

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Wireless"' Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 75 peach, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 2.85$ to UK addresses or $£ 3.45$ overseas, including. post and packing) each accommodating one volume of $P W$. Please state year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

© IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We. cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

Editorial Communications
PW Personality Eric Dowdeswell
News . . . News . . . News . . .
Special Product Report Radat 3106 C Oscilloscope
Kindly Note Logical Noughts and Crosses, June 1979
Production Lines .
Information on the latest products
Special Introductory Offer CSC Logic Probe Kit
Radio Special Product Report Lowe SRX-30 Communications Receiver

RAE Reprint Announcement

Hotlines.
Recent developments in electronics

FOR OUR CONSTRUCTORS

Telephone Bell Repeater B. Barnard
An extension bell with no connection to the phone
Automatic Intercom-1 Keith Cummins
Answer callers from your armchair
VMOS Top Band Transmitter Follow-up J. R. Green Adding a p.t.t. facility to this project
PW '"Trent'" Linear HF Amplifier-2
A 150 W broadband amplifier for $2-30 \mathrm{MHz}$
PWW 'Sandbanks' Follow-up-2 P. J. Wales

GENERAL INTEREST

New PO Aerials for Satellites
Describes the latest in communication satellite aerials
Aerial Design with Scale Models .
How to check out a new aerial design without going up the mast
IC of the Month
The TDE 2608 Waveform Generator
Ultrasonic Remote Control M. J. Darby Controlling Domestic Equipment without wires
Changes in SW Broadcasting Band Listening-2. Jonathan Marks
Looking at the international broadcasting scene
BIFET Integrated Circuits D. F. Bowers
On the Air
. Alan Martin
. Ginsburg

Fred Judd . Brian Dance

Amateur Bands Eric Dowdeswell
MW Broadcast Bands Charles Molloy
SW Broadcast Bands Charles Molloy
VHF Bands
Ron Ham

> Our cover photo this month shows Madley 1 earth station, and is reproduced by kind permission of the Post Office.

Our September issue will be published in early August
(for details see page 43)

ASTRA-PAK

92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB

PRAGTICAL WIREIESS T.V. SOUHD TUNER

(Nov. 75 article by A. C. Ainsile)
Copy of original art/c/e suppl/ed on request
IF Sub-Assembly (G8) £7.65. P\&P 75p.
Mullard ELC1043 V'cap UHF Tuner £6.19. P\&P 35p.
3-way Station Control Unit $£ 1$-35. P\&P 25p.
6-way Station Control Unit (Special Offer) £1-12.
Power Supply Prtd Circuit Board £1-12. P\&P 30p.
Res, Caps, Semiconds, etc. for above $£ 6.53$.
Mains Transformer for above £2.81. P\&P 30p.
(Price of goods inc/udes $12 \frac{1}{2} \%$ VAT) P\&P all items 85 p.
Callers welcome at shop premises.

MANOR SUPPLIES

172 WEST END LANE, LONDON NW6

(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

PLEASE ENQUIR
NEW COLOUR PHIHP H.BEARMAN
SAE WITH PRICES. 6 POTTERS Rd HEW BARAET MERTS PLEASE.
(Colour CGE f3.50) 6 POTTERS RUI, NEW BARNET HERTS.
Telephone enquiries welcomed. Tel: 01-449-1934/5.
LARGE RANGE OF BVA \& QUALITY VALVES. SAE LISTS.
(Tel. Answering Machine: 449/1934 only.)
NEW MONO TUBES, USUALLY 2 YEAR GUARANTEE.

A31/120; A31/300; A31/410W
A34/100; CME 1420 (M6529 FZP)
A38/160; CME 1520, Thorn.
A44/120; CME 1713, Thorn.
Few AW47/91; CME 1903, A47.14W A47/11W; A47.26WR, Mullard, few only. A47/13W; CME 1906, Thorn. (Limited Stocks) A50/120W; CME 2013, Vega. (Mullard Extra) A59/15W (AW59.91), Mullard.
A61/120WR (CME2413) Vega (Muliard Extra)
$\mathbf{E 1 8 . 5 0}$ incl VAT $\mathbf{£ 1 9 . 5 0}$ incl VAT $\mathbf{£ 1 9 . 5 0} \mathbf{i n c}$ VAT $\mathbf{£ 1 9 . 5 0}$ incl VAT $\mathbf{£ 1 2 . 0 0}$ incl VAT $\mathbf{£ 1 5 . 0 0}$ incl VAT $\mathbf{£ 1 5 . 0 0}$ incl VAT $\mathbf{£ 1 8 . 0 0}$ incl VAT $\mathbf{£ 1 1 . 0 0} \mathbf{i n c l}$ VAT £21.00 incl VAT £21.00 incl VARIOUS OTHERS (Subject to aunilbility) - NE 90° PORTABLE TYPES OR $310 / 340$ PREFIX TYPES.
CARRIAGE MAINLAND $\mathbf{f 2} 25$ [EACH, ENQUIRIES SAE. $(310,340$ SERIES).

Simply ahead!

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

Of all the purpose-built power amplifier modules by LLP the HY5O is under standably the most popular with those wanting to build or up-grade a hi-fi system, run a small high quality P.A. system, amplify a musical instrument (say for practise run a small high quality P.A. system, amplify a musical instrument (say for practise
or small range use) or use it for lab work. Its useful 30 watts RMS output into 8 ohms, its rugged construction and freedom from heatsink worries make HY50 the ideal all-purpose quality power amp-and it is unconditionally guaranteed for five years. Tens of thousands are in use throughout the worid.

. . . and a spec that means just what it says!

Encapsulated power amp with integral fuli-rated heatsink. Input -500 mV
Output 30 watts RMS/8 Ω
Load Impedance -4 to $16 \Omega \mathrm{~mW}$ to 25 watts at $1 \mathrm{KHz} / 8 \Omega$
Supply Voltage $- \pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$
Supply Voltage $- \pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$
nc. $\mathrm{A} . \mathrm{T}$ and postage in U.K.
Inc. V.A.T. and postage in U.K.
$\mathbf{£ 8 . 1 5}$

Nothing has been overlooked in the design and manufacture of I.L.P.
compromise production standards and true professional fircuitry, noworld leadership for I.L.P. Now we have up-graded output ratings and down-graded prices to bring I.L.P. within easier reach of all who want the best.

New production techniques enable us to reduce prices by an average of 20%, making I.L.P. a better buy than ever. Prices subject to amendments if VAT rate is changed.

Guaranteed 7 days despatch on all products
USE DUR FREE POST SERVICE for sending your orders, requests for information sheets etc. Simply address envelope.
NO STAMPS REQUIRED.

ELECTAONICS LTD.

FREEPOST 1

Graham Bèl House, Roper Close, Canterbury, Kent CT2 7EP
Phone(0227) 54778
Telex 965780

I.L.P POWER AMP MODEL HY50

MICROUNAVE MODULES LTO

HAVE YOU BEEN CONVERTED?

In this special issue of "Practical Wireless" we are featuring details of our wide range of VHF and UHF frequency converters and preamplifiers, which are intended for use with existing receivers to provide coverage of various amateur bands, both VHF and UHF.
As space only permits a brief description of these units, we suggest that you contact us for any further details you may require, and to discuss any particular requirements you may have for similar converters etc.,
\star MMC28/144 \star
10 metre converter having an I.F. output on the 2 metre band. 10 metres is wide open to the entire world at the moment, so don't miss out on the REAL DX. GAIN: 15dB NOISE FIGURE: 1.8dB

PRICE: $£ 20.25$ inc. VAT.
DELIVERY FROM STOCK.

MMC432/2B-S \star \& MMC432/144-S
 70 cm converter with dual range coverage of $432-436 \quad \mathrm{MHz}$. Available with an I.F. output on 10 metres or 2 metres as required.
 GAIN: 30dB NOISE FIGURE: 3.0dB
 PRICE: $\mathbf{f 2 9 . 9 0} \mathbf{~ i n c . ~ V A T ! ~}$
 DELIVERY FROM STOCK

\star MMA28 \star
Low noise 10 metre preamplifier for use with existing receivers to improved sensitivity.
Two levels of gain are included. 30dB and 20dB. NOISE FIGURE: 1.8 dB

PRICE: $£ 14.63$ inc. VAT.
OELIVERY FROM STOCK
\star MMC144/28 \star
2 metre converter having ạn I.F. output on the 10 metre band. GAIN: 30dB NOISE FIGURE: 2. 5 dB

PRICE: $£ 20$ - $\mathbf{2 5}$ inc. VAT. OELIVERY FROM STOCK THIS UNIT IS ALSO AVAILABLE FOR THE 136 MHz SATELLITE BAND AND THE 156MHz MARINE BAND.

MMC432/28-S PICTURED ABOVE

Any further information on the above products and others from our extensive range may be obtained by contacting our sales department, who will be only too pleased to help.
ALL MICROWAVE MODULES PRODUCTS ARE FULLY GUARANTEED FOR 12 MONTHS

OTHER
PRODUCTS
aVAILABLE
INCLUDE "

VHF and UHF Linear Amplifers, VHF and UHF Linear Transverters, VHF and UHF Converters \& Preamplifiers, 500 MHz Digital Frequency Meters

