

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

QUERIES

While we will always try to assist readers in difficulties with a Practical Wireless project, we cannot offer advice on modifications to our designs, nor on commercial radio, TV or electronic equipment. Please address your letters to the Editor, Practical Wireless, at the above address, giving a clear description of the problem and enclosing a stamped self-addressed envelope. Only one project per letter please.
Components are usually available from advertisers. A source will be suggested for difficult items.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Wireless' Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, Vest Sussex RH16 3DH.

BACK NUMBERS AND BINDERS

Limited stocks of some recent issues of $P W$ are available at 75 p each, including post and packing to addresses at home and overseas.
Binders are available (Price f2.85 to UK addresses or $£ 3.45$ overseas, including post and packing) each accommodating one volume of $P W$. Please state year and volume number for which the binder is required.
Send your orders to Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF.
All prices include VAT where appropriate. Please make cheques, postal orders, etc., payable to IPC Magazines Limited.

COPYRIGHT

(C) IPC Magazines Limited 1979. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden.
All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

NEWS \& VIEWS

Production Lines

Information on the latest products

FOR OUR CONSTRUCTORS

25 PW ''Soundlite"' T. P. Hopkins An economical 3-channel sound-to-light unit
Ideas Department
Step Tone Generator. Car Cassette Power Supply
PW "Hythe" Marine Band Receiver-2 . M. Tooley \& D. Whitfield Using the receiver, plus some add-on units
PW '"Winton'" Stereo Amplifier-1 E. A. Rule A high quality, 50W per channel design, using power f.e.t.s
Follow-up to the PW "Avon" Peter Preston Increased power and 12 V operation
Wide-band Noise Source
. D. Whitfield
An r.f. noise generator for receiver testing
Tone-burst Generator
P. Hodson

An audio oscillator for v.h.f./u.h.f. repeater access

GENERAL INTEREST

IC of the Month
Brian Dance
The TDE1607 interface device
On the Air
Amateur Bands Eric Dowdeswell
MW Broadcast Bands Charles Molloy
SW Broadcast Bands Charles Molloy
VHF Bands Ron Ham
VHF Personalities-The Two Erns Ron Ham

\approx FREE THIS MONTH

"HINTS \& TIPS FOR CONSTRUCTORS" - A special 8-page
supplement on all aspects of construction

We regret that, owing to circumstances beyond our control, the size of this issue of Practical Wireless has had to be reduced at short notice by eight pages. We apologise to readers for any disappointment caused.

B. BAMBER ELECTRONICS

Dept. P.W. 5 STATION ROAD, LITTLEPORT, CAMBS, CB6 $10 E$ Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

	PLEASE ADD 8\% VAT UNLESS OTHERWISE STATE		TCP2 TEMPERATURE CONTROLLED IRON. Temperature controlied iron and PSU. $\mathbf{£ 3 0}$ VAT (E2.40). SPARE TIPS Type CC single flat. Type K double flat fine tip Type P. very fine tip $\mathbf{£ 1 . 5 0}$ each + VAT (8p) MOST SPARES AVAILABLE.
coil) to fit $\frac{1}{2}^{\prime \prime}$ reeds (not supplied) 2 for 50p.	CELESTION $8^{\prime \prime} \times 5^{\prime \prime}$ ELIPTICAL	SPECIAL DFFER FOR CDMPUTER BUILDERS, ETC. 19 way ritbbon cable, decimal coded 4 metres for 1.25 . 13 way heavy duly ribtoin cable, decimal corted, lideal for PSU runs) 3 matres for $£ 1.50$.	
fe	ohm, 3 watts		
DUAL TO18 HEATSINKS $1^{\prime \prime} \times \frac{1}{2}$ " $\times \frac{1}{4}$ " with screw-in clamps. 3 for 50p.	$\times 1^{\prime \prime}$ high, with integral heatsink, com	CLAREED REED RELAYS, complete with reeds. TYPE 1. Size approx. $2 \frac{1}{2}^{\prime \prime} \times \frac{3^{\prime \prime}}{4} \times \frac{1^{\prime \prime}}{2^{\prime \prime}} 1$ pole make, $9 V 400$ ohm coil, 35 peach. TYPE 2 , Size approx. $2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{1}{2}$ ". 2 pole make +2 pole break. $2 \times 9 \mathrm{~V} 200$ ohm coils, 60 p each.	
AINS TESTER SCREWDRIVERS 100 to V . Standard size $\mathbf{5 0 p}$. Large 70p.			WELLER SOLDERING IRONS EXPERT. Built-in-spotlight illuminates work Pistol grip with fingertip trigger. High efficiency
		VIDICON SCAN COILS itransistor type, but no daral complate with vidicon base $\mathbf{£ 6 - 5 0}$ each Brand New	
SMALL SIDE CUTTERS (with wire holding davice)			copper soldering tip. EXPERT SOLDER GUN S100D £12,00. EXPERT SOLDER GUN KIT (spare bits, case, etc.) $£ 15-00$. Spare bits 40 p pair.
MINIATURE FILE SETS. Set of $6 \mathbf{£ 2} \mathbf{2 0}$. HIGH QUALITY RELAYS, 4 pole C/O, 3A	table batteries from mobite supply). Only needs ane 8 FY50/51/52 or similar transistor. which	IC TEST CLIPS, clip over IC while stilf soldered to pcb or in socket. Gold-plated pins. ideal for experimenters or service engineers. 28 pin OHL $\mathbf{£ 1 . 7 5 , 4 0}$ pin DIL $£ 2 \cdot 00$. Or save by buying one of each for $£ 3-50$.	
contacts. 12 V DC coil. 150 ohm . Size approx. $1^{\prime \prime} \times \frac{3^{\prime \prime}}{} \times 1 \frac{1}{4}$ ", with plastic covers. 80p each or 2 for $\mathbf{f} 1.50$.	ed with a star-type heatsink £2-00 each.		IXED COMPONENT PACKS, containing sistors, capacitors, pots, etc. All new. Huneds of items. $\mathbf{£ 2}$ per pack, while stocks last.
LARGE ELECTROLYTIC PACKS. Contaí	HE NEW EAGLE		
high voltage types. pack $\left[+12 \frac{1}{2} \%\right.$ VAT .	QUEST containing Audio, in-car, and test equipment, etc.	ASS BEAD FEEDTHROUGH I TORS. Solder-in type, overall dia.	BSA AUTOCHARGE RECORD PLAYER DECKS with cue device, 33-45-78 RPM. for $7^{\prime \prime}, 10^{\prime \prime}, 12^{\prime \prime}$ records. Fitted with SC12M Stereo
Slider Switches. 2 pole make and break lor can be used as 1 pole change-over by linking the two centre pinsl. 4 for 50p.		PLASTIC PROJECT BOXES with screw on lids (in black ABS) with brass inserts. Type NBI approx. $3 \frac{1}{4}^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \times 1 \frac{3^{n}}{4} 45$ fach Type NB2 approx. $4^{\prime \prime} \times 3^{\prime \prime} \times 13^{3 \prime \prime} 55 p$ each Type NB3 approx. $4 \frac{3}{4}{ }^{\prime \prime} \times 33^{\prime \prime} \times 1 \frac{3}{4} \times 65 p$ васh Type NB4 approx. $8 \frac{1_{2}}{}{ }^{n} \times 5 \frac{7}{4} \times 3 \frac{1}{4}^{n}$ E1-50.	Ceramic cartridge and styli. Brand new $£ 14.00$ $+12 \frac{1}{2} \%$ VAT.
DUE TO A CHANGE OF SUPPLIER, OUR STOCK ALUMINIUM BOXES AND VINYL COVERED EQUIPMENT CASES WILL BE AS FOLLOWS	ze approx. $3^{*} \times 3^{\prime \prime}$, with large ates. $0-9+$ Clear. A, B, Dual Wate ew only. £2.00 while stocks last.		PLAYER DECKS, Model 6.300, with cue device, 33-45-78 r.p.m. for $7^{\prime \prime}, 10^{\prime \prime}$, $12{ }^{\prime \prime}$ records. Fitted with KS41B Stereo Ceramic cartridge and styli Brand new $\mathbf{£ 1 6 . 0 0}+12 \frac{1}{2} \%$ VAT. Please note, record decks sent by Roadline, allow 14 days for delivery.
	T.		
AL1 $3^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$ 60p			
	SEMICONDUCTORS	PLUGS AND SOCKETS BNC Plugs, new 50p each. $\mathrm{N} / \mathrm{T}_{\mathrm{yp}}$ Plugs 50 ohm, 60p each. 3 for $\mathbf{E 1} 50$. PL259 Plugs (PTFE) brand new, packed with reducers, 75p each. SO239 Sockets (PTFE), brand new (4-hole tixing typel. 60p each.	FULL RANGE OF BERNARDS/BABAN ELECTRONICS BOOKS IN STOCK. S.AE FOR LIST.
	ult		
$6^{\prime \prime}$	BC108 (metal can), 4 for 50p.		
AL6 $8^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$			VARICAP TUNERS Mullard type ELC1043/05. Brand New. $\mathbf{£ 5 \cdot 0 0}+12 \frac{1}{2} \%$ VAT.
AL7 $\mathrm{Cl}^{\prime \prime} \times 6^{\prime \prime} \times \mathbf{3}^{\prime \prime}$ ¢1.75	BCY 72 Transistors, 4 for 50p. 12 for 25 p.		
Viny\# Equipment CasesBlte Viny covered steel tops with plain	E, TOS		BARGAIN PACK OF LOW VOLTAGE
	BF1 52 (UHF amp/mixer), 2N3819 Fet. 3 for 60p.	SOLDER SUCKERS (Plunger type). Standard Model, $\mathbf{E 5 \cdot 5 0}$. Skirted Model. E6. Spare Nozzles 60p each.	
BCO			ELECTROLYTIC CAPACITORS. Up to 50 V working. Seatronic Manufacture. Approx 100 $\mathbf{E 1} \cdot \mathbf{5 0}$ per pack $+12 \frac{1}{2} \%$ VAT.
BC2 $6^{\prime \prime} \times 4^{\prime \prime} \times 3 \frac{10}{}{ }^{\prime \prime}$ ¢2.25			Dubiller Electrolytics, 50 F. $450 \mathrm{~V}, 2$ for 50p. Dubiller Electrolytics, $100 \mu \mathrm{~F} .275 \mathrm{~V}, 2$ for 50p. Plessey Electrolytics, $470 \mu \mathrm{~F} .63 \mathrm{~V}, 3$ for 50p.
		NEW MARKSMAN RANGE OF SOLDERING IRONS.	
BC4 $10^{\prime \prime} \times 6 \frac{10}{\prime \prime \prime} \times 3^{\prime \prime}$			
BC7 $\quad 12^{n} \times 6 \frac{1}{2}^{\prime \prime} \times 5^{\prime \prime} \quad$ £3.25		ING IRONS.	
MAINS TRANSFORMERS. Type $15 / 300$ 240 V input. 15 V at 300 mA output. $\mathbf{£ 1 . 5 0}$	15 A .90 Watts, Flat pack type. 2 for $£ 1-50$.	S125DK 25W 240V + bits etc., KIT £5.50. BENCH STAND with spring and sponge for	
	GERMANIUM DIOOES, approx 30 for 30p.		Dubiller Electrolytics, 5000 F, 50V, 60p each. ITT Electrolytics, 6800 F, 25V, high grade
each MAINS TRANSFORMERS. Type 45/100, 240. 220, 110 , OV input. 45 V output. $£ 1.50$ each.	741 CG op amps by RCA, 4 for $£$	Spare bits MT9 (for 15 W) 60p, MT5 (for 25 W) 50p, MT 10 (for 40W) 55p. ALL PRICES + 8\% VAT.	screw terminals, with mounting clips, 50p each. PLEASE ADD $12 \frac{1}{2} \%$ VAT TO ALL CAPACITORS.
	RED. LEDs (Min (YPe) 5 for 70p.		
pase: '	DDER, MIMTMUW ORDER E2. ALL ALL GOODS IW STOCK DESPATCHED BY	ICES IWCLODE POST \& PACKIWG, RW. CALLERS WELCOME BY APPOWYTL	OWLYI, SAE with ALL ENOUIRI

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

spx 30
For the advanced, keen short wave listener the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think that the SRX- $\mathbf{3 0}$ will provide that listener with excellent performance at a reasonable cost and is the answer to this eternal problem. The SRX-30 is based on an advanced drift cancelling loop system which gives spot on dial accurac at any frequency between 500 KHz and 30 MHz together with easy to understand frequency readout Suitable for all users from raw beginners, thanks to it's simplicity of operation: to experienced listeners and amateur operators thanks to it's advenced technology, the SRX-30 is the best communication receiver available in its price range today.
Completely self contained, including operation from mains or 12 volts de. the SRX-30 is at home on broadcast or amateur bands. All mode reception oi AM. CW. LSB. and LSB is provided and receive Sand for futl details today or give us a ring and we'll tell you all about the SPXCarriage by Seuaricor $£ 3$.

NEW. Bellsonic power supply giving fully regulated 12 V dc output at 3 amps continuous rating rating from $220-240$ V ac mains input.
uses for the amateur experimenter or professional user. Incredibly low price £17.28

inc. vat. P \& P 86p

We also stock the RAK Listener 3 aerial systen for the man who demands the best and has the room for it. Double dipole system complete sith H/D alloy wire, insulators, coaxial feeder. centre connector etc. in an ov
$\mathbf{P} \& \mathbf{R}^{66 p}$.
Also available is the Listener 1 loaded end fed single wire aerial system for restricted space situations, Overall length only is feet due to use of loading coil and element folding. Ideal aerial for any user of short wave bands. Price $£ 7.50 \mathrm{inc}$, val. P \& P86p.
If you need professional osciltoscopes at reasonable prices, please contact us for details of terrific
TRIO range. Full range of other test equipment stocked.
For all that's good in Amateur Radio, contact
LOWE ELECTRONICS LTD., 119 Cavendish Road, Matlock, Derbyshire. Tel: 06292430 or 2817. For full catalogue, simply send 45 p in stamps and request catalogue CPW.

NEW. CL22 aerial tuner which will match New. CL22 aerial tuner which wil match frequency between 1.5 and 30 MHz . Six switch-
ed ranges with fully tunable receiver and aerial ed ranges with fully tunable receiver and aerial marching capacitors. A worthwhile addition to any SWL station and an instant improvement in aerial matching problems. Price $£ 15.75$ inc. vat
$\mathrm{P} \& \mathrm{P} 66 \mathrm{p}$.

FABULOUS PROFESSIONAL DISCO SYSTEM

F.A.L. De Luxe PROFESSIONAL Carr. GONSOLE (Powered)
etc. £15

Slide Fade Controls. Autofade with Music Overide on both mic. and jingle inpuis. Headphone pre-fade monitor with 5 Push-button selector. Illuminated V.U. meters. Illuminated unity gain. Mic. channel with Bass \& Treble. Slave outlet. Treble Control (Music Channel) Output into line (Slave) Treble Control (Mic. Channel) Autofade Recovery Bass Control (Music Channel) Microphone Input. Bass Control (Mic. Channel) Tape/Jingle. 1/P

PAIR MATCHING FULL RANGE De Luxe 80w LOUDSPEAKERS

Each inc. Pair of Powerful $12^{\prime \prime}$ Bass units (with aluminium centre domes), and High Frequency Horn unit to extend frequency range to above 17 kHz . Normally 889.95 ea.

FANTASTIC SPEAKER OFFER

TWIN 12" SPEAKER CABINET PLUS PAIR 12" SPEAKERS of Robust vibration-proof construction Fitted protective corner pieces, Re-
movable Vynair covered front with silver effect trim. Sunken jack socket with escutcheon at the rear Pair $12^{\prime \prime} 15 w$ speakers for wiring up and front mounting While stocks last in above supplied to Three items complete a 30w unit for
P.A.

£19.95

and
Turntables BSR P200 Beltdrive are Garrard 125SB Belt-drive with low and magnetic cartridge per system $£ 10$ for Garrard only.
POWER: POWER: 120 watts continuous RMS into 4 ohms able flexi-beams over each turn table with independent switching. CABINET: Solidly made to withstand the rigours of transporting. Covered in heavy duty leather cloth type material in attractive colour combinations Corner cap protectors Recesed ararying harates
List £320.76

ALL THREE UNITS PRODUCED BY BRITAINS LARGEST MAKERS OF DISCO EQUIPMENT

TRANSMITTER RECEIVER. MK.123. Very compact Army unit for use in range 2.5 to $20 \mathrm{Mc} / \mathrm{s}$, receiver section 7 valves inc RF stage \& BFO provides O/P for 4 K ohm phones, 3 bands with direct cal 2.5 to 5,5 to 10 \& 10 to $20 \mathrm{Mc} / \mathrm{s}$. Tx section 2.5 to $20 \mathrm{Mc} / \mathrm{s}$ in 3 ranges O / P 15/25 watts over range C.W. only, 2 valves Crystal Osc \& 5B251M P.A. stage, will match into the following Aerial loads 25, 100,500 \& 1500 ohms as int tune up meter, reqs crystals type FT243 in range 2.5 to $10 \mathrm{Mc} / \mathrm{s}$ int morse key fitted with plug for ext key. Mains P.U. self contained unit for 115 or 200/250v AC overhaul size inc Rx, Tx \& P.U. $30 \times 9 \times 14 \mathrm{Cm}$ weight 4 Kg . also supplied with ext invertor unit for 12 V DC. Supplied in clean cond with 80 page handbook giving circ details etc (no details on 12 v P.U.) $£ 54$.

TAPE RECORDERS. Made for use in language lab equipment 240 v I/P uses BSR type TD. 103 speed deck $5^{\prime \prime}$ spools, two chan transis amps with provision for playback \& record can be used for stereo. P.U. and circ boards are mounted below tape deck approx size $12 \times 11 \times 7^{\prime \prime}$ intended to work phones. Supplied in clean condition may be less knobs \& ind lamps some circ details supplied. No ext case. $£ 13$ also sim valve unit TD. 2 deck $£ 8.50$.
U.H.F. CAVITIES. New spares for 2C39/7289 valves will tune over range $990 / 1040 \mathrm{Mc} / \mathrm{s}$ with int fittings circ supplied $£ 6 \cdot 50$, also Rx section tunable preselector 1080/1130 Mc/s 4 section with 1 N 21 mixer diode for $60 \mathrm{Mc} / \mathrm{s}$ IF with circ $£ 4-50$.
ELECTROSTATIC VOLTMETERS range 0 to 15 KV AC or DC usable scale 3 to 15 Kv complete in wood carrying case $8 \times 9 \times 6^{\prime \prime}$ f10.80.
HELIPOT DIAL standard 10 turn type to fit $\frac{1}{4}^{\prime \prime}$ shaft size $1 \frac{3}{4}{ }^{\prime \prime}$ dia. f 1.50 or with 100 K helipot $£ 2$.
RECTIFIER UNITS ex-Army unit 200/250v I/P provides two DC O / Ps of 12 vDC at 3 amps ea can be connected for 12 v 6 amp or 24 v 3 amp will do 4 amp okay for battery chargers good cond f 10.80 .
INFRA RED LAMPS light \& heat units sealed beam 115 v 500 watts size $7^{\prime \prime}$ dia $4 \frac{1}{2}{ }^{\prime \prime}$ deep new American G.E. okay for paint drying etc two for $£ 5.40$.
V.H.F. TEST SET provides RF O/P over range 20 to $88 \mathrm{Mc} / \mathrm{s}$ in 4 bands, as int $2 \mathrm{Mc} / \mathrm{s}$ check, noise generator with 50 Ma meter, int pulse or C.W. O/P complete in case with cal charts \& Ae rods, circ \& notes. These req ext supplies of $250 \mathrm{v} \& 6 \cdot 3 £ 13$.
CRYSTAL OVENS. Miniature type to take $1 \mathrm{Hc} 6 / \mathrm{u}$ or 2 Hc 18 crystals $12 / 24 \mathrm{v}$ operation size inc base $2 \times 1 \frac{1}{4} \times \frac{3}{4}{ }^{\prime \prime}$ new $£ 1 \cdot 20$ either type.
PANEL METERS. 100 Ua scale 0 to 100 linear $2^{\prime \prime}$ dia $£ 3$ also 1 Ma FSD special scale $2^{\prime \prime}$ dia $£ 1.30$ both new.
FREQ METERS type BC 221125 Kc to $20 \mathrm{Mc} / \mathrm{s}$ with int crystal check, with charts \& book require 135 v HT \& $6.3 \mathrm{v} £ 27$.
HEAD \& MIKE SETS for use with 19 set m.c. type with hand mike nom 100 ohm new £4.
HANDSETS No. 3 m.c. with press to take swt suitable 19/62 sets elec okay store soiled $£ 2.50$.
HEATERS flat tubular 240 v 150 watt approx size $6 \frac{1}{2} \times 10^{\prime \prime}$ new £1.80.

DYNAMOTOR UNITS 24 v DC I/P O/P 200 \& 400 v DC 280 Ma int, by removing fan these can be used as powerful $12 / 24 \mathrm{v}$ DC motor with shaft $1 \times \frac{t^{\prime \prime}}{4} £ 6.50$.

CABLE miniature 25 core flex non-screened $5 / 16$ ths osd colour coded new 10 Mts for $£ 3$. Single flex 23/006 okay for Ae wire new 25 Mts for 85 p.
CRYSTALS mixed 10 X \& 10 XJ types in range 5 to $8.5 \mathrm{Mc} / \mathrm{s} 20$ for £2-20.
I.F. TRANS min type 465 Kc new with sec tap 3 for $£ 1 \cdot 30$.

COAX PLUGS \& SKS standard type ex new equip 5prs for £1.30. THERMISTORS bead type 3.8 mm dia 160 ohm at $200^{\prime} \mathrm{c} 20 \mathrm{k}$ at 20'C new 80p
RADIO STATION KIT contains, long wire aerial, dipole aerial, 75 ohm twin feeder, miniature morse key, handset, head \& mike set, misc fittings. In carrying bag new cond. for use in $2 / 10 \mathrm{Mc} / \mathrm{s}$ range. £ 10.80 .
FILTER UNITS 100 Kc crystal filters precision units by Marconi 75 ohm imp in case size $8 \frac{1}{2} \times 3 \frac{3}{4} \times 5^{\prime \prime}$ available in 1 or 2 Kc bandwidths with connectors $£ 5.40$ either type.

Above prices include Carriage \& VAT.
Goods ex equipment unless stated new.
S.A.E. for enquiry or List 21.

A.H. SUPPLIES

122, HANDSWORTH RD. SHEFFIELD S9 4AE
Phone: 444278 (0742)

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

```
AUDAX - AUDIOMASTER - BAKER - BOWERS &
WILKINS - CASTLE CELESTION - CHARTWELL
COLES - DALESFORD - DECCA E EMI - EAGLE -
ELAC FANE - GAUSS - GOODMANS - I.M.F. 
ISOPHON - JR - JORDAN WATTS - KEF - LEAK
- LOWTHER MCKENZIE - MONITOR AUDIO -
PEERLESS - RADFORD - RAM - RICHARD
ALLAN - SEAS - SHACKMAN - STAG -
TANGENT - TANNOY - VIDEOTONE
WHARFEDALE YAMAHA
```

WILMSLOW AUDIO
(Dept. P.W.)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount Hifi Etc. at 5 Swan Street and 10 Swan Street
Speakers, Mail Order \& Export 0625529599 Hi-Fi 0625526213

Low cost version, AOII3 (.02\% dist.) 627.50 (Kit. 623). Other instruments include Milivoitmeter, Fachometer, Noise level meter, Distortion Analyser, for lists. VAT extra 8%. Post/Pkg. $£ 1 \cdot 50$.

TELERADIO ELECTRONICS

325 Fore Street, Edmonton N.9. 01-807 3719
Closed all day Thursday

Printed Circuit Coils
 (Pat. App. For)

For the P.W. Sandbanks, only available from the designer of the detector. By reducing the coil capacitance, vast improvements in sensitivity to gold and silver can be achieved and only four resistors need to be changed for maximum sensitivity. A complete kit including the PC coil to fit the Ambit International moulding, the four resistors required, and instructions for only $£ 2.50$ are available from:

PLESSIS ELECTRONICS,
Castle House, Old Road, Leighton Buzzard, Beds.
Callers by appointment only

ambit
 international

Production of the new catalogue has been heid up for a few weeks - since we have just been appointed as distributors for two of the most exciting ranges of radio components products yet : The Micrometals range of iron dust torroids cores and formers, and the OKI range of VLSi for digital frequency displays for receivers. We apologize for any inconvenience, but these two ranges are really worth the wait and include some products you will find hard to believe, like the MSM5523 IC, an IC with less than ten external components that gives AM frequency readout to 1 kH from $L W$ to $39.999 \mathrm{MHz}, F M$ frequency readout in 100 kHz steps - (all usual IF offsets programmable by diodes), a 24 hour format clock with 12 hour display, independent on and off timers, time signals on the hours, stopwatch facility and a sleep timer. This costs $£ 14$ with its timebase crystal, and makes all that has gone before an expensive and time wasting excercise. Rather like the way the Intersil ICM7216 has revolutionized the instrument counter market. (See the OSTS ad.) And those of you familiar with Amidon and IG dust torroids, favoured in many new RF designs, will be pleased to know Ambit will be stocking a broad range of the Micrometals types for applications from EMI filters to RF PA stages OK1 frequency counter ICs: details in cat2 MSM5523 for CA LEDs with RHDP such MSM5525 $\begin{array}{ll}\text { as FND507 } \\ \text { for } 31 / 2 \\ \text { digit LCD AM/FM with }\end{array}$ for $31 / 2$ digit LCD AM/FM with
direct segment drive. no clock or timers $£ 11$ inc xtal or timers
Other types for fluore

A brief summary of some of our range of ICs: TDA1062/1.95; TDA1083/1.95; HA1 197/£1.40
CA3123E/£I.40; TBA651/f1.81; CA3089/1.94 HA1137/£2.20; MC1310/£2.20; HA1196/£3.95 KB4424/£2.75; KB4423/£2.53;SD6000/£3.75 KB4412/f2.55; KB4413/f2.75; KB4417/乇2.55 MC1495L/f6.86*; MC1496P/f1.25 LM381N/£1.81: LM1303/\&0.99; ULN2283B/ Other new semiconductor additions: KB4438 milot cancel mox decode HA1370 supercedes TDA2020 TDA1090 HiFi AM/FM TDA 1220 low cost AM/FM new technology in power transistorsis getting heaper. 120 V comp pairs $/ 100 \mathrm{~W}$ for $£ 10.00$ Price reduction on CA3189Enow $£ 2.20$ New varicaps: to add to the biggest range.. KV1211 2:9v bias to tune MW, like the New pilot tone filters from TOKO...... 208BLR series, individual per channel with a $26 / 38 \mathrm{kHz}$ version for pilot cancel decoder applications. Flat to 15 kHz New crystal filter for amateur NBFM...... ToYO $10 \mathrm{M4B1}$ with over 90 dB adjacent ch .
rejection for 2 m NBFM .10 .7 MHz New ceramir IF fiters for 455 kHz CFM $455 \mathrm{H} 6 \mathrm{kHz} / 6 \mathrm{~dB}$ 15kHz $\mathrm{max} / 60 \mathrm{~dB}$ CFM $455 \mathrm{H} 6 \mathrm{KHz} / 6 \mathrm{~dB}, 15 \mathrm{kHz} \max / 60 \mathrm{~dB}$ -
ideal for MC 3357 etc. sheet of scalas and ledgends for $\mathbf{£ 1 2 . 5}$ Catalogue part 145 p part 250 p all incit Items is generally $121 / 2 \%$, except where marked (*) f3. Phone Brentwood (0277) $216029 / 227050$ 9am-7pm. Callers welcome inc. Saturdays.

At lust, DIY Hi Fi whith looks us if it isn't.

That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The Mk3 outstrips and outperforms all British made HiFi tuners, and most imported ones too. Certainly at the price, there isn't one near it. But more than that, it looks superb. A small pic here would be an insult so send an SAE for details on the kit that looks as if isn't. it's something else.

> Exceptionally high performance - exceptionally straightforward assembly Baseboard and plug-in construction. Future circuit developments will readily plug in, to keep the MkIII at the forefront of technical achievement Various options and module line-ups possible to enable an installment approach to the system
and now previewing the matching 60W/channel VMOS amplifier
Matching both the style and design concepts of the MkII1 HiFi FM tuner
\$ Hitachi VMOS power fets - characterized especialily for HiFi applications * Hitachi VMOS power fets - characterized especiaily for HiFi application
\star Power output readily multiplied by the addition of further MOSFETs * VU meters on the preamp - not simply dancing according to vol level Backed with the usual Ambit expertise and technical capacity in audio

The PUI Darchester-[WU,ImW, SW, \& FII steren tuner

In much the same way as we have swept away the 'old technology' in frequency/timer counters - with the OKI and lntersil single IC counters, we now offer a single IC "All Band" radio tuner. Don't confuse this one chip radio with things like the ZN414-for this is a genuine superhet receiver with a mechanical AM IF filter, and ceramic IF filters for FM, The AM section employs a balanced input mixer section, covering all broadcast bands - plus a BFO and MOSFET product decetor for SSB/CW - though at this price, the tuner is not intended as a "communications receiver"- although we know of many lesser designs that make that claim. The AM sensitivity is nevertheless better than 5 uV , and FM sensitivity make that claim. The AM sensitivity is nevertheless better than 5 uV , and FM sensitivity
is 1.2 uV for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. As a multiband broadcast superhet receiver, it is a unique construct project that fulfills the requests we very frequently get for a general coverage circuit that isn't over complicated. The set has CA3089E FM performance, with mute etc., and a PLL stereo decoder with full pilot tone filtering.
The tuner board - with "on board" PCB mounted switching, all components etc : $£ 33.00$
The case/cabinet with PSU, meter and mechanics etc
£25.00
An SAE for fuil details please. See the feature article in Practical Wireless (Dec/Jan)
2 GreshamRaud, Brentwand, Es5Re.

Following the success of Breadboard'78, Trident Exhibitions announce

-2, - 15

The second hobby electronics show

Information on exhibiting from: Trident International Exhibitions Limited, Abbey Mead House, 23a Plymouth Road, Tavistock, Devon. PL 19 8AU.
Telephone (0822) 4671 Telex 45412 TRITAV. December 4th-8th Royal Horticultural Hall, Westminster, LondonSW1

PRACTICAL WIRELESS T.V. SOUND TUNER

(Noy. 75 article by A. C. Alnalie) Copy of onighal articfe supplfed on reques
IF Sub-Assembly (G8) £6.80. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner £5•50. P \& P35p.
3-way Station Control Unit £1-20. P \& P 25p.
6-way Station Control Unit (Special Offer) £1.00.
Power Supply Prtd Circuit Board £1-00. P \& P 30p.
Res, Caps, Semiconds, etc. for above £5•80.
Mains Transformer for above £2-50. P \& P 30p.
Add 12 $\frac{1}{2} \%$ VAT to price of goods. P\&P all items 85 p .
Callers welcome at shop premises.
MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

I enclose 30p*, please send catalogue.

Name

\qquad

[^0]05T5Since AMBIT introduced the "One Stop Technology Shop" to our service, we have been pleased to see just how many users of electronic components appreciate our guarantee to supply goods only from BS9000 approved sources. More than ever, professional and amateur electronics engineers cannot afford to waste time on anything less than perfect pedigree products.

004000 tm05

NEW LOW PRICES 7900 series UC TO220 package 1A all $95 p$ 7800 series UC $\mathbf{7 O 2 2 0}$ package 1 A all $\mathrm{f1}$ 78LCP series TO92 100mA all 35p 78MGT2C 1/2amp adjustable volts 175 p | 79MGT2C $1 / 2 a m p ~ a d j u s t a b l e ~ v o l t s ~$ | $175 p$ |
| :--- | :--- |
| 723 p precision controlier | 65 p | MAINS FILTERS FOR NOISE/RFI etc $\begin{array}{ll}1 \mathrm{amp} \text { in IEC connector } & £ 4.83 \\ 5 \mathrm{amp} \text { in 'wire in' case } & £ 3.87 \\ \mathrm{NE550A} & 73 \mathrm{p}\end{array}$ B IMOS

CA3130E
CA3130T
A3140E
CA3140T
A3160E
A3160T
M amps
M301AH
M301AAN
M308H
M308N
M318H
M318N
 욱 음요 옹

\qquad 'N' 57
LSN' 'N'
${ }^{\mathbf{N}}{ }^{\prime} 134$ 'LSN'
${ }^{\mathbf{N}}{ }^{\prime} 134$ 'LSN' N
134
275

LSN
124The ICL7216BIPI is still the cheapest way to make a full 8 digit/ 10 MHz frequency counter/timer,
and with 10 external components + display - it is also one of the simplest., For $£ 19.82$, it takes a
lot of beating. The mains filters have been extended now to include a 6 amp IEC version at $£ 5.10$,lot of beating. The mains filters have been extended now to include a 6amp IEC version at $\mathbf{£ 5} \mathbf{5} \mathbf{1 0}$,and with the amount of electronic noise on the average supply (next door's fridge, for instance) itis a really worthwhile addition to any sensitive equipment. LPSN TTL now includes many moreof latest types, all - of course - are absolutely prime first quality types. And don t forget our range
of OPTO displays includes Hewlett Package high efficiency $0.43^{\prime \prime}$ types in all colours - renownedof OPTO displays includes Hewlett Package high efficiency $0.43^{\prime \prime}$ types in all colours - renowned
as the finest quality in the market. For other types of component - discrete LEDs, radio and audiodevices, tuner modules, kits etc., see our other advertisement for more details - Or send for theAMBIT' catalogue system. Part one (45p) includes details of our background 'standard' items, and
the new part two includes all the latest introductions and developments, plus a rundown on OSTS

PROGRESSIVE RADIO
 31 CHEAPSIDE, LIVERPOOL L2 2DY

MICROPHONES: EM506 Electret Dual Imp (50K $+600 \Omega$) Imp Stick Mic, with Battery £11.00. Electret ModelECMT05 Pencil Hand Mics IK Ω impedance, with standard jack £2.85.
EM104 Tie Cip, Electret supplied with battery $1 \mathrm{Kimp} \mathbf{E 4} \cdot 95$. UD130 Duel imp ($50 \mathrm{~K}+600 \Omega$) EM104 Tie Clip, Electret supplied with battery 1 K imp £4-95. UD130 Duel imp ($50 \mathrm{~K}+600 \Omega$)
moving-coil dynamic mic, cardied response $£ 8 \cdot 25 \mathrm{p}$. moving-coil dynamic mic, cardied response $£ 8 \cdot 25 p$
BUZZERS, GPO open type $3-6 \mathrm{~V} 30 \mathrm{p}$. Large plastic do
Solid state buzzers miniature, $6-9-12-24$ volt 15 ma 75 p each
MAINS TRANSFORMERS, all 240 V AC primary, postage shown in brackets per transformer. 6-0-6 100ma, 9-0-9 75ma, 12-0-12 50 ma 75 p each (15p). 0-4-6-9 150ma no mounting bracket, 65 p (20 p). 12-0-12 100ma 95p (15p). 12 V 500ma 95p (22p). 12 V 2 amp 22.25 (45 p p, 30 V tapped at $2 \mathrm{amp} £ 4.50$ (54 p). $200 \mathrm{O}-20 \mathrm{~V} 2 \mathrm{amp} £ 3 \cdot 50(54 \mathrm{p}) .25 \mathrm{~V} 1.5 \mathrm{amp} £ 1-45$ (45 p). 18 V 1.5 amp rectified $£ 2.00$ (45 p). 35 V 2 amp 2.5 V 2 amp torold $£ 2.95(54 \mathrm{p}$). 20 V 2.5 amp , $£ 2 \cdot 20$ (54 p). Murata MA401L 40 KHZ rec/send transducers $£ 3.25$ pair.
SMITHS TRANSISTORISED AUDIBLE WARNING DEVICE, 6-12V, 30p
BOARDS SURPLUS. Reed Board with 14 12v Reed SP c/o RLAS $\mathbf{E 1} \cdot 75$. LM 309 K 5v Requiator Panel 65p
NEW LOW COSTMULTMETERS.
NEW LOW COST MULTIMETERS, ${ }^{\text {KRT100, } 1000 \Omega \text {. P.V. } 1 \mathrm{KV} \text { AC/DC., } 50 \mathrm{~mA} \text { DC current, } 0-100 \mathrm{~K} \Omega \text { res. mirror scale, switched }}$ range selector, £4-65.
TAPE HEADS Mono Cassette £1-30. Stereo version £3-00.
PROJECT BOXES, black plastic ABS with lid $75 \times 56 \times 3544$ p; $95 \times 71 \times 35$, 52p $115 \times 95 \times 3660 \mathrm{p}$.
TERMS: cash with order, (or offlcial orders from colleges etc). Postage 30p unless otherwise shown overseas post at cost. VAT inclusive prices. New lllustrated Catalogue now ready. S.A.E. please

Progressive Radio, 31 Cheapside, Liverpool L2 2DY. Tel: 0512360982.

(1.

BRIGHTCASE

Box your 'HYTHE" MARINE BAND RECEIVER (P.W. Jan. \& Feb.) in our BRIGHTCASE BC2 121 X (£27-25 without front panel: add 8% VAT).

Use our Swiftcase SWF 222 (E 16 -95 plus 8\% VAT) for your Burley P.S. (P.W. Nov. 78) Send for catalogue.

WEST HYDE DEVELOPMENTS Ltd.,

 Unit 9, Park St. Ind. Est., Aylesbury, HP21 1 ET.Aylesbury 20441. Telex 83570.

SOLVE your component buying problems with this
 famous Catalogue

- The finest components catalogue yet published.
- 128 A-4-size pages.
- About 2,500 items clearly listed and indexed.
- Profusely illustrated.
- Bargain List sent free.
- At $£ 1 \cdot 25$, incl. p. \& p., the catalogue is a bargain.
Send the coupon below now. HOMERADIO (Components) LTD. Dept. PW . $234-240$ London Road,
Miftham, Surey CR4 ${ }^{2} \mathrm{HD}$

The best things come in little packages?

Are you shopping for Antennas and Receivers?

The JOYSTICK VFA gives you a six amateur band or continuous tuning $(0.5-30 \mathrm{MHz})$ effective ground plane, efficient, substantially harmonic free, space saving antenna. Proven performance, testimonials world-wide bulge in our files!
In use by amateur transmitting and SWL stations world-wide and in Government communication.

JOYSTICK ANTENNAS SYSTEM "A"
 £41.00

200 w . p.e.p. OR for the SWL
SYSTEM "J"'
£47.95
500 w. p.e.p. (Improved ' Q '' on receive)

"'PACKAGE DEALS"'
 COMPLETE RADIO STATIONS FOR ANY LOCATION

All packages include the JOYSTICK VFA (System ' A '') 8 ft feeder, all necessary cables, matching communication headphones. Delivery Securicor our risk. ASSEMBLED IN SECONDS. You SAVE E14.15 on each PACKAGE DEAL!

PACKAGE No. 1
$\mathbf{£ 2 2 2 . 0 0}$
Features R. 300 Rx
£237.45
PACKAGE No. 2
Features FRG7 Rx
£212.45
PACKAGE No. 3
£402.00
PACKAGE No. 4
Our 'Rolls' - RX. FRG 7000

RECEIVERS ONLY

R. $\mathbf{3 0 0}$	$£ 184.50$	FRG7	$£ 199.95$
SRX $\mathbf{3 0}$	$£ 174.95$	FRG 7000	$£ 364.50$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

or write for details, send 9p stamp
 BSAET

 CT10-1LD. (Callers by appointment).
ELEGTROVALDE

FOR A GOOD DEAL BETTER THAN MOST

WE PAY POSTAGE on C.W.O. orders in U.K. over £5.00 list value.
WE GIVE DISCOUNTS on U.K. C.W.O. orders - 5\% for list value over $£ 10.00 ; 10 \%$ for list value over $£ 25.00$.
WE GUARANTEE all goods are brand new, clean and to specification - no seconds, no surplus.
WE GIVE SERVICE to all orders large or small - to help we microfilm orders, computer processing and double check personal supervision.

This month's
 Spacialist
 Matil Ordor Suppliars
 Sines 1951.

ELECTROVALUABLES
Electrovaluables' are our own Overstock should quote 'Electrov
'Orders
'
time at greaty reduced phy price as adve where prices show
and state description and 12% or 8% (professionall V.A.T. MUST BEADDED
 $k 30 / 3$ (dia 24 mm)

 Green or Blue Yellow, Blue 20p ea. $\left.{ }^{83111} 160 \mathrm{~V}\right) 820 \mathrm{pF}(63 \mathrm{~V})$ any $(63 \mathrm{~V}) 100$
 JV23
Grey
20p $5^{\text {ir }} \times 3^{\prime \prime} \times 2^{\prime \prime}$ matrix for Polypropylene Siemans 833063 . 5100 . Veroboard $5^{\prime \prime} \times 3^{\prime \prime} \times 20 \mathrm{p}$ Polyp $100,470,2200$, 4700 , for $\mathbf{E 4}$
 Unisi, Belclere kit 36 way 1^{11} axial lead $.15 / 250$. $39 / 250$. 95 for
 16 way 19 " gold flash \quad B0p High voltage pal flash 24 way $15^{\prime \prime}$ gold flash 15 A 250 V Siemens 832227 nocker switches 15 A 25 FP o. 1 $\mu \mathrm{F} 4 \mathrm{KV}$ KV each $\begin{array}{lll}\text { Rocker } \\ \text { OPST NO } 50 A & 25 p & 0.25 \text { f } \\ \text { polyenter PC Mounting }\end{array}$ $\begin{array}{lll}\text { Ceramic capacitors } \\ 83744840 \mathrm{~V} \cdot 022100 & \text { Siemens } 832234 \\ 0.68 / 250 \mathrm{~V} \text { each }\end{array}$ disc 02,837440 WE ARE NATIONAL DISTRIBUTORS FOR

NASCOM MICROCOMPUTER KITS 50 net for delivery from stock from

+ V.A.T. Also supporting Nascom
Atems
A. Enquiries invited D. 2 MICROPROCESSOR MOTOROLAON KIT mputer- $\mathbf{£ 1 7 5 . 8 7 \text { net }}$ (for the N

Two depots to serve you One North, One South

All communications, orders etc.; to Englefield Green address, Dept. PW3.
ELECTROVALUE LTD

CATALOGUE 9 Yours for the asking -

 and it's FREE Completely revised, up-dated and more attractively presented. 120 pages-semi-conductors, I.Cs, Opto-electronics, Rs, Cs, materials, tools, connectors, etc. etc. And you'll be delighted with our threemonth competitive stabilised price28, ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY TW2O OHB
Telephone Egham 3603. Telex 264475
Northern Branch - 680, BURNAGE LANE,
BURNAGE, MANCHESTER M19 1NA(O61)432. 4945 Shop hours 9-5.30: 1.00 pm Sat.

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ ($+8 \% \mathrm{VAT}$), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

$31 / 2$ digit resolution.
Sharp, bright, easily read LED
display, reading to ± 1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA
($0.0001 \mu \mathrm{~A}$).
Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to $20 \mathrm{M} \Omega$. 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard $10 \mathrm{M} \Omega$ input impedance.

Compare it with an analogue meter!

The PDM 35 's 1% of reading compares with 3\% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of $10 \mathrm{M} \Omega$ is 50 times higher than a $20 \mathrm{k} \Omega /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

Technical specification

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 M Ω input impedance.
AC Volts ($\mathbf{4 0} \mathbf{~ H z - 5 ~ k H z}$)
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts. DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count. Note: Max. resolution 0.1 nA .

Resistance (5 ranges)

Range: 1 n to 20 Mn .
Accuracy of reading: $1.5 \% \pm 1$ count.
Note: Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 1 / 2$ in.
Weight: $61 / 2 \mathrm{oz}$.
Power supply: 9 V battery or
Sinclair AC adaptor
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V 50 Hz power. De-luxe padded carrying wallet. 30 kV high voltage probe.

An unbeatable pedigree

The Sinclair PDM35 comes to you from the same stable as a whole range of electronic world-firsts from custom large-scale IC's and laser-trimmed resistor networks, to programmable pocket calculators and miniature TVs.

Tried, tested, ready to go!

