

Tecknowledgey for sale. same again. Ambit's Mark III tuner system is electrically \& visually superior to all others. Some options available, but the illustrated version with reference series modules: $£ 149.00+£ 18.62$ VAT With Hyperfi Series modules design of all parts Time/frequency display State of the art performance with facilaties for updates. using modular plug in tems.
 Deviation level calibrator for recording All usual tuner features

Dipitar Dorchester All Band Broadcast Tuner: LW/MW/SW/SW/SW/FM stereo	
A multiband superhet tuner, constructed using a single IC for RF/IF processing - but with all features you would expect of designs of far greater complexity. The FM section uses a three section (air gang) tuned FET tunerhead, with ceramic IF filters and interstation mute; AM employs a double balanced mixer input stage, with mechanical IF filters - plus a BFO and MOSFET product detector for CW/SSB reception. Styled in a matching unit to the	
Mark III FM only tuner employing the same degree of care in mechanical design to enabie easy construction. MW/LW reception via a ferrite rod antenna.	
Electronics only (PCB and all components thereon)	$£ 33.00+£ 4.95$ VAT
Complete with digital frequency readout/clock-timer hardware	£99.00 + £14.85 VAT
Complete with MA1023 clock/timer module with dial scale	$\mathrm{f66.00}+£ 9.90$ VAT
Hardware packages are available separately it you wish to house	your own designs in a

RADIO and AUDIO MODULES : Consistently the most advanced
F5801-3-4 series: 6 stage varicap tuning, all with sccillator output
5801 Dual gate MOSFET RF stages, bipolar mixer
5801 Dual gate MOSFETRF stages, bipolar mixer $\mathbf{5 1 7 . 4 5 + 2 . 6 1 \mathrm { VAT }}$
5804 'Hyperfi' series, with internal PIN diode agc,
EF5402 $\begin{array}{lll}\text { and ultra wide range tuning system } \\ 4 \text { stage vade agc, }\end{array} \quad £ 24.95+3.74 \mathrm{VAT}$
FOR $30-200 \mathrm{MHz}$
20% of the centre frequency) in the order to cover bands (usually approx
$\frac{\text { FOR FM } 1 \text { Fs at } 10.7 \mathrm{MHz}}{7030}$
$7130 \quad$ two 6 pole linear phase fitter IF with HA1137f10.95 +1.64 VA
ceramic filters with diode switched narrow filter $£ 24.95+3.74 \mathrm{VA}$
DECODERS for MPX (STEREO)
LARSHOLT FM TUNERSETS
$\frac{\text { LARSHOLT FM TUNERSETS }}{7252}$
JFET front end, combined with IF cand de if $£ 26.50+3.97 \mathrm{VAT}$
FM/AM tuning sVnthesiser, see details elsewhere in th is advertisement

COMPONENTS FOR RADIO/COMMUNICATIONS/AUDIO/TV etc. As usual, Ambit brings you the latest and best, a small selection of which is sh in this advertisement. The Ambit catalogues contain information on most of the
devices mentioned hera devicess mentioned here - and an order for the new part thrmae will on most of of the
with latest developments. Data photocopying service tascribe with latest developments. Data photocopying service described in pricelist info.
RADIO ICs for FM

OSTS: Remember all OSTS stocks are obtained from BSS0000 approved sources - your

Tl:Standard RND LP 5chottkY

$[04000$

MORE FROM THE GENERAL AMBIT CATALOGUE RANGES: Varicap tuning diodes for AM/FM/TV:
1.9 AMBIT CATALOGUE RANing (Cr $15: 1$ Hom TOKO-
KV1211
KPU controllabte digital freg.
Synthesiser PCB. Preliminary:
 $\begin{array}{llll}\begin{array}{llll}\text { KV1210 } & \text { triple matched } & \text { 245p } & \text { 37p vat } \\ \text { KV1215 }\end{array} \\ \text { triple snap- 3part } & 245 \mathrm{p} & \text { 37p vat }\end{array}$

 applications. Not for beginners
Full preim inary data package $\mathrm{f} 1+\mathrm{SAE}$ No phone enquiries answered on this system for the
time being. Watch this space..... Proiected cost af the controller
PCB less than $£ 30$: comprises t two modulus counter, prog.div.
phase detecror, muitiple TC Ioon
filerintegrators

Current news: A PCB for the Muliard DC tone and volume control system is now availabie $£ 3+0.45$ VAT. HMOS PA modules for $60-100 \mathrm{~W}$ - kit $£ 14+£ 2.10 \mathrm{VAT}$, heatsink $£ 4.10+0.61$. FM radio control system crystals $£ 3.75$ pair inc VAT (Sept on). MK50366N: static drive clock/timer IC $£ 3.78+0.57 \mathrm{VAT}$. $121 / \mathrm{kHz}$ channel spacing 8 pole 10.7 MHz XTAL filter by TOYO business letterhead, or an SAE. STOP PRESS: TOKO's new split-apart triple AM tuning diodes are in stock $2.45+37$ PAT (KV1215) S BL 1 , Terms: CWO please. Account facilities for commercial customers OA Post 25 p . . VAI, which is usually shown as a separate amount. Overseas customers weicome - please allow for postage etc according to desired shipping method. Access achitiss for credit purchases.
 Hours/phone: We are open from 9 am .7 pm for phone calls. Cailers from 10 am to 7 pm . Administrative enquiries Sam to 4.30 pm please (not Saturdays). Saturday service 10 am to 6 pm .

practical

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Wireless' Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 80 p each, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 3.75$ to UK addresses and overseas, including post and packing) each accommodating one volume of PW. Please state the year and volume number for which the binder is required.

Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.

All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

On the Air

Amateur Bands Eric Dowdeswe/l
Medium Wave DXCharles Molloy
Short-Wave BroadcastsCharles Molloy
VHF Bands Ron Ham

3 SPECIAL OFFER

57 Zentron LCD Time-Zone Watch

O EXTRA

78
Editorial: Capacity for Confusion
PW Personality: Joe Bishop
Obituaries: John Scott-Taggart. Stanley Robert Mullard
Radio Special Product Report
FMD-7 FM Detector Module, Burns Electronics
EDXC: News of European DX Council projects
Hotlines
Ginsberg
Recent developments in electronics

Kindly Note

VHF DF Loop Aerial, October 1979
Production Lines
Alan Martin
Information on the latest products

FOR OUR CONSTRUCTORS

Aerials for $160 \mathrm{~m}-2$
Designs for Top-Band operation
Semiconductor Tester
J. Scott Paterson

Check transistors, diodes, etc, on an oscilloscope screen
Model Radio Control-1 J. Burchell \& W. S. Poel A comparison of various systems, plus constructional details of the receiver
Field Telephone System
E. A. Parr \& J. Wallace

A versatile intercom based on $741^{\circ} \mathrm{op}$ amps.

GENERAL INTEREST

CB-UK-The Facts and the Future
More thoughts on this controversial subject
Hi-Fi Glossary-3
G. J. King

All you wanted to know about Hi - Fi Jargon
IC of the Month
Brian Dance
The TL497 switching regulator

Index to Volume 55

Contents of our issues dated January-December 1979
Our January 1980 issue will be published in early December
 circunt whes allows the: cienl a lemeser perioci of turne:onstore its eneregy befors
 buift in static: timmuleght. syste:ms fanction loght. and seceurity chancelecivi:s switeh Will work all reve tenuiters
Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders. THE KIT COMPRISESE EVERYTHING NEEDED Die pressed calse Ready drillexd, alaminnum extruded base and heat sink. coul mounhtug clips and accessoriess All kit components are guar antee ed for a peal iad ef 2 year s from date of purchase Fully illustraterdassembly and installation instructıons are. inclucied

Roger Clark the world famous rally driver says"Sparkrite electronic ignition systems are the best you can buy:
 ELECTRONIC IGNITION

Electronics Design Associates, Dept. PW1279 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791

Name

Phone your order with Access or Barclaycard	
Inc. V.A.T. and P.P.	quanitit reood.
X5KIT f 16.95	
access on baiclay card No.	

I encosese cheque:P1's for

E
Cheque No.
Send SAE if brochure only required.

FROM CASIO - THE NEXT STEP FORWARD IN TIME

Casio's new Lithium battery, lasting up to 5 , years or more, totally eclipses most SOLAR watches

Hand held COMPUTER GAMES

We have selected the best availabl It's you against the computer . .

GRANDSTAND

4-in-1
Calculator/Auto Race/ Code Breaker (as Mastermind)/Blackjack. Convenience - skill brainpower - luck.

£22.50

UFO MASTER BLASTER STATION More sophisticated than Destroyer. Guide missiles to destroy UFO's which may change course or disappear!
£22.50
AMAZE-A-TRON
Over 1 million mazes to defeat! 1 or 2 players. Electronic sound effects.

£17.25

GRANDSTAND DESTROYER
Protect your convoy from torpedoes. £14.95
GRANDSTAND SOLITAIRE
Absorbing and challenging.
$£ 14.95$
DIGITS (As Mastermind)
Deduce four random numbers.
$\mathbf{2} 13.95$

MICROPROCESSOR

FAIRCHILD GRANDSTAND
Video Entertainment Computer
£74.95

19 plug-in
pre-programmed
memory cartridges
now available.
Each $£ 12.50$

Price includes VAT, P\&P. Send your cheque, P.O. or phone your ACCESS or BARCLAYCARD number to:-

HAVE A FABULOUS TIME THIS CHRISTMAS - FROM TEMPUS

From CASIO's New Collection we present some of the most sophisticated executive watches available today.

ALARM CHRONOGRAPH

Displaying hours, minutes, seconds, date, $\mathrm{am} / \mathrm{pm}$; or Hours, minutes, alpha day, date, $\mathrm{am} / \mathrm{pm}$. With automatic $28,30,31$ day calendar.
83SQ-27B
4 YEAR BATTERY. 1/10 second chrono to 12 hrs , measuring net, lap and 1 st and 2nd place times. 24 hour alarm. Hourly chimes. Backlight. Mineral glass, Stainless Steel encased, Water resistant to 66 feet. (£31.95) 227.95

Displaying hours, minutes, seconds, day; and with day, date, month and year perpetual automatic calendar.
Available soon:

24 hour alarm. Selectable hourly chime facility. Backlight. Mineral glass face.

81CS-36B
As above but:
Stainless steel case.
WR to 100 feet. (£39.95)

£35.95

81QS-33B

5 YEAR BATTERY Chrome plated case WR to 66 feet (£31.95)
£27.95
1/100 second chrono to 7 hours. Net, lap and 1st and 2nd place. Selectable 12 or $2{ }^{2}$ hour display.

HONG-KONG WATCHES

Most low cost digital watches come from Hong Kong. In our experience these are proving unreliable, particularly those with multi-function modules, with very high failure rates. Repairs can tke as long as three months and replacement parts are not always available even replacement plastic glasses!
Compare this with Casio, Citizen and Seiko, whose failure rate is typically under 1%, Casio's service time of $2-3$ weeks and comprehensive spares and we ask you:-
ISN'T IT WORTH PAYING A LITTLE
MORE FOR QUALITY AND RELIABILITY?
Fully guaranteed for 12 months.

> Most CASIO products available from stock. Send 25 p for illustrated brochures and membership of our CHRISTMAS CLUB. EXTRA DISCOUNTS on many items.

CASIO CHRONOGRAPHS

Constant LC display of hours, minutes, seconds, am/pm and day (12 or 24 hour). Dual time (12 or 24 hours). Automatic day, date, month and year calendar. Chronograph measures net, lap and 1st and 2nd place times from $1 / 100$ second to 7 hours. Backlight. Mineral glass face.
Guaranteed water resistant to 66 or 100 feet.
NEW MODEL
95QS-32B
4 YEAR BATTERY. Superbly styled brass case heavily chrome plated. Water Resistant to 66 feet.
(RRP £27.95)
£23.95

95QS-31B
(left)
4 YR BATTERY
S/Steel jacket.
WR to 66 feet (£27.95)
$£ 23.95$
95CS-31B
(Right)
5 YR BATTERY
Solid S/S case.
WR to 100 feet.
(£34.95)
$£ 29.95$
F-200 SPORTS CHRONO
Hours, minutes, seconds, am/pm. Day, date, month $1 / 100 \mathrm{sec}$ chrono to 1 hr . Net, lap and 1st and 2nd place times. Backlight. Resin case/strap. Mineral glass. WR to 66 feet. Silver oxide battery (£17.95)
$£ 15.95$
F-8C Time/date 3 YEAR BATTERY Hours, minutes, seconds, date, day, am/pm. Auto $28,30,31$ day calendar. Backlight. Resin case/ strap. Mineral glass. WR to 66 feet (£12.95)

LADIES MODELS (others available)
Hours, minutes, 10 seconds, am/pm. Automatic calendar. Stainless steel, mineral glass. WR to 100 feet.

86QL-10B
86QL-12B
£26.50

86CL-22B

£37.25

Dept. PW, Beaumont Centre, 164 - 167 East Rd.,
Cambridge CBI IDB.
Tel. 0223312866

ERSIN

5CORE
SOLDER
SAVBIT
handy solder dispenser

Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size 5 78p

For soldering fine joints

Two more dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx. of 0.71 mm solder for
tine wires, small
components
and printed circuits.
PC115 92p
Or size 19A for kit wiring or radio and TV repairs.
2.1 metres approx. of 1.22 mm solder

Size 19A 83p

Handy size Reels \& Dispensers OF THE WORLD'S FINESTCORED SOLDER TO DO A PROFESSIONAL JOBATHOME
Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Ref.	Alloy	Diam. mm .	Length metres approx.	Use	Price
$\begin{gathered} \text { Size } \\ \hline \end{gathered}$	$\begin{gathered} 40 / 60 \\ \mathrm{Tin} / \mathrm{Lead} \end{gathered}$	1.6	10.0	For economical general purpose repairs and	
$S_{4}^{S i z e}$	ALU-SOL	1.6	8.5	electrical joints. For aluminium repairs. Also solders aluminium to copper, brass etc.	£3.22
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} \text { 60/40 } \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires, small components and printed circuits.	£3.22
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	£3.22

WIRE STRIPPER \& CUTTER
Easily adjustable for most sizes of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles and handle locking device. ع2.21 inc. VAT.

MULTICORE WICK

for solder removal and desoldering.
Absorbs solder
instantly from
tags, printed circults etc. Only needs 40-50 Watts soldering iron. Quick and easy to use. Non-corrosive.

Size AB10 £1.29

Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - AUDIOMASTER - BAKER - BOWERS & WILKINS CASTLE CELESTION CHARTWELL COLES - DALESFORD - DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON - JR - JORDAN WATTS - KEF - LEAK LOWTHER MCKENZIE - MONITOR AUDIO PEERLESS - RADFORD RAM - RICHARD ALLAN - SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA
```


WILMSLOW AUDIO

(Dept. P.W.)

SWAN WORKS, BANK SQUARE, WIEMSLOW, CHESHIRE SK9 1HF

Discount Hi-Fi Etc. at 5 Swan Street
Speakers, Mail Order \& Export 0625529599 Hi-Fi 0625526213

A Conference and Exhibition to help you come to terms with the Second Industrial Revolution *
at the WEMBLEY CONFERENCE CENTRE JANUARY 30-FEBRUARY 1 from 10 am each day

[^0]

JIL NBI
 EUROSOLDERSUCKER

This 195 mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an anti recoil system and built in safety guard. Only £7.25 inc. VAT \& P.P.

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.

All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance $(<10 \mathrm{~m}$. ohms)
Easily renovable, non-slip. rubber backing allows damaged contacts to be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 6.20$ each or $£ 11.70$ for 2 - inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

r/o 74 Crayford High Street,
Crayford, Kent, DA1 4EF
Please send m
1 EuroSolderSucker @ $£ 7.25$
or 1 EuroBreadBoard @ $£ 6.20$
or 2 EuroBreadBoards @ $£ 11.70$ \qquad Tick
(All prices are applicable from July 1st, 1979 and include VAT \& P.P., but add 15\% for overseas orders).

Name
Company.
Address.

Tel. No.
Please make cheque/P.O.'s payable to David George Sales

A Fount of Information for all Keen Amateurs

K $\quad \mathrm{VHF}$ COMMUNICATIONS

This publication covers a vast field of amateur devices from HF to 10 GHZ , with very detailed construction articles.
Information on rare topics like stripline dimensioning and parallel and series crystal oscillators provides valuable background information for the amateur
With VHF Comms by your side, you can usually find the circuits, or indeed a com plete kit, to let you build that personalised multi-everything that you dream about, or perhaps just a VHF SWR bridge. We know - cause we have built quite a few ourselves.

Recent articles have included designs for VHF Preamplifier, 70cm Transceiver, 2M 400W Power Amplifier, 23cm Converter, etc.

THE SUMMER EDITION 1979 RECENTLY PUBLISHED!
 Special Features include informative articles on:

3 cm Frequency Multiplier

 13 cm SSB Transmitter Interdigital Converters2 m FM Transceiver (Part 2) Attenuators for Power Matching

Send $£ 1.40$ for a copy of this edition or $£ 5.30$ for complete 1979 volume.

VHF COMMUNICATIONS is the English language edition of the German publicaion UKW-BERICHTE, a quarterly amateur radio magazine especially catering for hif/uhf/shf technology. It is published in spring, summer, autumn and winter.
All special components required for the construction of the described equipment, such as printed circuit boards, conllarmers, semiconductors and crystals, as wrinted circuit boards, in addition to despatel direct from Germany. Many of the rice list of kits and material is availate send SAE for your copy.

VHF COMMUNICATIONS Dept. 982, Communications House, 20 Wallington Sq., Wallington, Surrey SM6 8 RG (01-669 6700)

New master kit EMK Mark II

A completely Solderless construction kit, with Ready Drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the Kit, Transistors, Capacitors, Resistors, Silicon and Germanium Diodes, Integrated Circuit and LED, Potentiometer, Switch, Tuning Capacitor, Wire Sleeving, Knobs, Dials, Loudspeaker and Speaker Case, Crystal Earpiece, Ready Wound Medium Wave and Long Wave Ferrite Rod Aerial. A range of Circuits with Pictorial Diagrams and Instructions are supplied with the Kit. Covering Medium Wave and Long Wave Radio Receivers

Stages, Amplifiers, Test Equipment, Metronome and Noise Generators, Morse Code Practise Oscillator with Key and Circuits using the IC and LED supplied. Everything necessary to build and
operate the Projects supplied in the Kit. Battery used PP9 volt (not supplied).
Size $19^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime} \times 1 \frac{3}{8}{ }^{\prime \prime}$.

$$
\mathbf{f 1 7} \cdot \mathbf{g 9}++\underset{+}{f, 8 p}
$$

8 Transistors and
4 Diodes. A world of listening on the

New model RX001

and internal Ferrite Rod Aerial. Kit includes all parts to build it up including rubber feet and ready drilled Panels. Comprehensive Instruction Manual for stage by stage construction. by stage construction.
Uses 9 volt battery not Uses 9 volt battery not
supplied. supplied.
Flat area size $9 \frac{1}{2}^{\prime \prime} \times 6$ 喑" $\times 1 \frac{3{ }^{\prime \prime}}{}$.

$\mathrm{f} 10.70+$| $\mathrm{P} \& \mathrm{P}$ |
| :---: |
| E 1.30 |

Short Wave Frequencies, with this highly sensitive self contained Short Wave Radio. Complete with Telescopic Aerial, Loudspeaker, Gain and Tuning Controls and all components necessary to build it. Covering approximately 60 metres to 18 metres. Uses Ever-Ready PP9 volt battery. Kit comes complete with Instruction Manual, Pictorial and Circuit Diagrams
Size $6 \frac{3}{8}{ }^{\prime \prime} \times 6 \frac{3^{\prime \prime}}{8} \times 6 \frac{33^{\prime \prime}}{}$.

V.H.F. air

 converterkit
Build this converter kit and receive the air-
 craft band by free with all parts. Uses a retractable chrome-plated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc
Size $5 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$
All parts including case and plans.

placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied

New model EСК2-(M.)

Sound, Public Service Band, Aircraft, VHF local Stations etc Operates from 9 vol battery (not supplied with

Size $12 \frac{1}{2} \frac{1}{2}^{\prime} \times 6 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{3}{8}{ }^{\prime \prime}$
Complete kit of parts.
Kit comes complete with manual pictorial and circuit diagrams.

Self contained

 8 Transistors and 4 Diodes. Push-Pull output. Quality Loud speaker, Gain Control, Swivel, Chrome Plated Telescopic Aerial, VHF Tuning Capacitor Resistors, Capacitors, Transistors etc. Will receive T.V.

V.H.F. AM multiband receiver VX8

This is an updated version of our excellent RK3 Model; Employing a new Flat Look, different layout, extra Slider Switch and projected loudspeaker Case.
Waveband Coverage and components including 39 inch Telescopic Aerial as the RK3. Complete with VX8 instruction

Multiband V.H.F. and A. M. Recoiver. 13

 Transistors and Six Diodes.Quality Loudspeaker with Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multi-band. A. M. section with separate Tuning Capacitor for easier and accurate tuning, covering M.W.1, M.W.2, L. W. Three Short Wave Bands S.W.1, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrlte Rod Aerial for Medium Wave, Long Wave and Aerial for Medium Wave. Long Wave and Trawler Band, etc., Chrome-plated 7 section Telescopic Aerial, angled and rotatable for
peak Short Wave and V.H.F. reception. PushPull output using 600 mW Transistors. Gain. Wave-Change and Tone Controls. Plus two Slider Switches. Powered by PP9-9 volt battery.
Complete kit of parts including carrying strap. Building Instructions and operating Manuals
$\mathbf{f 1 6} \cdot \mathbf{9 5}+\begin{gathered}\mathrm{P} \& \mathrm{P} \\ £ 1.30\end{gathered}$

Build this exciting now design. Now with 7 Transistors and 4 diodes.
MW/LW. Powered by gV
batter. Fowered by 9V
tuning condenser volume control. and $23^{3}{ }^{n}$
loudspeaker. Attractive case with speaker grille. Size $9^{\prime \prime} \times 5 \frac{1}{4}^{\prime \prime} \times 2 \frac{3}{4}^{\prime \prime}$ approx. All parts including Case and Plans.
Total Building Costs:

for
1 enclose $£$ \qquad NAME
\qquad
manual and diagrams. uses 9 volt
battery.
Size $13^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime} \times 1 \frac{3^{\prime \prime}}{8}$.

1 023452367

The NEW Marshall's 79/80 catalogue is just full of components

and that's not all. . .

4 ournna catalogue's higger and betler than ever. Witha its 60 peges are details and prices of the complete-vange of components and accessories avallable from Marshall 8
These inehide Audia Amps, Connectors. Boxes tases, Britge fectiters, Cables Capacitols. Civstals Diacs Oiodes Dis pleys Heatsinks, 1 Cs, Knobs, LEDs Mutinyters, Plugs Sockets Pots, Pubhidions, Melays yhesistors, Soldering Equpmenf. Thinistors. Transistors, Transtormers Valfage Fequators elt ele.
Plus detalls of the NeN Marshalls bugget Gredit Card Me are the first lok tomponent tetailer to ofter our customers oúr owncreat card faculyy
Plus 2 Thin postage paid order foms to faciltate speedy ordering
Plus - Manu new products and data
Plus 100 s of mices cut or pur poontar lines undudrg 1 Cs Trąnsistors Resistors and many more.
If youineed components you need the new Marstballs Catalogue
Availate by post 65 ppost pard from Marshall's, Kingsgate House, Kingsgate Rlace Landen NW6 4TA. so avaceble from diy branch to callers 50p

TRANSISTORISED DC TO AC INVERTERS

$12 v-24 v-48 v$ DC input models 110 v or 240 v AC off load output models Square-wave output or optional filtered models Frequency 50 Hz or 60 Hz models ($\pm 5 \%$ typical)

12 vdc inputs $/ 110 \mathrm{v}$ or 240 v outputs 50 Hz or 60 Hz

N12/B-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 60$ watts $£ 23.20 .10$

Filtered waveform models available at 15\% extra.
$24 v$ DC inputs $/ 110 v$ or $240 v$ outputs 50 Hz or 6 OHz
N24/A- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 40$ watts $£ 19.20$ N24/B- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts $£ 29.80$ N24/C-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts $£ 36.00$ N24/D-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts.......................... $£ 44.00$ $\mathrm{N} 24 / \mathrm{E}-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts $\mathbf{£ 5 2 . 5 0}$ $\mathrm{N} 24 / \mathrm{F}-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts $\mathbf{£ 6 0 . 0 0}$ N24/G-10" $\times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts $\mathbf{£ 7 1 . 4 0}$ $\mathrm{N} 24 / \mathrm{H}-10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 500$ watts $£ 83.00$ N24/L-12" $\times 8^{\prime \prime} \times 8^{\prime \prime} 700$ watt N24/ $-12^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 700$ watts $\mathbf{f} \mathbf{£} 81.00$ $\mathrm{N} 24 / \mathrm{J}-12^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 1000$ watts.....................£150.00
Filtered waveform models available at 15% extra

All silicon power transistors Separate driver and output transformers
Designed for cool continuous operation
Aluminium ventilated cased units DC input fused

48 v DC inputs $/ 110 \mathrm{v}$ or 240 v outputs 50 Hz or 60 Hz
N48/A—8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 50$ watts $\mathbf{f} 20.00$ N48/B- $-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts $\mathbf{2} \mathbf{3 1 . 6 0}$ N48/C—8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts ..£37.00 N48/D $-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts $£ 45.00$ N48/E- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts £54.00 N48/F- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts $\mathbf{£ 6 2 . 0 0}$ N48/G-10 ${ }^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts $£ 73.00$ $\mathrm{N} 48 / \mathrm{H}-10^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 500$ watts $£ 86.00$ N48/I- $12^{\prime \prime} \times 10^{\prime \prime} \times 8^{\prime \prime} 700$ watts $£ 112.00$ N48/J-12 $2^{\prime \prime} \times 10^{\prime \prime} \times 8^{\prime \prime} 1000$ watts....................... $£ 160.00$ $\mathrm{N} 48 / \mathrm{K}-12^{\prime \prime} \times 10^{\prime \prime} \times 10^{\prime \prime} 1500$ watts...

Filtered waveform models available at $\$ 5 \%$ extra.

Please add $£ 5.00$ carriage per unit U.K. overseas at cost
Delivery 10 to 21 days subject to availability - Cased sizes subject to variations
Callers strictly by appointment - Telephone enquiries 01-736 0685, _ 01-748 5778
Prices subject to fluctuation

DISCO MODULES
Make your own console CONTROL UNIT (mains powered)

(2)	边	cick		MODULE	\%

Vol. (left) Vol. (Right)
Tape input and volume control. Bass, Treble, ON/OFF switch for each Table.

f25.00 Carr. f 1

MONITOR UNIT
With Headphone Socket and
Vol. Control Carr. Free.
£7.95
FADER UNIT Carr. Free
£7.95
100w OUTPUT UNIT.
Mains powered Carr. £1.50 $\mathbf{£ 2 9 . 9 5}$
MICROPHONES
SHURE 515 SA MICROPHONE R.S.C. PRICE AITAI DUAL IMPEDANCE MICROPHONE. R.S.C. PRICE $\mathbf{~ f 9 . 9 5 . ~}$

TITAN
 GROUP/DISCO SPEAKERS

Rating RMS
Imp 8-15 ohms

T12/45R 12" 45 w
T12/60R 12" 60 w £23.95 ... £15.95
T12/100 12" 100w £37.95 ... £23.95
T15/70 15" $70 \mathrm{w} \quad £ 29.95 \ldots £ 20.95$
T15/100 15" 100w £42.95 ...£29.95
T18/100 18" 100 w £53.95 ...£41.95
Carr. $12^{\prime \prime}-£ 1.0015^{\prime \prime}-£ 1.5018^{\prime \prime}-£ 2.00$

SCOOP PURCHASE

COLLARO RECORD DECKS

* Auto or Manual * 11" Turntable * Suit Disco Operation

Excellent Value $£ 15.95$ or Pair for $£ 30$ (Carriage $£ 1$ each)

Realistic Sound Centres

OPEN ALL DAY SATURDAY
BRADFORD 10 North Parade (Closed Wed.) Tel. 25349
BIRMINGHAM 30/31 Great Western Arcade
(Closed Wed.) Tel. 021-236-1279
CARLISLE 8 English Street (Closed Thurs)
Tel. 38744
COVENTRY 17 Shelton Square, The Precinct
(Closed Thurs.) Tel. 25983
DERBY 97 St. Peter's Street (Closed Wed.)
Tel. 41361
DEWSBURY 9/11 Kingsway (Closed Tues.)
Tel. 468058
DONCASTER 3 Queensgate, Waterdale Centre
DONCASTER
(Closed Thurs) Tel. 63069
Closed Thurs) Tel. 63069
EDINBURGH 101 Lothian Road (Closed Wed.)
EDINBURGH
Tel. 2299501
Tel. 2299501
GLASGOW 403 S
Tel. 0413320700
HULL 7 Whitefriargate (Closed Thurs.)
Tel. 20505
LEICESTER 32 High Street (Closed Thurs.)
Tel. 56420
LONDON 238 Edgware Road, W. 2
(Closed Thurs.) Tel. 7231629
*LEEDS 16-18 County (Mecca) Arcade, Briggate
IClosed Wed, Tel. 449609
-LIVERPOOL 35 Dawson Way, St. John's
Precinct (Closed Wed.) Tel. 7089380
*MANCHESTER 60A Oldham Street (Closed Wed.) Tel. 2362778
MIDDLESBROUGH 103 Linthorpe Road
(Closed Wed.) Tel 247096
*NEWCASTLE UPON TYNE 59 Grainger St. (Closed Wed.) Tel. 21469
NOTTINGHAM 19/19A Market Street
(Closed Thurs.) Tel. 48068
SHEFFIELD 13 Exchange Street (Castle Mkt. Blds.)
(Closed Thurs.) Tel. 20716
-WOLVERHAMPTON 6 Wulfrun Way (Closed Thurs.) Tel. 26612
*MUSICAL INSTRUMENTS \&
ACCESSORIES in stock at these branches
ALL RSC PRICES INCLDDE VAT
Mail Orders and Export Enquiries to DEPT. GC AUDIO HOUSE,
HENCONNER LANE, LEEDS 13.
Tel: 0532577631

Barclaycard,Access \& Trustcard
Phone orders quoting card number accepted

100W D SYSTEM
 Consisting of

DISCOMASTER MKII POWER DISCO CONSOLE WITH 100W INTEGRAL AMPLIFIER, TWIN FULL SIZE TURNTABLES, CUEING DEVICE AND FULL MONITORING FACILITIES.
1 PAIR 50 WATT LOUDSPEAKERS, MODELT50H, INC. 12"' UNIT AND HF HORN.
TERMS FOR SYSTEM DEPOSIT $£ 39.50$ 38 WEEKLY PAYMENTS OF £5.95 (TOTAL £265.60) Sold separately
DISCOMASTER MK II £169.95 (carriage $\mathbf{£ 5}$) 50W LOUDSPEAKERS MODEL T50H £54.95 each

PULSAR ZERO 3000 THE MOST VERSATILE SOUNDLITE PULSAR ZERO 3000 THE MOS
CONTROL UNIT IN ITS CLASS

- 1000 WATTS PER CHANNEL ONLY $£ 99.95$
* SOUND TO LIGHT ON BASS ONLOSIT £20.00.
MIDDLE AND TREBLE
$\begin{array}{ll}\text { MIDDLE AND TREBLE } & \text { DEPOSIT } \\ 3 \text { WAY AUTO CHASE } & 12 \text { MONTHLY PAYMENTS }\end{array}$
3 WAY CHASE TO MUSIC OF £8.07. (TOTAL £116.84.
SPECIALIMPORTPURCHASE
Exclusive to R.S.C.
AS-1 FOLK
ACOUSTIC GUITAR
Just $£ 17.95_{\text {(Cariage ev) }}$
OR £5 DEPOSIT \& 8 MONTHLY PAYMENTS OF $£ 2$ (TOTAL CREDIT PRICE $£ 21$)

Please supply the following:
(Please mark quantity required in box)
100W Disco System Package \square Model T5OH Speakers @£54.95 each \square Discomaster MK II \square
Disco Modules Control Unit \square
Disco Modules Monitor Unit \square
Disco Modules Fader Unit \square
Disco Modules 100w Output Unit \square
Titan Group/Disco Speakers. Type \qquad Collaro Record Decks $£ 15.95$ each \square OR £30 pair \square
Pulsar Soundlite Zero $3000 \square$
Shure 515 SA Microphone \square Altai Dual Impedance Microphone \square AS-1 Folk Acoustic Guitar \square lenclose PO/Cheque for $£$ \qquad
Name
Address

MAIL ORDERS MUST NOT BE SENT
TO SHOPS

M13

Features and Specification
Hour minute display Laige LED display with p m . and alarm on thdicator 24 Hours alarm with
on off control Display flashing for pewer loss nicication Repeatable 9 minute snooze Displdy
in bright'dmmodes control. Size $5.15^{\prime \prime} \times 3.93^{\prime \prime} \times$
$236^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm})$ Weight 143 lbs (065 kg) AC power 220 V .
$£ 10.20$ Thousands sold ${ }^{1}$
Mains operated.
Guaranteed same
day despatch.

SOLAR QUARTZ LCD 5 Function

Genuine solar pane with battery back-up. Hours, mins., secs., day, date. Fully adjustable bracelet. Back-light. Only 7 mm thick.
£8.65

Guaranteed same day despatch.

FRONT-BUTTON
Alarm Chrono
Dual Time 6 digits. 5 flags. 22 functions. Constant display of hours and mins., plus
optional seconds or date display. AM/PM indication, month, d Continuous display of day. 59.9 secs. in $1 / 10$ second Split and lap timing modes.
Dual time zones.
Only 8 mm thick
Back-light. Fully adjustable
open bracelet.
Guaranteed same day dispatch

G10.65 Thousands sold I
Guaranteed same day despatch. M3

SOLAR QUARTZ LCD Chronograph with

 Alarm Dual Time Zone Facility 6 digits, 5 flags.22 functions. Solar panel with battery back-up. 6 basic functions. Stop-watch to 12 hours 59.9 secs., in $1 / 10 \mathrm{sec}$. steps.
Split and lap timing modes. Dual time zones. Alarm. 9 mm thick. 8ack-light. $\mathbb{2} 7.95$ Fully adjustable bracelet.

M 7

QUARTZLCD
 Ladies Fashion Watch

Elegant bracelet in
bronze/gold finish or bronze/gold fin
silver colour. Hours, mins, secs, day, date, backlight and auto calendar. Adjustable for
the slimmest of wrists. the slimmest of wrists.
State colour preference State colour preference.
£14.95
Guaranteet same day despatch M17

QUARTZ LCD
11 Function
CHRONO
6 digit, 11 functions. Hours, mins., secs., day, date, day of week. 1/100th. $1 / 10$ th, secs., 10X secs., mins., Split and lap modes. Back-light, auto calendar Only 8 mm thick. Stainless steel bracelet and back.
and back. Adjustable bracelet. Metac Price

Guaranteed same day dispatch.

M4

ALARM CHRONO

 with 9 world time zones* 6 digits, 5 flags. * 6 basic functions. * 8 further time zones.
- Count-down alarm.
* Count-down alarm.

Stop-watch
59.9 secs.
59.9 secs.
in $1 / 10$ sec. steps.
in $1 / 10$ sec. steps.

- Split and timing modes.
- Split and
- Alarm.
- 9 mm thick.
- Back-light.
- Back-light.
- Fully adiustable bracelet
£29.65

QUARTZ LCD
Ladies Cocktail Watch
Highly functional watch which also suits those special occasions.
Beautifully designed Beautifully designed
with a very thin bracelet with a very thin bracelet
which retains strength as well as elegance.
Hours, mins, secs, day, date, backlight and autocaiendar. Bracelet fully adjustable to suit slim wrists. State gold or silver finish.
£19.95
Guaranteed same day despatch M18
Metac price breakthrough for an Alarm Chronograph with Dual Time
only only
£18.95

QUARTZ LCD ALARM 7 Function

Hours, mins., secs,. month, date, day. 6 digits, 3 flags plus continuous display of day and date or seconds. Back-light Only 9 mm thick
£12.65

EXECUTIVE ALARM WATCH

HOWTOORDER
Payment can be made by sending cheque, postal order, Barclay, Access or American Express card numbers. Write your name, address and order details clearly, enclose 40 pence per single item for post and packing or the amount stated in the advert. All products carry 1 year written guarantee and full money-back 10 day reassurance. Battery fitting and electronic calibration service is available to customers at any Metac shop. All prices include VAT currently at 15\%,
Metac Wholesale:
Metac Whalesale:
Trade enciries - send for a complete list of prices for all the goods advertised plus many more not shown also minimum order details.
Telephone orders: Credit card customers can telephone orders direct to Daventry (03272) 76545
or Edgware Rd. 01-723 475324 hours a day.

Service Enquiries 03272-77659
CALLERS WELCOME Shops open 9-30am-6.00 \rightarrow

ELECTRONICS \& TIME CENTRES

South of England 327 Edgware Road LONDON W. 2 Telephone: (01) 7234753

SUPERSOUND 13 HI-FI MONO AMPLIFIER
A superb solid state audio ampliner. Brand new components
throughout. 5 silicon tranthroughout. 5 silicon tran-
sistors plus 2 power output ransistors in push-pull Full wave rectification. output approx. ohms. Frequency sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3db. Fully integrated separate Volume Bass boost and Treble cut controls Suitable for $8-15$ ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built and tested, with knobs, escutcheon panel. input and output plugs. Overall
size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7 \frac{1}{2}{ }^{\prime \prime}$ deep. AC $200 / 250 \mathrm{~V}$. SRICE 1818.40, P. \& P. fil. 20 .
HARVERSONIC MODEL P.A.
TWO ZERO
An advanced solid state
purpose mono amplifier suitable purpose mono amplifier suitable
for Public Adress system, Disco,
 individually controlled inputs (each
input has a separate 2 stage pre-amp.). Input $1,15 \mathrm{mV}$ into 47 k . Input
$2,15 \mathrm{mV}$ into 47 k (suitable for use with mic. or guitar etc.) Tnput $2,15 \mathrm{mV}$ into 47 k (suitable for use with mic. or guitar etc.). Input 3 , 200 mV into 1 meg. suitable for gram, tuner, or tape etc. Full mixing
facilities with full range bass \& treble controls. All inputs plug into facindard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 30 watts music power. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front
escutcheon. For ac mains operation $200 / 240$ volts. Size approx. escutcheon. For ac mains operation $200 / 240$ volts. Size approx.
$12 \pm$ in wide $\times 5$ in high $\times 7$ 7in deep.
Special introductory price $£ 29.00+£ 2.50$ carriage and packing.
"POLY PLANAR"' WAFER-TYPE, WIDE RANGE "POLY PLANAR" WAFER-TYP Size $111^{\prime \prime} \times 14 \frac{1}{16^{\prime \prime}} \times 1 \frac{7}{16}{ }^{\prime \prime}$ deep. Weight 19oz. Power handling 20 W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with or without baffle. Send S.A.E. for full details.
Only $£ 8.80$ each + p. \& p. (one $90 p$, two $£ 1 \cdot 10$).
Now available in $8^{\prime \prime}$ round version. 10 watts RMS 60 Hz
20 KHz £6.30. $20 \mathrm{KHz} \mathbf{£ 6} \mathbf{3 0}$
P. \& P. (one 65p, two 75p).

STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER
 200240 V Mains operated Solid State FM AM Stereo Tuner. Covering
M.W. A.M. $540-1605$ $\mathrm{KHz}^{\mathrm{KHz}}$ VHF/FM $88-108$ Muilt-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM.
Stereo Beacon Lamp Indicator. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage Will match almost any. Simplated Jeak finish cabinet. Will match almost any amplifier. Size $8 \frac{1}{2}^{\prime \prime} \mathrm{W} \times 4^{\prime \prime} \mathrm{h} \times$ 9k dapprox.
LIMITED N 10/14 WATT HI-FIAMPLIFIER KIT
A stylishly finished monaural amplifier with an output duction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 ELS4s, ECC83,
EF86 and E780 rectigier. Simple instruction booklet $\mathbf{5 0 p}+$ SAE (Free with parts). All parts sold separately. ONLY £18.40, P. \& P. £1.40. Also available ready
haily and fested $£ 22.50, \mathrm{P}, \mathrm{\&} \mathbf{P} . £ 1.4 Q$
STEREO DECODER MK.II
SIZE $\frac{1}{2}^{\prime \prime} \times 2.5 / 16^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ ready built. Pre-aligned and tested for 10 16 V neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions supplied. $\mathbf{£ 7 . 0 0}$ plus 20 p P. \& P. Stereo beacon light if required 40 p extra.

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer for AC Mains or battery use. MW and FM bands. Dynamic M/coil speakers. telescopic acrial and internal Finished in attractive simulated leatherette. Size $7^{\prime \prime} \mathrm{H} \therefore 9 \frac{1}{2}{ }^{\prime \prime} \mathrm{W} \quad 4^{\prime \prime} \mathrm{D}$ approx. Fully guaranteed. Bargain price of only $\mathbf{£ 1 0 . 2 5}+\boldsymbol{£} 1.30$ p. \& p.
Mullard LPII59 RF-IF module 470 kHz £2-50 + P. \& P. 20p. Full specification and connection details supplied. put. $7-8 \mathrm{~V}$ + earth. Supplied pre-aligned, with full circuit diagram with precision-geared F.M. gang and $323 \mathrm{PF}+323 \mathrm{PF}$ A.M. Tuning gang precision-geared F.M. gang
only
P3.40 P.
YYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app.
54 in. wide. Our price $\mathbf{~} 2.30$ yd. length. P. \& P. 50 p per yd. 54 in. wide. Our price \&2.30 yd. length. P. \& P. 50p per yd. (min. 1

HARVERSONIC SUPERSOUND
$10+10$ STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five stages on each channel resulting in even lower noise level with improved sensitivity. Integral Pre-amp with Bass. Treble and two Volume Controls. Suitable for use
with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge--instructions in moniry to suit magnetic cartidge-instructions inohms. Compact design all sarts supplied including drilled metalwork, high, quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be
proud of. Brief specification: Power output: 14 watts r.m.s. Der channel into 5 ohms. Frequency response: $\pm 3 \mathrm{~dB} \cdot 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into Bass boost power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass 16 dB . Negative feedback isdB over main amp Power requirements 35 v . at $1 \cdot 0 \mathrm{amp}$

Overall Size $12^{\prime \prime} \mathrm{w}$. $8^{\prime \prime} \mathrm{d}$. $23^{3 \prime \prime} \mathrm{~h}$.

Fully detailed 7 page construction manual and parts list free with kit or send 25p plus large S.A.E. \quad \& \& P. 8 . 80 p AMPLIFIER KIT . $\begin{array}{lll}\text { Magnetic input components } 33 \text { p extra) } \\ \text { POWER PACK KIT } & . . & \mathbf{8 6 . 2 0} \text { P. \& P. } 95 \text { p }\end{array}$ CABINET
SPECIAL OFFER-only $£ 25.80$ if all 3 items
ordered at one time plus $£ 1 \cdot 25 \mathrm{D} . \& \mathrm{p}$.
Also avail. ready built and tested $£ \mathbf{3 2 \cdot 2 0 , P}$. \& P. £1.50.

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis, with an output of 3-4 watts per channel into 8 ohm speakers. Using the atest high technology integrated circuit amplifiers with components including rectifier smoothing capacitor, fuse, tone control, volume controls, 2 pin din speaker sockets \& 5 pin din tape rec./play socket are mounted on
 max. depth. Supplied brand new \& tested, with knobs,
brushed anodised aluminium 2 way escutcheon (to allow he amplifier to be mounted horizontally or vertically) at only $£ 10.40$ pius 50 p P . \& P. Mains transformer with an
output of 17 v a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 2.15+$ $40 \mathrm{p} P$. \& P. if required. Full connection details supplied. All prices and specifications correct at time of press and subject to alteration without notice.
PLEASE NOTE: P \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL

STEPHENS-JAMES LIMITED

47 WARRINGTON ROAD, LEIGH WN7 3EA
Telephone (O942) 676790
Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers. Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp . Antenna switches-converters. Aluminium masts-clamps. Antenna rotators.

Yaesu FRG7-FRG7000
 Drake SSR-1
 Secondhand Equipm
 Our secondhand eequipment stock changes daily. Send S.A.E. for latest price list. Part exchanges welcome.
 Access-Barclaycard and H.P. facilities

PRACTICAL WIRELESS T.V. SOUND TUNER

(Nov. 75 articie by A, C. Alnsile) Copy of original article supphled on request
IF Sub-Assembly (G8) $\mathbf{£ 7 \text { -82. P\&P 85p. }}$
Mullard ELC1043 V'cap UHF Tuner £6.33. P\&P 40p.
3-way Station Control Unit $\mathbf{£ 1 \cdot 3 8}$. P\&P 30p.
6-way Station Control Unit (Special Offer) f1.15. P\&P 35p.
Power Supply Prtd Circuit Board £1-15. P\&P 35p.
Res, Caps, Semiconds, etc. for above £6.67. P\&P 45p.
Mains Transformer for above $\mathbf{£ 2}$-88. P\&P 35p.
P\&P all items 95p.
(Price of goods and P\&P includes 15\% VAT)
Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

IT'S FREE

Our monthly Advance Advertistng Bargains List gives detairs of bargains arriving or just arrived-often bargains an interesting list and it's free-just send S.A.E. Below are a ew of the Bargains still avallable from previous line

12v SUBMERSIBLE PUMP

Just join it to your car battery, drop it into the liquid to be moved and up it comes, no messing about, no priming etc. Suitable for
water, paraffin and any non explosive, non corrosive liquid. One
 PRECISIONRESISTORIS
A fortunate purchase enables us to offer almost a complete range start at 5 r and go right through to 976 k . Most values are available in $\frac{1}{2}$ watt and $\frac{1}{2}$ watt rating, Price $25 p$. $3 \frac{1}{p} p$ each in small quantities, or $20 p+3$ each where supplied not less than 10 of a value, $15 p+2$ 2p each not less ti
THIS MONTHS ELECTRICAL SNIP
Parcel of M.E.M White flush 13 amp sockets, switches etc. Total
cetail value over $£ 56+$ vat for only $£ 28+£ 4.20 \mathrm{p}$. You get 10 double 13 amp sockets and 6 single 13 amp S . sockets with neons.
neonsi.
20 sower (20 amp dpt switches and spurs some with
ning neons), 20 single ganged one way, two way and intermediate
switches, and super free gift (worth $£ 3$). If not coliecting please add E.M. WHITE FLUSH SOCKETS ETC.
 $1000,1005,1010,1011,1020,1021,{ }^{2} 1022,1024,1025$,
$1033,140,140, ~ W H H 1401 \mathrm{WH}, 142,1402 \mathrm{WH}, 1403$,
$1403 \mathrm{WH}, 1404,1404 \mathrm{WH}, 1405,1405 \mathrm{WH}, 1407,2025$, 7092. Electricians and Contractors using these accessoris,
should send for our M.E.M. Electrical List where prices and quantity discounts will bequoted.
W. German make but fitted to several popular colour T.V's, makers ref no 2357076 . his has 6 push buttons each of which is in effect a multi turn pot, total resistance is 15 k . The button
are black with chrome metal tops. Price $£ 1+15 \mathrm{p}$. post 25 p . Good quantity available at $\mathbf{U S U a l}$ disc
MULTI TURN POT WITH KNOB
100 k lin, 20 turn used in many TV. receivers, makers ref. 7802 vitry. Price $40 \mathrm{p}+6 \mathrm{p}$. Cuitry. DIPLEXER
On plastic moulding size $2 \frac{1}{2}^{\prime \prime} \times 1 \frac{3^{n}}{4}$. We are able to offer these at
such a low price that they can be used as T.V. aerial sockets only. such a low price that the
Price 10 for $£ 1+15 p$.
ntrol T.V. receivers. Price $\mathbf{£ 1 . 5 0 p}+22 p$
As used remote contro
BURGLAR ALARM
Mains operated new circuit available, this is simple to install and trouble free. Price list and diagram free on request.
As made for and used in the Second World War, we have a few of these in mint condition. complete with carrying satchels, headphones, throat mikes and instruction cards. In unopened
boxes. Price $£ 30+£ 4.50$, post $£ 2$. boxes. Price ${ }^{\text {E3O }}+$ £ 4.50 ,
MUSIC CENTRE COVER
special packing £2.
lush pane mounting, wide angle, extra long, 320° scale mad for G.P.O. Really beautiful instrument, brand new in original car-
tons. Limited quantity only so no discounts. Price $£ 8+£ 1.20$ p. Less than half maker's price).
BIG BLOWER
Thiven by $1 / 10$ H.P. mains motor but compact and quiet running This is ideal for air conditioning, fume extraction, pressurizing and
many other applications. Overall size $10 \frac{1}{2} \times 10 \frac{1}{2}$ dia. outlet size many other applications. Overall size $10 \frac{1}{2}^{\prime \prime} \times 10 \frac{x^{\prime \prime}}{2}$ dia. outlot size
$10 \frac{1^{\prime \prime}}{2} \times 4 \frac{3}{n^{\prime \prime}}$. Price $\mathbf{f 1 5}+£ 2.25$, carriage $£ 3$. Note this is the largest of our 'Snail' shaped blowers, we have smaller ones righ down to 10 watt motors with outlets as small as $2^{\prime \prime} \times 2^{\prime \prime}$ in fact we can cover almost sny application and welcome your enquirie
Price are from $£ 3$ complete with motor. Price are from $£ 3$ complete
DOLLS HOUSE SWITCH
Time is fast approaching when you may be thinking of making oys. Small surface mounting switches are often a problem and this why we are now offering this plastic bodied rotary switch CASSETTE STORAGE CASE
保 for joining, to another, so you can make up in lenghts to suit
yourself. Price $50 \mathrm{p}+7 \frac{1}{2} \mathrm{p}+50$ p post or ten for $\mathbf{£ 4}+60 \mathrm{p}$. post TELEPHONE ANSWERING MACHINES
Grade 2 machines are in stock ready for immediate despatch or collection, (lit coming specially to coilect please telephone first
For the bentio of new readers we supply these machines on the original purpose. The machines are secondhand but so far as we can see they are complete and quite possibly in good working
order. We do not test them but quarantee to replace any part order. We do not test them but guarantee to replace any part of the machine should it be missing or taulty, providing we are ollows: Grade 2 that is in very good condition $£ 15.50$ ap £2.25p, and Grade 1 which are top grade machines and are our $£ 2.2$ best almost perfect $£ 20+£ 3.00$ each, but there is likely to
be one month's wait. To these prices must be added $£ 2.50$ p to cover carriage.
For telephone answering machine. Price $\mathbf{£ 4 . 5 0 p}+63 \mathrm{p}$. Post POT CORES
Ve now have good stocks of Ferrite pot cores. These are ex un used equip

