scale deflection of the meter with the test prods shorted together, and adding a resistor across the test prods then results in reduced current flow and a correspondingly lower meter reading.

This produces the familiar and rather inconvenient reverse reading resistance scale. The scale is also nonlinear with severe cramping at the high-resistance end, and this also tends to be a little inconvenient and with rather poor accuracy.

## Linear Scale

The conventional method of obtaining a forward reading linear resistance-scale is to feed the test resistor from a constant current source and measure the resultant voltage using a high impedance voltmeter, which will not draw a significant proportion of the constant current generator's output.

The voltage needed to drive a given current through a resistance is obviously dependant upon the value of the resistance, and will rise in proportion to the value of the resistance. For example: 1 volt is needed in order to drive 1 ampere through 1 ohm. Doubling the resistance to 2 ohms would require 2 volts for the same current flow, 3 ohms would need 3 volts, and so on. Thus a forward reading linear scale is produced.

Circuits of this type often use current source and meter circuits which fall clearly into two separate sections, but


Fig. 1 (a)


Fig. 1 (b)
others use a disguised form of circuit which employs operational amplifier techniques. The unit described in this article falls into the latter category, and this enables an extremely simple circuit to be used. In fact this circuit is not really much more complicated than the ordinary resistance meter circuit, and the unit is well within the scope of any constructor, including the beginner.

## Circuit Operation

The unit is based on an operational amplifier connected in the non-inverting amplifying mode. The circuit of Fig. 1(a) shows this basic amplifying arrangement. The input is applied to the non-inverting ( + ) input and a negative feedback loop consisting of two resistors is connected between the output and inverting $(-)$ input.

The voltage gain of this circuit is equal to $(\mathrm{Ra}+\mathrm{Rb})$ divided by Ra. This is because the output voltage is equal to the voltage difference across the inputs multiplied by the open loop voltage gain of the operational amplifier.

Theoretically an operational amplifier has infinite gain


Fig. 2: The complete circuit diagram of the resistance meter



## ALSO A MATCHING VIDEO DISPLAY UNIT MODEL CD300 especially designed for the RTTY ENTHUSIAST!

The video display unit is designed to be an all-electronic replacetages of bulk, unreliability and noise.

The basic function is to take Murray Code - either from a Terminal Unit (on receive) or from a Keyboard - and produce a complete TV into the aerial of an ordinary domestic TV set. for transmit purposes.

16 lines per page. 64 characters per line.
TTL compatible input. Standard IV video output.
Flashing cursor. Auto-scroll at end of page. Front panel controls for:
Letter shift. Figure shift. Page reset. Carriage return. Line feed.
Built-in mains P.S.U. Styled to match the Catronics CT100 Terminal Unit. Cabinet size $9^{\prime \prime} \times 2 \frac{1^{\prime \prime}}{} \times \mathbf{7}^{\prime \prime}$ approx.

Now with built-in UHF Modulator for only $£ 170$ incl. VAT (plus $£ 2.50$ delivery).

\section*{PLESSEY SL1600 Series ICs} | SL1610 $£ 1.62$ | SL1611 $£ 1.62$ | SL1612 $£ 1.62$ | SL1613 $£ 2.30$ |
| :--- | :--- | :--- | :--- | :--- |
| SL1621 $£ 2.15$ | SL1623 $£ 3.20$ | SL1626 £2.60 | SL1630 $£ 2.15$ |
| SL1640 $£ 2.42$ | SL1641 $£ 2.42$ |  |  |

Other parts for SSB transceiver also available.
ALL PRICES INCLUDE VAT but please add $\mathbf{4 0 p} \mathbf{~ m i n}$. postage. Access and Barclaycards welcome

COMMUNICATIONS HOUSE
20 WALLINGTON SQUARE,
WALLINGTON, SURREY SM6 8RG. Tel: 01-669 6700.

Shop/showroom open Monday-Friday: 9-5.30
(closed for lunch: 12.45-1.45) Saturdays: 9.00-1.00.

## NEW MAIL ORDER SERVICE FOR CONSTRUCTORS IN DEVON \& CORNWALL

I.Cs., all discreet components, die cast \& instrument cases, S.Dec breadboards, matrix \& copper clad boards, panel meters and speakers, $A C / D C$ convertors, DC adaptors, in fact everything the constructor may require

## ENQUIRIES WELCOME

also: soldering irons, multimeters, transisor testers, SWR meters, test leads etc.
SPECIAL OFFERS:- mains neons (amber + red) 30p. S.P.S.T. toggle switches © 38p. D.P.D.T. toggles e 50 p. plus special offers on headphones (from $£ 3$ ) etc.


Providence Street, North Hill, Plymouth. PL4 8JG Tel. (0752) 21581-2

Callers welcome 9 a.m.-5.30 p.m. Mon.-Sat. inc.
P.A. equipment, scanning monitors, mobile radio accessories/aerials also stocked.

## STEPHENS-JAMES LIMITED

COMMUNICATION ENGINEERS
47 WARRINGTON ROAD, LEIGH WN7 3EA
ENGLAND

## Telephone (0942) 676790

Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers, Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp . Antenna switches-converters. Aluminium masts-clamps. Antenna rotators.

Trio R1000 Receiver
Trio R1000 Roceiver
Digital readout general coverage receiver
covering 200 KHz to 30 MHz with a synthesiser. Also incorporating quartz digital clock. £298.00.
Trio R820
Amateur Band Receiver $£ 690.00$
Send for full specifications of our full range of receivers covering from 200 KHz to 520 MHz . Our secondhand equipment changes daily. Send SAE for up to date lists. Part exchange cash.

We have a good range of secondhand equipment at all times. Send large S.A.E. a week.

Bearcat 220FB Receiver
Scanning Receiver. $66-88 \mathrm{MHz}-118$ $136 \mathrm{MHz}, 144-148 \mathrm{MHz}-144-148 \mathrm{MHz}$. $420-450 \mathrm{MHz}-450-470 \mathrm{MHZ}, 470-512 \mathrm{MHz}$ E258.75. Band Receivers details of our range Aircraft Band Receivers.


Size/Cell
4.8V Pack
6.0V Pack
9.6V Pack


VARTA BUTTONS (1-24V PER CELL)

225 mA DKZ 25 mm dia $\times 9 \mathrm{~mm}$ £3. 20

VAT included P+P60p per order RECHARGEABLE BATTERIES.

600 mA DKZ
$34 \frac{1}{2} \mathrm{~mm}$ dia $\times 10 \mathrm{~mm}$
£5.55
£6.94
£ 11.10

CYLINDRICAL NICADS HP7 Size 80p only: HP11 Size £2.35: HP2 Size £3.20: PP3 £4.00: PP3 Charger $£ 5.00$.
CONSTANT CURRENT CHARGER - Switched $9 \mathrm{~mA} / 25 \mathrm{~mA} / 50 \mathrm{~mA}$ $120 \mathrm{~mA} / 200 \mathrm{~mA} / 400 \mathrm{~mA}$ output - charges 1 to 12 nicads - $£ 13.95$.

V \& F SMALLCRAFT (POPLAR) LTD
38, STONELEIGH ROAD, CLAYHALL, ILFORD, ESSEX
Tel: 01-550-6642
limited trade discounts possible on deacs.
and any difference between the input voltages will result in the output going fully positive if the ( + ) input is at the higher potential, or fully negative if the $(-)$ input is at the higher voltage. Practical operational amplifiers do not achieve theoretical perfection of course, but their open loop gain is normally in the region of 200000 times and can be regarded as infinite for most practical purposes.

In the circuit of Fig. 1(a), applying an input voltage will unbalance the inputs and cause the output voltage to rise or fall, depending upon the polarity of the input signal. As it does so, due to the coupling through Rb it will raise or lower the voltage at the inverting input, as appropriate, and once again balance the inputs.

If Rb has a value of zero, the output will assume the same potential as the non-inverting input in order to balance the input potentials. If Ra and Rb have the same value, then due to a potential divider action the output must be double the input voltage in order to balance the inputs. Making Rb two times the value of Ra will produce an output voltage three times that of the input voltage, since the potential divider action across Ra and Rb will result in only one third of the output voltage appearing at the inverting input. It will be apparent from this that the equation given earlier is, therefore, correct.

This resistance meter circuit uses the basic configuration shown in Fig. 1(b). Here a stable reference is applied to the non-inverting input, and Rb is the test resistance. A voltmeter is connected between the operational amplifier output and the reference voltage.

If, for the sake of this example, we assume that the reference voltage is 1 volt and Ra is $1 \mathrm{k} \Omega$, with Rb at zero the circuit will have unity gain and the meter will read zero because 1 volt will be present at both its terminals. If Rb is raised to $1 \mathrm{k} \Omega$, the circuit will have a voltage gain of two, 2 volts will appear at the amplifier output, and the meter will register the 1 volt developed across its terminals. With Rb at say $5 \mathrm{k} \Omega$, the circuit will have a voltage gain of six, 6 volts will appear at the output of the amplifier, and the meter will register the 5 volts present across its terminals.

This gives the required forward reading linear scale resistance meter action with the meter reading being proportional to the test resistance. Note that the current through Ra and Rb is constant and does not vary with changes in the value of Rb , and that the voltmeter reading is equal to the voltage across Rb . The circuit is therefore really using the constant current generator/high impedance voltmeter system mentioned earlier, but in a disguised form.

The complete circuit diagram is shown in Fig. 2.
A reference voltage of about 0.6 volts is provided by

forward biased silicon diode D1. R7, R8 and M1 comprise the voltmeter circuit which has a sensitivity of about 6 volts f.s.d. (i.e., ten times the reference voltage). The voltmeter sensitivity can be varied to some extent by adjustment of R7 for calibration purposes. R2 to R6 are the equivalent of Ra in Fig. 1(b), and one of these is selected by SI . This provides the unit with five measuring ranges of $0-1 \mathrm{k} \Omega, 0-10 \mathrm{k} \Omega, 1-100 \mathrm{k} \Omega, 0-1 \mathrm{M} \Omega$, and $0-10 \mathrm{M} \Omega$.

C 2 is the compensation capacitor for IC1, which is a CA3130 device. This particular operational amplifier has been chosen because it has an extremely high input impedance of typically $1500000 \mathrm{M} \Omega$, and this removes inaccuracies on the higher ranges due to the input impedance of the amplifier shunting the lower feedback resistor. It is also necessary to use a device, such as the CA3130, that operates with its inputs and output close to the 0 V rail.

With S1 in the position shown, the circuit works normally, but when it is in the alternative position the meter is disconnected from the main circuitry and is connected across the supply lines via R9. This converts M1 to a

## components




Fig. 3: The p.c.b. copper track pattern is shown full size at the top. The component placement is indicated, together with the other wiring above


$0-10 \mathrm{~V}$ voltmeter which can be used to check the loaded supply potential. The battery should be replaced when this falls much below 8 V .

C 1 is a supply decoupling capacitor and S2 is the on/off switch. A non-locking push-to-make type is used here as the supply should only be connected when a test resistor is connected into circuit and a measurement is actually to be made. This is because the meter will be driven beyond f.s.d. with no test resistor in circuit. The circuit has been designed so that a maximum meter overload of only about 50 per cent can occur, and while this is unlikely to damage the meter it is not advisable to risk this.

Current consumption is about 4 mA , or so on all ranges except $1 \mathrm{k} \Omega$ when it is approximately 9 mA , and this can be supplied by a PP3 or other small 9 volt battery.

## Construction

A $188 \times 110 \times 60 \mathrm{~mm}$ plastic case is used to house the prototype, but the unit could be fitted into a much smaller case if desired. The general arrangement of the unit is not critical and any sensible layout can be used.

R2 and R6 are mounted direct onto S1 and the other small components are assembled on a small printed circuit. Once this board and the other wiring have been completed, the p.c.b. is mounted on the meter terminals. Details of the p.c.b. and wiring are illustrated in Fig. 3.

## Calibration

In order to calibrate the unit a close tolerance resistor, 1 per cent or better, having a value equal to the f.s.d. value of one range of the unit is required. With this connected across the test clips, S1 switched to the appropriate range, and with R7 initially set for maximum resistance (fully clockwise), S3 is depressed and R7 is adjusted for precisely full scale deflection of S1. The resistance meter is then ready for use.

## introducing <br>  part 3 Jeff MAYNARD G4EJA

We have already seen in Part One of this series that the simplest method of generating RTTY for transmission is with an AFSK unit. This can then produce AFSK or FSK by modulating the appropriate transmitter. Accordingly, it is not proposed to discuss any FSK circuits in detail. Various suggestions for producing AFSK are given below; however, before that is done it will be helpful to consider interface circuits again so that the AFSK units need only be designed for TTL-compatible input operation.

The most common terminal output arrangement is the two-way switch biased to mark as shown in Fig. 21. In a TTY system this could be arranged with -80 V on the mark contact and +80 V on the space so that the tongue switched between these two values. It is just as easy, however, to arrange for the tongue to be grounded and the mark and space contacts used to switch a flip-flop as shown in Fig. 22 (which also serves to debounce the input).

Conversion of 80 V signals can be done simply by using a potential divider as shown in Fig. 23. A safer method is

Fig. 21: The most common terminal output arrangement, a switch biased in the marked condition

Fig. 22: An alternative form of terminal output, a flip-flop which also "de-bounces" the switch contact


Fig. 23: The simplest method of converting. 80 volt signals down to TrL levels, but not the safest. Consider, for instance, the result of the $470 \Omega$ resistor going open-circuit


Fig. 24: A more reliable method of 80 volts to TTL conversion, where an opto-isolator gives complete electrical separation between the two circuits
to isolate the 80 V supply completely from the TTL circuitry by means of an opto-isolator as shown in Fig. 24.

In these methods only the +80 V supply is needed and is connected to the space contact. An advantage of using 80 V is that the terminal contacts are "wetted" at each changeover and are thus, as intended, kept free of oil and other contamination from the mechanical parts of the terminal. The opto-isolation method can of course be changed for other voltages, simply by altering the value of the resistor in series with the l.e.d.

## Generating AFSK

Having developed a TTL-compatible signal as the output of the terminal (with 1 representing mark and 0 representing space), the next task is to produce an AFSK signal, with an output of 1445 Hz for mark and 1275 Hz for space. Four basic methods are available for the generation of AFSK signals: switching betwen two oscillators; switching the frequency-determining element of a single oscillator; variable division of a crystal-controlled oscillator and use of a special integrated circuit.

For the first method, almost any type of audio frequency oscillator can be used-f.e.t., multivibrator, 555 and so on. For example, two circuits based on Fig. 25 could be used with a suitable switching mechanism.

A reduced component count is one advantage of the second method-using a single oscillator with alternative frequency-determining components, rather than two distinct oscillators. Again, any number of different types of oscillator can be employed. RTTY The Easy Way uses a simple two-transistor multivibrator that the author used for many successful QSOs. This circuit is shown in Fig. 26. The pre-set potentiometers should be of the multi-turn variety. With a mark input, the $10 \mathrm{k} \Omega$ pot is adjusted for 1445 Hz output; then the $5 \mathrm{k} \Omega$ pot is adjusted for 1275 Hz output with a space input, the latter pot being switched in and out of circuit by the BC108 transistor.


Fig. 25 A
Fig. 26

 integrated circuit

Generating AFSK tones by division of a crystalcontrolled oscillator is a useful method, particularly if an accurate source of, say, 1 MHz is already available from a counter, MPU or other test oscillator.

Division of 1 MHz by 784 and 692 respectively will produce outputs of 1275 Hz and 1445 Hz , both within 1 Hz of the desired frequency. This is easily done with 7493 dividers as shown in Fig. 27, which also shows an optional crystal-controlled oscillator. The 555 timer is used to lengthen the very short reset pulses from the gate, in order that the ouput waveform has an even mark-to-space ratio. Unused inputs of all the gates should be taken to the positive 5 V rail via $2.2 \mathrm{k} \Omega$ resistors. This circuit has the advantage that, given an accurate source of 1 MHz pulses, the constructor can produce an AFSK unit that does not require any line-up procedure.

Several "custom" i.c.s can be used to produce AFSK with minimum external components. The author has experimented with the Plessey SL652, which may be used as a stable tone source as shown in Fig. 28. The $10 \mathrm{k} \Omega$ preset


# Lee Electronitsstrd 

## C7800

The C7800 is one of the most advanced mobile 70 cm transceivers available. Features include:- * Digital Readout * Five Memories * Two Speed Scan Rate * L.E.D.

## £274.85

inc. VAT
(C8800 is the matching 2 m unit)

Power and S Meter and many more. Why not try one for yourself.


TRIO R1000


BEAT THIS PRICE!! $\mathbf{f} \mathbf{2 8 9} \mathbf{i n c}$. VAT FREE HEADPHONES WITH THIS SET AND WITH FRG7


## THE NEW C800

This 10 channel scanner out performs many of its rivals due to its highly sensitive fron end and excellent filtering. $A$ one channe 50MW transmitter is incorporated and is ideal for local use. Controls include squelch volume, auto scan and manual channel stepping. The unit comes complete with channels S20, R1, R2, R7, Nicads, Charger, helical antenna and wire antenna.
PRICE $£ 80.45$ inc. VAT
CARRIAGE FREE


SWR25: This ever-popular twin SWR and Power meter covers VAT. P\&P 50p.

DL-30 Dummy load 25W DC-150 MHz $£ 6.35$ inc. VAT. P\&P 25p. T-100 80 W Dummy load DC-500 MHz £24.10 inc. VAT.
P\&P 25p. P\&P 25p. T-200 150W Dummy load DC-500
P\&P 25 p.

Just a small selection from our comprehensive range of accessories.


SWR200B swr/power meter covering $3-200 \mathrm{MHz}$ $50 / 75$ Ohm power range $3-30 \mathrm{MHz}, 20 / 200 / 2 \mathrm{~kW}$. VHF $2 / 20 / 200 W$ £40.20. P\&P $£ 1.00$.


T-435: VHF/UHF swr and power meter with 2/20/120 watt through line power measurement $\mathbf{£ 3 4 . 4 5}$ inc. VAT. P\&P 75 p .


CT-1 Coax Toggle 3 SO239's CT-2 Coax Toggle 2 SO239's PL259 £6.85 inc. VAT. P\&P 25p

PX402 13.8V DC 3 amp continuous 4 amp max fully stabilized power supply with overload proP\&P £2.00. Also available:
PH5000, 5A continuous, 7A surge. EP2500, 25A continuous, 30 a surge.

We are London's Largest Stockist of Microwave Modules products.

TRANSVERTERS:
MMT28/144 (10m linear transverter MMT144/28 ( 2 m linear transverter MMT432/28-S $\quad$ ( 70 cm linear transverter) MMT432/144-R MMT70/28 MMT70/144 (4m linear transverter) MMT1296/144 (23cm linear transverter) LINEAR AMPLIFIERS:

| MML144/25 | 2 m 2 25 watt linear amplifier) |
| :--- | :--- | MML144/100 ( 2 m 100 watt linear amplifier MML144/40 ( 2 m 40 watt linear amplifier MML432/20 $\quad 170 \mathrm{~cm} \quad 20$ watt linear amplifier $\begin{array}{lll}\text { MML432/50 } & \text { ( } 70 \mathrm{~cm} & 50 \text { watt linear amplifier } \\ \text { MML432/100 } & \text { ( } 70 \mathrm{~cm} \text { 100 watt linear amplifier }\end{array}$ MML432/100 ( 70 cm 100 watt linear amplifier RECEIVE CONVERTERS:

MM2000 (RTTY to TV converter) MMC28/144 (10m converter) MMC50/28 ( 6 m converter MMC50/28LO ( 6 m converter) MMC70/28 (4m converter MMC70/28LO ( 4 m converter)

## MMC144/28

 MMC144/2810 ( 2 m converter) MMC144/28LO ( 2 m converter) MMC432/28-S ( 70 cm converter) MMC432/144-S MMC1296/28 $\quad 0 \mathrm{~cm}$ convert MMK 1296/144 ( 23 cm converter, 10 m output) FREOUENCY 123 cm converter, 2 m output)MMDO50/500 $\begin{array}{ll}\text { MMD600P } & \text { ( } 600 \mathrm{MHz} \text { prescaler) } \\ \text { MMDP1 } & \text { (frequency counter probe) }\end{array}$ RECEIVE PREAMPLIFIERS:

| MMA28 | (10m preamplifier) | 14. |
| :--- | :--- | :--- |
| MMA144V | (2m RF switched preamplifier) | 29. |
| MMA1296 | (23cm preamplifier) | 29.9 | MMA1296 (23cm preamplifier) FILTERS: MMF144 MMF144 MMF432 VARIOUS:

MMV1296 MMV1296 MMS384 ATTENUATOR MMR15/10
( 2 m filter)
( 70 cm filter)
(70 cm to 23 cm varactor tripler) 384 MHz frequency source)

15 dB attenuator, BNC terminations)

| 24.90 | A |
| ---: | ---: |
| 26.90 | A |
| 29.90 | A |
| 29.90 | A |
| 32.20 | A |
| 59.80 | B |
|  |  |
| 69.00 | A |
| 23.00 | A |
| 11.50 | A |
|  |  |
| 14.95 | A |
| 29.90 | A |
| 29.90 | A |
| 6.90 | A |
| 6.90 | A |
| 34.50 | A |
| 27.60 | A |
|  |  |
| 5.75 | A |

THE ABOVE PRICES ARE INCLUSIVE OF VAT BUT NOT POSTAGE. PLEASE ADD POSTAGE TO THE ABOVE PRICES AT THE FOLLOWING RATES: UNITS 'A': $£ 0.675$ UNITS ' $B$ ': $£ 1.75$ UNITS ' ${ }^{\prime}$ ': $£ 2.25$ UNITS 'D': $£ 2.75$

| 400 EDGWARE ROAD LONDON W2 <br> 01-723 5521 TIx: 298765 | Bagk wiht |  | INSTANT H.P. \& P/EX. WELCOME | Send 25p for full details of our range. |
| :---: | :---: | :---: | :---: | :---: |


certainly less than you think. By incorporating a custom made LSI chip, these fully auto-ranging $3 \frac{1}{2}$ digit multimeters are available at prices from

## under $£ 50.00$.

SK-6110 (illustrated)

## $£ 67.17$ <br> + VAT


£45.43

+ VAT


7

SK-6110 and SK-6220
$\square$ Full auto-ranging on both voltage and resistance Current measurement up to 10A DC and AC
Unit and range automatically displayed
Auto polarity and auto zero
Only 5 mW dissipation-200 hours continuous useZero adjust key to correct for test leads on low value measurementsHigh impact ABS case
Low battery indication

## SK. 6110

Audible continuity test functionRange hold function
Audible over-range indication

Telephone orders welcome for Access and Barclaycard and all account customers. All prices inc. P.\&P


## New 7th edition <br> AMATEUR RADIO TECHNIQUES

Basically an ideas and source book, this ever-popular work by Pat Hawker, G3VA, brings together a large selection of novel aerials, circuits and devices, together with many fault-finding and constructional hints. In this latest edition some 50 new or revised pages describe the most recent techniques; the "quick guides" now cover such topics as microprocessors and vmos power fets.

Chapter titles are: Semiconductors; Components and construction; Receiver topics; Oscillator topics; Transmitter topics; Audio and modulation; Power supplies; Aerial topics; Fault-finding and test units.
368 pages
£6.08
Price includes postage, packing and VAT where applicable. Postal terms: cheques/POs with order (not stamps or book tokens). Goods are obtainable (less P \& P) at RSGB HQ, 9.30-5pm, Monday Friday.
The RSGB is the national society representing all UK radio amateurs and membership is open to all interested in the hobby, including listeners. The Society also publishes a complete range of books, log books and maps for the radio amateur. Contact the membership services section for more information about amateur radio, the RSGB and its publications.

Radio Society of Great Britain 35 Doughty Street, London WC1N 2AE Telephone 01-837 8688

## WOOD <br> \& <br> DOUGLAS

With the winter evenings approaching, the constructional season for radio amateurs is about to begin. If you are undecided on your winter project perhaps you can find something in our range of over 30 kits and modules to suit you.
70FM05TR In case you missed last months review of this single channel FM transceiver for 70 cms here are a few details. The receiver sensitivity is typically 0.4 V and uses duel gate MOSFETS and a high quality crystal filter. The audio output drives an $8 \Omega$ speaker. The transmitter gives 500 mW of RF and has a modulator on the pcb. Both boards use readily available crystals and measure a very compact $6^{\prime \prime}$ by less than $1 \frac{1_{4}^{\prime \prime}}{}{ }^{\prime \prime}$.
Kit RX $£ 38.50$
Assembled RX $£ 47.25$
TX £17.80
TX £25.95
70MC06TR When one channel is not enough then by adding this two pcb set you will have 6 channels on $t \times / r x$. This includes a toneburst for repeaters and a scanner to ease monitoring.
Kit RX £18.60
Assembled
RX $£ 26.05$
TX £11.30
TX $£ 18.10$
144 SY 25 B An FM synthesiser for 25 KHz steps at 144146 MHz . The output frequencies are $5.5,11,22$ or 45 MHz on receive and 6,12 or 24 MHz on transmit. This will feed most commercial radio telephones and also the PW NIMBUS. So for the cost of ten crystal channels you get full band coverage, crystal controlled toneburst, repeater $\pm 600 \mathrm{KHz}$ offset, out of lock inhibit and channel selection by channel number.
Kit £50.95
Assembled £69.70
INTERESTED? If you would like further details of these and our many other products then send a large SAE (please!) for the latest lists. The above prices include VAT at the current rate but please add $60 \mathrm{p} p \& \mathrm{p}$ on the total order. The prices include all items to make a working pcb module. We do not supply external hardware such as boxes or switches etc. This leaves you free to use the modules in whatever configuration you wish and yet have confidence that the electronics will perform well. We will gladly service any of our products providing it has been built as directed. We make a small charge for this facility depending on complexity. Kits when in stock are return of post otherwise 10-14 days. Assembled items 10-14 days.
9 HILLCREST, TADLEY
BASINGSTOKE, HANTS RG26 6JB
(which should be multi-turn) sets the mark frequency (pin 9 high), after which the $3 \cdot 3 \mathrm{k} \Omega$ preset (also multi-turn) is used to set the space frequency (pin 9 low). For a minimum-chip terminal unit for transmission and reception the reader is referred to Radio Communication Handbook by Plessey Semiconductors, which suggests a method by which a single SL652 may be used for both functions. If experimenting with the SL652, great care must be taken not to exceed 6 volts on either power rail. Op. amps., for an active filter say, can be run from $\pm 6 \mathrm{~V}$ in conjunction with an SL652.

Each of the AFSK circuits described above produces a squarewave output. This should not be fed directly to a transmitter but should first be passed through a low-pass filter. A simple CR network such as shown in Fig. 29 will suffice, although the user may care to add an active bandpass filter based on a 741 if desired.

## Storing Messages

Using a combination of circuits discussed so far, the licensed amateur can very easily join the ranks of active RTTY enthusiasts, assuming of course he has some form of terminal. However, with the exception of microprocessor owners (dealt with in a later article), it will soon become evident that some additional equipment is highly desirable. This is because of the difficulty of sending repetitive messages from a keyboard-particularly for the one-finger typist. The most obvious message that needs to be sent repeatedly is CQ, although even this has variants

Fig. 29: A simple CR low-pass filter to limit the AFSK generator output spectrum


Fig. 30: Basic block diagram of a 1K RTTY store


Fig. 31: Combining several message-originating devices onto a single TTL bus


The control panel of the author's 1K RTTY message store
(CQ DX, CQ CONTEST, etc.). Other messages can include test patterns, one's own callsign (particularly when beset by QRM) and RTTY pictures.

Incidentally the two most common test patterns are the "fox" message (the quick brown fox jumped over the lazy dog in the stable), because it includes every letter of the alphabet, and a string of RYs because this is the resulting output when keying alternate mark/space.

Traditionally the source of such standard messages has been paper tape. Many of the older TTY terminals include a paper-tape reader and punch, and stand-alone units are still readily available if rather cumbersome. Messages on tape can be made into continuous loops and sent as required. For example, a tape might contain:

## CQ CQ CQ CQ DE G4EJA G4EJA

followed by a carriage return and line feed. This can be formed into a loop and sent about ten times as a means of initially establishing a contact.

A favourite tape-loop subject is a description of one's particular station, which would normally be sent during each QSO. Many terminals have an auxiliary contact that is made or closed when figure J (or bell) code is received. This can be used to stop the paper tape reader when, for example, some variable information has to be inserted into the transmission (such as a contest report and number).

Two electronic alternatives to paper tape are available (excluding microprocessors). These are the diode matrix and ram (Random Access Memory). The former is not really a good idea for anyone starting from scratch because it is cumbersome to set up, difficult to change, and no cheaper now than using some form of semiconductor storage.

An RTTY message can be started in RAM such as the 2102. If five 1 K chips are used then 1 K RTTY characters can be stored. A UART (Universal Asynchronous Receiver Transmitter) is used to convert from serial RTTY to the parallel mode needed to load the ram. A block diagram of such a system is shown in Fig. 30, where the necessary clock-at 16 times the baud rate-can be derived by further division if a crystal-controlled AFSK generator is used. A detailed circuit description is beyond the scope of this article; interested readers are referred to a design by G3PLX in the BARTG Newsletter, December 1977.

Remembering that any RTTY device is in the mark condition when idle, it is easy to see how a number of message-originating devices can be paralleled onto a single ttl bus (Fig. 31).

Part 4, next month, deals with some proprietary terminal units, providing a method of getting into RTTY with minimum delay.

Most radio modellers rely on very simple equipment for setting up and checking the performance of their radio gear. This unit is a sophisticated test system which provides all the facilities for alignment and checking of almost any modern digital radio control system, and while it is sophisticated it is also relatively easy to put together, thanks to the availability of pre-aligned modules.

The absorption wavemeter is rather novel and is in reality a very simple spectrum analyser enabling the wanted 27 MHz output to be peaked while keeping an eye on the unwanted crystal fundamental frequency and the dreaded 54MHz harmonics.

## Circuit

The circuit diagram of the wavemeter is shown in Fig. 1 and, as can be seen, is simply three parallel tuned circuits connected in series. The output of each parallel tuned circuit is taken to an individual $0-200 \mu$ a meter, which provides an indication of the r.f. signal level at that particular frequency.

Several other circuit configurations were tried, including some in which the 13.5 MHz and 54 MHz components were subtracted from the 27 MHz component and displayed on a single meter. This meter then showed a representation of the overall "goodness" of the transmission.

However, it was found that having simultaneous display of all three components made it a great deal easier to tune up the transmitter for the best output, and imparted somewhat more of an intuitive feel to the user as to how to tweak the coils for the optimum signal out. In fact, it is a "poor man's" spectrum analyser and the design could be extrapolated to cover as many frequencies as the user desired.

The digital frequency meter (d.f.m.) is based around a commercially available l.c.d. readout unit which is in two parts. A front panel unit consists of the 1.c.d. readout, the timebase crystal and an Oki i.c. Type MSM 5527 which
contains all of the display and measuring electronics for a d.f.m. with a basic range of 3999.9 kHz .

A prescaler board, which offers $\div 10$ and $\div 100$ facilities, thus extending the range of the basic unit to 399.9 MHz , plugs onto the front panel. The prescaler board also contains a matrix board on which diodes may be placed to select the various options and i.f. offset values of the front panel unit.

The unit used in the FM-80 Field Test Set was programmed to read Frequency directly with the prescaler selected to $\div 10$, thus giving a resolution of 1 kHz to 39.999 MHz and is used in this mode to check both the Tx and Rx frequency. The Rx frequency should, of course, be 455 kHz below the Tx frequency. One of the programming options available on the unit allows the subtraction of 455 Hz from the input frequency whilst in the short-wave mode. This facility can be used to enable a reading of what the Rx Local Oscillator frequency should be whilst actually measuring the Transmitted Frequency.



Fig. 1: The circuit diagram of the three frequency wavemeter

## Period Measurement

One of the modes available on the front panel unit is event count. In this mode, transitions on the input are counted and displayed on the l.c.d. until the rest line is pulsed, when the display is set to zero. Due to the fact that within the MSM5527 all pulses being applied to the display counter are divided by eight, it actually takes eight transitions on the input to increase the display reading by one.

Fig. 2 shows a block diagram of the period measuring add-on unit. The rising edge of the incoming pulse is used to reset the counter to zero, the rest of the pulse being delayed whilst this is happening. The delayed pulse is then applied to the gated oscillator and is used to turn it on for a period of time equal to itself. The gated oscillator thus presents a series of pulses, for as long as the input signal is high, to the front panel module, which are counted and displayed. Nothing further happens until the next pulse arrives, when the whole process repeats itself. If the oscillator is set to a frequency of 800 Hz the display will count to 100 in 1 ms giving adequate resolution for our purposes.

The unit is capable of displaying the period of any single input pulse providing the count from the gated oscillator does not exceed 39999. If, however, the input is a


Fig. 2: Block diagram of the add-on period measuring unit
pulse train then the mark to space ratio should not be less than about $5: 1$ as the display is not blanked during the actual measuring time of the input pulse and must therefore be allowed to remain stationary for most of its time in order to be read properly by the user.

The original unit gave an unambiguous display for input signals up to 8 ms at a repetition rate of 70 Hz which means that it is more than capable of measuring the typical servo output pulse train.

The circuit diagram of the period measuring add-on is shown in Fig. 3, and is constructed from a single CD4093 with the barest minimum of external components. The rising edge detector is formed from C1, R1, IC1a. This is then buffered, inverted and applied to the reset input of the MSM5527. While this is going on the pulse is delayed by R2, C2 and then applied to the gate of the oscillator formed from IC 1c, C3, VR1. The output is then buffered and applied to the input of the MSM5527. IC1 must be a schmitt device in order to enable the oscillator circuit to function and provide good recovery of the pulse after it has been delayed by C2, R2 .


Fig. 3: Circuit diagram of the period measuring unit

## Construction and Testing

Although, providing good r.f. practice is followed, it is possible to build the wavemeter on plain matrix board, it is strongly recommended that the printed circuit board is used, as the exact layout, and hence the stray capacitance, will affect the values of the parallel tuning capacitors particularly at 54 MHz . The only way to set the wavemeter up is with the aid of a signal generator capable of being tuned to $13 \cdot 5 \mathrm{MHz}, 27 \mathrm{MHz}$ and 54 MHz -you can of course use the digital frequency readout to check it -then rotate the cores of T1, T2 and T3 to give maximum deflection on the relevant meter. It should be found that the ranges do not interfere with each other.


Fig. 4: Connections of the d.f.m. board and display showing the switching arrangements and power supply connections used in the prototype unit. Other arrangements are possible to allow the d.f.m. to be used for other purposes and these are detailed in the comprehensive instruction booklet supplied with the d.f.m. module


Fig. 5: The copper track pattern of the wavemeter p.c.b. shown here full size. Fig. 6 (above right): The component placement drawing of the wavemeter p.c.b. Ambit International will be able to supply ready built and aligned boards for those constructors without the necessary gear


Fig. 7: The copper track pattern of the add-on period measuring unit shown here full size. Fig. 8 labove right): The component placement drawing for the addon unit. This board plugs directly onto the main d.f.m. board as shown in Fig. 4


The main d.f.m. board with the add-on unit in position. Note that some extra support for the add-on board will be needed and could be provided by the use of "Sticky Fixers"

## Period Measuring Add-on Unit

This is designed to be built on a small p.c.b. which then connects to a purpose-designed connector on the prescaler module. To test its operation connect the period measuring board to a +6 V supply and connect the input to a logic high $(+6 \mathrm{~V})$ for the time being. The gated oscillator will now be turned permanently on and it should be possible to measure its frequency at the output of IC1d. Using VR1, adjust to between $810-815 \mathrm{kHz}$ (N.B.-it is set somewhat high compared to its theoretical value due to some pulse shortening which occurs in the pulse delay network). You can use the digital frequency unit in its frequency mode to do this. Now connect up a suitable signal source ( $1-2 \mathrm{~ms}$ pulses every 20 ms from the Tx encoder output) and check that everything works. The display should be stable and for 1.5 ms pulses will show 15.0 , e.g., the display must be divided by ten to obtain the reading in milliseconds.

If all is not well, check for the presence of bursts of 800 kHz on the count line and for reset pulses on the reset line. Also check that the right value components have been used.

## Digital Frequency Meter

There is, of course, no construction or testing to be carried out here and all that one must do is decide which programming options are desired and install the relevant diodes. The unit comes with a four-page booklet which fully describes its working and method of connection. As stated earlier, the unit used in the prototype was programmed into the frequency count mode with the prescaler selected to $\div 10$ giving a display range of $3999.9 \mathrm{kHz} \times 10$ and to read short-wave minus 455 kHz , allowing one to see what the Rx local oscillator frequency should be whilst measuring the transmitter frequency. The unit was also programmed into the event count mode for use with the period measuring add-on. Fig. 4 shows the switching employed in the prototype.
It is, of course, possible to use the unit as a general piece of testgear in which case suitable switching of the input source and prescaler will have to be arranged by the constructor.

## components

## WAVEMETER

$\left.\begin{array}{lll}\begin{array}{c}\text { Capacitors } \\ \text { Ceramic } \\ 10 \mathrm{pF}\end{array} & 1 & \mathrm{C} 1 \\ 30 \mathrm{pF} \\ 120 \mathrm{pF}\end{array}\right)$

Miscellaneous
$200 \mu \mathrm{~A}$ f.s.d. meters (3); p.c.b.; sockets for aerial and leads (3).
The following items are only available as ready made modules:

Display unit MSM5527 (Ambit)
Prescaler board (Ambit)
The wavemeter board is available ready built and pre-aligned from Ambit International at a special price of $£ 5.50$ complete with 3 meters.

## PERIOD MEASURING ADD-ON UNIT




> Internal view of the test set before final wiring. Note that the d.f.m. main p.c.b. has yet to have its extra support pillar fitted. This will be fitted between the bottom of the Verobox and the hole drilled in the rear corner of the p.c.b. and will consist of a suitable length pillar

The prototype was built into a large Verobox as this was the only case to hand with a large enough front panel to accept the three meters and the d.f.m. Any suitable box can be used, and either the wavemeter or the d.f.m. could be built into a smaller box on its own.

The d.f.m. display unit is mounted onto the bezel using the four screws and two plastic clamps supplied with the bezel. The four outer screws holding the display p.c.b. to the plastic front of the display must be carefully removed and the four holes in the p.c.b. carefully enlarged and continued right through the plastic panel to clear the bezel screws. Extra support is needed for the added board and the main p.c.b. to prevent strain.

The wavemeter aerial is a suitable length of thick copper wire soldered into a standard TV type of plug. The length is not particularly critical.

Three TV coaxial sockets are mounted on the top of the case and one is used for the wavemeter aerial while the other two are the inputs for the period counter and the digital frequency meter.

Power is supplied to the d.f.m. from a PP7 6V dry battery but a 9 V battery could also be used by feeding the 9 V into the appropriate pin on the d.f.m. board. Rechargeable NiCad cells could also be used and there is plenty of room in the box to accommodate the battery charger and servo tester described earlier in the series.


## 2 metre mobile multi-mode transceivers

|  | FDK Multi-750E | ICOM IC-260E |
| :---: | :---: | :---: |
| Synthesiser steps | $100 \mathrm{~Hz}, 5 \mathrm{kHz}$ | $100 \mathrm{~Hz}, 1 \mathrm{kHz}$ (c.w./s.s.b.) $1 \mathrm{kHz}, 5 \mathrm{kHz}$ (f.m.) |
| Frequency stability | $<500 \mathrm{~Hz}$ (1-30min, $<200 \mathrm{~Hz}$ (1 hr) | $< \pm 1.5 \mathrm{kHz}$ |
| Frequency read-out | 5-digit green fluorescent | 7-digit red l.e.d. |
| Reverse repeater mode | No | Yes |
| Memories | None | 3 channels |
| Non-standard offsets | Yes (2 v.f.o.s) | Yes (2 gangable v.f.o.s) |
| Supply requirements ${ }^{(2)}$ | Transmit: 3A/2A ${ }^{(3)}$ <br> Receive: $0.4 \mathrm{~A} / 0.8 \mathrm{~A}^{(4)}$ <br> Memory back-up 1.5 mA | Transmit: $3 \cdot 1 \mathrm{~A} / 1 \cdot 6 \mathrm{~A}^{(3)} 2 \cdot 2 \mathrm{~A}$ s.s.b. <br> Receive: $0.6 \mathrm{~A} / 0.8 \mathrm{~A}^{(4)}$ <br> Memory back-up: |
| Case size ( $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ ) | $73 \times 163 \times 260 \mathrm{~mm}$ | $64 \times 185 \times 223 \mathrm{~mm}$ |
| Weight | 2.6 kg (approx.) | 2.7 kg |
| TRANSMITTER |  |  |
| Power output ${ }^{(3)}$ | 10W/1W | 10W/1W |
| Spurious emissions | Below -60dB | Below -60dB |
| Microphone | 500-600 2 dynamic | $1.3 \mathrm{k} \Omega$ dynamic $^{(8)}$ |
| Repeater access tone | Auto burst | Auto burst |
| Satellite frequency unlock | No | No |
| RECEIVER |  |  |
| Intermediate frequencies | $\begin{aligned} & 10.7 \mathrm{MHz} \text { and } 455 \mathrm{kHz} \text { (c.w./s.s.b) } \\ & 10.7 \mathrm{MHz} \text { (f.m.) } \end{aligned}$ | ```10.75MHz}\mathrm{ and 455kHz (c.w./s.s.b.) 10.75MHz (f.m.)``` |
| Sensitivity: c.w./s.s.b. f.m. | $0.4 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ <br> $0.6 \mu \mathrm{~V}$ for 20 dB quieting | $0.5 \mu \mathrm{~V}$ for 10 dB S $+\mathrm{N} / \mathrm{N}$ <br> $0.6 \mu \mathrm{~V}$ for 20 dB quieting |
| $\text { Selectivity }{ }^{(7)}: \begin{gathered} \text { c.w./s.s.b. } \\ \text { f.m. } \end{gathered}$ | $\begin{aligned} & 2 \cdot 2 \mathrm{kHz} / 6 \mathrm{kHz} \\ & 15 \mathrm{kHz} / 25 \mathrm{kHz}{ }^{(8)} \end{aligned}$ | $\begin{aligned} & 2.4 \mathrm{kHz} / 4.8 \mathrm{kHz} \\ & 15 \mathrm{kHz} / 30 \mathrm{kHz} \end{aligned}$ |
| Spurious response rejection | $>60 \mathrm{~dB}$ | $>60 \mathrm{~dB}$ |
| RF Gain control | Yes | No |
| AGC Fast/Normal switch | No | Yes |
| Audio output into $8 \Omega$ | $>1.2 \mathrm{~W}$ at $10 \%$ t.h.d. | >2W |
| Programmable band scan | No | Yes |
| Scan for vacant or busy channel | No | No |
| Priority channel monitor | No | No |
| Price |  |  |
| Including standard accessories and VAT | £299 <br> Waters and Stanton Electronics Ltd. | £339 <br> Thanet Electronics Ltd. |




## Trio TR-9000

$100 \mathrm{~Hz}, 10 \mathrm{kHz}^{(1)}$ (c.w./s.s.b.)
$100 \mathrm{~Hz}, 12.5 \mathrm{kHz}, 25 \mathrm{kHz}$ (f.m.)
$< \pm 500 \mathrm{~Hz}(1-60 \mathrm{~min})$
$<50 \mathrm{~Hz}$ any 30 min thereafter
5-digit red l.e.d.
No
5 channels
Yes (Memory channel 5)
Transmit: 2.9A/1.3A ${ }^{(3)}$
Receive: 0.4A
Memory back-up: 2.5 mA
$68 \times 170 \times 234 \mathrm{~mm}$
2.5 kg
$10 \mathrm{~W} / 1 \mathrm{~W}^{(5)}$
Below $-60 \mathrm{~dB} /-46 \mathrm{~dB}^{(3)}$
$500 \Omega$ dynamic
Auto burst

No
10.695 MHz and 455 kHz (c.w./s.s.b.)
10.695 MHz (f.m.)
$0.2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
$0.2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
$2.2 \mathrm{kHz} / 4.8 \mathrm{kHz}$
$12 \mathrm{kHz} / 25 \mathrm{kHz}$
$>70 \mathrm{~dB}$
Yes
No
$>2 \mathrm{~W}$ at $10 \%$ t.h.d.
Yes ${ }^{(10)}$
No
No
£365
Lowe Electronics Ltd.


