Practical

 88

50p
Australin New Zealand
South Africa Malaysia

JUNE 1979

THEPUTHENII

practical

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10 \cdot 60$ per annum, from ''Practical Wireless"' Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 75 p each, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 2.85$ to UK addresses or $£ 3.45$ overseas, including post and packing) each accommodating one volume of $P W$. Please state year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

\square NEWS \& VIEWS

18 Editorial

CB ?
PW Personality Keith Woodruff

54 Kindly Note
PW 'Soundlite", March 1979
Car Test Probe, May 1979
PW at the RSGB Exhibition
Special Product Report
Active Antenna AD170, Datong Electronics Ltd.
Production Lines
.Alan Martin Information on the latest products
RAE Reprint Announcement
FOR OUR CONSTRUCTORS

GENERAL INTEREST

Student Radio
C. Arunde/

A look at campus radidio statuons
Direct Use of Communications Satellites
Developments in personal communications
A Glance into the Past
Chas E. Miller
Reminiscences from the 1928 BBC Handbook
IC of the Month
Brian Dance
The $\mu \mathrm{A} 78 \mathrm{HG}$ variable voltage regulator

On the Air

Amateur Bands Eric Dowdeswell
MW Broadcast BandsCharles Molloy
SW Broadcast Bands Charles Molloy
VHF Bands Ron Ham
VHF Personalities-The Rennison Brothers Ron Ham
Our July issue will be published on 1 June
(for details see page 35)
The background to our cover is a picture of the Aurora Borealis as seen in Scotland during April 1978
FABULOUS PROFESSIONAL DISCO SYSTEM
ALL THREE UNITS PRODUCED BY BRITAIN'S LARGEST PRODUCERS OF DISCO EQUIPMENT
DEWSBURY $9 / 11$ Kingsway (Closed Tues.) Tel. 41361
DEWSBURY $9 / 11$ Kingsway (Closed Tues.).
EDINBURGH (Closed Thurs.). Tei, 63069
EDINBURGH 101 Lothian Rd. (Closed Wed.). Tel. 2299501
GLASGOW 403 Sauchiehall Street (Closed Tues.)
HULL 7 Whitefriargate (Closed Thurs.). Tel. 041-3320700
LEICESTER 32 High Street (Closed Thurs.)

Slide Fade Controls. Autofade with Music Override on both mic and jingle in- Treble Control (Music Channel) puts. Headphone pre-fade monitor with 5 Push-button selector. Illuminatod V.U. Treble Control (Mic. Channel) meters. Huminated rocker switches. LED cue indicators. Tape or Jingle inputs. Bass Control (Music Channel) unity gain. Mic, channel with Bass \& Treble. Slave outiet OPEN ALL DAY SATS (5 Day.Week)
BRADFORD 10 North Parade (Closed Wed). BIRPINGHAM Norh Parade (Closed Wed.). Tel. 25349
(Closed Wed.). Tel, 021-236 1279 CARLIE 8 English Street (Closed Thurs.)

```
DERBY 97 St.Peter's Street (Closed Wed.). Thurs.). Tel. 25983
```

```
DERBY 97 St.Peter's Street (Closed Wed.). Thurs.). Tel. 25983
```

LONDON 238 Edgware Road, W. 2 (Closed Thurs.

Output into line (Slave) Autofade Recovery Tape/Jingle. I/P

Frequency Hor
Carr. etc. f15

DEPOSIT £31.95 and 38 weekly INC payments of £11.00
(Total $£ 449 \cdot 95$)
TURNTABLES: B.S.R. P200 125SB Belt-drive with Low Mass ' S ' arm and Magnetic Cartrid
POWER: 120 watts continuous RMS into 4 ohms DECK LIGHTS: Fully adjustable flexi-beams over each turntable with independent switching.
CABINET: Solidly made to withstand the rigours of transporting. Covered in heavy duty leather cloth type protectors attractive colour combinations. Corner cap protectors. Recessed carrying handles.

MAIL ORDERS \& EXPORT ENOUIRIES TO:AUDIO HOUSE. HENCONNER LANE, LEEDS, 13. Tel. 0532577631
MAIL ORDERS MUST NOT BE SENT TO SHOPS Phone or Write for FREE CATALOGUE \star LEEDS

16-18 County (Mecca) Arcade, Briggate
(Closed Wed.). Tel. 449609

* L/POOL 35 Dawson Wav, St. John's Precinct (Closed Wed.). Tel. 7089380 middlesbrough 103 Línthorpe rd. * NEWCASTLE UPON TYNE 59 (Closed Wed.h. Tel. 247096 NOTTINGHAM 19/19A Market Street (Closad SHEFFIELD 13 Exchange Street (Castle Mart.). Tel. 48068 (Closed Thurs.) (Closed Thurs.). Tel. 20716 - WOLVERHAMPION (Closed Thurs.). Tel. 26612 \star MUSICAL INSTRUMENTS \& ACCESSORIES in stock at thase branches

Section 1. Analogue and digital meters. Section 2. Oscilloscopes.
Section 3. Frequency generation and measurement.
Section 4. Special measuring instruments.
Heathkit car electrical
systems course.
Section 1. Electrical principles of the car. Section 2. Starting system fundamentals. Section 3. Car charging systems.
Section 4. Accessories and body electrical
Two new self-instruction courses from Heathkit. Based on step-by-step programmed instructions, they let you learn at your own pace in your own home.

Each course is complete and contains audio/ visual material, text, and parts for 'hands on' experiments with the optional Heathkit experimenter trainer. So all you need is a cassette player and the will to learn.

Full details of Heathkit courses are available in the Heathkit catalogue, together with hundreds of kits you can build for yourself - computers, oscilloscopes, transceivers etc. ... Send for your copy now.

There are Heathkit Electronics Centres at Solddering 233 Tottenham Court Road, London (01-636 7349) Iron offer and at Bristol Road, Gioucester (0452 29451).

FREE
 Heathkit CI 1265 Digital Tach/Speedometer. Push-button digital readout. Displays engine speed/rpm. Accurate to 1 mph or rpm variations of 100.

Registered in England, No. 606177

To: Heath (Gloucester) Limited, Dept. PW679 Bristol Road, Gloucester, GL26EE Please send a copy of the Heathikit catalogue I enciose 20p in stamps. \square Please send a copy of the Computer Brochure. I enclose 20p in stamps. \square
N.B. If you are already on the Heathkit maling list you will automatically receive a copy of the latest Heathkit catalogue without having to use this coupon.

100K!

This new style course will enable anyone to have a real understanding by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certifficate is given at the end of every course.

1.Build an oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also for later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2. Read, draw and understand circuit diagrams.

In a short time you will be able 5 read and draw circuit diagrams, understand the very fundamentals of television, radio, computers and countless other electronic devices and their servicing procedures.
3. Carry out over 40 experiments on basic circuits.
We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v. etc.

4. Free Gift.

All students enroling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

Can YOUR Antenna do all this?

A SMALL SELECTION FROM OUR HUGE FILE OF TESTIMONIAL LETTERS ON THE JOYSTICK VARIABLE FREQUENCY ANTENNA (.5-30MHz).

G4DJY's COPY LOG shows 68 North Americans worked in the ARRL W/VE con-
W6TYP worked WA6JPR over hundreds of miles on 40 m . using the JOYSTICK VFA and MICROWATTS "equivalent to $1,000,000$ MILES PER WATT"-AWORLD RECORD-we can supply conclusive evidence!
"I have used Rhombics, $4 \times \frac{1}{2}$ waves in phase, centre fed dipoles, etc., but the success I have had with the V.F.A. has been AMAZING . . . only 20 ft . high ... in front of my mobile home, INEVER RECEIVE LESS THANR7 AND MOSTLY R9 ON CWDX WORKING-Bob Green, SUIKG/G3APH, W.B.E., W.A.C. Phone and CW.

WTOE, U.S.A. Government Electronics Engr. (retd.), claims "VFA 5ft. below ground, same as dipole, elevated 15 ft ., one " S " point UP on dipole."

IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLDWIDE AND IN GOVERNMENT COMMUNICATION

200 w. p.e.p. OR for the SWL
SYSTEM "J"
£47.95
500 w. p.e.p. (Improved ' Q '' on receive)
"PACKAGE DEALS"'
COMPLETE RADIO STATIONS FOR ANY LOCATION
All packages include the JOYSTICK VFA (System "A") 8 ft feeder, all necessary cables, matching communication hoadphones. Delivery Securicor our risk.
ASSEMBLED IN SECONDS. You SAVE E14-16 on each PACKAGE DEAL!

PACKAGE No. 1. Features R. 300 Rx .
PACKAGE No. 2. Features FRG7 Rx.
PACKAGE No. 3. Features SRX30 Rx.
PACKAGE No. 4. Our "Rolls"-Rx. Frg7000.

CHORDGATE Ltd. SWINDON

Printed Circuit Boards. Add 27p post \& packing for 1 to 3 boards. Larger quantities post \& packing inclusive
Voltage Tripler P.C.B. contains 40.1 MFD 1000V, 2 pre-sets, 1 bridge rect., 4 IN4007, 9 resistors. 65p.
P.C.B. contains 2 TIP31 (or equiv.), MJE 340 and over 70 other resistors, diodes, zeners, transistors bridge rect., and capacitors. 50 p .
P.C.B. contains 2×741, 2 N 4921 and over 40 other components and multiturn 20 k pot. 60p.
P.C.B. contains 2 IP 10 W Wafer Switches, 2×7490 I/C, 2×74141 I/C, various Logic I/Cs, IN4148 and over 50 components. 60 p .
P.C.B. with GEC, G424 Triac control IC, 2 SGS transistors, three 9 watt WW resistors and 12 other components. 70p.
P.C.B. with $8 \times$ BC107, $8 \times$ BCY70, 4 pre-set pot., and over 70 other components. 75p.
Parcel of 1 each of above, 6 P.C.B.'s. £3.30.

Post and packing inc/usive. Audio Amplifier Boards containing $2 \times$ BFY50, IBFX29 and output pair of 2N5293 output transistors. rated at 36 watts when heatsink mounted $£ 1.75$ or 2 for $£ 3.00$. Post and packing inclusive.
(Dept B.) 194 A DROVE ROAD, SWINDON, WILTS. ALL OUR PRICES INCLUDE V.A.T.

[^0]
15-240 Watts!

HY5

Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input fither by a multi-way switch or, direct connection to the appropriate pins. Thetion is achieved and tone circuits merely require connecting to external potentiometers (not included). The HY5 s compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-ampliffer.
FEATURES: Complete pre-ampliffer in single pack-Multi-function equalization-Low noise Low distortion-High overload-Two simply combined for stereo.
APPLICATIONS: Hi-Fi-Mixers-Disco-Gudar and Organ-Public address
SPECIFICATIONS:
INPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up. 30 mV ; Tuner 100 mV ; Microphone 10 mV : Auxiliary $3-100 \mathrm{mV}$; innut impedance 47 kR at 1 kHz ,
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at 100 Hz .
DISTORTION. 0.1% at 1 kHz . Signal/ Noise Ratio 68 dB
OVERLOAD. 38dB on Magnetic Pick-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$ Price $\mathbf{5 6} \mathbf{6 7}+\mathbf{7 B}$ p VAT P\&P free.

The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board. 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date
technology available. technology avaliable.
Build APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifieraudio oscillator. SPECIFICATIONS:
OUTPU POWER 15W R.M.S. into 8Ω : DISTORTION 0.1% at $1-5 W$
INPUT SENSITIVITYY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE +18 C SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$.

The HY50 leads I.L.P.'s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most
reliable and robust High Fidelity modules in the World FEATURES: Low Distortion-Integral Heatsink Only sistors-No external components
APPLICATIONS: Medium Power Hi-Fi systems-Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.04% at 25 W SIGNAL/NOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm

Price \&8 18 + 玉i-02 VAT P\&P free

The HY120 is the baby of I.L.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protecAPPLICA

organ

organ
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8 8 LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE

Price $\mathbf{E 4 9} \mathbf{0 1}+\mathbf{8 1} 52$ VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retaining true $\mathrm{Hi}-\mathrm{Fi}$ performance FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsink - No external components

APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave—Industrial-Public Address SPECIFICATIONS
INPUT SENSITIVITY 500 mV (at 1 kHz . INOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE

Price £27.99 + £2-24 VAT P\&P free.
The HY400 is I.L.P.'s "Big Daddy"' of the range producing 240 W into 4Ω ! It has been designed
for high power disco address applications. If the amplifier is to be used at continuous high for high power disco address applications. If the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes ali the qualities of the rest
FEATURES: Thermal shutdown-Very low distortion-Load line protectio
components.
APPLICATIONS ; Publïc address-Disco-Power slave-Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS into 4Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.1% at 240 W SIGNAL NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm Price £38. 61 + $£ 3$-09 VAT P\&P free.'
PSU36 suitable for two HY30's $£ 6.44$ plus $81 p$ VAT, P/P tree. PSU50 suitable for two HY50's $£ 8-18$ plus $£ 1-02$ VAT. P/P free.
PSU70 suitable for two HY120's $£ 14 \cdot 58$ plus $£ 1 / 17$ VAT. P/P free PSU90 suitable for one HY200 £ $15 \cdot 19$ plus $£ 1 \cdot 21$ VAT. P/P free.
 PSU180 $£ 2542+£ 2 \cdot 03$ VAT. P\&PFREIN

TwO YEARS' GUARANTEE ON ALL OUR PRODUCTS

I.L.P. ELECTRONICS LTD., GROSSLAND HOUSE, NAGKINGTON CANTERBURY, KENT, CT4 7AD.
> I.L.P. ELECTRONICS LTD.,

> GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY, KENT, CT2 $7 E P$.

Tel: (0227) 54778.
Regd No. 1032630.

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square Account number
Name and Address
Signature
superb solid state audio amplifier. Brand new components hroughout. 5 silicon tranistors plus 2 power output Full wave rectification. Full wave rectification.
Output approx.
watts
ohms. Frequency reohms. Frequency re-
sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3db. Fully integrated separate Volume. Bass boost and Treble cut controls. Suitable for $8-15$ ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full
output. Supplied ready built and tested, with output. Supplied ready built and tested, with knobs, size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide $\times 7 \frac{1}{2}^{\prime \prime}$ deep. AC $200^{\prime} 250 \mathrm{~V}$

HARVERSONIC MODEL P.A
TWO ZERO
An advanced solid state general for Public Acurress system
 Disco, Guitar. Gram., etc. Features 3 individually controlled inputs (each input has a separate 2 stage preamp). Input 1.15 mv into 47 k . Input 2.15 mv into 47 k . (suitable for use with mic. or guitar etc.). Input 3 200 mv into 1 meg. suitable for gram. tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8
ohm or 16 ohm speaker. Output in excess of 20 watts ohm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet
made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon, For ac mains
 "POLY PLANAR", WAFER-TYPE, WIDE KANGE ELECTRO-DYNAMYC SPEAKER
 handling 20W r.m.s. (40 W peak). Impedance 8 onm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on
ceilings, walls, doors, under tables, etc., and used with or without baffle. Send S.A.E. for full details.
Only $£ 8 \cdot 40$ each + p, $\&$ p. (one 90 p, two $£ 1 \cdot 10$). Now available in 8 " round version. 10 watts RMS 60 Hz $20 \mathrm{KHz} £ 5.25$.
P. \& P. (one 65p, two 75p).

STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for
100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from 100 mV out. 15 to 35 V neg. earth. Equ. $\pm 1 \mathrm{~dB}$ from
20 Hz to 20 KHz . Input impedance 47 K . Size 15 응 $\underset{2 \frac{3}{6}}{20 \mathrm{~Hz}}$, to $_{5 \frac{5}{*}} 20 \mathrm{HH}: £ 2 \cdot 60 \perp 20 \mathrm{p}$ P. $\& \mathrm{P}$.

MAINS OPERATED SOLID STATE

 AM/FM STEREO TUNER $200 / 240 \mathrm{~V}$ Mains oper ated Solid State FM AM Stereo Tuner. Covering
 MHz. Built-in Ferrite rod acrial
for M.W. Full AFC and AGC on AM and FM Stereo Beacon Lamp Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20K. Simulated Teak finish cabinet. Will match almost any amplifier. Size $84^{\prime \prime} w \times 4^{\prime \prime} h \times$ $9^{\frac{2}{2}}{ }^{\prime \prime}$ d approx.
LIMITED NUMBER ONLY at $£ 28.00-+£ 1.50 \mathrm{P}$. \& P. 10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match $3-15 \Omega$
speaker and 2 independent volume controls, and peparate bass and treble controls are provided giving separate bass and treble controls are provided giving
good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet 25p - SAE (Free with parts). All parts sold separately. ONLY $£ 15.50, P$. \& P. £1.40. Also available ready built and tested $£ 20.00 . \mathrm{P}$
SIZREO DECODER $2^{\prime \prime} \times 3^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$ ready built. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions (in-
clusive of hints and tips) supplied. $£ 6 \cdot 00$ plus 20 p. clusive of hints and tips) supplied. $\mathrm{f}^{6.00}$ plus 20 p.
$\mathrm{P}, \& \mathrm{P}$. Stereo beacon light if required 40 p extra.

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer for AC Mains or battery use. MW and FM bands. Dynamic M/coil speakers. telescopic aerial and internal ferrite aerial. Earpiece socket for personal listening. Finished in attractive simulated leatherette. Size $7^{\prime \prime} \mathrm{H} 91^{\prime \prime} \mathrm{W}: 4^{\prime \prime} \mathrm{D}$ approx. Fully guaranteed. Bargain price of only $£ 10 \cdot 00+£ 1 \cdot 30 \mathrm{p}$. \& p.

SPECIAL OFFER LIMITED NUMBER ONLY

GOODMANS speakers, $6 \frac{1}{2}{ }^{\prime \prime}-8$ ohm, long throw, ceramic magnet, full range rated 10 watts R.M.S., (when fitted in enclosure), $84-00$ each $+80 p$ p\&p (p\&p on two $£ 1.20$).
YYNAR \& REXINE SPLAKERS \& CABINET FABRICS app, 54 in. wide. Our price $£ 2.00 \mathrm{yd}$. length. P. \& P. 50 p per yd. (min. 1

HARVERSONIC SUPERSOUND
 10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14
transistors including Siticon Transistors in stages on each channel resulting in even lower noise level with improved sensitivity. Integral pre-amp with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions included Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metalwork, high quality ready drilled printed marked, smart brushed anodised aluminum front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response. $\pm 3 \mathrm{~dB} 12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -16dB. Negative feedback 18 dB over main amp. Power requirements 35 y , at 1.0 amp
Fully detailed 7 page construction manual and parts list free with kit or send 25 p plus large S.A.E. (Magnetic input components 33p extra) POWER PACK KIT $\quad . \quad$ £6.00 P. \& P. 95 p SPECIAL OFFER-only $£ 25 \cdot 00$ if all 3 items
ordered at one time plus $£ 1 \cdot 25$ p. \& p.

Fuil after sales service
Also a vail. ready built and tested $£ 31 \cdot 25$, P. \& P. $£ 1 \cdot 50$

A solid state stereo amplifier chassis. with an output of $3-4$ watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with built in short term thermat orerload protection. Al fuse, tone control, volume controls, 2 pin din speake sockets \& 5 pin din tape rec play socket are mounted on the printed circuit panel, size approx $9 \frac{1}{* "}^{\prime \prime} 23^{\prime \prime} 1^{\prime \prime}$ max. depth. Supplied brand new \& tested, with knobs brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at output of 17 v a $/ \mathrm{c}$ at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 2.00+$ output of 17 V a/c at $500 \mathrm{~m} / \mathrm{a}$ can be suppiied at $\mathbf{£ 2 . 0 0}+$
$40 \mathrm{p} P \& P$ if required. Full connection details supdied. All prices and specifications correct at time of press and subject to alteration without notice. PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL
ENOUIRIES.

ASTRA-PAK
92 GODSTONE ROAD WHYTELEAFE SURREY CR3 OEB

All prices include V.A.T. Add 25 p .
for P\&P (Extra for overseas).
for P\&P Extra for overseas).
Discounts over $£ 10$ less 5%, over
£ 20 less 10%, over f. 50 less 15%,
over f100 less 20%
over f 100 less 20%.
Send SAE for compl
Send SA
ponents.

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX-30 will provide that listene whe excellent performance at a reasonabic cost and is the answer to this eternal problem at any frequency between 500 KHz and 30 MHz together with easy to understand frequency readout Suitable for all users from raw beginners, thanks to it's simplicity of operation; to experienced listener and amateur operators thanks to it's advanced technology, the SRX-30 is the best communications receiver available in it's price range today
Completely self contained, including operation from mains or 12 volts dc, the SRX-30 is at home on broadcast or amateur bands. All mode reception of AM. CW. USB. and LSB is provided and receive selectivity is automatically switched to give optimum performance on any mode.
Send for full details today or ger a ring and we li teil you all about the SRX-30. Price \&175 inc. vat NEW CL22. and 30 MHz . Six switched ranges with fully tunable receiver and aerial matching capacitors. A worthwhile addition to any SWL station an
an instant improvement in aerial matchin problems. Price $\mathbf{5 1 6 . 4 1}$ inc. V.A.T., post and packing.
 A set of first class chassis punches in a
fitted plastic case which
also includes a most also includes a mos
useful tapered reamer and believe me, if you ve never used a reamer, you are in for a pleasant surprise when you
find how easy it is to make beautifully round
holes of almost any size punches having diameters of $16,18,20,28$ and
30 mm . Price $£ 8.77$ including V.A.T., post and packing.
 but this really is an It is a five digit frequency counter reading up to 50 MHz . Additionally, the $\mathrm{FC}-5 \mathrm{M}$ has a minus 455 kHz offset which allows you to hang it on to the oscillator of your 9R59 (or whatever)
receiver, and to have digital readout. receiver, and to have digital readout.
(N.B. full details supplied free with cach (N.B. full details supplied free with each
counter). Price $£ 39.16$, including V.A.T., post and packing.

For all that's good in Amateur Radio, contact:
LOWE ELECTRONICS LTD
 For full catalogue, simply send 45 p in stamps and request catalogue CPW.

BUILD

 ELECTRONICS BY NUMBERS

 ELECTRONICS BY NUMBERS FISH'N'CLIKS

 FISH'N'CLIKS} PROJECTS ON

Now using EXPERIMENTOR BREADBOARDS and following the instructions in "Electronics by Numbers" ANYBODY can build electronic projects. Look at the diagram, this has the same letter/number system as all EXP BOARDS. Look at the "YOU WILL NEED" list and select Q1 this is PNP transistor type HEP-230. This plugs into hole X9, A7 and C9. NOW take C1, a 50 uF capacitor, and put into holes J6 and J14 and do the same with all the components.
NOW YOU HAVE FISH'N'CLIKS

YOU WILL NEED
B1, B2-2x1.5V AAA batteries
C1, C2-50 uF, 12-VDC electrolytic capacitor
E1-Crystal earphone
Q1 - Motorola HEP-230 pnp transistor
R1-5000-ohm pot
R2-27000-ohm, $1 / 4$ watt resistor
S1-Spst switch part of R1
T1-Mini transistor output transformer; 500 -ohm center tapped primary to 8-ohm secondary
EXP-ANY EXP. BREADBOARD.
The anglers dream come true. This electronic marvel emits a CLIK-CLIK sound that makes fish really hungry. Shove the whole works in a watertight container lower it over the side and wait for the fish to grab the hook.

FILL IN THE COUPON AND WE WILL SEND YOU FREE OF CHARGE A COPY OF THE FULL PROJECT FISH'N'CLIKS. AND A COPY OF PROJECT No 1 "TWO" TRANSISTOR RADIO'.

PROTO-CLIP TEST CLIPS.

Brings IC leads up from crowded PC boards. Available plain or with cable with clips at one or both ends.

PC - 16 pin. $£ 2.75$
$P C-16$ pin with cable.

$P C-16.00$.
16 with cable and 16 pin clips at both ends. $£ 10.25$.

CONTINENTAL SRECAALIES CORPCRATION

Europe, Africa, Mid-East: CSC UK LTD. Unit 1, Shire Hill Industrial Estate,
Saffron Walden, Essex CB11 3AQ.
Telephone: SAFFRON WALDEN 21682. Telex: 817477.

EXPERIMENTOR BREADBOARDS.

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts 8,14,16 and up to 22 pin IC's. ONLY $£ 1.60$.

EXP. 350.
£3.15.
270 contact points with two 20 -point bus-bars.

EXP. 300. 550 contacts with two 40-point bus-bars. £5.75.

EXP. 650 for Microprocessors. $\mathbf{£} \mathbf{3 . 6 0}$.

EXP 4B.

More bus-
bars.

f2.30.

ALL EXP. 300 Breadboards mix and match with 600 series.

BREADBOARDS.

> EXP. 325
> EXP. 350
> EXP. 300
> EXP. 650
> EXP. $4 B$.

TEST CLIPS
PC. 16-18.
PC. 16-18 Dual Clip.
PROTO-BOARDS.
PB. 6.
PB. 100.
NAME
ADDRESS

PROTO-BOARDS.
THE ULTIMATE IN BREADBOARDS FOR THE MINIMUM COST.
TWO EASILY ASSEMBLED KITS.

PB. 6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips. PROTO-BOARD 6 KIT. £9.20.

PB. 100 Kit complete with 760 contacts accepts up to ten 14-pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80.

HOW TO ORDER AND RECEIVE FREE COPY OF FISH'N'CLIKS PROJECT WITH BONUS OF FREE TWO TRANSISTOR RADIO PROJECT.
CSC UK LTD. Unit 1, Shire Hill Industrial Estate. Saffron Walden, Essex CB11 3AQ.
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or credit card number and expiry date. OR telephone 079921682 and give us your Access, American Express or Barclaycard number and your order will be in the post that night.
EXPERIMENTOR. CONTACT HOLES. IC CAPACITY UNITPRICE

FILL IN COUPON \& RECEIVE FREE COPY OF ELECTRONICS BY NUMBERS PROJECTS No 1 AND No 2

PARTS FOR CURRENT PW PROJECTS FROM AMBIT INTERNATIONAL VHF FM monitor RX: A complete kit of parts for this project, which we firmly believe will be an established "standard" for years to come. The kit includes a 5 channel switched crystal oscillator added to the board end, using diode switch ing. Uses cheaper 3rd OT crystals, employing original oscillator as $\times 3$ stage. Price depends on fitter selected iwe have various types) and whether or not chip capacitors are required. More notes on the kit from our own lab. $£ 25-£ 35 \mathrm{kit}$ VMOS POWER TRANSISTORS FOR PW WINTON $£ 9.95$ pair ${ }^{*}$ 2SK133/J48 FULL KITS FOR THE PW SANDBANKS METAL LOCATOR (should be ex stock) FULL KITS FOR THE PW DORCHESTER

Radio 1Cs		
TDA1062	HF/VHF tunerhead	1.95
TDA1083	One chip AM/FM rx	1.95
TDA10go	One chip HiFi am/fm	3.35
TDA1220	One chip am/fm rx	1.75
HA1197W	HiFi AM tuner IC	1.40
CA3123E	AM tuner IC	1.40
TBA651	AM tuner IC	1.81
CA3089E	Famous FM IF system	1.94
CA3189E	As 3089+ deviation mute	
	AF preamp, adj. age	2.75
HA1137W	Improved S/N 3089	2.20
TBA120	limiting amp+detector	0.75
TBA120S	high gain	1.00
MC1350P	agc'd If preamp	1.20
MC1330P	synch AM/video detector	1.35
KB4406	Cascode IF preamp	0.65
UA753	limiting FM preamp	1.95
Communications circuits		
S06000	OMOS RF/Mixer pair	3.75
KB4412	Bal mixers, IF+age	2.55
K84413	AM/SSB det. squelch,agc	2.75
KB4417	mic processor	2.55
MC3357	best thing in NBFM yet	3.12
MC1496P	popular double bal mixer	1.25
Multiplex decoders + noise blanker.		
MC1310P	popular PLL decoder	2.20
UA758	buffered 1310	2.20
CA3090AQ	RCA PLL decoder	3.25
HA1196	improved PLL decoder with stereo preamps	3.95
HA11223	19 kHz pilot cancel, low distortion, high S / N	4.35
KB4437	as HA11223 with remote	
	VCO kill facility	4.55
Kb4438	stereo MUTING preamp	
	for post decoder mute	2.22
K84423	impulse noise blanker	2.53

grade types - absolutely no junk are AEG firs for panel mounting 0.03 each
M1se. ICs for radio/audio applications $\begin{array}{lll}\text { SASEE } 10 & 5 & \text { LED bargraph driver } \\ \text { station touch tune IC } & 0.80^{*} \\ 1.48^{*}\end{array}$ SAS6710 adds 4 stations to $6610 \quad 1.48$ MSAS523/4 LW.MW,SW and FM digita Lrequency read FM digital frequency readout plus
clock, timers, stopwatch MSM5526 Clock, timers, stopwatch E14* TCA720 DC volume control
rCA7A0 TDA1028 DC tone control TDA1029 DC input switch Radio and Tuner modules We cannot really list all the details we would Wke to here - but with advent of the new mark 3
tuner system, the Dorchester and matching AF units, Ambit offers you the widest choice ever, plus hardware and styling that matches the ver

TERMS etc: CWO please, VAT on Ambit Items is generally $12 \% / 2 \%$, except where marked (*

 £3. Phone Brentwood (0277) 216029/227050 9am-7pm. Callers welcome inc. Saturdays
Rt lust, DIY HiFi whith looks us if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The Mk3 outstrips and outperforms all British made HiFi tuners, and most imported ones too. Certainly at the price, there isn't British made Hifi tuners, and most imported ones too. Certainly at the price, there isn't
one near it. But more than that, it looks superb. A small pic here would be an insult, so send an SAE for details on the kit that looks as if isn't. It's something else...

```
\# Exceptionally high performance - exceptionally straightforward assembly * Baseboard and plug-in construction. Future circuit developments will readily
plug in, to keep the Mklll at the forefront of technical achievernent \(\star\) Various options and module line-ups possible to enable an installment to the system
```

and now previewing the matching $60 \mathrm{~W} / \mathrm{ch} a n n e l$ VMOS amplifier:
$\prod \begin{aligned} & \star \text { Matching both the style and design concepts of the MkIII HiFi FM tuner } \\ & \star \text { Hitachi VMOS power fets - eharacterized especially for Hifi applications }\end{aligned}$ \star Power output readily multiplied by the addition of further MOSFETs \star VU meters on the preamp - not simply dancing according to vol level \star Backed with the usual Ambit expertise and technical capacity in audio

The PWU Darchester•LU,IMW, 5W,\& FII steren tuner
the digital dorchester all band tuner

With styling and dimensions to fit in with the rest of AMBIT's new range of tuner $\&$ audio equipment.

When the new range of OKI digital frequency display ICs was announced, the original prototype of the Dorchester had been made - but since so many of you wanted to use the OKI frequency counterdisplay system with the Dorchester, we quickly designed a unit to incorporate the necessary facilities. The Digital Dorchester is designed in 19 inch form, and forms a perfect match for the other units in the range. If you don't want to go to the expense of the full Ambit DFM1 module, with AM/FM/Time/Timers, then the MA1023 clock module can be used instead
The Dorchester has been described in PW Dec., Jan. and Feb. issues - but for those of you who may have missed it - it is an All Band broadcast tuner, covering LW/WW/SW and FM stereo in 6 switched ranges. Construction is very straightforward, with all the switching being PCB mounted - and the revolutionary TDA 1090 /C used for AM/FM.
The electronics for the radio section of the Dorchester remain unchanged at $£ 33.00$, with 12.5% VAT. The hardware package, of case, meter, PSU now costs $£ 33.00+8 \%$ with the MA1023 available for an extra $£ 5$ only.
For the fully digital version, with Ambit DFM1, the price is $£ 56.50 \div 8 \%$ VAT

2 Gresham Raad, Brentwand, Essen.

$*$
 Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISGOUNT PRICE LIST.

AUDAX - AUDIOMASTER BAKER - BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS - I.M.F. ISOPHON JR JORDAN WATTS KEF - LEAK LOWTHER MCKENZIE MONITOR AUDIO - PEERLESS - RADFORD RAM - RICHARD allan - SEAS SHACKMAN STAG TANGENT TANNOY VIDEOTONE WHARFEDALE YAMAHA

WILMSLOW AUDIO

(Dept. P.W.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF

Discount Hi-Fi Etc. at 5 Swan Street and 10 Swan Street Speakers, Mall Order \& Export 0625529599 Hi-Fi 0625526213

SINCLAIR PRODUCTS microvision tv

 world model E 147.95, U.K. model $£ 89.95$, mains adaptor $£ 6.73$. PDM35 $£ 28.95$, mains adaptor £3.19, case £3-19. DM350 £68-95. DM450 £97.95. DM $235 £ 49.45$, $f 3.70$, case $£ 8.45$. enterrorise prog calculator with accessories $£ 22.95$. cambridge prog calculator $£ 12.13$, prog library $£ 4.45$. prog CSC MAX 100 freq meter 775.40 .CALSCOPE oscilloscopes send sae for data or see the Calscope advert in this magazine. Super $6 £ 174$. Super $10 £ 236$.
COMPUTER GAMES chess challenger 10 £167. chess challenger 7 £79, checker Atari videocomputer $f 138$ cartridges 13.45.

N4148 NENTS send sae for full list. bc182b, bc183b, bci84b, bc212b, bc213b,
 $10 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{p}$ for $50+$ of one value. 16 V electrolytics $.5 / 1 / 2 / 5 / 10 / 22$ uf 5 p . 100 uf 6 p , 1000ut 10 p .1 lb FeCl fl 1.05 . dalo pen 79 p . kit $£ 8 \cdot 95$. rifle kit $£ 4 \cdot 95$. AY-3-8600 + kit £12.50. stunt cycle chip + kit $£ 15.70$. IC AUDIO AMPS with pcb.JC12 6WE1. 60. JC20 10 W £2.95. send sae for data.

TRANSFORMERS 6-0-6v 100ma 74p, $1 \frac{1}{2} \mathrm{a}$
 £2, 2a £2.60. 12-0-12v100ma 90p BATEEFY ELIMINATORS 3-way type $6 / 71 / 9 \mathrm{v} 300 \mathrm{ma} £ 2 \cdot 95$. 100 ma radio typ with press-studs $9 \mathrm{v} £ 3.35 .9 \mathrm{v}+9 \mathrm{v} £ 4.50 \mathrm{ca}$ convertor 12 v input. output $4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 \mathrm{v}$ BATIERY E for data 100 ma MINATOR KITS send sae $4 \frac{1}{2} \mathrm{f} 1.40$, $\mathrm{Ev} £ 1.40$ types with press-studs $\mathrm{f}_{\mathrm{T}}^{\mathrm{T}} .80,6+6 \mathrm{v} \mathrm{f} 1.80,9+9 \mathrm{v} £ 1.80$. stabilized 8 -way types $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{Bv} 100 \mathrm{ma}$
 $18 \mathrm{v} 100 \mathrm{ma} £ 3.60,2-30 \mathrm{v} 1 \mathrm{~A}$ £6.95. 2-30
 T-DEC
T-DEC AND CSC BREADBOARDS t-dec
 f2.48.
BI-PAK AUDIO MODULES $5450 £ 23$-51. AL $60 £ 4.86$. pal 100 £ 16.95 . spm80 $£ 4.47$ bmt 85 £ £ 35 -44.
SWANLEY ELECTRONICS Dept. PW
32 Goldsel Rd., Swanley Kent. Post 30p extra. prices include VAT. Official and overseas orders welcoms.

PRACTICAL WIRELESS T.V. SOUND TUHER
(Nov. 75 article by A. C. Ainslie)
Copy of original articie suppiled on request
IF Sub-Assembly (G8) £7-65. P\&P 75p.
Mullard ELC1043 V'cap UHF Tuner $\mathbf{£ 6 \cdot 1 9 . ~ P \& P ~ 3 5 p . ~}$
3-way Station Control Unit E1-35. P\&P 25p.
6-way Station Control Unit (Special Offer) £1.12.
Power Supply Prtd Circuit Board $\mathbf{£ 1} \mathbf{1 2}$. P\&P 30p.
Res, Caps, Semiconds, etc. for above $\mathbf{£} 6.53$.
Mains Transformer for above $\mathbf{£ 2}$-81. P\&P 30p.
(Price of goods includes $12 \frac{1}{2} \%$ VAT) P\&P all items 85p. Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

05T5
Since AMBIT introduced the＂One Stop Technology Shop＂to our service，we have been pleased to see just how many users of electronic components appreciate our guarantee to supply goods only from BS 9000 approved sources．More than ever，professional and amateur electronics engineers cannot afford to waste time on anything less than perfect pedigree products． SEE THE

mos

4000	$17 p$	4059
4001	$17 p$	4060
4002	$17 p$	4063
4006	$109 p$	4066
4007	$18 p$	4067
4008	$80 p$	4068
4009	$58 p$	4069
4010	$58 p$	4070
4011	$17 p$	4071
4012	$17 p$	4072
4013	$55 p$	4073
4016	$52 p$	4075
4017	$80 p$	4076
4018	$80 p$	4077
4019	$60 p$	4078
4020	$93 p$	4081
4021	$82 p$	4082
4022	$90 p$	4085
4023	$17 p$	4086
4024	$76 p$	4089
4025	$17 p$	4093
4026	$180 p$	4094
4027	$55 p$	4096
4028	$72 p$	4097
4029	$100 p$	4098
4030	$58 p$	4099
4031	$250 p$	4160
4032	$100 p$	4161
4033	$145 p$	4162
4034	$200 p$	4163
4035	$120 p$	4174
4036	$250 p$	4175
4037	$100 p$	4194
4038	$105 p$	4501
4039	$250 p$	4502
4040	$83 p$	4503
4041	$90 p$	4506
4042	$85 p$	4507
4043	$85 p$	4508
4044	$80 p$	4510
4045	$150 p$	4511
4046	$130 p$	4512
4047	$99 p$	4513
4048	$60 p$	4514
4049	$55 p$	4515
4050	$55 p$	4516
4051	$65 p$	4517
4052	$65 p$	4518
4053	$65 p$	4519
4054	$120 p$	4520
4055	$135 p$	4521
$T E R M s: c w o$	$p s e$,	

7400
7401
7402
7403
7404
7405
740
7408
7409
7411
741
7414

AMBIT AD TOO：
MITPTMITRTB PRICES
TTLELITITI rit
D LP Schottk

\qquad むずす

MANRNANRNR

LS
124
93
93 74377
74378

7 | 74378 |
| :--- |
| 74379 |
| 74396 | 124

93
130
37

930
37
140
$\begin{array}{ll}74395 & 139 \\ 74396 & 133\end{array}$ 74396
74398
74399

	150	
	92	
	94490	140
	90	
	74668	110
74670	249	

93	74670	249
90	MISCELLEN Y	

$$
\left\lvert\, \begin{array}{lr}
\text { NE555 } & 30 \mathrm{p} \\
\text { NE556 } & 78 \mathrm{p} \\
\text { NE558 } & 180 \mathrm{p}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\text { NE558 180p } \\
\text { ICM7217 950p } \\
\text { ICM7208 } 9495 p
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
1 \mathrm{CM} 7208 \text { 1495p } \\
\text { ICL7106CP }
\end{array}\right.
$$

$$
\left\lvert\, \begin{aligned}
& \mathrm{CL7106CP} \\
& \mathrm{CCD} \text { DVM }
\end{aligned}\right.
$$

$$
\begin{array}{r}
955 p \\
\text { VG KIT }
\end{array}
$$

$$
\left\{\begin{array}{l}
2480 \mathrm{p} \\
31 / 2 \text { digit } \\
\text { display } \\
\text { dis }
\end{array}\right.
$$

$$
\begin{aligned}
& 31 / 2 \text { digit LCD } \\
& \text { display } 1150 \mathrm{p} \\
& \text { ICL7107 LED }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { ICL7107 LED } \\
\text { DVM kit 2065 }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { DVM kit 2065p } \\
& 7 \text { ICM7216-8 digit } \\
& \text { InCH } 2 \text { DEM }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\text { ICM7216-8 dig } \\
\text { 10 MHz DFM } \\
\text { timer } \\
\text { E19.82 }
\end{array}\right.
$$

$$
7\left(\begin{array}{l}
\text { timer } \\
7
\end{array}\right. \text { f is LED C. Cath) }
$$

$$
\left\{\begin{array}{l}
\text { for LED C.Cat } \\
\text { SCALAR ISs }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { SCALAR IC s } \\
& 8629 \text { 150 MHz }
\end{aligned}
$$

$$
\begin{array}{l|ll}
00 & 8629 & 150 \mathrm{MHz} \\
15 & \text { divide by } 100 \\
49 & 420
\end{array}
$$

$$
\begin{aligned}
& 91+900 \mathrm{C} 1400 \mathrm{p} \\
& 8618 \text {-new-divide }
\end{aligned}
$$

$$
\begin{array}{l|l}
77 \\
77 \\
7618 \text {-new-divid } \\
\text { by } 100 \text { or } 10 \\
\text { for } 120 / 60 \mathrm{MHz}
\end{array}
$$

$$
\begin{array}{l|l}
77 \\
77 & \text { by } 100 \text { or } 10 \\
60 & \text { for } 120 / 60 \mathrm{MHz} \\
450 \mathrm{p}
\end{array}
$$

SOUTHERN VALVE CO．
 SECOND FLOOR， 6 POTTERS ROAD， NEW BARNET，HERS． MAIL ORDER ONLY．MINIMUM ORDER BOp

Some leading makes available．VAT invoices issued on request
Do NOT carry any guarantee，Enquire prices．
NOTE：PLEASE VERIFY CURRENT PRICES．COrrect only at time of going to press．

 STOP PRESS！One valve post $1 \frac{\text { if unavoidable }}{5 p}$ ，each extra valve $6 p$ ．Large valves 2 p Min．order $\mathbf{8 0 p}$ ． STOCKISTS UHF MAX 75p．LISTS AND ENQUIRIES．S．A．E．PLEASE！ $\begin{array}{ll}\text {＂MICRO＂AERIAL！} & \text { MAX } \\ \text { SIZE } 1 \frac{1}{4} " \times 3^{\prime \prime} \text { only } £ 3.70 \text { p incl．}\end{array}$ ENQUIRIES WELCOMED FROM TRADE and RETAIL（same prices）

Iuralimank

COMPONENTS－Now over 1,000 types in stock！
KITS

SERVICE QUALITY PRICES MAGAZINE
PROJECTS－Trouble－free！
S．A．E．for list of PWprojects
I enclose 30p＊，please send catalogue．
Name
＊Refundable with future orders over $£ 5.00$ ．

SAVBIT
handy solder dispenser Contains 2.3
metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size 5 65pinc. VAT For soldering fine joints
Two mone dispensers to simplify those smaller jobs. PC115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.