```
llll 9p per pair
COMPONENT BOARD 421
Again from unused equipment, major items on these are two
power silicon transistors, Motor Rola ref. SJ 5433 mounted on a heat sink with mica insulators, also behind the panel are two power rectifiers \(S T\) NS 1008. Price 90p + 6p.
```


SOUND TO LIGHT KIT. Based on the Everyday Electronics ciruit this is a very efficient little unit and when made up is in every way equal to professional models costing many times the price This unit is not tuned to any particular frequency, it is simply dependent upon volume. This is no disadvantage, in fact the effect is very pleasing. It will control up to 750 w of lighting and
works well with ampliflers with outputs of 250 watts. The kit complete with leads and plastic case is $£ \mathbf{2 5}$ only

MULLARD UNILEX

A mains operated $4+4$ stereo finest performers in the stereo fleld this would make a won derful gift for almost anyone in easy - to - assemble modula of speakers this should a pai about f30mbut due to a specia about esumbut due to a specia for you to buy this month w offer the system complete at
only $£ 45$ including VAT and

$25 A$ E
 25A ELECTRIC PROGRAMMER

Lean in your sleep. Have radio playing and kettle boiling

a warm house to come home to All these and many other things you can do if you invest in an electrical programmer Clock by
famous maker with 15 amp on/of switch. Switch-on time can be set anywhere to stay on up to ory iogger A beautiful unit $£ 450$

HUMIDITY SWITCH

American made by Honeywell. The action of
this device depends upon the dampnes causing a membrane to stretch and trigger a sensitive micro-switch, quide sensitive Micro 3 amp. at 250 V a.c.

MAINS BLOWER

The sorrin-quiet but powerful
outhet size $2 \frac{1}{2} \times 1 \frac{3}{4}$ for cooling equipment etc. will extract of outlet is blowing outwards price $£ 5 \cdot 50$
Other models from $£ 2.00$.

INDUCTION MOTORS
 sp1.75.
$\mathbf{£ 3 . 2 5 .}$

DRILL CONTROLLER
Electronjcally changes speed from approximately 40 revs to kit ins by finger-tip control Kit includes all parts, cas θ, Made up model $£ 1.00$ extra

MOTORISED DISCO SWITCH

TANGENTIAL HEATER UNIT

A most efficient and quiet running

3KW MODEL
KW MODEL
$£ 5.95$
$£ 1.50 \mathrm{P} \& \mathrm{P}$

2 k .w. model made in metal

MINI-MULTI TESTER

Amazing. deluxe pocket size precision moving coil instrument mirrored scale. 11 instant ranges measure
$D C$ volts $10,50,250,1000$ $D C$ volts 10,50, 250, 1000
$A C$ volts 10,50, 250, 1000 AC volts $10,50,250,1000$
DC amps $0-1 \mathrm{~mA}$ and $0-100 \mathrm{~mA}$
Continuity and resistance 0.150 K ohms. Complete with insulated probes,
ieads, battery, circuit diagram and instructions.
Unbelievable value only $£ 6 \cdot 50+50 p$ post and insurance. FREE Amps ranges kit enable you to read DC current from $0-10 \mathrm{amps}$, directly on the $0-10$ scale. It's free if you purchase quickly but i
send $£ 1 \cdot 50$.

TERMS: Cash with order-but orders under $\mathbf{£ 5}$ must add TERMS: Cash with ord
BULK ENQUIRIES INVITED. PHONE: 01-688 1833.
ACCESS \& BARCLAYCARD ACCEPTED

J. BULL (ELECTRICAL) LTD
 (Dept. PW) 103, TAMWORTH ROAD, WEST CROYDON, SURREY. Tel: 01-688 1833

HEAVY DUTY 3 CORE APPLIANCES LEAD
15 amp wire 6 ft. Iong, conventional yellow green, brown and
blue cores, grey pvc outer, prepared ends this flex nowil blue cores, grey pve outer, prepared ends, this flex normaily sel
at 30 p per metre. 10 leads for $£ 2.50 \mathrm{p}+40 \mathrm{p}$. Post $£ 1.50 \mathrm{p}$. E.H.T. MAINS TRANSFORMER

Output' voltage 4.5 kv 3 mA . These transformers are unused
P.S.U.s. Price $£ 2+30$ p, post 40 p . P.S.U.s. Price $\mathbf{E 2}+30 \mathrm{P}$. p
LOUD SPEAKER GRILL

Good quality rigid plastic, ideal for use in car or home extension
speakers. Two sizes available $12^{\prime \prime} \times 12^{\prime \prime}$, price $75 p+13 \mathrm{p}, 18^{\prime \prime} \times$ $18^{\prime \prime}$ f1.50p +23 .
6 DIGIT COUNTER - RESETTABLE
6 DIGIT COUNTER - RESETTABLE
Coil voltage 48 D.C. or $115 v$ A.C., current 100 mA approx. Price £1.95p +30 p.
10 DIGIT SWITCH PAD
Made we belisve for G.P.O. push button telephones, each button operates 2 pole switch which returns automatically, panel size
$2 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2} \times 1 \frac{1}{2}^{\prime \prime}$, push buttons with clear plastic protected digits O-9, price $\mathrm{EA}^{2} .95 \mathrm{p}+30 \mathrm{p}$.
Real bargain this month is a blower made by Smiths, the mains motor is let right into the turbulator and takes up the minimum of space. Overall size of the blower is $7^{\prime \prime}$ dia, $\times 2 \frac{1}{2}^{\prime \prime}$ and the air outlet
$1 \frac{3}{\prime \prime} \times 2 \frac{3}{4}^{\prime \prime}$ Price only $\mathbf{£ 2 . 5 0 p}+\mathbf{3 3} \mathrm{p}+\mathrm{p}$ \& p 50p. DIAL INDICATOR
As used in tool making and other precision measuring operations, the famous John Bull accurately shows differences of .01 mm . A beautifully made precision instrument, price in most tool shops
would be $£ 12-£ 15$. Price $\mathbf{£ 8 . 0 0}+£ 1.20 \mathrm{p}$. WATERPROOF SWITCH
ideal for greenhouse or outdoor, plastic body. Price 60p +9 p .
$\begin{aligned} & \text { CAR SPEAKER } \\ & \text { Elliptical size } 7 \frac{1}{2}\end{aligned} \times 5^{n}, 4$ ohm. Price $\mathbf{E 1 . 5 0 p}+12$ p, post $20 p$
2p. $\mathbf{7}$ SEGMENT DIGITAL DISPLAY
TIL 302, l.e.d. com. anode - character size $4^{\prime \prime}$ approx. Price E1.15p + 16 p.
We do not normally offer second hand equipment for breaking down but this particular item contains so many useful pieces that we have decided to break our rule. The unit is in fact a pocket by $5 \frac{1}{2}{ }^{\prime \prime}$ deep, ideal size to fit into the top jacketpocket. Case comes apart by undoing two screws, inside is printed circuit board
upon which are mounted a miniature loud speaker, three rechargeable nicads diac type $150-4$ ferrite potted coils, three of which are tunable, $4^{\prime \prime}$ ferrite rod. Mercury tilt switch on when case is upright, 4 electrolytic condensors, one micro switch, 8
transistors all with usable length leads, 4 polystyrene capacitors, transistors all with usable length leads, 4 polystyrene capacitors,
2 pin plug for charging batteries without uncasing and approximately 4 diodes and approximately 30 various capacitors and resistors, most of the resistors being it watt type, trupay a very useful unit although secondhand, still in reasonable condition. Price f1.50p + 22p.
25 WATTSPEAKERS
comprising $8^{\prime \prime}$ woofer, and $3^{\prime \prime}$ tweeter with crossover and ter-
minal connection panel, all mounted in good quality non resonant cabinet. These are extremely good quality units comparable with those selling at twice the price. Cabinet size approx. $20^{\prime \prime}$ high
$103^{\prime \prime}$ wide and $81^{\prime \prime}$ deep, heavy cabinet made of thick $10 \frac{3^{n}}{4}$ wide and $8 \frac{1}{2}$ " deep, heavy cabinet made of thick
blockboard. Price $\mathbf{f} \mathbf{2 5 . 0 0}+\mathbf{£ 3 . 7 5 p}$ the pair, well worth your coming to collect but if you cannot collect they are still worth this £5.00 extra for carriage.
TWIN PADDED FLEX
TWIN PADDED FLEX
5 amp ideal for some electric irons and appliances that require
very flexible lead, 10 metre lengths. Price $\mathbf{£ 1 . 0 0}+15 \mathrm{p}$. Post 45OD THERMOSTAT
Suitable for high temperatures up to $550^{\circ} \mathrm{F}$. This is adjustable E2.50p +38 p. In aerosol can for easy application and for purting lubricant into places where the normal oil-can cannot reach. Offered at about
half the original list price. $50 \mathrm{p}+7 \mathrm{p}$ per can 18 ozt or 12 cans for
 Popular switch with 10 amp 250 volt changeover contacts, Price
£15 per 100 or $£ 140$ per 1000 + vat. Ditto with 15 amp
changeover contacts $£ 20$ per 100 or $£ 180$ per 1000 . changeover contacts $\mathbf{~} 20$ per 100 or $\mathbf{2 1 8 0}$ per 1000
ASSORTED MICROSWITCHES 10 different small, medium and large sizes to suit most projects the one you want give us a ring we may have it.
PUSH SWITCHESS
PUSH SWITCHEXS
That really stand out, its large dished knob also makes this extra easy to operate, sprung to reiurn to normal when pressure is
removed. 10 amp 250 volt changeover contacts. Type $1,1 \mathrm{c} / \mathrm{o}$ rep +6 p . Type $2,2 \mathrm{c} / \mathrm{o} \mathbf{6 0 p}+9 \mathrm{p}$. Type $3,3 \mathrm{c} / \mathrm{o} \mathrm{80p}+12 \mathrm{p}$.
NEW KIT NEW KIT
Light Trace
Light Tracer and Strobe for disco's or parties. 2 running light
patterns and a strobe. Was described with full constructional patterns and a strobe. Was described with full constructional kit including case £14 +f 2.10 p .
SPRING LOADED ROCKER SWITCH
Made originally for car dash. This is a simple on/off for up to 10 amps. Price 25P
DP PANEL SWITCH
Arco made. This is a handsome switch. it has a long flat-ended
toggle, black and chrome finish. Aated 2 amps at 250 volts and double-pole on/off. Price 10 p
5 PUSH BUTTO SWITCH
Suitable mains audio or RF. Each switch rated at 250 volts 15 amps. 1st (black push button) closes 2 circuits: 2nd (white push button) operates one changeover; 3 rd (white push button) cuit. Note: All depressed buttons remain down until cleared by the 5 th (red button). Further note: It is a relatively easy job to alter the position of the tags, thus making the switches suit your
circuit. Fitted with 3 white. 1 red and 1 black button. Price $75 \mathrm{p}+\mathrm{t}$ circuit. Fitted with 3 white. 1
11 p .
COMBINATION SWITCH banks of 3 and mounted on frames with four digital numbered thumb wheels and a removable lever for locking the thumb wheel, the thumb wheel operates 3 banks. Over $4,000 \mathrm{com}-$
binations are possible, by re-wiring the switch connections derneath thousands more variations are possible. If you are making equipment which should not be switched on accidentally or
without authority, then this is a switch to consider. It can be used as a coding switch for many other operations. Very neat and compact, measuring approx. $4^{\prime \prime} \times 1 \frac{1}{4}^{\prime \prime}$ and $1 \frac{1}{2}^{\prime \prime}$ deep. Price $£ 1.75 p+$

BALANCE ARMATURE INSERTS

P品OTO TRANSISTOR
First class maker, respond to light or infra-red. 5 for $\mathbf{£ 1}+15 \mathrm{p}$.
100 for $£ 15+\mathbf{£ 2} .20 \mathrm{p} .1000$ for $£ 18.75 \mathrm{p}+£ 1.25 \mathrm{p}$. MEDIUM WAVE PERMABILITY TUNER (2 stage]
Made for car radios, could be the basis of a simple radio on an oscilator wes. Basically the tuner comprises an aerial coil and a simple radio the tuning could be done by the thumb on the geared drive wheel which protrudes through the side of the tuner. POWERFULREVERSIBLE MOTOR WITH GEARBOX Final speed 56 r.p.m. Has a pull of 501 lb to the inch, which makes
it suitable for opening doors, ventilators etc. Made by Framco. For it suitable tor opening doors, ventilators etc. Made by Framco. For
mains operation and supplied complete with capacitor. Price $£ 15$ mains operation and s
$+£ 2.25 \mathrm{p}$, carriage $£ 2$

NEW LOW PRICES

 ALL EX-Stock REAL-STATE-OF-THE-ART NEW AC/DC/BATTERY PORTABLE FREQUENCY COUNTER FROM OPTOELECTRONICS USAModel OPTO 7000
7 DIGITS 10 Hz to 600 MHz ONLY $£ 141.45$ inc.
($£ 120+£ 3$ p\& + VAT $£ 18.45$)

Complete with built-in NiCads, charging circuits \& rear panel switch for 1 Hz resolution.

Size only $1 \frac{1}{4}{ }^{\prime \prime} \mathrm{H} \times 44^{\prime \prime} \mathrm{W}$ $\times 5 \frac{1}{4}$ " D .
The minia The miniature go anywhere counter that gives you more range, visibility accuracy and versatility than any comparable unit at anyw
near as low price.

* TCXO time base $0.8 \mathrm{PPM} /{ }^{\circ} \mathrm{C}(0.0001 \%$ accuracy $)$ less than 2PPM per year aging * Deluxe gold and black anodised aluminium case $\star \mathrm{H} 12$ and 50 ohm imputs $\star 1$ sec and $1 / 10 \mathrm{sec}$ gate times \star Built in prescaler and preamps standard \star Auto decimal \star BNC connectors \star No direct connect required for RF pick up \star State of the art LS 1 circuitry \star Sensitivity 10 mV to 60 MHz 25 mV to 150 MHz 50 mV to 450 MHz (liess than 75 mV guaranteed) \star Power requirement 7.5 V AC/DC wi less than 250 mA .
ELENCO PRECISION DMM 1200B ONLY 6 G6.70 inc.

The most versiatile DMM we have ever offered at lowest ever price!
$\star 3 \frac{1}{2}$ digit jumbo LED (0-56) display * 0.05% basic accuracy $\%$ Measures AC/DC voltages from 100 microvolt to 1000 voits. AC/DC current from microamp to 2 amp and resistance from
 0.01 ohm to 20 Megohm * Fully
overload protected to 1000 volts.
* High input impedance to 10 Megohm * Mains (with adaptors not supplied) or battery (both disposable and Nicads) operation * Uses 1% precision resistors not unstable trimpots * Hi Lo power ohms. Hi for diodes, Lo for resistors in circuit don how many DMM's costing less than $£ 100$ do you find this feature!!
ELENCO POWER SUPPLY MODEL XP-90 $13-8 \mathrm{~V}$. 8 amps Regulated only $\mathbf{£ 6 3 . 2 5} \mathrm{inc}$

H.A.C.

SHORT-WAVE KITS WORLD-WIDE RECEPTION

'H.A.C.' well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories to sui the novice and the expert.
£ 12.00 INCLUSIVE-the ever popular and easy to construct DK receiver Mark III drilled chassis, valve, accessories and full instructions. NEW T TWIN TRANSISTOR RECEIVER selective, sensitive and with rantast battery, a yet needing only a single PP3 battery, a
$£ 14.50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even better reception. All orders despatched within 7 days. send stapedive catalogue of vits and now for free descriptive catalogue of kits and

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. I6, 10 Windmill Lane

Lewes Road, East Grinstead, West Sussex RH19 3SZ

LOW VOLTAGE TRANSFORMERS: Prim 240V ac

 £18.00; 8 A CT £29.25; 12 A CT $£ 37.50 ; 40 \mathrm{~V} 3 \mathrm{~A}$ CT f13.50:
TWIN SEC TRANSFORMERS: Prim 240V ac.
6V O. 6A-6V O. 6A: 9V O.4A - 9V $0.4 \mathrm{~A}: 12 \mathrm{~V} 0.3 \mathrm{~A}-12 \mathrm{~V}$ $0.3 \mathrm{~A}: 20 \mathrm{~V} 0.15 \mathrm{~A}-20 \mathrm{~V} 0.15 \mathrm{~A}$; all at $\mathrm{f4} .15$ each: 15 V
$0.75 \mathrm{~A}-15 \mathrm{~V} 0.75 \mathrm{~A} \mathbf{f 6 . 4 0}$; $15 \mathrm{~V} 1.5 \mathrm{~A}-15 \mathrm{~V} 1.5 \mathrm{~A} 8.25$ $18 \mathrm{~V} 1 \mathrm{~A}-18 \mathrm{~V} 1 \mathrm{~A} £ 7.90 ; 18 \mathrm{~V} 1.5 \mathrm{~A}-18 \mathrm{~V} 1.5 \mathrm{~A} £ 9.75$
$20 \mathrm{~V} 1.5 \mathrm{~A}-20 \mathrm{~V} 1.5 \mathrm{~A} \mathbf{£ 9} .75 ; 12 \mathrm{~V} 4 \mathrm{~A}-12 \mathrm{~V} 4 \mathrm{~A} £ 12.00$ 25V 2A-25V 2A f12.00.
 O.25A Or 20V-0-2OV $0.15 A \notin 3.00$ each.
LT TRANSFORMERS TAPPED SEC.

LT TRANSFORMERS TAPPED SEC: Prim 240V ac.

 AUTOTRANSFORMERS $110 / 240 \mathrm{~V}$ ac
30 watt to 4000 watt ex stock, lists.
MAINS TRANSFORMERS, SPECIAL OFFER: Prim
240 V ac. $2 \mathrm{~V} 60 \mathrm{Ma}, 6.3 \mathrm{~V} 1 \mathrm{~A} £ 2.50$; $250 \mathrm{~V} 100 \mathrm{Ma}, 6.3 \mathrm{~V}$ $2 A \mathrm{C3.50} ; 9 \mathrm{GA} 3 \mathrm{~A} 2 \cdot 50 ; 25 \mathrm{~V} 300 \mathrm{Ma} 90 \mathrm{p}$. LOUDSPEAKERS
 other vupes available. CASSETTE/TAPE ERASER Instant erasure of cassettes, and any diameter of tape spools demangnetises tape heads, $200 / 240 \mathrm{~V}$ ac, teaflet $\mathbf{£ 7 - 5 0}$ Size $19 \times 18 \times 20 \mathrm{~mm} 800 \mathrm{C}$ FSD $200 / \mu \mathrm{A}$ CHARGING METERS 1 in diamete $2 A$ or $3 A £ 1.25$ each; $5 A$ or $10 A £ 1.50$ each SYNCHRONOUS GEARED MOTORS, $240 V$ ac.
Brand new, built in gear box, 1 r.ph. fi. 25 each 8rand new, built in gear box, 1 r.ph. f1. 25 each.
O/P TRANS FORMERS FOR VALVE AMPLIFIERS P.P.sec tapped 3-8-15@ A-A 6 K . $30 \mathrm{~W} £ 17.50$; A-A $3 \mathrm{~K} \Omega$ G.E.C. MANUAL OF POWER AMPLIFIERS G.E.C. MANUAL OF POWER AMPLIFIER MULTIWAY SCREENED CABLE, PVC COVERED 36 way $£ 1.00 ; 25$ way 75 p; 14 way 50 p; 6 way $25 p ; 4$
way 20 ; 2 way 10 p; 1 way $8 p ; 4$ way individualy way 20p; 2 way 10p; 1 way Bp; 4 way individually screen-
ed 30 p ;ig 8 twin stereo do screened $15 p$, metre. ed 30p; fig \& twin stereo do screened 15 p, metre.
CONDENSERS

CARRIAGE EXTRA ON ALL ORDERS ALL PRICES INCLUDE V.A.t.

Callers by appointment only. S.A.E. Enquiries, Lists.
46, Kenilworth Road, Edgware, Middsx. HA8 8YG. Tel: 01-9589314
Imp 8 or 15 as app.
TITAN 5 years FANE LIFETIME OTHERS 1 year
ALL PRICES INC. VAT

	Rec. Ret. Price	Sonic Price
CENERALPURPOSE		
5" FANE 501	-	¢4.95
$8^{\prime \prime}$ AF MODEL 80	-	$\mathbf{4 5 . 9 5}$
8" AF MODEL 83	-	£6.95
8" FANE 808T DUAL CONE	-	£3.95
$10^{\prime \prime}$ ELAC 10RM 10 WATTS	-	22.50
HI-F\|KITS		
AF FRI $8^{\prime \prime}+$ TWEETER	-	214.95 pr
FANE MODE ONE $8^{\prime \prime}$ + TWEETER	-	$\mathbf{8 1 9 . 9 9 ~ p r}$
WHARFEDALE DENTON KIT ¢	£42.41 pr	230.95 pr
WHARFEDALE SHELTON KIT ¢	$¢ 54.32 \mathrm{pr}$	238.95 pr
WHARFEDALE LINTON KIT £	¢ 75.53 pr	¢52.95 pr
WHARFEDALE GLENDALE KIT £	£92.78 pr	$\mathbf{2 8 5 . 9 5} \mathrm{pr}$
GROUP/DISCO TYPES		
12" TITAN T $12 / 50 \mathrm{R}$	£20.20	£16.95
$12^{\prime \prime}$ TITAN T12/100A	£39.95	£26.95
$12^{\prime \prime}$ CELESTION G12H 30W	£22.48	814.95
$12^{\prime \prime}$ CELESTION G12/50 50W	£19.68	$\mathrm{E12.95}$
12" GOODMANS PD	-	222.95
$12^{\prime \prime}$ GOODMANS PG	-	821.95
$12^{\prime \prime}$ FANE SPECIALIST P ${ }^{\prime}$ 85	¢33.81	£23,95
12" FANE SPECIALIST DISCO 80/2	£34.88	£24.95
$12^{\prime \prime}$ FANE SPECIALIST DISCO $100 / 2$	/2£37.01	£25.95
$12^{\prime \prime}$ FANE SPECIALIST GUITAR 801	L $£ 33.81$	£23.95
$12^{\prime \prime}$ FANE SPECIALIST GUITAR		
80B/2	£ 34.88	£24.95
12" FANE CRESCENDO 80	¢53.20	£36.95
12" FANE CRESCENDO 80LT	¢57.24	£39.95
12" FANE CRESCENDO 12E	¢74.50	¢51.95
15" TITAN T15/70 70W	¢ 66.95	£24.95
$15^{\prime \prime}$ TITAN T15/85	¢ 42.95	£28.95
$15^{\prime \prime}$ TITAN T15/100 100W	£47.95	£35.95
$15^{\prime \prime}$ FANE SPECIALIST BASS 100	£51.07	£35.95
$15^{\prime \prime}$ FANE CRES. COLOSSUS		
15E 200W	£129.88	¢89.95
18" GOODMANS 18P	-	E46.95
$18^{\prime \prime}$ TITAN T18/100 100W	£59.95	£46.95
$18^{\prime \prime}$ CELESTION G18/200 std.	£68.88	848.95
$18^{\prime \prime}$ FANE CRESCENDO 18E	¢122.42	± 85.95
$18^{\prime \prime}$ FANE CRES. ${ }^{\text {c }}$ COLOSSUS		
18E 200W	£138.40	£96.95
HORNUNITS		
CELESTION MH 1000 25W	£20.95	£14.95
FANE J44	¢8.47	25.95
FANE J73	¢13.79	48.95
FANE J104	f20.18	£13.95

CROSSOVERS (FOR ABOVE)

FANE HPX1R OR HPX2R

£4.21 $\quad \mathbf{E 2 . 9 5}$
Mail Orders/Export enquiries to above, Add $£ 1$ carr. on
Hi-Fi spkrs. or kits. Otherwise add $£ 1-25\left(12^{\prime \prime}\right.$ Spkr). Hi-Fi spkrs. or kits. Otherwise add $£ 1-25$ (12" Spkr).
f1 $1.50\left(15^{\prime \prime}\right) £ 2 \cdot 50\left(18^{\prime \prime}\right)$

SPECIAL OFFER! COLLARO RECORD DECKS

* 'S' Shaped Arm * Auto or Manual
* 11 " Turntable * Ideal for Disco £15.95 ea. or 2 for $£ \mathbf{3 0}$. Carr. $£ 1.00$ ea.
Also for personal shoppers oniv
AMPS, TTABLES, JINGLE MACHINES, DISCO CONSOLES, LIGHTING, CABINETS
CREDIT TERMS AVAILABLE
orders
over
£20

The opportunities in electronics, today, and for the future are limitless - throughout the world. Jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, TV and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on to the world market.

We give modern training courses in all fields of electronics - practical D.I.Y. courses - courses for City \& Guilds exams, the Radio Amateur licence and also training for the new Computer Technology. We specialise only in electronics and have over 40 years experience in the subject.

All the training can be carried out in the comfort of your own home and at your own pace.

A tutor is available to whom you can write at any time for advice or help during your work.

and a career.

COURSES AVAILABLE

- CITY \& GUILDS CERTIFICATES IN TELECOMMUNICATIONS AND ELECTRONICS.RADIO AMATEUR LICENCE.COMPUTER TECHNOLOGY WITH HOME TRAINING COMPUTER.

DIGITAL ELECTRONICS.BEGINNERS PRACTICAL COURSE.
RADIO AND TELEVISION SERVICE.AND MANY OTHERS.

> WE ARE AN INTERNATIONAL SCHOOL SPECIALISING IN ELECTRONICS TRAINING ONLY AND HAVE OVER 40 YEARS EXPERIENCE IN THIS SUBJECT.

All students enroling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Radio Society of Great Britain

A Guide to Amateur Radio (17th edn)............................. $£ 1.76$
Amateur Radio Techniques (6th edn)£4.10
Amateur Radio Operating Manual (new)4.83
Morse Code for Radio Amateurs $.58 p$
OSCAR-Amateur Radio Satellites £4.27
RSGB Amateur Radio Call Book 1980 (latest edition) $£ 3.77$
Radio Amateur's Examination Manual (8th edn)............................ (new syllabus) $\mathbf{2} .2 \mathbf{2}$
Radio Communication Handbook (5th edn) Vol...
Radio Communication Handbook (5th edn) Vol 2............£8.29
Radio Data Reference Book (4th edn)............................... $\mathbf{£ 3 . 7 6}$
Test Equipment for the Radio Amateur (2nd edn)............. $\mathbf{£ 4 . 5 6}$
TVI Manual (2nd edn).. $\mathbf{£ 1} \mathbf{6 0}$
VHF/UHF Manual... £7.00
World at their Fingertips (Deluxe)£2.90
Logbooks
Amateur Radio Logbook ..£1.78
Mobile Logbook... £1.08
Receiving Station Logbook...£1.67
Maps, charts and lists
Great Circle DX Map (in tube) (new edition)................... $\mathbf{£ 1 . 9 9}$
Oscar Map (in tube) ...48p

QTH Locator Map of Western Europe (wall)......................... $\mathbf{£ 1 . 2 2}$
QTH Locator Map of Western Europe (card for desk).......62p
UK Beacon List.
UK Repeater List. 23p

American Radio Relay League

Antenna Anthology..£3.54
Antenna Book (13th edn) ... $£ 3.97$
Course in Radio Fundamentals...
Electronic Data Book..26.
FM and Repeaters for the Radio Amateur $\mathbf{£ 3 . 6 9}$
Getting to know Oscar from the ground up..27
Ham Radio Operating Guide ..27
Hints and Kinks...
Ras
Single Sideband for the Radio Amateur ..59
Solid-state Basics ... $£ 4.58$
Solid-state Design for the Radio Amateur ...
Specialized Communication Techniques......................... £3.32
Understanding Amateur Radio ... £3.75
VHF Manual£3.87

Radio Publications Inc

Beam Antenna Handbook......................) $E 3.95$
Cubical Quad Antennas. £2.83
Simple, Low-cost Wire Antennas. £2.94
Miscellaneous
Amateur Television.... £2.23
Complete Handbook of Slow-scan T £5.68
80-metre DXing
£2.94
£2.94
World Atlas (Amateur radio prefixes).. $\mathbf{£ 1 . 8 1}$

Prices include postage, packing and VAT where applicable. Postal terms: cheques/POs with order (not stamps or book tokens). Goods are obtainable (less P \& P) at RSGB HO, 9.30-5pm, Monday Friday.

The RSGB is the national society representing all UK radio amateurs and membership is open to all interested in the hobby, including short-wave listeners. The Society also publishes a complete range of books, log books and maps for the radio amateur. Contact the membership services section for more information about amateur radio, the RSGB and ite publications.

THRE TERRIFIC EXTRAS FORYOURCAR

SPECIAL OFFER just in time for XMAS This beautiful
SEIKO WATCH

Save £45 on manufacturer's

PRACTICAL
 $55 p$

WATFORO ELEGTROMCS

33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND

We stock many more items.
Foostock many more items. It pays to visit us. We are aituated behind Watford Open Monday to Saturday 9 a.m.-6 p.m. Ample Free Car Parking space available.

 160V: 1 : 10 n ; 15 n 20p;22n 22p; 47n 26p; 100n 38p; 470n 53p; 1 $\mu \mathrm{F}$ 175p. \begin{tabular}{ll|l}
\hline POLYESTER RADIAL LEAD CAPACITORS: 250V; \& ULTRASONIC

\hline

$10 \mathrm{n} .15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 5 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}, 68 \mathrm{n}, 100 \mathrm{n} 7 \mathrm{p} ; 150 \mathrm{n} 10 \mathrm{p} ; 220 \mathrm{n}$. \& TRANSDUC

330n 13p;470n 17p;680n 19p; 1 $\mu 2 \mathrm{p} ; 1 \mu 5$ 30p; $2 \mu 2$ 34p. \& 350p per pair
\end{tabular} ELECTROLYTIC CAPACITORS: Axial lead type (Va

500V: $1040 \mathrm{p} ; 4768 \mathrm{p} ; 250 \mathrm{~V}$: $100 \mathrm{C5p} 63 \mathrm{~V}: 0.4$

12p; 1000 14p. 50V: 3300 105p; 2200 99p; 40V: 15,000 399p; 4700 120p; 4000 92p; 3300 93p;
2500 85p; 2200 85p; 2000+2000 120p; 30V: 4700 90p; 25V: 6400 105p; 4700 85p; 3300 80p; 2200 60p.
TANTALUM BEAD CAPACITORS

MYLAR FILM CAPACITORS
100V: 0.001 0.002 0.005 .
100V:0.001.0.002.0.005.0.01 $\mu \mathrm{F}$
0 pp
$0.015,0.02,0.03 .0 .04,0.05,0.056 \mu \mathrm{~F}$
0.1 p
CERAMIC CAPACITORS 50V
CERAMIC CAPACITORS 50V
Range: 0.5 pF to 10 nF
$15 \mathrm{nF}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF} 5 \mathrm{p} \quad 100 \mathrm{nF} \mathbf{6 p}$
POLYSTYRENE CAPACITORS:
10pF to $1 \cap \mathrm{FF}, 6 \mathrm{p} .1-5 \pi \mathrm{~F}$ to 47 FF 10p

COPPER CLAD BOARDS

Fibre	Single-	Double
Glass	sided	sided
$6^{\circ} \times 6^{\prime \prime}$	75p	$\mathbf{9 0 p}$
$6^{\circ} \times 12^{\prime \prime}$	$\mathbf{1 3 0 p}$	$\mathbf{1 7 5 p}$

FERRIC CHLORIDE $1 \mathrm{lb} 95 \mathrm{p}+35 \mathrm{p} \mathrm{p} \mathrm{q} p$	DALOETCH RESIST PEN +6 155p
SOLDERCON PINS 100 pins 50 p ; 500 pins $£ 2.00$	VEROWIRING PEN +spool 325p
DIL SOCKETS ED	EDGE CONNECTORS
Low Wire profile wrap 2	2. 10 way 1 - $\quad 15$
8 pin 10p 25p	$2=15$ way - $\quad 99 p$
14 pin 12p 35p 2	2. 18 way 115p 120p
16 pin 13p 46p	$2=22$ way 130p 135p
18 pin 16p 52p	$2=25$ way 149p 160p
20 pin 22p 65p 2	2-i30 way 170p
22 pin 25p 70p $2=$	$2=36$ way 194p
	$2=40$ way $210 p$
$28 \mathrm{pin} 39 \mathrm{p} \quad 85 \mathrm{p}$ 20,	2. 43 way 232p
$\begin{array}{ll}36 \text { pin } \\ 40 & \text { pin 50p } \\ & 105 p \\ & 109\end{array}$	
DENCO COILS Dual Purpose DP VALVE TYPE Ranges: 1-5 BI Y	89A Valve Base 25p
	RDT2 98p
	RFC 5 chokes 104p
	RFC $7(19 \mathrm{mH}) \quad 104 \mathrm{p}$
Rd. Wht. 92p	1FT 13/14/15/16
6-7 B, Y, R 82p	P17 110p
1-5 Green 100p	1FT 18/1.6 102p
T'-type (Transistor	(1 FT 18/465 114p
Tuningl.	TOC1 92p
Ranges: 1-5 Bl. YI.	MW 5FR 88p
Rd. Wht. 105p	MW/LW 5FR 112p

THE CHOICE IS YOURS!
 YAESU MUSEN
 General Coverage
 Communications Receiver FRG-7

 YAESU MUSEN

 YAESU MUSEN

 Digital Display Communications

 Digital Display Communications Receiver with CPU Digital Clock Receiver with CPU Digital Clock \& Timer FRG-7000

 \& Timer FRG-7000}

0.5-29.9MHz Coverage with 10kHz Readout

The fRG-7 is a precision-built all-purpose communications receiver, featuring all solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3 -position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception, the FRG-7 is the receiver for you.

mREMUT

at

Meet us on Stand C3 where our NEW CATALOGUE will be on distribution, itemising:
MAGNUM AUDIO MODULES
MAGNUM ENERGY CONSERVATION MODULES
FUTABA VF DISPLAYS combined with OKI L.S.I.
DELPAK KEYBOARDS
DELPAK POWER SUPPLIES
It you can't make the exhibition but would like a copy of our New Catalogue, send large S.A.E. to:

TRRGIUT RUDID LtJ.

DEPT. PW12, 13 HAZELBURY CRESCENT,
LUTON, LU1 1DF.
TEL: 058228887

ENGINEERS

YOURSEAF FORA ificicily wirн

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.

MORE PAYI

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

Aldermaston College
 Dept. TPW 24, Reading RG7 4PF

also at our London Advisory Office, 4 Fore Street Avenue, London EC2Y 9DT. Tel. 6282721.