MICROWAVE MDDULES
BROOKFIELD DRIVE, AINTREE, LIVERPOOL L97AN,
Telephone: 051-523 401.1 Telex 628608 MICRO G

Wilmslow

 Audio
THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - AUDIOMASTER - BAKER - BOWERS &
WILKINS - CASTLE - CELESTION - CHARTWELL
COLES - DALESFORD - DECCA - EMJ EAGLE -
ELAC - FANE - GAUSS - GOODMANS - I.M.F. -
ISOPHON - JR - JORDAN WATTS - KEF - LEAK -
LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS
- RADFORD - RAM - RICHARD ALLAN - SEAS -
SHACKMAN STAG TANGENT - TANNOY -
VIDEOTONE WHARFEDALE YAMAHA
```

WILMSLOW AUDIO
(Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1 HF
Discount Hi-Fi Etc. at 5 Swan Street and 10 Swan Street Speakars, Mall Order \& Export 0625529599 Hi-Fi 0625526213

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio. TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate
Diploma Courses
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting

Qualify for a New Career

Home study courses for leading professional examinations and diploma courses for business and technical subjects:G.C.E. Engineering Purchasing

60 subjects Farming
Farming Sales Heating Storekeeping

$$
\begin{array}{ll}
\text { at "O"\& } & \text { Heating } \\
\text { "A"levels } & \text { Industrial }
\end{array}
$$ Management Accountancy Air

Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

[^0]U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

3 ohm. 6×4 in. $£ 1.50 .7 \times 4 \mathrm{in} . £ 1 \cdot 50.8 \times 5 \mathrm{in} . £ 2 \cdot 50.5 \mathrm{in} . £ 1 \cdot 50$.
 $8 \mathrm{ohm} .2 \neq \mathrm{in} . £ 1.50 .3 \mathrm{in} . £ 1.50 .5 \mathrm{in} . £ 1.50$. $10 \mathrm{in} . £ 3.12 \mathrm{in} . £ 4$.
$16 \mathrm{ohm} .6 \times 4 \mathrm{in} . £ 1.50 .7 \times 4 \mathrm{in} £ 1.50 .5 \mathrm{in} £ 1.50 .8 \mathrm{in} . £ 2.60$ 10 in. $£ 3.12$ in. $£ 4.10 \times 6$ in. $£ 3 \cdot 50$.

THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and all sizes of tape reels. A.C. mains 200/249V. Leaflet S.A.E.
$\mathbf{f 5 . 5 0}$ Post
HEAD DEMAGNETISER PROBE $£ 4.75{ }^{50 \mathrm{P}}$

BAKER
 \section*{50 WATT}

 AMPLIFIER £59 Post $£ 1$

Superior quality ideal for Halls/PA systems. Disco's and Groups. Two inputs with Mixer Volume Controls. Master Bass, Treble and Gain Controls. 50 watts RMS. Three loudspeaker outlets $4,8,16 \mathrm{ohm}$. AC 240 V (120 V available). Blue wording on black cabinet.
BAKER 150 Watt AMPLIFIER 4 inputs $£ 79$.
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains. Post 35p $\quad \mathbf{~} \mathbf{3} \mathbf{2 5}$
STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per channel, with volume control multi-way stereo mixers. multi-way stereo mixers.

TOLIGTTDISPAY Post 35 p £
Complete kit of parts with RCS, printed circuit MK 2
channels. Up to 1,000 watts each, Will operate from 200 MV to 100 watts signal source. Suitable for home $\mathrm{Hi}-\mathrm{Fi}$ \& 17 and all Disco Amplifiers. Cabinet extra $£ 4$.
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco
MAINS TRANSFORMERS ${ }^{\text {Post }}$
6 VOLT $\frac{1}{2}$ AMP. £1.00 3 AMP. £1.95 9 VOLT 3 AMP. $£ 2.75$ 12 VOLT 300 MA. $£ 1 \cdot 00750$ MA. $£ 1 \cdot 3020$ VOLT 2 AMP. $£ 2 \cdot 50$ 30 VOLT 5 AMP. AND 34 VOLT 2 AMP. C.T. £3-45
20 VOLT 1 AMP. $£ 2.00$ 20-0-20 VOLT 1 AMP. $£ 2.95$
30 VOLT $1 \frac{1}{2}$ AMP. $£ 2.7540$ VOLT 2 AMP. $£ 2.9530 \mathrm{~V} 2$ AMP. $£ 3$
$0-20-40-60$ VOLT 1 AMP. $£ 3.502 \times 18$ VOLT 5 AMP $£ 9$. Low Voltage $0-8$-12V $\mathbf{3}$ AMP. $£ 3.502 \times 18$ VOLT 6 AMP. $£ 9$.
Low Voltage 0-8-12V.3 AMP $£ 3$.
Low Voltage 12-0-12V, 2 AMP $£ 3$.
GENERAL PUR POSE LOW VOLTAGE. Voltages available at
$2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24$ and 30 V
$2 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$
$3 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$
$5 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$
R.C.S. TEAK

COMPACT
SPEAKERS
$13 \times 10 \times 6 \mathrm{in}$.
50 to $14,000 \mathrm{cps}$.
10 watts. 4 or 8 ohms.
e16 pair

BAKER SPEAKERS
"BIESOUND"
Robustly constructed to stand up to long periods of electronic power.
Bass resonance 55 cps .
GROUP "35"
12 in .40 watt
4,8 or 16 ohms.
£14.00
GROUP"50/12"
12 in .60 watt professiona
model. 4, 8 or 16 ohms.
 With aluminium presence dome. GROUP "50/15" 15 in .75 watt
8 or 16 ohms.
Send for leaffets on Disco, P.A. and Group Gear.
E.M.I. $13 \frac{1}{2} \times 8$ in SPEAKER SALE!

With tweeter. And crossover.

10W. State 3 or 8 ohm.
Illustrated
8 ohms Bass unit only.

GOODMANS 20 Watt Woofer Size $12 \times 10 \mathrm{in} .4$ ohms. | Hi-Fi Bass unit | $\mathbf{E 9 . 8 5}$ |
| :--- | :--- | GOODMANS TWIN AXIOM 8 $8 \mathrm{in} .8 \mathrm{ohm} \mathrm{Hi}-\mathrm{Fi}$ Twin Cone Special unit

$\mathbf{f 9} .95$
Post 50 p

R.C.S. MINI MODULE HI-FI KIT 15×8 fin 3 -way Loudspeaker System, EMI 5in, Bass 5in, Middle 3in. Tweoter with 3way Crossover and Ready Cut Baffla. Full assembly instructions supplied.
Response $=\mathbf{6 0}$ to 20000 cps 12 watt RMS. 8 ohm.
$£ 10.95$ per kit. Two kits $£ 20$.
Postage 75p. One or two kits.

P.W. JUMBO CLOCK
 Kits of parts by the designers of the clock.

Kit A.
Comprising of printed circuit board. Price £8.96. V.A.T. and postage included.

Kit B.

Comprising of printed circuit board, case, perspex panel, pillars, transformer and l.e.d.s. Price £22.72. V.A.T. and postage included.

Kit C.

Comprising of full kit, excluding mains cable and wire. Price $\mathbf{£ 2 9 . 0 0}$. V.A.T. and postage included.

Two colours of cases are available:- Gloss White \& Simulated Black Leather Grain.
Please state colour with order e.g. Kit C/Black.

Full range of R.S. components available (48 hours service)

If you are experiencing difficulty in obtaining certain components for projects please do not hesitate to telephone us.

I.C.'s LM3900 \& MC3302
 £1.13 per pair Postage and package 20 pence.
 V mos transistors. VN66AF
 $\mathbf{£ 1 . 3 0}$ each Postage and package 20 pence.

P.C.B'S FOR PRACTICAL WIRELESS PROJECTS

Nov. 78. Sarum Q Meter
Nov. 78. S.T.D. Charge Timer Nov. 78. Porch Light Timer
Nov. 78. Battery Indicator
Dec. 78. Car Radio L.W. Converter
Dec. 78. Digital Door Chimes
Dec. 78. Car Radio L.W. Converter
Jan. 79. Acoustic Delay Line
Jan. 79. Dorchester
Jan. 79. Sandbank Met. Det.
Feb. 79. Hythe Receiver
March 79. Hythe Receiver
March 79. Soudlite Converter
March 79. Tone Burst Generator
March 79. Wide Band Noise Source
April 79. PW'Winton'
April 79. FM Multitester
May 79. Car Test Probe May 79. Follow up to PW Gillingham May 79. PWImp May 79. Inline Crystal Calibrator
June 79. Jumbo Clock
June 79. Logical 0's + X's
June 79. Trent
July 79. AAM/FM Frequency Readout V.MOS Top Band Transmitter WR056 Price $£ 3.82$ \& 20 pence p \& p. Inexpensive A/F Voltmeter WR055 Price $£ 1.08$ \& 15 pence p \& p.
Send
orders to: C. BOWNS \& CO. LTD.,
4, Wood Street, Cheadle, Cheshire SK8 1 AQ.
Tel. 061-428-4497.
Please state type number and enclose cheque or postal order.

assurance that all devices are very best first quality commercial types. Some LPSN

Til:Standard MIID LP Sthattk

Current news: Work continues apace on our HMOS PA kit, and by the time this is published

[14001

[m05

Micramarket

解 advert , and a separate leafet is available on request with an SAE. All new pricelist revision also available with an SAE. The Mullard DC controlled tone/volume and switch ICs with this Terms: CWO please. Account facilities for commercial customers OA. Postage 25p per order. Minimum credit invoice for account customers flo.00. Piease follow instructions on Catalogues: Ambit. Part 1450 . Part 250 p 90 p pair. TOKO Euro shortform 20p. Micrometals etc according to desired shipping method Access facilities for credit purchases. Hours/phone: We are open from 9 am -7 pm for phone calls. Caliers from 10 am to 7 pm . Administrative enquines 9 am to 4.30 pm please (not Saturdays). Saturday service 10 amplements 6 pm ambit international 2 GreshamRoud, Brentunad, 5 E5EX.

Can YOUR Antenna do all this?

A SMALL SELECTION FROM OUR HUGE FILE OF TESTIMONIAL LETTERS ON THE JOYSTICK VABIABLE FREQUENCY ANTENNA (.5-30MHz).

G4DJY's COPY LOG shows 68 North Americans worked in the ARRL WNE contest.
WGTYP worked WA6JPR over hundreds of miles on 40 m . using the JOYSTICK VFA and MICROWATTS "equivalent to $1,000,000$ MILES PER WATT"-A WORLD RECORD-we can supply conclusive evidence !
"I have used Rhombics, $4 \times \frac{1}{2}$ waves in phase, centre fed dipoles, etc., but the success I have had with the V.F.A. has been AMAZING . . . only 20 ft. high ... in front of my mobile home, I NEVER RECEIVE LESS THAN R7 AND MOSTLY R9 ON CWDX WORKING-Bob Green, SUIKG/G3APH,W.B.E., W.A.C. Phone and CW.
W7OE, U.S.A. Government Electronics Engr. (retd.), claims 'VFA 5ft. below ground, same as dipole, elevated 15 ft ., one " S " point UP on dipole."

IN USE GY AMATEUR TRANSMITTING AND SWL STATIONS WORLDWIDE AND IN GOVERNMENT COMMUNICATION

JOYSTICK ANTENNAS

SYSTEM "A"
£41.00
200 w. p.e.p. OR for the SWL (Improved " \mathbf{a} " on receive)

All packages include the JOYSTICK VFA (System "A") 8ft foeder, all necessary cables, matching communiction headphones. Delivery Securicor our risk,
ASSEMBLED IN SECONDS. You SAVE E14.15 on each PACKAGE DEAL!

PACKAGE No. 1. Features R. 300 Rx .
£222.00
PACKAGE No. 2. Features FRG7 Rx.
£237.45
PACKAGE No. 3. Features $\operatorname{SR} \times 30 \mathrm{Rx}$.
£212.45
PACKAGE No. 4. Our "Rolls"-Rx. FRG7000.
£402.00

RECEIVERS ONLY			
R.300	$\mathbf{£ 1 8 4 . 5 0}$	FRG7	£199.95
SRX $\mathbf{3 0}$	$\mathbf{£ 1 7 4 . 9 5}$	FRG $\mathbf{7 0 0 0} £ \mathbf{~} 364.50$	

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

5, Patridge House, Prospect Road, Broadstairs, CT10-1 LD. (Callers by appointment).

OUR 1979 CATALOGUE including the first edition of
 \star Latest low prices
 * Fascinating new items
 \star Special offers a bargain on their own
 * Lowest prices ever for TTL
 * Free 45p worth of vouchers

 EHROMASOUNE Electronics

DEPT. 16, 56 FORTRIS GREEN ROAD
MUSWELL HILL, LONDON N10 3HN
TELEPHONE: 01-883 3705/2289

barclaycard

USE OUR "ORDER Cul RING' LINES VAT INCLUSIVE PRICES PKP 25p

CHORDGATE Ltd. SWINDON

Printed Circuit Boards. Add 27p post \& packing for 1 to 3 boards. Larger quantities post \& packing inclusive

Voltage Tripler P.C.B. contains 40.1 MFD $1000 \mathrm{~V}, 2$ pre-sets, 1 bridge rect., 4 IN4007, 9 resistors. 65p.
P.C.B. contains 2 TIP31 (or equiv.), MJE 340 and over 70 other resistors, diodes, zeners, transistors, bridge rect., and capacitors. 50 p . P.C.B. contains $2 \times 741,2 \mathrm{~N} 4921$ and over 40 other components and multiturn 20 k pot. 60 p .
P.C.B. contains 2 IP 10W Wafer Switches, $2 \times 7490 \mathrm{I} / \mathrm{C}, 2 \times 74141$ I/C, various Logic I/Cs, IN4148 and over 50 components. 60 p .
P.C.B. with GEC, G424 Triac control IC, 2 SGS transistors, three 9 watt WW resistors and 12 other components. 70p.
P.C.B. with $8 \times \mathrm{BC} 107,8 \times$ BCY70, 4 pre-set pot., and over 70 other components. 75p. Parcel of 1 each of above, 6 P.C.B.'s. £3.30.

Post and packing inclusive. Audio Amplifier Boards containing $2 \times$ BFY50, IBFX29 and output pair of 2N5293 output transistors rated at 36 watts when heatsink mounted $£ 1.75$ or 2 for $£ 3.00$. Post and packing inclusive.
(Dept B.) 194 A DROVE ROAD, SWINDON, WILTS.
ALL OUR PRICES INCLUDE V.A.T.

CHORDGATE Ltd. SWINDON
 ALL NEW AND FULL SPEC DEVICES

Add 27p post and packing. Orders over $£ 2.50$ post and packing inclusive.

Fairchild FND 107 seg displays $0.5^{\prime \prime}$ red common cathode. 60p.
Pye Dynamics thick film. 1 MHz . Clocking oscillator 5 volt supply. Drives one TTL load. 60p.
Min glass reed switch 20 mm length. 10 for 60 p .
Bechive trimmer 3-30PF. 10 for 50p.
Denco I.F.T.s. 470 kHz interstage IFT13 60p. DET out IFT14 60p.
Tantalum bead 10 MFD 6.3 v . 10 for 60p.
PCB mounting HCU XTAL $\mathbf{3 6 8 . 6 4 0 \mathrm { kHz } . 7 5 p . ~} 10$ for $\mathbf{£ 5 . 0 0}$.
Honeywell plastic snap panel MTG P.B. DP/CO micro-switch. 15 p. 10 for $\mathbf{£ 1 . 2 5}$. Latch and non-latch state type.
Multi-turn 500.0 HM trim pot PCB mounting. 20p. 10 for $£ 1.50$.

Stettner 3-15PF CER min trimmer. Vert mount. 15 p. 10 for $£ 1.00$.
SILICON SEMICONDUCTORS TIP31B 25p. Comp TIP32B 25p. 5 pairs $\mathbf{£ 2 . 0 0}$. or 10 either type $£ 2.00$. 1N914 2.5p. 25 for 50 p. Equiv. IN4148. 2N5293 NPN 75v, 4A tab collector. 25 p .10 for $\mathbf{£ 2 . 0 0}$.
BFY51, 15 p. 10 for $\mathbf{£ 1 . 2 0 .}$
2N3707 NPN plastic G.P. 10 for 50p. TIP34A NPN 60v 10A. 40p. 10 for £3.00.
BD525. 30p. Comp BD526. 30p. 60 v 2 A . Useful up to 50 MHz . 5 pairs $\mathbf{£ 2 . 5 0}$. 10 either type $£ 2.50$.
(Dept B) 194A DROVE ROAD. SWINDON, WILTS.
ALL OUR PRICES INCLUDE V.A.T.

- Que VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED
 SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

AA	0.1	ASY	0.43
	0.29		
AAZ	0.19	AS	1.35
AAZ	0.37	ASZ	1
AAZ17	0.29	ASZ20	1.62
AC107	0.65	ASz2	$2 \cdot 16$
${ }^{\text {AC }} 125$	0.22	AU110	1.94
	0.22 0.22	AUYY13	1.84
${ }^{\text {AC }} 128$	0.22	BA145	0.15
${ }_{\text {AC }}$	0	BA	0.15
AC142	0.22	BA	0.11
${ }_{\text {AC }} \mathrm{AC}$	0.32	BA15	0.10
AC1	0.22	${ }^{\text {BAX }} 13$	0.07
	0	BAX16	0.10
ACY18	0.86	${ }_{8 C 1}$	0.13
ACY19	0.81	${ }_{8 C 109}$	0.14
Acr	0.81	BA	0.13
	1.62	${ }_{8 C}$	
	0.78		0
AD162	0.49		
06	0.49	${ }^{\mathrm{BC} C 125}$	0.18 0.23
	0.81 0.81	${ }_{8 C 12}^{8 C 13}$	${ }_{0}^{0.23}$
AFP16	0.81	$8 \mathrm{8C136}$	0.17
AF117	0.81	8 BC 137	0.17
39	43	${ }_{8 C}$	10
AF239	0.49	${ }_{\text {BCl }}$	0.10
AF211	2.97	BC	

PL82 1.35	UCC84 1.24
PL83 2.50	UCC85 1.35
PL84 1.22	UCF80 1.29
PL504/500	UCH42 1 1-35
7.58	UCH81 2.61
PL508 2.03	UCL82 1.17
PL509 3.38	UCL83 1.62
PL519 $\mathbf{3 . 6 5}$	UF4 1 1.13
PL801 1.24	UF80 1.62
PL802 3.33	UF85 1.62
PY33 $\mathbf{1 . 2 4}$	UF89 1.62
PY81 0.95	UL41 1-82
PY82 0.90	UL84 1.35
PY83 0.79	UM80 1.13
PY88 0.95	UY49 1.48
PY500A 2.03	UY85 1.17
PY800 0.95	2803U 8.53
PY801 0.95	183GT $\mathbf{2 . 4 4}$
QQVO2-6	1 1P5 1.18
- 11.23	155
QQv03-10	$1 \mathrm{~T} 4 \quad 0.45$
- 5.11	2AS15 10.80
QOVO3-20A	$2 \mathrm{C21} 2.76$
QQV06-40A	$3 \mathrm{3C} 100{ }^{1.46}$
18.90	- 21.60
$\mathrm{R17} 1.86$	
R19 1.35	$4 \mathrm{CX2508}$
R20 1.62	26.79
418-20 2.81	5R4GY 2.25
$\begin{array}{ll}\text { U25 } & 1.31\end{array}$	5U4G 4.25
U26 1.62	5 U 4 GB 2.54
UAEC8O 1.41	5 F 4 G 7.71
UB41 1.41 1.41	$\begin{array}{ll}5 Y 3 \mathrm{GT} & 0.96 \\ 5 \mathrm{Z} & 1.69\end{array}$
UBC41 1.69	$5 \mathrm{5} 4 \mathrm{G} \quad 1.71$
UBF89 1.35	$5 \mathrm{~L} 4 \mathrm{GT} \quad 1.69$

 0.32
0.32
0.32
0.32
0.09
0.09
0.09
0.10
0.10
1.08
1.08
1.08
1.08
1.08
2.16
2.70
2.70
2.97
3.24
0.97
0.97
2.16
2.16
1.62
1.62
0.86
0.81
2.43
0.65
0.59
0.59
0.59
1.08
0.70
0.70
0.69
1.30
0.70
1.30

 0.70
0.70
0.70
1.62
1.89
2.43
2.97
3.51
1.08
1.08
1.62
1.89
1.89
1.89
2.70
2.70
2.70
1.89
1.35
1.97
2.46
1.97
0.32
0.30
0.22
0.46
0.50
0.49
0.52
0.75
0.79
0.68
0.76
50.72
5

 $\begin{array}{ll}697 & 0 \\ 698 & 0 \\ 705 & 1 \\ 706 & 0 \\ 708 & 0 \\ 930 & 0 \\ 1131 & 0 \\ 1332 & 0 \\ 1303 & 0 \\ 1304 & 0 \\ 1305 & 0 \\ 1306 & 0 \\ 1307 & 0 \\ 1308 & 0 \\ 1613 & 0 \\ 1671 & 1 \\ 1893 & 0 \\ 2147 & 1 \\ 2148 & 1 \\ 2218 & 0 \\ 2219 & 0 \\ 2220 & 0 \\ 2221 & 0 \\ 2222 & 0 \\ 2223 & 2 \\ 2368 & 0 \\ 23654 \\ 2484 & 0 \\ 2646 & 0 \\ 2904 & 0 \\ 2905 & 0 \\ 2906 & 0 \\ 2907 & 0 \\ 2924 & 0 \\ 2925 & 0 \\ 2926 & 0 \\ 3053 & 0 . \\ 3054 & 0\end{array}$

INTEGRATED CIRGUITS

7400	0.17	7412	0.28	7432	0.32
7401	0.17	7413	0.35	7433	0.39
7402	0.17	7416	0.35	7437	0.35
7403	0.17	7417	0.35	7438	0.35
7404	0.18	7420	0.18	7440	0.19
7405	0.17	74222	0.22	7441 AN	0.92
7406	0.43	7423	0.35	74422	0.78
7407	0.43	7425	0.32	74474 AN	$\mathbf{0 . 9 7}$
7408	0.22	7447	0.32	7450	0.19
7409	0.22	7428	0.46	7451	$\mathbf{0 . 1 9}$
7410	0.17	7430	0.18	7453	0.19

-

0.96	1
2.19	1
2.25	1
1.18	1
1.18	1
1.69	1
	18

$92 A V$	8.60
$95 A 1$	5.24
15082	2.32
$150 B 3$	4.21
$150 C 2$	1.62
150 C	1.89
211	6.48
$723 A B$	37.80
807	3.89
$811 A$	9.18
$812 A$	9.02
813	34.56
$833 A$	81.00
$866 A$	6.21
$872 A$	14.85
$931 A$	13.22
2050	7.52
5642	5.68
5654	3.80
5651	1.94
5670	4.97
$5814 A$	4.51
6080	7.40
$6146 A$	5.53
$6146 B$	6.03
6159	8.62
6973	3.96
7586	12.80
75877	22.05
78689	4.43
8068	6.19
8136	2.75
40×2508	
	5.40
Tested	
Ex-equipment	

87 Gu unskirted 0.16		3KP1**	16.20 37.80	VCR517B*	6.48 6.48	THORN NEW LIFE COLOUR TUBES FULLY GUARANTEED												
$\begin{array}{ll}87 \mathrm{G} \text { skirtad } & 0.32 \\ \text { B9A unskited } \\ 0.16 \\ 0.16\end{array}$	ORT'S	58P1*	10.80 5.40 1.20	Tube Bases *=Surplus		X	50.99	A63-200x	47.81									
$\begin{array}{ll}\text { B9A skirted } & 0.32 \\ \text { NUVISTOR } & 0.59\end{array}$	$\begin{array}{lr}1 \mathrm{CP3} 1^{\circ} & 33.48 \\ 2 \mathrm{AP} 10\end{array}$	${ }^{\text {5cP1A }}$ 5 ${ }^{\text {5 }}$	43.20 16.20 15			A51-110X	49.52	A66-120X	81									
$\begin{array}{ll}\text { Int } \mathrm{Ctal} \\ \text { lotal } & 0.22 \\ 0.29\end{array}$		${ }^{5067}$	15.12 $\mathbf{2 7 . 0 0}$ 				50.31	A66-120x	19									
	$\begin{array}{ll}\text { 38P1. } & 8.64 \\ \text { 3DP } 1 . & 5.40\end{array}$	- ${ }_{\text {dG7-32 }}$	38.08 33.48 $\mathbf{3} .48$			A56-120X	50.31	A67-120X	59.19									
14 pindlL 0.15 16 pinDlL 0.18	$\begin{array}{ll}\text { 3EG1* } & \mathbf{7 . 5 6} \\ \text { 3FP7 }\end{array}$		73.44			A55-14X $\mathbf{5 0 . 3 1}$ A67-150X AVAILABLE FROM STOCK FOR COLLECTION ONLY-OLD TUBE MUST BE RETURNED.												
			$\begin{aligned} & 5.40 \\ & 10.80 \\ & 13.50 \\ & 16.50 \\ & 10.20 \\ & 10.80 \end{aligned}$			AVAILABLE FROM STOCK FOR COLLECTION ONLY-OLD TUBE MUST BE RETURNED.												
Terms of husinase: CWO. postage and packing vatyes and ammiconductors 30 p per order. CRTs £1.00. Price ruling at time of despatch. Account facilities evaileble to approved companias with minimum ordar charge f 10 . Carriage and packing f 1 Telephone 01-677 2424 on credit orders. Ovar 10,000 types of velves, tuben and temiconductors in atock. Telex 946708 QUOTATIONS FOR ANY TYPE NOT LISTED SAE. ALL PRICES INCLUDE VAT. OPEN TO CALLERS MONDAY-FRIDAY 9 a.m.- 5.30 p.m. CLOSED SATURDAY. E. \& O.E.																		

SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid state audio ampli-
fier. Brand new components throughout. 5 silicon iran-
 transistors in push-pult transistors in push-pull.
Full wave rectification. Full wave rectification
Output approx. Output approx.
watts r.m.s. into watts r.m.s. into 8 onms. Frequency re-
sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3db. Fully integrated pre-amplifier stage with separate Volume. Bass boost and Treble cut controls Suitable for $\$-15$ ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for fuli output. Suppled ready bant and outpue plugs. Overall escutcheon panel. input and outpul plugs. Overal Size
SONOTONE 9 TAHC COMPATIBLE STEREO CARTRIDGE T/O stylus Diamond Stereo LP and Sapphire 78.
T/O stylus Diamond Stereo LP and Sapphire 78 .
ONLY $£ 2-80$ P. \& P. 200 . Also available fitted with twin. Diamond T/O stylus for Stereo LP. £3.00 P. \& P. 20p.
LATEST CRYSTAL T/O STEREO/COMPATIBLE CARTRIDGE for EP/LP/Stereo 78. £2.20 P. \& P. 20 p .
LATEST T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or stereo records on mono equipment. Only $\mathbf{1 2 . 2 0}$ P. \& P. 20p.

STEREO MAGNETIC PRE-AMP sens. 3 mVin for 100 m Vout 15 to 35 V neg earth. Equ. $\pm 1 \mathrm{db}$. From 20 Hz to 20 KHz . Irput im pedance 47 x . Size $1 \mathrm{in} \times 2 \frac{3}{\mathrm{i}} \mathrm{in} \times 5$ H. $23.00+20 \mathrm{p}$ P. \& P

GENERAL PURPOSE HIGH STABILITY TRANSISTOR PRE-AMPLIFIER
 TRANSISTOR PRE-AMPLIFIER

For P.U. Tape, Mike, Guitar, etc. and suitable for use with valve or transistor equipment. $9-18 \mathrm{v}$ battery or from H.T. line $200 / 300 \mathrm{v}$ Frequency response $15 \mathrm{~Hz}-25 \mathrm{KHz}$. Gain 26 dB . Size $1 \frac{3}{\mathrm{i}} \mathrm{in} \times 1 \frac{1}{4} \mathrm{in} \times$ in. Brand new complete with instructions. Price $\mathbf{5 2} 20$. P. \& P. 30p.
"POLY PLANAR"* WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
, deep Weight 190 z Power handling 20W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings. walls, doors, under tables, etc., and used with or without baffe. Send S.A.E. for full details.
Only $£ 8 \cdot 40$ each + p. $\&$ p. (one 90 p, two $£ 1 \cdot 10$). Now available in 8 " round version. 10 watts RMS 60 Hz $20 \mathrm{KHz} £ 5.25$.
P. \& P. (one 65p, two 75p).

STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V neg. earth. Equ. $\pm \mathrm{IdB}$ from 20 Hz to 20 KHz . Input impeda
$2 \frac{3}{8} \times 5 \frac{5}{8} \mathrm{H} . \mathrm{H} \cdot 60+20 \mathrm{p}$ P. \& P.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240V Mains oper-
 ated Solid State FM AM Stereo Tuner. Covering M.W. A.M. $540-1605$ KHz
MHz.
Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and $F M$. Stereo Beacon Lamp Indicator. Buitt in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet Will match a
$9 \frac{1}{2}$ "d approx.
LIMITED NUMBER ONLY at $\mathbf{£ 2 8 . 0 0}$ £1.50 P. \& P..$~$ $10 / 14$ WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum Separate inputs for mike and gram allow records and
announcements to follow each other. Fully shrouded announcements to folion wound out transformer to match 3-15 Ω speaker and 2 independent volume controls. and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s. ECC83 EF86 and EZ80 rectiffer. Simple instruction booklet 25p + SAE (Free with parts). All parts sold separately. built and tested $£ 22.00$. P. \& P. $£ 1.40$
built and tested 22.00 .
STEREO DECODER
SIZE $2^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$ rea
SIZE $2^{\prime \prime} \times 3^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$ ready built. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost
any FM VHF radio or tuner. Stereo beacon light can any FM VHF radio or tuner. Stereo beacon light can
be fitted if required. Full details and instructions (inbe fitted if required. Full details and instructions (in
clusive of hints and tips) supplied. $£ 6 \cdot 00$ plus 20 p clusive of hints and tips) supplied. $26 \cdot 00$ plus
P. \& P Stereo heacon light if required 40 p extra.

SPECIAL OFFER

Slightly shop soiled radios by well-knowit manufacture for AC Mains or battery use. MW and FM bands. Dynamic M/coil speakers. telescopic acrial and internal ferrite aerial. Earpiece socket for personal listening.
Finished in attractive simulated leatherette. Size

SPECIAL DFFER LIMITED NDMBER ONLY
GOODMANS speakers, $6 \frac{1}{2}{ }^{\prime \prime}-8$ ohm, long throw, ceramic magnet, full range rated 10 watts R.M.S., (when fitted in enclosure). $\mathbf{£ 4 . 0 0}$ each $+\mathbf{8 0 p} p \& p$ ($\mathbf{p} \& p$ on two $£ 1 \cdot 20$).
VYNAIR \& REXINE SPEAKERS \& CABINET FABRICS app. VYNARR \& REXINE SPEAKERS \& CABINET FABRICS app.
54 in. wide. Our price \&2.00 yd. length. P. \& P. 50 p per yd. (min.
yd.). S.A.E. for samples.

HARVERSONIC SUPERSOUND
 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first flve stages on each channel resulting in even lower noise level with improved sensitivity. Integral pre-amp with Bass. Treble and two volume Conirols. Very simple to modify to suit masnetic cartridge-instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed circuit board with component identification clearly marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder. nuts, boltsno extras to buy. simble siep by amplifier to be enable any constucior proud of. Brent r.m.s. per channel into sonms. Ferter inan 80 mV into
$\pm 3 \mathrm{~dB} .12-30,000 \mathrm{~Hz}$ Sensitivity: bet $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16 dB . Negative feedback 18 dB over main amp

Overall Size $12 " w, ~ 8 " d . ~$
Fulls detailed 7 page construction
Fulls detailed 7 page construction manual and parts list free with kit or send 25 p plus large S.A.E.
\& 14.50 . \& P. 80 p (Masnetic input components 33 pextra)

${ }_{\text {\&6.00 P. }}^{26}$ \& P. 95 p
SPECIAL OFFER-only $£ 25.00$ if all 3 items
ordered at one time plus $f 1.25 \mathrm{p} . \& \mathrm{p}$.
Fuil after sales service avail. ready buill and tested $\mathbf{3 3 1}$ 25. P. \& P. £1-50. HARVERSONIC STEREO 44
A solid state stereo amplifier chassis. with an output of 3-4 watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with built in short term thermal overioad protection. All components including recinier 2 in din speaker fuse. tone contro. vape colay sockel are mounted on sockers the pripted circuit panel, size approx. $9 \frac{1}{*}^{*} \cdot 2 \AA^{*} 1^{\prime \prime}$ max. depth. Supplied brand new \& lested. with knobs, brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only $\boldsymbol{£ 1 0 . 0 0}$ plus 500 P. \& \mathbf{P}. Mains transformer with an output of 17 va a at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $\mathrm{\Sigma} 2.00$ $40 \mathrm{p} \mathbf{P} \& \mathrm{P}$ if required. Full connection details supplied. All prices and specifications correct at time of press and subiect to alteration without notice.
PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO
ENQUIRIES.
LONDON, S.W.I9.
Tel.: 01-540 3985
Open 9.30-5.30 Mon. to Fri. 9.30-5 Sat. Closed Wed.

NeV
 Heathkit electronic test
 equipment course.

Section 1. Analogue and digital meters. Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments.
Heathkit car electrical
systems course.
Section 1. Electrical principles of the car. Section 2. Starting system fundamentals. Section 3. Car charging systems.
Section 4. Accessories and body electrical.
Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc. . . . Send for your copy now.

There are Heathkit Electronics Centres at Soldering 233 Tottenham Court Road, London (01-6367349) Iron offer and at Bristol Road, Gloucester (0452 29451).

HEANHK표

RADIO HECHANCF MMUHHD

NEW ELECTRONIC
 MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, 5" $\times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
Projects:
V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transistor V.H.F. Earpiece Radio \star One Transistor M.W. L.W. Radio \star Two Transistor Metronome with variable beat control \star Three Transistor and Diode Radio M.W, L.W. \star Four Transistor Push Pull Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MultiTester \star Four Transistor and Diode M.W. Lniector Radio \star A.F. R.F. Signal Amjector \star Five Transistor Push Pull Amplifier \star Sensitive Hearing Aid
Amplifier \star Three Transistor and Amplifier \star Three Transistor and
Diode Short Wave Radio \star Signal Tracer \star Three Transistor Push Pull Tracer \AA Three Transistor Push Pull Ampinier \star One fransistor Class A \star Sensitive Transistor Pre-Amp \star Sensitive Transistor Pre-Amp Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Diode Tuner \star Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. Tuner \star Three Transistor Code Practice Oscillator \star Five Transiscor Regenerative Short Wave Radio \star Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio \star Seven Transistor M.W. L.W. Radio with Loudspeaker Push pull output \star 214.99 + P\& P $£ 1 \cdot 10$

V.H.F.
 AIR

CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts.
Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc. Size $5 \frac{1^{\prime \prime}}{2} \times 1 \frac{1^{\prime \prime}}{} \times 3 \frac{1}{2}^{\prime \prime}$, All parts including case and plans. $\mathbf{8 4 . 9 5}+\mathrm{P} \boldsymbol{\mathrm { A }} \mathrm{P}$ and

Self Contained Multi-Band V.H.F. Receiver Kit.

8 transistors and 3 diodes. Push pull output. $2 \frac{3}{4}$ in. loudspeaker, gain control, 7 section chromegain control, 7 section chrome-
plated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit).
Complete kit of parts

$\boldsymbol{£ 7 . 9 5}+{ }^{2 \pi}{ }^{2}$ Pand

NEW MODEL R.K.1.

MultiBand A.M. Receiver
M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and Carrying Strap, Rubber Feet and
ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

EDU-KIT JUNIOR

Complezely Solderless Electronic Construction Kit. Build these projects without Soldering Iron or Solder \star Crystal Radio Medium Wave Coverage-No Battery necessary \star One Transistor Radio
$\star 2$ Transistor Regenerative Radio

+ 3 Transistor Earpiece Radio Medium Wave Coverage
$\star 4$ Transistor Medium Wave Loudspeaker Radio
\star Electronic Noise Generator
\star Electronic Metronome
$\star 4$ Transistor Push/Pull Amplifier
All parts including Loudspeaker, Earpiece. M.W. Ferrite Rod Aerial, Capacitors, Resistors, Transistors, etc. Complete kit of parts including construction plans.
$\mathbf{8} \mathbf{8 . 9 5}+\mathrm{P}$ \& P and

Multiband V.H.F. and
A.M. Receiver. 13 Transistors and Six Diodes. Quality
Loudspeaker
With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with separate Tuning Capacitor for easier and accurate tuning, covering M.W.1, M.W.2, L.W. Three Short Wave Bands S.W.1, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome-plated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain Wave-Change and Tone Controls. Plus two Slider Switches. Powered by P.P. $9-9$ volt Battery.

Complete kit of parts including carrying strap. Building instructions and operating Manuals.

E.V. 6 PLUS ONE

Build this exciting new design Build this exciting new design.
Now with 7 Transistors and 4 Now with 7 Transistors and 4
diodes. MW/LW. Powered by $9 V$ diodes. MW/LW. Powered by $9 V$ battery. Ferrite rod aerial, tuning condenser, volume control, and $2 \frac{3}{4} \mathrm{in}$. oudspeaker. Attractive case with speaker grille. Size 9 in. $\times 5 \frac{1}{4}$ in. $\times 2 \frac{3}{4}$ in approx. All parts including Case and Total

Costs

EDU-KIT MAJOR

Completely solderless Electronic Construction Kit. Build fifteen projects including:-

Signal Injector Transistor ester NPN-PNP 7 Transistor Loudspeaker Radio MW/LW 5 Transistor Short Wave Radio.
Components include:

- 24 Resistors 21 Capacitors - 10 Transistors $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker Earpiece Mica Baseboard $3 \quad 12$-way Connectors 2 volume Controls 2 Slider Switches 1 Tuning Condenser 3 Knobs Ready Wound MW/ LW/SW Coils Ferrite Rod 6 6 yards of wire I yard of sleeving, etc. Complete kit of parts including construction plans.
Total building costs
P9.99+ P \& P and
RADIO CONSTRUCTION KIT Q7

A compact small adio kit covering Medium Wave and Long Wave bands. Rugged Micanite construction and simple square design allows for easy carrying and positioning. deal for the Garage, Workroom Kitchen, etc., has seven Transistors and four Diodes, quality Loudspeaker ready wound Ferrite Rod Aerial and Carrying Strap. Size $43^{\prime \prime} \times 42^{\prime \prime} \times 43$. All parts and plans excluding 9v PP7 Battery.

$=86.25+P \& P$ and

POCKET FIVE

NOW WITH $2 \frac{3}{4}{ }^{\prime \prime}$ LOUDSPEAKER 3 Tuneable wavebands. M.W., L.W., and Trawler Band, 7 stages, 5 transistors and 2 diodes, supersensitive ferrite rod aerial, attractive black and gold case. Size $5 \frac{1}{2}^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ approx. All Parts including Case and Plans.
Total Building Costs

To: RADIO EXCHANGE LTD

61 H High Street, Bedford MK40 ISA
Tel.: 023452367
Callers side entrance "Lavells" Shop.
Open $10-1,2.30-4.30$ Mon.-Fri. $9-12$ Sat
Reg. No. 788372

\qquad
Address \qquad

Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel:01-452 0161/2 ALSO 325 Edgware Road, W2. Tel:01-723 4242.
Glasgow: 85 West Regent Street, G2 2QD. Tel:041-3324133 AND Bristol: 108A Stoke's Croft, Bristol. Tel: $0272426801 / 2$.

TRANSISTORISED DC TO AC INVERTERS

$12 v-24 v-48 v$ DC input models 110 v or 240 v AC off load output models
Square-wave output or optional filtered models Frequency 50 Hz or 60 Hz models ($\pm 5 \%$ typical)

24 vDC inputs/ 110 v or 240 v outputs
50 Hz or 60 Hz
N24/A- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 40$ watts $\mathbf{1 9 . 2 0}$ N24/B— $\mathbf{8}^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts.......................... $£ 29.80$ N24/C- $-8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts $£ 36.00$ N24/D--8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts N24/E-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watt N24/F—-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts. N24/F- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts
N24/G—10" $\times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts. \qquad44 .00 N24/G— $10^{\prime \prime} \times 8^{\prime \prime} \times 6^{3} 400$ wats $\mathbf{f 6 0 . 0 0}$ N24/H $-10^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime} 500$ watts $£ 83.00$ N24//-12" $\times 8^{\prime \prime} \times 8^{\prime \prime} 700$ watts.......................... $\mathbf{£ 1 0 1 . 0 0}$

$$
\text { Filtered waveform models available at } 15 \% \text { extra. }
$$

All silicon power transistors Separate driver and output transformers
Designed for cool continuous operation
Aluminium ventilated cased units DC input fused

12 v dc inputs/ 110 v or 240 v outputs
50 Hz or 60 Hz
N12/A- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 40$ watts 18.00
N12/B—8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 60$ watts $£ 23.20$
N12/C- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts..
N12/D-8 $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 150$ watts............................ $\mathbf{N 3 4 . 5 0}$
N12/E- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts $\mathbf{£ 4 2 . 0 0}$
N12/F- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts.
N12/G- $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 300$ watts. f 50.60

N12/H-10" $\times 8^{\prime \prime} \times 6^{\prime \prime} 400$ watts...................................... 569.80
Filtered waveform models available at 15% extra.

48 V DC inputs $/ 110 \mathrm{~V}$ or 240 V outputs 50 Hz or 60 Hz
N48/A-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 50$ watts $\mathbf{£ 2 0 . 0 0}$
N48/8-8 $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 100$ watts...

N48/D--8" $8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime} 200$ watts.. $\mathbf{E 4 5 . 0 0}$
N48/E-8" $\times 6^{\prime \prime} \times 6^{\prime \prime} 250$ watts.. 554.00

N48/H— $10^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} 500$ watts ... 86
N48/l- $12^{\prime \prime} \times 10^{\prime \prime} \times 8^{\prime \prime} 700$ watts $£ 112.00$
N48/J- $12^{\prime \prime} \times 10^{\prime \prime} \times 8^{n} 1000$ watts...................... 160.00
N48/K-12" $\times 10^{\prime \prime} \times 10^{\prime \prime} 1500$ watts $\mathbf{£ 2 1 0 . 0 0}$
Filtered waveform models available at 5% extra.

Please add $£ 5.00$ carriage per unit U.K. overseas at cost
Delivery 10 to 21 days subject to availability -. Cased sizes subject to variations Callers strictly by appointment - Telephone enquiries 01-736 0685

Accurate pin point temperature control between 65° and $400^{\circ} \mathrm{C}$. Heating element and sensor built in tip of iron for fast response. Interchangeable slide-on bits from 4.7 mm ($3 / 16^{\prime \prime}$) down to 0.5 mm . Zero voltage switching, no spikes. No magnetic field, no leakage. Supplied with miniature CTC ($35-40$ watt) iron or XTC (50 watt). TCSUT soldering station with XTC or CTC iron £38.88 including VAT (Nett to Industry). Postage extra.

Model CX- 17 watts

a miniature iron with the element enclosed first in a ceramic shatt, ther in a stainless steel. Vitually leak.rree. Only $1 / 2$ Range of 5 other bits available from $1 / 4^{\prime \prime}$ down to $3 / 54^{\circ}$

Model X25-25 watts

A general purpose iron also with a ceramic and steel shaft to give you toughess combined with near-parfect mstlation Fitted with $1 / 8$ "bit and priced at $\mathbf{£ 4}$-37inclusive of VAT and P. \& P. Range of 4 other bits avallable

Model SK3 Kit

Contains both the model C×230 soldering iron and the stand $S T 3$ Priced at inclusive of VA
and P.\&P. and P.\&P. excellent present for the radio amateur, modelmaker or nohb is:

Model SK1 Kit

This kit contains a $\uparrow 5$ watt miniature soldering iron, complete with 2 spare bits, a coil of solder, a heat sink and a booklet, How to solder' Priced at $\mathbf{E 6} .48$ inclusive of VAT and P.\&P.

Model SK4 Kit

Model MLX Kit

The solderting iron in this kit cande operated fromany ominary car batter it is inted with 15 feet flexible cable and battery clips. Packed in a strong car a boat or a caravan leady for cor, a boat or a caraving price $£ 483$ inclusive of VAT and P.\&P

With the

Antex TCSUI Soldering Station

All Antex soldering irons are made on the principle of putting the heating element inside a shaft, then the desired bit is eased over the shaft, giving maximum heat transference, this is why so often a small Antex iron can do the job of a larger conventional iron. The precision made slide on bits are slit to make them easily interchangeable.
The ANTEX multi purpose range of soldering equipment is fast becoming a must for every home: Built with precision for long life, each iron is fully tested and guaranteed ANTEX soldering irons are made in England to strict local and international standards of safety Stocked by many wholesalers ans retailers or direct from us if you are desperate.

HicminlildiEDM	
TV	
Titiephome amplifili	
是	
为 Tiemphose	

OSMABET LTD $\begin{gathered}\text { We make transformers } \\ \text { amongst other things }\end{gathered}$ LOW VOLTAGE TRANSFORMERS: Prim 240V ac.

TWVNSEC TRANSFORMERS: Prim 240V ae.
 $18 V 1 A+18 V 1 A 6.85 ; 18 V 1.5 A+18 V 15 A £ 8.50 ; 20 V$
$1.5 A+20 V i .5 A £ 8.50 ; 12 V 4 A+12 V 4 A £ 10.50 ; 25 V$ 2A + 25V 2A £10.50.
 O.25A or 2OV-O-2OV $15 A$ E2. 85 each.
CTTRASFORMERS TAPPED SEC. 240 V ac.
 2A£10.50; 0-40-50-60-80-100-110V $1 \mathrm{~A} £ 10.50$
mim 240 V ac.
$250-0.250 \mathrm{~V}$ 60M. $6.3 \mathrm{~V} 1 \mathrm{~A} \mathbf{£ 2 . 0 0 ;} 250 \mathrm{~V} 100 \mathrm{Ma} .6 .3 \mathrm{~V}$ 2A £3.00; $9 V$ 3A $2 \cdot 50$, $25 \mathrm{~V} 0.3 A £ 1.00$.
LOUDSPEAKERS
$2 \frac{1}{\operatorname{in}} 8 \Omega, 2 \frac{1}{2} 8$ or $25 \Omega, 2 \frac{3}{4}$ in $8 \Omega, 3$ in 35Ω 31in $3,8,76$ o $4 \operatorname{in} 4,8,16,25$ or $80 \Omega, £ 1.75 ; 8 \times 5$ in 4,8 or $25 \Omega, £ 3-00$
 Instant erasure of cassettes, and any diameter of tape spools,
 New, British manufacture, smoothed d.c. output $20 \mathrm{~V} 1-5 \mathrm{~A}$
plus stabilised output of 15 V 100 Ma , plus 12 Vac 0.5 A out plus stapnsed outh di put, complete with diagram, E3.5S. 200/ A Size $19 \times 18 \times 20 \mathrm{~mm} 800 \mathrm{n} £ 1 \cdot 10$.
CHARGING METERS $1 \frac{3}{3}$ ins diameter 2AOr $3 A £ 1.25$ each; 5A or $10 A$ E1. 50 each.
SYNCHRONOUS GEARED MOTDRS, 240 V Brand new, built in gear box, 1 or 20 RPH. f1- 25 each.
O/P TRANS FORMERS FOR VALVE AMPLIFIERS P.P. sec tapped $3-8-15 \Omega$, A-A $6 K$, 30W £15.25; A-A $3 K$ 50W E22.75: 100 W (EL31, KT88, etc.) E31.25.
G.E.C. MANUAL OF POWER AMPLIFIERS G.E.C. MAN Amplifiers $30 W$ to $400 W$ f 1.00 .0
Covers valve
MULTIWAY SCRENED CABLE, PVC COVERE 36 way $£ 1.00$; 25 way 75 p; 14 way 50 p; 6 way 25p; way 20p; 2 way 10pi ${ }^{1}$ way $8 p ; 4$ way individually screen ed 25p per metre, fig 8 twin stereo do screened $15 p$, metre.
MAINS CABLE
4 Way 3 A 30 metre; fig 8 for loudspeakers etc. $\mathbf{£ 5 . 0 0 1 0 0}$ 4 way, 3 A 30p me
CONDENSERS $2200 / 40 \mathrm{~V} 40 \mathrm{p} ; 8+8 / 450 \mathrm{~V} 40 \mathrm{p}$; Paper tubular. W/E 4/160V $2200 / 40 \mathrm{~V} / 40 \mathrm{p} ; 8+8 / 450 \mathrm{~V} 40 \mathrm{p}$; Paper
$6 / 160 \mathrm{~V}, 2 / 2000 \mathrm{~V} 25 \mathrm{p}$ each

CARRIAGE EXTRA ONALL ORDERS
ALLPRICES INCLUDE V.A.T.
Callers by appointment only. S.A.E. Enquiries, Lists. 46, Kenilworth Road, Edgware, Middx. HA8 8YG. Tel: 01-958 9314

Imp 8 or 15 as app TITAN 5 years
FANE LIFETIME OTHERS 1 year ALL PRICES INC. VAT Prices correct at 23.1.79

$5^{\prime \prime}$ FANE 501 Mid or Full range
$8^{\prime \prime}$ A.F. Model 80 O $8^{\prime \prime}$ A.F. Model 80 Dual Cone
8^{\prime} A.F. Model 83 Dual Cone FANE $8^{\circ} 8087$ Dual Cone
WH'FEDALE LTON $3 \times$ P k kit DENTON $2 \times P$ KIT A.F. FR1 8^{n} SPKR KIT
8^{*} FANE MODE ONE KI

CABINETS (TEAK VENEERED)

$20^{\prime \prime} \times 11 \frac{1}{2}^{\prime \prime} \times 93^{\prime \prime}$ Suitable for Mode 1 or FR1 Kits and GRDUP/DISCO TYPES
12. TITAN T12/45R
" TITAN T12/100A 100
$12^{\prime \prime}$ CELESTION G12M
$12^{\prime \prime}$ CELESTON G12H
12^{*} CELESTION G12/50
12° GOODMANS 12 PD
\qquad ,. FANE 'SPECIALIST'P.A. 80 DISCO 80
DISCO 100
GUITAR GUTIAR 80 L
GUITAR 100 L gUitar 100
FANE CRESCENDO 8 \qquad

TITAN T1 5/770 70w $5^{\prime \prime}$ TITAN T15/70 70w 15 , FANE'SPECIALIST' BASS 85 15 GOOODMANS 15P

$$
\begin{aligned}
& 8121 \\
& 12 A \\
& 122 \\
& 12 \text { BASS } \\
& 0 w \\
& \text { BASS } 85 \\
& \text { BASS } 100
\end{aligned}
$$

juis
$15 / 160$ 160w
"TITAN T18/100 COLOSS
$18^{\prime \prime}$ GOODMANS 18 P
18° GELESTION G18C
18° CELESTION G18C
$18^{\prime \prime}$ FANE CRESCENDO $18 A$
$18{ }^{\prime}$. List Nalue
Sp. Price
Sp. Price
Sp. Price
Sp. Price
E60.70
f39.15
f82.44
Price Pair
Price Pair
Sp. Price

Sonic
Price
Sonic
Price
f4. 95
\& 4.95
 Ezb:95 GLENDALE $3 \times \mathrm{P}$ KTT
\qquad
Mode 1 or FR1 Kits and Limited Number $\mathbf{E 6 . 9 5}$ ea. PLEASE STATE IMPEDANCE.

HORN UNITS

CELESTION MH1000 25 w (Carr 85p)
FANE 910 MK II 50 w
920100 w
$\mathrm{J} 4430 \cdot 50 \mathrm{w}$
J 7350 w
J 10450.70 w

$\begin{array}{rr}£ 17.00 & £ 13.75 \\ £ 17.75 & £ 10.99 \\ \mathbf{6 2 . 9 5} & \mathbf{£ 4 4 . 5 0} \\ £ 7.95 & \mathbf{£ 4 . 9 5} \\ \mathbf{f} 11.75 & \mathbf{£ 7 . 9 5} \\ \mathbf{£} 16.95 & \mathbf{£ 1 0 . 9 5}\end{array}$

HIGH POWER 'CROSS-DVERS'
65 £2,25 ADD-ON HIGH FREOUENEY UNITS
FAL' Add-on' Carr. $£ 1$
TITAN T1H 70 Ow Carr. $£ 1$
E41.95 $\mathrm{E}^{235} \cdot 95$
TITAN TS2H 100w Carr. £ 1
$\begin{array}{ll}\text { £ } 33.00 & £ 23.95 \\ \text { £ } 39.00 & £ 26.95\end{array}$

SPECIAL OFFER!

 COLLARO RECORD DECKS* 'S' Shaped Arm *Auto or Manual
*12" Turntable * Ideal for Disco $\mathbf{f 1 7 . 9 5}$ ea. or $\mathbf{2}$ for $\mathbf{4 3 0}$. Carr. E1.50 ea

Also for personal shoppers only
AMPS, TTABLES, JINGLE MACHINES, disco consoles, lighting. CABINETS. CREDIT TERMS AVAILABLE
orders
over
$\mathbf{f 2 0}$
Phone orders accepted from Access \& Barclay 403 SAUCHIEHALL STREET Tel: 0413320700

GLASGOW
Mail Orders/Export enquiries to above. Add $£ 1$ carr. on
Hi-F1 spkrs. or kits. Otherwise add $£ 1.25\left(12^{\prime \prime}\right.$ Spkr). Hi-Fi spkrs. or kits. Otherwise add $£ 1.25$ (
E $50\left(15^{\prime \prime}\right) £ 2 \cdot 50\left(18^{\prime \prime}\right)$
H.A.C, SHort.wave KITS
WORLD-WIDE REGEPTION

H.A.C. well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories to suit the novice and the expert.
f10.50 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components,
drilled chassis, vaive, accessories and full drilled chas
instructions. selective, sensitive and with fantastic reception, yet needing only a single PP3 battery, at will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and

SORRY, NO CATALOGUES WITHOUT S.A.E.

"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane

Lewes Road, East Grinstead, West Sussex RH19 3sZ

A. J. H. ELECTRONICS
 [GBaqn)

Proprietor: A. J. HIBBERD
Tel. RUGBY deytime 76473 , evenlag 71066
Termes of Busineat: Cash with order, Mail order only, or Callers by appointment, SA.E. With enquires. Handling Charge 40p. Minimstm order £1.00. Official Ordgrs on i strict monthy basis. Priose now
VAT. FULL MONEY-BACK GUARANTEE ON ALL ITEME.
STEREO CAR CASSETTE PLAYERS famous manufacturers warran-
ty returns fully overhauled $\&$ in working order. output 5 watts per
Ehannel, controls:- volume, balance, tone, fast forward $\&$ rewind, auto
 STEREO CAR CASSETTE PLAYER amplffier boards with two NEC4PC1001H2 audio ICs 3 t wats per channel, rernoved from new equipment by manufacturer size $720 \times 45 \mathrm{~mm}$ supplied with cirevit 82.50 each.

VARECAP FM TUNERS $88-108 \mathrm{MH} \times 10.7 \mathrm{MHz}$ IF output contains 2 dual gate mosfets +2 bipolar transistors small size $70 \times 55 \times 30 \mathrm{~mm}$
sorry no data, new unused eas.so.
 hand decimal point character height $12 \frac{1}{2 m m} .5$
25 for $t 9.0050$ for $2 \$ 5.00,100$ for $t 28.00$.
25 for 29.00 SO
vidicon tube. no dats new enly $\mathbf{4 4 . 5 0}$.
MIXED BAE OF ELECTROLYTIC CAPACITOns 100 caps, of equal quantity of the following, $2.2 / 16 \mathrm{v}, 20 / 16 \mathrm{v}, 47 / 16 \mathrm{v}, 150 / 16 \mathrm{v}, 330 / 4 \mathrm{v}$. $470 / 10 \mathrm{v}, 47 \% / 16 \mathrm{v}$, $880 / 16 \mathrm{v}$, price ONLY E1. zo per 100 .
CAR RADIO RF/IF AMPLIFER BOARD 470 KHz IF amp plus
a sterto IC pro-amp ex-new car cassette/radios 60 p inc. circuit.
cAR RADIO sOAND complete except for permeatility tuner two CAR RADIO BOAND complete except for permosility tuner two typas
7 or 8 transistor, output 5 watts M/LW only $£ 1,00$ or two for $£ 1.78,4$ for 83.00 circuit supplied. Permability tunes not conect one but should work OK EOp each (only supplied with above boacd).
COMPRESSION THIMMER $9 \times 14 \mathrm{~mm}$ PC type $10-80 \mathrm{pf}$ ep esch 10 for 60 p .
MULLAAD SEMI-AFASPACED 7 mm sa. TRIMMERS $1-5 \mathrm{pf}, 1-$ 10pf, 1-18pt, 15p each. 10 mm dis. semi-tirspaced 2-25pf 10p 10 for COp. 4-60pf 18 Peach
TETFER TRIM WEA 1 -1Opf 9 mm dia. 25 p eech.
SLIDE SWITCH pro-set
$\$ 12$ EIT SHIFT RESISTER ic. type MM5016H list over $£ 3.00$ our
price only 60p 2 for $\mathrm{C1} .00$ inot rojectst.
FERMITE CORES mixed bag of 10080 p
DISC CERAMICS mixed bag of 100 values from 1 pf to 220pf approx 18 values aili made by ERIE lergest siza
81.15p per 100 . E1.15p per 100
BOX BROKEN
sistors. IFs, coils catc. RADIO BOARD: OK for sparas full of tran 12v MOTOAS as used in car cassette/cartridge players new siop each. AUDIO AAP ICe. LM 3802 watt into 4 ohm. 80 p each. ESM231 is watts into 4 ohms 24 volt e1.E0, TBA64tA 2.4 watts Into 4 ohims e 9 volts. E1.00. all with data.
IF AMP ICs CA3089E
IF ANP ICA CA30B9E E2.00, TAD 110 ع1.50, TBA/20A BOp.
20 BARBY LANE, HILLMORTON, RUGBY, WARWICKSHIRE CV22 50J

Automatic Intercom

 * AS FEATURED IN THIS ISSUE OF P.W.

- INCREASE SECURITY!!

- ADD CONVENIENCE!!

- DETER UNWANTED CALLERS!!

We can supply a complete set of parts for this useful project everything down to the last nut and bolt!! All parts as specified by the author, including PCB's and cases for £29-95.
4 core screened cable for interconnecting 27p/metre.

THE NEW 1979 GREENWELL catalogue

FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form
- VAT inclusive prices PRICE 30p +15 p POST

3W Amp Module

Ready built and tested, this handy amplifier will prove very useful around the workshop. Just requires 17 V ac source (and 8R spkr) as bridge rect and smoothing cap are mounted on the PCB. The 4 transistor circuit proivides enough sensitivity for most applications. Supplied complete with circuit diagram and wiring details.
Only £1.75. Suitable transformer $\mathbf{£ 2 . 2 0}$.

Please adjust Prices to include VAT at NEW Rate.
(Not available at time of going to press)

443B Millbrook Road Southampton SO1 OHX
Tel: (0703) 772501/783740

ENGINEERS

YOURSELF FOR A

 BETTER JOB "wnDo you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.

MORE PAYI

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

home of british instirute of encinezaing technology

SEMICONDUGTORS - COMPONENTS

Practical Wireless, August 1979

SEMICONDUGTORS POTS \& IRONS

EXPERIMENTOR BREADBOARDS
FROM
No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for"1 chip circuits. Accepts 8, 14, 16 and up to 22 pin IC's.
ONLY £1.60

EXP. 350. £3.50
270 contact points with
two 20-point bus-bars.

EXP. 300.

550 contacts
with two bus-bars. $£ 5.75$

EXP. 650 for Micro-
processors. $\mathbf{£ 3} \mathbf{3 0}$

EXP.4B.

More bus-
More

£2. 30
ALL EXP. 300 Breadboards mix and match with 600 series.

THYRISTORS			$7 \mathrm{amp} \quad$ TO 48 Case		
			Volts		
600ma TO 18 Case			50	THY7A550	E0.52
			100	THY7A/100	¢0.55
Volts	No.	Price	200	THY7A/200	E0.62
1020	THY600/10	£0.16	400	THY7A/400	¢0.67
	THY600/20	£0.17	600	THY7A/600	¢0.84
30	THY600/30	¢0.22	800	THY7A/800	¢0.99
	THY600/50	£0.24			
50 100	THY600/100	¢0.27			TO48 Case
200	THY600/200	£0.41			ro 48 Case
400	THY600/400	¢0.48	Volts	No.	
			50	THY10A50	E0.55
			100	THY10A/100	£0.62
1 amp		TO 5 Casa	200	THY10A200	¢0.67
Volts No.		Price	400	THY10A400	£0.77
50	THY1A/50	£0.28	600	THY10A/600	£1.07
100	THY1A/100	£0.30	800	THY10A/800	£1-32
	THY1A/200	£0.35			
200	THY1A/400	¢0.41	16 amp T		TO 48 Case
600	THY1A/800	¢0.49			
800	THY1A/800	¢0.63	Volts		Prica f0.58
			50 100	THY16A THY 16 d' $^{\prime} 100$	¢0.58 $\mathbf{6 0 . 6 3}$
3 amp TO		TO 66 Case	200	THY16A/200	¢0.67
Volts	No.	Price	400	THY16A/400	¢0.83
50	THY3A/50	¢0.30	600	THY16A/600	£0.97
100	THY3A/100	c0.32	800	THY16A/800	£1.50
200	THY3A/200	¢0.36			
	THY3A 400	¢0.45			
$\begin{aligned} & 400 \\ & 600 \end{aligned}$	THY3A/600	¢0.54	30 an		4 Case
800	THY3A/800	¢0.70	Voits	No.	Price
			50	THY30A50	¢1.27
			100	THY30A/100	£1.54
5 amp		66 Case	200	THY30A/200	£1.76
Volts 50	No.	Price	400	THY30A/400	£1.93
	THY5A/50	¢0.39	600	THY30A/600	£3.78
$\begin{array}{r} 100 \\ 200 \end{array}$	THY5A/100	£0.49			
	THY5A 200	£0.54			Price c0.86
400	THY5A/400	£0.62	BT10	1/500R	¢0.86 ¢0.86
$\begin{aligned} & 600 \\ & 800 \end{aligned}$	THY5A600	£0.75	$8 \mathrm{BT10}$	$2 / 500 \mathrm{R}$	¢0.86 $\mathbf{¢} 1.35$
	THY5A/800	£0.87	$8 T 106$ BT10		¢1.00
			BT10		£1.06
5 amp	P TO 220 Case		2 N 32	28	£0.76
Volts	No.	Price	2 N 3	535	¢0.83
400	THY5A/400P	¢0.81	87×3	50/50L	$£ 0.36$
600	THY5A/600P	¢0.75	BTX3	30/400L	£0.50
800	THY5A8800P	E0.87	C106		£0.65

CARBON POTS (Linear Track)
Single gang with wire end terminations, $6 \mathrm{~mm} \times 50 \mathrm{~mm}$ plastic shaft 10 mm bushes supplied with shake proof washer and nut. Tolerance 20% of resistance
1839 kkohms 1837 100k ohms 1832 2k2 ohms 1838220 k ohms 18334 k 7 ohms 1839470 k ohms 834 22 k ohms 83522 k ohms 18401 Meg
184 i 2 M 2 184i 2M2 183647 k ohms All at 29 p each CARBON POTS (Log Track) 18424 k 7 ohms 1847220 k ohms 1843 10k ohms $\quad 1848470 \mathrm{k}$ ohms $184422 \mathrm{kohms} \quad 18491 \mathrm{Meg}$ 184547 k ohms 18502 M 2 1846100 k ohms All at $\mathbf{2 9} \mathrm{p}$ each
Designed to fit 2.54 mm pitch board. All tracks are linear law

VC7

1816100 ohms $\quad 182447 \mathrm{k}$ ohms $1817220 \mathrm{ohms} \quad 1825100 \mathrm{k}$ ohms $\begin{array}{ll}1818470 \text { ohms } & 1826220 \mathrm{k} \text { ohms } \\ 18191 \mathrm{k} \text { ohms } & 1827470 \mathrm{k} \text { ohms }\end{array}$ $\begin{array}{ll}18191 \mathrm{k} \text { ohms } & 1827470 \mathrm{k} \text { ohms } \\ 18202 \mathrm{k} 2 \mathrm{ohms} & 18281 \mathrm{Megohms}\end{array}$ $\begin{array}{ll}18202 \mathrm{k} 2 \text { ohms } & 18281 \mathrm{Meg} \text { ohms } \\ 18214 \mathrm{k} 7 \text { ohms } & 18292 \mathrm{M} 2 \text { ohms }\end{array}$ 1822 10kohms 18304 M ohms 1823 10k hms All at 10 ohms
$\begin{array}{ll}\text { DUAL CARBON POTS (Log Law) } \\ 18604 \mathrm{k} 7 \mathrm{ohms} & 1865220 \mathrm{k} \text { ohms } \\ 186110 \mathrm{k} \text { ohms } & 1866470 \mathrm{kohms} \\ 186222 \mathrm{k} \text { ohms } & 18671 \mathrm{Meg} \\ 186347 \mathrm{kohms} & 18682 \mathrm{M} 2\end{array}$ 1864 100k ohms All at 97p each SINGLE GANG SWITCHED (Lin Law)
These potentiometers are fitted with double pole on-off switches. The switch is incorporated within the rotary action of the pot. Specification of pot is as VC1 Switch rating 1.5 amps at 250 v AC .
$18704 \mathrm{k} 7 \mathrm{ohms} \quad 1875220 \mathrm{k}$ ohms 187110 k ohms $\quad 1876470 \mathrm{k}$ ohms
187222 k ohms $\begin{array}{ll}187222 \mathrm{k} \text { ohms } & 18771 \mathrm{Meg} \\ 187347 \mathrm{kohms} & 18782 \mathrm{M2}\end{array}$ 1874 100k ohms All at 73p each
DUAL GANG LOG-ANTI-LOG POT
1888 Track specification as dual gang pots VC3. but tracks mounted to log-anti-log action 100k ohms $\mathbf{£ 0 . 8 4}$

SILICON

194315 watt high quality soldering iron totally enclosed element in a ceramic shaft fitted with $\mathbf{3 / 3 2 "} \mathbf{~} \mathbf{~} \mathbf{~ b i t . 1 0}$ 1947 Replacement element for $\begin{array}{r}\mathbf{1 9 . 1 0} \\ \mathbf{8 2 . 0 5}\end{array}$ iron.
1944 Iron coated bit $3 / 32^{\prime \prime}$ for 1943
$\mathbf{~} 19.05$ $\begin{array}{lr}\text { irorn } & \mathbf{E 0 . 5 0} \\ 1945 \text { Iron coated bit } 1 / 8^{\prime \prime} \text { for } 1943\end{array}$ 1945 Iron coated bit $1 / 8^{\prime \prime}$ for 1943
iron. 80.50
i940 1946 Iron coated bit $3 / 16^{\prime \prime}$ for 1943 iron.
9948 General purpose 18 watt iron fitted with iron coated bit. $£ \mathbf{3 . 8 9}$ 1952 Replacement element for 1948 Iron.
1949 Iron coated bit $3 / 32^{\prime \prime}$ for $\mathbf{£ 2 . 0 5} 948^{\prime}$
 1950 Iron coated bit $1 / 8^{\prime \prime}$ for 1948 iron.
1951 Iron coated bit $3 / 16^{\prime \prime}$ for $\mathbf{E 0 . 5 0}$
