

Itifiv
 'Sarum'

alsp:
 SHINIT:
 STAMIIPED POWIR SUIPTII

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

COPYRIGHT

© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

BINDERS AND INDEXES
Binders ($£ 2 \cdot 85$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Both prices include postage and VAT. Overseas orders for binders should include 60 p to cover despatch and postage. All remittances should be made payable to IPC Magazines Limited. Commencing with Volume 52, the Index is included in Number 1 of the following Volume.

BACK NUMBERS

Some back issues, mostly those published during the last two years, are available from our Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF, at 75 p each, including postage and packing to both home and overseas destinations. Remittances should be made payable to IPC Magazines Limited.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10 \cdot 60$ per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Remittances should be made payable to IPC Magazines Limited.
QUERIES
We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We cannot offer advice on modifications to our published designs, nor comment on alternative ways of using them. We do not supply service sheets nor information on commercial radios, TVs or electronic equipment.
All queries must be accompanied by a stamped self-addressed envelope, otherwise a reply cannot be guaranteed. We cannot answer technical queries over the telephone.
All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Practical Wireless", King's Reach Tower, Stamford Street, London SE1 9LS. All other correspondence should be addressed to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG.

NEWS \& VIEWS

Editorial

Chaos Reigns!
PW Personality
Rob Mackie
News . . . News . . . News . . .
Special Product Report
Mega Electronics Photolab Kit
RAE Reprint Announcement
Kindly Note
Point Motor Supply, August 1978. Simple High Resistance Voltmeter, September 1978. PW "Avon"-3, September 1978
On the Air
Amateur Bands
Eric Dowdeswe/l G4AR
MW Broadcast Bands
. Charles Molloy G8BUS
SW Broadcast Bands Charles Molloy G8BUS
VHF Bands, including what do the VHFs have to offer?-2
Ron Ham BRS15744

FOR OUR CONSTRUCTORS

ZL Special 2 m Beam.
F. C. Judd G2BCX

A high-gain aerial design
PW "Wimborne" Music Centre-3 N. B. Mattey Magnetic pick-up equalisation, plus the tuner module (f.m. section and decoder)
PW "Burley" Stabilised Power Supply .
W. S. Poel A simple design, giving up to 30V at over 2A
SPECIAL FEATURE-Gadgets Around the House
Slot Car Brake Lights. Porch Light Timer. STD Charge Timer. Door Bell Changeover Unit. Automatic Outside Light. Battery Indicator
PW "Sarum" Q-Meter
. M. Tooley
A versatile r.f. test instrument

GENERAL INTEREST

37 Why Programmable? What is a programmable calculator and what can it do for you?

SPECIAL OFFER

68 Commodore PR100 Programmable Calculator

Our December issue will be published on November 3rd (for details see page 36)

P.W. WIMBORNE

is now offering a complete service for this exciting project. Total cost for standard options approximately $£ 110$. Comparable price $£ 180$.
Using circuits based on this design it is possible to construct:
a) Tuner amplifier 11 watts RMS or 25 watts RMS per channel THD $0.02 \% 1$ UV or 1.5 uV sensitivity FM, MPX and MW, LW or Short Wave 1, Short Wave 2 and AM Prices $£ 65$ to $£ 85$ subject to performance.
b) Radio record player 2 watts or 8 watts RMS per channel AM/FM MPX or SW1, SW2/AM £65 to $£ 75$ with speakers.
c) Music Centres 25 watts per channel or 11 watts per channel very high performance rotary or slider controls. Kits are available complete and full technical back up available.

No. 1 Hardware Kit. Consists of all accessories to give a professional finish to your project. Precision punched aluminium front and rear extrusions. Vacuum formed top moulding, set of sockets and mounting panel. Tuning drive system and a complete set of knobs and push buttons. Special Price $£ 9.95$
No. 2 Amplifier module. A complete kit for £13.95, fully wired and tested £19.95.

No. 4 Complete kit for RF Board as per Wimbourne article S.A.E. for details.
No. 5 Stereo Cassette Recorder. Wired and tested as specified in the article, terrific value $£ 24 \cdot 95$.
No. 6 Teak plinths plus base board £9.g9.
No. 7 Magnetic Pre-amps with R.I.A.A. Equalisation $£ 2 \cdot 95+\mathrm{p} \& \mathrm{p} 30 \mathrm{p}$.
ALL PRICES ARE INCLUSIVE OF V.A.T. Please add $£ 1$ for p\&p items No. $1-5$ Send S.A.E. for complete details

> HEED HAMPTON LTD. 19 CHURCH LANE, WALLINGTON, SURREY Telephone: (01) 6470851

SPEC for WIMBORNE RF BOARD

MW, LW, FM. Sensitivity for FM 1 Microvolt for 26DB signal to noise. AM better than 200 microvolts. Stereo separation greater than 40DB signal to noise 74DB. Total harmonic distortion 0.5%. Provision for meter. Pre-selected station. Switching on AM and FM.

GIVE AWAY PRICES

MANUFACTURERS SURPLUS EQUIPMENT

Complete kit for the Wimbourne RF Board. SAE for details and prices of probably the best published kit build available to date.

STEREO POWER AMPLIFIER
25 Watts RMS per channel
\star Class AB Operation

* 16 Transistor Circuit
$\star \quad$ Unstabilised supply required
\star Tip 34A + Tip 33A Output
\star Supply Voltage 50V DC nominal
* $30 \mathrm{~Hz}-18 \mathrm{KHz}$ @ -1 dB
* Output 8 ohm
$\star \quad$ Input 50 Kohm $\mathbf{~} \mathbf{8 7 . 5 0}$

This power ampliffer which features an advanced designed design with complemen tary pair of transistors in class AB push pull. Will comfortably deliver 25 watts per channel. And comes complete with heat sink.
Hi-Fi Preamplifier
The PR 020 is a low noise preamplifier with full bass and treble cut and boost. It has four rotary controls and four specially selected transistors. It is designed to match most high quality power amplifiers.
£5.99

CASH WITH ORDER SEND S.A.E, FOR DETAILS

RF BOARD AM/FM/MULTIPLEX

$3 \times$ ICs $3089 E$ MC 13103123
3 ceramic filters,
meter drive
FET FRONT 3 stage FM tuning

2 Stage AM/MW - LW
LOW PASS AUDIO FILTER -
BUILT IN STABILISER
Complete with 4 way switch \& ferrite rod assembly
£9.99

OTHER MODULES AVAILABLE

VT01 115-150 MgHz Tuner, Aircraft amateurs, etc., Varicap front-end $10 \cdot 7 \mathrm{MgHz}$ IF output, tuner board mosfet £6.99

VT01 FRONT END

$88-108 \mathrm{MgHz}$ with a.m. gang £4.99

STEREO AMP \& PRE-AMP

8 Watts RMS only requires $24 v$ BC and pots, fully wired and tested. Fantastic value at $£ 5 \cdot 99$ 8-WAY SELECTOR PANEL
Can mix and select radio, phono, tape, and auxiliary inputs with loudness. Special price £3.99

ELECTRONIC SURPLUS EQUIPMENT

1 RAILWAY HOUSE, HARDHAM CROSSING, PULBOROUGH, SUSSEX.
£1.00 Postage and packing. Order in excess of $£ 20 \cdot 00$ total packing free.

BONA FIDE UK TRADERS ONLY!

 FASTERAS TEASLAEE REMS.

 A Fast and Easy Profit Message from Lektrokit
 For hobbyists and home project constructors, Lektrokit have put together the most comprehensive range of breadboarding and testing devices on earth. For you, Lektrokit have display racks, window stickers and catalogues to help you sell the entire range-faster and easier. For you, too, Lektrokit will be advertising to hobbyists and home project constructors continuously - telling them about the Lektrokit products that you supply If, of course, you have the stocks. And that's up to you.
 Launch dates for Lektrokit's exciting new range are November 21-25-at
 BREADBOARD 1978-but you can get in on it NOW! Just use the coupon.

LEKTROKIT
 Reading, Berks RG6 1 AZ. Telephone 0734669116

I am a bona fide UK trader. Please send full information about faster and easier profit by Lektrokit.
Name
Address
Tel.

TTLs	B T	XAS		74221	${ }^{160} \mathrm{p}$	74LS193		74 Cl 60							ISTO			TIP42A				DIODES	
7400		7497	180p	74251	140p	74LS193	140 p	74 C 160	$1{ }^{155}$	${ }_{*}^{*}$ AY1-0212	${ }^{600 p}$	${ }^{*}$ MC1496	100p	AC127/8	20p	BFY51/2		TIP42A	70p	*2N3903/4	4 18p	*BY127	2p
7401	14 p	74100	130 p	74259	250 p	74LSt95	40p	74 C 161	$1{ }^{155 p}$	${ }_{*}^{*} A Y 1-4313$	${ }^{668 p}$	${ }^{*}$ MC3340	160p	AD149	70p	BFY56	33 p	TIP42C	82 p	*2N3905/6	6 20p	*OA47	9p
7402	14p	74104	65 p			74LS196	120 p	74 C 162	2 155p	${ }_{*}^{*}$ AY1-5050	212p		120p	AD161/2	45p	BFY90	90p	TIP2955	78p		65p	OA81	15p
7403	14 p	74105	65 p	74278	290 p	74 LS 221	${ }_{245}$	74 C 163	355p	*AY5-1315	600p	${ }^{*}$ MFC40008	120p	BC107/8	11p	BLY83	700p	TIP3055	79p	*2N4058/9	9 12p	*OA85	15p
7404	17p	74107	34p	74279	140 p	744S240	$245 p$	74C164	120p	-AY5-1317	636p	MK50398	750 p	BC109	11 p	BRY39	45p	*TiS43	34p	2N4060	12p	*OA90	9 p
7405	18 p	74109	55p	74283	190p	74LS241	245 p	74 C 173	120p	*AY5-1320	320p	NE531	130 p	${ }^{+B C 147 / 8}$	${ }_{9 p}$	BSX19/20	20p	*TIS93	3 pap	*2N4061/2	2 18p	*OAs1	9 p
7406	32p	74110	55p	74284	400 p	74LS242	$245 p$	74 C 174	74 160p	${ }^{*} \mathrm{CA} 5019$	89 p	- NE540	200 p	${ }^{\text {BC149 }}$	10 p	*BU105	190p	*ZTX108	12p	*2N4123/4	4 22p	*OA95	9 p
7407	32 p	74111	70p	742		74LS243	p	74 C 175	210p	${ }^{+} \mathrm{CA} 5046$	70 p	NE543K	225 p	${ }^{*} \mathrm{BC} 157 / 8$	10p	*BU108	250 p	*ZTX300	13p	${ }^{*} 2 \mathrm{~N} 4125 / 6$	6 22p	${ }^{*} \mathrm{OA} 200$	9p
7408	19p	74116	200p		150p	74LS251	200p	74 C 193	150p		225p	NE555	30 p	*BC159	11 p	*BU205	220	*ZTX502	18 p	*2N4401/3	327 p		
7409	19p	74118	130p	74293 74294	150p	7445	1200p	74C194	$4{ }^{\text {l }}$ 150p			NE556 NE561B	$\begin{array}{r}70 p \\ 425 \\ \hline\end{array}$	${ }^{*} \mathrm{BC} 169 \mathrm{C}$	12p	*BU208	240p 1450	*ZTX502	18p	2N4427	27p	-1N914	7p
741		74	210p	74298	$200 p$	74LS259	175 p	74 C 195	5 110p	CA3089	225p	NE561B	4250	* BC 172	12 p	M B ${ }^{\text {B }}$	145 p 1750	2N457A	250p	"2N4874	60p	*1N4148	4p
7412	${ }_{29 p}$	74121	188p	74365	150p	74LS298	249p	74 C 221	1 175p		375p	NE565	130 p	BC177	17 p	M J491	200 p	2N696	${ }^{35 p}$	*2N5087	27p	1N4001/2	5
7413	30 p	74122	48 p	74366	150p	74LS373	200 p	4000 S	SERIES	CA3130S	100p	N 5666	155p	182		Md2501	225p	2N697	25 p	*2N5089	27p	1N4003/4	6p
7414	60 p	74123	55 p	74367	150p	74LS374	195p	4000	$15 p$	CA3140E	70 p		455p	184		M 32955	100p	2N697	45p	*2N5172	$27 p$	1 N4005	6 p
7416	27p	74125	55p	74368	150p			4001	17p	CA3160E	75p	RC4151	400p	BC187		M 33001	225 p	2N706A	20p	2N5179	27 p	1N4006/7	7 p
7417	27p	74126	60 p	7439	200	${ }^{81 L S 96}$		4002	17p		750 p	SN76003	1750	${ }^{+B C 212 / 3}$		*MJE340	65	2N7084	20	2N5	83 p	1N5401/3	
7420	17p	74128	75p	74393	200 p	81 LS		4006	95p	${ }^{\text {Cl7 }}$	925p	-SN	0p	*BC214	12 p	MdE2955	00p	2 N 918	45p	*2N5245		*ZENERS	
7421	40 p	74132	75p	74490	225p	8 T 28	2300	4007	18p	CM8038	36p			BC461	36 p	MJE3055		2N930	18p	*2N5296	55p		
7422	22p	74136	75 p	74 LS		${ }_{9301}$	260p	4008	80p	LM301An	${ }^{36}$		120p	BC477/8	30p			2N1131/2	${ }_{25 p}^{20 p}$	${ }^{2} \mathbf{2 N 5 2 9 6}$	50p	$2.75-33 V$ 400 mW	9 p
7423	34p	74141 74142	700p	SER		9302	175p	40	40p	LM318	190	*S		${ }^{*} \mathrm{BC} 516 / 7$	50p			2N1613	250	*2N5457/8		$1{ }^{1}{ }^{\text {d }}$	15p
7426	40 p	74145	90p	74LS02	22p		316	4011	17p	LM324	79p		120p			*MPSA	30p	2 N 2102	60p	*2N5459	40p	SPEC	
7427	34p	74147	190p	74LS04	22 p	311	P5	4012	18p	LM339	90p	*SN76033N	175p	578		*MPSA12	50p	2N2160	129p	* 2 N5460	49p	OFFERS	
7428	36p	74148	150p	74LS08	22p	9311	275	4013	50p	M348	95p	*SP8515	750p	-BC559C	D	*MPSA	32p	2N2219A	20p	*2N5485	44p	$100+741$	
7430	17p	74150	100p	74LS10	24p	${ }_{9314}^{9312}$		4014	84p	LM377	175p					*MPSU06	63p	2N2222A	${ }^{29 p}$	2N6027	48p	£17	
7432	30 p	74151A	70p	74LS13	45p	${ }_{9316}$	2250	4015	84 p	M380	99p		225 p		22p	*MPSU56		${ }^{2}$ N2369A	16p	${ }^{2} \mathrm{~N} 6247$	190p	00+555	
7433	40p	74153	70p	74LS14	109p	9322	150 p	4016	${ }_{80}^{45 p}$	*LM381AN	150p	*TBA800	90p 100 p	BCI31/2	22 p			2 N		2N6254	130p 650	£20	
74	355	74154	100p	74LS20	22p	9368	209p	4018	p	LM389N	140p	-T8A820	100p	BDY56	200p	${ }^{*} \mathrm{R} 2008 \mathrm{~B}$	200p	2N2904/5	25p	2N6292	$65 p$	RCA 2N	
7440	17p	74156	90 p	74LS27	38p	70	2	4019	45p			-TCA940	175 p		32p	*R2010B	200 p	2N2906A	24p	2N128	129p	£36	
7441	70p	74157	70p	74LS30	22p	源	200 p	4020	100 p	LM710	100 p	*TDA1022	600p	F244B	35p	*TIP29A	40p	2N2907A	30p	3N140	900p	BRIDGE	
7442A	60p	74159	190p	74LS47	90 p	9601	100 p	4021	110 p	LM741	22p	XR2206	400p	*BF256B	70 p	*TIP29C	55p	*2N2926	9 p	3N201	140p	RECTIFI	ES
7443	112p	74160	100p	55	30 p	9603	175	4022	100 p	LM747	70p	XR2207	400p		${ }_{36} 32$	+TIP30A	48p	2 N 3053	20p	3N204	100p	*A 50V	21 p
7444	112p	74161	100p	74LS73	50p			4023	22p	LM748	35p	XR2216	675p	${ }_{\text {* BFR39 }}$		IP30C		2 N 3054		40290	250p	* A 100 V	
7445	100p	74162	100p	74LS74	40p	INTER	CE	4024	65 p	13800	70p	XR:240	400p	*BFR40	30 p	T:P31A	58 p	2 N 3055	48p	40360	40 p	*1A 400 V	
7446 A	93p	74163	100p	74LS75	50p	I.C.s		4025	20p	LM3911	130p	*ZN414	90p	${ }^{*} \mathrm{BFR} 40$	30 p	TIP31C	62 p	2N3442	140p	40363/2	$45 p$	*2A 50V	30p
7447A	70p	74164	120p	74LS83	110p	MC	100p	4026	130p	136	12p	ZN424E	135 p	*BFR4	${ }^{30} \mathrm{p}$	TIP32A	88	2N3553	240p	40364	120p	*2A 100 V	
7448	80p	74165	130p	74LS85	100p	MC1489	100p	4027	50p	*		ZN425E	400 p	*BFR79	30 p	TIP32C	82 p	*2N3565	30p	40408	70 p	*2A 400V	
7450	17p	74166	140p	74LS86	40p	75107	160 p	4028	84p					BFR80	30 p	TIP33A	90 p	+2N3643/4		40409	65p	*3A 200 V	
7451	17p	74167	200p	74LS90	90p	75182	230 p	4029	100p	MC1458	55p	ZN1034E	200p	BFR81	30 p	TIP33C	114p	*2N3702/3		40410	$65 p$	*3A 600V	
7453	17p	74170	240p	74LS93	90 p	75450	120 p	4030	55p				800 p	BFX29	30 p	TIP34A	115p	*2N3704/5		40411	$300 p$	* 4 A 100 V	95p
7454	17p	74172	720p	74LS107	45p	75451/2	72p	4031	200p					BFX30	34p	TIP34C	160p	+2N3706/7		40594	97 p	*4A 400V	100p
7460	17 p	74173	120 p	$74 \mathrm{LS112}$	100p	75491/2	96p	4033	180p	VOLTAG	RE	LATORS		BFX84/5	30p	TIP35A	225p	*2N3708/9	12p	40595	105p	6 A 50 V	90p
7470	36p	74174	93p	74LS123	75p	C-MOS	I.C.s	4034	200p	Fixed Plas	tic T	220		BFX86/7	30p	TIP35C	290p	2N3773	300p	40603	58p	6A 100V	
7472	30p	74175	85 p	74LS132	120p	74 C 00	$25 p$	4035	190p	1A +ve		14 -ve		BFX38	30p	TIP36	270p	${ }^{2}$ 2N3819	25p	40673	90 p	6A 400V	
7473	34 p	74176	90 p	74LS133	60 p	$74 \mathrm{CO2}$	25p	4040	100p	5 V 7805	90p	5 V 7905	120p	BFW10	P	TIP36C	340p	*2N3820	70p	40844	90	5A	00p
7474	30 p	74177	90 p	74LS138	60 p	74 C 04	27p	4041	$80 p$	12V 7812	90p	12V 7912	120p					2N3823	70p	0871		A 400	00p
7475	36 p	74178	960p	74LS139	$60 p$	74C08	27p	4042	80p	15V 7815	90p	15 V 7915	120p	VAT RATES. All items at 8% EXCEPT marked*									
7476	35p	74180	93p	74LS151	100p	74 C 10	27 p	4043	90 p	18V 7818	90p	18 V 7918	120p										
74880	509 $\mathbf{1 0 0 0}$	74181 74182	${ }_{\text {200p }}^{90 \mathrm{p}}$	74LS153	60 p	74 C 14	90p	4044	90 p	$24 V 7824$	90p	24 V 7924	120p	which are at $12 \frac{1}{2} \%$									
7482	84p	74184A	150 p	74LS158	120p	74C30	27 p	4047	1300 100	${ }_{5}^{100 \mathrm{~mA}} 78 \mathrm{~L}$	- 35	100 mA	-99										
7483 A	90p	74185	150p	74LS160	130p	74C32	36p	4048	55p	12V 78L12	35p	12 V 79 L 12	80 p										
7484	00p	74186	700p	74LS161	400p	74C42	110p	4049	40p	15V 78L15	350	15V 79L15	80p										
7485	110p	74190	100p	74LS 162	140p	74C48	250 p	4050	49p	OTHER REGULATORS				p\&p and VAT at									
7486 7489	34, $\mathbf{2 1 0 p}$	74191 84192	${ }_{100 p}^{100 p}$	74LS163	140p	74C73 74.	75p	4051 4052	80 p 80 p	LM309K	135p	TBA625B	120p										
7490 A	33p	74193	100 p	74LS 165	80 p	74C85	200p	4053	80 p	LM317T	200p	TL430	65p	Govt., Colleges, etc. 54 SANDHURST ROAD									
7491	80p	74194	100 p	74LSt73	110p	$74 \mathrm{C86}$	65 p	4055	125p	LM323\%	${ }_{625} \mathbf{6 2 p}$	78HO5KC	675p										
7492A	46p	74195	95p	74LS 174	110	74C90	$95 p$	4056	135p	LM723	37p	78MGT2C	135p										
7493 A	33 p	74196	95 p	74LS 175	110 p	74 C 95	130 p	4059	600 p	OPTO-ELECTRONICS 2N5777 45p ORP12 90p ORP61 90p OCP71 130p ORP60 90p TIL78 70p				Callers weicome by appointment				LONDON NW9					
496	65p	7419	150p	74LS191	100p	74C151	256 p $\mathbf{2 5 0}$	4063	120p					Tel: 01-204 4333 Telex: 922800									

RADIO EXCHANGE LTD．

NEW ELECTRONIC MASTER KIT

WITH SPECIAL V．H．F．TUNER MODULE TO CONSTRUCT．A completely Solderless Electronic Construction Kit，with ready drilled Bakelite Panels，Nuts，Bolts，Wood Screws etc．Also in the kit Transistors，Capacitors，Resistors，Pots，Switches，Wire，Sleeving，Knobs，Dials，5＂$\times 3^{\prime \prime}$ Loudspeaker and Speaker Case，Crystal Earpiece，etc．Also ready wound Coils and Ferrite Rod Aerial．These are the Projects you can build with the components supplied with the kit，together with comprehensive Instruction Manual Pictorial and Circuit liagrams．
PROJECTS：V．H F．Tuner Module \star A．M．Tuner Module \star M．W．L．W．Diode Radio \star Six Transistor V．H．F．Earpiece Radio 大 One Transistor M．W．L．W．Radio 太 Two Transistor Metronome with variable beat control three Transistor and Diode Radio M．W．L．W．大 Four Transistor Push Pull Amplifier $太$ Eight Transistor V．H．F．Loudspeaker Recelver $太$ Variable A．F．Oscillator \star Jify MultiTester \star Four Transistor and Diode M．W．L．W．Radio \star A．F．R．F．Signal Injector \star Five Transistor Push Pull Amplifier t Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer $太$ Three Tran－ sistol Push Pull Amplifier \star One Transistor Class A Output Stage to drive Loudspeaker \star Sensitive Tran－ sistor Pre－Amp \star Transistor Tester \star Sensitive Three Transistor Regenerative Radio A Four Transistor Transistor V H F Tode \downarrow Thre \star Ransistor Transistor V．H．F．Tuner \star Three Transistor Code Practice Osciliator \star Five Transistor Regenerative Shor t Seven Transistor MW．LW Radio with Loudspeaker Push Pull output Rado

NEW ROAMER TEN MODEL R．K． 3

MULTIBAND V．H．F．AND A．M．RECEIVER．
13 TRANSISTORS AND SIX DIODES．QUALITY 4＂ROUND LOUDSPEAKER．
WITH Multiband V．H．F．section covering Mobiles，Aircraft，T．V．Sound，Public Service Band，Local V．H．F． Stations，etc．and Multiband A．M．section with Airspaced Tuning Capasitor for easier and accurate tuning，covering M．W．I，M．W．2，L．W．Three Short Wave Bands S．W．1，S．W．2，S．W． 3 and Trawler Band． guilt－in Ferrite Rod Aerial for Medium Wave，Long Wave and Trawler Band，etc．，Chrome Plated 7 section Telescopic Aerial，angled and rotatable for peak Short Wave and V．H．F．reception．Push－Pull output using 600 mW Transistors．Gain，Wave－Change and Tone Controls．Plus two Slider Switches．
Powered by P．P．9－9 volt Battery．

ELECTRONIC

 CONSTRUCTION KIT
MODEL

R．K．I
MultiBand A．M．Re－
ceiver．M．W．L．W Trawler Band and Three Short Wave Bands．Seven Tran－ sistors and Four Diodes．Pust Pull Output stage． $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker．Internal Ferrite Rod Aerial．Kit includes all parts to build it up including Carrying Strap．Rubber Feet and ready－drilled Panels．Comprehensive Instruction Manual for stage by stage construction．Uses P：P． 9 Nine Volt Battery．

E．C．K． 2 Self Contained Multi－Band 8 transistors and 3 diodes． Push pull output．3in．loud－ speaker，gain control， 7 section chrome plated telescopic aerial V．H．F．tuning capacitor，re－ sistors，capacitors，transistors， etc．Will receive T．V．sound，
 public service band，aircraft， V．H．F．local stations，etc．Operates from a

Complete kic of parts 9．H．F．local stations，etc．Operates from a
9 volt P．P． 7 battery（not supplied with kit） £7．95＋$P \& P$ and $\operatorname{lns} .90 \mathrm{p}$

RADIO
CONSTRUCTION KIT Q7

A compact small radio kit cover－ ing Medium Wave and Long Wave bands．Rugged Micanite con－ struction and simple square design allows for easy carrying and positioning．Ideal for the Garage，Workroom，Kitchen，etc．，has seven Transistors and Four Diodes quality Loudspeaker，ready wound Ferrite Rod Aerial and Carrying Strap

All parts and plans excluding 9v PP7 Battery．
66． 25
P\＆P／Ins．75p

Com－
Clete
kit of
parts in－
partsin－
cluding cluding
construc－ tion plans Total building 69.99 ＋P\＆Pand Ins．© 10

4 Transistor Earpiece Radio
－Signal Tracar
－Sranal Injector
－Transistor Te
NPN ment
4 Transistor Push Pull
Amplifier

EDU－KIT MAJOR
COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT

BUILD THESE PROJECTS WITHOUT SOLDERING
－ 24 Resistors＊ 21 Capacitors－ 10 Transistors ${ }^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker －Earpioce Mica Baseboard 3 12－way Connectors 2 Volume Controls ${ }^{2}{ }^{2}$ Slider Switches I Tuning Condenser © ${ }^{3}$ Knobs Ready Wound

V．H．F．AIR CONVERTER KIT
Build this converter kit receive the aircraft band by placing it by the side of a radio tunad to medium wave or the VHF band and operating as shown in the instructions supplied free with all parts． Uses a retractable chrome plated telescopic aerial，gain control，V．H．F． tuning capacitor，tran－ sistor，etc．
All parts including case and plans

To：RADIO EXCHANGE LTD 6IA High Street，Bedford MK40 ISA Tel．： 023452367 REG NO． 788372
Callers side entrance＂Lavells＂Shop．
－Open 10－I，2．30－4．30 Mon．－Fri．9－12 Sat．
I^{-}
tenclose：
Name．
\qquad PWII78

Bonioponinifintio

PRAGTICAL WIRELESS T.V. SOUND TUNER

IF Sub-Assembly (G8) £6.80. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner£5-50. P \& P35p.
3-way Station Control Unit £1-20. P \& P 25p.
6-way Station Control Unit (Special Offer) £1-00.
Power Supply Prtd Circuit Board £1 00. P \& P 30p.
Res, Caps, Semiconds, etc. for above $£ 5 \cdot 80$.
Mains Transformer for above £2-50. P \& P 30p.
Add 12 $\frac{1}{2} \%$ VAT to price of goods. $P \& P$ all items 85p.

Callers welcome at shop premises.

MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

Practical Wireless, November 1978

LOOK! Heres how you master electronics.

....the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Buildan oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read, draw and understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, co mputors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.v etc.

Speed up your precision work with

 MINIATURE POWER EQUIPMENT
NEW! The P2 Mk2 DRILL

With detachable head In storact 8100 pp 86 p In case with S2 Drill stand (holds both drills) $£ 18.50 \mathrm{pp} 106 \mathrm{p}$ S2 DRILL STAND A robust, all metal stand with ample throat dimensions. Will take both P1 and P2 Drills. £18.50 pp 106p.
SUPER 30 KIT 30 tools incl. Drill P1without stand. $£ 19 \cdot 39 \mathrm{pp} £ 1$.
P1 DRILL $\quad £ 9.67 \mathrm{pp}$ 38p
S1 DRILL STAND £5. 13 pp 38 p FLEXIBLE DRIVE SHAFT £5. 94 pp 34p

TRANSFORMERS

Continuous a/c 12v. D/C $\mathbf{£ 7 . 5 6 \mathrm { pp } 8 1 \mathrm { p }}$
Variable speed a/c 12v. D/C £9 50 pp 81 p
Drills, Stones, Burrs etc. 40p each. Circular Saw Blades-set of 4 with Arbor $£ 3 \cdot 50$. P\&P any quantity 25 p. Please send $9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. for leaflet and order form. Allprices include VAT

MiAmS. SHORT-WAVE

WORLD-WIDE RECEPTION

+ V.A.T. $i=2 \cdot 24$
Solve your communics-
tion problems with this 4-station Transistor Intercom system (1 mester and 3 Subs) in robust plastic cabinets for desk or wall mounting. Call talk/listen from Master to Subs and Subs to Master. Ideally suitable for Business, Surgery, Schools, Hospitals and Oftice.
Operates on one 9y batterr. On/ofs switoh. Folume Operates on one $9 V$ battery. On/off switoh. Folume control
Complete with 3 comecting wires each 66 ft . A Battery Complete with connecting wires each 66ft. A
NEW AMERICAN: TYPE CRADLE TELEPHONE AMPLIFIER
 $\underset{+V A T E 1.36}{£ 16.95}$

Latest transatorised Telephone Amplifier with detached plug-in speaker. Placing the receiver on to the cradle actinnes a swing immedate tro-wny conversation without holding the handset. Hingy people can listen at a
tinue. Increase etficiency in olfice, shop, workshop. Perfect for "conterunce" calls: leaves the' user's hands free to make untes, consult files. No long waiting, saves time with longdistance calls. Onfof spitch, volume control, conversation recording model at $119.95+$ VAT $\$ 1.60$. P. \& P. 899 . W-day price refund guarantee on all itemg. 169 KENSINGTON HIGH STREET, LONDON, W8 01-837 5548

No batteries NO WIRES £34.99 PER PAIR
$+\quad$ VAT $84 \cdot 87$
 with 3-core wire. Just. plug into power socket. Ready for use. Crystal clear communluations fron room to roons.
Range f-mile ori the sante mains phase. On/off switch. Volume control. Useful as inter-office interconl. hetween
office anil warrehoure in wurcery ant in homes. P. F. 99 p.
4SETHONTINETCOH

827.95
-

Prices are each, net \& excludeV.A.T.
Experimentor Series
EXP300 (6×2.1 in., 5×94 terminals \& 2 bus strips)
£5.75
EXP350 ($3.5 \times 2.1 \mathrm{in} ., 5 \times 46$ terminals $\times 2$ bus strips)
EXP600 ($6 \times 2.4 \mathrm{in} ., 5 \times 94$ terminals $\times 2$ bus strips)
EXP650 (3.6×2.4 in., 5×46 terminals $\times 2$ bus strips)
EXP4B (6×4 in., 2 bus strips only) $£ 2.30$
Quick Test Series
OT. 59 S ($6.5 \times 6.2 \mathrm{in} ., 118$ terminals) $\quad £ 7.20$
QT-47S (5.3×5 in., 94 terminals) $£ 5.75$
QT-35S ($4.1 \times 3.8 \mathrm{in} ., 70$ terminals) $£ 4.90$
OT-18S ($2.4 \times 2.1 \mathrm{in} ., 36$ terminals) $£ 2.75$
QT-12S ($1.8 \times 1.5 \mathrm{in} ., 24$ terminals) $£ 2.15$
OT-8S (1.4×1.1 in., 16 terminals) $£ 1.90$
QT-7S ($1.3 \times 1 \mathrm{in} ., 14$ terminals) $£ 1.75$
OT-59B (6.5×6.2 in., 20 terminals) $£ 1.45$
AT-47B (5.3×5 in., 16 terminals) $£ 1.30$
QT-35B ($4.1 \times 3.8 \mathrm{in} ., 12$ terminals) £1.15
Protoboard Series
PB-6 (630 tie points, 4 binding posts, 4×14 DIL capacity)
£9.20
PB-100 (760 tie points, 2 binding posts, 10×14 DIL capacity) $\mathbf{~} 11.80$ PB-101 (940 tie points, 1 binding post, 10×14 DIL capacity) £17.20
PB-102 (1240 tie points, 1 binding post, 12×14 DIL capacity) £22.95
PB-103 (2250 tie points, 4 binding posts, 24×14 DIL capacity) $£ 34.45$
PB-104 (3060 tie points, 4 binding posts, 32×14 DIL capacity)
$£ 45.95$
PB-203 (2250 tie points, 4 binding
posts, 24×14 DIL capacity; built-in regulated 5 V d.c. power unit)
$£ 55.15$
PB-203A(As PB-203 with 5 V and 15 V d.c. power supply)
$£ 74.70$
Design Mate Instruments
DM-1 £45.95 DM-2 £57.45 DM-3 £57.45
DM-4 $£ 74.70$

IC Test Clips

PC-14(14-pin) £2.60 PC-16(16-pin) £2.75
PC-24 (24-pin) £4.90
PC-40 (40-pin) E7.90
Logic Probes
Hand held logic probes,
TTL/DTL/CMOS compatible,
from
$£ 18$ to $£ 49.00$
Logic Monitors for
CMOS, HTL, DTL, TTL \& RTL
LM-1 Self-power clip-on logic
monitor
£28.70
LM-2 As LM-1, with fully isolated
power supply
668.95

Postage, Packing and Insurance per shipment $£ 1.25$
Please add 8\% VAT to overall total
Export orders: credit cards or international money orders, bank drafts and cheques drawn in $£$ sterling. Please add 10% (Europe) or $121 / 2 \%$ (all other countries) to total price.

Now, from the breadboard specialistseven better boards!

Since the appearance of the first breadboards back in the ' 40 's, we've really been going places. (The U.K., for one.) So we now have an exceptional range of prototyping products which are outstanding in their simplicity, versatility and reliability. Just see. (And for prices and specs., eyes left!)

Experimentor Series.
Low-cost, interlocking, solderless breadboard the world's first for 0.3 in . and 0.6 in . pitch DIPs.

The Protoboard Series.
Solderless breadboards with built-in 10\% regulated 5 V d.c. 1 A power supply; 2,250 solderless tie points; and capacity for DIPs of 14 to 40 pins.

Take a look at our low, low prices and quality specs., and get aboard! (Or if its data you're after, pick up the phone or drop us a line.)
For the best, from the specialists in breadboards.
 And, much more too: logic monitors, probes, logic monitors, probes,
frequency counters and test equipment to ensure the best, fastest results from your design. Quick Test Series. design with discrete components.

5IC Test Clips. Ultra-low cost IC clips in $14,16,24$ and 40 pin versions. Continental Specialties Corporation (U.K.) Ltd., Unit 1, Shire Hill Industrial Estate, Dept. 6H, Safiron Walden, Essex, CE11 3 AO

 Low-cost, snap-locking solderless circuit boards for fast

Continental Specialties Corporation (U.K.) Ltd., Unit 1, Shire Hill Industrial Estate, Dept. 4H Saffron Walden, Essex. CBII 3AQ Telephone (0799) 21682 Telex 817477 Reg. in London: 1303780. VAT No: 2248074 71. *Trade Mark applied for © CSC (UK) Ltd. 1977 Dealer enquiries welcome.

Please supply

Name \qquad Address

My cheque/postal order No \qquad for $£$ \qquad is enclosed

My Access/American Express/Barclaycard no. is \qquad All I want is data, please.

15-240 Watts!

HY5

Preamplifier

The HY5 is a mono hybrid amplifler ideally suited for all applications. All common input either by a multi-way swe, tuner, etc) are catered for thernally. The desired function is achieved and tone circuits merely require connecting to exterial potentiometers (not included). The HY5 is compatible with all I,L.P. power ampliflers and power supplies. To ease construction and

FEATURES: Complete pre-amplffler in single pack-Multi-functlon equalization-Low noise APPLICATIONS. Hi-Fi-Mistors-Two simply combined for stereo.

Disco-Guitar and Organ-Public address
SNPUTSICATIONS:
Auxillar. Magnetic Pick-up 3 mV ; Ceramic Plck-up 30 mV ; Tuner 100 mV ; Microphone 10 mV ; Auxillary ${ }^{3-100 \mathrm{mV}}$ j input impedance $4.7 \mathrm{k} \Omega$ at 1 kHz ,
OUTPUTS. Tape
$j 00 \mathrm{mV}$; Main output 500 mV R.M.S.
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at 100 Hz .
OVERLOAD. 38 dB on Magnetic Plek-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$. Price $\mathbf{f 6} \mathbf{- 2 7}+\mathbf{7 8 p}$ VAT P\&P free.
The HY30 is an exciting New kit from I.L.P. It features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink. P.C. board. 4 resistors, 6 This amplifier is ideally suited to the beginner in audlo who wishes to use the most up-to-date FEATURES: Compiete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to FEATURES: Compiete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to
Buid
APPLICATIONS: Updating audlo equipment-Guitar practice amplifler-Test ampifierAPPLICATIONS
audio oscillator. SPECIFICATIONS
OUTPUT POWER 15 W R.M.S. into 8Ω : DISTORTION 0.1% at 1.5 W INPUT SENSITIVITY 500 mV . FREQUENCY. RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE +18 V .
Price £6-27 + 78p VAT $\&$ free.