```
NAME (Block Capitais)
```

ADDRESS
\qquad
Accredited by C.A.C.C. Member of A.B.C.C.
HOME OF BRTISH NSTITUFE OF ENGINEERIMG TECHMOLOGY

Euild the World Farnous CHROMA-CHIME

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS cabınet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer
- Absolutely all parts supplied ancluding I.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit detaits
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be built in about 3 hours!
- Runs off 2 PP3 type batteries.
- Fully Guaranteed

* Saue pounds an narmal retail price by building yourself.
TNS 1000 N - MP0027AMicro
computer chip avalable separately if
required. Full 24 tune spec device
supplied with data sheet and fully
guaranteed
New low price only 44.95 inc. p\&p

R/C MODELLERS - LISTEN FOR THE C.B. MENACE GET A 27MHZ MONITCR

* Audibly confirm your channel's clear.
* Tunes over whole 27 mhz model band. (CB)
* Receives normal broadcast AM/FM bands as well.
* Sensitive with telescopic aerial.
* Totally portable.
* Runs on standard batteries.

This neat three band Superhet receiver
not only provides an invaluable service,
checking your channel and TX, but
gives normal broadcast reception
when you need it as well.
Costingless than a decent Servo, you'll find it cheap and reassuring insurance

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE
PLEASE ALLOW 7-21 DAYC FOR DELIVERY
Please send me: PW1279

TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX.
NAME
ADDRESS

I enclose cheque/PO value $£$
or debit my ACCESS/BARCLAYCARD account no.

Signature
GHROMATRONICS

EXPERIMENTOR BREADBOARDS

FROM

No soldering modular breadboards，simply plug components in and out of letter number identified nickel－silver contact holes．Start smali and simply snap－iock boards together to build breadboard of any size．
All EXP Breadboards have two bus－bars as an integral part of the board，if you need more than 2 buses simply snap on 4 more bus－bars with the aid of an EXP．4B．

EXP．325．The ideal breadboard for
chip circuits
Accepts 8，14， 16 and up to 22 pin IC＇s．

ONLY $\mathbf{1} \mathbf{1 . 7 0}$

EXP． 350.
£3．73
270 contact points with
two 20 －point bus－bars．

EXP． 300.

550 contacts with two
40－point bus－bars
f6． 13

EXP． 650 for Micro processors．$£ \mathbf{\$ 8 3}$

EXP．4B

E2．45
ALL EXP． 300 Breadboards mix and match with 600 series．

ANTEX IRONS		
1943	15 watt quality soldering iron with	3／32＂
	bit	£4．88
1947	Replacement element for 1943	f2．18
1944	Iron coated bit 3／32＂for 1943	£0．53
1945	Iron coated bit $1 / 8^{\prime \prime}$ for 1943	£0． 53
1946	Iron coated bit 3／16＂for 1943	£0．53
1948	18 watt iron with iron coated bit	£4．59
1952	Replacement element for 1948	£2．18
1949	Iron coated bit $3 / 32^{\prime \prime}$ for 1948	£0．53
1950	Iron coated bit $1 / 8^{\prime \prime}$ for 1948	£0．53
1951	iron coated bit 3／16＂for 1948	£0．53
1931	$\times 2525$ watt iron，ceramic shaft and another	
1935	Replacement element for 1931	£1．84
1932	Iron coated bit $1 / 8$＂for 1931	£0．57
1933	Iron coated bit $2 / 16^{\prime \prime}$ for 1931	£0．57
1934	Iron coated bit 3／32＂for 1931	£0．57
1953	SK 1 soldering Kit－contains 15 watt soldering iron with $3 / 16^{\prime \prime}$ bit plus two spare bits，a reel of	
	Solder	£6．38
1939	ST3 iron stand made from high grade bake chrom plated steel spring．suit alf models includes accommodation for six bits and tw	lite wo £1．86
1724	Model MLX as $\times 25$ iron but 12 volts	£5．29

DIODES

Type AA110	$\begin{aligned} & \text { Pric } \\ & \text { £0.0 } \end{aligned}$
AA120	c0．09
AA129	20．09
AAY30	co．10
AAZ13	£0．17
BA100	£0．11
BA102	¢0．37
84148	co． 17
BA154	c0．14
BA155	E0．16
BA 173	c0．17
BE 104	c0．17
BAX13	c0．08
BAX16	¢0．09

 Type
BYZ1
BYZ12
BYZ13
BYZ16
BYZ17
BYZ 18
BYZ 19
OAS
OA10
OA47
OA70
OA79
OA81
OA85
 Type
OA90
0 O91
$0 A 95$
04182
OA20
OA20
SD10
SD19
IN34
IN34A
IN914
IN91
IN4
IS44
IS92
 11

INSTRUMENT CASES in two enections vinyl covered top and sides，aluminium bottom，front and back．				
No．	Length	Width	Height	Price
＋55		51 $\frac{1}{3}$ in	2 2\％	£1．72
156	11 in	6 in	3 in	$\mathbf{£ 2 . 9 2}$
157	6 in	$4 \frac{3}{} \mathrm{in}$	$1 \frac{3}{\text { in }}$ in	£1．79
158	9in	$5 \frac{1}{4}$ in	2 $\frac{1}{2}$ in	¢2．43
ALUMINIUM BOXES made from bright alli，folded construction each box complete with half inch deap lid and				
screws．Length Width Height Price				
159	$5 \frac{1}{4} \mathrm{in}$	$2 \frac{1}{4} \mathrm{in}$	$1 \frac{1}{2}$ in	¢0．85
160	4 in	4 in	1 $\frac{1}{2}$ in	¢0．85
161	4 in	$2 \frac{1}{4} \mathrm{in}$	$1 \frac{1}{\frac{1}{2} \text { in }}$	¢0．85
162	514 ${ }_{4}$	4 in	$1 \frac{1}{2}$ in	£0．97
163	4 in	$2 \frac{1}{2}$ in	2 in	£0．87
164	3 in	2 ln	1 in	¢0．60
165	7 m	5 in	$2 \frac{1}{2}$ in	81.43
166	Bin	6 in	3in	£1．82
167	6 in	4 in	2 in	¢1．18
SLOPE front aluminium boxes with black vinyl bata and sides \＆aluminium back，top \＆front－strong conatruction				

SLOPE front aluminium boxes with black vinyl bata and
sides $\&$ aluminium back，top $\&$ front－strong construction
 VERO plastic case box．These boxes consint of top and
bottom sections which include fixings points for horizontal mounting PC boards／chassie plates，the two sections are held together by four screws which enter through the base

Positive	Price	SILICON		
UA7805 TO220	f0．85	Type		Price
UA7812 Y0220	£0．85	50v RMS	BR1／50	f0． 23
UA7815 02220	f0． 85	100vRMS	BR1／100	¢0．25
UA7824 TO220	¢0．85	200v RMS	BR1／200	¢0． 29
UA7818 TO220	¢0．85	400 v RMS	BR 1／400	¢0．41

SPECIALDFFERS
MINIDRILL $12 v$ hand held bartery－operated mini drill． 7.500 rp．m．Coilet chuck．Ideal tor drilting printed circuits or model making．No．1402． £7．79

making．No．1402． 240 Primary 0－20v 2A Secondery By
TRANSFORMER 240v Primary 0－20v 2A Secondary．By
removing 5 turns for each volt from the secondary winding，any removing 5 turns for each volt from the secondary winding，any
voltage up to 20 v 2 A is obtainable．Ideal for the experimenter．

BOOKS BY BABANI

| Engineers \＆Machinists Ref．Tables 2nd book Transistar Equivs \＆Subs
 79 Electronic Novelty Circuits
 52 Projects Using IC 741 （ar Equiv）
 Radio Antenna Book Long Distance
 Reception \＆Transmission
 Giant Chart of Radio Electronic
 Serniconductor \＆Logic Symbois
 Build Metal \＆Treasure Locatore
 Practical Repair／Renovation C／TV
 Handbook of IC Audio Preamplifier \＆
 Power Amplifier Construction
 50 Cicts use Germ／Sil／Zener Diodes
 50 Projects Using Relays／SCR／Triacs
 50 Field Effect Trans Projects
 Digital IC Equivs \＆Pin Connection
 Linear IC Equivs \＆Pin Connection
 50 Simple LED Circuits
 How to make Walki－Talkies
 IC 555 Timer Projects
 Projects on Opto－electronics
 Radio Circuits Using IC＇s
 Mobile Discotheque Handbook
 Electronics Projects tor Beginners
 Popular Electronic Projects
 IC LM3900 Projects
 Radio Stations Guide
 Coil Design \＆Construction Manual
 Handbook of Integrated Circuits
 Equivalents \＆Substitutes
 1st Book Hi－Fi Speaker Enclosures
 Circuits for Model Railways
 Shoriwave Circuits \＆Gear for
 Experiments \＆Radio Hams
 Electronic Gadgets \＆Games
 Solid State Power Supply Handbook
 28 Tested Transistor Projects
 Short－wave Receivers for Beginners
 50 Frojects using IC CA3 130
 50 CMOS IC Projects
 A Practical intro to Digital IC＇s
 Build Advanced Short－wave Receivers
 Beginners Guide to Building |
| :---: |等苜 Engineers \＆Machinists Ref．Tables

2nd book Transistor Equivs \＆Subs
79 Electronic Novelt Circuits
52 Proiects Using IC 741 Ior Equiv）
Radio Antenna Book Long Distance
Reception \＆Transmission Giant Chart of Radio Electranio Build Metal \＆Treasure Locatore Handbook of IC Audio Prenmplife 50 projects Using Reiays／SCR／Triacs Digital IC Equivs \＆Pin Conects 50 Simp Equivs \＆Pin Connection How to make Waiki－Talkie Projects or Projects Radio Circuits Using IC＇s Mobile Discotheque Handbook
Electronics Projects tor Beginn Popular Electronic Projects Radio Stations Guide Coil Design \＆Construction Manual Equivalents \＆Substitutes Circuits for Model Railways Shorwave Circuits \＆Gear for Electronic Gadgets \＆Games Solid Sate Power Supply Handbook Short－wave Receivers 50 CMOS $1 C$ Projects
8uild Advanced Short－wave Receivers
\square
\square
\square

No．2042．$\quad \mathbf{E 1 . 5 0}+86$ p．P \＆P
ANTEX MLX Soldering Iron．Sturdy 25 watt iron complete with
$4 \frac{1}{2}$ metres of 2 －core cable．Works off a 12 volt battery．Ideal for
$4 \frac{1}{2}$ metres of 2 －core cable．
Car．Boaz．Caravan．No． 1724
These paks contain
following groups．

16213	60 mixed 1／8w $1000 \mathrm{hms}-920 \mathrm{ohms}$	¢0．69
16214	60 mixed 1／8w 1 Kohms－82 Kohms	c0． 69
16215	60 mixed 1／8w 10 Kohms－83Kohms	c0．69
16216	60 mixed 1／8w $100 \mathrm{Kohms-820Kohms}$	c0．69
16217	40 mixed $1 / 2 \mathrm{w} 1000 \mathrm{hms}$－820ohms	c0．69
16218	40 mixed 1／2w 1 Kohms－B2Kohms	c0．69
16219	40 mixed $1 / 2 \mathrm{w} 10 \mathrm{Kohms}$－82Kohms	c0．69
16220	40 mixed $1 / 2 \mathrm{w} 100 \mathrm{Kohms-820Kohms}$	¢0．69
CERAMIC PAKS		
16160	$24-3$ or each value 22 pf 27 pf 33 pf 39 pf 47 pf 68 pf	¢0．69
16161	$24-3$ of each value 100pf 120 pf 150 pf 180 pf 2 270 pf 330 pf	$0 \mathrm{pf}$ $\mathbf{E 0 . 6 9}$
16162	24－3 of each value 470 pf 560 pf 680 pf 1000 pf 1500pf 2200pf 3300pf	£0．69
16163	24－3 of each value 4700pf 6800pf 01uf 015uf 033uf 047uf	$\begin{aligned} & 022 \mathrm{uf} \\ & \mathbf{E 0 . 6 9} \end{aligned}$

ELECTROIYTIC PAKS		
16201	values from $47 \mathrm{mfd}-10 \mathrm{mfd}$	
16202	values from $10 \mathrm{mfd}-100 \mathrm{mfd}$	$\mathbf{£ 0 . 6 9}$
16203	values from $100 \mathrm{mfd}-680 \mathrm{mfd}$	$\mathbf{8 0 . 6 9}$
		$\mathbf{8 0 . 6 9}$

COMPOMEMT PAKS		
16164	200 resistors mixed value approx（count by weight	£0．69
16165	150 capacitors mixed value approx icount by weight）	£0．69
16167	$801 / 2 \mathrm{w}$ resistors mixed values	£0．69
16168	5 pieces assorted ferrite rods	¢0．69
16169	2 tuning gangs MW LW VHF	£0．69
16170	1 pack wire 50 metres asssorted colours single strand	£0．69
16171	10 reed switches	£0．69
16172	3 micro switches	£0．69
16173	15 assorted pors	£0．69
16175	30 paper condensers－mixed values	¢0．69
16176	20 electrolytics trans types	£0．69
16177	I pack assorted hardware－nuts，bolts gromets etc	£0．69

CASSETTES					
			Type 50V RMS $200 \% \mathrm{RMS}$	$\begin{aligned} & \text { No. } \\ & \text { BR } 10 / 50 \\ & \text { BR } 10 / 200 \end{aligned}$	Price E1．50 £1．70
			SILICON Type 50vRMS 200vRMS	25 amp No． BR25／50 BR25／200	Price $\mathbf{£ 1} 90$ £2．20
TRIABS					
$2 \mathrm{amp}$ volts	TO5 case	Price	10 amp volts		
100	TR12A／100	£0． 36	－00	TR1：04／100	¢0．88
200	TR12A／200	£0．59	200	TR1：0A／200	£1．06
400	TR12A／400	£0．82	400	TR110A／400	£1．29
6 amp volts			10 amp volts		
100	TR16A／100	£0．59		Triod400	
200	TR16A／200	£0．70	DIACS		
400	TR16A／400	£0．88	BR100	$\mathbf{£ 0 . 2 3 ~} 032$	E0．23

400 mw （Bzy88）D007．Glass encapsulated range of voltages available． $1.3 \mathrm{v}, 2.2 \mathrm{v} .2 .7 \mathrm{v}, 3.3 \mathrm{v}, 3.9 \mathrm{v}, 4.3 \mathrm{v}, 4.7 \mathrm{v}, 5 \cdot 1 \mathrm{v}, 5.6 \mathrm{v}$ ．
$1 \mathrm{w}-1.5 \mathrm{w}$ Plastic and metal encapsulated，Range of voltages avaiable． $1.3 \mathrm{v}, 2.2 \mathrm{v}, 27 \mathrm{v}, 3.3 \mathrm{v}, 3.9 \mathrm{v}, 4.3 \mathrm{v}, 4.7 \mathrm{v}, 5 \cdot 1 \mathrm{v}, 5.6 \mathrm{v}$ ， $62 \mathrm{v}, 6 \cdot 8 \mathrm{v}, 7.5 \mathrm{v}$ 8－2v． 9.1 v ， $10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}$ ， $13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}$ ． $20 \mathrm{v}, 22 \mathrm{v}, 24 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}, 68 \mathrm{v}, 72 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}$ ， giv． 100 v ． No． 213 18p
10 w Meral stud type SO10 case．Range of voitages available $1.3 \mathrm{v} .2 \cdot 2 \mathrm{v}, 2.7 \mathrm{v}, 3.3 \mathrm{v}, 3.9 \mathrm{v}, 4.3 \mathrm{v}, 4.7 \mathrm{v}, 5 \cdot 1 \mathrm{v}, 5 \cdot 6 \mathrm{v}, 6 \cdot 2 \mathrm{v} .6 \cdot 8 \mathrm{v}$ ， $7.5 \mathrm{v} .8 .2 \mathrm{v}, 9 \cdot 1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}$ ， $13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 20 \mathrm{v} .22 \mathrm{v}$ ， $24 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}, 68 \mathrm{v}, 72 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}, 91 \mathrm{v}$ ． 100 v ． No． 210 44p

METAL FOIL CAPACITOR PAKS

16204 －Containing 50 metal foil capacitor like Mullard C280 series－Mixed values ranging from 01uf－2－2uf．Complete with
identification sheet
$\mathbf{~ 1 . 3}$

EDITOR

Geoffrey C. Arnold
ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE
ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Post vacant
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Joe Bishop
TECHNICAL ARTIST
Rob Mackie
ASSISTANT ART EDITOR
Keith Woodruff
SECRETARIAL
Sylvia Barrett
Debbie Calverley

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
Telephone: 01-2616636
Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-2615762
Colin R. Brown
MAKE UP \& COPY DEPARTMENT
Telephone: 01-261 6570
Dave Kerindi
ADVERTISEMENT OFFICES
King's Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Capacity for Confusion

THERE are some electronic components that seem to present few problems in identifying their type and value. The resistor, for instance, since it moved on from its original form of a hexagonal carbon rod with the value stamped on and a screw terminal at each end (in those days it was a resistance), has just one universally accepted code, based on colour. Admittedly, those of us who were around at the time had to make the mind-blowing transition from the Body End Dot (BED) system (remember the fun of identifying a $2 \cdot 2 \mathrm{k} \Omega$?) to the Rings system, but at least the basic code has remained the same. And there are mnemonics to help us remember the code: Bye Bye Rosie, Off You Go, Birmingham Via Great Western (we're really into the nostalgia bit this month) and others, mostly unprintable!

Capacitors, or condensers for the old hands, have always given difficulty. They originally had the values printed or stamped on, but then someone had the idea of using a colour code. Unfortunately, it didn't stop there, and by the early 1950 s reference books were quoting no less than seven different systems of marking capacitors by means of coloured dots. Mullard added yet another system for their C280 "mint humbug" polyester capacitors. Meanwhile, silvered mica, polystyrene and some other varieties continued to have values printed on.

Then came a new problem-capacitors were getting too small to carry all the coloured dots or bands required, so it was back to printed values again, using microscopic lettering. Things had got a lot easier since the old days when, admittedly, " 0.00005 MFD " could take up rather a lot of space. With the widespread familiarity with picofarads and nanofarads, a simple unified system could be devised. But did the manufacturers take the opportunity to adopt a common system? Not on your life!

Instead, each seems to have dreamed up his own pet scheme. We now have capacitors marked in pF , tens of pF, nF, decimals of nF , and even a weird system using a numerical version of the colour code so that, for example, a 1 nF is marked 102 (A " 1 ", a " 0 " and two " O " $\mathrm{s}=1000 \mathrm{pF}$). Add to this an assortment of other letters which presumably convey tolerance, temperature coefficient, working voltage and the like (maybe even the colour of the operator's socks), and is it any wonder that suppliers and users alike are confused, and equipment manufacturers are driven to devising their own crib sheets to translate the various codes for their own and their customers' benefit?

Incidentally, what does that Russian character which looks like a backward " N " signify on a capacitor? My dictionary tells me it's pronounced eeeeeeee . . .

Joe Bishop-Technical Sub-Editor
After spending the first sixteen years of his life on the same square mile of ground receiving a public school education, Joe reacted by joining first the Merchant Navy and then the Royal Corps of Signals in which he pursued a successful career for over ten years.
As the Irish say, Joe has "something of the travelling man" about him and there followed a period of some years working for a major telecommunications manufacturer as an Installation and Commissioning Engineer, special-
ising in tropospheric scatter, microwave and television broadcast equipment. From snorkel-diving in the Red Sea in July to antenna construction in the North Sea in midwinter, Joe did it all and enjoyed it all before coming finally to earth in his Dorset cottage.

Hobbies have generally been "those consistent with the available amenities" at a number of locations at home and overseas. Now that he has settled down, Joe intends to follow his first loves-good books, writing, concertgoing, walking, sailing and "real ale".

R.A.I.B.C.

The Radio Amateur Invalid and Blind Club is currently celebrating its Silver Jubilee.

The Club is formed of invalid and blind members interested in amateur radio; their local representatives who undertake to help by visits, repairs and advice; and supporter members whose financial contributions enable help to be given. The sole condition of membership, in any of the above categories, is an annual subscription of $£ 1$ minimum for "Radial" the club newsletter which is issued every six weeks.

Would readers who are interested in joining this very worthy club, please contact: Mrs F. E. Woolley, Hon Sec, R.A.I.B.C., 9 Rannoch Court, Adelaide Road, Surbiton, Surrey KT6 4TE.

New Catalogues

Toolrange Limited, the Reading based company who specialise in selling tools and production aids to the electronics market, have just issued their latest 104 page colour catalogue. The new catalogue contains over 2000 lines from some 80 manufacturers.

To obtain your copy of the catalogue apply to: Toolrange Ltd., Upton Road, Reading RG3 4JA. Tel: (O734) 29446 or 22245.

Available from Technocentre, a free, convenient pocket-sized electronics construction guide. Comprising nearly 200 coloured photographs and illustrations, circuit symbols and practical tips on mounting and soldering, make this
handy-sized guide of particular interest to beginners, students, etc.
Send s.a.e. to: Technocentre, 54 Adcott Road, Acklam, Middlesbrough TS5 TES.

Suhner have just produced a new edition of their Crimp Technique brochure. As well as giving comprehensive information about their connector crimping system for r.f. cables, the brochure has been updated to include Suhner's range of crimpable connectors. The brochure also gives details about tools, accessories, connectors and suitable cables as well as examining the physical and mathematical concepts behind the process of crimping.

Copies of the catalogue are available free of charge from: Suhner Electronics Ltd., Telford Road, Bicester, Oxon OX6 OLA. TeI:(O8692)44676.

Breadboard '79

A larger "Breadboard", with more to see and do, is promised by the organisers, Trident International Exhibitions Ltd., at the Royal Horticultural Halls, Elverton. Street, Westminster SW1 from Tuesday, 4 December to Saturday, 8 December inclusive.
Breadboard ' 78 attracted over 10,000 visitors and, once again, U.K. and overseas manufacturers and suppliers of components, tools and test equipment have been quick to take advantage of participating in this particular show.

Over 90 exhibition stands will feature micro-computer systems, analysers, logic test accessories, hi-fi amplifier kits, modulators, etc., as well as a varied range of exciting construction kits and TV games.

Competitions and demonstrations will take place during the show when visitors can participate, among other things, in constructing their own lie detectors and working radios.

For further information contact: Trident International Exhibitions Ltd., 21 Plymouth Road, Tavistock, Devon PL19 8AU. Tel: (0822) 4671.

Business News

Drake Transformers has acquired all the transformer interests of Lascar Electronics. The change coincides with the recent move by Lascar into portable instrumentation. Both parties express themselves as well pleased with the move. Peter Rowling, Drake MD explains: "Although long established as a high-quality manufacturer of OEM transformers, this acquisition gives us the opportunity to introduce a standard range of 'off the shelf' transformers. All Lascar services will continue, and we intend to ensure that no customers are inconvenienced by the changeover."

Details of the Drake standard range and services can be obtained from: Drake Transformers, Kennel Lane, Billericay, Essex. Tel: (02774) 51155.

Latest from Trio

Lowe Electronics inform us that they now have the latest communications receiver from Trio in stock.
The R-1000 is a high class general coverage receiver covering 30 bands between 200 kHz and 30 MHz with a p.l.I. synthesiser that incorporates all of Trio's sophisticated electronic technology developed over recent years.

Both digital display readout (1 kHz resolution) and analogue display (10 kHz resolution) are provided for easy and accurate tuning.

The R-1000 also includes a quartz digital clock with timer, three i.f. filters, r.f. attenuation and tone control, etc., to ensure the best receiving conditions for each mode.

Due consideration has been given to innovative design and compactness,

making the $\mathrm{R}-1000$ an excellent station receiver for amateur radio operators, professionals, broadcast and short wave listeners, etc.

The R-1000 costs approximately $€ 300$ retail and as soon as we are
able Practical Wireless will produce a "Radio Special Product Review" on the R-1000.

Further details from: Lowe Electronics Ltd., 119 Cavendish Road, Matlock, Derbyshire DE4 3HE. Tel: (O629) 2817.

Vertical aerials for low-frequency ground-wave propagation have been a topic of keen interest to the author for many years. In particular, due to their sheer impractical size, the question of optimum loading is paramount in their design.

Theory

To avoid making the theoretical argument unnecessarily complicated, the basis of this section rests on two simple formulae which provide a good approximation to more complex methods:

$$
\begin{equation*}
\text { Aerial Efficiency }=\frac{R_{\mathrm{RAD}}}{R_{\mathrm{RAD}}+R_{\mathrm{DC}}+R_{\mathrm{G}}} \tag{1}
\end{equation*}
$$

where $R_{\text {RAD }}=$ The radiation resistance of the aerial (dependent on useful length and height);
$R_{\mathrm{DC}}=$ The ohmic d.c. resistance in all wire, coils, and radials;
$R_{\mathrm{G}}=$ Ground losses, i.e., Earth resistance.
Near Field Strength $E(\mathrm{mV} /$ metre $)$

$$
\begin{equation*}
=\frac{377 \times I_{L} \times h}{\lambda \times D} \tag{2}
\end{equation*}
$$

where $I_{\mathrm{a}}=$ Aerial current at the base of the aerial (amps);
$h_{\mathrm{e}}=$ Effective height of the aerial;
$\lambda=$ Wavelength;
$D=$ Distance from aerial (kilometres).
Equation (2) is taken from the ITT Reference Data for Radio Engineers. Note that h_{c} and λ must be in the same units.

Effective Height

The Effective Height (h) of a grounded vertical aerial is equal to the height of a vertical wire producing the same vertically polarised field as the actual aerial, provided that the vertical wire carries a current that is constant along its entire length and of the same value as the current at the base of the actual aerial. For the more mathematically minded, $I_{\mathrm{a}} \times h_{\mathrm{e}}$ is the value of the integrated sinusoidal current in the actual aerial of physical height h.

The diagram Fig. 6 shows clearly how this definition makes sense, the areas "A" and " B " being equal for the correct value of h_{e}. Typically, h_{c} would range from $0.5 h$ for a very short vertical aerial, such as a base-loaded whip, to $0.66 h$ for a quarter-wave vertical.

Fig. 7: Current distribution and Actual and Effective Height relationship for an Inverted '‘L'' aerial

Practical Implications

On the basis of theory, we may assume that:

1. From Equation (1), we require a large $R_{\text {RAD }}$ (which means a large aerial, and a small R_{DC} (which means thick, heavy wire) and a small R_{G} (which means a field full of radials).
2. From Equation (2), both I_{a} and h_{e} should be as large as possible.

These implications are not really very "practical" at all, but we can at least examine them to make the best use of
what facilities are available. Let us first consider a commonly used amateur aerial, the Inverted "L". The diagram Fig. 7 shows a typical inverted "L" whose top section is much longer than the vertical section, and hence the current distribution is almost constant along the vertical portion. This gives an effective height h_{e} which is nearly equal to the actual height, i.e., about 18 ft , which is very poor compared with, say, a $\lambda / 4$ vertical, whose effective height would be $128 \times 0.66=84 \mathrm{ft}$, but better than a 20 ft short vertical, whose h_{e} would be only 10 ft .

As regards radiation resistance, the inverted " L " is fairly good (i.e., high) because of its $\lambda / 4$ length, but poor in respect that most of its radiation is horizontally polarised and very high-angle due to its low height.

The vertically-polarised radiation could be reduced by top loading in a non-radiating way. This will reduce the radiation resistance, thereby increasing I_{a} in the vertical portion, and a greater vertically-polarised field strength will result, although the actual aerial efficiency is lower.

For the standard inverted "L", we might have

$$
R_{\mathrm{RAD}}=30 \Omega, \quad R_{\mathrm{DC}}=5 \Omega, \quad R_{\mathrm{G}}=20 \Omega
$$

giving:

$$
\text { Efficiency }=\frac{30 \Omega}{30 \Omega+5 \Omega+20 \Omega}=55 \%
$$

and an effective height of 18 ft .
The first step towards increasing I_{a} without worsening h_{e} is to use " T " top loading, as shown in Fig. 8. Note that the current distribution splits at the top of the vertical radiator and, to a first approximation, cancels out. This eliminates horizontally-polarised radiation and reduces the radiation resistance, increásing I_{a} and actually increasing the vertically-polarised field strength.

Note that the efficiency might now be, say:

$$
\frac{20 \Omega}{20 \Omega+20 \Omega+5 \Omega}=45 \%
$$

but the higher value of I_{a} still has the desired effect.

LC Top Loading

The aerial may now be made more compact by using a smaller top composed of multiple wires to increase the capacitance, plus a top-loading inductor to bring the system to resonance, as shown in Fig. 9.

A large capacitance C is preferable, since then less inductance L is required and hence there is less loss $\left(R_{\mathrm{DC}}\right)$ in the L, and a wider bandwidth in the resonant frequency due to the lower Q of the system.

The top section should be symmetrical if possible, in order to cancel horizontally-polarised radiation. Since the actual vertical portion will be small compared with a quarter wavelength, the $L C$ resonant frequency on its own will be only slightly higher than the overall aerial resonance, which is reduced by the extra radiator inductance.

Hence, it has been shown that top loading, although nominally not improving overall antenna efficiency, can usefully channel "wasted" horizontally-polarised radiation into improved vertically-polarised radiation, although I daresay that many users of inverted " L " aerials do not consider the horizontal component to be wasted!

Improving Aerial Efficiency

By improving the efficiency we could, of course, improve the radiated field strength still further, since all we have done so far is to make the radiated energy all vertically-polarised. We must now consider the d.c. and ground losses.

The d.c. resistance losses are usually the least of our problems, since they are generally very low. However, the

Fig. 8: Current and height relationship for a ' T '' aerial

Fig. 9: A " $\mathbf{T}^{\prime \prime}$ aerial with multiple top span giving added capacitance loading, and top loading inductance

Fig. 10: Top-hat loading for a single guyed mast aerial. For maximum efficiency, the guy ropes should be led down at the shallowest possible angle, so that the top hat encloses the minimum amount of the vertical radiating element
use of a large capacity hat of reasonably thick wires plus an inductor wound from the thickest available wire (consistent with weight constraints) is advised, with the actual radiator constructed from coaxial cable braid, or aluminium tubing salvaged from Band I TV aerials or Band II f.m. aerial booms.

In view of the weight involved, the system may be adapted to a single guyed mast as shown in Fig. 10. The ground

Ideal $\lambda / 4$ Vertical
Actual height (h) 128 ft
Effective height $\left(h_{\mathrm{e}}\right) 84 \mathrm{ft}$

$$
\begin{aligned}
& R_{\mathrm{RAD}}=37 \Omega \\
& R_{\mathrm{DC}}=0 \Omega \\
& R_{\mathrm{G}}=0 \Omega
\end{aligned}
$$

Efficiency $=100 \%$

Practical Vertical

Actual height (h) 38-40ft
Effective height (h_{e}) 35 ft

$$
\left.\begin{array}{l}
R_{\mathrm{RAD}}=10 \Omega \\
R_{\mathrm{DC}}=2 \Omega \\
R_{G}=10 \Omega
\end{array}\right\} \text { approx. }
$$

Efficiency $=$ say 45\%

Aerial current for 7W r.f. input to aerial system
(i.e., 10 W d.c. input to transmitter p.a.)

$$
\begin{aligned}
W & =I^{2} R_{\text {total }} \\
I_{\mathrm{a}} & =\sqrt{\frac{W}{R_{\text {total }}}} \\
& =\sqrt{ } \frac{7}{37} \\
& =0.435 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
W & =I^{2} R_{\text {total }} \\
I_{\mathrm{a}} & =\sqrt{ } \frac{W}{R_{\text {total }}} \\
& =\sqrt{\frac{7}{22}} \\
& =0.565 \mathrm{~A}
\end{aligned}
$$

Note that $/_{\mathrm{a}}$ is higher for the top-loaded vertical since $R_{\text {total }}$ is lower. This helps to compensate for its reduced efficiency

Field strength at a distance \boldsymbol{D} of $\mathbf{1 k m}$

$$
\begin{aligned}
E & =\frac{377 \times l_{4} \times h_{4}}{\lambda D} \\
l_{\mathrm{a}} & =0.435 \mathrm{~A} \\
h_{\mathrm{e}} & =\frac{2}{3} \times \frac{\lambda}{4} \\
E & =\frac{377 \times 0.435 \times 0.67 \times \lambda}{\lambda \times 1 \times 4} \\
& =\frac{377 \times 0.435 \times 0.67}{4} \\
& =27 \mathrm{mV} / \text { metre at } 1 \mathrm{~km}
\end{aligned}
$$

This is the "ideal" best possible figure

$$
\begin{aligned}
E & =\frac{377 \times I_{\mathrm{o}} \times h_{\mathrm{e}}}{\lambda D} \\
I_{\mathrm{B}} & =0.565 \mathrm{~A} \\
h_{\mathrm{e}} & =\frac{35}{128} \times \frac{\lambda}{4} \\
E & =\frac{377 \times 0.565 \times 35 \times \lambda}{\lambda \times 1 \times 128 \times 4} \\
& =\frac{377 \times 0.565 \times 35}{512} \\
& =14.6 \mathrm{mV} / \text { metre at } 1 \mathrm{~km}
\end{aligned}
$$

This is a "practical" realisable figure

Fig. 11: More practical details of the author's toploaded vertical aerial and the associated ground-plane
losses, however, usually present the major headache in terms of aerial efficiency, because not many amateurs have a convenient field in which to bury the recommended 200 or so $\lambda / 2$ radials which a medium wave broadcast station, for example, would use with its aerial.

A very ancient radio data book studied by the author some years ago suggested that 4 radials, instead of 200 , would reduce the field strength to around half of the theoretical maximum, and a commonsense deduction suggested also that the radials need be no longer than the actual physical height of the radiator.

Experiment has shown that four 50ft radials offer quite a good ground, certainly much better than an earth stake, and if these cannot radiate in all directions from the aerial

One of the best-known pioneers of radio, John Scott-Taggart died at the end of July 1979. He was recognised as one of the founding fathers of the wireless valve era and a powerful force in initiating broadcasting and establishing a large audience for it in its early days. As author of many textbooks and articles, as well as papers read before learned societies, he both popularised radio and made serious contributions to its development. His first article appeared in Wireless World in December 1914.

He joined the army at 17 and served in France from the first battle of the Somme, later becoming Instructor in Wireless to the 1st Army. In 1917 he began his thirteen articles in Wireless World which educated the public and technicians in the revolutionary effect on radio of the valve.
In 1918, as wireless officer of the 55th Division, he was Mentioned in Despatches and later won the Military Cross. Also in 1918, he obtained the first of some thirty patents; some of these were of the greatest importance and were sold to leading companies in the radio and cable industries.
After the first world war he joined Ediswan and subsequently Radio Communication Co. As Head of the Patent Dept of that company and of Mullard he was chiefly responsible for the successful defence of a patent action brought by Marconi's and thus prevented a valve monopoly.

In 1921 John Scott-Taggart published a standard textbook entitled Thermionic Tubes in Radio Telegraphy and Telephonv. In 1922 he founded Radio Press Ltd and successively launched five radio periodicals which contributed very greatly to establishing an audience for the BBC. His set design ST100 alone was built to the extent of 100000 by amateurs.

In the winter of 1926/27 he sold his publishing interests to Amaigamated Press Ltd, and became chief wireless patent consultant to several worldfamous companies. He was called to the Bar in 1928. At this period of his life he qualified as an amateur pilot.

From 1932, Amalgamated Press employed him for five years as chief designer and contributor on a free-lance basis. His annual set designs ST300 to ST900 were built in hundreds of thousands. In 1935 he was elected Fellow of the Institute of Radio Engineers, and he was also a fellow of the Institute of Electrical Engineers, the Institution of Mechanical Engineers and of the Institute of Physics.

In May 1939, foreseeing events, he obtained a commission in the RAFVR, going to France on the second day of the war. Returning later to England, he was chosen to take a course in radar. In late 1939 he went to France to command a radar station. He left just before Dunkirk, having been Mentioned in Despatches for gallant and distinguished service.

On return to England he commanded a Battle of Britain radar station and subsequently became responsible for all radar training (ground and air) in the RAF, and then for the installation and maintenance of all the CH (Chain Home) radar stations in the UK-the chief radar defence system in this country-and several coastal stations serving the Royal Navy. He obtained his third Mention in Despatches.

After the war, John Scott-Taggart joined the Admiralty Signal and Radar Establishment (later named Admiralty Surface Weapons Establishment) as a technical civil servant, retiring in 1959. He wrote many technical manuals for the Royal Navy.

After retirement, John Scott-Taggart actively pursued his interest in art matters, both as collector and author of books. In 1962 the President of Italy appointed him a Knight Officer of the Italian Order of Merit for services to art. In the New Year Honours List in 1975 he was appointed OBE for services to radio engineering.

Stanley Robert Mullard MBE (MIL)

Born 1 November 1883

Stanley Robert Mullard, one of the pioneers of the UK radio industry, died in a Sussex nursing home on September 1 , at the age of 95 .
He was born on 1 November 1883 and, after attending a local school and the Borough Polytechnic, joined a firm of electric lamp manufacturers. He continued his studies at the Northampton Institute (now the City University) and became a student member or the Institution of Electrical Engineers in 1903. His employers appointed him a director of the company when he was only 24.
Later he joined the Ediswan Company. in 1915, while working in the lamp research laboratory, he developed the "Pointolite" arc lamp which was used in projection apparatus for over 40 years.
At the start of the first worid war Mullard enlisted in the Engineers' Battalion of the Royal Naval Reserve, but continued his work with Ediswan at the Admiralty's request. His interests now extended to radio valves. His wide knowledge of glass technology and vacuum techniques enabled him to make valuable contributions to the fast-growing use of valves in military radio equipment.

In 1916 he was commissioned as a lieutenant in the Royal Naval Volunteer Reserve, posted to the Royal Naval Air Service and put in charge of a special valve laboratory at Imperial College, London. He also attended meetings at the HM Signal School, Portsmouth, to assist with the design and production of high-power transmitting valves. It was largely due to his participation thet the manufacture of silica types became practicable and by the end of 1919 there was a pressing demand for them for Naval purposes.
It was on the strength of an order for 250 valves that he was able to raise capital required to form the Mullard Radio Valve Company in September 1920. Although this company was started primarily to make high-power transmitting valves, it quickly became involved with the production of smaller types. Public interest in "wireless" was quickening. Many ex-army signallers obtained licences to operate low-power transmitters and were also building their own receivers. Public broadcasting had not yet commenced, but it was possible to pick up private and commercial transmissions from Hilversum, Paris and Berlin.

The start of a public service brought a great demand for reliable valves and, appreciating the enormous potential, Mullard turned over part of his limited manufacturing facilities to the production of small receiving types. They were sold under the trade name ORA, signifying the valve's three main functions: to Oscillate, Rectify and Amplify. Output quickly rose to thousands a week. Demand soon out-stripped manufacturing capacity and larger premises were acquired. These, too, became inadequate when the BBC opened its London transmitter, 2LO, and in 1923 Mullard moved again, this time to Nightingale Lane; Balham. By the end of 1924 production had reached $2 \frac{1}{2}$-million a year and by demonstrating that reliable valves could be made cheaply Mullard helped materially to lay the foundations of the British radio industry.

By this time the commercial side of Mullard's activities had become important and he established a second company, the Mullard Wireless Service Co., to handle marketing and distribution. From its London headquarters it published a magazine, Radio for the Million, which made an immediate impact. It appeared quarterly for the next two years and sold in millions of copies.

In 1927, with the continuing increase in valve demand, production was moved to a still larger factory at Mitcham, Surrey. This remains one of the company's manufacturing plants, turning out more sophisticated components, but still handling the production and repair of high-power silica valves.

Impending developments in valve technology began to call for research facilities beyond the scope of a company so young as Mullard's. This demand led to the establishment in 1924 of close links with N.V. Philips of Holland and over the next few years Philips acquired all the shares of the company.

In 1929 Mullard resigned as managing director, but continued as a director, actively interesting himself in the company's affairs until. its golden jubilee celebrations in 1970.

Stanley Mullard lived to see the small venture he founded grow to an organisation employing more than 11000 people and occupying a leading place in the world's electronics industry.

The FMD-7 is an f.m. detector designed orginally for the FRG-7/FRG-7000 series of receivers, but it may be used with any receiver that has an intermediate frequency of 455 kHz . The module contains a buffer stage to isolate any s.s.b./a.m./c.w. filters in the receiver from those in the FMD7, two ceramic filters to give adjacent channel selectivity, a multi-function integrated circuit type MC3357P providing high gain, signal limiting, quadrature f.m. detection and squelch, plus output audio filtering and a low power d.c. regulator. Facilities are provided for an external tuning meter and a squelch disable switch.

specification

Sensitivity zodB Sifyratio for an inpdi of $10 \mu \mathrm{~V}$ at

Hniting Thresholde $1+0 y^{\prime} y$
Limiting Gharactesisticr 4188 changie in outpet Piveltor $20 y \mathrm{~V}$. 100 m vinout
Maximum Deviation: 童 5 . $5 k$ Fiz for 10% distortion

$-56 \mathrm{kB} / 24,25 \mathrm{kHz}$ from 455 kHz
Audio Frequenay Fiesponse: $-3 d B$ st 300 and $3600+32$ relatite e: 6 lkM
Squelch S S F retio gnerated. May be preser to fully oneriet 150834
Aidio. Frequancy Output Leved: 800 niv peak to

Power Supphes:

Temperatura Bamgeion $4+70^{\circ} \mathrm{C}$
Dimensions: Pintid. circuif board $51 \times 112 \mathrm{~mm} 12$ 4. 4. 4 (n)

Assembly

All parts for the module come packed in stout polythene envelopes. The kit is complete, right down to mounting hardware and wire-all you need is solder and the necessary tools. The printed circuit board is single-sided, epoxy-glass and has all the component locations and references silkscreen printed in white. The only drawback found is that most of the references are covered up once the components have been inserted, making it difficult to locate an item if subsequent fault-finding should be required. It would be a good idea to print the layout in the handbook as well.

Assembly of the module took just on two hours, and no major snags were encountered. Those that were, resulting from a few errors in p.c.b. drilling, were easily overcome. I think that it would have been easier to insert the terminal pins before fitting the remainder of the components, rather than afterwards.

Installation

The review module was installed in an FRG-7, and this proved to be far more time-consuming than assembly, taking some three-and-a-half hours altogether. Fitting details are given in the handbook for the FRG-7, FRG-7000, Lowe SRX-30 and Drake SSR-1, plus general guidance on other receivers, including valved types, for which a special power supply module is available, if necessary.

Most of the installation time was spent in positively identifying the components and links which have to be removed from the host receiver before the module can be connected. Even after years of experience in carrying out mods on professional equipment, I still approach the first one of a new type somewhat heart-in-mouth, and crosscheck about three times before cutting or removing anything!

SOUTH MIDLANDS COMMUNICATIONS LIMITED

S. M. HOUSE, OSBOURNE ROAD, TOTTON, SOUTHAMPTON, SO4 4DN, ENGLAND Tel: Totton (O703) 867333, Telex: 477351 SMCOMM G, Telegram: "Aerial" Southampton

STOP!... THIS IS WHERE SHORT WAVE LISTENING BEGINS

THE SHOP THAT SPECIALISES IN HAM RADIO

RECEIVERS-TRANSMITTERS
TRANSCEIVERS - HF - VHF - UHF

£178 inc. VAT

This month we present to you two excellent short wave receivers that give you top value for money. In July we mentioned how the FRG7 was the perfect receiver for both the beginner and experienced listener or radio amateur alike. And, of course, our many hundreds of satisfied customers know that we have a special test schedule that every receiver has to pass before it is despatched to its proud new owner.
We can now tell you that we are stocking the latest version of the Lowe SRX30 receiver. Now this receiver is very similar in many respects to the FRG7. In fact, electrically, there's not a great deal of difference between the two receivers. In other words, the ability of the SRX30 to pull the stations in is every bit as good as the FRG7. But there is a difference. It's not quite so pretty as the FRG7 but electrically it's every bit as good - both models are in stock for immediate free Securicor despatch.
 s, the TM56B receiver is ideal for home and car, having both 12 v DC and 240 V AC mains supplies built-in. We've already sold hundreds. It covers all the popular amateur VHF channels and repeaters. It also features automatic scanning of up to 4 channels of your choice. The amateur band version is $£ 106$. We can also supply a marine version with 10 channels fitted at $£ 115$ - as used by coast guards and river pilots, etc.
STOP PRESS
NEW R-1000 receiver is the latest receiver from Trio. $200 \mathrm{KHz}-30 \mathrm{MHz}$ and digital readout at a very realistic price. Send 10p stamp for full details.
Opening hours MON-SAT 9.00 a.m.-5.30 p.m. E.C. Wed 1.00 p.m. WATERS \& STANTON ELECTRONICS 18-20 MAIN ROAD, HOCKLEY, ESSEX. TEL: HOCKLEY (03704) 6835

TRIO R-1000 Stand by to receive the world

It's goodbye Wadley loops and hello to the new, true up-conversion, PLL system HF general coverage receiver from Trio.
The new R-1000 is going to turn the general coverage receiver world upside down since it combines professional performance with a really attractive price, thanks to Trio's commitment to using advanced technology to simplify operation rather than make complex gimmickry.
The R-1000 uses an advanced PLL system in an up-conversion scheme to a high (48 MHz) first IF to remove any possibility of image responses. The receiver covers the entire frequency range from below 200 kHz right up to 30 MHz in 30 bands, each 1 MHz wide. The bands are selected, not by ambiguous knob twiddling as in receivers using the Wadley loop but by a 30 position band switch which controls the PLL system.
The band switch also electronically selects the appropriate band pass filter network in the RF stages of the receiver so there are no "preselector" or "antenna trim"'controls to twiddle - simply set the band switch to the range required - that's it!
A highly stable VFO tunes each 1 MHz range and its linear, back lit scale makes readout easy. However, in addition to this dial, Trio have also provided 5 digit true frequency digital readout so as to guarantee spot on accuracy on any frequency. As a further feature, the digital display can also be switched to read time, this being derived from a quartz standard. Marvelious for accurate \log keeping. The display uses high intensity readout units which can be dimmed for use in low light conditions.
As for what else is inside this superb instrument - selectivity is catered for by three custom made IF filters; a 12 kHz wide AM filter; 6 kHz narrow AM filter; and a new 2.7 kHz SSB filter with a shape factor of better than $1: 2$ 6:60dB. Selectable sidebands are available at the touch of a switch.

For the first time in a mid price receiver, a true noise blanker is provided to remove pulse type ignition noise.
To minimise front end overload, a step RF attenuator is included which gives $0-60 \mathrm{~dB}$ attenuation in four steps.
All the rear panel connectors are recessed on a sloping panel so that you can stand the receiver either on its back, or pushed hard against a wall when used in conventional shelf mounting. The antenna inputs allow the use of either a high impedance wire aerial or a 50 ohm balanced input so that the proverbial long lump of wire will work really well with the R-1000.
Almost forgot - the R-1000 will work from either 12 V dc or any mains supply from $100-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ so you can really take it anywhere with you.
The basic features of the R-1000 do not tell the full story, because you cannot explain the superb "feel" of the receiver until you can handle it in the flesh. So, the advice is to see it soon at Lowe Electronics in Matlock.

For all thats good in Amateur Radio, contact:

LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock, Derbyshire. Tel: 06292430 or 2817.
For full catalogue, simply send 50 p in stamps and request catalogue CPW.

The European DX Council was formed 13 years ago in Copenhagen by a group of DXers and Short-wave Listeners who felt that co-operation between DX Clubs in various countries in Europe could be of mutual advantage. Since then it has succeeded in linking together over 20 clubs within Europe, and organising an annual conference where DXers can have an opportunity to meet fellow listeners and also broadcasters.

Since April 1979, the headquarters of the council has moved from Bochum in West Germany, to St Ives, Huntingdon, in England, from where all projects are now centrally organised. Clubs outside Europe are eligible for observer status with the EDXC, and the organisation also co-operates closely with its North American counterpart, the Association of North American Radio Clubs (ANARC). EDXC is currently undertaking a number of research projects.

Receiver Information Bank

The Receiver Information Bank is probably the most ambitious project ever undertaken by the EDXC and aims to serve the individual DXer or short-wave listener. In August 1979 a questionnaire was sent out to all registered DX clubs in the world, with the request that it be reprinted in their club bulletins. By this means EDXC has managed to reach a potential of around 40000 DX magazine readers. In addition, an extensive publicity campaign in a variety of languages was launched to run concurrently in the DX programmes of various s.w. radio stations. These short "spots" warned listeners to look out for the questionnaires and to fill them in. Non-DX Club members were invited to write in to the central address in Huntingdon for a copy of the questionnaire. Response from these requests for help has been very encouraging.

