

britanls leading jourral for the radio \& Electronic constructor
Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Wireless"' Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH.

BACK NUMBERS AND BINDERS
Limited stocks of some recent issues of PW are available at 75 p each, including post and packing to addresses at home and overseas.
Binders are available (Price $£ 2.85$ to UK addresses or $£ 3.45$ overseas, including post and packing) each accommodating one volume of $P W$. Please state year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

Editorial
Citizens' Band-Yes or No?
PW Personality
Peter Metalli
Citizens' Band Association
A Letter to the Prime Minister
News . . . 4
Letters
Comments from $P W$ readers
Kindly Note
PW "Hythe" Marine Band Receiver, February 1979
PW "Wimborne" Music Centre
Production Lines
Information on the latest products
Hotlines
Recent developments in electronics
RAE Reprint Announcement

FOR OUR CONSTRUCTORS

VH F/UHF Folded Colinear Aerial Array
A simple design giving 3 dB gain over a dipole
Follow-up to the PW "Sandbanks" P. J. Wales Modified search-coil designs
VHF Monitor Receiver James M. Bryant A miniature high-performance design for n.b.f.m.
PW 'Winton" Stereo Amplifier-2 E. A. Rule Beginning constructional details
Logical Noughts and Crosses-1
Pit your wits against the machine
FM Multitester D. Whitfield \& M. Tooley A comprehensive test-test for the v.h.f. enthusiast

GENERAL INTEREST

The Cassette Tape Medium
The development of the Compact Cassette system
Simple Audio Filter Design S. Skepper An introduction to filter calculations
Wireless went to War
Recollections of military communications up to 1939°
Stereo Decoders-Devices \& Circuits-1
A survey of current i.c.s and their application

On the Air

. Alan Martin
. Ginsberg

Fred Judd

- Gordon J. King

Ron Ham
. M.J. Darby
Amateur Bands
MW Broadcart Bands
SW Broadcast Bands
VHF Bands, including What do the VHFs

have to offer?-3 | | . | . | . | . | . | Eric Dowdeswell |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VHF Personality—Guy Stanbury | . | . | . | . | . | . |
| Ron Ham | | | | | | |

Our May issue will be published on 6 April (for details see page 33)
 ignition system inkit form Tried, tested, proven, reliable
assembled in two or three hours and fitted in 13 mins
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker There is no misfire due to contacibreaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R P.M Contact breake buin is eliminated by reducing the current to about I 50 th of the norm. It will perform equally well with new. old. or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparknte incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and. therefore. eliminates the possibility of blowing the transistors of the SCR iMost capacitive discharge igntions are not completely foolproot in this respecti The circuit incorporates a voltage regulated output for greatly improved cold starting The circuit includes buit in static timing light. systems function light. and security changeover switch All kits fit vehicles with coll distributor ignition up 108 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case Ready drilled. aluminium extruded base and heat sınk. coll mounting clips. and accessories Top quality 5 year guaranteed transtormer and components. cables, connectors. P C. B., nuts. bolts and siltcon grease Full instructions to assemble kit neg or pos earth and fully illurtrated installation instructions
NOTE Vehicles with
will require a tachometer pulse slave unit Price 5385 inc VAT Electronic Design Associates, 82 Bath Street, Walsall, WSI 30E U K only

Electronics Design Associates, Dept. PW4 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 61479।

Address

Phone your order with Access or Barclaycard
Inc VAT and $P P$
quantity reato.

| X\& KıI |
| :--- | :--- |
| TACHOPULSE |

TACHOPULSE
SLAVE UNIT

Send SAE if brochure ondy requered I endose cheque PO's for
£
Please state polarity pos. or neg. earth
Access or Barclaycard No

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX•30
For the advaneed, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX-30 will provide that listener with excellent performance at a reasonable cost and is the answer to this eternal problem
The SRX- 30 is based on an advanced drift cancelling loop system which gives spot on dial accuracy at any frequency between 500 KHz and 30 MHz together with easy to understand frequency readout.
Suntable for all users from raw beginners, thanks to it's simplicity of operation: to experienced listeners Suntabte for all users from raw beginners, thanks to it's simplicity of operation: to experienced tisteners
and amateur operators thanks to it's advanced technology. the SRX• 30 is the best communications receiver avalable in tt's price range today.
Completely self contained, inciuding operation from mains or 12 volts dc. the SRX-30 is at home on broadcast or amateur bands. All mode reception of AM. CW. USB. and LSB is provided and receiver selectivity is automaticaliy switched to give optimum performance on any mode.
Send for full detzils

Carriage by Securicor $\& 3$.

power Bellsonic power supply giving
fully reguiated 12 V dc output at 3 amps continuous rating and 5 amps peak
rating from 220.240 rating from $220 \cdot 240$
V ac mains input.
der current trip for sarety or professional user. Incredibly low price f 17.28 tnc. vat. P \& P 86p.
you abour the SRX-30. Price $£ 175$ inc. val NEW. CL22 aerial tuner which will match amost any receiver to almost any aenial at any ed ranges with fully tunable receiver and aerial matching capacitors. A worthwhile addition to any SWL station and an instant improvement in acrial matching probims. Price $A 15,75$ inc. vat P\& P66p.
NEW. Transform your TRIO 9R 59D. DE or DS with our digital readout unit giving direct Complete with futing insinut
omplete with auing instructions. $\mathbf{£ 3 8 . 8 8}$ inc vat. P \& P 28p.

We also stock the RAK Listener 3 aerial system for the man who demands the best and has the room etc. in an overall length of 75 feet covering the frequency range up to 30 MHz . Price f 18 . ince, vat P\& P86p.
Also available is the Listener I loaded end fed single wire aerial system for restricted space situations. short wave bands. Price f7.50 inc use of loading coil and element folding. Ideal aerial for any user of short wave bands. Price $£ 7.50$ inc. vat. P \& P 86p.
TRIO range. Full range of other test equipment stocke prices, please contact us for details of terrific TRIO range. Full range of other test equipment stocked.
For all that's good in Amateur Radio. contaet:
LOWE ELECTRONICS LTD.. I 19 Cavendish Road, Matock, Derty shirc. Tel: 06292430 or 2817. For full eatalogue, simply send 45 p in stamps and request catalogue CPW.

FABULOUS PROFESSIONAL DISCO SYSTEM
 TURNTABLE: BSR P200 Belt-drive. (Gerard I25SB

\section*{F.A.L. De Luxe PROFESSIONAL

F.A.L. De Luxe PROFESSIONAL
 Carr.
 Carr. etc. $£ 15$

Slide Fade Controls. Autofade with Music Overide on both mic. and ingle Inputs. Headphones pre-fade monitor with S Pushbutton selector. Illuminated V.U. meters. Illuminated rocker switches. LED cue indicators. Tape or Jingle inputs, unity gain. Mic. channel with Bass \& Treble. Slave outlet

Treble Control (Music Channel) reble Control (Mic. Channel) Bass Control (Mic Channel)

Output into line (Slave) Autofade Recovery
Tape/ Jingle. 1 1 p

PAIR MATCHING FULL RANGE De Luxe 80w LOUDSPEAKERS

Each Pair of Powerful $12^{\prime \prime}$ bass units (with aluminium centre

Belt-drive with low mass ' S ' arm and magnetic cartridge at £10 extra per system). POWER: 120 watts con tinuous RMS into 4 ohms DECK LIGHTS: Fully adjust able flexi-beams over each turn table with independent switching CABINET: Solidly made to withstand the rigours of transporting. Covered in heavy duty leather cloth type material in attractive colour combinations. Comer cap protectors. Recessed carrying handles.
List $£ 320.76$

ALL THREE UNITS PRODUCED BY BRITAIN LARGEST MAKERS OF DISCO EQUIPMENT
domes), and High Frequency Horn unit to extend frequency range to above 17 kHz . Normally $£ 89.95 \mathrm{ca}$

DISCO MODULES
Make your own consul

FANTASTIC SPEAKER OFFER

TWIN 12" SPEAKER CABINET PLUS PAIR 12" SPEAKERS
of Robust vibration-proof construction Fitted protective corner pieces. Removable Sunken jack socket with escutcheon at the rear.
Pair $12^{\prime \prime} 15 w^{\prime}$ speakers for wiring up and front mounting in While stocks last above supplied to Three items 1

Carr. $£ 2.50$

CONTROL UNIT (mains powered)

Vol. (left) Vol. (Right) Tape input and
volume control. Bass, treble,
$\mathbf{2 5 5 0 0}$ volume control Bass, resale treble, Carr. £1
MONITOR UNIT With H/Phone Socket and Vol. Control Carr. Free.
FADER UNIT Carr. Free
100w OUTPUT UNIT
Mains powered Carr. £ 1.50
129.95
£7.95
£7.95

(1) TWIN T/TABLE CONSOLE with PRE-AMP. and POWER OUITPUT STAGES (2) \& (3) PAIR 50 WATT LOUDSPEAKERS including 12° UNITS

New Branches at *LEEDS,*LIVERPOOL *WOLVERHAMPTON

OPEN ALL DAY SATS (5 Day Week)

 BRADFORD 10 North Parade (Closed Wed.) BIRMINGHAM 30/31 Great Western Arcade

Tel. 25349 CARLISLE 8 English Street (Closed Thurs.).
Tel. 38744 COVENTRY 17 Shelton Sq.. The Precinct. (Closed Thurs.) Tel. 25983 DERBY 97 St. Peter's Street (Closed Wed.) Tel. 41361 DEWS BURY 9/11 Kingsway (Closed Tues.) Tel. 468058 DONCASTER 3 Queensgate. Watergate Centre.
(Closed Thurs.) Tel. 63069
EDINBURGH 101 Lothian Rd. (Closed Wed.) Tel. 2299501

> | GLASGOW 326 Argyle St. (Closed Tues.). Tel. $041-2484158$ | | | |
| :--- | ---: | :---: | :---: |
| HULL 7 Whitefriargate (Closed Thurs.). | Tel. 20505 | | |
| LEICESTER 32 High Street (Closed Thurs). | Tel. 56420 | | |
| LONDON 238 Edgware Road, W. 2 (Closed Thurs.). | | | |
| Tel. 7231629 | | | |

\rightarrow LEEDS

 * LIVERPOOL 35 Dawson Way. St. John's Precinct $\begin{aligned} & \text { (Closed Wed.) Tel } 7089380\end{aligned}$
©

* DISCOMAJOR powEr DISCO CONSOLE with in Twin Full size - TWIN FULL SIZE BR * CARTRTRIDES with cue ing device.
- 3 SEPARATE volume CONTROLS for each turn table and Mic. COMPLETE WITH LID FULL HEADPHONE MON
TORINGFACILITIES.
£169.95
Carr. 54.75

 nighty Payments.
E 206.40) Carr. E 4.00 . Also available 200
£199.95

- ALL R SC

Barclaycard \& Access PHONE ORDERS quoting CARD NUMBER accepted

DENTON EXP

Drive Units
Power Handling Frequency Response Impedance Matching List Price $\$ 39.15 \quad 4.8$ ohms

LINTON XP

 Uric UnitPower Handling Frequency Response Impedance Matching
I men LIST PRICE 660.70

Bass 200 mm . Mid•range. Treble 50 mm 25 Watts DIN $65-17.000 \mathrm{~Hz}$ at -3 dB points

RS PRICE $£ 21.95$

WHARFEDALE SPEAKER KITS

Bass
Bass 200 mm . Mid. range. 100 mm perforated Treble 25 mm
30 Watts DIN
$60-20,000 \mathrm{~Hz}$ at -3 dB points. 4.8 ohms

RS PRICE $£ 35.95$

MAIL ORDERS \& EXPORT ENQUIRIES TO:AUDIO HOUSE, HENCONNER LANE, LEEDS, 13.
MAIL ORDERS MUST NOT BE SENT TO SHOPS TERMS C.W.O. or G.O.D. No. C.O.D. Under £3. POSTAGE 60p PER ORDER OR AS QUOTED. Phone or Write for FREE CATALOGUE.

MIDDLESBROUGH 103 Linthorpe Rd. (CI. Wed.) Tel. 247096 * NEWCASTLE UPON TYNE 59 Grainger St. $\begin{gathered}\text { (Closed Wed.). Tel. } 21469\end{gathered}$ NOTTINGHAM 19/19A Market Street SHEFFIELD 13 Exchange Stree: (Castle Mkt. Sids.

* WOLVERHAMPTON
\star MUSICAL INSTRUMENTS
(Closed Thurs.)
(Glee Midst.
6 Wulfrun Way. Tel. 20716 (Closed Thurs.). Tel. 26612 \& ACCESSORIES

B. BAMBER ELECTRONICS
 Dept. P.W. 5 STATION ROAD, LITLLEPORT, CAMBS, CB6 10E Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

	LEASE ADD 8\% VAT UNLESS OTHE RWISE STATE		TCP2 TEMPERATURE CONTROLLED IRON.
	ESTION	SPECIAL DFFER FDR COMPUTER BUILDERS, ETC 19 way ribbon cable, decimal coded, 4 metres lor 1.25 13 way theaw duty nbbon cable docimal coded. fidatal lor PSU runs) 3 metres lor $£ 1.50$.	
CHOKES wound on $\frac{18}{4} \times 1$ " long ferrites	EAKERS, 20 ohm, 3 watts		Temperature controlled iron and PSU. ¢30 *
FF CHOKES	each + 121% VAT.		
ferrites. 5 for $40 p$. DUAL TO18 HEATSINKS $1^{\prime \prime} \times \frac{1}{2} \times \frac{1}{2}$ with screw-in clamps. 3 for 50p.	IC AUDIO AMP PCB. Oulput 2 watis into 3 ohm speaker, 12V DC supply, size approx. $5 \frac{\frac{1}{2}^{\prime \prime}}{}$ $\times 1 \frac{1}{2} \times 1^{n}$ high. with integral heatsink. com-	CLAREED REED RELAYS, complete with reeds. TYPE 1. Size approx. $2 \frac{t^{\prime \prime}}{5^{\prime \prime}} \times \frac{7^{\prime \prime}}{} \times \frac{1^{\prime \prime}}{} 1$ pole make. 9 V 400 ohm coil. 35p each. TYPE 2. Size approx. $2 \frac{1}{2} \times 1 \frac{1}{\frac{1}{2}} \times \frac{1}{2}$. 2 pole make $\cdot 2$ pole break. $2 \times 9 \mathrm{~V} 200$ ohm coils. 60p each.	CC single flat. Type K double flat fine tip. P, very fine tip $\mathbf{\Sigma 1 . 5 0}$ each + VAT (Bp). SPARES AVAILABLE.
MAINS TESTER SCREWDRIVERS 100 to 500 V . Standard size 50 p . Large 70p.			WELLER SOLDERINGIRONS EXPERT. Built-in-spotlight illuminates work. Pistol grip with fingertip trigger. High efficiency copper soldering tip EXPERT SOLDER GUN S100D £12.00. EXPERT SOLDER GUN KIT (spare bits. case. etc.) $\mathrm{E15} \mathrm{\cdot 00}$. Spare bits 40p pair.
RADIO PLIERS 6t゙" E1.80.63" SMAIL SIDE CUTTERS Iwith wire holdin		VIDICON SCAN COILS (Transistor type. but no datal complete with vidicon base $\mathbf{£ 6 . 5 0}$ each. Brand New.	
	0/5 1/52 or similar transistor, which mounted direct on the pcb pins on	IC TEST CLIPS, clip over IC while still soldered to pcb or in socket. Gold-plated pins.	
$1^{=} \times \frac{3^{\prime \prime}}{} \times 1 \frac{1}{\frac{1}{n}^{\prime \prime}}$. with plastic covers. 80p each or 2 for E 1.50 .	ard, fitted with a star-type heatsink (Not pplied). £2.00 each.		MIXED COMPONENT PACKS, containing esistors. capacitors pots etc All new. Hundeds of items. $\mathbf{£ 2}$ per pack. while stocks last
LARGE ELECTROLYTIC PACKS. Contai	HE NEW EAGLE INTERNATIONA		
range of large electrolytic capacitors. low and high voltage types. over 40 pieces. $\mathbf{£ 3 . 0 0}$ per pack ($+12 \frac{1}{2} \%$ VAT).	CATALOGUE IS AVAILABLE ON REQUEST containing Audio, In-car, and test equipmant, etc.	GLASS BEAD FEEDTHROUGH INSULATORS. Solder-in type, overall dia. approx	BSR AUTOCHARGE RECORD PLAYER DECKS with cue device. 33-45-7B RPM, for $7^{\prime \prime} .10^{\prime \prime} .12^{\prime \prime}$ records. Fitted with SC 12M Stereo
Slider Switches. 2 pole make and break (or can be used as 1 pole change-over by linking the two centre pinsl. 4 for 50p.	DECIMAL KEYBOARDS, pressure sensitive type. when pressed contacts go from O/C to approx. 25 ohms. Switches only. no encoders	PLASTIC PROJECT BOXES with screw on lids (in black $A B S$) with brass inserts. Type NB2 approx. $4^{\prime \prime} \times 3^{\prime \prime} \times 1 \frac{1}{*}^{\prime \prime} 55$ e each Type NB3 approx. 4 " $^{\prime \prime} \times 37^{\prime \prime} \times 1$ " 65 e each Type NB4 approx. B! $\times 5 \frac{1}{"}^{\circ} \times 3 \frac{1}{*}^{-}$E1.50.	Ceramic cartridge and styli. Brand new $£ 14.00$ - 121\%VAT
DUE TO A CHANGE OF SUPPLIER, OUR STOCK ALUMINIUM BOXES AND VINYL COVERED EQUIPMENT CASES WILL BE AS FOLLOWS	Size approx. $3^{-} \times 3^{\prime}$. with large square touch plates $0-9+$ Clear. A, B. Dual Watch, and spare.		GARRARD AUTOCHANGE RECORD PLAYER DECKS, Model 6.300 with cue
	79		PLAYER DECKS, Model 6.300 with cue device. 33-45-7B r.p.m., for $7^{\prime \prime} .10^{\prime \prime}$. 12" records. Fitted with KSA18 Stereo Ceramic car-tridge and styli Brand new $£ 16.00+12 \frac{1}{2} \%$ VAT. Please note. record decks sent by Roadine. allow 14 days for delivery.
	ohm. £5.00 each (or 2	DIE/CAST ALUMINIUM BOXES	
ALI $3^{*} \times 2^{*} \times 1^{-}$60p			
AL2 $4^{*} \times 3^{*} \times 1 \frac{1}{}^{*}$ 70p	SEMICO	PLUGS AND SOCKETS BNC Plugs. new 50p each. $\mathrm{N} /$ Type Plugs 50 ohm. 60 p each. 3 for $£ 1.50$. PL259 Plugs (PTFE) brand new. packed with reducers. 75p each. SO239 Sockets (PTFE), brand new (4-hole fixing type). 60p each.	
AL3 $4^{-} \times 3^{*} \times 2^{2}$ 80p	BSX20 (VHF Osc/Mult), 3 for		FULL RANGE OF BERNARDS/BABANI ELECTRONICS BOOKS IN STOCK. S.A.E FOR LIST
AL4 $6^{*} \times 4^{*} \times 2^{*}$ - 90p	BC 108 (metal can). 4 for 50p.		
AL5 $6^{*} \times 4^{*} \times 3^{*}$ -	PBC1OB (plastic BC108). 5 for 50		
$\begin{array}{ll}\text { AL6 } & 8^{\circ} \times 6^{\circ} \\ \text { Al } \\ 8^{\circ} \times 6^{\circ}\end{array}$	BFY51 Transistors. 4 for 60p.		VARICAP TUNERS Mullard iype ELC1043/05. Brand New. $\mathbf{£ 5 . 0 0}+12 \frac{1}{2} \%$ VAT.
Vinyl Equipment Cases			
Blue Vinyl covered steel tops with plain			BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronic Manufacture. Approx 100. £1.50 per pack + $12 \frac{1}{2} \%$ VAT.
aluminium lower sections.	2N3819 Fet. 3 for 60		
BCO $5^{\prime \prime} \times 2 \frac{1}{* \prime \prime}^{\prime \prime} \times 2 \frac{1}{*}^{\prime \prime}$	BC148 NPN SILICON.	del	
$\left.\mathrm{BC1} \quad 6^{\prime \prime} \times 4\right\}^{\prime \prime} \times 2^{\prime \prime} \quad$ E2.00	B		
			Oubiller Electrolytics. 50 F, 450V. 2 for 50 p. Dubiller Electrolytics. 100 , F. 275V. 2 for 50p. Plessey Electrolytics. 470 F. $63 \mathrm{~V}, 3$ for 50 p . TCC Electrolytics, 1000 F, 30V, 3 for 60p. Dubiller Electrolytics, 5000 F. $35 \mathrm{~V}, 50$ p each. Dubiller Electrolytics. 5000 F. $50 \mathrm{~V}, 60 \mathrm{p}$ each. ITT Electrolvics. 6800 F. 25 V . high grade screw terminals, with mounting clips, 50p each. PLEASE ADD $12 \% \%$ VAT TO ALL CAPACITORS.
		NEW MARKSMAN RANGE OF SOLDERINGIRONS. S1400 40 W 240 V £4.50. S 1250K 25W 240V , bits etc.. KIT £5.50. BENCH STAND with spring and sponge for Marksman Irons £2-70.	
BC4 $\quad 10^{\prime \prime} \times 61^{\prime \prime} \times 3^{\prime \prime} \quad £ 3.00$			
BC7 $12^{\prime \prime} \times 6 \frac{1}{*}^{*} \times 5^{*} \quad \mathbf{£ 3 . 2 5}$			
MAINS TRANSFORMERS. TYpe $15 / 300$ 240 V input. 15 V at 300 mA output. $\$ 1.50$	Tip2955 Silicon PNP power transistor. 60 V at $15 A$. 0 Watts. Flat pack type 2 for $£ 1.50$. GERMANIUM DIODES approx 30 for 30 p .		
MAINS TRANSFORMERS. TYpe $45 / 100$ 240. 220, 110 . OV input. 45 V output. $£ 1.50$ each.	RED LEDe (min. type) 5 for 70 p . TO3 transistor insulator sets 10 for 50 p .	pare bits MT9 (for 15W) 60p, MT5 (for 25W)	
mS		WLCOME BY APPOKT	OWLY), SAE with All EMOUIRIES WLY.

The professional scopes you've always needed.

Super 6
£162.00 plus VAT

E219.00 plus VAT

When it comes to oscilloscopes, you'li have to go a long way to equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition

The Calscope Super 10 , dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mans fluctuations

The price £ 219 plus VAT
The Super 6 is a.portable 6 MHz single beam model with easy $t 0$ use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity Price $£ 162$ plus VAT
Prices correct at ime of going to press

CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components,
Kingsgate House,
Kingsgate Place,
London, N.W.6.

Audio Electronics, 301 Edgware Road, London W. 2. Tel: 01-724 3564
Access and Barclay card facilities
(Personal Shoppers)

Maplin Electronics Supplies Ltd.
P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155
Mail Order

RHDO WFCH:NGH MMIHHD

NEW ELECTRONIC MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels. Nuts, Boles, Wood Serews, etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $S^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece. etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
Projects:
V.H.F. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transistor V.H.F. Earpiece Radio \star One Transistor M.W. L.W. Radio * Two Transistor Metronome with variable beat control \star Three L.W. \pm Four Transistor Push Pull Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jify MultiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signal
Injector \star Five Transistor Push Pall Iniector \star Five ${ }^{\star}$ Transistor Push Pull Amplifier \star Sensitive Hearing Aid Amplifier \star Three Transistor and
Diode Short Wave Radio \star Signal Traser \star Three Transistor Push Pull Amplifier \star One Transistor Class A Outpur Stage to drive Loudspeaker * Sensitive Transistor Pre-Amp \star Transistor Tester * Sensitive Three Transistor Regenerative Radio \star Four Transistor M.W. L.W. and Diode Tuner \star Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. Tuner \star Three Transistor Code Praccice Oscillator \star Five Transistor Regenerative Short Wave Radio * Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio * Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output * One Transistor Home Broadcaster. $214 \cdot 99+\mathrm{P}$ \& P \& $1 \cdot 10$

V.H.F.
 AIR
 CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio cuned to medium wave or the VHF band and operating as shown in the instructions suppiied free with all parts.
Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor transistor, etc. Size $5 \frac{1}{2}{ }^{\prime \prime} \times 1 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime}$. All parts including case and plans £4.95

$$
\begin{aligned}
& \text { P\& } P \text { and } \\
& \text { Ins. } 60 \mathrm{p}
\end{aligned}
$$

ELECTRONIC

CONSTRUCTION KIT E.C.K. 2

Self Contained Multi-Band V.H.F. Receiver Kit. 8 transistors and 3 diodes. Push pull output. 3 in . loudspeaker, gain control, 7 section chromeplated telescopic zerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit).
Complete kit of parts

NEW MODEL R.K.I.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diodes. Transistors and Four Diodes.
Push Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.
$£ 8.99+{ }_{90 p}^{2 p}$
EDU KIT JUNIOR

Completely Solderless Electronic Construction Kit. Build these proiects without Soldering Iron or Solder

* Crystal Radio Medium Wave

Coverage-No Battery necessary * One Transistor Radio

* 2 Transistor Regenerative Radio * M Transistor Earpiece Radio Medium Wave Coverage
* 4 Transistor Medium Wave Loudspeaker Radio
* Electronic Noise Generator
\star Electronic Metronome
* 4 Transistor Push/Pull Amplifier

All pares including Loudspeaker, Earpiece. M.W. Ferrite Road Aerial, Capacitors, Resistors. Transistors, etc. Complete kit of parts including construction plans.

NEW ROAMER TEN

MQDEL R.K.3.

Multiband V.H.F. and
A.M. Receiver. 13 Transistors and Six Diodes. Quality $6^{\prime \prime}$ $\times 3^{\prime \prime}$ Loudspeaker
With Multiband V.H.F. section covering Mobiles. Aircraft, T.V. Sound. Public Service Band, Local V.H.F. Stations, etc. and Mulciband A.M. section with Airspaced Tuning Capacitor for easier and accurate cuning, easier and accurate
covering M.W.I. M.W.2, L.W. covering M.W.I, M.W.2, L.W.
Three Short Wave Bands S.W.I. Three Short Wave Bands S.W.I.
S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chromeplated 7 section Telescopic Aerial, angled and rotatable for peak Shore Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. WaveChange and Tone Controls. Plus two Slider Switches. Powered by P.P. $9-9$ volt Battery.
Complete kit of parts including carrying strap. Building Instruccions and operating Manuals.

E.V. 6 PLUS ONE

Build this exciting new design. Now with 7 Transistors and 4 diodes. MW/LW. Powered by $9 V$ battery. Ferrite rod aerial, tuning condenser, volume control. and now with 3in. loudspeaker. Attractive case with red speaker zrille. Size Sin. $\times 5 \frac{1}{4}$ in. $\times 2$ in. approx. All parts including Case and Plans.
Total Building Costs:
$86.95+P 8 P$ and
Ins. 90 p

EDU.KIT MAJOR

Completely solderless Electronic Construction Kit. Build fifteen projects including:Signal Injector Transistor Tester NPN-PNP 7 Transistor Loudspeaker Radio MWILW 5 Transistor Shore Wave Radio.

Components include:

- 24 Resistors 21 Capacitors - 10 Transistors $S^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker Earpiece Mica Baseboard - 3 I2-way Connectors - 2 Volume Controls 2 Slider Switches 1 Tuning Condenser - 3 Knobs Ready Wound MWI LW/SW Coils Ferrite Rod $6 \frac{1}{2}$ yards of wire 1 yard of sleeving, etc. Complete kit of parts including construction plans.
Toral building costs:
$89.99+\mathrm{P}$: P and
Ins. El 10
RADIO CONSTRUCTION KIT 97

A compact small radio kit covering Medium Wave and Long Wave bands. Rugged Micanite con. struction and simple square design allows for easy carrying and positioning. Ideal for the Garage. Workroom Kitchen. ecc.. has seven Transistors and four Diodes, quality Loudspeaker. Carrying Strap. Size 4 in $^{\prime \prime} \times 4 f^{\prime \prime} \times 41$ All parts and plans excluding $9 v \mathrm{PP} 7$ All part
Battery.

POCKET

FIVE

NOW WITH2*"LOUDSPEAKER 3 Tuneable wavebands. M.W. L.W.. and Trawler Band, 7 stages, S transistors and 2 diodes. supersensitive ferrite rod aerial. attractive black and gold case. Size $5 \frac{1_{2}^{\prime \prime}}{2} \times 1 \frac{1}{2}^{\prime \prime} \times 3 \frac{\frac{1}{2}^{\prime \prime}}{2}$ approx All Parts including Case and Plans.
Total Building Coses

To: RADIO EXCHANGE LTD

61A High Street, Bedford MK40 ISA
Tel.: 023452367

- Callers side entrance "Lavells" Shop.

Reg. No. 788372

Address ...

BENTLEY ACOUSTIC CORPORATION LTD.

7a GLOUCESTER ROAO, LITTLEHAMPTON, SUSSEX All prices inclusive of V.A.T. at $12 \frac{1}{2} \%$

ธั் 6аM8A

-

All Goods are unused, lested, and guaranteed. Despatch charges:- 50 on all orders below $\mathbf{5 2 5}$ in value. Orders
post free. Orders despaiched same day as received. Any parcel insured against damage in transit for 5 p per parcet extray post free. Orders despaiched same day as received. Any parcel insured against damage in transit for $S p$ per parcel extra.
Terms of business available on request. Many others in stock too numerous to list. Please enclose S.A. for reply to any jerms of business available on request. Many others in stock too numerous to list. Please enclose S.A.E. for reply to any
queries. All prices subject to change without notice.

SOUTHERN VALVE CO.
 Telophon O1-4. MAIL ORDER ONLY. MINIMUM ORDER 80p

Some loading makes available. VAT invoices issued on request. All Now and Boxed. "Ouality" Brended Valvee. Gueranteed 3 momths. BVA atc. 6\% Allowed in Fivi of Guermertel Alreedy deducted from our Priceel NOTE: PLEASE VERIFY CURRENT PRICES. Correct only at time of going to press.										
DY802		89				CF805 $£ 1.7$	PL81			
ECC81	60 p	EF 183	55p	PC88	78p	PCF806 75	PL83		UCC85	Pp
ECC82		EF 184			75p	PCF808 £1.75	PL84			
ECC83				PC900		PCL82 65	PL500	E1.15	UCL82	72
ECC85			E1.85	PCC84		PCL83 ${ }^{\text {P }}$	PL504	E1.15	-	1.00
ECH81	55p	EL84		PCC85		PCL84	PL508	£1.70	UF89	55 p
ECH84		EL509	3.00	PCC89		PCL805	PL509	23.05		95p
ECL80	52p	EM84	90p	PCC189	55p	PCL85	PL519	C3.30	UL84	
ECL82		EY86-7		PCF80		PCL86 88	PL802	E2.80		
ECL86	72p	EY500A	£1.60	PCF8		PCL200 11.50	PY88			
		EP80		PCF 200	1.60	PD500 23.6	PY800		U26	
	45					PFL200 E1.3	PY80			
We offer return of post service. CWO ONLY, No C.O.D. Post free over $£ 20$. $£ 6$ to $£ 20-80$ p (max.)										

practical wireless t.v. sound tuler
 (Nov, 75 article by A. C. Alnalle)
 Copy of orighal arifles suppliad on requett
 IF Sub-Assembly (G8) £6.80. P \& P 75p.
 Mullard ELC1043 V'cap UHF Tuner £5 50. P \& P35p. 3-way Station Control Unit £1-20. P \& P 25p. 6-way Station Control Unit (Special Offer) $£ 1.00$. Power Supply Prtd Circuit Board £1.00. P \& P 30p.
 Res, Caps, Semiconds, etc. for above $£ 5 \cdot 80$.
 Mains Transformer for above £2-50. P \& P 30p.
 Add $12 \frac{1}{2} \%$ VAT to price of goods. P \& P all items 85p.
 Callers welcome at shop premises.
 MANOR SUPPLIES
 172 WEST END LANE, LONDON NW6
 (Near W. Hampstead Tube Stn.) Tel. 01-794 8751

handy solder dispenser Contains 2.3 metres approx．of 1.22 mm Ersin Multicore Savbit Solder．Savbit increases life of copper bits by 10 times． Size 5 58p inc．VAT

For soldering fine joints
Two mone dispensers to simplify those smaller jobs PC115 provides 6.4 metres approx．of 0.71 mm solder for fine wires，small
components and printed circuits

69p inc．VAT
Or size 19A for kit wiring or radio and TV repairs． 2.1 metres approx．of 1.22 mm solder

Size 19A 63p inc．VAT

Mallar Sitarger and dispensers
of the world＇s finest cored solder to do a professional job at home

Ersin Multicore Solder contains 5 cores of
 －Corrosive flux that instantly cleans heavily oxidised surfaces and makes fast，reliable soldering easy．No extra flux is required．
handy size reels of
SAVBIT，40／60，60／40 and $A L U-S O L$ solder allovs
These latest Multicore solder reels are ideal for the toolbox Popular specifications cover all general and electrical applications， plus a major advance in soldering aluminium．Ask for a free copy of ＇HintsonSoldering＇containing clear instructions tomakeevery jobeasy．

Ref．	Alloy	Diam． （mm）	Length metres approx．	Use	$\begin{gathered} \text { Price } \\ \text { inc. VAT } \end{gathered}$
$\begin{gathered} \hline \text { Size } \\ 3 \end{gathered}$	$\begin{gathered} \hline 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints．	£2．16
$\begin{gathered} \text { Size } \\ 4 \end{gathered}$	ALU．SOL	1.6	8.5	For aluminium repairs． Also solders aluminium to copper．brass etc．	£2．46
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	$\begin{gathered} 60 / 40 \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	For fine wires．small components and printed circuits．	£2．38
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIt	1.2	13.7	For radio．TV and similar work．Increases copper－bit life tenfold．	¢2．29

Sole U．K．Sales Concessionaires
Bib Hi．Fi Accessories Limited，
Kelsey House，Wood Lane End
Hemel Hempstead．Herts．HP2 4RO

[^0]
BIB WIRE STRIPPER and CUTTER

Fitted with unique 8 －gauge selector and handle locking device．Sprung for automatic opening．Strips flex and cable in seconds．
Model 8B 97p inc．VAT
Pat．No． 144913

EMERGENCY SOLDER

Self－fluxing，tin／lead solder tape that melts with a match
For electrical and non－electrical applications．
Size ES36 39p inc．VAT

	${ }^{13}$		$120 p$					${ }_{4}^{4}$	${ }^{135}$			－MC1				${ }^{\text {BFFSS }} 12 \mathrm{2}$ 22p		70p			12p
	140		${ }^{150}$	72				${ }_{4}$	1350	－AY1－5		－Mc3300	\％	${ }_{\text {ADD }}{ }^{\text {A } 1681 / 2}$				碗			${ }^{\text {a }}$
	${ }^{4}$		S5	71278	2300		m			－Ars		－M									
		711	${ }_{3}$	${ }^{72279}$				${ }_{4}$	${ }^{120}$	－AYS－1317	50	MK	${ }^{750}$				－1543				
	1		${ }^{53}$	122	$\begin{aligned} & 1600 \\ & 4000 \end{aligned}$		¢	${ }^{4} 1$			120		130								\％
	32		530		10		1sp	7.	210		38	NE5431	${ }^{\circ}$								
			200		150		175p		150		23p	Ness5									${ }^{\circ} \mathrm{A} 2020$
760	\％		${ }^{120}$			7415		${ }_{74}{ }^{4} 123$	1500	CA3000E	${ }^{21}$	N	$7{ }^{10}$					80			－${ }^{\text {No14 }}$
		741	210．	${ }_{71298}$	${ }_{2000}$	${ }^{14} 45250$	1730	${ }_{74 \mathrm{C} 125}$		－CA3008			4ss								
	${ }_{2+p}$		23 p	73	1500	74.5	240 ${ }^{\text {P }}$	740221	$173{ }^{\circ}$			NE563	$13{ }^{1}$	${ }_{8}^{8 \mathrm{BC} 17}$	178	mus	${ }_{2} \mathrm{~N}^{2}$	\％	$2{ }^{\text {S53887 }}$	$7{ }^{\circ}$	
			${ }_{30}$	${ }^{7} 17368$	${ }^{1550}$		\％	4000	SEs		700	NE58	－1750								
	${ }_{27}^{27}$		S30		${ }_{15}$		\％		1	ca	$7{ }^{\text {7p }}$										
	27		${ }^{\circ}$		20				178	${ }_{5 \times 208}$	750 P										
	17	71128	${ }_{75}{ }^{\text {P }}$	73383	220	815	100	500	45	${ }^{\text {che }} 17008$	${ }^{235}$	－SN7601			$1{ }^{10}$	MJE2355 10	${ }^{2} \times 13$	Sp		\％	
	mip^{20}	714	${ }_{75 p}$	7618		${ }^{\text {9TT }}$	$2{ }^{2 \times 0}$	4008	$4{ }^{18}$	LM3 301 A	$3{ }^{2}$						2N3131／2	P	－23		
$7{ }_{7}^{723}$	330	74141	${ }_{2000}^{700}$	SER		2302	${ }^{1750}$	${ }^{4009}$	$4{ }^{40}$	${ }^{\text {LM3311 }}$	${ }^{1 \% 0}$	－SN76023				－MP	${ }^{2}{ }^{2} 16171314$	250			${ }_{\text {W }}{ }^{100}{ }^{\text {mW }}{ }^{\text {app }}$
		7414	\％${ }^{\circ}$	${ }^{744502}$	\％	2310	37p	1	178	L^{14324}	70°									研	
7428	sip	71414	，	${ }^{74} 4$	22 P	${ }^{3311}$	275	${ }^{013}$	sop	L¢м388	${ }^{\text {cop }}$								${ }^{2} \mathbf{2 N 5 4 5 8 5}$		
7432	370	${ }^{711}$	$7{ }^{7}$	${ }_{741513}$	3 p		20	1015	${ }^{\text {ap }}$	：LM337	${ }^{785}$						${ }^{2} 2{ }^{23368 A}$			${ }^{4}$	
${ }_{7437}^{7433}$		7415	1700	74.	${ }^{1020}$	2322	${ }_{\text {csp }}$	1018	45p	－L3311	${ }_{5}$	－TBAADO	，			${ }^{\circ} \mathrm{CC238}$	${ }_{2}^{2 N}$		2N8	${ }^{305}$	
	$3{ }^{317}$	， 1	20		22 P	2370	\％${ }^{\circ}$	1018		Lm＞09	${ }^{3}$	－tbazzo			120	－R20088 ${ }_{\text {R2018 }}$	${ }_{2}^{2} 22$		N	阯	RCA 2 N3055
74414	70°	21	${ }^{\circ}$	${ }^{4} 4$	22 p	2374	200	4020	4，	${ }_{\text {LMM73 }}^{\text {M }}$	${ }^{510}$	－TDA1022	cos	：8F2488	350		${ }^{\text {a } 22001}$		${ }^{3} 140$	\％${ }^{\text {P }}$	
	1120	74	$1{ }^{\circ}{ }^{\circ}$	${ }_{4}^{4}$	${ }^{30}$	9802	1750	1022	$100{ }^{\circ}$	LMM17	29	－	40	${ }^{\text {BFF257／8 }}$	320	－T1P30A	$2{ }^{2} 3$	${ }_{0}$	${ }^{2} 204$	10°	
	${ }^{1129}$	7414	100 p	${ }^{7145}$	Stop	IN		${ }^{2023}$	22p	$1{ }^{1978}$	$3{ }^{19}$	－\times R2216	${ }^{735}$	${ }^{\text {Prere39 }}$	$3{ }^{3}$	T1P31A	－		2023	${ }^{2300}$	2p
	230	${ }^{711163}$	$1200{ }^{100}$	${ }^{744575}$	S00	MС．${ }^{\text {C14 }}$		${ }^{4025}$	190	Lm3911	139	－ z	\％	：8FR40	330	TIP32A	$2{ }^{2} 3$		10383		
， 74.448	\％ep	74165	S30	${ }^{7} 74.45858$	1000	${ }_{75}$	$1{ }^{1}$	${ }^{1027}$	Sp		${ }^{123}$		4	－Bfara	\％	${ }_{\text {TIP334 }}$					P
7451	170	7416	240	${ }^{7} 4.5$	${ }^{4}$	7515	${ }^{2319}$	${ }^{1029}$	${ }^{10}$	${ }^{\text {MC1438 }}$	Smp		$2{ }^{20}$		30．	TiP32	${ }^{2} \mathrm{2N3}^{2}$		10410	65p	${ }_{3}{ }^{3}$ A 500 V V 720
	178	74172	${ }_{720}$	${ }^{4} 4.5107$	5	75451／2	72	1031	\％${ }^{\text {mp }}$							TIP3AC	－2N3				
	780	174178	230		${ }^{19 \mathrm{p}}$			${ }^{4033}$	${ }^{140}$	Volta	T	${ }^{2}$,	${ }^{353} \mathrm{C}$					
	300	74175	${ }_{\text {cos }}$	${ }_{7} 74$	200	174	cosp	${ }^{12035}$	10°	${ }_{\text {co }}{ }^{+0}$				BFwio	${ }^{\circ}$		－2N3339			${ }^{0}$	
	300	74	${ }^{\text {P\％}}$	74LS	${ }^{4}$		${ }_{27 \mathrm{P}}^{27}$	2001	\％	12V 7892	${ }^{80}$	${ }^{12 \mathrm{~V}} 7809$	（19p	${ }^{\text {afrso }}$	22p		${ }_{2}{ }^{2} 38323$	${ }_{70}$	10881／2	sep_{80}	
	$3{ }^{3}$	74	${ }^{3} \mathbf{3}$	44	${ }^{0}$		27 P	${ }_{6013}$	${ }^{\circ}$	$18 \mathrm{~V}{ }^{7818}$	0_{0}	18 V 7	${ }^{\circ}$								
	550．	${ }^{741181}$	${ }^{2009}$		${ }^{\circ}$	74	${ }^{170}$	1046	\％		O										
${ }_{7}^{7488}$	${ }^{4}$	7718		74LS	1290	74C30	270	${ }^{40017}$	$1{ }^{10}$	5V 78Los											
${ }_{7485}^{748}$	110	7418	709	744151	190	74	${ }_{210}^{110}$	4009	32 P	15 V 7	${ }_{30}$	15 V 70 L									
${ }_{7}^{74858}$	${ }^{3}$	74	$1{ }^{\circ}$	${ }^{74}$	${ }^{4}{ }^{\circ}$	174	${ }^{2} 5$	${ }^{2051}$	$8{ }^{\circ} \mathrm{p}$	OTHER R				p\＆		T at					
${ }_{7} 74898$	2iop	${ }_{1}^{184}$	$109{ }^{10}$	74	\％	${ }_{74}^{74 \mathrm{Cas}}$	${ }^{7} 7$	${ }_{4053}^{4053}$	\％00	${ }_{\text {LM }}^{41}$	$\underset{\substack{\text { copp }}}{1350}$	${ }_{\text {TEAA }}$	${ }_{\text {cosp }}^{120}$	促	硣						
	\％	74	100	74L	119	${ }^{74} \mathbf{4} 88$	\％ 50	${ }^{1035}$	1230	$L^{\text {LM }}$ M23 23		－ 78 7305KC	${ }_{\text {c7 }}^{\text {975 }}$	Govt．，	Colle	eges，	UR		R		
7403A	33 p	7419	Sp		140	${ }_{14}$	130	边	$4{ }^{6}$												
	\％				200		25p	1000	${ }^{1150}$					Caliers	wel	come	LONDO		Wio		
7486	${ }_{65}$	71198	15	74LS10	$1{ }^{1}$	74.151	200	$\begin{aligned} & 1003 \\ & 4068 \end{aligned}$	${ }^{2359}$		POR	品		SATUR	RAY	$10.30-6.30$	（0）	（01） 4	15		： 9228

 6 fin . 1.80 gin . 62010 in 53.12 in . $8 \mathrm{chm} .2 \mathrm{fin} . £ 1 \cdot 50$. 3 in . $£ 1 \cdot 50.5 \mathrm{in} . £ 1 \cdot 50$. 10 in . 23 . 12 in . 24. $16 \mathrm{ohm} .6 \times 4 \mathrm{in} . £ 1 \cdot 50.7 \times 4 \mathrm{in}$. $£ 1 \cdot 50$. 5 in . $£ 1 \cdot 50.8 \mathrm{in}$. $£ 2 \cdot 60$ 10 in . 13.12 in . 54.