Watts

The HY50 leads i.L.P.'s total integration approach to power amplifier design. The amplifier leatures an integral heatsink together with the simplicity of no external components, During the past three years the ampiifier has been refined to the extent that it must be one of the most ellable and robust High Fidelity modules in the World
FEATURES: Low Distortion-Integral Heatsink-Only five connections-7 amp output tran-
sIstors-NO external components
APPLICATIONS: Medium Power Hi-Fi systems-Low power disco-Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS into 8 Ω LOAD IMPEDANCE 4-16 Ω DISTORTION 0.04% at 25 W SIGNAL/NOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
UPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm
Price $1818+$ \&y-02 VAT P\&P free
The HY120 is the baby of 1.L.P.'s new high power range. Designed to meet the most exacting requirements including load line and thermal protection this amplifier sets a new standard in FEATURES: V
FEATURES: Very low disfortion-Integral heatsink-Load IIne protection-Thermal protecAPPLICATIONS: Hi-Fi-High
organ SPECIFICATIONS
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 60W RMS.Into 8 8 LOAD IMPEDANCE 4-16』 DISTORTION 0.04% at 60 W
SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
SIZE 1145085 mm
Price $£ 59.01+£ 1 \cdot 52$ VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retalning true Hi-Fi performance.
FEATURES: Thermal shutdown-Very low distortion-Load line protection-Integral heatsink
-No external components
APPLICATIONS: Hi-Fi-Disco-Monitor-Power slave-Industrial-Public Address
SPECIFICATIONS
INPUTSENSITYITY
\qquad
OUTPUTTPOWER 120W RMS into 8Ω LOAD IMPEDANCE 4-16 1 DISTORTION 0.05% at 100 W SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE

Price £27.99 + £2.24 VAT P\&P free.
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! thas been designed for high power disco address applications. If the amplifler is to be used at continuous high of the family to lead the market as a true high power hiffidelity power module the qualities of the rest FEATURES: Thermal shutdown-Very low distortion-Load line orotection
APPLICATIONS: Public address-Disco-Power slave-Industrial SPECIFICATIONS
at 1 kHz RMS into 4Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.1% at 240 W AI 1 kHz NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE
t 45 V U INPUT SENSITIVITY 500 mV SIZE 11410085 mm Price $\mathbf{5 3} \mathbf{6 1}+\mathbf{E 3} \cdot 09$ VAT P\&P free.
PSU36 suitable for two HY30's $\mathbf{£ 6 . 4 4}$ plus 81p VAT. P/P free.
PSU50 suitable for two HY50's $£ 8.18$ plus $£ 1 \cdot 02$ VAT P / P free PSU70 suitable tor two HY120's $814 \cdot 58$ plus $£ 1 \cdot 17$ VAT. P/P free. PSUgo suitable for one HY200 £ $15 \cdot 19$ plus $£ \mathbf{A} \cdot \mathbf{2 1}$ VAT. P/P free. PSU130£25. $42+£ 2 \cdot 03$ VAT.
$81 \times 0 \cdot 48+£ 0 \cdot 05$ VAT.

TWO YEARS' GÚARANTEE ON ALL OUR PRODUCTS
I.L.P. ELECTRONICS LTD., GROSSLAND HOUSE, NACKINGTON CANTERBURY, KENT, CT4 7AD.

I.L.P. ELECTRONICS LTD.

CROSSLAND HOUSE, NACKINGTON, CANTERBURY, LEMT, GT4 7AD. Tel: (0227) 64723.
Regd No. 1032630.

Please Supply

Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Flease debit my Access account \square Barslaycard account \square
Account number
Name and Address
Signature

SEMICONDUCTORS POTS \& IRONS

SOCKETS		
1611	8 pin DIL	£0. 13
	14 pin DIL	E0. 14
1613	16 pin DIL	¢0. 15
	24 pIn DIL	ع0.40
1615	28 pin DiL	c0. 45
1616	TO18 Translstor	£0. 12
	TU3 Transistor	E0.35
16117	TO5 Transistor	£0-12
VOLTAGE REGULATORS		
Positive		
MVR7	7805 v.a. 7805 TO220	£1.00
MVR7	7812 v.a. 7812 TO220	81.00
MVR7	7815 v.a. 7815 TO220	£1-00
MVR7	7824 v.a. 7824 TO220	£1-00
Negative		
MVR7	7905 v.a. 7905 TO220	£1-40
MVR7	7912 v.a. 7912 TO220	£1-40
MVR7	7915 v.a. 7915 TO220	£1.40
MVR7	7924 v.a. 7924 TO220	£1-40
v.a. 72	23C	45 p
72723	14 pln DN	$45 p$
LM309	9 K TO3	£1-50

ZENER DIODES

400 mw (Bzy88) DO7 Glass encap-

 1w-1. 5w Prastic and metal encapsurated
available. $1.3 \mathrm{v}, 2.2 \mathrm{v}, 2.7 \mathrm{v}, 3 \cdot 3 \mathrm{v}$
 $12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 20 \mathrm{v}, 12 \mathrm{v}$
$24 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}$ $68 \mathrm{v}, 72 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}, 91 \mathrm{v}, 100 \mathrm{v}$
$\mathrm{No} . \mathrm{Zi3} 15 \mathrm{pea}$.
10w Metal stud type SOto case. Range of voltages avallable, $1-3 \mathrm{v}$,
$2 \cdot 2 \mathrm{v}, 2 \cdot 7 \mathrm{v}, 3 \cdot 3 \mathrm{v}, 3 \cdot 9 \mathrm{v}, 4 \cdot 3 \mathrm{v}, 4 \cdot 7 \mathrm{v}$,
$5 \cdot 1 \mathrm{v}, 5 \cdot 6 \mathrm{v}, 6 \cdot 2 \mathrm{v}, 6 \cdot 8 \mathrm{v}, 7 \cdot 5 \mathrm{v}, 8 \cdot 2 \mathrm{v}$, $9-1 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}$,
$18 \mathrm{v}, 20 \mathrm{v}, 22 \mathrm{v}, 24 \mathrm{v}, 27 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}$,
$43 \mathrm{v}, 47 \mathrm{v}, 51 \mathrm{v}, 68 \mathrm{v}, 72 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}$, $91 v, 100 \mathrm{v}$
No. $Z 1035 \mathrm{p}$ ea.

SILICON RECTIFIERS	
200 mA	
1592050 v	£0.06
IS921 100v	£0.07
IS922 150v	£0.08
15923 200V	£0.09
15924300 v	£0-10
1 Amp	
IN4001 50v	£0.041
[N4002 100y	£0.0.5
IN4003 200 V	£0.06
IN4004 400v	£0.07
IN4005600v	£0.08
IN4006 800v	£0. 09
IN4007 1000v	£0. 10
1.5 Amp	
ISO15 50V	80.09 80.10
IS021 200v	E0.11
IS023 400V	¢0. 13
15025600 v	£0. 14
IS027 800v	£0. 16
IS029 1000v	£0. 20
IS031 1200v	£0. 25
3 Amp	
IN5400 50v	¢0. 14
IN5401 100	£0.15
1 N 5402 200v	E0. 16
IN5404 400v	E0. 17
IN5406600v	£0.21
IN5407800V	E0. 25
IN5408 1000v	£0 30
10 Amp	
$1510 / 5050 \mathrm{~V}$	¢0. 18
1510/100 100v	c0. 21
1510/200 200v	E0. 23
IS10/400 400v	E0. 35
IS10/600 600v	E0. 42
[$510 / 800800 \mathrm{v}$	E0. 51
$1510 / 10001000 \mathrm{v}$	¢0 60
IS10/1200 1200v	£0. 69
$30 \mathrm{Amp}^{1}$	
IS30/50 50v	£0. 56
IS30/100 100v	¢0. 69
IS30/200 200v	£0.93
$1530 / 400$ 400v	£1. 25
IS30/600 600v	£1.76
[$530 / 800800 \mathrm{v}$	£1.94
IS30/1000 1000v	£2.31
IS30/1200 1200V	£2.88
60 Amp	
1570/50 50v	£0.75
\$570/100 100v	£0. 84
1570/200 200v	¢1. 20
1570/400 400v	E.1. 75
15701600 600v	£2. 25
IS70/800 800v	£2. 50
IS70 10001000 v	£3.00
BYX38/300 6A 300v	c0. 45
BYX38/600 6A 600v	± 0.60
BYX38/300 Rev 6A 300v	£0.45
BYX38/600 Rev 6A 600v	£0-60

CARBON POTS (Linear Track
Single gang with wire end terminations supplied with shake proof washer $\&$ nut Tolerance $\pm 20 \%$ of resistance.
1831 1k ohms £0.26* 1836 47kohms $£ 0 \cdot 26^{*}$ 1832 2k2ohms £0.26* 1837 100kohms £0.26*
$18334 \mathrm{k} 7 \mathrm{hmms} £ 0.26^{*} 1838$ 220kohms $£ 0.26^{*}$ 1834 10kohms $£ 0.26^{*} 1839$ 470kohms $£ 0.26$

CARBON POTS (Log Track)

1842 4k7ohms $£ 0.26^{*} 1846$ 100kohms $£ 0.26^{*}$ 1843 10kohms $£ 0 \cdot 26^{*} 1847$ 220kohms $£ 0.26$

DUAL CARBON POTS (Lin Track) These high quality dual gang pots are fitted with wire end terminations and $6 \mathrm{~mm} \times$ 50 mm plastic shaft 10 mm , bush and supolied with shake proof washer \& nut track olerance
db
of each other. VC3
$18514 \mathrm{k7}$ £0.78* 1855 100kohms £ 0.78
 $1854100 \mathrm{kohms} £ 0.78^{*} 18581 \mathrm{Meg} \quad £ 0.78$

DUAL CARBON POTS (Log Law) 1860 4k7ohms £0.78* 1864 100kohms $£ 0.78$ 1861 10kohms $£ 0 \cdot 78^{*} 1865220 \mathrm{kohms} £ 0.78$

SINGLE GANG SWITCHED (Lin Law) These potentiometers are fitted with
double pole on-off switches. The switch is double pole on-off switches. The switch is
incorporated within the rotary action of the incorporated within the rotary action.
1870 4k7ohms $£ 0.60$ " $1874100 \mathrm{kohms} £ 0.60$ 1871 10kohms $£ 0.60^{*} 1875$ 220kohms $£ 0.60^{*}$ $\begin{array}{ll}1873 \text { 47kohms } £ 0.60^{*} 18771 \mathrm{Meg} & £ 0.60^{*} \\ 180\end{array}$

SWITCHED POT (Log Track)
Specification as VC2 but rrack having (log) 18794 1879 4k7ohms $£ 0.60^{*} 1833$ 100kohms $£ 0.60^{*}$
1880 10kohms $£ 0.60^{*}$ 1881 22kohms $£ 0.60^{*} 1885$ 470kohms $£ 0.60^{*}$ 1881 22kohms $£ 0.60^{*} 1885$ 470kohms $£ 0.60^{*}$
$188247 \mathrm{kohms} £ 0.60^{*} 18861 \mathrm{Meg}$
$18872 \mathrm{M} 2 £ 0.60^{*}$
$£ 0.60^{*}$

DUAL GANG LOG-ANTI-LOG POT
1888 Track specification as dual gang pots
VC3 as above, but tracks mounted to log-
ant \log action. $£ 0.75^{\circ}$
SPECIAL VOLUME CONTROLS
A miniature 16 mm type replacement
volume contro incorporating single pole
Tolerance $\pm 20 \% 1 / 8 \mathrm{watt}$ rating.
$1889 \quad$ £0-27* VC8

CONTROL

5 kohms 10 g law with on $/$ off switch. 20 mm
grooved spindle. Tag connections 17 mm dia. Supplied with fixing nut. Used mainly
or replacemen
890
£0.54* VC9
WIRE WOUND POTS
A range of wire wound single gang pots With linear tracks of 1 watf rating, fitted
with 10 mm bush and supplied with shakeproof washer and nut.
proof
VC6
1891
1891 100hms $£ 0.80 \quad 18952200 \mathrm{hms} £ 0.80$

PRE.SET POTS
PRESET POTS
HORIZONTAL MOUNTING
MIniature type for transistor circuits. The wiper of the preset is provided with a slot for screw driver adjustment. The tags of the preset will fit printed wiring boards with a pltch of 2.54 mm . All tracks are linear VC7
1801 1000hms $£ 0.08 * 1808$ 22kohms $£ 0.08^{*}$ 1802 2200hms $£ 0.00^{* *} 1809$ 47kohms $£ 0.08^{*}$ $18034700 \mathrm{hms} £ 0.08 * 1810$ 100kohms $£ 0.08^{*}$ *
1804 (kohms $£ 0.08^{*} 1811$ 220kohms $£ 0.08^{*}$
 $8064 \mathrm{k} 7 \mathrm{ohms} £ 0.08^{*} 1813$ 1Mohms $£ 0.08^{*}$ 1807 10kohms $£ 0.08^{*} 18142 \mathrm{M} 20 \mathrm{hms} \mathrm{£} \mathbf{0}-08^{*}$

PRE-SET POTS

Miniature type for
Wiper adjustment is made by a screw driver slot. Designed to fit 2.54 mm pitch board. All tracks are linear law.
816 1000hms $£ 0.08 * 1823$ 22kohms $£ 0.08 *$
 1818 4700hms $£ 0.08^{*} 1825$ 100kohms $£ 0.08^{*}$ $8191 \mathrm{kohms} £ 0.08^{*} 1826$ 220kohms $£ 0.08^{*}$ 820 2k2ohms £0.08* 1827 470kohms £0 08* 1822 10kohms $£ 0.08^{*} 1829$ 2M2ohms $£ 0.08$ 1830 4M7ohms $£ 0.08^{*}$

ANTEX IRONS

O/No. 1943. 15 watt high quality soldering shaft fitted with $3 / 32^{\prime \prime}$ bit. O/No. 1947. Replacement element for 1943 ron. $\quad \mathbf{£ 1 \cdot 9 0}$ O/No. 1944. Iron coated bit $3 / 32^{\prime \prime}$ for 1943 iron.
O/No. 1945. Iron coated bit $1 / 8^{\prime \prime}$ for 1943
iron. O/No. 1946. Iron coated bit $3 / 16^{\prime \prime}$ for 1943
iron. 10.46 O/No. 1948. General purpose 18 watt iron fitted with Iron coated bit. $\mathbf{£ 3 . 4 0}$ O/No. 1952. Replacement element for 1948 O/No. 1949. Iron coated bit 3/32" for 1948 ron. $\quad £ 0.46$ O/No. 1950. Iron coated bit $1 / 8^{\prime \prime}$ for 1948
iron
£0.46 O/No. 1951. Iron coated bit $3 / 16^{\prime \prime}$ for 4948

iron. $\begin{aligned} & \text { £0.46 }\end{aligned}$	TR120	TR101	TR053	TR203	TR205
£1 10	$£ 110$	$\mathbf{£ 1} 10$	$\mathbf{£ 1} 10$	$£ 1 \mathbf{1 0}$	

cose begeger daceager

 gose 808080 gecerverDraw your own bodras witl the new BlPAK etch-resist transfers. Lay the symbols on the board, rub over with a soft pencil. The transter will adhere to the board. Then complete the circuit with your BI-PAK

O/No. 1931. Highiy popular $\times 2525$ watt quality soldering iron ceramic shafts to
provide near perfect insulation break-down provage near perfect insulation break-down current of only 3-5uA and another shaft of
stainless steel to ensure strength. $£ 3-40$ O/No. 1935. Replacement element for 1931 O/No. 1932. fron coated bit $1 / 8^{\prime \prime}$ for 1931
O/No. 1933. Iron coated bit $3 / 16^{\prime \prime}$ for 1931

O/No. 1953. SKt soldering kit-this kit contains 15 watt sotdering iron fitted with a $3 / 16$ " bit plus two spare bits, a reel of
solder, heat-sink and a booklet 'how to solder, heat-sink and a booklet 'how to
solder'. In presentation display box. $£ 5.30$ O/No. 1939. ST3 soldering fron stand. Stand made from high grade bakelite spring, suitable for all models, includes accommodation for six spare bits and two sponges which serve to keep the soidering
iron bits clean.

PCB TRANSFERS

$\begin{array}{ll}\text { TR114 } & \text { TR312 } \\ \text { £1 } 65 & £ 110\end{array}$

008908008808
diesist pen. 11 different paks avallable each containing 10 sheets of transfers as illustration-approx. $\frac{1}{2}$ size-Special Intro ductory Sel, t pak each of above $\mathbf{£ 1 2 - 0 0}$.

LEDS DISPLAYS \& OPTOS

2nd GRADE LEDS
A pack of 10 standard sizes and colours which fall to perform
to their very rigid specification, but which are ideal for to their very rigid specification, but whic amateurs who do not require the full spec.
$0 / \mathrm{NO} 107 £ 1 \cdot 50$

NUMERICAL INDICATORS
Cold cathode ITT 5087 ST Side viewing indicator tubes. Displays 019 and decimal points. Wide viewing angle.
Operates from 180 v with 16 Kohms series anode resistor. Character height 16.5 mm . Pin connectors and supply details on pack.

5 per pack O/NO 1513 60p per pack

BRIDGE RECTIFIERS				
SILICON 1 amp				
Type		Order No.		Price
50 V RMS		BR1/50		£0.20
100 V RMS		BR1/100		£0.22
200V RMS		ER1/200		£0.25
400 V RMS		BR1/400		£0-36
SILICON 2 amp				
50 V RMS		BR2/50		£0.45
100 V RMS		BR2/100		£0.48
200V RMS		BR2/200		£0.52
400 V RMS		BR2/400		£0. 58
1000 V RMS		BR2/1000		£0-68
2 AMP METAL STUD MOUNTING				
No. KBS005		50 volt		£0.30
No. KBSO1		100 volt		£0.35
No. KBS 02		200 volt		£0.40

ORDERING. Do not forget to state order number and your name and address.
V.A.T. Add $12 \frac{1}{2} \%$ to prices marked*. 8% to those unmarked. Items marked are zero rated. P\&P 35p unless otherwise shown.

930 SERIES DTL			D.I.Y. P.C.B. ACCESSORIES	
BP930	20.30	BP948 £0.50		
BP932	£0.30	BP951 £0.65	1609. Etch resistant pen	
BP933	£0.30	BP962 £0.30	1608. Paks of etchant, complete with	80p
BP935	£0.30	BP9093 £0.42	1608. Paks of etchant, compiete with instructions	
BP936	£0. 55 £ 0.30	BP9094 £0-42		
BP944	£0.30	BP9067 £0.42	Single-sided fibre glass	
BP945 BP946	$£ 0 \cdot 50$	EP9099 £0-42	C27. 3 pieces $7 \times 3 \frac{1}{4}^{\prime \prime}$ (approx.) boards.	

DEPT. PW11, P.O.B OX 6, WARE, HERTS.
SHOP
AT
18 BALDOCK ST., WARE, HERTS.
OPEN 9 to 5.30 MON-SAT.

EDITOR

Geoffrey C. Arnold

ASSISTANT EDITOR

 Dick Ganderton C. Eng., MIERE ART EDITORPeter Metalli
TECHNICAL EDITOR
Ted Parratt, BA
NEWS \& PRODUCTION EDITOR
Alan Martin
TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST

Rob Mackie
 ASSISTANT ART EDITOR Keith Woodruff

SECRETARIAL

Sylvia Barrett
Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER

Telephone: 01-261 6671 Roy Smith
REPRESENTATIVE
Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT Telephone: 01-261 6570 Dave Kerindi

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Chaos Reigns

EACH new generation insists on wanting to prove for itself that hot things burn, that sharp things cut, that every warning or piece of advice which _elders might give really is sound. Perhaps in many ways it's just as well, for otherwise some very useful discoveries might never have been made. There are times, though, when we of more advanced years ponder "Will they never learn?"
The same question, it seems, might well be put to semiconductor manufacturers, who not only go on repeating the mistakes of the valve makers, but have thought up a whole host of new horrors of their own! In the heyday of valves, a multitude of different type-number "house-codes" was in use, and equivalent tables were essential to the serviceman, who might otherwise be looking in his spares holding for what was effectively the same valve under any one of half-a-dozen or more different type numbers. There was some standardisation in the American RMA and European Pro-Electron codes, and at least the "same" valve didn't appear in different shaped envelopes with different bases, with one or two notable exceptions such as the 807.
When transistors came along, they were expected to have a much longer life, and could be soldered straight into circuit. Most would have only three leads, so except where power dissipation requirements dictated otherwise, it would be nice and simple to arrange that all transistors had lead-outs in the same pattern . . . wouldn't it? It didn't happen, of course. In fact there are probably more permutations of case outline and lead-out arrangement for the bipolar transistor than there were valve bases ever invented.
I^{1} is not too difficuli to understand why there should be metal-can and plastics-case versions of the same small-signal transistor. And at least there is some uniformity in the metal-can versions, where all TO-18 (e.g. BC107) and TO-39 (e.g. BFY50) devices have identical lead-out arrangements. When you get to the plastics end of the market, the manufacturers seem to have gone stark staring mad. They take one humble transistor, apparently at the request of some major customers, and produce it in several different shaped packages, with the option of leads pre-formed to match the lead-out patterns of yet other packages, and mark them all in microscopic, rub-off printing, with type numbers differing only by suffix. Is it any wonder that people get thoroughly confused? You need a whole library of data books to cope, and even then there are devices around on which there seems to be no published data.
There is a version of that work-horse f.e.t., the 2 N 3819 , which comes into this category.
Still, the manufacturers will have learned their lesson when they come to integrated circuits, won't they? Wait a moment, though . . . what about those 8 -pin and 14 -pin d.i.l. versions of the 741 ?

We are sorry that, due to continuing rises in our costs, we are having to ask you to pay more for your copy of Practical Wireless commencing with this issue. I hope that we will continue to enjoy your support-we have some great projects lined up for the future.

Rob Mackie-Technical Artist

Although Rob spent his schooldays in Wantage, Oxfordshire, his professional life didn't begin in earnest until he came to live in Dorset and took a post as a draughtsman with a local company specialising in gas detection equipment. His arrival at PW's editorial office coincided with the magazine's move to Poole from London, only a few months after he had married and settled in Corfe

Mullen. He has a son and expects an addition to the family at any moment; his parents still live in Wantage, and his father is an electronics engineer at the Atomic Energy Research Establishment, Harwell.

Rob's interests include kite flying, squash, football, and progressive rock music. He also admits to an occasional thirst for the local brew!

The British Vintage Wireless Society

An exhibition of vintage radio and TV equipment is being staged at the Guildhall Museum, off New Orchard Street, Poole from now until about the end of the year. Opening hours are 2 until 5 pm on Sundays, 10 am until 5 pm during the rest of the week.

The RAC Amateur Radio Group Scheme

Membership of this scheme is open to all amateur radio enthusiasts and provides membership of the Royal Automobile Club at a discount of £1-50 below the normal subscription rate. Since 1st June 1978 the annual subscription for members of the group scheme has been $£ 9.50$.

Subscription renewal date is 17th May (World Telecommunication Day) each year, and all members renew on the same date. Anyone joining on any other date will pay at the pro-rata rate of 80 p per month for the remainder of the year. In addition, the once only joining fee of $£ 2 \cdot 50$ is also payable, regardless of the period remaining in the membership year. Those who are already members of the RAC will not be required to pay the joining fee. A desirable option is the RAC Recovery Service, the annual subscription for which is $£ 7.00$ for the whole or part of the year.

The scheme is administered by the RAC's Scottish Western Counties Office, 242 West George Street, Glasgow G2 4QZ. Further details from the coordinator of the scheme Mr A. W. Huchinson, 88 Broomfield Road, Chelmsford, Essex CM1 1SS.

Dinner date

The Wessex Amateur Radio Group are holding a dinner-dance at the Yenton Hotel, Gervis Road, Bournemouth on Saturday 18th November. Dress is informal and those attending should meet at the Hotel around 7.15 pm . Anyone in the area wishing to attend can be assured of a warm welcome. Tickets may be obtained by contacting the Secretary Mr G. D. Cole G4EMN, 6 St. Anthony's Road, Bournemouth or Mr A. Hoggan, G8ASX, 23 Leaphill Road, Bournemouth.

Good news, bad news

Doram the mail order component suppliers announce the launch in September of their new Electronic Hobbies and Equipment catalogue. Its 40 pages are full of micro-processor based and other kits, electronic project and hobbyist books, electronic and other tools, also audio and car accessories. The service will be supported by the Access credit facility. Order your free copy now.

Doram also give notice of their intention, later this year, to discontinue supplying electronic components. They plan to fully support the component range in the current Edition 4 catalogue until the end of September, after which time they will supply only on a 'whilst stocks last' basis. An end of season component list will eventually be made available.

RRF special

We are informed of a course in the North London area primarily for students who have taken the RAE examination and failed, and do not wish to go back to the start all over again.
The college station is G4GA and special coaching will be given by the senior tutor Fred Barns G3AGP.
Held at the De Beauvoir I.L.E.A. Evening Institute, Tottenham Road, London N 1 , enrolment will be between the end of September and the end of October.
Further details from Fred Barns G3AGP, 60 Alveston Avenue, East Barnet, Herts.

Diary date

The Amateur Radio Retailers Association are organising what they claim will be the 'Biggest and Best Hamfest in Europe', on the 2nd, 3rd and 4th November 1978.
The Seventh -Midland National Amateur Exhibition will be held at The Granby Halls, Leicester, and will be open between 10 am and 6 pm , admission 40 p with special concessionary prices for clubs, schools etc.

All the usual stands and events are planned including $£ 500$ to be won in voucher prices.

For further information contact Tom Darn G3FGY, 20 Mount Pleasant, Ripley, Derbyshire DE5 3DX.

Sought After

A 1977 survey of Technicians and Technical Engineers engaged in electronics in the U.K. shows that they enjoy virtually full employment. In fact, shortages of suitably qualified staff in some types of job, and in some areas of the country, are also indicated.
The survey was conducted by The Society of Electronic and Radio Technicians into the remuneration and occupations of its 8,000 members. Their activities cover radio and television, industrial electronics, technical education and local government, civil service and nationalised industries, and broadcasting.

Other points from the survey show that there has been an increase in Trade Union membership from 36% to 41%. During wage restraint between 1976 and 1977 increases in members salaries were 6% on average.

Sorry!

The article "Wideband Calibrated Attenuator" in our September issue should have been attributed to the joint authors, Mike Tooley and David Whitfield. Our apologies to David for omitting his name from the credits.

RRE reprint

For full details of availability and price, see page 35.

Can I help you!

Are you the secretary, organiser or general dog's body of your local radio club or any other group whose functions may interest readers of PW. If so, let me know and I will endeavour to publicise your rally, get-together, whatever, through this column. Remember though, we compile the magazine some time ahead of publication day (e.g. this note was written in mid-Sept.), so, the earlier I can have details, the better.

Alan Martin

In my article "Aerial Performance Test Set", (Practical Wireless, January 1978) readers may have noticed the photograph of a 12 -element beam aerial. This is one of the "ZL" series, developed from the ZL Special, details of which were published in Practical Wireless, May 1977. At the time, the principle of employing two driven elements to produce 'end-fire' arrays was examined. The ZL Special two-element system is in fact an end-fire array but with a difference. The element lengths are cut to produce a reflector/director action which gives increased forward gain over that normally obtained with two half-wave elements spaced ${ }^{1} 8 \lambda$ and driven 135° out of phase.

The ZL Special, apart from being a small beam aerial in its own right, is also a very useful primary driving system for relatively compact multi-element beams of higher gain. In this respect, the reader may find the article "Three and Five-Element Compact Beam Aerials for 2 Metres" (Practical Wireless, May 1977) of interest. The same arrangement can be used for ZL beams of up to five directors-i.e., six or seven elements total.

Beyond this however, if the gain is to be increased by additional directors and the size contained, the construction of the ZL Special as described in the above article must be modified.

The 12-element ZL beam to be described was developed nearly three years ago and up to the present time has been in use in two quite different locations. One of these was my former address in London and
the other my present home in the lovely countryside of Norfolk. It has been the means of establishing over 600 direct contacts with more than 10 countries outside the UK on 2 metres f.m. Operation into a number of continental repeaters, as well as distant UK repeaters, has been achieved with only slight tropospheric lift.

The basic ZL Special has a forward gain of about 6 dB over a dipole, which is much higher than can be obtained with a single driven element and reflector, the basis of the well-known Yagi. A ZL beam with directors does not require a reflector, as there is nothing from the rear to reflect. With the modified primary driving array and 10 directors as shown in Fig. 2 a forward measured gain of $13 \cdot 5 \mathrm{~dB}$ can be obtained with a beamwidth at the 3 dB down points of approximately 36°. The theoretical gain was 14 dB but calculated parameters are rarely, if ever, realised. For the sake of comparison with the dipole and other ZL beams however, the radiation pattern of 12 -element version is shown in Fig. 1; the field intensities are relative.
At this point it should be realised that if a highgain beam is used the increase in effective radiated power (e.r.p.) over a simple dipole is considerable. For example if 10 watts of actual radiated power is applied to a beam aerial having a gain of 13 dB , it will produce an e.r.p. of close to 200 watts (assuming no losses), 13 dB being a power ratio of approximately 20:1.

Before the constructor begins to build this aerial

Fig. 1: Field intensity patterns of the 12 -element ZL Beam and other ZL Series for comparison. Intensity levels are all relative to each other and a dipole
it should be stressed that only the materials specified must be used. As with most projects of this nature if the text is not followed closely, it is unreasonable to expect the results to function properly. The dimensions are fairly critical, and a tolerance of about one per cent should be aimed for in the longer lengths. In other words, about 2.5 mm in 254 mm . For shorter dimensions, 1 mm is adequate.

It seems a gremlin was at work when copy was written for the announcement about this article on page 43 of our October issue. We apologise for the wrong information given there.

Construction

From Fig. 2 it can be seen that the overall length is some $3 \cdot 2$ metres but if the elements are made as described from 6.3 mm diameter aluminium rod or tube, a boom of 20 mm square aluminium is adequate for the purpose. The prototype built exactly as described in this article has withstood gale force winds and gusts approaching 90 m. p.h., suffering nothing more than one broken director.

The diagrams should be fairly self-explanatory. The layout of the two driven elements, the 300Ω ribbon phasing line, the rear tuning stub and the small coaxial capacitor across the feed point are shown in Fig. 3.

Note that the ribbon feeder forming the phasing line is somewhat longer than the actual spacing between elements and this will lie slack within the protection box. The box may be of pvc or built from hardwood. In the latter case it is advisable to fit sleeves of a good insulating material over the elements and the rear stub where they enter the box.

The small rear stub is made from $6 \cdot 3 \mathrm{~mm}$ diameter aluminium rod or tube. The lower parts of the elements run underneath the boom. They must not come into contact with it but extra support could be given with small spacers of Perspex or pvc located between the centres of the elements and the boom.

The small capacitor is formed from a short piece of 50Ω coaxial cable, trimmed at one end by about 20 mm for connection to the feed point and with about 12 mm of screening braid removed at the far end to prevent short-circuit or r.f. flashover.
The boom is 3.234 m long and 20 mm square. All the directors are secured to the boom at their exact centre points. For this purpose small clips could be used or holes drilled through the boom to take the 6.3 mm diameter rods, which can ultimately be secured by bolts or self tapping screws. Whichever method is finally decided upon it will be necessary to establish that the electrical contact is good.
When the aerial is finally tested, the slots where the elements enter the protection box can be filled with Plastic Padding or similar to prevent the ingress of water. After the lid has been fitted the box should be painted or varnished.

Fig. 2: Details of element and director lengths etc.
These are critical and should not be altered in any way

Checking and Operation

This aerial will only operate with 50Ω coaxial cable which should be of good quality. Type UR67 is recommended for long runs but UR43 may be used for lengths of up to 10 to 12 metres without too much loss. It is advisable not to use old cable (eg cable which has been in use outside) as losses develop, usually due to moisture absorption and this will degrade the performance of the aerial.

Before fixing the lid to the protection box make sure all connections are secure. Large soldering tags, say 2BA, clamped under the element ends, are best for good soldered contact of the main coaxial cable, the phasing line and the coaxial capacitor. For testing, the full length of 50Ω cable should be connected. Set the aerial up in the garden, balanced on a pair of steps so that it is about 1 to $1^{1}{ }_{2} \mathrm{~m}$ above ground. If a v.s.w.r. meter (or power meter) is available and/or fitted to the transmitter, check at mid band (145 MHz), that the v.s.w.r. does not exceed $1 \cdot 5: 1$. If it is higher then a problem, perhaps with connections, is indicated. If the v.s.w.r. is below $1 \cdot 5: 1$ then leave well alone! However, adjustment can be made to the coaxial capacitor length for minimum v.s.w.r. It may mean trying two or three pieces of say $90 \mathrm{~mm}, 100 \mathrm{~mm}$ and 125 mm but the trouble will be worthwhile. If you have available a 6 watt fluorescent tube it should light brightly when touching the ends of the driven elements and most of the directors when 10 watts or more of r.f. is present.

If the v.s.w.r. is plotted across the band the curve should approximate that shown as (b) in Fig. 4 provided the feeder cable is not too long. For runs of 20 m or more the curve will tend to flatten out as (c).

Fig. 3: Details of the driven element assembly

For comparison, an average v.s.w.r. curve for a long Yagi is shown in (a) and the increased rise at each end is due to the fact that such aerials are sharply resonant. The ZL series are broad-band hence the flatter v.s.w.r. curve. The beam width at 3 dB is about 36°, as in the polar patterns of Fig. 5 which were taken from the prototype. The solid line is for horizontal polarization and the broken line for vertical, but note that the spurious lobes in the vertical pattern, due to reflection from nearby conductors,

Fig. 4: VSWR plots, ZL Beam by comparison with long Yagi

Continued on page 80

FM CIRCUITS-PERFORMANCE DETAILS

S/N Ratio: 26dB for $1 \mu \mathrm{~V}$ Sensitivity (Worst Case) Image Rejection: 60dB (Typical)
IF Rejection: 60dB (Typical)
Total Harmonic Distortion : 0.08\%
AM Rejection: 50dB
Stereo Separation: $\mathbf{4 0 d B}$ at $\mathbf{1 k H z}$

RF and Mixer Stages

Although the UK is well served in terms of coverage by f.m. transmissions, to achieve the maximum performance a receiver must be capable of resolving a weak station adequately, and a strong station without overloading.
The "front end" (VTO2) was chosen to meet these exacting requirements, and a description of the internal circuit follows.

In keeping with current design techniques, the r.f. stage utilises a MOSFET, which provides good immunity to cross-modulation combined with a low noise figure. Clearly this is an important factor since any noise introduced at this stage will progressively degrade the overall performance. AGC is also applied here, and the r.f. stage is band-pass coupled to the mixer (another MOSFET), which, through its wide dynamic range, presents a high level of immunity to overloading.

The local oscillator, which is tuned 10.7 MHz above the signal frequency makes use of a bipolar device resulting in a stable circuit which tracks well. AFC is introduced at this point to combat any drift.

Varicap Tuning

This technique was chosen eventually to suit a number of requirements. Most important of these was the fact that the original mechanical tuner unit shown on photographs in part 1 of the "Wimborne" suddenly became more expensive and of doubtful advantage. Less important, but more interesting in terms of the facilities which we could eventually build into the design, was the varicap pre-set tuning of stations which could be introduced by the constructor at a later stage if required. To some extent also, the physical needs of a fine tuning system are simplified, although it does necessitate a regulated supply. This wasn't a disadvantage however, since the design already incorporated such a supply.

Signal from the VTO2 (the i.f. signal at 10.7 MHz) is then amplified by 2 bipolar transistors with one twopole ceramic filter per stage, thus providing the necessary bandwidth for the entire i.f. amplifier. These two gain stages are important not only because they overcome the insertion loss incurred by the filters, but also because they present a strong signal to the RCA 3189 enabling virtually its optimum s / n ratio to be exploited.

Capabilities

The 3189 provides one of the highest levels of performance currently available in a combined f.m./i.f. amplifier/detector. Apart from a slightly improved s / n ratio, delayed a.g.c., a.f.c. facility, and signal strength meter output, it contains a deviation muting

Fig. 1: The internal circuit of the VTO2 f.m. tuner module
circuit which holds down the audio output until a station is correctly tuned. In addition, audio output can be set to any desired level to be compatible with following stages.
Editorial Note: A fuller treatment of the RCA3189's potential is given in our current "IC of The Month" in this issue. Also, the type no. of the BSR record player deck was incorrectly given as "BSR 162" in Part 1 of the "Wimborne Music Centre" (September issue). This should read "BSR 182".

Detector and Decoder Stages

A double tuned quadrature detector is employed, which ensures a very low total harmonic distortion, and the recovered audio is then fed via a capacitor to the MC 1310 multiplex decoder. Extensive low-pass filtering is provided at this point to ensure that the multiplex signal does not find its way into the following amplifier stages. As can be seen from the f.m. performance figures, results are very good and are consistent with those obtained from a commerciallybuilt high quality stereo f.m. tuner. During tests in Wallington, Surrey, the author has been able to listen regularly to the three main national stations of ORTF (France) using a 6 element beam 30 feet above sea level. Yugoslavia was also heard during a tropospheric opening.

Modified Supply Rail

A further stabilised supply of 15 V is necessary to supply the varicap bias for tuning, and this is derived from a modification of the existing 13 V stabiliser circuit, which also raises the original 13 V supply to 18 V for the r.f. board. The only changes necessary in this case are that R302 (150) is reduced to 33Ω (${ }_{2} \mathrm{~W}$) and the control Zener (ZDI) is changed to an 18 V 400 mW type. Tr5 (BD131) will still be operating well below its maximum rated current level, so no extra fuse precautions need be taken.

Constructional Notes

The fine tuner could be a multi-turn potentiometer, and the arrangement of the drive system need not change from that of the mechanical unit, although the tuning drum size or reduction gear (necessary if a realistic tuning scale spread is to be achieved) selection is up to the individual constructor. This does not apply where the kit of parts is purchased.

It is as well to note that those capacitors shown on the circuit diagram with an angled positive connection are specifically for decoupling purposes, and should be mounted as close to the "hot" end of resistor (or active device) it refers to as possible. This applies to $\mathrm{C1}, \mathrm{C} 5, \mathrm{C} 7, \mathrm{C} 11, \mathrm{C} 20, \mathrm{C} 27, \mathrm{C} 29$, and C 79 .

In some cases, a small amount of Zener-produced noise may find its way into the receiver outputs or the cassette unit output signal. This can be suppressed by including a $100 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic in the circuit. Connection is made on the back of the main amplifier/power supply module, positive to the junction of R303 ($3 \cdot 3 \mathrm{k} \Omega$) and Zener + , and negative connection to chassis.

Magnetic Equaliser Board

This contains the pre-amplifiers (LM387) for magnetic cartridges and should be mounted as close to the output connections of the cartridge as possible in order to minimise hum pick-up. Under certain conditions, not necessarily in the shadow of a transmitter, a condition known as "AM Rectification" may occur. This results in r.f. signals appearing at the output, usually a broadcast band short wave station or cochannel radiation from a t.v. receiver. It is generally caused by pick-up in connecting leads, and poor soldering can often emphasise the effect which is caused by the first high gain stage acting as an r.f. detector-this is quite understandable when it is realised that the upper frequency limit of the humble BC109 is something like 450 MHz !

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL. ..

The finest general-coverage synthesised communications receiver on the market

$£ 200.00$ me.vat

$+£ 2.00 \mathrm{p} . \& \mathrm{p} . / \mathrm{ins}$.
Also available from us with special 2 m converter, all for just an extra $£ 15 \cdot 00$
\star
Phone for details of current stocks, both new and secondhand

\star

AMATEUR RADIO EXCHANGE
2 Northfield Road, Ealing, London, W.I3.
Tel: 01-579 5311
Easy terms up to 3years
credit Card Sales by Telephone

Sparkrite X 4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete, It can be
assembled in two or three hours and fitted in 1/3, mins
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the fansistors or the SCR. Most capacitive discharge ignitions are not completely oolproof in this respect). The circuit incorporates a voitage regulated output for really function light and se. hity changever bich. All kit fil hight, ystems function, and coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING. NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and hea sink, coll mounting clips, and accessories. Top quality 5 year guaranteed
transformer and components, cables, connectors, P.C.B., nuts, bolts and siticon grease. Full instructions to assemble kit neg. or pos, earth and fully illurtrated installation instructions
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post \& packing. Electronic Design Associates, 82 Bath Street, Walsall, WS: 30E

Electronics Design Associates, Dept. PW11 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791

Fig. 2: Complete circuit of the f.m. stereo decoder
The best cure is to prevent, by keeping leads short, taking care over soldering, and running connecting leads close to the chassis. If the condition persists, it can usually be cured by connecting a small choke (about $10 \mu \mathrm{H}$) in series with the input, or bridging the input close to the LM387 + and - inputs with a capacitor approximately 150 to 300 pF .