$\mathbf{1 9 4 8}$ ${ }_{1931}{ }^{\text {iron. }}$ Highly popular $\times 25 \quad 25$ watt quality soldering iron ceramic shafts to provide near perfect insulation break-

RECTIFIERS

down voltage of 1500 volts AC and a leakage current of only $3-5 \mathrm{uA}$ and another shaft of stainless steel to ensure strength.
1935 Replacement element for 1931
iron. ron.
1932 Iron coated bit $1 / \mathbf{8}^{\prime \prime}$ for $\mathbf{£ 1 . 7 3} 1931$ 1932 lron coated bit $1 / 8^{\prime \prime}$ for 1931
iron. $\mathbf{£ 0 . 5 4}$ 1933 Iron coated bit $2 / 16^{\prime \prime}$ for 1931 1934 lron coated bit $3 / 32^{\prime \prime}$ for $\mathbf{f 0 . 5 4}$ 1934 Iron coated bit $3 / 32$ for 1931
iron. $\mathbf{~} \mathbf{0 . 5 4}$ 1953 SK1 soldering kit - This kit contains 15 watt soldering iron fitted with a $3 / 16^{\prime \prime}$ bit plus two spare bits, a ree of solder, heat-sink and a booklet 'How to solder'. In presentation display box. 1939 ST3 soldering iron stand. Stand made from high grade bakelite material, chromium plated strong steel spring, suitable for all models, includes accommodation for six spare bits and two sponges which serve to keep the
soldering iron bits clean.
$\mathbf{\& 1 . 6 2}$

PRINTED CIRCUIT BOARD TRANSFERS

ZENER DIODES ${ }^{400} \mathrm{mw}$ encapsulated (B888) 0007 Glass

 No. 24 9pea.

$1 \mathrm{w}-1.5 \mathrm{w}$ Plastic and metal encap-

 sulated. Range of voltages available.3 9v. 4.
$3.9 v$,
$6.8 v$,
124 v
24

10w Metal stud type SO 10 case.

$16 \mathrm{v}, 18 \mathrm{v}, 20 \mathrm{v}, 22 \mathrm{v}, 24 \mathrm{v}, 13 \mathrm{v}, 2 \mathrm{v} .30 \mathrm{v}$,
$33 \mathrm{v}, 43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}, 68 \mathrm{v}, 72 \mathrm{v}, 75 \mathrm{v}$
82 v,

> No. Z10 38p ea.

SOCKETS

$\begin{array}{ll}1611 & 8 \text { pin DIL } \\ 1612 & 14 \text { pin DIL }\end{array}$
161214 pin DIL
61316 pin DIL
$\begin{array}{ll}1614 & 24 \text { pin DIL } \\ 1615 & 28 \text { pin DIL }\end{array}$
1616 TO18 Transisto
16117 TUS Transistor
All prices are inclusive of V.A.T. at the appropriate rate. Please
add $\mathbf{f 0 . 3 5}$ p\&p per order unadd £0.35 p\&p per order, un-
less othervise stated.

REGULATORS		BRIDGE RECTIFIERS SILICON 1 amp		
u.a. 780510220	¢0.76	Type	No.	Price f0. 22
U.a. 7812 TO 220	£0.76			¢0.24
u.a. 7815 T0220	£0.76	200V RMS	BR1/200	E0.27
U.a. 7824 TO220	£0.76	400 V RMS	BR1/400	¢0.39
u.a. 7818 TO220	£0.76			
Negative				
u.a. 7905 TO 220	£0.86			
u.a. 7912 TO220	£0.86	SILICON 2 amp		
u.a. 7915 TO220	£0.86	Type		Price
u.a. 7924 T0220	¢0.86	50 V RMS	8R2/50	¢0.49
u.a. $7818 \mathrm{TO220}$	£0.86	100V RMS	BR2/100	CO. 52
u.a. 723 C 1099	£0.49	200 V RMS	BR2/200	£0.56
7272314 pin DN	£0.49	400V RMS	BR2/400	£0.55
LM309K TO3	£1.62	1000V RMS	BR2/1000	£0.73

DEPT. PW8, P.O. Box 6, Ware, Herts. COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

EDITOR
Geoffrey C. Arnold
ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE ART EDITOR

Peter Metalli
TECHNICAL EDITOR
Peter Preston
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICALSUB-EDITOR
Joe Bishop
TECHNICAL ARTIST
Rob Mackie

ASSISTANT ART EDITOR

Keith Woodruff
SECRETARIAL
Sylvia Barrett Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
 Telephone: 01-261 6636

Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone:01-2615762
Colin R. Brown
MAKE UP \& COPY DEPARTMENT
Telephone: 01-2616570
Dave Kerindi

ADVERTISEMENT OFFICES

King's Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Communications

OUR theme this month, communications, is a word with differing implications for different people. To a civil engineer, it means roads, railways, airports and docks. To a sociologist, it has to do with contact between individuals. In the field of radio and electronics, it means various ways of establishing that contact at a distance, traditionally by radio or wire, but also, more recently, by infra-red or by fibre-optic cable.

Whether "communications" can really be extended to cover contact between man and machine is arguable; perhaps it's a matter of scale. Where the machine in question is a computer operating in an interactive mode, such as that providing the Post Office Prestel service, it's difficult to call it anything else, though really, I suppose, the user is effectively communicating with the programmers who put the information into the computer originally. This month we have exercised literary licence to extend the use of the term to include "remote control" via ultrasonic links. It is, after all, simply a way of communicating your commands to a TV set, a garage door, or whatever.

Yet another variety of communication of great importance to us is that taking place between our contributors and editorial staff on the one hand, and the readers on the other, via the medium of the magazine. This is, of course, principally a one-way channel, though the feed-back which we get from you is very interesting to us, whether it's complimentary or otherwise!

We have recently been getting quite a few letters and-telephone calls from readers having difficulty in getting their copies of Practical Wireless each month. First, let me say that we realise only too well the frustrations caused by the magazine being late on sale these past months. As I said a few issues back, I had hoped that we would have been appearing on the scheduled dates long before now, but no sooner do we get over one problem than another crops up. You may rest assured that we are not just sitting back, doing nothing about it-we are trying hard to get things to rights, and hope that the situation will soon improve.

To get back to the difficulty in finding a copy of $P W$, it does appear that there may be some problems in our distribution system, but it is impossible for us to investigate these without some detailed information, covering at least the following points:

1. Name and address of your newsagent or bookstall.
2. Do you have a regular order, or were you wanting to make a casual purchase?
3. When and where did you finally manage to purchase a copy of that particular issue?
4. Do you know of any other newsagents, etc., in the area, who get their copies of Practical Wireless earlier than your usual supplier?
5. Has your newsagent had difficulty in getting you a copy of $P W$, even if you place a firm order in advance?
If you are having these problems, I would be very grateful if you could spare the time to write and let us know, with any additional information which you feel might be useful. Please, won't you help us to help you?

Eric Dowdeswell-"'On the Air' Contributor

Of "1918 vintage", Eric was introduced to the mysteries of radio at an early age by his father, and had become a licensed radio amateur by 1939. This, plus his work on mechanical TV projection systems, led him into war service in army wireless workshops around the Middle East, ending up in Istanbul.

There, he met and married a Greek girl, Christine, bringing her home when demob came in 1946. After a spell with Nagard, working on wideband amplifiers and oscilloscopes, Eric
decided to become a Flight Radio Officer, and spent 14 years with Sudan Airways in Khartoum. As ST2AR, he notched up over 200 certificates of achievement in working 273 countries on c.w. or s.s.b.

Returning to the UK in 1967, Eric became General Manager of the RSGB for a while, then joined the staff of Practical Wireless, remaining until the magazine moved to Poole in 1977, when domestic reasons forced him to stay in London.

Diary Date

The British Amateur Radio Teleprinter Group is holding its Annual Convention at the Harpenden Public Hall, Harpenden, Herts, on Saturday 21 July 1979, between 11.00 and 17.00 hrs .

There will be trade stalls, bring and buy picture tape factory, demonstrations and lectures; including one by G3PLX, which is expected to attract particular attention.

The venue has been specially chosen for its ease of access from the motorway network and by rail, as well as for its car parking and refreshment facilities. Everyone, members and non-members of BARTG, is welcome.

Further details from: J. P. G. Jones GW3IGG, Heywood, 40 Lower Quay Road, Hook, Haverfordwest, Dyfed SA62 4LR. Tel: Johnston (Dyfed) 890759.

BAEC exhibition

The British Amateur Electronics Club will be holding their 14th Amateur Electronics Exhibition, in the Shelter at the centre of the Esplanade, Penarth, S. Glamorgan, between 21 and 28 July 1979. The exhibition will be open from 7.00pm each evening, except Sunday 22 July, and will also open during the afternoon on 21,22 and 28 July.

The club will be displaying a largè number of projects and electronic games built by members. All proceeds from the exhibition will be given to the Cancer Research Campaign.

Will members and prospective new members please note, the Hon Sec, John Margetts has moved from Bristol to Cheltenham. To contact, write to: J. G. Margetts, Hon Sec, BAEC, 3 Bishopstone Close, Golden Valley, Cheltenham, Gloucester.

RETRA is moving

RETRA, the Radio and Electrical and Television Retailers' Association moved to new offices in April.

From 23 April the Association's new address and telephone number will be: RETRA House, 57-61 Newington Causeway, London SE1 6BZ. Tel: O14031463.

Using your calculator

"Realisation of the educational potential of the electronic calculator has been surprisingly and disappointingly slow" according to the authors of a new paperback book published by Martin Books of Cambridge.

To help stimulate greater interest, electronics lecturer Robin Bradbeer, and maths teacher Michael Bawtree, have written "The Sinclair Book of Students' Calculations" for secondary education students and teachers to fully explain the application of calculators across a range of subjects.

The book's introduction gives valuable advice on how to choose between the many types of portable electronic calculator now available. This is followed by four chapters carefully graded in level from basic arithmetic and geometry to advanced problems in statistics, mechanics and higher mathematics. In each chapter the most effective use of the calculator is explained through informative examples.

The final chapter is an introduction to the exciting possibilities of the new generation of programmable calculators, based on the facilities of the new Enterprise programmable calculator from Sinclair, the British company which pioneered calculator miniaturisation in the early ' 70 s .

The Sinclair Book of Students' Calculations is available from most branches of W. H. Smith, Boots, Foyles and leading bookshops throughout the UK, price $£ 1.25$, or direct from the publishers: Martin Books, 8 Market Passage, Cambridge CB 2 3PF, at $£ 1.55$ inclusive of postage and packing.

Can you help?

The "Handicapped Aid Programme UK" is an organisation set up to help housebound handicapped people to enjoy the exciting hobby of Short-Wave listening.

The HAPUK would like to hear from anyone who could help, or perhaps has an old or redundant s.w. receiver (working or not) that they may like to give to the organisation, other spares are needed, such as, valves, headphones, variable capacitors, in fact any useful components.

I have two contacts with HAPUK, first the Chairman: John Rose, 5 Hall Street, Wombwell, Barnsley S73 OJL, and the North Wales Area Representative: Les Crowther, 8 Plas Gwyn, Maes-y-Dre, Wrexham, C/wyd LL12 7DW. Tel: (O978) 262668. Please help if you possibly can.

Sorry!

My apologies to Mr D. J. Pattle, whose address was printed incorrectly in Production Lines on page 51 of the April issue. The correct address is: D. J. Pattle, Juniper, Hillbury Road, Alderholt, Fordingbridge, Hants. SP6 3BQ. Tel: Fordingbridge 52081.

RAE courses

North Trafford College of Further Education, is offering another Radio Amateur's course this year, starting in September 1979.

Course ERA1 deals with RAE theory and will be held on Thursday evenings between 18.30 and 21.00 hrs . Course ERA2 deals with the Morse code and will be held on Monday evenings between 18.30 and 21.00 hrs and the lecturer will be J. T. Beaumont TEng., MITE, MASEE, G3NGD. Enrolment will be on 10, 11, and 12 September 1979, between 18.00 and 20.00 hrs .

Further details from: Course Coordinator, North Trafford College of Further Education, Talbot Road, Stretford, Manchester M32 OXH. Tel: O618723731.

Walsall Education Department is also offering an RAE evening course at: The Broadway, North Centre, Queen Mary's Grammar School, Sutton Road, Walsall.

For further details contact: The Civic Centre. Tel: Walsall (O922) 21244 ext. 2319.

Girls, Girls, Girls again

Following the introduction last year of the highly successful competition to find The Girl Technician Engineer of the Year, The Caroline Haslett Memorial Trust and The Institution of Electrical and Electronics Technician Engineers have decided to repeat the Award in 1979. This electrical and electronic engineering Award carries with it a prize of $£ 250$ and the closing date for nominations is 19 September 1979; the announcement of the winner will be made in November.

The engineering industry needs to attract more young people of the highest calibre and the aim to the Award is to focus attention on electrical and electronic engineering as a worthwhile career for women. By selecting the most outstanding girl Technician En-gineer-who will have successfully undertaken the necessary technical
education and training, and have proved herself capable of holding a responsible job-it is the Award sponsors' express hope that she will, by her example, encourage more girls to enter the electrical and electronic engineering profession.

For further details and copies of the Award nomination form please apply to: Mrs Eileen Sheldon, IEETE, 2 Savoy Hill, London WC2R OBS. Tel: 01-836 3357.

RAE Reprint

A reprint of the complete series-So You Want to Pass the RAE?-including details of the new examination format being introduced this year, is now available.

Order your copy by completing and returning the coupon on page 62 .

Trio Technology

The new Trio TS 180 S makes its debut-and what a beauty it is too. Covering the h.f. bands $160-10 \mathrm{~m}$ this transceiver uses digital frequency control, designed around a dual-circuit phase-locked loop, comprising a 4-bit microcomputer and four memories, usable in transmit or receive modes.

Arrangements allow any of the memory frequencies to be tuned in 20 Hz increments up or down, either step-bystep or by scanning, the original stored frequency being retained for instant recall. Its like having four v.f.o.s in addition to the "conventional" analogue v.f.o. with digital read-out. The memories permit split-frequency operation and three of the four provided can be retained by the use of battery back-up.

An inovative single-conversion p.l.I. system improves the spurious characteristics during transmission and reception, making i.f. shift and mono-dial
indication possible in any mode.
The dual i.f. filter, when inserted improves receiver S / N ratio and selectivity significantly increasing speech processor efficiency in the transmit (s.s.b.) mode.

Another interesting feature is the tunable noise-blanker. This detects signals mixed with 455 kHz and the NB TUNE control selects the noise frequency.

The transmitter p.a. is, as you would expect, fully broadbanded and produces 200 watts p.e.p. output-160 watts c.w.-with a fractional reduction at 28 MHz from the 13.8 volt supply.

We will be reviewing this transceiver in PW very shortly, so "watch this space"

For further information contact the importers, Lowe Electronics, 119 Cavendish Road, Matlock, Derbyshire. Tel. (O629) 2430/2817.

Free Brochures

The new, Erg six-page, four-colour d.i.I. switch brochure is now available.

It contains full technical specifications on all Erg d.i.I. switches and includes switching configuration diagrams for all types, plus prices.

Copies may be obtained from: Erg Industrial Corporation Ltd., Luton Road, Dunstable, Beds LU5 4LJ. Tel: (O582) 622141.

Winslow Component Systems Ltd. have recently produced a comprehensive brochure, describing all their accessories for use with the TO220 power semiconductor package.

Full details of over 30 products are given, including, dimensioned drawings, specifications and photographs. The products feature full fixing kits, insulating kits, heatsinks and sockets, in fact, almost every accessory the TO220 user is likely to need. Available from: Winslow Component Systems Ltd., Southon House, Edenbridge, Kent. Tel: (0732) 864488.

Special events

Yeovil Amateur Radio Club G3CMH, have arranged two special event stations to attend the following functions.

First, International Air Days, RNAS Yeovilton on Friday, 3 August and Saturday, 4 August 1979. Callsign GB3FAA applied for.

Second, Mid-Somerset Show at Shepton Mallet, on Saturday, 18 August and Sunday, 19 August 1979. Callsign GB2MSS applied for.

The club meets at 7.30 pm every Thursday at Building 101, Houndstone Camp, Yeovil. For further information write to: J. W. Howard G4EVI, 127 Goldcroft, Yeovil, Somerset BA21 4DD.

Club News

Wisbech Radio Club would like to extend a welcome to anyone in the Wisbech Cambridgeshire area, whose interests include amateur radio. The club meets fortnightly at 19.30 hrs and the next meetings will be on Monday 9 and 23 July 1979.

Those interested may contact the Secretary, D. Dunn G8RZN, most evenings at the club's meeting place: Five Bells, Parson Drove, Wisbech, Cambs.

satellitit communications Into the einitics

Earth Station Expansion and Development

The idea of using satellites for communications had its origins in an article by Arthur C. Clarke who, in 1945, foresaw the potential of satellites in providing worldwide television and speech communications. Since the very beginning, the British telecommunications industry and the British Post Office have been in the forefront of translating that idea into reality.

Today, a large proportion of the intercontinental telecommunications system involves the use of satellites positioned in geosynchronous orbit $36,000 \mathrm{~km}$ above the Equator; in fact, a continental number dialled from the UK has about a 70% chance of being routed to its destination via satellite. It will be multiplexed with a very large number of similar calls and transmitted to the satellite on a microwave beam in the 6 GHz band, the earthward path being in the 4 GHz band. Submarine cables also support the system, of course, but cannot really offer the same traffic-handling capabilities, especially in respect of wide-band signals such as colour television, for instance.

Goonhilly

The British Post Office earth station at Goonhilly in Cornwall is well-known and has provided satellite links over the Atlantic and Indian Oceans for well over ten years. There are now four aerials at GoonhillyGoonhilly 1,2 and 3 operate to satellites poised over the Atlantic, where communications traffic between Europe and North America is far heavier than between other regions of the globe. Goonhilly 4 is currently being used for test transmissions to Europe's Orbital Test Satellite, OTS 2-forerunner to the European Communications Satellite, ECS. OTS 2 was launched on 11th May 1978 to prove the technology for digital satellite communications in the 11 and 14 GHz frequency bands.

The aerials at Goonhilly are impressive structures indeed, reflector diameters in the case of Goonhilly 1,2 and 3 being $25-30$ metres or around 100 ft . However, as the rapacious demands for international telecommunications facilities have been increasing so rapidly during recent years, a need for yet more aerials and associated ground terminal equipment has arisen. Also, as it seems that much of Europe's future telecomms. traffic is to be carried by the ECS, naturally the launch of this satellite will further increase this pressure. With this future expansion in mind, there are sites allocated for
another four aerials at Goonhilly. With ECS on the way, and the mighty Intelsat V series of satellites due for launch this year they, together with the new Madley earth station, will certainly be needed.

Goonhilly 4 and its associated equipment were formally handed over to the Post Office on September 5th, 1978. The prime contractor, Marconi Communication Systems Ltd., also equipped and commissioned Goonhilly 2 and 3 and remain the only British company to have supplied complete earth stations.

The new aerial differs markedly from its older neighbours, principally in that it is smaller at 19 metres. Don't let that fool you into thinking that it is in any way inferior though; its propagation capabilities are just as formidable, but at far higher frequencies, receiving at 11 GHz and transmitting at 14 GHz . Dealing with such frequencies calls for mechanical accuracy of a very high

Goonhilly 4 ($11 / 14 \mathrm{GHz}$) is currently proving digital satcom. technology with the OTS2 satellite
order, as one might expect. The tolerance of the main reflector surface, for example, is 0.024 inches in a diameter of 62 feet! The aerial is cassegrain in type, the r.f. energy collected by the main reflector being focused not directly onto the "feedhorn" as in the conventional parabolic "dish", but onto a sub-reflector (a pseudo-hyperboloid for the geometrically-minded among you) which is supported from the main backing structure by a tetrapod (i.e. four legs). The signal is then reflected back along the aerial's axis, through a hole in the main reflector and thence to the waveguide system and down into the terminal equipment in the building below. The transmit signals follow the same route but in the reverse direction, naturally.

Like Goonhilly 3, the aerial is steered by a method known as the "monopulse tracking system". In fairly simple terms, guidance is achieved by sensing abnormal and undesired electromagnetic wave modes in the aerial-feed, which are extracted, analysed and then used to control the aerial's driving motors until a position is achieved at which the unwanted parameters are at a minimum-the aerial should then be pointed directly at the satellite. In the event of a failure of this system, or should the aerial be required to point at another satellite, manual or computer control of the aerial heading is also provided.

Madley

By 1970, it was clear that a second major earth station complex would be required in Britain. The growth of international communications of all types was, of course, a major factor in deciding to develop a second site-but just as important, perhaps, was the desire to avoid having all the eggs in one basket, particularly when they cost around $£ 6 \mathrm{~m}$ each! The requirement was for an electrically quiet area, free from radio interference and where the ground was capable of supporting aerials, buildings and ancillary plant (a single air-conditioning chiller compressor unit at Madley weighs around 40 tons, for example).

Eventually, it was a site at Madley, near the city of Hereford, that was selected as most closely matching the overall needs. Madley 1, which became operational at the end of 1978, now operates eastwards into the Indian Ocean Intelsat IVA satellite. This route was previously served by Goonhilly 1 , which had been experiencing interference problems from French internal microwave systems and which, having been freed from this task by Madley 1 , now assists with the busy Atlantic route. Calls to Africa, Australasia, the Middle East and the Indian sub-continent can all be routed via Madley.

The statistics of Madley 1 are impressive by any standards. The aerial itself, a 32 metre cassegrain type working in the $4 / 6 \mathrm{GHz}$ band, is somewhat larger than those at Goonhilly; but it is the sheer quantity of equipment that makes Madley 1 one of the largest earth stations in the Intelsat system. There are 14 chains of transmitting equipment producing up to seven microwave carrier signals with a standby facility on each, 10 air-cooled klystron power amplifiers with provision for another three to be installed later if required and, in all, 55 chains of receiving equipment-Madley 1 thus has the capability of simultaneous communication with around 40 countries.

The transmitters employed at Madley are of a new design using a 3 kW klystron output stage. As the klystron is an essentially narrow-band device only one carrier can be handled by each one. Therefore, at Madley, the transmitter outputs are merged in a combining and selection matrix before being fed on up to the aerial. The use of single carrier klystron amplifiers (also used in Goonhilly 4's 14 GHz transmitters, rated at 2 kW) is a significant departure from the technology used in Goonhilly 1,2 and

Madley 1 (4/6GHz) handles traffic via the Indian Ocean satellite

3 which use a single 10 kW travelling-wave tube (t.w.t.) output stage. Being a wide-band device, several carriers previously combined at low power, can be amplified simultaneously.

Another important new feature of Madley 1, is the recently-developed "beam waveguide" aerial feed system, also used in Goontilly 4. This is an arrangement of reflecting surfaces, somewhat in the form of a periscope, which interconnect the main reflector aperture and the equipment at ground level. Three concave surfaces and one plane surface are used; the idea is for polarisation errors occurring at one reflector surface to be cancelled out by errors of opposite characteristics at another. Signal losses are thus kept to a minimum and it becomes possible to locate all the radio equipment at ground level. The aerial itself can be lighter and less bulky while maintenance is, of course, much easier.

Aerial steering is by two systems, the previously described "monopulse" system and also by the "step-track" system. With the 'step-track' system, the 290 ton aerial makes small predetermined movements while the signal power received from the satellite is monitored. The aerial will continue to "step" in elevation and azimuth until the received signal is at a maximum. As it was uncertain whether the "step-track" method would be effective for small angles of elevation (6° in the case of Madley 1 working into the Indian Ocean satellite), it was decided to incorporate both systems into the new station.

The Future

The prospect, then, is one of continuing and rapid expansion. The Intelsat V series of satellites, to be launched this year, will double the system channel capacity to the equivalent of 12,000 ; the ECS will give Europe its own satellite system; a new global maritime satellite communications system is also on the way. The Space Shuttle will, in due course, make the launching and servicing of communication satellites that much easier and cheaper. Small wonder that Madley 2 is under way and due for completion this year, to be closely followed by Madley 3 at the end of 1980.

With satellite communications, the sky is apparently the only limit!

CMOS

4000ub	0.17	40278	0.44	40758	0.20
4001u8/8	0.17	40288	0.77	40168	1.17
4002U8/B	0.17	4029B	1.03	40778	0.39
40068	1.04	4032B	0.89	4078B	0.20
4007 UB	0. 18	40248	1.71	40818	0.20
40088	0.87	${ }^{45408}$	0.97	40828	0.20
4011 U8 /B	0.18	40438	0.88	40938	0.80
$4012 \mathrm{CB} / \mathrm{B}$	0.20	4044B	0.84	401608	1.19
40138	0.43	4049UE	0.50	401618	1.19
40148	0.83	${ }^{40508}$	0.43	401628	1.19
40158	0.83	40518	0.82	401638	1.19
40168	0.48	4052B	0.82	401748	0.85
40178	0.79	40538	0.82	401758	0.86
40188	0.83	40668	0.55	401948	1.19
40208	1.11	4068 B	0.20	45108	1.01
40218	0.90	406948	0.20	45118	1.25
40228	0.62	40708	0.46	4512B	0.91
4023UB/B	0.18	4071B	0.20	45168	1.01
40248	0.70	4072 B	0.20	${ }^{45188}$	0.87
402548/B	0.20	40738	0.20	45288	0.80

TTL

7400	0.12	1451	0.20	${ }_{7141}$	0.75
1401	0.12	7453	0.20	74150	1.00
7402	0.12	1454	0.20	74151	0.70
7403	0.12	7450	0.20	${ }^{74153}$	0.70
7404	0.12	1470	0.35	74154	1.00
7405	0.18	7472	0.30	74155	0.70
7406	0.32	7473	0.30	74156	0.85
7407	0.32	1474	0.30	74157	0.70
7408	0.20	7475	0.45	74160	0.95
7409	0.20	7476	0.35	74161	0.50
7412	0.20	7480	0.60	74162	1.00
7413	0.30	7481	1.00	74163	1.00
7414	0.70	7482	0.90	74164	1.00
7415	0.30	1489	0.80	74165	1.00
7417	0.30	1484	1.10	74166	1.00
7419	0.50	7485	0.90	74167	250
7420	0.18	7486	0.30	74170	2.00
7421	0.20	7489	1.60	74174	0.95
7422	0.35	${ }^{1490}$	0.35	74175	0.80
7423	0.32	7491	0.50	74176	0.80
7425	0.30	1492	0.45	74177	0.80
74\%	0.30	1493	0.40	74180	0.80
7427	0.30	7494	0.90	74181	1.85
7428	0.40	7495	0.65	74182	0.95
7430	0.18	1498	0.65	74194	1.50
7432	0.26	7497	1.90	74185	1.50
7433	0.50	74100	1.40	74188	2.50
7437	0.30	74104	0.70	74190	1.00
7438	0.30	74105	1.70	74191	1.00
7440	0.18	74107	0.30	74198	1.00
7441	0.70	74109	0.55	74193	1.00
7442	0.50	74110	0.55	74194	1.00
7443	1.30	74118	0.95	74195	0.95
7445	1.00	74119	1.30	74196	0.95
7446	1.00	74121	0.28	74197	0.80
7447	0.75	74122	0.55	74198	1.60
7448	0.75	74123	0.55	74100	1.60
7449	1.00	14125	0.50		
7450	0.20	74132	0.70		

6" IMHOFF 19" Racks. Brand new. £25.00 each $+8 \%$ VAT.

TRANSFORMERS, all 240 V primary
6-0-6 500mA ($63 \times 35 \times 48$) $0-11,2 A ; 0-22,1 A(76 \times 64 \times 60)$
$12 \mathrm{~V} 130 \mathrm{~mA}(36 \times 45 \times 40)$
$12 \mathrm{~V} 130 \mathrm{~mA}(36 \times 45 \times 40)$
$17 \mathrm{~V} 300 \mathrm{~mA}(44 \times 47 \times 74)$
$17 \mathrm{~V} 300 \mathrm{~mA}(44 \times 47 \times$
$18 \mathrm{~V} 2 \mathrm{~A}(80 \times 55 \times 70)$
$18 \mathrm{~V} 2.5 \mathrm{~A}(115 \times 65 \times 62)$
$28 \mathrm{~V} 200 \mathrm{~mA}(53 \times 45 \times 37)$
$32 \mathrm{~V} 250 \mathrm{~mA}(46 \times 37 \times 31)$
0-2-4-6-8-10-12, 0-1-1, 5A

AUTO TRANSFORMERS

$0-110-115-120-230-240-250 \mathrm{~V} 150 \mathrm{VA}$
0-110-1 15-230-250V 2 KW
E .40
f 2.40 $£ 2.40$
$£ 0.75$ £ 0.75 $\varepsilon 1.50$ £2.80 $\mathbf{E 2 . 8 0}$
$\mathbf{E 2 . 5 0}$ $£ 1.00$ £1.20 $E 6.00$

MAINS FILTERS

Potter 30A, $125 \mathrm{~V}(184 \times 51 \times 70)$. Sealed $\quad £ 3.00$ Erie 8A, $250 \mathrm{~V}(61 \times 120 \times 47)$. Diecast box $\mathbf{£ 5 . 0 0}$ Brimar CRT M17/15GV, with scan coils and Wallis power supply. Rectangular screen $(96 \times 130) £ 20.00$

CINCH BARRIERSTRIPS

5A 8-way (57×6)
E0.16
10A 6 -way (66×8)
E0. 24
10A 10 -way (105×8)
£0.40
10A 12 -way (124×8)
£ 0.48
CAM TIMERS by General Time
$0-4.5 \mathrm{~min}$. with $22 \mathrm{~A} 150 \mathrm{VAC} \mathrm{ms}(70 \times 70 \times 60)$
$0-60 \mathrm{sec}$ with $10 \mathrm{~A} 250 \mathrm{VAC} \mathrm{ms} \mathrm{(} 84 \times 84$ fascia)
44.00
$1-17 \mathrm{sec}$ with 10A $250 \mathrm{VAC} \mathrm{ms}(80 \times 80 \times 50) £ 4.00$
LARGE PANEL METERS (Clear view)
SI fam 140-0-140microAmp (107×145). Calibrated $0-14$ and 7-0-7. Boxed Anders 1 mA f.s.d. (145×115), $\mathbf{E 5 . 0 0}$ boxed $£ 5.00$

We have at time of press over 2 million Electrosil \& Welwyn Metal Oxide Resistors well below manufacturer's price. Phone for details.

This advertisement is a fraction of stock held by us Phone for details.

No mail order accepted unless over $£ 5.00$.
Hours of business 9.30 am- 6 pm . Mon-Sat continuous. Carriage \& packing charge extra. Government, colleges and export welcome.

We have considerable stock of PT10 \& PT 15 Presets. Special price for PT 15 of the following value: 100Ω $1 \mathrm{k} 5,2 \mathrm{k} 2,4 \mathrm{k} 7,10 \mathrm{k}, 22 \mathrm{k}, 47 \mathrm{k}, 100 \mathrm{k}$. All the above values@£25/1.000.@121/2 VAT. Retail prices all values 10p either PT 10 size or PT15. Open or enclosed.
$2200^{\mu} \mathrm{F}$ 100V computer grade electrolytic Mullard £1.00 +VAT. $121 / 2$

PL259 Plugs with Reducers 50p each retail. SO 239 to suit Plug (259) Bulkhead Socket 45p each $+8 \%$ VAT.
BNC Plugs. Brand new. 30p $+8 \%$ VAT. Either 50Ω or 75Ω.
N Connectors available at a fraction of list price. Phone for details.

Seaiectro Plugs (miniature) Conhex for VHF \& UHF applications
75p straight entry type 51-130-3187-91. 90p right-angled gold plated type 055-014-3196 All the above RF Connectors are held in depth and are brand new
Cassette Monotape Heads $1 / 4^{\prime \prime} £ 1.00$ each. Brand new.
Cassette Erase Tape Heads $1 / \mathbf{4}^{\prime \prime} £ 1.00$ each. Brand new. $+i 21 / 2 \%$ VAT
Potentiometers W. Wound $1 \Omega-1 \cup 0 y$ by A. E. or Colvern Ltd, $11 / 2$ watt 40p, 3 watt 60p, 5 watt 80 p.

ROTARY SWITCHES available in 30 different types prices range from $\mathbf{4 5 p - £ 1 . 2 0 + 8 \%}$
prices range from $\mathbf{4 5 p - £ 1 . 2 0 + 8 \%}$
PREH Television Push-button Tuner Units. 4 and 6 PREH Television Push-button Tuner Units. 4 and 6
button, brand new in original boxes. 75 pach button, brand new in original boxes
$+121 / 2 \%$ VAT. Large quantity available.
SPECIAL OFFER 100 k LIN Mono Slider Poten tiometer by Noble (metal body) 63 mm length, price $\mathbf{2 0 p}$ each $+121 / 2$ VAT. All boxed as original. Discount on quantity.

EDGE CONNECTORS

Single sided 0.1 pitch
24-way (fixing holes 73 mm)-UCL $\mathbf{£ 0 . 7 0}$
40 -way (fixing holes 118 mm)-RS £1.20
78 -way (length 204 mm)-UECL
£1.20
Single sided 0.15 pitch:
15 -way (fixing holes 73 mm). Gold plated. EB $\mathbf{£ 0 . 6 0}$
18 -way (fixing holes 85 mm) inc. locatıng pin $\mathbf{E 0 . 7 5}$ 32 -way (fixing holes 136 mm). Gold plated. EB £ 1.50 27 -way (fixing holes 122 mm)
$£ 1.30$ Double sided 0.1 pitch
2×40-way (fixing holes 117 mm). Gold plated $\mathbf{£ 2 . 0 0}$ Double sided 0.15 pitch
2×40-way (fixing holes 165 mm). Gold plated $\mathbf{£ 2 . 0 0}$

PUSHBUTTON SWITCHES by A.B. Electronics 4 -way $2 \mathrm{PCO}, £ \mathbf{£} \mathbf{5 0}, 7$-way. $5 \times 2 \mathrm{PCO}, 2 \times 4 \mathrm{PCO}$ $£ 0.80$

ILLUMINATED SWITCHES by Licon
Rectangular snap in (01.800 series). 10A contacts Min. flange bulb holders
2PCO Latching $£ 1.50 \quad$ SPCO Momentary $£ 1.00$ 2PCO Momentary $\mathbf{£ 1 . 5 0 \quad \text { Indicator only } \mathbf { £ 0 . 5 0 } 0 0 0 0}$ Price includes lenses but not bulbs.
Red, yellow, blue, green and white lenses available

KEYSWITCHES - HEAVY DUTY by Kraus 8
Naimer
$2 \mathrm{P}(1 \mathrm{PM}-1 \mathrm{~PB}) 12 \mathrm{~A} 600 \mathrm{VAC} \mathbf{£ 1 . 5 0} \quad 49 \mathrm{~mm}$ square 10P (4PM-6PB) 12A 600VAC £3.00 fascia By Baco:
8 P (4PM-4PB) 10 A 380 VAC

LEVER SWITCHES GPO BP1000 TYpe
4PCO, 8PCO with knobs
$£ 0.60$ All the above at 8% VAT
\star SPECIAL OFFER $\star 2 k 2$ LIN single gang Poten iometer by Egen. $1 / 4^{\prime \prime}$ shaft, $3 / 3^{\prime \prime}$ bush plastic spindle Price 10p each $+121 / 2 \%$ VAT. Discount on quantity.
Miniature Moutded Track Presets by Plessey Screwdriver operation. 0.25W dissipation PCB fuxing. $15 p$ each $+8 \%$
Open Cermet Presets Most values in stock 15p each $+8 \%$ VAT
Trimpots $10 \Omega-500 \mathrm{k} \Omega 10$ turn and 20 turn 50p each $+8 \%$ VAT. By MEC, Paignton. Bournes Minı Square $3 / 4$ " rectangular or $1 \frac{1}{2}$ "rectangular Cermet or W Wound.
Convergence Pots Most television values 20p each $+121 / 2 \%$ VAT

A COMPLETE RANGE OF TRANSISTORS STOCKED
 MOTORS
 $(+8 \%$ VAT)

PAPST Motor HSZ 20-25-2-425 EEM. 42V 50C/S $10 \mu \mathrm{f}$ cap across size: < 6 cm Diam 3.4 cm . Shaft $<$ 1.7 cm Diam $4 \mathrm{~mm} £ 1.00$ each.

Smiths Motor $240 \mathrm{~V} 50 \mathrm{C} / \mathrm{S} 3$-hole fixing. Spaced 4.75 cm 3 rpm . Shaft $1.5 \mathrm{~cm} \mathbf{3 m m}$ diam. $£ 1.50$ aach. Cassette-deck Motor by Fujiya. 6V DC. $<3.25 \mathrm{~cm}$ Diam. 3.5 cm . Shaft diam $2 \mathrm{~mm}<.9 \mathrm{~mm}$. 3 -hole fixing 4 cm to centres. £1.25 each.
4 cm to centres. 1.25 each. Gelutch. $240 \mathrm{~V} 1 / 5 \mathrm{rpm}$ General Time Motors with clutch. 2 -hole fixing. $4.75 \mathrm{~cm}, 3 \mathrm{~cm}$ depth. Body diam 4.85 cm . Shaft length 1 cm . diam. 3 mm . $£ 1.50$ each Crouzet Motors. Speeds 6 rpm and 10 rpm 2 hole fixing. $4.75 \mathrm{~cm}, 3.9 \mathrm{~cm}$ depth. Body diam. 4.5 cm . Shaft $<0.9 \mathrm{~cm}$. Diam. $4 \mathrm{~mm} . £ 1.50$ each.
Miniature DC Motor 4-15V operation. High torque $<3.5 \mathrm{~cm}$ Body diam. 2 cm , 2 -hole front fixing, shaft diam 1.75 mm £ 1.00 each.
Plus large stocks General Time Motors in the following speeds: $1 / 180,1 / 2 \mathrm{rph} 12 \mathrm{~V}$ DC, $1 / 5 \mathrm{rpm} 240 \mathrm{~V}: 1 \mathrm{rpm}$ 240 V
Miniature Motor Clutches by General Time (USA) 24 V operation. Body diam. 2.2 cm .6 mm shaft centre £ 1.30 each.

Minimum $\mathbf{5 5 . 0 0}$ per order + Postage \& VAT. Phone or write for Postage details. VAT at rate set on 12/7/79.

AERIAL DESICN using seale models

Much of the initial development work on the "Slim Jim" and ZL series of 2 metre aerials recently described in $P W$ (May 1977, April 1978, November 1978) was carried out with the aid of a u.h.f. scale-model aerial performance testing system. This was dealt with in $P W$ in January 1978, but has since been much modified with the addition of a visual polar pattern display derived from a surplus 10 in radar PPI unit as shown in Fig. 1. Because the above issue of $P W$ is now out of print I will again, but briefly, deal with the method of employing ultra high frequency scale models as an aid to the design of aerials as well as performance measurement.

Similar aerials behave in exactly the same way, i.e., they will have the same gain and radiation pattern etc. whether operating at h.f. or u.h.f., so it is possible, for example, to scale down a typical beam aerial intended for operation at, say 28 MHz to a small but easily handled model operated at around 500 to 700 MHz . At frequencies much higher than this, matching the aerial to a feed cable and the transmitter becomes difficult.

Accurate matching is very important if gain is to be measured but is of little consequence if only radiation patterns are to be demonstrated. A mismatch between feed cable and aerial will not normally affect the radiation pattern, although wrong phasing between coupled radiating elements, such as in colinear arrays, will cause severe pattern distortion.

Transmitter

The first requirement is a "transmitter" which may in fact be a simple self-excited oscillator capable of delivering a few watts of power. Frequency stability is not greatly important as the model aerial to be tested is operated in "receive" mode, and the receiver itself need only be a tuned circuit with a diode rectifier, so as to obtain a rectified (d.c.) signal from the aerial. The distance between the transmitting aerial and the aerial being tested should not be less than about 10 wavelengths at the frequency used, e.g. at 600 MHz this would be about 5 metres $(50 \mathrm{~cm}$ per wavelength).

A circuit of a typical quarter-wavelength line oscillator suitable for a transmitter is shown in Fig. 2. The valve (V) may be any u.h.f. triode with appropriate power rating (on average the r.f. power output will be about 30 to 40 per cent of the d.c. power input). Tone modulation can be obtained by feeding an audio signal of a few volts to the grid via the $100 \mathrm{k} \Omega$ resistor as shown, although this is only necessary if the model aerial system is to be used for demonstration so that signal variation can be made audible. The transmitting aerial may be a dipole but it is better with a plane reflector as shown in Fig. 3, which will increase the radiated power and confine it to one direction.

Fig. 1: The author's aerial test console, showing: (A) The PPI (polar pattern indicator) display (B) The linear reading decibel meter (C) Magnetic tape recorder. See text

Polar Pattern Indicator

It so happens that "PPI" stands equally for polar pattern indicator or for its original designation in radar, namely, plan position indicator. The display shown at (A) in the photograph Fig. 1 is in fact a converted marine radar unit. Rebuilt might be a better word, as all the original electronics was stripped out and replaced by solidstate circuitry to provide the special facilities required, as illustrated in the block diagram Fig. 4. The display c.r.t. is 10 inches in diameter and the tube is a long-persistence

Fig. 2: Suggested circuit for a simple v.h.f. oscillator for use as a transmitter. See text

type. The timebase deflector coils are motor-driven at one rotation per 3 seconds and the timebase repetition rate is 360 Hz , so that in one complete rotation the timebase makes 1080 sweeps.

The signal from the aerial is d.c. (rectified r.f.) and this varies according to the radiation pattern. However, this d.c. signal is converted by the circuit shown in Fig. 5 to a variable-width square pulse which is used to brighten the trace. The amplitude of signal from the aerial is therefore displayed as a bright line every third of a degree. Since the model antenna rotating system is synchronised to the PPI display, the radiation pattern is continuously displayed as a stationary picture. Aerial signal amplitude is also measured by a direct-reading decibel meter (B), seen beneath the display, and this unit also incorporates special circuitry for converting the varying d.c. aerial signal to a correspondingly varying amplitude sinewave at 2000 Hz that can be recorded on magnetic tape (C). These signals

Fig. 3: Aerial for the transmitter, consisting of a dipole with a plane reflector

Fig. 4: Block diagram of the polar pattern indicator
Fig. 5: Circuit for converting varying d.c. (rectified r.f.)

are demodulated for display on the PPI at another time. In; other words, all patterns displayed on the PPI can be tape recorded for reference and displayed again whenever required.

The PPI display has a number of other facilities, such as the "electronic reference dipole" which produces a perfect cosine pattern to any desired amplitude, and there is provision for an electronically produced omni-directional pattern, which can also be set to any amplitude. Other facilities are: fixed calibration markers for linear voltage or linear dB readout and variable marker for establishing amplitude reference or 3 dB points on the displayed radiation patterns. The display is equipped with colour filters for photography and also map screens so that patterns can be viewed more realistically with regard to coverage over a given area. The system readout accuracy is to within ± 1 degree on angles associated with displayed patterns and to within $\pm 0.5 \mathrm{~dB}$ on amplitude.

Fig. 6: Electronically generated reference dipole pattern with superimposed amplitude calibration markers

Fig. 7: Polar pattern of a two-element ZL beam in horizontal mode with map overlay. Display centre is based on the writer's QTH in Norfolk

Fig. 8: Radiation pattern (cardioid) of a two-element ZL. beam in vertical mode, with 3dB marker ring

Fig. 9: Pattern from an experimental high-gain beam aerial, which shows that side lobes are too large and therefore the design is not acceptable

Fig. 10: The PPI display can be used for v.h.f. direction finding in conjunction with a continuously rotating aerial. See text regarding bearing markers

SPECIAL PRODUCT REPORT

10MHz OSClILISSCOPE
 RADAT INDUSTRIES

The oscilloscope is probably one of the most useful pieces of equipment anyone seriously interested in electronics or radio can possess. For most enthusiasts, however, such gear is out of the question as the cost is beyond the reach of most budgets.

For a scope to be of any great use it needs to be capable of looking at signals of 10 MHz and, although simple to drive, should offer useful trigger facilities and a wide input range.
Above all the price should be low enough to put the instrument within reach of all but the most impoverished amateur
The Radat 3106C almost fulfills these criteria except for price. It is a single beam unit with a frequency response of d.c. to $10 \mathrm{MHz}(6 \mathrm{~dB})$ and an input voltage range of 400 V .

The display is a flat $8 \times 10 \mathrm{~cm}$ c.r.t. with a graticule ruled at 1 cm divisions and rise-time reference lines at 10 and 90 per cent provided. The trace can be rotated to align with the horizontal axis using a preset control mounted on the rear panel. On the instrument tested this control proved adequate and simple to use.

Controls were the barest minimum, a timebase switch, vernier control for the timebase, horizontal trace position and $\times 5$ magnification switch are all that are provided for the timebase. No controls are provided for triggering which is fully automatic. The trigger worked without any problems during the test period and was adequate for simple repetitive waveforms. For looking at more complex waveforms and pulses and edges an independent trigger control would be useful to allow one to look at any part of the waveform, especially with the trace expanded.

The X amplifier controls again are of the simplest, a concentric switched attenuator with the vertical trace position controlled by the centre knob. The attenuator gives X sensitivities ranging from 10 mV per cm to 50 V per cm in 12 calibrated steps. A push-button selects a.c. or d.c. coupling of the input.

Intensity and focus complete the front panel controls with the mains on-off switch operated by the intensity switch.

In use the instrument was simple to use, the trace locking well with inputs over 1 cm deflection on the screen. The trace free-runs when no input is applied or the repetition rate is below 5 Hz . The trace was bright enough at all sweep speeds.

* Specification

Hoplay: $8 \times 10 \mathrm{~cm}$ wh 1 mmgraticute squares
Tine $130 \mathrm{BE} / \mathrm{P} 31$
ETY
4 4 RUSGLL AMPLIFIER

Bandwidth; $D C$ to $6 \mathrm{MHz}-3 \mathrm{~dB} ; \mathrm{DC}$ to $10 \mathrm{MHz}-6 \mathrm{~dB}$
Risetimper 55 n
Di̛utlimpedance: 1 Man and 30 pF
Hew
HORZONTAL AMPLIFIER
Sensifivity: $720 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$
Bandwidth: DC to $1.5 \mathrm{MHz}-3 \mathrm{~dB}$
X-Y Rhase Shift: 5° dic. to 50 KHz
TIMEBASE
Range: $0.54 \mathrm{~s} / \mathrm{cm}$ to $10 \mathrm{~ms} / \mathrm{cm}$ in 6 ranges
Magnifier: $\times 5 / 100 \mathrm{~ns} / \mathrm{m}$ fastest sweep speed)
Calibration: 5\%
Vernier: $12: 1$ continuous
Thigger Sensitivity: 1 cm deflection 10 Hz to 8 MHz
Automatic no manual controls?
Power Supplies: 100 to 135 V and 200 to 265 V $48-440 \mathrm{~Hz} 15 \mathrm{~W}$
Dimensions: $182 \times 200 \times 405 \mathrm{~mm} 4.5 \mathrm{~kg}$
Accessoreses: Main test prods and leads, Handbook
Price: f172.44 inc. 15\% VAT and Gartiage

The instrument reviewed was loaned by Kramer \& Co., 9 October Place, Holders Hill Road, London NW4 1EJ. Tel: 01-203 2473.
continued on page 33

Thomson-CSF TDE 2608 device is considerably more complex than the well known 555 timer, offering a wider range of facilities. It is especially versatile in its operation, being similar to Thomson-CSF TDB 2068, but can operate over a greater temperature range $\left(-25^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$).

The connections of the TDE 2608 are shown in Fig. 1 and the internal circuit in block form in Fig. 2, together with a few of the more important external components. Although one can use the device by merely constructing the circuits given, its versatility can only be fully realised if the internal circuit of Fig. 2 is understood.

This comprises an operational amplifier (marked A1 in Fig. 2), a comparator (marked A2), five current generators (marked $I_{A}, I_{B}, I_{C}, I_{D}$ and I_{N} and various other amplifiers and components.

The operation may be very briefly summarised by saying that when the potential of the start logic input at pin 5 is raised above a critical value, capacitor \mathbf{C} commences to charge due to the small current I_{D} which is fed to it. The voltage across this capacitor rises and when the voltage at the pin 14 exceeds that at pin 13 the comparator A2 switches so that pin 8 output changes from high to low and the output at pin 6 from low to high. The two outputs return to their original state when the pin 5 voltage is reduced so that the internal transistor $\operatorname{Tr} 2$ conducts and the timing capacitor C is discharged. The time delay is equal to the time taken for the current I_{D} to charge the capacitor C to a voltage equal to that at pin 13.

Detailed Operation

Let us now consider the operation in much more detail. The voltage reference in the base circuit of the transistor T1 causes this device to pass a constant collector current which is taken from the current generator circuits of I_{A} and I_{B}. This enables the current generators to pass equal currents (each about $250 \mu \mathrm{~A}$) to pins 11 and 1 respectively.

The current I_{B} develops a voltage equal to $I_{B} R 1$ across resistor R1 which is applied to the non-inverting input of the operational amplifier A1. This amplifier and the current generator I_{C} are in a feedback loop which stabilises with the potentials at pins 1 and 2 equal. The potential is equal to the product of I_{C} and R 2 and remains constant as R2 is changed; thus R2 may be used to set I_{C}. Quantitatively $\mathrm{I}_{\mathrm{C}}=\mathrm{R} 1 \mathrm{I}_{\mathrm{B}} / \mathrm{R} 2$.

The bias applied to the current generator I_{C} is also applied to the generator I_{D} and the internal circuit of the device is so designed that $I_{C}=20 \mathrm{I}_{\mathrm{D}}$. The current I_{D} is made twenty times smaller than I_{C} so that timing capacitor C charges relatively slowly and long time delays can easily be obtained. Hence $I_{D}=R 1 I_{B} / 20 R 2$.

The constant current I_{D} flowing to the capacitor C causes the potential across the capacitor to increase linearly with time, this potential V_{C} being given by the
equation $V_{C}=I_{D} T / C$ where T is the time for which the current I_{D} has been passing.

The timed period ends when the potentials at pins 13 and 14 become equal: that is when $I_{D} T / C_{B}=R 3 I_{A}$. Substituting for I_{D} we obtain $R 1 I_{B} T / 20 R 2 C=R 3 I_{A}$ which may be rearranged to show the time delay, T being given by the equation:

$T=20 C R 2 R 3 / R 1$ (since I_{A} and I_{B} are equal).

In case the reader feels that this is a complex method of charging a capacitor, it should be pointed out that any change in temperature or supply voltage (or some other parameter) will cause almost equal changes in I_{A} and in I_{B} and hence a proportional change in I_{D}. If I_{A} is increased, the voltage across $\mathrm{R} 3\left(=\mathrm{I}_{\mathrm{A}} \mathrm{R} 3\right)$ to which the capacitor C must charge to end the timed period also increases, but as the charging current I_{D} increases in proportion, the timed period is unaltered.

Fig. 1: The connections of the TDE 2068 device
This somewhat complex circuit design enables the time delays to change by only 100 parts per million per ${ }^{\circ} \mathrm{C}$ if only the circuit itself is considered. However, changes in component values due to temperature increase this value to about 500 parts per million per ${ }^{\circ} \mathrm{C}$. Changes in the supply voltage alter the delay time by about 0.05% per volt. Successive time delays should differ by less than $0 \cdot 1 \%$.

Power Supply

The TDE 2608 can be operated from a power supply between +15 V and +35 V applied to pin 3 , the supply current being typically 5 mA when the pin 5 voltage is low and 3 mA when pin 5 is high. Otherwise an alternating potential can be applied to pin 4, in which case a smoothing capacitor will be required between pin 3 and ground.

The output or outputs being used at pin 6 or pin 8 must be returned to a suitable positive line through a resistor or other load. When the output concerned is "low"; it can accept a current of 100 mA through the load without the output potential rising above +1.5 V . Pin 7 is normally connected to the positive supply line to which the load(s) are returned; if the load is inductive, the internal clamping diodes D4 and D5 will then prevent damage to the TDE 2608 from the transient reverse voltages which occur when the current ceases to flow through the load. An example of such an inductive load would be a relay.

Fig. 2: The internal circuit of the TDE 2608 in block form

Recommended Values

It is recommended that the value of R1 and R3 should not exceed $40 \mathrm{k} \Omega$. The value of the timing capacitor charging current at pin 10 should be between 0.5 and $100 \mu \mathrm{~A}$, although the data sheet states that the circuit may operate with a reduced performance with values of this I_{D} current between 0.1 and $300 \mu \mathrm{~A}$.

Despite the minimum value of the positive supply voltage being given as nominally 15 V , the circuit will operate down to 8 V if it is designed so that the potential at pin 11 is less than $\left(\mathrm{V}^{+}-2\right)$.

The voltage at pin 5 must be raised to at least +8 V to start the timing cycle and must be reduced to no more than +7 V to reset the circuit and to discharge the timing capacitor.

Fig. 3: A typical TDE timer

Hysteresis

Once the potential across the timing capacitor has reached the pin 13 potential and the timed period has elapsed, any small increase in the voltage at pin 13 or any small reduction in that at pin 10 could cause the circuit to revert to its former state. However, this can be prevented by connecting pins 11 and 12 together either directly or by means of a resistor. Part of the current I_{A} will then be diverted from R3 into pin 12 and so to the current
