

QUARTZ LCD
 5 Function

MULTI ALARM 6 Digits 10

£18.65

SOLAR QUARTZ LCD Chronograph

Powered from solar
panel with battery back-up.
6 digit, 11 functions. Hours, mins., secs., day, date, day of week. 1/100th, $1 / 10$ th, secs., OX secs., mins. Split and lap modes. Back-light, auto calendar. Only 8 mm hick. Stainless steel bracelet and back. Adjustable bracelet.

Metac Price

M5

SOLAR QUARTZ LCD 5 Function

Genuine solar panel with battery back-up. Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65
Guaranteed same day despatch.

FRONT-BUTTON Alarm Chrono

Dual Time 6 digits, 5 flags. Constant display of hours and mins., plus optional seconds or date display. AM/PM indication, month, d Continuous display of day Stop-watch to 12 hours Split and lap timing modes. Dual time zones.
Dual time zones.
Back-light. Fully adjustable
Back-1ight. Fuly adjustable $£ 22.65$
open bracelet.

SEIKO Alarm Chrono
LCD, hours, mins., secs., day of week, month, day and date, 24 hour Alarm, 12 hour chronograph, $1 / 10$ th secs., and lap time. Back light, stainless steel, HARDLEX glass. List Price $£ 130.00$ METAC PRICE
£105.00

M10

HANIMEX portable LCD clock radio

- Time set \& alarm controls.
- Snooze \& sleep controls.
- Wake to music or alarm.
* AM/PM indicator.
- Battery operated. No plug required.
- Receives all standard AM radio broadcasts.
- Drawstring carrying case included.
- Back-light.
- Batteries supplied free. $£ 17.95$
- Quartz crystal controlled. M14

QUARTZ LCD ${ }_{\text {sum }}$ 11 Function CHRONO

6 digit, 11 functions. Hours, mins., secs., day, date, day of week. 1/100th, $1 / 10$ th, secs., 10X secs., mins., Split and lap modes. Back-light, auto calendar
 Only 8 mm thick. Stainless steel bracelet and back.
Adjustable bracelet. Metac Price
£10.65 Thousands sold!
Guaranteed same day despatch. M3

QUARTZ LCD ALARM 7 Function

Hours, mins., secs,. month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9mm thick.

£12.65

Guaranteed same day dispatch.

ALARM CHRONO

 with 9 world time zones- 6 digits, 5 flags. - 6 basic functions. - 8 further time zones. - Count-down alarm.
- Stop-watch to 12 hour Stop-watch
59.9 secs.
in $1 / 10$ sec. steps.
- Split and timing modes.
- Alarm.
- 9 mm thick.
- Back-light.
- Fully adjustable bracelet.
£29.65
M8

SEIKO-STYLE
 Dual time-alarm Chronograph

Mineral glass

face.
Battery hatch for DIY battery replacement.
Top quality finish with fully
adjustable bracelet
£35.00

SEIKO MEMORY

 BANK

HOW TO ORDER

Payment can be made by sending cheque, postal order, Barclay. Access or American Express card numbers. Write your name, address and the order details clearly, enclose 30p for post and packing or the amount stated. We do not wait to clear your cheque before sending the goods so this will not delay delivery. All products carry 1 year guarantece and full money back 10 day reassurance. Battery fitting service is available at our shops. All prices include VAT

Trade enquiries: Send for a complete list of trade prices - minimum order value $£ 100$.
Telephone Orders: Credit card customers can telephone orders direct to Daventry or Edgware Rd 24 hour phone service at both shops: 01.7234753 03272.76545.

\therefore

 ELECTRONICS \& TIME CENTRES

CALLERS WELCOME Shops open 9.30-6.00.

- DUAL TIME. Local time always visible and you can set and recall any other time zone (such as GMT). Also has a light for night viewing.
- CALENDAR FUNCTIONS include the date and day in each time zone. - CHRONOGRAPH/STOPWATCH displays up to 12 hours, 59 minutes, and 59.9 seconds.
- On command, stopwatch display freezes to show intermediate (split/lap) time while stopwatch continues to run. Can also switch to and from timekeeping and stopwatch modes without affecting either's operation.
- ALARM can be set to anytime within a 24 hour period. At the designated time, a pleasant, but effective buzzer sounds to remind or awaken you!
Guaranteed same day dispatch. M16

North \& Midlands
 67 High Street, DAVENTRY Northamptonshire

Telephone: 0327276545

South of England
327 Edgware Road LONDON W. 2
Telephone: (01) 7234753

practical
 Wirelifs

BRITAINS LEADING JOURNAL FOR THE RADIO \& ELECTRONIC CONSTRUCTOR
Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio. TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components for our projects are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "'Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of PW are available at 85 p each, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 4.10$ to UK addresses and overseas, including post and packing) each accommodating one volume of $P W$. Please state the year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1980. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

20 News . . . News . . . News . . .
30 PW QSL Card Announcement
31

Hotlines

Ginsberg
Recent Developments in Electronics
Kindly Note
Burglar Alarms-3, January 1980
Special Product Report
Fluke 8022A Digital Multimeter
Letters Comments from PW readers
Production Lines
Alan Martin Information on the latest products
Radio Special Product Report
Yaesu FT-7B h.f. mobile transceiver-1

FOR OUR CONSTRUCTORS

PW "Nimbus"-1 M Tooley \& D. Whitfield
Model Radio Control-4 J. Burchell \& W. S. Poel Electronic speed controller
Dual Trace Unit-2
lan Hickman Extend the facilities of your PW Purbeck Oscilloscope

Ideas Department

Logic Lamp Dimmer. Signal Injector.
Sound Effects Generator. Automatic Clock Dimmer
Tweeter Attenuator
. T. P. Hopkins
Balance your home-built hi-fi speakers
A Battery Eliminator
W. J. Mainwaring

A "mains-powered" replacement for a PP9

GENERAL INTEREST

Hi-Fi Glossary-5
G. J. King

All you wanted to know about hi-fi jargon
The Vintage Years of Radio
Chas E. Miller
A nostalgic look at the early days
IC of the Month
Brian Dance
The TL496 dual regulator

On the Air

Amateur Bands Eric Dowdeswell
Medium Wave DX Charles Molloy
Short Wave Broadcasts Charles Molloy
VHF Bands
Ron Ham

※ FREETHIS MONTH
PW Datacard—Resistors \& Capacitors
Our April issue will be published on 7 March
(for details see page 37)

ELECTROVALUE

GATALOGUE 10 HAD YOURS YET?

> Our computer has already selected thousands of our customers to whom our new catalogue has automatically been sent. If you would like a copy too, simply send us your name and address. It's

(You don't even have to pay postage in U.K.)

ITS A GOOD DEAL BETTER FROMELECTROVALUE

- We give discounts
on C.W.O. orders, except for a few items market Net or N in our price lists.

5\% on orders, list value £10 or more
10% on orders list value £25 or more.
Not applicable on Access or Barclaycard purchase orders.

- We stabilise prices.
by keeping to our printed price lists which appear but three or four times a year.

- We guarantee

all products brand new, clean and maker's spec. No seconds, no surplus.

- We pay postage in U.K. on C.W.O. orders list value $£ 5$ or over. If under, add 30p handling charge.

Appointed distributors for SIEMENS, VERO, ISKRA, NASCOM and many others.

OUR NEW CATALOGUE No 10

Full 128 pages. Thousands of items. Improved classification for easier selection. Valuable working information. Illustarations. Separate quick-ref price list.

EIEGTROMILUE LTD

HEAD OFFICE (Mail Orders)
28(A) St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: 33603 (London prefix 87. STD 0784) Telex 264475.
NORTHERN BRANCH (Personal Shoppers Only)
680 Burnage Lane, Burnage, Manchester M19 1NA
Phone: (061) 4324945.

CHORDGATE LTD. SWINDON

SILICON TRANSISTORS FULL SPEC.
TIP31B 25 p comp. TIP32B 25 p, 5 pairs $£ 2.00$ or 10 either type $£ 2.00$. 2N3707 gen. pur. NPN 10 for 50 p. 2N5293 NPN 75 V 4 A TAB collector 20p 10 for $£ 1.75$. TIP34A PNP 60V 10A 40p 10 for $£ 3$, 1N914 25p 10 for 60 p. BD525 30p comp. BD526 30p useful up to 50 MHz . 5 pairs $£ 2.5010$ either type $£ 2.50$.

Fairchild FND10 7 seg. displays $0 \cdot 15^{\prime \prime}$ red common cathode 60 p.
Pye dynamics thick film 1 MHz clocking oscillator, 5 volt supply, drives 1 TTL loade 60 p.
368.640 KHz XTAL PCB MTG $\mathrm{HCU} \div 2^{10}=360 \mathrm{HZ} 75 \mathrm{p}$.
444.8 KHz XTAL wire end $£ 1.95$.

Beehive trimmer 3-30PF 10 for 50 p.
1.5-2.5PF min trimmer $5 \mathrm{~mm} \times$ 5 mm HOR MTG 12 p 10 for $£ 1$.
Stettner 3-15PF CER trimmer 10 mm dia. vert. MTG 15 p 10 for £1.20.
Denco transistor 1FTs interstage IFT13 60p. IFT14 Det. output 60p 470 KHz .

10 MFD 6.3 V tantalum caps bead type 7p. 10 for 60 p .
1 MFD 15 V tantalum min caps 4 mm $\times 1.5 \mathrm{~mm} 8 \mathrm{p} .10$ for 70p.

As above 2.2 MFD $5 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ 8 p. 10 for 70 p.

Colvern 1 watt wire wound pots 25 R , $100 \mathrm{R}, 1 \mathrm{~K}, 2 \mathrm{~K}, 2.5 \mathrm{~K}, 10 \mathrm{~K}, 30 \mathrm{~K}$, 40 p . 10 for $£ 3$. State value.

Electrolytic caps single end tag. 680 MFD 63 V 60 p .4700 MFD 16 V 60 p . 6800 MFD 10 V 60 p. 15000 MFD 10V 60p. Screw terminal 4700 MFD 40 V 60 p .
6 F 10 stud rect. 100 V P.I.V. 6A 25p. 4 for 80 p .

LA4245 mullard core 15p.
Mullard pot cores. All supplied with data sheet. LA1 50p. LA2 60P. LA4 70p. LA 780p.

28 PIN I/C holder 20p. 30 turret tags 50p.
500 OHM multi-turn PCB MTG pot 20 p . 10 for $£ 1.50$.
Airflow Developments snail blower $110 \mathrm{~V} 50 \mathrm{~Hz} £ 4.50$.
Citenco 48 V motor with right angle drive geared for 4 R.P.M. torque 24 oz-ins. $\frac{3^{\prime \prime}}{8}$ round or for $5 / 32^{\prime \prime}$ square shaft $\mathbf{£ 9 . 5 0}$.
Honeywell plastic snap panel MTG push button DP/CO switch, latch or non latch $\mathbf{1 5 p}$. 10 for $\mathbf{1 1 . 2 5}$. State type.
Alma push button reed switch ideal for keyboard 30 p .10 for $£ 2.50$.
Min. glass reed switches 20 mm length 10 for 60 p.
Mercury battery $1.35 \mathrm{~V} 1000 \mathrm{MA} / \mathrm{H}$ 16 mm dia. 16 mm high 15 p. 10 for £1.20.
LM324N quad op-amp I/C 60p. LM1303N sterio pre-amp I/C 60p.
SN76110 P.L.L. FM stereo multiplex decoder I/C 75p.
$0 \cdot 2^{\prime \prime}$ red LEDs 12p. 10 for $£ 1.00$. $0 \cdot 125^{\prime \prime}$ red LED 12 p .10 for $\boldsymbol{£ 1 . 0 0}$. 4.7 V 400 MW zener 6 p . 10 for 50 p . 13 V 400 MW zener 6 p . 10 for 50 p . Min cermet trimmers HOR MTG 220 R and $10 \mathrm{~K} \quad 15 \mathrm{p} .10$ for $£ 1.20$. State value.
$\frac{1}{2} \mathrm{~W}$ carbon resistors, 100 packed in manufacturers cartons. 15R, 39R, $47 \mathrm{R}, 150 \mathrm{R}, 560 \mathrm{R}, 2 \cdot \mathrm{~K}, 22 \mathrm{~K}, 68 \mathrm{~K}$, $100 \mathrm{~K}, 50 \mathrm{p}$ per carton. State value. Resistor pack 200 assorted 70p.
Min electrolytic pack approx. 100 assorted values, few types unmarked 75p.

Waveform generator kit. PCB and all components to build $20 \mathrm{~Hz}-20 \mathrm{KHz}$ generator with sine square and triangle outputs. $10-30 \mathrm{~V}$ supply, complete with data sheet $£ 9.95$. (8038 Based).
For all above supplies add 35 p post and packing. Orders over $£ 4.00$ post and packing inclusive.
Printed circuits detailed below add 35p post and packing 1-3 boards. Larger quantities post and packing inclusive.

PCB contains 2 IP 10 W wafer switches. $2 \times 7440 \mathrm{I} / \mathrm{C} 2 \times 74141$ I/C. Various logic I/Cs 1N4148s and over 50 components 70 p .
PCB with GEC G424 triac control I/C. 2 SGS transistors. Three 9 watt WW resistors and 12 other com ponents supplied now with G424 data and application sheet $£ \mathbf{1 . 0 0}$.
PCB with 4×0.1 MFD 1000 V caps 2 pre-sets, 1 bridge rect., $4 \times 1 \mathrm{~N} 4007$. 9 resistors 70p.
PCB with $2 \times 741.2 \mathrm{~N} 4921$ and over 40 other components and multiturn 20 K pot 70 p .
PCB with $8 \times$ BC $1078 \times$ BCY70 4 pre-set pots and over 70 other components 80 p .

PCB with 4 BD253A or 2 N 5838 (500V VCB 6A HFE 15) 5 wire wounds. Zeners diodes and 2 wound pot cores $\mathbf{£ 1 . 0 0}$.
PCB with LM309 5 volt reg. 7 reed relays 45 logic I/Cs 8 voltage comparators $2 \times$ MJ4 10200 V NPN. $2 \times$ $7490,2 \times 7442$ SCRs, 4 multiturn pots. Total of over 200 items $£ 1.75$.

Parcel of 1 each of above 7 PCBs £5.95. Post and packing inclusive.
Audio amp PCB with $2 \times$ BFY50 1 BFX29 and output pair of 2N5293. 2N5293 rated at 36 watt max dissipation. Circ. dia. supplied $£ 1.75$ or 2 for $£ 3.00$. Post and packing inclusive.

Special bargain 10 Kilo inclusive of packing parcel of PCBs, resistors, capacitors, etc. etc. and items not listed above $£ 5.50$.
Avo in circuit transistor tester type TT169 complete in case with instructions for testing transistors diodes and SCRs £17.50. Excellent condition fully tested.
(Dept B.) 194 A DROVE ROAD, SWINDON, WILTS. ALL OUR PRICES INCLUDE VAT

MORE BIG VALUE FROM YOURTANDY STORE

MULTITESTER

Dual FET imput for

REALISTIC DX 300
General coverage receiver. Quartz-synthesised tuning. digital frequency readout. 3 -step RF Attenuator. 6 range preselector with LED indicators. SSb and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204.

ret prace $£ 229.95$

Unique circuitry makes it a combined level detector. pulse detector and pulse stretcher. Hi-LED indicates logic " 1 ". Lo-LED is logic " 0 ". Pulse LED displays pulse transitions to 300 nanoseconds, blinks at 3 Hz for high frequency signals (up to 1.5 MHz). Input impedence: 300 K ohms. With $36^{\prime \prime}$ power cables. 22-300.

DYNAMIC TRANSISTOR CHECKER

Shows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go test trom
5.50 mA on power types. 22-024. REG. PRICE £9.95

moce 19.95

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2.500 products are made
specifically fy' or by Tandyat 16 tactories
around the world. The qliality of our proxtucts has been acheved by over 60 years
of contmuous technological advancement.
accuracy and minimum loading. 11.5 cm mirrored scale. DC volts. 0-1-3-10-30-100-300-1000. DC current 0-100 a. 0-3-30300 milliamp. Resistance 0-30-300-3k-301C-1 megaohm. 0-100-1k10 IC-100K-3 megaohms. Req. 9 V battery. 22-209.

£29.95

SIGNAL INJECTOR
For RF, IF, AF circuits. Maximum accuracy. Easy pushbutton operation. Needs two "AA" batteries. 22-4033.

REG. PRICE
$£ 2.79$

AC/DC CIRCUIT TESTER

Accuracy in $1-300$ volts ranges. Safe in live/dead circuits. Needs two "AA" batteries. 22-4034.

нат mac£1.99

VARIABLE POWER SUPPLY

Power project boards. IC's, other low-voltage DC equipment. Load regulation: less than 450 mV at 1 amp at 24 V DC. Ripple: less then 25 mV . Maximum output current: 1.25 amps . Switchable colour-coded meter reads $0-25 \mathrm{~V}$. DC and $0-1.25 \mathrm{amps}$. Three-way binding posts take wires, banana plugs or dual banana plugs with $0.75^{\prime \prime}$ centres. For 220/240V AC. 22-9123
$£ 35.95$
Acmad
 -risig

STARCHASER 4000

THE NEW FOUR CHANNEL LIGHTING CONTROLLER

4 channels 750 W each O over 1000 different sequence patterns and effects 3 alternative sound triggers A.G.C. simulated strobing zero reference triac firing superb TUAC quality and reliability $\quad \mathbf{2 9 9 . 0 0}$ inc. VAT

4 CHANNEL SOUND TO LIGHT SEQUENCE CHASER - 4LSM1

RCA 8A Triacs • 1000W per hannel - Switched master con trol for sound operation from $1 / 2 \mathrm{~W}$ to 125 W . Speed control fixed rate sequence from per minute to 50 per second - Full logic integrated circuitry with optical solation for amplifier protection.

3CHANNEL AUTO SOUNDTO LIGHT

- AFL 6
* RCA 8 amp Triacs * 500W per

TUAC MAIN DISTRIBUTORS (Callers Only) Birmingham, George Matthews, 85/87 Hurst Street, Tel: 622 1941)
London, Garland Bros., Deptford Broadway, (Tel: 01.692 4412). London, Session Music, 163 Mitcham Road, Tooting. (Tel: 01.6723413) Mon-Sat 10am to 5.30 pm . Closed Wed Luton, Luton Disco Centre, 88 Wellington Street, (Tel: 411733) Manchester, A1 Music, 88 Oxford Street, (Tel: 2360340). Middlesborough, Salcoglen, 43 Borough Road, (Tel: 242851) Watford, Component Centre, 7 Langley Road, (Tel: 45335)

[^0]

All prices NET - Add VAT at 15\%
MAIL ORDER minimum goods $\mathbf{£ 5 . 0 0}+\boldsymbol{p o s t a g e} \&$ add VAT on total
Prices may be revised without notice - Please phone for confirmation, stocks \& postage.

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with
numerous figures and diagrams.

- Handsome purpose built ABS cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer - Absolutely all parts supplied including I.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM - Can be built in about 3 hours'
- Runs off 2 PP3 type batteries
- Fully Guaranteed

* Save paunds on normal retail price by building yourself.

TMS 1000N

-MP0027A Micro-computer chip available separately if required. Full 24 tune spec device fully guaranteed.

This unique chip can be used not only for electronic door chimes but for other projects requiring musical output: Car Horns
Musical Boxes Amusement Machines Alarms
Public Address etc

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE PLEASE ALLOW 7-2I DAYS FOR DELIVERY
Please send me. Chromatronics, River Way, Harlow, Essex. TO: CHROM ATRONICS, RIVER WAY, HARLOW, ESSEX. NAME
ADDRESS

I enclose cheque/PO value $£$
or debit my ACCESS/BARCLAYCARD account no.

Signature

CHROMATRONICS

"FLIP"

PUSH BUTTON HEADS OR TAILS Complete kit and full instructions supplied. A pocket game, easy to build and great to play. A pocket game, easy to buil and great to play.
KIT PRICE $=\mathbf{£ 5} \cdot \mathbf{2 5}+\mathbf{1 5 \%}$ VAT. Post free.

75 OHM

$2 \frac{1}{\prime \prime}^{\prime \prime}(57 \mathrm{~mm})$ LOUDSPEAKER BARGAIN This ever popular many project loudspeaker. Only while stocks last. $90 \mathrm{p}+15 \%$ VAT ench. U.S.A.COAXIAL CONNECTOR P PL259 Price 50p $+15 \%$ VAT

PSI. STABILIZED

POWER SUPPLY

240 v AC input: Outputs:- 3, 6, 7.5 and 9 volts DC at maximum 400 ma . Three switches:- On-Off, Polarity Reversing and
Voltage Change. Regulated to supply exact marked voltages from no load up to maximum current. Dimensions:- $5 \times 3 \times 2 \frac{1}{6}$ inches.
Only $£ 7+15 \%$ VAT.

MOBILE PA. MICROPHONE
$C 2$
For all outdoor P.A. Work. 50K ohma. Onoff switch and volume control. Complete unwanted noise rejection mechanism. unwanted noise rejection mechanism,
Price $=\mathbf{~} 9+15 \%$ VAT.

MAIL ORDER DEPT.

CRESCENT RADIO LTD
1 ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ. 01-888 3206

3KILOWATT PSYCHEDELIC
 LIGHT CONTROL UNIT 1000W lighting per channel, max

1000W lighting per channel, max.
A 3 channel sound to light unit housed in a A 3 channel sound to light unit housed in a
robust metal case, with a sensitivity control
for each channel i.e. Bass. middle and treble. Full instructions make this unit easy to connect to your present amplifier
S.A.E. for spec, sheet.

Still only $£ \mathbf{2 0 . 0 0}+15 \%$ VAT
CR. 4110. DESOLDERING PUMP
4 ONLYE6
High suction pump with automatic ejection. Knurled, anti corrosive casing. Teflon nozzle.
CR. LV1. 12VDRILL 国畆:
£12.00p.
,
15% VAT
BRITISH MADE "Versadriil", 12 volts DC Compact battery operated power tool, sufficiently powerful to perform all the operations associated with 240 v drills Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia.)
C.180-'KEYNECTOR' MAINS

Essential equipment for the
showroom, workshop, factory, laboratory, home and hobby bench, the 'Keynec-
tor' provides quick, efficient tor provides quick, efficient
and safe temporary mains connection.
$\mathbf{£ 6 . 2 5} \cdot \mathbf{1 5 \%}$ VAT

$$
\begin{aligned}
& \text { FOOTSWITCH C. } \\
& 250 \mathrm{v} \text {. } 5 \text { arnp. Non-slip. } \\
& \text { base. Lead with } 2.5 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 250 \mathrm{v} \text {. } 5 \text { amp. Non-slip } \\
& \text { base. Lead with } 2.5 \mathrm{~mm} \\
& \text { plug. Body dims:- } 88 \times 66
\end{aligned}
$$

plug. Body dims:- 88×66
$\times 25 \mathrm{~mm}$.
f 3.75

 post freel Please add V.A.T.
$\mathrm{S} . \mathrm{A}$. . with all enquiries please.

Personal callers welcome at: 21 Green Lanes, Palmers Green N13. Also 13 South Mall, Edmonton Green, Edmonton.

$$
\begin{aligned}
& \text { Y * * * * * * * * } \\
& \text { We are the only people who include a } \\
& \text { * * * * * * * * } \\
& 50 \mathrm{~Hz} \text { model for British TV sets. Full key } \\
& \begin{array}{l}
\text { board and cassette interface and uses your } \\
\text { TV as a VDU } 8 \mathrm{~K} \text { basic. } 4 \mathrm{~K} \text { ram fully }
\end{array} \\
& \begin{array}{l}
\text { assembled } 1188 \text {. } 15 \% \text { VAT, post free } \\
\text { SINCTMIR }
\end{array} \\
& \text { SINCLAIR PRODUCTS } \\
& \text { £3.40. connector kit } £ 11.27 \text {. Microvision TV }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { DM350 } £ 71.82 \text {. OM450 £102.17. DM235 } \\
\text { € } 51.95 \text {. Accessories for all } 3 \text { models:- }
\end{array} \\
& \text { rechargeable batteries } \mathrm{E7.99} \text {, mains adap } \\
& \text { tor/charger }{ }^{\text {prog calculator } \mathrm{E} 19.95 \text {. New SC110 } 10 \mathrm{MHz}} \\
& \text { OSCiloscope f } 144.95 \text {. } \\
& \text { Chess champion } 6 \text { E49.95. Chess challenge } \\
& 7 \text { t.84. Voice chess challenger } £ 227.95 \\
& \begin{array}{l}
\text { Chocker challenger } 2 \text { ¢ } 46 \text {. Checke } \\
\text { challenger } 4 \text { © } 84 \text {. Star chess } \mathrm{f} 62 \text { Grands. }
\end{array} \\
& \text { tand video enterainment computer } £ 79.95 \text {. } \\
& \begin{array}{l}
\text { Videocarts E } 12.60 \text {. Philips } G 7000 \text { Videopak } \\
\text { home computer } \mathrm{f} 149 \text {. Videopaks } £ 12.95
\end{array} \\
& \begin{array}{l}
\text { home computer } £ 149 \text {. Videopaks } £ 12.95 \\
\text { Atari Videocomputer } £ 147 \text {. Cartridges }
\end{array} \\
& \begin{array}{l}
\text { Atari Videocomputer } £ 147 \text {. Cartridges } \\
£ 14.85 \text { (except chess } £ 43.95 \text { and backgam- }
\end{array} \\
& \text { TV GAMES } \\
& \begin{array}{l}
\text { Tank battes kit } £ 8.34 \text {. AY-3-8500 chip } \\
£ 3.00 \text { kit } £ 4.26 \text {. Stunt cycle AY-3-8760 }
\end{array} \\
& \text { £3.00. kit E4.26. Stunt cycle AY-3-8760 } \\
& \begin{array}{l}
\text { chip } £ 13.71 \text {, kit } £ 4.95 \text {, } 10 \text { game paddle } 2 \\
\text { AY-3-8600 chip } £ 10.25 \text {, kit } £ 7.03 \text {. Racing }
\end{array} \\
& \begin{array}{l}
\text { cat chip AY-3.8603 } \\
\text { kit } 55.28 \text {. Rifle } \mathrm{kit} ~ \\
\mathrm{~K} \\
5.27 \text {. Colour generato }
\end{array} \\
& \begin{array}{l}
\text { kit f9.05, } \\
\text { MAINS TRANSFORMERS }
\end{array} \\
& \begin{array}{l}
6 \cdot 0 \cdot 6 \mathrm{~V} \text { 1 } 1 \mathrm{a} £ 2.60,9 \cdot 0-9 \mathrm{~V} 75 \mathrm{ma} 76 \mathrm{p} \text {. } 1 \mathrm{a} \\
£ 2.22,2 \mathrm{a} \mathrm{C} 3.13 .12-0.12 \mathrm{~V} 100 \mathrm{ma} 92 \mathrm{p} \text {, } 1 \mathrm{a}
\end{array} \\
& \text { JC12 AND JC } 20 \text { AMPLIFIERS } \\
& \begin{array}{l}
\text { Integrated circuit audio amplifier chips with } \\
\text { data and printed circuits. JC12 } 6 \text { Watts }
\end{array} \\
& \text { data and printed circuits. JC12 } 6 \text { Watts } \\
& \text { CONTINENTAL SPECIALITIES } \\
& \text { PRODUCTS } \\
& \begin{array}{l}
\text { EXP300 £6.61. EXP350 €3.62. EXP325 } \\
\text { £1.84. EXP650 £4.14. EXP4B E2.64. LP2 }
\end{array} \\
& \text { PRINTED CIRCUIT MATERIALS } \\
& \begin{array}{l}
\mathrm{PC} \text { etching kits:- oconomy } £ 2.42 \text {, standard } \\
£ 4.46 .40 \mathrm{sq} \text { ins pet } 45 \mathrm{p} \text {. } 1 \text { if } \mathrm{FeC} 1 \mathrm{E} 1.30
\end{array} \\
& \text { Etch resist pens:- economy } 50 \text { p. dato 84p } \\
& \begin{array}{l}
\text { Drill bits } 1 / 32^{\circ} \text { or } 1 \mathrm{~mm} 30 \mathrm{p} \text {. Etching dish } \\
92 \mathrm{p} \text {. Laminate cutter } 90 \mathrm{p} \text {. }
\end{array}
\end{aligned}
$$

S-DECS AND T-DECS
S-Dec 63.79 . T-Dec $£ 4.59$, u-DecA $£ 4.69$ U-DecB f7.16.
3-way types with switched output and 4 way multi-jack:- $3 / 4 \frac{1}{1} / 6 \mathrm{~V} \quad 100 \mathrm{ma} £ 2.39 .6 / 7 \frac{1}{2} / 9 \mathrm{~V}$
300 ma f $3.14 \quad$ fooma radio types with press $300 \mathrm{ma} £ 3.14$. 100 ma radio types with press
 4.79. Cassette recorder mains unit
100 ma with 5 pin din plug $£ 3.57$. Full stabilized type $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 400$ ma $£ 5.89$, Ca convertors 12 V dc input, output 9 V 300 ma 3/4 $\frac{1}{6 / 6 / 7} 1 / 9 / 12 V 800 \mathrm{ma} £ 2.66$.
BATTERYELIMINATOR KITS
100 ma radio types with press-stud conned $4 \frac{1}{2}-4 \frac{1}{2} \mathrm{~V} £ 1.92,6.6 \mathrm{~V} £ 1.92,9.9 \mathrm{~V} £ 1.92$ Cassette type 712 V 100ma with din plug $4 \frac{1}{\frac{1}{2}} / 6 / 7 / 8 \frac{1}{2} / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$ 12 E 4.95 , $\angle \mathrm{A}$ t8.2U. Lar convertor mpu STABC, output 6/7 $1 / 9 \mathrm{~V}$ 1A sta
STA ED POW KITS
The first price is the kit without transformer the bracketed price includes transformer. 8
way types $3 / 4!/ 6 / 7!/ 9 / 12 / 15 / 18 \mathrm{~V}$ 100m
 $\begin{array}{lll}\text { (£7.30). Variable voltage models } & 2.18 \mathrm{~V} \\ 100 \mathrm{ma} & \mathrm{E} 2.12 & \text { (E2.98), } \\ 1-30 \mathrm{~V} & \text { IA } & \mathrm{E} .18\end{array}$ (E6.20). $\operatorname{BI-PAK}$ AUDIO MODULES
AL30A £4.08. PA12 £8.38, PS $12 £ 1.58$ PA100 E17.33. SPM80 14.74 . BMT80 £6.08. Stereo $30 £ 21.57$. MA60 £38.27.
COMPONENTS COMPONENTS
1 N4 $1480.9 p$. 1 N 40023.1 p. 7418 dil $18 p$
72314 dil 33 p. NE555 8 dil 24 p. bc213, bc 547 , bc 54954.9 p. bc 182 , bc 184 $\mathrm{bc} 212, \mathrm{bc} 214$, bc548 5.5 p . tip 31 c . tip 32 c
36 p . tip 41 c 40 p . bd131, bdi 32 27p. plastic equiv bcy 725 p. fuses 20 mm . 5 mm car 1p, anti-surge 3.6 p resistors 5% quickblow
 polyester capacitors $250 \mathrm{~V} .015, .068, .1 \mathrm{mf}$
$1.5 \mathrm{p}, .01 \mathrm{mf} 3.0 \mathrm{p}, 022,033 \mathrm{mf} 3.3 \mathrm{p}, .047 \mathrm{mt}$ $3.5 \mathrm{p}, 15,22,33,47 \mathrm{mf} 4.9 \mathrm{p}$ polystyrene 10 n 4 p . ceramic capacitors 50 V E6 22 pf to 47 n 2 p . electrolytic capacitors $50 \mathrm{~V} .5,1,2 \mathrm{~m}$ $5 \mathrm{p}, 25 \mathrm{~V} 5,10 \mathrm{mt} 5 \mathrm{p} .16 \mathrm{~V} 22,33 \mathrm{mf} 5 \mathrm{p} .47$ 68 mf 3.5 p . $100 \mathrm{mf} 6 \mathrm{p}, 330,470 \mathrm{mf} 9 \mathrm{p}$ $33 \vee 7$ p. preset pots subminiature 0.1 W horiz or vert 100 to 4 M 77 p . potentiometers ${ }^{w} \mathrm{w}$
4 K 7 to 2 M 2 log or lin single 27 p . dual $7 \mathrm{p}_{\mathrm{p}}$. 1. red LEDs 9 7p. ic sockets 8 dil 8.7 p .14 dil
10.1 p .16 dil 12 p .

SWANLEY ELECTRONICS

Callers by appointment only. Please add 30 p to the total cost of your order for postage. Prices orders weicome

WAVEMETER Adm pattern LF wavemeter covers 10 to 30 Kc in two ranges uses two plug in coils with direct calibration, absorption type with lamp ind. Also contains Tx 1100pf tuning cond this can be rebuilt for other capacities and spacings, the two coils contain large amount of silk covered copper wire all contained in polished wood case size $12 \times 7 \times 9 \frac{1}{2}^{\prime \prime} £ 10.50$.

AMPLIFIER MODULE self contained plug in unit provides var gain up to 500 DC coupled, contains mains trans providing stab $+20 \&-20 \mathrm{v}$ supplies, good selection of 1% res, trim pots, transistors etc standard 230vl/P $£ 5.50$
U.H.F. RX ASS single chan crystal controlled with crystal for $243 \mathrm{Mc} / \mathrm{s}$ dual conversion IFs $20.5 \& 2 \mathrm{Mc} / \mathrm{s} 11 \mathrm{~min}$ valves low $\mathrm{imp} 0 / \mathrm{P}$ reqs 200 v HT \& 6.3 size $9 \times 4 \frac{1}{2} \times 4^{\prime \prime}$ new cond $£ 16.50$.

POWER UNIT INVERTOR special purpose unit for $115 \mathrm{v} \mathrm{I} / \mathrm{P}$ contains 6 pot cores FX2240/42/43 types, $2 \times$ HV TO- 3 power transis, $4 \times$ 400 v 3 amp diodes, $8 \times$ BC107, $2 \times$ BFY52 (types may vary) $2 x$ Thyristors inc 4 amp type, $3 \times 20 \mathrm{~mm}$ panel fuse holders, elec conds, res, swt \& zener diodes etc all in screened case size $9 \times 3 \frac{1}{2} \times 4^{\prime \prime}$ with circ £4.50 or 2 for $£ 8$.

RECORDING TAPE $\frac{1}{4}{ }^{\prime \prime}$ by Ampex 3600 ft on $10 \frac{1}{2}{ }^{\prime \prime}$ spools new $£ 7.50$.
RECEIVER UNIT small high performance Rx uses 7 min valves covers 2,5 to $20 \mathrm{Mc} / \mathrm{s}$ in 3 bands as RF stage, BFO, Volt Stab. with O/P for HR or Crystal phones direct feq cal with gearded drive size $5 \times 3 \frac{3}{4} \times 3 \frac{1^{\prime \prime}}{}$ these req ext supplies of 180 v DC HT $40 \mathrm{Ma} \& 6.3 \mathrm{v}$ AC 1 amp supplied tested with circ \& notes no ext case $£ 25$.

TRANSMITTER ASS $2 / 8 \mathrm{Mc} / \mathrm{s}$ low power contains 500Ua meter, tuning cond, coils, swts, terminals etc complete in case with circ less valves £5.50.
MAINS TRANS 200/250v Pria Sec 340-250-0-250-340v at 210Ma LTs 6.3 v at 5 amps twice $\& 5 \mathrm{vCt}$ at 5 amps size inc term $5 \frac{1}{4} \times 4 \frac{3}{4} \times 6^{\prime \prime}$ these will do 700 v DC at 250 M a with no LT load new boxed $£ 9.50$.
RECEIVER UNIT small battery operated covers 2 to $8 \mathrm{Mc} / \mathrm{s}$ in two band 4 valve superhet plus BFO in case direct freq cal O/P for low or high res phones with circ reqs 135 v HT \& 1.5 v DC LT $£ 13.50$.
AUDIO TEST SET CT373 bench test set comprises AF Osc 17C/S to 170 Kc, AF VTVM \& Distortion meter new cond further spec on request £65.
CRYSTAL UNIT dual $1 \mathrm{Mc} / \mathrm{s}$ \& 100 Kc with suggested circ $£ 2.80$
STANDARD CELLS by Muirhead 1.01859 volts tested $£ 5.75$ H.F. RX R4187 \& CONTROL BOX crystal controlled 24 chan Rx covers 2.8 to $18 \mathrm{Mc} / \mathrm{s}$ intended for remote control dual conversion Rx with 2 RF stages, BFO. ML etc 15 miniature valves reqs ext supplies of $19 \& 24 \mathrm{v}$ DC supplied with circs notes \& suggested mods $£ 25$.
TAPE RECORDERS ex American services for $115 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ supply $19^{\prime \prime}$ rack mounting uses $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ tape as 3 heads, 3 motors with servo controlled capstan drive speed $3 \frac{3}{4}$ " takes $7 \frac{1}{2}{ }^{\prime \prime}$ spools, level meter, all controls on front panel weight about 30 Kg valve amps 8 or 600 ohm $0 / \mathrm{P} 600$ ohm I/P $£ 36$. HEAVY DUTY SLIDE RESISTORS 1 ohm $12 \mathrm{amps} £ 5.75$. METERS $2^{\prime \prime}$ dia 0 to 40 amps DC with shunt $£ 3$.
AUDIBLE WARNING UNIT small warning unit for use on 12 v DC size $1 \frac{1}{2}{ }^{\prime \prime}$ dia about $8000 \mathrm{c} / \mathrm{s}$ new $£ 1$ ea or 2 for $£ 1.70$.
HELIPOT DIALS two types 10tr to fit $3 / 8$ th bush $\frac{1}{4}{ }^{\prime \prime}$ shaft $£ 1.50$ also 15 tr type with lock by Beckman $£ 2.50$ Helipots 100 K \& $30 \mathrm{~K} £ 1$ ea or 50p ea if ordered with Dials.
METERS panel mounting type all moving coil 2 \& $3^{\prime \prime}$ types 4 different for £4.
IND UNIT 100 special test set contains meter 5-0-5 Ua with linear scale $3^{\prime \prime}$ dia in deluxe carrying case size $10 \times 8 \times 7 \frac{1}{2}{ }^{\prime \prime}$ with terminals etc $£ 8.50$.

BLOWER UNITS heavy duty single ended outlet $2 \frac{1}{2} \times 3 \frac{1}{2}{ }^{\prime \prime}$ for 240 v supply req ext cond new $£ 11.50$.

MAINS TRANS general purpose type 240 v pria sec tapped 0,12 , $15,20,24 \& 30 \mathrm{v}$ at $1 \mathrm{amp} £ 3.50$ or 2 amp type $£ 4.60$. Miniature types $9+9$ or $15+15$ or $20+20 \mathrm{v}$ all 3 Va per winding $£ 2.40$ ea all new.

FANS EXTRACTOR $230 \mathrm{v} 6^{\prime \prime}$ dia mount flange $7 \times 8^{\prime \prime}$ new ex Adm £7.50.
ARMY RECTIFIER UNITS $200 / 250 \mathrm{v} 1 / \mathrm{P}$ gives O / Ps of 12 v DC at 3 amps twice complete in metal case okay for battery charger $£ 13$.
TRANSISTOR INVERTORS $12 v \mathrm{DC} \mathrm{I} / \mathrm{P} \mathrm{O} / \mathrm{P} 180 \mathrm{v}$ at 40 Ma or 425 v at 120 Ma DC also 6.3 v DC 2.5 amps in case size $5 \times 4 \times 3^{\prime \prime}$ tested with circ £10.50

Above prices include VAT \& Carriage Goods ex equip unless stated new.
S.A.E. for enquiry or List 24.
A. H.SUPPLIES

122 HANDSWORTH RD, SHEFFIELD S9 4AE Phone 444278 (0742)

LATEST MODEL 830S-27B
Displays hours, minutes. seconds. date AM/PM or Hrs. mins, secs Alpha day date AM/PM with automatic $28 \cdot 30-31$ day calendar, 4 year battery. $1 / 10$ th sec chronograph to 12 his with net, lap and Ist and 2 nd place times 24 hour alarm, stainless steel encased mineral glass, water resistant to 66 ft , optional hourly chime facility. Illustrated.

ONLY £26.95

810S-33B as above with 5 year batery. plated case, watee esistant to 66 ft . $1 / 100$ th second chronograph 12 ot 24 hour display 24 hout alarm with chime facility
£26.95
81CS-33B as sbove two modets mith all stainess steel case Watet resistant to 100 ft , mineral glass. accuracy ± 10 seconds pet manth
oniy £33.95

OTHER MODELS FROM THE

CASIO RANGE
ate and day AM/PM display, three year battery. Illustrated.
F200 similat to F8C with month and date display. Stopwatch, $1 / 100$ th second nel and lap times. 1st. 2nd places only $£ 14.95$ 950S32B hours. mins, secs, chrono $£ 21.95$ 950S31B hours. mins, secs, chrono $£ 21.95$ 95 CS 318 hours, mins, secs, chrono $£ 28.95$

ALL OTHER CASIO WATCHES P.O.A.
SEIKO WATCHES CURRENT MODELS minimum 25\% discount

TERMS OF BUSINESS: please note all Casio products price in cludes VAT, P\&P and insurance. Please send cheque/P. 0 . made payable, B. Bamber Electronics. C.O.D. by phoning (0353) 860185 Callers welcome Tues-Sat 9 am- 5 pm.

CASIO POCKET AND CLOCK CALCULATORS

AQ2000 calculator with clock in hours, minutes, seconds, stopwatch. calander alarm, also countdown alarm. 1 year battery life. $£ 23.95$ MELOOY 80 calculator with clock. Hours, minutes, seconds, calandet, stopwatch. alarm buzzer and musical alarm. I year battery lite. $\mathbf{f 2 2 . 9 5}$

CO82 executive desk calculator, clock with multi function alarm. Battery life I year continuous. 18.95

FX80 scientific 39 tunctions 8 digit 4000 hour battery life. $£ 14.95$
FX68 scientitic card 39 functions with 500 hours battery life. $£ 18.95$
FX2600 ultra slim scientific $6+2$ LCD 43 functions, latest model. nonvolatile memory

EX3200 ultra slim scientific 10 digit 43 functions. latest model. nonvolatile memory. f20.95
FX310 ultra slim scientitic 6+2 LCO 50 functions, latest model f 16.95

FX510 ultra slim scientific 10 digit 50 functions. latest model. $£ 18.95$

CASIO SCIENTIFIC PROGRAMMABLES

FX501P Worlds first LCD pocket sized complete programmables. Uses algebraic computer language, has 128 steps with 11 memories. Optional FA1 program adaptor available. Permits programs to be recorded on standard tape cassette recorder and stored tor te-entry when required FA1 adaptor also contains a music switch which converts calculator into musical synthesizer. Keys 1.8 contain pre-programming for a full musical octave. Calculator has automatic power off after 14 minutes non-use With the program stored in 11 non-volatile registers. Complete with wallet.
FX502P as above with 256 steps and 22 memories

PRICES	FX501P	$\mathbf{£ 5 2 . 9 5}$
FX502P	$\mathbf{£ 7 2 . 9 5}$	
	FA1 Adaptor	$£ 18.95$

BUMPER 1980 CATALOGUE

A selection of items below from our 1980 catalogue. The products we stock are by
EAGLE, WELLER, DRAPER, SPIRALUX, KNIPEX, SERVISOL, BARNARD'S \& BABANI, NEWNES, JAYBEAM, VERO AND MANY OTHERS
SEND $\mathbf{1 1 . 3 5}$ and you will receive our catalogue plus five bi-monthly shortiorm catalogues to keep you up to date with prices and special offers. A FREE PACK OF BLOB BOARD COMES WITH THIS MONTHS ISSUE.
EAGLE MA780T electric fully automatic 6 section retractatile car aetial with built-in voltage sensor. Remote dive system makes fitting easier. Aerial length $1,000 \mathrm{~mm}$, below wing 200 mm , lead lenyit 9.000 mm , flexible drive link 700 mm
f 16.95 + VAT
EAGLE DD7 paging microphone, impedance 600 ohm or 50 Kohms. sensitivity 2.25 mV at 50 Kohms. Frequency response $300-9000 \mathrm{H}$, Desk or wall mounted
Desk will EAGLE MULTMMETER EM50 50.000 OPV DC volts 0.1200 volts AC volts 0.1200 volts. DC current $0-6 \mathrm{~A}$, resistance 0.10 meg ohms £19.95 + VAT
DRAPER SUPER CHROME $\frac{1}{6}^{\prime \prime}$ sq drive socket sets. 38 piece 9A.F hexagon, 3 A.F. bi-sq sockets, 11 mm hexagon sockets. 9 B.A. hexagon sockets and 6 accessories $\quad £ 12.75$ + VAT SPIRALUX metric nut spinner sets. Contains 8 nut spinners $4.4 .5,5$, 5.5, $6,7,8,9,10 \mathrm{~mm}$. Packeted in plastic wallet
£ 7.35 + VAT
WELLER TCP3 irons. 24 volt series, 3 wire powet units. For application requiting earthed tip. Also PU3D power units

TCP3 $£ 13.84$ + VAT WELLER INSTANT HEAT GUNS model no 8100D
WELLER CORDLESS model no WC100
13.21 + VAT SUPA servisol switch cleanet
25.47 + VAT

MARYPLASS storage $\mathbf{£ 0 . 7 2}+$ VAT $1 \times 600.2 \times 2 \mathrm{DI}, 5 \times 10$) interlocking storage boxes

Per Pack $\mathbf{£ 4 . 4 0}+$ VAT
JAYBEAM 'Stereobeam' VHF/FM antennas model SBM2 folded dipole and reflector with universal mast clamp. Full range ex stockf8.00 + VAT

TERMS OF BUSINESS: CHEQUE OR P.O. WITH ORDER. REMEMBER PIEASE ADD TERMS OF BUSINESS: CHEQUE OR P.O. WITH ORDER. REMEMBER PLEASE ADD
$15 \times V$ VAT FOR ABOVGOODS
CARRIAGE: PACKING AND CARRIAGE CHARGES FOR DROERS UNOER 55.00

ORDERS OVER $£ 5.00$ BUT LESS THAN
ORDERS OF $£ 20.00$ CARRIAGE PAID.