## Yaesu FT-480R (FT-280)

$10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}$ (c.w./s.s.b.) $1 \mathrm{kHz}, 25 \mathrm{kHz}, 100 \mathrm{kHz}$ (f.m.)

7-digit blue fluorescent
$\mathrm{No}^{(8)}$.
4 channels
Yes (2 v.f.o.s)
Transmit: 3A
Receive: 0.5A
Memory back-up:
$60 \times 180 \times 240 \mathrm{~mm}$
2.6 kg

## 10W/W

Below -60dB
$600 \Omega$ dynamic
Manual from front panel or microphone ${ }^{(9)}$
Yes
£359
South Midlands Communications Ltd. (FT-280 from Amateur Radio Exchange)

## 2 metre mobile multi-mode transceivers

## Notes:

1. In "Decade Scan" made.
2. All rigs run on 13.8 V d.c. nominal (negative ground).
3. The first figure is for full power, the second for low power.
4. The first figure is on standby (receiver squelched), the second for full audio output.
5. Low power not available on s.s.b.
6. Built-in pre-amplifier.
7. The first figure is the minimum -6 dB bandwidth, the second the maximum -60 dB bandwidth.
8. Maximum -70 dB bandwidth.
9. The FT-280 is imported direct from Japan by Amateur Radio Exchange, and modified by them to suit the European market. It differs from the FT-480R only in that: (a) It has auto toneburst. (b) It has reverse repeater facility from front panel and microphone controls. (c) It does not have the "Vacant/Busy" scan mode selection switch.

We understand that stocks of the FT-280 are very limited.
10. Any kilohertz decade can be scanned on c.w./s.s.b.

## Common Features

All the rigs listed are based on digital p.l.l. v.c.o. synthesisers, and cover the range $144.0000-145.9999 \mathrm{MHz}$, recycling at the band edges. Emissions available are: A1 (c.w.), A3J (u.s.b. and l.s.b.), and F3 (f.m.). Maximum deviation of F3 is $\pm 5 \mathrm{kHz}$. Aerial impedance is $50 \Omega$ in all cases. On A3J, suppression of the carrier and unwanted sideband is greater than 40 dB , and all rigs are provided with impulsive noise blankers and r.i.t. controls.

Each transceiver can retain the frequencies set on the dial and memories, so long as 13.8 V d.c. remains available. None incorporates a separate back-up battery, though, so all programmed frequencies are lost when shifting from house to car, etc.

## $\Rightarrow$

# 2 metre mobile multi-mode transceivers 

All the data given is extracted from the instruction manual specification tables, presented in a way to allow sensible comparison, so far as practical. A black square (图) denotes that no information appears in the manual.

The memory systems, etc., in all sets but the FDK, are somewhat complex in the facilities they provide, more so than we have space to deal with here, and we have simply tried to summarise the salient features.

## First Impressions

## FDK Multi-750E

The FDK Multi-750E is a somewhat more basic rig than the others listed in this survey; it has no memory facilities, for example, but this is well reflected in the price. It is very easy to drive.

The transmitter audio quality was reported by distant stations to be marginally less good than that from the other sets. The frequency read-out is big and bright, but the little " 14 " indicating the tens of megahertz seems an unnecessary embellishment, looking almost like a channel number. The " $\mathrm{MHz}^{\prime}$ shift button provides a quick and easy way of hopping between the f.m. and sideband sections of the band. The push-buttons, by the way, are a most unusual shape, and handle very well. The "High/Low" power switch is on the rear panel, which has the effect of encouraging you to use full power all the time. The instruction manual is very basic.

One feature of interest to 70 cm devotees is the ability to transvert or even work cross-band with an optional $430-440 \mathrm{MHz}$ transverter unit which will be available shortly.

## ICOM IC-260E

The ICOM IC-260E is a very versatile rig, having two independent v.f.o.s which can be ganged together if required, tracking across the band at a
given separation for non-standard frequency offsets. The tuning control has a decidedly "gritty" feeling and has a very low rate. In fact, a little clip-on handle is supplied which can be fitted to speed things up. An optional microphone with scanning and frequency step controls makes a useful substitute to the main tuning knob.

Scanning of a limited portion of the band is possible, by programming the two band limits into memory positions 2 and 3, and the IC-260E is unusual in that it will auto-stop on a station on all modes, rather than just f.m. as all the other sets do.

All controls are on the front panel, and the frequency read-out is large and reasonably bright for daylight use. The mobile mounting bracket is of the quick-release type, with catches on each side.

The instruction manual is very comprehensive, with a detailed operational guide, trouble-shooting and voltage charts, block diagram, circuit diagram and printed circuit board layouts.

## Trio TR-9000

The most unusual feature of the Trio TR-9000 is its decade scan, which allows any selected 10 kHz segment of the band to be scanned rapidly in 100 Hz steps when operating on c.w. or s.s.b. The same control allows the band to be scanned rapidly in 25 or 12.5 kHz steps when on f.m. On c.w./s.s.b. you can hear the station(s) being swept through, but punching the button at the right moment to stop the scan actually on the station is rather akin to trying to hit the target in those video shooting gallery games.

All the controls are on the front panel, and easy to operate (apart from the above).

The frequency read-out is nowhere near bright enough, and on a bright sunny day in the car it just about completely disappears.

The receiver audio output has got plenty of punch, and of all the sets tested, is most easily heard above the usual mobile background.

The instruction manual is in the usual Trio format, with lots of information, but somewhat disjointed and therefore hard to follow in places.

## Yaesu FT-480R/FT280

The Yaesu FT-480R (and its halfbrother the FT-280-see Note 9) are the very latest arrivals in multi-modes, and incorporate a couple of novel features. The frequency read-out is a small and very bright fluorescent display, no problems on bright sunny days here. If anything, Yaesu have gone to the other extreme, and should perhaps incorporate a dimmer for night-time use, since the display has a tendency to "halo" in dull surroundings. The l.e.d. power/" S " meter is bright and easily readable, though it has a disconcertingly long decay time. The r.i.t. is digital, and the shift is added into the receive frequency read-out. Control is by means of the main tuning knob. For some reason, Yaesu call this facility a clarifier, which does not accord with the normal use of the term. The memory selector and frequency step controls are concentric and are fitted with rather unsuitable knobs, so that we found we tended to turn the wrong one nearly every time in our tests. A very thoughtful feature is the "F-SET" button, which zeroes the frequency in on the selected step when changing from, say, 100 Hz to 25 kHz , without having to wind off all the redundant digits manually.

Both the ' 280 and the 480 which we had on test had a very occasional tendency to switch suddenly to 144.900 MHz when you tried to QSY off a calling channel. It was generally necessary to switch the set off to restore normal operation, which could be somewhat inconvenient.

The front panel on this rig is small, not much bigger than the average f.m.only mobile. This has been achieved at the cost of a bulge underneath, to house the loudspeaker, and more significantly three switches under the front lip (two in the FT-280). These are the "Satellite" switch, which allows the transmitter frequency to be changed whilst actually transmitting, the "Busy/Manual/Open" scan control switch, and the "Simplex/ $+/-$ " mode switch. It is annoying, to say the least, to have to peer under the rig to operate the last two, although I suppose you would eventually get used to them.

The instruction manuals were provisional and very sketchy. No doubt the final ones will be to the usual Yaesu standard.


## ANTENNAS

## THE JOYSTICK VFA

- THE MICROSCOPIC 230 Cm . GIANT Joystick VFA (Variable Freq. Antenna) - Simple, rapid erection - Not only 6 -band but CONTINUOUS $0.5-30 \mathrm{Mhz}$, incl BC - Omnidirectional $\bullet$ Substantially harmonic-FREE © 1 million miles per watt, world-record © Poor QTH's enhanced - QUOTE from RADIO ZS (South Africa) "A remarkable antenna with great possibilities. Its physical size makes confined space operation a practical proposition"
SYSTEM " A " Includes matching ATU
For the SWL or 168 m . Tx.
£48.55


## NEW JOYMASTER SYSTEMS

- Amateur Bands $3.5-30 \mathrm{Mhz}$ - System "J" has been superseded by our IMPROVED JOYMASTER SYSTEM "JM2" - SYSTEM "JM3" is a NEW DEVELOPMENT for the PRISONER OF CIRCUMSTANCEI THE HIGH-RISE BLOCK DWELLERS DREAMI Can be co-ax fed at a distance.

-Does not include 50 ohm. coax. cable where required to feed remotely located JOYSTICK VFA.


## RECEIVERS

## - FRG7 • FRG7000 -

COMPLETE RECEIVING STATIONS ASSEMBLED IN SECONDS!

- FRG7 - free wire aerial ONLY £187.00 - FRG7000 + free wire aerial ONLY £336.00 Package R.1" (FRG7 + ATU + World Record VFA and FREE HEADPHONES) $\mathrm{E} 218.00 \bullet$
Package "R." (FRG7000 + ATU + World Record VFA and FREE HEADPHONES)


## TRANSCEIVERS ETC.

We reckon we're offering the
LOWEST YAESU PRICES
Try phoning us for your personalised quote, with or without Partridge antennas. For example:

- FT901DM - ONLY £790!! - FT101ZD - ONLY £567!! • FT7B ONLY $£ 369$ !! If you take Partridge products as part of a "Package" deal, you'll save even more!


## VHF BUSINESS RADIO <br> - We can help! Just phone or send stamp.



## JUST TELEPHONE

Buy it with Access
BARCLAYCARD

## VISA

## YOUR CARD NUMBER

084362535 (ext 5) ( 62839 after office hours) or send 12p
stamp for FREE literature. Prices correct as at press. NOTE stamp for FREE literature. Prices correct as at press. NOTE
our prices are always INCLUSIVE OF VAT, carriage. Prompt service too, goods usually despatched WITHIN 48 HOURS!

5 Partridge House.
Prospect Road, Broadstairs, Kent CT10 1LD (Callers by appointment). G3VFA

## 

## TR9000

READ THE REVIEW IN THIS ISSUE, AND THEN COME ALONG AND TRY IT FOR YOURSEI.F AT

## M.R.S.

COMMUNICATIONS LTD.
76 Park Road, Whitchurch,

## CARDIFF

Tel: Cardiff (0222) 616936

OPEN
9 am to 5 pm
6 Days


## MORSE TUTOR

The uniquely effective method of improving and maintaining Morse Code proficiency. Effectiveness proven by thousands of users world-wide.

* Practise anywhere, anytime at your convenience.
* Generates a random stream of perfect Morse in five character groups.
* D70's unique "DELAY" control allows you to learn each character with its correct high speed sound. Start with a long delay between each character and as you improve reduce the delay. The speed within each character always remains as set on the independent "SPEED" control.
$\star$ Features: long life battery operation, compact size, built-in loudspeaker plus personal earpiece.


## ACTIVE RECEIVING

## ANTENNAS

Datong active antennas are ideal for modern broadband communications modern broadband communications limited.

* highly sensitive (comparable to fullsize dipoles).
$\star$ Broadband coverage (below 200 kHz to over 30 MHz ).
$\star$ needs no tuning, matching or other adjustments.
t two versions AD170 for indoor mounting or AD370 (illustrated) for outdoor use.
$\star$ very compact, only 3 metres overall length.
$\star$ professional performance standards.
Prices: Model AD170 (indoor use only) $£ 42.55$ Model AD370 (for outdoor use) $£ 56.35$ Both prices include mains power unit.


## VERY LOW FREQUENCY CONVERTER

If your communications receiver gives poor results below 500 kHz Model VLF is the answer.

* Connects between antenna and receiver input.

Converts signals between DC and 500 kHz to the range 28 to 28.5 MHz with low noise and high sensitivity.

* Crystal controlled for high stability.
(size $112 \times 62 \times 31 \mathrm{~mm}$ ), SO239 connectors, LED indicator, in/out switch.
* Operates from internal 9 volt battery or external supply ( $5-15$ volts DC).

Price: only $£ \mathbf{2 5} \mathbf{5 0}$
Our full catalogue plus further details of any product are available free on request.
All prices include VAT and postage and packing.
Spence Mills. Mill Lane. Bramley. Leeds LS13 3HE England. Tel: (0532) 552461

Since the publication of my article on the "Slim Jim" omni-directional aerial for 2 metres, many readers have written about its possible use for the 28 MHz ( 10 metre) band. Indeed, quite a number have already tried it for themselves by scaling up the dimensions, and have discovered that excellent results are possible.

It is appreciated that a version for 10 metres cannot be constructed to exactly the same format as that for 2 metres. The general configuration is the same, however, and a suggested design is shown in Fig. 1. For the benefit of new readers, and as a reminder to others, Fig. 1(a) shows the electrical behaviour of the aerial. It consists simply of a half-wave folded radiator, fed at one end from a quarter-wave stub which is used to obtain an impedance transfer from 50 or 70 ohm coaxial cable to the high impedance connection to the half-wave section of the aerial. Fig. 1(b) gives the required dimensions of the elements, which may be of heavy gauge copper wire ( 14 or 16 s.w.g. or multi-strand copper "aerial" wire). Tinned or enamelled wire would be preferable.

The main support could be a bamboo pole which is quite light in weight and strong, although finding a single pole this long is not easy. It might be possible to acquire a couple of the 15 ft canes used to roll carpets on and join them end-to-end. Whatever method is used to join them (wooden dowel glued down the centres, or plastics water pipe used as a sleeve, are two suggestions), it will then be necessary to stay the pole at top and centre. The stays (three at each level, spaced at approximately $120^{\circ}$ intervals) should be either of non-conducting rope, or of wire rope broken up with "egg" insulators. The lengths of the stay sections should be around one third of a wavelength $(3.3 \mathrm{~m})$ and preferably not all exactly the same length.
An alternative way of erecting the aerial, if you have a couple of support points at around 10 m above ground level, would be to suspend the "Slim Jim" from a stay run between them.

Small wood spreaders fitted with miniature stand-off insulators are used to support the wire elements. The feed cable can be 50 or 70 ohms impedance, and the correct tapping points to the stub section, about 300 mm up from the bottom, are found by temporarily connecting the cable with crocodile clips, and moving them up and down until minimum v.s.w.r. is obtained. This should be less than 1.5 to 1 . This adjustment can be made with the bottom of the aerial a metre or so off the ground, but standing vertically of course.
In a situation where there are a lot of buildings around, the operational height should be such that the bottom of the aerial is 3 to 5 metres above ground. The theoretical optimum vertical angle of radiation of about $15^{\circ}$ to $20^{\circ}$, as in Fig. 1, is obtained when the centre point of the radiating section is about $\lambda / 2$ above ground, but this applies only where the soil beneath has good conductivity and the aerial is situated in very clear surroundings. It would be worthwhile to experiment with height. Radiation is of course vertically polarised and omni-directional, but


Fig 1: (a) Electrical function of the "Slim Jim" aerial. (b) Suggested method of constructing a "Slim Jim" for $\mathbf{2 8 M H z}$ ( 10 metres)
$\star$ MICROPROCESSOR CONTROLLED 32,000 CHANNELS

* AM \& FM ALL BANDS
$\star$ WIDER COVERAGE: 26-58, 58-88, 108-180,
$380-514 \mathrm{MHz}$; includes $10 \mathrm{~m}, 4 \mathrm{~m}, 2 \mathrm{~m}, \& 70 \mathrm{~cm}$ Amateur bands.
$\star 5 \mathrm{kHz} \& 12 \frac{1}{2} \mathrm{kHz}$ FREQUENCY INCREMENTS
$\star 16$ MEMORY CHANNELS WITH DIRECT ACCESS
$\star$ SELECTIVE PRIORITY CHANNELS WITH LOCKOUT
$\star 2$ SPEED SCAN SCAN DELAY CONTOL
$\star 2$ SPEED SEARCH UP AND DOWN
$\star$ SEARCH BETWEEN PRESET LIMITS UP AND DOWN
» 3 SQUELCH MODES inc. CARRIER \& AUDIO
$\star$ Dx \& LOCAL CONTROL
$\star$ RELAY OUTPUT FOR Aux. CONTROL
$\star$ EXTERNAL SPEAKER \& TAPE OUTPUTS
$\star$ LARGE GREEN DIGITRON DISPLAY BRIGHT/DIM
* AM-PM CLOCK DISPLAY
* 12 v DC, 230 V AC OPERATION
'See us on Stand 27 at the ARRA Exhibition at the Granby Halls, Leicester.
6th, 7th \& 8th November.'

UK
REVCO ELECTRONICS LTD.

POUNDWELLSTREET

MODBURY, DEVON, PL21 ORQ

Tel: Modbury (0548) 830665

Dealer enquiries invited


OSMABET LTD $\begin{aligned} & \text { We make transformers } \\ & \text { amongst other things. }\end{aligned}$ TRANSFORMERS TO ORDER We have capacity for the supply of transformers to specification, either one off, or production runs, your enquiries please. LOW VOLTAGE TRANSFORMERS: Prim 240 Vac .
 £3.75; 3 A CT $£ 7.90$; 6A CT £9.75; $15 \mathrm{~V} 0.5 \mathrm{~A} £ 3.00 ; 18 \mathrm{~V}$
1.5 A CT $£ 7.90 ; 24 \mathrm{~V} 1.5 \mathrm{~A}$ CT £7.90; 3 A CT $£ 9.75$; 5 A CT
 £13.50.
f13.
MIDGET RECTIFIER TRANSFORMERS: Prim 240 V ac. 6-0-6V 1.5A or $9-0-9 \mathrm{~V} 1 \mathrm{~A} £ 3.40$ each; $12-0-12 \mathrm{~V} 1 \mathrm{~A}$. $20-0.20 \mathrm{~V} 0.75 \mathrm{~A} \mathbf{£ 4} 15$ each; $9-0-9 \mathrm{~V} 0.3 \mathrm{~A}$ or $12 \mathrm{~V}-0-12 \mathrm{~V}$ 0.25 A or $20 \mathrm{~V}-0-20 \mathrm{~V} 0.15 \mathrm{~A} £ 3.00$ each. IT TRANSFORMERS TAPPED SEC: Prim 240V ac. $0-10-12-14-16-18 \mathrm{~V}$ 2A £7.50; 4A £9.40; 0-12-15-20 2 20V 2 A £8-25; 4 A £12.00; 0-20-30-60V 1 A £9.00 $2 \mathrm{~A} £ 12.00 ; 0-40-50-60-80-100-110 \mathrm{~V} 1 \mathrm{~A} £ 12.00$. AUTO \& ISOLATION TRANSFORMERS
30 to 4000 watts, many types ex stock, Lists.
MAINS TRANSFORMERS. SPECIAL OFFER. Prim MAINS TRANSFORMERS. SPECIAL OFFER, Prim $250-0.250 \mathrm{~V} 60 \mathrm{Ma}: 6.3 \mathrm{~V}$ i A $£ 3.00$; $9 \mathrm{~V} 3 \mathrm{~A} £ 2.50$ 25 V 300 Ma 90 p .
LOUDSPEAKERS
 8, $16,80 \Omega^{\prime} 7 \times 4^{\prime \prime} 3$ or $80 \Omega$ £1.75; $8 \times 5^{\prime \prime} 25 \Omega \mathrm{\ell}^{\prime 2} .50$ Goodman $5^{\prime \prime} . \mathrm{Hi-Fi}$ speaker mid range, C/M 825 watt
systems $\mathbf{f 6 . 5 0}$. Goodman $3 \frac{1}{2}^{2}$ Tweeters $\mathrm{C} / \mathrm{M}$, 8 for 25 W systems $\begin{aligned} & \text { £6.50. } \\ & \text { systems, } 2.50 .\end{aligned} . . . ~$
"INSTANT" BULK CASSETTE/TAPE ERASER Instant erasure of cassettes, and any diameter of tape spools. demagnetises tape heads, 200/2 EDGWISE LEVEL METER FSD 200 $/ \mu$ A Size $19 \times 18 \times 20 \mathrm{~mm} 8000 £ 1.50$.
HARGING METERS $1 \frac{1}{3}$ in diameter 2 A or $3 \mathrm{~A} £ 1.25$ each; 5 A or $10 \mathrm{~A} £ 1.50$ each. SINGLE STRANDED WIRE PVC COVERED $32 / 0.2 \mathrm{~mm}(10 A)$ black or blue, $\mathbf{£ 6 . 5 0} 100 \mathrm{~m}, 0.5 \mathrm{~mm} £ 2.50$ 00 m special prices per 1000 m and ove
POWER SUPPLY, TWIN OUTPUT Prim 240V ac: New, British manufacturer, smoothed d.c. output 20V, 1.5A plus STABILISED output of 15 V 100 Ma , plus further 12 V ac $0.5 A$, complete with diagram, $\mathbf{£ 4 . 0 0}$.
O/P TRANSFORMERS FOR VALVE AMPLIFIERS P.P. sec tapped $3-8-15 \Omega$ A-A $6 \mathrm{~K} \Omega, 30 \mathrm{~W} £ 17.50$; A-A $3 \mathrm{~K} \Omega$ G.E.C. MANUAL OFPOWER AMPLIFIERS G.E.C. MAN amplifiers 30 W to $400 \mathrm{~W} £ 1.25$. MULTIWAY SCREENED CABLE, PVC COVERED 36 way £1.00; 25 way 75 p; 14 way 50p; 6 way 25p. CONDENSERS AC $50 \mathrm{~Hz}, 4.33 / 250 \mathrm{v}, 6 / 330 \mathrm{v}, \mathbf{£ 1 . 5 0}$. pirolic 400 W/E $4 / 160 \mathrm{~V} \cdot 6 / 160 \mathrm{~V} 30 \mathrm{p}$ each 2 mid 40 p ; Paper tubular,
150 V 25p, 0.1 mfd 2 KV 50 p .

CARRIAGE EXTRA ON ALL ORDERS ALL PRICES INCLUDE V.A.T.

Callers by appointment only. S.A.E. Enquiries, Lists. 46, Kenilworth Road, Edgware, Middsx.

HA8 8YG. Tel: 01-958 9314

## HOMEBRU RADIO

(Mail order only)
G4CLF P.C.B. SPECLAL OFFER
SET OF IC's and P.C.B.
To include:- 1 off G4CLF P.C.B.
2 off SL1612, 1 off SL1621, 1 off SL1626 or SL6270, 2 off 1640, 1 off SL6310, £18 incl. VAT. $+30 p . p \& p$.

G4CLF P.C.B.
£4.24
SL1612
£1.56
SL1621
SL1626 or SL6270
£2.07
SL1640
£2.51
£2.07
£2.51
$+30 p . p \& p$.
"HELFORD' TROUBLESHOOTING
(A unique service by the designers of the Helford)

Any query regarding building we receive, providing it is accompanied with a S.A.E. and one of our INVOICE NUMBERS, we will do our best to answer.
HOMEBRU RADIO (Mail order only)
55 Ashley Road, Parkstone, Poole BH14 9BT.

## H.A.B. SHORT-WAVE KITS WORLD-WIDE RECEPTION

'H.A.C.' well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories which have been up-dated to suit the novice and the expert.
$£ 14.50$ INCLUSIVE - the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components, drilled chassis, valve, accessories and full instructions.
AT LAST - a battery eliminator kit, which will last you a lifetime - for use in al H.A.C. valve receivers. H.T. batteries are now unobtainable, this will solve your problems for only $£ 9.60$.

T TWIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic recep tion, yet needing only a single PP3 battery at $£ 17.50$ this receiver is outstanding value, and will give you hours of interest and entertainment.

NEW - TRIPLE-T RECEIVER, a more advanced super three transistor receiver, loud, clear reception, value unequalled at bargain introductory price of $£ 24.00$.

All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RHI9 3SZ


## HF SSB TRANSCEIVER

## Vic Goom G4AMW

Back in 1974, when the first SL600 board designed by G3ZVC was published, a rather primitive single band (20 metres) transceiver was built. Although only pushing out 5 watts this was a great success, even working into VK and W6-ultimately adding another dimension to Continental motoring, as being quite small it sat happily on the armrest between the seats.

When the $P W$ Helford was in the early design stages, James Bryant, Plessey's applications manager offered to produce a new board, tailor-made for the job. It was therefore possible to press on with a completely compatable design, and for good measure Peter Chadwick, Plessey's applications engineer produced the power amplifier filters. Thanks are also due to the late Col Geoff Cole for the information on the driver and the p.a. which were obtained from T.R.W. of California.

In order to harness the G4CLF Board satisfactorily certain criteria have to be observed. The first essential is a stable v.f.o. and a very effective layout for this was drawn up by Peter Trowbridge. Secondly, the mixer must have a drive of 500 mV from the buffer. A slightly modified cascade amplifier from a Plessey handbook provided this.

Although the $P W$ Helford is presented here as a transceiver for 80 and 20 metres, it is intended to develop an oscillator and second-mixer board to convert it into a Five Band rig, already allowed for in the preselector.

The popular choice appears to be five wide-band double-tuned sets of coils a lot of wire and wave-change wafers with no means of tuning them. Thanks to the production of a four-gang tuning capacitor a rather neat solution was arrived at. By connecting the 80 metre pair of coils to two gangs and the 20 metre pair of coils to the remaining two gangs it was possible, with no top coupling switching, to put on the nose any frequency from 80 to 10 metres. It is felt that this can only enhance the dynamic range of the hot carrier diode mixer.

On the transmit side there can be no doubt that the ability to actually put 100 W plus into the aerial, coupled with the Voice Operated Gain Adjusting Device (vogad) facility, does give the operator considerable talk power. Indeed when this rig was only at the drive stage so potent was the signal that it was difficult to get off the air to actually build the p.a., as Phil Ciotti, builder of the original Helford would readily admit.

The basic straight-forward simplicity of this transceiver is to some extent displayed by the block diagram (Fig. 1), but to a greater extent by the fact that the wavechange switch has only three wafers-as opposed to 12 to 15 , which seems to be the going rate for commercial rigs.

Possibly the biggest shock to the proposed constructor is that the cost of the case is on a par with the filter. Of course a cheaper case could be used, but the precision and


Fig. 1: The block diagram of the complete Helford transceiver

## CONSTRUCTION RATING Advanced

## BUYING GUIDE

Builders of the PW Helford should have little difficulty in obtaining the components. The case is available from West Hyde, the meter and knobs from Sifam, while the variable tuning capacitors are by Jackson Bros and can be obtained from Watford Electronics. The components for the G4CLF Board can be obtained from Ambit International.

## APPROXIMATE cost £200

accessibility of the West Hyde case does give the whole thing a stable, well-engineered feel.
It is obviously important to follow all the construction details closely but this is particularly so with regard to the preselector, a little bit of double checking before it is all fitted into the box is a very good idea, as shorts in this area are very difficult to trace-practically everything is grounded through the coils!

In practical terms what is the $P W$ Helford capable of? When it was put on 20 metres for the first time, during the second week in June, conditions were generally reckoned to be pretty poor as at the time radio contact with the transatlantic yacht race was causing concern. However, working only the odd hour or so in the evening between June 9 and 15 the following stations were worked. PY1ZBS (5/7). ZS61W ( $5 / 5$ ). CTIEL ( $5 / 8$ ). CN8CW ( $5 / 8$ ). 4NIU ( $5 / 9$ ). WA9DJQ/M/M (5/9). VK2DM (5/6). PY4AH (5/8). J28AA (5/9). (DJIBOUTI) VP8HZ (5/6). (The antenna used was a 2 -element beam at 30 ft ). The fact that this quite interesting collection of DX was worked on a relatively poor band with the European QRM in full spate, displayed not only the punch of which the Helford is capable, but that the receiver selectivity is not wanting either.

This first part of the series deals with the G4CLF Board designed especially for the $P W$ Helford by James Bryant.

## The G4CLF Board

This is a direct descendant of the SL600 transceiver described by Brian Comer, G3ZVC, in "Radio Communication" for September 1974 and afterwards in a number of other journals around the World. The original design used the Plessey SL600 series of communications integrated circuits and consisted of a single-sided board measuring $127 \times 83 \mathrm{~mm}$ and carrying nine integrated circuits, two transistors and a diode ring mixer. The board contained the entire works of an s.s.b. transceiver capable of working at any frequency from 10 kHz to 500 MHz with the exception of the local oscillator, preselector, r.f. power amplifier, power supply, microphone and loudspeaker.
This new version is smaller, only $102 \times 76 \mathrm{~mm}$, and contains a number of improvements but uses an extra
integrated circuit and three extra transistors. The major improvements are increased sensitivity $(0.2 \mu \mathrm{~V}$ against $0.5 \mu \mathrm{~V}$ ), higher audio output ( 800 mW against 100 mW ), tailored audio response ( $24 \mathrm{~dB} /$ octave above 3.5 kHz ), on-board supply regulation (in fact two of the integrated circuits used in this design are regulators so the new version may, in one sense, be considered to have one less integrated circuit rather than one more), better filter matching and higher r.f. output. Minor improvements include the location of all input and output interfaces along one side of the board, trimmers on the sideband oscillator crystals, a better partition of gain between the i.f. and a.f. stages and lower oscillator radiation.

The circuit diagram of the transceiver is shown in Fig. 2 and may be broken down into six sections: the mixer, the bi-directional amplifier, the sideband filter, the receiver, the transmitter and the sideband oscillators.

## The Mixer

The mixer consists of an Anzac MD-108 hot carrier diode ring mixer, identical to that used in the previous design. These mixers have three parts, each of $50 \Omega$ impedance, an upper frequency limit of 500 MHz and a lower limit on two parts of 5 MHz and on the third of d.c. This transceiver uses the d.c. part as its r.f. port to permit operation at r.f. frequencies below 5 MHz so that the 5 MHz limit is unimportant on the other two ports.

The MD-108 has a third-order intercept point of +15 dBm and an insertion loss of 7 dB . It requires a local oscillator power of about +7 dBm ( 500 mV r.m.s.). The MD-108 has an elder, and more expensive, brother called the MD-138 which has a higher third-order intercept point but there is no point in using it in this particular design since the intermodulation performance of the system is set by the mixer, the bi-directional amplifier and the filter and improving one without improving the other will do little for the overall performance of the system.

Since the MD-108 is a passive device it is bi-directional and no switching is necessary between transmission and reception. It is important, however, that it is driven from $50 \Omega$ sources and drives $50 \Omega$ loads, otherwise its gain and intermodulation performance will suffer. On the board this $50 \Omega$ match is performed by the bi-directional amplifier.

Table 1. G4CLF Board Performance

## RECEIVE

( +12 V , +7 dBm , Local Oscillator at 90 MHz )
Sensitivity: Less than $0.3 \mu \mathrm{v}$ for 10 dB SINAD 114dB (Wanted Signals) 88dB (Off-frequency Signals)
Dynamic Range:
Third-order Intercept: +7 dBm
Audio Output: $\quad 800 \mathrm{~mW}$
Current Consumption: 60 mA (Minimum Audio Output)

TRANSMIT
( +12 V Supply, +7 dBm , Local Oscillator at 90 MHz )

Output Level:
Carrier:
Intermodulation
Products:

## Dynamic Range of Audio a.g.c.:

[^2]

## The Bi-Directional Amplifier

The bi-directional amplifier consists of a field-effect transistor, Tr1, four low capacity switching diodes, D2-D5, two transformers, T1 and T2, two capacitors, C1 and C2, and five resistors, R1-R4 and R20. The transformers act as impedance matching devices, together with resistors R3 and R4, and ensure that the mixer and the crystal filter are correctly terminated.

The diodes D2-D5 are used to reverse the direction of amplifier gain between reception and transmission. During reception the receiver power line is at +12 volts and the transmitter line is grounded. Diodes D2 and D5 are conducting and diodes D3 and D4 are biassed off. Signal then passes from T1 via D2 and C1 to the gate of the f.e.t., whose output goes to T2 via D5.

When the power supplies are reversed during transmission the system works in exactly the same way but now diodes D3 and D4 conduct and the signal from T2 is amplified and passed to T1-and hence to the mixer.

The choice of diodes and f.e.t. in this amplifier is critical. If the diodes have too large a capacity when in the "off" state the amplifier can become unstable. The diodes chosen, Mullard BA182s, were designed for switching r.f. in television tuners and are ideal for this application.

The f.e.t. must have a high gain and also good intermodulation performance. To some extent as the gain increases the intermodulation performance falls off but this may be compensated by using a high current device. The f.e.t. finally chosen was a Siliconix J310, a junction f.e.t. in a TO92 plastic package, which has a standing current at zero gate bias of between 20 mA and 60 mA .

The original G3ZVC design used a single transformer between the mixer and the filter. The bi-directional amplifier offers a number of advantages: both the mixer and the filter are better matched, giving improved intermodulation and passband ripple; losses in the mixer are regained before further losses take place in the filter (in fact during reception there is 8 dB gain from the input of the mixer to the output of the filter as opposed to about 9 dB loss in the original design): and the gain during transmission allows a greater r.f. drive to the p.a. The improved performance seems to be worth the increased complexity.

## The Filter

This design uses an XF9-B or a QC1246AX crystal filter, manufactured by KVG and Salford respectively. These are 8 -pole 2.4 kHz filters with a centre frequency of 9 MHz . They require termination of $500 \Omega$ in parallel with 25 pF which is provided by T2, R4 and C 3 on the mixer side of the filter and R6 and C8 on the other side.

Many other filters might be used in this transceiver but there are a number of points to be considered. If a 4 -pole or 6-pole filter is used the stopband suppression is reduced from over 90 dB to as little as 50 dB . This can degrade adjacent channel performance and lead to intermodulation problems in the i.f. from very strong local signals but there are compromises which may be accepted. Another problem can arise from the use of cheaper 4-pole or 6-pole filters which is not acceptable-blocking due to local oscillator leakage. The MD-108 has local oscillator attenuation of about 40 dB which means that there may be 5 mV r.m.s. of local oscillator signal present at its output and therefore some 25 mV at the input to the filter. If the filter attenuation is 90 dB this leakage is reduced to less than $0.8 \mu \mathrm{~V}$, which is unimportant, but if it is only 50 dB then the i.f. strip sees $80 \mu \mathrm{~V}$ of local oscillator leakage. If the transceiver is being used at v.h.f. this is unimportant since
the SL1612s in the i.f. strip have no gain at v.h.f. But in an h.f. transceiver this $80 \mu \mathrm{~V}$ may be sufficient to block the i.f. strip, particularly if no a.g.c. is present. The problem was far worse in the original design which had three i.f. stages but it can cause trouble even with the present design.

The solution is simple. At v.h.f. lower performance filters may be used-at h.f. they may not!

Intermediate frequencies other than the 9 MHz used here are perfectly acceptable. The system will work unchanged at 5.3 MHz and 10.7 MHz but i.f.s of over 15 MHz or under 5 MHz cannot be used. Above 15 MHz the gain of the i.f. amplifier starts to drop and below 5 MHz the MD-108 mixer loses gain. There is no way of extending the upper frequency limit but the lower one may be reduced by either of two methods.

One is to use the d.c. port of the MD-108 as the i.f. port. This allows the use of any i.f. down to 100 kHz but prevents the use of r.f. or local oscillator frequencies below 5 MHz which may or may not be a disadvantage. It will also be necessary to modify the p.c.b.

The other method is to replace the MD-108 with an MD-109. This is a lower frequency version of the MD-108 which is rather more expensive but has a frequency response from 200 kHz to 200 MHz . Of course with an MD-109 while it is possible to use i.f.s down to 200 kHz it is not possible to work with r.f.s above 200 MHz . This is unlikely to be a problem since the use of i.f.s below 5 MHz with r.f.s above 200 MHz is likely to lead to image problems and thus will tend to be avoided anyway.

If the transmitter performance is not to be degraded the bandwidth of the filter must not exceed 2.7 kHz and the shape factor should be as good as possible.

Finally, if the filter is changed it may be necessary to change R4 and R6 and C3 and C8 to match it with the correct impedance. The resistors should be 10 per cent higher than the value given in the filter specification and the capacitors should be about 3 pF lower and the circuit is not suitable for use with filters having impedances much greater than $1 \mathrm{k} \Omega$. If R6 is increased then R27 must be increased in the same ratio to preserve the d.c. levels on the transmitter driver transistor $\operatorname{Tr} 4$.

## The Receiver

The receiver consists of two i.f. stages, a product detector, a low-pass filter, an audio amplifier, an audio-derived a.g.c. system and an audio output stage.

The i.f. amplifier uses two SL1612 circuits. These are similar to the SL612 circuits used in the original design but are supplied in 8-lead plastic minidip packages instead of metal ones. This lowers the price and makes the circuits easier to mount but has negligible effect on performance. All the circuits used in this transceiver, with the exception of the TO 92 voltage regulators, are in 8-lead minidips.

Each SL1612 has a voltage gain of 34 dB and an a.g.c. range of 70 dB . The i.f. strip therefore has a gain of 68 dB ( 2500 times) and an a.g.c. range of 140 dB which cannot, of course, be used since the strip would overload with an input of 250 mV r.m.s.-equivalent to dynamic range of about 114 dB .

Each SL1612 has its own internal supply decoupling but the supply line is also decoupled near to them by C 10 , a ceramic $0.1 \mu \mathrm{~F}$ capacitor. Interstage coupling capacitors are kept low to minimise the l.f. gain of the strip and eliminate possible interaction of the a.g.c. circuitry and the detector.

The detector, IC4, can use an SL1640 or an SL1641 as a product detector. These are both "transistor tree" double-balanced modulators and differ only in their output circuitry-the SL1640 has an internal load resistor as its
output on pin 5 and an emitter follower output on pin 6 , the SL1641 has a free collector output on pin 5 and no connection to pin 6 . In this application pins 5 and 6 are joined so that if an SL1640 is used its emitter follower is turned off. If an SL1641 is used an external load resistor of $330 \Omega$ is necessary (R9) but with an SL1640, R9 must not be used, and the position on the board must be left open-circuit.

The detector uses only two other components, the bias decoupling capacitors C14 and C15. The entire i.f. strip and detector therefore uses only three integrated circuits, three or four resistors, and eight capacitors. Being a broad-band system it does not use any further coils or filters and needs no set-up adjustment.

The output of the detector contains the sum and difference of its two inputs (signal from the i.f. strip and carrier from the sideband oscillator). The signal from the i.f. strip consists mainly of a 9 MHz signal but there is a certain amount of broad-band noise in the range 100 kHz to 20 MHz . The sideband oscillator signal consists of a single frequency of 8.9985 MHz or 9.0015 MHz depending on the sideband in use, there is some noise here too, but it is low enough to be disregarded. The output therefore consists of a low frequency signal (the difference output) which is the output we want, a high frequency signal
around 18 MHz (the sum output), and broad-band noise extending from d.c. to at least 30 MHz . It is necessary to remove the h.f. output before the audio stages, and will give a more pleasant output signal if as much of the audio noise as possible is also removed.

This is done by a low-pass filter which is placed between the detector and the audio amplifier. This filter is designed to have 18 dB /octave roll-off above $3 \cdot 5 \mathrm{kHz}$ and consists of a single-pole filter formed by C16 and R9 (or the internal resistor equivalent to R9 if an SL1640 is used) followed by a two-pole Sallen and Key filter formed by R10, R11, C17, C18 and Tr5. The original design used a 2N3904 as Tr5 but if ever there was an application where the exact transistor used was unimportant this is it-all that is needed is a silicon $n p n$ transistor with a beta of over 80 and a $\mathrm{V}_{\text {ceo }}$ of over 9 V .