78p inc. VAT
Or size 19A for kit wiring or radio and TV repairs. 2.1 metres approx. of 2.1 metres approx
1.22 mm solder Size 19A 69pinc. VAT

Handy size reels and dispensers
of the world's finest cored solder to do a professional job at home

 These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications plus a major advance in soldering aluminium. Ask for a free copy of 'Hintson Soldering' containing clear instructions to makeeveryjobeasy.

SOLDERING FLUX PASTES
'ERSIN' A non-corrosive, rosin based flux for general and electrical soldering in conjunction with 'Ersin' Multicore solders. Ref RF10 52pinc. VAT
'ARAX' For general metal joining in conjunction with 'Arax'

Ref.	Alloy	Diam. (mm)	Length metres approx.	Use	$\begin{gathered} \text { Price } \\ \text { inc. VAT } \end{gathered}$
$\begin{gathered} \text { Size } \\ 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 40/60 } \\ \text { Tin/Lead } \end{array}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£2.81
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£2.81
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{array}{c\|} \hline 60 / 40 \\ \text { Tin/Lead } \end{array}$	0.7	39.6	For fine wires, small components and printed circuits.	£2.81
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAvBit	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfold.	£2.81

Bib HiFi Accessories Limited,

BIB WIRE STRIPPER and CUTTER
 Fitted with unique 8-gauge selector and handle locking device. Sprung for automatic opening. Strips flex and cable in seconds. Model 8B $\quad \mathbf{E 1 . 2 1}$ inc. VAT Pat. No. 144913

EMERGENCY SOLDER

Self-fluxing, tin/lead solder tape that melts with a match.
For electrical and non-electrical applications.
Size ES36
48pinc. VAT

MULTICORE

DESOLDERING WICK
Absorbs solder instantly from tags, printed circuits, etc. Orily needs 40-50 watt soldering iron. Quick and easy to use.
orrosive. Size AB10 $\quad \mathbf{1 . 1 4}$ inc. VAT

ECONOPAK

A reel of 1.2 mm 'Ersin' Multicore solder for general electrical use.
Size $13 \mathrm{~A} \quad \mathbf{£ 2 . 6 1}$ inc. VAT

A reel of 3mm 'Arax'
Multicore solder for general non electrical use.
Size 16A
£2.61 inc. VAT

TTLs BY TEXAS				74221	160p	74LS192	140p	74C157						TRANSISTORS				TIP41C TIP42A	$\begin{aligned} & \text { 78p } \\ & 70 p \end{aligned}$	2N3866 *2N3903/4	$\begin{array}{r} 90 p \\ 418 p \\ \hline \end{array}$	$\begin{aligned} & \text { DIODES } \\ & \text { EBYY27 } \quad 12 \mathrm{p} \end{aligned}$
7400		7497	180p	74251	140 p	74LS193	140p	74C160	155p	* ${ }^{\text {Y }}$ 1-0212	600 p	*MC1496	100 p	AC127/8	20p	BFY51/2	22p					
7401	14 p	74100	130 p	74259	250 p	74LS195	$140 p$	74C161	155p	*AY1-1313	688 p	*MC3340	120 p	AD149	70p	BFY56	33 p	TIP42C	82 p	*2N3905/6	20p	*OA47 9p
7402	14 p	74104	655	74265	90 p	74 S196	120 p	74C152	155p	* AY1-5050	212p	-MC3360	1200	AD161/2	45p	BFY90	90 p	TIP2955	78 p	${ }^{*} 2 \mathrm{~N} 4036$	65 p	*OA81 15p
7403	14p	74105	65 p	74278	290 p	74LS221	${ }^{100}{ }^{\text {p }}$	74 C 163	155p	AY5-1224A	225p	-MFC40008	120p	BC107/8	11 p	BLY83	700 p	TIP3055	70 p	${ }^{2} 2 \mathrm{~N} 4058 / 9$	12 p	* OA85 15p
7404	17p	74107	34 p	74279	140 p	74 S 240	175p	74C164	120p	*AY5-1315	600p	MK50398	750 p	BC109	$11 p$	BRY39	$45 p$	*TIS43	34 P	${ }^{2} \mathrm{~N} 4060$	12 p	*OA90 9p
7405	18p	74109	55 p	74283	190 p	744S241	175p	74 C 173	120 p 10	*AY5-1317	636p	NE531	1300	${ }^{\text {BCC147/8 }}$	${ }_{9}^{19}$	BSX19/20	20p	*TIS93	30 p	*2N4061/2	18p	*OA91 9p
7406	32p	74110	55							*AY5-1320	320p	NE540	200p	-BC149	10p	*BU105	190p	ZTX108	12p	*2N4123/4	22p	*OA95 9p
7407	32 p	74114	70p	74285	400 p	74LS243	175 p	74C175	210 p	CA5019	80p	NE543K	225	*BC157/8	10p	*BU108	250p	-ZTX300	11 p	-2N4125/6	22p	*OA200 9p
7408	19p	74116	200 p	74290	150 p	74LS245	175p	${ }^{74 C 192}$	150 p	*CA5046	70p	NE555	25p	-BC159	11 p	*BU205	220p	*ZTX500	15p	${ }^{*} 2 \mathrm{~N} 4289$	${ }_{27}^{20}$	*OA202 10p
7409	19p	74118	130 p	74293	200		4200	74C193	1500	${ }^{\text {-CA }} 3048$	225p	NE561B	70p	-BC169C	12p	*BU208	${ }_{145}^{240}$	*ZTX502	80p	-2N4401/3	97p	*1N914 4p
7410	15p	74119	210p	74298	200 p	74LS 259	175 p	74C195	220p	-	72p	NE561B	425 p	${ }^{*} \mathrm{BC} 172$	12p	*BU406	145 p	-2TX504	250p	2N4427 * 2 N471	90p	
7411	24p	74120	110p	74365	150p	74LS298	249p	74 C 221	175p	-	225p	NE562B	425p	BC177/8	17p	MJ481	175 p 200 p	2N457A	250p	-2N5087	60p	$\begin{array}{ll}\text { 1N4001/2 } & \text { 5p } \\ \text { 1 }\end{array}$
7412		${ }_{74122}^{74121}$	48p	74366	150p	7445373	200 p	4000 SE	SERIES		100	NE566	155p	${ }_{4 \mathrm{BC1}}{ }^{\text {BC1 }} 8$	18p	M ${ }^{\text {M2501 }}$	225 p	2N697	25 p	*2N5089	$27 p$	1N4003/4 6p
7414	60 p	74123	550	74367		74LS374	$195 p$	4000	15p	CA3140E	70 p	NE567	175p	${ }^{\text {B }{ }^{\text {BC18 }} 18}$	$11 p$	MJ2955	100p	2N697	45p	-2N5172	27 p	1N4005 6p
7416	27 p	7412	${ }^{55 p}$	74368		${ }^{81}$ 8S95	120	4001	17p	CA3160E	75p	RC4153	400p	BC187	30p	MJ3001	${ }^{2255}$	2 N 706 A	20 p	2N5179	${ }_{83}^{27 p}$	1N4006/7 ${ }^{\text {1 }} \mathbf{1} 5401 / 3 \mathrm{p}$
7417	27 p	74126	$60 p$ 75	74390 74393			120 p	4002	17p	FX209	750 p	*SN76003N	75p	-BC212/3	11p	*MJE340	65p	${ }^{2 N} \mathbf{N} 7088$	${ }_{45}^{20}$	2N5191 2N5194	83 p 90	
7420	17 p	74128 74132	75 p	74393 74490	200 p 2250	81LS98	120 p	4006	95p	${ }_{\text {ICLI }}$	925p $\mathbf{3 4 0}$	*SN76013N	140p	${ }^{*} \mathrm{BC} 214{ }^{\text {a }}$	12p	MJE2955		2N918 2N930	${ }_{18 \mathrm{p}}^{45}$	${ }_{\text {2 }}$	90p	$\begin{aligned} & \text { 1N5404/7 }{ }^{\text {19p }} \\ & \text { ZZESES } \end{aligned}$
7421 7422	42p	74132 74136	75p	74490	225 p	8 C 28	230p	4007 4008	\%	ICL8038				BC461	36 p	*MPF102	5p	$2 N 930$ $2 N+131 / 2$	18p	*2N5296	55	$2 \cdot 7 \mathrm{~V}-33 \mathrm{~V}$
7422 7423	22p	74136 74141	75p $70 p$	74LS		9301	160p	4008 4009	p	1 A	36 p 190 p	-SN76023N		${ }^{\text {BCC477/8 }}$	30 p	*MPF103/	40 p	2N1613	25p	*2N5401	50p	400 mW 9 p
7425	30 p	74142	200p	74LS00	18 p	02		4010	50 p	LM318		-SN76023NO		- ${ }^{\text {BC51677 }}$	${ }^{50 p}$	*MPF10	40p	2N1711	25p	*2N5457/8	40p	$1 W^{\text {W 15p }}$
7426	40p	74145	90 p	74LS02	18p	10		4011	17p	LM324	70p		120 p			*MPSA0	30 p	2N2102	60p	*2N5459	40p	SPECIAL
7427	34p	74147	190p	74LS04	20 p	9311	P	4012	18p	LM339	90p	SN76033N	175p	-BC557B	16p	-MPSA	50p	2N2160	120p	*2N5460	40p	OFFERS
7428	36 p	74148	150 p	74LS08	22 p	9312	160	4013	50p	LM348	95p	-SP3515	50p	-BC559C	18p	MPSA56	32p	2N2219A	20p	${ }^{2}$	$4{ }_{4}^{4 p}$	$100+741$
7432	30 p	74151A	7p	74LS 13	38 p	9314	165p	4015	P	*M377	175 p			BCY70	18p	PSU56	78p	2N2369A	16p	2N6247	190p	$100+555$
7433	40p	74153	70p	74LS14	100 p	9316	${ }_{150}^{225}$	4016	$45 p$	LM380	75p	"TBA800	90 p	BCY71/2	22p	OC28	130p	2N2484	30p	2N6254	130p	£20
7437	35p	74154	100p	74LS20	22p	9322	150p	4017	$80 p$	M38		-TBA810	100p	BD131/2	50p	OC35	130p	2N2646	50p	2N6290	65 p	$100+$
7438	35p	74155	90 p	74LS22	28 p	868		4018	89p	LM709	36 p	*TBA820	90p		209p	*R2008B	2000	2N2904/5	25 p	2N6292	65p	RCA 2N3055
7440	17p	74156	90 p	74LS27	38 p	${ }_{9374}$	200 p	4019	43 p		50 p	*TCA940	175p		${ }_{35} \mathbf{3 2 p}$	-R20108	200p	2N2906A	24 p	2N128	120p	£36
7441	70p	74157	70p	74LS30	22p	${ }_{9601}^{9374}$	100 p	4020	100 p	LM733	100 p	*TDA1022	600p	*BF256B	70p	-T1P29A	55p	2N2907A	30 p	3N140	100 p	BRIDG
7442 A	$60 p$	74159	190p	74LS47	90 p	9602	175 p	40	0p	LM741	29p	XR2206	400 p	BF257/8	32p	- T1P29C	55	${ }^{2 N} 2 \times 2926$	${ }^{9 p}$	3 N 201	10p	RECTIFIERS
7443	112 p 1120	74150 74161	100p	744S55	30p	9603	60 p	4022	100p	LM747	70 p	XR2207	400 p	BF259	32 p	-TIP30C		2N3053	65	3 N 204 40290	100p	-1A 50 V 22p
7444 7445	112 p 100 p	74161 74162		74LS74	50 p	INTER	CE	4023 4024	50 p	LM748	35p	- $\mathrm{XR2216}$	75p	${ }^{\text {* BFR }} 39$	30p	TIP31A	5	2N3055	48 p	40360	40p	*1a 400 V 30 p
7446A	93p	74163	100p	74LS75	50p	I.C. 5		4025	20 p	LM3800	${ }^{70 \mathrm{p}}$	- ZN 414	900	*BFR40	30p	TIP31C	62 p	2N3442	140p	40361/2	45p	*2A 50V 30p
7447A	70p	74164	120p	74LS83	110p	MC1488	100p	4026	130 p	LM3911	130p	CN424E	${ }_{35} 90$	*BFR41	30 p	TIP32A	68 p	2N3553	240p	40364	120p	-2A 100V 35p
7448	80p	74165	130p	74LS85	100p	C1489	1 cop	4027	50p	LM4136	${ }^{120} \mathrm{p}$	424 E		*BFR79	30p	TIP32C	82p	*2N3565	30p	40408	70p	*2A 400V 45p
7450	17p	74166	140p	74LS86	40p	75107	160 p	4028	84 p	*MC1310P	${ }^{150} 5$	ZN1034E		\#8FR80	30 p	TIP33A	114p	*2N3643/4		40409	65 p	*3A 200V 60p
7451	17p	74167	2090	74LS90	$60 p$	75182	230 p	4029	100 p	MC1458 MC1495	55 p 409 p	2N1034E		*BFR81	30p	TIP33C	114p	*2N3702/3		40410	65p	*3A 600V 72p
7453	17 p	74170	240p	74LS93	${ }^{60}$	75450	120 p	4030	55p	C1495	400 p		800 p	BFX29	30 p	TIP34A	115p	-2N3704/5		40411	300 p	*4A 100V 95p
7454	17p	74172	720p	74-S107	45p	75451/2	72 p	4031	200 p					BFX30	34 p	TIP34C	168 p	*2N3706/7		40594	97p	*4A 400V 100 p
7460	17p	74173	120p	74 LS112	100 p	75491/2	${ }^{96}$	4033	1800								${ }_{2250}$	${ }^{+2 N 3708 / 9}$		40595	${ }_{58}^{105 p}$	6 A 50 V 90p
7470	${ }^{36} \mathrm{p}$	74174	93p	$74 \mathrm{LS123}$	75 p	C-MOS	I.C. 5	4034	200	Fixed Pla	tic			BFX86/7	30 p	TIP35C	290p	$\xrightarrow{2 N 3773}$	300 p	40603	58 p	6A 100V 100p
7472	30 p	74175	85	744.5132	900 p	74 COO	25 p	4035	110 p	1A +ve		14 -ve		BFX38	30 p	TIP36A		-2N3819	25 p		90 p	6A 400V 120p
7473	34 p	74176	${ }^{90} \mathrm{p}$	74LS133	60 p	$74 \mathrm{CO2}$	25 p	4040	100 p	5V 7803	75p	5V 7905	100p	BFW10		TIP36C TIP41A	$\begin{array}{r} 340 p \\ 65 p \end{array}$	2N3820 2N3823	50p 70 p	$\begin{aligned} & 40841 \\ & 40871 / 2 \end{aligned}$	90p	10A 400 V 200 p
7474	30p	74177	90 p	744S138	60 p	74 CO	27p	4041	80p	12 V 7812	75p	12V 7912	100 p	BFY50	22 p	TIP41A	65	2 N 3823	70p	40871/2	sop	5 A 400 V
7475	${ }^{36 p}$	74178	160 p	74LS139	60 p	74C08	27 p	4042	80 p	15 V 7815	75p	15V 7915	100 p									
7476	35 p	74180	${ }^{931}$	744S151	100 p	74 Cl 10	27 p	4043	90 p	18 V 7818	90 p	18 V 7918	100 p	RED	DS				T P	ES: All	ite	at 8%
7480	50p	74181	200 p	74LS153	${ }^{60 p}$	$74 \mathrm{C14}$	$90 p$	4044	90 p	24 V 7824	90p	$24 V 7924$	100p	0.125	$12 p$	50			EPT	arked	whi	are at
7481	${ }^{100 p}$	74182	90p	744S157	${ }_{\text {chep }}^{60 \mathrm{p}}$	74 C 20	27 p	4046	1100	100 mA T	O-92	100 mA T	-0.92	$0.2^{\prime \prime}$		$50+$	p					
$7{ }^{74823} 4$	84 p	74184 A	150p	74LS158	120 p	74 C 30	27 p 36	4047	100 p	5V 78L05	${ }^{35 p}$	5 V 79 LO										
7484	100p	74186	700p	74LS161	100 p	74 C 42	190 p	4049	32 p	15 V 78 L 45		15 V 79										
7485	110p	74190	100p	74LS162	140 p	$74 \mathrm{C48}$	250p	4050	49p													
7486	34 p 210 p	74191	100p	7445163	100 p	$74 \mathrm{C73}$	75 p	4051	80 p	OTHER	135p			prop								
7489	210p	84192	100 p	74LS164	120 p	$74 \mathrm{C74}$	70 p	4052	80 p	LM309K	$135 p$ 200 p	TBA625B	${ }_{\text {120p }}{ }^{\text {65p }}$	approp	riate	rates.						
74900 A	${ }_{30 \mathrm{p}}^{33 \mathrm{p}}$	74193 74194	100p	74LS165	${ }_{140}^{80}$	$74 C 85$ 74 C 86	2005	4053 4055	sop_{125}	LM323K												
74914	80p 46 p	74194 74195	100p	74LS173	110p	744868 74690	65p 95 p	4055	135p	LM723	$\begin{aligned} & 625 p \\ & \mathbf{3 7 p} \end{aligned}$	78MGT2C	$\begin{aligned} & \text { 675p } \\ & \text { 135p } \end{aligned}$					17 BU	NL	ROA		
7493A	33p	74196	95p	74LS175	110p	74C95	130 p	4059	600 p													
7494	${ }^{84} \mathrm{p}$	74197	80 p	74LS181	320 p	74 C 107	125 p	4060	195	OPTO-EL	TR	ICs		Caller	W	me		N				
7495 A	70p	74198	150p	74LSt90	100 p	74 C 150	250 p	4063	120 p	2N5777	ORP	2 90p ORP6t		MON-F		-5.30						
7496	$65 p$	74199	150p	74LS19	100	74C1	260	40	55p	OCP71 ${ }^{13}$	ORP	90p TIL78	70p	SATU	DAY	10.30-4.30		I:)	1		: 9228

MAINS TRANSFORMERS All these have $230 / 240 \mathrm{v} 50 \mathrm{hz}$ All these have 230/240v 50hz Primary				
Voltage		Our Ref.	Price	Post
iv	2 amp	TM 1	19.94	40p
2.4	2 amp	TM 2	¢1.62	${ }^{45} \mathrm{p}$
$4 v$	7 amp	TM 32	¢2.70	${ }^{60}$ p
6 v	${ }^{3} \mathrm{amp}$	TM 3	${ }^{85 p}$	40p
6.5 v	$\frac{3}{4} \mathrm{amp}$	TM 37	85 p	40 p
6.5 v	200 mA	TM 21	£1.62	40 p
$6.5 \mathrm{v}-0-6.5 \mathrm{v}$	100 mA	TM 21	£1.62	40p
6. $5 \mathrm{v}-0-6.5 \mathrm{v}$	750 mA	TM 7	£2.16	45p
6.3-0-6.3v	100 mA	TM 33	£1.62	${ }^{40 p}$
6.3 v	2 mmp	TM 4	£1.89	50p
8.5 v	1 amp	TM 12	£1.62	40 p
$8.5+8.5 \mathrm{v}$ sep. winding	$\frac{1}{2}$ amp	TM 12	f1.62	40 p
9 v	1 amp	TM 5	f1.62	45p
9 g	31 $\frac{1}{2}$ amp	TM 11	£2.70	50p
9v	5 amp	TM 38	E3.24	5
10 v	25 amp	TM 15	E4.86	¢1.25
$10 \mathrm{v}-0-10 \mathrm{v}$	4 amp	TM 50	f3.78	19.25
$10 \mathrm{v}-0-10 \mathrm{v}$	$12 \frac{1}{2} \mathrm{amp}$	TM 15	£4.86	11.25
12 v	$\frac{1}{2}$ amp	TM 9	£1.05	${ }^{50 p}$
13v	100 mA	TM 21	£1.62	40 p
13 v	$\frac{3}{4} \mathrm{amp}$	TM 7	£2.16	50p
12 v	1 amp	TM 10	£1.89	50 p
$12 \mathrm{v}-0-12 \mathrm{v}$	50 mA	TM 19	f1.62	40p
12v-0-12v	1 amp	TM 41	£3.24	${ }^{50 p}$
15 v tapped 9 v	2 amp	TM 11	£2.70	50p
17 v	$\frac{1}{1}$ amp	TM 12	f1.62	50p
18v	早amp	TM 13	81.90	50p
20 v	$\frac{1}{5}$ amp	TM 14	f1.62	50 p
20 v (with $6 \mathrm{v} \frac{1}{2} \mathrm{mmp}$)	2 amp	TM 50	£3.78	1.25
20 v	6 amp	TM 46	£4.32	ع1.25
2 v	$12 \frac{1}{2}$ amp	TM 15	£4.86	ع1.25
20v-0-20v	6 amp	TM 15	£4.86	¢1.25
24v	13, amp	TM 16	f2.12	${ }^{60}$
24 v	2 amp	TM 17	¢2.70	${ }^{60} \mathrm{p}$
$24 \mathrm{v}+2 \mathrm{v} 7 \mathrm{amp}$	2 amp	TM 39	£2.97	70p
24 V	4 amp	TM 40	¢3.78	${ }^{80}$
25 v	${ }^{1 \frac{1}{2} \text { amp }}$	TM 18	f2.43	${ }^{60 p}$
26 v	2 amp	TM 39	£2.98	${ }^{60}$
30 v	8 amp	TM 15	£4.86	¢1.25
37v	37 amp	TM 34	[31.86	
40 v	3 amp	TM 46	¢4.32	ع1.25
40 v	5 amp	TM 48	f5.02	ع1.25
40 v	6 amp	TM ${ }^{5}$	f4.86	¢1.25
$40 \mathrm{v}-0-40 \mathrm{v}$	$2 \frac{1}{2}$ amp	TM 48	¢5.02	¢1.25
50 v \& 6.3v	2 amp	TM 22	¢4.86	ع1.25
50 v	8 amp	TM 29	¢11.65	¢1.75
60 v tapped 40v \& 20 v	2 amp	TM 46	£4.32	¢1.25
70 v	4.5 amp	TM 24	£7.02	£2,50
$75 v$ and 63 v	3 amp	TM 23	¢8.10	¢2.00
75 v	$4 \frac{1}{2} \mathrm{amp}$	TM 24	f7.02	ع2.50
80 vtapped 70 v \& 75 v	4 amp	TM 24	£7.02	c2.50
80 v centre tapped	$2 \frac{1}{2}$ amp	TM 48	¢5.02	£1.25
100 v	1 amp	TM 25	¢7.02	f1.75
$100 \mathrm{v}-0-100 \mathrm{v}$	$\frac{1}{4} \mathrm{amp}$	TM 25	f7.02	ع1175
200 v		TM 25	£7.02	ع1.75
$250 \mathrm{v}-0-250 \mathrm{v}$ \& 6.3v	50 mA	TM 36	£3.78	ع1.00
000v	100 mA	TM 36	E3.78	£1.00
500 v	50 mA	TM 36	¢5.78	£1.00
260 v	60 mA	TM 26	¢3.24	£1.00
1000v	60 mA	TM 43	f6.50	E2.00
4 kv	5 mA	TM 49	¢4.05	70p
5 kv	5 mA	TM 30	¢7.02	£1.00
8 kv	5 mA	TM 45	E4.05	£1.00
8.5 kv	10 mA	TM 31	¢10.26	£2.00
Full range of Mains to 120 v Auto transformers available. Pot Cores. We have now received our delivery of Ferrox pot but of course these have to be wound and you would have to				

	Dismoter	Thickness	Pri	
FX 2243	4.5 cm	3.0 cm 2.3 cm	81	
${ }_{\text {FX }} \times 2240$	2. 3.5 cm	1.6 cm	60	perpair

 insulators all on heat sink and 4 variable pots, preset type with spindle locks. Real bargain at $f 1.08$ each.
Component Bourd 421 . Acain from
Component Board 421. Again from unused equipment, major items on these are two power silicon transistors, Motor Rola ref.
$\mathrm{S} J 5433$ mounted on a heat sink with mica insulators, also behind
 primary and output vortage approx. 4kV 3 mAA Voltage, can be \&4.32. Chy
Music Centre Dust Cover. Size $12^{\prime \prime} \times 10^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{}$ with Music Centre Dust Cover. Size
atrachments for hingig. Price $\mathbf{E} 3.95$. Callers only
Telophone Anwwing Machines. Used. but apparently Telophone Answering Machines. Used, but apparently
complete and probably in working order. However, we are complete and probably in working order. However, we are alitable for conversion to open reel tape recorder, background music machine, echo chamber, etc. All untested but we guarantee to replace any major inem in the machine should it be fautry, Machines less outer case $£ 7.50$, case slightly broken but
substantially whole $£ 10.26$. Unbroken cases $£ 12.45$, and finally substantally whole $£ 10.26$ - Unbroken cases $£ 12.45$, and finally
with new looking cases $£ 14.50$. Post $£ 2.50$ per machine Many accessories available for these machines. Please enquire.
Watl Mounting Thermostat. The Satchwell room stat. Mains
20 amp settable over normal air temperatures between $30-80^{\circ} \mathrm{F}$ 20 amp settable over normal air temperatures between $30-80^{\circ} \mathrm{F}$, sutabe also for greenhouse contri. Ncely
enamel, P rice $f 3$. 25.
10 r enamel, Pice ex.2
10 r.p.m. Motor with 230 v mains coil, not like the usual of these
geared motors this has a good fength of $\mathbf{x}^{\prime \prime}$ shatt. Price $\mathbf{£ 2 . 5 0}+$ gep.
Rigon Rigonda Intermazzo $10+10$ hi-fi amplitier with belt driven
record deck with speed control and strobe check. The best hi-fi recerd deck
offered by Rigonda original selling price was in excess of $\mathbf{E 1 2 5}$. We have approx. 50 of these unused but with varid bus fauts. Untested, belifed complete except for cartridge and speakers.
Offered at $\mathbb{£ 3 3} \cdot 50$, less than the price of the very high quality oftered at $£ 33.50$, less than the price of the very high quality
deck incorported. It cannot collect add $£ 3.00$ to cover the
special ancking and carriage charget MINI-MULTI TESTER

Amazing, deluxe pocket size precision moving coil instrument-jewelled
bearings-i000 opv-mirrored scalie.
11 instant ranges measure:-
DC volts $10,50,250,1000$.
DC volts $10,50.250 .1000$
AC volts $10,50.150 .1000$
DC amps $0-1$ mA and $0-100$ mA.
Continuity and resistance $0-150$ Ohms
Complete with insulated probes leads, battery, circuit diagram and instructions.
Unbelievable value only $\mathbf{E 6}$ - $\mathbf{5 0}+50 \mathrm{p}$ post and insurance.

MULLARD UNILEX

 A mains operated $4+4$ stereo performers in the stereo field this would make a wonderful gift for aimost anyone in easy-to-assemblemodular form and complese with pair of Plessey speakers this should

special buik buy and as an incentive for you to buy this month we offer the system complete at only $\mathbf{E 1 5}$ including VAT and
postage. postag

24 HOUR TIMERS
VENNER
As illustrated with sun correction made for
G.P.O. phone boxes used perfect $\mathbf{£ 2 . 9 5} 20$ mp switching contacts.

SHORTWAVE CRYSTAL SET

Although ihis uses no battery it gives
really amazing results. You will receive an amazing assortment of stations over the
$1925,29.31$ metre bands. Kit contains chassis front panel and all the parts

SOUND TO LIGHT UNIT

Add colour or white light to your amplifier Will operate 1,2 or 3 lamps (maximu
450 W). Unit in box ready to work. $\mathbf{~ 9 . 9 5 .}$

BREAKDOWN PARCEL

 Four unused, made for computer units
containing most useful components, and containing most useful components, and computer panels, have wire ends of usable ieads over 1 It long-the diodes have
iepprox. $\frac{1}{2}$ leads.

List of the major components is as follows:- 17 assorted transistors- 38 assorted diodes- ${ }^{\text {con }}$ assorted resistors and multipin plugs or as hook up boards for experimental or quickly changed circuits (note we can supply the socket boards which we
made to receive these units). The price of this four unit parcel is made to receive these units) The price of this four unit parcel transistors or diodes alone). DON'T MISS THIS SPLENDID
MFI transistor
OFFER.

TANGENTIAL HEATER UNIT

A most efficient and quiet running blower-heater by Solatron-same
type as is fitted to many famous name heaters-Comprises mains an--split 2 kw heating elemen and thermostatic safety trip-
simply connect to the mains for mmediate heat-mount in simple wooden or metal case or mount direct onto base of say
kitchen unit-price $£ 4.95$ post
$f 1.50$ control switch 10 give 2 kw kitchen unit-price $£ 4.95$ post
f1.50 control switch 10 give 2 kw . 1 kw , cold blow or off available 60.
extra.

MOTORISED DISCO SWITCH
With to amp changeover
switches. Multi
adjustable
rated at 10 amps. This would provide a
magnificent display. For mains operating. 8 switch model 55.75 .
switch model $\mathbf{f 6 . 7 5}$.

FLUORESCENT TUBE

For camping car repairing ing from a 12 v
battery you can't

offer plenty of well distributed light and is economical. We offer
onvertor for $21^{11} 13$ watt miniature tube for only $£ 3.75$ with tube invertor for $21^{n} 13$ watt miniature tube for only $£ \mathbf{~} \mathbf{3 . 7 5}$ with tube

RELAYS

12 volt two 10 amp changeover plug in $\mathbf{9 5 p}$.
$12 v$ three 10 amp changeover plug in $£ 1.28$. $12 v$ three 10 amp changeover plug in E1.28,
$12 v$ two changeover miniature wire ended 96 .
12 volt open single screw fixing two 10 amp 12 volt open single screw fixing two 10 amp
changeovers $85 p .12$ volt open three 10 amp changeovers $£ 1 \cdot 25$. Latching relay mains
pperated $2 \mathrm{c} / \mathrm{o}$ contacts $£ 2 \cdot 11$. Mains operated three 10 amp changeovers open type one screw
fixing $\mathbf{£ 1 . 2 5}$. Meny other types with different coil voltages and contact arrangements are in

Terms: Prices include Post \& VAT. But orders under $\mathbf{5 6 - 0 0}$ please add 50p to offset packing. Bulk enquiries-Please Phone for Generous Discounts 6881833.

Access and Barciycard accepted

J. BULL (ELECTRICAL) LTD

(Dept. E. E.), 103 TAMWORTH RD.,
CROYDON CR8 1SG

IT'S FREE

Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived-often bargains which sell out before our advertisement can appear-it's an interesting list and available from previous lines.

FM Tuner and decoder, 2 very well made (Japan) units, nice clear dial, excellent reproduction. £11-20 the pair.
12 Volt Heavy Duty Relay, plug in tape has three pairs of 10 suitable 11 pin base 45.
4 Changeover Relay, upright mounting 4 sets of 10 amps mains voltage coil $\mathbf{f 1 . 7 2}$
12 Volt Pump. Designed we believe as a bilge pump, this is 12 volt AC/DC motor coupled by a long enclosed shaft to a submersi High Load 24 Hour Clock Switch, made by the famous Smith Company for normal mains but with clockwork reserve has load with large loads of say shop lighting, water heating, storage heaters, etc., etc. Has triggers for on and off once per 24 hours but extra triggers will be available. Price $\mathbf{£ 1 . 5 0}$ per pair, totally ncased, Price 29.50
Enclosed 24 Hour Clock with contacts for breaking, 10-12
amps at 240 volts. This one has two sets of on/off per 24 hours,
price $£ 7.00$. Light Dimmer, our timer module with small mods makes an excellent light dimmer. Contains a 4 amp 400 V SCR so it should be
suitable for loads approaching 1 KW . Price of module and instructions $£ 2$-25.
Puah Pull Solenoids, mains operated solenoids which will push as well as or instead of pull. Very heavy duty, estimate this at
201 bs push or pull $4 \frac{3}{4} \times 3 \frac{1}{4}^{\prime \prime} 4^{\prime \prime}$ made Magnetic Devices Co. £7-50.
Flashing Lights, chasing lights, random finishes, strobe effects etc., etc., can easily be achieved using our disco switches. These switable for mains working. To get some idea of loading number, ach switch is 10 amp . For the tight pipe or Catherine Whee解 connecting the switches to give fastest speed. 6 Sw
\&5. 9 Switch model $\mathbf{f 9 . 7 5}$. 12 Switch model $\mathbf{\text { ¢ } 6 . 2 0}$.
Reed Switchas, standard 60 watt glass type. Normal open con-
tacts glass lengths $2^{\prime \prime}$ diameter $3 / 16^{\prime \prime} .10$ for $£ 1,100$ for $£ 6$, 1000 for $£ 70$.
Flat Reed Switches, for stacking, greater quantity in confined
Coramic Magnets, suitable for operating Reed switches, central xing hole, 10 for $£ 1$.
Music Centre Trensformer 12-0.12 at 1 amp and 9 volt at $\frac{1}{2}$
amp. Normal primary, uprighting, impregnated and varnished for poration Price f 3.50

W' Shaped Fluorescent Tubes for porch light, box signs or where you want light evenly spaced over a confined
prox. $10^{\prime \prime}+1{ }^{10 n}, 30$ watts made by Philips, price $\mathbf{£ 2} \mathbf{2 4}$.
Extension Speakers, 8 ohm 4-5 watts handling power. We tytime at $\mathbf{£ 3 . 9 5}$ each, again only really a bargain for callers as postage is f 1.50 per speaker.
Auto Transformers for working American tools and equipment, ompletely enclosed in sheet metel case with American type flat output socket made for computer so obviously first class 500
watts. With cang handle, offered at about half price only $\mathbf{£ 1 5}$. These may be a bit soifed but are fully guaranteed. Similar but 1000 watt for $£ 29 \cdot 50$.
Car Starter Charge Kit. New version. We supply two 10 amp rectifiers. 250 v transformer and the start charge switch with in-
structions, price $\mathbf{\text { E9.7.7. This }}$ is probably one of the most useful pieces of equipment you can have in your garage. Sooner or later you or someone will leave something on and you will have a flat battery, this starter will get you away usually in less than 5

Resetter Countar, by Veedroot Company, 230/240V mains perated, intended for
12V Drip proof Relay. Specially designed for going under the has a removable semi-hard rubber cover Contacts look suitable for up to 10 amps so this could be the right one. If you are thinkHigh Speed Uniseiector. As many customers know, we have a very comprehensive stock of uniselectors as used in automatic telephone exchanges, light flashing device etc., etc. Just amived ole 32 way wiph overall size approx

Preumatic Ram for lifting, thrusting, pulling etc., has $2 \frac{3}{4}$ " travel, looks large
Price $£ 7-00$
Solder Gun Bargain. The ETP, this is 100 watt solder gun, a very well made tool with lamp to illuminate work has double insulated mains transformer and is built into the shock proof thercourse. Price $\mathbf{\text { E4.50. }}$
Interested in Tape Control. American made tape punches, realbelieve to automatically operate typewriters and they can of course be used to operate other punch tape controlled machines.
Reference number is NCR Class 461-2 reference 205 H8 R56. We believe these are 8 bit peper tape punches, powered from
115 V 50 HZ in very good condition with tape $\mathbf{£ 1 6 . 0 0 , ~ c a r r i a g e ~ i s ~}$ £3.20.
Resettable Fuses (thermal trips). Two new types have come in, one made by ETA is a 6 amp model which is mounted through a
single hole rather like a volume control. This is suitable for 250 volts $A C$ or 24 volts $D C$. Price 54 p. 4.5 Amp Model made by AEG is held by two screws thus a bank of these could be mounted
Disc Motor, mains operated. This is very thin in fact less than $\frac{1}{2}^{\prime \prime}$ spindle which is approx. $1 / 32^{\prime \prime}$ dia. pushes through so motor could be used to drive clockwise or anti-clockwise. The spindle being a friction fit can be pushed completely out and replaced by
your own spindle, a knitting needle for instance. Price only 38p.
75 rpm Mains Induction Motor with gearbox. This motor is is 1 powerful and has by $3^{\prime \prime}$ dia. The motor also has a spinde coming from he opposite end to which could be fitted another pulley Overall the opposite end to which could be fitted another
size approx. $3^{\prime \prime} \times 5^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}+$ spindles. Price $£ 3.35$.
24 Hour Motor, beautifully made by Sangamo. This is $200-$ size approx. $1 \frac{3}{4}{ }^{\prime \prime}$ dia. by $1 \frac{3^{\prime \prime}}{4}$ deep. If you are contemplating making a 24 hour switch with a lot of on/offs. then this is obviously the motor. Price $£ 1.89$.

