

practical

brtaill leading journal for the radio \& electronic constructor

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

COPYRIGHT

(c) IPC Magazines Limlted 1978. Copyright In all drawings, photographs and articles published in Practical Wireless Is fully protected and reproduction or imitation in whole or in part is expressly forbldden. All reasonable precautlons are taken by Practical Wireless to ensure that the advice and data given to readers are rellable. We cannot however guarantes it and we cannot accept legal responalbillty for ItPrices are those current as we go to press. CORRESPONDENCE
All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Practical Wretess", King's Reach Tower, Stamford Street, London SE1 gLS. All other correspondence should be addressed to the Editor, "Practlcal Wireless", Westover House, Wert Quay Road, Poole, Dorset BHis iJG. BINDERS AND INDEXES
Bindera ($\mathbf{E 2} 285$) end Indexes (450) can be supplied by the Poat Sales Department, IPC Magazines Letd., Lavington House, 25 Lavington Street, London SE1 OPF, Both prices include postage and VAT. Overeeas orders for binders should Include 00p to cover despatch and postage. All remittances should be made payabie to IPC Magaziner Llmitted, Commencing with Volume 52, the Index is included in Number 1 of the following Volume.

BACK NUMBERS

Some back lasues, mostly those publiahed during the last two years, are evaliable from our Post Sales Department (address above) at 65p each, Inclucing postage and packing to both home and overseat dettinations. Remittances should be made payable to IPC Magazines LImited.
SUBSCRIPTIONS
Subscriptions are availabie to both home and overseas addresses at $£ 10.60$ per annum, from "Practical Whreless" Subacrjption Department, Oakfield Houte, Perrymount Road. Haywards Heath, West Suesex RH18 3DH. Remittance ahould be made payable to IPC Servicen LImited.

QUERIES

We do not operate a Technical Query Service except on matters concerning conotructlonal articles publlehed in PW. We cannot offer advice on modifications to our publlahed dealgna, nor comment on alternative way of using them. We do not eupply service aheet nor Information on commerclal radios, TV. or electronic equipment.
All queries must be accompanied by a stamped self-addreased envelope, otherwise a reply cannot be guaranteed. We cannot anawer technical querles over the tolephone.

NEWS \& VIEWS

Editoria!

Caveat Emptor
PW Personality
Ted Parratt
News . . . News . . . News . . .
Hotlines.
Ginsberg
Recent developments in electronics
Production Lines

On the Air

Amateur Bands Eric Dowdeswell G4AR
MW Broadcast Bands Charles Molloy G8BUS
$\mathrm{S}^{1} \mathrm{~V}$ Broadcast Bands Charles Molloy G8BUS
VHF Bands
Ron Ham BRS15744
VHF Personality-Frank Luman Ron Ham BRS15744
\square FOR OUR CONSTRUCTORS
2m MOSFET Converter
A. J. Naller G4CFY

Listen to 2 m with yout h.f. bands receiver
PW "Wlmborne" Muslc Centre-2 N. B. Mattey
The amplifier/power supply module
μ DeCnology Project No. 6
David Glbson Audio oscilletor
PW "Glllingham" Frequency ReadoutD. S. Coutts Accurate tuning indication for your s.w. recelver
Aerlal Tuner .
F. G. Rayer G3OGR

A wide-range aerlal matching unit

GENERAL INTEREST

Using Translstor Pada
Improve the appearance and rellabillity of your projects
Amateur SSTV.
P. Barker

An introduction to slow-scan television
The Norton Amplifler
S. H. Davies

Basles of current-difierence amplifiers
Economlcal VMOS Power Devices.
Brian Dance
Using the new high-current t.e.t.s
AM Recelvers-Devices \& Clreuite-2.
M. J. Darby

Integrated circults for superhet recelvers
Landsat System Scans the Earth
Seaking out areas of natural resources
Our November listue will be publlahed on October 6th
(for detalis see page 43)

[^0]A superb solld state audio amplis． fler．Prand new components hroughout， 5 silicon iran．
sígiors plus 2 power output trangistors in pugh－pull． Full wave rectiecadlon． $\begin{array}{ll}\text { Outpur 日pprox．} & 13 \\ \text { watts r．m．s．into } 8\end{array}$ watts rimis．into 8
ohms．Frequency re sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3do，Fully integrated
ore－amplifier stape with separate Volume．Bass boost and Treble cut controls． Suitable for 8－15 ohm speakers．Inpus for cersmic ot crystal cartridge．Sensitivity approx．40my for full
outpot，Supplied ready butilt and tested，wieh knobs， esculcheon parth，input and output piugs．Overall

HARVERSONIC MODEL P．A．

TWO ZERO

An adyanced sozid state gencral purpose mono amplifier suinable for Public Adidress system， Disco，Guitar，Gram．，exc．Features 3 individually con－ trolleza imputs（cach input has a separate $2513 g e$ pre－
amp）．Input $1,15 \mathrm{mv}$ into 47 k ．Input 2 ， 15 mv into 47 k ． amplabinput 15 mv into 47 k ．Input 2， 15 mv into 47 k ．
（suitable for use with mic．or guitar etc．）．Input 3 200 mv into 1 mer ．suitable for stam，tuner．or tspe cte． Full mixing facilities with full range bass \＆trete controls．All ing its plug into standard jack sockets on front pancl．Output sacket on reas of chassis for an 8 ohm of 16 ohm speaker．Output in excess of 20 watts R，M．S．Fery attractively finished purpose buik cabint mude from black vinyl covered steel，with a brushed

 Mulard LPJISY RF－\｛F Assinte $\$ 70 \mathrm{KHz}$ \＆2．25＋
 Pye VHF／FM Tuner Head covering 88－108 M／Hz．10－7
 FM xang and $323 \mathrm{Pf}+323 \mathrm{Pr}$ A．M．Tuning gang ony

STEREO DECOOER
SIZE $2^{2} \times 3^{\circ} \times 1^{\circ}$ ready built．Prealigned and tested S［ZE $2^{*} \times 3^{*} \times \frac{1}{2}^{\circ}$ resdy built．Pre－aligned and tested
for $9.16 \mathrm{~V}^{2}$ neg．earth operation．Can be fted to almost for 9.16 V geg．earth operation．Can be fited to a amost
any FM YHF radio or tuncr．Slerep beacon light can be filted if requalred．Fuli detalls and instructions can elusive of hints and tips）supplied． 5600 plus 20 p P ．\＆P．Stereo beacon lizht if reauired 40 p extra．

MAINS OPERATED SOLID STATE

 AM／FM STEREO TUNER
$200 / 240 \mathrm{~V}$ Mains oper－ ted Solid state FM AM Stereo Tuncr，Coveriag
 Muz． Sor M．W，Ful AFC and $A G C$ on $A M$ and FM． Indicator．Built in Pre－amps with varlable output voltage afilustabie by pre－sct control．Max of Voltage 6か0miv RMS into 20 K Simuteted Teak finish cabinet Will maich almost any amplifier，Size $84^{\circ} W \times 4^{z} h \times$ Siciapprox． MAJNS TRANSFGKNEH

10 14 WA 「＇THITTI AMPLIFIER KIT
A stylishly fnished monaural amplifier with an output
of ty watis forn 2 ELGAs in push－suth．Super trepo－ duction of boih music and speech with negligible hum， Separate ituputs for mike and gram altow records and announcements to follow each other．Fully shrouded section whound output transformer io match $3-15$ s speaker and 2 independent volume controls，and separate bass and treble controis are provided giving Rood lift and cut．Valve line－ud 2 EL849，ECCR3． EF86 and EZRQ rectíier，Simple inseructlon buokle $25 \mathrm{P}+\mathrm{SAE}$（Free with parts）．Al parts sold separately．
ONLY $\$ 14.50$ P．\＆P．\＆t 40 ．Also available seady built and lested 819 00P．\＆P．犬 4.40 ．
WPOLYPLANAR WAFER－TYPE，WIDE RANGE FLELYPRANAR2＊WAFER－TYPE，WIDE RANGE Size $114^{2} \times 14 \mathrm{H}^{2} \times 1 \frac{7}{6}$ decp．Welght 190 z ．Power handiling 20W r．m．s．（ 40 W peak）．Impedance 8 ohm only．Response $40 \mathrm{~Hz}-20 \mathrm{KHz}$ ．Can be mounted on cellings，walls，doors，under tables，etc．，and used with or withour baffe．Send S．A．E．for full detarks，
Only £ 8.40 each + D．\＆ D ．（ont 90 p ，two $\mathrm{KI}, 10$ ）． Now availabie in either 8^{*} round version or $45^{\circ} \times 8 \frac{1}{*}^{*}$
rectangular． 10 warts RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ} \times 5 \cdot 25^{+}+$ rectangular， 10 warts RM
$\mathrm{P}+\mathbb{R} \mathrm{P}$ ．fone 65 p ． 1 wa 75 p ）．
MAsNF＇T1C FRE＊AMP．Sens， 3 mV in for 100 mV out， 15 to 35 V neg．earth．Equ，$\pm 1 \mathrm{~dB}$ from 20 Hz 1020 KHz
 20 P ．\＆P ．
2 PLASTCC CONE HF TWEETER 4 ohm， $53 \cdot 50$ DAF matched pair +50 p P．\＆

HARVERSONIC SUPERSOUND

10 ＋ 10 STEREO AMPLIFIER KIT

A really first－class Mi－Fj Stereo Amplifler Kit．Uses 14 frangistors including Silcon Translistors in the first five level of imprever boise Bass．Trebie and two Volume Controis．Suitable for use with Cerande or Crystal cartrides．Very simple to modify to sult magnetic cartridge－Instructions in cluded．Outpui stage for any speakers from 8 to 15 ohms．Compact design．all parts aupplied jocludlag drilled metalwork，high quality ready drilled printed circuit board with componens Identification cieazly marked，smart brushed anodiaed plurbinlum froot pancl with matching knobs，patre，soider，muts．bolts－ no extras to buy．Simple steb by step insuracalons protid of．Brief spectfication：Power outpult：14 fatis prota of．Brict specification：Power output： 14 witts
 $\pm M$ N：Full power bandwidsh： $\pm 3 \mathrm{~dB} 12-15,000 \mathrm{~Hz}$ Bass boost approx．to $\pm 12 d$ ．Treble cut approx．to －i6dB．Negative feedosek isdB over main amp． Power requirements $35 \mathrm{v}, \pm 11.0$ amp．
Overali Size $12^{\circ} w^{\prime} \times 8^{*} \mathrm{~d}$ ．$\times 2 \hbar^{\circ} h$ ．
Fully detailed 7 page construction manual and perts list fyee with kit or send 25 p plus large $\$$ ．A．E． AMPLIFRER KIT
Magnetic iniput components 33D extra
POWER PACK KJI COWER PACK KJT

15950 P．\＆P．95D
SPECIAL OFFER－only $£ 2 \dot{2 j} \cdot 75$ If all 3 Items
ordered as one thme plus $\varepsilon 125$ p．\＆D．
Also avail．ready buike and tested $£ 31 \cdot 25$, P．\＆P．£1． 50. HARVERSONIC STEREO 44
A solid siate sterepr smplifter chsssis．with an output of 3－4 watts per chamet into 6 ohm speakers．Ustag the latest higte technology integrated clrcult amplifers whith
built in short term thermat overlosd protection．Ah compontincs frejuding fectider smoothing ceDacitor fuse，tone conirol，volurne controls， 2 pin din speaker sowicets 85 pin din tape rec．／play socket bremounted on the primied circult pancl，size approx．9t＂$x^{2} 2 z^{\prime} \times 1$ ， max．depth．Supplied brdnd new \＆tested，with knobs， brushed anodised alurainlum 2 way escutcheon（to allow the amplifier so be mounted horizantainy or verticaily）at output of ifyate at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at itiso 40 p P \＆P if reguired Full conmection details gupplied． HA 343 Valve Audio Amp． $4 \frac{1}{2}$ ．output ready built and tested $58 \cdot 50-$－ 1.40 P．\＆R．Also HSC＇FOUR＇amp－ liter kit． $\mathbf{8 8} \cdot 00+\mathrm{fi}-40$ P．\＆P．

All prices and specifications correct at tlme of press and sublect to alteration without aotice．
（Dept．P．W．）I70 MERTON HIGH ST．，LONDON，S．W．19．Tel．：01．540 3985 Open $\boldsymbol{*} .30$－ 5.30 Manday to Friday．B．30－5 Soturday．Cieved Wednetday．

PLEASE NOTE：P ．\＆P ． CHARGES QUOTED APPLYTO U．K．ONEY．SEND SAE WITH all enoutries．

CRESCENT RADIO LTD
 I ST．MICHAELS TERRACE，WOOD GREEN， LONDON，N22 4SJ．0「－888 4474

FERAIC CHLORIDE
Anhydrous lerric chloride double sealed Itr．＇poly packs＇
PRICE： 65 P per ib PRICE：GSP per lo $+8 \%$ VAT HEAVY DUTY XOVER
2 WAYB OHM A 2 way 8 ohm H／D Xover suitable for L／S syscems up to 100 watt． Fitted wich scrow terminals for input，and 2 three position＂HF input，and z three position＇HF Flat．-3 dB or -6 dE ．

ONLY $53.00+6 \%$ VAT
A CRESCENT＇SUPERBUY＇ Goodmans 5＂ 8 ohm long throw HfD foudspeaker，
Mounting plate is integral with L / s chassis and has fixing holes with centres spaced ac $5{\frac{m}{}{ }^{\prime \prime}}^{2}$（diagonally）， ONLY $55.00+12 \frac{1}{2} \%$ VAT
TELESCOPIC AERIAL +1211 section telestopic zerialExtended length：I merre（39j＂）Fully clased： $135 \mathrm{~mm}\left(5 \dot{1}^{\prime \prime}\right)$Fixing：nut and bots fixing throughrecess at base of aeriat．ONLY 75p EACHI
LOUDSPEAKERS＋ $12 \frac{1}{2} \%$ VAT
$24^{\prime \prime}$（ $\mathbf{~ (7 m m)}$ ）or 75 ohm 90
$5^{\circ} \mathbf{8}^{\prime \prime}$ g chm Ceramic 1 I .30
$8^{\prime \prime}$＂ELAC＂${ }^{\text {g ahm }} 15 \mathrm{~W}$ dual $\mathrm{B}^{\text {＂＂GOL }}$＂GODMANS＂＇Audiom 5.00
$10^{\circ 1}$＂ELAC＇ 6 ohm $15 W$ 4． 76
$7^{7^{\text {cone }} \times 4^{n} 8 \text { ohm } 4 W}$ 6.50
6.20
GARGAIN LOUDSPEAKERS$+12 \frac{1}{2}$ VAT$21^{\prime \prime}$（ 60 mm ） 8 ohm（limited$2 \mathbf{z}^{\text {sra }}$（70） 8 ohm （limiter 60p2 l＇$^{\prime \prime}(70 \mathrm{~mm})$ B ohm（limited，

LOUDSPEAKERS＋ 8% VA
12 ．
$12^{\prime \prime}$＂MeKENZIE＂ 8 ahm 75W dual
12＂${ }^{\text {cone }}$＂McKENZIE＂ 8 oltm ${ }^{233.62}$Eeneral purpose $\mathrm{El8.37}$$12^{* *}$＂GOODMANS＂＇＇Audiam 12P＇$12^{\prime \prime}$＂FANE＂POP 33 T 16 ohm 33 W
$12^{\prime \prime}$＂FANE＂POP $50 / 216$ 2

Pap．Orders wa to Es，add 30p．Orders Es－ 110 ，sdd 50p．All ordery Over $£ 10$ Sost irsel with ail enquitites please．
Personal calters welcome at：2\｛Green Lanes，Palmers Green，N． 13.

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX－30
For the adranced，keen short wave listener，the chote of tecefver has ugually been becwean cheap sind nasty or very good but very expengive equipment．We think that the SRX． 30 will provide that listener with exceNent performance at a reason－ abte cosi and is the answer to this eternal problem．
The $\$ R X-30$ provides AM，CW，USB and LSB reception on ell frequencies from 500 kHz to 30 MHz ．All right，so does your Sooper Blooper Mk． 3 but you can＇t sce the Sooper Blooper dial to the frequency you want and be sure that it＇s correct
The SRX－3b The SRX－30 sunlpe syitem is so simple to operate，You have a dial reading In MHz
fromt $0-29$ and m main tuning dial reading $0-1000 \mathrm{kHz}$ ．So－if you know that from 0－29 and a matn tuning dial reading $0-1000 \mathrm{kHz}$ ．So－ H you know that
Radio Slobova is broaccastang on 10.295 MHz ，you set the Mzz dial to 10 ，the Radio Slobovia is broadcasting on 10.295 MHz ，you ser the MHz dial to 10 ．the
kHz dial to 295 and there you are．The MHz dial setuing is not critical，ag stablity is gisaranteed by a tripie mixisis drift cancelling systern，thereby overcoming is guaranteed by a tripe mixing grit canceling syste
A further drawback to chead receivers is massive fimage interterence on the halgher frequencies due to the use of a low IF，sypicaty 455 XHz ．The cure for this 40 MHz －so use of 40 MHz－so goodbye to Arss IF images．Yoo coutd of course find the sarme system as this in the racsi RAly series receivers；after all the So
copied the basic ldea from this very receiver．The big drawbeck to the RAi （apart（rom the price if）is that unless you have the muscites of a p pize flghice． lifting the RAt 7 may send you for a holday at Hernia Bay（staying at the Trusg House7）．
To surnmarize，the SRX－ 30 covers 500 kHz to 30 MHz with excellent dial readout and reset accuracy；it has all mode（AM，CW，SSA）reception and is equally at home in broades 51 or ampateur bands；it has ail the facilities of a too class com－ munications receiver，RF gain，fine luning．selectabie sidebands，bult in loud－ speaker，operatlon from ac mains or 12 v ．De，rugged consit
styling and all at an stractive orice－$£ 158 \mathrm{inc}$ ．VAT．Can $£ 3$ ．
See it soon at your nearest stockist，you will be agreeably inpressed．
For all that＇s goad in Amsterr Radio，contact：
LOWE ELECTRONICS LTD．，It9 Cavendisb Road，Matlock，Derbyshire， Tel： 06292430 or 2817.
Foi fuld catalogue，simply sead 45 p in stampt and request catalogue CPW．

AND NOW WE ARE PLEASED TO ANNOUNCE OUR SPECIAL OFFERS SERVICE BELOW ARE OUR SPECIALLY SELECTED-BRANDED PRODUCTS OFFFRED AT MUCH REDUCED PRRCES TO PW. READERS OFFFRED AT MUCH REDUCED PRICES TO P.W. READERS. ITEMS OFFERED WILL VARY MONTHLY,

WATCH BATTERES ALWAYS AVAILABLE--ANY TYPE 49p each

A
A GLCDB4.e.c.D. Watce
F Funetion Gunti L.c.O. quartz wateb
 Suinctions: Hry morn, pece. data, month, nifernatting timejdate bage Hotht. Woter

[B; LCCROF, LC.D. CRONOGRAPH Up to 25 Function: 0 diplt
Up to 25 Function: aliolt dispiay of Br . ., mins tecondt, day, trate, month. Meatovroen eccond. Swies Stelnlenis Steol etase á fully adilit etrap: Back llaht. Americar elationich. Win record fime elapsed whlat dioplaying watch duretlone gi dele. Water restitant.

C SOLAR S, BOLAR POWERED CHAREED WATCH
Wuleperbyy ongifaterod 10 funtilion SOLAA in tubdubt or artife with liont batterisas aven provide Pheen power al night lof watch a back lipht thate being charged by the coitar panel enca, day, date, manth AM/PM tnde. Date Ind, Alernating TimejDats. Super atyilsh
 etras. PRICE: $\kappa 23 \cdot \mathrm{H}+50 \mathrm{P}$ \& C .

```
D] LLEDA. LADIES L.C.D.WATCH AmbilicantSwiss yery praclical averyday lasies watch, Functionet hre mins,
```



```
E• BOLAR 2 BOLAR POWERED HAROE CHPOMPORAP OR Alarm
Up to 25 tuncilon \& dtalidtaplay chronograph watch functiont or LCCRO1 with Solar altm lestarino tull giarm Iscillitisa,
```



```
[F] LEED/4. SHUQAR L.E.D.
For the nipht blros: A A function L.E.D. which
houned in a protiy cockiat bracele. Funchoused 10 a proity cockisil bracelat. Func-
```


G LLED/AS. LADIES L.E.D. WATCH Á LiEO 43 but housed in an everyday stalnisas stael cais a atrap. PRICE: ebs +60 pa P.
 Full facility iffom cloch, bly grasn dianday and 2dir, alafm whth sioeplanooze itmerabiolutely overwhelming vplue. PRICE:

I RA9. Waveband AMfFM/BW The UNTOUE VEGA SELENA FEATURES:5 Ehort Wave Binda: 80 to $980+42$ to 50 $+30 \cdot 4$ to $32.5+24 \cdot 7$ to $20+\$ 8 \cdot 3$ to 20 Mtrs. A/M-LW A H/W. F.in. with A.F.C. Panai Iohilne: Full tone control: Extending rod abrial. Opgre. SiW A FiM: Baty/funing
 playback: Esth. The Yaga Solena WEiGHS Blby. Finjehed in black with ailyar tulma and a res! wood Eurround. PRICE: Ezisos +

IT MRtztic L, E.D. Ciovik Redio alum
FEATURES: 24 hr time and aiarm ciock + A/M, F/M Radlo. Fult alirm fagtures incluse

K'AMJFHIL OA@ITAL CLOCK/RADIO/ A MARTHO ALARH
A; MR/2tac but avallable aMiFM only and Mech., digital dinglay, Usysil full, inaeg:

In CRA9 L.C.D. TRAVELEING
RM CEOCK
Features: 12 hour timb and aiarm cloch (12 hour diaplay wlth AM/FM indicator). Ntadien, 4 minuls mnooze timer. Large 12-5inn diepfay. Super elegant datipn. The atarm effectue not aflly. Brush find ath.

PLEASE NOTE OUR NEW MAILING ADORESS:BOX 11, FLEET HOUSE-WELBECK STREET WHITWELL - Nr. WORKSOP - NOTTS Tel: (0909) 720695 TELEX: 547616 FLEET G

PW PCBs

PLEASE SUPPLY SPECIAL OFFERSIP.C.B AS INDICATED BY TICK/S IN BOX/ES.

Istue	Project	Ref	Price P/P
Dec 75	Sound-To-Light Dlspiay	DN0798	1-15+12 \square
Dec 75	Dluco System, Amp (2 req'd) each	'd) eath AM0421	4.40+22 \square
Dec 75	Dieco System, Light Modulator	ulator AM0429	$3 \cdot 50+22 \square$
Mar 76	CMOS Crystal Catibrator	AM0438	1-19+12 \square
July 76	Disco Preamplifier	A003	$0 \cdot 65+12 \square$
Oct. 78	Digital Car Clock (Bet) A011	A011/012/093,	$2 \cdot 58+12 \square$
Oct 76	Interwipe	DN8,	0.80+12 \square
Oct 78	Vldeo-Writer (set) Docos/a/4/	DC02/3/4/6 A 1007	$21 \cdot 44+50 \square$
Nov 70	Clitest Probe	A098	$0 \cdot 48+12$
Nov 76	Eurglar Alarm	A0ts	$0 \cdot 50+12$
Dec 76	Chromachase	A021	$5 \cdot 70+22$
Jan 77	Oscilfoscope Callbrator	A023	$1 \cdot 25+12$
Apr 77	Gas/Smoke Sensor Alarm	7 A028	0.85+42 \square
May 77	2-Way Intercom	D0:9	1-28+12
May 77	Protected Battery Charger	r A027	$2 \cdot 38+12$
May 77	Seekit Metal Locator	A03s	3 $38+12 \square$
June 77	Versatlle AF Generator	A033	2-38+12 \square
June 77	Tele-Games	D029	3-22+12 \square
Juty 77	20W IC Ampolfler	A034	$1 \cdot 38+12 \square$
Suly 77	Radlo 2 Tuner	A035	1-68+12 \square
\checkmark dely 77	Digltal Clack Timer	A036	$3 \cdot 28+12 \quad[]$
Aug 77	Shoot (Telegames)	D035	1-55+15 \square
Aup 77	Atomic Time Receiver	D038	2.65+15 \square
Aug 77	Morsa Code Tutor Cards (SRBP)	(SREP) A037	4.75+15 \square
Sept 77	Jubllee Electranic Organ	A038	$19 \cdot 00+75 \square$
Sept 77	Electronit Car Vostage Repulator	pulator 0037	1-25+12 \square
Oct 77	Audlo Level Indleator	D039	0.98+12 \square
Oct 77	Sine-Square Wave Generstor	ator D040	2.35+15 \square
Nov 77	Laboratory Power Supply	A039	$3 \cdot 50+12$
Jan 78	Direct Converslon Recelver	er D043	$1 \cdot 63+15$
Jan 78	Proportional Power Controtler	Otler ONGJM	0.78+82 \square
Mar 78	AudloiViaual Logic Probe	- 2001	1-40+15 \square
Apt 78	Europa Stereo Amplifer	R002	9.55+45 \square
May 78	DX'ers Audio Fitter	0001	2,35+15 \square
dune 78	Bovington Tark Game	R006	$3 \cdot 80+20 \square$
June 78	Audfo Dlatortion Meter (9et) R00	et) ROCT/8/9/40	6.75+25 \square
June 78	Darkroom Timer	R011	1-55+15 \square
Juły 78	Avon Transmitter R015/	R015/16/19/20	$5 \cdot 10+40 \square$
duly 78	Digltal Lock	R002	1.25+15 \square
لivly 78	Morse Tutor	R014	2-35+15 \square
Aug 78	Polnt Motor C, D. Supply	D005	1-25+15

Aug 78 Polnt Motor C.D. Supply
D005 ; $25+15$
Post and packing is for one board or set of boaros or one ltem. Prices Include VAT. Remittances with overseas orders must be sufficfent to cover despatch by ase or air mall as requized.
I enclose Postal Order/Cheque ACCESS welcome.
Senci card number oniy.
tor e payable to READERS PCB SERVICES LTD Box 11, Fleet House, Walbeck St., Whitwell, Nr. Worksop, Notts.

NA販E ..
ADDREBS
... Post Code............
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Edflorial affices.

IF YOU DO NOT WANT TO mUTILATE THIS HAG. YOUR WRITTEN ORDER IS ACCEPTABLE.

ESSENTIAL BOOKS for RADIO amateurs

A GUIDE TO AMATEUR RADIO
(NEW 17th edition)
by Pat Hawker, G3VA

This book has been deservedly popular for many years as an introduction to amateur radio-whas it is, how it works, and how to get started in this exciting hobby.

Most of the questions usdally asked by the newcomer are answered in an ineroductory chapter, and then the book takes the reader from the first szeps in setting upa receiving station to the basic theory and practice of anternas, transmitters and receivers, and how to obtain a cransmitting licence. Operation of an amateur station is discussed, and there are lists of Q-codes amateur radio callsign prefixes and other usefol data.
Chapter titles afe; This is amateur radio; Getting started Communication receivers; Transmitters; The Antenna; Amateur radio equipment; Workshop practice; The licence examinations; Operating an amateur station; The R5G8 and the radio amateur. International amateur radio organizations.
120 pages
C1.71
THE RADIO AMATEURS' EXAWINATION MANUAL (7th edition)
by G. L. Benbow, G3HB
A pass in the Radio Amateurs' Examination is required before the authorities will grant an amateur radio transmitting licence, and the aim of this book is simple: to provide sufficient information to enable its readers to pass that examination. This edition may be used co prepare for the December 1978 examination (but not the May 1979 examination).
Chapter sitles are: Becoming a radio amateur: Elementary electrical principles and cafulations; Thermionic valves and their applications; Introduction to semiconductors; Power supplies; Receivers; Transmitters; Measurements; Propagation and aerials; Interference; Licence conditions: Tackling the Radio Amateurs' Examination.
87 + viii pages
C1. 60
RADIO AMATEURS' EXAMINATION QUESTIONS AND ANSWERS
This book is a collection of model answers to typical Radio Amateurs' Examination questions, and should prove invaluable to candidates as a revision aid. The answers given are complete with diagrams and worked calculations where necessary,
118 pages
62.00

RECEIVING STATION LOG BOOK

One of the essential features of a listener's station is a well-kegt log book of stations heard. The RSGB Receiving Station Log Book is specially designed for the listener to the amateur bands. with columns for date, time, frequency, caßlsign of station heard, signal report, mode, other station being contacted and its report given, remarks and QSL information.
Plastic comb binding
El. 54
Prices include postage, packing and VAT.
These are just a few of a complete range of technical publications, log books and maps for the radio amateur. Send a large stamped self-addressed envelope for the complece list.
The RSGB is the national society representing ell UK radio amateurs. Membership is open to all interested in the hobby: write to the memberthip section and ask for full details.

SINCLAAR PRODUCTS Microviaion TV now in slock £200. PGila3s digitel mullimeter E27-25. Maing adaptor £3-24. doluxe padded case $0,3 \cdot 25$. 30 kr

 E2. 55 . malns adaptor 83.20 . Anterprise grogrammable calculator s20-35.
G-DECS AND T-DECS"
S-Dec E3.39. T-DeC E4.44. J-DeCA E.52, 15 DECB es.73. 16 dll or 10705
 PROPUCTR ${ }^{4}$
EXP300 EA, Zt. EXPS50 E3 4p. EXP600
 LPI ESA 4A. LP2 EIE 44.
TV OAMES
Send zas for trea data. new tacing cer ty games chlo AY-3-B6013 plus economy Wi1 ع20-60. tank batile chlp AY-3-8710 plos acanomy nit Eis's. Stunt motor cycif chio 10 game paddle 2 chlp $A Y-3-8060$ plus econorny hit $\sqrt{\mathbf{x} 12 \cdot 50 \text {. AY-3-B500 chip plus }}$ economy kit 8 g. 95 . Madified shott hit
 kit 5750 . atfractively cased sigsernbled game $139.95,4$ grime models (tennis. football squash, prlota):-biack and white ES1 85 , colour E14.50. deluxt asme b/w model with pistol allachmen HNS
-0-6V 100mA
 E2 $16.12 .90-12 \mathrm{~V} 50 \mathrm{ma} 79 \mathrm{p}_{\mathrm{c}} 100 \mathrm{mps} 90 \mathrm{p}$

JCtz, JC20 AND JC40 AMPL\&FERS A range of inteprated circuit audio ampl ferg supplied with fees data and printed circults. JC12 5 watts Et © © JCN0 50 watta $\mathrm{EA}_{2} \mathrm{AS}$. JC40 20 watis $\mathrm{EA} \cdot 20$. Send power sad preamp hits
FERRANTI ZN4t4
C radio chip 6 Es. Entra parls and pelb or radto es as. Case \&̀i. Send sae for free deta.
PRINTED CIRCUIT MATERIALS
PC etching hits:-etonomy Et 70, standsrd otch resist pans:-Deanomy $45 p_{\text {, dalo }} 73 \mathrm{p}$. Smalt drill bits $1 / 32$ ins or 1 mm 20 p each Etching diah 6ap. Laminale cutter 75p.

EATTERY ELIMINATORE
Wway mastale with switched gutput and 4
 s8me sive 88 PP9 bill rydo mode? sime size 58 in poy batiery with press
 mafne unit Ki.50. Calsistio vacoriar E2-15. Gay con 100 mb with 5 pind din puto Oulput 9 V convariart 300 ms 位. Ouk input. doume Ei-so.
BATTERY ELAMINATORKITS
Sond sae for free lesflet on range. I00me datio typut with prese flud conneclors
 ofte fype 715 V 100 m w with dia plug E 1.3 si . Hazy-duty is why typas if $/ 6 / 7181 / 11 / 113$ i $4 / 17 / 2125 / 28 / 34 / 42 V$. 1 Amp 64 65.2 Amp
 53-20. ${ }^{2}$ Amp Ef.40. Yarhabte voltage Hatisized models. 2-19V 100 ms E3. 60.
 fivitivi Amp E1-95.
BJ-PAK AvDIO MODILES

 20-12.
BULK EUY OFFERS
Minimum purche88 610 say mix From thls section. INA148 1 \$p. INADO2 3.Ap. BCR12 p. 14 Balo peng 59p. AC760Z3N okect equily at SN75023N with Improyed heat alink 79p. Piastlc equive of popdiar tranalstars: BC509 4-4p, BCV71 4.7p, $25,-5,1,2,3,5$ Amp. ouickbiow tyap 0.7 p Antisurge type 4 AP. Realntorn 5% E12 oohm lo 10M. zwo ip. IW it ip. Polyontar capacitors 250 V 01, 022,033 ,

 E12 63V 15 to 6800p 2ip. Ceramic capacitory SOV Et2 2hpi to 1000pi 1.7p. E6 1500 1033000 pI 1- Tp. 47000 p 12 p . Elotratrotylice OV $0.47 .1,2 \mathrm{mt} 5 \mathrm{p} .25 \vee 5 \mathrm{ml} 5 \mathrm{p}, 10 \mathrm{mt} 4 \mathrm{p}$. 8y 22 ms 5p, $33.47,100 \mathrm{mf}$ 5p. $220,330 \mathrm{ml}$ E24 2V7 to 33 W Efp. Pronit potil sub minlature 0.1 W horlz or yert 100 to 4 M 7

SWANLEY ELECTRONICS

DEPT. PW, sz Gofdepl Rd. Swarloy, Kent BR8 EEZ
Whati order only. Please add 30 to the tolal cost ol ordar for pogtage. Peitcas Inctude AJ. Overeat cuatomers deduct 7% on items marked * and 11% on others. Gfirial credlt orders welcome.

FANE NEW "POP" RANGE SPEAKERS

Improved appearance - higher sensitivity

$12^{\prime \prime}$ 'POP'	40T ${ }_{\text {Coar }}^{\text {ual }} 45 \mathrm{w}$	$\xrightarrow{\text { Rec. Price }}$
$12^{\prime \prime}$ 'POP'	50H 50w	\&16.99
12 " ${ }^{\text {POP' }}$	75 75w	$\mathbf{4 2 2 9 5}$
$15^{\prime \prime}$ 'POP'	65 70w	625.95
15" 'POP'	80 80w	629.95
18" 'POP'	100 100w	E49.95
$18^{\prime \prime}$ 'POP'	150 150w	455.00

Each designed to produce the individual sound for its purpose. Robust Cast Alu. Chassis. * As reviewed in Int. Musician.