Magnetic Cartridge Pre-amplifiers

In order to maintain a good performance in terms of noise, and partly to continue the low topographical profile of the "Wimborne", a discrete approach to the requirement for equalisation to the RIAA stan-

components

Resistors		
$\frac{1}{6}$ W carbon film 5\%		
270Ω	2	R403, 503
$2 \cdot 7 \mathrm{k} \Omega$	2	R404, 504
$47 \mathrm{k} \Omega$	2	R401, 501
$100 \mathrm{k} \Omega$	4	R402, 406, 502, 506
$1 \mathrm{M} \Omega$	2	R405, 505
Capacitors		
Polystyrene		
1nF	2	C405, 505
3.3nF	2	C404, 504
Polycar	nate	160 V
100 nF	1	C402
$1 \mu \mathrm{~F}$	2	C401, 501
Electrolytics 63 V		
$22 \mu \mathrm{~F}$	2	C403, 503
Semiconductors		
IC3	1	LM387

Miscellaneous

p.c.b., mic. cable

Fig. 3: The dual pre-amplifier (equaliser) circuit for magnetic cartridge inputs (above), and the relevant component list (left). The complete components list for all the receiver circuits will appear in the December issue
dard for magnetic cartridges was ruled out, and it was decided that the LM387 should again be used to provide this function.

While it is true that in order to obtain a good match between the two amplifiers contained in the LM387 ("selected" items are clearly to be desired), it is equally the case that the problem exists in the event of opting for the conventional approach using four BC109 or BC149 transistors. The improvement obtained in noise figure for the LM387 made it preferable, as did its compact "image", matching the "Wimborne" character overall.

READERS PCB SERVICES

and now we are pleased to announce our SPECIAL OFFERS SERVICE
below are our specially selected-branded products offfred at much reduced prices to p.W. readers. ITEMS OFFERED WILL VARY MONTHLY

Watch batteries always ayailable-any type 49p each

GLCDB4.L.C.D. WATCH
7 Function Gents L.C.D. quartz watch combining American electronics with a Stalnless Steel \& fully adj. strap. FUNCTIONS: Hrs, mins, secs, date, month, alternating time/date. back IIght, Water
resistant. PRICE: £If.88 $+50 \mathrm{P} \& \mathrm{P}$.

LCCRO1. L.C.D, CRONOGRAPH
Up to 25 Function: 6 diglt diapiay of Hrs. mins, seconds, day, date, month. Meas ures nett times, Lap tlmes, place times to $1 / 100$ th adt strap: Back light. American electronics. Wilf record time olapsed whilst displaying
watch functions or date. Water resistant. PRICE: $£ 20 \cdot 56+50$ P P \& P

SOLAR 1. SOLAR POWERED
CHARGED WATCH
A superbly engineered 10 function SOLAR watch. Will operate without batterles even in subdued or artificial IIght. Batterles fitted provide power at night for watch \& back light
these belng charged by the solar panel during the day. Functions: Hrs, mins secs. day, date, month AM/PM Indc, Date Ind, Alternating Time/Date. Super stylish
'Polished' stałnless steel case \& fully adi. Polished' statnless steel case \&
strap. PRICE: $£ 25 \cdot 98+50 \mathrm{p}$ P $\&$ P

LLCDS. LADIES L.C.D. WATCH American/Swlss very practical everyday ladies watch. Functions: hrs, mins, secs, date, month, back light, alt, Time case \& Adj. strap. Size: approx, 18 mm face $\times 8 \mathrm{~mm}$ thick. PRICE: $£ 15 \cdot 99+50 \mathrm{p}$ P\& P

SOLAR 2 SOLAR POWERED/ ALARM
Up to 25 function 8 digit display chronograph watch, functlons as LCCROt with Solar facifities as SOLAR f. Alarm version very slim featuring full alarm facilities. ALARM OR CHRONOGRAPH PRICE £27-50p. +50p P\&P

LLED/43. SHUGAR L.E.D. COCKTAIL
For the night bird: A B function L.E.D. watch
housed In a pretty cocktail bracelet. Func housed in a pretty cocktail bracelet. Functions: Hrs, mins, secs, day, date, month
Gold or silver. PRICE: £13 99 p, $+50 \mathrm{P} \& \mathrm{P}$.

MDIA METAL DETECTOR

Induction balance metal detector with telescopic handle, course and fine adjustments vary audible fine tone and sensitive search coil make this detector as efficient is others costing 4 times the price.
PRICE: $812.85+50 \mathrm{p}$ \& P.
CL. $. ~ L . E . D . ~ A L A R M ~ C L O C K ~$ Fuil facility alarm clock, big green display and 24 hr , alarm with sleep/snooze timerabsolutely overwhelming value. PRICE:

RAs. 8 Waveband AM/FM/SW Mains/batt RADIO The UNIQUE VEGA SELENA FEATURES:5 short Wave Bands: 80 to $180+42$ to 50
$+30-4$ to $32 \cdot 5+24.7$ to $26+19 \cdot 3$ to 20 Mtrs.
 lighting: Full tone control: Extending rod aerial. Opprts.i S/W \& F/M: BattiTuning indc. SOCKETS FOR: External 60 ohm playback: Earth. The Vaga Selena WEIGHS glbs. Finished in black wlth silver trlms and a real wood surround. PRICE: $£ 32.95+$ ${ }_{£ 1}-75$ P\& P
\square MR/218C (M,E,D. Clock Radio Alarm FEATURES: 24 hr time and alarm clock + nooze timer, radio set and off. Radio sleep timer. Brlght green 12hr LED display withA/M, P/M Indicator. PRICE: $£ 21 \cdot 75+£ 1 \cdot 25$ P \& P'.

CAR 1 24hr LED CAR CLOCK
Housed in a black crackle finish tachometer
case, superb blue L.E.D. display, Fast \& case, superb blue L.E.D. display, Fast \& slow set, display brightness adjustable, display switches out with ign. of but maining kit and wiring instructions-Remarkable
value:
PRICE: $£ 14 \cdot 95+50 \mathrm{p}$ P \& P
\square CRA28 L.C.D. TRAVELLING
Features; 12 hour time and alarm clock (12 hour display with AM/FM Indicator) $12 \cdot 5 \mathrm{~mm}$ display. Super elegant design. The alarm effectlve not silly. Brush finish. Size: $3^{\prime \prime} \times 4 \frac{1}{2}^{\prime \prime} \times 20 \mathrm{~mm}$ thick. 2 cheap dry batteries provide over 1 year's normal use

ALL ITEMS FULLY GUARANTEED 12 MONTHS. ALSO MONEY

 BACK WITHIN 7 DAYS IF NOT ENTIRELY SATISFIED.PLEASE NOTE OUR NEW MAILING ADDRESS:-

BOX 11, FLEET HOUSE-WELBECK STREET

 WHITWELL - Nr. WORKSOP - NOTTS Tel: (0909) 720695 TELEX: 547616 fLEET G
PW PCBS

PLEASE SUPPLY SPECIAL OFFERS/P.C.Bs AS INDICATED BY TICK/S IN BOX/ES.
Issue Project Ref Price P/P

Dec 75 Sound-To-Light Display DN0798 1.35+15
Dec 75 Disco System, Amp (2 req'd) each AM0421 4•90+25
Mar 76 CMOS Crystal Calibrator AM0438 $1 \cdot 25+15$
July 76 Disco Preamplifier
Oct. 76 Digital Car Clock (set)
Oct 76 Interwipe
A011/012/013
DN8JM 0.80+12
$\begin{array}{ll}\text { Cirtest Probe } & \text { A018 } \\ 0.48+12\end{array}$
Nov 76 Burglar Alarm
A019 $0 \cdot 50+12$

Jan 77 - Oscilloscope Calibrator
Apr 77 Gas/Smoke Sensor Alarm
May 77 2-Way Intercom
May 77 Protected Battery Charger
May 77 Seekit Metal Locator
June 77 Versatile AF Generator
June 77 Tele-Games
July 77 20W IC Amplifier
July 77 Radio 2 Tuner
July 77 Digital Clock Timer
Aug 77 Shoot (Telegames)
Aug 77 Atomic Time Receiver
Aug 77 Morse Code Tutor Cards (SRBP)
Sept 77 Jubilee Electronic Organ
Oct 77 Audio Level Indicator
Oct 77 Sine-Square Wave Generator
Nov 77 Laboratory Power Supply
Jan 78 Direct Conversion Receiver
Jan 78 Proportional Power Controller
Mar 78 Audio/Visual Logic Probe
May 78 DX'ers Audio Filter
June 78 Bovington Tank Game
June 78 Audio Distortion Meter (set) R007/8/9/10 $6 \cdot 75+25$
June 78 Darkroom Timer
July 78 Avon Transmitter July 78 Digital Lock
July 78 Morse Tutor
Aug 78 Point Motor C.D. Supply
Oct 78 2M Mosfet Converter
Oct 78 Music Centre
$\begin{array}{lllll}\text { Oct } 78 & \text { Gillingham SW Receiver } & \text { R025/6 } & 4 \cdot 80+20 \\ \text { Nov } 78 & \text { Farum } & & 3 \cdot 30+20\end{array}$
Post and packing is for one board or set of boards or one item. Prices include VAT. Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required.
I enclose Postal Order/Cheque ACCESS welcome.
Send card number only.
for $£$. made payable to READERS PCB SERVICES LTD Box 11, Fleet House, Welbeck St., Whitwell, Nr. Worksop, Notts.

NAME
ADDRESS

RPCBS Ltd reserve the right to ammend prices and specifications without notice illustrations should be taken as a general guide only. Due to continual updating of goods offered, equipment on sale may differ in minor points of detail from thos photographed.

Fig. 4 : Copper track pattern and component overlay for the magnetic equaliser board. Both are shown full size

Fig. 5: A view of the equaliser unit (above), and the f.m. amplifier circuit (right)-N.B.
"ZD1" should read "ZD2"

Circuit Approach

The essential features of the pre-amplifiers needed for magnetic cartridge are that account should be taken of the fact that they operate as velocity devices, and that output is directly related to velocity. This means that a compromise has to be reached if the RIAA curve is to resemble a good match at maximum and minimum modulation levels. Eventually, this breaks down to a need for matching to $47 \mathrm{k} \Omega$ im-

Fig. 6: Copper track pattern (full size) of the complete receiver p.c.b. The m.w. circuits will appear in the final part in December
pedance and a cartridge output between 3.5 and 5 mV , which should cover the major differences in cartridge response and the velocity range in the original recordings.

A non-inverting configuration was chosen, since

One of the main differences between a professional piece of electronic equipment and one built by the average amateur is the appearance of the case and front panel.

Several attempts have been made to produce panel transfers and there must be many panels using rub-down lettering. Few of these, however, produce a professional look to a front panel and rarely match the appearance of a nicely produced satin finish aluminium panel.

Although the necessary material has been available to produce aluminium panels photographically, they have been almost impossible to obtain in small sizes suitable for the home constructor's projects. This has now changed with the introduction of the Photolab Kit by Mega Electronics.

This kit contains all the equipment necessary to produce aluminium or plastic front panels as well as prototype single and double sided printed circuit boards.

Both p.c.b.s and panels are produced using photographic techniques on pre-sensitised materials available in a wide range of convenient sizes from Mega. An ultra violet exposure box provides the means of exposing the sensitised material and the necessary chemicals, and plastic trays to develop and etch the p.c.b. material are also provided. A small electric drill and a selection of twist drills complete the kit.

The production of p.c.b.s is very simple once a transparent positive has been produced, using the transparent film and rub-down pads and tracks provided or drawn on film with a suitably dense black

ink or paint. It is of course necessary to ensure that you produce a positive, i.e. black where you want copper left. The positive artwork is placed face down on the glass top of the u.v. box with the pre-sensitised copper clad p.c.b. material on top of it. Close the lid and time the exposure as directed in the clear instruction sheet then develop in the developing tray, rinse in water and place face down on the surface of the etchant in the other plastic tray. When fully etched the holes can be drilled for the component leads and the board cut to size.

Care must be taken with the chemicals, especially the etchant, and it is advisable to wear an overall and rubber gloves when using the developing and etching trays.

The quality of the boards produced by the kit is very good and the material seems to be very tolerant of variations in exposure and developing time and the resist appears to stand up to the etchant well. The laminate material is epoxy glass and both single and double sided types are available. The instruction sheet explains how to make double sided boards and following these a sample board was made confirming that the system works and that the registration of the two patterns was good. The resist can be left on the copper tracks after etching and forms an easy to solder fluxed coating.

The 12 V d.c. drill supplied with the kit is quite capable of drilling the holes in the finished p.c.b.s but the concentricity of the collet chuck leaves a lot to be desired. Mega are now supplying their own very simple drill holder which improves the true running of the drill. A novel drill stand is available to take the drill, and Mega are about to launch a control unit and power supply for the drill.

A most interesting and exciting use of the kit is for the production of professional quality front panels. The process is very simple and involves the exposure to u.v. of the sensitised material through a negative artwork which can be easily prepared using rub-down letters and numbers and the film supplied. A range of colours is available and the material has a selfadhesive backing enabling the finished panel to be easily fixed to the main front panel.

The transparent overlay films which are available from the $P W$ Editorial offices for selected $P W$ projects make ideal artworks and produce excellent front panels. Using these films results in a panel which has silver lettering on a coloured background. To produce a silver panel with coloured markings requires the production of a reversed film available from Mega. After exposing the panel material, or reversal film, in the u.v. box the special developer supplied is spread over the sensitised surface and then rubbed with the lint-free pads supplied. This removes the unwanted coloured surface leaving the desired patterns on the surface. The panel can be cut to size easily using scissors or a sharp craft knife, and apertures are also easy to cut. The finished panel should be sprayed with a fixer varnish to provide a scratch-proof finish.

The kit provides a good investment for the home constructor allowing him to make trial p.c.b.s rapidly and economically and to provide his projects with professional quality front panels of which he can be proud.

Mega Electronics Ltd., 9 Radwinter Road, Saffron Walden, Essex CB11 3HU. Tel: 079921918

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, is now available. The reprint will cost $85 p$, including postage and packing to addresses within the United Kingdom.

Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SEl OPF. Please ensure that your name and address are clearly legible.

PRACTICAL WIRELESS-Radio Amateur
 Examination Reprint
 Please send your order and remittance to:-
 IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SE1 OPF

Please send me... copies af 85 pach to include postage and packing

I enclose P.O./Cheque No
Value

Remittance must be crossed postal order or cheque (name and address on back please) and made payable to IPC MAGAZINES LTD

NAME.
(BLOCK LETTERS)
ADDRESS.
(BLOCK LETTERS)

Post Code

Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required.

Payable by International Money Order only

Company registered in England. Regd. No. 53626
A subsidiary of Reed International Limited

CAP PADIO LONG.WAVE CONVERTER

Those without l.w. facilities on their car radios will now be able to receive the new Radio 4 transmissions. This unit converts 200 kHz (I.w.) into a narrow "slot" at the high end of the m.w. band.

DIGTA DOOR CHDHES

Bring your "early warning" system into the twentieth century with our CMOS-operated "Digital Door Chimes". Delight (or insult) callers with "Colonel Bogey" or any other self-programmed melody.

It is not very many years since the first scientific electronic calculators were introduced. In their speed, they rivalled the slide-rule, and had the advantage of positioning their own decimal point! In accuracy, they were equal to a set of mathematical tables. Thus they combined the best features of both, though functions were generally limited to \log , \sin , \cos, tan and their inverses. Prices of such instruments were pretty frightening-well in excess of £50, which was still quite a lot of money in those days.

Advances in the technology of design and manufacture of large scale integrated circuits soon meant that prices began to tumble, and all the while more functions appeared. Reciprocals, powers and roots, constants, conversions and statistics chased each other into the specifications, while memories and multiple sets of brackets added ease and power to calculations. Algebraic entry (this simply means that a problem is keyed into the calculator just as it would be written down on paper) became almost universal, though an alternative method known as Reverse Polish Notation still has its devotees. It was not long before a machine offering some thirty functions could be purchased for under £30.

The advantages of a calculator with functions such as those listed above were fairly obvious to anyone involved in any branch of engineering, though probably many that were bought were used mainly for the four basic arithmetic functions-for adding up bills, checking bank statements and the like. But there had appeared on the scene programmable calculators, some at prices around $£ 200$. Their advantages were not so obvious then, nor are they today for many people, other than those versed in computers. Prices have plummetted yet again, and this month we offer PW readers a scientific programmable calculator for just £26-95.

So, what is a programmable calculator, and what can it do? For those who are frightened off just by the word "program" (which simply means a series of instructions to be followed), it may be reassuring to realise that all calculators make use of programs, even if you're just asking them to add one and one! Far more complicated programs are needed in a scientific calculator, for instance to produce the square root of a number, or the sine of an angle. These programs are worked out by the designer
and come into operation when you press the appropriate button. They are preset and cannot be altered by the user. When we talk about a programmable calculator, we mean that the user has got control over the series of instructions that will be followed by it.
The instruction program is entered by the user as a sequence of key strokes. These are remembered by the calculator for later operation, and can be used over and over again. This is a particular advantage where you want to repeat a calculation with several different sets of data. Obviously, you could key in the instructions afresh with each set of data; this is what you are doing when performing chain calculations on a conventional calculator. The advantage of programming over manual operation is that the instructions have to be entered just once, taking less time and reducing the likelihood of error. All that is then necessary is to enter each new set of data into the appropriate memories, press the "RUN" key and the calculator will do the rest.
A programmable calculator can be used in an even more powerful way, to solve problems which would be impractical on a manual calculator. By means of a repetitive loop, a particular sequence of operations can be repeated as many times as required at the touch of one key. It is also possible to program a decision (called a conditional branch) whereby the calculator can be told to do different things according to the outcome of a previous calculation. Many programs can of course be shortened and speeded up by using standard pre-programmed functions within the program.

Typical applications for a programmable calculator include:

```
    Solving quadratic equations
    - Complex arithmetic
    - Matrices and determinants
    - Vector problems
    Differential equations
    - Co-ordinate geometry
    - Statistical analysis
    - Probability calculations
    - Series
```

\title{

涫 Burley $\frac{1 . c}{}$ W.S.POEL

Introduction

Introduction

Just as most aspects of electronics have advanced mercilessly over the past five years, leaving a trail of prematurely redundant devices and systems in their wake, so the humble p.s.u. has recently received a jolt with the introduction of the L200 current and voltage regulator from SGS ATES. The L200 is supplied primarily in their versatile pentawatt packagealthough a TO8 can is provided for some applications. The specifications are, however, the same except that the pentawatt package apparently has a better junction/case thermal gradient.

The Regulator Unit

This device provides adjustable voltages from $2 \cdot 85$ to 36 volts, and variable current from 0 to 3 amps , when the input/output voltage differential permits. The regulator includes thermal and safe area of operation (SOA) protection that makes it virtually blowout proof (the actual maximum current being determined by the case temperature), shown in Fig. 4. The L200 does away with many of the past standards of the electronics industry by providing a five-pin regulator that can replace the 723 and "pass" transistor combination, and many of the more complicated discrete approaches that still manage to find their way into modern designs. The 7800 and LM340 series of regulators are still suitable for strictly fixed voltage applications, but the L200's versatility will certainly be favoured in many applications.

The Circuit

The applications circuit of the L200 as a variable current, variable voltage p.s.u. is quite straightforward, and makes some more costly p.s.u. regulator modules look embarrassingly overweight. Precautions are taken in the construction of the unit to eliminate as much r.f. interference as possible.

A mains filter is used, and since this also incorporates an IEC connector, the mains input lead is taken care of at the same time. Such a filter may seem unnecessary to some constructors, but the

specification of prototype

specification of prototype

Output voltage 2.8 to 30 V continuously adjustable Output current-see SOA graph
Output regulation 0.1% at 1.5 A
Output Impedance 1.5×10^{-3} in SOA operation Output noise voltage $80 \mu \mathrm{~V}$ at 1 MHz (may be reduced by 55 dB with GA1A5) Typically below measurement floorona spectrum analyser sweeping d.c. to 100 MHz
average level of noise pollution on the 240 V mains is quite sufficient to get "through the works" and cause trouble on sensitive r.f. equipment. These units attenuate everything above 400 kHz by over 50 dB , making their inclusion a useful feature in quite a few mains-operated units.

Further r.f. decoupling precautions are taken close around the L200 itself, since despite its unassuming appearance, deliberate attempts to excite it into misbehaviour produced a very passable 20W topband transmitter. All that was necessary was to misdirect some of the decoupling slightly-so that a simple positive feedback loop existed, For users with a requirement for a very pure output, a second filter may be used-the GAlA5 (5 amp) provides a further reduction 55 dB above 500 kHz and also keeps r.f. out of the p.s.u. itself. A 5 amp filter provides surge suppression, and the use of the p.s.u. in connection with r.f. transmitter work should automatically include the second filter at the output terminations.

Setting Meters for F.S.O.

The metering circuits are straightforward enoughexcept to mention that these employ the Ambit "Meter Made 930" series, where the same basic blank meter is used with the scale selected and fitted by the user to suit the application in hand. The meters come with details of shunt and multiplier design, and in this context the calculations are as follows: meter type $930,200 \mu \mathrm{~A}$ f.s.d. unit resistance 750 ohms. To

provide a 30 V f.s.d., then according to Ohm's Law $30=\left(200 \times 10^{-6}\right)(\mathrm{R}+750)$ where " R " is the value of multiplier required reducing to $\mathrm{R}=150 \mathrm{k}-750$ ohms. To permit accurate trimming of the f.s.d. a 68 k and 47 k are used in series with a 50 k preset-the trimmer is then adjusted in conjunction with a known reference meter.

To provide a 2 amp f.s.d. for the current meter, (200×10^{-6}) $750=2 \times \mathrm{R}$ (the $200 \mu \mathrm{~A}$ is insignificant in $2 \mathrm{amps}) \mathrm{R}=0.075 \mathrm{ohms}$. This is not the sort of value that grows on trees-and so it must be made. The easiest way is to wind a non-inductive resistor using ordinary cored flex ($7 \times 0.2 \mathrm{~mm}$). 70 cm of a typical RS type was found to be the right value-and by over-cutting it, then trimming back, the exact value can readily be found using the reference multimeter as before.

Bang!

Note the protection diode placed across the output. The only way so far discovered to blow the L200 is to connect a fully charged $1000 \mu \mathrm{~F}$ (or greater) capacitor the wrong way across the output pins. When working on equipment, it is going to be quite likely that this can occur if the circuit is momentarily connected in reverse. Be careful about this point, regardless of the protection afforded by the diode.

Construction

The case used is chosen from the Swift series by West Hyde developments. It is a costly approach, but since poor presentation nearly always lets down the home constructed equipment-it is well worth the expense. The rear panel makes an ideal heatsink for the L200, and by virtue of the construction of the case, it is also the best location for the transformer and all the mains connectors and fuse circuit components. The voltage setting potentiometer is a multi-

An internal view, showing the location of the major components
turn unit-again this may be substituted by a cheaper component with a loss of setting resolution. The current limit potentiometer must be a reasonable quality wire-wound unit. The current carrying output and input wires on the L200 should be reasonably sturdy to provide as little resistance as possible.

The bridge rectifier and reservoir capacitor are fixed to the base plate with double-sided adhesive tape. The prototype bears one or two scars of misplaced holes, but a brief experiment with the tape revealed that it was more than sufficient for the purpose and so nuts and bolts were omitted. In this way, holes and protrusions from the underside are avoided.
The mains transformer can be a straightforward 240 V primary, and 24 V (12-0-12 in series) secondary. The 930 series meters have internal 12 V illumination which is run from the raw a.c. side of the secondary (in series).

Fig. 2: (above) Copper track layout of the $\mathbf{L 2 0 0}$ connection p.c.b. (shown full size) and Fig. 3: (below) The component layout

Regulation

The current is regulated according to the value of the current regulator potentiometer where Iout max $=\frac{0.6}{\mathrm{VR1}}$. The current limiting is of a foldback natureso simply short-circuiting the output will not necessarily give an accurate idea of the maximum current available at high voltage. The same effect can be seen when connecting the p.s.u. to an uncharged capacitor, where the voltage at the output falls momentarily to zero, since this may instantaneously cause the Vin/Vout to trip the SOA protection circuit, effectively latching up the whole works.

The "on" current surge of filament lamps will create the same effect again, so keep the d.c. input voltage to below the switch-off point on the SOA graph of around $34 \mathrm{~V} . \mathrm{C} 5$ is used in the circuit to supply a clean reference for the error amplifier-a ten-turn wire wound control will produce a "whirring" effect in the output voltage when spun, if this is not included.

The d.c. output is terminated without direct connection to earth, permitting either positive or negative chassis operation. A series-connected switch is included at the output terminals to isolate the sup-
plied equipment when setting up. The chassis must be at mains earth for the purposes of supply filtering, and in a situation where the transformer is not of the preferred split/isolated bobbin type, it is necessary to provide primary/secondary breakdown fusing.

\star components

Fig. 4: Graph showing L200's current/voltage link with safe area of operation (SOA)

Using the Unit

The p.s.u.can be used to provide up to 3 amps (with an appropriately rated transformer) according to the limits of Fig. 4. If you have a specific need for high current, low voltage work, then use a transformer to give a lower d.c. unregulated voltagekeeping the Vin/Vout differential across the L200 to the range below 18 V where most current is available. The maximum regulated output voltage will be approx. 2 V less than the d.c. input voltage to the regulator-and in high current applications, depending on the transformer regulation, this may be increased to 5 or 6 volts at maximum output.

The unit may also be used for charging Ni-Cad batteries, etc. Set voltage to maximum (fully charged) required voltage, and attach the battery, slowly bringing up to the permissable level.

Introduction to S.A.MONEY

So far we have seen that flip-flops can be used as latches, or as shift registers for converting data between serial and parallel formats. Flip-flops can be, and often are, applied to other useful activities, such as those of counting and frequency division. We shall now investigate these applications of the flip-flop.

Frequency Dividers

When we examined the JK type flip-flop it was noted that an interesting action occurred if both the J and K inputs were held at 1 . Under these conditions the Q output simply changes state each time a clock pulse is applied. If the clock input is a square wave with equal half cycles at the 1 and 0 levels the resultant waveforms for clock input and Q output will be as shown in Fig. 42. Now the output waveform has the same shape as the clock signal but it has exactly half the frequency. We have produced a nice little circuit which will divide frequency by two.
You don't have to use a JK fip-flop to produce a divide-by-two circuit however, because a D flip-flop can also be connected to perform the same action. This is done by connecting the $\overline{\mathbb{Q}}$ output back to the D input as shown in Fig. 43. Now when a clock pulse is applied, the \bar{Q} output will take up the state previously held by the \bar{Q} output. In other words the \mathbf{Q} output changes state in the same way as it did with the JK flip-flop. We now have another version of the divide-by-two circuit.
Suppose we connect several divide-by-two stages in cascade as shown in Fig. 44. Here the $\overline{\bar{Q}}$ output from each stage is used as the clock drive for the

Fig. 44: A 4-stage binary divider

Fig. 45 : Normal counter waveforms
following stage. At the output of the first stage the frequency is half that of the clock input. At the second stage the frequency will be a quarter of the clock frequency and so on. For four stages we could produce half, quarter, one eighth and one sixteenth of the input frequency (Fig. 45).

If the Q output of each stage were used for the clock of the next stage we should still get the frequency division but each frequency would be in phase with the others. This is shown in Fig. 46.

This technique of frequency division is in fact used for quartz analogue watches. In this type of watch a tiny electric motor drives the hands and is pulsed at a rate of one pulse per second. For accurate timekeeping a quartz crystal oscillator is used to produce the pulses. Such an oscillator is not really practical at one cycle per second so the primary oscillator may run at a much higher rate and the frequency is divided down to produce one pulse a second for driving the hands of the watch.

Often the crystal frequency will be $32 \cdot 768 \mathrm{kHz}$ which when divided by two a total of fifteen times produces a frequency of one hertz. So the crystal oscillator will be fed through a chain of fifteen divide-by-two circuits to produce the required output signal.

Fig. 46: Waveforms where Q is used as clock drive
Sometimes the crystal may operate at even higher frequencies, such as 2.0968 MHz in which case a 21 stage frequency division chain might be used to produce the one hertz output. The same type of divider chain is also used for the initial frequency division in a digital watch or clock running from a crystal.

Normally in our everyday lives we use the decimal system of numbers. Here each of the digits of the number is allocated a weight value so that we have units, tens, hundreds, thousands and so on. If we take the number 103 as an example it can be broken down as follows:

$$
(1 \times 100)+(0 \times 10)+(3 \times 1)=103
$$

Numbers can also be represented by using a binary system. Here the digits can have only the value 1 or 0 and the weights allocated to each digit will be units, twos, fours, eights, sixteens and so on. Let us now see what our decimal number 103 looks like in its binary form. It will in fact be 1100111 which can be analysed as;

$$
(1 \times 64)+(1 \times 32)+(0 \times 16)+(0 \times 8)+(1 \times 4)+(1 \times 2)
$$

$$
+(1 \times 1)=103
$$

Why do we need to know about binary numbers? Well our logic system uses the binary states 1 and 0 so it is convenient to represent numbers in binary form. Each of the digits has a weight which is twice that of the next digit. Now we can, as we have just seen, divide frequency or numbers of pulses by two quite readily, and this lends itself to the production of counter systems which present the answer as a binary number.

Binary Counters

Suppose we have a chain of four divide-by-two stages as shown in Fig. 44 and that we start off by having all four stages set at 0 . As clock pulses are applied at the input the four stages will go through the sequence of logic conditions shown in Table 9.

From this sequence of logic states we can see that after each clock pulse the pattern of 1 s and 0 s stored in the four flip-flops represents the binary number of clock pulses that have been applied. Here the state of flip-flop FF1 represents the units digit whilst FF2, FF3 and FF4 give the twos, fours and eights of the binary number.

Let us see how such a counter might be used. Suppose we have a production line making radio sets and we arrange that as the sets leave the line they pass through a light beam falling on a photocell. Each time a set passes the photocell a pulse will be produced and this can be fed as the clock input to the first stage of a binary counter chain. At the beginning of the day the counter can be set at zero and
when production stops at the end of the day a binary number will be stored in the flip-flops making up the counter. This binary number represents the total number of sets that have been produced during the day.

If we wanted to count the number of pulses occurring in a second in some electronic circuit a similar approach might be used. Here an input gate is needed to control the application of the pulses at the clock input. The gate is opened for a period of exactly one second allowing pulses to reach the counter and be counted. Assuming that all of the stages of the counter were set at zero before the gate is opened then at the end of one second the gate will stop the incoming pulses and the counter will show the number that occurred in the last second whilst the gate was open. The gate timing might also be derived from a counter chain driven by a crystal oscillator as shown in Fig. 47.

BCD Counters

So far we can divide frequencies and count pulses using the binary system and the answers might be displayed on a series of lamps as a pattern of 1 s and 0s forming the binary number. Unfortunately, human operators are used to seeing numbers in their decimal form and will generally be confused by patterns of Is and 0 s forming binary numbers. What we need is some scheme where we can use binary logic to perform the counting process but where the display is presented in the more familiar decimal form.

Fig. 47: A gated counter system

Table 9

Clock Pulse	Logic State			
	FF4	FF3	FF2	FF1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	,

Converting pure binary numbers into decimal numbers is a rather complex process but it is possible to code our decimal numbers into a binary form so that they can be processed by logic. A 4-digit binary number can, as we have seen represent the numbers from 0 up to 15. To avoid confusion between binary and decimal digits let us introduce a new term. The binary digit is usually called a Bit so we can now say that a decimal digit may be represented by a 4-bit binary number. If we apply this scheme to our number 103 it will become;

$$
\begin{array}{ccc}
0001 & 0000 & 0011 \\
1 & 0 & 3
\end{array}
$$

This method of writing numbers is called Binary Coded Decimal (BCD) and has the advantage that it is relatively easy to convert to and from real decimal numbers whilst giving a binary form of number which can be handled by logic systems.

So let us see how we might build a counter system using this Binary Coded Decimal numbering scheme. For the units digit of the decimal number we can use a 4 -stage binary counter. Starting off with all stages set at 0 the clock pulses will cause the 4 -bit binary pattern from the counter to step through the numbers 1 to 9 . On the tenth clock pulse we must arrange that the pattern returns to zero and a clock pulse must be produced to drive the tens decade of the counter chain. The return to zero after the ninth clock pulse is achieved by using a gate to detect the pattern for 10 and using its output to reset the four counter stages. This is shown in Fig. 48.
For the tens decade a second group of four divide-by-two counters with a reset gate is used and this pattern is repeated for the hundreds, thousands and so on. Thus there will be a 4-bit binary pattern from the counter for each decade of the decimal count.

In the reset gate only two inputs are used. Looking at the table of logic states in Table 9 it will be seen that only at the count of 10 will both the " 2 " and " 8 " bits of the binary number be at 1 together. The other two bits of the pattern do not matter since they are only effective for counts above ten and we are going to reset the counter at ten anyway. When bits " 2 " and " 8 " go to 1 the output of the NAND gate falls to 0 and this is applied to the reset lines of all four stages to force them into the 0 state. Here a TTL type counter has been assumed. If the counter requires a 1 input to the reset line to produce the reset action the gate would be replaced by an AND type.
As the counter resets at the tenth clock pulse the \bar{Q} output will go from 0 to 1 and this transition can be used as the clock pulse drive for the next decade counter.

HDOS2
Fig. 48: A decade counter

Fig. 49 : Principle of a decimal decoder
Because decade counters are regularly-used devices it is common to find a complete decade counter with its reset gate built into a single package. Typical of these is the 7490 in TTL which provides one decade of a BCD-type counter chain. The 7493 contains just the four divide-by-two stages and can be used as a simple 4-bit binary counter. In CMOS similar functions are found in 4518 (BCD) and 4520 (binary) counters except that there is a pair of decade counters or binary counters in the single package.

Display Decoders

Having produced a decimal count and obtained the binary pattern for each decimal digit the next problem is that of displaying the answers. One solution is to use each bit output to light a lamp and read off the binary pattern of $1 s$ and 0 s from the array of lamps, but this is not very attractive.

By using a series of gates we can select out each of the binary combinations from 0 to 9 . In Fig. 49 we show how this is done for the first few digits. The basic scheme is to use a 4 -input AND gate to detect the pattern. Where the bit should be a 0 the input to the AND gate is inverted so that when the desired pattern occurs all of the inputs to the AND gate go to 1 and the gate gives a 1 output. Now as the output from the counter stages is stepped through from 0 to 9 each gate will produce a l output in turn as its particular count pattern occurs.

A simple display scheme is to have a bank of ten lamps, numbered 0 to 9 , for each decade. Now the answer can be read off by simply noting which lamp is lit in each decade to give the hundreds, tens and units of the result. In TTL the 7442 provide this one-from-ten decoding system in a single chip. The 4-bit outputs from the counter are fed to the 7442 and one of its ten outputs will go to 0 according to the binary pattern at the input.

A more convenient display system makes use of Nixie-type display tubes. These consist basically of a neon lamp which has a common anode and ten separate cathodes. Each cathode is formed in the shape of one of the numbers from 0 to 9 . With a suitable supply to the anode, if one of the cathodes is taken to 0 volts a discharge will strike between it and the anode. The glow will be in the shape of the symbol formed by the cathode selected.

Fig. 50: A typical counter with Nixie displays
The Nixie tube can be driven by a special logic decoder such as the 74141 in TTL which carries out a one-from-ten selection and provides the appropriate drive for the cathodes of a Nixie tube. The system for a 3 -decade BCD counter system and display might now be as shown in Fig. 50.

Seven-Segment Displays

Although Nixie tubes are still used for displays a more popular technique today is to use a light emitting diode or liquid crystal display. In this type of display the numbers are formed by selectively lighting up seven bar segments as shown in Fig. 51 and the resultant number shapes will be as shown in Fig. 52.
The segments of the display are switched in much the same way as the cathodes of a Nixie tube but a rather more complex decoder is required. This consists basically of a one-of-ten decoder to select the numbers to be displayed and each output of this drives a further set of gates to select the pattern of segments needed to display that number. Typical de-

Fig. 51 : Seven segment display layout

Fig. 52: Seven-segment number patterns

HD056
vices of this type are the 7447 in TTL and the 4511 in CMOS. In some 7 -segment l.e.d. displays the anodes are separate with a common cathode, and for these a 7448 decoder might be used.

Sometimes for multi-digit displays a single 7 -segment decoder is multiplexed to feed all of the displays. The general idea of such a scheme is shown in Fig. 53. The segments of all of the displays are fed in parallel from a 7 -wire bus driven by the 7 segment decoder. At the input to the decoder the 4-bit pattern for each decade of the counter chain is switched in sequence and at the same time the anode voltage to the appropriate display is also switched on so that only the selected display digit will light. The displays are now continuously scanned at a rate fast enough that persistence of vision will eliminate flicker as the displays flash on and off. This type of display scheme is often used on the large scale integrated circuits since it reduces the number of pins needed on the package in order to drive a bank of displays. A similar scheme can be used equally effectively with the Nixie tube type of display.
Often in such devices as digital clock circuits or multi-stage counters in one integrated circuit the display decoding, multiplexing and drive circuits are built into the chip giving only the seven cathode outputs and the anode outputs to the display system.

Digital Clocks

Having produced decade counters and displays we now have the basic ingredients for a digital clock. However, we do need one more type of counter which will divide by six. This can be achieved in much the same way as a decade count but in this case the reset gate is arranged to respond to the binary pattern for six instead of ten. So for the seconds

Fig. 53 Principle of a multiplexed display system

Fig. 54: A seconds counter system
section of the clock the system might be as shown in Fig. 54. Here the seconds are counted off by using a 4-bit decade counter whilst for the tens of seconds a 3-bit counter is used since it will only count up to five and then will be reset to zero on the sixth count. The 8 -bit input to the tens of seconds display driver is permanently set at 0 to produce the correct display. A pulse is taken from the tens of seconds counter each time it resets to 0 and this pulse is used to clock the minutes stage of the clock.

The overall system for a digital clock would be as shown in Fig. 55. In the hours stages, assuming a 24-hour system, both the tens of hours and hours must be set to zero when their combined count reaches 24. This is done by gating the " 2 " bit from tens of hours and the " 4 " bit from hours into an AND gate and using its output to reset both counters. For a 12 -hour clock system a similar scheme is used, but this time it is arranged to reset the hours counters when the total count reaches 12 instead of 24 .

Most digital clock and watch systems use special large scale integrated circuits to carry out the counting, decoding and display drive functions. In some cases these circuits may also include further counters for day, month and year to provide an automatic calendar as well as time.

Identity Gates

Suppose we want to build an alarm clock. How can the alarm be organised? Basically the scheme is to compare the binary pattern representing the alarm time code with the count pattern coming from the clock counter chain. When the two patterns are identical a flip-flop can be triggered. This flip-flop will then control the alarm circuit itself. The alarm code may be selected by a multiway switch or it may be entered into a bank of flip-flops in the clock system.