Electronics Design Associates, Dept.PW6 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791

Name

Address
Phone your order with Access or Barclaycard

 Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2. Also 325 Edgeware Road, W2. Tel: 01-723 4242

 Glasgow: 85 West Regent Street, G2 20D. Tel; 041-332 4133 And Bristol: 108A Stokes Croft, Bristol. Tel: 0272654201.

ELEGTRTKILIE

Your leading direct suppliers for

RESISTORS		
Carbon Film *		
+ watt 1 to 10	E24 values (E12 over 1M	
2 watt 47 to 4 M 7	E12 values	ea. 2 p
$t \times$ att 47 to 10	E24 values	
1 watt 4.7 to 10 M	E12 values	ea. op
Metal Oxide e $\frac{1}{2}$ watt ElectrosıI TR5		
10 to 7 M	2\% E24 values	ea. 5p
Motal Film		
0.4 watt Mullard MR25		
5.1 to 300 K	2\% E24	ea. 5 p
Wirewound		
1 watt 0.22 to 3.9	E12 values	өa. 15 ¢
3.an watt 1 to 1 K	E12 values (vitreous)	ea. 2 日p
\$ watt 1 to 10K	E12 values	ea. 19p
7 watt 1 to 10K	E 12 values	ea.1日p
THERMISTORS Discs - VA1039500 19p. VAT1040 130. VA1100 15 19p. VA1 104 15-25 59p. Plate and Bead (vacuum) types also available from 22p to		
Buying from Electrovalue can cost you even less when purchased together with other items from our Catalogue 9 (See pages $85 / 86$ and discounts scheme). You will find practically everything you want in our Catalogue at good prices backed by good service - so start buying the Electrovalue way today.		
V.A.T. Add 8% to all prices quoted here except those marked - which carry $12 \frac{1}{2} \%$. Prices subject to alteration without pror notice.		
Discounts non allowable on Barclaycard or Access		

- We pay postage.

In U.K. on cw orders list value $£ 5$ and over. If under add 27p handling charge

- We give discounts On cw orders only 5% on list value $£ 10$ or more. 10% on orders list value f25 or more.
- We stabilise prices By keeping to our printed price lists which appear, but three or four times a year.
- We guarantee

All products brand new, clean and to makers specs. No seconds, no surplus.

- WE WILL SEND YOU OUR 100 PAGE CATALOGUE NO. 9 FREE ON. REQUEST
Write, phone or call for your copy together with latest price líst.

Dept. PW6, 24 St. Judes Road, Englefield Green, Egham, Surrey, TW20 OHB. Phone Egham 3603. Telex 264475
Northern Branch (Personal shoppers only), 680 Burnage Lane, Burnage, Manchester M19 1 NA Phone (061) 4324945

J. BIRKETT
 Radio Component Suppliers 25 The Strait, Lincoln LN2 1JF. Tel: 20767

50. 1 AMP (S.C.R's) THYRISTORS Untested $\mathbf{2 5} \mathbf{5} 1$.
 MLFALBC 107, BC 108, BC 109 TRANSISTORS 6 for 50 p . SPECIALLOWNOISEVHFSTRIPLNE FET $2 N 4417$ © ${ }^{2} 2.20$ MINATUREVARIABLE CAPACITOR $25 \times 25 \times 25 \mathrm{pf}$ e75p each XBAND GUNN DIODESCXY11A 1 E3 each

R.F. TRANSISTOR2N 5179, 2 N 5180 , AF 239, BFY 90 Allat 50p, BF 362 25p, BF 724
 40673Ta 33 , BF $244 a 25$.
FERRITEBEADS FX 1115 at 15 pdoz
 LED's TIL 209 at 6 for 50 p, $2^{\prime \prime}$ Red $\mathbf{1 5 p}$, Greene 18 p . VHFTETFERTRIMMERS 1 pot a 18 Peach.
51. PLASTIC NPN/PNPTRANSISTORS U Untested 5 57p.
52. VARITCAP DIODRANSISTORS Untested © 57 P. $50.0 C 71$ TRANSISTORSUUTestedfor 75 p .

MULLARDTAAA 32M M. .S.S.T. PRE-AMPLIFIER I. C. with data 3 35p.

 Type 5.45 voit 2 amp, 45 volt 500 mA e $£ 3.50$ ($\mathrm{P} \& \mathrm{P}$ P 85 p). Type 6,16 voit 2 amp e $£ 1,60$
 25pl.
MINIATURE POLYSTYRENE CAPACITORS $12,15,20,25,30,50,56,100,120$, Ua 742 ZEROCROSSINGACTRIGGERTRIGAC with data $\mathbb{\S}^{25} \mathrm{p}$.
53. PHOTOTRANSSSTORSAND DARLINGTONS Assorted Untested for $£ 1$.

100uf 100v.w. WIRE ENDED ELECTRONICS at 5 for 35p.
SUB-MINIATURE $25 \times 25 \times 25$ PTVARIABLE CAPACITOR $\mathbb{I} 1$ HFCG00 FREQUENCY COUNTER8DIGITREADOUTGOO MHZ®E115.

Please add 20p for post and packing on U.K. orders unjer $£ 2$, overseas postage at cost.

DISCOUNT SPEAKERS

Imp 8 or 15 as app. TITAN 5 year: FANELIFETIME OTHERS 1 year ALE PRICES INC. VAT

BIG DISCOUNTS ON
 WHARFEDALE SPEAKER KITS
 LINTON 3XP
 Power handling 30 watts DIN
 Listivalue pontic
 DENTON 2XP
 Power handing 25 watts DIN £ $39.15 \subset 21.95$
 AMPS, TTABLES, JINGLE MACHINES, disco consoles, lighting, CABINETS CREDIT TERMS AVAILABLE

Phone orders accepted from Access \& Barciay
card holders.
403 Saucherall street Tal: 0413320700

GLASGOW
 Shopping Centre. NEWCASTLE. Add $£ 1$ carr. on
$\mathrm{Hi}-\mathrm{Fi}$ spkrs. or kits. Othervise add $\mathrm{E} 1.25\left(12^{\prime \prime} \mathrm{Spkr}\right)$.

SUPERIOR WATCHES

A well known consumer magazine has published a report on are the best watches in the world, with CASIO offering mubeatable valine for moncy.

* THIS YEAR'S STAR BUY

CASIO $\begin{gathered}46 \mathrm{CS}-27 \mathrm{~B} \\ 46 \mathrm{CS}-29 \mathrm{~B}\end{gathered}$
(29B slightly different case style)
Almost certaisly the slimmest and most sophinticated ALARM CHRONOGRAPHS available today.

- LC Display of hours, minutes, seconds, day; And with day, date, month and year calendar
- Optional 12 hour with am/pm or 24 hour clock display.
24 hour alarm setting
- Optional bourly chimes.
- Chrono measures from $1 / 100$ second to 6 hours.
Net, lap, 1st \& 2nd place.
- 7.8mm Surimess Steel case.
- Real mineral glass face.
- Water resibtant to 100 feet.

Less than ± 10 seconds per month.
S/S braceiet, removable links. Backlight. $\mathbf{£ 3 9 . 9 5}$

CASIO ALARM WATCHES

25CR-16B
Left, 9.1 mm
$\mathbf{\$ 2 4 . 9 5}$
23 CS -16B Right, 9.25 mm $£ 34.95$

LC Display of hours, minutes, seconds (or date), day, am/pm; And with day, date, month and year. 24 hour alarm setting. Nightlight. 15 month battery life.
Stainleas Steel case and Mineral Giass face, Water Resistant to 100 reet. Matching fully adjustable bracelets.

CASIO CHRONOGRAPHS
52QS-14B
Left, 8 mm
£22.95

45CS-22B

£34.95

Net, lap and 1st \& 2nd place timing to $1 / 100$ second. Stainless Steet cases with Mineral Glass faces, Water Resistant to 66 \& 100 feet. Both have nightlights.
52QS Displays hours, minutes, seconds, am/pm; And with day, date and month. Chrono times to 1 hour, with rollover.
45 CS Displays hours, minutes, seconds, am/pm; And with day, date month and year. Selectable 12 hour (with $\mathrm{am} / \mathrm{pm}$) or 24 hour clock display, Dual Time fieclity.
Fuily adjustable \mathbf{S} /S bracelets and removable links.

ADVANCE SPECIFICATION. Two separate Alarm Tunes. Calculator with keys $1-8$ playing individual notes - a mini synthesizer! Complete Caiendar Watch, Stopwatch - measuring net and lap times to $1 / 10$ second - Alarm Timer and Calculator with $\%, \sqrt{ }$, full memory, date calculations. CASIO RRP £31.95.
$£ 25.95$
Other CASIO Calculating Diary Alarm Watches AQ-2000 £24.95; MQ-10 £35.95; MQ-11 $£ 29.95$
CASIO LCD Scientific Calculators
FX-48 £14.95; FX-80 £16.95; FX-2500 £19.95; FX-3100 £23.95; FX-58 (alarm clock, stopwatch) $£ 24.95$

> Most CASIO products available from stock.
Send 25p for illustreted brochu
> 號 watches or carculators (both on requent)

Prices include VAT, P\&P. Send cheque, PO or phone your ACCESS or BARCLAYCARD number to:-

TIMETRON

Depi P. M . . Heturnemb
 chathan wiv: find

ELECTRONICS SUPPLIERS
SHOPS, IMPORTERS, MANUFACTURERS

HONG KONG IS CHEAPER

Owing to the rising value of the Japanese Yen, products from Japan are becoming very expensive.

We have equivalent quality products at far better prices from Hong Kong, Taiwan and Korea.

We can supply in both large and small quantities with proven quality.

Even if you have never imported goods before, we can show you how!

86 pages, comprehensive, fully priced catalogue available: specialising in products for the electronics hobbyist.

Catalogue $\$$ US 4.00 to cover
airmail postage.

[^1]
BUILD YOUR OWN METAL DETECTOR TR/IB TR/VCO BFO ...

Test equipment not required. Manuals for kits available at 25 p each (refundable). UK prices post \& VAT paid except where mentioned. Overseas: write for quote. Literature available: SAE please.

Shadow TR/IB

(illustrated)
A true transmit receive/induction balance metal detector - uses the latest circuitry for maximum range and sensitivity. Speaker or phones. Preassembled search head with lightweight closed cell foam encapsulated coils for thermal insulation and water resistance. A very powerful machine!
Shadow TR/VCO
An advanced version of the above detector, use it as a sensitive TR/IB machine or switch to VCO mode when the depths achieved approach the maximum "in air" range. Low power requirement: runs on standard 9 volt batteries. The
most sophisticated detector available as a kit. most sophisticated detector available as a kit.

Shadow TR/B kit $\quad \mathbf{£ 2 2 . 5 0}$ (£29.95 assambled)
Shadow TR $/ \mathrm{NCO}$ kit $\mathbf{£ 2 7 . 5 0 \text { (} \mathbf { £ 3 6 . 9 5 } \text { assembled) }) ~}$
detectors
Designing your own detector? Then we can supply the (hard to obtain) hardware "shell" including fully adjustable shaft with handle, search head moulding with hinge assembly, special clips to mount your own control housing (any box is suitable) completely non-metallic: suitable for any type of detector (TR-P!-VLF-BFO etc). Supplied undrilled as a kit with full instructions (as used on our Shadow range).

Detector Shell kit $\mathbf{£ 8 . 5 0}$

Low cost BFO detector $200 \mathrm{~mm}\left(8^{\prime \prime}\right)$ annular search head gives wide scan with easy pinpointing. Simple high efficiency circuit draws $<3 \mathrm{~mA}$. Extra lightweight 300 gms (10.5 ozs) with battery. Very detailed construction manual: ideal as a first project. Absolutely everything supplied including pre-assembled search head, tuning coil and earpiece.

ALT3 detector (kit) - $\mathbf{£ 9 . 9 5}$ (assembled $£ 12.95$) $+\mathbf{£ 1}$ post \& packing.
Padded high Z headphones for ALT3: $\mathbf{£ 4 . 9 0}$.
Order by post or phone (24 hours) - for quickest delivery quote credit card number.
Callers by appointment only please!

ALTEK
 Dept. (P.W.) 1 Green Lane, Walton-on-Thames, Surrey.

 Phone (093 22) 44110
Meet 'UncleTom' He's on your wavelength.

Leeds Amateur Radio, 27 Cookridge Street, Leeds 2, West Yorkshire. Tel. Leeds 452657.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors. backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Commúnications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate
Diploma Courses
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting

Qualify for a New Career

Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
" A " levels
Accountancy
Air
Conditioning
Building
POST OB PHONE TODAY FOR FREE BOOKLET.

SEMICONDUCTORS POTS \& IRONS

SOCKETS	
16318 pmplL	¢0.11
1612 14pin DL	${ }^{\text {f0. }} 12$
${ }^{1613} 16$ din Di/	
${ }_{1615}{ }^{28}$	${ }_{\text {coicle }}$
${ }_{1616}^{1615}$ TO18 Transistor	${ }^{\text {E0. }} 12$
VOLTAGE REGULATORS	
MVR7815 va. ${ }^{\text {M }}$	
MVR7818 ${ }_{\text {MVR7824 va. } 7824 \text { TO220 }} \mathbf{5 0 . 7 0}$	
MVR7905v.a. 7905 TO220 $£ 0$	
MVR7912 V.a. 7912 TO220 ¢0.80	
231	
	¢

ZENERDIODES

400 mw (Bzy88) 007 Glass encapsulated. Range of voltages avail$4.3 v, 4.7 \mathrm{v}, 5 \cdot 1 \mathrm{v}, 5.6 \mathrm{v}, 6.2 \mathrm{v}, 6.8 \mathrm{v}$, $7.5 v, 8.2 v, 9-1 v, 10 v .11 v, 12 v$
$13 v, 15 v, 16 v, 18 v .20 v, 22 v, 24 v$ $27 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 39 \mathrm{v}$.
No. 348 p
1w-1.5w Plastic and metal encap sulated. Range of voltages avaitable.
$1.3 \mathrm{v}, 2 \cdot 2 \mathrm{v}, 2.7 \mathrm{v}, 3.3 \mathrm{v}, 3.9 \mathrm{v}, 4.3 \mathrm{v}$ $4.7 v .5 \cdot 1 \mathrm{v}, 5.6 \mathrm{v}, 6.2 \mathrm{v}, 6.8 \mathrm{v}, 7.5 \mathrm{v}$,
$8.2 \mathrm{v}, 9.1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}$, $8.2 \mathrm{v}, 9 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}$,
$16 \mathrm{v}, 18 \mathrm{v}, 20 \mathrm{v} 22 \mathrm{v}, 24 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}$, $33 v, 43 v, 47 v, 51 v .68 v$,
$82 v, 91 v, 100 v$.
No. $21315 p$ ea.
10w Metal stud type SO10 case. Range of voltages available,
$2 \cdot 2 \mathrm{v}, 2 \cdot 7 \mathrm{v}, 3 \mathrm{vv}, 3 \cdot 9 \mathrm{v}, 43 \mathrm{v}$, $2 \cdot 2 v, 2 \cdot 7 v, 33 v, 3 \cdot 9 v, 43 v, 4.7 v$,
$5 \cdot 1 v .5 \cdot 6 v, 6 \cdot 2 v, 6.8 v, 7.5 v, 82 v$,
$9.1 v, 10 v, 11 v, 12 v, 13 v, 15 v, 16 v$, $18 v, 20 v, 22 v, 24 v, 27 v, 30 v, 33 v$,
$43 v, 47 v, 51 v, 68 v, 72 v, 75 v, 82 v$, $43 \mathrm{vv}, 47 \mathrm{v}$,
$91 \mathrm{v}, 100 \mathrm{v}$

No. 21035 p ea.

SILICON RECTIFIERS	
200mA	
IS920 50v	£0.06
IS921 100v	£0.07
IS922 150 v	£0.08
IS923200v	¢0.09
IS924 300v	E0.10
1 Amp	
IN400150y	¢0.041
[N 4002 L 100v	£0.05
IN4003 200v	£0.06
IN4004 40Gv	£0.07
IN4005600v	f0.08
IN4006800v	¢0.09
IN4007 1000 v	¢0.10
1.5 Amp	
IS015 50v	£0.09
15020100 v	¢0.10
15021200 v	£0.11
15023400 v	£0.13
ISO25 600v	£0.14
IS027800v	£0.16
IS029 1000 v	£0.20
IS031 1200v	£0.25
3 Amp	
1N5400 50v	£0.14
IN5401100v	£0.15
IN5402 200v	£0.16
IN5404400v	£0.17
IN5406600v	£0.21
IN5407800v	¢0.25
IN5408 1000v	f0.30
10 Amp	
is 10/50 50v	¢0.19
ISto/100 100v	£0.21
IS10/200200v	£0.23
IS10/400400v	¢0.35
IS10/600600v	£0.42
1510/800800v	£0.51
IS 10/1000 1000v	¢0.60
IS10/12001200v	£0.69
30 Amp	
IS30/50 50v	£0.56
1530/100 100v	¢0.69
IS30/200200v	£0.93
IS30/400400v	£1.25
1530/600600v	£1.76
IS30/800 800 v	£1.94
1530/1000 1000v	£2.31
IS30/1200 1200 v	£2.88
60 Amp	
1570/50 50v	£0.75
1570/100 100V	c0.84
[S70/200200v	£1.20
1570/400400v	£1.75
IS70/600600v	£2.25
IS70/800800v	£2-50
IS70/1000 1000v	£3-00
BYX38/3006A300v	¢0.45
BYX38/600 6A600v	¢0.60
BYX38/300 Rev 6A 300v	¢0.45
BYX $38 / 600 \mathrm{Rev} 64600 \mathrm{v}$	£0.60

POTENT:			
CARBON POTS (Linear Track)			
Single gang with wire end terminations, 6 mm $\times 50 \mathrm{~mm}$ plastic shaft 10 mm bushes supplied			
with shake proof washer \& nut.			
Tolerance $\pm 20 \%$ of resistance.			
1831 fk ohms	c0.28*	183647 kohms	20.28*
18322 k 20 hms	20.26*	1837 100kohms	20.26*
$18334 \mathrm{k70h} /{ }^{\text {a }}$	20.26'	1838220 kohms	20.26*
1834 10kohms	e0.20'	1839470 kohms	£0.26*
18412 M 2 20.26*			

CAREON POTS (LogTrack)			
1842 4k7ohms	20.23*	1846 t00kohms	60.200
184310 kohms	20.28*	1847220 kohms	20.28*
184422 kohms	c0.28'	1848470 kohms	¢0.26*
1.84547 kohms	20.28*	1849 1Meg	20.26*
	18502M2 20.2		

DUALCARBON POTS (Lin Track) These high quality dual gang pots are fitted with wire end terminations and $6 \mathrm{~mm} \times 50 \mathrm{~mm}$
plastic shaft 10 mm , bush and supplied with shake proof washer \& nut track tolerance \pm 20% but matched to within 2 db of each other. VC3.

OPTOELECTRONICS

NEW INCREASED RANGE-ALL 1STQUALITY LED's (diffused)

O/no.	Type	Size	Colour	Price
1501	ARL209(TIL209)	. 3 mm (.125)	RED	¢0.10
1502	MIL3232(TIL211)	. 3 mm (.125)	GREEN	£0.15
1503	MIL3331 (OPL212A)	. 3 mm (.125)	YELLOW	£0.15
1504	ARL4850(FLV117)	. 5 mm 1.2	RED	¢0.10
1505	MIL5251(TIL222)	. 5 mm (2)	GREEN	£0.15
1506	MIL5351(MV5353)	. 5 mm 1.2	YELLOW	£0.15
1509	FLX 1.11	. 5 mm (2	$\begin{aligned} & \text { CLEAR } \\ & \text { \{ill., Red } \end{aligned}$	¢0.11
SUPER 'Hi-Brite' Type				
1521	MIL32	3 mm (125)	RED	£0.10
1522	MIL52	$.5 \mathrm{~mm}(.2$	RED	¢0.10
1514	ORP12 Light depende	resistor		f0.55
1520	OCP7 1 Photo transist			£0.35

WIRE WOUND POTS
A renge of wire wound single gang pots with A range of wire wound single gang pots with
linear tracks of 1 watt rating, fitted with 10 mm
bush and supplied with shake-proo ${ }^{\text {washer }}$ bush and supplied with shake-proof washer and nut.

PRE-SETPOTS
HORIZONTALMOUNTING
Miniature type for transistor circuits. The wiper of the preset is provided with a slot for screwdriver adjustment. The tags of the preset will fit
printed wiring boards with a pitch of 2.54 mm . Alltracks arefinear law.
VC7
VC7

 $18154 \mathrm{M} 70 \mathrm{hms} 20.09{ }^{2}$

PRE-SETPOTS VERTICALMOUNTING

Miniature type for transistor circuits. Wiper adjustment is made by a screwdriver slot.
Designed to fit 2.54 mm pitch board. All tracks are linear law.

ANTEXIRONS
O/No. 1943. 15 watt high quality soldering O/No, 1943 . 15 watt high quality soldering
iron totaly enclosed element in a ceramic
shaft fitted with $3 / 32^{\prime \prime}$ bit.
$\mathbf{£ 3 . 8 0}$ $\mathrm{O} /$ No. 1947 Replacement element for 1943
iron
$\mathbf{£ 1 . 9 0}$ O/No. 1944 Iron coated bit $3 / 32^{\prime \prime}$ for 1943 O/No. 1945. fron coated bit $\frac{1}{3} "$ for 1943 £0.46
 O/No. 1948. General purpose 18 watt iron
fitted with iron coated bit.
$\mathbf{£ 3 \cdot 6 0}$ O/No. 1952. Replacement element for 1948
iron. $\mathbf{£ 1 . 9 0}$

O/No. 1949 . Iron coated bit $3 / 32^{\prime \prime}$ for 1948 O/No. 1950 iron coated bit $\frac{11^{\prime \prime}}{}$ for 1948 O/No. 1951. Iron coated bit $3 / 16^{\prime \prime}$ for 1948 iron.
$\mathbf{Y 0 . 4 6}$

O/No. 1931. Highly popular $\times 2525$ watt quality soldering iron ceramic shafts to provide near perfect insulation break-down voltage of only $3-5 \mu \mathrm{~A}$ and another shaft of stainless steel to ensure strength.
$\mathbf{E 3 . 8 0}$ O/No. 1935. Replacement element for 1931
iron.
$\mathbf{£ 1 6 0}$ O/No. 1932. Iron coated bit $\frac{1}{8}$
iron. for 1931
£0.50 O/No. 1933. Iron coated bit $3 / 16^{\prime \prime}$ for 193 (iron.
O/No. 1934. Iron coated bit $3 / \mathbf{3 2}$ " for 1931 O/No. 1953. SK 1 soldering kit-this kit conO/No. 1953 . SK 1 soldering kit-this kit con
tains 15 watt soldering ron fitted with a
$3 / 16^{\prime \prime}$ solder, heat-sink and a booklet 'How $\begin{array}{lr}\text { solder'. In presentation display box. } & \mathbf{£ 5 . 5 5}\end{array}$ O/No. 1939.
Stand made
from high grade bakelite material chromium plated strong steel spring, suitable for all models, includes
accommodation for six spare bits and two sponges which serve to keep the soldering iron bits clean.

PRINTED CIRCUIT PCE TRANSFERS

LEDCLIPS

LEDCLIPS		
$1508 / 125$ pack of 5	125 clips	$\mathbf{£ 0 . 1 5}$
$1508 / 2$ pack of 5	2 clips	$\mathbf{£ 0 . 1 8}$
	ALL $₫ 8 \%$ VAT	

DIS
DL70
RED
DL7
RED
DL5
RED
DL7
RED
DL7
RED
OP
Isol
100
CIL

	D.P. left ($30{ }^{\prime \prime}$ height)	
RED	Single Digit	O/No. 1523
DL707	7 segment D.P. left ($0.0 .3^{\prime \prime}$ height)	Common Anode
RED	Single Digit	O/No. 1510
DL527	7 segment D.P. left (.50"height)	Common Anode
RED	Two-Digit Reflector	O/No. 1524
DL727	7 segment D.P. right (. $510^{\prime \prime}$ height)	Common Anode
RED	Two-Digit Light Pipe	O/No. 1521
DL747	7 segment D.P. left (.630" height)	Common Anode
RED	Single-Digit Light Pipe	O/No. 1511

OPTO-ISOLATORS

100mA Breakdown - Volage 1500 - Continuous fwd ouren CIL74 Single-Channel 6 pin DIP standard type - optically oupled pair with infra-red LED Emitter and NPN
O/No. 1497 E0-50 CILD74 Multi-Channel 8 pin DIP Two isolated Channels
 ALL@ 8% V.A.

2ndGRADELEDs
A pack of 10 standard sizes and colours which fail to perform
to their very rigid specitication, but which are ideal for to their very rigid specitication, but which are ideal fo amateurs who do not require the full spec.

THYRISTORS

600ma TO	TO18 Case	7 Amp Volts No.	TO48 Case
Volts No. Price			Price
10 THY600/10	O $\quad \mathbf{E 0 . 1 5}$	50 THY7A 50	f0.48
20 THY600/20	O $\quad \mathbf{E 0 . 1 6}$	100 THY7A 100	£0.51
30 THY600/30	O \quad E0. 20	200 THY7A 200	f0. 57
50 THY500/50	¢ £0.22	400 THY7A/400	£0.62
100 THY600/100	$00 \quad \mathbf{1 0 . 2 5}$	600 THY7A 600	£0.78
200 THY600/200 400 THY600/400		800 THY7A 800	£0.92
	$0 \quad$ £0. 44	10 Amp TO 48 Case Volts No. Price	
	TO5 Case		
1 amp		50 THY10A50 ¢0.51	
Volts No. Prise		100 THY 10 A 100	f0.57
50 THY1A 50 ¢0.28		200 THY10A/200	£0.62
100 THY1A/100 E0.28		400 THY10A 400	£0.71
200 THY1A 200 ¢0.32		600 THY10A/600	f0.99
400 THY1A/400 600 THY1A 600 800 THYIA 800		800 THY10A8800	£1.22
	$\begin{array}{ll} 0 & £ 0.45 \\ 0 & £ 0.58 \end{array}$	16 Amp TO 48 Case	
		Volts No.	Pric
3 amp	TO 66 Case	50 THY16A/50	20.54
		100 THY16A/100	0.58
Volts No.50 THY3A/50	Price	200 THY16A/200	¢0.62
	¢0.28	400 THY16A/400	E0.77
100 THY3A100	$00 \quad \mathbf{~} 0.30$	600 THY16A600	c0.90
200 THY3A 200 400 THY3A/400 600 THY3A/600	E00.33	800 THY16A/800	£1.39
	¢00	30 Amp \quad TO94 Case	TO94 Case
	$00 \quad \mathbf{6 0 . 5 0}$		
800 THY3A $800 \quad \mathbf{¢ 0 . 6 5}$		Volts No.	Price
5 Amp	TO 66 Case	100 THY30A/100.	E1.43
		200 THY30A/200	¢1.63
Volts No.	Price	400 THY30A/400	¢1.79
50 THY5A/50100 THY5A 100 200 THY5A/200	0 f0.36	600 THY30A/600	¢3.50
	O0 \quad ¢0.45		
	O0 $\quad \mathbf{8 0 . 5 0}$	No.	Price
400 THYSA/400 600 THY5A600	0 ¢ \quad ¢0.57	BT101/500R	¢0.80
600 THY5A600	00 £0.69	BT102/500R	¢0.80
800 THY5A/800	O0 $\quad \mathbf{8 0 . 8 1}$	BT106	£1.25
		BT107	¢0.93
5 Amp TO	TO220 Cas	BT108	¢0.98
		2N3228	¢0.70
Volts No.	Price	2N3535	£0.77
400800 THY5 ${ }^{\text {TH/400P }}$ /600P	00P $\quad \mathbf{8 0 . 5 7}$	ETX30/50L	£0.33
	O0P $\quad \mathbf{E 0 . 6 9}$	BT $\times 30 / 400 \mathrm{~L}$	£0.46
800 THY5A 800 P	OOP $\quad \mathbf{C 0 . 8 1}$	C106/4	¢0.60

CABLES		
DESCRIPTION	O/No.	PRICE/ Metre
Microphone Cable	3126	¢0.10
Twin Microphone	3127	£0.20
Twin Stereo Screened Cable	3128	£0.15
Multicore Standard 4-Core Screened	3129	£0.30
4-Core Individually screened	3130	£0.22
Heaw Microphone Cabie	3131	¢0.18
Light 3-Core mains	3132	¢0.10
Twin Oval Mains	3133	¢0.09
Speaker Cable	3134	£0.07
Low Loss Co-axial Cable	3135	£0.22
15 Way Multi Coloured Ribbon Cable	3136	£0.40

Geoffrey C. Arnold
ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE
ART EDITOR

	Peter Metalli
TECHNICAL EDITOR	
	Peter Preston
NEWS \& PRODUCTION EDITOR	
Alan Martin	

TECHNICAL ARTIST
Rob Mackie

ASSISTANT ART EDITOR

 Keith WoodruffSECRETARIAL
Sylvia Barrett Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER

Telephone: 01-261 6636 Dennis Brough

CLASSIFIED ADVERTISEMENTS Telephone: 01-261 5762 Colin R. Brown

MAKE UP \& COPY DEPARTMENT Telephone: 01-261 6570 Dave Kerindi

CB?

THE airing given to the Citizens Band controversy in our April issue certainly did provoke some heart-felt comments from our readers, one or two of them frankly libellous! It does seem surprising that some members of the amateur radio fraternity should express quite so forcefully the view that no-one, but no-one, who has not passed the RAE should have any right whatever to any form of personal radio communication. There must be many people who, like one of our correspondents, are interested in radio but just seem unable to pass the RAE despite repeated attempts. And there are many, many thousands who could make good use of a personal, short-range communication facility.

The choice of frequency band is obviously important. It should preferably be in a presently unused portion of the spectrum, and well away from any bands for which off-the-shelf, high-powered transmitters or amplifiers are available. These requirements both put any portion of the 2 metre band out of court. The use of v.h.f. or u.h.f. is obviously preferable, in order to limit the range achievable, but this brings us back to the question of equipment cost.

Informed sources are quoting $£ 150$ as the likely cost of a UK-produced handportable set. Just how many would be sold, when there are reputed to be factories in the Far East with output capacities of $25000-50000 \mathrm{CB}$ sets per month, and FOB prices for 5 W output, 40-channel car transceivers as low as $£ 25$? Without some sort of import quota system for at least a limited period, our communications industry would suffer in the same way that our hi-fi industry already has, and our balance of trade situation be made even worse.

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Keith Woodruff — Assistant Art Editor

After leaving grammar school, Keith began his working life as a junior in the art department of a print company. He next joined Metro-Goldwyn-Mayer Filim Studios as a Set Decorator, where he stayed until the studios closed down. Keith then had an unsettled spell drifting from job to job until he joined IPC in 1973.

Having lived in Hoddesdon, Hertfordshire and commuted to London, he finds that the move to

Poole has drastically cut his travelling time to work. This gives him more time with his wife and daughter, who find the move to Dorset one of the best things to have happened to them

Keith and his family are members of Poole Camera Club, with Keith and his daughter actively engaged in competitions. His other interest is gardening, growing vegetables, soft fruit and cacti in a greenhouse.

Catalogues

Belzer, one of Europe's leading hand tool manufacturers, have been producing high-quality tools in their West German works for almost 100 years. A selection of some 200 precision electronic tools is now available from Toolrange Ltd.
Belzer are certainly not cheap but meet the highest standards of quality and finish. The range includes, special pliers with spring-loaded handles, cutters, screwdrivers, tweezers, adjustable tools and complete tool kits.
To receive a free 32 page catalogue and price list, apply to: Toolrange Ltd., Upton Road, Reading RG3 4JA. Tel: (0734) 29446 or 22245.

Watford Electronics' latest catalogue contains 92 pages, packed with the most useful information for the electronics constructor. Watford also supply kits for many PW projects, including the Purbeck Oscilloscope (for details see Watford's advertisement).
The catalogue costs 50 p plus 25p $\mathrm{p} \& \mathrm{p}$, available from: Watford Electronics, 33/35 Cardiff Road, Watford, Herts WD 1 8ED. Tel: (0923) 40588/9.

Marshall's latest catalogue has been expanded from 40 to 48 pages and includes many new items, such as, oscilloscopes, KIM and PET microcomputers, extended capacitor and switch ranges, more tools and a new digital multimeter.

A new feature of the catalogue is the limited line section covering obsolete items. The catalogue is available at 50p post paid or 40p to callers at their branches. A. Marshall (London) Ltd., Kingsgate House, Kingsgate Place, London NW6 4TA. Tel: 01-624 0805.

Astra, the electronic component mail order company, inform us their latest catalogue is now available. Among the many items featured are crystals, i.c.s, resistors, capacitors and electronics books. The free catalogue is available if you send a sae to; Astra-Pak, 92 Godstone Road, Whyteleafe, Surrey CR3 OEB.

Teach-in

The University of Salford is again running a one-week course in July 1979 on Electronic Applications for Teachers. The aim of the course is to provide teachers who have some basic knowledge of semiconductor electronics with the opportunity to study the subject in greater depth. The
material covered will be adequate for the option of the JMB ' A ' level physics syllabus, or other syllabi of comparable standard. The course will be devoted primarily to the study of operational amplifier and integrated logic circuit applications, approximately half the time being spent on experimental work.

The course organiser is Dr E. A. Flinn, of the University's Department of Electrical Engineering. For further details contact: The Administrative Assistant (Short Courses), Room 110, Registrar's Department, University of Salford, Salford M5 4WT. Tel: 0617365843 , extension 449.

Mobile Rallies

Otley Radio and Electronics Society (G8JTD, G3XNO) are holding "The Northern Mobile Rally 1979," at The Victoria Park Hall, Keighley on Sunday 20 May, between 11.30 am and 5.30 pm . There will be talk-in stations on S22 and SU8 also trade stands, films for the children, refreshments, bar and many other attractions. Further details from: Jack E. Annakin G8DFZ, 25 Ashfield Place, Otley, West Yorkshire LS21 3JN.

Maidstone YMCA Amateur Radio Society (G3TRF, G3YSC) Mobile Rally is to be held at the Y Sports centre, Melrose Close, Maidstone, Kent, on Sunday 27 May, 1979, commencing at 11.00 am . In addition to talk-in stations using the callsign GB2YSC on 1925 kHz s.s.b., 144.270 MHz s.s.b., and S 22 f.m., there will be bring-and-buy stalls (10% to club funds), covered trade accommodation, on-site parking, snack bar and special attractions for all the family. Further details from: John Parker, 42 Mote Road, Maidstone, Kent. Tel: (0622) 50350.

Getting started

A new careers publication has been issued by the Institution of Electrical and Electronic Technician Engineers (IEETE) entitled: "Engineering a Career in the electrical and electronics industry".

The booklet avoids excessive detail, concentrating rather on giving a general picture of the profession of electrical and electronic engineering, and the qualifications required to become a Technician Engineer, a Technician or a Chartered Engineer. The publication should be useful not
only to young people considering their career, but also to those engaged in offering careers advice and guidance.

Copies are available on request from: The Secretary, IEETE, 2 Savoy Hill, London WC2R OBS.

The Department of Industry has also produced a full-colour brochure entitled: "Microelectronics-the new technology", which should help the non-specialist to understand the basic principles of the new "silicon-chip technology". Copies of the brochure are avalable from: The Electronics Applications Division, Dean Bradley House, 52 Horseferry Road, London SW1.

Look you here

Barry College of Further Education Radio Society are holding their annual Welsh Amateur Radio, TV, Electronics and Computer Exhibition at the Barry Memorial Hall, Hoton Road, Barry, S. Glamorgan, on Sunday, 20 May, 1979, commencing at 11.00 am . There will be all the usual attractions including a licensed bar. Further information from: Reg Rowles GW4FOM, 4 Cowbridge Road West, Ely, Cardiff CF5 5BR. Tel: (O222) 565656.

Here we are again!

Once more it's time for the RSGB Amateur Radio Exhibition, at Alexandra Palace. The two-day exhibition will be open between 10.00 am and 7.30 pm on Friday, 11 May, and 10.00am and 6.00 pm on Saturday, 12 May, 1979.

The RSGB will occupy their largestever stand at the exhibition with staff and members there to answer your questions and run a talk-in station GB2AP on S22 and SU8, also listening-watch on 144.28 MHz s.s.b.

Among the many features of the exhibition are stands from other amateur organisations, including RAYNET, trade exhibitors, films for the newcomer, a full range of catering amenities and a larger supply of real ale than last year at the licensed bar.

Admission will be 60p (RSGB members 50p), children under 12 yrs free. Facilities for the disabled are available, plus free parking for up to 2,000 cars.

Technical staff from Practical Wireless will be attending the exhibition on stand N10, and look forward to meeting as many as possible of our readers.

r

I. HICKMAN

Most readers will know that when using a multimeter to measure the voltages at various points in a circuit, account must be taken of the usually small, but none-the-less finite, current drawn by the meter. This additional circuit loading can actually change the voltage at the point of measurement by a significant amount if the source resistance is high.

Fig. la shows the case where the emitter and base voltages of a small signal amplifier stage are measured separately. The figures in square boxes are the vcltages as measured by a $1 \mathrm{k} \Omega$ per volt meter on the 10 V range, whilst the figures without boxes are the actual voltages when the meter is not connected. The emitter voltage changes by a negligible amount, as the transistor acts as an emitter follower, i.e. a low source resistance. However, the source resistance of the base circuit is $16.6 \mathrm{k} \Omega(22 \mathrm{k} \Omega$ and $68 \mathrm{k} \Omega$ in parallel), which is not negligibly low compared to the $10 \mathrm{k} \Omega$ resistance of a $1 \mathrm{k} \Omega$ per volt meter on the 10 V range.

The erroneous conclusion one might draw if no allowance were made for the meter loading effect is that the transistor is cut off! The figures in round boxes are the voltages as measured on the 10 V range of $120 \mathrm{k} \Omega$ per volt meter and, as can be seen, the error due to meter loading is small. For this reason, multimeters specifically meant for electronic work (as distinct from general electrical work) have a sensitivity of at least $10 \mathrm{k} \Omega$ per volt, commonly $20 \mathrm{k} \Omega$ per volt and not infrequently $30 \mathrm{k} \Omega$ per volt or even higher.

Waveforms

Exactly the same problem of the measuring instrument loading the circuit and actually changing the very voltage that one is trying to measure, can arise when using an oscilloscope.

It should be obvious that with an input resistance of $1 \mathrm{M} \Omega$, the oscilloscope loads the circuit under test less than a $20 \mathrm{k} \Omega$ per volt mulitmeter (for voltage ranges up to 50 V full scale deflection).