The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ PO for the correct amount (usual 10-day money-back undertaking, of course), and sendit to us.

We'll mail your PDM35 by return! Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England. Regd No: 699483.

[^1]
Catronics
 FIRST with the NEW MODULAR KEYBOARD SYSTEM

Catronics Ltd. are proud to announce the introduction of the World's First Modular Keyboard Kit available to the home constructor!
The PCB is designed to take a maximum of 70 keys but may be assembled with a smaller number of keys for a simpler keyboard.

The board is not dedicated to any specific coding, allowing it to be used for any project whether it requires ASCI. Baudot or any other code. This makes it suitable for many projects including:

E.T.I.-System 68 MPU (54 keys)

RadCom-G3PLX RTTY VDU (36 keys)
Auto morse sender, etc.
The Keyswitches themselves are single pole push-to-make type and require no extra mechanical mounting arrangements.
A legend sheet is provided with each kit enabling the constructor to label the keys to suit individual requirements.

Kit for $\mathbf{7 0}$ station Keyboard $£ 29.00$
Please add 50p for postage.
SPECIAL PRICES for 7400 SERIES TTL

All new, full specification, full Guarantees.
Mostly National and Texas products

14p	7421	31p	7483	78p	74145	f1.24	74177	84 p
14 p	7427	29p	7485	¢1.12	74150	£1.07	74180	92 p
14 p	7428	38p	7486	33p	74153	69 p	74188	£3.40
15 p	7430	18p	7490	36p	74157	72P	74192	f1.38
40p	7432	27p	7492	52p	74161	99	74193	£1.38
18p	7440	18p	7493	39p	74164	£1.12	74195	¢1.03
16p	7442	73p	7496	97p	74165	£1.12	74196	£1.00
22p	7447	$75 p$	74107	35p	74166	f1.60	74221	£1.75
24 p	7473	35p	74121	29p	74170	£2.48	74 HOO	35p
78p	7474	29p	74123	79p	74174	94 p	74H04	44p
17p	7475	46p	74126	61p	74175	94p	74H10	39p

Prices INCLUDE VAT but please add minimum of 30 p for post $\& \mathrm{pkg}$.
Send SAE for FREE PRICE LIST or 45p+large (A4) 18 $\frac{1}{2} p$ SAE atronic's

C) aronico for VALUE \& VARIETY in FREQUENCY COUNTERS

In addition to our popular 250 MHz and 500 MHz counters we have produced a NEW 200MHz COUNTER KIT specially for home constructors.
Our new KF2OO counter, although small,
is a no-compromise design. It offers:
\star A full 8 digit LED display.
\star A frequency range of 10 Hz to 200 MHz .

* An accuracy of 10 Hz at $30 \mathrm{MHz}, 50 \mathrm{~Hz}$ at 150 MHz in normal home environments.
* 5/6 volt operation from batteries or mains PSU.
\star Power consumption of only $1 \mathbf{W}$ maximum
* A crystel oscillator at 5 MHz which doesn't need any special setting up equipment
\star Small size $4^{\prime \prime} \times \mathbf{2}^{\prime \prime} \times \mathbf{1}^{\prime \prime}$
* Uses only 4 i.c.s.
* Assembly time of about 2 hours.
* Fullialustrated assembly instructions.

The KF200 consists of 2 PCB assemblies, one being the complete input and counter unit (Suitable for direct driving an 8 digit common cathode display), the other, the display unit. Both units are available in kit or assembled/tested module form, Prices
(INCLUDING VAT).

Input/Counter Kit \quad £59.00 Display Kit \quad £12.96 Input/Counter Module $\mathbf{E 6 8 . 5 0 \quad \text { Display Module } \quad \text { £16.64 }}$ Add 750 for Post $\&$ P kg

This new Catronics model KF200 complements our DFM5, a $250 \mathrm{MHz}, 7$ DIGIT MAINS/12v HIGH QUALITY Frequency Counter, and the DFM 500 - a REAL 500 MHz - try some of the others actually at this frequency.
Both are absolute value for money and are available now with better than 1 -in- 10^{7} reference oscillators as $/ \mathrm{S}$ models

Special Prices, INCLUDING VAT:

DFM5
DFM 500
£148.50 DFM5/S
£177.12 DFM500/S
DFM500/S
Add $£ 5$ for Insurance and for Securicor Delivery

Leading detector designs now available as kits

Super performance true TR/IB (Transmit Receive/Induction Balance) metais detector using the very latest integrated circuitry. The most depending on conditions: PP3 battery lasts over 50 hours: fully adjustable shaft $\&$ search head. Plus many other refinements. If you are thinking of buying any other detector - phone us first (without obligation) for a frank comparative assessment. Or send S.A.E for instruction sheet which gives more information than space here permits.
'"Shadow', metal detector $£ 29.95$ posi paid 'Shadow'' kit (pre-wound coils) £22.50 post paid Padded headphones $\mathbf{£ 5 . 5 0}$
Send 25p for assembly manual refundable against kit purchase
Building your own detector? Then we can supply the hardware 'shell'. Including fully adjustable shaft with handle. Special clips to mount your own contro housing (any box is suitable) and search head Suitable for any type of detector (BFO-TR-IB-PI, etc.) including those published in this and other magazines. As used for our own "Shadow" detector. Supplied undrilled as a kit with full instructions. Detector 'Shell' kit $£ 7.50$ post paid
SPECIAL OFFER: To every purchaser of our "Shell" kit we are giving away a copy of our publication 'Metal detector design notes' which gives much useful information on many different types of metal detectors and detection techniques, including TR, IB, BFO effect, Off resonance, Coupled field Faraday shields, Push button Harmonic mixing, Hall ether legal requirements, how to obtain Home Office approval, circuits (including commercial designs) too numerous to list. A wealth of priceless information much of which has not been published before. QUALITY NOTE: All Altek detectors use high epoxy glass/roller tinned boards. Some manufacturers still use plain copper which quickly corrodes in damp weather. All Altek detectors are Home Office approved. Phone in your credit card number now (24 hour answering).

Mail Order only pleaseCallers by appointment

Altelz instruments
Dept. PA 1 Green Lane Walton-on-Thames Surrey

A good all round low cost metal detector $200 \mathrm{~mm}\left(8^{\prime \prime}\right)$ annular search head gives wide scan with easy pinpointing. Simple high ef ficiency B.F.O. circuitry draws $\triangleleft 5 \mathrm{~mA}$, in expensive battery gives over 100 hours search time Ferrous/non ferrous discrimination possible. Extra lightweight $300 \mathrm{gms}(10.5$ ozs) with battery-eliminates arm fatigue, even for a child. The lowest priced metal detector.
ALT3-f12.95 + fit towards $p+p$.
Build it yourself. Very detailed manual-ideal for a beginner as a first project (must be able to solder). Pre-wound search loop and tuning coil, absolutely everything supplied except tools and barts bought separately might cost you more, certainly it'd take more time. Makes a great present for a younger brother, etc. (buy it for him use it yourselfil).

ALT3 (kit)- $\mathbf{£ 9 . 9 5}+\mathbf{f 1}$ towards $\mathbf{p}+\mathbf{p}$.
Accessories for ALT3
Accessories for ALT3
Stethoscope adaptor 85 p post Steth
Padded headphones $\mathbf{£ 4} 90$ post paid Send 25p for Assembly Manual refundable against kit purchase.

Personal Shoppers EDGWARE ROAD LONDDN W2 Tet: 01-723 8432. 9.30am-5.30pm. Haff day Thursday. ACTON: Mail Order only. No callers GDODS MOT DESPATCHED OUTSIDE UK

YOURSELF FOR A BETTER JOB "m

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a lowcost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

Aldermaston College
 Dept. TPW 24, Reading RG7 4PF

also at our London Advisory Office, 4 Fore Street Avenue, London also at our London Advisor
EC2Y 9DT. Tel. 628 2721.

NAME (Block Capitals)
ADDRESS

Postcode...............
Other subjects of interest... Age.
Accredited by C.A.C.C. Member of A.B.C.C.
hgMe of british intitute of encineening technology

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF. Tel: 20767

400mW ZENERS Unmarked Good $3 \cdot 6,6 \cdot 8,10,11,12,13,16,18,24,30,33,36 \mathrm{v}$. All at 10 for $\mathbf{4 0 p}$
ERIE RED CAP - 01 uf $\mathbf{3 0 0 v . W}$. SUB-MINIATURE CAPACITORS @ 5 peach
BD1874 Amp NPN PLASTIC POWER NPN TRANSISTORS © 5 for $£ 1$
MURATA 10.7 MHz CERAMIC FILTERS @ 27 p , VERNITRON FM4
FILTER 0 50p, MURATA 455 KHz BFB

DAU TRIMMERS 2 to 9 pf @ 10p, 6 to 45 pf @ 10p, 0 to 125 pf @ 12p, 8 to 140 pf @
15p, TETFER VHF TRIMMERS 10 pf @ 18p. 15p, TETFER VHF TRIMMERS 1Opf @ 18p.
VHF POWER TRANSISTORS unmarked Good 2 N 3375 @ £1, 2 N 3866 @ 3 for 75p, $2 N 3553$ @ 3 for $£ 1 \cdot 10$.
ELECTROLYTIC CAPACITORS 1000uf 100v.w. @ 50p, $2200 \mathrm{uf} 100 \mathrm{v.w}$. @ 60p,
$3300 \mathrm{uf} 64 \mathrm{v} . \mathrm{W}$. © 60p, $3300 \mathrm{uf} 40 \mathrm{v.w}$. © 50 p .
HC6U CRYSTALS $38 \mathrm{MHz}, 40 \mathrm{MHz}, 44.3 \mathrm{MHz}, 45.9 \mathrm{MHz}, 46.5 \mathrm{MHz}, 46.7 \mathrm{MHz}$ 3 PIN PLUG AND SOCKET like
10 ASSORTED PUSH BUTTON BANKS less knobs for $£ 1.30$.
SUB-MINIATURE TANTALUM $4.7 \mathrm{uf} 10 \mathrm{v} . \mathrm{w}$., (1 5p, 6 for 26 p .
502 Watt ZENERS assorted untested @ 57p.
DISC CERAMICS . 1 uf $50 \mathrm{v} . \mathrm{w}$, @ 20 p doz, 1 uf $18 \mathrm{v.w}$. @ 25 p doz.
100 MINIATURE DIODES CV 9637 pre-formed leads
100 MINIATURE DIODES CV 9637 pre-formed leads @ 57p.
VHF FETS 40673T @ 33p, E304 @ 25p, J310 © 20p, MFE 131 @ 60p, BF 256 @ 25p,
MINIATURE BUTTERFLY PRE-SET VARIABLE CAPACITORS spindles easily extended $25 \times 25 \mathrm{pf}$ @ $50 \mathrm{p}, 38 \times 38 \mathrm{pf}$ @ $60 \mathrm{p}, 38 \times 38 \mathrm{pf}$ Wide Spaced $\mathbb{6}$ 65p.
KO VARI-CAP DIODES LIKE BA 102
50 VARI-CAP DIODES LIKE BA 102 untested © 57 p .
$200 \frac{1}{4}, \frac{1}{1}$ Watt RESISTORS assorted for $75 p$.
MULLARD VARIABLE CAPACITORS Solid Dielectric $195+80 \mathrm{pf}$ @ 40p.
30 ASSORTED $10 X A J$ CRYSTALS © $£ 1 \cdot 10,20$ FT 243 CRYSTALS assorted @
f1.50, 20 FT 241 ACRYSTALS £1.50, 20 FT 241A CRYSTALS assorted © $£ 1.10$.
$5010 \times$ CRYSTALS
TRANSISTORS BC 548 (i10p. 6 for 50p. BC 549 @10p, 6 for $50 p$.
PLASTICTRIACS 400 PIV 6 Amp @ 60p each.
MCMURDO 8 PIN PLUGS @ 20p, 8 PIN SOCKETS @ 20p, COVERS © 15p
600MHZ FREQUENCY 8 DIGIT COUNTERS HFC 600 @ $£ 115$.
2 GHz STRIPLINE NPN TRANSISTORS @ $f 1$ each.
100uf 100v.w. WIRE ENDED ELECTROLYTICS 10p, 5 for 35p
MC 3340 ELECTRONIC ATTENUATORI.C. with data © 50p.
1 uf 25v.w. ELECTROLYTICS at 6 for 26 p .
SOPHOR-IN FEED THRU's 6.8pf 100LINGTONS assorted untested @ $£ 1$.
MULLARD T PACK BOOM 6 .8pf, 1000 pf all 20p doz.
CRYSTALS $10 \times 8010 \mathrm{KHz}$ (10 p , $10 \times \mathrm{AJ} 7010 \mathrm{KHz}$ @ 30 p 25p
VARIABLE CAPACITORS $25+25+25 \mathrm{pf} \mathrm{I}^{\prime \prime}$ " Spindle direct drive © 75p
ELECTRET MICROPHONE INSERTS with FET Pre-amp (i EI. 85.
Please add 20p for post and packing, unless otherwise stated, on U.K. orders under $£ 2$.
Overseas post at cost.
SINCLAIR PRODUCTS microvision tv uk
model $£ 89.95$. PDM35 $£ 27.25$. mains
$\begin{aligned} & \text { adaptor £3.24. case £3.25. DM350 } \\ & \text { £67.80, DM450 £96.50. DM } 235 \text { £49.45. }\end{aligned}$
$\begin{aligned} & £ 67 \cdot 80 \text {, DM450 } £ 96 \cdot 50 \text {, DM } 235 £ 49.45 \text {. } \\ & \text { rechargeable batts } £ 7 \cdot 50 \text {. mains adaptor } \\ & £ 3.70 \text {. enterprise prog calculator } £ 21.95 \text {. }\end{aligned}$
cambridge prog calculator $f 13.13$. prog.
library $£ 3.45$. mains adaptor $£ 3.45$.
COMPONENTS send s.a.e. for fuil list. 1 lb
$\begin{aligned} & \mathrm{FeCl} £ 1.05 \text {. dalo pen } 73 \mathrm{p} \text {. } 60 \mathrm{sq} \text {. ins. pcb } \\ & 55 \mathrm{p} \text {. laminate cutter } 75 \text { p. smail drill } 20 \mathrm{p} \text {. }\end{aligned}$
55 p . laminate cutter 75 p . smatl drill 20 p .
$\begin{aligned} & \text { zn } 414 \text { £ } £ 1.05 \text {. pcb and extra parts for radio } \\ & \text { £3.85. case } f 1 \text {. } 1 N 4148 \text {. }\end{aligned}$
$\begin{array}{llll}\text { f3.85. case } & \mathrm{f1} 1 . & 1 \mathrm{~N} 4148 & 1.4 \mathrm{p} .1 \mathrm{~N} 4002 \\ 2.9 p . & 723 & 29 \mathrm{p} . & 741 \quad 15 \mathrm{p}\end{array}$
$\begin{aligned} & 2 \cdot 9 \mathrm{p} .72329 \mathrm{p} .74115 \mathrm{p} \text {. NE555 23p. } \\ & \text { bc } 182 \mathrm{~b} \text {, bc } 183 \mathrm{~b} \text {, bc } 184 \mathrm{~b} \text {, bc2 } 12 \mathrm{~b} \text {, bc213b. }\end{aligned}$
$\begin{aligned} & \text { bc182b, bc183b, bc } 184 \mathrm{~b}, \mathrm{bc} 2 \uparrow 2 \mathrm{~b}, \mathrm{bc} 213 \mathrm{~b} \text {. } \\ & \mathrm{bc} 214 \mathrm{c} 4.5 \mathrm{p} \text {. plastic equivs bc } 107 \text { bc } 109\end{aligned}$

> 0.8 p for $50+$ of one value. electrolytics 16 v $.5 / 1 / 2 / 5 / 70 / 22 \mathrm{mf} 5 \mathrm{p}, 100 \mathrm{mf} 6 \mathrm{p}, 1000 \mathrm{mf}$ $10 \mathrm{p}, 1500 \mathrm{mf}$ (PC) 3.4 p . 10 v 2 mf 1.7 p , $\begin{aligned} & .015,068 .-1 \mathrm{mf} 1 \frac{1}{2} \mathrm{p} \text {. ceramics } 50 \mathrm{~V} \text { E } 622 \mathrm{pf} \\ & .0147\end{aligned}$ $\begin{aligned} & \text { to } 47 \mathrm{n} 2 \mathrm{p} \text {. polystyrenes } 63 \mathrm{vE} 1210 \mathrm{pf} \text { to } 10 \mathrm{n} \\ & \text { to }\end{aligned}$ 3p. zeners 400 mW E24 2 v 7 to 33 v 7 p . TV GAMES send s.a.e. for data. AY-3-8500 + kit $£ 8.95$. AY-3-8600 + kit £ $12 \cdot 50$. Wipe $\begin{aligned} & \text { out chip } \\ & £ 6.90 \text { kit } £ 4 \text { kit } £ 17.90 \text {. Stunt cycle chip }\end{aligned}$ $£ 6.90$, kit $£ 4$. Rifle kit $£ 4-95$. Road race chip TRANSFORMERS 6-0-6v 100 ma 74 p ,
> $\begin{aligned} & 1 \frac{1}{2} a \text { £2.35. } 6 \cdot 3 \mathrm{v} \quad 1 \frac{1}{2} a \mathrm{f} 1 \cdot 89.9-0-9 \mathrm{v} 75 \mathrm{ma} \\ & 74 \mathrm{p}, 1 \mathrm{a} £ 2,2 \mathrm{a} \text { f2.60. } 12-0-12 \mathrm{v} 100 \mathrm{ma}\end{aligned}$ 90p. 1 a $£ 2.49$
> IC AUDIO AMPS with peb JC12 6W £1.60.JC20 £2.95. JC40 20W £2.95. BATTERY ELIMINATORS 3 -way type $\begin{aligned} & 6 / 7 \frac{1}{2} / 9 \mathrm{v} 300 \mathrm{ma} £ 2.95 .100 \mathrm{ma} \text { radio type } \\ & \text { with press-studs } 9 \mathrm{v} £ 3.35,9+9 \mathrm{f} 4.50\end{aligned}$ stabilized type $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{v} 400 \mathrm{ma}$ £5-30. 12 v car convertors $3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 v 800 \mathrm{ma} £ 2.50$. BATTERY ELIMINATOR KITS send s.a.e. for data. 100 ma radio types with press-studs $\begin{aligned} & 4 \frac{1}{2} v f 1 \cdot 40,6 v f 4-40,9 v £ f .40,4 \frac{1}{2}+4 \frac{1}{2} v \\ & £ 1.80,6+6 v f 1.80,9+9 v £ 1.80,\end{aligned}$ $\begin{aligned} & \text { 8-way types } 3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 v 100 \text {. } 6+6 \mathrm{ftab} \text { ized }\end{aligned}$ $\begin{aligned} & 8 \text {-way types } 3 / 4 \frac{1}{2} / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 v 100 \mathrm{ma} \\ & \text { £2.80, AAmp £6.40. stabilized power kits } 2-\end{aligned}$ 18 v 100 ma f $£ 6.60,2-30 \mathrm{v} 1 \mathrm{~A} £ 6.95 .2-30 \mathrm{v}$ $\begin{aligned} & 2 \mathrm{a} \text { f10.95. } 12 \mathrm{v} \text { car converter } 6 / 7 \frac{1}{2} / 9 \mathrm{v} 1 \mathrm{a} \\ & \mathrm{f} 1.35 .9 \mathrm{v}\end{aligned}$ f1.35. $\begin{aligned} & \text { T-DEC AND CSC BREADBOARDS s-dec } \\ & \text { £3.17. t-dec } £ 4.02 \text {. }\end{aligned}$ $\begin{aligned} & £ 3.17 \text {, t-dec } £ 4 \cdot 02 \text {. u-deca } £ 4.40 \text {, u-decb } \\ & £ 6.73 .16 \text { dil adaptor } £ 2.14 \text { exp } 300 \text { f } 6.21\end{aligned}$
$\begin{aligned} & \exp 350 £ 3.40 \text {. exp650 } £ 3.89 . \exp 4 \mathrm{~b} £ 2.48 \text {. } \\ & \text { BI-PAK AUDIO MODULES S450 } £ 23.51 \text {. }\end{aligned}$
$\begin{aligned} & \text { BI-PAK AUDIO MODULES S450 } £ 23.51 \text {. } \\ & \text { AL60 } £ 4.86 \text {. pa } 100 ~ £ 15.58 \text {. spm } 80 £ 4.47 \text {. }\end{aligned}$
bmt $80 £ 5 \cdot 95$. stereo 30 £ 20.12 .
SWANLEY ELECTRONICS (Dapt. PW)
32 Goldsel Rd., Swanley, Kent.

HAVE YOU DONE IT LATELY!

f Fit a

new tape head
and transform the performance of your tape recerder

20p P\&P with order
Full Catalog ue 25p

812-01 mono cass. playbk. £1.60 824-01 stereo cass. playbk. £2.80
A28-05 stereo 8 tk cartridge $£ 1.80$ E12-09 stereo/mono cass. erase $£ 1.80$
5/7 Church St, Crewkerne, Som. Tet, \{0460] 74321

Edge connector for external keyboard with up to 32 keys

The MK 14 is a complete microcomputer with a keyboard, a display, 8×512-byte preprogrammed PROMs, and a 256-byte RAM programmable through the keyboard. As such the MK 14 can handle dozens of user-written programs through the hexadecimal keyboard.
Yet in kit form, the MK 14 costs only $£_{3} 39.95$ $(+£ 3.20 \mathrm{VAT}$, and $\mathrm{p} \& \mathrm{p})$.

More memory - and peripherals!

Optional extras include:

1. Extra RAM - 256 bytes.
2. 16-line RAM I/O device (allowed for on the PCB) giving further 128 bytes of RAM.
3. Low-cost cassette interface module-which means you can use ordinary tape cassettes, recorder for storage of data and programs.
4. Revised monitor, to get the most from the cassette interface module. It consists of 2 replacement PROMs, pre-programmed with sub-routines for the interface, offset calculations and single step, and singleoperation data entry.
5. PROM programmer and blank PROMs to set up your own pre-programmed dedicated applications.
All are available now to owners of MK14.

A valuable tool-and a training aid

As a computer, it handles operations of all types-from complex games to digital alarm clock functioning, from basic maths to a pulse delay chain. Programs are in the Manual, together with instructions for creating your own genuinely valuable programs. And, of course, it's a superb education and training aid providing an ideal introduction to computer technology.

SPECIFICATIONS

-Hexadecimal keyboard 8 -digit, 7 -segment LED display 8×512 PROM, containing monitor program and interface instructions -256 bytes of RAM 4 MHz crystal -5 V regulator \bullet Single 8 V power supply \bullet Space available for extra 256 -byte RAM and 16 port I/O• Edge connector access to all data lines and I/O ports

Free Manual

Every MK 14 kit includes a Manual which deals with procedures from soldering techniques to interfacing with complex external equipment. It includes 20 sample programs including math routines (square root, etc), digital alarm clock, single-step, music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly

The MK 14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

How to get your MK 14

Getting your MK 14 kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK 14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade, Cambridge, Cambs., CB2 1SN. Telephone: Cambridge (0223) 311488

[^2]
TOTAL AMPLIFICAIION FROM CRIMSON ELEKTRIK

_ WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

CPR1-THE ADVAN
The best pre-nmplifier in the U.K. The suderiority of the CPR 1 is probably in the dlsc stage. The overload margln is a superb $40 d B$, thls together with the high slewing rate ensures clean top, even with high output cartridges rackig
heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.l.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 mV , distortion $<005 \%$ at 30 dB overload 200 kHz .

Following this stage is the flat gainlbalance stage to bring tape, tuner, ete. up to power amp. signal fevels. Signal to noise ration 858 db ; slew-rate $3 \mathrm{~V} / \mathrm{uS}$;
T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<.008 \%$ at any level. F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 8 \mathrm{C} \times 20 \mathrm{~mm}$. Supplv to be ± 15 volts.
MC 1-PRE-PRE-AMPLIFIER
Suitable for nearly all moving-coil cartridges. Sensitivity 10/170uV switchable on the p.e.b. This module brings signals from the now popular fow output
moving-coll cartridges up to 3.5 mV (typical signal required by most pre-amp disc inputs). Can be powered from a 9V battery or from our REG 1 regulator board.

REG 1-POWER SUPPLY

The regulator module, REG 1 provides $15-0-15 v$ to power the CPR 1 and MC 9. it can be used with any of our power amp supplies or our small transformer TR 6. The power amp kit wili accommodate it.

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios. educationai and government establishinents, etc. 'who have been usingCRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is avaitable in five types, they all have the same specisleation: 1 . H . $\mathrm{D} 5 \mathrm{~V} / \mathrm{uS}$; signal to nolse ratio 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz}$, -3 dB ; stability unconditional; protection-drives any load safely; sensitivity 775 mV (250 mV or 100 mV on request); size $120 \times 80 \times$ 25 mm .

POWER SUPPLIES

We produce suitable power supplies which use our superb TOROIDAL transiormers only 50 mm high with a $120-240$ primary and single bolt fixing (includes capacitors/bridge rectifier).

POWER AMPLIFIER KIT

The kit includes all metalwork, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styled and its quality is consistent with that of our other
products. Comprehensive instructions and full back-up service enables a novice to build it with confidence in a few hours.

POWER AMPLIFIER MODULES $\begin{array}{ll}\text { CE } 60860 \text { W/8 ohms } 35-0-35 \mathrm{v} & \text { f } 16.30 \\ \text { CE } 1004100 \mathrm{~W} / 4 \text { ohms } 35-0-35 \mathrm{v} & \mathrm{E} 19.22\end{array}$
 CE $1008100 \mathrm{~V} / / 8$ ohms $45-0-45 \mathrm{y} \quad$ E23-22 PRE.AMPS: CE $1704170 \mathrm{~W} / 4$ ohms $45-0.45 \mathrm{v}$ E29.22 These are avail $\begin{array}{lll}\text { CE } 1708170 \mathrm{~W} / 8 \text { ohms } 60-0-60 \mathrm{v} & \mathrm{fz31} \cdot 90 & \text { able in two ver } \\ \text { sions-one uses }\end{array}$ TOROIDAL POWER SUPPLIES sians standard compoCPSI for $2 \times$ CE 608 or $1 \times$ CE $1004 \times 14 \cdot 47$ standard nents, and the CE 608 for $2 \times$ CE 1004 or $2 / 4 \times$
CPS for $2 \times$ CE 100 or 1 .
 CPS4 for $1 \times$ CE 1008.
CPS5 for $1 \times$ CE 1708
CPS6 for $2 \times$ CE 1704 or $2 \times$ CE
CE 1708 INIKO
HEATSINKS Light duty, $50 \mathrm{~mm}, 2^{\circ} \mathrm{C} / \mathrm{W} \ldots .$.
Medium power. 100 mm , $1.4^{\circ} \mathrm{C} / \mathrm{W}$. Fan, Bomin, state 120 or $240 \mathrm{c} / \mathrm{W}$ Fan, 80 min , state 120 or 240 v
Fan mounted on two dritied Fan mounted on two dritled
100 mm heatsinks, $2 \times .4^{\circ} \mathrm{C} / \mathrm{W}$ $65^{\circ} \mathrm{C}$ max. with two 170 W THERAMAL CUT-OUT, $70^{\circ} \mathrm{C}$.

Other (the S) uses
MO
where nesistors
necessary and tantalum capacitors. CPR1 829.49 $21 \cdot 30$ £2.20
ع2. 85 POWER SUPPIY REGI 65.75 RRIDGE
ORIVER,
ODI Obtain up to 340 W £29. 16 using 2 amps 170 W $\begin{aligned} \text { £29 } 16 & \text { amps and this } \\ \kappa 190 & \text { module BDt } £ 5 \cdot 40\end{aligned}$

CRIMSON ELEKTRIK
1A STAMFORD STREET, LEICESTER. LEI GNL Tel ; (0533) 537727

All prices shown are UK only and include VAT and post. COD 90p extra, \&100 limit. Export is no problem, please write for specific quote. Send farge SAE or 3 International Reply Coupons for detailed information.

Distributor:-
MINIC TELEPRODUKTER 80X 12035: S-750 12 UPPSALA 12, SWEDEN'"

PAT HAWKER G3VA

17th Edition

A Guide to Amateur Radio will assist the newcomer to learn about the hobby and help him to obtain a transmitting licence. It includes information on the new RAE and there is a selection of 'sample' questions. It also provides a valuable reference source for information on amateur receivers and transmitters as well as providing details of home-built equipment and new data on recent trends in equipment and simple multi-band aerials. The whole range of amateur equipment is covered - test gear, fixed, mobile and portable stations and constructional details are given on h.f. receivers and transmitters. This new edition will be indispensable to all who want to know about amateur radio and forms a valuable introduction to a hobby which knows no boundaries.

0408003855
£4.95 approx. US $\$ 11.25$ approx.
略 NEWNES-BUTTERWORTHS Borough Green, Sevenoaks, Kent TN15 8PH

- T VALVE MAIL ORDER CO. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 6ED
 SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS			
${ }^{15} 50.237$	${ }_{\text {Ass27 }}$		
0.:50	2.7.700		
	${ }_{\text {AUA }}$		
象			
180.80			
0.75			
50	${ }^{\text {dactila }}$		
45		${ }^{\text {cis3 }}$	159
0.45			
:35	$\xrightarrow{B C}$		
		- ${ }^{\text {ccris }}$	
2,7	${ }_{\text {BCL }}$		

BF194	0.09**
BF195	$0.09{ }^{\circ}$
BF196	0.10^{*}
BF197	0.12*
BF200	0.27
BF224	$0 \cdot 20^{\circ}$
BF244	$0.28{ }^{\circ}$
BF257	0.24
BF258	0.26
BF259	0.32
BF336	$0 \cdot 20^{\circ}$
BF337	0.30*
BF338	0.31*
BFS21	3.96
BFS28	2.23
BFS61	$0.20{ }^{\circ}$
BFS98	0.20*
BFW 10	0.65
EFW11	0.65
BFX84	0.22
BFX85	0.23
BFX87	0.21
BFX88	0.21
BFY50	0.26
BFY51	0.26
BFY52	0.26
BFY64	0.26
BFY90	1.25
BSX19	0.21
BSX20	0.20
BSX21	$0 \cdot 20$
BT106	1.25
BTY79/4	O0R
	3.19
BU205	$1.75{ }^{\circ}$
BU206	2.25*
BU208	$2.00{ }^{*}$
BY100	0.45
8 Y126	0.14
BY127	0.15

BZX61	0.18
Series	0.13
CR	
CRS/14	0.60
CRS	
CRS/340	0.75
CRS/360	0.90
GEX66	
GEX541	1.75
GJ3M	0.75
GJ5M	0.
GM037	,
KS 100A	.45*
MJE340	0.80
MJE370	1-17
MJE371	1
MJE520	0.52
MJE521	0.55
MJE295	1.25
MJE305	50.75
MPF 102	. 30
MPF103	-30
MPF 104	0^{+}
MPF 1050	- 3
MPSAO	-24*
MPSA560	26*
	6°
5	-
E555	
NKT401	2.00
NKT403	1.73
NKT40	
OA5	0.95
OA7	0.55
10	0.6

OA70	0.30
OA79	0.30
OA81	0.30
OA85	0.30
OA90	0.08
OA91	0.08
OA95	0.08
OA200	0.09
OA202	0.09
OA211	1.00
OAZ200	1.00
OAZ201	1.00
OAZ206	1.00
OAZ207	1.00
OC16	2.90
OC20	$2 \cdot 50$
OC22	2.50
0 O 23	2.75
OC24	3.00
OC25,	0.90
OC26	0.90
OC28	2.00
OC29	2.00
OC35	1.50
OC36	1.50
0 C 41	0.80
0 C 42	0.75
0 O 43	2.25
0 O 44	0.60
0 C 45	0.55
$0 \mathrm{OC71}$	0.55
OC72	0.55
$0 \mathrm{C73}$	0.70
$0 \mathrm{C74}$	0.65
0 O 75	0.65
0 O76	0.55
OC77	1.20
$0 \mathrm{C81}$	0.65
$0 \mathrm{C812}$	1.20

VALVES

		$\begin{aligned} & \text { EL32 } \\ & \text { EL33 } \end{aligned}$	$\begin{aligned} & 1.50^{*} \\ & 3.50^{\circ} \end{aligned}$	N78 OA2	9.00*
AZ31 1.10	ECC83t 0.55*	EL34		$082 \dagger$	0.60
CBL31 1.50	ECC84 ${ }^{\text {c }}$ 0.60*	(Thom)	1.60	$0 \mathrm{OC3} \dagger$	0.75
CL33 2.00*	ECC85 $\dagger 0.55^{*}$	EL34	Mullard)	003 ${ }^{\text {¢ }}$	0.75
CY31 1.00"	ECC881 0.75°		2.24	024	1.60
DAF91+ 0.40°	ECC91t 0.55*	EL41	1.25*	PC86 ${ }^{+}$	$0.85{ }^{\circ}$
DAF96 1.00°	ECC189 1.66*	EL42	$1.75{ }^{*}$	PC88 \dagger	$0.85{ }^{\circ}$
DF91t $0.40{ }^{\circ}$	ECF80¢ 0.60°	EL81	1.10*	PC97	1.08*
${ }^{\text {DF96 }} 1.00 *$	ECF82+ 0.70 ${ }^{\circ}$	EL84 \dagger	$0.45{ }^{\circ}$	PC900t	1.00*
DK91 1.05	${ }_{\text {ECH35 }}{ }_{\text {ECH42 }} \mathbf{2 . 0 0}{ }^{\circ}$	EL86 \dagger	$0.75{ }^{\circ}$	PCC84t	$0.50{ }^{\circ}$
DK92 1.25' DK96 1.10°	ECH42 1.15°	EL91	$4.35{ }^{\circ}$	PCC88	$0.65{ }^{\circ}$
$\begin{array}{ll}\text { DK96 } & 1.10^{\circ} \\ \text { DL. } & \\ 0.755^{\circ}\end{array}$	ECH817 ECH83 $\mathbf{0 . 5 5}$ $\mathbf{1}$ 1.25	EL95 $\mathrm{EL360}$	0.80 2.75	PCC89 ${ }^{\text {P }}$	$1.05{ }^{\text {c }}$
DL94 1.20	ECH84† 0.85°	EM80	1.10	PCC189	+1.00*
OL96 1.10*	ECL801 0.60°	EM81	1.00	PCFB2	0.96*
DY86/7+0.55*	ECL821 0.60^{*}	EM84	1.00*		
DY802 0.80*	ECL83 1.50°	EM85	1.25**	PCF86t	0.75°
EB8CCt 1.00	ECL86† 0.85°	EM87	1.50°		1.15*
EABC800.55 ${ }^{\circ}$		EN911	2.24**	$\begin{aligned} & \text { PCF200t } \\ & \text { PCF201t } \end{aligned}$	$1.15{ }^{\circ}$
EAC91 ${ }^{\mathbf{0} \cdot \mathbf{5 0}}$	$\begin{aligned} & \text { EF37At } 2.50^{\circ} \\ & \text { EF39t } 1.60^{*} \end{aligned}$	EY51t	0.750	PCF201t	+1.60*
EAF80 1 1.75*	EF40 1.15*	EZ40	1.25*	PCF802	0.88*
EB41 2.00*	EF41 1.20*	EZ41	1.25*	PCF805	1.44*
EB91t 0.40*	EF42 2.00*	E280 \dagger	$0.50{ }^{\circ}$	PCF806	1.44*
EBC33 1.75°	EF50t 0.60*	EZ819	$0.50{ }^{\circ}$	PCF808	1.44**
EBC41 1.25*	EF80† 0.50 ${ }^{\circ}$	EZ901	0.60*	PCL821	0.80*
EBC81 1.10°	EF83 1.75°	GZ32	1.25*	PCL83t	0.92**
EBC90 0.75*	EF85 ${ }^{\text {c }}$ 0.50'	GZ33	4.00°	PCL84 \dagger	$0.75{ }^{\circ}$
ERF80 0.50	EF86t 0.60*	GZ344 \dagger	1.52*	PCL85t	0.96*
E8F83 E8F89 1.25* $0.45 * *$		K 161 $\mathrm{KT66}$	3.50**	${ }^{\text {PCLL86t }}$	0.85**
EBL31 ${ }^{\text {2.50* }}$	EF92t $0.7{ }^{\circ}$	K166 $\mathrm{KTB8}$	5.55*	PCL805	85t.
ECC40 1.25*	EF98 1-25*	KTW61	$1.75{ }^{\circ}$	PD500	$3 \cdot 60^{*}$
ECC81 ${ }^{\text {¢ }} 0.50^{*}$	EF1831 0.70°	KTW62	1.75*	PFL200	1.12*
ECCB2 ${ }^{\text {¢ }} 0.47^{\circ}$	EF184 ${ }^{\mathbf{0}} \mathbf{0 . 7 0}$	KTW63	1.75*	PL36t	1.12*

INTEGRATED CIRCUITS

ARTED						$\begin{aligned} & 7454 \\ & 7460 \end{aligned}$	0.18 0.18
7400	0.16	7412	0.26	7432	0.30	7470 7472	0.35 0.33
7401	0.16	7413	0.32	7433	0.36	7473	0.36
7402	0.16	7416	0.32	7437	0.32	7474	0.40
7403	0.16	7417	0.32	7438	0.32	7475	0.54
7404	0.17	7420	0.17	7440	0.18	7476	0.40
7405	0.16	7422	0.20	7441AN	0.85	7480	0.55
7406	0.40	7423	0.32	7442	0.72	7482	0.75
7407	0.40	7425	0.30	7447AN	1.90	7483	0.90
7408	0.20	7427	0.30	7450	0.18	7484	1.00
7409	0.20	7428	0.43	7451	0.18	7486	0.35
7410	0.16	7430	0.17	7453	0.18	7490	0.52

7491	0.80	74118	1.00	74144	2.50	74173	1.40	74196	$1 \cdot 20$
7492	0.60	74119	1.50	74145	0.90	74174	1.50	74197	$1-10$
7493	$0 \cdot 60$	74120	0.83	74147	2.00	74175	0.90	74198	2.25
7494	0.80	74121	0.40	74148	1.75	74176	1.20	74199	2.25
7495	0.72	74122	0.60	74150	1.60	74178	1.25	76013N1.75*	
7496	0.80	74123	1.00	74151	0.85	74179	1.25	LM309K 1.50 TAA570 2.30*	
7497	3.00	74125	0.55	74154	1.75	74180	1.15		
74100	1.50	74126	0.55	74155	0.85	74190	1.50	TAA630	
74107	0.45	74128	0.60 0.70	74156	0.85	74191	1.50		50°
74109	0.70	74136	0.70 0.55	74157	0.75	74192	$1 \cdot 35$	TAA700	3.91
74110	0.50	74141	0.80	74159	$2 \cdot 10$	74193	1-35		1.84*
74111	0.86	74142	2.30	74170	2.30	74194	1.25	TBA520	
74116	1.75	74143	2.50	74172	4.40	74195	1.00	tBas20	$2.30{ }^{-}$

\section*{TBA530 1.98
 | TBA920 | $2 \cdot$ |
| :---: | :---: |
| T8A9200 | 2.9 |
| TBA9900 | 2.9 |
| TCA2700 | - 2.98 |
| TCA760A | A 1 |
| | |
| Socke | ets |
| 8 PIN | 0.15 |
| 14 PIN | 0.15 |
| 16 PIN | 0.17 |

DISCOUNT SPEAKERS

imp 8 or 15 as app. Gưarantees: FANELIFETIME OTHERS 1 year ALL PRICES INC. VAT
Prices correct at 7.12.78

$5^{\prime \prime}$ FANE 501 Mid or Fuli range
$8^{\prime \prime}$ A.F. Model 80 Dual Cone $8^{\prime \prime}$ A.F. Model 80 Dual Cone
$8^{\prime \prime}$ A.F. Model 83 Dual Cone FANE 8" 808T Dual Cone WH'FEDALELTON $3 \times P$ kit Pr.
$10^{\prime \prime}$ DENTON $2 \times \mathrm{F}$ KIT Pair 10" DENTON $2 \times P$ KIT Pair
10^{n} GLENDALE $3 \times \mathrm{KIT}$ A.F. FRI $8^{\prime \prime}$ SPKR KIT 8 FANE MODE ONE KIT
10^{n} ELAC Model 10 RM $10-15 \mathrm{w}$

CABINETS (TEAK VENEERED)

$20^{\prime \prime} \times 11 \frac{1}{2 \prime}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime}$ Suitable for Mode 1 or FRI Kits and GROUP/DISCO TYPES
GROUP/DISCD TYPES 12" TTTAN T12/45R
12" TITAN T1260R $12^{\prime \prime}$ TITAN T12/100A 100 w
$12^{\prime \prime}$ CELESTION G12M $12^{\prime \prime}$ CELESTION G12H 30 w
$12^{\prime \prime}$ CELESTION G $12 / 5050 \mathrm{w}$ 12^{n} GOODMANS 12 PD $12^{\prime \prime}$ GOODMANS 12 PG
$12^{\prime \prime}$ FANE 'SPECIALIST' P.A. 80
 " FAN̈NE CRESC̈ENDO GUITAR 8OB
$12^{\prime \prime}$ FANE CRIESCENOO8O 80LT
12 A ${ }^{12 L} 12$ BASS $15^{\prime \prime}$ TITAN T15/60 60w
15^{n} TITAN T15/70 70 w 15^{n} TITAN T15/100 100w $15^{\prime \prime}$ FANE 'SPECIALIST' BASS 85
$15^{\prime \prime}$ BASS 100 $15^{\prime \prime}$ GÖODMANS゙ 15P $\begin{array}{ll}15^{n} & \text { FANE CRESCENDO/15 } \\ 15^{\prime \prime} & , \\ 15^{\prime \prime} & . \\ 8 A S S\end{array}$ $15 / 100 \mathrm{LT}$
$15 / 160160 \mathrm{w}$ 18^{n} TITAN T18/íOO 100 w 18^{n} GOODMANS $18 P$
$18^{\prime \prime}$ CELESTION G18C 18^{n} FANE CRESCENDO 18A
$18^{n} " \quad$ BASS
$18^{n} \quad$ 'COIÖCSUS Limited Number $\mathbf{£ 6 . 9 5}$ ea. S £15.00 £12.95
\qquad w w
 $\begin{array}{r}£ 22.00 \\ £ 214.95 \\ £ 25.75 \\ £ 18.95 \\ \hline\end{array}$ $\begin{array}{cc}\text { £25.75 } & £ 18.95 \\ \text { Sp. Price } & £ 21.95 \\ \text { Sp. Price } & £ 18.95\end{array}$

f
f 3
f

HORN UNITS

CELEETION MH FANE 910 MK H 100 w 25w 920100 w
J 4430.50 w
$\mathrm{J} 4430 \cdot 50 \mathrm{w}$
J 735 w
J 10450.70 w
HIGH POWER 'CROSS-OVERS’
ADD-ON HIGH FREQUENCY UNITS

EXTRA SPECIAL MAIL ORDER OFFER TITAN' TA/50A 50w AMPLIFIER
 three ind.
controlled inputs. Controls Bass. Treble presence. Robust, woll styled compact cabinet. Black Vynide 12 months Guarantee. Carr. $f 1$ 1
Also for personal shoppers only
AMPS, TTABLES, JINGLE MACHINES, DISCD CONSOLES, LIGHTING, CABINETS, CREDIT TERMS AVAILABLE orders
over
$£ 20$ Phone orders accepted from Access \& Barclay
card holders. 403 SAUCHIEHALL STREET Tel: 0413320700

GLASGOW Mail Orders/Export enquiries only. Ato 24 Newgate
Shopping Centre. NEWCASTLE. Add Shopping Centre. NEWCASTLE. Add f1 carr. on
Hi-Fi spkrs. or kits. Othervise add ft $25\left(12^{\prime \prime} \$ \mathrm{Skr}\right)$.