THE "INSTANT" BULK TAPE ERASER Suitable for cassettes, and all sizes of tape reels. A.C. mains 200/249V. Leafict S.A.E.
£5.50 Post
HEAD DEMAGNETISER PRO8E 44.75

BLANK ALUMINIUM CHASSIS, 18 s.w.g. 2 tin. sides, $6 \times 4 \mathrm{in}$ $95 \mathrm{p} ; 8 \times 6 \mathrm{in}$. $£ 1.40 ; 10 \times 7 \mathrm{in}$. $£ 1.55 ; 14 \times 9$ in. $£ 1.90 ; 16 \times 6 \mathrm{in}$. $21 \cdot 85 ; 12 \times 3 i n$. $11-20 ; 16 \times 10 \mathrm{in} . £ 2.20 ; 12 \times 8 \mathrm{in}$. $£ 1.70$. ALUMINIUM PANELS, 18 s.w.g. $6 \times 4 \mathrm{in}$. 24 p ; $8 \times 6 \mathrm{in}, 38 \mathrm{p} ; 10 \times$ $7 \mathrm{in} .54 \mathrm{p}: 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p}: 16 \times 6 \mathrm{in} .70 \mathrm{p}: 14 \times 9 \mathrm{in} .94 \mathrm{p}$ ALUMINIUM ANGLE BRAC
ALUMINIUM ANGLE BRACKET $6 \times \frac{1}{} \times 1 \mathrm{in}$. 15 p .
ALUMINIUM 8OXES, MANY SIZES IN STOCK.
$4 \times 2 \times 2 \mathrm{in} .86 \mathrm{p} ; 3 \times 2 \times 1 \mathrm{in} .60 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in} .\{1 ; 8 \times 6 \times 3 \mathrm{in}$
DE LUXE BSR HI-FI AUTOCHANGER

or Manual A high quality	
Auto or Manual. A high quality	
unit backed by ESR reliability	$\begin{aligned} & \text { All Post } \\ & \text { \&1. } \end{aligned}$
with 12 months guarantee. A.C.	
200/250V. Size $13+\times 11$ in.	
Above motor board 3 zin.	
Below motor board 2 tin.	
With CERAMIC STEREO CARTRIDGE	
8SR Budget Autochanger stereo ceramic certridge.	f14.95
Garrard 5300 . Autochanger with ceramic cartridge.	¢14.95
Garrard Minichanger. Plays all size records.	
Ceramic cartridge. Stereo.	£8.95
BSR. P182. Snake arm, fiared Aluminium Turntable	
Stereo ceramic cartridge. Latest model.	$\mathbf{5 2 2 . 5 0}$
8SR. DiscoSiagle Player	
Cueing Device 11 in . Tumtable. Budget price	¢19.50

BAKER 150 WATT

QUALITY

TRANSISTOR
mIXER/AMPLFIER

Professional amplifier using advanced circuit design. Ideal for
disco, groups, P.A. or musical instruments. 4 inputs 4 way mixing Master qeble, bases and volume controls. 3 spealer output sockets to suit various combinations of speakers. 4-8-16 ohm. Slave output. Guaranteed. Details S.A.E. A/C mains 120 v . and 240 v . £79 BAKER 50 Wan AMPLIFIER 2 isputs es 9.
DRILL SPEED CONTROLLER/IIGHT DIMMER KIT. Easy to build kit. Controls up to 480 watts AC mains. Post 35p $\mathbf{£ 3} 25$ STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gein per channel, with volume control and P.C. Board. Can be ganged to make

$$
\text { Post 85p } £ 2.95
$$

R.C.S. SOUNO TO LIGHT OISPLAY MK 2
Complete kit of parts with R.C.S. printed circuit. Three Complete kit of parts with R.C.S. printed circuit. Three
channels. Up to 1,000 watts each. Will operate from 200 MV to 100 watts signal source. Suitable for home $\mathrm{Hi}-\mathrm{Fi} \quad \mathrm{f} 17$ and all Disco Amplifiers. Cabinct extra $£ 4$.
200 Watt Rear Reflecting White Light Bulbs. Ideal for Disco

MAINS TRANSFORMERS ${ }_{75 p}^{\text {Post }}$

6 VOLT $\frac{1}{3}$ AMP. $£ 1.003$ AMP. 51.959 VOLT 3 AMP. $£ 2.75$ 12 VOLT $300 \mathrm{MA} . £ 1.00750 \mathrm{MA}$. $£ 1-3020$ VOLT 2 AMP. $£ 2.50$ 30 VOLT 1 AMP. AND 34 VOLT 2 AMP. C.T. £3-45 30 VOLT $1 \frac{1}{2}$ AMP. $£ 2.7540$ VOLT 2 AMP. $£ 2.9530 \mathrm{~V} 2$ AMP. $£ 3$ $0-20.40-60$ VOLT 1 AMP. \&3-50 2×18 VOLT 6 AMP. $£ 9$. Low Vottage 0-8-12V.3 AMP $£ 3$.
Low Voltage $12-0-12$ V. 2 AMP $£ 3$.
Low Voltage $12-0-12 \mathrm{~V}, 2$ AMP $£ 3$.
GENERAL PUR POSE LOW VOLTAGE. Voluges available at $2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24$ and 30 V inges available at ES . 5.80
5.80 $1 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$
$2 \mathrm{~A}, 6,8,10.12,16,18,20,24,30,36,40,48,60$ $2 A, 6,8,10.12,16,18,20,24,30,36,40,48,60$
3 A. $6,8,10,12,16,18,20,24,30,36,40,48,60$ SA, 6, 8, 10. 12, 16, 18, 20, 24, 30, 36, 40, 48, 60
R.C.S.TEAK

COMPACT
SPEAKERS
$13 \times 10 \times 6 \mathrm{in}$.
50 to $14,000 \mathrm{cps}$.
12 watts rms .8 ohms
f19 pair

BAKER SPEAKERS "BIG SOUND"
Robustly constructed to stand up to long periods of electronic power. Useful response $30-13,000 \mathrm{cpe}$ Bass resonance 55 cps . GROUP "35" 12 in . 40 watt
4,8 or 16 ohms.

Send for leafiets on Disco, P.A. and Group Gear.

SPEAKER SALE!

With tweeter. And crossover 10W. State 3 or 8 ohm.	5		
15 W model	£10.50	GOODMANS 20W Woofer	Size $12 \times 10 \mathrm{in} .4$ ohms.
:---			
Rubber cone surround.			
9.95			

G000MANS 20W Full Range sin. 8 ohm Hi-Fi Twin Cone
Spcecial unit
.
.
R.C.S. MINI MODULE HI-FI KIT $15 \times 8 \frac{1}{4}$ in 3 -way Loudspeaker System, EMI 5in, Bass 5in, Middle 5in, Tweeter with 3-way Crossover and Ready Cut Baffle. Full assembly instructions supplied. Response $=$ 60 to 20000 cps 12 watt RMS. 8 ohm. $£ 10.95$ per kit. Two kits $£ 20$. Postage 75p. One or two kits.

Printed Circuit Coils

(Pat. App. For)

For the P.W. Sandbanks, only available from the designer of the detector. By reducing the coil capacitance, vast improvements in sensitivity to gold and silver can be achieved and only four resistors need to be changed for maximum sensitivity. A complete kit including the PC coil to fit the Ambit International moulding, the four resistors required, and instructions for only $£ 2.50$ are available from:

PLESSIS ELECTRONICS, Castle House, Old Road, Leighton Buzzard, Beds. Callers by appointment only

Abstract

 rechargeable batts $\mathbf{C 7} 50$. mains adaptor E3 70. enterprise prog calculator E21 95. cambridge prog calculator $£ 1313$. prog library $£ 345$. mains adaptor E3-20. COMPONENTS send sae for full list. 1 lb FeCl Cl 05. dalo pen 73 p .60 sq ins pcb 55 p . laminate cutter 75 p. small drill 20p. $2 n 414$ E1 05 . pcb and extra parts for radio $\mathrm{C3} 85$. E1 O5. pcb and extra parts for radio C3 85. case E1. IN4 148 i 4p. IN 4002 2 9p. 723 29p. 741 15p. NE555 23p. bc182b. bc 183b, bc 184b. bc212b, bc213b, bc214c 45 p . plastic equiv bc 10748 p . W W 5% E 12 resistors 10 R to 10 M 1 p . 08 p for 50 . of resistors 10 R to 10 m 1 p . 08 p for 50 . of onn value. alectrolytics 16 v one value. electrolytics 16 V $5 / 1 / 2 / 5 / 10 / 22 \mathrm{mf} 5 \mathrm{p}$. 100 mf 6 p . 1000 mf 10p. $1500 \mathrm{mf}(\mathrm{PC}) 34 \mathrm{p}$. 10 ov 2 ml 17 p . 1000 mt 51 p 2200 mf 6 p polyesters 250 v 015. 068 . $1 \mathrm{mf} 1 \frac{1}{2} \mathrm{p}$. ceramics 50 v E6 22 pt to 47 n 2 p . polystyrenes 63 vE 1210 pf to 10 n 3p. zeners 400 mW E2 42 v 7 to 33 v 7 p . TV GAMES send sag for data. AY-3-8500 kit $\mathrm{C8} 95$. rifle kit C4.95. AY-3-8600 . kit E12 50. stunt cycle chip - kit E 1090 . racing cars chip. kit E1790. 1 ta E2 35.6 3v 1 ta $\mathbb{1} .89$ 100ma 74 p .

[^1]
+ BATTERY FLUORESCENT LIGHTING

Type "A"
(12 in. or 21 in.)

Type " C " \rightarrow
(18 in.)

White Enamel cases as shown above, including lampholders. Type "A" or "B" £1.50. Case only, £1.00. Plastic Lampholders to suit 50p pair. Ceramic (adaptable) 40 p . pair. Tubes to fit (21 in .) £1.00. (These can only be supplied when cases are ordered due to risk of postal damage.) Case type "C"' (18 in.) or Case type "D" (12 in.) including lampholders $\mathbf{£ 1 - 2 5}$.
INVERTER TRANSFORMERS, special design for maximum efficiency
£1.00 each
Transistor. Heat Sink. Circuit board cut to size, Resistor. Capacitors etc . £1.00 pack
21 in. Fittings built and tested Type " A ". . . With Tube.
1.00 pack

12 in. ditto (Batten type).... Type "A".... . ditto
$£ 4.95$
THIS IS ABOUT HALF THE PRICE THAT A SIMILAR FITTING WOULD COST YOU ELSEWHERE!!!!
WHY NOT DO AS MANY OTHERS ARE DOING. BUILD THEM AND SELL THEM TO YOUR CAMPING FRIENDS?
PRINTEO CIRCUITS. WHY NOT MAKE YOUR OWN WITH FOTOLAK POSITIVE LIGHT SENSITIVE LACQUER
Now you can produce perfect prined circuits in minutesi Method: Spray cleaned board lightly with lacquer. When dry, place positive master of required circuit on now sensitised surface. Expose to daylight,
develop and etch. Any number of exact copies can of course be made from one master. Widely used in industry for prototype work

FOTOLAK Aerosol.......... $\mathbf{1 1} .50$	Pre-coated 1/16** Fibre-glass board:
Developer 30	
Farric Chloride................... 40	$204 \mathrm{~mm} \times 228 \mathrm{~mm}$..00
Clear Acetate Sheet 12	$408 \mathrm{~mm} \times 228 \mathrm{~mm}$............................... 58.00
Daylo Pens......................... 98	

Plain Copper-clad Fibre-glass
Approx. 318 mm thick. sq. ft
Approx. 2.00 mm thick $\mathbf{~ s q . ~} \mathrm{q}$.
Approx
Approx. 100 mm thick sq. 19 t.
Approx
79 mm thick
Approx. 79 mm thick. sq. th.....in
Single-sided Copper-clad paxolin

Single-sided	Double
82.00	. 22.25
11.50	. 51.75
E1.25	

Pack of 10 sheets aach $245 \mathrm{~mm} \times 150 \mathrm{~mm} . ~ £ 2.50 ~$

Giant packs of unused mixed componentsl Weight 41 bs., these contain an assortment of resistors (carbon and wire-wound): capacitors, (electrolytic, paper, silver-mica, polyester and polystyrene): transistors, diodes, volume and pre-set controls and hosts of other bits and pieces. No two bags are the same, but all contain a jolly good mixture of parts. Ideal for the odds and ends box!!! Per bag £3.00

SPECIAL OFFER! Few only 3-channel (each 750 watts) Sound-to-light units. Fantastic value for money! Plug into any loudspeaker socket and create your own disco-type light show! Any mains lamps may be used . . . £17.95

Brand new printed circuit boards containing l.C's., transistors, diodes, resistors, capacitors etc. etc. It is quite impossible to list these so we are selling by weight at $\mathbf{£ 1 . 0 0}$ per lb. This could include upwards of 100 in -: tegrated circuits! Send as many $£ 1$'s as you wish, we will weigh as varied a parcel as possible and refund your change!
PLEASE NOTE: All lighting and printed-circuit materials plus 8\% VAT. Other goods $12 \frac{1}{2} \%$. No VAT on overseas orders. Postage INLAND 65p per order. Overseas include extra to cover. We will refund any excess paid. Any enquiries for further details MUST include stamped addressed envelope!

E. ت. $/ / \square / \mathbb{B} \boldsymbol{B}$ (ELECTRONIC COMPONENTS LTD.), 369 Alum Rock Road, BHam B8 3DR. 021-327 2339

PROGRESSIVERADIO

MICROPHONES: EM506 Electret Dual Imp (50K + 600n) Imp Stick Mic. with Battery E11.00. Electret Model ECM 105 Pencil Mand Mics IK Ω impedance. With standard jack £2.85. EM104 Tie Clip, Electret supplied with battery 1 K imp £4.95. UD 130 Dual imp ($50 \mathrm{~K}+6000$) moving coil dynamic mic. cardiod response £8.25p.
BUZZERS, GPO open type $3-6 \mathrm{~V} 30 \mathrm{p}$. Large plastic
Solid state buzzers, miniature. 6-9-12-24 volt 15 ma 75 peach type loud note 6 or 12 volts 50p. Solid state Guzzers, miniature. 6-9-12-24 voit 15 ma 75 p each.
$6-0-6 \quad 100 \mathrm{ma}, \quad 9-0-975 \mathrm{ma} 750$ each (15 p). $0-4-6-9$ pose (20pl. 12-0-12 100 ma 95 p (15p). 12 V 500 ma 95p (220). 12 V 2 ma no mounting bracket, 65p

 E2.20 (54p). Murata MA401L40KHZ rec/send transducers $£ 3.25$ pair
SMITHS TRAN SISTORISED AUGIBLE WARNING OEVICE, 6-i 2 V .30 p
BOARDS SURPLUS. Reed Board with 14 I2v Reed S.P. Make RLAS E1.7.
BOARDS SURPLUS. Reed Board with 14 12v Reed S.P. maké RLAS E1.75. LM309K 5v NEW LOW COSTMULTIMETERS,
KRT100, 1000 Q. PV. 1 kV AC/OC., 150 mA DC current. $0-100 \mathrm{~K}$ Q ras. mirror scale. switched

SOLDER SUCKER, high suction eye protection shield f4.95
PROJECT GOXES, black plastic ABS with lid $75 \times 56 \times 3544 \mathrm{p}: 95 \times 71 \times 35.52 \mathrm{p} 115 \times$ $95 \times 36 \mathbf{8 0 p}$.
TERMS: cash with order, (or official orders from colleges etc). Postage 30p unless otherwise shown, overseas post at cost. VAT inclusive prices. New lllustrated Catalogue now ready. S.A.E. please.

Prograsalve Radio, 31 Cheapaide, Liverpool L2 2DY. Tel: 0512360982.

STERNWAY ELECTRICAL LIMITED

3 BRIDE COURT, LONDON EC4Y 8DU
(OFF FLEET STREET)
013538530
SPECIAL OFFERS:-

555 28p each or 10 for $\mathbf{£ 2} .10$.
556 58p each.
ZN4 14 85p each
ORP 12 60p each
$74125 p$ each or 10 for $£ 2.00$
Above prices include V.A.T., please add 40 p post and packing for orders under E 10

别
RESISTANCE SUBSTITUTION BOXES -
A neat swivelling disc provides close solerance substitution of 36 preferred value resistors from e3.95s to megohm. Simply fix clips into circuit and swival until optimum result is achieved. Similar
Similar to resistance box, covering 0001 to 22 mid . $\mathbf{£ 3 . 9 5}$ each including postage and V.A.T. PLEASE SEND S.A.E. FOR SPECIAL OFFER LISTS.

SOLVE your component buying problems with this famous Catalogue

- The finest components catalogue yet published.
- 128 A-4-size pages.
- About 2,500 items clearly listed and indexed.
- Profusely illustrated.
- Bargain List sent free.
- At £1-25, incl. p. \& p., the eatalogue is a bargain.
Send the coupon below now.
HOME RADIO (Components) LTO., Dept. PW. ${ }^{234-220}$ London Road.
witcham, surrey CR4 $3 H D$

POST THIS COUPON
with cheque or P.O. for $£ 1.25$

A. Marshall (London) Ltd., Dept: PW Head Ofice mail order: Kingsgate House, Kingsgate Place, NWG 4TA. Tel: 01-624 D805 Retail Sales London: 40-42 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2. Telex: 21492. London: 325 Edgware Road. W2. Tel: 01-723 4242. Glasgow: 85 West Regent Sreet, G2 2QD. Tel: 041-332, 4133. Bristol: 1 Sraits Parade, Fishponds Road, 85162 LX. Tel: 0272654201.

15-240 Watts!

25 Watts into 8Ω

POWER SUPPLIES

The HYs is a mono hybrid amplifier ideally suited for all applications. All common input unctions (mag Cartridge, tuner, etc) are catered forinternally. The desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone cireuits merely require connecting to external potentlometers (not included). The HYS compatible with all... Dower amplifers and power supplles. To ease construction and EATURES. Complete pre-amplifier in single pach-Multi-fun -Low distortion-Hiph overload-Two simply combined lor stereo.
APPLICATIONS: Hi-Fi-Mixers-Diseo-Guilar and Organ-Public address
SPECIFICATIONS:
INPUTS. Magnetic Pick-up 3 mV , Ceramic Pick-up 30 mV : Tuner 100 mV : Microphone 10 mV : Auxiltary $3-100 \mathrm{mV}$ i inputimpedance $7 \mathrm{k} \Omega$ at 1 kHz .
OUTPUTS. Tape 100 mV : Main output 500 mV R.M.S.
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz : Bass \pm at 100 Hz .
OISTORTION. 0.1% at 1 kHz . Signal/ Nolse Ratlo B8dB.
OVERLOAD. 38 dB on Magnetic Pich-up. SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$ Price $£ 627+78$ р VAT P\&P freo.
The HY30 is an exeiting New kit from IL.P. It features a virtually indestructible I.C with short capacitors, thermal protection. The kit consisls of I.C., heatsink. P.C. board. ${ }^{4}$ resistors, 6 This amplifier is ldeally suited to the beginner in audio who wishes to use the mosi up-to-date echnology available
FEATURES : Complete KIt-Low Distortion-Short, Open and Thermal Protection-Easy to ulld.
APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifierudio osellator.
OUTPUT POWER 15W R.M.S. into 80 : DISTORTION 0 : at $1.5 W$ INPUT SENSITIVITY 500 mV . FREOUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{~h} \mathrm{~Hz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$.
Pico £6 $27+78 \mathrm{p}$ VAT P\&P free
The HY50 leads I.L.P.'s total integration approach to power amptifier design. The amplifier eatures an Integral heatsink tonether with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most eliable and robust High Fidelity modules in the Wortd.
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tranAPPLICATIONS: Medlum Pow
APPLICA
OUTPUT POWER 25W RMS Into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 25 W SIGNAL/NOISE RATIO 75dB FRE OUENCY RESPONSE $10 \mathrm{~Hz} .45 \mathrm{kHz}-3 \mathrm{~dB}$ UPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 min
Price \& 8 it + \&1 02 VAT P\&P free
The HYi20 is the baby of I.L.P.'s new hlgh power range. Designed to meet the most exacting equirements ineluding load line and thermal protection this amplifer sets a new standard In nodular design.
FEATURES: Very low distortion-Integral heatsinh-Load Ine protection-Thermal protec on-Five connections-No external components
APPLICATIONS: Hi-Fi-High quality disco-Public address-Monitoramplifier-Guitarand raan
SPECIFICATIONS
OUTPUTPOWER 60W RMS into 8 I LOAD IMPEDANCE 4-16\{\% DISTORTION 0.04% at 60W SIGNAL/NOISE RATIO 90 dB FREOUENCY RESPONSE $10 \mathrm{~Hz}+45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price £19.04 + £1.52 VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most ugned condithons such as disco or group while still retaining true Hi-Fi pertormance
FEATURES: Thermal shutdown-Very low distortion-Loadline protection-Integral heatsink
-No external components
APPLICATIONS: HI-FI
SPECIFICATIONS
NPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 8 § LOAD IMPEDANCE 4-16n DISTORTIONO 05% at 100 W SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz} \cdot 45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE STZE 1145085 mm
Price $£ 2799+£ 2 \cdot 24$ VAT P\&P free
The HY400 Is I.L.P.'s "Blo Daddy" of the range producing 240W Into 4Ω ! It has been desioned or high power disco address applications. If the amplifier is to be used at continuous high ower levels a cooling fan is recommended. The amplifier includes all the quatities of the rest of the lamlly to lead the market as a true high power hi-fidellity power module.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external
APPLICATIONS : Publre address-Disco-Power slave-Industrial
APPLICATIONS:
OUTPUT POWER 240W RMS into 411 LOAD IMPEDANCE 4.16 Q DISTORTION 0.1% at 240 W at 1 kHz NOISE RATIO 94 dB FREOUENCY RESPONSE $10 \mathrm{~Hz}_{\mathrm{z}}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm
Price $£ 38-61+£ 309$ VAT P\&P free.
PSU36 sultable tor two HY30's $£ 6.44$ plus 810 VAT. P/P free.
PSU50 sultable for two HY50's KB 18 plus $£ 1.02 \mathrm{VAT}$. P/P free.
PSU70 sultable tor two HY120's $£ 1458$ olus $£ 117$ VAT. P/P iree
SU90 suitable tor one HY200 $£ 15 \cdot 19$ plus $£ 1 \cdot 21$ VAT. P/P free B1 $£ 0.48+50.06$ VAT.

TWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON CANTERBURY, KENT, CT4 7AD.

I.L.P. ELECTRONICS LTD.,
 GRAHAM BELL HOUSE, ROPER CLOSE, CANTERBURY, KENT, CT2 7EP.

Tel: (0227) 54778.
Reed No. 1032630.

Please Supply

Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square Please debit my Access account \square Barclaycard account \square Account number Name and Address

EVEN LOWER PRICES!!

FROM TIMETRON Recommended by TEMPUS A well known consumer magazine has published a report on digital watches which supports our conviction that CASIO and SEIKO are probably the best watche
All CASIO watches have a calendar display, night illumination, mineral glass and stainless steel cases. water resistant to 100 f (except sports watches-66)

SPORTS WATCHES

32QS-14B £27.95
Up to 25 functions. Net, lap and first and second place times to $1 / 100 \mathrm{~h} \sec$. F-100. Resin case, strap $52 \mathrm{QS}-14 \mathrm{~B}$. S/S encesed version and $S /$ Sbracelet.

4 DIGIT WATCHES display hours. minutes, ten seconds. seconds by flash. am/prn; And with day. date and month. 1 second to 13 hours stopwatch. Dual time facility.

31QR-20B
Left. 8.5 mm 4 digiz. Was $£ 35.95$
£22.95
34QS. 16 B
Right. 7.5 mm 6 digit. Was C 49.95 £29.95
Not illustrated:
51QR-19B 6 digit Round face. Was $\mathbf{5 4 4 . 9 5}$
£24.95
SIQR. IBB 6 digigi. Round Iace Was $849.95 \quad \mathbf{£ 2 6 . 9 5}$
6 DIGIT WATCHES (Not Sports) Hours. minutes, seconds and day of week. Model 54QS has an optional display of hrs. mins. date, day, ten seconds. seconds by flash; And day. date. month

CHRONOGRAPH AND ALARM CHRONOGRAPH

$$
\begin{aligned}
& \text { 45CS.22B } \\
& \text { Left. Chrono } \\
& \text { Was } \$ 69.95
\end{aligned}
$$

$£ 39.95$

46CS.27B
Right.A/C. 7.8 mm
$£ 74.95$ Wes 889.95

CHRONOGRAPH. 6 digits as above, with stopwatch measuring net, lap and 1st and 2nd place times from $1 / 100 \mathrm{sec}$ to 6 hrs . Dual time facility.

ALARM CHRONO. As Chrono above but without dual time. 24 hour alarm with optional hourly chime facility

60QS-20B Chronograph. Details available on request.
RRP $\{44.95$
£34.95
CALCULATING ALARM CLOCKS (LCD)
AQ. 2000 With stopwatch and clendar.
$£ 24.95$
MQ. 10 As above
t×4 4×1 tins.
$£ 35.95$
MQ. 11 Asabove
$£ 29.95$

CQ-82

6 dight LC Display of time. with nighe light. Four alafms, one with snooze facility. Calculator with \%. . K. One year battery.

$£ 19.95$

玄䊩

LCD calculators with full memory. \%. . K. Mos have battery saving APO (Automatic Power-OM). LC-79 Sensor touch Mini Card with APO. A very rigid tr $\times 2\}_{1} \times 3_{3}$ ins. Beautifully styled. Pouch $£ 15.95$.
LC. 841 A PO. Rigid $\mid \times 21 \times 41$ ins. Pouch $£ 12.95$.
NEW HL series. Two AA batteries last $6,000 \cdot 10,000$ hours. HL-801 8 digits 29.95 . HL- 101 (10) \&12.95. HL-121, £19.95. LCd Scientific Caleulators. FX-48
FX. 3100 £ $25 \cdot 95$. FX- 8000 £ 29.95.
Most CASIO products in stock. Send 15p for brochures
Prices include VAT, P \& P. Send cheque. P.O. or phone your Access or B card num

[^2]THE SINCLAIR PDM35 Digital Muitimeter Now a digital mult
meter at an analogu meter at an analogue price and look at the
spect spec' O.C. VOLTS 1 mv 1000 v 1 m -
A.C. VOLTS Iv. 500 A.C. VOLTS 1 v. 500 v 40 OH ?
counts
D.C. CURRENT
count)
RESIS
20 ml
$20 \mathrm{~ms})$
count $£ 29.80$

Adaptor 5320 Padged case 532030 mv probe -1892

SINCLAIR DM235
 UK model E99 inc VAT:
Adaptors E6.00. 8attery E1.16. Adapiors E6.00. 8attery E1.16.
Sae (lor detaied Brochure en sloch)

OSMABET LTD $\begin{gathered}\text { We make ransformers } \\ \text { amongsi orner things }\end{gathered}$

LOW VOLTAGE TRANSFORMERS: Prim 240 V ©c. £3.35; 3A CT £6.85; 6A CT £8. 50 ; $15 \mathrm{IV} 54 \mathrm{E2.75}$; 18 V
 £15.50;
£12.25.
TWIN SEC TRANSFORMERS: Prim 240V ac.
$6 V 0.6 A \cdot 6 V 06 A: 9 V O 4 A, 9 V O 4 A ; 12 V O$ 3A. 12 V

 15 A - 20 V 15 A £8.50; 12 V 4 A . $12 \mathrm{~V} 4 \mathrm{~A} \mathrm{f} 10.50 ; 25 \mathrm{~V}$ 2A. $25 V 2 A$ £10.50.
MIDGET RECTIFIER TRANSFORMERS: Prim 240 V ac.
 $25 A$ or $20 \mathrm{~V} \cdot 0.20 \mathrm{~V} 015$ A 2.85 each.
LT TRANSFORMERS TAPPEO SEC. PRIM 240V ec.

 MAINS TRANSFORMERS SPECIAL OFFER:
prim 240 V ac. $60 \mathrm{Ma} 6 \mathrm{~V} 1 \mathrm{~A} £ 2.00$; 250 V 100 Ma . 6.3 V A £3.00:9V 3A £2.50, 25 V - 3 A £ 1.00
tin $8 \Omega .2$ in 8 or 250 . 2 in 8Ω. 3 in $35 \Omega .3$ in 3.816 or
 "INSTANT"'BULK CASSETTE/TAPE ERASER instant crasure of cassettes. and any diameter of tape spools demagnetises tape heads. $200 / 240 \mathrm{Vac}$. $£ 6.00$. POWER SUPPLY, TWIN OUTPUT: Prim 240V ac. New. 8 ritish manulacture. smoothed d.c. output 20 V 15 A
plus stabilised output of 15 V 100 Ma , plus 12 V ac 05 A out put, complete with diagram, E3.50.
EDGEWISE LEVEL METERFSD 200/ EDGEWISE LEVEL METER FSD 200/ $\mu \mathrm{A}$ Size $19 \times 18 \times 20 \mathrm{~mm} 800$ E1. 10 .
CHARGIAG METERS 1 I ins diameter SYNCHRONOUS GEARED MOTORS, 240 V ec Brand new, built in pear box, 1 or 20 RPH. E 1.25 each
O/P TRANSFORMERS FOR VALVE AMPLIFIERS P.P. Sec tapped $3-8-15$. A-A 6 K , 30W $£ 15.25$; A-A 3 K 50W £22.75; 100W (EL3 1. KT88. etc.) £31.25. Covers valve amplifiers 30 W to 400 W £ 1.00 MULTIWAYSCREENED CABLE, PVC COVERED 36 way $£ 1.00 ; 25$ way $75 p ; 14$ way 50p; 6 way $25 p ; 4$ way 20 p; 2 way t0p; way 8 p; 4 way individually screen ed 25 p per metre, fig 8 twin stereo do screaned 15p, metre.
MAINS CABLE 4 way, 3 A 30p
CONDENSERS
Electrolytic. 400/400V 75p; 2000/30V 30p: 1200/75 50pi 2/150V. 0 1/2dón Paper tubu each.

CARRIAGE EXTRA ON ALL ORDERS
ALL PRICES INCLUDE V.A.T.
Cellere by appointment only. S.A.E. Enquiries, Liste. 46, Kenilvorth Road, Edgware, Middx. HA88YG. Tel:01-9589314
 DISCOUNT SPEAKERS

Imp 8 or 15 as ap TITAN 5 yorime FANE LIFETIME OTHERS 9 year ALL PRICES

 INC. VATPrices correct at 23.1.79

HI-FI TYPES	List Value	Sonic Price
5" FANE 501 Mid or Full range	Sp. Price	£4.95
8" A.F. Model 80 Dual Cone	Sp. Price	84.95
$8{ }^{\text {n A.F.F. Model }} 83$ Dual Cone	Sp. Price	¢6.95
FANE 8*808T Dual Cone	Sp. Price	c3.95
WH'FEDALE L'TON $3 \times P$ kit Pr.	¢60.70	$\underline{25} 5$
$10^{\prime \prime}$ DENTON $2 \times P$ KIT Pair	C39-15	221.95
10^{*} GLENDALE $3 \times P$ KIT	c82.44	E58.95
A.F. FRI $8^{\prime \prime}$ SPKR KIT	Sp. Price Pair	£14.95
$8{ }^{\text {8 }}$ FANE MODE ONE	Sp . Price Pair	£19.99
10" ELAC Model 10RM 10-15w	Sp. Price	¢2.50

CABINETS (TEAK VENEEREO)
Models 80,83 or $808 T$ Spkrs. Mode 1 or FRI Kirs and

GROUP/DISCO TYPES

Limited Number $\mathbf{5 6} 95$ ea

5" TITAN T15/7̈0 70w
5- FANE 'SPECIALIST' 8 ASS 85
15° FANE SPECIALIST' 8ASS 85
15° GOOODMANS̈ $15 P$ 8ASS 100
15. FANE CRESCENDO/15
15^{-}BASS

BASS
$15 / 100 \mathrm{LT}$
$15 / 160160$
TITAN T18/iOO COLOS
18 GOODMANS 18 C
18° CELESTION G18C
18. CELESTION G18C
18. FANE CRESCENDO 18 A
 please state impedance.
HORN UNITS
(Carr. 850)
CELESTION MH 1000
$\begin{array}{rr}£ 17.00 & £ 13.75 \\ £ 17.75 & £ 10.99 \\ 662.95 & \mathbf{4 4 . 5 0} \\ 61.95 & £ 4.95 \\ \mathbf{1} 1.75 & £ 7.95 \\ \mathbf{1 6 . 9 5} & \mathbf{£ 1 0 . 9 5}\end{array}$ 920100 w
J 44 30-50w
J 7350 w
J 10450.70 w
£15.00 £12.95

ITAN T12/60R
CELESTION G 12 M
CELESTON G $12 / 50 \mathrm{w}$
CELON
GOODMANS 12 PD
P.A. 80
DSCO 80

DISCO 100
GUITAR 80 L
GUITAR 80L
GUITAR 100 L
GUITAR 808
GUII
FAÖE CRESC̈ENDO 80
$80 L$
880
80 LT
12 L
12 BASS

160160 w
SUS 200 w

HIGH POWER 'CROSS-OVERS'
$63.65 \quad$ e2.25
AOO-ON HIGH FREQUENCY UNITS $\begin{array}{ll}141.95 & \mathbf{8 3 5 . 9 5} \\ \mathbf{6 3 3 . 0 0} & \mathbf{2 3} .95 \\ 633.00 & \mathbf{2 3 . 9 5} \\ \mathbf{4 3 9 . 0 0} & \mathbf{8 2 6 . 9 5}\end{array}$ TITAN TS2H 100w Carr. E

BIG DISCOUNTS ON WHARFEDALE SPEAKER KITS
 LINTON 3XP List/value R.S.C. DENTON 2XP

Also for personal shoppers only
AMPS, T'TABLES, JINGLE MACHINES OISCO CONSOLES, LIGHTING, CABINETS. CREDIT TERMS AVAILABLE
ordere
over
£20

Phone ordert
403 SAUCHIEHALL STREET Tel: 0413320700

GLASGOW Mail Orders/Export enquiries only. Ad to 24 Newgate
Shoping Centre. NEWCASTLE. Add EI carr. on
Hi-Fi spkrs. or kits. Otherwise sdd E1. $25 \quad 12^{\circ}$ Spkr).
to 24 Newgate

A breadboard as big as your ideas:
 The ideal Breadboard for 1 chip circuits.

Accepts 8, 14, 16 and up to 22 pin IC's. Has 130 contact points including two 10-point bus-bars.

EXPERIMENTOR 600£6.30

The Breadboard for quick construction of Microprocessors and other circuits. EXP 600 has 550 contacts including two 40 -point bus-bars with $0.6^{\prime \prime}$ centres

EXP 650 has 270 contacts including two 20 -point bus-bars with $0.6^{\prime \prime}$ centres.

EXPERIMENTOR QUAD BUS
STRIP 杰2. 30 Need more bus-bars, clip on an EXP 48 and you have four 40-point bus-strips with 8 -, 12-and 16 -line address, create data-buses by combining EXP 4B, Bus Strips

No soldering simply plug all standard components in and out, nickelsilver contacts allow Breadboard and components to be used over and over again without damage.

Adaptable accepts any component without adaptors or jumper leads, use 22-30 gauge solid wire for jumper leads.

Mix and Match large and small chips in the same circuit. Use 300 series for smaller and $0.3^{\prime \prime}$ pitch DIP's. 600 series for Microprocessors with $0.6^{\prime \prime}$ centre channel for full fan-out with larger chips.

Smallest to Biggest, remember CSC's Breadboards "snap-lock" together so you can start with a small idea and expand your ideas to as Big a Breadboarding area as you like.

Easy Permanent Mounting, using four screws from front or six selftappers from rear. Vinyl-insulated backing lets you fasten to any surface.

Pick any project that you want to build, or any part of a project that you want to test or modify. Count up the number of IC's you need for the project.
Then simply look up in the box opposite the Breadboard you require.
If you need more than two bus-bars simply add the correct number of Quad-Bus Strips. GET STARTED NOW FOR AS LITTLE AS £2.54.
\qquad
\qquad
\qquad

SUPERSOUND 13 HI-FI MONO AMPLIFIER
A superb solid state audio amplier, Brand new components sistors plus 2 sower outpu
sown
 transistors in push-pult Full wave rectification Output approx. 13 watts r.m.s. into 8 ohms. Frequency re sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3do. Fully integrated separate tolume. Bass boost and Treble cut controls Suitable for 8 -15 ohm speakers. Input for ccramic or crystal cartrioge. Sensitivity approx. 40 mV for ful output. Supplied ready built and tested. with knobs. escutcheon pancl. input and outbut glugs. Overal size 3° high $\times 6^{\circ}$ wide $\times 7 \xi^{\circ}$ deep. AC 200250 V
HARVERSONIC MODEL P.A.

TWO ZERO

An advanced solid state reneral purpose mono amplifier suitable
for rubic Address system. Disco. Guitar. Gram. etc. Features 3 individually contromed inputs (cach input has a separate 2 mage pre (suitable for use with mic. or Ruitar etc.). Input 3 200 mv into 1 meg . suitable for gram. luner, or tape etc. Fuli mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panci. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 walts R.M.S. Very attractively finished purpose buit cahinet anodised aluminium front escutcheon. For ac mains operation $200 / 240 \mathrm{v}$. Size approx. $12 \ddagger^{\circ} \mathrm{w}, \times 5^{\circ} \mathrm{h} . \mathrm{K}^{\prime \prime} \mathrm{d}$.
 "POLY PLANAR" WAFER-TYPE. WIDE RANGE EI.ECTRO-DYNAMICSPEAKER
 handling 20W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings. walls. doors. under tables. etc.. and used with or without baffle. Send S.A.E. for full details. Only £8. 40 each D. \& D. (one 90 p , two E 1 - 10). Now available in either 8° round version or $4!^{\circ}$. $8!$
rectangular. 10 watts RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ}$ £5 25 rectangular. 10 watts RM
P. \& P. (one 65p, two 75p).
STEREO MAGNETIC PRE-AMP. Sens. 3 mV in for 100 mV out. 15 to 35 V nes. earth. Equ. $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 KHz . Input impedance 47 K . Size 11°
2 PLASTIC CONE HF TWEETER 4 ohm. $£ 3 \cdot 50$ per
2° PLASTIC CONE HF TWEETER 4 ohm. $5.3 \cdot 50$ per
matched pair SOD P. \& P.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER $200 / 240 \mathrm{~V}$ Mains oper-
ated Solid State FM AM ated Solid State FM AM Stere Tuner. Covering
M.W. A.M. $540-1605$ KHz VHF/FM ${ }^{\mathbf{M}} \mathbf{8 8 - 1 0 8}$ MHz.
Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Indicatur Huilt in Pre-amps with variable outpul Indicatur. Buit in Pre-amps with variable output
voltage adjustable by pre-set control. Max o/p Voltage voltage adjustable by pre-set control. Max
$600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet. Will match alnost any amplifier. Size $8 f^{\circ} w \times 4^{\circ} h \times$
91 "d approx.
LIMITED NUMBER ONLY at $£ 28.00 \cdot £ 1 \cdot 50 \mathrm{P} . \& \mathrm{P}$.
10/14 WATT HI-FI AMPLIFIER KIT
A siylishly finished monaural amplifier with an output of 14 watts from 2 EL 84 s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls, and separate oass and treble controls are provided giving EF86 and EZ80 rectifier. Simple instruction booklet 250. SAE (Free with parts). All parts sold separately. ONLY £15.50, P. \& P. £1.40. Also avaitable ready builh and lested 520.00, P, \& P. £1.40.

STEREO DECODER

SIZE 20 $\times 3^{\circ} \times$ OR $^{\circ}$ ready built. Pre-aligned and sested for 9.16 V neg. carih operation. Can be fitted to almos any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions (inclusive of hints and tips) supplied. \$6.00 nlus 20p. P. \&P. Stereo beacon lizht if required 40 p evtra.

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer for AC Mains or battery use. MW and FM bands ferrite aerial. Earpiece socket for personal listening Finished in atractive simulated leatherette. Size $7^{\circ} \mathrm{H}$ 91. W $4^{\circ} \mathrm{D}$ approx. Fully guaranteed. Bargain price of only $£ 10 \cdot 00^{\circ} \quad £ 130 \mathrm{p}, \& \mathrm{p}$.

MODEL FLA

Few only similar to above. but battery operation onls and fitted with twin speakers. Four wave bands. MW FM and two VHF bands for reception of aircraft and some public services. ONLY $£ 950$ £1 30 D. \& D.
VYNAR \& REXINE SPEAKERS a CABINET FABRICS app. $\$ 4$ in. wide. Our price $£ 2.00$ yd. length. P. \& P. $\$ 0 \mathrm{p}$ per yd. (min.

HARVERSONIC SUPERSOUND

10 - 10 STEREO AMPLIFIER KIT
A really first-class $\mathrm{Hi}-\mathrm{Fi}$ Sterco Amplifier Kit. Uses 14 transistors including Siticon Transistors in the first flve level with improved sensitivity Integral preamp with Bass. Treble and two Volume Controls. Suitable for use Bass, Treble and two Volume Controls. Suitabic for use modify to suit magnetic cartridge-instructions in cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including drilled metaiwork, high quatity ready drilled printed circuit board with component identification clearly marked. smart brushed anodised aluminium front panel with matching knobs. Wire, solder, nuts, ooctsenable any constructor to build an amplifier 10 be proud of. Brief specification: Puwsr output: 14 watts r.m.s. per channel into 5 ohms. Frequency response $\pm 31 B \quad 12-30.000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into $1 \mathrm{M} \Omega$: Full power bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$ Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to -I6dB. Nerative feedback 18 dB over main amp. Power requirements 35 s at 1.0 amp .
Overall Size $12^{\circ} \mathrm{w} .8^{\circ} \mathrm{d} . \quad 24^{\circ} \mathrm{h}$.
Fulls detailed 7 page construction manual and parts list free with kit or send 250 plus large S.A.E.
AMPLIFIER KIT (Magnelic Input components 33 p extra)
POWER PACK KIT .. $\mathbf{5 6 . 0 0 ~ P . ~ \& ~ P . ~ 9 5 p ~}$ CABINET $\mathbf{1 6 . 0 0 ~ P . ~ \& ~ P . ~} 95 p$
SPECIAL OFFER-only $\mathbf{£ 2 5 . 0 0 ~ i f ~ a l l ~} \mathbf{3}$ items
ordered at one time plus $\& 1-25 \mathrm{p}$. \& p .
Also a vail. ready built and tested $£ 31-25$, P. \& P. il -50 .
HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of 3-4 watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with built in short term thermal overload protection. All components including rectifier smoothing capacitor, sockets \& 5 pin din tape rec 'play socket are mounted on the printed circuit panel size approx. 91°. 24°. 1 max. depth. Supplied brand new \& tested. with knobs brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) a only $\mathbb{£ 1 0 . 0 0}$ plus 50 p P. \& P. Mains transformer with an output of 17 va c at $500 \mathrm{~m} /$ a can be supplied at $£ 2.00$ 40 p P \& P if required. Full connection details supplied
All prices and specifications correct at time of preas and subject to alteration without notice.
PLEASE NOTE: P \& P. CHARGES OUOTED APPLY TO U.K ONLY. SEND SAE WITH ALL ENOUIRIES.

Tel.: 01-540 3985
Open 9,30-5.30 Mon, to Fri, 9.30-5 Sot. Closed Wed.

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio. television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates: the R.T.E.B Servicing Certificates; etc. Also courses in Television: Transistors; Radar; Computers: Servo-mechanisms: Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullesṭ details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch OIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.
4 Integral Power Bus Strips around all edges for minimum interconnection lengths.
Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance $(<10 \mathrm{~m}$. ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.
What other breadboarding system has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE.

At $£ 5.80$ each The EuroBreadBoard is unique value for money. At $£ 11$ for 2 The EuroBreadBoard is an indispensable design aid.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whethei you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success

The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates

Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-

G.C.E.	Engineering	Purchasing
60 subjects	Farming	Sales

60 subjects
at "O" \&
"A" levels
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

Quality audio modules and accessories for

S450 STEREO
FM TUNER
Fithed Fitted with
phase lock-1000 £23.24 +4 p
$+12 \mathrm{i} \% \mathrm{VAT}$

FREQUENCY RANGE

 BENSITIVITY SPURIOUS REJECTID SELECTIVITY $\pm 400 \mathrm{kH}$ AUDIO OUTPUT (22 SUPPLY REQUIREMENT DIMENSIONS DIMENSIONS88-108 Mhz
30 HV
\qquad 50 d
The louch of button ensuring accurate tuming of pre-selected choose, simply by changing the selings of the presel controls. stations, any of which may be altered as often as you choose, simply by changing the setlon
Features include FET indut stage. Vari-Cap diode tuning Swithed AFC LED Stereo Indicator

DUTPUT POWER	7 Watts RMS
LOAD IMPEDANCE	8 ohms
TOTAL MARMONIC DISTORTION	Less than 5\% (Typically 3\%)
FREOUENCY RESPONSE	50 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{dBs}$
TONE CONTROL RANGE	$\pm 12 \mathrm{dBs}$ at 100 Hz and 10 kHz
SENSITIVITY	190 mV tor full output
INPUT IMPEDANCE	1 M ohms
TRANSFORMER REOUIREMENTS	22 V.A.C. rated at 1A
DIMENSIONS (Less controls and Danel)	$200 \mathrm{~mm} \cdot 130 \mathrm{~mm}$ - 33 mm

$200 \mathrm{~mm} \cdot 130 \mathrm{~mm} \cdot 33 \mathrm{~mm}$

The Stereo 30 comprises a complete stereo pra-amplifier. power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e. high qualis unit is supplied with full insteuctions black lont panel, knobs, main witch fuse and fuse holder and universai mounting brackels.