However, the oscilloscope is specifically used for examining voltage waveforms, i.e. voltages which are changing. Therefore, we also have to consider the input capacitance of the oscilloscope and this amounts to a few tens of picofarads (pF).

Whilst this would generally cause no problems at audio frequencies, the $P W$ Purbeck might be typically used to examine, say, a 1 MHz square-wave. An ideal square-wave contains harmonics extending up to an infinitely high

Fig. 1: (a) above, shows the effect of $20 \mathrm{k} \Omega / \mathrm{V}$ and $1 \mathrm{k} \Omega / \mathrm{V}$ meters on voltages measured. (b) below, is the circuit of a 10:1 probe to reduce circuit loading

frequency and even a "practical" 1 MHz square-wave will involve frequencies greater than 10 MHz . Now 30 pF (and the input capacitance of the $P W$ Purbeck oscilloscope is of this order) has a reactance of only 500Ω at 10 MHz and could thus considerably affect the waveform unless the source impedance were under 50Ω ! In fact, matters are a good deal worse than this, as we have not allowed for the capacitance to ground of a lead from the test point to the oscilloscope-trying to connect the circuit under test directly to the input connector of the oscilloscope with negligible lead lengths is always tedious and often impossible. Experience dictates that for general-purpose use, a lead of two to three feet is needed, screened to avoid hum pick up when working on high impedance circuits. Even choosing a low capacitance screened lead such as 75Ω coaxial cable, we have about 20 pF per foot, so that $2 \frac{1}{2}$ feet of cable plus the input capacitance of the oscilloscope leaves us with a total of around 100 pF . The purpose of a $10: 1$ divider probe is to reduce the effective input capacitance of the scope plus connecting lead to nearer 10 pF .

\star components

 CA 2220 nihnrier (Nullard) 1 nileter 752 Uniradio 70 " Thplataraldite, etc. as reaturact

The 10:1 passive divider probe is a useful addition to the PW Purbeck oscilloscope. On the right it is seen being used with a Scopex 4D10 scope while the picture below shows the completed probe

Theory of Operation

Fig. 2a shows the circuit diagram of the traditional type of oscilloscope probe. The capacitance of the screened lead plus the input capacitance of the oscilloscope form one section of a capacitive potential divider. The trimmer CT forms the other and it can be set so that the attenuation of this capacitive divider is $10: 1$ in volts, which is the same attenuation as provided by RA $(9 \mathrm{M} \Omega)$ and the $1 \mathrm{M} \Omega$ input resistance of the oscilloscope. When this condition is fulfilled, the attenuation is independent of frequency (Fig. 3a). Ássuming Ce the cable plus 'scope input capacitance $(\mathrm{Ce}=\mathrm{Cc}+\mathrm{Co})$ totals $100 \mathrm{pF}, \mathrm{Ct}$ should at any frequency have a reactance nine times that of CE. i.e. will equal $\frac{1}{9}$ of CE. If Ct is too small, high frequencies (e.g. the edges of a square-wave) will be attenuated by more than $10: 1$, whereas the attenuation of the steady level will still be $10: 1$ resulting in the waveform of Fig. 3b. Conversely if Ct_{T} is too large, the result is as in Fig. 3c. All of the above has assumed that CE is constant and this will only be so if the input capacitance of the 'scope is the same on all ranges. This is the purpose of capacitors C3-6 in Fig. 2, p. 29 of the June 1978 issue of $P W$ as they allow the input capacitance of positions 2-5 of S3B (Input Range) on the $P W$ Purbeck to be set to the same value as on position 1.

The rounding or pip on the edges of a square-wave will be difficult to see on a very low frequency signal, as with the slow time-base speed needed, the square-wave will appear to settle very rapidly to the positive and negative levels. Conversely, at very high frequencies, the displayed square-wave amplitude will be affected by the capacitive divider only. The time constant CR of the oscilloscope
input is $30 \mathrm{pF} \times 1 \mathrm{M} \Omega$ or 30 microseconds. Therefore, waveforms as in Fig. 3 will be seen with a square-wave input of around 1 kHz .

At very high frequencies, where the length of the probe cable is an appreciable fraction of a wavelength, reflections will occur, as the cable is not terminated in its characteristic impedance of 75Ω. For this reason, commercial oscilloscope probes often incorporate a resistor of a few tens of ohms in series with the inner of the cable at one or both ends, or use a special cable with an inner made of resistance wire. Such probes are suitable for oscilloscopes with a bandwidth of 100 MHz or more, but in the case of the $P W$ Purbeck, a resistor is already incorporated in the input circuit of the oscilloscope, so that further resistors in the probe are unnecessary.

Fig. 2a shows Ct as a variable capacitor. However, this is mounted at the business end of the probe, where it is not very convenient to accommodate a trimmer. Therefore, a fixed capacitor is used for CT , permitting a neat, compact design for the probe head. Adjustment is carried out by means of a trimmer mounted in a small box at the oscilloscope end of the probe. Inevitably, this means that CE (and hence the capacitive loading of a circuit under test) is higher than with the scheme of Fig. 2a, but only slightly, and is well worth the extra convenience. With the

Fig. 2: (a) above shows the traditional 10:1 divider probe and (b) below the design used for the PW Purbeck scope probe

chosen design of Fig. $2 b$ in use, CA_{A} is adjusted so that CT_{T} $=\frac{1}{9}(\mathrm{Cc}+\mathrm{CA}+\mathrm{Co})$, by the simple procedure of setting it to reproduce a test square-wave as in Fig. 3a rather than b or c.

Construction

This calls for the employment of a little ingenuity in the use of materials such as Araldite, tinplate (from the proverbial cocoa tin or similar), insulating tape, etc. and of tools such as tin-snips, snipe nosed pliers and the like. If you are adept at this sort of thing, construction is really straightforward and sketches of the necessary bits and pieces are given in Fig. 4.

The housing of CA is fabricated in two parts, the body being soldered to the rear of a BNC plug and the cover fitted later when construction and testing are complete. The BNC plug used by the author had a cable clamping sleeve with hexagonal flats and the body of the CA housing was shaped and soldered to this.

The method of fixing the 75Ω coaxial cable is crude but effective, the Araldite being essential to support the cable firmly. Araldite is also used, again as a strain-relief, at the cable entry into the probe head. The body of this is also made from tinplate and can usefully be as small as RA and Ct_{T} will allow, bearing in mind that these should be firmly mounted and reliably insulated. The author used a long 8BA brass bolt as the probe tip. After assembly, the shank was filed smooth, the tip sharpened and then flatted and nicked as shown in Fig. 4. This enables it to be hooked on to wires, transistor or diode leads, etc. when checking throughi a circuit and is a very useful feature as it leaves the hands free.

The reliability of the earth wire is most important. Many commercial probes, even of the best known makes, give continual trouble due to the earth lead going open circuit. Ordinary stranded wire will not stand up to the continual flexing, so the author used black plastic covered extra-flexible wire as sold for multimeter leads and this has proved very successful. The free end is terminated in a miniature croc-clip, preferably the sort with an insulating plastic boot. It must be stressed that the 75Ω coaxial cable must have a stranded inner conductor, e.g. "Uniradio 70". Cable with a solid inner is too stiff to be convenient in use and with the flexing to which it will be subjected, the inner will certainly go open-circuit eventually.

Note that as the probe attenuates the waveform to the oscilloscope by a factor of 10 , nine-tenths of the voltage applied to the probe will appear across RA and CT. The latter should therefore have a voltage rating adequate to cope with the highest voltage the probe may experience, say 500 V working or better still, 1000 V .

Setting Up The Probe

This requires a square-wave generator with an output which can be set to around 100 mV peak-to-peak at a frequency of 1 kHz or thereabouts. If it has accurately known output levels it can also be used for checking the oscilloscope's "Y" gain settings and the Oscilloscope Calibrator published in the January 1977 issue of $P W$ is quite suitable. Alternatively, the design shown in Fig. 5 can be used. This calibrator is powered from the front panel accessory socket of the $P W$ Purbeck oscilloscope itself.

Whichever source is used, connect the probe to the oscilloscope with the " Y " gain at $10 \mathrm{mV} \times 0.5$ and a sweep speed of $500 \mu \mathrm{~s}$ per division. Apply a square-wave source and adjust "Trig Level" for a locked picture. The

b) $C_{T}<\frac{C_{E}}{9}$

Fig. 3: The effects of misadjustment of CT

Fig. 4: The component parts of the probe housings. (Top) the housing for CA_{A} (Centre) the half shell for the probe head, two of these are needed. (Bottom) the details of the probe head wiring

Notes. CA mounted in housing at BNC plug and. RA and CT are insulated and fitted between shells which are then soldered along their seams. The screen tails are soldered to the outside of the sheils. Araldite is added at both ends, the insulating washers preventing ingress. The coaxial cable is secured to the CA housing by soldering the screen tails, wire ties through the four holes provided and also by Araldite. The inner connects to CA at probe head and BNC plug inner at the other end

The square wave generator shown in Fig. 5 as built by the author. It is powered from the front panel auxiliary socket of the PW Purbeck scope
trace will most likely look like either b or c of Fig. 3 and the $2-22 \mathrm{pF}$ trimmer CA should be adjusted to achieve the result shown in a. If, with CA set to minimum capacitance, the trace still looks like b, the cable capacitance is too high and the length should be reduced. Conversely, if even with Ca set to maximum the trace still looks like c, a longer length of cable should be used or a small capacitor connected in parallel with CA. With $2 \frac{1}{2}$ feet of 75Ω "Uniradio 70" cable (about 20 pF per foot) CA should provide ample range, but to avoid disappointment it is best to try setting up the probe as above before finally making off the cable ends and Aralditing.

Note that whilst the 'scope's internal 50 Hz Cal. squarewave is useful for checking time-base speeds on the lower ranges, its frequency is too low and its waveform not sufficiently square for the present purpose. Having calibrated the probe on the 10 mV setting of the "Input Attenuator" S3, it can now be used to set the input trimmers on the other settings. If you recall, this job was left over in the last instalment of the $P W$ Purbeck series, precisely because their purpose is to maintain a constant input capacitance as is necessary when a probe is used.

So, set "Input Attenuator" to $100 \mathrm{mV} /$ division and increase the square-wave amplitude to 1 V peak-to-peak. Without touching CA, set C3 (located on S3 behind the oscilloscope front panel) to obtain a trace as in Fig. 3a. Likewise, with a 5 V peak-to-peak square-wave, C 4 can be set up at position 3 of S3 and with the gain multiplier S301 set to "Var" and the variable gain control VR302 set for maximum gain, it will be possible to set up C5 at position 4 of S3. C6 can simply be left at midsetting as it is unlikely that a 10:1 divider probe would be used on the $100 \mathrm{~V} /$ division setting. When calibration is complete, the cover of the Ca housing should be fitted and soldered into place. To finish off the probe body an insulating covering should be applied. A heat-shrink sleeve such as the author used is ideal, but in the absence of this a fairly neat finish can be achieved using white pve insulating tape.

Fig. 5: The square-wave generator. With pins 1 and 14 of the CD4069 shorted and $S 2$ set to V, adjust RV1 ($4.7 \mathrm{k} \Omega$) for 5 V output at socket 5

Using The Probe

The first thing you will notice when using the probe is, of course, that the oscilloscope's effective sensitivity is reduced by a factor of ten. This is why a high sensitivity in the basic oscilloscope (like the $P W$ Purbeck's $5 \mathrm{mV} / \mathrm{cm}$, nearer $2 \mathrm{mV} / \mathrm{cm}$ on "Var") is so desirable. The pay-off is the reduced circuit loading and you will find that in practice there are very few cases where this has to be taken into account. The most common example is the voltage across a tuned circuit. If the probe is used to measure this, there are two effects to watch for. Firstly, the capacitance of the probe will change the tuned frequency. So, if the tuned circuit is the tank coil of an oscillator, the output frequency will change, whereas if it is, for example, in an i.f. stage, the amplitude will fall, as the circuit is no longer tuned to the i.f. frequency. Secondly, the a.c. loss resistance of the probe plus 'scope (which is lower than the d.c. value of $10 \mathrm{M} \Omega$) will damp the tuned circuit, again causing a reduction of the observed amplitude and may even cause a lightly-coupled oscillator to stop oscillating altogether.

The technique, therefore, when examining waveforms in a tuned circuit is to restrict the probe to a low impedance tap on the coil or in the case of a Clapp or Colpitts oscillator, to connecting across the largest of the series capacitors. If all else fails, connect a 1 pF capacitor in series with the probe tip (giving you a crude $\times 100$ probe) or simply hold the probe tip near to the hot end of the coil! In virtually all cases other than tuned circuits, the probe will entirely obviate circuit loading effects.

> Close-up view of the housing for CA showing how the trimmer capacitor is fitted and the cable secured

Interesting experiments in community broadcasting are currently being conducted in three English new towns: Telford, Basildon and at Newton Aycliffe in County Durham. Further closed-circuit local broadcasting has been introduced to suburban housing developments in Greater London.

Stations operating in the medium frequency band and based at seventeen universities and colleges in the United Kingdom have broadcast successfully for several years. Indeed the oldest of these, University Radio York, recently celebrated the tenth anniversary of its first broadcast, so this would seem an appropriate time to take a look at this form of radio.

Origins

It is often surprising how widely the effects of a simple new idea are felt, and the growth of campus radio certainly seems to fall into this pattern. It has its origins in the plan of a single student, who saw the potential value of this kind of facility as a forum for information and ideas within a university community. So it was that in 1967 the administration of York University was approached in order that the response to a scheme to operate a radio station might be gauged. It is worth pointing out at this juncture that a closed-circuit TV system had operated successfully since the University's inception several years earlier. There was therefore a generally favourable response to the idea, and representations were consequently made to the Post Office asking that the project should be allowed to proceed.

Lecturers currently at York remember the problems encountered in persuading the authorities of the feasibility of the project to create the first licensed radio station in England independent of the BBC. The fact that experimental local radio organised by that body was also planned at the time, may have been influential in their decision to provide a licence. University Radio York was eventually allocated the medium wave channel 998 kHz 301 metres, on the understanding that the signal should be audible only at the University site. The experience gained at York was to prove useful at the University of Kent, where plans for a similar project were in preparation.

Transmitting Installation

In order to restrict the signal to the campus as required, a system of aerials known as induction loops are in use at URY and the stations which have followed. Indeed, this is the only feature of the transmission systems of campus radio to differ from local radio generally.

The signal from the transmitter is transported to each part of the campus via runs of coaxial cable terminated in a r.f. transformer. The secondary winding of this transformer is connected in parallel with a single loop aerial, composed of approximately 25 metres of insulated wire wound in a coil upon a frame and connected to a variable capacitor, so forming a parallel tuned circuit, subsequently brought to resonance at the operating frequency. (Medium wave DXers will recognise this as a further application of the popular DX reception aerial).

The on-air studio at University Radio York, showing Sony mixer and cassette decks, Thorens TD125 transcription turntables and Revox 877 tape deck

Each loop provides a high field strength of transmitted signal at short range, but signal strength is very low at distances of only a few tens of metres from the aerial, minimising the risk of off-campus radiation. The loops are then installed on the roofs of groups of buildings to be supplied with programmes.

Developments

At URY, 30 April 1969 marked the end of a period of experimentation with the first official broadcast, a programme recorded for the occasion by BBC presenter John Peel.

The development of URY has proved to be characteristic of many of the campus stations, the initial capital outlay being donated by the University or college student union, and annual grants being provided thereafter to meet running costs, though some stations have found supplementary sources of income. University Radio Bath, for example, have shown some enterprise in running their own disco which appears four nights or so every week at venues in the town. The stations are not permitted to carry advertising.

As more stations came on-air it became clear that a coordinating organisation was required to negotiate with the licensing body and performing rights organisations, and to act as an information exchange between stations. Consequently the National Association of Student Broadcasters was formed, and each year its annual conference is hosted by one of the member stations.

Programmes

The programme formats adopted contain music, news, "what's on" information and features; and generally, record companies are very generous in supplying a good selection of their latest material. Singles and album charts are run in conjunction with local record shops and playlists are used at many universities to ensure the music heard has a wide appeal.

Typically, a fast-moving breakfast show is broadcast daily, plus a teatime magazine programme of local news and interviews, request shows and a variety of other material until the early hours. Minority interest features are also to be heard; thus the output of UKC Radio at Kent University includes arts reviews, plays, short stories, classical music and current affairs during the 80 or so hours of their broadcasting week. Apart from programmes presented during the course of a normal week, there is often news of particular local interest, and it is on these occasions that the benefits of campus radio become clear.

Stress is placed upon putting people on the air as soon as they feel confident in the use of studio equipment. The duration of courses being as they are, roughly one-third of the personnel depart each year and the gap which they leave must be filled as soon as possible. The policy is also consistent with the concept of ease of access and a belief that the most 'effective way to produce competent presenters is to give them plenty of practice.

Surveys carried out by the stations have shown a demand for regular news summaries and there has therefore been a tendency to relay the hourly bulletins of Independent Radio News, by arrangement, from the v.h.f. transmissions of commercial radio. Others have formed links with the BBC; Radio Bradford college produces a weekly programme of interest to students in West Yorkshire, which is broadcast by BBC Radio Leeds, and a link has also developed between the Kent University station and BBC local radio.

Campus stations in operation at June 1978. Stations given the suffix (A) use $999 \mathrm{kHz}, 300$ metres. Those given the suffix (B) use $\mathbf{9 6 3 k H z}, 312$ metres. These are the post-November 1978 channels

The Future

As for the future, it seems likely that campus radio will be brought within the auspices of the IBA. What the effects of this interaction will be remain to be seen, however several stations have pointed out that if the IBA was to assume responsibility for maintenance of transmitters, as is done at present with local commerical radio, it would be possible to devote more time to the basic process of programme production.
Whatever the future holds, the fact that University radio stations not only survive on relatively small budgets but that their number increase annually suggests that small community radio stations could succeed in a wide range of other environments. It is to be hoped that the next ten years of student radio prove as interesting as the last.

PLEASE MENTION PRACTICAL WIRELESS WHEN REPLYING TO ADVERTISEMENTS

Mounting the l.e.d.s

The display 1.e.d.s are mounted on PCB 3 and pushed up through holes drilled in the case lid. The board is held to the lid by the 6BA bolts used as input switching studs.

Fig. 6: The touch-switch input circuit, note this circuit is repeated nine times on the p.c.b.

The touch-switching input components are mounted on PCB 4, which is held on edge at the switch end of the case behind the corner pillars.

The power supply used in the prototype comprises of a battery-holder containing four HP11 or type C cells held two by two, and a silicon diode. The diode reduces the positive rail from 6 V to protect the input latches from damage. Alternatively, any supply giving 5 V at 500 mA d.c. may be built in if a larger case is used.

Fig. 5: Component placement layout for PCB3

Fig. 7: Component placement layout for PCB4

Fig. 8: component मlacomant layout for数 F PCR1

WAO344

Making the display

Display Board 3 is best constructed by inserting the l.e.d.s and initially soldering one leg only. The dropping resistors are mounted on the copper side either on pins pushed down through the board and cropped on the l.e.d. side, or by blob-soldering. Their leads should be sleeved. All connections from Board 1 are similarly made on the underside. The touch-switch screws may then be inserted
in the lid and held temporarily with strips of Sellotape. Invert the lid and drop a washer over each screw as spacers. Board 3 may then be fitted, and bolted in place.

Board 4 is mounted with the component side facing into the case. The leads from Boards 1 and 3 may be soldered in with the board close to the end of the case, and then lifted back as the board is placed in the case.

It is very helpful in construction if leads between boards are colour-coded.

(a)

Illogical moves

The program of the basic circuit is designed to make no reply to certain "illogical" moves, those associated with the five 3 -input NAND gates which enable the display inhibit. This was considered to be the logical response whereby 126 games may be won by the player.

A variation to the above is possible using additional output gating as shown in Fig. 9. A reply is routed to one of the two Nought displays when such a move is made (see Truth Table). The number of games which may be won by the player is reduced to 16. Two circuits as in Fig. 9(a) are required, inputs taken from display gating on PCB 1 and outputs to the l.e.d. display as shown in Fig. 9(b).

Additional components required for the above are one SN7432 (Quad $2 \mathrm{i} / \mathrm{p}$ OR), three SN7410 (Triple $3 \mathrm{i} / \mathrm{p}$ NAND), two SN7404 (Hex. inverter) and one SN7400 (Quad $2 \mathrm{i} / \mathrm{p}$ NAND). These may be mounted on an additional board above PCB 1, but a deeper case will be needed. The track betweeen IC5.6 and $5 \cdot 8$ on Board 1 should be cut. R1 is replaced by a $9.1 \mathrm{k} \Omega$, IC $5 \cdot 6$ is linked to IC 1.1 and R10 is replaced by a $1.5 \mathrm{k} \Omega$.

Construction

The case is moulded in ABS plastic, and a number of p.c.b. fixings and other extrusions have to be removed from inside the case. This is simply done using a coarsetoothed hacksaw blade, around which a piece of tape is wrapped as a grip. In order to fit the battery-holder flush to the grooved end of the base, approx. 2.5 mm must be carefully removed from the inner edges of the two nearby corner pillars, through which the screw fixing is made. This may also be done with the saw blade. The batteries are fitted here to allow clearance for the switches mounted in the lid at the lower end. The diode is soldered directly to the positive terminal of the battery-holder in the prototype, but could be mounted on Board 4.

Holes in the lid for l.e.d.s and switch studs may be positioned by gumming a tracing of Fig. 5 on top. Holes for the l.e.d.s should be drilled using a $5 \cdot 10 \mathrm{~mm}$ drill; those for the studs require a 2.95 mm drill. The squares on the lid may be marked out using a sharp knife and a straight edge. "Brasso" or a similar metal polish will clean up the lid after soaking off most of the paper. The lines around

Fig. 10: Component placement layout for PCB2
the squares may then be used as guides for thin plastic strips fixed using acetone as an adhesive (hold the strips in place and lightly brush the liquid along the edges with a fine brush. The weld will be firm in about 30 seconds).

Minimising costs

In order to keep cost to a minimum, only single-sided p.c.b.s are used and i.c.s are soldered directly into the boards. PCB 1 should be constructed as shown, using Veropins at all points where connection is made to more than one other pin or to another board. After testing the completed board, remove R5 before connecting to PCB 2 .

PCB 2 should be constructed as shown, using Veropins on all NAND gate outputs and where connections are made to Board 1. After checking, it may be mounted beneath Board 1 using 4BA nuts and bolts with 12 mm spacers. Input leads from Board 1 may then be connected, and Board 2's outputs checked before connecting back to Board 1. Operation of the complete logic circuit may then be tested, using a probe as input and a logic probe. (A probe circuit is given in Fig. 11.)

The bolts holding the two boards together should be heads down. A blob of epoxy will then fix them to the floor of the case, in the space left by the battery-holder, which is fixed similarly.

Fig. 11: The logic probe circuit diagram

Embellishment

There are of course many extras which may be added to the basic circuit, such as a win indication, delayed replies, an external larger display, etc. Deeper cases are available in the same style for those who may need the extra space.

Full-size paper prints of the p.c.b. layouts are available at an inclusive price of 40p. Apply to Practical Wireless, Westover House, West Quay Road, Poole, Dorset BH15 1JG. Cheques and P.O.s should be payable to: IPC Magazines Ltd.

Mainline takeover

Arrow Electronics Ltd. of Leader House, Coptford Road, Brentwood, Essex, have acquired the entire stock of Mainline Electronics Ltd. previously of Windsor and Slough, Berks.

Mainline Electronics audio equipment will be available from Arrow and it is contemplated that production of the Mainline amplifiers will be continued, as it is proposed to merge these products with Arrow's existing '"Leader" range of kits.

Can I Help You!

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of $P W$. If so, let me know and I will endeavour to publicise your rally, get-together whatever, through this column. Remember though, we compile the magazine some time ahead of publication day (e.g. this note was written in mid-March), so, the earlier I can have details, the better.

Alan Martin

RAE Reprint

A reprint of the complete series--So You Want to Pass the RAE?-including details of the new examination format being introduced this year, is now available.

Order your copy by completing and returning the coupon on page 70 .

New Portable Radiophone

Marconi Mobile Radio, a Division of Marconi Communication Systems Ltd, is now an approved supplier of equipment to the Post Office Radiophone Service and the new 'go-anywhere' telephone, the SV1320A, opens up completely new uses for the service.

With the extension of the East Pennine Radiophone Area coming into operation in the near future the SV1320A is a telephone that could be extremely attractive to new subscribers. The versatile equipment is designed to fit into the corner of a car boot with the control unit and handset easy to hand for the driver or
passenger. Take the equipment out of the vehicle, a simple operation taking less than a minute, and a completely portable telephone is available to take to your weekend cottage, on the boat, fishing, into the garden or wherever you need to be contacted.

With a battery or charger unit the equipment can be used as a temporary telephone at major construction sites and office accommodation before land lines are installed. The equipment works from 12 volts or by attached battery pack, which with normal operating will last a day without recharging. Marconi Mobile Radio, M.C.S.L., Marconi House, Chermsford CM1 1PL. Tel: (0245) 53221.

Hi-Fi f.m.

A new piece of equipment which greatly improves the quality of frequency modulation (f.m.) transmission has been developed in Australia.

For use with a typical $£ 100000$ transmitter the new equipment-about the size of two cigarette packetscosts around $£ 10$.

It is the result of four years' research by Dr Keith J. Kikkert, senior lecturer in the Electrical and Electronic Engineering Department at the James Cook University of North Queensland, Townsville. Dr Kikkert, 34, was born in Amsterdam and went to Australia in 1962.

Tests of his new equipment have produced f.m. reception with a distortion factor 20 times less than the best
equipment now used by large f.m. radio and t.v. stations.

Dr Kikkert said the reduction in distortion might even be much better than indicated, because there was no equipment available capable of measuring it above the " 20 times" mark.

Conventional f.m. transmittersthose used in radio, television sound and microwave communication relays-generate at a high frequency. Dr Kikkert's success has been achieved by generating f.m. at a low frequency of 1 MHz , which is then amplified and transmitted at 101 MHz . Existing f.m. transmitters have a direct output. Australian Information Service, Australia House, Strand, London WC2B 4LA.

Dr Kikkert with the piece of equipment he developed

Everymonthis the right frequency

When you＇re building a major project from．a PW design， you want to be sure of getting every issue in sequence！ Use this order form for a year＇s supply to be posted to you． ANNUAL SUBSCRIPTION RATES（including postage and packing）U．K．$£ 10.60$ ．Overseas $£ 10.60$ ．

practical
 MIIFFBE
 SUBSCRIPTION ORDER FORM

Please send me Practical Wireless each month for one year．I enclose
a Sterling cheque／international money order for． （amount）．

NAME Mr／Mrs／Miss
ADDRESS

POSTCODE

Make your crossed cheque／MO payable to IPC Magazines Ltd．，and post to ：Practical Wireless，Room 2613，King＇s Reach Tower，Stamford Street，London SE1 9LS．
\qquad
\qquad

ELROMAROMIL electranics your soundast comnection in the morld of components

Dept PW1， 56 FORTIS GREEN ROAD．MUSWELL HILL，LONDON，N10 3HN

The items shown in from Resistors to the this advert are iust a his advert are fust a small selection taken from our new 78／79 Catalogue which is now available．It
contains everything
TELEPHONE：01－883 3705

Low Power Schottky and TTL								CMOS				l．C． sockets	BITS and PIECES		Regulatore，	Linear I．C＇s	
$7400.13^{\mathbf{N}}$	19	74	${ }^{87}$	74136	39＊			4000	．15＊＊	4053	${ }^{81}{ }^{\text {82，}}$	Ofl（Texas）		${ }^{1+}$ 17－6364＋	78 MS	CA30B0	35
7400.13^{*} 7401.13^{*}	．19＊＊	7449 7450 $16 *$		${ }_{74138}^{74136}$ 二	39＊＊	74191 $1.21 * *$	${ }_{\text {c }}^{\text {．} 755^{*}}$	4001	16＊＊	4054	1．29＊＊	8 pin 10^{*}	${ }^{21024}$（350ns）	1．055＊＊${ }^{\text {5 }}$		CA3130E	$9{ }^{7}$
$7402.15 *$	．19＊	$7451.16{ }^{\text {\％}}$	．19＊	74139	．55＊	${ }^{74193} 1.21{ }^{\text {l }}$	${ }^{1.855^{*}}$	4006	．92＊	4059	1．46＊＊	${ }^{14} 4 \mathrm{pin} .12^{*}$					37 30
${ }_{7} 7403.15{ }^{\text {c }}$	－1900	${ }^{7453}{ }^{7454} .16 *$		74141 $7{ }^{76 * *}$		$741941.21{ }^{\circ}$		4007	${ }^{18}{ }^{\text {\％}}$	4060	${ }^{124 *}$		${ }^{2112 A-2}$［250ns）	2．14＊： $1.90^{*} 1.78^{*}$	All $68 p^{*}$	Lm324N	73＊
7405.16	21°	${ }_{7455}$	． 19	74147， 7.55^{*}	1.05	（10．0．	${ }^{1.05 *}$	4	．94＊＊	${ }_{4068}^{4066}$	${ }_{21 *}^{48^{*}}$	$\underline{20}$ pin $20 *$	（3）5005）		79M	LM348N	99
7406		7460		$74148{ }^{1.32^{*}}$		74197 1．18＊＊	1．05＊	4010	54＊＊	4069	${ }_{21}{ }^{1}$	${ }_{24}^{22}$ pin ${ }^{24}{ }^{26^{*}}$	2114 （450ns）	${ }_{8.100^{*}}^{8.19 .9}{ }^{\text {c／}}$ 6．75＊ 5^{*}		LM381N	1.73
	9．	7470		741501.02^{*}	${ }^{88}{ }^{*}$	741988 $1.81 *$		4011	${ }_{\text {18＊＊}}$	4070	21＊		6810	$3.50^{*} 2.97^{*} 2.52^{*}$		L3382N	33
7409.17^{*}	19.	$7473{ }^{7}{ }^{28^{*}}$	29°	$74153.67{ }^{\circ}$	${ }^{48}{ }^{\circ}$	74221 －	99＊＊	4013	${ }_{48 *}$	4072	21＊＊		${ }_{8080}$		85	（M3900N	${ }^{65}{ }^{*}$
7410.15	19＊＊	$7774{ }^{7}{ }^{28 *}$	29	74154 1．21＊	$1.25{ }^{\circ}$	74240	$2.25{ }^{\text {2 }}$	4014	${ }^{\text {92＊}}$	4077	${ }_{21}{ }^{\circ}$	Wire Wiap	8880	Buflers ${ }_{\text {cher }}$	${ }^{79}$ Series	SN7800in	
741.25^{*}	190：	7475 ${ }^{7476}{ }^{44^{* *}}$	${ }^{4}{ }^{2}$	74155 6.67^{*}	$7{ }^{78}{ }^{\circ}$	12241	${ }_{2}^{2.255^{*}}$	4015	．92＊＊	4081	21.	8 pin 23	$9900{ }^{42} 42.50^{*}$	$\begin{array}{ll}{ }^{8 T 26 P} & 165^{\circ} \\ 8728 P & 1.65\end{array}$	12	SN760	2.32
7413.27°	${ }^{40}{ }^{-}$	${ }_{7478}{ }^{47}$	29°	74157 ．67＊＊	．55＊	${ }_{74243}$	$\stackrel{2.25}{ }{ }^{2.25}$	4016	${ }_{81 *}$	${ }_{4082}$	．21＊＊	14 pin 16 34＊ 37	E－Pron	${ }_{\text {BT95P }}$ 1．49＊	184824×2.	SN76013N	1.55 1.55
$7414.7{ }^{\circ}$	79＊	782		74158	．580．	74247	，	4018	${ }^{\text {92＊}}$	${ }_{4088}$	．92＊		${ }_{27080}{ }^{\text {7 }}$ 7．87＊	996P $1.49{ }^{\text {a }}$	All 85a＊each	tiabioas	90
${ }_{7} 7415$	19＊		．75	$741801.21{ }^{\circ}$		74248	95＊	4019	55° ．	4093	${ }^{81}{ }^{*}$	20 pin ．55＊	Tristate Buffers	87979 87989	79 Serius	TCA94	1.75
			${ }_{28} 8$.	74181 121210	${ }^{1255^{*}}$	${ }^{74249}$	83＊	${ }_{4021}^{4020}$	92＊＊	4099	1．81＊＊	24 in 60^{*}	81	8798 P	NEG）	ZN414	． 90
7420．16：	19＊	7489 2.60^{*}		74163 1．21＊	． 65^{*}	74253	${ }_{99}{ }^{\text {a }}$	4022	${ }_{92}{ }^{\text {．}}$	4508	2．46＊		${ }_{81 \text { 81LS96 }}^{81}$			－${ }_{\text {L }}$	${ }_{3.78{ }^{\text {\％}}}$
74422	${ }^{19}{ }^{19}{ }^{\text {a }}$		．62．	74164 1．02＊	${ }_{\text {1．73＊＊}}$	74257	99	4023	${ }^{185^{*}}$	4510	1．07＊＊	40 pin 1.05 ．	815598 75＊	Regrletors	All f1．00＊each	ZN459CT	3．54＊＊
7423 25＊		7492 ．46＊＊	75＊	$741651 . \overline{02}{ }^{*}$		${ }_{74259}^{7428}$ 二	1.50^{*}	4025	${ }^{18}{ }^{+}$	4511	2．95＊＊	VAT	74365 74366	dentars		2N	
7425．25＊＊＊		${ }^{77933}{ }^{7493^{*}}$	． 65°	74168	1．85＊＊	${ }^{72466}$	35＊＊	4026	1．84＊＊	45 5	${ }_{2}^{2.70}{ }^{\text {a }}$	NC	$\underset{74367}{ }{ }^{\text {75＊}}$		1 M 304 H	2NA116E	，
7427．39＊＊	．19＊＊	7495 74.54	1.25	741798 1．85＊		${ }_{14279}^{14273}$ 二	${ }^{2.255^{*}}$	4	${ }^{51}{ }^{*}$	4516	1．97＊＊	PRICES	4368 ．75＊		IM323K 6．25＊＊		
${ }^{7428.38 *}$		74107	． 35	74173 1．41＊	88＊	14283	99＊	4029	1．18＊	4518	4．95＊				${ }_{\text {LM326N }}^{\text {M }}$		
7430	．19＊＊	${ }^{74109}$ 7412＊	35．	74174 1．01：	105＊	14290	${ }^{83} 3^{\text {a }}$	403	．56＊＊	45	2．54＊＊	09710	${ }_{4116}^{\text {dymamic Ram }} 12.75{ }^{\text {a }}$	5v． 6 v	LM345k 810＊		
74323 25＊＊	25	${ }^{74112}$	．35＊＊	74175 $8.81{ }^{\circ}$	1．05＊	14293		4032		45	$1.89{ }^{\text {\％}}$		$416{ }^{\text {a }} 12.75 *$		129930／31		
$7437.25{ }^{\text {2 }}$	25＊	74114	${ }^{35}$	$741771.01 *$		${ }_{7} 72988$	125^{*}	4035	1．06＊＊	${ }_{4528}^{4526}$	＊	${ }^{125}{ }^{\text {² }}$	${ }_{+5}+{ }^{10+}{ }^{10+}$		$10+$		
${ }^{74498.170}$	${ }^{.25}{ }^{19}$		75	74180 9．07＊＊		74365	－51＊	4040	${ }_{\text {70＊＊}}$	4534	7．12＊		200．18＊ $10^{10^{*}}$	${ }_{\text {Hili220 }}^{\text {Til2 }}$ Yel			
7441.70°	．19＊	74122 51.50^{*}	${ }^{77^{\circ}}$	7418182．218＊＊	2.99	74366 74367	．51＊	40404	81^{+}	454	${ }_{1} .62^{*}$	T11216 Red	$20^{*} 18^{*} .166^{*}$			LM	
${ }^{74425.50^{\circ}}$	．55	${ }^{74124}$	1.25	741841.8		74368	． $51{ }^{\circ}$	404	1．06＊＊	4553	4．53＊＊	H232 Gre	${ }_{\text {ss }} \mathrm{s}^{*} .18^{+} .16^{*}$	${ }_{\text {tll } 234 ~ G r e ~ x ~}^{\text {a }}$	21＊． $1955^{-17 *}$	3 for	
7446		7425	39	74188 7.9		${ }_{7}^{74385}$	${ }_{1.85}{ }^{\text {．}}$		${ }^{43}{ }^{+}$	4568							
$7447.60{ }^{\text {c }}$	． $87{ }^{\text {a }}$	${ }_{74,32} 7{ }^{\text {72＊}}$	35	741893.17^{*}	$2.25 *$	74670		405			${ }_{1.07^{*}}^{1.02^{*}}$						
7448．60＊	．87＊	74133 －－	．19＊	${ }^{0} 1.21^{\circ}$				405	${ }_{81}{ }^{*}$			$4 \tan$（80）	5 梱 +1.00	165 1100			
			V．A T．Inclusive prices＊ 8% others 12.5% Export Cusioners deduct VAT 227 from ${ }^{*} 19$ from others Postage and Packing 25p．Trade and Export İnquities most Welcome：Hocirs $9.00 \mathrm{an}=500 \mathrm{pm}$ Now available our ORDER RING fine．jusi phone your order hirough with your Access of Barclaycard number and prouviting the order is receivad by 3.00 prin the compenents will be despatched the same day（min tel order $\mathrm{f} 5,00$ ）．														

RADIO WRCRIANGF MWIMHD

NEW ELECTRONIC MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, 5" $\times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive instruction Manual Pictorial and Circuit Diagrams.
Proiects:
V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio $\star \begin{aligned} & \star \\ & \text { Radio }\end{aligned}$ Transistor O.H.F. Ene Transistor M.W. E. W. W . Radio \star Two Transistor Metronome with variabie beat control \star Three Transistor and Diode Radio M.W. L.W. \star Four Transistor Push Puli Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star liffy MultiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signai Injector \star Five Transistor Push Pull Amplifier * Sensitive Hearing Aid Amplifier $\underset{\star}{\star}$ Three Transiscor and Diode Short Wave Radio t Signal Tracer * Three Transistor Push Puli Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker * Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Diode Tuner \star Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. Tice Oscillator Transistor Code PracRegenerative Short Wave Radio Regenerative Short Wave Radio \star Four Transistor and two Diodes - Seven Transistor M M W Wak w Seven ransistor Push Pull output \star One Transistor Home Broadcaster
914.99 + P \& P \& 10

V.H.F.
 AIR
 CONYERTER
 KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions suppiied free with all parts. Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc. Size $5 \frac{3^{\prime \prime}}{2} \times 1 \frac{1}{2}$ " $\times 3 \frac{1}{2}$ ". All parts including case and plans. $84.95+P \& P$ and

Self Contained Multi-Band V.H.F. Receiver Kit. 8 transistors and 3 diodes. Push pull output. 3 in . loudspeaker, gain control, 7 section chromeplated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F local stations, etc. Operates from a 9 yolt P.P. 7 battery (not supplied with kit).
Complete kit of parts
$87.95^{+P \& P \text { and }} \mathrm{ins.90p}$
NEW MODEL R.K.1.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-Grilled Panels. Comprehensive Instruction Mianual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

£8. $\mathbf{9 9}{ }^{+}{ }^{+{ }_{90}{ }_{90}^{2}}$

EDU-KIT JUNIOR

Completely Solderless Electronic Construction Kit. Build these profects without Soldering Iron or Solder

* Crystal Radio Medium Wave Coverage-No Battery necessary * One Transistor Radio
* 2 Transistor Regenerative Radio
* 3 Transiscor Earpiece Radio Medium Wave Coverage
* 4 Transistor Medium Wave Loudspeaker Radio
* Electronic Noise Generator
* Electronic Metronome
$\star 4$ Transistor Push/Pull Amplifier
All parts including Loudspeaker, Earpiece, M.W. Fervite Rod Aerial, Capacitors, Resistors, Transistors, etc. Complete kit of parts including construction plans.