To compare two binary numbers for identity we can use a set of EXCLUSIVE OR gates as shown in Fig. 56. In the EXCLUSIVE OR gate you will recall that if both of the inputs are at 1 or both are at 0 the gate output will be 0 . In an identity gate one bit from one of the numbers to be compared is fed to one input of the gate, whilst the other input is fed by the corresponding bit in the second number. This is done for all of the bits in the numbers to be compared, one EXCLUSIVE OR gate being used for each bit in the numbers. When the two numbers are identical all of the outputs of the EXCLUSIVE OR gates will be at 0 . These signals can now be inverted and gated together in an AND gate to produce a single output which will be 1 when the input numbers are identical and 0 when there is a mismatch. For an alarm system the output of the AND gate is used to set a flip-flop which then operates the alarm device.

This technique of comparing two binary or BCD numbers may be used in other applications where identity between a pair of numbers is to be detected.

Synchronous Counters

In the counters we have considered so far each stage produces the clock pulse for the following stage in the chain. Because of propagation delays in each stage the clock pulse to the next stage will be delayed slightly. Suppose we have a 3 -stage binary counter set at 111 and apply a clock pulse. In theory the counter should switch to the 000 state immediately but in practice the sequence of logic states shown in Fig. 57 will occur. Here the delays have been exaggerated to show the effect more clearly. The stages switch one after another to give a rippling action and for this reason this type of counter is usually referred to as a "ripple-through" counter.

Problems can arise when gates are used with ripplethrough counter chains to detect a particular count state. In Fig. 57 it is seen that the states 110 and 100 appear briefly at the output of the counter and any gates set to respond to these patterns may be activated. As a result a short pulse, usually referred to as a "glitch", may appear at the output of these gates. This can cause havoc in a logic system by mistriggering of other logic circuits by the glitch pulses.

Fig. 55: A typical digital clock counter

Fig. 56 : An Identity gate

To overcome the problem of glitches caused by ripple-through counters an alternative type of circuit known as a synchronous counter may be used.
In the synchronous counter a master-slave flip-flop is used for each divide-by-two stage. Now the input clock is applied to all stages simultaneously and hence output logic states tend to change synchronously for all stages, thus reducing the problems of glitches in selector gates operating from the counter.
Most synchronous counters come as 4 -bit units and may be designed for either pure binary or decade counters. Typical devices are the 74160 and 74162 decade counters and the 74161 or 74163 binary counters in TTL. In the CMOS range the 4518 and 4520 provide dual decade or dual 4 -bit binary counters.

Up/Down Counters

Sometimes instead of counting upwards we may wish to count downwards, say from 9 down to 0 . In a simple binary counter this is easily achieved by inverting the output signals from the counter stages. This effect is shown in Table 10 where the binary
counts and their decimal equivalents are shown for both the normal and inverted outputs of the counter stages.
An alternative approach is to take the clock drive for each stage from the Q output of the preceding stage instead of from its $\overline{\mathbb{Q}}$ output. Now assuming we start with say the count state 000 when the clock pulse is applied the first stage will set to 1 . This will in turn clock the other stages to 1 to end up with the count 111 which gives a count of 7 after the 0 count. On the next clock pulse the count will reduce to 6 and so on. You can work through these states to check that the count decreases for each clock pulse.

For a decade counter things are a little more complex. Now after the counter reaches 0 its next count is to 15 (1111). This must be detected by the reset gate and then the counter must be forced into the 9 state to produce the correct count sequence.

Fortunately Up/Down counter devices are available as single integrated circuits with the required control logic built in. Sometimes a control line determines whether the counter will count forwards or backwards. In TTL the 74190 (decade) and 74191 (binary) counters use this technique. Alternatively two separate clock inputs may be used, with one for up counting and another for down counting. This is the case for the 74192 (decade) and 74193 (binary) types.

Presettable Counters

Many of the integrated circuit counter devices have facilities for direct parallel loading of data to force the counter into a desired count state. This can be of use where a variable time delay is required such as in a darkroom timer. The technique is to preset the counter to the desired number of seconds and then to count down until the zero count is detected. At this point the alarm or other circuit may be triggered. For other count times the value preset into the counter is altered but the reset detection gate remains set for the zero state. This count down to zero technique may be used for any application where a variable number of pulses must be counted, before another circuit is triggered.

TO BE CONTINUED

Table 10

"8"	$\text { " } 4 \text { " }$	" 2 "		'1"	$\begin{gathered} \text { Decimal } \\ \text { Digit } \end{gathered}$	" 8 "	"4")		'1"	$\begin{aligned} & \text { Decimal } \\ & \text { Digit } \end{aligned}$
0	0	0	-	0	0	1	1	1	,	15
0	0	0		1	1	1	1	1	0	14
0	0	1		0	2	1	1	0	1	13
0	0	1		1	3	1	1	0	0	12
0	1	0		0	4	1	0	1	1	11
0	1	0		1	5	1	0	1	0	10
0	1	1		0	6	1	0	0	1	9
0	1	1		1	7	1	0	0	0	8
, 1	0	0		0	8	0	1	1	1	7
${ }^{*} 1$	0	0		1	9	0	1	1	0	6
1	0	1		0	10	0	1	0	1	5
1	0	1		1	11	0	1	0	0	4
1	1	0		0	12	0	0	1	1	3
1	1	0		1	13	0	0	1	0	,
1	1	1		0	14	0	0	0	1	0
1	,	1		1	15	0	0	0	0	0

Slot Car Brake Lights

AD219

This simple, but effective, circuit adds working brake lights to slot racing cars. The brake lights are out when the car is accelerating or running at constant speed, but come on as the car slows down.

The circuit is shown in Fig. 1. When the motor is drawing current, diode D1 is forward biased, and LED1 and LED2 are both off. If power is removed the motor acts as a generator and current flows through LED1 and LED2, R1 and R2. The two l.e.d.s light and stay lit until the car is almost stationary. Capacitor C1 stops the l.e.d.s flashing as the car passes over dirty track, and prevents them lighting on the troughs in the normally unsmoothed supply. Diode D2 protects capacitor C1 from reversed supply. This diode will short the supply, but slot racing supplies are protected by a current limit or cut-out. Diode D1 introduces a 1 volt drop to the motor, but this has not been found deleterious in normal home sessions. It might make a small difference in a serious slot car competition but could probably be compensated for in the motor design. The weight of the components might be advantageous if correctly positioned inside the car.

Although the circuit has been shown driven from a positive supply, reversal of all polarity sensitive components will allow operation from a negative supply. The l.e.d.s can, of course, be replaced by other suitable indicators. The unit can be built on a small piece of $0 \cdot 1$ in Veroboard, but the components could be positioned anywhere convenient inside the model car if space is at a premium.

The circuit has been tried on Revell and the more powerful of the Scalextric range of cars, but some experimentation with the value of $\mathbf{R 2}$ might be necessary in individual cases.

Fig. 1

* components

```
Resistors
        +W 5%
        R1 47\Omega
        R2 220n
        Capacitor
        C1 }250\mu\textrm{F}25\textrm{V}\mathrm{ electrolytic
        Diodes
        D1,2 1N5401
        LED1, 2 Any suitable l.e.d. (TIL209)
```


Porch Light Timer

This simple timer was originally designed for the purpose of switching on an outside light for about five minutes by simply pressing a bell-push once. It was connected in parallel with the original light switch and does not affect its normal function, but, by providing a means of running the light for only a specified period it has proved to be most convenient for getting the car out during hours of darkness.

The five minutes of illumination given by the timer has proved to be adequate to cover removal of the car from the garage and the embarkation of the family in the driveway.

The timer could also be used as a delayed "on" switch, so that, for instance, a car alarm could be made to switch on after five minutes delay allowing the motorist ample time to alight, close doors etc., and eliminating the need to drill the
car body for the mounting of an external key-switch. The circuit is convenient in that it uses the popular NE555 i.c. It is also adaptable in that by varying the values of two components the delay can be adjusted to anything from a few milliseconds to an hour.
A bell-push is connected across SK1 (see Fig. 1) so that a press on the button supplies power to the timer circuit from the 9 volt supply. At this stage, capacitor C1 is discharged, making a short circuit between pin 6 of the i.c. and 0 volts. This causes pin 3 of the i.c. to rise to the supply voltage, energising the relay and shorting out the push button. At the same time, it causes capacitor C1 to charge up via resistor R1 until pin 6 of the i.c. reaches two-thirds of the supply voltage, when the i.c. drops the output at pin 3 back to 0 volts. This switches off the relay and in turn the power supply to the timer circuit. Capacitor C1 then discharges itself via R1 and the relay coil so that the timer is ready for the next cycle of operation.

In this application, the timer is used to hold the mains contacts on the relay closed for the specified period, but It is of course a simple matter to reverse the action of the timer by using a relay having contacts which are normally closed.
In the prototype, a 700Ω relay was used, but any type which will operate comfortably on 9 volts is satisfactory provided that its resistance is not below about 180 2 , otherwise the i.c. will be damaged. With a 700Ω relay the current drain from the battery is only about 9 mA , so a small capacity 9 volt battery will last for some hundreds of operations. A mains power supply could be used quite easily providing the output was well smoothed and between 5 and 15 volts d.c., but the prototype uses a PP9 battery which has been in use for about a year and shows no sign of needing renewal.
The circuit was constructed on a piece of printed circuit board as shown in Fig. 2, but 0.1 in Vercboard could easily be used as an alternative. The circuit board and battery are mounted rigidly in a suitable box, with a 4 -way terminal
block mounted on the outside of the box for SK1 and SK2. If the box is made of metal and the device is to be used for mains switching, the box should be properly earthed and the relay contacts suitably insulated from the casing.

An i.c. socket should be used so as to avoid the risk of damaging the NE555 by overheating.

Fig. 1

components

Resistor
 R1 $1 \mathrm{M} \Omega \frac{1}{4} \mathrm{~W}$

Capacitor
C1 $\quad 500 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
Semiconductor
IC1 NE555 timer
Relay
RLA 2-pole changeover, 185Ω coil, R.S. type 348-908

Miscellaneous

Bell push, PP9 battery and clips, 4-way terminal block rated 2A, p.c.b. approx. $25 \times 65 \mathrm{~mm}$, suitable case.

Fig. 2

STD Charge Timer

Most telephone calls within Britain are made using subscriber trunk dialling (s.t.d.) these days, and this system is faster and more convenient than its predecessor. One problem with this system is that it can be difficult to calculate the cost of a call.
STD calls are charged in units which have a uniform cost (3p at the time of writing) regardless of the distance over which the call is made. However, the length of time which constitutes one unit does vary with the distance of the call, and there are three main categories; ' L ' or local area, ' A ' which is for calls up to 56 km , and ' B ' for calls over 56 km . The time allowed per unit also depends on the time of day, with three categories; peak rate, standard rate, and cheap rate. Detailed information on this can be found in the telephone directory or dialling code booklet.

In order to calculate the cost of a call it is necessary to check the applicable time per unit, time the call, and then calculate the number of units used (parts units being charged as whole units). The charge timer simplifies the procedure slightly. Having looked up the time per unit for the call, a switch on the timer is set to the corresponding position. Then when the number has been dialed and the call answered, the timer is switched on, displaying digitally the number of units used.
The timer is especially useful where a telephone is used by à number of people as it enables each person to keep an accurate account of their share of the phone bill. It can also be very useful when making calls at the higher charge rates. A unit can be as short as 10 seconds, and losing track of the time when making such a call can prove very expensive. Using the timer avoids this possibility.

The Circuit

On the face of it the circuit merely needs to consist of a simple $C-R$ oscillator of some form to provide the clock signal, and a straightforward two digit counter circuit. There are a couple of complications though.
The clock frequency is very low, being between a few seconds and a few minutes per cycle. In order to generate this kind of frequency with a C-R oscillator it is necessary to use high valve components in the timing network, and this necessitates the use of an electrolytic capacitor. Unfortunately, electrolytics tend to have comparatively high leakage resistances and do not always work well in this type of circuit. Another problem with many C-R oscillators is that the first output cycle is longer than subsequent cycles (this is the case with the NE555 for example).
The second complication is that subscribers are charged the full rate for any part units that are used. Therefore, the counter must start at one rather than zero, since one unit is charged as soon as the phone is answered.

components

Resistors				
330Ω	R2	4.7	1	R4
390Ω	R6	$10 \mathrm{k} \Omega$	1	R5
$1 \mathrm{k} \Omega$	R1	18k Ω	1	R8
$2 \cdot 2 \mathrm{~K} \Omega$	R3	27k Ω	1	R9
+ W 2\%				
$56 \mathrm{k} \Omega$	R10	220k Ω	1	R13
82k Ω	R11	$330 \mathrm{k} \Omega$	1	R14
110k Ω	R12	1.2M Ω	1	R15
Sub-min. horiz. preset				
$220 \mathrm{k} \Omega 1$	R7			
Capacitors				
Ceramic plate 1.5 F				
$1 \cdot 5 n \mathrm{~F} \quad 1$	C1			
Polyester 250 V				
$0 \cdot 1 \mu \mathrm{~F} \quad 3$	C3, 4, 5	47nF	1	C2
Polycarbonate 5\%				
$0 \cdot 1 \mu \mathrm{~F} \quad 1$	C6			
Semiconductors				
Transistor				
BC109 1	Tr1			
Integrated Circuits				
CD4026AE 1 IC2				
CD4033AE 1 IC1				
ZN1034E 1 IC3				
7-segment l.e.d. displays				
FND500 2 Display 1, 2				
Switches				
1p. 12w. 1 S1 (adjustable end-stop)				
s.p.s.t. 1 S2 (sub-min, toggle)				
Miscellaneous				
Plastics case $150 \times 80 \times 50 \mathrm{~mm}$ (Verobox 65-2520J or similar). Printed circuit board. PP3 battery and connector. Red Perspex or display filter material. IC sockets (2 off 16 -pin d.i.l., 1 off 14 -pin d.i..I.). Control knob.				

Fig. 1 shows the complete circuit diagram of the call charge timer. The clock signal is generated by a $2 N 1034 \mathrm{E}$ precision long timer i.c. consisting basically of a high quality $\mathbf{C - R}$ oscillator feeding a twelve stage binary divider circuit. The oscillator thus operates at over 4,000 times the output frequency, and the necessary low output fre-
quencles can be generated without using a high value tlming capacitor. C6 is the timing capacitor.

The eight unit times (not nine as standard 'L' and cheap 'a' rates are both 3 mins), are produced by eight different timing resistors (R8 to R15) with the appropriate resistor being selected using S 1 .

R7 enables the output times to be trimmed to the correct values, although there will be small descrepancies between ranges due to small errors in the timing resistor values. The ZN1034E has an integral 5 volt regulator circuit of the shunt type, and R6 is the load resistor for this. The ZN1034E is actually a monostable, but it is made to perform as an astable by coupling the \mathbf{Q} output to the trigger input via R-C network R5-C5.

The counter circuit consists of two c.m.o.s. decade counters/seven segment display decoders directly driving two low current seven segment l.e.d. displays. No current limiting resistors are needed between the decoders and the displays due to the low output current drive capability of the c.m.o.s. i.c.s. The output current of about 5 mA per segment is a good match for the specified FND500 displays. A 4033 device is used in the IC1 position as this has zero blanking, and will not drive the display until the count reaches ten. This eliminates unnecessary battery drain displaying a superfluous zero.

When switch S2 is initially closed and power is applied to the circuit, C1 and R1 produce a brief positive pulse which resets both counters to zero. Tr1 is used as an inverter, and is fed from the $\overline{\mathbf{Q}}$ output of IC3 by way of current
limiting resistor R4. The \mathbf{Q} output will be at logic 0 at first, and so Tr1 will be cut off. Its collector voltage will therefore rise to the positive supply, rail voltage. It will be delayed slightly by the presence of R2 and C2 in the collector circuit, and so the counters will rest before this positive pulse is applied to the input. The purpose of this pulse is, of course, to make the counter circuit effectively start from one rather than zero.
Each time IC3 reaches the end of a timing period the Q output will briefly go positive and switch on Tr1 until C5 discharges to a sufficient level via R5 to retrigger the timer. Tr1 is then cut off again and a positive pulse is fed to the counter circuit, causing it to be incremented by one.

Construction

The project is built into a Verobox and most of the components, including the two displays, are mounted on a printed circuit board. Fig. 2 shows both the copper side of the board and Fig. 3 the component layout. IC1 and IC2 are c.m.o.s. devices and normal handling precautions should be taken when dealing with these two devices. The completed panel is mounted on two of the threaded pillars on the base section of the case using long M3 screws. Spacers are used over the mounting screws to raise the panel so that the displays are close to the lid of the case when it is fitted into position. This also provides a space for the battery beneath the circuit board. It is a good idea to fix some self adhesive foam material to the

Fig. 1

Adjustment
Start with the slider or R7 set at about the middle of its track. Set S1 to the ten second position, turn the unit on, and measure the actual time taken between each increment of the display. It will almost certainly be necessary to adjust R7 to obtain the correct clock frequency, clockwise rotation decreasing the length of each clock cycle.
With the clock frequency reasonably accurate on the ten second range, S 1 is switched to one of the longer rainges so that R7 can be adjusted more critically. When
good accuracy is achieved on the longer ranges the unit is ready for use.
It is possible that at some future date it will be necessary to amend some of the times provided by the unit. Assuming C6 is left at 100 nF , the required timing resistance is equal to $1.8 \mathrm{k} \Omega$ per second. Where the calculated value does not coincide with a preferred value, choose the nearest value in the E24 series and use a close tolerance component to minimise the maximun possible error. Alternatively the required value can be made up from two resistors wired in series.

Door Bell Changeover Unit
This circuit was designed to meet the conflicting requirements of a door bell loud enough to be heard when working in the garden, yet not ear-shattering in normal use. The repeater bell operates only on the second operation of the push.

When the bell-push is operated, RLA makes and C1 is charged to supply voltage. At the same time the solenoid of the Ding-Dong bell moves to strike the first note. When the bell-push is released, the solenoid returns, to strike the second note, RLA releases and the charge on C1 is applied to base of Tr1 which conducts and switches Tr2. Tr2 in turn operates RLB, and the trembler bell is then in
circuit via the bell push if required. With values of C1, R1 as shown, RLB holds on for about 75 seconds. When the charge on C1 falls, Tr1 and Tr2 switch off, RLB releases and the circuit reverts to its original state. The circuit could be assembled on a small piece of Veroboard.
The circuit could also be used to switch on a light for a deaf person's door call.
components

Fig. 1

Automatic Outside Light

This simple circuit will turn your outside light on as darkness approaches and turn it off again at dawn, unless you decide to switch it off earlier.

The design is based around the ORP12 light dependent resistor a useful component which changes resistance with the amount of light falling on its active surface. This change in value is used to switch a BC109 transistor which in turn switches a 2 N3053 transistor to operate a small relay.

The required threshold level at which the relay switches is set by VR1 and the amount of hysteresis, the difference between the switch-on and switch-off levels, is varied by VR2.
The unit is powered from the mains via a small 6 V transformer and a full wave rectifier system.

The circuit can be built on a small piece of Veroboard and fitted inside a waterproof bulkhead fixing outside light fitting. The ORP12 I.d.r. should be mounted through a small hole drilled in the top or one side of the light fitting with a suitable tube to act as a shield to prevent the unit being switched off again by the light from the unit.

Care must be taken in positioning the unit inside the housing to avoid a position where it will be affected by the

\star components

heat generated by the lamp. If the housing is physically small then it would be better to err on the side of safety and mount the unit in a small plastic case away from the light.

Fig. 1

Battery Indicator

There have been many designs for battery state monitors and indicators published in various magazines and journals. These are a very useful addition to any piece of battery
operated equipment, but most seem to suffer from one major disadvantage; their quiescent current consumption is of the order of 10 mA or so and is often as great or greater than that consumed by the equipment in which they are incorporated. The current consumption of the unit described is a mere $8 \mu \mathrm{~A}$ in its quiescent state. Fig. 1 shows the circuit diagram of the complete indicator.

Fig. 1

Fig. 2

\star components

Transistors Tr1 and Tr2 form a Schmitt trigger. R1, VR1, and R2 are connected across the supply rails and form a potential divider. This provides the reference potential for the base of Tr1 and determines when it changes state. With the values shown the switching point of the Schmitt can be varied between about 5 V and 15 V .

The output of the Schmitt, which is normally high and goes low when the battery voltage falls below a preset level, is fed to the input of a CMOS inverter (actually a NAND gate with its inputs connected together). The output of this is connected to the control input of an oscillator constructed from two of the remaining gates in a CD4011 package. The output of the oscillator is connected to the base of Tr3 which turns the l.e.d. on and off at a rate of about $2 \cdot 5 \mathrm{~Hz}$ as a visual indication that the battery voltage is low. The time-averaged current consumption of the indicator is approximately 5 mA when in this state. This can be reduced further, with a corresponding decrease in l.e.d. brightness, by increasing the value of R8.

The inputs of the remaining gate in the CD4011 should be connected to either supply rail in this version. In the original version, the remaining gate was used in conjunction with a 1 kHz signal to turn the l.e.d. on and off rapidly to indicate that the equipment was switched on. This is shown in Fig. 2.

The time averaged current for the battery low indication in this case is reduced to about 2.5 mA .

The unit can be built on a simple p.c.b. as shown in Figs. 3 and 4. It is recommended that you use a socket for the i.c. and observe the usual precautions when handling c.m.o.s. devices.

Fig. $\mathbf{3}$

Fig. 4

Many of our readers will be familiar with an f.m. device used as a 10.7 MHz amplifier/limiter and demodulator which is marketed as the type number 3089 and as the TDA1200. Quite a number of designs using this device have appeared in our pages, since it offers a wide range of facilities on a single chip. Although first introduced by RCA in 1971 as their CA3089E, the 3089 has since become an "industry standard" type which is available from many manufacturers; indeed, it is probably the most widely used of all f.m. i.f. devices.

The CA3189E

The new RCA type CA3189E has been developed as an improvement on the 3089 type device. RCA have had prolonged discussions with many manufacturers of high quality f.m. receivers who use the 3089 before designing the new CA3189E to meet the manufacturer's requirements as closely as possible. The CA3189E was conceived and designed by RCA at Sunbury-on-Thames, England, but the wafer and device fabrication is carried out in the USA.
The CA3189E is encapsulated in a 16 pin dual-inline package. The connections are similar to those used in the 3089 device except for pin 16 (which is not used in the 3089), but both the internal and external circuits differ from those of the 3089.
The internal circuit of the CA3189E is quite complex and provides the following functions: (i) a high gain i.f. amplifier (ii) a quadrature demodulator circuit (iii) an a.f.c. output (iv) an a.g.c. output with an adjustable threshold (v) an output to drive a signal strength meter (vi) a noise muting circuit to reduce inter-station noise (vii) a deviation muting circuit to mute the audio signal as the receiver is tuned through a sideband.

Pin-out details of the CA3189E

Typical Circuit

A typical circuit for the use of the CA3189E which provides a very high performance is shown in Fig. 1. The $10 \cdot 7 \mathrm{MHz}$ input signal from the output of an f.m.
tuner is fed to the base of the BF594 transistor amplifier stage and then to a pair of Toko type CSFE ceramic filters connected in cascade. A similar transistor amplifier stage follows and the output from this second stage is fed into a further pair of cascaded CSFE filters.

The circuit shown provides a signal-to-noise ratio of 40 dB for an input of only $3 \mu \mathrm{~V}$. A somewhat simpler circuit can be made by employing only one transistor stage and one pair of CSFE filters. In this case the input signal is fed through Cl to the base of Tr 2 and the Trl circuit is omitted. However, the signal-to-noise ratio with a single transistor input stage is about 20 dB for a $3 \mu \mathrm{~V}$ input signal, so it is wise to use two transistors if you wish to receive any weak signals.
The signal from the two transistor pre-amplifier is fed into pin 1 of the CA3189E, this being the input of a high gain amplifier/limiter. The bandwidth of this internal amplifier has been limited to 15 MHz (as opposed to the 25 MHz typical bandwidth of the 3089 device), since this not only improves circuit stability and renders the printed circuit board layout less critical, but also improves the noise performance of the circuit. Two signals outside the receiver pass band can interact to form noise in the band, but this is reduced by restricting the bandwidth.

The Demodulator

Two coils are required in the demodulator circuit. A $22 \mu \mathrm{H}$ coil is connected between pins 8 and 9 , the Toko coil type 144LZ 220 K having been found very suitable for the purpose. A tuned circuit resonant at $10 \cdot 7 \mathrm{MHz}$ must be connected between pins 9 and 10 , but the miniature Toko type KACS K586 HM is ideal for this purpose; it was designed for a similar function with the 3089 type device.

The typical third harmonic distortion with the circuit of Fig. 1 is about 0.3%. It is possible to reduce it to less than $0 \cdot 1 \%$ by the use of a double tuned circuit between pins 9 and 10 instead of the single tuned circuit so as to obtain better phase linearity over a wider bandwidth. Although Toko offer suitable components to make a double tuned circuit, the alignment requires an oscilloscope and the writer would advise readers to use the single tuned circuit unless they have the necessary equipment and experience.

Noise

Great efforts have been made in the design of the CA3189E to reduce the noise level at the audio output. We have already mentioned how the noise has been reduced by restricting the i.f. amplifier/limiter bandwidth, but further improvements have been made by using a Zener diode in the regulator section of the device which produces very low noise. Unlike

the 3089 , the CA3189E requires an external audio load resistor (R15 in Fig. 7) so that pin 10 can be decoupled by C 9 ; this produces a small improvement in the noise level.

Muting

A noise muting circuit is required for silencing the receiver when tuning between stations. A noise muting circuit in the CA3189E detects the absence of a signal or sufficient holes in the limited carrier wave and produces a voltage change at pin 12; a portion of this voltage is tapped off by VR2 and is fed to pin 5 where it is used to reduce the audio output to zero.
This noise muting circuit alone is sufficient to produce excellent inter-station muting, but unfortunately it is not very satisfactory for providing the muting required when tuning through sidebands rapidly. The sudden voltage changes at the audio output produce a "thump" in the loudspeaker when passing through the station frequency. The deviation muting circuit incorporated into the CA3189E reduces the maximum voltage shift at pin 6 when the circuit switches to or from the muted state and provides a considerable improvement over the 3089 type of device which has only noise muting. When R14 has the value shown in

Fig. 1 the circuit will stay in its muted state until the tuning comes within $\pm 40 \mathrm{kHz}$ of the correct tuning point for the station; this resistor controls the sensitivity of the deviation muting circuit by determining the deviation at which muting ceases.

A.G.C.

There was considerable disagreement as to the optimum threshold level at which the automatic gain control circuit should start to become effective. This threshold level had been set at about 10 mV r.m.s. input to pin 1 in the 3089 device, but to meet the requirements of the various circuit designers RCA decided to provide a variable a.g.c. threshold level in the new CA3189E. They use pin 16 for this purpose, the only pin which is not used in the 3089 device.

As shown in Fig. 1, the control voltage tapped off by VR1 is fed to pin 16 , so VR1 controls the a.g.c. threshoid level. When the control voltage is obtained from pin 13, as shown, the threshold of a.g.c. action can be varied from a signal level of $200 \mu \mathrm{~V}$ up to as much as 200 mV at pin 1. The a.g.c. characteristic shown in Fig. 2 has a very sharp "knee" and is therefore very satisfactory.

SPECIAL OFFER TO P.W. READERS

ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY In a superb STAINLESS STEEL case with MINERAL GLASS face. THIS MUST BE THE ONE YOU HAVE BEEN WAITING FOR!

If you could write the specification for your own ideal watch you would probably want everything this one has. As for styling, without a close inspection nobody is going to te able to tell the difference between this watch and that world famous lames Bond classic selling for E 145 . However, this one goes one better and has $1 / 100$ second measurement of net, lap and Ist \& 2nd place times, with dual time facility.

- Constant LCD display of hours and minutes, plus optional seconds or date display, plus day of the week and am/pm indication.
Perpetual calendar; day, date, month and year.
24 hour alarm with on off indication
24 hour alarm with on/off indication.
$1 /$ nod second chronograph measuring net, lap and first and second place times.
Dual time zone facitity. Night light.
Fully adjustable stainless steef bracelet.
STAINLESS STEEL CASE, MINERAL GLASS.

It is fully guaranteed for 12 months with first-class service back-up.
The watch is not to be confused with cheaper models with chrome plated cases and plastic lens.
Manufactured by National Electronics, it runs a close second to Casio, Citizen and Seiko for quality and reliability, with undeniable value for money.
The first very limited quota will be available in mid-September with another small consignment in October, so order now to avoid disappointment. We will quote you a delivery date by return of post.

SEIKO-20\% OFF!

Most quartz analogue \& digital models, so order
CITIZEN-LARGE REDUCTIONS
On most quartz analogue \& digital models
SOLAR POWERED WATCHES—SO called
Misrepresentation? We WON'T sell them.
LEDWATCHES
We DON'T sell them. Send us a S.A.E. and we will tell you why not.
FAIRCHILD TIMEBAND
C6110 Mains Digital Alarm Clock

Large LED display 24 hour alarm, 9 pleasant tone. Mains fail indicate. Mains fail indica
Black or white ≤ 10.95
FROM CASIO-OF COURSE
NEW CQ-8I CALCULATING
ALARM CLOCK PLUS
2 ALARM/TIMERS
Two AA batteries last for 10.000 hrs (1 year) LD 6 digit clock,
24 hr Alarm also two 24 hr Alarm, Timers with countdown (one self. clearing, one repeats). Full Memory, Constants \% V 1

OTHER LOW COST NATIONAL WATCHES (or similar high quality)
From reputable manufacturers, with full service backup. All with backlight, automatic calendar adjust ment, and stainless steel bracelets that will easily adjust to fit almost any wrist size. Reliable electronics. Compare our prices for the same watches advertised elsewhere!
PH-GI. 4 DIGIT $5+2$ functions. Hrs, mins, secs. Date \& Month Optional alt. Time/Date. (others $f 12 \cdot 38$) Our price 19.95

PH-G2
With Stopwatch
414.95

PH-CHRONO (Left)

Chronograph 6 digits. Net, lap and Ist \& 2nd place times to 1/100 (Others
$E 21 \cdot 06$, tingersoll $£ 29.95)$
$\mathbf{f 1 8 . 9 5}$
PH. ALARM (Above, right) Same timekeeping \& calendar functions and superb styling of Alarm/ Chrono above but without the Stopwateh and Dual Time facility.
$\mathbf{t 2 9 . 9 5}$

PH-ANALOGUE

Stepping motor, sweep second hand, Day, Date.
Round metal case, S/S bracelet. $\mathbf{1 2 4 . 9 5}$

LADIES LCD WATCHES

$5+2$ functions, light
Gold or Silver finish :-
All metal $\mathbf{f} 11.95$
Dress Watches
Matching bracelet $£ 14.95$
Cocktail Watches
Integral bracelets.
As illustrated, also
square \& rectangular 1 ¢ 18.95
Others $£ 27$ plus)
Others 627 plus)

CASIO LADIES LCD WATCHES

All stainless steel, $7+2$ functions. Night light

Send $\mathbf{2 5}$ p for our illustrated catalogue. Accurist, Casio, Citizen, Seiko ete. Prices include VAT P. \& P. Send cheque, P.O. or phone your credit card No. to:

CASIO QUALITY

All CASIO watches have a calendar display, night illumination, mineral glass and stainless steel cases

SPORTS WATCHES
F-100
elf. 9.45 m
$£ 24.95$
52, 5S-14B Right 8 mm Right 8 m
$(f 44.95)$ $£ 34.95$

Up to 25 functions. Net lap and first and second place times to $1 / 100$ th sec. F-100. Resin case, strap. $52 Q S-14 B$. S/S encased version and bracelet.

4 DICIT WATCHES (extept World Time) Hours, minutes, ten seconds, seconds (by flash), am/pm. Day, date, month. Stopwatch. Dual time, am/pm, Day, da
except $3 / Q R-20 B$

31QR-20B ${ }^{\text {Leff. }} 4$ digit ± 26.95

51QR-19B ${ }^{6}$ (digit 35 . ± 29.95

6 DIGIT WATCHES (except Sports \& Alarm) Hours, minutes, seconds, day. OR Hours, minutes, date, day, ten seconds, seconds (by flash). Day, date, month, year. Selectable 12 hour (with am/pm), or 24 hour clock

CHRONOGRAPH
6 digits, as above, with stopwatch measuring net, lap and Ist \& 2nd place times from $1 / 100 \mathrm{sec}$ to 6 hrs . Dual time facility.

WORLD TIME WATCH
The time in ten capitals plus one optional time. Instant summer time correction. Hrs, mins, 10 secs, secs (by flash). Perpetual calendar, day, date, month. Running digital seconds.
ALARM WATCHES 25 CR-16B
Round
($£ 64.95)$
£49.95
25CS-16B
Square
$\mathbf{t 5 9 - 9 5}$

Hours, minutes, seconds (or hrs, mins, date), day, am/pm. Day, date, month \& year. 24hr alarm, on/of indicator.
ULTRA SLIM DRESS WATCHES

Not illustrated: 53CS-198. 4 digit, barrel shaped £54.95. 49CS.24B, 6 digit ($£ 74 \cdot 95$) $£ 59.95$.

SPECIAL SUBSCRIPTION OFFER A Year's Subscription to

 Copies are sent direct to your home at this amazing price reduction every month
 if you order three or more gift subscriptions from any of the magazines shown below.

Magazine subscriptions make ideal gifts. They are so easy to arrange - with no shopping and no packing - and they form a year-long reminder to friends and relatives at home and overseas. Choose a magazine suiting the interests of your recipient from the list of titles below, and if you order three or more gift subscriptions to one

1
Practical or more of these magazines you can claim your own annual subscription to Practical Wireless
for as little as $£ 2$-an unbeatable price for ensuring that copies are delivered direct to your home every month. Even cheaper than waiting your turn at the newsagents'.

Electronics

to addresses
in:
U.K. $£ 10.60$

Other countries £10.60

2
Practical
Wireless
to addresses
in:
U.K. $£ 10.60$
Ohter countries
£10.60

Everyday
 Electronics to addresses in:
 U.K. $£ 8.50$ Other countries £9.50

7
Practical
Woodworking
to addresses
in
U.K. $£ 9.50$
Other countries
f10.50

8
 Practical Motorist

to addresses in:
U.K. £9.50 Othercountries £10.50

All subscription orders must be accompanied by payment. Cheques should be made payable to IPC Magazines Limited and sent with this completed order form to Room 2613 King's Reach Tower, Stamford Street, London SE1 9LS.

Fig. 2: The a.g.c. characteristic of the CA3189E

S Meter

The voltage at pin 13 increases in a way which approximates closely to the logarithm of the input signal to pin 1 . Thus a voltmeter may be connected from pin 13 to ground to provide an indication of a very wide range of signal levels. The S meter characteristic is shown in Fig. 3.

The S meter may have a full scale deflection of 150 to $200 \mu \mathrm{~A}$, in which case R20 of Fig. 1 may have a value of about 33 k , since a voltage in the region of 5 to 7 V will then produce a full scale deflection. However, any high impedance voltmeter or a voltmeter made from the resistor R20 in series with a suitable microammeter may be employed.

A centre reading voltmeter connected between pins 7 and 10 can be used as a tuning indicator. When the circuit is correctly aligned, the meter will swing through zero when passing through the correct tuning point.

Fig. 3: The S meter characteristic of the CA3189E

De-emphasis

The capacitor C17 in conjunction with the load resistor R15 provides the de-emphasis time constant of about $50 \mu \mathrm{~s}$ which is required for the correct frequency response in Europe. This capacitor must be removed if the output is fed to a stereo decoder, since two separate de-emphasis capacitors will then be required at the outputs of the decoder.

The audio output amplitude from pin 6 increases in a fairly linear fashion with the value of the load resistor R15, but the signal will be distorted to a greater extent if the value of R3 is too high. An excessively low value of R15 will result in a noisy output. A change in the value of R 15 will also necessitate a change in the value of C17 in a monaural system, since the product of the values of these components must provide the required time constant for deemphasis.

When R15 has a value of 12 k , the audio output level is about 1V r.m.s. (or about 3V peak-to-peak). The signal-to-noise ratio is typically about 75 dB for input voltages exceeding 1 mV at pin 1 , whilst a.m. rejection exceeds 60 dB for similar inputs.

In order to preserve stability, all decoupling capacitors except C7 should be grounded at pin 14. Only C7 should be grounded at pin 4.

Conclusion

The wide range of facilities and the high performance offered by the 3089 type device have resulted in it being adopted for many high quality receivers. The CA3189E offers all of the facilities provided by the 3089 together with an improved performance. One may therefore expect that it will be widely used in high quality f.m. receivers during the next few years. The use of complex i.c.s together with ceramic filters has greatly simplified the task of the f.m. receiver constructor.

HInlu notet

Potil inotor suipty August 1988

 pole sotary swich shovid be vsed bitl one gote
 Si and the other prile shifeting the right hatad coll suppty atat s2. Al the commens itomathe motors should be taken staajou vack to the cid. anits
 1078

In lig. I of the poucr supply, the emitier and colleblor of 1424 showitevers The inpu: connection to the weathtor st from the base of
 the collector. The connection to the $0 V$ rat the eommon:

The manufacture and testing of radio frequency inductors often poses problems for radio constructors. It is not easy to obtain a specified inductance value and, even if an inductance bridge is available, it is usually a matter of "trial and error" before satisfactory results can be obtained. Furthermore, since most r.f. inductors are usually associated with resonant circuits, a simple form of ' Q ' meter is a more convenient instrument for use in the construction of coils.
A ' Q ' meter provides a variable radio frequency signal source together with a calibrated capacitor and an r.f. voltmeter. It may thus be used to determine the resonant frequency and ' Q ' factor of a capacitor/ inductor combination, to establish the tuning range of a variable resonant circuit, and even to measure unknown capacitance or inductance. The instrument described forms a most useful addition to the range of test equipment in any radio constructor's workshop and will certainly help to alleviate the frustration which is often associated with "trial and error" coil winding. The r.f. output of the ' Q ' meter, in the frequency range 1 MHz to 30 MHz , is available so that the instrument may also be used as a signal generator.

Yoder

A series resonant circuit is shown in Fig. 1. This consists of a coil connected in series with a capacitor. The coil possesses both inductance, L, and a series loss resistance, R. If the circuit is supplied with a low voltage at the frequency of resonance, magnified voltages are developed across both the capacitor and the inductor. The amount of voltage magnification depends on the ' Q ' or "magnification factor" of the circuit. The greater the ' Q ' factor of the circuit, the larger will be the voltage magnification. The ' Q ' factor of the series resonant circuit is defined as the
ratio of capacitor (or inductor) voltage to the applied voltage. In most resonant circuits the capacitor can be considered to be "loss free" and the loss can then be entirely attributed to the d.c. resistance of the coil together with a resistance due to losses at r.f. The bandwidth and selectivity of a tuned circuit are dependent on the ' Q ' factor and, in order to obtain a high ' Q ' factor, the loss resistance of the circuit must be very small. The higher the ' Q ' factor the narrower the bandwidth will be and the greater the selectivity achieved.

specification

'Q' ranges: $\quad 0$ to 20 and 0 to 100
Frequency range: 1 MHz to 30 MHz in the following six overlapping bands;
A 950 kHz to 1.6 MHz
B 1.5 MHz to 2.6 MHz
C 2.5 MHz to 4.6 MHz
D $\quad 4.5 \mathrm{MHz}$ to 8.5 MHz
E 8.0 MHz to 17.0 MHz
F 15.0 MHz to 32.0 MHz
Internal capacitor: variable from 20 pF to 365 pF
RF output:

Measurements:
500 mV r.m.s. typical over the above frequency range measured in an open circuit

Resonant Frequency (using either internal or external capacitors), ' Q ' factor, Inductance, Capacitance and Quartz Crystals (see text).