B. BAMBER ELECTRONICS DEPT: P.W. 5 STATION ROAD LITLLEPORT CAMBS CB6 10E

P.C.B'S FOR PRACTICAL WIRELESS PROJECTS

Jan. 79.
Jan. 79.
Feb. 79. March 79
March 79. Soudlite Converter
March 79. Tone Burst Generator March 79. Wide Band Noise Source April 79. FM Multitester
May 79. Car Test Probe
May 79. Follow up to PW Gillingham May 79. PW Imp

Inline Crystal Calibrator
June 79. Jumbo Clock
June 79. Logical 0's +X 's
June 79. Trent
July 79. AAM/FM Frenquency
Readout
V.MOS Top Band

Transmitter
Sound Operated Switch Inexpensive A / F Voltmeter
August 79. Telephone Bell Repeater
August 79. Automatic Intercom
Sept. 79. Automatic Intercom Part 2
Sept. 79. Noise Blanker
Oct. 79. Burglar Alarms
Oct. 79. Burglar Alarms
Radio Control Receiver
Jan. 80. A.F. Speech Processor
Jan. 80 P.W. Parkhurst Burglar Alarm Jan. 80 Wide band R.F. Pre Amp Jan. 80 Radio Control Encoder

FULL RANGE OFR.S. COMPONENTS AVAILABLE
Send P.W.JUMBO CLOCKKIT $£ 31.00$ ALL PRICES INCLUDE VAT
4, Wood Street, Cheadle, Cheshire S̈́ks 1 AQ. Tel. 061-428-4497.
Please state type number and enclose cheque or postal order.

NEW FOR 1980 MAGNUM100

ANOTHER DISCO WINNERFROM THE SPECIALISTS

 RSC PROUDLY PRESENT THE MAGNUM 100 FEATURES GALORE AT A PRICE YOU CAN AFFORD\author{

- Full 100 watts output
 - Mike Input with Separate Treble/ Bass - Full Headphone Monitor Facilities - Autofade - Master Volume
}
- 11" Turntables with Independent Illuminated Mains Switches - Twin Speaker Sockets - Slave and Sound to Light Outputs

Exclusive to R.S.C.

AS-1 FOLK ACOUSTIC GUITAR Just $£ 17.95$

(Carriage f.1)
OR 55 DEPOSIT \& 8 MONTHLY PAYMENTS OF £2 (TOTAL CREDIT PRICE £21)

Guarantee
Top Value at $\mathbf{8 9 9 . 9 5}$
or Deposit £20.00 and 12 Monthly
Payments at $£ 8.07$
(Total Credit £116.84)
Also available 15 watt Practice Amp FAL Super Minstrel $£ 39.95$

* Full 50 watts RMS * $12^{\prime \prime}$ Heavy Duty Fane Speaker
* Separate Treble,

Bass and Presence
Controls

* 3 Separate Inputs
\star Master Volume
Control
\star Full 12 Month

Combo Amplifier

MORE PEOPLE ARE DEMANDING TITAN SPEAKERS !!! MORE POWER
MORE RELIABILITY MORE VALUE FOR MONEY Titan Group Disco Speakers All Ratings RMS

Imp. 8-15 ohms Compare these prices with other makes T12/50R $12^{\prime \prime} 50$ Watts $£ 16.95$ Deposit $£ 4.95$ \& 8 Months at $£ 2.00$ (Total Credit $£ 20.95$) T12/100A $\mathbf{1 2}^{\prime \prime} 100$ Watts $£ 26.95$ Deposit $£ 6.95 \& 8$ Months at $£ 3.12$ (Total Credit $£ 31.91$) T15/70 $15^{\prime \prime} 70$ Watts $£ 24.95$ Deposit $£ 5.95 \& 8$ Months at $£ 3.00$ (Total Credit $£ 29.95$) T15/85 $15^{\prime \prime} 85$ Watts $£ 28.95$ Deposit $£ 7.95 \& 8$ Months at $£ 3.25$ (Total Credit $£ 31.95$) $\begin{array}{lll}\text { T15/100 } & 15^{\prime \prime} 100 \text { Watts } \underline{£ 35.95} & \text { Deposit } £ 8.95 \& 8 \text { Months at } £ 4.00 \text { (Total Credit } £ 40.95 \text {) } \\ \text { T18/100 } & 18^{\prime \prime} \mathbf{1 0 0} \text { Watts } £ 47.95 & \text { Deposit } £ 8.95 \text { \& } 8 \text { Months at } £ 5.80 \text { (Total Credit } £ 55.35 \text {) }\end{array}$ $\begin{array}{lll}\mathrm{T} 15 / 100 & 15^{\prime \prime} 100 \text { Watts } £ 35.95 & \text { Deposit } £ 8.95 \& 8 \text { Months at } £ 4.00 \text { (Total Credit } £ 40.95 \text {) } \\ \mathrm{T} 18 / 100 & 18^{\prime \prime} \mathbf{1 0 0} \text { Watts } \underline{£ 47.95} & \text { Deposit } £ 8.95 \text { \& } 8 \text { Months at } £ 5.80 \text { (Total Credit } £ 55.35 \text {) }\end{array}$

Sound Advice Nationwide AllBranches open alldaySaturday

BRADFORD 10 North Parade Tel 25349 (Closed Wed) BIRMINGHAM 30/31 Great Western Arcade Tel 021-236 1279 (Closed Wed) CARLISLE 8 English Street Tel 38744
(Closed Thurs) coventry 17 Shelton Square, The Precinct Tel 25983 (Closed Thurs) DERBY 97 St Peter's Street Tel 41361
(Closed Wed)
DEWSBURY 9/11 Kingsway
(Closed Tues)
DONCASTER 3 Queensgate, Waterdale Centre
(Closed Thurs)
EDINBURGH 101 Lothian Road Tel 2299501
(Closed Wed) GLASGOW Unit 13. Anderston Shopping Precinct Tel 041-2484158 (Closed Tues) HULL 7 Whitefriargate
(Closed Thurs)

LEICESTER 32 High Street Tel 56420
LONDON 238 Edgeware Road W2
Tel 723-1629
(Closed We

* LIVERPOOL St John's Precinct
(Temp. closed due to fire, all enquiries to
Leeds or Manchester)
* MANCHESTER 60A Oldham Street

Tel 236-2778
(Closed Wed)
MIDDLESBROUGH 103 Linthorpe Road
Tel 247096 (Closed Wed)

* NEWCASTLE UPON TYNE 59 Grainger St

Tel 21469 (Closed Wed)
NOTTINGHAM 19/19A Market Stree:
Tel 48068 (Closed Thurs)
SHEFFIELD 13 Exchange Street (Castie Mkt Bids)
Tel 20716 (Closed Thurs)

* WOLVERHAMPTON 6 Wulfrun Way

Tel 26612 (Closed Thurs)

* MUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches
S.A.E. for FREE illustrated brochures. Please state main interest/s
DEPT. GC AUDIO HOUSE,
HENCONNER LANE, LEEDS 13 Tel: 0532577631

Barclaycard. Access \& Trustcard
Phone orders quoting card number accepted
MAIL ORDERS MUST NOT BE
SENT TO SHOPS
E \& OE prices correct at 20.12.79

UNBEATEN SIX BAND ANTENNA

THE JOYSTICK VFA

(Variable Freq.Antenna $0.5-30 \mathrm{MHz}$). SUPER RESULTS - EVEN FROM A BASEMENT!

(From a user's report)

* Only 7'6" long * 3 easily assembled sections * $0.5-30 \mathrm{MHz}$., no gaps * Matching Antenna Tuner * No harmonic resonances, highest efficiency power transfer from TX to ether. This ensures TVI and other spurious emissions are just not substantially present * Low angle radiation, operates as a ground plane on all bands, less skips, greater power deployment! * Gives your RX extra front end selectivity, reduces cross-mod and out of band blocking * Tailor your installation to space available. Install VFA on mast or chimney or in roof space with long or short feeder OR SIMPLY STAND IN THE SHACK * WOKFF used it in BASEMENT, excellent results (Reported World Radio, USA) * "If you are high enough the antenna will operate as well as the wellknown 3 -element beam with which we compared it. The tests were operational, not theoretical. We find that if we can hear them we can work them!" (CQ Mag, USA) * In QRP contest scored unbeaten IM Miles per watt.

JOYSTICK ANTENNA SYSTEMS SYSTEM "A"
 is0w.p.e.p. or for the swL $£ 48.55$ SYSTEM "J"
 500 w.p.e.p. Improved "Q" receive.
 $£ 54.00$

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION

All cables, matching cables Communications Headphones, JOY STICK System "A" Ant.

FRG7 Rx.
FRG7000 Rx.
(And all accessories) ($R \times$.only $(210.00$)
$£ 240.80$
${ }_{(1)}^{\text {(AAd all }}$ (acesorise)
$£ 409.00$ ON THE AIR IN SECONDS! SAVE (21.45

YAESU PRODUCTS

Now available on a larger scale via us. As an INTRODUCTORY OFFER FOR LIMITED PERIOD ONLY - the following REDUCTIONS., incl. carr., VAT., deliv. Securicor our risk. SAVE ADDITIONAL $\subset 13.50$ if you order a $j 0 Y S T I C K$ " " J " same time.

FT.901DM	6920.00	FT-207R	6194.25
FT.901D	6816.50	FTIOIS	C442.90
FT.901DE	c805.00	FT. 7	6297.70
FT.1012	6560.65	FT-227R	C238.90
FT-101ZD	6644.75	FR.101D	E588.65
FT-107M	6740.00	FT.7B	(420.45
FT-107M	6837.55	FT. 301	6577,45
	(Inci Mem.)	FL-101	(487.75
FT-225R	6523.25	FT.200B	6393.55
FT-225R	6575.00	FT.620B	C308.34

BARCLAYCARD

VISA

JUST TELEPHONE YOUR CARD NUMBER

084362535 (Ext. 5) After office hours 084362839 or send 10 p stamp for free literature. Prices correct as at press. NOTE our prices are always INCLUSIVE. Prompt
service too, goods usually despatched WITHIN 48 service to
HOURS!

5, Partridge House,
Prospect Road, Broadstairs, Kent, CTIO ILD (Callers by appointment)

PROGRESSIVE RADIO

SEMICONDUCTORS. 2 N5062 (100V 800 mA) SCR 18p. BX504 opto isolator 25p. CA3130 95p. TBA800 50p. C106D $400 \mathrm{~V} 2 \cdot 5 \mathrm{~A}$ SCA Cropped Heatsink 20p. TDA 115125 p .
SWITCHES. Min. toggles, SPST $8 \times 5 \times 7 \mathrm{~mm} \mathbf{5 2 p}$. DPDT $8 \times 7 \times 7 \mathrm{~mm}$ 62p. DPDT c/off SWITCHES. Min. Hoggles, SPST $8 \times 5 \times 7 \mathrm{~mm}$ 52p. DPDT $8 \times 7 \times 7 \mathrm{~mm}$ 62p. DPDT Coft
$12 \times 11 \times 9 \mathrm{~mm} 77 \mathrm{p}$. HEAVY DUTY-DPDT $240 V A C$ 10 Amp 35p. PUSH TYPE, push on $16 \times 6 \mathrm{~mm}$ $12 \times 11 \times 9 \mathrm{~mm} 77 \mathrm{p}$. HEAVY DUTY-DPDT 240 VAC 10 Amp
15 p, push to break version 17 p. 16 pin D.I.L. switch 40p.
tDISPLAYS. 0.5^{*} Led displays, com, cath. green 95 p. 4 digit LED clock displays with message
 icentre, $0.6^{\prime \prime}$ figures, com. cath,
I cath. with data sheet $£ 1.45$.
Icath. with data sheet $£ 1.45$.
LIGHT DIMMER. Wall mounting 250VAC 800 watts max., has built in photo cell for automatic switch on when dark $\mathbf{E 4 . 5 0}$ p.

| SECORDING TAPE, Low noise Mylar, supolied spooled unboxed, $7^{\prime \prime} 1200^{\prime} \mathbf{E 1 . 0 0}, \mathbf{7}^{\prime \prime} 1800$ |
| :--- | $\mathbf{£ 1 . 4 5 p}, 10)^{\prime \prime} 3.600^{\prime} \mathbf{£ 5 . 0 0}$. BLANK CASSETTES C60 10 for $\mathbf{£ 2 . 7 5}$ p, C90 10 for $\mathbf{£ 3 . 8 5 p}$. £1.45p, $10{ }^{\prime} 3,600$

EDGE CONNECTOR 48 way 0.1 , double contact type 700 each.
 ELECTRONIC IGNITMN CAPACICh
size nicads. $1.2 \mathrm{v} 500 \mathrm{MaH} \mathrm{£1.10} \mathrm{peach} \mathrm{or} \mathrm{4} \mathrm{for} \mathrm{£3.75} \mathrm{}. \mathbf{\text { TOOLS. } 5 \text { . }}$ piece precision screwdriver sets. individual handles only $\mathbf{£ 1 . 0 5}$ set
JUMPER TEST LEAD SETS. 10 pairs of leads with insulated crocs each end 90 p.
JUMPER 4OKHZ TRANSDUCERS, RX/TX E3.50 pair.
MELEPHONE PICK UP COIL suction type with lead and plug 62p.
MINIATURE SOLID STATE BUZZERS. $33 \times 17 \times 15 \mathrm{~mm}$, output at 3 feet 70 db ., 15 ma drain, 4 type, 6-9-12 or 24 volts 80p. LOUD 12 volt buzzer 63p.
Cash with order please, official orders welcome from schools etc., please add 30p postage and packing. VAT inc/usive. SAE for latest illustrated stock list.

31, CHEAPSIDE, LIVERPOOL L2 2DY

 easy to understand stages.

Learn the technology of the future today in your own home.

ELECTRONICS
Build your own oscilliscope.

Learn to draw and understand circuits.
Carry out over 40 experiments.

From watches to sophisticated instrumentation,
Digital Electronics adds scope to hobby or career.

No previous knowledge is necessary. - Just clip the coupon for a brochure

It is exactly one year since we launched the WINTON on an unsuspecting public, and in that year we seem to have caused something of a revolution in the attitudes of HI-FI buffs not only in the U.K. but World Wide.
Our flabbers have become quite ghasted at the response we have achieved from an amazing number of countries, and most gratifying of all is the number of very complimentary letters we have received from people who have built the WINTON and have been so delighted with the results that they have felt compelled to put pen to paper to tell us of their delight.

Our advertising over the last 12 months has at times been a little flippant, but what the hell? The World is a serious enough place at the best of times without having gloom thrust at you from adverts as well. But in all seriousness any Manufacturer (if he is honest!) will admit that most people only correspond when they have something to moan about, and it is this accepted fact of Manufacturing life that makes us so pleased to receive your letters.
So! To all our many customers over the past year we say a sincere Thank You for helping the WINTON to become the runaway success it has, and to all of our prospective customers what the devil are you waiting for, another price rise? Send your order off NOW for the incomparable WINTON, and when you have built it we won't mind at all if you write to tell us how marvellous it is.

The Superlative WINTON is available for your convenience packed as follows:
Pack (A) All Capacitors and Fixed Value Resistors, (Inc. 7 Amp ripple Res. Caps.)
£21.93
Pack (B) Switch Bank, Switches, Potentiometers, Pre-Sets \& all Knobs $£ 15.93$
Pack (C) Printed Circuit Board (Tinned, Drilled, \& Overlay Printed) \& Pins
£8. 28
Pack (D) Hardware Pack, consisting of precision formed \& punched Chassis, Black Epoxy finish Heat Sinks, Teak Veneered Cabinet, all screws, wire, fuseholders, etc., and a super Brushed Silver Aluminium Fascia Panel. $£ 40.25$
Pack (E) All Semiconductors. (Including HITACHI POWER MOSFETS)
Pack (F) Special LOW HUM FIELD Toroidal Transformer $£ \mathbf{£ 2 3 . 5 5}$ COMPLETE KIT, of all parts necessary to build the P.W. WINTON
£133.50
Order with complete confidence (C.W.O. only please) from:

T. \& T. ELECTRONICS

Green Hayes, Surlingham Lane, Rockland St. Mary, Norwich, NR14 7HH. Telephone 05088632
ALL PRICES INCLUSIVE OF V.A.T. \& CARRIAGE. Callers by appointment only.

A HIGH PERFORMANCE SPEAKER AT A
REMARKABLY
LOW PRICE

FULL CLASSIC RANGE
Classic 45 12" 45 Watts Classic $5512^{\prime \prime} 55$ Watts Classic $8012^{\prime \prime} 80$ Watts Classic $8515^{\prime \prime} 85$ Watts Classic $15015^{\prime \prime} 150$ Watts Classic $12518^{\prime \prime} 125$ Watts Classic 175 18" 175 Watts

Impedances 8 ohms or 15 ohms as required.

LOOK AT THESE TYPICAL PERFORMANCE FIGURES and it's a BUDGET SPEAKER
Total distortion at rated output 3\% Sensitivity 98d.b. Frequency range $50-5000 \mathrm{~Hz}$

Also Available HIGH FREQUENCY HORN UNITS SPECIALIST RANGE SPEAKERS CRESCENDO 'E' SERIES SPEAKERS

Available from YOUR LOCAL DEALER or if in difficulty post free direct from

BRITAINS LARGEST PRODUCERS OF HIGH POWER CHASSIS SPEAKERS
FANE ACOUSTICS LTD, HICK LANE, BATLEY, YORKS. Telephone: (0924) 476431 Telex: 556498 FANE G

Great 1980
 \section*{BI-KITS AUDIO MODULES AT}
 \section*{SPECIAL OFFER! COMPONENT PAKS}

 PRE-INCREASE PRICES!
AMPLIFIERS

$\begin{array}{ll}\text { AL } 10 & 3 \text { watt Audio Amplifier Module 22-32v supply } \\ \text { AL20 } & 5 \text { watt Audio Amplifier Module 22-32v supply }\end{array}$ $\begin{array}{lll}\text { AL20 } & 5 \text { watt Audio Amplifier Module 22-32v supply } \\ \text { AL30A } & 7-10 \text { watt Audio Amplifier Module 22-32v }\end{array}$ AL60 $\quad \begin{aligned} & \text { supply } \\ & 15.25\end{aligned}$ supply
15.25
supply pply

ALL REDUCED!

 CAPACITOR PAKS16201 18 electrolytics 4.7 uf -10uf
1620318 electrolytics 100 uf-680uf

1616124 ceramic caps $100 \mathrm{pf}-390$ pt
$16162 \quad 24$ ceramic caps $\quad 470 \mathrm{pf}-3300$ p
ALL 4 at SPECIAL PRICE Of E1

RESISTOR PAKS

$16213 \quad 60 \frac{\mathrm{t} w}{} \mathbf{~ r e s i s t o r s ~} \quad 100 \mathrm{ohm}-820 \mathrm{ohm}$
$16214 \quad 60$ wresistors $\quad 1 \mathrm{~K}-8.2 \mathrm{~K}$

ALL 4 at SPECIAL PRICE of £1.80
$\begin{array}{lll}16217 & 40 & \text { fw resistors } \\ 16218 & 40 \text { fw resistors } & 1000 h m-820.2 \mathrm{~K}\end{array}$
1621940 w resistors $\quad 1 \mathrm{~K}-8.2 \mathrm{~K}$
$\begin{array}{lll}16220 & 40 \\ 10 & \mathrm{w} \text { resistors } & 10 \mathrm{~K}-82 \mathrm{~K} \\ \text { resistors } & 100 \mathrm{~K}-820 \mathrm{~K}\end{array}$

IC SOCKET PAKS

SJ36	14	8 p
SJ37	12	14 pin
SJ38	11	16 pin
SJ39	8	18 pin
SJ40	7	20 pin
SJ4 1	6	22 pin
SJ42	5	24 pin
SJ43	4	28 pin
SJ44	3	
ALL at ONLY $£ 1.00$ EACH		

F.E.T.'s 2N3819
2N5458
2N4220 $£ 0.17$ 10.18
60.28 £0.28
$\mathbf{£ 0 . 2 5}$
(PROGRAMMABLE UNIJUNCTION) 2N6027 £0.25
£0.25

VOLTAGE REGULATORS

Positive	Case	220	Negative
UA7805	¢0.65	UA7905	¢0.70
UA7812	¢0.65	UA7912	¢0.70
UA7815	¢0.65	UA7915	¢0.70
UA7818	¢0.65	UA7918	¢0.70
UA7824	¢0.65	UA7924	¢0.70
UA723 14 pin DIL	f0.35		
LM309K T03	£1.10		

OPTOELECTRONICS

1510	707 LED	Display	Price each	¢0.70
1511	747 LED	Display	Price each	£1.50
1512	727 LED	Display	Price each (dual)	¢1.55
L.E.D.'s				
				Price each
SJ78	. 125 LED	Diffused	RED	¢0.08
SJ79	. 2 LED	Diffused	RED	¢0.08
S120	.125LED	Bright	RED	¢0.09
S121	2 LED	Bright	RED	c0.09
1502	.125LED	Diffused	green	c0.11
1505	. 2 LED	Diftused	GREEN	c0.11
1503	. 125 LED	Ditfused	Yellow	co. 11
1506	2 LED	Diffused	Yellow	¢0.11
SJ80	. 2 LED	Bright	Yellow	¢0.14
SJ82	2 LED	Clear illum	nating RED	¢0.10
SJ83	. 125 LED	Clear illum	nating RED	¢0.10
2nd QUALITY LED PAKS				
1507	10 asso	cod	ours \& size	$\underline{6.65}$
S122	10.125	RE		¢0.50
S123	10 2	RE		¢0.50

LED CLIPS
1508/.125 . 125 5 for $£ 0.10$
$\mathbf{5}$ for $£ 0.12$
$1508 / .2$. 2
Intra RED emitter-Fairchild FP f0.25

SJ81	I	Infra RED emitter - Fairchild FP100	$\mathbf{£ 0 . 2 5}$
SJ98	5	Photo Detector MEL11. Data	$\mathbf{£ 1 . 0 0}$
ORP12		NORP12 Cad Cell	$\mathbf{£ 0 . 4 5}$
SJ99	4	ITT 5870 ST Nixie Tubes	$\mathbf{£ 1 . 0 0}$

SJ29 Texas NPN silicon transistors 2 S503 $=$ 8C108 T0-18 metal can-perfect $\&$ coded
50 off $£ 2.50-100$ off $£ 4.00$

SPECIAL OFFER

SJ100 12v Electric Drill 7.500 RPM for all your PCB drilling
SUPER DUPER COMPONENT BOX
Min. 3 lbs in weight consisting of a fantastic assortment of Electronic Comp
Board-Semiconductors, wire, hardware, etc., etc., etc.
-This is a large box and is sent separate to your order*
CALCULATOR CHIP
GOM2-C500 24 pin MOS
IC INSERTION/EXTRACTION TOOL
$\begin{array}{lll}\text { AL80 } & 35 \text { watt Audio Amplifier Module } 40-60 \mathrm{v} \text { supply } & £ 8.44 \\ \text { AL120 } & 50 \text { watt Audio Amplifier Module } 50-70 \mathrm{v} \text { supply } & £ 13.74\end{array}$

STEREO PRE-AMPLIFIERS

PA12 Supply voltage 22-32v
Pait:AL10/AL20/AL30
PA100 Supply voltage 24-36vinputs:- Tape. Tuner
$\begin{array}{ll}\text { PS200 } & \begin{array}{l}\text { Sagply voltage } 35-70 v i n p u t s:-~ T a p e . ~ T u n e r . ~\end{array} \\ & \text { Mag PU.,Suit:AL80/AL.120/AL250 }\end{array}$

MONO PRE-AMPLIFIERS

$\begin{array}{ll}\text { MM } 100 & \begin{array}{l}\text { Supply voitage } 40-65 \text { inputs: Mag. P.U } \\ \text { Microphone Max output } 500 \mathrm{mv}\end{array} \\ & \text { Mat }\end{array}$ Mictophones Max output 500 mV (IES $\begin{array}{ll}\text { PS12 } & \text { 24v Supply suit } 2 \cdot A L 10,2 \cdot A L 20, \\ \text { 2.AL30\& \& PA } 12 / S, 450\end{array}$ SPM80 $\quad 33 v$ Stabilised supply-suit 2 AL60. SPM120/45 45v Stabilised supply-suit 2 - AL60, SPM 120/55 55 v Stabilised supply-suit 2 - AL80 SPM 120/65 65v Stabilised supply-suit 2 AL120. SG30 $\quad 15-0.15$ Stabilised power supply for

MISCELLANEOUS

 $\begin{array}{ll}\text { MPA30 } & \text { Stereo Magnetic Cartridge Pre-Amplifier- } \\ \text { input } 3.5 \mathrm{mv} \text { Output } 100 \mathrm{mv} & \\ & \text { E2.98 }\end{array}$ $\begin{array}{ll}\text { STEREO30 } & \begin{array}{l}\text { Varicap tuned } \\ \text { Complete } 7 \text { watt per Channel Stereo }\end{array} \\ & \text { Amplifier } 5 \text { ward }-1 n c l u d e s ~\end{array}$ Amplifier Board - includes amps. preVPS30 complete with sliders and knobs
$\begin{array}{ll}\text { PS250 } & 2 \text {-30v0.2 amps } \\ \text { Consists }-1 \text { capacitor \& } 4 \text { diodes for }\end{array}$
$£ 23.00$ construcring unstabilised power supply to

TRANSFORMERS

2034	1.7 amp 35v suit SPM80	£5.40	C12
2035	2 amp 55 v	£6.35	£1.4
2036	750 mA 17 v suit PS 12	£3.20	
2040	$1.5 \mathrm{amp} \mathrm{O-45v-55v} \mathrm{suit} \mathrm{SPM} \mathrm{120/45}$.		
	SPMI120/55v		
2041	2 amp 0.55v-65v suit SPM 120/55		
	SPM120.65v	¢6.80	¢ 1.
2050	1 amp 0-20v suit Stereo 30	£3.25	¢0.7
1725	150mA 15-0-15v suit SG30	£1.77	

ACCESSORIES

139	Teak Cabinet suit Stereo 30.320-235	¢
140	Teak Cabinet suit STA $15425 \cdot 290 \cdot 95 \mathrm{~mm}$	¢7
FP100	Front Panelfor PA 100 \& PA200	¢1
BP100	Back Panel for PA 100 \& PA200	£1
GE 100FP	Front Panel for one GE 100MKII	
2240	Kit of parts including Teak Cabinet, chassis	

sockets, knobs to build 15 watt stereo
$£ 19.95$

DIODES					
Type	Price	Type	Price	Type	Price
AA119	¢0.06	OA7O	¢0.06	in4004	¢0.06
BA100	¢0.08	OA79	¢0.08	in4005	¢0.07
BA148	¢0.13	OAB1	¢0.08	in4006	£0.08
BA173	£0.13	OA90	£0.08	1N4007	¢0.09
8×13	¢0.05	OA91	¢0.08	IN5400	¢0.12
BAX16	f.0.06	OA95	¢0.08	in5401	¢0.13
OA200	¢0.06	iN34	¢0.06	IN5402	¢0
OA202	¢0.07	IN60	£0.07	in5404	£0.1
BY 100	£0.18	IN4148	£0.05	IN5406	¢0.1
BY126	¢0.12	in4001	£0.04	IN5407	¢0.23
BY127	£0.14	in4002	£0.04	IN5408	¢0.28
OA47	£0.06	in4003	£0.05	1544	¢0.03
LINEAR					
Type		Type			Pric
CA270	¢0.95	SL414A	¢1.75	TBA810	¢0.85
CA3089	£1.70	SN76013N	£1.65	tBAB20	¢0.65
CA3090	£3.00	SN76023N	£1.60	uA703	¢0. 20
LM380	¢0.80	SN76115	£1.60	uA709C	¢0.25
LM381	£1.35	TAA550	¢0.30	UA710	¢0.25
LM3900	¢0.50	TAA621A	£1.80	UA711	c0.28
MC1310	¢0.85	TBA120B	¢0.60	7419	¢0.16
NE555	$\mathrm{f}^{\text {¢0. }} 18$	T8A641A	£1.10	TAA661	f1.25
NE556	¢0.55	tbaboo	¢0.75	TAA6618	£1.2

$£ 3.74$ $£ 11.30$ £1.50

O/NO

200 Resistors mixed values
200 Carbon resistors $\frac{1}{4}-\frac{1}{2}$ watt preformed $60 \frac{1}{\frac{1}{2}}$ watt miniature resistors mixed values 50 1-2 watt resistors mixed pot valued
50 Precision resistors 1.2° tol. mixed
$305-10$ watt wirewound resistors mixe
亚
50 Polyester/polystyrene capacitors mixed 50 C280 type capacitors mixed
40 High Quality electrolytics 100.470 mt 20 Electrolytics transistor types mixed 20 Tantalum bead capacitors mixed
2 large croc clips 25 A rated
Small pocket size 'Mains Neon Tester Siemens 220 v AC Relay DPDT contact 1Oamp rating - housed in plastic case Black PVC tape ($\$$) 15 mm .25 m -strong
tape for electrical \& household use 0.35 per roll 1.50
S. 125100 Silicon NPN transistors all perfect \& coded mixed types with data \& equivalent sheel 50 Assorted pieces of SCR's diodes \& rectifiers incl. stud types all perfect - no rejects fully coded - data incl.
20 TTL 74 series gates - assorted $7401-74601.00$ PC Board - mixed bundle PCB fibreglass/ paper single \& double sided - super value! 00 sq . ins. (approx) copper clad paper board 00 sq . ins. (approx) copper clad fibre glass 8 dual gang carbon pots $\log \&$ lin mixed 10 assorted slider knobs - chrome/black
1 Switchbank 5 way incl. silver knobs pak of vero board approx 50 sq . ins mixed assorted fall-out integrated circuits including logic 74 series. linear-zudio and D.T.L. many coded devices but some unmarked - you to identify
20 slider pots mixed values \& sizes
$6100 \mathrm{~K} \operatorname{lin} 40 \mathrm{~mm}$ slider pots
$6100 \mathrm{~K} \log 40 \mathrm{~mm}$ slider pots
$6100 \mathrm{~K} \log 40 \mathrm{~mm}$ slider po
61 K lin 40 mm slider pots
65 K lin 40 mm slider pots
45 K log 60 mm single
SJ6
SJ6
SJ6
15 mm chrome knobs standard push fit Instrument knob - black winged (29
Instrument knob - black/silver aluminium
$2 . p$
0.50
0.50
0.50
0.50
0.50
rolls

$\begin{array}{ll}\text { SJ66 } & \text { 100K lin } \\ \text { SJ67 } & \text { Chrome slider knobs to fit }\end{array}$

code C1395 6 TO64 SCRs 5 Amp assorted $50 \mathrm{v}-400 \mathrm{y}$. all coded
8 way ribbon cable - colour coded individually
FM coax cable - plain copper conduction cellu polythene insulated and plain copper braided PVC sheath - impedance 75 ohms $\mathbf{0 . 1 0} \mathrm{m}$ Board containing 2 , 5 pin DIN sock $02-2$ pin DIN loudspeaker sockets
5 pin DIN 180° chassis/normal sock DPDT switch
5 Germ. OCP7I type photo transistors O BD 131 NPN transistors low Hfe rejects 6 PNP Darlington Power Transistors TO-126 5 PNP TO-3 germ. power transistors at VLTS $10-20 \mathrm{VCB}$
20 Asst. heat sinks TO1/5/18/92
2 Post Office relays
 20 Mixed values 400 mW zener diodes $11-33 \mathrm{v}$ 10 Mixed values 1 W zener diodes $3-10 \mathrm{v}$ 10 Mixed values IW zener diodes $11-33 \mathrm{v}$
8 Silicon Bridge Rectifiers up to 4 Amp

200 v . Data
Battery holder to take 6. HP7's 5 assorted ferrite rods
50 meters asst colours single strand wire
10 Reed switches.
3 Micro switches
15 assorted pots
1 pack assorted hardware
5 Main slider switches assorted 1 pack assorted tag strips
assorted control knobs

$\underset{4}{4}$

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting

Qualify for a New Career

Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
" A " levels
Accountancy Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

```
IES
To: International Correspondence Schools
SINCE 1890
```

Engineering Purchasing
Farming Sales Heating Industrial Storekeeping

Management Mechanical

SPECIAL 5 NPN DARLINGTON PAIRS in 14 Pin Dil Packages HFE 5000500 mA 10 volt with connections at 50p each.
SEMI-AIRSPACED DAU TRIMMERS 2 To 9pf, 7 To 35pf, 6 To 45 pf , 8 To 125pf, 8 To 140pf. All at 15p each.
MIDGET 20pf AIRSPACED TRIMMERS at 15p each.
MINIATURE DIFFERENTIAL AIR SPACED TRIMMERS $10 \times 10 \mathrm{pf} \sim \mathbf{2 2 p}$
EDDYSTONE TRANSMITTING VARIABLE $30+30 \mathrm{pf}(60 \mathrm{pf})$ Wide Spaced = $\mathbf{£ 2 . 2 0}$.
COMMON ANODE 7 SEGMENT RED DISPLAY FND 507 with data - 70p.
VHF MINIATURE WIRE ENDED PIN DIODES For Transit-Receive Aerial Switching with circuits at 40p, 3 for $\mathbf{£ 1}$. UHF TYPE $\boldsymbol{\sim}$ 60p each.
SOLDER-IN FEED THRU'S $6.8 \mathrm{pf}, 300 \mathrm{pf}, 1000 \mathrm{pf}$ All 20p doz
3/16" COIL FORMERS with core at 6 for 25p.
VERNITRON FM $410.7 \mathbf{M H z}$ FILTERS 50p each. 3 for $£ 1$.
ERIE RED CAP .01uf 100v.w., DISC CERAMICS at 5p each,
QUAD COMPARATOR LM 339 with data ~ 50p.
12 WAY MINIATURE CERAMIC TAG STRIPS = $15 p$.
VHF MINIATURE R.F. CHOKES 3 UH, $5 \mathrm{UH}, 10 \mathrm{UH}, 22 \mathrm{UH}, 27 \mathrm{UH}, 60 \mathrm{UH}$, All 7p ea,
FX 1115 FERRITE BEADS at 15p doz. VHF TRANSISTOR 2N 918 = 25p.
VARIABLE CAPACITORS $5 \mathrm{pf}=\mathbf{7 5 p}, 10 \mathrm{pf}=\mathbf{7 5 p}, 50+50 \mathrm{pf}=\mathbf{~} 1,125+125 \mathrm{pf}=\mathbf{6 0 p}$, $100+200 \mathrm{pf}=60 \mathrm{p}, 200+200+20+20 \mathrm{pf}=60 \mathrm{p}, 250+250-20+20+20 \mathrm{pf} \sim 75 \mathrm{p}, 25+25+25 \mathrm{pf}$ $\therefore 75 \mathrm{p}$.
$\mathbf{8 0 0} \mathrm{MHz}$ STRIPLINE TRANSISTOR NPN BF 362 ~ $\mathbf{2 5}$ p, PNP BF 679 - 25p.
THYRISTORS 10 amp type. 100 PIV = 28p, 400 PIV = 55p, 800 PIV - 65p.
DUAL GATE MOS FETS LIKE $40673 \sim 33$ p, 4 for $£ 1.10$.
VHF FETS BF 256 C \& 4 for $\mathbf{7 5 p}$, E304 \& 4 for $£ 1$.
OP-TO ISOLATORS $1 \mathrm{~L}-74$ with data at 50 p each.
MULLARD POLYESTER CAPACITORS . $1 \mathrm{uf} 16 \mathrm{v} . \mathrm{w}$., at 20p doz
300 To 75 ohm BALUM TRANSFORMERS at 20p.
502 WATT ZENER DIODES assorted untested for 60 p.
50 BC 107-8-9 TRANSISTORS assorted untested for 60 p
PAPER CAPACITORS $10 u f 370$ V.A.C. $5 \frac{1^{\prime \prime}}{2^{\prime}} \times 2 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime}-£ 1.50$ each.
CRYSTAL FILTERS 10.7 MHz B.W. $\pm 7.5 \mathrm{KHz}$ \& $\mathbf{£ 5}$ each.
200 ASSORTED $\frac{1}{1}, \frac{1}{2}$ WATT RESISTORS for $75 p$.
50 DISC CERAMICS assorted for 60p.
10 AMP TOGGLE SWITCHES 2 Pole Make for 50 p .
CRYSTALS 10X TYPE $8010 \mathrm{KHz}, 7090 \mathrm{KHz}$ All 40 p each.
GUNN DIODES X BAND with data a $£ 1.65$, Type CYX1 1 A = $\mathbf{£ 3}$.
HIGH SPEED CMOS HEF 45188 F - 55 p, 5 for $£ 2$.
DIE CAST ALLOY BOXES $6^{\prime \prime} \times 3.3 / 16^{\prime \prime} \times 2^{\prime \prime}+\mathbf{£ 1 . 1 5}, 3$ for $\mathbf{£ 2 . 8 5}$.
ELECTRET MICROPHONE INSERTS with Fet Pre-Amp $\$ £ 1.85$
400 mW ZENER unmarked good. $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}$, 36 v . All at 10 for 40 p .
WIRE WOUND POTENTIOMETERS 2 Watt $2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K} 4$ watt All 30p.
CLOSE TOLERANCE CAPACITORS 1288pf, 1670pf, 5979pf, 19669 pf All 1% at 5 p each, CLOSE TOLERAN
ASSORTED PACKS OF CRYSTALS 10XAJ 30 for £1.20, FT 241A 20 for £1.20, FT 243 20 for $£ 1.50,10 \times$ Typo 25 for $£ 1.25$
SUB-MINIATURE LOUDSPEAKERS 8 ohm 1 $\frac{z^{\prime \prime}}{}$ Dia, \& 75p.
MAINS TRANSFORMERS 240 volt input. Type 1.24 volt Tapped at 14 volt 1 amp , $\mathbf{£ 1} .30$ ($\mathrm{P} \& \mathrm{P}$ 25p). Type $2.30-0-30$ volt $500 \mathrm{~mA}=\mathbf{£ 1 . 3 0 (P \& P 2 5 p \text {). }}$
TTL I.C's 7400, 74LOO, 7410, 7430, 7453, All at 10p each, 6 for 50p.
Please add 20p for post and packing. unless otherwise stated, on U.K. orders under $£ 2$.
Overseas postage charged at cost.

RADIO CONTROL
 P.W. F.M. SYSTEM

TELERADIO R/C ELECTRONICS ARE STOCKING ALL PARTS

Send S.A.E. for leaflets to

TELERADIO R/C
325 Fore St., London N9 OPE
01-807 3719
Closed Thursdays

THREE FOR FREE

EXPERIMENTOR BREADBOARDS

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build a breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP 4B.

EXP 325 £ 1.60 The ideal breadboard for 1 chip circuits. Accepts 8, 14, 16 and up to 22 pin ICs. Has 130 contact points including two 10 point bus-bars.

EXP $350 £ 3.15$ Specially designed for working with up to 40 pin ICs perfect for 3 \& 14 pin ICs.
Has 270 contact points including two 20 point bus-bars

EXP 300 f5. 75 The

most widely bought bread-board in the UK With 550 contact points, two 40 point bus-bars, the EXP 300 will accept any size IC and up to 6×14 pin DIPS

EXP 600 f6.30 Most
MICROPR JCESSOR projects in magazines and educational books are built on the EXP 600

EXP $\mathbf{6 5 0} \mathbf{£ 3 . 6 0}$ Has $\cdot 6$ "centre
spacing so is perfect for
MICROPROCESSOR applications

EXP $\mathbf{4 B} £ 2.30$ Four
more bus-bars in "snap-on" unit.
-
The above prices are exclusive of PGP and 15% VAT.

THE CSC 24 HOUR SERVICE TELEPHONE (0799) 21682

With your Access, American Express, Barclaycard number and your order will be in the post immediately CONTINENTAL SPECIALIIES CORPORATION

CSC (UK) LTD. EUROPE, AFRICA, MIDEAST Dept 6EE Shire Hill Industrial Estate Units 1 and 2 Saffron Walden, Essex CB 11 3AQ
Tel: Saffron Waiden (0799) 21682. Telex: 817477

Electronics $\mathrm{NO}_{4} \mathrm{NO}_{\mathrm{N}} \mathrm{N}, \mathrm{NO}^{6}$
 Available from selected stockists ELECTRONICS BY NUMBERS

 RAIN ALARM

 RAIN ALARM}You need never be caught out by the weather again The rain alarm will emit a warning sound whenever there's rain or moisture in the atmosphere. The current drawn from the battery is negligable so it can be left switched on for up to a year!

WOBBLY WIRE GAME

All the fun of the fair, in your own home! Test your skill at building and playing this version of the popular game, where a 'wand' has to be moved from one end of a wire to the other, without the loop at the end of the wand ever touching the wire.

HIGH QUALITY CONTINUITY TESTER

An invaluable piece of test gear for testing and fault finding circuits and wiring. Pure continuity checks can be carried out without being affected by adjoining circuitry.

Want to get started on building exciting projects but don't know how? Now using EXPERIMENTOR BREADBOARDS and following the instruction in our FREE "Electronics by Numbers" leaflets, ANYBODY can build electronic projects
Look at the diagram, select RI, plug it in to the letter numbered ho'es on the EXPERIMENTOR
BREADBOARD, do the same with the other components, connect to battery and ANYBODY can build a perfect working project.

YOU WILL NEED

e.g. LED Bar Graph (a previous project)
components EXP300 or EXP350
D1 to D15 - Silicon Diodes
R1 to R6 Resistors
LED 1 to LED 6 Light emitting diodes
For the full detailed instructions, including
"Electronics by Numbers" circuit diagrams, simply
take the coupon to your nearest CSC stockist or send direct to us and you will receive "THREE FREE PROJECTS FROM CSC'

If you missed Free project No's 1, 2 and 3, please tick the appropriate box in the coupon.

PROTO-BOARDS

The ultimate in breadboards for the minimum of cost. Two easily assembled kits.

PB6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips.
PROTO-BOARD 6 KIT £9.20

PB 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD $100 \mathrm{KIT} £ 11.80$

Simply ahead..