generator I_{N}; this only occurs after the circuit has switched at the end of the timed period and reduces the pin 13 voltage so that there is no tendency for the circuit to switch back to its former state. Thus the connection between pins 11 and 12 provides some hysteresis so that unwanted switching is prevented.

Typical Timer

A typical timer circuit using the TDE 2608 is shown in Fig. 3; with the values shown the timed period is just under 8 seconds. It is easy to increase this delay by a factor of ten by placing a $2.2 \mathrm{k} \Omega$ resistor in parallel with the existing resistor R1. Other time delays up to about 16 minutes can be obtained using the values of $\mathrm{C}, \mathrm{R} 1, \mathrm{R} 2$ and R3 shown in Fig. 4.

Fig. 4: Time delays available with various component values

Fig. 5: TDE 2608 timer waveforms

Fig. 6: A power delay circuit

It is important to note that the timing capacitor C should not be an electrolytic, since electrolytic capacitors take a variable leakage current and alter in value with time, to some extent. For optimum stability of delay, C should be a polycarbonate capacitor and R3 a metallic film resistor, but in most applications any non-electrolytic capacitor is satisfactory.

The two load resistors shown are marked $2 \mathrm{k} \Omega$ in Fig. 3, but naturally their value may be chosen according to the application concerned, provided that it is not so small as to cause a current exceeding 100 mA to flow. A small relay may be used as a load, for example.

The circuit waveforms are shown in Fig. 5. It can be seen that when the potential at pin 5 rises above 8 V , the voltage at pin 14 commences to rise as the capacitor C charges. When this voltage becomes equal to that at pin 13, the timed period T ends and the output voltages change as shown. At the same time, the voltage at pin 13 falls to provide hysteresis. When the pin 5 potential falls, the circuit is reset to its initial state. It should be noted that there is no change in the output voltages when the timed period commences.

In many cases a circuit which provides variable delay times is required. With the circuit of Fig. 3, the time can be made variable by replacing R2 by a $47 \mathrm{k} \Omega$ potentiometer in series with a $2 \cdot 2 \mathrm{k} \Omega$ fixed resistor. A range of time delays around 20:1 can then be obtained by adjusting the potentiometer.

Power Delay Circuit

The circuit of Fig. 6 shows how the TDE 2608 circuit may be used to close a relay after a certain time, following the application of a.c. mains input. This may be used, for example, to apply power through the relay contacts to certain parts of another circuit after the mains power has been applied for long enough to warm up other sections.

If the values shown are used, when the potentiometer VR2 is set to its maximum value, time delays of about 3.7 to 82 seconds may be obtained by the adjustment VR1. VR2 may be set to a lower value for shorter delay times. Pin 5 is connected to a positive potential at all times when the mains voltage is applied.

Function Generator

A circuit which will generate triangular and square waves simultaneously is shown in Fig. 7. The triangular wave rises during the time pin 6 is in the low voltage state,

Fig. 7: A waveform generator circuit

Fig. 8: A voltage-to-frequency converter
this time $20 \mathrm{CR} 3 \mathrm{R} 1 / \mathrm{R} 2$. The falling part of the triangular wave occurs when the pin 6 voltage is high for a time of CR3 $\mathrm{I}_{A} / \mathrm{I}_{\mathrm{N}}$ or about 1.8 CR3. The circuit values may be chosen to obtain a wide range of waveform times.

The TDB 158 operational amplifier is used so that the output utilising the triangular wave does not load the part of the circuit containing the timing capacitor C , as this would affect the waveform.

Voltage to Frequency Converter

The circuit of Fig. 8 provides a square wave output proportional to the input voltage to the operational amplifier A (which may be a 741 device). The frequency is equal to $200 \mathrm{~V} 1 / \mathrm{R} 1 \mathrm{R} 2 \mathrm{C}$ which corresponds to 1 kHz per volt. The high part of the output waveform has a period of $5 \mu \mathrm{~S}$ and the low voltage part varies with the input voltage.

Better temperature stability can be obtained if R2 is replaced by a Zener diode whose Zener voltage, V_{z}, is less than 10 V . In this case the frequency $=\mathrm{V}_{\mathrm{V}} / 20 \mathrm{~V}_{\mathrm{z}} \mathrm{R} 1 \mathrm{C}$.

The TDE 2608 is a very versatile device which is available from Phoenix Electronics Ltd., 139 Havant Road, Drayton, Portsmouth PO6 2AA.

AERIAL DESIGN USING SCALE MODELS

continued from page 28
The photographs Figs. 6-10 were taken with a Polaroid 350 camera, using a lens aperture of about $\mathrm{f} / 16$ and exposure time equivalent to one rotation of the timebase, i.e. about 3 seconds. The facilities of the display are illustrated as well as actual patterns from model aerials and the captions provide a short explanation of each photo. The pattern of the 2-element ZL Special in vertical-mode (Fig. 8) may be of particular interest to users of this aerial, as it has a virtually perfect cardioid shape which makes it very suitable for v.h.f. direction finding because of the very well-defined null to the rear. In fact it is used by a certain authority for this purpose.

The pattern in Fig. 9 is from an experimental high-gain beam aerial using a square-loop radiator, a square-loop parasitic reflector and a series of parasitic directors. The square-loop reflector proved to be inefficient, however, as is the case with Quad aerials, owing to the large lobes to the rear. This was replaced by a larger plane reflector which almost completely eliminated the spurious lobes and provided a greater forward gain.

Experimental work of this nature can be carried out very rapidly with scale models, in conjunction with the PPI display described in the foregoing paragraphs. This set-up has been put to good use in the design and development of numerous v.h.f. aerials, some of which $P W$ readers are already familiar with, the latest being a colinear version of the "Slim Jim" which it is hoped to publish shortly.

Direction Finding

The PPI display can also be used in conjunction with full-size 2 metre aerials, not only for performance measurement etc., but for direction finding as well. It can be coupled to an aerial that rotates continuously in synchronism with the rotation of the timebase. The signals from the aerial are taken to a sensing circuit that provides a short duration squarewave when the signal from a particular direction is at maximum amplitude. The bright arc produced on the display by this squarewave is about 5 degrees wide and its centre denotes the actual bearing. A similar bright arc is produced for a "north" or 0/360 degree reference. The photo in Fig. 10 shows an actual readout from a station bearing 290 degrees with respect to north or $0 / 360$ degrees. Directions of stations obtained with this system are to within better than 2 degrees and a bearing can be registered even if a signal is present for only 5 or 6 seconds. Continuous rotation of the aerial is obtained by an inductive loop coupling method devised by the author, and which with continued development, may prove to be the means of achieving a low-cost beam aerial rotation system.

A set of plain test leads with plain prods fitted was supplied and plugged firmly into the input terminals mounted on the front panel. No provision was made for using a b.n.c. plug such as would be fitted to a 10:1 passive divider probe. This is a pity since the instrument is good enough to warrant the use of such an accessory.

The scope was well constructed and the case dismantled easily to give access to the single printed circuit board.

Most important, the instruction manual gives full circuit diagrams and instructions for servicing and setting up the instrument. The instructions are excellent, taking the user through the use of the scope and explaining what it can do, how the circuits work and how to get the most out of it.

Dick Ganderton

HIDIU IOTE:

Logical Noughts and Crosses* Part 2, June 1979
The following constructional hormation was unfor tunately missed:
Fig. 10 Component placement layout for PCB 2 After inserting components and links as shown, use Insulated wire to connect all like numbered pins to top, ond of appropriate resistor tink positive stipply to all 1.c. top left hand pins and negative supply to all fec bottom right hand pins.
Fig. 8 Component placement hyout for PCB 14 After inserting components and links as shown use Misulated wire to link i,gi pins as shown:-

$$
\begin{aligned}
& \text { IC } 2.4-\operatorname{IC} 10.20-1 \mathrm{C} 7.3 \\
& 1 \mathrm{C} 2.9-1010.18-105.13 \\
& \text { LC } 4.1-1010.6 \text { - } 105.11 \\
& 164.13-1010.4-105.5 \\
& 1 \mathrm{C} 5.2-\text { IC } 14.2 \\
& \text { IC } 5.4-1012.5 \\
& \text { IC } 6.1-1070.22-1072 \\
& 1069-1010.16-107.13 \\
& 1 C 7.5-1 C 108
\end{aligned}
$$

Positive supply to al top lelt hand pins, negative supply to all bottom right hand pins:
Reser to IC $10.1-$ IC $10.13-1 C 111-1 \mathrm{C} 13.9-$ IC $14.1-\operatorname{IC} 15.1$.
Fig. 5 Component placement layout for PCB 3 : Connect positive supply to one dropping resistor (top endi:

B. BARNARD

It is surprising how many domestic problems and irritations can be overcome by the sensible application of quite simple electronic technology.

One such problem in many households is the diffi-culty-sometimes impossibility-of hearing the telephone bell when one is working in some remote part of the house.

I found, particularly when working in the garden or garage and alone in the house, that the phone bell was quite inaudible and any calls remained unanswered. They might have been important, and as I do get a fair number of important telephone calls, it became a major source of worry.

TV Phones

In my case there was another aspect. The phone is installed in the hall which is adjacent to the room in which we do our listening and viewing. With normal listening levels, we can hear the phone when it rings, but whenever a phone rings off-stage as part of a TV programme (we have hi-fi sound from the TV) we are often halfway out of our seats before identifying the source of the noise. This can be very irritating and a clear, immediate indication of the source adds greatly to relaxation and enjoyment of programmes.

I suspect that this problem applies in many households and the Telephone Bell Repeater is a simple and reasonably cheap answer. Apart from the relay, most of the components will be found in the average experimenter's spares box: the values of resistors and capacitors are not particularly critical and all the transistors are commonly used types.

No connection whatever is made to the telephone instrument or its wiring. The method employed is to pick up the sound of the ringing bell with a cheap crystal microphone which is mounted on a plinth on which the phone stands. The audio signal from the microphone is amplified and then applied to a d.c. amplifier which operates the relay: the relay contacts make and break the circuits of independent battery-operated visual audible indicators.

Circuit Operation

The circuit of the unit is shown in Figure 1. Trl and Tr 2 are audio amplifiers and provide sufficient drive to operate the d.c. amplifiers $\operatorname{Tr} 3, \operatorname{Tr} 4$ and $\operatorname{Tr} 5$ so that they activate the relay in the collector circuit of the final pnp transistor. There is nothing sophisticated about the circuit, the design being largely dictated by the components available in my spares box and considerable variations are permissible as we are not concerned with distortion-high gain, however, is required so that the system will be stable and certain in operation. Another reason for high gain is that the unit should work off the low pitched "hooting" telephone and this it does quite satisfactorily.

No attempt has been made to equalise the microphone input circuit as would have to be done for normal audio use: In this particular application, we are concerned only with the sound from a telephone bell which is of quite high frequency and the rising characteristic of the crystal microphone is an advantage in that it gives a useful output at the frequencies we want and a lower output for lower

Fig. 1: Circuit diagram of the telephone bell repeater amplifier. D1 is fitted inside the reley specified but if a different relay is used then a diode (1 N 4148) must be fitted across the coil

The telephone sits on the home-made plinth with the amplifier unit alongside
pitched extraneous noises which might occur in the vicinity of the telephone. For much the same reason, the 10 nF coupling capacitor between the a.c. and d.c. stages is quite small-but if you have the lower pitched telephone, this can be increased to about $0 \cdot 1 \mu \mathrm{~F}$ with advantage.

The amplifier is battery-operated, and the quiescent current is about 2 milliamps rising to some 50 milliamps when the bell signal is applied.

The complete system comprises the amplifier, relay and battery in one box, the microphone plinth on which the telephone stands and a red indicator lamp with separate 4.5 volt battery housed in a small box. The microphone is plugged into the amplifier by means of a screened cable and miniature jack plug: the relay contact connections are taken to choc-strip connectors fixed to the rear of the amplifier container to which suitable extension wiring to the indicator can easily be joined.

Where a bell is required for outside use, extension leads are run to a convenient window frame which is drilled and a normal sized jack socket is fitted. The bell and its battery can then be plugged in as required. Obviously, some weather protection must be devised for the jack socket.

The construction of the microphone plinth is quite simple: it consists of a piece of hardboard about 12 mm larger all round than the telephone instrument. Wood fillets are glued to the front and rear of the upper side to prevent the telephone slipping off. The edges of the lower side are strengthened with wood struts 18 mm wide and of sufficient depth to allow the microphone to clear the table top on which it stands. These struts are covered with non-slip rubber so there is no tendency for the whole assembly to slip about when dialling.

A hole is cut in the hardboard large enough to accept the face of the microphone which is held in place by a single piece of strong wire clamped on either side by two small nuts and bolts. The microphone screened cable is held against the underside of the hardboard by a short length of adhesive tape and is then lead out through a hole in the rear. With the standard type of telephone, the hole for the microphone is located well to the front of the plinth so that it coincides with the bell position just beneath the telephone dial. I have fitted a small piece of foam rubber around the face of the microphone to cut out extraneous sounds.

The layout, construction and position of the visible warning device is a matter for each individual constructor. I was lucky enough to have on hand a small cigarette box $120 \times 95 \times 38 \mathrm{~mm}$ deep which is just the right size to hold a 1289 pocket lamp battery and comfortably takes
on its front face a miniature red lamp indicator assembly. A light gauge twin-core flex emerges from the rear and connects with the extension wiring to the relay contacts. The unit sits on top of one of my stereo speakers and is neat and unobtrusive.

The bell and its battery, since they are not likely to be part of the house furnishings, can be a rather crude arrangement and, in my case, consists of a piece of plywood with the bell fixed to one side and the battery strapped to the other: a hook at the top enables it to be hung from a convenient nail when in use. The device is unplugged and brought indoors when not in use as this avoids problems of arranging weather protection.

Relays

Relays are available in a number of different types with different specifications, and although a d.i.l. reed relay with only one set of contacts has been used for the unit shown, the prototype used a different type with two sets of contacts. A larger case was used along with Veroboard instead of a p.c.b.

Alternative Relays

One relay suitable for this application operates in the voltage range of $5 \cdot 5-17$ volts and is generally referred to as the " 12 volt type". In addition to this information, the d.c. resistance of the coil should be of the order of 184 ohms. The contacts themselves are rated in the order of 1 amp at considerably higher voltages than are used in this system so there is no reason why more than one indicating device should not be connected to one set of contacts provided you do not mind them operating simultaneously. In choosing the relay, therefore, there is no reason to go beyond two sets of contacts.

There is another point worth mentioning. If you happen to have on hand a 27 volt relay (coil resistance 700 ohms) or can buy one very cheaply from a surplus stores, then by all means try it. In the early work on this system, I used one and it worked satisfactorily, albeit a little sluggish in operation but, as the load current on the contacts is so small, this is of little importance.

The plinth is made from plywood or hardboard with rubber edging to prevent it slipping about when dialling. The crystal microphone insert is fitted into a cut-out in the base and is positioned so that it is underneath the bell

The printed effcuit beard Ifs iestly itwo the plastics Yirchoox tog ther with the PR3 size hittery. The

 mHtt be fakan when Dofitioniny the pisiput
 Wh Atant componeme on the p.c. b_{x}

Testing

Having completed the constructional work some bench tests are necessary.

Plug in the microphone jack and connect the visual indicator to its relay contacts: connect the battery and switch on. Set VR1 to maximum and gently stroke the face of the microphone with a finger. The relay should close and the lamp come on.

If this does not happen, check the constructional work for a fault. Another possibility is that the relay will close but remains on permanently: this almost certainly indicates that the amplifier is unstable and, in the absence of a fault condition, it is worth trying some decoupling in the supply lead to the first two stages. Another possibility is hum or noise introduced by poor connections to the microphone screened lead.

Fig. 2: The printed circuit board copper track pattern is shown full size

The next step is to connect a milliammeter in the battery lead and check the no-signal current, which should be about 2 milliamps, the actual value depending on the transistors used and the value of components chosen.

Now check the system on a signal. After a little experimenting, I found that a tin mug or china saucer "rattled" with a screwdriver, produced a sound closely approximating to that of a telephone bell and enabled sensible bench tests to be done.

Adjust VR1 to maximum and hold the mug about two feet from the face of the microphone: for each strike of the screwdriver against the mug, the relay should close, the indicator lamp light up and the milliammeter flick up to about 50 to 60 milliamps.

When these simple tests have been satisfactorily completed, back off VR1 to its halfway position and transfer all the units to their final installation positions.
continued on Page 58

Fig. 3: The component placement for the p.c.b.

Soldering aids

A set of three double ended soldering aids has been introduced by Adcola Products Ltd., manufactured in nontinning steel with white plastic hexagonal handles.

The fork/brush tool can be used for wire twisting, unwinding, cleaning components and p.c.b.s, prior to soldering-the hook/spike tool can be used as an extractor to clean holes and for chassis marking-the knife/scraper is useful for removing surplus solder, solder altering and repairing.

The solder aid tool set is priced at £2.50. Further details may be obtained from Adcola Products Ltdi, Adcola House, Gauden Road, London SW4 6LH. Tel: 01-622 0291.

15\% VAT

Readers should check prices of items mentioned on this page.

IC sockets

Winslow Component Systems Ltd., the Kent based semiconductor accessory manufacturer, announce the recent launch of a brand new range of i.c. sockets.

Featuring low profile, glass reinforced polyester bodies-they have been designed to exceed the most stringent criteria demanded by today's high technology microprocessor user and yet are manufactured to be price attractive, even in consumer markets.

The phosphor bronze anti-wicking contacts are available in either gold or bright acid tin plated in 8-14-16-18-20-22-24-40 ways. Prices over the range are approximately between 15 and 60p.

Further details and technical data are available from: Winslow Component Systems Ltd., Southon House, Edenbridge, Kent. Tel: (0732) 864488.

Mini soldering station

Toolrange Ltd. have recently introduced the "Oryx PSU-6", a complete soldering station in miniature.

Ideal for work on micro-miniature circuitry, it has a fully isolated and fused transformer for safe operation, a miniature coil-spring iron rest with stainless steel insert, and a sponge tray for tip cleaning.

The base, which has non-slip feet, a burnproof aluminium cover-to which solder will not adhere, an indicator lamp and measures only $120 \times 65 \times 50 \mathrm{~mm}$. The $6 \mathrm{~V}, 6 \mathrm{~W}$ iron has a stainless steel shaft, longlife element and a slideon nickel plated tip only 2.4 mm in diameter.

Low-loss trimmers

Two new tubular trimmer-capacitors with PTFE dielectric and silver-plated brass rotor and stator have been added to the range offered by Jackson Brothers (London) Ltd. Both show very low losses at v.h.f. and u.h.f. frequencies, and their multi-turn screwdriver adjustment permits the very precise setting required by electronic instruments and professional communications equipment.
The "Type 430" capacitor has minimum capacitance below 2 pF , capacitance swing 30 pF , and settingresolution around 2 pF per complete turn. Deviation from linearity is under 1%. The "Type 430" is horizontal mounting and its diameter is 6.3 mm and maximum length is 38.9 mm (at minimum capacitance).

The smaller " V " 3-pin trimmer is vertical mounting, diameter is 6.3 mm and maximum height is 31.8 mm . Minimum capacitance is below 2 pF , swing 25 pF and setting-resolution around 1 pF per turn.

Both trimmers show excellent resistance to shock and vibration and remain stable at temperatures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Further information from: Jackson Brothers (London) Ltd., Kingsway, Waddon, Croydon CR9 4DG. Tel: $01-$ 681 2754/7.

This well styled product represents excellent value at $£ 9.95$ plus VAT.

Available from: Toolrange Ltd., Upton Road, Reading RG3 4JA. Tel: (0734) 29446 or 22245.

There are a number of ways by which a piece of equipment can be controlled at a distance without using connecting wires. Signals may, of course, be conveyed to the equipment as radio waves or microwaves using a suitable radio transmitter and receiver; indeed, this is the only satisfactory solution in many cases, such as model aeroplanes and model boats which move some considerable distance away from the person controlling the movement. Unfortunately, however, the transmitter and receiver can be fairly complex and expensive, and an operator licence is required before such equipment can be used.

It is not usually very practical to use light waves, since daylight will normally prevent a satisfactory communications channel being established. In television remote control systems, the current trend is for an infra-red link to be employed, since it is easy to provide the many channels of communication required to select stations, control volume, brilliance, colour, etc., over a reasonable distance in any room. However, infra-red systems are not always the simplest type of circuit for an inexperienced person to construct and a suitable filter is required to prevent daylight from falling onto the photocell in the receiver.

The circuits to be described have been chosen so that they are some of the simplest possible ones which can be made to operate reliably by anyone with little or no previous experience with remote control systems. There are no critical adjustments to be made and the component count is quite small.

The main problem imposed by the use of an ultrasonic link is the limited range which is possible. One cannot quote a definite value of the maximum range; generally it will be between 10 and 20 metres with the simple circuits discussed, but much depends on the gain provided by the particular integrated circuit used as even devices of the same type number can vary considerably in gain. In addition, the range can vary with various types of surroundings; if used in a corridor, the range is likely to be increased owing to the reflection of the waves from the transmitter unit towards the receiver. The range is limited by the attenuation of the waves as they pass through the air.

Ultrasonic waves are, of course, just like sound waves except that they have such a high frequency that humans cannot hear them. However, many animals including dogs, cats and small rodents can clearly hear them. Indeed, it is possible to remove vermin from premises by using a relatively high power ultrasonic generator, but this is not the purpose of the circuit described in this article. Never-the-less, the writer has found that most dogs will prick up their ears when the transmitter is switched on, and it would doubtless be possible to train a dog to come inside a house when the transmitter is operated without the need for the receiver.

The simple circuit to be described has been designed to cause a relay to close at a remote point. The closing of the relay can be used to cause any desired operation to be performed. For example, it could be used to signal to a person in a garden shed that he is wanted in the house.

If one mounts an ultrasonic transmitter unit on the bumper of your car, you could use the emitted waves to cause the garage door to open automatically when you arrive home. Similarly the door could be shut automatically as you leave home, but a suitable motorised door opening system would be required. The driver would not need to leave his car seat as a short pulse of an ultrasonic signal will cause automatic operation of the door.

A simple form of intruder alarm can also be made. The transmitter is placed on one side of a corridor and the receiver on the other side. When the ultrasonic beam is interrupted by a person, the relay in the receiver will open and can be made to initiate an alarm. One advantage of the use of an ultrasonic system is that the intruder will not know he has been detected unless the alarm is deliberately designed to sound in the area concerned to scare the intruder away.

The Transducers

A small ultrasonic transducer is required for use in the transmitter and a similar one in the receiver unit. These transducers are quite small, about 14 mm diameter by 11 mm long, and have two terminals. They contain piezoelectric ceramic bimorph elements mounted so as to minimise any mechanical damping. Each transducer has a natural mechanical resonant frequency and can be used only at frequencies close to this resonant frequency.

The circuits shown were designed using transducers resonant at a frequency of 40 kHz , but they have also been successfully used with 25 kHz transducers. The 40 kHz transducers are rather more directional than the 25 kHz types, but 40 kHz waves are attenuated more rapidly in air than 25 kHz waves. However, it is doubtful if most users would really notice very much difference between the performance of the two types of transducer.

In order to generate ultrasonic waves in air, an alternating voltage, usually a sine or square-wave, is applied across the terminals of the transmitter transducer. The frequency of this signal must be quite close to the resonant frequency of the transducer if a high efficiency is to be obtained. The transmitting transducer can be driven from a signal generator, but it will usually be much more convenient to make one of the simple circuits to be described in a small box incorporating the battery as well.

Fig. 1: Discrete component circuit to provide an ultrasonic signal

The transducers used are SEO5B 40T for the transmitter and SEO5B 40R for the receiver operating at 40 kHz and are available from Hall Electronics, 48 Avondale Road, Leyton, London E17 8JG. Somewhat similar 25 kHz types are also available from this same supplier.

In the case of the 25 kHz transducers, there is only one type, which is suitable for either the transmitter or for the receiver. However, with the 40 kHz types optimum results will be obtained if the type with the suffix " T " is used in the transmitter and that with the suffix " R " in the receiver. The 40T and 4OR transducers differ in that the 40R is much more sharply resonant in frequency, but if a wider frequency response is required, the 4OR type can be damped by a suitable parallel resistor of about $3.3 \mathrm{k} \Omega$ with a reduction in the sensitivity.

One connection of the transducer is directly connected to the case of the device, which should be earthed. Otherwise the two connections are interchangeable. The connections are at the back of the device so that the metal grille at the front is left clear for the passage of ultrasonic waves to or from the internal ceramic element.

Transmitter Circuits

The transmitter circuit must employ a low power oscillator which can provide a sine or a square-waveform of a few volts r.m.s. across the transmitter transducer at the correct frequency.
(i) Discrete component circuit. An astable multivibrator circuit capable of feeding an ultrasonic transducer with a square-wave is shown in Fig. 1. The resonance of the transducer automatically triggers the multivibrator circuit so that it operates at the transducer resonant frequency; no oscillator tuning is therefore required. The two BAX13 diodes can be omitted if a low supply voltage is to be used, but in this case the intensity of the ultrasonic waves emitted from the transducer will be reduced and hence the maximum range will be somewhat smaller.
(ii) Integrated circuit transmitter. An ultrasonic transmitter unit using the well-known 555 timer is shown in Fig. 2. The potentiometer VR1 is a preset type which is used for tuning the frequency of oscillation of the 555 circuit to match the resonant frequency of the transducer used. The adjustment is not critical and can be made by adjusting VR1 for maximum current from the power supply line, but it is
better to adjust the transmitter for maximum signal to the receiver as described later.

An alternative type of integrated circuit transmitter unit can be made using a 4011 integrated circuit with two of the four NAND gates as standard type of c.m.o.s. oscillator and the other two NAND gates as output buffers feeding the transmitter transducer in push-pull.

The Receiver

When ultrasonic waves from the transmitter transducer fall on the receiver transducer, a very small alternating voltage at the ultrasonic frequency is produced across the terminals of the receiver transducer. This may be considerably less than a millivolt and must therefore be amplified before it will operate a relay.

Although one can use about seven transistors in a discrete component amplifier and demodulator as the receiver, a very much simpler circuit can be made using one or more integrated circuits. Amplification at the ultrasonic frequency can be easily carried out by the use of an integrated circuit designed for radio or television intermediate frequency amplification, but a power amplifier is required for the operation of a relay of moderate size.

LM1808 Integrated Circuit

The National Semiconductor LM1808 is an 18 pin dual-in-line integrated circuit which contains an amplifier intended for use as a television i.f. amplifier, a volume control circuit and a power amplifier stage on the same silicon chip. The circuit of Fig. 3 shows how this device can be used without any other amplifier devices to close a 12 V relay when ultrasonic waves fall on the receiving transducer.

When ultrasonic waves at resonant frequency fall onto receiver, a small alternating voltage at this frequency is applied to the internal amplifier between pins 12 and 13. Pin 12 is tied to ground as far as alternating voltages are concerned by means of the capacitor C5, but the steady bias voltage from pin 12 is applied through $R 2$ to the input at pin 13 so that the amplifier can operate correctly.

The output from the 40 kHz amplifier at pin 9 is applied through C4 to the diode pump circuit consisting of D1 and D2 together with the capacitor C3. The diode pump circuit is effectively a demodulator circuit which converts the 40 kHz alternating voltage from pin 9 into a steady voltage which appears across C3. Thus when ultrasonic waves fall onto the transducer, the junction of D1 and C3 becomes negative.

A current flows from the positive supply line through the resistor R3 into the inverting input of the power amplifier stage at pin 16. The flow of this bias current results in a

Fig. 2: Ultrasonic generator circuit using a $\mathbf{5 5 5}$ timer

Fig. 3: Receiver circuit using an LM1808 integrated circuit
quiescent voltage of about +2 V at the output of the power amplifier stage at pin 1 when no ultrasonic waves are falling onto the transducer. Pin 16 cannot become more positive than about +0.3 V , since if the potential at this pin should tend to rise above this value, a current would flow through D1 and D2 to ground; these diodes are germanium types which operate at low forward conduction voltages.

The quiescent voltage of about +2 V at pin 1 is not enough to cause the relay to close. However, when the upper end of C3 becomes negative due to ultrasonic waves falling on the transducer, this negative voltage is applied to the inverting input of the power amplifier at pin 16 and the output at pin 1 rises to about +13 V so that the relay closes. The diode D3 by-passes the voltage transients developed when the current ceases to flow through the inductive relay coil. If D3 is omitted, these transients could damage the power amplifier stage of the LM 1808 device.

It is normally required that the relay will open again when the ultrasonic waves no longer fall on the receiving transducer. A relay should therefore be selected which will
open when the potential across its coil falls to +2 V . If one wishes to use a relay which does not open when the coil voltage falls to this value, one should include either a low voltage zener diode in between the relay and pin 1 or alternatively up to three forward biased silicon diodes so that the quiescent voltage across the relay is reduced to below +2 V .

General Comments

Good decoupling is very desirable with such a high gain circuit. The electrolytic decoupling capacitors $(6.8 \mu \mathrm{~F})$ suggested are much higher than would be used when the LM1808 is used as an intermediate frequency amplifier simply because the operating frequency in this ultrasonic application is much less than in the television application for which the device is primarily intended. The LM1808 has been designed for use from a 24 V supply, but the +16 V supply has been found to be suitable for this application.

As shown in Fig. 5, the SEO5B 40R transducer is sharply resonant when no load is connected across it. In the circuit of Fig. 3, however, the resistor R2 is effectively connected across the transducer and reduces its mechanical Q factor so that the matching of the transmitter and receiver resonant transducer frequencies becomes much less critical. This resistor is, in any case, required to provide the appropriate bias as already discussed.

The volume control section of the LM1808 device is not employed in this application. The power amplifier section of the LM1808 incorporates protection both against short circuiting of the output and against an excessive rise in the temperature of the silicon chip. The use of the resistor R1 in Fig. 3 is essential, since the voltage at pin 6 is stabilised by the internal circuit at between 10.5 and 12.5 V and no attempt must be made to try to increase the potential of this pin above the stabilised value.

The Relay

The LM1808 device can switch enough power to operate a substantial relay of the type which often fits into an octal socket. The coil resistance should not be less than about 120Ω so that the current from pin 1 is kept to a reasonable value and dissipation in the LM 1808 is minimised. However, this enables a relay to be used which can switch up to about 10A at reasonably high a.c. voltages.

Fig. 4: Circuit using the 3065 and LM380 integrated circuits

Changesin
 BRORICRST-BPIDILSTEIIIIG on Short Waves Jonathan MARKS

One point which soon becomes apparent when tuning in to short-wave broadcasting stations is the overcrowding problem. Thousands of stations are competing for only a few frequencies, with resulting mutual interference. The problem is not helped by the presence of jamming transmitters which "broadcast" white noise or distorted music thus blocking a large number of frequencies. Their existence is due to politics and the fear by some governments that listeners will tune in to broadcasts from abroad which disagree with the party line.

Hopefully, the situation should improve with the World Administrative Radio Conference (WARC) 1979 in Geneva which will re-examine frequency allocations. Some are optimistic, forecasting a doubling of existing broadcasting space. But one wonders whether all the military and point-to-point services will be quite so eager to give up their s.w. frequencies in favour of satellite links, as the optimists suppose.

In 1977, the Home Office invited members of the public to send in their suggestions and observations for WARC. Two prominent British clubs, the World DX Club and the Twickenham DX Club, accepted this offer and a number of their members, professionally involved with radio communications, got together to compile a 39-page document of proposals, including a survey of active jamming stations in the broadcast bands. This has since been submitted to the Home Office for examination.

Studios and Equipment

The s.w. stations themselves seem rather optimistic about the media's future. Some still run from ancient studios far inferior to those used by their country's domestic service, yet the standard of presentation is often amazing. In the past five years though, many stations have moved to more modern studios or have renovated the old ones. The Austrian Radio External Service for example, moved in 1976 from wooden "barracks" in down-town Vienna to brand-new studios in the television centre, making it one of the most modern stations in Europe. Likewise, Adventist World Radio in Portugal uses extremely expensive studio facilities to make its religious programmes. Meanwhile at Radio Budapest, work goes on to convert an old tenement block near the broadcasting house into studios for the s.w. service.
All international s.w. stations use reel-to-reel tape machines running at a speed of $7 \frac{1}{2}$ or 15 i.p.s. (19 or 38 cm / s), a point to bear in mind if you ever send a station a tape, as few can accommodate the domestic $3 \frac{3}{4}$ i.p.s. (9.5 cm / s) very easily. In addition, the Voice of America in Washington uses instant-start cartridges for correspondents' despatches during news programmes, in order to facilitate easy "flow" and fast continuity. The identifying
signals which most stations use before each transmission, to help the listener tune in, are also on endless-loop cartridges, being triggered automatically if the landline from the studio fails. In most cases, stations keep a recording of their output using a very slow-speed tape machine. Tape is usually kept for about a month before being erased, while written scripts are filed for between two and four years.

Broadcast channels on s.w. are 5 kHz apart, which means the audio range a station can put out is very limited and far from hi-fi. Still, this is perfectly adequate for speech, which forms the main output from most stations. Music does suffer, however, not only because of the limited audio range, but also because the ionosphere itself introduces fading and phase distortion which sometimes make listening to music programmes very trying.

To help punch their signals through the noise more clearly, most s.w. stations employ compressors and filters before the signal from the studio is fed into the transmitters. The compressor is designed in the same way as the automatic level control in a tape recorder, turning the studio signal level up on quiet music passages and down again during loud orchestral sequences. This ensures that the transmitter is almost 100 per cent modulated (i.e. working at maximum efficiency) for most of the air-time. The filters cut the upper audio frequencies, which are not permitted if the station is to remain within the 5 kHz channel allocation. Some stations also boost the remaining treble frequencies to enable voices to be more easily understood through white-noise jamming.

Austrian Radio continuity suite (SW Service). Note the slow-running tape machine under the clock for 24-hour recording of studio output
Photo courtesy ORF, Vienna

Transmitters

Short-wave stations these days find themselves in an unofficial power race whether they like it or not. Ten years ago, stations with 100 kW were giants, now 500 kW is thought by many to be the normal working power for each transmitter! Such high power operation brings its own headaches. Getting a reliable high voltage power supply is often difficult and running costs are high. Electric arcing in the final power stage of these huge transmitters, where the anode is at a potential of several kilovolts, is a serious problem: HCJB, a religious station in Quito, Ecuador, has had to redesign a new 500 kW transmitter to prevent arcing when it is used at exceptionally high altitudes up in the Andes mountains. There have been a number of cases where engineers have received lethal shocks while undertaking maintenance on the transmitter or aerials. Sometimes a transmitter has been overloaded and caught fire!

Choosing a transmitter site presents further problems. Ideally it should have a high water table for good soil conductivity, something which FEBA in the Seychelles solved by putting the antennae on the beach! For the majority of broadcasters though it means a compromise. Quite often there is fierce hostility from local residents near the transmitters when they discover the station's output breaking through over their hi-fi equipment or causing weird effects on electrical equipment. One landlord in the Netherlands though, whose pub stands not far away from Radio Nederlands transmitting complex in Lopik, tuned up a number of coils of wire, connecting the ends to light bulbs. The strong radio frequency power in the vicinity is enough to provide him with free lighting 24 hours a day!

Once on the air, the engineers have to make sure that the transmitters remain on the correct frequency without wandering and are not putting out a distorted signal. Hence most broadcasting organisations run a monitoring service in another part of the country. This set-up checks the station's output regularly and, in the case of s.w. monitoring, is often done for other stations abroad on an exchange basis. Probably the most famous monitoring station in the world is at Caversham, near Reading, home of the BBC Monitoring Service, which not only does the former tasks but also monitors the content of news bulletins from s.w. stations abroad to provide a very important independent news source.

In order to overcome some reception problems in distant countries, several stations have constructed relay transmitters nearer the target zone. Deutsche Welle, the Voice of Germany, for example, serves much of its African audience via transmitters in Kigali, Rwanda. These remote transmitters are fed by landline, s.w. single sideband links, or more recently via satellite. However, the relay bases bring with them problems, when some governments suddenly object to the presence of foreign transmit ters in their country, putting out material over which they have no control. This has happened in many cases, notably between China and Albania. Radio Peking has been using the transmitters of Radio Tirana, Albania, for many years for broadcasts beamed to North America. At the beginning of 1978 , however, relations between the two countries became strained and in July the relay of Peking was stopped by the Albanians. Whether it will ever start again depends on politics.

Future Developments

So what of the future? At present some broadcasters are looking towards single sideband (s.s.b.), a mode of transmission which amateur radio operators have been using for years. The advantages include reduced

Two aerials at the Austrian Radio Transmitting Centre in Moosbrun, Lower Austria. On the left, a log-periodic for beaming signals to distant targets, on the right an omni-directional cage antenna for European broadcasts
Photo courtesy ORF, Vienna
bandwidth, the possible use of less transmitter power, and clearer music and speech which is less susceptible to distortion by the ionosphere on the signal's path between transmitter and receiver. But there are problems. For the SWL it means a new receiver with an extremely stable reference oscillator to receive the transmissions, far more stable in fact than SWLs use to listen to s.s.b. on the amateur bands. For if the receiver drifts only slightly during a musical programme the music changes key and the results are awful! Technology is there to overcome this, but at present it is expensive. So for the time being, s.s.b. broadcasts from stations such as the Swiss Broadcasting Corporation are experimental and beamed to North America, where listeners own the most up-to-date equipment. Meanwhile, ordinary a.m. broadcasts will remain for a long time yet, especially to developing countries.

However, there might be a rival to s.s.b., the so-called digital system, and experiments are at present under way. Here, the studio signal is analysed, broken down into very small time segments, and the amplitude of each segment is then described in number form. These numbers or digits in the form of tones, are then broadcast by the s.w. transmitter. The receiver at the other end performs the reverse process, using the digital information to reconstruct the studio signal. The results are an excellent quality signal instead of the usual clipped and distorted transmission via conventional means, with superb fidelity and the minimum of interference. Of course, it needs a special receiver to pick up digital broadcasts, but then so does s.s.b., and with most of the money these days in digital research, integrated circuits for digital radios could beat s.s.b. research to the post.

Other ideas include programme labelling. A frequency modulated (f.m.) signal is encoded into the original amplitude modulated (a.m.) signal, which would not interfere with the programme material on existing sets. Cheap, simple circuitry could be incorporated into the average radio to identify the encoded f.m. signal and by changing the form of the latter with each language you could programme your s.w. radio of the future to check, for example, all the English-language broadcasts in the 49 metre band at any particular time. The technology for this is already with us!
continued on page 64

Are you embarrassed and annoyed to be dragged away from a good book or your favourite programme only to find that your caller is a smooth-talking hawker, intent on selling you something you cannot afford and don't even want? If you are, or you want simply to tackle an interesting and reasonably technical project that will provide an additional and useful facility about the house (or that of an elderly relative, perhaps?)-you might consider getting your tools together and starting work on $P W$'s Automatic Intercom.

The system is designed to provide two-way speech, completely automatically, between the front door of a house and a convenient position inside; the lounge or kitchen, for example. The remote door-unit originates an electronic call-tone which gives instant warning of the caller's presence. The occupant, having determined the visitor's identity, can then decide to open the door or otherwise as he sees fit.

Enhanced Security

The intercom affords obvious advantages, foremost among these, naturally, being that of enhanced security for one's home and family. One is able to diplomatically discover a caller's name and the purpose of his visit without opening (or even approaching) the front door-an important consideration in these days of increased petty crime. Therefore the system described in this article is worthy of serious consideration, particularly if you own one of those modern, mainlyglass front doors that were designed to be aesthetically pleasing rather than as an effective barrier to entry. If the logic of fitting good locks and chains to a structurally weak door is lost on you as well as on me, this system may provide a reassuring answer! You may even find that, after dark, the illuminated door-unit will, in itself, act as a deterrent to the nuisance caller. The implications to the elderly or chairbound are quite obvious, particularly when all that is necessary is to keep within reach of a microphone.

Automatic

Why automatic? Mainly because under most conditions, the caller having "opened" the system with his push at the door-unit button, there will be no further need for a lot of fiddly button-pressing, in order to conduct a normal visitor-occupant chat. The direction of speech is determined by the system itself sensing whether it is the caller or the occupant who is doing the talking, changing the speechflow accordingly and closing the system down fifteen seconds after conversation ceases. The system will not then reopen without another push at a button-so if a motor-mower is being used a few feet from the door-unit, its melodic rattle will not be unavoidably relayed into the house interior!

Other worthwhile features include a manual override button on the indoor main unit so that events on the doorstep can be monitored or, alternatively, so that it is always the householder who has the last word! The system also incorporates an automatic gain control which will maintain a nearly constant volume under practical conditions-two "potentiometers enable the a.g.c. characteristic to be "trimmed" to suit a particular environment, be it central London or a rustic porch. If someone calls while you are out, the event is "remembered" and a flashing "call" indicator remains flashing until cancelled by the householder, on his return.

Integrated Circuits

The reader will probably appreciate that, to provide the facilities and automatic control described is a complex process. In fact, the intercom is rendered practically viable and cost-effective only by the use of integrated circuits-ten i.c.s are used, five in the control logic and five in the audio circuitry. Fortunately, most of these are reasonably priced; the cmos chips particularly so.

Two considerations led to the choice of cmos devices: the high input impedance allows for simple long timeconstant circuits, and a common +12 V supply can be used for both logic and audio components. Transistors

Printed circuit board details for the main unit. The copper track pattern is shown full-size at the top with the component placement drawing underneath. Note: C17 is a non-polarised ceramic capacitor

are used peripherally to buffer the cmos logic and to perform certain functions in the a.g.c. circuitry.

As a constructional project, the intercom provides an interesting combination of digital and analogue tech-niques-not all constructors are familiar with both, and either may present "new ground". It is convenient that, for ease of description, the circuit may be broken down into these same two areas: control and call-tone generation (digital) and the audio-processing components (analogue). The audio circuit is shown in Fig. 1 and is mounted, together with the logic components, on the p.c.b. within the main unit.

Door unit