Fig. 1: This example illustrates a resonant circuit with a ' Q ' factor of $\mathbf{2 5}$

Fig. 2 shows the basic arrangement of a simple 'Q' measuring device. This consists of an r.f. signal and a high impedance r.f. voltmeter connected to the resonant circuit. The variable r.f. signal source must have an output impedance which is very low compared with the series loss resistance of the coil. The exact resonant frequency of the tuned circuit is first determined for a specified capacitor value by varying the signal generator frequency and noting the point at which the voltage in position 2 rises to a maximum. S1 is then switched to position 1 and the r.f. voltmeter then reads the voltage applied to the resonant circuit. In position 2 the voltmeter measures the magnified voltage developed across the capacitor and thus the ratio of the voltages in the two positions of $S 1$ gives the ' Q ' factor of the curcuit.

Fig. 2: Basic arrangement of a ' Q ' measuring device

Circuit Description (Fig. 4)

Trl operates in the common base configuration and forms a wide range r.f. oscillator, the frequency of which is varied by VCl. The oscillator operates in six switched ranges with a different inductor, selected by Slb, for each range. In order that adequate output with low harmonic content is obtained over the entire frequency range, Sla selects capacitors to vary the feedback conditions and, on the two highest frequency ranges, the emitter current of TrI is increased by means of R4. Tr2 forms a buffer stage and also acts as an impedance converter. This emitter follower stage presents a high impedance to the oscillator tuned circuit and a low output impedance. This arrangement helps minimise loading effects on the oscillator tuned circuit and improves frequency

Fig. 3: (above) Block diagram of the ' Q ' meter
Fig. 4 : (below) Complete circuit diagram of the ' Q ' meter

stability. The resistor chain, R7 to R11, provides an attenuation of twenty or a hundred times depending on the setting of S2. VC2 is a calibrated capacitor for use with the inductor under test. Tr3 operates as a source follower and acts as a buffer stage with a very high input impedance and low output impedance. This arrangement is vital in order to prevent loading
effects which would otherwise reduce the ' Q ' of the circuit under test. D1 and D2 form a conventional voltage doubler rectifier and act as a wideband r.f. detector. The rectified current is measured using a moving coil meter. VRI is used to set the meter current to full scale deflection with S3 in the 'Set' position.

Fig. 5: Copper track layout of the printed circuit board, shown actual size

Fig. 6: Component placement and wiring of the printed circuit board

U.K. RETURN OF POST MAIL-ORDER SERVIGE ALSO WORLD WIDE EXPORT SERVIGE
 R.C.S. 100 watt MIXER/AMPLIFIER ALL VALVE
 BAKER MAJOR I2" 116.88
 BAKER DISCO SPEAKERS
 HIGH QUALITY-BRITISH MADE

Four mputs. Four way muxing, master volume, trebls and bass chasis is suitable tor all groups, disco, P.A., where high quality power is required. 5 speaker outputs. A/C mains operated. Sleve output. Produced by demand for a quality valve ampifier.
Send for dotails.

Chessis only 199 carr. 25

R.C.S. MINI MODULE KIT
 $15^{\prime \prime} \times 8^{\prime \prime} \times 14^{\prime \prime} 3$-way LoudspeakerSystem EMI, Bass, Middle \& Tweeter Units with 3-way Crossover \& Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to 20000 C.P.S. 12 watt RMS. 8 ohm. $£ 10.95$ per kit. Two kits $\mathbf{6 2 0}$. Postage 75p.

TEAK VENEER HI-FI SPEAKER CABINETS MODEL "A". $20 \times 13 \times 12 \mathrm{in}$. For 12 in ,

MODEL "B" Bookshilf
 MODEL "C" BOORSHELF For 8 itin and tweeter. $\mathbf{\leq 5} .95$ post 76p LODDSPEAKER CABINET WADDING

3;in. diam. 18.000 c.f.s. 25 WATts $8 \quad \Omega \quad$ E3. 25
ELAC TWEETER 4 ohm 20 watt 42.50
BARGAIN 4 CHANNEL TRANSISTOR MONO MIXER. Add musical dijghlights and sound effectit to recordings. Will mix microphone, recordis, tape and output. 9 volt battery $\mathbf{6 6 . 7 5}$
 TW0 opeted.
TWO OHANNEL L LOUDSPEAKER BARGAINS
 THE "INSTANT" BULK TAPE ERASER Sultable for cassetteg, and sll wizee of tapo
reels. A.c. malns $800 / \mathrm{R} 48 \mathrm{~V}$. Leafet s.A.E.
$64.95{ }_{5}^{\text {Pog }}$
HEAD DEMAGNMTISER e4.75

A.c. he ECTRIC MOTORS
${ }_{8}^{2}$ Pole, 240V, ${ }_{8}^{2}$ Amp. Spindle 240 V .15 Amp . $1.43 \times 0.218 \mathrm{in}$. 81.75.

 Spinds $-0.5 \times 0.25 \mathrm{in}$. $82 \cdot 96$ each.

DE LUXE BSR HI-FI AUTOCHANGER	
Plays 12in. 10 in , or 7 in . records	
Auto or Manual. A high quality unit becked by BSR rellability	
with 12 monthe guarantee. A.C.	
above motor board 3 lin.	
Below motor board 2 i in.	
With magnetio stereo carthide $\quad \mathbf{2 1 . 5 0}$	
Cueing Device, Bias Compensator, Belayced Arm, All Pout 75p	
NEW DECES	
BSR MPE0/P128 with Goldring G850 magnetic cartridge.	284.
BSR Budget Autochanger with ceramic	812.96
Garrard AP76. Single player lesm eartridge.	¢28.
BSR. P163. Beit dxive Turntable, less cartridg	827.60
Garrard 5300. Autochanger with ceramic cartridge.	814.95
Garrard Mínichanger. Plays all size records. Ceramic cartridge.	89.8
ESR. P182. Snake arm, fared urntable, ceramic cartridge. Latest model.	819.

 nad twoeter cons together with a B AKER ceramic magnat azaembly having a fux den aity of 14,000 gauss and a total flux
 18 ohme mast be atated.

MAJOR MODULE KIT
$30-17,000 \mathrm{c} / 8$ with twoetor, croshover baffe 19×12 in. Pleane
state 4 or 8 or 18 ohmas. $<21 \cdot 38$

Post 18180

BAKER SPEAKERS "BIG SOUND"

Robustly constructed to atanai up to long periods of olectronic power. At used by leading groupa.
Usetul ronponse $30-13,000 \mathrm{cps}$. Bata renanance 65 epl.
GROUP "25" 12 in .30 watt
4,8 or 16 ohm
GROUP "35") $1 . \mathrm{kin} .40 \mathrm{watt}$
4,8 or 16 ohm

GROUP " $50 / 12$ "

± 12.96 Pont 21

 f15.12 Post El £22.68 12in. 60 watt proveniona Post $21 \cdot 60$ Reaponse $=30-16,000 \mathrm{cps}$. With alaminium premence dome. GROUP "50/I5" 18 in .76 watt8 or 16 ohmi.
£ 34.50
Post 81.60
Send for leafeta on Disco, P.A. and Grouy Gear.
bAKER 150 WAT
QUALITY
TRANSISTOR
MIXER/AMPLIFIER

profonional amplitez uaing advanced carcuit desmen. Ideal to dieco, granpa, P.A. or munjeal initruments. 4 inputs 4 way mixing. Manter troble, basi and volume controle. 3 apeaiker output nocket to zuit variour combingtions of apeaters.

100 WATT DISCO AMPLIFIER
MADE BY JENNINGS MUSICAL INSTRUMENXS $\quad 59$
48peaker outputs volume, treble, bass, controla
CAN BE USED A8 100 WATT SLAVE
Carr. 1

B.S.R. SINGLE PLAYER DECK

3 upeed. Playi all size records, Storeo Cartridge. Cueing device, Iaeal Dinco Deck.
£ 19.95 Poat 21.00

DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. EARY to
 STEREO PRE-AMP KIT. All parta to build thif pre-amp. 3 lapata
lor high meddum or low gain Dor channel, with volume control for high medium or low gain por channel, with volume contro

R.C.S. SOUND TO LIGHT DISPLAY MK 2
 to 100 watts mignal source. Suitaible lor home nie. $\mathbb{E} \mid 7$

200 Watt Rear Retiecting White Light Bulbr. Ideal for Dineo Lighti. Edison ferow Fitting 76p. Elach.
MAINS TRANSFORMERS Pant
 2 VOLT $300 \mathrm{MA} .41 \cdot 00750 \mathrm{MA}, 81.30 .20$ VOLT 2 AMP. 22.60

R.C.S. TEAK

COMPACT
SPEAKERS
$18 \times 10 \times \sin$.
50 to 14,000 ecss.
12 watts rms. 8 ohms
f19 pair Post t1.50

$2 \times 12^{\prime \prime}$ CABINETS

 60 WATT R.M.S. $£ 56$
With one horn 466
With twa horns $E 74$
Carr. 3
80 WATTR.M.S. $€ 60$
With one horn f68
With two horns 476

120 WATT
R.M.S. $£ 75$

With one horn 683
With two horns 691
SINGLE l2inch CABS COMPLETE 30 WATT R.M.S. £32. WITH HORN 640. 40 WATT R.M.S. E34. WITH HORN $£ 42$. 60 WATT R.M.S. E41. WITH HORN E49. CARR $£ 3$ EA.

"SUPERB HI-FI"

I2in 25 watts
A high quality loudapeaker, itm remarkable low cone renonance oneuses cleaz reproduction of the deopolt besin. Fitted with a apecial coppar dive and eoncentrio
twoeter cone reatiting in tull range reproduction with remarla able officioncy in the uppor egiatez.
Bas Revonance $\quad 25 \mathrm{cpi}$
Flux Denaty Trelul reapone $\quad \mathbf{2 0 - 1 7 , 0 0 0 e 8}$ 8 or 16 ohma models.
$£ 24 \cdot 75$
"AUDITORIUM"
I2in. 35 wates
A fill range raproducer for high power, Ideal lor Hi-Fi and puble addroas, multi-wpeaker Byatyme, olectric orsans. Beal Resonance Fux Derity $\quad 15,000$ 天Ru: 8 or 16 ohmine modela.
£22.68
"AUDITORIUM"
I5in. 45 watts
A high wattage loudapeaiker o A high wattage loudspeaiker of renponue to abovo 8,000 ops. Ideal Yor Publlo Addreal, Difcotheguel, gloctronic in Ban Remonance
$15,000{ }^{35 \mathrm{cpm}}$
 8 or 16 ohanill model

Loudspeaker Cabinet Wadding 18in wide, 20p per ft.

Hi-Fi Encloware Manual containing plans, designs, crossover
data and cubic tableg, 85 p .

E.M.I. $13 \frac{1}{2} \times 8$ in

SPEAKER SALE!

$\mathbf{f} .95$
15W model $\begin{array}{r}\text { Pot } 450 \mathrm{FD} \\ 10.50\end{array}$
8 oims. Post 65p

gOODMANS 20W Woofer

 Rubber cone surround. Post 65p
Hi-Fi Bass unit.

Internal view showing the front panel controls and the printed circuit board

Using the 'Q' Meter

The normal procedure for determining the resonant frequency and approximate ' Q ' factor of a coil/capacitor combination is as follows. Connect the coil to the 'L' terminals and set the desired parallel capacitance value on VC2. If a value greater than 365 pF is required, an extra capacitor may be connected to the ' C ' terminals and its value is then added to the reading on VC2. If possible, estimate the approximate resonant frequency and set the ' Q ' meter tuning to this value. If this is not possible, the ' Q ' meter tuning will have to be swept across each band slowly whilst looking for a peak on the meter. A peak should be found with S2 in the ' 20 ' position, S3 in the 'Read Q ' position and VR1 set to about mid-position. Very small peaks may occur at several frequencies lower than the correct resonant frequency. These are due to harmonics present in the signal waveform and they should be hardly noticeable compared with the peak at true resonance. After establishing that the correct peak has been obtained, S 3 should be switched to 'set' and VR1 should be carefully adjusted for full-scale deflection (100) on the meter. The ' Q ' factor can then be read, on a scale of 0 to 20 or 0 to 100 depending on the setting of $S 2$, with $S 3$ in the 'Read Q' position.

Other Measurements with the ' Q ' Meter

1. Unknown Inductance

This method is satisfactory for inductors in the range $1 \mu \mathrm{H}$ to $250 \mu \mathrm{H}$. The accuracy does not depend on the ' Q ' factor of the coil but on the accuracy of calibration of the ' Q ' meter frequency scale and on VC2. With VC2 set to 100 pF , connect the unknown inductor to the ' L ' terminals and vary the frequency of excitation until resonance is obtained. Note down the resonant frequency and then calculate the inductance from the approximate expression:
$\mathrm{L}=\frac{250}{\mathrm{f}^{2}}$
Where L is in $\mu \mathrm{H}$ and f is in MHz .
Example: If $\mathrm{f}=5 \mathrm{MHz}$ then $\mathrm{L}=250 \div 25=10 \mu \mathrm{H}$.

2. Unknown Capacitance

This method is useful for values of capacitance in the range 20 pF to 350 pF . The accuracy of this method depends on the calibration scale of VC2. Connect an inductor, preferably one which will be resonant with 20 pF between 3 MHz and 8 MHz , to the ' L ' terminals and the unknown capacitor to the ' C ' terminals. Set the internal capacitor at 20 pF and vary the frequency

HAYE YOU DONE IT LATELY!

B24-RP stereo cassette glass/ferrite record/playback $\mathbf{£ 9 . 8 4}$
B12-01 mono cass. playbk. $£ 1.60$ B24- $\mathbf{Q 1}$ stereo cass. playbk. $£ 2.80$
A28-05 stereo 8tk cartridge $£ 1.80$ E12-09 stereo/mono cass. erase $£ 1.80$

HIGH QUALITY
Very Low Distortion Audio Signal Generator AN IDEAL INSTRUMENT FOR HI-FI TESTING
Based on a Linsley Hood design.
PRICES, assembled instrument, plastic case $\mathbf{E 2 6} \cdot \mathbf{5 0}$, metal ease $\mathbf{£ 3 0}$. (Kits, ©22). Tax extra 8\%. P.P. and ins. $£ 1$.

Specification. Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in 4 steps. Output: 10 mV 1 volt in 3 steps. Sine- and Square-wave forms: Dist. below -02%. Attenuator: Powered by 9 V battery.
Other instruments: Millivoltmeter, Frequency Meter, Reg. P.S. Units. THD Analyser. Also Hi-Fi Amp kits $10-100$ Watts F.M. Tuners, Kef Speaker Units. S.A.E. for further information to:

TELERADIO ELECTRONICS (PW)
325, Fore Street, Edmonton, London, N.9. Telephone: 01-807-3719.

STEPHENS-JAMES LIMITED

COMMUNICATION ENGINEERS
47 WARRINGTON ROAD, LEIGH WN7 3EA ENGLAND Telephone (0942) 676790
Everything for the Short Wave Listener.
We stock receivers and listening aids by most of the world's leading manufacturers. See our entire range at the Granby Halls, Leicester Nov. 2-3-4th. Full range of VHF receivers - transceivers - antennas - mobile equipment.

Yaesu FRG

- Prake SSR-1 * SPR4 * R4C *
Secondhand Equipment Our secondhand equipment stock changes daily. Send S.A.E. for latest Access-Barclaycard and H.P. Jacilities.

R-300-R5990 - R820S Antenna Multituners Designed and manufactured by ourSelves. Over 1000 sold in over 50
countries. MkI covers 2.30 Mhz
 Send SAE for Test report.

院
 SP SECCII ala Cons $=$? F ER

Three calculators in one-that's the Commodore PR100. It's a standard calculator for problems in basic arithmetic. It's a scientific calculator, with ten memories and four levels of parenthesis, powers, trigs, and logs, probability and statistical functions, conversions and constants. It's a programmable calculator, handling programs of up to 72 sequential steps keyed in by the user, with branching capability.

A 12 -digit red l.e.d. display is used, providing 8 -digit mantissa, 2-digit exponent and change sign for each. Fixed point, scientific and engineering display modes are available.

The PR100, which measures approximately $160 \times 78 \times$ 32 mm runs on internal Ni -cad batteries and comes complete with a protective carrying pouch, a.c. mains adaptor/ charger and a comprehensive instruction and application manual. This contains twenty-one program examples plus instructions for writing your own programs. A one year guarantee for labour and parts is given by the manufacturers.

The recommended retail price of the PR100 is $£ 37 \cdot 95$ including VAT. This month, we offer it to PW readers at only $£ 26.95$ including postage and packing, a saving of £11.

Complete both parts of the coupon and send it with your remittance to "Practical Wireless", Dept. PWL2, Rochester X, Kent ME99 1AA.

\star functions

Arithmetic:	$\begin{aligned} & +,-, \div, X, M, M R, M+, M-, M \div, M x, \\ & X \longleftrightarrow M, 9 M,(1), \text { constant. } \end{aligned}$
Mathematical:	$X \longleftrightarrow Y, \sqrt{X}, Y^{X}, X \sqrt{Y}, \frac{1}{X}, \pi, \%, \Delta \% .$
Logarithmic :	$\log \mathrm{X}, 10^{\mathrm{x}}, \mathrm{e}^{\mathrm{x}}, \ln \mathrm{X}$.
Trigonometric:	$\sin X, \cos X, \tan X,($ inv), $c \longleftrightarrow s$, $d \longleftrightarrow h m s, \quad$ deg, rad, grad, $d \longleftrightarrow r$.
Hyperbolic:	$\sinh X, \cosh X, \tanh X$, (inv).
Graphical:	$\mathrm{R} \longleftrightarrow \mathrm{P}, \mathrm{c} \longleftrightarrow \mathrm{s}$.
Factorial:	$n!, P_{m}^{n}, C_{m}^{n}$.
Statistical:	$\begin{aligned} & X_{n}, \bar{X}, \quad \mathbf{S}\left(\sigma_{\mathrm{n}-1}\right), \quad \mathbf{S}^{1} \quad(\text { Var. }), \quad \mathrm{Ci}\left(X_{1}, Y_{1}\right), \\ & \operatorname{Cs}\left(X_{s}, Y_{s}\right) . \end{aligned}$
Conversion:	$\left({ }^{\circ} \mathrm{F}{ }^{\circ} \mathrm{C}\right.$, (in) cm , (US gal) L , (lb) kg , (inv).
Programming:	Back step, Single step, R/S, GOTO, Skip, Clr, Run, Load.

COMIIIODORE PR100

Scientific Programmable Calculator

 HOW TO ORDERPlease complete both parts of the coupon below in BLOCK CAPITALS Remittances must be by postal order or cheque (name and address on back of cheques, please) crossed, and made payable to IPC Magazines Ltd. This offer is open to readers in England, Scotland, Waies, Northern Ireland, and Channel Islands only. It is not available in Eire or Overseas. Orders are normally despatched within 28 days but please allow time for carriage. You will be notified if a longer delay may be expected.
THE CLOSING DATE OF THIS OFFER IS 26th January 1979.

To: PRACTICAL WIRELESS,

Dept. PWL2, Rochester X, Kent ME99 1AA.
Please send me the Commodore PR100 Calculator(s) as indicated below at $£ 26.95$ each, incl. $P \& P$.

Value

Name:
Address:

Tel. No. (Home or Work)

No. required

Name:
Address:

From: PRACTICAL WIRELESS,

Dept. PWL2, Rochester X, Kent ME99 1AA.

by Eric Dowdeswell G4AR

The advent of TV may have been a boon to many people but it did nothing for the amateur radio movement. Unless one lives out in the country away from any neighbours, or stays up half the night when TV is QRT, it is now virtually impossible to construct and test a transmitter without causing QRM on nearby TV sets. The very wideband nature of the input circuits of colour TVs, in particular, has not helped.

Screening and filters are ineffective when one is experimenting with a transmitter. If power inputs are restricted to a few watts then one might get away with it, which may explain the increasing popularity of QRP operation. The use of a dummy load when testing does not help all that much especially if one's own TV is only the thickness of a wall away!

The result, of course, has been for the frustrated amateur to buy commercial equipment, generally imported, which is generally well screened and able to meet requirements in respect of harmonic radiation. In the process, however, the amateur has had to forgo the pleasure and satisfaction of making his own gear, thereby failing to learn anything on either the constructional or theoretical sides.

There are now thousands of licensed amateurs in this country who have never known the pleasure of building even the simplest of transmitters and getting it on the air. Believe me, even a few watts of homeproduced c.w. is much more satisfying than 400 W of s.s.b. from a commercial rig that one dares not touch inside.

The only hope is that the transmitting amateur or listener will at least try to construct his own aids such as frequency measuring equipment, audio filters, converters for v.h.f. and u.h.f., and perhaps gear for RTTY or SSTV operation.

Remember that the more commercial gear we buy and use the more we become "communicators" rather than experimenters, and the greater the possibility of losing amateur band frequencies to those whose job it is just to communicate: commercial and government interests.

General Notes

No newcomers to the column this month so straight on to the letters from regular writers. Following the request for a manual for his Skywood CX203 receiver Paul Bown of Theale, near Reading, is very pleased with the 'stat copy he was able to get from a reader. He hopes to have the set working properly on 10 and 15 m before long. Paul wonders if a loop aerial of the classic $P W$ medium wave type would be any good on the 80 m band. Well, I'm afraid that it probably wouldn't help very much. Since most signals there arrive via sky wave there would be little directional effect. Some listeners on 160 m have reported using loops to good effect especially in reducing local manmade interference.
Greg Duffy (East Kilbride, Glasgow) is getting down to the handbook stuff and playing around with aerials for his Yaesu FR50B and logging some interesting calls on 10 and 15 m . Ian Marquis A9140 of Leigh-on-Sea, Essex, points out that the call of the schoolboy net on 3780 kHz should have been GW4GIA and not GMA. Ian said he was "sprawled out in the garden on his back" while writing his letter. Funny, I must have missed the summer this year! But I'm off to SV land shortly so perhaps I can make up for it there!

On the Bands

J. Goodier, near Stockport, Cheshire, was surprised to find not one but two rare ones, from Western Samoa, 5 W 1 AX and BN . Well, one can go for years and never hear 5 Wl and then up they come. That was on 15 m s.s.b. and they were indeed heard by several readers. J.S.G. was intrigued when TI2CF reduced power, at the request of a German station, from 1 kW to, he said, 1 watt! when he was still just about copyable. There's a motto there somewhere!
Back to Ian Marquis who found such breathtaking stuff as 5 W 1 , KH6, KG6, VR8, KX6 and the like on 15 m s.s.b. not to mention TF6M on 20 m from beneath a glacier at Kirkjubaejarklaustur! If I've got the spelling wrong, blame Ian.
Looks like we shall be losing Dave Greenhalgh (Poynton, Cheshire) to the opposition v.h.f. column before long. Dave is just getting a QM70 2 m converter and about to knock up some kind of suitable aerial from an old Band I TV beam. However, BRS39965 admits to logging some good DX on bands from 10 to 40 m including the aforementioned 5 Wls .
Bernard Hughes BRS25901 of Worcester is now the proud owner of a Drake R4C receiver and his log
bristles with rare stuff. Seems it is the set of his dreams, having tried just about everything else. So OM, what about getting down to it and getting on the air??
The offer of an R1155 receiver in the September issue produced several replies, all from young readers, all anxious to get going on the s.w. bands with something better than a domestic set. I wonder just how many more sets there are sitting around doing nothing that would give so much pleasure to young beginners? If any regular reader wants to give such a set he, or she, has only to give me brief details and I'll try to arrange for some suitable applicant to pick it up without any further bother. As one applicant said "Us schoolkids just can't afford to lash out on reasonable receivers".

Some late but excellent news from two of our regular contributors. Martin Liezers (Newport) has passed the May RAE and hopes to be on 2 m very soon. Likewise Simon Robinson BRS40093 in Stocksfield, Northumberland, has done the trick with a distinction in each part and now goes on for the code test. In the meantime he will be on 2 m with a Belcom FS1007P, a 16 -channel scanning transceiver. Incidentally, Simon wants to swop a Shibaden SV700ED video recorder for something similar that uses lin tape. Good luck to you both as you depart this column!

Clubs and Societies

The Bury RS continues to meet every Tuesday evening at Mosses Centre, Cecil Street, Bury, with the club station on the air and constructional projects under way, not to mention the odd "noggin and natter". October 10th sees the annual construction competition, with a surplus gear sale on November 14th. The new RAE course is already running at the Metropolitan College of Further Education, with G8NOF lecturing. Details from Eric Thirkell G4FQE, at the centre.
TARS Talk is a jolly good 10 -pence worth from the Torbay ARS, with at least a couple of down-to-earth articles every month, conned from members' experiences. Write to F. J. E. Bolton, G3VTQ, 2 Lower Combe Road, Kingsteignton, Newton Abbot, Devon, for info on the club and magazine.
Don't forget the newly formed Shirehampton ARC meeting every Friday evening at Twyford House, High Street, Shirehampton. Club call is G4AHG and RAE courses are envisaged soon. Fortunately the club premises can be used for RAE exams which should help the more nervous candidates! Write to R. Ford G4GTD at 2 Jersey Avenue, St. Annes, Bristol.

Members of the East London Silverthorn RC are also lucky to have such a fine magazine as their Spurious newsletter. Five technical articles plus all the usual chatter can't be bad for an annual club fee. Don't forget Friday nights at Friday Hill House, Simmons Lane, Chingford, London E4, or details from C. J. Hoare at that QTH. CARA News of the Cheltenham ARA deserves an equal mention, likewise wellproduced and a mine of info. Their previously mentioned TVI clinic quotes a member fixing TVI on a neighbour's hi-fi outfit "within the hour, before he had time to get uptight". That kind of action can only do good all round. Contact Garth Martin G3IER, 88 Tennyson Road, Cheltenham.

Reports by 15th of month please. Club meeting info at least seven weeks ahead!

Log Extracts

B. Hughes:- 20m A3BHF (Tonga) KC6BNQ YB3AE 5WIAT 8R1DT 15m JD1AHS (Marcus Is.?) 5V1TA 10m KC4QMN 5V1JH
D. Greenhalgh:-40m EA8SS 20m HK0EDF JX3P (Jan Mayen) VP2VBK TF6M 8R1R 15m A2LAV C5EE HH2A YS1WP 5W1AX 10m C31QR PYoRO
I. Marquis:- 80 m HI8RPB VE3BWK/4X4 40 m VP2MBB 20m TF6M VR3AK 15m F0CH/FC KX6MP VP5SI VR80 5WIAX 9V1SR 10m 8RIJ
G. Duffy:-20m VP2DAW HP1MU VP2MZZ YB0CR 15m SV1JJ CX8CV 5W1BN
J. Goodier: - 20m HH2SD KZ5GE VP2MBB VP9L VE8RCS 15m FY7OG HS1WR TU2GM WD9FCC/VQ9 ZF2AA 5W1BN 5W1AX
M. Liezers:- 80m OA3I VP1RDT VP2MBB 7X2GOK 40 m CO2KK HI8RDH LU3MCO ZP5EF 20 m C5ABK FM7AC FP0MG HR1JAG VP2EEN VP2KG VP2MZZ VP2SSA YK4ACW YK6JBK 4D6DO (Philippines) 5J4RCA 5V3YJ 15m FH8CY HK4EU HM2JV

MEDIUM WAVE DX

by Charles Molloy G8BUS

Following on from last month when a number of Asiatic and African stations operating in the gaps between Europeans were highlighted, it might now be useful to have a look at a few Europeans, mainly low power, which transmit on non-standard frequencies. Why they do so is not clear though it may be to avoid interference. One would expect these broadcasters to be moved onto official channels after the introduction of the new band plan that comes into operation on the 23 rd November this year. If this happens then it will no longer be possible to eavesdrop into local broadcasting at the eastern end of the Mediterranean where currently some of these outlets are located.

Low Power Greek Stations

Broadcasting in Greece is carried out mainly by the state-owned ERT and by YENED which provides a service to the armed forces. There are also a few privately-owned locals, two of which operate just beyond the highest European channel. Bob Bell (Blyth Northumberland) reports hearing an unidentified Greek on approximately 1620 kHz at 2350 using an FRG-7 receiver and a 20 in mini-loop aerial. This is probably Radio Terapetra, situated on the south coast of Crete, which operates on a nominal 1614 kHz with a power of 500 watts. This station has been known to QSL and the address for reception reports is Radio Ierapetra, Anatolikis Kristis, Crete, Greece. Do not forget to enclose an International Reply Coupon. The other station in this part of the band is Radio Aegion on 1610 kHz . Although inclined to wander off frequency these two locals are not too difficult to pick up in the UK.

FABULOUS PROFESSIONAL DISCO SYSTEM

F.A.L. De Luxe PROFESSIONAL Garr. CONSOLE (Powered)
Slide Fade Controls. Autofade with Music Overide on both mic. and jingle inpuis. Headphone pre-fade monitor with 5 mic. and ingle inpuis. Headphone pre-face monitor with 5
Push-button selector. Illuminated V. U. meters. lluminated Procker switches. LED cue indicators. Tape or Jingie inputs, rocker switches. LED cue indicators. Tape or jingle inpu
unity gain. Mic. channel with Bass $\&$ Treble. Slave outlet. Treble Control (Music Channel) Output into line (Slave) Treble Control (Mic. Channel) Autofade Recovery $\begin{array}{ll}\text { Bass Control (Music Channel) } & \begin{array}{l}\text { Microphone Input. } \\ \text { Bass Control (Mic. Channel) }\end{array} \\ \text { Tape/Jingle. 1/P }\end{array}$

PAIR MATCHING FULL RANGE De Luxe 80w LOUDSPEAKERS

Each inc. Pair of Powerful 12" Bass units (with aluminium centre domes), and High Frequency Horn unit to extend frequency range to above 17 kHz . Normally $£ 89.95$ ea.

FANTASTIC SPEAKER OFFER

TWIN $12^{\prime \prime}$ SPEAKER CABINET PLUS PAIR 12" SPEAKERS
of Robust vibration-proof construction Fitted protective corner pieces, Resilver effect trim. Sunken jack socket with escutcheon at the rear.
Pair $12^{\prime \prime} 20 \mathrm{w}$ speakers for swiring in series and front While stocks last mounting in above Three items supplied to complete a $40 \begin{gathered}\text { watt } \\ \text { unit for tead guitar }\end{gathered}$ or P.A. Three items
21995
 DEPOSIT £29.12 and 35 weekly payments of
 (Total £399)

TURNTABLES: Garrard 125SB Belt-drive with LowMass ' S ' arm and Magnetic Cartridge.
POWER: 120 watts continuous RMS into 4 ohms DECK LIGHTS: Fully adjustable flexi-beams over each turntable with independent switching CABINET: Solidy made to withstand the rigours of transporting.
 Covered in heavy duty leather cloth type material in attractive colour combinations Corner cap protectors Recessed carrying handles. List £320.76

DISCO MODULES

CONTROL UNIT

(mains powered)
Vol. (Left) Vol. (Right)
Tape input and volume
control B Bass Treble ON/FF switch h for each $£ 25 \cdot 00$
Table. Carr $£ 1$ Table. Carr. £1 MONITOR UNIT with H/Phon Socket and Vol. Control Carr Frec FADER UNIT Carr Free
IOOw OUTPUT UNIT
£7.95
67.95
$£ 29.95$

TITAN GROUP/DISCO SPKRS			
	Value	C Price	
T12/45R 12" ${ }^{\prime \prime}$ 45w	£15.00	211-95	
T12/60R 12" 60 w	£22.50	113.95	
T12/100 12* 100 w	£36.00	¢25-95	
T15/60 15* 60 w	£26.00	£17.95	
T15/70 15"70w	£28.00	119.95	Rating RM
T15/100 15 ${ }^{\prime \prime} 100 \mathrm{w}$	£41.00	£29.95	Imp 8-15
T18/100 18"100w	£47.00	236.95	

Carr. $£ 1 \cdot 20$. under $£ 18$, over this add $6 p$ per $£ 1$.
CABINETS FOR ABOVE Heavy duty, finished in black Vynide with Vynair fronts, protective corner pieces, various sizes cut-outs. TE1 $1 \times 12^{*} £ 11 \cdot 95$.
TE2 $2 \times 12^{\prime \prime} £ 16 \cdot 95$. Deposit Terms orders over $£ 20$.

RES 2111 WATTDSCOSYSIEM

(1) TWIN TTABLE CONSO (i) TWIN T/TABLE CONSOLE WI STAGES (2) \& (3) PAIR 50 WATT LOUDSPEAKERS including $12^{\prime \prime}$ UNITS

\star UISCOMAJOR POWER DISCO CONSOLE with \star TWIN FULL STZEE BSR turntables with cueing device.

* CARTRIDGES with Dia mond styli.
3 SEPPARATE VOLUME
CONTROLS for Controls for each CONSOLE COMPLETE WITH LID. FULL HEADPHONE MONI
TORING FACILITIES
 aiso
Carr. $£ 4.75$

Arr. 4 available 200
WATT SYSTEM

ALL RSC PRICES INCLUDE VAT

50 WATT AMPLIFIER SACRIFIGE Limited
TITAN
TA/50A
to be cleared

for a re-styled
model.
Solid state, 3 sep. controlled inputs plus Master control. Bass, Treble \& Presence Controls. Vynide covered cab. with corner protectives. Value £60. Terms: Dep. $£ 7.95$ \&
8 monthly payments $£ 4-72$ Total 8 monthly payments 54.72 (Total

MAI ORDRES * EXPORT BMQURIES TO:-
AUDIO HOUBE, HENCONNER LANE, LHERD, 18 AUDIO HOVBE,
Tol: 0588 577691.
MAIL ORDERS MUST NOT BE SENT TO SHOPS TERER C.W.O. Or C.O.D. No. C.O.D. under E3. POSTAGE GOy PRE
ORDER OR. AS QOOTED. Phone or Write lor FREE CATALOGUE.

MIDDLESBROUGH 103 Linthorpe Rd. (CI. Wed.) Tel. 247096 *NE WCASTLE UPON TYNE 59 Grainger St. $\begin{gathered}\text { (Closed Wed.). Tel. } 21469\end{gathered}$ NOTTINGHAM 19/19A Market Street (Closed Wed.). Tel. 21469 SHEFFIELD 13 Exchange Street (Closed Thurs.). Tel, 4806 Castle Mkt. Blds.)
(Closed Thurs.). Tel. 20716 Wulfrun Way ${ }^{2}$. 28812 *WOLYERHAMPTON $\begin{aligned} & \text { 8 Wulfrun } \\ & \text { (Closed Thurs.). Tel. } 28812\end{aligned}$ tMUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches

THERMOSTATS

Refrigeration
capillary $\& 1 \cdot 62$ as illustrated with $36^{\prime \prime}$ Limpet Stat must be mounted in close contact calibrated $90^{\circ}-190^{\circ} \mathrm{F} \quad 15 \mathrm{amp}$ Appliance Stat fix like a volume control15 amp contact $30^{\circ}-80^{\circ} \mathrm{F}$ 85p. ditto but for high temps \&1.25. Wall Mounting by Satchwet!
Boiler Stat. with control $20^{\circ}-80^{\circ} \mathrm{C}$

FLUROESCENT TUBE

offer plenty of wel। distributed light and is economical. We offer invertor for $21^{\prime \prime} 13$ watt miniature tube for only $£ 3 \cdot 75$ with tube and tube holders as well.

ROTARY PUMP
 Self priming portable fits drill or electric motor pumpsup to 200 gallons per hour depending upon revs. water oil, petrol, fertiliser chemicals, anything llquid. Hose connectors
each end f2 post paid each end $£ 2$ post paid

8 POWERFUL
BATTERY MOTORS
For models, Meccanos, drills, remote control
planes, boats, etc. $£ 2$.

MERCURY BATTERIES

Bank of 7 Mercury cells type 625
which are approx.
wh 7 in . thick in plastic tube
giving a total of 10.7 v .
break up a plastic tube it is very easy to
and use these for radio control and
similar equipment. Carton of 25 batteries
$£ 1.60$.
INDUCTION MOTORS
One illustrated is our reference MM11
made for $1 T T \frac{3}{4}$ stack $1 \frac{1}{2}$ spindle $£ 2 \cdot 25$.

TANGENTIAL HEATER UNIT
A most efficient and quiet running

blower-heater by Solatron-same type as is fitted to many famous
name heaters-Comprises mains induction motor-long turbo fan -split 2 kw heating element and connect to the mains-simply mediate theat-mount in a simple wooden or metal case or mount direct onto base of say kltchen
unit-price £4-95 post $£ 1 \cdot 50$ contd blow or off available 60p
cold
$2 \mathrm{k} . \mathrm{w}$. model made in metal extra.
case w

MAINS TRANSFORMERS			
VOLTAGE	CURRENT	REF.	PRICE
1 v	2 amp	TM1	£1. 94
$2 \cdot 4 \mathrm{v}$	5 amp	TM2	£1-62
4 V	7 amp	TM32	£2.70
6 V	$\frac{3}{4} \mathrm{amp}$	TM3	85p
$6.5 v$	$\frac{3}{4} \mathrm{amp}$	TM37	85 p
6.5 v	200 mA	TM21	${ }^{1} 1 \cdot 62$
$6.5 \mathrm{v} 0-0.5 \mathrm{v}$	100 mA	TM21	¢1.62
6.5v 0-6.5v	750 mA	TM7	£2. 16
$6 \cdot 3 \mathrm{v} 0-6.3 \mathrm{v}$	100 mA	TM33	¢1. 62
$6 \cdot 3 \mathrm{v}$	2 amp	TM4	E1. 89
8.5 v	1 amp	TM12	¢1. 62
$8 \cdot 5 \mathrm{v}+8 \cdot 5 \mathrm{sep}$ winding	$\frac{1}{1} \mathrm{amp}$	TM12	¢1. 62
9 v	1 amp	TM5	¢1. 62
9 y	1 amp 'c' core		¢f $\mathbf{c o}_{0}$
9 V	$3 \frac{1}{2} \mathrm{amp}$	TM11	£2.76
9 y	5 amp	TM38	¢3.24
10 v	25 amp	TM15	¢4.86
$10 \mathrm{v} 0 \cdot 10 \mathrm{v}$	122 $\frac{1}{2} \mathrm{amp}$	TM15	£4.86
12v	\% amp	TM9	E1.05
13 v	$\frac{3}{4}$ amp	TM7	£2. 16
12v	1 amp	TM10	£1.89
12v-0.12v	50 mA	TM19	£1.62
12v-0.12v	1 amp	TM41	¢3.24
15v tapped 9v	2 amp	TM11	¢2. 70
17 v	$\frac{5}{2}$ amp	TM12	£1.62
18 v	$\frac{3}{4} \mathrm{amp}$	TM13	£1.90
20 v	$\frac{1}{2}$ amp	TM14	£1.62
20v	5 amp	TM27	£4.32
20 v	1212 ${ }^{\frac{1}{2}} \mathrm{amp}$	TM15	¢4.86
20v-0.20v	6 amp	TM15	£4.86
13 v	100 mA	TM21	£1. 62
24v	14 amp	TM16	£2. 12
24v	2 amp	TM17	£2.70
$24 v+2 v 7$ amp	2 amp	TM39	£2. 97
24v	4 amp	TM40	E3. 78
25v	112 amp	TM18	£2.43
26v	2 amp	TM39	¢2. 98
30 v	8 amps	TM15	E4.86
37v	37 amps	TM34	£31-86
40 v tapped 10 v 30v, 20v \&	6 amp	TM15	¢4.86
$\therefore 0 \mathrm{v}-2 \mathrm{amp}$ with 6.3 v shrouded		TM22	¢.4.86
50v	8 amp	TM29	£11.65
60 v	5 amp	TM24	£7.02
$75 \mathrm{v}-3$ amp with $6 \cdot 3 \mathrm{v}$ shrouded		TM23	¢8. 10
75 v	4i ${ }^{\text {amp }}$	TM24	6.7.02
70v tapped 60v \& 75v	4 amp	TM24	¢7.02
100v	1 amp	TM25	¢ 7.02
$100 \mathrm{v}-0.100 \mathrm{v}$	$\frac{1}{7} \mathrm{amp}$	TM25	¢7.02
130 v tap ped 120v	\% amp	TM28	63.78
200 v	$\frac{1}{2} \mathrm{amp}$	TM25	¢7.02
$250 \mathrm{v}-0.250 \mathrm{v}$ with 6.3 V 2 A	50 mA	TM36	£3.78
250 v	100 mA	TM36	¢3.78
500 v	50 mA	TM36	£3.78
Quantity Prices availab add 25% to your order to	e. Please, unle cover cost of ca	you age.	calling

MULLARD UNILEX

A mains operated $4+4$ stereo system. Rated one of the flinest
pefformers in the stereo field this would make a wonderful gift for almost anyone in easy-toassemble modular form and
complete with a pair of Ple

Speakers this should sell at about $£ 30$-but due to a special buik the and as an incentive for you to buy this month we
offer system complete at only $£ 15$ including VAT and
postaoe. postave

42 HOUR TIMERS VENNER As illustrated with sun correction made
for G.F.O. phone boxes used perfect $\mathbf{£ 2 . 9 5}$ 20 amp switching contacts.