OUTPUT POWER	25 Watls RMS
SUPPLY	$30-50 \mathrm{~V}$
LOAD IMPEDANCE	$8-18$ ohms
TOTAL HARMONIC DISTORTION	Less than 1% (Typically 06%
FREQUENCY RESPONSE	20 Hz to 30 kHz 2 dBs
SENSITIVITY	280 mV for full output
MAX. HEAT SINF TEMPERATURE	$90^{\circ} \mathrm{C}$
DIMENSIONS	$103 \mathrm{~mm} \cdot 64 \mathrm{~mm} \% 15 \mathrm{~mm}$

This high qualfty audio amplifier module is for use in audio equlpment and stereo amplifiers and provides outpul powers ub to 25 RMS with distortion levels below 01%

AL30A 10w M.M.S AUDIO AMPLIFIER MODULES $£ 3.79+3 s_{p} p \varepsilon_{0}$	MAXIMUM SUPPLY VOLTAGE	30 V
	POWER OUTPUT for 2\% THD	10 Watis RMS
	TOTAL HARMONIC DISTORTION	Less than 25%
	LOAD IMPEDANCE	8-16 ohms
	INPUT IMPEDANCE	100 K ohms
	FREOUENCY RESPONSE	$50 \mathrm{~Hz}-25 \mathrm{kHz} \pm 3 \mathrm{dBs}$
	SENSITIVITY	75 mV for tull output
	DIMENSIONS	$74 \mathrm{~mm} \cdot 63 \mathrm{~mm} \times 28 \mathrm{~mm}$

These low cost 10 watt modules offer the utmost in reliability and performance, whilst being compact in size.
SPM80 STABILISED £4.40 + 35p peop

INPUT A.C. VOLTAGE	$33-40 \mathrm{~V}$
OUTPUT D.C. VOLTAGE	33 V nommal
OUTPUT CURRENT	$10 \mathrm{~mA}-15 \mathrm{mps}$
OVERLOAD CURRENT	17 amps approx.
DIMENSIONS	$105 \mathrm{~mm} \cdot 63 \mathrm{~mm} \cdot 30 \mathrm{~mm}$

+ 121\%VAT Designed
protection

PA100
STEREO
PRE-AMPLIFIER

FREOUENCY RESPONSE	20 Hz to 20 kHz , 1 dB
TOTAL HARMONIC DISTORTION	Less than 1\% (Typically 07\%)
SENSITIVITY 1. TAPE INPUTS 2. RADIO TUNER 3. MAGNETIC P.U.	$\left.\begin{array}{l}100 \mathrm{mV} / 100 \mathrm{~K} \text { ohms } \\ 100 \mathrm{mV} / 100 \mathrm{Kohms} \\ 35 \mathrm{mV} / 50 \mathrm{Kohms}\end{array}\right\}$For an outoul 250 mV
EOUALISATION	$\begin{aligned} & \text { Within } \pm 1 \mathrm{~dB} \text { from } \\ & 20 \mathrm{~Hz}_{2} \text { to } 20 \mathrm{kHz} \end{aligned}$
BASS CONTROL RANGE	$\pm 15 \mathrm{dBs}$ at 75 Hz
TREBLE CONTROL RANGE	+ $10-20 \mathrm{dBz}$ at 15 kHz
SIGNAL/NOISE RATIO	Better than 6508 Bs (All inputs)
INPUT OVERLOAD	Better than 26 dBs (All induts)
SUPPLY	20 to 40 V
DIMENSIONS	300-90.33mm (less controls)
nit. the PA 100 provides a comprehens ix push bution selector swith gives	sive solution to the front end choice of inputs together with

MPA30

MAGNETIC CARTRIDGE PRE-AMPLIFIER

Enjoy the quality of a

STEREO PRE-AMPLIFIER

$+35 p p \& p$
$+12 i \% \vee \& 7$
igned and recommended lor use with the AL $20 / 30$ Audio Amplifier Modules. the PSi2 power supply and the T538 Translormer. Festures include onlof volume. Balance. Bass and Treble controls. Complete with tape output
 $20 \mathrm{~Hz}-20 \mathrm{kHz}(-3 \mathrm{~d} B)$
H:

CROSSTALK
SIGNALINOISE RATIO
OVERLOAD FACTOR
TAPE OUTPUT IMPEDA DIMENSIONS

PS12 POWER SUPPLY MODULE

Power supply for AL20A-30A
PA12. S450 etc.
Transformer T538.
Input A.C. Voltage 15-20V. Output D.C. Voltage $22-30 \mathrm{~V}$ approx. (Dependent upon input.)
Output Current 800 mA
maximum.

£1.90

$+12 \frac{1}{3} \% V A T+35 p p \& p$.

BP124 SIREN ALARM

MODULE
American Police screamer powered from any 12 volt supply into 4 or 8 ohm speaker ideal for car burglar alarm. freezer break-down, and other security purposes

ONLY £3.50

+8\% VAT + 35p p\&p. 5 WATTs -

MA60 HI-FI AMPLIFIER KIT

Build you own too quality amplifier, save yourself Dounds. The 1_{4} PA100 pre-amp. 1 SPM80 stab. Dowe' suDDly. 1. BMT80 transt giving 15 watts RMS pet channel STEREO. All modules covered by the BI-PAK satistaction of money back guarantee.

TC60 KIT

A beautitully designed genuine TEAK WOOD veneered cabinet to put the prolessional touches to your home buit amplifler. Full Sockets. Noen, etc. Ideal for the MA60. Size 425 mm . 290 mm . Pricefis es + 12; VAT +85 p pep

TRANSFORMERS

Professionals and Enthusiasts from BI-PAK

AMPLIFIER
(With integral (With integral
heas sink and short-circuil £11.95

+ 8\%V.A.T. P. \& P. 35p

Introduced to fulfill the demand for a fulty protected power amp., capable of driving high quality speaker systems at up to 50w with distortion levels bclow 05\%, deal for domestic use Discos. PA systems electonic organs etc. The generously rated com ponents ensure continuous operation at high output levels.
SPM120
SPY120/45 SMP 120/55 SMP 120/65
£5.80
P. 8 P. 35 p

AC INPUTS

OUT PUT POWER	50 Watts R.M.S
SUPPLY	70 Watts
LOAD IMPEDANCE	8 -16 onms
TOTAL HARMONIC DISTORTION	05\% Max (Typically 02\%)
FREQUENCY RESPONSE丰1dB	$25 \mathrm{~Hz}-20 \mathrm{kHz}$
SENSITIVITY	500 mV
max heat sink temp	45 deg C
DIMENSIONS	$192 \times 89 \times 49 \mathrm{~mm}$

SPM120 is a fixed voltage stabiliser available with an outpui voirage of either 45 v .55 v . or 65 v Designed phimstriv for use in audio applications. the stabiliser which provides output cuffents up to 2
addition of 2 Electrolytic capacitors to complete the s/c protection.

The PA200 is basically our popular PA100 Modifications have been made to make it compatible with the higher output AL120 and AL2 50 amplifiers

HEADPHONES

A 100 quall Hy headphone with cushioned earpads s.nd he acdond Scaparate balance eolume contitis stereo
 A brillant coimpromise between price and pertorA briliant compromise betiveen price and pertor-

HI-FI ACCESSORIES

Parallal Tracking G ROOV KLEEN

The very latest in automatic record cleaning Desig-
ned to sut all modern single play decks Simple to fit. ned to suit all modern single play decks Simple to fit it is extremely efficient. Complete with iwo types of
base and three height extensions o/n 8101 . $\mathbf{3} 38.68$.

Cassette Tape
Enables cassette tapes to be edited and joined easily quickly and accurately Kir comprises Tape Splicer $)$.
(2 mm) 2 Precision Tape Cuters Tape Piel $132 \mathrm{~mm}) 2$ Precision Tape Cuters Tape Piercer 9 Sell adhesive Labels. Reel of Splicing Tape handy wallet o/n 811.c.2.40. - V.A.T p8p 35p
GROOV-STAT
The bic charge gr-Stat statec reducer neutralises the statuc charge on records and other plastic surfaces
$\mathbf{0} / \mathrm{n} 8103.65 .45 . \rightarrow 8 \% \vee A T$ p\& 35 . Cassetto Head Cleanar
Essential for cleaning of tape heads, capstans and rollers Pack contains Tape Head Appticator and tape head polisher tools. Plus bottle of special formula
cleaning fluid and full instructions o/n B32. 0.64 . cleaning fluid and full in
$12 \frac{1}{8} \%$ V.A T. p D 35 p

METERS

Miniature Balance \& Tuning Mate

Balance and Tuning Meter Balance and Tuning Meter
Clear view edgewisy meter Centrezero
doplication Sensitivity 1000 ion Coplivation Sensitivity 1000 o 100 UAA
dimensions $45 \times 22 \times 34 \mathrm{~mm} / \mathrm{n}$

Miniature Lavel Mote
Moving coll for accurate level indication for tape ecorders amplitiers etc Neat design, rugged construction will withstand five thries rated value
Sensitivity FSD $200 \cup$ A OdB. 130 UA Dimensions $23 \times 22 \times 26 \mathrm{~mm}$ o/n 1320.£2.80. $+8 \%$ VAT p\&p35p

Vu Mater

Calibraied - 20 to +3 and 0-100\%. making it suirable lor use as a recording level meter or as a
 V.AT $\mathrm{p} \AA_{\mathrm{i}} \mathrm{P} 35 \mathrm{p}$

ADAPTORS

CROSSOVER NETWORKS

2. Way channels for high and low frequencies to correct speakers -
high to tweeters low to woofers Complete with instructions. Fre-
 2. WAY for 8 ohm speakers up to 30 watts. Frequency: 3 KHz . $/ \mathrm{n}$
$1905 £ 1.65 .+12 \frac{1}{5} \vee \mathrm{~K} . \mathrm{T}$. pap 35 p. 3-WAY for 8 ohms speakers up to 30 natis. Frequency: 800 Hz and
45 KHz o/n 1906.62 .95 . 124% VAT. 8 g . 35 p 45 KHz o/n $1906 . \mathrm{f2.95} \cdot 12 \frac{1}{2}$ VA.T. $\mathrm{P} \& \mathrm{p} 35 \mathrm{p}$.

MICROPHONES

DYNAMIC CASSETTE
For equipment requiring a high quality microphone Siurdy. solid mouided body in black with neat chrome surround Pick-up pattern is
omnidirectional. On/OHf switch. 1 metre of tough lead with floating 25 amnidiectional. On/OH switch, I metre of tough lead with tloating 25
and 35 mm plugs Matching moulded strut Impedance: 200 ohms and 35 mm glugs Matching moulded strut impedance; 200 ohms
Sensitivity $90 d \mathrm{~F}$ (fequency 90.10 .000 Hz Size 20 mm dia x $120 \mathrm{~mm} \mathrm{o} / \mathrm{n}$ 1326. f160. 12:\%VAT. D\& F 350
OYNAMIC MICROPHONE
Supetior quality portable cosselte recorder mike with buition remote
control swith and lead fitted with 5 -pin 240 DiN plug liemote switht and 3 pin DIN plug imictophonel Piovides a direct replacement for those supplied with recorders With detachable stand Omnidirectional impedance 200 ohms Freq response 100 to
10.000 Hz Senstivily 79 dB a1 $1.000 \mathrm{~Hz} \mathrm{o} / \mathrm{n} \mathrm{1327.E2.65}$. . $12 \frac{1}{\%} \%$ \checkmark AT P\&
RE-317: DYNAMIC MICROPHONE
Highly sensitive hightrgrade desk or hand mike suitable for use with many popular cassette decks incorporates ONOH switch and I metre ead with moulded standard jack plug. Complete with desk stand Omnidirectional Impedance 5.000 ohms. Fien response 100 at
12.000 Hz Sensitivify $(-7 \mathrm{~dB}$ a; 1000 mz) o/n 1336. $\mathbf{~} 4.00 .+12 \neq \%$ V.AT p\& 0 35p

OMNIDIRECTIONAL CARDIOID
owered by a liv bartery located within the aluminium body. Satin siver finish with front disk protection to the diaphragm housing. Orvof switch Also with Busby type windsheeld U bracket and battery providing aporos. 8. 10000 hours continus 2 mA rom tiv battery providing approx. 8. 10000 hours continuous hife. Impedance dia +267 mm o/n 1329. £12.80. $12 \% \% V A T$. $p \&_{i p} 35 p$
UNIDIRECTIONAL CARDIOID
Dual imp 600 and 50000 ohms Response 50 , 1014.000 Hz

STANDS

GOOSENECK CHROME FLEXIBLE HOLDERS

engin 5 mm o/n 1334.
FLOOR STAND Heavy chrome. Stow away feet with rubber ends for
maximum stability Draws to a height of 5^{\prime} maximum ofn 1335 manumum stability Draws to a height of 5^{\prime} maximum otn 1335
00 12 A M
QOOM ARM for use with the above stand Heavy chiomed metar it
3 gives 30° reach trom the stand o/n $1337 £ 9-20 .+12 \frac{1}{2} \%$ VA.T. D\&

WINDSHIELD COVERS

o.n 1331 Medium per part f1.20.* $12 \neq$ V.AT. p\&p 35 p. o/n 1332
o.n 1331 Mediumper par £1.20. $12 \% \%$ V.A
Large per parr $\mathrm{f} 1.80 .+12 \% \% V A T .08 p 35 p$

AUDIO LEADS

113
114
13
14
14
5 pin Jin plug plo to 3.5 mm jack plug Leng 5 pin DIN plug 1035 mm . Jack connecied
to pins 385 Length 1.5 m to pins 385 Length 1.5 m
5 pin DIN plug to 3.5 mm . 5 pin DiN plug to 3.5 mm . Jack connected Car aerial extension Screened insulated ledd Firted plug \& ski
AC nains connecting lead tor cassetie AC mains connecting lead for c
recorders 8 radios 2 metres headphone jack socket
$2+2$ pin DiN plugs to stereo ack socket with attenuation nerwork for stereo
headphones. Length 0.2 m , plug to fit most car cassette, 8 track cartridge \& combination units Supplied cartridge \& combination units Supplied
with inline fised power lead ond instructions.
6.6 m Coiled Guitar Lead Mono Jack Plugg
$123 \quad 6.6 \mathrm{~m}$ Coiled Gutar Lead Mono Jack Plug
to Mono Jack Plug BLACK
3 pin DIN plug to 3 pon DIN plug. Length 1.5 m
$\begin{array}{lll}5 \text { pin DIN plug to } 5 \text { pin DIN plug. Length } 1.5 \mathrm{~m} & £ 0.7^{\circ} \\ 5 \text { pin DIN } \\ 50.75^{\circ}\end{array}$ 5 pin DIN pligg to Tinned open end. Length 1.5 m

$\mathbf{£ 0 . 7 5}$
$\mathbf{£ 0 . 7 5}$

All colour coded Length 15 m .
1285 pIn DIN plug to 5 pin DIN socket. Length $1.5 \mathrm{~m} \quad \begin{aligned} & £ 1.30^{\circ} \\ & £ 0^{\circ} .80^{\circ}\end{aligned}$
5 pin DIN plug to 5 in DiN plug mirror
image Length 5 m
2 pin DiN plug to 2 pin DIN inine socket Length 5 m CO.68*

$32 \quad 2$ pin DIN plug to 2 pin DIN sockel. Length 10 m Connected pins 385 Length 5 m 5 pin DIN plug to 2 phono sockets. Connected pins 385 Length 23 cm 5 pin DIN socket to 2 phono plugs
Connected pins 38.5 . Length 23 cm Connected pins 385 . Length 23 cm
Coiled stereo headphone extension lead. Black. Length 6 m
AC mains lead for calculators etc
£0.75*
¢0.
€0.85
¢0.85
£1.10*
¢0.68*
£1.05*
60.90°

Pleese add $12 \frac{1}{2}$ V.A.T. to alf the above leads.
BJ-PAK
DEPT.PW4, P.O. Box 6, Ware, Herts.

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR
Dick Ganderton C. Eng., MIERE

ART EDITOR

Peter Metalli

TECHNICAL EDITOR

Ted Parratt, BA

NEWS \& PRODUCTION EDITOR Alan Martin

TECHNICAL SUB-EDITOR Peter Preston

TECHNICAL ARTIST

Rob Mackie

ASSISTANT ART EDITOR
 Keith Woodruff

SECRETARIAL
Sylvia Barrett Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER
Telephone: 01-261 6671 Roy Smith

REPRESENTATIVE

Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT
Telephone: 01-261 6570° Dave Kerindi

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Citizen's Band-Yes orNo?

THE mention of a Citizens' Band for the UK can be relied upon to generate strong feelings, one way or another, among people with any interest in radio. This is evident from the letters received in response to J. S Goodier's proposals published in our December issue. A selection of these letters appears on page 29.

On the right, we print the text of a letter sent recently to the Prime Minister by the Citizens Band Association, urging the introduction of a UK CB service on a v.h.f. band. The Association's comments on four arguments against CB, while certainly valid in themselves, leave several questions unanswered. The adoption of a band other than 27 MHz has undoubted advantages from the point of view of reducing interference and illegal long-distance working, and providing a boost for the UK electronics industry. But what would be the price of these sophisticated v.h.f. sets? If it's anything like that of hand-portable transceivers operating in the marine or private-mobile v.h.f. and u.h.f. bands, it seems unlikely that many would be sold to private individuals.

If 27 MHz equipment continued to be imported and used, then little would have been gained. It is alleged that several thousand 27 MHz sets are presently operating regularly in a net in north London, but apart from an occasional prosecution there is little that the Home Office can do to control them. How would that situation be changed by introducing a legal service in parallel, on another band? And no doubt many would plead for the quoted 15000 existing users to be allowed to continue to operate their sets, though this figure does rather pale into insignificance against the current 66000 licensed users of radio model control and the numerous radiopaging systems having a long-standing legal right to the 27 MHz band in the UK. At the very least, the government would need to introduce legislation banning further imports of 27 MHz CB equipment.
Though the Association quotes several US authorities as now backing the use of CB as an aid to road safety, there have in the past been numerous published reports of $C B$ channels being swamped, leaving broken-down road users and others unable to contact assistance. With the present growing contempt for law and order in some sections of the community, it seems unlikely that we would be spared the interfering carriers, high-powered transmitters, obscene language or continuous music which have plagued CB in other countries.

There is no simple answer to these problems, and little use is served by claiming that there is. Whatever solution may be adopted is going to be unpopular with a lot of people.

Peter Metalli-Art Editor

From art school, Peter began his career in a newspaper feature agency in Fleet Street, receiving a solid grounding in drawing and publication methods. He remained there for 17 years, interrupted by four years (1943-47), in which he served in the RAF as a Flight Engineer.

In 1955 Peter joined "George Newnes" (incorporated now within IPC) working in the general art department "servicing" the "Practical Group"
magazines, and from there graduated to his present position in PW.

Peter, Gwen his wife, and daughter Angela, have all settled happily in Bournemouth after their move from Essex, following the company's relocation from London to Poole, Dorset.

Married son, Peter, and wife Alice, still back in Essex, have recently made him a proud grandfather.

Interests are model cars and aircraft, stamps, DIY and gardening.

The Rt. Hon. Mr J. Callaghan, MP, PC, The House of Commons,
London SW1
January 12th, 1979

Dear Prime Minister,

I am writing to you to ask you to reconsider your Government's opposition to the introduction of Citizens Band Radio in this country.

Eire and ourselves are the only countries left in Europe which do not allow private citizens some form of short range radio communication. While care must be exercised to license a system which offers efficiency without interrupting other services, is it not somewhat repressive to deny the private citizen any access to short range communication in his everyday affairs?

In the past four main arguments have been advanced against CB:
(i) It may be used by criminals and for undesirable purposes:
(ii) The administration required to control it would be prohibitively complex;
(iii) No frequencies exist which might be used for such a purpose; and
(iv) Those countries which have it wish they did not.

I should like to comment on these objections in order:
(i) At present any criminals who use CB equipment are unlikely to be heard. As soon as CB is legal, however, the presence of large numbers of CB users ensures that criminals using CB are heard and quite probably located and arrested. In the USA any criminal who is fool enough to try to use CB is almost invariably detected.
(ii) Modern "silicon chip" technology makes it not only possible but simple to fit every CB set sold, at the factory, with a unique identifying signal which cannot be tampered with without the resources of a microelectronics factory and without which the CB set will not transmit. The extra cost of such identification would be under 50 p per set. Such a device makes the identification of $C B$ sets simple and reduces the
administrative costs of a CB service to a low level. It also increases the impracticality of the criminal or antisocial use of CB.
(iii) Although there are no unallocated frequencies available for CB there are many MHz of spectrum throughout the v.h.f. and u.h.f. region which, though allocated, are thoroughly under-used. In particular the $220-240 \mathrm{MHz}$ range has unused sectors (some never used since 1944), there is space around 900 MHz , and the v.h.f. television channels are now so unused that spectrum there might well become available in the near future. Very little spectrum is needed for a Citizens Band- 0.5 to 1 MHz would be ample and even 200 kHz could provide a reasonable service-and given political will it could be found.
(iv) This last reason is the weakest of all, though frequently advanced in official circles. In the USA it is Federal policy to encourage the use of $C B$ radio because of its contribution to road safety, as a recent memorandum from the Secretary of the Department of Transportation, the Chairman of the Interstate Commerce Commission and the Chairman of the Federal Communications Commission makes plain. Over thirty countries, including a number not noted for their liberal regimes, now have CB and although there are inevitably some problems the benefits so far outweigh them that none regret introducing it.

However, I am not writing to you now to rehearse a dialogue which is some years old. There is at present a real danger of a less satisfactory form of CB being adopted in Britain in the future if action is not taken soon to define a better alternative.

In the past year three organisations, the National Electronics Council, the British Radio Equipment Manufacturers Association and the Electronic Engineering Association, have prepared reports on Citizens Band Radio in Britain. All are agreed that the Government should introduce $C B$ and all are agreed that the American 27 MHz a.m. standard used in most countries having CB is unsuitable for a
small, densely-populated island like our own on various grounds including television interference, the probability of the market being swamped by equipment built in the Far East for the American market and the availability of equipment, legitimately manufactured for the 10 metre Amateur service, which can boost 27 MHz transmitters to illegally high powers. Instead they (and the Citizens Band Association) propose v.h.f. and frequency modulation (f.m.). Such a system offers many advantages including local manufacture (four British manufacturers are already prepared to manufacture such sets should CB be legalised), minimal interference and higher quality.

However, many people, angered by the continued illegality of $C B$ in Britain, are now importing American and European equipment and using is illegally. The Citizens Band Association estimates that there are now some 15000 illegal users in this country and that their number is growing by about 1000 per month. If this continues your own or some future Government will be forced, as happened in Australia, to legalise what is being done. There will then be no possibility of introducing a more sophisticated system or such controls as the automatic identification mentioned above-it will be necessary to legalise another American-style system with most of the American problems. The CBA would prefer such a system to none at all but we feel that we would have missed a golden opportunity of leading the World into a new generation of Citizens Band Radio.

I therefore most earnestly urge you to reconsider your Government's opposition to CB and legalise a sophisticated v.h.f. system, with whatever controls you or your advisers may consider necessary, before you or your successors are forced, by pressure of illegal use, to permit the use of American 27 MHz equipment.

Yours sincerely,
James M. Bryant, President, Citizens Band Association

This aerial is a two-element colinear design for vertically polarised (omni-directional) radiation. It may be constructed for use on either the 2 m or 70 cm amateur bands and is a development of the very successful "Slim Jim", published in April 1978.
 of the colinear array

Two folded half-wave elements driven in phase from a quarter-wave stub constitute the active parts of the device, originally built for use on the Norwich 70 cm repeater. The requirement called for a pair of aerials with at least 3 dB gain which could be mounted on a mast without undue effect on their omni-directional properties-i.e. with minimal distortion of the otherwise circular radiation pattern.

The theoretical configuration is shown in Fig. 1. Experimentation indicated that the minimum tolerable distance from a metal mast producing the least effect on radiation was 0.625λ. Accordingly, a long stub section is employed which also serves as a supporting mount for the aerial.

The folded radiating elements are voltage driven from a quarter-wave section of the whole stub, the current distribution being indicated by the arrows. The increase in gain over a conventional two-element colinear (gain normally around 1.8 dB) is obtained by the use of the folded elements, which contribute an additional 1.6 dB . This aerial therefore has a total gain of 3 dB over a dipole. Note the break between the return sections, necessary to create a standing wave.

Construction

The diagram of Fig. 2 should provide enough information to enable this aerial to be constructed for either 70 cm or 2 m , detailed dimensions being given in Table 1. For u.h.f. the aerial will self-support but for v.h.f. some form of boom at right-angles to the mast may be necessary to take the weight of the stub and elementswhich are, of course appreciably longer than their u.h.f. counterparts. This could be constructed from wood, and reach at least as far as the quarter-wave section shorting bar. An alternative would be the use of larger diameter tubing for the elements and stubs, say $12.7 \mathrm{~mm}\left(\frac{1}{2} \mathrm{in}\right)$.

Connections to the feed point must be protected from rain and the prototype used an oblong plastic box with tight-fitting lid for this purpose. The insulator linking the two folded element sections should be of high quality material, such as ptfe, which is drilled to fit over the ends.

A piece of aluminium about 10 mm square may be used for the quarter-wave shorting bar, drilled to take the stub lines and tapped for the 4BA screws which lock the bar to the lines. Element dimensions are given for both versions, the velocity factor having been taken into account.

Adjustment

When the aerial has been completed it should be set up in fairly clear surroundings, approximately 2 metres above ground, with the full length of feeder cable attached. Adjust the feed tapping points and quarter-wave point (shorting bar) for maximum power and v.s.w.r. All v.h.f. aerials operate most efficiently when high up and clear of rooftops or other obstacles, such as tall trees. This is particularly true in the case of colinears with zero-angle radiation. Sizeable trees in full leaf can attenuate v.h.f. and u.h.f. signals by as much as 20 dB when placed in the path of radiation, even in dry weather. Brickwork can reduce signals by 10 dB or more.

The vertical angle polar pattern of Fig. 3 was taken from the Author's display unit and clearly shows the radiation characteristics of the u.h.f. prototype.

Fig. 2: Constructional details

Fig. 3: Vertical polar pattern of the $\mathbf{7 0 c m}$ prototype

MPU evaluation kit

Now available on an off-the-shelf basis from Distronic are two low-cost microprocessor development systems for the RCA CDP 1800 COSMAC m.p.u. family. Costing £ 100 (plus VAT), the CDP18S020 evaluation kit is a complete kit of components for building an evaluation board for the CDP1802 COSMAC m.p.u., while the CDP18S021 Microterminal, which costs only $£ 70$ (plus VAT), is a lowcost, hand-held, non-hard-copy alternative to a teletypewriter data terminal.

The two systems are ideally suited to combined operation. The evaluation kit represents a valuable first step in the development of COSMAC programs and prototype systems, and incorporates on-board utility read-only memory for terminal control. The Microterminal provides a convenient means of controlling a COSMAC system, reading and modifying memory, and providing hexadecimal input/output capability. Distronic Ltd., 50-51 Burnt Mill, Elizabeth Way, Harlow, Essex. Tel: (0279) 32947/39701.

On Station

For those interested in the whole spectrum of broadcasting, two recent publications are relevant. The 1979 "World Radio and TV Handbook", according to its Assistant Editor, contains comprehensive information on the world's transmitters (including recent frequency changes) and details of operating times, languages, DX clubs, time signal broadcasts, and even religious broadcasting organisations. The book is available at a cost of $£ 8.50$ from Billboard Publications, via Argus Books Ltd., 14 St. James Rd., Watford, Herts, at your bookshop.
"Radio Stations Guide", by B. B. Babani and M. Jay, has been considerably up-dated, and contains basic information on the world's radio broadcast transmitters, with a special supplement covering the changes in longand medium-wave transmissions in the United Kingdom. This guide is available at a cost of f 1.45 direct from the publisher: Bernard Babani (publishing) Ltd., The Grampians, Shepherd's Bush Rd., London W6 7NF.

Rally date

The North Midlands Mobile Rally organised by The Midland Amateur Radio Society and The Stoke-on-Trent Amateur Radio Society, will take place on Sunday, 29 April 1979, at Drayton Manor Park near Tamworth, Staffordshire. The Park is located on the A4091, which is within easy reach of the M1, M5 and M6 motorways.

The rally will open at 11.30am and visitors will be made very welcome. There will be a talk-in on 2 metres and 70 centimetres. For further details contact: Norman Gutteridge G8BHE, 68 Max Road, Quinton, Birmingham B32 1LB. Tel: 021-4229787.

Testing m.p.u.s

Programme details and synopses of papers for "Microtest", the Symposium on the testing, maintenance and reliability of microprocessor-based equipment, being held at the University of Sussex, from 4pm on Monday, 2 April 1979, until midday on Thursday, 5 April 1979, have now been finalised.

The papers being presented are from Industry, the Universities, Government Departments, and the Post Office.

The Symposium is being organised by the Society of Electronic and Radio Technicians in association with the IERE and the Microprocessor Application Group of the IEE.

The Symposium will open with a Keynote Address given by Colin Crook, Managing Director of Rank Precision Industries Ltd. on the evening of 2 April.

Further information and registration forms are available from: The Symposium Secretary (MS), SERT, Faraday House, 8-10 Charing Cross Road, London WC2H OHP. Tel: 01-240 1152.

New catalogues

Tirro Electronics, the mail order division of "Ritro" has issued a new, combined, catalogue/price-list/order form, available from them free of charge.

Products listed include a whole range of components from the AMICOS m.p.u. system, to resistors, diodes and capacitors. Other useful items included are transformers, i.c.s, aerials, tools, books, etc.

Each item is clearly priced (VAT included), with discounts for quantity orders. Tirro Electronics, Grenfell Place, Maidenhead, Berkshire. Tel: (0628) 36229.

Chloride Exide have just issued an updated list of their dry batteries and torches.

In twelve A4 pages plus covers, it gives all necessary information about high-power batteries; transistor equipment batteries; calculator batteries; extra power transistor batteries; low and high tension batteries; torch, lamp and special purpose batteries. It also includes an equivalents list, dry battery terminal diagrams and coloured illustrations of the top ten popular types.

Available on request from: Chloride Automotive Batteries Ltd., Chequers Lane, Dagenham, Essex RM9 6PX.

Home Radio

Due to a massive rise in the rent asked for their current premises, Home Radio (Components) Ltd., of Mitcham, Surrey are moving to new offices at the end of March. Because of this, they will be unable to maintain their retail counter facilities, and will in future trade by mail order only.

To dispose of some surplus stock items, there will be lots of bargains available to callers only in a clearance sale from 24-31 March at the existing address, $9 \mathrm{am}-5 \mathrm{pm}$ daily (close 1 pm on Wednesday).

The new postal address for mail order will be notified as soon as possible. For the present, customers should continue to write to: Home Radio (Components) Ltd., Dept. PW. 234-240 London Road, Mitcham, Surrey CR 4 3HD.

Can I Help You!

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of PW. If so, let me know and I will endeavour to publicise your rally, get-together whatever, through this column. Remember though, we compile the magazine some time ahead of publication day (e.g. this note was written in mid-January), so, the earlier I can have details, the better.

Alan Martin

J. BIRKETT

Radio Component Suppliers

$\mathbf{2 5}$ The Strait, Lincoln LN2 1JF. Tel: 20767

400 mW 2ENERS Unmarked Good 3.6, 6.8, 10, 11, 12, 13, 16, 18, 24, 30.33.36v. All at 10 for 40 p .
ERIE REO CAP .OIUf 100v.w. SUB-MINIATURE CAPACITORS O Ep each. BDIS7 4 Amp NPN PLASTIC POWER NPN TRANSISTOR8 5 tor 9 MURATA 10.7 MHz CERAMIC FILTERS 27 p , VERNITRON FM4 10.7 MHz FILTER 980 p , MURATA $455 K \mathrm{~Hz}$ BFB FILTER 930 p .
10 Amp S.C.R.e 100 PIV $025 \mathrm{p}, 400$ PIV © 60p, 800 PIV 060 p.
DAU TRIMMERS 2 to 9pf 6 10p, 6 to 45pf 10 10p, 0 to 125pf 0 12p, 8 to 140pt Q 15p, TETFER VHF TRIMMERS IOpf 0 18p.
 2N 3553 @ 3 for E1. 10
ELECTROLYTIC CAPACITORS 1000uf 100v.w. 50p, 2200uf 100v.w. 60p,
HCBU CRYSTALS $38 \mathrm{MHz} 40 \mathrm{MHz} .44 .3 \mathrm{MHz}, 45.9 \mathrm{MHz}, 48.5 \mathrm{MHz}, 46.7 \mathrm{MHz}$
$48.3 \mathrm{MHz}, 50.1 \mathrm{MHz}$. All at 50 p each.
3 PiN PLUG AND 8OCKET like R.S. European Type with Two Matres of Cable 75p
pair.
SUB-MINIATURE TANTALUM $4.7 \mathrm{uf} 10 \mathrm{v.w}$. . $5 \mathrm{p}, 6$ for 25 p .
502 Wett 2ENERS assorted untested 087 p .
DISC CERAMIC8 . O Iuf 50v.w. 6 20p doz, 1 iuf $18 \mathrm{v.w}$. . 25 p doz
IOO MINIATURE DIODES CV 9637 pre-formed leads 67 p.
VHFFET8 $40673 T$ 33p, E304 25p, J310 0 20p, MFE 1310 60p, BF 256 25p,
MINIATURE BUTTERFLY PRE-8ET VARIABLE CAPACITORS spind

30 VARI-CAP DIODES LIKE BA 102 untested θ E7p.
200 t. 1 Watt RESISTORS assorted for 75 p .
MULLARD VARIABLE CAPACITORS Solid Dielectric $195+80 \mathrm{pf}$ © 40p.
 si.50, 20 FT $241 A$ CRYSTALS assorted G ET.10.
TRANSISTORS BC 548 e 10p. 6 for 50 p. BC 549 © 10p, 8 for 50 p .
PLASTIC TRIACS 400 PIV 6 Amp O e0p each.
COIL FORMERS ${ }^{\text {i }}$ " Dia. with core at 6 for 25 p .
McMURDO 8 PINPLUGS $020 \mathrm{p}, \mathrm{SPIN}$ SOCKETS 20p, COVERS 0 15p.
600NHz FREQUENCY 8 DIIIT COUNTERS HFC 600 © E116.
2 GHz STRIPLINE NPN TRANSISTORS 0 EI each.
100uf 100v.w. WIRE ENDED ELECTROLYTICS 10p, 5 for 35p.
MC 3340 ELECTRONIC ATTENUATOR I.C. with data G BOp.
luf 25v.w. ELECTROLYTICS at 6 for 25 p .
位
SOLOER-IN FEEO THRU's 6.8pf. 1000 pf alt 20 p doz.
MULLARD TPACK 800MHz TRANSISTORS BF 362026 p .
CRYRTALS IOX 8010 KHz 40p, 10 XAJ $7010 \mathrm{KHz}_{2} \Theta 30$ p.
ELECTRET MICROPHONE INSERT8 with FET Pre-amp
Please add 200 for posi and packing. unless otherwise stated on U. Overseas post at cost.

P.C.B'S FOR PRACTICAL WIRELESS PROJECTS

Nov. 78	Sarum 0 Meter	R030	p.
Nov. 78.	Standard Charge Timer	AD212	Price $£ 280$ \& 20 pence p \& p.
Nov. 78.	Porch Light Timer	AD222	Pri
Nov. 78.	Battery Indicator	AD225	Price $£ 0.60$ \& 12 pence p \& p.
Dec. 78.	Car Radio L.W. Converter	$R 034$	Price $£ 2.35$ \& 15 pence p \& p.
Dec. 78.	Digital Door Chimes	R017	Price $£ 3.78$ \& 25 pence p \& p.
Dec. 78.	Car Radio L.W. Converter	R032	Price $£ 2.62$ \& 20 pence p \& p.
Jan. 79.	Acoustic Delay Line	R018	Price $£ 3.53$ \& 20 pence p \& p.
Jan. 79.	Darchester	R033	Price $£ 10.80$ \& 30 pence p \& p.
Feb. 79.	Hythe Receiver	WR037	Price $£ 5.94$ \& 20 pence p \& p.
March 7	Hythe Receiver	WR038	Price $£ 2.70$ \& 20 pence p \& p.
March 7	Soundlite Converter	WK001	Price $£ 5.98$ \& 20 pence p \& p.
March 79	Tone Burst Generator	R023	Price $f 1.60$ \& 15 pence p \& p.
March 7	Wide Band Noise Souce	WR036	Price $£ 0.70$ \& 12 pence p \& p.

Send order to:

C. BOWES \& CO. LTD.,

> 4, WOOD STREET, CHEADLE, CHESHIRE SK8 1 AQ. TOI. 061-428-4497.

Please state type number and enclose cheque or postal order.

Can YOUR Antenna do all this?

A SMALL SELECTION FROM OUR HUGE FILE OF TESTIMONIAL LETTERS ON THE JOYSTICK VARIABLE FREQUENCY ANTENNA (.5-30MHz).

Carl V. Guest, Mount Vernon, Ohio, writes-"I set the Joystick antenna on the floor of my operating room which is at street level. On 40 meter CW 1 worked out to a distance of 700 miles in the afternoon."
"CQ" Magazine--"If you are high enough the antenna will operate (especially at 15-20) as well as the well-known 3 -element beam with which we compared it. The tests were 'operational, not theoreticall' We find that if we can hear 'em we can work em-and in most cases with a 100 watts input."
K6MDJ-"Early results are astounding. l've been using a trap dipole for 40-20-
15. This JOYSTICK out-performs the dipole $2 \times 1 .{ }^{\circ}$

G3UGB--"Extremely good reports on 160 meters and 80 meters."
W5CJV-"Do I like the JOYSTICK? I guess sol i took five antennae down and now use the Joystick alone?"
IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLDWIDE AND IN GOVERNMENT COMMUNICATION

JOYSTICK ANTENNAS

SYSTEM "A"

£41.00
200 w. p.e.p. OR for the SWL

SYSTEM "J"

£47.95
500 w. p.e.p. (Improved " Q ' on receive)

"'PACKAGE DEALS"
 COMPLETE RADIO STATIONS FOR ANY LOCATION

All peckages include the JOY8TICK VFA (Syatem "A") 8ft feeder, all neceasary Cobles, matching communication headphones. Delivery Securicor our rikk.

PACKAGE No. 1. Features R. 300 Rx.
£222.00
PACKAGE No. 2. F Feautus 5 FG7 7 Ax

PACKAGE No. 3. Features SRX30 Rx.
PACKAGE No. 4. Our "Rolls"-Rx. FRG7000.

RECEIVERS ONLY
 $\begin{array}{llll}\text { R. } 300 & £ 184.50 & \text { FRG7 } & \text { £199.95 }\end{array}$
 SRX 30
 £174.95
 FRG $7000 £ 364.50$

All prices are correct at time of going to press and include VAT at $12 \ddagger \%$ and carriage.

Just telephone your card number Phone 0843 62535(ext.5)
(or 62839 after office hours)

or write for details, send 9p stamp

G3GED

G3VFA
5. Patridge House, Prospect Road, Broadstairs, CT10-1LD. (Callers by appointment).

Having in mind the miniscule 0.6 mm tracks of the Compact Cassette, and the low tape/head velocity of a mere $4.75 \mathrm{~cm} / \mathrm{s}$, it seems incredible that the medium is currently capable of high quality recording and replay up to frequencies approaching 20 kHz , and it is still improving. When the Compact Cassette system was launched by Philips way back in the Fifties the quality by today's hi-fi standards was, frankly, abysmal. The noise floor was little more than 40 dB below signal peaks of some 5 per cent distortion, the upper-frequency response commenced rolling-off around 7 to 8 kHz , and the wow and flutter figures could easily reach 0.5 per cent or more!

Assisted by the recent noise reduction systems, notably Dolby B, and the new psuedo-chrome (Cr) and pure Cr tapes, a noise floor as low as 65 dB (CCIR/ARMweighted) relative to an output of 3 per cent 3 rd-order distortion threshold is readily achievable at middle frequencies, which is virtually as good as can be expected from the best gramophone records. At the recording levels likely to be experienced in the treble regions by the vast majority of home recordists, the response holds well to frequencies of 15 kHz or more (which is the upper limit of most gramophone records and f.m. radio), while dramatic improvements to tape transport mechanisms have decreased the wow and flutter to less than 0.1 per cent DIN-weighted peak.

With these sort of performance figures, therefore, it is little wonder that more audiophiles and music lovers are turning to the cassette deck as a primary source of programme signal, which is regarded as having the edge on the record deck in terms of its recording attribute, if not in absolute music quality.

If a recording is made of a top quality gramophone record or stereo radio programme with a contemporary hifi deck using good tape, it is often difficult to determine conclusively whether one is hearing the original or the recording. Yes, the state-of-art is to this standard. Indeed, there are people who claim that the recording sometimes auditions more favourably than the original, which would appear to have significance, in that the replay distortion is "disguising" some of the less palatable distortion plaguing the original programme signal, but this is a different story!

So far as pre-recorded cassettes (e.g., Musicassettes) are concerned, the quality of the equivalent gramophone records is generally better. It is also more convenient to locate a particular track on a disc than on a cassette record, but even this cassette shortfall is being resolved by the microprocessor chip, such as found in the Optonica up-market cassette decks, for quickly locating a required
section of music for replay, without the frustration of having to make experimental fast winds and rewinds.

Cassette Shortcomings

So far, then, it might be supposed that the compact cassette medium no longer has any shortcomings and that all the problems have been resolved. This is certainly not true. For example, the medium cannot yet compete with wider-track reel-to-reel tape running at higher speed. However, with some of the latest tapes the performance can currently exceed that of reel-to-reel tape running at $9.5 \mathrm{~cm} / \mathrm{s}$, which is a truly remarkably achievement.

When the pure metal particle tapes are more readily available, along with machines to do them full justice, then the improvement will be even more dramatic, and we shall probably be able to obtain the existing cassette performance with a tape speed half that of the existing cassette tape speed! Conversely, by retaining the existing cassette speed, the performance will be lifted virtually to match that of most domestic type reel-to-reel machines running at high speed.

The biggest shortcoming of the cassette medium can be described with one word-compression. A tape can assimilate only a certain amount of magnetism depending on its magnetic properties. If the magnetising force is increased by passing an increasing current through the winding of the recording head, the magnetic flux density of the tape will increase until it can accept no more magnetism. At this point no matter how much more the force is increased there will be no further increase in tape flux. This means that the tape is fully saturated since all the available magnetic domains are then in alignment.

Fig. 1: Hysteresis loop of magnetisation. See text for description

The hysteresis loop in Fig. 1 describes the path taken by flux (B) as the magnetising force (H) is increased first in one direction, decreased, and then increased in the opposite direction. Initially, the flux follows the brokenline up to saturation; it then falls back from saturation as the force is reduced to zero, and rises to saturation in the opposite direction as the force is increased in the opposite direction. The loop shows that after the tape has been magnetised and the force is reduced to zero a flux remains on the tape of value (R) which is, in fact, the magnetism which has been imparted to the tape and retained by it. Points (R) on the loop are called the remanent points and thus signify the remanent magnetism remaining on the tape after the force has been removed.

The loop also shows that once the tape has been magnetised, an opposite field of force H_{c} is required to pull the remanent flux down to zero again, and hence to demagnetise the tape. This is called the coercive force, so the greater the coercivity of the tape, the better it holds its magnetism and the harder it is to demagnetise, which can be useful, particularly for recording high frequencies.

Transfer Non-Linearity

To combat the severe non-linearity at low values of magnetising force, the signal for recording is superimposed on a high-frequency sinewave of around 100 kHz . This caused the magnetic force, resulting from the signal, to swing on the upper reaches of the two halves of the $B H$ curve, which are more linear than the lower reaches. Even so, the resulting transfer characteristic is still not very linear, particularly as the signal pushes the tape towards saturation, which means that in spite of the recording signal being of very low distortion, the replay signal is bound to carry a greater level of distortion, especially at high recording levels.

The nature of the transfer characteristic, after the improvement by the h.f. biasing has been taken into account, is shown in Fig. 2. As this type of curve contains odd-order terms, most of the distortion is odd-harmonic, such as 3 rd, 5 th , 7 th , etc., harmonic, with the 3 rd harmonic predominating. Moreover, because the curve goes more non-linear as the tape approaches saturation, so the 3rd harmonic distortion increases. If the signal being recorded is so strong as to push the tape into saturation, then there can be just as much 3rd- and odd-order distortion as there is fundamental! Hence the reason why cassette recordings sound abysmally poor when they are over-recorded on signal peaks.

The maximum output level (MOL) of a tape refers to the level of flux that it can accommodate up to a specified level of distortion-usually 3 per cent. In the SI units, magnetic flux density is expressed in webers per metre (Wb / m), but as tape flux is so small the expression $\mathrm{nWb} / \mathrm{m}$ is used, where n is the nano or 10^{-9} multiplying factor. Some idea of the flux level on a tape can be gleaned from the fact that the majority of Japanese cassette decks show +3 VU on their meters when the recorded tape flux corresponds to about $200 \mathrm{nWb} / \mathrm{m}$ which, incidentally, is the Dolby noise reduction reference level. This means, then, that at 0 VU the tape flux is about $141.5 \mathrm{nWb} / \mathrm{m}$ (e.g., 3 dB down from $200 \mathrm{nWb} / \mathrm{m}$, which is 200×0.707).

The curves in Fig. 3 give some indication of how the 3rd harmonic distortion increases with increasing tape flux, based on the average of five different tapes as used in domestic cassette decks at low, middle and high frequencies. It should be noted that different machines and tapes of different samples might well result in a different distribution. For convenience, lines have been drawn to

Fig. 2: Transfer characteristic of magnetic tape showing non-linearity of odd-order terms, which is responsible for odd-order distortion on the output signal. The curve takes account of the correction provided by the h.f. bias

Fig. 3: Curves showing how the distortion increases at three different frequencies as the recorded level and hence the tape flux is increased. The results represent the averages of a number of samples and batches of the tape types indicated, when used with domestic cassette decks
indicate the $0 \mathrm{~dB} 200 \mathrm{nWb} / \mathrm{m}$ point on the horizontal scale and the 3 per cent distortion point on the vertical scale.
The curves show that with this particular combination the pseudo-Cr tape (such as Maxell UDXL II, TDK SA, etc.) is capable of the greatest flux at the low frequency of 333 Hz where, to the 3 per cent distortion point, a flux of +5 dB (corresponding to about $356 \mathrm{nWb} / \mathrm{m}$) can be accommodated. The basic Fe will only yield about +1 dB , basic Cr a trifle less, Cr Super (a recent BASF formulation) about +2.5 (depending on bias), and ferrouschrome (FeCr) about +3 dB . Clearly, then, the pseudo- Cr is a clear winner so far as sheer flux is concerned at I.f.

Although a good deal of music energy and peaks reside at low and middle frequencies, this is not the whole story because high quality music can undoubtedly contain quite high-amplitude transients at much higher frequencies. Looking at the curves applicable to $10-11 \mathrm{kHz}$, it will be seen that the distribution has altered somewhat, for now
the greatest flux is yielded by the Super Cr to 3 per cent distortion at about $-8 \mathrm{~dB}(80 \mathrm{nWb} / \mathrm{m})$. The pseudo- Cr is down to about $-12 \mathrm{~dB}(50 \mathrm{nWb} / \mathrm{m})$, while the basic $F e$ is at the bottom at about $-14 \mathrm{~dB}(40 \mathrm{nWb} / \mathrm{m})$. The basic Cr is quite respectable at $-10 \mathrm{~dB}(63 \mathrm{nWb} / \mathrm{m})$ and the FeCr is not bad at $-11 \mathrm{~dB}(56 \mathrm{nWb} / \mathrm{m})$. These curves, then, indicate that Cr and FeCr are good upper-frequency performers.