- Linen Cone surround

HIGH HORNS

$\mathrm{J} 44_{\text {Range }}$

2 $5 \mathrm{KHz}=15 \mathrm{KHz}$
ower: 50
HPXPR
30w with H? H^{2} IR

Imp:	ohms

J73 ${ }_{\text {Range: }}$ $2 \cdot 5 k H z-20 \mathrm{kHz}$ Power: 50 wr with $\mathrm{HP} \times$ (R lmp: 8 ohms Size approx:
$7 \pm^{4} \times 3^{*} \times 6 \ddagger$

REQUENCY
 MANUFACTURERS OF GROUP \& DISCO EGUIPMENT 2 years guarantee on speakers \& Horns Distributors (Wholesale \& Retai) MEAR PRODUCTS LTD, ELECTRON WORKS, ARMLEY, LEEDS FANE ACOUSTICS LTD, HICK LANE, BATLEY, YORKSHIRE

BADID EXCHINGE LTD．

NEW ELECTRONIC MASTER KIT

WITH SPECIAL Y．H．F．TUNER MODULE TO CONSTRUCT．A complezely Solderless Elactronic Construction Kit，with ready drilled Bakelite Panels，Nurs，Bolts，Wood Scraws etc，Also in che kit： Transistors，Gapacitors，Resistors，Pors，Swiches，Wire，Sleeving．Knobs．Dials， $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and rou can build with the components supplied with the kis，togecher with comprehensive tnseruction Manual Pictorial afd Circuit Diagrams．
PROJECTS：V．H F．Tuner Module $大$ A M Tuner Module $*$ M．W．L．W．Diode Radio＊Six Transistor V．H．F．Earpiece Radio t One Transiscor M．W．L．W．Rasio＊Two Transistor Metronome with vafiable bear conkrol 大 Three Transistor and Diode Radio M．W．L．W．大 Four Transiscor Push Pull Amplifier t Eighs Transistor V．H．F．Loudspeaker Receivar＊Variable A，F，Oscillator \star Jiffy MulkiTester $\$$ Four Transisror Hearing Aid．W，L．W．Radio A．F，R，F．Signal Injector t Five Transistor Push Pull Amplifier 太 Sensitive iscor Push Amplifier＊Three Transistor and Diode Shore Wave Radio Signal Tracer threz Trant sistor Pre－Arnp \＆Transistor Tester $\&$ Sensitive Three Transistor Regenerative Radio t Eour Transister M．W．L．W．and Diade Tuner twive Transistor M．W．L．W．Trawler Band Regenerative Radia＊Five Transistor V．H．F．Jumer \＄Three Transiszor Code Pracrice Ostillator thiye Transistor Regeneraziye 5 hort Wave Radio 大 Four Jransistor and two Diodes M．W．L．W．Loucspeaker Radio
＊Seven Trapsiscor M．W．L．W．Radio with Loudspeaker Push Pull output
＊One Transistor Home Broadcaster．
$\mathbf{1} 4.99+$ P\＆P4． 610

NEW ROAMER TEN MODEL R．K． 3

MULTIBAND Y．H．F．AND A．M．RECEIYER．
13 TRANSISTORS AND SIX DIODES，QUALITY 4＂ROUND LOUDSPEAKER．
WITH Multiband V．H．F．section covering Hobiles，Aircraft，T．V．Sound，Public Service Band，Local V．H．F．
Stations，etc．and Multiband A．M．section with Airspaced Tuning Capacitor for easier and accurace cuning，covering M．W．I．M．W．2，L．W．Threo Short Wave Bands S．W．，S．W．2，S．W． 3 and Trawier gand． Builtin Ferrice Rod Aerial for Medium Wava，Long Wave and Trawler gand，erc．，Chrome Plated 7 section Telescapic Aerial，angled and rotatable for peak short Wave and V，H．F．reception．Push－Pull output using 600 mW Transistors．Gain，Wave－Change and Tone Controls．Plus wo Slider 5witches Powered by P．P．9－－9 volt Battery．

NEW

MODEL
R．K．I
Mulciband AM．Re seiver．M．W．L．W Trawler gand and Three Shors Wave Bands．Sevan Tratu siscors and Four Dioder． Pull Cutput itage． $5^{n} \times 3^{n}$ Loudspeaher Intermal Ferrica Rod Aerial．Kik inciudes all paris co bulth is up ineluding Garrying Skrap，Rubber Fece and ready－dritled Panels．Comprehensive Instruction Manual for seago by seage conitruction．Uses P．P． 9 Nine Vole Eatlery．

ELECTRONIC

 CONSTRUCTION KITE．C．K． 2 Self Contained Multi－Eand
V．H．F．Receiver，Kit． 8 eransistors and 3 diodes． Push puil output．3in．loud－
speaker，gain control， 7 sectian chrome plated telescopic acrial V．H．F．tuning capaciear，re－ sistors，capacitors，transistors． etc．Will receive T, V ．sound， public service band，aircrafr， V．H．F．local stations，etc．Operates from a 9 volt P．P． 7 battery（not stopplied with kit）

EDU－KIT MAJOR

RADIO

CONSTRUCTION KIT Q7

A compact small radio kic cover－ ing Medium Wave and Long Wave bands．Rugeted Micanite con－ offuction and simgle square design ktfown for easy carrying and posisionifus．Ideal for the Garage，Workroom，Kitchen，etc，，has seven Transistors and Four Diodes quatity toudspeaker，ready wound Ferrike Rod Aerial and Carrying Strso． Size $4 t^{-} \times 4 \mathbf{z}^{*} \times 4 \frac{1}{2}^{-}$．

All parcs sna plans excluding 9y PP7 Battery，
P2Piln． 75 p ．

V．H．F．AIR CONVERTER KIT
Build thie converser hit and recoive the eircrafz hand by placing it by tho ide af t radis tunod to mediums rave or the VHF band and operating as hown in the instructions applied free with all parto． Unes a retractsble chrome plaved telessopic torial，gein control，V．H．F uning capatitor tran sistor，ect
All pares including case and plans
64.95

Pa Fand
Ins． 60 p

To：RADIO EXCHANGE LTD 61A High Street，Bedford MK40 ISA Tel．： 023452367

REG NO．788372
－Callets sido entrance＂İavells＂Shop． －Open I0．1．2．30－4．30 Mon．－Fri．9－12 Sat．
${ }^{-}$
\qquad
\qquad

Address ．． \qquad

PW 1078

Handy size Reels \& Dispensers OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOME
Ersin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.

SAVBIT
handy solder dispenser
Contains 2.3metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times. Size 5 58p

For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC 115 provides 6.4 metres approx of 0.71 mm solder for fine whes, small components and printed circults. PC115 69p
Or size 19A for kit wiring or radoand TV repairs. 2.1 metres approx. of 1.22 mm soldjer. Size 19A 63p
 handy size reels of SAW/B/TT, 40/60, 60/40 \& ALU-SOL Siller

These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major adivance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Rel.	Alloy	Diam. mm	Length metres approx.	Use	Price
Slz_{3}	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	\$.6	10.0	For economical general purpose repairs and electrical boints.	£2.16
Slze_{4}	ALU-SOL	1.6	8.5	For aluminium repatrs. Also solders aluminium to copper, brass etc.	£2.46
${\underset{10}{S i z e}}^{2}$	$\begin{gathered} \text { 60/40 } \\ \text { Tin/Lead } \end{gathered}$	0.7	39.6	Forfine wires, small components and printed circuits.	£2.38
$\begin{gathered} \text { S1ze } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TVand similar work increases copper-bit life tenfoid.	82,29

Pat. No. 1443913

Burd

56 FORTIS GREEN ROAD, MUSWELL HILL, N10 3HN. TELEPHONE: 0f-883 3705

OUR LATEST CATALOGUE CONTAINS FREE 45 pence WORTH OF VOUCHERS

 CONTAINS MICROPROCESSORS + BOARDS, MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.

SUPERSERIES

ALL	C DEVIC	TEXAS RED LED
741	555	TIL 209
		(INC CLIP)
$5 \text { for }$	4 for	10 for
E1.00	£1-00	£1-00

VAT INCLUSIVE PRICE +25 p P. \& P.

IC A4 BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH $55 \cdot 00$ OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35p + SAE IF SOLD ALONE).
grouv

D. J. PATTLLE

HILLBURY RD., ALDERHOLT, FORDINGBRIDGE, HANTS SP6 3BQ.

GIVE YOUR P.W. PROJECT A PROFESSIONAL LOOK

Anodised aluminium tront panels
Matt finish, Artwork almost indestructible. Available for the following projects:-

Issue	Project	Ref.	Price	p/p
Dec. 74.	Car Cassette Player	12741	\$2.00	20p
Dec. 77.	Power Unit.	12771	12.00	20p
Mar. 78.	Europa Amplifier.	3781	83.50	35p
May 78.	Audio Distortion Meter.	5781	85.06	40p
June 78.	Bovington Tans Game.	6781	¢225	20p
June 78.	Darkroom Timer.	6782	81-50	15p
July 78.	Axon Transmitter.	7781	55.50	50p

Prices include VAT. Remittance with overseas orders must be sufficient to cover dispatch by sea or air mail as required. Postal Order or Cheque with order.

30
 Wilmslow Audio

THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

ATC - AUDAX BAKER - BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC - FANE - GAUSS - GOODMANS - HELME - I.M.F. ISOPHON - JR JORDAN WATTS KEF - LEAK - LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD - RAM - RICHARD ALLAN SEAS - TANNOY - VIDEOTONE - WHARFEDALE

WILMSLOW AUD10 (Dept. p.w.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SKI 1HF
Discount HiFi Ete. at 5 Swan Street and 10 Swan Street TEL: W!LMSLOW 29599 FOR SPEAKERS

WILMSLOW 26213 FOR HFFI

TMURF I.C.E. MULTIMETERS
 In HCE Ethe infirm in
 The I.C.E. range of multimeters provide an unrivalled combination of maximum performance within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions.

Supertester 680R

 (illustrated)* $20 \mathrm{k} \Omega / \mathrm{N}, \pm 1 \%$ fsd on d.c.
$4 k \Omega N, \pm 2 \%$ fsd on a.c.
* 80 Ranges - 10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{£ 3 2 . 0 0}+$ VAT
ffor Matl Order adth 80p P\&P)
- 1 Ifor Mall Order add 800 Psel

All I.C.E. multimeters are supplied comprow with unbreak 50 -plus page, fully detailed and illustrated Operating and Maintenance Manual. Now available from selected stockists. Write or phone for list, or for details of direct mail-order service. 49-53 Pancras Foad, London NW1 2QB

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ isd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 48 Ranges - 10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
$\mathbf{£ 2 4 . 5 0 ~ + ~ V A T ~}$

Microtest 80

* $20 k \Omega / N_{1} \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on a.c.
* 40 Ranges - 8 Functions
* Complete with case -
only $93 \times 95 \times 23 \mathrm{~mm}$
$\mathbf{E 1 6 . 6 0}+$ VAT
;For Marl Order add 80 p P\&P)

Advance Board No．7006s．A modern hibre glass circult can be ascumed pertect．Mator itoms：－8 trandisiori type AC 107,8 tranaissiof type BC 112,8 minlature diodes， 4 Pra 5 B
 resiatory i，子 watt．Board zlze apgrox． 5×4 ． henta can be removed with working lenglh leads E1．
Tetephone A nawering machine．Uked，bul we underpland are in cood working order，however．we can supply only fo breaking sp－they are not to be used for totephone ensweting
Thay contatn： 4 pote tape molor．twin capstans wilh hesyy They contatn： 4 pole tape molot．twin capstans wilh heayy to take standsid reele，tape guldes and woiteroid operated brake，a piano hey type switching and control methanism ape used counter，flipaticsl apeaker， 2 soienolde，oplr plug and sockel． 36 pin ptup and sockel． 5 Circuit boards containt varied assoriment of tranalators in emall parte．Alt ite kbove here is as suh chasals with 5 miniature o pole retay ${ }^{2}$ ， transtormed， 4 iron cored tranaformeta． 5 variable 901 s ． 35 renithors，over ano varloug resislory，capacitars，dtoden
 lion block，wo way ditto，bierea input zockel， 3 oues in neon buasistors．The indil is nicely cased size about $2 \mathrm{~T}^{\prime \prime} \times 10^{\circ} \times \theta^{\circ}$ and shauld be guitoble far converslon to open reel tape re
cordgr，bsekground mubic machine，echa chamber efc．ole． cordgr，bsekg
pilice E12．25
Wigh Voltage maine \mathbf{T} tansformer．Normal matina primary，
 ref．no．TM45．
sorry iald out ol Tranaformer refi，No．TM 37 but we have just

 Bmith＇Biowar．Snail shape with exterior motor，oblong

 Torrla Elowpr：Sneil type almilar but empitar to above，

 but wlih usasble lengit ieads．Normally a very erpentive chpachtor，our price $23 p+29$ each
Fitan
Butg
 connecting difect to healing dopllancar but being lougher thon usurl it is ideal alsa for externion reads especially outdon onef．Smm conductare oo sulkable for top to 7.5 mmp 100 mel

\＄／3rd rev pet minute mainu driven motor．${ }^{2}$ Wblls alto
 min εx government hem ahd the acaie is beadod Sadiation，

 a further minute minder bell swifthathe us to eo minutes．Lasg

 amp changsover contact ex equinment with our leap price wap $4 \mathrm{p}, 10$ tor $\varepsilon 5+40 \mathrm{p}$

 $30-80^{\circ} \mathrm{F}$ or tower or higher， $50 \mathrm{~g}+4 \mathrm{p}$＊ach， 50 Ior EA so +360 ． Cat Bpathery．Twa bergaling ints month both alliptical，bolh

 Thermostat Pockel．To fit tha sbove tharmoetat Into 1 ink without heater then you nead a pockel to hold the thermestat， ta long lireaded eompleto with nut and wanher，price E1 ．Wi

Hol Wire Vacuem halay 8 witch， 4 pin olugin lype．Thin has a healer coll wound around a bi－metailc ilfle caubit voliage varios belwesn ty 87% time delay time－lrom a fow seconds upwards price E1－0
Hiller $512160-20^{\circ} \mathrm{C}$ femote phial lype capillary length sppron． with controt knob marked 20 to $80^{\circ} \mathrm{C}$ ，price EX－14p．
Tranalater holder for TOS（ OC 28 etel allows fransiator to be
 connections ax neit equlpment coverad by normal guarantee 39p＋2p．${ }^{3}$ walne operaled siren，Dan＇t let intrudert gat away wilh your possessions－they will hever stay in a house when one

 price al oip
Puliting swltch．Molorized unll which gives puiser byefy 30 secondt，longth of pulse can be adjuated up to 30 yeconde
 molor of thit deytco fa 115 y Sohz but we supply complefe with
 wilh a knob on the trant lar adjusting the pulse lonoth． 20 amp awitch＂inalde＂is o chanoeovar autitch 30 this devise
 determined by awitch control opling，price $\overline{\mathrm{L}} \mathrm{t} \cdot \mathbf{2 2}$ ．
10 Linm Coniecting gok．This is 10 way Iwing grub wcrew
 Yicusly a good oroduct．The cables，ere brought in through
broakaways in the plavite bos 18 connection oolnta ars dil numbeted fror easy difentificatlon，price $\mathcal{1}$ ity． wefl thermograt uking a gensor connecied to the awitch by a
$28^{\prime \prime}$ tength of casillaty．The control gelting salustabie from
 selling E2－4
 Be．heth ofice ilin．

8paspat for Dimplox Heatery．Wa haye luat laken doflyery
 et tos have your enquirio
Heary Duty Catart．Four of thee would cerry a ton，net
of 4 E2 85 ．

MULLARD UNILEX

 svatem．Fated one of the frest perlosiners in the glerpo fold tor altmost anyane in exaty $y+10-$ assomble modular lorm and spakers thiz thouldsell at abou E30－bul duelo a toecial bulk buy and as sis Incentive for you buy tuding VAT and htrludingEI 50 each

\section*{HNISELECTORS whehe as uted in eulorate lelephone owitchborots．ic， Brm thingteh one opsifion

Excedt where incleated the selectors are 25 position type

and $50 y$ Corl is gtendard． or 124 oneration extia al E2
 | 3 pole | 25 to |
| :---: | :---: |
| 4 pole | ¢ 5 \％ |
| 5 pole | E120 |
| 6 pole | C．tit 25 |
| B pole | 51140 |

tem camplate al onfy $E i s$

10 polie 12 pole 2 Dole 50 way

24 HOUR TJMERS

The que Hiuntrated tis the＇E＇conirol，ithls
 contacte，override switch es 50 ．
mithe 100 amp model ortp onjor oer 2
 ay，one onfof oer 24 hourt Es 50 ，Axtro

RELAYS

12 volt 1wo 10 amp changeoves plup In 15p 12v changacear minialure wire enoed 95 p ．I2 yol pen ingele scraw fixing two 10 bmp change Ef 2s．Latchiag refoy mains opersite eq 2S．Latchiag refay mains opprated 2 c／o changeovers open lype orenacrew fixing \＆it 25 Many other typet withalfferent cati voltages and conlaci misangements are in stock，enquirles

ROTARY PUMP

Self polming porfable，fis arill a gactric motor，pumpe up to 200 revz，Virlually uncorrodabte，use 10
 comnectors each and．efz gail pald．

DELAY SWITCH
Maina operaied－cderoy con bo ac curstely tet with pointers hnob fot sulisble 10 swilch 10 ampe－tecond contact op is

HUMIDITY EWITCH

Amertcan mide by Ranco．thale type No．
Ji1．The eftion of inis devicat depands 1007 lhe dempreas cauaing a mematrane to plratch and trigger
swilch adjuetable by
wilch adjuctable by a braw，quite wilich it on．Mlero 3 amp ot 250 V act overall wiye of the devire approx．3 iong．

INOUCTION MOTORS

SMITHS CENTRAL HEATING CONTROLLER

push－bulton glyai 10 yarlaliona es follown
（1）conlinuouz hot water and continuour central hesifing（2）contiouout hot walat tinuous hot walet but central neating on only for 2 pertoda duplng the day（a）hol
 water and central haviling both on but day
 ater all day but ceniral heating only for 2 periodanly \｛5\} no dey（6）hot water and central hosting on lor 2 peationg the ummer ltme use with centidal hathig bif（7）hol water continuous f8）hot water day time a han hot waler twice dally（10）evaryiting of whithes and ooxing unit with 24 hour movement and the progreme of parfangessery so siect the dealred grsm．Originslly nold we belibve al over \＆15 we offor these

Terms：Prices Include Post \＆VAT．But ofders under $\mathbf{E E} \mathbf{C 0}$ please add 50p to offset packing．Eulk enquiries－Please Phone for Generous Discounts 6881833.

J．BULL（ELECTRCAL）LTD
 （Dept．P．W．）， 103 TAMWORTH RD． CROYDON CRSISG

 and primary wound for 23050 z If 85 ．
Honcod equipre ent but hisve gogod length 5ma，these sfe ex
 Spenker Cabinata．Simulsied teak inish，nice heridy size modern bleck apange type front fin． 75 ． In Car Epakar Cabinti．White wilth black adoo yery modern
looking plagtic with threaded studa for mounting npesher complete wilh beck，pilce $\mathbb{£ 2 \cdot 2 5}$ ．
AC Cagacitonis tor uge on fluarescent leghting for dowef factot correction or as a valtage dropping dovice，these are
 RMS vallage．A blg purchaat enabies us to offer these al
aboul ons third of tho current mantifacturora orice all 3 aboul ons thire of the current maneffacturora price．all are
 Nuprerical Dinphny Tubet \｛Ninie laben\} Mullard ref. ZM
 Watergroof Díciatat Boz very sulable for prolacling switch of a thermostat or a simHar dovita where thia is Mounled oulside or in a greanhoulfe，price 11.62. Multiwny Switehen．GEC alfyer finished metal box winh coble knackouts ench complete with switch mounling prid and matiching ratesped cover，suitable 1or conduit or TRS． E1， 12 avilich it 50 p ．
 45p， 5 amp 2 way $30 p, 2$ way and on 50 p ．Inlermediate（polarlit） changeovar sap）bel puan 3Fpg（avaltable in saveral coloura）， Most of the above swilchar can be qupplled without topoles but opersted by ：Epectal key，add $10 \rho p e r$ awifch and $23 p$ per
Kin any teader hofp？We have recenily Ecaulred atme very nice Ambrican made maiors 50 cyele for $50 h z$ 220w workino
obylougly made for the Brtich Marke？but they have 3 lead out wires and wo havo not bean eble to find out the correct method of wafking，il ly poendele that thay netd a capacitor， The colours of the leadoul wite are red．while，yellow and
blue．The maker＇s name io Robbine and Myere and ino model

 Baller atil．Salchwell ramots dial type with hatab calituraled －
Prelect Boxse．Nlcoly made in black plostle with threaded
 ${ }_{60} \mathrm{p}, 95 \times 7!\times 30 \mathrm{~mm}$ price 76 p 納 $115 \times 05 \times 38 \mathrm{~mm}$ price tep． instrument
 increases，ideal for pertional or cer alerm，price sop．
Sterea Hiadphons Lest．Black curly 10ft spprak，timint． other．Price 50p

Bterme Bataton hight II required 43p extra．
 and aland for de日k too work，prics E1－42．
Malnit Operatad Pomp．Host radera will hnow that wo stock tis Jedsco pump which was made to woth with partabte drilla，the price mounled them on smelal chassin and offer thle an a geserof purpose pump．Il is sultable for mozt liqulda and cerlanily for waler．The pumg ta aelt petming and will 1111 the liculd up to
quita a head buf naturally the dellvery wifi fall of depanding quita a head but naturally
Upon the tifs．Price Eti $2 s$.
Fioxlble Condutty made from o Thin bui very toupir of astlc tibbed to give extra strencint but very Ilphlwalght sidy very addition to cartying most nulde，these condufts csm slio be used for cable tldying and prolection and aven make do flexitile drive tor a stow soted turning operation．Twa elzet avallable 1^{7} and in $^{\prime \prime}$ Fnternal diamelers appronimately．II It Inlergating to note thal the $t^{\prime \prime}$ one is n rassonably gogd ai Pice 27 p ost melre，post lisp per melre．
Daubit Ended Mofor，malns operaled，capacllor run zpatrox
h．p．，thes has apindle coming out each side and shouto b very sulfeble for converting inlo a dauble anded patisher of grtnder，holes conveniently placed In the housing make it very easy to atand In the rioht position and 1he spesd althouph hol hiph is adequate．Limiled quantly only，we are offering hes
f H．P．Molora．Normbl base mounling，ex cornputors but
tested，230－840r 50izz good langth nplodie mosily Amerlcan make，$£ \$ \cdot 50$ ， 13 Amg Roeker Swlech
Luminoun Rocker Ewitch，quitable for 13 ampse malri voltape，these are filuminated wilt neon through amber pandl Thres postilion Rocker switch． 10 amp changeoryr with s contrs of elanderd size cllp fixing pusthe into hole area size

M Mingte Ctockwoth Time Switch mesia by Smithe and at hited to many lumble dryars，washing machiness，atc．Vary useful for othar timed aspricallons．When rotaisd pola main awilch makes circuit and stays on for up to hour depending on the emount you turn the bolndle，Special snin price §5．2s．
Clochwath Alt or Gan Switch made by the tamous Smitha Company，winding the clockwork opens the valve and ！ets Tee Air of gas come through for maximum of two houra depending uptr the empount the clockwark is rotate

EXTRACTOR FAN
En－compular！made by Woods of panel－reasoanably quitel running－ two nizes 5 or of dia $\mathbf{E S}$ and Et ．

READERS' P.G.B. SERVIGES-THIS MONTI'S EXTRA SPEGIALOFFER

Why D.I.Y. when you can purchase W.Y.E. Music Centre 902A complete and Guaranteed

FEATURES
' S ' shaped cubular tone arm simbal mounced with dampened cueing device
Padded front speakers with twin coned drive unics Automatic Frequency Control Stereo Beacon Headphone Socker Auto Stop Internal AM Aerial Twin Microphones Digital Turns Counter SPECIFICATIONS AMPLIFER
Ousput 2×14 wates A.M,S. into 4 ohms T.H.D. 0.5% typical

Controls Valume, Batance. Terabie Bass Push button selection for all functions
Sockats Headphone. FM Aerial
AECORD PLAYER
Unir B.S.R. F182 Semi-auromatic single player Speeds 33. 45, 78 Cartridye SC. 2 M 10.5 inch Bevel-edged Turntable Stylus Sapphire SPEAKERS
Drive Unic $8^{\prime \prime} \times 5^{\prime \prime}$
Rating 15 WATTS M.P. Impedance 4 ohms
RADIO
VHFF $87.5-108 \mathrm{MHz}$ with A.FC. LW $155-290 \mathrm{KHz}$ MW $520-1650 \mathrm{kHz}$ AfC switchable CASSETTE RECORDER Auco CRO2 (Chrome)
6 piana keys including pause control
Ausomatic recording ievel Dizital turns counter Auto stop an play,
CABINET
Fuff widh, hinged tinted dustcover
DIMENSIONS MUSIC COVER
Auto CRO2 switching
(including Ousteover)
Heisht 108 mm
Width 610 mm
SPEAKERS

Price: $£ 139.50$ Inclusive of V.A.T. and Post \& Pack.

DELIVERY EX-STOCK - For Colour illustration send S.A.E.

Wepth 610 mm
460 mm
Deprh 152 mm
Wing will axist as long as slorks past AVOID DISAPPOINTMENT All Unit: \$olr earry a full 12 month Guarantee.

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaning and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified. in every field of Electronics today. We offer the finest home sludy training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE: P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in.Television: Transistors; Radar; Computers: Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest detaiis will be gladiy sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to.

British National Radio \& Electronic School

P.O. Box 156. Jersey, Channel Islands.

NAME

ADDRESS

－© V VALVE MAIL ORDER CO． CLIMAX HOUSE，FALLSBROOK ROAD， LONDON SW16 GED SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

A ${ }^{\text {a }} 10$	－ 20	${ }^{\text {A SYY }}$	45
AAY30	－11	ASY27	－ 50
AAY32	－ 15	Aszis	125
AAZ13	－ 25	ASZ15	1－25
AAZ2B	＊ 31	ASE17	125
AAZ！${ }^{\text {a }}$	－ 3	As220	－ 76
A 107	45	Asz21	150
${ }_{4}{ }^{\text {c12 }}$	－ 34	AU110	1．7＊＊
AC128	－ 28	Al113	1．7＊＊
AC127	－25	AUY10	1－7＊＊
ACl26	－ 2	BA149	－15
Ac141	－ 2	BA148	－15＊
ACI41K	－ 33	BA154	
AC142	－ 2 ＊	BA165	－12
AC142K	－ 4	BA180	－17
${ }_{4}$	－ 21	BAWH2	－${ }^{\text {d }}$
AC487	－ 25	目AX13	17
ACtas	－ 23	BAXIO	－ 17
${ }^{4 C Y 17}$	－63	ECiay	－12
Acrss	－ 85	日C108	－ 12
ACYis	－	8C109	－11
ACY\％	－ 45	8C113	－ 15^{*}
ACYR	－ 15	BC114	0.10°
ACY30	1－28	BC145	－ $5{ }^{\circ}$
ADY49	－7	BCt18	－ti＊
ADI軆	－75	$8 \mathrm{BC17}$	－22＇
AD192	－ 75	ECCl_{118}	－10＊
AF309	－45	日C128	＋18：
AFS14	＊ 23	BC．723	数
AF13	4.25	日C135	＋19＊
AF19	－ 25	EC138	－16＊
AF117	－ 33	EC137	1．150
AF139	－40	日C147	－18＊
AF188	1－5	BC14	－10＊
AF239	－ 45	8G149	610
AFZ11	271	Sc157	－12＊
AF212	175	BC158	－11＊

VALVES

 InTEGRATED CIRCUITS

1400	－20	7412	－ 26	7432	－ 31
7401	－ 20	7413	－ 45	7433	－ 57
7402	－ 20	7495	040	7437	－ 42
3400	1 施	7417	－ 40	7438	037
7404	42	7423	－ 20	7440	022
7405	${ }^{1} 13$	7422	－ 25	7441AN	－12
7403	－ 6 －	7423	－ 35	7442	0.71
3471	－ 8	7425	－ 15	7467AN	$8 \cdot 20$
74.8	－ 21	7427	033	7453	－ 20
7600	021	7428	－ 50	7451	－ 3
7410	$0 \cdot 28$	7430	－ 20	7453	48

$12 \AA$

2N352
2N3
2 Ns 701 $\cdot .88$
$\cdot-64$
-4 B
125

2 N 3709
2 N 3710
2 N 371
2 N 377
$2 N 3773$
$2 N 381$
$2 N 3 g$
2 N 36 C
2 N 3 C
2 N 30 O
2 N 39 O
2 N 3 O
aN 300
2N408
$2 \mathrm{~N}^{2} 405$
$2 \mathrm{~N}^{2} 405$
2 N 40
2 N 40 C
2 N 6
2 N 4

2NS430
$\mathbf{S N 1 2 3}$
p2av

74145
7147
74148
7168
74181
74181
74988
74938
7467
74168
74170
74172
74173
74174

141
74
14
741
741
741
741
741
741
741
741
7
7
7
741
749
7

DIL
Sockets

BURGLAR ALARMS

WE HAVE STQCKS OF EVERYTHING YOU NEED.
CALLERS WELCOME. OPEN G DAYS
HEE CATALOGUE SEND S.A.E. Maxi nuard Mi
$£ 37.00+$ VAT
Control Unit 1006 B C19.50 plus ft 20 p\&p (Mains! Battery complete unit).

STEPHENS-JAMES LIMITED
 COMMUNICATION ENGINEERS

47 WARRINGTON ROAD, LEIGH WN7 3EA
Telephone (0942) 676790
Everything for the Short Wave Listener,
We stock receivers and listening aids by most of the worlds eading manufacturers.
$\underset{\text { Yagau }}{\text { FRG7-FRG7000-FR10 }}$
SSR-1 $-\stackrel{\text { Drake }}{\text { SPR4 }}=$ RGC .
Secondhand Fquipment
Cur secondhand Equlpment slock
price fist. Part exchangas wetcome.
Access-Barcloycard and $\mathrm{H}_{\text {, }}$. fecilities.

MAGNETIC CONTACTS from 50 MATS LARGE $28^{\prime \prime} \times 15^{\prime \prime} \quad 1 \cdot 50$ STAIR SIZE $6^{*} \times 24^{*}$ WINOOW FOHL 33 mts . $\quad 1.45$ KEY SWITCHES $\quad \begin{array}{ll}\mathbf{2} \cdot 15 \\ 2.10\end{array}$ ELECTRONIC CAR ALARM ONLY 55
Please add VAT $12 £ \%$, Post 70 p min. C.O.D. Free on orters over $\mathbf{1 2 0}$.
A. D. E. (SECURITY) CO., 217 WARERECK MOOR AINTREE, LIVERPOOL TEL: 051-525-3440 STOP PRESS : Trade Price List Available Applicationi on Ofricial Stationery orly

TAMPER JUNCTION BOXES VIBRATION DETECTORS DOORLOOPS COMPLEE 250 BELLS \& STRENS FROH BELL COVERS FROM
 $14 p$
2.50 4-00

ENGLANO
ENGLANO

790

P.W. WIMBORNE

 REED HAMPTONis now offering a complete service for this exciting project. Total cost for standard options approximately £110. Comparable price £180.

No. 1 Hardware Kit. Consists of all accessories to give a protessional finish to your project. Precision punched aluminium front and rear extrusions. Vacuum formed top moulding, set of sockets and mounting panel. Tuning drive system and a complete set of knobs and push buttons.
Special Price $\mathbf{£ 9} \cdot \mathbf{9 5}$, in a complete kit $\mathbf{1} 15$ - 95.
No. 2 Amplifier Module. We are able to supply the PCB, Pots, Rectifiers and I.C.'s or a fuliy wired amp, pre amp and power supply (11 watts per channel) for $£ 19 \cdot 95$
No. 3 We wil be supplying the R,F. Section PCB of we can offer a suitable High Performance R.F. board, wired and tested. 15 uV sensitivity for 26 dB S/N FM/MPX + MW/LW. Price $£ 24$-95
No. 4 Stereo Cassette Recorder Modufe. Fulfy wired and tested with ALC Piano Key mechanism, tape counter, low noise devices throughout, requires $9-12 \mathrm{Vdc}$, has its own motor regulator circuit. Terrific Value at $£ 24.95$.
No. 5 Limited number of B.S.R. Single Play decks type P172 with A.D.C. MAGNETIC CARTRIDGE only £ 19 -95.
No. 6 A.D.C. Cartridges at $£ \mathbf{3} .95+$ p\&p 30p.
No. 7 Magnetic Pre-amps with R.t.A.A. Equalisation $£ 2.95$, p\&p 30 p .
No. 8 Teak Cabinet - baseboard 99 -95. ALL PRICES ARE INCLUSIVE OF V.A.T.
Please add 81 for p\&p items No. 105 and 8
Send S.A.E. for complete details

REED HAMPTON LTD.