PP3/PP9 REPLACEMENT

 MAINS UNITJapanese made in plastic container
with leads size $2^{\prime \prime}$. $1 \frac{1}{2}$ (1/2", this is ideal to power a calculator or radio It has a full wave rectified and smoothed of $u p$ to $100 \mathrm{~mA} . \mathrm{E}_{2}^{2} 53$.

SOUND TO LIGHT UNIT

 Add colour or white light to your amplifierWill operate 1,2 or 3 lamps (maximum 450 W). Unit in box all ready to work. $\mathbf{£ 9} 95$

HUMIDITY SWITCH

American made by Ranco, their type
No. J11. The action of this device depends upon the dampness causing sensitive microswitch adjustable by screw, quite sensitive--breathing on it
for instance will switch it on. Micro 3 am at 250 v AC. Overall size of the devic approx. $3^{\frac{3}{4}}$ "long, $1^{\prime \prime}$ wide and $1 \frac{z^{\prime \prime}}{}$ deep. $75 p$

WHAT COULD YOU BE DOING:

in one year's time, if you understood computor and microprocessor technology? Thinkitover, then join the "Doing it digitally" course which is starting now.
You will learn mainly by doing, not just reading, it's easy to understand that way. Pay as you learn-Just $£ 5$ deposit and eleven monthly payments of $£ 3$, (or $£ 35$ Cash now), will follow as course requires them.
REMEMBER THIS IS YOUR CHANCE:

RELAYS

12 volt two 10 amp changeover plug in 95 p
12 v three 10 amp changeover plug in f 1.28 12v two changeover miniature wire ended 95p. 12 volt open single screw flxing two 10
amp changeovers $85 \mathrm{p}, 12$ volt open three 10 amp change overs $\mathrm{E1} \cdot \mathbf{2 5}$. Latching relay mains operated 2 c/o contacts $£ 2 \cdot 11$. Mains
operated three 10 amp changeovers open type one screw fixing $£ 1 \cdot 25$. Many other types with different coll voltages and contact
arrangements are in stock, enquiries invited.

SHORTWAVE CRYSTAL SET really amazing resuits. You will restations over the $19,25,29,31$ metre bands. Kit contains chassis front panel and all the parts \$1-94-crystal
earphone 55p including VAT and earphone
postage.

XMAS PRESENTS
Table radio as illustrated- $\quad \mathbf{~ m a i n s ~ M W ~}$
ma
 Stereo Record player with pair
of speakers
£33.50
BURGLAR ALARM ITEMS
(Circuit free on application)
$13^{\prime \prime} \times 10^{\prime \prime}$
$\times 10^{\prime}$
Relay 24 volt
Alarm Bell 24 volt 9.12 volt
Reset, Switch Mains
Reset, Switch, ordinary
Secret type with key
Wire-100 metres
24 v Power unit mains operated

Terms: Prices inciude Post \& VAT. But orders under $£ 6.00$ please add 50 p to offset packing. Bulk enquiries-Piease Phone for Generous Discounts 6881833.

J. BULL (ELEGTRCAL) LTD
 (Dept. P. W.), 103 TAMWORTH RD., CROYDON CR8 1SG

IT'S FREE!

Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived-often bargains sell out before our advertisement can appear-It's an interesting list and it's free-just send S.A.En Eelow are a few of the Bargains still available from previous lists.
FM Tuner and decoder, 2 very well made, (Japan) units, nice ciear dial, excellent reproduction. fil 20 the pair. 12 Volt Heavy Duty Relay, plug in tape has three pairs of
10 amp changeover contacts. A transparent dust cover, price £1. O8 suitable $1 \dagger$ oin base 45 .
4 Changeover Relay, upright mounting 4 sets of 10 amps 4 Changeover Relay, upright mounting 4 se
changer contacts, mains voltage coil $£ 1 \cdot 72$,
12 Volt Pump. Designed we believe as a bilge pump, this is 12 volt AC/DC motor coupled by a long enclosed shaft to a submersible pump. Suitable for water or most any fluids.
High Load 24 Hour Clock Switch, made by the famous Smiths Company for normal mains but with clockwork reserve has load cavacity of 80 amps at 240 V 50 HZ . Therefore suitable for dealing with large loads of say shop lighting,
water heating, storage heaters, etc., etc. Has triggers for water heating, storage heaters, etc., etc. Has triggers for on
and off once per 24 hours but extra triggers witl be available. Price £1 50 per pair., totally encased, Price £9.50.
Enclosed 24 Hour Clock with contacts for breaking 10-12 amps at 240 volts. This one has two sets of on/off per 24 hours, price 17.00 .
Light Dimmer, our timer module with small mods makes an
excellent fight dimmer. Contains a 4 amp 400 V SCR so it excellent ilgh: ommer. Contans be suitable for loads approaching 1 KW . Price ot so it and instructions $\mathbf{5 2} \cdot 25$.
Bush Puit Solenoids, mains operated solenolds which will Bush Puit Solenoids, mains operated solenolds which will push as well as or instead of pull. Very heavy duty, estimate
this at 20lbs push or pull $13^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$ made Magnetic this at 201bs push
Devices Co. $£ 7-50$,
Flashing Lights, chasing lights, random fiashes, strobe effects etc., etc., can easily be achieved using our disco switches. These switches are ex-equipment but guaranteed perfect and supplied suitable for mains working. To get some dea of the laading number, each switch is 10 amp. For the with light pipe data model, interconnecting the switches to give fastest speed. 6 Switch model $£ 5$. 9 Switch model $£ 9.75$ 12 Switch model $\mathbf{£ 6} \mathbf{2 0}$.
Reed Switches, standard 60 watt glass type. Normal open
contacts giass lengths $2^{\prime \prime}$ diameter $3 / 16^{\prime \prime}$, to for $£ 1,100$ for $£ 8$. contacts glass leng ths $2^{\prime \prime}$ diameter $3 / 16^{\prime \prime}, 10$ for $£ 1$, 100 for $£ 8$,
1000 for $£ 70$. Flat Reed Switches, for stacking, greater quantity in confined space. Price 50p.
Ceramic Magnets, suitable for operating Reed switches,
central fixing hole, Central fixing hole, 10 for $£ 1$
Music Centre Transformer $12-0-12$ at 1 amp and 9 volt at nished for quiet operation. Price $£ 3 \cdot 50$.
'W' Shaped Fluorescent Tubes for porch light, box signs or where you want light evenly spaced over a confined area of
approx. $10^{\prime \prime} \times 10^{\prime \prime}, 30$ watts made by Philips, price $£ 2.24$. approx. 10 10 , 30 watls made by Phips, price $22 \cdot 24$. Extension Speakers, 8 ohm $4-5$ watis handling power. We have 5 or 6 different models in stock. cheapest being the as postage is $£ 1.50$ per speaker.
Auto Transformers for working American tools and equipment, completely enclosed in sheet metal case with American type flat output socket made for computer so obviously first only 515 . These may be a bit soiled but are fully guaranteed Only 15 .
Similar but 1000 watt $£ 29 \cdot 50$.
Car Starter Charger Kit. New version. We supply two 10 amp rectiffers. 250v transformer and the start change switch with instructions. price £9.75. This is probably one of the most useful pieces of equipment you can have in your garage. you will have a flat battery, this starter will get you away usually in less than 5 minutes.
Resetter Counteq, by Veedroot Company, 230/240V mains operated, intented for surface mounting has a fixing flange at the bottom. Price £2-16.
12V Drip proof Relay. Specially designed for going under the bonnet of a car, made by one of our big manufacturers, tacts look suitable for up to 10 amps so this rouid be fhe right ane if you are thinking about making an anti-thief device. Priç f1+8p.
High Speed
High Speed Uniselector. As many customers know, we have a very comprenensive stock of uniselectors as used in
a:Itomatic telephone exchanges. light flashing device etc., etc. Just arrived however is a high speed model made by famous Plessey, this is 2 pole 32 way with make before break
wipers, overall size approx, $4^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime}$, price $£ 3 \cdot 50+28 \mathrm{p}$. wipers, overall size approx. $4^{\prime \prime} \times 3^{\prime \prime} \times 2 \frac{1}{2}$ ", price $£ 3 \cdot 50+28$ D. Pneumatic Ram for lifting, thrusting, pulling etc., etc., has
$2_{4}^{\frac{3}{4}}$ " travel, looks large enough to open doors, Hft, staircase, ventilators, etc. Price $£ 7.00$.
Solder Gun Bargain. The ETP, this is 100 watt soider gun a very well made tool with lamp to illuminate work, has double insulated mains transformer and is built into the shock proof thermoplastic case. Comes complete with spare tips. Mains
operated of course. Price $£ 4.50$. Interested in Tape Control. An
really beautiful units made of sophisticated parts, designp we believe to automatically operate typewriters and they can of course be used to operate other punch tape controlled machines. Reference number is NCR Class 461-2 reference
205 H8 R56. We belleve these are 8 bit paper tape punches, powered from 115 V 50 HZ in very good condition with tape ${ }^{2} 16 \cdot 00$, carriage is $£ 3 \cdot 20$.
MINI-MULTI TESTER
Mazing deluxe pocket
size precision moving
size precision moving
coil instrument
jewelled bearings -
1000 opv - mirrored
11 instant ranges
measures-
DC volts $10,50,250$,
${ }_{1000}^{1000}$ volts $10,50,150$,
${ }^{100}$ amps
0.100 mA .
Continuity and resist
ance 0.150 K ohms.
Complete with in
sulated probes, leads,
battery, circuit dia-
battery, circuit dia
grams and instruc-
tions.
Unbelievable value
Unbelievab
only $E 6.50$.

electrovalue
 Buying

Meet us at BREADBOARD 78 Stand B8

Capacitors

Crystal calibrators are available commercially either as completed units or in kit form. Kits are available from two advertisers in $P W$. Rocquaine Electronics, Aldebaran, Le Coudre, St Peters, Guernsey, C.I. offer their RQ-1 which has outputs of 1 MHz , 100 kHz and 10 kHz with optional c.w. or modulated outputs, while Cambridge Kits have a calibrator with outputs of $1 \mathrm{MHz}, 100 \mathrm{kHz}$ and 25 kHz which provides markers up to v.h.f.

DX Clubs

The World DX Club has recently released the 3rd edition of its QSL Statistics which contains details of 16576 QSLs received by members from 1969 to 1976. Copies can be obtained from the WDXC, 17 Motspur Drive, Northampton, NN2 6ZY for 50 p (UK) or 5 IRCs seamail and 7 IRCs airmail. The WDXC can also supply copies of two new publications issued by the European DX Council. The first is the Reporting Guide which contains advice, vocabularies and report models for reporting in English, French, Spanish and Portuguese. The other is the EDXC Landlist which lists 274 radio countries and contains an ITU zone map. The EDXC publications can be obtained by UK and Irish DXers from 39 Sollershott Hall, Letchworth, Herts for 80p each.

The inaugural meeting of the North England Radio Club took place in Birkenhead on July 29, the new club being formed out of the old Merseyside DX club. A sample copy of the club bulletin Radio Spectrum is available for two 9p stamps (UK) or for two IRCs (abroad) from the secretary who is Norman Monti, 66 Chesnut Grove, Birkenhead, Merseyside, L42 0MZ.

DX

Radio Japan has been picked up on 21535 kHz in the 13 m band by Charles Kaberry (Fleetwood) who heard the English programme at 0800 with his FRG-7 and Joystick antenna. Bill Stevenson (Swinton) also heard this transmission with his Vega 206 plus 40 ft loft aerial and he received a QSL card within 3 weeks. Bob Bell (Blyth) logged Radio Colombia on 5985 at 0335 and ORF (Austria) on 15410 and 15440 at 0830 using his FRG-7 and long wire. Davis Stevenson (Thurso) has an Astrad 17 and 100ft long wire with which he picked up Radio Australia on 6035 at 2100 , 15410 at 2240, 11880 at 1900, 17825 at 0140 and 17725 at 0200, none of which are beamed to the UK. The address for reception reports is Box 428 G , Melbourne, Australia 3001.

Harmonics are reported by P. R. Sixe (Cambourne) on $23670(2 \times 11835)$ and $23940(2 \times 11970)$ both being from Radio Free Europe and on $23660(2 \times 11830)$ this time from Radio Moscow. DX heard on 60 m included Lagos 4990 at 0430, Radio Colosal Colombia 4945 at 0445, Radio Reloj Costa Rica on 4832 also at 0445 and a station mentioning Paramaribo Surinam on approx 4850 at 0425 (nothing listed here). Roy Patrick (Derby) has also been active on 60 m with his Trio 9R59D and he pulled in ELWA Monrovia on 4770 at 2215 and a Chinese station on 5020 at 2200. Jim Edward (Wigan) has an FRG-7 and a 60ft loft aerial plus a.t.u. DX heard included Radio Nacional Colombia on 15335 at 0200 and Uganda on 15325 at 0400 , the latter being a test transmission with a request for reception reports.

by Ron Ham BRS15744

Guy Stanburys letter to the Editor in our August issue about interest in Band II has certainly prompted comments from my readers and I know that Guy is delighted with the response he has already received. John Branegan, GM80XQ, Saline, Fife, says "I wonder if many of the youngsters realise what a good band for DX Band II is, with my ordinary commercial stereo and a simple 3-element beam, fixed on Kirk of Shotts, i.e. 215°, I still get plenty of Polish, Slav and French stations on f.m. whenever the barometer is up".

Mike Gaskin, a new reader from Croydon, Surrey, uses a Trio KT600S on Band II with a dipole at 30 ft and says that Hilversum 1 was audible for 4 days from July 13th to 18th and Ian Rennison, Horsham, Sussex, writes "The MUF increased to 100 MHz for about 15 minutes at 1805 on July 27th allowing a number of Spanish stations to be heard in Band II'". Between 1200 and 2200 on July 12th, Frank Luman, Glasgow, heard several Norwegian stations between 89 and 97 MHz and recommends that DXers should use some form of r.f. pre-amplification as well as a good aerial on Band II.

Sporadic-E

Both Ian Rennison and myself frequently received strong television pictures, identified by their test cards, from stations in eastern Europe, Russia, Spain and Scandinavia during the sporadic-E disturbances which occurred for some period on 21 of the 30 days between July 19th and August 18th. Signals from Norwegian television were often very strong and test cards labelled Norge, Gulen and Steigen were seen on Ch.E2 and Gamlem and Hermnes on Ch.E3. Mike Gaskin uses a JVC 3050, 625-line TV receiver for DXing on Bands I, III and V and around 1830 on July 15th he saw, as I did, a caption which read "Granada Television International", we think on Ch.E2. Any gen about this will be welcome.

A picture received in Sussex by sporadic-E from Finland. The JVC 3060 receiver was fed by a simple dipole aerial

Throughout each event, a large number of strong signals were received from east-European broadcast stations between 65 and 73 HMz , a variety of Continental radiotelephone signals between 40 and 50 MHz and often signals from the German 10 m beacon, DL0IGI.

Solar Activity

Although very little solar noise was recorded at 136 MHz between July 19th and August 18th, Cmdr Henry Hatfield, Sevenoaks, Kent, has observed several very dense prominences and filaments with his spectrohelioscope. Henry is building a 23 cm radio telescope and intends to find out if there is any positive relationship between solar noise at 1296 MHz and 136 MHz when sunspots are present.

The 10 Metre Band

John Branegan also noticed the lack of solar activity and writes, "This is a very sudden change from a month ago, 10 m is dead, 15 m poor, OSCAR-8A superb into USA with 4 -minute QSOs right down to the horizon with no trace of fading, so the ionosphere is very quiet". Mr M. Mrzyglod, Wallingford, Oxford, has been DXing on the m.w. band for about two years, and, after reading about the International Beacon Project stations, in this column, and hearing distant amateurs on 10 m , he is going to give this band a try.

Sporadic-E was very prominent on July 27th and Harold Goble, G4FDQ, Lancing, worked OD5ID, a French Embassy station in Beirut, who was using 10 watts and 7X2BIC, Algeria, who was only using 2 watts. Harold Brodribb, St Leonards-on-Sea, now using an AR88LF receiver, heard DM5TML calling CQ and LV9DM calling SM. Both Harolds have heard Rhodesian and South African stations on 10 m during sporadic-E disturbances. On August 8th stations were again heard calling $C Q$ sporadic-E on 10 m and at 1832 on the 10th and 0913 on the 18th, the Cyprus beacon, 5B4CY was heard.

Microwaves

Both Ern Hoare, G8BDJ, Southwick, Sussex, and Ern Downer, G8GKV, Worthing, worked Don Hayter, G3JHM/P, from Chanctonbury Ring, near Worthing, during a recent RSGB Microwave Cumulative contest. However, during the evening of August 11th Don, holidaying near Parfleur, used his 3 cm gear with the callsign, F0AKD/P and, at a distance of 155 km he had 59 plus QSOs with both G8BDJ/P and G8GKV/P on Mill Hill, some 400ft above Shoreham, Sussex, which means that Ern Downer now qualifies for the RSGB's award, for a contact on 3 cm above 150 km . Further congratulations go to Ern who has completed 3 cm contacts with stations in 5 QRA Locator Squares and qualifies for another Society award. He may well be the first UK amateur to hold both microwave awards.

Readers' Special Events

On July 22/23rd, members of the Chichester Radio Club established a station, G8NMF/P at the Goodwood Show, in aid of charity, along with military
displays and vintage vehicles. During the event, club chairman Mike Rowe, G8JVE/M, was a passenger in a TR7 with a 2200 G between his knees, and a whip aerial inside the car being driven around the famous Goodwood motor circuit by a chief racing driving instructor. At 100 m. p.h., Mike worked their exhibition station and his signals were also heard by a listener, in nearby Chichester, who reported hearing the squeal of tyres via Mike's microphone.

Early in July, Jack Brooker, G3JMB, Hassocks, Sussex, had a camping holiday in Orkney and Scotland and managed a few f.m. contacts on 2 m . Jack did very little mobile operating in the three days he took to travel 770 miles to Scrabster, Caithness, "Mainly", says Jack, "because in the head winds my $5 / 8$ magnetic mount would not stay on the roof of the car". During his holiday he worked numerous GMs, G, ON, and LA via the Aberdeen repeater GB3GM, R7, and while parked on the old Flintstown to Kirkwall road he heard the Stavanger repeater, LA5VR, competing with GB3GM on R7 and used it to work LA2FV in Stavanger.
Ian Rennison has produced some fine transparencies of the sporadic-E television signals he received from Austria, DDR, Italy, Iceland, Spain and Russia. His brother David, in the same QTH, has a special interest in 2 m DX using a NR56 in his car with a $5 / 8$ whip aerial and a Microwave Modules converter into a Trio 9R59-DS in his shack. David built a 3 -element beam for s.s.b. DXing and uses a $5 / 8$ ground plane for the repeater network.

Alan Baker, G4GNX, Newhaven, worked W8FUP on 20 m who told him that there are over 100 repeaters on 2 m within a 50 mile radius of Cincinnati, Ohio, and some of them are over 800 ft a.s.l.

Tropospheric

Between 2000 and midnight on July 27th a tropospheric disturbance followed the sporadic-E and Mike Rowe worked $3 \mathrm{Fs}, 3 \mathrm{HB} 9 \mathrm{~s}$, and 1 ON on 2 m s.s.b. During the early evening of July 22nd, Roy Bannister, G4GPX, heard PA0s and ONs on 2 m s.s.b. and Alan Baker had 2 m c.w. contacts with F6DOP in Paris and F9LT in Versaifles. A brief lift occurred around 2000 on August 8th when I heard G3GDW in Northampton contact Constance Hall, G8LY, Hampshire, through our local repeater, GB3SN, R5, and at 2010 Ian Rennison watched a news programme, with a YL announcer on Ch.E6, 182MHz.

At 1600 on August 14th, G4GPX heard repeaters FZ2THF, FZ3THF, GB3BC, and GB3PO, and at 2146, G4GNX worked F1ENH, Boulogne, and ON6FI and ON5AN in Ghent. Conditions were good for v.h.f. during the spell of fine weather on August 17th, 18th, and 19th, when many repeater signals were heard well above their normal range. At 0722 on the 19th I heard G8DD in Nottingham and G8MLC on the Isle of Wight have a QSO through the Bristol Channel repeater, GB3BC.

OSCAR

John Branegan has now worked transatlantic s.s.b. on both satellites, on all four modes, 7A, 7B, 8A and 8J. "On my first test transmission up to OSCAR-7B", writes John, "I called CQ test and DB5KF/P came straight back" and later he worked a K4 in West Virginia.

What do the VHFs

 have to offer?Apart from the general enjoyment of operating on the v.h.f. bands, the scientific aspect of hearing or working DX is exciting, especially when a given region of the earth's atmosphere is well and truly disturbed. Although a great deal is already known about the strange behaviour of v.h.f signals under abnormal conditions, we still have a lot to learn and the observations which we make during each new event will be of value to the scientists of the future.

Owing to the limited range of v.h.f. signals and the careful planning by both national and international bodies, the hundreds of transmitters required to meet the needs of a thickly populated area like Europe, must share the same or similar frequencies, within a particlar band. This arrangement works well until a natural disturbance occurs and increases the normal range of signals from about 100 to more than 1,000 miles. Remember the old saying "One man's meat is another's poison" well, this is very true in the world of v.h.f., because, when we radio enthusiasts are enjoying that super DX on 2 m and 70 cm , the Band III and Band V televiewers are pestered with interference on their sound and pictures from the unwanted signals, of the distant stations, which are sharing the same channel.

Solar Noise

Radio waves from a solar event are most likely to be heard between 100 and 200 MHz and will sound like a massive increase in the receiver background noise. whoooooosh, and covering several megahertz These waves, which originate on the sun $8 \cdot 3$ minutes before they are heard on earth, tell us that a solar event, like a flare, has taken place and that particles from the sun may reach us within the following 50 hours.

Because the earth's atmosphere is so very complex it is worth taking a look at the different regions and their effect upon v.h.f. signals.

Aurora Borealis

Briefly, if a stream of particles from a solar flare enter the earth's polar atmosphere they are likely to randomly ionise the surrounding gases for several hours. This phenomenon, called aurora, has a strange effect on radio signals, for instance, the letter X in Morse code normally sounds like dah-dit-dit-dah, but when reflected from an aurora it will sound raspy, ror-rit-rit-ror and likewise, an s.s.b. signal is like a ghostly whisper and no amount of b.f.o. will improve it. Another point to remember is, that whatever the geographical location of the transmitter from which the auroral reflected signals originated, your receiving aerial beam must point toward the north. By careful tuning it is possible to detect signals from stations some 2,000 miles away. For our readers in the southern hemisphere, a similar effect-Aurora Australis-occurs at the South Pole.

Sporadic-E

The E region, or, as in early technical literature, the Kennelly-Heaviside layer, of the ionosphere, forms some 60 miles up at sunrise and disperses at sunset. But, during the months of April to August this region will suddenly break up into clouds of densely ionised gas and deflect radio signals within the range $30-80 \mathrm{MHz}$ more than 1,000 miles off their intended course. Because of this extended range, UK televiewers, still using Band I, $40-67 \mathrm{MHz}$ for BBC, will receive a wide variety of continental radiotelephone, RTTY, and beacon signals on top of their pictures. While those viewers gnash their teeth, the TV DXers among us look in Band I for pictures from stations in Europe, the Mediterranean area, Russia, and parts of South Africa.
Most sporadic-E events last for only a few hours, during which time the 4 m amateur band may be blotted out by strong f.m. signals from broadcast stations in Poland, while broadcast signals from several other east-European countries, using the range $65-73 \mathrm{MHz}$, pound into the UK and interfere with Private Mobile Radio transmissions in "low band". Readers like Anthony Mann in Australia, keep us informed about the sporadic-E disturbances which affect other parts of the world at different times of the year.

Understanding ELECTRONICS

R. H. WARRING

Describes and illustrates the meaning of symbols, layouts and methods of construction that sometimes baffle beginners, with numerous working circuits for experiment. Each chapter covers a particular aspect of electronics-from components to the working of radio and television-and accompanying definitions, simple mathematical equations and formulae and explicit line drawings made each stage fully intelligible to the layman.

From leading bookshops

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF Tel: 20767

2 GHz STRIPLINE NPN TRANSISTORS 18 voit $100 \mathrm{~mW} @ \notin 1$ each. 800 MHz NPN TRANSISTORS BF 362 STRIPLINE @ 25p each. RCA VERSION BFY 90 ($2 N$ 2857) TRANSISTORS @ 50p each.
MURATA $455 \mathrm{KHz}^{2}$ FILTERS BFB 455 with data @ 30 p .
YERNITRON 10.7 MHz CERAMIC FILTER FM4 90 p .
MINIATURE ROTARY SWITCHES 2 Pole 4 way@ 20 p , 1 Pole 10 way 2 Bank m 40p.
3/16 $\mathbf{6}^{\prime \prime}$ COIL FORMERS with core at 5p, 6 for 25p.
$\dot{t}^{\prime \prime}$ COIL FORMERS with core at 3 for 10 p .
50 off $10 \times$ CRYSTALS Assorted for $\mathrm{fi}, 50$.
CRYSTALS FT 241 A 72 nd Harmonic $36 \cdot 3,36 \cdot 4,36 \cdot 5,36 \cdot 6,36 \cdot 7 \mathrm{MHz}$. All at 25p each.
AARIABLE CAPACITORS Direct Drive. 5pf @ 75p, 10pf @ 75p, 15pf@75p,30pf@85p, 50pf@85p, 125+125pp@ 55p, 100+200pf @ $55 \mathrm{p}, 180+180 \mathrm{pf} @ 60 \mathrm{p}, 200+200+25+25 \mathrm{pf}$ @ $55 \mathrm{p}, 500+500 \mathrm{pf} @ 60 \mathrm{p}$. With Slow Motion Drive. $300+300$ pf @ 55 p, $500+500+25+25$ pf @ $55 \mathrm{p}, 250+250+20+20+20 \mathrm{pf}$ @ ${ }^{75 p}, 365+365+365 \mathrm{pf}$ @ ${ }^{2} 65 \mathrm{p}$.
400 mW UNMARKED GOOD ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}$, 11 v , 12 v , $13 \mathrm{v}, 16 \mathrm{v}, 18 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 36 \mathrm{volt}$. All at 10 for 40 p .
MAINS TRANSFORMERS 240 volt input. Type 1. 24 volt Tapped at 14 volt 1 amp @ $£ 1 \cdot 30$ (P\&P 25p). Type 2.22-0.22 volt 500 mA @ $£ 1.60$ (P\&P 25p). Type 3. 45 volt 6 amp @ 54.50 (P\&P 95p). Type 4. 20 volt 2 amp Twice, 10 volt 1 amp Twice @ $£ 4.50$ (P\&P 95p). Type 5. 45 volt $2 \mathrm{amp}, 45$ volt $500 \mathrm{~mA} @ 63.50$ (P\&P 85p).
ELECTROLYTTCS. 2200uf $100 \mathrm{v} . \mathrm{w}$. @ $60 \mathrm{p}, 100 \mathrm{uf} 100 \mathrm{v} . \mathrm{w}$. @ 6 for 25p,

$0.2^{\prime \prime}$ RED LEDS
502 WATT ZENERS Assorted Untested for 57 p .
100 ASSORTED C280 CAPAC1TORS
Mof $25 \mathrm{v} . \mathrm{w}$. ELECCTROLYTICS at 6 for 25 p .
luf 25v.w. ELECTROLYTICS at 6 for 25p.
50. BC 107-8-9 TRANSISTORS Assorted Untested for 57p.
50. BC $107-8-9$ TRANSISTORS Assorted Untested for 57p.
50. AC 128 TRANSISTORS Branded but untested @ 57p.

LM 380 AUDIO I.C. with various circuirs @80p.
LM 380 ACA or N.C. with various circuits @ ${ }^{\text {O }}$ CMOS RCA or NATIONAL SPECIAL OFFER CD 4001 @ 10 p,
$\mathrm{CD} 4007 @ 10 \mathrm{p}, \mathrm{CD} 4011 @ 10 \mathrm{p}, \mathrm{CD} 4020 @ 60 \mathrm{p}, \mathrm{CD} 4029 @ 60 \mathrm{p}, \mathrm{CD} 4043$ @ 60 p .
FT 241 CRYSTALS 285 KHz ar 20p each.
FT $241 A$ CRYSTALS 285 KHz ar ${ }^{20}$ e each. 50 .w., Iuf $50 \mathrm{v} . \mathrm{w}$. Both MINIATURE MYLER CABA 4 Amp PLASTIC NPN TRANSISTOR @ 25p, 5 for $\mathbf{E l}$. HC18U CRYSTAL 10.23 MHz @ 75p each.
HCI8 add 20p for post and packing, unless otherwise stated, on UK orders under $£ 2$. Overseas orders at cost.

YOUR cOMPLETE RANEE OF ELEOTRONIC HARDVARE."

BIMENCLOSURES

ALL METAL BIMCASES
Red, Grey or Orange 14swg Aluminium removable top and bottom covers. 18 swg black mild steel chassis with fixing support brackets.

BIM 3000
$(250 \times 167.5 \times 68.5 \mathrm{~mm})$ £14.58

MINI DESK BIMCONSOLES

Orange, Blue, Black or Grey ABS body incorporates 1.8 mm pcb guides, stand-off bosses in base with 4 BIMFEET supplied. 1 mm Grey Aluminium panel sits recessed with fixing screws into integral brass bushes.
BIM $1005(161 \times 96 \times 58 \mathrm{~mm}) \quad £ 2.18$ BIM $1006(215 \times 130 \times 75 \mathrm{~mm}) £ 3.05$

ALL METAL BIMCONSOLES
ALL METAL BIMCONSOLES
All aluminium, 2 piece desk consoles with Colour Code Top Panel Base either 15° or 30° sloping fronts, sith 4 self-adhesive non-slip Ventilation slots in base and rear panel for excellent cooling.
Colour Code
A
B Off White Sand 15° Sloping Pane
30° Sloping Panel BIM 7151 ($102 \times 140 \times 51[28] \mathrm{mm})$ BIM $7301(102 \times 140 \times 76[28] \mathrm{mm}) ~ £ 9.87$ BIM7152 ($165 \times 140 \times 51[28] \mathrm{mm}$) BIM7302 ($165 \times 140 \times 76[28] \mathrm{mm}) £ 10.86$ BIM 7153 ($165 \times 216 \times 51[28] \mathrm{mm}$) BIM7303 ($165 \times 183 \times 102[28] \mathrm{mm})$ f11.96 BIM7154 ($165 \times 211 \times 76[33] \mathrm{mm})$ B $\mathrm{MM}^{2} 304(254 \times 140 \times 76[28] \mathrm{mm}) \quad £ 12.93$ BIM 7155 ($254 \times 211 \times 76(33] \mathrm{mm})$ BIM $7305(254 \times 183 \times 102[28] \mathrm{mm}) £ 14.47$ BIM $7156(254 \times 287 \times 76[33] \mathrm{mm})$ BIM $7306(254 \times 259 \times 102[28] \mathrm{mm}) £ 15.46$ BIM $7157(356 \times 211 \times 76[33] \mathrm{mm})$ BIM $7307(356 \times 183 \times 102[28] \mathrm{mm}) £ 16.55$ BIM7158 ($356 \times 287 \times 76[33] \mathrm{mm}$) BiM7308 ($356 \times 259 \times 102[28] \mathrm{mm}) £ 17.43$

ABS \& DIECAST BIMBOXES

6 sizes in ABS or Diecast Aluminium. ABS moulded in Orange, Blue, Black or Grey. Diecast Aluminium in Grey Hammertone or Natural. All boxes incorporate 1.8 mm pcb guides, stand-off supports in base and have close fitting flanged lids held by screws in to integral brass bushes (ABS) or tapped holes (Diecast).
$(50 \times 60 \times 31 \mathrm{~mm})$ $(100 \times 50 \times 25 \mathrm{~mm}$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm})$ $(150 \times 80 \times 50 \mathrm{~mm})$ $(190 \times 110 \times 60 \mathrm{~mm}$

ABS

N/A

 BIM BIM2002/12 \quad €0. 96 BIM2003/13 £1.13 BIM2004/14 £1.35 BIM2005/15 £1.52 BIM2006/16 '£2.37Diecast BIM5001/11 BIM5002/12 BIM5003/13 BIM5004/14 BIM5005/15
BIM5006/16

Hammertone
 Hamme TBA

f1 46
£ 1.46
£1.78
£2. 24
£2.84
£3.94

Natural
TBA
£1.19
£ 1.46
£ 1.82
£2.28
$£ 3.33$

Also available in Grey Polystyrene with no slots and self-tapping screws BIM 2007/17 (112×61×31mm) £1.00

BIM $6005(143 \times 105 \times 55.5[31.5] \mathrm{mm}) £ 2.37$ BIM $6006(143 \times 170 \times 55.5[31.5] \mathrm{mm}) \notin 3.08$ ВІМ $6007(214 \times 170 \times 82.0[31.5] \mathrm{mm}) \quad £ 4.12$

BIM $8005(169 \times 127 \times 70[45] \mathrm{mm}) \quad £ 4.12$ BIM 8007 (to be announced shortly)

BIMTODLS

MAINS BIMDRILLS

Small, powerful 240 V hand drill complete with 2 metres of cable and 2 pin DIN plug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or $.125^{\prime \prime}$ dia. shanks. Drills brass, steel, aluminium and pcb's. Under 250g, off load speed 7500 rpm . Orange ABS, high impact, fully insulated body with spring return on/off switch $£ 10.53$
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, .125^{\prime \prime}$ twist drills, 5 burrs and 2.4 mm collet $£ 2.48$
Mains Kit 2 includes Mains BIMDRILL as above, 20 assorted drills, mops, burrs, grinding wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $.125^{\prime \prime}$ collets. Complete in transparent case measuring $230 \times 130 \times 58 \mathrm{~mm} £ 22.14$

12 VOLT BIMDRILLS

2 small, powerful drills easily hand held or used with lathe/stand adaptor. Integral on/off switch and 1 metre cable.
Mini BIMDRILL with 3 collets up to 2.4 mm dia $£ 8.10$ Major BIMDRILL with 4 collets up to 3 mm dia $£ 13.60$ Accessory Kits 1 have appropriate drills and collets as above plus 20 assorted tools. Mini Kit $1-£ 15.12$, Major Kit $1-£ 19.44$.
Accessory Kits 2 have appropriate drills, collets plus 40 tools and mains 12 V dc adaptor. Mini Kit $2-£ 34.02$, Major Kit $2-£ 39.42$.
Accessory Kits 3 as appropriate Kits 2 plus stand/lathe unit. Mini Kit $3-£ 45.36$, Major Kit $3-£ 50.76$.

BIMDIPS

Rapidly inserts and withdraws any 4-18 pin, . $3^{\prime \prime}$ pitch DIL package without beding the legs. Adjustable metal jaws for MOS type devices grip the bottom of the leg for minimum strain. Will pick up IC's from a bench, a carrier or a pcb. $£ 13.77$

Precision made side cutters, spring action, ground steel fine pointed blades for intricate work.

on hook

BIMIRONS

Type 30 General Purpose 27 watt iron with long life, rapid change element, screw on tip, stainless steel shaft and clip on hook. Styled handle with neon. £4.05

Type M3 Precision 17 watt iron, quick change tip, long life element, styled handle with clip $£ 4.43$

BIMPUMPS

2 all metal desoldering tools provide high suction power and have easily replaceable screw in Teflon tips. Primed and released by thumb operation with in-built safety guard and anti-recoil system.

BIMPUMP Major (180 mm long) £7.99
BIMPUMP Minor (150 mm long) $£ 6.80$

BIMSTATION

Type PSU6 Soldering I ron Station complete with 6V, 6 Watt miniature iron having stainless steel shaft, quick change slide on tip and long life element.

Station contains $240 \mathrm{~V} / 6 \mathrm{~V}$ transformer, neon, coiled iron support and sponge iron tip cleaning pad.

New product available shortly

BIMENCLOSURES (Bimboxes, Bimconsoles and Bimcases) BIMTOOLS (Bimirons, Bimdrills, Bimsnips, Bimpumps, Bimdips) BIMACCESSORIES (Bimfeet, Bimdaptors) BIMDICATORS BIMBOARDS

BIMDICATORS

ECONOMY QUALITY LED's

Mixed bags of $.125^{\prime \prime}$ and $.2^{\prime \prime}$ dia. lens in various colours 50 for $£ 5.67,100$ for $£ 10.00$

FULL SPECIFICATION LED's

$125^{\prime \prime}$ or.$^{\prime \prime}$ with mounting clips and data
Red - $£ 1.67 /$ pack of 5 , Green $-£ 2.48 /$ pack of 5 , Yellow/Amber $-£ 3.18 /$ pack of 5

33 and 34 SERIES
Front viewing (30° angle) LED indicators
BIM 33 is nickel plated, uses 3.2 mm dia LED and needs 6.5 mm dia. fixing hole.
BIM 34 is chromium plated, uses 5 mm dia. LED and needs 8 mm dia. fixing hole.
Red - $£ 2.80$ /pack of 5 , Green/Yellow - $£ 3.24$ /pack of 5

A SERIES
240 V Neon with integral resistor. held in 8 mm hole by plastic bezel.
Red, Amber, Clear or Opal lens $£ 2 /$ pack of 5 , Green lens $£ 3 /$ pack of 5
Low Voltage equivalent of above with Red, Amber, Clear, Opal or Green Lens. $6 \mathrm{~V} £ 0.54$ each, $14 \mathrm{~V} £ 0.58$ each, $28 \mathrm{~V} £ 0.65$ each
State Voltage, lens style, colour and whether tags or flying leads.