PW579

NEW ROAMER TEN

 MGDEL R.K.3.

Multiband V.H.F. and
A.M. Receiver. 13 Transistors and Six Diodes. Quality $6^{\prime \prime}$ $\times 3^{\prime \prime}$ Loudspeaker
With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chromeplated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. Wave Change and Tone Controls. Plus two Slider Switches. Powered by P.P.9-9 volt Battery.
Complete kit of parts including carrying strap. Building Instruc. tions and operating Manuals.

E.V. 6 PLUS ONE

Guild this excitimg naw design. Now with 7 Transistors and 4 diades. MW/LW. Powered by gV battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in . loudspeaker. Attractive case with speaker grille. Size $9 \mathrm{in} . \times 5 \frac{1}{4} \mathrm{in} . \times 2 \frac{3}{4} \mathrm{in}$. approx. All parts including Case and Plans.
Total Building Costs

To: RADIO EXCHANGE LTD
61 A High Street, Bediord MK40 ISA
Tel.: 02.3452367
Callers side entrance "Lavells" Shop.
Open 10-1, 2.30-4.30 Mon.-Fri. 9-i2 Sat
Reg. No. 788372

I enclose f..........................for..
\qquad
Address \qquad
EDU-KIT MAJOR

Completely solderless Electronic Construction Kit. Build fifteen projects including:-- Signal Injector Transistor Tester NPN-PNP 7 Transistor Loudspeaker Radio MW/LW 5 Transistor Shore Wave Radio.
Components include:

- 24 Resistors 21 Capacitors - 10 Transistors $5^{\prime \prime} \times 3^{\prime \prime}$ Loud speaker Earpiece Mica Baseboard - 3 12-way Connectors - 2 Volume Controls 2 Slider Switches 1 Tuning Condenser - Knobs Ready Wound MWI LW/SW Coils Ferrite Rod $6 \frac{1}{2}$ yards of wire 1 yard of sleeving, etc. Complete kit of parts including construction plans.
Total building costs
\&
RADIO CONSTRUCTION KIT 97

A compact small radio kic covering Medium Wave and Long Wave bands struction and simple square design allows square design allows ldeal for the Garage, Workroom, Kitchen, etc., has seven Transistors and four Diodes, quality Loudspeaker, ready wound ferrite Rod Aerial and Carrying Skrap. Size $4 \frac{3^{\prime \prime}}{2^{\prime}} \times 4 \mathrm{~m}^{\prime \prime} \times 4 \frac{3}{8}$. Ali parts and plans excluding gy pp\% Bactery.
2G.25 + P \& and
OEMET
FIVE

NOW WITH23"LOUDSPEAKER 3 Tuneable wavebands. M.W., L.W., and Trawler Band, 7 stages, 5 transistors and 2 diodes, supersensitive ferrite rod aerial, attractive black and gold case. Size $5 \frac{1 / 2}{2} \times 1 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{\frac{1}{2}^{\prime \prime}}{}$ approx. All Parcs including Case and Plans.
Total Building Costs
$84.95+$ ins. 80 pand Ins. 80p
r.an prices
colude. Yat
\qquad

GOMMUNIGATIDNS SAIELIITES

We have already seen great developments in satellite communications, but far more impressive systems are likely to become available during the next ten years. Initially the larger manufacturing companies will have their own earth stations which will provide them with continuous communications facilities, but hand-held personal communications sets for direct transmission to huge spacecraft are being planned for about 1990.

In European homes the greatest impact of satellite communications occurs when a television signal is relayed from another continent. All such very long distance television links are made using satellites in geosynchronous orbit some 36000 km above the equator; such satellites orbit the earth once every 24 hours and hence remain. above the same point of the earth at all times. However, television relays account for only about 2 per cent of the total use of communications satellites, the greatest demand being for ordinary telephone conversations by businessmen, together with high-speed data transmissions.

At the present time, communications satellites are used mainly for intercontinental communications by means of the INTELSAT spacecraft, although maritime and military satellite communications are also of vital importance. Very rapid developments are taking place; the European Space Agency recently launched the OTS2 vehicle which will be a forerunner of the first European satellite to carry telephone and television signals on a commercial basis across Europe.

Satellites are presently handling rather more intercontinental telephone traffic than sub-oceanic cables. The American Federal Communications Commission is apparently delaying the production and laying of a new TAT-7 transatlantic telephone cable whose 4000 telephone circuits would provide a more equally balanced capacity between cables and satellites. Cables are more expensive than satellites, but have a much longer life than the typical seven years design life of a satellite.

The INTELSAT spacecraft provide first class communications facilities over the largest distances, but involve the use of extremely expensive earth stations with parabolic reflectors of some 30 metres diameter; all points of these huge reflectors should be positioned with an accuracy of about 1 millimetre and retain this accuracy even in a high wind. Such stations became available in the mid-1960s at a cost in the order of $£ 5$ million. Some smaller, more economical earth stations with 10 metre diameter aerial reflectors are used in low density traffic areas for international communications where maximum bandwidth is not required.

The era of satellite broadcasting of television and radio programmes is now commencing. Aerials with reflector diameters of some 5 metres can be used in earth stations costing some $£ 30000$, for receiving television signals from a geosynchronous satellite and relaying them to a whole community of users. Smaller aerials (perhaps 1 metre in diameter) can be used with more economical receivers costing no more than a few hundred pounds, to provide
television signals to individual homes in out-of-the-way places. Higher power satellite transmitters combined with very high gain satellite aerials make such economical earth stations possible for reception only, without facilities for transmitting to the satellite.

Eventually very large aerial structures will be assembled in space and, when used with far more powerful satellite transmitters, are expected to make possible the use of small hand-held transmitters for direct communications with the satellite by about 1990. The earth station reflectors may be about 100 mm diameter and the total cost of the hand-held equipment about $£ 10$ on present day values. One of the advantages will be that you will eventually be able to telephone almost any person via a satellite by merely dialling his number; it will not be necessary to know whether he is working at his office, on a visit to another company, at his home, at his club or even taking a bath-although some protection of his privacy may be necessary.

One can even imagine a wrist radio communications system in the next century. Enormous satellite aerials with very high power transmitters will be required for such a system. However, it is claimed that the cost of such systems will be surprisingly low owing to the enormous amount of telephone traffic they would handle. It seems likely that the cost of a call over a distance of 3000 km will be similar to that of a call to a person a few doors away in the same street. Competing with such telephone systems will be electronic letter facsimile transmission systems, which will (hopefully!) ensure the fast delivery of letters across intercontinental distances even if messages cannot be immediately delivered.

SBS

In the more immediate future, a series of satellites will be launched in 1981 by a consortium known as SBS (Satellite Business Systems), which will provide US businessmen with direct access to the satellites for communications purposes through small company-owned unattended earth stations using 5 or 7 metre diameter aerial reflectors. One can imagine such dish reflectors being as commonplace as our present-day television aerials.

The Hughes Aircraft Company of California has been awarded a $\$ 63$ million contract by SBS for the construction of three domestic satellites for the direct transmission of voice, facsimile (printed matter), video, high-speed computer data and tele-conferencing pictures for US business and government agencies.

The SBS system will be the first US domestic commercial communications satellite system to use the higher frequency " K " Band (12 and 14 GHz ; that is, 12000 and 14000 MHz). This high frequency system will enable earth stations to be located in urban areas without causing interference to terrestrial systems or to other spacecraft, whilst small and relatively inexpensive earth stations can be used at such frequencies.

Fig. 1: A concept of how we may be able to communicate in the future by a personal satellite link

The SBS satellite system will cover all of the 48 contiguous states of the USA. The beam transmitted from the spacecraft will be electronically shaped so that the strongest signals are sent to the more densely populated east-central and west coast regions of the US, where SBS will install 5 metre diameter aerial reflectors on users' premises. In the remainder of the US the signals will be somewhat weaker, so 7 metre diameter aerials will probably be employed.
Perhaps the most interesting feature of the SBS satellites is the use of a telescoping solar panel system. During the launch phase, the cylindrical solar panels are closed over one another to keep the satellite as compact as possible, but the panels will be deployed in space to provide the relatively high power level of about 914 W . The spacecraft will be spin stabilised, so each part of the solar panel array comes into full sunlight in turn. It is intended that the SBS satellites will be launched by the Space Shuttle, since this type of launch will be much less costly than rocket launching. A SBS satellite will be able to sit upright in the cargo bay of the Shuttle vehicle with its aerial folded; this saves Shuttle charges, since the charge is more or less proportional to the payload bay length employed in the launch.

The travelling wave tubes in the SBS satellite transmitter will be able to provide an output power of 20 W ; this is higher than the more usual 5 or 6 W in satellite transmitters. Ten channels, each 43 MHz wide, will be available. Time Division Multiple Access (TDMA) will be used to provide the maximum signal-carrying capacity.

The specially shaped beam for providing maximum signal strength in the most heavily populated areas will be created by a 1.83 metre reflector with two reflecting surfaces. The front horizontal grid reflector is essentially
transparent to vertically polarised r.f. signals bounced off the rear reflector. Superimposition of the reflectors in a single aperture allows both of them to share structural support and have the maximum possible diameter. The two reflectors are offset from each other with a corresponding offset of their focal planes so that two separate feed arrays for transmit and receive can be employed without any mutual interference. It is expected that a minimum signal strength of 43.7 dBW will be provided over the primary eastern coverage zore of the USA.
The SBS spacecraft are 2.16 metres in diameter by 6.6 metres in height when the solar panels are fully deployed. Each will weigh some 1057 kg at launch, but after the apogee engine has been fired to place the craft in its correct geosynchronous orbit, the weight will be 555 kg . Design life is seven years.

Conclusions

Satellite communications are going to have an even larger impact on our lives in the future and will greatly facilitate business communications. It is interesting to note that it has been reported that the US has been using a "Pyramider" satellite communications link to enable their foreign agents to transmit short bursts of secret coded information via the satellite to their National Security Agency. Apparently Soviet agents in Mexico have purchased details of the system and former employees of a US satellite manufacturer have been charged with security offences. Presumably the US National Security Agency is rapidly searching for a replacement for their previous link. It is understood that the National Security Agency is interested in spread-spectrum links of very wide bandwidths (even up to 5 GHz), since signals of such extremely wide bandwidths are very difficult to detect when transmitted at fairly low power, even with the most sophisticated receivers.

There have been many published designs for digital clocks, but these have almost all been for a digit height of less than 25 mm . By using an array of discrete l.e.d.s, this clock has digits 64 mm ($2 \frac{1}{2} \mathrm{in}$) high, and is ideal for use in shops, offices, kitchens, etc.

The circuit is based on the General Instrument Microelectronics clock chip AY-5-1224A, which utilises p-channel m.o.s. technology. Although not one of the most recent clock chips, it nevertheless incorporates a wide range of features, not all of which are used in this particular application. By the use of multiplexing techniques, a 16 -pin dual-in-line package can be used. A non-multiplexed device offering similar facilities would require a 40 -pin package.

Multiplexing

The time division multiplexing technique, whereby several separate signals are passed in turn via one connection, is now widely used, particularly in digital displays and in calculator or typewriter keyboards. For the benefit of readers not familiar with the principle, a brief explanation may not be out of place. This will be based on the 7 -segment, common-cathode l.e.d. displays used in this clock.

In Fig. 1(a), we show the schematic arrangement of one 7 -segment display digit, with segments conventionally identified. Each digit requires eight external connections, so four digits connected in the normal way would require

Fig. 1 (a): Schematic arrangement of a I.e.d. 7-segment display digit

Fig. 1(b): A 4-digit, 7-seǵment display considered as a matrix for multiplex driving

[^2]

Table 1—Pin Functions

Pins 1 and 11 to 16 are multifunction. During multiplex times 1 to 4 they function as data outputs, either 7 -segment code or BCD according to the display mode selected. During multiplex time 5 (Strobe) they function as inputs.

Segment Outputs A-G (Pins 1 and 11 to 16)
In 7 -segment mode the digits are multiplexed out on to these pins. Normally the outputs are at logic O (positive to display).

BCD Outputs $2^{0}-2^{3}$ (Pins 1, 16, 15, 14)
In BCD mode the digits are multiplexed on to these pins in BCD code. Normally the outputs are at logic O (positive), i.e. code $0=0000$.

Multiplex Outputs 1-4 (Pins 10, 9, 8, 7)
These pins are successively switched to logic O to select appropriate digit display. A fifth multiplex time (Strobe) is used to enable the control inputs. The multiplex rate is $1 / 20$ th the multiplex clock frequency.

Strobe Output (Pin 6)

This pin is used to enable the control input lines; it goes to logic 0 to enable.

Set Hours Input (Pin 1)

When taken to logic O during Strobe time this input causes the hours counter to advance at the rate of 1 hour per second.

Set Min Input (Pin 16)

When taken to logic O during Strobe time this input causes the minutes counter to advance at the rate of 1 minute per second and the hours counter to advance at the rate of 1 hour per minute.

Reset Input (Pin 15)

When taken to logic O during Strobe time this input causes the clock to reset to zero.

Complement Input (Pin 14)

When left open the segments and BCD outputs will have normal polarity. When connected to Strobe output via a diode the 7 -segment and BCD output will be inverted.

12/24 Hour Select (Pin 13)

When left open the clock will run in the 12 hour mode, when connected to Strobe via a diode 24 hour operation will result.

$50 / 60 \mathrm{~Hz}_{\text {s }}$ Select (Pin 12)

When left open a 50 Hz clock will be accepted. When connected to Strobe via a diode 60 Hz operation will result.

BCD/7-Segment Select (Pin 11)
When left open 7 -segment outputs will be provided, when connected to Strabe via a diode BCD outputs will be provided.

$50 / 60 \mathrm{~Hz}$ Input (Pin 4)

The master clock (50 or 60 Hz) is input to this pin. Hysteresis is provided on the input so that the input waveform is not critical.

Multiplex Oscillator (Pin 3)

An external capacitor is used to set the multiplex frequency. If required this input can be driven by an external oscillator.
$\mathbf{V}_{\text {ss }}$ (Pin 2)
Positive supply line nominally OV.
$V_{G G}($ Pin 5)
Negative supply line nominally -15 V .

Power-On Reset

At power-on the chip is reset to zero. Counters will not start until Set Hours or Set Minutes has been activated.

Fig. 2: Pin configuration of the GIM AY-5-1224A clock chip

Fig. 3: Timing diagram for the AY-5-1224A

32 connections. By connecting the 28 segments in a matrix, as shown in Fig. 1(b), only 11 connections are needed-almost a three-to-one saving. Any individual segment can be lit up by applying power to the anode and cathode lines across whose intersection that segment is connected. In practice, the cathode (digit) lines are scanned in turn, the appropriate pattern of anode (segment) lines being connected in each case to light up the required digit. Persistence of vision will cause the digits to appear to be continuously illuminated if the scanning frequency is sufficiently high.

The AY-5-1224A

In the AY-5-1224A, the multiplex principle is extended still further, and allows several of the pins to be used for inputs and outputs in turn. In Fig. 2, we show the pin configuration of the device, with the various input and output functions identified. A more comprehensive description of these functions is given in Table
The Timing Diagram (Fig. 3) shows how the display digits are scanned in turn by the MX (Multiplex) outputs going to $\operatorname{logic} 0$. Note that in this device, the 1 logic level is

Fig. 4: Complete circuit diagram of the Jumbo Wall Clock

a negative voltage, approaching the V_{G} supply rail. The input/output pins become inputs during the period that the Strobe output goes to logic 0 .

Circuit Description

The complete circuit diagram of the clock is shown in Fig. '4. Transformer T1 has a nominal 9 volt secondary, and the rectified and smoothed d.c. output across C3 will be around 13 volts. A sample of the 50 Hz a.c. supply is taken from T1 secondary via R12, and after shaping by C 2 , is fed to pin 4 on ICl as the Master Clock. The frequency of the on-chip Multiplex Clock is set by C1, and will be about 6.7 kHz .

The 7 -segment outputs are applied to transistors $\operatorname{Tr} 1-7$, which drive the l.e.d. arrays via limiting resistors $\mathrm{R} 1-7$. Each horizontal segment uses three series-connected l.e.d.s, and each vertical segment uses four. The values selected for the limiting resistors compensate for the resulting difference in voltage drop across each segment, and give an even overall brightness to the display.

The four Multiplex outputs are applied to Darlington pairs $\operatorname{Tr} 8 / 9,10 / 11,12 / 13$ and $14 / 15$, and control the "Tens of hours", "Hours", "Tens of minutes" and -"Minutes" digits respectively. Only two vertical segments are required for the "Tens of hours" digit, since this can only be a blank or a " 1 ". This form of display is known in instrumentation circles as a $3 \frac{1}{2}$-digit display, meaning that there are three full digits, each capable of displaying " 0 " to " 9 ", and one half digit, capable of displaying only a blank or a " 1 ".

The colon separating the hours and minutes digits comprises two l.e.d.s, and is scanned at the same time as the "Tens of hours" digit. The cathode end of the colon pair is fed via limiting resistor R17 directly from the 0 V line.

Construction

All the components, apart from the mains transformer and the time-setting switches, S1 and 2, are mourted on a single p.c.b., greatly simplifying construction. In the display window area, all the wire links and resistor R18 are mounted on the foil side (underside) of the board, to preserve a clean frontal appearance. The power supply reservoir capacitor C3 is also mounted on the foil side, because there is insufficient room for it between the p.c.b. and the case front.

Being an m.o.s. device, IC1 should be left in its static protection pack until it is actually to be fitted to the board.

The first step in construction is to fit the wire links. Take the length of 20 s.w.g. tinned copper wire, secure one end in a vice, hold the other end with pliers and stretch slightly. This will remove all kinks, etc., and make the wire easier to cut and bend. Cut 21 lengths, each 45 mm long, and bend both ends, allowing 26 mm between bends. Because these links are fitted on the foil side of the board, they must be spaced off to avoid short-circuits to other tracks. It is easier to achieve this spacing if the bends are made curved rather than sharp, as shown in the photograph. A bend of some $2-3 \mathrm{~mm}$ radius is about right. Place the links in the foil side of the board as shown in Fig. 6 , solder both ends and trim the protruding wire ends flush with the plain (top) side of the p.c.b. The plain side of the board should then be sprayed with a light coat of matt black paint, to provide maximum display contrast in high ambient light levels.

components

This photograph shows the way in which the 20 s.w.g. wire links are made to stand clear of the board by the radiused bends to the legs at each end

Fig. 5: The p.c.b. track pattern, shown full size

Fig. 6: Component
layout and off-board connections

An internal view of the clock, showing the two timesetting switches and the mains transformer mounted on the rear panel

Insert all resistors, diodes, transistors and capacitors (except C3), and the i.c. socket, taking care to check that the semiconductors are fitted the right way round. Solder all the leads and trim the ends close tc the p.c.b.

Next insert the l.e.d.s, noting that these are polarised, and should be fitted with the longest lead (the opposite side to the flat on the l.e.d. body) on the side facing away from the transistor, except for the two l.e.d.s forming the colon, which face the opposite way.

The l.e.d.s are easily damaged by excessive heat during soldering, and it is best to solder just one leg of each l.e.d. first, and then allow them to cool. Check that all l.e.d.s are in line and flat against the p.c.b., and then solder the second leg and trim off the excess wire ends.

Fit and solder five 300 mm lengths of thin, pve-covered wire to the p.c.b. in the positions shown in Fig. 6. Insert IC1 in its socket (check correct orientation). Fit C3 on the foil side of the board, noting that the negative end faces the edge of the board. After pushing the capacitor flush against the underside of the p.c.b., bend the wires over flat against the top side of the board before cutting, so as to create a mechanical fixing. Solder the leads on the foil side.

The four p.c.b. mounting pillars are made from 6 mm diameter rod, and drilled 2.4 mm to about 12 mm deep at each end to take self-tapping screws. If the l.e.d.s and case mentioned in the components list have been used, the pillars will need to be 57 mrn long. If other types are used, the length will have to be adjusted to suit.

The transformer and switches are mounted on the back of the case, as shown in the photograph, and wired as shown in Figs. 4 and 6. Note that S2 (Set Hours) is on the left-hand side, behind the hours digits. The mains lead should be terminated in a fused clock connector or plug, fitted with a 1 amp fuse.

Testing

When connected to a mains supply, the display should show three zeros and light the colon. On pressing a button at the rear of the case the appropriate digits should change, enabling the time to be set correctly.

Experience has shown that any l.e.d.s damaged internally through soldering are likely to fail during the first 24 hours of operation. It is therefore advisable to run the clock for two days out of the case.

When satisfied with the operation of the clock, the remainder of the case may be assembled. The red Perspex window should be glued into the case front with Evostik
(use sparingly to avoid spoiling the finished appearance), and the case fixed together either by means of self-tapping screws or Evostik.

Fault Finding

If a single segment of the display fails to light when power is first applied, it is probable that one l.e.d. has been damaged when soldering. To locate the faulty l.e.d., select a number by means of the rear buttons, when it is known that the particular segment should be illuminated, and carefully short out each individual l.e.d. in that segment. The l.e.d. which, when shorted, lights the remainder, is the faulty one. Switch off the power and replace the faulty l.e.d.

If the same segment on each digit is off, check the resistor feeding the line, and the soldering of the associated transistor connections. If one digit is out completely, make the same checks on the resistors and transistor pairs at the bottom of the board.

Noise

In common with all other multiplexed displays, it will be found that severe interference is caused to radio reception in the immediate vicinity of the clock. This interference is radiated from the display wiring, and it is not really practicable to suppress it. It will be found, however, that the noise disappears when the radio receiver is moved more than about a metre from the clock, and it should not normally prove a problem.

I recently acquired a copy of the BBC Handbook for 1928. It's a slim, but quite weighty volume of 384 pages, handsomely bound in dark red. Surprisingly, it contains a large number of advertisements, and at this distance in time these are arguably of at least as much interest as the text! For instance, on pages 2 and 3 we find a doublespread for Mr C. S. Dunham, late radio engineer to the Marconi Scientific Inst. Co., and a member of the BBC since its conception. (A somewhat doubtful word to employ in connection with that august organisation, I would have thought!), who has now set up in business as a manufacturer of high-class receivers. The two-valve loudspeaker set has a performance equal to many threevalve sets, at half the price and half the maintenance costs. Tuning is by a single dial with a small knob to vary reception power to individual requirements. Coils are entirely dispensed with. The larger C.S.D. 51D three-valver has a handsome cabinet fitted with a lock and key! It is a beautiful piece of furniture worthy of the most exclusive (but not presumably the most affluent) home, and is secured by a down payment of 35 s 6 d , and 25 s monthly. Should you doubt any of the claims made, sworn statements are available for only 2 d postage.

Passing on, Messrs Igranic Electric Co. Ltd. modestly announce their Neutrosonic Seven Radio Receiver, with the words: Igranic Radio Devices put life into a circuit life in the zest and virility they give to results - life in the extraordinary length of time they continue to give such complete satisfaction. But what's this on page 17? An appeal To The Women Of Britain, no less, by a firm which has an enormous range of sizes, shapes, and designs. Of lampshades, I hasten to add. Hailwood \& Ackroyd Ltd. (Morley, Nr. Leeds), enjoin the ladies to make their homes a Heaven on Earth for their menfolk by the use of their glassware. Zest, virility, and Mutual Pleasure! They certainly don't write advertisements like that any more. It makes one yearn for those far-off days when people thought a double-entendre was French for a pair of earphones.

Origins

Ah well, on to the text. In an article entitled "BBC the old Regime" we learn that the original British Broadcasting Company was set up in a remarkably short space of time - talks started in May, 1922, and the Company was registered on 15 December of that year. However, stations in London, Birmingham, and Manchester were commissioned on 15 November, and Newcastle had programmes from the following Christmas Eve. Thus, by the end of the year the BBC was able to claim that 40 per cent of the population were in "crystal range" of a transmitter. By the Autumn of 1925 this figure had increased to nearly 80 per cent.

In June, 1927, there were 2299822 licences in force for reception, which wasn't bad growth from virtually a standing start less than five years previously. Curiously enough the BBC now wished to dismantle the local stations in favour of "regional" broadcasting, not without some opposition from listeners, particularly in Birmingham, where the old 5IT transmitter in Summer Lane had already been closed down and replaced, in part, by the new high power experimental station 5GB at Daventry. High power in this instance meant 30 kW ; not a lot by today's standards, but vastly greater than the other stations then operating. 2LO, for example, was the next in line with 3 kW , while most of the others had no more than 200 watts $(0.2 \mathrm{~kW})$. In the light of this it is really surprising that so many people could expect to get good results on the insensitive receivers then in common use, albeit with very largely no choice of programmes.

With a glance forward to the independent radio network set up in the 70s, we find that it more closely mirrors the old British Broadcasting Company's chain of stations than does the latter day BBC's own local radio. La plus ça change, etc . . . Returning to the lack of choice in the 20 s , however, it is refreshing to find that the handbook contains a list of all the major European radio stations as well as the domestic ones, for what was quaintly termed "reachers
out", or long-distance listeners. There is even a reference to broadcasting in the United States - " . . . many of (the stations) giving regular transmissions of fair to excellent quality ..." There were, incidentally, 50 stations in Chicago alone, so choice would not seem to have been any problem!

Programmes

Browsing along, in an article entitled "Topical Addresses", we discover that the Instant TV Pundit of today is merely a descendant of an older breed: ". . . the 9.20 space on Monday evening is still vacant on the morning of the same day, and somebody on the staff of the BBC is wondering whether it would not be possible to shift the centenary of Dante or King Charles the Martyr on the strength of some historical quibble, and make it, rather abruptly, that very Monday as ever is, and by the same token telephone to Professor Asterisk Space, the celebrated Italian authority, and get him to broadcast at 9.20." It appears that one talk broadcast from London was criticised in listeners' letters because it was (a) biased towards Communism, (b) Fascist propaganda, (c) anticlerical, (d) sectarian propaganda, (e) frivolous, (f) overintellectual. We are not told who made the broadcast in question, or what was its burden, but one hopes that the luckless author could shrug off the reaction with the timehonoured "Ah well, you can't please 'em all!"

A large section of the book is devoted to explaining how the programmes were produced, and fascinating reading it is. However, perhaps we should now confine ourselves to the technical matter, which is truly comprehensive, starting with an historical survey of "Wireless", and going on to detailed discussion of the BBC transmitters, with circuits of amplifiers and oscillators, and of other radio stations, such as that used for transatlantic telephones. This latter worked on about 5000 metres (60 kHz) using single-side-band! At least there shouldn't have been too much difficulty in keeping the local b.f.o. on tune at that frequency.

Equipment

Moving on to receivers, there are details of many types of set, from the simplest crystal to a superhet, with two stages of "h.f. magnification". The listener is warned against wearing headphones whilst making adjustments to mains-powered high tension supplies, because of the danger of electric shock. It was remarked that "modern headphones are much improved acoustically, but whether sufficient attention has been given to the response/ frequency curve in every case is open to question. No doubt the necessity for a low price is responsible . . ." Neither could the moving-iron type of loudspeaker boast of really good reproduction, but in America the moving-

THE PERSONAL AND EXPERIENCE OF

It was realised by Mr. C. S. Dunham (who until some time ago was Radio Engineer to Marconi Scientific Inst. Co. and had been a member of the B.B.C. since its conception) that radio appliances should not

RECOMMENDATION A RADIO ENGINEER

lines. So he applied his knowledge and experience to the production of a range of radio sets and components that would be entirely different in their design and

ELM WORKS, ELM PARK
BRIXTON HILI, LONDON, S.W. 2
write now for fule barticulars

Igranic Radio Devices put life into a circuit-life in the zest and virility they give to results-life in the extraordinary length of time they continue to give such complete satisfaction.

Write for lists describing cur latest range of components. Dept. $\mathbf{J 2 7 3}$

IGRANIC Electric Coip

149 Queen Victoria Street, LONDON Works : BEDFORD
coil speaker had already become widely used. Interspersed into the pages of this particular section are the numerous advertisements of the loudspeaker manufacturers. The Celestion C. 12 could be had in oak for $£ 75 \mathrm{~s}$, or in mahogany for an extra 5 shillings; but "this is but one of the 1927-28 Celestions, which range in price from $£ 510 \mathrm{~s}$ to $£ 25$.(!) They all definitely improve with age." Perhaps they matured, like wine. No doubt if anyone discovers one which had been laid down in a cellar back in 1928, it will by now out-perform anything the hi-fi merchants can offer!

And so to aerials. Once again the advice given to listeners is applicable to all sorts of receivers and reception conditions. In general they were urged to use the maximum length of wire allowed by the receiving licence - 100 ft , and no doubt they needed to if they wished to hear a 200 watt transmitter at any distance with a crystal set. The earth, too, was important, the recommended method of ensuring good results was to bury a 3 feet square plate in damp ground, with the lead-in wire soldered to several points along its top edge, with a ". . small wooden cover over the joint, so that it may be inspected from time to time." This section ends, incongruously, with a picture of four aristocrats playing a hand of Bridge, which was being broadcast! There is no sign of a commentator, so perhaps the listener heard only the player's voices, plus the occasional soft thud of a wellshod foot impinging on a partner's shin!

From then on, most of the text is devoted to the do-ityourself enthusiasts of the day, with articles by outside contributors on subjects such as "Hints for the Novice", and "The Home Constructor Scores", followed by 12 Don'ts for Listeners (e.g. DON'T forget that it is impossible practically to get true reproduction when receiving in the "silent point". How about that?), a glossary of technical terms. In this latter are some terms which are surprisingly familiar, such as, KiloHertz, Pushpull Amplification, and Cathode Ray Oscillograph.

In a limited space it is clearly impossible to do full justice to a book which is rich in interest, so here are just three more samples.

The Ormond 5-valve Portable advertised on page 306 is ". . . ideal for indoor and outdoor use . . . and will render perfect reproduction under average conditions from a main BBC station within about 30 to 40 miles, and about 400 miles of Daventry." Price, ready for immediate use, $£ 2410$ s - but then comes the sting in the tail. Marconi Royalty, extra, was no less than $£ 3$ 2s 6d, or just over $12 \frac{1}{2} \%$. No doubt this caused as much displeasure as does VAT today! On the very last page is an ad. for the British Radio Corporation, of Weybridge. It can't be the same one owned by Thorn, can it? Anyway, their speciality of the day was a High Frequency Combination Transformer, 200-2000 metres, which sounds as though it was intended to convert ordinary t.r.f. sets into superhets, although only hinted at by the reference to a high value of intermediate frequency. A somewhat strange reticence compared with

REMOTE AERIAL PRE-AMP SUPPLY

There have been several published designs for remote (mast-head) aerial pre-amplifiers, but these have generally been battery powered, or fed via a separate supply cable. It is very convenient, and not difficult, to supply power via the signal coaxial cable, using the circuitry shown here to draw power from the associated tuner.

In Fig. 1, C1 isolates the d.c. supply from the pre-amp output, and L1 prevents the r.f. output from being shunted away via the pre-amp power supply circuits. Resistor \mathbf{R}_{x} is

Fig. 1

Fig. 2
chosen to reduce the supply voltage to the required value at the rated current consumption of the pre-amplifier, and also provides supply decoupling in conjunction with C2.

To prevent damage to the tuner's power supply, in the event of a short-circuit on the aerial downlead, some sort of overload protection is necessary. The circuit of Fig. 2 is fed from the power supply reservoir capacitor, which will often have around $+15 / 25 \mathrm{~V}$ on it. The series pass transistor Tr 1 acts as the control element of the overload protection circuit, and also provides electronic smoothing by the action of R1, C3, R2. When an excessive current is drawn, the voltage drop across R 4 will rise above about 0.6 V , turning on Tr 2 , whose collector current triggers CSR 1. When CSR 1 conducts, it removes the base drive from $\operatorname{Tr} 1$ and so shuts off the d.c. supply to the tuner aerial socket via D1 and L2. The supply is restored by pressing S1, the "Reset" button. Diode D1 protects Tr1 from high reverse emitter-base voltages which can occur at switch-off if there is a large-value capacitor in the aerial pre-amplifier. Decoupling is provided by L2 and C4. Capacitor C_{y} must be added to the tuner input circuit if the latter is not a d.c. open circuit.

The output voltage of the protection circuit will be about 1.5 V less than the tuner supply voltage, due to the voltage dropped across Tr1, R4 and D1. With the value shown for R4, shutdown will occur at a load current of about 200 mA . If some other value is required (dictated by the maximum safe additional current which can be drawn from the tuner power supply), the value of R4 can be calculated from the formula:

$$
\mathrm{R} 4=0 \cdot 6 / \mathrm{I}_{\mathrm{c}}
$$

where R4 is in ohms and I_{c} is in amps.
The inductors L1 and L2 should be mounted as close as possible to the coaxial sockets, and may be made by winding about five turns of enamelled copper wire onto a ferrite bead. Other than this, the circuit layout is in no way critical.

This article describes the theoretical and practical considerations necessary to construct a push-pull 150 watt, solid state linear r.f. power amplifier. The unit, which provides a 15 dB gain, is primarily intended for use with s.s.b. transmitters, and employs broadband technology, covering the range $2-28 \mathrm{MHz}$. Operation is from a 13.8 V d.c. source and the full output is achieved for only 3 watts excitation. Intermodulation products, measured at 28 MHz for 150 watts p.e.p. are better than -30 dB .
The amplifier, which is fairly simple to construct, uses two TRW power transistors type PT9784/A and a BD135. A schematic diagram is given in Fig. 1. Readilyavailable European components were a prerequisite design consideration.

Design Criteria

In a push-pull configuration the transistor input or output impedances are in series, making the required transformation ratio one-quarter of that required for parallel operation. This method has been chosen to improve even-harmonic suppression and to simplify the matching problems due to very low input and output transistor impedances.

The circuit calculation was made in the following order:

1. Choice of the input and output transformer ratio.
2. Choice of transformer type.
3. Estimation of the transformer volumes.
4. Calculation of the transformer compensation.
5. Calculation of the input network between the input transformer and the transistors to match the two input impedances to 3Ω and to stabilise the gain/frequency characteristic.
A detailed analysis of the theoretical parameters will be given later for those wishing to study the technology. However, this should not deter the amateur from constructing the module, which requires only a little care and common sense in order to make it work.

Fig. 1: Block diagram of the amplifier

The complete circuit is shown in Fig. 2 and the p.c.b. and component locations in Figs. 6 and 7. On-the-top assembly is employed throughout and the heatsink should be drilled and countersunk to permit the power transistors to seat properly on the p.c.b. The mica chip capacitor and the transformers should be the first devices to be fixed to the board. Note that one of the transformer end-pieces forms the centre-tap in each case:

When the transformers for the prototype were built, some difficulty was experienced in locating brass tubing of the prescribed dimensions. It is possible that copper would suffice, but the original development module called for brass, so a supply was ultimately found, and appears in the components list. Several other devices could possibly be substituted, but those listed are those currently working in the prototype.

Output Circuit

The equivalent r.f. output circuit is given in Fig. 3. Resistor AA, capacitor AA and inductor BB form the equivalent circuit to $2 \times$ Zour in series. Capacitor CC, capacitor EE and inductor FF are the transformer h.f. compensation. The transformer itself is a black box, described by its S-parameters.

Optimisation of the compensation elements was carried out with the aid of a computer and the maximum output v.s.w.r. is lower than 1-6:1.

Input Circuit

The equivalent r.f. input circuit is shown in Fig. 4. Here IMP JJ represents the two transistor input impedances in

Fig. 2: The circuit diagram

Elements		Calc. value	Empirical value
CC	Cap (pF)	1474	$1000+100 / 700 \quad *$
EE	Cap(pF)	136	$20 / 100 \quad *$
FF	Ind. (nH)	256	90
	$\operatorname{Cap}(\mathrm{pF})$	2993	4700

Fig. 3: Equivalent output circuit

Elements		Calc. value	Empirical value
AA	Ind. (nH)	5732	4000
BB	$\operatorname{Cap}(\mathrm{pF})$	1294	1680
DD	$\operatorname{Cap}(\mathrm{pF})$	1146	2000
	Res (Ω)	13.4	10
	$\operatorname{Ind}(\mathrm{nH})$	189	200
FF	Res. (Ω)	1.3	1.2
	$\operatorname{Cap}(\mathrm{pF})$	33350	57000
GG	Res (Ω)	7.2	5.5
	$\operatorname{Ind}(\mathrm{nH})$	93.3	95
H	$\operatorname{Res}(\Omega)$	6.8	4.3
	$\operatorname{Ind}(\mathrm{nH})$	31.5	45
	$\operatorname{Cap}(\mathrm{pF})$	3040	3300

Fig. 4: Equivalent input circuit
series. Inductor AA and capacitor BB are for lowfrequency transformer compensation and capacitor DD forms the high-frequency compensation.

Circuits EE, FF, GG and HH have two functions, namely to form a selective attenuator with 3Ω input impedance to stabilise the gain/frequency characteristic and to match the two transistor input impedances (which are in series) to 3Ω with the minimum of loss at the highest frequency. Again a computer program was employed to arrive at the final figures and the maximum v.s.w.r. is lower than 1-6:1.

Bias Circuit

Naturally, the two power transistors heat during operation, although this effect is reduced if the duty cycle

The mica chip capacitor can be seen between the trimmer and the end of the transformer. Note also the fins of the power transistor
is low-as in the case of c.w. or s.s.b. Never-the-less, a thermally-compensated bias current must be arranged. In this instance an emitter-follower circuit is used producing a low output resistance, in which the base voltage is fixed by a thermally-variable component-diode D2. This is fixed to the heatsink in a manner which ensures good heat transfer to take place. The method used in this project was to shape the adjacent fin on one of the power transistors into a bracket with which to secure the diode. A detailed illustration is given in Fig. 5. The diode DI is needed to compensate the VBE of the transistor.

A more sophisticated circuit could have been evolved but this is quite adequate for the purpose. Potentiometer VR1 is used to adjust the current through the diodes by changing the voltage across them.