However, before considering these major areas of the design, it would be best to deal with the much simpler door-unit (Fig. 2) and the cable which connects it with the main unit. Five connections are required between the door and main units and these are conveniently provided by a screened four-core cable; care was naturally taken to devise a system which depends upon only a single cable connection between the two units. The screen is used, fairly obviously, to provide a common earth connection between the units: the four inner conductors provide a speech pair (kept separate from other functions in order to avoid noise and hum), the +12 V supply and the "control line", which conditions the logic in the main unit and provides the appropriate indications to the caller.

Fig. 2: Circuit of door unit. Starred items are mounted on front panel

The unit itself consists of a 64Ω loudspeaker (doubling as a microphone), the indicator circuit which responds to the d.c. voltage present on the control line, and the power supply to the two 6 V lamps.

In the quiescent "standby" condition, the control line is at approximately +6 V ("half-rail"). If it moves positively (towards "rail"), Tr 11 turns on and LED4 lights, whereas if it moves negatively (towards earth) Tr 12 turns on and LED5 illuminates; thus "Speak Now" and "Listen" are signalled to the caller. Push-button S2, which the caller presses on first arrival, short-circuits the control line to earth causing the "Listen" l.e.d. to light and the logic circuitry in the main unit to produce the call-tone, alerting the attention of the householder. Resistors R63, 64 and

65 bias the emitters of $\operatorname{Tr} 11$ and $\operatorname{Tr} 12$ slightly either side of +6 V ; therefore, if the control line is at half-rail neither l.e.d. illuminates. R62 limits the base current in these two transistors. R66 reduces the applied voltage to the 6 V lamps in order to increase their life.

Audio

The audio circuit is shown in Fig. 1, and uses three 741 op. amps (IC6, 7, 8), an MC3340P variable attenuator (IC9) and an LM380 as the audio output chip (IC10). IC9 is controlled by $\operatorname{Tr} 8,9,10$ and provides the a.g.c. The direction of speech through the system is switched by a miniature relay, RLA, and its contacts are all shown in Fig. 1. Their method of connection has been carefully chosen to avoid feedback problems-for example, the earth return of the door-unit speaker is switched through to the earthing of the output chip IC10, and contacts RLA1 and RLA4 are effectively in cascade when the door speaker is used as a microphone, resulting in excellent isolation between input and output.

With RLA de-energised, the 64Ω door speaker is used as a microphone and is connected to earth and the inverting input of IC6 via R41 and C12. The gain of IC6 is determined mainly by the ratio $\mathrm{R} 43: \mathrm{R} 41$-in this case, approximately 32 dB . It is contact RLA3 which connects the output of IC6 to the input of IC9, the variable attenuator, and thence to the output stage and the mainunit speaker, via contact RLA4.

Considering the circuit in greater detail, the three 741 op. amps have their non-inverting inputs biased to half-rail by the common divider network R58-59, this bias rail being decoupled by C25. Because all the inverting inputs are a.c. coupled, the outputs will stand at half-rail because of the 100% d.c. feedback applied through R43, 44 and 45. As the difference in d.c. voltage between the outputs of the three op. amps is therefore negligible, the input to IC9 via C14 can be directly switched by contact RLA3 without clicks in the audio output.

The speech from the door-unit ("V" speech) is amplified by IC6 (32 dB) and that from the householders microphone ("H" speech) by IC7 which is arranged to have a higher gain ($\mathrm{R} 44: 42=40 \mathrm{~dB}$). An output additional to that which is fed to IC9 via contact RLA3 is taken to IC8 which provides another 23 dB gain. Thus " H " speech from the microphone, amplified by a total of 63 dB , it taken to the logic circuits (via C1) which recognise its source and energise RLA. The contacts of RLA then route the speech so that the householder can address the caller.

Automatic gain control is accomplished by IC9 (more of this later) before the signal is passed to the non-inverting input of IC10 via C17, R47, R48 and C20 which form an audio filter restricting the speech bandwidth roughly to the limits imposed by a normal telephony system. C17 and R47 attenuate low frequencies while R48 and C20 form a low-pass filter with a cut-off frequency of around 3 kHz . The output from IC10, which has a gain of the order of 50 dB , is fed via contact RLA4 to whichever speaker is selected by the logic-naturally, these are both inductive loads and the Zobel network R56/C 23 compensates for this so that the LM380 sees a constant and resistive load. An additional output from IC10 is taken to the logic circuits so that the end of speech in either direction is recognised, and the system returned to the "standby" mode 15 seconds later. The LM380 is also used to amplify the pips generated by the logic when S2 is operated by a visitor; they are fed via VR2, the pip volume control, to the inverting input of IC10 avoiding the need to buffer both pips and audio.

Resistors
$4 W 5 \%$
2.7Ω
33Ω
220Ω
470Ω
$2 \cdot 2 \mathrm{k} \Omega$
$3 \cdot 3 \mathrm{k} \Omega$
$4.7 \mathrm{k} \Omega$
$6.8 \mathrm{k} \Omega$
$18 \mathrm{k} \Omega$
$47 \mathrm{k} \Omega$
$470 \mathrm{k} \Omega$ $1 \mathrm{M} \Omega$
$\frac{1}{4} W 10 \%$
$3 \cdot 3 \mathrm{M} \Omega$

Potentiometers
Miniature pre-sets (horizontal mounting) 0.1 W

Capacitors
Ceramic
InF
22 nF
47

Polycarbonate
$0: 22 \mu \mathrm{~F}$

35V tantalum bead

Gain control

Now we come to the a.g.c. circuit. A third output from IC10 is taken to VR4 ("Set a.g.c.") and is then rectified by D12, charging C19 to a voltage proportional to the speech level-but only if $\operatorname{Tr} 10$ is not turned on. The a.g.c. must be disabled while the call-pips are being produced so that C19 does not become overcharged. If this occurred and the householder answered immediately, his speech

Diodes

BC212L $4 \quad \operatorname{Tr} 2,4,5,12$
TIP31 $1 \quad \operatorname{Tr} 13$

DIL sockets
8-way 4 for IC6, 7, 8,9
14-way 3 for IC3, 4,5
4 way flow-profile) 2 for $1 \mathrm{C} 1,2$
NB:IC10 is soldered directly to the p.c.b.

Miscellaneous

$64 \Omega 66 \mathrm{~mm}$ dia. foudspeaker (1). $8 \Omega \operatorname{Sin} \times 3$. in loudspeaker (1). Mains transformer 14V 1A (GreeriXO27 or similar) (1). 200Ω microphone (1). similar (1) $120 \times 98 \times 45$ (Greenweld V216 219 or similar) (1). "Continental" type $185 \Omega 4$-pole c/o relay (1), plus 0.1 in p.c.b. mounting socket (1). 6 V 0.36 WT1. 2 LES. lamps (2), plus clear lamphoiders (11) Main 20. (1) Door (1. pla (1)* Equipment wire for interconnections, sleeving terminal pins, 3-core mains lead, 4-core screened cable for interconnecting units, grommets, polystyrene foam, aluminium strip, nuts, bolts, washers and adhesives as required.

Veroboard if desired.
householder pressing the "override" button on the mainunit, the logic sends an "audio enable" command to the a.g.c. circuit. This takes the form of approximately +11 V (or logic "high") applied to the base of Tr8 via R53 and VR3; Tr8 then turns on to a degree determined by the setting of VR3, pulling down the potential on pin 2 of IC9 and enabling it to pass the audio signal to the input of IC10. It is, then, this conduction through Tr 8 that determines the gain of IC9 and therefore VR3 is the master gain control of the system. The voltage across C19, which depends on the signal voltage rectified by D12, progressively turns $\operatorname{Tr} 9$ on, reducing the voltage at the junction of R53 and VR3 and turning Tr8 off, consequently lowering the overall gain. The degree of volume compression (or the percentage change in the system gain brought about by a given rise or fall in the audio level at the output of IC10) is set by VR4 ("Set a.g.c.").

Of course, it is not simply the degree of a.g.c. that is important, but the manner in which it is applied. Obviously, it is necessary for the a.g.c. to react quickly to a sudden increase in volume (i.e. have a fast attack) and to decay at a slower rate; this is so that each syllable is not attacked indívidually. This produces a most unnatural effect! C18 has been chosen, together with C 19 , to produce the required a.g.c. characteristic.

Power Supplies

Before passing on to the logic itself, it might be best to briefly consider the power supply arrangements as these are fairly standard and uncomplicated, using a Zenerstabilised emitter-follower as a series regulator. The circuit is shown in Fig. 3.

Fig. 3: Power supply
Approximately 14 V a.c. from the mains transformer T1 is rectified by REC1 to produce a +17 V supply, smoothed by C28. This 17 V directly feeds the coil of RLA, the collector of $\operatorname{Tr} 13$ and also supplies the current feed to the Zener D13 via R67. It is the stabilised voltage across D13 further smoothed by C29 that is applied to the base of $\operatorname{Tr} 13$-the stabilised +12 V is then obtained from the emitter of Tr 13.

It is also worth noting the rail filtering network (Fig. 1) (R61, C27, R60, C26) which supplies the early stages of audio amplification. It is required in order to prevent feedback snags and "glitches" from the logic which would produce clicking in the audio output.

Next Instalment

The project is concluded in Part 2, in which we shall describe the operation of the logic side of the system. The second instalment will also include the constructional drawings and details of how to set up the intercom on completion.

Readers who are building the Top-Band VMOS Transmitter featured in our July issue may be interested in the arrangements made on the prototype for push-to-talk operation, via the 4 -pole microphone input.

The best way of incorporating this facility would be to use a miniature changeover relay of the Siemens type and to switch the 0 V to ground via the push-to-talk switch embodied in the microphone case. Where the microphone lead is supplied with separate insulated conductors for this purpose-ie. where there is no common connection to the audio circuit-it is possible to switch the 12 V supply directly. However, having regard to the possibility of a fault condition causing heavy current to flow, the best approach would still be to employ a relay for this function.

Fig. 1: (Left) Simple toggle switch wiring. Fig. 2: (Right) Wiring for p.t.t. facility using a relay

In the drawings, Fig. 1 shows the simple wiring of a toggle switch which is used to key the transmitter. If p.t.t. is required, Fig. 2 should be used as a working basis. The 4-pole socket can be any suitable type, such as a Tuchel or similar Japanese equivalent, often fitted to Trio or Yaesu transceivers and readily available as a "service spare."

DUE TO THE RECENTINCREASE

IN VAT, READERS SHOULD
CHECK WITH ADVERTISERS
FOR CURRENT PRICES

SPECIAL INTRODUCTOAY OFFER Logic Probe Kit

Checking out digital circuits can be very difficult especialiy if they are complex and operate at high speeds. The usual test gear available to the amateur is not ideal as the main interest lies in edges and pulses and changes of logic states rather than analogue signals and voltages. Hence the multimeter and single beam scope are of little or no use in troubleshooting the problems of these circuits.

\star Specification

Input impedance: $3 \mathrm{k} \Omega$.

Detectable pulse width: 300 nanoseconds minimum.
Threshold: Logic '1' 0.7 Vcc . Logic ' 0 ' 0.3 Vcc.
Input frequency: 1.5 MHz maximum.
Input voltage: $\pm 50 \mathrm{~V}$ continuous. 120 V a.c. for less than 15 seconds.
Pulse detector: High-speed pulse train or single events (positive or negative transitions). Active pulse stretcher 0.1 seconds.
Power: 5 V Vcc at 30 mA or 15 V Vcc at 40 mA . 25 V maximum, Reversal protection.
Physical size: $147 \times 25.4 \times 17.8 \mathrm{~mm}$, weight 85 grams.
Power leads: 61 mm with colour coded insulated clips.

A logic probe is the answer enabling you to rapidly check the logic conditions at any point on the circuit. These probes are normally expensive but with the introduction of the CSC Logic Probe Kit LPK-1 it is now within the budget of most enthusiasts to own one of these useful tools.

Practical Wireless reviewed this kit in the July issue and found it to be easy to build and extremely useful when completed. The indication of the state of the test point is by three l.e.d.s.

The recommended retail price of the probe kit is $£ 13.71$ incl. VAT but as a special introductory offer it is available to PW readers for $£ 11.75$ incl. 15\% VAT, postage and packing.

Complete both parts of the coupon and send it with your remittance to "Practical Wireless", Dept PWL4, Rochester X, Kent ME99 1AA.

HOW TO ORDER

Please complete both parts of the coupon below in BLOCK CAPITALS Remittances must be by postal order or cheque (name and address on back of cheques, please) crossed, and made payable to IPC Magazines Ltd. This offer is open to readers in England, Scotland, Wales, Northern Ireland, and Channel Islands only. It is not available in Eire or Overseas. Orders are normally despatched within 28 days but please allow time for carriage. You will be notified if a longer delay may be expected.
THE CLOSING DATE OF THIS OFFER IS 26th October 1979.

To: PRACTICAL WIRELESS, Dept, PWL4, Rochester X, Kent ME99 1AA.

Please send me the CSC Logic Probe Kit(s) as indicated below at $£ 11.75$ each, incl. P \& P.

I enclose P.O./Cheque No. Value.

No. of kits required

Name:

Address:

Tel. No. (Home or Work) \qquad

No. required \square

Name:
Address:

From: PRACTICAL WIRELESS,
Dept. PWL4, Rochester X, Kent ME99 1AA.

KED FET E Integrated Circuits D.F.BOWERS BSc

Although the mOSFET has made a tremendous impact upon digital i.c. design, the benefits of f.e.t.s to linear i.c.s have not been forgotten.

The junction f.e.t. is the most common device in linear applications, but until recently f.e.t.s integrated on the same chip as bipolar transistors have been noted for their unpredictable characteristics. Although monolithic devices, such as operational amplifiers, have often incorporated JFETS in their design, their use has generally been restricted to such applications as constant-current generators-as in the case of the 301 and 4136. Operational amplifiers requiring the very low input currents which JFETS can offer have usually been hybrid types, where the f.e.t.s are diffused on a separate piece of silicon, although there have been monolithic devices, such as the $\mu \mathrm{A} 740$ and NE536, with less-than-ideal d.c. characteristics.

The development of the BI-FET process has done much to alter this situation, but before going into more detail, it is worth examining the benefits f.e.t.s can provide.

It has already been stated that the very high input impedance exhibited by the f.e.t. can reduce the input currents of operational amplifiers to mere picoamps. Additionally, the f.e.t. has a much lower transconductance than the bipolar transistor which, although poor from the d.c. characteristics aspect, makes a significant increase in speed possible. More speed can be obtained by replacing slow, lateral $p n p$ transistors with p-channel JFETS or mosfers. Furthermore, f.e.t.s make excellent current sources, a feature which is fully exploited in i.c. design to improve the gain of common-emitter stages, the linearity of common-collector stages and the rejection capabilities of long-tailed pairs.

Another use of the f.e.t. is as an analogue switch-a characteristic used extensively in the design of multiplexers, chopper amplifiers and sample/hold devices. In short, the

Fig. 1
f.e.t. makes possible many designs which would otherwise be quite impractical using bipolar transistors.

The bi-FET process, introduced in 1975 by National Semiconductor, provides a means of integrating wellmatched JFETS on the same silicon chip as bipolar transistors.

A typical integrated JFET, produced by the old diffused process, is shown in Fig. 1. Here the successive doping is achieved by "soaking" the silicon wafer in vapour of the required (p or n) impurity at high temperature. As can be seen, the channel thickness of the f.e.t.-a critical factor in the determination of its ultimate characteris-tics-is very much dependent on the diffusion length of the gate, which is difficult to control. This situation is aggravated by the necessity to produce a very thin channel to keep the pinch-off voltage (analogous to the Vbe of a bipolar transistor) to reasonable proportions.

Ion Implantation

To overcome this problem, the ion implantation process has been developed (see Fig. 2). With this system, the critical doping is achieved by bombarding the silicon wafers with a controlled flow of high-energy dopant ions, derived from an arrangement which is, in essence, a giant mass-spectrometer.

Ion implantation is in fact extremely useful wherever shallow doped regions need to be produced with high accuracy, and has applications outside the production of precision f.e.t.s.

The BI-FET Process

A typical p-channel JFET formed by the BI-FET (Bipolar compatible field-effect transistor) process is shown in Fig. 3. This type is the most common, since bipolar integrated circuits are almost always diffused on an n-type epi-layer, which forms part of the gate (the remainder being produced by implanting a thin n-type layer on top of the channel). This "sandwich" arrangement provides a very low pinchoff ($<2 \mathrm{~V}$) and the implant process ensures repeatable characteristics.

Besides the extra processing steps, the only major disadvantage of the BI-FET is that the lower gate section has an increased leakage to the substrate and isolation walls, which can be troublesome at high temperatures.

Operational amplifiers can greatly benefit from the use of f.e.t.s and there are several Bi-FET op. amp. families currently on the market.

The first series of BI-FET op. amps. to be introduced was the $155 / 156 / 157$ range (designated $355 / 356 / 357$ for commercial applications) by National Semiconductor and shown in Fig. 4. This series featured offset drifts as low as $5 \mu \mathrm{~V}$ per ${ }^{\circ} \mathrm{C}$ and input currents as low as 30 pA . The

Fig. 2

makes the amplifiers quite fast, the $156 / 356$ having a slew rate of $12 \mathrm{~V} / \mu \mathrm{S}$. The $155 / 355$ is a low power version with lower speed and the $157 / 357$ a high-speed compensated version.

This range is now sourced by many manufacturers, some of whom have developed their own proprietary BIFETS. Fairchild are introducing the $\mu \mathrm{AF} 771 / 772 / 774$ series of BI-FETS and Motorola have also developed devices of their own. Texas Instruments have launched a complete bi-FET family which includes low-noise devices optimised for audio applications and National have recently introduced a new low-cost series (LF351/353/347) as well as a 741 with f.e.t. input, designated LF 13741.

Progress is still continuing, but two improvements are especially worthy of attention. Despite ion implantation, bI-FET operational amplifiers still have a higher input offset voltage than bipolar types, and for precision applications at the upper end of the market, both Texas and National have developed a laser-less trimming process known as "Zener-zap", which also provides offsets of less than 0.5 mV for use on their proprietary bI-FET series.

Another problem is that f.e.t. input currents tend to double for every $10^{\circ} \mathrm{C}$ increase in junction temperature, a property which can prove awkward at high ambient temperatures or in cases where the internal (chip) dissipation rises steeply.

Fairchild produce devices with copper lead frames which act as efficient heat sinks to alleviate the latter problem and Precision Monolithics have developed an ingenious input-current cancellation system which employs current "mirrors" to lower input currents at high temperatures.

Fig. 3

Fig. 4: (Below)

Overall Impact

It can be seen that bi-fet operational amplifiers have been produced to satisfy all sectors of the industry, and it would appear inevitable that the low-cost devices will become readily available to the amateur. The advantages of high-speed, low-noise and low input currents make them eminently suitable for most general-purpose applications. It must be made clear, however, that with the larger chip area and new technology, BI-FETS will not be as cheap as 741s!

The bi-FET technology is by no means confined to the production of operational amplifiers; devices such as comparators, instrumentation amplifiers and sample-andhold circuits have all been produced. Analogue switches are also in production and have several advantages over conventional m.o.s. types, including lower "on" resistance and freedom from static discharge problems.

It seems certain that an increasing proportion of the linear i.c. market will ultimately be claimed by bi-fets-a view which is obviously held by the manufacturers, who are investing quite heavily in BI-FET production.

SMC YOUR SINGLE STOP SOURCE FOR: TRANSCEIVERS, RECEIVERS -

HF, VHF AND UHF. ANTENNAS AND ROTATORS CABLE - CONNECTORS

- TOWERS - MASTS AND FITTINGS

FRG7000

 COMMUNICATIONS RECEIVERTHE FRG7000 IS A HIGH PERFORMANCE ALL SOLID STATE COMMUNICATIONS RECEIVER DESIGNED TO COVER THE ENTIRE HIGH fREQUENCY SPECTRUM OF 0.25 TO 30 MHz . WITH BRIGHT $\frac{3^{\prime \prime}}{8}$ SEVEN SEGMENT LED's PROVIDING DIGITAL READOUT TO 1 kHz . Also included is a 24 -hour digital clock for both local and GMT time, with a timing feature for automatic receiver (and/or tape recorder through rear panel relay contacts) on/off switching.
The Barlow Wadley loop (Triple conversion Superhetrodyne) system used, proffers extremely stable (better than $500 \mathrm{~Hz} / \mathrm{hr}$. A.W. U.) performance Ceramic If The Barlow Wadley loop (Triple conversion SS with good rejection of interference.
The Mosfet RF amplifier offers an outstanding sensitivity of $0.7 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ on SSB and $2 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ on AM , without sacrificing strong signal performance. Wide provisions are made for antenna connections; for MW broadcast ($0.25-1.6 \mathrm{MHz}$) a high impedance binding post, for $1.6-30 \mathrm{MHz}$ a SO239 socket (to take a $50-75$ ohm unbalanced coaxial feed) plus binding post (for random low impedance length SW antenna). Also the antenna terminal strip is the earth and a mute (earth for standby) connector.
Audio output of up to 2 Watts drives the internal speaker, but plugging in an external 4 ohm unit or headphones ($1 \mathbf{1}^{\prime \prime}$ Jack) disables this. A socket for tape Audio output of up to 2 watts drives the internal speaker, control setting. A built-in mains power supply allows operations from 100/110/117/220/230V
recording produces about 50 mV independent of the volume AC (50 or 60 Hz).
To reduce the power consumption (of 25 W) the front panel lamps and displays may be extinguished.
For high reliability FET's and IC's are used extensively throughout the receiver providing maximum performance within a compact cabinet ($36(\mathrm{w}), 12.5(\mathrm{~h})$, 20.5 (d) and 7 Kg .). For ease of service plug in boards are employed widely.

A switchable RF attenuator, AM noise limiter and amplified AGC, assist in reception under adverse conditions of strong adjacent signals, inpulse noise and (ing of a desired station.
Frequency readout is taken directly from the digital display. The first two digits are controlled by the " MHz set" oscillator, the remaining three by the VFO (both via a CPU). The receiver front end is a narrow band with preselector and rangeswitch colour coded for ease of use, to provide the maximum in sensitivity and rejection of out of band signals.
Accessories included are the handbook, plugs (for every socket in the receiver) and 3 and 10 m wire antennas.
PRICE: $£ \mathbf{\$ 6 7 . 8 7}$

Send all mail orders direct to H.Q. (in Totton).	
S.M.C (Jack Tweedy) LTD	NORTHERN (Leeds) BRANCH
Roger Baines, G3YBO	Colin Thomas G3PSM
79 Chatsworth Road.	257 Otley Road.
Chesterfield, Derbyshire	Leeds 16. Yorkshire.
Chesterfield (O246) 34982	Leeds (0532) 782326
9-6: Tuesday-Saturday	$9-5:$ Mon-Wed \& Fri-Sat.

NORTHERN (Leeds) BRANCH
Colin Thomas G3PSM
Otey Road.
Leeds (0532) 78232
9-5: Mon-Wed \& Fri-Sat.
S.M.C. (Jack Tweedy) LTD

Jack Tweedy, G3zY
Ham Shack, 150 Hornecaatle Roed
Woodhall Spa, Lincolnshire
Woodhall spa (0526) 52793
9-5: Tuesday-Sat (+ appointments)

STOP!... THIS IS WHERE SHORT WAVE LISTENING BEGINS

THE SHOP THAT SPECIALISES IN HAM RADIO

RECEIVERS - TRANSMITTERS
'TRANSCEIVERS - HF - VHF - UHF

FREE SECURICOR DELIVERY
f175 inc. VAT

This month we present to you two excellent short wave receivers that give you top value for money. Last month we mentioned how the FRG7 was the perfect receiver for both the beginner and experienced listener or radio amateur alike. And, of course, our many hundreds of satisfied customers know that we have a special test schedule that every receiver has to pass before it is despatched to its proud new owner.
We can now tell you that we are stocking the latest version of the Lowe SRX30 receiver. Now this receiver is very similar in many respects to the FRG7. In fact, electrically, there's not a great deal of difference between the two receivers. In other words, the ability of the SRX30 to pull the stations in is every bit as good as the FRG7. But there is a difference and only you, the potential purchaser, can judge which model is for you.
The SRX30 is definitely not so pretty as the FRG7 and lacks the nice looks of the latter. Obviously, the manufacturers have spent less money on the front panel design and this is reflected in the price. Also, mechanically it has less of a solid feel to it. But, whichever model you choose, you'll not be disappointed. Both have passed our stringent pre-delivery tests and, yes, a few of both models do fail. So if you really want to be sure that your receiver is performing at its best, buy from us - all our staff are amateur radio enthusiasts and will ensure that the receiver you select is working as well as the one they themselves would wish to own.
AERIALS 7 Forget those magic 6 ft . long wonder poles! The best general coverage aerial is a length of wire as long as possible. For better performance try the Mosley RD5. It covers all short wave amateur bands and is fed with coaxial cable for really low noise reception. Length is 69 ft and functions as a true dipole.

WATERS \& STANTON ELECTRONICS 31, SPA ROAD, HOCKLEY, ESSEX. TEL: HOCKLEY (03704) 6835
 Opening hours MON-SAT 9.00 a.m. 5.30 p.m. E.C. Wed 1.00 p.m.

- $0.5-29.9 \mathrm{MHz}$ Coverage with 10 kHz Readout

The FRG-7 is a precision-built all-purpose communications receiver featuring all solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3 -position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception, the FRG-7 is the receiver for you.
Free Delivery Securicor
£210.00

FIT A DIGITAL DISPLAY TO YOUR FRG7 OR SRX30.

These units come complete, with only three wires to connect. The FDU7 for the Yeasu FRG7 can be The FDU3 for the SRX30 is supplied for top of the set use only.
(Full Fitting Instructions are supplied.)

$$
\begin{array}{cc}
\text { (FDU7) for FRG7 } & \text { @ } \mathbf{f 4 4 . 7 7} \\
\text { (FDU3) for SRX30 } & \text { @ } \mathbf{4 4 4 . 7 7}
\end{array}
$$

The MB6R (Receive only) and the MB6R/T (Receive/Transmit).
We supply these units with single or double current loops for connection to teleprinter To Order.
T.T.L./C-MOS Logic Levels and Oscilloscope Outputs are provided
(MB6R Double or single current) $@ 17.96$
(MB6R/T Doubls or single current) @ $\mathbf{f 8 3 . 2 5}$
(All Units are fully Guaranteed, and come complete)
(No extras needed) (No extras needed)
(All prices inclusive of postage and V.A.T.)
(Payment by P.O., Cheque or Access)
(Payment by P.O.. Cheque or Access)
B. BRODKES ELECTRONICS, 69 Leicaster Street,
NORWICH NR2 2DZ, ENGLAND.
Tel: 0603-24573.

STEPHENS-JAMES LIMITED

COMMUNICATION ENGINEERS
47 WARRINGTON ROAD, LEIGHWN7 3EA
ENGLAND
Telephone (0942) 676790
Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers. Full range of VHF receivers-transceivers. Mobile equipment pre selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp . Antenna switches--converters. Aluminium masts-clamps. Antenna rotators.

Drake
SSR-1*SPR4*R4C*
Secondhand Equipment Our secondhand equipment stock changes
daily. Send S.A.E. for latest price list. Part exchanges welcome. Access-Barclaycard and H.P. facilities.

Pent TRET

The following data is a resume of the basic design considerations involved in the early stages of the "Trent" amplifier.

Input Voltage Transformation Ratio

Typical values are given in Table 1 , obtained from the expression $Z_{\text {in }}=\mathrm{R}+\mathrm{jX}(\Omega)$

In order to achieve a good match at high frequency, $Z_{\text {in }}$ is considered at 25 MHz . The real part at this frequency is 1.5Ω, which means that for a push-pull configuration it is 3Ω between the two transistor bases.

The voltage transformation ratio is determined by

$$
\begin{aligned}
& \mathrm{n}=\sqrt{\frac{50}{3}} \simeq 4 \\
& \mathrm{n}_{\text {in }}=4
\end{aligned}
$$

Output Voltage Transformation Ratio

The transistor equivalent output circuit is given in Fig. 10. With $\mathrm{C}_{\mathrm{c}} \simeq 270 \mathrm{pF}$

$$
\mathrm{R}_{\mathrm{c}}=\frac{\left(\mathrm{V}_{\mathrm{cc}}-\mathrm{V}_{\mathrm{sal}}\right)^{2}}{2 \mathrm{P}_{\mathrm{o}}}
$$

where V_{cc} is the collector voltage $=13.5 \mathrm{~V}$
$\mathrm{V}_{\text {sal }}=$ r.f. saturation voltage $=1.0 \mathrm{~V}$
$\mathbf{P}_{\mathrm{o}}=$ output power for one transistor $(75 \mathrm{~W})$
$\mathbf{R}_{\mathrm{c}}=1.1 \Omega$

The output transformer matches $2 \times Z_{\text {out }}$ to 50Ω for the push-pull configuration. The voltage transformation ratio is defined by

$$
n=\sqrt{\frac{50}{2.2}}=4.7 \simeq 5
$$

In fact, it was discovered empirically that the best ratio is $\mathrm{n}=4$.

Transformer Types

Since the input and output transformation ratios are 4, we can use the small, practical transformer shown in Fig. 8 (Part 1). The low impedance winding always consists of one turn, which limits the available impedance transformation ratio to $1,4,9$.

Transformer Volume Estimation

Output Transformer

The ferrite used is 4C6 material, manufactured by R.T.C., whose reference is $14 / 9 / 5$ - 4C6 4322.020.97.180. The relative permeability is $120 \pm 20 \%$, and dimensions are shown in Fig. 11.

Table 1

Z in $=R+J X \quad$ (Ω) Typical values
WAD381

$F(M H z)$	2	5	10	15	20	25	30
$R(\Omega)$	15	8	5	3	2	1.5	$1 \cdot 2$
$X(\Omega)$	-8	-11	-7.5	-5	-4	-3.5	-3

Fig. 10: Transistor equivalent output circuit

The primary inductance can be calculated from the following formula

$$
L_{p}=\mu_{0} \mu_{\mathrm{r}} \mathrm{n}^{2} \frac{\mathrm{~S}}{1}
$$

\qquad
where L_{p} is the inductance in henries
$\mu_{0}=4 \pi 10^{-7}$
μ_{r} is the relative permeability
S is the ferrite cross-section (m^{2})
l is the average length of lines of force (m)
n is the number of turns

The value of L_{p} must be chosen high, but not higher than necessary, otherwise the performance at the top end of the band will be degraded.

So, we take

$$
2 \pi L_{p} F_{\min .} \simeq 3 R
$$

in which $R=$ load impedance (50Ω)

$$
\begin{aligned}
\mathrm{F}_{\min .} & =2 \mathrm{MHz} \\
\mathrm{~L}_{\mathrm{p}} & =\frac{150}{2 \pi 210^{6}}=12 \mu \mathrm{H}
\end{aligned}
$$

The ferrite cross-section is:

$$
S=N 1 \frac{D-d}{2}
$$

in which N is the number of toroids

$$
\mathrm{S}=\mathrm{N} 510^{-3} 2 \cdot 510^{-3}=1.2510^{-5} \mathrm{~N}\left(\mathrm{~m}^{2}\right)
$$

Fig. 11: Section of output transformer toroid

Fig. 12: Section of input transformer toroid

From Eq. 1 we can calculate N:

$$
\begin{aligned}
\mathrm{N} & =\frac{\mathrm{L}_{\mathrm{p}} \mathrm{l}}{\mu_{0} \mu_{\mathrm{r}} \mathrm{n}^{2} 1 \cdot 2510^{-5}} \\
& =\frac{1210^{-6} 36 \cdot 110^{-3}}{4 \pi 10^{-7} 1201612 \cdot 510^{-5}} \\
\mathrm{~N} & \simeq 14 \text { toroids. }
\end{aligned}
$$

In fact, 16 cores are used, which give

$$
\mathrm{L}_{\mathrm{p}}=13 \cdot 7 \mu \mathrm{H} \text { and } \mathrm{S}=210^{-4}(\mathrm{~m})^{2}
$$

Fig. 13: Typical performance characteristics of the PW ''Trent' prototypes

The highest toroid losses occur in this case at 2 MHz under large-signal conditions. The power loss density, i.e., the power loss related to the unit of volume versus the maximum induction and the frequency, is given by R.T.C. in their relevant data. The maximum induction $\hat{\mathbf{B}}$ can be calculated with the following formula:

$$
\begin{equation*}
\hat{\mathrm{B}}=\frac{\hat{\mathrm{V}}}{2 \pi \mathrm{FS}_{\mathrm{n}}} . \tag{Eq. 2}
\end{equation*}
$$

in which $\hat{B}=$ maximum induction (T)
$S=$ ferrite cross-section (m^{2})
$\mathrm{n}=$ number of turns
$\hat{V}=$ max. value of voltage across n turns (V)
$F=$ frequency
$\hat{\mathrm{V}}$ is given by:

$$
\begin{equation*}
V=\sqrt{ } 2 P_{0} R_{L} \tag{Eq. 3}
\end{equation*}
$$

where P_{o} is the output power
$R_{L}=50 \Omega$

$$
\begin{aligned}
& \hat{\mathrm{V}}=\sqrt{ } 215050=122 \cdot 5 \mathrm{~V} \\
& \hat{\mathrm{~B}}=\frac{122 \cdot 5}{2 \pi 210^{6} 210^{-4}}=1 \cdot 210^{-2} \mathrm{~T}
\end{aligned}
$$

For $\hat{B}=12 \mathrm{mT}$ and $\mathrm{F}=2 \mathrm{MHz}$ the power loss density is $210^{2} \mathrm{~mW} / \mathrm{cm}^{-3}$.

The ferrite volume is:

$$
\begin{aligned}
\hat{V} & =\frac{\pi}{4}\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right) \mathrm{hN} \\
& =\frac{\pi}{4}\left(14^{2}-9^{2}\right) 51610^{-3} \\
& =7 \cdot 2 \mathrm{~cm}^{3}
\end{aligned}
$$

This gives a loss \propto :

$$
\propto=210^{2} 7 \cdot 2=1440 \mathrm{~mW} \text { or } \frac{1 \cdot 4}{150}=1 \%
$$

This 0.05 dB loss in the ferrite is quite acceptable.

Input Transformer

The ferrite used for the input transformer is 4C6 material by R.T.C., whose reference is Tore 9/6/3-4C6 4322.020.97170. Its relative permeability is $120 \pm 20 \%$.

The toroid dimensions are given in Fig. 12. In order to contain these, a transformer with a primary inductance at 2 MHz of:

$$
2 \pi \mathrm{~L}_{\mathrm{p}} \mathrm{~F}_{\min .} \simeq \mathrm{R}_{\mathrm{s}} . \ldots . ~ E q . ~ . ~ 4 ~
$$

where $R_{s}=50 \Omega$
is used. This inductance is compensated at low frequencies by the circuit of Fig. 14, and Fig. 15 is the Smith chart.

From Eq. 4:

$$
\mathrm{L}_{\mathrm{p}} \simeq \frac{50}{2 \pi 210^{6}}=4 \mu \mathrm{H}
$$

The ferrite cross-section S is:

$$
\begin{aligned}
\mathrm{S} & =\mathrm{N} \frac{\mathrm{D}-\mathrm{d}_{\mathrm{h}}}{2} \\
& =\mathrm{N} 1 \cdot 510^{-3} \cdot 310^{-3} \\
& =4 \cdot 5 \mathrm{~N} 10^{-6}\left(\mathrm{~m}^{2}\right)
\end{aligned}
$$

where N is the number of toroids.
The average length of the line of force l is:

$$
\begin{aligned}
1 & =\pi \frac{\mathrm{D}+\mathrm{d}}{2} \\
& =\pi 7 \cdot 510^{-3} \\
& =23.610^{3}(\mathrm{~m})
\end{aligned}
$$

Fig. 14: Low-frequency compensation circuit for input transformer inductance

Fig. 15: Smith Chart plot for the circuit of Fig. 14

N may be calculated from Eq. 1:

$$
\begin{aligned}
\mathrm{N} & =\pi \frac{\mathrm{L}_{\mathrm{p}} 1}{\mu_{\mathrm{o}} \mu_{\mathrm{r}} \mathrm{n}^{2} 4 \cdot 510^{-6}} \\
& =\frac{410^{-6} 23 \cdot 610^{-3}}{4 \pi 10^{-7} 120164 \cdot 510^{-6}} \\
\mathrm{~N} & =8 \cdot 7 \simeq 9
\end{aligned}
$$

In fact, we used $N=10$ toroids, which means $L_{p}=4.6 \mu \mathrm{H}$.
By using the same reasoning and formula as for the output transformer:

$$
\begin{gathered}
\mathrm{P}_{\mathrm{in}} \simeq 3 \mathrm{~W} @ 2 \mathrm{MHz} \\
\hat{\mathrm{~V}} \sqrt{ } 2 \mathrm{P}_{\mathrm{in}} \mathrm{R}=\sqrt{ } 2.3 .50=17.3 \mathrm{~V}
\end{gathered}
$$

$$
\begin{aligned}
\hat{\mathrm{B}} & =\frac{\hat{\mathrm{V}}}{2 \pi \mathrm{FS}} \\
& =\frac{17 \cdot 3}{2 \pi 210^{6} 4 \cdot 510^{-5} 4} \\
& =7 \cdot 610^{-3} \mathrm{~T}
\end{aligned}
$$

For $\hat{B}=8 \mathrm{mT}$ and $\mathrm{F}=2 \mathrm{MHz}$ the power loss density is $70 \mathrm{~mW} . \mathrm{cm}^{-3}$.

The ferrite volume is:

$$
\begin{aligned}
V & =\frac{\pi}{4}\left(D^{2}-d^{2}\right) h N \\
& =\frac{\pi}{4}\left(9^{2}-6^{2}\right) 31010^{-3} \\
& =1 \mathrm{~cm}^{3}
\end{aligned}
$$

This gives a loss \propto :

$$
\propto=70 \times 1=70 \mathrm{~mW} \text { or } \frac{70}{3000}=2 \cdot 3 \%
$$

This $0 \cdot 1 \mathrm{~dB}$ loss in the ferrite is acceptable.

Modifications

For those interested in a more sophisticated biasing arrangement for the amplifier, the circuit of Fig. 16 may provide a working basis. This produces a lower internal resistance than that originally shown.

Fig. 16: Alternative biasing circuit offering a lower internal resistance. IC1 is a 723 voltage regulator. The diode should be mounted in the same manner as shown for D2 in Figs. 5 and 7 (Part 1). All resistors can be $\frac{1}{2}$ watt rating

Changing the relative permeability of the input transformer ferrites (to, say, 400) will give a better balance with regard to the signal applied to the transistors. Devices are available (with a μ_{r} of 400) from the supplier quoted in the components list in Part 1, and are of Ceramic Magnetics manufacture.
components

It now remains to set VR1 so that the system actuates on the sound of the telephone bell. Persuade a co-operative friend to dial your number and when the bell rings, adjust VR1 so that the relay closes and opens at the start and end of each ring. Leave VR1 at the minimum position where this happens as this will reduce the battery drain on signal and also make the system less susceptible to extraneous sounds.

Other Applications

I believe that individual experimenters will find other applications for this type of system to deal with individual domestic problems; one other that I have found useful is to relay the warning buzzer on the electric cooker-which is scarcely audible outside the kitchen - to the lounge so that it is possible to sit in relaxed comfort, confident that the small lamp beside you will tell you when the cooker needs attention. For people who are hard of hearing the possibilities are considerable.

These other applications often involve much less intense sounds than the phone bell and it is seldom possible to fix the microphone so close to the sound source: for this reason gain will be required. It will be noticed that in the phone bell application, $\operatorname{Tr} 1$ contributes no gain at all as its emitter resistor is not by-passed; in fact it serves to raise the impedance to approach that of the microphone and makes the setting of VR1 less critical: to obtain extra gain for special applications it is only necessary to connect about $250 \mu \mathrm{~F}$ across Tr 1 emitter resistor. Connected this way, I found it quite easy to make the indicator lamp follow the ticking of the kitchen clock!

For all thats good in Amateur Radio, contact;
LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock, Derbyshire. Tel: 06292430 or 2817. For full catalogue, simply send 45p in stamps and request catalogue CPW.

THE COMMUNICATIONS SPECIALISTS EVERYTHING FOR THE RADIO AMATEUR

YAESU FRG-7000

The New Performance Standard in Communications receivers !
A high quality general coverage receiver for the discerning SWL and a worthwhile ad diton as a second receiver for the transmitting amateur.
How often have you wanted a true general coverage receiver of this calibre but been put off by the price.
The FRG-7000 is a cost-effective answer to your prayers
\star Full and continuous coverage 250 kHz to $29.999 \mathrm{MHz} \star$ Operation on SSB/AM/CW \star Switched selectivity and fine tune control for maximum efficiency on SSB \star Accurate digital frequency readout to 1 kHz , using advanced CPU techniques \star Built-in digital clock with facilities for setting two time zones (GMT and local), selected at the flick of a switch \star CPU controlled timing clock switches receiver on or off at preselected times, also enable control of externat unit such as lape fecorder \downarrow Wancy selection: easy-to-use colour coded maximum stability \star Simple and accurate frequency selection: easy-to-use colour coded bandswitch and preselector.

Send large SAE for further details of this and other equipment - or use our Answerphone after hours.

Wertern Electronics (Uu) Itd

HEAD OFFICE (All Mail/Enquiries)
FAIRFIELD ESTATE
LOUTH, LINCS, LN11 0JH
Tel: Louth (0507) 604955/6/7

The Lowe SRX-30 is a general coverage receiver, principally for the serious short-wave listener and covers the range 500 kHz to 30 MHz .
A variety of "on-air" tests were made with this equipment using both long wire and beam aerials and in all respects, save perhaps the actual audio quality it performed well. Selectivity was quite adequate in all but the most difficult cases of crowding and the overall stability of the receiver was particularly good.

In conjunction with a Trio transmitter, many contacts were made with $W, V K$ and several of the more exotic countries and the SRX-30 gave a good account of itself throughout-lacking only in bandspread, of course, which is to be expected in most receivers of this type.

Several converters were tried with the receiver, and here some little difficulty was experienced. It is not possible to disconnect the telescopic aerial fitted to the receiver, unless one is prepared to get inside and unsolder it, and this can,

under strong-signal conditions, cause breakthrough of 10 m signals. The aerial input arrangements too may cause some problems if outboard converters are to be used and a simple solution would be to fit an SO239 coaxial socket and detach the fixed telescopic aerial altogether.

The controls of the SRX-30 are all mounted on the front panel and are widely spaced ensuring that even the largest hands do not get tangled up. The tuning unit is mounted on the front panel at the top right and has the pre-selector, MHz tune and kHz tune controls with the concentric tuning scales visible through the window above the kHz knob. The dials are illuminated and were easy to read, the MHz dial being calibrated into distinct separate 1 MHz bands while the kHz dial is calibrated from 000 to 1000 in steps of 10 . The kHz control is operated via a $6: 1$ slow motion drive which proved to be smooth in action. This made the tuning of the set relatively easy and it was possible to return to a frequency, even after an appreciable time, without any great difficulty.

Like most modern communications receivers the SRX-30 uses the Wadley Loop triple-conversion superheterodyne system which was fully described in the July issue of Practical Wireless. The front end of this receiver was remarkably stable, making tuning a pleasure.

The pre-selector was also simple to operate with no dials or drums to worry about, the knob being merely turned until maximum signal is found. An r.f. attenuator control is fitted which provides some 30 dB of attenuation in the fully clockwise position.

A clear S meter, illuminated when the supply is on, is mounted next to the tuning dial and proved easy to read.

The Clarify control, calibrated from -5 to +5 gives fine tuning over a frequency range of $\pm 3 \mathrm{kHz}$ to enable the pitch of a station operating on s.s.b. or c.w. to be accurately set.

The audio side of this receiver is a bit of a let-down and certainly did not match the rest of the set. Using the small internal speaker was a disappointment, the quality of reproduction being poor. This is probably a function of the speaker used and its mounting in the metal cabinet, as, using an

THE CHOICE

IS YOURS!
 YAESU MUSEN
 Digital Display Communications Receiver with CPU Digital Clock \& Timer FRG-7000

$0.5-29.9 \mathrm{MHz}$ Coverage with 10 kHz Readout
The FRG-7 is a precision-built all-purpose communications receiver, featuring al solid state construction for long life and high performance. Utilizing the Wadley Loop drift cancellation system, in conjunction with a triple conversion superheterodyne circuit, the FRG-7 boasts high sensitivity along with excellent stability. It provides broadcast listeners with such features as a 3-position tone selector, an RF attenuator, and an automatic noise suppression circuit. For many years of satisfying reception, the FRG-7 is the receiver for you.
YAESU MUSEN
General Coverage
Communications Receiver FRG-7

- 0.25 Thru 29.9MHz Coverage with 1 kHz Readout

Computer technology and convenience features are brought together in the FRG7000, a digital-display general coverage receiver for the discriminating SWL. The digital clock and timer, controlled by a CPU (Central Processing Unit) chip, will read ut both local and GMT time, and will control peripheral station equipment such as a tape recorder. Improved SSB selectivity, ease of operation, and rugged construction are yours with the new FRG-7000 from YAESU.

FULL DETAILS OF THESE EXCITING RECEIVERS FROM THE NUMBER ONE IMPORTER-PLUS EX-STOCK FREE SECURICOR DELIVERY!
($\mathbf{3 6}$ pence in stamps brings Illustrated Brochure and our Credit Voucher value £3.60)-A 10 to 1 Winning Offer!

AMATEUR ELECTRONICS UK
 Bisminchams
 Tel: 021-327-1497/6313 Telex: 337045

Meet 'UncleTom' He's on your wavelength.

Tom Beaumont - a radio enthusiast for 25 years - sells radio equipment.for love! And he particularly loves Lowe -Trio for quălity, value and reliability.

Tom is the sole authorised Lowe - Trio distributor for Yorkshire and North East England, and he offers the best before-and-aftersales service around on units like the top-value SRX-30 receiver illustrated.

THE LOWE SRX-30

All the facilities of a top-class communications receiver in one top-quality, economically priced unit. Covers 500 KHz to 30 MHz with excellent dial readout and re-set accuracy. AM, CW, SSB reception The SRX-30 is equally at home in broadcast or amateur bands.
Other features include RF gain, fine tuning selectable sidebands, built--in loudspeaker, AC mains or 12 V DC operation and rugged construction at an attractive price-Just $£ 175.00$ inc. VAT

Buy by post or call in - or phone your Barclay Card or Access number For speedy delivery on your SRX-30, please send cheque/P.O. made out to Leeds Amateur Radio for $£ 178.00$ which includes $£ 3.00$ carriage and packing. We will deal with your order by return.
Alternatively, call in for a chat at 'Uncle Tom's Cabin'. The shop is just 10 minutes from Leeds City Station, and there's easy parking if you travel by car: Instant H.P. for Licenced Amateurs. Extended Credit Terms Available. Send 50 p for Catalogue and Price List.
LOWE TRIO DISTRIBUTOR
Leeds Amateur Radio are area distributors for Jay Beams, Antenna specialists and Hilomast products.

CP-P1

Shown here mounted with its associated components (and the CP-TM1 Peak Programme Monitor) on the CP-MPC1 interconnection board; the CP-P1 is a complete stereo pre-amplifier and tone control module. Performance features $>70 \mathrm{db} \mathrm{S} / \mathrm{N}$ ratio and $>30 \mathrm{db}$ overload margin (both ref. 3 mV) and distortion of 0.02%. The internal R.I.A.A. feedback compensation around the low-level pre-amp may be replaced with external networks and the tone control circuits can be programmed to give different turnover frequencies if required (including separate bass and treble 'defeat' facilities).

CP-P1 £14.95 incl. (U.K.)£16.95 incl. (Export) Also Available: Power Amplifiers, Filters, Stereo Image Width Control, Compressor/Expander, Active Crossovers, Power Supplies plus all pots, switches, etc.

MRGEUTM RUDIL Ltd.

DEPT PW7, 13 HAZELBURY CRESCENT
LUTON, BEDS. LU1 1DF
TEL: 058228887
SEND LARGE S.A.E. FOR DETAILS

specifications

Frequency Coveragex 0.5 to 30 MHz 1 n 1 MHz bands with 1 Oktz geaduations on dial
ReceptionModes: CM, USB and AM
Somsitivizy At least 10 dB ($\mathrm{S}+\mathrm{N}$) N under following conditions:
Mode Frequency Input Level SSB $\quad 0.5-2 \mathrm{MHz}$
$1.0 \mu \mathrm{~V}$
$2-30 \mathrm{MHz} \quad 0.3 \mu \mathrm{~V}$
AM $0: 5-2 \mathrm{MHz} \quad 3.0 \mathrm{MV}$ $2-30 \mathrm{MHz} \quad 1 . \mathrm{OHV}$
(AM: $1000 H 2$ at 30% modulation)
These voltages are haf the open circut signal generatoy ydtavie. fe the voltage read on the meter OfaHP Mided \% 6 Generator
Outpute 200mW oltput on $\$ S B$ at 2 MHz with Input
Welnalof 0.51 V and 2 W output with $5 \mu \mathrm{~V}$ input
A 4 fol 9 istortion : Less than 5% at 2 watts

mandwidt ($-6 \mathrm{~dB}) \mathrm{SSB} 3 \mathrm{kHz} \pm 25 \%$ AM 5.5 kHz $\pm 25 \%$
Image Rejection:Greater than 50 dB
If Rejection Greater than 50 dB at f below 20 MHz Greater than 40 CB at f_{d} above 20 OHHz
Antenna: Extemal connection to terminal strp 750 input impedance unbalanced. A self-contalned telescoping whip is provided for strong local signals
Audlo Output Provisions: Internal 8Ω speaker. A phone lack on the front panel which disables the finternal speaker
Powar Supply: $100,117,220,240 \mathrm{~V}$ ac, $50-60 \mathrm{~Hz}$ External 12 V d.c staply connected via rear panel connector
Current Consumption Less than 100 mA quiescent at 12 Vdc
Clarifier: Tuntes minimum of $\pm 2 \mathrm{KHz}$ and maximum 0 of 至致Hz

external speaker, which plugs into a socket on the rear panel, improved the audio quality.

The small telescopic whip aerial mounted on the rear panel and hinged so as to be stowable when not in use was useful but proved to be a nuisance when not in use as it cannot be disconnected from the aerial input to the set. A useful modification might be to make the whip dismountable if not required.

Construction is of a sound standard throughout, the majority of components being mounted on glass-fibre printed circuit boards.

The instruction book was rather spartan with no maintenance information given and only a roughly drawn circuit diagram included on a separate sheet.

The main attraction of the SRX-30 must be its simplicity of operation, especially for the newcomer to the hobby. It is a pity that the audio performance does not do the r.f. side justice.

Prices

SRX-30 receiver $£ 178.00$ including 15% VAT. The SRX-30 receiver reviewed was kindly loaned by Lowe Electronics Ltd., 119 Cavendish Road, Matlock, Derbyshire. Tel: 0629 2430, and we would like to thank them for their invaluable assistance in this respect.

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint costs 85 p , including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 0PF. Please ensure that your name and address are clearly legible.
r

PRACTICAL WIRELESS—Radio Amateur Examination Reprint

Please send your order and remittance to:
IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF
Please send me ... copies at 85 p each to include postage and packing
I enclose P.O./Cheque No.......... Value
Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

I NAME
I (BLOCK LETTERS)

ADDRESS

(BLOCK LETTERS)

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

William Munro (Invergordon) Limited
 distributors for

NEC

Amateur Radio Equipment

CQ-P2200E 2M FM Portable 12 Channel Transceiver. Complete with Mic and Accessories.
Switchable 1W/3W. Send for full Spec. 3 Channels $£ 179$ VAT incl.
All Repeater Channels available and SO, S20, S21, S22,
S23 ex stock at $£ \mathbf{3}$ per channel.
Choose your channels from these and we will fit them.
CQ-R700 6 Band General Coverage Receiver.
170 kHz to 30 MHz - AM, SSB, CW, RTTY. Built-in Mains Power Supply and Speaker with the new Auto-spread VFO. (Send for full Spec.) $\mathbf{f 2 2 0}$ VAT incl.

CQ110E HF bands Digital Read-out Transceiver,
CQ 301 Matching Linear Amplifier.
CQ 201 Matching VFO (Three oven controiled VFOs in one and acts as Digital Freq. Counter as well.)
M 110 Matching Table Microphone.
SP 110 Matching Speaker Unit/Digital Ciock.
(Full Spec. Prices and current availability on receipt of your enquiry.)
100 HIGH STREET, INVERGORDON, ROSS-SHIRE V18 ODN
Telephone 0349852351
Telex 75265 ACCESS BARCLAYCARD HIRE PURCHASE

BREDHURST ELECTRONICS

The SOUTH COAST CENTRE for communications receivers and all your Amateur Radio requirements.
Examples:

HF receivers

Yaesu FRG7 $0 \cdot 5-30 \mathrm{Mhz}$ Wadley loop
£210.00
Yaesu FRG7000 As FRG7 but digital readout de-luxe £ $\mathbf{£ 6 7 . 0 0}$
Lowe SRX30 0.5-30Mhz Wadley loop £175.00
2 Metre receivers
Daiwa SR9 2M FM VFO + 11 xtal positions $£ 59.00$
FDK TM56B 2M FM 12 channel + 4 auto scan $\mathbf{£ 1 0 5 . 0 0}$
Belcom AMR217B 2MFM 10 channel +9 auto scan $\quad \mathbf{£ 1 2 0 . 0 0}$

Marine receivers

Daiwa SR11 Tuneable $156-162 \mathrm{Mhz}+6$ channel scan $\mathbf{£ 9 5} \mathbf{9 0 0}$
FDK TM56B FM 12 channel +4 auto scan
$\mathbf{£ 1 1 5 . 0 0}$

Aerials

Jaybeam VHF + Antenna Specialists VHF mobile full ranges PLUS transceivers, convertors, plugs, microphones etc. All on-the-air in our showroom.

Carriage free. All prices include VAT.
just phone your credit card number for same day shipment.