The filter has a gain of unity and since the audio is still at a very low level (about 5 to 10 mV r.m.s.) it is then amplified by 18 dB in a 741 operational amplifier. Since the audio level is so low there is no possibility of clipping in this amplifier so bias is obtained by directly coupling the audio path from the detector through the low-pass filter to the 741. This saves components but provides no l.f. roll-off so that all subsequent audio coupling capacitors should be chosen to give roll-off below 300 Hz , as should the


Fig. 3 (Top left): The copper track pattern shown full size, for the G4CLF Board
Fig. 4 (Left): The component placement details of the G4CLF Board. The photograph above shows the completed G4CLF Board before installation into the PW Helford


## G4CLF Board

| Resistors <br> $10 \% \frac{1}{4} W$ |  |  |
| :--- | :--- | :--- |
| $47 \Omega$ | 2 | $R 5,6$ |
| $68 \Omega$ | 1 | $R 24$ |
| $100 \Omega$ | 2 | $R 7,8$ |
| $220 \Omega$ | 1 | $R 29$ |
| $330 \Omega$ | 2 | $R 9,28$ (SL1641 only) |
| $560 \Omega$ | 3 | $R 3,4,6$ |
| $1 \mathrm{k} \Omega$ | 4 | $R 22,23,27,33$ |
| $2 \cdot 2 \mathrm{k} \Omega$ | 1 | $R 19$ |
| $3 \cdot 3 \mathrm{k} \Omega$ | 1 | $R 12$ |
| $3 \cdot 9 \mathrm{k} \Omega$ | 1 | $R 15$ |
| $4.7 \mathrm{k} \Omega$ | 2 | $R 1,2$ |
| $10 \mathrm{k} \Omega$ | 2 | $R 10,11$ |
| $12 \mathrm{k} \Omega$ | 1 | $R 13$ |
| $22 \mathrm{k} \Omega$ | 1 | $R 20$ |
| $27 \mathrm{k} \Omega$ | 2 | $R 21,25$ |
| $47 \mathrm{k} \Omega$ | 1 | $R 31$ |
| $100 \mathrm{k} \Omega$ | 1 | $R 14$ |
| $120 \mathrm{k} \Omega$ | 1 | $R 18$ |
| $270 \mathrm{k} \Omega$ | 2 | $R 16,17$ |
| $1 \mathrm{M} \Omega$ | 1 | $R 30$ |

Semiconductors
Diodes
BA182

MD-108 (Anzac)
Transistors

| J304 (Siliconix) | 2 | Tr2,3 |
| :--- | :--- | :--- |
| J310 (Siliconix) | 1 | Tr1 |
| 2N3904 | 1 | Tr5 |
| 2N5771 | 1 | Tr4 |

Integrated Circuits

| 741 | 1 | IC6 |
| :--- | :--- | :--- |
| 78LO6 | 2 | IC1,10 |
| SL1612 | 2 | IC2,3 |
| SL1621 | 1 | IC5 |
| SL1640 or SL1641 | 2 | IC4,8 |
| SL1626 or SL6270 | 1 | IC9 |
| SL6310 | 1 | IC7 |


decoupling capacitors in the feedback of the amplifiers IC6 (the 741) and IC7 (the ouput stage). The output from the audio amplifier goes to a volume control, which is off the board, and then to the audio output stage. It also goes directly to the a.g.c. system.

In the best s.s.b. receivers the a.g.c. is derived from the detected audio, and this technique is used here. The audio is applied, via a dropper resistor (R15), to the input of an SL1621 audio a.g.c. circuit. In this circuit, which requires only three external components, C22, C23 and C24, forms a sophisticated audio a.g.c. system which adopts quickly to new signals, tracks rising or fading signals at up to $20 \mathrm{~dB} /$ s, holds a.g.c. constant during speech pauses, and reverts almost instantly to full system gain if a speech pause continues beyond one second-indicating a probable end of transmission.

The a.g.c. output from IC5 is applied to the two i.f. stages via $100 \Omega$ resistors (R7, R8) and is also taken off the board to act as the " S ' Meter drive. The a.g.c. line has a value of about 2 V at the a.g.c. threshold and increases by about 12.5 mV for each dB increase in signal ( $80 \mathrm{~dB} / \mathrm{V}$ ). The 2 V threshold is temperature dependant and may be
compensated by three silicon diodes. A simple " S " Meter is generally adequate as shown in Fig. 6. This is another circuit where the actual transistors used are un-important-any small-signal silicon npn transistors and small silicon diode will do. The $1.5 \mathrm{k} \Omega$ resistor (R35) may need some slight adjustment to give the correct range.

The capacitor C21, shown in the circuit diagram, should not be necessary if the receiver is to be used for speech only and will probably not be necessary with c.w. But under some circumstances it is possible to find low frequency instability in the a.g.c. system during the reception of c.w. The insertion of C21, which may have a value between $0.1 \mu \mathrm{~F}$ and $1.0 \mu \mathrm{~F}$, cures the problem.

The audio output stage uses a new circuit, the SL6310, which is an audio power amplifier in an 8 -lead minidip package capable of delivering between 800 mW and 1 W into $8 \Omega$ with a 12 V supply. As can be seen the SL6310 uses few components (R16 and R17 are at present needed to provide input bias but may not be needed with later versions of the SL6310) and no adjustments. If more than 800 mW of audio is desired the SL6310 should be omitted from the board and an external high power amplifier used.

## The Transmitter

This section is more accurately described as the sideband exciter. It uses two integrated circuits and a transistor. The first integrated circuit is an audio amplifier with a.g.c. which is used to ensure that the output of the transmitter is substantially unchanged by varying audio input levels. Such a circuit is known as a vogad.

Two different vogads may be used in this equipmentthe SL1626 or the SL6270. The SL1626 has been available for several years while the SL6270 is more recent. They are identical in pin connections and functions but the SL6270 has better performance when used with an unbalanced input. A balanced input is when the two terminals of the microphone are connected to the two input terminals of the vogAD, an unbalanced input is when one of the microphone terminals is grounded and the other is connected to one terminal of the VOGAD, the other being unused. If a balanced microphone input is used then either circuit will give equally good performance. R29 (220』) need only be used with the SL1626 and R31 (47 (2) need only be used with the SL6270, but both resistors may be used with either circuit without any problems occurring.

These circuits require the use of a low impedance microphone ( $500 \Omega$ or less) with an output in the range 1 mV to 30 mV . The a.g.c. range is about 60 dB and this may be too large for some applications where high levels of background noise are present, but may be reduced by shunting C47 with a $1 \mathrm{k} \Omega$ resistor ( R 32 ). If this resistor is used C47 should be increased from 4.7 nF to 47 nF to preserve the h.f. roll-off characteristic of the vogad.
The two capacitors C52 and C53 isolate the vogad inputs at d.c. and the capacitors C50 and C51 decouple any r.f. which may be induced on the microphone leads. The audio from the vogad is coupled to the double-balanced modulator by C 46 .

As in the receiver the double-balanced modulator may be either an SL1641 and again a $330 \Omega$ resistor is required only if the SL1641 is used (R28).

The principle of a single-sideband generation used in this transmitter is simple. Audio and carrier are applied to a double-balanced modulator, the output of this modulator consists of a d.s.b.s.c. (double-sideband suppressed carrier) signal which is filtered in a narrow filter to remove one sideband. Which sideband is selected depends on the carrier frequency chosen.

The d.s.b. signal from the double-balanced modulator is amplified and buffered by $\operatorname{Tr} 4$ and applied to the crystal filter. Tr 4 is a high frequency $p n p$ transistor, the original design used a 2N5771 but any high frequency silicon pnp transistor with a low $\mathrm{C}_{\mathrm{ob}}$ would be suitable. A transistor is used in this buffer rather than an integrated circuit because it does not present any load to the filter when it is turned off during reception. The gain of the transistor amplifier is set by R26 and may be altered if necessary. Bias for the transistor is obtained by direct coupling from the doublebalanced modulator.

## The Sideband Oscillators

One might expect the title of this section to be "The Sideband Oscillator" but there are in fact two separate oscillators. The original design used a single oscillator and diode switching of two crystals but varying capacity between diodes from different manufacturers led to a number of problems. When this design was started we investigated various ways of switching one oscillator between two crystals and decided in the end that the most reliable solution was the use of two separate oscillators. Interestingly enough, this solution was also as cheap as any other.

Each oscillator uses a Siliconix J304 f.e.t. in a Colpitts circuit. The quartz crystals supplied with the XF9-B or QC1246AX filters are 30 pF parallel resonant types and the oscillators are designed to work with these. If 20 pF parallel resonant types are used it is probably sufficient to reduce C32, C33, C34 and C35 to 33 pF each, but if series resonant crystals are to be used more changes will be necessary. The trimmer capacitors C31 and C38 are used for fine adjustments of the u.s.b. $(8 \cdot 9985 \mathrm{MHz})$ and l.s.b. ( 9.0015 MHz ) crystals respectively.

The output voltage from both oscillators is developed across R24. In the prototypes R24 and $68 \Omega$ and the output voltage is about 80 mV r.m.s. If this voltage falls outside the range $60-200 \mathrm{mV}$ r.m.s. then R24 should be adjusted until the voltage is within this range but this is not very likely to happen since the prototype boards all had outputs lying between 70 mV and 100 mV and they used f.e.t.s from a number of batches and crystals of widely varying activity.

The oscillator to be used is selected by applying a 12 V supply to its power input pin. The other oscillator's power supply should be off and, preferably, grounded.

## Construction

The p.c.b. layout for this transceiver is shown in Fig. 4 and the component placing in Fig. 5.

Resistors are carbon or metal film $\frac{1}{4} \mathrm{~W}$ types, capacitors below $\operatorname{lnF}$ are miniature Mullard or RS ceramic types, between 1 nF and 100 nF miniature monolithic ceramic types with 0.1 inch lead spacing. All capacitors above 100 nF with the exception of C 6 which is an aluminium electrolytic are miniature resin dipped tantalum electrolytics. The transformer T1 and T2 are wound on blocks of B1 ferrite $11.3 \times 11.3 \times 5.8 \mathrm{~mm}\left(\frac{1}{2}\right.$ in $\times \frac{1}{2}$ in $\times \frac{1}{4}$ in $)$ with two holes. (Mullard Part No. FX2249 "Double Aperture Core.") These blocks are glued to the circuit board with epoxy resin and then wound with $32-36$ s.w.g. self-fluxing

Table 2. G4CLF Board Connections

| Pin | Function | RFC details |
| :---: | :---: | :---: |
| 1 | +12V Rx/Earth Tx Audio output to $8 \Omega$ speaker | $2 \frac{1}{2}$ T on FX1115 |
| 3 | Earth | $=$ |
| 4 | Volume control potentiometer (Top) | $3 \frac{1}{2}$ T on FX1115 |
| 5 | Volume control potentiometer (Wiper) | $3 \frac{1}{2}$ T on FX1115 |
| 6 | 'S' Meter output | 21 |
| 7 | Earth | = |
| 8 | +12V (I.s.b.) | $2 \frac{1}{2}$ T on FX1115 |
| 9 | +12 V (u.s.b.) | $2 \frac{1}{2} \mathrm{~T}$ on FX1115 |
| 10 | Earth | $=$ |
| 11 | Microphone input (500) | = |
| 12 | Earth | $=$ |
| 13 | Microphone input (500 ${ }^{\text {) }}$ | = |
| 14 | +12V Tx/Earth Rx | $3 \frac{1}{2} \mathrm{~T}$ on FX1115 |
| 15 | Earth | = |
| 16 | Mixer port (r.f.) d.c. to 500 MHz | $=$ |
| 17 | Earth | = |
| 18 | Earth | = |
| 19 | Mixer port (I.o.) 5 to 500 MHz | $=$ |
| 20 | Earth | = |



Fig. 5: The circuit diagram of the external circuitry needed to operate the G4CLF Board. This is the complete PW Helford with the exception of the power supply and relay switching circuits
copper wire. T1 has a two-turn primary (on the D1 side) and a six-turn secondary, T2 has six turns on both windings.

There are four wire links on the board to connect various earth tracks together for minimum h.f. impedance. There is also a hole near to the quartz crystals through which passes a piece of wire which is soldered, as quickly as possible, to avoid damage to the crystal cans to ground them. If this is not done the crystals tend to radiate.

All components must be mounted with the shortest possible leads and i.c. sockets must not be used.

Assembly of the board should be in the following order: 1. Glue down the ferrite cores. When the glue has set wind the transformers T1 and T2.
2. Insert Tr1 and diodes D2, D3, D4 and D5. Mount D1 and F1. Insert the resistors and capacitors of the bidirectional amplifier.
3. Insert IC2, IC3, IC4 and IC6, checking that they are inserted the correct way round. Insert resistors R5 to R15, insert capacitors C7 to C18 and C20, then Tr4 and Tr 5 .
4. Insert IC5, and C22 to C26 and C6.
5. Insert crystals X1 and X2 and trimmer capacitors C31 and C38. Solder and cut leads and solder wire to ground cans. Insert resistors R21 to R25, capacitors C32 to C37, and Tr 2 and Tr 3 .
6. Insert IC7, resistors R16 to R19, capacitors C27 to C30 and the four wire links.
7. Insert IC8 and IC9, resistors R26 to R31, and capacitors C39 to C53 (the ceramic capacitors should all be mounted first, then the tantalum electrolytics).
8 . Finally insert IC1 and IC 10 , the remaining components, and the pins, sockets or wires, which are to be used to make the connections to the board.
The connections to the board are given in Table 2. The r.f. and l.o. signals may either be connected via the same $0 \cdot 1$ inch pitch connections, as the rest of the signals and
supplies, or via miniature co-axial sockets. The latter are used in the Helford.

The board is powered from a single +12 V supply but will work between +10 V and +15 V without damage or significant change in performance. It is essential to ground the transmitter supply during reception and the receiver supply during transmission. This is not merely to prevent spurious transmission of signals as was the case in the original design, but is because these other lines are actually used as d.c. return paths.

When the board is complete the sideband oscillators should be set up by connecting a frequency meter across R24 and connecting power to each oscillator and adjusting its trimmer until its frequency is within 10 Hz of nominal.

If for any reason the board does not perform properly when first connected it should be checked for shortcircuits and then the integrated circuits should be checked with a high impedance voltmeter for correct operating voltages. (The correct operating voltages are given in the "Plessey Semiconductor's Radio Communications Handbook", available from any Plessey Semiconductor Office or distributor.) If this method also fails then signals must be traced through the board with the aid of a signal generator and an oscilloscope or spectrum analyser.

> Readers who intend to operate the Helford should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.


## THE Pro 'SHERBDRNE'  <br> PART 2

The synthesiser has so far been described in isolation from the radio hardware of the complete tuner. This is partly because the synthesiser itself is suitable for use with a variety of different tuner configurations-and partly because the entire circuit would appear impossibly complicated. This would be unfortunate, as it falls neatly into a series of building blocks that may be considered "jointly and separately" in the context of this article, or as "separates" for substitution or addition into existing designs.
The synthesiser unit is replacing the following traditional features:

1. Tuning potentiometer
2. Preset station selection
3. Frequency indication/readout
and takes care of these less obvious aspects:
4. All tuning voltage stabilisation cared for
5. Requirement for a.f.c. non-existent
6. Greatly simplified switching
7. A plethora of otherwise unattainable features.

Those features fulfilled by the synthesiser are also vastly improved by the fact that everything is referred to a quartz crystal for frequency determination. The penalty is the close proximity of digital processing to a sensitive radio environment, so some care is needed to avoid radiation of the harmonics into the broadcast bands.

The tuner design must take into account the signals required by the MPU when operating in the scanning mode, and thus must provide:
(a) Local oscillator output for both a.m. and f.m.
(b) Scan stop information
(c) Simple bandswitching
(d) Stereo decoder with v.c.o. defeat
(e) High impedance tuning voltage lines.

The interconnections required between the synthesiser and tuner modules are shown in detail in Fig. 10, which will also serve later as the inter-unit wiring diagram for the complete tuner.

A medium-priced tuner is described here. Considerable efforts have been made to develop a design that can be repeatably assembled and made to work by a wide range of enthusiasts with different levels of experience. The result is an a.m./f.m. tuner that will out-perform any previously published design, so it can scarcely be described as a compromise. Much of the credit must go to the advances made in the past year or so in the state of component technology-such as new linear-phase ceramic i.f. filters,


WRM278



Fig. 11: Simplified block diagram of the complete tuner system
very low-noise members of the universally appreciated CA3089/3189 families of f.m. i.f. amplifier and detector i.c.s, MOSFETS, etc.

A higher specification tuner system was considered unsuitable, since accurate alignment of a more complicated i.f. would not be feasible for anyone without access to thousands of pounds worth of advanced test equipment. Nevertheless, the tuner synthesiser described last month is quite capable of driving alternative r.f.//i.f. designs if required.

## The Tuner

The tuner divides down into three blocks as shown in the simplified system diagram of Fig. 11: a front end (the UM1181 and the Alps FD811UX are described); a combined f.m. i.f. amplifier and detector, with three-band a.m. tuner section built around the Sprague ULN2242A; and a stereo decoder common to both designs that uses the Toko KB4437 pilot-cancel stereo decoder, followed by the KB4438 matching muting audio pre-amplifier.

The front ends are available only as prebuilt and tested items, but the circuit diagrams are nonetheless relevant to a comprehensive description of the circuit function. The UM1181 and FD811UX adopt similar circuitry although the Alps unit is perhaps constructed more thoughtfully.

In the UM1181 (Fig. 12) the antenna circuit is a single-stage-tuned coil, feeding gate 1 of v.h.f. MOSFET r.f. amplifier. Automatic gain control (a.g.c.) is provided on gate 2 of this MOSFET (via R2) although if left open circuit, R3 will pull the gate bias up to ensure maximum gain. The filter between the r.f. and mixer stages is an interesting feature, being basically a triple-tuned stage and bottom inductance coupled. The advantage of this method of coupling is that the coupling points are at a far lower impedance than with top-capacity coupling, enabling some of the fastidious screening to be omitted inside the can. However, although the small-signal selectivity is impressive at 90 dB or better, really strong signals at the antenna can leak across-but these are levels rarely ex-
perienced under UK conditions, unless a beam antenna is employed in an already strong signal environment.

The mixer is a common source JFET, with source injection of the local oscillator, and a JFET i.f. pre-amp in common-gate mode (high stability/medium gain/broadband) between the drain load i.f. coil and the output matching coil. The local oscillator ( 10.7 MHz high) is the classical Colpitts design, with feed taken from the relatively low-impedance emitter to both the mixer and the oscillator buffer amplifier. Approximately 300 mV of 1.0 . is thus available for the input of the prescaler on the synthesiser control board.

In the FD811 (Fig. 13) a similar input arrangement exists, although the physically larger construction of the coils used in the FD811 series enables a higher $Q$ to be achieved at each stage, thus enhancing selectivity. The a.g.c. system in this tuner is not returned to the positive supply rail, and unless an external bias is applied to the a.g.c. terminal, the r.f. stage will be operating under conditions of minimum gain.

A quadruple-tuned filter is used between the r.f. and mixer stages, the input and output couplings being via inductive proximity, and the centre two via capacitor top coupling. Capacitor coupling is avoided at the input and output sections because of the capacitive loading effects of the drain on the r.f. stage and the gate of the mixer-these "unknowns" will affect the calculation of the ideal coupling capacitor for the correct coupling constants. The capacitive coupling section with the coils well screened from one another enables the filter to provide excellent strong-signal selectivity. In designs with a second r.f. stage (Ambit EF5800), the excess gain can be used to iron out the lumps in entirely top-coupled filter sections, since slightly staggered tuning will be far less serious to the overall tracking of the system.

The output of the mixer goes through a double-tuned i.f. filter stage before reaching a f.e.t. buffer amplifier; the load presented is resistive (R22), which is more suitable for the following f.m. i.f. filter stage in many instances.

The local oscillator ( 10.7 MHz high), is again the


Colpitts circuit, used at a lower level. This reduces oscillator drift due to the heating of tuned circuit components, and prevents the local oscillator causing nonlinearities in the tuning diode characteristics. As it happens, the synthesiser can take care of drift anyway (since the only drift possible occurs in the reference oscillator, which is crystal controlled), but it also provides a very low-noise signal, subsequently raised in level by a common-base transistor amplifier (Tr6), and fed to the gate of the mixer MOSFET via an emitter-follower buffer. Thus a very high degree of isolation is maintained between the l.o. and mixer signals. A second emitter-follower buffer is used to provide l.o. signal for the synthesiser system.

## The FM IF/AM 3-band Tuner Module

As can be seen from Fig. 14, the TDA1090 is used for both these major functions. The i.c. was described in some detail in conjunction with the PW "Dorchester" multi-
band broadcast tuner, so only a brief resumé is offered here.

The device (Fig. 15) uses the same basic i.f. amplifier for both f.m. and a.m., although the detector for f.m. is a quadrature coil system (as in the CA3089 families) fed from a phase correction choke. Under f.m. conditions, the i.f. amplifier is driven into limiting by grounding the a.g.c. terminal, providing a squarewave i.f. output rich in harmonics. The quadrature coil helps to restrain this somewhat, but the whole assembly is placed inside a screening can to prevent unwanted radiation.

Listeners in the London area may have noticed that many tuners give an unaccountably high level of hiss or birdy response when tuned to 95.8 MHz (Capital Radio). The answer is simple, since $95 \cdot 8=9 \times 10 \cdot 64$, some 60 kHz away from the i.f. centre of 10.7 MHz , and well within the filter pass-band. The noise is very mushy and warbly, since in the process of being multiplied nine times, the deviation is also increased nine times-so at no time



Fig. 14: Circuit diagram of the f.m. i.f./a.m. tuner module, with associated remote tuned and switched ferrite rod aerial
will such a harmonic provide an intelligible signal to the detector.

Careful decoupling and earthing of the f.m. i.f. and detector system is required, for the same reasons as discussed in connection with the prescaler on the input to the synthesiser's phase-locked loop in last month's article.
The f.m. section of the TDA1090 possesses a signal level mute (as does the CA3089E)-but no deviation muting. This shortcoming is easily rectified with a few external transistors, using the a.f.c. voltage to operate a
"window" through which the f.m. mute will be allowed to open. The same signal is used in this design to provide the scan-stop information for the tuner, since it can be set to give a signal when the synthesiser has stopped precisely on a wanted f.m. signal. The behaviour of this signal with regard to detuning effect is shown in Fig. 16. The actual bandwidth is determined by the voltage developed across the a.f.c. output and the reference voltage. The a.f.c. output is basically a current source, and so the larger the value of the resistor used, the larger will be the a.f.c. voltage developed for a given degree of detuning. Ohm's Law states that $V=I R$ (within the limits of the supply available on the i.c.).

## WATERS \& STANTON ELECTRONICS



## CHECK-OUT THE ALL-NEW



## FDK MULTI-750E 2 METRE 'ALL-MODE' RIG

The Multi 750 is FDK's new, all mode 2 metre unit for both base or mobile use. Using the same cabinet dimensions as the M700EX, this really does provide the basis for an action-packed, go anywhere station. To list all its features would be impossible in the space available on this page. However, we will list its main points so you can get some idea of just what this amazing package is capable of.
$144-146 \mathrm{mHz}$ at 10 WATTS OUTPUT (Minimum!); ALL MODES - FM/USB/LSB/CW: REPEATER OPERATION - normal or reverse with automatic crystal controlled tone-burst; DUAL VPO's - these are selectable at the press of a button so that one vfo can be left at the SSB end of the band and the other at the FM end; NOISE BLANKER - a really efficient circuit to take out those ignition pulses on ssb; DUAL SPEED TUNING - enables 1 kHz or 100 Hz step tuning on SSB/CW and 1 kHz steps on FM: RIT - essential for accurate tuning of the received SSB signal; LOW EFFECTIVE PRICE - and the option of 70cms operation. At the end of the summer the UHF EXPANDER will be available to provide instant QSY to 70 cms or even cross-band operation. This unit will be in a matching cabinet which together with the AC mains module will build into a complete $2 \mathrm{~m} / 70 \mathrm{cms}$ base or mobile station.

- Simple and smooth VFO control gives either 100 Hz or 5 kHz steps on both FM and SSB modes for optimum convenience.
- The large green fluorescent display tube gives full frequency readout to 100 Hz and provides safe and clear readout for both night and day operation.
- Standard features include noise-blanker, RIT control with switch. RF attenuator gain control, automatic crystal controlled tone-burst, high and low power switching and remote up/down frequency control microphone unit.
- Compare its compact size and light weight, its smart appearance and comprehensive front panel controls. Simple and reliable operation is made possible by employing advanced solid-state and logic techniques. - A dual VFO is employed for the selection of two independent frequencies anywhere in the band. This also enables split frequency operation. particularly useful when used in conjunction with the optional

M750 BUILDS INTO A $2 \mathrm{~m} \& 70 \mathrm{~cm}$ PACKAGE
$(70 \mathrm{~cm}$ module available late summer)

"UHF-EXPANDER" transverter.
For normal repeater operation a pre-programmed shift is selected by front panel selector.

## SURELY TODAYS BEST VALUE



## for Feature

## Waters \& Stanton Electronics, Warren House, 18-20 Main Road, Hockley, Essex.

 Tel: 0702206835 \& 204965To: WATERS \& STANTON ELECTRONICS
*Please supply Multi 750E by return. Cheque/P.O. enclosed: £299
*Please send full colour literature on the Multi 750E
*Please send H.P. forms for completion. Deposit of $£ 60$ enclosed.
NAME
ADDRESS

WARREN HOUSE, 18-20 MAIN ROAD, HOCKLEY, ESSEX. TEL: 0702206835 \& 204965

$£ 90.85$
MMT 144/28 £99.00
MMT 432/144R £173.00
MMT 70/144 £155.00


For further information on any of the above items, or any other MICROWAVE MODULES products please contact:

MAIL
ORDER

## BREDHURST ELECTRONICS, <br> The High Street, Handcross, Sussex. Tel. 0444400786 <br> RETAIL CALLERS

TO ORDER ANY OF THE ABOVE ITEMS SIMPLY WRITE, ENCLOSING A CHEQUE OR PHONE YOUR CREDIT CARD NUMBER



ZL-12 SPECIAL
13 db gain, compact 2 metre Yagi. $10^{\prime} 6^{\prime \prime}$ boom, lightweight rugged design Hundreds of this award winning antenna already in use. Send for details.
$\mathbf{£ 2 8 . 7 5}$ p.p. $£ 1.50$

## ZL-8 SPECIAL

9 db gain, super compact 2 metre Yagi. $6^{\prime} 0^{\prime \prime}$ boom, lightweight rugged design. Ideal for limited spaces and portable operation.
$\mathbf{£ 1 7 . 2 5}$ p.p. £ 1.50
YAESU FT480R. FDK 750E MULTIMODES
Both of these new 2 metre multimodes transceivers are amongst our full range of Amateur Radio equipment and accessories. Ring or call for complete information: Tues-Sat. 9.45am-5.30pm.
Telephone (0422) 40792.
303. Claremount Road, Halifax HX3 6AW,


West Yorkshire. G3UGF.


Fig. 15: Block diagram of
the ULN2242A/TDA1090 integrated circuit

Fig. 16: Operation of the deviation mute circuit

Fig. 17 (bottom): Amplitude and group delay characteristics of an l.f. filter. The solid line is the group delay

An output is also available from the TDA1090 in a form suitable to drive the front end. If required, this a.g.c. signal can be used to drive the muting signal system (both signals go low with increasing input), since the a.g.c. operates somewhat after the standard noise-operated muting, enabling selection of strong signals only, without any background hiss under critical stereo listening conditions.

## The FM IF Amplifier

The TDA 1090 provides the same facilities as the CA3089E with the exception of a signal level indicator output. However, the a.g.c. output of the TDA 1090 may be regarded as a reference of signal level, albeit the onset of the indication occurs at greater input levels than with the CA3089 type of circuit. However, the gain of the front end and i.f. pre-amp is such that the a.g.c. indication starts at about $70 \mu \mathrm{~V}$ input.

In f.m. mode, the a.m. local oscillator is turned off and the i.f. amplifier is turned into a limiting amplifier by ground pin 1 of the i.c. In this application, the f.m. tunerhead supply voltage is also switched-since the module would still be susceptible to the output of the f.m. tunerhead when in the a.m. mode, as the i.f. amplifier is common to both a.m. and f.m. A single transistor i.f. preamplifier provides some 20 dB of additional gain at 10.7 MHz , as well as providing matching for the ceramic filters.

Various types of ceramic filter are available these days, and the technology has come a long way since the first types were introduced. The Toko CFSE series is used here, although the Murata ultra-linear phase i.f. filters in the SFE $10 \cdot 7 \mathrm{ML}$ series could be used. However, the extreme tuning accuracy of the synthesiser makes the choice of filter easier, since it is no longer necessary to worry about a fairly broad detuning tolerance. In fact, a narrower filter can be used if desired. Under UK bandlistening conditions, this is of little benefit except under sporadic-E conditions, and might possibly cause unnecessary problems during alignment.


The crucial feature of any f.m. filter is the group delay (see Fig. 17)-which is related to the phase linearity by: Group Delay $=$ Phase change/frequency change. The ideal phase change from one side of the filter to the other is a straight line. This is the same as the slope of the f.m. detector, which uses exactly the same principle when demodulating f.m. signals in a quadrature system, to convert frequency change into amplitude change.

Distortion at the extremes of the slope will cause ripples in the group delay, causing these parts of the modulation
spectrum to arrive at the detector at slightly different times. This phase error will cause problems in the ZenithGE multiplex stereo system, where the phase accuracy between the 19 kHz pilot tone and the 38 kHz subcarrier is the cornerstone of the theory. A full analysis of the theory of f.m. and multiplex is beyond the scope of this featurebut suffice it to say the composite f.m. stereo signal, with an audio bandwidth of 53 kHz , requires approximately 220 kHz of r.f. i.f. linear phase bandwidth. As f.m. sidebands theoretically extend to infinity (but diminishing to an infinitesimally small amplitude quite quickly), opinions as to the ideal bandwidth for stereo f.m. vary from 180 kHz (favoured by some applications notes written at Philips) to 280 kHz . A compromise value of 220 kHz does not adversely affect stereo programme material in any way that can be detected using current broadcast standards.

The detector in the TDA1090 uses a form of quadrature-with the signal fed to the phase-shift coil via a fixed choke of $18 \mu \mathrm{H}$. This choke is used to compensate for delays in the signal path of the other input to the quadrature detector-so the midpoint of the detector slope is exactly in the middle of the d.c. characteristic (Fig. 18). This also applies to the CA3089E families. If the signal path correction is wrong, then the detector exhibits a d.c. offset, although the demodulation characteristic will not be adversely affected by even quite a large d.c. offset.

As this d.c. characteristic is used to drive the a.f.c., it may appear to be irrelevant in a synthesised tuner-but in this instance, the a.f.c. is used in the deviation muting system to provide a signal to stop the tuning synthesiser from scanning, and so must be accurate and fast in operation.

The a.m. i.f. transformer T 1 is apparently in the way of the f.m. i.f. signal, but the reactance of the 180 pF capacitor in the a.m. i.f.t. is a low value at 10.7 MHz , and thus does not affect operation at f.m. However, this i.f. is in a sensitive path for the f.m. signal with regard to the detector time delay mentioned above. Any extra capacity


Fig. 18: The effect of a d.c. level shift at the f.m. detector

CONSTRUCTION RATINE

## BUYING GUIDE

Some of the component types for this project, especially in the f.m. i.f./a.m. tuner module, are critical from the point of view of physical size. The specialised semiconductors and all the filters and inductors are available from Ambit International (see Advertisers' Index). Ambit are also able to supply the ready-built f.m. tuner modules, and kits for the remainder of the modules and units.

The non-specialised components and the printed circuit boards should also be available from regular suppliers among our advertisers.

The cost quoted below is for the parts required to build the complete tuner, in the case shown in our photographs.

## APPROXIMATE cost $£ 150$

here will cause d.c. offset to occur, and will confuse the choice of choke. No part of the secondary of the a.m. i.f.t. should be grounded, since the capacity between the i.f. primary and secondary will be enough to cause an incurable offset if the secondary is more than just a couple of turns.

Such stray capacity effects may be compensated by changing the value of the choke feeding the f.m. quadrature coil, but then the amplitude of the i.f. signal passing through would be attenuated if the choke value were increased. The signal level muting of the TDA 1090 relies on the i.f. signal at pin 11 being 160 mV r.m.s. under limiting conditions.

The original aim of offering the a.m. i.f. with a secondary was to provide an undetected output of the 468 kHz i.f. signal for use in such things as product detectors, n.b.f.m. ratio detectors, etc. In a number of applications, the d.c. offset created by grounding one side of the secondary may not adversely affect the f.m. audio quality-but absolute accuracy of the a.f.c. output is necessary for the correct operation of the scan detector circuitry.

As the TDA1090 does not possess internal deviation (detune) muting, it is necessary to provide these facilities externally. Transistors Tr3 and Tr 4 form a differential amplifier with their emitters referred to the i.c. reference voltage at pin 13. Transistor Tr5 is driven from either the signal muting (pin 14) or the a.g.c. (pin 15). Using the muting signal from the a.g.c. source enables selection of only the high-level input signals, to avoid stopping at each of those signals recognised by the standard muting system, since many will be noisy under stereo listening conditions. This option has been "hardwired" in the tuner described here, although it could be switched if required. The excep-

Introducing the latest professional state-of-the-art $31 / 2$-digit DMM - at really oldfashioned prices! From just an unbelievable $£ 39.95$ inc. VAT, plus $\boldsymbol{£ I . 1 5} \mathbf{p \& p}$ !

|  | 6100 | 6110 | 6200 | 6220 |
| :---: | :---: | :---: | :---: | :---: |
| RESOLUTION | $1 \mathrm{mV}, 10 \mu \mathrm{~A}, 0182$ on all models |  |  |  |
| FULL AUTO RANGING | $\cdots$ | - | - | - |
| RANGE HOLD | $\checkmark$ | $\checkmark$ |  |  |
| UNITS OF MEASUREMENT DISPLAYED | $\mathrm{mV}, \mathrm{V}, \mathrm{mA}$ | $m \mathrm{~m}, \mathrm{~V}, \mathrm{~mA}, \mathrm{~A}$ | $m \mathrm{mb}, \mathrm{V}, \mathrm{mA}$ | $m \mathrm{~m}, \mathrm{~V}, \mathrm{~mA}, \mathrm{~A}$ |
| FUNCTIONS DISPLAYED | $\Omega, \mathrm{KII}, \mathrm{AUTO}, \mathrm{BATT}, \mathrm{ADJ}, \mathrm{LO}$, - and AC |  |  |  |
| MEASURES DC VOLTAGE TO | 1000 V | 1000 V | 1000 V | 1000 V |
| MEASURES AC VOLTAGE TO | 750 V | 750 V | 750 V | 750 V |
| MEASURES AC DC CURRENT TO | 200 mA | 10A | 200 mA | 10A |
| ZERO ADJUSTMENT | Zeros out minute test-iead resistances for precise measurements |  |  |  |
| ACCURACY | 0.50 | $0.5{ }^{\circ}$ | $0.8 \%$ | 0.8\% |
| LOW POWER OHM RANGES | For in-circuit resistance measurements on all models |  |  |  |
| BUZZER - Continuity Test | - | $\sim$ | * |  |
| BUZZER - Over Range indicator | $r$ - | - |  |  |
| COMPLETE WITH | Batteries, pair of Test Leads, Spare Fuse. One Year's Guarantee |  |  |  |
| PRICE | ONLY 664.95 | ONLY 674.95 | ONLY 639.95 | ONLY 449.95 |
| p\&p | 61.15 | 61.15 | 61.15 | 61.15 |

Why such a low, low price? Because the A/D converter and display are custom built! This is a genuine top-spec DMM. Check these features for unbeatable value - you won't find a hand-held DMM with these features at these prices again!

Maclin-Zand Electronics Ltd., 38 Mount Pleasant, London WC1X OAP


## FM IF \& AM TUNER MODULE


tionally keen can even arrange for the muting level to be switched from a circuit that checks to see if the signal is stereo or mono, and selecting the muting level rate accordingly.

The emitters of $\operatorname{Tr} 3$ and 4 are held at reference (approx. 5.6 V ); their bases are commoned and monitor the decoupled a.f.c. output from pin 7 of the i.c. The a.f.c. swing centres on the reference voltage, thus if the a.f.c. voltage goes approximately 0.6 V either high or low of the reference, then either $\operatorname{Tr} 3$ or $\operatorname{Tr} 4$ conducts (respectively). If Tr3 conducts, Tr6 conducts holding the deviation muting output (pin 10 of the module) in a high state. If Tr 4 conducts, then Tr 5 also conducts, thus Tr6 conducts-and the muting output stays high. Transistor Tr 5 also monitors either the a.g.c. (by linking pins 7 and 8 on the module)or mute (link 6 \& 8). If a.g.c./mute is high (low signal level), then Tr5 conducts, Tr6 conducts, and once again the mute output stays high.

Only if the a.g.c. or mute is low (signal tuned in) and the a.f.c. is centred within 0.6 V on the reference can $\operatorname{Tr} 6$ turn off, driving the deviation mute output low. Applying this to
the muting input of the i.c. on pin 8 via diode D19, means that the deviation mute signal cannot hold the mute shut (audio off) when the signal is high. However, it can assist in holding the mute open (audio on) when the signal is low.

The full deviation muting facility is available when a $47 \mathrm{k} \Omega$ resistor is applied between pins 5 and 11 of the module. This holds the mute open if the deviation mute output is high. Thus, manual override of all deviation mute facilities is available at pin 5 of the module.

The operational bandwidth of the deviation muting system is set by the voltage at the bases of $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$. The swing of the a.f.c. voltage at pin 7 is determined by the resistance from pin 7 to $\mathrm{V}_{\text {ref }}$ (i.c. pin 13), since the a.f.c output is a current source/sink, and not a voltage in its own right. Values are chosen for a $\pm 20 \mathrm{kHz}$ bandwidth of operation (or "window"), to enable the scan detection to operate accurately with the synthesiser selecting the f.m. band in 50 kHz steps (Fig. 19).

The detected audio output appears at pin 6, together with a lot of unwanted i.f. signal, and unless the i.f. is effectively decoupled, it will lead to instability if it gets near the

$10 \cdot 7 \mathrm{MHz}$ input. The usual tricks don't work. A 10 nF ceramic disc capacitor will get rid of the i.f. signal, but also reduce the audio bandwidth long before the 53 kHz required for a composite stereo signal has passed through. A value of 100 pF would be better, but since the TDA1090 is also an a.m. i.c., the 468 kHz i.f. of the a.m. section must be taken out as well, or the a.m. will become unstable. The

Fig. 19: Deviation mute window determination. The values of R22 and R34 are chosen so that the a.f.c. voltage swing is sufficient to turn on Tr3 and Tr4 (Fig. 14) at the extremes of the mute window

Fig. 20: Requirements for the multiplex birdy filter

answer is a correctly designed 55 kHz low-pass filter, sometimes referred to in this context as a "birdy" filter, which offers large attenuation at anything above 55 kHz , but does not affect the band of frequencies below 55 kHz (Fig. 20). This filter also helps to reduce stereo birdy noises brought about by the presence of the extremes of adjacent f.m. signals in the 55 kHz composite baseband, since although the centre frequencies of two f.m. signals may be separated by 200 kHz (unusual under normal UK listening conditions), there is plenty of scope for the extreme sidebands to mix and produce high frequency products above 55 kHz . This filter is formed by C18, L1 and C19.

Next month, we deal with the decoder, a.m. tuner and remote switched/tuned ferrite rod aerial, and begin constructional details.


Aerials and aerial accessories are very definitely among the most popular topics covered in Practical Wireless. In response to requests from readers, we've reprinted a selection of articles from the past three years, plus two new features-one by Ron Ham on v.h.f. propagation, the other describing the "Ultra-Slim Jim", a new version of that most popular 2-metre aerial design by Fred Judd.

Out of Thin Air has 80 pages, $295 \times 216 \mathrm{~mm}$, and is available from W. H. Smith price $£ 1.25$, or by post from Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, price $£ 1.50$ including postage and packing to UK addresses, or $£ 1.80$ by surface mail overseas. Please ensure that your name and address are clearly legible.

## OUT OF THIN AIR

Please send your order and remittance to:

## IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me........copies at $£ 1.50$ each to include postage and packing ( $£ 1.80$ surface mail overseas
I enclose P.O./Cheque No.............Value
UK remittances must be by crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME
(BLOCK LETTERS)
ADDRESS
(BLOCK LETTERS)

## Post Code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626 A subsidiary of Reed International Limited

Follow-up to ${ }^{\text {THE }} \mathbb{P}_{\mathrm{U}}$ NIMBUS M. TOOLEY \& D.WHITFIELD

The next module in the $P W$ "Nimbus" series, a 16-channel scanner with lock-out facilities, will commence in our January 1981 issue

It may seem a little odd to publish a follow-up article before the series has even finished, but we thought it would be helpful to pass on some comments and advice which have arisen out of readers' experiences in building the basic PW "Nimbus" transceiver and the base-station adaptor.

In general, the comments have concerned the receiver, most constructors having found that the transmitter works satisfactorily, although for some the problems have been the other way around.


Fig. 2: Suggested " $\mathbf{S}$ " meter modification

1. Large transmitter output at half-frequency $(\mathbf{7 2 \cdot 5 M H z})$. First of all, as most constructors will have realised, coils L7 and L8 are fitted with tuning slugs. Standard "500 grade" cores, as supplied by Maplin Electronics, were used successfully in the prototypes in L1-L8, but increased output could undoubtedly be obtained with v.h.f. "900 grade" cores in L5 onwards.

Very careful alignment of L7, L8 and TC5 is required to provide clean drive at 145 MHz to Tr 6 . If 72 MHz radiation is still a problem, then a series-resonant trap circuit (Fig. 1) should be connected across the transmitter output, To set up this trap, simply adjust the core to "suck out" the 72 MHz signal. Alternatively, pre-tune it to 72 MHz with a grid dip oscillator, connecting the coil and capacitor as a parallel resonant circuit for this adjustment.
2. Instability in the transmitter p.a. stage. The 2 N 4427 was selected for this stage because of its rather "tame" performance compared with other transistors (e.g., 2N3866), capable of producing a higher output but prone to go into self-oscillation when not correctly tuned. It may well be that there is a variation in performance of 2N4427s from one manufacturer to another, and in very difficult cases a $100 \Omega \frac{1}{4} \mathrm{~W}$ carbon resistor wired in parallel with RFC1 could be helpful. The resistor should be soldered to the underside of the p.c.b., with the shortest possible leads.

It is, of course, important that all decoupling capacitors (C7, etc.) are ceramic disc types, fitted close to the p.c.b. and with the shortest possible leads. They will otherwise be useless at the frequenies involved.
3. Squelch circuit ineffective. Regrettably, the CA3089/3189 is well-known for its poor squelch system, though it may be adequate for broadcast f.m. tuners! It is advisable to check that the quadrature coil (L105) has been connected correctly, with the primary winding to pins 9 and 10 of IC101, since with less than about 150 mV of signal drive at pin 9 , the squelch circuit will not operate at all.

On the prototypes, the squelch range was rather limited, and it was for this reason that the control was made a pre-
set, rather than completely variable. set, rather than completely variable.
4. Large residual reading on the " S " meter. A large residual reading could be due to incorrect alignment of L104, since it is caused by 10.245 MHz leaking into the second i.f. stages. If this cannot be reduced, try the modification shown in Fig. 2, which will provide a zero to full-scale " S " meter reading.

In cases where the residual reading is acceptable (it was about 10 per cent of f.s.d. on the prototypes) but full scale is not reached on an " S 9 " signal, reduce the value of R 128 (try $2.2 \mathrm{k} \Omega$ ) to produce f.s.d.