Fig. 5: Fixing diode D2 and mounting the power transistors

Fig. 6: Printed circuit board pattern

Fig. 7: Component locations

Ti(input transformer)

P.C.B. 'A'

P.C.B.'B'

Ferrite cores (5 req'd)

T2 (output transformer)

P.С.В. 'в'

Ferrite cores (8 req'd)
components

Resistars

$\frac{1}{2}$ W 10% metal oxide
$1.2 \Omega \quad 4 \quad$ A5.6.7.8
470Ω. \quad R10
$\frac{1}{2} W 5 \%$ carbon composition

3.3Ω	1	$R 9$
10Ω	1	R3
12Ω	1	R4
200	2	R1,2

Potentiometers
Honzontal mounting, cermet, enclosed pre-set $5 k \Omega \quad 1 \quad$ VR 1

Capacitors
Miniature dipped-case polyester

2.2 nF	1	$C 15$
3.3 nF	2	$\mathrm{C9}, 13$
10 nF	2	$\mathrm{C6.8}$
47 nF	2	$C 5.7$

Miniature ceramic disc
680pF 1 C2
$1 \mathrm{nF} \ldots 3 \mathrm{C}, 3,4$
10 FF - 1 C 17
Monolithic ceramic
$0.1 \mu \mathrm{~F} \quad 3 \quad \mathrm{C} 14,16,18$
Mica chíp
$1 \mathrm{nF}^{*} \quad 1 \mathrm{Cl}$
Tubular electrolytic. Axial leads $470 \mu \mathrm{~F} 25 \mathrm{~V} \quad 2 . \mathrm{C} 10,12$

Trimmers
Arco compression type
7-100pF* 1. TC2 (Arco 423)
$170-780 \mathrm{pF}$ * 1 : TC1 (Arco 469)

Semiconductors

Transistors PT9784/A 2 Tr1, 2
BD135
1
Tr3
Diodes IN4002 $2 . \quad$ D1,2

Colls
1115 turns 0.5 mm enamelled copper wire on *RTC 4322-020-97170 toroid
126 turns 8 mm inside diameter of 0.8 mm enamelled copper wire
L3 6 turns 8 mm inside dameter of 1 mm enamel led copper wire
L4 4 turns 8 mm inside diameter of $0.6-0.8 \mathrm{~mm}$ enamelled copper wire 6 mm long
L5. 4 turns 10 mm inside diameter of $0.8-1.4 \mathrm{~mm}$ enamelled copper wire 9 mm long
L6 25 turns 0.5 mm enamelled copper wire on *RTC 4322-020-97170 toroid
L7. 10 turns 1.5 mm enamelled copper wire on *RTC 4322-020-97180 toroid

Transformers

T1-Primary

* 2×5 fertite cores $9 \times 6 \times 3 \mathrm{~mm} \mu_{r}=120$, material 4C6 RTC reference 4322-020-97170 on 2 brass tubes 5 mm o.d., 22 mm long, with $10 \times$ 20 mm plece of copper-clad board at each end-see text.

71-Secondary
4 turns of $0.5 \mathrm{~mm}^{2}$ insulated wire, wound through the 2 brass tubes.

T2-Primary

* 2×8 ferrite cores $14 \times 9 \times 5 \mathrm{~mm} \mu_{r}=120$, material 4C6, RTC feference 4322-020-97180 on 2 brass tubes 8 mm o.d. 49 mm long with a $15 \times$ 30 mm piece of copper-clad board at each end-see text.

T2-Secondary

4 turns of $1.8 \mathrm{~mm}^{2}$ insulated wire, wound through the 2 brass tubes.

Miscellaneous

Printed circuit board (C. Bowes \& Co.)
Heatsink*. Coaxial sockets (2)

Component Sources

The: specialised components marked with an asterisk are available from R. B. Knight, 28 Lynwood' Dive, 'Wimborne, Dorset. Tel: 10202) 888426. These include the RTC ferrites used for the transformers and colls L1; L6 and L7. In addition, suitable brass tubing for T1 and T2 can also be obtained from this source.

Making the Transformers (Fig. 8)

By careful reference to the drawings one should be able to reproduce the transformers with a high degree of accuracy. Note the end pieces (which are made from small rectangles of single-sided copper-clad board) very carefully. One has a narrow strip of copper removed to form two distinct and separate islands. The other joins the two brass tubes and when fixed to the main p.c.b. forms the centre-tap connection.

Only the dimensions, wire gauges and-most important-the toroids specified must be used. The transformer assemblies should be fitted to the p.c.b. before the windings of insulated wire are inserted into the tubes, otherwise heat generated during the soldering process may destroy the sleeving.

The heatsink used to accommodate the prototype can be seen to be quite substantial-around $0.5^{\circ} \mathrm{C} / \mathrm{W}$. However, the power amplifier could well be reduced in size and mounted within existing equipment, say on a metal

back-plate. In this case, additional heatsinking could be provided on the outside.

If the method of mounting the power transistors used in the prototype is used, it will be necessary to put a small, flat-bottomed countersink in the heatsink to settle the devices properly (Fig. 5). Great care should be taken to ensure maximum heat transfer by making the stud holes only just large enough for the thread to pass through. Do not chamfer, but de-burr with Emery cloth. Apply a smear of thermal grease and tighten-firmly, but not so as to stretch the studding. (About 10lb. inches torque, for the perfectionist.)

Finally, note that in some areas continuity of the earth plane sections of the p.c.b. is effected by the fixings to the heatsink. If other arrangements of the amplifier are envisaged, it may be necessary to take this into account.

Setting up the Amplifier

The technology employed in this project means that a minimum of adjustment is required to achieve acceptable performance. If you are fortunate enough to have access to a spectrum analyser, all the better. A description of the original test arrangements is given in Fig. 9.
In its quiescent state, the module will only draw a few hundred milliamps-typically 200 . This is set by the
potentiometer VR1. It is a good idea to initially apply a very low level of r.f., which is increased gradually whilst carefully observing the current consumption. Judicious peaking of the trimmers should be all that is necessary to produce the required output.

सीlliw note:

PW ''Soundlite'", March 1979

On Fig. 5, electrolytic capacitor labelled C18 adjacent to D12 shouid be C13. On Fig. 6 the labels on the Bass and Treble switches should be transposed.

Car Test Probe, May 1979

The three l.e.d.s (D2, 3,4) are shown connected the wrong way round in the circuit diagram. They are correctly shown in the component drawing

$$
\begin{aligned}
& \text { VISIT PW ON STANIOA TO (NEXA THE } \\
& \text { STAGE) AT THE BSGB EXCHPHION: } \\
& \text { ALEXANDRA PALACE, LONDON:NZ2 } \\
& \text { May 11, 10am to 7.30pm } \\
& \text { May 12, 70am to Epin } \\
& \text { Admission 60p }
\end{aligned}
$$

RST VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED

 SPECIAL EXPRESS MAIL ORDER SERVICE

 SPECIAL EXPRESS MAIL ORDER SERVICE}

P.W. JUMBO CLOCK

Kits of parts by the designers of the clock.
Kit A.
Comprising of printed circuit board. Price £8.96. V.A.T. and postage included.

Kit B.

Comprising of printed circuit board, case, perspex panel, pillars, transformer and l.e.d.s. Price £22.72. V.A.T. and postage included.

Kit C.

Comprising of full kit, excluding mains cable and wire. Price $\mathbf{£ 2 9 . 0 0}$. V.A.T. and postage included.

Two colours of cases are available:- Gloss White \& Simulated Black Leather Grain.
Please state colour with order e.g. Kit C/Black.

Full range of R.S. components available (48 hours service)

If you are experiencing difficulty in obtaining certain components for projects please do not hesitate to telephone us.

I.C.'s for Soundlite Converter Type LM3900 \& MC 3302 £1.13 per pair
 Postage and package 20 pence.

P.C.B'S FOR PRACTICAL WIRELESS PROJECTS

Nov. 78.	Sarum 0 Meter	$R 030$	Price $£ 3.30 \& 20$ pence p \& p.
78.	S.T.D. Charge Timer	AD212	Price $£ 2.80$ \& 20 pence p \& p.
ov. 78.	Porch Light Timer	AD222	Price $£ 0.60$ \& 12 pence p \& p.
Nov. 78.	Battery Indicator	A0225	Price $\mathrm{f0} 0.60$ \& 12 pence p \& p.
Dec. 78.	Car Radio L.W. Converter	R034	Price $£ 2.35$ \& 15 pence p \& p.
Dec. 78.	Digital Door Chimes	R017	Price $£ 3.78$ \& 25 pence p \& p.
Dec. 78.	Car Radio L.W. Convert	R032	Price $£ 2.62$ \& 20
Jan. 79.	Acoustic Delay Line	R018	Price $£ 3.53$ \& 20
Jan.	Dorch	R	Pric
Feb. 79.	Hythe Recei	WRO3	Price $£ 5.94$ \& 20
March	Hythe Receiver	WR038	Price $£ 2.70$ \& 20 pence p \& p
March	Soundlite Conve	WK001	Price $£ 5.98$ \& 20 pence p \& p
March	Tone Burst Generator	RO23	
March	Wide Band Noise Sourc	WR036	Price $£ 0.70$ \& 12
April 79.	PW 'Winton'	WR039	Price $£ 15.42$ \& 30
April 79.	FM Multitester	WR040	Price $£ 2.70$ \& 15 pence p \& p.
May 79.	Car Test Probe	WR042	Price f 0.90 \& 15 pence p \& p.
May 79.	Foilow up to PW Gillingh	WR044	
May 79.	PW Imp	WR043	Price $£ 1.42$ \& 15 pence p \& p
	Inline Crystai Calibrator	WR041	Price $£ 1.58$ \& 15
June 79.	Jumbo Clock		

Send arders to:
 All prices include V.A.T.

C. BOWES \& CO. LTD.,
 4, WOOD STREET, CHEADLE, CHESHIRE SK8 1 AQ.
 Tel. 061-428-4497.

Please state type number and enclose cheque or postal order.

Hey, Good Looking!

Beautiful innit?, but a swish exterior can often be an eye catching cover for some very ordinary "guts", so what's so different about the WINTON?
Well, for a start we have discarded Bi-Polar output devices in favour of the far superior performance of the Hitachi Power MOS-FETS, which until now have only been available in some of the most expensive $\mathrm{Hi}-\mathrm{Fi}$ Amplifiers around, (and we consider $£ 700$ to be expensive with a capital E!). Secondly, our extremely low distortion figures are obtained at FULL RATED OUTPUT with both channels driven, across the entire audio spectrum.

Further, at these power levels 2 nd and 3rd order intermodulation components are typically less than 0.005% (See the March issue of P.W. for the full spec' and a few shots from the Spectrum Analyser.) Whilst we freely admit that ownership of a Winton will not prevent your hair from falling out, nor warts from growing on your nose, you will feel a nice sense of achievement when the job is complete, and you will own an Amplifier that will make your mates positively green with envy, until that is they see the light and obtain one of their own.

The WINTON Kit is available in the following form:-

[^3]
渭
 'WINTON' Stereo Amplifier

Part 4

E.A.RULE

The manner in which the peripheral components of a hi-fi system are connected to the main amplifier is very important, especially if low noise and hum are required. One extra earth connection can lead to horrible hum problems through earth loops.

The drawing (Fig. 19) shows how the connections should be made between the $P W$ Winton amplifier and the tape, record deck and tuner unit.

Three minor errors occurred in the metalwork drawings in the April issue. Fig. 13 which shows the mounting
details of the power transistors has the chassis upside down and inside out. The right-angle fold should be at the bottom and folded away from the heat sink.

Fig. 14 the main chassis drawing has the mains transformer fixing holes shown at 75 mm from the back edge of the chassis. The entire group of holes for this component should be centred at 75 mm from the front edge.

Fig. 15 has the chassis front shown upside down, with the bottom fold at the top.

[^4]

Most of the currently available voltage regulators will provide only a small output current of the order of 100 mA to 1 A . Greater current demands require the use of a low current regulator with a series-pass transistor in a more complex circuit or a number of low current regulators.

Most regulator devices have a fixed output voltage. Although variation is possible by suitable circuit techniques, it is not generally convenient to purchase just one type of fixed voltage device and expect to be able to use it to provide a specific voltage range.

The new Fairchild $\mu \mathrm{A} 78 \mathrm{HG} 5 \mathrm{~A}$ regulator with variable output voltage can provide the answer to the problem of obtaining high output currents from simple circuitry over the wide operating output range of 5 V to 20 V .

The $\mu \mathrm{A} 78 \mathrm{HG}$

The $\mu \mathrm{A} 78 \mathrm{HG}$ is encapsulated in an hermetically sealed metal package like that of TO-3 transistors, but has the four connections shown in Fig. 1 instead of the normal three leads of a TO-3 device. The case must be bolted to a suitable heat sink where the internal power dissipation is appreciable. The letter " H " in the type number of this device signifies that it is a "hybrid" component which unlike monolithic integrated circuits contains several silicon chips joined together internally.

The $\mu \mathrm{A} 78 \mathrm{HG}$ can be used in the simple circuit of Fig. 2. The internal circuitry of the device maintains the "control" pin at +5 V relative to the "common" pin. It is recommended that the value of the current in R 2 should be 1 mA , so R 2 should normally have a value of 5 kilohm.

The value used for R1 determines the output voltage. This output voltage, V_{o}, is given by the equation:

$$
V_{o}=5 \times(1+\mathrm{R} 1 / \mathrm{R} 2)
$$

Thus if R1 has a value of $5 \mathrm{k} \Omega$, the output voltage will be 10 V , whilst R1 should be $15 \mathrm{k} \Omega$ for a 20 V regulated output.

For a variable output voltage, R1 should be replaced with a suitable potentiometer.

Drop-out Voltage

It must be emphasised that this type of regulator cannot supply a greater output voltage than the applied input voltage; indeed, the output will always be somewhat less than the input. As the input voltage is decreased, a point is reached at which the regulator circuit "drops out" and ceases to function. The drop-out voltage is the difference between the input and output voltages when the regulator ceases to function.
The drop-out voltage of the $\mu \mathrm{A} 78 \mathrm{HG}$ is typically 2.6 volts at 3 amps output, and 3 volts at 5 amps output. Thus one should always ensure that the input voltage to the circuit is at least 3.5 volts above the maximum output voltage required. However, the input voltage must never be allowed to exceed 25 volts, even for an instant, or the regulator device may be damaged.

The $\mu \mathrm{A} 78 \mathrm{HG}$ contains an internal circuit to prevent damage when the output voltage is accidentally shorted to ground. This internal circuit limits the output current to approximately 7 amps under such conditions. In addition, the device incorporates "safe operating area" protection which ensures that the power transistors in the device are kept within the safe operating area of their current/voltage characteristic. Any tendency to go outside this safe operating area will result in the device being shut down with little output current until the condition is cleared.

Thermal Considerations

The $\mu \mathrm{A} 78 \mathrm{HG}$ also has internal circuitry which prevents damage to the device by overheating, such as when an inadequate heatsink is fitted. Never-the-less, it is advisable to operate the device so that it does not become too hot, since high temperature operation tends to reduce the life by a factor of about two for each $10^{\circ} \mathrm{C}$ rise.

Fig. 2: A simple circuit using the μ A78HG

The maximum permissible dissipation in the $\mu \mathrm{A} 78 \mathrm{HG}$ is 50 W , but this applies only when the case temperature is $25^{\circ} \mathrm{C}$. At higher case temperatures the internal dissipation must be de-rated according to the graph shown in Fig. 3.

The size of the heatsink required depends on the internal thermal dissipation which in turn depends on the input voltage, output voltage and output current. The quiescent current is only 10 mA , so the dissipation it produces is fairly small. The internal dissipation in watts will therefore be approximately equal to the output current multiplied by the difference between the input and output voltages.
To obtain an output voltage which can be varied over a wide range, a fairly high input voltage is necessary and the internal dissipation will be large if the output current is large. This requires a large heatsink. However, to maintain a fixed output voltage, the input voltage can be set at about 3.5 volts above this output voltage and the heat dissipated in the regulator device will then be much reduced.
The maximum value of the thermal resistance of the heatsink required may be estimated in the following way. The difference between the case temperature of the $\mu \mathrm{A} 78 \mathrm{HG}$ (from Fig. 3) and the maximum room temperature is divided by the internal dissipation in watts. About $0.2^{\circ} \mathrm{C} / \mathrm{W}$ is then deducted from the result to allow a safety factor.

Fig. 3 (left): Maximum internal power dissipation in the $\mu \mathrm{A} 78 \mathrm{HG}$. Fig. 4 (right): Ripple rejection provided by the $\mu \mathrm{A} 78 \mathrm{HG}$

The $\mu \mathrm{A} 78 \mathrm{HG}$ contains a beryllium oxide substrate for efficient heat transfer. This material is extremely toxic, so it is very important to note that one must never cut open the case of this device. If one were to saw through the beryllium oxide, the toxic particles could enter the lungs.

Performance

The line and load regulation are respectively the variation of the output voltage with the input voltage and with the output current; their values do not exceed 1% of the output voltage of the $\mu \mathrm{A} 78 \mathrm{HG}$.

The rejection of unwanted noise and ripple on the input power supply is quite high, as shown in Fig. 4 at various frequencies. The output noise voltage is typically $50 \mu \mathrm{~V}$ r.m.s. The output capacitor shown in Fig. 2 improves the transient response, whilst the input capacitor should be used if the regulator is located more than a short distance from the power supply reservoir capacitor. Solid tantalum capacitors are recommended for use in Fig. 2.

The $\mu \mathrm{A} 78 \mathrm{HG}$ is available from Arrow Electronics Limited, Coptfold Road, Brentwood CM14 4BN.

The ORMOND

5 VALVE PORTABLE SET

This set is ideal for indoor and outdoor use. It is contained in a Handsome Mahogany Cabinet, is extremely simple to control, and will render perfect reproduction under average conditions from a main B.B.C. Station within about 30 to 40 miles, and about 400 miles of Daventry.

A simple switch gives choice of short and long wavebands. Entirely self-contained and is fitted with a Cielestion Loud Speaker. Complete with all Accessories and ready for immediate use.

199-205, PFNTONVILLE ROAD, KING'S CROSS, LONDON, N゙.
Telephone: (lerkenwell 9344-5-6. Telegrams: " Ormondengi, Kincro-s."
FACTORLES: HHISKIN ST. \& HARDGTCK ST., GLERKENHELL, I.C.I
Continental Agents: Messrs. Pettigrew \& Merriman Ltd., "Phonos
House," 2 and 4, Bucknall Street, New Oxford Street, London, W.G. i
the hyperbole used by other firms, but perhaps explained by their not wishing to frighten-off timid constructors!

Censorship

Lastly, now that permissiveness reigns, let us see what Sir John Reith wrote in 1928 about censorship: "The peculiar nature of Broadcasting . . . inevitably transfers the choice . . . from the listener himself to the broadcaster. The theatre manager, the editor, the preacher, deal each with his own public rather than with the public, and the . . . subject and opinions likely to be expressed is established by their assembling and buying. To impose limits upon the freedom of such publicists, therefore, is sheer censorship, to be justified or not as such. But the broadcaster's censorship, if it be fair to call it so, has a different basis. He has not to consider the willing but the unwilling audience, the people who if the matter were, say, performed in a hall would not be there. And he has further to consider that even for the same people, matter entirely proper in a hall or a newspaper may be in bad taste or even frankly objectionable in a family group. This is not Philistinism but common-sense." I don't think one needs to be too much of a Mary Whitehouse to concur with this statement, or even to wish that certain television producers would take note of it!

Our grateful thanks to the BBC for permission to reproduce the illustrations in this article

SPECIAL PRODUCT REPORT

DATONG ELECTRONICS LIMITED

ACTIVE antienna moditilio

For those enthusiasts who enjoy the l.f. and h.f. bands an efficient antenna is a fundamental necessity and whilst many may dream about three-element beams on 120 ft . towers, few will be fortunate enough to be able to obtain one. Some, such as those living in flats, may well be denied any outside wires at all and this group in particular should reap the greatest benefit from an active antenna.

The Datong AD170 Active Antenna is a matched set of modules which, when assembled, exhibits some of the characteristics of a full size half-wave dipole. The kit consists of a short wire dipole, each leg being connected to a highimpedance differential input amplifier whose output is arranged to match a low impedance feeder which carries the signals to the receiver. Some signal amplification is also achieved within this module.

A second "interface" unit mixes d.c. power with the r.f. output signal, which is fed via coaxial cable to the antenna module. Its power input is filtered to avoid interference pickup and is also protected against a polarity reversal.

The Datong units are designed for indoor use and may be installed almost anywhere, an ideal position being the loft or similar high siting. Try to avoid places likely to be influenced by electrical noises, such as may be experienced from fluorescent lights. Remember also that water tanks, overflow pipes and so on will also affect the performance of any antenna.

The two wires from the head amplifier are stretched out and the ends attached to convenient fixing points (rafters, etc.) by non-conductive material-string, for example. For this purpose, two loops are provided. Optimum orientation of the dipole will depend on many factors, such as distance from the transmitter, mode of propagation, transmitter polarisation, time of day and operation frequency, so some experimentation is necessary. Vertical or near-vertical mounting is recommended for frequencies above 10 MHz . This will give omnidirectional reception of ground waves (e.g. from l.f. stations) and of low-angle sky waves from DX

\star specification

> Frequency range: $60 \mathrm{kHz}-70 \mathrm{MHz}$ Output impedance: 50Ω
> Differential voltage gain of amplifier: Unity
> Recommended dipole length: 3 m overall

Third order intermodulation products: typically -90 dB relative to two output signals of 100 mV e.m.f. (Equivalent to 100 mV p.d. at the differential inputs)
Second order intermodulation products: typically -80 dB relative to two output signals of 50 mV e.m.f. (Equivalent to 50 mV p.d. at the differential inputs) Current consumption: 80 mA Supply voltage: 12 V d.c. nominal The Datong AD170 is supplied as a package containing the active aerial, the interface unit, $2 \times 1.5 \mathrm{~m}$ antenna wires, $1 \times 4 \mathrm{~m}$ jumper cable and a 3.5 mm jack plug. The mains power unit shown in the photograph is an optional extra.
Price: Antenna $£ 33.19$ incl. VAT
Power Supply £6. 19 incl. VAT
Both units (inclusive price) $£ 37 \cdot 13$ incl. VAT
Datong Electronics Ltd, Spence Mills, Mill Lane, Bramley, Leeds LS 13 3HE Tel: 0532-552461
stations. Reception of high-angle sky waves from medium distance stations will be relatively poor, however.

Horizontal mounting gives almost omni-directional reception of high-angle sky waves and directional reception of low-angle sky waves. In the latter case, maximum response will be obtained when the line of the dipole wires is perpendicular to the line between antenna and transmitter. Null responses occur in directions along the line of the wires and can be used to reduce local interference.
continued on page 62
 \title{
PRODUCTION
 \title{
PRODUCTION LINES jannatin

}

Classic case

West Hyde Developments have recently introduced a new, versatile series of 45 different cases called the "Contil Classic II."

The main design feature of the cases is the extruded rail, which for the new Classic 11 has been extensively modified, giving much greater flexibility in use: The slot for the front and back panels is now stepped to give a choice of three different panel thicknesses and to allow for an added translucent panel. The screw groove has been altered to prevent thread stripping and more slots are provided for mounting a chassis or p.c.b. horizontally or vertically.

The case sizes have been carefully chosen to accept single or double Eurocards, which will fit horizontally across the " T " slots or slide vertically behind the front or back panels.

The Contil Classic II is available in three widths, five heights and three depths and held in stock as component parts. For further information contact: West Hyde Developments Ltd., Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 1ET. Tel: (0296) 20441/5

If you please

Would readers kindly mention "Production Lines", when applying to manufacturers or suppliers featured on this page.

Safety buzzer

Those who have ever had a freezer full of food ruined because the power to the unit has been accidentally switched off, or a fuse has blown, will be well aware of the value of the Buzz Plug recently introduced by Videotime Products.

Wired like an ordinary plug and looking not much larger, the Buzz Plug may be fitted as a direct replacement for a standard plug.

The slightly thicker top contains the circuit which continuously monitors the mains supply. Should the power fail the plug produces a loud instantaneous warning which will persist until some action is taken.

The plug is powered by a single inexpensive battery which will give up to 48 hours warning. Typical applications include use with freezers, fridges, incubators and equipment which must run constantly or would require recalibration. The RRP is $£ 5 \cdot 95$, and is available from: Videotime Products, 56 Queens Road, Basingstoke, Hants. Tel: 10256) 56417.

Simple wrapper

OK's new WSU-3OM is about the size of a small screwdriver, but performs the complete wire-wrapping function. At one end it has a bit for making wirewrapped terminal connections, in the middle a "no-nick" wire stripper and, at the other end, an unwrapping bit.

Designed for use with AWG30 $(0.25 \mathrm{~mm})$ wire and $0.025 \mathrm{in}(0.63 \mathrm{~mm})$ square terminal posts, the all-metal tool produces a modified wrap which has a small amount of insulated wire
around the terminal, in addition to the bare wire, to improve vibration resistance. The connection, which takes only seconds to make, is considerably stronger than solder, has excellent conductivity characteristics but can be quickly "undone" if necessary

The WSU-30M is available at a VAT and carriage inclusive price of $£ 5.64$ from: OK Machine \& Tool (UK) Ltd., 48a The Avenue, Southampton, Hants SO1 2SY. TeI: (0703) 38966/7.

PRODUCTION
LINES janaratin

A better 555

Rapid Recall Ltd. are now distributing to retailers the ICM7555 and 7556 timers, which provide a significantly improved performance over the standard SE/NE555/6 and 355 timers and are direct replacements for these devices in most applications.

The devices are manufactured by Intersil using a low-power CMOS process and will provide time delays from a few microseconds to several hours.

Operating from any d.c. power source within the range of 2 V to 18 V , and consuming only $80 \mu \mathrm{~A}$ (typical), the ICM7555 or the ICM7556 (160 1 A) can be used without the special decoupling arrangements which are mandatory with standard 555 devices.

This is because the $7555 / 6$ creates switching spikes on the power rail of only 2 or 3 mA compared with 200 to 300 mA with standard devices. Also, because the CMOS comparators on the chip possess a very high impedance, control voltage decoupling capacitors are unnecessary. Therefore, in many applications the two or three capacitors needed with the 555/6 are not needed with the 7555/6.

For details of availability and price contact: Watford Electronics, 33/35 Cardiff Road, Watford. Herts. Tel: (0923) $40588 / 9$.

Display bezel

Newly-available from Vero Electronics, is a moulded "display bezel AB064" in
two sizes to attractively frame and highlight a display and at the same time cover unsightly tool marks around a panel cut-out.

Designed to fit into a single rectangular cut-out, the bezel is positioned in the cut-out by four removable location pegs, and firmly secured by two moulded-in screwed studs which also secure the display mounting board on spacers provided.

A choice of lenses are offeredneutral, red and clear, polarised or unpolarised and a full range of compatible mounting boards for both l.e.d. and l.c.d. displays is available.

Prices range from $£ 1.50$, for a 4-digit bezel with clear lens, to $£ 2.65$ for a 6-digit bezel with coloured lens.

Further details from: Vero Electronics Ltd., Industrial Estate, Chandler's Ford, Eastleigh, Hants SO5 3ZR. Tel: (04215) 69911.

DATONG ACTIVE ANTENNA

continued from page 60
The AD170 has a frequency range of 60 kHz to 70 MHz . On "medium" and "long" waves there are many strong stations which call for a very good intermodulation performance from a unit such as this. At -80 dB on secondorder products and -90 dB on third-order products the Datong antenna fulfils this requirement admirably.

The interface unit previously referred to contains a switchable amplifier of 12 dB gain which will help compensate for the poorer h.f. performance of some older receivers, but is not essential if the unit is to be used with more modern equipment. It is, however, very convenient to have a couple of S-points extra gain available when required to winkle out that elusive $D X$ station.

On test, the AD170 gave very impressive results. It should be fully-understood, however, that the level of signal at the receiver will only compare with that from a full-size dipole at frequencies of about 16 MHz , appearing to be about one Spoint better at 30 MHz .

Below 16 MHz the "gain" relative to a full-size resonant half-wave dipole falls at approximately 6 dB per octave and at 2 MHz will be three S-points down on a 75 metre passive dipole. However, this may not be as dramatic as may first appear, because at 2 MHz the level of signal received on a full-sized dipole is considerable, as is the noise level. The active antenna worked quite satisfactorily at these frequencies and its all-important signal-to-noise ratio was at worst equal to and in many cases better than the full-size dipole against which comparisons were made.

by Eric Dowdeswell G4A R

An oft-repeated complaint by readers of this column concerns interference on the amateur bands, generally between amateur stations, but frequently from other services. It is often assumed that the amateur bands are exclusive allocations, but a look at the allotments will show that sharing with other services is not uncommon. The 80 m band is a typical example.

Such QRM can be the making or breaking of a newcomer to the amateur bands, especially if the equipment in use is relatively simple or unsuitable, which is frequently the case. I would say from my correspondence that about 50 per cent of budding amateurs buy equipment on the strength of ads in the popular press, instead of seeking advice from those having some experience of amateur radio.

All too often, sums of well over $£ 100$ are spent on receivers claimed to be able to "get the world", on a telescopic aerial! "Listen to the amateurs" they say, about a receiver that does not have a b.f.o., when the vast majority of amateurs today use single-sideband on our h.f. bands, necessitating the use of a b.f.o. "Eavesdrop on the aircraft bands, the police, the taxis etc.," is quite common, all of which is illegal in this country, but it sounds good in advertising.
So my advice must be to contact another person before buying a receiver for use either on the amateur bands or

Reports on the various bands are welcome and should be sent direct, by the 15 th of the month, to:
AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW. Logs by bands, each in alphabetical order.
MEDIUM and SW BANDS Charles Molloy G8BUS, 132. Segars Lane. Southport PR8 3JG. Reports for both bands must be kept separate.
VHF BANDS Ron Ham BRS 15744 , Faraday, Greyfriars, Storington, Sussex RH2O 4HE.
for general s.w. listening. Avoid also the sets that claim to cover the long-wave band through to the v.h.f. or even u.h.f. bands! There are few, if any, sets that can do this efficiently over such a wide range of frequencies. Get a good communications set for the h.f. bands and use its facilities in conjunction with a converter for the v.h.f. and u.h.f. bands. There must be another amateur not too far away, or a radio club of some kind, where you can seek advice on buying a set. An intelligent look at the advertising in magazines devoted to amateur radio is as good a start as any.

A good secondhand receiver is not to be despised, can be quite cheap, and can always be sold or swopped for another set if it is not up to expectations. Old valved sets, especially those with i.f. filters intended for use on s.s.b., can frequently out-perform many solid-state receivers under the conditions of interference that prevail on some amateur bands. They are virtually free of the bugbear of most transistorised sets, cross-modulation, where signals which are on adjacent channels, or even far apart in terms of frequency, inter-modulate giving the effect of interference on the desired signal. It is frequently almost impossible to convince a listener that the interfering station is not on an adjacent channel! Turning down the r.f. gain can usually prove the point.

What's on the Bands

From Marple, near Stockport, John and Steven Goodier used their FRG-7 and 30ft wire to log J6LFU, a new prefix for St. Lucia, previously VP2L, plus suffix. On 20 m s.s.b. FWOTT on Wallis Is. was a good find as well as JX9WT, much nearer home on Jan Mayen but still quite rare. S8AAT is another unusual prefix, this time for the Transkei while D68AD in the Comoro Is. is not heard all that often.

School work doesn't prevent Ian Marquis BRS41426 in Leigh-on-Sea, Essex, from digging out some goodies with his FRG-7, such as EA8CR and VO1HP on 160 m c.w., FP8, HR3, TI5, 6W8 and 9K2 on 80 m s.s.b. in spite of the rising sunspot number, or is it? David Palmer writes for the first time from Stowmarket, Suffolk, with a goodly selection of DX heard on his Trio JR310 with indoor dipoles for 10,15 and 20 m , and a 100 ft wire for the l.f. bands, plus an a.t.u. I have suggested that David tries the wire on the h.f. bands, too, if he hasn't already done so. He found 10 m quite good with prefixes like C5, DU1, HH2, H44, J28 and 6W8. David's two precepts for good DX are, getting on at the right time, and skill in operating the receiver. D'accord!

Finally, some more grist for the June DX mill, says Bill Rendell in Truro, Cornwall. He's been trying his h.f. dipoles as centre-fed " T "s on 80 m using an a.t.u., as well
as on the design frequencies of 20 and 15 m . Bill's still hankering after a new set to replace his beloved Heathkit AR3, but so far an AR88 in the pipeline has been vetoed by the XYL! The QTH of AA6AA turned out to be Los Angeles much to Bill's disappointment as did KG4W in Virginia. However, he did manage three ZLs on the same band, 80 m , while on 20 m VK2AGT on Lord Howe Is. was some compensation. VP8SO seems to be a new one on from Signy Is. with QSLs via G3KTJ, S79MC is still a mystery to Bill, and me, so if anyone can enlighten us please do so. Could it be old timer VS5MC?

The Month's Mail

Andrew Smith in Glasgow admits to being just a beginner but is lucky to be off the mark with an FRG-7 and Joystick aerial and a.t.u. He thought of contacting someone else in his area who might also just be starting, but my advice in such a case is to find the local radio society or group and get among the experienced amateurs and listeners who will be only too willing to assist. G4HWB hides the identity of Mike Stollov of Blackley, near Manchester, who complains that although modern technology has given him colour TV and non-stick frying pans it hasn't indicated how he can pay for all the modern amateur radio gear!

However, he has an FRG-7, and being keen on c.w. he ought not to have much trouble getting hold of one of the older c.w. rigs such as the LG300 for next to nothing. Another recruit from the BC bands is Martin Gill (Kirkby Lonsdale, Cumbria) who has been active on 10, 15 and 20 m with a Barlow-Wadley XCR30 and logged 67 countries in four months. David Wyatt a 14 -year-old from Oswestry, Salop, is starting to copy c.w. on his BC348 and queries à few prefixes. I can only advise, as I do most months, buying Geoff Watt's prefix list for the grand sum of 45 p from 62 Belmore Road, Norwich. His weekly news sheet is also good value for those keen on keeping up with the latest DX news.

A note of warning for owners of Realistic DX160 receivers comes from D. Dempster of Birmingham, who points out that the set's on-off switch only cuts the internal low-voltage supply and not the mains supply in the conventional manner. The set is therefore always live, which could be dangerous if one is poking around inside believing the mains is switched off. W. Semmens, writing from Penzance, Cornwall, says that he is handicapped but very keen to take up amateur radio, if he had a receiver, so if anyone in his area can help with a secondhand set at a reasonable price please let me know.

The above note on the DX160 should be of interest to P. C. Hawkes who uses his with a 100 ft wire. A beginner of only a few months, P.C.H. has been disappointed at not finding a radio amateur's map of the world at his local bookshops. Only source for these are the RSGB and Short Wave Magazine, and to be of any use such maps must be on a great-circle projection which gives true direction, so important when used with rotary beams. Incidentally P.C.H. sold part of a stamp collection to take up our hobby, but I can assure him he will never be disappointed with his choice.
After five years of studying electronics Phil Charlesworth, now BRS41107, in Southport, went to a mobile rally with G8EFQ and fell for amateur radio. He passed the RAE last December and is going all out on his code before getting his $\mathrm{G} 4+3$. He even threatens to send in some c.w. logs! Alan Billington is very lucky indeed, as his Dad is teaching him the code and he sits the RAE in May, Alan, that is! He is only 16 and has a Lafayette HA350 plus 80 ft aerial and homebrew a.t.u. Alan is BRS40845
and wonders if there are any other SWLs in Morecambe, Lancs.

John Cassidy of Shanklin, IOW, is 13 and recently bought a five-valve set from AH Supplies of Sheffield, and wonders if any reader has a circuit diagram. He'd also like to get hold of a pair of $4 \mathrm{k} \Omega$ headphones (so would I!) at a reasonable price. John lives at 15 Sibden Road if anyone car help. Some comments on the National DR2800 mentioned in the April column, from John Gomer (Colchester). He had one but swopped it for a Hammarlund SP600JX which sounds like a good swop to me. He heard subsequently that the 2800 was traded for a VW Beetle! John is dedicating a couple of nights a week for RAE study so good luck OM.

News from the Clubs

Editor of SWM, G3KFE, will be talking to the West Kent ARS on making homebrew equipment on Friday May 25 at the Adult Education Centre, Monson Road, Tunbridge Wells where meetings are held fortnightly. Alternate Tuesdays for informal meetings, Morse practice and chat at the Drill Hall, Victoria Road. Bury RS (G3BRS) will benefit from a chat on modifying Pye gear by G8EUM on May 8 at Mosses Centre, Cecil St., Bury, and every Tuesday evening. Contact: G4GSY at 7 Rothbury Close, Ainsworth Road, Bury, or ring 061-761 5083.

Stevenage \& District ARS normally meet first and third Thursdays but contact Trevor G8KMV, 11 The Dell, Stevenage for details of the 2 m DF Hunt on May 10, or ring 043854689 . An anonymous secretary has sent details of the Loughor Amateur Radio \& Electronics Club operating near Swansea. Only formed late last year the club is looking for more members so ring said Sec on 0792 893392.

A little detective work on the Crawley ARC (W. Sussex) Newsletter reveals that it meets on the last Wednesday of the month with informal gatherings at a member's QTH on the second Wednesday. Formal meetings at Trinity United Reformed Church Hall, Ifield Drive, Ifield but write to "Dot and Vernon" G3MER and G3MSK respectively for details of club activity, at 16 Newmarket Road, Crawley, W. Sussex.

Don't forget, letters and logs by 15 th of the month and don't miss the RSGB's Exhibition at Alexandra Palace on May 11 and 12 .

Log Extracts

M. Gill:-20m HS1WR VU2JNA VP2LFZ TU2HS 15 m ZP5LN HC7DR 10 m FM7WY ZP5CDE YS9RE R. Bell:-20m HC9CB HP7OP VP2MFO YA3DM YB6IB 15 m TR8AC 10 m CX8CN JR2LDM
W. Rendell:- 80 m CO2JA CT2SH (QSL W3HNK) HR0QL KG4W PJ2FR VP2SK XE1OW YV5ANS ZL2BT/ZL4AP 20 m C5AAL CT2YB HS1ABD TU2AE VK2AGT (Lord Howe Is.) VK7AE VP2MF VP8SO 15 m CT2CP C6ANU D4CBS HK3AXT J3AAE S79MC TG5WQ
D. Palmer:-15m C5ABK J28AY VQ9MR YB0WR 10m C5AAP HH2PW HR0QL H44JD J28AG TA1MB VS6EZ YB0TZ YS9RVE 6W8DY 7Z2AP
J. \& S. Goodier:-20m FW0TT JX9WT J6LFU KA1MI S8AAT 5U7AG 15 m D68AD VP2AC 9Y4TRV 10m C5AAP ZE2JK
I. Marquis:-80m CT2SH VE3BWK/4U 20m VP8SO ZD7PL 4S7DJ 5U7AG 15m FC9VN FG7AX HR0QL VP2LFZ 6W8DY

All above loggings were on s.s.b.

MEDIUM WAVE DX

by Charles Molloy G8BUS

While tuning round the medium waves recently, I was intrigued by the number of 1 kHz heterodynes that could be heard. A quick check brought a surprising total of 33 , some quite strong, which indicates in each case there was a station still working on the old pre-Geneva frequency, 1 kHz below the correct channel. If two stations are operating 1 kHz apart then they will interfere with each other, and the difference in frequency between them will appear as a 1 kHz audio tone at the loudspeaker.

A note over Sweden Calling DXers shed some light on the problem when it was stated that a number of countries have not (yet?) adopted the Geneva plan. Algeria, Iraq, Jordan, Lebanon, Libya and Tunisia it was claimed had not changed over at all, while several others in the same area have altered only a few of their transmitters. Algeria is still on 251 kHz on the long-waves, while 520 kHz now appears to be an out-of-band frequency at the 1.f. end of the medium waves, inhabited by low-poweì Austrian and German stations.