The middle-frequency curves fail to reveal the upperfrequency attribute of the Cr and FeCr tapes, since the pseudo- -Cr is still showing the highest flux at -2 dB $(159 \mathrm{nWb} / \mathrm{m})$. Nevertheless, the Super Cr is not far behind, nor is the basic Cr . The lowest output is given by the FeCr at $-6 \mathrm{~dB}(100 \mathrm{nWb} / \mathrm{m})$.

These curves, then, signify that as the frequency of the recorded signal increases, so the tape arrives at the beginning of saturation at decreasing levels of flux. If we were to record a tape at a constant level over the frequency spectrum, starting at, say, $200 \mathrm{nWb} / \mathrm{m}$ at 333 Hz , on replay we would find that the flux carried by the tape would gradually decrease with increasing frequency, as shown in Fig. 4. The upper-frequency rolloff of the curve is caused by the progressively increasing compression (that is, the inability of the tape to retain a given high level of magnetic flux as the frequency is increased).

This is the result of self-demagnetisation of the highfrequency, short-wavelength magnetic domains recorded on the tape oxide. For each half-cycle of recording signal the equivalent of a miniscule bar magnet is produced on the oxide, and because the poles get closer together as the frequency of the signal is raised, the ability of the magnet to sustain its strength is diminished.

The recorded wavelength is equal to the tape velocity divided by the frequency in Hz . Thus, at 15 kHz and at the cassette speed of $4.75 \mathrm{~cm} / \mathrm{s}$, the wavelength is a mere $3.16 \mu \mathrm{~m}$, so each magnet has a length of $1.58 \mu \mathrm{~m}$. Little wonder, then, that there is a strong tendency towards demagnetisation! It is noteworthy that the length of the gap of the replay head must be of a similar small order fully to define the high-frequency components of the signal.

During recording, pre-emphasis is applied to the signal current fed to the head to help combat the h.f. loss. However, if excessive magnetic force is applied to the tape, the tape tends to demagnetise while it is actually being recorded, which can further worsen the compression distortion at h.f. Tapes which give the best h.f. performance with the least compression and hence h.f. distortion, are those of relatively high coercivity, such as the recent $\mathrm{Cr}, \mathrm{FeCr}$ and the latest high-energy Fe and pseudo- Cr formulations, the first mentioned particularly including the BASF Cr Super if the programme material warrants the extra price and the machine can do full justice to the tape.

Although there are more factors involved in tape choice, the performance at h.f. cannot be over-stressed for the adequate recording of high quality material, from microphone channels direct, from electronic music-making devices, and from synthesisers where the peaks and energy at h.f. are likely to be relatively high. For dubbing from gramophone records and f.m. stereo radio, tape choice is less exacting (but it is desirable always to use the best that can be afforded and never cheap non-proprietary brands which can quickly shed their oxide and clog up the head gaps) because of the limited high-frequency energy and signal peaks of this nature of signal.

Although the curve in Fig. 4 is interesting, more useful are those curves which refer a given level of distortion to tape flux over the lower, middle and upper parts of the frequency spectrum. Since odd-order distortion

Fig. 4: Compression curve. The magnetic flux assimilated by a tape recorded at high level corresponding to $200 \mathrm{nWb} / \mathrm{m}$ at 333 Hz falls off with frequency as shown. To avoid the effect of compression, the frequency response is taken at a recording level at least 20 dB below $200 \mathrm{nWb} / \mathrm{m}$, a curve shown by the broken-line is then achieved provided the bias and equalisation are set to suit the tape. If the bias is too low the upper frequencies will tend to show a boost, while if too high the upper frequencies will tend towards early roll-off
predominates (particularly 3rd-order), the distortion measured is 3 rd harmonic at I.f. (around 333 Hz) and 3 rdorder intermodulation distortion at upper-middle ($4-5 \mathrm{kHz}$) and h.f. $(10-11 \mathrm{kHz}$).

There is no difficulty in measuring 3rd harmonic at I.f., for at 333 Hz it falls at 999 Hz , which is well within the passband of the system. At upper-middle and particularly h.f., the 3rd harmonic is likely to fall outside the passband and be affected by the replay equalisation. To avoid this, two-tone driving signals are used of f_{1} and f_{2} and the 3rdorder IM products of $2 f_{1}-f_{2}$ and $2 f_{2}-f_{1}$ measured in ratio to the driving signals. Since there is a mathematical relationship between 3rd harmonic and 3rd-order distortion, perfect correlation is achieved provided due attention is taken of the difference between the crest factors of the single-tone and two-tone signals.

For hi-fi applications, an upper limit distortion threshold of 3 per cent would appear to be appropriate, so the plan, then, is to find the flux assimilation of the tape when used with a specific domestic machine (or batch of such machines-taking the average) over the spectrum for 3 per cent distortion threshold.

> NEXT MONTH
> Spectral distortion, bias and equalisa-
> tion, head problems, noise floor and dynamic range

The letter from J. S. Goodier regarding Citizen's Band in the UK, which appeared in our December 1978 issue, provoked a flood of letters from readers. These were fairly evenly divided between "for" and "against" CB. Several writers took violent exception to Mr Goodier's suggestion that part of the 2 metre band should be allocated for novice use, as a substitute for a Citizen's Band in the UK. We print here a selection of the letters received.

Sir: I have recently returned from Australia, where Citizen's Band radio has been legal for just over a year. I feel, however, that the Australian service follows too closely the American service. I also feel that the biggest problem with these two services is that a licence is far too easily obtained, and that a bad frequency band and emission type have been employed. A CB service could be introduced in this country, with heavy modifications to the American system of licensing.

I think that the following would greatly reduce the problems of such a service:

1. Correct radio procedure should be used, with proper station identification at the beginning and end of each transmission; only normal speech should be allowed, such as would be used on the telephone, with no "10-codes", which seem to make up the total vocabulary of many CBers.
2. The 11 metre h.f. band should be maintained, but the frequencies used changed to, say, $26 \mathrm{MHz}-27 \mathrm{MHz}$ $(11.538 \mathrm{~m}-11.111 \mathrm{~m})$, thus avoiding any overseas contacts. This band can be used in its entirety, perhaps utilising v.f.o. controlled transceivers, and allowing plenty of space for everyone.
3. Emission should be s.s.b. only, avoiding a.m. heterodyning and giving less overcrowding and more signal clarity. 4. A maximum output of 15 W p.e.p. to be allowed, with no directional or gain antennas of the beam or quad type.
4. Licensees would be required to undergo an examination on regulations, including possible interference problems and remedies, a procedural test, and show a basic knowledge of antennas for the frequencies used and their alignment.
5. A licence fee of $£ 7$ to $£ 10$ should be charged and a callsign allocated once the examination had been passed. A callsign could take the form SD123W, etc., where SD indicates the county, 123 is the licence number, and W is the initial of the town in which the licensee lives.

I feel that the "Toms, Dicks and Harrys" could be greatly reduced by the initial pre-licensing exam. There is obviously a demand for a service in the UK, so with the appropriate licensing conditions there is no valid reason for such a service to be denied to us.

> Gerald Yates Watcombe Torquay

Sir: I do not think that Mr Goodier's idea of a novices' amateur band on $144.5-145.0 \mathrm{MHz}$ would be accepted by present 2 m users. The code-free facility of the present G8-type licence should not be beyond the capability of any interested enthusiasts, and any lowering of the licensing requirements would certainly make channelised f.m. on 2 m sound like CB.

Anyhow, quite a lot of the 144.5 MHz region and upwards is used for s.s.b. contacts, and $144.90-145.0 \mathrm{MHz}$ is used for beacon facilities. As one amateur using s.s.b. on 2 m and trying for beacons here in Ireland (both their reception from distant places and their establishment here too), I would not welcome private communication type facilities in the band.

We here in EI (Eire) have just been given the facility of a code-free v.h.f. licence, so we welcome the increased use of 2 m throughout the country. Only a small percentage of present amateurs are active on v.h.f. here-the silence has to be heard to be believed.

Perhaps the supporters of a novice type band could try for additional frequency allocations in the v.h.f. spectrum, say, $100-105 \mathrm{MHz}, 220-225 \mathrm{MHz}, 400 \mathrm{MHz}$, or some other unused band. Enthusiasm for private communications should be directed positively towards a technical service with technical requirements for operation, and also giving the home electronics industries a chance to manufacture the equipment. Re-crystalling of expensive imported 2 m f.m. equipment should be made very, very difficult. CB on 27 MHz has caused havoc in the USA, not only from the TV interference aspect but also by upsetting the balance of trade. A novices' v.h.f. band is a possibility for the UK.

Des Walsh EI5CD
 Carrick on Suir
 Co Tipperary

Sir: Why is it every now and then some crank wants to do something with 2 m below 145 MHz ? First G3RKL wanted to put repeaters and channels for s.s.b. Letters in Radio Communication told him where to put them! Now a reader in Stockport wants it for CB.

The 2 m band from 145 MHz down is for amateur usetrue amateur-with DX, RTTY, SSTV and all modes. If our reader gets a good 2 m receiver and antenna, he will be able to hear these signals.

The only people we want on the air in G-land are those who have passed the RAE.

John Tye
Dereham

- Norfolk

Sir: Your correspondent J. S. Goodier suggests that if a Citizen's Band was permitted in the UK "they will come in their millions".

We must assume more than, say 1 million-perhaps as many as 5 million. If we take the price for an average 2 metre transceiver equipment, let's say $£ 200$, then the total market for 5 million sets will be worth $£ 1000$ million. On this will be charged 8 per cent VAT, which comes to $£ 80$ million. Good grief, man, what is the Chancellor of the Exchequer waiting for?

Who is fooling who? Cut the b*****"t and legalise what other sensible countries have already done.

> J. Acton
> Iver
> Bucks
continued on page 67

K nowing how to design a filter for a pre-amp or mixer is a very handy thing if you do a lot of playing with audio circuits, but can be uphill work if your knowledge of maths does not extend a great deal beyond Ohm's Law. If you fit into this category then despair no more! To design passable (if you will pardon the pun) filter circuits, all one needs is a (modified) version of Ohm's Law (a pocket calculator helps, too!).

The simplest type of filter is the CR filter, so called because it uses only capacitors and resistors. Fig. 1(a) shows a low-pass filter, and Fig. 1(b) a high-pass filter.

Low Pass

The low-pass filter works like this: at low frequencies, the reactance (a.c. resistance) of C is much larger than the resistance of R, so the circuit functions as a voltage divider. Because the reactance of C (called X_{c}) is so much larger than R , the voltage dropped across R is very small, and the output is very nearly the same as the input. As the input frequency rises, the reactance C drops until, at a certain frequency called the cut-off frequency (abbreviated F_{c}, , X_{c} equals R.

If we have a voltage divider composed of two equal resistors, then the output is exactly half the input. This is the frequency that gives the filter its name, e.g., we talk of a " 10 kHz low-pass filter", meaning it halves a 10 kHz signal and rejects all frequencies above, because as the input signal rises above the cut-off frequency, X_{c} gets smaller and smaller and the output drops off correspondingly. When we design a filter, we have to take into account the input impedance of the amplifier or pre-amp, Z in the circuits.

Now let's design a filter. The three things we may know or may not know are C, R and F_{c}, so the three formulae for calculating them are shown below:

$$
\begin{aligned}
F_{c} & =\frac{1}{6.28 \times R \times C} \\
R & =\frac{1}{6.28 \times F_{c} \times C} \\
C & =\frac{1}{6.28 \times F_{c} \times R}
\end{aligned}
$$

1. Design a scratch filter for an amplifier with an input Z of $100 \mathrm{k} \Omega$.

Scratch filters reject at about 15 kHz , so we know F_{c} approximately. As a general rule, at F_{c}, R should equal Z, so we now know $\mathrm{R} ; 100 \mathrm{k} \Omega$. All that leaves is C . From the above equation we get:

C in $\mu \mathrm{F}$
R in $\mathrm{k} \Omega$

$$
C=\frac{1}{6.28 \times 15 \times 100}
$$

F_{c} in kHz

$$
\begin{aligned}
& =\frac{1}{9420} \\
& =0.0001 \text { or } 100 \mathrm{pF}
\end{aligned}
$$

To check, work out the other two equations;

$$
\begin{aligned}
\mathrm{R} & =\frac{1}{6.28 \times 15 \times 0.0001} \\
& =\frac{1}{0.0094} \\
& =106 \mathrm{k} \Omega \\
\mathrm{~F}_{\mathrm{c}} & =\frac{1}{6.28 \times 100 \times 0.0001} \\
& =\frac{1}{0.0628} \\
& =15.9 \mathrm{kHz}
\end{aligned}
$$

Both results are near enough, considering we are only working to four decimal places.

High Pass

The high-pass filter (Fig. 1(b)), in the same way as the low-pass filter, has a point where the output is half the input: the cut-off frequency. Because the capacitor and resistor are inverted, the output rises as the frequency rises and so the circuit rejects frequencies below F_{c}. The equations for calculating C, R, and F_{c} are the same as for the low-pass filter.

Fig. 1: Basic filter circuits and their response curves: (a) (Top) Low-pass. (b) (Bottom) High-pass
2. Design a rumble filter for a pre-amp with an input Z of $250 \mathrm{k} \Omega$. Rumble is mechanical noise from a record deck motor, and occurs at frequencies below about 25 Hz , so we know $\mathrm{F}_{\mathrm{c}}(25 \mathrm{~Hz})$ and $\mathrm{R}(250 \mathrm{k} \Omega)$;

$$
\begin{aligned}
C & =\frac{1}{6.28 \times 0.025 \times 250} \\
& =0.025 \mu \mathrm{~F}
\end{aligned}
$$

Band Pass

Finally, let us look at band-pass filters. The simplest form of band-pass filter is shown in Fig. 2. It is simply a combination of Fig. 1(a) and 1(b). Band-pass filters are used for a variety of things, such as "middle" channel separation in tone controls, or combined rumble and scratch filters. The only limitation of this circuit is that the upper cut-off frequency, F_{h}, must be at least ten times the lower cut-off frequency, F_{1}, or interaction between the two circuits will occur, and the filter will not have a smooth response curve. Only two equations are given, as $\mathrm{R}=\mathrm{Z}$, and Z is usually known. Units are in $\mathrm{kHz}, \mathrm{k} \Omega$ and $\mu \mathrm{F}$.

Fig. 2: A band-pass filter circuit and response
C_{s} determines F_{h} :

$$
C_{s}=\frac{R+Z}{6.28 \times F_{h} \times R \times Z}
$$

C_{c} determines F_{l} :

$$
\mathrm{C}_{\mathrm{c}}=\frac{1}{6.28 \times \mathrm{F}_{1} \times(\mathrm{R}+\mathrm{Z})}
$$

3. Calculate a combined rumble and scratch filter for an amplifier with an input Z of $50 \mathrm{k} \Omega$. $R=Z=50 \mathrm{k} \Omega . \mathrm{F}_{\mathrm{h}}$ wants to be, say 12 kHz , and F_{1} about 40 Hz .

$$
\begin{aligned}
C_{s} & =\frac{50+50}{6.28 \times 12 \times 50 \times 50} \\
& =\frac{100}{188400} \\
& =0.0005 \mu \mathrm{~F} \text { or } 500 \mathrm{pF} \\
\mathrm{C}_{\mathrm{c}} & =\frac{1}{6.28 \times 0.04 \times(50+50)} \\
& =\frac{1}{25.12} \\
& =0.03 \mu \mathrm{~F}
\end{aligned}
$$

Phase Shift

The output signal from a CR network will always differ in phase (to a greater or lesser degree) from the input signal. Whether this is important depends on the application. In this introductory article, the effects of phase shift have been ignored.

HInlw note:

PW "Hythe" Receiver, February 1979.

IFT1 is Denco type IFT 18/465.
IFT2 is filter type CFT455 from Ambit.
IFT4 is Denco type IFT13.

Referring to the circuit diagram Fig. 2, presets VR4 and VR5 appear on the overlay (Fig. 4) as VR1 and VR2 respectively.

In Fig. 2, L2 (collector of Tr 3) is unmarked. The BZY88/C6V2 diode from the junction of R17/L2 to ground should be shown at D1 (not D3).

The following may help those who are having difficulty locating specialised components:

The Denco coils are available from Maplin or Watford Electronics; C. Bowes \& Co. Ltd., 4 Wood Street, Cheadle, Cheshire (Tel: 061428 4497) supply the p.c.b. Front panels may be obtained from D. J. Pattle, "Juniper", Hillbury Road, Alderholt, Fordingbridge, Hants (Tel: 0425 52081). The vernier drive is Home Radio Type DL66-it is necessary to re-calibrate the scale. Suitable knobs are available from Marshalls or West Hyde Developments. Instrument case Type BC2121 is from West Hyde Developments. The signal-strength meter is RS Components Type 259561 from Ace Mailtronics. Where no address is shown, see index to advertisers.

Wimborne Music Centre, October 1978.
The 2N6133 power transistors are incorrectly shown as "2N6103". RCA type BRC6103 is suitable, but alternative complementary pairs may be fitted where supplies are short, TIP41A/TIP42A being an example.

PLEASE MENTION PRACTICAL WIRELESS

WHEN REPLYING

Follow-up to

P_{w} Sandbank METAL DETECTOR P.J.WALES

The more experienced constructor, having built his "Sandbanks", may wish to increase its performance, and these notes are a guide as to how that may be achieved.

The locator works by transmitting a heavy magnetic field over the find (which we shall call the subject) and comparing the decay of that field in the subject, to the decay in the coil. Hence, if the rate of decay in the subject is faster than that in the coil, the subject will not be detected. Thus the first item to evaluate is the coil.

Energy Storage

To detect small and fast-conducting objects such as gold, silver or copper, the energy stored in the coil must be as low as possible. The energy is stored in three ways. First the magnetism, which we want as large as possible, secondly the inductance, which is very low in an air-cored inductor, and thirdly and most importantly, the capacitance, which has no effect other than to slow down the rate of decay of the magnetic field. The capacitance is produced by the proximity of the conductors in the coil, and they are only separated by the thickness of the insulating varnish, so a significant improvement can be obtained by insulating the wire used for the coil with a pve sleeve. Greater gains can be obtained by winding the coil, with the extra insulation, in a neat manner so that the inside turns are as far away from the outside turns as possible. This leads us on to a flat coil which has about twothirds of the capacitance of the wire bundle coil. However, it is very difficult to wind, but if you succeed, then Araldite the coil before potting it or the turns may move in the potting compound. By far the best solution is to use a printed circuit coil, as designed by the author and available from Plessis Electronics, Castle house, Old Road, Leighton Buzzard, Beds, which has a capacitance of about half that of a wire bundle.

Coil Shape and Size

The next stage in the coil design is to alter the size of the coil. Generally speaking, to maintain the same parameters within the machine, it is necessary to increase the number of turns when reducing the diameter of the coil. A small coil will locate objects very accurately, but its range is reduced. For greater range, the coil can be increased in diameter, and as a rough guide, doubling the coil size will double the range, within limits.

Square coils also have a lot to offer, because the range on a square coil is greater than that on a round coil of a similar size. Even greater range can be obtained by using a rectangular coil, and the optimum ratio of the sides is $4: 1$. One manufacturer of machines using the Pulse Induction principle offers a coil $1.83 \times 0.48 \mathrm{~m}(72 \times 18 \mathrm{in})$ as a standard with one of his detectors.

Modifications

Experimenting with coils for enormous range is very easy, but finding nails 3 m under hard ground is not very rewarding, so stay within reason. In order to take maximum advantage of any reduction in coil capacitance achieved, it is necessary to reduce the time between the transmit pulse and the sample pulse, called the delay time. The shorter the delay time, the more sensitive the detector is to gold. The delay time in the PW "Sandbanks" is altered by changing the value of R31 and R32. It is easiest to replace these two with $47 \mathrm{k} \Omega$ presets during tests, putting in suitable resistors when a satisfactory performance has been reached. It is best to check the delay time using a double-beam oscilloscope, but lacking one of these, the control VR2 should be set to its midpoint and VR1 adjusted to ensure that the output of the 709 is at 0 V . Then reducing the added presets until the speaker just starts clicking ensures the optimum delay time.

Internal Delays

It may be argued that the internal circuits produce their own delays and this is certainly true, but the circuit has a fall time of 3 microseconds and this is quite fast enough. No improvement was obtained with a $£ 4.50$ r.f. power transistor and low-capacitance diodes. The capacitance at the coil connections was measured as 231 pF and an ordinary coil as 681 pF . Reducing the 100Ω resistor R7 will reduce the decay time but it will also reduce the current in the coil and its damping effect will alter, so leave it alone.

When you have wound the coil that meets with your requirements, do not forget to waterproof it and make it rigid. If it is left loose, the machine will drift all over the places as the coil capacitance changes when the coil moves.

This article describes the construction of a miniature, high-performance v.h.f. receiver for narrow-band frequency modulation, based on the Plessey SL6640 integrated circuit. The SL6640 is a complete i.f. strip, detector and audio system for n.b.f.m., requiring the minimum of external components. It consumes only 3.5 mA of current in the standby mode and can produce 200 mW of audio.

The receiver is so simple that it may be built even by the relatively inexperienced, and yet it gives a professional account of itself,
with a sensitivity better than $0.4 \mu \mathrm{~V}$ for a 20 dB signal-to-noise ratio. Physically, the module is only $46 \times 82 \mathrm{~mm}(1.8 \times 3.2 \mathrm{in})$ and although the details given are for operation within the $144 \mathrm{MHz}(2 \mathrm{~m})$ amateur band, the receiver will easily tune to marine v.h.f. channels, and could be used to keep a watch on, say, channel 16 , the distress and calling frequency. In this respect it would be a useful project for the yachtsman or small boatowner, and is licensable for use on board such vessels.

The circuit diagram of the complete receiver is given in Fig. 1. It can be seen to consist of a double-tuned input arrangement feeding a dual-gate m.o.s.f.e.t. amplifier with a gain of 18 dB . Another double-tuned circuit couples the amplifier to a second dual-gate m.o.s.f.e.t. which acts as a
mixer whose conversion gain falls around 12 dB . The local oscillator uses a pnp v.h.f. transistor in an overtone configuration.

A crystal filter. specially designed by Cathodeon, filters the 10.7 MHz signal and then passes it directly to the

[^3]

Fig. 1: Complete circuit diagram of the single-channel version of the receiver

SL6640, which performs the functions of i.f. pre-amplifier, main i.f. limiting amplifier, quadrature detector, squelch and audio output stages.

Dual-gate m.o.s.f.e.t. devices were selected on the grounds of their good noise (about $4-6 \mathrm{~dB}$) and intermodulation performance. They will cope with large offchannel signals with the minimum of intermodulation distortion. Prototypes used the 3 N 210 in a plastic encapsulation, but $3 \mathrm{~N} 211,3 \mathrm{~N} 201$ or 40673 devices in the metal TO-72 packages will fit the board and work equally well.

Only five components, in addition to the capacitors and inductors of the tuned circuits, are employed in the r.f. amplifier: the m.o.s.f.e.t., two resistors to bias gate 2 of the m.o.s.f.e.t. and two decoupling capacitors. Standard Toko coils are used throughout, and the small ceramic capacitors are of ITW manufacture. At $2 \mathrm{~m}, \mathrm{C} 2$ is 12 pF , C3-6.8pF, C7-8.2pF and C8-6.8pF. Note that C4 and C9 are not "real" components, but represent stray capacitance.

A 2N5771 pnp transistor has been chosen for the local oscillator. This reduces the number of devices necessary in the circuit, as the collector load coil is at d.c. ground potential and hence no coupling or bias components are needed for the second gate of the mixer m.o.s.f.e.t.

The oscillator is very simple and reliable, using only nine components. Any additional expense incurred by the selection of overtone crystals is easily justified against the increased complexity and power consumption of multiplier stages.

In the case of a 2 m receiver, C12 may have to be omitted or may be found to be as large as 1.8 pF , a certain amount of experimentation being necessary to determine the optimum value. Capacitor C13 will not usually be required; Cll is 6.8 pF and L5 a Toko S18/301-SN0300.

Using 7th or 9th overtone crystals can lead to oscillator starting problems, but this circuit has been rigorously tested and found to be completely reliable, provided the
supply voltage remains stable. Crystal frequencies are calculated from the formula:

Crystal frequency $=$ Carrier frequency minus $10 \cdot 7 \mathrm{MHz}$
If the receiver is required to work on more than one channel, some sort of d.c. switching will have to be evolved, as long leads are not permissible. Such techniques will be found to complement the use of scanners. A suitable method is shown in Fig. 2, where the diodes should exhibit low-capacitance characteristics, such as the 1N4313.
The mixer consists of another dual-gate m.o.s.f.e.t. with both gates at d.c. ground. Signals are applied to gate 1 , whilst gate 2 is connected to the oscillator tank circuit. which drives it with about 2 volts r.m.s. of r.f. Better conversion gain and a lower local oscillator could be achieved by biasing gate 2 between 2.5 and 4.5 volts, but this would degrade the strong-signal performance of the front-end.

Two signals of 100 mV , one 50 kHz and the other 100 kHz off-channel, could be tolerated by the prototypes without receiving an intermodulation product. Never-theless, an even better performance may be obtained by sacrificing some front-end gain-and therefore sensitivity.

The mixer drives a crystal filter, designed specifically by Cathodeon for this receiver, which has a relatively low terminating impedance of 470Ω at 25 pF -eminently suited to the output of the dual-gate m.o.s.f.e.t. and the input of the SL6640. Other filters, some appreciably cheaper, are acknowledged as being available, but will almost certainly present the constructor with problems, due to their different terminating impedances. Although C14 and C17 may be changed if necessary, it is not possible to increase the value of R3 and R8 above 820Ω without upsetting the operation of both $\operatorname{Tr} 3$ and IC1. A reduction of their values, on the other hand, will cause the gain to deteriorate.

From the filter, the signal is applied to the pre-amplifier input (pin 16) of the SL6640, which has a gain of 46 dB and an output impedance of 330Ω. This matches the interstage ceramic filter between its output (pin 18) and the main i.f. amplifier input (pin 14). The pre-amplifier is biased, via R7 and R8, from its own output: R8 sets its input impedance and C18 decouples the bias line. Similarly, R9 and C25 provide bias and decoupling for the main i.f. amplifier input.

The interstage filter is intended only to limit broadband noise within the i.f. and not to determine the receiver passband. Thus an inexpensive ceramic device is employed for this purpose.

About 60 dB gain is available from the i.f. amplifier, giving the SL6640 in total an overall sensitivity of about $10 \mu \mathrm{~V}$. Such high gain makes bias decoupling essential and this is achieved by C19 and C20. The output of the main i.f. goes to the quadrature detector and squelch system.

The squelch works by detecting the amount of limiting in the i.f. amplifier, pre-set VR1 determining the operating threshold. This control could be panel-mounted, if required.

Resistor R11 sets the hysteresis of the squelch - that is, the amount by which the signal must drop in order to mute the receiver. With R11 at $390 \mathrm{k} \Omega$ and an 8 volt supply this is about $7-9 \mathrm{~dB}$. A reduction to $4-6 \mathrm{~dB}$ is possible by increasing R 11 to $1.5 \mathrm{M} \Omega$.

The muting arrangements control power to the detector and audio stages. In the absence of a signal they turn off, reducing the total current drain to around 3.5 mA . Under "signal applied" conditions, the current consumption would be in the region of 8 mA plus the amount drawn by the audio output stage.

A squelch output is also present on pin 3 of the SL6640. which is "high" in the absence of a signal and "low" when a signal is detected. This logic may be employed to control a scanner, if a multi-channel receiver is ultimately constructed, or to illuminate a l.e.d. status indicator (Fig. 3). The inclusion of C26 on pin 3 prevents the squelch fluttering if rapid changes of signal level occur.

The detector is self-contained, with the exception of the quadrature coil (Toko) connected between pins 4 and 5. Plessey Semiconductors SL6640 i.c. is intended for narrow-band f.m. applications and should not be confused with such devices as the CA3089, TBA 120 and CA3189, which are essentially for the domestic market and similar wide-band situations. It works well even with 10.7 MHz
i.f.s, as the Q of the quadrature coil is not loaded by the resistance of the i.c. Signal-to-noise ratios of 50 dB for 2 kHz deviation with a 10.7 MHz i.f. can easily be achieved, whilst to produce the same performance from, say, a CA3089 would require either a 455 kHz i.f. or a crystal quadrature element.

The detected audio is routed via a d.c. "volume control" (VR2) to the a.f. output stage. Any residual r.f. is filtered out by C28, C29 being used for interstage coupling. The potentiometer VR2 would normally be located on the front panel. Note that the output is at its highest when the resistance of this control is at maximum.

The a.f. output stage is biased by R13 and R16, negative feedback being applied via R14, R15 and C30 Overall gain can be varied by altering the value of R14, but this should not be reduced to below $1 \cdot 2 \mathrm{k} \Omega$, if excessive distortion is to be avoided. Up to 200 mW output is possible with the 8 volt supply. Any h.f. instability is decoupled by the tantalum capacitor C23.
The receiver module is powered from an 11-15 volt supply, which is reduced to 8 volts and regulated by IC2 for the crystal oscillator and the SL6640. Decoupling is provided in several places by $0.1 \mu \mathrm{~F}$ ceramic capacitors. If the supply source impedance is likely to exceed 2Ω, 1.f. decoupling may also be a necessary-a capacitor of a few hundred microfarads being called for.

Readily-available components were part of the design philosophy, so this aspect should present no problems to the constructor. The printed circuit board uses minimalinductance layout techniques which are very effective at v.h.f. and quite easy to assemble. Note that plated-through holes are necessary and all components should be mounted as close to the board as possible.

The alignment of the receiver is fairly simple, but of course if the constructor has access to an r.f. millivoltmeter and a good oscilloscope really professional performance can be attained.

Alignment

Initially the crystal oscillator coil L5 is adjusted for maximum output, consistent with reliable starting. To avoid loading the oscillator, the test probe should be connected to the drain of the m.o.s.f.e.t. $\operatorname{Tr} 3$ (mixer): coils L1, L2, L3, L4 are adjusted in turn for maximum gain from the aerial input.

Fig. 2 (left): Adding multi-channel facilities. Grounding one terminal "T" activates the associated crystal
Fig. 3 (right): Driving a l.e.d. squelch indicator requires this simple buffer stage

Fig. 4 (laft): Full-sise trsck patterna for the p.e.b. nhowing nan-tompenont aidn (top) and component aide thottom!

Fig. 5 (ahove): Drilling drawing for the p.c.h.
تig. 0 Thutowf: Componant fryout. The ground plane pattern on the componunt side of the board is shawn in orange tone

Feed a 10.7 MHz frequency-modulated signal to the input side of the crystal filter. Now, with full audio gain and minimum setting of the squelch resistor, tune the quadrature coil for minimum distortion at the output. If clipping occurs. back off the audio gain slightly.

Adjustment without instrumentation is. of course, somewhat less precise. Never-the-less. acceptable results can be obtained and lack of test equipment should not deter the constructor from building this project.

With the presence of a strong i.h.f. signal, tune the local oscillator coil L5 until it is heard at maximum volume and
minimum distortion. Having done this. turn the power on and off several times to ensure that the oscillator will always start.

Next, set the quadrature coil for minimum apparent distortion with the squelch potentiometer at minimum resistance. Then reduce the strength of the alignment signal, perhaps by using progressively smaller aerial lengths, tuning L1. L2. L3 and L4 at each stage for the best signal-to-noise ratio.

Finally, the squelch control is set so that muting occurs when the signal-to-noise ratio becomes unacceptably low.

Resistors

Resistors $\frac{1}{8}$ watt carbon 330Ω 470Ω	1	$R 9$
$1.8 \mathrm{k} \Omega$	2	$R 3,8$
$4.7 \mathrm{k} \Omega$	1	$R 4$
$12 \mathrm{k} \Omega$	1	$R 5$
$15 \mathrm{k} \Omega$	2	$R 6,14$
$27 \mathrm{k} \Omega$	1	$R 7$
$47 \mathrm{k} \Omega$	1	$R 2$
$120 \mathrm{k} \Omega$	3	$R 1,10,12$
$270 \mathrm{k} \Omega$	1	$R 15$
$1 \mathrm{M} \Omega$	2	$R 13,16$
	1	$R 11$

Potentiometers

*Miniature, round, linear law preset. Plessey type 416 $1 \mathrm{M} \Omega \quad 1 \quad$ VR1 mute threshold

Miniature log law, panel mounting $1 \mathrm{M} \Omega \quad 1$ VR2

Capacitors
"*TW type M2 monolithic

22 pF

1nF 3.3 nF 10nF

Ceramic Plate
$0.1 \mu \mathrm{~F}$
Tantalum Bead

$0.22 \mu \mathrm{~F}$	1	C23 35V type
$0.47 \mu \mathrm{~F}$	1	C 2635 V type
$1 \mu \mathrm{~F}$	1	C30 35V type
$100 \mu \mathrm{~F}$	1	C 246 V type
$100 \mu \mathrm{~F}$	1	C 2210 V type

Note: C2-4, 7-9, 11-13 see text C27 is part of coil assembly.

Filters

***BP4130-30 1 F1
SFE10.7 1 F2 (Ambit)

Semiconductors

Transistors
3N210 2 Tr1, 3 (or 3N201, 3N211, 40673)
2N5771 1 Tr2

Integrated Circuits
**"SL6640
1 IC1
$\begin{array}{lll}\mu \mathrm{A} 78 \mathrm{LO} C \mathrm{C} & 1 & \text { IC2 }\end{array}$

Crystal(s)
"7th overtone, Type WW239

Inductors

Toko S18/301

> -SN-032

Toko S18/301
-SN-0300 4 L2-5 (Ambit)
Toko 85-4402SEJ 1 L6 (Ambit)

Printed Circuit Board

The special p.c.b. for this project is available from Ambit International. Kelan Engineering Ltd., 27-29 Leadhall Lane, Harrogate, Yorkshire HG2 9NJ. Tel: 0423 879126, are also able to offer a multichannel option, using 3rd overtone crystals.

Hardware

Two double coil screening cans are required for L2L3, L4-L5 and a single can for L1. These are obtainable from Ambit International.

COMPONENT SOURCES

*Preset available from Ambit International.
**ITW capacitors available from ITW Electronics, Darville Ho., 4 Oxford Road East, Windsor, Berks and Ambit International.
***SL6640 available from Catronics or Ambit International.
****BP4130-30 available from Cathodeon Crystals Ltd, Linton, Cambridge CB1 6JU. Tel: 0223891501.
*****7th overtone crystals available from Webster Electronics, Rose Mills, Hort Bridge, Ilminster, Somerset TA19 9PS. Important: specify crystal Type WW239 with channel (carrier) frequency and crystal frequency (carrier minus 10.7) when placing order.

With a calibrated signal generator, this point should be between 0.15 and $0.5 \mu \mathrm{~V}$-however, it is preferable to set the squelch to a signal-to-noise ratio, rather than to an absolute input voltage.

No instrument case or mechanical details are given for this project, but the receiver is a complete module, requiring only the addition of a battery, volume control, squelch control and small loudspeaker as external components. It could therefore easily be constructed within an existing receiver, using the incoming v.h.f. signal to mute and over-ride the normal programme. For example, the marine version on channel 16 could mute an m.f. signal, or indeed another v.h.f. signal, thus giving priority to channel 16 traffic. On the other hand, it could easily be a self-contained unit.

Multi-channel Conversion

If coverage of more than one channel is necessary, then the circuit of Fig. 2 can be regarded as a working basis, and could probably be accommodated on a small subassembly. If a multi-channel facility is decided on at the outset, a small extension could possibly be made to the printed circuit board.

The 7th overtone WW239 crystals are relatively expensive, but on the other hand the end-product will hold its own with many professional receivers of its type. The original design work for this project was carried out for a specific professional application, and the specification of this version has in no way been degraded.

In the 1830s, Samuel B. Morse invented a code which was used by signallers to convey military information along thousands of miles of telegraph lines during the American Civil War (1861-1865) and, some 40 years later, Alexander Graham Bell's telephone was extensively used by both sides throughout World War I.

To find out more about communications during that war, the author spoke to several old-timers who were there. One, Bert Knight, now 90 years old, a veteran of the Rifle Brigade, remembers seeing telephone cables at Ypres being laid from a large drum, mounted on a limber drawn by a team of horses, and signalmen in dugouts wearing headphones. However, this means of communications had its drawbacks because. the cables, whether overhead or underground, were vulnerable to secret tapping by enemy signalmen, calculated cutting of the wires, and being totally destroyed by artillery bombardment.

During the last decade of the 19th century, men like Edouard Branly. Oliver Lodge (later knighted), and Guglielmo Marconi, to name a few, were pioneering a means of transmitting both the Morse code and the human voice over great distances without wires. Before their ideas were fifty years old, wire-less communications (later called radio) was used during two world wars on land, sea and in the air.

The Great War

Wireless during the 1914/18 war rested mainly with the electric spark transmitter and receivers, using a coherer or catswhisker and crystal detectors and, for amplification, a limited range of bright-emitter (triode) valves, so called because their high filament current produced a lot of light.

Wireless installations were also vulnerable to enemy action, mainly because the high aerials required gave away the position of a signals unit to enemy spotters. Also, the noise from the transmitter spark gap and the receiver tuning buzzer could be heard for some distance on a quiet night.

The late Bill Longmire. G3TKL, joined the signals section of the 26th Canadian Battalion in 1914 and after three months training had to pass in Morse at 12 w.p.m. with buzzer, lamp and heliograph, and in semaphore and flags. "Serving in France in 1915," said Bill, "I found that war was a bloody business and that communications (by land-line) were not only most important but also dangerous." He used a "D3" telephone set, phone and Morse, with a single-strand wire and an earth return.

Later, Bill transferred to the Canadian Corps wireless section to learn the basic facts of radio and then was selected for a special, three week, training course in London. At the end of the course, a team of three could erect an aerial consisting of a 100 ft long wire on two 24 ft masts, with guys, earth rods and counterpoise, in under five minutes. On returning to France, Bill saw action at Vimy Ridge, and was told to set up a wireless station on a front where shell fire kept land lines out of action. For such an advanced post Bill said: "An NCO and two men with a 24 -hour watch and frequent checks with headquarters station, were required. Usually we had a $2-3$ week stretch in the line if the enemy was not too active."

The trench set illustrated in Fig. 1 consists of a spark transmitter, spark-gap and coil at bottom right, and a crystal detector receiver on top, with its tuning buzzer on front left. The output meter, stud-type aerial matching switch and Morse key are mounted on the top panel, all beautifully engineered and housed in a mahogany cabinet. Bill said that this type of set, plus six 6 volt storage batteries, aerial masts and earth mat was the equipment used in an advanced station. When possible, they tried to select a site for the station which was concealed from the enemy and had easy access from the rear for delivery, by carrying party or mules, of their food and replacement batteries.

Most messages were passed in cypher, code words and callsigns being changed daily, their lighting was by candle and heating by coke. Around midnight, the news could be

copied from Poldhu, Cornwall; Eiffel Tower, Paris; or Naum, Germany. "The extra copy taken to the local infantry or artillery cook-house was always good for a handout," said Bill, but Passchendaele was an exception. "Ten days in, four operators and self, one killed, four wounded, but station was able to handle all traffic in spite of the antenna being shot down eight times."

Wireless in the Air

Mark Denny, G6DN, said: "Before the war many amateurs became proficient in Morse by following a programme which started with a session of listening to the Eiffel Tower news bulletin, which was sent at 12 w.p.m. with a T1 note. Then followed a period of receiving the news from a German station at about 15 w.p.m. The final achievement was the ability to copy Cleethorpes Naval Station weather report sent at 10 pm each day. This was initially at 20 w.p.m. and repeated at 25 w.p.m." At that time the Navy required aspirants for entry to their W/T branch to copy, for five minutes, without error, a message in clear at 25 w.p.m.

In 1914, Mark entered the Royal Navy as a Wireless Telegraphist and in 1915 was commissioned in the (Army) Royal Flying Corps, later the RAF. While in the RN he was posted to a Naval Airship Station and along with a group of W/T matelots had to unpack and assemble the wireless equipment for airships, which consisted of a "Stirling" spark coil and a Marconi crystal receiver plus a hand-operated winch containing over 300 ft of wire, with a lead weight attached, for the aerial. Mark said: "We were ordered to install the apparatus in the airships and to assemble a ground station without delay. Our difficulty was that, whilst every material item necessary was provided, no written instructions or wiring diagrams were available. This is where our amateur, pre-knowledge of radio helped and we were on the air to the C/O's satisfaction."
The author showed Mark Denny a photograph of the Marconi transmitter in Fig. 2 and he recognised it as the type he used in the RNAS airships and in the RFC and said: "I used to feel rather apprehensive when adjusting the tuning clips on the helix, considering the thousands of cubic feet of hydrogen gas just above your head."
Their best DX from air to ground was a QSO with Malta Naval Station from the English Channel, using a half-inch spark coil. Sending Morse messages by spark, situated only a few feet below a gas bag, was one of the hazards of life in those days.

Fig. 2: Marconi spark transmitter from World War I

Fig. 3: Short-wave Tuner, Mark III made by Johnson and Philips

Aerial Installation

As a wireless officer in the RFC. Mark saw active service in France. At one stage he was supplied with portable sets, especially flown out from England for the use of certain gentlemen who were deposited over the lines, and later he listened to their transmissions. Soon after he established listening posts in "No Mans Land" and still has his pass permitting him to advance in front of the front line. Like Bill Longmire with his 24 ft masts, Mark also had aerial problems to solve. While in France, they used steel rods which were a loose fit in their rifle barrels, and marched down a village street firing these rods with cords attached over opposite houses. On joining the cords with aerial wire, they soon had an excellent antenna.

Later, back in England, Mark put up the first ground-to-air telephony stations for the Air Defence of Great Britain, which involved getting up in the early hours, before the traffic was about, because one antenna was across Horse Guards Parade, from the Foreign Office to the Horse Guards building in Whitehall, and from the Horse Guards to the War Office, just over the road in Whitehall.

The late John Clarricoats, G6CL, referring to the RFC in the $T \& R$ Bulletin (then the journal of the RSGB), December, 1939, wrote: "The chief job of the 1915-1918 wireless operator was to act as "the ears" between a roving plane and the battery to which he was attached; his equipment was primitive (usually a Mark III tuner) and his only means of communication with the observing machine was by means of "white" ground strips which, sad to relate, seldom lived up to their name." Mark Denny also remembers the Mark III tuner, as the set supplied to them
on the Western Front, and used by RFC wireless operators in their dugouts in conjunction with the Royal Artillery batteries.

The Wireless Reserves

In the 21 years which elapsed between the two world wars, radio made fantastic strides both in broadcasting and short-wave communications around the world, and it is well-known that amateur radio enthusiasts played their full part in both fields.

With the war clouds gathering again in the early 1930s, the authorities, knowing there would be a need for trained wireless operators if war came, once more called upon the amateur radio enthusiasts for assistance. On August 26, 1932, Wireless World commented: "At last British wireless amateurs are to be given the opportunity to assist His Majesty's Forces"; when they reported that: "The Secretary of the Admiralty announces the institution of a Royal Naval Wireless Auxiliary Reserve (RNWAR) in Great Britain and Northern Ireland, to be recruited largely from Wireless Amateurs owning transmitting sets." One of the objects of the RNWAR was, "to provide a reserve of operators trained in Naval procedure, for Naval service afloat or ashore in war or emergency."

The setting up of this organisation was the result of careful work by officials of the Admiralty and the Radio Society of Great Britain, as was the establishment, by the Air Ministry, in September, 1938, of the Royal Air Force Civilian Wireless Reserve (RAFCWR). The announcement, by the Air Ministry, reported in Wireless World, December 29, 1938, made it clear that the CWR was to "consist largely of amateur experimenters which would, if the need arose, provide a reserve of personnel experienced in the operating procedure of the RAF." Both the

$\mathbf{£ 2 . 8 5}$ inclusive of VAT and post and packaging from: Post Sales Department, IPC Magpzines Ltd., Lavington House, 25 Lavington Street, London, SEI OPF.
(Overseas orders please add 60p).

Fig. 4: National Wireless Register, published in Wiraless World on 26 January, 1939

RNWAR and the RAFCWR attracted several thousand radio enthusiasts from all walks of life. They divided the United Kingdom into areas where small groups could train to the required military standard. Experimental sections were manned by experienced radio amateurs who dealt with the design of transmitters and receivers to meet a particular section's needs; and all in harmony with the signals branch of their respective service.

National Wireless Register

Both the RSGB, through their journal, The $T \& R$ Bulletin, and Wireless World frequently reported the progress of the Wireless Reserves and, furthermore, Wireless World did much to find out what radio skills were available among their readers that would be of use to the armed forces in the event of war.

In their editorial on January 26, 1939, Wireless World comments: "In the event of an emergency which would require everyone to put himself at the service of the Country, the moment will arise when every individual will ask where he can offer his services so that such qualifications as he may possess will be of greatest value." As a pull-out in the same and some subsequent issues, $W W$ enclosed a printed OHMS form, addressed on one side to . . . Secretary, Wireless Telegraphy Board, c/o Admiralty, Whitehall SW1, and with a general and technical ability questionnaire on the other. This document, Fig. 4, was

Part 2

As the p.c.b. must be mounted into the chassis before the other parts, we will start construction by assembling the components onto the boards.

The leads of the components should be preformed and inserted into the holes, as shown in the component overlay Fig. 7. Turn the p.c.b. over so that it rests on a sponge or foam mat, which will then hold the components in close contact with the p.c.b. while they are soldered into place.