The questionnaire is designed to appeal both to the technical and non-technical SWL. It is interesting to note that non-technical listeners often are not using their receiver properly due to poor instruction booklets, while the more technically minded report persistent or common faults with particular models.

A close dialogue has been established between the EDXC and 15 radio manufacturers, and it is planned to pass on the results of the survey to the designers of the various sets for their attention. In addition, using outlets in DX programmes on Austrian Radio, Radio Nederland, AWR Sines, and BBC (Finnish Section), the EDXC plans to report on new models and compare the various sets on the s.w. market.

EDXC is primarily concerned with broadcast band listening. Ì does not cover amateur band or utility DXing.

Results will be sorted by a computer into various files. Each file will deal with a particular set and contain (1) A manufacturer's brochure; (2) A circuit diagram; (3) Details of any modifications that are possible; (4) Extracts from reviews; (5) User comments on reliability, servicing, and "usability". It is expected that such files will be available in early 1980 and will cost the price of return postage. Comparative tests on sets in the same price category will be undertaken later.

For a copy of the questionnaire, drop a line to: $E D X C$, P.O. Box 4, St Ives, Huntingdon, England PE17 4FE, enclosing a stamp if possible. EDXC is a volunteer organisation.

OSL Survey

In August a multiple choice questionnaire was sent out to 57 s.w. radio stations, all of whom have a foreign service. Its purpose was to establish whether or not reception reports are still of use to them, now that many stations rely on technical monitors who are paid for their work. The results of this survey will be made known as soon as possible.

EDXC-HAP Co-operation

In future, EDXC will act as the central mailing address for the Handicapped Aid Programme-UK organisation in order to simplify the address. In addition, all the stamps on mail to EDXC are being saved for HAP-UK to raise money and the EDXC publicises any projects that HAPUK organise. John Rose remains as HAP-UK chairman. \bullet

A REVIEW OF RECENT DEVELOPMENTS
In general, the author does not have any more information on products than appears in the article.

Throw-away Computers

Comedians commonly use throwaway lines, but now electronics has turned to throw-away computers. The new concept is the brain child of a computer manufacturer who is intent on marketing a computer that is designed to have faulty parts thrown away.

The machine (a 16 -bit model) is made up of plug-in boards each carrying a separate function. Each board measures roughly $210 \times 160 \mathrm{~mm}$ and has light-emitting diodes on its outer edge, wired in as go no-go indicators. Every time the machine is switched on, a selfdiagnostic routine is initiated which tests all circuitry on each of the boards. Any fault that's located causes the nogo diode on the appropriate board to light. The board is then unplugged and thrown away. A new board is plugged in and the system is again fully operational. New boards are reckoned to cost around $\$ 200$.

If this trend catches on, I can see piles of boards stacked up 100's deep in Lisle Street-just like T1154 and T1155's used to be in the old days.

Printers Again

Electronic printers are becoming big business, and the latest one could prove extremely useful in both amateur and professional field. Called the VP-850 it uses c.r.t. signals (in a scope etc) directly to drive the print head matrix. Thus whatever is displayed on the screen would be printed out on a roll of electrosensitive paper in the printer.

In operation, the printer takes the analogue signals direct from the c.r.t. gun and samples each raster line 1350 times until it has stored 24 complete raster lines in its RAM. The data, which has now been converted to digital data, is fed to activate the printing head. Costs around $\$ 1200$ were rumoured in the US.

Cheapies

Just when I thought that electronic calculators couldn't get any cheaper, I find I'm deluding myself. In absolute cheapness the local store selling a four function machine for less than $£ 4.00$ is approaching the limit. But for sheer value the battle appears to be far from over.

Newest and "bestest" to arrive is the Slimline T1-35. In addition to doing so many things (I just couldn't list them all; it's a 54 function calculator!) it also offers keys for finding mean and/or standard deviation for samples and population data. And there's a factorial key. The price of this 54 function machine is to be around $\$ 25$. Eventually, the batteries will cost more than the calculator!

Speaking chips

There's chips and there's chips, but the latest one to hail from Japan is going to take a lot of beating. So new it hasn't got a reference number, this one is a speech synthesiser-all on one chip. This miniature marvel codes and decodes human speech by analysing it into sound source parameters (this corresponds to the human vocal chords) and into filtering parameters (corresponding to the roof of the mouth). Onto a piece of silicon measuring less than 3.7 mm square, the manufacturers have managed to get 3500 gates, a 2240-bit ROM, and a 350-bit RAM. Wonder how many you could get in the boot of a Mini?

Scribble

If you dislike licking gum on envelopes every time you post a letter, then your aversion may be in for some assistance. It could come under the intriguing title of "Scrib". This comprises a very novel typewriter that also has a few other tricks it can perform-like word processing, storage or letters and articles (or whatever) on magnetic tape and the ability to transmit your treasured words over the telephone at around 30 characters a second. The self-contained Scrib has its own video screen so that you can see just what you are typing, letter at a time. You can erase or alter as you go along.

Another useful little dodge provided by electronics is that Scrib will display the "old" text you are working on plus the new, updated version with your amendments too. It does this by splitting the screen image into two parts-a sort of schizophrenic c.r.t.! A miniprinter gives you hard copy and Scrib will also keep an accurate record of the number of characters you type in. A
cassette magnetic tape is used for storage. No price is mentioned, and although Scrib may weigh heavily on the cheque book, it's only a mere 8.5 kg to carry around.

Der Zug am Gleis . . .

With computer-generated voices being featured in the news these days, it's nice to look around and pick an application or three. A useful one that comes to mind is the German railway station that uses a computer to give out train information to callers. The idea is that the person needing the information rings a special number. They are then asked the identification of the destination station and the desired times of departure. In response, the computer will speak giving the best train around that time.

Perhaps British Rail could use the idea, the computer being used to pick an excuse for late arrival from a long list. Perhaps a suitable program might be:
10 LET BR =
EXCUSE(INTL + 100*RND(0))
20 PRINT "BR"
30 NEXT BR
40 GOTO 10

Solar cells

News has just filtered through that researchers are busy developing a photoelectrochemical solar cell (try saying it quickly!). This rare creature not only obligingly changes sunshine into electric power, it also stores energy while it's doing it. Most solar cells employ comparatively expensive photocrystalline materials, or single crystal ones. This new cell uses the less expensive cadmium selenide and it has three photo anodes. One of these anodes is used to store electrical energy while the sun is shining. Connecting it with a common anode enables it to be persuaded to give an energy after darkness. The efficiencies so far are very low, typically a few per cent. However, the researchers are hopeful, and so am I.
Cimbers

SEmCOMOUCTOR TESTER For OXILIOSCODE DISPLAY J.SCOTT PATERSON

This simple add-on unit uses two a.c. voltages in quadrature (90° out of phase) which are fed to the semiconductor under test. The condition of the device is displayed on an oscilloscope used in X-Y mode. With no device connected, the Lissajous figure produced is a circle. With a transistor connected, both voltages are half-wave rectified, the transistors being treated as back-to-back

Fig. 1: The various displays produced on the c.r.t. for good devices

Fig. 2: Circuit diagram of the semiconductor tester. The leads marked Vert and Hor are connected to the scope Y and X amplifier inputs respectively
diodes, and this results in one quarter of a circle being displayed (Fig. 3). If there is any leakage, the shape will be shrunk in one direction so that either the X or Y voltage is reduced. Horizontal shrinking is due to base-emitter leakage, vertical shrinking due to base-collector leakage, so that the "corners" of the quarter-circle represent the base, emitter and collector connections.

If only a vertical line results (a radius of the original circle) there is a base-collector short; a horizontal line indicates a base-emitter short. Should the line be at 45° then there is a collector-emitter short, and when both junctions are shorted only a dot is shown.

In Fig. 1, we show the patterns produced by good devices; the figures for the various faults can be worked out by connecting resistors between terminals to simulate leakage, by connecting terminals together for shorts and by not connecting terminals together for shorts and by not connecting terminals for open circuits.

Circuit Diagram

Operational amplifier IC1 is a low-pass filter, and together with IC2, an integrator, forms a sinusoidal oscillator with quadrature outputs, the amplitude of which are controlled by the two back-to-back Zener diodes. If good temperature stability is required, the two Zeners can be replaced by two diode-connected $n p n$ transistors (collector to base) with reverse breakdown voltages similar to the original Zener voltages.

Table 1: Connection chart for different devices

Terminal	1		3
Transistor Diode SCR	Emitter	Base	Collector Anode Cathode
Gate	Anode		

components

continued on page $56 \rightarrow$

THE FACTS \& THE FUTURE

By the time this issue of $P W$ appears on the bookstalls, it is quite likely that a government announcement will have been made regarding a Citizens' Band Radio Service in the UK. If so, then what is said here may, in some ways, be less relevant than it was when written. It seems right, however, to give one of our vehemently pro-CB
readers the right to reply on behalf of all those who thought the article CB - an Unbiased Review in our September issue was in fact strongly biased against CB. I should add, however, that some readers thought it fair, and some even thought it pro-CB! Opinion is a very varied thing.

> Sir. Would you kindly allow me space in PW as you did J D. Pearson G3KOC in order that I mav answer that most Biased-of Unbiased reviews on CB that 1 have ever read.

It is my gpinion G3KOC that fyou honestly consider that your narticle was unbiásed then you are suffering from KKey Cricks int the tuned circuits of the brain What frequency are these clicks 727 MHz , 2 ,
". "Do we need.CB?" If so Why?" Let nte put a fifer an your spuriousemissions.

1. If one doctor in 1000 arrived at a personisuside in time to save his life as a result.of CB \& NEED IT.
2. If one Ambulance man Nurse Police Officer a Pedestrian or Motofist did the same. That's five. more feasons why WE NEED ITI
3. If any of the people mentioned heand a Small Boat in distress - WE NEEDIT.
4. Xf Muggers were caught as aresmit of CE, it Bombers and Terrofists were caught WE NEED IT. "x路 "
5. If old people in distress ieceived help, If a disnbled driver is able tó get helo, whenbroken down fad incapable of walking to a telephone. If evety fonely. elderly, crippled, blind, bedridden person will be able to call up a "good buddy" who can bring some cheerand pucpose In their life - WE NEEDIT
6. If BB ank robbers, or any other cilminal escaping by vehicle were very soon caught as a result of a CB trace, If a multiple ihnotorway pile up wasevoided - WENEED T
7. If a few CB ers choose to move to greater heights and joy the RSGB and the Hams - WE NEED IT 56 fry
 think because they have passed the RAE, the arrwaves: should only be tor them. There are quite y few Hams Who only know fust enough to pass the examination. They then go out, pay a few hundred pounds for a set and a matching jeitial and never take the cover off the set When it goes wrong, they return if to the flifacturers. In other words, ther hre netwiter than $a^{\circ} \mathrm{CB}$ 'er. Most of all we can do without pgople like you. Professionals calling themselves Hanta, who consider themiselves "God"s. Keepers" to the TX Chat enels, The conversations on the Ham Bands, drive me tmad. Everyone does not wish to talk or listen to dB's; p.a. output or how many flements the latest Yagi has. You and yourstellow "knackers", of CB should be giving it the go-ahead and encouraging MPs to do so. Why? Because you should be ovelioyed at the thought of how many more people will be brought into the fold, to enjoy radio as you and t do: Afterall, does it nhatter whet form theirenioyment takes?
 dislike by, others don't like bither and go on slow scap TV Telex or Moon-bpunce Poople like me collect: ax-Wb sets and monitor all the matine trequencies ond the the waty more than once twe beeñ refponsiblefor people receiving, help at seds onco in Serdinia and anêther time off the NE coastof Canada, st
"There is also another typo tike me 30 years into Iradiò at sea, Coastguạrd and Ham, who knows quite a lot but not all by any meants, but whotsimply falls apart at the thought sof arrexamination llave you the fright to deny mesthe meths of speecti" The anawer KG3KÓCI NO yoưd

In the past few months, CB has received a great deal of exposure in the press. A lot of the points, both for and against, have been repeated over and over again; and - if the newspaper reports are to be believed - a lot of drivel and half-truths have been spouted by many people, including licensed radio amateurs, CB fans, Members of Parliament, even the Home Office! There seem to be misconceptions about just what a CB service is for, what regulations it operates under in other countries, what the causes and effects of radio interference are and how it can be overcome, and many other aspects. Even some of our rival electronics publications have been unable to get all the technical facts right. We will try to clear up some of these points.
(a) CB radio is intended as a means of communication between mobiles, or between mobile and fixed stations, for messages about the licensee's private or business affairs. Since messages on business matters are expressly prohibited in the amateur service, an amateur licence is NOT a viable alternative. In any case, many potential CB users are not interested in radio technology. The argument that people from all walks of life can and do pass the RAE is irrelevant.
(b) CB radio is NOT intended as a hobby in itself. The regulations of the various countries differ in the way in which they express this. Among the most forthright are the Canadian General Radio Service Regulations, which prohibit: "Communication used in itself as a diversionary or recreational activity". If you want to experiment with radio communication then licensed amateur radio is a means available to you. Maybe there should be a Novice class to introduce beginners to the hobby, but that is a separate argument.
(c) CB radio in other countries is not as free and unfettered as some people seem to think. In the USA, for instance, only type-approved CB transmitters may be used; transmitters must not be modified in any way; linear amplifiers are prohibited (possession of a linear is considered to be sufficient evidence that it has been used); all internal repairs and adjustments to CB transmitters must be carried out by, or under the direct supervision of, a person holding a first- or second-class commercial radiotelephone operator licence. Violations of provisions of the FCC Rules or the Communications Act are punishable by fines up to $\$ 10000$ and/or up to one year's imprisonment.

The argument advanced that many of the US CB Rules are not enforced really reflects no credit on the CB fraternity there, but only goes to support the arguments put forward by opponents of the service.
(d) The interference problem will not be magically solved overnight by putting CB on a different channel, since all radio transmitters are capable of causing interference, particularly at close range. The reduction of interference depends upon good design, correct adjustment and adequate maintenance of transmitters, and good design of receivers (and audio equipment), and upon the sensible allocation of frequencies to various services.
(e) The argument advanced for the adoption of 27 MHz CB on the ground that it would allow travellers within the

EEC countries to maintain communication throughout their journey is not valid. Although there is a CEPT Specification for 27 MHz CB , few of the European countries adhere to it. In fact, if an Italian takes his CB into Germany, it is quite likely to be confiscated and destroyed, because it does not comply with the German regulations. (f) The commandeering of sections of the r.f. spectrum, in the way that some UK CB fans are trying to do on 27 MHz , is not really a blow for freedom: quite the reverse. After all, if you steal something from someone, you cannot really complain if someone else then steals it from you. That way lies chaos, and I'm sure CBers will be quick to complain if they get an allocation and someone else interferes with that!
(g) The problems of interference to radio-controlled models are dismissed by many CBers, but the fact remains that the potential for loss to the modeller, and injury to bystanders, is considerable in the case of aircraft models. In the UK, $26 \cdot 96-27.28 \mathrm{MHz}$ is allocated to radio control, and this band includes 28 of the 40 channels allotted to CB in the US, in other words 70 per cent of the total allocation.

There are reputed to be around 72000 model control licences currently in force in the UK, and very few models indeed are using the alternative u.h.f. band, as yet.

It has been argued that a CB user finding a radiocontrolled model operating on the channel that he has selected will quickly change to another channel. Since most CBers are supposedly non-technical, how will he recognise the strange sounds he might hear as being caused by a radio-control transmitter? In any event, by the time he has recognised that the channel is occupied by a r.c. user it will be too late - the model will most likely have gone out of control with possibly fatal consequences.

The Future

The recent announcement of the reorganisation of the Post Office, and the opening up of some aspects of the telecommunications services to ouside competition, gives an opportunity for a re-think on the licensing and control of radio and the like, and also of the form that CB might take.

The present system of notifying sales of TV sets to the TVLRO could be extended to such things as radio control systems, metal detectors, and CB transceivers (if legalised!). Licence application forms could be included with each equipment sold, and licences made available over Post Office counters. This could even be extended to amateur licences. After all, the Post Office already issue vehicle licences on presentation of the relevant documents and fee. If buying or renewing a licence were made easier, it might even persuade some of the present unlicensed metal detector and radio control fans to do the decent thing.

Licences for any portable or mobile equipment could, with advantage, be produced in a form like a credit card or driving licence. Maybe even made to be attached to the

set. And while they're about it, they could make the metal detector licence valid for any type-approved design, and save the aggravation of getting a new licence when buying a new detector.

On the subject of CB, there is much to be said for adopting a system flexible enough to allow it to be used at the level of technology and expense desired by the individual. With modern microprocessor circuitry, it would be comparatively simple to extend the service to offer the options of data handling, selective calling, or linking in to the public telephone system. This would allow the current exorbitantly-expensive GPO Mobile Radiophone system to be done away with.

This scale of service would involve a countrywide network of repeaters, but these could easily be sited along motorways and main roads. The repeater system would, even for the lowest level of service - the simple handheld - offer the advantages of more reliable communication, plus lower transmitter power, and therefore lower battery drain.

Perhaps it's a little 1984 'ish, but it would be easy to arrange for an auto-identification signal to be built into each transmitter, to allow a computer to check if you had paid your licence and, if not, refuse to provide you with service, except possibly for emergencies! Remember, 1984 is not all that far off now.

We are indebted to readers who have contributed information and ideas to this article. Perhaps, finally, we should try to sum up PW's viewpoint on the subject of $C B$ in the UK:

1. We believe that theer is a need tor a portabtel mobile radio comminication service for the general public, st a rexsonable cost. This should be entirely separate from the amateur service and should not involve the user in passing any sort of exam.
2. This service should be on a frequency band other than 27 MH , which is unsuitable for reliable shortrange communications by reason of propagation characteristics, and is already allocated to other services. The band and modulation. system chosen should be the best avaliabte from the point of view of reduction of interferenee and shouta allow for the optional use of special faclifies.

3. Transmitters used shoula be type-approved, and the use oflinear amplifiers prohibited.
4. The service should be capable of being effectively licensed and controlled with a minimum of buteaneracy.

FMD-7 FM DETECTOR

\rightarrow continued from page 28
There was one mistake in the installation instructions for the FRG-7, but this was pretty obvious and should not cause any problems.

Switching the module into use ideally requires another position on the MODE switch. This is possible on the FRG7/7000 if you are prepared to sacrifice the AM/ANL facility, and use this for NBFM. Otherwise, you will need to fit an additional switch somewhere on the receiver. Instructions are given for both methods.

Results

Once one problem, caused by overlooking a correction slip in the handbook, had been overcome, the module worked perfectly. Tuning, which involves adjustment of the quadrature coil for maximum audio output, takes but a moment, and the only other adjustments required are one preset potentiometer for squelch threshold, and one to make the audio output level roughly equal to that on other modes. Audio quality is good and sensitivity entirely adequate.

Apart from those points about the handbook mentioned already, it includes a full technical description, detailed assembly instructions, test procedures, and fault-finding procedures including comprehensive d.c. and a.c. checks. A full component list and the circuit diagram complete the information.

Price

The FMD-7 was supplied by Burns Electronics, 43a Chipstead Valley Road, Coulsdon, Surrey CR3 2RB. Telephone 01-668 7766. The price in kit form is
 £26.68. Both prices include UK carriage and insurance and VAT.

Historically, radio control has evolved through all manner of what now seems to be the most appalling anachronisms, the first types using valves. But after a long and reasonably happy association with the transistor circuitry, the recent emergence of suitable i.c.s, first in the encoder/decoder circuit, and now in the actual radio sections too, has led to considerable advances in the sophistication and reliability of these systems.

Reliability

The most sophisticated system in the world is of little use if the whole system fails at a crucial moment. The plane flies never to be seen again, or the boat ends up marooned in the middle of the pond, frantically harassed by a bemused duck.

Predictability

Early systems were based on straight switching, where the control device slammed from one extreme to another. Or, if motor driven, operated either too slowly or erratically to be of much use in delicate control operations. The use of servo units gives a positional feedback to the control medium, so that a movement of the control stick is directly related to the actual movement observed in the model. In the toy market at present, there are several cheap imported radio controlled cars - and these are nearly all non-proportional control, relying on crude switching functions for forwards/backwards and left/right/centre control. The radio links themselves are extremely dubious, since the cheap receiver techniques employ a super-regenerative technique that itself emits a rather grubby spectrum of noise and hash both on and around the control frequency, and on many harmonically related frequencies. Several examples seen have been excellent at jamming u.h.f. as far as TV frequencies.

Interference

The question of interference on the 27 MHz band allocated to radio control is one of the burning issues for present day modellers, since estimates of some 400000 radio control devices (including unlicensed users), point to a severe congestion of the few frequencies available.

Freedom from interference and from adjacent channel operators is, primarily, a function of the type of receiver circuit in the equipment. The avoidance of unnecessary power levels in the transmitter is good practice too-but since the aeromodeller is more prone to interference, by virtue of the height of the receiving antenna when airborne, it is understandable that they will wish to use the maximum permitted 1.5 W of r.f. to ensure best range. Certainly, on the ground, and on the water, a power of $25-100 \mathrm{~mW}$ will control any reasonable system just about as far as the eye can follow the manoeuvres of the model. Operation out of eyeshot is not necessarily of much use, since the feedback between the eye and the model under control is the crux of r.c.

The avoidance of interference is one of the prime preoccupations of the serious 27 MHz user, and with so much illegal CB equipment in the UK, let alone the 'legal interference' from Europe, and even the USA, this preoccupation is readily understood. However, CB is either a.m. or s.s.b. and since this can scramble an a.m. radio control system on the fringe areas of operation, the use of narrow deviation f.m. is rapidly beginning to gain popularity, due to the a.m. rejection facilities afforded by this mode. The f.m. carrier is also transmitted continuously, and not switched on and off like so many of the a.m. approaches, which means there are no pauses in the data stream to allow the receiver to accept any other signals on the channel (see Figure 1).

The limiting action of f.m. means that the problems associated with good a.g.c. need not apply, since the r.f. and i.f. amplification can be class C, limiting the signal and rejecting a.m. Good limiting with a low input signal means that the recovered carrier information remains constant over a wide range of input signals, which, in the a.m. system requires carefully designed a.g.c. action to achieve.

Thus f.m. can significantly improve the rejection of co-channel signals (those on the same frequency but from some distance away), but for good adjacent channel rejection-such as from other modellers using the same area but on different frequencies--the problem becomes one of i.f. selectivity in the receiver.

The classic a.m. channel spacing for r.c. has been 50 kHz , resulting in six channels. However, since the capture effect of f.m. combined with modern ceramic filters can dramatically improve receiver selectivity, 10 kHz spacing is possible, greatly increasing the number of possible channels. However, unless you are very certain of your own equipment and that of the other users in the vicinity, always put as many kHz between yourself and the other operators as possible, since whilst your receiver may be fine, their transmitters may be slightly off-channel,' or, if a.m. the splatter caused may spread well outside their basic channel.

Technically, 27 MHz is not ideal, since under the correct conditions, usually associated with sunspot activity, the band has ranges of 6000 miles plus, with hardly any power at the transmitter. This makes life both unpredictable and precarious for 27 MHz users. The actual wavelength is 11 metres, so aerials fall into the category of, 'electrically short' (less than $\frac{1}{4}$ wave), which introduces complicated variables into their design. In fact, receiver aerials usually end up as being strictly high impedance capacitive types, tacked on the end of the first tuned circuit-which is in itself not really too bad a compromise, but apart from electrostatic susceptibility (even to the extent of being bothered by rubbing control surfaces), such aerials mean that the conscientious designer really needs to trim each aerial coil to suit the aerial conditions to ensure optimum performance at all times. These types of aerials are not to be confused with good old transmission line impedance of

Fig. 1(a): The waveform above shows a typical a.m. transmission while below is the same information transmitted as an f.m. signal

Fig. 1(b): The level changes with model movement for an a.m. system (above) while for the equivalent fim. system the level is constant

Fig. 2: The design approach chosen for the PW FM-80 f.m. receiver
50Ω, and they must not be fed down coaxial cable, since that merely 'looks' like a big capacitor across the tuned circuit, with little hope of getting the circuit to peak.
At the transmitter, power transfer cannot be achieved the same way, and even if you tried, the r.f. voltages developed across such high impedances can lead to r.f. burns. The aerial is thus loaded with a coil at the base, or in the middle. Loading reduces the impedance to the desired level.

An ideal frequency for radio control would be the $144-146 \mathrm{MHz}$ amateur radio band (assuming co-channel interference were to be avoided), but it is unlikely to be permitted in this country. The 19in-long, 2 metre band quarter wave antenna is ideal, and the technology available today could permit the construction of suitable miniature receivers to the same dimensions as present 27 MHz types. 459 MHz u.h.f. is outside the scope of most constructors, since everything from signal generators to strip line technology are just that little bit outside the grasp of the keen amateur. The stability demanded of the crystals used means that they cost about 5 times as much too!

Armed with the aims and objects of a comprehensive r.c. system, we can consider how best to apply currently available technologies to solve the problems. A summary of the features sought, and alternative approaches available are listed in Table 1.

Receiver Design

The approach to the receiver design is shown in Figure 2. A couple of added features are apparent, since it is a very useful thing to have some means of actually listening to the receiver in operation. This is particularly so with f.m. where the Tx crystal is a fundamental cut, and the range of frequency pulling is quite substantial when compared to the usual 3rd overtone types used for a.m. Basically, this makes life a bit difficult for the home constructor, since it is almost impossible for a setup with 3rd O / T crystals to be more than the i.f. bandwidth off tune. This is not so with f.m. and being able to listen-in means that you can pull in the crystal trim by ear, if you do not

Table 1

Receiver Feature	Approaches commonly used	Conclusion
Small size	Universally semiconductor, though surprisingly few using i.c.s. at the moment. Recent i.c.s. from Motorola and Plessey seem to offer real advantages for f.m. applications	use MC3357P
Low Power, flexible supply voltages	This factor tends to rule out the use of j.f.e.t. and m.o.s.f.e.t. techniques, since r.c. has grown up with 4.8 V being the recognized supply. But at low currents, bipolar stages can suffer from cross modulation very easily. Again, the technique used in the MC3357 scores, since the input configuration is a fully balanced mixer stage, possessing superior performance to a simple transistor r.f. stage of mixer. It also happens to work down to 3 V and less, with some 2 mA current drain!	
Good selectivity	The r.f. tuned circuits should be at least a double tuned pair-but space prevents anything very much more sophisticated. Keeping r.f. gain down will assist here. The main i.f. filter should be a good class ceramic unit, bearing in mind the criteria mentioned earlier. The cost to performance ratio will reflect the final application of the equipment. Since the receiver is basically going to be cheap, it is not really too much to expect that the enthusiast will be prepared to make separate receivers for separate applications.	use miniature ceramic or mechanical filters

have access to a digital frequency meter. All that is needed is a high impedance crystal earpiece-which is tapped in via a crystal earpiece jackplug socket. This also provides a safety check to hear what's going on, on the channel you propose to use. The mute function may be considered pointless by some, since most commercial systems do not appear to offer this feature yet, possibly because a reliable circuit takes up too much space if not fully integrated as in the MC3357P. The final circuit for the receiver is shown in Figure 3 and whilst this may not be the smallest receiver in the world, it is certainly a manageable size for the home constructor-and particularly those who are being tempted into radio control for the first time.

The Receiver Circuit

Starting at the front end, the wire aerial is fed into the top of the input half of a bandpass coupled pair. Top coupling, and proximity (mutual inductive) coupling is frequently used in r.c. but both these tend to suffer from problems which deserve a brief word of explanation. Both methods nearly always tend to overcouple the circuits, providing too wide a response, and the classic 'double hump'. Top capacity coupling can also be a reasonably good way of allowing v.h.f. and static type interference through, since L1 and L2 look like fairly amiable chokes at 175 MHz , permitting passage of some of the very strong v.h.f. carriers likely to be 'seen' by a model aircraft at 100 feet or so. This can lead to blocking of the mixer, despite the fact it has excellent overload capability anyway, with the subsequent demise of the whole system.

So the technique adopted, after some experimentation, was the lower impedance coupling, using the coil secondary to provide a much lower impedance point, and thence requiring use of a higher value coupling capacitor. The overall r.f. response is thus greatly enhanced, and quite excellent close to the desired frequency. Despite this, the use of 455 kHz means that the i.f. image rejection is still only 18 dB or so down, but that is only improved by going to a higher i.f., and using crystal filters which may not stand up to the rigours of model vibrations.

The actual responses of the r.f. input stage are shown in Figure 4. The h.f. response of this input arrangement is ideal, and the v.h.f. feedthrough is only beginning to get obtrusive as the frequency reaches levels that are outside the receiver frequency response, which tails off at about 60 MHz . The plot was taken with a spectrum analyser and high impedance ($10 \mathrm{M} \Omega$) r.f. probe with a 900 MHz response, and so is a reasonable approximation. One very important point for the r.c. enthusiast to bear in mind is the fact that the usual airborne aerial of $15-16$ inches (or less) is getting to look suspiciously like a quarterwave antenna for either the commercial 175 MHz band, or worse-the Band III TV transmitters. Further work on these types of electrically short aerials is being carried out to investigate methods of making them less attractive to unwanted r.f. of this type. This aspect also means that the use of a really wideband f.e.t. at the input stage is not a good idea, since the response of such a stage will not be bandwidth-limited, and, if the input is wideband then the aerial is certainly going to tend towards its natural resonance, unless suitably loaded. The circuit used can be shown to provide reliable control with an input p.d. of $4 \mu \mathrm{~V}$ by rearranging the input circuit to match the 50Ω generator source. This is quite enough for most applications, and too much for some-so further gain in front of the major selectivity of the set is not considered necessary. Remember that the aerial may be thought of as an extension of Cl , and so T 1 must be trimmed to suit each aerial-and also the aerial when in situ, since the high

Fig. 3: The circuit diagram of the FM-80 f.m. radio control receiver. This circuit gives excellent performance yet remains simple to build. C25 should be 47μ

impedance of such an aerial is liable to be influenced by the proximity of metal parts of the installations.

From the input stage, which is a fully balanced mixer, fed from the oscillator and the input signal, the signal passes to the i.f. after mixing. The crystal oscillator used here is worthy of note, since the original function of the MC3357 required a fundamental mode Colpitts circuit to be used here-performing the function of the second conversion in f.m. receivers, from 10.7 MHz to 455 kHz . However, the circuit needs to run on the 27 MHz third harmonic, and since the fundamental of a third overtone crystal is not exactly one third of the 3rd overtone frequency, even the unsatisfactory expedient of running the crystal at its fundamental, and trusting to there being sufficient third harmonic content is not viable. Approaches such as trying to force the crystal onto its third overtone in all manner of 27 HMz tuned circuitry around the oscillator
pins at 1 and 2 were tried, and found wanting. Unreliable starting was the main problem -and since the Colpitts circuit works well enough when the crystal is replaced by an LC tuned circuit, trying to force the crystal with LC arrangements only provided a free running oscillator that was loosely locked to the crystal. The answer is to prevent operation at 9 MHz , and this is the function of the parallel tuned trap formed by C6 and T3. Since pin 2 of the i.c. represents the emitter of the Colpitts configuration, this approach presents an impossibly high impedance at 9 MHz , and so the next most likely mode-the 3rd overtone is automatically selected. The $10 \mathrm{k} \Omega$ resistor R 1 is used to further encourage the circuit into life, shunting the internal $100 \mathrm{k} \Omega$ emitter resistor to provide more urge. To perform the same trick, but at the fifth overtone, the tuned circuit at pin 2 needs to be a more complex double trap, but it still works!

Fig. 4: The response curves for the r.f. input stage of the receiver

T4 provides i.f. output matching to the subsequent filter stage. Various possibilities exist here ranging from the very low cost CFM2 filter, which still provides better overall selectivity than the comparable four i.f.t. circuit, to the more expensive ladder filter ceramics, such as the Murata and NTK series CFX and SLF-D series, where the adjacent channel disappears to some 80 or 90 dB down. The CFM2 described is not a ceramic filter, but a miniature mechanical filter, and as such, the inter-electrode capacitance causing some of the problems associated with ceramic ladder filters, is far less. Overall stopband is thus better, and combinations of the CFM2 and ceramic ladder filters may be used to good effect, although a higher insertion loss results.

Pin 5 of the i.c. is the entry point for the i.f. and limiter, and although the basic circuit is capable of $4 \mu \mathrm{~V}$ operation with the decoder described, there may be certain applications where a bit more is considered desirable. As mentioned earlier, the temptation to place gain at the front end of the circuit should be resisted at all costs, as this tends to amplify not only the 27 MHz , but much else besides. The place to put the gain is in the i.f. after the filter stage has limited the bandwidth. The circuit used is very simple, and is in fact the same as many audio amplifier circuits, contributing some extra $12-15 \mathrm{~dB}$ of noticeable gain.

Fig. 5: Two different filter design approaches for the receiver. The filter chosen for the FM-80 system is the Murata CFW455HT

The MC3357 amplifier, limiter and detector stage are all biased externally via R2 and R3, and since these resistors basically represent different ends of a very high gain amplifier chain, the junction must be very effectively decoupled to ground with a capacitor that possesses ideal r.f. performance. The types used also need to be about $0 \cdot 1 \mu \mathrm{~F}$ to be effective at all the frequencies involved, and so C9 and C10 are monolithic ceramic plate types, which also happen to be the smallest variety of $0 \cdot 1 \mu \mathrm{~F}$ capacitor anyway. The detector is the usual quadrature phaseshifted system fed from pin 7 via only 10 pF , resulting in very little detector loading, and a very steep slope to the detector characteristic at this point.

It is from here that the advocates of the f.m. system tend to mumble quietly to themselves about noise perfor-
mance. With all that gain before the detector, a no-signal condition results in white noise within the bandwidth of the i.f. system that crashes from rail to rail, i.e. a fully limited output, presenting very nice edges for edge triggered decoders to 'see' and clock from.

When the signal disappears, the residual noise can send the servos into fits of apoplexy, although pure white noise is usually too 'fast' for the decoder, which sits in a condition of reset. The really embarrassing point is the transition from full control to no control, since the partial control area can allow just enough of the desired control information to pass through the decoder, but can also let through noise at the same time. In a.m. systems, the transition from control to partial control is a far more orderly affair, since the noise in no-signal conditions is rarely enough to create spurious operation of the decoder.

The ideal decoder will only permit the passage of correct width control information and immediately reset when it sees the noise. Most present circuits wait until the decoder has buzzed through all channels to the end before holding the reset condition, leaving a trail of jarred servos in its wake.

Original thoughts were that the built-in mute should be used. Indeed a means of signal mute was tried and found to work using the communications noise mute function. However, this took up a lot of space, as well as the rather handy trigger amplifier in the i.c. itself. Handy, because this amplifier provides the ideal means by which the data train may be reconstituted. The amplifier can produce a perfect squarewave from a moderately dishevelled array of data pulses, and so makes a big contribution to noise immunity. However, this still does not entirely get around the problem above-since noise can still foul the decoder, and so a noise mute of another variety is used, with a coil and capacitor combination and a diode 'pump' detector. This mute is almost a linear function of the noise input, relying on the finite reset level of the decoder i.c. for its trigger action. This also means that the mute may be applied in such a way that the reset can occur at any point in the data train, providing instant shutdown, rather than waiting for the decoder logic to rush about randomly until it resets itself.

Thus the transition occurs without major servo jerking and jittering, and may be likened in many respects to the behaviour of an a.m. system at threshold levels.

The Decoder

The data system used in radio control is a stream of pulses whose width is varied from 1 to 2 milliseconds by the control medium at the transmitter.

In order that the first pulse of a series, or frame, may be recognised by the decoder, a reference or reset pulse is transmitted at the end of each stream of data. This reset pulse is made to be 2 or 3 times the length of the data channel pulse (see Figure 7) and so may be detected by a process which is basically integration with an RC time constant. Thus perhaps the generic term 'digital' is a slight

Fig. 6: Block diagram of the decoder

The prototype FM-80 system was installed in a MiniEscort trainer model aircraft built from a kit made by Galaxy Models and powered by a Flash 15 glow-plug motor supplied by Neway Models. A later part of this series will deal in greater detail with the models and installation
misnomer, as the system is more accurately a linear function of the channel pulse width, which provides the necessary control information to operate the standard servo mechanism decoders and other control media. To be truly digital, a data stream of fixed pulse width would have to be transmitted in the form of a digital word (binary), and then decoded into positional information directly. The process would require a large number of 'bits' to be accurate, since the present technique offers potentially infinite resolution of control over the range of the servo output. However, pure digital control would not need positional feedback in the classic servo fashion, since a word could be directly translated to a positional function. Thus such a system would only need an update when a control position had changed, as opposed to the usual system of p.w.m. where an absent pulse can cause problems, and so is being continually refreshed. Fully digital control of several channels would require a much longer serial frame length to accommodate all the bits, and the loss of a single bit would cause a system "glitch" that
may not be refreshed for almost a second. Thus the present system of control is the ideal compromise, since channel information is updated at a rate of $50-60 \mathrm{~Hz}$, within the scope of the relatively narrow r.f. bandwidth available.

The decoder employed is slightly unusual in many respects, since the incoming pulse train is first doubled in the 4093, where leading edges of the data output correspond to the leading and trailing edges of the input signal.

This doubled pulse train then clocks a 4017 Johnson counter, whose alternate outputs correspond to the originally encoded data train. The reset pulse is fed to the retriggerable pulse stretcher, and then used to reset the 4017 to accept the start of a new frame. As long as there is an input to the pulse stretcher, the output remains high, since the input voltage does not reach the threshold. However, after a period determined by the time constant of the stretcher, usually 2 to 3 ms after the trailing edge of an input signal, the output goes low and resets the 4017.

The pulse doubler is built around the first two gates of the 4093 , taking advantage of the Schmitt action to provide noise immunity and a perfect clock for the 4017.

Fig. 7: Waveforms at various points in the decoder
 for the majority of servos available but if servos of a different design to those to be described later are used then the socket connections must be checked

MacGregor Radio Control Servos,Stick Units, Complete Radio Control Systems.

Send stamped,addressed envelope for further information or telephone Slough (0753) 49111or 42251/2/3

MacGregor Radio Control
Canal Estate, Langley, Berkshire SL3 6EO

FLASH sams MOTORS

Easy Starting
Reliable

- Economical

Low Cost Spares Partial Crash Insurance - Spares Available

Flash 15 Stunt.......£11.95
Flash 15R/C£13.95
Flash 20 Stunt*
Flash 20 R/C \qquad
Flash 35 Stunt........... 16.95 Flash 35R/C£18.95 - Due soon

- All prices inclusive of silencers
PARTIAL
CRASH INSURANCE

Any Flash engine however badly crash damaged, will be completely rebuilt at a cost not exceding 60% of a new engine.

IMPORTED AND DISTRIBUTED BY: NEWAY MODELS, THE WALNUTS, THE STREET,

RICKINGHALL, DISS, NORFOLK.
TEL: BOTESDALE 714.
SEE THEM AT YOUR MODEL SHOP

BUTTONS 4.8 volt pack
(centre tap available)
 500mAh DKZ**........................ $£ 5.35$ *-The original "DEAC $\mathrm{Rx} /$ Tx converaion 12. pencelis, charging hoiders and $\mathrm{Rx} / \mathrm{T}_{\mathrm{x}}$ charger $\mathbf{2 0 . 5 0}$