The calibration of any " S " meter fitted to the $P W$ "Nimbus" will be only somewhat arbitrary, and a $0-5$ scale may well be preferable to a conventional dB scale.
5. Receiver first oscillator problems. As most constructors will have realised, the contents of Tables 3 and 4 (page 60, PW May 1980) have been transposed, although the formulae are correctly placed.

The first oscillator uses 45 MHz overtone crystals, but the oscillator is basically a fundamental mode circuit with collector tuned broadly to 45 MHz to select the third harmonic of the frequency of the signal at the base of Tr102. The reason for employing this rather unusual arrangement


IMPORTANT-The ideas presented here are suggestions only, and as they are untried by this magazine, we cannot accept responsibility for any resultant damage, however caused. Before alterations are attempted, care should be taken to ensure that any guarantee is not invalidated, and it should also be borne in mind that modifications usually have an adverse effect on resale prices. In cases where specialist skills or equipment are needed, most dealers will undertake the work for a reasonable fee.

## Roger Hall G8TNT(Sam)

No. 1

The title of this feature will be self-explanatory to most amateurs, but for those who think it has something to do with the fitting of chromed bubbles and eight-foot aerials to Vespas, it should be explained that, in this instance, "Mods" has no connection with "Mods \& Rockers". It is, of course, an abbreviation of the word modifications, and is used by amateurs to describe alterations that can be made to improve the performance, or to extend the facilities of standard amateur equipment.

Mods come from a variety of sources; some from the manufacturers, some from dealers' workshops, and a large proportion from people who enjoy tinkering with their sets. Whilst some mods are adopted universally, some are known only to the originator and his immediate circle of friends. With this in mind, I hope to use this feature to extend some of the lesser-known ideas to a wider audience. In order to do this, I would like anyone who has modified any piece of amateur equipment, and who would like his idea published, to write to me at the address below. Please don't forget to include your name and address so that you can be given the credit (or the blame) for the idea. Initially we will be publishing dealers' mods, but I would like to use as many readers' ideas as possible, so please write to me if you have any tips to pass on.


Fig. 1: Extending the frequency range. In some later models 020 (TC9122P) and $\mathbf{Q 2 5}$ ( $\mu$ PD 651C-13) are numbered 0.14 and $\mathbf{Q 1 5}$ respectively

This month, Lowe Electronics have suggested two very useful modifications for the Trio TR2400. The first is for those of you who may be holidaying abroad, and who wish to extend the range of the 2 MHz European model to 4 MHz , with direct keyboard entry over the entire range. Before starting, please note that although it is very simple elec-
tronically, physically it requires a fine-tipped soldering iron and a steady hand. Steve Boler, the Sales Manager of Lowe Electronics, has stressed that he does not want to be inundated with 2400 s containing molten microprocessors.

The first step is to remove the faceplate, by undoing the two screws at the top of the back, and the two screws in the battery compartment, underneath the battery pack. Having done this, locate the two integrated circuits, Q20 and Q25, and the link wire $X$, shown in Fig. 1(a). Cut this wire approximately in the middle, strip back some of the insulation from the end that is still attached to Q25, then resolder it to point Z, see Fig. 1 (b). Ignore the end attached to point $Y$. Now replace the faceplate, because that's all there is to it. It should now be possible to select any frequency between 143.900 and 148.495 MHz by pressing the appropriate buttons on the keypad. One more word of caution, again from Lowes, beware of winning the WACS (Worked All Cop Shops) award, as the band above 146 MHz is allocated to the police in the UK.


Fig. 2 (left): Identifying leads to be shorted Fig. 3 (right): Polarity of the external power connector


Fig. 4: A stabiliser circuit capable of providing $+\mathbf{9 . 6 V}$ at currents up to 1 A from a 12 V car battery supply

The second modification enables the TR2400 to be run from an external power supply, and is even easier to carry out. The first step is to remove the battery pack and short out two of the pins on the connector inside the set, as shown in Fig. 2. A miniature crocodile clip is adequate, but if repeated use is anticipated, it would be better to obtain a suitable female connector, and to short out the appropriate two sockets, and to use this instead of the clip. With the pins shorted together, a 9.6 V power supply can now be plugged into the "Charger" socket. Please note the polarity, see Fig. 3. A circuit for a suitable 9.6 V supply is shown in Fig. 4.

A modified TR2400, used with a suitable power supply and a small power amplifier, could make an effective mobile or base station, without the inconvenience of the batteries dying halfway through a QSO.

The address to write to if you have any modifications for publication is: R. S. HALL, Practical Wireless, King's Reach Tower (Hatfield House), Stamford Street, London SE1 9LS.

73's
Sam G8TNT

## LOWE ELECTRONICS LTD.



2298 inc VAT


The new digital flight sean receiver from Regency of America is a stunning improvement on any other air band monitor receiver. Utilising its own micro computer system to control an advanced synthesiser, the flight scan allows you to monitor any air band frequency in the range $108 \cdot 136 \mathrm{MHz}$ and to store up to 16 channels which can then be scanned continuously. Other features include fast keyboard entry of frequency, full band search facilities, channel lockout and much more. For the last word in air band monitors contac us today. Also available - M100 digital FM scanner covering $30-50 \mathrm{MHz}, 144-174$
FLIGHT SCAN $£ 199$ inc VAT carr $£ 4.50$
M100FMSCAN $£ 192$ inc VAT carr $£ 4.50$

## THE FINEST HF COMMUNICATIONS RECEIVER FROM THE LEADING COMPANY IN THE FIELD <br> R 1000 BY TRIO

THIS RECEIVER IS SO ADVANCED, IT MAKES ANYTHING ELSE IN ITS PRICE RANGE COMPLETELY OBSOLETE.

And we should know, because we at Lowe Electronics have been firmly committed to Trio ever since we were appointed to be the UK distributors many years ago, and we are your direct contact with the Trio factory if you need advice or information. As the Trio distributors, we maintain the finest amateur radio workshop in the country here at Matlock, and our customers will tell you of our renowned service.
We stock and sell the complete Trio range, and operate a fast, efficient mail order and Securicor delivery service so that you are as close to us as your nearest letter box. We also recently introduced a terrific new credit card scheme which gives you, the customer, real purchasing power with instant credit.
As an example, should you wish to pay $£ 12.50$ per month, you have instant credit of $£ 300.00$ which is enough to buy your R 1000 right away; no hefty deposits, no fuss and as a further bonus, should you need accessories, or even a new transceiver, you can extend the credit on your card to suit. The Lowe blue card is a really powerful purchasing aid and you shouldn't be without it. Why not ask us for details right away and also for full information on all that's good in Amateur radio.


## Microwave Modules <br> MML 432/50



Microwave Modules make a wide range of linear amplifiers and transverter units, and the subject of this report is their 50 watt linear for the 70 cm amateur band. They also make a 100 W linear, but the 50W version is the more popular, probably because of the price.

The MML432/50 is housed in a substantial sheet steel box with the printed circuit board fitted to the large aluminium finned heatsink which forms the box top. The power switch is fitted to one end of the box, and the connectors for the r.f. input and the aerial are on the opposite end. A robust mounting bracket is attached to the sides, bridging the heatsink to allow the linear to be mounted in a vehicle.

The 13.8 V supply is fed to the amplifier via two heavy leads, and the supply is fused by a panel-mounted fuseholder next to the cable entry. When the MML 432/50 is being driven to its full power output of 50 W , the current drain from the power supply is 8 A , so it is essential to keep the power lines as short and direct as possible.

As well as the linear amplifier, the unit contains a 70 cm pre-amplifier, the changeover from transmit to receive being carried out automatically by a vox system operating on the r.f. input to the amplifier. The vox can be overridden by an external switching system if desired, but the automatic system worked very well, and during the tests it was the only switching used.

Initial tests were carried out using the Standard C7800 f.m. rig to drive
the linear. The power supply used for base-station tests was a large car battery, float-charged during use, this being the only means available at the time capable of meeting the high current demands. The C7800 pushes out about 12 W , and this should have been more than enough to drive the linear to its full rated output of 50 W . However, the maximum output measured was 48 W , probably due to voltage drop on the supply lines. Reducing the input power to around 1W reduced the output of the linear to 5 W . The 12 dB or so of gain in the preamplifier section made no difference to the Standard as a base station, but this was put down to the superb performance of its receiver.

When used in the car, the linear did improve the coverage obtained from the Weymouth repeater GB3SD, but the improvements were only marginal with the C7800. Difficulty was found in getting the full rated power output from the linear, in this case definitely due to voltage drop along the wiring from the battery. In fact with the motor turned off and the linear driven by the Standard, the r.f. power output could be seen to fall off rapidly on the wattmeter, as the battery voltage decayed to its off-charge level.

The unit was also tested with a Philips FM321 transceiver, and the improvements here were dramatic. The pre-amplifier gain brought the receiver performance up to the same level as that of the C7800, and the linear improved the 6 W output to a healthy 30 W . This allowed simplex operation between the Standard as a base station and the Philips run mobile over a range of some 15 miles, compared to about 6 miles or so with the Philips running barefoot.

The MML 432/50 was not tried with s.s.b. equipment, and this is undoub-

tedly where its benefit would be most noticeable. Obviously it is essential to ensure that the unit is supplied with 13.8 V through cable of sufficient size to prevent undue power loss due to voltage drop. Otherwise, the unit is very simple to install and use, and can really transform a rig with an average performance.

The MML 432/50 costs $£ 116.60$ including carriage and VAT, from Microwave Modules Ltd., Brookfield Drive, Aintree, Liverpool L9 7AN, telephone 051-523 4011, to whom we offer our thanks for the loan of the review unit. It is also available from authorised retail stockists around the UK.

## AR-22 PLL FM Receiver



The AR-22 is a pocket-sized v.h.f. f.m. receiver tuning over a range of 141.000 MHz to 149.995 MHz , which includes, of course, the 2 m amateur band. A phase-locked loop synthesiser
gives coverage in 5 kHz steps, with direct setting and read-out of tuned frequency by three digital pushswitches and a slide switch. Sensitivity is quoted as $0.2 \mu \mathrm{~V}$ for 12 dB SINAD, with a -60 dB bandwidth of 24 kHz . Dual conversion is used (i.f.s are 10.7 MHz and 455 kHz ) with spurious and image rejection specified as better than 50 dB down.
The AR-22's diminutive size ( $136 \times$ $64 \times 25 \mathrm{~mm}$ overall) also houses a 225 mAH 4.8 V NiCad battery pack. Consumption is quoted as around 25 mA with the receiver squelched, rising to around 100 mA when delivering its maximum rated 100 mW into an $8 \Omega$ load.

Supplied with the set are a 100 mm helical whip antenna, a $\lambda / 4$ wire antenna, an earpiece, a charger unit capable of restoring the battery pack to full vigour in around 10 hours, and an owner's manual.

## Results

The AR-22 is a very sensitive receiver with a sound output of very adequate volume and quality. Best results are obtained with the wire antenna, as might be expected, but the more convenient "mini rubber duck"

does well for itself. At the home QTH, some three quarters of a mile from GB3SC, that station comes through, albeit noisily, even with no antenna plugged in. This is obviously due to the lack of any screening in the plastics case, plus a fair length of unscreened wire between the antenna jack and the p.c.b., which although double-sided does not incorporate an earth-plane. The manual in fact warns against using the set in the vicinity of a transmitter, where the field strength might exceed $1 \mathrm{~V} / \mathrm{m}$.

With its small size and low weight (around 200 g ) the AR-22 is truly a pocket set. It is a shame that its designers went completely overboard on the arrangement of the controls. Frequency setting arrangements are alright, but the knobs on the Squelch and Volume controls are each 7 mm in diameter and 7 mm high including the bar on top. The clearance between them is only 2 mm , and between the

Squelch knob and the base of the helical antenna only 1 mm . The controls themselves are stiff anyway, and even using just finger- and thumb-nails on the top bar, are very difficult to adjust sensibly.
The manual gives the specification and operating instructions, but no service information whatever. Looking inside the set, it is so miniaturised and tightly packed that any repairs would be beyond the capabilities and facilities of most owners anyway, so this is perhaps a minor point.

The AR-22 costs $£ 99$ including carriage and VAT from Bredhurst Electronics, Mid Sussex House, High Street, Handcross, West Sussex RH17 6BW, telephone 0444400786 , to whom we offer our thanks for the loan of the review unit.


NOW IN SIX COLOURS!

- SILVER-GREY - RED - WHITE
- BLACK
- SPUN GOLD - CLEAR CB - 2 METRE • MARINE TELE • LAND MOBILE TELE
- TRUE HIGH dB GAIN ANTENNAS
- LOW ANGLE OF RADIATION
- $\frac{5}{8}$ and $\frac{\overline{3}}{4}$
- LOW SWR PROVEN
- POWER RATED UPTO 1400 WATTS
- RUGGED SHATTER-PROOF FIBREGLASS
- FACTORY PRE-TUNED
- THE ULTIMATE PERFORMERS

Introduced by Silicon General Inc. in 1976 as the first monolithic switching regulator control device, the SG3524 was soon second-sourced by Texas Instruments Ltd., and is now an "industry-standard" type-which means it is produced by many manufacturers. Containing all of the semiconductor devices required to make a regulated power supply, invertor or switching regulator circuit integrated onto a single chip, it can also be employed as the controlling element of a high power circuit.

The SG3524 was designed for switching regulators of either polarity, transformer-less d.c.-to-d.c. converters, transformer-less voltage doublers and for polarity converter applications employing fixed-frequency pulse-widthmodulation techniques, and also for other power control applications.

Encapsulated in a 16 -pin dual-in-line package with the connections shown in Fig. 1, the device contains a voltage reference which is used as a standard voltage, an error amplifier, an oscillator circuit, a pulse-width-modulator circuit, a pulse steering flip-flop circuit, a pair of alternating output switching devices together with current limiting and protective shut-down circuitry.

The absolute maximum power supply voltage rating for the SG3524 is 40 V , but it is wise to regard the maximum as being about 35 V to prevent the possibility of damage with supply fluctuations or transient voltage spikes. The quiescent current is about 8 mA , increasing when a load is applied, with a maximum permissible current from collector 1 or collector 2 of 100 mA .

The internal reference block provides an output of 4.6 V to 5.4 V (typically 5.0 V ) at pin 16 , and current of up to 50 mA may be taken from this pin. As the input voltage increases from 8 V to 40 V , the voltage of pin 16 varies typically by 10 mV (maximum 30 mV ) and, as the load current at this pin increases from 0 to 20 mA , the voltage varies by about 20 mV (maximum 50 mV ). The variation of the reference voltage with temperature is typically 0.3 per cent (maximum I per cent) over the range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and the long-term stability at $25^{\circ} \mathrm{C}$ some 20 mV per 1000 hours of use.

## The Oscillator

The internal oscillator circuit requires an external resistor $\mathrm{R}_{\mathrm{T}}$ from pin 6 to ground and an external capacitor $\mathrm{C}_{\mathrm{T}}$ from pin 7 to ground. The charging of the capacitor by a current passing through the resistor provides a linear ramp waveform for timing the oscillator circuit. The charging current is equal to about 3.6 V divided by $\mathrm{R}_{\mathrm{T}}$, so the value of $\mathrm{R}_{\mathrm{T}}$ should be $1.8 \mathrm{k} \Omega$ to give 2 mA .

It is recommended that the values of $\mathrm{C}_{\mathrm{T}}$ should lie in the range 1 nF to 100 nF , since the value of this capacitor determines the pulse width of the oscillator output pulse; a pulse width of less than about 200ns may allow false triggering of one output by removing the blanking pulse
before the flip-flop has reached a stable state. It is possible to synchronise a SG3524 to an external signal or to another SG3524.

In many cases a stabilising network consisting of a resistor and a capacitor in series will be required from pin 9 to ground. A $50 \mathrm{k} \Omega$ resistor in series with a $\operatorname{lnF}$ capacitor will usually be satisfactory for stabilisation of the error amplifier.

A current of $200 \mu \mathrm{~A}$ taken from pin 9 will disable the SG3524.
The output circuit consists of two transistors with both the collectors and emitters available at external pins. Both transistors have anti-saturation circuitry which limits the current through each transistor to a maximum of 100 mA for a fast response.

## Applications

The SG3524 can be employed in a very wide variety of applications. Broadly speaking these can be classified into three main types:

1. Capacitor-diode coupled voltage multipliers.
2. Inductor-capacitor implemented single ended circuits.
3. Transformer coupled circuits.

## Capacitor-diode Circuit

The capacitor-diode circuit of Fig. 3 is a simple polarity converter which produces a -5 V supply from a +15 V input. This circuit can provide an output of up to 20 mA without any additional current boosting transistors.

The output transistors are current limited by the internal circuitry of the device, so no additional protection circuitry is required. A particular feature of this very


Fig. 1: The connections to the SG3524 device

## YAESU MUSEN -

General Coverage Communications Receiver FRG-7

£199.00<br>VAT included

1

3


- 0.5-29.9MHz Coverage with 10 kHz Readout

The FRG-7 is a precision-built all-purpose communications receiver, featuring all solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system in conjunction with a triple conversion superheterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3 -position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception, the FRG-7 is the receiver for you.

# ALWAYS THE BEST NOW EVEN BETTER VALUE! 

Digital Display Communications Receiver with CPU
Digital Clock \& Timer FRG-7000


- 0.25 Thru 29.9 MHz Coverage with 1 kHz Readout

Computer technology and convenience features are brought together in the FRG-7000, a digital-display general coverage receiver for the discriminating SWL. The digital clock and timer, controlled by a CPU (Central Processing Unit) chip, will read out both local and GMT time, and will control peripheral station equipment such as a tape recorder. Improved SSB selectivity, ease of operation, and rugged construction are yours with the FRG-7000 from YAESU.

FULL DETAILS OF THESE RECEIVERS AND THE NEW LOW FACTORY PRICE LIST FROM BRITAIN'S NO. 1 IMPORTER
EX-STOCK - INSTANT CREDIT - FREE SECURICOR DELIVERY

| 508-514 ALUM ROCK ROAD | 021-327 1497 |
| :--- | ---: |
| BIRMINGHAM 8 | Telex 337045 |

## BURGLAR ALARMS

## SUPPLIES AND EQUIPMENT


S.A.E. for free catalogue.

LARGE SIZE PRESSURE MATS $28 \mathrm{in} \times 5$ in $£ 1.89$. MAGNETIC SWITCHES WITH MAGNETS FROM 75p.
BELLS . SIRENS . ALARM UNITS . CABLE BELL COVERS WINDOW FOIL. VIBRATION CONTACTS - ULTRASONIC AND INFRA-RED DETECTORS •INERTIA SWITCHES

A. D. ELECTRONICS<br>217, WARBRECK MOOR, AINTREE, LIVERPOOL L9 OHU. Telephone: 051-525-3440



Newest, neatest system ever devised for storing small parts capacitors, diodes, transistors, etc. Rigid plastic units interlock together in vertical and horizontal combinations. Transparent plastic drawers
have label slots. 10 and 2 D have space dividers. Build up any size cabinet for wall. bench or table top.
As supplied to Post Office. Industry and Government Depts.
SINGLE UNITS (1D) (5in - $\left.2 \frac{1}{2} \mathrm{in}-2 \frac{1}{\mathrm{in}}\right) \quad \mathbf{£ 4 . 9 0}$ DOZEN DOUBLE UNITS (2D) ( $5 \mathrm{in}-4 \frac{1}{2}$ in $-2 \frac{1}{4}$ in) $£ 7.50$ DOZEN REBLE $€ 10.90$ for 8.
EXTRA LARGE SIZE (601) $£ 8.50$ for 8 .
PLUS QUANTITY DISCOUNTS
Orders over E60, less 5\%. PACKING/POSTAGE/ CARRIAGE: Add $£ 1.30$ to all orders under $£ 10$. Orders E10 and over. please add $10 \%$ carriage.
QUOTATIONS FOR LARGER QUANTITIES.

Please add $15 \%$ V.A.T. to total remittance. All prices correct at time of going to press.
(PW11) 124 Cricklewood Broadway, London NW2 Telephone 01-4504844

## AMATEUR RADIO RETAILERS ASSOCIATION <br> Secretary: Fred Hopewell, P.O. Box 36, Loughborough LE11 1 DW <br> Presenting the NINTH

AMATEUR RADIO AND ELECTRONICS EXHIBITION
at the GRANBY HALLS, LEICESTER ON 6th, 7th AND 8th NOVEMBER 1980 OPEN DAILY, 10 a.m. to 6 p.m.
E500 IN VOUCHER PRIZES TO BE WON!
PLUS FABULOUS FREE DRAW PRIZES THROUGHOUT THE EXHIBITION!
DON'T MISS THIS EXCITING EVENT - BARGAINS GALORE
REFRESHMENTS, BAR AND ALL THE USUAL AMENITIES
ADMISSION: 75p. Concessionary Tickets 50p for Parties of 15 or over
NO ADVANCE TICKETS. ON RECEIPT OF YOUR REMITTANCE WITH ORDER, TICKETS WILL BE RESERVED FOR YOU TO PICK UP AT THE BOX-OFFICE. IF YOU REQUIRE AN ACKNOWLEDGEMENT, PLEASE ENCLOSE A STAMPED ADDRESSED ENVELOPE.
BOOK THE DATES NOW FOR THE SHOW OF THE YEAR!
 current flows from emitter 1 to charge the $20 \mu \mathrm{~F}$ capacitor so that its left-hand side is positive. A fraction of a second later transistor 2 conducts; this means that collector 2 is effectively earthed, since emitter 2 is earthed. As the lefthand side of the $20 \mu \mathrm{~F}$ capacitor is now earthed and as it is more positive than the right-hand side, the latter must be a negative potential. This negative charge is used to charge the $50 \mu \mathrm{~F}$ output reservoir capacitor through a 1 N 916 diode. This type of circuit with two diodes is known as a diode pump, since charge is pumped through it to be stored in the $50 \mu \mathrm{~F}$ reservoir capacitor at the output.

The output voltage is fed back through the $15 \mathrm{k} \Omega$ resistor, stabilising the output voltage.

## More Current

The circuit of Fig. 4 shows how the SG3524 may be used to provide a stabilised output of +5 V at a current of up to 1A suitable for driving TTL circuits. The SG3524 cannot itself provide more than 100 mA of output current and therefore an additional device is required which can pass the larger current and which is controlled by the collector outputs of the SG3524. In the circuit shown this device is a TIP115 power Darlington manufactured by Texas Instruments Ltd.

As in the circuit of Fig. 3, the inverting and noninverting inputs of the error amplifier are kept at a potential of $+2 \cdot 5 \mathrm{~V}$. In the circuit of Fig. 4, the positive output voltage is divided into two equal parts and fed to the inverting input of the error amplifier, while the +5 V reference output is similarly divided. The feedback mechanism maintains the potentials of pins 1 and 2 approximately equal. If the output voltage tends to rise above


Fig. 3: An invertor circuit providing an output of $\mathbf{- 5 V}$, 20 mA


Fig. 4: This circuit uses an external TIP115 Darlington to boost the maximum ouput current to 1A
+5 V , less charge will be fed into the $500 \mu \mathrm{~F}$ output capacitor per unit time so that the output voltage drops towards +5 V . Similarly, if the output voltage falls below +5 V , more charge per unit time will flow into the output capacitor to raise the voltage to +5 V (in the Fig. 3 circuit, the feedback is taken to the non-inverting input, since the ouput is negative).

The inductor used in Fig. 4 must have a very low series resistance if the circuit is to operate at maximum efficiency. A Mullard "RM" core with an inductance factor of 250 nH can be used; this means that the inductance of a one turn coil is 250 nH . As the inductance is proportional to the square of the number of turns, 60 turns will provide the required $900 \mu \mathrm{H}$ inductance. The wire diameter should be as large as can be accommodated on the former of a RM10 core; and should be about 0.7 to 0.75 mm . Smaller cores of the "RM" series, such as the RM6 type, would result in the use of thinner wire of higher resistance; lowering the power efficiency of the circuit.

## Conclusions

In order to avoid interference problems, the output capacitor should be soldered as close to the SG3524 as possible, and must be a good quality component. A capacitor of about $10 \mu \mathrm{~F}$ should also be soldered directly between pins 15 and 8 to decouple the power input supply, unless the lead from the raw power supply is very short.

The SG3524 device and the RM10 core are available from Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex CM14 4BN.

## PW "NIMBUS" FOLLOW-UP

$\rightarrow$ continued from page 64

was that crystals in the 15 MHz region for 2 m receivers are not generally available, whilst overtone types at 45 MHz are available from several sources, cheaply, and ex-stock.

It was also found that this arrangement, when used with overtone crystals operating on their fundamental ( $45 \div 3$ ), does give quite a large trimming range using capacitor trimmers, rather than the inductor trimmers more commonly used with overtone crystals.

Incidentally, crystals from two sources were tried in the prototypes, and no difficulties were experienced in getting the overtone crystals to oscillate readily in the fundamental (Colpitt's) circuit of the $P W^{\text {" Nimbus". The slight error }}$ in frequency which occurs when overtone crystals are operated at their fundamental was easily accommodated by means of the series trimming capacitors.
6. Low output from the base-station adaptor. The use of the optional filter unit on the output of the amplifier is strongly recommended, in order to reduce spurious emissions to the absolute minimum. The loss of 145 MHz due to this filter should not exceed about 1.5 dB . If it does, repeat the alignment process for the filter and check that the coupling capacitor C101 is a suitable type for use in r.f. power circuits. A possible alternative is to replace it by a "gimmick" capacitor, formed by twisting together two short lengths of pvc-insulated solid wire. The value can be adjusted by trimming the length of the wires and repeating the filter alignment process until the insertion loss is acceptable.


A neat printed circuit board is the hallmark of a good radio constructor, but to achieve this, all the leads of axial components such as resistors and diodes need to be accurately bent at precisely the correct hole spacing before being fitted to the board.
With the Practical Wireless Lead Bending Gauge, presented free with this issue, you can perform this neat bending simply and quickly.
The tapered end of the tool allows a variety of different hole spacings to be accommodated. Simply select the appropriate groove to give the desired spacing, place the component centrally in the slot, with its leads lying along the groove, and carefully fold the leads over the sides of the tool.
Other lead bending gauges have stopped at folding the leads-ours is different! At the opposite end is a useful set of gauges. The holes have been chosen to enable you to check on the sizes of drills needed to fit commonly-used screws and components such as potentiometers and switches. Around the outside of the tool is a series of slots. To check the gauge of a wire, gently try it for fit in the slots until you find the one that just lets the wire slip through to the inner hole. This slot gives you the wire gauge size. Do not force the wire through the slot, as this will tend to open it up, making it useless for further checks. Note that the slot is the gauge, not the inner hole.

## specification

> Component length: 11 mm (maximum).
> Range of lead spacings: 13 mm to 50 mm (approximately).
> Drill sizes gauged: $0.8 \mathrm{~mm}, 1.0 \mathrm{~mm}, 4 \mathrm{~mm}, \frac{1}{4} \mathrm{in}, \frac{3}{8} \mathrm{in}$, tapping and clearance sizes for 4, 6 and 8BA screws.
> Wire sizes gauged: 16 s.w.g. to 44 s.w.g. (even sizes only).

## New Shure Mic.

Over many years the Shure Model 444 has been regarded as the "standard" among fixed-station microphones, now an improved version has been introduced, it is the Shure Model 444D.

Among the new features is a high/low impedance selector switch, located beneath the base of the unit, which will increase compatibility with existing fixed-station equipment, also an easy-to-use slide switch is provided for normal/VOX operation. These new features join the unit's existing momentary or locking p.t.t. switch bar, the Controlled Magnetic microphone, height adjuster and tough Armo-Dur case that is impervious to rust and deterioration.

Other added features are a coiled input cable, personalised nameplate with your station callsign, and a new wiring guide which provides instructions for wiring the microphone to major manufacturers equipment.


Priced at $£ 31.80$ plus VAT, the Model 444D is available from most good amateur radio equipment stockists or direct from: Shure Electronics Ltd., Eccleston Road, Maidstone ME15 6AU. Tel: (0622) 59881.

## Ring Main Tester

At the very least, an incorrectly wired socket can damage valuable electrical equipment; at its worst it can be physically dangerous.

Martindale, the Neasden-based company that specialises in industrial safety equipment and electrical test instruments, has now introduced its simple Ring Main Tester for use by the householder.
No larger than a conventional plug, the Tester is simply fitted into a standard 13A socket to give instant visual identification of the polarity of the wiring. Correct wiring, faulty earth connections, faulty neutral and reversed live/neutral connections are immediately shown by combinations of the carefully selected neons on the face of the Tester adjacent to ex-

planatory diagrams. A fault in the live connection or supply is indicated when no neons are lit.

The Ring Main Testers are available from local hardware, do-it-yourself and electrical retail outlets at around $£ 4.70$ plus VAT. Any difficulty in obtaining the Tester should be referred to: Martindale Electrical Co. Ltd., Neasden Lane, London NW10 1RN. Tel: 01-450 8561.

## Fuelstretcher

Following a mention in "Production Lines" of specialised low-cost fuel conservation and car electronics components in the June issue of Practical Wireless. The company concerned, Envirosystems Ltd., announce the availability of kits using these devices.

The FSX20 petrol consumption monitor displays an instantaneous digital read-out of m.p.g., with a choice of two update frequencies to suit individual driving conditions, automatic clear-down under idling and simple owner calibration facility, which makes the system generally applicable to most vehicles with carburettor fuel systems and cable driven speedometer. A unique petrol injection option is available to compensate for fuel returned to the tank.

The FSX10 petrol consumption recorder displays total gallons used, with reset facility to allow determination of overall fuel consumed and average m.p.g. This kit is lower priced as it requires fuel sensor input only.

Both kits are suitable for vehicles employing a 12 V d.c. negative earth system and come complete with digital transducers, p.c.b.s and all other components, including an attractive display case. Construction and installation instructions are provided with the kits and a technical back-up service is available.

Prices inclusive of VAT and $p \& p$ for the UK are as follows: FSX10 kit $£ 34.80$; Basic FSX20 $£ 47.50$, and including the petrol injection option £65.90.

Further details from: Envirosystems Ltd., Hampsfell Road, Grange-overSands, Cumbria LA11 6BE. Tel: 1044 84) 4233

## RTTY to TV Converter

Recently introduced by Microwave Modules Ltd. is the MM2000, a RTTY to TV converter which, among others, should be of particular interest to readers of the "Introducing RTTY" series currently running in Practical Wireless.

The unit requires only an audio signal link from a receiver, a 12 V d.c. supply and a suitable link to a TV, to enable a live display of "off-air" RTTY and ASCII on a domestic standard u.h.f. TV set.

The following modes of reception are accepted by the converter: Amateur Standard ASCII, 300 baud; Murray Coded RTTY, 45.5, 50 and 75 baud. In each of these four modes, the converter will accept FSK and AFSK signals.

Utilising two m.p.u.s and 21 i.c.s, the MM2000 is constructed on two p.c.b.s, all housed in a black diecast enclosure measuring $187 \times 120 \times$ 53 mm and weighs only 1 kg .

The MM2000 costs $£ 169$ which includes VAT, and is available from: Microwave Modules Ltd., Brookfield Drive, Aintree, Liverpool 19 7AN. Tel: 051-523 4011.


## ALAN MARTIN GBZPW

## VHF Wavemeter

If you hold an amateur radio licence, one' of the conditions of that licence reads something like this, "an absorption device of suitable frequency range and accuracy is necessary . . . and the frequency coverage must extend up to the second . . . harmonic . . .

Packer Communications can supply an accurate and reasonably priced absorption wavemeter, called the $W M-2 a$. The range covered is 130 MHz to 300 MHz and each unit is individually calibrated, the unit also employs a sensitive $50 \mu \mathrm{~A}$ meter.

The WM-2a costs $£ 19.95$ plus VAT and $85 p \mathrm{p} \& \mathrm{p}$, other models are available covering 100 kHz to 1 GHz .

Further details from: Packer Communications, Bridge End Barn, Soutergate, Kirkby-in-Furness, Cumbria LA1 7 7TW. Tel: (022 989) 448.


## Bib Record Clamp

The trouble with plastic records is that they are prone to warp, through bad storage or heat. With delicate stylus tracking pressures it is imperative that the record is not allowed to float up and down the centre spindle, thus creating distortion as the stylus is thrown from one side to the other of the microgroove.

The Bib Record Clamp, especially designed to overcome the problem, fits over the centre spindle on single play decks and is locked in position, creating a firm bond between the record and turntable. This helps to flatten the warped record and eliminate vibration. The fitted stroboscopic disc allows determination of r.p.m.

The Bib Record Clamp is generally available through most good $\mathrm{Hi}-\mathrm{Fi}$ dealers and record shops, priced around $£ 2.50$ which includes VAT.

Bib Hi-Fi Accessories Ltd., Kelsey House, Wood Lane End, Hemel Hempstead, Herts HP2 4RQ. Tel: (0442) 61291.

## DMM Kits

Lascar Electronics are now also selling their digital I.c.d. multimeters in kit form.

The kits are being made especially as an educational aid, giving an insight into design of digital measuring instruments, the constructor also gains practical experience in working with double-sided p.c.b.s and I.s.i. integrated circuits. Being in kit form the instruments also offer a large cost saving.

Both models feature a 0.5 in I.c.d.

readout with "battery low" warning, five functions (a.c./d.c. volts, a.c./d.c. current and resistance) with ability to check diodes.

Inputs are fully protected against overloads and transients, with ability to withstand mains on any range.
The LMM-200 is a hand-held multimeter with a $0.5 \%$ basic accuracy, and 15 ranges. The LMM-100 is suitable for field or bench use, has a $0 \cdot 1 \%$ basic accuracy, and 25 ranges. It also features an adjustable and digital hold facility.

The kits are priced as follows: LMM$200 £ 39.04$, LMM-100 £69.80, both prices include VAT and $p \& p$.

Lascar Electronics Ltd., Unit 1, Thomasin Road, Burnt Mills, Basildon, Essex SS13 1LH. Tel: (O268) 727383.

## Soldering Station

The new version of the Antex TCSU1 soldering station, meets the latest requirements for precision temperaturecontrolled soldering. The station is constructed in one of the toughest and most durable moulding materials available.

A significant addition is the antistatic earth connection to protect m.o.s. devices from damage caused by static electricity, this is achieved by inserting the jack with the special earthing cable in the socket at the side of the unit, which makes contact to a specifically made "earth", thus eliminating any static charge.

The station is supplied with either the miniature CTC 40 watt iron or the XTC 50 watt model. Both irons are fitted with 5 -core, silicone, burn-free cable with 5-pin DIN socket which connects with the 24 V supply from the station. Thermocouples, at the front of the irons, sense the temperature which is kept at a pre-set level between $65^{\circ} \mathrm{C}$ and $420^{\circ} \mathrm{C}$ with an accuracy of $2 \%$. A range of three long-lasting bits, heavily coated with iron, is included with each iron for micro, miniature or general soldering work. The bits slide easily on or off the iron's stainless steel shaft.

Temperature control switching is done electronically at zero voltage, avoiding such evils as magnetic fields, arcing transients or spikes. A separate sponge tray is supplied with each station.

Like all Antex products, the TCSU1 is made in England to a British design, and costs (with either of the irons) $£ 38$ plus VAT and $£ 1.75$ p\&p. Separately the irons cost $£ 9.75$ plus VAT and 45 p p\&p.
Available from many retail outlets throughout the country, or direct from: Antex, Mayflower House, Plymouth, Devon. Tel: (0752) 67377.




## by Exic Dowdeswell G4AR

Reports to: Eric Dowdeswell G4AR
Silver Firs, Leatherhead Road,
Ashtead, Surrey KT21 2TW.
Logs by bands in alphabetical order.

There is one sure way for the DXer to hear a lot of countries on the h.f. amateur bands in a very short time, and that is to listen to the control station making a "list" of stations wanting to QSO a particularly rare bit of DX who wants to do things the easy way! Readers frequently ask what all this "list" business is about so a brief explanation may help.

DX pile-ups have existed ever since amateurs were interested in working as many different countries or prefixes as possible, usually by calling the DX station on his own frequency, with the strongest signal getting through for a very brief exchange of reports and nothing more. When the big boys have made it, the weaker stations may have a chance, provided conditions haven't changed too much in the meantime. There is a definite technique to be learned in pile-ups if one is to be successful without the aid of high power or expensive aerial systems. Personally speaking, I always enjoy a pile-up but there are many who don't!

The operator at the DX end can handle a pile-up quite expeditiously if at all experienced, but if he happens to be new to the game then all is chaos and he frequently just gives up, which is a pity. The current alternative to the pile-up is for an experienced DXer, generally with a potent, world-wide signal, to take the DX station under his wing and to act as a control station, taking down a list of stations wanting to work the DX station, by inviting them to call in, usually by continents or countries or prefixes. So when control asks: "any G4's?" I just say "G4AR" and if he repeats my call I know I'm on the list!

The eventual length of the list can be quite staggering but when a halt is finally called our controlling hero checks that the DX station is on frequency and asks the first one on the list to exchange reports with the DX fellow, and so on down the list, as called out by the control station. And this is where the first fault in the system raises
its nasty head! For the DX station can hear the call of the next bod on the list, which is half the battle normally in getting through! And if there are problems in exchanging reports there is always someone on frequency prepared to pass on the reports! I have even heard control stations do this in order to keep things moving, making a nonsense of the whole idea.

In fact, it is not unlike the repeater systems on v.h.f. and u.h.f. which increase distances covered on these frequencies but have little intrinsic merit as far as the operator's capabilities are concerned. Of course there are those not on the "list" who can hear the DX quite well and want to work him in the normal way, often not realising that the list system is operating but, rightly or wrongly, they are soon told the error of their ways by control or others on the list. In the meantime the clever DX listener should have been taking down all these calls and picking up some new countries or prefixes or whatever, and all quite legitimately.

Just for fun I recently got on the "list" for H44SH in the Solomon Islands with American AD1S acting as control, but it took another 45 minutes before I was "allowed" to contact H44SH with a 5 and 7 each way. Since the control station now has, in effect, the log of the DX station he can send out suitably printed QSL cards for these contacts as requested, which explains why cards are often forthcoming in a matter of days for a QSO with some distant, lonely DX station. Effective? Yes, but it cannot give the thrill that receiving a card direct from the DX station does, complete with a handsome stamp.

In some cases two control stations are involved in different parts of the world. This helps if one cannot get on to a list because of skip problems, if, for example, a G station is one control on the 20 m band. In this case one may have to QSO a VK to get on the list!

With such easy world-wide communication on the amateur bands the mere listener should ask himself if there is still any point in spending time and much money on sending QSL cards to stations who already know they cover the world with their signals. Much better to use these valuable assets in achieving a pass in the Radio Amateurs' Examination so that he can join in the fun and get on to a DXer's list!

## Happy People!

Yes, the RAE results from the May exam are coming in and the first of the happy people is Arthur White of Aisby, Grantham, Lincs, with credits in both parts as a result of being thumped round the ears regularly by G3ZOA, who
had the additional satisfaction of learning that his XYL has also passed, not only the RAE but the code test as well. So he won't be able to get his hands on his gear for a while! Good luck Arthur and best wishes with the Morse test he has promised to take 'ere long. Oh, yes, Arthur would still like to get hold of a genuine S-meter for his AR88D, so any offers to me please in the first instance.

Now to Rod Williams (Brecon, Powys) who also got credits in the RAE and I must quote from his letter: "I thought the RAE was some nasty exam put there by the Home Office boys to stop one getting on the air. I can now see it is there to help one and to make one aware of the responsibilities one has in upholding a licence." Rod worked entirely on his own from books including, dare I say it, PW's RAE Reprint, studying an hour every night from February to April in spite of mundane jobs like looking after the children! Rod also quotes the golden rules for taking any exam: "Follow the instructions given, read the question paper thoroughly before starting, re-check all answers in good time even if you haven't finished all the questions." It certainly worked for Rod, and so on to the code test!

Third with the good news is John Sparks of Darlington with credits yet again (what is it with these $P W$ readers?) who supplemented self-study with a weekly forty mile each way journey to RAE classes at a technical college. ExRAF op. John should have no trouble now with the Morse exam, blaming me for his re-entry into the operating field!

Can anybody help C. F. Perham, PO Box 2042, Kopeopeo, Whakatane, New Zealand with info on an aerial article in magazine Old Man of July 1970 by I1BER? Write to me in the first instance if you wish.

Following my comments in the April $P W$ on Beverage aerials, I had a long and interesting letter on their operation from Max Gill of Gordon, NSW, Australia, who threatens to write an article on the subject for $P W$. I'm sure he wouldn't mind if I statted the letter for anyone interested.

## Now for the DX

Some funny callsigns in the log of Colin Frankland of Hull until he pointed out that his typewriter's figure 1's look like his letter l's! So with his Trio 9R59DS, a Codar PR30 preselector and two dipole aerials indoors, it was 8P6CS among many on 14 MHz s.s.b. with 21 MHz producing 3D6BB, 5N0DOG, HM2JN, VU2USE (US Embassy, New Delhi), TU2HG, JR6RYU on Okinawa and HP1XFN.

With a new long wire of 132 ft plus indoor 20 m dipole Basil Woodcock BRS44266 in Leeds has persuaded his SRX-30 to pick up such as CE1BLL, HH2FH, J6LOU, KC6IN, VP2MO, VP2VAG and VS5DD on 15 m , and 5N2KY, 9N1MM, 8P6BO, SU1BA, 6W8GT and 9X5AV for his 20 m catch. Using his FRG-7 with a 66 ft aerial and a.t.u., David Coggins of Knutsford, Cheshire, comments on YB0WR working into Europe on 7 MHz in the evenings and the Pacific net with goodies like YJ8NPS, H44JB and P29NRL around 21150 kHz between midday and 1500 with DK 9 KG exercising some sort of control. Other catches include OJOMA on Market Reef on 160 m , LU3AJW, VK6LK and YB0WR on 40 m , FO8FI, VK1WB, VK9ZG, VR6TC (Box 1, Pitcairn Is), 5H3FW, and 5 W 1 BP on Samoa all on 20 m , with AH8A on American Samoa, A22VP (Botswana), HM0OO, H44JB, VE4AFQ/8 (Ellesmere Is), YC1GJ, 3D2CS and 9M2GZ for 15 m and, finally on 10 m CE1BLL, J6LB/M (mobile on St Lucia!), ZS3N and 5N2DOG.