Coils

Before assembling the main p.c.b., the two coils Lla and L1b should be made up as shown in Fig. 6. Each coil consists of 30 turns of $18 \mathrm{~s} . \mathrm{w} . g$. insulated wire wound in three layers of ten turns each. The internal diameter of the first layer is 8 mm . If masking tape is wound over each layer after winding, the turns will stay in place while the next layer is wound. When the coil is completed the 1 W 10Ω resistor is fed through the centre of the coil and the leads soldered to the coil as shown. The coil ends are then opened out to a spacing of 22.5 mm to fit the p.c.b. It will, of course be necessary to scrape the insulation from the coil ends before soldering.

Assembly should start with the terminal pins, which will be a tight fit and can be tapped into place with a light hammer, but you must support the p.c.b. from behind when doing this. Insert them from the top of the p.c.b. and then turn the board over and solder the pins to the track.

Once the pins are in place, the suggested order of assembly is resistors, small capacitors, transistors, electrolytics, switches, etc.

Fig. 6: Winding details of the two coils L1. Internal diameter 8 mm ; Length 15 mm ; 3 layers of 10 turns each (Total 30 turns) 18 8.w.g. enamel copper wire. R58 is $10 \Omega 1 \mathrm{~W}$ carbon resistor

Switches

Be sure to mount all electrolytics the correct way round as indicated on the overlay. This also applies to diodes and i.c.s. When fitting the push-button unit to the p.c.b., first make sure that all the pins are straight, then "walk" the pins into the holes by starting at one end of the switch with the switch at a slight angle to the p.c.b. and gradually lower the switch pins into the holes as the switch is levelled out. Make sure that the switch is parallel to, and in close contact with, the top of the p.c.b. before soldering the pins to the track, otherwise the push-buttons will not align with the front panel holes.

Use only the components specified as only then will the specification, of which the Winton is capable, be achieved.

Chassis

The main chassis is made in the form of an inverted "U" from aluminium sheet and the overall size required, before bending, is $462 \times 298 \mathrm{~mm}+$ twice the bend allowance for the thickness of metal used, i.e., $462 \times$ 300 mm when using 1.2 mm thick ($18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.) aluminium. Most d.i.y. suppliers will cut aluminium to size for a small charge, and it is well worth having this done as it will save work and ensure a "square sided" chassis. The author used aluminium of 2 mm ($16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$.) thickness for the main chassis but has access to a bender capable of folding this thickness. Unless a suitable bender is available, the 1.2 mm material will be found easier to work with and will still provide adequate strength.

Mark out the chassis as shown in the drawing (Fig. 14), not forgetting to scribe two lines to allow for the thickness of metal used when bending.

The centre height of the push-button holes must be 20 mm above the inside edge of the bent-up chassis, and this is the reason for scribing two lines. If the bottom line is used as the guide line in the bender the holes should be correctly positioned after bending.

Cut-outs

After drilling, all the holes should be deburred. The four large rectangular cut-outs in the chassis are provided so that the underside of the p.c.b. can be reached, as it would be almost impossible to remove and/or test the p.c.b. otherwise. These cut-outs are made using an Abrafile blade fitted to a standard hacksaw, any burrs being removed with a suitable file.

When all the holes and cut-outs have been made the chassis can be bent up. Make sure you bend it the correct way!!

WAD315
Fig. 7: Component layout for the PW Winton amplifier. This is shown slightly reduced in size

design by $T \& T$ electronics
C copyright IPC magazines limiter

Fig. 8: Above left, the full size copper track pattern of the PW Winton printed circuit board

Fig. 9: Far left, details of the output transistor heatsinks. Four of these are needed made from 1.2 mm thick aluminium sheet with all burrs removed and the mounting surfaces absolutely flat. Paint matt black when completed

Fig. 10: Centre, the baseplate which covers the cutouts in the aluminium chassis. Only one is needed from 1.2 mm thick aluminium

Fig. 11: Left, details of the earth terminal assembly

Heat Sinks

The four heat sinks can be made from the aluminium removed from the four rectangular cut-outs and should be made up as shown in Fig. 9. It is very important that the holes on the heat sinks are completely free from burrs, also the part in the centre should be flat and any high spots removed with a suitable file. The power f.e.t.s must be mounted on a perfectly flat surface and the parts used for this must be filed flat and freed of burrs.
Once the p.c.b. is fully assembled it should be very carefully checked for any errors. If possible get someone else to check your work for you. When you are satisfied that it is correct, it can be assembled into the main chassis.

First, fix the five p.c.b. pillars onto the chassis. These are held in place with No. 6 self-tapping screws approximately 9 mm long. The p.c.b. can then be mounted onto the pillars by lowering the push-button end so that the buttons line up with and project through the front panel holes. Then press the p.c.b. firmly onto the pillars. Check the action of the push-button switches, which must all be free to move without catching on the chassis. The use of a small file may prove helpful if problems exist but if the chassis has been made correctly, all should be well.
The c . me components can now be fitted to the chassis in the position shown in the drawings and photographs. Note that the volume, balance and tone controls are assembled onto their mounting bracket (Fig. 15), before the whole assembly is fitted to the chassis.

Control Spindles

First cut the control spindles to a length of 22 mm . Do not strain the control when doing this. Clamp the unwanted part of the spindle in a vice and hold the potentiometer end to steady it, while cutting the spindle with a small hacksaw. Then remove any burrs.

Assemble the controls into their respective positions on the mounting bracket and tighten all nuts firmly but do not overtighten. The bracket is fixed to the chassis front with countersunk 6BA screws, approximately 12 mm long, and spaced from it with two 6BA nuts. Finally it is held in place with another 6BA nut and lock washer.

When fitting the socket for the headphones, the tags come up either side of the phone/speaker switch and should be bent slightly outwards.

When the heat sinks are satisfactory, they should be painted matt black and left to dry thoroughly before using.

Finally, make up the chassis base plate and the control mounting bracket as shown in Figs. 10 and 12.

Fig. 12: Above, details of the control mounting bracket which is made from $\mathbf{1 . 2 \mathrm { mm }}$ thick aluminium

Fig. 13: Below, the mounting details of the power f.e.t.s and heat sinks

Fig. 14: Marking out details for the aluminium chassis which is made from $\mathbf{1 . 2 m m}$ thick sheet

Fig. 15: Method of mounting the control potentiometers using the pot mounting bracket

The black earth terminal on the rear of the chassis is mounted without its rear insulating washer to ensure a good electrical contact with the chassis (Fig. 11).

The output power f.e.t.s should be assembled onto the heat sinks and chassis as shown in Fig. 13, but it is very important to make sure that the pins do not touch the sides of the holes, and that the mica washers are not damaged. The use of a heat sink compound helps here. After assembly, a multimeter may be used to check for shorts between pins and chassis.

Both the $4700 \mu \mathrm{~F}$ reservoir capacitors are held in place with plastic cable ties. Four large plastic cable ties are used to hold the special toroidal mains transformer and should be firm but not over tightened, otherwise they may distort
the chassis. A piece of foam is placed between the transformer and chassis to reduce vibration. This method of fastening the transformer to the chassis has been used instead of the bolt and plastic centre method as it has proved to be considerably cheaper and is just as easy and reliable. Do not be tempted to use metal ties, wire, or a bolt and clamp bar through the centre of the transformer, any of these methods can create a shorted turn, overloading the transformer. The l.e.d. used as an "on" indicator is a firm push fit into the hole provided.

Next month finishes the wiring of the amplifier and covers testing and setting-up procedures

A NEW STAR ON THE WORLD'S HI-FI HORIZON.

${ }^{\text {W }}$

WINTON

PW and T. \& T.

HAVE COLLABORATED TO BRING TO PW's READERS A WORLD FIRST ON THE HOME CONSTRUCTOR HI-FI KIT SCENE.

Ted Rule, a member of the design team of T. \& T. Electronics was commissioned by P.W. to design a High Fidelity Stereophonic Amplifier in a form suitable for the Home Constructor which would supersede the now ageing "Texan".
This, bearing in mind the phenomenal success story of the Texan was a daunting brief for any design team, but we are both delighted and proud to announce that Ted as well as achieving his original design brief, has far exceeded it.
Ted, (who has 30 years experience in Hi Fi design) has excelled himself in producing the P.W. WINTON amplifier, which we sincerely believe to BETTER SIGNIFICANTLY ANYTHING CURRENTLY AVAILABLE TO THE HOME CONSTRUCTOR IN THIS POWER RANGE.
The almost unbelievable specification for this design (published in full in the WINTON article) was achieved by utilising the latest "state of the art" devices available including the revolutionary POWER MOS-FETS developed by HITACHI Lid., and BI-FET Op Amps from TEXAS.
The HITACHI research has we feel rendered the use of Bi-Polar Power Output Transistors obsolete in any design which has any pretentions towards true HIGH FIDELITY.
Because we are so excited at the performance obtainable, and to avoid disappointment caused by the use of sub-standard components, we have decided to market a complete kit of parts to ensure that the Home Constructor can achieve the same superb results.
As with Rolls-Royce quality doesn't come cheaply, and we make no apologies at all for the fact that our kit costs a bit more than the average Bi-Polar design, we firmly believe that the standard of reproduction obtainable is a reflection in part of the quality of the components used in the kit, and that discerning Audiophiles the world over will recognise the inescapable truth that today you usually get just what you pay for. The WINTON Kit is available in the following form:-

Price Inc.
V.A.T. \&
carriage.
£21.45
Pack (A) Capacitors \& Fixed Value Resistors
Pack (B) Switches, Potentiometers, Pre-Sets \& Knobs
£13.26
Pack (C) Printed Circuit Board, and Terminal Pins
£8. 10
Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks, Cabinet, Screws, Wire, Fuseholders etc., and a Brushed Aluminium Fascia Front Panel.
$£ 32.99$
Pack (E) Semiconductors (including HITACHI MOS Power Fets)
£30.53
£17.22
$\begin{array}{lr}\text { Pack (F) Toroidal Mains Transformer } & \mathbf{£ 1 7 . 2 2} \\ \text { Complete Kit of all parts necessary to build the WINTON } & \mathbf{£ 1 2 0 . 0 0}\end{array}$
ORDER WITH COMPLETE CONFIDENCE (Cash with order please) FROM:-
T. \& T. ELECTRONICS. GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK. NR14 7HH. PLEASE ALLOW 28 DAYS FOR DELIVERY.

SCOOPTHIS EXTRA!

Don't miss the new Maplin 40-page bound-in illustrated guide and price list in our April issue!
plusthese projects:

- "Autoranging Multimeter" - 5-function autoranging AC/DC instrument for measuring voltages, current and resistance.
"Phaser" - guitar sound effects unit with - 6 phase-shift networks. Creates superb 'atmospheric whooshing'!
and
-Electronic DoorBell
- Bubble Memories progress with

PRAGTICAL

A-HTRONICS
April issue

MAINS TRANSFORMERS All theee heve 230／240v 50hz All thet heye $230 / 240 v$ s0hz Primery				
Votte		Our Ref．	1ce	1
Iv	2 amp	TM 1	11．94	40p
2.4 v	2 amp	TM 2	¢1．62	45p
4 v	7 amp	TM 32	22．70	60p
6 v	4 amp	TM 3	8^{85}	$40 p$
$6.5 v$	$t \mathrm{amp}$	TM 37	85p	40p
6.5 v	200 mA	TM 21	¢1．62	$40 p$
6．5v－0－6．5v	100 mA	TM21	¢1－62	40p
6．5v－0－6．5v	750 mA	TM 7	c2．16	45p
6．3－0－6．3v	100 mA	TM33	¢1．62	40p
6.3 v	2 amp	TM 4	¢1．89	50 p
8．5v	1 amp	TM 12	¢1．62	40p
$8.5+8.5 \mathrm{v}$ sep，winding	$\frac{1}{1} \mathrm{amp}$	TM 12	81.62	40p
9 v （ ${ }^{\text {g }}$	f amp	TM 5	81.62	46p
9v	$3 \frac{1}{2} \mathrm{mp}$	TM 11	£2．70	$50 p$
$9 v$	5 amp	TM 38	¢3．24	60p
10 v	25 amp	TM 15	24．88	11．25
10v－0－10v	4 amp	TM 50	¢3．78	¢1．25
10v－0－10v	121 $\frac{1}{2} \mathrm{amp}$	TM 15	¢4．88	E1．25
12v	$\frac{1}{1} \mathrm{mmp}$	TM 9	£1．05	$50 p$
13 v	100 mA	TM 21	E1．62	40p
13v	$\frac{1}{4} \mathrm{amp}$	TM 7	£2．16	$50 p$
12v	1 amp	TM 10	¢1．89	50p
12v－0－12v	50 mA	TM 19	¢1．62	40p
12v－0－12v	1 amp	TM 41	£3．24	50p
15 v tapped 9 v	2 amp	TM 11	£2．70	$50 p$
17 v	$t a m p$	TM 12	¢1．62	50 p
18 v	tamp	TM 13	f1．90	80p
20 v	tamp	TM 14	£1．62	50p
20 v （with $6 \mathrm{v} \frac{1}{\frac{1}{4} \mathrm{amp}}$ ）	2 amp	TM 50	¢3．78	81.25
20 v	6 amp	TM 46	24.32	81.25
20 v	12⿺⿻十⿵冂⿰入入	TM 15	54.86	¢1．25
20v－0－20v	6 amp	TM 15	54.88	21.25
24 v	$1 \frac{1}{2}$ amp	TM 16	E2．12	60p
24v	2 amp	TM 17	£2．70	60p
$24 \mathrm{v}+2 \mathrm{v} 7 \mathrm{amp}$	2 amp	TM 39	£2．97	70p
24 V	4 amp	TM 40	¢3．78	$80 p$
$25 v$	11 $\frac{1}{2} \mathrm{mp}$	TM 18	$\underline{22.43}$	60p
26 v	2 amp	TM 39	£2．98	
30v	8 amp	TM 15	24．88	11.25
37 v	37 amp	TM 34	¢ 21.86	enquire
40 v	3 amp ．	TM 46	84.32	81.25
40 v	5 amp	TM 48	E5．02	21.25
40 v	6 amp	TM 15	f4．86	f1．25
$40 \mathrm{v}-0-40 \mathrm{v}$	21 $\frac{1}{2} \mathrm{mp}$	TM 48	55.02	E1．25
50 v \＆ 8.3 v	2 amp	TM 22	¢ 4.88	81.25
50 v	8 amp	TM 29	£11．65	E1．75
60 v tapped 40v \＆20v	2 amp	TM 46	84.32	¢1．25
70v	4.5 amp	TM 24	87.02	£2．50
75 v and 63 v	3 amp	TM 23	28.10	£2．00
$75 v$	$4 \frac{1}{2} \mathrm{amp}$	TM 24	87.02	£2－50
80v rapped 70v \＆75v	4 amp	TM 24	87.02	E2．80
80 v centre tapped	$2 \frac{1}{2} \mathrm{amp}$	TM 48	E5．02	81.25
100 v	1 amp	TM 25	87.02	¢1．75
$100 \mathrm{~V}-0-100 \mathrm{v}$	t amp	TM 25	87.02	81.75
200 v	$\frac{1}{\text { amp }}$	TM 25	87.02	81.75
250v－0－250v \＆6．3v	50 mA	TM 36	E3．78	11.00
000 v	100 mA	TM 36	¢3．78	11.00
500 v	50 mA	TM 36	¢3．78	£1．00
260v	60 mA	TM 26	E3．24	11．00
1000v	60 mA	TM 43	68．50	E2．00
4 kv	5 mA	TM 49	4．05	70p
5 kv	5 mA	TM 30	27.02	11．00
8 kv	5 mA	TM 45	84.05	E1．00
8.5 kv	10 mA	TM 31	£10．26	£2．00
Full range of Mains to 120 v Auto transformers avaitable． Pot Cores．We have now received our delivery of Farrox pot cores．These are ex unused equipment．They contain the bobbins but of course these have to be wound and you would have to unwind．Three pairs available．				

 Quantity discounts apply．
Componemt Pand Raf． 3055 ．Taken from unused P．S．U．＇s． these contain $4 \times 2 N .3055$ power transistors with mica
insulators all on heat sink and 4 variable pots．preset type with
spindle locks．Real batgain at 1. ．O8 each． spindle locks．Real batgain at Et .08 each．
Component Board $\$ 21$ A as from un
items on these are two power silicon unused equipment，major SJ 5433 mounted on a heat sink with mica insulators．also behind the panel are two power rectifiers ST NS 1008．Price 98 p．
E．H．T．Mans Transformer．With inductance control E．H．T．Mains Transformer．With inductance control，normal
priman and output voltage approx． 4 kv 3 mA ．Voltage can be primany and output voltage approx． 4 ky 3 mA ．Voltage can be
varied by applying DC to lower bobbin．Unused，ex P．S．U．＇s Price ع4．32． Music Contre Ougt Cover．Size $12^{-} \times 10^{\circ} \times 1 \frac{1}{2^{-}}$with
attachments for hinging．Price $\mathbf{\varepsilon 3 . 9 5 .}$ ．Callers only． attachments for hinging．Price E3．95．Calers only but apparently Tomphore andewng in wechings．Used，but apparently
complete and probably in working order．However，we are allowed to supply these only for breaking up．they should be very suitable for conversion to open reel tape recorder，background music machine．echo chamber，etc．All untested but we quarantee Machines less outer case $\mathrm{E} 7 \cdot \mathrm{EO}$ ，case slightly broken but Machines less outer case
substantially whole $£ 10-26$ ．Unbroken cases $£ 12$ ．4s，and finally
with new looking cases $£ 14$ ． 60 ．Post $£ 2.50$ par machine．Many with new looking cases f14．EO．Post $£ 2.80$ per machine．Many accessories available for these machines．Please enquire．
Wad Mounting Thermostat．The Satchwell room stat．Mains
20 amp settable over normal air temperatures between $30-80^{\circ} \mathrm{F}$ ． suitable also for greenhouse control．Nicely finished in white
enamel Price $£ 3.25$ ． enamel，Price $£ 3.25$ ．
$10 \mathrm{r} . \mathrm{p} . \mathrm{m}$ ．Motor with 230 v mains coil，not like the usual of these
geared motors this has a good length of $t^{\prime \prime}$ shats Price $⿷ 2.50$ ． geared motors this has a good length of $\frac{f}{}{ }^{2}$ shatt．Price $\mathbf{2 0 . 5 0}$ Riponde Intermezzo $10 * 10$ hi－fi amplifier with belt driven
record deck with speed control and strobe check．The best hi－fi record deck with speed control and strobe check．The best hi－fi
offered by Rigonda original selling price was in excess of $\mathbf{\Sigma 1 2 5}$ ． offered by Rigonda original selting price was in excess of 8125 ．
We have approx． 50 of these unused but with various faults． We have approx． Offered at $\mathbf{\$ 3 3} .50$ ，loss than the price of the very high quality deck incorporated．If cannot collect add 83.00 to cover the
MINI－MULTITESTER

Amazing．deluxe pocket size precision
moving coil instrument－jowelled bearings－ 1000 instrument－fowrored scale
11 instant ranges measure：－
DC voliss 10.50 .250 .1000.
AC volts $10,50,150,1000$.
DC amps $0-1 \mathrm{~mA}$ and $0-100$
OC amps $0-1$ mA and $0-100 \mathrm{~mA}$
Continuity and resistance $0-150 \mathrm{~K}$ Continuit
Ohms．
Complate with insulated probes leads．battery．circuit diagram and instructions． instructions．
Unbelievable value only $\mathbf{\varepsilon 8} \cdot \mathbf{8 0}+50 p$
post and insurance．

MULLARD UNILEX
A mains operated $4 * 4$ stereo
system．Rated one of the finest performers in the sioreo field this would make a wonderful gift for
almost anyone in easy－to－assembla almost anyone in easy－to－assemble
modular form and complete with a pair of Plessoy speakers this should
sell at about cua－but due to a
special bulk buy and as an incentive for you to buy this month we
offer the system complete at only 215 including VAT and

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives mazing assortment of stations over th 19.25 ． 29.31 metre bands，Kit contains chassis front panal and all the parts

24 HOUR TINERS VENNER As illustrated with sun correction made tor G．P．O．phone boxes use £1．94－crystal e

SOUND TO LIGHT UNIT
Add colour of white tight to your amplifier． Will operate 1,22 or 3 tamps（meximu
450 W ）Unit in box ready to work．E9．95．

BREAKDOWN PARCEL

Four unused．made for computer units containing most useful components，and computer panels，have wire ends of usable length．The transistors for instance have eads over 1＂long－the diodes have approx．$\frac{1}{2}$＂leads．

List of the major components is as follows：－ 17 assorted
transistors－ 38 assorted diodes－ 60 assorted resistors and transistors－ 38 assorted diodes－ 60 assorted resistors and condensers－4 gold plated plugs in units which can serve as multipin plugs or as hook up boards for experimental or quickly
changed circuits（note we can supply the socket boards which we made to receive these units）．The price of this four unit parcel is £1 including VAT and post（considerably lesss than value of the
transistors or diodes alone）．DONT MISS THIS SPLENDID transist
OFFER．

TANGENTIAL HEATER UNIT

 A most efficient and quiet running
blower－heater by Solatron－same
type as is fittod to many famous name heaters－Comprises mains induction motor－long turbo and thermostatic safoty trip－ simply connect to the mains for
immediate heat－mount in a simple woodon or metal case or mount direct onto base of soy
kitchan unit price $\mathrm{f4.95}$ post
f 150 control switch to give 2 kw
3KWMODEL 1 kw ，cold blow or off available 60 D
$2 \mathrm{k} . \mathrm{w}$ ．model made in metal case with control switch $\mathbf{\$ 1 2 . 0 0}$
MOTORISED DISCO SWITCH
With 10 amp chanqeover
switches．
adjustable switches are
would provide
maqnificeni display．
mains operating． 8
switch model e5．25． 10
switch model 85.28 ．
switch model $\mathrm{f5} .76$ ．
swith model f 8.75 ．

FLUORESCENT TUBE INVERTOR
For camping
car repairing
emergency light－
beat fluorescan

offer pfenty of well distributed light and is economical．We offer invertor for 21＂ 13 watt min

RELAYS

Terms：Prices include Post \＆VAT．But orders under $\mathbf{~} \mathbf{6 . 0 0}$ please add $\mathbf{5 0}$ p to offeet packing．Bulk enquiries－Please Phone for Generous Discounts 6881833.

Access and Barclycard accepted

J．BULL（EELECRICAL）LTD

（Dept．E．E．）， 103 TAMWORTH RD． CROYDON CR8 1SG

IT＇S FREE

Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived－often bargains which sell ou it＇s free－iust send S．A．E．Below are s fow of the Bargains still available from previous lines．

FM Tuner and decoder， 2 very wall made（Japan）units．nice clear dial．excellent reproduction． $\mathbf{2 1 1}$ ． 20 the pair
12 Volt Heavy Outy Rotay，plug in tape has three pairs of 10 amp chand oover contacis．A transparent dust cover，price fi．0
4 Changeovar Relay，upright mounting 4 sets of 10 amps
changeover contacts，mains vottage coil $\mathbf{f 1 . 7 2}$ ． 12 Vott Pump．Designed we believe as a bilge pump，this is 12 volt AC／DC motor coupled by a long enclosed shatt to a submersi－
ble pump．Suitable for water or most any fluids．Price \＆12．50． High Loed 24 Hour Clock Switch，made by the famous Smiths capacity of 80 amps at 240 V 50 Hz ．Therefore suitable for dealing with terge loads of say shop lighting．water heating，storage
heaters．etc．，eic．Has triggers for on and off once per 24 hours heaters．etc．etc．Has triggers for on and off once per 24 hours
but extra triggers will be available．Price ET .50 per pair．，totally but extra trigegers wil
ancased．Price $£ 9.50$
Enclosed 24 Hour Clock with contacts for breaking 10－12 amps af 24.
Ught Dimmer，our timer module with small mods makes an ex suitable for loads approaching 1 KW ．Price of module and instruc tions E2．25．
Puah Pull Solenolds，mains operated solenoids which will push as well as or instead of pull．Very heavy duty．estimate this at
20lbs push or pull $17^{\circ} \times 34^{-} 4^{\text {a }}$ made Magnetic Devices Co． 201 bs pu
$E 7.50$ ．
Flashing Liphts，chasing lights，random finishes，strobe offect etc．．etc．，can easily be achieved using our disco switches．These suitable for mains working．To get some idea of loading number each switch is io amp．For the light pipe or Catherine Whee effect order the 12 switch model with light pipe data model，inter connecting the switches to give fostest speed． 6 Switch mode E5． 9 Switch model $\mathbf{E 9}$ ．75． 12 Switch model $\mathbf{~} 6.20$ ．
Reed $\mathbf{8}$ witches，standard 60 watt glass type．Normal open con－
tacts glass lengths 2° diameter $3 / 16^{\circ}$ ． 10 for $\mathbf{£ 1 , 1 0 0 \text { for } £ 6 \text { ，}}$ tacts glass leng
1000 for E 70 ．
Flat Reed Switches，for stacking，greater quantity in confined
Ceramic Magneta，suitable for operating Reed switches．central fixing hole． 10 for \mathbf{E} ．
Music Centre Trantformer 12－0 12 at 1 amp and 9 volt at $\frac{1}{2}$ amp．Normal primary，uprighti
quiet operation．Price E3．50．
－W．Shaped Fluoreacent Tubes for porch light，box signs or where you want light evenly spaced over a confined a
prox $1 \delta^{2}+10.30$ watts made by Philips，price $£ 2.24$ ．
Extension Speekers， 8 ohm 4－5 watts handling power．We have 5 or 6 ditterent models in stock cheapest being the Par－
tytime at 83.95 each，again only really a bargain for callers as postage is f 150 per speake
Auto Transformere for working American tools and equipment completely enclosed in sheet metal case with American type Ha output socket made for computer so obviously rist class 500 These may be a bit soiled but are fully guaranteed．Simitar bu 1000 watt for E29－50．
Car Starter Charge Kit．New version．We supply two 10 amp rectifiers．250v transtormer and the start charge switch with in
structions，price $\mathbb{\text { E．75 }}$ ．This is probably one of the most uselul pieces of equipment you can have in your garage．Sooner or late you or someone will leave something on and you will have a fla
battery．this starter will get you away usually in less than 5 minutes．
Resetter Counter，by Veedroot Company．230／240V main Reserter Counter，intended for surlace mounting has a fixing flange at the bottom．Price £2－16．
12 V Orip proof Relay．Specially designed for going under the connet of a car．made by one of our big manulacturers．this really has a removable semi－hard rubber cover．Contacts look suitaile ing about making an anti－thief device．Price $£ 1.8 \mathrm{p}$ ．
High Speed Uniedector．As many customers know，we have a very comprehensive stock of uniselectors as used in automatic
telephone exchanges．light flashing device etc．，etc．Just arrived however is a high speed model made by tamous Plessey，this is pole 32 way with make before break wipers．overall size approx $4^{*} \times 3^{*} \times 2 \frac{1}{2}^{\prime \prime}$ ．price $\mathbf{E 3 \cdot 5 0} \cdot 28$ p．
Pneurnatic Rem for lifting．thrusting．pulling etc．，has $2 z^{-2}$ travel，
looks large enough to open doors，lifi，staircase．ventilators，etc． looks large en
Price $£ 7.00$ ．
Soldar Gun Bargein．The ETP．this is 100 watt solder gun， very well made tool with lamp to illuminate work has double in sulated mains translormer and is built into the shock proof ther
moplastic case．Comes comptete with spare tips．Mains operated of course．Price £4．50．
Interested in Tape Controf．American made tape punches，real－ Iy beautiful units made of sophisticated parts．designed we
betieve to automatically operate typewriters and they can of course be used to operate other punch tape controlled machines We believe these are 8 bit paper tape punches．powered from 115 V 50 HZ in very good condition with tape $£ 16 . \mathrm{CO}$ ，carriage is f3 20 ． Resetteble Fuses（thermal trips）．Two new iypes have come in．
one made by ETA is a 6 amp model which is mounted through a
single hole rather like a volume control．This is suitable for 250 singte hole rather like a volume control．This is suitable for 250
volts AC or 24 volts DC．Price 54p．4：5 Amp Model made by volts AC or 24 volts DC．Price 54p．4－5 Amp Model made by
AEG is held by two screws thus a bank of these could be mounted between meral straps．Price 54p．
Dlac Motor，mains operated．This is very thin in fact less than $1^{\prime \prime}$ spindle which is approx． $1 / 32^{\prime \prime}$ dia．pushes through could be used to drive clockwise or anti－clockwise．The spindle being a friction fit can be pushed completely out and replaced b
your own spindle，a knitting needle for instance．Price only 38 ．
75 rpm Maine Induction Motor with gearbox．This motor quite powerful and has $1 \frac{1}{2}^{"}$ stack and the final 75 rpm drive shsft
is It $1 \frac{1}{2}$ long by $i^{\prime \prime}$ dia．The motor also has a spindle coming from ithe opposite end to which could be fitted another pulley．Overall size approx． $3^{\circ} \times 5^{\prime \prime} \times 2 \frac{1}{2}^{n}$ ．spindles．Price $£ 3.35$ ．
24 Hour Motor，beautifully made by Sangamo．This is 200 － size approx．14＂dia．by if ${ }^{\circ}$ deep．If you are contemplating mak ing a 24 hour switch with a lot of on／offs，then this is obviousl
the motor．Price Et .89 ．

PRODUCTION LINES alan martin

Pattle's panels

We all know the problems of making a really good front panel for our projects. Dymo tape and typed sticky labels are no substitute for a photographically reproduced anodised aluminium panel. Several of our recent projects have featured front panels professionally made by D. J. Pattle to our designs. These panels are available to readers and come in a variety of styles, colours and thicknesses.

The thin type is available, selfadhesive backed, ready to be cut out and mounted on to a sub-panel. A full thickness aluminium version is available which also acts as the front panel.

If you want to add a touch of class to your shack, then the aluminium RSGB badge with your callsign across the centre, is available to order from Pattle. Full details and prices from: D. J. Pattle, Juniper, Hillbury Road, Alderholt, Dorset. Tel: Fordingbridge 52081.

If you please

Would readers kindly mention "Production Lines", when applying to manufacturers or suppliers featured on this page.

Grounded

A portable field service kit which can prevent electrostatic charge from damaging sensitive electronic components during construction or servicing operations is now available from 3 M UK Ltd.

This is the "Velostat" 8005 Field Service Grounding Kit, which provides an effective method of draining electrostatic charge from the individual to ground before it can damage or destroy sophisticated components, such as MOS, bi-polar devices and microprocessors.

Research has shown that thousands of volts of electrostatic charge can be
generated and stored in a technician's body by simply walking across floors and sliding on and off stools. When the individual then handles a p.c.b., the electrostatic charge flows from him through the circuitry, literally blowing components.
The kit consists of a "Velostat" Table Top $(614 \mathrm{~mm}$ square), a conductive wrist strap and a ground cord. The Table Top has convenient storage pockets and can be rolled or folded to fit neatly in tool cases.

For details of price and availability contact: $3 M$ United Kingdom Ltd., 380-384 Harrow Road, London W9 2HU. Tel: 01-286 6044.

Battery holder

Most small equipment enclosures on the market today make no provision for battery housing and dismantling a complete instrument in order to replace an exhausted battery is both tedious and time consuming.

Vero Electronics Ltd. now make available an injection-moulded battery housing of simple clip-in design offering access for battery changing from outside the instrument.

The holder accepts a 9 V battery and may be easily fitted to a panel or enclosure with a thickness of 1.5 to 3 mm . All that is required for fitting is a rectangular cut-out into which the holder is pressed home.

Supplied as a kit, the battery holder comes complete with connector and lead for less than $£ 1$. Further details from: Vero Electronics Ltd., Industrial Estate, Chandler's Ford, East/eigh, Hants SO5 3ZR. Tel: (042 15) 69911.

NOUGHTS \& CROSSES J.D.MITCHELL

The game of Noughts and Crosses presented here is a less ambitious development than the automated opponents currently advertised, but has proved itself a source of great interest to friends and offspring alike. Babysitters particularly appreciate trying to beat the "computer" after the television closedown.

The game uses TTL integrated circuits, directly driven l.e.d. displays, and inputs are made by touch-switches or alternatively with a simple prod. The circuit automatically remembers the first input and sets its program for the remainder of the game. With the advantage of first move, the player may win 126 or 16 of the 945 different possible games as explained later. This facility was added at the cost of a few extra gates. The programming could have been wired to win or draw only, but there is little interest in competing against an infallible opponent. Mis-switches cannot override previously lit noughts and crosses.

Identifying the board squares as in Fig. 1(a), if the first input is to any outer square the reply is to 5 . Should the first move be to square 5 , the reply is to 1 . The first reply is directly gated, but this is not possible for subsequent replies and a 9 -bit event latch is used to set a program. The programs set by the first input made in each game are identified as in Fig. 1(b).

Figure 2 details the event latch, gating for the first reply, input latches which store the momentary Logic 0 's from the touch-switches or probe, and display latches which directly drive the l.e.d. displays.

Six input latches are contained in IC 13. type SN74118. The other three are cross-coupled 2 -input nand gates type SN7400. Capacitor Cl connected to the reset input prevents the discrete latches setting in the opposite polarity to those in IC 13 on powering the circuit. All other capacitors shown are for decoupling.

Display latches

The display latches operate differently to the usual setreset of the input latches. Initially. both inputs are at Logic 0 . When one input is switched to Liogic 1 , both inputs to one gate are then at l and its output is at 0 . The display in that square is thus lit.

Display gating for squares 2, 4, 6 and 8. Fig. 2(b) are modified forms of the above latches. If a nought or cross input is made first, the display will be lit accordingly. If the third (inhibit) input is made first, a nought cannot then be

displayed although a subsequent cross can. Five 3 -input NAND gates are also used in the gating. Outputs from these are connected to the inhibit inputs of the latches. Two are spare type SN7410 as used in the 3 -input display latches. The other three are type SN7412 (o/c collector) so that two may be connected as a wired-or to the inhibit input of display latch 4. These latches with their associated gates prevent replies being made after the player has won a game.

Wired-OR gates

The 9-bit event latch comprises IC 10 and square 5's input and display latches. IC10 is a dual 4 -bit latch with clear inputs, type SN74116. Each 4-bit latch also has two enable inputs, which are connected as two pairs on PCB 1. All outputs from IC 10 are connected as a wired-OR gate into one pair of enable inputs. The other enable inputs are connected to the $\overline{\mathrm{Q}}$ output from square 5 's input latch. When either pair of enable inputs is switched from Logic O to 1 , all eight latch outputs are held in the condition they were in previous to the switch. If the first input switched is 5 , all outputs from IC 10 are held at O. Display latch output $5 x$ is enabled, and inverted to enable program E. Output E is inverted again to enable display latch ouput Io. The inverters buffer display lateh 5 . Should any other input be switched first (say 3x), output 3 from IC 10 switches to Logic 1 and enables program C. The other programs remain disabled by the output of the wired-or gate, whilst display latch output 50 is enabled.

The nine outputs from the event latch circuit are taken to PCB 2 where they are connected with eight of the Input latch \bar{Q} outputs in a gated matrix. Input latch 5 is not re-

7	8	9
4	5	6
1	2	3

(a)

WTS002	G	H	J
	D	E	F
	A	B	C

(b)

Fig. 1: The identification of the squares on the board

Fig. 2(a): The input latches are contained in IC13, an SN74118. The 9-bit event latch is made up from IC10 (SN74116) and square 5 input and display latches. C1 is to prevent the discrete latches from setting in the opposite polarity to those in IC13 when power is applied

WRMIIS

Fig. 2(b): The display gating for squares $2,4,6$ and 8 are shown in this drawing. These gates ensure that the correct symbol is displayed in the appropriate square

Wired prog.op connections to nought display latches													
inputs	A	B	C	D	E	F	G	H	J	$A+D$	$B+C$	G+H	F+J
1	-	3	2	7	-	-	-	-	-	-	-	4	2
2	-	-	1	-	8	1	-	-	4	3	-	6	-
3	-	1	-	-	7	9	-	\rightarrow	6	2	-	6	-
4	7	7	8	-	6	-	-	-	-	-	-	1	2
5	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-	-	-	4	-	2	3	3	8	9	-	-
7	4	-	-	1	3	-	-	9	-	-	4	-	8
8	6	-	-	9	2	-	9	-	-	-	4	-	7
9	-	-	-	-	7	3	8	7	-	8	6	-	-

components

Resistors		
$\frac{1}{2}$ W 2% metal oxide		
270Ω	9	Display
$1 \mathrm{k} \Omega$	10	R8 and input switching
$1.2 \mathrm{k} \Omega$	2	R3, 9
$1.5 \mathrm{k} \Omega$	1	R14
$1.6 \mathrm{k} \Omega$	5	R10, 11, 12, 13, 15
$2 \mathrm{k} \Omega$	1	R16
$2.2 \mathrm{k} \Omega$	9	Input switching
$4.7 \mathrm{k} \Omega$	2	R1, 4
$7.5 \mathrm{k} \Omega$	1	R6
$9.1 \mathrm{k} \Omega$	3	R2, 5, 7
Capacitors		
Disc Ceramic		
Tantalum bead		
Semiconductors		
Diodes		
1N4001	1	D1
Red I.e.d.	63	Display
Transistors		
Integrated circuits		
SN7400	6	IC2, 4, 6, 11, 14, 15
SN7403	12	$\begin{aligned} & \text { IC17, 18, 19, 20, } 21 \\ & 23,24,25,26,27,28 \end{aligned}$
SN7404	2	IC1, 8
SN7405	2	IC9, 12
SN7410	2	IC3, 7
SN7412	1	IC5
SN7432	1	IC16
SN74116	1	IC10
SN74118	1	IC13

Miscellaneous

Push-to-make switch (1), miniature slide switch (1). Battery holder B203 (1), Verocase 205×140 $\times 40 \mathrm{~mm}$ (1), Veropins, nuts, bolts, washers, printed circuit boards (set of 4).

Fig. 3: Circuit board 2 connects the nine event latches to eight of the input latch $\overline{\mathbf{Q}}$ outputs in a gated matrix. All outputs with the same numbers are 'wired-OR' connected to the appropriate resistor on Board 2 and then to Nought inputs of display latches on Board 1

Fig. 4: Circuit diagram of one l.e.d. display. This forms the display for one square and nine of these are required for the complete game. The 270Ω resistor is the approximate value needed to limit total current to 10 mA
quired because of the direct gating used for the first reply. 2 -input o/c collector NAND gates type SN7403 are used for the matrix, their outputs connected as wired-or gatessee Fig. 3. To reduce the number of gates in the matrix, four 2 -input-OR gates type SN7432 are used to provide outputs $\mathrm{A}+\mathrm{D}, \mathrm{B}+\mathrm{C}, \mathrm{F}+\mathrm{J}$ and $\mathrm{G}+\mathrm{H}$. The nand gate outputs are connected back to inverters on PCB 1 and then to the nought inputs of the display latches.

Outputs

Outputs from the display latches are connected directly to the display l.e.d.s, which are interconnected and positioned as shown in Fig. 4. Initially, both outputs of a latch are at Logic 1. If the " X " input to a display is switched to 0 V , current tlow is from the positive rail via the four corner-mounted l.e.d.s, through the centre l.e.d. into the gate, displaying a cross in the appropriate square. If a "O" input to a display is switched low, current flow is via the corner l.e.d.s and through the top and bottom l.e.d.s to show a nought. The resistor is selected to limit current to $10-15 \mathrm{~mA}$.

PART 2 will cover the construction of this interesting project together with the circuit diagrams and printed circuit board layouts

Lasers Again

Readers may remember the fuss over using lasers as part of London's Christmas decorations last year. Apparently some thought the beams would constitute a hazard.

In the American town of Atlanta they've been using lasers for some time to control traffic lights. Before anyone sees "red", the health hazard is virtually nil and the system has been given a fond, approving kiss by the US Bureau of Radiological Health Standards as being "safe for eyes".

Previously, the digital computer that controls the city's traffic lights was coupled to the lights via telephone lines, or by dedicated cables. The system can control up to 500 separate road junctions. At each set of lights is an optical transceiver that faces its neighbour at another junction.

Sensors, in the road, monitor the traffic density and this information is fed back along the laser chain to the computer. The digital computer "computes" all this information and, having computed sends a master command signal to the relevant traffic lights.

Tests on the laser's range showed reliable operation at distances of well over $\frac{1}{4}$ mile even in the very worst weather conditions (such as heavy fog, etc). In a good, clear, typical English summer's day (singular!) type weather, the range approaches 10 miles.

Peak power outputs of the GaAs laser diodes used are around 10W, and these are pulsed at 2 kHz .

A shining example to traffic light manufacturers everywhere.

Thermometers

For those with an interest in electronic thermometers, keep an eye open for the magic number AD590. It's a completely self-contained temperature transducer with an accuracy of $\pm 0.5^{\circ} \mathrm{C}$ over the temperature range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. And it's only "transistor size" being housed in a standard TO-52 can. Better still, there are only two leadout wires.

During manufacture, the resistive elements are precision laser trimmed to precise values. The result is a sensor that is linear over the range. So much so that you can plug in different ones without any need to recalibrate. For the technical buffs, the output is $298 \cdot 2 \mu \mathrm{~A}$ at $298 \cdot 2 \mathrm{~K}$ (that's $25^{\circ} \mathrm{C}$) and any tem-
perature change up or down gives a $1 \mu \mathrm{~A} / \mathrm{K}$ variation.

The cheapest version costs barely the equivalent of a single British quid. A miniature, ceramic flat pack version is also available. Note that these are the prices for 100 off, though!

Stronger yet Faster

High gain-bandwidth product and high collector-emitter breakdown voltage are two conflicting ideals according to many bipolar transistors. These comments are particularly pertinent in the field of switching applications.

The Japanese think they ve found an answer, and it's quite a clever one. They've combined a field-effect transistor gate structure with a standard bipolar transistor. One of the beneficial effects observed is that, assuming the same base width, where a particular conventional transistor had a breakdown voltage of say 20 V , the new hybrid would make this figure 200V.

Not only does the new structure give a ten times increase in breakdown voltage, but it also offers a four times increase in gain-bandwidth product. One set of figures quotes $80 \mathrm{MHz} / 500 \mathrm{~V}$.

Midget Supplies

Ever since the advent of switching power supplies, these items seem to have shrunk ever smaller. An American company began one power supply development programme by asking itself a question. "As digital panel meters get smaller and smaller, how will they be able to keep the useful feature of being operable from d.c. supplies and mains?' Pointless to have a beautiful, small d.p.m. only to find a dirty great power supply (by comparison) is required to power it.

Since many miniature d.p.m.s use c.m.o.s. and require only small currents and voltages, their power needs are not great, never-the-less with mains one side and a d.c. voltage the other, something very small has to go in the middle.

The result is the $\mu \mathrm{S}-\mathrm{A}$ series power supplies. They measure only 12.5 mm cube and will supply from 1.5 to 15 V d.c. from a 120 or 240 V a.c. mains supply. They don't mind if the frequency of that supply is anywhere be-
tween 47 Hz and 440 Hz . The one-off price in the US is about the equivalent of $£ 4$ sterling. But the 100 off price plummets to just over $£ 1$.

Tiny Switch

Always well worth watching is the International Electron Devices Meeting. Among the many fascinating papers that caught my eye was one which described a small electromechanical switch. And when I say small, I really do mean small with a very little "s". This intriguing device is built using semiconductor technology. The switching cantilever is just 76 micrometres long. It is fabricated from a very thin layer of metal coated on a membrane of silicon dioxide. The membrane itself certainly isn't very thick, either; only 3500 Ångströms! Switching takes place by electrostatic action on the membrane. Switching time is around 40 millionths of a second using a "switching" voltage of 60 V . The author claims the higher voltages give even shorter switching time-but one then starts to get contact bounce.

An important aspect of this new device is that the switch (or switches) could be fabricated on the same chip as the active devices.

A parting shot. It is thought that, after development, these tiny switches could be made to function at switching times to the order of 10μ s using 30 V max. and with a current carrying capability exceeding 100 mA .

Although obviously in its infancy, the idea seems to be promising when one examines the prototype test figures. Some of the switches under test in the laboratory have exhibited lifetimes of over 2 million switching operations while switching current densities of 5×10^{4} amperes per square centimetre.

It might be as well for readers who are avid constructors to purchase a powerful watchmakers glass as a precautionary aid to future projects!

STERED DECDDERS

DEVICES\&CIRCUITS

PART 1

M.J.DARBY

In previous articles we have seen how a basic f.m. receiver functions, and have also considered front-end devices and circuits in detail.

However, many f.m. transmissions carry stereo information, and this part of the series deals with the essentials of the stereo decoder.

The Multiplex Signal

The audio output from the demodulator of a stereo receiver consists of both audio frequencies and ultrasonic frequencies which carry the required information for both the left and right hand channels. These two channels are said to be "multiplexed" so that they can be present as a single signal. It would obviously be very uneconomical to employ two separate transmitters for the left and right hand signals.

The multiplex signal from the output of the receiver demodulator circuit contains a number of parts which are illustrated in Fig. 1 and listed below.

1. The audio frequency band from about 30 Hz up to 15 kHz contains the required audio signal and constitutes the sum of the signals in the left and right hand channels. In a monaural receiver, only this part of the signal will provide the output in the loudspeaker.