ILP'S NEW GENERATION OF HIGH

With I.L.P. performance standards and quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain
- the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as
those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there

PERFORMANCE MODULAR UNITS

HY5 PRE－AMPLIFIER

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume－ $10 \mathrm{~K} \Omega$ log． Bass／Treble $-100 \mathrm{~K} \Omega$ linear．Balance $-5 \mathrm{~K} \Omega$ linear．

The HY5 pre－amp is compatible with all I．L．P．amplifiers and P．S．U．＇s．It is contained within a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$ ．and provides multi－ function equalisation for Magnetic／ Ceramic／Tuner／Mic and Aux（Tape） inputs，all with high overload margins． Active tone control circuits； 500 mV out．Distortion at $1 \mathrm{KHz}-0.01 \%$ ． Special strips are provided for connec－ ting external pots and switching systems as required．Two HY5＇s connect easily in stereo．With easy to follow instructions．
$£ 4.64+74 p$ VAT

THE POWER AMPLIFIERS

Model	Output Power R．M．S．	Dis－ tortion Typical at 1KHz	Minimum Signal／ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V．A．T．
HY30	15 W into 8 Ω	0.02%	80 dB	$-20-0-+20$	$105 \times 50 \times 25$	155	$£ 6.34$ $+95 p$
HY50	30 W into 8 Ω	0.02%	90 dB	$-25-0-+25$	$105 \times 50 \times 25$	155	$£ 7.24$ $+£ 1.09$
HY120	60 W into 8 Ω	0.01%	100 dB	$-35-0-+35$	$114 \times 50 \times 85$	575	$£ 15.20$ $+£ 2.28$
HY200	$120 \mathrm{~W} \Omega$ into 8 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 50 \times 85$	575	$£ 18.44$ $+£ 2.77$
HY400	240 W into 4 Ω	0.01%	100 dB	$-45-0-+45$	$114 \times 100 \times 85$	1.15 Kg	$£ 27.68$ $+£ 4.15$

Load impedance－all models 4－16 Ω
Input sensitivity－all models 500 mV
Input impedance－all models $100 \mathrm{~K} \Omega$
Frequency response－all models $10 \mathrm{~Hz} \cdot 45 \mathrm{~Hz} \cdot 3 \mathrm{~dB}$

PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to
five HY5 pre－amps $\mathbf{£ 4 . 5 0}+£ 0.68$ VAT
PSU 36 for 1 or 2 HY30＇s $£ 8.10+£ 1.22$ VAT
PSU 50 for 1 or 2 HY50＇s $\quad £ 8.10+£ 1.22$ VAT
PSU 70 with toroidal transformer for 1 or
2 HY120＇s $£ 13.61+£ 2.04$ VAT
PSU 90 with toroidal transformer for
1 HY200 £13．61＋£2．04 VAT
PSU180 with toroidal transformer for
1 HY400 or $2 \times$ HY200
$£ 23.02+£ 3.45$ VAT

NO QUIBBLE 5 YEAR GUARANTEE 7．DAY DESPATCH ON ALL ORDERS INTEGRAL HEATSINKS BRITISH DESIGN AND MANUFACTURE FREEPOST SERVICE －see below

，ALL U．K．ORDERS DESPATCHED POST PAID HOW TO ORDER，USING FREEPOST SYSTEM
Simply fill in order coupon with payment or credit card instructions．Post to address as below but do not stamp envelope－we pay postage on all letters sent to us by readers of this journal．

FREEPOST 1 Graham Bell House，Roper Close， Canterbury，Kent CT2 7EP．
Telephone（0227） 54778

[^1]Please supply
I ．．．．．．．．．．．．Total purchase price $£$.
I I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account／Barclaycard Account No．

\qquad
\qquad
\qquad
Signature．

EDITOR
Geoffrey C. Arnold

ASSISTANT EDITOR
 Dick Ganderton C. Eng., MIERE

 ART EDITORPeter Metalli

TECHNICAL EDITOR
Malcolm Cummings G8KPN
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Joe Bishop
TECHNICAL ARTIST
Rob Mackie
ASSISTANT ART EDITOR
Keith Woodruff
SECRETARIAL
Sylvia Barrett Sharron Breeze

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
Telephone: 01-2616636
Dennis Brough
AD. SALES EXECUTIVE
Telephone: 01-261 6807
Roger Hall G8TNT (Sam)
CLASSIFIED ADVERTISEMENTS
Telephone: 01-2615762
Colin R. Brown
MAKE UP \& COPY DEPARTMENT
Telephone: 01-2616570
Dave Kerindi

ADVERTISEMENT OFFICES

King's Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

The 1979 Girl Technician Engineer of the Year

The 1979 Girl Technician Engineer of the Year is Mrs Anne Cox-Horton, age 26, an Electrical Contracts Engineer from Chertsey, Surrey. At a recent ceremony in London she was presented with the prize of $£ 250$ and an inscribed rose bowl by Sir Montague Finniston, FRS, Chairman of the Committee of Inquiry into the Engineering Profession.

The Runner-up, Mrs Barbara Needham, 27, a Senior Research Engineer from Harlow, Essex, received a special award of $£ 150$.

Sponsored by The Caroline Haslett Memorial Trust and the IEETE, this Award aims to focus attention on electrical and electronic engineering as a worthwhile professional career for women.

Ann Cox-Horton is a Contracts Engineer with T. Clarke \& Co. Limited, a London firm of electrical contractors. She is responsible for contracts valued at up to $£ 1 \frac{1}{2}$ million, including the work of up to 50 people. Ann served her

apprenticeship on building sites, and was actually the first girl apprentice ever registered with the Joint Industry Board.

The Institution of Electrical and Electronics Technician Engineers, 2 Savoy Hill, London WC2R OBS. Tel: 01-836 3357.

Ron Ham in Video

During August 1979, BBC TV-South Today visited Chalk Pits Museum at Amberley, West Sussex.

The purpose of the visit was to record a programme commemorating the 40th anniversary of the outbreak of the second world war.

The programme centred around the Radio Workshop-a collection of antique and wartime radio equipment-run by none other than Ron Ham BRS15744, who writes the
"VHF Bands" column in Practical Wireless.

Our photograph shows the BBC camera crew filming at the Radio Workshop, and Ron Ham can be seen at the extreme right of the picture. The $7 \frac{1}{2}$ minute programme was shown on 3 September 1979.

The museum re-opens on 2 April 1980, for information on opening times contact: Chalk Pits Museum, Houghton Bridge, Amberley, West Sussex. Tel: Bury (079 881) 370.

Versatile Chips

Plessey Semiconductors has won an order for over half a million remote control chips from Joustra, a leading French toy manufacturer.

The i.c.s have been designed into Joustra's latest remote controlled model car which is being sold in French toy shops now.

The remote control i.c.s are the SL490 transmitter and the ML928 receiver. Low current consumption on the transmitter chip ensures a long battery life. The car is controlled easily by
a miniature steering wheel on the hand-held transmitter.

Although the Joustra car is radio controlled, the same chips are versatile enough to be used for ultrasonic, infrared or cable transmission systems.

Originally developed for TV applications, Plessey Semiconductors is currently designing these remote control chips into other systems such as moving toys, TV games and domestic appliances.

Plessey Semiconductors Ltd., Cheney Manor, Swindon, Wiltshire. Tel: (0793) 36251.

Teletext/Viewdata in Japan

Mullard Ltd. was one of four companies who took part in a two-day series of presentations of the British Teletext/Viewdata systems in Tokyo during December.

The other participants were General Instruments, Texas Instruments and VG Electronics. The Department of Industry and the Electronic Component Industry Federation were also represented.

The presentations were organised by the British Overseas Trade Board and were held at the British Export Marketing Centre. Audiences consisted of leading Japanese setmakers and broadcasting authorities.

The objective of the presentation was to underline the advantages of the Mullard Teletext/Viewdata systems, components and sub-assemblies to those Japanese setmakers who
undertake-or plan to undertakemanufacture of suitably-adapted TV receivers in the UK or Europe.

Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD. Tel: 01-580 6633.

SERT has moved

Since Monday, 12 November 1979, the Society of Electronic and Radio Technicians have been established in their new premises.

The new address is: 57-61 Newington Causeway, London SE1 6BL. Tel: 01-403 2351.

Ring Their B.E.L.

Barrie Electronics Ltd. inform us that they now stock the complete range of Vero Products. The products are on display at: 3 The Minories, London EC3N 1BJ. Tel: 01-488 3316/7/8.

SWLs \& DXers get-together

A "get-together", supported by the European DX Council and organised by Northern DXers and short-wave listeners, is to take place on Saturday, 8 March 1980, starting at 2.00 pm .

The venue will be the Conference Centre at the heart of the city of Durham.

Attendance is expected to be quite large and various receiver manufacturers have been invited, along with guest speakers who will give talks. The EDXC and the Handicapped Aid Programme UK will also be represented, as will certain international broadcasting stations.

A number of receivers will be on show (including the Trio R-1000) and programme schedules for the new frequency period will be available.

For further details, a "get-together" agenda and a map, contact: The Organiser, John Shaw, 10 Poplar Lea, Brandon, Durham, Co Durham. Tel: (0385) 780743.

Catalogues

Ace Mailtronix Ltd., the Wakefield based component supplier have recently published their latest catalogue.

The catalogue costs 30 p and is supplied with a 30p voucher which is redeemable with orders over $£ 5.00$.

Available from: Ace Mailtronix Ltd., Tootal Street, Wakefield, West Yorkshire WF1 5JR. TeI: (0924) 250375.

Sigma Technical Press publish their latest catalogue of books, which should be of particular interest to the personal and professional computer user.

Available from: Sigma Technical Press, 23 Dippons Mill Close, Tettenhall, Wolverhampton WV6 8HH. Tel: (O902) 763152.

Transam Components Ltd. have recently published a new computer products catalogue containing details of their products and specialist services offered to micro-computer users in the UK.

For further information contact: Transam Components Ltd., 12 Chapel Street, London NW1 5DH. Tel: 01-402 8137.

BEGINNING THE

i

NIMBUS

Modular Zm Transceive System

Michael TOOLEY BA G8CKT \& David WHITFIELD BA MSc G8FTB

The 2 metre amateur band is popular with both class A and B licence holders and covers the frequency range from 144 MHz to 146 MHz . While many operators make use of high power f.m. and s.s.b. fixed station equipment in pursuit of long distance contacts, excellent results can be achieved using a low-power portable transceiver. For the energetic, operation from a mountain peak or other local "high spot" will bring considerable rewards; even under normal conditions contacts can readily be made over paths of more than 200 km . The advent of 2 metre repeaters, of which there are currently a large number in service, has greatly improved the working range of portable and mobile equipment from many otherwise less than favourable sites.

The PW "Nimbus" has been developed to meet the need for a compact and versatile portable 2 metre f.m. transceiver. The basic circuit module comprises a single printed circuit board measuring only $160 \mathrm{~mm} \times 90 \mathrm{~mm}$. The single-sided board incorporates a high performance dual-conversion superhet receiver and a matching lowpower transmitter. In order to allow the constructor the choice of a wide range of possible equipment configurations, the controls, changeover switching, modulator and power supplies are all external to the basic circuit module. A range of add-on modules designed to extend the performance of the basic unit will be described in later articles. These will include an alternative speech processor/modulator, a 10 W power amplifier, a mains power unit, battery charger, repeater tone-burst with timeout facility and an extended multi-channel facility. The "Nimbus" can thus form the basis of a comprehensive 2 metre station which can change and grow to adapt to the individual needs of the constructor.

The design underwent many changes in the course of its evolution from rather speculative beginnings (sketches on used envelopes, beer mats, etc.), to the first QSO on the air using the prototype. Between these two extremes are hidden long periods (often well into the small hours) of paper design and bench testing. The immense satisfaction to be derived from operating a piece of equipment which has been built entirely by one's own efforts is hard to describe.

Whilst it is realised that the diecast box into which the transceiver boards fit is rather larger, to say the least, than the normal hand-held size, the dimensions were thought appropriate for two reasons. Sufficient room has been left
in the box for later additions and modifications of the basic circuitry, also the box used in the prototype is a readily obtainable item.

The constructor may, of course, feel free to use any convenient metal box provided it is rigid in construction, (no tobacco tins please!) and has sufficient internal space for the mounting of the units.

Design Philosophy

The basic transceiver module represents a compromise between cost and circuit complexity, while providing a standard of performance which should satisfy the demands of all but the most discerning amateur. The design is straightforward and conventional, using well-proven devices and techniques. It should, however, be clearly stated at the outset that this is not a project for the novice, nor is it suitable for the newcomer to r.f. constructional practice.

A great deal of consideration was given to the ultimate flexibility of the overall design. Indeed, from the outset it was envisaged that the basic circuit module would form the heart of a number of possible transceiver configurations. The transmitter and receiver circuits have consequently, been kept entirely independent (permitting "full duplex" operation if required), and all controls and changeover switching may then be arranged to suit the particular application. The main aim was to produce a portable transceiver which could be built for about half the cost of a comparable ready-made unit. Even so, constructors should be wary of too much economy; "junk box" components should be avoided, and only new fullspecification devices should be used.

System Description

The basic system comprises a number of functional modules (transmitter, modulator, etc.) which may be connected in a variety of different configurations to suit particular applications. Figure 1 shows a simple arrangement of the three basic modules in the form of a portable transceiver. This particular arrangement produces a compact unit of good performance, yet which features a current consumption which is low enough to allow portable operation from a modest battery supply (e.g., 225 mAh 12.5 V NiCad pack measuring approximately 25 mm diameter by 70 mm long).

The three basic circuit modules are arranged physically as two single-sided p.c.b.s, the main board containing the

Fig. 1: System block diagram for a portable v.h.f. f.m. transceiver
transmitter and receiver modules. Although these are on the same board, they are totally isolated functionally, but for the use of a common earth plane. The second board contains the modulator and this arrangement will be seen in future articles as capable of providing the maximum flexibility without undue proliferation of boards.

A functional block diagram for the transmitter module is shown in Figure 2. A low frequency (18 MHz) fundamental crystal oscillator is used to define the transmitter output frequency. The fundamental signal is then passed to the phase modulator circuit before being successively applied to three cascaded frequency doubler stages. The output from the final doubler is thus at eight times the fundamental frequency, and this is used to drive the output amplifier stage. The overall design features bandpass coupling throughout which achieves a low harmonic content in the output. The alignment procedure is simple with test points provided for each stage; the only test equipment necessary for alignment of the transmitter being a simple d.c. voltmeter.

The receiver module features a conventional high performance dual-conversion superhet arrangement as shown in Figure 3. The signal frequency is applied via the r.f. amplifier stage to the input of the first mixer. The local oscillator drive is derived, by way of a frequency tripler,

from the first oscillator working at 45 MHz . The $10 \cdot 7 \mathrm{MHz}$ output from the first mixer is filtered to remove the unwanted mixer products, and then amplified before being applied to the second mixer. The output from the second mixer is at 455 kHz and this signal is further amplified before being demodulated. The combined second i.f. amplifier and demodulator stage also provides the ' S ' meter and audio squelch facilities. Final audio amplification is provided by an i.c. power amplifier. The use of high gain i.c. amplifiers, with their associated i.f. filters, ensures that the alignment of the receiver is a very straightforward task, with a minimum of preset adjustments.

The modulator is arranged as a separate unit to allow the user a choice of speech processing and other associated facilities (e.g., vox, alc, toneburst, etc.). The basic modulator features a variable gain microphone preamplifier to allow a variety of microphones to be used. After amplification, the signal is subject to peak limiting to prevent over-deviation on speech peaks, the output being adjusted in level to set the maximum transmitter deviation.

Transmitter

The transmitter is shown in Figure 4. Transistor Trl operates as a conventional Colpitts oscillator with frequency determining crystals and trimmers selected by S1b. The d.c. supply to the oscillator stage is stabilised against supply variations by means of a simple Zener diode regulator, D1. Phase modulation is provided by Tr 2 which acts as a variable reactance element. Components L1/C9 and L2/C12 form a bandpass coupled tuned circuit at 18 MHz . The coupling capacitor, C10, is kept small so as to ensure purity of the input to the first doubler stage, $\operatorname{Tr} 3$ output of which is similarly passed to a bandpass circuit with the selected frequency now being 36 MHz . Again, the value of coupling capacitor, C17, is kept to a small value.

Transistor Tr4 is the second doubler with an output at 72 MHz which is selected by L5/C21 and L6/C24, the final doubler, $\operatorname{Tr} 5$, providing an output on 144 MHz . The collector of Tr 5 is tapped into the tuned circuit, L7/C35, in order to ensure a good impedance match and also to maintain a relatively high ' Q ' factor in the bandpass coupled circuit.

The final stage is a low-power amplifier operating with both input and output at 144 MHz . The emitter of $\operatorname{Tr} 6$ is
returned directly to the earth rail rather than via the resistor and capacitor arrangement associated with the earlier doubler stages; this helps to reduce the impedance of the emitter connection and facilitates heat sinking. The combination of L10/TC $6 /$ TC 7 tunes to 144 MHz , TC6/TC7 being adjustable in order to provide correct matching of the antenna load impedance. The r.f. output level is detected by D2 and a d.c. output is available at TP6 for alignment purposes and for continuous r.f. output indication where desired.

Alignment of the multiplier stages is facilitated by means of test points TP1 to TP4 where the emitter current of successive stages may be monitored and TP5, which allows for measurement of the collector current (either directly or by calculation involving the voltage drop across R22), and hence d.c. input power to the final stage.

Receiver

The receiver circuit is shown in Figures 5(a) and 5(b). The double superhet receiver necessitates the use of two mixers and associated crystal-controlled first and second oscillators. The high first intermediate frequency $(10.7 \mathrm{MHz})$ ensures good image channel rejection whilst the low second intermediate frequency (455 kHz) permits the use of low cost ceramic filters in order to achieve the desired selectivity (approximately 12 kHz at the -6 dB points). Integrated circuits are used in both the 10.7 MHz and 455 kHz i.f. stages.

A low noise dual-gate f.e.t. $(\operatorname{Tr} 100)$ is used for the first stage of r.f. amplification at 144 MHz , giving about 20 dB of gain coupled with excellent cross-modulation performance. A second dual-gate device is used for the first mixer stage with injection at approximately 135 MHz . Transistor Tr 102 is connected in the familiar Colpitts configuration with frequency determining crystals and their associated trimmers selected by Sla (this is ganged with the transmitter crystal switch S1b). Tuned circuit L102, C108 and associated stray capacitance tune the collector circuit of $\operatorname{Tr} 102$ to 45 MHz . Transistor $\operatorname{Tr} 103$ operates in common base mode as a tripler with L103/TC106 tuned to 135 MHz .

To improve efficiency, a small amount of forward bias is applied to the stage by means of the potential divider formed by R112 and R113. The 7.8V regulated supply for

specifications

Fig. 4: Transmitter module circuit diagram

components

TRANSMITTER

Resistors

$\frac{1}{4} W 5 \%$ carbon

10Ω	1
22Ω	1
47Ω	2
100Ω	3
220Ω	1
470Ω	2
$2.2 \mathrm{k} \Omega$	2
$3.3 \mathrm{k} \Omega$	1
$4.7 \mathrm{k} \Omega$	2
$10 \mathrm{k} \Omega$	2
$15 \mathrm{k} \Omega$	1
$22 \mathrm{k} \Omega$	2
$100 \mathrm{k} \Omega$	2

Capacitors

Semiconductors
Transistors

2N2369A	4	Tr1,3,4,5
2N3819	1	Tr2
2N4427	1	$\operatorname{Tr6}$
iodes		
BZY88C9V1	1	D1
OA91	1	D2

Tantalum bead 25 V
$10 \mu \mathrm{~F} \cdot 1 \quad \mathrm{C} 11$
Ceramic trimmers, miniature
$5-30 \mathrm{pF} \quad 7 \quad$ TC1, 2, 3, 4, 5, 6,7

Miscellaneous

4.8 mm coil formers Type $722 / 1$ (8); tuning slugs Type 4 (6); coil former bases (8); screening cans Type 10 (8); anti-parasitic beads (3); HC25/U crystal sockets (4); RFC1 see text.

MODULATOR

Resistors

$\frac{1}{4} W 5 \%$ carbon

220Ω	1	$R 205$
$1 \mathrm{k} \Omega$	1	$R 207$
$3.3 \mathrm{k} \Omega$	2	$R 201,202$
$10 \mathrm{k} \Omega$	3	$R 200,203,204$
$22 \mathrm{k} \Omega$	1	$R 206$

Potentiometers

GENERAL ASSEMBLY

Resistors
$\frac{1}{4} W 5 \%$ carbon

$1 \mathrm{k} \Omega$	2	$R 300,301$

Potentiometers
$47 \mathrm{k} \Omega$ log. $1 \quad$ VR102/S2 (d.p. switch)
Semiconductors
Light emitting diodes

0.2 in red	1	D300
0.2 in green	1	D301

Switches
Rotary 3p4w 1 S1
$\begin{array}{lll}\text { Min. s.p.s.t. } 2 & 2 & \text { S } 100,300\end{array}$
Sockets
DIN 5 pin $1 \quad$ SK1
270°
SO239 u.h.f. 1 SK2
Relay
2 p changeover 1 RL1 (RS349-658) min. p.c.b.

Miscellaneous

HP7 cells (8); battery holder, 4-cell, press stud connections (2): $10 \mathrm{k} \Omega$ dynamic microphone with p.t.t. switch (1); $222 \times 146 \times 55 \mathrm{~mm}$ diecast box (1); transceiver p.c.b. (1); modulator p.c.b. (1); knobs (2).

RECEIVER

Resistors

$\frac{1}{4} W 5 \%$ carbon		
47Ω	1	$R 124$
100Ω	1	$R 114$
220Ω	4	$R 100,103,109,111$
390Ω	1	$R 115$
470Ω	3	$R 107,121,129$
680Ω	1	$R 122$
$1 \mathrm{k} \Omega$	1	$R 106$
$1.5 \mathrm{k} \Omega$	1	$R 133$
$2.2 \mathrm{k} \Omega$	2	$R 117,120$
$3.3 \mathrm{k} \Omega$	1	$R 116$
$4.7 \mathrm{k} \Omega$	3	$R 128,131,132$
$10 \mathrm{k} \Omega$	2	$R 113,123$
$12 \mathrm{k} \Omega$	3	$R 125,126,127$
$47 \mathrm{k} \Omega$	4	$R 101,102,108,130$
$100 \mathrm{k} \Omega$	5	$\mathrm{R} 104,105,112,118$,
		119

Potentiometers

Miniature preset (vertical mounting) 0.1 W

$10 \mathrm{k} \Omega$	1	VR101
$47 \mathrm{k} \Omega$	1	VR100

Capacitors

Ceramic		
10 pF	2	$\mathrm{C} 108,109$
22 pF	1	C 106
47 pF	4	$\mathrm{C} 102,107,117,141$
100 pF	2	$\mathrm{C} 118,127$
220 pF	1	C 119
1 nF	2	$\mathrm{C} 105,137$
$2 \cdot 2 \mathrm{nF}$	1	C 136
$4 \cdot 7 \mathrm{nF}$	1	C 133
10 nF	21	$\mathrm{C} 100,101,103,104$,
		$110,111,112,113$,
		$114,115,116,121$,
		$122,123,124,125$,
		$126,128,131,134$,

Electrolytic 16 V

$1 \mu \mathrm{~F}$	1	C 135
$2 \cdot 2 \mu \mathrm{~F}$	1	C 130
$10 \mu \mathrm{~F}$	2	$\mathrm{C} 132,139$
$47 \mu \mathrm{~F}$	1	C 129
$470 \mu \mathrm{~F}$	1	C 140

Ceramic trimmers, miniature $5-30 \mathrm{pF} \quad 8$

TC100, 101, 102, 103 $104,105,106,107$

Semiconductors

Transistors

40673	2	Tr100, 101
2N2369A	2	Tr102, 103
2N3819	1	Tr104
BC458	1	Tr105

Integrated circuits

$\mu A 753$	1	IC100
CA3189E	1	IC101
LM380N	1	IC102

Crystal filters
CFU455H or 1
CFU455F
CFS10.7 2
(150)
(NB. These two items must be ordered together.)

Crystal

$\underset{\text { wire ended }}{10.245 \mathrm{MHz}} \quad 1 \times 104$

Coils

YRCS 11098	1	L105
AC2 (Toko)		
RFC 100	1	see text

Miscellaneous

4.8 mm coil formers Type $722 / 1$ (3); coil former bases (2); tuning slugs Type 4 (2); screening cans Type 10 (2); anti-parasitic ferrite beads (3); HC25U crystal sockets (4); 8Ω loudspeaker (1); $500 \mu \mathrm{~A}$ signal strength meter (for test purposes) (1).

The completed printed circuit board for the Nimbus transceiver

Fig. 5(a): Receiver module circuit diagram Section 1

Fig. 5(b): Receiver module circuit diagram Section 2

Fig. 6: Basic modulator circuit diagram

Aryinul mapo meriange

As one of London's leading retailers of amateur radio equipment, we know that YAESU offer about the finest range on the market. But as enthusiast retailers rather than importers or distributors, we are also able to recognise and recommend great products, whoever makes them. So, when we saw and tried the new TRIO R-1000 receiver, we knew that we - and our customers - must have it. It's good . . . every bit as good as TRIO say it is . . . so we bought in substantial stocks. That way we can offer it to you just a little cheaper!

R-1000
inc. VAT

If your budget is nearer $£ 200$ than $£ 300$, don't worry, because at that price you can't do better than the YAESU FRG-7. We like to summarise its specification and performance by saying that the FRG-7 hears things that other receivers don't even know exist! So, come and try it, and see for yourself why it still represents the finest value-formoney in the communications reveiver market today.

FRG-7

2 Northfield Road, Ealing, London, W13.
AMATEUR RADIO EXCHANGE
Easy terms up to
Credit Card sales by telephone

Closed all day
Wednesday
Phone 015795311
for details of current stocks, new and secondhand

Wimires
 OSI CAROS

(Sample sent on receipt of s.a.e.).
For the radio amateur or short wave listener, an attractive card incorporating a world map and the initials of your favourite radio magazine, printed in blue and green.

Your callsign, name and address will be overprinted in black, at the top of the card. The reverse of the card will have the usual form for reception report, etc., and address space.

The cards measure $102 \times 152 \mathrm{~mm}(4 \times 6 \mathrm{in})$ and are available in the following quantities:

$$
\begin{array}{r}
250 \text { off- } £ 6.25 \\
500 \text { off-£ } 10.00 \\
1000 \text { off- } 16.00
\end{array}
$$

These prices include VAT and packing and postage to any United Kingdom address. Please send your order with a cheque or postal order for the appropriate amount to: Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH 15 1JG, giving full details on the coupon provided, or on plain paper if you do not want to cut your copy of Practical Wireless. Please make your remittance payable to IPC Magazines Ltd.
Please supply:
250/500/1000* PW OSL CARDS
Information to be printed on card (please print):
Callsign:
NAME
ADDRESS

Pease supply.
 Callsign:
 NAME

Information to be printed on card (please print):
\qquad
ADDRESS
-

Modules Rule-OK

The modular concept has been popular for some time in many areas of electronics. A major advantage, particularly in instrumentation, is that servicing is much easier; each module is tested until the "baddie" is found and subsequently unplugged and replaced. This approach seems to have been really taken to heart by a television manufacturer in Germany whose latest colour telly has been modularised throughout. To make the service engineer's job even easier, each module has its own private red and green l.e.d.s that inform immediately which module is working properly and which one isn't. Apart from easy servicing, the manufacturers have really gone for state of the art. Screen size of 27 in is available and all peripheral items like Teletext and electronic games can be connected. This also extends to home computers, and TV cameras both colour and black-and-white. Phaselocked loop synthesisers are also included and the set has a memory that can store 30 station numbers and up to 100 different channel frequencies. A very gratifying advantage is the care given to screening which gives protection against r.f. sources such as electrical interference, and QRM from Radio Hams and Citizens' Band users.

Beer Meters

Most motorists work out the petrol consumption of their cherished chariots by filling the tank up, driving till it's almost empty, repeating this and then averaging things out over a period of time. While this method does work it is rather approximate. One possibility might be to use a new photosensor turbine that can be employed to give you, instantaneously, the vehicle's petrol flow-rate. This information, fed to the dashboard, could help a driver regulate his driving to ensure economical fuel consumption. Basically, the idea is simple. The unit is connected into the fuel supply line and comprises a turbine blade that rotates as fuel flows past it. Careful design ensures that turbulence is not set up in the sensor chamber. The turbine blades have a transparent housing and on either side of this is a
light source and photo-transistor. As the tiny blades of the turbine rotate, the light is chopped forming a series of pulses. The faster the flow the faster the pulses. A small computer converts the pulse rate to the practical information needed for the dashboard display. Perhaps beer supplies to Rugby clubs might be monitored in this way, and the bill settled once every quarter when the man comes to read the beer meter?

Lipreading Spectacles

Perhaps the most impressive application of electronics this month is in lipreading. The device, just short of pure genius, uses a microprocessor and analyses spoken words. It then displays these as symbols on two dot matrices of light emitting diodes. Tests so far appear promising. The prototypes have improved the identification of syllables from the normal 25 per cent to around 75 per cent. Note too that a 25 per cent score was for a trained lipreader. The ultimate aim is to have the entire system in the frame of a pair of ordinary glasses. The symbol image would be caused by l.e.d.s in the bowed frame. Their illuminated symbols would then be directed into the lens of the glasses, and these would project an image so that it appeared to the user to be in focus some 1200 mm away close to the lips of the speaker. It is thought that the new system could help improve comprehension up to 90 per cent in favourable conditions. The device is only just at the laboratory/ experimental stage and is not likely to be available for some time.

Speech Synthesisers

Medical applications of electronics are always nice to report on because it means that circuit ingenuity is serving a very worthwhile purpose. One company has launched two I.s.i. chips to form a programmable digital processor that can be used in a speech synthesiser circuit. This is aimed at the manufacture of a text-to-speech system that should be able to offer blind people a vocabulary of some 200 English words.

Sonic Sinbad

The area of underwater electronics is fascinating. Clearly a field where, to get to the top one must go to the bottom! A French company has developed an underwater ultrasonic flaw detecting system that looks interesting. The system uses an array of transducers arranged as 32 elements in a row, with a total of 5 rows. By special programming of the phasing of coherent energy bursts fed to the transducers, some 32 different focal planes are achieved. The net result is an image in three dimensions with 5120 points. Individual welded joints can be inspected under water, quite a feat. The system is also inspecting the inside of metals at various depths in the metal itself. Could be worth thinking about if you're an underwater treasure hunter, a sort of sonic Sinbad.

Wow!

While home computing continues to boom the professionals are racing ahead to bigger and better-or maybe smaller and better things. In Germany, for example, there's a very interesting single board beastie that can perform 32 million operations in one second. It's quite a clever approach. The idea is to fill the board with microprocessors and memories (plus attendant bits and pieces). The result is a single board with the equivalent computing power of a large mainframe. Organisation of the tasks on the board work out well. Each little module on the board handles one part of a mathematical problem. It can also interact with the others giving up its answers that they need, and taking in their answers in order to continue with its own tasks in the computation. In the original, currently on test, some 128 "microcomputer" modules are employed. The designers believe that a ten times increase in capability is easily possible. Makes you think, doesn't it? But not at 32 million operations a second.
Cimberz

OFFSET ANGLE (PICKUP)

When a gramophone record is being cut the cutter head follows a true radial path across the disc as shown by the full line in Fig. 21. However, when a record is played using a conventional pivoted arm the stylus follows a curved path as shown by the broken line. The difference between these two paths results in lateral tracking error.

The amount of error is a function of by how much the angle between a line along the axis of the pickup cartridge and a line of disc radius deviates from 90 degrees. For example, in Fig. 22 at (a) the angle is exactly 90 degrees so there is no error. At (b), though, the angle is less than 90 degrees by the amount of the error angle (\emptyset) as shown. It will be apparent that the accuracy at (a) is achieved by shifting the axis of the cartridge off the axis of the arm. This is called the offset angle, which is defined at (a). At (b) it is assumed that the axis of the cartridge lies along the axis of the arm. This is not the whole story, however (see below).

Fig. 21: When a gramophone record is cut, the cutter head traverses a true radial path across the disc as shown by the full line. When played with the pivoted arm, however, the stylus traverses an arc as shown by the broken line. The deviation from the true radial path is a function of lateral tracking error

OVERHANG (PICKUP)

While an offset angle can be arranged to eliminate lateral tracking error at one groove diameter, the error will start to show again at different groove diameters. This is countered by arranging for the stylus to overhang the turntable spindle by a calculated amount when a conven-

Fig. 22: Lateral tracking error is zero when the angle between a radial line and a line along the axis of the cartridge is 90 degrees, as shown at (a). At (b) is shown significant error since the required angle falls short of $\mathbf{9 0}$ degrees by the "error angle" ϕ (see text)
tional pivoted arm is moved to the centre of the record. This is shown in Fig. 23, which also indicates that the least lateral tracking error obtains at all groove diameters when the overhang is carefully combined with the offset.

Overhang and offset are related to the length of the arm, and an alignment protractor of some kind is often used to establish the best value of overhang to use for the least lateral tracking error at the inner groove diameters, where the distortion can be highest owing to the reducing stylus/groove interface velocity and hence the reducing wavelengths of recorded signal.

Lateral tracking error can cause a significant rise in distortion (essentially even-order), particularly on high recorded velocities, so it is highly desirable to ensure the least error by careful adjustment to the cartridge in the headshell. With some arms the offset is provided by a carefully calculated geometric curve.

Other rather special arms are engineered for so-called parallel tracking, which means that the cartridge moves on a path which is exactly parallel to the recording radius. The artifices just described are not then required. Neither is side-thrust correction (see later).

Fig. 23: In Fig. 22(a) the required angle is provided by the offset angle obtained by suitably angling the axis of the cartridge with respect to the effective axis of the arm. To help retain the required 90 -degree angle at all groove diameters, the cartridge is positioned in the headshell so that the stylus overhangs the turntable spindle by a specified amount when the arm is brought to the centre of the record, which is usually established by an alignment protractor

PHASING

With hi-fi this applies mostly to the correct phasing of the stereo signals through the left and right channels, all the way from source to the speakers. On a mono source applied simultaneously to the two channels the signals should remain in step over the entire audio spectrum to the two speakers so that their cones also move in and out together. If the signal in one of the channels somehow gets reversed in phase (e.g., the cone of one speaker moving inwards while that of the other is moving outwards on the same signal), then sounds of progressively decreasing frequency will tend towards cancellation, resulting in a bass output deficiency.

Moreover, on a stereo signal the stereo image will fail to resolve precisely; there will appear to be a spread of the sound stage either side of the two speakers and "diffused" stereo will result. Special test records are available to assist with phasing tests. If an out-of-phase condition is detected this is easily cured merely by reversing the connections to one of the speakers, it matters not which one. Another good test is to place the two stereo speakers side by side and to play a record rich in very low bass notes, such as a large organ rendering, with the amplifier switched to mono mode. With one of the speakers connected one way round the bass output will be very weak. That would be the out-of-phase incorrect condition. By reversing the connections of one speaker the bass will be reproduced far more dramatically. That would be the correct condition.

PHON

This is the unit of loudness (see Part 4) which at 1 kHz is equal in value to a dB scale; but the unit takes account of the variations in the sensitivity of the human ear at different frequencies and sound intensities.

PHONO PLUG

This type of plug is commonly used on hi-fi equipment to connect the programme sources to the amplifier, which is equipped with corresponding phono sockets. There is a centre connector which is connected to the "live" signal circuit and an outer connector surrounding it which is connected to the "earthy" side of the signal circuit and hence the outer braid of the signal lead.

PILOT TONE

This is the 19 kHz part of the f.m. multiplex (MPX) stereo signal responsible for synchronously reclaiming or synchronising the 38 kHz subcarrier generator in a stereo decoder, which is required for the re-constitution of the separate left and right channels. This signal, along with the residual subcarrier (most of the latter being suppressed at the transmitter), uses up $\pm 7.5 \mathrm{kHz}$ of the total $\pm 75 \mathrm{kHz}$ full modulation deviation, thereby leaving a deviation of $\pm 67.5 \mathrm{kHz}$ available for the audio information.

The pilot tone is also used to activate the stereo decoder and to switch on the stereo indicator or "beacon" as it is sometimes called. Also see under Multiplex decoder in Part 4.

PINCH EFFECT

As the stylus of a pickup cartridge traces a recorded record groove it undergoes a vertical motion at twice the frequency of the lateral modulation owing to the groove walls becoming closer together with increasing modulation depth. This, of course, gives rise to 2nd-harmonic distortion, which can be regarded as a kind of tracing distortion. The effect is common to both mono and stereo recordings.

PLAYING WEIGHT (ALSO TRACKING WEIGHT)

The correct term is playing force since it refers to the downward force applied to the pickup stylus to yield optimum tracking within the capabilities of the cartridge at high amplitudes (low frequencies), and at high velocities and accelerations. The force is that effected by the pull of gravity on a mass and is commonly expressed in grams (e.g., the attraction of gravity on a mass of 1 g effects a force of about 980 dynes at latitude 45 degrees and sea level). The SI unit of force is the newton (N), which is equivalent to 10^{5} dynes. An approximate conversion is to multiply the gram value by ten and call the result millinewtons (mN). Thus a playing weight of 1 g becomes a playing force of 10 mN . SI units are just beginning to percolate into the hi-fi literature!

High-flight cartridges in a suitable arm will track as low as 10 mN , but it is best to track a shade higher than necessary than too low, for the resulting mistracking of the latter is not only subjectively disconcerting but more damaging to the record than the use of slightly more force. Side-thrust correction (see later) also helps to reduce the tracking force for a given tracking performance.

PRE-EMPHASIS

Pre-emphasis refers to the controlled "boosting" of high frequencies with respect to the lower frequencies when transmitting or recording, as shown by curve (a) in Fig. 24 . Here the response is +3 dB at just over 3 kHz (actually 3184 Hz) and the ultimate rate of rise close to $6 \mathrm{~dB} /$ octave. This, in fact, corresponds to the UK and European preemphasis of f.m.

It is defined by a time-constant, which in the above example is $50 \mu \mathrm{~s}$. The frequency corresponding to the 3 dB point is equal to

$$
\frac{1}{50 \times 10^{-6} \times 6 \cdot 28}
$$

or 3184 Hz . In American countries the f.m. time-constant is $75 \mu \mathrm{~s}$, corresponding to

$$
\frac{1}{75 \times 10^{-6} \times 6.28}
$$

or 2123 Hz . With a simple time-constant like this the response ultimately reaches a rate of change of 6 dB / octave (e.g., as per a single-pole filter).

To restore the response integrity it is necessary to apply the converse type of filtering at the receiver or in the replay amplifier. This is called de-emphasis, shown by curve (b).

Fig. 24: Pre-emphasis (a) is equalised by de-emphasis (b) to yield a "flat" response (c). Upper-frequency noise is reduced by the attenuation of the deemphasis. The curves correspond to a time-constant of $50 \mu \mathrm{~s}$, which is the UK and European f.m. timeconstant

The net result is then a "flat" response shown by curve (c).
What is the point of all this, one might ask! Well, it is one way of improving the signal/noise (S / N) ratio bccause a fair amount of noise is composed of high-frequency components which are attenuated when the response is equalised by the de-emphasis.

Pre-emphasis (a part of the RIAA recording characteristic-see under Equalisation in Part 3) is also used for disc recording, for low-speed reel-to-reel tape recording and for cassette recording. The time-constant is established by the specific recording characteristic, and in the case of the tape (see also under De-emphasis in Part 3).

WAD496

WAD497
Fig. 25: Print-through characteristics of Maxell UDXLII cassette tape after 48 hours storage at $20^{\circ} \mathrm{C}$. (a) first play, and (b) showing how the average printthrough ratio is increased by rewinding the tape before playing. The tape was recorded with $1 \mathrm{~s} 1 \mathbf{k H z}$ pulses at a recording level corresponding to $200 \mathrm{nWb} / \mathrm{m}$ with approximately 10 s intervals between the pulses. Replay was through a $1 \mathbf{k H z}$ bandpass filter to the pen-chart recorder to decrease the swamping tape noise. The signal before the main pulse is preecho and that after the main pulse post-echo. The overall length of each recording is about 100 seconds

PRINT-THROUGH

Owing to the intimacy of adjacent layers of spooled magnetic tape, information print-through can occur which, in severe cases, manifests as pre- and post-echo effects during replay, particularly related to heavily-recorded passages of music and high-amplitude transients.

Chromium dioxide (Cr) tape seems to be more prone to the effect than lower coercivity ferric (Fe) or modified Fe formulations. Measurements that I have made in my own lab also indicate that the metal particle tapes are less prone to the effect than Cr brands. However, environmental storage of a recorded spool of tape can have a marked effect on the print-through, which becomes worse as the storage temperature is increased. Humidity, too, would also appear to play a rôle.

It is also possible to reduce the print-through by rewinding a recorded tape before playing, as can be seen by comparing pen-chart recording (b) in Fig. 25 with that at (a). See caption for details. In general, I have not personally found cassette tape print-through particularly troublesome when the ratio is around 50 dB or more. However, incorrect storage of Cr tape (in the rear window of a car, for example!) can lead to lower print-through ratios which are subjectively apparent.

QUIETING

With f.m. receivers, the level of background noise decreases as the aerial signal level increases. Starting at very low input signal level, the noise decrease is at first very swift, after which it slows down, ultimately reaching
the mono noise floor with an input of 1 or 2 mV , depending on the receiver's sensitivity. The amount in dB by which the noise falls when the receiver is fed with a v.h.f. signal of given voltage is the quieting. For a quieting of 50 dB , the aerial input signal usually needs to be about ten times $(20 \mathrm{~dB})$ stronger in stereo than mono mode.

RECORDING CHARACTERISTIC

This refers to the nature of signal boost or cut applied during recording, usually to an agreed standard (see under RIAA). When replaying, an inverse characteristic is used to achieve a "flat" frequency response (see also under Equalisation in Part 3).

Index of Partly Defined Jargon

Coercivity
De-emphasis
Equalisation
Lateral tracking error
Loudness
Multiplex decoder
Noise floor
Parallel tracking
Phono socket
Playing force
Side-thrust correction
Sound stage
Tracing distortion
TO BE CONTINUED

HAVE YOU SEEN THE NEW PWOSLCARD?

Then turn to page 30

HIDIU IDIE:

Burglar Alarms Part 3, Dec. 1979

Readers should note that the GDHM microwave module and antenna are available from the author P. J. Wales, PO Box 88 , Aylesbury, Bucks. under a special arrangement with the manufacturer. Orders and queries should not be directly addressed to Plessey Ltd.

AF Speech Processor, Jan. 1980

In the circuit diagram, Fig. 6, the junction of C3 and R6 should be connected to the emitter of Tr1. The p.c.b. (Fig. 9) is correct.

nigrial wuIIIIIIR

Not very many years ago, digital measuring instruments came in 19 inch, rack-mounting, steel cases, and consumed considerable quantities of power. Since then, in common with calculators, they have got smaller, cheaper, more versatile and more reliable, and the day of the "personal" digital multimeter is with us.

The Fluke 8022A is such an instrument, pocket-sized and offering a comprehensive range of measurements at a standard of accuracy far surpassing that of an analogue multimeter. The shape and size, and the arrangement of the push-button range selectors, make possible one-handed operation of the instrument, even by someone with quite small hands. The case moulding is ribbed around the centre section to provide a firmer grip.

The display is a $3 \frac{1}{2}$-digit liquid crystal type with digits approximately 11 mm high and good contrast even in low light levels, though it is a pity that a non-reflective material could not have been used for the display window, to obviate irritating glare from overhead lighting when the instrument is used on the bench top. In this position, the display is tilted about 10° up from the horizontal. The glare problem can be largely overcome by using the tilt-bail built into the back of

continued on page 47

specification

DC Volts:

Ranges: $200 \mathrm{mV}, 2,20,200,1000 \mathrm{~V}$
Accuracy: \pm ($0 \cdot 25 \%$ of reading +1 digit)
Input Impedance: $10 \mathrm{M} \Omega$
Overload Protection: 1000 V d.c. or peak a.c.