19 CHURCH LANE, WALLINGTON, SURREY
Tel: (01) 6470851

GIVE AWAY PRICES

MANUFACTURERS SURPLUS EQUIPMENT

STEREO POWER AMPLIFIER

25 Watte RMS perchannel E7.50

* Class AB Operation * 16 Transistor Circuis * Unstabillsed supply required \star Tlp 34A + Tlp 33A Output \star Supply Voltage 50V DC nominal
* $30 \mathrm{~Hz}-18 \times \mathrm{Hz}$ 国 -1 dB
* Output 8 obヶт
* Input 50 Kohm

 tary patr ol sranalstors in sfass AE puah pull. Whil comiorlably dellyar 25 watte pat channel. And comes complele with heat sinh

Hi-Fi Preamplifier
The PR 020 is a low noise preamplifier with tuil bass and qreble cut and boost. It has four rotary controls and four specially selected iransistors. It is designed to match most high quatity power amplifiers.
$\mathbf{8 5} \cdot 99$

RF BOARD AM/FM/MULTIPLEX

$3 \times \operatorname{ICs} 3089 \mathrm{EMC} 13103123$ 3 ceramic filters. meter dilve

FET FRONT 3 stage FM tuning

2 Stace AM/NW - LW
LOW PASS AUOIO FHLTER BUILT IN STABILISER

Complete with 4 way switch \& lerite rod assembly £9.99

SPECIAL OFFER

COMPLETE STEREO AMPLIFIER AND STEREO PRE-AMPLIFIER FULLY WIRED AND TESTED 8 WATTS PER CHANNEL RMS.
(Just require Tone Controls, Slider or Rotary available)

Incredible Price $\mathbf{2 6 . 9 5}$ $£ 8 . \mathbf{2 5}$ with Pots
Also power supplies transformers available

\section*{the MIGHTY MIDGETS s.a
 MINIATURE SOLDERING IRONS ACCESSORIES
 | 18 WATT IRON inc. No. 20 BIT | RETAIL PRICE each inc.v.a.t. E3. 78 | $\begin{aligned} & \text { POSTAGE } \\ & \text { extra. } \\ & \text { 22p } \end{aligned}$ |
| :---: | :---: | :---: |
| SPARE BITS | 44p | - |
| STANDS | ¢3-25 | 65p |
| SOLDER: SAVBIT 20' | 52p | 9p |
| 10^{\prime} | 26p | 4p |
| LOWMELT 10' | 65p | 9 p |
| I.C. DESOLDERING EI\% | 88p | 9p |
| BIT SIZES: $\begin{aligned} & \text { No. } 19(1.5 \mathrm{~m} \\ & \mathrm{N} 0.21(4.5 \mathrm{~m}\end{aligned}$ | No. $19(1.5 \mathrm{~mm})$ No. $20(3 \mathrm{~mm})$
 No. $21(4.5 \mathrm{~mm})$ No. $22(6 \mathrm{~mm})$ | |
 From your Local Dealer or Direct from Manufacturers
 S:R. BREMSTERLT 86-88 Union St - Plymouth PL1 3HG
 Te: 07526501 TRADE ENOUIRIES WELCOME}

PROGRESSIVE RADIO

34 CHEAPSIDE, LIVERPOOL Liz 2OY. Tal: 051-236-0912

 CO4051 45p, 723 14 pin I, C.' ISp. Special Ofer SGS 64 gaped regulated caleette motor

 minnsa 3 mm lad diaplay. 50 p , Min. Ntale 587 OST 75 p .
Pot cors unlt, hat six pot corat (incleding one FX2243 (4timm) and twa FX2242 (35mmi)

 .20.,

Cryital microphonas inearia $37 \mathrm{~mm} 45 p_{4}$ Grundig tloctret condenior Ineerta with bultt in

BOLDER BiJGKER, high suction, oyo protaction shisid EA.35p.
FROJECT BOXEB, BLACK ABS PLASTIC WITH BRASS TNSERTS AND LID, 76人
UZZER \& GFO OD
ThPE HEADS, Mono Caeterte Ei-30p, Sitro cassotte c3. 60, ESR MNI330 hsif trac
 Nw Typer, 12 b
 NiO 20p. CRYSTA
CRYSTALS. 300khz 40p, BOV AC ctm unita, motor owliching ten elo micro ewtchee

U.M.F, TV Tuntri, push button (not yaricap) new and boxed e2-sip, Minlalute ropgle

 TERMS: cash with order, (or onticlal ardert from colleget etc). Postago $30 p$ untast other-

15－240 Watts！

Preamplifier	The HYs in a mono hybrid amplliat ldeally suitad for all appleations．All common Inpul funcliong（mas Cartridge，tunar，atc）are caterod for intermelly．The dealited lunction iz schleved oither by a mulif－way awitich or alfaci connection to the sppropribte plns．The intarnal yalume and lone circulte meraly reguirs connacting to arternel potentlomaters（not included）．The AYs moumpatio P．C．connector is supplled wilh exch grevemplifier． FEATURES：Complete pra－impilfer in alngle pack－Mulal－function equalization－Low nolse －Low diaterion－Hiph overload－Two almply comblinad for starea． APPLICATFONS：HI－FI－Mixert－Cilsco－Gutar and Organ－Public addeas SPECIFICATIONS： INPuTS．Magnellc Pich－pp 3 mV ；Ceramice Plek－up 30 mV ；Turer 900 mV ；Microphone 10 mV ； DISTORTION． 0.1% at 1 kHz ．Signal／Nolse Rallo Gade． OVERLOAD．3gdB on MEanatic Pick－up．SUPFLY YOLTAGE $\pm 16-50 \mathrm{~V}$ ． Pricese $27+76$ VAT P\＆P lite．
15 Watts into $B \Omega$	The HY30 is an exeling New kIt from I，L．P．It features a witualiy indoslructible＇C．with ahort clrcult and thermsl prolecilon．The WJI coneials of I．C．，healsink，P．C．board．i resistore，f cspacitors，mounfing kit，togelher with easy to dollow construction and optrating instructhona． technology avallable． FEATURES：Complete KIt－Low Dislortlor－Short，Open and Thermal Protecilan－Eapy to Build． audla ovelliator． APECIFICATIONS： OUTPUTPOWER 13WR．M．S．Into BR：DISTORTION 1% at $1.5 W$ ． INPUT SENSITVITY SOOmV．FREQUENCY RESPONSE TOHZ－TGMHI－3dB． SUPPLY VOLTAGE $\pm 19 \%$ ．
25 Watts into 8Ω	The HY50 leads I．L．P．＇s tolal Integralion appranch to power amplifior design．The amplifier featuren an integral hatalink lagetimer with tha simplicity of no external componenta．During the pest three years the bmalifiar has bean refines to the extent that fimush ban al the most religble and robusl High Fidelity modules in the World， FEATURES：Low Distortlon－Integrai Heazalnk－Only five connections－7 amp putpal tran－ piclori－No exjernal componenls APPLICATIONS：Medtum Power HI－Fl ayblemg－Low powt dis σ－Gultar amplifier BPECIFICATIONS：INPUT SENSITIVITY 500mV OUTPUT POWER 25W RMS Into BR LOAD IMPEDANCE $4-160$ DISTORTION 0.04% at 25 W Et hidy SIGNALINOISERATIO 15d日 FREQUENCY RESPONSE 10Hz－45kHz－3dB． SUPPLY VOLTAGE $\pm 25 V$ SIZE 1055025 mm Price $\boldsymbol{\kappa}$ I $18+\mathbf{f}_{1} 92$ VAT PaP fres
60 Watts into 8Ω	The HY120 ta the baby or J．L．P．＇s now high powar range．Dealgned to mael the most extellag requisements including lond tine and thetmal proteciton thets amplifler sels a new standard in modular design． FEATURES：Very low dislortion－Integral healsink－Load kine pratection－Thermal protac－ tion－five concreclton－No external components APPLICATIONS：H3－Fi－7ilgh quality dised－Public address－Monltor amplifor－Gultar and arpan APECIFICATIONS INPUT SENSITIVITY 500 mV ． OUTPUT POWER GOW RMS Into 80 LOAD IMPEDANCE 4－16 O DISTORTION 0 04\％at cow it 1 kHz SIGNALINOISE RATIO GOdE FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{EHz}_{z}$－ 30 B SUPFLY VOLTAGE $\pm 35 \mathrm{~V}$ SIZE 11450 BBmm
120 Wates into 8Ω	The HY200 naw Imptoved ta glve an output of t 20 Watto has been designect to pland the moat FEATLFES：Thermal thutdown－V ery low distorilon－Load ilne protectlon－Integral heatoink －No externsl componarts SPECIFICATIONS INPUT SENSITIVITY 500 mV OUTPUT POWER 120W RMS 1nto 8 I LOAD IMPEDANCE 4－10n DISTORTION $0 ~ 05 \%$ at 100W at ihHz ． SIGNALINOISE RATIO D8GB FREQUENCY RESPONSE 10H2－45kHI－3dB SUPPLY VOLTAGE $\pm 45 \mathrm{~V}$ SIZE 145085 mm Prict $\mathbf{\Sigma} 2799+$ C2．24 VAT P\＆P frem．
240 Watts into 4Ω	for high pawar disco address appricallons．Tt the amplitier th to be used at conthnuous hagh power ievels a cooiling ton la recommended．The amplifier inctudes atl the quatilies of the reat of the famlly 10 leut the markel as a true hlgh power hi－fidelity power module． FEATURES：Thamal shutdown－Very iow disiortion－Ladd line prolection－No externas components． APPLICATIONS：Pubilc address－Disco－Power alave－Induatrial SPECIFICATIONS OUTPUT POWER 240W RMS 1 nto 14 LQAD IMPEDANCE 4 －18 D DISTORTION O 1% el 240 W at 1kHz SIGNAL NOISE RATIO OUdB FREQUENCY RESPONSE IOHz－4FkHz－3dE SUPPIY VOLTAGE去PMVT Price $\mathrm{E} 38 \cdot 6 t+63-69$ VAT P\＆P free．
POWER SUPPLIES	PSU36 sultede tor tho HY30＇e 8 \＆ 44 plus 11 p VAT．PfP liee． PSUSO sullabie for twa HY50＇s $\mathbf{C E}$ it plua $\mathbf{L 1}$ ．©I VAT．P／P fre PSU70 suitablo for two HY180＇$E 14$－5 plue $E 1.17$ VAY．P／P froe． PSU180 $82542+52$ E3 VAT． B1 EO． $48+$ EO OB VAT．

clrcult and thermel prolecilon．That kit conelsis of i．C．healesink．P．C．board．\＆resistore， capacitors，mounting kxit，togelhit with easy to loflow construction and operatimg instructions． lechnology ayallible．
FEATURES：Complete Kit－Low Dlelortlon－Short，Open and Thermal Protecilon－Eany to
APPLLCATIONS：Updalling oudio equpmont－Gular practice amplifer一Totilampliffer－ audio obelilatior．
OUTPUT POWER ISW R．M．S．Into BR：DISTORTIONO 1% Et 1.5 W ．
INPUT SENSITIVITY SOOMV．FREOLENCY RESPONSE TOHz 96 HHz －3dB

HY50
25 Watts into 8Ω

HYI2
60 Watts into 8Ω

POWER SUPPLIES

TWO YEARS＇GUARANTEE ON ALL OUR PRODUCTS

I．L．P．ELEGTRONICS LTD．，CROSSLARD HOUSE，NAGKINGTON CANTERBURY，KENT，GT4 7AD．

I．L．P．ELECTRONICS LTD．，

GROSSLAND HOUSE，NAGKINGTON， CANTERBURY，KENT，CT4 7AD．

Tel：（0227） 64723.

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account，
Account number
Name and Address

© WIRE WRAPPING CENTRE ©

HOBBY WRAP Motal ew 630	WIRE-WRAPPING TOOL posmuve indexino. overwrapping devico.	
	4 For Awg 30	BW-630
wrisping	Ear AwG 26-28	日w-2628
Complate	Bit lot AwG 30	Er-
with it	8it 10 AWg	BT-262a

DIPIC EXTRACTOR TOOL $E 119$ Tha Ex-1 Entractoris Icbaliy tulifa tor hobby steq comsiruction. it wini andzat an LSI, Wist and SSI devices af trom a to Ertuaster Tool EX-1.	DIPALC INSERTION TOOL WITH PIN STRAIGHTENER ¢2.79 INS-1416

 CNIVEASAL CUTTER Cuts morything Lethet cardbourd statndatit phages
Jutit ons
 3136 £346 IC TEST CLIPS 82.97 FOR DUAL-INLINE PACKAGES
 intograteo circuit dop - Remove DIP's famagr

FAOM BOP
TERMPNAL AND DISTHBUTION STRIPS
Breat bourding bullding
 Olug tin tiepanis.

- Faciniate quick ind checkrout on buad-wn
Mnd chwck-owt on untuartal $1^{\prime \prime} x+1^{\prime \prime}$ matrix
- Are orforsodin ien Accoppall components
win lasci up to. 032 . oflometor.
- Requira no ipacial patch

Eoras. includes intagial non.

WIRE-WRAPPING KIT Contalns: Hobby Wrap

 $\mathbf{E} 19.22$

OK Machine \&TOOIU.K.
Limited
4Bazhe Avenue southampron sol 2 sy

DISTRIBUTORS
WANTED***

B. BAMBER ELECTRONICS

Dept. P.W. 5 STATION ROAD, LITTLEPORT, CAMBS.. CB6 TOE Telephone: ELY (0353) 860185 (2 tines) Tuesday to Saturday

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED

 A MEW RANAE OF EPEAKERE CABINETS. BRAND N
 Prach +12 it Y YAT. NETS. Smart woodgrain formice tyon iminh \#ith nyton arilit. Dverall heloht $\mathbf{w a}^{\prime \prime} \times 12^{N}$

 124% VAT. CEILFAG BPEAKERS. While
 Boteker, Sorry sold put. TYPE LI PORTABLE SPEAKER CAEI-

 former, 27.60 each +124 VAT
DECIMAL KEYBOARDS, prensure ganzlifive type, when prassed contacts go from Of C to approx, 25 orte. Switches sily, no

 Whife stocka lasit RANGE ©PEAKERR, 10°
 12% VAT.
BEMEONDUCTORS
OSX20 (VHFFOBCTMuliv. 3 for 50 p .

SCY72 Trantictors. 4 for Eip.
PNP sudid type TOS Tranalaiors, 12 for 23p QF152 (UHF 8 arpplmizer). 3 for 50p.

EC58 PNP SLLCCON, A 1or 5op. iN4148 ((N914) 10 1or 25 p .
ection (Metal cen) 4 for sep.
 15A, Silleon PNP power transistor, EOV at GERMAMNIUM DIODES, APPTOK AD for 30 . 741CG op ampt by RCA 4 for E 1 .

SPEAKER CABINET TYPE M22I, White

 Ilne tranaformer. E4. 50 esch or $\frac{2}{2}$ for EA QD

- 12 TRACK CARTRIDGE PLAYER UNITB, with internal mains pgu pand 25 watt mong ertrack carlididgas. All contolned in amal veneared wood cabtmet, alie approk. 14^{-}
 Cifcults. Brand new and boxid. SPECIAL VIDICON ESCAM COILS CTranilgior type, VIDiCON BCAM COILS (Tranilstior type, bit no datos completo with vialion bate
IC TEST ELIPS, Elid over IC while still soldered io peb or in socket. Gold-plasisd play, Ideal for expertmentere or peryice Of abve by buying one of ese tor $£ 3.54 \cdot$ GLASS BEAD FEEDTHROUTH INSU. LATORS, Solderill type, overall dila approx Sima, Pack of approx. 50 for 909 . Die-CAET ALUMINJUM BOXEA
Sand Car Lateat Price Llet.
PLASTIC PROJECT EOXES with acrew on Hide (in bloch ABS) with brate interte. Type NB 1 epprox $31 \mathrm{~m} \times 2+\ln \times 1+\ln 4 \operatorname{lig}_{\mathrm{y}}$ each

 To3 trankikfor insulator iete, 10 tor itp PLUGS AND SOCKETS
BNC Pluas, new 50p efch.
N-Typa Pluge 50 ohm, 60 p each, 3 for 51.50 . PL254 Pluge (PTFE) brand new, packed with SO238 Sochte (PiFE), brand new (4-hole fixing lypen) ep each.
SOLDER SUCKERS (P/Unger type) SIandurd Model. KS.50. Skifled Modaliei, Spary Nozzles wpeach.

NEW MARKSMAN RANGEOFBOLDER.

 ING IROMS.$5140040 \mathrm{~W}_{2} 20 \mathrm{~V}$ E4 50.
sissok $25 \mathrm{~W} 240 \mathrm{~V}+$ bits etc., KIT $£ 53 \mathrm{st}$ DENCH STAHD with spilng und epongetor
 50p. MT10 (for 40 W$) \mathrm{S5}$.

TCPZ TEMPERATURE COMTROLLEO ThOMperature confroliod iron and PSU, fiso+ VAT (段-40).
BPARE TIPs
Type CC single fiat. Typa K doublg fint fine 11p, Type P, Ury flat th fit 50 each +VAT

WELLER SOLOERING IRON
EXPERT, Bulli-ln-apottight Illuminate wark, Pistal grip with fingertip trigger. High EXPERT SOLDER GU4 Bion
EXPERT SOLDER GUN H100D A2 40.
EXPERT SOLDER GUN KIT (spara bite.
cate, etc.) Eis- 60 . Spari bits 40 p pair. MIXED COMPONENT PACKS, contelnIng resistory capacltofs, pots, efc. All hew,

BSH AUTOCHANEE RECORD PLAYER DECKS wilh cue device, $33-45-78 \mathrm{RPM}$ for $7^{* \prime}$, 10", $12^{* \prime}$ records. Fited wilh SCi2M Hew f14-00 + $12 \% \%$ VAT GARRARD AUTOCHANGE RELORD PLAYER DECK8, MOdel for $7^{\prime \prime}$. TO", $10^{\prime \prime}$
 recarde. Fatied willdy and styli Brand new EfA $00+125 \%$ Ragdiline, bllow 14 disy tor dellvery.
FULLRANE OF BERNARDSUQABANF ELECTRONICS BOONS IN BTOCK.
VARICAD TUNERS Mulfard tyon ELClous 05. Brand Now, $\mathrm{Is} \cdot 06+124 \%$ VAT.

BARGAIN PACK OF LOW VOLTAGE ELECTROIYTLC CAPACITORF. Up to 50 V working. Sestronic Matnufacture. Approx $100 . £ 1.50$ per pack $+121 \%$ VAT.
Dub'ller Elecirotylick, 50pF. 450V, 2 for 50p. Dubilier Electrolytics, 100 p F, $275 \mathrm{~V}, 2$ for 50 p . P!assev Electrolyilcs, $470 \mathrm{iFF}, \mathbf{3 3 V}$, a for 50 p . TCC Etactrolytica, $1000 \mathrm{aF}, 30 \mathrm{~V}, 3$ for 50 p. Dub'lier Electratytles, 5000 LF , 35V, 50p each. ITT Electralytles, $8800 \mu \mathrm{~F}, 2 \mathrm{sV}$, hish orade ITT Electralytics, $8800 \mu \mathrm{~F}, 2 \mathrm{zV}$, hith orgot each. CAPACITOAS

Terms of Businass CASH WITH ORDER MINIMUM ORDEA [2, ALL PRICES INCLUDE POST \& PACKING FUK ONL.YI SAE WIM ALL ENOUIRIES Pleasi PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK OESPATCHED BY RETURN CALLERS WELCOME BY APPOINTMENT ONL

Ome 5tap Technology Shapping starts lnere

product raliabilizy. But is complexitias hava multiplied. ond pricas have beeome competative. the datineation batweun 100% functional and 95% functional ICs has got a
 only from BS 9000 spproved wourcos No nondeacript clearance lines of dubious pedigreb, anly tha wary beri. If you are a designer, or simply a kean hotbyist, you may buy Irom the OSTS with toral confidance.
As you may mireudy know, we nake a point of backing our products with axtensive by
 to supplying you
Phesse note thar OSTS prices exchude VAT at 8% throughour thas side of the obge. Whost mbit ifems are at 12% except those marked . Ptesse keep orfers separstely totor

Fram the Ularld's leading radio innountian saurce:
On this side of the page, we affor vou the leading products from the warid of wiraless. We are continually reviewing and edding to our range, and this month we feature some of the

Moving Coil Meters

Arग me Mad stal

Coils \& Filters by TOKO Aftar period of relative price rtability.
trleat note that soms prices are increasedtheat note that tome prices are incrasedutronger trading currencias. (Mainly Yea)

Snort Wave Coila sets
Now two langes of nimecancelcuupling ga 33 p

FM IF FILTEAS ceramic and tinesr phaw

QLA315? Mono 4k? 340 imb
MFL wrim 2 AkHz sxb 1495 kHz carring 095 pTuner Modules

EF5400 Accr busnced mixerfpin mge
EC 3302 3est FET inpu1 minuturg
$\begin{array}{lll}7252 & \text { Dual MOS hontilow dive if } & 2650 \\ 7253 & \text { FET hasd, mpe decoser ine } & 26.50\end{array}$
 16.25
0.95
huffse mmptrines fut min 300 mV AMS
$93090 \quad 3090$ Aa bsyed syriemBtT223 HA11223 beatin motem
81197 The anighnal AMrifLW wtickp$\mathbf{5} 22$ The unibsene tuner maduts11.85
13.221083 Uning TDA10B3, peovides a campleta
10930 Divertat ryblem Ior 31083
SPECIALS TUNEAHEADI
Eha EFSEO3 mnd EF54CO are mysilith 10
depend on quantivy smd mckuy! moda 1 tquarmdcover of danta Irequency salgctmd. Also. pithe,

2 EreshamRand, Brentwond, Es5gu.

	ROnKS	
Purchase bookil io the value bi £5－00 iram the tiet below and choopr any 60g pak from this page fREE		
BPP	Handbook of Radio，TV \＆Indu miting Tube a Valve Equivale	＋
B	Engineers and Machinists Rofer	Ot
8P7	Radlo \＆Electronic Colour Codes and Crata	p \dagger
BP10	Modern Crystal and Tranalstor Set Clrcuits for beginnera	，
BP95	Construttors Manual of Electronic Clicults for the varme	50p \dagger
BP22	79 Electronle Novelly Circuits	75p \dagger
BP23	First book of Practical Electronic Projetia	$75 \mathrm{p} \dagger$
BP24	52 Prolects Using IC741（or equlvalenit）	75p \dagger
8P26	Radio Anterna Handbook for Long Distance Receptlon and Transmiasion	85p ${ }^{\text {d }}$
BP27	Giant Char：of Radio Electronic Semp－ conductor and Logle Symbols	00^{3}
BP29	Molor Solid State Audia मll－Fl Consituction Projects	15pt
BP32	How to Bulld Your Own Metal \＆Tressure Locators	45 ${ }^{\text {¢ }}$
BP	Prectical Repats a Renovallon of Coloue TVs	25pt
B935	Hand hook of IC Audio Preampliner ${ }^{\text {a P Power }}$ Ampliner Construction	crpt
BP36	5o Circulis Using Germanlum，Sllicon \＆ Zaner Dlodes	75p \dagger
BP37	so Projects Using Relays SCR＇s and TRIACS	$51.18{ }^{+}$
BP	50 \｛FET）Fiald Effect Transistor Projecta	E1－25；
BP4	How to make Walkie－Talkles	c1－25
8	1．C． 555 T／mer Pro	E1．45 \dagger
BP47	Mobite Dlacoteque Handbook	C1－35：
129	Universal Gram－motor Speed Indicato	10a \dagger
16	Coil Cesign and Construction Manual	759
195	AF－RF Renctance Frequency Charl for Con－ siructors	15；
202	Handbook of Integrated Circults（ICs）Equlva－ lents and Subattules	\％p ${ }^{\text {P }}$
205	First Book of Hi－fi Loudapasker Encioeures	$75 \mathrm{p} \dagger$
213	Electronic Circults for Model Railways	5pt
214	Audio Enthuslasts Handbook	55pt
2	Eractronic Gadgets and Garnes	$55 \mathrm{p} \mid$
217	Solld S1ale Powar Supply Handbook	65p \dagger
21	Solld Slate Novelty Profecte	13p
220	Build Your Own Solld State Ki－Fi and Aud Actessorles	85p
222	Sold Stale Short Wava Recelvers for Beginners	95p \dagger
223	50 Projecls Ualnp IC CA3130	95p ${ }^{\text {a }}$
224	50 CMOS ac prolects	95 p 1
225	A Practical Introduction to Dlgital IC＇s	5p：
22.1	How to Suild Adyanced Shart Wave Receivers	E1－251
RCC	Reaialor Colour Code Disc Calculator	10p＇

BOOKS BY NEWNES

No 2299 Bepirners Guide to Elmetronies	Price $\mathbf{E 2} 25{ }^{\text {2 }}$
No． 230 Benemners Guite to Television	Price $\mathbf{£ 2} 25 \dagger$
No 231 Beginntes Guine to Travisistots	Ptue E2．25 \dagger
Ao． 233 Begmeners ¢ ¢ulde to Rarlio	Price $\mathbf{1 2} \mathbf{7 5}{ }^{\text {¢ }}$
Nin， $2348 \mathrm{Bug} \mathrm{m}^{\text {aners }}$ Guide to Culout Television	Prite £2．25 \dagger
Nu． 235 Evectronic Oiaqrams	Price ¢1－80\％
No 236 Exectrurie Components	Price £1 08t
Nos 237 9rinted Circuit Assembly	Price E108 ${ }^{\circ}$
An 238 个ransistot Potket Booix	Psite £3 90t
No 225110 Mirtisior Profects Usung St，Rs \＆Triacs	Price $£ 250 \%$
No． 227110 COSMOS Dighal IC Projects for the Homa あaristructor	Price $\mathbf{8 2} \mathbf{2 5}{ }^{\text {¢ }}$
Ner 225 110 Operatonal Amphitien Propects for the Home Cfuksinucis	Price $\mathbf{E 2} 50$ ¢
Nu． 242 Elnçlranics Pocker Book	Price f3．90 \dagger
Nu． 23930 Photnelectric Circurts \＆ SVsiturns	Price £180ヶ

	NUTS AND BOLTS									
EA BOLTS slotied cheese										
Supplied in multinitr										
	$\begin{aligned} & 80 \\ & 839 \\ & 840 \\ & 842 \\ & 843 \\ & 844 \end{aligned}$	$\begin{aligned} & \text { Price } \\ & \text { f1.20 } \\ & 60.75 \\ & 6085 \\ & 6045 \\ & 6052 \\ & 6044 \end{aligned}$		$\begin{aligned} & \text { No } \\ & 846 \\ & 847 \\ & 848 \\ & 849 \\ & 850 \end{aligned}$						
BiA nuts packa of eadmultm glated futl inuts in multiples of										
$\begin{aligned} & \text { Tyoe } \\ & 080 \\ & \hline 8 A \end{aligned}$	$\begin{aligned} & \text { No } \\ & 855 \\ & 856 \end{aligned}$	$\begin{aligned} & \text { Proce } \\ & \text { fo } \begin{array}{c} \text { fole } \\ 5048 \end{array} \end{aligned}$	$\begin{aligned} & 48 \mathrm{~A} \\ & \text { 6BA } \end{aligned}$	$\begin{aligned} & \text { No } \\ & 857 \\ & 858 \end{aligned}$	$\begin{gathered} p_{\text {Picice }} \\ \text { co. } 30 \\ 6024 \end{gathered}$					
8A WASHEAS＇－fla；cadimum slated plain slatmped washers supplied in multiules of 50 ．										
$\begin{aligned} & \text { O日 } \\ & 28 \end{aligned}$	$\begin{aligned} & \mathrm{Vo} \\ & 859 \\ & 860 \end{aligned}$	$\begin{gathered} \text { Pruco } \\ \text { fo } 94 \\ \text { cot } \end{gathered}$	Typa 4 BA 68A	$\begin{aligned} & \mathrm{Na}, \\ & 86 \\ & 862 \end{aligned}$	Pricescoinco 0.12					
SOLDEA TACS－hoo simped suppled in mutiples of 50.										
$\begin{aligned} & \text { fype } \\ & 0 \mathrm{gas} \\ & 29 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { No } \\ & 881 \\ & \hline 15 \end{aligned}$	$\begin{array}{r} \text { Price } \\ \text { fo } 40 \end{array}$	$\begin{aligned} & \text { Type } \\ & \text { abA } \end{aligned}$	$\begin{gathered} \mathrm{No}_{85} \end{gathered}$	$\begin{aligned} & \text { Prite } \\ & \text { fo-2.2. } \end{aligned}$					

AND COMP

TRANSFORMERS

miniature matns pumary 240 V

No．	
${ }_{2022}^{2021}$	\％V．0．6V
	12 V .012 V 100 ma

MINIATUAE MAINS Pumbry 280 V

1 ANAP MAINS Primary 24 CN

No．	Sccundory	Prí
2025	$6 \mathrm{~V}-0.5 \mathrm{~V} 1 \mathrm{amp}$	¢2．60＊
2027	$9 \vee 0.9 \mathrm{~V} 1 \mathrm{smp}$	E200＇
2028	12 V 012 V 1 әmp	¢2 bo＇
2029	$15 \mathrm{~V} \cdot 0.15 \mathrm{~V} 1 \mathrm{mmp}$	£2．75＊
2030	$30 \mathrm{~V} 0 \cdot 30 \mathrm{~V} 1 \mathrm{amp}$	¢3．45＊

STANDARD MAINS Primary 240 V
Multi－tappled secondary mains transforming avalable in $\frac{1}{3}$

Vollages availatie by use of iaps．
$47810,141517,19,25,31.3340,25 \cdot 025 \mathrm{~V}$

Na_{o} 2031 2032 2033	Rating amp 1 gmp 2 ang	Price f5．50 E6．60	

MIDGET WAFEA SWITCHES

Single barik waler type－tuituble tor switching at 250 V o．e． 100 mA of 150 V d．c．in non－reactiver toerfs make－betore－bregk contacts．These swilches have a spindle 025 in dia and 30° indexing．
Dascriptia
Ordar No，Prict
$\begin{array}{ll}1 \text { pole } & 12 \text { w } \\ 2 \text { pole } & 6 \mathrm{wa} \\ 3 & \text { pole }\end{array}$
$\begin{array}{ll}3 \text { pole } & 4 \text { way } \\ 4 \text { pole } & 3 \text { wey }\end{array}$
$\begin{array}{ll}1965 & \mathbf{E 0 . 4 8 ^ { \circ }} \\ 1966 & 80.48^{*} \\ 1967 & \mathbf{f 0 . 4 8 ^ { * }} \\ 1968 & \mathbf{E 0 . 4 7 ^ { * }}\end{array}$
MICRO SWITCHES
Plastic bulton gives simple
सating $10 \operatorname{amp} 2 \mathrm{BOV}$ a c ．$\quad 1969$ E0 20
Butpon gives I pare change
Order No．Price

OVes action
Rafing 10 amp
$1970 \quad 5025$

FUSE HOLDERS AND FUSES

OMIENTS

Raying 10 amp 250 V a．c．
S

AUDIO LEADS
$\begin{array}{ll}107 & \text { FM Indoor Aibhon Arrial } \\ 113 & 3.5 \mathrm{~mm} \text { Jack plug io } 35 \mathrm{~mm} \text { jatk plug }\end{array}$
114 Lengith 5 pin Din piug to 3.5 mm Jack connecte
5 pin DiN plug to 3.5 mm J8ck connecied
5 b pin DiNplug io 3.5 mm ，fack connected
Topins 184 ．Lengin 1.5 m
Cat Hetial extension．Sciet
iend．Fhted plug \＆sik1．Scienned insulated
AC mains connecting lead for cassette
$8 \quad b$ pin OIN phono plug to sterea
headphone lack socke：
$2 * 2$ pin OiN
$2 * 2$ pith DIN plugs to sterea，ark sockes
wilh allenuathen reitwork tor siereo with allenuation retwork tor slereo
hoaciphanes．Leirgth 0.2 m
20 Car steref comecter．Variable geometry plat 10 fit mast car casselle， 8 rack
carcridge with inline fused power lead snd inswucrions．\quad E0．60＊
12366 Goiled Guizar Lead Mono لack Plug to Mono Jack Plug BLACK
3 tin DIN plug to 3 pin DIN plug．
5 pin DIN plug to 5 pin DIN plug．
6 Lengith 5.5 m ，
Lergth $1.5 m$
5 pin Din plug to 4 Priong Pu $\lrcorner g s$
All rulour coded．Lengin $\$ 5 \mathrm{~m}$
5 pin OiN piug to 5 pin DiN steckel．
Lenglt i 5 m
5 pin DiN plug to 5 nin DIN plug mirror
Imoge．Lenglh 1.5 m
2 pin DiN plug to 2 pln DIN inline sockel 2 gin dir
5 fin olN plug to 3 pin DIN plug． 184
and $3 \& 5$ ． 4 ength 15 m
anit $3 \& 5$ ．2ength 15 m
2 pin DiN plug to 2 din DiN socket
Leryith 10 m
5 gin DIN plug
5 gin DIN plug to 2 phono plugs
Conirecred pins 385 ．Longth 9.5 m

5 pin DIN sotket To 2 phorto plugs． Connected pins 3 s． 5 Lenpth 23 cm Black．Length 6m
AC mains lead for calculators etc－

ELECTROLYTIC PAKS

A range of paks each containing is first quality，mixed value
miniature electrolytics．
16209 －values trom $47 \mathrm{mFD}-10 \mathrm{mFD}$
16202 －values from $10 \mathrm{mFO}-100 \mathrm{mFD}$
16203 －values from $100 \mathrm{mFO}-680 \mathrm{mFD}$

BI－PAK CATALOGUE

NEW EDITION NOW AVA／LABLE

Send for your cropy of our revised catalogue and price lost NOW！ it containts 127 piges packed with diterally hundrod？of

 It containts 127 piges packed with diterally hundredf，ofsemitendurtots．componinols and our famgus renge of El－kITS audio mordules．ONLYG5p POST FREE

ORDERING Do nol lorget to stare order number and your hame and sddiess，
V．A．T．Add $12 ; \%$ to prices mrarked 8% ig those unmarked PaP． 3 nad are zero rataci

METAL FOIL CAPACITOR PAK

Containing 80 metal foit Capacitor－like Mullard Cz80 serles．
Mixed walues ranging fram OIut－2．2uf．Complete with Mixed values ranging fram orut－2．2ut．Complete with
dantincation sheet OiN sfor

DEPT，wio ，P．O．Box 6，Ware，Herts COMPONENTS SHOP： 18 BALDOCK STREET，WARE，HERTS．

The 850 Tuner provades insisant praprammes siection at the touch of a bution anturing accurnte tuning of are－gelected Histions，any ol which may be alterad se oftom ala you choose，bimoly by changing the aeltings af the pre－tat controls． Fealurá include FET input slage．Vari－Cnp diode tuning．Swith had AFC EED Stereo Indicator．

Stereo 30
 COHPLETE CHASEIS £18．95 \ddagger

OUTPUTPOWER
TOTAL HABMONLC DUSTORTION FAEOUENCTY RESPOUNSE $\pm 12 \mathrm{dBn}$ at $\mathrm{toj} \mathrm{Hz}_{\mathrm{z}}$ and 10 kH SENSI $\quad 190 \mathrm{mV}$ for full output NPUTIMPEDANCE TRANSTFOAMERREOUTREMENTS DIMENSIONS
LLess controls and panel 1 Mohm：

 mounting brackers．

This high qualify audio smolifier module is Ior use
to 25 RMS with diblortion devela betow 0.1% ．

OUTPUT POWER

 SUPPLYLOAD IMPEDANCE TOTAL FARMO゙NIC DISTORTION FREQLENCYRESPONSE SENSITVITY DiMÉNSISONS

25 Watte RMS 0－50
Les ingin wour ypicaliy ese 20 Hz 知 $30 \mathrm{kHz} \times 2 \mathrm{~dB}$
2Bo mu for lut outpul $109 \mathrm{~mm} \times 6 \mathrm{fmm} \times 15 \mathrm{~mm}$

OUTPUT POWER \qquad 35 Watis RuTS

LOÁD IMPEDANCE TOTAL HARMONIC DISTORTION FREQUENCY RESPONSE SENESITIVVITY MAX．HEAT SI DIVAENSIONS
$40-80 \mathrm{y}$ s－16 ohms
Lésathen－1\％（Typleally－06\％ 20 Hz to $3 \overline{\mathrm{O}} \mathrm{K} \overrightarrow{\mathrm{Hz}} \overline{\mathrm{x}}$ 2dघs 260 miv Tor fulf outpul ${ }^{-} 0^{\circ} \mathrm{C}$ $103 \mathrm{~mm} \cdot \overline{64 \mathrm{~mm} \times 15 \mathrm{~mm}}$

The AL 80 is almilar in dotign to the Al． 60 above and is of the same high quality but praviden autput pow ers up to 35 W with diviortlon levels below 0 i\％．

This unit，deslgnated ALa50，ib a powet ampiffer providing an output ol up to 125 W RMS，into a 4 athm load．
 pescipned

PA100

£15．80
$+46 \neq p d P T$
$+12 \% \% Y A T$
 foquirementa of sterto ampllflers or audto units．The sus guan button selector switch glves a chotce of inputs together with
two fliters for high and jow fiequancias．

FREQUENCY RESPONSE $\quad 20 \mathrm{~Hz} 1020 \mathrm{kHz} \times 1 \mathrm{~dB}$	
TOTAL HARMONIC OISTORTION	Lese then 1%（ $\%$ ypically 07% ）
SENSITJVity 1．TAPE	$100 \mathrm{mvi} 100^{\circ} \mathrm{K}$ ahme ${ }^{\text {a }}$（ For an
iNPUTS 2．RADIOTUNER	100 mV Vi 100 K ohms output
EQUALISATION	Wrthln $\pm 1 \mathrm{~dB}$ from 20 Hz 1020 hHz
BASS CONTROL RANGE	
TREBLE CONTROOL RANGE	＋ $10-20 \mathrm{~d}^{\text {Ba a }}$ a 15 kHz
SIGNALINOISE RATHO	
INPUT OVERLOAG	Betler man 20 dis（All innuts）
SLPPLY	201040
DIMENSIONS	$300 \times 50 \times 33 \mathrm{~mm}$（1\％日可 conirais）
ant，the PA 100 prouldes a comprahen g ouan button selector Bwitch glves	lee solution to the trom end chotce of inputs together with

MPAZO

magnefic cabtridge

PRE－AMPLIFIER

Enjoy the quality of a

£2．95
megnetse cartidige with your
exisilnd caramic equipment using

the MPA 30 which is a high quality pre－ amplifler enablina magnetic carlidiges to be used where latilitles

Exat for the use oramic cartroden only．
SENSITIVITY
EQUALISATIÓN
INPUT IMPEDANCE
SÜPPLY
DIMENSIONS
－ 35 mv for 100 mV oulpul
Wjihint 1 dB from 20 Hz 10 20 kHz

PA12
 socket）
 STEREO

＊a to $30 \mathrm{~V}-\mathrm{re}$ earth

The PA12 Stereo Pre－
Ampltier chassis ta dezigned and recommended for the with the AL 20130 Audio Amplifler Modulee．The PSi2 power supply and the and Irable cantrols．Complete with lepe outpul
FREOUENCY RESPONSE ．．． 20 Hz 20 MHz （ -3 Jg $)$
BASS CONTROL
TREBLE CONTROE INPUT IMPEDANCE INPUT SENSITIVETY CROSSTALK \qquad
SIGNALINOISE RATIO
OVERLOADFACTOR
TAPE OUUTPTTTIMPEOANC
DIMENSIONS

－＿－－

PS12 POWER SUPPLY

Designed lor une with
with ifsintlormer 5539 ．
INPUT VOLTAGE
OUTPUT VOLTAGE
OUTPUT CURRENT
$17-20 \mathrm{~N} A C$
$27-304 \mathrm{DC}$
800 mA
$60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 35 \mathrm{~mm}$
£1－30

GE 100 NINE CHANNEL

MONO－GRAPHIC EQUALIZER

The GE100 has nine 1 octave adjusiments using integrated circuil bellve filters．Eognt and Cut timits are 甾 12dB Klay Volinge impedence lesn than 10 K ．Frequancy response $20 \mathrm{~Hz}-20 \mathrm{KHz}$（3d8）．
 sugpested galn controf are 10 X ciN bilfars（not +35 p pp vupplied with the module）Sep Paks $\mathbf{5 3 1}$ and r6182．$+421 / 4$ Yat EESA POWER SUPPLY BOARD tor GE10015－0－15 YOLT［3．54＋
12\％VAT＋ 350 DEP 12\％\％VAT＋35p p\＆p

SIREN ALARM MODULE

Amerlcan Police bereamer Doweted trom any iz valt aupply Inlo 4 or 8 ahm apeaher．Idesl for car burglar alarm，fradier breahdown
ond other aecurity puranser Order No S15．No．BPpla

MA60 HI－FI AMPLIFIER KIT

Bulld you own top quality amplifher，save yoursell pounds．The
 trane siving iT watts RMS per channel STEAEO．All iodulcs Fered by the $B i^{n}$ it X sat disclion of mant；back guarantee．

TC60 KIT

A beautifully designed genuine TEAK WOOD renaered eftimet to put the praiesmignal touches to your home buil amplifief，Full
sef！ol parta Inct．Fiont A Back Panels，Knobs，Chassis．Fusps， Sockels，Noen，etc．Edeal for the MAEO．Slien： $425 \mathrm{~mm} 290 \mathrm{~mm} \times$
${ }^{85} \mathrm{~mm}$ ．

TRANSFORMERS

T2050 For use with Stereo 30

BMT250 For use with AL250 Prica：ES $40+600$ pap $+123 \%$ VAT
Ofdef Na， 2435

DEPT．PW6，P．O．Box 6，Ware，Herts

EDITOR

Geoffrey C. Arnold
ASSISTANT EDITOR
Dick Gainderton C. Eng., MIERE
ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA

NEWS \& PRODUCTION EDITOR
 Alan Martin

TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie
LAYOUT ARTIST
Keith Woodruff
SECRETARIAL
Sylvia Barrett
Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone. Poole 71191

ADVERTISEMENT MANAGER
Telephone: 01-2616671 Roy Smith

REPRESENTATIVE

Telephone•01.2616636 Dennis Brough
CLASSIFIEO ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT Telephone: 01-2616570 Dave Kerindi

ADVERTISEMENT OFFICES

Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Caveat Emptor

IET THE BUYER BEWARE!-a very old Latin tag, but one which is still sound, even with the advent of present-day consumer protection legislation. Perhaps not quite its usual application, but none the less important for the home constructor of electronic projects, would be in warfing readers to make sure that they can still get the specialised bits and pieces used in a past design, before spending out money on the rest of the components.