Paul Barker G4HPS of Sunderland is still the only reader to send in a c.w. log, in his case all worked with his

TS189 transceiver and 18AVT vertical aerial system. Not DX but fairly rare all the same was DJ9GI/HB0 on 10 m , plus HK0BKX on San Andres \& Providencia Is on 15 m for a welcome new one. Chasing US states Paul managed WB7RMI in Wyoming and AI0M in Nebraska but who'd guess that from that call!

From Lee-on-Solent, Hants, Alec Bell writes in for the first time with the news that he will be after the RAE in December, in the meantime keeping an eye on things with an FRG-7, a.t.u., trap dipole for 10 m to 80 m and a 100 ft wire. On 20 m Alec found HM1HR, HS5DLD, 6Y5HM and 9 Y 4 OV with 15 m coming up with CE3OE, JR6BRE, SV0AW and EA8JP. First report also from 13-year-old Mark Ryder BRS43580 (Oldham) also with an FRG-7 and wire some 120 ft long. He likewise threatens to have a go at the December RAE, in the meantime frequenting the Manchester \& District ARS. The all-s.s.b. log reads VO1GK and W1MX on 80 m , HI8VBR, KG 4 KK , 5N0RHK on $40 \mathrm{~m}, \mathrm{C} 31 \mathrm{DV}, \mathrm{C} 5 A A A$, D4CBC, FB8ZO, J6LOU, VP2VBK and XT2AW on 20 m . Nothing of note was found on 10 m which has been very patchy of late.

Phil Charlesworth G8SNG kindly keeps me posted as to his activities. Having got his BSc he has decided against going for the jackpot PhD, and to apply for a commission in the RAF, needless to say in electronics and communications. Interesting log entries were OJOMA on Market Reef, SV6ZA and 4X6AW, all on 80 m s.s.b. Phil queries a couple of Y21's which I'm afraid are just East Germany.

Allan Stevens (Crowthorne, Berks) is considering the Datong up-converter feeding into a 10 m set-up yet to be built. September's $P W$ had a good write-up on this unit. On 15 m recently, on what seemed to be a dead band, up popped a number of stations enabling Allan to log all continents in a very short time including a nice one in ZK1AA on Cook Is. Others found on the band included HS1AMM, OH1KB/OH0 on Aaland Is, S79MC, XT2AY, YC1BY and 4S7DJ.

A QSL received here from A4XGR, PO Box 981, Muscat, Oman, says he'd like to renew old acquaintances in G-land after wanderings in the UK area and previous activity as VS6EZ, with A4 as the starting point. Likely frequencies will be 21150 and 28490 plus the Sea Net at 1200 Z on 14320 kHz . Three IRCs or a 20 p postal order will get a QSL by return airmail.

Down in Feoch, Truro, Cornwall, Bill Rendell has continued to virtually rebuild his HRO and yet manage to keep it operational. He still likes his preselector in front of it in spite of the two r.f. stages in the set itself. To prove it, Bill made a note of C5ACO, C31MS, OJ0MA, VR6TC and YS9RVE (QSL Box 0543, San Salvador) on 20 m s.s.b. and expects me to believe YO00OO. He must be joking-should have kept that one for next April! 15 m came up with C5ACO, N6HR/KX6, TY9ER (where's that?), VP8SB, VS5DD (QSL Box 1200, BSB, Brunei), 5N0DOG and 8Q7AZ.

## Club Time

If you have only just come into contact with amateur radio there is no better way to get to know more about it than by visiting or joining a local club of which there are hundreds scattered around the UK. If there is nothing suitable in the list below then try some recent past issues of $P W$. Failing that contact the RSGB at 35 Doughty Street, London WC1N 2AE, to whom the great majority of these clubs are affiliated.

Crawley ARC. Seems from the club's Newsletter that meetings take place at the Trinity United Reformed Church Hall, Ifield, on Wednesdays, like 22 October when Mike Underhill G3LHZ will be holding forth on a.t.u.s

## LOW PRICES ON YAESU!!

Whether you are; just starting, taking an R.A.E. course, just licensed, or an old timer, SMC has something for you... And at the lowest
FT225RD saves $£ 59$ on last list prices).

Advertised prices here include VAT at $15 \%$, include Securicor's speedy delivery and include a two year Warranty (remember as Yaesu Musen UK distributors our guarantee is factory backed). We take Access and Barclaycard over the phone, offer attractive HP quotations (including a FREE FINANCE SCHEME on many regular priced items) on application and have branches and agents conveniently situated across the country plus the biggest mail order department right here in torton.
Remember what is shown here is only a tiny proportion of our stock and our range of accessories, Remember what is shown here is only a tiny pr
antennas, rotators and masts are second to none.


10-160m. SSB, CW, AM, Digital. Variable IF bandwidth. (Analogue version $£ 488.57$ !!


FT480R $£ 359$
2 m . Synthesized. $100,25,1 \mathrm{KHz}$ steps FM
$1 \mathrm{KHz}, 100,10 \mathrm{~Hz}$, steps SSB, 10W PEP.


FRG7 £199
$0.5-30 \mathrm{MHz}$ General Coverage Receiver. $0.5-30 \mathrm{MCz}$ General Coverage Receiver. 12 V DC, + Battery pack. AM/SSB.
230 AC
PRICES INCLUDE VAT @ 15\%


2 m. SSB, CW, FM, AM, Digital readout. $25+$ watts. (Analogue version $£ 449.00$ )


FT7B £399
10-80m. 100W PIP. SSB, AM, CW, Mobile
12v Transceiver


FREE SECURICOR DELIVERY


10-160m. SSB, CW, AM, FM, Deluxe Digital. (DE version $£ 7$ i3.00. 'D version $£ 724.50$ )


FT707 £500
10-80m. 100W PEP. SSB, AM, CW. Variable
IF Bandwidth. Digital (ills + FV707DM).


2 YEAR DISTRIBUTOR WARRANTY

## SOUTH MIDLANDS COMMUNICATIONS LIMITED

S. M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: "Aerial" Southampton

S.M.C. (Jack Tweedy) LTD Roger Baines, G3YBO 79 Chatsworth Road, Chesterfield, Derbyshire 9-6: Tuesday-Saturday

NORTHERN (Leeds) BRANCH Colin Thomas, G3PSM 257 Otley Road, Leeds 16, Yorkshire. 9-5.30 Monday-Saturday
S.M.C. (Jack Tweedy) LTD

## MAKE A GOOD START (With New Low Prices)

A GOOD START is essential to short wave listening and expert advice is important in achieving this - So here's some - If you've made up you're mind to buy a receiver you should be aware it will perform only as well as the antennna it sees. The old adage regarding wire antennas "As long and as high as you can" is still good, but at best is only good for PEAK PERFORMANCE on one or two frequencies, at worst none.
Whichever frequency you tune your receiver to, for PEAK PERFORMANCE on all frequencies you need good matching between your Receiver and Antenna to hear the best from it. If you plan to listen on the high frequency bands up to 30 MHz then you know you can't have an antenna for every frequency! Or can you? - Well Not quite! BUT we can offer you MUCH IMPROVED PERFORMANCE from your receiver by using an antenna tuning unit, that will electrically change the length of your antenna to match the frequency you select - In other words - A MATCH AT ALL FREQUENCIES. You'll see many antennas being advertised under gimmicky names, but when it comes down to it they're only random wires or odd configurations. At the end of the day, if you're expecting the performance the manufacturers want you to have, you'll still have to buy an antenna tuning unit.
Tell you what we'll do - we'll prove it to you - we'll give you one ABSOLUTELY FREE when you buy your FRG 7 or FRG 7000 and we'll give you complete advice on an antenna to suit your available space, which should only cost you a couple of pounds!
So let's put the offer in big print for you!

# 1 YAESU FRG 7 + AMTECH 200 ATU 1 YAESU FRG 7000 + AMTECH 300 ATU VAT included 

What's the difference between the Amtech 200 and Amtech 300? Well both will tune any random length of wire but the Amtech 300 will do a little extra - it will also match co-axial fed antennas - Their normal selling price, The Amtech $300 £ 39.95$ - The Amtech $200 £ 25.95$ - What can you lose?

So get cracking MAKE A GOOD START! HAVE PEAK PERFORMANCE FROM THE OFF.
JAYBEAM - HYGAIN - BANTEX - AMTECH - CUSHCRAFT - SWAN - ATLAS
and 50 other major lines - all ex stock.

## £199.00 <br> £299.00

## So You Want to Pass the RAE?



A reprint of the complete series, including details of the new examination format introduced in 1979, is now available. The reprint costs 85 p , including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF. Please ensure that your name and address are clearly legible.

## PRACTICAL WIRELESS-Radio Amateur Examination Reprint <br> Please send your order and remittance to: <br> IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF <br> Please send me ... copies at 85 p each to include postage and packing <br> I enclose P.O./Cheque No......... Value <br> Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

## NAME

## (BLOCK LETTERS)

## ADDRESS

## (BLOCK LETTERS)

and aerials, with all standing to attention when RSGB Regional Rep G3MDO and Area Rep G3JMB visit on November 26. CARC celebrated its 21 st in September having been started by old friend Ron Vaughan G3FRV, now VK6RV, in 1959. Club competition seeks new name for Newsletter which it seems has been "temporary" for 21 years.

St Neots \& District ARS. Newly-formed, welcomes new faces at The Ernulf Community School, Barford Road, Eynesbury, St Neots, Cambs, at 7.30 pm Mondays, but contact Sec Paul Herod G8TQI, 49 Luke Road, Eynesbury, St Neots, Cambs, for meeting details or try Huntingdon 74642.

West Kent ARS. The Adult Education Centre, Monson Road, Tunbridge Wells, sees Ambit International talking about choosing the right component on October 10 with G5XB holding sway on the Hellschreiber on the 24th. G3ROO is on the ball with advice on how to get on to the new bands without buying a new rig, on November 7. But Brian Castle G4DYF can tell you more on Sevenoaks 56708.

Bolsover ARS. Wednesdays 8 pm , Angel Hotel, Bolsover, with RAE classes already going great guns. Being formed recently, the club particularly welcomes new members whether licensed or newly interested in the hobby. Contact: Allan Turford G8HPQ, 103 Hilltop, Bolsover, near Chesterfield, Derbys S 44 WJJ or on Chesterfield 824972.
Bournemouth RS. First and third Fridays at the Dolphin Hotel, Holdenhurst Road, Bournemouth with October 3 being AGM night, or talk with G. R. Freeth G4GQH, 9 South Avenue, New Milton, Hants on New Milton 618092.

Wirral ARS. First and third Wednesdays at 7.45 pm at the Sports Centre, Grange Road West, Birkenhead with AGM on 15 October, so go along and see what makes a club tick. Recent interesting Newsletter holds inquest on this year's HF NFD which is always a good way to ensure a better effort next year.

Exeter ARS. Has club stations G4ARE and GB3EX for use by licensed members with code lessons for those wishing to go from B to A! Advance notice of meeting on November 3 when Any Questions will be conducted by an electronics lecturer from Exeter College, and November 10 when surplus gear will be flogged off! Incidentally November 3 will also be the occasion for a discussion on the RAE syllabus with a view to the December exam. Try G. W. Draper BRS44198 at 1 Carlyon Close, Heavitree, Exeter EX1 3AZ or Exeter 37170.

Durham University Radio \& Electronics Society at Grey College, Durham, will be organising two special event stations, hopefully GB2DUC and GB8DUC, in connection with the Charities Week in that fair city at the beginning of November with all-band operation promised. Informant Ian Jefferson G4IXT even threatens to get on the key. Write to him at the College for more details.

Mexborough \& District ARS. Friday night is meeting night at the Dolcliff Hall, in the road of that name, Mexborough at 7 pip emma (early Roman phonetic code!) with a station on the air, code classes, junk sales and lectures, but not all together! Ian Abel G3ZHI of 9 Grove Terrace, Maltby, Rotherham, Yorks can tell you more or chat on 0709814911 (that's what he wrote! Looks more like my electricity account number).

Derby \& District ARS. Chairman Dick Buckby G3VGW expresses pleasant surprise at the amount of amateur radio matter in $P W$ these days, which ought to lead to more people getting along to the club on Wednesdays at 7.30 pm at 119 Green Lane, Derby, in fact the top floor of the Oddfellows Hall; "Very appropriate!" Dick's words, not mine! Tea, coffee and snacks available! First

Wednesday each month is junk sale night on top of which there are code classes on Tuesdays and Wednesdays at the same spot. They must be churning out G4 +3 's like a sausage machine! But more on that from Jenny Shardlow G4EYM, 19 Portreath Drive, Darley Abbey, Derby DE3 2BJ, or if you dare risk the wrath of the OM then its 0332 556875.

Bedford \& District RC. Winnie The Pooh conceals the identity of the club station G3WTP located three miles north of Bedford, near the car park, near the barn, near the Ravensden Church. Sorry no QTH, just a map! By a valiant effort Dave Whitty G4FEV has resurrected the club magazine, last heard of in 1970, and a good one it is too with several short but interesting projects, with clear drawings and diagrams, so often the weak point of such newsletters. Dave will be glad to tell you more about the club and its activities if you drop him a line to 16 Fairmead Crescent, Rushden, Northants NN10 9NB or call him on Rushden 56768.

Edgware \& District RS. Second and fourth Thursdays at 8 pm , Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware with other evenings being filled in by G3ASR and his RSGB slow Morse transmissions on Mondays and first and third Thursdays on Top Band and 2 m . If that is not enough there are code classes before each meeting. Vintage Radio is theme of G3IEE on October 9 and November 13 should see G3BNL expounding on microwaves. In the meantime why not tackle PRO Howard Drury G4HMD, 39 Wemborough Road, Stanmore which is also 01-952 6462 .

A note to all clubs. Why not help the Radio Amateur Invalid \& Blind Club by joining as a supporter? Syphoning off a few per cent from those junk sales and dinner/dances could help to get someone on the air or provide a receiver for a new and enthusiastic member. Work can always be found for a willing pair of hands in the many tasks that arise in assisting members. Drop a line to Frances Woolley G3LWY, 9 Rannoch Court, Adelaide Road, Surbiton, Surrey KT6 4TE. She is secretary of the RAIBC.


The medium-wave band is allocated to short-range domestic broadcasting. Propagation is by means of the ground wave which, as the name suggests, travels close to the earth's surface where it is attenuated rapidly. There is some radiation skywards from the transmitting mast, though efforts are made to minimise it. Absorption takes place in the D layer of the ionosphere during the day and nothing returns to ground. After dark the D layer disap-
pears and the radio waves reach higher layers where they are refracted, mainly by the E layer, and returned to earth some considerable distance from the transmitter, well outside the ground-wave service area. This is the reason why many more stations are to be heard at night than during the day and it is also the phenomenon that makes mediumwave DXing possible. Rule number one for the m.w. DXer: Reception can only take place when there is a path of darkness between transmitter and receiver. No use looking for DX in the middle of the day as you won't find any.

## North American DX

Readers express surprise when they learn that North American medium-wave stations can be heard in the UK, yet this type of reception is as old as broadcasting itself. In the 1920 s, veterans such as WGY in Schenectady were heard regularly with the simple equipment in use at the time. Nowadays, the band is full of Europeans at night, but many do close down around 2300 and since the north Atlantic path will be in darkness this is the time to hunt for DX.

Locate Brussels on 927 kHz . The language is French and the station goes off the air between 2250 and 2315 . Once the tuning notes are finished and the carrier goes off, tune up-frequency slightly to 930 kHz where, if conditions are favourable, you ought to pick up CJYQ which is a 50 kW broadcaster at St John's in Newfoundland. Identification is easy since the callsign (CJYQ) or its contraction (Q Radio) is used repeatedly and time checks will reveal a Time Zone $3 \frac{1}{2}$ hours behind our own.

Do not be disappointed if you fail to hear CJYQ at the first attempt. Conditions vary a lot and the signal may be strong one night and absent for the following few nights. Be prepared too for the slow cyclic fading that is typical of a m.w. DX signal. Over a couple of minutes it may go from strong to inaudible and then come slowly back. Stay on the channel for a few minutes in case there is a fade.

If you do hear CJYQ then try for two other Newfoundlanders; CKVO in Clarenville on 710 kHz and CBGY in Bonavista Bay on 750. Look for WHDH in Boston on 850 and for two stations in New York City; WNEW on 1130 and WQXR on 1560.

## Beverage Antennas

From Galway in the west of Ireland comes a request for help from reader Neil Sharkey who is having difficulty picking up the BBC, particularly Radio 3 on 1215 kHz . There are quite a few areas over here where reception is far from good! Neil has tried a simple dipole without much success and he wonders if there is some sort of beam antenna that he could construct that would improve reception on 1215.

The mind boggles at the thought of a multi-element beam for use on 247 metres but what is really required is a Beverage which is a very long, long wire, at least two wavelengths in length. It runs from the receiver in the direction of the transmitter and is joined to earth at the remote end by a 600 ohm resistor.

This aerial is directional along the length of the wire away from the receiver. It gives a substantial increase in signal strength as well as an improvement to signal-tonoise ratio, and the wire need only be fixed a few feet above ground level. I have heard recordings of low-power North Americans made in New Zealand with a domestic radio connected to a mile-long Beverage and the results were quite staggering. Unfortunately the Beverage is not the antenna for the city dweller, nor even for those who live in the country, but where space is available this is the ultimate aerial for m.w. DXing.

OWNED AND OPERATED BY
CANADIAN BROADCASTING CORP.
Thank you for your report on our program, your times and details check with our $\log$ and we are pleased to verify your rec. eption of CBI.

Yours truly,
Canadian Broadcasting Corporation


A QSL Card confirming transatlantic reception by the author some years ago

## Semiconductors

"I have a valve-operated Q Multiplier which has its own power supplies. Can this be used with a transistorised receiver or are the voltages too high?" is the question posed by reader Vernon Graham who lives at St PietersLeeuw in Belgium.

Personally, I would not risk it. On the face of it there is no reason why the two cannot be connected together, since a commercially-made Q Multiplier will certainly have its internal voltages isolated from the "output", but - there is always the risk of a short-duration high-voltage spike appearing and if it finds its way into a transistorised receiver it will certainly destroy any semiconductors in its path.

Talking of semiconductors. Some time ago I came across the expression "half conductor" in a translation made by someone without a technical background.

## DX Circle

This is the name of a programme in English that can be heard at 1900 every Tuesday over the 600 kW West German Deutschlandfunk on 1269 kHz . It is written and presented by DXer Alan Thompson who says: "The programme has evolved into a five-minute chat-show about things to do with radio." It has been on the air now for some ten years to my knowledge.

Alan has recently acquired an Eddystone 770R v.h.f. communications receiver. He has a copy of the manual but he wonders if any $P W$ reader could explain the

"This new Z-match l've got is great-the s.w.r. is better than 1 to $11^{\prime \prime}$
. heard by G3RZP
"I'm not surprised there was no modulation, I never said anything."
. Brighton \& District RS Newsletter

## Hefteff FOR GENERAL COVERAGE RECEIVERS

 Western for hf transceivers Wertern for vhf/uhf transceiversWe are direct importers of YAESU and TRIO
We also stock equipment from ICOM and FDK
Send SAE for details and prices

## Wertern can also fix you UP WITH . . .



UNBEATABLE VALUE FOR MONEY
arrays


## POWER/SWR METERS <br> Weskern PEAK READING WATTMETERS

PM-2000 Reads peak or RMS RF power from 3.5 to 30 MHz . Patent peak-reading facility for direct reading of SSB, PEP during Patent peak-reading facility for direct reading of SSB, PEP during
normal transmission. Impedance 50 ohms, power ranges up to 2 kW PM-2001 Similar to PM-2000 (above) but covers VHF from 50.75 150 MHz and has power ranges up to 200 W . OSKER SWR-200 An established favourite, this power/SWR has a place in many shacks. Power measurement up to 2 kW (RMS only) with $15 \%$ accuracy: dual impedance $50 / 75$ ohms, frequency range 3.5 to 150 MHz . Now reduced in Price to ................. $£ 39.00$

## STATION ACCESSORIES

DUMMY LOADS-
W1 type. MDL1000. Extruded finned, heat-sink housing, oil-filled load resistor, 52 ohms, 1 kW for 3 mins, or 300 W continuous. A high quality load at a good price.
(Similar to Trio RD-300 - but not in price!) ............................. £29.95
WESTERN DL-1000 can-type, 250 watts.............................. £14.15
MORSE KEYS
MRK-1 High
SRK-1 High quality "straight" key as made for the professional users
and now available to the amateur .......................................... £12.65
VIBROPLEX
"Original Standard "bug" key ......................................... £39.65

"Vibrokeyer" single paddle for el-bugs .................................................. $£ 39.65$
Valves - 6146B, 6JS6C, 6KD6, 12BY7A and Others, SAE for prices. Also Baluns, Traps, Plugs, Cable, Etc. Etc.