```
REGAL HOUSE,
PENHILL ROAD,
LANCING,
SUSSEX.
```

Lancing (09063) 63119
Open 9-5 Mon-Sat
Access
Barclaycard
Instant HP

The Bearcat ${ }^{\circledR} 250$ with more than 30 separate and distinct functions is designed with the professional scanner in mind. Since it's crystalless, programming 50 frequencies in infinite frequency combinations is as easy as pushing a few buttons. With its incredible "non-volatile" memory, the Bearcat 250 searches out frequencies, stores them in memory for later retrieval, and even counts transmissions by frequency. It's alsoa fine quartz crystal clock. The capabilities of the Bearcat 250 almost defy imagination. If you want the ultimate scanner available today, this is it.

Bearcat E日I RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW63AY. TELEPHONE: 01-624 7174. TELEX: 23718.

GOOD QUALITY INEXPENSIVE POCKET SIZE MULTIMETER

SPECIFICATIONS

- DC VOLTAGE:
$0-10,50,250,1000$ volts
2000 ohms/volt
- ac voltage:
$0-10,50,250,1000$ volts
2000 ohms/volt
- DECIBEL;
$-10 \mathrm{ta}+22 \mathrm{~dB}$
- dC CURRENT.
$0-100 \mathrm{~mA}$
- OHMMETER

0-1 0 kilohms, 0-1 megohms, 60 ohms centre scale

- POWER SUPPLY:

One 1.5 V size "AA" cell ohmeter

- SIZE
$3-5 / 8^{\prime \prime}, 2-3 / 8^{\prime \prime} \times 1-1 / 8^{\prime \prime}$
- WEIGHT;
$40 z$

Price: $£ 5.30$ inclusive V.A.T. \& P \& P Cash with order

ULTRASONIC REMOTE CONTROL

continued from page 40

If it is not required to switch more than 5 A at up to 250 a.c., one can select a Keyswitch relay type MS1B which has a $12 \mathrm{~V}, 26 \mathrm{~mA}$ coil. Thus the use of this relay ensures that the supply current is kept quite small.

Other Devices

The LM 1808 device is equivalent to an CA3065 television sound i.f. device and an LM380 power amplifier in a single package, although there are minor differences in the volume control circuit-which is not used in the ultrasonic application. The circuit of Fig. 4 shows a receiver which uses the 3065 and the LM380 as separate devices, but it is equivalent to the circuit of Fig. 3. The CA3065 is a 14 pin dual-in-line amplifier. The LM380N is a 14 pin dual-in-line device, but a miniature version is also obtainable as the LM380N-8 in an 8 pin d.i.l. package.

Fig. 5: Graph showing the response of the SEO5B 40R ultrasonic receiver

If the transmitter circuit of Fig. 2 is used, it will be necessary to adjust the potentiometer VR1 so that the frequency of oscillation of the 555 circuit matches that of the two transducers used in the system as closely as possible. This can best be done by connecting a sensitive voltmeter of high impedance across C3 of either Fig. 3 or Fig. 4.

When the transducers are placed close together with power applied to both of the circuits, the voltmeter should read a few volts. The transducers should now be separated and pointed away from one another until the meter deflection decreases. The preset VR1 in the transmitter should now be adjusted for maximum deflection of the meter in the receiver circuit. If necessary, this process should be repeated with the transducers spaced farther apart until the control is set in its most sensitive position. It is also possible to carry out this adjustment using a 100 mA f.s.d. meter in series with the relay or by using a voltmeter across the relay.

Conclusion

Various circuit options have been given so that the reader has some choice. The circuit using the LM1808 is more compact than the Fig. 4 circuit, but the CA3065 and LM380N are more readily obtainable.

BC BAND LISTENING

BBC External Services Control Room, Bush House, London, responsible for the co-ordination of all the simultaneous language broadcasts leaving Bush House
Photo courtesy BBC
Satellite broadcasts of world-wide television are also possible now, but here technology is over-ruled by other factors. Most broadcasting organisations have enough problems scraping money together to finance programmes for licence-fee paying domestic viewers, let alone free TV programmes for viewers abroad. Secondly, politics is such that countries with different social systems would no doubt be loath to let their people have free access to possibly contradictory propaganda from abroad via a TV antenna dish pointed upwards to a satellite. This method, remember, is far more difficult to jam.

In the meantime, s.w. broadcasting is the cheapest, most immediate and direct form of international communications. It will never overtake the popularity of the local radio station, but for those who take an interest in events beyond their back garden, s.w. radio will be there for a long time to come.

List of Publications for Further Reading

1. World Radio TV Handbook and World DX Guide edited by Jens Frost. Published by Billboard publications, and available through bookshops.
2. DX Catalogue. A list of free courses for the DXer and SWL offered on request by Radio Nederland, PO Box 222, Hilversum, Holland.
3. List of Broadcasting Stations for Europe. Up-to-date schedule of frequencies registered by International stations at the International Frequency Registration Board. Sent free of charge by the Austrian Radio Technical Department, A-1136 Vienna, Austria.
4. European DX Council Reporting Guide. Hints on making out useful reception reports in English and a number of other languages. Enquiries (with one International Reply Coupon) to EDXC, Postfach 2503 25, D-4630 Bochum 25, Federal Republic of Germany.
List of organisations involved with Broadcast Listening
5. International SW League, 1 Grove Road, Lydney, Glos. GL15 5EP.
6. Twickenham DX Club, 37a Pope's Grove, Twickenham TWI 4JZ.
7. European DX Council, Postfach 2503 25, D 4630 Bochum 25, Federal Republic of Germany.
8. Handicapped Aid Programme (UK), c/o Mr John Rose, 5 Hall Street, Wombwell, Barnsley, Yorkshire. This very worthwhile organisation is also in need of volunteers with or without technical experience.
9. UK DX Camp, c/o J. Marks, 12 South Bailey, Durham DH 1 3EE.
10. Danish SW Clubs International, Greve Strandvej 144, DK-2670 Greve Strand, Denmark.
Since the above are non-profit-making organisations, please enclose return postage with all enquiries.

Follow-up to Pu Sanchank METAL DETECTOR Mo. 2

Response from readers to the $P W$ "Sandbanks" article of January 1979 has taken two forms, faults which cannot be located, and requests for variations on the theme. The most common fault reported has been that of the output of IC4 going negative when a large piece of metal is brought near the search coil. A few letters were selected at random and the writers were asked to send the offending p.c.b. in for examination. In only one case was the 709 faulty. This particular device is running in its fastest possible mode, and so all stray capacitance and inductance around it should be at a minimum. This means that the i.c. must not be a socket, and it should preferably be a TO5 version. All of the associated components should have short leads and be mounted as close to the board as possible. If these precautions are observed, it is very unlikely that IC4 will go unstable.

Power Supply Problems

The second phenomenon which can cause the output to go negative is poor power supply regulation. If your "Sandbanks" has this problem, then check the -5 V rail and the +12 V rail. If they are more than one volt out then that is the fault. If they are correct, then try adjusting VRI whilst monitoring the 12 V rail. If it varies or if it is low anyway then that is the fault. The cure is not so easy to find, but is frequently due to either the 709 or the 741 taking too much current, so disconnect pin 7 on each i.c. and measure the current. The 709 should take 2.6 mA and the $741,1.7 \mathrm{~mA}$. If either or both is taking more then change them, but the figures are only manufacturers' typical figures, the devices are not faulty.

A very large number of these circuits have been tested, and less than one per cent of them have had to have any changes made to the circuit values as published in $P W$. The only fault that it has not been possible to cure was
that of drift. The circuit should remain absolutely stable once set, and if any reader has had this problem and cured it, the author will be very pleased to hear from him or her.

Response Speed

To get the very best from your "Sandbanks" several things can be optimised, but the first step is to fit a printed circuit coil, as described in the April 1979 issue. This really does increase the sensitivity to gold and silver tremendously. Having fitted this and made the appropriate changes to the sampling circuit, the next improvement is in the response speed. This is defined by two things, the pulse rate of IC1, and the integration time of IC5. The pulse rate can be increased to 500 Hz by changing C2 to 33 nF . This change allows the integration capacitor C12 to be reduced from $0.47 \mu \mathrm{~F}$ to 47 nF . The circuit now is 10 times as fast as it was and will detect a coin being thrown through the coil.

Fig. 1: Improving the audio quality. Only those components with values indicated are subject to change

Fig. 2: Providing a meter readout instead of the audio indication

Fig. 3: Providing a meter readout but retaining the audio indication

Audio Changes

Checking the machine's performance now, will prove that the next step of improving the quality of the audio is a good one to take. The first problem with the audio is that it is too low in frequency, and when a coin is detected at maximum range, the change in audio frequency is so slow that it is very easy to have passed the coin and miss it. To remedy this, change R25 to $220 \mathrm{k} \Omega$ and C 14 to 47 nF . This now gives a much higher pitch but the tone comes on too fast and it is very difficult to tell how deep the find is by the tone. It is also very unstable due to the short integration time of IC5. The instability can be cured by wiring C_{X} (10 nF) from base to collector of $\operatorname{Tr} 5$ on the back of the p.c.b. The speed of the audio can be corrected by wiring another $10 \mathrm{nF}, \mathrm{C}_{\mathrm{Y}}$ on the back of the board, this time between pin 2 of IC6 and the base of $\operatorname{Tr} 5$. This has a great feedback effect and now the audio is super-smooth from a fast clicking to a very high pitch indeed (Fig. 1).

Having got the audio working correctly, the next step is to balance all of the tolerances in the circuit. This should be effective for 95 per cent of all "Sandbanks" but if it does not work on yours, then do not worry, your machine is still very powerful.

To peak the sensitivity, connect a meter between the output of IC4 and the 0 V rail. Set the audio, with no metal near the coil, to about half-pitch. Adjust VR1 so that the audio is at its lowest frequency with the meter reading between 0 V and 8 V . If the meter reads outside these limits when at the lowest pitch, then re-adjust VR1 for 0.5 V and leave it there; it is very near the optimum setting at this point. If you can get a minimum between 0 and 8 V then expect to see about 5 V typically.

Meter Option

Some readers have requested a meter option for the "Sandbanks", but adding one which will improve the sensitivity is not easy. Ambit International do make a suitable meter, scaled " 1 " to " 5 " and legended "Tuning", and with a bit of fiddling it should be possible to fit this into the end of the handle. There are two different ways to wire this into the circuit; the easiest way is if you intend to discard the audio stage completely. This makes the machine more sensitive, but you do have to watch the meter all of the time. If this is the way you want to do it, then remove $\operatorname{Tr} 5$ and R 25 . Solder a $10 \mathrm{k} \Omega$ resistor R_{Z} between the base and emitter connections in the p.c.b. and connect the meter into the holes for R25 (Fig. 2).

To retain the audio stage, it is necessary to build the audio modifications as previously detailed, but leave out R25, and leave C14 as $0.1 \mu \mathrm{~F}$. R 25 now becomes a $27 \mathrm{k} \Omega$ but the meter is connected in series with it, and measures the base current of $\operatorname{Tr} 5$. It will be found when adjusting VR2, that the meter will just leave the " 1 " mark before the audio starts. This is the correct position for VR2 and so it is easy to verify that the setting has not changed when the machine is in use (Fig. 3).

Component Problems

The demand for the "Sandbanks" kit was much greater than was anticipated and so Ambit have had some problems in supplying some of the less common parts of the kit, such as IC2, which has been modified in some kits. The biggest problem has been the supply of the cases, but I am assured that these are available now, and so if you were disappointed before, it is worth contacting Ambit again.

A REVIEW OF RECENT DEVELOPMENTS
In general, the author does not have any more information on products than appears in the article.

Whistle Stop

A popular circuit in many electronics construction journals is the sound switch. A bright young man in America has come up with the idea of taking things a step further in order to aid handicapped people. He's brought out a "Whistle Switch".

The basic idea is simple, you just whistle and the device switches from one state to another-from on to off and/or vice versa. A step further than that has been to include a digital display and to make the instrument a multi-channel, multi-purpose unit. The arrangement causes the digital display to illuminate a series of numbers in sequence-1, 2, 3, 4 and so on. When the desired number, corresponding to the task required, comes up, it only needs a whistle to cause the unit to switch on or off. Thus one could have a light turned on or off, television receiver switched, telephone answered, nurse called, etc.

Believe it or not, there's even circuitry that allows the unit to be tailortweeked to your own particular brand of whistle, from bass to contralto (actually adjustable from around 800 Hz to 2.5 kHz). The first few have sold in the US for just under \$1,000 and patents have been applied for. Not available in the UK as far as I know.

Micro Magic

The integrated circuit designers are always trying to make yesterday's i.c.s obsolete. The problem for us, the users, is that they succeed all too well-and all too often. The very latest piece of micro magic to come my way is a new breed of linear creatures that will function effectively and efficiently right down to a miserly 1 V power supply. They're not delicate little specialities, either, and will work over the temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (means you can listen to the miniature
receiver you make with them in both the oven and the refrigerator!).

At present, only sketchy details have arrived, but the i.c.s do look very interesting. For example, there's mention of a high performance op amp which needs only 1.2 V . A device with similar function performance to a Darlington circuit can provide a 20 mA output current but only takes a diminutive $10 \mu \mathrm{~A}$ of standby current.

Television Developments

I was interested to read a report from America giving figures for the consumer section of the electronics, radio and TV markets. According to the report, video tape recorders will hit around 400,000 this year on projected figures. Colour receivers are topping around 710,000 per month, while radio receivers (a.m./f.m.) dropped a little and could only manage a mere 1.3 million sets-per month.

In the other direction, a German company is forecasting a growth potential for projection colour television receivers. Up until now, acceptance (or perhaps purchases) have been slow, but the company has confidently launched a new projection receiver with some impressive technical claims.

First, the projected colour image is very clear and extremely bright-some 140 candelas per square metre (about 40 foot-lamberts). This intensity would make it easily and clearly visible even in daylight. The image size is some 965 by 1270 mm . Hi-fi buffs will be relieved to hear that the projector is capable of providing 14 W of high quality sound. The estimated price tag is around the $£ 1,900$ mark. Can you imagine a $1 \times$ 1.25 metre version of Crossroads or Coronation Street? No way Brothers, no way!

Optical Fibres

It never ceases to amaze me--the speed at which things happen electronically. Signals being whizzed round computers in thousandths, even millionths of a second. Having admitted difficulty in visualizing that, you can imagine my gasp of credulity on hearing of happenings at the famous Bell Labs. Apparently (or should that be transparently) they've got this 700 metres-plus length of single mode optical fibre that's only nine meagre micrometres in diameter. And current experiments are showing the possibility of transmitting digital information along this fibre at the rate of 200 gigabits per second! The one watt laser doing this generates pulses only five picoseconds wide with little or no broadening. When the laser power was stepped up to 60 W , problems arose with smearing at the output end of the fibre.

If someone had shot a 60 W pulse loaded with 200 gigabits of information down my fibre, I reckon l'd be smearing, too.

Cheaper Printers

Home computer addicts will be pleased to hear of a new printer launched recently in America. It can print at 150 characters per second and is claimed to give "letter quality copy". It's a dot matrix printer, but the makers tell that the dots print so close that they overlap thus avoiding the "broken up image" appearance of many units of this type. Price on the US market is less than $\$ 3,000$, which is very much cheaper than the popular daisy wheel printers.

Cimberz

by Eric Dowdes well G4AR

I have always been concerned over the fact that one can pass the Radio Amateurs' Examination and get on the air with a 400 W p.e.p. transmitter without ever having touched a transmitter before, or a receiver for that matter. While the commercial "black boxes" that almost every newlylicensed amateur seems to start up with these days are pretty foolproof, they can still be tuned wrongly leading to severe interference to TV sets over a wide area. Whether h.f. or v.h.f. bands are used is immaterial.

Even with the transmitter properly run and operating into a well-matched aerial system, the sheer power output can be just as harmful to neighbouring TVs. Complaints roll in, tempers get frayed, and the inexperienced operator wonders if there is anything he can do about it. Many just give up when faced with this problem, as evidenced by the ads in our magazines for the sale of almost brand-new equipment by recently licensed amateurs.

Surely there cannot be any justification for the present system other than bureaucratic convenience. The ideal practical examination of a would-be licence holder is totally impossible today, but we did have a much better way of bringing up the amateur operator in days gone by. Such a method deserves consideration by those who deprecate the present "appliance operator" syndrome which can only deprive the amateur of his "experimental". status, the sole justification for the amateur licence in this country.

[^1]It is also a very good stick with which to beat the amateur when the third-world countries, in particular, start grabbing the frequencies at the World Administrative Radio Conference in Geneva later this year.

So, I wonder if there is any hope of reviving the "artificial aerial" licence which existed before the last war, whereby permission was granted to use transmitting equipment with a dummy aerial load in order to gain experience with operating transmitters and knowledge of the equipment, thus virtually eliminating the objectionable QRM caused by the present system. A licensed amateur could verify that such work had been carried out before a full licence was granted.

Alternatively, a novice type licence for, say, c.w./telephony operation on a maximum of 25 W input for six months for the h.f. bands, or 10 W on telephony on the v.h.f. bands, with the log book as evidence of experience. Some intermediate step in our present licensing procedure is badly wanted. Considering some of the questions I get asked by newly licensed operators I wouldn't trust them with a walkie-talkie!

From all Around

Congratulations are in order this month for Phil Charlesworth of Southport, who dropped his BRS41107 in favour of G8SNG and wisely is swotting on the code to get his G4 as soon as possible. He uses PA0AA on Friday evenings for code practice around 1930hrs on 1827,3600 and 14100 kHz following news bulletins.on telephony.

Felicitations too for Ed Phillips living in Wales who passed his RAE in December. He has a TCS8 receiver for the time being, but would feel happier if he had a handbook. He lives at Rhos-Y-Coed, Rosebush, Clunderwen, Dyfed, and feeds his set from a $90 f \mathrm{ft}$ wire and a.t.u.

Keith Taylor is 12 and hopes to take his RAE this year, but as I have pointed out many times, the exam is now a costly exercise and since Keith cannot get a ticket for another couple of years he'd be well advised to hang on and make sure he passes at the first attempt in a year or so's time. For the moment Keith has an R1155 and 75ft of aerial but mentions that he has a 300 ft garden and a 60 ft tree at the far end! Bliss, indeed, in Camborne, Cornwall.

Edgar Powell (Canton, Cardiff) joins the fray with a BC779, a version of the famous Super Pro, but he's stuck a three-valve preselector in front which, probably, helps not at all! Anyway, I've suggested trying it in and out of circuit on such as JX9WT, Jan Mayen Island, one of Edgar's better bits of DX. A sour note from John Powell (Southwold, Suffolk) abroad for very many years but happy to pick up $P W$ again and re-arouse his interest in
the amateur bands again. He's written twice to the RSGB for info on joining same and guidance on local reps and clubs but to no avail. This is the sort of treatment that is calculated to put a newcomer off amateur radio for good but I'm sure John is made of sterner stuff.

Regular writer Bill Rendell down in Truro, Cornwall, reveals that his AR3 set plus preselector has a total of 17 knobs! He reckons a newcomer would need a two-day course on it before getting any results. From his DX log it's obvious that Bill screws every circuit to the maximum from such a simple outfit. He wants me to keep on urging readers to use the long wire plus a.t.u. for best results, which I'll be pleased to do! At 336 Bocking Church Street, Braintree, Essex, R. Oliver has an EC10 Mk 1 and has problems with drift and wonders if anyone has any ideas on how to cure the trouble. Write to him direct.

About DX

Both Lawrence Woolf GJ3RAX (St. Brelade, Jersey) and Bob Round (Camborne, Cornwall) were kind enough to send me lists of the American callsign prefixes following my comments on AG5H. Pretty obviously things are completely out of hand over there in that field. AC3 was a time-honoured prefix for Tibet but now becomes commonplace, a great pity. Incidentally, I wonder what happens when our own G8ZZZ gets issued in the not too distant future!

John and Steven Goodier have been chasing UA0I, North Pole DX-expedition around 21181 kHz without luck, but did find A35RB on Tonga and lovely FW8AD in the Willis \& Fortuna Islands, a pretty rare catch. J3AAE (an old Japanese callsign!) popped up from Grenada while VK0PK on MacQuarrie Is. is not one that is heard very often. All these were on 20 m s.s.b. Pete Lucas, Padarn Hall, Great Darkgate Street, Aberystwyth, Dyfed, has an AR88 but is sans manual or circuit, so can anyone oblige? Pete wisely leaves the heaters on most of the time to cut drift, always a good idea with valved sets, if one can stand the electricity bill! Anyway, he logged J28BN (QSL F6UYG), FG7XA, S79MC and FR7BJ on 10 m s.s.b. so he's not doing so badly.
In Loscoe, Derbys, "C.P." Palfreyman got out his old and trusty 0 -V-1 t.r.f. set (a two-valve set, detector and audio stage for those who are not so very old) and looked for some interesting c.w. finding VP9JC on 40 m , HI8LC and ZL1AJU on 20 m and EA8QP on the 15 m band, using indoor dipoles! Peter Hawkes and his DX160 found VOIOB on 80 m and VP8QG on 20 m s.s.b. but feels he could do with a better receiver. Don't throw it away, will you, OM? I've still got several young readers on my waiting list for a set!

Bill Rendell, already mentioned, still seeks islands as his main target and came up with OHONA, Aaland Is, quite close but still not heard all that often, VK0PK on MacQuarrie Is. and "find of the year" VR6TC on Pitcairn, all 20 m s.s.b. On 15 m OK3TAB/D2A in Angola (QSL OK3ALE) was interesting for Bill as was VK1FT of which there are very few around. Dennis Sheppard reports on RTTY matters from Sheerness, Kent, once again with finds on 10,15 and 20 m like JA1JDD, PY2YFG and TI3DJT (10 m), AL7J (Alaska), A4XFW and HI8JSM on 15 m and KL7JHD, PS7JA and VR6BJ on Pitcairn for his 20 mDX , although Dennis has since reported trouble with the 20 m band on his receiver.

The Drake of Bernard Hughes (Worcester) is earning its keep with things like CO3VR, VP2ABC and VP5GT on $80 \mathrm{~m}, \mathrm{CO} 2 \mathrm{GS}$, HK0BBD on 40 m and BV2B, JT1BG, VQ9TC and TA1SU on the 20 m band. In West Wickham, Kent, John Dainty has been having problems with Band

1 TV breakthrough on his SSR 1 receiver via the i.f. stage working in the region of 45 MHz . Any suggestions would be welcome.

A couple of quickies. Lee Humphrey, 49 Altwood Road, Maidenhead, Berks, would like circuit/manual on the R1155 receiver, while Alan Billingham, BRS40845, 3 Hale Carr Grove, Heysham, Lancs, is anxious to contact other amateur band listeners in his area.

Club Info

Edgware and District RS, second and fourth Thursday of the month at the Watling Community Centre, 145 Orange Hill Road, Burnt Oak, Edgware, at 8 pm where Morse instruction is given to suit those present. Slow Morse also from club station G3ASR on Top Band and 2 m . Details of this and forthcoming meetings from Sec. Dennis Lisney G3MNO, 119 Draycott Avenue, Kenton, Middx. 01-907 1237.

If you live in the Stevenage area your RS meets first and third Thursdays at 8 pm at the British Aerospace QTH, Gunnels Wood Road, Stevenage, Herts. A DF hunt takes place on July 12 and July 19 sees the h.f. and v.h.f. equipment being given a workout at the club. Contact Peter Byrne G8MCV, EM2.3 Hitchin Exchange or ring 04624231 in working hours.

Now a first notice of the Derby ARS Mobile Rally on August 12 which should not be missed if there is any chance of getting there. Details from Jenny Shadlow G4EYM, 19 Portreath Drive, Darley Abbey, Derby. A fox hunt (radio, not animal!) is planned for July 10 by the Bury RS with an electronic and radio brains trust on August 14. The club meets at Mosses Centre, Cecil Street, Bury, every Tuesday night and visitors are doubly welcome. The club has an operational FT101 G3BRS and extensive library so contact M. Bainbridge G4GSY, 7 Rothbury Close, Bury, Lancs.

I am still getting letters either too early so that the news content is out of date by the time it would be published, or too late to meet the $\mathbf{1 5}$ th of the month deadline. General letters not involving publication are welcome at any time, of course.

From the Logs

B. Hughes:-80m CO3VR VP2ABC VP5GT ZF2CL ZB2CJ 40m CO2GS FY7BC HK0BBD 20m A7XAH BV2B J3AAE JT1BG S2BTF VR6HI VQ9TC 15m C6ANU FR7ZN HSIABD TJ1BB 10m KC4B VK9NI 4M5A 6T2NI
J. Dainty:-20m D4HXA ZL2QY ZF1SV
D. Sheppard:-RTTY 20m JH1HWN KL7JHD PS7JA VR6BJ ZP5CD 3D2BM 15m AL7J (Alaska) A4XFW HI8JSM YV2BSV 5N2ZBH 10m JA1JDD PY2YFG TI3DJT YV2RD
W. Rendell:-80m YV5ANS ZF2CL ZL4AP 6W8DY 20m C5ABM J6LFZ (St. Lucia) KB6EX VK0PK VP2KT VP2VGI VP8PU VP9JR VR6TC XT2AV 15m C6ANU J6LFZ OK3TAB/D2A (Angola) SU1DP VK1FT VP2MDG VP8SB YB6IB 6W8DY
P. Hawkes:-20m VP8QG 15m 8P6FU
C. Palfreyman:-c.w. 80m UA9CM 40m LU8DQ VP9JC 20m HI8LC ZLIAJU 15m EA8QP
J. \& S. Goodier: - 20 m A35RB (Tonga) D4CBS FW8AD J3AAE VK0PK 3D2ER (Fiji) 5T5ZR 15m TU2ID 10m YB0ADW ZE1AD
P. Lucas:-20m VS5TX (Box 980 Brunei) 10m J28BN FG7XA S79MC FR7BJ

All reports in s.s.b. unless indicated otherwise.

'WINTON'
 $50+50$ watts, of quite extraordinary amplifier.

Why Extraordinary? Well, the P.W. WINTON is the first Amplifier for the home constructor to offer the enormous benefits of POWER MOS-FETS, and to do so at such low cost.
Power MOS-FET technology is available commercially, and the couple of Amplifiers we have seen are superb examples of the HI-FI designers art, but, and here's the bad news you will have to shell out about SIX HUNDRED POUNDS to enjoy them.
The alternative? - do it yourself, build the WINTON and when it is completed we defy anybody without ten thousand quid's worth of sophisticated lab equipment to tell the difference, but your Wallet will certainly assure you that you've made the correct choice.

What about looks? We think the slimline Burmese Teak veneered cabinet and the Brushed Aluminium fascia look superb, but we are horribly biased, besides we lie a lot too.

So! to discover the truth for yourself send a 9 p stamp to T. \& T . - nice people to deal with - and we'll send you a totally biased, utterly patronising, and irritatingly smug 'gen sheet (sent in plain brown wrapper, nudge nudge), or alternatively take our unashamedly immodest word for it and send us your cheque for the best Amplifier buy of your life, or perhaps you'd rather settle for an ordinary Amp.?

The Superlative WINTON is avaliable for your convenience packed as follows: Pack (A) All Capacitors and Fixed Value Resistors, (inc. 7 Amp ripple Res. Caps.) Pack (B) Switch Bank, Switches, Potentiometers, Pre-Sets \& all Knobs Pack (C) Printed Circuit Board (Tinned, Drilled, \& Overlay Printed) \& Pins Pack (D) Hardware Pack, consisting of precislon formed \& punched Chessis, Black Epoxy finish Heat Sinks, Teak Vene日red Cabinet, all screws, wire, fuseholders, etc., and a super Brushed Silver Aluminium Fascia Panel. Pack (E) All Semiconductors, fincluding HITACHI POWER MOS-FETS) Pack (F) Special LOW HUM FIELD Toroidal Transformer COMPLETE KIT, of all parts necessary to build the P.W. WINTON Order with complete confidence (C.W.O. only please) from:

T. \& T. ELECTRONICS

Green Hayes, Surlingham Lane,

 Rockland St. Mary, Norwich, NR14 7HH.Please Allow 28 Days For Delivery.
ALL PRICES INCLUSIVE OF V.A.T. \& CARRIAGE

MEDIUM WAVE DX

by Charles Molloy G8BUS

Long Wave Across the World is the name of a 12-page booklet written by Adrian Peterson and published by the Australian Radio DX Club. It traces the history of broadcasting on the long waves in Europe, the Americas, Asia and Australia, and is illustrated with reproductions of QSL cards, early photographs and even a set of postage stamps.

Broadcasting on the long waves was much more extensive during the early days of radio than it is now-the consequence of the longer daytime range of 1.f. stations compared with those on the medium waves and the absence of short-wave broadcasting which had not yet been developed. It will come as a surprise to many to learn that there was l.w. broadcasting during the 1920s in Ceylon, Hongkong, India, Afghanistan, Brazil and Chile.

This booklet makes absorbing reading and I would recommend it to anyone interested in the early days of broadcasting. It is obtainable from the Australian Radio DX Club, PO Box 54, Melton South, Victoria 3338, Australia for six International Reply Coupons (or US $\$ 2.00$) airmail or 4 IRCs ($\$ 1.00$) seamail to anywhere in the world.

Ramadan

In 1979, the month of Ramadan starts on 26 July and ends on 24 August, some 10 days earlier than last year. This advance through the calendar occurs annually because the Moslem year is based on the lunar month rather than on the calendar month as in the west. It has the effect of moving Ramadan through the seasons of the year in a 33year cycle.

During Ramadan, broadcasting in Moslem countries continues throughout the night. The majority of the states involved are in Time Zones ahead of GMT and conse-

quently, sign-off normally occurs before European QRM has had a chance to subside. Of course sign-on is earlier too but during this time of the year much of the path from the more easterly countries will be in daylight and reception will not be possible. The occurrence of Ramadan in the summer is therefore a welcome event, at any rate to the DXing fraternity who do not have to participate in the rigours of fasting through the long hours of daylight!

DX to be Heard

In past years I have listed some of the easier stations and also a few of the more difficult ones that might be picked up. This year, owing to the Geneva Plan and its almost universal non-observance in the Middle East, it is anyone's guess what will be heard during Ramadan 1979. Reports from readers will be very welcome as these will give an indication what Ramadan will mean to the m.w. DXer in the future.

One spin-off from the current situation is the production of 1 kHz heterodynes between stations operating on the pre-Geneva channels and those on the new channels which are 1 kHz higher. Tune round the band after dark and you should hear a number of 1 kHz "hets" on the low frequency side of European broadcasts. They reveal the presence of a station 1 kHz below this strong local signal. Make a note of the weak hets and go back to them later on when
hopefully the European may have signed off. You may then be on to some real DX.

The following is a list of the authorised frequencies of the stronger stations in the Arab world. Look for Algeria on $549,576,891$ and 981 kHz , Egypt on 621 and 1107 , Kuwait on 540, 1134 and 1341, Libya on 828, 1125 and 1251, Morocco on 612, 963 and 1044, Turkey on 1017 and 1062, Tunisia on 630 and 1566 , Syria on 747 and 783, and Saudi Arabia on 585 and 882. Do not forget the long waves. Azilal in Morocco is on 209 kHz , Tipaza in Algeria is on 254 kHz and Turkey is on 182 and 245 kHz .

Identification

The identification of Middle East stations can be a problem. The language is Arabic except in Turkey and Iran, which is a help. Listen for Burasi in Turkish, Burasi Turkiyem Sesi Radyosu is the Voice of Turkey. In Farsi (Persian) Inja Teheran means Here is Teheran. The key word in Arabic is Huna. Huna al Kuwait means This is Kuwait, also there is Sowt el Arab, the Voice of Arabs, from Egypt.

Reception Reports

A few years ago an enterprising DXer in Germany produced an Arabic reception report form complete with vocabulary, which really is an example of dedication to a hobby. Problems could arise though if it fell into the hands of a DXer who did not realise that Arabic is written from right to left! I have never used anything but English when writing to the Middle East as it seems to be widely understood. The problem is not so much the language to use as what to put into the report. "Arab music and singing" is not really much use. Time signals, news bulletins, station identification, clock chimes (Egypt uses the Post Office clock in Cairo), are the sort of items to look for, but if you really pick up something special then a short tape recording sent to the station is really the only way to be sure, in spite of the cost.

Language Identification

Last month, reader \mathbf{S}. Donnelly raised the question of key words and their use as an aid to identifying a foreign language. This brought to mind the Foreign Language Recognition Course which was produced by the now defunct Radio Canada Short Wave Club. The course is still available on tape, either as a cassette or reel-to-reel, for $£ 1.98$ through the British or Canadian branches of the Handicapped Aid Programme. It is compiled by the wellknown author, linguist and DXer, Dr Richard E. Wood. It plays for over 80 minutes, gives spoken examples of 55 different languages and includes key words and hints on pronunciation. Broadcasts examples are made from studio tapes and not from over-the-air recordings.

Further information about this and other Radio Canada SW Club tapes can be obtained, for return postage from the HAP, 5 Hall St, Wombwell, Barnsley, S. Yorkshire S73 0JL or direct from CHAP, RR3, Colbourne, Ontario, Canada KOK ISO. Proceeds from the sale of these tapes are used to finance the world-wide activities of the Handicapped Aid Programme which includes the introduction of the handicapped or housebound to the hobby of DXing.

Language identification is of some importance to the m.w. DXer as interval signals are infrequently used on this band and national anthems are generally played only
at the end of a day's transmission. It is possible to become quite adept with language recognition even to the extent of being able to identify the particular brand of Spanish spoken in some regions of South America. The harsh and clipped variety spoken in Venezuela is often heard on the m.w.s and is easily recognisable.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

A note from Jonathan Marks of Austrian Short Wave Panorama mentions the new schedule for this well-known English DX programme. It is now on the air on Sundays at 0900 GMT on 6155 and 7170 kHz (Europe) 9770 (SE Europe), 21610 (Australasia and SE Asia), at 1805 on 6155 (Europe), 15435 (E Africa), 15560 (Middle East), 21740 (S Africa), at 2305 on 5945 and 9770 (N America), 12015 (S America). Reception reports and comments on the new timings can be sent to Austrian SW Panorama, Austrian Radio SW Service, A-1136 Vienna, Austria. (See also Part 2 of Jonathan's article on Short Wave Broadcasting in this issue-Ed.)

Frequency-Wavelength Conversion

Retired reader Dorothy Porter (Broxbourne) collects old radios from rummage sales etc., and she is currently using a Convair 1 receiver which is marked out from 13 metres to 1800 metres. She wonders if there is a table available which gives the equivalent values for metres and kHz . I hope Table 1 will fill the need. It is based on the formula: frequency times wavelength $=300000$ so that:

$$
\mathrm{kHz}=\frac{300000}{\text { metres }} \quad \text { and metres }=\frac{300000}{\mathrm{kHz}}
$$

13 m and 16 m Bands

The 13 and 16 metre bands, which cover 21450 to 21750 kHz and 17700 to 17900 kHz respectively, are long-distance daytime bands. They go dead at night, but during daytime signals from all over the world can be heard. Radio Australia on 21570 and 21680 kHz together with Radio Japan on 21610,17710 and 17810 kHz are to be heard at breakfast time, while Radio New Zealand is on 17770 until 0815. Later in the day, try for Radio Pakistan on 21485 and 17830 , Radio RSA on 21535 and 17780 , Sri Lanka on 17850 , Kuwait on 21600 , Lebanon on 17710 and Radio Bangladesh on 21670 kHz .

There is some DX to be heard during the late evening on 16 m from stations to the west, as the path in this direction is still mainly in daylight. Look for R. Havana Cuba on 17750 and 17855 , Sao Paulo, Brasil on 17815 , Voice of Chile on 17715 . HCJB in Quito, Ecuador is normally conspicuous at this time but services from this

ELEGTROVILIE

Your leading direct suppliers for RESISTORS

Carbon Film *

$\frac{1}{2}$ watt \ddagger to 10 Watt 47 to 4 M 7 watt 47 to 10
watt 4.7 to 10 M
Motal Oxide -
$\frac{1}{2}$ watt Electrosil TR5 ${ }^{\frac{1}{2}} 10$ to 1 M
Metal Film
0.4 watt Mullard MR25 5.1 to 300 K

Wirewound
1 watt 0.22 to 3.9
3. watt 1 to 10 K

7 mostt 1 to 10 K
THERMISTORS \bullet
Discs --VA1039500 19p. VAT 1040 130. VA1 10015 19p. VA1104 15-25 59p.
Plate and Bead (vacuum) types also available from 22p to 54.80 each

Buying from Electrovalue can cost you even less when purchased together with other items from our Catalogue 9 (See pages $85 / 86$ and discounts scheme). You will find practically everything you want in our Catalogue at good prices backed by good service - so start buying the Electrovalue way today.
V.A.T. Add 8% to all prices quoted here except those marked - which carry $12 \frac{1}{2} \%$. Prices subject to alteration without prior notice.
Discounts non-allowable on Barclaycard or Access

ELECTROLILUE LTD

- We pay postage.

In U.K. on cw orders list value $£ 5$ and over. If under add 27p handling charge.

- We give discounts

On cw orders only 5% on list value $£ 10$ or more10% on orders list value £25 or more.

- We stabilise prices By keeping to our printed price lists which appear. but three or four times a year.
- We guarantee All products brand new, clean and to makers specs. No seconds, no surplus.
- WE WILL SEND YOUR OUR 100 PAGE CATALOGUE NO. 9 FREE ON REQUEST Write, phone or call for your copy together with latest price list.

Dept. PW6, 24 St. Judes Road, Englefield Green, Egham, Surrey, TW20 OHB.
Phone Egham 3603. Telex 264475
Northern Branch (Personal shoppers on!y), 680 Burnage Lane. Burnage, Manchester M19 1NA Phone (O61) 4324945

SPECIAL OFFER SEMICONDUCTORS

TBA800 50p. LM3900 40p. 7418 pin 6 for £1.00. NE555 22p. ZN414 75p. IN4005 10 for 35p. 723 REGS 35p. OC 140 TRANS. 40p. BX504 opto isolators 25p. 2 N 5062 (100 V 800MA SCR) 18p.
MINIATURE TOGGLE SWITCHES. SPST $8 \times 5 \times 7 \mathrm{~mm} 49 \mathrm{p}$. DPDT $8 \times 7 \times 7 \mathrm{~mm} 53 \mathrm{p}$. DPDT centre off $12 \times 11 \times 9 \mathrm{~mm}$ 78p. HEAVY DUTY TOGGLE DPDT 240 V AC 10 amps 35p.
MINIATURE SOLID STATE BUZZERS. $33 \times 17 \times 15 \mathrm{~mm}$ white plastic rectangular case, output at 3 feet 70 dB , Low consumption only $15 \mathrm{MA}, 4$ voltage types available, $6-9-12$ or $24 V$ DC 75p each. LOUD BUZZER. 50mm diameter 6 or 12 volts 60p. GPO DC 25p.
DE-SOLDERING TOOL. Good suction, Teflon nozzle, f4.75p.
MOTORS. Miniature model motors $1.5-6 \mathrm{~V}$ DC 20 p . 12 V DC 5 pole motors 35p. 8 track replacement motors 12 V DC 55 p . 'Big inch' tiny precision motor 115 V AC 3 rpm 30 p . Smiths Clock Motor Synch., 240 V AC 1 rev. per hour $£ 1.75 \mathrm{p}$.
SURPLUS BOARDS
No. 1 has $1150 V 2,5 \mathrm{amp}$ scrs., one relay and yariqus transistors including UJT £1.95p. No. 2 cas radio RF/tif boards 2. transistors, LM382 IC trimmers IFs etc. 65 . No. 3 car radio boards with 6 transistors including power output types if's choke etc. 75p. TELEPHONE PICK UP COIL. Suction type with lead and plug 55p.
Terms - Cash with order (or official orders from schools etc.) Postage 30p. (Overseas at cost) VAT inclusive. SAE for illustrated lists.

PROGRESSIVE RADIO
31, Cheapside,
Liverpool, L2 2DY

WEST HYDE CASES FOR P.W. PROJECTS

VMOS TOP BAND TRANSMITTER (July 1979),
Classic case CL2 ADK £11-02.

CAR TEST PROBE (May 1979) Case PRB LPO £1.78. P.W. HYTHE RECEIVER (February 1979). Brightcase BC2 121X £29-43.
All the above prices include P. \& P. and V.A.T. Send for your free catalogue describing literally hundreds of cases - see Feb. '79 "Production Lines".

WEST HYDE DEVELOPMENTS LTD., Unit 9, Park St. Industrial Estate, Aylesbury HP20 1ET Aylesbury 20441. Telex 83570

Munaw
 EUROSOLDERSUCKER

This 195 mm long, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an antirecoil system and built in safety guard. Only $£ 6.80$ inc. VAT \& P.P

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around all edges for minimum inter-connection lengths.
All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$. ohms).
Easily removable, non-slip rubber backing aliows damaged contacts to be rapidty replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 5.80$ each or $£ 11.00$ for 2 - inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

David George Sales
r/o 74 Crayford High Street,
Crayford, Kent, DA 1 4EF.
Please send me 1 EuroSolderSucker @ £6.80
Please
or 1 EuroBreadBoard @ £5.80
or 2 EuroBreadBoards @ $£ 11.00 \square$
Tick
(All prices include VAT and P.P., but add 15% for
overseas orders)
Name
Company.
Address.

θ
Tel. No.
Please make cheque/P.O.'s payable to David George Sales

PW879
station have had to be severely restricted as a result of a drought. This has affected the station's hydroelectric power station according to a report in Sweden Calling DXers.
The move to higher frequencies which is demonstrated by the amount of activity on the 11 m band is also apparent on 16 m and 13 m . New channels are opening up, such as the Voice of Greece on 21455 and 21655 so it is worthwhile tuning carefully round both bands.

Table 1 Frequency/Wavelength Conversion Short, Tropical, Medium and Long wave Bands

Band	kHz	Metres
11 m	$25600-26100$	$11.72-11.49$
13 m	$21450-21750$	$13.99-13.79$
16 m	$17700-17900$	$16.95-16.76$
19 m	$15100-15450$	$19.87-19.42$
25 m	$11700-11975$	$25.64-25.05$
31 m	$9500-9775$	$31.58-30.69$
41 m	$7100-7300$	$42.25-41.10$
49 m	$5950-6200$	$50.42-48.39$
60 m	$4750-5060$	$63.16-59.29$
75 m	$3900-4000$	$76.92-75.00$
90 m	$3200-3400$	$93.75-88.24$
120 m	$2300-2500$	$130.43-120.00$
Medium	$531-1602$	$564.97-187.26$
Waves		
Long	$155-281$	$1935-1068$
Waves		

Digital Readout

"Is there a frequency counter on the market that would serve as a frequency readout for my receiver?" asks C. Smith of Pembroke, who admits to being confused by some of the adverts in current literature. The situation is rather confusing, mainly because an ordinary frequency counter will not do the job properly.

A frequency counter adds up the number of complete cycles occurring in a short period of time, and displays the result as the number of kHz (complete cycles in one second $\times 1000$).. It is a marvellous product of modern technology, and on the face of it all one has to do is to join a counter to the receiver. Problems arise though when you try to do this. If you attempt to measure the incoming signal at some point, say at the input to the mixer, then there will be no display at all until you tune in a station! Moreover, there will be problems when measuring weak stations and the counter may get confused if there is interference. Why not measure the local oscillator (l.o.), whose strength is constant (more or less), and which is always generating something that can be measured? This is what is done but you will get an incorrect display because the frequency of the l.o. is not the same as the station the receiver is tuned to. The l.o. is usually higher than the incoming signal by the value of the intermediate frequency (i.f.). For example, if the i.f. is 465 kHz and the receiver is tuned to 6055 kHz then the l.o. will be generating $6055+465=6520 \mathrm{kHz}$. Well, all you have to do is to subtract 465 from the value displayed, but if your mental arithmetic is anything like mine you will soon run into trouble. You could use a pocket calculator but this will be tedious if you are tuning around the band a lot. What you need is a counter that will do the subtraction for you. Such a counter would have an "offset" equal to the receiver's i.f.

Offset Counters

Chips are being produced that can be programmed by means of diodes to give one of a number of offsets. Ambit International (2 Gresham Road, Brentwood, Essex) produce an offset counter based on the OKI MSM5524 while Lowe Electronics (119 Cavendish Avenue, Matlock, Derbyshire) advertise a readout suitable for use with the Trio 9R59D or E. Rocquaine (Aldebaran, Le Coudre, Rocquaine, Guernsey, CI) offer their RG-3 frequency counter kit with an additional p.c.b., the RQ-30M which will "correct for any offset". All of the above advertise in $P W$.

For those wanting to build their own counters, two designs have appeared in Practical Wireless. The PW "Gillingham", published in the October 1978 issue with further information in May 1979, covered the band from medium waves up to 30 MHz . The final page of the original article shows how to connect a counter to the local oscillator, and gives details of a suitable buffer amplifier should one be required. The second design, AM/FM Frequency Readout, appeared in the July 1979 issue and is based on another OKI integrated circuit, the MSM 5526. This unit is intended for the m.f. and v.h.f. broadcast bands only, and may therefore have limited appeal for readers of this column.

It cannot be long before all but the cheapest receivers will be equipped with digital readout. The cost will, to some degree, be balanced by the saving in tuning scales, drive mechanisms and bandspread arrangements. In the meantime, those of us like reader C. Smith will look around to see if there is any way we can up-date our existing gear.

Readers' Letters

Reader Cliff Middieton (Nottingham), who retired recently, has taken up DXing and he writes to say that he would like to be able to choose a country, set up a frequency and know that he is listening to the country of his choice. It is not too difficult to set a receiver onto a precise frequency, either by means of a crystal calibrator or with the aid of digital readout. To guarantee reception on any particular path is another matter. Propagation on the short waves is variable and this is one factor that makes the hobby so interesting. If you could tune in and be certain of perfect reception then DXing would soon lose interest, for me at any rate.
"Could you give me details of the Standard Frequency Transmissions on the h.f. bands?" asks Roger Shepherd of Whitstable, who uses a National Panasonic RF1105 with telescopic aerial. These stations are to be found on $2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}, 15 \mathrm{MHz}$ and 20 MHz , where they can be identified by the continuous clock ticking type of pulses they transmit. They are very useful for receiver calibration. 2.5 MHz is the upper limit of the 120 m band; 5 MHz is within the 60 m band; 10 MHz is at the h.f. end of the 31 m band; 15 MHz below the l.f. end of the 19 m band. These stations have been covered more fully in recent issues of this column especially in October 1978.

Radio New Zealand

Mrs D. L. Bonar (High Wycombe) has a National Panasonic RF2200 Direct Readout receiver and she says "This little portable with telescopic aerial surprises me." DX heard includes South America, Australia and Japan, but New Zealand has still to be logged. It is a difficult country to hear in the UK as the transmitters are low power (7.5 kW) and they are not beamed to Europe.

COMPUKIT UK101 LOW COST

 SUPERBOARD IN KIT FORM
SPECIAL I.C. OFFER INTERSIL 7216A

D.C. to 10 MHz counter/timer. Measures frequency, period, time intervais, etc. Drives 8 digit L.E.D. display direct. Low component count.