CONSTANT CURRENT CHARGER - ideal for all nicads - switched $25 \mathrm{~mA} / 50 \mathrm{~mA}$ $120 \mathrm{~mA} / 200 \mathrm{~mA} / 400 \mathrm{~mA}$ output - charges up to 12 cells in series without adjust ment - $\mathbf{£ 1 3 . 4 5}$ sae for futher details.
PHOTOGRAPHER'S CHARGER - Charges 1 to 4 HP7 size nicads f6.45.
New FIELD CHARGER 12 v input/two 50 mA constant current outputs - ideal
for charging up to eight 0.5 Ah nicads or two "Deacs" per output $\mathbf{£ 8 . 3 0}$. UK POST AND PACKING - ADD 50p PER ORDER.

PATRICK WALTON (SMALLCRAFT)
38 Stoneleigh Road, Clayhall, Ifford, Essex. Tel: 01-550 6642

FLEET R/C SERVO TYPE FPS-3

A COMPLETE KIT FOR THE HOME CONSTRUCTOR

This small, powerful servo (size $1.55 \times 1.5 \times .73^{\prime \prime}$ weight 1.4 ozs.) employs the latest Ferranti 419 I.C amplifier driving a top quality 5 pole servo motor with a CTS cermet feedback potentiometer (5 K) assembly. Transit time is .4 seconds with up to 6 ibs. thrust available. The body and gears are moulded in a tough acetal copolymer (Hostaform), with a gear ratio of $250: 1$. Resolution is $\pm \frac{1}{2} \%$, with near perfect damping: while the output can be rotaryor a linear rack type - all parts are supplied with the kit.

FPS-3 servo kit complete fless piug
Special price for Practical Wireless readers.................£11.45 FPS-3 Amplifier kit with 419 I.C. £4.75 Ferranti 419 I.C. with circuit board and instructions..... $\mathbf{E 2 . 9 5}$ FPS-3 servo mechanics (inc. motor \& pot.).................... $£ 7.20$

Fleet 3-pin plug 27p
Fleet 3-pin socket..... 27p Spare gears etc.........15p Spare body parts30p

The FPS-3 servo is suitable for use with the P.W. F.M. R.C.M. \& E.F.M., E.T.I./REMCON and virtually all modern commercial R / C outfits.
All prices include VAT. Order by mail (add $30 p$ p\&p). telephone, or in person. Payment by cash, cheque, ACCESS Barclaycard, Hobbycard, etc

FLEET CONTROL SYSTEMS

47 FLEET RD., FLEET, HANTS. TEL: FLEET 5011

A. J. H. Electronics

'The Gablea', 20, Barby Lane, Hillmorton, Rugby Warwickshire. Tel: Rughy 76473 or 71066 . Eva
TERMS OF BUSINESS:- Cash with order, Mail order only, or callers by appointment. SAE with enquiries. Post \& VAT 15% FULL MONEY BACK GUARANTEE ON ALL ITEMS.
STEREO CAR CASSETTE AMPLIFIER BOARDS $3 \frac{1}{2}$ watts per channel uses $2 \times \mathrm{NEC}$ uPC 1001 H 2 ICs 4 transistors, removed from new equipment \& supplied with cir$+45 \mathrm{~mm} E 2.75$ each
CAR RADIO RF/IF AMPLIFIER BOARDS 470KHz IF freg. plus sterec pre-amp IC ex-car radio/cassette players
with circuit 65p each. two tor E 1.20 . (matching amp. CAR STEREO RADIO/CASSETTE AMPLIFIER 5 watts plus per channel $2 \times$ TA7205P ICs. this is the main amp. section \& does not have the pre-amp on this board, the pre-amp is fitted to the matching if amp above, ssecond tone. \& on/off. supplied with circuit f 2.25.

$$
\begin{aligned}
& \text { tone. \& on/off. Supplied with circuit t } 2.25 \text {. } \\
& \text { CAR RADIO BOARD complate except }
\end{aligned}
$$

$$
\text { tuner choice of a } 7 \text { or } 8 \text { transistor type. } 5 \text { watt output } M / L W
$$

only, if freq. 470 KHz , manufacturers mechanicat rejects ie slightly chipped board, badly soldered joint etc. contains loads of components \& supplied with circuit $£ 1.10$ each. 2 for $£ 1.90,4$ for $£ 3.25$.
BOX B BROKEN CAR RADIO EOARDS ok for spares full of transistors. IFTs. coils, resistors \& capacitors etc. 2
kilos in weight $f 275$ plus $f 125$ pp. 12 VOLT D.C. MOTOR8 as used players new inio bacs ilectroirtic capacitors approx 100 of equal quantities $2.2 / 16 \mathrm{~V} .20 / 16$, $47 / 16$, €1.50. MIXED BAG OF DISC CERAMIC CAPACITORS approx 1001 pf to 220 pf 18 different values all made by ERIE largest size $6 \mathrm{~mm}\left(\frac{1}{4}\right.$ " dia) new \& unused £1.25 per bag.
MIXED BAG OF VERTICAL PRE-FORMED RESISTORS ali with tong leads $\frac{i}{4}$ wart carbon film approx 250 per bag ONLY $£ 1.50$. two bags $£ 2.75$.
VIDEO CAMERA SCAN FOCUS COIL 100 60p
VIDEO CAMERA SCAN \& FOCUS COIL ASS. tran-
sistor type for $1^{\prime \prime}$ vidicon tube sorry no data new ONLY SLIDE SWITCHES pre-set type 2pco 10p each 10 for ELEC
ELECTROLYTICS $2000+2000$ MFD $25 \mathrm{v} 30 \mathrm{p}, 4700 \mathrm{MFD}$ $40 v 45 \mathrm{p}, 1600+1600 \mathrm{MFD} 63 \mathrm{v} 65 \mathrm{p}, 10,000 \mathrm{MFD} 16 \mathrm{v}$ 40p, all can types, 3300 MFD 25v 25p. 1000 MFD 40 v 20 p both types wire ended.
M NIATURE NIXIE TUBE ITT853S side viewing with left SPECIAL OFFER 10 for $\mathbf{f} 2.50,25$ for $£ 5.00$. supplied new \& unused \& with data sheet.
MINIATURE 470 KHz IFTs transistor type 10 mm sq. 10 p each. double tuned type $15 p$ each

Fig. 9: The copper track pattern for the printed circuit board used for the complete receiver and decoder is shown full size on the right. The laminate should be $\frac{1}{32}$ inch thick and the p.c.b. is carefully trimmed to fit snugly in the plastics case. The component placement for the p.c.b. is shown above. It should be noted that all components must be as small as possible and fitted flush with the board surface with the exception of the two jacks for the crystal

Operation

Gates G1 and G2 form a frequency doubler, where G1 inverts the incoming signal, whilst R10/C20 and R11/C21 differentiate the signal present on their inputs. The output of G 2 remains high until the voltage on C 10 or C 11 has passed the threshold of G2, according to the CR time constant. The retriggerable pulse stretcher is formed from G1, G3, D3 and R13, C22. Whenever the input to G1 is high, the output is low-thereby discharging C22 and keeping the input to G3 low-resulting in a high on the output. When Gl goes low at the end of the last pulse in the data, D3 ceases to conduct, and C22 starts to recharge via R13. After a period related to R13, C22, the output of G3 goes low, unless the capacitor C22 is again discharging by a further data pulse entering G1, when the whole cycle repeats until the reset period is reached. When G3 goes low, the output of G4 goes high-but at the same time, C23 will charge via R12, and after a further period related to R12/C23 product, the output of G4 goes low once again. Desired channel information appears at alternate outputs of the 4017 (frequency doubling makes the intermediate outputs meaningless), Q1, 3, 5, 7 and 9 and the servo control outputs, with Q9 representing the switching channel, which is switched from $1-2 \mathrm{~ms}$ for functions such as undercarriage retract. The outputs of the cmos decoder are sufficient to drive all modern servos directly. G4 of the 4093 also includes an input from the linear squelch/noise detector of the receiver output, such that the presence of noise tends to drive the output of the noise detector low, thus creating a reset at any point in the preceding cycle of operations to prevent spurious triggering of the decoder circuit.

Construction

The p.c.b. layout is shown in Figure 9, and by some r.c. standards this may seem large. However, many constructors may be tempted into this as a first exploit in r.c. and so the design is left as manageable, rather than miniaturised. As with any r.f. circuit, all leads should be left cut short as possible-but sockets for the i.c.s are permissible providing you choose ones that will not permit the i.c.s to vibrate out of place.

As many standard parts as possible have been used, since although some purists may like to wind their own coils, and grind their own crystals, most constructors prefer the expedient of using tried and tested components in areas where adjustments and tolerances are not trivial. The outputs are taken via a proprietory SLM servo connector block, which also provides access for the supply.

The aerial is connected at the other end of the workswhich all fit into a standard SLM receiver box type PT309.

When constructing the receiver p.c.b. use a clean, tinned, hot iron of the miniature 15 W variety. Insert the smallest components first finishing up with the i.f. transformers last. The SLM socket is wired up before soldering to the pads on the board. Note that the socket block is mounted vertically on the board edge with the row of output pins soldered to the pads and the other two rows used as supply rails for the servos.

The SLM case will need to be carefully cut as shown in the photo to fit the socket block. A small cut-out can also be made in the lid immediately above the crystal to allow it to be changed without having to undo the box.

All components must be mounted as close to the board as possible without straining the leads and the wires on the copper track side must be cropped as close as possible to the pads. The two Cambion cage jacks used for the crystal holder are fitted to be almost flush with the copper pads.

Close-up view of the SLM socket block showing the method of mounting and wiring to the p.c.b. The two rows of pins above the board are wired using $22 \mathrm{~s} . \mathrm{w} . g$. tinned copper wire which also serves to complete the power rails on the p.c.b.

Testing and alignment

Much of this aspect of the receiver will have to wait until you have completed the encoder/transmitter described next month-but you can perform a preparatory test by applying 4.8 V from a current-limited supply, and checking that the current is around $4-6 \mathrm{~mA}$. If it is, then you have a good chance of success. If not, check the soldering, the chances of a faulty component are so marginal compared with the incidence of faulty construction as to be discounted.

Assuming the 4.8 V supply is providing $4-5 \mathrm{~mA}$, then listen to the audio output at the junction of R5 and C14. There should be a characteristic hiss, which changes tone as you dab a finger on the underside by the r.f. and i.f. inputs. Pulling the crystal out should have a marked effect, but if not, adjust the core of T3 until an increase in the noise is noted, indicating this section has started up.

T4 should then be trimmed by NOT MORE THAN A TURN EITHER WAY, to peak the noise apparent in the output. With the i.f. section thus optimised, the detector T5 may be adjusted, again by not more than a single turn, and you should notice a distinct change in the character of the noise. Measuring the d.c. voltage at the junction of R5 and C14 will reveal that it changes its quiescent state be-

The finished p.c.b. mounted into the SLM case. This picture also shows the two cut-outs to be made in the case halves

components

Resistors
$\frac{1}{4} W 5 \%$ carbon film

100Ω	1	R14
$1 \mathrm{k} \Omega$	2	R4, R filter
$2 \cdot 2 \mathrm{k} \Omega$	2	R2,9
$10 \mathrm{k} \Omega$	2	R1,5
47 k ,	2	R3,13
$100 \mathrm{k} \Omega$	1	R12
$150 \mathrm{k} \Omega$	1	R6
220k Ω	1	R8
$1 \mathrm{M} \Omega$	3	R7,10,11

$\left.\begin{array}{lll}\begin{array}{l}\text { Capacitors } \\ \text { Ceramic }\end{array} \\ 10 \mathrm{pF}\end{array}\right)$

Tantalum

$1 \mu \mathrm{~F} 35 \mathrm{~V}$	1	C 12
$47 \mu \mathrm{~F} 16 \mathrm{~V}$	2	$\mathrm{C} 8,25$
Polystyrene 470 pF	1	C 20

\section*{Semiconductors
 Diodes
 | OA91 | 3 | D1,2,4 |
| :--- | :--- | :--- |
| 1N914 | 1 | D3 |}

$\begin{array}{lll}\text { Transistors } \\ \text { BF274 } & 1 & \text { Tr1 }\end{array}$

Integrated circuits		
MC3357P	1	IC1
$4017 B$	1	IC3
4093	1	IC2

Inductors

113CNF2K509ADZ	3	T1,2,3
LLC4828	1	T4
LMC4102A	1	T5
33 mH	1	L1

Miscellaneous

Filter CFW455HT (Murata); Crystal (see text), Cambion cage jacks (2); p.c.b. (1); 14 pin d.i.l. socket (1); 16 pin di.i.l. socket (2); 7 channel socket block (SLM); Case PT309 (SLM).
tween extremes of 1 and 3 volts as the detector coil T5 is rotated. This is because the d.c. level follows the characteristic ' S ' curve of the f.m. discriminator, with the noise shaped in the i.f. filter providing sufficient 'substance' for the detector to operate. The detector will usually be set at the halfway point between the voltage extremes, corresponding to the crossing point of the detector curve, for symmetrical modulation systems such as speech. But in p.w.m. systems, the information relies on only the two logic levels 0 and 1 , and the quiescent point should not be set using an unmodulated carrier from the transmitter/encoder, as this represents one extreme of the detector curve. Accordingly, although an approximation may be made by 'centering on noise', the detector should be adjusted for most consistent results when using a correctly modulated carrier. Thus a sinewave-modulated generator set for about $1-1.5 \mathrm{kHz}$ deviation will not give the best results in practice.

The value of R4 may need some adjustment, since this is providing bias for the noise squelch amplifier. Listening to the output of this amplifier at pin 11, using a crystal earpiece may reveal a rather broken sound under no-signal conditions, rather than the usual white noise hiss-and the value of R4 should then be changed for $10 \mathrm{k} \Omega$, up to a maximum of about $47 \mathrm{k} \Omega$ until the output at pin 11 is a constant hiss. The detector setting will have a considerable bearing on the choice of R4, and so you must satisfy yourself that the setting of T5 is accurate before changing R4, as retuning T 5 may necessitate a further change in R4, Now check the d.c. voltage at the output of the noise-the signal should be approaching 0 V , rising to Vcc as the noise is slowly reduced. During reception of an r.c. transmission, part of the waveform will be detected, and so point C may not be at Vcc, although it should not approach the reset level of the decoder.

In the development of this circuit, two basic prototype stages were evolved, and over 10 actual receivers of the final design have been made, proving the results achieved. This should give confidence to first-time builders that the design is repeatable so long as the correct components are used.

Part 2 deals with the transmitter and its construction.

> A licence is required to operate radio control equipment. This costs $£ 2.80$ for five years. Application forms are available from: The Home Office, Radio Regulatory Dept., Waterloo Bridge House, Waterloo Road, London SE1 8UA

1
 Wireless QSL CAROS

(Sample sent on receipt of s.a.e.).
For the radio amateur or short wave listener, an attractive card incorporating a world map and the initials of your favourite radio magazine, printed in blue and green.

Your callsign, name and address will be overprinted in black, at the top of the card. The reverse of the card will have the usual form for reception report, etc., and address space.
The cards measure $102 \times 152 \mathrm{~mm}(4 \times 6 \mathrm{in})$ and are available in the following quantities:

$$
\begin{array}{r}
250 \text { off- } £ 6.25 \\
500 \text { off-£ } 10.00 \\
1000 \text { off-£ } 16.00
\end{array}
$$

These prices include VAT and packing and postage to any United Kingdom address. Please send your order with a cheque or postal order for the appropriate amount to: Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG, giving full details on the coupon provided, or on plain paper if you do not want to cut your copy of Practical Wireless. Please make your remittance payable to IPC Magazines Ltd.

PRODUCTION IINES alan martin

Naked d.p.m.

Recently introduced by OMB Electronics, a low cost, low profile frequency meter.

The type $35 \mathrm{LCD} 3 \frac{1}{2}$ digit d.p.m. provides the high accuracy (0.1%) autozeroing and autopolarity, now expected of low cost d.p.m.s, in a low profile package. The front panel occupies only $83 \times 31 \mathrm{~mm}$ of panel space (maximum depth behind panel 43 mm).

Power drain is a nominal 1 mA from 9 V and other supplies up to 24 V as well as 120 V or 240 V a.c. may be accommodated. Other options are available.

The 1 -off price is $£ 18.37$ plus VAT and 75p P\&P from: OMB Electronics, . 30 Riverside, Eynsford, Kent. Tel: (0322) 863567.

Nice Pair

Lascar Electronics have recently introduced two new digital multimeters. Both have I.c.d. readouts for clarity and long battery life, and are claimed to be considerably lower cost than imported products of similar specification.

The LMM-100 is suitable for field or bench use, has 25 different ranges, a basic accuracy of 0.1% and is priced at $£ 69.95$ plus VAT.

The LMM-200 is a compact handheld instrument, with 15 different ranges, a basic accuracy of 0.5% and a 200 hour battery life. It is priced at £ 34.95 plus VAT.

Another ten instruments are to be introduced over the next year and eventually, the range will include frequency counters, counter-timers, thermometers and other general purpose instruments. All with feature I.c.d. readouts.

Lascar Electronics, Unit 1, Thomasin Road, Burnt Mills Industrial Estate, Basildon, Essex. Tel: (O268) 727383.

New Cassette

Agfa-Gevaert have recently introduced a new tape cassette-Agfa Super-chrom-and added 6 more minutes of playing time (3 mins each side) to their entire range of C60s and C90s. They are also re-launching the cassette range in new packing designs and colours.

Agfa Superchrom is a new, highly sophisticated dual-layer chrome tape which records at very high levels without distortion. In the company's own laboratory tests, Superchrom registered a t.h.d. of only 1.5%-significantly lower than the $2 \cdot 2 \%$ of a Japanese competitor. At 62 dB , the new cassette also has a wider dynamic range than any other cassette--by 2 dB , Agfa claim.

Agfa Superchrom is also said to overcome the traditional weakness of chrome tapes in the middle to lower frequencies, having perfect linear response from 333 Hz to 10 kHz . It has been produced for machines with CrO_{2} switching, and Agfa assert it has no rival in terms of sophistication and technical performance.

Further details from: Magnetic Tape Products, Agfa-Gevaert Ltd., 27 Great West Road, Brentford, Middx. Tel: O15602321.

ASCII Keyboard

The latest from Star Devices is an ASCII encoded touch keyboard which measures $365 \times 203 \times 310 m$, weighs 454 grams and operates within a temperature range of 0° to $35^{\circ} \mathrm{C}$.

The complete "stand-alone" data terminal features 7-bit parallel ASCII encoded output; positive and negative strobe edges; full ASCII set-128 char-acters-upper and lower case in dual QWERTY layout, individual pads for all control codes; all code outputs will drive 4 t.t.l. loads; I.e.d.s to show ASCII code of selected character; audio feedback with volume/tone control; character output rate continuously adjustable from 0.1 to 1 second; auto repeat and modified 2 key rollover; automatic scan facility-will automatically scan through and output each character in the ASCII set, useful for testing and setting-up systems; operational life in excess of 250 million operations.

Requiring a power supply of 5 V d.c. $\pm 0.25 \mathrm{~V}$ at only 200 mA , the keyboard

is presented in a low profile case with non-slip feet and wipe-clean polyester touch pad area with back printed characters, which eliminates wear-off.

The assembled, "burnt in" and tested keyboard, manufactured in the

UK carries a six month guarantee and costs $£ 37.50$ plus VAT.

Further details of optional extras and availability from: Star Devices $L t d ., P O$ Box 21, Newbury, Berkshire. Tel: (0635) 40405.

Outside Detector

It is now generally accepted that the protection of property is primarily the responsibility of the owner and that he should take appropriate action within the law to minimise his risk

Most alarm systems are based on detecting intruders entering buildings, but now the emphasis will have to change with the object of detecting intruders before entry is attempted thereby enabling the occupier to take appropriate action in good time. Exterior detection of potential intruders presents a number of problems not associated with internal protection and, depending upon the layout of any particular site, it is not always possible to provide complete protection at an economical price. However, any form of prior warning is worthy of consideration and to meet this need Photain Controls Ltd., have designed a new Pulse Modulated Gallium Arsenide Infra-Red Beam Unit, which is contained in a waterproof housing and will provide coverage up to a distance of 50 metres.

The unit comprises two housings, one containing the solid state infra-red emitting device complete with optical system and associated circuitry and the other containing the photocell, optical system, de-modulator circuit and with an output relay. The relay is normally
energised and when the beam is interrupted the relay is de-energised changing over the output contacts to perform a switching function. The switching function can be designed to provide a variety of warnings for example:

1. To operate an alarm bell for a period of time (say 5-50 seconds) and then to automatically re-set.
2. To operate an alarm bell continuously until manually re-set by a push button inside the building.
3. To switch on exterior floodlights either for a timed period or until manually re-set.
4. To operate silent alarms inside the premises or remotely to the police.

Various units are available, starting with a beam range of 5 metres up to a a beam range of 50 metres. Prices start at $£ 40$ plus VAT to $£ 80$ plus VAT. The units operate from the mains supply and the output contacts are rated at 5 amps, alternative models are also available operating from a 12 V d.c. supply.

Further details from: Photain Controls Ltd., Unit 18, Hangar No. 3, The Aerodrome, Ford, Nr. Arundel, West Sussex BN18 OBE. Tel: (O9064) 21531

U.K. RETURN OF POST MAIL ORDER SERVICE also WORLDWIDE EXPORT SERVICE

LOW VOLTAGE ELECTROLYTICS
$1,2,4,5,8,16,25,30.50,100,200 \mathrm{mF} 95 \mathrm{~V} 10 \mathrm{p} .500 \mathrm{mF}$ $12 \mathrm{~V} 15 \mathrm{p} ; 25 \mathrm{~V} 20 \mathrm{p} ; 50 \mathrm{~V} 30 \mathrm{p} .1000 \mathrm{mF} 12 \mathrm{~V} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p}$; $50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p} .2000 \mathrm{mF} 40 \mathrm{~V} 60 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} .2500 \mathrm{mF}$
$50 \mathrm{~V} 62 \mathrm{p} .3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 6 \mathrm{p} .2700 \mathrm{mF} 76 \mathrm{~V} 1$.
 $\frac{75 \mathrm{p} ; 35 \mathrm{~V} 85 \mathrm{p} .5600 \mathrm{mF} 76 \mathrm{~V} \mathrm{£1} 175.1200 \mathrm{mF} 76 \mathrm{~V}}{\text { HIGH VOLTAGE ELECTROLYTICS }}$

Now, the complete MK 14 micro-computer system from Science of Cambridge

VDU MODULE. £33.75

($£ 26.85$ without character generator) inc. $\mathrm{p} \& \mathrm{p}$.
Display up to $1 / 2 \mathrm{~K}$ memory (32 lines $\times 16$ chars, with character generator; or 4096 spor positions in graphics mode) on UHF: domestic TV. Eurocard-sized module includes UHF modulator, runs on single 5 V supply. Complete ascii upper-case character set can be mixed with graphics.

POWER SUPPLY. $£ 6.10$ inc. p \& p.
Delivers 8 V at 600 mA from $220 / 240 \mathrm{~V}$ mains sufficient to drive all modules shown here simultaneously. Sealed plastic case, BS-approved

PROM PROGRAMMER.
$\mathcal{L} 11.85$ inc. p \& p.
Use to transfer your own program developed and debugged on the MK 14 RAM to PROM (74 S 5 T1) to replace SCl0S monitor for special applications, c.g. model railway control. Software allows editing and verifying.

MK 14 MICROCOMPUTER KIT
§46.55 inc. $\mathrm{p} \& \mathrm{p}$.
Widely-reviewed microcomputer kit with hexadecimal keyboard, display, 8×512-byte PROM, 256-byte RAM, and optional 16-lines I/O plus further 128 bytes of RAM.

Supplied with free manual to cover operations of all types - from games to basic maths to electronics design. Manual contains programs plus instructions for creating valuable personal programs. Also a superb education and training aid - an ideal introduction to computer technology.

Designed for fast, easy asscmbly; supplied with step-by-step instructions.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, CAMBS., CB2 1SN. Tel: 0223311488.

To order, complete coupon and post to Science of Cambridge
Return as received within 14 days for full money refund if not completely satisfied.
To: Science of Cambridge Lid, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Please send me:
$\square \mathrm{MK} 14$ standard kit © $£ 46.55$. \square ExtraRAM © 4.14 per pair. \square RAM I/O device (0) $£ 8.97$.
-VDU module including character generator fol £33.75.
\square VDU module without character generator (a) $£ 26.85$.
I enclose cheque/MO/PO for \mathcal{L} \qquad
\square Cassette interface module e 10.7 .25 - PROM programmer ell C11.85.
\square Power supply ($£ 6.10$
\square Full technical details of the MK 14
System, with order form.
All prices include p and p.

(total).

Name

Address (please print)

DECODER

This is a passive or active circuit which restores the "integrity" of programme material subsequent to encoding (see under Encoder). The multiplex decoder used in f.m. stereo receivers exemplifies one such application. It is the job of this decoder to reclaim the separate left and right stereo signals from the encoded stereo multiplex information which is modulated on the v.h.f. '(very highfrequency) carrier wave (Fig. 10).

In certain types of noise reduction circuits, such as Dolby B which is used in domestic cassette decks, the

Fig. 10: Basic principle of f.m. stereo encoding and decoding

WAD453
Fig. 11: Block diagram of Dolby B noise reduction encoding and decoding
signal is first encoded during recording and then decoded during replay to restore the frequency response integrity while at the same time reducing the noise content. What happens here is that the upper-frequency part of the recording signal is boosted by an amount determined by the signal level. On high-level signals corresponding to a recording level of $200 \mathrm{nWb} / \mathrm{m}$ (this is called the Dolby level) or more, no boost is applied, but as the level reduces so more upper-frequency boost is progressively applied, reaching a maximum of 10 dB .

When the encoded signal is replayed, the Dolby decoder comes into operation and introduces upper-frequency attenuation to correspond to the boost applied during recording. The attenuation is thus also determined by the signal level. The net result is not only restored frequency integrity but also a significant improvement in signal/noise (S / N) ratio owing to the integrated upper-frequency noise being reduced by an amount corresponding to the decoding attenuation.

The scheme ensures that maximum noise reduction occurs only on low-level signals thereby avoiding impairment to the effective dynamic range. The higher level signals automatically mask the noise, anyway. A block diagram of the encode and decode parts of the Dolby B noise reduction system is given in Fig. 11.

It will be appreciated that the encode and decode sections need to track with changing signal level very accurately to avoid frequency response errors when replaying a tape, and for this reason the gains of the two sections need to be normalised with respect to a tape of given sensitivity. Some cassette decks are equipped with a 400 Hz oscillator for recording a suitable level tone on the tape used, so that on replay the decoder gain can be adjusted to yield a corresponding output.

DE-EMPHASIS

For some applications, notably f.m. radio, a fixed amount of upper-frequency boost is introduced at the input. This calls for a fixed amount of treble attenuation at the output for correct frequency integrity, which is generally called de-emphasis (also see under Pre-emphasis). Because of this the noise is also reduced. However, because of the fixed pre-emphasis, the average level of input signal needs to be restricted to avoid overloading at the high frequencies. The frequency at which the input treble boost and the output treble attenuation start to take effect is commonly referred to a simple time-constant. The European (including the UK) time-constant for f.m. radio (and TV) is $50 \mu \mathrm{~s}$, which corresponds to a -3 dB frequency of $1 / 2 \pi \mathrm{~T}$ (where T is the time-constant in seconds), or 3184 Hz . The time-constant in the USA is $75 \mu \mathrm{~s}$, corresponding to a -3 dB (turnover) frequency of 2123 Hz .

When Dolby B noise reduction is used on f.m. (in the USA - in the UK this has so far only been experimented with) the time-constant is reduced to $25 \mu \mathrm{~s}(6369 \mathrm{~Hz}$ turnover frequency).

If the receiver set for the American standard is used in the UK the treble frequencies are rolled-off prematurely. Conversely, if a receiver set for the European standard is used in America the treble frequencies are boosted.

HIFFIGLOSSARY

DIN

These are the initials of the German Industrial Standards organisation, or Deutscher Industrie Normen-and not to be confused with the noises produced by dubious so-called hi-fi systems! It commonly refers to the standards for plugs, sockets, equalisation, measurement references and so forth, but also includes the basic requirements for hi-fi under DIN 45-500. Like our own British Standards Institution (BSI), it also defines the standards for numerous items outside the field of hi-fi and electronics.

As DIN 45-500 refers essentially to the basic requirements for hi-fi (though it is being updated) it is not regarded by UK hi-fi devotees as a very strict standard, and many items of hi-fi carrying the DIN 45-500 label often exceed the minimum requirements.

DROP-OUT

When there is a momentary vanishing of signal from a recording tape this is commonly referred to as a dropout. It is caused either by a flaw in the magnetic-oxide or metal-particle coating of the tape or a mechanical aberration resulting in the tape momentarily losing contact with the tape head. Some tapes are more prone to dropout problems than others, which is one reason why cheap, non-proprietary tapes cannot be recommended for use with hi-fi decks. Another reason is that the loose oxide particles of cheap tapes can clog the minute gaps of the heads and impair the upper-frequency response, the output, S / N ratio and the erase ratio.

DYNAMIC RANGE

One aspect of this is the dB distance between the highest distortion-limited output and the noise floor of the reproducing equipment, including the noise of the programme source itself. For example, if the distortion-limited output of a cassette deck with a particular brand of tape is referred to 0 dB and 3 per cent distortion and the noise floor is 50 dB below this output, then the effective dynamic range would be 50 dB .

With acoustic programme material such as "live" music from a concert hall the dynamic range is the difference in phons between the strongest and the weakest sounds.

With hi-fi equipment some sort of noise weighting is commonly adopted so that the annoyance value of the noise correlates to the measurement. With CCIR weighting, for example, a cassette deck with Dolby B noise reduction might return a dynamic range of 65 dB at low and middle frequencies with chrome or pseudo chrome tape, a hi-fi f.m. tuner 72 dB stereo, and a hi-fi amplifier 75 dB at pickup input, the latter referred to an output of 1 W , which is thus more accurately the S / N ratio.

Fig. 12: Illustration of tracing distortion

EIGENTONE

This term refers to sound resonance in a room owing to parallel boundaries. The effect is basically the "bouncing" of the waves to and fro between the parallel surfaces before they decay to a non-disturbing value. When the inter-boundary spacing is a multiple of half the wavelength of the sound the reflections become phase coincident and a standing wave resonance is then evoked, so that a listener moving in the sound field will experience successive nodes and antinodes as he traverses the line of wave incidence.

A primary eigentone corresponds to a sound whose wavelength corresponds to twice the distance between the boundaries. For example, if two parallel surfaces (walls) are spaced by 6 m then the room will produce a strong eigentone around 30 Hz and possibly "colour" the reproduction. The frequency of a sound can be found from c / λ where c is the propagation velocity (close to 344 metres per second at sea level and $20^{\circ} \mathrm{C}$) and the wavelength in metres (frequency in Hz). By remembering that an eigentone results from half a wavelength it is possible to calculate the frequency of an eigentone which will develop between any two parallel surfaces.

Coloration resulting from eigentones can be reduced by damping the boundary interfaces with acoustic tiles, drapes, etc., but the effect of such damping tends to diminish with decreasing frequency. It has been calculated that, based on unity height, the best dimensions for hi-fi are 1.25 width and 1.6 length for a small room, and 1.6 width and 2.5 length for a large room.

ELLIPTICAL STYLUS

One aberration of disc replay is the distortion resulting from the tip of the stylus tracing high-frequency, short wavelength groove modulation, as shown in Fig. 12. This is called tracing distortion which can only be reduced by decreasing the radius of the stylus tip so that the short wavelength modulation can be better defined.

When this is done with a spherical tip, the tip tends to "bottom" in the groove and decrease the S / N ratio. This is combated by the so-called elliptical stylus which has a small radius for defining the modulation and a larger radius across the groove to avoid bottoming.

EQUALISATION

For recording or transmission it is often necessary to tailor the programme signal to suit the medium concerned. For example, disc recording calls for a progressively decreasing recording level with reducing frequency to prevent inter-groove collapse on loud bass signals. This
is equalised during replay by passing the pickup signal through an amplifier whose gain rises with decreasing frequency.

At the other end of the spectrum it is desirable to give the recording signal a boost (pre-emphasis) so that the corresponding degree of attenuation on replay not only restores the frequency integrity but also reduces the noise. As with f.m. radio, time-constants are used to define the turnover frequencies, and with disc records these are 318 and $75 \mu \mathrm{~s}$. In addition, there is a low-frequency turnover of $3180 \mu \mathrm{~s}$ (more recently also a subsonic turnover according to IEC 65) to avoid dise ripple effects on replay. These time constants collectively yield RIAA record equalisation.

Equalisation is also required for tape recording and replay. When a magnetic tape recorded at a constant input from low to high frequencies is replayed, the output from low to high frequencies rises at the rate of 6 dB per octave up to a certain high-frequency where head and tape losses cause the output to start falling. In the replay amplifier, therefore, the gain needs to rise at 6 dB per octave with decreasing frequency, while at that frequency where the head and tape losses come into play a suitable upperfrequency boost is also required. The upper-frequency losses are also countered to some degree by the application of treble boost (pre-emphasis) during recording.

The turnover frequencies involved depend on the tape speed and the magnetic properties of the tape. With cassette machines the time-constant is $120 \mu \mathrm{~s}$ for basic ferric tape and $70 \mu \mathrm{~s}$ for chrome, pseudo chrome, ferrochrome and metal particle tapes. As with disc replay, there is a further low-frequency time-constant of 3180μ s to reduce the effects of mains ripple during replay.

ENCODER

This is a device which restores the integrity of the programme material during replay when the material has been subjected to encoding during recording or transmission (see under Decoder).

Fig. 13: Three types of frequency response defined in the text

FLUTTER

This term is commonly associated with tape machines and record players and refers to a waver of pitch resulting from spurious fluctuations of speed at periods in excess of about 10 Hz . Lower rate fluctuations are referred to as wow. Flutter can cause an undesirable "roughness" to the reproduction as the result of intermodulation products. Wow and flutter are usually measured together by a suitable instrument, often via a weighting network to provide a more valid subjective indication, one standard being DIN peak weighted, often seen in the hi-fi literature.

FREQUENCY RANGE

This is the range of frequencies over which an item of equipment is operative. Because no defined output limits are included it is not a very meaningful parameter and one which should be treated with suspicion when reading the specification of an item of hi-fi equipment.

FREQUENCY RESPONSE

The frequency response is the range of frequencies provided by the equipment within prescribed output (usually dB) limits. The frequency response differs from the power response in as much as the former is measured at a low level (well below the full output yield of the equipment), while the latter is measured at or close to the rated output. The frequency response is commonly quoted as that frequency range between low and high terminal frequencies where the output is 3 dB below that at 1 kHz , as shown in Fig. 13 at (a).

A greater accuracy is provided by referring to the $\pm 1 \mathrm{~dB}$ undulations within a stated frequency range. Curve (b) in Fig. 13, for example, could be written as $\pm 1 \mathrm{~dB}$ $20 \mathrm{~Hz}-20 \mathrm{kHz}$. Curve (c) in Fig. 13 could be defined as $60 \mathrm{~Hz}-15 \mathrm{kHz}-3 \mathrm{~dB}+0.5 \mathrm{~dB}$, or as $150 \mathrm{~Hz}-8.5 \mathrm{kHz}$ $\pm 0.5 \mathrm{~dB}$. The greatest accuracy of all, of course, is provided by the frequency response curve proper being a part of the specification.

FRINGE AREA

This is the area in advance of the normal service area range of a transmitting station, usally an f.m. or TV station. The reliable reception range of a v.h.f. transmitter is a trifle in advance of the line-of-sight distance between the top of the transmitting and receiving aerials, assuming there are no large obstructions in between. This gives the service area distance, which corresponds in miles to 1.5 $\sqrt{h_{t}}$ plus $1.5 \sqrt{h_{r}}$, where h_{t} and h_{r} are the heights of the transmitting and receiving aerials in feet. For example, if
the height of h_{t} is 1000 feet and the height of $h_{r} 100$ feet, then we get $47 \cdot 43+15$, or 62.43 miles.

This distance, however, can only be regarded as approximate because it depends on the power of the transmitter and on the prevailing tropospheric conditions. The factor 1.5 can increase during a spell of high pressure conditions (e.g., anticyclonic weather) and thus propagate v.h.f. signals more deeply into the fringe area.

HAAS EFFECT

A sound source is located by a listener by the differences in intensity and time of arrival of the sound waves at his two ears. Imagine two stereo speakers each emitting corresponding sound, of equal intensity but that the sound from one speaker is slightly delayed with respect to that from the other. A listener placed at an equal distance from the two speakers will hear the sound as though emanating from that speaker which is not subjected to the delay. This is called the precedence effect or Haas effect. If there is no delay, then the sound will appear to emanate from a point midway between the two speakers when the intensities are equal. If the sound from one speaker is louder than that from the other the sound will appear to come from the speaker of loudest sound.

These two properties of human hearing make it possible for us to enjoy stereo reproduction from a two-channel system; but it is the Haas effect which is the dominating factor, for with a 50 ms delay the sound intensity from that speaker needs to be stepped up by some 10 dB or more to reverse the apparent balance of sound.

HALF-POWER BANDWIDTH

If the rated power of an amplifier is, say, 50 W , the half-power is 25 W , which is 3 dB down from 50 W . Now, one way of expressing the bandwidth of a power amplifier is to locate the lower and upper frequencies at half power where the distortion is, say, 1% (or, perhaps, a lower value). This is shown diagrammatically in Fig. 14.

HANGOVER

Not quite the same as the morning after the night before, but just as disconcerting! The effect results from the speaker cone or diaphragm continuing in motion after the passing of a sharp transient. What happens is that the cone or diaphragm overshoots, undershoots, overshoots and so on at diminishing amplitude until all the stored energy has been exhausted. It can result from a very low damping factor (see Part 2) or from "ringing" (e.g., damped oscillations) in a filter circuit or part of the amplifier or receiver. The result is that the "edge" is taken from the music definition and the absolute attack of the reproduction is weakened.

HARMONIC DISTORTION

This results from amplitude non-linearity such that a ratio of increase or decrease of input signal does not result in precisely the same ratio of increase or decrease of output signal. A perfectly linear amplifier would have a straight line transfer (input/output) characteristic as shown by the broken line in Fig. 15. In reality no such amplifier exists. All have a very slightly curved characteristic as shown by the full line in the diagram, which is very much exaggerated, for the curvature of hi-fi amplifiers would not be detectable diagrammatically at this scale.

The mathematical nature of the characteristic determines the order of the distortion produced. A characteristic of even powers produces even-order distortion, such as second-, fourth-, sixth-, etc., harmonic, while a characteristic of odd powers produces odd-order distortion, such as third-, fifth-, seventh-, etc., harmonic. It is generally considered, and agreed by myself, that even-order distortion is more palatable than odd-order distortion, and this applies also to the odd-order (e.g., third-order) intermodulation distortion that odd-order non-linearity also evokes.

Fig. 14: Definition of half-power bandwidth

Fig.15: Transfer characteristic of amplifier. Ideal state shown by the broken-line (perfectly linear), and realistic state (exaggerated) shown by the full-line curve

HOLE-IN-THE-MIDDLE EFFECT

When the spacing of the two stereo speakers is correctly established in relation to the listening distance from the stereo pair, the sound appears to emanate evenly across the sound stage between the two speakers. However, if the two speakers are too far apart or if the phasing between the two is wrong, then there may appear to be an absence of sound coming from the centre of the sound stage. This is sometimes referred to as the hole-in-the-middle effect. If a large room or hall necessitates the use of wide speaker spacing, the hole-in-the-middle can be filled by the use of a third, centre speaker being fed with a correct mix of left and right signals.

HUM-LOOP

When a hi-fi system is earthed in more than one place, it is possible for minute mains ripple currents to flow round the closed earth loop and appear in series with lowlevel programme source signals, especially the small signals delivered by the gramophone pickup. When this happens a disconcerting background hum mars the reproduction.

The only solution to this problem lies in disconnecting the earths from all but one item of equipment, which is usually the amplifier. However, extreme care is essential when running certain items of hi-fi without an earth,
because under a fault condition this could render the system lethal! Some of the more recent equipment is designed with so-called Class II insulation, which avoids the need for earthing and hence makes it virtually impossible to create a hum-loop condition. However, if in any doubt at all about hi-fi earthing please always consult a reputable hi-fi dealer. It is better to be safe than sorry, particularly since all members of the family are likely to use the hi-fi system.

Index of Partly Defined Jargon

Antinode
CCIR weighting (also see Part 2) Coloration
Damped oscillations
Deutscher Industrie Normen
Distortion limited output
Dolby level
Dynamic range
Encoding
Intermodulation distortion
Multiplex decoder
Noise reduction

Phons
Power response
Precedence effect
Pre-emphasis
Service area
Signal/noise (S/N) ratio
Sound stage
Standing wave
Tracing distortion
Tropospheric conditions Weighting network
Wow and flutter

TO BE CONTINUED

AERIALS for 160 Metres

\rightarrow continued from page 26

Fig. 12: If space does not permit a mast in the garden, the aerial of Fig. 11 may be mounted on the house-top
base, then commonsense suggests that they should run under the aerial's top section, although this may well affect the directivity. In the immediate vicinity of the aerial base, the ground current is highly concentrated and an earth mat of many interconnected wires, or chicken-wire mesh should be used.

To summarise the various recommendations, the author's "practical" 160 m top-loaded vertical is shown in Fig. 11. If garden space does not allow the erection of a mast, the aerial may be mounted atop the house, on a chimney stack for instance, as shown in Fig. 12.

Semiconductor Tester \longrightarrow continued from page 33

The two out-of-phase voltages are then passed to two complementary emitter followers which act as current output buffers. Fed through $100 \mathrm{k} \Omega$ variable resistors, they are connected to the test sockets and also applied to the oscilloscope X and Y amplifiers. Before testing components, VR1 and VR2 are adjusted to give a good circular pattern on the screen.

Fig. 3: The displays for good transistors showing the portions of the display representing the base, emitter and collector connections

Construction

Veroboard can be used for the main components, the actual layout not being critical. Power can be derived from two 6 V batteries and the completed unit housed in a suitably sized plastics box. Screw terminals can be used to connect the device under test but a specially made socket would be preferable.

IDECIALOFFER

 ZENTRON LCD Time-Zone WatchOur special offer to PW readers this month will appeal particularly to radio amateurs and short wave listeners. Featuring eight predetermined time zones in addition to the basic watch functions, it's a great help in keeping track of time in distant countries.

Not only that-it's also a stop-watch with $1 / 10$ second accuracy; an alarm watch; and a 12 -hour down counter.

Having a liquid crystal display, it shows the selected function continuously. No need to put down an armful of books or parcels just to press a button to see what the time is.

The special price of the watch for $P W$ readers is $£ 23.95$ plus 55 p postage and packing, a total of $£ 24.50$, including VAT.

Complete the coupon and send it with your remittance to "Practical Wireless", Dept PWL6, Rochester X, Kent ME99 1AA.

THE CLOSING DATE OF THIS OFFER IS 15 FEBRUARY 1980.

specification

1. Basic Watch Functions-Twelve-hour display format with flags displaying hours, minutes, seconds, date, and day of the week. Month displayed only in setting mode. Date controlled by 4-year aúto-calendär.
2. World Time-Eight predetermined time-zones covering major cities: London, Paris, Cairo, Tokyo, Los Angeles, New York, Rio de Janeiro and Chicago.
3. Chronograph-Two stop-watch functions (Add and Lap) of $1 / 10$ second accuracy with running indicators. Start and stop operations checked by sounding of beep-tone. Maximum time 11 hours, 59 minutes, 59.9 seconds.
4. Down Counter-Timer of second accuracy, presettable in one-minute steps up to 12 hours. Beeptone checks start and stop: Alarm tone when time reaches 0 hours; 0 minutes; 0 seconds:
5. Alarm-Twenty-four-hour alarm. Presettable to hours and minutes.
6. Fast Satting-Automatic slow/fast digit advance feature.
7. Backlight-For night viewing.

Single battery operation, UCC393 or equivalent. $32: 768 \mathrm{kHz}$ quartz crystal control.
Module Size 30 mm diameter by 6 mm thick.
Viewing area $21.7 \times 11 \mathrm{~mm}$.
Fully adjustable stainless steel bracelet.

HOWTO ORDER
Please complete both parts of the coupon beiow in BLOCK CAPITALS.
Remittance may be by Access, Barclaycard, Postal Order or Cheque (name and address on back of cheques, please), crossed, and made payable to IPC Magazines Ltd. This offer is open to readers in England, Scotland, Wales, Northern Ireland and Channel Isiands only. It is not available in Eire or overseas.

Orders are normally despatched within 28 days but please allow time for carriage. You will be notified if a longer delay may be expected.

If paying by Access or Barclaycard, please do not enclose your credit card with your order.

Please send me the watch(es) as indicated © $£ 24.50$ each, including P\&P.

Tel. No. (Home or Work)
\square

\qquad

From: PRACTICAL WIRELESS

Dept PWL6, Rochester X, Kent ME99 1AA

COMPUKIT UK101 LOW COST

 SUPERBOARD IN KIT FORM

COMPUKIT UK101

ELENCO - $3 \frac{1}{2}$ digit D.V.M. as nationally advertised.
ONLY $\mathbf{£ 5 5}+$ V.A.T. + DEL.
ORDER FROM:-
Contour Electronics
23 HIGH STREET,
STANSTEAD ABBOTTS.
WARE, HERTFORDSHIRE

SEND ONLY £10.00 DEPOSIT
 TO RESERVE ONE