Heterodynes and DXing

Although a heterodyne is usually associated with a frequency difference between two signals that is at least great enough to generate an audible note, it is possible to have a sub-audio heterodyne. These are called "beats". A beat is generated when two stations, nominally on the same frequency, are separated by only a few hertz, which is usually the case when two signals are not synchronised. This is of particular interest to the DXer, as the beat will show up on the " S " meter. Even a weak station swamped by a much stronger one on the same channel will produce a beat strong enough to be indicated on the " S " meter and thus reveal its presence to the DXer. If you come across such a beat then stay on the frequency for a few minutes. DX on the medium waves is usually subjected to slow cyclic fading, so the strong station may fade and the weak one may increase in strength and even become dominant for a short while. I have often picked up interesting DX just by sitting on a channel that has a strong signal with a beat.

West African DX

Sunset along the West African coast occurs at much the same hour as in the UK, which makes this part of the world attractive to anyone who would like to DX during a summer's evening. Since the DX is coming from the south and any interference will most likely be from other directions, a loop will be useful in getting rid of unwanted co-channel interference.

Radio Las Palmas in the Canary Islands is now conspicuous, in Spanish, on 1008 kHz after Lopik in Holland signs-off. The Radio Naçional España outlet in Tenerife can be heard with the call "Centro Emisor del Atlantico" on 621 kHz , but there will be QRM from Batra
in Egypt which a loop should be able to deal with. Brussels, which is on the same frequency, signs-off at 2245. Radio Dakar in Senegal shares 765 kHz with Sottens in Switzerland and it is often heard in the UK with African music and French announcements. Conakry in Guinea is a regular on 1404 kHz with the call "La voix de la Revolution," and it is difficult to miss it after 2300 when the France Cultur network on the same channel goes off for the night. Bissau, located in Guinea-Bissau, is now on 107 kkHz and the time to look for this one is after 2100 when the France Inter network closes down.

World Radio and TV Handbook

The 1979 edition of this handbook is now available and it contains the latest changes on the medium and long waves. As well as listing the stations authorised under the Geneva Plan, it also indicates those that are not yet on the air, or are operating with less than maximum power. This is the only up-to-date list of medium- and long-wave stations that is available at the time of writing. The $W R T V H$ contains all sorts of information that is useful to the DXer including station addresses, schedules, and details of interval signals from broadcasters in every country in the world, and it covers the long, medium, short, v.h.f. and TV bands. The 1979 edition costs $£ 8.50$. It is published by Billboard, distributed in the UK by Argus Books, 14 St James Rd, Watford, Herts and it can be ordered through bookshops.

WARC 1979

These initials stand for the World Administrative Radio Conference, which is due to be held in Geneva in September this year. This conference is concerned with the allocation of frequencies to different users, and when I wrote about its possible effects on s.w. broadcasting last month, it did not occur to me that the conference would concern itself with the medium waves. There is, however, a proposal to the conference from the US Government, that the medium waves should be extended to 1860 kHz in Region 2, which covers North, Central and South America.

Radio amateurs will be far from happy at the prospect of having broadcasting in the lower 60 kHz of the 160 m band, and one can only hope that this part of the proposal is not implemented. The US intention is to use the extended part of the band to provide another 14 channels which would be occupied by 700 low-power local stations. Each would become what is known as a graveyard channel, like $1230,1240,1340,1480$ and 1490 kHz are at the moment. These frequencies are the resting place for hundreds of stations with powers of 500 watts or less, some of which operate during the daytime only.

It is hard to predict what DXing among these new channels would be like, but experience of existing graveyarders indicates that some interesting and unpredictable results can be expected.

Readers' Letters

"Perhaps the internal ferrite rod interferes," writes D. R. A. Lowe from Lichfield, who has been trying to use a m.w. loop with a Philips 543A receiver. He found that the loop exhibited no directional properties. Yes, this is what is wrong. The receiver is picking up signals from the internal ferrite rod aerial at the same time that the loop is trying to null-out this signal. You should only connect a loop to a receiver that does not have an internal aerial, and preferably a receiver that is well screened in a metal
cabinet, so that the receiver wiring does not act as an aerial. It is easy to test the receiver. Unplug the loop and the receiver should now be dead.

A similar problem comes from Roy Haynes who has been trying a loop with his Realistic DX160 and cannot get directional reception. Unplug the loop and see if the receiver still picks up the station you are trying to null-out. If it does then the loop is OK and it is the receiver that is causing the problem. Some versions of the DX160 are fitted with a ferrite rod aerial for m.w. reception, and this will have to be disconnected before a loop can be used with it. The ferrite rod should be fitted at the back, externally to the metal cabinet.

Chris Constantinides would like to listen to any of the Greek medium-wave stations and wonders if he should swap his DX160 for a better receiver. A more selective receiver will not help Chris, as the interference you are experiencing comes from stations operating on the same frequency as the signals you are trying to pick up. Try a m.w. loop along with your DX160, making sure that the latter does not have an aerial of its own. Don't be optimistic about obtaining regular reception from Greece on the m.w.s as there is a lot of co-channel interference to overcome.
Athens is now on 729 kHz and signs-off at 2300 . The power is 150 kW but there is high-power interference from Egypt, USSR and Finland, and also from stations in East Germany and Spain. Similarly with the main Yened outlet which is on 981 kHz with 200 kW , there is QRM from Algeria, Bulgaria, Cyprus and Sweden. The best time to listen to the Eastern Mediterranean is from 0400 onwards when, owing to the different time zones, stations in that area are signing-on while those further west are still off for the night.

DX Heard

Using a DX160, 90 ft long wire, a.t.u. and pre-amp K. Lewis (Pensilva, Cornwall) pulled in Radio Margarita, Venezuela on 1020 kHz , WINS New York on 1010, Radio Coro Venezuela on 1210 and Radio Paradise, St Kitts 1265, all heard between 0145 and 0330 in mid-March. Listen at this time of the year for North America and the Caribbean during the hour before sunrise. Reception is often good and QRM is light.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

A three-transistor receiver is in use at Fareham by Simon Pegler, who finds he gets improved reception if he unplugs the aerial from the receiver and runs the aerial lead close to a piece of wire which is plugged into the aerial socket. Similar results would be obtained by fitting a low-value fixed capacitor in series with the aerial. Peter Simms has a similar problem with his 9 -valve, semi-vintage domestic receiver, which he uses with a $40 f t$ inverted " L " aerial.

This set-up works well on some bands but not on others: "It picks up very little and selectivity becomes poor. This does not happen if I use short lengths of wire . . ."
It is possible to electrically shorten an aerial by inserting a capacitor between the aerial and the receiver. A variable capacitor with a maximum value of about 50 pF will do the trick on the main short-wave bands. This dodge is as old as radio itself and it was once the subject of a patent held, I believe, by Scott Taggart who designed the famous ST series of receivers. A long aerial picks up a lot of signal which is useful when you are listening to a weak station, but it can cause receiver overloading with strong signals, as well as damping the receiver input tuned circuits as in the two cases quoted above. A capacitor in series with the aerial will be found beneficial with many sets.

Tropical Bands

Some very good DX has been reported on the Tropical Bands recently. Bob Bell (Blyth) used an FRG-7, a.t.u. and a vertical aerial to pull in Radio Nepal at Katmandu on 3425 kHz in the 90 m band at 0030 , Radio Bolivar Venezuela $4770 \mathrm{kHz}(60 \mathrm{~m})$ at 0100 , Radio Tallin in English on 4860 at 0105, Radio Naçional Luanda 4820 at 0120, Dacca in Bangladesh 4790 at 2050, Radio RSA 4875 at 2350 with sign-off, Gansu in China on 4865 at 2155 in Chinese with jamming, an unidentified station in Arabic on 4845 at 2215 , Alma Ata on 5035 at 2205 in Chinese, and Ashkhabad on 4895 at 2350.

From Pensilva in Cornwall, K. Lewis reports hearing Radio Guatapuri in Colombia on 4817 kHz at 0535 and Radio Garoua in Cameroon on 5010 at 1840 in English, the receiver being a DX160. Peter Ramsey (Ayrshire) used an AR88 and a loft aerial to pull in Radio Singapore on 5010 at 0315 , Tegucigalpa Honduras on 4820 at 0330 and Lagos, Nigeria on 4990 at 0440. David Wyatt (BC348) heard Radio Reloj in Costa Rica on 4832 at 0755 , Nouakchott in Mauretania on 4845 at 2305, Cotonou Benin on 4870 at 0550, Radio Rumbos (Villa de Cora) in Venezuela on 4970 at 0625 , Radio Colosal (Neiva) Colombia on 4945 plus two he could not identify-Radio Superas on 4879 (R. Super at Medellin Colombia is on 4870) and Radio Cosanti on 4950 (anyone any ideas?).

DXers who have not tried the Tropical Bands should study the above carefully as it is representative of what can be heard. Listen after dark during the summer for African stations and throughout the night for Latin Americans.

"Long Live Short-Wave"

This is the title of an album (12 inch LP) issued by the well-known songwriter and record producer Mitch Murray. Mitch, who is a keen DXer himself, is the narrator who in the space of an hour, guides the listener through just about every aspect of DXing. One advantage of this type of presentation is that the audience can actually hear what it is all about, whether it is a signal from a satellite, WWVH in Hawaii, or QRM such as facsimile or Teletype. Station announcements and interval signals from a number of stations, some everyday and some exotic, are presented and I must admit there were a couple that were new to me. A few words from Henry Hatch of the BBC World Radio Club are included.

The album, which is advertised on page 159 of the 1979 World Radio and TV Handbook is accompanied by an explanatory booklet. It is available from Trans-Island Productions, PO Box 24, Douglas, Isle of Man, either as a record or cassette for $£ 3.50$, post paid. It should provide a

novel introduction to the hobby for the newcomer as well as being of interest to many old hands like myself.

Frequency Standard and Time Signal Stations

Fourteen-year-old David Wyatt (Oswestry) got hold of a BC348 surplus receiver which was made in 1942 , and is the type that was used in the wartime Flying Fortress. When used with a 90 ft long wire, it pulled in IBF in Turin, Italy on 5 MHz at 0700 with identification in Italian and English plus IBF in Morse, VNG Lyndhurst, Australia on 12 MHz at 0915 and WWV Fort Collins USA on 10 MHz at 0955. David finds these frequency standard stations useful to check the calibration of his receiver. This is, of course, one of the reasons why these stations are on the air. Others that are logged now and again (I nearly said from time to time) are Podebrady, Czechoslovakia 3170 kHz , BPV Shanghai and JJY Tokyo on 10 MHz , CHU in Ottawa on 14670 kHz , RWM Moscow and WWVH Hawaii on 15 MHz .

Readers' Letters

Fourteen-year-old Alistair Dupres (Cardiff) has made a good start with DXing by logging Radio Japan on 15195 kHz at 2200 , using his Vega Selena MB $210 / 2$ with telescopic aerial; their address is 2-2-1 Jinnan, ShibuyaKu, Tokyo. Alistair asks: "what is a QSL card?" A QSL card is a colourful picture postcard, or a card with an artistic design, that a station will send to a listener in return for a reception report. See the front cover of the August 1978 issue of $P W$ and my article on QSLs in the same issue. The card will usually have the station callsign or slogan printed on it together with the verification details that will confirm that the DXer actually heard the station.

A Hitachi Radio Cassette Type TRK5320E with telescopic aerial is in use by P. W. Oliver of Paisley, who wonders if he would get improved reception by joining an additional aerial to the telescopic one. I would not recommend it as you may get overloading. A series capacitor will help, but I like the method suggested by Mitch Murray in Long Live Short-Wave, which is to wrap a piece of insulated wire round the whip aerial without making direct contact with it. Then join your aerial to one end of this piece of wire, the degree of coupling being adjusted by altering the number of turns.
"What is a mechanical filter?" asks Michael Welsh, who is thinking of investing in a Collins R390A which possesses "mechanical intermediate frequency filters for selectivity." It is an electromechanical device which replaces an i.f. transformer. It will give results equal to, if not better than a crystal filter, and its main advantage is the steep sides of the reponse curve. A mechanical filter should not be confused with a ceramic filter which gives results similar to an i.f. transformer. Since the ceramic filter does not require adjustment it has advantages from the manufacturer's viewpoint and they are now widely used for domestic receivers.

Ian McLean has a Pye Cambridge R35 and he wonders if anyone could put an age to it. Replies direct to Ian at 46 Golf Drive, Port Glasgow, Scotland. Used with a PR40 preselector and 50 ft long wire this receiver pulled in Radio Australia on 17785 kHz at 0306 and Radio Pakistan in English on 17890 at 0245, both in the 16 m band. Derek Vivian would like to contact any reader who has fitted an " S " meter to the CR100 and his address is 9 Dymock House, 19 Malden Rd, Wallington, Surrey.

Radio Tinian crops up again with a suggestion from Dr S. K. Kellet Smith (Guernsey) that this station might be
located on an island called Tinian in the Marianas Group in the SW Pacific (Micronesia). This would really be DX! Unfortunately, broadcasting in this area (according to the $W R T V H)$ is on the medium waves and v.h.f., neither of them being likely to be heard in the UK. Dr Kellet Smith, who is now retired, has a Sanyo RP990 with telescopic aerial which pulled in Australia on 11855 kHz after midnight for him. Receiver trouble is being experienced by 15 -year-old Julien Smith who has a Philips 341 A which has blown a valve and also a new replacement. Julien lives at 48 Seafield Close, Seaford, Sussex, and help from anyone in his area would be appreciated as he is currently "off the air". Neil Devlin writes from Dundee to say that his Ferguson 5 -valve domestic receiver and 60 ft long wire pulled in Vietnam on 12035 at 2115 , Iran on 9022 at 1705 (out-of-band) and Radio Yugoslavia on 9620 at 2202 and Radio Australia on 6005 at 1705.

by Ron Ham BRS15744

I always enjoy attending the RSGB's annual VHF Convention and this year's event, held on March 10, at the Winning Post Hotel, Whitton, was no exception mainly because it is a wonderful opportunity to meet many of our readers and to feel the pulse of the current v.h.f. affairs.

Sudden Ionospheric Disturbance

Soon after I arrived at Whitton, Mark Deutsch G3VJG, told me about the Sudden Ionospheric Disturbance which occurred between 1035 and 1142 on March 9. Shortly afterwards I met Charlie Newton G2FKZ, with the same news and Cmdr Henry Hatfield, Sevenoaks, who was not a bit surprised because, at that time, he recorded solar radio noise at both 136 and 1296 MHz . Another old friend, Harry Gratton G6GN, up for the day from Bristol, knew something had happened because 10 m conditions were extra good at midday. At 1215 he worked VK2QL on c.w. and as late as 1400 he heard a VK in QSO with a GW on the key.

Aurora

The Convention was a mine of information and during the afternoon lecture session, Charlie Newton explained, with illustrations, how the equipment aboard SkyLab improved our knowledge of the sun's coronal holes, great solar filaments that unwind like a knotted rope, and the occurrence of auroral events. "Information is vital," said Charlie, "I often have a thousand observers on the air throughout Europe during an event," and he told Angus McKenzie G3OSS, London, who recently achieved a toneA contact with a GM on 70 cm , that auroral contacts on the u.h.f.s and microwaves should be attempted. Many of the pundits were expecting an aurora after the previous day's s.i.d., and soon after I arrived home from Whitton, Alan Baker G4GNX, Newhaven, phoned around 2300, saying that signals on 20 m had gone auroral. By midnight, John Cooper G8NGO, Cowfold, had received a GM and Roy Bannister G4GPX, Lancing, almost completed a

ECONOMY MODELS

12v DC inputs:

EC1 $-6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ approx. 20 watts	$\mathbf{£ 9 . 5 0}$
EC2 $-6^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime}$ approx. 40 watts	¢12.80
EC3-11" $\times 7 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$ approx. 150 watts	£25.48
EC4 - $11^{\prime \prime} \times 7 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}{ }^{\prime \prime}$ approx. 200 watts	£32.20
EC5 - $11^{\prime \prime} \times 7 \frac{1}{2}{ }^{\prime \prime} \times 5^{\prime \prime}$ approx. 300 watts	£39.00
ED1-11" $\times 7 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime}$ approx. 100 watts	£22.10
ED2-11" $\times 7 \frac{1}{2}^{\prime \prime} \times 4 \frac{1}{2^{\prime \prime}}$ approx. 150 watts	£26.80
ED3-11" $\times 7 \frac{1}{2 \prime \prime} \times 5^{\prime \prime}$ approx. 200 watts	£33.50
ED4-11" $\times 7 \frac{1}{2}$ " $\times 5^{\prime \prime}$ approx. 300 watts	£42.00

Please add $£ 2.00$ per unit carriage.
All units assembled to order approx. 28 days.
Caged sizes are subject to variations.

TEL:
 01-7360685
 ELECTROVANCE
 P.O. Box 191, London SW6 2LS

TIUNTW

1u

EUROSOLDERSUCKER

This 195 mm fong, all metal, high suction, desoldering tool with replaceable Teflon tip enables removal of molten solder from all sizes of pcb pads. Primed and released by thumb, it incorporates an antirecoil system and built in safety guard. Only f6.80 inc. VAT \& P.P.
TILE UNOUE
EUROBREADBOARD

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's. Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points, plus 4 Integral Power Bus Strips around alt edges for minimum inter-connection lengths.
All connection rows and columns are now numbered or lettered enabling exact location indexing.
Double-sided nickel silver contacts for long life (10K insertions) and low contact resistance $(<10 \mathrm{~m}$. ohms).
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
No other breadboard has as many individual contacts, offers all these features and costs only $£ 5.80$ each or $£ 11.00$ for 2 - inclusive of VAT and P.P.

Snip out and Post
David George Sales, r/o 74 Crayford High St., Crayford, Kent DA1 4EF

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint costs 85 p , including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF. Please ensure that your name and address are clearly legible.

tone-A QSO with a GM on 2 m . SM4IVE told John Branegan GM8OXQ, Saline, Fife, that an aurora manifested east of northern Sweden around 1925 on February 24, and John saw the effect of a weak aurora on Band I television on the 26th. Between 1900 and 2200 on the 21 st, John received auroral signals from the 2 m beacons in Germany DL0PR, Cornwall GB3CTC, Northern Ireland GB3GI and from three amateur stations in Scotland.

Solar

There is little doubt that the February aurorae were caused by the solar activity which was recorded by Robin Knight, South East Essex Astronomical Society on 60 MHz , Henry Hatfield on 136 MHz , John Smith, Rudgwick, Sussex, on 142 MHz , and myself on 146 MHz , between the 19 th and 23 rd . Also on the 23 rd , Henry, using his spectrohelioscope, saw a sunspot group nearing the western limb. Alan Baker visited Henry on the 25th and saw a prominence, several sunspots and a cloud of gas through Henry's machine. At 1052 on March 1, Henry located a bright area and a prominence just inside the east limb which may well have caused the solar radio noise recorded earlier by himself and John Branegan.

Satellites

I chatted to Ron Broadbent G3AAJ, Secretary/editor of AMSAT-UK at the Convention, and he sent me a copy of their journal, OSCAR News, in which I am delighted to read that Britain's first Amateur Radio Spacecraft is in the pipeline and will be built at the University of Surrey. Ron is going to update us on all future developments. (Full details were given in "News" in our last issue. Ed.)

On March 4, John Branegan received a QSL card from W3JPT, Washington, DC, confirming his best OSCAR-8J DX to date. John raises an interesting point in his letter, "The intense high pressure to the east side of the UK on February 25 and 26 had a marked effect on satellite results, creating a barrier which slowly moved south-south-east. It was not possible to put a 2 m signal into a satellite through this barrier when the satellite's elevation was below $25^{\circ} .{ }^{\circ}$ (My barograph recorded 30.75 in at that time.)

Several stations have given John propagation data by coming back to his OSCAR-Mode J CQs, in particular the 11 QSOs with each of VE2LI Montreal, WA3ZHW Pennsylvania and WB2OXJ New Jersey.

The 10 Metre Band

Harold Brodribb, St Leonards-On-Sea, writes: "Now that 10 m is so brilliant and the Russian stations so numerous, we have a new field to hunt in." Harold has far too many American and Russian stations for a detailed report, which shows that his AR88 and loft-mounted, inverted "V" dipole are going well. Harry Gratton has been concentrating on 10 m and in just two weeks has worked 60 JAs on the key. Between February 20 and March 18, I heard signals almost daily from the International Beacon Project stations in Bahrain A9XC, Cyprus 5B4CY, Germany DLOIGI, and periodically at midday, Bermuda VP9BA.

DX TV

Both Ian Rennison, Horsham, and myself noticed frequent short bursts of signals on Channel R1, 49.75 MHz during the early mornings. Around 0956 on

February 26, I received an unidentifiable picture, with vertical bars, on R1 and at 0900 on March 6 there were bursts of test card. Ian Roberts, Glenstantia, Rep. South Africa, says that conditions for DXTV were good on March 3 and writes: "The spectrum was literally jammed at the low-frequency end and the only pictures I could make out in detail were on R2 at 1609 GMT and later in the evening from 2053 to 2200, local time, Channel E2, Kenya." At 2300 Ian could still hear video signals above the receiver noise on Channels E2, R1 and IA. At the suggestion of young Stuart Hardy, Loudham, Notts, I wrote to Granada Television, Manchester, to find out more about the Granada caption that several of us saw during a Band I sporadic-E disturbance last year. In reply, one of our readers, Arthur Brennan G2AUC, of their engineering department said: "I can confirm that it was a Granada Television International caption which you saw. We do export to all European Countries and during sporadic-E we do have reports of our own station at Winter Hill, Lancashire, being received in Holland, Sweden and Norway". Arthur also expressed his interest in the "Five Metre Story" ($P W$ March 78), because he and GW2CPU listened to the Snowdon tests, in 1932, with a super-regen receiver situated 800 ft a.s.l. some 10 miles inland from Aberystwyth.

From Western Australia, Anthony Mann writes: "I spent February 10 and 11 modifying a valved TV set for 405 lines, just in time to lock B1 video, $45 \cdot 0 \mathrm{MHz}$, on the 12th, and B1 was in again on the 14th, 16th, 17th, 20th and 21st. Without doubt February 21 was the best B1 opening so far. Next day was completely different, absolutely dead, as is often the case with enhanced F2 conditions the day before." Anthony also heard B1 sound, 41.5 MHz , briefly on March 8, 9 and 10 and signals from China on R1, on February 14 and March 2.

Tropospheric

Anthony Mann tells me that on December 29, 1978, a two way QSO on 1296 MHz established a new world record between VK6KZ, 160 km west of Albany, across the Great Australian Bight to VK5MC, 70 km west of Mt Gambier. Our congratulations to the participants.

Although the atmospheric pressure rose from 29.1 in at midday on February 13 to a record of 30.75 in on the 25th, the v.h.f.s did not open as much as we hoped. However, some DX was about and on the 19th, David Wakefield G8RVK, Worthing, worked ON1YW and ON4VN; on the 20th, G3CHN, south Devon and at 1815 on the 26 th, GU3KFT. David has a Mizuho SB-2M portable rig and a 10 watt linear on loan from Mitch Tribe G8PMT, and has worked G, GJ, GU, GW, F and ON and had QSOs in 13 different QRA locator squares including ZM, YJ and YK. On the 21st, a newly licensed husband and wife team, John G8RZP and Jackie G8RZO, Brakespeare, Slough, worked into Belgium and Holland on 2 m s.s.b. During the evening of the 25 th, Alan Baker worked F1ANH and ON5UN on s.s.b., ON6CP on c.w. and F1FJT through the Brighton repeater GB3SR, R3. At the Convention, Randam Electronics displayed a massive, eye catching, 21 ft long, 2 m Yagi, French made by Tonna, which, along with their 70 cm beams were selling well. Harry Gratton uses one of these beams and is delighted with its performance. During one of the Convention lectures, Ray Flavell G3LTP, talked about the mechanics of tropospheric openings and explained how to use the data published in the RSGB's VHF Manual. He also emphasised the importance of getting the "upper air data"
when obtaining daily met. information which is available from many sources.

144/432MHz Contest

Although conditions were generally poor for the RSGB's 144/432MHz and SWL Contest held on March 3 and 4, Alan Baker worked four French stations, one ON, one GW and a GJ on 2 m s.s.b., and David Wakefield, a first timer, made 30 QSOs including 2 Fs and 1 GW . The multi-operators of the Hastings Electronics and Radio Club, G6HH/P, made 496 QSOs during the event with a best DX of 620 km into France.

St Dunstan's Weekend

Among the guests at the AGM of the St Dunstan's Amateur Radio Society held at Ian Fraser House, Ovingdean, Nr Brighton, on February 24, were Alan Baker, President of the Brighton and District Radio Society, Barry Cook G4BWJ, Royal Naval Amateur Radio Society, Eric Letts, Chairman of the Mid-Sussex Amateur Radio Society and John O'Houlihan G4BLJ and Len Wooller G9GEZ, of the Post Office Radio Division. After the official business a talk was given by Louis Varney G5RV, and during the weekend the St Dunstaners contacted several Ws on 10 m and many locals on 2 m through the Brighton repeater.

Raynet

On March 1, several of our readers took part in an East Sussex Raynet exercise designed to assist the Red Cross ambulance service if the need arose. The group covered a wide area from Worthing along the south coast to Eastbourne and inland to Crowborough, with Dermot Cronin G3GRO, on the Royal Sovereign Light as a relay station. Many Sussex Raynet members were again on exercise on March 11 when they operated throughout Sussex in conjunction with the County Emergency Planning Officer, using 80 m and 2 m , s.s.b. and f.m.

Amateur Co-operation

On February 25, F1FJT of Radio Club de Normandie wanted to contact Geoff Ellis G3LFZ of the Southdown Amateur Radio Society, so Alan Baker, who worked the Frenchman, called Geoff on the land line and they were soon in QSO. During the evening of March 9, Alan heard G5BYU/M on 2 m s.s.b. in Haywards Heath and G3IIR, in London, calling each other in order to arrange a meeting at the VHF Convention the following day. By breaking in, Alan linked the two stations together.

Sporadic-E

I was fortunate to be chairman for the Convention lectures given by Charlie Newton, Ray Flavell and Professor Martin Harrison G3USF, who began by playing tape recordings of music from Budapest, and an Italian commercial heard around 70 MHz during a sporadic-E disturbance last summer. Martin explained some of the theories about sporadic-E, and emphasised that it was an erratic phenomenon occurring annually between May and August and most likely to affect the 2 m band in the late afternoon.

The VHF Convention

During the morning I met my two opposite numbers, Graham Knight and Norman Fitch, the v.h.f. columnists for Radio Communication and Short Wave Magazine, who, like myself were surveying the trade stands which were laden with components especially for the home constructor. Among the trade exhibitors, who were all most helpful, were Messrs Burns, Cambrian, C and C, Display, Garex, Heller, J.M.G., Modular and S.G.S. Electronics, J Birkett, Catronics, Crayford, Hamvel,

Packer, South Midlands Communications, SOTA, S.W. Webb, Wood and Douglas, Amateur Radio Technical Service and Amateur Radio Exchange. At the end of the day Westlake Electronics told me that they had their usual run on coaxial cables, and John Fisher Electronics sold a lot of finishing materials, such as knobs, pilot lampholders and bits for making p.c. boards. The RSGB's bookstall and Bring and Buy sale were well supported and Mike Dormer G3DAH, and his lady assistants at the reception desk, were kept very busy as approximately 800 visitors arrived for the convention.

THE RENNISON BROTHERS

by RON HAM

A variety of receivers belonging to radio enthusiasts, David and Ian Rennison, are installed in their respective bedrooms at their parents' home in Horsham, Sussex.

David, an 18-year-old trainee electrician, caught the bug for radio from his elder brother Ian and Ian's friend, Chris Otley G4CYA, some six years ago when the Rennisons lived in Sheffield. Ian, a 28 -year-old bank employee, recalls that he began around the age of 14 , when Chris and he listened to the medium waves on an old valved set which, after taking some 30 minutes to warm up, gave about 30 minutes good service before developing a loud squeal.

Ian's first communications receiver was a Codar 70A which he used to take around to Chris's home, in a shopping bag, because, with a bigger garden, Chris had a larger aerial and more signals were heard. David, a member of the Horsham Amateur Radio Club, is more inclined toward amateur radio than Ian whose main interests are medium wave DX, Band II broadcast listening and v.h.f. television DXing.

Both David and Ian use Trio 9R59 communications receivers with Codar preselectors. David uses an NR56 v.h.f. receiver for the 2 m repeaters and a dual-gate MOSFET converter for general coverage of the 2 m band, while Ian uses a Aiwa 5080A, with its wide bandspread for the f.m. stations in Band II, and a JVC 3040 UKC receiver for the European TV Channels, E2-4 and 5-12.

Both brothers have sound recording facilities and use sundry home-constructed items, such as aerial tuning units and crystal calibrators, and, in the large loft of the Rennison home, David has a Slim Jim, a $5 / 8$ groundplane and a home-brew 2 m beam, while Ian has a dipole for Band I and a Yagi for Band III.

David is also keen on motor car engineering, while, over the years, Ian has built a large collection of pop records. As a regular reader of Practical Wireless, Ian makes frequent contributions to the columns of Charles Molloy and myself.

Although living under the same roof, their mutual interest in radio is separated by the different wavebands which suit the needs of Ian, the BCL and David, the SWL.

David Rennison operating his Trio receiver

Ian Rennison with his DX TV gear

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

3 ohm. 6×4 in. £1.50. 7×4 in. £1.50. $8 \times$

 $6 \frac{1}{2}$ in. $£ 1.80 .8 i n . £ 2.60$. $10 \mathrm{in} . £ 3$. 12 in . $£ 4$ 8 ohm. $2 \frac{1}{2} \mathrm{in} . £ 1.50 .3 \mathrm{in}, £ 1.50 .5 \mathrm{in} . £ 1.50 .10 \mathrm{in}, £ 3.12 \mathrm{in} . £ 4$. $16 \mathrm{ohm} .6 \times 4 \mathrm{in} . £ 1.50 .7 \times 4 \mathrm{in} . £ 1 \cdot 50.5 \mathrm{in} . £ 1.50 .8 \mathrm{in} . £ 2.60$. 10 in . f^{2}. 12 in . £4. $10 \times 6 \mathrm{in}$. $£ 3.50$THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and all sizes of tape reels. C. mains 200/249V
£5.50 $\begin{array}{r}\text { Post } \\ 50 \mathrm{p}\end{array}$
HEAD DEMAGNETISER PROBE $\$ 4.75$

BLANK ALUMINIUM CHASSIS, 18 s.w.g. $2 \operatorname{lin}$ in. sides, $6 \times 4 \mathrm{in}$ $95 \mathrm{p} ; 8 \times 6 \mathrm{in} . £ 1.40 ; 10 \times 7 \mathrm{in} . £ 1-55 ; 14 \times 9 \mathrm{in} . £ 1-90 ; 16 \times 6 \mathrm{in}$. $\mathrm{f} 1 \cdot 85 ; 12 \times 3 \mathrm{in}$. $£ 1 \cdot 20$; $16 \times 10 \mathrm{in}$. $£ 2 \cdot 20$; $12 \times 8 \mathrm{in}$. $£ 1 \cdot 70$.
ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in} .24 \mathrm{p} ; 8 \times 6 \mathrm{in} .38 \mathrm{p}$; $10 \times$ $7 \mathrm{in} .54 \mathrm{p} ; 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p} ; 14 \times 9 \mathrm{in} .94 \mathrm{p}$. 12×12 in. $£ 1$; 16×10 in. $£ 1 \cdot 16$.
ALUMINIUM ANGLE BRACKET $6 \times \frac{3}{4} \times \frac{3}{4} \mathrm{in}$. 20p.
ALUMINIUM BOXES, MANY SIZES IN STOCK.
$4 \times 2 \times 2 \mathrm{in} .86 \mathrm{p} ; 3 \times 2 \times 1 \mathrm{in}$. $60 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in}$. $£ 1 ; 8 \times 6 \times 3 \mathrm{in}$.
$\mathrm{f} 1-90 ; 12 \times 5 \times 3 \mathrm{in} . £ 2 ; 6 \times 4 \times 4 \mathrm{in} . £ 1-30.10 \times 7 \times 3 \mathrm{in} . \mathrm{£} 2.20$.

50 WATT

 AMPLIFIER £59 Post£ 1

Superior quality ideal for Halls/PA systems. Disco's and Groups. Two inputs with Mixer Volume Controls. Master Bass, Treble and Gain inputs with Mixer Volume Controis. Master Bass, Treble and Gain 240 V (120 V available). Blue wording on black cabinet.
BAKER 150 Watt AMPLIFIER 4 inputs $£ 79$
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains. Post 35p $\mathbf{f 3} \mathbf{3 5}$
STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per chanmel, with volume control and P.C. Board. Can be ganged to make \quad Post $35 p$ E2.95
multi-way stereo mixers. R.C.S. SOUND TO LIGHT DISPLAY MK 2 Complete kit of parts with R.C.S. printed circuit. Three to 100 watts signal source. Suitable for home $\mathrm{Hi}-\mathrm{Fi} \quad \mathrm{E} 17$ and all Disco Amplifiers. Cabinet extra£4.
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco
Lights. Edison Screw 75 peach or 6 for $£ 4$. or 12 for $£ 7-50$.
MAINS TRANSFORMERS ${ }^{\text {Post }}$
6 VOLT $\frac{1}{2}$ AMP. $£ 1.00 \quad 3$ AMP. $£ 1.959$ VOLT 3 AMP. $£ 2.75$
12 VOLT 300 MA. $£ 1.00750$ MA. $£ 1.3020$ VOLT 2 AMP. $£ 2.50$
30 VOLT 5 AMP AND 34 VOLT 2 AMP C 30 VOLT 5 AMP. AND 34 VOLT 2 AMP. C.T. $£ 3-45$ 20 VOLT 1 AMP. $\mathbf{2 2} \cdot 00$ 20-0-20 VOLT I AMP. $£ 2.95$ 30 VOLT $1 \frac{1}{2}$ AMP. $£ 2.7540$ VOLT 2 AMP. $£ 2.9530 \mathrm{~V} 2$ AMP. $£ 3$
$0-20-40-60$ VOLT 1 AMP. $£ 3.502 \times 18$ VOLT 6 AMP $£ 9$ $0-20-40-60$ VOLT 1 AMP. $£ 3.502 \times 18$ VOLT 6 AMP. $£ 9$. Low Voltage 0-8.12V. 3 AMP 123 .
LOw Voltage $12-0$ PROSE LOW VOLTAGE. Voltages avaitable at $2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24$ and 30 V analates $\mathbf{~} 5.80$ $\begin{array}{ll}2 \mathrm{~A}, 3,4,5,6,8,1,1,12,13,18,24 \text { and } 30 \\ 1 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \text { £5.80 } \\ 2 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \mathbf{~} 8.50\end{array}$ $2 A, 6,8.10,12,16,18,20,24,30,36,40,48,60$
$3 A, 6,8,10,12,16,18$ $3 \mathrm{~A}, 6,8.10,12,16,18,20,24,30,36,40,48,60$
$5 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$ 25.80
$\mathbf{8 1 1 . 0 0}$
$\mathbf{~} 11.00$
R.C.S. TEAK

COMPACT
SPEAKERS
$13 \times 10 \times 6 \mathrm{in}$.
50 to $14,000 \mathrm{cps}$.
50 to $14,000 \mathrm{cps}$.
10 watts. 4 or 8 ohms.
elít pair

BAKER SPEAKERS "BIG SOUND"
Robustly constructed to stand up to long Robustly constructed to sta
periods of electronic power. periods of electronic power.
Bass resonance 55 cps .
GROUP "35"
12 in .40 watt
4,8 or 16 ohms.
GROUP "50/12"
12 in .60 watt professiona
model. 4,8 or 16 ohms.
£21.00 Response $30-16,000 \mathrm{cps}$.
With aluminium presence dome.
GROUP " $50 / 15$ " 15 in. 75 watt
8 or 16 ohms.
end leaflets on Disco, P.A. and Group Gear.
E.M.I. $13 \frac{1}{2} \times 8$ in SPEAKER SALE!

With tweeter. And crossover.
10W. State 3 or 8 ohm.
5w
15W model
$\mathbf{6} 10.50$ GODDMANS 21 Wat W Size $12 \times 10 \mathrm{in} .4$ ohms. Rubber cone surround. Hi-Fi Bass unit. GOOOMANS TWIN AXIOM 8 8 in .8 ohm Hi -Fi Twin Cone Special unit
Sing
LLE!
f8.95
Post 45 p
£10.50
Post 65 p

$\mathbf{f 9 . 9 5}$
Post 65 p

$\mathbf{f 9 . 9 5}$
Post 50 p
R.C.S. MINI MODULE HI-FI KIT 15×8 8in 3-way Loudspeaker System, EMI 5in, Bass 5in, Middle 3in. Tweeter with 3way Crossover and Ready Cut Baffle. Full assombly instructions suppliad. Response $=60$ to 20 000cps 12 watt RMS. 8 ohm. $£ 10.95$ per kit. Two kits £20.
Pastage 75p. One or two kits.