```
Normal price over \(£ 21\) +V.A.T. OUR SPECIAL. PRICE INCLUDING FULL DATA, ONLY
£18.95
Including P\&P and V.A.T. Displays available.
```

COMING SOON - 2 metre mobile rig. Fully synth. L.E.D. display. 50 Watt O / P.

ORDER FROM:-

COMTECH.

23B HIGH STREET,
STANSTEAD ABBOTTS,
WARE, HERTFORDSHIRE

SEND ONLY £10.00 DEPOSIT TO RESERVE ONE

A tape of 10 programs on cassette educational games, etc. will be supplied free of charge with each kit.

Simple Soldering due to clear and consise instructions compiled by Dr. T. Berk, BSc.PhD

```
NO EXTRAS NEEDED JUST HIT
``` 'RETURN' AND GO.
```

Build, understand, and program your own
computer for only a small outlay.

```

\section*{only \(\mathbf{£ 2 1 9}\) + vat + del.}
including RF Modulator \& Power supply. Absolutely no extras.

INTRODUCTORY OFFER
ORDER BEFORE JULY 31st AND CLAIM
£10 DISCOUNT

FOR FURTHER DETAILS
Telephone: Harlow (0279) 415717.

The Compukit UK101 has everything a one board 'superboard' should have. * Uses ultra-powerful 6502 microprocessor * 50 Hz frame refresh for steady clear picture (U.S.A products with 60 Hz frame refresh always results in jittery displays)
\(\star 48\) chars by 16 lines -1 K memory mapped video system providing high speed access to screen display mes and graphs. per and lower case alphanumerics, Greek symbols for per and lower case alphanumerics, Greek symbols for characters enabling you to form almost any shape you desire anywhere on the screen.
\(\star \quad 8 \mathrm{~K}\) full Microsoft Basic in ROM compatible with PET, APPLE SORCERER hence taking the headache out of programming by using simple English statements. Much faster than currently available personal computers.
\(\star\) Professional 52 Key keyboard in 3 colours software polled meaning that all debouncing and key decoding done in sottware.
\(\star\) Video output and UHF Highgrade modulator \((8 \mathrm{Mz}\) Bandwidth) which connects direct to the aerial socket of your T.V. Channel 36 UHF.
\(\star\) Fully stabilised 5 V power supply including transformer on board.
\(\star\) Standard KANSAS city tape interface providing high reliability program storage - use on any standard domestic tape or cassette recorder.
\(\star \quad 4 \mathrm{~K}\) user RAM expandable to 8 K on board \(£ 49\) extra. \(\star 40\) line expansion interface socket on board for attachment of extender card containing 24 K RAM and disk controller. (Ohio Scientific compatible).
\(\star 6502\) machine code accessible through powerful 2 K machine code monitor on board.
\(\star\) High quality thru plated P.C.B. with all I.C.'s mounted on sockets.

\section*{FULL CONSTRUCTION DETAILS} IN P.E. AUG 1979 EDITION

Delivery date June 1979
at the 1979 MicroComputer Show Customer orders in strict rotation only.

\section*{Electronics. Make a job of it}

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television: Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

\section*{Become a Radio Amateur.}

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

\section*{British National Radio \& Electronic School}
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

WINDSCREEN WIPER CONTROL
vary speed of your wiper to suit
conditions. All parts and instruc-
MICRO SWITCH BARGAINS
Rated at 5 amps 250 V . Ideal to make a
switch panel for acalculator and fordozens of other applica
oypes) tor \(\mathrm{E}, 25\).

\section*{RADIO STETHOSCOPE} Easiest way to fault find, traces, signal stoos you've found the fault. Use it on Radio, TV, amplifier,
anything. Kit comprises translstors anything. Kit comprises translstors and parts including prom
twin stetho-set \(\& 3.95\).

MULTISPEED MOTORS
Six speeds are available 500,800 and 1,000
r.p.m. and \(7,000,9,000\) and 11,000 r.p.m. Shait is \(\frac{t}{2}\) in, diameter and approximately 1 in. in. Long.
230 . 240 V its speed 230/240 \({ }^{2}\). Its speed may be further contronged
with the use of our Thyristor controller. Very powerful a ad useful motor sizal
dia. \(\times 5\) in. Iong. Price \(£ 2.50\)

6 DIGIT COUNTER One pulse at mains voltage
moves 1 digit not resettable-
real bargain 50 p . real bargain@ 50p.

\section*{MAINS BLOWER} The Torrin-quiet but powerful
outlet size \(2 \frac{1}{2}\) qut \(1 \frac{1}{4}\) for coling equip-
ment etc. will extract of outiet is ment etc. will extract of
blowing outwards price \(£ 5.50\). Other models from f2.00.

INDUCTION MOTORS

\section*{EXTACTOR FAN} Ex computers-made by Woods
of Colchester. ldeal for fixing
through panel-reasonably quiet running-wery powertul 2500 rpm .
Choice of two sizes \(5^{\prime \prime}\) or \(6 \frac{1}{2}\) "dia. Choice
f5. 66.

MAIN RELAYS
With triple 10 amp changeover contactsoperating coil wound for 230 V a.c. Chassis
mounting one screw fixing. Price \(\boldsymbol{E 1 \cdot 2 5}\).

BURGLAR ALARM ITEMS
(Circult free on application)
Trigger mats \(24^{\prime \prime} \times 18^{\prime \prime}\)

\section*{Relay 24 volt}

Alarm Bell 24 volt
Mains
Reset, Switch, ordinary
Secret type with
Wire-100 metres

\section*{MERCURY BA}

Bank ol 7 Mercury cells type 625
which are approx. fin. fiameter
by Fin: thick in plastic tube
ond
gying a total of 10.7
Being in a
break up the battery into is very easy to and use these for radio control cells
similar equipment. Carton similar equipment. Carton of 25 batteries
\(⿷ .1 .60\)

\section*{PP3/PP9 REPLACEMENT}

Japanese made in plastic container with
leads size 2 in. \(\times 1\) in. \(\times 111 n\), this is ideal to power a caliculator or radio. It has a full wave rectifier and smoothed output of \(9 V\)
suitable for loading of up to 100 mA . \(\mathbf{\Sigma 2} \mathbf{5 3}\).

\section*{MAINS TRANSISTOR PACK}

Designed to operate transistor sets and amplifiers. Adjust Takes the place of any of the following batteries: PP ?
T , PP , PP4, PP5, PP7, PPg and others. Kit comprises: mains iransformer, rectifier, smoothing and load resistor, condensers
and instructions. Real snip at only \(£ 1.95\).

DRILL CONTROLLER
Electronically changes speed trom approximately 10 revs to
maximum. Full power at all speeds by finger-tip control speeds by finger-tip control
kit includes all parts, case everything and full instructions., Made up model \(£ 100\) extra

\section*{8 POWERFUL}

BATTERY MOTORS
For models, Meccanos, drills, remote
control planes, boats, etc. \(\mathbf{A R}\).

\section*{ROTARY PUMP}

Self priming, portable, fits drill or elec tric motor, pumps up to 200 gallons per hour depending upon revs. Virtually
uncorrodable, use to suck water, oil, uncorrodable, use to suck water, oilt,
petrol, fertiliser, chemicals, anythins
hiquid. Hose connectors each end,

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives
really amazing results. You will receive an amazing assortment of stations over the 10. 25, 29, 31 metre bands. Kit contains chassis front
panet and all the parts 81.94 crrstal
earphone 55 p including \(V A T\) and MULLARD UNILEX A mains operated \(4+4\) stereo
system. Rated one of the fines performers in the stereo field this would make a wonderful gitt or almost anyone in easy-to assemble modular form and complete with a pair of speakers his should sell at about \(f 30-\)
 but due to a special bulk-buy and as an incentive for you
buy this month we offer the sy including VAT and postage.

\section*{HUMIDITY SWITCH}

American made by Honeywell. The action of this device depends upon the dampiness sensitive micro-switch, quide sensitive breathing oin it for instance will switch it on

DELAY SWITCH
Mains operated-delay can be acderiods of up to \(2 \frac{1}{2}\) hrs. 2 contacts suitable to switch 10 amps-second contact opens few minutes after ist contact \(\mathbf{E 1} \mathbf{5 0}\)

25A ELECTRIC PROGRAMMER
Learn in your sleep. Have radio playing and kettle boiling
 lights to ward off intruders-have a warm house to come home to. you can do if you invest in an
electrical programmer Clock by electrical programmer Clock by
famous maker with 15 amp on/off
switch. Switch-on time can be switch. Switch-on time can to
set anywhere to stay on up to 6
hours independent 60 minute memhours independent 60 minute mem-
ory jogger, A beautiful unit. \(£ 4.50\)

\section*{MULLARD AUDIO AMPLIFIERS}

Alt module form, each ready bult complete with heat
 power, output \(£ 1 \cdot 69\).
Model \(1175-10\) watts power outpute3.g4 Modet 11721 iW , power output \(\mathrm{E2} 25\). 94
Model EPSOOO 4 watt power ouput \(£ 290\) EP 9001 twin channet or stereo pre-amp
£2 90 .

Absolutely brand new, in fact still in the makers packing cases. The \(\mathrm{H} \dagger 200\) primarily is a VDU with Ascii Keyboard, but it has many features which makes it ideal for almost any application from main frame to home MPU systems. Main features are:

\section*{1920 Characters (80 c 24 lines) \\ V24/RS232 Interface}

Selectable Baud Rates (110-9600)
Local, Half or Full Duplex Screen Size 12" Diagonal 55 Key TTY Format Keyboard Automatic Scroll UP Parity Error Indication Ascii Code Full Service Manual Available
Export and Trade enquiries welcome.
Sorry our quantity price does not apply to these but we welcome trade enquiries and where possible some small discount will be given, Price for the Terminal \(\mathbf{£ 3 5 0}+\) f24 Carriage.
SOUND TO LIGHT UNIT Add colour or white light to your
amplifier. Wil operate, 2 or 3 lamps
(maximum 450 w) (maximum 450 W
to work. \(£ 995\).

MINI-MULTI TESTER Amazing, deluxe pocket size
precision moving coil instrument jewelled bearings-10 11 instant ranges measure:-
DC volts \(10,50,250,1000\) C
C volts \(10,50,250,1000\)
volts \(10,50,250,1000\) \(A C\) volts \(10,50,250,1000\)
\(D C\) amps \(0-1 \mathrm{~mA}\) and \(0-100 \mathrm{~m}\) Continuity and resistance \(0-150 \mathrm{~K}\) Complete with insulated probes, leads, battery, circult diagram
and instructions. Unbelievable value only \(\mathbf{£ 6} \cdot 50+50 \mathrm{p}\) post FREE Amps ranges kit enable you to read DC current from quickly but if you already own a mini tester and would like one send E1-50p.
TERMS : Cash with order-but orders under \(\mathbf{5 6}\) must add 50p to offset packing, etc.
BULK ENOUIRIESINVITED. PHONE: 01-688 1833.

\section*{J. BULL (ELECTRICA) LTD \\ (Dept. PW), 103 TAMWORTH RD., CROYDON CR9 1SG}

\section*{IT'S FREE}

Our monthly Advance Advertising Bargains List gives which sell out before our advertisement can appeargains an interesting list and it's free-just send S.A.E. Below TELEPHONE ANSWERING MACHINES
We supply these machines on the understanding th up or at least not used for their ofiginal purpose. The machines are second hand but so far as we can see they are complete and quite possibly in good working order. We do not test them but guarantee to replace any part of the machine should it be missing Thia Mo.
This Month's Snip is a brand new two piece intercom. with 50 ft inter-connecting lead. Master station and sub-station in heat alarm etc. These are new stock but some we understand may need slight attention. Offered at half regular price only \(£ 3.74\). Portable Fiuorescent Lamp Ideal for camping but really a must
for you if you are a motorist. You never know when you nead a light and unlike the average torch this lamp will illuminete the whole engine. With a lead which you can plug into the car lighter socket thus its saving internal batteries. A real bargain complete with \(9^{\prime \prime}\) tube ready to operate. Price \(£ 7.99\).
Setting up a Weather Station? We have two only professional Anemonitors. Quite complets i.e. a generator whits rotating ment which directly indicates wind speeds of up to 100 mph . Furthermore there is a facility for setting off an alarm should the wind speed reach a pre-determined level (adjustable) say 80 mph These are brand new and complete,with handbook. Price \(£ 189\). Enamelled Copper Wire Available on one pound reels or four ounce reels. We keep a stock of even numbered sizes but will also
get odd numbered sizes to order. Price for \(10,12,14,16,18\) SWG \(£ 2.70\) per pound, 81 per quarter pound. \(30,32,34\)
\(\mathbf{£ 3 . 2 4}\) per pound. \(36,38,40 £ 3.78+28 p\) per pound, \(\mathbf{f 1 . 2 6}\) per. quarter pound. Thinner sizes also available to order price on request.
Want a Cheap Electric Fan We can offer the \(\mathbf{1}^{\prime \prime}\) stack induction piece of hiandy angle and you will be zble to keep yourself cool this summer.
Want a Million Resistora These are \(\frac{1}{4}\) watt, 1 watt and 2 watt
types, all neatly packed in boxes with values clearly marked Resistors themselves are colour coded and vare perfactly standard. not every value of the range is included but they are reasonably value. Ideal stock for retail shop or service depot. Price \(\mathbf{f 1 , 0 0 0}+\)
VAT.

Service Engineers Assortment I.F.'s and OSC Coils Standard for many Jap and Hong Kong portable radios and cassentes Heating Pal \(11^{\prime \prime} \times 8 t^{\prime \prime}\) wo
Heating Pad 11 " \(\times 8 \frac{1}{4}\) ", wafer thin 250 watt. Price £1-16.
Heat and Light Lemp 500 watt tubular like a short fluorescent
tube, ideal for paint drying etc. Price \(£ 3.95+20\) p, post and special packing \(\mathrm{E} 1 \cdot 25\).

\section*{Radiom.
£28.12.}

Car Radio L \& M and with F.M. good quality, Far Eastern make 12 volts. Price \(£ 19.95\)
Mains Tranaformer 30 volts 2 amp secondary upright moun-
ting, primary and secondary wound on separate ditional safety price \(\mathrm{f3} 84\) wound
Relay Plug in, 3 changeover in clear plastic case 12 volt D.C. or
25 volt A.C. or 3 voli \(D . C\).) same price. Morcury Operated Switch Glass enc \(12^{\prime \prime}\) very flexible leads. Price \(£ 1 \cdot \mathbf{6 2}\).
Special Multi-Core Cables 14.0076 cores. PVC insulated and colour coded and each core with metal screen, PVC outer cover. The
\(\mathbf{£ 1 5} 15,12\) core \(£ 1 \cdot 50\). All per metre + VAT. Cut to any length, ter
0-1mA Panel Meter Flush mounting and in a waterproof case made for American equipment, scale divided into zones but not Tape Head Cleaners Suitable for any cassette or reel to reel
machine, special fluid (Isoproypl alcohol) in felt tipped dispenser. Price 35p. Price 35p
Uniselector Base mounting Tamsa 9 pole 12 way 50 volt opera-
tion. Price \(£ 4.86\). Plug in Unisale
Plug in Unizelector Ref No: AP 212958 definitely a piece of wide \(\times 1^{\prime \prime}\) thick, plugs into a 20 pin base. Probable cost would be
at least f 20 each. We only have a few 5.40 at least \(£ 20\) each. We only have a fow. \(\mathbf{£ 5 . 4 0}\).
Redoing Your Living Room? If you are thinking of making a log
effect fire piace. we have the fibre glass tops which effect fire piece. we have the fibre glass tops. which when lit up
give the fulr log effect. Size approximately \(17^{\prime \prime} \times 10 \frac{1}{2}\). Price
2.35 . e2. 35 .
Papst Motors Sometimes described as the motor with the built and in other equipment where wow and flutter has been reduced to a minimum. We have five different motors in stock, these gre quote their type numbers but we have no other technical information. Price includes the capacitor required.
\(H S Z 20.50-4-5400\) dual voltage \(125 / 22\)
\(\begin{array}{ll}\text { HSZ } 20.50-4-2550110 V 50 / 60 \mathrm{~Hz} & \text { Price } £ 7.50+60 \mathrm{p}+50 \mathrm{p} \text { p.p. } \\ \mathrm{£5}+44 \mathrm{p}+50 \mathrm{p} \mathrm{p.p}\end{array}\) \(\begin{array}{lll}\text { HSZ 20.50-4-2550 } 110 \mathrm{~V} & 50 / 60 \mathrm{~Hz} & \text { £5.50 }+44 \mathrm{p}+50 \mathrm{p} \text { p.p. } \\ \mathrm{KZZ20.50-4-5400} \mathrm{220V} & 50 \mathrm{~Hz} & \text { £7.50 }+60 \mathrm{p}+80 \mathrm{p} \text { p.p. } \\ \text { KLZ20.50-4-4250 115V } & 60 \mathrm{~Hz} & \mathbf{£ 5 . 5 0}+44 \mathrm{p}+50 \mathrm{p} \text { p.p. }\end{array}\)
 Battery Condition Teater Suitable for most betteries. That is
zinc carbon types, mercury, manganese, nicad, silver oxide and
 ed "Replace' "Weak' or "Good etc. Complete in case, size ap-
proximately \(3 \frac{3}{4} " \times 6 \frac{1}{2} \times 2^{\prime \prime}\) with leads prods and instructions. proximately \(3 \frac{34^{\prime \prime}}{} \times 6 \frac{1}{2^{\prime \prime}} \times 2^{\prime \prime}\) with leads prods and instructions. Price £5.95.
Torque Motors Elico (USA make) ref no: \(\mathrm{NCH3} / 11600\) 1/30
horse 150 V 50 Hz brand new condition Unused spare for horse 150 V 50 Hz brand new condition. Unused spares for comTwo Track Recor
with separate erase head. Special offer this month \(£ 1.08\). Cassette Mechanism Jap made to rigid specification. These will fit many music centres and cassette players. Chassis size approx.
\(4 \frac{1}{2}\) wide \(\times 51^{\prime \prime}\) deep. 6 V motor and tape position counter at the \(4 \frac{1}{2}\) " wide \(\times 51^{\prime \prime}\) deep. \(6 V\) motor and tape position counter at the
rear. The six !evers' for 'play', 'fast forward', 'rewind', 'stop'. ear. The six . .evers for 'play', 'fast forward', 'rewind', 'stop'.
record' and 'eject' are all at the front, as is the auto mechanism to stop the motor when tape end is reached. These ere new and unused and have stereo heads. Limited quantity, Price £15.25. COOKER CLOCKS
All are less knobs and glass fronts, but you will no doubt be able
to take these from the clock you are replacing. Replacements for Tricity and other well known cookers, thesegre also suitable for other timed switching oparations, all are 230/40 working, with switches rating at \(25-30 \mathrm{amps}\) famous makes. Cat. No. 5856 L 40 amp, farge clear dial size \(5^{\prime \prime} \times 3 z^{\prime \prime}\) ap-
proximately. Made by Lux Time Canada to This proximately. Made by Lux Time Canada Ltd. This has a normal Cat. No. DDS \(0863 / 2\) made by Smiths, dial size approximately \(40^{\circ} \times 3^{n}\) this has the ciock on the right hand side and the stop and start switches on the left hand side. There is no minute
minder. Price \(£ 1.62+12 \mathrm{p}\).
A. D. Scholifield (South Shields) has been listening to the new RNZ outlet on 17770 kHz between 0630 and 0815 with QRM at times from Radio RSA. He also picked up the transmission on 15345 kHz on one occasion at 0340 . Details of receiver and aerial were not given. Reception reports to RNZ should go to the Overseas Programmes Manager, RNZ, PO Box 2092, Wellington, NZ accompanied by two IRCs.

\section*{The B40 Receiver}
"I must tear you off a strip for advising John Markey to connect a 50 pF variable across his B40 r.f. stage. Severe misalignment would be the result," writes A. J. Dixon from Weymouth, who goes on to say that the anticrossmodulation control on this set is a pretty useless gimmick and is best removed. Well, the capacitance will only be 50 pF when the vanes are fully meshed; in the minimum position there should only be a few picofarads in circuit. The anti-crossmodulation control, which must be unique on receivers, applies an adjustable positive potential to the control grid of the first r.f. valve and this should, I think, have some effect on crossmodulation. Has anyone tried using this control? Perhaps it was intended for use in close proximity to a transmitter such as would occur on board ship. Reader Roderick Williams would like to form a club for B40 owners, replies direct to Roderick please, who lives at 54 Woodlands Avenue, Talgarth, Brecon, Powys LD3 0AT, not forgetting to enclose return postage.

\section*{by Ron Ham BRS15744}

Although no major v.h.f. disturbance took place between April 18 and May 21, my readers, as usual, concentrated their efforts on the many less important events which often occur and may otherwise have passed by unrecorded, showing once again that the v.h.f. bands are never dull.

\section*{Solar}

An eleven-day period of solar activity began on April 24 when Cmdr Henry Hatfield; Sevenoaks (on 136MHz) and myself (on 146 MHz) recorded a mild noise storm followed by four days of small, short-duration bursts. Further noise storms were recorded on April 29 and May 1 and a few individual bursts again on the 4th and 5th. Robin Knight, South East Essex Astronomical Society, recorded solar noise at 60 MHz on April 29 and at 134 MHz when they were testing their new radio telescope. Henry Hatfield received three bursts of solar noise at 1296 MHz between 0800 and 1000 on the 30th and, later in the day, he saw five sunspot groups with his spectrohelioscope, two of which were large groups accompanied by five long filaments and two arched filaments. Henry saw another arched filament on May 2 and was delighted
when, at 1250 , he recorded a burst of noise at both 1296 and 136 MHz giving him his first positive correlation between these two widely-separated radio frequencies.
The 134 MHz instrument now in use by SEEAS comprises a Yagi aerial, home-brew BFW 10 f.e.t.pre-amplifier, Microwave Modules converter, an early Eddystone communications receiver, followed by a 741 d.c. amplifier driving an Evershed and Vignoles pen recorder. Robin Knight told me that the members of SEEAS all thoroughly enjoyed Henry Hatfield's talk, early in May, about his spectrohelioscope and radio telescopes. Further bursts of solar noise were recorded on May 12, 14 and 19 at 136 and 146 MHz , and at 1500 on the 18 th a 10 minute burst was recorded at 60 MHz .

The brief auroral event during the late afternoon of April 25, reported by John Branegan GM8OXQ, Saline, Fife, was no doubt caused by the solar storm on the previous day.

\section*{The 10 Metre Band}

The solar activity also upset the 10 m band, because frequent checks between 0700 on the 22 nd and 1100 on the 24th, found the band dead, as it was at midday on the 25 th and early on the 26 th. Strange things were happening, because at midday on the 26th and early on the 27th, the only signal I heard on 10 m came from the Cyprus beacon, 5B4CY. The band was also dead during the early mornings on the 28th, 29th and 30th, confirmed by Ron Nugent G2FTS, Polegate, Sussex, yet, at times on these days it would open up, as Steve Harris RS41444, Goring-by-Sea, Sussex, pointed out. During the evening of the 29th he received strong c.w. signals from PY2ZBO and PY5EG. While in France, Steve held the call-sign F6LUC, and now, at home he enjoys listening on the DX bands with a Trio 9R59D fed with a Hygain, 18 AVT/WB-A vertical aerial. For portable use he has a National Panasonic DR28, which he also uses for Band II DX.

Gordon Goodyer, Petworth, has changed his rig to a Drake R4B, fed with a long wire in the loft for 80 m and a dipole for 20 and 10 m , and is delighted with the set's performance on all bands. Neil Clarke BRS34306, Knottingley, West Yorks, has heard strong signals from the Mauritius beacon, 3 B 8 MS , on its new frequency, 28.210 MHz and, like myself, has frequently heard the beacons in Bahrain A9XC, Cyprus 5B4CY and much less frequently, the German beacon, DLOIGI. Neil also reports hearing a new beacon around 1700 on 28.315 MHz , sending its call-sign, ZS6DN, every 18 seconds. Strong signals, often peaking 599 , were heard from the Cyprus beacon around 1300 on April 27 and 30, May 3, 4, 10, \(13,14,16\) and 18.

\section*{From the USA}

John Keegan is now back in Steyning, Sussex, after a 6 month business trip to New York. While there, John used a 40 -channel scanner for CB listening and often heard families returning home in their cars, with mum, at home, as base station net controller. "It's not uncommon" said John, "to see homes with high, ground-plane aerials for their 5 watt rigs, or notices on highway bridges telling motorists which CB channel to use if help is required." Like most of us, John has mixed feelings about CB, because, at times, in the cities the band is unusable through overcrowding. "On the other hand," he said "it's a godsend on the highway, if you are in real trouble, like a puncture, breakdown or witness an accident, you reach for your CB and call 'Smokey' for help".

\section*{DXTV}

With the 1979 sporadic-E season close to hand it was not surprising to see bursts of test card from Poland on Channel R1, 49.75 MHz , at 0815 on April 24,0752 on the 27 th, and 0807 on May 2. At midday on May 18, I feel sure an F2 opening to Scandinavia occurred, because I received strong test cards from Norway, Melhus, on E2 and Sweden, TV1 on E3 but none of the usual evidence of Sp.E. This event gave me a chance to try my new National Panasonic T5001G, with a vertical dipole on the European v.h.f TV band, channels \(2-4,48-68 \mathrm{MHz}\), and I am very pleased with its performance. Ian Roberts, Glenstantia, Rep. South Africa, writes "F2 has been monitored as usual and has been quiet of late, but suddenly picked up on April 23 with Spain on E2 and Italy on 1A. On the 24th, Spain was again very strong." Many thanks for the report Ian, and congratulations on passing your Morse test.

The first real sporadic-E disturbance of 1979 took place during the afternoon of May 21 when John Matthews G3WZT, Horsham, worked YU and SV on 2 m s.s.b. and Ian Rennison, also in Horsham, received Italian Television pictures on his JVC 3040 and heard many Italian f.m. broadcast stations in Band II. Peter Penfold in nearby West Chiltington, also using a 3040, watched Italian adverts, Guy Stanbury received pictures from Rumania and Spain, and I saw a cartoon film from Poland on Channel R1.

\section*{CQ Air Cadets}

David Whitfield, G8RVK, Worthing, is busy building a unit to change his 2 m Yagi from horizontal to vertical and back again and hopes in the near future to start constructing gear for 10 GHz . David, himself a Sergeant cadet in the Worthing 45 F squadron, ATC, wishes to contact any readers who are also in the Air Training Corps with a view to having skeds with them and possibly a regular net.

\section*{DX Ladder?}

John Cleaton G4GHA, Wareham, Dorset, uses a Trio 700S and a linear to a 6 -element quad aerial and gets a great deal of enjoyment just listening around the bands. John also suggests that we should run a Countries or QRA Squares ladder; what about it readers? Let me know how you feel on this one.

\section*{Satellites}
"OSCAR 7B is working well" writes John Branegan, "I have quite a few QSOs with old and new friends. OSCAR 8J is as good as ever" and several new stations have come on who John hopes to work. All of them, old friends and new, will have to get used to a new call-sign because he has passed his Morse test and by now may be a GM4.

\section*{Tropospheric}

Throughout the period, April 18 to May 20, v.h.f. conditions were generally good, because, for at least 23 days, the atmospheric pressure was above 30.0 in and at times reached 30.4 in . Continental broadcast stations were just audible in Band II on April 21, amd I received pictures from Lichfield on Channel \(8,189 \mathrm{MHz}\), and strong signals through the Bristol Channel repeater GB3BC, R6. On the same day, Alan Baker G4GNX, Newhaven, was working into France on 2 m s.s.b., and between 1300 and 1600 on the 22 nd he made c.w. contacts on 2 m with

ON5FF, ON5UN and F6FDR. At 2022 on the 27th, F6AID worked Alan via the Brighton repeater GB3SR, R3, and around 2200 on the 29th, Ron Nugent, Dermot Cronin G4GRO, on the Royal Sovereign Light and G4GNX had a round-table QSO, first among themselves and then with F1FHA in Paris via GB3SR.

Conditions were good on May 5 and 6 for a Continental 2 m contest and during the evening of the 5th, G4GNX worked F1ENH/P, two ONs and a PA0 on 2 m s.s.b., and ON7DV on c.w. John Cooper G8NGO, Cowfold, Sussex, worked 23 stations, including four ONs, three PAOs, a DJ and PA0NIE/LX/P in Luxembourg on s.s.b. during the same event. John is eagerly awaiting QSL cards for his many contacts on 2 m because he is after the QRA Locator Square Award offered by the RSGB.

I heard an interesting QSO during the early afternoon on May 9 between EA2OZ/MM aboard ship in the English Channel and G8PTC/push-bike mobile, near Croydon, through the Hampshire repeater GB3SN, R5. On May 13, John Cooper worked 29 French stations and a GU, all with 12 watts, and heard DJ and PA0 on 2 m s.s.b. Both Derek Knight, Storrington, Sussex, using a Sharp stereo and John Bugler, Wimborne, Dorset, using a Grundig Yacht Boy, reported that Band II was open to the Continent and northern UK for most of the 13th and 14th. Also on the 14th, I heard signals through the Malvern Hills repeater GB3MH, R3 and a QSO between G8PMU, Hornchurch, Essex and G8RAL/P, Southend, via the Bristol Channel repeater. F3NW and G4GNX took advantage of these conditions for a QSO through the new French repeater FZ2VHF, at Boulogne on R5. By now this repeater, situated some 210 metres a.s.l., should be running about 50 watts and your reports will be welcomed by F2XO and F3NW, QTHR.

\section*{BBC Programme for Sussex Amateurs}

Seven members representing the Brighton and District Radio Society, the Mid-Sussex Amateur Radio Society and the Worthing and District Amateur Radio Club met producer Ian Collington at the studios of BBC Radio Brighton on May 14 to inaugurate a fortnightly programme for radio amateurs in the Radio Brighton area.

A joint broadcasting committee consisting of one delegate from each club was formed and the first programme, aptly named Call-Sign and presented by Ron Ham, was then recorded and transmitted at 1848 on the 16 th. Future programmes of ten minute duration will be planned by committee members, Nigel Hewitt G8JFT, Brighton, Jack Brooker G3JMB, Mid-Sussex and Bob Jones G3YIQ, Worthing and presented by Ron Ham.

First recording of Call-Sign in the Radio Brighton studio. Left to right . . . Ron Ham and lan Collington and programme guests, Eric Godsmark G5CO, Alan Baker G4GNX and Ron Kingstone G4HHB

\title{
THREE FOR ER
FROM CSC
}

\section*{ELECTRONICS BY NUMBERS}

\section*{LED BAR GRAPH UNIVERSAL} INDICATOR
Now using EXPERIMENTOR BREADBOARDS and following the instructions in "Electronics by numbers" ANYBODY can build electronic projects.
Look at the diagram and select R1, this is a resistor with a value between 120 to 270 ohm. Plug it into holes \(\times 20\) and D20, now take LED 1 and plug it into holes E20 and F20. Do the same with the Diodes e.g. plug D7 into holes G7 and G10.

\section*{YOU WILL NEED}

EXP- ANY EXPERIMENTOR BREAD-
BOARD
D1 to D15 - Silicon Diodes (such as 1N914) R1 to R6 - From 120-270 ohm resistors \(1 / 4\) watt.
LED1 to LED6 - Light emitting diodes.
LED BAR GRAPHS are replacing analogue meters as voltage-level indicators in many instances.
This circuit uses the forward voltage drop of diodes to determine how many LEDs light up. Any type of diode can be used but you must use all the same type. For full working details of this circuit fill in the coupon. If you have already built the Two-transistor Radio and the Fish'n'cliks projects you will find that you can reuse the components from these projects to build other projects in the series.

FILL IN THE COUPON AND WE WILL SEND YOU FREE OF CHARGE FULL COPIES OF "ELECTRONICS BY NUMBERS" PROJECTS No 1, No 2 and No 3.

\section*{PROTO-CLIP TEST CLIPS.}

Brings IC leads up from crowded PC boards. Available plain or with cable with clips at one or both ends.

PC-16 pin. £2.75. PC - 16 pin with cable
 £6. 00 .
PC -16 with cable and 16 pin clips at both ends. \(£ 10.25\).

Europe, Africa, Mid-East: CSC UK LTD. Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB1 13 AQ . Telephone: SAFFRON WALDEN 21682. Telex: 817477.

\section*{EXPERIMENTOR BREADBOARDS.}

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts 8,14,16 and up to 22 pin IC's. ONLY \(£ 1.60\).

EXP.350. . £3.15.
270 contact points with two 20-point bus-bars.

EXP. 300. 550 contacts with two 40-point bus-bars.
 £5.75.

EXP. 650 for Micro-
processors. \(\mathbf{£ 3 . 6 0}\).

EXP 4B.
More busbars.
- Mi mbin bili hit him tin mis £2.30.

ALL EXP. 300 Breadboards mix and match with 600 series.

PROTO-BOARDS.
THE ULTIMATE IN BREADBOARDS FOR THE MINIMUM COST.
TWO EASILY ASSEMBLED KITS.

PB. 6 Kit, 630 contacts, four 5-way binding posts accepts up to six 14 -pin Dips.
PROTO-BOARD 6 KIT. £9.20.

PB. 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80.

HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT, FISH'N'CLIKS AND LED BAR GRAPH.
CSC UK LTD. Unit 1, Shire Hill Industrial Estate, Saffron Walden, Essex CB11 3AQ
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or credit card number and expiry date. OR telephone 079921682 and give us your Access, American Express or Barclaycard number and vour order will be in the post that night. EXPERIMENTOR. CONTACT HOLES. IC CAPACITY UNITPRICE BREADBOARDS. 14 PIN.DIP. INCLUDINGPOST AND V.A.T.
\begin{tabular}{lc}
EXP. 325 & 130 \\
EXP. 350 & 270 \\
EXP. 300 & 550 \\
EXP. 650 & 270 \\
EXP. 4B. & Four 40 Point \\
Bus-Bars
\end{tabular}
\begin{tabular}{cc}
1 & \(£ 2.53\) \\
3 & \(£ 4.21\) \\
6 & \(£\) \\
use with 0.6 & \(£ .29\) \\
pitch Dip's & £ 4.69 \\
Bus-Bar Strip & \(\mathbf{£} 3.29\)
\end{tabular}

TEST CLIPS
PC. 16.
f 3.78
PC. 16-18
PC. 16-18 Dual Clip
PROTO-BOARDS.
PB. 6.
630
6
£ 7.56

PB. 100
760
10
£11.01
£13.82

NAME
ADDRESS

\section*{FILL IN COUPON \& RECEIVE FREE COPY OF ELECTRONICS BY NUMBERS PROJECTS Nos 1, 2 AND 3}
\begin{tabular}{|c|}
\hline TTLs & BY T & XAS & & 74221
74251 & \[
\begin{aligned}
& \text { 460p } \\
& \text { 140p }
\end{aligned}
\] & \begin{tabular}{l}
74LS 192 \\
74LS43
\end{tabular} & \[
\begin{aligned}
& 140 \mathrm{p} \\
& 1400 \mathrm{l}
\end{aligned}
\] & \[
\left\{\begin{array}{l}
74 \mathrm{C} 157 \\
74 \mathrm{C} 160
\end{array}\right.
\] & \begin{tabular}{l}
\(7 \quad 250 \mathrm{p}\) \\
\hline 55 p
\end{tabular} & *AY1.0212 600p & & & AC127/8 & \[
200
\] & & & TIP41C TIP42A & \[
\begin{aligned}
& \text { 78p } \\
& \text { 70p }
\end{aligned}
\] & \[
\begin{gathered}
2 N 3903 / 4
\end{gathered}
\] & \[
\begin{aligned}
& 30 p \\
& 18 p
\end{aligned}
\] & DIODES
*BY127 12p \\
\hline 7400 & 13p & & 180p & \[
\begin{aligned}
& 74251 \\
& 74259
\end{aligned}
\] & \[
\begin{aligned}
& 140 \mathrm{p} \\
& 250 \mathrm{p}
\end{aligned}
\] & \begin{tabular}{l}
74LS 593 \\
74LS195
\end{tabular} & \[
\begin{aligned}
& 140 \mathrm{p} \\
& 140 \mathrm{p}
\end{aligned}
\] & \[
\begin{aligned}
& 74 \mathrm{C160} \\
& 74 \mathrm{C} 161
\end{aligned}
\] & \(\begin{array}{ll}155 p \\ 155 p \\ 1 & \\ 155\end{array}\) & AY100212 600p
- AYY-1313 6680 & - MC1496 & 100p
120p & AC127/8' & \[
\begin{aligned}
& \text { 20p } \\
& \hline
\end{aligned}
\] & BFY51/2 & \[
\begin{aligned}
& 22 p \\
& 330
\end{aligned}
\] & TIP42A & \[
\begin{aligned}
& 70 \mathrm{p} \\
& 82 \mathrm{p}
\end{aligned}
\] & \[
\begin{aligned}
& * 2 \mathrm{~N} 3903 / 4 \\
& { }^{2} \mathrm{~N} 3905 / 6
\end{aligned}
\] & \[
\begin{aligned}
& \text { 18p } \\
& 20 p
\end{aligned}
\] & \[
\begin{array}{ll}
\text { *BY127 12p } \\
\text { *OA47 } & \text { 9p }
\end{array}
\] \\
\hline 7401 & 14p & 74100 & 130p & & & 74 LS 196 & 120p & & 155p & *AY1-5050 212p & -MC3360 & 120p & AD149 \({ }^{\text {A }}\) & \({ }^{70 p}\) & & & TJP2955 & 78 p & - 2 N 4036 & 65 p & -0A81 15p \\
\hline 7402 & 14p & 74104 & \(65 p\) & 74278 & 290 & 74LS221 & 1000 & 74 C 163 & 3155 p & AY5-1224A225p & * MFC4000 & 120p & & 11p & BLY83 & 700 p & TIP3055 & 70 p & *2N4058/9 & 12p & -OA85 15p \\
\hline 7403 & 14p & 74105 & 65 p & 74279 & 140 p & 74LS240 & 175p & 74 Cis 4 & 4 120p & *AY5-1315 600p & MK50398 & 750p & BC109 & 110 & BRY39 & 45p & "T1S43 & 34p & *2N4060 & 12p & * OA90 \% \\
\hline 7404 & 17 p & 74107 & 34 p & 74283 & 1900 p & 74 LS 241 & 175 & 74 C 173 & 3120 p & *AY5-1317 636p & NE531 & 130 p & \({ }_{*}^{\text {BC109 }}\) & \(11 p\) & BSX19/2 & \({ }_{20 \mathrm{p}}^{45}\) & -TIS93 & 30 p & *2N4061/2 & 18p & * OA 91 9p \\
\hline 7405 & 18 p & 74109 & 55 p & 74284 & 400 p & 74 LS 242 & 175 p & 74 C 174 & 4 160p & *AY5-1320 320p & *NE540 & 200p & \({ }^{*}{ }^{\text {BCC147/8 }}\) & 10p & *BU105 & 190p & *ZTX108 & 12p & *2N4123/4 & 22p & * 0495 9p \\
\hline 7406 & 32 p & 74110 & 55p & 74285 & 400 p & 74 LS 243 & 175 & 74 C 175 & 5 210p & & NE543K & 225p & *BC149 \({ }^{\text {*SC157/8 }}\) & \({ }_{10 \mathrm{p}}^{10}\) & *BU108 & 190p & *ZTX300 & 11p & *2N4125/6 & 22p & *OA200 9p \\
\hline 7407 & 32p & 74111 & 70p & 74290 & 150 p & \(74 L S 245\) & 175 & 74 C 192 & \(2{ }^{2} 150 \mathrm{P}\) & *CA5046 70p & NE555 & 25 p & *BC159 & 11p & -BU205 & 220 p & - ZTX 500 & 15p & 2N4289 & 20 p & *OA202 10p \\
\hline 7408 & 19p & 74116 & \(200 p\) & 74293 & 150 p & 74LS251 & 200 p & 74C193 & 3150 p & \({ }^{\text {- CA }}\) - \({ }^{\text {22504 }}\) & NE556 & 70 p & *BC169C & 12 p & * BU208 & 240p & \({ }^{*}\) ZTX 502 & 18p & -2N4401/3 & 27p & *1N814 4p \\
\hline 7409 & 19p & 74118 & 130p & 74294 & 200p & 74LS257 & 120p & 74 C 194 & \(4{ }^{220} \mathrm{p}\) & A308080 \({ }^{\text {225p }}\) & NE561 \({ }^{\text {N }}\) & 425p & *BC169C & 12p & - BU406 & 145p & *ZTX504 & 30p & \({ }^{2} \mathrm{~N} 4427\) & 90p & *1N916 7p \\
\hline 7410 & 15p & 74119 & 210p
\(110 p\) & 74298 & 200p & 74LS259 & 175 & 74 C 195 & 5 110p & - САЗ3089E 225p & NE562B & 425 p & & 12p & MJ481 & 175p & 2N457A & 250p & \({ }^{2} \mathrm{~N} 48771\) & 60 p & *1N4148 4p \\
\hline 7411 & \({ }_{20 \mathrm{p}}{ }^{\text {24p }}\) & 74120
74121 & \({ }_{\text {110p }}\) & 74365 & 150p & 74LS298 & 249 p & 74 C 221 & 1715 p & \({ }^{*} \mathrm{CA} 309040375 \mathrm{p}\) & NE565 & 130 p & & 17 p & MJ491 & 200 p & 2 N 696 & 35p & \({ }^{*} 2 \mathrm{~N} 5087\) & 27p & \(1 \mathrm{~N} 4001 / 2 \mathrm{pp}\) \\
\hline 7412
7413 & \({ }^{20 p}\) & 74121
74122 & \({ }^{28 p}\) & 74366 & 150 p & 74LS373 & 2000 & 4000 S & SERIES & CA3130S 100p & NE566 & 155 p & & 18p
10 p & M 25001 & 225 p & 2 N 697 & 25 p & *2N5089 & 27 p & \(1 \mathrm{~N} 4003 / 4 \mathrm{cc}\) \\
\hline 7414 & 60 p & 74123 & 55p & 74367 & 150 p & 74 LS374 & 925p & 4000 & 15 p & CA3140E 70p & NE567 & 175p & *BC184 & 11 p & MJ2955 & 100 p & 2N697 & 45 p & +2N5172 & 27p & \(\begin{array}{ll}\text { iN4005 } \\ \text { N } 400617 & \text { 6p }\end{array}\) \\
\hline 7416 & 27p & 74125 & 55p & 74368 & 150 p & 81 8S95 & \({ }_{160 \mathrm{p}}^{120}\) & 4001 & 17 p & CA3160E 75p & RC4451 & 400p & BC187 & 30 p & MJ3001 & \({ }_{265}^{225}\) & 2N706A & \({ }_{20}^{20 p}\) & 2N5479
2NS191 & 27p & 1N4006/7 7 7p \\
\hline 7417 & 27p & 74126 & 60p & 74390 & 200 p & 815897 & & 4002 & 17p & FX209 \({ }^{\text {c }}\) & -SN76003N & 175p & *BC212/3 & 11p & MJE340 & 6sp & \({ }_{2}{ }^{2 N} 918\) & 45 & 2N5194 & 90 p & 1N5404/7 19p \\
\hline 7420 & 17p & 74128 & 750 & 74393 & \({ }_{225}^{200 p}\) & 81 LS98 & 160p & 4006 & 95 p & ICL7106 925p & :SN76013N & 140p & - BC214 & 12 p & & & 2N930 & 18p & \({ }^{*} 2 N 5245\) & 40p & ZENERS \\
\hline 7421 & 40p & 74132 & \(75 p\) & 74490 & 225p & \(8{ }^{128}\) & 230 p & 4007 & 18 p
80 p & CL.8038 3 340p & & & BC461 & 36 p & -MPF102 & \({ }_{65 p}\) & 2N1131/2 & 20 p & +2N5296 & 55p & \(2.7 \mathrm{~V}-33 \mathrm{~V}\) \\
\hline 7422 & 22 p & 74136 & 75p & SIES & & 9304 & 160 p & 4009 & 80p & LM301A 36p & & p & \({ }^{\text {BCC477/8 }}\) & 30p & *MPF103/ & 40p & 2N1613 & \(25 p\) & *2N5401 & 50p & 400 mW 9p \\
\hline 7423 & 34 p
30 p & 74141
74142 & \({ }_{200 \mathrm{p}}^{70}\) & SERIE & & 9302 & 175 & 4009 & 40p & M311 190p & *SN76023N & & & \({ }^{50} \mathrm{p}\) & +MPF105/ & 640 p & 2Ni711 & 25p & *2N5457/8 & 40p & 1 W 15p \\
\hline 7425
7426 & \(30 p\)
\(40 p\) & 74142
74145 & 200p & 74LS00 & 18 p & 9308 & 356 & 4011 & 17p & LM324 70p & & 120p & \({ }_{*}^{* B C 5478}\) & 16p & *MPSA06 & 30p & 2N2102 & 60 p & *2N5459 & 40p & SPECIAL \\
\hline 7427 & 34p & 74147 & 190p & 74LS04 & 20p & \({ }_{9311}^{9310}\) & 275 p & 4012 & 18p & LM339 90p & -SN76033N & 175p & *BC5578 & 18 p & *MPSA12 & 50p & 2N2160 & 120p & 2N5460 & 40p & OFFERS \\
\hline 7428 & 36p & 74148 & 150p & 74LS08 & 22 p & 9312 & 27 & 4013 & 50 p & M348 95p & -SP8515 & 750 p & *BC559C & 18 p & -MPSA56 & \({ }_{63 \mathrm{p}}^{32 \mathrm{p}}\) & 2N2219A & 20 p & - 2 N5485 & \({ }_{48 \mathrm{p}}^{48}\) & \({ }_{\text {c18 }}^{100}+741\) \\
\hline 74 & 17p & 74150 & 109p & 74LS10 & 20 D & 9314 & & 4014 & & *LM377 175p & B464 & & BCY70 & 18p & & & 2N2222A & & 2N6247 & 190p & \({ }_{100+555}^{\text {E16 }}\) \\
\hline 7432 & 30 p & 74151 A & 70p & 74LS13 & 38p & \({ }_{9316}\) & 225 & 4015 & 450 & EM380 75p & & p & BCY71/2 & 22p & & 1309 & 2N2484 & 30 p & 2N6254 & 130 p & £20 \\
\hline 7433 & 40 p & 74153 & 70p & 74LS14 & 100 p & 9322 & 150p & 4016 & 45 p & -LM381AN 150p & -TBA810 & 100p & BD131/2 & 50p & \({ }^{0} \mathrm{C} 35\) & 130 p & 2N2646 & 50p & 2N6290 & \(65 p\) & \(100+\) \\
\hline 743 & 35p & 74154
74155 & 100p & 74LS20 & p & 9388 & 200 p & 4017 & 880 & 140p & *TBA820 & 100p & BDY56 & 200p & \({ }^{*}\) R2008B & 200p & 2N2904/5 & 25 p & 2N6292 & 65p & RCA 2N3055 \\
\hline 7438 & 35p & 74155
74156 & 90p & 74LS22 & 28 p & 9370 & 200 p & 4018 & \({ }_{45}{ }^{89}\) & 36p & *TCA940 & & BF200 & 32 p & *R2010B & 200p & 2N2906A & 240 & 2N128 & 120 p & \(\pm 35\) \\
\hline 7441 & 70 p & 74157 & 70 p & 74LS30 & 22 p & 9374 & 200p & 4020 & 100 p & LM710 50p & ,TDA1022 & & \({ }^{*} \mathrm{BF} 2448\) & \(35 p\) & *TIP29A & 40 p & 2N2907A & 30 p & 3N140 & 100p & Bripge \\
\hline 7442A & 60p & 74159 & 190p & 74LS47 & 90p & 9601 & 175 & 4021 & 150p & LM744 & XR2206 & 400p & B & 72 p & -TIP29C & 55 & 2N3926 & \({ }^{90}\) & 3N201 & 100 & RECTIFIERS \\
\hline 7443 & 112p & 74160 & 100p & 74LS55 & 30 p & 9603 & p & 4022 & \(100 p\) & LM747 \({ }^{\text {LM }}\) & XR2207 & 409 p & BF259 & 36 p & & & & 65 & 20 & 2500 & -1A \(100 V^{21 p}\) \\
\hline 7444 & 12p & 746 & & 74LS73 & & INTERF & & 4023 & 22 p & LM748 - 35p & XR2216 & 675 & *BFR39 & 30p & TIP3iA & & 2N3055 & 48p & 40360 & 40 p & *A 400V \\
\hline 7445 & 100p & 74162
74163 & 100
100 & 744LS 74 & 50 p & li.c.s & & 4024 & 50p & 13800 70p & XR \(2 \times 240\) & 400p & -BFR40 & 30 p & TIP3ic & 62 p & 2N3442 & 140p & 40361/2 & 45 p & *2A 50V 30p \\
\hline 7447 A & 70p & 74164 & 120p & 74LS83 & 110p & MC1488 & 100 p & 4026 & 130 p & LM3911 f30p & 2N & 135p & "8FR41 & 30 p & TIP32A & 68p & 2N3553 & 240p & 40364 & 120 p & *2A 100V 35p \\
\hline 7448 & 80p & 74165 & 130p & 74LS85 & 100p & MC1489 & 100 p & 4027 & 50 p & LM4136 120p & ZN424E & & *BFR79 & 30 p & TlP32C & 82 p & 2N3565 & 30p & 40408 & 70p & *2A 400V 45p \\
\hline 7450 & 17p & 74166 & 140p & 74LS86 & \(40 p\) & 75107 & 160p & 4028 & 84p & MCi310P 150p & & & \({ }^{*} \mathrm{BF}\) & 30 & TIP33A & & & & & & * \\
\hline 7451 & 17p & 74167 & 200p & 74LS90 & 60 p & 182 & 230 p & 4029 & 100p & 458 & 2N1034 & & & & & & -2N3702/3 & & 40410 & & 3A 600V 72p \\
\hline 7453 & 17p & 74170 & 240p & 74LS93 & \(60 . \mathrm{D}\) & 75450 & 12 & 4030 & 55 p & diop & & & & & TP34 & 19 & 2N370 & & 4011 & 307 & 4A \(100 \mathrm{~V} 95 p\) \\
\hline 745 & 17p & 74172 & 720p & 74LS107 & 45 p & 75491/2 & \({ }_{96 p}\) & 4031 & 200 p & V & A & & 84/ & & P35 & 225 p & -2N3708/9 & & 40595 & 105 & 50V 90p \\
\hline 7460 & 17 p & 74173 & 120p & 74LS112 & 100 p & C-MOS & 96 & 4033 & 80p & Fixed & & & BFX86/7 & 30 p & TIP35C & 290 p & 2N3773 & 300 p & 40603 & 58 & 6A 100 V 100 p \\
\hline 7470 & 36p & 74174 & 93 p & 74 LS 132 & 700p & C-mos & 25p & 4035 & 110 p & 1a +ve & & & & 30 p & TIP36A & 270p & -2N3819 & 25p & 40673 & 90p & 6 A 400 V 120 p \\
\hline 7473 & 34 p & 74176 & 90 D & 74LS133 & 60 p & 74 C 02 & 25p & 4040 & 100p & 5V 780b 75p & 5V 7905 & 100p & BFW10 & 90 p & TIP36C & 340p & -2N3820 & 50 p & 40841 & 90 p & 10A 400V 200p \\
\hline 7474 & 30p & 74177 & 90p & 74LS138 & 60p & 74 C 04 & 27p & 4041 & 80p & 12V 7812 75p & 12V 7912 & 100p & BFY50 & 22p & & 65 & & 70p & 40871/2 & 90p & 25A 400V 400p \\
\hline 7475 & 36 p & 74178 & 160p & 74LS139 & 60p & \(74 \mathrm{C08}\) & 27p & 4042 & 80 p & 15 V 7815 75p & 15 V 7915 & 100p & & & & & & & & & \\
\hline 7476 & 35p & 74180 & 93p & 74LS151 & 100p & 74 C 10 & 27p & 4043 & 90 p & 18 V 7818 90p & 18V 7918 & 100p & RED & DS & & & & & TES: & it & at \(8 \%\) \\
\hline 7480 & 509 & 74181 & 200p & 74L.S153 & 60p & 74 C 14 & 90 p & 4044 & \(90 p\) & 24 V 7824 90p & 24V 7924 & 100p & 0.125 & & & & & PT & marked & w & are at \\
\hline 7481 & 100p & 74182 & 90p & 74 LS157 & 60 p & 74 C 20 & 27p & 4046 & 110 p & 100 mA TO-92 & 100 mA T & -92 & 0.2 \({ }^{\text {t }}\) & & & P & & & & & \\
\hline 7482 C & 84 P
90 p & 74184 A & 150p & 74LS158 & 120p & 74 C 30 & 27p & \[
\begin{aligned}
& 4047 \\
& 4048
\end{aligned}
\] & \(100 p\)
550 & \begin{tabular}{c}
5 V \\
12 V \\
78 L L05 \\
\hline 12 \\
350
\end{tabular} & 5 V 79L0\% & & & & & & & & & & \\