```
An extended monitor on cassette will be supplied
free of charge with each kit.
```

Simple Soldering due to clear and consise instructions compiled by Dr. T. Berk, BSc.PhD

NO EXTRAS NEEDED JUST HIT
'RETURN' AND GO.

Build, understand, and program your own
computer for only a small outlay.

ONLY $\mathbf{f 2 1 9}$ + VAT + DEL.
including AF Modulator \& Power supply. Absolutely no extras.

FOR FURTHER DETAILS

Telephone: Harlow (0279) 415717

Ware 870218

The Compukit UK101 has
everything a one board 'superboard' should have.

* Uses uitra-powerful 6502 microprocessor.
donz Frame refresh for steady clear picture (U.S.A. fittery displays).
$\star 48$ chars by 16 lines -1 K memory mapped video system providing high speed access to screen display enabling animated games and graphs.
\star Extensive 256 character set which includes full upper and lower case alphanumerics, Greek symbols for mathematical constants and numerous graphic characters enabling you to form almost any shape you desire anywhore on the screen.
* 8 K full Microsoft Basic in ROM compatible with PET, APPLE SORCERER hence taking the headache out of programming by using simple English statements. Much faster than currently available personal computers.
\star Professional 52 Key keyboard in 3 colours software polled meaning that all debouncing and key decoding done in software.
\star Video output and UHF Highgrade modulator 18 Mz andwidth) which connects direct to the aerial socket of your T.V. Channel 36 UHF
Fully stabilised 5V power supply including Standard KANSAS
high reliability program storage - use on any providing high rellability program storage - use on any standard domestle tape Cassette rocorder.
- 40 user RAM expandable to 8 K on board $£ 49$ extra tachment of extender card containing 24K RAM and disk controller. (Ohio Scientlfic compatible).
* 6502 machine code accessible through powerful 2 K machine code monitor on board.
* High quality thru plated P.C.B. with all I.C.'s mounted on sockets.

FULL CONSTRUCTION DETAILS

IN P.E. AUG 1979 EDITION

AVAILABLE NOW

TTLs	EY	S		74221	${ }^{\text {460p }}$	74 LS192	440p	$74 \text { C157 }$	$\begin{aligned} & 250 \mathrm{p} \\ & \mathbf{1 5 5 p} \end{aligned}$	AY1-0212	p	MC1496	100p	AC127/8	20	BFY51/2		T1P42A	$\begin{aligned} & \text { 78p } \\ & 70 \mathrm{p} \end{aligned}$	$\begin{aligned} & 2 N 3866 \\ & 2 N 3903 / 4 \end{aligned}$	$\begin{aligned} & 90 \mathrm{p} \\ & 18 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { DIODES } \\ & \text { BY127 } \end{aligned}$
7400	$41 p$		180 p									MC3340	120 p					T1P42C	320	2N3905/6	$2{ }^{\text {2 }}$	OA47 9p
7401	12p	74100	430p	744285	${ }_{90 \mathrm{p}}$	${ }^{74} 4$ LS 196	120	74 C 169	155p	AY1-5050	212p		120 p	AD161/2	75p	BFYY0	90p	TIP2955	78p	2 N 4036	$65 p$	OA81 15p
7402	12p	74104	${ }^{65}$ p	74278	290 p	74LS221	409p	74C163	455p	AY5-1224A	225p	MK50398	790	BC	14 p	BRY39	45p	TIP3055	70p	2N4058/9	12p	OA85 45p
7403	14P	74105	65p			74LS240	475p	$74 \mathrm{C1} 64$	120p	AY5-1315		NF531	200p	A		BSX19i20		TIS43	34p	2N4060	12p	OA90 9p
7404	14 P	74107	34p	74278	19	74LS241	1750	74C173	120 p	AY5-1317	7400	NE543K	225p	$7 / 8$	p	BU105	190p	TIS93	30p	2N4061/2	88p	OA91 9p
7405	18 p	74109	55 p	74284	400 p	74LS242	175p	74C174	180 p			NE555	25 p	${ }_{\text {BC149 }}$	10p	BU108	250p	ZTX108	12p	$2{ }^{2} 4123 / 4$	22p	OA95 9p
7406	32p	74110	55p	748285	400 p	74LS243	175p	74C175	210 p	AY.5-1320	320 p	NE558	70p	${ }_{\text {BC157/8 }}$	10p	BU205	220 p	ZTX300	11 p	$2 \mathrm{~N} 4125 / 6$	22p	OA200 9p
7407	32p	74119		74290	156 p	74LS244	185p	74C192	150 p	3046		NE561B	425p	BC459	19	8 BLOB	240p	ZTX500	15p	2 N 4289	20p	OA202 10p
7408	19p	74116	200p	74293	150p	74.5245	280p	74C193	150p	CA3048	225	NE562B	425				145p	ZTX502	1p	2N4401/3	27p	1N914 4p
7409	49p	74118	139p	74294	200	74LS25	200	74 C 194	220 p		22p	NE565	13	$\mathrm{BC}^{\text {BCi }}$ C	p	BU400	145	ZTX504	30p	2N4427	90 p	1N916 7p
74	15	741		74288	200 p	74LS257	120 p	74C195	110 p		225	NE568	155	C172	12 p	M 22501	225p	2N457A	250p	2 N 4871	60 p	1 N 4148 4 -
7419	24 p	74120	110p	74365	150p	74LS259	175p	74 C 221	475p	A 3090 A	1375p	NE567	175p	BC1	178	M 29255	100p	2N696	35p	2N5087	$27 p$	1N4001/2 5p
7412	P	74121	48 p	74366	450p	74LS298	249 p	48	aes	CA3130e	1000	RC4151	400p	${ }^{\text {BC182/3 }}$	10 p	M33001	225 p	2N697	25 p	2N5089	27p	${ }^{1 N 4003 / 4} 808$
7414	$60 p$	74123	48	74367	150	74 S3373	2000	4000	15 p	CA3140E	70p	SN76003N	175p	BC184	14 p	MJE340	p	2 N 697	45 p	2 N 5179	27 p	
				7438	150p	74LS374	195 p	4001	17p	CA3160E	75p	SN76013N	140p	BC187	30p			2N706A	P	2N5191	83p	1N5401/3 14p
7417	27p	74126	p	7438	2009	81L595		4002	17p	FX209	759 p	SN76013N		BC212/3	11p			2NT18		2 N 5		1N5404/7 49 p
7420	47p	74128	,	74393	200 p	81LS96	1	4006	95 D	7106				BC214	12p		40 p	2N930	18 p	2N5245	40p	ZENERS
7421	40p	74132	75 p	74490	225p	81 81L598	14	4007	18 p	CL8038	34	SN76023		BC469	36p	05	40p	2N1131/2	20 p	2N5296	55p	$2.7 \mathrm{~V}-33 \mathrm{~V}$
7422	22p	74136		ES		${ }^{8128}$	230p	4008	${ }_{40 \mathrm{p}}^{80}$	M301A		SN76033N	175p	BC477/8	30 p	A0		2N1613	25p	2N5401	50p	400 mW 9p
7423	34 p	74141	2000	S4LSOO	13 p	9301	160p	4010	50p	LM318	200p	SP8515	750p	BC516/7	50p	SA1	50p	2N1711	25p	2N5457/8	40p	$1 \mathrm{~W}^{\text {c }}$ 15p
7426	40 p	74145	90p	74LS02	18p	9302		4011	17p	LM324	70p	TBA641		BC549C	${ }_{\text {f8p }}$	MPSA56		2 N 2102	60 p	2 N 5459	40p	
7427	345	74147	490p	74LS04	14p	9308		4012	18 p	LM339				BC557B	16p			2N2160	120 p	$2 N 5460$ 2 N 485	44 p	SFFERS
7428	36p	7448	边	74LS	22 p	9310		013		LM348		BAs00		BC559C	18p			2N2222A	20p	2N6027	48 p	¢16
743	17p	74150	00p	74LS10	20 p	9312	160 p	4014		77	47p	TBA810		BCY70	18p	-C28		2N2369A	16p	2N6247	190p	$100+555$
7432	30 p	74151 A	70p	74LST3	385	9314	165 p	4015	45 p	380		820		BCY71/2	22p			2N2484	30 p	2N6254	130p	¢20
7433	${ }_{35}{ }^{\text {p }}$	74153 74154		74LS20	p	8316	225 p	4017	80 p	LM381AN		TDA4500	2	BD131/2	50 p	R2008B	200p	2N2646	50 p	2N6290	${ }^{655}$	$100+$
743	35 p	74155	90p	74LS22	24 p			4018	89 p	LA		TDA1004	32		200	R2010B	200p	2N2904/5A	30 p	2 N 6292	65p	RCA 2 N 3055
7440	17p	74156	90p	74LS27	33 p	${ }_{9370}^{9368}$	200 p	4019	45 p			TDA1008		24B	35p			2N2907A	30p	2N140		BR
7441	70p	74157		74L	22 p	9374	290 p	20	100p	LM733	100 p	TDA1022		BF256B	70p	TIPP9C	55p	${ }_{2}{ }^{2} 2926$	${ }_{9 p}$	3N201	110 p	RECTIFIERS
7442	${ }^{60 p}$	74159		74LS47	30	${ }_{9601}$	200	4021	1100	LM741	20 p	XR2206		BF2578	32p	TIP30A	48 p	2N3053	20p	3 N 204	100p	1 A 50 V 21 p
7443	112p	74160	100	74LS55		9802	220p	4022	1098	LM747	70p	XR2207 $\times 82215$ $\times 1$		BF259	36p	TIP30C	60p	2N3054	65 p	40290	250 p	1A 100V 22p
74	142p	74162					Ace	4023	22p	L.M748		221		BFR39	23p	TiP31A	58p	2N3055	48p	40360	40p	1 A 400 V 30 p
7446 A	100p	74162 74163	100	74LSS74		I.c.			200	LM3900		XR:240	p	EFR40	27 p	TIP31C	62 p	2N3442	140p	40361/2	45p	2 A 50 V 30 p
7447AA	${ }^{93 p}$	74163		LS83	11	MC1488	400p	4026	1300	LM3911	130p			BfR49	27p	TIP32A	68 p	2N3553	240p	40364	120p	2 A 100 V 35 p
${ }_{7448}{ }^{\text {744 }}$	80 p	74164		74LS85	100p	MC1489	f00p	4027	150	LM4138	120p	ZN424E		BFR79	27p	TiP32C	82 p	$2{ }^{\text {N3565 }}$	30 p	40408	70 p	2 A 400 V 45 p
7450	17p	74166	100p	74LS86	40p	75107	180p	4028	84p	310P	450p			80	27	TIP33A		2N3543/4		40409	65 p	3 Aa 200 V 60p
7451	47p	74167	200p	74LS90	$60 p$	75182	200 p	4029	100 p	MC1495		95H90	300 p	29	30p	TIP34A	145p	$2 \mathrm{~N} 3704 / 5$		40411	300 p	4 A 100 V
7453	17p	74170	$240 p$	74LS93		75451/2	120 p	030		Mci49\%.				${ }^{\text {BFX }} 30$	34 p	TPP34C	160 p	2N3706/7	12p	40594	97 p	4A 400V 100p
7454	17 p	74172 74173	720 p	74LS107	100p	75491/2	96p	4031	2	VOLTAE		AT		BFX84/5	30 p	TIP35A	225 p	2N3708/9	12p	40595	105p	50V 90p
7470	36 p	74174	93p	7415123	75p	C-MOS	I.C.s	4034	200 p	Fixed Pla	tic	20		BFX86/7	30p	TIP35C	299p	2 N 773	300p	40803	58 p	p
7472	30 p	74175	85 p	74LS132	900p	74 COO	25p	4035	110 p	4 A +ve		1A -ve						N38				
7473	34p	74176	90p	74LS133	60 p	74.002	25 p	4040	100p	5V 7805	75p	5V 7905	90	BFY50	22	TIP41A	${ }^{3} 6$	2N3823		40871/2		
7474	30p	74177	90p	74LS138	60 p	74 CO 4	27p	4041	80 p	12 V 7812	75 p	12V 7912										
74	35	74	180p	74LS139	${ }^{60 p}$	$74 \mathrm{CO8}$	270	4042	$80 p$ 900	15V 7815	75	15V 7915							fll	s plea	se	A.E. or see
7488	350 500	74180 74181	200p	74LS153	160 p	${ }^{74 C 14}$	90	4044	90 p	24 V 7824	90p	24 V 7924	80	0.125	12			ou	full	ge adv	tisem	ents in P.E.,
7481	100p	${ }_{74182}^{7418}$	90p	744SS157	${ }_{\text {cop }}^{80 \mathrm{p}}$	74	27 p	4046	1100p	100 mA T	O-92	100 mA T	-					E.T.I	I., W	less Wo		
${ }_{7483} 74$	84 p 90 p	$\begin{aligned} & 74184 A \\ & 74185 \end{aligned}$	150p	74LS180	120p	${ }^{744} 423$	2370^{27}	4047	10	5V ${ }_{\text {5 }}$	${ }_{35 \mathrm{p}}$	5V 79LOt										
$7484{ }^{\text {7 }}$	100 p	74186	c00p	74LS161	109 p	74 C 42	110 p	$404{ }^{4}$	20	15 V 781.15	35 p	15V 79L15	80p	eas	d	p						
7485	110 p	74190	100 p	74LS162	1400	74 C 48	${ }^{250 p}$	${ }^{4051}$	47 p	OTher re	EGUL	TORS				at						
7486	34 p	74191	100 p	74LS163	100 p	${ }^{74} 74{ }^{73}$	75 p	4051	sop_{0}	LM309K	135 p	TBA625B	120p			+						
74889	178p	84192 74193	$100 p$ 1000	74LS164	${ }_{80 \mathrm{p}}$	74.85	200 p	4053	80 p	LM317T	200 p	TL430	650	Govt	0	es,						
74991	80p	74194 7	400p	74LS 173	110 p	$74 \mathrm{C86}$	${ }_{65 p}^{65}$	4055	125	LM323K	${ }_{6}^{625 p}$	78 HOSKC $78 \mathrm{MGT2C}$	${ }^{6759}$	order				17 BU	N	Y RO		
7492A	46p	74195	95p	74LS174	10p	$74 C 90$	95 p	4056	${ }^{135} \mathrm{p}$	LM723	37 P	78MGT2C	840									
7493 A	30 p	74196	95p	74LS175	110 p	74 C 95	${ }_{1250}$	40	${ }^{600 p}$	OPTO-EL				liers	We	m		LOND	N	W10		
74895	${ }^{84 \mathrm{p}}$	74198	80p	74LS190	${ }_{1000}$	74 C 150	2500	4083	120 p	2N5777 45p	ORP	230 p ORP6										
7496	$65 p$	74199	150	74LS19	100p	74C151	260p	4066	55p	OCP71 430p	ORP	90p Tli.78	70p	SATURD	DA	10.30-4.3		Tel:	(1)	1500		

The integrated circuit regulator device is now widely used whenever a well regulated, smoothed supply is required which can be made with the absolute minimum of trouble. The most commonly used form of regulator device employs a series pass transistor which controls the continuous current flowing into a load. One of the disadvantages of this type of regulator is that a considerable proportion of the input power can be wasted, especially when the input voltage is much higher than the output voltage.

During the past couple of years or so, another type of regulator has come onto the market which has many advantages, but also some disadvantages. This new device, known as a switching regulator, can operate with very high efficiency so that little power is wasted in the regulator circuit. Therefore, one does not need a large heatsink to keep the regulator device cool (in contrast to the heatsink required with high-current regulators employing series pass transistors). Additional advantages of switching regulator circuits include the fact that one can obtain output voltages which are lower than the input voltage, higher than the input voltage or of the opposite polarity to the input voltage. Also, if the output voltage is lower than the input voltage, the output current can exceed the input current.

In spite of the versatility of the switching regulator circuits which enable such a wide range of outputs to be obtained at high efficiency, one must remember that these devices require more complex circuitry than series pass regulator devices, which often have just input, output and ground connections. Switching regulator circuits require an inductor. This type of regulator operates by switching current to a reservoir capacitor at a high frequency and is therefore liable to generate radio frequency interference.

Basic circuits

Before we consider the TL497 device in detail, let us first discuss three basic switching regulator circuit configurations which enable (a) an output voltage lower than the input voltage to be obtained with low input current (b) an output voltage greater than the input voltage to be achieved and (c) an output of inverted polarity to be obtained.
(a) The step-down circuit. The basic circuit of the stepdown switching regulator (also known as the "buck regulator") is shown in Fig. 1(a). The output voltage is always less than the input voltage.

The transistor acts purely as a fast switch. When the transistor is biased to conduction, the voltage across the diode D rises almost to the input voltage. Thus a voltage approximately equal to the difference between the input and output voltages appears across the inductor L and
causes a steadily increasing current to flow through this inductor. This increasing current ceases to flow only when the transistor ceases to conduct.

The voltage across the inductor is now reversed and the diode is biased to conduction so that the magnetic energy stored in the inductor can be passed to the reservoir capacitor C. The internal control circuit used to operate the transistor switch is controlled by an oscillator circuit which automatically increases the "on" time of the transistor if the output voltage decreases and increases the "off" time if the output voltage increases.

The output voltage is therefore maintained almost constant. As the energy stored in the inductor is recovered during the "off" time of the transistor, when no current is being taken from the input, the circuit can operate at high efficiency with the output current larger than the input current. This type of circuit can generate a relatively large amount of noise in the input line due to the rapid switching.
(b) The boost circuit. The boost regulator circuit of Fig. 1(b) can be used when one requires an output voltage greater than the input voltage. At the instant the transistor is switched to conduction, most of the input voltage appears across the inductor and the diode is reverse biased, since the collector of the transistor is only a little above earth potential.

When the transistor is switched off, the energy stored in the inductor will send a current through the diode to the reservoir capacitor. The internal circuit automatically times the switching operations so that the mean diode current is equal to the load current and therefore the output voltage remains constant.

This type of circuit has the advantage that little noise is generated in the power supply input line, since current can flow into the circuit during both of the transistor switching states. Unfortunately it is not especially easy to filter the

Fig. 1: Basic circuits for (a) step-down (b) step-up and (c) inverting types of switching regulator
output voltage so as to render it really smooth without any fluctuations at the switching frequency.

It should be clear that in this type of circuit the input current must exceed the output current, since otherwise there would be an inadequate flow of energy to allow the output voltage to exceed the input voltage.
(c) The inverter or flyback circuit. The inverter circuit of Fig. 1(c) provides a negative output voltage from a positive input voltage, the magnitude of the output voltage being either smaller or larger than the input, depending on the circuit design.

Almost the whole of the input voltage appears across the inductor L when the transistor conducts, so energy is stored in L as a magnetic field. When the transistor is switched off, the reverse voltage appearing across the inductor causes the diode to conduct so that the capacitor C becomes charged.

Both the input and output circuits tend to be quite noisy at the switching frequency in this circuit. The output should therefore be well smoothed, not merely by the use of an electrolytic capacitor (which has a high series inductance), but also by a smaller capacitor in parallel with the electrolytic.

The Texas Instruments TL497 device contains the semiconductor devices which are required to make any of the three types of circuits discussed. Output currents of up to 500 mA can be obtained from the device itself, but the TL497 can also be used with an external transistor to provide much higher regulated output currents.

The basic internal circuit of the 14 -pin TL497 is shown in Fig. 2. The most recent type is the TL 497A which has a Schottky type diode between pins 6 and 7, but either type can be used in the circuits to be discussed. The TL497AC is the economical commercial type.

It is important to note that the absolute maximum permissible input voltage to the TL497 device is 15 V , but it is wise to limit the maximum input voltage to a somewhat smaller value, perhaps 12 V , but certainly no more than 14 V , so as to provide some margin of safety. The absolute maximum output voltage is 35 V , but again it is wise to allow some margin of safety.

The TL497 contains an internal 1.22 V precision reference voltage source. In practical circuits a fraction of the output voltage is tapped off by means of a potential divider circuit and is compared with this reference voltage by the use of the internal comparator. The output of the comparator determines whether the transistor switch is put in the "on" or in the "off" state.

Step-down circuit

A typical circuit for providing an output of +5 V from an input of about +7 V to +14 V is shown in Fig. 3. The oscillator frequency is determined by the value of the capacitor connected between pin 3 and ground. The value of this capacitor, C_{T} in Fig. 3, is 150 pF and this results in a maximum oscillator frequency of about 60 kHz which is suitable for most TL497 circuits.

The output voltage is stabilised at a value which results in the pin 1 potential (one of the inputs to the internal comparator) being equal to the internal 1.22 V reference voltage. The output voltage is divided in potential by R1 and R2, so with the values shown in Fig. 3, the pin 1 voltage is near to $+1 \cdot 2 \mathrm{~V}$. Obviously there are tolerances in the values of R1, R2 and in the value of the internal reference voltage, but if necessary R 1 can be trimmed so that the circuit provides the exact output voltage needed. As the internal reference voltage is about 1.2 V (actually 1.08 V to 1.32 V), it is convenient to choose the value of $1.2 \mathrm{k} \Omega$ for R 2 , since the output voltage is then the sum

Fig. 2: Internal components in block form of the TL497

WAD459

NC-No internat connection
of the values of R1 and R2 in kilohms-to a first approximation.

The use of the current sensing resistor R_{sc} between pins 13 and 14 is optional. If this resistor is omitted, these two pins should be joined directly together. If the resistor is included in the circuit, when the voltage at pin 13 is about 0.07 V below that at pin 14 , the internal switching transistor is turned off so that no output is obtained. Thus when the value of 1 ohm is employed for this resistor, the output current is limited to approximately 700 mA and this will prevent damage to the device if the output is accidentally shorted to ground.

The circuit of Fig. 3 is based on that of Fig. 1(a). It should be clear that the inductance L and the capacitance C are in similar positions to those in Fig. 1(a), whilst the diode D of Fig. 1 is connected internally between pins 6 and 7 of the TL497 in Fig. 3.

In a typical case, the input to the circuit of Fig. 3 could be 12 V at 130 mA representing a power of 1.56 W . The output could be 5 V at 200 mA which is 1 W ; thus the overall efficiency would be about 64%. Output ripple in this circuit is typically around 15 mV .

Naturally other output voltages may be obtained by suitable choice of R1 and R2. The output voltage is equal to $(1+\mathrm{R} 1 / \mathrm{R} 2)$ times the value of the internal reference voltage.

A circuit for stepping up an input voltage of perhaps +5 or +10 V to an output of +16.2 V is shown in Fig. 4. This is based on the circuit of Fig. 1(b), but the input passes through the resistor $R_{s c}$ before reaching the inductor L, this resistor performing the same function as the similar resistor in Fig. 3. As indicated in Fig. 1(b), the right-hand side of the inductor is connected to the switching transistor

Fig. 3: A typical step-down TL497 circuit providing a +5 V output

Plastic Boxes

 boxes to suit every project. There are case-boxes, sloping front and flip-top boxes, general purpose and potting boxes - there's even some with integral battery compartments. We've also got circuit boards, accessories, module frames and metal cases - all to the highest standard to give your equipment the quality you demand. Send 25p to cover post and packing and the catalogue's yours.

/T1] VERO ELECTRONICS LTD RETAIL DEPT. Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR
 Tel: (04215) 62829

(pin 10 in Fig. 4) and hence through a diode (pin 7 to pin 6) to feed the capacitor C.

As in the case of Fig. 3, the output voltage is equal to (1 $+\mathrm{R} 1 / \mathrm{R} 2$) times the value of the internal reference voltage. By selecting a value of $1.2 \mathrm{k} \Omega$ for R 2 , the output voltage is made equal to the sum of the values of R1 and R2 in kilohms.

Inverter circuit

An inverting regulator circuit for supplying an output of about -5 V is shown in Fig. 5. This is based on the circuit of Fig. 1(c) with the addition of the short-circuit limiting resistor R_{sc}, as in the previously discussed circuits. In Figs. 3 and 4 the one side of the 1.2 V internal voltage reference is grounded at pin 4 so that this reference voltage can be compared with the potential across a resistor, one side of which is grounded. In Fig. 5, however, pin 4 is connected to the output potential and pin 1 to the junction of the two potential dividing resistors so that the positive side of R2 can be connected to the comparator input at pin 1 in order to render the polarities at the comparator inputs correct.

The output voltage from the Fig. 5 circuits is equal to $-(1+\mathrm{R} 1 / \mathrm{R} 2)$ times the internal reference voltage.

General comments

The use of the TL497 device enables switching regulator circuits to be constructed much more simply than if discrete components are used. The basic circuits shown in Figs. 3 to 5 are simple to construct, but circuits using an external power transistor for controlling larger currents must be carefully designed.

The minimum input voltage for the operation of the TL497 is 4.5 V . The step-down circuit of Fig. 3 is suitable for providing any output voltage from the +1.2 V of the internal reference up to a value of 1 V less than the input. The step-up circuit of Fig. 4 can be used to provide an output of not less than 2 V above the input voltage up to the maximum of 30 V . In the inverting circuit of Fig. 5, the output voltage can range from the negative value of the internal reference source up to -25 V .

Texas Instruments have made available speciallydesigned inductors for use with the TL497 device, these being known as the RI 497. Four types are available, details being shown in Table 1. The 0.5 V types are suitable for use in the circuits of Figs. 3 to 5 inclusive, the 5 A types being required only when an external transistor is employed to obtain large output currents. These inductors are encapsulated in cases 25.4 mm square by 9.53 mm in height and incorporate a toroidal ferrite inductor.

Although the use of the specially-designed inductors is strongly to be recommended, any ferrite-cored inductor could be employed provided that the ferrite material does not become magnetically saturated at the maximum current at which it is likely to be used. As an experiment, the writer wound about 70 turns of 28 s.w.g. wire around a standard ferrite rod aerial and found that the TL497 device would operate satisfactorily in two of the three

Table 1. Data on the coils produced for use with the TL497 device

Inductor type	Inductance $(\mu \mathrm{H} \pm 10 \%)$	Resistance (ohm, max.)	Max. Current (A)
RI 497-01	75	4	0.5
RI 497-02	150	6	0.5
RI 497-03	75	0.1	5
RI 497-04	150	0.15	5

Fig. 4: A step-up circuit providing an output of $+\mathbf{1 6 . 2 V}$ with the component values shown
circuits shown. However, the design of switching regulator circuits is not especially easy and it is well worth while using the recommended inductor.

Switching regulator circuits can generate much high frequency noise if a reasonable layout is not adopted. In order to obtain low output voltage ripple, the output filter capacitor (marked C in the circuits of Figs. 3 to 5 inclusive) should be close to the integrated circuit and have

Fig. 5: An inverting switching regulator circuit providing an output of about-5V
a short lead to a point on the negative line close to pin 5 of the TL497. A good quality capacitor should be employed. If long power supply leads are used to bring current to the TL497, a larger value of input filter capacitor may possibly be required, but this capacitor should always be close to the integrated circuit. Inadequate filtering of the input and output leads can cause considerable problems with switching regulator circuits.

No capacitor behaves as if it were a pure capacitor without resistance. In switching regulator applications it is very important that the "equivalent series resistance" of the input and output filter capacitors should be reasonably small; this small resistance can be obtained by suitable constructional techniques when making the capacitors, namely by joining the input leads onto the metal foil of the capacitor in many places rather than just at one place. Such capacitors tend to be slightly more expensive than inferior types having a much higher series resistance.

The TL497 i.c. and the RI 497-02 coil are available from Arrow Electronics Ltd., Leader House, Coptfold Road, Brentwood, Essex, CM14 4BN.

The authors spend a large amount of their working year on site, commissioning complex electrical equipment. This often involves checking electrical panels several hundred yards from control panels and the work is usually hindered by poor or non-existent communications.

The simple telephone handset system described here was developed to provide versatile instant communications. To meet our requirements, the system must:

1. Be cheap. Despite million-pound budgets for projects, firms usually baulk at a $£ 10$ order to RS Components.
2. Be battery-operated with a very long life on a PP3 battery.
3. Comprise, at each end, a telephone handset (or headset with a boom microphone) and an amplifier. The amplifier must be small and light enough to be carried in a pocket.
4. Unlike the usual "baby alarm" circuit, have two-way speech with no press-to-talk buttons.
5. Be a two-wire system, floating to allow use with spare cores in multicore cables shared with high-voltage, heavycurrent signals without suffering from interference.
6. Have a call facility which will work with the receiving amplifier turned off.
7. Have a range of approximately 1 km .

These design criteria were met by a simple circuit built around standard Post Office-style handsets and the ubiquitous 741 amplifier.

Circuit Description

The basic design is shown on Fig. 1. We have two handsets and amplifiers, denoted A and B, connected by a signal pair. Each amplifier is connected to the signal line by a series resistor RSA and RSB. The two earpieces are connected direct onto the lines.

Suppose amplifier A is transmitting, and we have a voltage V_{OA} at the amplifier output. Since the output of amplifier B looks like a low impedance, the voltage on the line will be
$\mathrm{V}_{\mathrm{LA}}=\mathrm{V}_{\mathrm{OA}} \times \frac{(\mathrm{RSB} \text { in parallel with two earpieces })}{(\mathrm{RSB} \text { in parallel with two earpieces })+\mathrm{RSA}}$

Similarly the voltage on the line from amplifier B will be:
$\mathrm{V}_{\mathrm{LB}}=\mathrm{V}_{\mathrm{OB}} \times \frac{\text { (RSA in parallel with two earpieces) }}{\text { (RSA in parallel with two earpieces) }+ \text { RSB }}$
Since $V_{O B}=V_{O A}$ by design and RSA $=$ RSB by design then $\mathrm{V}_{\mathrm{LA}}=\mathrm{V}_{\mathrm{LB}}$ and speech of equal volume will be obtained in both earpieces, and two-way speech is possible. Note that when you speak into your handset, you will hear yourself in your own earpiece. This effect, known as sidetone, is deliberate, as it is disconcerting NOT to hear yourself, and in addition it reduces the natural tendency to shout in noisy locations.

The actual circuit of one handset and amplifier is shown in Fig. 2. The circuit of the other amplifier and handset is, of course, identical. The microphone in a standard PO handset is a carbon transmitter, and needs a bias current. This is provided by R1. In the absence of any data, the value of R 1 was determined empirically. IC 1 is a conventional 741 op . amp. connected as an inverting amplifier. The amplifier is biased by R2 and R3 to a point mid-way between the supply rails. The signal from the microphone is a.c. coupled to the amplifier and the gain of the amplifier is fixed by R4 and R5. This was deliberately made nonadjustable to ensure that $V_{O A}$ and $V_{O B}$ are equal. If moving-coil microphones are used, R4 and R5 may need to be changed, and R1 may be omitted. At the amplifier output, a signal of approximately 1 volt is produced. The amplifier output is a.c. coupled onto the line via C2. Resistor R6 is the source resistance RS of the amplifier mentioned above.

The earpiece is connected to the line via the volume control VR1. Note that this only affects the received volume, not the transmitted volume. In theory it will affect the volume on both earpieces as the load on the line is changed, but this effect is negligible.

The call facility is provided by S2. This simply applies positive feedback via C 3 , causing IC1 to oscillate. As a practical observation it is advisable to remove the handset from your ear before pressing the call tone button. If the circuit is used with earphones and a boom microphone, the call facility is best omitted in the interest of preventing induced deafness!

The ON/OFF switch is a two-pole switch. One contact switches the supply, the other causes the earpiece to bypass the volume control so that the call facility can be used when the receiving amplifier is turned off and the volume control is turned right down. When in use, battery consumption is a miserly $1-2 \mathrm{~mA}$.

Construction and Use

The amplifiers were built on a piece of 0.1 in pitch Veroboard measuring $42 \times 42 \mathrm{~mm}$, with the layout shown on Fig. 3. The circuit board, volume control, ON/OFF switch, line connector and battery were mounted into a standard diecast box which is small and light enough to fit into a pocket.

The circuit is so simple it should be straightforward to fault-find on if problems are encountered. An obvious area to start is the voltages on pins 2, 3 and 6 of IC1. These should all be at half battery volts. To aid fault finding and repairs, IC1 should be mounted in a d.i.I. socket.

The connection to the line is made via a jack plug and socket or crocodile clips, as convenient. It is important that neither of the signal lines is connected to the case. There are two reasons for this; the first being safety. In impromptu use it is quite possible that a live wire could be used in error: with a signal wire connected to the case the

Fig. 1: Basic principles of two-way operation

Fig. 2: Circuit diagram of one telephone

Fig. 3: Veroboard layout and external connections. The only track cuts required are those beneath IC1

components

THIS LIST COVERS ONE AMPLIFIER AND HANDSET

Resistors
$\frac{1}{4}$ W 5%

220Ω	1	R6
$10 \mathrm{k} \Omega$	2	R1, 4
$15 \mathrm{k} \Omega$	2	R2, 3
220 k ,	1	R5
Potentiometers		
$1 \mathrm{k} \Omega$	1	VR1
Integrated Circuits		
741	1	IC1

Capacitors

Disc ceramic
$10 \mathrm{nF} \quad 1 \quad \mathrm{C} 3$

Tantalum bead, $16 / 35 \mathrm{~V}$
$1 \mu \mathrm{~F} \quad 1 \quad \mathrm{C} 1$
$22 \mu \mathrm{~F} \quad 1 \quad \mathrm{C} 2$

Miscellaneous

S1 Min. toggle d.p.d.t.
S2 Min. push-to-make
Veroboard 0.1 in pitch, $42 \times 42 \mathrm{~mm}$
8 -pin d.i.l. socket (optional but recommended)
Diecast box $114 \times 64 \times 30 \mathrm{~mm}$. PP3 battery and connector. Post Office-style handset and cable (available from surplus shops, etc.). Jack plug and socket, or crocodile clips (see text)
results could be fatal. The second reason is that if the signal wires were crossed, and both cases were on an earthed surface, the signal would be shorted and the phones would not work.

Several pairs of phones have been constructed, and they have proved to be a valuable aid to site work. They have been operated in adverse conditions with high background
noise and in the presence of electrical interference and have proved very durable. Apart from the obvious industrial use they were designed for, they are also useful for applications such as sports meetings, amateur dramatics, aerial adjustment, house to shed links etc. The simplicity and low cost makes them an excellent project for an inexperienced constructor.

by Eric Dowdeswell G4AR

It was a pleasure to read that the European CW Association ($P W$ September, Letters) is supporting the idea that I and others have been putting forward from time to time of a Novice-style licence as an introduction to the full amateur licence. This will allow the newcomer a chance to get a good grounding in the construction and operation of equipment to combat the sad lack of experience so prevalent today among newly-licensed amateurs.

It seems to me that everyone nowadays wants to start at the top, with the best of equipment, regardless of the cost. Fine, but where does one go from there? Since the answer is obviously not "on and up" it must be "down and out". Out of one hobby into another, seeking some kind of satisfaction although, of course, the person concerned will never admit this.

Real, lasting satisfaction in a hobby is obtained by working one's way up from the bottom, learning and seeking new information on all aspects of the hobby, making and doing with one's own hands, saving up hardearned cash to buy another bit of gear, meeting with others to share experiences, generally getting results from one's own efforts.

The acquisition of expensive equipment that is operated without a backing of knowledge and experience will bring only short-lived satisfaction in many cases. How much nicer to know what really goes on inside those black unimaginative boxes. If something goes wrong the best one can do is to change one anonymous-looking module or p.c.b. for another, which is not likely to prove very instructive, only expensive.

With the advent of some form of CB radio service in this country amateurs will need to be doubly sure that they are not wrongly blamed for TV QRM, and a more than skin-deep knowledge of TVI and its cure will be a necessity. The "appliance operator" in this situation will be ill-equipped to deal with TVI.

The introduction of some form of novice licence could mean that $P W$ and similar magazines could once again publish constructional articles on low-power transmitters and all the associated equipment and test gear which were so popular in years gone by. There would be a whole new market for kits and components to meet the demands of
novice licensees. Readers would find a new interest in studying electronics at its roots with practical applications, instead of having to take so much for granted as they do today.

Merely soldering blank-looking i.c.s. to a p.c.b. is not a very inspiring or instructive pastime and is unlikely to hold the attention for very long. How many readers of this column have assembled such a p.c.b. only to find that it doesn't work and then have not had the slightest idea as to how they should go about finding the trouble? They then pass on to another project having learned precisely nothing in the process.

Whatever the hobby or interest may be, there is only one place to start if the genuine understanding of the subject is the target. At the bottom. The projected novice licence could easily provide the necessary inspiration and incentive, leading on to a new generation of amateurs who would be technicians as well as operators, which, after all, is what our amateur radio service is supposed to be all about. It might even lead to a rewarding career in electronics.

Clubs Ahoy

Just for a change, let's start with news of the clubs that have sent in info on their activities, like the newly formed St. Helens and District ARC which welcomes new members to its Wednesday meetings at the YMCA HQ, 107 Corporation Street, St Helens at 1945, with a preceding Morse code practice session. Paul Gaskell G8PQD, 131 Greenfield Road, St Helens, Lancs, will be pleased to hear from any interested reader or tel 25472 if it's easier.

Maidenhead and District ARC wants to get in on the act, and why not, seeing that the ad is free; meetings are on the first Thursday and third Tuesday of each month at 1945 at the Red Cross Centre, The Crescent, Maidenhead, and John Patrick G3TWG, Bedford Lodge, Camden Place, Bourne End, Bucks will be pleased to take your queries by letter or on Bourne End 27275.

Reading the RAIBC newsletter Radial recently I noted an excellent practice which deserves wider mention, namely the idea of clubs donating sums of money, from small to large, to the RAIBC, obtained by a general collection or from a particular function. Just 10 per cent from a junk sale could be several pounds with no trouble at all. And it all goes to helping handicapped and blind members get a receiver or transmitting gear installed and, believe me, every penny is put to good purpose, there are no "overheads". Contact Frances Woolley G3LWY at 9 Rannoch Court, Adelaide Road, Surbiton, Surrey for more info. Or listen to the RAIBC net with G4IBC on 3750 at 1000 on Tuesdays or 1400 Wednesdays.

West Kent ARS has meetings at Adult Education Centre, Monson Road, Tunbridge Wells, Kent at 8 pm on
 tinct functions is designed with the professional scanner in mind. Since it's crystalless, programming 50 frequencies in infinite frequency combinations is as easy as pushing a few buttons. With its incredible "non-volatile" memory, the Bearcat 250 searches out frequencies, stores them in memory for later retrieval, and even counts transmissions by frequency. It's alsoa fine quartz crystal clock. The capabilities of the Bearcat 250 almost defy imagination. If you want the ultimate scanner available today, this is it.

Bearcat ESI RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW63AY. TELEPHONE: 01-624 7174. TELEX: 23718.

General Coverage Communications Receiver FRG-7

- $0.5-29.9 \mathrm{MHz}$ Coverage with 10 kHz Readout

The FRG-7 is a precision-built all-purpose communications receiver featuring all solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion super-heterodyne circuit, the FRG7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3-position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception the FRG-7 is the receiver for you. Free Securicor Delivery $\mathbf{£ 2 1 0}$.

WIDE RANGE OF
 NEW and USED RECEIVERS and TRANSCEIVERS

Open 7 days a week. Sundays $11-3.00$ pm.

AMCOMM SERVICES

194A Northolt Road, South Harrow, Middx. 01-864 1166

01-422 9585

9 Nov. with Tom Douglas G3BA speaking on "Radio in PoW Camps", on 23 Nov. there is junk sale and 7 Dec. sees Laurie Crawford expounding on modernising old receivers. Contact is Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent.

Bury ARS G3BRS every Tuesday night at Mosses Centre, Cecil Street, with 13 Nov. devoted to a junk sale, and 11 Dec. sees the AGM linked to a wine and cheese party with, I imagine, the ladies getting a word in for a change! A warm welcome awaits visitors to the Edgware \& District RS at Watling Community Centre, 145 Orange Hill Road, Burnt Oak, on the second and fourth Thursdays at around 8 pm . Latest gen on meetings from Howard Drury G4HMD QTHR. The Edgware Ham News is a good read combining technical and personal chitchat with member G3SHY designing a cmos logic keyer and organising a kit for less than $£ 3$.

Northern Heights ARS has a similar style newsletter plus an excellent fixtures card for the wallet, running right through to next August! That's what I call organisation and other clubs might do worse than think about this idea. At least it shows that the committee is doing it's job! Meetings 8 pm promptly at the Bradshaw Tavern, Bradshaw, near Halifax, on Wednesdays with 7 Nov seeing the RSGB's RR in attendance, a junk sale on 14 Nov. and the 28th welcomes Dr Bailey a Bradford University.

Here and There

Normally from West Wickham, Kent, John Dainty has been merrily caravanning around East Anglia and able to "listen without the infernal crackles etc at my QTH" his DXing being aided on this occasion by the vertical multiband aerial described in the RSGB Handbook. Jim Rowland in Tetbury, Glos., bought an a.t.u. which did nothing for his DX160, which seemed strange, as I told him. He persevered and eventually found a solder bridge in the wiring which, when demolished, let the a.t.u. do the job it was intended to. Then Jim bought a crystal calibrator by mail order which was supposed to provide signals from 1 MHz to 1 kHz , but didn't! Supplier took a month to reply but said nothing useful. Jim found a dry solder joint on a Veroboard "standing out like a desert island in a silver sea". Clearing this and all was OK. Needless to say, Jim is very apprehensive now about mail order, and rightly so, since in both cases the equipment could not have been tested properly at any stage which is just not good enough, but Jim has given me the names of the suppliers and these will be borne in mind.

Jim mentions his 130 ft Windom "leaping over telephone wires and ducking under electricity cables". I am sure he is exaggerating a bit, or I hope so, because an aerial should never, ever, be allowed to come close to such installations. Over the years a number of amateurs have been killed when an aerial has fallen across power wires, so be warned, don't do it!

Eric Flack, 58 Victoria Road West, Hebburn, Tyne \& Wear, would like to hear from readers who have been able to improve their DX160s in respect of selectivity, sensitivity and general stability. Ex-RAF wireless op W. Thompson is returning to the fold after some 40 years and would like to beg, borrow, or steal a manual for the CR300/1 receiver. Already he is back to 20 w.p.m. so if you can help write to him at 21 Polwarth Drive, Brunton Park, Gosforth, Newcastle-on-Tyne.

Rod Williams has got his B40 Owners' Club going, the main problem being lack of spares for these sets. If you know of a source or perhaps of any sets that could be cannibalised please write to Rod at 54 Woodlands Avenue, Talgarth, Brecon, Powys.

Far and Wide

Strings of VP8s make Bill Rendell in Truro wonder what is "going on" down in them there parts! Like VP8SB on Adelaide Is (QSL G3ZMF "we only have one ship a year"), VP8SO on Signy Is., and VP8QI on Argentine Island, the site of the British "Faraday" Antarctic base (QSLs to G4CHD), all on 20 m s.s.b. However, warmer climes produced SV1DC DXpedition to Greece's Mount Athos, (QSL Box 161, Athens) on 15 m together with VP2ARS (QSLs to DF1EQ), VP2MM on Montserrat and 5T5AY.

Like most readers Allan Stevens of Crowthorne, Berks, found 28 MHz becoming quite lively and improving all the time, producing YB0WR in Jakarta and P29GC on New Britain Is. in Papua New Guinea, with ZF1J on 21 MHz for good measure. Peter Hawkes from Stourbridge, West Mids, moved his DX160 into the end of his garage and so virtually cleared up his TVI problem, except on the Top Band, so that is one answer to the radiation from TV set time-bases. Peter mentions the Hurricane Net on 14325 kHz , run by YLs K 4 HKL and WA1KKP, which presumably has had plenty to do of late! Peter logged stuff on 10 m like SU1CR, AP2KS, YB0WR with 5T5AY, HS1ABD, 3D6BP and 3V8ONU on 15 m . 20 m provided VP8SO of Signy, with 8P6AH on 40 m and VO1BB, ZS6DW (!), K 6SVL/VP9 and 8P6KY on 80m, all s.s.b.

Mike Stollov G4HWB in Blackley, Manchester also has trouble trying to get his 60ft wire clear of telephone wires but his FRG-7 still found 10 m wide open with a marked burst of solar noise on August 26 at 1135. He logged CP5JA/P2, JY5ZM, XT2AW, 5H3KS and 9G1JX. Arthur White, near Grantham, Lincs, had trouble with his Trio QR666 and borrowed an Eddystone 888 which he is now loath to return and hopes to buy! Using a 60 ft wire and a.t.u. he found VK6NY on 10 m , stacks of VKs on 20 m , and ZS2MI of Marion Is. who QSLs via ZS6APO or WA2ZN. Our RTTY hero Dennis Sheppard (Sheerness, Kent) has not been too active, preferring to concentrate on a stereo amp he is building, but nevertheless logged, or rather got them to log themselves, DJ6UZ and JA 1DSI on 10 m , JA1BPQ and ZS6AKO on 15 m and AH6D (Hawaii), G4BHT/4X4, VE3JCU, VK2EG, YV1EQ, ZS1LM, 3V8ONU and 5N0SID on 20 m . Dennis now has 34 C confirmed on this mode.

With a trapped dipole in the loft feeding his FRG-7, Bob Anderson of Canvey Island (no, it's not a new country!), Essex, logged ZE8JB and 9K 2DR on 10 m with A2CBT, HP1ACJ, VP2VBK and 7 X 2 HM on 14 MHz . Pete Lucas, near Newport, Salop, decided not to take his AR88 with him on holiday since he didn't want to have to hire a crane, so was out of touch with the bands for a while. He comments on the American prefixing system which seems to have gone quite mad making our prefix lists look rather sick. Space permitting I will try to sort this out by giving the new prefixes, but in the meantime take nothing for granted but check by listening for the actual QTH. This applies to almost any US and possessions station.

Great to hear that Dave Coggins is able to get something up other than a long wire. He has his 66 ft as an invertedV aimed at $\mathrm{VK} / \mathrm{ZL}$, feeding an a.t.u. into his DX160 which he is able to compare with a 2 -element quad on the 10 m band. On 10 m it was ST2SA in Khartoum, VP8PU (another one!), YB0ADW, with FO8DT, P29GC and VU2LQA on $15 \mathrm{~m}, 5 \mathrm{~W} 1 \mathrm{BP}$ (W. Samoa) and 9Y4TFL for 20 m and CO2DC and 6 W 8 DY representing 40 m , while 80 m produced FM7WS and ZS6DW, the latter confirming the reception by Peter Hawkes of this ZS6 mentioned earlier. So 80 m is already showing an improvement and hopefully is a forecast of things to come this winter.

MEDIUM WAVE DX

by Charles Molloy G8BUS

The appearance of signals from the Droitwich transmitters on $693 \mathrm{kHz}, 1053 \mathrm{kHz}$ and 1215 kHz "at a wide variety of places on the band" are making DXing difficult for reader Stewart Kinsley of Coventry. The receiver is a Drake SSR-1 used with a $20 f t$ end-fed aerial.

Overloading

Overloading is the problem, which is giving rise to spurious responses within the receiver. Stronger signals than the receiver is capable of handling are being fed into the aerial socket, and the cure is to reduce these offending signals by means of an attenuator fitted between the aerial and the receiver.

A simple attenuator can be made using a $1 \mathrm{k} \Omega$ potentiometer. There are three tags on the "pot". Connect the aerial to the centre tag. Connect either of the outer tags to the receiver aerial socket. Connect the remaining outer tag to the receiver earth socket along with the earth wire if one is used.

When the pot is set to one end of its travel there will be maximum signal. At the other end there will be little or no signal. Start with the pot at maximum signal and slowly rotate the control until the spurious signals disappear but, and this is the snag, you will also have reduced the strength of your DX signals as well. Only use the minimum attenuation necessary to cure the overloading.

It might also be worthwhile to check that the receiver r.f. stage is working properly, as a fault in this part of the receiver or in the mixer stage might give similar results.

In spite of his difficulties, Stewart managed to pull in Malta on 1557 kHz , Tenerife on 621 , Conakry, Guinea on 1404, Rhodes on 1260 and Batra in Egypt on 819.

FRG-7 Survey

As promised in the July issue here is a synopsis of a survey made from letters from forty FRG-7 owners. It was compiled by George Tyler of Bristol and it starts by saying that the FRG-7 is a fine receiver, well laid out externally and internally with each component marked on the printed board for ease of identification.

Reports on the various bands are welcome and should
be sent drect, by the 15 th of the month, to:
AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, beathethead Road, Ashtead, Surrey KT21 2TW: Logs by bands, eachin alphabetical order.
MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane. Southport PR8 3JG. Reports for bothbands must be kept separate.
VHF BANDS Ron Ham BRS 15744 ; Faraday, Greyfriars, Storrington, Sussex RH2O 4HE.

No component failure was reported and the manual is considered excellent. The stability is also excellent and the only spurious signal observed was on 21350 kHz . The calibrated dial mechanism gives frequency readout to 10 kHz and can easily be read to 5 kHz . Selectivity is adequate for a.m. reception but is not for s.s.b. (A selectivity modification kit is available).

Power consumption on internal batteries is high. The receiver is poor for m.w. DXing. The attenuator is of little value unless a very strong signal overloads the receiver. The tone control is useful on both a.m. and s.s.b. The fine tuning knob is too small and the noise limiter has little effect.

High impedance phones give better results for DXing than the low Z types. The Dial Set is useful but the \mathbf{S} meter is rather small.

Comment on the Survey

There are a couple of points I feel compelled to comment on. The first has to do with selectivity.

A receiver with fixed selectivity will have to compromise between a bandwidth wide enough to give good intelligibility, and narrow enough to pick out a wanted station from interference. Wide bandwidth means good quality audio along with poor selectivity. Narrow bandwidth means poor quality audio but good separating ability. Hifi and DXing do not go together! It would appear that the FRG-7's bandwidth is too wide hence the modification kit. What will the audio be like after modification? There really ought to be a selectivity switch, with two positions at least, on any communications receiver.

It is a pity that "poor for m.w. DXing" was not expanded. Readers of this column have reported some excellent DX on the FRG-7 and this is the first time I have heard this complaint. I wonder how many of the reporters are experienced m.w. DXers?

Finally, many thanks to George for making this survey available to readers of $P W$ and my apologies to him for chopping it down from the original four pages.

Bats

"I thought you might like to hear of some unusual long wave DX-Bats", writes Martin Mann from Cambridge. He fixed a 40 kHz transducer at a window and fed it to the aerial input of a receiver. At dusk he heard and recorded several bursts of bat sonar signals which sounded rather fluttery(!) with rapidly sweeping pulse frequency. The range was about 20 ft which must make this the shortest distance DX reported to date.

A bat's radar system is based on ultrasonic sound waves, not radio, hence the need for the transducer. Martin has demonstrated how, with a little ingenuity, one can extend DXing into a new and interesting field, however it is not long wave DX! Wavelength equals velocity of transmission divided by frequency. The velocity of radio waves is 300000 km per second which gives a wavelength of 7500 metres for a frequency of 40 kHz . The velocity of sound waves through air is roughly 330 metres per second which gives a wavelength of 8 mm . So bats really use microwave radar and the report from Martin should have gone to Ron Ham!

Realistic DX160 Receiver

A rather disturbing report comes fom reader David Hyams of Finchley who discovered that his newly-acquired DX160 has an internal aerial for use on the medium and long waves. This aerial replaces the aerial tuning coils
which are shown as T 1 and T 2 on the circuit diagram. If this aerial is disconnected then the receiver will not work. As it stands this latest version of the DX160 cannot be used with a m.w. loop. David is trying to get the supplier to restore the receiver to its original unmodified state and unless this can be done then it will be of limited value for m.w. DXing. Obviously the manufacturer has not heard of DXing on the medium waves.

It is easy to test if a receiver has an internal aerial. Unplug any external aerial and tune round the m.w. band. Any signals heard must be picked up by an internal aerial and they will still be heard when a loop is nulling out a station. The overall result therefore is no null. The directional properties of the loop are masked by the pickup of the internal aerial.

DX

A "40 inch" loop together with a home-brew receiver were used during the first week in September by Alan Morton (Edinburgh) to log the following North Americans: CJYQ St John's Newfoundland on 930 kHz at 0330, WBZ Boston on 1030 at 0400, WINS New York City on 1010 at 0415 and CHNS in Halifax, Nova Scotia on 960 kHz at 0430 .

The maximum of the current sunspot cycle was expected during the autumn and with it a lower than average reception on the North American path. Once the maximum has passed then reception should pick up quickly, so listen around midnight for the stations listed above. Others to look for are CBN St John's on 640, CKVO Clarenville in Newfoundland on 710, CHER in Sydney on 950, WNEW New York City on 1130 and CKEC New Glasgow in Nova Scotia on 1320 kHz .

DX signals on the medium waves are subject to slow cyclic fading which lasts over several minutes. A channel may have a reasonable signal on it at one moment, but two or three minutes later nothing can be heard. So tune slowly and come back later to any dead channels.

A short extract from my own log to round off this month. The receiver is a BRT400 used with a " 40 inch" loop on 15 September to pull in: Conakry, Guinea on 1404 kHz at 2220 SIO 333 , Ouagadougou, Upper Volta on 747 at 2225 SIO 232 and CJYQ St John's on 930 at 2230 SIO 333. At first sight the reception of CJYQ at this time appears surprising, but local sunset here was some four hours earlier at 1829 and Newfoundland is $3 \frac{1}{2}$ hours behind GMT. In mid-winter, CJYQ has been heard as early as 1930 and it is only European QRM that prevents it being a conspicuous signal during the evening when conditions are good.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

Occasionally a frustrated DXer with a faulty receiver sends me details of his troubles in the hope that, like some modern Sherlock Holmes, I will instantly diagnose the
trouble and point to an easy and immediate remedy. That sort of servicing belongs, along with the famous detective, to the world of fiction. A modern receiver is really quite a complex piece of equipment and the chances that a novice would be able to repair it are negligible. He is more likely to be the phantom twiddler who knocks everything out of alignment and in the case of a mains operated receiver he may even receive a nasty shock. It is only on the test bench in the hands of a competent person that the trouble will be sorted out properly.

Home Made Receivers

The "competent person" need not necessarily be a service engineer. Radio Amateurs have the technical knowledge to deal with receiver problems and there are still a few about who even construct their own gear. Why not do the same? It is great fun and you do not need a technical background to construct a simple receiver. Designs and constructional details are easy to come by, in Practical Wireless for example. Not only will you have the satisfaction of using something you have made yourself but you will be able to peak it up, modify it and improve it to meet your own individual requirements. All the time you will become more proficient and knowledgeable and the day will come when you feel bold enough to try your skill on a commercial receiver.

TRF Receivers

"I cannot afford a communications receiver", writes student Nick Quin of Lancing, who built a 3-transistor t.r.f. receiver from a design in Radio and Electronics Constructor (oh!). The receiver nominally tunes over the range 1.2 to 24 MHz but by altering the position of the tuning coil cores slightly he was able to get up to the 11 m band which is from 25600 to 26100 KHz . The aerial was a 30 ft long wire, now increased to 90 ft , and the receiver drives a pair of headphones. DX heard included Radio RSA on 25790 kHz at 1410, Radio Australia on 11800 at 1824, All India Radio on 11620 at 1805 and the Voice of the Revolution in Iran on the 31 m band at 1920. Nick would be very interested to learn of DX heard by anyone else who has built a t.r.f. No need to worry if you are not sure of the exact frequency. Just mention the metre band, but DX only please.

The term t.r.f. means tuned radio frequency and refers to a complete receiver working on this principle. The expression has been used by at least one manufacturer in the United States to refer to a superhet with a tuned r.f. stage, which is rather confusing. In the UK t.r.f. means a simple receiver usually with a reaction control.

Broadcasting on 10 Metres

My suggestion in the September issue that the IBA Jerusalem broadcasts beyond the upper edge of the 10 m amateur band might be a harmonic, has brought some interesting replies. Paul Hardy, who lives at Caversham, says that 29705 is quoted in the IBA schedule, while Andy Sennitt of the World Radio and TV Handbook confirms that the transmission was really on the fundamental and he suggests that it was intended for reception by Russian radio amateurs. Paul says the frequency was withdrawn in June but Harold Brodribb (St Leonards-onSea) picked it up again in September SIO 555 at 1415. The Programme, which was in Yiddish (sounds like German), was the same as on 25605 and 25640 kHz in the 11 m band, both of which were being jammed.

Beyond 10 Metres

The frequency mentioned is rather interesting as it lies in a sort of no man's land where h.f. ends and v.h.f. begins. The boundary is 30 MHz , which was the lower of the two frequencies of the Knickebein beam navigation system used by German bombers during the last war. The other was 31.5 MHz and both beams were discovered using a Hallicrafters S27 bought in Webbs Radio in Soho. At that time it was the only v.h.f. communications receiver available. I have an S27, which covers 28 to 143 MHz in three bands and far from being an antique, it is still a very useful receiver.

Hallicrafters

Another Hallicrafters admirer is Ashley Griffiths who has acquired an S38E. It is in working order but he would like to know more about it. Replies to 73 Llanmiloe Est, Pendine, Dyfed, S Wales please. From memory I think it is a general coverage receiver without an r.f. stage. There was a commercial version of it called the Echophone which had a rather unusual bandspread control. By means of cord, pulley wheels and a spring, a piece of ferrite material was moved in and out of the air-cored oscillator coil.

Hallicrafters gave names to some of their receivers such as Sky Buddy, Sky Champion, Sky Rider; names that will bring a twinge of nostalgia to older DXers. What a pity modern manufacturers do not do the same. I have heard one currently available receiver referred to as the Frog!

Radio Japan

Transmissions of Radio Japan broadcasts over Radio Trans Europe in Portugal will take place again this winter. The frequencies are 17815 from 0700 to 0730 for the Middle East and on 15305 from 2200 to 2230 for Europe. Reception reports are welcome and should go to Overseas Dept, Nippon Hoso K yokai, Tok yo, Japan.