## HF MOBILE ANTENNAS

```
    NOW IN STOCK AGAIN - the
    best HF mobile antenna system
    there is for }10\mathrm{ to }80\mathrm{ metres.
    Choose from:
```



``` Choose from


\section*{Terrific Value! Terrific Performance!}
\[
\text { WESTERN DX-5V 5-band vertical, 10-80m ........................... } 89.00
\]
\[
\text { WESTERN DX-31 Rotary dipole, } 10 / 15 / 20 \mathrm{~m} . . . .
\]
\[
\text { WESTERN DX-32 2-ele beam. } 10 / 15 / 20 \mathrm{~m} . .
\]
\[
\text { WESTERN DX-34 4-ele beam, } 10 / 15 / 20 \mathrm{~m} . . . . . . . . . . . . . . . . . . . . .
\]

Also available: CONVERSION KITS to upgrade DX- 31 to 32 etc.
trap dipoles also available


\section*{THE RECEIVER FOR LF, MF \& HF . . . . .}

\(\star\) SALES \(\star\) SERVICE \(\star\)

0RADIO SHACK LTD.

Giro Account No. 5887151 Telephone: 01-624 7174 Cables: Radio Shack, NW6.


Telex: 23718
significance of the \(\mathrm{S} / 77 \mathrm{R} / 8\) and the two 12 -pin sockets fitted to the back panel. Replies direct to Alan please at 16 Ena Avenue, Neath, West Glamorgan SA 11 3AD.

\section*{Eddystone}

Reader Tony Jover has drawn my attention to the Eddystone EB35 Mark 3 "Statesman", which does not have an internal aerial for use on the medium wave and can be used with a m.w. loop. My own second receiver, the EB36, is a variant of the original EB35 and I have found it to be remarkably free from overloading on the medium waves, even when used with a 60 ft long wire. The EB35 is similar in appearance to the well-known EC10, and details of the EB35 and others in the range are obtainable from the Eddystone main agents who are Sonic Sound Audio of Tottenham Court Road in London.

\section*{Saudi Arabia}

An up-to-date picture of the high power m.w. transmitters in Saudi Arabia comes from G4BHH. There are two sites, one at Qurayat (Q) and the other at Dhuba (D). Daytime means 0300 to 1600 and night-time means 0300-0500 and 1400-2300, all in GMT.

549 kHz (Q) 2 MW into a 6 -element beam. Daytime.
594 kHz (D) 2 MW into a 6 -element beam. Daytime.
900 kHz (Q) 1 MW into a 3-element beam. Night-time.
1521 kHz (D) 2 MW into a 6-element beam. Night-time.
The beam elements consist of 30 ft triangular-section masts one quarter wavelength high and those at Qurayat \((\mathrm{Q})\) are on a great circle heading that extends towards the UK. If you have not yet logged Saudi Arabia, try one of the above frequencies.

"I have difficulty in finding and tuning into stations on the short-wave bands," writes T. Ernest Hall, who is referring to his attempts to pick up the BBC World Service while travelling in France and Spain.

This is not an unusual problem when tuning round the short waves on a general-coverage receiver. It occurs because a short-wave tuning scale displays a much larger portion of the frequency spectrum than a medium- or longwave scale. A receiver tuning from 6 MHz to 22 MHz covers 16 times the frequency range of the medium waves and inevitably stations are 16 times closer together. What can be done about it?

\section*{Bandspread}

Bandspread is one solution. The receiver has two scales; a main scale and a bandspread scale. The pointer on the main scale is set to a spot or mark for bandspreading and stations are then tuned in on the bandspread scale where they are spread out more and are easier to tune in and locate. This arrangement is used on some communications receivers but seldom on domestic-type sets.

Another remedy is to have a separate scale for each short-wave broadcast band, so that stations are spread out like they are on the medium and long waves. The Grundig Satellit and similar receivers use this method, but it means a large number of scales and associated circuitry and consequent expense. The snag with this method is that you cannot tune to out-of-band stations, but this should not bother the s.w.l. too much though it could be a disadvantage to the DXer.

My Vega 204 works partly on this principle. It has only a single pointer which travels over eight separate scales, one each for the \(13 \mathrm{~m}, 16 \mathrm{~m}\) and 19 m bands, one covering \(9 \cdot 3 \mathrm{MHz}\) to \(12 \cdot 1 \mathrm{MHz}\) which includes the 25 m and 31 m bands, one covering 5 MHz to 7.5 MHz to include 41 m and 49 m and another tuning over 3 MHz to 5 MHz to cover the tropical bands. The remaining scales are for the medium and long waves.

\section*{Digital Readout}

The best and most recent solution to the station location problem is digital readout. The frequency in \(\mathrm{kHz}(\mathrm{MHz} \times\) 1000) is shown on a digital clock-type display, and provided the receiver has a reasonable slow-motion drive
then you can hardly go wrong. Rotate the tuning control until the frequency you want appears on the display. At the moment, digital display is only available on the more expensive receivers but it cannot be long until every set is equipped with this ultimate aid to easy tuning.

\section*{Aerial Tuning Units}
"Can I use an aerial tuning unit (a.t.u.) with a receiver that has an aerial trimmer control?" asks Thomas Glennon of Cork. The function of the aerial trimmer is to compensate for any loading that the aerial may place on the receiver. The a.t.u. will minimise aerial loading by matching the aerial to the receiver and consequently the aerial trimmer will then have little effect. Of the two, I much prefer the a.t.u. and it is worthwhile using one with a receiver that has an aerial trimmer as such a set-up may occasionally give a boost to a weak signal.

It is always a good idea to experiment with different aerials along with an a.t.u., rather than speculate what might happen. You will not damage a receiver by joining an a.t.u. between the aerial and aerial socket. At worst it will make no difference; at best it will give a valuable boost to a weak signal. Details of how to make an a.t.u. appeared in the Aerial Data Chart contained in the November 1979 edition of Practical Wireless, but they are available from advertisers in \(P W\) and other magazines.

\section*{Volmet}

My comments about Volmet in the April issue brought an interesting reply from K. Todd of Kaiapoi in New Zealand who enclosed an article on the subject from an


A QSL Card confirming reception of a test transmission from Dubai Radio by reader W. Higgins of Aylesbury

American magazine. A lot of confusion exists among DXers as a result of differences between the law in the USA and this country. In the UK it is illegal to even listen to anything other than broadcasting stations or amateurs, unless you have a licence and this is not normally issued to private individuals. As a result, information about point-to-point, Volmet, etc., cannot be included in this column. Very sorry but that is the position. Utility DXing is illegal in the UK!

\section*{Readers' Letters}
"I heard the BBC World Service on approximately 20460 kHz in s.s.b.," says G. R. Ellis from Aylesbury, who wonders if he was listening to some sort of freak transmission. You were probably listening to a feeder, which is a transmission to an overseas location for rebroadcasting. It is not intended for direct reception by the public as it merely replaces the usual landline between the studio and transmitter.
"Have fixed the old Rx up again and find things to be quite interesting s.w.l.-wise anyway," says N. C. Dove of Lockerbie in Scotland, who first started DXing in 1937. His receiver is a home-made ten valver which covers \(3 \cdot 2 \mathrm{MHz}\) to 22 MHz in nine switched bands. The station you heard on the 31 m band was probably FEBA, the Far East Broadcasting Association which transmits religious programmes from the Seychelles. Listen for Pakistan during the afternoons on the 13 m band \((21755 \mathrm{kHz}\) and \(21486 \mathrm{kHz})\) and the 16 m band \((17910 \mathrm{kHz})\) and during the evening on 21485 kHz and 17760 kHz .

\section*{DX Heard}

A test transmission from Dubai was picked up on 17775 kHz at 0730 by W. Higgins of Aylesbury, who was using his FRG-7 with Joystick System A plus Cambridge notch filter and home-brew noise limiter. A reception report brought a QSL card in less than three weeks.

Reykjavik Radio is reported on approximately 13910 kHz from 2210 until past 2330 on 29 June SIO 454 by David Wyatt (Oswestry) using an AR88LF and loft aerial. Although not listed on the short waves, Icelandic Radio does use one of the Post Office transmitters on a part-time basis for broadcasting to fishermen.

Trans World Radio Guam is reported by Alan Scholefield of South Shields, who picked it up on 15365 kHz between 1430 and 1459 where it is on the air
on Fridays at the time of writing. Reception reports to TWR, PO Box 66, Agana, Guam 96910, USA.

While trying to pick up Radio Australia on 9570 kHz in the 31 m band with his Marconi Atalanta, George E. Lee of Ossett picked up Port Moresby in Papua New Guinea instead. This station transmits on 9520 kHz and 9570 kHz with a power of 10 kW and George wonders if any other \(P W\) reader has heard this rather rare DX.


Very often when reading your letters, I sense the pioneering spirit and the excitement, which I share, when you report that bit of super DX. With that same enthusiasm, the true spirit of amateur radio prevailed during the weekend of August 9 and 10 when many of my Sussex readers, equipped with their 2 m gear, played their part with Raynet and joined the hunt on the South Downs for a missing child, which, thanks to all concerned, had a happy ending.

\section*{Solar}

Both Cmdr Henry Hatfield, Sevenoaks, and Ted Waring, Bristol, were prevented by the recent bad weather from using their optical equipment as much as they would like. However, Ted managed to see the sun and count 86 sunspots on July 21, 8 on August 1 and 5, and 40 on the 11th and Henry, using his spectrohelioscope on the 9th, saw some activity developing on the eastern solar limb which may well have been responsible for the sudden large burst of radio noise (Fig. 1) which was recorded by Reg Taylor, Shillington, Henry and myself, at 151 MHz , 136 MHz and 143 MHz respectively, at 1250 on the 14th. Large individual bursts of noise were also recorded on July 21, 27, 30 and August 12.


Fig. 1: The author's recording of the burst of radio noise which occurred at 1250 on August 14


Three of the pictures received from Russian Television by the author on July 23

\section*{Perseids Meteor Shower}
"Meteor scatter has been excellent since August 3, usually from 0800 to 1200 with long pings showing video for up to a minute at a time," writes John Branegan GM4IHJ, Saline, Fife. On the 9th and during the evening of the 11th, near the peak of the Perseids, Mike Hearsey G8ATK, Farnham, heard brief pings of signals on 2 m from amateur stations in F, LA, OE, OK, OY, OZ, SP and YU. It is well worth observing again when the earth passes through the Leonid meteor shower between November 15 and 19 , with a predicted peak on the 17 th.

\section*{The 10 Metre Band}

Throughout the period July 21 to August 19, signals from the International Beacon Project stations were relatively sparse, except during sporadic-E events when signals from the two German beacons, DKOTE and DLOIGI and the Norwegian beacon LA5TEN, were prominent and often peaking 599. Under normal conditions both Ted Waring and I periodically heard signals from the beacons in Cyprus 5B4CY, and occasionally the two in South Africa, ZS6DN and ZS6PW. George Grzebieniak RS41733, London, commented about the short skip conditions on July 26 when he heard s.s.b. signals from stations in EA, IS and ZS.

\section*{Sporadic-E}

Strong signals from east-European f.m. broadcast stations were received between 65 MHz and 73 MHz during sporadic-E disturbances around 0800 on July 24 and August 4 and 12, at midday on July 22 and August 5, and around 1800 on August 10 and 11. The most intense of these events was on the 11 th, when I counted 30 such stations with only a dipole feeding my R216 receiver. George Grzebieniak also heard music around 71 MHz on August 5 , and during the sporadic-E season users of the 4 m amateur band and the "low band" commercial frequencies are often pestered by the strength of these signals. At 1809 on the 10th, the disturbance briefly extended its influence into the 2 m band and Mike Hearsey nearly completed a QSO with ISODSQ/P and heard ISODKU/P.

\section*{Tropospheric}

The good conditions on 2 m during the week July 21 to 27 enabled John Cooper G8NGO, Cowfold, Sussex, to work 9 Fs (one of these, F6GQE/P, on the Spanish border was only using 3 watts), 2 ONs and 5 PAs on the 21st, a DD, 25 Fs and 2 ONs on the 22nd, and an F, 2 ONs and

5 PAs on the 23 rd . On the 24th, he heard signals from the 2 m beacon in Angus, GB3ANG and worked 8 Fs , a GM and a PA. The signals from the Angus beacon proved to John that the opening was changing direction, because on the 26 th he worked 2 EIs and a GJ and he finished in style on the 27 th by working \(2 \mathrm{EAs}, 24 \mathrm{Fs}\), a GJ and a GU.

During that week, George Grzebieniak heard 2 m signals from Belgium, France, Holland and both northern and southern Ireland. Mike Hearsey also worked many French stations and several near the Spanish border during that period, and on August 9 Mike worked 25 stations in the south-east of France, 2 EAs, and C31RN in Andorra. On the 10th Mike heard C31VF in QSO with French and Spanish stations but could not get in. To date, while Mike has worked 106 QRA squares on 2 m and has only 3 French squares left to work, John Cooper has confirmed 40 squares and 10 countries toward his RSGB award.

Like the others on July 22 and 28, John Cleaton G4GHA, Wareham, worked many French stations on 2m, one (F1FJJ) on the French-Swiss border and another (F1DSQ) on the Spanish border. During the evening of August 9, John heard several EAs but although audible, they were not workable from his QTH. He also heard several contacts between EA and GW.

During the brief spell of good conditions on August 19, Alan Baker G4GNX, Newhaven heard strong signals from a couple of GW mobiles in QSO on 2 m f.m. simplex. Signals from the Cambridge repeater GB3PI, R6, were so strong, said Alan: "That they were overpowering the, almost local, Crawley repeater GB3BP. Strong signals were also heard in Sussex from the Leicester repeater GB3CF, R0.

\section*{DXTV}

At 0721 on July 23, I watched a cartoon film on Channel R1, 49.75 MHz , and at 1723 the prevailing sporadic-E disturbance produced a mixture of pictures on E2, 48.25 MHz and R1 where pictures of Olympic swimming were fighting for predominance. Both Harold Brodribb, St Leonards-on-Sea, Sussex, and I saw the Olympic swimming on R1 and R2, 59.25 MHz , and at 1800 a clock showing 2100 , three hours ahead of GMT, appeared suggesting that the signals were coming from the Moscow area. This clock was followed by Russian news on both R1 and R2.

Around 0700 on the 24th I received a strong test card from MTU, Budapest, and a clock showing 0900, two hours ahead of GMT, followed by a YL announcer. Harold told me that at 1110 on the 22nd he received a brief test card from TV1-Sverige and at 1345 a news bulletin from Spain on E2. At 1400, R1 was carrying the
large letters "POLSKA 80" and 10 minutes later, on E2, he saw a Spanish picture with a road sign "Barcelona", and later an advert showing a detergent, "Luzil", going into a washing machine and another about the fruit juice, "Fruco". While using his RL85 communications receiver to tune through Band I, Harold heard Spanish sound on \(\mathrm{E} 2,53 \cdot 75 \mathrm{MHz}\) relaying the Olympics with Spanish commentary overlaying the Russian announcements from the Moscow stadium.

David Appleyard, Uppsala, Sweden, was using his equipment during the sporadic-E disturbance between 1000 and 1400 on August 5 and writes: "It started with a brilliant test card from Budapest on R2. The same picture was visible on R1 at half strength, with bursts of Grünten on E2. By 1050 the +PTT-SRG1 test card plus classical music had appeared on E2 and was also coming in on E3 next to the strong Budapest signal on R2." Around 1400 both Harold Brodribb and I watched a mixture of pictures on R1, with the Russian stations becoming predominant as Harold said in his letter: "At times male announcers were seen with brief captions of their names in Russian letters."

Another of our keen TV DXers is T. Ampi, London, who tells me that he has, and I think wisely, invested in good equipment for his interests. For Band II reception he uses a National Panasonic DR49, and he has a Nordmende Colorsonic 2400, SK3 series, for television. "The beauty of this set," writes T. Ampi, "is that it picks up very weak signals and it has scanning facilities up to 99 channels (including satellite reception) which helps a lot for DXing. Secondly it has memories from 24 channels so if I find a weak signal I put it in the memory and then, at least for a week or two, I try it often." In addition to his three Fuba aerials, one for each band, he has preamplifiers installed as required and a JVC 3660EK video recorder from which he gets very good replay results.

During the 1980 sporadic-E season he has received most European test cards on v.h.f., and since February has seen u.h.f TV signals from Belgium, Germany and Holland.

At 1736 on August 11 I watched part of a film about the Olympic opening ceremony on R1 with the bear "Mischa" very much to the fore. Around 1700 on the 18th, I received a strong test card on E2, made up of small graduated squares, mixing with a test card from RTP, Portugal and a caption from Spain which was headed, RTVE Control Central. Just as the disturbance was fading away I saw the RTP clock followed by a YL announcer.

Electronic Mail Order Ltd. sent me their gen sheet on the pre-amplifiers which they supply for Bands I, II and V, designed with the f.m. and TV DXer in mind. Details available from the firm's office at 62 Bridge Street, Ramsbottom, Bury, Lancs.
"All my receiving equipment has been working overtime during the past few weeks," writes Andrew Rogers, Bristol, on August 14. "I had a small party at my house and one of my friends turned on the TV. Wondering what the small stickers on the push-buttons meant, he shunned BBC1 and ITV and pressed R1. I had left the upconverter plugged in and to his surprise, he was greeted with the caption "TB CCCP!" Reception continued all evening and quite spoilt the party." I like that story Andrew, I bet your friends are now envious of you and your TV gear. On July 21 Andrew received TVE all evening on E2 and TV CCCP on R1, test card from RAI, Italy on 1A, 53.75 MHz , during the afternoon of the 22 nd and again between 0950 and 1100 on the 23rd. An extract from Andrew's log for August shows that he received pictures from Italy and Spain on the 7th and 11th and CST, Czechoslovakia and TVP, Poland, on the 11th.

\section*{News Items}

David Thorpe G4FKI, Ilford, has prepared an extensive list of amateurs who are active on the 4 m band, and by what I have seen it is well worth the 30 p he is asking for the document, to cover printing and postage costs. Readers interested should write to G4FKI, QTHR. David is active himself on 4 m , all modes.

Congratulations to Sue Houlihan, who along with several other students of the Brighton \& District Radio Society's RAE class, passed the exam and is now working on her Morse. Sue was out with husband John, G4BLJ, when about 30 members of West Sussex Raynet reported for duty, at the request of the Police, to assist in the hunt for a missing child, code name Operation Elizabeth, on the Sussex downs during the weekend of August 9 and 10. Between two and four Raynet members with their portable sets accompanied each search party, and their control station, supplied by RSGB Council member, Robin Bellerby G3ZYE, Hove (also among the searchers), was in a prominent position with an FT-221R feeding a 6 -element 2 m quad mounted on a 40 ft pump-up mast. At the end of the operation Raynet were congratulated and thanked by a senior police officer.

Alan Baker has fitted a 3 SK 59 mOSFET to the receiver front-end of his FT-221 and is pleased with the results. Alan, who repairs these sets, has had a lot of experience with them and has incorporated a variety of mods to suit his own requirements.

Can anyone help Herb Bartlett G5QA, QTHR, with a 3.5 MHz to 7 MHz coil-pack for an HRO receiver.

Congratulations to George Grzebieniak who through sheer hard listening has received the RSGB 432 MHz listeners' award and to Arthur White, Grantham, on passing the RAE with credits in both papers.

\section*{SLIM JIM for 28MHz}
\(\rightarrow\) continued from page 41


Fig. 2: Approximate vertical radiation pattern when the centre point of the radiating section is \(\lambda / 2\) above ground of good conductivity, and the aerial is situated in very clear surroundings
there is usually sufficient polarisation twist during longrange propagation to effect good transmission and reception to and from stations using horizontally polarised aerials.

One final note, make sure that the feed point is fully protected from rain water. A small plastics box could be used for this, with the element wires passing right through from top to bottom. A couple of coats of paint or varnish should be applied to the support mast and element spreaders.

\section*{HAVE YOU BEEN CONVERTED?}

Our wide range of high quality VHF \& UHF frequency converters and preamplifiers will expand your existing equipment (YAESU FRG7, TRIO R1000, etc.), to provide coverage of the ever-popular VHF \& UHF bands, at the least expense possible. No modifications to your equipment are necessary. Just put one of our converters in place of your existing aerial connection, connect a suitable aerial, a 12 volt DC supply - and that's all there is to it!! DO YOURSELF AND YOUR RECEIVER A JUSTICE, BUY ONE OF OUR TOP QUALITY PRODUCTS - AND SEE WHAT YOU'VE BEEN DO YOURSELF AND YOUR RECEIVER A JUSTICE, BUY ONE OF OUR
\begin{tabular}{|c|c|c|c|}
\hline MMC 144/28 & MMA 144V & \multicolumn{2}{|l|}{MM2000} \\
\hline \begin{tabular}{l}
2 METRE DOWN TO 10 METRE CONVERTER \\
Gain: 30dB typ. \\
Noise figure: 2.5 dB max. Image rejection: 65 dB typ. \\
Our "old faithful" will give you a 2 metre facility, immediately. \\
JUST \(£ 24.90\) inc. VAT ( \(p+p 65 p\) )
\end{tabular} & \begin{tabular}{l}
2 METRE ULTRA LOW NOISE RF SWITCHED PREAMPLIFIER \\
this preamplifier \\
is an essential addition for the serious operator. \\
Gain: 15 dB typ. \\
Noise figure: 1.3 dB max. \\
This unit is designed to be left in the aerial lead at all个29 \\
\(\mathbf{£ 2 9 . 9 0}\) inc. VAT ( \(p+p 65\) p)
\end{tabular} & \begin{tabular}{l}
RTTY TO TV CONVERTER \\
This NEW converter contaims a terminal unit
microprocessor controlled TV interface, and requires only an audio input from yout FRG7. TRIO RIOOO, or similar, and a 12 wolt DC supply, to enable a live display of "off-air" RTTY and ASCII signals on a domestic UHF standard TV set
\end{tabular} & \begin{tabular}{l}
FEATURES INCLUDE:- \\
* Complete terminal unitTV interface \\
* Automatic speed sensing \\
* Microprocessor controlled \\
* Will accept RTTY and amateut standard ASCII \\
ALL THIS FOR \\
JUST £169 \\
inc. VAT \\
( \(p+\) p \(£ 1.75\) )
\end{tabular} \\
\hline MМ¢ \(70 / 28\) & MMA 28 & MMC 28/144 & MMC.432/28-S \\
\hline \begin{tabular}{l}
4 METRE \\
DOWN \\
TO 10 METRE CONVERTER \\
Gain: 30dB typ. \\
Noise figure: 2.5 dB max. \\
Image rejection: 65 dB typ.
\end{tabular} & \begin{tabular}{l}
10 METRE LOW NOISE PREAMPLIFIER \\
Now that the winter months are nearing, and MF conditions will be better, hot up the performance of your 10 metre receiver with this low-noise preamp. Gain: 20dB typ. Noise figure: 1.8 d B max.
\end{tabular} & \begin{tabular}{l}
10 METRE DOWN TO 2 METRE CONVERTER \\
For those of you with an existing 2 metre receiver, here is a simple means of listening to the 10 metre band. \\
Gain: 15 dB typ. \\
Noise figure: 1.8 dB max.
\end{tabular} & \begin{tabular}{l}
70 CM DOWN TO 10 METRE \(=\) CONVERTER \\
(with dual range coverage) \\
This 70 cm converter covers \(432-434 \mathrm{MHz}\) and \(434-436\) MHz in two switched ranges, both for an IF output of 28-30 MHz . This facility allows satellite and repeater coverage as well as the usual simplex mode. \\
Gain: 30 dB typ. Noise figure: 3.0 dB max. \\
A/so available with an IF of \(144-146 \mathrm{MHz}\) - IMMC 432/t44-SI).
\end{tabular} \\
\hline JUST \(£ \mathbf{2 4 . 9 0}\) inc VAT & \(£ 14.63\) inc. VAT & \(\mathbf{£ 2 4 . 9 0}\) inc. VAT & \begin{tabular}{l}
\(\mathbf{£ 2 9 . 9 0}\) inc. VAT \\
( \(p+p 65\) p)
\end{tabular} \\
\hline
\end{tabular}

BARCLAYCARD AND ACCESS WELCOME M M CRDVNAVE MDDLLES Your orders and enquiries will be dealt

BROOKFIELD DRIVE, AINTREE, LIVERPOOL L9 7AN, EN Telephone: 051-523 4011 Telex 628608 MICRO G Callers are welcome, please telephone first.


\section*{Јнz то 100MHz}

\section*{TOMORROW'S TOOLS TODAY}

CONTINENTAL SPECIALIIES CORPORAIION

C.S.C. (UK) Limited Dept. 6D

Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex. CB11 3AQ
Telephone: Saffron Walden (0799) 21682
Telex: 817477
Instant frequency indication from 5 Hz to 100 MHz ; no range selection problems; a brilliant 8 -digit LED display; mains or battery operation; an accuracy of 4 parts per million \(\pm 1\) count; and totally automatic operation - all this for only \(£ 77.55^{*}\) with CSC's new Max-100 freqency counter.
Just take a look at our spec. Where else could you find anything similar at the price? *Frequency range \(5 \mathrm{~Hz}-100 \mathrm{MHz}\) *Input impedance 1 M shunted by 10 pF *Sensitivity 30 mV from 1 KHz up to \(50 \mathrm{MHz} ; 120 \mathrm{mV}\) r.m.s. over full frequency range *Timebase accuracy \(\pm 4\) parts in 106 (from 5 to \(45^{\circ} \mathrm{C}\) ) \({ }^{*}\) Maximum aging rate 10 parts in 106 per year *Over-frequency indication *Low-battery-power alarm *Operates from dry or rechargeable cells, an external 7.5 to 10VDC supply, or a car battery (via an adaptor) *Dimensions: \(45 \times 187 \times 143 \mathrm{~mm} *\) Options: 12 V adaptor; battery eliminator; r.f. antenna, low-loss r.f. tap, carrying case.
Fill in the coupon for further details...
- price excludes post, packing and VAT




\section*{PRACTICAL}

\section*{GL=ETRGNIES}

\section*{NOMOGRAPH}

\section*{CHART}

Gives you instant foolproof selection of component values for all the common timers.

\section*{SECURITY \({ }^{\circ}\) SENTINEL}



\section*{HOME SENTINEL}

A comprehensive burglar alarm system for your home.

\section*{GAMES TIMER}

For timing moves in scrabble and other common board games.

\section*{geactilat}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\boldsymbol{V}_{\text {A1065 }} \boldsymbol{H}_{1.40}\)} & \multirow[t]{2}{*}{} & & \[
81
\] & \[
0.65
\] & & \[
4.30
\] & UAF482 & 0.70 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
58 / 255 \mathrm{M} \\
11.50 \\
5 \mathrm{~B} / 258 \mathrm{~m}
\end{gathered}\right.
\]}} & \(6 F 12\)
\(6 F 14\) \(6 F 14\) & 1.50
1.15
1.30 \\
\hline & & & & & Pfl20 & 1.10 & & & & & & \\
\hline \({ }^{\text {A1065 }} 1.40\) & & 20 & & & & & J81 & & & & \({ }_{6 F 5}^{6517}\) & 1.15 \\
\hline 900 & & & Ez80 & . 70 & & 1.25 & UBL21 & & & & & \\
\hline \(\begin{array}{lll}\text { A2983 } & 9.75 \\ \text { AR }\end{array}\) & 80 & 070 & & & & 85 & UCC84 & 0.8 & & 0.75 & , \({ }^{\text {bF2 }}\) & 1.75 \\
\hline AP3 0.70 & EC182 & & & & 82 & & jcc85 & 0.70 & & & & \\
\hline ATP4 0 & & 1.40 & & & & 0.60 & & & 523 & 1.50 & & \\
\hline 3.90 & & 0.80 & & & & & & 75 & 52 & & & \\
\hline 1.40 & EC186 & & & & P1508 & 1.95 & & & 524 & 1.05 & \& & . 35 \\
\hline DaF96 0.70 & & 1.50 & 6237 & 3.90 & & & & & 6/30 & 0.90 & & 2.00 \\
\hline 21.95 & & & & & PL519 & 3.20 & UF85 & 0.95 & & 0.70 & & 2.30 \\
\hline 070 & & 1.25 & & & P1802 & 20 & & & & & & \\
\hline 0K96 \(\quad 1.20\) & & & & & PY33 & 0.70 & U184 & 0.95 & & & & \\
\hline 0.75 & & & & & & 0.70 & UM8 & 0.90 & & 15 & & \\
\hline 01920.60 &  & & & & & & & & & & & \\
\hline 0Y86/87 0.65 & EF85 & & N78 & 2.50
9.90 & & 0.80 & UY82 & & & & & \\
\hline OY802 0.65 & & & & 0.70 & PY82 & 0.65 & UY8 & 0.85 & & 0.60 & & \\
\hline 14.20 & Ef91 & 1.50 & & 0.80 & & . 80 & & & & & & \\
\hline & & & &  & & 0.85 & & 12 & & & & \\
\hline CCL & & & & & & & & & 6AM & 1.50 & 61 & \\
\hline 3.10 & EF9 & 0.60 & & & & & & & 6AN & 2.50 & & \\
\hline 120 & 83 & 0.80 & & 0.95 & & & & 0.95 & & 3.40 & & \\
\hline 280 & EF184 & 0.80 & & & & & & 1.70 & 6 6AO & 1.00 & & \\
\hline 6.30 & & & & & & & & & 6A05 & 1.80 & & \\
\hline 4.95 & EF81 & & & & & & 咗 & & SAS & 1.15 & 6118 & 0.70 \\
\hline 2.25 & EFL & 1.85 & & & & & & & 6AT6 & 0.90 & & \\
\hline 0.60 & EH & & & & & & 2749 & 0.75 & & 0.60 & 61020 & 0.70 \\
\hline 0.50 & E132 & 1.10 & PCC84 & 0.50 & & 2.8 & 28000 & 3.45 & \({ }^{64} \mathrm{~A}\) & 0.85 & 6076 & \\
\hline 1.15 & El34 & 1.80 & PCC89 & 0.85 & 00v03/2 & & 28010 & & & & \({ }^{65}\) & \\
\hline 0.90 & & & PCC189 & 1.05 & & 14. & 28030 & 3.95 & & & 6567 & 1.15 \\
\hline & E37 & 4.40 & PCF80 & 0.80 & 2 & & 290 & 2.45 & 68 & 0.40 & & \\
\hline \({ }^{\text {E8F83 }} 00.60\) & E138 & 4.60 & 582 & & & 21 & \(1{ }^{\text {A }}\) & 0.85 & & & & \\
\hline & & & PC884 & 0.75 &  & & 14 & 0.50 & & & 6SL7 & \\
\hline 34 & E181 & & PCF86 & 1.50 & & 15.1 & 185 & & 68G & 1.60 & & \\
\hline  & El82 & 0.70 & PCF87 & 0.50 & av03-12 & & 154 & & & & & 1.10 \\
\hline EC92 0.85 & E184 & 0.80 & F200 & & & & & & 6B0 & & S & \\
\hline 5ccci & \({ }^{186}\) & . & PCF201 & 1.55 & SC1/400 & & & & & 4.4 & & \\
\hline \(\begin{array}{ll}\text { ECCB2 } & 0.60 \\ \text { ccce }\end{array}\) & E190 & 1.00 & PCF800 & & SC1/600 & 04. & & & 68W6 & 5.20 & \({ }^{\text {sV6}}\) & \\
\hline ECC83 & El9 & 4.20 & PCF801 & 1.75 & SP61 & 1.80 & & 1.40 & & 0 & & \\
\hline ECCB4 0.60 & E195 & 0.b & PCF802 & 0.85 & T21 & 16.50 & & & & 0.50 & \(6 \times 4 \mathrm{WA}\) & \\
\hline \({ }^{\text {ECCCB5 }}\) & Et504 & 1.70 & crios & & U25 & 1.15 & 2K25 & 11.90 & & 0.55 & -xat & \\
\hline ECC86 1.40 & E15 & 2.70 & PCF806 & 1.20 & U26 & 1.15 & & & 6СН6 & 8.20 & 6 666 & \\
\hline 25 & E1802 & 1.70 & PCFB08 & 2.05 & U27 & 1.15 & & & 6CL6 & 1.70 & 624 & 0.70 \\
\hline ECC189 0.95 & E1821 & . 20 & PCH200 & 1.35 & 4191 & 0.85 & 306 & 0.50 & ¢ & 1.15 & 787 & \% \\
\hline ECC804 0.30 & E1822 & 9.90 & PCL81 & 0.75 & U281 & 0.70 & 3022 & 23. & 60 & 0.70 & \(7 Y 4\) & 1.00 \\
\hline  & EM31 & 1.60 & PC182 & 0.95 & U301 & 0.65 & \({ }_{3629}\) & & ¢ & 3.20 & 902 & \\
\hline ECF82 0.055 & Em80 & 0.8 & 184 & & U600 & 11.50 & & & & 50 & 906 & 2.90 \\
\hline ECF801 1.05 & EM81 & 0.8 & & & U801 & 0.90 & 58/254M & & & & & \\
\hline \(\begin{array}{ll}\text { ECH34 } & 225 \\ \text { ECH35 } & 1.70\end{array}\) & & \[
0.85
\] & 1805/ & & UBC41 & 1.20 & & 14. & 6F) & 2.80 & 8 & 0.70 \\
\hline \multicolumn{13}{|l|}{\multirow[t]{8}{*}{}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

COMMUNICATIONS RECEIVERS part of Navy CAS equipment made by Murphy Radio 5 band RX covers 60 to 550 Kc two bands and \(1.5 \mathrm{Mc} / \mathrm{s}\) to \(30 \mathrm{Mc} / \mathrm{s}\) three bands. The Rx uses a total of 13 B 7 g valves as two RF stages, Sep L.O. 3x IF stages at 800 Kc Det, Noise Lim, \(2 \times\) AF stages, BFO, Crystal Cal at 800 Kc , the \(0 / P\) stage matches to 100 ohm phones and a 600 ohm 2 watt speaker line. Controls main tune, band sel, RF gain, LF gain, Phone gain, AGC on/off. Selectivity at \(8,3,1 \mathrm{Kc}\) and \(200 \mathrm{c} / \mathrm{s}\) the 1 Kc position uses a bandpass crystal filter, the \(200 \mathrm{c} / \mathrm{s}\) uses crystal plus Audio filter, BFO this swt selects upper or lower beat or tune also selects 800 Kc crystal cal, there are two \(0 / P\) jacks for phones and one for speaker on front panel, provision for 75 ohm \(\mathrm{Ae} \mathrm{I} / \mathrm{P}\) or long wire. Complete in steel case size \(13 \times 14^{\prime \prime}\) front \(14^{\prime \prime}\) deep these Rx req ext power supplies of 250 v HT and 150 v Stab total load 100 Ma 6.3 v AC at 4 amps. There is room inside the case to build internal P.U. supplied Tested with copy of Circuit and 40 page handbook, more details on request. £115. VIDEO RECORDERS Philips type LDL100 portable monochrome 625 line recorder reel to reel \(\frac{1}{2}{ }^{\prime \prime}\) tape 75 ohm I/P 1 v sig .4 v sync 75 ohm O/P ext size \(42 \times 34 \times 20 \mathrm{~cm}\) weight 12 Kg we also have a few \(/ 2\) models these are table case version, both \(240 \mathrm{v} 50 \mathrm{cl} 1 / \mathrm{P}\) these are supplied in good cond with 80 page handbook untested, fuller spec on request. £185. ARMY RADIO station 128 small low power T/Rx covers 2 to \(8 \mathrm{Mc} / \mathrm{s}\) tunable Rx with crystal controlled Tx normally operates from dry batteries 135 v and 1.5 v supplied with haversack, battery holder, morse key, aerial wire, headphones and circ. \(£ 25\). MAINS INVERTORS small 12 v DC \(1 / P 240 \mathrm{v} 0 / P\) at 20 watts square wave at \(50 \mathrm{c} / \mathrm{s}\) in case size \(6 \frac{1}{2} \times 4 \frac{1}{2} \times 3^{\prime \prime}\) stab freq from UJT, okay for Soldering irons or AC/DC razors with rect \(O / P\) tested \(\mathbf{£ 1 5}\). PANEL VARIAC small type 200/250v O/P 0 to 240 at 700Ma max ex new equip with knob £9.50.

Above prices include Postage and VAT goods ex equipment unless stated new, \(2 \times 10\) p stamps for list \(25 / 1\).

\section*{A. H. SUPPLIES}

122, Handsworth Road, Sheffield S9 4AE.
Phone 444278 (0742)

\section*{Master Flectronics the new Practical way.}


\section*{Conquer the 'Chip' - Easy-Fast-Exciting!}

AND MASTER ALL THE NEW TECHNIQUES IN MODERN ELECTRONICS.


Build an Oscilloscope.
Carry out over 40 full experiments
including work on Digital Electronic Circuits.

Recognition of Electronic Components. Understand and draw Circuit Diagrams. Experience with handling Solid State Circuits and "Chips".
Testing and Servicing of Radio, T.V., Hi-Fi and all types of modern computerised equipment.

Colour Brochure - without any obligation. Post to :-

Freepost E Birmingham - FREEPOST ON ORDERS - VAT INCLUSIVE PRICES - CASH

B19 1BR CHEQUE
ALL PRICES IN PENCE EACH UNLESS OThERWISE STATED


SEND A LARGE SAE FOR OUR FLOGLIST \& OTHER INFO.


GMT ELECTRONICS, P.O. BOX 290, HAMPTON STREET, BIRMINGHAM B19 3JR

\section*{J. BIRKETT}
(Partners: J. H. Birkett, J. L. Birkett)
Radio Component Suppliers
25 The Strait, Lincoln. LN2 1JF Telephone: 20767

UHF POWER AMPLIFIER MODULE 50 mW Input 2.5 Watt Out 13 Volt 420 To 480 MHz OY 34 WATT 13 VOLT 175
HF-VHF POWER TRANSISTORS TYpe 587 BLY SSB-FM 27 To \(80 \mathrm{MHz}, 40\) Watts, 28 Volt
with data, \(£ 3\).
BLY 9724 Volt 175 MHz 4 Watt with data \(=£ 3\).

UNMARKED GOOD \(2 N\) N 3866 VHF TRANSISTORS at 3 for 75p.
H.P. HOT CARRIER DIODES \(5800-2800.40 \mathrm{p}\) each.
R.P. HIGNALTRANSISTORS 2N 918-25p,2N 5179 . 2N 5180 8oth 50p.

EDDYSTONE TRANSMITTING VARIABLE \(30-30 \mathrm{pf}(60 \mathrm{pf})=\mathbf{£ 2 . 2 0}\)
VHF-UHF STRIPLINE FET \(2 N 4417\) with data - \(\mathbf{£ 2 . 2 0}\).
VHF R.F. CHOKES Wire ended 10 U.H., 30 U.H., 330 U.H. All 7p ea.
GHHE STRIPLINE NPN TRANSISTORS \(\times 1\) each, \(38 \times 38 \mathrm{pf}-60 \mathrm{p}\).
5 GHz STRIPLINE NPN LOW NOISE TRANSISTO
FERRITE BEADS FX 1115 , 15p doz, Long Type \(\frac{1}{}{ }^{\prime \prime} 6\) for 10p.
10.7 MHz VERNITRON FILTERS at \(50 \mathrm{p}, 3\) for \(\mathrm{E}^{2}\).
10.7 MHz VERNITRON FILTERS at 50 p , 3 for E 1 .

VHF FETS BF 256 C . 4 for 75 p , E304; 30p, 4 for £1.
WIRE ENDED VHF AERIAL SWITCHING PIN DIODES with data at 40 p each.
\(X\) BAND GUNN DIODES with data - £1.65
X BAND TUNING VARACTOR DIODES 1 To 2 pf or 2 To 4 pf, Both \(£ 1.65\)
MINIATURE CERAMIC TRIMMERS 2.5 To 6 pf. 3 To 10 pf 4.7 To 20pf, 6 To \(35 \mathrm{f}, 10\) To VARIABLE CAPACITORS Direct Drive. 5pf \(=75 \mathrm{p}, 10 \mathrm{pf}=\mathbf{7 5 p}, 125+125 \mathrm{pf}=\mathbf{6 0 p}\)

SUB-MINIATURE CERAMIC TUBULAR TRIMMERS 0.5 pf To \(3 \mathrm{pf}=15 \mathrm{p}\).
MURATA 455 KHz FILTERS 40 p each.
MINIATURE 10pf AIRSPACED TRIMMERS at 20p each.
SOLDER-IN FEED THRU 3 6.8pft, 27 pf, 300pf, 1000pf All 20p doz
ELECTROLYTIC CAPACITORS 1500 uf \(63 v . w\). Size Approx. \(3^{*} \times 1^{* *}-3\) for \(£ 1\).
20 ASSORTED BRANDED 250 mW ZENERS for 60 p .
9 VOLT ITRON 9 DIGIT SEVEN SEGMENT DISPLAY Type FG95A- £1.80.
TRANSFORMERS 240 Volt input. Type 1. 24 Volt Tapped at 14 Volt \(1 \mathrm{Amp}=\mathbf{£ 1 . 3 0}\) (P\&P 25 p ). Type 2. \(\mathbf{3 0 - 0 - 3 0}\) Volt 500 mA - £1.30 (P\&P 25p). Type 9.12 Volt 1 Amp \(\mathbf{~} \mathbf{£ 1 . 6 0}\) (P\&P
HOUSE CODED TTL 7400, \(7410,74 \mathrm{LOO}, 7453,7430\) All at 6 for 50 p .
TTL I.C. s \(74 \mathrm{HOO}=15 \mathrm{p}, 74 \mathrm{H} 10\). \(15 \mathrm{p}, 74 \mathrm{H} 30-15 \mathrm{p}, 74 \mathrm{H} 50\) - 15p, \(74 \mathrm{H} 51=15 \mathrm{p}, 74 \mathrm{H} 61\) 15p, \(74 \mathrm{H} 106-25 \mathrm{p}, 74 \mathrm{~S} 05-15 \mathrm{p}, 74 \mathrm{~S} 10-22 \mathrm{p}, 74 \mathrm{~S} 51-\mathbf{2 2 p}, 74 \mathrm{~S} 64-\mathbf{2 2 p}, 74 \mathrm{~S} 158\)
60 p.
\(\mathbf{6 T O}\)
\(\mathbf{6}\)
\(\mathbf{6}\) Volt MINIATURE RELAYS 5 Amp SPCO Contacts a 60p.
WIRE ENDED HF TO VHF PIN SWITCHING DIODES untested 25 for \(\mathbf{£ 1 . 5 0}\).
Please add 20p for post and packing on U.K. orders under \(£ 2\). Overseas postage charged at
cost.

\section*{PROGRESSIVE RADIO}

ALL ORDERS DESPATCHED BY RETURN POST
SEMICONDUCTORS. 2N5062 (100V 800mA) SCR 18p. BX504 opto isolator 25p. CA3130 95p. TBA800 50p. Tag4443 SCR 45p. Texas R1038 power trans, 50p. TDA1151 25p. SWITCHES. Min. toggles, SPST \(8 \times 5 \times 7 \mathrm{~mm} 42 \mathrm{p}\). DPDT \(8 \times 7 \times 7 \mathrm{~mm} 55 \mathrm{p}\). DPDT c/off \(12 \times 11 \times 9 \mathrm{~mm} 77\) p. HEAVY DUTY-DPDT \(240 V A C 10 \mathrm{Amp} 35 \mathrm{p}\). PUSH TYPE, push on \(16 \times 6 \mathrm{~mm}\) 15p, push to break version 17p. 16 pin D.I.L. switch 40p.
15p, push
DISPLAYS. 4 digit LED clock displays with message centre, \(0.6^{\circ}\) figures, com. cath. with data \(\mathbf{£ 3 . 2 5 p}\). NSA1198 \(8 \frac{1}{4}\) digit multiplexed displays, com. cath. with data sheet \(\mathbf{£ 1 . 4 5 p}\). SPECIAL OFFER TIL209 Red LED's 10 for 75p.
LINEAR I.C.'s. LM300 40p, LM301 55p, LM308 £1.30, LM324 £1.00, LM388 95p, LM358 50p, LM386 90p, LM3900 80p, LM3909 75p, CA1310 £1.70, CA3018 £1.00, CA3028 £1.30, CA3035 £2.20, CA3046 85p, CA3098 95p, CA3130 95p, CA3140 37p, MC1303 £1.70, NE566 £1.70, TAA550 40p, TAA621 £2.20, TBÁ 41 £1.30, NE556 50p. GPO TELEPHONE DIALS \(£ 1.00\) (new). JACKSONS C804 50pf var. capacitors 50p each. TOOLS. 5 piece precision screwdriver sets, individual handles only \(\mathbf{E 1 . 0 5}\) set. JUMPER TEST LEAD SETS. 10 pairs of leads with insulated crocs each end 90 p. 40KHZ TRANSDUCERS, RX/TX \(£ 3.50\) pair.
STC BREAK GLASS FIRE ALARM UNITS, new with mounting box \(\mathbf{£ 1 . 5 0 p}\).
MINIATURE SOLID STATE BUZZERS. \(33 \times 17 \times 15 \mathrm{~mm}\), output at 3 feet 70 db ., 15 ma drain voltage range \(4-15 \mathrm{vdc} 75 \mathrm{p}\). Loud buzzers (mechanical) 6 volts \(55 \mathrm{p}, 12\) volt \(\mathbf{6 5 p}\). Cash with order please, official orders welcome from schools etc., please add \(30 p\) postage and packing. VAT inclusive. SAE for latest illustrated stock list.

31, CHEAPSIDE, LIVERPOOL L2 2DY

\section*{PRAGTICAL WIRELESS T.V. SOUND TUNER \\ (Nov, 75 article by A. C. Ainsile) Copy of orlginal article supplled on reques! \\ IF Sub-Assembly (G8) \(£ 7\)-82. P\&P 85p. \\ Mullard ELC1043 V'cap UHF Tuner £6-33. P\&P 40p. \\ 3-way Station Control Unit £1-38. P\&P 30p. \\ 6 -way Station Control Unit (Special Offer) £1-15. P\&P 35p. \\ Power Supply Prtd Circuit Board £1-15. P\&P 35p. \\ Res, Caps, Semiconds, etc. for above \(\mathbf{£ 6 \cdot 6 7}\). P\&P 45p. \\ Mains Transformer for above \(\mathbf{£ 3 . 8 0}\). P\&P 35p. \\ P\&P all items \(£ 1.00\). \\ (Price of goods and P\&P includes \(15 \%\) VAT) \\ Callers welcome at shop premises. \\ MANOR SUPPLIES \\ 172 WEST END LANE, LONDON NW6 \\ (Near W. Hampstead Tube Stn.) Tel. 01-794 8751}