"H.A.C. ' well known by amateur constructors for its Short Wave receivers, now offers a complete range of kits and accessories to sui the novice and the expert.
£10-50 INCLUSIVE-the ever popular and easy to construct DX receiver Mark III: drilled chassis, valve, accessories and full instructions. selective, sensitive and with fantastic reception yet needing only a single PP3 battery, a $\mathfrak{1} 2 \cdot 50$ this receiver is outstanding value, and will give you hours of interest and entertainment.
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAYE PRODUCTS
P.O. Box No. 16, 10 Windmil! Lane

Lewes Road, East Grinstead, West Sussex RHI9 3SZ

OSMABET LTD We make transiofmers LOW VOLTAGE TRANSFORMERS: Prim 240V ac. $6.3 \mathrm{~V} 1.5 \mathrm{~A} £ 2.45 ; 3 \mathrm{~A} £ 3 \cdot 00 ; 6 \mathrm{~A}$ CT $£ 5 \cdot 30$; $12 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$

 TWIN SEC TRANSFORMERS: Prim 240V ac.
$6 V 0.6 A+6 V 0.6 A ; 9 V 0.4 A+9 V 0.4 A ; 12 V 0.25 A$ $12 \mathrm{~V} 0 \cdot 25 \mathrm{~A} ; 20 \mathrm{~V} 0 \cdot 15 \mathrm{~A}+20 \mathrm{~V}$ C. 15 A ; all at $\mathrm{E} 3 \cdot 50$ each; 15 V $0 \cdot 75 \mathrm{~A}+15 \mathrm{~V} 0 \cdot 75 \mathrm{~A} \mathrm{E4} \cdot 85: 15 \mathrm{~V} 1.5 \mathrm{~A}+15 \mathrm{~V} 1.5 \mathrm{E} 57.00$ $18 V 1 A+18 V 1 A$ £6.50:18V1.5A + 18V 1.5A £7.50 $25 V 2 A+25 V 2 A E B \cdot 50.5 R ; 12 V 4 A+12 V 4 A E 5 \cdot 50 ;$
MIDGET RECTIFIER TRANSFORMERS: 240 v ac. $6-0-6 \mathrm{~V} 1 \cdot 5 \mathrm{~A}$ or $9-0-9 \mathrm{~V}$ 1A $£ 2-50$ each; $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ or $20-0-20 \mathrm{~V}$ 0.75A $£ 3.00$ each; $9-0-9 \mathrm{~V}$ 0.3A or 12-0-12V OTSARANSFORMERS TAPPED SEC: Prim 240V ac
 -40-50-60-80-100-1
MAINS TRANSFORMERS SPECIAL OFFER:
$250-0-250 \mathrm{~V} 60 \mathrm{Ma} 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A}$ £1 75; 250V 100Ma 6 -3V 2A
 LOUDSPEAKERS 25 , $2 \frac{1}{4} \ln 8 \Omega, 2 \Omega$, 3 in 35Ω, $3 \frac{1}{2}$ in 3

 Instant erasure of cassettes and tape spools, any dia meter, demagnerses ape New, British manufacture, smoothed d.c. output 20 V 1.5 A , plus stabilised output of 15 V 100 Ma , plus 12 V ac $0.5 A$ output, complete with diagram, $£ 32$.
EDGEWISE LEVEL HETER FSD 200μ A
Size $19 \times 18 \times 20 \mathrm{~mm} 800 \Omega, £ 1 \cdot 10$.
2A Or $3 A$ E1-25 each; $5 A$ or $10 A$ £1-50 each.
SYNCHRONOUS GEARED MOTORS, 240V ac. Brand new, built in gearbox, 1 or 20 RPH, at $£ 1 \cdot 20$ each.
O/P TRANSFORMERS FOR VALVE AMPLIFIERS O/P TRA SFORMERS FOR VALVE AMPLIFIERS $50 \mathrm{~W}, \mathrm{E17} \cdot 00$; 100 W (EL31, KTB8, etc), $£ 2200$.
G.E.C. MANUAL OFPOWER AMPLIFIERS Covers valve ampliflers 30w to 4ew. 75p. COVERED 36 way $£ 1-00 ; 25$ way $75 p ; 14$ way $50 p ; 6$ way $25 p ; 4$ way
$20 \mathrm{p} ; 2$ way $10 \mathrm{p} ; 1$ way $8 \mathrm{p} ; 4$ way individually screened 25p per metre, flg 8 twin stereo do screened 15 p .
MAINS CABLE 4 way 30 p 3 A .3 .
COms: telephones etc: $£ 4 \cdot 50100 \mathrm{M}$.
Electrolytic; $400 / 400 \mathrm{~V} 75 \mathrm{p}$; $2000 / 30 \mathrm{~V} 30 \mathrm{p}$; $1200 / 75 \mathrm{~V} ; 50 \mathrm{p}$; $2200 / 40 \mathrm{~V} 40 \mathrm{p}: 3900 / 100 \mathrm{~V}$ £1.25; Paper tubular, W/E, 4/160V, 6/160V. 2/150V. each 25p, 0-1/200V 30p.

> CARRIAGE EXTRA ON ALL ORDERS ALL PRICES INCLUDE V.A.T.

Callers by appolntment only. S.A.E. enquiries, lists 46 Kenilworth Road, Edgware, Middx. HA8 8YG. Tel: 01-9589314

OPTOELECTRONICS	Displars
	$\begin{array}{ll}\text { HP5082-7730 ef.15 } \\ \text { DL704 } & \text { £1.15 }\end{array}$
	${ }^{\text {DLTOS4 Economy }}$ E. 75
	¢

BADO ERCHANCH LKIMHD

NEW ELECTRONIC MASTER KIT

With special V.H.F. Tuner Module to construct. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws, etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.

Projects:

V.H.F. Tuner Module \star A.M. Tuner Module * M.W. L.W. Diode Radio \star Six Transistor V.H.F. Earpiece Radio \star One Transistor M.W. L.W.
Radio \star Two Transistor Metronome with variable beat control t Three Transistor and Diode Radio M.W. L.W. \star Four Transistor Push Puli Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MultiTester \star Four Transistor and Diode M.W. L.W. Radio \star A.F. R.F. Signal Injector \star Five Transistor Push Pull Amplifier \star Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \pm Signal Tracer \star Three Transistor Push Pull Amplifer \star One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Transistor Pre-Amp \star Transistor Tester $\underset{*}{\star}$ Sensitive \star Four Transistor M.W. L.W. and \star Four Transistor M.W. L.W. and M.W. L.W. Trawler Band RegeneraM.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F.
Tuner \star Three Transistor Code PracTuner \star Three Transistor Code Prac-
tice Oscillator \star Five Transistor tice Oscillator Sort Wave Radio Regenerative Short
\star Four Transistor and two Diodes
M \star Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output \star One Transistor Home Broadcaster. 214.99 + P \& P $£ 1 \cdot 10$
V.H.F.

AIR
CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts.
Uses a retractable chromeplated telescopic aerial, gain control, V.H.F. tuning capacitor, transistor, etc. Suze $5 \frac{1^{\prime \prime}}{2} \times 1 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ All parts including case and plans. $\underset{24.95+P \& P \text { and }}{\substack{\text { ins. } 60 \mathrm{p}}}$

ELECTRONIC

CONSTRUCTION. KIT E.C.K. 2

Self Contained Multi-Band V.H.F. Receiver Kit. 8 transistors and 3 diodes. Push pull output. 3 in. loudspeaker, gain control, 7 section chromeplated telescopic aerial, V.H.F. tuning capacitor, resistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit).
Complete kit of parts
£7.95 ${ }^{+2 \% \text { Pand }}$
NEW MODEL R.K.1.

MultiBand A.M. Receiver. M.W.L.W. Trawler Band and Three Short Wave Bands. Seven Transistors and Four Diades. Push Pull Output stage. 5" $\times 3^{\prime \prime}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.
$28.99+\mathrm{P}_{90 \mathrm{p}}$
EDU KIT JUNIOR

Completely Solderless Electronic Construction Kit. Build these proiects without Soldering Iron or Solder \star Crystal Radio Medium Wave Coverage-No Battery necessary \star One Transistor Radio
$\star 2$ Transistor Regenerative Radio t 3 Transistor Earpiece Radio Medium Wave Coverage
$\star 4$ Transistor Medium Wave Loudspeaker Radio
\star Electronic Noise Generator
\star Electronic Metronome
\star Transistor Push/Pull Amplifier All parts including Loudspeaker, Earpiece, M.W. Ferrite Road Aerial, Complete kit of parts including construetion plans.

$86.95+P$ \& P and

NEW ROAMER TEN

MODEL R.K. 3 .

Multiband V.H.F. and
A.M. Receiver. 13 Transistors and Six Diodes. Quality $6^{\prime \prime}$ 3" Loudspeaker
With Multiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate tuning, covering M.W.I, M.W.2, L.W. Three Shore Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band. Built-in Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chromeplated 7 section Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain. WaveChange and Tone Controls. Plus two Slider Switches. Powered by P.P.9-9 volt Battery.
Complete kit of parts including carrying strap. Building Instructions and operating Manuals. $214.79+\underset{\& 1 \cdot 10}{P}$
E.V. 6 PLUS ONE

Build this exciting new design. Now with 7 Transistors and 4 diodes. MW/LW. Powered by $9 V$ battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in. loudspeaker. Attractive case with red speaker grille. Size $\operatorname{Sin} . \times 5 \frac{1}{4} \mathrm{in} . \times 2 \frac{3}{4} \mathrm{in}$. approx. All parts including Case and Plans.

Total Building Costs:

To: RADIO EXCHANGE LTD

61A High Street, Bedford MK40 ISA
Tel.: 023452367
Callers side entrance "Lavells" Shop.
Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.
Reg. No. 788372
\qquad
\qquad
Address

PW379

Vtis
 $W_{0}=W_{j}$

 THYRISTORS

 THYRISTORS
 No. THY 1 A/50 1 Amp 50 volt TO5

 WOWTER

BOOKS BY BABANI

The following books are offered at 10% off their normal retail price

```
BP6 Engineers & Machinists Reference Tables
MP
MP22 79 Electronic Novelty Circuits 
Radio Antenna Handbook for Long Distance Reception &
BP27
BP32 Sow to Build Your Own Metal & Treasure Locators
lol
    50 Construction Gevits using Germanium, Silicon & Zener Diodes
MP37 50 Projects using Relays SCR's and Triacs
BP40 Digital IC Equivalents & Pin Connections
BP41 Linear IC Equivalents & 
    How to make Walkie-Ta
    iC 555 Timer Projects
    Prodects on Opto-Electronics
    Mobile Discoteque Handbook
    Electronic Projects for Beginners
    Popular Electronic Projects
    Radio Stations Guide
    Coil Design &% Construction Manual
    Handbook of Integrated Circuits (ICs) Equivalents 8
    First Book of Hi-Fi Loudspeaker Enclosure
BP213 Electronic Circuits for Model Railways
        Hams
    Electronic Gadgets & Games
    28 Tested Transistorpply Handbook
    Solid State Short Wave Rece
    50 Projects using IC CA S $ 30
    50 CMOS IC Projects
    A Practical introduction to Digital ICs
    Howinners Guide to Building Electronic'Projects
    Essential Theory for the Electronics Hobbyist
```


VPS30 Variable Regulated Stabilised Power Supply Module

```
ncorporating a short circüit protection and current limiting
    Regulared Current 0-2A
AC Input Maximum 25\
Elmminates the use of batteries and thus saves f's-can be used time and time again
ONLY£7-60+VAT
```


Brand New

ITT 923 Sifican Diodes 200 mA 200 V $100 \mathrm{off}-\mathbf{£ 2 . 0 0}$
$500 \mathrm{off} \mathbf{~} \mathbf{8 9 . 0 0}$.500 off- $\mathbf{~} 9.00$
1000 off- $\mathbf{~} 15.00$ $10.000 \mathrm{off}-\mathbf{£ 1 5 0 . 0 0}$

Single-Sided Fibre Glass Board $12^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ approx. 2 pos $\mathbf{£ 0 . 6 0}$

No. THY1A 4001 Amp. 400 voit TO5 No. THY3A/50 3 Amp 50 volt TO64 No. THY3A/200 3 Amp 200 volt TO64
No. THY3A/400 3 Amp. 400 volt TO64 $\begin{array}{ll}\text { No. THY3A } \\ \text { No THY } 5 \mathrm{~A} / 50 & 5 \mathrm{Amp} . \\ 50 & \text { vol T TO66 }\end{array}$ No. THY5A/400 5 Amp. 400 volt TO 66 No. THY5AV600 5 Amp. 600 volt TO66 $\begin{array}{ll}\text { No. ChY5A/600 } \\ \text { No. C1O Amp. } 600 & 6 \text { Amp } 400 \text { volt TO220 }\end{array}$
s

CAPAC
16201
16202
16203

Vositive VITAGEREGULATORS			
No. MVR7805	μ A 805	TO220	55p
No MVR7812	μ A) 812	TO220	55p
No. MYR7815	μ A7815	TO220	55p
No. MVA7818	μ ¢ 7818	TO220	55p
No. MVR7824	\%A7824	TO220	55p
*			
Negative			
No MVR7905	нA7905	TO220	75p
No. MVR7912	нA7912	TO220	$75 p$
No. MVR7915	\#A7915	TO220	75 p
No. MVR7918	HA7918	TO220	75p
No MVR7924	нA7924	TO220	75p
μ A723C ${ }^{\text {¢ }}$ (099	${ }_{309 k}$	$\begin{aligned} & 72314 p \\ & E 1.20 \end{aligned}$	38p

SWITCHES

No. $161785 \times$ Mains Slide Switches
$\begin{array}{ll}\text { No. S18 } & 4 \times \text { Standard Slide Switches } \\ \text { No S19 } & 4 \times \text { Miniature Pusis to Make }\end{array}$
40p:
No $520 \quad 3 \times$ Mingle nole mounting
No. $521 \quad \begin{gathered}\text { single hole mounting } \\ \text { Push button Switch Pak }\end{gathered}$ $4 \times$ Assorted types multi bank and singles
Latching and no AUDIO LEADS
Order No.
127
2 piugs 5 pin DIN plug to 4 phono
129 Audio lead 5 pin plug to 5 pin DIN plug
$130 \quad 5$ Mirror mage
Mirror mage
metre lead 2 pin DIN plug to 2 pin
DiN inline socket

AUDIO PLUG AND SOCKET PAKS

Order No.

Ord		
S1	$5 \times 35 \mathrm{~mm}$ Plastic Jack Plugs	40p*
5	$5 \times 2.5 \mathrm{~mm}$ Plastic Jack Plu	
S3	$4 \times$ Std. Plastic Jack Plugs	$50{ }^{\circ}{ }^{\circ}$
S4	$2 \times$ Stereo Jack Plugs	30p*
S5	5×5 Pin 180° DIN Plugs	50p*
S6	8×2 Pin Loudspeaker Plugs	50p*
S7	$8 \times$ Phono Plugs Plastic	60p ${ }^{\text {c }}$
S8	$5 \times 3.5 \mathrm{~mm}$ Chassis Sockets (Switched)	25p*
S9	$5 \times 2.5 \mathrm{~mm}$ Chassis Sockers (Switched)	25p*
S11	$2 \times$ Stereo Jack Sockets with instruction leafler for H/Phone connection	50p*
512	5×5 Pin 180° DIN Chassis Sockets	40p
S13	8×2 Pin OIN Chassis Sockets	50p ${ }^{\text {a }}$
S14	$6 \times$ Single Phono Sockets	40p"
	P.C. BOARD	
S110	Mixed Bundle. P.C.B., Fibreglass/paper, single and couble-sided Fantastic value	$75 p$

SPECIAL OFFER!

 UNTESTED
SEMICONDUCTOR PAKS

Code No's shown below are given as a guide to the
type of device. The devices themselves are normally
No. 16130100 Germ. Gold bonded diodes a like OA47
No 16.31150 Germ. Point contact diodes like OA70/81
No. $16132 \quad 100200 \mathrm{~mA}$ Sil. diodes like OA200
No $16133 \quad 15075 \mathrm{~mA}$ Sil. Fast switching diode like ! N4 148
No. 1613450750 mA Sil. top hat Rect
No $16135 \quad 203 \mathrm{amp}$ Sil. stud Rect.
No 1613650400 mw Zeners D. 0.7 case \quad 40p
No. 1613730 NPN Plastic trans. like BC107/8
No. 1613830 PNP Plastic trans like BC177/8
No. 1613925 NPN trans like $2 N 697 /$
 No. 1614130 NPN trans like 2N706 TO 18 No. 1614330 NPN Plastic trans like 2N3906
No. 1614430 PNP Plastic trans. like 2N3905 No. 16144 30 PNP Plastic trans. like 2N3905
 2N3055

I.C. \$OCKET PAKS

No. S66	11×8 pin DHL Sockets
No. 567	10×14 DiL Sockets

$\mathbf{f 1 . 0 0}$
$\mathbf{f 1 . 0 0}$
$\mathrm{f1.00}$
$\mathrm{f1.00}$
$\mathbf{f 1 . 0 0}$

MAMMOTH I.C. PAK

Approx. 200 ieces. Assorted fall-out integrated circuits, including: Logic, 74 series, Linệar. Audio and
to identify

From U.S.A. by DINDY SCREW CASED LOW NOISE CASSETTES
Order No. S53 10 for $\mathbf{£ 3 . 5 0 ~ C 9 0 ~}$ HEAD-CLEANING CASSETTE 45p each

RETURN OF THE AL20A
By popular demand-this useful 5W RMS power amplifier is offered at the Hook-up and data supplied.

$\underset{\text { Order No. } 1609}{\text { ETCH RESIST PENS }} \underset{\text { 50p each }}{ }$		
UNIJUNCTION TRANSISTORS		
2N3819	${ }_{15 p} \text { FET's }_{2 N 5458}$	18p
2 AMP. BRIDGE RECTIFIERS Metal Stud Mounting		
No. S45	50 V (KBS 005)	28p
No. 546	100V (K8S01)	30p
No. 547	200V (KBS 02)	34p
SILICON BRIDGE RECTS.		
S99	Mixed Pak 2 - 5 Amp. 50-600v. All coded. 4 for	¢1.00*
	SIMILARIN4000 SERIES	
No. $\mathrm{S4} 1$ No. $\mathrm{S42}$		${ }_{60 p}^{60 p}$
No S43	18 Like $\operatorname{Na} 4003$ (1A 200 V)	60 p
No. S44	15 Like IN4004 (1A/400V)	60p

SPECIAL OFFER! COMPONENT PAKS

CONPONENT PAKS	
Order No. Quantity	
16169	2 pieces Tuning gangs MW/LW
16170	50 metres Single strand wire assorted wire
16171	10 Reed switches
16172	3 Micro switches
16176	20 Assorted electrolytics Trans types
16177	1 pack Assorted Hardware
16179	20 Assorted tag strips and panels
16180	15 Assorted control knobs
16184	15 Assorted Fuses 100 mA 5 amp
16188	$60 \frac{1}{2} \mathrm{~W}$ resistors mixed values
16187	30 metres stranded wire assorted colours
S100	$120 \frac{1}{4}$ watt resistors Pre-formed 1978 Prod Our mix
S101	120 ; watt resistors. Pre-forme
S102	1978 Prod. Mixed values
	Range 100 othms - 10 meg
S103	$220 \frac{1}{2}$ watt resistors
	Aange 100 ohms - 10 meg
S104	60 Low ohms $\frac{1}{3}$ watt resistors 10-100 ohms
\$105	40 Low ohms $\frac{1}{2}$ watt resisto
	10-100 ohins
S106	25 Mlixed wirewound resisto
S107	20 Tantatumbead caps 0.22-100mF Our mix
5108	High quality electrolytics 10 m
	500 mF voltaze range 1550 Our mix: 40 for
16204	C280 Pak Contains 50 metal
	caps

POTENTIOMETERS

Slider 40mm TRAVEL
OrderNo.

S90 Wirewound Pots Linear 1 Watt rating Mixed useful values 5 for $\mathbf{£ 1 . 0 0}$ CARBON TYPES
591 Car Radio type Dual \$wirched Pot 100 KLinting switched
2.5 K in

DUAL POTS P.C. MOUNTING 6mm Shaft

S92 S93 16173 16186	$4 \times 100 \mathrm{~K} \mathrm{Lin}$ $4 \times 100 \mathrm{~K} \mathrm{Log}$ 15 Rotary Pot Assorted 25 Pre-sets Assorted Values	f1.00* f1.00 40p 40p \%
ZENER PAKS		
No. S55	20 mixad values 400 mW Zener diodes 3-10V	11.00
No S56	20 mixed vaiues 400 mW Zener diodes $11-33 \mathrm{~V}$	£1.00
No. S57	10 mixed values $1 W$ Zener diodes 3-10V	f1.00
No. S58	10 mixed values IW Zener diodes 11-33V	f1.00
SILICON POWER TRANS. N.P.N.		
S97	BD3712 Amp 1-2w. 60vceo Hte 40 400. Case TO92 with heal tab 5 for	60p"
S98	2N5293 R.C.A. 36w 4 Amps 75 V ceo Hfe 30-120. 5 for	£1.00*

ORDERING

V.A.T.

Minimum postage and packing for Sale Orders $\mathbf{£ 0 . 5 0}$
PLUS any further postage as stated as per this Sale Advertisement
Overseas Orders-ADD extra for Air-mail

Please ADD V.A.T. as follows:
$\dagger 2 \frac{1}{2} \%$ to items marked ${ }^{*}$
8% to unmarked items. NO VA.T. on Books

	chrstal Less plug

-

TRANSISTORS
BRAND NEW FULLY GUARANTEED
$\begin{array}{lrlrlll}\text { Type } & \text { Price Type Price Type Price Type } & \text { Price Type }\end{array}$

Price
5 2

	$\mathbf{1 6 p}$	BC179	$\mathbf{1 2 p}$	BF196	*12p	TIP32C	$\mathbf{3 6 p}$	2N1711
AC128	$\mathbf{1 6 p}$	BC182	•9p	BF197	*12p	TIP41A	$\mathbf{3 4 p}$	$2 N 2218$

$A C 128 K$
$A C 176$

$4 C 176 k$
$4 C 187$
$4 C 187 K$
AC187K
AC188
AC188K
AD161/

162 MP AF 139 AF 239

AF239
BC_{107}
BC10
BC
BC_{10}
$\mathrm{BC}_{1} \mathrm{C}_{18}$
BC_{14}
BC_{14}
$\begin{array}{cc}16 p & B C 178 \\ 24 p & B C 182 \\ 18 & B C 182 L\end{array}$
$\begin{array}{ll}\text { 16p } & \text { BC183 } \\ \text { 24p } & \text { BC183L } \\ \text { 16p } & \text { BC184 } \\ \text { 26p }\end{array}$
$\begin{array}{ll}\text { 16p } & \text { BC184 } \\ \text { 26p } & \text { BC184L }\end{array}$$\begin{array}{ll}\text { 20p } & \text { BC212L } \\ \text { 80p } & \text { BC213 }\end{array}$$\begin{array}{ll}9_{p} & \text { BF19 } \\ 9_{p} & B F 197 \\ 9_{p} & B F 200 \\ 9_{p} & B F \times 29\end{array}$
$\begin{array}{ll}\text { 80p } & \text { BC213L } \\ \text { 30p } & \text { BC214 } \\ \text { 30p } & \end{array}$
$\begin{array}{llll} & & \text { 12p } & \text { TIP42C } \\ \text { TIP2955 } \\ \text { 10p } & & & \text { TIP3055 } \\ \text { 10p } & \text { MPSAO5 } & \text {-22p } & \text { ZTX107 } \\ \text { 10p } & \text { MPSAO6 } & \text {-22p } & \text { ZTX108 }\end{array}$
BC147
BC148
BC149

| To. |
| :--- | :--- |

${ }^{\text {No }}$

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR Dick Ganderton C. Eng., MIERE

ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie
ASSISTANT ART EDITOR
Keith Woodruff
SECRETARIAL
Sylvia Barrett
Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER

Telephone: 01-261 6671 Roy Smith
REPRESENTATIVE
Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT Telephone: 01-261 6570 Dave Kerindi

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

TO those readers who have suffered delay and disappointment in obtaining their copies of Practical Wireless of recent months, we offer our sincere apologies. In some of the more remote parts of the UK, late publication and some hiccups in distribution have combined to produce a particularly trying situation. We hope that these difficulties are now being overcome and that the magazine will be on sale by the specified date each month.

Another disappointment for some of our readers, is being unable to obtain a copy of an issue because every one has been snapped up, and their newsagent just cannot get any more. Worse still is picking up a casual copy of $P W$ only to find that an interesting series has been running for some months and they can't get hold of the previous issues. We always do what we can to help someone in this predicament, and have recently increased the number of magazines put aside each month for our back numbers service (see page 1). Unfortunately though, many issues are now completely out of print, and only very limited stocks exist of some others. The table below summarises the situation as we went to press.

	1979	1978	1977	1976	1975	1974
JANUARY						
FEBRUARY	\ddots					
MARCH						
APRIL						
MAY						
JUNE						
JULY						
AUGUST						
SEPTEMBER						
OCTOBER						
NOVEMBER						
DECEMBER						

If you want to make sure of getting your copy of $P W$ each month, either place a regular order with your newsagent, or take out a subscription--again, see page 1 for details.

Debbie Chapman, Copy Typist

A secretarial course which she completed immediately after her normal schooling at the Purbeck School, Wareham, led Debbie into her first job which, luckily for us, was with PW.

She was born in Kenya, where her father was serving in the Army, and most of her life so far has been spent on a "world trip" with her father and the rest of the family. Dad is an instructor with the 3rd Royal Horse Artiliery at Bovington Camp, specialising in tanks.

Mum also works for the Army, and Debbie is engaged to a Police Constable-she certainly maintains an interest in uniforms!

Among her other interests, which include swimming and looking after children, she quotes cooking as the most important. Future husband Martin seems to have it made in no uncertain terms-good food and a willing baby sitter while he's out working can't be bad.

Well done Erzsebet

The 1978 Girl Technician Engineer of the year is Mrs Erzsebet Kibble (see News, October 1978): the award was announced by The Secretary of State for Education and Science, The Rt Hon Mrs Shirley Williams, MP, at a meeting of The Institution of Electrical and Electronics Technician Engineers (IEETE) in London on Monday, 4 December.

Erzsebet, aged 25, is an Assistant Test Manager with Thorn-Ericsson Telecommunications (Sales) Ltd. Born in Hungary, Erzsebet is married to an Englishman and lives in Woking, Surrey. She joined her present employers in 1974 and gained the Higher National Certificate in Electrical and Electronic Engineering in 1976.

The Award, accompanied by a cheque for $£ 250$ and an inscribed rose bowl, is sponsored by The Caroline Haslett Memorial Trust and the IEETE. Its aim is to focus attention on electrical and electronic engineering as a worthwhile career for women. IEETE, 2 Savoy Hill, London WC2R OBS. Tel: 01-836 3357

New catalogues

Barrie Electronics Ltd. inform me that their latest catalogue is available. Although the 32 page catalogue lists a good deal of Barrie's stock, they have many other components, too numerous to list. They also invite readers to contact them if they need assistance with purchasing any difficult items.

The catalogue is obtainable for $15 p$, from: Barrie Electronics Ltd., 3 The Minories, London EC3N 1BJ. Tel: 01488 3316/7/8.

Suhner Electronics, the UK subsidiary of the Swiss company Huber \&

Suhner, have recently issued 2 new catalogues covering just part of the range of connectors they manufacture.

1. High Voltage Connectors; this 16 page catalogue covers 3 different series of coaxial high voltage connectors with 50 ohm nominal impedance and bayonet coupling mechanisms. In all a total of 80 different connectors.
2. RF Connectors Series TNC; this comprehensive 28 page catalogue details Suhner's range of TNC mediumsized coaxial cable connectors.

Copies of these catalogues are available, free of charge, from: Suhner Electronics Ltd., Telford Road, Bicester, Oxfordshire.

Three new parts of the Mullard Technical Handbook are now available. They are: RF power devices-Book 1, Part 2-£2.00; Thyristors and triacsBook 1, Part 5-£1.50; Loudspeakers, television assemblies and modulesBook 3, Part 5-£2.00.

The Mullard Technical Handbook is broken down into twenty-one different parts which can be purchased separately-the prices depend on the contents and include P\&P.

The handbooks and a leaflet giving further details is available from: Central Enquiry Handling Unit, Mullard Ltd., New Road, Mitcham, Surrey CR4 4XY.

Operation Drake

Radio communications equipment, supplied by companies in the GECMarconi Electronics group, will play a big part in Operation Drake-the two year round-the-world voyage by parties of experienced explorers, scientists and 24 young explorers in the 150 ton brigantine Eye of the Wind, which left Plymouth on Wednesday, 8 November, to celebrate the 400th anniversary of Sir Francis Drake's circumnavigation of the globe.

Marconi Marine is providing one of its new 400 watt Transocean/Pacific s.s.b. radiotelephones to satisfy the vessel's requirements for m.f. and h.f. communications with shore-stations round the world. This equipment is powered by the vessel's a.c. mains supply.

In case of generator failure on board, Marconi Marine is also supplying a 24 V d.c. operated Falcon II, a m.f./h.f. s.s.b. radiotelephone as a back-up set for the main equipment.

When working within 40 miles of the coast, the primary ship-to-shore
communications will be supplied by an Argonaut S v.h.f. radiotelephone.

For emergency purposes Marconi Marine is also to provide a Survivor II survival craft radio equipment.

Communications in the v.h.f./f.m. bands will be provided by three UK/VRC353 transceivers for the overland expeditions.

PW Gillingham

It has come to our notice that readers are having difficulty obtaining the 1.280 MHz crystal for the PW Gillingham Short-wave Receiver Frequency Readout, published in the October 1978 issue.

A special arrangement has been made to supply these devices, at an inclusive price of $£ 4.15$, from P. R. Gollege Electronics, Merriott, Somerset TA16 5NS. Tel: (0460) 73718.

Project Index

A new index of electronic projects has been compiled by M. L. Scaife, Principal Librarian (Technical) of North Tyneside Libraries and Art Department.

The index provides a descriptive guide to over 2500 projects published between 1972 and 1977, in journals such as Practical Wireless, Practical Electronics, Wireless World and Television Magazine.

The project is not intended as a profit-making venture, as the following inclusive prices indicate: 1-2 copies£1.50, 3-6 copies-£ $1.40,7-10$ copies- $£ 1.35$, over 10 copiesspecial rates.

Copies of the index are obtainable from: M. L. Scaife, Central Library, Northumberland Square, North Shields, Tyne and Wear NE3O $10 U$. Tel: (08945) 82811.

OSO? GB2RN

The amateur radio station aboard HMS Belfast moored in the pool of London, between Tower Bridge and London Bridge, has been granted the use of the special callsign GB2RN when the ship is open to the public. Summer hours 1100 to 1800 , winter hours 1100 to 1630, all British local time.

The station is interested in establishing schedules with other museum and special interest stations worldwide, these and other stations who would like to arrange skeds, please contact Don Walmsley G3HZL, 153 Worple Road, Isleworth, Middlesex TW7 7HT, England.

All h.f. bands from 1.8 to 28 MHz are covered on c.w. or s.s.b.; it is hoped to have $R T Y$ in the near future.

G4HMS will be operational outside of the stated hours.

LCDs

Two liquid crystal displays (I.c.d.s) will be available from Mullard in quantity early in the year. These devices join the Company's already established ranges of solid-state and plasma display devices. This announcement is the result of a long-term development programme which not only involved investigation into different techniques but also into basic materials in order to ensure that the displays would give continuing high-standard performance coupled with assured long-term reliability.
The technology selected for the Company's I.c.d.s was field-effect twisted-nematic. This technology has been in the market place for some time, but the Mullard I.c.d.s will incorporate the latest developments in this field. In particular, nematic liquid crystal materials have been developed to provide high standards of chemical stability and special precautions have been taken to eliminate chemical reaction between the different materials used. Also, to ensure satisfactory viewing, the l.c.d.s incorporate the results of a great deal of research into viewing angles, colour balance and the brightness ratio of the character to the background areas.

Many different types of l.c.d.s are in use today in watches, clocks, calculators and a great deal of instrumentation where their low power consumption, compared to that of l.e.d.s, enable them to be driven
directly by m.o.s. devices.
The Mullard l.c.d.s were designed specifically for time displays and provide a 4 -digit read-out with a colon between the second and third digits. Each digit is 12 mm high and is formed from 7 segments. The first of these l.c.d.s, type LTC001R, is designed for use in the reflective mode: that is, it collects ambient light and reflects it back to the viewer. The second I.c.d., type LTC001T, is used in the transmission mode with a light source behind the display.
Mullard Limited, Mullard House, Torrington Place, London WC1E 7HD.

GB3WM

The Home Office have granted the special callsign GB3WM to the Wireless Museum at Arreton Manor, near Newport, Isle of Wight. Arreton Manor is the home of The Count and Countess Slade de Pomeroy, the Manor is open daily from Easter until November, and also by appointment during the winter months.

The Wireless Museum contains a unique collection of very early radio and television receivers, including a 30-line Baird Televisor with spinningdisc mechanical scanning.

It is now planned to build an exhibition short-wave experimental transmitting station, as used by radio amateurs before the last war, and display it side-by-side with a modern piece of equipment, showing a direct comparison between the old type of rack-mounted equipment and today's 'state of the art".
All amateur bands will be used, with both c.w. and s.s.b. on the high frequencies and f.m. on two-metres (via GB3SN, the Alton, Hampshire repeater).
Official station operators will be Messrs. D. Byrne G3KPO (Museum Curator), A. R. Williams G3KSU, D. E. Denny G3ZQE, A. Wakeley G3MAD, R. W. Fisher G2DZN, K. B. Pearse G3MLC, F. D. Cawley G2GM, H. Childs G3IOW, L. Critchley G3EEL, D. Hoult G400 and W. Carter G2NJ.

A special OSL card will be printed and issued to all initial QSOs. Shortwave listeners are also invited to send in report cards, for which OSLs will be exchanged-all via the RSGB Bureau, or on receipt of an s.a.e.
D. Byrne G3KPO, The Wireless Museum, Arreton Manor, near Newport, Isle of Wight.

TMMETRON

TEMPUS

Until TEMPUS have re-established their business we will be pleased to supply you from the superb range of

QUALITY CASIO PRODUCTS
A well known consumer magazine has published a report on digital watches which supports our opinion that CASIO and SEIXO are probably the best watches in the world, with CASIO offering unbeatable value for money.

CASIO 46CS-27B

Almost eertainly the slimmest and most sophisticated alarm/chronograph watch available today.
Liquid crystal display of hours, minutes, seconds, day: And with day, date, month and year perpetual calendar

- Optional 12 hour clock (with am/pm indicators) with $\mathrm{am} / \mathrm{pm}$ ind
or 24 hour display.
- 24 hour alarm setting
- Optional hourly chimes.
- Chronograph measures in units of $1 / 1000$ second to six hours.
- Net, lap and
place times. 1 st \& second
- All stainle
only 7.8 mm thick.
- Mineral glass face
- Water res. to $\mathbf{1 0 0 f}$.
- 10 seconds/month RRP $\mathbf{1 8 9 - 9 5 .}$
$\mathbf{£ 7 4 . 9 5}$

CASIO CHRONOGRAPH

45CS-22B Similar functions to the above watch but without the 45Cs-22B Simiar WATCHES LCD, 6 digits, $1 / 100$ second stopwatch SPORTS and lst \& 2nd place times. Time and calendar display. F-100 Rein case strap (£29.95) £24.95. 520S-14B S/S encased bracelet ($£ 44.95$) £34.95).

digit LC Display of time, with nightlight. Four alarms, one with snooze facility. Calculator with \%, , K. Long battery life, compact size (£24.95) $£ 19.95$
CQ 81 Calculating alarm clock now only $£ 14.93$
PQ-7 Alarm clock, alarm/timer, stopwatch. Now £17.95
CASIO AQ-2000
Calculating alarm clock with stopwatch and calendar $£ 24.95$ ST-24 Card Time. Calculator, stopwatch, 2 alarm/timers
 have battery saving APO (Automatic Power-Off) LC-79 Sensor touch Mini Card with APO. A very rigid $\frac{1}{16} \times 2_{8}^{\frac{1}{8}} \times 3^{3}$ ins. Beautifully styled. Pouch $\mathbf{£ 1 5 . 9 5}$.
LC-841 APO. Rigid $3 \times 2 \mathrm{~d} \times 4$ ins. Pouch $£ 15.95$
NEW HL series. Two AA batteries last $6,000-10,000$ hours HL-801 8 digits $\mathbf{£ 9 . 9 5}$. HL-101 (10) £12.95. HL-121. £19.95. LCd Scientific Calculators. FX 48 £19.95. FX $2500 \mathbf{£ 2 1 . 9 5 .}$ FX-3100 $£ 25.95$. FX $8000 £ 29.95$.
Most CASIO products in stock. Send 15p for brochures
Prices include VAT, P \& P. Send cheque, P.O. or phone your Access or B'card number to:-

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

 8 ohm. $2 \frac{3}{6} \mathrm{in} . £ 1 \cdot 50.3 \mathrm{in} . £ 1 \cdot 50.5 \mathrm{in} . £ 1 \cdot 50.10 \mathrm{in} . £ 3.12 \mathrm{in} . £ 4$ 16 ohm. $6 \times 4 \mathrm{in} . £ 1 \cdot 50.7 \times 4 \mathrm{in} . £ 1-50.5 \mathrm{in} . £ 1-50.8 \mathrm{in} . £ 2 \cdot 60$. 10 in . £3. 12 in . $£ 4$.
THE "INSTANT" BULK TAPE ERASER Suitable for casseftes, and all sizes of tape reels. Leaflet S.A.E. £4.95 $\underset{\substack{\text { Pose } \\ \text { Sop }}}{\substack{\text { den }}}$
HEAD DEMAGNETISER £4.75

BLANK ALUMINIUM CHASSIS, 18 s.w.g. $2 \frac{1}{1}$ in. sides, 6×4 in.

ALUMINIUM PANELS, 18 s.w.g. 6×4 in. 24 p; $8 \times 6 \mathrm{in} .38 \mathrm{p} ; 10 \times$ $7 \mathrm{in} 54 \mathrm{p}:. 12 \times 5 \mathrm{in} .44 \mathrm{p} ; 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p} ; 14 \times 9 \mathrm{in} .94 \mathrm{p}$; ALUMINIUM ANGEE BRAC
ALUMINIUM BOXES MANY SIZES $\times \frac{3}{4} \times \frac{1}{4} \mathrm{in} .15 \mathrm{p}$.
$4 \times 2 \times 2 \mathrm{in}$. $86 \mathrm{p} ; 3 \times 2 \times \operatorname{lin} .60 \mathrm{p} ; 6 \times 4 \times 2 \mathrm{in}$. $11 ; 8 \times 6 \times 3 \mathrm{in}$.
$£ 1 \cdot 90$; $12 \times 5 \times 3$ in. $£ 2 ; 6 \times 4 \times 4$ in. $£ 1 \cdot 30$.

BAKER 150 WATt

QUALITY

TRANSISTOR

MIXER/AMPLIFIER
Professional amplifier using advanced circuit design. Ideal for disco, groups, P.A. or musical instruments. 4 inputs 4 way mixing. Master treble, bases and volume controls. 3 speaker output sockets to suit various combinations of speakers. 4-8-16 ohm. Slave output. Guaranteed.
Details S.A.E. A/C mains 120 v . and 240 v . BAKER 50 Watt AMPLIFIER 2 inputs $\mathbf{5 9 9}$.
DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. Easy to build kit. Will control up to 480 watts AC mains. Post 35 p f $\mathbf{f 3} \mathbf{2 5}$
STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs and PC. Board Can be ganged to make multi-way volume contro and P.C. Board. Can be ganged to make multi-way
stereo mixers.
Post 85p
$\mathbf{f 2 . 9 5}$

> R.C.S. SOUND TO LIGHT DISPLAY MK 2 Complete kit of parts with R.C.S printed circuit. Three channels. 600 to 1,000 watts each. Will operate from 200MV. to 100 watts signal source. Suitabie for home use. Cabinet extra $£ 4$. \& 17

MAINS TRANSFORMERS ${ }^{\mathrm{P}_{5}}$
6 VOLT $\frac{1}{2}$ AMP. $£ 1.00 \quad 3$ AMP. $£ 1.959$ VOLT 3 AMP. £2. 75
12 VOLT $300 \mathrm{MA} . £ 1.00750 \mathrm{MAA}$. £1. 3020 VOLT 2 AMP. $£ 2.50$ 30 VOLT 5 AMP. AND 34 VOLT 2 AMP. C.T. $£ 3.45$
20 VOLT 1 AMP. $£ 2-0020-0-20$ VOLT I AMP. $£ 2.95$ 30 VOLT $1 \frac{1}{2}$ AMP. $£ 2.7540$ VOLT 2 AMP. $£ 2.95$ 30V 2 AMP. $£ 3$ 0 -20-40-60 VOLT 1'AMP. $£ 3$-50 2×18 VOLT 6 AMP. £9.
GENERAL PURPOSE LOW VOLTAGE. Voltages available at $\begin{array}{ll}2 \mathrm{~A}, 3,4,5,6,8,9,10,12,15,18,24 \text { and } 30 \mathrm{~V} & \\ 1 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60 & \mathbf{£ 5 . 8 0}\end{array}$

$3 \mathrm{~A}, 6,8,10,12.16,18,20,24,30,36,40,48,60$	
$5 \mathrm{~A}, 6,8,10,12,16,18,20,24,30,36,40,48,60$	$\begin{array}{r}\text { 2 } \\ \hline\end{array}$

R.C.S. TEAK COMPACT SPEAKERS $13 \times 10 \times 6 \mathrm{in}$.
50 to $14,000 \mathrm{cps}$. 12 watts rms .8 ohm f19 pair

BAKER SPEAKERS

 "BIG SOUND' periods of electronic power. Useful response $30-13,000$Bass resonance 55 cps . Bass resonance 55" GROUP " ${ }_{\text {12in }}$
 2in. 60 watt professional model. 4, 8 or 16 ohms. Response $30-16,000 \mathrm{cps}$.
With aluminium presence dome. GROUP " $50 / 15 "$
15 in .75 watt E33.00 15 in. 75 watt
8 or 16 ohms.
Send for leaflets on Disco, P.A. and Group Gear.

R.C.S. MINI MODULE HI-FI KIT $15 \times 8 \frac{1}{4}$ in 3-way Loudspeaker System, EMI 5in, Bass 5in, Middle 5in, Tweeter with 3-way Crossover and Ready Cut Baffle. Full assembly instructions supplied. Response $=$ 60 to 20000 cps 12 watt RMS. $\mathbf{8}$ ohm. $£ \mathbf{1 0 . 9 5}$ per kit. Two kits $£ 20$. Postage 75p.

E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!
With tweeter. And crossover. $\quad \mathbf{£ 7}$
15 W model $\quad \begin{array}{r}\text { Post } 45 \mathrm{p} \\ \mathrm{f} 10.50\end{array}$
GOODMANS 20W Woofer Size $12 \times 10 \mathrm{inn} .4$ ohms. $\quad \mathbf{~} \mathbf{9 . 9 5}$
Rubber cone surround. Rubber cone surround.
Hi -Fi Bass unit. 337 WHITEHORSE ROAD, CROYDON

EHROMASONTE electronics your soundest connection in the world of componants

Dept PE1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON, N10 3HN

The items shown in this advent are just a small selection taken from our new 78/79 Catalogue which is now available It contains everything
from Resistors to th latest in Micro processcrs. Don't delay order your copy today The price is only 40 p dinc $45 p$ vouchers)

TELEPHONE: 01-883 3705

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint will cost 85 p, including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 0PF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS-Radio Amateur

Examination Reprint

Please send your order and remittance to:-
IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me . . copies at 85 p each to include postage and packing

I enclose P.O./Cheque No Value

Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NA ME

(BLOCK LETTERS)

ADDRESS
(BLOCK LETTERS)
\qquad

Post Code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required. Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

The Editor, PRACTICALWIRELESS, Westover House, West Quay Road, Poole, Dorset BHIs IJG

Radio 3

Sir: While admiring the ingenuity of the BBC Engineering Department in replacing Radios 1, 2, and 4 transmitters, I must complain about the allocation of 1215 kHz for Radio 3 . This frequency is only fit for its original purpose-a back-up for I.w. transmissions in big cities. The map on page 41 of 18-24 Nov 1978 issue of Radio Times confirms this. The 1215 kHz frequency is subject to hideous phase distortion here, and swamped by Radio Albania after 3 pm .