Last winter the European transmission was on the 25 m band where tests were conducted for the month of October only. It was possible to pick up the same programme on the 31 m band direct from Japan, with a much inferior signal of course. At the time of writing the winter schedule of R Japan is not yet available.

Direct reception of Japan is usually at breakfast time on the 13 and 16 m bands. When R Japan first appeared on the short waves before the war it gave a good signal in the evening. Overcrowding and high-power transmitters have made other than single-hop broadcasting unpopular and this has led to the modern practice of using relay stations.

Readers' Letters

Jakarta in Indonesia has been picked up by A D Scholefield (South Shields) on 11790 kHz between 1400 and 1500. Paul Martin (Edinburgh) used his Panasonic RF2200 to pull in Radio RSA on 25790 at 1425 SIO 333 and Radio Japan on 21610 at 0900 SIO 222. He asks if he can use an aerial tuning unit (a.t.u.) between this receiver and his 70 ft long wire. An a.t.u. can be used with any receiver that has an aerial and earth socket.

The problems of getting a QSL from South American stations are highlighted by Jeremy Boot (BRS 41156), who speaks both French and Portuguese. He has been quite successful with Brazil, though many stations have not replied despite reports in their own language and IRCs. International Reply Coupons are not valid in some countries and are unwelcome in others. It is better if you

OSL Cards from Radio Japan

can send unused postage stamps of the relevant country if you anticipate problems. They are available from stamp dealers.

News Items

There are no longer any s.w. transmissions from Syria (World Radio and TV Handbook Newsletter, August 1979). Someone asked about Syria a few months ago.

Radio New Zealand frequencies for the period 28 October to 1 March (Spring and Summer!) are as follows, all times being in GMT:

Pacific Service

$1700-2005$	11835 or 17860 kHz
$2015-0715$	17860
$1700-0525$	15345
$1540-0930$	6105

Australian and NW Pacific Service
 0730-0115 11945
 0945-1115 6105

If a QSL card is required then RNZ are now asking for 3 IRCs, according to their latest schedule.

IF YOU WANT PERFORMANCE

Lunar Electronics, based in San Diego, California, are undoubtedly the leading manufactures of 144 MHz and 432 Mhz Linear Amplifiers and Preamplifiers. But don't take our word for it, ask a LUNAR user. TAKE A LOOK AT THE RANGE.

U.K. Distributors for

DAVIS ELECTRONICS FREQUENCY COUNTERS NEW! боомнz $^{\prime 2}$ Mini Counter $£ 145$ + VAT

General purpose low cost Counter without the sacrifice of basic performance
Check the features we have that some other low cost counters don't have" - All metal Cabinet Sensitivity 10 MV at 150 MHz - Completely Auto Decimal Point 8 Digit $4^{\prime \prime}$ LED Display

- 240V or 12 V Operation Selectable Gate Times (1 Sec \& 1 Sec) Push Button Controls Built in Preamp
- 12V Input Jack Gate Light - Crystal Time Base (1 ppm)
S.A.E. for full set of Data Sheets, or see our stand at most of the coming Rallies \& Exhibitions. Trade \& Export enquiries welcome.

SOTA COMMUNICATIONS SYSTEMS LTD.
26, CHILDWALL LANE, BOWRING PARK, LIVERPOOL, L146TXENGLAND Tel: 051-4805770 Hours: 9.00 a.m. to 6.00 p.m., Monday to Saturday.

FIT A DIGITAL DISPLAY TO YOUR

 FRG7 OR SRX30.These units come complete, with only three wires to connect. The FDU7 for the Yeasu FRG7 can be fitted in place of the KHz dial, or can be supplied for external use. (Please state when ordering) The FDU3 for the SRX30 is supplied for top of the set use only.
(Full Fitting Instructions are supplied.)

$$
\begin{array}{ll}
\text { (FDU7) for FRG7 } & @ \mathbf{f 4 4 . 7 7} \\
\text { (FDU3) for SRX30 } & @ \mathbf{f 4 4 . 7 7}
\end{array}
$$

We also manulacture an R.T.T.Y. Converter.
The MB6R (Receive only) and the MB6R/T (Receive/Transmit).
We supply these units with single or double current loops for connection to teleprinter To Order. T.T.L./C-MOS Logic Levels and Oscilloscope Outputs are provided. Dimensions (84X304X210).

$$
\text { (MB6R Double or single current) @ } 77.96
$$

(MB6R/T Double or single current) @ $\mathbf{f 8 3 . 2 5}$
(All Units are fully Guaranteed, and come complete) (No extras needed)
(All prices inclusive of postage and V.A.T.)
(Payment by P.O., Cheque or Access)
B. BROOKES ELECTRONICS, 69 Leicastor Streat, NORWICH NR2 2DZ, ENGLAND.

Tel: 0603-24573.

NORTHERN COMMUNICATIONS

A new name to you, perhaps, but not in commurications. More than 10 years professional experience is now available to you. Whatever your interest, we can help: Why not give us a ring? Most leading makes of equipment and accessories available including.

YAESU. FDK-Multi SWAN ATLAS DENTRON NAG SEM, J. Beam SINCLAIR

We keep a comprehensive range of new and used
HF Receivers, Transceivers, VHF convertors, Pre-amps, Antennas, Mobile whips, Power supplies, SUR meters, Rotators, Digital Multimeters and Frequency Counters, Books You name it!

Trade-ins are most Welcome، Access, Barclaycard Finance Available
Why not ring, or write to:-
(0274)-814218 Mon to Sat, \& Ansaphone
(0422)-40792 Thur, Fri, Sat

Why not visit our new Retail Showroom at,
303, Claremount Road, Claremount,
HALIFAX. West Yorkshire HX3 6AW
9.45-5.30 Thur Fri, Sat or by appointment.

Buy by post or phone your Barclay Card or Access number.
Altematively, call in for a chat. The shop is just 10 minutes from Leeds City Station, and there's easy parking in you travel by car \star instant H.P. for icenced Amateurs \star Extended Credit Terms Available \star Send 50 p for Catalogue and Price List

LOWE TRIO DISTRIBUTOR

LEEDS AMATEUR RADIO 27 cookndge Street eeds. W. Yorks. Teĺ. 452657

LAR are are
distributors for Jay Beams,
Antenna Specialists and Hilomast Products.

NO ALE?, Perish the thought, we mean of course NOEL, you know the season of goodwill \& all that. More specifically we have in mind that awful vacuum after the event, you must know the scene only too well. Your waistline has expanded two inches, the games at the office party are by now just guilty memories (and that Amanda seemed such a quiet girl too), you have read the puerile jokes out of the crackers for the tenth time, :sample, "My dog's got no nose", really? how does he smell? "Terrible" ugh...
There are so many repeats on the Telly that you are considering sending the Beeb some Alka-Seltzer, and to round off your happiness you are in the Doghouse with the Wife for thumping young Willie because he was trying to shave the cat with the Electric Razor Santa brought you.
Now is the time to slope off to your Den and start to build your WINTON so that when the festivities are over you can really appreciate your record collection and discover just how Hi the Fi really is.
With spring to look forward to, Stravinsky's Rite of Spring will never have sounded so rite (sorry about that), the definition and clarity is quite awesome.
So send us a 10 p stamp, and we will send you a bumph sheet that will sober you up a bit, and bring to you the realisation of how ordinary some Amp's are, or better still send a cheque for your kit now to ensure a very Happy New Year.

The Superlative WINTON is available for your convenience packed as follows:
Pack (A) All Capacitors and Fixed Value Resistors, (Inc. 7 Amp ripple Res. Caps.)
£21.93
Pack (B) Switch Bank, Switches, Potentiometers, Pre-Sets \& all Knobs
$£ 15.93$
Pack (C) Printed Circuit Board (Tinned, Drilled, \& Overlay Printed) \& Pins $\mathbf{f 8 . 2 8}$
Pack (D) Hardware Pack, consisting of precision formed \& punched Chassis, Black Epoxy finish Heat Sinks, Teak Veneered Cabinet, all screws, wire, fuseholders, etc., and a super Brushed Silver Aluminium Fascia Panel.
£40.25
Pack (E) All Semiconductors, (Including HITACHI POWER MOSFETS)
£31.21
Pack (F) Special LOW HUM FIELD Toroidal Transformer £23.55
COMPLETE KIT, of all parts necessary to build the P.W. WINTON
£133.50
Order with complete confidence (C.W.O. only please) from:

T. \& T. ELECTRONICS
Green Hayes, Surlingham Lane, Rockland St. Mary, Norwich, NR14 7HH.

ALL PRICES inclusive of V.A.t. \& CARRIAGE

GOOD QUALITY INEXPENSIVE POCKET SIZE MULTIMETER

SPECIFICATIONS

- DC VOLTAGE:
$0-10,50,250,1000$ volts 2000 ohms/volt
- AC VOLTAGE
$0-10,50,250,1000$ volts 2000 ohms/volt
- DECIBEL:
-10 to +22 dB
- DC CURRENT: 0-100mA
- OHMMETER:

0-1 0 kilohms, 0-1 megohms, 60 ohms centre scale

- POWER SUPPLY:

One 1.5 V size " AA " cell ohmeter

- SI2E:
$3-5 / 8^{\prime \prime}, 2-3 / 8^{\prime \prime} \times 1-1 / 8^{\prime \prime}$
- WEIGHT:

402

Price: $£ 5.30$ inclusive V.A.T. \& P \& P
Cash with order
TRADE ENQUIRIES INVITED

BURNS ELECTRONICS

FM DETECTOR MODULE FMD-7

Designed for use with the Yaesu FRG-7*/FRG-7000, Lowe SRX-30, Drake SSR-1 or any general purpose receiver with a 455 KHz IF, the FMD-7 provides channel selectivity, high gain and limiting, quadrature detection, squelch and audio filtering. A buffer is included to isolate the receiver filters from those in the FMD-7.
The module uses a low power, multi-function, linear integrated circuit for reliability and ease of assembly and is available in kit or made and tested form. Full assembly and test instructions are provided.
Price: KIT £18.63 + VAT

Made and tested $\mathbf{£ 2 3 . 2 0}+$ VAT
*FRG-7 receiver reviewed in July 1979 Practical Wireless.
Absorption Wavemeter TC-101 with signal probe
$£ 36.95$ + VAT
Crystal Calibrator CC-10
$\mathbf{£ 4 1 . 9 0}+$ VAT
Frequency Standard SD-1
$\mathbf{£ 1 3 8 . 6 0}+$ VAT
Further details of our range of frequency measuring instruments and communications modules on application - send large SAE.

APPLICATIONS MANUAL No. 1 - RESONANT

 CIRCUITSTheory and applications of resonant circuits covering filters, amplifiers, oscillators, mixers and multipliers. Circuits are given covering frequencies from $85 \mathrm{~K} \mathrm{~Hz}-200 \mathrm{MHz}$ together with block diagrams of larger functions - receivers, transmitters etc.

Price $\mathbf{£ 0 . 6 0}$ post free in UK and zero VAT.
A full range of electronic components, C-MOS, TTL, Hardware, Wires, Connectors etc. are listed in our new Issue 10 Component Catalogue together with many attractive discounts, Price $£ 0.25$ post free in UK and zero VAT
All kit and equipment prices exclude VAT which must be added for UK sales at the rate of 15%. Carriage within the UK is included.

43a Chipstead Valley Road, Coulsdon, Surrey. CR3 2RB.
Tel. 01- 6687766 (Ansafone)

by Ron Ham BRS15744

Generally speaking, DX, as far as v.h.f. is concerned is relative to where we live and the surrounding terrain. For instance, if the home QTH is situated on high ground then, under normal conditions, our signal catchment area is far greater than that of a station in a valley or behind a hill. All reader's reports are therefore welcome because, whether their particular DX is great or small, or whatever mode is used, it is worth writing about.

Solar

Cmdr Henry Hatfield, Sevenoaks, and I recorded solar noise at 136 and 146 MHz respectively on August 22 and September 5, 9 and 14 and individual bursts on August 23, 24 and 31 and September 6 and 7, Fig. 1. Sam Faulkner, Burton-on-Trent, heard solar noise between 50 and 60 MHz around 1715 on August 29 and Mike Allmark, Leeds, heard solar noise in the 2 m band at 1518 on the 28 th, all no doubt due to the 65 sunspots counted by Ted Waring, Bristol, on the 26th.

On September 9, Henry, using his spectrohelioscope, saw the remains of a flare and five sunspot groups, "two quite large", and at 0935 on the 14th he saw a bright loop prominence, about 100000 miles high on the eastern solar limb. This could well have been the remnants of the event which caused the sudden ionospheric disturbance, at 0735, reported by Louis Prechner in the BBC's World Radio Club programme on the 16 th.

Lucky Henry

At 1025 on September 15, Henry watched a bright patch, on the eastern limb of the sun, develop into an arched prominence rising about 50000 miles above the sun and take 20 minutes to return to the solar surface approximately 100000 miles away. "It was a beautiful sight", said Henry, who also recorded some radio noise at 136 MHz from the event.

The 10 Metre Band

During the 28 days from August 21 to September 17, I heard signals from the International Beacon Project stations at Bahrain A9XC, on 12 days, Bermuda VP9BA, 2 days, Cyprus 5B4CY, 22 days, and Germany, DLOIGI, 8 days. Periodically, on some days, the signals from $5 \mathrm{B4CY}$ were peaking 599 and although Ted Waring's I.B.P. report was similar to mine he did hear the Canadian beacon VE3TEN, on August 24 and 31 and September 8 and 12. During the early morning of August 24 I heard many strong signals from Russian stations and by midday it was obvious that the band was wide open. In fact, some American stations who were coming in like locals, were saying that they were "surprised and delighted" about the good conditions. For example, I received 9 -plus signals from both sides of a QSO between W4MB and 4Z4SG.

Fig. 1: A 1.5 minute duration solar burst recorded by the author at 146 MHz at midday on 6 September

Russian signals were again very strong during the early mornings of August 27 and 28 and September 16 and 17 and at midday on the 15 th and 17 th. Around 1225 on the 17 th I heard strong signals from VK 3 XF, Melbourne and VK5ZK, Adelaide, who both worked GD3EIG on the Isle of Man.

Satellites

"OSCAR-7B is going strong on sun power only" writes John Branegan GM4IHJ, Saline, Fife, on September 2. "Some recent QSOs include VE6KY and VE6TD in Edmonton, Alberta, K3BWD, Haverford, Pennsylvania, VE3TW, St Catherines, Ontario, W0CA, Backus, Minnesota and W8DX, Detroit, Michigan." John has now received QSL cards from stations in DB, DC, G, OH, OK, and W for QSOs through the Russian satellites and on September 2 he worked GD5UG giving him another country through OSCAR-8J.

Aurora

During the auroral event on August 29, John Branegan heard Tone-A c.w. signals from the 2 m beacons in Cornwall GB3CTC and Northern Ireland GB3GI and amateur stations in Belgium, Denmark, France, Holland, Germany, Norway, Sweden and Wales between 1300 and 1900. In addition he had c.w. contacts with stations in EI, G, GM, GW and PA0. "Having c.w. even with 10 watts, makes a tremendous difference", said John who makes full use of his GM4 call. Roy Bannister G4GPX, Lancing, heard auroral signals from stations in GI and GM between 1800 and 1900 but could not raise them.
"We had a very good aurora on August 29 from 1519 to 1910 ", writes Mike Allmark. "Many countries were heard here on 2 m and the TV bands went berserk. All G was heard from Cumbria to Cornwall." Kevin Jackson, Leeds, said: "The aurora was very intense at Band I frequencies, the strongest noted here in five years." During the event, Kevin saw a clutter of BBC-1 signals from all parts of the UK, some unidentified programmes on

Channels E2 and E4 and a signal in Band III from France-Lille on Channel F8a.

DXTV

In my August column I used the words: "I feel sure an F2 opening to Scandinavia occurred" when referring to a particular event. Well, my assumption was wrong, and three West Yorkshire readers, Mike Allmark, Kevin Jackson and Clive Morton G4CMV, were quick to tell me that it was due to sporadic-E and proved their claim with some most interesting letters. Welcome to the column Gentlemen, and I hope that my error has gained three new contributors.

Mike's interests range from Band I to u.h.f. and he is very experienced in these fields. On Band I he has seen all of Europe via sporadic-E, meteor scatter and some aurora, and USSR and possibly China and Malaysia via F2. Although on Band III he has seen lots of stations via tropo, best DX is Spain. He has received signals from stations in many countries by the meteor scatter mode, and while on u.h.f. his best DX is Poland, TVP on Channel R25, he has also seen pictures from Belgium, Netherlands, Luxembourg and Sweden.

Kevin has been a TV DXer for 5 years and, like Mike, has an impressive record. He is interested in all modes of propagation in addition to monitoring for the odd occurrences of Night-Es, which, as Kevin explains, is "like sporadic-E but at night only and all transmitters are from the auroral zone and only when a geomagnetic storm is in progress". Observations are reported to the IARU coordinator. Kevin's receiver, a Bush TV161, is connected to crossed dipoles for Band I, a dipole and 5 -element Yagi for Band III, and an MBM 70, Group A and a 10 -element, Group B for u.h.f. These aerials are all fixed, beaming south-east, because Kevin lives in a sheltered valley with a clear take-off in that direction. "Even so", writes Kevin, "I see Sweden at u.h.f., off the side of the beam over a 150 ft rise in the ground which surrounds me except for the south-east." When Kevin installed the 70 -element on u.h.f. he found that he could receive the Dutch TV from Goes on Channel 32 and what's more, he can see it daily, as he can the Belgian station on Channel 43 with his $10-$ element Yagi directed toward Egem. His best DX on Band I via F2 is Vladivostock, 8353 km , Band III, sporadic-E, Italy, 2026 km , and u.h.f., tropo, Feldis, Switzerland, 1101 km .

It is letters like these from Mike and Kevin that stir the enthusiasm into others who wonder whether or not TV DX is worthwhile. On August 18, Mike Allmar, John Branegan and Sam Faulkner, all received RTVE, Spain, via sporadic-E. Sam also has very strong pictures from Budapest carrying adverts for HUNGEXPO followed by news and cartoons. On the subject of RTVE, I have just received a coloured QSL card, Fig. 2, in response to a photograph and report which I sent to them about their signals.

Sam watched a music programme, with a YL announcer on Channel R1, during the evening of the 19th and a fashion show around 1830 on the 21st. Ian Rennison, Horsham, also saw the YL announcer on R1 on the 21st at 1958. Ian has now added a JVC 3070 UKC to his DX TV equipment and is pleased with its performance.

Russian signals were also reported by John Branegan around this time, and Mike reported very strong sporadicE signals from Austria, Czechoslovakia, Italy, Russia, Spain and Switzerland, during the morning and early evening, on Band I. On August 27, Sam received the 0249 test card at 0900 from TSS, USSR, Fig. 3; at 1400, Ian Rennison, received a strong PM5544 test card from

Fig. 2: The OSL card received by the author from RTVE Spain

Fig. 3: The 0249 Test card from TSS, USSR, received by Sam Faulkner on 27 August

Fig. 4: The signal from RTE, received by Sam Faulkner on 4 September

Sweden, and later in the afternoon and early evening John Branegan watched television signals from both Russia and Spain. Both Sam and John received pictures from RTVE, Spain, on September 2 and on the 4th, Sam received pictures from RTE, Eire, Fig. 4, during a tropospheric opening.

During the good tropo conditions on August 29, 30, 31 and September 1 and 5, Mike Allmark received u.h.f. television pictures from stations in Belgium, France, Holland and West Germany. Ian Rennison received pictures from the Netherlands at 0700 on the 5th, and from Russia and Wales on the 7th.

Tropospheric

George Grzebieniek RS 41733, London, who entered the receiving section of the RSGB's 144 MHz contest on September 1 and 2, heard F1CB/P, F1KBF/P, ON5FF/P, PEOAY and PEOMAR/P and a couple of GWs. Before the contest he heard signals through the Brighton GB3SR, Cambridge GB3PI and Malvern Hills GB3MH, repeaters. George has been carrying out receiver tests on 23 cm with G3FZL and G3IDG, yet another example of co-operation between radio amateurs.

On August 30, Alan Baker G4GNX, Newhaven, told me that he heard signals on all repeater channels from R0 through to R9. Conditions on v.h.f. were generally good on September $1,4,5,8,11,12$ and 16 , shown up on each occasion by the strength of the repeater signals. During the opening on the 1st, I heard a 3 -way QSO between G3JEP, Exmouth, G4EJV, Worthing and GW3XJA, via the Bristol Channel repeater GB3BC. The GW was using 1 watt to a home-brew Slim Jim aerial.

At 2200 on the 16th, Alan heard signals through the French repeater FZ1THF, R0, and as it faded he worked a station in Kent via the Leicester repeater GB3CF, R0. Later he worked HB9ARI on s.s.b. and heard HB7MMM. Congratulations to Ken Jeal, Horsham, who has passed the RAE and now sports the call sign G8SVY.

Old Receiver

Can anyone help Mr E. G. Thomas of 11 Burrell Ave, Lancing, Sussex, with a manual or service info for a Hallicrafters, S20R, Sky Champion.

24 TUNE DOOR CHIMES

DOOR TUNES 516.44 + VAT.

Wadding:on's Videomaster announce a doorbell that doesn't go Brringgg, Ding-Dong or Bmzz, Instead it plays 24 different classical and popular tunes. It will play the tune you select tor your moad, the season or die vistor you are
expecting to call Door lunes is nor only great fun and a expecting to call. Door lunes is not only great fun and a wonderful ice breaker, bun is also very functionaliy and beautifully designed to anhance your home There is something for Christmas, something for your continental visiors or your relations from the states, and even something for the dueen Uoor tunes is easy to ind

T.V. GAMES

PROGRAMMABLE E9.50 + VAT
 COLOUR CARTRIDGE T.V. GAME.

The TV game can be compared to an audn cassette deck and is programmed to play a multitude of diflerent games in Choun, using various plugin cartidges. At long last a technology by aliowing you to extend your library of games with the purchase of addrional cartridges as new garnes are developed. Each carrridge contains up to ten different action games and the first cartridge containing ten sports games is inchuded free with the console. Other cartridges are currently available to enable you to play such games as Grand Prix Molor Racing, Super Wigenut and Strint Rider Further cartudges are to be released later this year, induding Tank Batte, Hunt the Sub and Target. The console comes compete with two removable jowstick player controls to enable you to move in all four directions lupldowninghivleftl and built into these joystick controk are tall serve and target fire buttons. Other features include several difficuity option swithes, automatic an screen digital scoring and colour coding on scares and balls. Lifelike sounds are transmited through the TV's speaker, simulating the actual game being played. Manufactured by Waddington's Videomaster and to G colou guranteed for one year.

CHESS COMPUTERS

DRAUGHTS COMPUTERS

CHECKER CHALLENGER 2 LEVELS E43.98 + VAT.
4 LEVELS E80.09 + VAT.
The draughts computer enables you to sharpen your skills, improve your game, and play whenever you want. The compliter incorpbrates a sophisticated, rellable, decision making microprocessor as its brain it ing hing ent counter thinking aburty enables it orespond with is best count
moves like a skilled human appanent. You can seiect moves like a skined humrian opplanenc. dificuity levels at
offence or detence ans changa playing dificter any timue. Positions can be verifed by compuler memory recali. Mechine does not permit llegal roves and can solve set probleris. Computer camies complete with instructions, set prouleris. Comiputer tomies complect wing
mains adapaior and twelve manths quarantea.

FOR FREE BROCHURES - SEND S.A.E

For FREE ilustrated brochures and reviews on V and chess games please send a stamped addressed envelope, and state which paticular garues you requere intormatun on.
 To order by telephona please quote your name, address and AccessiBarclaycard mum ber. Postage and Packing FREE
AJD DIRECT SUPPLIES LIMITED, Dept. PW9, 102 Bellegrove Road, Welling Kent DA16 30D. Tel: 01-303 9145 (Day) $01-8508652$ (Evenings)

Volume 55 JANUARY TO DECEMBER 1979

COMSTRUCTIONAL-Transmitiing
Follow-up to the PW "Averư Transmitter
by P Preston 48 Mar
VNos Top BanoAug
Tone-burst Gencrator Ly P Hodson 51
Pant 1 47 JunePert 255 Aug
VMCS Top Bund Trankmitterby u R Green 44
IC of the MONTH by E. Dance
No, 73 LM391-66 Autio Pawer Diver
No. 74 TDE 1607 Interface Device 49-Feb
No. 75 Thomsoncsf SF 796364
TV Display Driver: 29 Msy
No. 76 Farchild jA78HG
Variable Volfage Regula 58 June
No. 76 Thomsen-CSF TDE2608 - Waveform Gencrator $30.4 u g$
No. 77 TOB0791 Pawer Op, Amp 26 Nov
No. 79 TL497 Swithing Fegulator 59. Dec
GENERAL INTEREST
A Glance inte the P St by'G.E. Mifee 48 . June
Acrij! Design with Scale Models byFic Judd, wh:
Builing Disco Cabinets by 1. P Hookies 52
CE-UK - The Facts and the Future 24 Dec
Charges in Broadcast-Band Listerving on
Short Weves by 3 Mats Part 1 50 July
Part 21 Aus
Digital Audio Ampificotian hy G. J. King:
Direct Use of Communications Satelites 26 Feb
EDXC. European DX Counch 31. Dec
FM Fecelvers-Devices and Circuits
Whit Hotlines by ginstierg Irecent davelophenis in electronics!$\frac{18}{34}$

KivDLY NOTE

Porlis arising from earlet articles
*Bifel linegrated Circüts Aug 1 g79 Burtey Power Supply Niou 19786411- Jan
Breadboards Supplement Dec 1978
Crhadio LW Converter Dec 1078 56. Mar
Car Test Probe May 1979 64
Julu Aug 1979.; Band Lsterting. 64 Oct
Digital Door Chimes Dee 1978. 56 Mar
DXer's Audia Fiter May 1978 64 Oct
"the" Marine Band R
Hydne" Feb-Mar 1979 64.0 ct
ITeas Department ${ }^{\text {t Sten Tont Generator }}$ Mar 1979 47. Mey
"Inp" Seginners Receiver May 1979 suy
Logical Noughts and Crossés June 1979 33. Aug
"Purbeck Osclloscope Jan 1979 ,1;"t 66
Sainterlks' Follow-Up-2 Aug1079 61s Nor
Selectivo Sourd Operated SWiteh duly 1979
ESarnufté'Mar 1979 47. Ma
Soundter Mar 1979. 54.
Step Fone Generator Mar 1.979 47
Trent: June and Aug 1979 6
VHF DF Loop Aerat Oct 1979. 36
VHF Monitor Recefuer.Apr 1979 47. May64
Wimberne Music Centre Dct 1978

ON THE AIR

Arnateur Bands by A. Et Bobwleswelt 78 :dan 62 Fab. 60 Mar 68 Apr 62 May; 63 June, 66 July, 68 Auq, 58 Sent 67 Oct 65 Nov, 66 Dét MW Broadcest Bands by G, MAblloy 75 san; 63 Feby 62 Mar 70 Apt, 65 Mow 65 , ine 70 triv, 71 Aug, 61, Sept $700 \mathrm{ct}, 69$ Now. 70 bec SV Broadcast Bands of 6 Mhaloy 76 van. 64 Fob, 6 M Mar 71 Apt, 66 May: 66 June, 71 July 72 Aug, 63 Sept

711 Oct 70 Noynt 1 Dec VHF Bands by R Ham 78 dam, 67 Feb 64 Mar, 72 Apr 69 May 68 June. 73 July 77 Aug. 64 Sept, 740 ct
$73 \mathrm{Nov}, 75 \mathrm{Bec}$

PRODUCTION LINES by Alan Martin

SHOW REPORTS

The Great BristhElectronics Bazyar
33 Oct

NEW BOOKS

A Gude to Amateur Radio byP Howker GIVA iv, wivivity ter 75

Bogimers Cuide to Tape Recording by 1. R. Sínclar.
Eteetronic Designets Hanobook (Sid Etition) by K. Heringway:

32 Nov
Electron: - an elementary introducion for legimers by f. W. Owers

61 Fel

Learnabout - Mokng a Transistor Racibs, by G. C. Dobbs 32. Nov

Liernabout Situble Electronis' Cy Rey: George C. Dobbs.
$32 \cdot \mathrm{Nbv}$
Master HLFiL Loudspeakers anc tron phtues by Dave Berrinisn

32 Now
Radio Amateurs' Examiratioń' Manual by 6 t' Benbow $G g+1 B$ is
adio Renait by Las Luwn 75 Nav

Telecommunications Svsterns for Technicians - 1 br Q ISOanietwon and: f. S. Walker:

32: Noy
Television Interference Manual 2 nd Edtion by A Prestleve

32 . 140%

MISCELLANEOUS:
Citizehs Band Association-A letter to the
Pinie Minister by f Enxint wr.ternu....t 21 Apt
Cover Plice Incremse
Newst News-News . 4 : 21 3an 21 Feb, 21 Mar, 24 Apr 21 May. 19:8, 30 len'e $21 t^{2} 81$ Juhy, 24 Aug. 21857 Sept, $190 c t 24$ Nov, 23 Dec.
Obituaries
Wing Commandertionn Scoti-Toggart

Stanfey Robert Mullard MEEFMII witut. .t. 27. Dec

- 60 fuly, 68 Sept, 60 0ct, 81 Dee

RAE Repint Coupon whe 58 Jan 71 Feb, 24 Mar 78 Apr 36 May, 70 Juno, 30 Juty. 62 Aug, 30 Sept, 55 Oct.

SUPRLEMHNT ATE

Special Fentures

cifis

Spellal Offers
Commodore 95×3 nad 35×1 Léd, watches., 30 , Jan

Hanitnex LC780 Scientific lisid. Caleulator . 54.34 Oct
 Indexes:

Everymonthis the right frequency

When you're building a major project from a PW design, you want to be sure of getting every issue in sequence! Use this order form for a year's supply to be posted to you. ANNUAL SUBSCRIPTION RATES (including postage and packing) U.K. $£ 10.60$. Overseas $£ 10.60$.

practical Millifis subscription order form

Please send me Practical Wireless each month for one year. I enclose a Sterling cheque/international money order for. (amount). please use block letters

NAME Mr/Mrs/Miss ADDRESS,
POSTCOOE

Make your crossed cheque/MO payable to IPC Magazines Ltd., and post to: Practical Wireless, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS

Simply ahead . .

 ILP'S NEW GENERATION OF HIGH quality already so well established any advances in I.L.P. design are bound to be of outstanding importance

- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain - the completely adequate heatsinks, protected sealed circuitry, rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands such, for example, as those revealed by vastly improved pick-ups, tuners loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS
 IN ELECTRONIC MODULAR DESIGN

and staying there PERFORMANCE MODULAR UNITS

HY5 PRE-AMPLIFIER

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained with in a single pack $50 \times$ $40 \times 15 \mathrm{~mm}$. and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins Active tone control circuits; 500 mV out. Distortion at $1 \mathrm{KHz}-0.01 \%$. Special strips are provided for connec ting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
$\mathrm{f} 4.64+74 \mathrm{p} \vee \mathrm{A} T$

THE POWER AMPLIFIERS

Model	Output Power R.M.S.	Distortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price + V.A.T.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	80dB	-20-0- +20	$105 \times 50 \times 25$	155	$\begin{aligned} & \text { £6.34 } \\ & +95 p \\ & \hline \end{aligned}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	90dB	$-25-0 \cdot+25$	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +\quad £ 1.09 \\ & \hline \end{aligned}$
HY120	$\begin{array}{\|l\|} \hline 60 \mathrm{~W} \\ \text { into } 8 \Omega \\ \hline \end{array}$	0.01\%	100dB	-35-0-+35	$114 \times 50 \times 85$	575	$\begin{gathered} £ 15.20 \\ +£ 2.28 \\ \hline \end{gathered}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	-45-0-+45	$114 \times 50 \times 85$	575	$\begin{array}{\|c} £ 18.44 \\ +£ 2.77 \\ \hline \end{array}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	-45-0-+45	$114 \times 100 \times 85$	1.15 Kg	$\begin{array}{\|} £ 27.68 \\ +£ 4.15 \end{array}$

Load impedance - all models 4-16 Ω
Input sensitivity - all models 500 mV
Input impedance - all models 1.00 KK
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

THE POWER SUPPLY UNITS
I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer the other with toroidal transformer having half the weight and height of its conven tional laminated types.

PSU 36 for 1 or 2 HY 30 's $£ 8.10+f 1.22$ VAT PSU 50 for 1 or 2 HY50's $£ 8.10+£ 1.22$ VAT PSU 70 with toroidal transformer for 1 or 2 HY120's $\quad £ 13.61+£ 2.04$ VAT
PSU 90 with toroidal transformer for 1 HY200 £13.61 +£2.04 VAT
PSU180 with toroidal transformer for
1 HY400 or $2 \times \mathrm{HY} 200$
$£ 23.02+£ 3.45$ VAT
PSU $30 \pm 15 \mathrm{~V}$ at 100 ma to drive up to five HY5 pre-amps
$\mathbf{£ 4 . 5 0}+68 \rho \vee$ AT

NO QUIBBLE

5 YEAR GUARANTEL 7.DAY DESPATCH ON ALL ORDERS
BUILT.IN PAOTECTIVE CIRCUITRY
Britisis design and MANUI ACIURRL FRFFPOST SERVICE

UK DESPATCHED - ALL ORDERS POST PAID HOW TO ORDER, USING FREEPOST SYSTEM

Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.

FREEPOST 1 Graham Bell House, Roper Close Canterbury, Kent CT2 7EP.
Telephone (0227) 54778

Please supply
| Total purchase price £.
I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

NAME . ADDRESS.

Signature.

Want to become

 a Radio Amateur?\author{

- Wasting time
 Without
 - Ruining the BANK BALANCE
 - Spoiling TV pictures
 - Upsetting the Town Hall
}

The simple answer is

THE PARTRIDGE PACKAGE R4

A SUPERB COMPLETE LOW COST AMATEUR RADIO STATION MINUS ONLY THE LOW COST TRANSMITTER SECTION. We tell you what to do to commence your studies and take your examination and morse test; also personal advice, where needed, from an ex-professional and experienced radio amateur-G3CED.
This Package (SAVING YOU $£ 15.70$ against items purchased separately) includes the NEW ATLAS R-110 CW/SSB Communications Receiver covering the 80, 40, 20, 15 and 10M bands; The WORLD RECORD VFA Antenna; Matching A.T.U.; all necessary connecting cables, even inlcuding a $13-\mathrm{amp}$ plug. YOU ARE ON THE AIR SECONDS AFTER UNPACKING!
In addition to the joy of listening to RADIO AMATEURS all over the world, your new listening station will provide you with much of the information you need to enable you to complete your studies for the Radio Amateur's Examination.

SWAN TX-110L TRANSMITTER £149.50

Having passed the R.A.E. and Morse Test, complete your AMATEUR RADIO STATION by purchasing from us the matching ATLAS TX-110L TRANSMITTER which derives its power from a socket on the back of the R110 Receiver. With matching Mike (we will supply for as little as $£ 8.62$) and Morse Key (E 10.29) your station is complete.
Being already familiar with the operation of the Receiver, transmitting will come that much easier to you - and remember, PARTRIDGE are always at your service to help and advise - " 73 and GOOD Dx G3CED"
PURCHASED SEPARATELY:
ATLAS R-110 £207.00
ATLAS TX-110L $\mathbf{£ 1 4 9 . 5 0} 10-15 \mathrm{w}$ powered by R-110
ATLAS TX-110M£218.50 100/150w separately powered.

JOYSTICK ANTENNA SYSTEMS (0.5 - 30MHz)

SYSTEM 'A' 150w.p.e.p. or for the SWL
VALUE ADDED OFFERS TOO NUMEROUS FOR OUR LIMITED SPACE. YAESU - SWAN - ATLAS products!

We have lots more offers at Partridge House, so if you have'nt seen our 'Beat VAT' ads, send 9 p stamp for details of current offers. WE ARE IN BUSINESS TO SAVE YOU MONEY! Purchase receivers, transceivers and our worldfamous JOYSTICK VFA antenna to obtain MAMMOTH SAVINGS! All goods sold inclusive of delivery and VAT at 15%.

Just telephone your card number - 0843 62535 (ext. 5) or 62839 (after office hours) or write (Send 10p) for details of Value Added Offers or general literature
Prices correct as at press.

BARCTAKCADD

5. Partridge House, Prospect Road, Broadstairs, CT 10 1LD
MSA (Callers by appointment)

G3CED G3VFA

P.C.B'SFOR			
Dec. 78.	Car Radio L.W. Converter	R032	Price $£ 2.79$ \& 20 pence p \& p.
Jan. 79.	Acoustic Delay Line	R018	Price $f 3.77$ \& 20 pence p \& p.
Jan. 79.	Dorchester	R033	Price $f 11.00$ \& 30 pence p \& p.
Jan. 79.	Sandbank Met. Det.	R035	Price $£ 3.41$ \& 20 pence p \& p.
Feb. 79.	Hythe Receiver	WR037	Price f6. 34 \& 20 pence p \& p.
March 79.	Hythe Receiver	WR038	Price $£ 2.98$ \& 20 pence p \& p.
March 79.	Soudlite Converter	WK001	Price $£ 6.33$ \& 20 pence p \& p.
March 79.	Tone Burst Generator	R023	Price f1.71 \& 15 pence p \& p.
March 79.	Wide Band Noise Source	WR036	Price f0. 74 \& 12.pence p \& p.
April 79.	FM Multitester	WR040	Price $£ 3.05$ \& 15 pence p \& p.
May 79.	Car Test Prohe	WR042	Price f0.96 \& 15 pence p \& p.
May 79.	Follow up to PW Gillingham	WR044	Price $f 1.45$ \& 15 pence p \& p.
May 79.	PW Imp	WR043	Price $£ 1.52$ \& 15 pence p \& p.
May 79.	Inline Crystal Calibrator	WR041	Price $f 1.68$ \& 15 pence p \& p.
June 79.	Jumbo Clock		Price f 9.52 \& 30 pence p \& p.
June 79.	Logical $\mathrm{O}^{\prime} \mathrm{s}+\mathrm{X}$'s	$\begin{aligned} & \text { WRO46/ } \\ & 7 / 8 / 9 \end{aligned}$	Price f 12.84 \& 30 pence p \& p.
June 79.	Trent	WR050	Price $f 4.06$ \& 20 pence p \& p.
July 79.	AAM/FM Frenquency		
	Readout	WR052	Price $£ 3.66$ \& 20 pence p \& p.
	V.MOS Top Band		
	Transmitter	WR056	Price $£ 4.08$ \& 20 pence p \& p.
	Sound Dperated Switch	WK005/6	Price $£ 3.74$ \& 20 pence p \& p.
	Inexpensive A/F Voltmeter	WR055	Price $f 1.15$ \& 15 pence p \& p.
August 79.	Teiephone Bell Repeater	WR053	Price $£ 1.15$ \& 15 pence p \& p.
August 79.	Automatic Intercom	WR043	Price f6. 20 \& 20 pence p \& p.
Sept. 79.	Automatic Intercom Part 2	WR058	Price $£ 0.60$ \& 12 pence p \& p.
Sept. 79.	Noise Blanker	WR057	Price $f 1.24$ \& 12 pence p \& p.
Oct. 79.	Burglar Alarms	WR059	Price $f 1.23$ \& 15 pence p \& p.
Oct. 79.	Burglar Alarms	WR060	Price $f 1.91$ \& 20 pence p \& p.
FULL RANGE OF R.S. COMPONENTS			
AVAILABLE			
P.W. JUMBO CLOCK KIT $£ 31.00$			
C. BOWES \& CO. LTD., 4, Wood Street, Cheadle, Cheshire SK8 1 AQ. Tel. 061-428-4497. Please state type number and enclose cheque or postal order.			

TMEC ${ }_{19}$ Roses Lane, Bigglewwade, Beass.
Mail Order and correspondence only.
LERS StRICTLY BY APPoINTMENT

MORE BIGVALUE FROM YOURTANOYSTORE

transis SIGNAL TRACER speaker on allaudio battery, instructions $22-010$. ${ }_{\text {ret pace }} £ 9.95$	

REALISTIC DX 300

General coverage receiver. Quartz-synthesised tuning digital frequency readout. 3-step RF Attenuator. 6range preselector with LED indicators. SSb and CW demodulation. Speaker. Code oscillator. Batteries (not included) or 12V DC. 20-204.
reg paca $£ 229.95$

DYNAMIC TRANSISTOR CHECKER

Shows current gain and electrode open and short circuit. Tests low, medium or high power PNP or NPN types. Go/no-Go test from $5-50 \mathrm{~mA}$ on power types. 22-024.

REG. PRICE $£ 9.95$

You save because we design, manufacture, sell and service. Tandy have over 7,000 stores and dealerships worldwide. Over 2,500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 year of continuous technoiogical advancement.

MULTITESTER

Dual FET imput for
accuracy and minimum loading. 11.5 cm mirrored scale. DC volts, 0-1-3-10-$30-100-300-1000 . D C$ current 0-100 a. 0-3-30300 milliamp. Resistance 0-30-300-3k-30 lC-1 megaohm. 0-100-1k-101C-100K-3
megaohms. Req. 9 V battery. 22-209.

REG. PRICE
 $£ 29.95$

SIGNAL INJECTOR

For RF, IF, AF circuits
Maximum accuracy. Easy pushbutton operation. Needs two "AA" batteries. 22-4033.

AC/DC CIRCUIT

TESTER

Accuracy in 1-300 volts ranges. Safe in live/dead circuits. Needs two "AA batteries. 22-4034. нis mact $£ 1.99$

VARIABLE POWER SUPPLY

Power project boards. IC's, other low-voltage DC equipment. Load regulation: less than 450 mV at 1 amp at 24 V DC. Ripple: less then 25 mV . Maximum output current: 1.25 amps . Switchable colour-coded meter reads $0-25 \mathrm{~V}$. DC and 0-1.25 amps. Three-way binding poststake wires, banana plugs or dual banana plugs with $0.75^{\prime \prime}$ centres. For 220/240V AC. $22-9123$

The largest electronics retailer in the world.
Offers subiect to avilibabity instant credit vaviabibie in most cases
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

[^1]Prices may vary at individual stores.

- ©~ VALVE MAIL ORDER CO CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED

 SPECIAL EXPRESS MAIL ORDER SERVICE

 SPECIAL EXPRESS MAIL ORDER SERVICE}

SEMICONDUCTORS

AA119	0.12	ASY26	0.46
AAY30	0.31	ASY27	0.46
AAY32	0.48	ASZ15	1.44
AAZ 13	0.21	ASZ16	1.44
AAZ15	0.39	ASZ17	1.44
AAZ17	0.31	ASZ20	1.72
AC107	0.69	ASZ21	$2 \cdot 30$
AC125	0.23	AU110	1.96
AC126	0.23	AU113	1.96
AC127	0.23	AUY10	$2 \cdot 30$
AC128	0.23	BA145	0.15
AC141	0.29	BA148	0.15
AC141K	0.40	BA154	0.10
AC142	0.23	BA155	0.12
$\mathrm{AC1}^{42 \mathrm{~K}}$	0.35	BA156	0.10
${ }^{\text {AC1 }} 176$	0.23	BAW62	0.06
AC187	0.23	BAX13	0.07
AC188	0.23	BAX16	0.10
${ }_{\text {ACY }}{ }^{\text {ACY }} 17$	0.98 0.92	BC107	0.14
ACY18	0.92	BC108	0.14
ACY19	086	BC109	0.15
ACY20	0.80	BA113	0.14
ACY21	0.86	BC114	0.15
ACY39	1.72	BC115	0.16
AD149	0.80	BC116	0.17
AD161	0.52	BC117	0.20
AD162	0.52	BC118	0.12
AF106	0.52	BC125	0.18
AF 114	0.86	BC126	0.23
	0.86	BC135	0.16
AF116	0.86	BC136	0.17
AF117	$0 \cdot 86$	8C137	0.17
AF139	0.46	BC147	0.10
AF186	1.38	BC148	0.09
AF239	0.52	BC149	0.10
AFZ11	3.16	BC157	0.10
AFZ12	3.16	BC158	0.09

11	1.7
15	0.5
121	1.3
23	1.3
24	1.5
31	0.4
32	0.4
35	0.3
36	0.3
37	0.4
38	0.4
39	0.4
140	0.5
44	2.3
181	1.2
82	1.3
37	0.4
38	0.6
10	1.0
132	2.3
760	1.4
15	1.7
52	0.2
53	0.2
54	0.2
59	0.2
60	0.1
67	0.2
73	0.2
77	0.2
78	0.2
79	0.2
80	0.3
81	0.3
82	0.3
83	0.29
84	0.29
85	0.2

0.10
0.10
0.12
0.14
0.31
0.23
0.32
0.28
0.30
0.37
0.35
0.35
0.36
4.55
2.56
0.23
0.23
0.74
0.74
0.25
0.26
0.24
0.24
0.30
0.30
0.30
0.30
1.44
0.24
0.23
0.23
1.44
4008
3.67
2.02
2.59
2.30
0.52
0.16
0.17

BZX6
Series
BZY88
Series
CRS $1 /$
CRS3
CRS3
GEX
GEX5
GJ3M
GJ5M
GMO3
KS10
M1E
MJE3
MJE3
MJE
MJE
MJE2
MJE3
MPF
MPF1
MPF
MPF
MPS
MPS
MPS
MPSU
MPSU
NE55
\qquad

1.79
1.7
1
1
2
5.
3.
2
1
2
4
2
6
3
3
1
1
6
7
0
4
1
1
4

.73
.61
.84
.30
.52
.98
.81
.01
.65
.43
.07
.12
.80
.10
.84
.42
.76
.98
.24
.24
.35
.57
.73
.02
.15
.89
.31
.27
.74
.24
.84
.25

4.14
4.60
2.02
4.60
4.60
1.75
5.70
2.62
1.01
2.76
F
1.64
2.55
7.48
4.12
8.33
1.01
2.59
4.49
3.31
2.44
1.73
2.02
1.84
1.33
1.21
1.21
1.73
6.10
6.21
9.04
1.44
1.50
1.73
2.02
7.08
2.88

4.60
2.02
4.60
4.60
1.75
5.70
2.62
1.01
2.76
5.64
2.55
7.48
4.12
8.33
1.01
2.59
4.49
3.31
2.44
1.73
2.02
1.84
1.33
1.21
1.21
1.73
6.10
6.21
9.04
1.44
1.50
1.73
2.02
7.08
2.88
1.73

6L6GT

9.15
5.98
2.76 5.06
1.73
2.19
6.90
40.25
2.30
 9.78
36.80
86.25

21 OA70

1	0.26
	0.65
07	0.13
9	0.12
9	0.14
1	0.15
2	0.17
4	0.20
1	0.11
4	0.23
1	0.15
1	0.16
2	0.18
3	0.20
4	0.23
0	0.18
4	0.06
6	0.08
1	0.07
2	0.07
3	0.08
4	0.08
5	0.09
6	0.09
7	0.10
9	0.07
48	0.07
0	0.15
1	0.15
	0.05
0.08	
	0.08
	1.15
1.15	
4	1.27
	0.29

.65
.13
.12
.14
.15
.17
.20
.22
.14
.15
.16
.18
.20
.23
.23
.18
.06
.08
.07
.07
.08
.08
.09
.09
0.10
0.07
0.15
0.15
0.05
0.08
0.08
1.15
 N697
N698
N705
$N 706$
$N 708$
N930
N1131
N1132
N1302
N1303
N1304
N1305
N1306
N1307
N1308
N130
N1613
N1671
N1893
N2147
N214B
N2218
N2220
N2221
N2222
N2223
N2368
N2369
N2484
N2646
N2904
N2905
N2906
N2924
N2925
N2926
N3053
N3054

VALVES

\section*{| 749 |
| :--- |
| 749 |
 | 7491 | 0.92 | 7411 |
| :--- | :--- | :--- |
| 7492 | 0.69 | 74119 |
| 7493 | 0.69 | 7412 |}

 74145
74147
74148
74150
74151
74154
74155
74156
74157
74159
74170
74172
2.88
1.04
2

$\mathbf{2 . 8 8}$	74173	$\mathbf{1 . 6 1}$	7419
$\mathbf{1 . 0 4}$	74174	$\mathbf{1 . 7 3}$	7419

TBA920 TBA9200
 TBA9900 ${ }^{\mathbf{3 . 3 4}}$
 $\begin{array}{r}\text { TCA2700 } \\ 3.34 \\ \hline\end{array}$

REFERENCE BOOKS
$\begin{array}{ll}\text { BP1 } & \text { First Book of Transistor Equivalents \& Substitutes } \\ \text { BP2 } \\ \text { Handbook of Radio. TV and Industrial \& Transmitting Tube and Valve Equivalents }\end{array}$
 Second Book of Transistor Equivalent \& Su
Digital l.C. Equivalents \& Pin Connections Linear I.C. Equivatents \& Pin
Practical-Transistorised Novelties for HI-FI Enthusiasts Handbook of Integrated Circuits (IIC. 's) Equivalents $\&$ Substitutes First Book of Dlode Characteristics Equivalents \& Substitutes Beginners Guide to building Electronic Projects
Essential Theory for the Electronics Hobbyist Many more available - send S.A.E. for fist
Postage \& Packing $=1$ book $0.18-0.05$ each additiona

EHROMASONTE electronics your soundest connection in the world of components

The items shown in this advert are just a small selection taken from our 1979 Catalogue containing everything from Resistors to the latest in Microprocessors. Order your copy today FREE with all orders upon request or S.A.E

Dept PW1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN
TEL: 018833705018832289

A. S. COOPER

RADIO REPAIRS

11a Kingsholm Road, Gloucester GL1 3AY Tel: DAY (Glos.) 422259 NIGHT (Glos.) 27223

CLEARANCE SALE

Capacitors and Trimmers - all Ceramic. All must go. All at $\mathbf{£ 1 . 0 0}$ per pack.
Please tick box and number required.
Trimmers 0.5 to 5 pf PC mount $\quad 10$ per pack Trimmers 2.0 to 2.5 pf PC mount 15 per pack Trimmers 3.5 to 13 pf $\quad \mathrm{PC}$ mount $\quad 15$ per pack Trimmers 4.5 to 20 pf PC mount 15 per pack Next 6 boxes fixed pf values, all 25 per pack. Circle required pf value. $0 \cdot 5,2 \cdot 0,2 \cdot 7,3 \cdot 3,3 \cdot 9,4 \cdot 0,4 \cdot 7,6 \cdot 8,12 \cdot 0,15 \cdot 0$
$18,20,25,27,30,33,36,40,47,50$
$60,68,75,82,220,240,250,300,330,360$
$400,560,620,750,820,2 \cdot 2 k$
2.5k, 2.7k, 3.0k, 3.5k, 4.0k, 4.7k

7pf, 8pf tab type disc

$$
\text { Packs of } 100
$$

$11 \square \square 1 \mathrm{kpf}$ leadless disc
Buy any 10 packs and get one Bumper Pack of mixed values FREE. Cut out and order today while stocks last.
P \& P Orders up to $£ 5$ add 30 p. Orders $£ 5$ to $£ 10$ add 50 p. Orders over £10 free. UK ONLY.
Overseas enquiries very welcome. SAE with enquiries only
Name...
Address...
\qquad Post Code.

ELEGTROVALIE

LEADING DIRECT SUPPLIERS FOR

NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOU TO WORK AT PROPER
PROFESSIONAL LEVELS
\star Appointed Nascom stockists
\star Widest possible range stocked
\star Information on request
\star Enquiries from trade, industrial and educational users invited
We are also appointed distributors for the fine products of:
SIEMENS, ISKRA, RADIOHM, VERO AND MANY OTHER FAMOUS MANUFACTURERS

It's a good deal better from

ELEGTROMALIE LTD

Dept. PW12, 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB. Phone: Egham 33603. (London, dial 87 first: STD 0784). Telex 264475.
Northern Branch (Personal shoppers only), 680 Burnage Lane,
Burnage, Manchester M19 1NA. Phone (061) 4324945.

Britains Best Breadboard Buy at Breadboard 79

FREE ENTRY TICKET WORTH £1.00 WITH EVERY PURCHASE

All over Britain, hobbyists are discovering Britain's Best Breadboard Buys. At the London Breadboard exhibition ' 79 on Stand Nos. F1, F2 and G1, G2, CSC will be exhibiting their full range of breadboards.

Here is your chance to obtain a special ticket for Breadboard '79 worth $£ 1.00$ absolutely FREE.

Cut out the coupon below and take it along to one of our listed dealers, and make a purchase of any of our breadboards and receive your special FREE ticket - see you at Breadboard '79.
Take the coupon to any of these main dealers: LONDON
Rastra Electronics Ltd., 279-281 King Street, Hammersmith, London W6
Cubegate Ltd., Audio Electronics, 301 Edgware Road, London W2 1BN
Technomatic Ltd., 17 Burnley Road, London NW10 1ED
Precision Instrument Labs., Instrument House,
727 Old Kent Road, London SE15

MANCHESTER

Shudehill Supply Co., 53 Shudehitl, Manchester M4 4AW BUCKINGHAMSHIRE
West Hyde Development, Unit 9 , Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET
Best Electronics (Slough) Lid., Unit 4 Farnburn Ave., Slough, Bucks SL14XU

KENT

Lawtronics, 13a High Street, Edenbridge, Kent TN8 5AX NEWCASTLE
Aitken Bros., 35 High Bridge, Newcastle upon Tyne

SCOTLAND

Marshalls, 85 West Regent Street, Glasgow G2
F. Brown \& Co., 45 George N Bridge, Edinburgh EH1 IE3

LEEDS

Leeds Amateur Radio Club, Cookridge Street, Leeds 1

HERTFORDSHIRE

Bi-PAK, 3 Baldock Street, Ware, Herts

CONTINENTAL SPECIALTIES CORPORATION

CSC UK LTD. EUROPE, AFRICA, MIDEAST
Shire Hill Industrial Estate Unit 1 Dept. 6CC2
Saffron Walden, Essex CB11 3AQ
Tel: Saffron Walden (0799) 21682. Telex: 817477

EXP 650
EXP 325 Built in bus-bars accepts 8, 14, 16 and up to 22 pin ICS. $\mathbf{£ 1 . 6 0}$
EXP 350270 contact points, ideal for working with up to 3×14 pin DIPS. $\mathbf{£ 3 . 1 5}$ EXP 650 For microprocessor chips. $\mathbf{£ 3 . 6 0}$
EXP 4 B An extra 4 bus-bars in one unit.

£2.30

EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. $\mathbf{£ 5 . 7 5}$
EXP $6006^{\prime \prime}$ centre channel makes this the
Microprocessor Breadboard. $\mathbf{£ 6 . 3 0}$
PB6 Professional breadboard in easily assembled kit form. $\mathbf{£ 9 . 2 0}$
PB100 Kit form breadboard recommended for students and educational uses. $£ 11.80$ The above prices do not include P\&P and 15% VAT

Receivers and Components

LARGE RANGE of specialised components for radio controlled home construction. SAE for lists please. Trio Instruments Limited, (Dept PW, Dartford Road, Far ningham, Kent. DA4 ODZ
BRAND NEW COMPONENTS BY RETURN

 Subminiature bead tantalum electrolytics.

 Vertical Mounting Ceramic Plate Caps 50V. Polystyrene E12 Series 63V. Hor. Mounting Miniature Polyester 250V. Vert. Mtg. E6 Series. 01 -. 068 -4p. 1 - 5 p. $15, .22$. $6 \mathrm{p} .33, .47-10 \mathrm{p}$. 61-12p.1-0-15p. $1 \cdot 5$ - 22 p. 2-2-24p.
 Miniature Film Resistors Highstab. E12 5\%. 0125 watt $10 \Omega 2 \mathrm{M} 2 \Omega$
0250 watt 1Ω to $10 \mathrm{M} \Omega(10 \%$ over 1 M$) .. ~$
 1N4148-2p, 1N4002-4p, 1N4006-6p, 1N4007-7p BC107/8/9, BC147/8/9, BC157/8/9, BF194 \& 7-10p. 8 Pin Dil i.c's 741 's-18p. 555 s-24p. 20 mm . fuses $15,25.5,10,2 \cdot 0,30$ \& 5A-3p. 20 mm . fuseholders P.C. or Chassis Mtg.-5p. Post $10 p$ (Free over £4). Prices VAT inclusive.

THE C. R. SUPPLY CO.
127. Chesterfield Road, Sheffield S8 ORN

100 MIXED COMPONENTS $£ 2.75$. Sole Electronics, 37 Stanley Street, Ormskirk, Lancs. L39 2DH.

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors

We Dispatch Valves to alf parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976 . Open to callers Monday to Saturday 9.30 to 5.00 closed Open to callers Monday to Saturcay Wednesday 1.00. We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors

COX RADIO (SUSSEX) LTD.

Dept. P.W. The Parade, East Wittering, West Wittering 2023 (STD Code 024366)

TUNBRIDGE WELLS COMPONENTS, BALLARD'S 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

> AM/CW/SSB COMMUNICATION RECEIVER and preselector
and BCD.
> CRYSTALS Brand new high-precision. You benefit from very large stocks held for industrial supplies. All normal fred standards, baud rates, MPU , and all magazine projects inc
$\mathrm{HC} 33 / \mathrm{H} .1 .0,1.008,2.5625 \mathrm{MHz}, \mathbf{~} 3.50$. 1.280 MHz £4.15. $\mathrm{HC} 18 / \mathrm{U} ; 4.0,5.0,6.0,7.0,8.0,9.0,10.0,10.7$,
$\mathrm{MHz} \mathbf{4 3 . 0 0} 12.0,15.0,16.0,18.0,20.0,6.9375$, $\mathrm{MHz} £ 3.00$, 12.0 . $15.0,16.0,18.0,20.0$. 6.9375 $38.6667 . \mathrm{MHz}, \mathbf{£ 3 - 2 5}$. Selected freas stocked in Glider Marine and 27 MHz bands. Any freq made to order in weeks from £3-90. for AM, CW, SSB, FM, on $455 \mathrm{kHz}, \mathrm{F} .6,9 \cdot 0,10.7,21.4$ MHz , etc.
> Prices inc. VAT and UK post. SAE fists.
> P. R. GOLLEDGE ELECTRONICS G3EDW, Merriott, Somerset, TA16 5NS. Tel: 046073718

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

Publishers Announcement

Due to increases which may have taken effect since this issue went to press, we strongly advise readers to check with advertisers the prices shown, and availability of goods, before purchasing.

WAVEFORM GENERATOR. Square, sine, triangular. Adjustable range 1 to 20 KHz . Built and tested $£ 5.98$ p\&p 30p. Reynolds (P.R.) 32 Common Approach, Benfleet, Essex.
VHF TUNERHEAD. $45-220 \mathrm{MHZ}, 30 \mathrm{MHz}$ IF output, ideal feed HF receiver. $£ 6.0060$ p post. $45-220$, 440 870 MHz tuner $£ 14.0060$ p post. Sae data \& lists on many items. H. Cocks, Bre Cottage, Staplecross, Robertsbridge, E. Sussex. Tel. 058083-317.

> | SOUTHERN VALVE CO., |
| :--- |
| 2nd Floor, 6 Potters Road, New Barnet, Herts. |
| Tel: $01-440 \mathbf{8 6 4 1}$ |
| For current prices \& availability, all popular valves stocked. |
| NO CALLERS, SAE Lists. Cash with order - Same Day |
| Postat Despatch. |
| Valves, Tubes, Aerials etc by LEADING MAKERS, Send SAE |
| Lists or Phone for current prices. Counter or MAIL ORDER. |
| NO COD. Speedy despatch assured. No order under E1. |
| Philip Bearman, 6, 6 . |
| Telters Road, New Barnet, Herts. $01-449$ 1934/5 (1934 Recording Machine). |

1007400 SERIES IC + 100 Diodes 4148 type. marked and unmarked, untested. $100+100 £ 1.50$. STE Ltd., UniCom Building, Edenbridge, Kent. TN8 6EW.

Books and Publications

FREE. World-famous manufacturers convenient, pocketsized electronic construction guide (nearly 200 full-colour illustrations). Limited period offer. Send S.A.E. now to TECHNOCENTRE, 54 Adcott Road, Middlesbrough.

Build your own
 P.A., GROUP \& DISCO SPEAKERS
 Save money with this practical guide. Plans for 17 differen designs, line source, 1.B., Horn and Reflex types. for $8^{\prime \prime}-18$ rive units $\mathbf{£ 3 . 9 5}$ post free ($\$ 8$ overseas)
 THE INFRA-BASS LOUDSPEAKER
 by G. Holiiman
 (full constructional details for versions using $15^{\prime \prime}, 12^{\prime \prime}$ and $10^{\prime \prime}$
 THE DALESFORD SPEAKER BOOK
 by R. F. C. Stephens
 This book is a must for the keen home constructor, Latest technology DIV designs. Plans for $1 . B$., and Reflex designs for $10-100$ watts. Also unusual centre-bass system. $\mathbf{£ 2 \cdot 2 0}$ post

\section*{VAN KAREN PUBLISHING

SWAN STREET, WILMSLOW, CHESHIRE

SWAN STREET, WILMSLOW, CHESHIRE

FULL REPAIR data any named T.V. $£ 5.30$, with circuits layouts, etc., £7. (AUSW) 76 Church Street, Larkhall, Lanarks ML9 1HE.

Aerials

KILL THAT INTERFERENCE

G2DYM ANTI-T.V.I. TRAP DIPOLES:
S.W.L. Indoor models $£ \mathbf{1 4 . 5 0}$ \& $£ \mathbf{2 7 . 5 0}$ S.W.L. Outdoor models $£ 30.00$ \& $£ \mathbf{3 4 . 5 0}$ Tx-ing models $£ \mathbf{3 6 . 0 0} \mathbf{£ 4 6 . 0 0}$ \& $\mathbf{£ 5 4 . 7 5}$ Lists 10×8 in SAE. Aerial Guide $\mathbf{5 0 p}$. Indoor and invisible aerials for S.W.L's $\mathbf{£ 3 . 5 0}$. G2DYM, Uplowman, Tiverton, Devon.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

COPPER AERIAL WIRE 14 swg hard drawn $70^{\prime} £ 3.50$ $140^{\prime} £ 7.00$. inc. VAT. Postage $£ 1.00$. T.M.P. Electronic Supplies. Britannia Stores, Leeswood, Nr. Mold, N. Wales.

AERIAL BOOSTERS
 Improves weak VHF Radio and Television reception
 B45-UHF TV, BII-VHF Radio. B 11 A-2 metres For next to the set fitting.
 Price f6. S.A.E. for Leaflets. ACCESS
 ELECTRONIC MAILORDER LTD
 62 Bridge Street,
 Ramsbotton, Bury, Lancs, BLO 9AG.

For Sale

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70p each, post free. Open P.O. Cheque returned if not in stock - BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.
PRACTICAL WIRELESS August 1973 to July 1977 Offers Leeds 691655
ELECTRONIC ignition (Capacitor Discharge) manufac turers surplus P.C. Boards, Tested less Box $£ 2.75$ each. (01) 643-6111 after 6 p.m.
MULLARD LP1164 AM/FM I.F. Modules guaranteed unused $£ 1.50$. P.P. C.W.O. S.A.E. Lists. Tennex Limited, Stock Road Industrial Estate, Southend, Essex
SALE - Grundig "Satellite 2100", LW, MW, FM and $18 \times$ SW. Guaranteed. $\mathfrak{\text { 1 } 1 4 0 \text { . Ring X. Kreiss (London) } 2 4 0 3 4 5 6}$ Ext. 2671.
U.S. SIGNAL CORPS -27 MHz Transmitter and Receiver with 78 Crystais. £75. Phone Tunbridge Wells 28607.

Wanted

WANTED Cossor Oscillograph Model 1049MK 1. Work ing or not to be used as spare. S. Burns, 15 Glenelg Quadrant, Easterhouse, Glasgow, G34 0DQ.
ELECTRONIC COMPONENTS PURCHASED. AlI Types Considered - Must be new. Send detailed list - Offer by return -. WALTONS, 55A Worcester Street, Wolverhampton.

JASON Stereo valve amplifier J210MK III circuit diagram wanted CH10S $\$ 0,49$ Beaconsfield Villas, Brighton, Sussex. 505821.

Ladders

LADDERS varnished 21' Extd. £39.39. Carr. £3.50. Leaflets. Callers Welcome. Alloy Ext. to $62 \frac{1^{2}}{}$ '. Ladder Cen tre (WLS3), Haldane, Halesfield (1) Telford. 586644.

Service Sheets

SERVICE SHEETS. Radio, TV etc., 10,000 models Catalogue 24 p , plus S.A.E. with orders, enquiries TELRAY, 154 Brook Street. Preston PR1 7HP.
BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc., $£ 1.00$ plus SAE Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

Service Sheets

C THE TECHNICAL INFORMATION SERVICE 76 CHURCH ST., LARKHALL, LANARKS ML. 1 HE

1000's of service sheets - any single sheet $\mathbf{£ 1}+$ L.S.A.E.
1000's of service manuals in stock for immediate despatch.
1000's of repair manuals in stock for immediate despatch.
S.A.E. for full details, quotations, newsletter, bargain offers eg. service sheets under 40p each - by return post.

FREE £4 vouchers when you send very large S.A.E. with $£ 2$ for our 2 GIANT SERVICE SHEET \& MANUALS CATALOGUES + free gift.

LARGE SUPPLIER OF SERVICE SHEETS

 and Colour Manuals, TV Mono Radios, Tuners, Tape Recorders,Record Players, Transistors. Stereograms, all at 75 pach + S.A.E except colour $\mathbb{N} £ 1.00$ and Car Radios $£ 1.25$. State if Circuit will do. if sheets are not in stock. All TV Sheets are full lengths $24 \times$ 12. not in Bits \& Pieces. Free Fault Finding Chart or TV Catalogue with order. All crossed PO 's returned if service sheets not in stock C. CARANNA

71, Beaufort Park, London, NW1 1 6BX 01-458 4882 (Mail Order)

Record Accessories

STYLI, Cartridges For MUSIC CENTRES, etc. FREE List No. 29 For S.A.E. includes Leads, Mikes, Phones etc. FELSTEAD ELECTRONICS, (PW), Longley Lane, Gatley, Cheadle, Ches. SK8 4EE.

Educational

COURSE IN ELECTRONICS by correspondence. For free brochure, write to: The Dataspec Program, Box 23, Succ Laval West, Laval, Quebec, CANADA. H7R-5B7.

TELEVISION 8
 VIDEO SYSTEMS SERVICING

15 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO \& COLOUR TELEVISION
- CLOSED CIRCUIT TELEVISION
- VIDEO CASSETTE RECORDING
- digital techniques
- TELETEXT \& TV GAMES

Shortened courses for applicants with suitable electronics background.

Next session starts January 7th.
(Also available $2 \frac{1}{2}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept. B12, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721.

[^2]SERVICE SHEETS from 50 p and S.A.E. Catalogue 25p and S.A.E. Hamilton Radio, 47 Bohemia Road, St. Leonards, Sussex.

Educational

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. P277 Intertext House, London SW8 4UJ Tel. 01-622.9911 (all hours)

State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. P277 Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)

State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs, Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. P277 Intertext House, London Sw8 4UJ Tel. 01-622 9911 (all hours)

State if under 18

Miscellaneous

THE SCIENTIFIC WIRE COMPANY				
ENAMELLED COPPER WIRE				
swg	1 lb	802	4 oz	202
10 to 19	2.65	1.45	. 75	. 60
20 to 29	2.85	1.65	. 90	70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 to 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15.00	9.00	6.00	3.30
SILVER PLATED COPPER WIRE				
14.16. 18	4.50	2.25	1.44	90
20\& 22	5.00	2.85	1.74	1.06
24\& 26	5.70	3.31	2.00	1.22
28 \& 30	6.67	3.86	2.35	1.44
Prices include P \& P and VAT SAE brings list of copper $\&$ resistance Wires Dealer Enquiries Invited				

[^3]
MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-24 w.p.m. for professional examination
preparation. Each Cassette are type c preparation. Each Cassette are type C90.
Price each Cassette (including booklets) $\mathbf{~ 4 . 7 5 .}$. Morse Key
and Buzzer Price each Cassette
and Buzzer 4.75 .
Prices include postagsetc. Overseas Airmail f1-50 extra.
MHEL ELECTRONICS (Dept P.W.), 12
Longshore Way, Milton, Portsmouth PO4'8LS

PRINTED CIRCUITS. Make your own simply, cheaply and quickly! Golden Fotolak Light Sensitive Lacquer now greatly improved and very much faster. Aerosol cans with full instructions $£ 2.25$. Developer 35 p. Ferric Chloride 55 p. Clear Acetate sheet for master 14 p. Copper-clad Fibre-glass Board approx. Imm thick $£ 1.70$ sq. ft. Post/packing 60p. WHITE HOUSE ELECTRONICS, P.O. Box 19, Castle Drive, Penzance, Cornwall.

NICKEL CADMIUM BATTERIES

Rechargeable and suitable for fast charge HP7 (AA) £1.05. SUB C£1.36, HP |I (C) £1.98, HP 2 (D) $£ 3.02$, PP $3 £ 3.79$. PP 3 charger $£ 5.40$.
All the above nickel cadmium batteries are brand new and all guaranteed full spec. devices.
All cells are supplied complete with solder tags lexcept PP
Brand new full spec. RECHARGEABLE SEALED ACID maintenance free batteries suitable for burglar alarms etc, 1.2 amp hr. $6 \mathrm{v} \mathbf{£ 4 . 0 7} \mathbf{2} \mathbf{2 . 6} \mathrm{amp}$ hr. $6 \mathrm{v} \mathbf{£ 5 . 2 3 .}$

Quantity prices available on request. Data and charging circuits free on request with orders over $£ 10$, otherwise 30 p post and handling (specity battery type). Please add 10% ate should be added to total order. Cheques, Postal Orders, Mail order to:-
SOLID STATE SECURITY DEPT. (PW), 108 radshaw Lana, Parbold, Wigan Lincs.

SUBERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90 p . Chassis punching facilities at very competitive prices. 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI. (Dept No. 25) St. Wilfrids, Foundry Lane Halton, Lancaster. LA 6LT.