AC Volts:

Ranges: $200 \mathrm{mV}, 2,20,200,750 \mathrm{~V}$
Frequency Range: $45-450 \mathrm{~Hz}$
Accuracy: \pm (1% of reading +3 digits)
Input Impedance: $10 \mathrm{M} \Omega$ in parallel with $<100 \mathrm{pF}$
Overload Protection: 750 V r.m.s. or 1000 V peak

DC Current:

Ranges: 2, 20, 200, 2000mA
Accuracy: \pm (0.75% of reading +1 digit)
Burden Voltage: 250 mV r.m.s. $\max (700 \mathrm{mV}$ r.m.s. on 200 mA range)
Overload Protection: 2A/250V

AC Current:

Ranges: 2, 20, 200, 2000mA
Frequency Range: $45-450 \mathrm{~Hz}$
Accuracy: \pm (2% of reading +3 digits)
Burden Voltage: 250 mV r.m.s. $\max (700 \mathrm{mV}$ r.m.s. on 200 mA range)

Resistance:

Ranges: 200, 2k, 20k, 200k, 2000k, 20M Ω
Accuracy: \pm ($0 \cdot 2 \%$ of reading +1 digit)
$\pm(0 \cdot 3 \%$ of reading +3 digits) on 200Ω range
$\pm(2 \%$ of reading +1 digit $)$ on $20 \mathrm{M} \Omega$ range
Overload Protection: 500 V d.c. or r.m.s. a.c.
Size: $1800 \times 860 \times 450 \mathrm{~mm}$
Weight: 0.37 kg

Mode Rad Control
 Part 4

 PII Fili-in
 J. BURCHELL \& W.S.POEL

Although a standard servo mechanism such as that described last month can be used to operate a variable resistance motor controller this is very wasteful both of a servo and also of power.

A simple electronic speed and direction controller can be built using a Signetics NE544 servo amplifier chip which will give good speed control with forward and reverse direction as well.

The unit described in this article is suitable for use in electric boats and cars and gives excellent control over the speed of the model from full ahead to full astern with a distinct centre-off position.

The block diagram of the speed controller is shown in Figure 1 and this shows it to be essentially the standard servo system with the mechanical part of the feedback loop broken and extra output drive capability added to cope with the high motor currents encountered in electric boats and cars.

The internal pulse width is set up to be 1.5 ms wide as long as the input signal pulses are also 1.5 ms wide. In this condition there is no output from the circuit hence the voltage across the motor is zero.

As the input signal is increased in length the resultant error signal is amplified by the pulse stretcher and the resulting pulses applied to the output stage.

Fig. 1: Block diagram

The gain of the pulse stretcher is such that when the error pulse is 1 ms wide the output is continuous in nature and the motor is driven as hard as possible.

For input signals with a width of less than 1.5 ms the output signals are in the opposite phase and the motor direction is reversed.

A licence is required to operate radio control equipment. This costs $£ 2.80$ for five years.
Application forms are available from: The Home Office, Radio Regulatory Dept., Waterloo Bridge House, Waterloo Road, London SE1 8UA

Circuit

Figure 2 shows the circuit of the speed controller. Component values around the NE544 have been altered from the standard servo circuit to give the correct pulse stretcher gain and a definite off position. The output drive is provided by two TDA 1490 quasi-complimentary dual darlington devices, as it is beyond the capability of the NE544 to sink these sort of currents. The power supply is adequately decoupled by the $100 \mu \mathrm{~F}$ capacitors (C9, 10) and the output of the TDA 1490 devices decoupled to 0 V by the 47 nF capacitors (C11, 12). The NE544 receives its power from the receiver NiCad batteries keeping the high current motor supply separate.

Output currents larger than 5A can be accommodated by using output bridges built from discrete transistors, but this requires the use of special low saturation voltage devices and as these are rather expensive no details of this sort of output bridge are provided here.

One potential trouble with this sort of controller is the production of r.f.i. noise, but this has been kept under control by the inclusion of a special π filter across the motor.

Fig. 2: Circuit diagram of the electronic speed controller

Construction and testing

The p.c.b. and component overlay are shown in Figure 3. Construction is straight-forward and simple. The TDA1490 i.c.s must be insulated from the metal heatsink.

The toroidal choke (L1, L2) consists of 40 turns biflar wound on a Micrometals toroid, and should be located,

Fig. 3: (Top) component layout of the p.c.b. shown full size above

The finished speed controller showing the aluminium heat sink covering the components. The output transistors must be insulated from the heat sink

The component side of the finished p.c.b. without the heat sink. Compare this with the photographs of the prototype unit shown on the previous page

The radio frequency interference (r.f.i.) filter showing the bifilar wound toriodal inductors and the way in which the unit can be built on a small piece of Veroboard
components

together with two 47 nF capacitors (which must be disc ceramic types) as close as possible to the motor and not on the main p.c.b. A heatsink for the output devices is easily made from thin sheet aluminium folded so as to cover the p.c.b. Two small holes will need to be drilled in the heat sink to allow VR1 and VR2 to be adjusted.

Setting up
The only setting up needed is of the set centre (VR1) and set full power (VR2) presets. With the transmitter joystick at the centre of its travel adjust the set centre potentiometer so that the motor is stationary. Now move the joystick fully one way at which point the motor should start to revolve. The set full power preset should now be adjusted until the point at which the motor speed no longer increases is reached.

Next month we will cover the installation of the FM-80 system in different types of models including aircraft, boats and electric cars.

The Australian Scene

Sir: I thought your readers might be interested in the licensing requirements for radio amateurs in this country, since I understand that the UK does not have a "Novice" amateur certificate of proficiency.

Amateur radio here in Australia has seen a tremendous boost since the advent of CB (Citizens' Band) radio, which uses a slot between 27.015 and 27.225 MHz . Most amateur operators licensed within the last two years have experienced CB radio-indeed it was probably CB which gave them their first experience of two-way communications. I was involved for around a year in CB, which taught me a few basic principles about antennae, propagation of radio waves, v.s.w.r. and so on. So, the next logical step for me was the Novice certificate.

The Novice certificate of proficiency entails three exams, these being: 1. THEORY-a basic test of transmitting and receiving principles; valves; transistors and their operation; propagation and antennae. 2. REGULATIONS-a written (multiple choice) test on current rules and regulations governing the safe and legal operation of an amateur radio station. 3. MORSE CODE (CW)-the candidate must satisfy the examiner that he/she is proficient in the sending and receiving of numerals and plain language at a speed of five words per minute.

On passing these exams, the candidate is then given a callsign with the prefix VK (Australia) followed by a number which signifies the State of residence:

VK1—Australian Capital Territory (Canberra)
VK2 -New South Wales
VK3-Victoria
VK4-Queensland
VK5-South Australia
VK6-West Australia

My callsign is VK3NAY. The " N " signifies a Novice station, "VK3" signifies that I reside and operate in the State of Victoria, in the Melbourne area. If your short-wave listeners or amateurs have heard calls having a suffix starting with "V", e.g. VK3VAA, these are also Novice stations, it's just that we've run out of " $\mathrm{N}--$ " suffixes. The series will be VAA-VZZ, but what will be used next I do not know. YAA-YZZ and ZAA-ZZZ are Limited licence holders, limited to 6 metres and above.

Our full licence holders, who must achieve 10 w.p.m. c.w. proficiency and pass a much stiffer theory exam, have suffixes $A A-Z Z, A A A-A Z Z, B A A-B Z Z$ and $D A A-D Z Z$. We're about halfway through the " D " calls at present. A "VK-C--" callsign indicates a station that moves around Australia a lot, and uses the area or State number with his call.

Bands, modes and powers for the various classes of operator are as follows:

Novice: Phone - 10W mean a.m., 30W p.e.p. s.s.b. CW - 10W
$3.525-3.625 \mathrm{MHz}, 21 \cdot 125-21 \cdot 200 \mathrm{MHz}$,
$28 \cdot 100-28 \cdot 600 \mathrm{MHz}$.
Limited: RTTY, SSTV, ATV, f.s.k., f.m., a.m., p.m. s.s.b. 150 W mean, 400 W p.e.p. No c.w.
$52-54 \mathrm{MHz}, \quad 144-148 \mathrm{MHz}, \quad 1215-1300 \mathrm{MHz}$, $2300-2450 \mathrm{MHz}, \quad 3300-3500 \mathrm{MHz}, \quad 5650-5850 \mathrm{MHz}$, $10000-10500 \mathrm{MHz}, 24000-24250 \mathrm{MHz}$.
Full: As for Limited, plus c.w. and the following bands: $1800-1860 \mathrm{kHz}, \quad 3 \cdot 500-3.700 \mathrm{MHz}, \quad 7.000-7.150 \mathrm{MHz}$, $14.000-14.350 \mathrm{MHz}, 21 \cdot 000-21.450 \mathrm{MHz}$, $28 \cdot 000-29.700 \mathrm{MHz}$.

I have had the good fortune to work 3 " G " stations on 15 m , one contact lasting 30 minutes. The rig used was a TS120V, feeding simple dipoles only eight feet above ground level, and without baluns.

We now have a second CB service which uses 40 channels in the 50 cm band, $476-477 \mathrm{MHz}$ with F3 (f.m.) modulation. If the UK ever looks to a CB service, this is where to put it. There is no DX QRM, but contacts up to 200 miles have been achieved with 5W into a vertical gain antenna.

Phil Perry VK3NAY,
Wantirna South,
Victoria,
Australia

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold approximately 12 issues and is attractively bound and blocked with the PRACTICAL WIRELESS logo. Gold Letraset supplied for self blocking of volume numbers and years.
Price $£ 4.10$ including postage, packing and VAT. Why not place your order now and send the completed coupon below with remittance to: IPC Magazines Ltd., Post Sales Dept., Lavington House, 25 Lavington Street, London SE1 OPF.

its easith widullulil

Part 2

Construction

The unit is mounted in a standard Bazelli case. Drilling details can be taken from the front panel markings as detailed in Fig. 8. Four holes are also needed in the base of the box for the stand-offs which support the p.c.b. These can be marked through using the board as a template, remembering that the rear of the finished board should fit 4.5 mm forward from the back of the case to clear the grommets. If fitted too far forward, the p.c.b. will foul the front panel controls, see photographs. Three grommets are fitted in the rear panel, 3 mm higher than the p.c.b. and placed to take the three flying leads, i.e., the coaxial output lead to the Purbeck Y input, the lead to the ext trig socket and the lead from the alt gate socket. The 180° 5 pin DIN supplies socket is also mounted on the back panel, but higher up, clear of the p.c.b. The exact position is not important. Note that one pin is not used, and ensure that the metal shell of the socket makes good contact to the metal case. A short jumper lead with a $180^{\circ} 5$-way DIN plug at each end connects the Dual Trace Unit to the Purbeck.

Although only four pins are used (the Dual Trace Unit does not use the +150 V stab supply), all five should be wired to match the socket on the Purbeck front panel.

A sixth wire connects the metal shells of the two plugs together and should on no account be omitted.

Having completed all the drilling and prepared the metalwork generally, check that the controls, p.c.b. and power sockets all fit; much better find out now if they don't, rather than later on! All being well, it is time to load the p.c.b. Before fitting any components, fit the board pins, of which there are 28. As in the Purbeck, the 733 video amplifier chips must mount direct on the board to keep lead lengths to a minimum. The four c.m.o.s. chips however can be accommodated in i.c. sockets; on balance this is well worth doing, even though the sockets cost nearly as much as some of the i.c.s! As the design does include c.m.o.s. devices, make sure before you start that you
have a soldering iron with a three core mains lead and that the earth lead is in good order and properly earthed. The small amount of point to point wiring should be completed after all the components have been fitted.

With the p.c.b. complete and carefully checked, it is time to turn to the attenuators. The two input attenuator switches S501 and S502 are constructed similarly to that of the Purbeck, but with one less position. The Y2 channel attenuator S502 is mounted rotated 180° relative to S 501 , to bring the trimmers to the right hand side where they can be easily reached for adjustment. With the attenuators complete and visually checked, the loading of the front panel components can begin. A transparent film overlay is available for this unit marked in a matching style to the Purbeck.

Fit the p.c.b. stand-offs in the base of the case and the grommets in the rear panel. Then fit all front panel controls and sockets except the four rotary switches. The two 400 V working $0 \cdot 1 \mu \mathrm{~F}$ capacitors C501, 502 should now be mounted on the a.c./d.c. coupling switches S501, 502. Also wire R501, 502 between these switches and the input sockets.

Fit the printed circuit board onto the four stand-offs, feed the coaxial lead through the grommets and connect them to the appropriate board pins. Wire the Variable gain controls R517, 518 and the shift controls R519, 520 to the appropriate pins on the p.c.b. as in Fig. 11 noting carefully which wires cross over.

Next fit the front panel rotary switches, having prewired them as far as possible-e.g., R523 and C522 ready mounted on S505, using spare contacts as anchoring points for the other ends of these components. C522 is grounded to the p.c.b. ground plane via the outer of the short length of coaxial cable whose inner connects R523 to R648 and C621. R521 and 522 mount between the board and S505a as in the photographs. Wiring up the mode switch S506, the two input attenuators, and the supplies from the rear panel socket to the p.c.b., concludes the constructional work. Do not fit the cover at this stage, but carefully centre all the pre-set potentiometers.

Resistors
$\frac{1}{4}$ W 5\%

10Ω	4	$R 607,608,611,612$
47Ω	3	$R 633,644,648$
68Ω	2	$R 501,502$
330Ω	4	$R 605,606,609,610$
510Ω	1	$R 642$
680Ω	1	$R 662$
$1 \mathrm{k} \Omega$	10	$R 515^{*}, 516^{*}, 603,604$,

$1.2 k \Omega \quad 4 \quad$ R623,624,625,626
$1.3 \mathrm{k} \Omega$
1
R643
R613,614,615,616, 654
$2 \mathrm{k} \Omega$
$2 \cdot 2 \mathrm{k} \Omega$
R647
R521,522,523
R655
$2.4 \mathrm{k} \Omega$
R645,657,663,665
$3.6 \mathrm{k} \Omega$
R652
R638
$3.9 \mathrm{k} \Omega$ R666
$5.6 \mathrm{k} \Omega$
R646
R660
R653
R511*,512*,627,628
R636
R651
R631,632,650,657
R649 (select on test)
R635,644
R507*,508*,658,661, 664
$470 k \Omega \quad 2$ R601,602
$910 \mathrm{k} \Omega \quad 2$ R505*,506*
$1 \mathrm{M} \Omega$
6 R503,504*,509*, 510*,513*,514*
*1\% tolerance

Capacitors

Ceramic

47 pF	2	C509,510
330 pF	2	$\mathrm{C} 601,602$
470 pF	2	$\mathrm{C} 515,516$
1 nF	1	C630

Ceramic Disc		
10 FF	3	$\mathrm{C} 625,627,628$
$0 \cdot 1 \mu \mathrm{~F}$	10	$\mathrm{C} 603,604,605,606,611$,
		$612,615,616,619$,
		620

Polyester $4.7 n F$ $0.1 \mu \mathrm{~F}(400 \mathrm{~V})$

2 C521,522
Tantalum
$4.7 \mu \mathrm{~F}(10 \mathrm{~V}) \quad 1 \quad \mathrm{C} 629$
$17 \mu \mathrm{~F}(16 \mathrm{~V}) \quad 12 \mathrm{C} 607,608,609,613$, 614,617,618,621, 622,623,624

Min. Trimmer 22pF

14 C503,504,505,506,507, 508,511,512,513, 514,517,518,519,520
Semiconductors

Transistors		
E421	2	$\operatorname{Tr} 601,602$
BC107	4	$\operatorname{Tr} 607,608,609,610$
BSV81	4	$\operatorname{Tr} 603,604,605,606$

Integrated Circuits

CD4001	1	IC606
CD4047	1	IC604
CD4052	1	IC607
CD4081	1	IC605
CA3018	1	IC603
LM733	2	IC601

Switches
Min. s.p.s.t. toggle 2 S501,502
Rotary 2p4w 1 S505
Rotary 3p4w 1 S506
Rotary 2p4w 2 S503,504 (see text)

Miscellaneous

Case, Bazelli B16; Printed Circuit Board; 50Ω b.n.c. sockets UG1094/U(2); 5 pin 180° DIN socket (1); 5 pin 180° DIN plug (2); Sifam collet knobs with nut covers, 15 mm wing (4), 15 mm plain (4); p.c.b. mounts (4); 50Ω b.n.c. plug (1); Min. coaxial cable $50 \Omega(300 \mathrm{~mm})$; Front panel overlay (1). Sockets 14 pin d.i.l. (3), 16 pin d.i.l. (1).

Purbeck modifications

Whilst construction of the Dual Trace Unit is now complete, there are some necessary modifications to be performed on the Purbeck itself. These are shown in Fig. 10. The reason for changing S6's circuitry lies in the nature of the signal in the 'scope's Y amplifier when the Dual Trace Unit is in the Chopped mode. The Y signal switches rapidly between the two traces displayed, at approximately a 100 kHz rate. The two traces may be displaying no
waveform at all-just two straight lines-but the Y signal in the Purbeck is still a 100 kHz square-wave with a peak-to-peak amplitude equal to the separation between the traces, which could be up to full screen. With the original/single pole INT/ExT trigger select switch, the fast edges of this square-wave are partially coupled via the small capacitance of the open contacts into the trigger circuit. Although much attenuated, they are still sufficient to
upset the trigger signal fed in via the external trigger socket from the Dual Trace Unit, tending to make the trace synchronise to the chopping frequency. The modified arrangement with the double pole switch entirely avoids this problem. In fact, it is a worthwhile modification for any Purbeck owner who has experienced problems when using external trigger, even if they have no intention of building the Dual Trace Unit. Note also the changed components associated with the external trigger input sockets.

Fig. 8: The front panel of the Dual Trace Unit shown full size

Fig. 9: The double-sided printed circuit board is used for the \mathbf{I} shown full size above with the track pattern

ual Trace Unit. The ground plane pattern (component side) is for the opposite side shown full size below

Fig. 10: Modifications needed to the PW Purbeck oscilloscope to enable the Dual Trace Unit to be used with it

Testing

Check with a multimeter that the shell of the 5 pin DIN socket and the p.c.b. ground plane are both connected to the metalwork (ground) and that none of the supply pins of the DIN socket is short-circuit to ground. The unit should now be connected to the Purbeck oscilloscope, which should be set to $100 \mathrm{mV} /$ div, $\times 1$, a.c. coupled, and the 'scope switched on. Check straight away that the $+12 \mathrm{~V},+5 \mathrm{~V},-6 \mathrm{~V}$ and -12 V supplies at the pins of the Dual Trace Unit's supplies socket are present and correct. (If not, switch off immediately and investigate.) Set the trigger selector S505 and the mode switch S506 to Y1, the Y1 input attenuator S 503 to $100 \mathrm{mV} /$ div and the Y 1 gain control to maximum, i.e., fully clockwise. The Y1 shift control should be centred, and the d.c. conditions set up as follows.

1. Centre the trace on the screen of the Purbeck, then switch the Purbeck's input to d.c. coupled.
2. The trace will almost certainly move off centre and possibly off screen. If this happens set the Purbeck to 1V/div. Using the Y1 shift control of the Dual Trace Unit R519, re-centre the trace, switching back to $100 \mathrm{mV} /$ div to enable this to be completed exactly. If the trace cannot be completely centred leave the Y1 shift control at the end of its travel where the trace is nearest centred and complete centring with SET ZERO control R637 on the board.
3. Y1 balance control is now set up as follows: Rotate the gain control RV1, and it will, almost certainly, be found that the trace moves up and down. Adjusting R617 one way or the other will increase or decrease the amount of movement and R617 should be carefully set so that rotating the gain control over its whole travel results in no vertical movement of the trace. Note that the setting of R617 to achieve this will of course result in the trace not being centred.
4. Having set R617 the Y1 balance control, the SET ZERO control R637 should now be set such that the Y1 shift control R519 produces, at the extremes of its travel, an equal shift in the upwards and downwards directions relative to the centre of the screen. R629, the pre-set SHIFT CAL control should then be adjusted so that the full range of the front panel shift control just shifts the trace from the top to the bottom of the graticule.
5. Set the mode switch to select Y2 only and set up the Y2 balance pre-set R618 so that varying the Y2 gain control R518 does not change the vertical position of the trace. This is carried out as in 3 (above). Also adjust the Y2 preset SHIFT CAL control R630 to set the range of the Y2 front panel shift control R520 to eight vertical divisions. This range may not be centred equally above and below the graticule centre line; this is due to differing offsets in

Fig. 11: The component placement diagram for the Dual Trace Unit. Note that the components are fitted to the ground plane side of the p.c.b. taking great care to ensure that connections are only made to the ground plane where indicated. The components are numbered odd for Channel 1 and even for Channel 2

Fig. 12: These links must be made using insulated wire, on the opposite side of the p.c.b. to the components
the 733 video amplifiers IC601 and 602. Any off-centring of the Y2 shift range can be halved by slightly re-adjusting the set zero pre-set control R627. This splits the difference between the Y1 and Y2 shift controls. It also completes the setting up of the d.c. conditions.

Input attenuators

The next step is to set up the input attenuators for correct frequency response, and this requires a squarewave generator at say 5 kHz , with adjustable output. The calibrator described in "Passive 10:1 divider probe for the $P W$ Purbeck" in the June 1979 issue is very suitable, but arrangements will need to be made to "tee" it into the +12 V stab supply as you can't plug both it and the Dual Trace Unit into the Purbeck's accessory power socket at once!

It is assumed in the following that the $10: 1$ divider probe, which is currently used with the Purbeck, is correctly set up for use with that instrument, and that it will also be used with the Dual Trace Unit. This being so, it would clearly be inconvenient to have to re-adjust the probe every time it is changed over from the scope to the Dual Trace Unit and vice-versa, and the following procedure is designed to avoid this.

Probes

Check using the calibrator that the 10:1 divider probe really is correctly set up for use with the Purbeck. Now unplug the probe from the latter and connect up with the Dual Trace Unit.

Always switch the 'scope off whilst plugging in or disconnecting anything from the accessory power socket.

Connect the probe to the Y1 input of the Dual Trace Unit which should be set to Y1 only, Y1 trigger source. Set the Y1 var gain control to maximum, the Y1 input attenuator to $10 \mathrm{mV} / \mathrm{div}$, and the calibrator to 20 mV output.

The resultant square-wave on the screen will probably not have square leading edges (see Fig. 3 of the June 1979 article on the 10:1 passive probe). Adjust C503 to obtain the correctly compensated waveform of Fig. 3a.

Now remove the probe and with the square-wave generator connected directly to the Y1 input set up C507, 513 and 519 in turn at the $100 \mathrm{mV} / \mathrm{div}, 1 \mathrm{~V} / \mathrm{div}$ and $10 \mathrm{~V} /$ div settings of S 503 , using an appropriate output from the calibrator and setting of Y1 var Gain for each range. Now re-connect the $10: 1$ probe between the calibrator and the Y1 input socket and adjust C505, 511 and 517 in turn similarly.

This completes the setting up of the Y1 input attenuator, and the whole procedure should now be repeated to set up the Y2 input attenuator. With the Y1 gain control at maximum (counter clockwise) set the gain by adjusting gain cal preset R621. Similarly set the Y2 gain with R622, and mark the $\times 0 \cdot 5, \times 1$ and $\times 2$ settings on the panel. This finally completes the setting up of the unit, which is now ready for use.

I he tinal part will cover using the Dual I race Unit with the Purbeck oscilloscope.

A transparent front panel overlay is available to fit the case recommended. This overlay can be obtained from the editorial offices, price $£ 1.60$ including postage. It is understood that Watford Electronics will be supplying ready punched and printed cases for this project.
the case. This raises the display to around 45° to the bench. Automatic polarity indication is included in the display, as is overrange.

The manufacturers claim a battery life on continuous operation of typically 200 hours for an alkaline battery, or 100 hours for a zinc carbon, the type used being a standard 9 V , NEDA 1604 ("PP3" size). A "battery low" indication is given on the display when approximately 20 per cent of the battery life remains. A battery eliminator is available for mains operation.

Of the six resistance ranges provided, three have a fullscale voltage of less than 250 mV , and therefore will not turn on a silicon diode junction, while the remainder have a terminal voltage of at least $700 \mathrm{mV}(1 \mathrm{~V}$ on the $2 \mathrm{k} \Omega$ range) and will turn silicon diodes on. By the selection of an appropriate range, it is therefore possible to ignore the effect of diodes on in-circuit measurements, or not, as desired.

The test leads provided are 1.2 m long, terminated in special safety-shrouded 4 mm connectors, but standard 4 mm banana plugs will also fit the meter sockets. Only test prods are included, but other clips with a 4 mm socket could be substituted for these.

Handbook

The measurement ranges of the instrument are summarised in the specification table, but full details are given in the handbook, which is among the most comprehensive seen for an instrument of this type. Subjects covered include full specification, operating instructions, check-out list, and measurement techniques (including conversion tables for various input waveforms). A detailed description of the theory of operation (the dual-slope integration technique is used, with a quartz crystal clock running at a multiple of the mains supply frequency) is given, plus maintenance, calibration, and trouble-shooting procedures, with circuits, component layouts, etc., provided.

The handbook is rounded off with a list of optional accessories available. These include carrying case, temperature probe, high voltate probe, two r.f. probes, current transformer, current shunt and battery eliminator.

The 8022A is covered by a full two year Warranty, and is available, price $£ 102.35$ including VAT, plus $£ 2.50$ p. and p., direct from Fluke International Corporation, Colonial Way, Watford, Herts WD2 4TT, telephone (0923) 40511, or from their distributors.

PRODUCTION LINES alan martin

New Bench/Portable d.m.m.

Microprocessor techniques have allowed Fluke to incorporate some very useful features in their latest low cost $4 \frac{1}{2}$ digit 8050 A d.m.m. For, apart from being a very compact and highly accurate bench/portable model with 39 measurement ranges and nine functions, the 8050 A also provides unique dB computing and offset modes in addition to a high performance true r.m.s. capability.

In the dB mode, the 8050A d.m.m. allows the user to call up any of the 16 reference impedance levels from 8 to 1200 ohms and to display the readings directly in dBs.

Additionally, a reference/offset mode allows any input signals to be stored either as a reference value for relative dB readings or as an offset against any reading. In offset mode, the user can zero-out any lead resistances for really high resolution impedance measurements or set up a reference offset and display only the variance from that reading.

These absolute and relative dB modes with offset greatly simplify measurements in audio, amplifiers and telecommunications circuits as well as in production testing where only the variance from the stored value may be required. The offset facility is available on all functions such as a.c./d.c. Volts or Amps, Resistance or Conductance.

The high resolution $4 \frac{1}{2}$ digit I.c.d. display is matched by a basic d.c. accuracy of 0.03% specified over a full year. Measurements can be made down to $10 \mu \mathrm{~V}, 10 \mathrm{nV}, 10 \mathrm{~m} \Omega$ with Fluke's true r.m.s. hybrid circuit providing excellent spectral response

If you please

Would readers kindly mention "Production Lines", when applying to manufacturers or suppliers featured or. this page.

600MHz Mini Counter

From Sota Communication Systems Ltd., comes the Davis 7208 v.h.f.-u.h.f. Frequency Counter which incorporates the latest l.s.i. technology in a wide range portable instrument at a reasonable price.

Among the outstanding features of the 7208 are, an all metal case for r.f. shielding, large 10 mm 8 -digit l.e.d. display, built-in prescaler, gate light, proportional control crystal oven (optional), automatic decimal point, and with the built-in v.h.f.-u.h.f. preamp the 7208 can directly measure low level r.f. signals from r.f. generators. The 7208 can be operated completely portable with the NiCad battery option.

Priced at $£ 145.00$ plus VAT, the 7208 is available from the exclusive UK distributor: Sota Communication Systems Ltd., 26 Childwall Lane, Bowring Park, Liverpool L14 6TX. Tel: 051-480 5770.

More Bits/Tips

Adcola Products has announced the extension of their range of iron plated soldering bits/tips to include soldering tips suitable for the Weller Magnastat tools. Available in ten different profiles and three different temperatures rated $316^{\circ} \mathrm{C}, 370^{\circ} \mathrm{C}$ and $426^{\circ} \mathrm{C}$.

Adcola has formed a Plated Products Division whose aim is to solely concentrate on the production of iron plated bits, at realistic prices, with an ever widening range of profiles and types to suit every requirement of the user of electrically heated soldering tools.

Further information from: Adcola Products Limited, Gauden Road, London SW4 6LH. Tel: 01-622 0291/3.

New Radio I.C.s

Two new circuits which will considerably increase the level of integration possible in professional radio equipment have been introduced by Plessey Semiconductors. Both products, the SL6270 and SL6310, are additions to the recently introduced SL6000 series of radio linear circuits.

The SL6270 is a microphone amplifier with integral gain control. The circuit provides a constant output level whether the speech into the microphone is very loud or soft and therefore applications are anticipated in the tape recording and public address systems fields.

One of the limitations of battery life in hand-portable receivers is the high quiescent power consumption of the audio amplifier. The SL6310 is designed to avoid this excessive consumption by means of a novel feature which allows the circuit to be switched off in weak or noisy signal conditions by application of a 'mute' signal. Even when operating normally, the standby current is only 5 mA , half that of comparable products, but the SL6310 is still capable of 500 mW output power.

Plessey Semiconductors Ltd., Cheney Manor, Swindon, Wiltshire. Tel: (0793) 36251.

Look in

Augmenting their existing Bim 2000 range of Bimboxes, Boss Industrial Mouldings Limited have now introduced a new, 2 part, deep profile version, available with base and lid colours in black, grey, orange, or blue plus the added attraction of optional clear lid.

Manufactured in ABS with optional clear lid in SAN, as with all Bimboxes, 5.08 mm spaced slots are incorporated on all sides of the base section capable of supporting 1.5 mm thick p.c.b.s.

Both the coloured and the transparent versions of the lid are

Power Supply/Charger

The PS 1200 is a power supply designed primarily for use with Trio TR2200G, TR2200GX, TR3200, TR2300 and Icom IC-202S and IC402 transceivers. The unit provides a 13.8 V regulated d.c. output at 750 mA and also a constant current charging supply (45 mA) for the optional battery pack. This enables the operator to use the transceiver as a base station whilst at the same time charging the transceiver battery pack for portable use.

Powered by the a.c. mains supply, the unit is protected by inbuilt circuitry against short-circuit and thermal overload. The antisurge fuse is rated at 1 amp .

The PS 1200 is housed in an attractive metal case which measures $150 \times 75 \times 97 \mathrm{~mm}$ deep, and weighs 1.35 kg .

Obtainable either direct or through dealers, the VAT inclusive price is $£ 29 \cdot 50$, postage and packing $£ 1.25$.

LAR Modules Ltd., 27 Cookridge Street, Leeds LS2 3AG. Tel: (0532) 452657.

Sommerkamp 2m

Transceiver

The Sommerkamp TS280 FM 2-metre VHF mobile transceiver is probably the world's most compact 80 channel 50 watt 2 -metre FM transceiver. The high output power (quoted in the manufacturer's literature as 75 watt input) is achieved by adding the high power amplifier section at the back of the transceiver unit, thereby achieving a total depth of 290 mm excluding controls, enabling the unit to be fitted under dash in most vehicles.

Of course, the high power capability means that the unit provides an excellent base station when used with a good high current regulated supply. The high power transistor output switch is fully protected against adverse load conditions, the p.a. shutting down immediately in the case of excessive s.w.r., etc.

80 channels at 25 kHz spacing from $144-146 \mathrm{MHz}$ are achieved by using a pull switch on the squelch control to select lower end of the band. Repeater
selection is automatic thereby making this unit extremely easy to operate in mobile conditions. The bright green digital display directly reads the channel in use with the exception that RO reads as 40 .

The receiver sensitivity is quoted $0.4 \mu \mathrm{~V}$ for 12 dB sinad with a squetch threshold less than $0 \cdot 1 \mu \mathrm{~V}$. The total current drain of the unit on full power transmit is 8 amps at 13.8 V d.c.

Also available for the TS280 is a variety of microphone options such as telephone handset with p.t.t. switch, a selective tone calling microphone, a loudspeaker microphone and a mobile hand microphone with built-in volume control.

Attractively finished in metallic blue with a dark green front panel, the transceiver is economically priced at £203.55 including VAT and delivery charge.

The TS280 is available from: Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex CM14 4BN. Tel: (0277) 219435 and 226470

secured by 4 screws running into base corner bosses, and, with the lid incorporating a small flange which sits recessed into the base, these boxes exhibit excellent water repellent properties.

Ideal for use in a wide variety of timer/control type applications, the
clear lid version in particular of this $150 \times 80 \times 76 \mathrm{~mm}$ deep Bimbox is eminently suitable where viewing of, but not necessarily access to, internal components is required.

Boss Industrial Mouldings Ltd., 2 Herne Hill Road, London SE24 OAU. Tel: 01-737 2383.

names today (although they have been swallowed up by large groups and exist only by virtue of "badge engineering"), but in the early ' 30 s there were only two major examples of this practice-the "His Master's Voice" and "Marconiphone" trademarks of the giant EMI concern. Later, Philips marketed an almost identical range, both under their own name and under that of Mullard. But the rest of the multitude of brand names were largely independent and individualistic. Some were offshoots of firms longestablished in the electrical or entertainment fields (such as GEC, Ferranti and Decca) while others were set up by pioneers like Frank Murphy, E. K. Cole and Leslie McMichael.
This vast array of firms, large and small, were served by appropriately extensive component and valve industries. In this favourable climate, competition flourished and bore fruit: one of the first advances was that the town-dweller, at least, was freed from the drudgery of carrying accumulators to be charged as the new range of all-mains sets appeared. For the country folk, who as yet had no electricity supply, it was common for similar batteryoperated versions to be supplied; these had the virtue of looking as modern, even if they didn't perform as well! Indeed, it was not unusual for three variants of a basic chassis to be produced as the mains types had to be further sub-divided to suit either a.c. or d.c. supplies. The development of the universal a.c./d.c. sets came somewhat later.

Superhets

Another early advance was the widespread adoption of the superheterodyne receiver. True, some t.r.f.s continued in production (notably by A. C. Cossor, with their loftilynamed "Super-Ferrodynes"), but the superiority of the superhet was soon clearly established-particularly as the number of radio stations and the power radiated by them increased. Good selectivity became an essential selling point.

For a number of years, the favoured i.f. lay in the $110-130 \mathrm{kHz}$ band and the amplification possible at these comparitively low frequencies with even the earliest h.f. pentodes and tetrodes can be an eye-opener to anyone lucky enough to be able to find a working set of the period. With this increased gain, however, came the need for some form of automatic gain control, then termed "automatic volume control". It didn't take long for simple a.v.c. to develop into delayed and squelch versions.

Sometimes, the two would be combined and the characteristic could be adjusted according to the listener's requirements. The Ekco "Silent Tuning" models, for example, had a small knob which could be set for either "all stations" (minimum delay), through to a point where only the strongest signals would be received; in between, there would be complete silence in place of the usual jumble of music and speech.

[^2]Selectivity Problems
Improved selectivity brought with it extra problems for the designers, one of which was the need for accurate tuning if the harsh reception resulting from working on the edge of the acceptance band was to be avoided. Improved dials were a partial answer and, from having simple markings of $0-100$, they advanced to having wavelengths and station names displayed; still something more was needed, however. Thus, tuning indicators were introduced which sensed the drop in h.t. current drawn by the i.f. amplifier valves when the correct tuning point, and therefore the point of maximum a.v.c. bias was attained. The indicator might take the form of a small meter or, more commonly, a long neon lamp mounted beside the dial. In due course, that famous gimmick the "magic eye" (a miniature c.r.t.) displaced both types.

Another line of thought was that it would be better to take the tuning out of the hands of the listener altogether and make it entirely automatic. There were three main approaches to this proposition: (a) electrical; (b) mechanical; and (c), a combination of both. Bush and EMI preferred method (a) and used a bank of push switches to select one of a number of pre-tuned groups of tuning coils. If the system was not to become too elaborate, however, it had to be restricted to "simple" superhets which did not possess r.f. amplifiers.

This was quite a drawback at a time when this feature was popular and did not apply to the mechanical method (b) favoured by, amongst others, GEC and Decca. Here, the push-buttons operated on cams which turned the gang capacitor to the correct position thus requiring no extra sets of coils; a small clutch meant that manual tuning could be instantly selected if desired. It must have been a good design, because it survives 40 years later in many of today's car radios!

Ekco and Plessey went for method (c)-the electromechanical solution. These two concerns (who made the "Defiant" range for the Co-op) came up with what is perhaps the ultimate method using light-action push switches to control a small electric motor which did the actual work of turning the capacitor. To ensure accuracy, an a.f.c. system was incorporated and, once again, the basic design is still in use today.

Another problem was the attenuation of the upper audio frequencies caused by the narrow-bandwidth i.f. amplifiers. To alleviate this, some high quality designs (such as the RGD, for example) had a switch which broadened

A Murphy Type A92 a.c. mains receiver (1939), still going strong!
the i.f. response curve when reception conditions allowed. RGD (Radiogram Development Company) and EMI were probably the market leaders in this field, with concerns producing massive multi-valve sets with ponderous autochange record-players which gave the impression of having been built in a shipyard!

Wide Range

Nevertheless, not all radios in the ' 30 s were on such a large scale. As the decade drew to its close a wide range of types was available, right down to semi-miniature sets which, having regard to the big valves that they used, were masterpieces of design.

Portable sets were, at last, becoming really portable thanks to the advent of 1.4 V filament valves; before this, there was little difference in size and weight between a "portable" and a normal domestic model!

Thus, in 1939, there was an enormous range of radios on offer to the public and every taste and pocket was catered for. There were, however, two clouds on the horizon-one small, the other very large. The small cloud was television, by now well out of the experimental stage but still very much the poor relation of sound broadcasting-the second cloud was, of course, the prospect of war. With the outbreak of the Second World War the British radio industry was reduced to making just two standardised domestic models; one for mains use and the other powered by batteries.

Thus, the vintage years of radio came to an end, in the words of T. S. Eliot, "not with a bang, but a whimper".

LOGIC LAMP DIMMER

This circuit is for adding a dimming facility to "sound-tolight" disco lighting systems. With coloured lamps of a given wattage, yellow and red usually seem to be brighter than blue and green, but conventional triac light dimmers cannot be readily interfaced with disco lighting equipment.

The circuit shown in Fig. 1 is that of a logic lamp dimmer which can be included in the final stage of many of the recently published lighting circuits.

The quadruple NAND gate IC1 is fed at one input with a full-wave rectified signal of 5 V amplitude (see Fig. 2(a)) and the disco lighting control signal is fed to the other input. The full-wave signal (unsmoothed) may be taken from a suitable point in the lighting system p.s.u. When enabled by the control signal, the output of the gate gives a series of short positive pulses synchronised to the 50 Hz mains. These pulses are integrated by the RC network (R1 VR1 and C 1), resulting in a waveform having some resemblance to a sawtooth. This signal is then converted into a square-wave via the Schmitt trigger IC2. As VR1 is varied the slope of the sawtooth waveform is altered, and consequently the point in the cycle at which the Schmitt trigger will operate; thus the pulse width at the output is increased or reduced.

Up to four channels can be simultaneously controlled simply by using all four nand gates of IC 1, and the timeconstants of the RC networks can be varied until the desired effect is achieved. With the values shown, the output pulse width may be adjusted to have a duration of up to 8 ms -it should never exceed 10 ms however.

Fig. 1

The NEW Marshall's 79/80 calalogue is just full of components

and that's not all . . .

... our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's.
These include Audio Amps, Connectors, Boxes. Cases. Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, I.Cs, Knobs. LEDs. Multimeters. Plugs. Sockets, Pots. Publications, Relays, Resistors, Soldering Equipment, Thyristors. Transistors, Transformers, Voltage Regulators, etc.. etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our own credit card facility.
Plus - Twin postage paid order forms to facilitate speedy ordering.
Plus - Many new products and data.
Plus 100s of prices cut on our popular lines including I.Cs. Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue
Available by post 65 p post paid from Marshall's, Kingsgate House, Kingsgate Place, London NW6 4TA. Also available from any branch to callers 50 p.

Retail Sales: London: $\mathbf{4 0}$ Cricklewood Broadway, NW2 3ET. Tel: $01-452$ 0161/2. Also 325 Edgware Road, W2. Tel: 01-723 4242. Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-332 4133. And Bristol: 108A Stokes Croft, Bristol. Tel: 0272426801 /2.

TOTAL AMPLIFICAIION FROM CRIMSON ELEKTRIK

——WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIER POWER AMPLIFIER

MC 1

CPR 1
CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload inargin is a superb 40dB, this together with the high slewing rate ensures clean top, even with high output cartridges tracking design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 FiV , disistortion $<.005 \%$ at 30 dB overroad 20 kHz .

Following this stage is the flat gain/balance stage to bring tape, tuner. etc. up to power amp. signal levels. Signal to noise ration 85 db : slew-rate $3 \mathrm{~V} / \mathrm{US}$:
T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<\mathbf{0 0 8 \%}$ at any level. F.E.T. mutting. No controls are fitted. T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at any level. F.E.T. muting. No controls are fitted.
There is no provision for tone controls. CPR 1 size is $138, ~ 80 \wedge 20 \mathrm{~mm}$. Supply to There is no pr
be ± 15 volts.

MC 1-PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coil cartridges. Send for details.
X02 : X03-ACTIVE CROSSOVERS
X02 - two way, X03 - three way. Slope 24dB/octave. Crossover points set to order
within 10\%.
REG 1-POWER SUPPLY
The regulator module, REG 1 provides $\mathbf{1 5 - 0 - 1 5 v}$ to power the CPR 1 and MC 1 . It can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit will accommodate it.

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording stutios, educational and government establishments, etc.' who have been usingCRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is available in five types, they all have the same specification: T.H.D. typically 01% any power 1 kHz 8 ohms. T.I.D. insignificant; siew rate.
 25 mm .

POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a 120-240 primary and single bolt fixing (includes capacitors/bridge rectifier).

PRE-AMPLIFIER KIT

This includes all metalwork, pots, knobs etc. to make a complete pre-amp with the CPR 1 (S) module and the MC $1(\mathrm{~S})$ if required.

ACTIVE CROSSOVERS X02.......... 15.16 X03......... $£ 23.58$ POWER AMPLIFIER MODULES CE 608 60W/8 ohms $35-0-35 \mathrm{v}$ £ 19.52 $\begin{array}{ll}\text { CE } 1004 & 100 \mathrm{~W} / 4 \mathrm{ohms} \\ \text { O5-0.35v } & \mathbf{1 2 3 . 0 2}\end{array}$ CE $1008100 \mathrm{~W} / 8$ ohms $45-0-45 \mathrm{v} ~ £ 25.96$ $\begin{array}{ll}\text { CE } 1704 & 170 \mathrm{~W} / 4 \text { ohms } 45-0-45 \mathrm{v} \\ \text { CE } & \text { 1708 } \\ 170 \mathrm{~W} / 8 \text { ohms } 60-0-60 \mathrm{v} & \mathrm{E} 33.90\end{array}$ TOROIDAL POWER SUPPLIES CPS1 for 2. CE 608 or $1 \times$ CE 1004 £16.56 CPS2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608.
 CE 1704.
 CPS6 for $2 \times$ CE 1704 or 2, CE CE 1708 HEATSINKS
Light duty, $50 \mathrm{~mm}, 2^{\circ}$............................ Medium ${ }^{\circ}$ power, 100 mm $1.4^{\circ} \mathrm{C} / \mathrm{W}$ Disco/group, $150 \mathrm{~mm}, \quad 1-1^{\circ} \mathrm{C} / \mathrm{W}$ Fan, 80 mm , state 120 or 240 v . Fan mounted on two drilled $65^{\circ} \mathrm{C}$ max with two ${ }^{2}$, 170 W modules.

PRE-AMP KIT POWER $£ 38.07$ POWER AMP KIT £35.03 PRE-AMPS: These are available in two ver-sions-one uses
standard compostandard compoother (the S) uses MO resistors where necessary and tantalum capa-
citors. CPRI. CPRI $£ 31.65$
CPRIS . . . $£ 40.87$ $\mathrm{MCl} \ldots . . \mathrm{£21.28}$ MCIS £33.17 POWER SUPPLY REGI $\mathbf{~} 6.90$ TR6....... £1.97 BRIDGE
DRIVER, BDI
Obtain up to 340 W
using $2 \times 170 \mathrm{~W}$
using $2 \times 170 \mathrm{~W}$ module BDI $£ 5.75$

CRIMSON ELEKTRIK

1A STAMFORD STREET. LEICESTER. LE1 6NL Tel: (0533) 553508
U.K.-please allow up to 21 days

All prices shown are UK only and include VAT and post. COD 90p extra, £100 limit. Export is no problem, please write for specific quote. Send large SAE or 3 International Reply Coupons for detailed Information.
Distributors:-
BADGER SOUND SERVICES LTD.
46 WOOD STREET,
LYTHAM ST. ANNES
LANCS FY8 1QG.
"MINIC TELEPRODUKTER BOX 12035: S-750 12 UPPSALA 12, SWEDEN"

SIGNAL INJECTOR

This simple signal injector can be used to test radios, amplifiers, loudspeakers, etc. Capacitor C1 charges up through R1 until the uni-junction transistor conducts: the capacitor is immediately discharged and, of course, the cycle starts again.