The transmitted signal is thus "compatible", which means that the one signal can be used to operate both monaural and stereo radio receivers.
2. A 19 kHz pilot tone which is transmitted at a relatively low signal level. This pilot tone is required for the operation of the stereo decoder circuit: if the tone is not present in any signal (or not present at an adequate amplitude). the stereo decoder circuit will switch to the monaural mode and the same signal (left-plus-right) will be fed to the two speakers.
3. A left-minus-right signal which is modulated onto a 38 kHz sub-carrier signal. The sub-carrier itself is suppressed so that there is a small gap of about 60 Hz in

Fig. 1: Spactrum of the aterno multiplexed signal
width at 38 kHz . The left-minus-right signal covers a frequency band of about 30 Hz to 15 kHz . The sub-carrier modulation process generates signals of $38 \mathrm{kHz} \pm$ (left-minus-right frequency); this means that the lower sideband of the sub-carrier extends from $38-15=23 \mathrm{kHz}$ up to within 30 Hz of the 38 kHz frequency, whilst the upper sideband extends from 30 Hz above 38 kHz up to $38+15$ $=53 \mathrm{kHz}$. The upper and lower sidebands are shown in Fig. 1. The 38 kHz sub-carrier itself has an amplitude which does not normally exceed 1% of the total signal amplitude.

It is obvious from Fig. 1 that the stereo multiplex signal has a much wider bandwidth than the monaural signal which extends up to only 15 kHz . This wide bandwidth inevitably results in more noise being present in a stereo signal than in the same signal in the monaural mode. In practice the degradation in signal-to-noise ratio is some 20 dB , so a much better aerial is required for good. low noise stereo reception than is necessary for good reception of the same signal in the monaural mode.

When a broadcast is to be monaural for a period of more than a few minutes, the pilot tone at the 19 kHz frequency may be switched off so that stereo receivers are switched to the monaural mode. This automatically ensures that the optimum signal-to-noise ratio is obtained when only a monaural signal is being transmitted. Similarly, if the signal level falls below that required for good quality stereo reception. most stereo decoders will automatically switch to the monaural mode so that a better signal-to-noise ratio is automatically obtained without the listener having to take any action.

Decoder Types

Some of the earlier forms of stereo decoder circuits are of the so-called switching type. In such circuits the 19 kHz pilot tone is extracted from the multiplexed signal using a tuned circuit and is doubled in frequency to re-generate the 38 kHz sub-carrier frequency. This latter signal is used to switch the multiplexed input to the decoder between the left and right hand channels.

Switching circuits of this type are not at all easy to set up and to align. In addition, they have the disadvantage that they do not provide the optimum separation between the left and right hand channel signals and require ferrite cored inductors (which are always difficult to design effectively.

All modern circuits employ phase-locked loops in the stereo decoder circuit. The frequency of oscillation of the voltage controlled oscillator of the phase-locked loop automatically locks on to a harmonic of the pilot tone frequency and the loop will remain locked to this latter frequency until the pilot tone is switched off. Any normal

Fig. 2: Block diagram and external circuitry for the CA3090AQ p.l.I. stereo decoder
variation of the component values with temperature or normal ageing will not affect the performance of the circuit, so no critical component values are required in phase-locked loop decoders. In addition, this type of decoder is easy to set up, a simple adjustment of the loop free-running frequency being all that is required. Circuits employing a phase-locked loop for stereo decoding can provide excellent separation of the two channels, the interference between the channels normally being at least 40 dB below the signal level.

Special integrated circuits for the phase-locked loop decoding of stereo signals are readily available. We will now discuss the principles of operation of a phase-locked loop stereo decoder and look at some typical circuits. It is much simpler to use a monolithic device than to try to make a stereo decoder from discrete components.

The RCA CA3090AO

The first integrated circuit phase-locked loop stereo decoder to become available was the RCA Type CA3090Q in 1971, but this has been replaced by the CA3090AQ which is an improved version of the device, and provides an excellent performance. It has the disadvantage that the phase-locked loop is tuned by means of an inductor, whereas the other devices are tuned by a variable resistor; however, the thermal stability of the CA3090AQ is reputed to be better than that of other devices.

The internal circuit of the CA3090AQ is shown in block form in Fig. 2 together with a typical external circuit. This device is encapsulated in a 16 pin dual-in-line package and requires a supply of around 21 mA from a +12 V line. It can be seen that the internal circuit of the device is relatively complex, but the external circuit is quite simple and easy to construct.

A demodulated multiplexed stereo signal with a frequency spectrum like that shown in Fig. 1 is applied to pin 1 of the CA3090AQ; the input impedance at this pin is fairly high (about $50 \mathrm{k} \Omega$), so there is very little loading on the demodulator circuit which feeds pin 1. The signal is first amplified by a low-distortion pre-amplifier circuit inside the CA3090AQ and is then fed to both a 19 kHz phase-locked detector and to a 38 kHz detector of a similar type. In addition, the amplified signal is fed to a 19 kHz pilot tone detector, the output of which determines the state of a Schmitt trigger circuit which controls the mode of operation (monaural or stereo).

The voltage controlled oscillator in the CA3090AQ operates at the fourth harmonic of the pilot tone frequency, namely $4 \times 19=76 \mathrm{kHz}$, this 76 kHz signal being locked in frequency to the harmonic of the pilot tone. However, the 2 mH external inductance connected to pin 16 must be adjusted so that the free-running frequency of this voltage controlled oscillator is fairly close to 76 kHz ; when the pilot tone is applied with the signal to pin 1 , locking is then automatic.

The 76 kHz voltage controlled oscillator signal is divided in frequency by a factor of two to produce a

38 kHz signal exactly at the frequency of the suppressed sub-carrier; this 38 kHz signal is fed to the $\mathrm{L}-\mathrm{R}$ (left-minus-right) signal detector. The 76 kHz signal is also divided in frequency by other circuits which produce two 19 kHz signals in phase quadrature (that is, 90° out of phase with one another. One of these 19 kHz signals is passed to the 19 kHz phase-lock detector which generates the error signal which keeps the loop in lock, whilst the other 19 kHz signal is required by the pilot tone detector.

The amplified multiplex signal and the output from the $38 \mathrm{kHz} \mathrm{L}-\mathrm{R}$ detector are applied to a matrix circuit which produces the left and right hand audio signals. These signals are amplified internally before appearing at pins 9 and 10 . The 5 nF capacitor and the $10 \mathrm{k} \Omega$ resistor in each of these output circuits provide the required de-emphasis time constant.

If the pilot tone is absent or at such a low amplitude that the signal could not provide good stereo reception, the pilot tone detector does not switch the Schmitt trigger circuit to the stereo mode. The circuit therefore, operates in the monaural mode and the left-plus-right sum signal appears at both of the outputs so that both speakers produce a monaural output.

The signal from the Schmitt trigger also operates a lamp driver circuit. The latter causes the light emitting diode D1 to glow when the circuit is operating in the stereo mode. If no 19 kHz pilot tone is present at the input or if the pilot tone is too weak to cause the circuit to operate in the stereo mode, the light emitting diode does not glow. A light emitting diode consumes less current than a tungsten filament lamp and also has the advantage that it is more reliable (since filaments tend to break after much use!). Nevertheless, the light emitting diode and its series resistor R4 in Fig. 2 can be replaced by a suitable small tungsten filament lamp which requires not more than about 100 mA .

The Coil

The Toko coil type YXNS 30450NK has been especially designed for use with the CA3090AQ device; it has 270 turns on a ferrite core and a blue colour coded core adjuster. The use of this miniature coil (available from Ambit International) is much more convenient than trying to wind a suitable coil oneself.

In order to adjust the core, a stereo signal should be fed to the circuit of Fig. 2. The core of the coil should be rotated first in one direction and then in the other to find the points at which the circuit switches from the stereo to the monaural mode (as indicated by the light emitting diode, DI). The core should be set about half way between these two points. The centre frequency of the voltage controlled oscillator is then quite close to 76 kHz , but the setting is not very critical, as the capture range of the phase-locked loop circuit is some $\pm 10 \%$ of the centre frequency.

The mode of operation (stereo or monaural) can be controlled by the application of a suitable potential to pin 4 of Fig. 2. At potentials of more than about $+1 \cdot 2 \mathrm{~V}$, the circuit is switched to the stereo mode, whilst at voltages of less than about +1 V the circuit operates monaurally. If this mode switching facility is not required, pin 4 should be directly grounded.

The CA3090AQ provides a channel separation better than 25 dB , the typical value being about 40 dB . The 2 nd harmonic distortion in each of the outputs is some 0.2% typical, but higher order harmonics are less than 0.1% of the output amplitude.

The CA3090AQ is readily available from Arrow Electronics Ltd., Coptfold Road, Brentwood CM14 4BN,

Fig. 3: External circuitry required for the MC1310

Fig. 4: External circuitry for the National LM1310E
the current price being $£ 2.96$ including VAT, but 25 p is required for $\mathrm{p} \& \mathrm{p}$ on orders under $£ 5$.

The 1310 Types

The Motorola MC 1310P first appeared on the market in 1972, but is now an "industry standard" type of device which is second sourced by many other manufacturers. For example, National Semiconductor market it as their LM1310, Signetics as the MC1310, RCA as their CA1310E, Texas Instruments as their SN76115N, Sprague as their ULN-2210 and Exar as their XR1310.

All of these devices can be used in the circuit shown in Fig. 3, although there may be minor differences between the various types, such as the exact supply voltage range over which they operate satisfactorily.

The circuit of Fig. 3 operates on very similar principles to that of Fig. 2, but the free-running frequency of the voltage controlled oscillator is set by the adjustment of VR1 instead of by the adjustment of the core of a coil. The adjustment can be made by connecting pin 10 to a frequency counter and adjusting VR1 with no input signal until the frequency at pin 10 is 19 kHz . The amplitude of the signal at pin 10 is about 3 V peak. However, it is usually far easier to adjust VR1 with a small stereo input signal so that it is set at about the centre of the range over which the light emitting diode D1 remains illuminated.

The value of the capacitor employed between pins 8 and 9 determines the stereo-monaural mode switching delay. The time constant for this switching is equal to the value of this capacitor multiplied by about $53 \mathrm{k} \Omega$. If pin 8 is connected to ground, the circuit will operate only in the monaural mode.

The capture range in the circuit of Fig. 3 is less than that in the case of the CA3090AQ, being typically about $\pm 3 \%$. However, it can be increased by reducing the capacitance between pin 14 and ground and increasing the resistors in parallel with this capacitor in proportion; nevertheless, care must be taken to ensure these changes do not result in increased beat note distortion at high signal levels due to oscillator phase jitter.

The MC1310P is available from Arrow Electronics Ltd., at $£ 3 \cdot 14$ including VAT.

Emitter Follower Outputs

A number of other devices, such as the National Semiconductor LM1310E, are available in 16 pin dual-inline packages. They are similar to the MC1310P, but include an emitter follower in each output circuit to provide low impedance outputs. A circuit for the use of the LM1310E is shown in Fig. 4. It can be seen that the deemphasis components in the pin 3 and pin 6 circuits are not connected to the output pins themselves, but rather in the base circuits of the internal emitter followers. In general the remarks made about the MC1310P also apply to the versions with emitter followers (with a change of pin number), but the emitter follower device circuits will not be discussed further, as they have been largely replaced by a rather better device.

The industry standard Types LM1800, CA758E, SN76116N, MC1311, $\mu \mathrm{A} 758$ and ULN-2244 are similar to the LM1310E, but in addition to their emitter follower outputs, they incorporate a circuit which provides some 45 dB of power supply ripple rejection. In other words, they can give the lowest possible hum level. These devices are encapsulated in 16 pin dual-in-line packages and can be used in the circuit of Fig. 4. They are adjusted in the way already described and the remarks about the 1310 type of device also apply to these devices except for pin number changes.

It should be noted that the total harmonic distortion from devices of this type increases with increasing input signal level, as shown in Fig. 5. However, a low signal level will give rise to a poor signal-to-noise ratio. A suitable compromise between distortion level and signal-to-noise ratio must therefore be reached. The output typically consists of the wanted signal plus a second harmonic component at -52 dB down together with a 19 kHz pilot tone at -37 dB down, the 38 kHz suppressed carrier at -40 dB down and the sidebands of this sub-carrier at about -28 dB down. The channel separation in dB at

Fig. 5: Relationship between total harmonic distortion and input signal level

Fig. 6: Channel separation plotted against input signal level
various levels is shown in Fig. 6 for a typical device of this type.

The Sprague ULN-2244 device is available from Phoenix Electronics Ltd., 139 Havant Road, Drayton, Portsmouth PO6 2AA at $£ 3.38$ (including VAT) plus 20p $\mathrm{p} \& \mathrm{p}$ at the time of writing.

The TDA1005

The Mullard/Signetics TDA 1005 phase-locked loop stereo decoder device has been designed so that it can provide an output which is very low in unwanted signal levels. The device was originally designed for use with an

Fig. 7: External circuitry for the TDA1005 in the frequency multiplex mode

Fig. 8: External circuitry for the TDA1005 operating in the time multiplex mode
inductor in a frequency multiplex decoder, but can also be used without any inductor in the so-called time multiplex circuit. Typical circuits of these types are shown in Figs. 7 and 8 respectively.

WIRELESS WENT TO WAR

Fig. 5: Now museum pieces, the R1155/T1154 stands proudly in the centre with three sets from the Heinkel 111 on the left and a piece of wartime RADAR on the right
called the National Wireless Register, and readers were invited to complete the form so that they might be classified into technical groups which would be useful to the authorities, and avoid the real danger that the ability of wireless men might be lost through individuals being hastily drafted into non-wireless categories.

The form itself states: "During the Great War the needs of the Services for operators were largely met, especially during the early stages, by the voluntary enlistment of trained Post Office operators, but as Morse is no longer used in the Post Office, this possible source of supply is rapidly dwindling. It is therefore imperative that all our readers who have at least a good working knowledge of Morse, or have other qualifications such as ability to service and repair wireless and electrical apparatus, should apply to help fill the vacancies which now exist in the RNV(W)R, the Royal Corps of Signals, TA, and the RAFCWR."

Less than a year later, Great Britain was at war and in the early days a party of 55 ex-Civilian Wireless Reservists went to the Maginot Line and were christened the "Early Birds" by the amateur radio fraternity. According to the RSGB journal, September, 1942, some 2500 of their members had joined the forces. By the end of the war, thousands of people from the radio fraternity had served their Country in one of the many branches of radio communications in the armed forces. Ex-service personnel still talk with affection about such famous pieces of equipment as the Army's Wireless Sets, Nos 18, 19, 38 and 46, the Navy's CR100, the RAF's R1155/T1154 combination, the AR88 and the B2 and MCR-1 Clandestine sets, all of which are now collectors' items and stand silent in various museums representing a period of time when Wireless and thousands of its enthusiasts went to war.

ACKNOWLEDGMENTS

We are indebted to the Editor of Wireless World for permission to reproduce Fig. 4 and other extracts from that journal, and to the RSGB for permission to quote from the $T \& R$ Bulletin.
The sets in the photographs are from the author's collection and are on display at The Chalk, Pits Museum, Houghton, Sussex.

SN761 10 Stereo decoder 75p; 25/ع15 $100 / \& 45$.
8 C 184 Pratormed for TO5 spacing 100/E4.50 1000/£30.
8C2 13 L straight leads $100 / \mathrm{ES} 1000 / \mathrm{e} 33$. 2N5060 08 A SCR 30V. Ig 200uA 10/£2 100/E15 1000/E120.
1 N4148. bandoliered $1000 / £ 15$ $2500 /$ / 32 10.000/E90. Loose, boxes of 10k/E75.
74180 IL 10/£1-80 100/£14.50.
$55580 \mathrm{IL} 10 / £ 2.40$ 100/£19.50.

iN4007 100/£4.90 1000/£44.
Electrolytics: $10 u 40 \mathrm{~V}$ PC mntg $25 / £ 1.25$ Electrolytics: 10 u 0 V PC mntg $25 / \mathrm{E1.25}$
$100 / \mathrm{V} ; 4 \mathrm{~W} / 63 \mathrm{~V} . \mathrm{PC}$ mntg. $1 \mathrm{~W} / 63 \mathrm{~V}$ H.PC mntg same price.
H.PC ming same price.
$1250 \mathrm{w} / 2 \mathrm{~V}$ can $10 / \mathrm{E} 1.60$ 100/£10. $1500 \mathrm{w} / 40 \mathrm{~V}$ can $10 / \mathrm{E2} .20 \quad 100 / \mathrm{E} 15$. $800 \mathrm{u} / 250 \mathrm{~V}$ can $10 / \mathrm{/E} \cdot 60$ 100/E44. $400 \mathrm{u} / 400 \mathrm{~V}$ can $10 / \mathrm{E8} 100 / \mathrm{E} 58$. $200 \mathrm{w} / 350 \mathrm{~V}, 100+100+50 / 300 \mathrm{~V}$ lat in one can) 10/E5 100/E36.
Pots - 10k lin std bush \& spindle 1 " long 10/E1 100/E7.50 1000/E50.
Slider 18 k lin 60 mm long prices as above. Dual 100k lin PC or chassis mntg, min type $18 \times 13 \times 17 \mathrm{~mm} 0.125^{\prime \prime}$ spinde supplied with smart knob 40p 10/ $£ 3.50$ 100/ E30.
Compression trimmer. 10.100 pF 10 for £1.20 100/E8.50.
Resistors - IW 5\% carbon fiam, these values only: 22OR 470R 1k 3k9 4k7 33k 47 k 220 k 18R. All - 1000/64 (min giv of one value) or $\mathbf{£ 3 5}$ per 10.000 any mix.

NIXIE TUBES

 each. each.7-seg display. wire ended tube NEC type L080 $12 \frac{1}{}{ }^{\prime \prime}$ high, with data 65 p. 7 -seg display. (as above) Futaba type DG $10010.3^{\prime \prime}$ char. 70 p with data.

Audible Warning device - solid state ircuit drives high efficiency transducer to give high output. Voltage req'd 6 -18V. Can lso be driven direct from TTL or CMOS. Module size $45 \times 2 i \times 12 \mathrm{~mm}$ Comprehensive data supplied $£ 1.20$. ut meters - 2 meters $40 \times 40 \mathrm{~mm}$. driver board supplied with full date and circuit $\mathbf{5 3} 50$.

OSCILLOSCOPES

We have available from stock the following SCOPEX models: 4010A - DC-10MHz; romv sensitivity: Stab Power supplies: Dual beam: 3% accuracy:
4 SG - DC-6MHz: 10 mV sensisivity, Ideal portable scope. Solid state circuitry. All for $\varepsilon 150$ inc VAT and Care.

RESISTOR PACK

Carbon Fitm 5% mostly 4 W , few $\frac{1}{2} \mathrm{~W}$ resistors. 8rand new, but have preformed leads. ideal for PC mntg. Wide range of mixed popular values at the unrepeatable price of £2.50 per 1000: £11 per 5000 .

1979 CATALOGUE

64 big pages with 50p discount vouchers - aty prices for bulk buyers . reply paid envelope-All this for just 45p inc. post.

Relays. push button banks and variable caps; Switches. component packs etc, etc, all in our latest 8argain List - send SA Pice in mis ad
Prices in this ad include VAT and are valid until 30.4.79. Add 25p UK/8FPO postage cash.

Meet 'UncleTom' He's on your wavelength.

Tom Beaumont - a radio enthusiast for 25 years - sells radio equipment for love! And he particularly loves Lowe - Trio for quality, value and reliability.

Tom is the sole authorised Lowe - Trio distributor or Yorkshire and North East England, and he offers the best before-and-aftersales service around on units like the top-value SRX-30 receiver illustrated.

THELOWESTX 30

All the facilities of a top-class communications receiver in one top-quality, economically priced unit. Covers 500 KHz to 30 MHz with excellent dial readout and re-set accuracy. AM CW, SSB reception The SRX-30 is equally at home in broadcast or amateur bands.

Other features include RF gain, fine tuning selectable sidebands, buitt-in oudspeaker, AC mains or 12 V DC operation and rugged construction at an attractive price - Just $£ 175.00$ inc. VAT.
BUY BY POST OR CALL IN
For speedy delivery on your SRX-30, please send cheque/P.O. made out to Leeds Amateur Radio for $£ 178.00$ which includes $£ 3.00$ carriage and packing. We will deal with your order by return.
Atternatively, call in for a chat at 'Uncle Tom's Cabin'. The shop is just 10
minutes from Leeds City Station, and there's easy parking if you travel by car
Oinstant H.P. for Licenced Amateurs. Extended Credit Terms
Available. Send 50 p for Catalogue and Price List.

LOWE TRЮ DISTRIBUTOR

Leeds Amateur Radio are ares distributors for Jay Beams, Antenna speciatists and Hilomast products.

LEEDS AMATEUR RADNO Leeds Amateur Radio, 27 Cookridge Street, Leeds 2. West Yorkshire. Tel. Leeds 452657.

ELEGTROVALUE

FOR A GOOD DEAL BETTER THAN MOST

WE PAY POSTAGE on C.W.O. orders in U.K. over E5.00 list value. If under, add 27 p handling charge.
WE GIVE DISCOUNTS on U.K. C.W.O. orders - 5% for list vatue over $£ 10.00: 10 \%$ for list value over $£ 25.00$.
WE GUARANTEE all goods are brand new, clean and to specification-no seconds, no surplus.
WE GIVE SERVICE to all orders large or small-to help we microfilm orders, use computer processing and double check all orders by personal supervision.

THIS MONTH'S SPECIAL OFFERS Suppless

ELECTROVALUABLES

Electrovaruables are our own overstock items oftered Elictrovaluables
ume at greatly reduced prices Orders should quie ERICES ARE NET ANO lime at greatly reduco and ptice as advertiore prices show
and state desciption 12% where. 8% or
 Integrested Circults, 7480 25p.
$74509 p, 74016 p, 7481$
740 . $74509 p_{5} 747.709$ (meval) 30p, $7419055 p .709$ TAA2 7
TAA9910 65p.
TAA9910 65
Transistort $A C Y 30 p A D 16{ }^{\circ}$
$2 N 4906$, $A C Y$
 8Cl5TA. any 10 tor 80p. 80 p .
 80130 . 8195 any 10 tor $£ 1$.
$8 F 194$. BF194.0C84
OC83.
OCBJ.
Diodes AAli6 AAll7 AAI 18
AAll3. 8
BAl33F any 10 tor 60p
Rectifiar
80680
80660 any 10 for 80 p
Bridge rectifiore
Bridg
81906

$$
\begin{aligned}
& 8 \text { for } £ 1.20 \\
& \text { Bridge rectifiers } \\
& 81906 \\
& \text { Thyristore } \\
& \text { B0 } 140.80226 \text { any } 5 \text { for } £ 1.25
\end{aligned}
$$

B0i40. 80226 any 5 for $£ 1.25$
potentiomert
 4 tor $£!$
JP2O 47 K in. short spindle
4 tor $£$ $100 \mathrm{~K} \log .2 \mathrm{M}_{2} \log _{4}$ for ft IM log rev $\log _{4}$ short fi spindle: po58, slides.
1 M in. $10 \mathrm{~K} \log , 47 \mathrm{~K}$
220 K 100.100 K 109. 220 K log. 1 $\mathrm{m}^{\text {log }}$ miny 6 for f 1 potentiondere wire wound 1 K 5 .
 pR15 presete $470 K$.
 $4 \mathrm{M}^{2} 7$
PR140 Presett IOM horiz. any lolded track plessey MPWT mould M
$47 \Omega .220 .47 \mathrm{~K} .220 \mathrm{~K} .1 \mathrm{any} 4$ for $£ 1$ Magneto resletor 5 tor $£ 2.50$ FP3OLIOOE 500Ω dise 5 1or $40 p$ Thermistort 500Ω dise $_{5}$ for 40 p WE ARE NATIONAL DISTRIBUTORS FOR

NICROCOMPUTER KITS
 EVALUATION KIT Microcomputer - $£ 175.87$ net (for the M. 680

FREE FOR THE ASKING
Two depots to serve you One North, One South
All communications, orders etc. to Englefield Green address, Dept: PW4.

ELEETROVALUE LTD
pletely revised and up-dated. 120 pages Semi-conductors, I.Cs Cs. materials, etc. etc. And you'll be delighted with out competitive writh out competive price list
28, ST. JUDES ROAD, ENGLEFIELD GREEN EGHAM, SURREY TW2O OHB Telephone Egham 3603 Telex 264475 Northern Branch - 680 , BURNAGE LANE, BURNAGE, MANCHESTER M19 1NA(061)432 4945 Shop hours 9-5.30: 1.00 pm Sat.

D.WHITFIELD \& M.TOOLEY

This multitester was originally evolved as a constructional project for members of the UK F.M. Group in London, where several such instruments were very successfully built. Together with a suitable wavemeter, it forms the basic test equipment necessary to carry out performance checks on frequency-modulated v.h.f. equipment and meets Home Office requirements in this respect.

The majority of people owning commercial apparatus will possess basic test equipment but are unlikely to have the sophistication of r.f. power meters, deviation meters and so on. The unit to be described was developed as a means of carrying out rapid assessments of performance and offers an accuracy, after initial calibration, which is quite adequate for amateur use.

Receiver check. crystal test, power output (IW and 10W) and frequency deviation are the four functions provided, together with a battery status indication. The instrument and battery pack is built into a small, diecast box, which makes it rugged and readily portable.

Functions

Function 1 selects the crystal oscillator, which puts out a low-level signal on a pre-determined frequency within the 2 m band. The choice of crystal is left to the constructor but perhaps the most useful channel to use would be S20 $(145 \cdot 500 \mathrm{MHz})$, the UK calling frequency.

The oscillator operates at the fundamental frequency of the crystal - which falls in the 8 MHz range - the output frequency being achieved by a stage of multiplication. The facility may be used for checking receiver gain, S-meter calibration and alignment.

Function 2 provides a crystal test, and devices within the range $4-24 \mathrm{MHz}$ may be checked for performance. The internal crystal is removed and that to be tested plugged into its socket. If the constructor foresees regular use of this facility, it may be worthwhile bringing the socket to the outside of the unit - possibly putting several different types in parallel.

The measurement of r.f. power, to a maximum of 1 watt, may be carried out using Function 3 and the internal 50Ω dummy load, at a typical v.s.w.r. of $1 \cdot 1: 1$. Although the power scales are non-linear, it is possible to draw up a calibration chart for the instrument by reference to a commercial power meter.

Measurements of up to 10 watts may be made by selecting Function 4. The internal dummy load will handle these levels only for a short period however - typically 30 seconds.
Function 5 measures the deviation of an f.m. signal on a pre-calibrated scale of $0-10 \mathrm{kHz}$. The signal applied should be at a power level of between 500 mW and 10 W and must be of the same frequency as that used for the receiver check (Function 1).
A check on the carrier frequency is also possible using Function 5. If the internal oscillator is accurately adjusted by means of a frequency meter or against a communications receiver with crystal calibrator, the meter will

Table 1

Voltages

(Multitester switched to range 2, Cystal Check)

Tr1 (with crystal fitted)	$\left\{\begin{array}{l}\text { c } \\ b \\ e\end{array}\right.$	$\begin{aligned} & 12 \mathrm{~V} \\ & 5.1 \mathrm{~V} \\ & 8.5 \mathrm{~V} \end{aligned}$
Tr1 (crystal removed)	$\left\{\begin{array}{l}\text { c } \\ b \\ e\end{array}\right.$	12 V 5.8 V 5.2 V
Tr2 (with crystal fitted)	$\left\{\begin{array}{l}\text { c } \\ \text { b } \\ e\end{array}\right.$	$\begin{gathered} 12 \mathrm{~V} \\ 1.7 \mathrm{~V} \\ 2.5 \mathrm{~V} \end{gathered}$
Tr2 (crystal removed)	$\left\{\begin{array}{l}\text { c } \\ \text { b } \\ e\end{array}\right.$	$\begin{array}{r} 12 \mathrm{~V} \\ \mathrm{OV} \\ \mathrm{OV} \end{array}$
IC1	$\begin{aligned} & \left\{\begin{array}{l} \operatorname{pin} 2 \\ \operatorname{pin} 3 \\ \operatorname{pin} 6 \\ \operatorname{pin} 7 \end{array}\right. \end{aligned}$	$\begin{array}{r} 6 \mathrm{~V} \\ 6 \mathrm{~V} \\ 6 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$

The above voltages were measured with a $10 \mathrm{M} \Omega$ resistance d.c. voltmeter and a $1 \mathrm{M} \Omega$ probe.

The r.f. voltages at various points are:

Tr1	emitter	1.5 V r.m.s.
Tr2	base	1.4 V r.m.s.
Tr2	collector	0.15 V r.m.s.
D6	cathode	0.05 V r.m.s.

Fig. 1: Circuit of the Multitester
indicate a standing reading corresponding to the error, ir kilohertz. For example, a reading of 4 in the absence of modulation would indicate that the transmitter is 4 kHz off channel. Hence, the instrument can be used for checking both the receive and transmit frequencies once correctly calibrated.

The final function serves to test the internal batteries. Here the meter operates as a voltmeter with a full-scale deflection of 20 volts.

Circuit Description

Transistor Trl functions as a conventional Colpitt's oscillator, the frequency being adjusted by trimmer TC1, whilst $\operatorname{Tr} 2$ acts as a multiplier and amplifier, the diode D7 improving the harmonic content of the signal at its base. With suitable crystals, Tr 1 will readily oscillate at any frequency between 4 and 24 MHz . However, the circuit is optimised for operation at 8 MHz and when a crystal for

Fig. 2: Layout of the p.c.b. (shown full-size)

Fig. 3: Component layout
this frequency is used $(8.08333 \mathrm{MHz}$ for 145.5 MHz , for instance), Tr2 multiplies 18 times, Ll , together with the stray and internal capacitance of $\operatorname{Tr} 2$, resonating at approximately 145.000 MHz .

The integrated circuit IC 1 is arranged to operate as a very high gain audio-frequency amplifier and requires only a very small input voltage to achieve full limiting of its output. This means that a small sine-wave input is converted to a 6 volt peak square-wave output of the same frequency. Diodes D4 and D5, together with C12, form a charge-pump arrangement. Thus, the current through VR3 and the meter will depend on the frequency of the signal applied to ICl and not on its amplitude. The relationship between the input signal frequency at C 7 and the meter current is substantially linear.

Potentiometer VR3 is used to calibrate the instrument. Diode D6 acts as a simple, but effective, mixer, the output of which passes through an r.f. filter formed by L2 and C6 and is the frequency difference between the output signal at $\operatorname{Tr} 2$ and the input from SK1. This is subsequently passed to ICl and the circuit previously described. The diodes D1 and D2 form a limiting circuit to prevent the input to the mixer diode (D6) from exceeding 1.2 volts peak-
to-peak whilst D3 is used to sense the r.f. at SK 1 for the power ranges, the calibration being by adjustment of VR1 and VR2.

Construction

In order to ensure the circuit operates satisfactorily, it is essential to closely follow the recommended layout. Newcomers to the construction of v.h.f. and u.h.f. equipment take heed that conventional wiring techniques will introduce stray reactance which will adversely affect the ultimate performance. Hence component leads must be as short as possible, the neatness of the wiring being a secondary consideration.

Most of the devices are mounted on a p.c.b., the remainder being fixed on the lid of the box. Ferrite beads provide the necessary r.f. decoupling, and these may be rigidly mounted by the application of a small amount of adhesive.

The dummy load resistors (R1-R4) are positioned on the screen and as close to SK 1 as possible. In use, these are likely to become fairly warm, so the screen will also double as a heatsink. The free length of the resistor leads should not exceed 5 mm for minimum v.s.w.r.

The full circuit of the multitester is shown in Fig. 1 and the p.c.b. details and component layout in Figs. 2 and 3. It should be noted that many devices are vertically mounted and this should be borne in mind when shopping!

The inductor Ll consists of $3 \frac{1}{2}$ turns of 20 s.w.g. enamelled copper wire, wound on a 4 mm diameter ferritedust core. It is self-supporting and after initial adjustment should be secured with wax. Chokes L2 and L3 are each made from 6 turns of 36 s.w.g. enamelled copper wire, wound on a ferrite bead. Note the capacitor C23, which is mounted below the p.c.b. between the "hot" end of crystal X1 and the junction of R12 and R13.

Holes marked:- $A=3.2 \mathrm{~mm}$ Dia.
All dimensions in mm
$B=6.5 \mathrm{~mm}$ Dia.
$C=2.5 \mathrm{~mm}$ Dia.
$D=4.0 \mathrm{~mm}$ Dia.
$E=9.5 \mathrm{~mm}$ Dia.

WAD292

Fig. 4: Drilling details for the box lid

Holes marked:- $A=3.2 \mathrm{~mm}$ Dia.
All dimensions in mm

Fig. 5: Construction of the tinplate screen

Testing and Calibration

Make a thorough visual examination of the p.c.b. when the assembly has been completed, paying particular attention to the polarity of components and soldering. Assuming all seems correct, connect the batteries and switch on, setting the function switch to "Battery Check". The meter should indicate " 6 " - corresponding to 12 volts - and the l.e.d. should illuminate.

Now set the function switch to "Crystal Test" and observe the meter reading: if the oscillator is working then some indication should be present. Adjust VC1 for max-

Internal view of the unit, showing arrangement of dummy load resistors

Fig. 6: Wiring diagram

components

Resistors		
$\frac{1}{4}$ W 5\% Carbon film		
120Ω	1	R10
$1 \mathrm{k} \Omega$	1	R5
$2 \cdot 2 \mathrm{k} \Omega$	1	R15
$3 \cdot 3 \mathrm{k} \Omega$	4	$R 6,7,8,11$
$47 \mathrm{k} \Omega$	1	R16
$100 \mathrm{k} \Omega$	4	R12, 13, 14, 17
$1 \mathrm{M} \Omega$	1	R9
2W High stab. carbon		
180Ω	2	R2, 4
220Ω	2	R1, 3
Semiconductors		
Transistors		
BC109	2	Tr1, 2
Integrated circuit		
741	1	IC1 (Mini-dip type)
Diodes		
1N4148	3	D1, 2, 7
OA90	4	D3, 4, 5, 6
LED	1	D8 (Red)
Crystal		
Within 8 MHz range (see text),		
8.08333 MHz for S 20 (145.500 MHz) from P. R.		
Golledge E	tron	ics, Merriott, Somerse

Sockets

50』 BNC	2	SK1, 2
HC25	1	SK3 Crystal Holder (P. R. Golledge
Electronics)		

Switches

S1	1	2-pole, 6-way rotary
S2	1	2-pole, 2-way slide

Potentiometers

Miniature skeleton pre-set, horizontal mtg.	
$47 \mathrm{k} \Omega$	1
$100 \mathrm{k} \Omega$	1
$220 \mathrm{k} \Omega$	1
	1

Capacitors		
Silver Mica		
2.2pF	2	C1, 2
10pF	1	C5
Polystyrene		
68pF	2	C19,23
100pF	2	C4, 20
330 pF	2	C13, 14
Miniature disc ceramic		
1 nF	8	C3, 6, 8
10 nF	2	C7, 12
100 nF	2	C10, 16
Electrolytic 16 V axial leads		
$1 \mu \mathrm{~F}$	1	C9
$22 \mu \mathrm{~F}$	1	C22
Trimmer. Single turn miniature ceramic		
2-22pF	1	VC1

LETTERS

continued from page 29

Sir: I agree entirely with Mr Goodier's letter. A lot of what people consider to be progress in this world is anything but. I think it must be because people don't hear what they don't like!

G. M. Pheasant
Great Wyrley
Walsall

Sir: I am an ardent supporter of CB, and unlike the majority of its critics, I have had five years of operating on a Citizen's Band in a more enlightened country, where I learned the true value of low-power radio communications for the general public.

I wonder why Mr Goodier singles out hikers and climbers? There are numerous situations where two-way radio could be a lifesaver. Yes, hikers would benefit-how many times do we hear of mountain and moorland rescue teams being called out each winter? But what about the owners of small boats that do not warrant a marine-band ship-to-shore radio? I think it fair to say that the lifeboat service would have been spared many hours of searching if small fishing boats and yachts had the right to carry a CB radio. What about the everyday motorist, broken down on the motorway or involved in an accident-both situations where CB would be of immense value? There are, of course, emergency telephones to cover these eventualities, but how often does one find these out of order due to vandalism? I think these points must surely form the basis of a good argument in favour of a UK Citizen's Band.

I am not so naive as to believe the band would be full of do-gooders permanently listening and waiting for emergencies. I am sure it would suffer misuse and abuse, but I think you will agree that there are very few aspects of modern life that are not abused by someone, somewhere. I can say in all honesty, that during my five years of operating CB, I encountered only a very small number of cases of illegal operating, such as the use of high-power r.f. amplifiers and v.f.o.s, etc.

I will agree with those who say the 27 MHz band is in some ways unsuitable due to the ease of DXing when conditions open up. Although this would contravene the terms of the licence, I feel it much less likely to offend the listener than the fiasco on GB3LO and other repeaters. I would like to see a portion of the v.h.f. spectrum opened up to CB, but to be practical I think the 27 MHz band would have to be accepted, as there is an unlimited amount of good-quality equipment already available at very modest prices.

I believe many people, especially some of my fellow amateurs, are being very guarded about this issue, but this is hardly surprising when Mr Goodier suggests using part of the amateur 2 m band. There is no connection between CB and amateur radio-they are worlds apart and will always remain that way.

The suggestion of a novices' band is excellent. I have spent many enjoyable hours working slow c.w. and giving American novices some overseas contacts, and it is towards the United States that we must look when considering such a band.

I rather suspect Mr Goodier's motives to be somewhat personal, and I see them as an attempt to use 2 metres without taking the RAE. When his proposals are carefully studied, I believe they would benefit neither amateur radio nor a Citizen's Band service.

John M. Southall G4DMT
Somersham
Suffolk

Sir: Contrary to Mr Goodier's suggestion, $144.5-145.0 \mathrm{MHz}$ is not " A dead part of the 2 metre band". Many local nets use this section of the band, including the Norfolk-Lincolnshire nets, also it contains various beacons and the Dutch National (similar to RAYNET) frequencies. Why should the small amateur frequency allocations be cut up for a Citizen's Band, albeit in the guise of a novices' band?

It is quite simple these days to obtain an amateur licence without having to study Morse. Also to allow a free-for-all with 10 watts is just inviting interference problems. One watt would be more than adequate in any novices' band, but let it not be in the amateur frequency allocations, please.
D. G. Blake G3MWV

Cromer
Norfolk

New publication

Sir: I intend launching a new publication called Innovation News, initially as a newsletter, devoted to new designs, ideas, inventions, etc.

If anyone is interested in this idea, either as a subscriber or contributor, would they please contact me at the address below. An s.a.e. would be appreciated.

B. McAleer
59 Castledine Street
Loughborough
Leicestershire
LE11 2DX

Information Please

Sir: I would be glad to hear from readers with any knowledge of pulsed High Frequency as used in Medicine.
G. H. Anthony

17 Ledbury Road
Hereford
HR1 2SY

So You Want to Pass the RAE?

For details and coupon see page 78

by Eric Dowdes well G4AR

Letters from readers on aerial matters are very common. but reveal a certain misunderstanding on the results to be expected with simple half-wave dipoles. Such an aerial is usually cut to length using the formula $468 /$ frequency (MHz) giving the answer in feet. It is sufficient to take the middle of the band concerned rather than a specific frequency. On 20 m for example, take 14200 kHz , giving $468 / 14 \cdot 2=33 \mathrm{ft}$ approximately.
This length of wire is then cut in half and fed in the centre with low-impedance feeder, preferably 75 ohm , which is led to the receiver. Some readers seem to think that this aerial will virtually eliminate all signals except those on 20 m ! Such an aerial is similar in electrical characteristics to a simple tuned circuit which has quite a broad selectivity curve, so it will still work, albeit with decreasing efficiency, from 10 m to 160 m , peaking on 20 m . On the transmitting side one would not use a half-wave dipole on other than its design frequency, except perhaps on its third harmonic (a 7 MHz aerial on 21 MHz) but that is another matter.

I feel that it is rather pointless using an aerial designed for one band with a multi-band receiver. Much better to use a dipole, say 66 ft . centre-fed with open wire tuned feeder and an a.t.u. to give optimum performance on all bands. Details with possible feeder lengths can be found in most aerial handbooks. The end-fed version, known as the "Zepp". was one of the first aerials ever designed and can be very useful in certain locations.

I am surprised that readers do not progress to simple wire element beams from end-fed wires, as they need not cost anything but can be made from copper wire obtained from old transformers, with bits of plastic strip for insulators. It seems to be thought that such beams will not work well unless the elements are nice and straight, precisely vertical or horizontal, as they appear in the books.

Nothing could be further from the truth. as the ends of elements may be drooped down and attached to such sundry supports as are available. Simple V-beams are very useful provided the legs are each at least a wavelength long, which is easily obtainable for say the 10 and 15 m bands. An a.t.u. will permit operation on other bands and
still retain some gain. The legs of the " V " can even go from the top of a pole down to ground level if no distant supports are available.

The thing is to try out various designs and to experiment, but always use an a.t.u. to bring the whole system to resonance. The experience obtained will come in very useful indeed when a transmitting licence is eventually obtained.

On the Bands

In spite of finding it a problem to stay awake lan Marquis A9140 of Leigh-on-Sea. Essex, has managed to cover all bands and it is very obvious that the 80 m band is really waking up now with prefixes like EP2, JA. TU, ZL showing up in Ian's log, caught on his FRG-7 and "multiband Slim Jim". A new one on me and I await details with great curiosity! On 20m Ian found a nice one in VK9XW on Christmas Island, very appropriate!

A pleasant letter from G4HLN, Lawrence Bennett of Bristol, who finds working DX a lot less easy than just listening to it! He has a Heathkit HW32A on 20 m s.s.b. but is very keen on c.w. and would like to see some c.w. logs in this column. I agree, being a code nut, and as there must be plenty of readers studying code for their " A " licence how about some c.w. logs for a change?

Regular Bill Rendell from Truro, Cornwall, got very excited when he heard the "long path effect" on some OH stations on 20 m and even went to the trouble of calculating the distances involved, having done some navigation in the past. However, I feel that there was probably an intense aurora borealis at the time, reflecting signals from the Scandinavian area. The effect is better known on the v.h.f. bands, when best results are obtained if all concerned turn their beams to the north. On 80 m Bill logged CT2. KG4. TF. W0 and ZL4 for his first look at this band this season.

David Parker BRS40420 got his hands on some shiny new sets at the Leicester, show but didn't feel too jealous when he got back to his HQ120X. I'd plump for that set any day OM! David found Jan Mayen on 20 m in the form of JX9WI for a rare one, plus ZD7SD on St. Helena.

General Notes

From Stokenchurch, Bucks, Peter Recklin BRS40425 found the $P W$ series on the RAE to be easy reading compared to other books on the subject. Having organised the series. I feel rather good about his remarks. He, like many others, comments on the lack of interest shown by the RSGB in the "very beginners" and adds: "after all, that is where the new generation of radio amateurs will come from". Precisely! Peter had a go at an RAE course but found the pace too hot for the time he had available,
but I'm sure it was good experience. Peter has an FRG-7 modified with a Toko MFL455 filter, as per Radio Communication, August '78. Naturally enough, he finds reception of s.s.b. signals greatly improved.

Greg Duffy of East Kilbride, Glasgow, has been using a 15 m dipole on several bands and still managed to copy things like HR3, 9N1 and YN1 on 20 m on his FR50B. You may be interested in my opening few paragraphs, OM. From 23 Palace Avenue, Paignton, Devon, Tom Hillier writes to ask for advice on improving his ex-naval B40 receiver. There are plenty still around so if you think that you can help Tom, drop him a line direct.

With little time for DXing Dave Wyatt in Oswestry, Salop, found ZD9GH on Tristan da Cunha, with his BC348 and 90 ft long wire on 20 m . Good luck with the exams OM. Another seeking information is Jim Clow of 7 Montagu Road, Datchet, Berks, who has a Collins TCS 10 set and no manual. "Complete stranger" Colin Price of Leuven in Belgium hails from Cambridge and is keen on taking the RAE with a view to getting an ON ticket, to keep in touch with home. Having just finished a postgraduate course, Colin acquired a Marconi Electra set plus an old 19 set and an a.t.u., so he's well on the way.

Through the kindness of a reader, Chris Mortlock of Brackley, Northants, acquired an R107 and, with the help of G3YMQ, is getting it up to scratch. Chris has been playing around with pins in maps to see what his aerial is doing on 80 m as far as directivity is concerned. A good idea but a world map must be one of the great circle type that gives true direction and distance. Other maps are useless for this purpose.

Newcomers

Following my odd notes offering guidance to those newly acquainted with amateur radio, I have heard from a couple of dozen readers who were obviously standing on the sidelines, just looking in, but a bit shy to write in case they should be thought to be "slow". As I've said before, we all have to start somewhere, whatever the hobby, and it is only commonsense to seek advice and no-one will think less of us for that. John Bull (Laughton-en-le-Morthen |lovely! | South Yorks) wanted the aerial chart to go with his new SRX30 (Lowe Electronics).

George Grzebieniak, London W4, is 14 and collects old radios but now favours amateur radio. He has a Realistic DX 160 and inside long wire. lan Scrimshaw of Grimsby has an AR88 now and wonders about an aerial for 160 m . Well, other than a specialised one, a long wire around 132 ft and a.t.u. is probably the best answer, with a good earth connection if at all possible.

Glasgow University lecturer in biochemistry Barry Clark BSc. PhD, AIMLS, did not hesitate to write in, having been interested in crystal sets and simple valve sets a few years ago, at school. He is about to buy a receiver and intends to go on for his ticket. London W3 is the QTH of Peter Smith who has a National DR 2800 but didn't have much luck with an a.t.u. I don't know this set but it sounds as if the "very long wire" is the trouble, already causing intermodulation problems on strong signals, compounded by the a.t.u.

David Allsop started recently with a CR100 in Abingdon, Oxon, and logged ZD7SS on St Helena. An FR50B has been added, greatly improving reception, with a 60 ft wire. Heart attack victim Len Wilson of Scarborough wanted the aerial chart to go with his DX160 receiver and 60 ft of wire in his bungalow loft. He, quite rightly, reckons amateur radio is for him now that he has to take things easy. Raised in the RAF on the R1155, AR88 and the R1475, Jim Bence, now of Hamilton,

Lanarkshire, has returned to radio with an Elizabethan Pathfinder set with 12 bands running from long waves to 470 MHz , after 27 years, so not quite a newcomer!