```
            ELECTROLYTIC CAPACITORS -
MODERN MINIATURE TYPE. 
THREE CHANNEL SOUND/LICHT
THREECHANNEL SOUND/LIGHT UNIT Boards 700
w.p.c. £12.Sereag. complete units £21.50 ea. inc. P&P. Also
Send large S.A.E. and top for lists of range. or phone or cal
at
            N.J.D. LTD.
    3, Marborough Street, Dunkirk, Nottingham
    Trade enquiries wefcome - quantity discounts available.
```


LOSING DX?

RARE DX UNDER ORM? Get 40dB more DK to QRM ratio with a Tunable Audio Notch Filter, between your NEW: receiver and speaker, only $£ 8.90$.

Second 8 , Hours, Minutes $\times 8 \times 15 \mathrm{~cm}$, Time Signal accuracy alway fot 48 , only 5 $\times 8 \times 15 \mathrm{~cm}$, Time Signal accuracy always, f48.80.
$60 K H z M S F R e c e i v e r, ~ s e r i a l ~ d a t a ~ o u t p u t, ~$
1 13.70 . GOKHzMSF Receiver, serial data output, $£ 13.70$.
OFF FREQUENCY? GRAB the RARE DX with

Calibrator, between your antenna and receiver. TMHz $100,25 \mathrm{KHz}$ markers, no missing "even" ones, f 15.80 .
V.L.F.? EXPLORE $10-150 \mathrm{KHz}$. Receiver only $£ 10.70$ V.L.F.? EXPLORE $10-150 K \mathrm{~Hz}$. Receiver only £10.70.
MAKE UP YOUR OWN TUNES with a Programmable Chime, new carol each day? E 23.50 less speaker. LONG WAVE DX? $100-600 \mathrm{KHz}$ Converter, built-in anten-
na tuner, $4.1-4.6 \mathrm{MHz}$ output for FRG 7 etc, Et 10.90 . Each fun-to-build kit includes all parts, printed circuit, case, postage etc, money back assurance so SEND off NOW.

CAMBRIDGE KITS

45 (PZ) Old School Lane, Mitton, Cambridge.

GUITAR/PA/

 MUSIC AMPLIFIERS100 watt superb treble/bass overdrive. 12 months guarantee. Unbeatable at £44; 60 watt £37; 200 watt £59; 100 watt twin channel sep. treble/bass per channel $£ 58$; 60 watt $£ 48$; 200 watt $£ 72 ; 100$ watt four channel sep. treble/bass per channel $£ 75 ; 200$ watt $£ 92$; slaves 100 watt $£ 32 ; 200$ watt
$£ 50$; fuzz boxes, great sound $£ 8.50$; bass fuzz $£ 9.50$; overdriver fuzz with treble and bass boosters $£ 15 \cdot 50 ; 100$ watt combo superb sound overdrive, sturdy construction, castors, unbeatable $£ 90$; twin channel $£ 100$; bass combo $£ 100$; speakers 15 in . 100 watt $£ \mathbf{£ 3 5 ;} 12 \mathrm{in} .100$ watt $\mathbf{£ 2 3 ;} \mathbf{6 0}$ watt
$\mathbf{£ 1 5}$; microphones Shure Unidyne B $£ \mathbf{2 6}$. Send cheque or P.O. to

WILLIAMSON AMPLIFICATION

62 Thorncliffe Avenue, Dukinfield, Cheshire. Tel: 061-344 5007 or 061-308 2064 BELLICES INCLUSIVE.95 SEND CES INCLUSIVE. -WAS A.P.O. to CWAS ALARM 11 Denbrook Walk, Bradford BD4 09S

SOLAR CELLS, Batteries, Panels, Thermoelectric Generators, Heat pipes, Books etc. Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.

WIN - WIN - WIN - WIN

A Professional 16/4 Mixer and 4 Track Tape Machine. Or a Programmable 7 day Video Unit or 20 Current Chart Albums.
Send S.A.E. For Competition Entry Form To:

EUROPRIZE COMPETITIONS LTD.,

Home Farm, Northall,
Dunstable, Beds.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS
Please insert the advertisement below in the next available issue of Practical Wireless for
I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME.
Send to: Classified Advertisement Manager PRACTICAL WIRELESS,
GMG, Classified Advertisement Dept., Rm. 2337,
ADDRESS

Electronics
 Makeajob-or hobby-ofit

The opportunities in electronics, today, and for the future are limitless - thriughout the world - jobs for qualified people are available everywhere at very high salaries. Running your own business, also, in electronics - especially for the servicing of radio, T.V. and all associated equipment - can make for a varied, interesting and highly renumerative career. There will never be enough specialists to cope with the ever increasing amount of electronic equipment coming on the world market.
We give modern training courses in all fields of electronics practical D.I.Y. courses - courses for City and Guild exams, the Radio Amateur Licence and also training for the new Computer Technology. We specialise only in electronics and
 have over 40 years of experience in the subject. - Details sent without any obligation from

30 VOLT RANGE
Pri $220 / 240$ sec $0-12-15-20-24-30 \mathrm{~V}$
Voltages available 3. $4,5,6,8,9.10$
12.15 .18 .20 .24 .30 V or $12 \mathrm{~V}-0-12 \mathrm{~V}$
and $15 \mathrm{~V}-0.15 \mathrm{~V}$.

50 VOLT RANGE Pri 220/240V Sec 0-20-25-33-40-
50 V Votrages availaber $5,7,8,10,13$
$15,17,20,33,40$ or $20 \mathrm{~V}-0-20 \mathrm{~V}$ and
$25 \mathrm{~V}-\mathrm{O}-25 \mathrm{~V}$ $25 \mathrm{~V}-0-25 \mathrm{~V}$
Ref

> Continuous Ratings

+ VAT 15\%

END OF LINE OFFERS

$\begin{array}{llll}30 \text {-Isolator } 240 \mathrm{~V}: 240 \mathrm{~V} & 200 \mathrm{VA} & \mathrm{E} 4.54 & \mathrm{Eq} .04\end{array}$

 $\begin{array}{lllll}\text { 62-Isolator } 240 \mathrm{~V}: 240 \mathrm{~V} & 250 \mathrm{VA} & \mathbf{£ 5 . 6 2} & £ 1.04\end{array}$ 6-250-0-250 100 ma 1 Sec 6.3 V - 3.5A 2) Sec $0-5 \mathrm{~V} 6.3 \mathrm{~V} 2 / 1 \mathrm{mmp} \quad \mathrm{f3} .2078$ 7-350-0-350V © 100 ma 1) $\mathrm{Sec} 6.3 \mathrm{~V} \mathrm{e} \mathrm{3.5A} \mathrm{2)} \mathrm{Sec} 0-5 \mathrm{~V}$ 6.3 V © $2 / 1 \mathrm{amp} \mathbf{~ E 4 . 1 0 9 6 p}$ 27-250-0-250 60ma 1) Sec 6.3V © 2.5A 2) Sec 6.3V 82-4 amp Battery Charger (transformer) £4.81 £ 1.04 $\mathbf{8 6 - 6}$ amp Battery Charger (transformer) $\mathbf{£ 5 . 8 0} £ 1.04$ M184 - To match EL84 15W £1.62 32p M616-0-240V: Screen 1) 13-0-13 1A. 2) 12 V 150 ma £2-1060pM489-0-240V: 1400V @ 150ma, 6 3V 4A
M708 - 6 K to $3 \mathrm{~K} \Omega$ matching trans $5 \mathbf{E 5 . 5 0} £ 1.04$
trans. 5 watt 90p 40p M865 - $100 \mathrm{~V} \times 2: 36 \mathrm{~V} 1-6 \mathrm{~A}$ M865-100V Line to $4 \Omega 10$ watts M973-100V Line to $8 \Omega 40$ watts M1015-Choke 8 A e 5 mH 150A Surge M1020-0-240V 12-0-12V \& 50ma M1126-120/240V: 9-0-9V 1 A M1130-0-2404500V 10 ma M1165-0-115-240V: 14 V 50 ma Metal Oxide Resistors $\frac{1}{4} \mathrm{~W} 5 \%$ TR4 (Electrosil) $24 \mathrm{~K} / 470 \mu / 560 \mu 1 \mathrm{~K} / 1 \mathrm{~K} 8 / 2 \mathrm{~K} 4 / 1 \mathrm{~K} 1 / 270 \mathrm{~K} / 1 \mathrm{~K} 6 / 82 \mathrm{~K} /$ $20 K / 820 \mu / \uparrow 6 K / 180 K / 390 \mu / 3 K / 510 \mu / 300 K /$ $220 \mathrm{~K} / 2 \mathrm{~K} / 100 \mathrm{~K} / 22 \mathrm{~K} / 130 \mathrm{~K} / 47 \mathrm{~K} / 1 \mathrm{~K} 2 / 120 \mathrm{~K} / 110 \mathrm{~K}$ £1.50/100 + VAT.
P.W. Purbeck osciloscope transformer 250-0-250V $6.3 \mathrm{~V}: 12.9 \mathrm{~V}$
£7.51£1.04
Solderless bread boarding U Dec B for IC's etc $£ 6.99$ P \& P 40p VAT 15%

AVO TEST METERS	
AVO 8 MK5	£91.50
AVO 71	£38.00
AVO 73	¢50.70
AVO MM5 minor	£35.95
Wee Megger	£76.28
T169 in circult transistor tester	£41.53
EM272	£59.80
DA116 Digitai	£110.90
BM7 Megger	£53.76
Clamp Meter to 300A	£54.60
All Avos Meggers and accessories	ailable.

15V RANGE (75-0-7.5V) O-CT 15 V
Wee Meg minor

Mini Multimeter:-DC1000V AC
1000 V AC/DC 1000 $1000 V$ AC/DC 1000 V DC
100 ma Res- 150 K £7.20 P \& P 100mares-
Plug in Save Batteries:- fits into let 300 me £4-60P \& P P 55 p VAT 15%

Electronic Construction Kit Home eiectronic starter. Start
simpiy and progress to anf ranpio and progress to a TRF radio or electronic organ. No
soldering, All parts included in
presentation pox full instryctions E8.29. P\& Pf7:10VAT 15\%

AUTO TRANSFORMERS			
Ref	VA (Wetts)	£	P\&P
113	15 0-115-210-240	2.73	0.
64	75 0-115-210-240	4.41	1.10
4	150 0-115-200-220-240	5.70	1.10
67	$5000115 \cdot 200-220-240$	12.89	1.91
84	1000 0-115-200-220-240	29.84	2.39
93	1500 0-115-200-220-240	25.61	OA
95	2000 0.115-200-220-240	38.31	OA
13	3000 0.115-200-220.240	85.13	OA
805°	4000 0-10-115-200-220-240	84.55	OA
57S	5000 0-10-115-200.220-240		0 A
lep up or step			
Eectromics Lid.			
ORIES, LONDON EC3N 1BJ HONE: 01-488 3316/7/8			

RADIO CONTROL

P.W. F.M. SYSTEM

TELERADIO R/C ELECTRONICS ARE STOCKING ALL PARTS

Send S.A.E. for leaflets to
TELERADIO R/C

325 Fore St., London N9 OPE
01-807 3719
Closed Thursdays

PROGRESSIVE RADIO

ALL ORDERS DESPATCHED BY RETURN POST

SEMICONDUCTORS. 2 N5062 (100V 800mA) SCR 18p. BX504 opto isolator 25p. CA3130 95p. TBA800 50p. C106D 400V 2-5A SCR Cropped Heatsink 20p. TDA 1151 25p.
SWITCHES. Min. toggles. SPST $8 \times 5 \times 7 \mathrm{~mm}$ 52p. DPDT $8 \times 7 \times 7 \mathrm{~mm}$ 62p. DPDT c/off $12 \times 11 \times 9 \mathrm{~mm}$ 77p. HEAVY DUTY-DPDT 240 VAC 10 Amp 35p. PUSH TYPE, push on $16 \times 6 \mathrm{~mm}$ 15p, push to break version 17p. 16 pin D.I.L. switch 40p.
SURPLUS BOARDS. No. 1 car radio IF. Board 2 transistors and IM382 I.C. I.F.'s etc., 65p. No. 2 with 150 V 2.5 Amp SCRS, relay and various transistors. Including unijunction type $\mathbf{£ 1 . 7 5 p}$ NO. 3 WT DIMMER. Wall mounting 250 V .
LIGHT DIMMER. Wall mounting 250VAC 800 watts max., has built in photo cell for automatic switch on when dark £4.50p.
RECORDING TAPE. Low noise Mylar, supplied spooled unboxed, $7^{\prime \prime} 1200^{\prime}$ £1.00, $7^{\prime \prime} 1800^{\prime}$ TAPE HEAD DEMAGNETISER. f1.95p.
TOOLS. 5 piece precision screwdriver sets, individual handles only $£ \mathbf{£ 1 . 0 5}$ set
JUMPER TEST LEAD SETS. 10 pairs of leads with insulated crocs each end 90 p.
MURATA 4OKHZ TRANSDUCERS, RX/TX E3.50 pair.
TELEPHONE PICK UP COIL suction type with lead and piug 62p.
MINIATURE SOLID STATE BUZZERS. $33 \times 17 \times 15 \mathrm{~mm}$, output at 3 feet 70 db ., 15 ma drain, 4 type, 6-9-12 or 24 volts 80p. LOUD 12 volt buzzer 63p.
Cash with order please, official orders welcome from schools etc., please add $30 p$ postage and packing. VAT inc/usive. SAE for latest illustrated stock list.

31, CHEAPSIDE, LIVERPOOL L2 2DY

FIRST

and STILL BEST!
We've been producing our Electronics Components Catalogue for over 20 years. During that time we've learned a lot, not only in the art of catalogue production but in building a business that serves the needs of constructors. Little wonder that we have a reputation second to none for our catalogue-and for the service that backs it up. Experience both for yourself. Just send $£ 1.30$ with the coupon and a catalogue will come by return of post.

- About 2,500 items clearly listed and indexed.
- Profusely illustrated throughout.
- 128 A-4 size pages, bound in full-colour cover.
- Bargain list of unrepeatable offers included free.
- Catalogue contains details of simple Credit Scheme.

HOME RADIO (Components) LTD.,
Dept. PW., 234-240 London Road, Mitcham, Surrey GR4 3HD

with cheque or P.O. for $£ 1.30$ \square
HOME RADIO (Components) LTD Dept PW 234-240 London Road. Mitcham, Surrey CR4 3HD

- - - - - 912966 London

Theprofessionalscopes you've always needed.
 When it comes to oscilloscopes, you'll have to go a long way to

 equal the reliability and performance of Calscope.

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price £219 plus VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT.
Prices correct at time of going to press.

CALSCOPE DISTRIBUTED BY

Watford Electronics

33-35 Cardiff Road.
Wattord, Herts.
Tel: 092340588

Audio Electronics, 301 Edgware Road, London W. 2. Tel: 01-724 3564 Access and Barclay card facilities (Personal Shoppers)

Maplin Electronics Supplies Ltd.
P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155
Mail Order

CALSCOPE

SWANLEY ELECTRONICS
 Dept. PW, 32 Goldzel Road, Swanley, Kant BRe sez.

Mail order only. Please add 30 po the total cost of your order for postage. Prial
24 p post free. Overseas customers deduct 13%. Official credit orders welcome.

CASH \& CARRY PRICES SHORT-WAVE RECEIVERS

SONY-ICF 6700. 5 band. General coverage. Digital readout. B / I spkr. and ant.
£198.00
SONY-ICF 6800. 31 band. Dual conversion. Crystal synthesizer. Digital. Fet balanced mixer. Tuned RF preselector
NATIONAL DR26. 6 band portable receiver. Digital read-out.
Preselector
$£ 159.00$ NATIONAL DR48. 11 band communication RX. Digital. 2 speed tuning. Rugged steel cabinet $\mathbf{E 2 7 0 . 0 0}$ GRUNDIG 3400 SATTELITE. Latest model of FI famous receiver. Superb audio. $£$ to be announced.

Established over 50 years on good service.

G3ST
 PARK ELECTRIC
 G8HGE

211 Streatham Road, Mitcham, Surrey 01-648 6201

BURGLAR ALARMS

WE HAVE STOCKS OF EVERYTHING YOU NEED. CALLERS WELCOME. OPEN 6 DAYS EXPRESS POSTAL SERVICE FREE CATALOGUE SEND S.A.E.

SPECIAL OFFER
18 SWG steel plastic coated bell box with FREE ADE sticker

inc. VAT and postage

A. D. E. (SECURITY) CO., 217 WARBRECK MOOR
 AINTREE, LIVERPOOL
 TEL: 051-525-3440

STOP PRESS ! Trade Price List Available Applications on Official Stationery only

4-STATION
 INTERCOM

£27.95

+ VAT $£ 4 \cdot 19$
Solve your communication problems *ith this 4-Station Transistor Intercon system (1 master :nd 3 Subs) in robust plastie cabinets for desk or wall mounting. Cal/talk/listen Surgery Schools, Hospitals ind Office opuitable for Business, Surgery, Schools, hospitas ind Office. Operates on one 9 V necting wiris each 66 ft . I Battery and other accessories necting wiricy
P. \& P. $\mathbf{E} 1.25$. Ni w' AMIRICAN IMPF CFADIE
TELEPHONE AMPRIFIER

£17.95
+VAT $£ 2.69$
+ P. \& P. 99p.
Latest inthintonised Telephone Amplifier with detachen thug in speaker. Plicing the receiver un to the cradle activates a the handset. Muny people conversition without holding efficiency in office, shop, workshop. Perfect for "conterence" calls: leaves the user's hands free to mike notes, consult files No long wiiting. sives time with long-distance calls. On/of switch. volune control, conversation recorting model a $£ 19.95$ + VAT $15 \%=£ 2.99$. P. \& P. 99 p.

DOOR ENTRY SYSTEM

No house/bubiness/surgery should be without a DOOR ENTRY SYSTEM in this day and age. The modern way to answer
 button which will open the tloor electronically. A boon for the invalid. the aged and busy houstwife. Supplied complete d.i. y. kit with one internal Telephone, outside Speaker panel, electric door lock release (for Yale type surface latch lock), Price $£ 49.95$ + VAT £7.50 + P \& P. £1.45. Kit with two Telephones $£ 59.95+$ VAT $£ 9.00+$ P. \& P. $£ 1.65$.
10.day price refund guarantec on all items.

WEST LONDON DIRECT SUPPLIES (P.W.12)
169 KENSINGTON HGH STREET, LONDON, W8

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
"A" levels Accountancy Air

Conditioning
Building
POST OR PHONE TODAY FOR FREE BOOKLET.

A SELECTION FROM OUR STOCKS OF FULLY

 GUARANTEED FIRST QUALITY VALVES| IB3GT | 0.85 | 6AX4GTB | $1 \cdot 15$ | 6CY5 | $1-15$ | 12AT7 | 0.57 | ECF201 | 1.03 | EM87 | $1 \cdot 15$ | PCF806 | 1 -15 | PL802 | 3.22 | UCC84 | 0.86 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IR5 | 0.57 | 6AX5GT | 1.49 | 6CY7 | 1.15 | 12AU6 | 0.75 | ECF801 | 1.09 | EY81 | 0.63 | PCL81 | 0.75 | PY81 | 0.81 | UCC85 | 0.69 |
| 1 $\times 2 \mathrm{~B}$ | 1.38 | 6BA6 | 0.52 | 6006B | 1.67 | $12 \mathrm{AU7}$ | 0.54 | ECF802 | 1.09 | EY87 | 0.57 | PCL82 | 0.92 | PY82 | 0.63 | UCF80 | 0.86 |
| 5AT8 | $0 \cdot 92$ | 6BE6 | 0.55 | 6DT6 | 0.92 | 12AV6 | 0.98 | ECH42 | 1.27 | EY88 | 0.63 | PCL84 | 0.86 | PY83 | 0.81 | UCH42 | 1.15 |
| 574 | 0.86 | 6BF5 | 0.98 | 6DT8 | 0.92 | 12AV7 | 1.16 | ECH81 | 0.63 | EY500A | 1.73 | PCL86 | $0-98$ | PY88 | 0.86 | UCH81 | 0.75 |
| $5 U 46$ | 0.69 | 6BF6 | 0.65 | 6DW4 | 1.03 | 12AX7 | 0.63 | ECH200 | 0.92 | E780 | 0.57 | PCL805 | $0-92$ | PY500A | 1.73 | UCL81 | 0.81 |
| 508 | 0.86 | 6BG6G | 1.49 | 6ES5 | 1.15 | 12AY7 | 0.98 | ECL80 | 0.69 | EZ81 | 0.57 | PD510 | 3-86 | U25 | 1.15 | UCL82 | 0.86 |
| 5 V 4 G | 0.69 | 6BH6 | 0.98 | 6EV5 | 1.73 | 12BA6 | 0.75 | ECL81 | 0.86 | GY501 | 1.03 | PL36 | 1-27 | U26 | 1.15 | UCL83 | 0.92 |
| 5X4G | 0.92 | 6BJ6 | 1.38 | 6EW6 | 0.92 | 12BF6 | 0.77 | ECL82 | 0.69 | GZ30 | 0.75 | PL81 | 0-92 | UABC80 | 0.66 | UF41 | 1-15 |
| 5×8 | 1.03 | 6Bd7 | 0.75 | 6GH8A | 0.92 | 12BH7A | 0.86 | ECL83 | 1.33 | GZ32 | 0.75 | PL82 | 0-63 | UAF4 1 | 0.92 | UF80 | 0-57 |
| 5Y3GT | 0.75 | 6BK4B | 1.61 | 6GK5 | 0.81 | 12BL6 | 0.81 | ECL84 | 0.81 | G233 | 4.38 | PL83 | 0.57 | UBC41 | 0.81 | UF85 | 0.57 |
| 5246T | 0.75 | 6BN4A | 1.03 | 6GK6 | 1.03 | 12B06 | 1.03 | ECL85 | 0.75 | KT66 | 7.42 | PL84 | 0.86 | UBC8 1 | 0.66 | UL84 | 0.98 |
| 6AB7 ${ }^{\circ}$ | 0.69 | 6BN6 | 0.92 | 6 J 4 | $1-38$ | 12BY7A | 0.92 | ECL86 | 0.98 | KT88 | 8.28 | PL504 | 1.38 | UBF80 | 0-69 | JM80 | 0.69 |
| 6AC7 | 0.92 | 6B07A | 0.81 | 6.J5GT | 0.92 | 12CU6 | 1.03 | EF80 | 0.46 | OA2 | 0.75 | PL508 | 1.62 | UBF89 | $0-69$ | UM81 | 0.86 |
| 6AD8 | 0.69 | 6BR8A | 1.38 | 6.56 | 0.63 | 19 ALS | 0-86 | EF85 | 0.55 | OA3 | $0 \cdot 66$ | PL509/519 | 2.87 | UBL21 | 1.03 | UM84 | 0.52 |
| 6AF4A | 0.92 | 6BS7 | 2 -65 | 6K56T | 0.86 | 19BG6G | $0-57$ | EF86 | 0.69 | OB2 | 0.81 | | | | | | |
| 6AG5 | 0.75 | 6BU8 | 0.98 | 6K6GT | 0.98 | 35A3 | 0.81 | Ef92 | 1.16 | 083 | 0.86 | | | | | | |
| 6AG7 | 0.98 | 6BW7 | 1.15 | 6L6GT | 1.27 | $35 \mathrm{B3}$ | 0.75 | EF97 | 0.81 | $00^{0} 2$ | 1.61 | OSCILLOSCOPE TUBES | | | | | |
| 6AH6 | 1.09 | 6BZ6 | 0.75 | 6N7GT | 0.98 | 35C5 | 0.98 | EF98 | 1.03 | $00^{0} 3$ | 0.98 | | | | | | |
| 6AJ5 | 0.75 | 6BZ7 | 0.81 | 607 | 1.03 | 50C5 | 1.16 | EF183 | 0.81 | 003 | 0.86 | current production. Made in USSR | | | | | |
| 6AK5 | 0.63 | 6 C 4 | 0.63 | 6SA7 | 0.92 | 50EH5 | 0.98 | EF184 | 0.81 | PABC80 | 0.52 | One inch Tube Type 3L0 11. This tube is a | | | | | |
| 6AK6 | 0.86 | 6C5GT | 0.69 | 6SG7 | 0.92 | DAF96 | 0.69 | EFL200 | 1.84 | PC86 | 1.03 | | | | | | |
| 6AK7 | 0.98 | 6C6 | 0.57 | 6SK7 | 0.92 | DF96 | $0-69$ | EH90 | 0.69 | PC88 | 1.03 | good replacement for 1 CP31. Tube | | | | | |
| 6AL5 | 0.46 | 6C8G | 0.69 | 6SL7GT | 0.81 | $0 \mathrm{Kg2}$ | 1-16 | EL33 | 2.87 | PC96 | 0.57 | characteristics are identical with those of | | | | | |
| 6AM6 | 1.38 | 6CB6 | 0.63 | 6SN7GT | 0.81 | DL96 | 0.69 | EL36 | 1.73 | PC97 | 1.09 | 1 CP31. As the connections are different the | | | | | |
| 6AM8 | 0.81 | 6CG7 | 0.81 | 6S07 | 0.92 | ECC84 | 0.69 | EL81 | 0.92 | PC900 | 1.15 | | | | | | |
| 6AN5 | 2.87 | 6CG8A | $0 \cdot 86$ | 6SR7 | 0.92 | ECC85 | 0.55 | EL82 | 0.69 | PCC84 | 0.57 | tube is supplied complete with base, | | | | | |
| 6AN6 | 0.98 | 6CM7 | 0.92 | 6 6 6 GT | 0.92 | ECC86 | 1.44 | EL83 | 0.69 | PCC85 | 0.69 | connection diagram and technical data | | | | | |
| 6A05 | 0.98 | 6CN7 | 1.38 | 6×4 | 0.81 | ECC88 | $0 \cdot 86$ | EL84 | 0.75 | PCC88 | 0.75 0.86 | | | | | | |
| 6AS6 | 1.15 | 6C08 | 0.86 | $6 \times 5 \mathrm{GT}$ | 0.69 | ECC89 | 0.92 | EL86 | 0.86 | PCC89 | 0.86 | $\mathbf{E 1 2 . 0 0 ~ p l u s ~} \mathrm{f} 1.80 \mathrm{VAT}$. Threeminch tube | | | | | |
| 6AS76 | 1.38 | 6CS7 | 0.98 | 6X8 | 0.92 | ECC189 | 0.92 | EL95 | 0.81 | PCC189 | 1.15 | Type 3BP1. This well known tube used in | | | | | |
| 6AT6 | 0.86 | 6CU5 | 1.15 | 12A6 | 0.69 | ECF80 | 0.69 | EL504 | 1.09 | PCF80 | 0.98 | "PURBECK" Oscilloscope can be supplied | | | | | |
| 6AU6 | 0.57 | 6CU6 | 1.15 | 12AL5 | 0.75 | ECF82 | 0.63 | EM80 | 0.75 | PCF82 | 0.52 0.75 | for $£ 7.50$ plus $£ 1.12$ VAT. 14 -pin base for | | | | | |
| 6AV6 | 0.86 | 6CW4 | 4.05 | 12A05 | 0.69 | ECF86 | 0.92 | EM81 | 0.69 | PCF84 | 0.75 | | | | | | |
| 6AW8A | $0 \cdot 86$ | 6CX8 | 1-15 | 12AT6 | 0.69 | ECF200 | 1.03 | EM84 | 0.69 | PCF86 | 0.86 | the abov | e ± 0 | 80 plu | . 12 | VAT. | |

Prices are inclusive of VAT (at current rates) except where shown separately. Postage and packing charges are $\mathbf{£ 0 . 1 5}$ per $£$ subject to a minimum of $\mathbf{£ 0 . 4 0}$. Minimum order charge for Approved Credit customers $\mathbf{£ 2 0 . 0 0}$. Minimum Transaction Charge for mail orders $\mathbf{£ 1 . 0 0}$.

INDEX TO ADVERTISERS

Advance Design		
A. J. H. Electronics		44
A.J. P. Electronics		77
Amateur Electronics		18
Amateur Radio Exchange		67
Ambit international.		Cover II
Amcomm Services		
Antex		Cover 11
Armon Products		
B. P. M.		
Barrie Electronics		93
Bearman, Phillip		90
B.I.E.T.		19
$\mathrm{Bib} \mathrm{Hi}-\mathrm{Fi}$		
Bi-Pak Limited		20, 21
Bi-Pre-Pak		43
Birkett J.		
Bowes C.		84
British National Radio \&		
Electronics School		15,92
Bredhurst	.	68
Brooks B.	\ldots	73
J. Bull	\ldots	13
Casscope		94
Cambridge Kits		91
Caranna C.		91
Catronics (VHF Communic	tions	
Chromasonics Electronics	\ldots	88
Chromatronics	\cdots	19
Continental Specialities		
Corporation Ltd. ...	\ldots	89
Contour Electronics		58
Cooper A. S.		8
Cox Radio (Sussex) Ltd.		90
C. \& R. Supply Co.	\ldots	90
C.W.A.S. Alarm ...	\ldots	92
Dudley \& Co. Ltd., John		91
Electronic Design Associat Electronic Mail Order Lid.		
Electrovalue		88
Electrovance		
Europrize Competitions Lid		92

Published on approximately the 7th of each month by IPC Magazines Limited, Westover House, West Quay Road, POOLE. Dorset Brib IJG. Printed in England by Chapel River Press, Andover, Hants. Sole Agents for Australia and New Zealand-Gordon and Gotch (Asia) Ltd.: South Africa-Central News Agency Ltd. Subscriptions NLAND and overseas ele foblishers first having been given, be lent, resold, hired out
 otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, ititerary or pictorial matter whatsoever.

\because odel CTC- 24 volts Friced at $\mathbf{5 9 . 7 5}(1.87)$

\because del CTC-24volts Priced at $\mathbf{£ 9 . 7 5 1 1 8 7}$

Accurate pin point temperature contr between 65° and $400^{\circ} \mathrm{C}$. Heating element and sensor built in tip of the uron for fast response. Interchangeable slide-on bits from $4.7 \mathrm{~mm}(3 / 16$) down to 05 mm . Zero voltage switching. no spikes. No magnetic field. no leakage spikes. No magnetic field. no leakage.Supplied with miniature CTC ($35-40 \mathrm{watt})$ Supplied with miniature C)C($35-40$ watt
iron or XTC (50 watt). TCSU1 soldering iron or XTC (50 watt). TCSU1 soldering
station with XTC or CTC iron $£ \mathbf{~} \mathbf{3 6}(6.44)$ Nett to Industry

Model TCSU2-

Specificationas TCSU1 except temperature range $200^{\circ}-400^{\circ 2} \mathrm{C}$ Visual temperature indicators by square LED at 270.300 .330 and $360^{\circ} \mathrm{C}$. Priced at £42.50 (7.50) Nett to Industry

\square	\square	\square	\square
270	300	330	360 c

Model SK1

A minniature iron with the element enclosed first in a ceramic shaft. then in stainless steel. Virtually leak-free Only $7 \frac{1}{2}$ long Fitted with a $3 / 32^{\prime \prime}$ bit.〔4.20(.98)
Range of 5 other bits available from $1 / 4$ down to 3/64
Also available for 24 volts.

Spare element Moder Cx230E

A general purpose iron also with a ceramic and stee! shaft to give you toughness combined with near-perfect insulation Fitted with $1 / 8$ bit and priced at $\mathbf{£ 4 . 2 0 (9 8)}$ Range of 4 other bits available
Also available in 24 volts
Spare element Model $\times 25240 E$

This kit contains a 15 watt miniature soldering iron. complete with 2 spare bits. a coil of solder. a heat sink and a booklet. How
to Solder. Priced at to Solder Priced at
$\mathbf{£ 5 . 9 5}(153)$ £5.95 (1.53)

The soldering iron in this kit can be operated from any ordinary car battery. It is fitted with 15 feet flexible cable and battery clips. Packed in a strong plastic envelope it can be left in a car a boat or a caravan ready for soldering in the field
V.A.T. + P\&P as shown in brackets ()

A strong chromium plated. steel spring screwed into a plastic base of high grade insulating material handy receptacle for handyreceplacle for MNTEX mode Priced at $\mathbf{E 1 . 5 0 : 5 7}$
$\tan =00_{0}(x)$
Stocked by many wholesale!s and retailers or direct from us if you are desperate.

[^4]

A 63-key ASCII keyboard with 625-line TV interface, 4-page memory and microprocessor interface. Details in our catalogue.

Our catalogue even includes some popular car accessories at marvellous prices.

A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specificatiọn in our catalogue.
Breadboard 1979 is even bigge Breadboard than last year. It's
and better miss! G $=$

These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.

A massive new catalogue from Maplin that's even bigger and better than betore. If you ever buy electronic components, his is the one catalogue you musi not be oages - some in f colour-it'sa comprehensive guide to electronir gumpo electronth hundreds of photographs an photographs and page after page of inval uable data.

Our bi-monthly news etter contans guaranteed prices, special offers and alil the latest news from Maplin.

Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.

A digitally controlled stereo synthesiser the 5600 S with more facilities than almost anything up to $£ 3,000$. Build it yourself for less than £700. Full specification in our catalogue.

A superb range of microphones and accessories at really low prices. Take a look in our catalogue - send the coupon now!

An attractive mains alarm clock with radio switching function and battery back up! Complete kit with case only £15.92 (incl. VAT \& p \& p) MA1023 module only $£ 8.42$ (incl. VAT).

ELECTRONIC SUPPLIES LTD

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155. Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.

[^0]: CONFERENCE SESSIONS enable you to share the experience of experts in the microtechnology field
 A BUYERS' FORUM helps you to establish
 effective criteria for selection of goods and services.

 A PROFESSIONAL DEVELOPMENT SEMINAR introduces managers to the use of microprocessors in business and industry.
 AN EXHIBITION where you can talk personally
 with the suppliers of microtechnology products
 and services.
 Admission to the exhibition is free. You may book
 in on the spot for conference sessions, or obtain
 further details of fees and a booking form from:
 NUKROSSIEMS
 CONFERENCE Roon 821. Dorsel House, Stamford Street, London, SE19LU

[^1]: Access, Barclaycard and
 Trustcard welcome

[^2]: GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 8JZ.

[^3]: 44 MHz MKI Converter with OSC Trimmer £18.00, Board \& Parts $£ 9.00$.
 144 MHz MKII Converter with 116 MHz Output for Transyerter £19.00, Board \& Parts $£ 9.30$.
 144 MHz Class A PA $2 w$ in >10w out £22.00, Board \& Parts $£ 10.92$.
 Units supplied with Beling Lee Sockets, BNC or SO239 at 60p extra.
 (S SPECTRUM COMMUNICATIONS
 12 Weatherbury Way, Dorchester, Dorset DT1 2 EF
 Prices inclusive of P. \& P.

[^4]: TPiease send me the Antex colour brochure \square I enclose cheque/P.O/Giro No. $2581000 \square$
 Please send the following
 Name.
 Address
 Antex Ltd., Freepost, Plymouth PL1 1BR Tel. 075267377