This results in a series of positive-going spikes at the output, possessing energy at both a.f. and r.f. The components can be mounted to correspond with the layout of the circuit diagram-capacitor C2 may be fairly bulky as it is a non-electrolytic type, but this is to isolate the circuit from high bias voltages which may be present on the equipment under test.

If a 220Ω resistor is connected between the test-leads, and the resulting wire loop is held near a working radio, the tone should easily be heard (not on f.m.).
A. P. Cooper, Wimborne, Dorset.

SOUND EFFECTS GENERATOR

Although the "programmable uni-junction transistor" (p.u.t.) is a generally available device, there are relatively few circuits around which use it despite its similarity to the u.j.t.

In this circuit, two relaxation oscillators have been coupled together via a transistor biased by a phototransistor. The frequency of the oscillations associated with $\operatorname{Tr} 4$ is varied by VR 1, while those associated with Tr 1 progressively decay due to the discharge of C2 (recharged by closing S1).

The p.u.t's can be either MEU21 or 2N6027 devices, and the photo-transistor was an OCP71.

By varying the values of the components, a wide range of eerie and interesting audio effects can be produced.

P. Gatehouse,
 Stowe,
 Bucks.

AUTOMATIC CLOCK DIMMER

This circuit consists of a 555 timer connected as a variable duty cycle oscillator. Capacitor C1 charges via R1, D1 and the l.d.r. and subsequently discharges through IC1 pin 7 via R2. As the ambient light level increases, the resistance of the l.d.r. falls and thus the length of the charge cycle decreases. Since the output of the i.c. at pin 3 is positive during the charge cycle, the display is switched on for a proportionately longer part of the chargedischarge cycle as the ambient light level increases. Similarly, the display dims as the light fades.

To drive common anode displays, replace R2 with the l.d.r. and a diode connected in series, and increase the value of R1 to 1 M . The anode of the new diode should be connected to C 1 .

The supply voltage can range between 5 and 15 V , and the output of the i.c. can drive 200 mA . The l.d.r. should be positioned adjacent to the clock display.

D. A. Akerman,
 Dagenham,
 Essex.

It is useful to be able to adjust the level fed to the tweeter unit of a home-built loudspeaker system without affecting the main driver units. Some expensive commercial systems have a switched attenuator network to control the tweeter level; the unit described here allows the home constructor to add such an attenuator to his speakers.

No constructional details are given as this will obviously depend on the design of the speakers themselves.

Fig. 1: Circuit diagram
Table 1

	1.5 dB steps			3dB steps			5 dB steps		
	4Ω	8Ω	16Ω	4Ω	8Ω	16Ω	4Ω	8Ω	16Ω
R1	1.5	3.3	6.8	6.8	12	27	33	68	120
R2	1.2	$2 \cdot 7$	4.7	4.7	10	18	18	33	68
R3	1.0	$2 \cdot 2$	3.9	3.9	6.8	12	10	18	39
R4	1.0	1.8	3.3	2.2	$4 \cdot 7$	10	$5 \cdot 6$	10	22
R5	1.0	1.5	3.3	1.5	3.3	6.8	$3 \cdot 3$	6.8	12
All values in ohms $R 1$ to $R 5$ are 2.5 W wirewound resistors									

components

Resistors
2.5W wirewound

3.3Ω	1	R5
4.7Ω	1	R4
6.8Ω	1	R3
10Ω	1	R2
12Ω	1	R1
Switches		
1p6w rotary	1	S1

Alternative Steps

The resistor values shown on the circuit diagram are for 3 dB steps with an 8Ω speaker system but alternative values for other steps are given in Table 1.

Many cross-over networks have a resistor in series with the tweeter. If this is reduced in value, or removed, boost as well as cut is produced.

Resistors R1-R5 may be fixed to the rear of the switch. If this is mounted on a recessed plate (such as is normally used for a jack) and fitted with a matching knob, a neat finish suitable for baffle mounting is obtained.

PLEASE MENTION

 PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

The Yaesu Musen Company of Japan introduced a mobile rig some years ago-the FT-75. Limited in its applications in fixed station use, it has been replaced by similarly sized, all-solid-state transceivers-first the FT-7 with ten watts output, and now the FT-7B, rated at 100 watts d.c. input. Although designed primarily for mobile use, the addition of c.w. facilities suggests that some thought was given in the design to possible portable use. The transceiver runs off a nominal 12 volt d.c. supply, and, as is usual with h.f. solidstate p.a. stages, is a wideband device. The only front panel tuning control is for the preselector, marked on the front panel as tune.

The bands covered are $80-10$ metres, and provision is made for the coverage of the whole of the 10 m band, although the crystal provided is for the $28 \cdot 5-29 \cdot 0 \mathrm{MHz}$ segment. Modes of operation are u.s.b., l.s.b. and a.m. on telephony, and c.w. A noise blanker is fitted, and provision is made for crystal controlled operation. A 100 kHz crystal marker is provided, as is an aerial attenuator, and a clarifier, or independent receiver tuning control.

Construction of the equipment is very compact. Most of the circuitry is contained on "daughter" boards, which plug in to a "mother" p.c.b. There are two of these mother boards, and maintenance is almost impossible without a suitable set of extender cards. Although the average amateur has probably not got sufficient test equipment to be able to maintain the transceiver, nevertheless, reducing the maintainability to almost zero by the lack of extender cards is not a particularly good feature.

Generally, the standard of construction is reasonably good-slightly better than the usual middle quality range domestic equipment, except for the p.a. stage. This was very poorly built, and comments from professional radio designers on it were surprising-the writer didn't realise that some of his colleagues knew words like that!! Especially poor here was the method of thermal coupling between the
p.a. transistors and the temperature compensating diodes in the bias network. These diodes are attached to the p.c.b. over the transistors in such a way as to get some sort of thermal coupling, and suitably coated in heatsink "goo" to help. During measurements of the transmitter, it was noticed that the power setting tended to drift slightly, which is probably caused by this poor thermal coupling. The wiring to the p.a. stage was very poorly done, with several of the connecting leads suffering from soldering iron burns. Certainly the standard was not that which the writer would expect of prototype equipment, let alone production.

Technical Description

The transceiver is of the single conversion type, using a 9 MHz intermediate frequency. The injection to the main mixer is derived from a pre-mixer system, in which the v.f.o. is mixed with a crystal oscillator, and the desired output is filtered and fed to the signal mixer, via a wide-band amplifier. The v.f.o. covers $5 \cdot 0-5 \cdot 5 \mathrm{MHz}$, and so no mixing occurs on 80 metres.
The signal input is fed via the switchable r.f. attenuator unit to a tuned circuit, controlled by the front panel TUNE COntrol. A dual-gate mOSFET amplifier acts as the r.f. amplifier, and this is followed by a coupled pair of tuned circuits. This coupled pair acts as a bandpass filter, and requires no tuning by the operator. An emitter follower provides a step down in impedance to drive a diode ring mixer using Schottky diodes, followed by a monolithic crystal filter, which provides some narrowing of the bandwidth and also delays impulse interference, allowing the noise blanker time to act. The monolithic filter is followed by an f.e.t. amplifier, a single diode as the noise gate, and an f.e.t. source follower driving the main crystal filter, which is a 6-pole filter. This is followed by the i.f. stages and detectors, all of which are built from discrete transistors-mainly mosfets. The noise

Fig. 1: Block diagram of the FT-7B
blanker is fed from the output of the Schottky mixer, and consists of an amplifier-mixer-amplifier-detector-d.c. amplifier chain, all of which, excluding the detector, use dual-gate mosfets. An a.g.c. loop is built into the amplifier chain, and the mixer converts the 9 MHz input to 455 kHz . The output from the detectors in the main signal path is fed to the audio stages, one of which is an active filter on c.w., with a bandwidth of some 80 Hz . The a.f. output stage uses an i.c.-one of the relatively few in the set.

The transmitter is conventional, with an i.c. microphone amplifier feeding either a MOSFET a.m. modulator, or a diode balanced modulator for s.s.b. The signal is then amplified and filtered to produce s.s.b., amplified, mixed in the Schottky mixer with the local injection, and then via the bandpass pair referred to in the receiver description, fed to the pre-driver stage. This stage has a tuned circuit controlled from the front panel tune control to select the required signal, which is then amplified in various stages up to the 50 watt output level. Quite complex a.l.c. and s.w.r protection is provided, and a set of low-pass filters reduces the harmonic output of the p.a. stage.

Capability is provided for crystal controlled operation, with a different crystal for each band. The rest of the circuitry is concerned with power distribution, regulation, and switching, except for the crystal calibrator. This uses a 12.8 MHz crystal, and a divide-by- 128 смоs divider. Automatic switching between transmit and receive, with a delay circuit, is used on c.w. transmission, but VOX is not provided. Fig. 1 is the block diagram from the handbook.

Measurement Techniques

Measurements can be split into two basic groupstransmitter and receiver. Receiver measurements are made with the system set up as in Fig. 2, while transmitter measurements are made as in Fig. 3. A somewhat sobering thought arises when it is realised that the cost of the test equipment to make these measurements to the accuracy
desired is about $£ 35000$! Even then, the answers obtained on the air were required to complete the picture.

The transmitter measurements were fairly straightforward, and in general have been based on the applicable clauses and methods used for marine radio transmitters, which are probably the nearest thing commercially to the amateur equipment. Two audio frequency tones were fed into the microphone socket, and the output from the transmitter fed via the attenuator to the spectrum analyser. The following were then measured: power output; 3 rd order intermodulation products; 5 th order i.p.s; harmonics, and spurious. This was done for each band, and the results are in Table 1. The transmitter was then set up on 14.2 MHz , and carrier suppression, hum and noise measured. As usual, there was a change in the level of carrier suppression with sideband, being $-73 \cdot 9 \mathrm{~dB}$ on I.s.b. and -76.4 dB on u.s.b, and also a slight change with power level. Hum and noise were better than -55 dB . Application of a single tone 6 dB down from p.e.p allowed measurement of transmitter passband, and the unwanted sideband suppression, while the final test is based upon the commercial tests aimed at limiting adjacent channel interference.

In general, it seems that the higher order sidebands in a solid-state transmitter tend to be slightly worse than those in a valve linear, and certainly at full output, the sidebands extend some way from the signal. The test for this is to apply two audio tones to the transmitter of such frequencies that the intermodulation products fall (for u.s.b) above +3.1 kHz and below -200 Hz relative to the suppressed carrier. The marine specification requires that products between +2.7 and $+6 \cdot 2 \mathrm{kHz}$, and between -200 Hz and -3.4 kHz be at -31 dB or lower relative to peak envelope power. From $+6 \cdot 2$ to +9.4 kHz , and from -3.4 to -6.6 kHz , the requirement is -38 dB , and beyond these limits it is 43 dB , without exceeding 50 mW . It is a particularly valid specification limit (reproduced graphically in Fig. 4) with transmitters that have appreciable higher order products; for Sunday mornings on 80 m , however, a more stringent one could be considered

Fig. 2: The receiver measuring system used by the author
necessary if anti-social emissions are to be avoided!
The final transmitter tests are of the c.w. keying. Again, the marine specifications are taken as a guide, and the transmitter is keyed by a 50% duty cycle signal derived from a pulse generator. The spectrum resulting, and the envelope distortion were measured with an oscilloscope and the spectrum analyser. The marine limits are for 30 baud keying (about 40 w.p.m.), and the bandwidth is limited to -24 dB at $\pm 100 \mathrm{~Hz},-37 \mathrm{~dB}$ at $\pm 200 \mathrm{~Hz}$, and -47 dB beyond $\pm 400 \mathrm{~Hz}$. Again, this is not a particularly tight specification, but does put limits on the anti-social behaviour of the transmitter (see Fig. 5).

Receiver Measurements

Receiver measurements are a much more lengthy process. To start with, it is necessary to ensure the method of coupling the signal generators to the equipment under test is satisfactory on the following points:
(a) Isolation of the generators from each other. This requires a suitable combining network, and a good matched load for the combiner, so an attenuator is used. Since the loss in the combiner is 6 dB , it is convenient to use a 14 dB attenuator after the combiner, thus giving a total loss of 20 dB .
(b) Limiting the external attenuation of the signal to the practicable minimum thus reducing the amount of cable carrying high level signals and restricting the effects of leakage.
(c) Keeping the cable length from the final attenuator as short as possible to prevent inaccuracy caused by any s.w.r. on the cable-this s.w.r, of course, being caused by the receiver input not being exactly 50 ohms.

The measurements fall into three categories, viz: Sensitivity-based checks. These include signal-to-noise, S meter sensitivity, signal to noise improvement, ultimate signal to noise, a.g.c., and audio power output.
Two Signal Tests. These cover intermodulation, cross modulation, blocking and reciprocal mixing.
Spurious Responses. These cover internal whistles, and external spurious responses.

The sensitivity series of tests are easy to carry out. They measure the ability of the receiver to distinguish weak signals, and its ability to apply gain control correctly. Obviously, an attenuator in front of the receiver would give gain control by making all signals equally weak, but would also cause the signals to have an equally poor signal-to-noise ratio. The SINAD measurement measures distortion as well-SINAD stands for the ratio of Signal plus Noise plus Distortion to Noise plus Distortion only. For mobile use, an

Table 1. Output Power, Intermodulation and Spurious Outputs
$\left.\begin{array}{cccccc}\text { Frequency } & \begin{array}{c}\text { Output } \\ \text { Power }\end{array} & \begin{array}{c}\text { 3rd IMP } \\ \text { (rel. p.e.p.) }\end{array} & \begin{array}{c}\text { 5th IMP } \\ \text { (rel. p.e.p.) }\end{array} & \begin{array}{c}\text { Spurious }\end{array} & \begin{array}{c}\text { Level } \\ \text { (rel, p.e.p.) }\end{array} \\ 3.72 \mathrm{MHz} & 45 \mathrm{~W} & -31 \mathrm{~dB} & -46 \mathrm{~dB} & \begin{array}{c}1.45 \mathrm{MHz}\end{array} & -72.5 \mathrm{~dB}\end{array}\right)$

Table 2. Modulation-Frequency Characteristics

Tone Frequency Hz	Level -1000
-700	below -70 dB
below -70 dB	
-400	below -65 dB
-300	below -65 dB
300	-11.5 dB
400	-2.67 dB
700	-0.42 dB
1000	-0.45 dB
1300	0
1900	-1.87 dB
2400	-2.72 dB
2700	-5.70 dB
3200	-35.1 dB
3500	-53.0 dB
4000	-74.7 dB
8000	below -88 dB
10000	below -88 dB

Table 3. Out of Channel Radiation
Measured at 14.2 MHz at 45 W p.e.p., modulated by tones of 700 and $2400 \mathrm{~Hz}_{2}$

Frequency relative to carrier frequency	Level relative p.e.p.
-7.75 kHz	-42.9 dB
-6.15 kHz	-44.8 dB
-4.4 kHz	-38.2 dB
-2.7 kHz	-42.6 dB
-1.05 kHz	-29.3 dB
4.1 kHz	-28.4 dB
5.85 kHz	-45.1 dB
7.45 kHz	-38.6 dB
9.20 kHz	-48.9 dB
10.95 kHz	-44.3 dB

Lee iestronics trd

LONDON'S LEADING STOCKISTS OF YAESU Ө ICOM Ө STANDARD - SWAN ©ATLAS O LUNAR Q MICROWAVE MODULES © HI-MOUND © SST - JAYBEAM - ASP SHURE LEADER © CDE © HY-GAIN OETC

SWR25: This ever-popular twin SWR and Power meter covers $3.5-150 \mathrm{MHz}$ at $\mathbf{£ 1 0 . 5 0}$ plus VAT. P\&P 50p.

T-435: VHF/UHF swr and power meter with 2/20/120 wat through line power measurement £29.95 plus VAT. P\&P 50p.

DL-30 Dummy load 25W DC-150 $\mathrm{MHz} £ 5.50$ plus VAT. P\&P 25 p . T-80 80W Dummy load DC-500 MHz $£ 19.95$ plus VAT. P\&P 25 p . T-150 150W Dummy load DC-500 $\mathrm{MHz} £ 28.50$ plus VAT. P\&P 25 p .

OSKER BLOCK RANGE

SWR200B swr/power meter covering $3-200 \mathrm{MHz}$ $50 / 75$ Ohm power range $3-30 \mathrm{MHz}, 20 / 200 / 2 \mathrm{~kW}$. VHF $2 / 20 / 200$ watt $£ 34.95$ plus VAT. P\&P 50p.

SWR300 swr/power meter $3-30 \mathrm{MHz}(2 \mathrm{~m}$ and 70 cm with adaptors) power range 20/200/2kW with SPC-2B 20/200W at 2 m with SPCO7A $2 / 20 \mathrm{~W}$ a 70 cm . Respective prices $£ 39.95, £ 14.95, £ 18.95$ plus VAT. P\&P 50p.

SWRVVV meter body only, covers $144 / 432 \mathrm{MHz}$ with adaptors SPC-2B and SPC 07A, £19.95 plus VAT. P\&P 30p. Adaptors as SWR300.

HI-MOULD KEYERS

HK707 Straight Up/Down keyer
BK100 Semi auto mechanical bug
HK702 Up/Down keyer on marble base
MK702 Manipulator
MK705 Squeeze paddle
MK705 Squeeze paddle on marble base
PLUS VAT. P\&P 30p.
$\mathbf{£ 8 . 7 5}$ $£ 15.55$
$£ 19.50$ $£ 19.50$
$£ 19.50$ f 19.50 $£ 12.50$
$£ 19.50$

PX402 13.8V DC 3amp continuous 4 amp max fully stabilized power supply with overload protection £19.95 plus VAT. P\&P 50p.

JVL MK2

Base VHF/UHF antennas. These antennas are made to very high standards from the finest quality anodised aluminium: collapsible and ideal for portable or fixed use. Power handling 350W:
JVL144 6dB gain 2 m colinear $\mathbf{£ 3 2 . 0 0}$ plus VAT. P\&P \& 1.50 ; JVL433 6 dB gain 70 cm colinear $£ 32.00$ plus VAT. P\&P $£ 1.50$.

C7800 70cm FM Mobile

The C7800 is one of the most advanced mobile 70 cm transceivers available, covering $430-439-975 \mathrm{MHz}$ in 25 kHz steps. Tuning is accomplished either by the main tuning control or with the up/down control on the mic. A MHz button is provided to step the frequency up by 1 MHz at a time to save hours of knob twiddling. SU2O is available at the touch of a button; two repeater offsets are supplied -1.6 MHz and 4.6 MHz for European use. Just look at the features:

- Digital readout *Easy to read display *Five programmable memories *Scanning of the band in one MHz or memories stopping on in-use or vacant channels *Two speed scan rate *Tone burst *LED power and S-meter. 10 watts RF output *Back-up for memories *Spare button on front for user's use.
£239.50
VAT. cariige tree (C8800 $2 \mathrm{~m} F \mathrm{M}$ Mobile version also available).

The C8800 is the matching unit, with the same features, covering the 2 m band in 5 kHz or 25 kHz steps.
£219.00

ELECTRONIC KEYERS

EK-150

MK-1024

As EK-150 but with four memories each capable of storing 256 bits making a total of 1.024 bits. This can be recalled separately or in sequence for one long message.
 en plus VAT.

A semi- or fully-automatic squeeze keyer producing dots and dashes in the precise ratio required for perfect code. The speed is adjustable from 240 VAC or $9-14 \mathrm{VDC}$. $\mathbf{£ 6 5}$ plus VAT

POCKET MONITOR

This small receiver has 12 xtal-controlled channels. Fitted with 9 -SO, S2O, S22. S23, S24, R4, R5, R6 and R7, and comes complete with ni-cads, charger and carry case, etc.
£57.95
Extra channels available at $\mathbf{£ 2 . 5 0}+$ VAT

CT-1 Coax Toggle 3 SO239's £5.75 plus VAT. P\&P $25 p$ CT-2 Coax Toggle 2 SO239's 1 PL259 £5.95 plus VAT. P\&P 25p.

LEE ELECTRONICS LTD 400 EDGWARE ROAD, LONDON W2 Tel: 01-723 5521. Telex: 298765

Nearest Tube: Edgware Road or Paddington main line. HP \& art exchanges welcome

ART3000C

This rotator delivers the highest performance that can be expected of the standard size rotator. The unit has disc brakes to ensure of $250 \mathrm{~kg} / 550 \mathrm{ibs} . £ 79.95+15 \%$ VAT.

NEW! TRIO R1000 UNBEATABLE PERFORMANCE AT AN UNBEATABLE PRICE

 42024 hour delivery available
inc. vat.
"It beats anything under $£ 1000$!"

LOWE SRX 30

COMMUNICATIONS RECEIVER
24 hour Securicor delivery 5 O

$0.5 \mathrm{MHz}-30 \mathrm{MHz} 30$ Bands

FRG7
 24 hour delivery £214 inc. vat.

$0.5 \mathrm{MHz}-30 \mathrm{MHz} 30$ bands

WHY BUY FROM US?

Its pretty well known amongst short wave listeners around the World that we specialise in communications receivers. Our workshops are staffed by enthusiasts and licensed radio amateurs, and each receiver is given a thorough pre-delivery check before despatch (yes a few do fail). Once we are satisfied, your receiver is carefully packed and despatched by Securicor for direct delivery to your door the following day. Mail order customers need simply quote us their Barclaycard or Access numbers or alternatively send us a cheque or postal order.

WATERS \& STANTON ELECTRONICS

18-20 MAIN ROAD, HOCKLEY ESSEX Tel: HOCKLEY (03704) 6835.
Callers welcome Mon-Sat 9-5.30 E.C. Wed. 1 pm.

Wertern

THE COMMUNICATIONS SPECIALISTS EVERYTHING FOR THE RADIO AMATEUR

ANTENNAS . .

FOR THE HF BANDS

BRITISH MADE BY Wertern

TRAP DIPOLES (3 types)

TD 1/10-80	10,40 and 80 m	£25.30
TD1/15-80	15, 20, 40 and 80 m	£25.30
TD-P	Portable type with winding spools	£30.48
VERTICAL		
DX-5V	10-80 metres; approx 26 ft high; slimline	£60.32
BEAM ANTENNAS (and Rotary Dipole)		
DX-31	Rotary dipole for $10,15,20 \mathrm{~m}$	£46.00
DX-32	2-element beam for $10,15,20 \mathrm{~m}$	£80.50
DX-33	$3-$	£121.90
DX-34	4-	£161.00
DX-103	3 -element monoband beam for 10 m	$£ 74.75$
DX-105	5-	£97.75

\# Other Antenna Accessories available - see our Price List \star ALL PRICES INCLUDE VAT (15\%) AND FREE DELIVERY UK.

Send large SAE for further details of this and other equipment - or use our Answerphone after hours.

Wertern Electronics (UH) Lled

HEAD OFFICE (All Mail/Enquiries) FAIRFIELD ESTATE

Tel: Louth (0507) 604955/6/7

Fig. 3: The transmitter measuring system

Fig. 4: Out-of-band radiation on s.s.b., compared with the UK Marine Transmitter Specification limit

Fig. 5: Out-of-band radiation on c.w., compared with the UK Marine Transmitter Specification limit

Table 4. Receiver Sensitivity, Ultimate SINAD, Output Power and \mathbf{S} meter

| Frequency | AF o/p | Input tor | Input for | Ulitimate | | Input for |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | Input for

Table 5. AGC Performance

Input Level	AF o/p@ 3.7 MHz	AF o/p@ 28.7 MHz
10 mV	1 W	0.93 W
1 mV	0.93 W	0.93 W
$100 \mu \mathrm{~V}$	0.88 W	0.82 W
$10 \mu \mathrm{~V}$	0.72 W	0.45 W
$3 \mu \mathrm{~V}$	0.51 W	0.15 W
$1 \mu \mathrm{~V}$	0.2 W	15 mW
$0.3 \mu \mathrm{~V}$	30 mW	1.5 mW

important point is audio power output, and this is measured at the same time. The results of these tests are shown in Table 4.

The idea of a.g.c. is to keep the audio output of the receiver constant with changing input signal, and the results of this test are given in Table 5. The measurements were made on 3.7 and 28.7 MHz .

The remainder of the receiver measurements will be described next month, together with comments on the measurement results and on tests "on the air"

"Old Timers" will remember the "Eliminator" from the good old battery-valve days. With the ever increasing cost of dry batteries coupled with a seemingly ever shortening life of the things, it seems that now is the right time to build a modern version of the "Eliminator".

The unit described in this article was evolved as a project for a group of secondary school teachers attending a basic electronics course at Brunel Technical College. During this course the elements of components, circuitry, colour-coding, and the Safety at Work Act as it affects school workrooms were made known.

The cuts in spending on educational matters made it imperative to "count the pennies" and make each part of the project cost effective.

Almost every project needs a battery or similar power supply, and the PP9 variety is one of the more popular types. The case of the PP9 makes a convenient cabinet for the "Eliminator", after the old spent cells have been removed.

The circuit of the "Eliminator" is shown in Figure 1 and consists of a simple half-wave rectifier circuit coupled to a Zener diode stabiliser. The transistor Tr1 serves to amplify the current handling capability of the stabiliser.
continued on page $65 \gg$

* components

$\left.\begin{array}{\|l\|l\|l\|l\|}\hline \begin{array}{l}\text { Resistors } \\ \frac{1}{4} W 5 \%\end{array} \\ 470 \Omega\end{array}\right)$	

Fig. 1: (Above) Circuit diagram of the battery eliminator

Fig. 2: (Below) The constructional details of the unit

Voltage regulator integrated circuits are commonplace nowadays (indeed, the TL497 from Texas Instruments was the subject of this series in December's $P W$) but the TL496 is unique, for it contains two separate regulator circuits within a compact 8 -pin d.i.l. package. One circuit is a switching regulator accepting an input from either one or two NiCad rechargeable cells which it then converts into a regulated output of $7-9 \mathrm{~V}$ at a maximum current of 80 mA . The other circuit, which is a series regulator, provides an output of $8.6-10 \mathrm{~V}$ when a mains supply is available - thus both regulator and charging circuit are conveniently accommodated within a single i.c!

Calculators and battery-powered toys for which one requires a 9 V supply without going to the expense of seven or eight rechargeable cells, are just two obvious applications for the TL496. It is naturally much cheaper to employ one or two cells and to convert the voltage upwards to 9 V , than it is to connect NiCads in series until the same e.m.f. is achieved. The TL496 can also be used to "step up" the output voltage of conventional "dry" (Leclanche) or alkaline cells; both of these types are not, of course, rechargeable.

The device could also be used to power a small radio receiver from one or two cells. Remember, however, that the small maximum output current (voltage up $=$ current down!) means that there is insufficient power to drive the radio unless the volume is kept low. Any attempt to gain a high audio output will merely result in distortion. Despite this, the device certainly has interesting applications for small receivers of the hand-held variety.

Internal Circuit

The internal circuit of the TL496 and the external pin connections are shown in Fig. 1. It should be noted that although pins 5 and 7 are connected internally, both must be connected to the zero voltage line in order to ensure correct operation. If only one cell is to be used, it should be connected with its positive side to pin 3 and its negative side to ground, while pins 2 and 3 should be connected together in order to short-circuit the internal diode (Fig. 3). Similarly, pins 1 and 8 should also be connected together for the same reason; when used with a single cell, note that the cell used should provide an e.m.f. of $1 \cdot 1-1 \cdot 5 \mathrm{~V}$.

When used in the two-cell configuration (Fig. 3), the total input voltage should be $2 \cdot 3-3 \mathrm{~V}$; note that the internal diodes should not be short-circuited for two cell operation.

The circuits are simple but do involve the use of an inductor; optimum efficiency (power output divided by
power input) is achieved when this inductor has a value of $40-50 \mu \mathrm{H}$. The Fig. 2 circuit provides a maximum output of 40 mA at 7.2 V , and 80 mA at 8.6 V can be obtained from the Fig. 3 circuit.

Decoupling

The importance of adequate decoupling cannot be overemphasised. The author, for example, tried fairly long leads to the cells and found that the circuit would simply not operate when the decoupling capacitor between pin 2 and ground was removed. Both capacitor negative returns (pins 5 and 7) should be connected together with quite short lengths of wire.

As the switching frequency is approximately 10 kHz and peak currents of about 1A occur, the filter capacitors should be of reasonable quality and should not have an unusually high equivalent series resistance; this comment applies equally to all of the circuits to be discussed.

Battery Operation

The circuits shown in Figs. 2 and 3 operate purely as a boost circuit switching regulator. The cycle commences when the potential at pin 1 falls below a certain threshold value, namely about $7 \cdot 2 \mathrm{~V}$. In the circuit of Fig. 2, this will occur when the output is about $7 \cdot 2 \mathrm{~V}$ but, in the Fig. 3 circuit, the cycle will begin when the output is greater than
this by the voltage developed across the two internal forward-biased diodes shown in Fig. 1. Thus the threshold for "turn on" in the Fig. 3 circuit is about 6.8 V .

As the output voltage falls below one of these values, the output transistor is turned off and the energy stored in the inductor is delivered to the output reservoir capacitor.

The output transistor remains in the non-conducting state until the output voltage sensed by the feedback input (pin 1) again falls below the threshold value for the circuit concerned.

Fig. 2: Single cell battery operation

Fig. 3: Battery operation with two cells

Mains Operation

The circuits of Figs. 4 and 5 show how a small transformer with its input connected to the mains supply can be used to power the TL496, and charge the cells connected in the circuit. If the mains fails or the equipment is disconnected from the mains, the cell or cells will automatically and instantly maintain the output voltage without even a momentary interruption of the power output.

The series regulator of the TL496 device accepts its power input from the mains transformer during the half cycle when the lower end of the transformer secondary winding (as it appears in the circuit diagrams) is positive with respect to the upper end. The output voltage from the series regulator circuit is slightly higher than that from the switching circuit; thus, when mains voltage is present, the output voltage always exceeds the threshold level at pin 1, and the output transistor is kept in a non-conducting state. When mains power is being used, the output voltage is typically 10 V for the two-cell circuit of Fig. 5 and about 8.6 V for the one-cell circuit of Fig. 4.

During the succeeding half cycle of the mains input, the series regulator will not operate because the applied polarity is such that no current can pass through the internal diode connected in the pin 4 circuit (Fig. 1). However, diode DI clamps the negative-going side of the transfor-
mer secondary winding to ground so that the positivegoing side can supply current to the positive terminal of the cell or cells; thus charging takes place.

There is an absolute peak voltage rating at pin 4 of 20 V , therefore the output r.m.s. voltage of the transformer secondary winding should not be in excess of 12 V . In practice, a transformer with a 6.8 V r.m.s. secondary output voltage and a secondary resistance of 11Ω was found to be quite satisfactory.

The secondary resistance is not critical but does affect the charging current which can flow; an excessive charging current will, of course, ruin any cells that are subjected to it!

Performance

The TL496 has not been designed for applications which require the highest possible voltage stability. There is some change of output voltage as the swap from battery to mains operation occurs (an increase of approximately 1.4 V), but this is unimportant in the type of application for which this device has been designed.

Care should be taken to ensure that the absolute maximum voltage ratings of 3.5 V at pin 2 and 2.5 V at pin 3 are not exceeded, and that the switching current at pins 6 and 8 does not exceed $1 \cdot 2 \mathrm{~A}$. The TL496 is designed for use at temperatures in the range $0-70^{\circ} \mathrm{C}$.

A noteworthy feature of this device is the low supply current drawn during stand-by operation-typically $125 \mu \mathrm{~A}$. In most circuits, this allows the battery to be

Fig. 4: Single cell mains operation

Fig. 5: Mains operation with two cells
connected at all times as, at this rate of discharge, the estimated period between charges is 60 days for the singlecell configuration and 166 days for the two-cell arrangement!

When an output current is drawn, the input current in the case of battery operation must obviously exceed the output current since the output voltage exceeds the input voltage-one, after all, cannot create energy from nothing! The typical efficiency for battery-powered operation is 66% in all cases. With a 120Ω load connected across the output, the current drawn from a single cell is approximately 525 mA , and that from two cells approximately 405 mA .

Table 1. Performance of TL496 circuit used by the author. In all cases the input voltage was 2.5 V

$\mathrm{V}_{\text {out }}$	Load (Ω)	$\mathrm{I}_{\text {in }}$ (mA)	$\mathrm{I}_{\text {out }}$ (mA)	Power I / P (mW)	Power O / P (mW)	Effi- ciency $\%$
9.72	-	0.17	-	0.425	-	-
9.72	2.2 M	0.27	0.004	0.675	0.039	5.8
9.72	100 k	1.3	0.097	3.25	0.94	28.9
9.71	39 k	3.05	0.248	7.62	2.41	31.6
9.70	10 k	10.2	0.97	25.5	9.41	36.9
9.65	2.2 k	31	4.39	77.5	42.3	54.6
9.52	1.0 k	75	9.52	187.5	90.6	48.3
9.0	200	370	45	925	405	43.8

The Inductor

Unlike other passive components, inductors can be difficult to wind to a definite specification as one has to consider not only the value of inductance but several other factors as well: the resistance and thickness of the wire to be used; the core material; Q factor and its variation with change in frequency, etc. No particular i.2ductor is stipulated by Texas, but it is recommendea that the resistance of the inductor winding should not exceed $0 \cdot 15 \Omega$ for high efficiency in the battery-operated mode.

The author chose a Mullard RM6 ferrite core which has an inductance factor (known as A_{L}) of $250 \mathrm{nH} /(\text { turns })^{2}$-a single turn of wire on this type of core therefore has an inductance of 250 nH . Because the inductance increases as the square of the number of turns, it is easy to calculate that $13 \frac{1}{2}$ turns of wire are required in order to achieve the required value of about $45 \mu \mathrm{H}$. The part number of the RM6 ferrite core is LA4146; you will also require a DT2467 coil former and two DT2398 retaining clips (alternatively, the DT2498 retaining clips with an earthing tag may be used). The copper wire used must, of course, be of the enamelled variety.

The tables in the Mullard Technical Handbook (Book 3, Part 4) indicate that $13 \frac{1}{2}$ turns of 0.85 mm diameter wire could be accommodated on this former, but 0.56 mm diameter (24 s.w.g.) was used in practice. The coil former was supported during the winding operation; it was then necessary only to mount the ferrite parts onto the former and fix the retaining clips in order to complete the inductor.

The performance that resulted from using two cells and this inductor is shown in Table 1.

Availability

The TL496 and the above-specified inductor components are available from Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex CM14 4BN.

The Vintage Years of Radio

\mapsto continued from page 51

Peacetime

When peace returned, the lessons of miniaturisation that had been learned in wartime, were applied to the new domestic radios-"small is beautiful" became the order of the day. A few attempts were made to revive the luxury radiogram, but the writing was on the wall; the giant strides made by television would soon relegate sound to second place as a home entertainment medium.

In the '50s the mergers and take-overs started to shrink the numbers of the actual manufacturers-perhaps the most symbolic withdrawal was that of EMI and RGD. Some good-looking sets of excellent performance continued to be made but somehow they lacked the character which, in another field, makes the modern mass-produced car far less interesting to an enthusiast than the older hand-built job.

An incident recalled from a few years ago might serve as an example. The author used to carry out trade service work for a well known radio store in Stoke-on-Trent when one day a pre-war radio (by then about 35 years old!) was brought in for repair. It still possessed its original valves, the fault was minor and, although it hadn't been a particularly notable model in its day, it brought murmurs of approval from the people in the shop when it triumphantly burst into life. One of the half dozen or so customers had been listening to a modern transistor radio-by comparison, it sounded strangely "tinny". He shook his head sadly and placed the set back onto the counter.

It was perhaps the best tribute he could have made to the long-defunct maker of that truly vintage receiver!

A BATTERY ELIMINATOR

$\mapsto>$ continued from page 62

Construction

The top edges of the metal PP9 case were squeezed using large pliers until the bottom could be pushed up to expose the layered cells, the connectors and the moulded plastics base. The spent cells were carefully removed and discarded and the base drilled to allow the transformer to be secured with two 6BA nuts and bolts. The reservoir capacitor C1 was mounted on a blob of Araldite which both insulated and fastened it on top of the transformer.

Blocks of wood were used to support the connector board at the correct height and also to reform the PP9 shaped outline. Two holes in the back corners of the connector board allow the three-core mains cable to exit and the overload bulb to be seen. If desired a PP3 connector can be fitted to the top, while, for teaching purposes, the sides could be cut away and clear plastics sheet fitted to allow the components to be seen.

The performance of the supply is comparable to a PP9 giving 8.4 V at up to 100 mA while the ripple is about 10 mV peak-to-peak. Short-circuit conditions cause the bulb to light and this also gives a measure of protection against overload.

The prototype models have easily earned their keep and should be able to pay their way in about three or four battery lives.

by Eric Dowdeswell G4AR

I get rather het up, as they say, when I hear from a reader who has bought an XYZ receiver on which to listen to the amateur bands and, please, what do I think of it? Generally it is a cheap and almost nasty contraption that performs moderately well on the medium- and long-wave bands with its ferrite rod aerial but is a bit of a failure on the s.w. bands with only its telescopic aerial.

I get angry not because it's a lousy receiver but because the writer has not bothered to get some advice before spending his money. At the very least the receiver should have been tried out before buying.

One of the advantages of belonging to a radio club is the vast amount of practical knowledge that exists there waiting to be tapped just for the asking. Mention almost any receiver and someone is bound to be an expert on it, just waiting to pour forth at the slightest pretext, and all for free.

The newcomer may very well be able to get a suitable receiver from a member of the club, secondhand, and maybe even valved although that is by no means a disadvantage, especially when one considers the performance of some of the solid-state sets of today. What is more, advice on operating the set will be forthcoming and should it go wrong the answers will be readily available, which is more than one can say about some suppliers of receivers.

The lone buyer of a s.w. receiver does have to rely to some extent upon the blurb in the ads but it shouldn't take much common sense to realise that a cheap set that professes to cover all bands from v.h.f. to the long-wave band must be something of a compromise as far as performance is concerned. None of the ads tell us outright lies these days but the copywriters certainly have a vivid imagination in some cases! If you just want the amateur bands don't go for a set that promises the trawler, police and air bands (as well as all the s.w. broadcast bands), because, for one thing, it is illegal to listen to them and they rapidly become rather boring, which the amateur bands never do.

Having been lumbered with a poor set a writer will often ask how he can improve it and how does he go about connecting up an outside aerial to make reception better. Firstly, its almost impossible to do anything to the set to make matters better and the cost of the necessary parts to do it would be prohibitive considering the price of the set
in the first place. Give it away to some small friend! Adding an aerial just compounds the problems by causing severe cross-modulation on any strong signal because of the cheap and poor transistors being used and the fact that there is certainly no r.f. stage fitted.

So, what to do? Look at the ads and see what the more popular receivers are, compare the prices although these won't vary much between reputable suppliers. Make every effort to locate someone already using the set you fancy and ask them for their views on it. Ask a supplier for the address of someone in your area who has bought that particular set and arrange to visit them after dropping them a line.

As a last resort there are always nutcases like myself willing to stick their necks out and give advice!

In General

By the time that this appears in print there may be some definite news of the three new bands which are to be allocated to the amateur service, according to two very reputable sources. However, don't let's get all excited because by the time any such allocation has been ratified by all the countries concerned and existing occupants have moved out, presuming the allocations are exclusive, it could be a matter of three years or so.

It's good luck and good DX to Bill Kerr of Aldershot, Hants, who has become G8UNV, at least until he has taken the code exam. For the time being Bill is using a Storno valve rig with seven channels, run from a car battery. It's a start, anyway. In West Wickham, Kent, John Dainty is busy swotting for the RAE which he hopes to take this year, so he has not been listening around too much. He did shorten his aerial to around 130 ft which enabled his a.t.u. to work properly and give better results generally.

An appeal from Chris Mousley of 6 Queens Road, Aldershot, Hants, for any info on a power supply for the R1155B that he has recently acquired, or even a manual if anyone can help. A more specialised appeal from Alex McLennan, 6 Christie Street, Dunfermline, Fife, for a wavechange switch for his Hallicrafters S38 receiver.

Using an SRX-30 in Leeds, Basil Woodcock is only just finding the amateur bands but he has made up an a.t.u. for the couple of aerials so far erected. He's on a hill 400 ft a.s.l. so the DX outlook is good. Another listener to write in for the first time is Arthur White living in Grantham, Lincs, who sports an Eddystone 888 receiver with a 66 ft wire and a.t.u., with an inverted " V " aerial for the 40 m band where he found ZL4BO after a lot of patience. Dick Barker (Canterbury, Kent) has a "warm glow of confidence" after taking the RAE and hopes the examiner is in a good mood when marking the paper. Well, let's hope the multiple choice system will eliminate any such bias in the

YAESU MUSEN
 U.K. MAIN DISTRIBUTOR FOR ALL YOUR RADIO NEEDS

* RF Attenuator: The three-position RF attenuator is effective when confronted by local or very strong stations.
* Automatic Noise Suppression Circuit: minimises impulse noise during AM reception.
* Three Position Tone Selector: limits the audio spectrum to increase signal readability: LOW (high cut), NORMAL and NARROW (low and high cut).
* Built-in Power Supply: Ready to go for 234V AC and 12V DC operation, also available is an internal battery holder.

The FRG7 is a precision-built all-purpose communications receiver, featuring solid state construction for long life and high performance. It utilizes a Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, for high sensitivity, image rejection and excellent stability.

FRG7 £212.00 Ex-stock (including VAT) TWO YEAR GUARANTEE AND FREE SECURICOR DELIVERY FRG7D Fitted SMC Digital Readout $\mathbf{£ 3 0 4 . 0 0}$ inc.

* Versatility: listen to shortwave broadcasts, commercial mediumwave stations, amateur radio, CB operators, and a variety of other communications services.
* High-performance engineering: the Wadley Loop System, (triple conversion superheterodyne) provides high sensitivity with stability. Set the dial to your favourite programme, and start up your tape recorder-confident that your FRG7 will stay on frequency.
* 10 kHz Direct Dial Readout: The extremely stable VFO is equipped with a precision held mechanism.

FRG7000
$0.25-30 \mathrm{MHz}$ Coverage with 1 kHz Readout

- Digital frequency display gives resolution to 1 kHz , using large, bright LED's for maximum readability.
* The built-in digital clock can be set to your local time plus GMT. Just flick a switch for selection.
* If you want to record a programme, but have to be away from your station, the FRG7000 will do it for you! The clock contains a timing feature that activates the receiver and internal relay contacts. Set the time you want to start and stop recording, hook up your tape recorder, and the FRG7000 will do the rest!

Computer technology and convenience features are combined in the FRG7000, a digital-display general coverage receiver for the discriminating SWL.
Improved SSB selectivity, ease of operation, and rugged construction, plus a digital clock-timer controlled by a CPU chip. that reads local and GMT, and controls peripheral station equipment such as a tape recorder.

FRG7000 £375.00 Ex-stock (including VAT) TWO YEAR GUARANTEEAND FREE SECURICOR DELIVERY YH55 deluxe padded headphones $\mathbf{£ 1 0 . 0 0}$ inc.

* An FET front end provides excellent sensitivity, and the "Wadley Loop" heterodyne oscillator yields rock-solid stability. Separate SSB and AM filters allow selection of the optimum selectivity for your application.
* The built-in AC power supply allows operation from $100 / 110 / 117 / 200 / 220 / 234$ volts $A C, 50 / 60 \mathrm{~Hz}$. The front panel lamps and digital display may be turned off, for energy conservation. A 12 V DC supply is an option.
* Ease of operation is ensured by careful selection and positions of controls and switches.