PCB'S FOR PRACTICAL WIRELESS PROJECTS

Jan. 80. Nimbus Radio Control Encoder WRO61 Price \(£ 2.2830\) pence p\&p.
Jan. 80. Nimbus Radio Control Rec. WR064 Price \(£ 2.9230\) pence p\&p.
Jan. 80. AF. Speech Processor WR068 Price \(£ 2.2830\) pence p\&p.
Jan. 80
Jan. 80. Nimbus Radio Control T.X.
April 80 Signal Generator
April 80. P.W. Nimbus Relay
April 80. P.W. Nimbus Modulator
April 80. Nimbus Transceiver
May 80. Hundred Second Photo Timer
June 80. Audio Limiter Main Board
June 80. Audio Limiter
Audio Limiter RF Input Board WR079
June 80. VHF/UHF Repeater Timer Main WRO80
June 80 P.W. Nimbus Base Station Adpt.
June 80. Acoustic Flash Trigger
Aug. 80 Model Railway Controller
Sept. 80 Transceiver Power Unit
Sept. 80 P.W. Nimbus Tonedurst/ Timer Module
Sept. \(80 \quad\) Beginners 2 m Converter
Sept. 80 P.W. Tamar Board 1
Sept. 80 P.W. Tamar Board 2
Sept. 80 P.W. Tamar Board 3
Sept. 80 P.W. Tamar Board 4
Oct. 80 P.W. Tamar Board 5
Oct. 80 P.W. Tamar Board 6

WR083 Price \(£ 2.6030\) pence p\&p. WRK84 Price \(£ 1.2530\) pence p\&p. WR085 Price \(£ 21730\) pence p\&p. WR095 Price \(£ 0.6230\) pence p\&p.

WR096 Price \(£ 1.8530\) pence \(\mathrm{p} \& \mathrm{p}\). WAD634 Price \(£ 1.0830\) pence p\&p. WR086 Price \(£ 0.8030\) pence p\&p. WR087 Price \(£ 1.5030\) pence p\&p. WR088 Price \(£ 1.7130\) pence p\&p. WR089 Price f 1.7130 pence p\&p. WR090 Price \(£ 3.7030\) pence p\&p. WR091 Price \(£ 3.7030\) pence p\&p.

FULL RANGE OF RS COMPONENTS AVAILABLE
THIS MONTHS SPECIAL OFFER \(8^{\prime \prime} \times 5^{\prime \prime}\) ELLIPTICAL SPEAKERS
E2.30 EACH PLUS 75p p\&p. RATED AT FIVE WATTS. 15 OHM SPEECH COIL.

\section*{C. BOWES ELECTRONICS}

252A Stockport Road, Cheadie Heath, Stockport, Cheshire SK3 OLX. Tel: 061-428 4497
Please enclose cheque or postal order with order.


A \(12 p\) stamp will bring you the full details or better still, send your cheque for the best amplifier kit around. POWER MOS-FET's RULE, O.K.
COMPLETE KIT, of all parts necessary to build the P.W. WINTON
£133.50
Order with complete confidence (C.W.O. only please) from:

Green Hayes, Surlingham Lane, Rockland St. Mary. Norwich, NR14 7HH. Telephone 05088632 price inclusive of V.a.t. \& Carriage. Callers by appointment only

\section*{Technical Training in Radio, Television and Electronics}

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

\section*{Personal Tuition and Guaranteed Success}

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and 1 am expecting a further increase when my course is completed."

\section*{City and Guilds Certificates}

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

\section*{Diploma Courses}

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing.
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E. Engineering Purchasing
G.C.E

60 subjects
at "O" \&
"A" levels
Accountancy
Air
Conditioning
Building

\section*{POST OR PHONE TODAY FOR FREE BOOKLET.}

\section*{PTH: International Correspondence Schools \\ SINCE 1890 \\ Dept. Z276 Intertext House, London \\ SW8 4UJ or telephone 6229911 \\ Subject of Interest. \\ Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \\ Address \\ Telephone Number \\ }

COMPUTERS AUDIO RADIO MUSIC LOGIC TESTGEAR CB GAMES KITS


COMPONENTS DEMONSTRATIONS SPECIAL OFFERS MAGAZINES BOOKS Royal Horticultural Halls Elverton Street Westminster London SWl November 26-30 1980 It's all at Breadboard '80
This is the exhibition for the electronics enthusiast. From November 26-30 there is only one place in the universe for the electronics enthusiast to be - Breadboard '80, at the Royal Horticultural Hall in London. The majority of leading companies will be exhibiting, including all the top monthly magazines in the field. There will be demonstrations on most stands and many feature special offers that are EXCLUSIVE to Breadboard!
All aspects of this fascinating field are catered for, from CB to home computing, so whether you want to buy a soldering iron or a synthesiser - or just keep up to date with your hobby - don't miss Breadboard '80.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{THE ALYE AND TUBESPECMALST} \\
\hline \multicolumn{8}{|c|}{YALVES AT MEW LOM PRICES} \\
\hline \multicolumn{8}{|l|}{RECEIVING, SQ, TRANSMITTING, DISPLAY, GAS FILLED, ETC.} \\
\hline Type No. & Price ea. & Type No & rice oa. & Type No. P & rice es. & Type No. & rice ea. \\
\hline BK448 & 95.65 & EF37A & 4.43 & M8137 & 1.20 & QY4-250 & 72.00 \\
\hline BT5B
D77 & 33.15 & EF39 & 2.10 & M8162 & 4.00 & OZO6-20 & 24.10 \\
\hline D77 & 0.80 & EF80 & 0.80 & M8163 & 2.65 & RG1-240A & 16.00 \\
\hline DF61 \({ }^{\text {DM160 }}\) & 0.56 & EF85 & 0.91 & M8212 & 0.85 & TY2-125 & 61.80 \\
\hline DY86/87 & 3.20
0.64 & EF86 & 0.80 & ME1400 & 3.50 & TY4.400 & 62.27 \\
\hline E55L & 15.00 & EF89 & 0.72 & OA2 & 2.10 & XG1-2500 & 59.60 \\
\hline E80CC & 5.65 & EF91 & 1.85
2.20 & O82 & 2.55 & 5 C 4 G & 1.95 \\
\hline E80CF & 11.02 & EF93 & 2.20
0.60 & EN92 & 3.10 & 6AK6 & 1.35
2.40 \\
\hline E80F & 6.32 & EF95 & :4.88 & PC86 & 0.83
0.83 & 6AR6 & 1.40
1.30 \\
\hline E82CC & 1.85 & EF183 & 1.60 & PC88 & 0.83 & 6 AU6 & 0.95 \\
\hline E83CC & 3.50 & EF184 & 0.75 & PC97 & 1.40 & 68H6 & 1.20 \\
\hline E83F & 2.10 & EH90 & 0.86 & PC900 & 0.58 & 6B67A & 1.85 \\
\hline E86C
E88C & 6.20 & EK90 & 0.90 & PCC85 & 1.10 & 68R7 & 6.00 \\
\hline E88CC & 5.84
4.00 & EL34 & 1.64 & PCC89 & 1.50 & 6857 & 4.00 \\
\hline E92CC & 1.65 & EL36
EL37 & 0.82
5.20 & PCC189 & 1.75 & 78W6
\(68 W 7\) & 5.30 \\
\hline E99F & 4.00 & EL81 & 5.20
1.48 & PCF80
PCF86 & 0.87
1.58 & 68W7
\(6 \mathrm{C4}\) & 1.45
1.30
1.80 \\
\hline E130L & 16.30 & EL84 & 0.96 & PCF200 & 1.88
2.15 & 6L6GT & 1.30
1.60 \\
\hline E180CC
E180F & 4.65
5.45 & EL86 & 1.65 & PCF801 & 0.95 & 6S4A & 1.25 \\
\hline E182CC & 8.00 & EL90 & 1.25 & PCF802 & 0.81 & 6SJJ7 & 1.10 \\
\hline E186F & 5.50 & EL95 & 1.85
1.28 & PCF805 & 1.40 & 6SL7GT & 2.68 \\
\hline E288CC & 7.40 & EL360 & 1.28
6.20 & PCF808
PCH200 & 1.40
1.10 & 6SN7GT & 0.90 \\
\hline E810F & 14.47 & EN91 & \begin{tabular}{l}
6.56 \\
\hline
\end{tabular} & PCL82 & 1.10
0.74 & 6X6GGT & 0.95
0.95 \\
\hline EAF801 & 3.15
0.85 & EN92 & 3.18 & PCL84 & 0.83 & \(12 \mathrm{AL5}\) & 0.95 \\
\hline EB91 & 0.85
0.95 & EY51 & 1.66 & PCL85 & 0.85 & 12AL5
\(12 \mathrm{AU6}\) & 1.85
1.85 \\
\hline EC91 & 1.82 & EY84
EY86 & 8.08
0.64 & PCL86 & 0.85 & 12 BH 7 & 0.98 \\
\hline EC92 & 0.94 & EY868 & 1.64
1.25 & PDL500
PFL200 & 3.90
1.40 & 12SN7GT & 0.98
2.00 \\
\hline ECC81 & 0.78 & EY500A & 1.65 & PL36 & 1.15 & 29 Cl & 10.00 \\
\hline ECC82 & 0.60 & EY802 & 0.96 & PL81 & 0.80 & 30FL2/1 & 1.20 \\
\hline ECC83 & 0.78 & EZ80 & 0.58 & PL84 & 0.75 & 30 PL 14 & 1.95 \\
\hline ECC84 & 1.19 & EZ81 & 0.75
1.30 & PL95 & 1.10 & 90 Cl 1 & 1.95
2.80 \\
\hline ECC85 & 0.82 & GXU1 & 15.00 & PL504 & 1.58 & 90CG & 13.68 \\
\hline ECC88 & 1.20 & GZ32 & 1.45 & PL509 & 1.85 & 90 CV & 9.00 \\
\hline ECC91 & 2.10 & GZ33 & 1.55 & PL802 & 2.75 & 92AG & 7.96 \\
\hline ECC2000 & 4.50 & G234 & 1.45
5.10 & PY88 & 0.78 & & \\
\hline ECF80 & 0.80 & KT66 & 5.10
4.25 & PY500A & 1.55 & CASH WITH & RDER \\
\hline ECF82 & 0.80 & KT88 & 7.15 & PY800 & 1.20 & Carriage 50p. & VAT 15\% \\
\hline ECH81 & 0.75 & M8079 & 10.69 & PY81/801 & 0.68 & Account faci & \\
\hline ECL80 & 0.95 & M8081 & 4.40 & QV06-20 & 11.50 & available for & \\
\hline ECL82 & 0.63 & M8082 & 2.14
3.50 & QQV03-20 & 22.75 & established cu & omers. \\
\hline ECL85 & 0.82 & M8083
M8100 & 3.00
3.00 & QQVO6-40A & 21.85 & Quotations & en for \\
\hline ECL86 & 0.94 & M8136 & 0.85 & Qavo2-6 & 12.04 & large quantit & \\
\hline
\end{tabular}


SIX DIGIT COUNTERS One pulse moves one digit-
Type 1 for 230 v AC not resettable. Type 1 for \(230 v A C\) not resettable.
Price \(80 \mathrm{p}-\mathrm{Type} 2\) for 48 VDC or Price 80p-Type 2 for 48 v DC or
115 V AC and resettable \(£ 1-35\).

DOOR MOVING MOTOR
Franco reversible single phase 240 V AC motor with gear box giving final speed 56 rpm very powertul motor, weight approx.
i3in, Price \(£ 15\) carriago \(£ 3\) mainland only,

SIREN OR BLEEPER
American Delta mechanical type.
works on 6 to \(12 v\) to \(0 C\) or 12 to 24 A A. Price 75 p or \(\mathrm{E60} 0 \mathrm{per} 100\). high pitched wailing note of varying pitch, In red plastic
case with fixing bracket. \(85 \cdot 00\).


\section*{CASSETTE PLAYER/RECORDERS}

With record and playback heads, all electronics, switches and speaker. Price £9.95 (surely this must be the bargain of
the year). Music centre replacement stereo with heads but not electronics. £14-95.

\section*{FRUIT MACHINE HEART}

4 wheels with all fruits, motorised and with solenoids for your friends getting the "jackpot"". \(£ 9 \cdot 95+£ 4\) carriage.

DESOLDERING PUMP
Ideal for removing components from
computer boards as well as for \(\qquad\)
computer boards as well as for
service work generally. Price \(£ 6 \cdot 35\).
4 CORE FLEX CABLE
White pvc for telephone extensions, discollights etc. 10 metres
\(\mathbf{£ 2}, 100\) metres \(£ 15\). Other multicore cable in stock \(\mathbf{£ 2}, 100\) metres \(£ 15\). Other multicore cable in stock.

\section*{HEADPHONE AMPLIFIER (STEREO)}

With volume, tone and
balance control gvoperation.
balance control 9 v operation.
All made up ready to 90 .
Price \(£ \mathbf{4} \cdot \mathbf{5 0}\).

\section*{MUGGER DETERRENT} A high note bleeper, push latching switch, plastic case and
battery connector. Will scare away any villain and bring help.
\(\mathbf{£ 2} \cdot \mathbf{5 0}\) complete kit.

\section*{RELAYS}

Open type with 2, 10 amp c/o contacts-single screw fixing

\section*{HUMIDITY SWITCH}

American made by Honeywell. The action of this device depends upon
the dampness causing a membrane to stretch and trigger a sensitive microswitch, very sensitive-breathing on it for instance will switch it on. Micro

\section*{SAFE BLOCK}

Mains quick connector will save you valuable time. Features
include quick spring connectors include quick spring connectors, heavy plastic case and
auto on and off switch. Complete kit \(£ 1.95\).

VERSA DRILL
A 12 volt battery operated power drili, not just sultable for printed
clrcuit boards but will do all the clrcuit boards but will do all the
jobs and is powerful enough to perform all the functlons and operations normally expected of Black \& Decker and other mains
 drills. Size approx
50 mm . Price \(£ 16.75\).
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Precision Swiss made-normal price 50 p each 10 \\
sifit. \\
sizes covering \\
super bargain.
\end{tabular} \\
\hline
\end{tabular}

\section*{MAINS SOLENOIDS}

All have powerful pul!,
\(7 T 2\) size \(1 \frac{1}{*}^{\prime \prime} \times 2 \frac{1}{\prime \prime}^{\prime \prime} \times 2^{\prime \prime}\). Price £2.95.

MOTORISED DISCO S WITCH
With 10 amp changeover
switches. Muti
adjustswiches. Mutit adjust-
able switches are rated at 10 amps . This would pro-
vide. a magnificent disvide. a magnificent dis-
play. Fo: mains operating.
8 switch model \(£ 6-25\). 10 \(8 / 2\) switch model \(£ 6 \cdot 25\). 10
switch model \(£ 6 \cdot 75\). 12 switch model \(\mathbf{£ 6 \cdot 7 5}\).
switch model \(£ 7 \cdot 25\).

MULLARD UNILEX
A mains operated \(4+4\) stereo
Bystem. Rated one of the finest Periformersesid in the stereo field
inis would make oith tor almost anyone, in easy-to-assemble modular form this
should sell at about \(£ 30\)-but due to a special bulk buy and as
an Incentive for you to buy this an Incentive for you to buy this month we offer the system com-
plete at only £16 including VAT




\section*{NEW KITS}

5 WAVE BAND SHORT WAVE KIT Bandspread covering \(13 \cdot 5\) to 52 metres. Complete kit includes case, materials,
six transistors and diodes, condensers, resistors, inductors switches etc. Nothing else to buy, if you have an amplifier to connect it to or a pair of high resistance headphones. Special price is \(£ 11.95\) inc.

\section*{SUB-MIN MICROPHONE}

Size only \(\dot{1}^{\prime \prime} \times\) 敦" \(\times 3 / 16^{\prime \prime \prime}\) so small enough for a bugging device, ex-hearing aids but guaranteed. Price \(£ 1 \cdot 50\).
TRANSMITTER SURVEILLANCE
Tiny, easily hidden but which will enable conversation to be
picked up with FM radio. Can be made in a matchbox-all picked up with FM radio. Can be made in a matchbox-all
electronic parts and circuit. \(£ 2 \cdot 30\). electronic parts and circuit. \(£ 2 \cdot 30\).

\section*{RADIO MIKE}
deal for discos and garden parties, allows complete freedom of movement. Play through FM radio or tuner amp. E6-90.


DRILL CONTROLLER
Electronically changes speed from approximately 10 revs to maximum. Full power at all
speeds by finger-tip control. speeds by finger-tip control.
Kit Includes all parts, case, everything and full instructions. Made up model \(£ 1 \cdot 00 \underset{\substack{\text { extra }}}{£ 3.45}\)
VENNER TIME SWITCH mains oparated with 20 amp switch, one on and
one off per 24 hrs , repeats dally automatically correcting for the lengthening or shortening day. An expensive time switch but you can have it for
only £2.95. These are new butwithout case, but we can supply plastic cases (base and cover) £1.75 or metal case with window \(£ 2 \cdot 95\). Also avallable Is adaptor kit to convert thls Into a normal 24 hr . time switch but with the 24 hrs . This makes an ideal controlier for the immersion heater, Price of adaptor kit is \(£ 2 \cdot 30\).


\section*{THIS MONTH'S SNIP}
inclucies a Free Gift, a desoldering PUMP, the one we are currently selling at \(£ 6 \cdot 35\). The snip is perhaps the most useful breakdown parcel we have ever
offered, 50 nearly all different computer panels, on offered, 50 nearly all different computer panels, on
these panels you will find over 300 ICs, over 300 these panels you will find over \(\mathbf{3 0 0}\) ICs, over
diodes, over 200 transistors and several thoussand diodes, over \(\begin{gathered}\text { other parts. resistors, condensers, multi-turn pots, }\end{gathered}\) rectifiers, etc., etc. You can have the parcel for only £8.50 which when you deduct value of the
desoldering PUMP, work out just a LITTLE OVER desoldering. PUMP, work is pust a 4 p per panel. Surely this is a bargain you shoula not 4p per panel. Surely this is a bargain you should nol
miss so send your ORDER today. Add \(£ 3 \cdot 26\) for miss so send \(y\)
Post and VAT.

\section*{SOUND AND LIGHT UNITS} 3 CHANNEL SOUND TO LIGHT KIT Complete kit of
parts for a three channel sound to light unit controlling
over 2000 watts of lighting. Use this at home if you wish over 2000 watts of lighting. Use this at home If you wish The unit is housed in an attractive two-tone metal case The unit is housed in an attractive two-tone metal case
and has controls for each channel, and a master on/off.
The audio input and The audio input and output are by \(\frac{t^{\prime \prime}}{}{ }^{\prime \prime}\) sockets and three panel mounting fuse holders provide thyristor protection. A four
pin plug and socket facilitate ease of connecting lamps. pin plug and socket facilitate ease of connecting lamps.
Special snip price is \(£ 13.50\) in kit form or \(£ 16.50\) assembled Special snip
and tested.
REMOTE CONTROL for Sound to Light (ours or any other circult) saves connecting to speaker or amp-kit consists Price £3.95.
LIGHT EXPANDER AND LATCH for Sound to Light, enables 3000 watts of lighting to be controlled by single
channel or each channel and enables lights to be latched on. KIt consists of latching relay, control switch, case, sundries and diagram. Price £4-25.
SINGLE CHANNEL KIT still available. Price \(\mathbf{\text { E5-18 }}\)

\section*{DELAY SWITCH}

Mains operated-delay can be accurately set with pointers knob
for periods of up to \(2 \frac{\mathrm{hrs}}{}\). contacts suitable to switch 10 amps-second contact opens a
few minutes after ist few mi.
\(\mathbf{£ 1} \cdot \mathbf{5 0}\).


MINI-MULTI TESTER
Deluxe pocket size \(\begin{aligned} & \text { precision } \\ & \text { moving coil instrument, }\end{aligned}\) jewelled bearings-2000 0.P.V. mirrored
scale.
ranges measure:DC volts \(10,50,250,1000\).
AC volts \(10,50,250,1000\). DC amps \(0-100 \mathrm{~mA}\). Continulty and resistance \(0-1\) me ohms in two ranges. Complete with Test Prods and measure capacity and inductance as well.
Unbelievable value only \(\mathbf{8 6 . 7 5}+\) 50p post and insurance.
FREE Amps ranges klt to enable you to read DC current purchase quickly but if you already own a mini tester and would like one, send \(£ 2 \cdot 50\).
TERMS: Cash with order-but orders under £10 must add 50p to offset packing, etc.
BULK ENQUIRIES INVITED. PHONE: 0444-54563.
ACCESS \& BARCLAYCARD ACCEPTED.

\section*{J. Bull [EEECTRICAL] Ltd. (DEPT. PW11) \\ 34-36 AMERICA LANE, HAYWARDS HEATH SUSSEX. RH16 3QU}

BURGLAR ALARM CONTROL PANEL
Contains labelled connection block, latching relay, test switch and removable key control switch. Simplifies the whole installation, all you have to do is to take wires to
pressure pads and to alarm bell. Price \(\mathbf{£ 6} \cdot \mathbf{0 0}+90 \mathrm{p}\). With pressure pads and
complete diagram

PRECISION MAINS OPERATED CLOCK
For only \(£ 1 \cdot 50+22\) p. Sounds unbelievable but that's what which have large clear dials were made by the famous Smiths Company for use with their domestic cooker switch and are
brand new and guaranteed.

15-0.15v @ 2 AMP MAINS TRANSFORMER
Mains transformer, upright mounting primary and secondary
wound on separate bobbins with fixing lugs. Price \(£ 3+\) wound on sep
45 p . Post 60 p .

\section*{\(\mathbf{2 5 - 0 - 2 5 v}\) @ 750 mA MAINS TRANSFORMER}

Mains transformer C core construction, heavily varnished for dead quiet operation. Upright mounting with fixing lugs.
Price \(£ 2.75+41 \mathrm{p}\). Post 50 p .

25 WATT MID-RANGE SPEAKER \(51^{\prime \prime}\)
Made by Goodmans so there's none better. 4 ohm coll.
Price \(£ 3.50+45 \mathrm{p}\). Post \(£ 1.00\).
8 OHM TWEETER
Made by Goodmans. \(31^{\prime \prime}\) square, \(4^{\prime \prime}\) across fixings. Price
\(\mathbf{£ 1} 1 \cdot 50+22 \mathrm{p}\). Post 30 p .
PRECISION PARKING PAD KIT as specified-
£2.50.
LIGHT FAILURE MONITOR KIT as specified \(£ 7.50\)

LIGHT FAILURE MONITOR KIT as specified. \(£ 7 \cdot 50\).

\section*{WATERPROOF HEATING WIRE}

As used for electric blankets, etc. This has dozens of other applications- In gloves or socks for people with poor circulation are obvious uses. One unusual use suggested by a
customer is a 'grow' bag heater. The wire which consista customer is a 'grow' bag heater. The wire which consists
of an element wound on glass fibre then PVC covered has resistance of 60 ohms per yard. The price is \(20 \mathrm{p}+3 \mathrm{p}\) per yard.
TELEPHONE PICK-UP coil attaches by suction to phone ody, enabling conversation to be recorded, put through amp or headphones. Price \(21+15 p\).
TRANSDUCERS
As used remote control T.V. receivers. Price \(\mathbf{£ 1} \cdot \mathbf{5 0}+\mathbf{2 2}\) p. LIGHT CHASER
Gives a brilliant display-a psychedelic light show for discos, arties and pop groupds. These have three modes of flashing 750 watts per channel. Complete kit. Price \(£ 14+£ 2 \cdot 10\). Ready made up for \(£ 4\) extra.
PRINTED CIRCUIT KIT
4 copper plated boards and the chemical for etching the electronic gadgets which can be made on these boards. Price \(£ 1 \cdot 70+30 \mathrm{p}\).

MAINS TRANSISTOR POWER PACK to operate transis tor radio, cassettes, ampliffers, etc., take the place of any of he following batteries, PP1, PP3, \(\mathbf{3 0 0} \mathrm{mA}\). Complete kit but no case \(\mathbf{£ 1} \cdot \mathbf{7 5}+\mathbf{2 6}\) p. Case \(\mathbf{7 5 p}+\) 13p.
TELESCOPIC AERIAL
5 sections, \(21^{\prime \prime}\) when extended. Nickel plated superior make
FISH BITE INDICATOR enables anglers to set up severa lines then sit down and read a book. As soon as one has a
bite the loudspeaker emits a shrill note. Kit. Price \(\boldsymbol{\Omega} 4 \mathbf{5 0 + 6 8 p}\).

6 WAVEBAND SHORT WAVE RADIO KIT
Brandspread covering 13.5 to 52 metres. Based on circult which appeared in a recent issue of Radio Constructor. diodes, condensers, resistors, inductors, switches, etc. Nothing else to buy, if you have an amplifier to connect it to on a pair of high resistance headphones. Special price
to get this kit off the ground. is \(£ 11 \cdot 95\) inc VAT and postage.
\(3^{\prime \prime}\) EDGEWISE PANEL METER
0.25 MA moving coil made for the G.P.O. A very useful
instrument especially when panel space is Ilmited. \(£ 2.50\) instrument especially when panel space is IImited. \(£ 2 \cdot 50\)
+382 . +38 p .
PANEL METER 0.1 mA
Japanese made full vision perspex front, flush mounting.

12v SUBMERSIBLE PUMP
Our drill pump is useful, but this new one is even more so. Just join if to your car battery, drop it into the liquid to be moved and up it comes, no messing about, no priming, etc. and any non-explosive, non-corrosive liquid. One use if you are a camper, make yourself a shower. Price \(£ 6+90 \mathrm{p}\). A free gift, first' 100 purchasers will get tap with bullt in switch and length of plastic tublng.
E.H.T. MAINS TRANSFORMER with inductance control, normal primary, secondary output by our equipment, 3.5 kv to the lower normally unused bobbin. We are not sure how much the voltage may be increased or decreased but using a 9 volt battery we seem to get a rise or fall of about 50 volts Ex unused P.S.U.'s. Price \(\mathbf{E 2}+30 \mathrm{p}\). Post 40 p .

\section*{SHORT WAVE CRYSTAL RADIO}

All the parts to make up the beginners model. Price \(£ 2+30 \mathrm{p}\). Crystal earpiece \(57 \mathrm{p}+8 \mathrm{p}\). High resistance headphones (give best results) \(\mathbf{£ 3 \cdot 2 5}+\mathbf{5 0}\) p. Kit includes chassis and front but not case.
RADIO STETHOSCOPE
Easy way to faul find-start at the aerial and work towards the speaker-when signal
plete kit \(\mathbf{£ 4} \cdot \mathbf{2 5}+\mathbf{6 5 p}\).
INTERRUPTED BEAM KIT
This kit enables you to make a switch that will trigger when a steady beam of infra-red or ordinary light is broken. Main com-ponents-relay, photo transistor, resistors
Circuit diagram but no case. Price \(£ 2+30\) p.


\section*{CHOICE OF 3 PRIMARY INPUTS}
I.L.P. Toroidal Transformers are available in choice of \(110 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}\), coded as follows: (Secondaries can be connected in series or parallel)
For 110 V Primary insert 0 in place of " X " in type number.
For 240 V Primary insert 2 in place of " X " in type number.
Example - 120VA \(240 \mathrm{~V} 15+15 \mathrm{~V} .4 \mathrm{~A}=42013\).
*TYPES TO SPECIFICATION CAN BE SUPPLIED TO ORDER IN
QUANTITY, AGENCIES IN CERTAIN COUNTRIES AVAILABLE
ENQUIRIES INVITED

\section*{FREEPOST facility.}

We pay postage on U.K. enquiries and orders. Simply address envelope to FREEPOST T5 to address below. NO STAMP REQUIRED.

TO ORDER Enclose cheque/Postal Order/Money Order payable to I.L.P. Electronics Ltd or quote your ACCESS or BARCLA YCARD account No. To pay C.O.D. add \(£ 1\) extra to TOTAL value of order.

TRANSFORMERS A division of I.L.P. ELECTRONICS LTD
FREEPOST T1 GRAHAM BELL HOUSE ROPER CLOSE
CANTERBURY CT2 7EP Phone (0227) 54778 Telex 965780

\section*{OHIO SCIENTIFIC SUPERBOARD II}

50HZ BLACK AND WHITE SUPERBOARD II E159.95 + \(15 \%\) VAT POST FREE,
50 HZ COLOURBOARD II, THE NEW COLOURVERSION \(£ 205+15 \%\) VAT SOHZ COLOURBOARD II, THE NEW COLOUR VERSION £205 + 15\% VAT

5OHZ UK BLACK AND WHITE SUPERBOARD II \(£ 159.95+15 \%\) VAT COLOURBOARD II £205 + 15\% VAT


COMPUTER GAMES
Chess challenger 7 £ 79 . Atari videocomputer £129. Space invaders cartridge \(\mathbf{£ 2 7 . 5 0}\) (only \(£ 17\) if bought with the videocomputer)
SINCLAIR (THANDAR) PRODUCTS
 £4.20, connector kit £13.95. Microvision TV £89, mains adaptor £6.88. PDM35 £34.23, mains adaptor \(£ 4.20\), case \(\mathbf{£ 2 . 0 7}\). DM350 £76.70, DM450
£102.17 DM235
\(\mathbf{~} 55.55\), £102.17,
for
ail
models:- rechargeable batts £7.99, mains adaptor/charger \(\mathbf{£ 4 . 2 0}\), case \(£ 8.90\). Enterprise prog calculato
\(\mathbf{£ 1 9 . 9 5 . ~ T G ~} 105 \mathbf{~} 87\). TF 200 £19.95. TG105 £87. TF200£150.
\(+\)
THE UNIQUE SPECIAL
OFFER YOUCAN'TRESIST

* If bought with superboard or colourboard these items are at the reduced prices shown first. Also sold separateVAT. Modulator and power supply kit E 7.95 ( \(£ 11\) ). 4 K extra ram \(£ 20\)
( 24 ). Display expansion kit ( \(£ 24\) ). Display expansion kit approx
30 lines 54 characters \(£ 15\) (E20). Case £23 ( \(£ 266\). Colour conversion
board fully assembled \(£ 45\) ( \(£ 45\) ). board fully assembled \(\mathbf{£ 4 5}\) ( \(£ 45\) ). Cassette recorder \(\mathbf{£ 1 3}(£ 15)\). Extend-
ed monitor \(£ 20)\) ( \(£ 20\) ). Ad monitor £20 (£20) pansion board £160 (E160) Minifloppy with psu and 2 copies DOS £275 (£275).


SUPER PRINT 800MST

The ideal impact matrix printer for Superboard, UK101. pet, apple, tri80. 60 lines/minute. 5 print densities of 72,80 . 96,120 or \(132 \mathrm{chr} / \mathrm{line}\). Tractor and friction feed for up to \(9 \frac{1}{2 \prime}\) tractor paper. RS-232 20ma, IEEE488 and centronics I/O. SPECIAL OFFER:- Supplied with free word processor program and interface components \(£ 359+15 \%\) VAT.

\section*{SWANLEY ELECTRONICS}

Dept. PW, 32 Goldsel Rd., Swanley, Kent BR8 8EZ.
Mail order only. Please add 35p postage. Prices include VAT unless stated. Lists 27p post free. Overseas customers deduct \(13 \%\). Official credit orders welcome.

\section*{\(\because\) TECHNICAL BOOKS \\ MAIL \\ ORDER}

ELECTRONICS - RADIO - AUDIO
Why waste time and money shopping around for that book you want? - We have a comprehensive range by well-known authors and publishers.

> AMATEUR RADIO - HI-FI - TAPE RECORDING - DIY ELECTRONICS - IC CIRCUITS - MICROPROCESSORS RADIO - CB - ELECTRONIC MUSIC - TEST GEAR VIDEO - ETC. ETC.

\section*{LATEST BOOKS ON}

\section*{CB RADIO}

Send only \(12 p\) stamp with your address for catalogue of titles and prices plus contents of books FREE - Real leather embossed book mark with orders over \(£ 5\).

\section*{NEW! RECOMMENDED BOOKS}

Q and A Amateur Radio - F. C. Judd - (Newnes) \(£ 1.75\)
1980 Edition. Guide to Broadcast Stations (Newnes) £3.40
Beginners Guide to Digital Electronics - I. Sinclair (Newnes)
£3.50
Electronics - Build and Learn - R. A. Penfold (Newnes)
£3.00
Two Metre Antenna Handbook - F. C. Judd (Newnes) \(£ 3.95\)
All in stock books despatched first class post same day as order received. All prices include packing and postage.
Tel: Freethorpe 821 (STD 049 370). 9 am- 5 pm Mon-Fri only.
Z. L. COMMUNICATIONS CANTLEY, Nr. NORWICH, Norfolk NR13 3RT.
(Netherlands Branch - De Ruyterstraat 3. 3134 XN, Vlaardingen, Holland)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TTLS BY TEXAS} & 74221 & 160p & 74LS192 & 140p & 57 & & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{LINEAR I.C.s}} & \multicolumn{4}{|l|}{TRANSISTORS} & \multirow[t]{2}{*}{\begin{tabular}{l}
TIP41C \\
TIP42A
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 78 \mathrm{p} \\
& \text { 70p }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
{ }_{2 N 3966}^{2 N} 3
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 90 \mathrm{p} \\
& 18 \mathrm{p}
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { DIODES } \\
& \text { BY127 } \\
&
\end{aligned}
\]} \\
\hline 7400 & 11p & 7497 & \(180 p\) & 74251
74259 & 140p & 74LS193 & 140 p & 74C160 & 155p & & & & & AC127/8 & 20p & BFY51/2 & 22p & & & & & \\
\hline 7401 & 12p & 74100 & 130p & 74259 & 250p & 74LS195 & 140p & 74C161 & 155p & AY1-1313 & \({ }^{668} \mathrm{p}\) & MC3340 & 120p & AD149 & 70p & BFY56 & 33p & TIP42C & 82 p & 2N3905/6 & 620 p & \\
\hline 7402 & 14p & 7410 & 65p & 74265 & \({ }^{90} \mathrm{p}\) & 74LS196 & 120p & 74 C 162 & 155p & AY1-5050 & 212p & MC3360 & 1290 & AD161/2 & 45p & BFY90 & 90 p & TIP2955 & 78 p & 2 N 4036 & 65p & OA81 15p \\
\hline 7403 & 149 & 74105 & 65 p & 74278 & 290p & 74LS221 & 100p & 74 C 163 & 155 p & AY5-1224A & 225p & MK50398 & 7500 & BC107/8 & 11p & BRY39 & 45p & TIP3055 & 70p & 2N4058/9 & 9 12p & OA85 15p \\
\hline 7404 & 14 p & 74107 & 34 p & 7427 & 140p & 74LS240 & 175p & 74 C 164 & 120p & AY5-1315 & 600p & NF531 & 1000 & \({ }^{\text {BC109 }}\) & 11p & BSX19/20 & 20p & T1S43 & 34 p & 2N4060 & 12p & OA90 9p \\
\hline 7405 & 18p & 74109 & 55p & 74283
74284 & 190p & 74LS241 & 175p & \(74 \mathrm{Cl13}\) & 120p & AY5-1317 & 780p & NE543K & 225 p & BC147/8 & 9 p & BU105 & 190 p & TIS93 & 30 p & \(2 \mathrm{~N} 4061 / 2\) & 218 p & OA91 9p \\
\hline 7406 & 32 p & 74110 & 55p & 74285 & 400 p
400 p & \({ }^{74 L S S 242}\) & 775p & \(74 C 174\)
\(74 C 175\) & & AY5-1320 & 320p & NE555 & 25 p & BC149 & 10p & BU108 & 250p & ZTX108 & 12 p & \(2 \mathrm{~N} 4123 / 4\) & 4 22p & OA95 9p \\
\hline 7407 & 32p & 74111 & 70p & 74290 & \({ }^{400 \mathrm{p}}\) & 74LS243 & 175p & \(74 C 175\) & 210 p & CA5019 & 30D & NE556 & 70p & BC157/8 & 10p & BU205 & 220p & ZTX300 & 11 p & 2N4125/6 & \(622 p\) & OA200 9p \\
\hline 7408 & 19 p & 74116 & 200p & 74293 & 150p & 74LS244 & 196 & \(74 C 192\)
\(74 C^{193}\) & 150 p
150 p & CA3046 & 700 & NE561B & 425 p & BC159 & 11 p & BU208 & 240p & ZTX500 & 15p & 2 N 4289 & 20p & OA202 10p \\
\hline 7409 & 19 p & 74118
74119 & 130 p
210 p & 74294 & 150 p
200 p & 74LS245 & & 74 C 193
74 C 194 & & CA3048 & \(225 p\) & NE562B & 425 p & BC169C & 12p & BU406 & 145p & ZTX502 & 18p & 2N4401/3 & 3 27p & 1N914 4p \\
\hline 7410 & & 741 & 210p & 74298 & 200 p & 74LS257 & 120 & \(74 \mathrm{CC195}\) & 220p & CA3080E & 72 p & NE565 & 130p & BC172 & 12p & & & ZTX504 & 30p & \({ }^{2} \mathrm{~N} 4427\) & 90 p & 1N916 7p \\
\hline 7412 & 20p & 74121 & 28p & 74365 & 150p & 74LS259 & 175p & 74C221 & 175p & CA33089 & 225p & N & 155p & BC177/ & 17p & M 225 & 225p & 2N457A & 250p & 2 N 4871 & 60 & 1N4148 4p \\
\hline 7413 & 30p & 74122 & 43 p & 74366 & 150p & 74LS298 & 249p & 4000 & & CA3130E & & NE567 & & BC179 & 18p & M 23955 & & & 35p & 2 N 5089 & 27p & 1N4001/2 5 Sp \\
\hline 7414 & 60p & 74123 & \(4{ }^{4 p}\) & 74367 & 150p & 74LS373 & 200p & 4000 & 15p & CA3130E & 100p & RC4151 & 400 & BC182/3 & 10p & MJE340 & 65p & 2N697 & 25p & 2N5172 & 27p & \(\begin{array}{ll}\text { 1N4003/4 } & 6 \mathrm{p} \\ \text { 1N4005 } & 6 \mathrm{p}\end{array}\) \\
\hline 7416 & 27p & 74125 & 55p & 74368 & 150p & 74LS374 & 195p & 4001 & 25p & CA3160E & 75 p & TBA641B11 & 750 & BC18 & 11 p & MJE2955 & 100p & 2N706A & 20p & 2N5179 & 27p & 1N4006/7 \\
\hline 7417 & 27p & 74126 & 60 p & 74390 & 200p & 81 LS95 & 140p & 4002 & 20 p & FX209 & 750 p & & 225p & BC187 & & MJE3055 & 70p & 2N708A & 20 p & 2N5191 & 83 p & 1N5401/3 \\
\hline 7420 & 17p & 74128 & 75p & 74393 & 200 p & \({ }^{811596}\) & 40 & 4006 & 95 p & ICL7106 & 925 p & TBA800 & 225p & BC212/3 & 1p & MPF102 & 45p & 2N918 & 30 & 2N5194 & 90 p & 1N5404/7 19p \\
\hline 7421 & 40p & 74132 & 75p & 74490 & 225 p & \({ }^{811597}\) & & 4007 & 25p & ICL8038 & 340p & TBA810 & 100 p & & & MPF103/4 & 40p & 2N930 & 18p & 2N5245 & 40p & ZENERS \\
\hline 7422 & 22 p & 74136 & 600 & 74 LS & & 81 8988 & & 4008 & 80p & LM301A & 36p & TBA820 & & \({ }_{\text {BC461 }}\) & 36 p & F105 & 640p & 2N1131/2 & 20p & 2N5296 & 55p & \(2 \cdot 7 \mathrm{~V}-33 \mathrm{~V}\) \\
\hline 7423 & 34 p & 74141 & 70p & SERIES & & 8 128 & & 4009 & 40p & LM311 & 190p & TCA940 & 175p & \({ }^{\text {BC477/8 }}\) & 30p & MPSA06 & 30p & 2N1613 & 25p & 2N5401 & 50p & 400 mW 9 p \\
\hline 7425 & 30p & 74142 & 200 p & 744500 & 14 p & 9301
9302 & & 4010 & 50p & LM318 & 200p & TDA4500 & 250p & BC516/7 & \({ }^{50 \mathrm{p}}\) & MPSA12 & 50p & 2N1711 & 25p & 2N5457/8 & 8 40p & \(1 W^{\text {W }}\) 15p \\
\hline & & 74145 & 90p & 74LS02 & 18 p & \({ }_{9308}^{9302}\) & & 4011 & 25p & LM324 & 70 p & tDA1004 & 328 p & BC5478
BC549 & 18 p & MPSA56 & 32p & 2N2102 & 60p & 2N5459 & 40p & SPECIAL \\
\hline 7427
7428 & 34 p
35 & 74147 & \({ }_{\text {150p }}\) & 741504 & & \({ }_{9310}^{9308}\) & \(316 p\)
275 p & 4012 & 18 & LM339 & 90 p & TDA1008 & 300p & \({ }_{8 C 5578}\) & 18p & MPSU06 & 63p & 2N2160 & 120p & 2N5460 & 40p & OFFERS \\
\hline 74 & 35p & 74148 & 150p & 74LS08 & 22p & \({ }_{9311}\) & \(275 p\)
275 p & 4013 & 50p & LM348 & 95 p & TDA1022 & 800p & BC5578 & 18 p & MPSU56 & & 2N2219A & 300 & 2N5485 & 44p & \(100+741\) \\
\hline 7430 & 30 p & 74150 & \({ }^{00 p}\) & 74LS10 & P & 9312 & \({ }^{2750} \mathrm{p}\) & 4014 & 84 p & LM377 & 175p & XR2206 & 400p & & 18p & & & 2N2222A & 20p & 2N6027 & 48p & £16 \\
\hline 7432 & \({ }^{30 \mathrm{p}}\) 40p & 74151 A & 70p & 74LS13 & 10 & \({ }_{9314} 9312\) & 169p & 4015 & 84 p & LM380 & 75p & XR2207 & 400 p & BCY70 & \({ }^{18} \mathrm{p}\) & OC35 & & 2N2369A & 30p & 2N6247 & 190p & \(100+555\) \\
\hline & 40p & 74153 & 700p & \(74 \mathrm{LS14}\) & 7 & \({ }_{9316}\) & 165p & 4016 & 45 p & LM381AN & 150p & XR2216 & 675p & BCY71/2 & 22p & & & 2N2484 & 30 p & 2N6254 & 130p & ¢20 \\
\hline & 35 & 74154 & 100p & 74L & & \({ }_{9322}\) & 150p & 4017 & 30 p & LM389N & 140p & XR:240 & 400 p & BD131/2 & & R2008B & 200p & 2N2646 & 50p & 2N6290 & 65p & \(100+\) \\
\hline 7440 & 17p & 74156 & 90 p & 74LS22 & & 9368 & 200p & 4018 & & LM709 & 36p & ZN414 & 90p & BF200 & 200 & R2010B & 200p & 2N2904/5A & 30 & 2N6292 & 65p & RCA 2N3055 \\
\hline 7441 & 70p & 74157 & 70 p & 74LS30 & p & 9370 & 200p & 4020 & 100 & LM710 & 50p & ZN424E & & BF244B & 35 & & & 2N2906A & & 2N128 & 120p & £ 36 \\
\hline 7442A & 60p & 74159 & 190p & 74LS47 & 90 p & 9374 & 200p & 4021 & 190p & LM733 & 100p & ZN425E & 400p & BF256B & 70p & TIP2 & & 2N2926 & & 3N140 & 100p & BR \\
\hline 7443 & 12p & 74160 & 100p & 74LS55 & 30p & \({ }^{\text {Q8SO1 }}\) & & -4022 & 100 p & LM741 & 29p & ZN1034E & 200p & BF257/8 & 32p & TIP30A & & 2N3053 & & 3 N 20412 & 120 p & RECTIFIERS \\
\hline 7444 & 112p & 74161 & 100p & 74LS73 & 50 p & 9602 & & 4023 & 22 p & LM747 & 70p & 95 H 90 & 800p & BF259 & 36p & TIP30C & & 2N3054 & 65 p & 40290 & & p \\
\hline 7445 & 100p & 74162 & 100p & 74LS74 & 40 p & INTER & ACE & 4024 & 50 p & 78 & & & & BFR39 & 27p & TIP31A & 58 p & 2N3055 & 48 p & 40360 & 40p & 1 A 400 V 30 p \\
\hline 7446 A & 93p & 74163 & 1000 & 74LS75 & 50p & MC1 & & 4025 & 20p & M3900 & & & & 8FR40 & \(27{ }^{2}\) & TiP31C & 62p & 2N3442 & 140p & 40361/2 & 45 p & 2A 50 V 30 p \\
\hline 7447 A & 70p & 74164 & 100 & 74LS83 & 110p & MC1488 & 100p & 4026 & 130p & LM3911 & 130p & & & BFR41 & \(27 p\) & TIP32A & 68p & 2N3553 & 240p & 40364 & 120p & 2A 100 V 35 p \\
\hline 7448 & 80 p & 74165 & 130 & 74LS85 & 100p & \({ }_{75107}\) & 100p & 4027 & 50 p & LM4136 & 120p & & & BFR79 & 27p & TIP32C & \({ }^{82 p}\) & 2N3565 & 30p & 40408 & 70p & 2A 400V 45p \\
\hline 7450 & 17p & 74166 & 100 & 74LS86 & 40 p & 75107
75182 & 160p & 4028 & \({ }^{84} 8\) & \(\mathrm{MC1310P}^{\text {M }}\) & 150p & & & BFR80 & 27p & TIP33A & 90p & 2N3643/4 & 48p & 40409 & 65p & 3A 200V 60p \\
\hline 7451
7453 & 17 p & 74167
74170 & 200p & 74LS90 & 60 p
60 p & 75182
75450 & 230p & 4029 & \({ }^{100} \mathrm{p}\) & \(\mathrm{MC1458}\)
\(\mathrm{MC1495}\) & 48p & & & & & TIP33C & 14p & \(2 \mathrm{~N} 3702 / 3\) & 12p & 40410 & 65p & 3 A 600 V 72 p \\
\hline 7454 & 17 p & 74172 & 2420p & \({ }_{74}\) & 60p & 75451/2 & 120p & 4030 & 55 p & & & & & BFX29 & & Tip34 & 115p & \(2 \mathrm{~N} 3704 / 5\) & 12p & 40411 & 300p & 4A 100V 95p \\
\hline 7460 & 17p & 74173 & 120p & 74LS112 & 100p & 75491/2 & 96p & 4033 & 180 p & VOLTAC & RE & ATORS & & BFX84/5 & 30 p & TIP35A & 160p & 2 N 37 & & 40594
40595 & & p \\
\hline 7470 & 36p & 74174 & 93p & 74LS123 & 75p & C-MOS & I.C. 8 & 4034 & 200 p & Flxed Pl & c \(T\) & 220 & & BFX86/7 & 30 p & TIP35C & 200p & 2N3773 & 300 p & 40673 & 105p & \\
\hline 7472 & 30p & 74175 & 85p & 74LS132 & 900p & \(74 \mathrm{C00}\) & 25p & 4035 & 110p & 1A + ve & & & & BFX38 & & TIP36A & 270p & 2N3819 & & & & 400V 120 p \\
\hline 7473 & 34 p & 74176 & 90p & 74LS133 & 60p & 74 CO 2 & 25 p & 4040 & 100p & 5 V 780b & 60p & 5 V 7905 & & BFW 10 & & TIP36C & 340p & 2N3820 & 50 & 40871/2 & & 10 A 400 V 200 p \\
\hline 747 & 30 & 74177 & 90 p & 74LS138 & \({ }^{60 p}\) & \(74 \mathrm{CO4}\) & 27p & 4041 & 80p & 12V 7812 & 60p & 12 V 7912 & & BFY50 & 22p & TIP41A & 65p & 2N3823 & 70 & & & 25A 400 V 400 p \\
\hline & & 74178
74180 & & & & & 27 p & 4042 & 30 p & 15 V 7815 & 60p & 15V 7915 & 90p & & & & & & & & & \\
\hline 7480 & 50 p & 74181 & 200p & 74LS151 & & 74C10 & 27 p & 4043 & & 18 V 7818 & & 18V 7918 & & & & & & f & full & please & & S.A.E. or see \\
\hline 7481 & 100p & 74182 & 90p & 74LS157 & 60 p & \(74{ }^{120}\) & 27 p & 4046 & 110 p & 2 V & & \(24 V 7924\) & & & & \(50+\) & & & full & ge & tise & ents in P.E., \\
\hline 7482 & 84 & 74184 & 150 & 74LS158 & 120p & 74 C 30 & 27p & 4047 & 100 p &  & & 100 mA
5 C & & & & & & , & ., & less Worl & & \\
\hline 7483 A & & 74185 & 150 p & 74LS160 & 100p & 74 C 32 & 36p & 4048 & 55p & 12 V 78 L 12 & \({ }^{35} \mathrm{p}\) & 12V 79L12 & & & & & & & & & & \\
\hline 74 & 100 & 74186 & \(800 p\) & 74LS161 & 100p & 74.42 & 110p & 4049 & 40 & 15 V 78 L 15 & 35p & 15 V 79 L 15 & & & & & & & & & & \\
\hline 7485
7486 & 110 p
34 p & 74190
74191 & 100p & 74LS162 & 140 p & 74.488 & 250 p & 4050 & \({ }_{49}{ }^{2} \mathrm{p}\) & & & ATORS & & Pleas & d & Pp & & & & & & \\
\hline 7486
7489 & 134p & 74191
84192 & p & 74 LS 163 & 100p & 74.73 & 75 p & 4051 & 80 p & OTHER R & & ATORS & & prp & d & at & & & & & & \\
\hline 74908 & & 74193 & 100p & 74LS165 & 80p & 74.785
74.85 & 200p & 4052 & & LM317T & 200p &  & & & & & & & & & & \\
\hline 702A & & 74194 & 100p & 74LS173 & 110p & \(74 \mathrm{C86}\) & \({ }^{65}\) p & 4055 & 125 p & LM323K & 625 p & \(78 \mathrm{HO5KC}\) & 67\% & & - & es, et & & & & & & \\
\hline 7402 A & & 74195 & \({ }^{95}\) & 74LS174 & 110p & \(74 \mathrm{C90}\) & 5p & 4056 & 135 p & LM723 & 37p & 78MGT2C & 140p & orders & cce & pted. & & BUR & R & ROA & & \\
\hline 494 & & 74196 & & 74LS175 & 110 & \(74 \mathrm{C95}\) & 130p & 4059 & \({ }^{600}\) p & & & & & Callers & W & & & & & & & \\
\hline 7495A & 70p & 74198 & 150p & 74LS190 & 100p & \(74 \mathrm{C150}\) & 125p & 40 & 115 p & N & & Nics & & & & & & & & & & \\
\hline 7496 & 65p & 74199 & 150p & 74LS191 & \[
100 p
\] & \(74 \mathrm{C151}\) & \[
\begin{aligned}
& 250 \mathrm{p} \\
& \text { 260p }
\end{aligned}
\] & \[
\begin{aligned}
& 4063 \\
& 4066
\end{aligned}
\] & \[
\begin{array}{r}
\text { 120p } \\
\text { 55p }
\end{array}
\] & 2 N & OR & p TIL7 & & & \[
9.36
\] & \[
10.30-4.30
\] & & Tel: & ) & 1500 & & : 922 \\
\hline
\end{tabular}


When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

\section*{Receivers and Components}

\section*{BRAND NEW COMPONENTS BY RETURN}

HIGH STABILITY RESISTORS
\(\frac{W}{W}\) Carbon Film E12 Series 1R-10M. (E24 2R-6M2)-1p
W. \(\downarrow \mathrm{W}\) \& 1 W Metal Film E12 Series 10R-2M2-2p \(\frac{1}{2} \mathrm{~W}\). \(\ddagger\) W \& 1 W Metal Film E12 Series 10R-2M2-2p
CAPACITORS. MULLARD Min. Coramic E12 100V 2\% 1.8 pff . to 47 pf . -3 p
\(2 \%\) 56pf. to 330 pf . \(4 \mathrm{p} .10 \% 390 \mathrm{pf}\). to 4700 pf . 4 p Plato Coramic \(50 \mathrm{Vf} \mathbf{W k g}\). Vortical Mounting.
E12 22 p . to 1000 pf . 4 p
E6 1 K 5 pf to
\(47 \mathrm{Kpf}-2 \mathrm{p}\)

 \(0.68-11\) p. 1.0-15p. 1.5-20p. 2.2-22p
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 0.47/50 & 5p \(\quad 22 / 25\) & & 100/25 & & 470/25 & \\
\hline 1,0150 & 5p 22/50 & & 100/50 & P & 470/40 & \\
\hline 22/50 & \(5 \mathrm{p} \quad 47 / 16\) & \(5{ }^{\text {jp }}\) & 220/16 & 8 p & 1000/15 & \\
\hline 47/50 & 5p 47/25 & 5 p & 220/25 & 8 p & 1000/25 & \\
\hline 10/50 & 47/50 & & 220/50 & 10 p & 1000/40 & \\
\hline 22/16 & 5jp 100/1 & 7 p & 470/16 & 11p & \(2200 /\) & 20p \\