Every few months we seem to get a spate of letters from readers who have suddenly decided to build something which we published five, ten or even more years ago. They have gone ahead and spent a considerable sum getting together the "easier" components, only to find that they can't find a source of one awkward one anywhere. Then they write to us for help.

If it's a semiconductor device, it's usually not too difficult to find an equivalent, though to replace some early audio i.c.s. will often involve modifying a printed circuit board layout. The real problem area is that of transformers, sometimes for power supplies for valved equipment. A careful check through the advertisement pages, or some suppliers' catalogues, will often reveal something suitable for these.

More difficult are audio transformers, particularly inter-stage coupling or push-pull output types for early transistorised power amplifiers. The coming of direct-coupled amplifier designs with complementary or quasi-complementary output stages, and the more recent single-chip audio power amplifers, has meant that the demand for such transformers has largely disappeared, and as a result many manufacturers have stopped producing them. Obviously it's possible to use a more modern design if just a straightforward audio amplifier is involved, but if it's doing a special job, things can sometimes be more complicated.

While we will always try to help a reader in difficuliy with a project (but do please send an s.a.e.) we simply do not have the manpower to research and produce modifications to past designs to accommodate new components. It is often tempting to store away a circuit for future use-l know, I have a boxfile full at home which I have collected over the past ten years or so. To any reader contemplating building a project from previous years, I would say please, please check that you can still get the "difficult" bits and pieces before you invest many pounds in the remainder.

Ted Parratt BA-Technical Editor

Ted's entry into the world of electronics began with RAF service as a Wireless Operator, followed by spells as a Test Engineer in industry with GEC and Solartron.
During a period a's a freelance Audio/Visual Aids Technician he studied for an Open University degree, graduating in 1974, and just before coming to PW worked as a contract technician with another university.

Apart from active involvements as a musician (a classical and jazz guitarist with a quartet), he enjoys jogging and real ale, although not simultaneously! Ted is married (his wife has an unusual "mobile" museum of domestic items), with one daughter a Legal Executive in the City, and a younger daughter and son just beginning work.

Club news

Plymouth Radio Club, G3PRC are now meeting at their new venue, The TAVR Centre, Lambhay Hill, Plymouth, on alternate Mondays commencing 17th July. Visitors and newcomers are particularly welcome. Beginners and those who may feel uncertain are invited to phone or write to the secretary at the following address, Len England, 62 Fullerton Road, Milehouse, Plymouth, Devon. Tel: 075258841
The Sully and District Amateur Radio Club formerly the Sully and District Short Wave Club, would like to extend a warm welcome to prospective new members. At the moment the club is quite small and although they have their own call sign there are not quite enough members to keep it operational, so, for the time being it is in 'cold storage'. The club meets fortnightly at The Sully Bowls Club at 7.30 pm until 10.15 pm . Those interested please contact the new secretary at, 13 Nailsea Courl, Sully, Cardiff, S. Glam. Tel: 0222530787.

Shine on

Amalgamated Wireless (Australasia) Lid., has commenced work on a $\$ 600,000$ scheme to convert the entire trunk telecommunications network in Papua New Guinea from battery to solar power.

This is believed to be the first time such a project has been undertaken, and involves the installation of power cells at about 20 microwave repeater stations located at strategic points throughout the Territory.

Many outstations currently using mechanical generators will also be included in the scheme.

Long Distance TV

We have been asked to advise readers that Roger Bunney's book Long Disiance Television, formerly avallable from Weston Publishing, Romsey, is now out of print. A revised and expanded version of the work is to be published shortly by Babani Press.

Girls, Girls, Girls

The Caroline Haslett Memorial Trust and The Institution of Electrical and Electronics Technician Engineers have introduced an annual electrical and electronic engineering award valued at £250 for 'The Girl Technician Engineer of the Year'. With a closing date of 1st October for nominations, the announcement of the 1978 Award will be made in December.

The engineering industry needs to attract more young people of the haghest calibre and the aim of the Award is to focus attention on electrical and electronic engineering as a worthwhile career for women. By selecting the most outstanding girl technician engineer-who will have successfully undertaken the necessary technical education and training, and have proved herself capable of holding a responsible lob-it is the Award sponsors' express hope that she will, by her example, encourage more girls to enter the electrical and electronic engineering profession.

For further details and copies of the Award nomination form please apply to: Joan Ashton, IEETE, 2 Savoy Hill. London WC2R OBS. Tel; 01-836 3357.

Diary Dafe

1 am informed by Blackwood \& District Amateur Radio Society that this year's Welsh Amateur Radio Convention will be held on Sunday, 24 th September at the usual venue, Oakdale Community College, Oakdale, Blackwood, Gwent. The Convention will be opened by Dr D. S. Evans, G3RPE, President of the R.S.G.B.

Apart from a Trade Exhibition, demonstrations and advice on amateur TV (Gwent TV Group), RTTY (BARTG), satellite communication (AMSAT UK) and 'ORACLE', the I.B.A. teletext system, the programme will include a film of the 1978 Clipperton Island DXpedition, the ARRL film 'Ham's Wide World', an illustrated lecture by S. Cherry, G3SJK, of the Appleton Laboratory on 'Telemetry Communications from High Altitude Transatlantic Balloons Using Low Power h.f.', and a talk on R.S.G.B./ W.A.R.C. 1979 by Dr. D. S. Evans.

There will be increased exhibition space this year and advice on overnight accommodation is available from F. B. Davjes GW3KYA, 16 Vancouver Drive, Penmain, Blackwood, Gwent NP2 0UQ. Tel: 0495225825.

RAE courses

RAE courses are available this Autumn at the following locations:-

Hemel Hempstead (Herts.)-Commencing Tuesday 12th September, enrolment on 4th and 5th September. The course lecturer will be C. Burke G3VOZ, tel: 0442833300 . Hemel Hempstead College of Further Education, Marlowes, Hemel Hempstead, Merts.

Knottingley (West Yorks.)-Commencing mid-September, enrolment on 11th September. Course lecturer G3HCW. Knottingly High School, Knottingly, West Yorks.

Birkenhead (Cheshire)-Commencing mid-September on Thursday evenings, enrolment from 4th to 11th September, or at class meetings. Course lecturer D. E. Owen G4GGB. Depl. of Electrical Engineering, Birkenhead College of Technology, Borough Road, Birkenhead, Wirrah.

Openshaw (Manchester)-Commencing Tuesday 18th September, encolment 4th, 5th and 6th September between 6 pm and 8 pm . Course lecturer A.B. Langfield G3IOA. Openshaw Technical College, Whifworth Street, Openshaw, Manchester 17.

Swinton (Manchester)-Commencing Thursday 28th September. Details from G8BFP, tel: 061-794 3706. Moorside High School, East Lancashire Road, Swinton, Manchester.

Gosforth (Newcastle upon Tyne)Theory and morse classes to be held on Tuesdays and Thursdays respectively, between 7 pm and 9 pm , commencing in September. For further information telephone the course lecturer on 0632 668439. Gosforth High School, Knightsbridge, Gosforth, Newcastle upon Tyne.

RAE reprint

For full details of availability and price, see page 64 .

Om.J.NAILER G4CFY

The circuit to be described was developed as a simple and effective version of a more complex converter which has been in use at the Author's station for the past five years. It was decided that the new converter should use the most up-to-date circuit techniques in order to achieve low noise figures, good gain and good cross-modulation performance.

The previous converter employed cascode f.e.t. i.f. stages and performed well but it had been tricky to set up and therefore would not be reproducible by the newcomer to amateur radio. Replacing the cascode f.e.t.s with a new. MOSFET r.f. stage made it possible to achieve a greater signal-handling capability, about the same gain but a slight degradation in the noise figure. The new stage presents no problems with regard to stability and is easy to tune. Although the noise figure for the converter is about $2 \cdot 5-3 \cdot 5 \mathrm{~dB}$ this is perfectly adequate and not exceeded by many commercial units airned at the amateur market.
The new stage was exhaustively tested using sophisticated equipment, including a spectrum analyser, to optimise its performance.

During the tests it was found that non-linearity did not become severe until a signal of 120 mV r.m.s., (350 mV p-p) was applied. The gain of the stage was about 18 dB (xB), there were no signs of instability with or without the aerial connected, and it was simple to tune.

Principle of Operation

The signal arriving at the aerial is matched into the input of a MOSFET r.f. amplifier which magnifies its amplitude by 8 times and passes the larger signal to the mixer. Here the input signal is fed to the most sensitive electrode (gate l) of another MOSFET, and a signal from the oscillator/multiplier chain is fed to the other control electrode (gate 2). These are then mixed together in the electron stream of the device emerging at the drain, together with the sum and difference of the two frequencies.

The biasing conditions for the mixer do not allow it to provide much gain but it does amplify the signal by a further two-and-a-half times. The signal selected from those present at the drain is the difference signal, which is $144-116=28 \mathrm{MHz}$. This is now matched to a low impedance suitable for feeding via coaxial cable to the receiver.
The local oscillator signal is developed from an oscillator running at $38 \cdot 6666 \mathrm{MHz}$ as a reference, and a multiplier stage which produces multiples of this frequency. Then it selects the tripled frequency at 116 MHz and filters it before injection into the mixer.

[^1]

Circuit Description

The 144 MHz signal enters the input terminal at an impedance of 50Ω and is coupled via capacitor Cl to a low impedance tapping point on Ll. This coil steps up the voltage in a manner which is proportional to the ratio of input turns to output turns. Similarly, the impedance is transformed up by the square of the turns ratio to provide a suitable match into gate 1 of Tr . The trimmer TCI tunes L 1 to resonance in the 2 metre amateur band.

Resistors R1 and R2 provide bias at 33% of the supply voltage to the gain control electrode gate 2.

Fig. 1: Block diagram of the converter

Fig. 2: Complete circuit diagram

Capacitor C2 decouples any variations of this voltage at radio frequencies to maintain constant gain conditions in the stage. Resistor R3 provides a voltage drop from the source/drain current fiowing through it, making the source more positive than gate 1 , or conversely, making gate 1 more negative than the source. This is the manner in which gate 1 bias is achieved and again this voltage is smoothed at signal frequency by the decoupling action of C3.

The amplified signal appears at the drain electrode and is developed across L2, this being tuned to resonance by TC2. The coi] is closely coupled to L3 and draws off any signals that appear on it at their mutual frequency, other unwanted signals being heavily attenuated. Trimmer TC3 tunes L3 to resonance at the same frequency as $\mathcal{L 2}$ and TC2. The signal then passes into gate 1 of $\operatorname{Tr} 2$, as the impedance of L 3 / TC3 presents a fairly good match to the gate. Bias for this gate is developed in a similar fashion to Tr 1 by the operation of R7 and C7.

The bias for gate 2 of Tr 2 is more critical than for ' r rl, as this device, when acting as a mixer, must be driven well down on its characteristic curve for good mixing to take place. The bias voltage developed by the combination R5 and R6 should normally be 1/11th
of the supply rail voltage but its precise value for good mixing is solely dependent on oscillator drive. For a mass-produced unit such as this one, it is better to bias the gate slightly higher than normal-i.e. $1 / 16$ th of the supply voltage-to take account of low gain devices in the oscillator strip and ensure that all units will work fairly well. For the perfectionist, it would be worth trying a 47 k resistor for R6 to take full benefit of the low noise figures that can be obtained with this converter.

The r.f. choke in the drain circuit allows all the products of mixing to be developed actoss it whilst the pi circuit C8, C9 and L4 tune out the required difference signal at $28-30 \mathrm{MHz}$ for feeding to the receiver. Ore of the principal purposes of the pi arrangement is to match the signal to the low impedance coaxial output capacitor. Capacitor C11 separates the d.c. connection via RFC and L4 from the output terminal.

Supply line components C4, C6 and Cl0 decouple any r.f. signals leaving the unit and prevent undesirable interaction between the various stages.

Resistor R4 aids the decoupling whilst providing good isolation from large local oscillator signals appearing on its supply.

The oscillator works due to feedback from the drain of $\operatorname{Tr} 3$ being passed back to the gate by virtue of the internal capacitance of the device, thus maintaining tuned gate/tuned drain oscillation in a similar manner to that developed by Miller for thermionic devices. To start and maintain the oscillation, the resonant circuit formed by L5, Cl3 and C14 must be tuned to the same frequency as the crystal.

Resistor R8 provides a d.c. path for the gate without damping the crystal, at the same time limiting the voltage across it to a reasonable level. This ensures that the f.e.t. works over a fairly linear section of its characteristic curve, to reduce the generation of harmonics.

The components $\mathrm{Zl}, \mathrm{Cl} 2$ and R_{b} stabilise the oscillator supply voltage to minimise frequency shift due to variations of the supply line voltage. The value of resistor $\mathrm{R}_{2 \mathrm{c}}$ is dependent on the $\mathrm{I}_{\mathrm{dss}}$ of the f.e.t. and may be determined by the expression shown in the components list.
e.g. $\mathrm{R}_{\mathrm{chit}}=\frac{12-9.1}{0.005+0.004}=\frac{2.9}{0.009}=322 \Omega$

Therefore, in this case use a 330Ω resistor.
The $I_{\text {tes }}$ can be found by coupling the source of the f.e.t. to the gate and connecting the combination to the negative rail of a low voltage supply-say 6 V . Wire the drain via a 50 mA meter to the positive pole of the supply: the $I_{\text {ssy }}$ can then be established.

The multiplier transistor Tr4 operates in the grounded-base mode and is normally non-conducting. This is because no forward bias is applied to the base/ emitter junction. The transistor requires 0.6 V to switch on and thus does not conduct during negative half-cycles of the oscillator output signal; only for that proportion of the positive half-cycle which exceeds $0 \cdot 6 \mathrm{~V}$. In this manner, only short-duration pulses arrive at the collector and these are transformed into a rough sine wave by the flywheel action of the tuned circuit L6/TC4. The composite waveform contains many multiples of the original or fundamental frequency, but usually the signal of greatest magnitude is that to which the circuit is tuned. The coil L7 extracts the required signal by mutual coupling at a specific frequency, rejecting, to a large extent, those frequencies which are unwanted. The trimmer TC5 tunes L7 to the same multiple frequency as L6/TC4. In this way the 116 MHz signal has an amplitude 50 dB (300 times) greater than any of the unwanted multiples, providing virtually a pure sine waveform to the mixer and a relatively clean mixing action.

Construction and Layout

The component layout provided puts the circuit into a small and stable form. Copper-clad chassis techniques could be employed, but would probably result in a reduction in overall performance. The board is easy to assemble and no problems should be encountered provided the coils are wound to the specified dimensions and the screens reproduced as shown.

The board may be mounted within the cabinet of a receiver, which will tend to reduce stray pick-up at the intermediate frequency of $28-30 \mathrm{MHz}$. No diffculties should arise from internally mounting the unit unless the local oscillator of the receiver should happen to be poorly screened, and be producing harmonics which fall within the 2 metre band.

components

Resistars			
0 25W 5% Carbon Film			
100s!	1	R4	
22018	2	R3, 7	
39002	1	R9	
47 ks 2	1	R2	
68 kS 2	\dagger	R8	
100 kSt	2	R1, 6	
470kst	1	R5	
Rht;-330s2 if t.e.t. Idss			4 mA
2705 if f.e.t. Idss otherwise.			8 mA
Rht		$12 \quad 9.1$	
		$0.005+10$	
Capacitors			
Sub-miniature Plate Ceramic			
10 pF	3	C5, 13, 1	
68 pF	1	C1	
${ }_{82} \mathrm{pF}$	1	C 9	
$0.001 / 7 \mathrm{~F}$	5	C2, 3, 4,	1, 15
$0.01 / 1 \mathrm{~F}$	3	C6, 7, 12	
Stiver Mica			
22pF	1	C8	
Tantalum Bead			
$10 \mu \mathrm{~F}$		C10	
Trimmers .			
Miniature Single-turn Ceranme			
$3-9 \mathrm{pF}$	2	TC1, 3	
4.20pF	3	TC2, 4, 5	
Semiconductors			
Transistors			
40673	2	Tri, 2	
2N3819	1	Tr3	
BS $\times 20$	1	Tr4 (2N2	69 can
Diodes			
gV1 Zene	r	$1 \quad 21$	

Crystal
38.6666 MHz 3rd overtone 30 pF series-resonant HC18U

Coil Data
L1 4t 6 mm t.d. 8 mm long 19s.w.g. tinned. L 2, 3, 6, 7 4t 6 mm i.d. 8 mm long 19 s. w.g. enam. L4 $\quad 17 \mathrm{t}$ on 5 mm slug-tuned former. 30s.w.g. enam. L5 $9 t$ on 5 mm slug-tuned former. $30 \mathrm{~s} . w . g$. enam. RFC 47 , H choke (RS type 228-135).

Hardware
BNC Sockets 50:2 2
** Oie-cast box. Bopal 102 or 103.
** Available from West Hyde Developments, Unit 9, Park Industrial Estate. Aylesbury. Buckinghamshire HP20 TET

Miscellanequs
Switch. Miniature SPDT, if required

Another method of using the converter is as an out-board unit, connected to the receiver at its aerial socket and to a 12 V supply linc. In this case it would be ideal if the unit were fitted in a $111 \cdot 1 \times 60.3 \times$ 27 mm die-cast box, such as the Eddystone EDD 20 , or West Hyde "Bopal" 102/103 with suitable coaxial connectors fitted and a supply input socket.

Fig. 3: Printed circuit board track pattern, shown fuif size (above)

Fig. 4: Component layout on the p.c.b. (below)

Fig. 5 and 6: Coil and p.c.b. screen details (right)

4 turns 19 swg Lf,L2,L3,L6,L7 (90064

continued on page 64

Have you ever wondered how manufacturers of high quality equipment manage to get their components arranged so neatly on their printed circuit boards, indeed just why do they go to such lengths to achieve such neatness?

With our free gift this month you too can mount your transistors neatly and evenly on your p.c.bs and reap the benefits.

What then are these benefits? Our mounting pads hold each transistor the correct distance away from the board allowing you to solder the leads with less fear of damaging the transistor itself. The very act of pushing the transistor leads through the holes in the mounting pad ensures that the leads are not twisted or touching each other.

Having a solid pad of plastic between the transistor envelope and the bodrd surface provides a means of mechanically supporting the transistor, preventing it from being displaced with the consequent danger of lead fracture or short circuits.

Reliability of equipment is usually improved as a result of using such aids as transistor mounting pads. This comes about as a direct result of neatness assisting visual inspection as well as improving your pride in your work. This lifts the standard of work giving better joints with less damage to p.c.b.s and components.

A properly designed and constructed printed circuit board should be a work of art. Take care with mounting components and the reliability and operation of your projects should improve.

To use our free transistor mounting pads carefully remove each one from the sprue to leave a disc of plastic with four holes and a small tab. Select the appropriate size of pad for the transistor you are fitting. The small pads fit TO18 size packages and can be used for the small plastic encapsulations as well although they cannot be seated right down onto the pad. The larger pads fit TOS packages.

To help with feeding the leads through the pads the top of the holes are countersunk and the leads should be fed through from this side. Push the pad right up to the transistor envelope and then insert the leads into the appropriate holes in the p.c.b. Push the transistor right down so that the pad is sandwiched between the transistor base and the board surface and solder the leads to the copper pads, fnally cropping off the excess leads. It is important that the pads do not just float around but are firmly sandwiched to ensure that the transistor is properly supported.

Using the small pads with plastic type transistors will help you to change the lead configuration to the same as a TO18 type without fear of the leads shorting together.

Mounting pads are extensively used in industry and are available in many different shapes and sizes including types to convert 10 lead TO5 can i.c.s. to d.i.l. configurations and types to cross transistor leads over. Ours are the simplest type which are designed just to hold the transistor correctly on the board.

Use them on your next project and see for yourself just how much better your board looks.

Teleplay

 now presmagame A whole library of easy to mestridg farm tor to enjoy assemble all the family to works you and full colour - works -all in fro ($\left[\begin{array}{ccc}* \\ *\end{array}\right.$Electrical knowledge is not a necessity to assemble this project - just simple soldering. Cheques and Postal Orders to be made payable to TELEPLAY: send your order (No Stamp Needed) to Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number. Queries and Technical Advice offered either by phone or by calling at our shop.
 PLAYER comprising ready assembled steceo amp moduls，Gartord KIT auto／niamal deck with cueury dewie pue cul and lonshed Eatimet wark Dulpua 4 watis per channel．

 Aotary Comtiols Vol On Oit Rass，Iresle，Bo anre
Pugh Bumans for Gram fape VHI N木，IW and 5 futian rodaly splec msponich

 Ieda lat FM aribu

 $200 \mathrm{~m} 4 / 50 \mathrm{X}$ ouldut avalabie isom 75 KHz （150miv 100 K 1 devaliom

VALUE FOR PERSONAL SHOPPERS

8SA Retard autd deth［x ploth with
slerea cafrifpe reatry wred．
LEB 5 Iuntion frite \＆dightal watth
slamiess sised 1，insh
LE0 $\$$ hanction men I diadial waich
slainless stiget linsh
ICO A luncforn CHRONOGRAPH mee s digizal
waleh staniess sleet hinish
STERED CASSETTE Recuug＇eplay Iully buill PC
boaid Userd，withoul tuaianipe［la Equipmeni］
I25 Wall Power Amp Module
Mans power supply pans
100K Multiturn Uaritap turing pots 6 tor
MUSIC CEmyRI CABIMET whin minged smithe

MULLARE Ŝ́wil power fupply
DECCA DC I000 Steted Cassame PEA
compitere wilh sworth osciltaldr couls and
lape has ats
and

28CC 20 w Steite speaket bit comprisung

weeter ine crassonfors
2 BAND CIDEK RAONO Matto Dperated with
sleep consrol
videamasten＇Super Stont TVGame
with pisiod malins aperation
VIDEO MASSIE C Odor Tune
24 differemt tilles！
Miero cassette lape resoriter
7＂TAPE TRAASPDRT rechanism－a selection
of modnls loom

Opportunity！ AUDIOMODULESIN BARGAIN PACKS CURRENT CATALOGUE PER PACK SEEOURPRICES
 PACK $1.7 \times$ LP 1173 10w RMSS output pawer audio atnp modules．+1 LP1182／2 Steree pres amp for ceramit and muyliary inpur DUA PATCE ，ostion $£ 4.95$
 PACK 22×1 P11\}J 1 Bw RalS output power audio amp moduates $+1 \mathrm{LP} 1184 / 2$ ．Siareo pre amp for maphetic ctiamic and aurilisy inpuls qietic ctramic and aurblay inpuls ． PAEK 3． $1 \times$ LP $1179 / 7$ FMTuminghead wilt AM garg． 1×1 LP $1165 / 1$ AM／FM IF modela $2 \times$ LPIIT3／10w hass ontput power audio arap modules +11 l and auxilian input
 aupanc $\mathfrak{x \rightarrow 0 . 9 5}$
 TRADE ENQUIRIES INVITED
 ACCESSORIES mans tanslarmer，reckror，smobiting VOLUME and BALANEE

f19．95
£2．50
f11．95
$f 5.95$
$f 7.95$
f12．95
f1．95
f 13.95
$f 3.50$
f1．00
$f 5.95$
20 ± 20 Wमit SJEREO AHPLIFES Supert Viscount IV umil in leak linished cabinel Silyer lastra with aluminium rotary conteds and ＇2990 pushbultons ted mans instrater and stereojack 1250 socker function switch lof mic magnetic and crysla gick ups．lape，tuner and auniliaty fear panel teatures two mains outielt．UlN speaker andinpul sockels，plus luse $20+20$ walls rms． 40 ， 40 watts pe 3 k ．
30×30 WhT ARMPL $3 F I E R$ KIT
for the exparienced canstruclor camplete in every
${ }^{\text {c } 2900}$
detad Simalar facilities as Viscount iV arpplifier ρ oip $£ 2.50$
60＋60
avgita
outpu1 $30+30$ watls mas $60+68$ peat
SPECIAL DFFER：PACKAGE PHICE WITH $30 \times 30 \mathrm{KIT}$ He II versman，opeates into 4 to 15 OHMS speakers．Designed by 8 IVC for the mpetunces conslryctor Complete int mery delain Iacilitios Gondmans Complisier 6B＋B0 prak Sepplied with 2 Mannet． 30 watt．rms hansting ${ }^{4}$ fag00 5400 34 approx tweeters and erossouges 42

ADD－QN STEAEO CASSEJt天 TAPE GECK K Designed lot the expenented D I Y ．man This hel comprises of a lape tramsport met
ready hull and tested record replay electronics wilh Iwin $V \mathrm{U}$ meters and level cantrol far matung wilh mechanis． Specificalions Sensilivizy－Mic．
500 if 400 K OBMS Ouptul 300 mV RMS per charnel，1KMz from 2 OnMSsource Copss Tati－－3006 Tape Count 3 Drgat Flesertable frequency Response $40 \mathrm{H}_{1} 8 \mathrm{KH}_{7} \pm 6 \mathrm{do}$ aeck pholor 9 yolt CC with eleclronic speedregulabor Key funclions Record．Fewind Fasl forward．Ptay，Sion Etesect

310 EDGUMRE ROAD，LONON WZ AIL PRICRS Al haria subject to malablity．Price carrect

 taciude two disc inputs helh for teeamic cationges，lape
 w－th inlegial pesh pult swallithes Independent hass and reble conirals and minsier volume

70 E 100 WATT MOND DISCO A

 SHOND DISCO AMP Sy Sile appror$14=40$ ；
Brushed alumibism
lastia and iotaty roatiols
tascia andiotar comirots
taper masiervalume torperfect gis Nonecr graduated change from recnrd deck No 119

 Dutput 100 walls RMS 200 walls peak 100 wall 65

$12^{\prime \prime} \times 1 \frac{1}{2 "}^{\prime \prime}$ appoz cueing device and ste	GARRARD DECK CCLIOA \quad C 795 Record changer with cue． stereo cerarric carindge．p \＆ \boldsymbol{f} £2． 10 BSR MPEATYPE Single plar recturd qinck tess carlinilge Cartridges ta sull above Acos．magneluc sterep 44.95 Ceramicsterig 〔195 BSR antomatuc ecord playet deck
BSA MP 50 I4Pe．com diamond stylus，and	with magnetuc cartindge．${ }^{〔} \mathbf{2 9}$ eplinth and cours．D\＆$\ddagger \leqslant 450$
Hame 8 Itack cartuldy with the Viscount iv	$\begin{aligned} & \text { aye this unat woll matith } \quad 16^{50} \\ & \left.8^{\circ}, 3\right)^{\prime \prime} p \& 25250 \end{aligned}$

£14．95
£12．95
f13．95
f8．95

Slow-scan television is a method of transmitting video information within the bandwidth of a normal singlesideband signal. The video occupies the 800 Hz between $1-5 \mathrm{kHz}$ and $2 \cdot 3 \mathrm{kHz}$, the former representing black level and the latter peak white.

Fig. 1: A typical grey-scale and its corresponding line waveform

Consider the picture suggested in Fig. 1. A 5ms pulse at a frequency of $1 \cdot 2 \mathrm{kHz}$ is used to start the line scan, followed by approximately 18 ms of $1 \cdot 5 \mathrm{kHz}$ (black), 18 ms of $1 \cdot 9 \mathrm{kHz}$ (mid-grey) then a further 18 ms of 2.3 kHz (white). After. 120 lines have been 'written' a frame pulse of 30 ms replaces the line pulse and is used to return the beam to the start of its scan.

Each frame takes about seven seconds to complete and so, in order to retain the information contained in earlier lines, it is necessary to use a long-persistence cathode ray tube as the display. Radar tubes, such as the 5FP7, could be employed and these can often be obtained quite inexpensively from 'surplus' distributors.

Fig. 2: Block diagram of a typical SSTV monitor

PART 2 Amplifiers \& Supplies N.B.MATTEY

Main Amplifiers and Power Supplies

The input stages, power amplifiers and regulated d.c. power supplies are contained on one board, connections being made via plugs and sockets "out" to cassette unit, disc equipment and radio circuitry. Inter-unit connections will be dealt with in later instalments.

Circuit Description

The circuit configuration consists basically of a dual high gain pre-amplifier (LM387), passive tone control circuitry, a dual driver/output amplifier (LM378), and a complementary pair transistor output stage for each channel. Amplifier functions are identical throughout, and so only one channel will be described.
Initial amplification is effected by the use of the LM387, which is a later version of the LM381 although its equivalent input noise figure is an improvement at only $0.65 \mu \mathrm{~V}$ r.m.s., as is supply rejection ($\mathrm{f}=1 \mathrm{kHz}$) at 110 dB . In the description which follows, components prefixed "l" (i.e. R104) refer to the left hand amplifier, while prefixes " 2 " and " 3 " refer to right hand amplifier and power supply components respectively.
Each pre-amplifier is used in the inverting a.c. amplifier mode, signal input being applied via R101 and Cl01 to the inverting input of the LM387. Matching to high impedance inputs (crystal and ceramic cartridges) is direct at this point, although provision will be made later (in part 3) to match to magnetic cartridges (47 k impedance), with consequent standard equalisation to the RIAA characteristic. R101
and R102 act as input voltage dividers, while R103 provides feed-back. This technique tends to raise the limits on imput voltage, and thereby, produces virtual unity gain stability.

Tone Controls and Output Stage

Due to the fairly high gain of the stage, it is possible to make use of a passive tone control network, insertion loss being rendered less dominant than it mi bt otherwise be. Tape "out" signal is taken from the output of ICI via C103/R104 and is virtualiy "ffat" in terms of frequency response. VR1 is the bass control, VR2 the treble control, and the R-C network R105 to R108 and C104/C105 provides "tailoring" to effect bass and treble boost and cut.
VR3 is the single balance control, and after balancing the signal is fed via the volume control (VR4) to the oon-inverting input of bC 2 which acts as a driver/output stage in combination with the complementary pair Tr 1 and $\mathrm{Tr} 2 . \mathrm{C} 106$ provides a degree of treble rolloff, and R112 provides d.c. feedback.

Fig. 1 (above): The mains transformer circuitry, and Fig, 2 (facing page) the circuit diagram of the main amplifiers and power supplies

\star components

Resistors

$\frac{1}{4}$ Walt 5\% carbon		
3.35)	2	R113, 213
14§	2	R114, 214
.4752	1	R301
15052($\left.\frac{1}{3} \mathrm{~W}\right)$	1	R302
330:2*	1	R304
$2 \mathrm{2k}$	2	R109, 209
3-3k	1	R303
5.6k	4	R105, 205, 106, 205
33 k	2	R111, 2111
39k	2	R108, 208
68k	2	R104, 204
120h	4	R101, 201, 112, 212
220k	4	R102, 202, 107, 207
470 k	1	R110
680k	2	R103, 203
* depenós	- ca	unit

Potentiometers
p.c.b. mounling

100k lin. dual track	1	VR1
100k tin. singie track	1	VR3
100 k log. dual track	2	VR2, VR4

Semiconductors

LM387	1	JC1
LM378	1	102
2N5296	2	Tr1, Tr4
2N6103	2	Tr2, Tr3
BD 131	\dagger	Trs
BZY 88	1	ZD1
SKB2/02L5A	2	- REC301,302
Capacitors		
Polystyrene		
$82 p$ F	2	C109, 209
Polyester		
1 nF	2	C106, 206
$2 \cdot 2 \mathrm{nF}$	2	C105, 205
2205	4	C101, 201, 104, 204
100nF	4	C102, 202, 107, 207
220 nF	3	C103. fi?, 203
Ceramic		
$10 \rightarrow \mathrm{~F}$	4	C303, 304, 305, 306
Electrolytic		
4.7; F 50 V	2	C108\% 208
$47 / 2 \mathrm{~F} 50 \mathrm{~V}$	1	C200
10000رF 25 V	2	C110, 210
$1500 \mu \mathrm{~F} 40 \mathrm{~V}$	1	C301
4700):F 40 V	1	C302

Fuses

Cathridge	
$2 \AA$	
1	

$1 \mathrm{~A} \quad 1 \quad$ FS2

Mains Transformer
240 V primary, secondaries 22 V (r.m.s.) ceṇtre-tapped (a) 1 5A, 9V (a) 600 mA

Miscelfaneous

Aluminium heatsink, fuse holders (2) 6BA nuts and bolts, SW1 (ganged with VR4) d.p.dit. Staver type heatsink for IC2 (fins), heatsink compound. mica washers
while R1ll and C109 are responsible for a.c. feedback. C200 ($47 \mu \mathrm{~F}$) and C111 (220nF) provide decoupling for the supply rails. C110 feeds the loudspeakers and prevents the establishment of high standing d.c. levels.