DSERIES
LES and Midget Flanged lampholder with 13 mm dia. (A) and 18 mm dia (B) lens. Solder tags. $1 / 2^{\prime \prime}$ dia. hole fixing (lamps not supplied) plus chrome bezel with A lens.

Red, Amber, Clear, Green, Opal £0.66 each

G SERIES

TI Midget F langed lampholder. Lamps are available on request. 8 mm fixing hole, solder tags. Front replaceable, 7.25 mm dia.
lens. Red, Amber, Clear, Green, Opal $£ 0.43$

05 SERIES

240 V Neon with integral resistor. Self retaining in 13 mm hole, Solder $/ .25^{\prime \prime}$ push on blades. 13 mm dia. lens with 19 mm dia. chrome bezel. Red and Amber $£ 0.61$ each, Green $£ 0.78$ each.

M \& MP SERIES
Low voltage nickel plated brass
(M) and Polycarbonate (MP) indicators, 150 mm leads, 6.4 mm fixing hole Red, Amber,
6.9 mm dia. lens (M) $6 \mathrm{~V} £ 0.65$ each, 14 V £ 0.68 each, $28 \mathrm{~V} £ 0.79$ each
7.5 mm dia. lens (MP) $6 \mathrm{~V} £ 0.55$ each, $14 \mathrm{~V} £ 0.59$ each, $28 \mathrm{~V} £ 0.68$ each

BIM M LED SERIES
Nickel plated brass bodied LES indicator, 21 mm wire wrappable leads, 6.5 mm fixing hole, 2 styles, $6,8 \mathrm{~mm}$ dia lens.
Red $£ 0.85$ each, Green/Amber $£ 1.34$ each.

BIM LM \& MM LED SERIES
Subminiature nylon bodied LED indicators with 12 mm wire wrappable leads
LM \& MM push fit into 4.75 mm \& 4 mm holes respectively. Each series has 4 lens styles in Red $£ 0.67$, Green $£ 0.83$, Yellow $£ 1,00$ each.

BIM 23, 26 \& 56 LED SERIES

Black nylon bodied LED indicators. BIM 23 has 7 mm flat face, BIM 26 \& 56 utilise 4 \& 5 mm dia LED's. Push
fit in 8 mm hole. Red $£ 0.58$ each, Green/Yellow $£ 0.99$ each.

BIMACCESSDRIES

BIMDAPTORS

Allows pcb's to be flat mounted sandwich fashion in BIMBOXES,
BIMCONSOLES, and all
other enctosures having
1.5 mm wide vertical guide slots. One plastic BIMDAPTOR on each corner of pcb(s) enables assembly to be simply slid into place. 54 mm long, 10 slots on 5 mm spacing and can be simply snipped off to length.

Packs of $25 \quad £ 1.08$ per pack BIMFEET

11 mm dia, 3 mm high, grey rubber self adhesive enclosure feet.
Packs of $24 £ 0.77$ per pack

BIMEDARDS

Accept all sizes (4-50 pin) of DIL IC packages as well as resistors, diodes, capacitors and LEDs. Integral Bus Strips up each side for power lines and Component Support Bracket for holding lamps, switches and fuses etc. Available as single or multiple units, the latter mounted on 1.5 mm thick black aluminium back plate which stand on non slip rubber feet and have 4 screw terminals for incoming power.

BIMBOARD 1 has 550 sockets, multiple units utilising 2,3 and 4 BIMBOARDS incorporate 1100,1650 and 2200 sockets, all on 2.5 mm (0.1") matrix.

BIMBOARD 1 £ 8.83
BIMBOARD 2 £21.01
BIMBOARD 3 £29.84
BIMBOARD 4 £ 38.79

DESIGNER PROTOTYPING SYSTEM

1. 2, or 3 BIMBOARDS mounted on BIM 6007 BIMCONSOLE with Integral Power Supply $(\pm 5$ to $\pm 15 \mathrm{Vdc} @ 100 \mathrm{~mA}$ and fixed $+5 \mathrm{Vdc} @ 1 \mathrm{~A}$) All O/P's fully isolated. Short circuit and fast fold back protection. Power rails brought out to cable clamps that accept stripped wire or 4 mm plug.

DESIGNER $1 £ 55.62$
 DESIGNER 2 £61.02
 DESIGNER 3 £66.42

...FROM

All quoted prices are 1 off and include Postage, Packing and VAT. Terms are strictly cash with order unlass you have authorised BOSS account. For individual data sheets on all BOSS products send stamped, solf addressed envelope.

IIINIISTRIII MIIIIIIIINSS IIMIIFI Cables \& Telecrams: 'LITZEN LONDON SE24

TECHNICAL TRAINING IN ELECTRONICS TELEVISION AND RADIO SERVICING

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advant age of the many opportunities open to the trained person. You study in your own home, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Audio Engineering and Servicing Electrical Engineering, Installation and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.

- L To: International Coryespondence

 SchoolsDept. No. A276, Intertext House, LONDON
SW8 4UJ or telephone 6229911
Subject of interest
Name
Address

DIODE SCOOP!!
We have been fortunate to obtain a lanmarked glass silicon diodes. Testing a sample batch revealed about 70% useable devices-signal diodes, high
voltage rects and zeners may all be incluged. These are being offiered and included. These are being oftered at
the incredibly low price of $£ 1.25$ $11000-$ or a bag of 2500 for 62.25 . 617.50. Box of 100,000 c62 BC182B OFFER
Special offer for auantity users 1 k 035
+YAT 5 jk 032+VAT. Price negotiable $+{ }_{\text {on }} 10 \mathrm{k}+$ Approx. 70 k available

PC ETCHING KIT Mk III Now contains 200 sq. ins. Copper clad
board llb. Ferric Chloride. DALO board, llb. Ferric Chloride. DALO etch resist pen, abrasive cleaner, two
miniature drill bits, etching dish and instruetions. E4.25. $^{\text {m }}$

RELAYS
W847 Low profile PC mntg 10×33 $\times 20 \mathrm{~mm}$ 6V coil, SPCO $3 A$ contacts. ${ }^{93} \mathrm{p}$.
$\begin{array}{ll}93 \text { P. } \\ \text { W83 } \\ 10 \mathrm{~mm} & \text { Sub min type, } 10 \times 19 \times \\ 12 \mathrm{Coil} \text { DPCO } 2 \mathrm{~A}\end{array}$ 10 mm 12V coil DPCO $2 A$ contacts W701 6V SPCO $1 A$ contacts 20×30 $\times 25 \mathrm{~mm}$. Only 56 p.
W817 11 pin plug in relay. rated 24 V
ac, but works well on 6 V
DC . Conac, but works well on 10 A . DC.
W81912V1250R DPCO IA contacts. size $29 \times 22 \times 18 \mathrm{~mm}$. Min plug-in type 72p.
W839 50 V ac (24 V DC) coil. 11 pin plug in type. 3 pole c/o IOA contacts. Only 85p.
W846 Open construction mains relay. 3 sets $10 \mathrm{~A} / \mathrm{c} / \mathrm{o}$ contacts. $\mathrm{f} / 20$.
Send SAE for our relay list-84 types
EDGE CONNECTORS
Special purchase of these 0.1 " pitch double-sided gold-plated connectors enables us to offer them at less than one-third their original list price!
18 way $41 \mathrm{p} ; 21$ way $47 \mathrm{p} ; 32$ way 72_{p}; 18 way 41 p
40 way 90 p

THE NEW 1978-9 GREENWELD

CATALOGUE

FEATURES INCLUDE:

- 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplement
- Reply Paid Envelope
- Priority Order Form

Size 36 POLYTHENE SHEET around the home. 100 sheets for Et 50 Box of 150 for $£ 19$.

AIR FRESHENER KIT

 As featured in Nov EE. Complete kitinc. case and instructions. Only $£ 795+$ 55p p\&p (SAE for details)

CAPACITOR BARGAINS

 $800 \mathrm{mfd} 250 \mathrm{~V} 76 \times 38 \mathrm{~mm} 82 \mathrm{p}$; $400 \mathrm{mfd} 40 \mathrm{PC} \times 40 \times 25 \mathrm{~mm} 7500 \mathrm{mf}$ 40 V PC mount $40 \times 25 \mathrm{~mm} 7$ for $£$$2000 \mathrm{mfd} 10 \mathrm{~V} 38 \times 18 \mathrm{~mm} 10$ for 100 pF discs 100 for $\& 1.05 \mathrm{mid} 30 \mathrm{~V}$ dises 100 for EI 1.68
1 mfd 20 V discs 100 for $\mathbf{E 2} \cdot 36$ 2. 2 mfd 3 Y discs 100 for $\mathbf{E 3 . 9 4}$
4.7 mfd loov polyester 6 for $\mathbf{E 1}$

EXPERIMENTERS

Based on the C500 chip, this pack of parts enables the more experienced 4 function calculator. The compre hensvie data supplied includes full size layout of PCB required, type of suitable display and keyboard that can be used etc. Components included in the pack are C5OO ealeulator chip, driver IC, all compo nents for invertericlock
R's C's etc. All for only $\mathbf{E 3} \mathbf{5 0}$.

EASY BUILD SPEAKER DIY KITS

 Specitaliy designed by RT VC for cosi. conscious hi fi enthusiasts, these kits incorporate two teak-simulate enclosures "two EMI $13^{\prime \prime} \times 8$ " (approx.) woofers, two tweeters and a parr of matching ciossovers Supplied complete with an easy-to follow £2800 circuit dagram. and crossover companents. STEREO PAIR Input 15 watts ms . 30 watts peak, each unit SPEAKERS AVAILABE WITHOUT CABINEIS SPEAKERS AVAILABLE iweeter, and matching crossover components. stereo par Power handing is watts sms. 30 watts peak. $+p \& p\{3.40$

BUILT AND READY TO PLAY

SPEAKERS Two models - Duo Hb, teak veneer, 12 watts rms. 24 watts poak. $18 \frac{1}{\frac{1}{4}} \times 13 \frac{1}{2} \times 7 \frac{1}{\prime \prime}^{\prime \prime}$ (approx.). Ouo III, 20 wartsrms. 40 watts poak. $2^{\prime \prime} \times 13^{\prime \prime} \times 11^{\prime \prime}$ appx

RECORD tor the $0-\frac{1}{4}$ Y man who requires a steren unit as a tudget price. PLAYER comprising ready assembled stereo emp. module. Garrard KIT auto/manual deck with cueing device, pre-cut and finished cabinet work Output 4 watts per channel.
phones sockat and record/raplay socket
$\mathbf{I} 9.95$ including 2 SPHERICAL HIFI speakers
p\&e $\int 405$
AM/FM STEREO TUNER AMPLIFIER CHASSIS COMPLETE. Ready butt. Oesigned in a slim form for compact. modern instailation Rotary Controls Vol On/Olt. Bass. Trable, Balance
Push Buttonstor Gram. Tape VHF. MW, LW and 5 button totary selection swatth
Power Supply Seleniem Bridge-35V OC from $210-250 \mathrm{~V}$ AC. 50 Hz laput
Aarial Fernte 8 " : y /." built into chassis for LW and MW plus fiying lead for FM aerial
Power Ouput 5 watts per channel Sine at 2% TH0 into 150 hm 7 watts speech and music
Tape Sonsitwity Playback $400 \mathrm{mV} / 30 \mathrm{KOHM}$ for max output Record $200 \mathrm{mV} / 50 \mathrm{~K}$ oulput ava, able from 25 KHz ($150 \mathrm{mV} / 100 \mathrm{~K}$) deviatio FM signat. Frequency Ringo. (Audio) 50 Hz to 17 KHr withn \pm Id

VALUE FOR PERSONAL SHOPPERS 16016 VOLT MAIHS TRAMSFOBMER. $21 / 2$ amp

ESR Record auto deck on plinth win stereo cartidge ready wired.
LED 5 tunction men's digital watch
staintess stael finish
LCD 5 function men's digital watch
stainless steel finish
LCD 8 Function CHRONOGRAPH men's digital watch. stainless steel finish.
125 Watt Power Amp Madule
f2.50

Mains power supply for above unit LEWTEX Monitor loudspeaker cabine LEHTEK Monitor loudspeaker cabine
size approx. $43 /^{\prime \prime} \times 15 /^{\prime \prime} \times 151 /^{\prime \prime}$ 100K Meltiturn Varicap tuning pots, 6 for MUSIC CEMTRE CABIMET with hinged smoke acrylic top, finished in natural teak veneers, size $301 / 4^{\prime \prime} \times 14 /^{\prime \prime} \times 71^{\prime \prime}$ approx f11.95
f5.95
£ 7.95
f13.95
f13.95
$f 3.50$
f24.95
f1.00
£5.95
mULLARD Built power supply
DECCA DC 1000 Stereo Cassette P.C B. £1.50 complate with switch oscillator coils and tape-heads.
£2.95
DECCA 20w Stereo Speaker kit comprising
$28^{\prime \prime}$ approx. bass units $+231 / 反^{\prime \prime}$ approx
tweeter inc. crossovers
videgmaster Super Scora TV Game.
with pistol mains operation
VIDEO MASTER' Door Tunes
(24 different titites)
Micro cassette tape recorder
7" TAPE TRANSP ORT Mechanism-a salection of modals frem
£20.00
f14.95
f12.95
f13.95
f8.95
f10.95
STEREO RABIO/CASSETTE RECORDER. MW, LW, SW and Stereo VHF. 6 watts output Battery mains operation. $\mathbf{1 7 5 . 0 7}$ PORTABLE RAOIO/CASSETTE RECORDER, AM/FM with clock LW, MW. SW, VHF mains/battery operation.
f41.95

20×20 WATT STEREO AMPLIFIER Viscount IV unit in teak-finished cabinet. Silver fascia with aluminium rotary confols and pushioutions,
mains indicator and stereo jack socket Function
 plus fuse $20+20$ watts rms $40+40$ watts peak.
30×30 WATT AMPLIFIER KIT
30×30 WATT AMPLIFIER KIT
For the experienced conistructor complete in every detail. $\mathbf{£ 2 9 . 0 0}$ Simidar faciities as Viscount IV amplifier $60+60$ peak
p\& $£ 250$ Similar facilities as Viscount IV amplifier $60+60$ peak

* SPECIAL OFFER: PRCKAGE PACE WHH 30×30 KIT

MK II version operates into 4 to 15 ohmis speakers. Specially designed by facilities as VIscount N amplifier $60+60$ peak supplied with 2 GOOD AHAS CDMPACI $12^{\prime \prime}$ Bass wofers with cropped sides. 14,000 Gaus mannet. 30 watts rms handling +3 """ approx magnet. 30 watts rms handling $+3 \%$ approx
tweeters and crossovers

AOD-ON STEREO CASSETTE TAPE DECK KIT R
AOD-ON STERE O CASSETE TAPE DECK
Oesigned tor the experienced DIY. man. This kll comprises of a lape transport mec ready built and tested record replay electronics with twin V.U. meters and evel control for mating with mechanis Specifications: Sensitivily - Mic.
0.85 mV : 20 K DHMS; Din 40 mV
 " 400 K OHMS : Output - 300 mV RMS perchannel " 1 KHz fromi 2K OHMS source: Cross Talk - 30dt : Tape Counter 3 Otgit. Resettable: Frequency qespanse $-40 \mathrm{~Hz}-8 \mathrm{KHz}^{2} \pm 6 \mathrm{db}$ Deck Motor 9 Volt DC with electronic speedreguiations Key Functions - Record. Rewind. $\quad \mathbf{1 9} 95$ Key Funcions - Record. Rewnd
Fast Farward. Play. Stop \& Elec

Order by giving Credit card NUMBER only
23. EDGWARE RDAD. LONDON W 2'C HIGH STREET. ACTON W3 6NG ALL PRICES INCLUDE VAT AT $12 \frac{1}{2}$ All items subject to availability. Price correc 1.9 .78 and subject to change without notice.

50 WATT MONO DISCO AMP
629.95 £29.95
$P \& P$ f2.50 Size approx. (x) $33 \%^{\prime \prime} \times 5 \%^{\prime \prime} \times 53 /{ }^{\prime \prime}$ 50 watts mms . 100 watts peak output. Big teatures include two disc inpuls, both tor ceramic cantidges, tape input and microphone input. Level mixing controls fitted with integral push-pull swatches. Independent bass and treble controls and master volume
SPECTAL OFFER. The above 50 watt amp plus 4 Goodmans Type 8P. 8" speakers. Packoge price $645.00+f 4.00$ P\&P.

70 \& 100 WATT

 MONO DISCO Size approx.$14^{\prime \prime}=4^{\prime \prime}=10 \frac{1}{a}$ Brushed alumanami

$M P$ 数

freta andron controls.
mastervolume
tape ievel. mic leval. deck level. PLUS INTER OECK FADER lor perfecr graduated change from record deck No 1 to No. 2. or vice versa. Pre fade level control 70 watt $£ 57$ IPFLI lets YOU hear next disc before tading 40 wall paat 0 p $f 4.00$ it in. VU meler monitors putput level.
Output 100 watts RMS 200 watts peak. 100 watt $\mathbf{6} 65$ 6. 2 H. 4 BOS 95 TYPE Belt drive chassis turnable less cartidge. f255 p \& $\mathbf{Z 2 4 . 9 5}$ BSR MPGO TYPE Single play ecord plaver less cartridge f15.95 CARTRIDGES to suit above f255p\& enorel magnetic stereo $£ 4.95$
BSR automatic record player deck, cueing device
and stereo ceramic head.
$£ 2.55$ o op $\mathbf{E 9 . 9 5}$ f2.55 p \& o $\mathbf{E} 9.90$ GARRARD DECK CC10A. Record changer with cue and sterreo
ceramic cartridge. Size $12^{\prime \prime} \times 812^{\prime \prime}$ approx. f2 00 p \& p $\mathbf{f 7 .} 55$ PERSOMAL SHOPPERS
GARRARD 86SB Deck: $\mathbf{\Psi 2 4 . 9 5}$ GARRARD SP25 MKIV Deck GAKRARO35SB Deck. $\mathbf{£ 2 4 . 9 5}$ with Shure $\mathbf{1 2 6 . 9 5}$

PORTABLE DISCD CDMSOLE Here's the big-valua portabla disco console from RT-VC! It features a paif of BSA MP 60 type auto -riturn, single play professiona with sarias mecord backs. Nus all ine comfers and Whith-if you need to give iabulous disco performances.

What did Fleming say to Edison about antennas in 1912?

We're not sure, but we can be sure that they couldn't have been discussing the merits of the Joystick VFA (Variable Frequency Antenna, -5-30 Mhz). That had to come later.... so that now, you can have a versatile antenna system that acts as a ground plane right through the six lower amateur bands and on all frequencies in between. Short wave listener and transmitting amateur alike will benefit from a VFA-if you can't hear 'em, you can't work 'em.

SYSTEM "A"
£41'00
250 w. p.e.p. OR for the SWL.

SYSTEM "J"

£47.95
500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
Featuring the World Record Joystick Aerial (System 'A'), 8ft, feeder, all necessary cables, matching communication headphones. Deliv. Securico necessary cables, matching communication headphones. Detivinecuric

PACKAGE No. I
As above with R. $\mathbf{3 0 0}$ RX. SAVE $£ 14 \cdot 15$!
s?29-10
PACKAGE No. 2
£237•45
Is offered with the FRG7 RX. SAVE $£ 14$-15:
PACKAGE No. 3
Here is a lower-price, high-quality package featuring the LOWE SRX30., with al
£184•50
RECEIVERS ONLY, inclusive delivery, etc.
R. $\mathbf{3 0 0} \boldsymbol{£ 1 8 4 . 5 0} \quad$ FRG7 $£ 199.95 \quad$ SRX $\mathbf{3 0} £ 146.75$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

or write for details, send 9p stamp

Anf:

 G3VFA

5, Partridge House, Prospect Road, Broadstairs, CTIO-ILD. (Callers by appointment).

Transistors		* ${ }^{\text {BF }} 197$		DIODES	74		\%
${ }^{\text {ACY }}$ A 68	34 90	- BF 198			7427		
BC 107	8	BF 257	26	IN 4001/2 4	7440	15	10W Axial 9
${ }^{\text {BC }} 108$		BF	24	IN 4004/5	7445		
${ }^{*} \mathrm{BC} 147 / \mathrm{A}$		BF	28	$1 \mathrm{~N} 4006 / 7$	7472		
${ }^{*}{ }^{\text {B BC }}$ (148/C	8	${ }_{*}^{\text {* } \mathrm{BF}}{ }^{337}$	30		${ }_{74} 743$	30 49	ALITEMS NEW
${ }^{*} \mathrm{BC} 158$	9	BFR 80	25	*is ${ }^{\text {is }} 941$	7474	27	Pa
${ }^{*} \mathrm{BC} 171 \mathrm{~A}$	10	BFY 50		LINEARIC's	74.74	43	100 Gen. purpose tran-
${ }_{*}^{*}{ }^{\text {BCC }}$ 207B 2078	11.	BSX 19/20	16 130	$7418 \mathrm{PP} \quad 19$	7476 7480	30 45	sistors incluading, BC $149,2 \mathrm{~N} 3703$, etc.
BC 348	11	BU 205	150	5558 P	748	69	
BC 35	12	BU 208	160	${ }_{7812}^{\text {Regulators }} 60$	7483	72	20 Transistors incl. 80
${ }_{\text {BCY }} 71$	14	MJE 340	175	$7815 \quad 60$	7488	${ }_{33}^{30}$	115, BDK 131, etc. 25.50
BCY 72	14	MJE 520	43	TTL	749	75	100 mixed W/W Resis-
BD 115	43	OC 201	70	$7400 \quad 13$	74L.91	145	tors including 2.5 W ,
BD 131	${ }^{33}$	TIP 31A	38	74.0024	7493	32	5W, 10 W , etc. ± 3.50
BD 139	33	*ZTX $212 / \mathrm{B}$	$\stackrel{62}{16}$	7404 7404 14	${ }^{494}$	50	100 off 74 series with
BD 695A		*ZTX 302	11	74L04 27	74100	5	preformed pins inclu-
BD 69	${ }_{6}^{65}$	*2TX 502	12	740514	74107	29	7430, etc. 84
- BF 185	18 24	${ }^{2 N}{ }^{\text {N }}$ 3053	16 20	7408 17 7409 17	${ }_{74123}^{7421}$		PAK 5 . purpos
* ${ }^{\text {BF }} \mathbf{B F} 195$	9	- ${ }^{2} \mathrm{~N} 3055$	50	$\begin{array}{ll}7433 & 30 \\ 7420 & 15\end{array}$	${ }_{74151}^{74150}$		odes including, \%41 is 44 , etc.
Quantity Discounts Available. Min, Order $\mathbf{5 2} \mathbf{0 0 0}$ p. \& D. 30p. VAT please add 8% except those marked* which are $12 \cdot 5 \%$. S.A.E. for lists. Export, Wholesale and Industrial enquiries welcome.							
52, Barkby Road, Syston, Leicester LE7 8AF. Tel: 0533609391							

56 FORTIS GREEN ROAD, MUSWELL HIL N10 3HN. TELEPHONE: 01-883 3705			
OUR LATEST CATALOGUE			
CONTAINS FREE 45 pence WORTH OF VOUCHERS			
CONTAINS MICROPROCESSORS + BOARDS, MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.			
SUPERSAVERS			
ALL full spec devices by texas			
TEXAS741		TIMER	RED LED
		555	TIL209
			(INC CLIP)
$\begin{gathered} 5 \text { for } \\ £ 1 \cdot \mathbf{0 0} \end{gathered}$		$4 \text { for }$	
		VEPRICE	

IC A4 BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).

Telephone 01 $440 / 8641$
MAIL ORDER ONLY. MINIMUM ORDER 80p
Some leading makes available. VAT invoices issued on request.
II New and Boxed. "Quality" Branded Valves. Guaranteed 3 months, BVA etc.
$\mathbf{6 \%}$ Allowed in lieu of Fuarantee! Already deducted from our Prices!

DY86/7DY802ECC81ECC82ECC83ECC85ECHB1ECL84ECL82ECL86EF80EF85	52p\|EF86 54	GY501 51.30	PCF802 ${ }^{80}$	36	90 p	PY50	1.75
	52 p EF89 55p	PC86 78p	PCF805 $£ 1 \cdot 60$	PL81A	65 p	UBF	4
	53p EF183 55p	PC88 $\quad 78$	PCF806 75p	PL83	50 p		
	60p EF184 55p	PC97 72p	PCF808 51.70	PL84	50		
	53p EH90 60p	PC900 65p	PCL82 62p	PL500		UCL82	
	50 p EL41 90p	PCC84 35p	PCL83 80p	PL504\}		UCL83	
	55p EL84 50p	PCC85 50 p	PCL84 62p	PL508	E1.50	UF89	
	80p EL509 52.90	PCC89 52p	PCL85 $\}$	PL509	¢ 83.05	UL41	
	52p EM84 90p	PCC189 55p	PCL805 ${ }^{\text {c }}$	PL519	E3 10	UL84	
	60p EY86/7 46p	PCF80 80 p	PCL86 70p	PL802	£2.85	UY41	
	70p EY500A £1-50	PCF86 60p	PCL200 51.40	PY88	75 p	UY85	
	41 p EZ80 42p	PCF200 $21 \cdot 50$	PD500 £3.60	PY800		U25	
	45 p EZ81 - 44p	FFOO1 52p	PFL200 . $£ 1 \cdot 35$	$Y 801$	60	\%	
	offer return of po Post free over	$\begin{aligned} & \text { t service. Cl } \\ & 0 . \quad £ 6 \text { to } £ 21 \end{aligned}$	O ONLY, No 80p (max.)	O.D.		NY O	ERS
Items in stock at time of going to press but subject to							
STOP PRESS if unavoidable. One valve post $13 P_{2}$ each extra valve $6 p$. Large valves $2 p$ each extra.							
EL519, etc. MAX 75p. LISTS AND ENQUIRIES, S.A.E. PLEASE!							
EX S		ALL PRI	ICES INCLUDE		(a) 1212\%		
NQUIRIES WELCOMED FROM TRADE and RETAIL (same pric							

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaınıng and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especialiy for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE: P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathe matics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladiy sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to.

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Channel Islands

NAME
ADDRESS

W \& A ELECTROTECHNICS LIMITED

465 CREWE ROAD SANDBACH CHESHIRE.

SALE of NEW and GUARANTEED unused integrated circuits surplus to our requirements. All prices include VAT, add 25p for p\&p. DISCOUNTS, over £10 less $7 \frac{1}{2} \%$, over £20 less $\mathbf{1 5 \%}$ over $£ 50$ less $\mathbf{2 0 \%}$ cash with order.

PROGRESSIVE RADIO

31 CHEAPSIDE, LIVERPOOL L2 2DY. Tel: 051-236-0982

SEMICONDUCTORS ALL FULL SPEC. TBA800 I.C.'s 10 for $\mathbf{5 5} \mathbf{5 0}$. LM380 80p, LM381 $95 p$, NE55 33p, 7448 PIN 23p, 741 S (wide bandwidth) 8 pin $35 p$. TIL 305 Alpha numerica display (with data) £2.50p. BX504 opto isolators infra red led to photo celf, 4 lead 25 p,
BFY50 plastic 14p, 723 REGS i.C.'s 14 pin 35p, BD533 33p. MRD3051 photo transistors 35 p , FETS similar to 2N381918p, MOSFET similar 40673 35p, Intel C1103 1024 bit mos rams $95 p$, CD4051 45p, 72314 pin I.C.'s 35 . Special Offer 6 v speed regulated cassette motor ex equip as new 55 p. New 8 track 12v cartridge motor $£ 1$ - 25 p.
DIODES, BY127 9p, IN4002 4p, IN4005 7p, 600 y 3 amp 17p, ORP61, Multard new boxed 30p. MAN3A 3 mm led displays 50p, Min. Nixie 587 OST 75p.
Pot core unit, has six pot cores including one FX2243 (45 mm) and two FX2242 (35 mm) 3
TO3 sil. power transistors on heat sink $3-20 \mathrm{~m} / \mathrm{m}$ panel fuseholders and panel with TO3 sil. power transistors on heat sink $3-20 \mathrm{~m} / \mathrm{m}$ panel fuseholders and panel with various MOTORS. Model fype 9-5-6 volts 20p 'BIG INCH' sub min motor 115 4 OVAC SYNCH. MOTORS WITH GEARBOX, $1 / 5$ r.p.m. 75p, 1/24th r.p.m. 35 r.p.m. 25p £1-20p, Crouzet 115 VAC 4 r.p.m. 95p. 12v D.C. 5. Pole 35p.
HI-SPEED MORSE KEY, ALL METAL £2 25p. PLASTIC VERSION 95p.
PLESSEY WINKLER SWITCHES, 1 Pole, 30 way, 2 Bank Adj. Stop, 75p
Crystal microphone inserts 37 mm 45p, Grundig electret condenser inserts with built in
FET preamp $61 \cdot 50 \mathrm{p}$, ELECTRET PENCIL HAND MICROPHONES IK IMP WITH STAN OARD JACK PLUG £2.85p, TIE CLIP CONDENSER MIKES OMNI, 1 K IMP, (u5es deaf SOLDER SUCKER high
, high suction, eye protection shield $\mathbf{£ 4} \mathbf{9 5} \mathbf{9}$.
PROJECT BOXES, BLACK ABS PLASTIC WITH BRASS INSERTS AND LID, $75 \times$
UUZZERS, GPO Open typ $32 \mathrm{~F}, 15 \times 95 \times 3660 \mathrm{p}$
Solid State buzzers, miniature, 6 -9-12 Large plastic domed type loud note 6 or 12 volts 50p,
TAPE HEADS, Mono Cassette £1-30p. Stereo cassette £3.00, BSR MNI330 half track dual imped. heads £1-75p, TD10 Dual head assemblies 2 heads both $\frac{1}{4}$ track R/P with built in erase, mounted on bracket, $\mathbf{E 1} \cdot \mathbf{2 0 p}$. SRPGU $\frac{1}{4}$ track R/P £1-95p.
 CRYSTALS 300k 40 p 50 V AC
CRYSTALS, $300 \mathrm{khz}{ }^{40 p}, 50 \vee \mathrm{AC}$ cam units, motor switching ten $\mathrm{c} / 0$ micro switches,
MAINS TRAMSFORNERS, all 240V AC Primary, postage
transformer. $6-0-6100 \mathrm{ma}, 9-0-975 \mathrm{ma}, 12-0.1250 \mathrm{ma} 75 \mathrm{p}$ each (15 p). 0-4-6-9 150 mackets per ing bracket, 65 p (20p). $12-0-12100 \mathrm{ma} 95 \mathrm{p}$ (15p). 12 V 500 ma 95 p (22p), $12 \mathrm{~V} 2 \mathrm{amp} £ 2 \cdot 25$ (45 p). $12 \mathrm{~V} 4 \mathrm{amp} £ 2 \cdot 75$ (54 p). $15-0-15 \mathrm{~V} 1 \mathrm{amp} £ 2 \cdot 10$ (45 p). $30-0-30 \mathrm{~V} 1 \mathrm{amp} £ 2 \cdot 75$ (54 p). $\mathbf{0 - 1 2 - 1 5 - 2 0 - 2 4 -}$
 £2. 20 (54 p). Murata MA401L $40 \mathrm{KM} 2 \mathrm{rec} / \mathrm{send}$, Large mains solenoid 25lb pull $2^{\prime \prime}$ travel. $£ 3 \cdot 95 \mathrm{p}+54 \mathrm{p}$ Post
J.H.F. TV Tuners, push button (not varicap) new and boxed $\mathbf{5 2} \mathbf{5 0 p}$. Miniature toggle switches, SPST $8 \times 5 \times 745 \mathrm{p}$, DPDT $8 \times 7 \times 750 \mathrm{p}$, DPDT $\mathrm{c} / \mathrm{o} 12 \times 11 \times 9 \times 75 \mathrm{p}$, Min. push to make or push to break $16 \times 16 \mathrm{~mm} 15 \mathrm{p}$ each type. Slider switches, OPDT standard 15p, Min 12p, Std. c/o 20p. Roller action micro switches 15p.
TOOLS Small side cutters $5^{\prime \prime}$ insulated handies $£ 1.35 p$. Snub nosed pliers $5^{\prime \prime}$ insulated sets, 10 leads with insulated croc clips each end, different colours $80 p$. Telephone pick up coll, suction type with 3.5 mm jack plug 50 p . 9 volt battery eliminators, 240 v ac Input 9 v dc out at 120 mA stabilised replaces PP3. PP6, PP7. PP9 $£ 2.45$ p. Edge connectors, 0.164 way $65 \mathrm{p}, 34$ way $40 \mathrm{p}, \mathbf{0 . 2} 18$ way 15 p . 13 amp rubber trailer extension sockets 38 p . LA4230 on/off switch, straight probe $£ 2.00$, curved probe (cassette) $£ 2.35 \mathrm{p}$.

TERMS: cash with order (or ofial orders fom colleges eta). Post
wise shown. overseas post at cost. VAT inclusive prices. S.A.E. for lists.
Progressive Radio, 31 Cheapside, Liverpool L2 2DY. Tel : 0512360982.

BRAND NEW SURPLUS MODULES

AND OTHER ITEMS
${ }_{7}^{2}$ STAGE STEREO PRE-AMP on $6^{\prime \prime} \times$ $7 \frac{3}{2 \prime \prime}$ P.C.B. 4 push buttons, gram, tape in/out, aux. on/off. 4 slider controls. vol.,
bal., bass., treble, input approx. 100 mV for 300 mV out with' knobs. Now only $£ 6.00$

ELAC SPEAKERS $8^{\prime \prime}, 8 \Omega$ with tweeter
Phillips control box for coupling stereo cassette to stereo car radio. Includes stab supply, transformers A.F. 3 Din plugs,
$8^{\prime \prime} \times 5^{\prime \prime}$ L.S. Units, 4 ohm--8w pk ceramic magnet. Good hi-power car speakers,
pair.

STEREO GRAM AMP on 12 " $\times 1 \frac{1}{2}$ " P.C.B. $3 W+3 W$ for 100 mV in controls for 8Ω L.'S. or 25 V DC for 15Ω L.S. $£ 5 \cdot 90$ Suitable 14 v transformer and rect. ordered With gram amp
Singly Tun

Two above mounted in attractive rexine $5 \frac{1 / 2}{}$. Open back-Gives 8 ohm, $16 \mathrm{~W}^{4}$ pk 5 ery efficient, $\frac{1}{2} \mathrm{~W}$ fills a room, 10 W fills a
small hall with very clear speech. $£ 8.50$. small hall with very clear speech. $£ 8 \cdot 50$.
Very smart car control box. Contains stab supply, 7.5 v coupling trannies, 3 P.B.'s
3 DIN olugs, screened cable, 2 DIN socket Easily modified, diagrams supplied. £1-90
Belling Lee-mains power supply unit for masthead ampliffer. Gives 15 v stabilised or feeding up co-ax. Easily modified to give 12 v at 100 m
SMART BOX
£1-90

BRAND NEW AUDIO AND R.F. REPLACEMENT PANELS. Send sae for list.

Example 1 PC $218 \mathrm{G} 3 \mathrm{~W}+3 \mathrm{~W}$ tuner amp AM-FM.
Includes 13 transistors, 8 mini IF and osc
coils, rect. and smoothing. Over 120 coils, rect. and smoothing. Over 120 supplied.
Requires Tuner head, switches, yol. and
tone pots.
Example 2 PC 256B. Play/rec. amp pane Ineludes Track selector, play/rec. and rec. comp. switching. Provision for pause erase. Layout and circuit diagrams erase. suplied.
Requires AC 161/162, vol. and tone con-
trols, and $24 v$ trannie. Only 82.00 For stereo: 2 boards $£ 3.50$

TV tuner. UHF transistorised s / m drive
Aerial socket panel etc. As used on GEC 2000.

Brand new £2. 50
Audio \& radio panels, damaged or incom plete, Thorn man'f'd. Hundreds of modern
useable components including PB useable components, including PE
switches, transistors, R 's \& C 's, tants \& electrols. Trimmers, mini Toko IF's and osc. coils, 465 and $10 \cdot 7$

31bs Lot $\mathbf{£ 5} \mathbf{0 0}$
$9 v$ Cassette Motors 40 mm dia $\times 35 \mathrm{~mm}$ with 2 mm dia. Shaft $\times 10 \mathrm{~mm}$ long runs
$\mathrm{OK} 6 \mathrm{v}-12 \mathrm{v}$ self-reg. OK 6v-12v self-reg.
2 Gang Tuning-caps. 3 Types $500+500 \mu \mathrm{~F}$. aiso OSC/R.F. A.M. and VHF all geared S/M drive. Any type.
C.W.O. +25 p p\&p.

Prices incl. VAT. Sae for list

ELECTRONICAL SUPPLIES CROYDON
40, Lower Addiscombe Road, Croydon, CRO 6AA. Tel: 01-688-2950.

Build any Project-Fast and Easy

It's the new deal for project builders from Lektrokit! A complete new range of breadboarding and testing devices. At prices anyone can afford. For any project anyone could want to build- from one-chip simplicity to 1,000 -chip complexity.
It's fast and easy project building, too. You simply push components in and pull them out. No soldering, no de-soldering, no chance of heat damage. You can make design changes instantly, keeping full leads on components.
In fact, with Lektrokit, you can build a project as fast as you used to sketch a layout. And a lot more easily.