I am primarily concerned with conditions during daylight hours. Most people have v.h.f. at home, although that is difficult in some parts of this town, and v.h.f. car radio is ineffective here.

I am waiting for the howls of protest, when we have the first "Test Match Special" on m.w. only. I have had a long correspondence with the BBC and I am now hopeful that they will, after 23 November, try to improve Radio 3 outlets. Small relays could go on an international common frequency-or even a borrowed one, as at Cambridge (that is not on the Geneva list). What we urgently need is one more frequency to be used by alternative main stations as for Radios 1 and 2. We still have, as yet unused, an allocated frequency of 227 kHz , although it may be liable to interference.

It is a scandal that the Home Office did not even ask for extra channels at Geneva (see Richard Last, page 12, Daily Telegraph, 13 November 1978). How did small countries like Belgium, Holland and Eire, manage to get new valuable long and medium wave allocations, all more efficient than the 648 kHz , which is now lost to us, for the BBC European Service.

I hope that all your readers who enjoy Radio 3, especially in cars, as I have done for years, will make their views known to the BBC as soon as possible. Then, perhaps, some improvements will occur.

Dr H. S. Brodribb
 St Leonards-on-Sea

Any offers

Sir: I have for sale approximately 150 copies of various electronic magazines, such as PW, PE, EE and WW. Some of the issues date back to 1946/7, if anyone is interested, I would accept any reasonable offer plus postage.

I also have a quantity of electronic bits and pieces (valves, transistors, transformers, motors etc.), for which all I require is the postage.

Mr.H.C. Leivers 4 Cavendish Place Gwaun Miskin Beddau CF38 2 RP

In recent years, Sound-to-Light (STL) units, in various forms, have become extremely popular for discos, pop concerts, parties, shop displays and so on. In its simplest form, a STL unit consists of three of more CR filters fed from the loudspeaker terminals of an audio amplifier, feeding transistors which trigger triacs (or thyristors) via pulse transformers. Each channel has its own level control, and there may be a "master" control as well. This form of STL has several drawbacks; the sensitivity is low (an audio signal of $2-3 \mathrm{~V}$ may be required) and continual adjustment is required to compensate for changes in volume and tone. The apparent separation between channels is poor, due to the simple filters used: the unit generates interference spikes on the mains, since the triacs may be triggered at any point on the mains cycle, and it uses several heavy and/or expensive transformers.

The STL unit to be described overcomes all of these disadvantages; it uses interference-free "zero-voltage switching", so that the triacs are triggered only when the
voltage across them is very low; it has active filters for excellent separation between channels and automatic gain control (a.g.c.) amplifiers to eliminate manual adjustments; the sensitivity is approximately 700 mV to control 1 kW of lights per channel, and it uses only one inexpensive transformer. Due to the virtual elimination of transformers, this design is little more expensive to construct than the conventional version described above.

The Circuit

As can be seen from the simplified block diagram (Fig. 1), the circuit comprises several blocks each with a welldefined action. Each block is identified in the circuit diagram (Fig. 2). The signal from the loudspeaker circuit of an audio amplifier is fed via transformer T1. This provides isolation between the amplifier and the remainder of the circuit, which is at mains line voltage. Consequently, extreme caution is required when constructing the circuit.

Fig. 2: Complete circuit diagram (excluding options)

Note that T1 is actually a miniature mains transformer, which has good isolation and adequate frequency response for this application. The audio signal then enters an a.g.c. amplifier which allows the STL to operate with inputs from 700 mV r.m.s. $(0 \cdot 12 \mathrm{~W} / 4 \Omega$ to $25 \mathrm{~V}(150 \mathrm{~W} / 4 \Omega)$. This consists of a voltage controlled attenuator $\mathrm{R} 16 / \mathrm{Tr} 3$, followed by a X30 amplifier IC2a, with a control voltage derived from the rectifier circuit D6/D7.
If more sensitivity is required, R13/R14 may be reduced to, say, $1 \mathrm{k} \Omega 1 \mathrm{~W}$, but this loads the audio amplifier somewhat more, and increases the possibility of noise affecting the lights. If a high voltage source is used (e.g., 100 V lines) R13/14 should be increased to $15 \mathrm{k} \Omega$ 1W. Note that a stereo input is provided; if mono only is
required, both inputs should be tied together, alternatively a mono jack plug in the (stereo) jack will work with slightly reduced sensitivity.

After processing in the a.g.c. amplifier, the audio signal is fed to three active filters: low-pass (bass, IC2b), bandpass (midrange, IC2c) and high-pass (treble, IC2d). These have their cut-off frequencies chosen to give subjectively good separation between channels with most types of music from a variety of sources from a portable transistor radio to powerful discotheque systems. The output of each filter is connected to one of three identical detector/a.g.c. circuits constructed around a quad comparator integrated circuit.

For simplicity, consider the circuit connected to the low-pass filter (IC1b). If there is no audio signal, the comparator output will be low due to the bias voltage from D10 and R32, and no trigger pulses will be applied to the
triac. Now, if a steady audio tone is applied, capacitor C14 will rapidly charge via D9 and the comparator output will go high. This allows trigger pulses, timed to coincide with the points in the mains cycle where the voltage is zero, to be applied to the triac. Thus, the triac will turn on when the voltage across it is small and the appropriate lights will come on without any interference being generated. However, C15 slowly charges via D8 and eventually the voltage across it exceeds that on C14. The comparator switches again, turning the lights off. With more complicated dynamics in the audio signal the situation is more complex, but it can be seen that this circuit provides

Fig. 3: (a) (top) Addition of pushbutton and switched override facilities. (b) Half/full power switching

A rear view of the prototype, showing input jack, fuses and eight-way output socket
an a.g.c. type action. The preset VR1 allows adjustment of the operating point of the circuit for optimum operation.

The detector circuits described above are fed with "zero voltage" pulses from the pulse generator circuit Trl/ICla. The mains input is clipped by D3, and an inverted squarewave is produced at Trl collector. The positivegoing edges of both are differentiated by CR networks, and trigger a comparator IC a providing short positivegoing pulses at Tr 2 collector. The positive supply for the whole unit is provided by D2 and C1.

Circuit Modifications

The circuit described so far is capable of forming a simple but effective "no frills" STL unit, with no external controls whatsoever! If, like the writer, you prefer more facilities, several additions can be made, some of which are provided for on the printed circuit board described later.

First, a mains on-off switch can be provided-useful for quick changes between lighting effects. Switches can be provided (Fig. 3(a)) to override the triacs on each channel, switching the lights permanently on. If the switches have built-in neon indicators, these can be connected to provide monitoring of the light display. These switches must be capable of carrying the full load current. However, low power switches or push-buttons may be used with a simple diode gate (also shown in Fig. 3(a)), providing fast, noisefree switching. This method is particularly suitable for push-buttons, allowing the lights to be rapidly flashed under manual control. These additions are included in the version described in the constructional details and positions for the extra components required are included on the p.c.b.

Other improvements include the addition of a half/full power switch (Fig. 3(b)). This short-circuits Tr1, so that only half of the differentiated pulses reach the comparator. Thus, the triacs are only triggered on positive half-cycles, so the lights will be less bright. In a similar manner, an audio on/off switch can be added, allowing the override push-buttons to be used alone. This switch short-circuits R15, preventing audio signals from reaching the a.g.c. amplifier.

More ambitious modifications include making presets VR1-VR3 front panel controls (for the "knobs with everything" man!) or even providing controls with a switched "automatic" position. If this is tried, the controls must be well insulated. Also, a sequencer facility can be added, using transistors in place of the push-buttons in Fig. 3(a), or a dimmer control can be added using a 555 oscillator. These modifications are left to the more experienced constructor.

Construction

WARNING: Most of the circuit board and wiring is at MAINS LIVE VOLTAGE and EXTREME CAUTION is necessary when testing or adjusting the circuit. The use of an Epoxy Glass Fibre p.c.b. is strongly recommended; Veroboard, etc., is NOT suitable, as it has insufficient intertrack voltage rating.

Fig. 4 (above): Printed circuit board track pattern, shown full size.

Fig. 5 (below): Component layout

Internal view of the prototype unit

The p.c.b. track pattern is shown in Fig. 4 and the component layout in Fig. 5. Constructors should have little trouble in assembling the board provided the specified components are used. The usual precautions against the effects of static electricity should be taken when handling the two c.m.o.s. integrated circuits. It is safest to use sockets as specified in the components list, and insert the i.c.s only when the remainder of the components have been fitted to the p.c.b. Note that the wirewound resistor R1 gets hot in operation and should be mounted away from the board. Also, the triacs may require larger heatsinks if the unit is constructed in a small, enclosed box. If a common heatsink is used, mica washers and insulating bushes will be required. If the push-button override facility is not required (this is shown on the layout diagram), D_{A}, D_{B} and R_{A} (three of each) may be omitted and D_{A} replaced by a wire link. Finally, the p.c.b. has extra holes to allow the presets to be replaced by fixed resistors when the optimum values have been found.

The wiring of the unit is not critical and any convenient layout may be used. For guidance, the wiring used in the writer's unit is shown in Fig. 6, drawn flat for clarity. All mains wiring should, of course, use thick wire, say $40 / 0.2 \mathrm{~mm}$, remembering that some leads can carry up to 12A! Note that diode D1 is mounted off the board and resistors R13-R15 are mounted on the input jack JK 1. Any convenient case may be used, but the circuit must be securely protected from prying fingers. All metal parts except the heatsinks must be efficiently earthed. The writer's unit was constructed on a metal chassis in a wooden sleeve as shown in the photographs, but alternative construction methods could easily be used.

Fig. 6: Wiring diagram of a unit incorporating options of Fig. 3(a)

Testing and Setting Up

After construction is completed, all wiring should be double-checked and all presets set to their central position. Connect a set of lights and switch on. The lights may flicker briefly then they should remain off. The push button switches (if fitted) should be tested at this point; this checks the operation of the triacs. If all seems well, switch off and connect an audio source. Setting up is best done with a moderately large input signal (2-3V r.m.s.). Switch on again and the lights should show some response. The presets should be adjusted, with an insulated tool, to give the best results with various types of music; this need only take 15 minutes or so. Finally, vary the volume over a wide range and check that the display is similar at different volume levels. The a.g.c. amplifier takes a second or so to "catch up" after rapid changes in volume, so allow a little time between adjustments, etc

Any faults found are likely to be due to incorrect assembly (e.g., short-circuits on the board, reversed tantalum capacitors), faulty semiconductors or "dry" joints. Note that it is no use trying to test the unit using only the neon indicators in the override switches (where fitted), instead of external lamp loads. The neons do not draw sufficient current to hold the triacs on after they have been triggered.

In cases where there is an exceptional amount of electrical noise on the mains supply from other sources, the lights may flicker even when no audio signal is present. If this is a problem, a $0.1 \mu \mathrm{~F} 1000 \mathrm{~V}$ capacitor across the mains supply should cure it (see Fig. 6); alternatively, or in extreme cases additionally, the sensitivity may be reduced slightly by increasing the value of R17.

The unit described has been very reliable in use, and several prototypes have been constructed. With care, constructors will have a Sound-to-Light unit of professional standard, capable of long service.

STEP TONE GENERATOR

This circuit produces a sound which relates to defined increments stepping up and down a musical scale. No shift register or counter is required to produce each step, and with the exception of the peripheral components the circuit consists of only two 555 timers, an f.e.t., and a unijunction transistor.

One 555 is used as an astable driving a loudspeaker, with the other functioning as a triangular waveform generator providing a control ramp for feeding back into the astable.

Increments are provided by spikes from the unijunction at intervals of $100 \mu \mathrm{~s}$, which are impressed onto the triangular waveform. The output of the astable is fre-
quency modulated at the same rate, and as the triangular waveform changes, a series of loud beats are produced, running up and down the musical scale. The f.e.t. acts as a buffer to prevent loading of C 1 . This circuit could be modified to become a "blind man's d.v.m." or a relatively sophisticated voltage to frequency noise scrambler.

> D. Brown GM8FFH,
> South Hawthornhill,
> Dumbarton.

CAR CASSETTE POWER SUPPLY

This simple circuit uses a 7805, which is a compact device used mainly with TTL i.c.s and fed with an ample input of at least 8 V will produce a stabilised output of 5 V at up to 1 amp , provided it is mounted on a heat sink. The minimum of smoothing is required, and the overall circuit will provide 5.6 V to power a cassette player from a car battery.

Only a handful of components are needed and R1 was selected such that no voltage drop occurred at maximum volume and of course, the voltage never rises beyond 5.6 V without a load. There is, therefore, little chance of the device becoming faulty and damaging the cassette recorder. If a higher output voltage is needed, another diode

can be connected in series with D1 giving 6.2 V but for safety, the existing output is sufficient for most applications.

The output can either be connected directly to the battery connectors in the recorder or alternatively a low voltage power plug can be used to connect externally to the recorder if a socket is fitted.

The unit will work with cars using either positive or negative earth but if a metal box is used as a case, care must be taken to prevent it coming into contact with any part of the car body, especially if a positive earth is used.
M. Burrell, Halstead, Essex.

Everymonthist right frequency

When you're building a major project from a PW design, you want to be sure of getting every issue in sequence! Use this order form for a year's supply to be posted to you. ANNUAL SUBSCRIPTION RATES (including postage and packing) U.K. $£ 10.60$. Overseas $£ 10.60$.

practical

Please send me Practical Wireless each month for one year. I enclose a Sterling cheque/international money order for. \qquad (amount).
please use block letters
NAME Mr/Mrs/Miss \qquad ADDRESS

> POSTCODE
\qquad -
Make your crossed cheque/MO payable to IPC Magazines Ltd., and post to: Practical Wireless, Room 2613, King's Reach Tower, Stamford Street, London SE1 9LS.

A miniature highperformance, ser for narrowband f, m. operation, based on the plessey Semiconductors SL6640 integrated circuit

VHF/UIF FOLDEO COLINEAR AERIAL ARRAY

An omni-directional, vertically polarised design, giving 3dB gain over a dipole. Details are given for both 2 metre and 70 cm versions

The development of the Compact Cassette system from its inception to the present day is reviewed by Gordon J. King

After completing the assembly of the receiver as shown in Fig. 5, a careful visual check should be carried out on all wiring, the unit connected to a 12 V d.c. supply and the supply current measured. This should be approximately 75 mA in the absence of a signal. If a signal generator is available, this should be connected to the aerial socket via a suitable attenuator, and set to $455 \mathrm{kHz}(\pm 1 \mathrm{kHz})$ with internal modulation. A tone should be heard when the receiver is switched to give a.m. reception, and it should be possible to peak IFT1 and the filter IFT2 for maximum output. If necessary, increase the attenuation between the signal generator and the receiver progressively as the i.f. circuits are peaked. This alignment is best done with a relatively weak signal since the a.g.c. action will, to some extent, mask changes in the output level for strong input signals.

An input to the receiver of about 1 mV at 455 kHz will be all that is required in order to produce a strong audio output signal if the i.f. stages are working correctly. If a signal generator is not available, the i.f. stages may be aligned by tuning the receiver for a weak signal and then adjusting IFT1 and the filter for maximum output. In either case, the alignment process is greatly simplified by reference to the signal strength meter. To adjust the meter, VR4 is first set to mid-position and, with the aerial disconnected, VR5 is then adjusted to zero the meter. VR4 may later be set to calibrate the meter. Constructors should note, however, that there may be a slight interaction between these two controls and the setting-up procedure may have to be repeated whenever the calibration is being altered.

After completing the i.f. alignment, the r.f. tuned circuits of L1 and L2 should be aligned. The signal generator should be set to 1.45 MHz with internal modulation and VC1 set for maximum capacitance (i.e., vanes fully meshed). VC2 should be set to mid-position and the core of L2 adjusted until a strong signal is heard. The core of L1 is then peaked for maximum signal. The signal generator is then set to 3.5 MHz and VC1 adjusted to near minimum capacitance (i.e., vanes almost fully open) until a strong signal is again heard. The core of L1 should again be peaked for maximum signal but the core of L2 should
be left alone. If, however, the 3.5 MHz signal is not located, the core of L2 may be adjusted until a signal is heard at minimum capacitance. This establishes the high frequency end of the receiver's tuning range. There will be a noticeable difference in the settings of the core of L1 at 1.45 MHz and 3.5 MHz , due to the "tracking" error. With VC2 still set to mid-position, the signal generator is tuned to 2.5 MHz and a strong signal located at approximately mid-position of VC1 (i.e., middle of the tuning range). The core of L1 is peaked for maximum, when its position should be roughly mid-way between the 1.45 MHz and 3.5 MHz positions.

If a signal generator is not available, signals on known frequencies can be used as an aid to alignment. These could include broadcast signals at around 1.5 MHz , coastal radio stations on frequencies around 2 MHz , and the 2.5 MHz standard frequency and time signal. The vernier dial can be calibrated by first removing the scale, painting it with a matt-finish white or silver paint, and then using dry transfers to provide markings every 100 kHz from 1.5 MHz to 3.5 MHz . Alternatively, a somewhat simpler solution is to draw a calibration curve for the receiver and to refer to this whenever exact frequency readout is required. A typical calibration curve is shown in Fig. 6.

BFO

In order to align the b.f.o. transformer, IFT4, a strong carrier, preferably with no modulation, should be selected. With the receiver switched for a.m. reception, VC1 should be carefully tuned to provide maximum indication on the signal strength meter. The mode switch, S1, is then set to the s.s.b./c.w. position and, with VR3 set to mid-position, the core of IFT4 is adjusted for zero-beat.

A beat note may not, in some cases, immediately be heard since the heterodyne produced may lie outside the audible range. If this is the case, adjustment of the core of IFT4 should readily produce an audible note. The quadrature detector tuned circuit, IFT3, is best adjusted using a known f.m. signal of preferably 3 kHz peak devia-
backed off for best results. The facility to receive f.m. (which is very rarely used at h.f.) was thought to be a useful addition to a receiver which can potentially be used as a tuneable i.f. in conjunction with a v.h.f. converter. The f.m. facility provides for the reception of narrow-band f.m. signals of typically not more than 3 kHz peak deviation. Limiting action is automatically provided for strong signals. The f.m. detector will, however, not perform well with wide-band f.m. signals and, should this be an important consideration, constructors are advised to replace the i.f. filter IFT2 with a comparable type having a wider bandwidth (e.g., the CFT455B which has a nominal 8 kHz bandwidth and is pin-compatible).

The receiver is eminently suitable for either fixed or portable use. In each case the receiver will benefit greatly from the use of a properly designed aerial system and tuning unit or preselector. This ensures optimum performance and also helps to reject signals on the image channel. These sometimes appear as breakthrough of strong h.f. signals spaced by twice the intermediate frequency (i.e., 910 kHz) above the wanted signal. A particular problem associated with sensitive low- and medium-frequency receivers is that of line-timebase interference from nearby television receivers. There is often little that can be done to prevent this nuisance, but in exceptional circumstances it may be necessary to site the aerial some distance away from dwellings and to employ a buried coaxial feeder with its screen earthed at each end.

For mobile use, a simple base-loaded whip aerial should be adequate although, here again, some form of preselector or tuning unit will give vastly improved results.

Fig. 6: Tuning calibration curve, used as an aid to alignment

Fig. 7: The basic circuit of the image channel rejector

Fig. 8: An input tuned circuit using a ferrite rod

Aerial Matching

The additional tuned circuit shown in Fig. 7 will provide an extra 20 dB of image channel rejection. The variable capacitor VC should have a maximum value of about 500 pF . Ll consists of 100 turns of 36 s.w.g. enamelled copper wire wound in two layers on a 4.8 mm diameter former fitted with a dust core, base and screening can. L2 consists of 10 turns of $30 \mathrm{~s} . \mathrm{w} . g$. over-wound on L1. C C_{x} can be 47 pF for short aerials or 15 pF for a long-wire aerial.

If desired, this form of circuit can be modified to use a ferrite-rod aerial, as shown in Fig. 8, though it should be remembered that such an aerial is directional. Here, VC should have a maximum value of 208 pF . L1 is 22 turns of 30 s.w.g. enamelled copper wire wound at one end of a 180 mm ferrite rod (see Fig. 9), and L2 is 5 turns of 30 s.w.g. enamelled copper wire over-wound on L1. The ferrite rod should be mounted on pillars about 50 mm long, either above or to the rear of the receiver.

An aerial matching unit provides an excellent method of improving the r.f. selectivity of the receiver, thus adding considerably to the image channel rejection, and also acts as an impedance match. In the circuit of Fig. 10, Tr1 is operated as an emitter follower which exhibits a voltage gain of slightly less than unity with a high input impedance and a low output impedance. The circuit can be constructed on a small piece of Veroboard or matrix board. Component details for the input tuned circuit are shown in the table.

Tuned Circuit Details for the Aerial Matching Unit

\star components

Fig. 9: Details of the ferrite rod aerial

Fig. 10 (below) the circuit diagram of the aerial matching unit

Power Supply

The receiver will give many hours of operation from its internal battery supply which consists of eight U11 cells or equivalent. However, a mains power supply is a very useful addition to any receiver which is likely to be used for any length of time at a fixed location. The circuit diagram of a suitable supply is given in Fig. 11, with p.c.b.

Fig. 11: The circuit diagram of the mains power supply unit

track pattern and component layout shown in Figs. 12 and 13 respectively.

A centre-tapped mains transformer T1, and a full-wave rectifier (diodes D1 and D2) are used to build up a d.c. voltage across the reservoir capacitor C 1 . The smoothed output is stabilised by the series regulator transistor Trl, driven by a d.c. amplifier based on Tr 2 . Control of the output voltage from the unit is achieved by supplying the base of Tr 2 from an adjustable tap on the potential divider

Copper track pattern and layout of the power supply unit shown full size
formed by R4, VR1 and R3. Zener diode D3 provides an emitter-reference potential for Tr2. Changeover from a.c. mains to battery power is automatic in the event of a supply failure. This is achieved by the steering diodes D4 and D5. When the mains supply is present, the potential at point " A " will exceed that at point "B" (see Fig. 11). This will reverse-bias D4 and forward-bias D5, effectively open-circuiting the battery supply. When the mains supply is removed, either by accident or design, D4 will be forward-biased and D5 reverse-biased, supplying battery power to the receiver.

The power supply is straightforward to build and only one adjustment is necessary. Before connecting the output of the supply to the receiver board, the voltage at point "A" should be set to +13 V by adjustment of VR1. In case of any problems, typical test voltages as measured using a $20 \mathrm{k} \Omega / \mathrm{V}$ multimeter on the 25 V range are indicated on the circuit diagram.

The a.c. mains plug should be removed from the supply when the receiver is not required for operation over an extended period, since the mains unit remains working independently of the front panel on/off switch.

THE

 IU 'WINTON'

 IU 'WINTON' Stereo Amplifier

 Stereo Amplifier}

The Winton amplifier has been designed primarily for the home constructor who would like a high fidelity amplifier equal to the best commercial design available, but at a price that enables it to be built within a sensible domestic budget, the total outlay being in the region of $£ 110$ for the complete project.

All the components are available and no special test equipment is needed for testing or setting up. The amplifier uses the very latest techniques and is capable of a standard of performance at least equal to the best commercial designs available with similar power ratings. In some aspects of its design it will outperform other amplifiers costing very much more.
Power f.e.t.s are used in the output stage and allow a wider power-bandwidth response with lower distortion than could be obtained if conventional bipolar output transistors were used. In the control unit section, bi-f.e.t. op.amps are used. These have an improved slew rate over the more common types, as well as much lower distortion. In the disc (magnetic) pre-amplifier, a three stage circuit using ultra low noise transistors enables noise figures of -68 dB unweighted relative to 50 W output to be obtained, with distortion so low that the input (normally 3 mV) has to be increased to $140 \mathrm{mV}(+33 \mathrm{~dB})$ before the distortion even reaches $0 \cdot 1 \%$. A full circuit description will be given later.

On the front panel the Winton amplifier has controls for Volume, Balance, Bass, Treble and push buttons for selecting, Disc, Tuner, AUX 1, AUX 2, Tape monitor, Mono, h.f. and l.f. filters. Plus switches for mains on/off and loudspeaker or phones.
The headphone socket is also mounted on the front panel. DIN sockets are fitted on the rear panel for all inputs, terminals for the loudspeaker connections, an earth terminal, and fuse for the mains and each loudspeaker output. The heat sinks for the power f.e.t.s are also mounted on the rear panel.

Power f.e.t.s

Until recently bipolar transistors have been used in almost every Hi-Fi available (the exceptions using valves). Bipolar transistors require a wide area of Safe Operation to achieve reliability and a large gain-bandwidth product so that large amounts of negative feedback can be used at the higher audio frequencies to reduce the distortion. They also have a positive temperature coefficient which means that any increase in transistor temperature causes an increase in transistor collector current which causes the temperature to increase further, and so on requiring careful design to avoid thermal runaway. Also, as bipolar transistors are minority carrier devices, they suffer from storage effects at high frequencies which can cause a most objectionable distortion, which may well account for the so called "transistor sound".

In the light of all these problems a considerable amount of money and research has gone into looking for a better device. One result of this has been the power f.e.t.s developed by Hitachi Ltd., of Tokyo, Japan. Some advantages over conventional transistors are:

1) Good frequency response because of fast carrier speed.
2) No storage effect.
3) Negative temperature coefficients, so no risk of thermal runaway.
4) No secondary breakdown.
5) High input impedance and high gain.

The Winton amplifier uses a complementary pair of Hitachi power f.e.t.s Type 2SJ48 (p-channel) and 2SK 133 (n-channel). These devices have a maximum dissipation rating of 100 W each, so when used in an amplifier of 50 W output, each device is only dissipating about 25 W , or just ticking over! In fact combined with a 120 V drain to source breakdown voltage and a drain current of 7A they are almost indestructible when used in the Winton, which

[^3]

Fig. 1: Circuit diagram of the PW "'Winton'" stereo amplifier, showing Channel "a" (left) only. The following components are shared between the two channels: R12-15, 37, 38, 62-64; C2, 3, 8-11, 24, 40-45; Tr13, 14; IC1-3; D1, 2, 8-12; VR3; T1; F2; S9. The remainder are duplicated for the other channel

specification

Power Output

Continuous sine wave power, both channels driven
$50+50 W$ into 8Ω

Power Bandwidth (power amp. only)
$-1 \mathrm{~dB} 15 \mathrm{~Hz}-100 \mathrm{kHz}$

Frequency Response (power amp. only)
$-0.5 \mathrm{~dB} \quad 10 \mathrm{~Hz}-40 \mathrm{kHz}$
$-3 \mathrm{~dB} \quad 5 \mathrm{~Hz}-150 \mathrm{kHz}$

Harmonic Distortion (50 + 50W)
$1 \mathrm{kHz} 0.013 \%$
$10 \mathrm{kHz} 0.015 \%$
$20 \mathrm{kHz} 0.018 \%$
$100 \mathrm{~Hz} 0.011 \%$
$20 \mathrm{~Hz} \mathrm{0.019} \mathrm{\%}$
No significant increase at lower powers

Intermodulation Distortion ($28 \mathrm{~V} p k$ into 8Ω)
$\mathrm{f}_{1}=15 \mathrm{kHz} \quad 2 \mathrm{f}_{1}-\mathrm{f}_{2} 0.005 \%$
$\mathrm{f}_{2}=16 \mathrm{kHz} \quad 2 \mathrm{f}_{2}-\mathrm{f}_{1} 0.004 \%$
$f_{2}-f_{1} 0.003 \%$

Damping Factor

$20 \mathrm{~Hz}-1 \mathrm{kHz} 80$
20 kHz 20

Rise Time (power amp. only) $2 \mu \mathrm{~s}$

Slew Rate (power amp. on/y) $26 \mathrm{~V} / \mu \mathrm{s}$

Stability - Unconditional

Sensitivity for 50W
Disc 3mV
Tuner 100 mV
AUX 100 mV
Tape 100 mV

Input Impedance
Disc $47 \mathrm{k} \Omega$
Tuner $100 \mathrm{k} \Omega$
AUX 100k Ω
Tape $100 \mathrm{k} \Omega$

Maximum Input for 0.1% t.h.d.
Disc 140 mV
Tuner 4V
AUX 4V

Frequency Response $\pm 0.5 \mathrm{~dB}$
Disc RIAA
Tuner $20 \mathrm{~Hz}-20 \mathrm{kHz}$
$\mathrm{AUX} 20 \mathrm{~Hz}-20 \mathrm{kHz}$
Tape $10 \mathrm{~Hz}-40 \mathrm{kHz}$

Plot of Harmonic Distortion components generated when handling a 1 kHz signal dissipating 50 W in an 8Ω load. The 2nd harmonic is at -82 dB and the 3rd harmonic -86 dB relative to the fundamental

The upper trace shows the PW 'Winton'" output when handling a 1 kHz signal dissipating 50 W in an 8Ω load. Note the complete absence of crossover distortion

The lower trace shows the residual harmonic content of the above signal, after the fundamental had been removed by the distortion meter filter. The total harmonic distortion is about -78 dB , but is masked by noise

Plot of Intermodulation Distortion components generated when driven to full power into an 8Ω load by two equal-amplitude signals, $f_{1}=15 \mathrm{kHz}, f_{2}=$ 16 kHz . Component $2 \mathrm{f}_{1}-f_{2}$ is at $-\mathbf{8 6 d B}, 2 f_{2}-f_{1}$ at -88 dB , and $\mathrm{f}_{2}-\mathrm{f}_{1}$ estimated at about -90dB

This test, using these frequencies, is very critical of the power-bandwidth capability of an amplifier, and is seldom given in specifications due to the generally poor figures obtained

Hum \& Noise

Unweighted* with reference to rated sensitivity
Disc-70dB
Tuner -75 dB
$\mathrm{A} U \mathrm{X}-75 \mathrm{~dB}$
Tape -75dB

Hum \& Noise

Disc input with reference to 10 mV input Unweighted $80 \cdot 5 \mathrm{~dB}$

Cross Talk** -48 dB

Tape Output 100 mV
AUX 1100 mV via $100 \mathrm{k} \Omega$

* See comments regarding specifications.
** Important to note that cross talk residual is clean, i.e., does not introduce distortion into the other channel-a common failing in many amplifiers and seldom mentioned.

Tone Controls

Bass $\pm 10 \mathrm{~dB}$ at 100 Hz
Treble $\pm 10 \mathrm{~dB}$ at 10 kHz

Balance Control

+0.5 dB to zero, each channel

Channel Matching 0.5 dB

Filters

I.f. -3 dB 50 Hz	$12 \mathrm{~dB} /$ Octave
h.f. -3 dB 5 kHz	$12 \mathrm{~dB} /$ Octave

Subsonic, disc only, non-switchable

(IEC 65) -3 dB	20 Hz
-8 dB	10 Hz
-17 dB	5 Hz

Ultrasonic, all inputs except tape, non-switchable
$-3 \mathrm{~dB} \quad 60 \mathrm{kHz}$
$-7 \mathrm{~dB} \quad 100 \mathrm{kHz}$

Before making any measurements, the amplifier was pre-conditioned for 1 hour at 30\% full power with both channels driven. Measurements were made after a further 5 minutes at full power.
Unless otherwise stated, the volume control was at maximum, tone controls at centre and filters switched out.
The stability tests were made using various combinations of loads with capacitors up to $2 \mu \mathrm{~F}$ and also with capacitors up to $2 \mu \mathrm{~F}$ without additional load. Square wave signais were used over a frequency range of 20 Hz to 20 kHz .
The figures given are those obtained on the prototype amplifier.

Test Equipment

Hewlett Packard HP3580 spectrum analyser; KronHite 4100 low distortion oscillator; Sound Technology 1700B distortion analyser, power output meter and low distortion oscillator; Telequipment D83 oscilloscope; Polaroid oscilloscope camera.
This equipment was kindly made available by Armstrong Audio Ltd., at their research laboratory.

General Comment

Be very careful when comparing specifications of other amplifiers with the Winton. Many other published specifications use a weighted signal to noise figure. This would allow an extra 10 dB or so to be added to their figures and tends to favour the poorer quality amplifiers at the expense of the really good amplifiers.
means that the circuit can be kept simple as no protection circuits are required, eliminating another source of distortion.

The Bi-f.e.t. Op.amps

The use of the Texas bi-f.e.t.s in the control unit section offers a number of advantages over the more usual 741 type of op.amp. The main ones being:

1) Wider bandwidth. 3 MHz typical.
2) High slew rate $13 \mathrm{~V} / \mu \mathrm{s}$.
3) Low distortion 0.01%.
4) High input impedance j.f.e.t. input stage.
5) Low noise $18 \mathrm{nV} / \mathrm{Hz}$ (TL072CP).
6) 80 dB supply ripple rejection.

When used in low or unity gain circuits using large amounts of negative feedback the noise and distortion from the device is almost unmeasurable. The Winton amplifier has a basic sensitivity at the AUX inputs of 100 mV and this has to be increased to 4 V before the distortion reaches $0 \cdot 1 \%$. At any normally used input level the distortion is below the noise and completely inaudible.

Circuit Description

Both channels are identical and are pre-fixed "a" for left and " b " for right. Only the "a" channel will be described. See Fig. 1.

The Disc Pre-Amplifier

The input from a magnetic cartridge is fed into the base of $\operatorname{Tr} 1$, a low noise BC 414 via the input load $\mathrm{R} 1,47 \mathrm{k} \Omega$, and an r.f. filter R2C1. The transistor $\operatorname{Tr} 1$ forms one half of a differential input pair. Operating at a low current, approximately $100 \mu \mathrm{~A}$ each half, ensures the minimum amount of noise.

The output from $\operatorname{Tr} 1$ is coupled directly to $\operatorname{Tr} 3 \mathrm{a}$ BC556. This in turn is coupled to a subsonic filter (as recommended by IEC65) consisting of C12, R16 and R17. This subsonic filter has its -3 dB point at 20 Hz , Fig. 2. This response, coupled with the normal RIAA response provides a 12 dB /octave filter at subsonic frequencies and prevents intermodulation at low frequencies caused by warped records, etc., from being produced and affecting the overall sound quality. The RIAA negative feedback equalising circuit consists of R7, R8, C $5, \mathrm{C} 7$ and is connected between the output of $\operatorname{Tr} 3$ and the base of $\operatorname{Tr} 2$.

In order to ensure further the low noise factor in the disc amplifier, electronic decoupling is used, $\operatorname{Tr} 13$ (BC546) Tr14 (BC556) in each supply rail to remove any ripple or noise from the power supply. This supply has already been decoupled and stabilised by the Zener diodes, D1, D2.

The output from the disc pre-amplifier then goes to the selector switches S 1-5.

Control and Filter Section

From the selector switches S 1-5, each channel goes to one half of ICl a bi-f.e.t. op.amp, Type TL072CP. This is used as a low noise buffer amplifier (with 4 dB of gain) to provide a high impedance input, and a low impedance output suitable for driving the next stage, which also uses a bi-f.e.t. op.amp, Type TL082CP. This is used as an active high- (C15, C16, R22, R23) and low- (C17, C18, R24, R 25) pass filter. Operating at unity gain, the filter is designed to provide a $12 \mathrm{~dB} /$ octave cut-off with the -3 dB points at 50 Hz and 5 kHz respectively, Fig 3 . A slope of $12 \mathrm{~dB} /$ octave is considered to be optimum for Hi-Fi use as a steeper slope could introduce ringing on transients, which would sound most objectionable.

The tone controls follow the filters, again using a bif.e.t. op.amp, Type TL082CP, and the circuit is a Baxandall negative feedback type.

This type of tone control circuit keeps distortion and noise to a much lower level than the passive type and also provides frequency response contours more acceptable to the ear, Fig. 4.

The amount of bass and treble boost and cut has been restricted to around + or -10 dB at 100 Hz and 10 kHz . Although it is possible to obtain up to 20 dB boost and cut at these frequencies by removing R29 and reducing R33, extreme amounts of boost or cut are considered by the author to be bad design, as in practice large amounts can rarely be used. For example, suppose we have a signal requiring +10 dB at 100 Hz , with our circuit we can obtain this with only an extra dB or so at lower frequencies. If the unrestricted circuit was used, 10 dB of boost at 100 Hz would also produce 20 dB of boost at 20 Hz , as the response would continue to rise as shown in Fig. 4. The effect of this would be to increase all the rumble and other low frequencies a further 10 dB over the required level at 100 Hz . This would be in effect asking the amplifier for a considerable increase of power at low frequencies and as it cannot provide this, severe distortion would result. Note:

10 dB of boost equals a voltage ratio of $3 \cdot 16: 1$.

If our amplifier is already producing 50 W into 8Ω, i.e., 20 V , then $20 \mathrm{~V} \times 3 \cdot 16=63 \cdot 2 \mathrm{~V}$, power $=\mathrm{V}^{2} \div \mathrm{R}=3994 \div$ $8=499 \cdot 28$ watts!!

Even with the amount of boost restricted to +10 dB , if the bass control is at maximum and the amplifier is just reaching maximum power (50W) at say 20 Hz then the maximum power at 1 kHz must be limited to 5 W (assuming a flat frequency response of the input signal). In practice, the tone controls are normally used to make up for the deficiency in the incoming signals, i.e., to restore the signal to an overall "flat" response, so the power restriction normally won't apply.

The output from the tone control circuit then passes to the balance control and the tape monitor switch S8. This switch selects either the output from the control unit section or the output,from a tape recorder (connected to the tape socket) and feeds the signal via the volume control to the power amplifier. A tape output signal is permanently connected from the control unit output to both the tape socket and via $100 \mathrm{k} \Omega$ resistors to the AUX 1 socket. This arrangement allows the use of either or both reel to reel and cassette recorders with the Winton. When using a reel to reel or cassette recorder fitted with a monitor head (plugged into the "tape" socket) tape monitoring can be achieved by simply pressing the "tape" button.

Fig. 2: Disc input - Subsonic filter response

Fig. 3: Frequency response of l.f. and h.f. filters

Fig. 4: Frequency response range of Bass and Treble controls

Fig. 5: Cross-talk between the two channels, for Disc and Auxiliary inputs

Power Amplifier

The circuit used for the power amplifier is based on a design produced by Hitachi for their power m.o.s.f.e.t.s. The original circuit has been modified by the author to suit the requirements of the Winton and electronic decoupling added to further improve the overall specification.

The signal from the volume control, VR4 is fed via an r.f. filter R40, C27 to the base of $\operatorname{Tr} 4$. This is one half of a differential pair $\operatorname{Tr} 4, \operatorname{Tr} 5$ using low noise transistors Type BC556. These in turn drive a second differential pair, Tr6, Tr7, Type 2SC1775, which has an active collector load (current mirror formed by $\operatorname{Tr} 8$ and D3), to maintain the pushpull action. The power m.o.s.f.e.t.s $\operatorname{Tr} 11, \operatorname{Tr} 12$ are driven directly from the second differential pair. As the

inherent distortion of the amplifier is very low, only 45 dB of negative feedback is used, this is fed from the output, back to the base of $\operatorname{Tr} 5$ via R46, R45, C31. The use of less feedback means that, at the overload point, the onset of distortion is less severe then would be the case with amplifiers using considerably more negative feedback. Diodes D4, D7 and Zeners D5, D6 form an overdrive protection circuit to prevent the gates of the m.o.s.f.e.t.s from receiving excessive drive voltages in the event of a fault condition.

Due to the excellent high frequency response of the amplifier only minimal feedback phase correction is required via C31, R45, and L1, R58, R59, C39. The amplifier is unconditionally stable.

As mentioned earlier, electronic decoupling has been included in each power amplifier to reduce the power

components

Internal view of the PW "'Winton'' amplifier. Here, we show the final version
using a printed circuit board. The model illustrated on our front cover is the
prototype, which was constructed on perforated board with hard wiring
supply noise and ripple voltage, as well as improving the cross-talk (Fig. 5) between channels. Transistors Tr9, BC546 and $\operatorname{Tr} 10$, BC556 are used for the decoupling circuit.

Provision is made to adjust the d.c. offset at the output to zero. By adjusting VR5, the current through the differential input stage can be adjusted to compensate for the slight gain variation in each half of the differential pairs. It is very important that the output from the amplifier does not contain any d.c. voltage, as this would cause the loudspeaker cone to take up a position away from its centre which in turn would cause distortion because of the resulting non-linear cone movement.

Power Supply

By no means least important, the power supply of the Winton has been subjected to the same standard of design as the rest of the circuits, although on the surface it may look simple.

In a high fidelity amplifier the power supply can either turn a good amplifier into a top quality model or into a not so good one. There are two main reasons for this:

1) The regulation of the supply volts must enable the amplifier to reach its full power potential under the worst possible signal conditions. At the same time, it must not let the voltage rise to dangerous levels under quiescent conditions.
2) The external magnetic field from the transformer must not inject any hum into the amplifier circuits, particularly the disc amplifier.
To enable the full performance that the Winton is capable of to be achieved, it was decided to use a toroidal type of transformer. The design and development of this special low-field transformer was carried out by Belclere Ltd., and this transformer is now available from T \& T Electronics.

The output from the transformer goes to a bridge rectifier and then to the two $4700 \mu \mathrm{~F}$ capacitors C40, C41. These, and the electronic decoupling circuits used in the
power amplifiers, coupled with the Zener stabilised supply to the control unit and further electronic decoupling to the disc pre-amplifier, ensure that only about 0.001% of the total output from the Winton is noise from the power supply. Even on the disc input the total noise in the output from all sources combined is only about 0.04%.

Heat Sink Ratings

When designing an amplifier for domestic use, the design is almost always a compromise between all the various requirements. In the case of the Winton amplifier this applies to the size of the heat sink and mains transformer.

It is possible to make both of these components in such a way that the amplifier could deliver $50+50 \mathrm{~W}$ continuous power for hours on end without much temperature rise. The cost of doing this would be so high as to put the amplifier out of reach of most peoples' budget. On the other hand these components could be made down to a low price and the amplifier allowed to run very hot, which would lower the reliability.

In the design of the Winton the author has arranged that these two components will allow the power f.e.t.s and the transformer to run well inside their respective maximum rating under continuous drive conditions, although under these conditions both the heat sink and transformer will reach quite high temperatures and certainly be too hot to touch.

When used for its normal purpose, i.e., reproducing music, the temperature rise is very much less and after some hours of loud music will still be only moderately "Hot". The actual heat sink may reach $60^{\circ} \mathrm{C}$ under these conditions.

This compromise doesn't reduce the quality of the reproduced sound in any way, but it does avoid a severe pain in the wallet.

NEXT MONTH Constructional details

Those who built the Avon transmitter described in $P W$, July 1978 , may be interested in one or two simple yet significant modifications which were ultimately incorporated into the prototype. The purpose was to increase the power output to approximately 20 watts for the original 24 volt supply and to give some consideration to a repeater access facility. The question of powering the transmitter from 12 volts-a car battery, for instancewas also examined, and the update caters for this at a reduced r.f. output of around 9 watts.

In the first piace, the "Calibrate" facility provided by S1 in the switching arrangements of Fig. 10, p. 52 ($P W$, Aug. '78) was dispensed with and the switch re-assigned to a toneburst facility for repeater working. Details of the toneburst module appear elsewhere in this issue: the board on which it is constructed can easily be accommodated in the availabie space.

Step two is to replace the 15 V regulator (7815) with a 12 V type 7812 . Our attentions are then directed towards the power amplifier board, where the majority of changes take place. Here a little care is needed, although the modifications are far from complex. The revised board could, of course, be constructed as an "afterburner" which would provide a substantial increase in output from, say, a hand-held tranceiver.

Initially, remove the resistor R1 ($82 \Omega 2 \mathrm{~W}$) and take the h.t. feed (now 12 V) directly to the board. The collector supply to the p.a. transistors remains routed to the input of the 7812 voltage regulator, via the switching of Fig. 10 (Aug.' 78).

Now take out the BLY83 transistors and carefully expand the holes in the p.c.b. to accommodate the new 2N5642 devices. The leads will require a little trimming and this should be done fairly accurately to permit the transistors to fit on the appropriate islands on the board.