\hline 7484 & 100p & 74186 & 700p & 74LS161 & 100p & \({ }_{74}\) C42 & 110p & 4049 & 32p & 15 V 78L15 35p & 15 V 79L15 & & & & & & & & & & \\
\hline 7485 & 110 p & 74190 & 100p & 7445162 & 148 p & \({ }_{74}{ }^{\text {C48 }}\) & 250 p & 4050 & 89 p & OTHER REGUL & ATORS & & & & & & & & & & \\
\hline 7486 & 34p & 74191
84192 & 100p
100 p & 74LS163 & 100 p
120 p & \(74 C 73\)
\(74 C 74\) & 750
70 p & 4051 & 880 p & LM309K 135p & TBA625B & & & & & & & & & & \\
\hline \[
\begin{aligned}
& 7489 \\
& 7490 A
\end{aligned}
\] & 210p & 84192
74193 & 100 p & 74LS165 & \(120 p\)
\(80 p\) & \({ }^{74 \mathrm{C}} 85\) & 200p & 4052 & \(8_{80 p}\) & LM317T 200p & TL430 & 65 & approp & ia & rates. & & & & & & \\
\hline 7491 & 80p & 74194 & 100p & 74LS173 & 110p & 74 C 86 & 65p & 4055 & 125 p & LM323K 6 625p & 78HO5KC & 675 p & Govt & Col & ges, et & & 17 B & N & RO & & \\
\hline 7492A & 46p & 74195 & 95p & 74LS174 & 110p & 74.890 & 959 & 4056 & 135p & LM723 37p & 78MGT2C & 135p & order & c & te & & & & & & \\
\hline 74934 & 33 p & 74196 & \(95 p\) & 74LS175 & 110p & 74 C 95 & 130 p & 4059 & 600 & & & & & & & & ON & N & & & \\
\hline 7494 & \(84 p\) & 74197 & 80 p & 74LS181 & 320p & 74 C 107 & 125 p & 4060 & 19p & OPTO-ELECTR & ONICS & & & W & & & & & & & \\
\hline 74956 & 70p & 7498
74199 & 150p & \[
\begin{aligned}
& \text { 74LS190 } \\
& 74 \mathrm{~L} \text { S } 91
\end{aligned}
\] & 100p
100 p & \[
\begin{aligned}
& 74 \mathrm{C} 150 \\
& 74 \mathrm{C} 151
\end{aligned}
\] & 250p
260 p & \[
\begin{aligned}
& 4063 \\
& 4066
\end{aligned}
\] & \[
\left.\begin{gathered}
120 \mathrm{p} \\
55 \mathrm{p}
\end{gathered} \right\rvert\,
\] & 2N5777 45p ORP
OCP71 130p ORP & \[
12 \text { 90p ORP61 }
\] & \[
190 \mathrm{p}
\] & & \[
\text { RI } 9 .
\] & \[
\begin{aligned}
& 30-5.30 \\
& 10.30-4 .
\end{aligned}
\] & & Tel: & 1) 4 & 21500 & & : 922800 \\
\hline
\end{tabular}

SAVBIT
handy solder dispenser Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size \(5 \mathbf{6 5 p}\) inc. VAT For soldering fine joints
Two mone dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.

78p inc. VAT
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of
1.22 mm solder

Size 19A 69pinc.VAT

\section*{Handy size reels and dispensers}
of the world's finest cored solder to do a professional job at home

Ersin Multicore Solder contains 5 cores of
 on-corrosive flux that instantly cleans heavily
oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.
handy size reels of
SAVBIT, 40/60, 60/40 and \(4 \angle U-S O L\) solder alloys
These latest Multicore solder reels are ideal for the toolbox Popular specifications cover all general and electrical applications plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clearinstructionsto make everyjobeasy
\begin{tabular}{|c|c|c|c|c|c|}
\hline Ref. & Alloy & \begin{tabular}{c}
Diam. \\
(mm)
\end{tabular} & \begin{tabular}{c}
Length \\
metres \\
approx.
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Use \\
Price \\
inc. VAT
\end{tabular}} \\
\hline \begin{tabular}{c}
Size \\
3
\end{tabular} & \begin{tabular}{c}
\(40 / 60\) \\
Tin/Lead
\end{tabular} & 1.6 & 10.0 & \begin{tabular}{l}
For economicai general \\
purpose repairs and \\
electrical joints.
\end{tabular} & \(\mathbf{£ 2 . 8 1}\) \\
\begin{tabular}{c}
Size \\
10
\end{tabular} & \begin{tabular}{c}
\(60 / 40\) \\
Tin/Lead
\end{tabular} & 0.7 & 39.6 & \begin{tabular}{l}
For aluminium repairs. \\
Also solders aluminium \\
to copper, brass etc. \\
For fine wires, small \\
components and printed \\
circuits. \\
SAVEIT
\end{tabular} & 1.2
\end{tabular}

\section*{SOLDERING FLUX PASTES}

ERSIN' A non-corrosive, rosin based flux for general and electrical soldering in conjunction with 'Ersin' Multicore solders Ref RF10 52pinc. VAT
'ARAX' For general metal joining in conjunction with 'Arax' Multicore solders

\section*{BIB WIRE STRIPPER and CUTTER \\ Fitted with unique 8 -gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds. \\ Model 8B \(\mathbf{£ 1 . 2 1}\) inc. VAT \\ Pat. No. 144913}

\section*{EMERGENCY SOLDER}

Self-fluxing, tin/lead solder tape that melts with a match.
For electrical and non-electrical applications.

\section*{O[JCOMPUTER}

PE presents..

\section*{COMPUKIT UK 101}

It compares very favourably with machines three times its price and is similar to Superboard II (recently reviewed by us) using the same \(8 K\) Microsoft, full feature, BASIC which runs faster than other currently available personal computers. Faster than some business computers.
Its features are:
- Up to 8K RAM on board.
- Fully expandable via on board sockets.
- Cassette interface (CUTS).
- VDU - with its own dedicated RAM (1K).
- Full ASCII keyboard.
- U.H.F. modulator on board.
- P.S.U. on board, transformer included in kit.
- Full machine code monitor (2K) and I/O utilities in ROM.
- Upper and lower case plus graphics and gaming characters.
It will mate with all Superboard extras.
For example:
- Expander board for up to 24K static RAM.
- Mini-floppy interface.
- Port adaptor for printer and modem.
- OSI 48 line expansion interface.

Compukit UK 101 will sweep the board in the hobby computer field. It is an excellent design with full feature (not Tiny) BASIC. A complete kit will be available from Computer Components for \(£ 219+V A T\).

\section*{FULL CONSTRUCTIONAL DETAILS STARTING IN} PRACTICAL

\title{
ELECTRONICS
}

AUGUST ISSUE ON SALE FRIDAY, 13 JULY

\section*{NOTICE TO READERS}

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance. (C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

\section*{Receivers and Components}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{34}{*}{\begin{tabular}{l}
 \\
THE C. R. SUPPLY CO. \\
127, Chesterfield Road, Sheffield S8 ORN \\
COMMUNICATION RECEIVER \\
 \\
 \\
8. \\
别 \\
E25.90 anch \\
P. R. GOLLEDGE ELECTRONICS G3EDW, Merriott, Somerset,
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

\section*{ 1920 to 1950}

Receivers, valves, components, service data, historical plete service for the collector and enthusiast of vintage plete
S.a.e. with enquiries and for monthly newsheet.

THE VINTAGE WIRELESS COMPANY, 64, Broad THE VINTAGE WIRELESS COMPANY, 64, Broad
Street, Staple Hill, Bristol BS 16 5NL. Tel. Bristol
\(\mathbf{5 6 5 4 7 2}\).

\section*{SMALL ADS}

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting \(£ 7.50\) per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wells, Tel: 31803. No Lists. Enquiries S.A.E.

100 MIXED COMPONENTS \(£ 2.75,10\) LEDS 90 p. Lists 15p. Sole 37, Stanley Street, Ormskirk, Lancs. L39 2DH.

\section*{VALVES}

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors
We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976 .
Obsolete types a speciality. List 30 . Quotations S .A.E. Obsolete types a speciality. List 30p. Quotations S.A.E.
Open to callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering, Sussex PO20 8BN
West Wittering 2023 (STD Code 024366)

\section*{CONDITIONS OF ACCEPTANCE} OF CLASSIFIED ADVERTISEMENTS
1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shall not be liable for clerical or printers' errors or their consequences.

\section*{Aerials}

SHORT WAVE LISTENERS, Indoor Aerials \(£ 10.88\) and \(£ 17.95\). Outdoor \(£ 19.95\) and \(£ 30.50\), lists large SAE. New Publication "Indoor and Invisible Aerials" £3.24. G2DYM, Uplowman, Tiverton, Devon.

\section*{AERIAL BOOSTERS}

Improves weak VHF Radio and Television reception.
B45-UHF TV, BII-VHF Radio.
For next to the set fitting.
Price £5. S.A.E. for Leaflets.
\[
\begin{aligned}
& \text { ELECTRONIC MAILORDER LTD, } \\
& \text { Ramsbotton, Bury, Lancs, BLO 9AG. }
\end{aligned}
\]

\section*{Books and Publications}

\section*{Build your own \\ P.A., GROUP \& DISCO SPEAKERS \\ by R.F.C. Stephens \\ Save money with this practical guide. Plans for 17 different
designs, fine source, I.B., Horn and Reflex types, for \(8^{\prime \prime}-18^{\prime \prime}\) designs. line source, 1. \(\mathbf{i}\). Horn and Reflex types,
drive units. \(\mathbf{~} 3.95\) post free (\(\$ 8\) overseas \\ THE INFRA-BASS LOUDSPEAKER \\ (full constructional details for versions using \(15^{\prime \prime}, 12^{\prime \prime}\) and \(10^{\prime \prime}\) \\ drive units.) \(2 \mathbf{2} .95\) posi free (\(\$ 6\) overseas \\ THE DALESFORD SPEAKER BOOK \\ by R. F. C. Stephens \\ This book is a must for the keen home constructor. Latest technology DIV designs. Plans for I.B., and Reflex designs for
\(10-100\) watts. Also unusual centre-bass system. \(£ 2.20\) post unusual centre-bass
free (\(\$ 5\) overseas). \\ VAN KAREN PUBLISHING \\ 5 SWAN STREET, WILMSLOW, CHESHIRE}

\section*{For Sale}

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70 p each, post free. Open P.O. Cheque returned if not in stock-BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5000 . odds and ends. Mechanical/Electrical Cat Free. WHISTON, (Dept. PW), New Mills, Stockport.

COMMUNICATION RECEIVER TRIO R300 New April \(1978 £ 90\). O.N.O. Securicor Delivery Arranged. Evening Dingwall 4460.

EQUIPMENT CLEAROUT. R/TV Test Gear. 'Scope. Valves. Military Radios. Many bits \& pieces. Alton (0420) 63623.

REALISTIC D.X. 160 Solid state communications receiver £90. Excellent condition. Four Months old. Hardly used. A. Redfern, 104 Prenton Hall Rd., Prenton, Birkenhead, Merseyside. Tel: 0516085320.

\section*{Ladders}

LADDERS varnished 21' extd. £31.97. Carr. £3. Leafiet. Alloy Ext. to \(62 \frac{1^{\prime}}{2}\). Ladder Centre (WLS3) Halesfield (1) Telford 586644.

\section*{Service Sheets}

\section*{HUGE G.T. TV/RADIO/ETC. CATALOGUE (with \(£ 4\) worth of useful vouchers)}

Lists thousands of service sheets, manuals, etc. Many unobtainable elsewhere. Plus up dated Chassis Guide, newsletter, etc. Essential for every firm/engineer - Save ffs - only \(f 1\) plus large S.A.E.
S.A.E. for details of our Giant Service Sheet Collections - not available elsewhere.

\section*{G.T. TECHNICAL INFORMATION SERVICES}

76 Church St, Larkhall, Lanarkshire ML9 1 HE
Largest stocks of manuais, etc. anywhere. \(f 1\) + large SA.E. brings any requested fuli size single service sheet. Service sheets from 50p: S.A.E. for full details of this plus unique T.V. Publications. The new 1979 British Colour T.V. Repair Manual and the new First Foreign Colour T.V. Repair Manual for \(£ 4-90\) each - both for \(£ 9.50\).
S.A.E. brings full details of these and other unique publications.

\section*{LARGE SUPPLIER OF SERVICE SHEETS} and Colour Mantals, TV Mono Radias. Tuners, Tape Recorders, Record Players. Transisters, Stereograms, all at 75 p each + S.A.E. except colour TV and Car Radios. State if Circuit will do, if sheets re not in stock. All TV Sheets are full lengths \(24 \times 12\), not in Bits \& Pieces. Free Fault Finding Chart of TV Cataiogue C. CARANNA (Mail Order)

71, Beaufort Park, London, NW11 6BX 01-4584882

SERVICE SHEETS for Radio, Television, Tape Recor ders, Stereo, etc., with free fault-finding guide, from 50 p and S.A.E. Catalogue 25 p, and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.
BELL'S TELEVISION SERVICES for Service Shects on Radio. TV etc., \(£ 1.00\) plus SAE Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS, Radio, TV etc., 10,000 models. Catalogue 24 p , plus S.A.E. with orders, enquiries. TELRAY, 154 Brook Street, Preston PR1 7HP

\section*{Educational}

\section*{TELEVISION \& VIDEO SYSTEMS ENGINEERING}

\section*{15 MONTHS full-time Diploma course to include a high percentage of practical work.}
- ELECTRONIC PRINCIPLES
- MONO \& COLOUR TELEVISION
- CLOSED CIRCUIT TELEVISION
- vIDEO CASSETTE RECORDING
- digital techniques
- TELETEXT \& TV GAMES

Shortened courses for applicants with suitable electronics background.

Next session starts September 17th
(Also available \(2 \frac{1}{3}\) year course in Marine Electronics \& Radar for employment as ships Radio Officer.)

Prospectus from:

\section*{LONDON ELECTRONICS} COLLEGE

Dept. B8, 20 Penywern Road, London SW5 9SU. Tel. 01-3738721.

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 8JZ.

WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford, RM7 OXU. (Tel: Romford 66841).

\section*{COLOUR TV SERVICING Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from: \\ ICS SCHOOL OF ELECTRONICS \\ Dept. K277 Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours) \\ State if under 18}

\section*{TECHNICAL TRAINING}

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics. Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS Dept. K277 Intertext House, London SW8 4U.

Tel. 01-622 9911 (all hours)
State if under 18

\section*{CITY \& GUILDS EXAMS}

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G exams. Special courses for: Telecoms, Technicians, Electrical Installations, Radio, TV \& Electronics Technicians, Radio Amateurs, Fuli details from:

\section*{ICS SCHOOL OF ELECTRONICS}

Dept. K277 Intertext House, London SW8 4UJ Tet. 01-622 911 (all hours)

State if under 18
Situations Vacant

\section*{VIDEO ENGINEER}

Experienced all-round Video Engineer required by leading company in North London. Good pay, Bonus, Pension, Company Car. Phone J. Rabin or A. Brown

01-951-0466

\section*{Wanted}

ELECTRONIC COMPONENTS PURCHASED. All Types Considered - Must be new. Send detailed list - Offer by return -. WALTONS, 55A Worcester Street, Wolverhampton.

\section*{Miscellaneous}

\section*{LOSING DX?}

RARE DX UNDER QRM? Dig it out with a Tunable Audio Notch Fitter, between \(r x\) and speaker, \(£ 8.90\). V.L.F.? Explore witha \(10-150 \mathrm{KHz}\) Receiver, f 10.70 .
OFF FREQUENGY? Dial up the DX with a Crystal OFF FREQUENCY? Dial up the DX with a
Calibrator, \(1 \mathrm{MHz}, 100.25 \mathrm{KHz}\) markers, £ 15.80 . TIME7 MSF 60 KHz Receiver, data output. f13.70. seconds Display (nom, date, day, hours. minutes, FADIO 4 GONE? FRG7? 200 KHz to Medium Wave SIG. GEN. \(10 \mathrm{~Hz}-200 \mathrm{KHz}\), logic/sine/square, f 10.80 . PROGRAM YOUR OWN tunes on a Musical Doorbell, 120 programs-FREE, £23.50, needs speaker.
LONG WAVE DX? \(100-600 \mathrm{KHz}\) Converter built-in
Each easy-assembly kit includes all parts, printed circuit, ase, instructions, battery when used, postage etc. money back assurance so SEND off NOW.

\section*{CAMBRIDGE KITS}

45 (PV) Old School Lane, Milton, Cambridge.

ALFAC etch resist transfers and other p.c. board drawing materials available from stock. SAE details. Ramar Constructor Services, Masons Road, Stratford-upon-Avon. CV37 9NF.

\section*{JORDAN SECURITY SYSTEMS}

\section*{ALARM COMPONENTS}

201 Pressure Pad \(29^{\prime \prime} \times 15^{\prime \prime} \quad \mathbf{£ 2 . 3 0}\)
202 Pressure Pad \(22^{n} \times 6 \frac{1}{2}{ }^{\prime \prime}\) (Stair Tread) \(\mathbf{f 1 . 6 8}\)
203 Window Foil (To British Standards 30 metres
£2.95
30 metres \(.15 p\)
204 Foil Blocks (Self Adhesive) \(\quad .15 p\)
205 Outdoor Bell Case (Plastic Coated Metal) \(\mathbf{£ 8 . 5 0}\)
206 High Output \(6^{\prime \prime}\) Bell (12 volts D.C.) \(£ 12.55\)
207 Siren (12 volts D.C.) E. E
208 Security Control Panel-Mains/Battery
\(\begin{array}{lr}\text { Anti-Tamper Circuitry } & \mathbf{£ 2 . 0 0} \\ \text { bration Contacts } & \mathbf{E 7 . 9 9}\end{array}\)
209 Vibration Contacts \(\quad \mathbf{£ 2 . 9 5}\)
\(\begin{array}{rlr}210 & 4 \text { Core Wire (100 metres) } \\ 211 & \text { Flush Magnetic Switch } & .94 p\end{array}\)
\(\begin{array}{ll}212 \text { Surface Magnetic Switch } & \mathbf{. 9 4 p} \\ & \mathbf{9 4 p}\end{array}\)

All prices include VAT \& Postage
170, Cromwell Road, Grimsby, South Humberside. Tel 0472-41451/2 CALLERS WELCOME

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO ELECTRONICS, Grenfell Place, Maidenhead, Berks.

PrACTICAL WIRELESS Projects P.C.B's all in Glass Fibre tinned and drilled. November 78. Sarum Meter 210p Standard charge timer 175 p. Porch Light Timer 60p. Battery Indicator 60p. December L.W. Convertor 350p. (Two Boards). Door Chimes 250p. January 79. Delay Line 250p. Sandbanks 250p. February. Hythe Receiver 400p. March. Hythe Receiver 210p. Soundlite Converter 400p. Toneburst Generator 110 p . Wideband Noise Source 70p. April. F.M. Multitester 150p. May Xtal Calibrator 110p. Car Probe with Free Fascia Panel 70p. IMP 110p. Gillingham follow up 90p. Prices include dispatch by First Class Post. Please enquire for P.C.B's for current issues. H.T.E. (Dept P.W) 50 Milnefield Avenue, Elgin, Morayshire. IV 30 3EL.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{\multirow[t]{2}{*}{THE SCIENTIFIC WIRE COMPANY}} \\
\hline & & & & \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
PO Bex 30, London E. 4 \\
Reg. Office 22 Coningsby Gdns
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{ENAMELLED COPPER WIRE} \\
\hline SWG & 1 fb & 8 oz & 4 oz & 202 \\
\hline 10 to 19 & 2.65 & 1.45 & . 75 & . 60 \\
\hline 20 to 29 & 2.85 & 1.65 & . 90 & . 70 \\
\hline 30 to 34 & 3.05 & 1.75 & 1.00 & . 75 \\
\hline 35 to 40 & 3.40 & 1.95 & 1.15 & . 84 \\
\hline 41 to 43 & 4.55 & 2.55 & 1.95 & 1.30 \\
\hline 44 to 46 & 5.05 & 3.05 & 2.15 & 1.70 \\
\hline 47 & 8.00 & 5.00 & 3.00 & 1.80 \\
\hline 48 & 15.00 & 9.00 & 6.00 & 3.30 \\
\hline \multicolumn{5}{|c|}{SILVER PLATED COPPER WIRE} \\
\hline 14,16,18 & 4.50 & 2.25 & 1.44 & . 90 \\
\hline 20 \& 22 & 5.00 & 2.85 & 1.74 & 1.06 \\
\hline 24 \& 26 & 5.70 & 3.31 & 2.00 & 1.22 \\
\hline \(28 \& 30\) & 6.67 & 3.86 & 2.35 & 1.44 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Prices include P \& P and VAT \\
SAE brings list of copper \& resistance Wires Dealer Enquiries Invited
\end{tabular}} \\
\hline
\end{tabular}

AUDIO OSCILLATOR Sine- Square - R.I.A.A. outputs. 15 Hz to 200 KHz in four ranges. Thermistor stabilised. Assembled P.C.B. ready to use. 9V supply required. S.A.E. data. £16.30 inclusive. Quantec, 40 Aln Court, Ellington, Morpeth, Northumberland. Morpeth 860101.

BLLK PURCHASE. Battery intercoms to clear. 50ft. lead \& volume control \(£ 6.95\) pair. J. HARMSWORTH (PW2) 34 Victoria Street, Eccles, Maidstone, Kent.
\[
\begin{aligned}
& \text { NICKEL CÄDMIUM BATTERIES } \\
& \begin{array}{l}
\text { Rechargeable and suitable for 'fast charge' HP7 (AA) £1.13 } \\
\text { SUB C £1.47, HP 11 (C) £2.15, HP } 2 \text { (D) } £ 3.27, \text { PP } 3
\end{array} \\
& \text { SUB C } 21.09 \text {, PP3 not suitable for fast charge, PP3 charger } \mathbf{f 5} 5.81 \\
& \begin{array}{l}
\text { 24.09, PP3 not suitable for tast charge, PP } \\
\text { All above Nickel Cadmium batteries are guaranteed EVER }
\end{array} \\
& \text { READY' full spec, and are supplied complete with solder tags } \\
& \text { (except PP3). Just in stock-New rechargeable sealed lead } \\
& \text { acid maintenance free batteries suitable for burgiar alarms } \\
& \text { etc. } 1-2 \mathrm{amp} \mathrm{hr} 6 \mathrm{v} \text {. £4-40 } 2 \cdot 6 \mathrm{amp} \mathrm{hr} \text {. } 6 \mathrm{y} \mathbf{£ 5} \cdot \mathbf{6 5} \text {. } \\
& \text { Quantity prices available on request. Date and charging cir- } \\
& \text { cuits tree on request with orders over } £ 10 \text { otherwise } 30 \text { p } \\
& \text { post and handling (specify battery type), all prices include } \\
& \text { Cheques, postal orders, mail order to: SOLID STATE } \\
& \begin{array}{l}
\text { SECURITY DEPT PW } 10 \text {. } \\
\text { Wigan, Lancs. } 02575-4726 .
\end{array}
\end{aligned}
\]

OFFERS for 80 used Tapes \(\frac{1}{2}\) inch for Helical Scan V.T.R. one Sony 19 inch Video Monitor. Wellingborough 223527.

STOCK of downgraded capacity cells, type AA, Sub C, C, D and F. Cells are of the rechargeable Sealed Nickel Cadmium type. Please write to Box No. 143.

SOLAR CELLS, Batteries, Panels, Thermoelectric Generators, Heat pipes, Books etc. Details; Edencombe Ltd., 34 Nathans Road, N. Wembley, Middx. HA0 3RX.

SUBERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from. Suppliers only to Industry and the Trade. BAZELLI, (Dept No.25) St. Wilfrids, Foundry Lane, Haiton, Lancaster. LA 6LT.

\section*{Please mention \\ PRACTICAL WIRELESS}

\section*{when replying to advertisements}

\section*{Record Accessories}

STYLI, Cartridges For MUSIC.CENTRES, etc. FREE List No. 29 For S.A.E. includes Leads, Mikes, Phones etc. FELSTEAD ELECTRONICS, (PW), Longley Lane, Gatley, Cheadle, Ches. SK8 4EE.

\section*{Equipment}

COMMUNICATIONS RECEIVERS made by PYE for R.N. part of Navy CAT equipment. General coverage Rx 60 Kc to \(30 \mathrm{Mc} / \mathrm{s}\) in 8 bands cont coverage, uses 12 minature valves with dual conversion on H.F. ranges IFs \(1.4 \& 460 \mathrm{Kc}\) controls, RF \& L.F. gain. AVC on/off. BFO freq, Selectivity 4 pos with dual crystal filter, Main tune, Band sel. Phone jack. tuning scale similar to Eddystone. As O/P for 100 ohm phones or 2 watts into 500 ohm . Size in case \(10 \frac{1}{2} \times 13 \frac{1}{2} \times 14^{\prime \prime}\) weight 44 lbs . These require ext supplies of 250 v DC HT at \(130 \mathrm{Ma} \& 6.3 \mathrm{v} \mathrm{AC}\) at 4 amps supplied tested with copy of handbook \& circ good cond, fuller spec on request £108.
A. H. SUPPLIES.

122, Handsworth Rd. SHEFFIELD. S9. 4AE.

\section*{ORDER FORM PLEASE WRITE IN BLOCK CAPITALS}

Please insert the advertisement below in the next available issue of Practical Wireless for \(\qquad\) insertions

I enclose Cheque/P.O. for \(£\)
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).
\begin{tabular}{|l|l|l|l|}
\hline & & & \\
\hline
\end{tabular}

NAME.
ADDRESS \(\qquad\)
Send to: Classified Advertisement Manager PRACTICAL WIRELESS,
GMG, Classified Advertisement Dept., Rm. 2337 King's Reach 'Tower, Stamford Street, London SE1 gls Telephone 01-261 5846 Rate
22p per word, minimum 12 words. Box No. 60p extra.
Company registered in England. Registered No. 53626. Registered office: King's Reach Tower. Stamford Street. London SE 1 9LS

\section*{PRACTICAL WIRELESS}
is looking for someone with a comprehensive knowledge of the Radio/Electronic Industry, who would like to enter the field of Advertisement Selling. The suitable applicant, based in London would be responsible for approaching advertisers or their Agents with a view to persuading them to advertise in

\section*{Practical Wireless.}

Attractive salary, Company Car etc . . .
Applications, initially in writing please, should be made to Mr. I. P. Stamp, Group Advertisement Controller,
IPC Magazines Ltd, Westover House, West Quay Road, Poole, Dorset BH 15 1JG.

\section*{J. BIRKETT \\ Radio Component Supplies}

\section*{25 The Strait, Lincoln LN2 1JF. Tel: 20767} MINIATURE ELECTROLYTICS . \(8 \mathrm{uf} 300 \mathrm{v} . \mathrm{w}\). 10 for 60 p . \(10 \mathrm{uf} 250 \mathrm{v} . \mathrm{w}\). 10 for 60 p. 300 uf 25 v .w. 10 for 60p.
VARIAB LE CAPACITORS \(25+25+25\) pf \& 75 p.
4 Watt \(100 K\) LINEAR WIRE WOUND POTENTIOMETERS © \(30 p\) each
4 Watt 100K LINEAR WIRE WOUND
2"8 To 1 VERNIERDRIVES at \(£ 1.40\).
50. BC 107-8-9 TRANSISTORS assorted untested a 57p.
50. AC 128 TRANSISTORS Branded but untestede 57p.
50. 1 AMP THYRISTORS Untested \(\ddagger\) £1.
25. 5 AMP STUD MOUNTING THYRISTORS untested 75p.

50p. OC 71 TRANSISTORS untested i \(75 p\).
25. 10 AMP STUD MOUNTING SILICON DIODES untested E 57 P-
10. 20 AMP STUD MOUNTING SILICON DIODES untested © 57p
50. VARI-CAP DIODES like BA 102 untested 57p.
100 MULLARD C280 CAPACITORS assorted 57p.

LED's TIL 209, 6 for 50p, \(\cdot 2\) " type Red 6 for 70p.
50.2 watt ZENERS untested assorted \& 57 p .

X BAND GUNN DIODES CXY 11 A \(£ 3\) each.
VERNITRON FM, 10.7 MHz FILTERS at 50 p , 3 for f 1
ERIE REDCAP , OLUf \(100 \mathrm{v} . \mathrm{W}\). MINIATURE CAPACITORS E EP each.

200 ASSORTED 4 , 1 RESISTORS. for 75 p.
COIL FORMERS \(3 / 16^{\circ}\) Dia. with core at 6 for 25p.
SOLID DILECTRIC VARIABLES 195+80pfe 40p each.
SUB-MINIATURE TANTALUM CAPACITORS \(4.7 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}\). ब 6 for 25 p
DAU TRIMMERS 2 To 9 pf 15 p , 3 To 35 pf 15p, 6 To \(45 \mathrm{pf} \oplus 15 \mathrm{p}\), 0 To \(125 \mathrm{pf} \propto 15 \mathrm{p}\); 8 To 140pf - 15p.
SILICON DIODES 50 PIV \(2 \frac{1}{2}\) amp \(7 p, 6\) for \(25 p\).
400 mW ZENERS unmarked good. \(3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}\) \(33 \mathrm{v}, 36 \mathrm{volt}\). All at 10 for 40 p .
MULLARD TRANSISTORS BC 548, BC 549 8oth 10p ea. 8 for 50p
10 ASSORTED PUSH BUTTON BANKS less knobs for £1.30.
 \(125+125 \mathrm{pf} \times 55 \mathrm{p}, 100+200 \mathrm{pf}\) \& \(55 \mathrm{p}, 200+300 \mathrm{pf} * 55 \mathrm{p}\).
10 ASSORTED SLIDER POTENTIOMETERS for \(£ 1\).
CRYSTAL FILTER 10.7 MHz 910 ohm B.W. \(\pm 7.5 \mathrm{KHz}\) a \(£ 5\).
1000pf SOLDER-IN FEED THRU CAPACITORS 20p doz. 30. ASSORTED 10XAJ CRYSTALS £1.10, 20.
fi.10, 20 FT 271 A CRYSTALS assorted fi.10.

MIIO, 20. FRE BUTTERFIY PRE-SET VARIABLES Spindles easily extended. \(25 \times 25\) pf MINIATURE BUTTERF \(50 \mathrm{p}, 38 \times 38 \mathrm{pf}=60 \mathrm{p}, 38 \times 38 \mathrm{pt}\). Wide Spaced 65 p .

CRYSTALS. \(10 \times\) type \(8010 \mathrm{KHz} \approx 40 \mathrm{p}, 100 \mathrm{KHz}\) plus 1 MHz e \(\mathbf{f 2}\).
WIRE ENDED GLASS CRYSTALS. \(28 \mathrm{KHz}, 28.5 \mathrm{KHz}, 29.75 \mathrm{KHz}, 315 \mathrm{KHz}\). All at 50p each.
 \(39.8889,40.37,40.111111,40.2963,41.11111,44.3,45.7,45.9\), 46.1, 46.3. 46.5, \(46.612,46.7,48.3,50.1 \mathrm{MHz}\). All 50 p each, or 3 for \(£ 1.30\).
MINIATURE NON POLARISED CAPACITORS 1 uf \(63 \mathrm{v} . w\). 5p, \(4.7 \mathrm{uf} 63 \mathrm{v} . \mathrm{w}\). © 10p, 10uf 63v,w. = 15p.
MIDGET AIRSPACED TRIMMERS 3 To 20pf e 15p each
Please add 20p for post and packing on U.K. orders under \(£ 2\). Overseas postage at cost.

\section*{WAITORN ELEGTRONICS \\ 33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND} MAIL ORDER. CALLERS WELCOME. Tel. Watford. 40588/9 ALL DEVICES BRAND NEW. FULL SPEC. AND FULLY GUARANTEED. ORDERS

 overseas orders postage at cost.
VATE \(\begin{aligned} & \text { Export orders no VAT. Applicable to U.K. Customers only. Unless } \\ & \text { stated otherwise, all prices are oxclusive of VAT. Please add } 8 \% \text { to } \\ & \text { devices marked } \% \text {. To the reat add } 12 \% \text {. }\end{aligned}\) devices marked © To the reat add \(12 \%\),
We stock many more items. it pays to yisit us. We are situated behind Watiord
Football Ground. Nearest Underground/Br. Rail Station: Watford High Street Football Ground. Nearest Underground/Br. Rail Station: Watford High Street.
Open Monday to Saturday 9 a.m. 6 p.m. Ample Free Car Parking apace available. POLYESTER CAPACITORS: (Axial Lead Type)
 160V: 82p. \(12 \mathrm{n}, 39 \mathrm{n}, 100 \mathrm{n}, 150 \mathrm{n}, 220 \mathrm{n} 11 \mathrm{p} ; 330 \mathrm{n}, 470 \mathrm{n}\) 19p; 680n, \(1 \mu \mathrm{~F} 22 \mathrm{p} ; 2 \cdot 2 \mu \mathrm{~F}\)
32p; \(4.7 \mu \mathrm{~F} 36 \mathrm{p}\). 1000V: 32p; 4.7 10 36p.
10n, 15n 20p; 22n 22p; 47n 26p; 100n 38p; 470n 53p; \(1 \mu \mathrm{~F}\) 175p. POLYESTER RADIAL LEAD CAPACITORS: 25OV; 330'n 13p; 470n 17p; 680n 19p; 1 \(\mu\) 22p; \(1 \mu 5\) 30p; \(2 \mu 2\) 34p. ULTRASONIC
TRANSDUCERS
450p per palr

 12p; 1000 14p.

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
POTENTIOMETERS (AB or EGEN) Carbon Track, 0.25 W Log \& 0.5 W Linear values. \\
\(500 \Omega\), \(1 \mathrm{~K} \& 2 \mathrm{~K}\) (LIN ONLY) Single \(5 \mathrm{~K} \Omega 602 \mathrm{M} \Omega\) single gang \(5 \mathrm{~K} \Omega 602 \mathrm{M} \Omega\) single gang \(\mathrm{D} / \mathrm{P}\) switch \(5 \mathrm{~K} \Omega 602 \mathrm{M} \Omega\) dual gang stereo
\end{tabular} & \[
\begin{aligned}
& 27 p \\
& 27 p \\
& 65 p \\
& 78 p
\end{aligned}
\] \\
\hline \begin{tabular}{l}
SLIDER POTENTIOMETERS \\
\(0.25 \mathrm{~W} \log\) and linear values 60 mm track \(5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega\) Single gang 10KQ \(500 \mathrm{~K} \Omega\) Dual gang Self-Stick graduated Alum. Bezels
\end{tabular} & 70p
80p
25p \\
\hline \begin{tabular}{l}
PRESET POTENTIOMETERS \\
0.1W 50Д-2.2M Minl. Vert. \& Horiz. \\
\(0-25 \mathrm{~W} 100 \Omega-3-3 \mathrm{M} \Omega\) Horiz. larger \\
\(0.25 \mathrm{~W} 250 \Omega-4.7 \mathrm{M} \Omega\) Vert.
\end{tabular} & 8p
10p
10p \\
\hline
\end{tabular}

JACKSONS VARIABLE CAPS
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{2 365pF with slow} \\
\hline 500 pF 165p & motion Drive & \(25 p\) \\
\hline 6:1 Ball Dr & 00 208/176 & 28 \\
\hline 4511/DAF 115p & \multicolumn{2}{|l|}{., ., with slow} \\
\hline Dial Drive 4103 & \multicolumn{2}{|l|}{motion drive 325p} \\
\hline 6:1/36:1 650p* & C8 & \\
\hline Drum \(54 \mathrm{~mm} 30{ }^{\text {p }}\) & & \\
\hline 0-1-365pF 245p & 10 & \\
\hline 002365 pF 275p & ''3x310 & 495p \\
\hline 00-2-500pF 525p & \(00-3 \times 25 \mathrm{pF}\) & 430p \\
\hline SILVER MICA (PF) & \multicolumn{2}{|l|}{CRYSTALS*} \\
\hline 3.3, 4.7, 6.8, 8.2, 10, & 100 kHz & 385p \\
\hline 12, 18, 22, 27, 33, 39, & 455 kHz & 385p \\
\hline 47, 50, 68, 75, 82, 85, & 1 MHz & 323p \\
\hline 10 & 1.008 MHz & 323p \\
\hline 250. 270.3000 .33 & 1.80 MHz & 385p \\
\hline 360, 390, 470, 600 \& & 1.832MHz & 362p \\
\hline 820 pF 16p each. & 1.6 MHz & 395p \\
\hline 1000,2000pF 20p. & 3 2768MHz & \\
\hline TRIMMERS miniature & 4 MHz & \\
\hline 2.5pF; 3-10pF: & 4.032 MHz & \\
\hline \begin{tabular}{l}
3-30pF: 3-50pF \\
5-25pF; 65p F88pF
\end{tabular} & 4.433619
5.0 MHz & 135p \\
\hline MPRES & 6.5536 MHz & 200p \\
\hline DFF:10-800F 30p & 7.680 MHz & 323P \\
\hline 25-200pF \({ }^{\text {3 }}\) & 9.375 MHz & 323p \\
\hline 100-500pF 45p & 10 MHz & 323p \\
\hline GAS 8 SMO & 12.7M & 323 p \\
\hline DETECTOR & 12 MHz
14.318118 M & 392 p
300 p \\
\hline TGS812 or 813 415* & 14.318118 M & \\
\hline RF CHOK & 18-432M & 33p \\
\hline 10, 22, 47, 100, 220. & 20 MHz & 362p \\
\hline \(470,750,1 \mathrm{mH}, 2.5,5\), & 27.648 MHz & 350p \\
\hline 10 mH 35 p .35 mH . & 48 MHz & 323p \\
\hline 100 mH 60 p . & 100 MHz & 300p \\
\hline
\end{tabular}

TRANSFORMERS* (mains Prim. 220-240V) \(6-0-6 \mathrm{~V}\)
75 mA
8 VA
8VA type: 6V-.5A 6V-5A: 9V-.4A 9V-4A
\(12 \mathrm{~V}-3 \mathrm{~A}\)
12 VA 12VA: \(4.5-1.3 A \quad 4.5 V-9.3 A \cdot 6 V-1.2 A\) A 6 V
 20V-6A 50VA: 6V-4A 6V-4A; \(9 \mathrm{~V}-2.5 \mathrm{~A} 9 \mathrm{~V}-2.5 \mathrm{~A}\) (42 p . 12 V)
2A 12V-2A: 2 A 12V-2A: \(15 \mathrm{~V}-1.5 \mathrm{~A}\) 15V-1.5A; 20V-1.2A
\(20 \mathrm{~V}-1.2 \mathrm{~A}: 25 \mathrm{~V}-1 \mathrm{~A} 25 \mathrm{~V}-1 \mathrm{~A}: 30 \mathrm{~V}-8 \mathrm{~A} ~ 30 \mathrm{~V}-8 \mathrm{~A}\) 100VA: 12V-4A 12V-4A; \(15 \mathrm{~V}-3 \mathrm{~A}\) 15V-3A \(20 \mathrm{~V}-1.5 \mathrm{~A}\) 20V-2.5A; 30V-1.5A 30V-1.5A
\(40 \mathrm{~V}-1.25 \mathrm{~V}-1.25 \mathrm{~A} ; 50 \mathrm{~V}-1 \mathrm{~A} 50 \mathrm{~V}-1 \mathrm{~A} 650\) (N.B. P\&P charge to be added
above our normal postal charge.)
(\(60 \mathrm{p} \beta \& \mathrm{p}\))

\section*{DENCO COILS
Dual Purpose 'DP
VALVE TYPE}

\(\begin{array}{ll}\text { Rd. Wht. } & \mathbf{8 6 p} \\ \text { 6-7 B.Y. } & \text { 76p } \\ \text { 1-5 Green } & \mathbf{9 2 p}\end{array}\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{RESISTORS-Erie make 5\% carbon} \\
\hline \multicolumn{5}{|l|}{025W22ת-4.7M E24 1.5p} \\
\hline 0.5 W 2.2 l & 4.7M & E12 & & 1.5p \\
\hline \multicolumn{5}{|l|}{1W 2-2 \(\mathrm{N}-10 \mathrm{M}\) E1} \\
\hline \multicolumn{5}{|l|}{2\% Metal Film \(10 \Omega-1 \mathrm{M}\)} \\
\hline 1\% 0.5W 5 & -1M & E24 & & \\
\hline \multicolumn{5}{|l|}{COMPUTER HAREWARE :- 4047} \\
\hline 2102 & 225p & 74 S & & \\
\hline 2111 & 195 p & 74 S 2 & & \(895 p\) \\
\hline 2112-2N & 250p & 74 S 2 & & 325p \\
\hline 2114 & \(695 p\) & 74S4 & & 325p \\
\hline 2513 & 650 p & 74 S & & 825p \\
\hline 2708 & 775p & 81LS & & 125p \\
\hline 27L08 & 995p & & & 125p \\
\hline 2716 & 1650p & 81 LS & 97 & 125 p \\
\hline AY-5-2376 & 920p & MC1 & 488 & \(85 p\) \\
\hline CP1610 \({ }^{\text {a }}\) & 920p & & & 90p \\
\hline TMS601 & 355p & 280 & .5N & 1050p \\
\hline 4027 & \(325 p\) & & & \\
\hline
\end{tabular}

2

\section*{TL. 74" (TEXA}

\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
NNNNNNNNNNNNNNNNNNNNNNNNNNNAAAA AAAAAAABA \\
 NOM \\

\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

21
以

\section*{INDEX TO ADVERTISERS}
\begin{tabular}{|c|c|c|c|c|}
\hline Ace Mailtronix & \(\ldots\) & ... & ... & 85 \\
\hline A.JH Electronics & & & & 16 \\
\hline A. H. Supplies & ... & & & 84 \\
\hline Altek Instruments & & \(\ldots\) & & 7 \\
\hline Amateur Electronics & & & & 61 \\
\hline Ambit International & \(\ldots\) & & & 9 \\
\hline Amcomm Services & \(\cdots\) & & & 54 \\
\hline Antex & . & & & 15 \\
\hline Armon Products & w. & & & 63 \\
\hline Astra-Pak & \(\ldots\) & ... & & 4 \\
\hline Barrie Electronics & \(\ldots\) & : \(\%\) & \(\cdots\) & 85 \\
\hline Bearman, P.H. & & ... & & 4 \\
\hline Bib Hi-Fi Accessories Lt & td. & ... & \(\ldots\) & 0 \\
\hline B.I.E.T. & ... & \(\ldots\) & & 7 \\
\hline Bi-Pak Ltd. & ... & ... & & \\
\hline Birkett J. & & \(\ldots\) & ... & 5 \\
\hline Bowes C. & & & & 8 \\
\hline British National Radio \& & \& Ele & onics & & \\
\hline School & ... & ... & & \\
\hline Bredhurst & \(\ldots\) & \(\ldots\). & ... & 3 \\
\hline Brookes, B. & ... & \(\ldots\) & \(\ldots\) & 4 \\
\hline Bull, J. ... & + & \(\because\) & \(\cdots\) & 6 \\
\hline Cambridge Kits & \(\ldots\) & \% & & 3 \\
\hline Caranna C. & \(\ldots\) & .. & & 3 \\
\hline Catronics & & \(\ldots\) & & 7 \\
\hline Chordgate & ** & \(\ldots\) & & 0 \\
\hline Chromasonics & & & & 0 \\
\hline Colomor & & & & 2 \\
\hline Colour Print Express & & & Cov & \\
\hline Continental Specialities & Corp & U.K.) & & \\
\hline Ltd. & & & *. & \\
\hline Contour Electronics (Com & mpt & & & \\
\hline Cox Radio (Sussex) Ltd. & & & & 2 \\
\hline C.R. Supply Co. ... & & ... & & 2 \\
\hline C. T. Electronics & \(\cdots\) & \(\ldots\) & & \\
\hline C.W.A.S. Alarm .., & ... & \(\cdots\) & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Partridge Electronics & ... & \(\ldots\) & \% & 10 \\
\hline Progressive Radio & \(\cdots\) & \(\cdots\) & -ar & 73 \\
\hline \multicolumn{2}{|l|}{Radio Components Specialists} & ... & & 8 \\
\hline Radio Exchange Ltd. & ... & ... & \(\cdots\) & 13 \\
\hline Radio Shack Ltd. & & \(\ldots\) & - \({ }^{\text {a }}\) & 63 \\
\hline R.S.C. (Hi-Fi) & & & & 4 \\
\hline \multicolumn{2}{|l|}{R.S.T. Valve Mail Order Co.} & ... & .. & 11 \\
\hline \multirow[t]{3}{*}{Scientific Wire Co. The Solid State Security Sonic \(\mathrm{Hi}-\mathrm{Fi}\)} & ... & \(\ldots\) & . & 84 \\
\hline & & ... & & 84 \\
\hline & & & & 16 \\
\hline \multicolumn{3}{|l|}{South Midlands Communications Ltd} & & 53 \\
\hline Southern Valve Co. & & & & 6 \\
\hline \multirow[t]{2}{*}{Squires, Roger ...
Stephen-James Ltd.} & \% & \(\ldots\) & \(\cdots\) & 2 \\
\hline & \(\ldots\) & & \(\ldots\) & 54 \\
\hline Swanley Electronics & \(\ldots\) & * & \(\ldots\) & 6 \\
\hline Technomatic Ltd. & *.6 & \(\ldots\) & & 80 \\
\hline Thanet Electronics & & ... & ... & 59 \\
\hline T.K. Electronics & ... & \(\cdots\) & \(\ldots\) & 82 \\
\hline \multirow[t]{2}{*}{TUAC \({ }^{\text {T. }}\).} & & & & 70 \\
\hline & *, & \(\cdots\) & \(\cdots\) & 88 \\
\hline \multicolumn{2}{|l|}{Van Karen Publishing} & ... & & 82 \\
\hline \multicolumn{2}{|l|}{Vintage Wireless Company} & \(\ldots\) & & 82 \\
\hline \multicolumn{2}{|l|}{Waters \& Stanton Electronics} & \(\cdots\) & & 54 \\
\hline Watford Electronics & & & & 87 \\
\hline Western Electronics & & & & 59 \\
\hline West Hyde Developmen & ts Ltd. & & & 73 \\
\hline West London Direct Sup & pplies & & \(\cdots\) & 16 \\
\hline Williamson Amplificatio & & & & 83 \\
\hline Wilmslow Audio & ... & \(\ldots\) & & 6 \\
\hline Z \& I Aero Services & \(\ldots\) & c. & & 88 \\
\hline
\end{tabular}
Progressive73
Radio Exchange Ltd8
13
R.S.C. (Hi-Fi)R.S.T. Valve Mail Order Co.11
Scientific Wire Co. Th 84
Sonic \(\mathrm{Hi}-\mathrm{Fi}\)16
53
Squires Ralve Co.Stephen-James Ltd.54
Thanet Electronics 80
T.K. Electronics 72
TUAC 82
Waters \& Stanton Electronics 54
Western Electronics 59
West London Direct Supplies 16
Wilmslow AudioZ \& I Aero Services88
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Head Office and Warehouse 44A WESTBOURNE GRDVE LONDON W2 5SF \\
Tel: 727 5641/2/3
\end{tabular}} & \multicolumn{2}{|l|}{} & \multicolumn{9}{|l|}{\begin{tabular}{l}
AERO SERVICES LTD. \\
Reg No. 242125503 \\
Please send all correspondence and Mail-Orders to Head Office
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Retail Shop \\
85 TOTHENHAM COURT ROAD \\
LONDON W1 \\
Tel: 5808403 \\
Open all day Saturday
\end{tabular}} \\
\hline \multicolumn{17}{|c|}{A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES} \\
\hline 18369 & 0.84 & 6AX4GTB & 1.13 & \(6 \mathrm{CY5}\) & 1.13 & 12AT6 & 0.68 & ECF200 & 1.01 & EM84 & 0.68 & PCL81 & PY82
PY83 & 0.62 & UCC84 & 0.84 \\
\hline 1 R 5 & 0.56 & 6AX5GT & 1.45 & 6 CY 7 & 1.13 & 12AT7 & 0.56 & ECF201 & 1.01 & EM87 & 1.13 & PCL182 & PY83 & 0.79 & UCC85 & 0.68 \\
\hline \(1 \times 28\) & 1.35 & 6BA6 & 0.51 & \({ }^{6006 B}\) & 1.63 & \(12 A U 6\) & 0.73 & ECF881 & 1.07 & EY81 & 0.62 & PCL84 & PY88 & 0.84 & UCF8O & 0.84 \\
\hline 5AT8 & 0.90 & 68E6 & 0.54 & \({ }^{\text {6DT6 }}\) & 0.90 & \(12 \mathrm{AU7}\) & 0.53 & ECF802 & 1.07 & EY87 & 0.56 & PCL86 & PY500A & 1.69 & UCH42 & 1.13 \\
\hline 514 & 0.84 & 68F5 & 0.96 & 6DT8 & 0.90 & 12AV6 & 0.96 & ECH42 & 1.24 & EY88 & 0.62 & PCL805 & TT21 & 10.69 & UCH8 1 & 0.73 \\
\hline 5446 & 0.68 & 6856 & 0.64 & 60W4 & 1.01 & 12AV7 & 1.13 & ECHB1 & 0.62 & EY500A & 1.69 & PD510 & T22 & 10.69 & UCL81 & 0.79 \\
\hline 548 & 0.84 & 68G6G & 0.34 & 6ES5 & 1.13 & 12AX7 & \(0 \cdot 62\) & ECH200 & 0.90 & EZ80 & 0.56 & PL36 & U25 & 1.13 & UCL82 & 0.84 \\
\hline 5 V 4 G & 0.68 & 6BH6 & 0.96 & 6ev5 & 1.69 & 12AY7 & 0.96 & ECL80 & 0.68 & EZ81 & 0.56 & PL81 & U26 & 1.13 & UCL83 & 0.50 \\
\hline \(5 \times 46\) & 0.90 & 68 \({ }^{6} 6\) & 1.35 & 6EW6 & 0.90 & 12 BAB & 0.73 & EL81 & 0.84 & GY501 & 1.01 & PL82 & UABC80 & 0.65 & UF4\} & 1.13 \\
\hline \(5 \times 8\) & 1.01 & 68.17 & 0.73 & 6GH8A & 0.90 & 128F6 & 0.75 & EL82 & 0.68 & 6230 & 0.73 & PL83 & UAF41 & 0.90 & UF80 & 0.56 \\
\hline \(5 Y 36 \mathrm{~T}\) & 0.73 & 6BK4B & 1.58 & 6GK5 & 0.79 & \({ }^{128 H 7 A}\) & 0.84 & EL83 & 1.30 & 6232 & 0.73 & PL84 & UBC41 & 0.79 & UF85 & 0.56 \\
\hline 574 GT & 0.73 & 68N4A & 1.01 & 6GK6 & 101 & 128L6 & 0.79 & EL184 & 0.79 & 6233 & 4.28 & PL504 & UBC81 & 0.65 & U184 & 0.96 \\
\hline 6 6AB7 & 0.68 & 68N6 & 0.90 & 6.4 & 1.35 & 12806 & 1.01 & EL25 & 0.73 & OA2 & 0.70 & PL508 & UBF80 & 0.68 & UM80 & 0.68 \\
\hline 6AC7 & 0.80 & 6807A & 0.79 & \({ }^{6.565}\) & 0.90 & 12 BY 7 A & 0.90 & ECL86 & 0.96 & 0a3 & 0.81 & PL802 & U8F89 & 0.68 & UM81 & 0.84 \\
\hline 6 AD8 & 0.68 & 6BR8A & 1.35 & 6.56 & 0.62 & \(12 \mathrm{CL6}\) & 1.01 & EF80 & 0.45 & 0B2 & 0.76 & PY8 & UBL21 & 1.01 & UM84 & 0.51 \\
\hline 6AF4A & 0.90 & \({ }^{6857}\) & 2.59 & 6 J 7 & 0.90 & \(19 A 05\) & 0.84 & EF85 & 0.54 & 083 & 0.81 & & & & & \\
\hline 8 8AG5 & 0.73 & 68188 & 0.96 & 6K56T & 0.84 & 198G6G & 0.56 & EF86 & 0.68 & OC2 & 1.51 & & & & & \\
\hline 6 6AG7 & 0.96 & 68W7 & 1.13 & 6K6GT & 0.96 & 35A3 & 0.79 & EF92 & 1.13 & \({ }_{0}^{0} 0\) & 0.32 & & LLOS & OPE & UBE & \\
\hline 6AH6
6A.15 & 1.07 & \({ }_{6826} 68\) & 0.73 & \({ }_{\text {6NTGT }}\) & 1.24
0.96 & \({ }_{35 C 5}^{3583}\) & 0.73
0.96 & EF997 & 0.79
1.01 & PABC80 & 0.81
0.51 & & roduct & Ma & & \\
\hline 6AK5 & 0.62 & 664 & 0.62 & 607 & 1.01 & 50 C 5 & 1.13 & EF183 & 0.79 & PC86 & 1.01 & & & & & \\
\hline 6AK6 & 0.64 & 6C5GT & 0.68 & 6SA7 & 0.90 & 50EH5 & 0.96 & EF184 & 0.79 & PC88 & 1.01 & One & be Typ & LO 1 & 1. This & e is a \\
\hline 6AK7 & 0.96 & \(6 C 5\) & 0.56 & 6S67 & 0.90 & DAF96 & 0.68 & EFL200 & 1.80 & PC96 & 0.56 & goo & cemen & for & CP3 & ube \\
\hline 6 AL5 & 1.45 & 6C8G & 0.68 & \({ }^{\text {6SK7 }}\) & 0.90 & DF96 & 0.68 & EH90 & 0.68 & PC97 & 1.07 & char & s are & ntical & with & e of \\
\hline 6AM6 & 1.35
0.79 & \({ }_{6 C 67}^{6 C 86}\) & 0.62 & 6SL7GT
6SN7G & 0.79 & DK92 & 1.13
0.68 & EL33 & 2.81 & PC900 & 1.13
0.55 & 1 CP & e conn & ions & re dif & the \\
\hline 6AN5 & 2.81 & 6C68A & 0.84 & 6S07 & 0.90 & ECC84 & 0.68 & EL81 & 0.90 & PCC85 & 0.68 & tube & plied & mple & e w & ase, \\
\hline 6AN6 & 0.96 & 6CM7 & 0.90 & 6SA7 & 0.90 & ECC85 & 0.54 & EL82 & 0.68 & PCC88 & 0.73 & con & diagra & and & echn & data \\
\hline 6405 & 0.196 & 6CN7 & 1.35 & 6V66t & 0.90 & ECC86 & 1.41 & EL83 & 0.68 & \({ }^{\text {PCCO89 }}\) & 0.84 & f12 & ¢0.96 & T. Th & ree-i & tube \\
\hline \({ }_{6 \text { 6AS7 }}\) & 1.13
1.35 & 6C08
6687 & 0.84
0.96 & \(6 \times 4\)
\(6 \times 56 T\) & 0.79
0.68 & ECC88 & 0.84
0.90 & EL84 & 0.73
0.84 & PCC189
PCF80 & 1.13
0.96 & Typ & This & know & n tub & ed in \\
\hline \({ }_{6}\) GATS & 0.84 & 6Cu5 & 1.13 & \(6 \times 8\) & 0.90 & ECC189 & 0.90 & EL95 & 0.79 & PCF82 & 0.51 & "PU & Oscillo & ope c & an be & plied \\
\hline 6AUG & 0.56 & 6CU6 & 1.13 & \({ }^{12}{ }^{246}\) & 0.68 & ECF80 & 0.68 & EL504 & 1.07 & PCFB4 & 0.73 & & \[
\text { I } \mathrm{EO}
\] & & & \\
\hline 6AV6 6AW8A & 0.84 & 6CW4
6CX8 & 3.75
1.13 & \(12 \mathrm{AL5}\)
12 A 05 & 0.73
0.68 & ECF82
ECF86 & 0.62
0.90 & EM80 & 0.73
0.68 & \[
\begin{aligned}
& \text { PCF86 } \\
& \text { PCF806 }
\end{aligned}
\] & 0.84
1.13 & the & \[
80 \text { plu }
\] & \[
0.06
\] & VAT. & \\
\hline
\end{tabular}

Prices are inclusive of VAT (at current rates) except where shown separately. Postage and packing charges are \(\mathbf{£ 0 \cdot 1 0}\) per \(£\) subject to a minimum of \(\mathbf{£ 0 . 3 0}\). Minimum order charge for Approved Credit customers \(\mathbf{£ 2 0 . 0 0}\). Minimum Transaction Charge for mail orders \(\mathbf{£ 1 . 0 0}\).

OUR NEW 1978/1979 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR fO-30

\section*{FOR YOUR GUIDANCE VALUE ADDED TAX}

Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.
Export orders are not subject to the addition of Value Added Tax.

But don't send any money until you see the colour of your prints. We're so confident in the reliability of the service and the quality of our prints, every one of which is checked by professionals at our laboratories. Luxury colour prints
You'll be amazed at the crisp, sharp, high-definition sheen finish of the prints we supply . . . borderless to give you maximum picture area. And coming with the prints will be your FREE Kodak colour film, worth around \(£ 1\), the same size as the one you sent us for processing.
Unbeatable value
What about prices? Ours are certainly much less than those you would pay in most shops - quite apart from the free film you get every time we develop and print for you.
Our Colour Print Service charges you only 15 p.for each print, plus 85 p towards developing, postage and packing. The minimum charge is 85 p inc. VAT (that is, if no prints can be made). The offer is limited to the UK, Eire, CI and BFPO.

FRIE
for every one you send in
for processing by the Practical Wireless Colour Print Service!

\section*{Reliability at less cost}

Photography can cost you a lot less these days. If you know how to go about it. Like the hundreds of thousands of magazine readers who are delighted with this reliable Colour Print Service - and the replacement films that come FREE to every customer! So why don't you give it a try? Here's what you do. Send us any make of colour print film inside the envelope enclosed in this issue. Or fill in the coupon below and send it with your film in a strong envelope to: The Practical Wireless Colour Print Service, Freepost, Teddington, Middlesex, TW11 8BR. No stamp is required.

More benefits to you
You benefit in two additional ways. Firstly, you enjoy a personal service with every care taken over each individual order. And secondly, you pay only for what you get - with no credit vouchers as with many other companies. An invoice comes with your prints so it's a straight business transaction.

```


[^0]:    Th To: International Correspondence Schools

    Dept K276 Intertext House, London
    SW8 4UJ or telephone 6229911
    $\qquad$
    $\qquad$
    $\qquad$
    Address

    Telephose Number
    

[^1]:    Reports on the various bands are welcome and should be sent direct, by the 15 th of the month to:
    AMATEUR BANDS Eric Dovedeswell G4AR, Siver Firs, Leatherhead Road, Astitead, Surrey KT2 127 W . Logs by bands, each in alphabetical order.
    MEDIUM and SW BANDS Charles Molloy GBBUS, 132 Segars Lane. Southporf PR8 3JG, Reports for both bands must be kept separate.
    VHF BANDS Ron Ham BRS15744 Faraday Greyfriars, Stornington, Sussex RH20.4HE.