Power Supplies

Supply rails are provided by two mains transformer secondary windings from T1, 9 V and 22 V , (this must be 22 V r.m.s. to maintain supplies at a safe level) being rectified by bridge unit REC301 for the 30 V rail, and REC302 for the 12 V supply to the cassette mechanism. Tr5 drops the 30 V line and in combination with ZDl regulates the 13 V line to supply the r.f. board. Smoothing is effected by C301 and C302, the bridge rectifier techmique providing good regulation overall The LM387 is supplied from the regulated 13 V supply (Vcc pin 6), and the LM378 from the 30 V rail (Vcc pin 14). Supplies are fused at a.c., i,e. the inputs to the bridge rectifiers REC301 and REC302.

On no account must the supply rail for the LM387 be allowed to rise above 30 V , since the establishment of safe working tolerance demands that the maximum rating of 35 V should not be approached too closely.

Fig. 3: Dimensions and bending details of the output stage heat sink

Construction

Component assembly on the printed board should present no problems, although it is worth noting one or two points concerning specific items.

While ICl can be pushed straight into the board and then soldered in, the heatsink for IC2 must be lightly bent onto the body of the device before fitting and soldering. The reason for this is that the large lugs on the heatsink could prove difficult to engage simultancously with the i.c. pins, and it is as well to keep heating of the unit (from the soldering iron) at a minimum. The aluminium heatsink should be bent as shown.

The output transistors should be bolted in after applying heatsink compound. 'Tr2 and Tr'3 are connected straight to chassis via the heatsink, while Trl and Tr4 are installed using standard mica insulating washers. In order to make a good electrical connection to each collector, a wire bridge is connected from the middle pin of each transistor to the relevant part of the track. These are shown as dotted lines on the layout illustration.

Fig. 4: The p.c.b. copper track pattern; the emitter resistor tracks (see text) are clearly shown at the top of the board

Although not shown on the circuit diagram, the output stage emitter resistors are included on the p.c.b. as a part of the track, but where a different construction is employed, lengths of $32 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. shellaccovered wire approximately 150 mm in length will suffice. Alternatively, if available, $0.5 \Omega 2$ wire-wound resistors may be employed.

Fig. 5: Component overiay, relating directly to the board delails on the previous page

Havillearn a |ot fiom Heathititelectroniss caurses.

Heathkit electronics crurses are a most effective way to learn - with fast, reassuring results.

Each course is a complete self-instructional package with clear, concise instructions in everyday language. You follow at your own pace, using modem teaching aids and expert guidance.

Four basic courses to start with.
DC electronics, AC electronics, semi-conductors and electronic circuits. These courses give you a thorough and practical understanding - the key to all knowledge in the field of electronics.

Microprocessors and digital techniques.

The advanced Heathkit courses take you on to higher levels of computer technology and advanced circuit design, using the same easy to foltow leaming system.

Experimenter-Trainers.

With the benefit of increased practical guidance.
these optional aids will help you through the courses with exceptional speed.

The finest way to learn.
Heathkit courses are used by home students, industrial concems, technical colleges and schools. They're acknowledged as the finest way to leam. And the range of courses

J-Decnology

The'Basic Oscillator

Most circuits are designed to do one particular job. This month's μ DeC project will do at least three jobs.

Basically; the 741 is made to oscillate and the exact Irequency is set by $\mathrm{Cl} / \mathrm{R} 3 / \mathrm{VR1}$. Making the resistor variable means that by simply turning a single control we can alter the frequency of our oscillator. The output is a series of square waves and because of the very high gain of the op. amp, these have quite stcep sides.
Two things to note. Don't forget the three jumper or shorting leads marked as "link wires". Secondls, the circuit requires two separate batteries to give a $\pm 6 \mathrm{~V}$ supply. If you take the two 6 V batteries and connect the +6 V of one to the -6 V of the other. thenthis junction becomes zero volts and is connected to hole Q23. The free +6 V lead then goes to $\mu \mathrm{DeC}$ hole $Q 1$, while'the remaining lead from the negative 6 V terminal is plugged into hole G22.

Mëtronome

Let us now look at the three projects we can have with our circuit. The first is a simple electronic metronome. In this case, you should try a $47 \mu \mathrm{~F}$ capacitor for Cl. If you have connected a light-emitting diode to the output as shown, this will flash on and off. The rate of flashing can be set by adjustment of VRI. Thus we have a visual metronome. This can be useful when no noise can be tolerated while playing-for example in a group with no drummer and where the "beat"' is.taken from one player, as in some folk groups:

If an audible output is' required, then this can be obtained very simply, by connecting an earpiece actoss the diode or by plugging it' in instead of the lle.d A
cheap crystal earpiece works well. Purists may wish to leave the diode in to form a d.c. path but the circuit works well without it 'using only the earpiece. A series of clicks was obtained using a small crystal microphone although these are not really loud enough when playing a musical instrument at the same time, hence the need for an earpiece.

* components

Fig. 1: Circuit diagram of the audio oscillator with ${ }_{\mu}$ Dec hole nos. and optionall lie.d. or speaker output

Fig. 2: The component layout of the completed unit

Signal Injector

By making the value of Cl smaller (i.e. less $\mu \mathrm{F}$) the pitch of the output waveform rises so that it goes above just clicks to being a musical tone or note. By setting VR1 to mid travel and substituting a $0 \cdot 1 \mu \mathrm{~F}$ capacitor for Cl, a steady audio tone can be obtained from the earpiece. This tone can be used for injecting into audio equipment for test purposes. Things like loudspeakers, headphones, earpieces, amplifiers etc may be checked very quickly and simply in this manner. If this were to be the prime use of the circuit, then it would be simpler (and cheaper) to make VR1 a $470 \mathrm{k} \Omega$ fixed resistor, $\mathrm{Cl}=0 \cdot 1_{R} \mathrm{~F}$, and transfer the whole project onto a piece of Blob Board which could then be stuck inside a suitable small case using adhesive on the blank side (no track side) of the Blob Board-switch on, inject signal, listen for tone.

Electronic Organ

By suitable choice of Cl , the circuit can be made to oscillate over an extremely wide range; from well below 1 Hz to well over 15 kHz . To make a simple electronic argan one has only to select a series of fixed resistors and connect this string of components between holes P25 and P35 in the place of VR1. This idea is shown in Fig. 3. If really accurate notes are required, then it would pay to use 13 (for one octave) skeleton slot potentiometers. In this way each note can be individually adjusted spot on. Fig. 4 shows this plus a refinement of an octave switch and a set pitch pot. With none of the keys depressed all the skeleton pots will be in circuit and the lowest note will be obtained if the two pots (VR2/VR3) are set at maximum resistance. With the lM』 pot shorted out, the 100k pot is adjusted to bring the lowest note to one octave above that required. The individual pots in the chain are tuned and the lowest note again checked
and adjusted by the $100 \mathrm{k} \Omega$ pot. Now remove the short across the $I M \Omega$ pot and adjust it to bring the lowest note to one octave below the pitch which it was when the $1 \mathrm{M} \Omega$ pot was shorted out. The switch now becomes an octave switch and will take the whole keyboard down one octave when the switch is opened removing the short across the pot.

Fig. 3: Connection points for a basic organ

Fig. 4: A more "sophisticated" version of the organ

To give some indication of the range of the Fig. 1 circuit, a coverage from G below middle C to over three octaves above was obtained in the prototype using $0 \cdot 01 \mu \mathrm{~F}$ for CI and a 1 MS pot for VR1.

One word of warning. When using the circuit to inject audio signals, care should be exercisedespecially in mains equipment. It would be prudent to use $0 \cdot 1 \mu \mathrm{~F}$ JkV capacitors in series with each lead i.e. the audio inject output from $\mu \mathrm{DeC}$ holes 043 and 023 should have a capacitor in series with each lead. These capacitors should be permanently connected into the circuit.

Digital r.f. meter

Measuring voltage is a thing commonly carried out fairly oasily with the aid of a simple meter. Measuring radio frequency voltage is a fittle more difficult. But it's no problem for a new instrument from Germany. This beautiful little box will give you an immediate digital readout of r.f. voltage from $300 \mu \mathrm{~V}$ up to 1 kV over the frequency range 10 kHz to 2 GHz . Besides the digital readout, an analogue readout is simuitaneously given in dBs. This is effected by a single line of l.e.d.s which move a light point along and are calibrated in 1dB steps. The whole instrument can be run from a 12 V battery (mains, too), consumes less than 4 W , and weighs only 2.6 kilograms. Launched in the US it costs around 2,000 dollars. Wonder if the Germans run a Christmas Ciub?

Power!

For those who like to be "with it", the in word for Autumn is "Transcafent". This is the name for a comparatively new type of semiconductor. Basically it means that you can push extremely high currents through the device without arc-welding it to your coliar stud. The wafer on which the business area is contained measures 50 mm . The substrate is bonded to a heat pipe which will get rid of the generated heat efficiently. The devices will not suit miniaturisation enthusiasts. We're taiking about things weighing around 2 kilograms and measuring some $190 \times 150 \times 150 \mathrm{~mm}$ However, these devices include 900A rectifiers, $1,400 \mathrm{~A}$ thyristors, and 400 A transistors. Pop groups will doubtless welcome the latter!

Stable resistors

How stable is stable, especially when it comes to resistors? A British company has just announced a range of resistors with values from 0.1Ω to $1 \cdot 5 \mathrm{M} \Omega$ which have exceptional stability. The stablity is claimed to be so good that it is almost impossible to measure any slight deviations reliably; typically they vary between 5 and 10 p.p.m. (parts per million) over several years. They also offer a resistance tolerance matching capability of 0.001%. Called NPRL21 resistors, they cost around 90p each.

Bubbles

Things are bubbling at $1 B M-$ literally. Some time back, bubbie memories were a novelty. Then they became practicalities. One of the materials used for bubble memories is garnet. The IBM researchers have now discovered a way in which a 25 mm square piece of garnet can be made to hold 100 million bits of informationinstead of the 3 million bits more common so far. But it doesn't stop there. From the same company comes news of mobile "light" bubbles which hide in magnesium-doped thin films of zinc sulphide. The current theory is that these light bubbles might be electrical analogues of the magnetic bubbles which are already well established.

Sonar Snooper

Mix microprocessors with submarines and you end up with a kind of sonar snooper. That's what French researchers have done. Their sonar transducer fires out fow frequency signals, between 6 and 8 kHz , which gives them a range of about 40 km . But it's no ordinary transducer. The head consists of 48 arrays of piezoelectric fransducer elements. These can all be powered in a single shot, or individually in sequence. The enormous amount of information coming back from this complex array is handled by the microprocessors and the net effect is that the system can electronically divide the sea around it into something like 500,000 little cells. The electronics processes the signals received from the transducers and can differentiate between the various echoes received.

Certain things give known echoes, and these are stored in a memory, so the system can compare anything it receives with all things in its memory for immediate check on identification. It also compares the echoes in time, checking if the same echo came from the exact same place for each sweep.
Look out little sardine; big brother is watching!

Invest in technology

Buy British was a cry not too long ago, and if you want random access memories you may soon be able to do just that. The National Enterprise

Board, no less, may "invest" something like $£ 50$ million in a semiconductor manufacturing facility in the UK. This could be interesting because, starting from scratch, only the very latest equipment would be purchased so the new venture cauld be in the forefront of technology.
But 1 do remember another fantastic, latest, state-of-the-art semiconductor facility in Essex which cost a lot of money-and died. Watch this space!

Thin Television

Fiat screen television time is booming again. The Japanese have a 16 in colour display on the go which uses plasma techniques, while at the recent Chicago Consumer Electronics Show one exhibitor proudly displayed an electroluminescent screen which was just 50 mm thick. Although the size was only 7 inches brightness has reached 15ft/famberts with power consumption barely 7 W . This manufacturer reckons that it will be marketing portable television sets using such a screen within two years.

Better Photocells

An American scientist from a University talked at a special conference on photovoltaics, and caused a very big stir among energy producers. He claimed that a teamat the university had produced a cadmium sulphide/copper sulphide cell, using thin film techniques, which produced an efficiency of well over 9 per cent. This represented an impressive increase on earlier efforts when efficiency stood at around 7.8 per cent.
By 1980, this scientist believes that the cost will be down to 30 cents/watt. A final shattering fact was the cost comparison of the materials. Silicon cells (single crystal) work out at around 150 dollars per square metre, whereas the cadmium sulphide/copper sulphide thin film approach costs just 3 dallars per square metre.

Introduction

Most readers will by now be familiar with the conventional operational amplifiers, such as the 741 and 709. In recent years a new type of op-amp has come onto the scene. This has received the title "Norton Amplifier", and it amplifies the difference between two currents rather than two voltages. The Norton amplifier is best suited to amplifying a.c. signals where the utmost precision is not required-in such situations its ability to operate from a single power supply is very useful. When used as an audio preamplifier, it can give up to 10 dB more gain than a 741 before the bandwidth suffers. The ability to operate at supply voltages as low as 4 V means that it can replace discrete component amplifiers in many situations. The four amplifiers come in a 14 -pin DIL package, for around 80p, making it economical as well as space-saving. Its main disadvantage is the difficulty of designing d.c. amplifiers, since it is also necessary to consider the biasing of the amplifier in such cases.

There are at least three manufacturers of the Norton amplifier--Motorola (MC3401). RCA (CA3401), and National Semiconductor (LM3900). The Motorola and RCA devices are completely compatible. Specifications of the various devices are given in Table 1, and circuit diagrams of one amplifier in Fig. 1. For clarity the biasing circuitry has been omitted. The significant differences are the wider supply range and additional transistor Q5 of the National Semiconductor device.

TABLE 1-Typical characteristics of the EM3S00 and MC3A01

Parameter	L M3900	MC3404
Supply Range ($V+$)	4-36V	$5-18 \mathrm{~V}$
Supply Current	62 mA	6.9 mA
Power Dissipation	570 mW	625 mW
Operating Temperature Range '	0-70.C	0-75 C
Open Loop Voltage Gain	70dB	66dB
Unity Gain Bandwidth	$2 \cdot 5 \mathrm{MHz}$	5 MHz
Output Voltage Swing	$V+-1$	$V+-1$
Output Current-High	3 mA min	5 mA min
Low	0.5 mA min	0.5 mA min
Output Slew Rate	$0.5 \mathrm{~V} / \mathrm{us}$	$0 \cdot 6 \mathrm{~F} / \mathrm{us}$
Output Resistance	8ks?	8kS2
Power Supply Rejection	70 dB	55dB
The output resistance figure value is maintained until 1 kHz , an reaching 200 ohms at approx 200	is quoted a and then star 0 kHz for the	100 Hz . This to decrease, C3401.

This additional transistor is useful for sinking large output currents--up to 30 mA . Motorola also make the MC3301, which will operate with a supply of up to 28 V , and is specificd over a wider temperature range. For more detailed information the reader is referred to the manufacturers' data sheets, in particular the National Semiconductor application note AN.72, which gives comprehensive information on the amplifier itself and design requirements.

Fig. 1: The Motorola and N. Semiconductor variations in type.

The Circuit

Consider first the circuit of Fig. 1(a), with Q3 and CRI omitted for the present. It is then essentially an inverting amplifier with considerable current gain, the output voltage and current being controlled by I_{1}. The main limitation on output current is the current source CS2 at the output. The values of the current sources are set by biasing circuitry on the chip, and since they depend on diode voltage drops, are essentially independent of supply voltage. Cl rolls off the amplifier gain at high frequencies, giving the open loop voltage gain frequency characteristic of Fig. 2, where it is compared with that of a 741. This voltage gain is the gain between inverting input and output, and provides a useful comparison with conventional operational amplifiers. Thus, although the open loop gain of the Norton amplifier is lower than that of a 741 at d.c., it is about 10 dB higher above 1 kHz , making it more suitable for acc. amplifiers.

Fig. 2: Essential gain and frequency response (openloop)
We now come to the operation of CR1 and Q3, which together form a "current mirror". The bulk of the input current I_{4} will pass through CR1, causing a voltage drop across it, the same as the base-emitter voltage of Q3. A small part of I_{3} will enter the base of Q3, causing an emitter current to flow. If Q3 and CR1 are properly matched, this emitter current will be approximately equal in magnitude to k_{3}, as will the collector current of Q3 (provided Q3's current gain is high). It can then be seen that if the collector of Q3 is connected to the base of Q1, the current into the base will be the difference between I_{2} and I_{t}, which is in turn equal to $\mathrm{I}_{4}-\mathrm{I}_{3}$. Thus the amplifier will amplify the difference between the two input currents-the current mirror has effectively inverted \mathbb{I}_{3}. It can also be seen from the circuit that the input potential will remain approximately constant at about 0.5 V (i.e. one base-emitter junction voltage drop). The additional transistor Q5 in the NS amplifier is of little consequence until the output is required to sink large currents-then if Q 1 is driven hard on, Q 5 will turn on to provide the additional capacity.

A slightly different symbol is used for the Norton amplifier in order to differentiate it from the more common type. This is shown in Fig. 3, and will be used in future.

Fig. 3: Circuit symbols for the Norton Amp.

Biasing the Amplifier

The Norton amplifier requires particular attention to be paid to biasing-this unfortunately does not look after itself as with conventional op-amps. It will be assumed here that the amplifier is being used with a single supply rail.

When both inverting and non-inverting inputs are being used it is necessary to maintain a certain average current through the current mirror. This entails feeding equal currents into the two inputs, one of the currents being derived from the output in order to set the output voltage. The simplest and commonest way of achieving this is shown in Fig. 4(a). A current is fed into the non-inverting input via RI, from the positive supply rail. The inverting input is fed from the output via R2. Thus we have a feedback systemif the output voltage rises above its equilibrium value, it will increase the current into the inverting input, which will act to decrease the output voltage. This fact can be used to set the d.c. level of the output voltage-normally to half supply voltage to obtain maximum voltage swing. Since the currents into the two inputs must be equal, it is clear that in this case R1 should be twice R2. The recommended bias current for the current mirror is in the range $10-100 \mu \mathrm{~A}$, with 10 m A being a suggested value for many applications.

A disadvantage of the simple type of biasing described is that any ripple on the power supply is fed into the amplifier by R1, and appears on the out. put at half the amplitude. This can be eliminated by using the circuit of Fig. 4(b). Here the bias supply for the non-inverting input is derived from a potential divider which provides a well-smoothed supply at half supply voltage. Biasing resistors for all such amplifiers in a circuit may be taken from this one potential divider, so the extra cost is minimal. Needless to say, to maintain equal currents into the inputs, RI and R2 should now be equal in value.

There is a third method of biasing, using only the inverting input, and therefore only really suited to inverting amplifiers. This method will be desctibed later.

Fig. 4: Modification to provide better smoothing.

Practical Circuits

Having considered the biasing arrangements peculiar to the Norton amplifier, we are now in a position to consider some practical circuits. In most cases a marked similarity to circuits using conventional opamps will be noticed. The main difference is the more frequent need for d.c. blocking capacitors between stages, apart from the additional biasing circuitry.

Fig. 5: Simple inverting amplifier.

Inverting Amplifier

The simplest inverting amplifier circuit is shown in Fig. 5. The voltage gain, as with the more conventional circuit, is R1/R2, or 10 with the values shown; the input impedance is equal to R 2 , or 47 k here. The design procedure is to choose R1 and R2 to give the required gain and input impedance, and then make R3 approximately equal to twice Rl. The d.c. blocking capacitors should be large enough to pass the lowest frequencies needed.

Fig. 6: Additional circuitey to raise imput impedance.
A disadvantage of this circuit is that it is not possible to have high gain and high input impedance simultaneously, since R1 must be low enough to pass at least $10 \mu \mathrm{~A}$ into the inverting input. With a $12-15 \mathrm{v}$ supply, this sets an upper limit of about 560 k on R1. The problem can be overcome by using the circuit of Fig. 6. albeit at the expense of extra complexity. The d.c. bias is now provided via RI and R3 in series, so R2 should be equal to twice their sum. No d.c. passes through R4, due to the blocking capacitor. A.C. signals, however, are attenuated first in the potential divider of R1 and R4, then passed to the inverting input as negative feedback via R3. Then, provided R3 does not load the potential divider (i.e. $\mathrm{R} 3>\mathrm{R} 4$), the voltage gain of the circuit is given by:

$$
A_{v}=\frac{R 1+R 4}{R 4} \cdot \frac{R 3}{R 2}
$$

and to satisfy the biasing conditions, $\mathrm{R} 1+\mathrm{R} 3<560 \mathrm{k}$ (with 12 V supply). The values shown in the circuit

Fig. 7: Simplification avoiding the use of the "current mirror."
should give a gain of around 105 , which is about the maximum obtainable when used as an audio preamplifier.
A third possibility eliminates the current mirror and its associated bias current. The only bias current needed then is the actual inverting input current (I_{1} in Fig. la), which is typically $30 \mu \mathrm{~A}$. The circuit is shown in Fig. 7. Initially the values of R1 and R2 are chosen to give the desired values of gain and input impedance. R3 is then chosen to give the required output voltage V_{c}, using the relation:

$$
V_{o}=V_{B E}\left(1+\frac{R 2}{R 3}\right)
$$

where $V_{y:}$ is the voltage at the inverting input, typically 0.5 V . The main disadvantage of this circuit is that the output voltage depends on Vur, which, being due to a semiconductor junction, is extremely temperature dependent. Output voltage drift will only be a problem, however, when large output voltage swings are envisaged.

Fig. 8 : Unity gain buffer circuif.

Non-Inverting Amplifier

The Norton amplifier is not really recommended for use as a non-inverting amplifer, since accurate determination of the gain is not possible, due mainly to variations in the current mirror circuitry. Motorola state that the voltage gain of a non-inverting amplifier may vary by up to 20% from the calculated value. However the circuit of a unity gain buffer amplifier is given in Fig. 8 for completeness. One advantage of the non-inverting configuration is that the bandwidth of the amplifier depends only on the value of the feedback resistor R1, since the input resistor R2 is outside the feedback loop. In calculating the gain it is necessary to include the small signal resistance R_{s} of the current mirror inpat, which is given by $26,000 / \mathbf{I}_{3}$. (I_{3} is the non-inverting input current, in $\mu \mathrm{A}$.) The voltage gain then becomes:

$$
A_{3}=\frac{R 1}{R 2+R s}
$$

This equation assumes that the gain of the current mirror is exactly unity-in fact it may vary between 0.8 and $1 \cdot 16$, which accounts for much of the uncertainty in the gain. As an example, with $R 1=470 \mathrm{k}$, bandwidth will be over 200 kHz for gains up to 100 .

Oscillators

The Norton amplifier is not particularly suited to oscillator configurations. The only sinewave oscillator given in the application notes uses all four amplifiers on the chip, as well as considerably more discrete components than the very common Wien Bridge circuit used with conventional op-amps or individual transistors. With square wave oscillators the main fimitation is the low slew rate of about $0.5 \mathrm{~V} / \mu \mathrm{s}$. Thus with a supply of 15 V , the rise time will be of the order $30 \mu \mathrm{~s}$, which is too slow for most applications.

(b) Square and Triangular Wave Generator
Fig. 9: Typical op. amp oscillators.
Two examp. s, based on the well-cstablished op-amp circuits, are given in Fig. 9. The first is a square-wave oscillator, which will oscillate at about 1 kHz with the values given. The output frequency is given by $0.6 /$ CR_{1} approximately, and the output has good symmetry. The second circuit is the well-known triangular and square wave'generator, and is an example of a circuit utilising the properties of the current mirror (in the integrator section) to give a circuit as simple as its op-amp counterpart. The values shown give a period for the waveforms of about 0.9 ms . The timing depends on R1 and Cl , and to obtain good output symmetry R2 should be half R1.

Various other oscillator circuits are possible-the most interesting is a complete phase-locked loop with linear voltage controlled oscillator, using only three of the amplifiers. However such circuits are not given here since they tend to need designs suited to the particular application.

Voltage Regulators

Some very simple voltage regulators are possible using the Norton amplifier. The simplest is shown in Fig. 10, and makes use of the fact that the input potential of the amplifier remains substantially constant with variations in input current. The output voltage is then $V_{z}+V_{1,}$, at currents of up to IA. Bias current for the Zener is provided by resistor R -the

Fig. 10: A simple voltage regulator using a Norton Amplifier.

Fig. 11: Increasing current capability with an external transistor.

Fig. 12: Self-regulation circuit.
ADOg2
value of 470Ω specified will provide a bias of about ImA. An additional transistor could be connected as in Fig. 11 to increase the current capability-outputs of up to 10 A are then possible, provided the transistors will dissipate the power. An extension of this idea uses the voltage regulating circuit to regulate the supply to the amplifier chip itself-this is shown in Fig. 12.

Conclusions

It is unlikely that the Norton amplifier will ever be used extensively in mains-powered equipment, since in this situation it is relatively simple to provide a split power supply and use conventional op-amps, with their simpler design and generally lower component count. The most likely application is where the power supply is battery derived, in particular in cars and portable radios. The circuits described here give some of the more common applications-with a little ingenuity the Norton amplifier can be made to extend the range of a conventional operational amplifier.

also:
the Pit Sarum'

With a gain of 13dB (a forward gain of 6dB over a dipale), this 12 -eiement end-fire array offers excellent results for users of the 2 metre band. Full constructional details are provided along with the relevant assessment methods

SHORT-URUE RECEIUER FREQUELITY RERDOUT D.S.COUTTS

There are many simple "communications" type of receivers in the hands of s.w.l.s which are single conversion types using an i.f. of 460 or 455 kHz . These receivers are doing an excellent job, but how often have you wished for a digital readout of the frequency you are tuned to, instead of relying on the pointer and string method used?

The General Instrument AY-5-8100 m.o.s. integrated circuit gives you this readout on a 5 digit l.e.d. display, to an accuracy of $\pm 5 \mathrm{kHz}$, up to $29 \cdot 95 \mathrm{MHz}$. This allows you to find a net reasonably quickly if you know the frequency being used.
The AY-5-8100 was specifically designed for use in radio receivers. It accepts the receiver local oscillator frequency after suitable prescaling ($\div 80$ on s.w. range), subtracts the i.f. frequency from it, and outputs the frequency the receiver is tuned to the l.e.d. display, via suitable drivers. The receiver local oscillator must therefore be at a higher frequency than the receiver frequency and the short wave receiver i.f. must be 460 kHz (or 455 kHz with link changes on the p.c.b.). Many of the cheaper receivers around fall into this category.
\star An Engineer with General Instrument Microelectronics, Glenrothes

The unit has been designed as a free standing unit to be connected to the required receiver via coaxial cable. This allows you to multiplex the unit to more than one receiver and to use it for experimental work on home-brew receivers.

The unit should only be used on receivers which are isolated from the mains, i.e., using a double wound mains transformer.

A block diagram of the unit is shown in Fig. I. A simple power supply provides the necessary voltage of +5 V and -12 V . The receiver local oscillator is buffered by a 2-stage amplifier and fed to the $\div 80$ prescaler and then into the AY-5-8100 i.c. A $1 \cdot 28 \mathrm{MHz}$ clock is also fed into the i.c. for system timing. The segment and digit outputs are fed via transistors to the display.

To consider the circuit in more detail refer to the circuit diagram Fig. 2. The two 6 volt windings of transformer Tl are connected in series to give 6 V and 12 V to feed the unit.

Components D1, C1, C2, IC5 and C3 provide a stabilised +5 volts for the unit and D2, C4, C5, R1, C6 and D3 provide the -12 volts. The input is fed to the 2 stage amplifier formed by Trl and Tr2 and the output of Tr^{2} is fed to the buffer, ICle.

The output of ICle feeds IC2, ($a \div 8$) and this in turn feeds IC3 ($a \div 10$). IC 3 output, pin 12 is either connected directly to pin 27 of IC4 by linking A to B on the p.c.b. (455 kHz i.f.) or A is linked to C on the p.c.b. and D is linked to B (460 kHz i.f.). ICla and
b provides the $1 \cdot 28 \mathrm{MHz}$ crystal controlled clock to the 8100 . Pin 26 of 1 C 4 outputs a 12 ms positive pulse to reset the prescaler every 20 ms and this is buffered by ICle and f .

Pins 6-9 and 11-13 of the 8100 output the signals to drive the l.e.d. segments via the transistors $\operatorname{Tr} 3$ Tr9. Resistors $1216-22$ and R23 limit the current through the l.e.d.s. Pins 19-23 output the positive going multiplex signals to drive the digits D1-D5 with Dl as the least significant digit (l.s.d.).

As the digit outputs have limited drive capability emitter followers, Tri0-l4 are used to increase the drive. Five common anode 7 -segment l.eds are used for the display. The l.s.d, only displays a 0 or a 5 , giving the $\pm 5 \mathrm{kHz}$ accuracy,

Construction

The case is 2 -piece all metal case approx. 200 mm wide by 50 mm high by 125 mm deep. Commence construction by drilling the case as shown in Fig. 5 and carefully cut the rectangular slot for the display. Spray the front panel and put the case on one side to dry and await lettering.

Assemble the main p.c.b. using the component layout in Fig. 4 and parts Iist as a guide. It is advisable to use a socket for the AY-5-8100 and to fit this i.c. after the board has been completed and checked for correct assembly.

Fig. 3: Full size print pattern of the main p.c.b.

Fig. 4; Component layout and external connection details of the main printed circult board

components

Resistors		
$\frac{1}{4}$ W 5%		
100 S	B	R16, 17, 18, 19, 20, 21, 22, 23
27081	1	R1
1 kS	3	R3, 6, 7,
2.7kS	1	R5
6.8kSt	1	R8
$8 \cdot 2 \mathrm{k} 52$	1	R4
10ks)	1	R2
\$5k§	7	R9, 10, 11, 12, 13, 14, 15
Capacitors		
Plate Ceramic		
47pF	2	C13,14
100pF	2	C10, if
$0.01 \mu \mathrm{~F}$	6	C5, 6, 7, 8, 9, 12
Polyester		
0 22/rF	2	C1, 3
Electrotylic		
2200 FF 25 V	2	C2, 4
Semiconductors		
Diodes		
1N4001	2	D1, 2
BZY88C12	1	D3
Transisiors		
BSX20	2	Try, 2
2 N 3904	12	Tr3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Integrated Circuits		
SN7474	1	IC 1
SN7490N	1	IC3
SN7493AN	1	IC2
AY-5-8100	1	$1 C_{4}$
7805	1	IC5
Displays		
RS 586-532 5		(7) segment l.e.d. green common anode:) (alternative red display RS 586-526.)
Miscellaneous		
1280 MHz crystal (McKnight)		
Printed circuit boards (2 in set)		
Transformer RS 207-194 0-6V, 0-6V (1)		
Case Marshall's RB2		
Mains on-off switch		
Fuseholder		
Coaxial socket		
Display filter cut from RS 586-677 for green display or		
(replaces display p.c.b. and filter) RS 587-002.	RS 586-548 for red display. Optional bezel for display	

A logical building sequence is:

1. Fit all resistors and socket for IC4.
2. Fit all capacitors (note polarities of C2 and C4).
3. Fit wire links.
4. Link A to B or A to C and D to B on the p.c.b. depending on the i.f. used. (A to $B=455 \mathrm{kHz}$ i.f.)
5. Fit Veropins where indicated on Fig. 4.
6. Fit diodes, transistors and [C5 (7805) taking care to orient them correctly.
7. Fit crystal.
8. Fit ICI, 2 and 3 observing correct orientation.
9. Check board very carefully for solder bridges between tracks and for proper orientation of semiconductors.

Fig. 5: Drilling details for the case

Fig. 6 (left) and Fig. 7 (right): Full size print pattern and component layout for the display p.c.b.

Fig. 8: Connecting together the main and display boards

Fig. 9: Signal take-off from a valved receiver local oscillator

Fig. 10: Adding f.e.t. isolation to the circuit of Fig. 9

Fig. 11: Deriving a stabilised 12 V supply from a f50V h.t. line

Fig. 12: Tapping the signal from a low-impedance source requires a higher value for $\mathbf{C X}$

Fig. 13: Some receivers incorporate an isolating emitter follower

Fig. 14: If the receiver local oscillator output is too small, this simple amplifier will raise it to the $\mathbf{5 0 - 1 0 0 \mathrm { mV }}$ necessary to drive the "Gillingham"
10. Lay the main board to one side and start assembly of display board (Fig. 7).
11. Fit the eleven wire links to the display board.
12. Fit the 7 -segment l.e ds to the display board noting that pin 1 is at the top left, looking from the front.
13. Check for any shorts between tracks on the display board.
14. When you are satisfied that both boards are correct fit 13 lengths of tinned copper wire through the holes at the bottom of the display board. Solder the wires to the board. Bend them down at right angles and fit the boards together as in Fig. 8, trimming of any surplus wire protruding through the holes.
15. Fit a small tinplate screen round the input amplifier. Take the completed p.c.b. assembly and lay it in the case, line the display up horizontally with the slot in the front panel and mark through the three fixing holes on the p.c.b. Drill 6BA clearance holes in the case. Mount the p.c.b. assembly in the case using 6BA bolts through the holes and adding 6BA nuts to pack the board up until the display lines up with the front panel slot. Fit a piece of filter material behind the slot and make up a small "picture frame" bezel to finish off the slot. As an alternative to the p.c.b. mounted display an R.S. Components bezel assembly (587002) can be used with hard wiring instead of the p.c.b. Fit the mains transformer Tl, fuse holder FS1 and mains on/off switch Sl to the case. Also fit a coaxial socket in the rear of the case for the input. Wire the unit up as shown in Fig. 4.

TABLE 1.
PIN CONNECTIONS OF AY-5-8100

3 OV (Gnd)	15 No connection
$21 \cdot 28 \mathrm{MHz}$ clock input	16 OV
$3+5 \mathrm{~V}$	17 OV
4 No connection	18 OV
5 No connection	19 Digit 5 output (m.s.d.)
6 Seg. B output	20 Digit 4 output
7 Seg. A output	21 Digit 3 output
8 Seg. Foutput	22 Digit 2 output
9 Seg. G output	23 Digit 1 output (I.s.d.)
10 No connection	24 No connection
11 Seg. C output	$25+5 \mathrm{~V}$
12 Seg. D output	26 Prescaler reset output
13 Seg. E output	27 Counter input
14 VSS +5 V	28 VDD-12V

An internal view of the compieted unit

Testing

Testing the unit is fairly straightforward, but remember that it runs off the mains and requires a little more respect than battery powered equipment. Switch the unit on and check that the voltage across C 3 is +5 V and the voltage across D3 is -12 V . If the voltages are correct and you have an oscilloscope available monitor IC1 pin 4 for the $1-28 \mathrm{MHz}$ clock. Switch off the unt, fit IC4 into its socket and power up again. The display should light up. IC4 pin 26 should now be outputting 12 ms positive puls-s every 20 ms , and these pulses should appear at IC2 pins 2 and 3 and IC3 pins 2, 3, 6 and 7.
To check that the unit is counting you can temporarily connect a wire from ICl pin 2 to the amplifier input. This provides us with a signal which we can trace through the unsit. Monitoring it at ICl pins 5 and 6 we should have a continuous $1 \cdot 28 \mathrm{MHz}$ signal. At IC2 pin 8 we will have 8 ms bursts of $(1 \cdot 28 \div 8) \mathrm{MHz}$ (i.e. 160 kHz) every 20 ms and at 1 C 3 pin 12 we will have 8 ms bursts of $(1 \cdot 28 \div 80) \mathrm{MHz}$ (i.e. $16 \mathrm{k} \cdot \mathrm{Hz}$), which should also appear at IC4 pin 27. At thus time the display should read around 820 kHz .
If this checks out the unit is functioning and we can consider interfacing it to our receiver, using one of the methods indicated in Figs. 9 to 14.
If the unit is not functioning and we have +5 V and -12 V available then check that -12 V appears at IC4 pin 28. If this is so check that +5 V is appearing at IC1 pin 14, IC2 pin 5, JC3 pin 5 and IC4 pins 3, 14 and 25 , and also at $\operatorname{Tr} 10$ collector. If you suspect the crystal oscillator is not running you can listen for it on your receiver around $1 \cdot 28 \mathrm{MHz}$ and harmonics of this frequency. Trouble with the display may be caused by shorts between the tracks on either of the boards causing extra segments to light up.