Electronics technician Eric Hayes (Freckleton, Lancs) specialises in the repair of hi-fi gear but got the bug when a friend brought in a Trio QR666, and finished up buying the set! He's tried a 60 ft wire and a vertical in the loft but wants something better. He intends to go for the RAE in the near future and I don't imagine you will have much difficulty OM .

In Stanford-le-Hope, Essex, Alan Taylor has "hung up his football boots" and with family ties having cut out sailing, gliding and skiing, he has turned to amateur radio, realising that it will keep him at home! Having been a 25 w.p.m. operator in the RAF he is well on the way to his G4 ticket. Alan, you almost had me in tears! Lastly, but certainly not the least, 13 -year-old Paul Burgess of Lowestoft, Suffolk, has started off with a Heathkit AR3 valve set, but is concerned that it does not have a variable b.f.o. as he is keen on c.w. Hooray. If anyone can help with a manual or info write to Paul at 3 Andrew Way. With letters from 15 "newcomers" this month it ought to produce a couple of new licences at least, in due course!

Club News

Stevenage and District ARS meet first and third Thursdays at British Aerospace, Gunnels Wood Road, Stevenage, Herts, at 8 pm . Programme arranged to August which gives us poor reporters a chance to get items in print in due time. Wish other clubs would do likewise! April 5 sees G3AGP talking on the problems of mobile operators, with a junk sale on the 19th. Newcomers, don't despise a junk sale, you'll never get better bargains anywhere! Sec. Trevor Tugwell G8KMV at 11 The Dell, Stevenage, for more info.

Southdown ARS meets on first Monday of the month (ex-Bank Holidays) at Chaseley Home for Disabled, Bolsover Road, South Cliff. Eastbourne at 1930 hours. Cyril Minns G3YSZ has ascended to the presidency and Dave Morgan G4FDW now handles the society's Newsletter. Copy please! Cyril Collins G8SC, prog. sec. would like to hear from anyone able to give talks, lectures, etc. Contact Dick Jeffries G8KQN, 16 James Avenue, Herstmonceux, East Sussex.

West Kent ARS have G4BWH talking on the engineering involved in the recent BBC programme changes, on March 16. On the 30th Tony Tory lectures on microprocessors in amateur radio. Meetings at the Adult Education Centre, Monson Road, Tunbridge Wells at 8 pm , plus alternate Tuesdays at 8 pm , at the Drill Hall, Victoria Road. More info from Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent.

Wessex AR Group (sec. ed. Geoff Cole G4EMN, 3a Cavendish Road, Bournemouth) has a very special meeting at the lecture theatre, Bournemouth School, East Way, at 7.30 pm on Friday March 16, when L. Moxon G6XN, aerial expert par excellence, will talk on Aerials and Propagation, Multi-banding of Aerials and Miniaturised Beams. Next day, on to skittles and social evening at the Moose Centre, Malmesbury Park Road, Bournemouth with special prizes for the ladies. Info on this from Archie Hoggan G8ASX on Bournemouth 427582.

Thames Valley ARTS are in for a treat when Dr. A. McGregor talks to them about Radio Astronomy on March 6 at usual meeting place, Giggs Hill Green Library. Thames Ditton. Meetings there first Tuesday every month. Contact R. Blasdell G3ZNW, 92 Bridge Road. Chessington, Surrey.

Remember, logs, letters by 15 th of the month and allow for strikes, delays and other tribulations!

Log Extracts

W. Rendell:-80m CT2QN KG4W TF1AW W0MC ZL4KE 20m C5ABK EA8LS FK8CU (New Caledonia) JY5MC P29JS VK9XW 8P6IB 9Y4OV 15m C5ABK KZ5AS OX3WO 9J2TJ
L. Bennett G4HLN (worked): $-\mathbf{2 0 m ~ C} 31 O Z \mathrm{CT} 2 \mathrm{AO}$ FPOEE HCIBU J28BA OY81 PJ8CO YIIBGO
G. Duffy:-20m HR3JJ YNICR 9N1MM 15m FY7AWZ KZ5RO OX3GW SUICR TI2JV VP9JO YSIFAF ZLIBD 8P6FX 9LIAB 6W8AR
R. Bell:-20m ZL4HB ZL4LZ
I. Marquis:-160m (c.w.) K1PBW W1BB/I 80m CN8DO D4CBK EP2SL JA4BCW TU2FH ZL4KE 5B4HD 20m JY9DI VK9XW 15m VS6HG XT2AV 10m FR7ZL HZ1SH SUIDP TR8GDC

All s.s.b. except where stated otherwise.

MEDIUM WAVE DX

by Charles Molloy G8BUS

A DXer in the Shetland Islands, Arthur Tate, writes to say that he has modified his m.w. loop to work on the long waves simply by fitting a fixed capacitor (no value given) in parallel with the loop's tuning capacitor. Arthur asks for comments about this arrangement which works very well with BBC Radio 4 on 200 kHz . Radio 4 incidentally, appears to have become semi-DX in the Shetlands since the great change around last November.

Modifying a Loop for the Long waves

The disadvantage of Arthur's method is the very restricted tuning range that is obtained. With my 40 inch loop, a parallel capacitor of 2000 pF tunes it to 300 kHz , but the tuning capacitor would only adjust the frequency through a range of about 20 kHz ! At the I.f. end of the band the situation is worse. A fixed capacitor of 6700 pF tuned the loop to 155 kHz , but this time the tuning control had little effect.

To cover the band, a capacitance range of 2500 pF to 7200 pF is required which is obviously impracticable. None-the-less, this method is of value if you want to tune the loop to a single frequency as Arthur did. Fitting "in parallel" means joining one wire of the fixed capacitor to one terminal of the tuning capacitor on the loop and joining the other end to the other terminal. No need to disconnect anything, you just bridge the fixed capacitor across the variable one.

A better method is to insert a fixed inductor in series with the loop's main winding. Disconnect one of the two wires to the tuning capacitor. Connect this wire to one end of the inductor and run a wire from the other end of the inductor to the tuning capacitor in place of the disconnected wire. You may have to put the inductor inside a metal box, which should be earthed, in order to prevent it acting as an
aerial. The inductor should have a value of about $2000 \mu \mathrm{H}$, i.e. 2 millihenries, and the loop should now tune over the long-wave band. The secondary winding of a long-wave tuning coil would have about the right value of inductance. If the loop will not tune to a low enough frequency then more inductance is required. If it will not tune high enough, then remove some turns from the inductor or use one of a lower value.

Long-wave Loops

Both of these methods of modifying a m.w. loop are at best a makeshift, but they do enable the DXer to try out the long waves without too much effort. Anyone seriously interested in DXing on this band should construct a l.w. loop. It will certainly have greater pick-up than a modified m.w. loop. Pick-up is proportional to the number of turns and to the size of the loop. A 40 inch l.w. loop will have about $3 \frac{1}{2}$ times the number of turns of a 40 inch m.w. loop, and therefore will have $3 \frac{1}{2}$ times the pick-up.

It is difficult to specify the exact number of turns that are required as the self-capacitance of such a winding will be high. For a 40 inch loop the number should lie between 22 and 28 , and if you start with the higher figure you can remove turns one at a time until the desired range is achieved. The type of wire to use is not important so long as it is insulated and rigid when wound. A 500 pF tuning capacitor or thereabouts, should be adequate as the frequency ratio (highest to lowest) on the l.w.s is approx 2:1 instead of $3: 1$ on the m.w.s.

Readers' Letters

An interesting letter from \mathbf{N}. Soar, who lives near Sheffield, and is the author of 50 Circuits using Germanium, Silicon and Zener Diodes published by Babani. He describes how to boost the performance of a transistor portable, by placing it close to a crystal set tuning coil which in turn is connected to an aerial. If the receiver is tuned to a weak signal and the crystal set coil is tuned to the same frequency, then the coil will feed extra signal to the receiver by induction which greatly improves reception. With this set-up he was able to pick up Radios Manchester, Blackburn and Nottingham. Reception was good enough to listen to the programmes.

This method will be of interest to DXers who use a transistor portable that does not have an aerial socket, and it works on the same principle as mounting the receiver on a shelf fixed to a m.w. loop as described in this column in the December 1978 issue. You can also boost the signal by wrapping the aerial lead round the receiver two or three times, but you will boost all stations not just the one you are tuned to and this may cause overloading. It does help on some occasions though.

The well-known R 1155 receiver is in use by Chris Marcroft at Ramsbottom, who obtained one for $£ 3$ and modified it along the lines described in an article I wrote for the March 1967 issue of $P W$. When connected to a 130 ft long wire and a.t.u., this rig pulled in WINS on 1010 kHz , WNEW on 1130 and VOCM 690, CJYQ 930 which are located in New York City and St John's in Newfoundland. Chris prefers his long wire to a m.w. loop as the pick-up is much greater, which is what one would expect. If you have a long wire and a loop, then it is worthwhile fixing a switch so that you can try each aerial in turn, to see which gives the best results with any particular station.

Reader Andrew Roger is puzzled by the number of layers in the ionosphere and how they affect DXing. So far
as the medium and long waves are concerned, only the bottom two layers, the D and the E are of interest. The D layer, which absorbs I.f. signals, is maintained by the sun and disappears after dark to allow DX to be heard. The E layer, which also is created by the sun, does not disappear entirely after dark and this is the layer that reflects the DX on the medium and long waves. In mid-winter the D layer may only appear around mid-day and consequently some DX can be heard at times during daylight hours of winter mornings and afternoons.

DX Heard

Our long-wave DXer Andrew Roger of Bristol reports hearing the USSR 1 st programme on 173 kHz , Tebessa Algeria on 251 kHz , Lahti in Finland on 254 , an unidentified station behind Czechoslovakia on 271 (Novosibirsk Siberia?) and Minsk on 281. Reception was during the evening, using a Vega Spidola with internal aerial, and Andrew draws attention to the English programme from Tebessa which is on 251 kHz daily from 2000 to 2030 .

Some Spanish DX comes from Bob Bell (Blyth) who used his Yaesu Musen FRG-7 and 20 inch mini-loop to pull in Seville on 683 kHz , Malaga 729, San Sebastian 774, Seville? on 792, Murcia 1179 and La Linea on 1314. Spanish stations have been conspicuous since last November, but there has been quite a shuffling about of frequencies and you have to listen for the identification to be certain.

Chris Mancroft asks about Radio Beacons on the medium waves and he reports hearing "MW" in Morse on 1008 kHz and "RO" on 1012, which appear to be at their strongest when DX conditions to North America are good. The medium waves are supposed to be used exclusively for broadcasting, though in practice some radio beacons are to be found within the band below 800 kHz . It has also been the practice in some countries to leave their m.w. transmitters on the air after the programmes finish and to key the transmitter with some sort of identification. Sottens in Switzerland, now on 765 kHz , used to transmit "SOT" during the night, though whether this was for navigation purposes or just to keep the frequency occupied and deter intruders, was not clear. Morse signals on the medium waves are very likely the harmonics of long-wave radio beacons. Such beacons would be of considerable value to the DXer if their locations were known as they could be used as a guide to propagation. Unfortunately it is not too easv ' J track down many of them.

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

Readers often comment on the current state of the shortwave bands which are dominated by high-power broadcasts of political propaganda and jamming. T. W. G. Eltenham complains that smaller countries do not get a look-in, while George Rose comments on the increasing number of harmonics observed on the higher frequencies, caused no doubt by a combination of super-power trans-
mitters and beam antennas. In my opinion it is an absolute waste of time to write to the offenders, who have no interest in DXers or in the hobbyist s.w. listener, but there are several things that can be done to get round the problem. After all, if DXing were all that easy then it would cease to be attractive!

When to Listen

Not every band is dominated by high-power broadcasts all of the time. Generally speaking the higher frequencies are in use during the day and lower ones at night, but there is DX to be found when the bands are quiet. Latin Americans for example, are on the 19 m and 25 m bands during the late evening as the path to that area is still open then. Mixed paths of daylight and darkness can also produce signals on unexpected frequencies, usually at the middle of the spectrum. Low frequencies can yield interesting catches during the day.

Out of Band Stations

As a result of overcrowding there is an unofficial spreadout, up to 100 kHz beyond the limits of each s.w. band. Some of the late arrivals to international broadcasting are to be found here. Typical is Kuwait on 12085 kHz which is outside the h.f. limit of the 25 m band. This station has European-style programming and is widely reported. Countries to be found around the edges of the $49 \mathrm{~m}, 41 \mathrm{~m}, 31 \mathrm{~m}, 25 \mathrm{~m}$ and 19 m bands are Israel, Andorra, Egypt, Iran, Pakistan, Vietnam, Saudi Arabia, India, Bangladesh, Austria and Guinea, so that it is always worthwhile tuning near the upper and lower limits of each band and investigating weak signals.

Another area where interesting DX is to be found is in the spaces between the international bands, though telegraph QRM can be troublesome. Israel broadcasts its domestic service on approx 9020 kHz , which is well away from the 31 m band. Out-of-band transmissions appear to be used mainly for domestic broadcasting, particularly by China but also by India, Iran, Israel, Mongolia, Korea, Turkey and on the l.f. side of the 49 m band by Peru, Indonesia, Bolivia and Honduras. Always check a weak signal as real DX seldom comes roaring in.

The B40 Receiver

Many thanks to $P W$ readers G. A. Cartwright, John Markey, D. Porter and Bill Hentall, for responding to Roderick William's request in the January issue for suggestions for a suitable replacement for the output valve in his B40 wartime communications receiver. The B40 was used by the Navy and although bulky and heavy it is quite presentable in appearance. It has its own speaker and can be plugged straight into the mains and used without modification. It is the only set I have come across that has an anti-crossmodulation control which works by adjusting the bias to the control grid of the first r.f. valve. There were a number of variants of the B40 indicated by a suffix letter. There was also the B41, a low frequency version covering 15 kHz to 720 kHz in five bands-not much use for broadcast band DX as it stands.

A number of readers have referred to the B40 recently. Robert Round remarks wryly: "My first receiver was a B40, and to be honest I think I was a fool to get rid of it." I can sympathise Robert, I feel the same way about my old much-modified CR 100 which was disposed of some time ago. G. Stainton is desperate for a manual for his B40. Try Brooks, Farrant House, Winstanley Road, London SW 11 2EJ who supply reprints of many manuals. John Markey
would like to fit an antenna trimmer to his B40. Connect a small variable capacitor of about 50 pF in parallel with the first r.f. section of the main tuning capacitor, if you can locate it. John would like to contact readers who have done any "mods" to the B40, replies direct to John please at 4 Harrison Way, Lydney Gdns, Gloucester GL4 5BN. Perhaps someone will start a club for B40 owners!

11 Metre Band

This band ($25605-26095 \mathrm{kHz}$) is gradually opening up now that increasing solar activity is bringing higher frequencies into use. Harold Brodribb of St. Leonards-on-Sea (AR88) reports hearing Radio RSA on 25790 kHz (also announcing 21535 and 15220) and Radio France on 25630 , both stations logged during the afternoon. К. H. Smith of Ross-on-Wye picked up the Voice of America in the early evening on his home-brew receiver on 26040 and Mark Hallam of Hereford (Realistic DX 160 plus long wire) logged Radio RSA on 25790 from 1100-1200 and again between 1300 and 1530 with a very strong signal and English programming.

Other stations reported recently were Radio Liberty on 25690 and IBA Jerusalem on 25605 kHz . 11 metres is a daytime band and worldwide reception is possible when it is open. Broadcasters will be tempted onto 11 metres to escape from the congestion on lower bands, even though it is outside the range of many domestic receivers. If your receiver will tune as high as 11 metres then it is worth giving the band a try.

Tropical Bands

The main tropical band is 60 metres which extends from 4750 to 5060 kHz . Unlike the main s.w. bands, 60 m is shared with commercial users and is only reserved for broadcasting in tropical areas and parts of Asia. As a result there is a lot of telegraph QRM on 60 m and the newcomer to the band, especially if he listens at the wrong time of day, may not hear any broadcasting stations at all. A path of darkness between Tx and Rx is required before reception is possible, so it is a waste of time looking for DX on 60 m in the middle of the day. A good outdoor aerial is an advantage, though many of the better portables will deliver DX with their internal aerial.

A good log of 60 m DX comes from Bob Bell who lives in Blyth and uses an FRG-7. He reports hearing Radio Universo in Venezuela on 4800 kHz at 0200 , Benin on 4870 at 1825, Radio Casa Ecuador on 4930 at 0215 , Radio Ecos Venezuela on 4980 at 0225 and two out-ofband catches, one in Chinese on 4380 at 1750 and an unidentified station in English on 4385 at 1805. L. Lewis (Pensilva in Cornwall) used his Realistic DX160, long wire and a.t.u. to pull in Radio Guatapuri in Colombia on 4817 kHz at 0535 , and Radio Garoua in Cameroon on 5010, with a programme in English at 1830. Mark Hattam picked up Radio ELWA Liberia on 4779 at 2200 and Radio Nigeria on 4990 at 1800 both in English.

DX Reported

A Trio 9R59D plus Joystick are in use at Mackworth near Derby by Roy Patrick who reports hearing Kabul, Afghanistan on 11805 with a programme in English at 1900, Radio Nacional Chile on 11720 at 2205, Radio Australia on 11870 (replacing 11855) from 1500 to 1700. Roy mentions that Radio Monitors International DX programme from SLBC Sri Lanka is on the air on Sun-

> Reports on the various bands are welcome and should be sent direct, by the 15 th of the month, to:
> AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2 TW. Logs by bands, each in alphabetical order.
> MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport PR8 3JG. Reports for both bands must be kept separate.

VHF BANDS Ron Ham BRS15744, Faraday, Greyfriars, Storrington, Sussex RH2O 4HE.
days at 1100 on $11835,15120,17850$ and again at 1900 on 9720, 11870, 15115 and 17850.

From RSA-land comes a log from David Webb who lives in Sunnyside, Pretoria and who uses an old domestic receiver of unknown origin together with a wire put round the picture rail. With this set-up he has managed to pull in Tirana on 9500 at 1930, Australia on 9570, 11940 at 1500, Algiers on 9500 at 1915 in English and Radio Sweden on 15240 at 1845. A Racal 117E and 80 ft long wire are in use by V. Frankl of Rotherham, who reports hearing out-of-band Pyongyang on 6576 kHz at 2000 , South Korea on 7550 at 1615 and Radio Athens on 9930 at 1920. Andrew Rogers of Bristol (Vega Spidola and whip) heard Amman in Jordan on 9560 at 1500 and Riyadh, Saudi Arabia on 6075 at 2110 . Roger Shepherd of Whitstable has had his National Panasonic RF1105 for only two months, and during this time he has heard programmes in English from Turkey on 9515 at 0105 , Israel on 9435 at 2005 and Spain on 9505 at 2030. J. Pritchard (Warsop) now has an ITT Touring CD 108 with digital readout which picked up Pakistan on 17665 at 1104 and the Voice of Nigeria on 15185 at 1849.

by Ron Ham BRS15744

One of the most exciting things about the radio frequency spectrum above 30 MHz is that unexpected natural disturbance which can suddenly occur and take the most experienced v.h.f. enthusiast by surprise and, as my readers have shown, 1979 began in just that way.

Solar

Early in 1978, we observers of the sun were confidently expecting the then high level of sunspot activity to continue throughout the year, but, how wrong we were. Having recorded radio noise from the "active" sun on 108 out of the first 212 days (compared with 106 days for all of 1977), the count fell drastically to only 24 "active" days from the remaining 153, which means that, in future, we should consider sunspot activity on a day-to-day basis. At 1036 on December 31, John Branegan GM8OXQ, Saline, Fife, heard a strong burst of solar noise covering a wide frequency range, and Cmdr Henry Hatfield, Sevenoaks, Kent, and myself, recorded several individual bursts of solar noise, at 136 and 146 MHz , on January 3 and 4, and

- QT VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

$\begin{array}{ll}2 \mathrm{~N} 3055 & 0.70 \\ 2 \mathrm{~N} 3440 & 0.60\end{array}$ $\begin{array}{lll}2 N 3440 & 0.60 \\ \text { 2N3441 } \\ \text { 2. } \\ \text { N }\end{array}$ 2N3441 0.80 $\begin{array}{ll}2 N 3442 & 1.10 \\ 2 N 3525 & 0.80\end{array}$ $\begin{array}{ll}\text { N3525 } & 0.80 \\ \text { N3614 } & 1.50\end{array}$ 2N37020.110 2N3703 0.13^{*}
2N37040.13* 2N $N 7050.13^{\circ}$
2N37060.13* 2N37070.13*
2N37080.10 2N37090.13 2N37100.10 2N 27110.10°
$2 N 3771$
$2 N 3$ $\begin{array}{ll}2 N 3772 & 2.00 \\ 2 N 3773 & 3.00\end{array}$ 2N3B190.36* 2N38230.55* 2N3866 0.72 ${ }^{2 N} 39040.13^{\circ}$ 2N39050.13
$2 N 39060.13^{\circ}$
 $2 \mathrm{~N} 40590.10^{\circ}$
$2 \mathrm{~N} 40600.12^{\circ}$ 2N4061 0.12*
2N4062 0.13° 2N41240.15*
2N41260.15* 2N41260.15* 2N42860.20
2N4
2N
N 2N54570.35 $2 N 54570.35^{\circ}$
2N54580.35*
2N5459 0.35°

VALVES

\section*{				
AZ31	$\mathbf{1 . 1 0}$	ECC839	0.55°	
CBL31	1.50	ECCB41	0.60°	}

PL81AT 1.20

U84 41.25°
UBC4
1 1.00

523 524 G	1.50*
524GT	1.00°
6-30L2	1.56*
6 6AB7	0.75*
6AC7	0.75*
6AF4AT	0.70°
6AG7	$0.75{ }^{\circ}$
6AH6T	0.95*
6AK5 ${ }^{\text {a }}$	$0.50{ }^{\circ}$
6AK6	0.95*
6AL5 ${ }^{\text {¢ }}$	0.40°
6 AM4	2.30*
6AM5	3.85*
64M6 ${ }^{\text {¢ }}$	0.70
6AN5	$2.50{ }^{\circ}$
GANBAT	
	0.70°
6AO5 ${ }^{\text {¢ }}$	$0.85{ }^{\circ}$
6AR5	0.70^{*}
6AS64	$0.80{ }^{\circ}$
6AS7G	1.50*
6AT6!	0.75 ${ }^{\circ}$
6AU5GT	4.26*
6AU6t	$0.55{ }^{*}$
6AV5GT	$3.74{ }^{\circ}$
6AV6t	0.75 ${ }^{\circ}$
6AWBA	
	1.00
$6 \mathrm{AX5GT}$	3.10°
687	0.75
68 B	0.75
68461	0.50*
6847	5.12*
6BABA	3.75
6BC4	3.71
68E61	0.48°

7491	0.80
7492	0.60
7493	0.60
7494	0.80
7495	0.72
7496	0.80
7497	3.00
74100	1.50
74107	0.45
74109	0.70
74110	0.50
74111	0.86
74116	1.75

74118	1.00	74144	2.50
74119	1.50	74145	0.90
74120	0.83	74147	2.00

74144	2.50
74145	0.90
74147	2.00
74148	1.75
74150	1.60
74151	0.85
74154	1.75
74155	0.85
74156	0.85
74157	0.75
74159	2.10
74170	2.30
74172	4.40

74173
74174
74175
74176
74178
74179
74180
74190
74191
74192
74193
74194
74195 $\begin{array}{ll}1.40 \\ 1 & 1.50 \\ 5 & 0.90 \\ 1.20 \\ 1.25 \\ 9 & 1.25 \\ 0 & 1.50 \\ 1 & 1.50 \\ 2 & 1.35 \\ 3 & 1.35 \\ & 1.25 \\ & 1.00\end{array}$ \qquad $\begin{array}{rr}74196 & 1.20 \\ 74197 & 1.10 \\ 74198 & 2.25 \\ 74199 & 2.25 \\ 76013 N & 1.75 \\ \text { LM309K } & 1.50 \\ \text { TAA570 } & 2.30 \\ \text { TAA630S } \\ \text { TAA } & 3.50 \\ \text { TBA } & 3.91 \\ \text { TBA } & 1.8 \\ \text { TBA5 } & 1.8 \\ \text { TBA } \\ 2.3\end{array}$
 $\begin{array}{ll}\text { TBA920 } & \mathbf{2 . 9 0} \\ \text { TBA9200 } & 2.99\end{array}$ $\begin{array}{ll}\text { TBA9900 } & 2.99^{\circ} \\ \text { TCA2700 } & 2.99^{\circ}\end{array}$ DIL Sockets
$\begin{array}{ll}\text { B PIN } & 0.15 \\ 14 \text { PIN } & 0.15 \\ 16 \text { PIN } & 0.17\end{array}$

IT

7400	0.16	7412	0.26	7432	0.30	7470
7401	0.16	7413	0.32	7433	0.36	7473
7402	0.16	7416	0.32	7437	0.32	7474
7403	0.16	7417	0.32	7438	0.32	7475
7404	0.17	7420	0.17	7440	0.18	7476
7405	0.16	7422	0.20	$74414 N$	0.85	7480
7406	0.40	7423	0.32	74422	0.72	7482
7407	0.40	7425	0.30	$74474 N$	1.90	7483
7408	0.20	7427	0.30	7450	0.18	7484
7409	0.20	7428	0.43	7451	0.18	7486
7410	0.16	7430	0.17	7453	0.18	7490

BASES		GRT'S		5ADP1	35.00 10.00
87G unskirted	0.15			${ }_{5}^{5 C P 1 *}$	5.00 40.00
87 G skirted	0.30		31.00 8.50	5CP1A	40.00 15.00
89A unskirted	0.15	${ }^{2 A P P 1}{ }^{\circ}$	9.00	5UP7	14.00
89A skirted	0.30	$3 \mathrm{SPP}^{\text {2 }}$	8.00	5UP	14.00
NUVISTOR	0.55	30 Pi .	5.00	DG7-5	25.00
Int Octal	0.20	3EG ${ }^{\circ}$	7.00	DG7-32	36.00
Loctal	0.55	$3 F P 7$	6.00	DH3-91	31.00
8 Bin DIL	0.15	3GPI	6.00	DH7-11	68.00
16 pin DIL	0.15	3JP1*	8.00	VCR97*	5.00
	0.17	3JP2*	8.00	VCR138*	10.00
		3JP7*	10.00	VCR 13BA*	12.50
Valve screening cans all sizas $\quad 0.30$		$3 \mathrm{KP1}{ }^{\circ}$	15.00	VCR139A*	8.00
		$3 \mathrm{RPI}{ }^{\circ}$	35.00	VCR517A*	10.00

$\begin{array}{ll}\text { VCR5178. } & \mathbf{6 . 0 0} \\ \text { VCR517C } & 6.00\end{array}$
Tube Bases

- Surglus
VAT B\%

THORN NEW LIFE COLOUR TUBES FULLY GUARANTEED

A49-191/192X	$\mathbf{4 2 . 3 2}$	A63-200X	$\mathbf{5 2 . 5 0}$
A51-110X	$\mathbf{4 4 . 0 0}$	A66-120X	$\mathbf{5 3 . 6 1}$
A56-120X	$\mathbf{4 5 . 7 2}$	A67-120X	$\mathbf{5 3 . 6 1}$
A55-14X	$\mathbf{4 5 . 7 2}$	A67-150X	$\mathbf{5 4 . 6 0}$

AVAILABLE FROM STOCK FOR COLLECTION ONLY-OLD TUBE MUST BE RETURNED. ADD VAT $12 \frac{1}{2} \%$

Torms of buainoss: CWO. postage and packing valves and aemiconductors 25 p per order. CRTs $75 p$. Items merked* add $12 \frac{1}{2} \%$
VAT. Others 8%. Indicates chosp quality version or aurplus, but alto svailable by leading UK and USA manufecturers, Prics VAT. Othors 8\%. \uparrow Indicates chosp quality vorsion or aurplus, but alto available by leming UK and USA manuftecturers. Price packing E 1 on credit orders. Over 10,000 types of veiv
QUOTATIONS FOR ANY TYPE NOT LISTED SAE.

Telephone 01-677 2424 Telex 946708
E. \& O.E.

10 to 16 , inclusive. These bursts were associated with about eight groups of sunspots, some with four and six spots, seen by Henry with his spectrohelioscope. On the 6th he saw five plages, on the 11th a small flare, and a bright active area was visible on the 12th and 13th.

Aurora

Considering this solar activity, it was not surprising that ionospheric disturbances were reported by the BBC World Service on January 5 and 6, and John Branegan noted auroral events on the 4th and 7th. Between 1810 and 1817 on the 4th, John heard tone "A" signals from the 2 m beacons in Wrotham, GB3VHF and Kiel, DLOPR, and although the auroral signals faded out on 2 m around 1820 they persisted on Band I TV until 1907. During the event, several of John's fellow GMs worked London stations on 2 m . Following an auroral alert from John Matthews G3WZT, near Horsham, Sussex, around 1900 on the 7th, John Cooper G8NGO, Cowfold, Sussex, heard a French station working a GM on 2 m s.s.b. and. in turn, phoned Alan Baker G4GNX, Newhaven, who heard some weak s.s.b. signals bouncing off the auroral display, while in nearby Lancing, Roy Bannister G4GPX, heard GM4DSZ. Alan also confirmed a report from Cecil Sadier G3JEO, Brighton, that signals in the 40 m band were being influenced by the aurora. Between 1500 and 2000 on the 7th. John Branegan received auroral signals from European TV in Band I, f.m. broadcast stations in Band II, strong 2 m signals from stations in DL, EI, G, GI, GM, GW, LA and SM and from beacons around the UK, in Cornwall, GB3CTC, Northern Ireland, GB3GI, Lerwick, GB3LER and Kent, GB3VHF. John also had three contacts through OSCAR-8J during the event and was told by SM5FUR that, the aurora was affecting all Sweden.

The 10 Metre Band

Mark Hattam, Hereford, using his Realistic DX- 160 receiver and a long wire aerial, says that signals from Radio South Africa and Voice of America, in the 11 m band. were "pounding in" on January 9, and in the 10 m band he heard UN3CEY in QSO with an American station, and a harmonic of a Radio Moscow transmission around 28.750 MHz . Michael Mrzyglod, Wallingford, Oxford, who is in the process of joining the RSGB, reports hearing several European and Russian amateurs

Fig. 1: Test card from Poland on 49.75 MHz , received in Sussex on 20 December 1978
on 10 m around noon on December 26. From December 15 to January 17 I received signals, almost daily, from the International Beacon Project stations in Bahrain, A9XC, Germany, DL0IGI and Cyprus, 5B4CY and less frequently from Bermuda, VP9BA and Florida, N4RD. The majority of these signals were received on my FR 101 with a long wire aerial and averaged around 539.

DX Television

At 0910 on December 19 I heard strong television sync pulses on 49.75 MHz with my R216, fed by a dipole aerial, which alerted me to switch on my JVC3060, also fed by a dipole, and there on Ch. R1, for a short while was a test card from YLE-HK 1, Finland. Between 0800 and 0920 on the 20th both Ian Rennison, Horsham, using a JVC3040, and myself, received a very strong test card from Poland (Fig. 1), on R1, accompanied by the sound, which I received on the R216, on $56 \cdot 25 \mathrm{MHz}$. From 0745 until about 0930 on January 4, Ian and myself received strong pictures from both Poland and Hungary on R1 (Fig. 2), and at times both signals were fighting for predominance on our receivers.

During the afternoon of the 7th, John Branegan, using his Eddystone 770R, heard video signals on 48.25, 49.75 and 61.8 MHz and TV sound, in Spanish, on 53.75 and 60.75 MHz . John reports that the m.u.f. was up around 44 MHz to the USA on January 5,6 and 7 and, at 1450 on the 6 th, he received French TV sound on 41.25 MHz and, "strangely enough," says John, "the aerial seemed to peak around 270°.

Tropospheric

Despite the poor conditions on December 26, Roy Bannister heard signals from the new Norfolk repeater, GB3FR, on R7 when the London repeater, GB3LO, was quiet, and, during a spell of good conditions on December 18, signals from the Burnley repeater, GB3RF, also on R7, were received by Don Campbell G5SD, in Clymping, on the Sussex coast. A mild tropospheric opening occurred on January 6 when the atmospheric pressure, which had reached 30.4 in , began to fall. Throughout the day, I received strong signals from more than a dozen Continental f.m. stations in Band II and during the evening, Ian Rennison received a strong picture from the French TV station at Lille.

Fig. 2: Test card from Hungarian Television on 49.75 M Hz , received in Sussex on January 4

Around 1300 , while I was receiving strong pictures from the IBA transmitter at Lichfield, Ch. $8,189 \mathrm{MHz}$, Alan Baker worked FIBBQ on 2 m c.w. and later had QSOs through the French repeater, FZ2THF, on R9. During another pressure drop, at 2030 on the 3rd, Fleming Jul-Christensen G8RMA (ex OZIEVA), Eastbourne, using a TS700-S, heard OE5KEJ on 2 m s.s.b.

Microwaves

John Tye G4BYV, Dereham, Norfolk, is active on both 13 and 23 cm with home-brew equipment into a 4 ft dish aerial on both bands. During the second half of 1978 he had 10 QSOs with G stations, 11 with PA0 and 1 DK on 13 cm , and 33 with G, 40 with PA0, 22 in Germany, 3 ON and 1 GW on 23 cm which is a fine effort. John has now built a converter for 9 cm and is waiting for the right conditions to use it.

Satellites

To celebrate the new year, John Branegan had Hogmanay QSOs with WB2OXJ and WB2SBW, both in New Jersey, just a few minutes before midnight on OSCAR-8J. All-told, John worked 16 stations in 8 countries. DB, G, GM, HB, I, PE, SM and W via 8J on New Year's Eve, and with only 4 days operating during December he had 60 QSOs on $8 \mathrm{~J}, 7$ of them transatlantic, including W2GEZ and WB2SBW which are new ones for him. John now has a QSL card confirming his 8J contact with C31QO, Andorra and has now worked CN8AK, Morocco on OSCAR-8A.

Tail-piece

Congratulations to Ern Hoare G8BDJ, Brighton and Alec Painter G8EAQ, Worthing, on passing their Morse tests. They will, no doubt, soon be sporting their new callsigns.

I received a Christmas card from Frank Luman who, while on holiday with his parents in Denver, Colorado, is studying the DX-TV situation over there.

While on a round trip to Birmingham on January 10 , Alan Baker worked through eight of the 2 m repeaters, GB3BC, BM, LO, MH, PI, SN, SR, and WH, showing that mobile operators need never be alone on their journeys through and around the UK.

What do the VHFs

have to offer?

No one should harbour the idea that the v.h.f. bands have little excitement to offer the radio enthusiast. In fact, there is still so much to learn about the behaviour of radio waves between 1 and 10 metres that they are a haven for the DX hunter, experimenter and home constructor. To be successful in the world of v.h.f., one must pay great attention to detail, such as taking extra care when selecting components, keeping wiring as short as possible, soldering all joints, and making sure that aerials are securely mounted, and have a good-quality feeder. Remember, it is easy to ruin the performance of an expensive piece of v.h.f. gear with a poor aerial, badly-connected mains lead, loose loudspeaker, and microphone connections or an intermittent aerial plug.

The Home Station

Before equipping a v.h.f. station, the operator, whether a licensed amateur, broadcast or short-wave listener, radio-astronomer, satellite enthusiast or TV DXer, must decide first where to locate his shack and then where to put his aerials. These, ideally, should be as close to the shack as possible to avoid unnecessarily long and therefore lossy feeders. The choice and size of aerial depends upon the band being used and the space available, in some cases the consent of the local planning authority is required, it is best to play safe and get this point clarified.

The Transmitting Amateur

The holder of a class B transmitting licence (G8-plus-3letter callsign) may only use the 2 m band within the v.h.f. spectrum, whereas the holders of a "full" licence (those who have passed the Morse test in addition to the RAE) may also use the 4 m band. A typical aerial installation for the DX hunter is an 8 -element Yagi for 2 m and a 3element Yagi for 4 m , both horizontally polarised and mounted on an aerial rotator. The majority of amateurs are in favour of the VHF Band Plan, published by the RSGB, which recommends that c.w. contacts are made between 70.025 and 70.150 MHz and 144.00 and 144.150 MHz , and s.s.b. contacts on 70.200 MHz and between 144.150 and 144.500 MHz .

Operators soon learn the possible range of QSOs on each band from their location, under normal atmospheric conditions, but the real DX comes during the sporadic-E season on 4 m and a tropospheric opening or aurora on 2 m . Apart from the sheer thrill of working v.h.f. stations at almost impossible distances, it is advisable to exchange QSL cards to confirm contacts, because these cards are the evidence required by RSGB members who wish to claim the "Four Metres and Down" certificates offered by the Society for confirmed QSOs from: 3 Countries and 20 Counties on 4 m ; 5 Countries and 30 Counties on 2 m . Senior awards are also offered.

Under abnormal conditions it is possible to work DX through the national and European 2 m repeater network; these signals are frequency modulated and vertically polarised, so aerials such as dipoles, ground planes or crossed Yagis are normally used. Repeater contacts do not qualify for the RSGB certificates.

The Broadcast Listener

The v.h.f. hunting ground for the broadcast listener is the f.m. broadcast band. $88-108 \mathrm{MHz}$, which is full of Continental broadcast stations during a tropospheric opening. East-European broadcast stations are often heard in the UK between 65 and 73 MHz during the sporadic-E season. Many of my readers use a rotatable, multi-element Yagi for the broadcast DX in Band II, especially if they wish to resolve full stereo from the incoming signal.

The VHF Listener

The v.h.f. listener should make sure that his aerials are as efficient as those used by the transmitting amateurs. Listening on v.h.f. is very rewarding, especially during an atmospheric disturbance, when there is a host of DX signals about and a great opportunity to get a QSL card, from stations in rare Counties, which cannot be heard under normal conditions. To earn a QSL card, from either an amateur or a beacon keeper, the listener's report must be useful and contain such information as date, time, signal

AUDIO MODULES

1 Stereo Cassette Deck N999
Complete with electronics uses:-
music centres, disco consols, tape editing etc. Freq resp $63 \mathrm{~Hz}-10 \mathrm{kHz}$ WOW: 0.15% FLUTTER 0.18% channel: separation 55dB Electronic speed control. ALC Mic and line inputs. JAPANESE Manufacture - requires 12V DC. £23.95. Top moulding $£ 1.00$.
2 Preamp Amp - PSU Wimborne 11 W per channel Four Rotary controls. Vol Bass Treb Bal. $2 \times$ PSUs for RF Board - cassette deck, LM 387 preamp IC driver. TIP 31 +TIP 32 Output Pairs. Special price includes transformer £16.95
(October 1978 PW)

3 AMP 041
8 watt RMS per channel amp+preamp supplied with pots. Fully complementary requires 28V DC. Price complete $\mathbf{£ 6 . 9 9}$

4 AMP 020

Stereo power amp 30W RMS per channel. Class ABI TIP 34A×TIP 33A. 16 Transistor circuit Fre resp $15 \mathrm{~Hz}-18 \mathrm{~K} . \mathrm{Hz}$ - $1 \mathrm{~dB} . \mathbf{£ 7 . 9 9}$

5 Matching HiFi Preamplifier

Four rotary controls - Vol, Bal, Treb, Bass. Treble + or -14 dB . Bass + or -14 dB facility for loudness control $\mathbf{£ 6} 99$

RF MODULES

6 Surplus RF Board 020

Complete MW/LW/FM/MPX Tuner uses 3 stage FET front end 2 ceramic filters 3089E1310 Decoder. AM section built around 3132E, 2 stage tuning comes complete with 4 way switch - ferrite rod aerial - $\mathbf{£ 9} .99$

7 RF 030

Improved version of above extra gain stage imposed S / N ratio and 1.5 uV sensitivity for $26 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ way selector switch AFC stereo/mono switching - 2 additional inputs $\mathbf{£ 1 9 . 9 5}$

8 RF 020

MW/LW/FM/MPX varicap tuned RF board as per 78 Nov/Dec PW Dual gate MOSFET front end. 2×1 Fgain stages 3189 Deviation mute, interstation mute, MPX filters. STab PSU luV sensitivity and 75dB S/N ratio. AM Section also varicap tuned HA1197 excellent performance. Special price $\mathbf{£ 2 8 . 9 5}$

9 VT04

FM FET Front end three stage tuning 26 dB gain AFC and AGC facility 10.7 MHz IF output $£ \mathbf{3 . 9 9}$

10 IF15

Matching IF Strip double conversion $10.7 \mathrm{MHz} / 470 \mathrm{kHz}$ AM/NB FM excellent performance $£ 12.95$

We have all parts in atock for the Wimborne Music Centre - parte for ampa/tuner amps and music centres up to 25 Watte per channel. We tiock all harctware and trim to give units a professional finish. Front panels, meters, knobs, sockets, etc.

CRLROMASOMTE electronics

The items shown in from Resistors to the this advert ate just a latest in Micro smalt selection taken processcrs Donit delay from our new $78 / 79$ order your copy today rom our new 78/79 Catalogue which is now avallable it
contains everything

The price is only 40p (inc $45 p$ vouchers)

TELEPHONE: 01-883 3705

strength, any interference, beam headings, and mention the callsigns of other signals heard from the same area. Don't forget to enclose s.a.e.

Artificial Earth Satellites

A large cross-section of the v.h.f. fraternity are interested in receiving signals from both commercial and amateur radio satellites. A 10 -element crossed Yagi with an alt/azm (altitude and azimuth) mount is ideal for listening to or working through the amateur satellites. Although this aerial is specifically designed for the 2 m band it will suffice for receiving signals from the commercial birds in the $136 / 137 \mathrm{MHz}$ band. A permit from the Home Office is required to receive signals from commercial satellites. Both the AMSAT and Russian amateur radio satellites have uplink frequencies around 145.900 MHz and downlinks around 28.400 MHz . The latest information about these satellites can be obtained by listening to the AMSAT net at 1015 on Sunday on 3.780 MHz .

Radio Astronomy

Briefly, a radiotelescope consists of a high-gain aerial directed toward the celestial source being observed, a sensitive receiver tuned to the observational frequency, and a recording instrument-usually a pen recorder. Radio waves from heavenly bodies are very similar to the background noise of a radio receiver, therefore the telescope must be able to distinguish between the two.

The usual practice is to connect a local noise source to the aerial socket and see how far it deflects the pen, then disconnect it, couple the aerial and measure the difference between the noise source and the incoming celestial waves. The sun, which affects our daily communications around the world, is a very powerful transmitter of radio waves when sunspots are present. For solar radio observers there is the day-to-day excitement of never knowing when this nuclear furnace, 93 -million miles away, is going to send off a flare and emit radio waves between 100 and 200 MHz . Radio astronomy presents a challenge to the home constructor who wishes to build v.h.f. aerials. low noise pre-amplifiers. converters and d.c. amplifiers to drive a pen recorder.

DX Television

It is well-known that the normal range of v.h.f. television signals is, subject to the terrain between the transmitter and receiver, about 50 miles. However, to receive signals at a greater distance, a large aerial system plus mast-head pre-amplifiers are required. Long-distance television reception is possible during an atmospheric disturbance which can affect both v.h.f. and u.h.f. signals over a wide area.

Within the UK, v.h.f. transmissions of the BBC are in Band I, $41-76 \mathrm{MHz}$, and the IBA in Band III, $176-$ 215 MHz , both 405 -line. Continental, African, Icelandic and Russian v.h.f. transmissions, which are the targets for the TV DXer, fall in two frequency ranges, $48-68 \mathrm{MHz}$ and $175-225 \mathrm{MHz}$. The lower range is subject to sporadicE and the higher range to tropospheric disturbances. Pictures from Russia can be received on Ch.R $1,49.75 \mathrm{MHz}$ and R2, 59.25 MHz .

For super DX. which is not outside the bounds of possibility, there are American (525 -line), Australian and New Zealand TV who also transmit between 46 and 68 MHz . Detailed information about international television is published in World Radio and TV Handbook.

Fig. 3: Pictures from Spain and Sweden received by the author during the 1978 sporadic-E season with only a dipole aerial feeding a JVC 3060 receiver. Both stations can be received on Channels E2 (48.25MHz), E3 $(55.25 \mathrm{MHz})$, and $\mathrm{E} 4(62.25 \mathrm{MHz})$. In each case the sound is 5.5 MHz higher than the vision frequency

GUY STANBURY
by RON HAM

For Christmas, 1963, the 9 -year-old Guy Stanbury received a Philips electronic kit. Soon after, he was borrowing copies of Practical Wireless from his local library, and in 1968 he became a regular reader.

Guy's interest in v.h.f. began in 1971, when he visited Bob Dewick, a keen Band II DXer at Bradwell-on-Sea, Essex, and saw Bob's Hacker receiver which could be fed from either a Rhombic aerial or four Jaybeam 4 -element Yagis stacked vertically and horizontally. Very soon, Guy, at his home in Chelmsford, began experimenting with v.h.f. aerials, starting with an Antiference 4E, mounted on a cable-controlled rotating spindle, then a 6 -over- 6 array on a rotator followed by various long Yagis. His current installation is two Fuba UKa Stereo 8 aerials, stacked and phased according to the instructions and mounted on a Stolle rotator.

His receivers progressed from a Rigonda "Symphony" stereogram, to a PW "Sandown", which he constructed in 1975, and used for about a year until he purchased his present equipment, a tuner and i.f. modules from Ambit International. In his station, Guy has both reel-to-reel and cassette recording facilities, a frequency counter which he is trying out, an oscilloscope, and all the tools needed by the home constructor. Although he is a Band II specialist, with signals heard from stations in Greece, Italy, the low countries, Western Germany and Yugoslavia, via sporadic-E and tropospheric propagation, Guy plans to expand into the field of u.h.f. DX-TV, using a Wolseley Colour King or Colour Prince aerial.

Guy is currently on an HNC course in Electrical and Electronic Engineering, and enjoys corresponding with his fellow Band II enthusiasts, and his many friends in the world of v.h.f. radio.