The increased output of the new p.a. inevitably means that appreciably more heat will be dissipated by the final stages. Additional heatsinking will have to be provided and in the prototype this took the form of a piece of aluminium $100 \times 50 \times 4 \mathrm{~mm}$, drilled to accept the studs of the power transistors. The sink is fixed to the main chassis by means of a suitable nut and bolt in each corner and the surface in contact with the chassis coated with Thermopath grease or similar compound. Insert the 2N5642 devices and tighten down, carefully soldering the connections to the p.c.b. afterwards (Fig. 1).

Fig. 1: Mounting the power transistors

The installation of the toneburst module designed by Philip Hodson is extremely simple. A power supply is taken, via the defeat switch S1, from across the energising coil of the keying relay RLA, which is shunted with a diode to absorb switching transients. Miniature screened lead feeds the signal input to the base of $\operatorname{Tr} 2$ (Board 1), with a $1 \mu \mathrm{~F}$ tantalum capacitor placed in series.

The prototype exhibited some problems which ultimately were attributed to stray r.f. entering the microphone input. It is therefore recommended that a

Fig. 2: The new switching arrangements - note the earth on changeover contacts RLA2, the option of different coil resistances for RLA and RLB from the original article, and the addition of diodes D2 and D3

Wideband RF Noise Source

 D.Whitfield

 D.Whitfield}

A wideband r.f. noise generator is a most useful device for carrying out rapid performance checks on all types of h.f. and v.h.f. receiver. The wide variety of applications of such an instrument includes gain checks, receiver sensitivity measurements and, where a calibrated attenuator is available, the noise generator may also be used to carry out accurate measurements of gain, noise figure, a.g.c. characteristics, and the calibration of signal strength meters.

The noise generator described here uses a minimum of components, is simple to construct and, although its output level is uncalibrated, is eminently suitable as a source for receiver alignment with an output which is substantially of constant level over a very wide frequency range. A previous article dealt with the construction of a matching calibrated 50Ω attenuator.

True "white" noise can be thought of as a signal which is evenly distributed over an infinitely wide range of frequencies and, although the instantaneous voltage varies randomly, the r.m.s. noise voltage developed into a resistive load will be constant when measured over a short time period. The noise power developed into a purely resistive load is thus directly proportional to the bandwidth in which it is measured.

Generating Noise

The simplest form of noise source is that due to thermal agitation current in a conventional carbon resistor. The fluctuation in current caused by the random movement of electrons is evenly distributed in frequency but the noise voltage produced is usually extremely small. Practical noise generators do not provide an infinite noise spectrum. This is due both to the limitations of the noise source itself and to the bandwidth of any following amplifier. The choice of noise source depends on a number of factors.

Fig. 1: Block diagram (a) and Thevenin equivalent circuit (b) of the noise source

Thermionic diodes are popular in commercial noise generators but, for economy of supply and portability, the noise source employed in this design is a conventional Zener diode. A considerable noise voltage is developed across the series load resistor of a Zener diode when it is undergoing breakdown. It is, however, usually necessary to include a stage of amplification following a noise source so that its output voltage is of a sufficient level for general purpose use. This has the added advantage that the amplifier stage also provides a degree of isolation between the noise source and the input of the circuit or receiver under test.

Circuit Description

A block diagram of the noise generator, together with its Thevenin equivalent circuit, is shown in Fig. 1. The noise output of the Zener diode is amplified using a twostage wideband amplifier, $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$. Both transistors operate in the common emitter mode and the gain of the second stage, $\operatorname{Tr} 2$, is made variable by the application of negative feedback by means of VR1. The device used in the $\operatorname{Tr} 2$ position has an effect on the bandwidth of the noise output. For use at v.h.f. the transistor recommended is a BFY 90 as this has a very high cut-off frequency. For general purpose use at h.f. (i.e. to at least 30 MHz) a much less expensive transistor may be used, and the 2 N 706 is quite adequate.

In order to facilitate matching to a standard 50Ω system, the output of the wideband amplifier is terminated in a 56Ω carbon resistor. This, together with the parallel effect of the collector load resistor of Tr2, ensures an output resistance of almost exactly 50Ω. The output noise voltage can be thought of as being generated in this resistor and thus the Thevenin equivalent circuit of Fig. 1b is realised.

Fig. 2: Circuit diagram of r.f. noise source

Construction

Construction is straightforward and the use of the printed circuit board layout described is highly recommended. Where a printed circuit board is not used, care must be taken to ensure that all wiring is neat and as direct as possible. The noise generator is housed in a standard diecast box. Any alternative screened metal box can be used provided that the leads from the printed circuit board to the output socket are kept as short as possible. A small

Fig. 3: Internal arrangement of components

\star components

Fig. 4: Printed circuit board copper track pattern shown full size

Fig. 5: Component placement
on p.c.b.

hole is made in the front panel of the box to provide access for the adjustment of VR1. Either a skeleton type or a knob type pre-set may be used. The latter will prove to be more satisfactory where frequent adjustments of output level are likely to be made. Care should be taken to ensure that the hole made in the case aligns correctly with the adjusting slot or shaft of the pre-set. Standard variable resistors are not recommended for use since they are not only too large but have considerable stray reactance which may impair the frequency response of the amplifier. The BFY90 is available in both TO18 and TO72 packagesthe latter type should have pin 4 (case connection) clipped off before soldering the remaining connections to the board.

Testing

When the wiring of the noise generator has been completed, a thorough visual check should be made before connecting the battery. Connect the noise generator to the input of a receiver and check that an output is obtained. If the receiver has a signal strength meter this should show a steady indication; if no signal strength meter is fitted a 'rushing' sound should be heard from the loudspeaker. Adjustment of VR1 should cause a change in the noise level. If possible, a check should be made over a range of frequencies. If the receiver sensitivity is constant over a range of frequencies its signal strength reading (or audible output level with a.g.c. off) should remain constant as the receiver is tuned across its entire frequency coverage. Receiver alignment may be carried out using the receiver's signal strength meter in a conventional manner. The use of an a.f. voltmeter connected across the loudspeaker terminals as an output level indicator is strongly recommended when alignment is carried out on receivers not fitted with a signal strength meter.

Amongst the majority of would-be and newly-licensed amateurs there still seems to exist an air of uncertainty with regard to repeaters. This is quite apparent by the number of new 2 m stations openly admitting "I'm recently licensed and don't fully understand repeater operation". This article looks at the principle of repeater working and suggests a suitable design for a toneburst generator with which to access them.

Operation via Repeaters

A repeater may be simply described as a remotelyoperated transceiver which simultaneously transmits on one frequency and receives on another. Such a function is usually referred to as duplex, as opposed to simplex, when transmission and reception occur on the same channel but not at the same time. In the duplex mode, the repeater transmit and receive frequencies are well separated, the transmit channel being the higher of the two. This difference is referred to as the "shift" and is 600 kHz in the case of 2 m and 1600 kHz at 70 cms .

The amateur therefore would normally transmit on the repeater receive channel, which is known as the input. Some confusion arises here, especially when the term "reverse repeater" is used. This, as the name implies, refers to the amateur transmitting on the repeater transmit channel, effectively by-passing the facility. The function can be useful when calling a station known to be within point-topoint distance, and under normal circumstances you would transfer to one of the simplex channels when contact has been established. For obvious reasons you should not call a station in this mode unless you can hear him on the repeater input.

Table 1: 2m Repeater Channels

Channel	Frequency (Receive)	Frequency (Transmit)
R0	145.000	145.600
R1	145.025	145.625
R2	145.050	145.650
R3	145.075	145.675
R4	145.100	145.700
R5	145.125	145.725
R6	145.150	145.750
R7	145.175	145.775
R8	145.200	145.800
R9	145.225	145.825

Table 1 shows the frequency and channel allocations for duplex repeater operation. Not all of these are at present in use within the UK however, our own stations being between R3 and R7 inclusive.

Access to a repeater is gained by a short burst of tone $(1750 \mathrm{~Hz})$ generated at the beginning of the transmission and lasting for 500 ms typically. Some repeaters require this to be followed by several seconds of speech without loss of carrier, and this is quite difficult to arrange if all the switching is done manually. The device described in this article fulfils all these functions by one operation of the push-to-talk switch.

Most repeaters, with the notable exception of GB3LO (London), restrict the duration of transmission. After a pre-determined period a time-out occurs and the repeater releases, having first sent a series of "pips" to advise the receiving station of its intention.

When the input of the repeater senses the absence of a carrier, an advisory signal is sent, indicating that the station is ready to be re-accessed. Here it should be clearly understood that the terms "access" and "re-access" do not relate to the same function. Re-access involves the resetting of the timing mechanism immediately after the repeater has been used, whereas access is given to mean "starting from cold", as it were.

British repeaters vary considerably in the method by which re-access takes place. Some require a toneburst with or without speech to follow, others operate on receipt of speech alone whilst some require only to receive a carrier, whether modulated or not. Some very interesting information is given in the International VHF-FM Guide \dagger, for those who would like to consider individual cases.

The Toneburst Module

Referring to the circuit of Fig. 1, we can see that the crystal oscillator operates at a frequency of 910 kHz . The Schmitt trigger IC 2a converts the waveform into a sharpedged square wave which is fed to the twelve-stage ripple counter IC3 as the clock reference. This counter, in conjunction with other gates, divides the clock frequency by 520 , thereby obtaining the required 1750 Hz necessary. The output is routed via another Schmitt trigger IC2c into a 3-pole Butterworth filter, which produces a relatively pure sine wave.

[^4]

Immediately power is applied, the capacitor C9 starts to charge through R10. As the potential rises towards that of the supply, a point is reached where IC 2c changes state, effectively blocking the path of the 1750 Hz signal. When this occurs, the system has to be re-set by disconnecting the power supply and consequently allowing the capacitor to discharge.

By installing the toneburst module in such a way that on pressing the microphone p.t.t. switch power is simultaneously applied to the transmitter, the access signal will be generated on the initiation of each "over" and the possibility of dropping carrier is eliminated. The provision of a switch in the power supply to the module permits its isolation when working simplex.

Construction

The discrete components should be mounted initially, leaving the crystal and integrated circuits until last. Omit resistor R12 at this stage, otherwise it will have to be removed in order to test the board.

If you do not wish to use holders, leave IC 1-3 until last. These devices are c.m.o.s. and so should be handled as infrequently as possible prior to installation. The techniques for soldering these components have been considered on many occasions within these columns and in other publications. These should be closely adhered to if damage is to be avoided from static charges. The crystal is also susceptible to damage from excessive heat. The best method of soldering this is to use a very hot iron and to complete the process as quickly as possible.

components

Fig. 2 (left): Copper track layout of the p.c.b. shown full size and (right) the component layout

The capacitor C9 is specially selected, and it has been found that only the type in the components list is suitable. Most tantalum beads have a tolerance of 20%, and these gave rise to problems in the prototypes. For this reason a tubular version with axial leads and a tolerance of 10% is required. Increasing the value of this device will lengthen the duration of the toneburst.

Testing the Board

Make certain that you have not fitted R12 before commencing. Now connect a small loudspeaker or pair of headphones between the slider of VR1 and earth, then temporarily short across C9 with a small piece of wire. Apply around 15 volts and you should hear a continuous 1750 Hz tone. Disconnect, and remove the short across C9. Re-apply power, and the tone should occur for a period of approximately half a second. Should it happen that the burst is appreciably longer, then reduce the value of the capacitor slightly. Selection of the correct value proved to be the only variable in the prototypes. The final decision to use $4.7 \mu \mathrm{~F}$ was taken only after exhaustive experimentation, which indicated that this value produced the most consistent results. Provided the burst duration falls between 540 and 650 ms , no difficulties should be encountered.

After carrying out these procedures, don't forget to insert R12!

If you are installing the module into the Avon transmitter, the following information may be helpful. Connect a microphone to the transmitter, key the device and adjust VR1 on Avon Board One to obtain a clear and undistorted speech output. Do not attempt to set for maximum volume; this is not the function of the deviation control.

Fig. 3(a): The toneburst module fitted to a simple push-to-talk arrangement

Fig. 3(b): Fitting the module into a high-power transmitter, where a keying relay is used

Too little deviation is preferable to an excess. Once adjusted, do not touch this control again, but alter VR1 on the toneburst module to give a level of tone slightly lower than that obtained with speech. If you are lucky enough to have access to an oscilloscope, the speech should be set for a maximum deviation of 5 kHz and the toneburst limited to 3.5 kHz .

Follow-up to the PW Avon

continued from page 48
100 pF silver mica capacitor be connected from the input to earth, as close to the p.c.b. as possible, to provide the necessary decoupling.

Replace the p.a. board and the modifications are now complete. Retuned, the transmitter will produce about 9 watts of r.f. with a power supply of 12 volts, rising to around 20 watts for the original 24 volt supply.

Operating the microphone pressel switch with the "Access Repeater" facility enabled will automatically generate toneburst, thus providing the required conditions to open repeater stations.

The power supply featured in the September ' 78 issue of $P W$ can easily be modified to handle the increased current drain, provided the transformer is capable of delivering 1 it . Merely place another $0.47 \Omega 25$ watt precision wirewound resistor in parallel with R2 (Fig. 1, p. 30, September '78 issue).

Q D D D TONEBURSTKIT ASINTHISISSUE

910 KhzXtal	2.16	4093
3.3 FTant	27 p	4040

When using a small current (such as that from a t.t.l. or c.m.o.s. logic device) to control a much larger current in a load, it is possible to employ a simple transistor amplifier in some cases, whereas if a higher current gain is required a power Darlington device may be used as an amplifier. However, simple circuits employing such devices do not incorporate any means of limiting the current in the load so as to protect both the load and the amplifier device from possible damage. Also they do not incorporate any means of protecting the amplifier device if it should undergo an excessive temperature rise.

The TDE 1607 is a new integrated circuit from Thomson-CSF which can be used to overcome these problems. Basically it is a protected operational amplifier, being designed for fairly high currents and voltages, and is specifically intended for the control of the current in such loads as relays, lamps and stepping motors.

The TDE 1607 is essentially fail-proof in operation provided that the absolute maximum permissible supply voltage and input voltage (both 36 V) are not exceeded. An external resistor can be incorporated in the circuit so as to limit the current in the load to any chosen value up to 0.5 A (although the TDE 1607 has a maximum permissible output current of 1 A). If the silicon chip in the device becomes too hot for safety, the internal circuit will automatically reduce the output current and thus prevent possible damage.

Connections

The TDE 1607 is supplied in a small circular metal transistor-type package with 6 leads. The connections are

Fig. 1: Package outline and connections

Fig. 2: Block diagram and 'pass' transistors
shown in Fig. 1, but it must be remembered that this is a top view. This device can operate over the wide temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

The way in which the device operates can be understood using the block diagram of Fig. 2. When the non-inverting input to the amplifier (marked +) is at a voltage greater than that of the inverting input at pin 2 (marked -), the output voltage from the amplifier at point A in Fig. 2 will be relatively high (only a little below that of the V^{+}supply line).

The output from the amplifier will then normally feed a current into the base of the transistor $\operatorname{Tr} 2$ (inside the TDE 1607) so that this transistor conducts and passes a current through the external resistor R_{sc} and through the load, R_{t}. The value of the current sensing resistor R_{sc} determines the maximum current which can flow in the output circuit. For example, if the value of R_{sc} is about $1 \cdot 5 \Omega$, a current of 0.5 A will produce about 0.75 V across R_{sc} and this voltage is applied between the base and emitter of the transistor Trl. It is adequate to cause this transistor to commence to conduct, so instead of the current from A passing to the base of $\operatorname{Tr} 2$, it will pass to the collector of Tr1. Thus $\operatorname{Tr} 2$ will pass only just enough current to maintain a large enough voltage across $\mathrm{R}_{\text {sc }}$ to keep $\operatorname{Tr} 1$ conducting. The current passing through $\mathrm{R}_{\text {sc }}$ is equal to the load current, so the internal transistors Tr 1 and Tr 2 can be used to limit the load current.

If $\mathrm{R}_{\text {sc }}$ has the value of 1.5 ohms mentioned above, the load current will be limited to about 0.5 A , whereas as $\mathrm{R}_{s c}$ is increased to 3 ohms, the maximum load current will be
about 0.25 A . The writer found experimentally that still larger values of $\mathrm{R}_{\text {sc }}$ could be used, a value of 100Ω producing a maximum current of some 10 mA . The exact value of the maximum current varies somewhat with the case temperature of the device, typical values being plotted in Fig. 3. Obviously the output current will never exceed the value of V^{+}divided by $\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{sc}}\right)$, since an adequate voltage is required to cause the current to flow.
The output current will flow only when the noninverting input of the internal amplifier (pin 3) has a potential exceeding that of the inverting input (pin 2); if this condition is not satisfied, the device will be 'off' and little output current will flow. If the silicon chip of the device ever becomes too hot for safety, the thermal protection circuit of Fig. 2 passes current from point A to ground so that there is little bias current to feed the internal transistor $\operatorname{Tr} 2$; the output current therefore falls until the device cools. However, it is unwise to operate the device for an appreciable time at such a high temperature that the thermal protection circuit is in operation, since such high temperature operation can tend to impair device reliability and certainly tends to produce surface defects on the chip. It should rather be regarded as a safety circuit which is not normally used.

Fig. 3: Typical output current plotted against case temperature

Power Supply

It is recommended that TDE 1607 device is fed from a power supply of between 10 V and 30 V ; it is, of course, possible to use $\pm 15 \mathrm{~V}$ balanced supplies if desired. The supply current is typically only 3 mA (maximum 5 mA for any TDE 1607 device) from a 24 V supply, when the output current is zero.

Fig. 4: Graph showing safe operating area

When the output voltage from the device is low, ideally no output current should flow and the output voltage should be zero. In practice, an output leakage current of up to $100 \mu \mathrm{~A}$ can flow through the load at a junction temperature of $20^{\circ} \mathrm{C}$ or up to $500 \mu \mathrm{~A}$ at a temperature of $85^{\circ} \mathrm{C}$, whilst the output voltage may be a volt or so above the potential of the ground line. Similarly, when the output voltage is in the high state, there may be a potential of up to 1.8 V between the output and the positive supply line.

The input currents required by the TDE 1067 are quite small, typically 100 nA (maximum $1 \cdot 5 \mu \mathrm{~A}$). The input offset voltage at which switching from one state to the other occurs is typically 2 mV (maximum 50 mV) between the two inputs.

Fig. 5: An application circuit of the device

In order to provide adequate protection for the device, the value of the resistor R_{SC} should be chosen so that one operates within the unshaded area of the graph of Fig. 4. For example, with supply volts of up to 24 V the value of R_{sc} should not be less than $0 \cdot 8 \Omega$ so that the output current is never allowed to exceed about 1 A . Obviously there is no objection to the use of larger values of R_{sc} where a smaller output current is adequate for the application concerned.

Typical Circuits

A typical application circuit for the TDE 1067 is shown in Fig. 5. The inverting input is biased by the potential divider to the desired value; a load current flows when the potential of pin 3 exceeds that of pin 2.

The diode D1 is required only if the load is inductive, such as a relay. When the current ceases to flow through the relay or other inductive load, a short transient reverse voltage can be developed across the relay coil. The diode is used to short this transient voltage to ground, since transients can damage the TDE 1067 device.

Fig. 6: Extension of the Fig. 5 circuit providing higher output current

5A Output

To provide a higher current than the TDE 1067 can itself supply, the circuit of Fig. 6 may be used in which an extra pnp power transistor fitted to a heat sink is used with the TDE 1067. Current limiting is again provided by the resistor $R_{s c}$, but the value of this component is much smaller owing to the higher current passing through it. Such small resistors are conveniently made from a length of resistance wire wound around a high wattage resistor of much higher value.

Conclusion

The TDE 1067 is a versatile device which can be operated by very low currents to its inputs. When used correctly in circuits, it is almost impossible to damage the device even if the output is short-circuited to ground. At the time of writing the price is $£ 2.99$ (including VAT) plus $£ 0 \cdot 20$ for packing and postage from Phoenix Electronics Ltd, 46 Osborne Road, Southsea, Hants PO5 3LT.

RIDIW IOIE:

Car Radio LW Converter, December 1978.
The MVAM 15 varicap diodes are sfown on the circuit diagram but omitted from the components list. They are avallable from Ambit Intemational, Gresham Rd. Brentwood, Essex.

Breadboards Supplement; December 1978.
On the 5 V regulated supply (p. 2 of supptement), DI is shown incorrectly. The configuration should be identical to that of D2.

Digital Door Chimes, December 1978.
tin the audio amplifier section in Fig. 1. Tr3 (BC160) is shown invented. The emitters of Tr 2 and Tr 3 should be linked. The collector of Tr3 goes to chassis.

Sandbanks Metal Detector. January 1979.
C17, 18, 19, and 20 are incorrectly shown in the components list (p .50) as 10 nF , These should all be $\ln \mathrm{F}$, as correctly shown on the circuit diagram on p. 49. In the circuit diagram; Fig. 2 , diode 3 should be reversed in polarity.

PW "Purbeck" Oscilloscope

Some readers seem to have misunderstood the information given in the Follow-up article $1 p, 55$ January 1979) regarding the mains transformer.

Due to an unfortunate combination of circumstances, the differing chatacteristics of the transformers supplied by Watford Electronics with their PW "Purbeck" kits were not picked up by the author when incorporating the sample transformer in the original PW "Purbeek" oscilloscope This oscilloscope and transformer have been in daily use now for many months, but two changes have proved necessary as follows.

If you are using one of the original Watford Electronics transformers then, as stated in the follow-up article, alt that need be done is to replace R103 by a wire shorting link, and to reduce the value of 101 to around $120 \Omega(5 \mathrm{~W}$ wire-wound; or better still, replace R101 by a wire shorting link. This provides a greater margin for low mains voltage It is NOT necessary to change the transformer:

Don't forget to check, as stated previousiv, that the X and Y Boards draw 20 mA and 30 mA respectively from the $\pm 150 \mathrm{~V}$ stabilised supply.

Please note that, when adjusting the input attenuator trimmers (C3-C10), a metal-bladed screwdriver is not suttable. An insulated coll-core adjuster should be used, and the hand held well clear to reduce stray tapacitance effects.

AUDIO MODULES

1 Stereo Cassette Deck N999
Complete with electronics uses：－
music centres，disco consols，tape editing etc．Freq resp $63 \mathrm{~Hz}-10 \mathrm{kHz}$ WOW： 0.15% FLUTTER 0.18% channel：separation 55 dB Electronic speed control．ALC Mic and line in－ puts．JAPANESE Manufacture－requires 12V DC．£23．95
2 Preamp Amp－PSU Wimborne 11W per channel Four Rotary controls．Vol Bass Treb Bal $2 \times$ PSU＇s for RF Board－cassette deck，LM 387 preamp IC driver．TIP $31+$ TIP 32 Output Pairs．Special price includes transformer £16．95
（October 1978 PW）

3 AMP 041

8 watt RMS per channel amp＋preamp supplied with pots．Fully complementary requires 28V DC．Price complete $\mathbf{£ 6 . 9 9}$

4 AMP 020

Stereo power amp 30W RMS per channel． Class ABI TIP 34A×TIP 33A． 16 Transistor circuit Fre resp $15 \mathrm{~Hz}-18 \mathrm{kHz}-1 \mathrm{~dB} . £ 7.99$

5 Matching HiFi Preamplifier

Four rotary controls－Vol，Bal，Treb，Bass． Treble $\quad 14 \mathrm{~dB}$ Bass $\quad 14 \mathrm{~dB}$ facility for loudness control $\mathbf{f 6 . 9 9}$

RF MODULES

6 Surplus RF Board 020
Complete MW／LW／FM／MPX Tuner uses 3 stage FET front end 2 ceramic filters 3089E－ 1310 Decoder．AM section built around 3132E， 2 stage tuning comes complete with 4 way switch－ferrite rod aerial－£9．99

7 RF 030

improved version of above extra gain stage imposed S / N ratio and 1.5 uV sensitivity for $26 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ way selector switch AFC stereo／mono switching－ 2 additional inputs $\mathbf{£ 1 9 . 9 5}$

8 RF 020

MW／LW／FM／MPX varicap tuned RF board as per 78 Nov／Dec PW Dual gate MOSFET front end． 2×1 Fgain stages 3189 Deviation mute，in－ terstation mute，MPX filters．STab PSU 1 uV sensitivity and 75 dB S／N ratio．AM Section also varicap tuned HA1197 excellent performance． Special price $\mathbf{£ 2 8 . 9 5}$

9 VT01

$108-150 \mathrm{MHz}$ MOSFET front end 26 dB gain $10 \cdot 7 \mathrm{MHz} 1 F$ output．Covers 2 metres． Amateurs．Aircraft etc． $\mathbf{£ 7 . 9 9}$

10 IF15

Matching IF Strip double conversion $10.7 \mathrm{MHz} / 470 \mathrm{kHz}$ AM／NB FM excellent performance $£ 12.95$

We have all parts in stock for the Wimborne Music Centre－parts for amps／tuner amps and music centres up to $\mathbf{2 5}$ Watts per channel．We stock all hardware and trim to give units a professional finish．Front panels，meters，knobs，sockets，etc．

A．Harshall dhondont Lld．，Dapt：PW Head Office maif order：Kingegale House，Kingsgale Placg，NWG ath．Tel：01－624 taos fietail sales Londan： $40-42$ Cricklewood Broadway，NW2 3ET．Tsl：01－452 0161i2．Telex：21492．London： 325 Edgware Road，W2．Tel：01－723 4292．
Glasgow：Bo west Regent Street，G2 2CDD．Tel：04：－232 4133，Bristol： 1 Straits Parade，Fistponds Foad，B516 2t X，Tef：0272 654201．

2N929	0.37	2N3417	0.25	2N4062		2N5245	0.37	AF106	0.80	BC182L	0.15	AY－3－8500	6.50	CA30	1.83	LM34015	0.03	LM	70	M7805KC	15	SN76013N	50
2 N 930	0.37	2 N 3439	0－35	2 N 4121	0.27	2N5248	$\underline{+14}$	AF109	0	BC183A	17	CA3000	3.30	CA3052	1.78	LM340T12	0.83	LM741C8	0.30	LM7812KC	1.75	SN76012NO	1.30
2 N 1131	0.32.	2N3441	0.92	2N4122	4.27	2N5293	4.4	AF114	0.78	BC183LA	－ 15	CA300	4.25	CA3053	0.77	LM340115	0.83	LM 741 C74	0.30	［M7815КС	1.75	SN76018KE	60
2N1303	0.30	2N3442	1.45	2 N 4123	089	${ }^{2}$ N5294	14	4F． 15	0.7	AC1 84	4.12	CA3002	3.30	CA3054	4.10	LM340124	0.83	LM747CN	G．99	LM7824kC	1.75	SN76023N	56
${ }^{2} \mathrm{~N} 1305$	0.30	2N3565	0.25	2N4124	419	2N5401	44	Fint	0.15	EC184L	0.15	CA3005	2.50	CA3059	2.16	LM341P5	0.80	LM748－8		LM78205C2	0.30		
2N1501	［ 30	143566	$0 \cdot 25$	こN4125	－18	${ }^{2} \mathbf{N} 5415$	1．65	${ }^{\mathbf{c}} \mathbf{7}$	0.74	BC205	$9 \cdot 12$							LM748－8	0.50 0.50	LM78L12C2	0.30	SN76023N0	1.36 2.35
2N1613	0.30	2K3567	0.25	－ CN 4125	${ }^{1} 18$	${ }^{2} \times 5447$	4.16	\％	0.5	BC212A	0.1	CA3006 CA3007	4.60	CA3062	3.75 1.10	LM341P12	0.80 0.80	LM748－14 LM716	0.50 1.00	LM7815CZ	0.30	SN76033N SN76110N	2.35 1.30
2 N 1637	0.77	2－3638	4.17	－ N 4235	1.35	2N5448	0.15	\％2U1	1．38	BC212 2 A	0.11	CA3007 CA3008	4.15 2.55	CA3084 CA3065	1.16 1.10	LM341P15	0.80	LM716	1.00 0.50	LM78224C2	0.30	SN76110N SN76115N	1.30 1.65
2N1890	030	243639	0.48	2N4236	1.15	2N5449	${ }_{0}^{0.20}$	CF201	1．70	${ }^{\mathrm{BC}} 213 \mathrm{Bb}$	0.15	CA3012	1.65	CA3068	3.80.	LM348N	0.95	LM911	0.50	MC1035P	1.50	SNT6i16N	1.80
$\begin{aligned} & 2 N 1893 \\ & 2 N 1991 \end{aligned}$	110	7N3644	0	${ }^{\text {7 }} \mathrm{N} 42377$	1.55	2N5458	0.35 0.35		1.26	${ }_{\text {BC2 }} \mathrm{BC214} 4$	0.12 0.12	CA3013	1.85	CA3070	1.90	LM358N	$0 \cdot 60$	LM921	0.50	MC1327P	1.70	SN76131N	1.30
2N2193	0.50	7k3663	0.29	SN4240	170	2N5555	0.65	AF2TE	0.8	BC2141	0.11	CA3014	2.20	CA3071	1.90	（M360N	3.00	LM923	0.50	MC1330P	1.10	SN76226N	1.68
2N2194	042	2k 3702	0.14			2N6109	0.55	AF26．：	0.05	BC237B	0.11	CA3018	0.75	CA3072	1.90	LM370N	3.30	LM1303N	1.15	MC1352P	1.20 3	SN76227N	1.30
2N2217	0.55	2N3703	0.14	2N4266	0.32	2N6122	0.44	ASY28	1.30	BC2388	0.13	CA3018A	1.10	CA3075	1.70	LM371H	$2 \cdot 35$	LM 1304N	1.52	MC14336	3.65	SN76228N	1.55
2N2218	035	2h3704	0.14	2N4284	0.38			ASY55	0.74	BC239C	0.11	CA3020	2.20			LM350K	6.45	LM1305N	1.52	MC1435G		SN76531N	0.82
2N2219	038	273705	0.14	2N4286	4.32	2N6124	8.45	W． 107	0.16	BC256A	0.2	CA3020A	2.50	ca30		LM373N	3.35	LM1307N	1.22	MC1439G	1.75	SN70532N	1.55
2N2221	028	＋173706	0.14	2N4287	422	2N6125	8－4	Sc108	0.16	${ }^{8 C 257 A}$	0.12		2.40	CA3080A		LM374N	3.35	LM1310N	2.10	MC1440G	1.85	SN76533N	1.30
2N2222	0.26	${ }^{2 N 3707}$	0.14	2N4288		2N6288	5．bs	5109	0.15	${ }^{8 C 2588}$	0.24	${ }^{\text {CA33022 }}$	2.20	CA3086	2． 0.50	LM377N	1.80	LM1351N	1.30	MC1456G	2.15	SN76544N	1.60
2N2270	0.49	2／3708 W3709	8． 12	2N4292	${ }^{2} 1$	2 S 702	$3 \cdot 3$	201．3		BC2598	0.17 0.85	CA3023	2.20	CA3088	1.87	LM378N	2.40	LM1458N	0.45	MC1463R	3.90 3	SN76545N	1.80
2N2388	0.27	－1N1710	${ }^{1} 12$	2N4303	8.31	25703	3.93		0.22 4.22	BC261A BC2628	0.25	CA3026	0.7	${ }_{\text {CA }}^{\text {CA3088F }}$	1.87 2.90	LM3799	4.25	LM 4496 N	197	MC1438L	3.35 3.16	8N76546N	\＄．59
2N2369	0.27	－N3711	4.12	2 N 4342	－1．6．	40232	0.54	区1．	4.21	BC2628	0.25	C41028A	0.98	CA30900	4.40	LM380N8	0．8s	LM1800N	$1-94$	MC1469R	3.16	SN76550－2	6．3
2N248	$0 \cdot 30$	SN3712	1.39	2 N 4401	4.28	40311	0.65		F．22	${ }^{\text {BC2638 }}$	425	LC10288	1.25	CA3i30	1.06	$1 \mathrm{M380N14}$	1．02	LM1812N	6－20	MC1495L	5.6	SN76570N	6．5） 1.85
2N2613	0．4	2N3714	4.65	2N4402	－ 26	40316	I	C135	1.8	BC26	$4{ }^{\text {\％}}$	－ 01029	0.75	CA3140	1.04		$2 \cdot 10$	LM182	$1-16$	MC1529G	7.12	SN76620AN	1．85
2N2646 2N2848	1.15	2N37	170	2N4403	48	40389	7	ค．13\％	1.91	${ }^{\text {BC3 }}$ C308B	616	C61029A	0－90	LOBST1		LM381N	1.69	$1 \mathrm{ml}{ }^{\text {chen }}$	190	MC4024P	2.20	SN／6650N	1．26
2 ${ }^{\text {290 }}$ 294	0.7 t	2N3794	0.21	2N4822	0.63	40408	0.12	3 ）	17	BC309C	618	C．6． 1030	1.50	LM1 $14{ }^{\text {H }}$	2.75		1.12			MM5314	4.62	SN76660N	0．65
2N2905	0.31	243819	0.36	2N4870L	0.58	40440	0.74	をじ30	0.44	8С327	42	［53030A	2.20	LM301AH	0.50	LM386N	1.5	LM184	190	MM5316	4.62	\＄N76666N	0.87
2N2906	0.24	243820	0.39	2N48711	4.51	40512	1.70	\％ 40	0.30	BC328	020	${ }_{4} 41033$	3.78	LM3018	0.30	LM387N	1．16	LM1845N	150	MM5320	4.20	56100	2.75
2N2907	0.25	243821	0.95	2N4898	1.55	40594	0.87	$3 \mathrm{c}, 141$	0.32	BC337	020	Cr， 1034	2.75	LM304	$2 \cdot 0$	LM38N		LM1848N	198	NE555	6.33	SL611C	2.75
2N2923	0.17	743827	0.27	2N4901	1.65	40595	0.93	ES．143	0.32	BC414	0 r	C．23035	1.95	LM307N	0．010	LM388N	1.63	LM1889N	190 490	NE556	6.65	S． 612 C	2.7
2N2924	0.17	$\geq 43854 \mathrm{~A}$	0.30	2N4992	2.20	40673	0.80	N： 141	0.13	BC415	¢ 18	CA3036	1.21	LM308H	1．89	LM389N	1.03			NE560	4.51	\＄1620C	161
2N2925	0.19	2N3855	0.30	2N4903	2.75	AC126	0.43	E．149	0.15	BC416	517	CA3038	2.90	LM308N	0.45	LM555cN	0.33	LM2907N－8	1.80	NE561	4.50	SL．621C	1.1
2N3011	0.37	2N3856A	0.19	2N4904	1.85	AC127	0.48	BC149	0.15	BC547A	0.13	CA3038A	4.10	LM309KC	1.95	LM565CN	1.39	LM2987N－8	1.80	NE562	4.50	SL623C	5.25
2N3020	0.75	2N3588A	0.20	${ }_{2} \mathrm{~N} 4905$	2．49	${ }^{\text {ACLI28 }}$	0.43	${ }_{\text {B }} \mathrm{C} 153$	0.30	${ }_{8 C 5478}^{\text {BC5 }}$	013		0.77	LM317K	23.35	LM7018	2.99	LM3301N	0.60			SL640C	4.4
2N3053	0.25		0.22	${ }^{2} \mathrm{~N} 4920$	6.83 0.30	AC151 AC152	0.43 0.54	P175．1 ACI5A	0.30 0.15	BC548 BC5498	4．93	－A3040	3.76	LM318N	2.15	LM701C LM 7026	2.99 0.81	${ }_{\text {LM3302N }}$	0.55 0.55	NE566	1.35 1.90	$\underset{\text { SL }}{\substack{\text { SL01C }}}$	4．4．4
2N3055	0.75	ZH3866	1.98	2N5087	${ }_{6} 6$	ACI53	0．69	RC153B	0.15	ВС558	［． 13	－${ }^{33041}$	1.65 1.65	LM32005		，	1.15	LM3900N	0.68	NE558N	1.95	SL7016	
2N3108	0.75	24x901	0.30	2N5088	436	ACI 53K	0.59	RC15 $\mathrm{B}^{\text {B }}$	017	BC559	0.15					LM709		LM3905N	f． 15	NE571N	4.85	TAA233	1.33
2N3133	0.50	2M3904	0.18	2N5089	430	AC176	0.54	日C16＊	038	BCY54	48	${ }^{2} \mathrm{~A} 3045$	1.58	LM320T24	2.15	LM709	0.50	LM3909N	0.78			rasiou	
2N3242	0.61	$\underline{-143}$	0.18			AC176K	0.60	8－16．8	05	BCY58	－27	－A3046	0.77	LM3209 ${ }^{\text {P／}}$	1.15	LM709．14	0.49	LM391 ${ }^{\text {N }}$	1．10	SAS570	0	taas50a	1．15
2N3250	0.3	－	8	2N5130	0.22	AC187	b． 59		（0．13）	BCY70	121	A3047	2.20	LM320MP12	1．15	LM710	0.67	［M4250CN	1．30	SAS580	2.40	tas521	${ }_{1.15}$
2N3301	0.48	283962	0.95	2N5131	0.22	AC187K	4.65	SC169B	0.13	BCY71	$+25$	CA3047A	3.70	LM320MP15	2．115	LM710－14	0.64	LM78L05CH	0.85	SAS590	2.40	taA522	2.16
2N3302	0．39	2h4031	0.55	2N5137	0.22	AC188	－ 54	BC1708	0.19	BCY72	4.13	－A3048	2.45	LM320MP24	1．15	LM7IICN	$0 \cdot 12$	LM78L12CH	0.85	SN76001N	1.30	taA550	0.41
2N3392	0.17	2N4032	0.65	2N5143	4.22	AC188K	5.65	Q．1718	0.47		843	［A3049	1.93	LM323K	6.95	LM723C	4.75	LM78L15CH	0.85	SN76003N	2.38	TAA560	2.19
2N3394	0.17	2\％1033	0.65	2N5180	4.58	${ }^{\text {ACF1 }} 1$	1.00	${ }^{8172 C}$	0.15 0.17	${ }^{80121} 8$	220	A3050	2.66	LM339N	0.65	LM723C－14	6.45	LM78L24CH	0.85	SN76008KE	1.60	ta4570	2.25
2N3397	0.19	＜11036	0.72	2N5190	4.65	ACY22	0.	－ 1736	0.17	B6131	055												

[^5]
BENTLEY ACOUSTIC CORPORATION LTD.

7a GLOUCESTER ROAD, LITTLEHAMPTON, SUSSEX
All prices inclusive of V.A.T. at $12 \frac{1}{2} \%$ (2nำ

in in in í

MATCHED TRANSISTOR SETS:LP15 (AC113. AC154, AC157, AA120) 75p per pack. 1/OC81D \& 2/0C81, £1.00.1/0C82D \& 2/0C82. 56p. Set of $3 / \mathrm{OC} 83$ 76p.

Special offer of EF50 valves, soiled, but new and tested, $£ 1$ each.
All Goods are unused, tested, and guaranteed. Despatch charges:- 50 p on all orders below 125 in value. Orders post free. Orders despatched same day as received. Any parcel insured against damage in transit for $5 p$ per parcel extra.
Terms of business available on request. Many others in stock too numerous to list. Please enclose S.A.E. for reply to any
queries. All prices subject to change without notice.

SUPERSOUND I3 HI-FI MONO AMPLIFIER
fier. Brand new components her. Brand new components oughout. 5 silicon trantransistors in push-pull. Full wave rectification. $\begin{array}{lll}\text { Output } \\ \text { watts } \\ \text { approx. } & 13 \\ \text { r.m.s. into } & 8\end{array}$ watts r.m.s. into 8
ohms. Frequency re-
sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ sponse
3 db . Fully
integrated pre-amplifier stage with separate Volume. Bass boost and Treble cut controls. Suitable for 8-15 ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full
output. Supplied ready built and tested, with knobs, escutcheon panel input and output plugs overal size $3^{\prime \prime}$ high $\times 6^{\prime \prime}$ wide and output plugs. $\times^{\prime \prime}$ deen. AC $200^{2} 250 \mathrm{~V}$.
HARVERSONIC MODEL P.A.
tWO ZERO
An advanced solid state general
purpose mono amplifier suitable
for Public Address system
Disco, Guitar. Gram.. etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre-
amp). Input 1.15 mv into 47 k . Input $2,15 \mathrm{mv}$ into 47 k amp). Input 1.15 mv into 47 k . Input $2,15 \mathrm{mv}$ into 47 k . (suitable for use with mic. or guitar etc.). Input 3
200 my into 1 meg . suitable for gram. tuner. or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front banel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains operation $200 / 240 \mathrm{v}$. Size approx.
Special introduciory Price $£ 28 \cdot 00$
"POLY PLANAR""WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $111^{\prime \prime} 14 \frac{4}{4^{\prime}}$ " $1 \mathrm{l}^{\top}{ }^{\circ}{ }^{\prime \prime}$ deep. Weight 19 oz . Power hanly. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables. etc., and used with
 Now available in either $8^{\prime \prime}$ round version or ${ }^{4 \prime 2}$.
rectangular. 10 watts RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ} \quad 5 \cdot 25$
P. \&P. Cone 65p, two 75p). 100 mV out. 15 to 35 V neg. earth. Equ. \pm IdB from
20 Hz to 20 KHz . Input impedance 47 K . Size $1 \$^{\prime \prime} \times$ $\frac{2 \frac{3}{8} " \lambda 5 \frac{5_{8}^{\prime \prime}}{}{ }^{\prime \prime} \mathrm{H}, £ 2 \cdot 60 \quad 20 \mathrm{p} \text { P. \& P. }}{2^{\prime \prime} \text { PLASTIC CONE HF TWEETER } 4 \text { ohm, } £ 35 \text { per }}$

MAINS OPERATED SOLID STATE

 AM/FM STEREO TUNER
$200 / 240 \mathrm{~V}$ Mains operated Solid State FM AM
Stereo Tuner. Covering M.W A.M. $540-1605$
S. KHz VHF/FM 88-108 Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM.
Stereo
Beacon Lamp Indicatot. Built in Pre-amps with variable output voltage adjustable by pre-set control. Max o/p Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak finish cabinet.
Will match almost any amplifier. Size $84^{\prime \prime} \mathrm{w} \times 4^{\prime \prime} \mathrm{h} \times$ Will match alroost any amplifier. Size $84^{\prime \prime} \mathrm{w} \times 4^{\prime \prime} \mathrm{h} \times \mathrm{d}$ approx. LIMITED NUMBER ONLY at $£ 28.00$

10/14 WATT HI-FI AMPLIFIER KIT

A stylishly finished monaural amplifier with an output duction of both music and speech with negligible hum Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output transformer to match $3-15 \Omega$ speaker and 2 independent volume controls. and separate bass and treble controls are provided giving EFOd lift and cut. Valve line-up 2 EL84s, ECC83, 25p . SAE (Fro rech er. Simple instruction booklet 25D SAE (Free with parts). All parts sold separately. uilt and tested $\mathbf{5 2 0 . 0 0}$ P \& P £1.40 a

built and tested $\boldsymbol{£ 2 0 . 0 0}$

STERE SIZE 2

ready built. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can clusive of hints and (ips) supplied. $\mathbf{f 6} \cdot \mathbf{0 0}$ plus 200

SPECIAL OFFER

Slightly shop soiled radios by well-known manufacturer for AC Mains or battery use. MW and FM bands. Dynamic M/coil speakers. telescopic aerial and internal Finished in attractive simulated leatherette. Size. $7^{\prime \prime} \mathrm{H}$. $9 \frac{1}{2} " \mathrm{~W} 4^{\prime \prime} \mathrm{D}$ approx. Fully guaranteed Bargain price of only $£ 10 \cdot 00 \cdots £ 1 \cdot 30 \mathrm{p} . \& \mathrm{p}$.
MODEL FL4
Few only similar to above, but battery operation only and fitted with twin speakers. Four wave bands, MW. FM and two VHF bands for reception of aircraft and
some public services. ONLY $£ 9.50-£ 1.30 \mathrm{p}$. \& p . MODEL MULTI 5
Specification as Model FL4 but with additional SW
band. Fitted wih twin speakers. ONLY \&11.00

HARVERSONIC SUPERSOUND 10 - 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five level with each channel resulting integral pre-amp with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartriages. Very simple to modify to suit magnetic cartridge-instructions included. Output stage for any speakers from 8 to 15 drilled metalwork high, all parts supplied including dircuit board with high quamy ready drimed printed marked, smart brushed anodised aluminium front panel with matching knobs, wire solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts $\pm 3 \mathrm{~m}$.
$\pm \mathrm{d}$
$12-30,000 \mathrm{~Hz}$ Sensitivity: better than 80 mV into M Ω : Full power bandwid Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble Power requirements 35 v . at 1.0 amp .
Overall Size $12^{\prime \prime}$ w. 8 "d. . $2 \frac{3}{}{ }^{\prime \prime} h$
ully detailed 7 page construction manual and parts AMPLIFIER KIT $\quad . \quad$. \quad \&14.50 P. \& P. 80p POWER input components 33p ext $\mathbf{8 6 . 0 0}$ P. \& P. 95p CABINPT
SPECIAL OFFER-only $£ 25 \cdot 00$ if all 3 items
ordered at one time plus $\mathfrak{£ 1} \cdot 25 \mathrm{p} . \& \mathrm{p}$.
Also avail. ready built and tested $£ 31 \cdot 25$, P. \& P. £1.50.