PRINTED CIRCUIT BOARDS SERVICE FOR PW PROJECTS

It has now been decided, commencing with our issue dated September 1978, to enlarge the facilities for the supply of p.c.b.s to readers by authorising additional suppliers. It is hoped that readers may benefit from being able to purchase boards as part of component kits, thereby reducing the number of separate orders for a project.

For some time, most p.c.b.s published in Practical Wireless have been available exclusively from Reader's PCB Services Ltd., P.O. Box 11, Worksop, Notts, who will continue to be a supplier and to whom we would wish to say thank you for helping us to get the service started.

Applications for permission to reproduce boards for resale must be made to the editor in writing.

production LINES alan martin

Hacksaw?

Recently introduced from Abrafile, Squarecut Hacksaw Fikes. Designed for the rapid cutting of a wide range of materials inciuding tool steel.

When fitted into a hacksaw frame and tightened in the usual manner, these files can be used for straight cuts, internai and external slots and to follow limited profiles; in ferrous and non-ferrous metals (including stainless steel), ceramic tiles and plastics. These files will outlast and out-perform the well-known Abrafile tension files, but they do not have peripheral teeth nor can they be used for more intricate shapes and profiles; they are not suitable for wood.

Supplied in three widths and two lengths, each card contains one of each of the three different width files ($1 \cdot 5,1 \cdot 8$ and $2 \cdot 5 \mathrm{~mm}$). Card SC25 contains 250 mm (10°) long files and costs $\mathrm{f} 1 \cdot 24$, and SC30 300 mm (12") long costs £i•46. Available from, Abrasive Tools Lid., Abrium Works, Colne Road, Twickenham TW2 $6 Q E$. Tel: 01-894 1273.

POWer

At last an h.f, afterburner to complement the fine Trio range of transmitters and tranceivers.

The TR922 grounded-grid linear amplifier packs quite a punch from two husky Eimac 3.500 Z tubes in class AB2, delivering a mighty 2 kW p.e.p.1kW c.w. or r.t.t.y. for 80 W excitation.

Covering all bands $160 \mathrm{~m}-10 \mathrm{~m}$ the amplifier matches other Trio equipment in both performance and appearance and must certainly appeal to those already using transmitters of this manufacture barefoot.

The price is $£ 763$ at the time of going to press and further details can be obtained from the importers, Lowe Efectronics Lid., 119 Cavendish Road, Matlock, Derbyshire. Tel. 0629-2817/ 2340.

Safe cutting

The new OK SAF 01 safety shears, which can handle hard or soft wires up to 1 mm diameter, incorporate an adjustable clip to hold wire firmly after it has been cut. This prevents the hazard of clippings flying into the eyes or dropping into the workpiece.

A spring loaded scissors action ensures a clean cut, and the shears' handles have a bright orange padded covering which not only makes them comfortable during prolonged use but also enables them to be found easily on a cluttered workbench.
Priced at $£ 2.58$ which includes VAT and P\&P, the SAF 01 shears are available from OK Machine \& Tool (UK) Ltd., 48 The Avenue, Southampton SO1 2SY. Tel: 0703 3896617.

Safe time

Trying to read the time from one's watch whilst driving can be a dangerous operation, especially at night. So, why not install a car clock? W.K.F. Electronics can supply the 'Harvard', an inexpensive 12 V electronic car clock with digital display.
The clock utilises a low power consumption circuit and a quartz crystal oscillator, with a claimed accuracy of ± 0.5 seconds per day.

Displaying hours and minutes on a dark blue display with brightness contro!, the display extinguishes when the car ignition is switched off, whilst of course the clock continues to operate.
Designed with a swivel mounting bracket the clock can be fitted either above or below the dashboard.

Priced at only £ $22 \cdot 50$ plus 50 p P\&P, the 'Harvard' is available as an optional 12 hour or 24 hour version and comes complete with supply leads, connectors and inline fuse. W.K.F. Electronics, Welbeck Streel, Whitwell, Worksop, Notts. Tef: 0909720695.

ECONOMICAL VANㅡN

 J. B. DANCE

 J. B. DANCE}

Vertical MOS (VMOS) power field effect transistors have been produced by Siliconix of Swansea for more than two years. The first VMOS devices were encapsulated in TO-3 or TO-39 hermetically sealed metal packages, but more recently similar devices in plastic packages have been marketed by the same manufacturer at about one quarter of the price. They can be used in many simple circuits and are equally suitable for use by both the amateur experimenter and by the professional engineer.

A VMOS power device incorporates the high input impedance of a field effect transistor and yet it can control a moderately high current. The devices under discussion have a maximum continuous current rating of 2 A and voltage ralings from 40 V to 80 V . They can be used for audio or radio frequency amplification, as fast switches, etc.

VMOS Structure

The structure of the VMOS power device shown in Fig. 1 may be contrasted with that of the conventional f.e.t. shown in Fig. 2. In the VMOS device of Fig. 1 the current flows vertically through the structure from the drain to the source and this allows a much higher power dissipation than is possible in the

Fig. 1: General physical structure of a VMOS device
ordinary f.e.t. structure of Fig. 2 in which the current flows horizontally along the layers at the top surface of the silicon.

An interesting feature of the VMOS devices is the V-shaped groove shown in Fig. 1 which produces two vertical channel regions bringing the advantage of a high current density.

Fig. 2: The physical structure of a conventional f.e.t.

Package

The plastic encapsulated VMOS devices are supplied in the type of package shown in Fig. 3. The device has the same electrodes as a conventional f.e.t., namely source, gate and drain; the metal tab at the back of the device is internally connected to the drain electrode. The internal circuit of a VMOS device is shown in Fig. 3; it can be seen that a Zener diode is connected between the gate and source electrodes. This protects the thin layers of silicon dioxide against the accumulation of any stray electrostatic charges which could produce a voltage great enough to puncture the thin layer. The Zener diode will break down when the voltage across it exceeds 15 V positive with respect to the source electrode, causing the charge to leak away. Nevertheless. it is wise to take reasonable precautions when using VMOS devices; in particular, soldering irons should be well earthed. These devices should be kept in metal foil when not in use. The current into the gate should not exceed

2 mA and the reverse current out of the gate should not exceed 100 mA .

Fig. 3: Package, pin connections, and internal circuit of a VMOS device

Types

The main difference between the three types of VMOS device under discussion is the maximum voltage which can be safely applied to the drain relative to either of the other two electrodes. These voltages are shown in Table 1 together with the drain-source saturation voltage which is slightly higher for the highest voltage device.

Table 1: Differences between the three basic devices

Device type	Max. drain voltage	Maximum drain- source saturation voltage at
		$V_{G S}=10 \mathrm{~V}$ and A_{0}
		1 A

The maximum dissipation in the device itself without any heat sink is 2 W for temperatures up to $25^{\circ} \mathrm{C}$, whereas the device can dissipate 12.5 W at a case temperature of $25^{\circ} \mathrm{C}$ or 6 W at a case temperature of $90^{\circ} \mathrm{C}$ as shown in Fig. 4.

Advantages

VMOS devices have a very high input impedance and can provide an extremely high current gain of the order of a million or more. Another advantage over conventional bipolar transistors is the very short switching time of typically 2ns (maximum 5ns). This can be achieved because they are majority carrier devices in which only electrons contribute to the current flow. Their speed is not limited by minority carrier storage time effects found in bipolar transistors enabling them to be used in high efficiency voltage converters operating with a very small internal dissipation.

Conventional transistors are subject to a phenomenon known as "secondary breakdown" due to local temperature rises; VMOS devices do not suffer from this effect, since any local increase in temperature produces a fall of current in that region owing to the negative temperature coefficient. This also prevents the possibility of thermal runaway.

Applications

VMOS devices are very useful in the control of a device requiring an appreciable current using a high impedance signal source. For example, the circuit of Fig. 5 shows an oscillator using two gates of a CMOS 4011 quad NAND gate device; when the input of the left hand NAND gate goes high, the circuit oscillates at a frequency of around 2 kHz . The output from the

Fig. 4: Power dissipation in relation to case temperature
gate can supply a square wave of about 5 V amplitude, but only a small current. However, this output can be employed to switch the VN46AF device which can control enough current to produce a loud noise in the loudspeaker. Thus when the input goes 'high' (a few volts positive with respect to ground), the circuit emits the alarm sound from the loudspeaker.

The frequency of the alarm signal can be set by choosing suitable values of R1 and Cl. The VN46AF device imposes a negligible load on the CMOS output circuit and does not affect its waveform.

Fig. 5: A circuit which uses a VMOS device as a "slave" current driver. The impedance of the speaker should read "4-56气"

The high switching speeds of VMOS devices render them suitable for switching laser diodes. The type of circuit shown in Fig. 6 may be used, the values of R1 and R2 being chosen according to the bias and pulse currents required by the laser diode.

Fig. 6: A laser switching circuit
VMOS devices can be employed in voltage converters which enable a steady input voltage to be converted into a steady output voltage of another value. A typical basic circuit using a pair of VMOS devices is shown in Fig. 7, but the transformer design would depend on the input and output voltages concerned and on the power output level required. High efficiencies can be obtained with this type of circuit, since the rapid switching of the VMOS devices ensures that they spend little time in the intermediate voltage state where power is wasted.

Fig. 7: Two VMOS devices used as a steady voltage converter

It would be possible to use a VMOS device to control the brightness of a tungsten filament lamp by merely varying its gate voltage; however, this would result in much power being wasted in the device when the light output of the lamp is fairly low. A pulse-width-modulation lamp dimming circuit is shown in Fig. 8. The 4011 gates act as a square wave oscillator with a duty cycle which varies according to the setting of VR1. The VN46AF is either fully conducting or completely switched off at all times except during the very rapid switching transients, so
little power is wasted. The brightness of the lamp can be controlled and one of the inputs of the left hand gate used as an ON/OFF switch.

Amplifiers

VMOS devices form excellent low distortion amplifying devices, since their characteristics are very linear at drain currents exceeding about 400 mA . Simple VMOS device amplifiers such as that shown in Fig. 9 can have a response which is almost level to frequencies up to 10 MHz .
High quality amplifiers and a transmitter/receiver for the 144 MHz amateur band have also been produced using similar VMOS devices.

Fig. 8: A lamp dimming circuit which is economical in terms of power consumption. VRi controls the duty cyale

Conclusions

VMOS devices have many advantages over conventional bipolar power transistors, including much higher current and power gain (better by a factor of about 10,000), faster switching, no secondary breakdown or thermal runaway and the ability to operate with several devices connected in parallel.

Fig. 9: A high impedance broadband ampliffer circuit

Plastic packaged VMOS devices are available from Arrow Electronics Ltd., Leader House, Coptfold Rd., Brentwood, Essex CM14 4BN. The price of the VN46AF is £1.36, the VN66AF is $£ 1.43$ and the VN88AF is $£ 1.58$ including VAT, but 25 p must be added to orders under $£ 5$ to cover packing and postage.

A.M. RECEIVERS

M.J.DARBY

Jast month we discussed simple tuned radio frequency receivers using the ZN414 device, but we now turn our attention to the more complex superheterodyne receivers which are able to provide much better selectivity and also higher gain over a wider frequency range.

Basic Circuit

The basic circuit of a typical superheterodyne receiver is shown in Fig. 12. The incoming signal from the aerial (which may be a ferrite rod) is coupled into an optional radio frequency stage which amplifies the signal at the same frequency as that at which it is transmitted, The signal is then coupled through another tuned circuit to a mixer stage.

If the radio frequency stage is'omitted, the signal from the aerial is fed directly to T 2 and the mixer stage. A high frequency oscillation is generated in this stage (or in a separate oscillator stage) and the incoming signal is "mixed" with this locally generated oscillation. The resultant output signal from the mixer-oscillator stage contains not only the input signal frequency and the oscillator frequency, but also the sum and difference of these two frequencies.

The transformer at the output of the mixer-oscillator stage, T3, is normally resonant at the difference frequency so that other frequencies are greatly attenwated. This required different frequency is known as the intermediate frequency (i.f.) and remains constant as the tuning varies; in most a.m. receivers the i.f. is in the range 455 kHz to 475 kHz , but other frequencies such as 1.6 MHz are sometimes used.

The output from the i.f. stage is fed into a second pair of coupled tuned circuits resonating at the intermediate frequency, $T 4$, so that good selectivity can be obtained. In many modern receivers T3 is replaced
by a ceramic or a mechanical filter to obtain still better selectivity. The output is demodulated by the diode Dl and the resulting audio signal is fed to a power amplifier which in turn drives a loudspeaker.

Advantages

The advantage of using the superbeterodyne type of circuit is that the transformers T3 and T4 always operate at the same frequency and need not therefore be retured each time the station being received is changed. It is thus possible to add further tuned circuits if required, and special types of filter.

In the circuit of Fig, [2, the capacitors $\mathrm{Cl}, \mathrm{C} 2$ and C3 are ganged together so that the transformers Tl and $T 2$ are resonant at a frequency close to the wanted signal, whilst C3 controls the oscillator frequency. The so-called padder capacitor C_{0} and the value of the inductance 1 used for the oscillator coil are chosen so that the difference between the resonant frequency of T1 (or T2) and the oscillator frequency remains almost constant as one tunes through the band using the ganged capacitor. The three tuned circuits are said to "track" with one another.

The tracking cannot be made exact at more than about three points on the tuning scale. The selectivity of the four tuned circuits in T3 and T4 is much greater than that of the two tuned circuits in T1 and T2, and it is this which determines the frequency being received. A small variation of the oscillator circuit tuning will produce a large effect on the tuning of the receiver, whereas a small variation of the tuning of either T 1 or T 2 will only produce a small change in the gain of the circuit.

The disadvantages of the superheterodyne receiver, apart from its complexity relative to a t.r.f. receiver, are the generation of spurious frequencies which can

result in "whistles" in the output, plus the problems of aligning the receiver after construction so that the radio frequency and oscillator circuits track correctly.

One has to accept these disadvantages if one wishes to receive distant signals. One cannot increase the selectivity of a t.r.f. receiver by an adequate amount by using more and more tuned circuits at the incoming radio frequency, since the number of sections in a ganged capacitor which can be practically useful is limited. Tuned circuits using a ganged capacitor cannot be designed for optimum selectivity, whereas the tuned circuits of T3 and T4, which operate at a relatively low and constant frequency, can be designed so that they give optimum selectivity at that frequency. In addition, the use of a constant frequency makes the use of ceramic or mechanical filters possible.

The performance of t.r.f. receivers leaves much to be desired when one attempts to use them at high frequencies of, perhaps 30 MHz , since the relatively low value inductances required to tune the circuits results in a low gain and poor selectivity

A.M. Devices

A number of integrated circuits are readily available from advertisers which contain all of the semiconductor elements required for the radio section of an a.m. receiver for use at frequencies of up to at least 30 MHz . Some of them include a provision for a radio frequency input stage, whereas others do not. Although such devices contain many of the components required for the radio section of a receiver, all of the tuned circuits are separate components external to the integrated circuit used. A few a.m. superhet integrated circuits are now becoming available with a low power audio amplifier integrated onto the chip.

One of the best known a.m. devices has become an "industry standard" type and is available from National Semiconductor as the LM1820, from RCA as their CA3123E, from Fairchild as the $\mu A 720$, from Signetics as their NE546 and also as the HA1I97, etc. Another somewhat similar device with an r.f. amplifier stage on the chip is the SGS-ATES TBA651 which provides a very good performance. The Siemens devices are their TCA440 for use at signal frequencies of up to 50 MHz and the T'DA 1046 for use at up to 30 MHz .

A number of manufacturers are introducing devices for use in a.m./fim receivers. Apart from the semiconductor devices required for the radio section of the a.m. receiver, these also include the i.f. amplifier and demodulator for the f.m. section of the receiver. Examples of such a.m./f.m. devices include the Fairchild μ A721, whilst other a.m./f.m. devices such as the SGS-ATES TDA1220 and TDA1230 and the Siemens TBA460 include an audio preamplifier on the chip. The Mullard TBA700 a.m./f.m. device incorporates a 1W audio amplifier. The circuits in which a.m./f.m. devices are used are relatively complex, since one has both the a.m. and the f.m, receiver circuits, so these devices will not be discussed further. However, some constructors may find the new Telefunken TDA1083 and the equivalent Sprague ULN2204 a.m./f.m. device with a 0.8 W output attractive (available from Ambit International).

Some of the earlier a.m. devices (such as the Mullard TAD100 and the RCA CA3088) are still
available from retailers, but we will confine our attention to the more recent devices.

6V Superhet

The circuit of a simple 6 V superheterodyne receiver is shown in Fig. 13. This employs the LM1820 device which has provision for a radio frequency amplifier before the mixer stage, but the radio frequency amplifier is not used in the simple circuit shown. A two-gang capacitor can therefore be used in this circuit for tuning.

The aerial Tl is normally a ferrite rod type, the secondary winding consisting of a few turns of wire connected between the mixer input at pin 1 and the supply voltage at the lower end of Rl. The oscillator operates at a frequency determined by the inductance of T2 and the value of the oscillator section of the ganged capacitor $C 1$. The difference frequency appearing at the mixer output at pin 14 is selected by T3 and fed into pins 11 and 12 . These pins are connected to what is normally used as the radio frequency amplifier stage, but in this circuit is used as ant additional intermediate frequency amplifier.

The output signal from this stage appears at pin 13 and is coupled to the input of the intermediate frequency amplifier at pin 7. The output from this stage appears at pin 6 and feeds a transformer T5 also resonant at the intermediate frequency. Part of the signal from pin 6 is fed through C3 to the automatic gain control circuit incorporated in the LM1820 device.

The signal from T5 is also fed into the demodulator diode D1 which is connected to the i.f. filter components R4, C7 and C8, The resulting audio signal is coupled through C9 to the volume control.

A simple LM386 audio amplifier stage is used in Fig. 13. The gain of the audio stage is set by the value of R7. If R7 is completely omitted together with C12, the voltage gain will be 20 times, whereas if R7 is zero (Cl 2 being connected directly between pins 1 and 8 of the LM386), the voltage gain will be 200 times. Values of R7 intermediate between these values of infinity and zero will produce intermediate values of gain, for example if R7 is 168 ohms, the gain of the audio stage is about 100 times.

The components C13 and R8 may be required to suppress high frequency instability in the audio amplifier stage, but should not be needed if the loudspeaker has an impedance of more than about 40 ohms. These components form the so-called Zowel network which compensates for the inductance of some loudspeakers and reduces the variation of loading on the amplifier with frequency.

In small radio receivers of this type a miniature loudspeaker is often employed for convenience, but it must be stressed that one cannot expect to obtain good reproduction unless one employs a speaker and a speaker enclosure which are of a reasonable size. This applies to all radio receivers; miniature speakers just cannot reproduce a good audio signal with good bass notes.

For simplicity no waveband switching is shown in the circuit of Fig. 13. However, arrangements may be made to switch the transformer Tl and the oscillator inductance T2 to provide the wavebands required. Obviously a better aerial than a ferrite rod will be required for the reception of very distant stations.

C1:2-Section Gang Capacitor.Dscillator Section $=60 \mathrm{pF}$ Antenna Section $=130 \mathrm{pF}$

The R.F. Stage

A similar circuit employing a radio frequency stage before the mixer involves the use of a three-gang tuning capacitor and three coils for each waveband instead of two. What advantages does this bring?

One advantage of the use of a radio frequency stage is a lower noise level when receiving signals at high frequencies. The conversion gain of a mixer stage is considerably less than the gain of a radio frequency amplifier and hence the noise added to the signal by a mixer stage is greater than the noise added by an amplifier stage. If one has an amplifier before the mixer, the signal is brought up to such a level that the noise added by the mixer is less noticeable in the larger signal voltage. At long, medium and the lower short wave frequencies, however, the amount of noise entering the receiver from a good aerial is so great that the mixer noise is relatively insignificant, so one does not usually bother to include a radio frequency stage unless one wishes to receive relatively high frequency signals.

A further advantage of the use of a radio frequency stage is the greater rejection of signals at the "image" frequency which can interfere with reception of the wanted signal. Image rejection is also important only at the relatively high short wave frequencies. In order to understand the term "image" frequency, let us consider the case of a receiver tuned to a signal at 1000 kHz with an oscillator circuit operating at 1455 kHz so that the intermediate (difference) frequency is 455 kHz . If a signal at 1910 kHz is also present at the mixer input, this will mix with the 1455 kHz local oscillator frequency to form a spurious difference signal at the 455 kHz intermediate frequency which interferes with the wanted signal. If a radio frequency stage is used, the additional tuned circuit will attenuate the unwanted 1910 kHz signal before it reaches the mixer and therefore the interference will be mintimised. No amount of extra selectivity in the intermediate frequency stages will affect image interference; the additional selectivity is required before the mixer.

TBA651 Receiver

A receiver with an r.f. stage can be made using the LM1420, $\mu \mathrm{A} 720$, NE546 or CA3123E devices, but as we have already considered the use of one of these 14 pin dual-in-line integrated circuits in the receiver shown in Fig. 13, we will now discuss a receiver using the TBA65l device which also incorporates a radio frequency stage.

A circuit using the TBA651 is shown in Fig. 14; no audio amplifier is included in this circuit, but the audio output can be fed into any standard type of

TOP VIEW

$\begin{array}{r} \text { Mixer Input }\left[\begin{array}{l} 1 \\ \text { Oscillator }[2 \end{array}\right. \end{array}$	$14]$ Mixer Oulput 13 RR Oufput
Positive Supply $\dagger 3$	12]R.F Input
Mixer Decoupling[44	11]RF Decouple
Oemodulator Input ${ }^{5}$	10] A G.C.Filter
I F Out put [6	9 9, Ground (1)learth)
I.E Input[77	87.6 Found I2lfearth]

[^2]Fig. 13: A receiver using the LM1820 device with a simple LN386 audio stage

Fig. 15: The selectivity of the circuit of Fig. 14 may be greatly improved if a suitable ceramic filter is employed between pins 5 and 13 of the TBA651

Noise

The TBA651 employs a high gain. low noise radio frequency amplifier and this enables an excellent overall noise performance to be obtained This noise performance is conveniently shown by the type of graph of Fig. 16. The lower curve shows the noise output when no signal is present at the input, whereas the upper curve shows the output with a signal modulated to a depth of 30 per cent with a 1 kHz tone. The carrier test frequency is 1.6 MHz .

It can be seen that the signal output is about 26 dB above the noise under these conditions when the imput voltage is only $10,4 \mathrm{~V}$, whilst an input signal of only l"V produces a 6 dB signal-to-noise ratio.

Fig. 16: The typical noise performance of the TBA 651 device. The lower curve shows the output noise level without any input signal

The a.g.c. control range of the TBA651 is some 120 dB , this being made up of about 50 dB for the first stage and 70 dB for the mixer stage. A variation in the input signal level of 80 dB can be made to produce a change of less than 10 dB in the output level. The a.g.c. voltage is applied to the first stage only when the input voltage exceeds $100 \mu \mathrm{~V}$ so as to obtain optimum signal to noise ratio. The TBA651 will operate at supply voltages in the range 4.5 V to 18 V . the current required being of the order of 12 mA .

The TCA440

The Siemens TCA440 is another high performance a.m. superhet device. It uses a multiplicative mixer so that few harmonic mixing products and therefore few "whistles" are formed.

A typical TCA440 circuit for medium wave use is shown in Fig. 17. The aerial input to L1 is coupled to the signal frequency amplifier at pins 1 and 2, but this signal frequency amplifier output is internally connected directly to the mixer stage without the use of any external tuned circuit. The oscillator tuned circuit is connected to pins 4 and 5 .

An output from the mixer stage appears at pin 16, is coupled from the tuned circuit containing L6 to L7 and hence D1 which rectifies the signal and provides a.g.c. The other mixer output at pin 15 passes through the transformer containing L9 and L10 and hence to the SF 455D ceramic filter element. It then passes into pin 12, is further amplified and appears at pin 7. The audio signal is obtained from D2, the demodulator diode, whilst an a.g.c. signal is fed back into pin 9 for controlling the gain of the final amplifier stage.

When a 1 MHz signal modulated to a depth of 30 per cent with a 1 kHz tone is fed to the TCA440 circuit, input levels of $1 \mu V, 7 \mu \mathrm{~V}$ and lmV will produce signaltonoise ratios of about $6 \mathrm{~dB}, 26 \mathrm{~dB}$ and 58 dB respectively.

The tuning meter, if used, may have a full scale deflection of $100 \mu \mathrm{~A}$, in which case it should have a reesistance of about 1500 ohms, but a $500 \mu \mathrm{~A}$ meter with an internal resistance of about 300 ohms may also be used.

Fig. 17: A TCA440 circuit for use as a medium wave receiver

Varicap Diodes

Another circuit using the TCA440 for medium wave reception is shown in Fig. 18, but instead of a ganged tuning capacitor, semiconductor "varicap" diodes are employed. Tuning is carried out by varying the voltage applied to the terminal marked $+V_{p}$. In a typical case, a tuning voltage of +8.5 V will result in the receiver being tuned to a frequency of 800 kHz , whilst increasing the tuning voltage to +30 V will change the tuning point to the uppermost part of the medium wave band at about 1620 kHz .

The tuning voltage is applied to the BBll3 triple a.m. tuning diode. Two of the three diodes are used in the radio frequency aerial circuit, whilst the third diode is used in the oscillator circuit where the required capacitance is considerably smaller.

The supply from which the tuning voltage for the BBll3 diodes is obtained must be regulated. The use of a low current integrated circuit voltage regulator is convenient for this purpose, since it will stabilise the tuning voltage against drift with temperature or against mains voltage changes and will also reduce the mains frequency ripple to the very low level required for the supply to the tuning diodes. Tuning is carried out by using a ten-turn potentiometer to tap off the required tuning voltage $+\mathrm{V}_{\mathrm{D}}$ from the stabilised supply voltage.

Conclusion

We have looked at a variety of integrated circuit a.m. receivers; althougb these have not been discussed in any great detail, it should be clear that an excellent performance can be obtained at frequencies of up to at least 30 MHz (corresponding to a wavelength of 10 m).

Fig. 18: A TCA440 circuit for medium wave use in which tuning is performed by varying the voltage $+V_{D}$ applied to the BB113 varicap diodes

PW WIMBORNE

continued from page 34

Precautions Against Hum

As with the majority of audio amplifiers, care must be taken in the physical layout to avoid high levels of hum, especially where earthing at various points on the chassis is concerned. The emphasis placed upon "input earth" and "speaker earth" in the circuit diagram is no idle instruction; it is essential to take external earthing to only one of these points in order to prevent the creation of circulating currents ("hum loops"), and a consequent high residual hum level.

With the same aim in view, caution in the layout of current carrying conductors such as mains transformer secondary cables will help to prevent hum by routing them well away from sensitive points on the audio pre-amplifier layout.

One very important point is that the mains transformer itself can, by virtue of its high field intensity, radiate hum to the amplifier sections. This is especially true of the cassette unit, where the replay head will be very sensitive in this respect. As a result, it should not be permanently sited until after the cassette unit has been installed, at which point it should be swung in different directions while the cassette unit is switched to "play", noting the best position for minimum hum.

Succeeding instalments will cover the remaining circuit elements, which includes the r.f. board and tuner unit, along with the two optional magnetic cartridge pre-amplifiers, and notes on installation of the cassette unit.

The third Landsat satellite was launched from the US Western Test Range on March 5, 1978. It joins an earlier Landsat craft to scan the entire earth every nine days from an altitude of 500 miles. The satellites detect variations in sunlight patterns reflected from objects on the earth and even from subterranean materials such as mineral deposits and water.

Information thus provided is transmitted to earth stations and converted into photographic prints and tapes which can provide solutions to many problems in food, minerals and other critical resources. It has been estimated that the Landsat craft will save thousands of millions of dollars annually and cut the cost of obtaining data about environmental resources by a factor of about 20 times.

The imaging systems aboard Landsat-3 (weight 940 kg) are improved versions of the multi-spectral scanner subsystem and return-beam vidicon units employed in the two earlier Landsat craft. The developments in these infra-red sensors allow the detection of temperature differences in vegetation, bodies of water and urban areas, during either the day or night.

The Landsat craft have provided over half a million electronic images of the earth to over one hundred nations and are said to have affected more people than any other space programme. Information contained in the Landsat images is vital to the intelligent management of our natural resources.

The third Landsat spacecraft during its final checking at the General Electric Space Division Laboratory, Valley Ford, Pennsylvania.

Although the prime contractor for the construction of each of the three Landsat craft was the US General Electric Company, the work required ground support equipment for the launch operations, satellite tracking and data-collection receiving site apparatus for NASA tracking and data stations. The intitial ground data system at the NASA Goddard Space Flight Centre, Greenbelt, Maryland, USA decodes the Landsat data to the required form for distribution to the various user agencies.

Landsat-1 was launched in July 1972 and was operating successfully when its transmitters were turned off in January 1978 in preparation for the laurching of Landsat-3. Both Landsat-2 (launched in January 1975) and Landsat-3 will continue to provide data in the coming years, but plans are well advanced for the launch of a Landsat-D craft in the early 1980's. The new spacecraft will provide more and better data at a faster rate; in addition, major improvements have been made to the ground datahandling system.

Although the Landsat programme was initially experimental, undertaken to ascertain the feasibility of the remote sensing of earth resources from space, more and more demands for information obtained by the spacerraft are being received from an increasing number of users. The Landsat observations have been employed as a vitally important part of the information required to estimate food crop yield, to aid oil and mineral exploration, to measure water quantity and quality, to make inventories of forests and to monitor land use. Indeed, the number of purposes for which the information is being used is growing at a rapid rate.

Practical Wireless, October 1978

F.G.RAYER G3OGR

This tuner can be used with end-fed or balanced feeder systems, either for reception or transmission. When used with a receiver, a substantial improvement in signal strength is obtainable. For transmission, it allows the usual pi-tank to be matched to endfed, Zepp, and other aerials.

Construction

Ll is wound with 20 s.w.g. tinned copper wire, and L2 is of well-insulated wire, on top of L1, as in Fig. 2. The former is $89 \mathrm{~mm} \times 44 \mathrm{~mm}$ and 34 turns are used in all. Taps are equally spaced at six turns, two turns, four turns, and five turns from the centre tap. They are made by passing short lengths of 16 s.w.g. wire into holes in the former, and securely

Fig. 1: The circuif diagram of the aerial tuner
soldering these to the winding turns as required. Nine 6BA bolts with tags, mounted on a piece of paxolin about $102 \mathrm{~mm} \times 102 \mathrm{~mm}$ (as in Fig. 2), support the coil. Below these taps fit three bolts for A, B and C . A to B is three turns, and B to C has four turns, so that three, four, or seven turns may be selected. Two further bolts are for E, E, Fig. 2.

Provided plenty of taps are available, other coils may be suitable.

Methods of Coupling

It is possible to find a suitable coupling method by trial only, especially for reception alone. Fig. 3 will help clarify some of the more usual configurations.
" A " is a pi-coupler, and adjustment of the capacitors allows a wide range of impedances to be matched, either to load the transmitter correctly, or to give best reception.
" B " is a popular method for high impedance aerials. With a transmitter, a co-axial lead is generally used, with outer conductor to the chassis. This, shown at "B" may be fitted for any circuit.
"C" employs the link for coupling. For low frequencies, the two capacitors may be put in parallel as shown, and this is useful if they are not of very large value.
" D " is a somewhat similar arrangement to using a centre-tapped coil and having the capacitors in series in this way is most appropriate for a high frequency band.
" E " shows the aerial tapped down, which is useful with parallel tuning when aerial loading prevents proper tuning with " B ".
"B", "C" and "D" are appropriate for high impedance. " E " suits many intermediate lengths. " F " is for low impedance (quarter wave) with one capacitor used for series tuning.

Parallel tuning of balanced feeders is shown in Fig. 1. This is satisfactory when the feeder termination is high impedance. For low impedance feeders, " G " in Fig. 3 is necessary. The best balanced system is a tuned doublet. The top is divided jnto equal lengths, and the twin feeders are spaced about 102 mm by spreaders. High impedance feed is expected if onehalf the top, plus the feeder, equals a half-wave or multiple of half-waves. Should one-half the top plus feeder be a quarter wave or odd multiple, lowimpedance coupling " G " is anticipated.

components

VC1 and VC2 350pF Jackson 5021/2 or similar. Ceramic or paxolin former, 100 \& 100 mm . Aluminitm base $165 \times 100 \times 9 \mathrm{~mm}$, aluminium panel 203 . 452 mm , Case $203 \times 152 \times 152 \mathrm{~mm}$. Tinned copper and insutated wire.

Fig. 2: General layout, showing connections to screw terminals

A view of the unit showing L.2 (p.v.c. covered wire) wound over L1

Fig. 3: Coupling circuits A and B

Fig. 4 : Coupling circuits \mathbf{C} to \mathbf{E}

Frequency

Circuits showing the whole of Ll in use, above, are for the 80 m band. For higher frequencies, fewer turns are used. With " A " short out unwanted turns. Circuits such as " B ", " C ", " E " and " F " are used at higher frequencies by moving the aerial and capacitor connections down the coil.

With balanced circuits, Fig. 1, " D " and " G " in Fig. 3, move taps in equally from each end.

There is sufficient latitude to allow tuning up for reception on $25 \mathrm{~m}, 3 \mathrm{~lm}$ and other broadcast bands, if required.

Fig. 5: Coupling circuits F (upper) and G (lower); details of all coupling circuits are given in the text

Reception

For reception purposes only, it is an easy matter to try various tappings or circuits, to find which peaks up signals best. This can be done with the aid of the S-meter, selecting a signal not subjected to fading. " B ", " E " and " F " will cover most conditions likely to be met with a single wire aerial. The improvement is greatest when the original match with no tuner was poor.

Fig. 1 or " G " will be used with twin tuned feeders (doublet or Zepp) or Fig. 1 with feeders tapped in equally from each end ot LII.

Transmission

The points already mentioned apply, plus the fact that for correct operation and loading, suitable matching is essential. Mis-matching may in fact cause damage to the transmitter output stage.