\hline \multicolumn{7}{|l|}{\multirow[t]{7}{*}{TANTALUM BEAD SUBMINIATURE ELECTROLYTICS. \(0.1,0.22,0.47,1.0,2.2,35 \mathrm{~V}\) \& 4.7 a \(6.3 \mathrm{~V}-14 \mathrm{p}\) \(4.7 / 16 \mathrm{~V}\) \& \(25 \mathrm{~V}-15 \mathrm{p}\). \(10 / 16\) \& 22/6-20p. \(10 / 25-29 \mathrm{p}\) \(10 / 35 \mathrm{~V}, 22 / 16 \mathrm{~V}, 47 / 6.3 \mathrm{~V}, 68 / 3 \mathrm{~V}\) \& \(100 / 3 \mathrm{~V}-30 \mathrm{p}\) 15/25. 22/25, 47/10-35p. 47/16-80p. 220/16-£1.20 Polystyrene 63 V Wkg. E12 Series Long Axial Wires. 10 pf . to 820 pf . -3 p . 1000 pf . to \(10,000 \mathrm{pf}\). 4 p}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{TRANSISTORS.} \\
\hline BC107 & /8/9 10p BC & BC182L & 8 p & & & 9p \\
\hline BC147/ & /8/9 10p BC & BC184L & 8 p & & 50/5 & \\
\hline BC157/ & /8/9 10p BC & BC212L & 8 p & BFX & & 25p \\
\hline BC547C & C/8C/9C7p BC & 8CY70 & 15p & & 926 & 7 p \\
\hline BC55 & 9C7p & BF194 & 9 p & & & \\
\hline \multicolumn{7}{|l|}{8 Pin D.I.L. i.c's 741 Op/amp.- 18p. 555 Timer- 24p Holders 8 pin-9p. 14 Pin-12p. 16 Pin-14p. 28 Pin-25p \(40 \mathrm{Pin}-30 \mathrm{p}\).} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline 100/1A & A 1N4002 & 2 4p & 400/3 & & 1N540 & \\
\hline 800/1A & IN4006 & 6 6p & 60/1.5 & & S1M1 & 5 \\
\hline 1000/1 & A 1N4007 & 7 7p & 30/150 & & AAY32 & 12p \\
\hline \multicolumn{7}{|l|}{ZENER DIODES.} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
E24 Series 3 V 3 to \(33 \mathrm{~V} 400 \mathrm{~mW}-8 \mathrm{p}\). \(1 \mathrm{~W}-10 \mathrm{p}\) \\
L.E.D.'s 3 mm , \& 5 mm , Red -10 p .
\end{tabular}}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Grommets for 3 mm .-1 1 p . Holders for 5 mm - 2 p} \\
\hline \multicolumn{7}{|l|}{FUSES. 20 mm . Glass. 100 mA to 5 A . 0.8 - 3 p . 4 S. 2 p} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{VOLTAGE REGULATORS \(+.5 \mathrm{~V}, 8 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}, 100 \mathrm{~mA}\) - \({ }^{\text {P }} 35\)}} \\
\hline & & & & & & \\
\hline & -T & 1ov & 2 V & & Op. 1A & 65p \\
\hline \multicolumn{7}{|l|}{0 mW \& \(\frac{1}{4} \mathrm{~W} 100 \mathrm{R}\) to 1 MO .-6p} \\
\hline
\end{tabular}

\section*{THE C. R. SUPPLY CO.}

127, Chesterfield Road, Sheffield S8 ORN
V.A.T. Inclusive Prices, Postage 15p (FREE over £5.00)

\footnotetext{
CLEARANCE PARCELS: Transistors, Resistors, Boards, Hardware. 10lbs only \(£ 5.80\) ! 1,000 Resistors \(£ 4.25,500\) Capacitors \(£ 3.75, \quad\) BC 108 . BC171, BC204, BC230, 2N5061. CV7497 Transistors, \(10 \quad 70 \mathrm{p}, 100 \quad £ 5.80 .2 \mathrm{~N}\) 3055. 10 for \(£ 3.50\). S.A.E. Lists: W.V.E. (1) 15 High Street, Lydney, Gloucestershire.

BUILD a professional VLF/TR metal detector for \(£ 19.00\). Moulded coil, prealigned and assembled circuit board. Phone Storrington 4830.
}

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 8.00\) per single column centimetre (minimum 2.5 cms ). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846).

\section*{NOTICE TO READERS}

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

\section*{CB SPARES}

Original transistors and integrated circuits for alt types of \(40 / 120 / 24 \mathrm{C}\) etc. channel rigs.

McLAUGHLIN ELECTRONICS,
44 Carlisle Road,
Northern Ireland BT48 6JW.
Tel. 050465002.

CRYSTALS MADE TO ORDER within 6 weeks. 4.105 MHz , wire or pins. \(£ 3.90\) each inclusive. HARTLEY CRYSTALS. Green Lane, Milford, Godalming, Surrey GU8 5BG.

\section*{FM DX!}
\(88-108 \mathrm{MHz}\) Mosfet preamplifier
Vastly superior performance over bi-polar preamplifiers. Mains powered unit. £25.95 inc. pp.
SAE data to: H. Cocks,
Cripps Corner, Robertsbridge, Sussex.
Tel: 058083-317.

WE SUPPLY most Vintage Radio component parts with a friendly service worldwide. Vintage British Radio Components Co.. Weldon Park, Weldon, Near Corby, Northants. Tel. Corby 61875.

\section*{VALVES}

Radio - T.V. - Industrial - Transmitting
Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976. Obsolete types a speciality. List 50p. Quotations S.A.E. Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00. We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors.
COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering, Sussex PO2O 8BN
West Wittering 2023 (STD Code 024366)
\[
\begin{aligned}
& \text { CRYSTALS Brand new high-precision. You benefit from } \\
& \begin{array}{l}
\text { very large stocks held for industrial supplies. All normal freq } \\
\text { standards, baud rates, MPU, and all magazine projects inc: }
\end{array}
\end{aligned}
\]
\(\begin{aligned} & \text { £4.15. HC18/U; } 4.0,5.0,6 \cdot 0,7.0,8 \cdot 0,9.0,10.0,10.7, \\ & \mathrm{MHz}^{2} \mathbf{£ 3 . 0 0}, 12.0,15.0,16.0,18.0,20.0,6.9375,\end{aligned}\)
\(\begin{aligned} & \mathrm{MHz} £ 3.00,12 \cdot 0,15 \cdot 0,16 \cdot 0.18 \cdot 0,20 \cdot 0,6.9375, \\ & 38.6667 . \mathrm{MHz}, ~ £ 3.25 \text {. Selected freqs stocked in Glider. }\end{aligned}\)
Marine and 27 MHz bands. Any freq made to order in 6
weeks from £3.90.
\(\begin{aligned} & \text { FITRERS Your best source for } 6 \text { and } 8 \text { pole and monolithics } \\ & \text { for AM, CW, SSB, FM, on } 455 \mathrm{kHz}, 1.6,9.0,10.7,21.4\end{aligned}\)
\(\begin{aligned} & \mathrm{MHz} \text {, etc. } \\ & \text { Prices inc. VAT and UK post. SAE lists. }\end{aligned}\)
P. R. GOLLEDGE ELECTRONICS
G3EDW, Merriott, Somerset,

100 MIXED TRANSISTORS \(\mathbf{~ 5 3 . 5 0}\). List 15p. SOLE ELECTRONICS. (P.W.) 37, Stanley Street, Ormskirk, Lancs. L39 2DH.

\section*{Southern Valve Co.}

2nd Floor, 6 Potters Road, Now Barnet,' Herts. Tel: \(01-4408641\) for current prices \& availability, all popular valves stocked. NO CALLERS, SAE Lists. Cash with order

Valves, Tubes, Aerials etc by LEADING-MAKERS. Send SAE Lists or Phone for current prices. Counter or MAIL ORDER. NO COD. Speedy Despatch assured. No order under £1. Philip Bearman, 6 Potters Road, New Barnet, Herts. Tel: 01-449 1934/5 (1934 Recording Machine).
Télephone for Shop Hours.

> P.W. TAMAR
> Set of six top quality printed circuit boards glass fibre tinned supply P.C.B. WRO95 \(\mathbf{£ 0 . 7 5 . 2 \text { M }}\) converter P.C.B. WAD 634 £1.30. Nimbus timeburst module P.C.B. WRO 96 £1.80. Most P.W. Boards in stock. Complete lists s.a.e. Special service for P.W. readers. Phone Elgin 3227 between \(6-9 \mathrm{pm}\) quired P.C.B. P.C.B. problems? Please write or phone whether you require one or thousands.
> H.T.E. (Printed Circuit Boards)
> 50 Milnefield Avenue, Elgin, Moray IV30 3EL.

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

\section*{Books and Publications}

WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work you need, materials required, all instructions, rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. \(£ 4.50\) inclusive of P\&P. UK. CWO to: your customer. INDUSTRIAL SUPPLIES, 102 Parrswood Rd., \(^{2}\) Withington, Manchester 20. Dept. PW.


FULL REPAIR data any named T.V. \(£ 5.50\), with circuits, layouts, etc., £7. (AUSW) 76 Church Street, Larkhall, Lanarks ML9 IHE.


\section*{Record Accessories}

STYLI, Cartridges for Music Centres, etc. FREE List no. 29 for S.A.E. includes Leads, Mikes, Phones etc. FELSTEAD ELECTRONICS (PW). Longley Lane, Gatley. Cheadle. Ches. SK8 4EE.

\section*{Service Sheets}

\section*{G.T THE TECHNICAL INFORMATION SERVICE 76 CHURCH ST., LARKHALL, LANARKS ML9 1HE}

\author{
Any single service sheet for \(£ 1\) and large S.A.E.
}

1000's of different service sheets, service manuals and repair manuals always kept in stock for immediate despatch. S.A.E. brings newsletter; pricelist; bargain offers such as service sheets under 40 p ; quotations for any requested service sheets/manuals without obligation. Phone 0698883334.
Save time and money - 2 giant catalogues listing thousands of service sheets/manuals plus \(£ 4\) worth of vouchers free - send \(£ 2+\) large S.A.E.

SERVICE SHEETS, Radio, TV etc., 10,000 models, Catalogue 24 p , plus S.A.E. with orders, enquiries. TELRAY, 154 Brook Street, Preston PR17HP.
bell's television Services for Service Sheets on Radio, TV etc., \(£ 1.00\) plus S.A.E. Colour TV Service Manuals on request, S.A.E. with enquiries to B.T.S., 190 Kings Road, Harrogate, N. Yorkshire. Tel. (0423) 55885.

SERVICE SHEETS from 50p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

\section*{30,000 SERVICE SHEETS IN STOCK COLOUR MANUALS ALSO AVAILABLE}

TV Monos, Radios, Tuners \(£ 1\). - Tape Recorders, Record Players, Transistors from \(\mathbf{£ 1 . 2 5}\) - Car Radios, Stereograms, Radiograms from \(\mathbf{£ 1 . 2 5}\) - Except Colour TV Circuits from £2. - State, if circuit will do, if sheets are not in stock. All TV sheets are full length \(24 \times 12^{\circ}\), not in Bits \& Pieces. All other with order. Crossed P.O.s returned, if sheets not in stock. with order. Cres.
S.A.E. please.
C. CARANNA

71, Beaufort Park, London NW11 6BX
\(01-4584882\) (Mail Order)

For Sale

SOLARTRON CD 1400 Oscilloscope. Dual Beam V.G.C. £125, Marconi U.H.F. signal generator \(1700 \mathrm{MHz}-2500\) \(\mathrm{MHz} £ 30\). Brentwood 223055 .

SONY 32 BAND GLOBAL RADIO 'CRF 320'. Frequency synthesizer on short wave bands with digital LED readout. Sold at \(£ 875\) in shops. Available for \(£ 600\) as new. Write to Mr. Withanage, 8 Cromer Mansions, Cheam Road. Sutton. Surrey.

ORGAN (Home Built) \(2 \times 61\) note +32 note PED. Drawstops! 01-452 9975 PAUL BANKS.

MULLARD LP1164 AM/FM I.F. Modules Guaranteed Unused, £1.50. P.P. C.W.O. S.A.E. lists. Tennex, Stock Road. Industrial Estate. Southend, Essex.

AR88D RECEIVER S-METER MANUAL and some spare valves \(£ 40\). Buyer collects. Mr. D. Clark, Hillside, Butchers Hill, Shorne. Nr. Gravesend, Kent

LOWE SAX30 with A.T.U. £100. Phone Alnwick 710004. Weekends.

NEW BACK ISSUES OF "PRACTICAL WIRELESS" available 80p each, post free. Open P.O./Cheque returned if not in stock - BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N.Yorks. Tel: (0423) 55885.

DECCA STEREO cassette deck model 5359. Dolby deck vortex permally head and auto stop with circuit diagram \(£ 20.00\). 100 metres single screen wire \(7 / 0.2 \mathrm{~mm}\). \(£ 5.50\). Pyral Maxima C90 cobalt cassettes. 10 for \(£ 8.50\). Two Way TV aerial splitter \(£ 1.50\). (Condenser) 1" Terry Clips. 100 for \(£ 4.00\). Prices inc. VAT and UK post. SURPLECTRONICS, 216, Leagrave Road, Luton, Beds. LU3 IJD.

\section*{Courses}

COURSES - RADIO AMATEURS EXAMINATION. City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this and other courses (GCE, professional examinations etc) write or phone - THE RAPID RESULTS COLLEGE, DEPT. JX1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 (24hr Recordacall).

\section*{Educational}

CAREERS in Marine Electronics, Courses commencing September and January. Further details, The Nautical College, Fleetwood FY7 8JS. Tel. 0391779123.

\section*{COMPUTERS}

Learn to really understand computers - how they work and how they are programmed. Home study course with skilled Tutor available ensures success. No previous experienc needed. Colour brochure from:-Dept. PW.
British National Radio \& Electronic School., 4 Cleveland Rd, St.Helier, Jersey, Channel Islands.

\section*{Wanted}

ELECTRONIC COMPONENTS PURCHASED. All types considered - Must be new. Send detailed list - Offer by return - WALTONS, 55A Worcester Street, Wolverhampton.

EDDYSTONE EA12 WANTED. Also recent Amateur HF Transceiver. For sale. EC 10; £55. 01-935 7119 Days.

WANTED Heathkit HFW-1 Knightkit KG687 alignment generators. 7, Firtree Road, Hastings, Sussex. Tel. 0424 427374.

PX4, PX25 and equivalent valves, new or used, plus all types of bright emitter valves, Vintage Wireless Co., (see advert on Page 82).

VALVE ENTHUSIAST wants books \(1940-60\) on valve theory, practice and repair, including basic maths for radio and electronics; Colebrook \& Head. Radio \& Electronic Lab. Handbook: Langford-Smith, Fundamentals of Electronics Ist Ed. E. N. Lurch. Also circuit diagram for Furzehill V.V.M. Type V220. J. Hadlow. 01-689 6450.

WANTED. 2 pairs of headphones 4000 OMS suitable for crystal sets. Preferably with ear piece adjustment. Also detector crystals 6. G. C. Munton, Willoughby House, 31. Church Street. Digby, Lincs.

\section*{Aerials}

Jaybeam aerials Mail Order Service. SaE to Michael Day Ltd, Place Farm Way, Princes Risborough, Bucks.
COPPER AERIAL WIRE 14 swg hard drawn \(70^{\prime} £ 3.50\), \(140^{\prime} £ 7.00\) inc VAT. Postage \(£ 1.75\). T.M.P. Electronics Supplies, Britannia Stores, Leeswood, Nr. Mold, N. Wales.

\section*{KILL THAT INTERFERENCE}

G2DYM ANTI-T.V.I. TRAP DIPOLES:
S.W.L. Indoor models \(£ 14.50\) \& \(£ 27.50\) S.W.L. Outdoor models \(£ 30.00 \& £ 34.50\) Tx-ing models \(£ 42.50, £ 52.50\) \& \(£ 59.75\) Lists \(10 \times 8 \mathrm{in} 17 \mathrm{p}\) SAE. Aerial Guide 50p. Indoor and invisible aerials for S.W.L's \(£ \mathbf{3 . 5 0}\).
G2DYM, Uplowman, Tiverton, Devon.
EX-GOVT: Miniature Co-axial Relays \(18 \mathrm{~V}-28 \mathrm{~V} \mathbf{£ 5 . 0 0}\) Large Toggle Switches D.P.D.T. £1.00, Earth Tags ( \(\times 20\) ) £0.50. M. K. SMITH (Factors Agent), 16 High Wiend, Appleby, Cumbria.

\section*{Veteran \& Vintage}
\begin{tabular}{|c|}
\hline SOUNDS VINTAGE \\
\hline only magazine for all vintage so \\
\hline thusiasts, . packed with articles by top \\
\hline writers, covering gramophones, phono- \\
\hline aphs. 78s, wireless. \\
\hline ews, etc. \\
\hline -monthly. Annual subscription ©6.00 \\
\hline irmail extra). Send 775 p for sample copy. \\
\hline \\
\hline
\end{tabular}

\section*{Situations Vacant}

MAKE YOUR HOBBY YOUR CAREER! An opportunity for a school-leaver to join London's largest independent radio-telephone company. We are looking for a trainee. preferably with G.C.E.'s in English, Maths and Physics and an interest and enthusiasm in two way radio. Whilst working and training with us you will be given day-release at college to enable you to qualify as a radio-telephone engineer. Call or write Mike Rawlings or Bill Clarke, Lon don Communications (Equipment) Ltd., 30 Boundary Road. St. John's Wood, London NW8. Telephone 01-328 5344.

TESTERS, Test Technicians, Test Engineers - Earn what you're really worth in London Working for a World Leader in Radio \& Telecommunications. Phone Len Porter on 01-874 7281 or write - REDIFON TELECOMMUNICATIONS LTD., Broomhill Road, Wandsworth, London SW 18.

\section*{UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING AND APPLIED SCIENCES ELECTRONICS TECHNICIAN}

A vacancy exists in the School of engineering and Applied Sciences for an Electronics Technician. The successful applicant will be required to assist in the teaching and research laboratories on a variety of interesting projects, should have had considerable experience of Teletype Servicing.
Salary on the scale \(£ 4431-£ 5097\) pa or \(£ 4776\) -
f 5577 pa , depending on experience and qualifications.
Applications, in writing, should be addressed to:
The Laboratory Superintendent, School of Engineering and

Applied Sciences,
University of Sussex
Falmer, Brighton BN1 9QT.

Please mention
PRACTICAL WIRELESS
when replying
to advertisements

\section*{Miscellaneous}

\section*{GUITAR/PA}

MUSIC AMPLIFIERS
100 watt superb treble/bass overdive. 12 months quarantee. Unbeatable at \(\mathbf{£ 4 9 ;} 60\) watt \(£ 42 ; 200\) watt \(£ 68 ; 100\) watt twin channel sep. treble/bass per channel
\(£ 62 ; 60\) watt \(£ 52 ; 200\) watt \(£ 78 ; 100\) watt four channel sed. treble/bass per channel \(£ 75\) : 200 watt \(£ 98\); slaves 100 watt \(£ 34 ; 200\) watt \(£ 56\); fux2 boxes. great sound \(£ 12.00\); bass fuzz \(£ 12.90\); overdriver fuzz with treble and bass boosters \(£ 22 ; 100\) watt combo superb sound overdrive
sturdy construction, castors, unbeatable \(£ 98\); twin channei sturdy construction, castors, unbeatable \(£ 98\); twin channei
\(\mathbf{£ 1 1 1 0 ; ~ b a s s ~ c o m b o ~} £ 112\); speakers 15 in. 100 watt \(£ 36\); 12 in. 100 watt \(£ 24\); 60 watt \(£ 16\); microphone Shure Unidyne B £25; \(\mathbf{3}\)-Channel sound/light \(£ 26\).

Send cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-308 2064

SPLITTER/AMPLIFIER Two Televisions from one Aerial 4DB gain. Send \(£ 14.95\) or SAE. Michael Day Lid., Place Farm Way, Princes Risborough, Bucks.

\section*{MORSE CODE TUITION AIDS}

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-24 w.p.m. for professional examination preparation. Each Cassette are type C90.
Morse Key and Buzzer unit for sending practice.
Price each Cassette (including booklets) \(\mathbf{£ 4 . 7 5}\). Morse Key Price each Cassette
and Buzzer \(\mathbf{£ 4 . 7 5}\).
Prices include postage etc. Overseas Airmail \(£ 1.50\) extra.
MHEL ELECTRONICS (Dept P.W.), 12 Longshore Way, Milton, Portsmouth PO4'8LS.

SEEN MY CAT? 5000 Odds and ends. Mechanical, Elec trical, Cat. free. Whiston (Dept. PW) New Mills, Stockport.

\section*{RECHARGEABLE} BATTERIES

\section*{TRADE ENQUIRIES WELCOME}

FULL RANGE AVAILABLE. SAE FOR LISTS. £1.45 for Booklet "Nickel Cadmium Power" plus Catalogue. Write or call, Sandwell Plant Ltd, 2 Union Drive, BOLDMERE SUTTON COLDFIELD, WEST MIDLANDS. 0213549764 or see them
London WC2.

SSB KAYTONE, 1000 Hz da-dit-da, \(£ 6.00\). PT1000. Piptone, 1000 Hz for 250 ms , £4.00. AT1750, Toneburst, pos or neg earth, £3.50. RC2-10 Converter, 1 dB N.F. 26 dB gain, Kit \(£ \mathbf{1 0} \mathbf{1 0}\), Boxed ready built \(£ \mathbf{2 2} \mathbf{2 0 0}\). RC4-2 Converter, 4 metres input, 2 metre IF. Kit \(\mathbf{£ 8 . 3 4}\), ready built \(\mathbf{£ 1 9 . 0 0}\).

\section*{SPECTRUM COMMUNICATIONS 12 Weatherbury Way, Dorchester, Dorset DT1 2EF.}

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer now greatly improved and very much faster. Aerosol cans with full instructions. £2,25. Developer 35p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p. Copper-clad Fibre-glass Board approx. 1 mm thick \(£ 1.70\) sq. ft. Post/Packing 60p. White House Electronics, P.O. Box 19, Penzance, Cornwall.

\section*{LOSING DX?}


SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low \(£ 1.05\). Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI, (Dept No.25) St. Wilfreds, Foundry Lane. Halton, Lancaster. LA1 6LT.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
THE SCIENTIFIC WIRE COMPANY \\
PO Box 30, London E. 4 Reg. Office 22 Coningsby Gdns
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{ENAMELLED COPPER WIRE} \\
\hline \begin{tabular}{l}
SWG \\
10 to 29
\end{tabular} & \[
\begin{aligned}
& \mathbf{1 ~ f b} \\
& 3.10
\end{aligned}
\] & 8 oz
1.86 & 40 oz
1.10 & 2 oz \\
\hline 30 to 34 & 3.50 & 2.00 & 1.15 & . 80 \\
\hline 35 to 39 & 3.95 & 2.36 & 1.34 & . 98 \\
\hline 40 to 43 & 5.10 & 2.97 & 2.28 & 1.42 \\
\hline 44 to 46 & 6.00 & 3.60 & 2.50 & 1.91 \\
\hline 47 & 8.37 & 5.32 & 3.19 & 2.50 \\
\hline 48 to 49 & 15.96 & 9.58 & 6.38 & 3.69 \\
\hline \multicolumn{5}{|c|}{SILVER PLATED COPPER WIRE} \\
\hline 14 to 22 & 5.30 & 3.03 & 1.85 & 1.20 \\
\hline 24 to 30 & 6.50 & 3.75 & 2.20 & 1.40 \\
\hline \multicolumn{5}{|c|}{Prices include P\&P and VAT. Orders under \(£ 2\) please add 20p. SAE for list. Dealer enquiries welcome.} \\
\hline
\end{tabular}
C.W.A.S. ALARM. Send now for the latest discount catalogue of Professional Burlar Alarm Equipment. C.W.A.S. Alarm, 11 Denbrook Walk, Bradford BD4 0QS, W. Yorks. Phone 0274682674.

> KEEP ONE HANDY IN THE WORKSHOP BUCNEIE

> The unique aerosol treatment for minor burns and scalds. From Boots and other Chemists.

AVO METER REPAIR SERVICE For the Amateur. Full avometer repair and calibration service offered. Also large range of spares, service manuals available for AVO'S. Phone Stevenage (0438) 51383.

\section*{ORDER FORM PLEASE WRITE IN BLOCK CAPITALS}

Please insert the advertisement below in the next available issue of Practical Wireless for \(\qquad\) insertions
I enclose Cheque/P.O. for \(£\) \(\qquad\)
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}
\(\qquad\) Send to: Classified Advertisement Manager
PRACTICAL WIRELESS,
ADDRESS
GMG, Classified Advertisement Dept., Rm. 2337, King's Reach Tower, Stamford Street, London SE1 9LS Telephone 01-2615846
Rate
24p per word, minimum 12 words. Box No. 60p extra.

\section*{TRANSFORMERS \\ Voltages stated are on full load}

30 VOLT RANGE Sec Voltages available \(3,4,4,5,6,8,9\),
\(10.12,15,18,20,24,30 \mathrm{~V}\) or \(12 \mathrm{~V}-\mathrm{O}\). \(10.12,15,18,20,24,30 \mathrm{~V}\) or \(12 \mathrm{~V}-0-\)
12 V or \(15 \mathrm{~V}-0-15 \mathrm{~V}\).


50 VOLT RANGE
Sec 50V Voltages available \(5,7,8,10\).
\(13,15,17,20,33,40\) or \(20 \mathrm{~V}-0-20 \mathrm{~V}\) or Sec 115.17 .2
\(15 \mathrm{~V}-0.25 \mathrm{~V}\).
\begin{tabular}{|c|c|c|c|}
\hline Ref & Amps & Price & P \& P \\
\hline 102 & 05 & 3.75 & 0.90 \\
\hline 103 & 10 & 7.58 & 1.10 \\
\hline 105 & 3.0 & 9.42 & 1.52 \\
\hline 106 & 40 & 12.82 & 1.73 \\
\hline 107 & 60 & 16.37 & 1.89
2.39 \\
\hline 118 & 80 & 22.29 & 2.39 \\
\hline 119 & 10.0 & 27.48 & O.A \\
\hline 109 & 120 & 32.883 & O.A. \\
\hline
\end{tabular}

MAINS ISOLATORS (SCREENED)
\begin{tabular}{|c|c|c|c|}
\hline Ret & VA & Price & \& \\
\hline \(\bullet 07\) & 20 & 4.84 & 0.91 \\
\hline 149 & 60 & 7.37 & \\
\hline 150 & 100 & 8.38 & 1.31 \\
\hline 151 & 200 & 12.28 & 1.31 \\
\hline 152 & 250 & 14.61 & 1.73 \\
\hline 153 & 350 & 18.07 & 12 \\
\hline 154 & 500 & 22.52 & 2.47 \\
\hline 155 & 750 & 32.03 & O.A. \\
\hline 156 & 1000 & 40.92 & A \\
\hline 157 & 1500 & 56.52 & O.A \\
\hline 158 & 2000 & 67.99 & A \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{-Pri \(0-220-240 \mathrm{~V}\) Sec 115 or 240 V . State sec. volts required.}} \\
\hline & & & \\
\hline
\end{tabular}

\section*{CASED AUTO TRANSFORMERS 240 V cable in 115 V USA flat pin outlet} \(\begin{array}{cccc} & \text { Price } & \text { P \& P } & \text { Ref } \\ \text { VA } & \text { Price } \\ 20 & 6.55 & 1.03 & 56 \mathrm{~W} \\ 15 & 8.50 & 1.31 & 64 \mathrm{~W} \\ 150 & 11.50 & 1.31 & 64.31 \\ 250 & 13.88 . & 4.67 & 69 \mathrm{~W} \\ 500 & 20.13 & 1.89 & 67 \mathrm{~W} \\ 1 \mathrm{~K} & 30.67 & 2.89 & 84 \mathrm{~W} \\ 1500 \mathrm{VA} & \mathbf{4 2 . 8 2} & 0 . \mathrm{A} & \mathbf{8 3 W} \\ & & & \end{array}\)

Continuous Ratings + VAT 15\%

60 VOLT RANGE Pri 220/240V sec 0-24-30-40-48. 60V. Voitages available \(6,8,10,12\). 16. 18, 20, 24, 30, 36, 40, 48, 60 or Ref
NNNANA
Soldering Iron - 25W to BS spec \(\boldsymbol{£ 1 . 7 5}\) P\&P 30p+VAT Solder Gun - 100W include bulb for spot on vision and joints \(\quad \mathbf{£ 7 . 5 0 ~ P \& P ~ 7 0 p ~ + ~ V A T ~}\) De-Solder Pumps - Spring loaded with quick action button release for one handed working. Large \(\mathbf{£ 5 . 1 0}\) P\&P 35p + VAT Small £4.75 P\&P 30p + VAT Replacement tips Small 65p + VAT. Large 86p + VAT ABS Plastic Boxes: inset brass nuts, slots to take PC cards (boards) flush fitting lid.

PB1 \(80 \mathrm{~mm} \times 62 \times 40 \quad 80 \mathrm{p}\) PB2 \(100 \mathrm{~mm} \times 75 \times 40 \quad\) 90p \(\quad\) Burglar Alarm: ultrasonic PB3 \(120 \mathrm{~mm} \times 100 \times 45 \mathbf{£ 1 . 0 4}\) 20ft range, no installation PB4 \(215 \mathrm{~mm} \times 130 \times 85 \mathbf{£ 2 . 6 8} \begin{aligned} & \text { costs, key operated; built in } \\ & \text { siren (external can be }\end{aligned}\) \(P \& P 33 p+V A T\).
Metal Oxide Resistors \(\frac{1}{4} \mathrm{~W} 5 \%\) TR4 (Electrosil \(390 \Omega / 470 \Omega / 510 \Omega / 560 \Omega / 820 \Omega / 1 \mathrm{~K} / 1 \mathrm{~K} 1 / 1 \mathrm{~K} 2 / 1 \mathrm{~K} 6\) \(10 \mathrm{~K} / 120 \mathrm{~K} / 130 \mathrm{~K} / 180 \mathrm{~K} / 22 \mathrm{~K} / 24 \mathrm{~K} / 47 \mathrm{~K} / 82 \mathrm{~K} / 100 \mathrm{~K}\) £1.50/10
21.50/100 + VAT. in 100's only.

Antex Soldering Irona 15W \& 25W Safety Stand \(\quad \mathbf{~ 1 . 7 5 ~} P\) \& \(P 52 \mathrm{p} .58\) each
P.W. Purbeck osciloscope transformer 250-0-250: \(6.3 \mathrm{~V}: 12.9 \mathrm{~V}\) (author approved)

 AVO TEST METERS \(\qquad\)
> \begin{tabular}{lccr}
\multicolumn{4}{c}{ BRIDGE RECTIFIERS } \\
100V & \(25 A\) & \(£ 2.86\) & 500 V \\
200V & \(2 A\) & \(£ 0.52\) & PM7A \\
200 V & \(4 A\) & \(£ 0.75\) & 12 A \\
400 V & 4 A & \(£ 0.98\) & \(\mathbf{1}\) \\
400 V & \(6 A\) & \(£ 1.44\) & \(\mathbf{£ 3 . 7 5}\)
\end{tabular} END OF LINE OFFERS Ref
30 - 1 solator \(240 \mathrm{~V}: 240 \mathrm{~V}\) 200VA M616-0.240V: Screen 1) \(13-0-131 \mathrm{~A}\) M489-0-240V: 1400 V .
\(150 \mathrm{ma}, 6.3 \mathrm{~V}\)


 M1126-120/240V:9-0-9V 1 Ap 30 p
\[
\begin{aligned}
& \text { Split Bobbin Typo } \\
& 0-12-15-20-24-30 \mathrm{~V} \\
& \text { Ref 009 } 1 \text { Amp } £ 2.98
\end{aligned}
\]


\(\mathbf{2 0 , 0 0 0} \mathrm{ohm} / V\) Multimeter, murror scale
Aanges \(A C D C\) to \(1000 \mathrm{~V} D C\) current to 250 mA Ranges \(A C D C\) to 1000 V DC current to 250 m
Resistance to 3 Mohms
\(5^{\prime \prime} \times 3 \frac{y^{\prime \prime}}{} \times 1 \frac{1}{4}\) £14.36 P\&P E1.00VAT 15\%

U4315 Budget Meter. \(20 \mathrm{~K} \Omega / \mathcal{N}\) Ranges to \(1000 \mathrm{~V}, 2.5 A \mathrm{AC} / \mathrm{DC} 500 \mathrm{~K} \Omega\) Res. In steel case
£15.85. PP f1 \(15 \mathrm{VAT} 15 \%\)
NEW RANGE TRANSFORMERS
 EDUCATIONAL METERS(Moving Coil) O-10A \((0-1 \mathrm{~A}), 2 \mathrm{~A}, ~ 0-15 \mathrm{~V}\) (M) Freestanding large scale easily
meters with
O-30ad meters with top scraw terminals for
quick connections. \(\mathbf{E 4 . 5 0}\) P\&P \(66 \mathrm{p}+\) VA AUTO TRANSFORMERS
 \(48 \mathrm{~mm} \times 45 \mathrm{~mm} 250 \mu \mathrm{~F}\) fs VU edge SV041 centre zero \(250 \mu \mathrm{~F} \mathbf{£ 2} \mathbf{2} \mathbf{6 0}\)

Earrie zlectronics Lid.
3, THE MINORIES, LONDON EC3N 1 BJ TELEPHONE: 01-488 3316/7/8

\section*{JUMP TO IT!}

Climb aboard the breadboarding bandwagon with CSC's new WK-1 wire jumper kit - just what you've always wanted to make breadboarding easier and quicker than ever before. Here, in one neatly compartmented box, are all those different lengths of insulated hook-up wire you need -25 pieces of each, in 14 lengths ranging from 0.1 inch to 4 inches. What's more, the CSC kit makes your job even easier by colour-coding all the different lengths and providing a quarterinch length at each end with the insulation stripped off and bent through \(90^{\circ}\). So CSC jumper wires come ready to plug straight into your quick-test sockets, bus strips or breadboard system. No more fiddling around with wire cutters, strippers or pliers - everything you need in one box. Take the plunge right now by filling in the CSC coupon.

CSC (UK) Ltd. Dept. 6RR, Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ.

Telephone: (0799) 21682. Telex: 817477.

The Publishers of 'Practical Wireless' are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods
advertised in a catalogue or in a direct mail solicitation. advertised in a catalogue or in a direct mail solicitation
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with 'Practical Wireless' within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence. For the purpose of this scheme, mail order advertising is defined at:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

\section*{Top Priority for every constructorHOME RADIO CATALOGUE}
- About 2,000 items clearly listed. - Profusely illustrated throughout. - Large A-4 size pages.
- Bargain list order form and 2 coupons each worth 25 p if used as directed, all supplied free.
Price \(£ 1\), plus 50 p for post, packing and insurance.
Send cheque or P.O. for \(£ 1.50\)
HOME RADIO Components LTD Dept. PW, P.O. Box 92, 215 London Road, Mitcham, Surrey.

01-543 5659


\section*{WAITORN ELEGTROMCS \\ 33/35. CARDIFF ROAD WATFORD. HERTS, ENGLAND
MAIL ORDER CALLES WELCOME, TER W}

 \(\underset{\text { Single. }}{\text { Coppren }}\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{ll} 
Fibe & Single- \\
Glass & Sided \\
\(6^{6.6}\) & 90p \\
\(6^{\prime} .12\) & 150 p
\end{tabular} & \[
\begin{array}{lc}
\text { Double } & \text { SRBP } \\
\text { Sided } & \text { S.5 } \\
\text { 110 } & 9.5^{\circ} \\
\text { 200p } & 95 p
\end{array}
\] \\
\hline \begin{tabular}{l}
FERRIC \\
CHLORIDE \\
1 lb 225p +40pp\&p
\end{tabular} & EURO BREADBOARD 520p \\
\hline \begin{tabular}{l}
SOLDERCON PINS \\
100 pins 60 ; ;
500 pins 275 p
\end{tabular} & \begin{tabular}{l}
RESIST PEN 50p \\
VEROWIRING PEN \\
+ spool 325p
\end{tabular} \\
\hline
\end{tabular}


JACKSONS VARIABLE CAPS
\(100 / 300 \mathrm{pF} \quad 205 \mathrm{p} \quad \mathrm{Na}^{0}\) motion Drive with slow
\(5: 1\) Bail Drive
Dial Drive 4103
\(6: 1 / 36: 1\)
Drum 54 mm
002365 pF



\title{
INDEXTO ADVERTISERS
}

\begin{tabular}{|c|c|c|}
\hline separate lolume. Bass boost and Treble Suitable for \(8-15\) ohm speakers. Input for crystal cartridge. Sensitivity approx. 40 m output. Supplied ready built and tested. w escutcheon panel. input and output pluks size \({ }^{\text {high }} \times 6\) wide \(x\)
PRICE \(£ 18 \cdot 40\), P. \& P. £1. 60. &  & \begin{tabular}{l}
HARVERSONIC SUPERSOUND 10 + \(\mathbf{1 0}\) STEREO AMPLIFIER KIT \\
A really first-class Hi -Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise
level with improved sensitivity. Integral pre-amp with Bass. Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions in-
cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions
enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response:
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
HARVERSONIC MODEL P.A. TWO ZERO \\
An advanced solid state general purpose mono amplifier suitable for Publić Address system, Disco,
Guitar, Gram, etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-amp.). Input \(1,15 \mathrm{mV}\) into 47 k . Input \(2,15 \mathrm{mV}\) into 47 k (suitable for use with mic. or guitar etc.). Input 3 , 200 mV into 1 meg, suitable for gram, tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into
standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 30 watts music power. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front \(12 \frac{1}{2}\) wide \(\times 5\) in high \(\times 7 \frac{\mathrm{in}}{}\) deep. Special price \(£ \mathbf{2 9 . 0 0}+£ 3.00\) carriage and packing.
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
10/14 WATT HI-FI AMPLIFIER KIT \\
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-
pull. Super reproduction of both music and speech with negligible hum. Separate inputs for
mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer
to match \(3.15 \Omega\) speaker and \\
to match \(3-15 \Omega\) speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and E280 rectifier. Simple separately. ONLY \(£ 18.40\), P. \& P. \(£ 2.00\). Also available ready built and tested \(£ 22-50\), P. \& P. \(£ 2 \cdot 00\).
\end{tabular}} & \begin{tabular}{l}
\(\pm 3 \mathrm{~dB}\) 12-30.000 Hz Sensitivity: better than 80 mV into \(1 \mathrm{M} \Omega\) : Full power bandwidth: \(\pm 3 \mathrm{~dB} \quad 12-15.000 \mathrm{~Hz}\). Bass boost approx, to \(\pm 12 \mathrm{~dB}\). Treble cut approx. to -16dB. Negative feedback 18 dB over main amp. Power requirements 35 v , at 1.0 amp . \\
Overall Size \(12^{\circ}\) w. \(\times 8^{\circ} \mathrm{d}\). \(\times 24^{\prime \prime} \mathrm{h}\). \\
Fully detailed 8 page construction manual and parts list free with kit or send 50p plus large S.A.E. \\
AMPLIFIER KIT \\
(Magnetic input components 33p extra) \\
£14.95 P. \& P. £1. 20 \\
POWER PACK KIT \\
£6.20 P. \& P. £1. 50 \\
CABINET \\
£6.20 P. \& P. \(£ 1 \cdot 50\) \\
SPECLAL OFFER-only \(£ 25.80\) if all \(\mathbf{3}\) items \\
ordered at one time plus \(£ 2.80\) P. \& P. \\
Full after sales service \\
Also avail. ready built and tested \(£ \mathbf{3 2} \cdot \mathbf{2 0}\), P. \& P. \(£ 2 \cdot 80\).
\end{tabular} \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
HARVERSONIC STEREO 44 \\
A solid state stereo amplifier chassis, with an output of \(3-4\) watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with
built in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse, tone control, volume controls. 2 pin din speaker sockets \& 5 pin din tape rec. play socket are mounted on the printed circuit panel, size approx. \(91^{\circ} \times 2 i^{-} \times 1^{-}\) max. depth. Supplied brand new \& tested, with knobs. the amplifier to be mounted horizontally or vertically) at only \(£ 10.40\) plus 90 p P. \& P. Mains transformer with an output of \(17 \mathrm{v} \mathrm{a} / \mathrm{c}\) at \(500 \mathrm{~m} / \mathrm{a}\) can be supplied at \(£ 2.15+{ }^{+}\).
70 p P. \& P. if required. Full connection details supplied.
\end{tabular}} \\
\hline  & \begin{tabular}{l}
STEREO DECODER MK.II \\
SIZE \(14^{\prime \prime} \times 2.5 / 16^{\prime \prime} \times \dagger^{*}\) ready built. Pre-aligned and tested for 10 16 V neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions supplied \(\mathbf{£ 7 . 0 0}\) plus \(\mathbf{2 5}\) p P. \& P. Stereo beacon light if required 400 extra.
\end{tabular} & \\
\hline Size \(112^{\circ} \times 14 \frac{1}{6}^{-} \times 1 \frac{7}{6} 6^{\circ}\) deep. Weight 19 oz . Power handling 20W r.m.s. ( 40 W peak). Impedance 8 ohm only. Response \(40 \mathrm{~Hz}-20 \mathrm{kHz}\). Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without baffle. Send S.A.E. for full details. Only \(£ 8.80\) each + p. \& p. (one \(£ 1 \cdot 20\), two \(£ 1 \cdot 50\) ). & \begin{tabular}{l}
Mullard LPI 159 RF IF module \(470 \mathrm{kHz} \mathbf{~ 2 2} \cdot 50+\) P. \& P. 40 p. Full specification and connection details supplied. \\
Pye VHF FM Tuner Head covering \(88-108 \mathrm{MHz} 10.7 \mathrm{MHz}\) L.F. output. 7.8 V + carth. Supplied pre-aligned, with full circuit diagram with precision geared F.M. gang and 323PF + 323PF A.M. Tuning gang only \(£ 3.40+\) P. \& P. 60 p.
\end{tabular} & \\
\hline \multirow[t]{2}{*}{STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. \(\pm 1 \mathrm{~dB}\) from 20 Hz to 20 KHz . Input impedance 47 K . Size \(1 \mathrm{~A}^{-} \times\) \(2 \frac{2 n^{\prime \prime}}{} \times \frac{\xi^{\prime \prime}}{}{ }^{\prime \prime}\) H. \(\mathbf{\& 3} \cdot \mathbf{2 0}+22 \mathrm{p}\) P. \& P.} & \multirow[t]{2}{*}{\begin{tabular}{l}
MAINS TRANSFORMERS. 240 V Pri, 12.012 at 400 Ma . Fully \\
 \\
 £1-20 P. \& P.
\end{tabular}} & All prices and specifications correct at time of press and subject to alteration without notice. \\
\hline & & LEASE NOTE: P. \& P. CHARGES OUOTED PPLY TO U.K. ONLY. SEND SAE WITH ALL NOUIRIES. \\
\hline \multicolumn{2}{|l|}{HARVERSON SURPLUS CO. LTD. (Dept. P.W.) 170 MERTON HIGH ST.,} & Tel.: 01-540 3985 en 9.30-5.30 Mon. to Fri. 9.30-5 Sat. Clored Wed. \\
\hline
\end{tabular}

\footnotetext{
Published on approximately the 7th of each month by IPC Magazines Limited, Westover House, West Quay Road. POOLE, Dorset BHIS IJG. Printed in England by Chapel River Press. Andover. Hants. Sole Agents Road. Haywards Heath, Sussex. Practical WIRELEss is sold subject to the following conditions Agency Lid. Subscriptions INLAND and OVERSEAS EIO.60 payable to IPC Services. Oakfield House. Perrymount Road. Haywards Heath, Sussex. Pracrical Wireless is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out
or otherwise disposed of by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to V.A. T, and that it shall not be lent, resold, hired out or 'herwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising. literary or pictorial matter whatsoever
}

\section*{THE MOBILE/PORTABLE CHECKLIST:}

IC240 The most popular, simplest to operate, synthesized 10w-2m-FM mobile ever made

ICOM

IC255E

IC260E The 10 w , multimode, synthesized, digital, 2 m mobile for the man that wants even more again! \(\star\) Scanning mic now available.
\(\star £ 169{ }_{\text {VCT }}^{\text {NCT }}\)
The 25 w , digital, synthesized, 2 m - FM mobile for the man that wants just a little more. Now with improved receiver and scanning mic available
\(\star £ 339_{\text {Vat }}^{\text {NC }}\)
IC2E The smallest, synthesized, \(2 \mathrm{~m}-\mathrm{FM}\), hand-portable available
\(\star £ 159{ }_{\text {VAT }}^{\text {NA }}\)
IC202S
The BEST SSB/CW, \(3 \mathrm{w}-2 \mathrm{~m}\), portable made

IC402 The ONLY SSB/CW, 3w-70cm portable made
\(\star\) £242
INC
VAT

Note all our prices include VAT, some dealers prefer to show the lower VAT-less prices - so don't get caught out.

We offer FREE DELIVERY for all equipment tool.

\section*{ANNOUNCING A NEW COMMUNICATIONS COMPUTER!}



The new THETA 7000E means that every Amateur can enjoy the visual display of CW, RTTY, and ASC11 in both transmit and receive modes. Just connect the TONO to any TV set via the antenna terminals or to a page printer from the parallel port provided. Bring up your CW speed in receiving or sending by either watching receiver sent or from recorded cassettes. Connection to the transceiver is via the key, phone and mic sockets.

\section*{Some of the Outstanding Features COMMUNICATIONS COMPUTER THETA O-7000E}

VHF and Composite Video Output Provided
Printer interface \(\star\) Wide range of transmitting and

\section*{Theta 7000E}
receiving speeds -10 CW speeds +8 RTTY \(\star\) Built-in demodulator for high performance for 170, 425 and 820 Hz shift \(\star\) Crystal controlled modulator for AFSR - Hi or Lo tone \(\star\) Convenient ASCII key arrangement \(\star\) Large capacity display memory -2 pages \(32 \mathrm{chr} \times\) 16 lines split screen for \(R x \& T x\) if required \(\star\) Automatic transmit/receive switch \(\star\) Anti noise circuit \(\star\) Battery backed-up memory 7 channels of 64 chrs \(\star\) Send function \(\star\) Buffer memory -53 character type ahead, rub out function \(\star\) Simultaneous access of the memory \(\star\) Pre-loading function \(\star \mathrm{CR}\) (carriage return) LF (line feed) cancel function \(\star\) Cursor control function \(\star\) Word mode operation \(\star\) Automatic CR/LF ' 72,60 or 80 chrs per line) \(\star\) Echo function \(\star\) Word Wrap around function \(\star\) Transmit/receive in ASSC11 mode in RTTY \(\star\) CW identification function \(\star\) Mark and break (space and break) system \(\star\) Monitor circuit \(\star\) CW practice function \(\star\) Variable CW weights \(\star\) Cross pattern checking output terminal \(\star\) Log computer output provided \(\star\) Test message function (Ry and QBF).

Dot Printers, Monitors, Receive Only Units now available. Please ask for details.

\title{
Opens Tuesday 16th September, 1980 Opening Hours 9.45 am to 5.30 pm Tuesday to Saturday (Closed Monday)
}

in

Please send me a copy of your 280 page catalogue. I enclose 70 p (plus 46 p\&p) If I am not completely satisfied I may return the catalogue to you and have my money refunded If you live outside the \(\cup K\) send \(F 135\) or ten International Reply Coupons lenclose f1 16


\section*{Stereo Cassette Tape Deck}


Utilising the superb JVC deck made for Tandberg and a ready-made pre-aligned, tested and guaranteed module, this cassette deck has a superb sound and a high quality specification. We've got everything you need (except cabinet) including full instruction leaflet for only \(£ 39.95\).
Order as XY36P (Cassette
Recorder Kit)

\section*{Space Invaders}

Fight the space invaders, be a polaris captain or a spaceship commander. Full colour action on your own TV set and over 450 games to play.
Basic console with Combat cartridge (ACOOA) \(£ 99.50+£ 2.50\) carriage
All cartridges avalable including:
\begin{tabular}{|c|c|c|c|}
\hline Space Invaders (AC26D) & \(¢ 29.95\) & Adventure (AC22 \({ }^{\text {P }}\) ) & £23.95 \\
\hline Indy 500(AC24B) & £34.50 & Skydiver (AC13P) & E16.95 \\
\hline Chess (8levels) (AC28F) & £34.50 & Breakout (ACO5F) & £16.95 \\
\hline Golf (9holes) ( AC 18U) & £16.95 & Slot Racers (AC19V) & E16.95 \\
\hline Air Sea Battle (AC01B) & ¢16.95 & Programming (AC27E) & £34.50 \\
\hline Space War (AC02C) & £16.95 & Olympics (ACO4E) & ¢16.95 \\
\hline Brain Games (AC16S) & ¢16.95 & Street Racer (AC14Q) & £16.95 \\
\hline Outlaw (AC03D) & ¢16.95 & Keyboards per pair (AC29G & 95 \\
\hline
\end{tabular}

All prices include VAT and carriage except where shown



Maplin Electronic Supplies Ltd
All mail to:- P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155.
Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday) Telephone: Southend (0702) 554000.
```


[^0]:    Name

[^1]:    -Use a 600 mA at 9 VDC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon)

[^2]:    Current Consumption: 45 mA