HARVERSONIC STEREO 44

A solid state stereo amplifier chassis. with an output of atest high technology integrated circuit amplifiers with built in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse. tone control, volume controls, 2 pin din speaker sockets \& 5 pin din tape rec. play socket are mounted on he printed Supplied brand approx. 9 w ${ }^{2}$, 1 max. depth. Supplied brand new \& tested, with knobs, the amplifier to be mounted horizontally or vertically) at only $£ 10-00$ plus 50 p P. \& P. Mains transformer with an output of 17 v a/c at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $£ 2.00+$ $40 \mathrm{D} P \& P$ if required. Full connection details supplied. All prices and specifications correct at time of press and subject to alteration without notice.
PLEASE NOTE: P. \& P. CHARGES QUOTED
APPLY TO U.K. ONLY. SEND SAE WITH ALL

Easy

Verospeed have announced the introduction of two "Zero Insertion Force" (AB 052) di.i.p. sockets, available in $16-$ and 24-way configurations. They are designed to eliminate mechanical damage to expensive integrated circuits during test, burn-in or programming operations. The i.c.s may be inserted or removed with zero force on the leads.

When the lever is operated the socket exerts uniform force on the leads and compensates for varying lead thicknesses. They are priced at $£ 5.36$ and $£ 7.10$ respectively and are available from: Verospeed, Barton Park Industrial Estate, Eastleigh, Hants SO5 5RR. Tel: (O703) 618525.

Wire-wrapping

OK are probably the only company who produce wire-wrapping equipment specifically for the hobby market and their latest kit HW-KI brings power wire-wrapping within economic reach of the home electronics enthusiast.

The main item in the kit is a newly designed battery-operated wirewrapping gun, based on the design of the company's industrial units. It is for use with $0.6 \times 0.6 \mathrm{~mm}$ mini-wrap terminals and has a bit and sleeve to give modified wrap. The tool is also self indexing and has a back force device to prevent overwrapping.
It is powered by two NiCad batteries, the two batteries provided having a year's guarantee, and a mainsoperated charger is included. Also in the kit is a handy 'pocket-sized' wire dispenser, containing 50 ft of 0.25 mm

Mini-drill

Recently introduced by Boss Industrial Mountings Ltd. is a mains drill plus accessory kit housed in a specially designed carrying/presentation case with transparent lid.

This small but powerful 220/240V a.c. BIMDRILL is supplied with 4 collets capable of accepting tools with shanks of $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and 0.125 in diameter, and will readily drill brass, steel, aluminium and p.c.b.s.

Complete with spring-loaded on/off switch and a 2 metre long cable fitted with a 2-pin DIN plug, this BIMDRILL has a fully insulated, high impact, ABS body, weighs less than 250 g and has an off load speed of approximately 7500 r.p.m.

The accessories include 20 assorted twist drills, mops, burrs, grinding wheels and mounted points, all individually and securely located within the $230 \times 130 \times 50 \mathrm{~mm}$ case. Priced at $£ 22.14$ which includes VAT and P\&P, the kit is available from: Boss Industrial Mouldings Ltd., Higgs Industrial Estate, 2 Herne Hill Road, London SE24 OAU. Tel: 01-737 2383.
wire. The other item is a hand tool which can strip wire, wrap and unwrap.

Suggested retail price of the HW-KI is $£ 46.28$ (inc. VAT and carriage). $O K$ Machine \& Tool (UK) Ltd., 48a The Avenue, Southampton, Hants SO1 2SY. Tel: (0703) 38966/7.

Drill-Mills

A circuit board without a track? A single Stahler drill-mill bit simultaneously drills holes and mills isolated pads in plain copper clad board to produce circuit boards without etching.

Drill-mills are designed to perform two separate functions-Isolated-pads drill-mill drills a hole and mills a circular moat leaving an electrically isolated copper pad. Insulated-spot drill-mill also drills a hole, but instead of milling a moat, it milis out a disc
from the copper cladding around the hole. The application is to provide clearance spots for ground-plane mounting of d.i.p. sockets, feedthrough sockets, etc.

In each case the tools comprise a replaceable high speed or carbide twist drill, either $0 \cdot 0400$ in diameter or 0.0292 in diameter. Each tool is also available in three pad milling sizes, 0.01 in, 0.15 in and 0.20 in . Prices and a free catalogue are available from: Carel Components, 40-44 The Broadway, London SW19 1SQ. Tel: 01-5407186.

by Eric Dowdeswell G4AR

An interesting letter from Les Light G3KDL of Wembley, Middx, prompts me to write a few words for the reader who may be reading this column for the first time, perhaps after having had interest aroused elsewhere by contact with amateur radio.

Les received a letter from a young but obviously enthusiastic listener simply saying he had heard Les on the 80 m band. Time and frequency were given, but little else, except some details of the receiver and aerial. Now, with the best will in the world, the report was not of much use at all, but Les, no doubt thinking back to his own early days in amateur radio, did send a QSL.

It is naturally very exciting for the newcomer to listen to amateurs for the first time especially when they realise the comparatively low power of the amateur, possibly being accustomed to the high power stuff on the BC bands. So off goes a report such as quoted above, with a request for a QSL, and probably no s.a.e!

With the advent of so much commercial gear and highgain beam aerials, worldwide working by amateurs is commonplace and the excitement of working and then getting a QSL from some DX spot has waned somewhat. QSLing had decreased over the years to the extent that some amateurs don't even bother to have cards printed!

So the report from a listener, even if from the other side of the world, is of little use, generally speaking. It has got to be something unusual in the reception, or perhaps the other fellow is using very low power, before it is worth sending a report. I would counsel any beginner to first get the Guide to Amateur Radio from the RSGB to see what it is all about and to study, in particular, the section dealing with QSL matters.

The cost of QSL cards and postage today is enough to deter anyone from the hobby, so if you must send a report and request for a QSL, then make it easy for the other station by sending a s.a.e., or International Reply Coupons for overseas stations, and a report worthy of attention. Don't use these silly 5×3 in envelopes! Send something a bit bigger. Having sent tens of thousands of QSLs out when I was ST2AR I rate the small envelope as the biggest annoyance of all!

Collecting QSLs can be fun, or used to be, but if there is any intention of going on to get a transmitting licence I would say the best policy is to spend the money on the receiver and associated gear rather than on QSLs and QSLing. You'll need every penny for the entrance fee for the RAE and the ticket itself. Then you can have your own QSL card, and receive them from stations you work, when they really mean something.

General Notes

An interesting note from Owen Frame G4EIF of Reading, Berks, on the mysterious H44LW mentioned in the December issue. Owen confirms that it is the Solomon Islands, as he has a QSL for an s.s.b. QSO. QTH is Box 19, Honiara. Owen added, that he used to be ST2WF in Khartoum in 1934 with the RAF, with 80W of c.w. from 12 V accumulators! As he says: "happy days".
N. Eddy writes from Truro, Cornwall, for the first time although he has been reading $P W$ for many years. He is a member of the Cornish ARC and sports an AR88 and BC 348 with main interest on 14 MHz . He also has a 62 H receiver which he'd like to convert for 2 m operation, if any reader can help him on mods. Write to: Little Tregadles, Laity Moor, Ponsanooth, Truro, Cornwall, all expenses paid of course. John Bell BRS40279 in Melksham, Wilts, had "quite an amazing response" to his request for info on the AR88, particularly from Michael Swain G8MMP. John recently got hold of an Eddystone EC10 and, as an instructor to mentally handicapped people, he is going to try to teach elementary geography using the EC 10 to demonstrate the reception of BC stations from various parts of the world. Apparently a fellow instructor has had some success this way.

Newcomer to the column Derek Brabrook of Laurgharne, Dyfed, Wales, has been using a domestic type Pye set for a couple of years or so, as it goes up to 26 MHz . However, he finds his 223 ft aerial "difficult and poor''. I'm not surprised! It must be overloading the front end I imagine on the stronger signals, as I doubt whether there is any r.f. gain control, and selectivity can't be much good on such an old set. Instead of blaming the set, I suggest keeping the aerial and getting a more modern set!

In Oswestry, Salop, David Wyatt aged 14, has acquired a BC348 and promptly found KC4USX in Antarctica on 20 m s.s.b. His main regret is that it does not go above 18 MHz so he can't listen to the 10 and 15 m bands. Again, a case for a converter. David offers to reply to any readers who'd like to write to him on the BC348 at 11 Prince Charles Road, Oswestry. You might be overwhelmed, as the receiver was a very popular one OM! David is also learning the code from records and threatens to send in c.w. reports before long. We are certainly short of them of late; hint, hint, to other readers!

Round the Bands

Very little in the way of logs this month, unless the season's rush on the PO has held them up in the pipeline. Could be everyone's waiting to see if Father Christmas has remembered them with a nice, shiny, new receiver! Bernard Hughes BRS25901, who hasn't written in for a while from Worcester, liked my article on receiver accessories and wants more! Drop a line to the Editor OM! In spite of a new 20 m dipole Bernard found the most interesting DX on other bands with his Drake receiver. Latest QSL received of any note was from PYORO on St Peter \& Paul Rocks. Worthy of note in his log were HS1ABD, ST0RK (!) VR3AH and XT2AT on the 10 m band, KJ6BZ VP2DAY on 15 m and HR1HMV, YS1RRD and 4 W 1 BC on 40 m , all s.s.b.

From Leigh-on-Sea, Essex, Ian Marquis A9140 keeps up the good work keeping his ears open on all the h.f. bands from Top to Ten with stuff like JA2EMU TR8BA on $80 \mathrm{~m}, \mathrm{KL} 7$ IRT and ZL4AV on 40 m , and FP8, FR7, PZ5, TU2, ZD8 and 7P8 on the 15 m band, again all s.s.b.

A letter from Bernic Crockford ZS1BW mentions a contest for amateurs and SWLs to celebrate the 150th anniversary of the University of Cape Town, from Saturday Feb 17 to Sunday March 4, 1979, with operation from 0600 to 2000 on Sundays, and 0700 to 1000 and 1500 to 2000 weekdays. Likely frequencies are $7050,14210,21200,28580$, subject to QRM. Contact/log ZS1UCT plus two other ZS1s for award. Details from: Awards Manager ZS1MO, PO Box 5100, Cape Town 8000 , Rep. of South Africa.

Club Activity

Much more from the clubs this month than individual readers! RAIBC secretary, Frances Wooley G3LWY, reports that the Strumech tower raffled at the Leicester Show was won by disabled member Shirley Hesketh G4HES! Shirley has already coached to success several blind girls at Chorleywood College, for the RAE. Club net 3750 kHz s.s.b. 1000 Tuesdays and 1400 Wednesdays. The Cheshire Homes net is on 3650 to 3700 kHz on Thursdays 1330.

The Silverthorn RC meets Fridays 1930 at Friday Hill House, Simmons Lane, Chingford, London E4, with details from: C. J. Hoare, at that address. Newsletter "Spurious" would be considerably improved with less large cartoons and virtually useless photographs, and more details of events to come! Surely you must have a winter programme chaps? Tars Talk, journal of the Torbay ARS reveals that G3LHJ will give a slide show on Feb 24, with the society's annual dinner being held on March 10. Meetings are held at Bath Lane, Torquay (rear of 94 Belgrave Road). Details from: F. Bolton G3VTQ, 2 Lower Coombe Road, Blindwell Park, Kingsteignton, Newton Abbot, Devon.

Stevenage and District ARS continues to meet at British Aerospace, Gunnels Wood Road, Stevenage, Herts on first and third Thursdays at 2015. March 1 sees talk by GB3HR repeater group on proposed 23 cm and 10 GHz beacon, while the 10 th sees a visit to the VHF Convention at the Winning Post, Twickenham, Middx. AGM is on the 15 th. The West Kent ARS report in for the first time with details of meetings held at 2000 at the Adult Education Centre, Tunbridge Wells, on Fridays, with a junk sale on March 2. On March 30 an interesting talk by Tony Tory on microprocessors in amateur radio. Informal chit-chat and code practice on Tuesdays at the Drill Hall, Victoria Road, says Brian Castle G4DYF, 6 Pinewood Avenue, Sevenoaks, Kent, who will supply details.

A new QTH for the Swansea ARS at the Sketty Park Sports and Social Club, Aneurin Way, Sketty Park, Swansea, on alternate Tuesdays, Feb 6 and 20 et seq. New members welcomed with open arms and a pint! Ring Peter Jones GW4GRI on Swansea 873986 for info or write to: 27 Gorwydd Road, Gowerton.
J. Bazley G3HCP, President of the RSGB, will be guest of honour at the 31st annual dinner of the Sutton \& Cheam RS, taking place at the Woodstock Hotel on Saturday March 24. Details and tickets from: G. W. Brind G4CMU, 26 Grange Meadow, Banstead, Surrey.

Events to be held by the Cheltenham AR Assoc include: a constructors contest on Friday Feb 16 and a talk on i.c.s by Eric Hibbett G8LAY on Thursday March 1, with G4BSO and G3SSO discoursing on aerial planning permission on the 16th. Meetings at the Old Bakery, Chester Walk, Cheltenham at 2000. Info from: G. Martin G3IER, 88 Tennyson Road, Cheltenham, Glos.

Log Extracts (All s.s.b.)

B. Hughes:-10m HS1ABD KZ0DX P28NKV S79MC ST0RK VS6FI VR3AH XT2AT 15m D68AD KJ6BZ TJ2AP VP2DAY 40m HR1HMV HK5BCI YS1RRD ZP5LX 4W1BC
I. Marquis:-10m HP1PJ VP2MBD ZL3AAX 15m CT2BB FP8DX FR7ZN PZ5AA TU2FH ZD8RG ZF2AG 7P8BC 20m VP2DAO ZE3JO 40m HK5DUS KL7IRT ZL4AV 80m FP8DX JA2EMU LX1ST TR8BA 9H1EU

Remember, all logs and letters by 15 th of the month.

MEDIUM WAVE DX

by Charles Molloy G8BUS

It may be arguable, whether humility is the greatest virtue that a m.w. DXer should possess, but there is no doubt at all that selectivity is the attribute to look for in a receiver to be used for serious medium wave DXing. It is not that other factors such as sensitivity, stability, scale accuracy, freedom from overloading and cross-modulation, are unimportant. The present overcrowded state of the band, means that you should have the facility to winkle out DX that is close to a strong local station, and this means using a receiver that has good selectivity.

What is selectivity? It is the ability a receiver has to separate stations that are close to one another in the band. You can regard a receiver as a window into the frequency spectrum, the width of this window depending on the degree of selectivity. A narrow window means narrow (good) selectivity. It would be an easy matter, if all you had to do was to separate adjacent carriers, since a receiver with high selectivity would do the trick. Unfortunately the programme (modulation) requires space, the amount of space depending on the highest audio frequency. If it is 3 kHz then a 6 kHz bandwidth is required, i.e., 3 kHz above and 3 kHz below the carrier with the double sideband system currently in use. If bandwidth is reduced in order to reduce QRM then the audio range is reduced too, and in an extreme case speech becomes unintelligible.

How Selectivity is Measured

The handbook of a well-known receiver quotes the selectivity as 4 kHz at -6 dB and 18 kHz at -40 dB . What do these parameters mean? The first is the important one. 6 dB is shorthand for 6 decibels and -6 dB means "one half of the original value", so the signal at the sides of the 4 kHz window is half that at the centre. Selectivity is invariably measured at the 6 dB points. The statement 18 kHz at -40 dB is less important. It means simply that at 9 kHz on either side of the carrier the signal will be 40 dB down which is $1 / 100$ th of its original value. Ideally the signal would be zero at the sides of the window, but in practice it falls off gradually.

What to Look For

If you want to judge a receiver's ability to separate stations then look for the bandwidth at the 6 dB points. It will be found under "Selectivity" in the handbook or specification. Sometimes it isn't mentioned at all so one can draw the appropriate conclusion. Occasionally on imported receivers the bandwidth is given as a plus or minus figure such as $\pm 2 \mathrm{kHz}$. Multiply by 2 , as the real bandwidth is 4 kHz ! I recently studied a one-page "spec" for a receiver currently available and after some searching found Selectivity near the end. It was 4 kHz at the 6 dB points which is not very good for DXing. A few years ago I tried an experiment with CJON (now CJYQ) on 930 kHz using a bandwidth of 2.4 kHz . It could be heard easily between the Europeans on 926 and 935 . When the bandwidth was in-
creased to 5 kHz , CJON just disappeared, as the stations on either side spread out to meet each other.

My BRT400 communications receiver has a sixposition selectivity switch which gives bandwidths of 0.5 , $1.0,2.0,5.5,9.0$ and 13.0 kHz at the 6 dB points. Normally I use 2 kHz when tuning around and this is increased to 5.5 kHz or even 9 kHz , QRM permitting, if I want to listen to the programme. A receiver with fixed selectivity must compromise between the needs of the DXer and the listener, and I would question whether such a receiver should be entitled to use the term "communications". A personal view that many will disagree with. It is a pity that the Q Multiplier, referred to recently by Eric Dowdeswell, has gone out of fashion as this simple device provides an easy means of obtaining variable selectivity, and it was incorporated in a number of moderately-priced receivers a few years ago.

If you do have a receiver with narrow selectivity then it is possible to use this facility and still hear the modulation. If the programme quality deteriorates as selectivity is increased, then detune slightly, away from the offending QRM. Speech quality will immediately improve, as your window will now look out on only one of the two sidebands. It may come as a surprise to some DXers to find out that the programme is actually carried twice on an a.m. double-sideband system. There is a sideband complete with programme on each side of the carrier and it is only necessary to tune to one of these to extract the modulation. You could double the number of channels on the medium waves by suppressing one sideband but there are problems in doing this.

The New Band Plan

I remained up late on the night of the big change over last November, just in case I might be missing something, and was well rewarded with the feeling that I was listening to history being made. After hearing the short announcement on 200 kHz , at midnight, I tuned round the medium waves to be greeted by tuning notes on nearly every channel. The change at the h.f. end of the band was striking. Where the German power-house on 1602 had been, only a few minutes earlier, was now the third international common frequency with nothing to be heard but a burble. That evening I hunted around for any DX between channels, but all I could find was an unidentified Arab on 1570 . It looks as if Asiatic DX has disappeared, in the evenings at any rate.

Readers' Letters

Steve Whitt (Cambridge) is interested in QSLs and he reports that he has had 100% returns from the 24 US stations he has reported to so far, but from further south, Radio Margarita on 1020 and Radio Coro on 1210 have not replied. This is a common experience as Latin Americans are notoriously difficult to QSL. One approach is to write a personalised letter to the station giving details of one's self, and perhaps a photo of the shack, or the locality. WEVD 1330 broadcasts in Hebrew, and Steve wonders how he can compile a report, as the programme material is meaningless to him. Make a tape of the DX and if you cannot get it translated then send the tape to the station. Many DXers send tapes instead of reports though it is rather an expensive way of doing it.

Two other questions come from Steve: 1. What is the station on 593 (pre-Geneva) underneath the West German that relays the BBC World Service? It is probably crossmodulation which can occur in the ionosphere as well as inside the receiver. If you listen on the open carrier of any
high power European, just before sign-off, you may hear this effect. There are so many megawatts floating around the ionosphere these days, that all sorts of weird effects can be observed. 2. What is the easiest English speaking DX from the Caribbean? None is easy. Try ZDK Antigue on 1100 or Radio Paradise, St Kitts on 1265, but you will have to stay up late to hear them.

DX Heard

John Faulkner (Mansfield) reports hearing 19 Canadian and 13 US stations with his Trio 9R59D receiver and 40 inch $P W$ loop. Toronto was logged on three points on the dial with CBL on 740, CJBC 860 and CFRB on 1010. Others include WHAM Rochester, NY on 1180 and Fort Wayne, Indiana on 1190 kHz .

An HMV domestic receiver and loop are in use in Birmingham by John Dennis Court and his log contains two not-so-often heard stations in Newfoundland; VOWR on 800 at 0030 and VOAR on 1230 at 0200 . There are still a few outlets in Newfoundland that use the old prefix " V " in the call sign, VOCM on 590 being the one that is usually heard. Noel Cosgrave (Dublin) has a Mullard MAS1659 receiver and 36 inch loop, which brought him Radio Belgrano, Buenos Aires on 950 kHz at 0255 , Radio Tupi in Rio de Janeiro on 1280 at 0315 and CB57 Santiago, Chile on 570 kHz .

SHORT-WAVE BROADCASTS

by Charles Molloy G8BUS

Skip is a term frequently used by DXers and it is one that may confuse the newcomer to the hobby. Very briefly it refers to a zone around a transmitter where little or no signal can be heard. The ground wave travels only a few miles from a short-wave station before petering out, while the nearest place where the sky wave returns to earth may be hundreds of miles away. The distance between the two is the skip distance. Anyone situated nearer to the transmitter than the point where the sky wave returns, will be in the skip zone and consequently will not hear the station at all, unless of course he is within range of the ground wave. This is the reason why BBC short-wave transmitters in this country are not heard within the UK. The sites of these transmitters incidentally are at Daventry in Northamptonshire, Skelton in Cumberland, Wooferton near Ludlow and Rampisham in Dorset.

The Sky Wave

Great stuff, you may say, but why is it that the sky wave fails to come back to the earth inside the skip zone. To understand this you have to look at what happens to a wave sent up vertically. If the frequency is low enough then the signal will travel some distance into the ionosphere before being returned to the transmitter. A higher frequency will go up a bit further before coming back, and if frequency is increased gradually, a time will
come when the wave will travel right through the ionosphere and off into space. The highest frequency to be returned is called the critical frequency and is usually designated f_{c}.

Vertical radiation is not much use for broadcasting so in practice a lower angle is employed. A wave travelling at an oblique angle will have to travel a greater distance through the ionosphere than a vertical one, before coming out at the top, so frequencies higher than the critical frequency can be used at low angles. The highest frequency that will be returned will be when the wave is at a low angle, just above the horizon, which is the case for long distance transmission and this frequency may be three or four times f_{c}. The Maximum Usable Frequency (m.u.f.) for any particular angle can be calculated from f_{c} which in turn is fairly easy to measure. One final point. To get the maximum signal into the target area it is desirable to transmit as near as possible to the m.u.f., and any radiation at a higher angle than required for this distance will therefore penetrate the ionosphere and be lost. This is what happens to the signal that is missing in the skip zone.

Propagation and DXing

About 4000 km is the maximum distance that can be covered by a single hop from low angle radiation and in this case the skip will be great. If the target is nearer than 4000 km then a higher radiation angle will have to be used at the transmitter and a lower frequency will be needed as well. Obviously the skip will also be lower. Reception areas further away than 4000 km will be reached by multiple hops, the wavefront being reflected from the earth's surface back into the ionosphere after the first hop. So, at any particular time of day, season of the year or period of the sunspot cycle, all of which affect the critical frequency, the highest frequencies available will be used for long distance working and lower ones for short distances. There is no use looking for your favourite European local on 13 metres, for even if the band is open the skip will be too great.

19 Metre Band (15 MHz)

Following on from last month we will now have a look at 19 metres whose limits are 15100 to 15450 kHz , though there is some spread on either side. 19 metres is mainly a daytime band with world-wide reception being possible. Look for Vietnam on 15012 kHz , Teheran 15 084, Japan 15 105, RSA 15 220, New Zealand 15 130, Tanzania 15435 . Some medium range DX can be heard during the day, such as Norway on 15 175, Morocco 15 195, Sweden 15240 and Finland on 15 265, but these disappear as dark approaches and the m.u.f. falls.

During the evening Latin American DX can be heard and although at first sight this may appear surprising, it should be noted that the signal path is from the south-west from the southern hemisphere, where the greater part of the route will still be in daylight. DX heard regularly in the UK includes: Chile on 15115 , Brazil on 15 145, Chile on 15 150, Radio el Mundo Argentina on 15 290, Radio Nacional Colombia on 15335 , R. Mexico on 15385 , Venezuela on 15400 , and from the same area, Radio Grenada on 15105 kHz .

Readers' Letters

The MCR1 wartime receiver is mentioned again by Trevor Goodenough, who has two of them which he uses regularly with a 300 ft long wire and an a.t.u. DX heard with this set-up includes Radio Japan and Radio

Reports on the various bands are welcome and shouid be sent direct, by the 15 th of the month, to:
AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW. Logs by bands, each in alphabetical order.
MEDIUM and SW BANDS Charles Molloy G8BUS. 132 Segars Lane, Southport PR8 3JG. Reports for both bands must be kept separate.
VHF BANDS Ron Ham BRS 15744 , Faraday, Greyfriars, Storrington, Sussex RH2O 4HE.

Australia. Trevor is anxious to get hold of a copy of the circuit diagram or the manual for the MCR1 and if anyone can help, would they please contact Trevor direct at 8 Glencraig Terrace, Fenwick, Ayrshire. Postage will be refunded.

The logging of Radio New Zealand on 15130 kHz at 0630 by S.I. Fass in the December issue, is referred to by T. W. G. Elsenham, who points out that the RNZ schedule says that this channel closes down at 0450 . Schedules are always changing and cannot be relied on. Mr Elsenham goes on to refer to the pre-war BBC weekly World Radio. This had a feature covering stations heard by readers which included details of the programmes, and he wonders if we could do the same here. Sounds a very good idea. There are some interesting programmes to be heard on the short waves, usually from the less conspicuous broadcasts. Details of programmes from DX stations should be brief and give the date, time, and frequency (if known).

DX Reported

An unusual \log of 60 metre DX, all of Venezuelan stations, has been received from Leon R. Sin Sun of Aberdeen, who used a Sony CF9JOS between 2300 and 0400 to pull in Radio Lara on 4800 kHz , Bolivar on 4770 , Universo 4870, Juventud 4900, Yaracuy 4940, Rumbos 4970, Ecos del Torbes 4980, Barquisimeto 4990, Continente 5030. Programmes heard included local popular music, folklore and interviews which would be of interest to DXers who understand Spanish. Leon does not use any special aerial as he is rather short of space. Try the outside TV aerial if you have one or alternatively a Joystick plus a.t.u. might be useful, but consult the manufacturer, Partridge Electronics, who advertise in $P W$, to make sure that a Joystick can be used with your Sony receiver.

An FRG-7 plus 60 ft loft aerial and a.t.u. are in use in Wigan by Jim Edwards, who reports hearing KGEI, La voz de Amistad, on 9575 at 1030, Baghdad on 9745 at 2130, Lagos Nigeria on 11770 at 0630, WINB Red Lion on 15185 at 2000. Jim reports that he is now a monitor for Family Radio WYFR, which he finds an interesting diversion when he is not D Xing.

Australian Domestic Short-wave Stations

Lex Arnold, Hemel Hempstead (R107 ex-WD communications receiver and 9 ft indoor aerial), sends some notes about the domestic service of the Australian Broadcasting Commission. He reports that ABC Melbourne has been heard regularly between 1000 and 1300 on 9680 kHz . From past experience Lex suggests that DXers should try for stations in this network between late November and mid-April, especially during February and March. Listen for VLH9 on 9690 between 0730 and 1300, VLH11 on

11880 from 1900 to 2115, VLH15 on 15230 from 2230 to 0715 , all from Melbourne; VLM4 on 4920 and VLQ 9660 between 2200 and 1400 , which are in Brisbane; VLW6 on 6140 and VLW9 on 9610 from 2200 to 0100 and 1000 to 1600 , both in Perth. Readers who think that Radio Australia is not really DX should try for some of these domestic stations. There is also Port Moresby in New Guinea with P2T9 on 4890 between 0715 and 1400 and again from 2000 to 2200 plus P2T9 on 9520 between 2215 and 0700.

by Ron Ham BRS15744

First, our sincere congratulations to our reader Robin Bellerby G3ZYE, Hove, Sussex, on his election to the council of the Radio Society of Great Britain. Robin, a member of the Brighton and District Radio Society, the Mid-Sussex Amateur Radio Society and the Sussex Repeater Group, is actively interested in all bands from 160 m to 70 cm . News of his election victory came just after the Brighton and District RS had made Robin the first recipient of their trophy, the Bill Pitfield Memorial Award, given for meritorious service to amateur radio by a club member. Like all RSGB council members, Robin has some hard work ahead, what with society affairs, conferences, conventions and WARC 79, the outcome of which may well affect all of us. Congratulations also to \mathbf{D}. J. Stewart, ex-G8MZP, on passing his Morse test and now sporting the call sign G4HSY.

Solar Activity

Nigel Fisher, Goff Gill, Robin Knight, Peter Mynheer and Chris Peeder have recently completed a 60 MHz radio telescope for the radio section of the South-East Essex Astronomical Society, and were delighted when their new instrument, built with the r.f. and i.f. sections of an old TV receiver, recorded solar activity on December 10, 11 and 12 , as did the 136 MHz telescope of Cmdr Henry Hatfield, Sevenoaks, and the 146 MHz receiver which I use. Henry recorded a slight increase in solar radio noise during the afternoon of November 24, and again on the 25 th and, using his spectrohelioscope, he observed a large prominence on the north-west limb of the sun which lived for about 24 hours and he saw another on the east limb on the 26th.

It must have been this solar activity which caused the blackout on 80 m , reported by Alan Baker G4GNX, Newhaven, at midday on the 25 th, the aurora during the same afternoon and the ionospheric disturbance reported by the BBC World Service at 0215 on the 26th. At 1015 on the 25 th, I did not hear any International Beacon Project signals on 10 m and Alan said that on 80 m , even the strong shipping stations which share the band were weak and, from Applecross, Western Australia, Anthony Mann writes: "November 26 , absolutely dead, nil above 28 MHz all day".

Aurora

The land lines were soon buzzing with an alert once Roy Bannister G4GPX, Lancing, John Cooper G8NGO, Cowfold, and Dermot Cronin G4GRO, Royal Sovereign, heard auroral signals on 2 m . Dermot worked GI and GM and G4GNX, who was soon in on the action, heard PA3. Dave Cox G80PR, Andover, Hants, worked stations in 5 different QRA locator squares during the event which included 3 GMs and a GI. For John Branegan GM8OXQ, Saline, Fife, this aurora was a novel event because, at 1135, he had a QSO with SM4IVE and soon after with G8OGD via OSCAR 8J. The SM thought an aurora was starting over central Sweden and the G8 told John that his signal had an auroral tone.

At 1320, John again contacted SM4IVE via OSCAR 8J, who reported that the auroral activity in Sweden and Finland was fading and thought to be heading towards Scotland. Between 1340 and 1400 John was receiving auroral signals from the Russian satellite, RS-1, and when he left the satellite he found a full scale aurora affecting the 2 m band, which he monitored until 1840. During the period he heard tone "A" signals from the 2 m beacons in Cornwall GB3CTC, France FX0THF, Germany DLOPR, Lerwick GB3LER, Northern Ireland GB3GI, and Wrotham GB3VHF, in addition to amateur stations from EI, G, GD, GI, GM and SM. GM8OXQ said there was another, but much weaker, aurora on the 26th but only the northern GMs beyond Aberdeen could use it. Anthony Mann says: "It would be lovely to witness an aurora here", and thinks that the only two visible there were during the $1946 / 7$ sunspot maxima. It really is a wonderful sight Anthony, I will never forget the beauty of the one I saw from southern England, following a big solar event in August 1972.

The 10 Metre Band

M. Mrzyglod is delighted with the performance of his new FRG-7 and with his 10 m ground-plane aerial, he has been logging the IBP signals from Bermuda VP9BA, Canada VE3TEN, Germany DLOIGI and s.s.b. signals from amateurs on both sides of the Atlantic. M. Mrzyglod is looking for a circuit which he thinks was published in Practical Wireless some years ago for a Band I converter. If anyone can help, please let me know. Neil Clarke BRS 34306, Nottingley, York has been enjoying the DX on 10 m and logging A4XFA, OX3CO, and VS6FI.

Like myself, John Branegan has found that the signal from the Bahrain beacon A9XC, was very consistent between November 19 and December 15, in fact, I heard it every day except during the blackout on November 25. John, Alan Baker and I, also heard signals from 5B4CY, DL0IGI, N4RD, VP9BA and 3B8MS. On his newly acquired Eddystone 770R communications receiver, John can tune through Bands I and II, and has already observed the effect of F2 conditions on the American and European stations which operate between 30 and 40 MHz . He is looking forward to using it during the coming sporadic-E season.

From Down Under

Anthony Mann reports strong sporadic-E disturbances on November 16 and 28, producing Band I colour on an indoor aerial and m.u.f. lapping Band II. On November 18: "The best F2 opening so far", says Anthony who received strong signals from the BBC , Channel B 1 sound, 41.5 MHz , French Channel F2 sound, 41.25 MHz , a watchable picture from a South Korean station, strong Chinese video, 57.770 MHz , strong Russian TV sound,
east and west Malaysian video, and strong signals from Japanese amateurs in the 6 m band. We are all very envious Anthony.

Tropospheric

During the morning of November 22, Alan Baker worked F1EZP and Mick Senior G4EFO, Horsham worked F6DOP, both through the Brighton repeater GB3SR, R3, and for most of the 22nd and 23rd I heard GW stations working through GB3BC, R6. At 2201 on the 19th, Alan had an unusual contact which lasted 28 minutes, through GB3SR; he worked N2AFE/MM, Ralph, from 5th Avenue, Brooklyn, New York, who was in the engine room of the Export Patriot in the English Channel, and as soon as other people realised what was on, suddenly Ralph had 19 stations after him.

A more extensive v.h.f. opening took place on December 5, 6 and 7, during which time I received strong signals from both the Bristol Channel and Dover 2 m repeaters. Throughout the 6th I received good pictures from the IBA transmitter at Lichfield, Channel 8, 189 MHz , and signals from several continental broadcast stations in Band II. At 0030 on the 6th, John Cooper phoned G4GNX to say that he had worked a station through a Belgian repeater, and G4GNX reported hearing ONOOV on R4. During the morning, GU2FZC, St Peter Port and F1EBE, Rouen, worked through the Brighton repeater and in the afternoon GB3BC was putting a strong signal into east Sussex. Periodically, throughout the day, Band V TV suffered from co-channel interference and in the evening, G6GL, Radlett, Hertfordshire, had an effortless QSO with G3TIR in Crawley, Sussex, via the Hampshire repeater, GB3SN, R5. Signals from the French repeater on R9 were heard on December 8 by G4GNX and G4GPX, and G3TRY, High Wycombe worked a station in Yorkshire through extreme QSB.

Satellites

On December 1, our satellite expert, John Branegan, wrote: "Being a thorough optimist I still go on OSCAR 8A despite the high m.u.f., and though the ionosphere must be as thick as treacle, I have twice got across to W2BXA in New Jersey". The W2 told John that he was the only European he had heard for some time. "On Mode J at weekends it is a very different story", says John, who in 10 QSOs in November, worked 4 stations, W9KDR Conn, WB2OXJ New Jersey, WA3ZHW Penn, and VE2LI Montreal. By the end of November, John, by working his first east-German, DM2DIN, s.s.b., made his score 27 countries on 8 J and pushed his total up to 35 countries via satellite.

Contests

As usual the RSGB have catered for the v.h.f./u.h.f. enthusiasts in their contests calendar for 1979, and reports will be welcome from any of our readers who take part in either the transmitting or receiving sections of any of the following events:

March 3 and 4	144/432MHz and SWL
April 8	. 432 MHz open and SWL
April 29	. 70 MHz Open
May 26 and 27	. 144 MHz Portable
July 7 and 8	VHF NFD
August 18 and 19	. 70 MHz Open
September 1 and 2	144 MHz Open and SW
October 21	70MHz Fixed
December 2	144 MHz Fixed

by RON HAM

"'THE TWO ERNS"

One of the fascinations for me when writing my column is to realise that my readers are using wavelengths from 10 metres through to 3 centimetres, which in frequency terms, is 30 million to 10 thousand-million hertz. It is men like Ern Downer G8GKV of Worthing (right), and Ern Hoare, G8BDJ of nearby Southwick (left), known locally as "The Two Erns", who are pioneering the microwave end of the radio frequency spectrum.

Ern Downer's schoolboy interest in amateur radio was fostered by a neighbour, the late G2XO of London. During the early 1930s Ern built himself a number of short-wave receivers, from designs published in the amateur radio press. His introduction to v.h.f. came in the second world war with the Royal Tank Regiment. After the war he spent some years in East Africa where he used "point-to-point" links, and on his return to the UK, a colleague, G3YHM, invited him to join the Worthing Amateur Radio Club. In May 1972 he took the RAE, and by August, his call, G8GKV, was heard on the air.

In 1927, the 10 -year-old Ern Hoare began building crystal sets, progressing to valve sets, and later to a 30 -line scanning disc television receiver, through which he did get a picture of sorts. Ern was a radar operator with the Royal Artillery during the second world war, using both v.h.f. and microwave systems. Later, he volunteered for the 6th Airborne Division, where he used the famous 38 sets for 3in mortar fire control. He took the RAE in 1962 and was first licensed as G3RZD/T, constructing his own gear for amateur TV. When his call was changed to G8BDJ he used home-brew gear on $2 \mathrm{~m}, 70 \mathrm{~cm}$ and 23 cm .

Due to common interests, both G8GKV and G8BDJ began to inhabit the local hill tops, operating portable stations on 2 m . When 'BDJ began building equipment for 10 GHz , 'GKV was hooked, since when "The Two Erns" have never looked back. Now, with some very impressive home-brew portable stations, they each hold many well deserved awards, and apart from entering the RSGB's "diffz contests, they spend a great deal of time trying out "difficult" paths of microwavelength communications.

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate
Diploma Courses
Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
"A" levels
Accountancy
Air
Conditioning
Building
POST OR PHONE TODAY FOR FREE BOOKLET.