SOUTH MIDLANDS COMMUNICATIONS LIMITED

S. M. HOUSE, OSBORNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND

 Tel: Totton (0703) 867333, Telex: 477351 SMCOMM G, Telegram: "Aerial" Southampton

NORTHERN (Leeds) BRANCH

Colin Thomas, G3PSM

 257 Otioy Road,Leeds 16, Yorkshire.
9-5: Mon-Wed \& Fri-Sat.
S.M.C. (Jack Tweedy) LTD

Jack Tweody, G 3ZY
150 Hornecastle Road,
Woodhall Spa, Lincolnshire
Woodhall Spa (0526) 52793
9-5: Tuesday-Sat (+ appointments)

G3ZUL Brian
Stourbridge (03843) 5917 GW3TMP Howarth Pontybodkin (035287) 846/324 GI3KDR John Bangor (0247)55162

PuartSLab
 MARKETING LTD

QSL can supply crystals suitable for any commercial or amateur application. This advertisement will serve as a guide to the crystal service we are able to supply but for further details please write or telephone.
MADETO ORDER CRYSTALS SINGLE UNIT PRICING

Fundamentals	Price Group	Adjustment Tolerance ppm	Frequency Ranges	Price and Delivery	
				A	B
	1	200 (total)	10 to 19.999 kHz	-	£23.00
	2	200 (total)	20 to 29.999 kHz	-	£16.50
	3	200 (total)	30 to 99.999 kHz	-	£10.50
	4	200 (total)	100 to 999.999 kHz	-	¢6.00
	5	50	1.00 to 1.499 MHz	¢9.00	¢6.00
	6	10	1.50 to 1.999 MHz	¢4.75	¢4.20
	7	10	2.00 to 2.599 MHz	¢4.75	¢4.00
	8	10	2.60 to 3.999 MHz	¢4.55	¢3.70
	9	10	4.00 to 20.999 MHz	£4.55	£3.60
	10	10	21.00 to 24.000 MHz	¢6.00	¢5.40
3rdOVT	11	10	21.00 to 59.999 MHz	¢4.55	¢3.60
5th OVT	12	10	60.00 to 99.999 MHz	¢5.00	¢4.00
	13	10	100.00 to 124.999 MHz	¢6.15	¢5.20
5th, 7th \&	14	20	125.00 to 149.999 MHz	-	¢6.00
9 th OVT	15	20	150.00 to 225.00 MHz	-	£7.50

Unless otherwise requested fundamentals will be supplied with 30 pF load capacity and overtones for series resonance operation.
HOLDERS - Please specify when ordering - 10 to $200 \mathrm{kHz} \mathrm{HCl} 3 / \mathrm{U} .170 \mathrm{kHz}$ to 170 MHz HC 6 or $\mathrm{HC} 33 / \mathrm{U}, 4$ to $225 \mathrm{MHz}, \mathrm{HC} 18$ and HC 25 .
DELIVERY. Column A 3 to 4 weeks (this service is subject to availability). Column B 6 to 8 weeks.
2 METRE STOCK CRYSTALS. Price $£ 1.83$ for one crystal. $£ 1.74 /$ crystal when two or more purchased.
Channels R σ to R7. 58 to $\$ 23$.
TXCrystals: 4 \& 8 MHz in HC6/U. 12 \& 18 MHz in HC25/U
RX Crystals: 44 MHz in HC6/U. 14 \& 44 MHz in HC25/U
Also available from stock: 70 cm crystals (ALL popular repeater channels for Pye PF1, PF2 PF70 and Wood \& Douglas ($£ 4.50$ pr.). Converter crystals, frequency standards (Inc. 100 $\mathrm{kHz}, 1000 \mathrm{kHz}, 10.7 \mathrm{MHz} \&$ etc). Send SAE for list.
TERMS: Cash with order, cheques and postal orders payable to OSL LTD.
PRICES include postage but are EX VAT, PLEASE ADD 15%

PuartSLab

MARKETING LTD

P.O. Box 73

Telephone:01-690 4889 24Hr Ansafone: Erith (03224)30830 $\begin{array}{ll}\text { P.O. Box } 73 & \text { Telephone:01-6904889 24 } 7 \text { Ir Ansafone: Erith (0322 } \\ \text { Summit House (Dept. C) } \\ \text { Telex:912881 CWUKTX-G (Attention QUARTSLAB) }\end{array}$ London SE183LR

Cables:QUARTSLAB London SE18

CONSULTUS FOR YOUR

CRYSTAL

REQUIREMENTS
P.W. '"NIMBUS" CRYSTALS FROM STOCK $R \emptyset$ to $R 7, S \emptyset, S 8, S 18$, to S24 \& S32 © £4.91 per pair $10,245 \mathrm{MHz}$ second I.F. crystal @ $£ 2.66$
HC25/U crystal sockets for above crystals @ 20p each or £1.50 for 10
Crystals for other channels can be made to order © £4.53 each

We hold stocks of crystals for most of the popular amateur equipments.

Crystals can be supplied to most commercial specifications for marine, PMR etc. and for industrial applications e.g. microprocessor control.

ALL PRICES INCLUDE VAT \& P\&P

Please enclose S.A.E. with all enquiries.

P. M. ELECTRONIC SERVICES

2B, ALEXANDER DRIVE, HESWALL, WIRRAL, MERSEYSIDE, L61 6XT.

Telex: 627371 (PMES G)
future! Space for aerials is Dick's problem, without even enough for a 10 m dipole but I doubt if it is really as bad as that! Even a wire round the room will be effective on several bands given an a.t.u. to bring it to resonance.

DXers' Corner

Dave Coggins (Knutsford, Cheshire) keeps going strong on his DX160, covering all the h.f. bands on s.s.b., although the set seems to be suffering from modulation hum on the 10 m band. He comments: "I reckon listening is one half of the hobby, and building gear the other half" and how true that is! The satisfaction of building a bit of equipment and then going on the air with it takes a lot of beating. The 10 m band provided FK8CK, FR7BE, HM0OO, TA2AS. XT2AW with AP2KS, VP2VFO (Tortola, QSL AA6RX) and YB0ADW. 40 m came up with HH2BM for quite a rare country, VK7BC, 5N0AAS while 160 m meant UA3ACE.

Collecting books and manuals for the RAE is keeping Bill Rendell of Truro, Cornwall, busy at the moment and he has mentioned the May RAE as his target. The lure of the VK/ZL gang has been too much for Bill and he continues to collect them daily; for nearly 200 days now. His valved AR3 plus lots of gadgets found CM1RH, VK3XI and ZL4BO on 7 MHz with 14 MHz supplying C 5 ABK , FG7TD, FK8DH, M1D, VP2SAX, VP8SI on Argentine Is., and XT2AU. Also heard were ZL1, 2, 3 and 4 in a space of 20 minutes, 8 Z 4 A (also found on the 15 m band) with HK3LT on c.w., a change of mode for Bill.

Dennis Sheppard (Sheerness, Kent) is getting famous! He got a letter from another reader sent to just that address, which shows the power of $P W$! Dennis has prepared some notes on getting started on RTTY which I'll be covering next month. A new receiver in the shape of a Layfayette HA350 now graces Dennis's shack, the narrower i.f. filter proving a big advantage. On 20 m Dennis had copy from JA3RBG, OD5AO, OX3FG, VE1WG and ZS6AEC, with just JA IJDD and W1MX on 15 m . The 10 m band came up trumps this month with JA1JRK, many US stations, several VEs plus VK8HA (a fine catch on any mode), YO2IS, YV1DG, ZS6AKO, 3B9RS, 4X4MR, 5Z4RT and 9H79ET.

A long letter from Graham Mutton of Tasmania, Australia, editor of DX Panorama, a bulletin of the Australian Radio DX Club, comments on the popularity of the Yaesu FRG-7 receiver there as well as the Panasonic DR49 with its digital readout. He has a laugh at the YJ8 and H44 type of DX which we get excited over, being fairly commonplace in VK land. Some DX news includes P29JS going to C21 (Nauru) shortly and VK0KH replacing VKOPK on Macquarrie Is., by the time this appears in print. Mellish Reef could also be activated again by VK2BJL, while Heard Is. may also be back with us this coming summer. Thanks Graham and let's hope they all come off. Among DX logged by Graham was T3KC on Kiribati, YJ8NGR, both on 10 m , with FK8BT, FK8DE, LU3ZY (South Sandwich Is.), P29BS, P29DJ, S79NLB, S79RD, VR3AR on Christmas Is., VK9CGR on the Cocos Is., ZK2VE, 3C0AB (Annobon), 8Z4A and 9N1MM.

Allan Stevens also comments from Crowthorne, Berks, on the strength of VK 3 MO on 20 m who was still 57 when a short whip aerial was substituted for the long wire. Allan went on to log all VK areas except VK0 with others including HIIJE and TR8DX (QSL F6ESH + 3 IRCs). On 10 m South Americans LU6DZG and HR3JR came up, with 15 m revealing $3 \mathrm{~B} 8 \mathrm{CF}, 5 \mathrm{Z} 4 \mathrm{CW}$ and 8 Z 4 A .

Another letter from John Dainty shows how 80 m is now brightening up with logging of KP4AAO, VU2DPK,

WA2IUO, YA2CDO and YV3AZC. An unusual one on 20m was HP6KY. From Stourbridge, W. Mids. Peter Hawkes has done a good job on all bands from 10 to 80 m s.s.b., his main listening period being around 0330 onwards when on early shift. Anyway he found VS6BF, VP2AZG, and C6ACY on 10 m QSL to K4ZGB. Goodies on 21 MHz included YB0ADW, 8 Z 4 A , VU2TF 8 P 6 KB , and P 29 KK in Port Moresby. On 14 MHz it was HP3JAT, 8Z4A again, ZD8AI (QSL N3WM) and 3C1AC. CM1RH cropped up again on 7 MHz as did G2ACK/VP2 on Montserrat, with 80 m coming good with 5B4IJ (QSL via OE8HFL), HH2V a nice rarity, FM7WS and HI8JLB. All this on a 55 ft wire plus DX160 and a.t.u.

Clubbing

David G2FKS had sent me info on the Cambridge \& District ARC only to tell me in a later letter that the club had lost access to its meeting spot. So no more meetings until something in the area turns up.

Events in February for the West Kent ARS include G4BOO comparing receiver performances on the 15th and Terry Sadler talking on modern radio control equipment on the 29th, both at the Adult Education Centre, Monson Road, Tunbridge Wells. Informal meetings take place at the Drill Hall, Victoria Road on alternate Tuesdays throughout the year. Contact: Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks or try 073256708.

Stevenage \& District ARS meets first and third Thursdays in Senior Staff Canteen, British Aerospace Site B, Gunnels Wood Road, Stevenage, Herts at 8.15 pm or call in on the net Mondays 1930 on 144.550 MHz . Otherwise Peter Byrne G8MCV will be glad to answer your questions at 21 High Plash, Stevenage, alternatively ring 0438 64624.

February looks like being a busy month for the Liverpool \& District ARS according to Hon Sec Al Neilson G4CVZ of 78 Ackers Hall Avenue, Liverpool. February 5 has E. Birch G8HLQ giving forth on antique telephones (ideal s.s.b. communications quality?) while on the 12th there is an RSGB tape/slide lecture, with E. Grossmith discoursing on parabolic aerials on the 19th. Finally, on February 26 the secretary himself will talk on the annals of Liverpool's history. All this activity at 8 pm , Conservative Rooms, Church Road, Wavertree, but it doesn't matter really what colour flag you wave! Just go along.

West of Scotland ARS every Friday evening at 22 Robertson, Glasgow with GM4AGG on v.h.f. and h.f. bands. Programmes of talks and the like alternate with chat-nights. More info from: Sec Ian McGarvie, 3 Kelso Avenue, Paisley. If you can get to the Bradshaw Tavern, Bradshaw, Halifax on a Wednesday at 8 pm you'll find the Northern Heights ARS in session. On February 13 there is a demonstration of gear by Northern Communications/G3UGF while the 27th sees Jonathan Stockwell perform his dual fade slide show. The year's construction competition will be judged on March 12 next, so even if you are a newcomer there is time to make an entry. Sec is Marcus Topham G8NUC, 1200 Great Horton Road, Bradford or ring 73721.

The club room at 119 Green Lane, Derby sees the Derby \& District ARS having a jolly "bring and buy" sale on February 6 with the 13th devoted to a night on the air with stations G3ERD, G2DJ and G8DBY! Back to normal on the 20th with a visit to the PO sorting office and, finally, a talk by a member of the Derbyshire Royal Infirmary "Flying Squad" on February 27. Incidentally, light
refreshments are available at all meetings so no need to go home first for your tea and crumpet. Hon Sec is Jenny Shardlow G4EYM on Derby 56875 .

Visitors and potential members of the Torbay ARS are welcome to meetings at Bath Lane, rear of 94 Belgrave Road, Torquay, especially on February 23 when Peter Wakeham talks on Dartmoor, and you might as well know the annual dinner is on March 8 which is as good a place as any to meet all the gang. However, the editor of Tars Talk, the society's magazine, can tell you more at 2 Lower Coombe Road, Blindwell Park, Kingsteignton, Newton Abbot, Devon and the name is F. Bolton G3VTQ.

Brief details of the Lincoln SW Club meetings at the Corporation Social Club, Waterside South at 8 pm second and fourth Wednesdays. More info from: Sec Mike Wells G8PNU, 4 Horner Close, Brant Road, Lincoln or 0522 721277. North Londoners ought to be interested in the old-established Edgware \& District RS, meeting second and fourth Thursdays at the Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware at 2000. Local net Mondays 2150 on 1875 kHz . Write to: Hon Sec Dennis Lisney G3MNO, 119 Draycott Avenue, Kenton, Middx or try 01-907 1237.

The newsletter of the Irish Radio Transmitters Society is an immensely interesting journal and very well produced and full of information for the EI fraternity and others. Readers in Eire might like to contact the Society at PO Box 462, Dublin. One snippet is that our DM friends will be using calls in the series Y2 to Y9 in future.

One last note: if anyone else wants a copy of the G3IMI notes on the replacement filter for the FRG-7 then please send a decent sized envelope; there are three A4 sheets and you should have seen me trying to get them into $4 \times$ 3 in envelopes sent by some readers!

Late News

The World Administrative Radio Conference has agreed to amateur bands at 10.10 to $10.15 \mathrm{MHz}, 18.068$ to 18.168 MHz and 24.890 to 24.990 MHz , the first being a secondary allocation, the other two exclusive amateur allocations.

Bands 3.5 to 28 MHz remain the same with 3.5 MHz now being a shared primary service. On Top Band 1.810 to 1.850 will be exclusive amateur with national administrations able to allocate another 200 kHz if they so wish.

It has also been agreed that the requirement for a c.w. qualification will apply only to bands above 30 MHz . This would apply to the 70 MHz band if it is re-allocated by the UK, and to a proposed 50 MHz allocation.

Fig. 1. Circuit arrangement of a wavetrap

Fig. 2. Cascading wavetraps

MEDIUM WAVE DX

by Charles Molloy G8BUS

When I referred to the Piccadilly Radio transmitter at Ashton-under-Lyne in the November issue I little realised that we had a reader living only a few hundred yards away from it. He is Roy Haynes who is struggling away trying to DX under really adverse conditions. The problem is that the strong signal from the IBA transmitter overloads the early stages in the receiver causing spurious responses to be generated, and Piccadilly Radio to appear at a number of points on the dial.

Normally I would say, use a loop with the null pointing towards the offending signal. Unfortunately this is not possible as the receiver is a Realistic DX300 which has an internal aerial for the medium waves. Consequently a loop cannot be used with it, so for m.w. DXing Roy has to use a long wire.

Another solution is to fit an attenuator between the aerial and receiver. A simple attenuator can be made with a $1 \mathrm{k} \Omega$ potentiometer, as described in this column in the December $P W$. The trouble with attenuators is that they attenuate everything, DX and QRM but they can be of value none-the-less.

Wavetraps

A better solution is to use a frequency-selective attenuator such as a wavetrap. The trap is simply a parallel tuned circuit which has a high impedance at its resonant frequency and a low impedance at other frequencies. You connect the wavetrap between the aerial and the receiver aerial socket, preferably fitting it into a small box. The lead from the trap to the receiver should be as short as possible otherwise it may act as an aerial and pick up the station you are trying to suppress. If there is room inside then fit the trap behind the aerial socket.

The circuit of a parallel tuned wavetrap is shown in Fig. 1. Any medium-wave tuning coil will do, for example the Denco Maxi Q range 2 Blue. Ignore the coupling winding as it is not required. The tuning capacitor should have the value specified by the coil manufacturer and it can consist of a trimmer and fixed capacitor in parallel if you do not want to use a variable capacitor. The Denco coil requires a 350 pF variable to cover the medium waves. Connect the tuning capacitor across the main winding, e.g. with the Denco, tag 2 goes to one side of the capacitor and tag 3 to the other.

It is very easy to use the trap. Rotate the tuning capacitor until the spurii disappear. The wavetrap is now set and should not be adjusted any more.

If you have trouble from two strong stations then two wavetraps can be used in series (Fig. 2). One is tuned to one of the offending stations and the second trap to the other. Wavetraps were in general use in the early days of radio as they were of value with the unselective receivers of the day, but they can still be of service to the DXer who has trouble with strong local QRM.

THE SMALL PRINT STILL MAKES GOOD READING

Despite the increase in Bank Rate we're still able to save you a bomb - Still able to offer you a short sharp H.P. deal costing you no more than the cash price ... Want to buy a FT 101ZD? Try borrowing $£ 670$ from your bank and work out your charges ... PAINFUL? Trythe average finance company - EVEN MORE PAINFUL! Well above 20% per annum no less! ENOUGH TO MAKE YOU CRY is'nt it? ... Right - get your hankie out, wipe away those tears and focus your eyes down page to the deals we have listed - ENOUGH TO MAKE YOU SMILE is'nt it? ... You've probably noticed the down payment is higher than last month - not our fault - the Chancellor again! ENOUGH TO MAKE YOU CRY is'nt it? ... Never mind we've balanced this out by making your monthly repayments quite a bit lower - Go on work it out for yourself. ENOUGH TO MAKE YOU SMILE is'nt it . . . Of course if you're really clever you'll very quickly work out how to save even more money buying the AMCOMM WAY! If you can't see it - call us, we'll explain it! ... If this lot hasn't wiped the tears from your face we have one more thing that will. With the deals listed below and for a short period only we'll offer ABSOLUTELY FREE one only pure Irish linen hankie !!!!!
Incidentally, we're happy to consider trade-ins (regret no free hankie) and still offer our absolutely no quibble guarantee. "Any goods purchased from this company which do not meet the manufacturer's published specification will be immediately rectified or replaced".

Yaesu FT901DM	Yaesu FT 1012D	Yaesu FT 225RD	Yaesu FT 7B	Yaesu FT 1012
Cash Price $\quad \mathbf{¢ 9 2 0 . 8 0}$	Cash Price \quad ¢670.20	Cash Price $£ 557.76$	Cash Price $\quad \mathbf{¢ 4 3 2 . 1 2}$	Cash Price $£ 575.76$
Deposit \quad ¢352.00	Deposit £240.00	Deposit $\quad \mathbf{6 2 1 6 . 0 0}$	Deposit $£ 168.00$	Deposit $\quad \mathbf{5 2 3 4 . 0 0}$
12 monthly repayments of $£ 47.40$	12 monthly repayments of $£ \mathbf{£ 3 5 . 8 5}$	12 monthly repayments of $£ \mathbf{£ 2 8 . 4 8}$	12 monthly repayments of $£ \mathbf{£ 2} .01$	12 monthly repayments of $£ 28.48$
Yaesu FT 107M/107E	Yaesu FRG 7000	Yaesu FT 207R	Standard 8800	Standard 8700
Cash Price $£ 862.04$	Cash Price $£ 3777.04$	Cash Price $£ 199.60$	Cash Price $£ \mathbf{£ 2 5 2 . 0 0}$	Cash Price \quad ¢275.08
Deposit $\quad \mathbf{5 3 3 5 . 0 0}$	Deposit $\quad \mathbf{£ 1 5 0 . 0 0}$	Deposit £91.00	Deposit $\quad £ 99.00$	Deposit $\quad \mathbf{¢ 1 0 9 . 0 0}$
12 monthly repayments of $\mathbf{£ 4 3 . 9 2}$	12 monthly repayments of $£ 18.92$	12 monthly repayments of $\mathbf{£ 9 . 0 5}$	12 monthly repayments of $\mathbf{£ 1 2 . 7 5}$	12 monthly repayments of $£ 13.84$

OPENING HOURS
Mon-Sat 9.30-5.00

BURNS ELECTRONICS NEW EQUIPMENT FOR 1980

CRYSTAL CALIBRATOR CC-11

A battery operated, crystal controlled, portable instrument, the CC-11 uses CMOS and schottky integrated circuits for low power consumption and high harmonic output. Frequency stability is better than $\pm 10 \mathrm{ppm}$ over -10 to $+60^{\circ} \mathrm{C}$.
Designed to meet the UK amateur radio licence requirements, the CC- 11 generates 1 MHz . $500,100,50,25,12.5,10$ and 5 KHz with harmonics to above 600 MHz for receiver and transmitter frequency measurements. Modulation facility to identify output spectrum. Sampling bridge for heterodyne wavemeter function to above 500 MHz .
Supplied with battery and manual. Carriage free in UK.

$$
\text { Price } \mathbf{£ 5 5 . 0 0}+\text { VAT }
$$

FM DETECTOR MODULE FMD-7

(Reviewed in July 1979 Practical Wireless)
Designed for use with the Yaesu FRG-7/7000, Lowe SRX-30, Drake SSr-1 or any general purpose receiver with a 455 KHz IF, the FMD-7 provides channel selectivity, high gain and limiting. quadrature detection, squelch and audio filtering. A buffer is included to isolate the receiver filters from those in the FMD-7.
The module uses a low power, multifunction, linear integrated circuit for reliability and ease of assembly and is available in kit or made and tested form. Full assembly and test instructions are provided.

Price: KIT $\mathbf{£ 1 8 . 6 3 + V A T ~ M ~ \& ~ T ~} £ \mathbf{2 3 . 2 0}+$ VAT
Absorption Waverneter TC-101 with probe $\mathbf{£ 4 5 . 5 0}+$ VAT Frequency Standard SD-12 T.B.A

APPLICATIONS MANUAL No. 1 RESONANT CIRCUITS

Theory and applications of tuned circuits covering $85 \mathrm{KHz}-200 \mathrm{MHz} \mathbf{~} \mathbf{~} 0.74$ (zero VAT) ISSUE 10 COMPONENT CATALOGUE $\mathbf{£ 0 . 2 5}$ (zero VAT)
Data sheets available on all of our kit and manufactured products, send large SAE
All equipment and kit prices include carriage within the UK but exclude VAT which must be added at the rate of 15%. Exports are free of VAT.

> 43a Chipstead Valley Road, Coulsdon, Surrey, CR3 2RB Tel: 016687766 (Ansafone)

A.S. COODEF RADIO REPAIRS

15, Sandhurst Road, Kingsholm, Gloucester GL1 2FE Tel: Gloucs 27223
"We stock the full range of Vero products"

1. $19^{\prime \prime}$ CARD FRAME/CASE inc. Guides
$\mathbf{£ 2 7 . 9 3}$ inc. VAT
2. NEW V-Q DIP BOARD $\mathbf{£ 1 . 3 5}$ inc. VAT
3. S100 SYSTEM

S100 Main Frame (inc. 6 connectors)
£268.18 inc. VAT
4. " G " RANGE CASES LARGE $\mathbf{£ 1 2 . 5 7}$ inc. VAT
We also stock Philips audio and components products.
Radios, Cassettes, Music Centres, Hi-Fi, Car Radios, Accessories inc. the new 890 Car Radio Cassette with Digital LED Frequency Display. LW-MW-FM Stereo
£214.57 inc. VAT
MAIL ORDERS AND TELEPHONE ORDERS WELCOME
P\&P Orders up to $£ 5.00$ add 30 p
Orders up to $£ 5-£ 10$ add 50 p
\rightarrow
Bytebincem
U.K. ONLY. Overseas P\&P over $£ 10$ post free

SAE WITH ALL ENQUIRIES PLEASE

SRX30 SWL RECEIVER $£ 178.00$

Buy by post or phone your Barclay Card or Access number.
Alternatively. call in for a chat. The shop is just 10 minutes from Leeds City Station, and there's easy parking if you travel by car \star Instant H.P. for licenced Amateurs $\#$ Extended Credit Terms Available * Send 50 p for Catalogue and Price List

LOWE TRIO DISTRIBUTOR
AR are area
distributors for Jay Beams, Antenna Specialists, Hilomasi Modules Products.

STEPHENS-JAMES LIMITED
 COMMUNICATION ENGINEERS

47 WARRINGTON ROAD, LEIGH WN7 3EA
ENGLAND
Telephone (0942) 676790
Everything for the Short Wave Listener
We stock receivers and listening aids by most of the world's leading manufacturers. Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp .
Antenna switches-converters. Aluminium masts-clamps. Antenna rotators.

Trio R1000 Receiver
Digital readout general coverage receiver
covering 200 KHz to 30 MHz . synthesiser. Also incorporating quartz digital clock. £298.00.
Trio R820
Amateur Band Receiver $£ 790.00$.
Send for full specifications of our full range of receivers covering from 200 KHz to 520 MHz . Our secondhand equipment changes daily. Send SAE for up to date lists. Part exchange welcome. Good clean Equipment bought fo
cash. cash.

Antenna Multituner MK2
Designed and manufactured by ourselves.
Frequency coverage 500 KHz match any antenna over 5 m in length to practically all receivers. In production for over four years and now used in over 55 countries. Multifilter MK2
This unit incorporates Peak and Notch filter, and Band Pass filters. No internal connections to your receiver. Essential for users of
FRG7, SRX30, SSR-1 etc. Send for details including Send for details including our Preselector and Crystal Calibrator.
H.A.B. SHORT-wAVE KITS

WORLD-WIDE RECEPTION

'H.A.C. well known by amateur constructors for its Short Wave receivers, now offers a been up-dated to suit the novice and the expert. £12.00 INCLUSIVE - novice and the exper £ 12.00 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III; drilled chassis, valve, accessories and full instructions. T TWIN TRANSISTOR RECEIVER, selective, sensitive and with fantastic reception, yet needing only a single PP3 battery, at $£ 14.50$ this receiver is outstanding value, and will give you hours of in terest and entertainment.
NEW - TRIPLE-T RECEIVER, available early March. A more advanced receiver which gives remarkable performance.
Introductory offer $£ 20 \cdot 00$.
All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

> SORRY, NO CATALOGUES WITHOUT S.A.E.
> "H.A.C." SHORT-WAVE PRODUCTS
> P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West
> Sussex RH19 35Z

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SRX30.

These units come complete, with only three wires to connect. The FDU7 for the Yeasu FRG7 can be fitted in place of the KHz dial, or can be supplied for external use. (Please state when ordering) The FDU3 for the SRX30 is supplied for top of the set use only.
(Full Fitting Instructions are supplied.)

$$
\begin{array}{ll}
\text { (FDU7) for FRG7 } & \text { @ } \mathbf{£ 4 4 . 7 7} \\
\text { (FDU3) for SRX30 } & \text { @44.77 }
\end{array}
$$

We also manufacture an R.T.T.Y. Converter.
The MB6R (Receive only) and the MB6R/T (Receive/Transmit).
We supply these units with single or double current loops for connection to teleprinter To Order. T.T.L./C-MOS Logic Levels and Oscilloscope Outputs are provided. Dimensions (84X304X210).
(MB6R Double or single current) @ 77.96
(MB6R/T Double or single current) @ $£ 83.25$
(All Units are fully Guaranteed, and come complete) (No extras needed)
(All prices inclusive of postage and V.A.T.)
(Payment by P.O. Cheque or Access)
B. BROOKES ELECTRONICS, 69 Leicester Street, NORWICH NR2 2DZ, ENGLAND.

Tel: 0603-24573.

Beginners' Corner

The 1000 kW transmitter on 1323 kHz at Nauen in East Germany usually goes off the air just before 2300. If you stay on the channel for a few minutes until the carrier is switched off you should be able to hear the BBC World Service in English. The programme comes from the BBC Eastern Mediterranean Relay at Zyyi in Cyprus and continues until 2315 when the station gives its identification and signs off. If you want a QSL, no need to write to Cyprus, just send your report to BBC External Services, Bush House, London WC2B 4PH.

When Cyprus has gone off, tune down slightly to 1320 kHz and if you are lucky you may hear CKEC which is in New Glasgow, Nova Scotia on the western seaboard of Canada. At this time of year as the days are lengthening it may be a little late in appearing so if you are unsuccessful at 2315 then try again at midnight but remember, reception of North American DX is variable and what you hear one night may be inaudible the next. CKEC does QSL and reports should go to Box 519, New Glasgow, NS, BZH 5E7, Canada.

OSL card of CKEC, New Glasgow, Nova Scotia

Long Waves

"I have been experimenting with l.w. loops and have found that 500 pF and 25 turns work well", writes David Hyams from Finchley who is referring to the " 40 inch" box loop. When used with a Realistic DX160 it pulled in ten long wave stations including Tipaza in Algeria. The date was November 14 and the time 1320 which prompted David to ask if reception could have been by ground wave.

Long wave signals do travel a long way as the ground wave is not attenuated as much as medium-wave signals. The range of the ground wave is inversely proportional to frequency and you can observe the effect by tuning across the medium waves during daylight, starting at the l.f. end. As you progress across the band, stations become fewer and fewer, and by the time you pass 1200 kHz only locals will be heard.

During the winter, the D layer of the ionosphere, which absorbs both medium- and long-wave signals, does not always re-form completely at sunrise, and when this occurs semi night-time conditions can persist for most of the day. North American DX has been heard as late as 1000 in mid-winter. The short answer to David's question is that there was probably a mixture of ground and sky wave when listening to Algeria.

North American DX

In spite of the expected sunspot maximum, North American DX was quite good during the autumn with
some interesting DX reported during September and October. John Faulkner writes from Mansfield to say that among his best catches during October were: KMOX St Louis on 1120 kHz at 0140, WOAI San Antonio Texas on 1200 at 0210, WERE (5 kW) in Cleveland at 0048, WCSC Charleston South Carolina on 1390 at 0021 and CFCY Charlottetown, Prince Edward Island on 630 at 0138. Details of receiver and aerial were not given.
"What is the sunspot minimum like, as I have only been DXing since 1978?" asks David Hyams who has just succeeded in hearing his first two North Americans; CJYQ on 930 and WINS on 1010. They were logged on a Realistic DX160 and m.w. loop. Since David's version of the DX160 has an internal aerial for the medium waves, the loop was placed close to the receiver so that the signal could be transferred by induction. You can boost a signal this way but the loop's null will be masked by the receiver's aerial and you will not be able to null-out QRM, which is the main purpose of using a loop.

At sunspot minimum, North American DXing is a lot easier, some signals being conspicuous on the band nearly every night and a few being strong enough to be picked up occasionally on a portable with internal aerial. At the moment, reception of NA can really be classed as DX and it requires a good receiver, persistence and some luck to pull in your first transatlantic station. The situation will gradually improve though, as we pull away from the sunspot maximum and solar activity declines. I hope this answers Bradley Wilson who is a Canadian living in Bristol.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

There are two good reasons for using an outdoor aerial. The first is to obtain maximum signal pick-up, which means erecting the aerial as high as possible above the ground and nearby buildings. The second reason is to avoid or reduce electrical noise from electrical equipment within the house, or from elsewhere via the mains wiring. Where there is insufficient space to erect a long wire then a vertical aerial attached to the outside of the house should be considered.

Vertical Aerials

One hears occasionally of a wire with a weight on the end being lowered from a window, or of a vertical wire suspended between insulators fixed to the eaves and some point near the ground, but these are not the type of verticals I have in mind. They do not meet the criteria mentioned above, though they are probably a shade better than an indoor aerial.

A mast, fixed to but insulated from the roof would be ideal, a whip with insulated base, fixed to a chimney or to a window ledge if access to the roof is not available, is what will be used in practice. The construction of a homemade vertical rod antenna some 3 to 4 m long is shown in
the Aerial Data Chart presented with the November 1979 issue of $P W$.

It is essential to use screened feeder such as coaxial cable to connect the whip to the receiver, as an unscreened lead will act as an aerial and pick up interference on the way down. Earth the feeder screen at the receiver end; i.e. join it to the receiver earth socket which should be connected to earth. Connect the inner conductor to the whip and to the receiver aerial socket. An a.t.u. between the coaxial cable and receiver may be found useful, see the Aerial Data Chart for details.

TV Aerials

If you have an outdoor TV aerial then you have a ready-made vertical. The directional effect of the aerial is only apparent at TV frequencies, and in the h.f. part of the spectrum it will act as a short vertical. All you have to do is to unplug the lead from the TV and connect it to the receiver or a.t.u.

It is a lot more convenient to use a switch so that the TV aerial can be switched for DXing or TV reception. The Antiference Aerial Switch will do; I use one to connect an aerial to either of two receivers. There is a coaxial socket at the top of the switch and the aerial is plugged in there. At the bottom of the switch there are a couple of holes leading to a saddle and two screw terminals. The new leads to the receiver and the TV come in at these points. The saddle secures and connects together the two screens, while each of the inner wires goes to a screw terminal. You will need another coaxial plug to join up to the TV and whatever plugs are required at the receiver or a.t.u. Do not get the cables crossed and join the TV to receiver-neither will like it!

A short vertical will not pick up as much signal as a long wire, especially on the lower frequencies, but signal pick-up is not everything. Signal-to-noise ratio is what matters, and this will be better for a whip with screened feeder than for an indoor aerial. A weak signal with a quiet background can be boosted with a preselector, but there is little that can be done with a weak signal and a noisy background.

DX Programme

This is the title of a weekly programme for DXers, broadcast from Madrid by the Spanish Foreign Radio. It starts with the interval signal of a broadcasting station and you are given to the end of the programme to identify it. In the meantime you will hear a talk on one of a wide range of subjects of interest to DXers, or excerpts from club magazines plus up-to-date tips on the state of the bands.

I have become a regular listener to DX Programme as I find it both refreshing and informative. It is compiled by Ambrosio Wang and is on the air every Sunday at 2100 on 7105,9685 and 11840 kHz with a repeat at 2150 . The station QSLs with a colourful pennant.

DX

Reports of Japan in the late evening come from several readers. George Smith (Liverpool) has an FRG-7 and 70ft long wire and he logged NHK on 15270 at 2345 while K. H. Smith (Ross-on-Wye) picked it up at 2200 in the 25 m band with a very strong signal. The Rev A. E. Whyatt (Walsham) was kind enough to send me an up-to-date schedule which shows 15195 kHz with programming in English in the Asian Service from 2200-2230 and 2300-2400. There is also a simultaneous broadcast to Europe on 9585 kHz in the 31 m band. A. Dodsworth (Liverpool) reports reception of Japan on 21610 kHz at

The QSL pennant of Spanish Foreign Radio

the more normal time of 0800 using a Vega 206 and a short length of wire wound round the picture rail.

There have been a number of requests for help with countries that are not conspicuous on the international bands. At the time of writing, Argentina can be heard on 11710 kHz during the evenings and there is a programme in English at 2300 Mondays to Fridays. Brazil can be heard on 15265 around 2100. Try for Sri Lanka on 15 120, for R Uganda on 15250 , and for Bangladesh on 11765 or 15285 , all between 1800 and 1900. Has anyone logged Saudi Arabia, Kenya, Zambia, Rhodesia, Libya, recently on the international bands?

A report of Africa No. 1 which is currently testing on a number of frequencies, comes from P. N. Kirkup of Burnley. The address for reception reports is Radio Africa No. 1, BP 1, Libreville, Gabon. Reader H. L. Nyman refers to the report in the October $P W$ of the simultaneous reception on the 16 m band of the English and Hebrew transmissions from Israel. IBA broadcasts in Hebrew all day on 17630 kHz and in English on 17685 at midday and on 17645 at 2000 hours all of which are near to each other.

Readers' Letters

"Is it possible to use the umbrella-type clothes line as an aerial and what type of cable is used," asks A. B. Cooper of Plumstead. Use coaxial cable just as you would with a whip and make sure the metal parts are insulated from the

Reports on the various bands are welcome and should be sent direct, by the 15 th of the month, to:
AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2 TW. Logs by bands, each in alphabetical order.
MEDIUM and SW BANDS Charles Molloy G8BUS. 132 Segars Lane, Southport PR8 3JG. Reports for both bands must be kept separate.
VHF BANDS Ron Ham BRS15744, Faraday, Greyfriars, Storrington, Sussex RH2O 4HE.
ground. In reply to Mick Ballamy, the transmissions you heard on 8 MHz are commercial stations not intended for reception by the general public.

Sixteen-year-old Mark Godden is looking for spares for his ex-WD R 107 communications receiver and he wonders if anyone has a scrap R 107 for stripping down. He would also like to contact anyone of his own age in his area with an interest in radio. Replies to: 27 Southwell, Portland, Dorset DT5 2DP. Joseph Pritchard, who is a student at UMIST (Manchester), is constructing a 5 transistor t.r.f. for use on the tropical bands. Hope to have a log from you soon. In the meantime he is using his ITT CD108 and telescopic aerial and he mentions hearing Australia on 11800 at 1849 and Pakistan on 11672 with this rig.

Fourteen-year-old Richard Everitt has started DXing with a Vega 206, which he considers excellent value for money, but when he uses a $40 f$ long wire he finds that performance is only improved on the lower frequencies. Try a small capacitor between the aerial and receiver. Richard would like to contact other DXers in his area or to join a local DX club. Replies to: 15 St Mary's Road, Bluntisham, Huntingdon, Cambs PE17 3XA.

by Ron Ham BRS15744

In the world above 30 MHz , we become familiar with the various disturbances which increase the range of signals and provide the DX, which, after all, is the thrill of the exercise. Periodically, however, up comes the big one, as it did in late November. and the enthusiasts are faced with relatively super DX on all bands from 3 m to 3 cm .

Tropospheric

The atmospheric pressure, measured in Sussex, rose from $30 \cdot$ Iin on November 26 to a peak of $30 \cdot 35$ in during the afternoon of the 28 th and was back to 30.15 in by midday on the 30th. Fig. 3. True to form, the real peak of the
exceptional tropospheric opening, on November 28 and 29 , came as the high pressure began to fall. I first noticed a lift at 1400 on the 27th when signals from the Bristol Channel GB3BC, R6 and the Kent GB3KR, R4, repeaters were opening the squelch on my TM 56B receiver and pictures were appearing from the IBA transmitter at Lichfield on channel $8,189 \mathrm{MHz}$.

As both these receivers are fed with dipole aerials the strength of the signals, from east, west and the Midlands, suggested that an extensive opening was brewing up and by midday on the 28th, the big lift had begun. At 1319, I heard G5SD in nearby Littlehampton, work G8HYT, Weston-super-Mare, via the Bristol Channel repeater, pictures from Lichfield were very strong and about 12 f.m. broadcast stations (predominantly French), mixed with the BBC transmissions in Band II. Around this time, cochannel interference was beginning to effect Band V television and I received a 539 signal from the 70 cm beacon at Emley Moor GB3EM. During the evening I heard several northern-G stations, including my old friend Jack Hum G5UM, working continental stations on 70 cm and another old friend, Harry Gratton G6GN, Bristol, working into London.

My aerial for 70 cm is a north/south horizontal dipole and to show how good u.h.f. conditions were, I heard a QSO between ON4HU and a G station in Devon, though both stations were well off direction for this tiny aerial. Conditions like this continued throughout the 29th and although some bands were beginning to clear before midnight, the last DX I heard was at 0059 on the 30th when DD3LN worked a PA0 via GB3KR. and at 0105 $\mathrm{DC} 5 \mathrm{QH} / \mathrm{A}$ worked a PE1 through the London repeater GB3LO. R7.

Band II

While, during the evening of the 28th, Ken Smith BRS20001, Horsham, Sussex, was receiving full stereo from Dutch and German f.m. stations. Adrian Corbett, Bookham, Surrey, heard French and German stations taking turns to blot out LBC and Guy Stanbury, Chelmsford, received very strong signals from Belgian, Dutch and French stations, many from West Germany and said that all stereo programmes were of excellent quality with little or no noise. Harold Brodribb, St. Leonards-on-Sea, Sussex, using a Bush VHF 80 and a loft aerial heard one Dutch, 21 French, and BBC stations from many parts of the UK. At 0122 on the 29th Ian Rennison, Horsham, logged about eight Dutch and German stations in stereo, some of which he heard again during the evening.

Fig. 3: Atmospheric pressure recorded by the author, 27-30 November 1979

DXTV

At 1800 on the 28th, Tony Skitt, Heslington, Yorks, heard a BBC1 weather man say that the high pressure was causing TV reception problems in the south east and, indeed, many of my local viewers were complaining bitterly as the co-channel interference built up and ruined their pictures. Very soon both the BBC and IBA were warning people about the disturbance, which was no surprise to Ken Smith because at 1800 he was watching a weather report and commercials from a French TV station around channel 21. Arthur White, Aisby, Grantham, writes: "I watched part of a John Wayne film in German, a news broadcast from Austria, and the film Rebecca apparently with Dutch sub-titles."

At 0045 on the 29th, Ian Rennison watched pictures from ZDF (Zweites Deutsches Fernsehen) on channel 45, his first u.h.f. TVDX and using only a set-top loop aerial. Around 0120, I received a test card from Oostvleteren, Belgium (RTB, network-2) on channel 55 and the end of the news, clock and test card from ZDF on channel 21. Between 0800 and 1000 I saw test cards from East Germany, DDR-F1, followed by a sports programme on European channel 11, Holland on channels E5 v.h.f. and 29 u.h.f., Fig. 4(a) and (b), and Dortmund on channel 25.

By 1313 the word Dortmund on the test card was changed to ZDF and the Nederlands test cards (also seen by Tony Skitt using a Labgear wide-band u.h.f. set-top aerial) were replaced by an Open University type of programme. The v.h.f. transmissions from Holland were received on my National Panasonic 5001G and the u.h.f. signal on my JVC 3060, both sets being fed from vertical dipole aerials. Periodically the Dutch educational programme was interrupted with a fixed caption and at 1313, PAOZE was seen. Guy Stanbury reported: "Very clear pictures obtained from all of the north European stations" and Adrian Corbett, using a Waltham W 154, with his aerial on an outside window-sill, did some home DXing and received pictures varying in strength from the BBC at Wenvoe, the IBA at Sutton Coldfield, and erratic signals on other channels, not easily identified. Parmjit Singh, Leicester, hopes to start TV DXing; good idea Parmjit, it is openings like this that make all the routine monitoring, that a DXer must do, worth while. Tony Skitt also picked up a strong test card marked (RTBF Tele 2 Liege Canal 45) and both BBC and IBA pictures from southern England.

At 0105 on the 29th, I watched the end of the ATV programme Telespots on channel 61, advertising for the Coventry and Nottingham areas followed by the station close-down announcement given by Mike Prince. Andy Martin G3UDR, was duty transmission controller during the evening of the 28th and said: "I have not experienced so much of a problem with co- and adjacent-channel interference before. The link from London on This is Your Life and London Night Out actually faded out on us." Although this tropospheric disturbance was the hot news, my readers have been keeping an eye on channel R1, 49.75 MHz , for television pictures via the F2 layer of the ionosphere. A mixture of pictures were received on this channel during the early mornings of November 19, 20, 21, 23, 24, 27 and December 2, 3, 4, 8, 9, 11, 12 and 13, and although individual pictures are difficult to identify, I did make out a group of dancers or skaters at 0850 on December 2. John Branegan saw a blurred announcer on October 22, Fig. 5, and I received strong bursts of test card from TV1-Sverige at midday on November 23. This mixture of pictures on R1 was exceptionally strong on December 11 ; at 0900 a clock appeard but there were too many images to tell the time. This was also the case with a test card which followed.

Fig. 4: Dutch TV received by the author simultaneously on Ch.E5 (top) and Ch.E29 (bottom), on the morning of 29 November 1979

Fig. 5: Announcer on Ch.R1, received via F2

The 2 m and 70 cm Bands

During the big tropo event, John Cleaton G4GHA, Wareham, Dorset, made his first LX contact on 2 m and filled over four sides of his \log book with DX, among which he heard stations in EI, GI, HB and OZ, worked stations in D, EA, F, GJ, GU, GW, LX, ON and PA, and said that EA2HX, on the 28th, was 40 dB over S9. George Grzebieniak RS41733, London, said: "Conditions were fantastic" and is very pleased because he heard G6GN, Bristol; G8DJW, Dorset; six PEs and DK3OL on 70 cm
and has now heard a greater distance on 70 cm than on 2 m . Arthur White, Grantham, Lincs, heard many Dutch, French and German stations on 2 m using only the telescopic aerial attached to his set.