An excellent method of matching is to place a standing wave indicator in the co-axial lead from tuner to transmitter, and adjust the tuner for minimum SWR, with reduced power. An indication of $1.5: 1$ or lower is normally satisfactory. Adjustment to a very low SWR (virtualiy $1: 1$) is generally simplified by placing a variable capacitor in series with the link or tap-e.g., between A and the co-axial inner conductor in Fig. 1. A 500 pF component is suitable for h.f. bands, and $2 \times 500 \mathrm{pF}$ for 80 m , receiver type capacitors having adequate spacing. " A " Fig. 3 does not require this item, and can generally provide virtually I: 1 SWR.

Capacitor settings and tappings used for each band should be noted so that re-tuning is possible with a minimum of trouble.

What did Flemming say to Edison about Antennas in 1912 ?

We're not sure, but we con be sure that they couldn't have been discussing the merits of the foystick VFA (Variable Frequency Antenna, 5-30 Mhz). That had to come later . . . so that now, you can have a versatife antenna system that acts as a ground plane right chrough the six lower amateur bands and on all frequenctes in between. Short wave listener and transmitting amateur alike will benefit from a VFAif you can't hear 'em, you can't work 'em'.

SYSTEM "A"
$£ 41 \cdot 00$
250 w. p.e.p. OR for the SWL.
SYSTEM "J"
£47.95
500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADEO STATIONS FOR ANY LOCATION
All Packages feacure the World Record Jaystick Acrial (System 'A'). with alt. feeder. all necessary cablas, matching communication headphones. Deliv. Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS!

PACKAGE No. I
AE above with R. 300 RX. SAYE ©14. 15!
£222.00
PACKAGE No. 2
If offered with the FRG7 RX. SAVE C54-15!
£222.00
PACKAGE No. 3
Hera is a fower-price, high-quality package featuring the LOWE SKX30., with all tite Partridge extras. SAVE f14.151

RECEIVERS ONLY, ineluaive delivery, ete.
R. $300 £ 184.50 \quad$ FRG7 $£ 184.50 \quad$ SRX $30<140.75$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

Just telephone your card number Phone 084362535 (ext.5)
(or 62839 after
office hours)

or write for details, send 9p stamp

5 Partridge House, Prospect Road, Broadstairs CTIO-ILD. (Callers by appointment).

So You Want to Pass the RAE?

A reprint of the complete series, including details of the new examination format being introduced in 1979, will be available in mid-September 1978. The reprint will cost 85 p , including postage and packing to addresses within the United Kingdom.
Order your copy by completing and returning the coupon, together with your remittance, to IPC Magazines Ltd., Post Sales Department, Lavington House, 25 Lavington Street, London SEl OPF. Please ensure that your name and address are clearly legible.

2m MOSFET CONVERTER

continued from page 25

An internal supply using a PP3 battery could also be utilised if the Zener stabiliser in the oscillator is changed to a 6V8 type and $\mathbf{R}_{\text {bl }}$ suitably adjusted in value.

The converter would then be completely self. contained and could be used with valve receivers where an internal 12 V supply is not normally avail. able.

Coil Winding Details

Coils L1, L2, L3, L6 and L7 are identical, with the exception of a tap at $1^{1} 4$ turns on Ll. They are all made using a 6.5 mm drill as a winding mandrel.
All coils can be wound using 19 or 20 s.w.g. tinned copper wire and, with the exception of Ll, may be constructed from enamelled wire for appearances sake. The turns are separated evenly until the coils are $9 \mathrm{man}(0 \cdot 3$ inches) long.

Coil L4 is wound using 30 s.w.g. enamelled copper wire with a total of 17 turns on a 5 mm slug.tuned former, which is then fixed to the board with cyanoacrylate adhesive.

Enamelled 30 s.w.g. copper is also used for L5, which is wound with 9 turns on a smm slug-tuned former and fixed in the same manner. Both the coils are close-wound, the windings being subsequently waxed to aid stability and to hold in place whilst fitting to the board.

Alignment and Operation

Once the unit has been completed and checked for faults, the battery or other supply may be connected and the current measured. This should be in the order of 20 mA at 12 V . If all is well the oscillator can now be adjusted with the core of L5, using a wavemeter to sense when oscillation occurs and to tume for maximum output. At this point, the supply should be switched off and on again to ensure that the oscillator re-starts. If it does not, then detune the coil slightly until instantaneous oscillation occurs at switch-on. Once correct, use a wavemeter to tune $\mathrm{L} 6 / \mathrm{TC} 4$ to 116 MHz and then tune $\mathrm{L} 7 / \mathrm{TC} 5$; return to TC4 and peak, then TC5 again to achieve maximum output, as these coils will tend to detune each other.

Plug the converter into the aerial socket of a receiver and tune the set to 29 MHz , now adjust L4 for maximum noise at the speaker.

Carefully tune the station receiver from 28 to 30 MHz and try to find a signal. If a station is heard or a locally-generated signal is available trimmers TC1, TC2, and TC3 can be peaked for maximum output from the speaker or against a reading on the Smeter (which is usually much more accurate).

The trimmers TC4 and TC5 should now be carefully turned for optimum converter gain.

No further adjustments are required and the unit should give you years of satisfactory operation without the need for any further adjustment if a small drop of wax is melted into the coil cores to ensure rigidity.

by Eric Dowdeswell G4AR

Looking at the spate of reports on 10 and 15 m activity it is fairly obvious that most are from readers possessing one of the relatively new types of receiver, such as the FRG-7. This is only to be expected, of course, but it leads me to wonder just how many readers are plodding away with older sets, which may not be very effective at these frequencies, not hearing very much, and frequently switching off, convinced that the bands are dead.
If you have such a set, don't scrap it but build yourself a converter from sorne published design. The set is probably quite effective at, say, $3 \cdot 5$ to $5 \cdot 5 \mathrm{MHz}$, with a good dial, so the converter is used to change signals on the 10 and 15 m bands (28 to $29 \cdot 7 \mathrm{MHz}$ and 21 to $21 \cdot 4 \mathrm{MHz}$) to a frequency within the range of the main receiver, which is used as a tuneable i.f. stage. The simple r.f. tuned circuits can be arranged to cover both bands without any switching.

A good line-up for the converter is an r.f. stage, mixer, and crystal oscillator/multiplier. If, for example, a 3.5 MHz crystal is chosen, the oscillator output selects the 7th harmonic on $24 \cdot 5 \mathrm{MHz}$ which is fed to the mixer, producing a difference frequency, on 28 MHz , of 3.5 MHz which is fed to the receiver. The dial calibration of 3.5 MHz will now represent 28 MHz and by tuning up to, say, 4.5 MHz then signals on 29 MHz will be heard, and so on, the converter r.f. circuits being peaked appropriately.
In practice a crystal just below $3 \cdot 5 \mathrm{MHz}$ will be chosen or the receiver will be blocked by the fundamental. A frequency of about 3.490 MHz should be suitable
If the fifth harmonic of the crystal is chosen, on 17.5 MHz , this will mix with 21 MHz to produce $3 \cdot 5 \mathrm{MHz}$ again, thus covering the 15 m band. The only switching involved is for the correct harmonic, the r.f. tuning covering both bands. There are no variable oscillators involved which means that the overall stability of the set-up is as good as the main receiver.
Crystals over a very wide range of frequencies can be chosen, different ones for each band if you like, and the i.f. tuning range can be other than that suggested. However, the use of 3.5 MHz gives automatic fixing of the band edges.

It is essential that the main receiver be well screened and that the converter is connected up with coaxial cable with proper fittings, otherwise signals may leak through at the chosen i.f. The converter should have a switch to change the aerial input direct to the receiver to avoid having to play around with cables. If solid-state, the converter may be powered by a 9 V PP3 battery, or possibly from the main receiver.

I used a valved version of such a converter for some years, coupled to a much-modified HRO, and such a combination would be hard to beat. Remember that in a multiband receiver the necessary r.f. switching can only introduce losses at the higher frequencies.

Newcomers to the Column

From East Kilbride, Glasgow comes a letter from Greg Dufly who has been listening around the bands for only a few months. He has an FR50B receiver but has been worried about the type of aerial to use, and wants to improve on an indoor wire. I have sent him the PW Aerial Chart that was given away in October '72 and I have a few more copies for any other newcomers who have aerial problems. An 8×5 in SAE would help, please. My other oft-repeated advice was to write to the RSGB for a copy of the Guide to Amateur Radio which costs $£ 1 \cdot 70$ inc post and packing. Their address is 35 Doughty Street, London WCl for those just starting in amateur radio.

I'm going to include Neil Clarke of Mexborough, S . Yorks here because although he has written to me before, he has only recently got going with a PCR receiver, although he was after an HRO or AR88. He comments on the very rapid overs that some chaps use so that he is unable to copy the callsigns. This, I'm afraid, is something that only experience, listening on the bands, will sort out, but be patient, Neil.

An appeal from Steve Donnelly of 25 Church Street, Adlington, near Chorley, Lancs, who would like to meet others of like interest in his district. He's been using another FR 50 B for over a year and if anyone wants to call on Steve and "have a go" they are welcome. Thanks, OM. Steve wants to know all the pros and cons of adding accessories to a set. It so happens that an article from me on the very subject is with the Editor now, so let's hope he looks on it kindly!

On the Bands

Dick Smith of Porthcawl (mid-Glam) is still plugging away with his little t.r.f. set, mainly on 20 m where he found HP3AB on s.s.b., and A5JO ostensibly
in Bhutan, which is just too good to be true! Bob Bell (Blyth, Northumberland) reports that about a dozen people have come forward as a result of appeals in this column so it looks as if a local club there will materialise very soon. Any group thinking of starting a club but feeling a bit hesitant about it should write to the RSGB and see if they still have the leaflet which gives a suggested set of rules and general guidance on running a club.
Flat Holme Island was the QTH for the Marconi celebrations and special station GB3FI. Brian Smith of Barry, Glam. can see the island from his QTH but was determined to log the station. He found it eventually on 160 m ! Brian bought himself a typewriter, unfortunately for me, as his letters are now twice as long! He found DX on 80 m at this time of year in the shape of ZP5YW, which is pretty good going.
Steve Turner BRS37620 kept away from radio while working on his O-levels but was amply rewarded on his return by catching the Rodriguez Island DX-pedition 3B9DA on 20 m s.s.b., using his ex-Army R208 and 50 ft wire. He's contemplating recalibrating his set and would like to hear from anyone else who has managed to do this successfully. So fellow R208 users are asked to drop a line to Steve at 9 Wallingford Road, Handforth, Wilmslow, Cheshire.

According to Ian Marquis A9140 the band with the sparkle has been 15 m where he found VP2MZZ on Montserrat, VR4CF in the Solomons and YBOAB in Indonesia. Talking of VP2, I wonder how many people realise that it counts as nine different countries for DXCC purposes? The first suffix letter denotes the island, as shown with VP2MZZ above, and there are nine principal islands. Another one who is just relaxing after his exams is Pete Cockerell of Leigh-on-Sea, Essex. He's asking me when the peak of the current sunspot cycle is likely to be! My guess is as good as anyone's but I'd say around 1981, but there, half the fun of amateur radio is not knowing how conditions are going to turn out! Pete's problem is that he'd like something better than the PW Direct Conversion Receiver that has stood him in good stead, but can't decide whether to go on making up odds and ends of projects or to save for a proper set! Go for the set first OM and get some more listening time in. You can go for the bits and pieces later.

In far-distant Truro, Cornwall Bill Rendell has added a 15 m folded dipole to his "elementary" valved Heathkit AR3 and his log seems to justify the work involved, with FP, KC4, KG4 etc appearing in the log, as part of Bill's quest for island calls. Bill comments on the sunspot wipeout in mid-July when the band was full of DX at 1730 but within a couple of hours all he could hear were G's working each other. He managed to bag GJ for a new one on 15 m !

Club News

John Howard G4EVI, publicity officer of the Yeovil ARCG3CMH invites interested readers to two lectures. On September 14th Dud Charman G6CJ gives his famous talk and demo on aerials, and on October 12th the RSGB's Region 17 rep Les Hawkyard G5HD will discuss the World Administrative Radio Conference 1979. Club meetings every Thursday at 1930 in Building 101, Houndstone Camp, Yeovil. A club net operates on Sundays 1030 on 3660 kHz .

I always thought that Shirehampton was one of those places mentioned in Crossroads! But now R. G.

Ford tells me that the Shirehampton ARC meets on Friday evenings at Twyford House, High Street, Shirehampton, Bristol and that a new RAE course starts in September. The club has h.f. and v.h.f. gear plus a programme of lectures and films. Write to Hon. Sec. R. G. Ford, 2 Jersey Avenue, St. Annes, Bristol for details.

Log Extracts

W. Rendell:- 15m C5AAR EA8LD FPOAM HM1II HSIWR J3AH KA6KN KC4AAC (Anvers Is.) KG4FW KZ5ED SVIIW (Crete) TR8AC YB0ACB 9VITG.

1. Marquis:- 20 m FC9UC OH0NA TA1ZB 15m TU2GM FM7BA VP2MZZ VR4CF 3D6BP YB0AB 10 m 306BP 8RIJ (c.w.).
S. Turner:- 20m duicle hb0XaA YbibF/7 3B9DA (Rodriguez Is.).
B. Smith:- 80 m ZP5YW 40 m CO2KK TI2RMA TG9IA 15m HSIWR.
R. Smith:-20m A5JO CO2FRC HP3AB VP2VEM.
R. Bell:- 15 m P29JS CP3AF 10m LUINR.

All s.s.b. unless indicated otherwise.

MEDIUM WAVE DX

by Charles Molloy G8BUS

During the last war a number of specialist receivers covering the low frequency bands only, were produced and on the face of it, they should be the answer to the medium wave DXers' prayers. Unfortunately there are snags. The majority of these receivers are bulky and heavy. Some are unsightly with jacks and multiway plugs on the front panel, and many were designed to run from unorthodox power sources such as a 24 volt aircraft supply. Reader M. N. Button of 101 The Street, Holt, Trowbridge, Wiltshire, has acquired one of those receivers-the ex-USAF DF Receiver type R101A/ARN6 which covers 100 kHz to 1750 kHz in four bands and he would be very gratefui for any information on it. All letters will be answered.

Low Frequency Communications Receivers

A general coverage receiver such as the CR100 or the AR88 must have a reasonably high i.f. in order to provide good image rejection at the h.f. end of its range, but the higher the value of the i.f, then the worse the selectivity becomes so usually a compromise is chosen around 460 kHz . If the selectivity is not good enough then a crystal or mechanical i.f. filter has to be provided. A receiver for low frequency use only, can have an i.f. as low as 100 kHz which provides excellent selectivity with a minimum of complication while at the same time the image rejection is acceptable. Stability is also easier to achieve and two r.f. stages and three i.f. stages are not uncommon. As

U.K. RETURN OF POST MAIL-ORDER SERVIGE ALSO WORLD WIDE EXPORT SERYICE

R.C.S. 100 watt MIXER/AMPLIFIER all valve

Fotr lepate. Four wis mideg, menter folames, troble and kass
 ciamis is auluble for all groups, diuco. P.A., where blets duality powar la roquired, s spenkez opotpath. Ate mathi opernind. Blera pripul. Froduced by demand foe a quallty velto mopiliee.
flead for dolain.
cbunat onis E 99 corr. es

R.C.S. MINI MODULE KIT

$155^{\prime \prime} \times 8^{\prime \prime} x\left[4^{n \prime}\right.$ 3-way Loudspeaker System EMI, Bass, Middle \& Tweeter Units with 3-way Crossover \& Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to 20000 C.P.S. 12 watt RMS. 8 ohm. 610.95 per kit. Two kits C20. Postage T5p.

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A". $20 \times 13 \times 1$ 144. Far 12in.

MODEL "B" b00ks

MODET, "C" BOOESHELP
Tor bilin and tweeter. $\mathbf{f 5} .95$ pent 76
LOUDGPEAKER CASIFET WADDIKG 1Bin. wide. 20p th.

GOODMANS CONE TWEETER	
	43.25
ELAC TWEETEB 4 ohm 20 watt 22 to	

 TOMO KIXER. Add mantoul alrblithty and agnad anecir to recordisers. Wil mis Mioroptone. recorde. fage und oatpak. P voit beltery Tpartiod.

TOO CHABFEL ETEREO FERSIOY OF AHOVE ESSO LOUD8PEAEER GARGALAS

THE "LTETAAT" BULE TAPE EHABEA
Inltable tor cacenttof, and 411 rizec ol tape Leote. A.c, malor $200 / 2407$.
HEAD DEMAGKETIRER 44.75

A.C. ELEOTRIC MOTORS

8 Poit, $840 \mathrm{~F}, \mathrm{\&}$ Amp. 8pladte $-143 \times 0212 \mathrm{in} .41 .75$. 8 Potp $240 \mathrm{~F}, 16 \mathrm{Ama}$. Doable spiadi $1.75 \times 0181 \mathrm{a}$.

[^3]BAKER MAJOR I2" $\mathbf{E 1 6 . 8 8}$

20-14,800 ain. 121n, qoubre soni, Footar

 if otmil man bo stion.

MAJOR MODULE KIT $30-12.000 \mathrm{e} / \mathrm{f}$ Fith $\mathrm{lm} \mathrm{K} / \mathrm{s} \mathrm{t}$, croseorer

PEAKERS
 BAKER SPEAKERS "BIG SOUND"

 pariodi of alestrode powar. Ad modi by letalag graition.
Trastoi roppoare 30-13,000 cpm.
Gaw corobance bs cpa.
GAOUP "45"
121 l .30 watt
4.8 or 18 ohme
GROUP "35"
12, 8 or 18 Fism
GROUP "50 12"
 f15.12

1ein. 60 Fail profanalop £22.68 modis) 4, 8 of 18 ohms. Pont 1160 Respoas $=30-14,000$ ops. With numininm presa
GROUP "50 15" 15ita. 78 Fall 634.50

Poll 4180 221.38 Baz is otal

BAKER I50 WATT QUAㄴITY TRANSISTOR MIXER/MMPLJFIER

 Siltaz trable, baEs and polnme costrola 3 rpeakor oaiput cookots
 100 WATT DISCO AMPLIFIER
 MADE 9Y TENMTMGS MUBTCAL InSTRTEEFTS

B.S.R. SINGLE PLAYER DECK
a speed. Plate all olse recortas.
 thent Diseo Dook.
\& 17.50 por 81.00

DRILL BPEED CONTMOLLER LIART DRYYEA EIT. EAIP

 or bixt madiuta pr iom anio per thenhe

R.C.S. SOUND TO LIGHT DISPLAY MK 2

200 Wett Ramp Rofiooting White Likbt Balba, Tfesal tor Duoo Laghls. Edisoo Bortw Fliting 76p. Rech.
MAINS TRANSFORMERS Poll

 $24,3,4,5,6,8,7,10,12,15,18,244 n d 30 \%$
$1 A, 4,8.19,12.18,18,20,24,30,86,40,48,80$
 3A, 6, 8, 10, 12, 26, 18, 20. E4, 30. 36, 40, 48, 60 \$14.60
R.C.S. TEAK

СОMPACT
SPEAKERS
$13 \times 10 \times \mathrm{ain}$.

C19 pair Pat 21 so

BAKER DISCO SPEAKERS

HIGH QUALITY-ENITISH MADE

$2 \times 12^{\prime \prime}$ CABINETS

faide odrerad Diter cabiosta in ates.
AAt lar tratie
SOWATT R.M.S. 456
With one horn 466
With two horns 474

SO WATTR.M.S C60
With one horn C6B
With two horns C76

120 WATT
R.M.S. 475

With one horn 63
With two horn* 491

SINGLE l2inch CABS COMPLETE 30 WATT R.M.S. 632. WITH HORN t40. 40 WATT R.M.S. ©34. WITH HORN 42. 60 WATT R.M.S. E41. WITH HORN 449. CARR C) EA.

"SUPERB HI-FI"

I2in 25 watts
A algh quality loadipeaker, ift cumatinbla la triarer olesy reprod nation of the desperit buty. Fitted mita a apposial coppar trive and sonopatrle rance raproduclion with remirkcble tmetsenty in thi epper ragitigt.
FoIr Resominces 25apt Plar Beandty $\quad 10,800$ quato Ueatal retponed 80-17.000031
£24.75 :

"AUDITORIUM"

I2in. 35 watts
 onwry Idsel for RboFl bud Dlacotherged. Eleatric Gethat gablio sdireth, maltinipenkot fritama, slecticio oritabl.

 or 16 oump modeli.

£23.60 :

"AUDITORIUM"
| 5 in. 45 watts
A hifh wathege Iondipasiar of
 laf Fabito Address, Dlecelthefuei. Eleotranlo imatromitan: and thi

 oz 16 olms modals.
E29.25 :

Loudnpenker tanaltiet Wadiling Iatin wlitm, app tiep ts.
 E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!
With twatez, Abd ofors
10W. Btate 8 oz 8 chmo
t7.95
5W model $£ 10.50$

Pobe mot

gOODMANS 20W Woofer

Hi-HARAH uatl. Poal 65p

337 WHITEHORSE ROAD, CROYOON Open 9—4 Wed. 9—1 Sat. 9—5 (Ciosed for lunch 1.15-2.39)

Reports on the various bands are welcome and should be sent direct, by.the 15th of the month, to:-
AMATEUR BANDS Eric Dowdeswell G4AR, Sllver Firs, Leatherhead Road, Ashtead, Surrey KT21 $2 T$ W. Logs by bands, each in alphabetical order.
MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane. Southport, PRB 3JG. Reports for both bands must be kept separate.
VHF BANDS Ron Hàm BRS15744, Faraday, Greyfriars, Storrington, Sussex RH20 4 HE .

I have used three of these receivers at one time or another for medium wave DXing I thought it might be useful to pass on what I know of them.
The Marconi Mercury is by far the best receiver 1 have used for MW DXing. It first came to my attention when detailed in an article on coastal radio stations in Practical Electronics November 1966 edjtion. At that time the receiver was still in use in these stations. This valved receiver, complete with separate power pack, can be plugged straight into the 240 volt mains and it is ready to use. There is even an internal speaker. The receiver covers 100 kHz to $4 \cdot 0 \mathrm{MHz}$ in four bands with an additional band from 15 kHz to 40 kHz . On the two higher bands, which include the medium waves, it is a double superhet with i.f.s of 4.5 MHz and 85 kHz . There is a three-position selectivity switch which is adequate and heterodynes can be removed with an external audio notch filter instead of the more usual crystal phasing control. The receiver, although presentable in appearance, is too bulky and heavy for use in domestic surroundings, at any rate in my QTH, and consequently it is temporarily in retirement.

The BC314 is a low frequency version of the well known BC312 and there is also a BC344 which has the same relationship to the BC342. The BC314, which I have used, covers 150 kHz to 1500 kHz in four bands using an i.f. of 92.5 kHz and there are two r.f. stages and two i.f. stages with metal octal valves. The BC314 performs very well on the medium waves. It is heavy but not too bulky but it runs from a 12 volt battery with a consumption of aboul 5 amps . The one I used was converted to run off 240 volt mains but this is not too easy to do as internal space is limited. The BC344 runs off 110 volt mains.

Older DXers will remember the Medium Wave Command Receiver which at one time was popular as a car radio. The official name is the R24/ARC5 or the BC946. It is compact and light, it has one r.f. and two i.f. stages using metal octal valves and the i.f. is 239 kHz . The three i.f. transformers have push-pull rod adjustments for changing selectivity and in the "narrow" position this receiver is excellent for DXing. The frequency range is from 520 kHz to 1500 kHz in a single band. The tuning scale which rotates, is surprisingly accurate but there is no tuning knob as the receiver was designed for remote control by Bowden cable. It is fairly easy to fit a tuning control. The Command receiver works from 24 volts but the dynamotor can be removed to make space for a mains transformer etc. The heaters are unfortunately wired for 24 volts.

Other l.f. receivers that I know of are the Radio Compass MN26 with the suffix A, C, CA or W for medium wave coverage and the RBM which tunes from 140 kHz to 2 MHz with an i.f. of 140 kHz , Although
all of the receivers mentioned here have long since disappeared from the surplus market many are still in private hands and are sometimes on offer in the small ads columns of specialist radio amateur magazines such as Radio Communications (RSGB) and the Short Wave Magazine. When available, these receivers can usually be obtained for a modest outlay, for apart from the medium wave DXer and perhaps collectors, few people have any use for them.

Crystal Calibrators

"The crystal calibrator you mention presumably applies to your particular set and valves" writes R. E. Steele from Swanley, referring to the notes in the June issue about the gear at my QTH. This is not so. A crystal calibrator is connected to a receiver in place of the aerial and one can be used with any receiver, even a crystal set. A 100 kHz calibrator generates a 100 kHz carrier plus harmonics at 100 kHz intervals. Harmonics are multiples of the fundamental, which in this case is 100 kHz . This means that there will be 11 such harmonics or markers across the medium waves starting at 600 kHz , then 700 kHz and so on up to 1600 kHz . Although useful, such a calibrator has limitations on the mediurn waves and a more complicated model with an additional alternative output of 25 kHz or 10 kHz will be more useful. My calibrator has switched outputs of $100 \mathrm{kHz}, 50 \mathrm{kHz}$ and 10 kHz which are used as markers on the medium waves, enabling me to set my receiver onto any of the North American "channels" which are spaced at 10 kHz intervals between 540 kHz and 1600 kHz . A calibrator with a single output of 10 kHz would have its own problems as it would then be difficult to identify the individual 10 kHz markers from one another. There would be 107 of them actoss the band.

These remarks apply to the medium and long waves only. A different approach is required for the short waves where the 100 kHz markers become difficult to identify on the higher frequencies and an additional marker of 500 kHz or 1 MHz is then an advantage. For general DXing a calibrator with three outputs is adequate. One output of either 500 kHz or 1 MHz , a second of 100 kHz and a third of either 25 kHz or 10 kHz , will cover most requirements.

DX

The implementation of the new (Geneva) band plan for the medium and long waves on the 23rd November 1978 will make Asiatic, African and Near East DXing more difficult from the UK. The new plan applies to these areas as well as to Europe! At the moment broadcasts from outside Europe are to be found in some of the gaps between European stations. For example, Kabul in Afghanistan can be found on 1280 kHz which lies between Europeans on 1276 and 1285. Under the new plan, Kabul moves to 1278 kHz which will be a European channel and this station may then become a rarity. So now is the time to have a look around before the change occurs. Listen as darkness approaches in the gaps between the European channels and refer to an up-to-date list, such as the 1978 World Radio and TV Handbook for possible DX. Riyadh in Saudi Arabia is on 587 kHz , Kermanshah Iran is on 895 kHz , Egypt on 1155, Enugu Nigeria on 1320, Kuwait on 1345, Kirkuk 1360 and Ahwaz 1390 both in Iran and Ban Pachi Thailand on 1580 with sign-on at 2230 GMT.

Pirate Radio Stations

A number of readers, the latest being Richard Casey EIGBL, send in logs of Pirate Radio stations. These stations operate outside the ITU regulations and they ought to be illegal in any country that belongs to this international organisation. It is also illegal in the UK to publicise these stations and consequently details of them cannot be included here. In any event, pirates are seldom DX. To the serious DXer they are just an unwelcome addition to a band already overloaded with QRM.

SHORT WAVE BROADCASTS

by Charles Molloy G8BUS

A reference to the MCRI receiver in this column prompted John I. Brown of South Ockenden in Essex to write "I designed the MCRI early in 1943 and it was produced by Philco in Perivale reaching a rate of 500 per week before Christmas that year. The set was packed in Huntley and Palmer biscuit tins, complete with two dry batteries, an a.c./d.c. power pack for $110-240 \mathrm{~V}$, earphones and coil boxes for all bands from 150 kHz to 15 MHz . The tins were solder sealed and 'delivered' in parachute containers, mainly by Halifax and Stirling bombers." John goes on to say that altogether 30,000 of these receivers were made, the majority being used to provide links to resistance movements in occupied countries. John. who has been a $P W$ reader since he was a boy, thinks that many people would regard attempts to modify the MCR1 as vandalism! Strong words, but it does seem rather a pity to muck about with such a famous piece of equipment.

Time Signal Stations

A request for detailed information about the various time signal stations that can be heard on the short waves comes from Findon Vicarage in Welling. borough where the Revd J. P. Beaumont thinks this could be helpful to DXers for receiver alignment and calibration checks.

Time signal stations are to be found on $2 \cdot 5 \mathrm{MHz}$, $5 \mathrm{MHz}, 10 \mathrm{MHz}, 15 \mathrm{MHz}$ and on a number of other frequencies as well. In the UK, station MSF located at the National Physical Laboratory at Teddington transmits on $2 \cdot 5,5 \cdot 0$ and 10 MHz , and the 5 MHz transmission which is within the 60 m broadcast band is a strong signal at my QTH. The "programme" which lasts for 10 minutes is repeated throughout the 24 hours. At 30 seconds before the hour the callsign MSF is sent in Morse code. Then there are second and minute pulses for a period of five minutes and during the following 41_{2} minutes the station is off the air. As well as providing an accurate time check. MSF also provides an accurate frequency check and the DXer will find it useful for locating 5 MHz on his receiver and hence the 60 m band. He can use MSF as a frequency standard against which to calibrate equipment such as a wavemeter or crystal calibrator (where
an adjustment is provided). MSF is also a good signal on 2.5 MHz which marks the upper limit of the 120 metre tropical band. Clock pulses can also be heard from various stations throughout the world on 10 MHz (30 m) and 15 MHz (20 m) which lie within the unofficial limits of the 31 metre and 19 metre bands respectivety.
Perhaps the most useful and interesting feature of these stations is the guide they give to propagation. Station VNG in Lyndhurst, Australia transmits on $4.5 \mathrm{MHz}, 7.5 \mathrm{MHz}$ and 12 MHz , all three transmissions being audible in the UK when propagation is favourable. Others from Taiwan, China, India, Italy, Japan, Argentina, USSR, USA, Hawaii and South Africa are on 5 MHz and 10 MHz and some of them can be heard in the UK. Identification can be a problem but some information is included in the World Radio and TV Handbook. Full details of all known time signal stations, including a breakdown of each programme which in some cases gives a propagation forecast, are contained in a booklet, printed in English called List of Time Signal Stations, which has been compiled by a German DXer. It is obtainable from Gerd Klawitter, Ochtrupper Str 38, D-4430, Steinfurt, FRG (West Germany) in return for five International Reply Coupons.

Aerials and Trees

Following the comments in the July issue about using a tree as an anchorage for an aerial in place of a mast, E. C. Rowland has written in with some details of his own experiences. He says that if the tree is likely to move a lot then make sure that the pulley is able to move freely and is of as large a diameter as possible. Use stranded wire instead of rope as the latter will absorb moisture and freeze in cold weather. A spring between the end of the rope and the weight is also a help. His first attempt to use a tree was in the early days of wireless when he had a crystal set and the "weight" was an old-fashioned type of cooking pot designed to hang on a hook in a chimney. This rested on the ground when the tree was not in motion. An attempt was made to fit the pulley at the house end of the aerial but this caused problems with the lead-in and the idea was abandoned.

Receivers

Phil Grainger (South Shields) has moved from a Trio 9R59DS to the new Yaesu Musen FRG-7 but he says "I can't say this receiver is that much better than my trusty Trio". Do not expect spectacular results if you swap a good receiver for one that may be better. The law of diminishing returns also applies to receivers and quite a large outlay may bring only a marginal improvement which is not apparent except when listening to a weak or difficult station.

From South Africa regular PW reader Francois Steyn writes to ask if any reader could help him with some information, including a circuit diagram, about a rather old valve receiver which is marked SAJ Geloso Gruppo No 1988 Micro. Replies direct to 26 Voortrekker St, Villiersdorp, 7170, RSA. When connected to a 150 ft inverted " L " aerial via a MOSFET (40673) preselector, this receiver pulled in JJY, the time signal station in Japan on 10 MHz at 1640 , the CBC Northern Service on 11720 SIO 333 at 2104, FEBC Philippines in English on 15440 at 1430 SIO 433 and SLBC Sri Lanka with a test transmission on 17850 at 1850 SiO 433.

DX

The Newport Amateur Radio Society is looking for new members, enquiries should go to Martin Lifezers, 32 Barrack Hill, Newport, Gwent NPT 5FR. Martin, who looks after the interests of SWLs, uses a Realistic DX160, a home-brew aerial tuner and a large medium wave loop in series with a 200 ft long wire. On 60m, DX heard included two Venezuelans, Radio Universo in Barquisimeto on 4880 kHz at 2245 and Ecos del Torbes in San Cristobal on 4980 at 2240 . Conakry, Guinea on 4910 was also heard at 2305.

Martin is having difficulty identifying Latin Amerjcans and he mentions hearing "Colo Santa Araba" and "Radio Baraba" on 4950 kHz approx. This is probably a reference to Santa Barbara del Zulio which is a medium wave station which may well be linked up in a network, such as Radio Rumbos, with a short wave outlet. The Rumbos network has the habit of announcing the names of all its stations, including the towns, which is very confusing for the DXer. Martin asks for the address of Radio Clarin which is AP 205, Zona 2, Sto Domingo, Dominica. John Dennis Court of Birmingham reports hearing Radio Clarin on $11700 \mathrm{kHz}(25 \mathrm{~m})$ between 2230 and midnight using an Eddystone EC10 and loft outdoor aerial, while thirteen-year-old David Wyatt of Oswestry heard Radio Clarin at 2300 in English also on 11700 using a home-brew receiver and 100 ft of wire "tangled up" in the loft. From David's penpal in Indonesia comes news of RRI Jakarta on 9710 and 11790 from 0900-0930 and on 11790 from 1100 to 1200 .
S. Donnelly suggests that the Radio Ping Pong mentioned in the July issue may be Radio Pyongyang in Korea while David Wyatt asks if anyone has reported recently to Radio Pyongyang. This station sent David a QSL card, a pennant, schedule, letter, set of postcards of Wonsan, a badge, a book about Pyongyang Zoo and two IRCs, as the latter are not valid in North Korea.

by Ron Ham BRS15744

We all know that the i.h.f.s are full of surprises, but, how many of us would have expected to see adverts on Hungarian television, cartoon films from Italy, sport from Poland, hear east-European and Italian broadcast signals dominating Band II, and UK amateurs working their Italian counterparts on 2 m with comparative ease. It was all this, in one 3-hour session which set the telephones buzzing among our readers and disrupted the Saturday evening plans in many of our homes.

Sporadic-E

Around 1700 on July 8th, the v.h.f. bands were relatively quiet, but, by 1800 my R216, monitoring Ch. Rl, 49.75 MHz , was receiving strong television sync pulses which were heralding the start of the biggest sporadic-E disturbance for many years. It was
soon obvious that frequencies between 30 and 150 MHz were wide open and it was amazing to hear the chaos, as signals from a wide variety of international broadcast transmitters, which share the same frequencies throughout Bands I and II, mixed together.

Between 1810 and 1930, Ian Rennison, Horsham, Sussex, using a JVC 3040 UKC, fed by a dipole, received strong pictures from ORF Austria, DDR East Germany, RAI Italy and the USSR. At 1930, Guy Stanbury, Chelmsford, counted 37 Italian stations between 87 and 104 MHz , as did Ian who writes "I was also monitoring Band II and it was cluttered with Italian f.m. stations, some were so strong that stereo reception was a 'piece of cake' ". I rang Alan Baker, G4GNX, Newhaven, Sussex, who demolished his piece of cake and rapidly humped his 2 m gear up to his loft shack (it had been out for v.h.f. field day), and was rewarded for his immediate efforts, because between 1849 and 1930 he worked I6WJB, 10 HKD , IOJFE on 2 m s.s.b. and heard Mike Hearsey, G8ATK, Farnham, Surrey, along with several other G stations, in QSO with the Italians. Clive Atlowe, Blofield, Norwich, using three Sony sterco receivers, heard many private stations among the multitude of Italians in Band II and Bob Dewick, Bradwell-on-Sea, Essex, reckons that this event had been brewing up since early morning because during the day he received strong signals from Italian, Portuguese and Spanish broadcast stations in Band II. While most of us were concentrating on the v.h.f.s, Harold Goble, G4FDQ, Lancing, Sussex, used the short skip on 10 m to work into GI, ZE and 5N2.