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE;P.M.G. Certificates; the R.T.E.B Servicing Certificates; etc. Also courses in Television Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

NOTICE TO READERS

When replying to Classified Advertisements please ensure：
（A）That you have clearly stated your require－ ments．
（B）That you have enclosed the right remittance．
（C）That your name and address is written in block capitals，and
（D）That your letter is correctly addressed to the advertiser．
This will assist advertisers in processing and
despatching orders with the minimum of delay．

Receivers and Components

VALVES

Radio－T．V．－Industrial－Transmitting
Projector Lamps and Semiconductors
We Dispatch Valves to all parts of the world by return of
post，Air or Sea mail， 4000 Types in stock． 1930 to 1976 ． post，Air or Sea mail， 4000 Types in stock， 1930 to 1976 ．
Obsolete types a speciality．List 30 ．Quotations S．A．E．
Open to callers Alonday to Saturday 9.30 to 5.00 closed Open to callers Monday to Saturday 9.30 to 5.00 closed
Wednesday 1.00 ．We wish to purchase all types of new and Wednesday 1.00 ．We wish to purchase all types or
boxed Valves，Projector Lamps and Semiconductors．

COX RADIO（SUSSEX）LTD．
Dept．P．W．The Parade，East Wittering，
West Wittering 2023 （STD Code 024366）

NEW SHOP in East Kent．Vast range of Electronic Com ponents，equipment，hardware．Technocraft， 143 Tankerton Road，Whitstable（265091）．Open Tuesday to Saturday． Easy Parking．

BRAND NEW COMPONENTS BY RETURN

 $\begin{array}{lllll}\text { Subminiature } & \text { bead } & \text { tantalum，} & \text { electrofytics．} \\ 0.1 & 0.22, & 0.47, & 10 & 35 \mathrm{~V}, 4.7\end{array}$ $\begin{array}{lllll}0.1 \\ 2.2 / 35 \mathrm{~V} & \& & 4.7 / 25 \mathrm{~V}-9 \mathrm{p} . & 10 / 25 \mathrm{~V} & 15 / 16 \mathrm{~V}-12 \mathrm{p} . \\ 22 / 16 \mathrm{~V} . & 33 / 10 \mathrm{~V}, & 47 / 6 \mathrm{~V}, & 68 & 100 \\ 9 & 3 \mathrm{~V}-14 \mathrm{p} .\end{array}$

 Polystyrens E12 Series 63 V ．Hor．Mounting．
10 pf ．to 1000 pf ． $\mathbf{3 p}$ ． 1200 pf ，to $10000 \mathrm{pf} .-4 \mathrm{p}$ ．
 ．68－11p．1－0－4p．14p．1．5－20p．2．2－24p．

 1N4148－2p， 1 N4002－4p， 1 N4006－6p， 1 N4007－7p

 20 mm ．fuseholders P．C．or Chassis Mtg．－5p
Post 10 p （Free over f4）．Prices VAT inclusive

THE C．R．SUPPLY CO．
127，Chestarfield Road，Sheffield S8 ORN
COMPONENTS： 32 Leds（ $12 \mathrm{R}, 10 \mathrm{G}, 10 \mathrm{Y}$ ）$£ 3,10$ packs £25；LM741 15p， 10 for $£ 1.40$ ；NE555 22p， 10 for $£ 2$ ； LM3900 40p， 10 for $£ 3.50$ ；LM 380 65p， 10 for $£ 6$ ；CPU＇s Z $80 £ 10,6800 £ 7 ; 8080 £ 6$, Z $80 \mathrm{~A} £ 14$, TMS $2708 £ 6.50$ ， all Micros include socket；－ $2102-1$（ 450 n ） 80 p ；Trans． 2N2222A 13p－RESISTORS $\frac{1}{2} p$ any mix；CERAMIC DISC 27pF to 8 n 21 p any mix；P．\＆P．12p，CMOS，TTL， MICROS free list．Tel．（0506 632337）．R．Machnik， 13 Mopefield Place，Blackburn，West Lothian．

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word（minimum 12 words），box number 60 p extra．Semi－display setting $£ 7.50$ per single column centimetre（minimum 2.5 cms）．All cheques，postal orders etc．，to be made payable to Practical Wireless＇and crossed ＂Lloyds Bank Ltd＂．Treasury notes should always be sent registered post．Advertisements， together with remittance，should be sent to the Classified Advertisement Manager，Practical Wireless，Room 2337，IPC Magazines Limited， King＇s Reach Tower，Stamford St．，London， SE1 9LS．（Telephone 01－261 5846）

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

> 1．Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertise－ ment does not contravene any Act o Parliament nor is it an infringement o the British Code of Advertising Practice
> 2．The publishers reserve the right to refuse or withdraw any advertisement 3．Although every care is taken，the Publishers shall not be liable for clerical or printers＇errors or their consequences．

RIBBON MICROPHONES with $4 / 8$ Poleswitch 95 p Microswitches，Capacitors，Receiver and Microphone Cap－ sules 10 p each；Bakelite Telephones $£ 2.95$ ；Handsets 50 p； Magneto Generators $£ 1-75$ ．P．\＆P．$£ 1-50$ ． CONVERSATION PIECES， 55 Swindon Road， Cheltenham．（35707）．

D．Y．M．THERMOMETER KIT	
	Based on the ICL7． 106 single chip DVM structions to make aio 200 MV FSD DVM Components aiso supplied to enabie this to be converted to a digital

IGUCH CONTROLLED．LIGHTING KITS

Directly replace conventional light switches and control up
to 300 W of lighting．No mains rewiring．Insulated touch plates．Easy to tollow instructions
NEW！TD30OK－TOUCHDIMMER！Single touchplate with alternate action．Brief touch switches lamp on and off，longer
touch dims or brightens lamp．Neon lamp helps find the touch dims or brightens lamp．Neon lamp helps find the
switch in the dark switch in the dark
ocation，two－way switching，etc－
etc－
TOUCHMER－One
TOUC．Smal $\mathbf{E 1 . 5 0}$
aternate TSD30OK－TOUCHSWITCH－DIMMER－Une alternate
ON／OFF action．TOUCHPLATE．Smal
knob tor
$\mathbf{E 5}$ ． 50 TS30OK－ON／OFF TOUCHSWITCH．Two touch－ TSA30OK－AUTOMEATIC TOUCHSWITCH．Time variable 2 ． delay
$\mathbf{8 4 . 3 0}$
$\mathbf{8 2 . 9 0}$ LD300K－300W LIGHTDIMMER KIT

$$
\begin{gathered}
\star \text { SPECIAL OFFER } \star \\
10 \% \text { discount on any } 4 \text { lighting control kits. }
\end{gathered}
$$

$$
5: 2 \cdot 90
$$

24 HR．CLOCK APPLIANCE TIMER KIT

 Switches any appliance of up to 1 KW on and off at preset times once a day KIT contains：AC－5－1
pliance Timer $1 \mathrm{C}, \mathrm{O}^{2}$ LED display mains supply，display drivers，switches，
LEDs triac PCBs and fuil LEDs，triac
instructions
White box $56 \times 131 \times 71 \mathrm{~mm}$ with red Acrylic window
White
White box as above ready drilled for k it
Ready－built in box，incl．mains cable

TUNBRIDGE WELLS COMPONENTS，BALLARD＇S， 108 Camden Road，Tunbridge Wells，Tel：31803．No Lists． Enquiries S．A．E．

> AM/CW/SSB COMMUNICATION RECEIVER and AM/CW/SSB COMMUNICATION RECEIVER $\begin{aligned} & \mathrm{kHz} \text { BW, with diode-switching, } \\ & \text { CRYSTALS Brand new high }\end{aligned}$
> $\begin{aligned} & \text { CRYSTALS Brand new high, precision HC33/U: 1-0, } 2 \cdot 0 \text {, } \\ & 3.0 .1 .008,2.5625 \mathrm{MHz} \text { £3.35. 1.28 MHz £4.15. HC13 }\end{aligned}$ 3.0. $1.008,2.5625 \mathrm{MHz}$ £3.35. 1.28 MHz £4.15. HC13

> Large stocks of standard freas for MPU etc. Any freq made to order 6 weeks from $£ 3.75$.
> WINKLE PICKERS. Winkle out DX from the ORM with pin-sharp 250 Hz 8 -pole crystal CW filters speciaily manufactured to tit 18.10 and
> All prices inc. VAT and UK post. SAE List
> P. R, GOLLEDGE ELECTRONICS
> $\begin{aligned} & \text { Merriot, Somerset, } \\ & \text { Tel: } 046073718\end{aligned}$

THE VINTAGE WIRELESS COMPANY ${ }^{\text {／7／n }}$ 1920 to 1950

Receivers，valves，components，service data，historical Receivers，valves，components，service data，historical
research books，magazines，repairs and restorations．A com－
plete service for the collector and entiosiast of vintage plete service for the collector and enthusiast
radio．
S．a．e．with enquiries and for monthly newsheet．
THE VINTAGE WIRELESS COMPANY，64，Broad Street，Staple Hill，Bristol BS16 5NL．Tel．＇Bristol
565472 ．

回回回回回回回回回

Record Accessories

STYLI，Cartridges For MUSIC CENTRES，etc．FREE List No． 29 For S．A．E．includes Leads，Mikes，Phones etc． FELSTEAD ELECTRONICS，（PW），Longley Lane， Gatley，Cheadle，Ches．SK 8 4EE

Ladders

LADDERS varnished $22^{\prime \prime}$ extd．$£ 30$ ．Carriage $£ 2.80$ Leaflet．Also Alloy ext．up to $62 \frac{1}{2} \mathrm{ft}$ ．LADDER CENTRE （WLS3），Halesfield（1），Telford．Tel： 586644

Service Sheets

The Big Suppliers of:-

ALL SERVICE SHEETS \& MANUALS

1 sheet $£ 1.6$ for $£ 5.25$ for $£ 20.100$ for $£ 75$. Most manuals by return post. All enquiries welcome, please enclose S.A.E.

Colour T.V. data specialists

COMPLETE BRITISH MONO T.V. REPAIR SYSTEM

Every main circuit/layout in luxury binder with the 4 McCourt Repair Manuals for only $£ 30$.

G.T. TECHNICAL INFORMATION SERVICES (PW) 10 Dryden Chambers, 119 Dxford Street, London W1R $1 P A$.
 (Mail Order Department oniy)

LARGE SUPPLIER OF

SERVICE SHEETS

and Coleur Manuals, TV Mono Radios, Tuners. Tape Recorders. Record Players, Transistors, Stereograms, all at 75 p each + S.A.E except colour TV and Car Radios. State if Circuit will do, if sheet are not in stock. All TV Sheets are full lengths 24×12. not in Bits \& Pieces. Free Fault Finding Chart or TV Catalogue with order
C. CARANNA (Mail Order)

71, Beaufort Park, London, NW11 6BX 01-458 4882

SERVICE SHEETS for Radio, Television, Tape Recor ders, Stereo, etc., with free fault-finding guide, from 50p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

SERVICE SHEETS, Radio, TV etc., 10,000 models. Catalogue 24p, plus S.A.E. with orders, enquiries. TELRAY, 154 Brook Street, Preston PRI 7HP

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc., $£ 1.00$ plus SAE Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

T.V. REPAIRS MADE EASY

Full, easy-to-follow instructions for the repair of almost any T.V. set.
Send details of set, plus $£ 5$ (Circuit £1 extra) to -
T.I.S.(W) 76 Church St., Larkhall, Lanarkshire MLS 1HE, Scotland.
(Callers weicome)

Books and Publications

VAN KAREN PUBLISHING
 5 SWAN STREET, WILMSLOW, CHESHIRE

Educational

TELEVISION \& VIDEOSVSTEMS ENGINEERING

15 MONTHS full-time Diploma course to include a high percentage of practical work.

- ELECTRONIC PRINCIPLES
- MONO \& COLOUR TELEVISION
- closed circuit television
- VIDEO CASSETTE RECORDING
- DIGITALTECHNIQUES
- TELETEXT \& TV GAMES

Shortened courses for applicants with suitable electronics background.

Next session starts September 17 th.
(Also available $2 \frac{1}{3}$ year course in Marine Electronics \& Radar for employment as ships Radio Officer.)
Prospectus from:

LONDON ELECTRONIES COLLEGE

Dept. B6, 20 Penywern Road, London SW5 9SU. Tel. 01-3738721.

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 8JZ.

COLOURTV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. H277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TECHNICAL TRAINING
Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from;

ICS SCHOOL OF ELECTRONICS
Dept. H277 Intertext House, London SW8 4UJ Tel. 01-622 9911 (all hours)

State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians. Electrical Installations, Radio. TV \& Electronics Technicians, Radio Amateurs, Full details from:

ICS SCHOOL OF ELECTFOMICS

Dept. H277 Intertext House, London SW84U3
Tel. 01-622 911 (all hours)
State if under 18
WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Marine Radio Officer. Full details from the Principal, Barking College of Technology, Dagenham Road, Romford RM7 OXU. (Tel: Romford 66841).

For Sale

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat Free. WHISTON, (Dept. PW), New Mills, Stockport.

REALISTIC DX 160 S.W. Receiver $£ 105$. Joystick VFA (System A) £35. 'Phones £3. Excellent condition, little used. G. Barlow, 37 Tanhouse Lane, Malvern Link, Wores.

NEW BACK ISSUES of "PRACTICAL WIRELESS" availabie 70 p each, post free. Open P.O. Cheque returned if not in stock-BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.
P.W. F.M. Multitester P.C.B. 90 p. H.T.E. 4 watt Electronic Siren P.C.B./circuit 90p. Complete kit $£ 3.49$. P.C.B. manufactured from your design at realistic prices. H.T.E 50 Milnefield Avenue, Elgin, Morayshire.

Wanted

ELECTRONIC COMPONENTS PURCHASED. Al Types Considered - Must be new. Send detailed list - Offer by return -. WALTONS, 55A Worcester Street, Wolverhampton.

WANTED Instructions circuit for Wireless set 19 MKI conversion to 240 ac mains. T. Edwards, 2 Pembrok Terrace, Varteg, Pontypool, Gwent.

CIRCUIT DIAGRAM and detailed parts list to build a radio permanently tuned to 194 metres or 1546 kHz with pre-set volume and nine volt battery supply or have such a radio constructed in a wooden or sturdy plastic box to be inserted into a padded bag or details of how to replace a variable tuning capacitor with a pre-set one. THE JOB IS FOR AN IN-PATIENT OF WARLINGHAM PARK HOSPITAL WHO IS SUFFERING FROM A TERMINAL DISEASE WHICH SEEMS LIKE A TWENTY-FOUR HOUR EPILEPTIC FIT AND MAY SUBJECT THE RADIO TO ROUGH TREATMENT INCLUDING DROPPING IT! Offers please to:- BM BEDSITTER, LONDON, WCIV 6XX

Miscellaneous

AERIAL BOOSTERS Improve weak VHF Radio and Television reception, price $£ 5.00$ S.A.E. for Leaflets. ELECTRONIC MAILORDER LTD., Ramsbottom, Bury Lancashire BLO 9AG

THE SCIENTIFIC				
WIRECOMPANY				
PO Box 30, London E. 4 Reg. Office 22 Coningshy Gdns				
ENAMELLED COPPER WIRE				
swg	1 lb	8 oz	402	202
10 to 19	2.65	1.45	. 75	. 60
20 to 29	2.85	1.65	. 90	. 70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 to 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15.00	9.00	6.00	3.30
SILVER PLATED COPPER WURE				
14, 16, 18	4.50	2.25	1.44	. 90
20\&22	5.00	2.85	1.74	1.06
24 \& 26	5.70	3.31	2.00	1.22
28 \& 30	6.67	3.86	2.35	1.44
Prices include P \& P and VAT SAE brings list of copper \& resistance Wires Dealer Enquiries Invited				

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and in dustrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated) BAZELLI, Dept. No. 25, St. Wilfreds, Foundry Lane Halton, Lancaster LA 6L.T.

LOSING DX?

RARE DX UNDER ORM? DIG it OUT with a Tunable Audio Notch Filter, $350-5000 \mathrm{~Hz}$, 40 dB notch, speaker amplifier, ondy $£ 8.90$.
V.L.F.? Explore with a $10-150 \mathrm{KHz}$ Recelver, $£ 10.70$.

MISSING RARE DX? Get SPOT-ON with a Crystal Call RADIO 4 GONE? FRG7? AR88? 200 KHz to Medium Wave Convertor, coax and inductive outputs, $£ 9.70$. TIME? MSF 60 KHz Receiver $£ 13,70$. Sequential year,
month, date, day, hours, minutes seconds display parts (no case or ppb) for receiver $£ 10.70$.
SIG. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$, logic and variable sine or square wave outputs, linear frequency scale, $£ 10.80$.
GOING DOWN? $100-600 \mathrm{KHz}$ to $4 \cdot 1-4 \cdot 6 \mathrm{MiHz}$ Convertor, built-in antenna tuner, extend your coverage, §9.90.
Please write for overseas prices. Each easy-assembly kit includes all parts, printed circuit, case, instructions, pastag
eic, monev back assurance so SEND off NOW.

CAMBKIDGE KITS
45 (PT) Oid School Lane
Miton, Cambridgo.

KIT OF PARTS for Wireless World Stereo Tuner, or Ready Built and aligned, Semiconductors, Knobs, Meters, Resistors, Capacitors, Switches, Transformers. Catalogue 35p. R.B. Electronics, 24 Springfield Park, Holyport, Maidenhead. 39798.

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination Cassette B: 12-24 w.p.m. for professional examination Mreparation. Price each Caseette (including booklets) $\mathbf{£ 4 - 5 0}$. Morse Key and Buzzer 4 . 50.
Prices include postage etc., Overseas Airmail $£ 1.50$ extra. MHEL ELECTRONICS (Dept. P.W.), 12 Longthore Way, Milton, Portsmouth PO4 8LS.

GUITAR/PA
 MUSIC AMPLIFIER

100 Watt with superb treble bass overdrive 12 months guarantee, unbeatable at £42; 60 watt $£ 37$; 200 watt $£ 58$; 100 watt twin channel sep treble/bass per channel $\mathbf{£ 5 5 ;} 60$ watt £48; 200 watt £72; 100 watt four channel sep treble/bass per channel £75; 200 watt £92; Slaves 100. watt £32; 200 watt £49; Fuzz boxes great sound $\&$..50; Bass fuzz £9.50; Overdriver: fuzz with treble \& bass boosters $\mathbf{~} 14$; 100 watt combo superb sound overcrive, sturdy constuction cas rs, unbe 15 in 100 watt $£ 35$; 12 in. 100 watt $\mathbf{5 2 2}$.50; 60 watt $\mathbf{E 1 4 . 5 0}$ Serid Cheque or PO. to

WILLIAMSON AMPLIFICATION
62 Thorncliffe Ave., Dukinfietd, Cheshire. Tel 061-344 5007 or 061-308 2064

ALFAC etch resist transfers and other p.c. board drawing materials available from stock. SAE details. Ramar Constructor Services, Masons Road, Stratford-upon-Avon. CV379NF.

Resistors $\frac{1}{4}$ W 5\% 2R2-2M2 (E12). 10 each or more of each value $90 \mathrm{p} / 100.100$ assorted, our mixture $75 \mathrm{p} / 100$. C60 cassettes in library cases 30 p each. Miniature relays $17 \times$ $30 \times 28 \mathrm{~mm} 6000$ coil 4 sets change over contacts 50p each. Prices include V.A.T. Add 10\% postage.

SALOP ELECTRONICS
23 Wyle Cop, Shrewsbury.

KEEP ONE HANDY IN THE WORKSHOP

The unique aerosol treatment for minor burns and scalds. From Boots and other Chemists.
CATALOGUE OF WIDE Range of components FREE on request. J. R. Hartley, Electronics Components, 78B High Street, Bridgnorth, Salop WV16 4DY. Tel: 074623865.

DART STATIONERY Presents FOR THE AMATEUR Large variety of personalised QSL CARDS -see catalogue for prices - LOG BOOKS \qquad $\mathbf{£ 2 . 0 0}$ each FOR THE DX'er Personalised QSLCARDS. RECEPTION REPORT LETTERE. Professionally stýled letters printed in two colours and supplied in pads of 100 letters. $\begin{aligned} & 1 \text { Pad } £ 1.80 \\ & 2+\text { Pads } £ 1.80 \text { each. } \end{aligned}$ Loose Leaf LOG BOOKS with 100 sheets. \qquad e2.50 FOR THE CB'er Personalised OSL CARDS. CATALOGUES available containing complete range of radio stationery PRICE 45p. EVERYORDER CARRLESA MONEY BACK ASSURANCE IF NOT COMPLETELY SATISFIED. Please send cheques or P.O. payable to:- DART STATIONERY 20, Bromivy Road, London E174PS, England T럭. 01-539 5412

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO ELECTRONICS, Grenfell Place, Maidenhead, Berks.

BELLS AND SIRENS CARTERS SIREN E5.95
INDUSTRIAL SIX 1 INCH NNDUSTRIAL SIX INCH
BELL
E8-27 PRICES INCLUSIVE.
SEND CHEQUE, P.O. To: CWAS ALARM Bradford BD4 OQS list of Profess
Equipment.

12v D.C.

EX MINISTRY AND SURPLUS EQUIPMENT A neat $2{ }^{\prime \prime}$ " dia DC Moving coil indicator, F.S.D. 1 mA resistanc transistor tester) supplied unused $\mathbf{£ 3} \mathbf{3} \mathbf{3 0}$. 24 V DC Motor $1 \frac{1}{\prime \prime}^{\prime \prime}$ dia $\times 2^{\prime \prime}$ long $+\frac{!}{\rho^{\prime \prime}}$ on a $\frac{1}{1}^{\prime \prime}$ dia shaft, a quality made motor supplied unused $\mathbf{£ 2 . 8 0}$ 50 K ohms Ten Turn potentiometer $f^{\prime \prime}$ dia, servo mounting with a $\frac{1}{2}^{\prime \prime}$ dia shaft, supplied unused $\mathbf{£ 1 - 2 5}$. Seven segment nine digit Gas Discharge Di
character height $27^{\prime \prime}$, supplied unused $\mathbf{£ 1 . 2 0}$. Elliott Transistor Curve Tracer type 8079, requires an oscillo scope with $D / C X$ and Y Amps to operate $£ 30-00$.
All prices include postage, Lots of other items in stock S.A.E for lists. Shop hours 9.30 am to 2 pm weekdays, closed Thursdays. Saturday 9.30am to 5 .30pm.
1 Arnolds Yard, Old Market Place, Altrincham, Cheshire.

NOTICE
 TO

READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and a vailability of goods before ordering from non-current issues of the magazine.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for \qquad insertions

I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME. \qquad Send to: Classified Advertisement Manager PRACTICAL WIRELESS,
ADDRESS \qquad GMG, Classified Advertisement Dept.
King's Reach Tower, Stamford Street,
London SE1 9LS
Telephane 01-261 5846
Rate
22p per word, minimum 12 words. Box No. 60p extra.

[^5]
TRANSFORMERS

EX-STOCK—SAME DAY DESPATCH

12 OR 24 VOLT OR 12-0-12V PRIMARY 220-240 VOLTS				
	Amps			
Ref	12 V	24 V		
213		0.5	2.38 2.85	0.49
71	,		3.79	0.84
18	4	2	4.35	1.04
	0.5	25	4.86	0.85
70		3	6.78	1.04
108	8	4	8.02	1.23
72	10	5	8.77	1.23
176	12	8	9.71	1.43
115	20	$1{ }^{8}$	11.58	1.43 2.25
187	30 60	15	19.36	2.25
Pri $220 / 240 \mathrm{~V}$ Vect RANGE $0-20-25-33-40-50 \mathrm{~V}$				
Voltages avaliable $5.7 .8 .10,13,15.17$.$20.33,40$ or $20 \mathrm{~V}-0.20 \mathrm{~V}$ \& $25 \mathrm{~V}-0.25 \mathrm{~V}$.				
	Am		AT inc.	P \& P
103	1		3.68 4.94	+0.84
104			7.73	1.23
105	3	0	9.24	1.43
106	4	0	12.32	1.62
118	6	0	21.88	2
	0.		26.98	A
109		2	31.21	OA
MAINS ISOLATORS ISCREENED)				
		Watt	VATInc.	
* 07		0	4.75	0.85
149		0	7.24	1.04
150		0	8.23	1.23
152	2	000	12.05	1.62
153	35		17.74	1.99
+154	75		22.11 31.38	2.32
156	100		40.18	OA
157	150		55.49	OA
159	2000		66.75	$\mathrm{OA}_{\mathrm{OA}}$
Pri 0-220-240V. Sec 115 or 240V. State secondary volts required.				
HIGH VOLTAGEISOLATORS Pri 200/220V or $400 / 440 \mathrm{~V}$.				
60	243		7.24	${ }_{1.43}$
350	247		17.74	1.99
1000	250		45.10	OA
SEND 15p For catalogue				

H.A.C.
 SHORT-WAVE KITS WORLD-WIDE RECEPTION

H.A.C. well hnown by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories to suit the novice and the expert.
£10.50 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components,
drilled chassis, valve, accessories and full drilled chassis, valve, accessories and full
instructions.
NEW T TWIN TRANSISTOR RECEIVER. selective, sensitive and with fantastic reception, yet needing only a single PP3 battery, at
$£ 12 \cdot 50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and sonar, NO
SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane

Lewes Road, East Grinstead, West
Sussex RHI9 $35 Z$

INDEX TO ADVERTISERS

Partridge Electronics Progressive Radio Powell, T.	\ldots	Cover II	
Radio Components Specialists			
Radio Exchange Ltd.			
R.S.C. (Hi-Fi)			
R.S.T. Valve Mail Order Co.			
Salop Electronics			
Scientific Wire Co. The			5
Smith, Dick			
Sonic Hi -Fi	\cdots		4
Southern Valve Co	\cdots		
Squires, Roger Swanley Electronics	\ldots		
Technomatic Ltd.			
Timetron	\ldots		4
T.I.S.			5
T. K, Electronics ...	\ldots		
T. T. Electronics ...		\cdots	6
Tuac			
Van Karen Publishing			
Vintage Wireless Company			
Watford Electronics			
West London Direct Supplies			
Williamson Amplification			6
Wilmslow Audio			
\& 1			

A SELECTION FROM OUR STOCKS OF FULLY

 GUARANTEED FIRST QUALITY VALVES| 1.13 | 12AT6 | 0.68 | ECF200 | 1.01 | EM84 | 0.68 | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.13 | 12AI7 | 0.56 | ECF201 | 1.01 | EM87 | 1.13 | P |
| 1.63 | 12AUB | 0.73 | ECF801 | 1.07 | EY81 | 0.62 | P |
| 0.50 | 12AU7 | 0.53 | ECF802 | 1.07 | EY87 | 0.56 | PC |
| 0.90 | 12AV6 | 0.96 | ECH42 | 1.24 | EY88 | 0.62 | PC |
| 1.01 | 12AV7 | 1.13 | ECH81 | 0.62 | EY500A | 1.69 | P |
| 1.13 | 12AX7 | 0.62 | ECH200 | 0.90 | Ez80 | 0.58 | PL |
| 1.69 | $12 \mathrm{AY7}$ | 0.96 | EL80 | 0.68 | E281 | 0.56 | P |
| 0.90 | $12 \mathrm{BA}{ }^{\text {a }}$ | 0.73 | ECL81 | 0.84 | GY501 | 1.01 | PL |
| 0.90 | 12BF6 | 0.75 | ECL82 | 0.68 | 6230 | 0.73 | P |
| 0.79 | 128H7A | 0.84 | ECL83 | 1.30 | 6232 | 0.73 | P1 |
| 1.01 | 128L6 | 0.79 | ECL84 | 0.78 | 6z33 | 4.28 | P |
| 1.35 | 12 Ba 6 | 1.01 | ECL85 | 0.73 | 0A2 | 0.70 | PL |
| 0.90 | 128Y7A | 0.90 | ECL86 | 0.96 | 043 | 0.81 | P |
| 0.62 | 12 CU 6 | 1.01 | EF80 | 0.45 | OB2 | 0.76 | |
| 0.90 | 19 A05 | 0.84 | Ef 85 | 0.54 | 083 | 0.81 | |
| 0.84 | 19B66G | 0.56 | EF86 | 0.68 | OC2 | 1.51 | |
| 0.96 | 35A3 | 0.79 | Ef92 | 1.13 | 00^{3} | 0.92 | |
| 1.24 | 3583 | 0.73 | EF97 | 0.79 | 003 | 0.81 | |
| 0.96 | 35C5 | 0.96 | EF98 | 1.01 | PABC80 | 0.51 | |
| 1.01 | 50 C 5 | 1.13 | EF183 | 0.79 | PC86 | 1.01 | |
| 0.90 | 50EH5 | 0.96 | EF184 | 0.79 | PC88 | 1.01 | |
| 0.90 | DAF96 | 0.68 | EFL200 | 1.80 | PC96 | 0.56 | |
| 0.90 | DF96 | 0.68 | EH90 | 0.68 | PC97 | 1.07 | |
| 0.79 | DK92 | 1.13 | EL33 | 2.81 | PC900 | 1.13 | |
| 0.79 | DL96 | 0.68 | EL36 | 1.69 | PCC84 | 0.56 | |
| 0.90 | ECC84 | 0.68 | EL81 | 0.90 | PCCB5 | 0.68 | |
| 0.90 | ECC85 | 0.54 | EL82 | 0.68 | PCCB8 | 0.73 | |
| 0.90 | ECC86 | 1.41 | EL83 | 0.68 | PCC89 | 0.84 | |
| 0.79 | ECC88 | 0.84 | EL84 | 0.73 | PCC189 | 1.13 | |
| 0.68 | ECC89 | 0.90 | EL86 | 0.84 | PCF80 | 0.96 | |
| 0.90 | ECC189 | 0.90 | EL95 | 0.79 | PCF82 | 0.51 | |
| 0.68 | ECF80 | 0.68 | EL504 | 1.07 | PCF84 | 0.73 | |
| 0.73 | ECF82 | 0.62 | EM80 | 0.73 | PCF86 | 0.84 | |
| 0.68 | ECF86 | 0.90 | EM81 | 0.68 | PCF806 | 1.13 | |

PCL81
PCL82
PCL84
PC886
PCL805
PD510
PL36
PL81
PL82
PL83
PL84
PL504
PL58
PL802
PY81

0.62	UCC84
0.79	UCC85
0.84	UCF80
1.69	UCH42
$\mathbf{1 0 . 6 9}$	UCH81
10.69	UCL81
1.13	UCL82
1.13	UCL83
0.65	UF41
0.90	UF80
0.79	O85
0.65	UL84
0.668	UM80
0.68	UM81
1.01	UMB4

0.68
0.84
1.13
0.73
0.79
0.84
0.90
1.13
0.56
0.56
0.96
0.68
0.84
0.51

OSCILLOSCOPETUBES

current production. Made in USSR One inch Tube Type 3LO 11. This tube is a good replacement for 1 CP31. Tube characteristics are identical with those of 1CP31. As the connections are different the tube is supplied complete with base, connection diagram and technical data $\mathbf{£ 1 2 . 0 0}$ plus $£ 0.96$ VAT. Three-inch tube Type 3BP1. This well known tube used in "PURBECK" Oscilloscope can be supplied for $£ 7.50$ plus $£ 0.65$ VAT. 14 -pin base for the above $\mathbf{£ 0 . 8 0}$ plus $£ 0.06$ VAT.

Prices are inclusive of VAT (at current rates) except where shown separately. Postage and packing charges are $\mathbf{£ 0 \cdot 1 0}$ per $£$ subject to a minimum of $\mathbf{£ 0} \mathbf{0 . 3 0}$. Minimum order charge for Approved Credit customers $£ \mathbf{2 0 . 0 0}$. Minimum Transaction Charge for mail orders $\mathbf{£ 1 . 0 0 .}$

FOR YOUR GUIDANCE VALUE ADDED TAX

Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.
Export orders are not subject to the addition of Value Added Tax.

EVERYBODY'S DOING IT!
Doing what? Sending for the latest Home Radio Catalogue. It's the most comprehensive components catalogue you can get. 128 pages, about 2,500 items listed, and profusely illustrated. Now only $£ 1.25$ with a free bargain list. Send your cheque or postal order now.

HOME RADIO
COMPONENTS LTD.
Dept. PW, 234 London Road Mitcham, Surrey CR4 3HD

OSMABET LTD $\begin{gathered}\text { We make transformers } \\ \text { amongst other thing }\end{gathered}$
LOW VOLTAGE TRANSFORMERS: Prim 240 V ac. 6.3 V 1.5A $£ 2.95 ; 3 \mathrm{~A}$ £3.60; 6A CT $£ 6.85 ; 12 \mathrm{~V}$ 1.5A
$\mathbf{£ 3 . 3 5 ; ~ 3 A ~ C T ~ £ 6 . 8 5 ; ~ 6 A ~ C T ~ £ 8 . 5 0 ; ~} 15 \mathrm{~V} 0.5 \mathrm{~A} £ 2.75 ; 18 \mathrm{~V}$ 1.5A CT £6.85; 24 V 1.5 A 6.85; 3 A CT £8.50; 5A CT
$\mathbf{£ 1 5 . 5 0 ; ~ 8 A ~ C T ~ £ 2 6 . 7 5 ; ~} 12 \mathrm{~A}$ CT $£ 35 \cdot 00$; 40 V 3A CT £15.50; 8A CT £26.75; 12A CT £35.00; 40
TWIN SECTRANSFORMERS: Prim 240V ac.
. $3 \cdot 6 A+6 V 0-6 A ; 9 V 0.4 A+9 V 0.4 A ; 12 V 0.3 A+12 V$
 $18 \mathrm{~V} 1 \mathrm{~A}+18 \mathrm{~V} 1 \mathrm{~A} 6.85 ; 18 \mathrm{~V} 1.5 \mathrm{~A}+18 \mathrm{~V} 15 \mathrm{Af8.50;20V}$

$$
\begin{aligned}
& 2 A+25 V 2 A £ 10.50 \\
& \text { MIDGET RECTIFIER TRANSFORMERS: Prim 240Y ac. }
\end{aligned}
$$

$$
20 \mathrm{~V}-\mathrm{O}-20 \mathrm{~V} 0.75 \mathrm{~A} \text { f3.75 each } 9-0-9 \mathrm{~V} \text { O-3A or } 12 \mathrm{~V}-\mathrm{O}-12 \mathrm{~V}
$$

LT TRANSFORMERSTAPPED SEC. prim 240V ac.
 2A E10.50; 0-40-50-60-80-100-110V 1A 10.50 .
MAINSTRANSFORMERS SPECIALOFFER:
prim 240 V ac.
prim 240V ac. $250-0-250 \mathrm{~V} 60 \mathrm{Ma} .6 .3 \mathrm{~V} 1 \mathrm{~A}$ e2.00; 250 V 100 Ma .6 .3 V 2Af3.00;9V 3A £2-50, 25V O.3A £1.00.
LOUDSPEAKERS
$2 \frac{1}{2} 8 \Omega, 2 \frac{1}{2} 8$ or $25 \Omega, 2 \frac{3}{4}$ in $8 \Omega, 3$ in $35 \Omega, 3 \frac{1}{2}$ in $3,8,16$ or

"INSTANT", BULK CASSETTE/TAPE ERASER Instant erasure of cassettes, and any diameter of tape spools, POWER SUPPLY, TWIN OUTPUT: Prim 240V ac. New, British manufacture, smoothed d.c. output 20 V 1 . 5 A ,
plus stabilised output of 15 V 100 Ma , plus 12 V ac 0.5 A output, complete with diagram, E3.50. 200/ $/$ A
Size $19 \times 18 \times 20 \mathrm{~mm} 800 \Omega \mathrm{f1} \cdot 10$.
CHARGING METERS $1 \frac{3}{3}$ ins diameter
2A Or 3A $£ 1.25$ each; 5A or $10 A$ £1.50 each.
SYNGHRONOUS GEARED MOTORS, 240 Vac .
Brand new, built in gear box, 1 or 20 RPH. 1.25 each.
O/P TRANSFORMERS FOR VALVE AMPLIFIERS
P.P. sec taped 3-8-15贝, A-A 6K, 30W £15.25; A-A $3 K$, $50 \mathrm{~W} £ 22.73$; 100 W (EL31, KT88, etc.) $£ 31.25$. G.E.C. MANUAL OF POWER AMPLIFIERS Covers valve amplifiers 30W to 400W E1.00.
MULTIWAY SCRENED CABLE, PVC COVERED 36 way $£ 1-00 ; 25$ way $75 p ; 14$ way $50 p ; 6$ way $25 p ; 4$
way 20 p; 2 way 10 p; 1 way 8 p; 4 way individually screened 25 p per metre, fig 8 twin stereo do screened 15p, metre.

4 way, $3 A 30 \mathrm{p}$ metre; fig 8 for loudspeakers etc. $\mathbf{\text { f5-00 }} 1$
metres. CONDENSERS
Electrolytic, 400/400V 75p; 2000/30V 30p; 1200/75 50p; $2200 / 40 \mathrm{~V} / 40 \mathrm{p} ; 8+8 / 450 \mathrm{~V} 40 \mathrm{p}$; Paper tubular. W/E $4 / 160 \mathrm{~V}$.
$6 / 160 \mathrm{~V} 2 / 150 \mathrm{~V} 0.1 / 2000 \mathrm{~V} 25 \mathrm{p}$. CARRIAGE EXTRA ON ALL ORDERS ALI PRICES INCLUDE V.A.T.
Callers by appointment only. S.A.E. Enquiries, Lists. 46, Kenilworth Road, Edgware, Middx. HA88YG. Tel: 01-9589314

[^0]: SPECIAL OFFER SEMICONDUCTORS
 TBA800 50p. LM3400 40p. 7418 pin 6 for $£ 1.00$. NE555 22p. ZN414 75p. IN4005 10 for 36p. 723 REGS 35p. LM340T (6VIA) REGS 40p. BX504 opto isolators 26p. 2 N5062 (100V 800MA SCR) 18p.
 MINIATURE TOGGLE SWITCHES. SPST $8 \times 5 \times 7 \mathrm{~mm} 49 \mathrm{p}$. DPDT $8 \times 7 \times 7 \mathrm{~mm} 53$ p. DPDT centre off $12 \times 11 \times 9 \mathrm{~mm} 78 \mathrm{p}$. HEAVY DUTY TOGGLE DPDT 240 V AC 10 amps 35p.
 MINIATURE SOLID STATE BUZZERS. $33 \times 17 \times 15 \mathrm{~mm}$ white plastic rectangular case, output at 3 feet 70 dB , Low consumption only $15 \mathrm{MA}, 4$ voltage types available, $6-9-12$ or $24 V$ DC $75 p$ each. LOUD BUZZER. 50 mm diameter 6 or 12 volts 60 p . GPO ADJUSTABLE BUZZER, 6-12V DC 25p.
 DE-SOLDERING TOOL. Good suction, Teflon nozzie, $\mathbf{~ 4 . 7 5 p}$.
 MOTORS. Miniature model motors $1.5-6 \mathrm{~V}$ DC 20p. 12 V DC 5 pole motors 35p. 8 track replacement motors $12 \mathrm{~V} D \mathrm{C} 55 \mathrm{p}$. ' Big inch' tiny precision motor 115 V AC 3 rpm 30 p .75p
 SURPLUS BOARDS. No. 1 has 14 encapsulated reed relays, 12 V E1.95p
 No. 2 has $1150 \mathrm{~V} 2,5$ amp scrs., one relay and various transistors including UJT $\mathbf{E 1 . 9 5 p}$. No. 4 car radio boards with 6 transistors including power output types IF's choke etc. 75p. TELEPHONE PICK UP COIL. Suction type with lead and plug 55p.
 Terms - Cash with order (or official orders from schools etc.) Postage 30p. (Overseas at cost) VAT inclusive.
 SAE for illustrated lists.
 PROGRESSIVE RADIO
 93 Dale Street,
 Liverpool L2 2DY.

[^1]: DICK SMITH
 ELECTRONICS (HK) LTD.
 Retail Showroom: \& Buying Office
 29-39 Astley Rd, Kowloon, H.K. Tel. 3-669 352 Tlx. 64398
 Call in when you're next
 in Hong Kongs

[^2]:

[^3]: Pack (A) Capacitors \& Fixed Value Resistors
 Pack (B) Switches, Potentiometers, Pre-Sets \& Knobs carriage.

 Pack (B) Switches, Potentiometers, Pre-Sets \& Knobs $\quad \mathbf{£ 1 3 . 2 6}$
 Pack (C) Printed Circuit Board, and Terminal Pins £13.26

 Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks, Cabinet, Screws, Wire, Fuseholders etc., and a Brushed Aluminium Fascia Front Panel.
 £8.10

 Pack (E) Srushed Aluminium Fascia Front Panel.
 Fets)
 Pack (F) Toroidal Mains Transformer
 £32.99
 £ $\mathbf{3 0 . 5 3}$
 Pack (F) Toroidal Mains Transformer
 $\mathbf{£ 1 7 . 2 2}$
 ORDER WITH COMPLETE CONFIDENCE (Cash with order please) FROM:-
 T. \& T. ELECTRONICS. GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK. NR14 7 HH . PLEASE ALLOW 28 DAYS FOR DELIVERY.

[^4]: Very Important
 No direct connection
 between record player
 chassis and pick-up

[^5]: Company registered in England. Registered No. 53626. Registered office: King's Reach Tower, Stamford Street, London SE1 9LS