Between 1800 and 2100 on the 28th, Mike Rowe G8JVE, near Littlehampton, Sussex, worked nine Ds, 20 Fs , one HB , one LX, one ON and three PAs on 2 m s.s.b. and Alan Baker G4GNX, Newhaven, Sussex, worked one EA and one F on 2 m c.w. and one DB and two PEs on s.s.b. Like others, Alan said that all repeater channels, R0-9 were full of signals and some were three and four deep.

DJs were among the DX working through the Brighton repeater GB3SR, R3, and at one time Alan worked a GW, near Swansea, who was getting in to SR with only 1 watt. Keith Legett G8MLT, also worked an EA on 2 m and at 0104 on the 29th, Alan worked DK8SG from home on 2 m s.s.b. and while mobile, at 1100 , he had a QSO with DCIBN via the Belgium repeater, ONOWR, R2. Between 1600 and 1640 he contacted stations in D, EA, F and PE via the French repeater FZ3VHF, R7 and while he worked DC5CW/M at 1745 via GB3SR, Roy Bannister G4GPX, in nearby Lancing, heard the German station direct on the repeater's input frequency. Alan said: "Early on the 29th it was difficult to decide which 2 m channel or system to use because everything was packed with DX and the Leicester repeater GB3CF, R0, was heard and worked from the Sussex coast throughout the day." Ron Aitkenhead, G8DPP, London, worked six Dutch and 16 German stations on 2 m s.s.b. between 2300 on the 28th and 0202 on the 30th. David Rennison, Horsham, using his NR56 receiver and ground-plane aerial, heard numerous PAs on the 29th and at 1742 he heard DC5CW/M through the Brighton repeater and from 2045 received signals from DC2BE, F1CUO, ON1OW, and OZIZB via unidentified French repeaters.

Between 1055 and 1240 on the 29th, Jack Brooker G3JMB, Hassocks, Sussex, worked DF, DK, F, G, ON and PAO, from his car, while stationary on Ditchling Beacon, a high spot near Brighton. During the afternoon he worked DF8JM and DG4EH, from home, via the Leicester repeater giving Jack his first German QSO from the home QTH. During the early hours of the 29th, Andy Martin G3UDR, Evesham, worked a PA0 direct, on 2 m , while travelling home. Andy is also a member of the ATV Network Ltd Amateur Radio Club, Fig. 6, and says that they have many members among the presentation and engineering staffs.

Another, but far less intense, tropospheric opening occurred on December 4 and 5 when I received strong signals from the Bristol Channel, Birmingham GB3BM, R5, and Kent repeaters. Watchable pictures were received from Lichfield on channel 8 and several foreign stations were predominant in Band II. G4GNX heard many repeater signals and worked a mobile station in Birmingham, via GB3BC, while he was driving through Uckfield in Sussex.

The 10 m Band

Signals, averaging 539 , were heard daily between November 19 and December 13 from the International Beacon Project stations A9XC, DK0TE, DL0IGI, and from 5B4CY and VP9BA around midday on most of the days. Although conditions were generally good throughout the period, with strong signals from Canada, Japan, Russia and the USA, I noted an echo on two DJ signals at 0915 on November 21, on some Russian signals at 0851 on December 5, on DLOIGI at 0815 on the 8th and on G4AYW as he worked SM4DNK around 0930 on the 13th.

Fig. 6: ATV Network Ltd. OSL card

Fig. 7: Picture via Leonids MS on 16 November 1979

The 6 m Band

John Branegan GM4IHJ, Saline, Fife, has worked more than 45 VEs and Ws in crossband, 6 m to 10 m , QSOs and has regular contacts with K5EFW, Albuquerque, New Mexico and W5VY, San Antonio, Texas. John has built a 50 MHz , high-Q, mOSFET pre-amplifier for his Eddystone 770R receiver and is delighted with its performance. "I have also tried it on E2 and R1 on the TV, it really pulls in the meteor scatter," writes John on November 22 (Fig. 7), "As a result I am now enjoying a new breakfast treat nearly every day, Meteor Scatter TV with my cornflakes".

1 am still using my R216 and vertical dipole on 6 m and received strong s.s.b. signals from WBIFVS and W2UTH at 1345 on November 19, K8NSS and VEIAVX at 1350 on the 20th, a QSO between VE1AVX and W2UTH at 1427 on the 21 st, and the same Canadian again, around the same times on the $22 \mathrm{nd}, 23 \mathrm{rd}$, 29th and December 7 and 8 , and around 1400 on the 10th. I also heard KA4GCM and WB4HJF around 1400 on the 11th, K8EFS working John Branegan, WA8OGS, W8BJY and W8ULC and several weaker ones around 1500 on the 12th.

News Items

I hope to hear more in the future from Jonathan Rose, Ashtead, Surrey, a newcomer to amateur radio who is at present repairing a CR 100 receiver and intends joining the RSGB.

Congratulations to five Sussex amateurs; G8MIM, G80UK, G8TMX, G8TTT and Charles Ormerod, who, on November 30, all passed their Morse tests at North Foreland and will soon be sporting those G4 calls.

RSGB Council member Robin Bellerby G3ZYE, has been elected president of the Brighton and District Radio Society for 1980, and Nigel Hewitt was given the Bill Pitfield Memorial Award by the BDRS, for outstanding services to amateur radio, especially for teaching the RAE.

Britain's first comp

A complete personal computer for a third of the price of a bare board.

Also available ready assembled for $£ 9995$

The Sinclair ZX80.

Until now, building your own computer could easily cost around $£ 300$ - and still leave you with only a bare board for your trouble.

The Sinclair ZX80 changes all that. For just £79.95 you get everything you need to build a personal computer at home...PCB, with IC sockets for all ICs; case; leads for direct connection to your own cassette recorder and television: everything!
And yet the ZX80 really is a complete, powerful, full-facility computer, matching or surpassing other personal computers on the market at several times the price. The ZX80 is programmed in BASIC, and you could use it to do quite literally anything from playing chess to running a power station.
The ZX80 is pleasantly straightforward to assemble, using a fine-tipped soldering iron. Once assembled, it immediately proves what a good job you've done. Connect it to your TV set... link it to an appropriate power source ${ }^{\omega}$.. and you're ready to go.

Your ZX80 kit contains...

- Printed circuit board, with IC sockets for all ICs.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean
- Ready-moulded case.
- Leads and plugs for connection to any portable cassette recorder (to store programs) and domestic TV (to act as VDU).
- FREE course in BASIC programming and user manual.
Optional extras
- Mains adaptor of 600 mA at 9 V DC nominal unregulated (available separately - see coupon).
- Additional memory expansion board plugs in to take up to 3 K bytes extra RAM chips. (Chips also available see coupon.)
"Use a 600 mA at 9 V' DC nominal unregulated mains adaptor. Available from Sinclair if desired (see coupon

Two unique and valuable components of the Sinclair ZX80.

The Sinclair $Z X 80$ is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-yourself BASIC manual.

The unique Sinclair BASIC interpreter... offers these remarkable programming advantages

- Unique 'one-touch' key word entry: the ZX80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.
- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The $\% \mathrm{X} 80$ also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Integer names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions, USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols.
- All characters printable in reverse under program control.

\ldots and the Sinclair teach-yourself BASIC manual.

If the features of the Sinclair interpreter listed alongside mean little to you-don't worry. They're all explained in the specially-written 96 -page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC pro-gramming-from first principles to complex programs. (Available separately-purchase price refunded if you buy a ZX80 later.)

780-1 microprocessor-new, faster version of the famous Z-80 microprocessor chip, widely recognised as the best ever made.

Sockets for TV, cassette recorder,

Tel: 0223211488.

EHROMASONTE electronics your soundest connection in the world of components.

The items shown in this advert are just a small selection taken from out 1979 Catalogue containing everthing from Resistors to the latest in Mictoprocessors. Order your copy today FREE with al orders upon request or S.A.E

Dept PW1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN
TEL: 018833705018832289

OSMABET LTD $\begin{gathered}\text { We make tanstomers } \\ \text { amongst other } \\ \text { nings }\end{gathered}$
LOW VOLTAGE TRANSFORMERS: Prim 240 V ac. 5 V1 5A £3.00; 3A £4.15; 6A CT £7.90; 12 V
 £18.00; 8A CT $£ 29.25$; 12A CT $£ 37.50$; 40V 3 A CT £13.50,
TWIN SEC TRANSFORMERS: Prim 240 VaC
$6 \mathrm{~V} 06 \mathrm{~A}-6 \mathrm{~V} 0.6 \mathrm{~A}: 9 \mathrm{~V} 0.4 \mathrm{~A}$ - $9 \mathrm{~V} 04 \mathrm{~A}: 12 \mathrm{~V} 0.3 \mathrm{~A}-12 \mathrm{~V}$
 25 V . MIDGET RECTIFIER TRANSFORMERS: Prim 240 V ac. $6-0.6 \mathrm{~V}$ 1 5 A or 9.0 .9 V 1A $£ 3.40$ each: $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ o
$20-0.20 \mathrm{~V} 075 \mathrm{~A} £ 4.15$ each $9-0.9 \mathrm{~V} 03 \mathrm{~A}$ or $12 \mathrm{~V} .0-12 \mathrm{~V}$ IT TRANSFORMERS TAPPED SEC: Prim 240 V ac.
 2A f12.00; $0.40 .50 .60-80.10,110 \mathrm{VAA}$ f12.00.
AUTO \& ISOLATIO TRANSFORMERS $240 / 110 \mathrm{~V}$ o.c 30 to 4000 watts, many types ex stock, Lists. MAINS TRANSFORMERS, SPECIAL OFFER: Prim 240 V ac
$250.0-250 \mathrm{~V} 60 \mathrm{Ma} .6 \mathrm{JV} 1 \mathrm{~A} £ 2.50 ; 250 \mathrm{~V} 100 \mathrm{Ma} .6 \mathrm{3V}$ 2 A e3.50;9V $3 \mathrm{~A} £ 2.50 ; 25 \mathrm{~V} 300 \mathrm{Ma} 90 \mathrm{p}$.

£1.75; $8 \times{ }^{5} \cdot 25$ £2. 2.50 .
Instant erasure of cassettes. and any diameter of tape spools.
demangnetises tope heads. $200 / 240 \mathrm{~V}$ ac, leaflet $£ 7.50$. EDGWISE LEVEL METER FSD 200/LA
Size $19 \times 1 \times 20 \mathrm{~mm} 8000$ £ 1.50 .
CHARGING METERS 1 in diametor
$2 A$ or $3 A$ E1.25 each: $5 A$ or 10 A fl. 50 each,
SINGLE STRANDED WIRE PVC COVERED
SINGLE STRANDED WIRE PVC COVERED
 PP sec tapped $38.150 \mathrm{~A}-\mathrm{A} 6 \mathrm{~K} 0$. $30 \mathrm{~W} £ 17.50$; A-A 3 KO G.E.C. MANUAL OF POWER AMPLIFIERS G.E.C. MAN AL POW AM MULTIWAY SCREENED CABLE, PVC COVERED 36 way $£ 1 \cdot 00 ; 25$ way 75 p; 14 way 50 p; 6 way 25 p; way 20p; 2 way 10 p; 1 way 8 p; 4 way indiv screened 30 p. CONDENSERS
Electrolytic $400,400 \mathrm{~V} 75 \mathrm{p} ; 2000 / 30 \mathrm{~V} 30 \mathrm{p} ; 2200 / 40 \mathrm{~V}$ $40 \mathrm{p} ; 8-8 \mathrm{mfd} 450 \mathrm{~V} 40 \mathrm{p}$; Paper tubular. W/E. $4 / 160 \mathrm{~V}$
$6 / 6 \mathrm{~F} 0 \mathrm{~V} 30 \mathrm{p}$ each, 2 mfd 150 V 25 p , 1 Imfd 300 V a.c. 25p.

CARRIAGE EXTRA ON ALL ORDERS ALL PRICES INCLUDE V.A.T. Kenilworth Road, Edgware, Middsx HA8 8YG. Tel: 01-958 9314

MAIL ORDER PROTECTION SCHEME

INTRODUCTION
The Office of Fair Trading have agreed that the notice of the Mail Order Protection Scheme to appear in periodicals carrying mail order advertising should appear as follows:-

MAIL ORDER ADVERTISING

British Code of Advertising Practice
Advertisements in this publication are required to conform to the British Code of Advertising Practice. In respect of mail order advertisements where money is paid in advance, the code requires advertisers to fulfil orders within 28 days, unless a longer delivery period is stated. Where goods are returned undamaged within seven days, the purchaser's money must be refunded. Please retain proof of postage/despatch, as this may be needed.
Mail Order Protection Scheme
If you order goods from Mail Order advertisements in this magazine and pay by post in advance of delivery, Practical Wireless will consider you for compensation if the Advertiser should become inst went or bankrupt, provided:
(1) You have not received the goods or had your money returned; and
(2) You write to the Publisher of Practical Wireless summarising the situation not earlier than 28 days from the day you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insoivent.
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine not, for example, payment made in response to catalogues etc, received as a result of answering such advertisements. Classified advertisements are excluded.

Codespeed Hectronics

P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, HANTS. PO3 5BJ
8 DIGIT 0.1" LED DISPLAY multiplexed, common cathode. 99p each DIGITAL ALARM CLOCK MODULE with $0.7^{\prime \prime}$ disploy With data $£ 5.99$ each. 4 DIGIT CLOCK L.C.D. 0.5° digits, supplied with with ¢2.29 meach RESECT CALCULATORS Untested but good value for spares £2 50 each LED WRISTWATCH IC M Sstok MK5030 with data 95p each LED WRISTWATCH DISPLAY type DIS501 0.1 digits With data 95 p each SUPER SAVER Purchase an MK5030 and a DIS501 fot only $\mathbf{~} 1.50$ the pair NOTE the MK5030 and DIS501 are housed in a legless flatpack style package and require some faitly fine soldering 20 KEY KEYBOARDS calculator Hevboards 2 for 99 p Kaboal 4 DIGIT OR* LED DISPLAY Common cathode, with data $£ 3.75$ each. DIGITAL MULTIMETER CHIP MM5330 IC to build a $4 \frac{1}{2}$ digit multimeter. With data $£ 3.49$ each. SUPER QUALITY 23p SOCKETS 16.35 mm) ADC R POT KNOBS 23p each, stereo 25p each. SLIDE POT KNOBS VOLUME CONTROL KNOBS nice style, VOLU BE CONTROL KNOB 引lease siat coiour reguifed 18 p each 10 LED DISPLAYS Untested required, 18 p each, 10 LED DISPLAYS 6 DIGIT 0.1" LED DISPLAY multiplexed common cathode, 99p. 555 TIMER IC, with data and applications 99p. S5S ${ }^{3}$. POLARIZING FILM mux 19° wide booklet. 23p. POLARIZING FILM max. SUT SLIDER SWITCHES 2 pole change over 15 p ach PUSH BUTTON SWITCHES spring Ioaded each PUSH Bith one ow calculator chip Nortec 4204, 4 function and constant. With data 80p. 2102 MEMORIES Dy 2102 WE's With data 95p each MM5314 digital clock Wicros Win da misTWATCH chip. with data E .99 each. WRIS 9 Arch
NEW CATALOGUE AVAILABLE FROM JANUARY
SENDS.A.E. FOR YOUR FREE COPY.
(OVERSEAS ORDERSADD 90p)
V.A.T. ADD 15\% TOTHE TOTALOF

Full SATISFACTION GUARANTEE on all items.

IT'S HAPPENIED REAII ! THE PART THREE CRTRLOCUE IS PUBLISHED \& WE HAUE MOUED TO BIGCER PREMISE5.

Yes it's here at last - the all new Part Three Cataloune. Fun for all the famils and the usual update on all that is new, worthwhile and exciting in the world of Radio and Communications. A big section on frequenc! symbesis technigues covering broadcast tunen. to communication quality transmitter systems. More new products than ever. RADIO CONTROL parts. crvsal filters. ceramic filter for 455 hH , and the new range of TOKO CFSH low temperature coefficient types for 10.7 MH . Detaik on new radio ICs, including the new HA11225, the CA31s9L lookalike
 now with am Ambit designed screened front end, with 27 MH , ceramic bandpas filter. LCD panel cloch timer modules. the neato and bey L(D) panel DVI vet fonly $£ 19.45$ each + VAT), the new 5 decade resolution DFM13 for LW HF VHF with L(D) readout. The DF DI6 with fluorescent

 And don't miss our spot the gibion contest. together with a yuiz to see if you can spot the differences between a neolithie cave drawng and a circuit diagram of one of our competitor's tuners.

There is a danger . when advertizing in some magazines that because we do not find space to list everything we sell in every ad.. that some readers forget about half the ranges we stock. So to summarize the general ranges TOKO Chokes, coils for AM/FM/SW MPX, Audio filters etc Filters: Ceramic for AM/FM LC for FM, MPX etc. Polyvaricons
ICs for radio, clock LSI, radio control. MPX decoders etc
Micrometals Dust iron cores for toroids for resonant and EMI filters Torord mounts
Hitachi Radio/audio/mpx linear ICs 100W MOSFETs, small signal FETs, MOSFETs and bipolar

And the following groups of products from a broad range of sources:
Semiconductors -specializing in radio devices Plessey SL.1600, EUROPE's best selection of AM/FM and communications devices. Power MOSFETs, WORLD's LOWEST NOISE AUDIO small signal transistors, BAR graph LED drivers for linear and log.
CD4000 series CMOS, TTL/LPSNTTL, standard linears (741, 301, 3080 etc). MPUs, memories. Small signal transistors from AEG BC237/8/9 families etc. (1000 off BC239C : 5.2 p ea) LEDs: AEG $3 \mathrm{~mm} / 5 \mathrm{~mm}$ round, $2.5 \times 5 \mathrm{~mm}$ flat red, greem, orange, yellow. The best prices you will find for quality products MOSFETs for RF signal processing, including the BF960 UHF device, and 3SK51 for VHF Varicap diodes tor 17:1 capacity ratio tuning

DOES YOUR ONE GLOW GREEN IN THE DARK?
Out DFM4 does, since it uses a vacuum fluorescent display for direct readout of MW/LW/FM. Basically the same as the DFM2, (LCD Version). $£ 24.45$ kit (ine VAT) Transformer with all necessary windings for DFM4 - £2.50 inc VAT

Not illustrated here - but also now available is the DFM6. This is a vacuum fluorescent display arsion of our immensely popular DFM3 (LCD). Resolution is 100 Hz to $3.9999 \mathrm{MHz}, 1 \mathrm{kHz}$ to 39.999 MHz , and 10 kHz to 200.00 MHz ; all standard IF offsets (inc. 10.7 MHz on shortwave) are available via diode programming.

UM1181 VHF band 2 VARICAP TUNERHEAD
S tuned crrcuit, with image/spurn, better than -80dB, butfered 10
output, MOSFET RF stage, FET IF preamp, tunes with only 1 , 8 l output, MOSFET RF stage, FET IF preamp, tunes with only $1:$, 108 g

- 9 d 8 m 3rd order intercept. 1oft price f 12.00 inc VAT. (100off/ OA

911225 FM IF strip with all mod cons for the HiFi tuner All types use $80 \cdot d B \mathrm{~S} / \mathrm{N}$ Hitachi IC, with muting. AFC, AGC, meter mutputs for signal level and centre rero. If preamp stage

Dreamp and a 3 rd ceramic filters, with MOSFET (AGC'd) IF preamp and a 3rd narrow filter with DC filter select
tuned FM detector stage. f 2395 inc VAT (buatt) a. Dual ceramic fitters, single tuned detector stape $\mathbf{6 1 4 . 9 5}$ me VA (All ' A ' series units are set up with a spectrum analyzet tor best THD)

91072 AM RADIO TUNER MODULES • DC TUNED and DC SWITCHED Available February 80
All include buffered LO output, mechanieal if fater (TOKO CFMO) 1.10 v tuning bass, switching by a single pole to earth

A MW/LW (150 to 350 kHz LW range) with ferrite rod antenna
B As 'A' but also including SW1 or SW2 (specity.)
SWI $=1.8$ to 4 MHR Swz -5 to 10 MHz
C With both SW ranges

FREQUENCY READOUT LSI from OKL with a one-chip answer to most digital frequency display needs (and various modules).
Crystal and ceramic ladder filters from leading manufacturers, ferrite rods, various ferrite beads and a range of crystals for 'standard' frequencies and both $A M$ and $F M$ radio control at 27 MHz , Trimmer capacitors.
METERS a new range of linear movement types, plus many 'indicator' types for VU, all types of tuning indicators etc.
SOCKETS - a new range that are better quality than Texas low profile, yet better priced. Modules for AM/FM/STEREQ. complete kits for tuners, audio amplifiers from Larsholt SWITCHES complete low cost DIY systems for push button arrays, keyboard switches. DOUBLE BALANCED MIXERS MCL SBL1 replacement for MD108 etc. And cheaper

Receivers and Components

Southern Valve Co.

2nd Floor, 6 Potters Road, Now Bamet,' Herts.
Tel: 01.4408641 for current prices \& availability, all popular valves stocked, NO CALLERS, SAE Lists. Cash with order
Same Day Postal Despatch.

Valves. Tubes. Aerials etc by LEADING-MAKERS. Send SAE
Lists or Phone for current prices. Counter or MAIL ORDER. NO Lists or Phone for current prices. Counter or MAIL O
COD. Speedy Despatch assured. No order under $£ 1$.

Philip Bearman, 6 Potters Road, New Barnet, Herts Tel: 01 -449 1934/5 (1934 Recording Machine)

10 LEDS. Mixed colours-sizes $\mathrm{E1.15}$. Lists 15 p. Sole Electronics. (P.W.) 37 Stanley Street. Ormskirk, Lancs.

SURPLUS TO INDUSTRIAL REQUIREMENTS

100 mixed Min. Electrolytics	$\mathbf{£ 3 . 0 0}$
300 pack 220 mfd 10 V	$\mathbf{£ 1 . 5 0}$
25 mixed Large Can	$\mathbf{£ 3 . 0 0}$
104700 mfd 40 V Tag $3 \times 1 \frac{1}{4}$	$\mathbf{£ 1 . 2 0}$
10200 mfd 70 V Tag $1 \frac{3}{4} \times 2 \frac{3}{4}$	$\mathbf{£ 1 . 2 0}$
10200 mfd 450 V Tag $4 \frac{1}{2} \times 1 \frac{3}{4}$	$\mathbf{£ 1 . 2 0}$
100 mixed Preset Spindle Pots.	$\mathbf{£ 3 . 0 0}$
10100 K Dual $\frac{1}{2}$ watt Lin. Pots.	$\mathbf{£ 2 . 0 0}$
$\mathbf{2 4}$ mixed Voltage S/pole Relays	$\mathbf{£ 3 . 0 0}$
Add $\mathbf{3 0}$ p per item P\&P. All prices inc. VAT.	

BLORE-BARTON

Reedham House, Burnham, Bucks.

TUNBRIDGE WELLS COMPONENTS, BALLARD'S 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

BRAND NEW COMPONENTS BY RETURN

VHF TUNERS. $45 \cdot 220 \mathrm{MHz}, 30 \mathrm{MHz}$ IF. Ideal feed HF receiver. $£ 6.0060$ p post. $50-80$. $100-175.160-300 \mathrm{MHz}$ tuner $£ 11.50 .60$ p post. SAE data \& lists. H. Cocks. Bre Cottage. Staplecross. Robertsbridge. E. Sussex. Tel: 058083-317.

SMALL ADS

The prepaid rate for classified advertisements is 24 pence per word (minimum 12 words), box number 60p extra Semi-display setting $£ 8.00$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors
We Dispatch Valves to all parts of the world by return of post. Air or Sea mail, 400 T Types in stock 1930 to 19776
Osolete ypees a speiality, List 50 . Quotatioans S.A. Ubsolete types a speciality. List 50p. 9.30 atatioans SiA .e.
Open to callers Monday to Saturday 9.30 to 5.00 closed Open to callers Monday to Saturday 9.30 to 5.00 closed
Wednesday 1.00 . We wish to purchase all types of new and boxed Valves. Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD.
Dopt. P.W. The Parade, East Wittering, West Wittoring 2023 (STD Code 024366)

ELECTRONIC COMPONENTS. Quick delivery, wide range from stock catalogue on request. J. R. Hartley Electronic Components, 78B High Street. Bridgnorth, Salop WV164DY.

AM/CW/SSB COMMUNICATION RECEIVER and preselector modules. The cheapest way to good amateur and BCDX
CRYSTALS Brand new high-precision, You benefit from very large stocks held for industrial supplies. All normal freq
standards, baud rates. MPU and all magazine proiects HC33/U: baud rates. MPU , and all magazine projects inc,
$\mathrm{HC} 3 / .0,1.008,2.5625 \mathrm{MHz}, £ 3.50 .1 .280 \mathrm{MHz}$ £4.15. HC18/U: 4.0, 5.0.6.0, 7.0, 8.0, 9.0. 10.0. 10.7 $\begin{array}{lll}\mathrm{MHz} \\ 38.6667 .00 \\ \mathrm{MHz} & 12.0 .15 .25 \text {. Selected freas stocked in Glider }\end{array}$ Matine and 27 MHz bands. Any freq made to order in 6 weeks from £3.90.
FILTERS Your best source for 6 and 8 pole and monolithics for AM, CW, SSB, FM, on $455 \mathrm{kHz} .1 .6,9.0,10.7,21.4$ MHz . etc.
Prices inc. VAT and UK post. SAE lists

P. R. GOLLEDGE ELECTRONICS G3EDW, Morriott, Somerset, TA16 5NS Tel: 046073718

Aerials

AERIALBOOSTERS

Improves weak VHF Radio and Television reception.
B45-UHF TV, BII-VHF Radio. B11A-2 metres For next to the set fitting. Price $\mathbf{£ 6}$.

SIGNALINJECTOR
A complete range of AF and RF frequencies up to the UHF Band. Price £5.00.
S.A.E. for Leaflets. ACCESS

ELECTRONIC MAILORDER LTD,
62 Bridge Street,
Ramsbotton, Bury, Lancs, BLO 9AG.
COPPER AERIALS WIRE 14 swg hard drawn 70' $\mathbf{~ 1 3 . 5 0}$. $140^{\prime} £ 7.00$ inc. VAT. Postage $£ 1 \cdot 15$. T.M.P. Electronics, Supplies, Britannia Stores, Leeswood, Nr. Mold, N. Wales.

KILL THAT INTERFERENCE

G2DYM ANTI-T.V.I. TRAP DIPOLES:
S.W.L. Indoor models $\mathbf{£ 1 4 . 5 0}$ \& $£ \mathbf{2 7 . 5 0}$ S.W.L. Outdoor models $£ \mathbf{3 0 . 0 0}$ \& $£ \mathbf{3 4 . 5 0}$ Tx-ing models $£ \mathbf{~} 36.00, \mathbf{£ 4 6 . 0 0} \& £ 54.75$ Lists 10×8 in SAE. Aerial Guide 50p. Indoor and invisible aerials for S.W.L's $£ \mathbf{3 . 5 0}$.
G2DYM, Uplowman, Tiverton, Devon.

Situations Vacant

TESTERS Test Technicians. Test Engineers - Earn what you're really worth in London working for a Worid Leader in Radio \& Telecommunications. Phone Len Porter on 01 8747281 or write - REDIFON TELECOMMUNICATIONS LTD.. Broomhill Road, Wandsworth. London SW 18.

Educational

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. S277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV. Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. S277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio. TV \& Electronics Technicians, Radio Amateurs, Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. S277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18
GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 8 JZ .

Courses

COURSES-RADIO AMATEURS EXAMINATION. City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, professional examinations etc) write or phone - THE RAPID RESULTS college, DEPT JX 1, Tuition House, London SW19 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 (24 hr Recordacall).

For Sale

NEW BACK ISSUES of "PRACTICAL WIRELESS" available at 80 p each, post free. Open P.O. Cheque return ed if not in stock - BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate. N. Yorks. Tel: (0423)55885.

LOUDSPEAKERS COMPONENTS Manufacturers surplus S.A.E. List. TENNEX LTD., Stock Road. Industrial Estate. Southend, Essex.
BACK COPIES Practical Wireless and Practical Television 1955 to 1979540 issues. Offers: Park Street 72356.
SERVICE SHEETS Radio TV 1945 onwards. Offers per 50 Sheets. Folkestone 58265.
PRACTICAL WIRELESS 1969 to 1977 Approx. 100 copies. Offers Manchester 773-3965.

PRACTICAL WIRELESS, Practical Television. Radio Constructor. 102 copies 1943-1968. Offers. Aylesbury 81563 After 6 P.M.

MULLARD LPI 164 AM/FM I.F. Modules Guaranteed unused $£ 1.50$ P.P. C.W.O. S.A.E. Lists. Tennex Limited. Stock Road, Industrial Estate, Southend, Essex.

PRACTICAL WIRELESS/ELECTRONICS, Radio Constructor. 150 issues 1963-1976. Offers? Colne 866823.

Wanted

ELECTRONIC COMPONENTS PURCHASED. All Types Considered - Must be new. Send detailed list - Offer by return -. WALTONS, 55A Worcester Street, Wolverhampton.
WANTED. Information on Lafayette HE-80 receiver, to buy or copy. Tel: Rochdale 50690.

Books and Publications

VAN KAREN PUBLISHING

5 SWAN STREET, WILMSLOW, CHESHIRE

FULL REPAIR data any named T.V. $£ 5.30$, with circuits. layouts. etc., £7. (AUSW) 76 Church Street, Larkhall, Lanarks ML9 IHE.

WORLD RADIO TV
Radio Stations Guide.
Long distance Television

Popular Electronic Projects
Electronic Projects for

Mobronic Projects for Beginner
Radio Circuits using ICS.
Prolects in opto Electeronics
How to make Walke-Talkies
Radio Antenna H'book for Lonk Distance Receestion
How to build your own Metal of Treasure Locators
How to build your own Metal \& Treasure Locator
How to buld Adranced Short Wave Receivers.
PRICESINCLUDE POSTAGE \& PACKING.
4 CHILCHESTER COURT, WICXHAMM RD,BECKENHAMKEKT BR3 20W
WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work you need, materials required, all instructions, rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. $£ 4.50$ inclusive of P\&P. UK. CWO, to INDUSTRIAL SUPPLIES. 102, Parrswood Rd.. Withington. Manchester 20. Dept. PW.

Record Accessories

STYLI, Cartridges For MUSIC CENTRES, etc. FREE List No. 29 For S.A.E. includes Leads, Mikes, Phones etc. FELSTEAD ELECTRONICS, (PW), Longley Lane, Gatley, Cheadle, Ches. SK8 4EE.

Service Sheets

SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc.. $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E., with enquiries to B.T.S.. 190 King's Road, Harrogate. N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS. Radio. TV etc., 10,000 models. Catalogue 24 p, plus S.A.E. with orders, enquiries. TELRAY, 154 Brook Street. Preston PR1 7HP.

Service Sheets

G.T. THE TECHNICAL INFORMATION SERVICE 76 CHURCH ST., LARKHALL, LANARKS ML9 1 HE

Any single service sheet for $£ 1$ and large S.A.E.
1000's of different service sheets, service manuals and repair manuals always kept in stock for immediate despatch. S.A.E. brings newsletter; pricelist; bargain offers such as service sheets under $40 p$; quotations for any requested service sheets/manuals without obligation.
Save time and money - 2 giant catalogues listing thousands of service sheets/manuals plus $£ 4$ worth of vouchers free - send $£ 2+$ large S.A.E.

LARGE SUPPLIER OF SERVICE SHEETS

and Colour Manuals, TV Mono Radios, Tuners, Tape Recorders. Record Players. Transistors, Stereograms, all at 75 p each + SA.E. except colout TV from $f 1.00$ and Cat Radios $\mathrm{f1}: 25$. State if Cirtuit will do, il sheets are not in stock. All TV Sheets are full lengths 24×12, not in Bits \& Pieces. Free Fault Finding Chatt of IV Catalogue with order, All crossed PO's returned it service sheets ate not in stock

71, Beaufort Park, London, NW11 6BX
01-458 4882 (Mail Order)

Miscellaneous

MIXED BARGAINS
300 Mixed Carbon Film Resistors, Well mixed $£ 1.20$ post
45 p.
100 Mixed Ceramic Capacitors 1.5 to 82 pt £1.00 post 20 p. In line fuse connectors for $1 \frac{1}{4}$ fuses 20 p Each post 10 p any qty. 10 Mixed PCBa for breakdown for $£ 3.00$ post 55 p . 100 M Singlo Equipment Wire 5 colours for E 1.00 post 30 p . 100 M Stranded Equipment Wire ... 20 colours for E 1.00 post $40 p$.
100 M Tw 100 M Twin Transparent Mains Wire tor $£ 3.50$ pos
UR43...50 ohm Coax $17 p$ per M post $2 \nmid \mathrm{p}$ per M . Low loss UHF 75 ohm TV Coax 17 p per M post 2 ip per M 12 Volt soldering Irons - $£ 2.40$ post 30 p . Stick on Rubber Foot...5p each post 10p any qty.
SAE for full lists.
W. H. WESTLAKE

CLAWTON, HOLSWORTHY, DEVON.
SEEN MY CAT? 5000 Odds and ends. Mechanical. Electrical. Cat free. Whiston Dept. PW, New Mills. Stockport.

TRANSCEIVERS., TX'S., RX'S ANTENNAS. For BARGAIN deal see PARTRIDGE JOYSTICK advert. this issuc.
REEL RECORDERS, Ferrograth. Tandberg. UHER, Vortexion, etc. From £36. SAE details. A. E. Wright, Sunningdale, Broadheath, Worcester.
144 MHz MHz CONVERTER, 28 MHz IF, 26 dB Gain, 3.5 dB Noise Figure. Ready built $£ 18.00$, Board \& parts kit $£ 9.00$. Local Oscillator output version $£ 19.00$. Board \& parts $£ 9.30$.

SPECTRUM COMMUNICATIONS 12 Weatherbury Way, Dorchester, Dorset DT1 2EF

TOP QUALITY FIBRE Glass $\mathrm{S} / \mathrm{S}+\mathrm{D} / \mathrm{S}$ Circuit Board approx 150 sq ins. $£ 1.50+30$ p P.\&P. C.W.O. To: Paul Collins 12 Mill Meadow. Ivybridge. Devon. PL21 0AN.

MSF CLOCK

NOW Got ABSOLUTE TIME, always correct. never gains or loses. 8 digits show, Date. Hours. Minutes and
Seconds, also parallel BCD output for alarm etc, receives Rugby 60 KHz time signals. 1000 Km range.
built-in antenna. EXACT TIME for $£ 48.80$. LOSING DX7 RARE ONES UNDER ORM? D with a Tunable Audio Notch Filter. between your receiver and speaker, BOOST your DX/ORM ratio, ${ }^{40}$ OB notch, D D INVESTMENT, $£ 8.90$. V.L.F.? EXPLORE $10-150 \mathrm{KHz}$. Receiver $£ 10.70$. ONG WAVE DX? Exciting $100-600 \mathrm{KHz}$ Converter to
$4.1-4.6 \mathrm{MHz}$, buit-in tuner, ideal FRG 7 etc. E 10.90 . Each fun-to-build kit includes all parts, printed circuits, case.

CAMBRIDGE KITS

SUBERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p. Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLLI. (Dept No. 25) St. Wilfrids. Foundry Lane, Halton, Lancaster. LA 6LT.

GUITAR/PA

MUSIC AMPLIFIERS

100 watt supert treble/pass overdrive. 12 month guarantee.
Unbeatable at $£ 44 ; 60$ watt $£ 38 ; 200$ watt $£ 60$, Uieatable at sen; 60 watt $\mathfrak{E z s}$; 200 watt $\mathbf{£ 6 0}$; 100 watt twin channel sep, treble/bass per channel $£ 58$; 60 watt
$\mathbf{\text { t }} 48 ; 200$ watt $£ 72 ; 100$ watt four channel sep. treble/bass $£ 48 ; 200$ watt $£ 72 ; 100$ watt four channel sep. treble/bass
per channel $£ 75 ; 200$ watt $£ 92$; slaves 100 watt $£ 32 ; 200$ per channe; $£ 75 ; 20$ watt $£ 2 ;$ slaves
watt $£ 50$; fuzz boxes, great sound $£ 10$; bass fuzz $£ 10.90$; watt $£ 50$; fuzz boxes. great sound $£$, ${ }^{2}$; bass
overdriver fuzz with trable and bass boosters $£ 18 ; 100$ watt combo superb sound overdrive, sturdy construction, castors. unbeatable $£ 90$; twin channel $£ 100$; bass combo $£ 105$; speakers 15 in . 100 watt $£ 35$; 12 in. 100 watt $£ 23 ; 60$ watt £16; microphones Shure Unidyne B $£ 26$

Send cheque or P.O. to:

WILLIAMSON AMPLIFICATION
 62 Thorncliffe Avenue, Dukinfield, Cheshire. or 061-308 2064.

YOU SIMPLY cannot buy a more sophisticated intruder alarm system for any less. Prices from $£ 45$ to $£ 125$ for complete systems. Details from KRAM ELECTRONICS, 30 Hazlehead Road. Anstey. Leicester.

RECHARGEABLE ©BATTERIES

TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE. SAE FOR LISTS. $\mathbf{£ 1} \mathbf{2 5}$ for
Booklet "Nickel Cadmium Power" plus Catalogue. Write or Booklet "Nickel Cadmium Power" plus Catalogue. Write or call. Sandwell Plant Lid, 2 Union Drive, BOLDMERE.
SUTTON COLDFIELD, WEST MIDLANDS. 0213549764 SUTTON COLDFIELD, WEST MIDLANDS. 0213549764
or see them at TLC, 32 Craven Street. Charing Cross, or see them at TLC, 32 Craven Street, Charing Cross,
London WC2.

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination

Cassette B: $12-24$ w.p.m. for professional examination preparation. Each Cassette are type C90.
Morse Key and Buzzer unit for sending practice.
Price each Cassette (including booklets) $\mathbf{£ 4 - 7 5}$. Morse Key and Buzzer $£ 4.75$
Prices include postage etc. Overseas Airmail $£ 1.50$ extra
MHEL ELECTRONICS (Dept P.W.), 12
Longshore Way, Milton, Portsmouth PO4'8LS.
PRACTICAL WIRELESS CIRCUIT BOARDS December 78 Doorchimes $£ 2.90$. January 79 Sandbanks Metal Detector $£ 2.90$. February Hythe Receiver $£ 4.60$. March Hythe P.S.U. $£ 2.40$. Soundlite Converter $£ 4.60$, April F.M. Multitester $£ 1.70$. July V.M.O.S. TX $£ 3.20$, August Telebell Repeater $£ 0.90$. Auto Intercom $£ 4.76$. September Noise Blanker $£ 0.90$. Door Unit $£ 0.40$. October Burglar Alarm WR060 £0.90. WR059 £0.90. Dec. Radio Receiver WR064 $£ 1.50$. January 1980 Radio Control Encoder £2. Transmitter Board $£ 1.50$. A.F. Speech Processor £1.50. All Boards of top quality glass fibre tinned and drilled to BS.4584. Prices include postage ete. We can also supply P.C.B's and Fascia Panels to your design. S.A.E. for full details and complete list of P.C.B's. H.T.E. Electronics. Dept P.W.. 50 Milnefield Avenue. Elgin IV 30 3EL.

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for fast charge HP7 (AA) $£ 1.05$.
SUB C $£ 1.36$. HP II (C) $£ 1.98$. HP 2 (D) $£ 3.02$, PP $3 £ 3.79$.

PP 3 charger $£ 5.40$.
 PP 3 charger $£ 5.40$.

All the above nickel cadmium batteries are brand new and are guaranteed full spec. devices.
3), cells are supplied complete with solder tags (except PP

Brand new full spec. RECHARGABLE SEALED LEAD ACID
maintenance free batteries suitable for burglar alarms etc. $1.2 \mathrm{amp} \mathrm{hr} .6 \mathrm{v} £ 4.072 .6 \mathrm{amp} \mathrm{hr}, 6 \mathrm{v} £ 5.23$.
Quantity prices available on request. Data and charging circuits free on request with orders over $£ 10$, otherwise 30 p post and handling (specity battery type). Please add 10% P\&P on orders under $£ 10-5 \%$ over E IO. VAT at the current Mail order to:-
SOLID STATE SECURITY DEPT. (PW),
10 Bradshaw Lane, Parbold, W

THE SCIENTIFIC				
WIRE COMPANY				
PO Box 30, London E. 4 Reg. Office 22 Coningsby Gdns				
ENAMELLED COPPER WIRE				
SWG	1 lb	8 oz	4 oz	208
10 to 29	3.10	1.86	1.10	. 80
30 to 34	3.50	2.00	1.15	. 80
35 to 39	3.95	2.36	1.34	. 98
40 to 43	5.10	2.97	2.28	1.42
44 to 46	6.00	3.60	2.50	1.91
47	8.37 15.96	5.32	3.19	2.50
48 to 49	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 22	5.30	3.03	1.85	1.20
24 to 30	6.50	3.75	2.20	1.40
Prices include P\&P and VAT. Orders under $£ 2$ please add 20p. SAE for list. Dealer enquiries welcome.				