TTLS BY TEXAS				74221	${ }_{160 p}$	74L.S192 74L5193	$\begin{aligned} & 140 \mathrm{p} \\ & 140 \mathrm{p} \end{aligned}$	74 C 157 74 C160	$7{ }^{250} \mathbf{1 5 5 p}$	AYY-0212				AC12718	20 p			TIP41C TIP42A	$\begin{aligned} & 78 p \\ & 70 p \end{aligned}$	2N3866 $2 \mathrm{~N} 3903 / 4$	$\begin{aligned} & 90 p \\ & 18 p \end{aligned}$	DIODES *BY127	
7400	13p	7497	180 p	$\begin{aligned} & 74251 \\ & 74259 \end{aligned}$	$\begin{aligned} & 140 \mathrm{p} \\ & 250 \mathrm{p} \end{aligned}$	74LS193 74LS195	140p 140p	$\begin{aligned} & 74 \mathrm{C} 160 \\ & 74 \mathrm{C} 161 \end{aligned}$	$155 p$ $155 p$	$\begin{aligned} & \text { AY1-0212 } \\ & \text { AY1-1313 } \end{aligned}$	${ }^{600 p}$	-MC1496	${ }_{100 p}$	AC127/8 AD149	$\begin{aligned} & 20 \mathrm{p} \\ & 700 \end{aligned}$	BFY51/2	$\begin{aligned} & 22 \mathrm{p} \\ & 33 \mathrm{p} \end{aligned}$	TIP42A	$\begin{aligned} & 70 \mathrm{p} \\ & 82 \mathrm{p} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~N} 3903 / 4 \\ & -2 \mathrm{~N} 390 / 6 \end{aligned}$	$20 \mathrm{p}$	*OA47	$\mathrm{Izp}^{8 p}$
7401	14p	74100	130p	742595		74 LS 196	120 p		155p	- AY1-5050	212p	- MC3360	120 p	AD149 ${ }^{\text {A }}$	${ }^{70 \mathrm{p}}$	BrY56 BFY90	33 p 90	TIP2955	78	*2N4036	85p	-OA81	15p
7402	14 p	74104	659	74278	290	74LS221	100 p	74 C 163	155p	*AY5-1315		*MFC4000B	120p	AC107/8	$11 p$	BLY83	700p	TIP3055	70p	-2N4058/8	12p	-OAB5	$15 p$
7403	14 p	74105	85p	74279	140 p	74LS240	175p	74 C 164	120p	-AY5-1317	${ }^{835}$	MK50398	750 p	${ }_{\text {BC109 }}$	110	BRY39	45p	*TIS43	34 p	*2N4060	$12 p$	- O A90	8
7404	17 p	74107	34p	74283	190 p	74LS241	175p	74 C 173	120p	-AY5-1320	320p	NE531	130 p	${ }^{\text {BCC147/8 }}$	9p	BSX19/20	${ }_{20 p}$	-TIS93	30 p	-2N4661/2	17 p	- 0 A91	9 p
7405	18 p	109	55p	74284	400 p	74LS242	175p	74 C 174	160p	-CA5019		- NE540	200p	*BC149	${ }^{\text {Pp }}$	${ }^{-1}{ }^{\text {B }} 105$	190 p	${ }^{*} \mathrm{ZT} \times 108$	12p	-2N4123/4	22p	-0A95	9 p
7406	32p	74110	55 p	74285	400 p	74LS243	175p	74 C 175	210p		70p	NES43K	225 p	*BC157/8	10 p	*BU108	250p	${ }^{*}$ Z	13p	"2N4125/6	22p	${ }^{*} \mathrm{OA} 200$	p
7407	32 p	74111	700p	74290	150p	74LS245	$175{ }^{\text {1 }}$	74C192	2150 p	- CA3048	2259	NE555	25 p	*BC159	11 p	* BU205	220p	*ZTX500	15p	*2N4289	${ }^{20 p}$	*OA202	10p
7408	19p	16	200 p	74293	150 p	74LS251	200p	74 C 193	150p	CA3080	72p	NE556	70p	-BC159C	12 p	* BU208	240p	*ZTX502	18p	*2N4401/3	27p	*1N914	4p
7409	19p	74118	130 p	74294	200 p	74LS257	120p	74C194	220p	*CA3089E	$225 p$	NE5618	425 p	-BC169C	12p	- BU 406	145p	${ }^{*}$ ZTX504	30p	2 N 4427	99 P	*1N916	7 p
7410	15p	74119	210 p	74298	200 p	74LS259	175p	74 C 195	110p	- CA3090A	25	NE562B	425 p		${ }_{17 \mathrm{p}}^{12 \mathrm{p}}$	M 4481	475p	2N457A	250p	2N4871	${ }^{60 p}$	-1N4148	4 p
7411	24p		110 p	74365	150 p	74LS298	249p	74C221	$175 p$	CAJoua	375p	NE565	130 p	${ }^{\text {BCi79 }}$	17 p	MJ491	200p	2N696	35 p	*2N5087	27p	1 N4001/2	5 p
7412	2 pp	74121	${ }^{28} \mathbf{p}$		150 p	74LS373	200p		RIES	CA3130S	100p	NE566	155 p	${ }^{-8 C 182 / 3}$	$\mathrm{lop}_{10 \mathrm{p}}$	M J2501	225p	2N697	25p	-2N5089	27p	$1 \mathrm{~N} 4003 / 4$	8p
7413	30 p	74122	48p	74366 74367	150 p	74LS374	195p	4000	15p	CA3140E	70p	NE567	175 p		110	M J2955	100p	2N697	45p	${ }^{2} 2 \times 5172$	27 p	1 N 4005	6 p
7414	60 p	74123		74368	150 p	81LS95	129p	4001	17 p	CA3150E	$75 p$	RC4151	400p	BC187	30 p	M J3001	225p	2N706A	20p			1 N 400677	$7 p$
7416	27p	74125	55p	74368	200 p	81LS96	160p		17 p	F×209	750p	-SN76003N		- ${ }^{\text {cher }}$	90p	-MJE340	65p	2N708A	20p	2N5191	8 p	1N5401/3	14p
7417	27 p	74126	60 p	74	200 p	81LS97	120p	4006		1 CL7106	925p	-SN760t3N	140 p	${ }^{*} \mathrm{BC} 21273$	11 p	MJE2955	100p	2N918	45p	${ }^{2} \mathrm{~N} 5194$	90	1N5404/7	19p
7420	17p	74128	75	74490	225p	81LS98	180 p	4007	18 p	ICL8038	340p	- SN 76013ND		${ }^{\text {BC }}$ - 614	12p	MJE3055	70p	2N930		2N5245	40 p		
7421	22p	74136	75 p	74 LS		$8{ }^{8} 28$		4008	80 p	LM301A	36p		120p	BC477/8	30 p	PF102	45	2N1134/2	$29 p$	-2N5401	${ }_{50 \mathrm{p}}$	400 mW	p
7423	34p	74141	70p	SERIES				4009	40 p	LM311	190 p	-SN76023N	140 p	-BC516/7	50 p	105	40p	2N1711	p	*2N5457/8	40p	1 W	5p
7425	30p	74142	200p	74LS00	18 p			010	50p	LM318				- BC5478	16p	- MPSA0		2N2102	60 p	*2N5459	40p	SPECIA	
7426	40p	74145	90 p	74LS02	8 p	9310	27	4011		LM334			120 p	-BC549C	18 p	-M	50p	2N2160	120p	2-2N5460	40p	OFFERS	
7427	34p	74447	190p	74LS04	20 p	9311	275p	4013	189			-SP8515				+MPSAS	32p	2N2219A	20p	*2N5485	44p	$100+741$	
7428	36 p	74148	150p	74LS08	220	9312	160p	4013				641 B		- BC559C	18 p	-MPSU06	63p	2N2222A	20p	2N6027	4 p	E18	
7430		745	100 p	74LS10	20	9314	165p	4015	84 p	-LM377	p	TBA6418	225p	BCY70	18p	*MPSU58	78 p	2N2369A	16p	2N6247	190p	$100+555$	
7432	30 p	74151A	70 p	74LS13	38p	9316	225p	4016	$4_{45}{ }^{\text {ap}}$	-LM381AN	75p	-TBA800	90 p	BCY71/2	22 p	0 OC 28	130p	2N2484	30p	2N6254	130p	220	
7433	40p	74153	70 p	74LS14	100 p	9322	150p	4017	88 p	LM	140p	-TBA810	100 p	BD131/2	50 p	OC35	130p	2N2646	50p	2N6290	$65 p$	$100+$	
7437		74154	100 p	74.529	22	9368		4018	89 p	LM709	${ }_{36 p}$	-tBA820	90 p	BDY56	$200 p$	*R2008B	200p	2N2904/5	25 P	2N6292	65p	RCA 2 N 3	
743	35 p	74155	${ }_{90}^{90}$	74LS27	38	9370	200 p	4019	45p	LM710	50 p	-TCA940	175p	BF200	32 p	-R20108	200p	2N2906A	24 P	2N+28	120p	¢36	
7441	70 p	74157	70p	74LS30	22p	9374	200 p	4020	100p	LM733	100 p	*TDA1022	600p	- BF2548	35p	*TIP29A		2N2907A		3N:	10		
7442 A	60p	74159	190p	74LS47	p	9601	175	4021	0 p	LM741	29p	XR2208	400 p	BF257/8	32 p	-TIP30A	55	2N3053	20 p	3N204	100p	${ }^{1} 1 \mathrm{~A} 50 \mathrm{~V}$	21 p
7443	12 p	74180	100p	74LS55	30p	9603	60 p	4022	100 p	LM747	70p	XR2207 $\times \times R 2216$	600p	BF259	36 p	*TiP30C	60 p	2N3054	65p	40290	250p	*1a 100 V	22p
7444	112p	74161	100p	74LS 73	50 p	INTERF	C	4023	22 p	LM748	35p	-XR2216	675p	-BFR39	30 p	TIP31a	58 p	2N3055	48p	4036	40 a	-1A 400V	
7445	$100 p$	74162	100 p	74LS74	50 p	NKTER	E	4024	${ }_{20 \mathrm{p}}^{50}$	LM3800	70p	XR×240	400 p	-BFR40	30 p	TiP3ic	62 p	2N3442	140p	40361/2	45p	2A 50V	30p
7446 A	93p	7463	100p	74LS75	50p		100p	4025	200	LM3911	130p	ZN414	90 p	"BFR41	30 p	TIP32A	${ }^{88}$	2N3553	240p	40364	120p	"2A 100V	35p
7447 A	70p	74164	120p	74LS83	110p	MC1489	100 p	4026	130 p 50	LM4136	120p	ZN424E	135 p	-BFR79	30 p	TIP32C	$82 p$	-2N3565	30 p	40408	$70 p$	*2A 400V	
7448	80	74165	130p		$100 p$ $40 p$	${ }^{7} 5107$	160	4027 4028	50p	-MC1310P	150p	ZN425E	400 p	-BFR80	330 p	TIP33A	990p	*2N3643/4	48p	40409	65 p	-3A 200 V	
7450	17 p	74166 74167	1400p	74LS 90	60 p	75182	230p	4029	100 p	MC1458	55p	ZN1034E	200p	- BFR81	30 p	TIP33C	114p	-2N3702/3				-3A 600 V	
7453	17p	74170	240p	74LS93	60p	7545	120p	4030	55p	MC1495			00	BFX29	30 p	TIP34A				405	370	* 4 A 400	
7454	17p	74172	720p	74LS107	45p	754591/2	72p	31	200 p	VOLT		ATORS						*2N3708/9	12p	40585	105p	6A 50V	
7460	17p	74173	120p	74LS112	${ }^{100 p}$	75491/2	96p	4033	180 D	Fixed				BFX86/7	30 p	TIP35	29	2N3773	300p	40603	58 p	6A 100 V	
7470	$36 p$	74174	93 p	74LS123	${ }^{750} \mathrm{p}$	C-Mos	1.C.s	4034	${ }_{110}$					BFX38	30p	TIP36A	270p	*2N3819	25p	40673	900	6 A 400 V	
7472	30 p	74175	$85 p$	74LS132	900p	2	25p			5V 780b	90p	5 V 7905	100 p	BFW10	90 p	TIP36C	340	- ${ }^{\text {N }} 3820$	50p	40841	90 p	10 A 400 V	
7473	34 p	76	90p	744LS ${ }^{\text {743 }}$		$74 \mathrm{CO2}$ 74 CO	25p	4041	${ }_{80} 100 \mathrm{p}$	12v 7812	90p	$12 \vee 7912$	100 p	BFY50	22 p	TiP41A	65	2N3823	70	$40871 / 2$	90 p	25 A 400 V	
74 74	30 p	74178	160p	74LS139	p	$74 \mathrm{CO8}$	27p	4042	80 p	$15 \vee 7815$	90p	15 V 7915	100p										
7476	35p	74180	93p	74LS151	100p	74 C 10	27 p	4043	90 p	18 V 7918		18 V			T	TE		ms	8	XCE	T	k	
7480	50p	74181	200p	74LS153	60p	$74{ }^{\text {c14 }}$	90 p	4044	90 p	24.7824		24.7924											
7481	100p	74182	90 p	74LS157	60p	74 C 20	$27 p$	4046	110p	100 mA	-92	100 mA T	O-92										
74	84 p	741	150			$74 \mathrm{C30}$	27 p	4048	55p	5V 78L05													
7483 A	90 p	74185 74186	${ }^{150 p}$	74LS164	100p	74 C 42	110 p	4049	32 p	12 V 78L15		15 V 79L15	op										
7485	140p	74190	100p	74LS162	140 p	74.48	${ }^{250} 9$	4050	${ }^{49} \mathrm{p}$	OTHER 8				psp		AT at							
7486	34p	7494	100p	74LS163	100p	$74 \mathrm{C73}$	75 p	4051	80 c	LM309K	135p	TBA625B	120p										
7489	210p	8492	100p	74 LS164	${ }^{120 p}$	$74 \mathrm{C74}$	${ }^{700}$	4052	80	LM317T	20.9	TL430	65 p										
${ }_{7491} 780 \mathrm{~A}$	33 p	74193 74194	1000 p	74LS165	80p	74885	${ }_{65 p}$	4055	125 p	LM323K	625p	78HO5KC	675p	Govt	Col	eges,			N	RO			
7492A	46p	74195	95p	74LS174	110p	74 C 90	95 p	4056	135 p	LM723	37p	78MGT2C	135p	order	ac	.							
7493A	33p	74196	95p	74 LS 175	110p	74.95	130 p	4059	6000					all				LOND	H				
7494	${ }^{84}$	74197	80p	744 S 181	320 p	74 C 107	${ }_{250} 125$	4060	1150	O				MON									
5A	70 p 650	74198 74199	150p 150p	74LS190	10	C151	250 p	4063	120p	OCP79		90p	90p	SATUR	DAY	10.30-4		Tel:)	1500		$x: 92$	

slectronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar: Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-a mateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIL packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.

4 Integral Power Bus Strips around all edges for minimum interconnection lengths.
Double-sided, nickel silver contacts for long life (10K insertions) and low contact resistance ($<10 \mathrm{~m}$.ohms)
Easily removable, non-slip rubber backing allows damaged contacts to be rapidly replaced.

What other breadboarding system has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE.

At $£ 5.80$ each The EuroBreadBoard is unique value for money At f 11 for 2 The EuroBreadBoard is an indispensable design aid. Snip out and Post

CRESCENT RADIO LTD

I ST. MICHAELS TERRACE, WOOD GREEN, LONDON N22 4SJ. 01-888 3206

"FLIP"
PUSH BUTTON HEADS OR TAILS Complete kit and full instructions supplied. A pocket game, easy to build and great to play. A pocket game, easy to build and great to play.
KIT PRICE $=£ 5.25+8 \%$ VAT. Post free.

75 0HM

$2 \frac{1}{2}^{\prime \prime}(57 \mathrm{~mm})$ LOUDSPEAKER BARGAIN
This ever popular many project loudspeaker Only while stocks last. $65 \mathrm{~F} \%+12 \frac{1}{2} \%$ VAT.
hear Shelf car speakers
5 W 8 ohm good quality car stereo loudspeakers.
Still only $\mathfrak{f} 3.75+12 \frac{1}{2} \%$ per pair.
HEAVY DUTY XOVER 2 WAY 8 OHM
A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt. Fitted with screw terminals for input and a three position 'HF LEVEL' switch which selects either Flat, -3 dB or -6 dB .

ONLY $\mathbf{E 3 . 0 0}+8 \%$ VAT
A CRESCENT 'SUPERBUY' Goodmans 5" 8 ohm long throw H/D loudspeaker.
Mounting plate is integral with L / S chassis and has fixing holes with centres spaced at $5 \frac{1}{2}^{\prime \prime}$ (diagonally),

ONLY $\mathbf{E 5} \cdot \mathbf{0 0}+12 \frac{1}{2} \%$ VAT

CR. 3000. SCREWDRIVER SET

in neat plastic case. Consists of:- aw jewellers screwdriver, watchmaker's screwdriver, radio screwdriver, phillips screwdriver. All fit into master swivelling handle.
CR. 4110 . DESOLDERING PUMP
I - ONLY f6
High suction pump with automatic ejec tion. Knurled, anti corrosive casing. Teflon nozzle.

CR. LV1. £12.00p.
 ER12.00p $+8 \%$ VA

$+8 \%$ VAT
BRITISH MADE "Versadrill", 12 volts DC Compact battery operated power tool, sufficiently powerful to perform all the operations associated with 240 v drills.
Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia) Dimensions:- $150 \times 50 \mathrm{~mm}$ (dia)
LOUDSPEAKERS + 8\% VAT
12 " "McKENZIE' 8 ohm 75W
Bass $\quad \leq 23.62$
12 " "McKENZIE" 8 ohm 75W dual cone $\quad \mathbf{2 3 . 6 2}$
12" "McKENZIE" 8 ohm 75W general purpose $\mathbf{E 1 8 . 7 5}$ 12" "GOODMANS" 'Audiom 12P' $80 \mathrm{hm} 50 \mathrm{~W} \quad \mathbf{£ 2 3 . 7 3}$ 12" "FANE" POP 33T 16 ohm 33 W

12" "FANE" POP 50/2 16 ohm 50W | ¢ 15.70 |
| :---: |

P\& P. Orders up to $£ 5$, add 30 p. Orders
$£ 5-£ 10$, add 50 p . All orders over $£ 10$ £5-£10, add 50p. All orders over $£ 10$ S.A.E. with all enquiries please.

Personal callers welcome at: 21 Green Lanes, Palmers Green Ni3. Also I3 South Mall, Edmonton Green, Edmonton.

STEPHENS-JAMES LIMITED

COMMUNICATION ENGINEERS
47 WARRINGTON ROAD, LEIGH WN7 3EA
ENGLAND
Telephone (O942) 676790
Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers Full range of VHF receivers-transceivers. Mobile equipment pre-selectors-filters-antennas. Stabilised power supplies from 2 to 20 Amp .
Antenna switches-converters. Aluminium masts-clamps. Antenna rotators

Yassu
FRG7-FRG7000-FR101
SSR-1 *SPR4*R4C*
Secondhand Equipment Our secondhand equipment stock changes
daily. Send S.A.E. for latest price list. Part daily. Send S.A.E. for latest price list. Pa Access-Barclaycard and H.P. facilities.

R-300-R5990-R820S
Antenna Multituners Antenna Multituners
Designed and manufactured by ourselves.
Over 1000 sold in over 50 countries.

Mk 2 covers 550 Khz 30 Mhz Prices include VAT and postage.
£25.00

SOUTHERN VALVE CO

 Some leading makes avaifable. VAT invoices issued on request.
All New and Boxed. "Cuality" Branded Valves. Guaranteed 3 months. BVA etc. 6\% Allowed in lieu of Guarantee! Already deducted from our Prices! NOTE: PLEASE VERIFY CURRENT PRICES. Correct only at time of going to press.

Items in stock at time of going to press but subject to possible market fluctuations
STOP PRESS!
STOCKISTS
"MICRO"AERIAL
MAX 75p. LISTS AND ENOUIRIES. S.A.E. PLEASEI
SIZE $1 \frac{1}{4}{ }^{\prime \prime} \times 3^{\prime \prime}$
ENQUIRIES WELCOME ALL PRICES INCLUDE VAT © $12 \frac{1}{2} \%$.

A breadboardas big as your ideas.
 The ideal Breadboard for 1 chip circuits.
 Perfect for checking out Microprocessors.

Accepts 8, 14, 16 and up to 22 pin IC's. Has 130 contact points including two 10-point bus-bars.

EXPERIMENTOR $600 £ 7.88$
The Breadboard for quick construction of Microprocessors and other circuits.
EXP 600 has 550 contacts including two 40 -point bus-bars with $0.6^{\prime \prime}$ centres. EXP 650 has 270 contacts including two 20-point bus-bars with $0.6^{\prime \prime}$ centres.

EXPERIMENTOR QUAD BUS

STRIP £3.29 Need more bus-bars, clip on an EXP 4B and you have four 40-point bus-strips with 8 -, 12 - and 16 -line address, create data-buses by combining EXP 4B, Bus Strips.

No soldering simply plug all standard components in and out, nickelsilver contacts allow Breadboard and components to be used over and over again without damage.

Adaptable accepts any component without adaptors or jumper leads, use 22-30 gauge solid wire for jumper leads.

Mix and Match large and small chips in the same circuit. Use 300 series for smaller and $0.3^{\prime \prime}$ pitch DIP's. 600 series for Microprocessors with $0.6^{\prime \prime}$ centre channel for full fan-out with larger chips.

Smallest to Biggest, remember CSC's Breadboards "snap-lock" together so you can start with a small idea and expand your ideas to as Big a Breadboarding area as you like.

Easy Permanent Mounting,

 using four screws from front or six selftappers from rear. Vinyl-insulated backing lets you fasten to any surface.EXPERIMENTOR 350 £4.21 EXP 350 , specifically designed for the hobbyist working with up to 3×14 DIP IC's. With 270 contact points including two 20 -point bus-bars the EXP 350 accepts any size DIP with $0.3^{\prime \prime}$ spacing.

Marked Contact Points transfer

 component by component from letter/number position on Breadboard to finished P.C. Board or Wiring Table.Ruggedly built of abrasion-
resistant materials that withstand $100^{\circ} \mathrm{C}$.

Pick any project that you want to build, or any part of a project that you want to test or modity. Count up the number of IC's you need for the project.
Then simply look up in the box opposite the Breadboard you require.
If you need more than two bus-bars simply add the correct number of Quad-Bus Strips. GET STARTED NOW FOR AS LITTLE AS £2.54.

MODEL NO	NUMBER OF CONTACTHOLES	IC CAPACITY (14-pin DIP's)	UNIT PRICE (includes Posi \& VAT)
EXP 300	550	6	$£ 7.29$
EXP 600	550	use with 0.6" PITCH DIP's	$£ 7.88$
EXP 350	270	3	$£ 4.21$
EXP 650	270	130	$£ 4.70$
EXP 325	130 with 0.6" PITCH DIP's	$£ 2.54$	
EXP 4B	FOUR 40-point Bus-Bars	1	$£ 329$

How to order. Telephone 079921682 and give your Access.
American Express or Barclay card number, and your order wil be in the post that night: Or send your order, enciosing cheque, postal order, or statng oredticard number and expiry date. For full cataiogue showng all CSC producis for the engineer and hobbyisis send large S.A.E.

CONTINENTAL SPECIALTIES CORPORATION

Europe, Africa, Mid-East: CSC UK LTD. Dept. 6K, Shire Hill Industrial Estate, Units 1 and 2 Saffron Walden, Essex CB113AQ Telephone Number: SAFFRON WALDEN 21682 TLX 817477

Electronics Design Associates, Dept pW3 82 Bath Street, Waisall, WS 1 3DE. Phone (9) 614791

Name

Address
Phone your order with Access or Barclaycard

Inc. V. A.T. and P.P.	ouantity read
$\mathrm{X}_{4} \mathrm{~K} / \mathrm{T}$ £16.65	
TACHOPULSE SLAVE UNIT $£ 3.85$	

Send SAE if brochure onty requied. 1 enclose chequeifo's tor
f
Cheque No.
Please state polarity pos. or neg. earth
Access or Barclaycard No.

15-240 Watts!

Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input fither by a multi-way switch or direct connection to the approprlate pins. The internal volume and tone circuits merely require connecting to external potentiometers (not included). The HY5 s compatible with all I.L. P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pre-amplifier.
FEATURES: Complete pre-amplifier in single pack-Multi-function equalzätion-Low noise -Low distortion-High overioad-Two simply combined for stereo.
APPLICATIONS: Hi-Fi-Mixers-Disco-Guitar and Oigan-Public address
SPECIFICATIONS
INPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV : Auxillary $3-100 \mathrm{mV}$; input impedance $4-7 \mathrm{~kg}$ at 1 kHz .
OUTPUTS. Tape 100 mv ; Main output 500 mV R. M.
OUTPUTS. Tape 100 mV ; Main output 500 mV R.M.S
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at $100 \mathrm{~Hz}_{2}$
OVERLOAD. 38dB on Magnetic Pick-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$
Price $\mathbf{5 6} 6 \mathbf{2 7}+\mathbf{7 8 p}$ VAT P\&P free.
The HY30 is an excilling New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board. 4 resistors, 6 This amplifier is idealiy suited to the beginner in audio who wishes to use the most up-to-date technology available.
FEATURES : Complete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to Build.
APPLICATIONS: Updating audio equipment-Guitar practice amplifier-Test amplifietaudio oscillator.
SPECIFICATIONS
OUTPUT POWER 15W R.M.S. into 8Ω : DISTORTION 0.1% at 1.5 W INPUT SENSITIVITY 500 mV
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$.
Price $\mathbf{5 6} \cdot \mathbf{2 7}+78 \mathrm{p}$ VAT P\&P free.
HY50
25 Watts into 8Ω

The HY50 leads I.L.P.'s total integration approach to power amplifier design, The amplifier east three years the amplifier has been the simplicity of no external components. During the reliable and robust High Fidelity modules in the to the ext
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran-istors-No external components
APPLICATIONS: Medium Power HI-Fi systems-Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500mV at 1 kHz /NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price $\mathbf{E 8} 18+\mathbf{E y} .02$ VAT P\&P free
HYI20
60 Watts into 8Ω

HY200
120 Watts into 8Ω

HY400
240 Watts into 4Ω

POWER SUPPLIES

The HY120 is the baby of I.L.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in modular design
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-tion-Five connections-No external components
APPLICATIONS: Hi-Fi-High quality disco-..Public address-Monitor amplifier-Guitar and organ
SPECIFICATIONS
INPUT SENSITIVITY 500 mV . at 1 kHz HOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE真 ${ }^{35 V} 1145085 \mathrm{~mm}$
Price $£ 19.01+\boldsymbol{£ 1} \cdot \mathbf{5 2}$ VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most ugged conditions such as disco or group while still retaining true Hi - Fi performance.
FEA TURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsink FEATURES: Thermal shis
-No external components
APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave-Industrial--Public Address
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 8Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.05% at 100 W at 1 kHz . SIGNOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE

Price $\mathbf{5 2 7} \mathbf{9 9}+\mathbf{£ 2} \mathbf{2 4}$ VAT P\&P free.
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco address applications. If the ampifier is to be used at continuous high power ievels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external component
APPLICATIONS : Public address-Disco-Power slave-Industrial
SPECIFICATIONS
OUTPUTPOWER 240 W RMS into 4Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.1% at 240 W at 1 kHz , NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm Price $£ 38 \cdot 61+£ 3 \cdot 09$ VAT P\&P free.
PSU36 sultable for two HY30's $\mathbf{£ 6} \mathbf{4 4}$ plus $\mathbf{8 1 p}$ VAT. P/P free.
PSU50 sultable for two HY50's $£ 818$ plus $£ 1.02$ VAT. P/P free.
PSU70 suitable for two HY120's $£ 14.58$ plus $£ 1-17$ VAT. P/P free. PSU90 suitable for one HY200 $£ 15 \cdot 19$ plus $£ 1-21$ VAT. P/P free. $81 £ 0.48+£ 0.06$ VAT.

I.L.P. ELECTRONICS LTD., crossland house, nackington, CANTERBURY, KENT, CT4 7AD. Tel: (0227) 64723.

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address

$\angle 3$
 A NEW STAR ON THE WORLD'S HI-FI HORIZON.
 ${ }^{\mathrm{P}} \mathrm{W}$
 WINTON

PW and T. \& T.

HAVE COLLABORATED TO BRING TO PW's READERS A WORLD first On THE HOME CONSTRUCTOR HI-FI KIT SCENE.

Ted Rule, a member of the design team of T. \& T. Electronics was commissioned by P.W. to design a High Fidelity Stereophonic Amplifier in a form suitable for the Home Constructor which would supersede the now ageing "Texan".
This, bearing in mind the phenomenal success story of the Texan was a daunting brief for any design team, but we are both delighted and proud to announce that Ted as well as achieving his original design brief, has far exceeded it.
Ted, (who has 30 years experience in Hi Fi design) has excelled himself in producing the P.W. WINTON amplifier, which we sincerely believe to BETTER SIGNIFICANTLY ANYTHING CURRENTLY AVAILABLE TO THE HOME CONSTRUCTOR IN THIS POWER RANGE.
The almost unbelievable specification for this design (published in full in the WINTON article) was achieved by utilising the latest "state of the art" devices available including the revolutionary POWER MOS-FĖTS developed by HITACHI Ltd., and BI-FET Op Amps from TEXAS.
The HITACHI research has we feel rendered the use of Bi-Polar Power Output Transistors obsolete in any design which has any pretentions towards true HIGH FIDELITY.
Because we are so excited at the performance obtainable, and to avoid disappointment caused by the use of sub-standard components, we have decided to market a complete kit of parts to ensure that the Home Constructor can achieve the same superb results.
As with Rolls-Royce quality doesn't come cheaply, and we make no apologies at all for the fact that our kit costs a bit more than the average Bi-Polar design, we firmly believe that the standard of reproduction obtainable is a reflection in part of the quality of the components used in the kit, and that discerning Audiophiles the world over will recognise the inescapable truth that today you usually get just what you pay for. The WINTON Kit is available in the following form:-

Pack (A) Capacitors \& Fixed Value Resistors
Pack (B) Switches, Potentiometers, Pre-Sets \& Knobs
Pack (C) Printed Circuit Board, and Terminal Pins
Pack (D) Hardware Pack, consisting of Chassis, Heat Sinks, Cabinet, Screws, Wire, Fuseholders etc., and a Brushed Aluminium Fascia Front Panel.

Price Inc.
V.A.T. \& carriage. £21.45
$£ 13.26$
£8.10

Pack (E) Semiconductors (including HITACHI MOS Power
Fets)
Pack (F) Toroidal Mains Transformer
$\mathbf{£ 3 2 . 9 9}$
£ $\mathbf{3 0 . 5 3}$
£17.22
Complete Kit of all parts necessary to build the WINTON $£ \mathbf{1 2 0 . 0 0}$
ORDER WITH COMPLETE CONFIDENCE (Cash with order please) FROM:-
T. \& T. ELECTRONICS. GREEN HAYES, SURLINGHAM LANE, ROCKLAND ST. MARY, NORWICH, NORFOLK. NR14 7HH. PLEASE ALLOW 28 DAYS FOR DELIVERY.

Personal callers: ROGER SQUERE'S DISCO CENTRES
LONBON: : 175 Junction Road Tufne! Park $119500 \quad 01-2727474 \quad$ Open from 10.5 Tues. Sat BRISTOL: 125 Church Road, Redfieid, Bristol BS5 9JR 0272.550550 10.8 Weds MAHCHESTER: 251 Deansqate M3 4EN 061-831 7676 Closed Mondays GLASGOW: 1 Queen Margaret Rd.. (off Queen MargaretDrive) Kelvinside, Glasaow G206DP

The professionalscopes you've always needed.

When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope

Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition.

The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.
The price £ 219 plus VAT.
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivity. Price $£ 162$ plus VAT

CALSCOPE DISTRIBUTED BY

Marshalls Electronic Components,
Kingsgate House,
Kingsgate Place,
London, N.W.6.

Audio Electronics,

301 Edgware Road, London W.2.
Tel: 01-724 3564
Access and Barclay card facilities
(Personal Shoppers)

Maplin Electronics Supplies Ltd. P.O. Box 3

Rayleigh, Essex
Tel: 0702715155
Mail Order

You know it's easy with Heathkit.

Electronics Courses

New series of courses on car electrical systems.
New series of courses on electronic equipment.
DC electronics.
AC electronics.
Semi-conductors.
Electronic circuits.
Digital techniques.
Microprocessors.

NewKits

Line printer.
Dual floppy disc.
Dual trace 5 MHz and 35 MHz
oscilloscopes.
Memory expansion for digital trainer. 2M hand-held transceiver.

Heathkit self-instruction electronics courses are complete, low-cost learning systems. All you need is the will to learn and the Heathkit courses will teach you at your own pace.

It's easy because the courses are based on step-by. step programmed instructions, with audio records (or optional cassettes), self evaluation quizzes to test your understanding, and interesting experiments that encourage you to learn the easy "hands.on" way with the optıonal Heathkit experimenter-trainers.

Thousands of people just like you have already learnt electronics the easy Heathkit way - at home, in educational establishments and BARCLAYCARD in industry throughout the world.

You'll find it easy too. Full details are in the Heathkit catalogue, together with hundreds of kits you can build yourself; for the home, car and workshop.

Send for your copy now.

NOTICE TO READERS

When replying to Classified Advertisements please ensure:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance. (C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

Abstract

COMMUNICATION AHz/CW/SSB/RECEIVER and preselector modules. 453.5 kHz Mech Filter Modules 2.1 kHz BW , with diode-switching. CRYSTALS Brand new high precision HC33/U: 1.0, 2.0, 3.0, 1.008 , $2.5625 \mathrm{MHz} £ 3.35$. 1.28 MHz £4.15. HC13 $100 \mathrm{kHz} £ 3.25$. HC18/U: $4.0,5.0,6.0,7.0,8.0,10.0,10.7$, $\mathrm{MHz} £ 3.00$. $18.0,20.0,38.6667,48.0,100.0,116.0 \mathrm{MHz}$ £3.50. HC25/U $8.08333 \mathrm{MRz}(S 20) £ 3.00$. Large stocks of standard freqs for MPU etc. Any freq made to order 6 weeks from $£ 3.75$. WINKLE PICKERS Winkle out DX from the QRM with WINKLE PICKERS Winkle out DX from the QRM with pin-sharp 250 Hz 8 -pole crystal CW filters specially manufactured to fit TR1O and YAESU, FT/FR-101, FT-301, TS-520. TS-820. £25.90 each. All prices inc. VAT and UK post. SAE Lists. P. R. GOLLEDGE ELECTRONICS, G3EDW, Meriott, Somerset, TA 165 NS . Tel. 046073718.

ATTENTION SWL'S \& DXers. HIGH QUALITY, LOW COST equipment. ATU's PRESELECTORS etc., covering medium \& short wave. S.A.E. Details. AMTEST, 55 Vauxhall Street, Worcester WR3 8PA.

TUNBRIDGE WELLS COMPONENTS, BALLARD'S, 108 Camden Road, Tunbridge Wellis, Tel: 31803 . No Lists. Enquiries S.A.E.

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 7.50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertise ment does not contravens any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care is taken, the Publishers shatl not be liable for clerical or printers' errors or their consequences.

 1920 to 1950Receivers, valves, components, service data, historical research books, magazines, repairs and restorations. A com-
plete service for the collector and enthusiast of vintage
plete service for the collector and enthusias
radio.
S.a.e. with enquiries and for monthly newsheet.
THE VINTAGE WIRELESS COMPANY, THE VINTAGE WIRELESS COMPANY, 64, Broad Street,
565472.

CODESPEED
 Electronic Mail Order

TO3 HEAT SINKS ! ! ! Two types of heat sink. Exequipment, but condition as new. Most still contain a power transistor type $92 \times 66 \times 35 \mathrm{~mm} 20 \mathrm{p}$ each. Rectangula
tree type $130 \times 63 \times 32 \mathrm{~mm} 30 \mathrm{p}$ each. Please add 25 p per heat sink post and packaging-
PACK M1 2 Calculator keyboards. Each has 17
keys and two switches. Only $£ 1-00$. keys and two switches. Only $£ 1-00$.
PACK M2 1×2102, a 1024 bit static RAM. The
most popular of all RAM's in professional or amateur electronics. With data sheet $£ 1 \cdot 25$.
PACK M3 Build your own calculator! MM5725 calculator chip and data book. (Not compatible with Pack M1) £1.00.
CALCULATOR PACK M4 Contains a production line reject calculator. Either fix them not much wrong with some we checked) or strip them for good value for money-case/keyboard/display/chig/PCB). We include all the info. we can find on repairing calculators. What a bargain at $\mathbf{£ 2 . 5 0}$. PACK C1 10×12 pin Hybrid circuits each containing 16 resistors/capacitors. Useful values. Ideal for semiconductor circuits and PCB miniaturisation. With data 10 hybrid circuits for 50p.
back your own digital multimeter or panel Now build your own digital multimeter or panel meter Using this versatile chip
PACK T3 $1 \times$ MM5316 Digital Alarm Clock I.C. 12 or 24 hour. Will drive LED, LCD or fluorescent dis plays. With full instructions $£ 2.75$.
PACK T4 $1 \times 0.8^{\prime \prime}$ giant multiplexed red LED Clock Display. Common cathode. $3 \frac{1}{2}$ digit with am/pm in
dicator. An oxcellent display for your digital clock project at only $£ 3.95$. PACK E2 An 8 digit calculator style Liquid Crystal display. $0.33^{\prime \prime}$ high digits with right hand decimal points and overflow indicator. With data. E2•95.
PACK E3 Same as Pack E2 but with $0 \cdot 5^{\prime \prime}$ hig PACK E3 Same as Pack E2 but with $0.5^{\prime \prime}$ high
digits. £4.25. digits. E4.25.
PACK E6 Contains a brand new 6 digit Texas in-
struments LED display. Multiplexed with built-in struments LED display. Multiplexed with built-in
bubble magnifiers. $0.1^{1 "}$ high digits. Common cathode. $£ 1.00$.
PACK EB A miniature 5 digit, 7 segment $0.09^{\prime \prime}$ common cathode LED display, Mounted on 16 pin dual-in-line I.C. package. Terrific value at only 75p. Satisfaction guaranteed or return complete pack for replacement or refund

Postage and Packaging please add 25p
(Overseas orders add 60p)
For free catalogue send For free catalogue send
CODESPEED, P.O. Box 23,34 Seafield Road
Copnor, Portsmouth, Hants. PO3 5BJ

VALVES

Radio - T.V. - Industrial - Transmitting Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 4000 Types in stock, 1930 to 1976. Obsolete types a speciality. List 30p. Quotations S.A.E.
Open to callers Monday to Saturday 9.30 to 5.00 closed Open to callers. Monday to Saturday 9.30 to 5.00 closed
Wednesday 1.00 . We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering, Sussex PO20 8BN
West Wittering 2023 (STD Code 024366)

D.Y.M. THERMOMETER KIT

Based on the ICL7106 single chip DVM the kit contains a 3 digit LCD, a PCB
ICL7 106 and all ICL7106, and all components and in
structions to make $a 0-200 \mathrm{mV}$ FSD structions to make a $0-200 \mathrm{mV}$ FSD
DVM. Components also supplied it enable this to be converted to a digital thermometer. Requires a 2 mA
supply (PP3 battery). ONLY $\mathbf{E 2 1 . 9 9}$
TOUCH CONTROLLED LIGHTING KITS Directly replace conventional light switches and control up
to 300 W of lighting. No mains rewising to 300 W of lighting. No mains rewising. Insulated touch plates, Easy to follow instructions.
NEW! TD $300 \mathrm{~K}-T O U C H D I M M E$
alternate action. Brief touch switches alternate action. Brief touch switches brightens lamp. Neon lamp helps find the switch in the dark,
Extension kit for CD 300 K permits operation from another location, two-way switching, etc
TSD 300 K -TOUCHSWITCH-DIMMER ON/OFF action. Small knob for presetting alternate TS300K brightness - ON/QFF TOUCHSWITCH. Two touch TSA 300 K -AUTOMATIC TOUCHSWITCH. Time variable 2 secs to $3 \frac{1}{2}$ mins.

24 HR. CLOCK APPLIANCE TIMER KIT
Switches any appliance of up to 1 KW on and of at preset times once a day KIT contains: AY-5-1230 Clock/Ap
pliance Timer IC. 05° LED display pliance Timer IC, O 5 LED display,
mans supply, display drivers, switches, LEDs, triac, P'CBs and full instructions.
$\begin{array}{lr}\text { White box } 56 \times 131 \times 71 \mathrm{~mm} \text { with red Acrylic } & \mathbf{£ 1 4 . 9 0} \\ \begin{array}{ll}\text { Window }\end{array} \\ & \mathbf{£ 2 . 2 0}\end{array}$ window
White box as above ready drilled for kit $£ 2.20$
$£ 2.50$
$\mathbf{£ 2 2 . 5 0}$
Ready-built in box, incl, mains cable

40DY PLAST: TRIAKS		trya		COMPONENTS	
34	58p	$0.2^{\prime \prime}$ dia LEDSRed $12 \mathrm{p}(\mathrm{f} 1 / 10)$		$\begin{array}{ll} 555 & \mathbf{2 8 p}(4 \text { @ } £ 1) \\ 741 & 22 p \\ \hline \end{array}$	
88	74p				
120	84p	Green 20p			
2031	65	Yellow $\mathbf{2 5 p}$ 0L727 $\mathbf{1 1 . 5 0}$ 		Temperature	
25A 1	190 p				
6^{*} with trigger	30 p	LDR sim	$\begin{gathered} 50 p \\ 8 p \end{gathered}$	ICL7106 $\mathbf{£ 9 . 2 5}$ TIC1060 SCR 50p Diac $\mathbf{2 0 p}$	
${ }_{4}^{8 A_{\text {isolated }}{ }^{\text {i }} \text { (ab }}$					
				$\begin{aligned} & 2 \mathrm{~N} 6027 \\ & \mathrm{AY}-5-1230 \end{aligned}$	$\begin{array}{r} 34 p \\ 4.50 \end{array}$

QUANTITY DISCOUNTS ON REQUEST
ADD 8\% VAT +25 p P\&P. Callers by appointment only
106 STUDLEY GRANGE ROAD, LONDON W7 2LX

GRADE 1 semiconductors, passives, hardware, + security. Immediate services:-Texas $1 \mathrm{~N} 4148 \quad £ 1.50$ per 100:-RCA. CD4001/11 18p.-RCA. 7418 pin dil $£ 1.00$ per $5 .-555 £ 1.00$ per $4-$ CEH. PC. housings 60 p. Capacitors, resistors, keyswitches, Texas IC. sockets, control-panels. S.A.E. brings complete catalogue:- CEH Audio-Visual (F), 48 Whistler Road, Tonbridge, Kent.

Record Accessories

STYLI for Hi-Fi. Music Centres, III, List free for S.A.E also cartridges, leads, accessories. Details-FELSTEAD ELECTRONICS (PW), Longley Lane, Gatley, Cheadle Ches. SK 8 4EE.

Tapes

Tapes. Low noise cassettes. Free library cases. Delighted or money back. C60 six or more 29p each. Sample 32p. No more to pay. A. W. \& J. M. West, 56 Frankwell Drive more to pay. A. W

Service Sheets

REG. OFFICE 14 B QUEENS PARADE, NORTH EALING W5 3 HU

SERVICE SHEETS-COLOUR TV SERVICE MANUALS

Service Sheets for Mono TV, Radios, Record Players and Tape Recorders $£ 1$. Please send large Stamped Addressed Envelope. B.R.C. PYE ECKO PHILIPS ITT/KB SONY G.E.C. HITACHI BAIRD ULTRA INVICTA FERGUSON H.M.V. MARCONI AND MANY MORE
ped Addressed Envelope for a prompt reply. Also comprenensive T.V. repair manuals
by J. M. Court. S.A.E. for details. MAIL ONLY TO
G. T. TECHNICALINFORMATION SERVICE

10 Dryden Chambers, 119 Oxford St., London W1R 1PA

SERVICE SHEETS, Radio. TV etc., 10,000 models. Catalogue 24 p , plus S.A.E. with orders, enquiries. TELRAY, 154 Brook Street, Preston PR 1 7HP

LARGE SUPPLIER OF SERVICE SHEETS

and Colour Manuals, TV Mono Radios, Tuners, Tape Recorders, Record Players. Transistors, Stereograms, all at 75 p each + S.A.E. except colour $T V$ and Car Radios. State if Circuit will do, if sheets are not in stock. All TV Sheets are full lengths 24×12, not in Bits \& Pieces. Free Fault Finding Chart or TV Catalogue with order.
C. CARANNA

71, Beaufort Park, London, NW11 6BX 01-4584882

Educational

WHETHER SEA-GOING OR SHORE-BASED, an exciting life awaits you as a Marine Radio Officer. Full details from The Principal, Barking College of Technology, Dagenham Road, Romford RM7 0XU (Tel: Romford 66841).

COLOUR TV SERVICING

Learn the techniques of servicing Colour TV sets through new homestudy course approved by leading manufacturers. Covers principles, practice and alignment with numerous illustrations and diagrams. Other courses for radio and audio servicing. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. E277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

TECHNICAL TRAINING

Get the training you need to move up into a higher paid job. Take the first step now-write or phone ICS for details of ICS specialist homestudy courses on Radio, TV, Audio Eng. and Servicing, Electronics, Computers, also self-build radio kits. Full details from:

ICS SCHOOL OF ELECTRONICS
Dept. E277 Intertext House, London SW8 4UJ
Tel. 01-622 9911 (all hours)
State if under 18

CITY \& GUILDS EXAMS

Study for success with ICS. An ICS homestudy course will ensure that you pass your C. \& G. exams. Special courses for: Telecoms, Technicians, Electrical Installations. Radio, TV \& Electronics Technicians, Radio Amateurs, Fuli details from:

ICS SCHOOL OF ELECTRONICS
Dept. E277 Intertext House, London SW8 4UJ
Tel. 01-622 911 (all hours)
State if under 18
GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY7 8JZ.

Ladders

LADDERS varnished $22^{\prime \prime}$ extd. $£ 30$. Carriage $£ 2.80$. Leaflet. Also Alloy ext. up to $62 \frac{1}{2} \mathrm{ft}$ LADDER CENTRE (WLS3), Halesfield (1), Telford. Tel: 586644.

Wanted

WANTED Constructor to assemble an electronic steam whistle and model train Chuffer. Full instructions and most parts supplied. N. Taylor. 27, Nethergate Street, Bungay, Suffolk.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV etc., $£ 1.00$ plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc., with free fault-finding guide, from 50p and S.A.E. Catalogue 25p, and S.A.E. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

Equipment Wanted

Tempting prices paid for

Oscilloscopes-Signal Generators
DVM's-Small Computers Receivers.Teletypes-VDU's etc.

For Sale

BACK ISSUES FROM 1955. P.W.P.E. P.T. R.C. 35p plus post or exchange. Telephone Amersham 22434.

NEW BACK ISSUES of "PRACTICAL WIRELESS" available 70p each, post free. Open P.O. Cheque returned if not in stock-BELL'S TELEVISION SERVICE, 190 Kings Road, Harrogate, N. Yoiks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5,000 odds and ends. Mechanical/Electrical Cat Free. WHISTON (Dept. PW), New Mills, Stockport.

PRACTICAL WIRELESS. May 70 to Dec. 78. Perfect condition. Enquiries: 0782321487.

Books and Publications

COMPREHENSIVE TV REPAIR INSTRUCTIONS tor your set $£ 5.00$ with circuit (if requested). Free catalogue unique TV/other publications. AUSE (PW), 76 Church Street, Larkhall, Lanarkshire ML9 1HE.

Build your own P.A., GROUP \& DISCO SPEAKERS by R.F.C. Stephens

Save money with this practical guide, Plans for 17 different designs. Line source, I.B., Horn and Reflex types, for $8^{\prime \prime}-18^{\prime \prime}$ drive units. $\mathbf{~} 3.95$ post free ($\$ 8$ overseas),
THE DALESFORD SPEAKER BOOK by R.F.C. Stephens. This book is a must for the keen home con-
structor. Latest technology DIY designs. Plans for l.B., and structor. Latest technology DIY designs. Plans for l.B., and
Reflex designs for $10-100$ watts. Also unusual centre-bass system. $\mathbf{\text { 2 } 2 . 2 0 ~ p o s t ~ f r e e ~ (~} \$ 5$ overseas).

VAN KAREN PUBLISHING,

WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work you need, materials required, all instructions, rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. $£ 4.00$ plus 30 p P\&P. UK. CWO, to INDUSTRIAL SUPPLIES, 102, Parrswood Rd., Withington, Manchester 20, Dept. PW.

Miscellaneous

SUPERB INSTRUMENT CASES by Bązelli, manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept. No. 25, St. Wilfreds, Foundry Lane, Halton, Lancaster LA 6LT.

BECHARGEAELE BATTERIES

TRADE ENQUIRIES WELCOME
FULL RANGE AVAILABLE. SAE FOR LISTS. £1.25 for Booklet "Nickel Cadmium Power" plus Catalogue. Write or
call. Sandwell Plant Ltd, 2 Union Drive, BOLDMERE call, Sandwell Plant Ltd, 2 Union Drive, BOLDMERE, or see them at TLC, 32 Craven Street, Charing Cross,"
London WC2.

SINGLES HOLIDAYS/Houseparties. Friendship introductions. Free details-Christian Friendship Fellowship, Dept. B89, Edenthorpe, Doncaster (S.A.E.).

ALFAC etch resist transfer and other p.c. board drawing materials available from stock. S.A.E. details. RAMAR CONSTRUCTOR SERVICES, Masons Road, Stratford upon Avon CV37 9NF.