LEKTROKIT completes the circuit

See Lektrokit at one of the Lektrokit dealers near you. There's bound to be one they're springing up everywhere. Send for the name of your nearest - plus FREE fullcolour catalogue-to:
Lektrokit Ltd., Sutton Industrial Park, Earley, Reading, Berks RG6 1AZ
Telephone 0734669116

BURGLAR ALARMS

WE HAVE STOCKS OF EVERYTHING YOU NEED. CALLERS WELCOME. OPEN 6 DAYS
EXPRESS POSTAL SERVICE FREE CATALOGUE SEND S.A.E. $\underset{£ 37.00}{ } \mathbf{M a x i}$ guard MK4 Ultra Sonic Detector 12 volts D.C. special price $637.00+$ VAT
Control Unit $1006 \mathrm{~B} \mathbf{£ 1 9 . 5 0}$ plus $\boldsymbol{£ 1 - 2 0}$ p\&p (Mains/Battery complete unit)
MAGNETIC CONTACTS from 50p TAMPER JUNCTION BOXES 24p MATS LARGE $28^{\prime \prime} \times 15^{\prime \prime}$ STAR SIZE $6^{\prime \prime} \times{ }^{24 \prime \prime} \quad 1 \cdot 20$ DOOR LOOPS COMPLETE \quad 59p $\begin{array}{lllll}\text { WINDOW FOIL } \\ \text { KEY SWITCHES } & \text { mts. } & \mathbf{2 . 4 5} & \text { BELLS \& SIRENS FROM } & \mathbf{6 . 0 0} \\ & \mathbf{2 . 1 0} & \text { BELS COVERSFROM } & 4.00\end{array}$
ELECTRONIC CAR ALARM ONLY $\mathbf{6 5 . 0 0}$.
plastic coated
Please add VAT $12 \frac{1}{2} \%$, Post 70p min. C.O.D. Free on orders over $£ 20$.
A. D. E. (SECURITY) CO., 217 WARBRECK MOOR
TEL: 05I-525-3440
STOP PRESS ! Trade Price List Available
Applications on Official Stationery only

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX-30
For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think able cost and is the answer to this eternal problem.
The SRX- 30 provides AM, CW, USB and LSB reception on all frequencies from 500 kHz to 30 MHz . All right, so does your Sooper Blooper Mk. 3 but you can't set the Sooper Blooper dial to the frequency you want and be sure that it's correct! The SRX-30 tuning system is so simple to operate. You have a dial reading in MHz from 0-29 and a main tuning dial reading $0-1000 \mathrm{kHz}$. So-if you know that
Radio Slotovia is broadcasting on 10.295 MHz , you set the MHz dial to 10 , the Radio Slobovia is broadcasting on 10.295 MHz , you set the MHz dial to 10 , the
kHz dial to 295 and there you are The MHz dial setting is not critical, as stability kHz dial 10295 and there you are. The MHz dial setting is not critical, as stabiling
is guaranteed by a triple mixing drift cancelling system, thereby overcoming is guaranteed by a triple mixing drift cancelling syste
another problem in your Sooper Blooper Mk. 3: drift.
A further drawback to cheap receivers is massive image interference on the higher frequencies due to the use of a low IF, typically 455 kHz . The cure for this 40 MHz -so goodbye to frst IF images. You could of course find or aromd system as this in the Racal RA17 series receivers: after all, the SRX- 30 has copied the basic idea from this very receiver. The big drawback to the RA17 (apart from the price !!) is that unless you have the muscles of a prize fighter, lifting the RA:7 may send you for a holiday at Hernia Bay (staying at the Truss House?).
To summarize, the SRX -30 covers 500 kHz to 30 MHz with excellent dial readout and reset accuracy; it has all mode (AM, CW, SSB) reception and is equally at home in broadcast or amateur bands: It has all the factilites of a top class communications receiver, RF gain. fine tuning, selectable sidebands. built in loudspeaker, operation from ac mains or 12. Dc, rugged construction and super styling and all at an attractive price- 175 inc. VAT. Carr $£ 3$.
See it soon at your nearest stockist, you will be agreeably impressed.
For all that's good in Amateur Radio, contact:
LOWE ELECTRONICS ITD., 119 Cavendish Road, Matlock, Derbyshire. Tel: 06292430 or 2817.
For full catalogue, simply send 45 p in stamps and request catalogue CPW.

Receivers and Components

RECHARGEABLE BATTERIES

EXTENDED RANGE

HP2 (size ' D ') £3.56: HP11 (size ' C ') £2. 57. Sub 'C' $£ 1$ 1.64.
 £11-66. 9 volt PP7 $£ 9 \cdot 14.9$ yolt PP9 £14.30. All chargers
$£ 7 \cdot 97$ (except for PP3-is $£ 5 \cdot 82$ and penceli-is $£ 6-98$), 6 volt 8Ah sealed lead acid £11 88 . New child's, $2-4$ mile range.

ELECTRIC CAR

SAE for all details \& lists plus $£ 1 \cdot 00$ for rec. booklet "Nickel Cadmium Power". Add o \& p 10\% (5% orders Dept PW Sand Plant Dept. PW, Sandwell Plant Ltd., 201 Monmouth
Drive, Sutton Coldfield, West Midlands. Callers to tDrive, Sutton Coldfield, West Midlands. Callers to tDrive, Boldmere, Sutton Coldfield. 0213549764.

VALVES

Radio - T.V. - Industrial - Transmittine Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post. Air or Sez mail, 4000 Typas in tock, 1930 to 1976. Obsolete types a apeciality. List 30p. Quotation S.A.E. Open to callers Mondey to Saturday 9.30 to 5.00 elosed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves, Projector Lamps and Semiconductors.

> COX RADIO (SUSSEX) LTD.

Dept. P.W. The Parsde, Exet Wittering, Sussex PO10 8BN
Wast Wittering 2023 (STD Code 024366)
TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20p brings list. GRENFELL PLACE, MAIDEN. HEAD, BERKS SL6 1HL.

BRAND NEW COMPONENTS BY RETURN

 $1000 / 15 \mathrm{~V}$-15p. $1000 / 2 \mathrm{VV}-18 \mathrm{p} .1000 / 40 \mathrm{~V}-35 \mathrm{p}$. Subminiature bead tantalum
$0.1, ~ o f i c t r o l y t i c c . ~$

 Yortical Mounting Coramic Plate Capm. 50 V .
E12 22 pf. 1000 pf. E6 1500 pf.-47000 pf.-2p

 Mylar (Polyester) Film 1000. Vertical Meg. -001, 002, 005-mp. 01, 02-4p. 04, 05-5p. Miniature Film Resiatora Highatab. El2 5%.
0.125 watt 10Ω to $2 M 2 \Omega . ~$
 0.500 watt 10Ω to $2 \mathrm{M} 7 \mathrm{\Omega}$.
1.000 watt 10Ω to 10 Ma .

IN4148—3p, IN4002_5p. IN4006-7p, IN4007-8p BCl07/8/9, BCI47/8/9, BCI57/8/9, BFI94 \& 7-9p. 20 mm fuses 15, 25, 5, 1.0, 2.0, 3.0\& 5A-3p. Post 10p (Free over E4). Prices VAT inclusive.

THE C. R. SUPPLY CO.
127, Chesterfield Road, Sheffield S8 ORN

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 7 \cdot 50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertise ment does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertioing Practice.
2. The publishers reserve the right to refuse or withdraw any advertiement. 3. Although every care is taken, the Publishere shall not be liable tor clerica or printers' errort or their conse quences.

CRYSTALS as previously advertised plus: $\mathrm{HC} 33 / \mathrm{U} 1 \cdot 0,2 \cdot 0,3 \cdot 0,1 \cdot 008,1 \cdot 8432,2 \cdot 4576$, $2 \cdot 5625, \mathrm{MHz}$ £3.35. $3 \cdot 579$ and $4.433 \quad £ 1 \cdot 20$ each. HCl8/U: $3 \cdot 2768,4 \cdot 096,4 \cdot 8,4.9152$, $5 \cdot 12,6 \cdot 144,6.4,6 \cdot 5536,6.9375,18 \cdot 432$, $38 \cdot 6667,116 \cdot 0, \mathrm{MHz}$ £3-00. Sub-miniature HF crystals, any freq. $10-180 \mathrm{MHz}$ made to order 6 weeks, $£ 3 \cdot 75$. All prices post paid, no VAT. AM/CW/SSB Communication Re ceiver and preselector modules and kits. SAE details. P. R. GOLLEDGE ELEC TRONICS, Merriott, Somerset TA16 5NS Tel: 046073718.

D.Y.4. THERMONETER KIT
Based on the ICL 7106 single chip DVM the kit contains a $3 /$ digit LCD display, a PCB, the ICL7106, and ail components and instructions to make a $0-200 \mathrm{mV}$ FSD DVM. Components also supplled to enable this to be converted to a digital thermometerRequires a 2 mA 9 V supply (PP 3 battery) ONLY £2199
TGUCH EONTROLLED LIGHTHG KIS
OPTO EOMPONFNTS \quad 300W LIGHTDIMMER KIT
24 HR. \&OCK/APPL\&ANGE TIMERKIT
Switches any appliance of up to 1 kW on and off at preset times once a day. KIT contains: AY-5-1230 Clock/ Appliance Timer IC, $0.5^{\prime \prime}$ LED display, mains supply, display drivers, switches, LEDs, triac, PCBs and fufl instructions. ONLY £13.75
PDPHLAR INTEGRATED CIRCUIS
400Y PLASTIC.TRIACS + STAF EARGAINS $*$
34
QUANTITY DISCOUNTS ON REQUEST ADD 8% V.A.T. +25 P P\&P. MAIL ORDER ONLY TO: T. K, ELECTRONICS 106 STUDLEY GRANGE ROAD, LONDON W7 2LX

2M MOSFET CONVERTER: Parts for this and other projects from various publications. Many difficult-toobtain items.
$38 \cdot 6666 \mathrm{MHz}$ crystals HC48u $\mathbf{£ 2} \cdot \mathbf{7 5}+20 \mathrm{p}$ p\&p. $\mathbf{4 . 7 \mu \mathrm { H }}$ Cambion chokes $60 \mathrm{p}+15 \mathrm{p}$ p\&p. R.F. power amplifiers. Increase the output of your hand-held transceiver or mobile. 144 to 174 MHz (Specify any 2 MHz section within these limits). 20, 40, 70 and 100 watt versions; custom built. Low-band (4 m) also available.

P. N. JEVONS (ELECTRONICS) 691 CHRISTCHURCH ROAD BOSCOMBE. BOURNENOUTH.

MAIL ORDER ONLY. SAE with enquifies appreciated.

SUPERPACKS FROM CODESPEED

Full Spec. Devices

PACK C1 5×12 pin Hybrid Circuits containing 16 resistors/capacitors. Ideal for P.C.B. miniaturisation. PACK DM 5×14 PACK DM1 5×14 pin dual in line chips each conred signal diodes. With data. PACK E2 A calculator style 8 oigit Liquid Crystal display $0 \cdot 33^{\prime \prime}$ high. With data $£ 2 \cdot 95$.
PACK E3 Same as Pack E2 but PACK E3 Same as Pack E2 but 0.5" high digits. With data £4-25.
PACK M1 Terri
PAly $£ 1 \cdot 00$. Terrific value, two calculator keyboards.
PACK H2 9×2102, a 1024 bit static RAM. The most popular of all random access memories in protessional and amateur electronics. With full data. £i $\cdot 25$. culator chip and data book. £1-00.
PACK P1 $1 \times$ MM5330 Digitai Voltmeter I.C. Now you can build your own digital multimeter or panel meter with this yersatile chip. With data and circuit es.95. PACK T2 Back by popular demand, A high contrast 3i digit Liquid Crystal wristwatch display with data.
Et. 00 .
PACK T4 A O. 8" Giant red LED 12 hour ctock displav. Common cathode, 32 digit. An ideal size for your clo k project. With data, $\mathrm{EA}_{4} 95$.
FULL SPEC. SNT4 SERIES
SN74136 60p. SN74155 11 .00. SN74156 50p. SN74164 15p. SN741 1 60. SN74175 60p. SN75107 $81 \cdot 00$. PACK EA A $11^{\prime \prime}$ digit 0.3^{*} high 7 segment gas dis-
charge display. Requires 180 V Anode voitage. Makes an excellent replacement for LED's in your mains operated projects. With full data-iantastic value at only 90p.
PACK E5 Same as Pack E4, but dual digit. 90p.

Untested Devices

PACK E1 880% Guaranteed Good) $5 \times$ MAN3 7 segment $0.127^{\prime \prime}$ common cathode LED displays. Excellent value, $£ 4 \cdot 00$.
PACK DL1 (Untested-so no guarantees) Fantastlc value for mones. A jumbo pack of 30 mixed l.C.'s, There could be anything in this pack, linear, digital
who knows? Guaranteed a seit-out at only Ei ©0. Satisfaction guaranteed or return complete pack for replacement or refund,
MAIL ORDER ONLY - NO CALLERS PLEASE Postage and Packing please add 25p (Overseas Orders add 60p)
CODESPEED P.O. Box 23, 34 Seafield Road, Copnor, Portsmouth, Hants., PO3 5BJ

MAINS TOUCH SWITCH kit. 400 watt load capacity. Details free. I. G. bowman (Dept. PW), 59 Fowey Avenue, Torquay, S. Devon.

Ladders

LADDERS. Varnished 20ft 9 in extd. $£ 29 \cdot 72$ Carr $£ 2 \cdot 70$. Leaflets. Also Alloy ext., up to $62^{1}{ }_{2} \mathrm{ft}$. LADDER CENTRE (WLS2) Hales field (1) Telford. Tel: 586644. Callers wel come.

Service Sheets

REG. OFFICE I4B QUEENS PARADE, NORTH EALING W5 3HU

SERVICE SHEETS - COLOUR TV SERVICE MANUALS
Service Sheets for Mono TV. Radios, Record Players and Tape Recorders 75p. Please send large Stamped Addressed B.R.C. PYE ECKO PHILIPS ITT/KB SONY Gmakes of Colour Television Receivers by return of pos
comprehensive T.V. repair nanuals by D. M. Court. S.A.E. for details. prompt reply
G. T. TECHNICAL INFORMATION SERVICE 10 Dryden Chambers, 119 Oxford St., London WIR IPA

LARGE SUPPLIER OF SERVICE SHEETS
All models at 75p. TV, Radio, Tape Recorders, Record
All models at 75p. TV, Radio, Tape Recorders, Record Players, Transistors, Stereograms, Radiograms. All at $75 p$ each plus s.a.e. except Colour TV \& Car Radios. TV Sheets full-length, 24×12, not in bits and pieces. All other sheets also fuli'-length. Free Fault Finding chart o TV catalogue with order.
C. CARANNA
74, Beaufort Park, London NWit 6BX. 01-458 8812

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc., with free faulifinding guide, from 50 p and SAE. Catalogue 25p, and SAE HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

Books and Publications

THE DALESFORD SPEAKER BOOK

 by R. F. C. Stephens.This book is a must for the keen home constructor. Latest technology DIY speaker designs. Contalne fuil plans for infinite bafle and reflex desions for 10-100
 pald. $\$ 5$ Overseas).

VANKAREN PUQLISHING
5 SWAN STREET
WILNSLOW
CHESHIRE

COMPREHENSIVE TV Repair Instructions for your set $£ 4 \cdot 50$ with circuit (if requested). Free catalogue unique TV/other publications. Ause (PW), 76 Church Street, Larkhall, Lanarkshire ML9 1HE.

UFO CHARTS: Map; Anti-Gravity Systems; Wave Prediction; Optical Detector; Flight Pattern; Propulsion Theory; 90p each. Pulse Induction Metal Detector. (Plans): R\&E, Highlands, NEEDHAM Market, Suffolk.

WHY NOT START YOUR OWN BUSINESS REWINDING ELECTRIC MOTORS. A genuine opportunity to success. LARGE PROFITS. You can't help but make money if you follow the easy, step by step, instructions in our fully illustrated manual showing how to rewind Electric Motors, Armatures and Field coils as used in Vacuum Cleaners, Electric Drills and Power Tools. NO PREVIOUS KNOWLEDGE IS REQUIRED, as the manual covers in 13 chapters, where to obtain all the work you need, materials required, all instructions, rewind charts and how to take data etc. A gold mine of information. How to set up your home workshop and how to cost each job to your customer. $\mathbf{£ 4 \cdot 0 0}$ plus 30 p P\&P. UK. CWO. to INDUSTRIAL SUPPLIES, 102, Parrswood Rd, Withington, Manchester 20. Dept. PW.

Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY7 8JZ.

SERVICE SHEETS, Radio, TV etc., 10,000 models. Catalogue 24 p , plus SAE with orders, enquiries. Telray, 154 Brook Street Preston PR1 7HP.

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc. 75p plus SAE. Colour TV Service Manuals on request. SAE with enquiries to B.T.S., 190 King's Road, Harrogate, N. Yorkshire. (0423) 55885.

Aerials

G2DYM ANTI-TVI TRAP DIPOLES

Models: S.W.L., E29-81: 500 watt or S.W.L.' E41.06: inc. insulators, 75 ft . feeder, VAT and P \& P. Aerial matching units S.W.L. and 500 watt $10-160$ metres inc. shipping and B.C. Bands,
$£ 16-25$: ine. VAT and P \& P. Send $10^{\prime \prime} \times 7^{\prime \prime} 12+\mathrm{p}$ f16-25: ine. VAT and $P \& P$. Send $10^{\prime \prime} \times 7^{\prime \prime} 12 \frac{1}{2} p$
S.A.E. and $3 \times 9 p$ stamps for full details, aerial S.A.E. and $3 \times 9 p$ stamps for full
article, test reports and testimonials.

G2DYM, LAMBDA, WHITEBALL
WELLINGTON, SOMERSET

Courses

COURSES-RADIO AMATEURS EXAMINA. TION. City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, professional examinations etc) write or phone fessional examinations etc) write or phone
-THE RAPID RESULTS COLLEGE, Dept JX1, Tuition House, London SW19 4DS. Tel: $01-9477272$ (Careers Advisory Service) or for prospectus requests ring 01-946 1102. (24hr Recordacall).

For Sale

PRACTICAL WIRELESS May 1962 to February 1972. Practical TV. January 1965 to March 1969. Various Wireless Worlds from 1971 to 1974. Offers: SYMES, Titchborne Redlynch, Salisbury, Wilts.

NEW BACK ISSUES of "PRACTICAL WIREI.ESS" available 65p each post free. Open P.O./Cheque returned if not in stock. Bell's Television Service, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

ELECTRONIC KITS-SAE for new catalogue, and clearance list of obsolete kits. AMTRON UK, 7 Hughenden Road, Hastings, Sussex.

SEEN WHISTONS CAT? 5,000 odds and ends. Mechanical/Electrical Cat. Free. WHISTON (Dept. PW), New Mills, Stockport.
7 VOLS. PRACTICAL WIRELESS between March 1959 and April 1970, £3 per volume. Tel: 067552342.

SIGNAL GENERATOR MARCONI TF144G. In working order. Range 85 kHz to 30 MHz . £25. Enquiries: Poءt Office Radio Station, Somerton. 093522811.

BULK TRANSISTORS New Tested OC42 $£ 15 / 100$, OC71 £10/100, OC72 $£ 15 / 100$. P.P. free, quantity discount 1,000 plus. Southport Electronics (Dept. PW), 134 Duke St., Southport PR8 5BZ. Tel: 070440678.
"RUN YOUR OWN BUSINESS" as an extra home activity. A genuine opportunity to success. Full details on receipt of SAE. Industrial Supplies, 102 Parrswood Road, Withington, Manchester 20. (Dept. PW).

Wanted

FRENCH, DUTCH, GERIMAN AACHEN Philips 1930's R.F. Staged table receiver with Mono Knob wanted. Correspondence postage repaid by buyer. Barry Moss, 16 Burke Ave., Berala, Sydney, N.S.W. 2141. Australia.

OSCILLATOR Coil L7 for K.B. Transistor Portable T.P. 41 or equivalent. Write to Box No. 142.

WANTED: Clean new semiconductors, IC's etc. Good prices paid. Hewitts, 52 Barkby etc. Good prices paid.
Road, Syston, Leicester.

Electrical

STYLI-Illustrated equivalents (List 28) also cartridges, leads, etc. Superb quality and service at lowest prices: Fully guaranteed, free for S.A.E. from FELSTEAD ELECTRONICS (PW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.

Tapes

CASSETTE TAPES; C60 six for $\mathrm{fl} 1 \cdot 60$. C90 four for $£ 1 \cdot 60$. Case and index included. VAT paid. Please add 10% postage. West, (A2) 56 Frankwell Drive, Coventry CV2 2FB.

Miscellaneous

ATTENTION SWLs \& DYers superior aerial wire 20swg, copper plated, steel core, tough pve insulation. 4 p per metre +2 p per metre carr. AMTEST, 55 Vauxhall Street Worcester WR3 BPA.

> Cassette MORSE CODE TUITION AIDS
> $\begin{aligned} & \text { Cassette A: 1-12 w.p.m. for amateur radio examination. } \\ & \text { Cassette B: } \\ & \text { 12-24 w.p.m. for professional examination }\end{aligned}$ $\begin{aligned} & \text { Cassette } \\ & \text { preparation. }\end{aligned}$
> Morfe by light systers avail Morse Key
> Unit tor sending practice
> Prices each Cassette (including booklets) e4-so. Morse $\begin{aligned} & \text { Key and Buzzer } £ 4 \cdot 50 \text {. } \\ & \text { Prices include postage etc., Overseas Airmail } £ 1 \cdot 50\end{aligned}$ extra.
> $\begin{aligned} & \text { MHEL ELECTRONICS (Dept P.W.). } 12 \text { Longshore } \\ & \text { Way, Milton, Portsmouth POA }\end{aligned}$ Way, milton, Portsmouth POA P.S.

NICKEL CADMIUM BATTERIES PP3 \&4.09, PP3 charger £5. At. All above Nickel Cadmium batteries are guaranteed EVER READY' full spec, and are supplied complete with solder tags (except PP3) Just in stock-New rechargeable sealed lead acid malnJust in stock-New rechargeable sealed lead acid main-
 Quantity prices available on request. Date and charging circuits free on request with orders over $£ 10$ otherwise $30 p$ post and handing (specify battery type), all prices 30 p post and handing (specify battery type), all prices include VAT. Please add 10% P \& on orders under include VAT. Ple $\mathbf{£ 1 0 . 5 \%}$ over $£ 10$.
 Cheques, postal orders, mail order to: SOLID STATE SECURITY DEPT PW., 10, Bradshaw Lane, Parbold Wigan, Lancs. 02575-4726.

CW DXERS are you having trouble with clutter on the HF bands. If so this Filter could be the answer, simply plug in series with the phones and dig out the DX. with the phones and dig out the DX.
Cased ready for use only $£ 12.50$. inc. PCB module only $£ 5.75$ inc. C. L. Jervis, 15 Mercer Grove, Wolverhampton.

ORDER FORM PLEASE WRITE IN BLOCK CAPITALS

Please insert the advertisement below in the next available issue of Practical Wireless for insertions
I enclose ChequeIP.O. for £.........................
(Cheques and Postal Orders should be crossed Lloyds Bank Ltd, and made payable to Practical Wireless).

NAME

ADDRESS \qquad
PRACTICAL MIRELESS
amG, Clasifited Advertisement Dapt., Rm. 2397, King's Reach Tower, Stamford Streat London SE1 sLS Telephone 01-26f 3e4e Rate
22p per word, minimum 12 words. Box No. 60p exfra. Company registered in England. Registered No. 53626. Regietored office: King'a Reach Tower, Stamford Street, London SEI oLS

ALFAC etch resist transfers and other p.c. board drawing materials available from stock, SAE details. Ramar Constructor"Services, Masons Road, Stratford upon Avon CV37 9NF.

PRINTED CIRCUITS and HARDWARE

Readily mvailable supplies of Constructors' Hardware. Prinfed circuls boards, top quality for individual designe. Prompt service. Send 25p for catalogue from:

RAMAR CONSTRUCTOR SERVICES Masons Moad, Stratfordon-Avon. Warwiekt Tos: 487

AMPLIFIERS AND TEST EQUIPMENT

GUITAR PRACTICE AMPLIFIERS. Two input with volume-mix and tone controis. Output 2 W into 8 STABILIZED AND METERED POWER SUPPLIES STABILIZED AND METERED POWER SUPPLIES,
A range of vartable and fixed voltage supplies, high and low currents to suit any bench requirements.
FUNCTION GENERATORS. SIne, square and triangular outputs in the frequency range 5 Hz to 100 kHz . Precision attenuation 0-60dB down on max output of 10 V r.m.s. in 600 ohms. $£ 35$.
FREQUENCY METERS. Analogue meters for the precise measurement of frequency in the range 5 Hz to look Hz Irrespective of waveform or amplitude-f 3 3.
LOGI-TUTOR. Designed for schools and colleges, a compact system for understanding logic design and basic computer principles. A number of models from 235.
All brand new equipment made to professlonal standards in our own workshop. No strplus, no seconde, no odd modules, everything complete and guaranteed. Trade nodels and our custom-designed hi-fl ampliffer systems to.
EDiz-ELEOUPP; 28 Buckwood Ave, Dunstable, Beds

CNC MILLING for those awkward panels or complicated "Special" Heat sinks or whatever--short or long runs. Please ring or send details of your requirements to: DRURY BROS, Unit No. 6, Headley Road, St Albans, Herts. Phone 65094.

LOSING DX?

RARE DX UNDER GRM? DIG it OUT from whistles and cw with a Tunable Audio Notch Fiter, inc. speaker amplifier. only $\pm 8 \cdot 90$ LOSING RADIO if 200 KHz to Medium Wave Converter, built-in antenna, inductive TIME WRONG? MSF 60 KHz Receiver Kll . 70 TiME WRONG? MSF 60 KHz Receiver EI3-70, or with parts (no case or pcb) for sequential
YEAR, MONTH. DATE. DAY. HOURS, MINUTES, SECONDS dis play E24-40.
SiG. GEN.? $10 \mathrm{~Hz}-200 \mathrm{KHz}$, sine/square, $\mathrm{E} 10-80$. NO LONG WAYE? $100-600 \mathrm{KHz}$ Converter feeds your $4.1-4 \cdot 6 \mathrm{MHz}$ receiver, only $£ 9.90$. feeds your 4.i-4.6 MHz receiver. only 9.90 . KHz Crystal Calibrator, markers to VHF E13.80.
Each easy-assembly kit includes all parts, printed circuit, case, postage etc, instructions, money back assurance so SEND off NOW. Overseas prices-irc

CAMBRIDGE KITS
45 (PL) Oid School Lane, Milton, Cambridge

SUPERB INSTRUMENT CASES by Bazelli manufactured from P.V.C. Faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p. Chassis punching facilities at very competitive prices, 400 models to choose from, free litarature (stamp wonld be appreciated) BAZELLI, Dept No, 25, St. Wilfreds, Foundry Lane, Halcon, Lancaster LA2 6LT

100 WATT GUITAR/PA/MUSIC A MPLIFIER
With supers ireble, bass. Gverdrive, slimilne, 12 monthe guarantee. Unbeatable offer at Exs. Also twin channe with separate treble/bass per channef 天iti. Money returned if not obsolutely deflghted within 7 days. Also tuzz bexes great sound, robust c
watt 12 in . speakers $822-50$.
AII Inclusive of p.p. Send cheque or P.O. to
62 WHLLAABSON A Hiplification
62 THORNCLIFFE AVENUE, DUKINFIELD
CHESTIRE, TEL: $063-3445007$

ENAMELLED COPPER WIRE				
awa	1 tb	802	402	202
14-19	$2 \cdot 4$. 6	5
$20-29$ $30-34$	2.45 2.60	1.76	- 18	.
35-40	2.85	1. ${ }^{*}$	1-14	-78
Incluelve of pap and VAT. SAE brings Catalogue of copper and resietance wires In all coverings.				
THE SCIEMTIFIC WIRE COMPANY PO 曾ox 20, London E4 BW Reg. Offes: ${ }^{2}$ Coningeby Gardons,				

Resistors $\frac{1}{2} \mathrm{~W} 5 \% 2 R 2-2 \mathrm{M} 2$ (E12). 10 each or more of each value $90 \mathrm{P} / 100.100$ assorted, our mixture 75P/100. C60 cassettes in library cases 30P each. Miniature relays $17 \times 30 . \times 28 \mathrm{~mm}$ 600n coil 4 sets change over contacts 50 P each. Prices include V.A.T. Add 10% postagé.

Salop Electronies, 23 Wyle Cop, Shrowsbury.

NOTICE TO READERS

Whilst prices of goods

shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

	PB Electronics (Scotland) Dept PW1 9 Radwinter Road, Saffron Walden, Essex CB11 3HU				All prices include VAT Available from all good component stockists
U-DeCnology $\mathbf{£ 7 . 5 5}$ $+55 p p \& p$ Push ICs into numbered holes no soldering, when circuit is proven working transfer component by component to matching Blob-Board NOW WITH NEW 20 PROJECT BOOKLET. $\mathrm{U}-\mathrm{DeC}+$ control panel + IC Blob-Board + booklet + step by step instructions.				S-DeCnology Build any discrete project. Simply push component into hole. No soldering. Contains 9 project booklet. Control panel. Blob-Board.	
Build any project onto Blob-Board. No layout drawings. No cutting or breaking or tracks. Roller Tinner for super soldering. Low priced. Each BlobBoard pack contains a project booklet.				S-DeK-IT Perfect KIT for all users of discrete components. Contains S-DeC + control panel + 9 matching BlobBoards, 20 Jumper leads, KIT of PREFERRED VALUE RESISTORS ONLY 9 project book to build Radio-Receiver, Radio£6.48 Microphone etc. Complete $+55 p$ p \& p in box with component tray.	
	CODE 2821C 2841 C 2881C 288D	$\begin{aligned} & \text { SIZE } \mathrm{mm} \\ & 115 \times 78 \\ & 127 \times 203 \\ & 154 \times 203 \\ & 165 \times 241 \end{aligned}$	PRICE £0.71 £1.90 ¢3.69 ¢2.88		

NEW!
BUILD-IT-YOURSELF TEST GEAR KIT
BASIC SERVICING INSTRUMENTS WITH
EASY STAGE BY STAGE BUILDING INSTRUCTIONS—IDEAL FOR THE AMATEUR

MULTI RANGE TEST METER

A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic $3^{\prime \prime}$ general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts/cm

WATFORD ELEGTRONIES
33/35, CARDIFF ROAD, WATFORD, HERTS, ENGLAND
MAIL ORDER, CALLERS WELCOME. Tel. Watford $40588 / 9$ ALL DEVIC
ORDES
CASHCHE
ANDECUC
ORAD AN
ORDRS
VAT
 Export orders no VAT. Applleable to U.K. Customers only. Unless to devices marked . To the rest add $12+\%$ Wo stock Ground. Nearest Underground/Br, Rall Station: Wattord High Street Open Monday to Saturday 9 a, m,-6p.m. Ample Free Cap Parking space avaliable.

 DUBILIER: $1000 \mathrm{~V}: 0.01,0.015$ 20p; 0.022 22p; $0.04726 \mathrm{p} ; 0.138 \mathrm{p}: 0.4753 \mathrm{p}: 1.0$ 175p.
POIYESTER RADIAL LEAD (Values In
 ELECTROLYTIC CAPACITORS: Axial lead type (Values are In μ F).
500v: 10 40p; 47 68p; 250v: 100 65p; 63v: 0.47, 1-0, 1.5, 2•2, 2.5, 3.3, 4.7, 6.8, 8, 10,

CERAMICTRIMMER	CRYSTALS
CAPACITORS	
$2-7$ OF:	$4-15 \mathrm{PF}: 6-25 \mathrm{pF}:$
100 KHz	

LINEARIC'S	LM300H	17	
702 l	LM301A	30	N
$709 \mathrm{C} 8 \mathrm{pln} \quad 35$	LM304	240	
723** 14 pln 45	LM308т	110	
741*8pln 22	LM311 ${ }^{*}$	120	RA
747C 14 pin 70	LM318H	205	RC
$748 \mathrm{C} 8 \mathrm{pln} \quad 36$	LM318S	195	RO
$7538 \mathrm{pin} \quad 150$	LM324A	79	SG
810159	LM339	80	SL
AY-1-0212 580	LM348	95	SN
AY-1-1313A 660	LM349*		SN
AY-1-1320 305	LM379	375	SN
AY-1-5050 180	LM380	95	
AY-1-5051 145	LM381N	145	S
AY-1-5721/6 195	LM381AN	248	SN
AY-3-8500* 390	LM382	125	SN
AY-3-8710* 750	LM3900**	60	SN
AY-5-1224A ${ }^{\text {+ } 260}$	LM3909N*	70	SN
AY-5-1230** 450	LM3911*	125	
AY-5-1315 560	LM 732	125	
AY-5-1317A 630	M252AA*	750	
AY-5-3500** 510	M253AA*	795	
AY-5-3507* 415	MC1303	88	
AY-5-4007 650	MC1304P	280	
AY-5-8100* 735	MC1310P	149	
CA3011* 82	MC1312PQ	195	
CA3014* 137	MC1458P*	50	
CA3018** 68	MC1488*	95	A
CA3020 170	MC1489*	95	TB
CA3023 170	MC1495	395	TB
CA3028A* 80	MC1496L	92	TB
CA3035 240	MC3340P	150	TB
CA3036 110	MC3360P	120	TC
CA3043 190	MC3401	70	BX
CA3045 140	MEM780	205	TB
CA3046 70	MFC4000	85	
CA3048 200	MFC6040*	97	
CA3075 175	MK50362*	650	TB
CA3060E* 70	MK50398**	635	TB
CA3081 190	MM57160*	620	TB
CA3089E 210	NE543K	210	TD
CA3090AQ 375	NE544	185	TD
CA3123 200	NE555*	29	TL
CA3130* 85	NE558DB*	60	TL
CA3140 70	NE 560+	325	
ICL7106* \$10	NE581*	395	
/CL7107** 975	NE5623*	440	ZN
ICL8038CC* 335	NE564*		ZN
ICM7205** 1150	NE565A*	12	帾

44A WESTBOURNE GROVE LONDON W2 55F Tel: 727 5641/2/3

A SELECTION FROM OUR STOCKS OF FULLY GUARANTEED FIRST QUALITY VALVES

183GT	0.65	6AR5	0.70	6DT6	$0 \cdot 80$	12BA6	0.65	ECL86	$0 \cdot 85$	GY50]
1 $\times 2$ B	1.20	6AS6	1.00	6GH8A	0.80	12BE6	0.80	EF80	0.40	GZ30
3Q4	0.75	6AS7G	1.20	6GK5	0.70	12BH7A	0.75	EF85	0.48	GZ32
354	0.50	6AT6	0.75	654	1.20	12BY7A	0.80	EF86	0.60	KT66
5 AQ5	0.75.	6AU6	0.50	6J5GT	$0 \cdot 80$	35W4	$0 \cdot 70$	EF92	0.75	KT88
5AT8	0.80	6AV6	0.75	$6] 6$	0.55	50C5	1.00	EF97	0.70	OA2
5 T 4	$0 \cdot 75$	6AW8A	0.75	617	0.80	DAF96	0.60	EF98	0.90	OA3
5U4G	0.60	6AX4GTB	1.00	6K6GT	0.85	DF96	0.60	EF183	0.70	O82
5U4GB	0.95	6AX5GT	1.30	6L6GT	0.85	DK92	1.00	EF184	0.70	OB3
5U8	0.75	6BA6	0.45	6N7GT	0.85	DL96	0.60	EFL200	$1 \cdot 20$	OC3
5V4G	0.60	6BE6	0.48	6Q7	0.90	ECC84	0.60	EH90	0.60	OD3
5×8	0.90	6BF5	0.85	6SA7	0.80	ECC85	0.48	EL34	0.95	PABC80
5Y3GT	0.65	6BF6	$0 \cdot 75$	6SG7	0.80	ECC86	1.25	EL36	0.95	PC86
5Z4GT	0.65	68H6	0.85	6SK7	0.80	ECC88	0.75	EL.81	0.65	PC88
6AB4	0.55	68]6	1.20	6SL7GT	0.70	ECC89	0.80	EL82	0.60	PC92
6AB7	0.60	6BN6	0.80	6SN7GT	0.70	ECC189	0.80	EL83	0.60	PC95
6AC7	0.80	6BQ7A	0.65	6SQ7	0.80	ECF80	0.60	EL84	0.45	PC96
6AF4A	0.80	6BR8A	1.20	6V6GT	0.65	ECF86	0.80	EL86	0.75	PC97
6AG5	0.65	6BS7	$2 \cdot 30$	6×4	0.60	ECF200	0.90	EL95	0.70	PC900
6AG7	0.85	6BU8	0.85	6X5GT	0.60	ECF201	0.90	EL504	0.80	PCC84
6AH6	0.95	6BW7	1.00	12AC6	0.80	ECF801	0.95	EM80	0.65	PCC85
6AJ5	0.65	6BZ6	0.65	12AD6	0.80	ECF802	0.95	EM81	0.60	PCC88
6 6K5	$0 \cdot 55$	6827	0.70	12AE6	0.85	ECH81	0.55	EM84	0.60	PCC89
6AK6	0.75	6C4	0.55	12AT6	0.60	ECH83	0.60	EM87	1.00	PCC189
6 6K7	$0 \cdot 85$	6CB6	0.55	12AT7	0.50	ECH200	0.80	EY51	0.60	PCF80
6AL5	$0 \cdot 40$	6CS7	0.85	12AU6	0.65	ECL80	0.60	EY81	0.50	PCF82
6AM6	0.70	6CU5	1.00	12AU7	0.47	ECL81	0.75	EY87	0.50	PCF84
6AM8	0.70	6CU6	1.00	12AV6	0.85	5CL82	0.60	EY88	0.55	PCF806
6AN5	$2 \cdot 50$	$6 \mathrm{CY5}$	1.00	12AV7	1.00	ECL83	1. 15	EY500A	1.50	PCL81
6AN6	0.85	6 CY 7	1.00	$12 A \times 7$	0.55	ECL84	0.70	EZ80	0.50	PCL82
6AQ5	0.85	6DQ6B	1.45	12AY7	0.85	ECL85	0.65	EZ81	$0 \cdot 50$	PCL84

VAT is not included. Please add $12 \frac{1}{2} \%$ on all items except those marked with asterisk, on which VAT is 8%. Postage and packing charges are $\mathbf{£ 0} \cdot \mathbf{1 0}$ per $£$ subject to a minimum of $\mathbf{E 0} \cdot \mathbf{3 0}$. Minimum order charge for Approved Credit customers. $\mathbf{E 2 0} \cdot \mathbf{0 0}$. Minimum Transaction Charge for mail orders $£ 1 \cdot 00$.

OUR NEW 1977/1978 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR $\mathbf{6 0 . 3 0}$

\section*{| THIS is the Catalogue you need |
| :---: |
| to solve your |
| somponent |
| buying |
| problems! |}

- The finest components catalogue yet published.
- 128 A-4-size pages.
- About 2,500 items clearly listed and indexed.
- Profusely illustrated.
- Bargain List sent free.
- At £1-25. incl. p. \& p., the catalogue is a bargain.
Send the coupon below now. HOME RADIO (Components) LTD., Dept. PW, 234-240 London

JONES ELECTRONIC SUPPLIES
Retail Shop Open Mon., Thurs., Fri., $98 . \mathrm{m},-7-30$ p.m. Weds \& Sat. 9 am. 6 p.m. Tues. 9a.m. -1 p.m.

Transistors	1ED'S 0.2 '"	$6 \times$ mixed value pots 65p
BC107 4p	yellow 12p	$20 \times$ NPN audio trans. 35p
BC108 5p	green 14p	$10 \times$ mixed W/W resistors 24p
BC109 5p	orange 14p	$10 \times$ ceramic capacitors $12 p$
AC128 6p	General use	$10 \times$ mixed zener diodes 30p
BD187 32p	P-channel	$18 \times$ mixed small resistors 12p
BYX88 series	FET's 12p	$3 \times$ toroidal cores mix/sizes 40p
Zener diodes	Jap type transistor	Transistorised Inverter
2V7 to 33v 4p	audio output trans-	panel assembly. 12v dc in-
2 w zener dode	formers no data 18p	200/240v AC 50 Hz sq/wave
15/16v metal cased 6p	Button type nicads $1 \cdot 2 \mathrm{v} 50 \mathrm{ma} \mathrm{32p}$	20 watts out, $9^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ new at $\mathbf{£ 3} .75$ plus $30 \mathrm{p} \mathrm{p} / \mathrm{p}$
Please note som full spec. Caller	me devices are identifi s by appointment.	ed \& marked by us and may not be