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint costs 85 p , including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS-Radio Amateur Examination Reprint

Please send your order and remittance to:
IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF
Please send me ... copies at 85 p each to include postage and packing
I enclose P.O./Cheque No......... Value \qquad
Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME

```
(BLOCK LETTERS)
```

ADDRESS

(BLOCK LETTERS)

\qquad
\qquad
\qquad
Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

HANIMEX Electronic LED Alarm Clock Same as ETI offer Thousands sold	LADIES LCD Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick. 5 function: hours. mins. back light and auto cal. Elegant metal bracelet in silver or gold State preference. £10.95 Guaranteed same day despatch	5 FUNCTION LCD Hours, mins, secs, month, date, auto calendar, backlight, quality metal bracelet. $£ 7.65$ Guaranteed same day despatch Very slim, only 6 mm thick.	THOUSANDS SOLD 11 FUNCTION SLIM CHRONO 6 digit 11 functlons - Hours. mins. secs. Day. date. day of -1/100. 1/10. secs 10 \times secs. mins. Split and lap modes. Back lignt, auto calendar. - Only 8 mm thick. This same watch is being sold for $£ 22.00$ in newspaper and magazine special offer ads. Metac Price $£ 12.65$ Guar anteed same day despatch
Feature and Specification - Hour/minute display * Large LED display with p.m. and alarm on indicator * 24 Hours alarm with on/off control * Display flashing for power loss indication * Repeatable 9-minute snooze * Display bright/dim modes control Slze $5.15 \times 3.93 \times 2.36(131 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 60 \mathrm{~mm}$). Welght $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$. Guaranteed same day despatch	All products carry full 12 months guarantee. Please add $30 p \mathrm{p} \& \mathrm{p}$ with all orders. All prices include VAT. Shops open 9.30 to 6.00 daily. Trade enquiries welcome. Delivery: One week. Except where same day delivery is stated.	ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY - Constant LCD display of hours and minutes. or date display, plus day of the week and am/pmindication. daypetual calendar. day. date. month and year. - 24 hour alarm with on/off indication. - 1/10 second chronograph measuring net. lap and first and - Dual time zone facility. Night light.	PLEASE NOTE All our products carry full money back 10-day reassurance. Watches are despatched by FIRST-CLASS POST. They are fitted with new batteries, and include guarantee and instructions. Battery fitting service is available at our shops for no extra charge. We stock most watch batteries Metac have been selling electronic watches probably longer than anyone else in the UK. We take care of your watch not just this year but next year and the years after that.
Telephone Special 24-hour phone service Credit-card customers are welcome to buy by phone - simply phone 01-723 4753 with your credit-card number to place your order. place your order.	METAC Electr HIGH STREET VENTRY, NORTHANTS LON (032 72) 76545 Tel.	ics \& Time Centre GWARE ROAD Barclay \& Access N W2 welcome 7234753 Phone or Send Card	

You know it's easy with Heathkit.
 Heathkit self:nstruction electronics courses are

Electronics Courses

New series of courses on car electrical systems.
New series of courses on electronic equipment.
DC electronics.
AC electronics.
Semi-conductors.
Electronic circuits.
Digital techniques.
Microprocessors.

NewKits

Line printer.
Dual floppy disc.
Dual trace 5 MHz and 35 MHz
oscilloscopes.
Memory expansion for digital trainer. 2M hand-held transceiver.
complete, low cost learning systems. All you need is the will to learn and the Heathkit courses will teach you at your own pace.

It's easy because the courses are based on step-by. step programmed instructions, with audio records (or optional cassettes), self evaluation quizzes to test your understanding, and interesting experiments that encourage you to learn the easy "hands-on" way with the optional Heathkit experimenter-trainers.

Thousands of people just like you have already learnt electronics the easy Heathkit way - at home. in educational establishments and eancuareano in industry throughout the world.

You'll find it easy too. Full detalls are in the Heathkit catalogue together with hundreds of kits you can build yourself; for the home. car and workshop.

Send for your copy now.

To Heath (Gloucester) Limited, Oept PW 4/79. Bristol Road, Gloucester GL2 6EE. Please send the items I have ticked. \square Heathkit catalogue (enclose 20p in stamps). \square Computer brochure (enclose 20p in stamps).
ame
VISA

There are Heathkit Electronics Centres at 233 Tottenham Court Road. London (01. 6367349) and at Bristol Road, Gloucester. 'Gloucester 29451)
flactes TTL : Stundard ADD LP SchottkY

CRESCENT RADIO LTD
 I ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ. 01-888 3206

FLIP"

PUSH BUTTON HEAOS OR TAILS Complete kit and full instructions supplied A pocket game. easy to build and great to play KIT PRICE $=\mathbf{5 5 . 2 5 + 8 \%}$ VAT. Posi free.

75 OHM

$21^{\prime \prime}(57 \mathrm{~mm})$ LOUOSPEAKER BARGAIN This ever popular many project loudspeaker Only while stocks last. $85 \mathrm{p}+12 \frac{1}{2} \% \mathrm{VAT}$

REAR SHELF CAR SPEAKERS
5 W 8 ohm good quality car stereo Stin onhy $\mathrm{f} 3.75+12 \frac{1}{7} \%$ per pair

HEAVY DUTY XOVER 2 WAY OHM

A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt. Fitted with screw terminals for input and a three position 'HF Flat, -3 dB or -6 dB .
ONLY $23.00+8 \%$ VAT
A CRESCENT 'SUPERBUY'
Goodmans 5" 8 ohm long throw H/D loudspeaker
Hounting plate is integral with $L / S . S$
chassis and has fixing holes with chassis and has fixing holes with

ONLY $55.00+12 \frac{1}{2} \%$ VAT

CR. $\mathbf{3 0 0 0}$. SCREWORIVER SET

\geq E1.78p.

in neat plastic case. Consists of:- awl. jewellers screwdriver, watchmaker's scrowdriver. radio screwdriver, philtips screwdriver. All fit into master swivelling handle.
CR. 4110 . OESOLOERING PUMP ONLY E6 1 +8\% VAT High suction pump with butomatic ejectirn. Knurled, anti corrosive casing. Taflon nozzle.
CR.LV1. 12V ORILL
\&12.00p.
-8\% VAT Compact battery operated power tool. sufficiently powerful to perform all the operations associsted with 240 V drills. Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia
C. 180 -'KEYNECTOR' MAINS

Essential equipment for the
showroom, workshop. factory, taboratory. home and hor provides quick, efficient and safe temporan mains connection.

FOOTSWITCH C. 33

plug. Body dims:- 88×66 £3.75 - 8% VAT

Personal callers welcome at: 21 Green Lines, Palmers Green N13. Also 13 South Mall, Edmonton Green, Edmonton.

FOR YOUR GUIDANCE VALUE ADDED TAX

Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.
Export orders are not subject to the addition of Value Added Tax.

QUALITY QUARTZ CRYSTALS OUICKLY OUR RANGE

$10 \mathrm{kHz} \quad 50 \mathrm{kHz} \quad 100 \mathrm{kHz} \quad 500 \mathrm{kHz} \quad 1 \mathrm{MHz} \quad 100 \mathrm{MHz} \quad 250 \mathrm{MHz}$

PLEASE INDICATE CLEARLY THE FREOUENCY RANGE OF YOUR INTEREST SEND SAE FOR APPROPRIATE DATA SHEET

WWeloster RIectrouics
ILMINSTER, SOMERSET, ENGLAND TELEPHONE (04605) $4261 / 2$ TELEX 46264 FRQNCY G

ambit
 international

The PW Sandbanks Metal Locator: a kit based on this recently published design for this uniquely effective type of metal locator is available for only $£ 35.00+8 \%$ VAT. The kit closely resembles the appearance as published, except that a close fitting injection molded housing replaces the vacuum molded electronics box to improve the enviromental suitability of the construction. Carriage for complete kits fl . The Now Catalogue - "Tecknowledgey Part 2"
Part 2 of the catalogue: by the time this advert reaches the press, part 2 should be on sale. Sorry it's late, but it contains so many new and interesting things that we felt we had to hold up production to include them. Part three by the autumn -and already there are many new items to go in! Part one 45p, part 250 p. (inc PP etc).
Radio ICs
TDA1062
TDA1083
TDA1093 Dro chip AM/FM
TDA1220 One chip HiFi am/fm
HA1197W HiFi AM tuner IC
HA1197W AM AM tuner IC
CA3123E AM tuner IC TBA651 AM tuner IC
CA3089E Famous FM IF system
CA3189E As 3089+ deviation mute
AF proamp, sdi, age
HA1137W Improved S/N 3089
TBA120 limiting amp+detector TBA120S high gain
MC1350P agc'd IF preamp
$\begin{array}{ll}\text { MC1330P synch AM/video detector } \\ \text { KB4406 } & \text { Cresode IF preamp }\end{array}$
UA753 limiting FM proamp
Communications circuits
SD6000 DMDS RF/Mixer pair
KB44 12 Bal mixers, IF + agc
KB4413 AM/SSB dot. squelch,
KB4417 mic processor
MC3357 best thing in NBFM yet MC1496 Popular double bal mixer 1.25 Multiplex decoders 4 noise blanker MC1310P popular PLL decoder UA758 buffered 1310 CA3090AQ RCA PLL decoder HA1196 improved PLL decoder HA11223 19k HZ piliot cancel, low $\begin{array}{ll}\text { HA11223 } & \begin{array}{l}\text { 19kHz piliot cancel, } \\ \text { distortion, high S/N }\end{array} \\ \text { K84437 } & \text { sHA11223 with rem }\end{array}$ VCD kill facility stereo MUTING preamp for post decoder mute KB4423 impulse noise blanker

$\begin{array}{llll}\text { Reden } & 0.18 & 0.16 & 0.17 \\ \text { Green } & 0.18 & 0.15 & 0.20\end{array}$
$\begin{array}{llll}\text { Yellow } & 0.18 & 0.15 & 0.20 \\ \text { Orange } & 0.22 & 0.29 & 0.24\end{array}$
100 off mix, 25% discount. All are AEG first
grade types. :bssolutely no junk. 5 mm clips
for panel mounting 0.03 each
Misc. ICs for radio/audio applications SAS6610 4 station touch tune ic 1.48* SAS6710 adds 4 stations to 66101.48 MSM5523/4 LW,MW,SW and FM digital frequency readout plus
clock, timers, stopwatch MSM5526 Clock, timars, stopwatch E LW/MW/FM DFM with ${ }^{\circ}$ MSM5526 direct drive for LCD TCA730 DC volume control TCA740 DC tone control $\begin{array}{ll}\text { TDA1028 } & \text { DC input switeh } \\ \text { TDA1029 } & \text { DC mode }\end{array}$ TDA1029 DC mode switch We cannot really list all the details wo would like to here - but with advent of the new mark 3 tuner system, the Dorchester and matching AF units, Ambit offers you the widest choice ever. plus hardware and styling that matches the very
high standards we have set in this new range.

TERMS etc: CWD please, VAT on Ambit leems is generally $12 \% \%$ except where marked (${ }^{\circ}$) E3. Phone Brentwood 10277) $216029 / 2270509 \mathrm{am}$-7pm. Callors welcome inc. Saturdays.

Rt lust, DIV Hi Fi which laoks as if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The Mk3 outstrips and outperforms all British made HiFi tuners, and most imported ones too. Certainly at the price, there isn't one near it. But more than that, it looks superb. A small pic here would be an insult, so send an SAE for details on the kit that looks as if isn't. It's something else...............

```
* Exceptionally high performance - exceptionally straightfonward assembly
    - Baseboard and plug-in construction. Future circuit developments will readily
    plug in, to keep the MkIII at the forefront of technical schievement
    Various options and module line.ups possible to onable an installment approach
        o the system
```

and now previewing the matching 60W/channel VMOS amplifier
$\left[\begin{array}{l}\text { * Matching both the sivle and design concepts of the MkIII HiFi FM tuner } \\ \text { Hitachi VMOS power fets-characterized expecislly for HiFi applications } \\ \text { Power output readily multiplied by the addition of further MDSFETs } \\ \text { VU meters on the preamp - not simply dancing according to vol hovel } \\ \text { Becked with the usual Ambit expertise and technical capacity in audio }\end{array}\right]$

The PW Darthester•LU,MUW,SW,\& FIM steren tuner

THE DIGITAL DORCHESTER ALL BAND TUNER

With styling and dimensions to fil in with the rest of AMBIT's new range of tuner \& audio equipment.

When the new range of OKI digital frequency display ICs was announced, the original prototype of the Dorchester had been made - but since so many of you wanted to use the OKI frequency counterdisplay system with the Oorchester, we quickly designed a unit to incorporate the necessary facilities. The Digital Dorchester is designed in 19 inch form, and forms a perfect match for the other units in the range. If you don't want to go to the expense of the full Ambit DFM1 module, with AM/FM/Time/Timers, then the MA1023 clock module can be used instead
The Dorchester has been described in PW Dec.. Jan. and Feb. issues - but for those of you who may have missed it - it is an All Band broadcast tuner, covering LW/MW/SW and FM stereo in 6 switched ranges. Construction is very straight forward. with all the switching being PCB mounted - and the revolutionary TDA1090 IC used for AM/FM.
The eilectronics for the radio section of the Dorchester remain unchanged at $£ 33.00$, with 12.5\% VAT. The hardware package, of case, meter. PSU now cosis $£ 33.00+8 \%$ with the MA1023 available for an extra C 5 only.
For the fully digital version, with Ambit OFM1, the price is $£ 56.50+8 \%$ VAT

2 CreshamRaud, Brentwand, Essek.

NO DISCO SYSTEM IS COMPLIE WIIHOUL...
 CITRONIC MM 313 MIXER Ideal for the OIY enthusiast building up a complete disco system. $4 / 6 \mathrm{ch}$. mono. inc. LED indicators. connections via phono sockets at rear.8argain price. including PSU £ 80.46 nc. VAT IP.P. $[1501$
 PIEZO HORNS FANTASTLCSPECLIAL OFFER WIRELESS
 Tweeters for your disco. PA
 system or Hi.Fi. Frequency range 5 K .20 K No x over required. They can be used in Mp spistem up to 100 W Why pay more? PROJECTORS SQUIRE MULTIFECT 150
 BULGIN OCTAL PLUGS AND SOCKETS
 Theres alwars hundreds of Butgin Actal multiway plugs and sockets in stock ot your Sound to Light System P552 SOCKET ED.65 (Psp 35p) P551 PLUG £ 1.84 IPsP 35pl Carriage on 10 or more nominal £ 100 Also available 6 -way multicore cable (6 Amps per corel ex stock ©. 65 per metre Please phone for carriage quote

 -including rotator and effects wheel A truly ver satile projector which uses a powerful 150 W Tungsten bulb. all effects A BARGAIN AT $£ 40.50$ IPEP $£ 1001$

PLUS MANY DISCO ACCESSORIES
 All Roger Squire's shops have s

Roger Squirer pISco GEAR

[^4]TeI. 0419463303 GLASGOW: 1 Oueen Margaret Rd., (ofl Queen Margaret Ddve) Kelvinside, Glas oow G20 6DP

Our new catalogue lists a card frame system that's ideal for all your module projects - they used it on the ETI System 68 Computer. And we've got circuit boards. accessories, cases and boxes everything you need to give your equipment the quality you demand. Send $25 p$ to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals. and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

1920 to 1950
 Receivers. valves. components. service data. historical research books. magazines, rapairs and restorations. A comradio. S.s.e, with enquiries and for monthly newshear.
 THE VINTAGE WIRELESS COMPANY, 64, Brand Stroet, Staple Hill, Bristol BS 16 5NL. Tel. Bristol 58547 . 565472

BRAND NEW COMPONENTS BY RETURN

 Submininture bead tantalum, electrolvtice. $22 / 16 \mathrm{~V} .33 / 10 \mathrm{~V} .47 / 6 \mathrm{~V}$. 68 \& 100 证-14p.

 Polyatyren. E12 Series 63V. Hor. Mounting. Mullard Polvester 250 V Vort. Mig. E6 Series.

 Miniature Film Resistors Highatab. E12 5\%.
 0500 watt 10Ω to $2 \mathrm{M} 7 \Omega$
N4148-2p,1N4002 4p, IN4006 6p, IN4007 8C107/8/9, 8C147/8/9. 8C157/8/9. BF1944 \& 7-9p.
 Post 10p (Free over ©4). Prices VAT inclusive.

THE C. R. SUPPLY CO.
127. Chesterfield Road, Sheffield S8 ORN

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors

We Dispatch Valves to all parts of the world by return of post. Air or Sea mail. 4000 Types in stock, 1930 to 1976 . pen to calfers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00. We wish to purchase all types of now
boxed Valves. Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTO.
Dept. P.W. The Parade, Eatt Wittering,
Weat Wittering 2023 (8TD Code 024366)

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London SE 1 9LS. (Telephone 01-2615846)

CONOITIONS OF ACCEPTANCE OF CLASSIFIEO AOVERTISEMENTS

1. Advertiementa are accepted aubject to the conditions appearing on our current advartisement rate card and on the expreas understanding that the Advertiser warrants that the advertisement does not contravent any Act of Perliament nor is it an infringement of the British Code of Advertiaing Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishars shall not be lisble for clericel or printers' errors or their consequences.

RIBBON MICROPHONES with $4 / 8$ Poleswitch 95p; Microswitches. Capacitors, Receiver and Microphone Capsules 10p each; Bakelite Telephones $£ 2.95$; Handsets 50p; Magneto Generators $£ 1.75$. P.\&P. $£ 1.50$. CONVERSATION PIECES, 55 Swindon Road. Cheltenham. (35707).

TOUCH CONTROLLED LIGHTING	
24 HR. CLOCK/APPLIANCE TIMER KIT	
ov PLASTIC triacs	OPTO COMPONENTS

TUNBRIDGE WELLS COMPONENTS, BALLARD'S. 108 Camden Road. Tunbridge Wells. Tel: 31803. No Lists. Enquiries S.A.E
AM/CW/SSB COMMUNICATION RECEIVER and
praselecior modules. 4535 kHz Mech. Filter Modules 2.1
CRYSTALS Brand new high precision HC33/U: 1.0. 2.0
$30.1008,25625 \mathrm{MHz} 23.35 .128 \mathrm{MHz}$ E4.15. HC 13
$\begin{aligned} & 100 \mathrm{kHz} \text { E3.25. HC18/U: } 40.50 .6 .0 .7 .0 .8 .0 .10 .0 . \\ & 107 \mathrm{MHz} \text { E3.00. } 180.200 .38 .6667 .480 .100 .0 .\end{aligned}$
Large stocks of standard freqs for MPU etc. Any freq made
$\begin{aligned} & \text { to order } 6 \text { weeks from } £ 3.75 \text {. } \\ & \text { WINKLE PICKERS. Wink }\end{aligned}$
WINKLE PICKERS. Winkle out DX from the QRM with
$\begin{aligned} & \text { pin-shard } 250 \mathrm{~Hz} 8 \text {-pole Crystal CW filters specially } \\ & \text { manutactured to fit TRIO and YAESU: FT/FR-101. FT- } 301\end{aligned}$
TS-520. TS-820. E25.90 and
All prices inc. VAT and UK post. SAE Lists.
P. R. GOLLEDGE ELECTRONICS
G3EDW, Merriott, 8omerset, TA165NS

Equipment Wanted

Tempfing prices paid for

Oscilloscopes-Signal Generators
DVM's •Small Computers Receivers-Teletypes:VDU's etc.

IT= Electronic Brokers Lad 40/33 Pancras Road London NW1 208 Tolophone 01-2377781

Service Sheets

REG. OFFICE 14B QUEENS PARAOE. NORTH EALING W5 3HU

SERVICE SHEETS-COLOUR TV SERVICE MANUALS

> Service Sheets for Mono TV. Radios, Record Players and Tape Recorders E1. Please send large Stamped Addressed Envelope. Wo can supply manuals for HI BAIRD UITRA INVICTA FERCUSON H.N. by J. M. Court. S.A.E. for dotails. MAlL ONLY TO
> G. T. TECHNICALINFORMATION SERYICE 10 Dryden Chambers, 119 Oxford St., London W1R 1PA

SERVICE SHEETS for Radio, Television, Tape Recor ders, Stereo, etc., with free fault-finding guide, from 50p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

LARGE SUPPLIER OF SERVICESHEETS

and Colour Manuals. TV Mono Radios. Tuners. Tape Recorders Record Players. Transistors. Stereograms. all at $75 p$ each + SAE except colour TV and Car Radios. State if Circuit will do. if sheet are not in stock. All TV Sheets are full lengths 24×12. not in Bits a Pieces. Free Faut Finding Chart or TV Catalogus with order
C. CARANNA (Mall Order)

71, Beaufort Park, London, NW11 6BX 01-4584882

BELL'S TELEVISION SERVICES for Service Sheets on Radio. TV etc., $£ 1.00$ plus SAE Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS, Radio, TV etc. 10,000 models. Catalogue 24 p, plus S.A.E. with orders, enquiries TELRAY, 154 Brook Street. Preston PR 1 7HP.

Ladders

LADDERS varnished 22^{*} extd. $£ 30$. Carriage $£ 2.80$. Leaflet. Also Alloy ext. up to $62 \frac{1}{2}$. LADDER CENTRE (WLS3), Halesfield (1), Telford. Tel: 586644.

Educational

TELEMISTON TRAINING

18 MONTHS full-time course for begin ners to include all the undermentioned subjects. Short courses, combining one or more subjects, for applicants with suitable education and electronics background such as $C \& G$, HND BSc etc.

- 13 WEEKS TECHNICAL MATHEMATICS \& ENGLISH
- 13 WEEKS ELECTRONICS \& RADIO
- 13 WEEKS MONOCROME TELEVISION
- 13 WEEKS COLOUR TELEVISION
- 13 WEEKS VIDEO SYSTEMS (CCTV, VCR, Teletext, etc.)

The training incorporates a high percentage of practical work,
Next session starts on April 23rd
(Also available $2 f$ year course in Marine Electronics \& Radar for employment as ships Radio Officer)

Prospectus from:
LONDON ELECTRONICS COLLEGE

Dept. PWB4, 20 Penywern Rond, London SW5 9SU.

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. F277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
Stata if under 18

TECHNICAL TRAINING
 Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for derails of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics Computers, also self-build radio kits. Full details from:
 ICS SCHOOL OF ELECTRONICS
 Dept. F277 Intartext House, London SW8 4UJ Tel. 01-622 9911 (all hours)
 State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms. Technicians, Electrical Installations, Radio, TV \& Electronics Technicians. Radio Amateurs, Full details from

ICS SCHOOL OF ELECTRONICS

Dept. F277 Intertext House, London SW8 4UJ
Tel. 01-622 911 (all hours)
State if under 18
GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood, FY7 8JZ.

Record Accessories

STYLI for Hi-Fi. Music Centres. III. List free for S.A.E also carridges, leads, accessories. Details-FELSTEAD ELECTRONICS (PW), Longley Lane, Gatley, Cheadle, Ches. SK 8 4EE.

For Sale

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70p each, post free. Open P.O. Cheque returned if not in stock-BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat Free. WHISTON, (Dept. PW) New Mills, Stockport.

TRIO R 300 General Coverage Receiver as new $£ 159$ o.n.o. TRIO $2200 \mathrm{G} £ 114$ o.n.o. $1-20$ Watt 2M P.A. $£ 34$ o.n.o 021-453-4748.

8ACK ISSUES P.W. 1966.75 . E.E.- $1976+7750$ p each. Inclusive. Cheque/P.O. Returned if N/A. P. R. Sant, 10 Pevensey Close, Worcester.

Books and Publications

Build your own P.A., GROUP \& DISCO SPEAKERS by R.F.C. Stephens

Save monoy with this practical guide, Plans for 17 differen dosigns. Une source. 1.8.. Horn and Reflex types. for $8^{\prime \prime}-18$ drive units $\mathbf{£ 3} .98$ post tree ($\$ 8$ overseas)
THE DALESFORO SPEAKER BOOK bY R.F.C. 8tephens. This book is a must for the keen home con-
structor. Latest technotogy DIY designs. Plans for 1.8 ., and Reflox designs for $10-100$ watts. Also unusual centro-bas syatem. $\mathbf{E 2} 20$ posi froe ($\$ 5$ overseas).

5 SwA VAN KAREN PUBLISHING
5 SWAN STREET, WILMSLOW, CHESHIRE.

COMPREHENSIVE TV REPAIR INSTRUCTIONS for your set $\mathbf{£ 5 . 0 0}$ with circuit (if requested). Free catalogue unique TV/other publications. AUSE (PW), 76 Church Street, Larkhall, Lanarkshire ML9 1HE.

Wanted

WANTED Diagram for Labgear Transmitter LG300 or/and information regarding best type of aerial. D. Collin, 8 High Street, Belford, Northumberland. NE70 7NH.

ELECTRONIC COMPONENTS PURCHASED. Al Types Considered - Must be new. Send detailed list - Offer by return -. WALTONS, S5A Worcester Street Wolverhampton.

Miscellaneous

THE SCIENTIFIC				
WIRE COMPANY				
PO Box 30, London E. 4 Reg. Office 22 Conlugaby Gdna				
ENAMELLED COPPER WIRE				
SWG	1 fb	8 oz	4 or	208
10 to 19	2.65	1.45	. 75	. 60
20 to 29	2.85	1.65	. 90	. 70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 to 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15.00	9.00	6.00	3.30
SILVER PLATED COPPER WIRE				
14816	4.50	2.25	1.44	. 90
20822	5.00	2.85	1.74	1.06
24\% 26	5.70	3.31	2.00	1.22
28 \& 30	6.67	3.86	2.35	1.44
Prices include P \& P and VAT SAE brings list of copper \& resistance Wires Oealer Enquinies Invited				

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 25, St. Wilfreds, Foundry Lane, BAZELLI, Dept. No. 25
Halton, Lancaster LA 6LT.

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO ELECTRONICS, Grenfell Place, Maidenhead, Berks

NICKEL CADMIUM BATTERIES

Rechargesble and suitable for "fast charge" HP7 (AA) £1.13,
SUB C $£ 1.47, \mathrm{MP} 11$ (C) $£ 2.15$ HP 2 (O) $£ 3.27$ PP3 $\mathrm{SUB}_{\mathrm{E}} \mathrm{C}_{\text {(PP3 }} 1.47, \mathrm{HP} 11$ (C) £2.15, HP 2 (O) £3.27, PP3 E5.31. All above Nickol Cadmium batteries are guaranieed 'EVER READY' full spec, and are supplied complete with solder tags (except Pp3). Just in stock-Now rechargeable burglar alarms ofc.. 1.2 amph hr . 6 v . $\mathrm{E4} .40 \mathrm{gamp} \mathrm{hr}$,6 v . E5.85.
Quantity pricas available on request. Oate and charging circuits free on request with orders over E 10 otherwise 30 p
post and handing (specify battery type), all prices include VAT. Ploase add 10% P \& P on orders under $\mathbf{~} 10.5 \%$ over $\varepsilon 10$.
Cheques. postal orders, mail order to: 80LID 8TATE 8ECURITY DEPT. PW. 10, Bradahaw Lane, Partold, Wigan, Lance. 0257-4726.

ALFAC etch resist transfers and other p.c. board drawing materials available from stock. SAE details. Ramar Constructor Services, Masons Road, Stratford-upon-Avon. CV37 9NF.

PW October issue 2 m MOSFET CONVERTER units from the author G4CFY. Kit of parts for complate PCB $£ 8.50$. Ready built and alignod units boxad $£ 17.00$. Parts evailable separatoly, 38-86B7 Mhz Xtal £2.75, PCB £1-85.
1750 Tone Burst Board, Tested and Aligned 9.4 in sq. £3.50.
© SPECTRUM COMMUNICATIONS
12 Weatherbury Way, Dorchester, Doreat OT1 2EF. Prices inclusive of P \& \& .

LOSING DX?

RARE DX UNDER QRM? Dig it out with a Tunable Audio Notch Filter 350.5000 Hz 40 dB notch RADIO 4 GONE? FRG7? AR A8, 200 KHz to Medium
Wave Converter only £9. 70 .
EXPLORE $V . \operatorname{Li} .10 .150 \mathrm{KHz}$ Receiver $£ 1070$.
year, month, date, day, hours, minutes, second year, month, date, day, hours, minutes, seconds
display parts (no case or pcb) $£ 24.40$.
SIG. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine/square, E 1080 .
PROGRAM YOUR OWN tunes on a MUSICAL
OOORBELL. now tune each day. just needs bell HOW LOW CAN YOU GO? $100-600 \mathrm{KHz}$ to $41-46$ MHZ Converter only $£ 990$.
Giro 21-923.4000. Each easy-assambly kit includes alt parts, printed circuit, cose, posfege etc. money beck
assurance so SEND of NOW.

CAMBRIDGE KITS

45 (PR) Old School Lane, Mitton, Cambridge

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette 8: 12-24 w.p.m. for professional examination preparation.
Morse Kay and 8uzzer Unit for sending practice.
Price each Casserte (including booklets) $£ 4.50$, Morse Key
Prices include postage etc., Overseas Airmail $£ 1.50$ extra.
MHEL ELECTRONICS (Dept. P.W.), 12 Longshore Way, Milton, Portemouth PO48LS

BUILD you own 771B type Metal Detector, details SAE 117 Horton Road, Brighton, BN 1 7EG.

GUITAR/PA/MUSIC/AMPLIFIERS

100 walt with superb ireble bass overdrive, 12 months quarantee. Unbeatable at E40; 60 watt $£ 35 ; 200$ watt $£ 56$; win channel sep treble/bass per channel $£ 52 ; 60$ watt $£ 46$
200 watt $£ 69 ; 100$ watt tour channel sep treble/bass 200 watt $£ 69 ; 100$ watt four channel sep treble/bass per
channel $£ 65 ; 200$ watt $£ 79 ;$ Slaves 100 watt $£ 32 ; 200$ wath £48; Fuzz boxes great sound £7.90; 8ass fuzz £8-50; 100 watt combo superb sound overdrive. sturdy construction. castors. unbeatable £85; Twin channel £95; 8ass Combo f95; Speakers 8 . 100 watt E22-50; 60 watt £14.50; Shure mic unidyne 8 E26.
Send Cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Ave, Dukinfield, Cheshire. Tel. 061-3445007

LET LYNWOOD ELECTRONICS quote for parts for your project at competitive prices. Send list of your requirements. Interested and helpful service. 20 Stourcliffe Avenue, Bournemouth BH6 3PT.

AERIAL BOOSTERS Improve weak VHF Radio and Television reception, price $£ 5.00$ S.A.E. for Leaflets. ELECTRONIC MAILORDER LTD., Ramsbottom, Bury, Lancashire BLO 9AG.

DART STATIONERY Presents FOR THE AMATEUR Large variety of personalised QSL CARD8 - see catalogue for prices -
LOG 800KS0.0.............. $\mathbf{E 2} \mathbf{. 0 0}$ each
FOR THE DX'er Personalised O8L CARD8.
RECEPTION REPORT LETTER8. Protassionally styled letters printed in two colours and supplied in pads of 100 letters.
$1 \mathrm{Pad} \mathrm{E1.80}$ $2+$ Pads $£ 1.60$ each. Loose Leaf LOG BOOK8 with 100 sheets $\mathbf{E 2 , 5 0}$
FORTHE CB'er Personalised 08L CARD8. CATALOGUES available containing complata range of radio stationory PRICE 46p. EVERY ORDER CARRIES A MONEY BACK ASBURANCE IF NOT COMPLETELY BATISFIED.
Please send cheques or P.O. payable to:- DART STATIONERY 20, Bromley Road, London E17 4PS, England Tel. 01-539 5412

NOTICE
 TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

ORDER FORM please write in block capitals

Please insert the advertisement below in the next available issue of Practical Wireless for \qquad insertions

I enclose Cheque/P.O. for $£$ \qquad
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME

\qquad

Send to: Classified Advertisement Manager PRACTICAL WIRELESS,
GMG, Clessified Advertisement Dept., Rm, 2337, King'a Reach Tower, Stamford Street, London SE1 GLS Telephone 01-2615846
Rate
22p per word, minimum 12 words. 8ox No. 60p extra.

Company registered in England. Registered No. 53626. Registered office: King's Reach Tower, Stamford Street, London SEI 9LS

Mail Order Protection Scheme

The Publishers of Practical Wireless are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wireless within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - AUDIOMASTER - bAKER - BOWERS &
WILKINS - CASTLE - CELESTION - CHARTWELL
COLES - DALESFORD - DECCA - EMI - EAGLE -
ELAC - FANE - GAUSS - GOODMANS - I.M.F. -
ISOPHON - JR - JORDAN WATTS - KEF - LEAK -
LOWTHER MCKENZIE @ MONITOR AUDIO - PEERLESS
- RADFORD - RAM - RICHARD alLAN - SEAS -
SHACKMAN - STAG - TANGENT - TANNOY -
VIDEOTONE Q WHARFEDALE © YAMAHA
```

WILMSLOW AUDIO (Dop. P.w.)

SWAN WORKS, BANK SQUARE, WILMSLOW,

 CHESHIRE SK9 1 HFDiscount Hi-Fi Etc. at 5 Swan Street and 10 Swan Street Speakers, Mail Order \& Export 0625529699 Hi-Fi 0625526213

RADIO ON MW!

Yes, you can tune in to Radio 4 back on Medium Wave by using our easy to assemble LW- MW-Converter. Just place it beside your radio and you tune in as before.

Complete set of parts including assembly instructions

VDU Chip and MODULE
Convertyour TVintoa VDU by using the new Thompson-CSF TV-CRT controller chip, SF.F 96364 16 line by 64 Characters text refreshment. Curso management, Cursor Management on screen. Line erasing. Compatible with any Computing system.

AY-5-1013 UART SFC7 1301 ROM SFS80102 RAM 74LS 163
UHF Modulator
Compl. Module
Data Booklet 30p

£4.50

ASCII Coded 56 Key

Keyboard
259.50(75p $p \& p$)

74LSO1 13	74LS48 120	74LS124 180	74LS174 106		
		560			
74.514	74LS5 24	74 LS 12680	74LS181398	74LS258110	
0414	74155428	$74 \mathrm{LS132} 95$	74LS 183298		
0523	744555 30	74 LS 13655	74LS189	74LS261 450	
0822	74LS63 150	74 LS 13885	74LS 19014		
74LSO9 22	74LS73 46	74LS139 85			
74LS1020	74LS74	74LS 145108	74LS 192 132	74LS275 250	
LS1 122	$74 L 57548$	74LS 147170	74LS 193130	74LS279 66	74 LS379 21
LS1223	74LS76 40	74LS 148173	74LS194 16	74LS280 250	
1338	74LS78 40	74LS151 96	74LS 19513	74	
LS1475	74LS83 115	74LS153 76	74LS196100		
LS15 30	74LS85 118	74LS155 96	74LS 197140	74LS293 128	
20		74LS156 96	74LS 199		
S21 22	74LS90 38	74LS157 76	74LS200 3	74LS298 68	
S22 22	74LS91 104		74LS2		21
4LS26 48	74LS92 89	74LS160 128	74LS22196		
LS27 28	$74 \mathrm{LS93} 89$	74LS161 98	74LS240 236	74LS302 175	
LS28 48	74LS95 116	74LS162 138	74LS24		
LS30 22	74LS96 116	74LS 163102	74LS242 232	74LS324 240	
327	74LS 10744	74LS 164114	74LS243 232	74LS325 290	
LS33 39	74LS 10955	74LSi65	74LS244 155	74tS326 294	
39	74LS 11255	74LS 166228	74LS245 270	74 LS 327288	
39					
	-	74LS 169150			

INDEX TO ADVERTISERS

Maplin Electronic SuppliesMarshall A. (London) Ltd.Mhel Electronics

Fidelity Fasten Flairline Supplies

George Sales, Davi Golledge, P.R
G.T. Information Services Greenweld Electronics
H.A.C. Short Wave Supplies

Harversons
Heathkit
Home Radio
I.L.P. Electronics intertext I.C.S

Kramer \& Co.
Leeds Radio
we Electronics

Partridge Electronics

Progressive Radio

Electrovalue
Manor Supplies
MetacMilward, G.F.
Osmabet

Osmabet82

Powell, T .

2

15
80
82
83

84
Radio Components Specialists
Radio Exchange Ltd
Reed Hampton (E.S.E.)
R.S.C. (Hi-Fi)
R.S.T. Valve Mail Order Co.
Radio \& T.V. Components Lid.
Scientific Wire Co. The
Scopex (Calscope)
Solid State Security
Sonic Hi-Fi
Southern Valve Co
Spectrum Communications
Squires, Roger
Sternway Electronics
Swanley Electronics
Technomatic Lid.
Timetron
T.K. Electronics
T. T. Electronics

	6	Van Karen Publishing	\ldots	\ldots	\ldots	83
\ldots	6	\ldots	\ldots	\ldots	81	
Cover	Vero					
\ldots	12	Vintage Wireless Company	\ldots	\ldots	82	

Wales, P.J. (Plessis Electronics)	\ldots	10	
Watford Electronics	\ldots	\ldots	86,87
Webster Electronics	\ldots	\ldots	\ldots
Williamson Amplification	\ldots	\ldots	84
Wilmslow Audio	\ldots	\ldots	\ldots

Wilmslow Audio ication

25
Cover II

GUARANTEED FIRST QUALITY VALVES

1.00	12 at6	0.60	ECF200	0.90	EM84	0.60	PCL81
1.00	12A17	0.50	ECF201	0.90	EM87	1.00	PCL82
1.45	12AU6	0.65	ECF801	0.95	EY81	0.50	PCL84
0.80	12AU7	0.47	ECF802	0.95	EY87	0.50	PCL86
0.80	12av6	0.85	ECH42	1.10	EY88	0.55	PCL805
0.90	12AV7	1.00	ECH81	0.55	EY500A	1.50	P0510
1.00	12AX7	0.55	ECH200	0.80	Ez80	0.50	PL36
1.50	12AY7	0.85	ECL80	0.60	E281	0.50	PL81
0.80	128A6	0.65	ECL81	0.75	GY501	0.90	PL82
0.80	12856	0.67	ECL82	0.60	6230	0.65	PL83
0.70	128H7A	0.75	ECL83	1.15	G732	0.65	PL84
0.90	128 L6	0.70	ECL84	0.70	G233	. 3.80	PL504
1.20	12806	0.90	ECL85	0.65	OA2	0.55	PL508
0.80	128Y7A	0.80	ECL86	0.85	043	0.75	PL802
0.55	12CU6	0.90	EF80	0.40	082	0.60	PY81
0.80	19 A05	0.75	EF85	0.48	083	0. 75	
0.75	198G6G	0.50	EF86	0.50	C2		

0.65	PY82
0.80	PY83
0.75	PY88
0.85	PY500A
0.75	721
3.35	$\prod 22$
1.10	U25
0.80	U26
0.55	UABCBO
0.50	UAF41
0.75	UBCA1
1.05	UBCB1
1.30	UBF80
2.80	UBF89
0.70	UBL21

0.55	UCC84
0.70	UCC85
0.75	UCF80
1.30	UCH42
7.80	UCH81
7.80	UCL81
1.00	UCL82
1.00	UCL83
0.58	UF41
0.80	UF80
0.70	UF85
0.60	UL84
0.60	UM80
0.60	UM81
0.85	UM84

0.75
0.55
0.75
0.90
0.65
0.70
0.75
0.80
1.00
0.50
0.50
0.85
0.60
0.75
0.45

OSCILLOSCOPE TUBES

current production. Made in USSR
One inch Tube Type 3LO 11. This tube is a good replacement for 1CP31. Tube characteristics are identical with those of 1CP31. As the connections are different the tube is supplied complete with base, connection diagram and technical data $\mathbf{£ 1 2 . 0 0}{ }^{\text {® }}$. Three-inch tube Type 3BP1. This well known tube used in "PURBECK" Oscilloscope can be supplied for $\mathbf{£ 7 . 5 0 . *}$ 14 -pin base for the above $\mathbf{£ 0 . 8 0 .}$ subject to a minimum of $\mathbf{£ 0 \cdot 3 0}$. Minimum order charge for Approved Credit customers $\mathbf{£ 2 0 \cdot \mathbf { 0 0 }}$. Minimum Transaction Charge for mail orders $£ 1 \cdot 00$.

H.A.G. SHORT-WAVE KITS
 WORLD-WIDE RECEPTION

- H.A.C. . well hnown by amateur constructurs for its Short Wave receivers, now offers a complete range of kits and accessorics to suit
the novice and the expert.
$£ 10.50$ INCLUSIVE-the ever popular and easy to construct DX receiver Mark III; containing all genuine short wave components, drilled chassis. valve, accessories and full instructions.
NEW T TWIN TRANSISTOR RECEIVER. selective, sensitive and with fantastic reception. yet needing only a single PP3 battery, at $£ 12 \cdot 50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even
better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRT, NO CATALOGUES WITHOUT SA.E.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane

Lewes Road, East Grinstead, West
Sussex RHIS 3SZ

PLEASE

PRACTICAL

WIRELESS
WHEN
REPLYING
TO

ADVERTISEMENTS

The TCSUI soldering station with etther the XTC 50 watt - 24/26 volt soldering uron or the CTC 35 watt - solderng rron tof We have put at least twice as much power into irons which are already well known for good recovery time the temperature control stops them from over heating the fallsafe electronic circuit provides protection even it the thermocouple fals TCSUI solderans station £ 3810 XTC and CTC rons $£ 14.85$ inclusive of VAI and $P \& P$

Model CX- 17 watts

a miniature son with the element enclosed hist in a ceramic shatt then in a stamless steel Vitually leak lree Onir $7 /$? 8 long fitted wind 32 oitis 37 inclusive 10364

Model $\mathrm{X} 25-25$ watts

A general purpose iron also with a ceramic and steel shatt to give you toughness combined with neas-perfect insulation Ped with $1 / 8$ bit and priced at $\mathbf{~} \mathbf{4} \cdot \mathbf{3 7}$ inclusive of VAT and P\&P Range of 4 other bits avalable

Model SK3 Kit

Contarns both the model CX230 soldening ron and Priced at f6.2 inclusive ol VAT and P \& P It makes an exceltent present for the radio amateur modelmaker or nobbyis!

Model SK4 Kit

Model SK1 Kit

This kil contans a 15 watt minalure soldenng ifon complete with 2 spare bits a coll of solder a heat sink and a bookiet How to solder Priced at $£ 6.48$ inclusive of VAT and $P \& P$

Model MLX Kit

The soldering iron in this kit can be operateo from any ordinary car Dattery it is litted with is teet flexible cable and dattery clips Packed in a strong plastic envelope it can be lett in a car a boat or a caravan ready for inclusive of VAT and P \& P

Now heat to level

 between $145^{\circ}-400^{\circ} \mathrm{c}$(with accuracy of 2\%)

With the

Antex TCSC1 Soldering Station

All Antex soldering irons are made on the principle of putting the heating element inside a shaft, then the desired bit is eased over the shaft, giving maximum . heat transference, this is why so often a small Antex iron can do the job of a larger conventional iron. The precision made slide on bits are slit to make them easily interchangeable.
The ANTEX multi purpose range of soldering equipment is fast becoming a must for every home. Built with precision for long life, each iron is fully tested and guaranteed.
ANTEX soldering irons are made in England to strict local and international standards of safety. Stocked by many wholesalers and retallers or direct from us if you are desperate.

[^0]: Prices shown are recommended retail inc VAT． From electrical and hardware shops．In difficuity send direct．plus 20p P \＆P．Prices and specifications subject to change without notice：

[^1]: 74p. 1a C2. 2a E2.60. 12-0-12v 100 ma 90 p .1 a C2.49.
 IC AUDIO AMPS with pCb. JC12 6W E1 60. JC20 10W E2-95. send see for data. GATTERY ELIMINATORS 3-way iype $6 / 7 \frac{1}{2} 9 \mathrm{v} 300 \mathrm{ma}$ $£ 2.95 .100 \mathrm{~ms}$ radio type with press-studs $9 v$ ¢3 $35.9+9 \mathrm{y}$ โ4.50. stabilized type $3 / 6 / 7 / 1 / 9 \mathrm{v} 400 \mathrm{ma}$ E5-30. 12 v
 BATTERY ELIMINATOR KIT8 send sae $4 \frac{1}{2} \mathrm{v} \mathrm{C1} 40$, $6 \mathrm{v} \mathrm{E}=1.40 .9 \mathrm{v} \mathrm{E} 1.40,4+4+4 \mathrm{v}$
 8 -way types $3 / 4 \frac{1}{\frac{1}{2}} 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{v} 100 \mathrm{ma}$ 2.80. IAmp $£ 640$. stabilized power kits 2 18 v 100 ma E3.60. 2-30v 1A E6.95. 2-30v 2 f 11095 . 12 v car convertor $6 / 7 \frac{1}{2} / 9 \mathrm{v}$ la T-DEC AND CSC BREADBOARDS s-dec C3.17. t -dec E4-02. U-deca [4.40. \mathbf{U}-decb
 BI-PAK AUDIO MODULES $\$ 450$ E23.51. AL60 〔4 86. pa 100 € 15 . 58 spm80 £4.47. bmt80 E5 95. stereo 30 ع20.12.
 SWANLEY ELECTRONICS (Dept, PW)
 32 Goldel Rd., Swanloy, Kent.
 Post 30p extra. prices include VAT

[^2]: TIMETRON

[^3]: * Applications Manager, Radio Communications Group, Plessey Semiconductors, Cheney Manor, Swindon Wilts

[^4]: Personal callers: ROGER SOUIRES OISCO CENTRES
 LOMDON: 175 Junction Road, Tufnell Park N19 500 01.2727474 Open from 10-5 Tues-Sat enistol: 125 Church Roso. Redfiatad Bratel BS5 SR $0272.550550 \quad 10.8$ Weds
 MAMCHESTER: 251 Deansase M3 4EN 061-831 7R76