COMPONENTS FOR P.W. -
PLEASE F.M./RADIO CONTROL

MENTION PRACTICAL WIRELESS

WHEN

 REPLYING TO
ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for insertions
I enclose Cheque/P.O. for $£$.
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME...
Send to: Classified Advertisement Manager PRACTICAL WIRELESS,
ADDRESS
GMG, Classified Advertisement Dept., Rm. 2337, King's Reach Tower, Stamford Street,
London SE1 9LS Telephone 01-2615846
24p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered office: King's Reach Tower, Stamford Street, London SE1 9LS

TTLs BY TEXAS				74221	${ }^{160} \mathrm{p}$	74L				${ }^{250}$ p	LINEAR I.C.s AY1-0212 600p AY1-1313 655p AY1-5050 212p AY5-1224A 225p AY5-1315 600p AY5-1317 780p		MC1496 MC3340 MC 3360 MK50398 NE531	$\begin{aligned} & 100 \mathrm{p} \\ & 120 \mathrm{p} \\ & 120 \mathrm{p} \\ & 750 \mathrm{p} \end{aligned}$	TRANSISTORS				TIP41C TIP42A TIP42C TIP2955	78p 70p 82 p 78p	$\begin{aligned} & \text { 2N3866 } \\ & 2 N 3903 / 4 \\ & 2 N 3905 / 6 \\ & \text { 2N4036 } \end{aligned}$	$\begin{aligned} & \text { 90p } \\ & \text { 18p } \\ & \text { 20p } \\ & 65 \mathrm{p} \end{aligned}$	DIODES	
7400	11p	997	180 p	742	140 p	74LS193	140p	74 C		155			AC127/8			BFY51/2	22p							
7401	12p	74100	130p	74259	250p	74LS195	140p			155p			AD149		70p	BFY56	33p							
7402	12p	74104	65p	7426	90 p	74LS196	120p	74 Cl		155			AD161/2		45p	BFY90	90p	A81 15p						
7403	14p	74105	65 p	7427	290p	74LS221	100p	74 Cl		155p			BC107/8		11p	BRY39	45p	TIP3055	70p	2N4058/9	12p	OA85 15p		
7404	14p	74107	34 p	74279	140 p	74LS240	175p	74 C		120p					BC109	11p	BSX19/20	20p	TIS43	34 p	2 N 4050	12p	OA90 9p	
7405	18p	74109	55p	74283	190p	74LS241	175p	74 C		120p			NE543K	225p	BC147/8	9p	BU105	190p	TIS93	30p	2N4061/2	18p	OA91 9p	
7406	32p	74110	55 p	74284	400 p	74LS242	175p	74 Cl		160p	AY5-1320	320p		NE555	25p	BC149	10p	BU108	250p	ZTX108	12p	2N4123/4	22p	OA95 9p
7407	32p	74111	70p	74285	${ }^{400}$	74LS243	175p	74 C 1		210p	CA5019	80p		NE556	70p	BC157/8	10p	BU205	220 p	ZTX300	11p	2N4125/6	22p	OA200 9p
7408	19p	74116	200p	7429	150p	74.5244	15	74 C 1		150p	CA3046	700		NE5618	425 p	BC159	11p	BU208	240p	ZTX500	15p	2N4289	20p	OA202 10p
7409	19p	74118	130p	742		74LS245	280			150p	CA3048	225p		NE5628	425 p	BC169C	12p	BU406	145p		p	2N4401/3	27p	1N914 4p
7410	15p	74119	210p	94	200 p	14L3201	200	74 C 1		220 p	A3080E	72p	565	130p	${ }_{\text {BC172 }}$	12p			ZTX504	30p	2N4427	90 p	N916 7p	
7411	24p	74120	110p	74298 74365	200p	74LS257	120p	74 C 1		170p	CA3089E	225p	NE566	155p	BC177/8	17p	M 22501	225p	2N457A	250p	2N4871	60p	1N4148 ${ }^{\text {4p }}$	
7412	20p	74121	28p	74365	150 p	74LS259	175p	74 C		175p	CA3090A	375p	NE567	175p	BC179	18 p	MJ2955	100p	2N696	35p	N5087	27p	1N4001/2 5 5p	
7413	30p	74122	48p	7436	150p	74LS298	249p	4000		RIES	CA3130E	100p	RC4151	400p	BC182/3	10 p	MJ3001	${ }^{225}$	2N697	25p	N5039	27p	$\begin{array}{ll}1 N 4003 / 4 & 6 p \\ \text { 1N4005 } & 6 \mathrm{p}\end{array}$	
7414	60p	74123	48 p	74367	150 p	74		4000		15p	CA3140E	75 p	SN76003N	175p	BC184	11p	MJE340	5p	2N697	45p	2N5179	27p	1N4005	
7416	27p	74125	55p	4368	150 p			4001		17p	CA3160E	75 p	SN76013N	140p	BC187	30p			2N706A	20 p				
7417	27p	74126	60p	74390	00p	81LS95	140 p	4002		17p	FX209	750p			BC212/3	11p	MJE3055	70p	${ }^{2 N} \mathbf{N} 70818$	p	2N5191	83p		
7420	17p	74128	75p	74393	200 p	811596 81597	140p	4006		95 p	ICL7106	${ }^{925}$		120	BC214	12 p	$102 /$	${ }_{4}^{45 p}$	2N918	30p	2N5245	40 p		
7421	40p	74132	75p	74490	225p	811597		4007		18 p	ICL8038	340p	SN76023N		BC461	36p			2N1131	p	2N5296	55 p		
7422	22p	74136	60p	74 LS		8 CT 28	230	4008		80p	LM301A	36p		120p	BC477/8	30p			2N1131/2	25p	2N5401	50p	400 mW 9 p	
7423	34p	74141	70p	SERIES		8728	2	009		40p	LM311	190p	SN76033N	175p	BC516/7	50p	SA12	30p	${ }^{2} \mathrm{~N} 1613$	25p	2N5457/8			
7425	30 p	74142	200p	74 LSOO	13 p	9302		4010		50p	LM318	200p	8515	750 p	BC547	16p	PSA56	32p	2N1711	60p	2N5457/8	40p		
7426	40p	74145	90p	74LS02	18 p	${ }_{9308}$	175p	4011		17 p	LM324	70 p	1		BC549C	18p	PSA56	63p	2N2102 2N2160	60p 120 p	2N5459 2N5460	40 p	SPECIAL OFFERS	
7427	34 p 36	74147	190p	${ }^{74 \mathrm{LSO}}$	14 p	9310	275p	4012		18 p	LM339			$225 p$	BC5378	16p	PSU56		${ }_{2 N}$ 2N2160	120p	2N5460 2N5485	44p	$\begin{aligned} & \text { OFFERS } \\ & 100+741 \end{aligned}$	
7428	36p	74148 74150	150p	74LS08	22p	9311	275p	4013		50p	LM348				BC559C	18p			2N2222A	20p	2N6027	48 p	£16	
7432	30 p	74151A	70p	74LS13	38p	9312	160 p	4015		p	LM377	175 p 75 p	TBA820		BCY70	18 p			2N2369A	16p	2N6247	190p	$100+555$	
74	40p	74153	70p	74LS14	78p	14		4016		45p	LM381AN		TCA940		BCY71/2				2N2484	30 p	2N6254	130p	¢20	
7437	35p	14154	100p	74LS20	22p	222		4017		80 p	LM369N	140p	TDA4500	250p		50p	R2008B	200p	2N2646	50p	2N6290	${ }^{65}$ p	$100+$	
7438	35p	74155	90p	74LS22	23 p	322		4018		${ }^{89}$ p	LM709	36p	tDA1004	325	BD200	200	R2010B	200p	2N2904/5A	30p	2N6292	65p	RCA 2N3055	
7440	17p	74156	90p	74LS27	33p	${ }^{9368}$	${ }_{200 \mathrm{p}}$	4019		45p		0p	TDA1008	300p					2N2906A	24p	2N128	120p	¢36	
7441	70p	74157	70p	74LS30	22p	9370		4020		00p	LM733	100	TDA1022	800p	F25		TIP29	45p	2N2907A	30 p	3N140	100p	BRID	
7442A	60p	74159	190p	74LS47	90 p	9601		4021		0p	LM741	29 p	XR2206	400	BF257/8	32 p			N2953		3N2O	110 p	RECTIFIERS	
7443	112p	74160	100p	74LS55	30 p	9602	2280	4022		100 p	747	70 p	XR2207		BF259	36p	TIP30C		2N3054		40290	250p	1 A 100 V 22 p	
7444	112p	74161	100p	74LS73	50 p	INTER	ACE	4023		22p	LM748	35 p	16	675p	BFR39	27p	TIP31		2N3054	65p	40360	250p 40	1 A 400 V 32 p	
7445	100p	74162	100p	74LS74	40p	INTER	ACE	4024			LM3900	700	40	400p	8FR40	$27 p$	TIP31C	62p	2N3054	140 p	40361/2	45 p	${ }^{1 / 2} 400 \mathrm{~V} 30 \mathrm{p}$	
7446A	93p	74163	100p	74LS75	50p	14		25		p	LM3911	130p	N414	p	BFR41	27 p	TIP32A		2N3442	240 p		120 p		
7447A	70p	74164	100p	74LS83	110p	MC1488 MC1489	${ }_{100 \mathrm{p}}^{100}$	4026		130p	LM4136	120 p	ZN424E	135p	BFR79	${ }^{27} 7^{\text {p }}$	TIP32A		${ }_{2}^{2 N 3553}$	240p	40364 40408	120p	2A 100 V 35p	
7448	80 p	74165	100	74LS85	100p	${ }_{75107}^{\text {M }}$	100 p	4027		p	MC1310P	150p	ZN425E	400p	BFR80	27 p	TIP33A	90p	2N3643/4		40409	65 p	${ }_{3 \text { A }} 200 \mathrm{~V}$ 60p	
7450	17p	74166	1000	74LS86	${ }^{40} \mathrm{p}$	75182	230p ${ }^{\text {20p }}$	4028		p		55p	ZN1034E	200p	FR8 1	27p	TIP33C	114p	2N3702/3	12p	40410	65p	3 A 600 V 72 p	
7451	17p	74167	200p	74LS90	60 p	75450	120p	4030		100 p 55	MC1495	400p	90	800p	BFX29	30 p	TIP34A	115p	2N3704/5	12p	40411	300 p	4A 100V 95p	
7454	17p	74172	720p	74LS107	45p	75451/2	72p	4031		p					BFX30	34 p	TIP34C	160p	2N3706/7	12p	40594	97p	4A 400V 100p	
7460	17p	74173	120p	74LS112	100p	75491/2	96p	4033		,	VO		LATORS		$\times 84 / 5$	30p	TIP35A	225p	2N3708/9	12p	40595	105p	6 A 50 V 90p	
7470	36p	74174	93p	74LS123	75p	C-MOS	I.C. 8	4034		200 p	Fix		22		BFX86/7	30p	TIP35C	290p	2 N 3773	300p	40603	58p	6A 100V 100p	
7472	30p	74175	85 p	74 LS 132	900p	$74 \mathrm{C00}$	25p	4035		110p	1A + ve		1 A -ve		BFX38	30p	TIP36A	270p	2N3819	25	40673	90 p	p	
7473	34 p	74176	90p	74LS133	60p	$74 \mathrm{C02}$	25p	4040		100p	5 V 780 b	75p	5 V 7905	90p	BFW10	p	TIP36C	340	2N3820	50p	40841			
7474	30p	74177	90p	74LS138	60 p	$74 \mathrm{CO4}$	27p	4041		80p	12V 7812	75p	12V 7912	0p	BFY50	22p	P41				0871/2		25A 400V 400p	
7475	30 p	74178	160p	74LS139	60 p	$74 \mathrm{C08}$	27p	4042		${ }^{80}$	15V 7815	75p	15V 7915	90 p										
7476	35 p	74180	90p	74LS151	100p	74.10	27p	4043		90p	18V 7818	90 p	18V 7918	90p	,	DS							E. or see	
7480	50p	74181	200 p	74LS153	60 p	74 Cl 14	90 p	4044		90	24V 7824	90 p	24 V 7924	90p	$0.12{ }^{\text {m }}$	12 p	50.		our	un	ge ad	ise	ents in P.E.,	
7481	100p	74182	90p	74 LS 157	60p	74.20	27 p	4046		110 p	100 mA	O.92	100 mA T	T0.92	$0.2{ }^{\prime \prime}$		50		T. 1	I., W	less W			
7482	84 p	74184 A	150p	74LS158	120p	$74 \mathrm{C30}$	27 p	4047		${ }_{5}^{100} \mathrm{p}$	5 V 78L05	${ }^{35}$ p	5 V 79L0											
7483 A	90 p	74185	150p	74 LS 160	100 p	$74{ }^{4} 32$	36p	4048		55p	12 V 78 L 12	${ }^{35}$	12 V 79 L 12											
7484 7485	100p 10p	74186 74190	800p 100 p	74LS161	100 p 140 p	$74 \mathrm{C42}$ $74 \mathrm{C48}$	110 p	4049 4050			15 V 78L15	35p	15 V 79 L 15	80p		d								
7486	34 p	74191	100p	74LS163	100p	74 C 73	75	4051		80 p	OTHER	GUL	TORS		8.p	d	T at							
7489	178p	84192	100p	74LS164	120p	$74 \mathrm{C74}$	70p	4052		80p	LM309K	135 p	TBA625B	120p										
	30p	74193	100p	74LS165	80p	$74 \mathrm{C85}$	200 p	4053		80 p	LM317T	200p	TL			Ol	崖							
74918	80p	74194 74195	100p 95p	$74 \mathrm{LSS173}$	110 p 110 p	74C86 74 C 90	65 p 95 p	4055 4056		$125 p$ $135 p$	LM723	${ }^{625}$ 37p	78MGT2C	140	der	c	ted		17 BUR	RN	Y ROA			
7493 A	30p	74196	95p	74LS175	110p	74 C 95	130 p	4059		600p					e	W	om							
7494	84p	74197	30p	74LS181	320 p	74 C 107	125p	4060		115p	OPTO-EL		NICS											
7495A	70 p	74198	150p	74LS190	100p	$74 \mathrm{C150}$	250 p	4063		120p	2N5777	OR	290 p ORP6	90p										
7496	65		15	S		C151	260	6		55	OCP71 13	OR	90p TIL78	70p	SAT	A	10.30-4.30		Tel:	(01) 45	21500		:	

TRANSFORMERS

30 VOLT RANGE Pri $220 / 240 \mathrm{sec} 0.12-15 \cdot 20-24 \cdot 30 \mathrm{~V}$ Voltages available 3, 4, 5, 6, 8, 9,10 . 12. $15,18,20,24,30 \mathrm{~V}$ or $12 \mathrm{~V}-0.12 \mathrm{~V}$ and $15 \mathrm{~V} \cdot 0-15 \mathrm{~V}$				Continuous Ratings + VAT 15\%				$\begin{array}{r} \text { Ref } \\ 111 \\ 113 \\ 21 \\ 18 \\ 85 \\ 70 \\ 10 \end{array}$	$\begin{gathered} 12 \mathrm{~V} \\ 05 \\ 1 \\ 10 \\ 2 \\ 4 \end{gathered}$	$\begin{aligned} & 24 V \\ & 025 \\ & 05 \\ & 05 \end{aligned}$											
				2																	
	Amps	Price2.90	P \& P0.90																		
Rer									${ }^{8}$	4											
79	10	3.93	1.10	60 volt range					108 12 12	10	${ }_{8}^{6}$										
23	20 30	6.35 6.82	1.10 1.31 1.31	Pri 220/240V $\sec 0.24-30-40-48-$					116	12											
21	40	6.82	1.31	60 V . Votrages available 6, 8, 10, 12.				115187	20 30 30	10 15											
51	50	10.86	1.52	16. 18, 20, 24, 30, 36, 40, 48, 60 or$24 \mathrm{~V}-\mathrm{O}-24 \mathrm{~V}$ or $30 \mathrm{~V} \mathrm{O}-30 \mathrm{~V}$.						30											
117	60	12.29	1.67					$\begin{aligned} & 187 \\ & 226 \end{aligned}$													
88		16.		Ref124		Price $\quad \mathrm{P}$ \& P		SPECIAL OFFER													
89	100	18.98	1.8		Amps																
90	120	21.09	$\begin{array}{r}2.24 \\ 2.39 \\ \hline\end{array}$		1020	${ }_{6}^{4.50}$	10	ith com													
92	20	24.18 32.40	2.39 O.A.	127																	
50 VOLT RANGE				123	304.0	13.77	31	at 1 KHz and 465 KHz													
				17.42		89	${ }^{\text {AC }}$ C current to 500 mA														
					120121122	5.06080100	19.87	2.12			R Size										
$15.17 .20 .33,40$ or $20 \mathrm{~V}-0.20 \mathrm{~V}$ and							O.A.O.A.	$\begin{aligned} & 16 \times 97 \times 40 \mathrm{~mm} \\ & 88.50 \text { P } \mathrm{f} .00 \end{aligned}$													
Ref	Amps																				
				END OF LINE OFFERS																	
		4.57	1.10																		
$\begin{array}{r}104 \\ 105 \\ \hline 1\end{array}$	20 30	7.88 9.42	1.31 1.52	Ref																	
106	40	12.82	1.73	30-162-1M61	or $240 \mathrm{~V}: 240 \mathrm{~V} 20$				$\begin{aligned} & £ 4.62 \\ & £ 5.72 \end{aligned}$	f. 1.10£ 1.10											
107	60	16.37	1.89 2.39			V:240	25	200VA													
+118	80 100	22.29 $\mathbf{2 7 . 4 8}$	2. 39 O.A.		M616-0.240V: Screen 1) 13-0-13 1A. 2) 12 V 150 ma																
109	120	31.89	O.A.							10 60p											
MAINS ISOLATORS (SCREENED) PM 120/240 Sec 120/240V CT				M489-0-240V: $1400 \mathrm{~V}=150 \mathrm{ma}, 6 \mathrm{BV}=4 \mathrm{~A}$ £5-50 $£ 1.04$																	
Ret VA Price																					
-07	20	4.84	0.91	M708-6K to $3 K \Omega$ matching trans. 5 watt 90p 40 p																	
149	60	7.37	1.10	M679-0.120V - $2: 36 \mathrm{~V} 1.6 \mathrm{~A} \quad$ ¢3.00 78p																	
150	100	8.38	1.31	M865-100V Line to 4@ 10 watts					£1.90 60p												
151	200	12.28	1.31					£2.90 60p													
$\begin{array}{r}152 \\ +153 \\ \hline 155\end{array}$	250 350	14.61	1.73	M973-100V Line to 8 8040 watts																	
154	500	18.07 22.52	2.47	M1015-Chcke 8A - 5mH 150A Surge ¢1.5045p																	
155	750	32.03	$0 . \mathrm{A}$.	M1020-0.240V 12-0.12V - 50ma 75p 30p																	
156	1000	40.92	O.A.	M1126-120/240V:9-0-9V-1A E1.7971p																	
$\begin{array}{r}157 \\ 158 \\ \hline\end{array}$	1500	56.52	O.A	M1130-0-240 4500V - 10 ma					¢4.86 ¢1. 08												
158 159. 2000 $\mathbf{6 7 . 9}$				M1165-0.115-240V: 14 V 50 ma					75p 30p												
-Pri 0.220-240V Sec 115 or 240 V . State sec volts required.				Metal Oxide Resistors $\frac{1}{4}$ W 5\% TR4 (Electrosil)																	
CASED AUTO TRANSFORMERS 240 V cable in 115 V USA flat pin outlet				$390 \Omega / 470 \Omega / 510 \Omega / 560 \Omega / 820 \Omega / 1 \mathrm{~K} / 1 \mathrm{~K} 1 / 1 \mathrm{~K} 2 / 1 \mathrm{~K} 6$ $1 \mathrm{KK} / 2 \mathrm{~K} / 2 \mathrm{~K} 4 / 3 \mathrm{~K} / 16 \mathrm{~K} / 20 \mathrm{~K} / 22 \mathrm{~K} / 24 \mathrm{~K} / 47 \mathrm{~K} / 82 \mathrm{~K} / 100 \mathrm{~K}$ $110 \mathrm{~K} / 120 \mathrm{~K} / 130 \mathrm{~K} / 180 \mathrm{~K} / 220 \mathrm{~K} / 270 \mathrm{~K} / 300 \mathrm{~K}$ £1.50/100 + VAT.																	
	8.50	1.31	64 W																		
$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & 250 \\ & 1 \mathrm{~K} \end{aligned}$	11.00 12.02	1.311.671.67	65 W	Antex Soldering Irons 15W \& 25W Safety Stand				$\mathbf{£ 1 . 7 5} P \& \stackrel{\mathbf{£} 4.58 \text { each }}{ }$													
	13.3920.13		69 W67 W84 W8																		
		$\begin{aligned} & 1.67 \\ & 1.89 \\ & 2.65 \end{aligned}$		P.W. Purbeck osciloscope transformer$\mathbf{6 . 3 V}: 12.9 \mathrm{~V}$																	
	$\begin{aligned} & 30.67 \\ & 42.82 \\ & 54.97 \end{aligned}$																				
$\begin{aligned} & 1 \mathrm{~K} \\ & 15 \mathrm{FK} \\ & 2 \mathrm{~K} \end{aligned}$		$\begin{aligned} & 2.65 \\ & 0 . \end{aligned}$	$\begin{aligned} & 83 \mathrm{~W} \\ & 93 \mathrm{~W} \end{aligned}$																		

PLEASE MENTION PRACTICAL WIRELESS

WHEN

 REPLYING TO ADVERTISEMENTS
BURGLAR ALARMS

WE HAVE STOCKS OF EVERYTHING YOU NEED. CALLERS WELCOME. OPEN 6 DAYS
EXPRESS POSTAL SERVICE FREE CATALOGUE SEND S.A.E.

MAXIG SPECIAL OFFER

18 SWG steel plastic coated bell box with FREE ADE sticker £5.00
Inc. VAT and postage

Mains Battery Control Unit with full test facilities

£23.00

incl. VAT \& P. \& P.

A. D. E. (SECURITY) CO.,

 217 WARBRECK MOORAINTREE, LIVERPOOL
TEL: O51-525-3440
STOP PRESS : Trade Price List Available Applications on Official Stationery only

SOME THINGS YOU CAN DO WITHOUT ... but the HOME RADIO CATALOGUE is Top Priority for every constructor

- About 2,500 items clearly listed and indexed.
- Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free.
- Catalogue contains details of simple Credit Scheme.

HOME RADIO (Components) LTD.,
Dept. PW., 234-240 London Road, Mitcham, Surrey CR4 3HD
POST THIS COUPON
POST THIS COUPON
with cheque or P.O. for $£ 1.30$ Phone 01-648 8422.
Please write vour Name and Address in block capitals
NAME - PDDRESS
AOME RADIO (Components) LTD., Dept. PW
234-240 London Road, Mitcham. Surrey, CR4 3HD 8422.

WATFORD EEEGTRONILS

33/35. CARDIFF ROAD, WATFORD, HERTS, ENGLAND MAIL ORDER. CALLERS WELCOME. Tel. Watford 40583/9

We stock many total cost.
stated otherw
the toter
Footbail Ground. Nearest Underground/Br. Rail Station: Warford High Street

Open Monday POLYESTER RADIAL LEAD CAPACITORS: 250V: | $10 \mathrm{n}, 15 \mathrm{n} .22 \mathrm{n} .27 \mathrm{n} 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p}: 150 \mathrm{n} 10 \mathrm{p}$; |
| :--- |
| $330 \mathrm{n} 13 \mathrm{p} ; 470 \mathrm{n} 17 \mathrm{p} ; 680 \mathrm{n} 19 \mathrm{p}: 1 \mu 22 \mathrm{p} ; 1 \mu 530 \mathrm{p}: 2 \mu 2 \mathrm{34p}$. |

ELECTROLYTIC CAPACITORS: Axial lead type (Values are in μ F) 500V: 10 40p; 47 68p; 250V: 100 65p; 63V: $047,10,15,22,25,3,3,4.7,68,8$ $10,15,228 \mathrm{p} ; 32,47,5012 \mathrm{p} ; 63,100,27 \mathrm{p} ; 50 \mathrm{v}: 10 \mathrm{7p} ; 50,100,220$ 25p; 470 32p; $100050 \mathrm{p} ; 40 \mathrm{~V}: 22,33 \mu \mathrm{~F} 8 \mathrm{p} ; 10012 \mathrm{p} ; 2200,3300 \mathrm{85p} ; 4700 \mathrm{98p} ; 35 \mathrm{~V}: 10,337 \mathrm{p}$; 25p; 1000 27p; 1500 30p; 2200 45p; 3300 62p; 4700 74p; 16V: 10. 40, 47, 68 7p; 100, 125 8p; 220, 330 14p; $47016 \mathrm{p} ; 1000,1500$ 20p; 2200 34p; 10V: 1006 p .							
TAG-END TYPE 450V: $100 \mu \mathrm{~F}$ 180p; 70V: 4700 165p; 64V: 3300 130p; 2500 98p; $50 \mathrm{~V}: 3300$ 105p; 2200 99p; 40 V : 15.000 399p; 4700 120p; $400092 \mathrm{p} ; 330093 \mathrm{p}$; 2500 85p; $220085 \mathrm{p} ; 2000 \cdot 2000$ 120p; 30V: 4700 90p; 25V: $6400105 \mathrm{p} ; 4700$ 85p; 3300 80p; 2200 60p.							
				POTENTIOMETERS (AB or EGEN Carbon Track. 0.25 W Log \& 0.5 W Linear Values. Rotary Type 470 n. 680 , 1K. 2 K (Lin only) Single 5 KO to 2 MO Single gang $5 \mathrm{~K} \Omega$ to $2 \mathrm{M} \Omega$ Single with D/P switch 5 KO to $2 \mathrm{M} \cap$ Dual gang			
POLYESTER (MYLAR) CAPACITORS 100V: $0001.0002 .0005 .001 \mu \mathrm{~F}$ 6p 				SLIDER POTENTIOMETERS O $25 \mathrm{~W} \log$ and linear values 60 mm track $5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ Single gang 10K $500 \mathrm{~K} \Omega$ Dual garg Self-Stick graduated Alum. Bezels			
CERAMIC CAPACITORS SOV Range: 05 pF to 10 nF $15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF} 5 \mathrm{p} \quad 100 \mathrm{nF} 7$							
POLYSTYRENE CAPACITORS: 10 pF to 1 nF .6 p . 15 nF to 47 nF 10 p .							
					120		
					120		

TRANSISTOR

 LiABAGGNNNNNNNNNN जựिए $\vec{\circ}$ 						
	 伿 $N \sim N N_{\infty} N \vec{N}$ 					
	尔 $\frac{1}{\text { ® }}$	 				 А $\vec{A}{ }^{\circ} N \vec{D} \vec{N}$

 All parts and instructions with Zener diode printed circuit, rectifiers and
double wound mains transformer input $200-240$ a.c. Output voltages available 6 or $7, S$ or 9 or 12 V d.c. up to 100 mA or less.
Size $3 \times 2+\times 1 \frac{1}{2}$ in. Please state voltage required.
THE "INSTANT"BULK TAPE ERASER Suitable for cassettes, and all sizes of tape reels. A.C. mains 200/249V.

HEAD DEMAGNETISER PROBE 55

BLANK ALUMINIUM CHASSIS, 18 s.w.g. 2 tin. sides, $6 \times 4 \mathrm{in} .95 \mathrm{p}$; $8 \times 6 \mathrm{in} . £ 1.40 ; 10 \times 7 \mathrm{in}, £ 1.55 ; 14 \times 9 \mathrm{in} . £ 1.90$
$3 \mathrm{in} . £ 1.20 ; 16 \times 10 \mathrm{in} . £ 2.20 ; 12 \times 8 \mathrm{in} . £ 1.70$.
ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in} .24 \mathrm{p} ; 8 \times 6 \mathrm{in} .38 \mathrm{p} ; 10 \times$ ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in} .24 \mathrm{p} ; 8 \times 6 \mathrm{in}, 38 \mathrm{p} ; 10 \times$
$7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p} ; 14 \times 9 \mathrm{in} .94 \mathrm{p} ; 12$ $\times 12$ in. 1116×10 in. 11.16 .
ALUMINIUMANGLEBRACKET $6 \times 2 \times 2 \mathrm{in} .20 \mathrm{p}$.
ALUMINIUM BOXES.MANY SIZESINSTOCK.
ALUMNIUM $2 \times 2 \mathrm{in} .86 \mathrm{p}: 3 \times 2 \times 1 \mathrm{in} .60 \mathrm{p}: 6 \times 4 \times 2 \mathrm{in}, £ 1 ; 8 \times 6 \times 3 \mathrm{in} . £ 1.90$;
$4 \times 2 \times 5 \times 3 \mathrm{in} . £ 2 ; 6 \times 4 \times 4 \mathrm{in} . £ 1.30 .10 \times 7 \times 3 \mathrm{in} . £ 2.20$.

BAKER 50 WAT

AMPLIFIER
£65

Superior quality ideal for Halls/PA systems. Disco's and Groups. Two inputs with Mixer Volume Controls. Master Bass, Treble and Gain Controls. 50 watts RMS. Three loudspeaker outlets $4,8,16$ ohm. AC 240 V (120 V available). Blue wording on black cabinet.
BAKER 150 Watt AMPLIFIER 4 Inputs $\mathbf{f 8 5}$
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains.
Printed circuit and components
Post 35 p $\mathbf{£ 3} \mathbf{3 5}$
STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per channel, with volume control and P.C. Board. Can be ganged to make multi-way stereo mixers.

R.C.S. SOUND TO LIGHT DISPLAY MK 2

Complete kit of parts with R.C.S. printed cireuit. Three channels. Up to 1.000 watts each. Will operate from 200 MV to
100 watts signal source. Suitable for home $\mathrm{Hi} \cdot \mathrm{Fi}$
$£ 18$ and all Disco Amplifiers. Cabinet extra $£ 4.50$. $\mathrm{f}_{\text {Post } 45 \mathrm{p}}^{18}$ 200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco Lights. Edison Screw 75p each or 6 for $£ 4$, or 12 for $£ 7.50$.

RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD,

BAKER LOUDSPEAKERS "SPECIALPRICES"

Model	Post 1 -50each				Our
	Ohms	Size	Power	Type	
		in.	Watts		Price
Major	4.8.16	12	30	Hi-Fi	112
Deluxe Mk II	8.16	12	15	Hi-Fi	114
Superb	8.16	12	30	$\mathrm{Hi}-\mathrm{Fi}$	122
Auditorium	8.16	12	45	Hi-Fi	120
Auditorium	8.16	15	60	$\mathrm{Hi} \cdot \mathrm{Fi}$	130
Group 35	4,8,16	12	40	PA	112
Group 45	4.8.16	12	45	PA	15
Group 50	8.16	12	60	PA	120
Group 50	4.8.16	15	75	PA	${ }_{5} 30$
Group 75	8,16	12	75	PA	124
Group 100	8.16	12	100	PA	129
Group 100	8.16	15	100	PA	c35
Disco 100	8.16	12	100	Disco	[29
Disco 100	8.16	15	100	Disco	c39

R.C.S. LOUDSPEAKER BARGAINS

$3 \mathrm{ohm} .6 \times 4 \mathrm{in} . £ 1 \cdot 50.7 \times 4 \mathrm{in} . £ 1-50.8 \times 5 \mathrm{in} . £ 2 \cdot 50.6 \frac{1}{2} \mathrm{in} . £ 1.80 .8 \mathrm{in}$. $£ 2 \cdot 60$. $10 \mathrm{in} . £ 3.12 \mathrm{in}, 24$.
$16 \mathrm{ohm} .6 \times 4 \mathrm{in} . £ 1.50 .7 \times 4 \mathrm{in} . £ 1 \cdot 50.5 \mathrm{in} . £ 1 \cdot 50.8 \mathrm{in} . £ 2 \cdot 60.10 \mathrm{in} . £ 3$. $12 \mathrm{in}, £ 4$. $10 \times 6 \mathrm{in} . £ 3 \cdot 50$.
E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$. SPEAKER SALE!

With tweeter. And crossover.
10W.State 3 or 8 ohm.
10W.State 3
Illustrated.
15 W model with tweeter
8 ohms only.
GOODMANS 20 Watt Woofer
Size 12×10 in. 4 ohms.
Rubber cone surround
Hi-Fi Bass unit.
GOODMANS TWIN AXIOM 8-15 Watt
8 in .8 ohm Hi -Fi Twin Cone

R.C.S. MINI MODULE HI-FI KIT $15 \times 8 \frac{1}{4} \mathrm{in}$. 3 -way Loudspeaker System, EMI 5 in, Bass 5in., Middle 3in. Tweeter with 3 -way Crossover and Ready Cut Baffle. Full assembly instructions supplied.
Response $=60$ to 20000 cps
12 watt RMS. 8 ohm.
f 10.95 per kit. Two kits $£ 20$.
Postage 75p. One or two kits.

Cash price include VAT. Minimum post 30p. List 20p. Phone Access Barclay VISA. Open 9-6 Sat. 9-5 (Closed all day Wednesday)

INDEX TO ADVERTISERS

A. D. Security Systems
A. H. Supplies 85
Amateur Radio Exchange $\quad \cdots \quad \cdots \quad . . .$.
Ambit International
Amcomm Services
Antex
81
$\cdots-\cdots$ Cover II

Bamber Electronics 10
Barrie Electronics 85
Bearman, Phillip
Bi-Pak Limited $\quad \cdots \quad \cdots \quad \cdots \quad 82$
Birkett, J.
15
Blore Barton ... $\quad . .$.
Bowes, C. 10
Bredhurst 68
British National Radio \& Electronics School

13
Brooks, B. 72
Burns Electronics 71
Caranna, C. 83
Cambridge Kits 83
Catronics Ltd. 9
Chordgate 2
Chromasonics Electronics 80
Chromatronics 6
Codespeed .
Colormor 80

Cooper, A. S. 12

Continental Specialities
Cox Radio (Sussex) Ltd. $\quad . . . \quad$... 82
Crimson Electrik 53
C.R. Supply Company 82
C.T. Electronics

Electronic Design Associates Electronic Mail Order Ltd.			\ldots	6
			\ldots	82
Electrovalue	\ldots	...	2
Fane Accoustics	\ldots	\ldots	\ldots	14
Fidelity Fastenings			\ldots	9
Flairline	\cdots	16
Golledge Electronics, P.R. G.T. Information Services		\ldots	\ldots	82
			...	83
G2DYM Aerials	...	\ldots	...	82
HAC Shortwave	\ldots	\ldots	...	72
Harrison Bros.	\ldots		\ldots	83
Harvesons Surplus Co		4
Havant Instruments			\ldots	12
Home Radio	\ldots	\ldots	\ldots	85
I.L.P. Electronics Intertext I.C.S.		...		
	\ldots	\ldots		
Leeds Amateur Radio		\ldots	\ldots	72
Lee Electronics	...		\ldots	59
Lowe Electronics	\ldots	...	\ldots	71
Maplin Electronics Supplies		..		
Marshall A. (London)	Ltd.	...		53
Metac	\ldots			
Mhel Electronics			...	83
Monolith Electronics Co. Ltd.			\ldots	10
Osmabet	\ldots	\ldots	\ldots	80
P. M. Electronic Ser	ices			68

Partridge Electronics 12
Progressive Radio 12
Quartslab 68
Radio Book Services 83
Radio Component Specialists 87
R.S.C. (Realistic Sound Centres Ltd.) 11
R. \& T.V. Components 7
Sandwell Plant Ltd. 83
Science of Cambridge 78, 79
Scientific Wire Company 84
Solid State Security 83
Sonic Discount 88
Sonic Sound Audio 8 67
South Midlands Communications Ltd
South Midlands Communications Ltd
Stephen-James Ltd 72
Swanley Electronics 8
Tandy Corporation Ltd. 3
Technomatic Ltd. 84
Teleradio
60
60
Thanet Electronic 14
TUAC 4
Van Karen Publishing 83
Waters \& Stanton Electronics 60
Watford Electronics 86
Western Electronics 60
Williamson Amplification 83

Imp 8 or 15 as app.
Guarantees:
TITAN 5 years FANE LIFETIME OTHERS 1 year ALL PRICES INC. VAT

Prices correct at 3,1.80

GENERAL PURPOSE
5" FANE 501
8- AF MODEL 80
8^{-}AF MODEL 83
8° FANE BOBT DUAL CONE
10" ELAC 10RM 10 WATTS

HI-FI KITS

AF FRI $8^{\prime \prime}$ + TWEETER
FANE MODE ONE $8^{\prime \prime}+$ TWEETER WHARFEDALE DENTON KIT WHARFEDALE SHELTON KIT WHARFEDALE LINTON KIT WHARFEDALE GLENDALE KIT

GROUP/DISCO TYPES

12- TITAN T12/50R
12. TITAN T12/100A
12- TITAN T12/100A
12" CELESTION G 12 H 30W
12"- CELESTION G12/50 50 W
12^{-}GOODMANS PD
12^{-}GOODMANS PG
12^{-}FANE SPECIALIST PAB5
12" FANE SPECIALIST DISCO 80/2 ${ }^{\text {. }}$
$12^{\text {" FANE SPECIALIST DISCO } 100 / 2}$ $12^{\prime \prime}$ FANE SPECIALIST GUITAR 80 L $12^{\prime \prime}$ FANE SPECIALIST GUITAR 808/2
12- FANE CRESCENDO 80 12" FANE CRESCENDO BOLT 12^{-}FANE CRESCENDO 12 E | 15" TITAN T15/70 70W
15" TITAN T15/85
15" TITAN T15/100 100W 15- FANE SPECIALIST BASS 100 $15^{\prime \prime}$ FANE CRES. COLOSSUS 15E 200W
18" GOODMANS 18P 18- TITAN T18/100 100W
18^{-1} CELESTION G18/200 std
18° FANE CRESCENDO $18 E$

$$
18^{\circ} \text { FANE CRES COLOSSUS }
$$

18E 200W

HORN UNITS

CELESTION MH 100025 W
FANE J44
FANE J104

CROSSOVERS (FOR ABOVE)

FANE HPX1R OR HPX2R £2.95
Mail Orders/Export enquiries to address below. Add £1 att. in Hi-Fi spkrs. or kits. Otherwise add $£ 1.25\left(12^{2}\right.$ Spkr. $£ 1.50$ (15^{*}) $£ 2.50$ (18^{*}) (U.K. Only).

SPECIAL OFFER!

COLLARO RECORD DECKS

- 'S' Shaped Arm * Auto or Manual
- $11^{\prime \prime}$ Turntable * Ideal for Disco $£ 15.95$ ea. or 2 for $£ 30$.

Carr. £ 1.00 ea.

AMPS, T'TABLES, JINGLE MACHINES, DISCO CONSOLES, LIGHTING, CABINETS, CREDIT TERMS AVAILABLE | $\substack{\text { orders } \\ \text { over }}$ |
| :---: |
| $£ 20$ | MAIL ORDER ONLY

 GREENTHORPE LEEDS LS13 4LQ

A 63-key ASCII keyboard with 625-line TV interface, 4-page memory and microprocessor interface. Details in our catalogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

A massive new catalogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 280 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data. special offers and all the latest news from Maplin.

Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.

A digitally controlled stereo synthesiser the 5600S with more facilities than almost anything up to $£ 3,000$. Build it yourself for less than £750. Full specification in our catalogue.

A superb range of microphones and accessories at really low prices. Take a look in our catalogue-send the coupon now!

An attractive mains alarm clock with radio switching function and battery back up! Complete kit with case only £18.38(incl. VAT \& p \& p) MA1023 module only $£ 8.42$ (incl. VAT).

A superb technical bookshop in your home! All you need is our catalogue. Post the coupon now!

A hi-fi stereo tuner with medium and long wave, FM stereo and UHF TV sound! Full construction details in our catalogue.

Add-on bass pedal unit for organs. Has excellent bass guitar stop for guitarists accompaniment. Specification in our catalogue.

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR. Telephone: Southend (0702) 554155. Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.

[^0]: SUPERSOUND 13 HI-FI MONO AMPLIFIER superb solid state audio ampliier. Brand new components
 throughout. 5 silicon transistors plus 2 power output
 silicon trantransistors in push-pull. Full wave rectification. Output approx. watts r.m.s, into
 ohms. Frequency ohms. Frequency re-
 sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ pre-amplifier stage with separale tolume Bass boost and Treble cut controls Suitable for X-15 ohm speakers. Input for coramic or crystal cartridse. Sensitivity approx. 40 mV for full output. Supplied reads huilt and tested, with knobs escutcheon panel, input and output pluss. Overali size 3 hikh 6 wide 71° deep. AC 200250 V .
 PRICE $£ 18.40$, P. \& P. £1. 35 .
 HARVERSONIC MODEL P.A.
 tWO ZERO

 ## An advanced solid state general purpose mone Guitar, Gram, etc. Features 3 individually controlled in

 individually controlled inputs (eachinput has a separate 2 stage pre-amp.). Input $1,15 \mathrm{mV}$ into 47 k . Input 200 mV into 1 mes, suitable for gram th mic. or guitar etc.). Input 3. facilities with full range bass \& treble controls. All inputs plus into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 30 watts music power. Very attractively finished purpose built cabinet made from escutcheon. For ac mains operation $200 / 240$ volts. Size approx. 12 tin wide \times Sin high $\times 7$ tin deep.
 Special introductory price $£ 29.00+£ 2.75$ carriage and packing.
 "POLY' PI.ANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
 Size 111 , it 2 lo deep. Weight 1902 . Power handing 20W r.m.s. (40 W peak). Impedance K ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on
 ceilings, walls, doors, under tables, etc., and used with Only $£ 8.80$ each + p. \& p. (one £1. full details. Only $£ 8.80$ each + p. \& p. (one $£ 1$, two $£ 1 \cdot 25$).
 Now available in $8^{\prime \prime}$ round version. 10 watts RMS 60 Hz 20K Hz $\mathbf{2 6} \mathbf{3 0}$.
 P. \& P. (one 72p, two 82p).

 STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. carth. Equ. $\pm 1 \mathrm{~dB}$ from $\frac{20 \mathrm{~Hz}}{2 \frac{1}{x} \times \frac{1}{x} \mathrm{H}, £ 3 \cdot 20+22 \mathrm{p} P . \& \mathrm{P} .}$

 MAINS OPERATED SOLID STATE AM/FM STEREO TUNER 200.240V Mains operated Solid State FM AM Stereo Tuner. Covering
 M.W. A.M. $\quad 540-1605$ KHz VHFFM $88-108$ Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM Stereo Beacon Lamp Indicator. Buitr in Pre-amps with variable output voltage adjustable by pre-set control. Max of p Voltage 600 m RMS into 20 K . Simulated Teak finish cabinct. 94^{-d} match
 LiMITED NUMBER ONLY at $£ 29.00+£ 1.65$ P. \& P
 10/14 WATT HI-FI AMPLIFIER
 KIT
 A stylishly finished monaural
 amplifier with an amplifier with an output of 14
 watts from 2 EL84s in push. watts from 2 EL84s in push-
 pull. Super reproduction of both music and speech with neglig! ble hum. Separate inputs for mike and gram allow records
 and announcements to follow and announcements to follow
 each other. Fully shrouded sec
 cach other. Fulfy shroaded ser
 tion wound output transformer
 to match 3 . 15 to match 3.15Ω speaker and 2 independent volume controls, and
 separate bass and treble controls are provided aiving separate bass and treble controls are provided giving good lift and
 cut. Valve line-up 2 EL84s. ECC83. FP86 and E 80 rectifier cut. Valve line-up 2 EL84s. ECC83. EF 86 and EZ80 rectufier. Simple
 intruction booklet 50 . SAE (Free with parts) All parts intruction booklet $50 \mathrm{p} .+\underset{\text {. SAE (Free }}{ }$ with parts). All parts sold
 separately. ONLY $£ 18.40$, P. \& P. $£ 1-55$. Also available ready build and tested $£ 22 \cdot 50$, P. \& P. £1-55.

 ## STEREO DECODER MK.II

 SIZE $14^{\circ} \times 2.5 / 16^{\prime \prime} \times \frac{1}{*}^{*}$ ready built. Pre-aligned and tested for 10 16 V neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions supplied $\mathbf{8 7 . 0 0}$ plus 22p P. \& P. Stereo beacon light if required 40 p extra.

 Mullard LP1159 RF IF module $470 \mathrm{kHz} £ 2 \cdot 50+$ P. \& P. 22p. Full specification and connection details supplicu.
 Pye VHF FM Tuner Head covering 88 put. 78 V , earth Supplied pre aligng 88.108 MHz 10.7 MHz I.F. outprecision geared F.M. gang and 323PF +323 PF A.M. Tuning gang only $£ 3 \cdot 40+\mathrm{P}, \& \mathrm{P}, 40 \mathrm{p}$.

 VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app 54 in . wide, Our price $£ 2.30 \mathrm{yd}$. Iength. P. \& P. 55 p per yd. (min. I
 yd). S.A.E. for samples.

 HARVERSONIC SUPERSOUND

 ## IO 10 STEREO AMPLIFIER KIT

 A really first-class Hi-Fi Sterco Amplifier Kit. Uses I4 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise level with improved sensitivity. Integral pre-amp with Bass, Treble and two Volume Controls. Suitable for use modify to suil or Crystal cartridges. Very simple to cluded Output maxnetic cartridge-instructions in ohns. Compact design, all parts supplied including drilled metalwork, high quality reads drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any consrructor to build an amplifier to be proud of. Brief specification: Puwer output: 14 watts .m.s. per channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB} 12-30.000 \mathrm{~Hz}$ Sensitivits: better than 80 mV into $1 \mathrm{M} \Omega$. Full power bandwidt. $\pm 30 \mathrm{~B} ~ 12-15,000 \mathrm{~Hz}$ Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to Power. Nesative recaback 0 adb Power requirements 35.all 0 amp.
 Fully detailed 7 page construction manual and parts list free with kit or send 25p plus large S. A. E.
 AMPLIFIER KIT (Magnetic input components 33p extra POWER PACK KIT $\quad . \quad £ 6.20$ P. \& P. £1.05 SPECIAL OFFER-only $\boldsymbol{£ 2 5 . 8 0}$ if all $\mathbf{3}$ item
 ordered at one time plus $£ 1.40$ p. \& p.
 Also avail. ready built and tested $£ 32$-20, P. \& P. £1-65.

 $$
 \text { HARVERSONIC STEREO } 44
 $$

 A solid state stereo amplifier chassis, with an output of ... wath per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with built in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse. tone control, volume controls. 2 pin din speaker the printed the printed brushed anodised aluminium 2 way escutcheon (10 allow the amplifier to be mounted horizontally or vertically) a only $£ 10.40$ plus 55 p P. \& P. Mains transformer with an output of 17 v a/c at $500 \mathrm{~m} /$ a can be supplied at $£ 2.15+$ 44 p P. \& P. if required. Full connection details supplied. All prices and specifications correct at time of press and subject to alteration without notice.
 PI.EASE NOTE: P. \& P. CHARGES OUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL

[^1]: 「－ー－ーー－ー－－－－

[^2]: "The "Melody Maker". from A. C. Cossor Ltd., was a popular domestic receiver in the '30s and was available ready-assembled or in kit form, powered either from the mains or batteries. Our heading is reproduced from an advertisement in the "Practical Wireless" of 3rd December, 1932. 'Volume is enormous, quality is excellent, "wrote one Yorkshire user-his aerial consisted of 25ft of wire tastefully arranged around the picture rail!