THE SCIENTIFIC WIRE COMPANY PO Box 30, London E. 4 Reg. Office 22 Coningsby Gdns ENAMELLED COPPER WIRE				
SWG	1 fb	8 Oz	4 oz	202
10 to 19	2.65	1.45	. 75	. 60
20 to 29	2.85	1.65	. 90	. 70
30 to 34	3.05	1.75	1.00	. 75
35 to 40	3.40	1.95	1.15	. 84
41 to 43	4.55	2.55	1.95	1.30
44 to 46	5.05	3.05	2.15	1.70
47	8.00	5.00	3.00	1.80
48	15.00	9.00	6.00	3.30
SILVER PLATED COPPER WIRE				
14 \& 16	4.50	2.25	1.44	. 90
20 \& 22	5.00	2.85	1.74	1.06
24 \& 26	5.70	3.31	2.00	1.22
28\&30	6.67	3.86	2.35	1.44
Prices include P \& P and VAT SAE brings list of copper \& resistance Wires Dealer Enquiries Invited				

MORSE CODE TUITION AIDS

 Cassette A: 1-12 w.p.m. for amateur radio examination Cassetre B: 12-24 w.p.m. for professional examination preparation. Morse by light systems available. Morse Key and Buzzer Unit for sending practicePrice each Cassette (including booklets) $\mathbf{£ 4} \mathbf{5 0}$. Morse Key
Prices include postage etc., Overseas Airmail $£ 1-50$ extra. MHEL ELECTRONICS (Dept. P.W.), 12 Longshore Way, Milton, Portsmouth PO48LS.

GUITAR/PA/MUSIC/AMPLIFIERS

100 watt with superb treble bass overdrive, 12 months
quarantee. Unbeatable at $£ 40 ; 60$ watt $£ 35 ; 200$ watt $£ 56$: quaranter. Unbeatable at $\mathbf{£ 4 0 ; 6 0}$ watt $£ \mathbf{3 5} ; 200$ watt $£ 56$; Twin channel sep treble/bass per channel $£ 52 ; 60$ watt $£ 46 ;$
200 watt $£ 69 ; 100$ watt tour channel sep treble/bass per channel $£ 65 ; 200$ watt $£ 79$; Slaves 100 watt $£ 32 ; 200$ watt watt combo superb sound overdrive, sturdy construction, castors. unbeatable $£ 85$; Twin channel $£ 95$; Bass Combo £95; Speakers 12 in. 100 watt $\mathbf{£ 2 2 . 5 0 ;} 60$ watt $\mathbf{£ 1 4 . 5 0 ;}$
Shure mic unidyne $\mathbf{~} £ 26$. Shure mic unidyne $\mathbf{B} \mathbf{£ 2 6}$.
Send Cheque or P.O. to:
WILLIAMSON AMPLIFICATION
62 Thorncliffe Ave, Dukinfield, Cheshire. Tel. 061-344 5007 cassettes in library cases 30 p each. Miniature relays $17 \times$ $30 \times 28 \mathrm{~mm} 6000$ coil 4 sets change over contacts $50 p$ each. Prices include V.A.T. Add 10% postage.

SALOP ELECTRONICS
23 Wyle Cop. Shrewsbury

TREASURE TRACER MJ: Ill meallocater - Varicap tuning

- Britain's best selling metal locator
kit: Fitted with Faraday shield Speaker and earphone operation 4,000 already sold
Knocks down to only 17 in .
Prebuilt search coil assembly
- Thoroughly professional inish You only need soldering iron, screwdriver, pliers and snips Five transistor circuit Send stamped, add
onvelope for leaflet
 Foat $81 \cdot 24+51 \cdot \boldsymbol{T}$ VAT Poet $£ 1 \cdot 20+51 \cdot 71$ YAT MIMIKITEELECTROHICS. LONDON, EAB ZAN

DX DOWN?

QRM UP? NOW you can dig RARE DX from tiring whistles and cw with a Tunable Audio Notch Filter, inc. speaker and cw with a Tu
amplifier, $£ 8.90$.
V.L.F. $710-150 \mathrm{KHz}$ Receiver only f 10.70

MISSING RARE DX 7 Crystal Calibrator, 1 MHz, 100, 25
sig. GEN., $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine/square, $£ 10.80$
ANTENNA NOISE BRIDGE, $1-150 \mathrm{MHz}, \mathrm{f} 9.80$.
HOW LOW CAN YOU GOT $100-600 \mathrm{KHz}$ to $4 \cdot 1-4.6$ MH_{2} Converter snocp low for f 9.90
Europe acid 40p. Giro 21-923-4000. Eech easy-sssambly kit inctudes all parts, printed circuit, case, postags etc., money back assurance so SEND parts, prim.
off NOW.

CAMBRIDCE KITS 45 (PO) Old School Lare, Milton, Cambridge.

NICKEL CADMIUM BATTERIES

 SUB £4.09 (PP3 not suitable for fast charge), PP3 charger
E5.31. All above Nickel Cadmium batteries are guaranteed EVER READY full spec, and are supplied complete with solder tags lexcept PP3). Just in stock-New rechargeable sealed lead acid maintenance free batteries suitable for burglar alarms etc.. 1.2 amp hr . 6 v . $£ 4.406 \mathrm{amp} \mathrm{hr}$. 6 v
Quantity prices available on request. Date and charging circuits free on request with orders over $£ 10$ otherwise 30 p
post and handling (specify battery type), all prices include VAT. Please add 10% P \& P on orders under $£ 10.5 \%$ over f10.
Cheques, postal orders, mail order to: SOLID STATE SECURITY DEPT. PW., 10, Bradshaw Lane, Parbold,
Wigan, Lancs. 0257-4726.

AERIAL BOOSTERS Improve weak VHF Radio and Television reception, price $£ 5 \cdot 00$ S.A.E. for Leaflets ELECTRONIC MAILORDER LTD., Ramsbottom, Bury, Lancashire BL0 9AG

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for insertions

I enclose Cheque/P.O. for $£$
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd. and made payable to Practical Wireless).

NAME.
Send to: Classified Advertisement Manager PRACTICAL WiRELESS.
GMG, Classified Advertisement Dept., Rm. 2337, King's Reach Tower, Stamford Street,
London SE1 GLS
Telephone 01-2615846
Rate
22p per word, minimum 12 words. Box No. 60p extra
Company registered in England. Registered No. 53626. Registered office: King's Reach Tower, Stamford Street, London SE! 9LS

WATFORD ELEGTRONICS
 33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND MAIL ORDER. CALLERS WELCOME TEI WATOT $40588 / 9$

ALL DEVICES BRANDNEW, FULL SPEC. ANDFULLY GUARANTEED.
 ANDEDUCATIONALINSTITUTONSOFFICIALORDERSACCEPTED
TRADEANDEXPORTINQUIAYELCOME. PPADD 30 OTOALL
ORDERS
SEND 50p (plus 25p p\&pl for our catalogue.
VAT $\begin{gathered}\text { Export ordorano VAT. Applicable to U.K. Customers only Unless statad } \\ \text { ortherwa }\end{gathered}$
 Open Monday to Saturday 9 a.m.-6 p.m. Amplo Free

POTENTIOMETERS (AB or EGEN) Carbon Track, 0.25 W Log \& 0.5 W Linear	
(lyes. $1 \mathrm{~K} \& 2 \mathrm{~K}$ (LIN ONLY) Sing	
5 KO -2MOsingle gang	27 p
$5 \mathrm{KO}-2 \mathrm{M}$ a single gang	60p
-	70p
SLIDER POTENTIOMETERS 0.25 W log end I near values 60 mm track $5 \mathrm{~K} \Omega-500 \mathrm{~K} \Omega$ singie gang	
	80
Self-Stick graduated Alum. Bezels	22p
PRESET PO 0. W50 5 -2.2M Minl. Vert. \& Horiz, 8p	
$0.25 \mathrm{~W} 100 \mathrm{O}-3 \mathrm{M}$ M Horiz. larger O	${ }_{1}^{10 p}$

TRIMMERS mini	Caystals	
	100 kHz	p
	455 kHz	385p
COMPRESSION	1 MHz	323p
	1.80 M	$385 p$ $395 p$
$25-200 \mathrm{pF}$ 33 p $100-500 \mathrm{pF}$ 155	3.2768 M	323p
	4.	p
Buzzers 6 V or 12V 65p	4.03	323p
1 $\mu \mathrm{F}, 4,7,10,22,47,10$		
	8.083	

TRANSFORMERS* (Maing Prim. 220-24OV)
6-0.6V 100mA: $9-0-9 \mathrm{~V} \quad 75 \mathrm{~mA} ; 12-0-12 \mathrm{~V}$
100 mA95p.

 20V-3A 220p (20pp\&p)
 20V. 6A 290p (45pp\&p)
 350 p (50p p\& p)
$100 \mathrm{VA}: 12 \mathrm{~V}-4 \mathrm{~A} \quad 12 \mathrm{~V}-4 \mathrm{~A} ; 15 \mathrm{~V}-3 \mathrm{~A} \quad 15 \mathrm{~V}-3 \mathrm{~A}$ $20 V-2.5 A$ 20V $2.5 \mathrm{~A}: 30 \mathrm{~V}-1.5 \mathrm{~A} 30 \mathrm{~V}-1.5 \mathrm{~A}_{\mathrm{i}}$
$40 \mathrm{~V}-1.25 \mathrm{~A} 40 \mathrm{~V}-1.25 \mathrm{~A} ; 5 \mathrm{~V}-1 \mathrm{~A} 50 \mathrm{~V}-1 \mathrm{~A} 65 \mathrm{p}$ (60ppsp)

OUal Purpose ${ }^{\text {O }}$

9-5 Grren
T'-type
92p
Transistor

INDEX TO ADVERTISERS

Published on approximately the 7th of each month by IPC Magazines Limited. Westover House, West Quay Road. POOLE, Dorset BHIS IJG. Printed in England by Chapel River Press. Andover, Hants. Sole Agents for Australia and New Zealand Gordon and Gotch (Asia) Lid.; South Africa-Central News Agency Ltd. Subscriptions INLAND and OVERSEAS fIO. 60 payable to IPC Services, Oakfield House, Perrymount Road. Haywards Heath. Sussex. Practrcal Wireisss is sold subieer to the following conditions. namely that ir shall not, withour the writen consent of the Publishers first having been gisen, be lent, resold. hired out of otherwisc disposed of in a matitated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, iterary or pictorial matter whatsoever.

A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES

18361	0.65	6ax46Tb	1.00	${ }^{6 C Y} 5$	1.00	12at6	0.60	ECF200	0.90	ем84	0.60	PCL81	0.65	PY82	0.55	UCC84	0.75
1 R 5	${ }^{0.50}$	6AX56T	1.30	6CY7	1.00	12 277	0.50	ECF201	0.90	EM87	1.00	PCL	0.80	PY83	0.70	ucc85	0.55
1X28	1.20	6ва6	0.45	60068	1.45	12 CLB	0.65	ECFF89	0.95	EY81	0.50	PCL184	0.75	PY88		UCF80	0.75
5a78	0.85	68E6	0.48	${ }^{\text {6076 }}$	0.80	12407	0.47	ECF802	0.95	EY87	0.55	PCL86	0.85	PY500A	1.30	UCH42	0.90
574	0.75	6855	0.85	6078 ${ }_{\text {60, }}^{60} 4$	0.80	${ }^{12} 22 \times 6$	0.85	ECH42	1.10 0.55		${ }_{0}^{0.55}$	PCL1805		${ }_{T}^{1+21}$	7.80	UCH81	0.65
5446	0.60	${ }^{\text {6BF6 }}$	0.75	${ }^{\text {60W4 }}$	- 0.90	${ }_{12 \times 12}^{124} 7$	1.00 0.55	ECH81		Ev500A	1.50 0.50	P051	3.35	T22	7.80	UCL181	0.70
5086 5×46	0.60	${ }^{68666}$	0.30 0.85	6ES5	1.50	${ }_{12 \text { 2ax }} 12$	0.55 0.85	ECH200	${ }_{0}^{0.80}$	E280	0.50	P136	1.10	${ }^{125}$	1.00	UC182	0.75
- 5×46	0	${ }^{\text {68月 }}$ 686 6	1.20	${ }_{\text {bew }}$	0.80	${ }_{1284}^{284}$	0.85	Ectic	0.75	GY501	0.90	PL81	0.80	${ }^{1226}$	0.58	${ }^{\text {jei }}$	${ }_{0}^{0.80}$
5×8	0.90	6817	0.65	66H8A	0.80	12856	0.67	EL182		6230	0.65	P183				UF80	
5\%36T	0.65	6BK4B	1.40	66k5	0.76	123H7A	0.75	EC183		6232	0.65	PL84		UBC41			
5246T	0.65	6BN4A		6Gk6	0.90	12816	0.70	ECL84		6233	3.85	P1504	1.05	ubc81	0.60	U184	0.85
${ }^{6 A B 7}$	0.60		0.80	6J4	1.20	${ }^{128066}$	0.90	ECL85	0.65	0A2	0.55	P1508	1.30	ube80	0.60	UM80	0.60
${ }^{\text {6AC7 }}$	0.80	${ }^{68074}$	0.65	${ }^{6.3 .56}$	${ }^{0.80} 0$	${ }^{12887}{ }^{12}$	0.80 0.90		0.85	${ }^{\text {OA3 }}$		${ }_{\text {P1802 }}$	2.80 0.70	U8F89			0.45
6AF4A	${ }_{0} .80$	6885 ${ }^{\text {ch }}$	2.30	6.97	0.60	19405	0.75	Ef85	0.48	${ }^{083}$	0.75	PY8			0.85		
6AG5	0.65	6848	0.85	6K56T	75	19866	0.50	EF86	0.60	0 C 2	1.45	OSCILLOSCOPE TUBES current production. Made in USSR One inch Tube Type $3 L 0$ 11. This tube is a good replacement for 1 CP31. Tube characteristics are identical with those of 1CP31. As the connections are different the tube is supplied complete with base, connection diagram and technical data $\mathbf{5 1 2 . 0 0 ^ { * }}$. Three-inch tube Type 3BP1. This well known tube used in "PURBECK" Oscilloscope can be supplied for $\mathbf{£ 7} \mathbf{5 0}$. 14 -pin base for the above $\mathbf{£ 0} \mathbf{8 0}$.					
6 697	0.85	68W7	00	6 6 6 GT		3543	0.70	EF92	0.75	$0{ }^{0} 3$	0.75						
${ }_{6}^{6 A H G}$	0.95	${ }_{6822}^{682}$	${ }_{0}^{0.65}$	${ }^{6 L 66 T}$	0.85 0.85	3585 3555	0.65 0.70	EF97	0.70 0.90	${ }_{\text {Pab }}^{\text {Pa }}$	0.45						
6AK5	0.55	$6{ }_{64}$	0.55	607	0.90	50 C 5	1.00	EF183	0.70	PC86	0.85						
6AK6	0.75	6C5GT	0.60	6SA7	0.80	50EH5	0.85	EF184	0.70	PC88							
6AK7	0.85 0.40	${ }_{6 C 86}^{6 C 6}$	0.50 0.60	${ }^{\text {6867 }}$ 687	${ }^{0.80} 0$	${ }_{\text {dafab }}^{\text {Dafg }}$	0.80 0.60	Eft200	${ }^{1}$	${ }_{\text {PC96 }}$	0.50 0.95						
6AM6	0.76	6CB6	0.55	6SL76T	0.70	DK92	1.00	E133		PC900	1.00						
6AM8	0.70	6 6G7	0.70	6SN7	0.70	${ }^{196}$	0.60	E136	0.95	PCC84	0.50						
6AN5	2.50 0.85		0.80	${ }_{\text {6SA7 }}^{\text {bsal }}$	0.80	Ecc85	${ }_{0}^{0.60}$		0.60	${ }_{\text {PCCB8 }}$	0.60						
${ }_{6 A}$ a 5	0.85	6CN7	1.20	6vegr	0.65	ECC86	1.25	${ }_{\text {E883 }}$	0.60	PCC8	0.75						
6AS6	1.00	$6 C 08$	0.75	6×4	0.60	ECC88	0.75	E184	0.45	${ }^{\text {PCCC1 } 189}$	1.05						
${ }^{\text {6as76 }}$	1.20 0.75	${ }_{60}^{687}$	0.85 1.00		0.60	- eccis9	${ }_{0}^{0.80}$	${ }_{\text {E }}^{\text {E.86 }}$	0.75 0.70	Pectio	0.65						
¢6AT6	0.50	${ }^{6605}$	1.00	-886	0.60	${ }_{\text {echr }}$	0.60	${ }_{\text {E }}$	0.80	${ }_{\text {PCFP }}$	0.65						
6AVG	0.75	6CW4		12455	0.65	-	0.55	em80									
6AWBA	0.75	6C×8	1.00	12 AO 5	0.60	ECF86	0.80	M81	0.60	PCF806	1.00						

VAT is not included. Please add $12 \frac{1}{2} \%$ on all items except those marked with asterisk, on which VAT is 8%. Postage and packing charges are $\mathbf{£ 0} \mathbf{0} \mathbf{1 0}$ per $£$ subject to a minimum of $\mathbf{£ 0 . 3 0}$. Minimum order charge for Approved Credit customers $\mathbf{£ 2 0 . 0 0}$. Minimum Transaction Charge for mail orders $£ 1.00$.

OUR NEW 1978/1979 CATALOGUE IS,NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR £0-30

TRANSISTORISED INVERTER UNITS

CASED UNITS

Designed to operate reliably in continuous or intermittent use, low standing current drain, proportional current corisumption with regard to the connected load, assembled in vinyl covered instrument cases with grade one silicon power transistorsGuaranteed 2 years-DC input fused.

12 volt DC inputs-200/240V AC outputs regulated, at 50 Hz square wave or optional smoothed and filtered wave form circuitry for sensitive equipment:

25 watts $4^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ 40 watts $6^{\prime \prime} \times 4^{\prime \prime} \times 3 \frac{1}{2}^{n}$ 140 watts $6^{\prime \prime} \times 4^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ 200 watts $8^{\prime \prime} \times 7^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ 300 watts $10^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}$ 400 watts $12^{\prime \prime} \times 5^{\prime \prime} \times 6^{\prime \prime}$ 500 watts $14^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ 700 watts $14^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime} \times 9^{\prime \prime}$

Case sizes subject to variations

All inverters are ready assembled, DC input via heavy duty cables with attached battery clips, AC mains output via a 13 amp socket.

PANELASSEMBLIES

These inverter panels are assembled on aluminium sheets. all are uncased. Suitable for general purpose applications, plain DC leads in/and AC output leads
Square output waveforms 50 Hz regułation is optional at extra cost of £1.10.
$12 v$ DC in/200/240v AC out at 20 watts $4^{\prime \prime} \times 3^{\prime \prime} \times 3^{\prime \prime} \quad \mathbf{£ 4 . 4 0}$ $12 v \mathrm{DC}$ in $/ 200 / 240 \mathrm{~V} \mathrm{AC}$ out at 40 watts $4^{\prime \prime} \times 3^{\prime \prime} \times 3^{\prime \prime}$ 12 v DC in $/ 240 \mathrm{v} \mathrm{AC}$ out 50 Hz at 100 watts $6^{\prime \prime} \times 9^{\prime \prime} \times 4^{\prime \prime} \quad £ 16.80$

OPTIONAL EXTRAS
Smoothed and filtered waveform circuitry $\mathbf{£ 2 . 5 0 ;}$ Additional 13 amp mains output socket fitted $£ 1.20$; Panel fuse/holder 20 mm for mains protection fitted $\mathbf{£ 1 . 0 0}$.

TERMS OF BUSINESS

Cash/P.O./Cheque with order. Postage/Carriage inclusive. Delivery 10/14 days, urgent 48 hr service available 25\% extra

Mail Order Protection Scheme

The Publishers of Practical Wireless are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wireless within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mail order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail orde advertising are excluded.

Model TCSU1 Soldering Station

The TCSUl Siぱ゙ー volt solseric

 control stes $=-$－r ove heating the＂ail safe electronic Circuit prefes frezeion even it the thermocouple farls
 incluster er $x T$ and $P \& P$

Model CX－ 17 watts

a minature won with the element enclosed trist in a ceramic shaft then in a staïniess steel Vilually leak free Only 7 ，＂ long，Filled with a $3 / 32$ bit $14-37$ nclusive of vat and 5 other bits avaliable from wown do 364

Model X25－25 watts

A general purpose ifron also with a ceramic and steel shaft to give you toughness combined with near Derfect insulation Fitted with $1 / 8$ bit and priced at $£ 4 \times 37$ inclusive of VAT and $P . \& P$ Range of 4 other bits available

Model SK3 Kit

Model SK1 Kit

This kit contaims a 15 watt miniature soldering iron complete with 2 spar bits a coil of solder，a heat sink and a booklet How to solder Price at $£ 648$ inclusive of VAT and P．\＆F

Model MLX Kït

The solderimg iron in this kit cantue orerated from any ordinary car batter and hated with s leet llexible cable plastic envelone it can be lett in car a hoat or a caravan ready io soldering in the field Price $£ 4.83$ inclusive of VAT and P．\＆P

Model SK4 Kit

Now heat to aly level What 3

between $145^{\circ}-400^{\circ} \mathrm{c}$

Withinis
30
4新

Antex TCSCI Soldering Stafon：

 Tringoler fintina tir heang elenont mside a shay，then the Ugsirediottis ezaco aver the Shaft giving maximum heat transicuention，this： is why so often a small Antex iren can so the

brecision maria slite entits are sit to make
them easily interchangeable．
The ANTEX muiti purpose range of soldering
equipment is fast becerming a must for even
nome．Byit with precision for long fife，each． ron is fuly testedsand guaranteed．
ANT Ex soldering irons ane made in
Englants x strict local and
internattortat standarcs of safety．
Sturen by giny yhalesales anh weiners or direct tom us if
yev ard theprate．

*specinl fenkure

 8-R:न्हगUPRIEIIEI

Pinatical Mirales

contents

Finishing it off
The mystic art of soldering
Identifying components
Component buying
Handling c.m.o.s.

Two

Four

Six

Seven

Eight

Finishing it off

Give your project a really professional appearance

A growing number of home constructors seem to be aiming to finish their projects in a more professional manner. There is a growing interest in using better looking and better finished cases and cabinets and the days of the old tobacco tin seem, fortunately, to have passed.

The choice of cases available to the home constructor has improved in recent months and several companies have made some of their professional cases available on the amateur market.

In most projects presented in Practical Wireless the decision as to the type and style of case to be used has already been taken. A lot of thought goes into the choice of case for each project, bearing in mind such parameters as price, the use to which the project will be put, availability and styling.

Simple Boxes

Some simple projects can be adequately housed in a simple plastic box if electrical screening is not required, or in the traditional diecast aluminium box if it is needed. Plastic boxes have been developed by several makers into quite sophisticated units offering many advantages for the amateur user. They are relatively inexpensive and can be easily drilled for controls using only simple hand tools, although some degree of care is needed if the smooth polished surfaces are not to be marked. A wide range of sizes and styles are available and several types have mounting facilities for printed circuit boards moulded into the box, simplifying construction.

The diecast box in its simplest form has been around for several decades andthere are probably more pieces of electronic equipment built into one of these
than into any other type, with the possible exception of the infamous tobacco tin. It has several disadvantages for the amateur, being quite difficult to work on with simple hand tools and having a rather indifferent appearance in the 'as bought' state. Versions are available with a respectable gloss painted finish, but these are very expensive and unless the electrical screening properties of the diecast box are really needed then the plastic versions are better, and cheaper.

The plain simple aluminium box with removable lid offers a stark and cheap housing without any pretensions as to style or elegance.

Test Gear

When it comes to projects such as test equipment, domestic audio or amateur radio projects, some respectable form of housing becomes essential.

Test equipment should be built to be used, and must offer reliability and confidence and it cannot really give of its best housed in a piece of bent aluminium. The case design chosen must be mechanically robust, easily worked and allow the controls to be ergonomically positioned. If the instrument is intended to be used in the workshop then allowances should be made for maximum utilisation of bench or shelf space. Take a look at what the commercial instrument makers use and don't be ashamed to take the best ideas from all of them. Don't be tempted to use a case that is so small that the controls have to be cramped together making the instrument awkward to use. You should be proud of the finished instrument and not be ashamed to leave it permanently on the workshop. bench where it will get maximum use.

Audio equipment tends to be ratherfashion conscious and so the cases and cabinets used for amplifiers and tuners change styles rapidly. Because this type of project is on show to anyone who enters your home it is very important to ensure that the workmanship put into the cabinet and front panel of any audio project is of the very best. Probably the easiest way to achieve this is to build from a complete kit where the cabinet is provided. However, if you are designing your own circuits or insist on making the entire unit yourself then there are a few recent additions to several makers' case ranges which would lend themselves to audio equipment.

For the amateur radio enthusiast the need is for a functional but still attractive case at a respectable price and it also probably needs to be all metal as well.

Metalwork

Although very respectable work can be turned out on the kitchen table using nothing more than a pair of scissors, an old file and a simple hand drill if you have the patience, it is very much easier with a few basic tools.

The home constructor needs to be able to drill holes in metal or plastic panels, file rectangular holes for meters or plugs, cut pieces of metal to size and shape and bend them into simple shapes such as brackets. To perform these operations a few basic tools are essential and you must learn how to use them properly.

Some means of holding the work is essential if painted or polished surfaces are not to be scratched.

Ensure that your cutting tools and drills are all kept sharp and in tip-top condition. Blunt and rusty tools do not

Drilling sizes

Thread	Clearance	Tapping
OBA	6.10 mm	5.10 mm
2BA	4.80 mm	4.00 mm
4BA	3.70 mm	3.00 mm
5BA	3.30 mm	2.65 mm
6BA	2.85 mm	2.30 mm
8 BA	2.25 mm	1.80 mm
10BA	1.80 mm	1.40 mm
12 BA	1.40 mm	1.05 mm

A professional look can be achieved with the PW Front Panel Overlay System. This picture shows the overlay for the PW Purbeck oscilloscope. The overlay can be used over a plain white card panel or over a coloured one if preferred. A thin Perspex sheet can be fitted over the film to protect it and hold it firmly in place
help to make a good job. Mark out the positions of the holes and cut-outs accurately, paying particular attention to ensuring that groups of holes are correctly positioned relative to each other. Centre-pop each hole before drilling a small diameter pilot hole first then following up with the correct size drill. Rectangular cut-outs are made by drilling holes at each corner and using an Abrafile fitted in the hacksaw frame cut along the four sides. Use a suitable file to finish the cut-out to size.

Wherever possible try to use components that have some sort of bezel to cover up the holes. This gives you much more leeway with your metalwork.

Collet type knobs provide a firm fastening together with ease of positioning on the shaft. These are Sifam knobs and the various component parts can be seen

Front Panels

Lettering on the front panel can make or mar a project. Although press down letters and numerals can be used with good effect they are not as easy to use properly as is widely imagined and unless they are carefully fixed with special varnishes they tend to rub off quickly in use.

A system to enable constructors to produce professional looking hard wearing front panels for many PW projects has been evolved.

This uses a photographically produced transparent film of the front panel which can be carefully cut out and placed over the main panel. A thin sheet of Perspex can be placed over the film to hold it flat, the "sandwich" being held in place by the controls.

A further stage in the production of front panels is to use the film overlay as a photographic master to make a thin metal panel which is then stuck onto the main front panel. This method produces superb panels but does require the use of ultraviolet lamps, specially sensitised metal sheet and the appropriate chemicals.

Knobs

To complement the front panel design you should choose suitable knobs, bearing in mind the use to which the unit is to be put. For test equipment where ease of use is vital it is difficult to better a collet type of knob. These fit tightly onto the control shaft by a simple collet action and do not
require a flat on the shaft for a grub screw.

For audio units more fashionable knobs can be chosen but remember that good knobs cost more than poor ones.

Wire sizes

s.w.g.		dia. mm	s.w.g.		dia. mm
10	3.251	30	0.315		
12	2.642	32	0.274		
14	2.032	34	0.234		
16	1.626	36	0.193		
18	1.219	38	0.152		
20	0.914	40	0.122		
22	0.711	42	0.102		
24	0.559	44	0.081		
26	0.457	46	0.061		
28	0.376	48	0.041.		

Basic tool kit

Hand drill with $\frac{3}{8}$ inch chuck
Drills $1 \mathrm{~mm}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}$ inch diameter, countersink bit
Junior hacksaw
Abrafiles (to fit hacksaw)
Centrepunch
Small ballpein hammer
Small files including round, halfround and three square
Steel rule, 12 inches tong
Small engineer's square
Scalpel and blades (also use as scriber for marking out)
Small vice
Screwdrivers
Pliers, small and large
Sidecutters
BA spanners
Soldering irons $15 \mathrm{~W}, 30 \mathrm{~W}$

The mystic art of soldering

Assemble your projects correctly

The absolute success of any electronic or wireless project lies with the workmanship put into the construction. This applies especially to the quality of the soldering. One dry joint and the entire project is likely to fail to work, causing despair to the beginner.

It is simply not sufficient to assume that a project can be thrown together anyhow, the solder blobbed onto the joints, the power switched on and it will work. With modern circuits and exotic components this is just not the case. The would be wireless constructor should aim to master the various constructional techniques used.

The basic art which must be perfected before starting any constructional project is the technique of soldering.

Choice of Iron

Let us discuss the choice of iron first as this has a direct bearing on how easily you can make a given joint. The only purpose of the iron is to heat the metals to be soldered to the correct temperature so that the solder flows properly. It is not intended to be used as a means of carrying the solder to the joint or as a tool for bending lead ends over. The iron should ideally be matched to the joint being made so that the temperature is neither too hot nor too cold. If the temperature is too hot it is probable that the more delicate components might be damaged while if it is too cold the solder will not melt properly and the joint will be dry.

Soldering irons are available in a wide variety of sizes and shapes. The first figure to be quoted when talking about irons is the wattage of the element and these vary from about 10 W up to about 240W-ideal for soldering the seams on your car radiator. For our purposes a 15/17W miniature iron with an iron plated copper bit of about 2.3 mm diameter is ideal for modern p.c.b. work

Top left is a badly made soldered joint on a p.c.b. probably made with an iron that was cold and dirty. Too much solder has been used and has bridged across the three pads. Below it is the same area of the board after the excess solder had been removed and the joint made with a clean hot iron. Top right shows a solder bridge across two adjacent pads. Below are the same joints properly made. The heading picture shows a Stiron 75W iron and Antex 30W and 17W miniature irons
and will cope with most joints to be found on PW project boards.

However where large diameter earth wires, metal screens and components with heavy gauge wires are met with then such a small iron will not be capable of supplying enough heat to bring the metals up to soldering temperature rapidly enough and a poor joint will be the result. For this type of work and also for older projects such as those using valves a $25 / 30 \mathrm{~W}$ iron with a bit of around 3.2 mm diameter is needed.

If you want to go in for some really heavy brass metal chassis bashing then you will need at least a 60W iron with a large bit and you might even find that a small propane gas blowtorch is better.

Preparation

When preparing the components for soldering ensure that the leads are clean and, if necessary, tin them by applying the hot iron to the leads together with a resin cored solder so that the lead is completely covered by a thin layer of solder.

The leads should then be carefully bent so that the component fits into place without any strain on its leads. Place the hot iron onto the joint and immediately apply resin cored solder to the joint. The solder should flow easily and quickly to completely cover the joint, when the solder and iron can be removed and the joint allowed to cool. It is very important that the components are not allowed to move during the cooling down period as this will affect the quality of the joint.

When it has cooled down and the solder solidified the joint can be inspected. The solder should completely surround the joint and be bright and shiny. If the joint is dull or crystalline in appearance the joint is "dry" and must be remade. Likewise any small blowholes or areas where the solder has not "wetted" the leads means that the joint is suspect.

One very common fault is to use far too much solder on each joint. Only enough solder should be applied to the joint to completely cover it. An excess of solder is not only untidy, and could cover a bad joint but it is also expensive.

If you find that you have to remove a component from a p.c.b. at any time this can be easily done by using a de-soldering

These two pictures show a TV game p.c.b. as built by a novice (above) and after rebuilding correctly (below). Note how the components are poorly formed and placed in the upper picture with the transformer hanging on one small screw. All components should be neatly formed and positioned with great care and precision to obtain maximum reliability

braid. This braid is placed on the joint and a clean iron applied. The solder melts and is literally sucked into the braid by capilliary action. A clean piece is used for each joint, of course.

The soldering iron bit must be kept clean and this is best achieved by using a damp sponge and wiping the hot bit with it after each joint is made. Several stands are available to hold the iron when it is not in use and these usually incorporate the sponge in their bases. Remember to
keep the sponge damp though.
Never use any other solder than a resin cored variety which has been specially formulated for electrical and electronic work. Fluxes such as Baker's Fluid or other highly active varieties must never be allowed to get anywhere near an electronic component, the results will definitely prove disastrous for the component as well as shortening the life of your soldering iron bit. Leave these corrosive fluxes to the plumbers.

Identifying components
 The resistor and capacitor colour code explained

Although there are some minor differences in specific capacitor ratings, both resistors and capacitors follow the same colour code. In the case of resistors, where the colour code is in use, it refers to a nominal value in ohms, the unit of resistance. There are of course other types of resistor which do not utilise a colour code, such as wirewound types (high current or high stability) and some which simply have the resistance value written as a figure on the resistor body itself, but the vast majority of carbon, metal oxide, and thick film types use the colour code.

The way in which the code works is very simple, the colours being read off from one end of the resistor to the other, beginning at the end where the colours are concentrated. The first ring of colour indicates the first digit, the second ring the second digit, and the third indicates the multiplier or number of zeros in use. The fourth colour indicates the tolerance over the stated range, brown indicating 1%, red 2%, gold 5%, and silver 10%.

A typical resistor might read yellow. purple (or violet if you prefer), red, and gold. This indicates 47000 hms , variously written as $4.7 \mathrm{k}, 4.7 \mathrm{k} \Omega$, or 4 k 7 , and a tolerance of 5% over that range. It is important to appreciate that the third colour (the multiplier) actually denotes the number of zeros, thus a 47Ω resistor would appear' as yellow, purple, black, with a tolerance band following, indicating that there are no zeros in the multiplier.

In general, the colour code is restricted to carbon or metal oxide types, and these resistors will of course be suitable for all types of circuit application. On the other hand, wirewound types, which normally have their value stamped or printed on the body of the resistor, will possess inductive properties, which may render them unsuitable for r.f. circuits.

The stability and tolerance of a particular resistor is to a great extent dictated by the materials of which it is made, as is the inherent electrical noise
which it produces. High stability items are typically constructed from carbon film (5% tolerance) or metal oxide (2% tolerance) cermet ("thick film") also 2% tolerance, but precision items are of course wirewound, giving a rated tolerance of 0.1%.

In the case of power dissipation, wirewound forms are inevitably the favoured construction, giving a dissipation in specific items up to about 50 W commercially, but once again, fairly high levels of dissipation can be managed with moulded carbon compound types, up to about 2 W .

Where low noise levels are concerned, metal oxide and thick film types are used.

Capacitor Markings

Although the colour code is the same as that for resistors, it is generally

Table of Multipliers

> (referring to all electrical functions-current, voltage, resistance, inductance, frequency, power, and time)
> $\mathrm{p}=$ pico $=\times 10^{-12}$
> $\mathrm{n}=$ nano $=\times 10^{-9}$
> $\mu=$ micro $=\times 10^{-6}$
> $\mathrm{~m}=\mathrm{milli}=\times 10^{-3}$
> $\mathrm{k}=$ kilo $=\times 10^{3}$
> $\mathrm{M}=\mathrm{mega}=\times 10^{6}$
> $\mathrm{G}=$ giga $=\times 10^{9}$
restricted to ceramic disc, tantalum bead, and some moulded or dipped types. In the case of capacitors, there is some extra information necessary, notably the working voltage. The general code is read in the same way as with resistors, beginning at one end and moving towards the wire ends, the last line of colour indicating the working voltage. In the most common form, the polyester dipped type, red $=$ 250 V and yellow 400 V . In these types a white tolerance band indicates 10% and black 20%.

Caution must be exercised where colour bands are similar to the colour of the capacitor body, as for example, a 2200 pF (2-2nF or 2 n 2) polyester dipped type might well appear as a totally red item, made up from red $=2$ (first digit), red $=2$ (second digit or tens), and red $=$ 2 (multiplier or number of zeros).

Tantalums are usually low voltage types and the code, again, is read from the free end, away from the wire ends. The first colour is the first digit, the second the tens in the figure, the next the multiplier, and the final colour the working voltage. These voltage bands follow a colour code, black indicating 10 V , yellow 6.3 V , green 16 V , blue 20 V , grey 25 V . white 30 V and salmon pink 35 V .

Applications

The non-electrolytic categories, such as silvered mica, ceramic, paper, polyester and polycarbonate are highly suitable in all signal processing applications, both audio and radio, with the principal restriction being each type's working voltage and temperature capabilities. Ceramics are normally used in situations where their good temperature characteristics are an advantage, such as tuned circuits. Polyester, paper and polycarbonates are universally useful in high voltage situations where good insulation resistance is required such as pulse circuitry in television, and general signal and power stages in radio and audio circuits. In the main, coupling in transistor a.f. stages etc. utilises specific polyester items, due to their smaller physical size and good tolerance.

Electrolytics are used where high capacitance values are needed, and in the de-coupling of power supplies, where hum and ripple may be a problem.

Component buying

How and where to purchase those elusive parts

Abstract

"Where can I buy the components for the PW 'Whathaveyou' project?" is one of the commonest queries received. This article will try to explain the pitfalls of purchasing electronic components, and show how to overcome them.

Unless you can buy a complete kit for a project it is quite probable that you will have to undertake some detective work to uncover the relevant suppliers.

The first thing that any serious home constructor needs is a library of catalogues from various suppliers of components. A run through the adverts in PW will indicate who produces a catalogue and you really cannot have too many of them. Using your library you can select the appropriate supplier for most components. You can compare prices for various components to try to obtain the best deal if this sort of exercise takes your fancy.

Exotic projects

Consulting your favourite supplier's catalogue is all right for the common or garden components such as resistors, capacitors and semiconductors, but what about the special items often specified for the more exotic projects?

Often these are available only from one source and where this is so the source is given in the components list or in the text of the article describing the project.

One name that keeps appearing in component lists is that of RS Components. This company is a component distributor who produce a comprehensive catalogue widely used in industry. All the components sold by RS are "own brand" and they only sell to bona fide trade customers. Because of their rapid service and well-produced technical catalogue,
their components are used widely by authors when preparing projects, and the staff of PW also use them for similar reasons.

This leads to complications when a components list calls for an RS Components part number as many readers will find it difficult to obtain them. One way out is to befriend your local radio and TV repair shop who will certainly have an account with RS. It must be remembered that the prices given in their catalogue are not retail prices, and do not include VAT either, so be prepared to have to pay around 50% above catalogue price.

Up until recently RS Components' sister company Doram supplied to the amateur market but this service has been withdrawn. However several of the regular advertisers in $P W$ will obtain any RS Components part on request.

By the way, try and persuade your friendly repairman to let you have an old issue of RS Components' catalogue, it is a mine of valuable information on components, giving such information as sizes, connections and specifications.

Cases and cabinets

When it comes to the cabinet or case to fit the project, these are usually available from several advertisers, most of whom carry a range from two or three manufacturers. In most projects the actual case style is a matter of personal choice and the one used by the author need not be capied. However, some projects are built using specially designed cases or utilise some particular feature of a case, and then it is important that only that case is used.

If you are the type who enjoys making your own chassis and cases then you will
need to find a supplier of raw materials. This is not always easy and it pays in this case to have a copy of Whiston's Catalogue (K. R. Whiston Ltd., New Mills, Stockport SK12 4PT). This lists small quantity sizes of aluminium, brass, steel, etc., and is available for an s.a.e.

Printed circuit boards for PW projects should be obtainable from advertisers, but, individual readers can, if they have the equipment, make their own boards from the copper track patterns given fullsize in the magazine. Another way is to take the track pattern to your local printed circuit board company and get them to make you a board. This is likely to be expensive as they will have.to make you a photographic master from the drawing first (note that this must only be made for you and boards must not be made for resale by this method without obtaining permission and paying royalties to the copyright holder). You can find the address of p.c.b. makers in your local "Yellow Pages", which can also prove useful in locating component stockists, metal stockists, etc.

Semiconductors

When buying semiconductors for a project you will have to make up your own mind as to whether you risk using cheap unmarked types or spend out more money for guaranteed ones. Most suppliers will honour the maker's warranty and change faulty i.c.s or transistors so long as they have not been soldered into a circuit. With c.m.o.s. types, do not be tempted to take them out of their packaging to look at them. They are very prone to damage from static which builds up on all humans these days. Leave these i.c.s firmly in their conducting foam or silver foil wrappers until you are ready to insert them into their sockets. If you are supplied with c.m.o.s. not protectively wrapped in foil, conducting foam or a special housing. get in touch with the supplier immediately. If possible it is best to buy such components only from suppliers who are recognised or franchised by the manufacturer.

Finally, if you have exhausted all the above possibilities and feel that you simply must ask the magazine staff, please enclose a s.a.e. and don't expect miracles, and please, oh please, only after you really have tried yourself!

Handling C.m.o.s.

Avoid killing your i.c.s with static

Unlike t.t.l. (transistor-transistor logic), c.m.o.s. (which stands for "complementary metal oxide semiconductor") devices are very prone to damage if handled or fitted into circuits without due precautions having been taken.

It is true that one or two digital c.m.o.s. devices are fairly robust, and can usually only be destroyed by reversing polarity of the supplies or by feeding a high signal at low impedance into the inputs while the device is without a supply. but general c.m.o.s. "chips" for use in the audio, video, music and radio fields are highly susceptible to static charges and extremes of temperature.

A great deal has already been written on somewhat amusing lines concerning the wearing of nylon clothing while working on such devices, but the basic facts are quite simple and need no "scripting" in order to emphasise the requirements.

1) Unused inputs should always be tied to ground or positive supply. depending upon requirements.
2) Polarity of supplies must be carefully checked before any connections are made.

As it should be, neat and tidy.
3) Low impedance sources, including charged electrolytic capacitors, must not be connected directly to the input terminals, especially in the case of logic "chips". It is essential to use a surge limiting resistor in such cases of at least 1000Ω.
4) Input terminals must not be allowed to "float" and must be, like unused inputs, tied to ground or positive via a high resistance.
5) Where devices are supplied in packages of conductive foam, conducting foil, or the specialised conducting tubes which are becoming typical of c.m.o.s. packaging, they should not be removed until the very last moment in order to avoid the effects of any local static charges.
6) It is as well to avoid wearing nylon shirts or similar synthetic

Eight

[^0]: *Refundable with future orders over $£ 5.00$.

[^1]: Send to: Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ. Please send me a Sinclair PDM35@ 29.95 plus $£ 2.40$ (8% VAT) and $65 \mathrm{p} \mathrm{P} \mathrm{\& P}$, total $£ 33.00$.

 Please include (tick items required): De-luxe padded carrying case@ $£ 3.00$ (inc VAT). \square AC adaptor for 240 V 50 Hz power @ $\AA_{3.00 \text { (inc VAT) } \square ~}^{\square}$

 1 enclose cheque/PO for.
 (indicate total order value), made payable to
 Sinclair Radionics Ltd.

    ```
    Name.
    ```

 \qquad

 I understand that if I am not completely satisfied with my PDM35 in every way, I may return it within ten days for a full ${ }^{*}$ cash refund.

 World leaders in fingertip electronics

[^2]: To: Science of Cambridge Ltd, 6 Kings Parade, Cambridge, Cambs., CB2 1SN.
 Please send me the following, plus details of other peripherals:
 \square MK 14 Standard Microcomputer Kit © $£ 43.55$ (inc 40p p\&p.)
 \square Extra RAM@ $£ 3.88$ (incp\&p.)
 \square RAMI/Odevice eif $£ 8.42$ (inc p\&p.)
 I enclose cheque/money order/PO for \mathcal{L} (indicate total amount.)

 ## Name

 Address (please print)
 \qquad

 ## Science of Cambridge

[^3]: * T \& T Electronics

[^4]: + Available from J. Baldwin (G3UHK), 41 Castle Drive, Maidenhead, Berkshire (90p post free).

[^5]: 1979 CATALOGUE IS AVAILABLE NOW！
 PRICE 50p POST PAID OR 40p TO CALLERS．