Throughout a similar event during the evening of July 10 th, the German beacon, DLOIGI, was very strong and G4GNX had a half-hour QSO with DF2RQ, both on 10 m . Guy Stanbury reports that Band II was disturbed early in the evening, and so was 2 m , because Peter Henley, G81QO, Eastbourne, Sussex, and John Matthews, G3WZT, near Horsham, worked stations in Greece. Later in the evening Alan Baker and Roy Bannister, G4GPX, Lancing, worked YU0OM, on 2 m s.s.b. and John Cooper, G8NGO, Cowfold, Sussex, heard similar signals from $11, H G$, and $Y U$ with an indoor 4-element Yagi. Duncan Groves, Chelmsford, described the opening as being like Pandora's box. . "things appeared everywhere" and William Poel. G8CYK, Brentwood, Essex, heard Yugoslavian stations in Band II with only a piece of wire in the aerial socket of his Ambit International Tuner.

During the morning of the 11 th, DLOIGI was pounding in on 10 m , TV pictures were coming from Sweden and the USSR on Band I and I counted 48 strong signals from east-European broadcast stations between 65 and 73 MHz , some of which were heard by Harold Brodribb, St. Leonards-on-Sea, Sussex, using an indoor dipole to a home-brew receiver. Important, but much less severe sporadic-E disturbances occurred on June 19th, when I received good pictures from Finland, Iceland and Sweden, 20th, 22nd, and 29 th and July lst, when Ian Rennison received pictures from Austria, Hungary, Italy, Norway, Spain and the USSR, and July 2nd, 7th, 15th and 16th.

Solar Activity

Radio noise from the "active" sun was recorded at $136 / 142 \mathrm{MHz}$ by Cmdr Henry Hatfield, Sevenoaks, Kent, John Smith, Rudgwick, Sussex and myself on 18 of the 25 days from June 21st to July 16th, during
which time there were two major noise storms, June 24th to 28th and July 9th to 12th, both disturbing the ionosphere and causing radio blackouts on many occasions. On Juлe 26th, John Branegan, GM80XQ, Saline, Fife, heard solar bursts at 29 MHz , while Alan Baker received one at 144 MHz and, on July 9th and 12th, many of us heard them at 28,50 and 70 MHz .
On July 7th, Henry Hatfield, using his spectrohelioscope, saw the first appearance of the giant sunspot which reached the Central Meridian Passage on the 14th. Despite overcast skies, Henry did get a look at it on the 10th and noticed its unusually large penumbra, Charlic Newton, G2FKZ, London, tells me that the largest known Xray burst lasting 11 minutes took place on the Sun during the early days of this sunspot, and sent all recording instruments off scale. The thinning cloud during the evening of the 13th enabled Barry Ainsworth, Eric Dowdeswell, G4AR, Ashtead, Surrey, and Mike Rowe, G8JVE, East Preston, Sussex, to see this giant spot with only a filter in front of their eyes. It is not advisable to look directly at the sun under any circumstances unless as Henry Hatfield says, you have a special and carefully designed filter to protect your eyes.

Tropospheric Openings

To add to the turmoil the atmospheric pressure rose above $30 \cdot 0 \mathrm{in}$ on July 6th and was still high on the 16 th during which time there were several tropospheric openings. At 2218 on the 11th G4GNX worked ON5QW on 2 m c.w., on the 13th G8JVE worked DK7KO and 4 French stations on 2 m s.s.b., at 0130 on the 14th G8NGO had a QSO with DF1JC, first via the French repeater on R9 and then direct on s.s.b. G4GNX and G8JVE both contacted stations in southern France on the 15th and Ern Hoare, G8BDJ, Brighton. heard an OE on 2 m .

Microwaves

Ern Downer, G8GKV, Worthing, Sussex and Ern Hoare, G8BDJ installed their 3 cm gear at Chanctonbury Ring, a high spot on the South Downs, to compete in the 2 nd round of the $\operatorname{RSGB} 10 \mathrm{GHz}$ Cumulative contest on June 25th. Despite the atrocious weather conditions, both Erns worked G3JHM/P, near Petersfield, G3JVL and G8DIC, in Hayling Island, and G3IFF/P on Portsdown Hill, all in Hampshire. During a contact between G8BDJ/P and G3KSU/P, Isle of Wight, a rain storm was seen crossing the path and the signal strength dropped from S9 down into the noise and came up again when the storm cleared the path.

CB Down Under

M. A. Penfold, ZLITUI, Dunedin, New Zealand, read about the American CB stations being heard in the UK in our April issue, and asks if our readers would periodically listen around 26.5 MHz for CB signals from New Zealand. M. A. Penfold also has a CB call, R0575, and would like to know if their 0.5 watt signals ever reach the UK.

OSCAR-8

John Branegan, assisted GM8NXW on the OSCAR stand at the Scottish Mobile Rally on June 10th, and says "I talked OSCAR-8 solidly for five hours, we had about 300 people there and a continuous stream of
groups of 4 or 5 asking questions the whole time". At 2213 on July 8th John worked W1CRL, Maine, his first W contact via the satellite's mode-J. At 2317 on the 9 th he contacted VE2LI, Montreal on s.s.b. and the VE replied on c.w. Two minutes later he had an s.s.b. QSO with WA3ZHW in Pennsylvania.

Club News

One of the attractions at the Worthing and District Amateur Radio Club's mobile rally held at Whiteways, near Arundel, Sussex, on June 20th was the Radio and Television interference detector van belonging to the Brighton area of the Post Office. The officer in charge, Bob Taytor, G8JZZ, demonstrated the vehicle's equipment. More than 150 attended the event which was organised by Barry Ainsworth. The talk-in station on 145 MHz , operated by G8GKV worked more than 100 stations.

Bob Taylor G8JZZ beside his Post Office
interference detector van
The Mid-Sussex Amateur Radio Society had stations on 4 m G3XUP/P, 2 m G3ZMS/P (the club call), 70 cm G3VQN/P and $23 \mathrm{~cm} \mathrm{G3RXJ} / \mathrm{P}$ (the club chairman), during the RSGB VHF NFD on July 8th. They were situated 700ft a.s.l. near Brighton and are very pleased with their results, especially on 23 cm where they worked 10 stations in 5 counties using RXJ's home brew transmitter and a Microwave Modules converter.

Readers' Equipment

G8NGO now has a l2ft dish and hopes to use it in the future for moon-bounce on 23 cm .
Gordon Goodyer has completed the Practical Wireless Audio Filter and is delighted with its performance.

Clive Atlowe, a keen TV/FM DXer has 12 TV receivers installed at his home, nine are fixed channels for sporadic-E and meteor scatter on Bands I, II, and III and the others, Sony 9-306UM, Luxor Colour set, and a German Philips Bellini are for u.h.f. reception. All are fed by a wide variety of aerials and pre-amps.

FRANK LUMAN

by RON HAM

American-born Frank Luman began seriously DXing on the medium wave band, with a Hallicrafter SX-110, when the family moved from Cumberiand, Maryland, to Denver. Colorado. The medium waves interested Frank because he could often hear stations some 3000 miles apart (i.e. KNX, Los Angeles and WNBC, New

York), and was kept updated with the news as it happened as well as getting a different perspective on the music that was being played.

When Frank came to study in the UK (Pharmaceutical PhD) his hi-fi system, cassette deck, loudspeakers, stereo receiver and turntable came too. Through using the receiver, a Sherwood S-7100 A, at his present Q'TH in Glasgow, he fell for v.h.f. DX in a big way and began experimenting with aerials. In 1976, he was told that it was next to impossible to receive transmissions from the new station, Downtown Radio, (Belfast, $96 \cdot 0 \mathrm{MHz}$) in Glasgow, so, typically Frank, he mounted a Jaybeam FM9s aerial on his AR40 rotator, built an f.e.t. pre-amp and received the station loud and clear. What's more, with a little help from the troposphere, he heard signals from BBC Radio Carlisle, Radio Cleveland, and Metro Radio, along with Radio 4 from Holme Moss, Pontop Pike, and Sandale.

It was Roger Bunney's column, Long Distance Television in our sister magazine Television, that decided Frank to add DXTV to his radio activities. This meant two more Yagis on the rotator to feed a Hallicrafter S36-A for Band I sound carriers, and an early, dualstandard KB Victor VV-10 for v.h.f. and u.h.f. TV reception.

Frank's regular contributions to my v.h.f. column have shown some of the problems facing a DXer in Scotland and it was his enthusiasm for the subject that moved him to instigate the Scottish VHF and SW DXers Club, which currently meets fortnightly at his home. The members are making plans for a club shack where they can test a variety of aerials and equipment. Already they have an early warning system between them for auroral, meteor shower, sporadic-E and tropospheric events.

Frank Luman gets the most from his radio by coupling his interests in current affairs and music to an urge to receive programmes from stations at almost impossible distances.

AMATEUR SSTV

continued from page 29

One interesting feature of SSTV is that it can be stored on conventional audio recording tape. This is due to the low frequencies employed. which fall well within the 'audio' spectrum. Consequently, a readily available cassette or reel-to-reel recorder can also double as a storage and retrieval system for your SSTV pictures.

Slow to fast-scan converters are available which will display an SSTV picture on a conventional television monitor or receiver; designs by active amateurs such as DL2RZ are already well known. Alphanumeric information and colour transmissions have also been proved possible.
The accepted UK standards for SSTV are given in Table 1, and are the references to which any wouldbe constructor should work. There is, of course, a variety of commercially produced equipment available for those without the necessary facilities. The typical block diagram for a monitor, for example, is given in Fig. 2, and provides an indication of its complexity.

Table 1

```
Line Frequency 16.66 Hz
Frame Frequency \(0.142(1 / 7) \mathrm{Hz}\)
Lines per Frame 12018
Aspect Ratio 1:1
Horizontal Pulse Duration 5 ms
Vertical Pulise Duration 30 ms
Sub-carrièr Frequencies:-
Sync. 1-2kHz
Black 1.5 kHz
White \(2 \cdot 3 \mathrm{k} \mathrm{Hz}\)
```

The normal amateur licence permits the holder to use SSTV and no special dispensations are required, provided the standard requirements are observed. The accepted frequencies on which transmissions are made are $3640 \mathrm{kHz}, 3740 \mathrm{kHz}, 7040 \mathrm{kHz}, 14230 \mathrm{kHz}$, $21350 \mathrm{kHz}, 28680 \mathrm{kHz}$ and $144 \cdot 230 \mathrm{MHz}$, the bulk of DX traffic being on 14230 kHz .
Several publications on this subject are available to those interested and can be obtained from BATC Publications, 64 Showell Lane, Penn, Wolverhampton, Staffordshire.

TRANSFORMERS

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8%

BRAND NEW SURPLUS MODULES

AND OTHER ITEMS
2 害TAGE STEREO PRE-AMP on $0^{\prime \prime} \times$ intout, aux. onjoft, 4 butider controls, yol. bif., bases., Ireble, ingut approx, 100 mb ior 300 mv out with knobe. Now onty ≤ 8 oo
STEREO POWER AMP IA match EA
 Iupply for pro-amp. Bergein at only Ed ©o Bulid your own muglc centr SPECIAL
OFFERPRE-AMPEPOWER AMP TRANBFORMER to Bull $240 \mathrm{y} / \mathrm{I2V}$ ELAC SPEAKERS 8", 88 with Iwealer 8TRREO ORAM AMP on $12^{\prime \prime} \times 11^{\prime \prime}$ P.C.B. $3 W+3 W$ for 10 mV in control.
 5 ultable 14 tranulormer and recL ordered with giam amp
Singly $\mathbf{6 2} 50$
Very amart car controt box, Coniaing gtab.
 Easily modified, diagrame supplied. Ef-ge

Ealling Leo-mbins powar supply unlt top mestheag smpidfler. Gfyes 15y stabifized for leading uo co-ix. Easily madifled to give izy at 100 끼 A.

ELECTRONIGAL SUPPLIES CROYDON

40, Lower Addiscambe Road, Croydon, CRO 6AA. Tel: 09-688-2950.

GRAND NEW AUDIO AND R.F.

REPLACEMENT PANELS, Sond Aas for Het.
Example 1 PC 218 G 3W + 3W tuner amp

Includes 13 tranntatora, a mint IF and oas col|t, rect. And amoothing. Oyer 120
componenta. Eaily complateot, diagami supplied.
Requltea Tuner head, awitcheg, vel. and tone pota

Only 52.04
Example 2 PC 2568. Playfeec, amp penol Iot 4 tratk mono deck.
Includan Trach alelector, playirac. snd rect. comp. switehing. Pravialon lor panab and aulo stop. Solenoldy. 55 hHz, Biant
orase. Layout and cirevit diogram: orase
supplied.
Ras.
Requlage AC 1atfich, yol, and tome canteols, end 24 y tramale.

Only E2.40
TV tunef, UHF tranieistothed sim dive. Aerial eocket panal etc. Ac usod on GEC 2000.

Sfand now 22 : 50
Audio ot radia paneia, damaged or incemalete, Tharm man'f'd. Hundrede of modern
 oloctrols. Trimmera, Mini Toke 'IF's and osc. colfs, 405 and 10.7.

Jub Lot ES 09
of Cassente Motors 40 mm dia $\times 35 \mathrm{~mm}$ Hiks imm dia. Shatt $\times 10 \mathrm{~mm}$ long rumy

 c.w.O. $+{ }^{23} \mathrm{p}$ på.

Pricte Incl. VAT. Sie for lint

Doram SEE THE DORA CHIME KITS IN THE NEW DORAM HOBBIES CATALOGUE.

FANTASTIC SPEAKER OFFER

TWIH 12 " SPEAKER CABINET PLUS PAIR I2* SPEAKERS
of tobun vibratlom-propt conuruetion, Fitted provective comer pieces. Fiemovabie yrneir covored Prant whin silver effect trim. Sunken
Patr 12° 20w egenkers for withe In sertei and front Whito atocks lant
mounting in above moviled to come plete 40 watt unlt for
£19•95

DISCO MODULES

CONTROL UNiT (malins powered)
Vol. (Left) Vol. (Right) Bass, Treble, ON OFF switch for each T'table. Carr. fl
MONPTOR UNIT
With H/Phone Socket and Vol.
Control Carr Free
FADEA UNIT
Carr Free
100w OUTPUT UNIT
Mains مnweredi. Cars $£ 1 .<0$
$\mathbf{6 2 5} \mathbf{0 0}$ 67.95 67.95
629.95
|TITAN GROUP/DISCO SPKRS $\begin{array}{ll} \\ \text { T12/45R } 12.45 \mathrm{w} & \text { Value RSC Price } \\ \text { £15.00 }\end{array}$ $\begin{array}{lll}\text { T12160R } 12^{*} 60 \mathrm{w} & £ 22.50 & 813.95 \\ \text { T12. }\end{array}$ $\begin{array}{lll}\text { T12/60R } 122^{\circ} & 80 w & £ 22.50 \\ \text { T12/100 12 } 100 \mathrm{w} & £ 36.00 & \mathbf{2 2 5} .95 \\ \text { I } 13 / 60 \text {.95 }\end{array}$ $\begin{array}{lll}\mathrm{T} 12 / 20012.100 \mathrm{w} & £ 36 \cdot 00 & 225 \cdot 95 \\ \mathrm{~T} 15 / 6015^{\circ} 60 \mathrm{w} & £ 26 \cdot 00 & 217 \cdot 95\end{array}$ $\begin{array}{lll}\mathrm{T} \\ \mathrm{T} 15 / 7015.70 \mathrm{w} & £ 28.00 & 219.95\end{array}$ Tist100 15 100 w £4 00 E29.95 T:8.100 18* 100w $£ 47 \cdot 00$ E36.95 Cart. £I 20. under £18, over thts edd op per \& 5
CABINETS FOR ABOVE Henvy duty, flmished in black Vynide whth Vynair fronts, protecilye comer

New Branches at *LEEDS,*LIVERPOOL *WOLVERHAMPTON

ALL RSC PRICES INCLUDE VAT

* DISCUMAJOR POWER DISCO CUNSOEE with integral Power Anoplitier

交 TWIN FULL SIZ EA BR turntables with cueing device.

* 3 SEPARATE VOLUME CONTROLS for e8ch tumable and Mic. FACILIIIES
Terms: Deponit $530 \cdot 00$ and 18 [ortnightiy pymats. 29.80
$\AA 169 \cdot 95$ Also tvallable 200 WATT SYSTEM $\mathbf{4 1 9 9 . 9 5}$ Carr, 84.75
TD1 DISOO CONSOLE Incorporating twin BSR type turntabies \& Sonotone

OPEH ALL bAY gatE (5 Day Wepk) Pricet correct at 26.7 .78 E. \& O.E. All atems subject to avaifability
 BIRMINGKAM 30,31 Gfens Woblain Arcede.
 COVENTRY 17 Shetton Sq_{S}. The Precinct

 DONCAsTER 3 Quetnigato. Wateronit CEntre.
MDINEURGH 101 Lathian Rd, (Closid Wied.) Tol, 8299501

GLABCOW 328 Argyte St. (Closed Tuls.). Trl. 041-248 4159
HLULL 7 Whitefriargato \{Closed Thare.\}, Tel, Respos

* LEEDS ${ }^{\text {q8-18 Courly (Macea) Arcads, Brlparte }}$

ҺLIERPOOL зз Dawson Way, St. John' Precinc
LONDON 238 edgware Road, w. 2 (closed Thurs.).
, MANCHESTER
101. 723 1824

60A Oftham Strael (Closed Wed.). Tal. 295 2778

MALL ORDERS MUST NOT BE SENT TO SHORS

MIODLEEBROUOH 123 Lintherpe Rd. (CI. Wed.) Tal. 247048 NoJit NOTTiNGHAM 19JTAA Markot Strget
(Cloand Thust.3. Tol. 4 a0es (Castive Mht. Blde.)
(Closed Thure.), Tel. 2071s

* WOLVERHAMPTON $\begin{aligned} & \text { g Wultrun Way } \\ & \text { (Cigied Thurs.). ₹eq. 28s12 }\end{aligned}$ सMUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches

Our new 1978 catalogue lists circuit board accessories for all your projects - DIP sockets, pins standoffs, cable clips, hand tools. And we've got circuit boards, module systems, casea and boxeseverything you need to give your equipment the quality you demand. Send 25 p to cover posi and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR

Telephone Chandlers Ford (04215) 2956

electrōalue Buying

If you have bought before from Electrovalue, you wilf know just how Iarge and varled our atocks are, For those who heve yet to know, we ere publishing z everien of five adi. month by month to Five up-to-datalaformation and prices on the moat important items
 Pr. Wirnters, Pr. Elactrobici, Everyday Efectrontcs, Electrontce Todey Fintnten, End Elektor, so that the compinte feries will be evailabie exch month. In this way, mo matter which journali you raid, BY DETACHING AND SAYINGTHESE PAGES, YOU WILI BUILD UP A VALUABLE AND COMPREHENSIVE MONEY SAVING CATALOGUE.

Transistors/Zeners

NNS14 +N9142 iN916 IN4007 iN4148 N5402 IN5407 5920 5940 N697 N706 2Ns30 2N:132 $2 N: 302$
$2 N 1303$ $2 \mathrm{~N}: 304$ 2N:305 2Ni306
2Ni307 2N1308 2N1599—SCR 2N1613 2NE7II 2N1893
2 N 2218 2N22 18 A 2N2219 2N2219A N2270 2N2484 2N2646 2 N 2904 2 N 2904 A 2N2905 2N2905A 2N2924* 2N2925 * $2 \mathrm{~N} 296^{\circ}$ 2 N 3053 $2 N 3054$
$2 N 3055$ 2N3391A* 2N3405* 2N3663*
2N3702** 2N3703* $2 \mathrm{~N} 370 \mathrm{~A}^{\circ}$ 2 N 3705 . 2N3706 ${ }^{\circ}$ 2N3707* 2N3708* $2 \mathrm{~N} 3709^{\circ}$ 2N37i0* 2N3711* $2 \mathrm{~N} 3794{ }^{*}$
$2 \mathrm{~N} 3 \mathrm{~B} 9 \mathrm{~S}^{*}$ 2N3820* 2N3823E 2×13904 2N3506 $2 N 4036$ 2N4058 * 2N4059** $2 N 4060$ * 2N406: 2N40624 2N4:26* 2N42B6*
2N41B5* 2N4299 $2 N 429{ }^{\circ}$
$2 N \div 4301{ }^{\circ}$ $2 N 4410$.

- GOODS SENT POST FREE U.K. WITH C.W.O. orders over $C 5$ list value. If under. zdd 27 p thendling charge.
- ATTRACTIVE DISCOUNTS on C.W.O. mail orders- 5% wher list valua is ovar £ $10 ; 10 \%$ wher lise value is over $£ 25$.
- TOP QUALITY MERCHANDISE-ALL GUARANTEED.
- Y.A.T.-Add 8% to value of order. For

능日a $2 N 4443$
$2 N 444$ $2 N 4444$
$2 N 4906$ $2 N 4906$
$2 N+49: 5$ 2N49:S
$2 N 4991 *$ 2N5062
$2 N 5163^{*-S C R}$
$2 N 5192$
$2 N 5195$
2N5195
2NS457*
2N545 *
2N5459
6F40
$6 F 40$
$16 F 40$
40 HF 10
40 HF 40
40250
40361
40362
40362
40408
40412
40594
40585
10602
40636
40636
40673 40673
A9905
A A113
AAII
AAl!
AA119
AC126
-
ACISIR
ACi53
ACI53K
AC176
AC176
AC187K
AC!8g
ACY\{7
ACYI ACYIS
ACY2 ACY2 ACY39 $A C Y 40$
$A C Y 4$ AD136 ADI4 AD161
AD162 AD114 AFII6 AF117

For ACCESS or BARCLAYCARD arders just phane or write your number.

- No dizeounts allowable on prices marked NET or N.
- TAKE GOOD CARE OF THIS PAGE AND REMEMBER TO LOOK OUT FOR NEXT HONTH'S TO ADD TO IT.
- OUR COMPUTERAADED SERVICE TAKES GOOD CARE OF YOUR OROER NO MATTER HOW LARGE OR SMALI.
Comprethensive price list frag on rapuest.

0

BUX28

HEAT SNNKS

ZENER DIODES

$400 \mathrm{~mW} 2 \cdot 7-33 \mathrm{Y}$ $1.3 \mathrm{~W} 3.3-200 \mathrm{~V}$ $1.5 \mathrm{~W} 3.3-75 \mathrm{y}$
(I, 5W are metal cased) 20W $7-5 \vee-75 Y$ ti-25 auch

We are now Natlenal Distrlbuters Yar NASCOM I MICROCOMPUTER KITS
for dolivery from
trock from
$\mathbf{\Sigma 1 9 7} \cdot 50+$ Y.A.T.
Quantity discounts.
Trade Enquiries invited.

Master computers At home. The new practical way.
 The computer is entering every aspect of modern life and will continue to do so

 on an ever increasing scale . . . Do you understand the basic principles behind its operation? We can show you in a practical and interesting way . . .A new home study course on digital electronics and the basics of modern computer technology. Full experimental programme of PRACTICAL WORK on demonstration panel.

Easy, fast and exciting! No previous knowledge needed.

VALVE BARGAINS

Any 5-80p. 10-61-50, 50-f6-00. Your choic* from the list below.
ECCB2, EF80, EFIS3, EF184, E490. PCF80, PCFB02. PCLE2. PCLE4, PCL85, PCL86, FCLgo5, PL504, PYO1/800, PYBE, 30FLI4, 6F28, PFL200.

Colour Valver-uPL508. PL509. PL519, PY500/A. Alf tested. 55p ateh.

Aerind Splittere-2 way, 75 OHMS. Inside Type. 42.50.

AERIAL BOOSTERS

Atrial boosteri can produce remarkible. improvemente on the pieturb and Eound, in fringe or difficult areas.
BII-For TH scered and scandard VHF/FM radio. BIZ-For the older VHF television-llate state channel ntmbers.
0.45-for Mono or cotour thes covers the complate UHF Television band.
All boosters are complete with bartery with Co-ix plugs and sockets. Next to the ser fitcing.

MULLARD CAPACITORS
Type C.2a0/I Vatues from . OluF to 1.5uF, 250vin \& $400 \mathrm{v} / \mathrm{w}$.
Price per mixed Bargain Pack to clear $100 / \mathrm{El} \cdot 00$ a $500 / \mathrm{C4} .50$

All pricen include VAT. PAP 30p per order Exporte wielcome at cost.

ELECTRONIC MAILORDER LTD.
62 BRIDGE STREET, RAMSBOITOM, BURY, LANCS.
TEL: RAMS (079 682) 3036

H.A.c. shoritivene WORLD-WIDE RECEPTION

'H.A.C.' well known by amateur sonstructors for its Shorl Wave receivers, now offers a corapiete range of kis and accessorice to suit
the novice and the exper,
essy to construct $D X$ rectiver easy io construct
conioining all genuipe short wave companents, dzilled chassis, valve, accessorics and full
ins!ructions. selective, sensitive and with fantastic reception. yef needing only a single PP3 batiery, as 212.50 this receiver is outstanding valere, and will give you hours of interest and entertaimment.
Larily the K and K plus (illustrated wbove) for the more advanced constructor. This receiver has recently been re-destgred for even better reception. All ordess despatehed within 7 days. Send stamped and adjressed envelope now for free descridtive catalogue of kits and
accessories. \$ORRY, NO CAThLOGUES WITHOUT S.AE.
"H.A.C" SHORT-WAVE PRODUCTS
F.O. Dox No. 16, 10 Windmill Lene Lewan Road, Eant Grinntead, Wert

INTRODUCING 2 ESTABLISHED NAMES to PW Readers!

* Ordert nermaily despatched within 4 hours of recelpt.
* Full rafund ofternd on any tiem not In atock.
\star All putces include V,A,T.
Thla dervite la dificutt to mateh - JoIn the meny who now take ft for granted.
The atme of tha Amateur Asdio Bulk Buying Group are aimple: To halp the conctruction aide of the hobby by sndeavourlng to bring"some ol the mere "dteftcult-to-get" componenst to yout and to act as agents for somes of the eading manufacturers in this country and abroad, All our repuiar temara brand nim tram manutaciurers current atocks earrying full warranty. Semi
 compangnte tor car pasio use,

7400 SERIIES TIIL

Alf now, full spec., full Guaranigec

7400	145	721	3 H	7483	$7{ }^{\text {p }}$	3444	121	7477	
7402	140	7427	290	7405	¢: ${ }^{12}$	74450	${ }^{21} 97$	74180	$0{ }^{0}$
7403	14 p	7428	3 p	7486	33 p	74153	9p	74138	4.40
7404	13p	7430	$11 p$	7480	30p	74157	72p	74102	51.3
7805	40 p	7482	2 p	7492	52 p	74581	9\%	31193	E1 ${ }^{36}$
7408	4 p	7460	Sp	7403	39p	74564	E1) 12	74195	E1. 03
7410	18 p	7482	73 p	3466	\%p	${ }^{76465}$	${ }_{41} 12$	7198	${ }^{\text {E1 }} 100$
741	22p	7447	75p	74107	35	74168	C1 ${ }^{\text {to }}$	${ }^{76271}$	81.75
${ }_{7612}$	24 D	${ }^{7473}$	33 p	74181	${ }^{24}$	${ }^{761770}$	E2.43	74400	535
${ }^{7} 444$	$7{ }^{\text {7 }}$	${ }^{3476}$	${ }^{29}$	7412	$7{ }^{5}$	74774	4	${ }^{74104}$	45
7480	17p	7475	46p	74125	51.9	74775	${ }^{4} \mathrm{p}$	744410	300

100 DISCOUNT on TTL ordeyt over E20.

40W 2 m POWER AWPLIFIER

Kht for boonting output powef of 2 m iranamitters including 'Avow'
This Is a simple-to-butild, gaglify-aligned Cliast C PA sultable for CW and FM amplifeoflon at 2 metras from 8 nominal 13 - BV (-ye sarth) supply (7amps at full powar). T/R 'switchling' is performed by dides and $\frac{7}{2}$ wave lines. A pow or input of 10 watts ia required for the nominel 40 watte output power. Et: $30+15 \mathrm{p}$ Pas.

SOLD STATE RT.T.Y.

We cnn Bupply Printed Circist goards and components for the 害TTY Video Dispify putifehed by A3PLx in "Radlo Comsmunication'.

This video diaplay unlt is denigned to be an alf-algetronic replacemant for a Telsprinfer, and therafore does not aufler lita digativantagas-buth, unrolinillty and noise.
The besic function is to tahe Murray Code-ather trom E Terminal Unit ton receivet of from n Keyboafo-and produce n complete T,V, glonas, Thie aignal may be fad inio a monitor or modulatgd and fed into the bertal ol an ordinary domestic T.V. aet. The reasulting dieplay is a page of 24 lines of up to 46 characterg.
It mey also be uaed (with tes keyboard) to send lutiy encoded Murray Code signale tor tranamil ourpases.

Catronics

 or 45p + laggh (AN) filp S.A.E. for copy of our Dita-tatilogut.

DIGITAL PANEL METERS

Qur large range of electronic modulas lnclude power supplien, panel melert, 4-digit counters, 6-dioht counters, digitel alafm clacka bind many othar trpes Pholograph ahowe our naw 3 dudaglt Liquid Crystal ophs which testures Auto-zero, Auso-polarity and o 05% Accuracy. Is will run off ainpla rall supply between $7-12$ volis with a con-
Iumption of $\$ \mathrm{~mA}$. FSD of 200 my or 2 V , Ideal for construetion of portabla multi-
 In Kit Form Please deduct 10% from prices.

$B \%$
$V A T \&$
$\sum_{\text {PAP }}$
 $0.5^{*} \mathrm{~L}$. C'stal DPM 2V FSD 25.78 2.57 $0.43^{\prime \prime}$ Red LED OPM 200mV FSD $25702.5 t$
 $0 \cdot 3^{*}$ Red LED DPM 200 mV FSO it. © 1.9803^{2} Red LED 4 dig UpfDown C. $23202-32$ $0 \cdot 3^{*}$ Red LED DPM 2 wolte FSD 16. Th 1 igl Sultable Mounting Bazel tor above 234023 A larye number of other matulee are alo syalisble. Please deduct 10% for Modules in Kil Form.

STOP PRESS - BRAND NEW MODULE 8-Digit Universal Counter-Timer

Thls versatile new modute will perform all the małor counting and timing functions. The module can measure, Irequency from $0-10 \mathrm{MHz}$, period from 0.5 micro-seconds to 10 seconds, frequency ratio between two Inouts, time intervats in increments of 0.1 micio-seconds, and can afao function as a normal 8 -digit totatiser Mode Selection is by a single external switch.
Four different ranges can be selected which determines the time or the number of cycles that the disptayed data fa accumalated over.
Fitted with $0.4^{\prime \prime}$ high afficiency Orange LEDs, the modules operate fram +5 V d.c. Controfs include Store, Hold and Reset. The modtsle is fitted with a 30 MHz Quartz Crystal to give a higily accurate timebase, with a temperature stability of $\pm 10 \mathrm{ppm}$ over the temp. range -20 C to $+70^{\circ} \mathrm{C}$.
This product is half the price of existing counters with a similas apecifcation.

	E	$8 \% \text { PAPT }$
103Hz Counter Modula	14.25	8.49
Sultable Mountind Berel	$3{ }^{18}$	0.39
150mHz Preacaier	1535	$1 \cdot 19$

LASCAR ELECTRONICS, PO BOX 12, SECOND AVENUE, BILLERICAY, ESSEX - - - TEL: BILLERICAY (02774) 3394

Half Price Offers S, T, U-DeCnology KITS

Push component into DeC, when circuit is working transfer to exact matching 8loh-Board.
DeCnology-Kits contain either a "S," "T" or U DeC " B " breadboard,control panel, 9 matching Blob-Boards, 20 Jumper Leads, 20 preferred value RESISTORS, a project book with step by step instructions and circuit diagrams of exciting projects to build, all in box with pull out component tray.
SnDeCnology-KIT normally $£ 13.00$
ONLY £6.50
T-DeCnology-KIT normally E 17.90 ONLY $£ 8.95$
U-DeCnology-KIT normally E23.00 ONLY £11.50 with new 20 project book all prlees Include Post and VAT, send s.a.e. for full catalogue

DeC-IT and Blob-IT
P.E. Electronics (Scotland) Ltd.,

9 Radwinter Road,
Saffron Walden, Essex CB1\% $3 \% \cup$

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL

RRG-7

The finest general-coverage synthesised communications receiver on the market

$£ 200.00$ in...var

$+£ 2 \mathrm{p} . \boldsymbol{2} \mathrm{p}$.
Also available from us with special 2 m converter, all for just an extra $\mathbf{£ 1 5 . 0 0}$
\star

\star		
AMATEU 2 Northfield	RADIO Road, Ealing, Tel: 01-579 53I	CHANGE don, W.I3.
$\begin{gathered} \text { Easy terme up to } \\ 3 \text { yeart } \end{gathered}$	Credit Card Sales by Telephone	$\begin{aligned} & \text { Closed all day } \\ & \text { Wednesday } \end{aligned}$

THIS is the Catalogue you need to solve your component buying problems!

- The finest components catalogue yel published.
- 128 A-4-size pages.
- About 2,500 itema clearly Ilsted and / indexed.
- Profusely illustrated.
- Bargah List sent free.
- At $£ 1 \cdot 00$, incl. p. \& ρ, the catalopue is a bargein.
Send the coupon below now. HOME RAblo (Campononts) LTD. Oept. FW, 24-246 Landon

POST THIS COUPON P0.tor 11.00 1 Please wifte your Name and Addrest in bloch caplats甪 AODRESA
 HOME RADIO (Components) LTD., Depk. P.W. 234-240 London Road, Mitcham, Surray (ineon No I CR4 3HD.

L00K! Here's how you master electronics.

....the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Buildan oscilloscope.
As the first stage of your training. you actually build your own Cathode ray oscilloscopel This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you dacide to develop vour knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2
 Read,drawand understand circuitdiagrams.

In a short time you will be able to read and draw circuit dagrams, understand the very fundamentals of television. radio, computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide varizty of different circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio, t.vetc.

All students emoling in our courses receive a free circuit board originating from a computer and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the coupon for a free colour brochure and full details of enrolment.
British National Radio \& Electronic School
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

Morsholl＇s Trade and export enguiries welcome

Dept：PW Head Offlce mail order：KIngsgate House，Kingsgate Place，NW6 4TA．Tel．0i－624 0805.
Rotail Sales Eondoft： 40 Cricklewood Bdwy，NW2 3ET．Tel．01－452 0161／2．Telex．21492．London：325 Edgware Rd，W2．Tel．01－723 4242．Glaspow： 85 West Regent St，G2 2QD．Te1，041－332 4133．Bristol： 1 Straits Pde，Fishponds Rd，BSi6 $2 L X$ ．Tel．0272 654201．

2N8\％		2 N 341 J	${ }^{\circ} 2$	2＊	0	2N524	d 4	AFt00	\％ 4	－criba	－ 15	00		CA	＋					行	－
2N030	6	2N3439	－${ }^{\text {¢ }}$	2 N	－ 27	N5248	04	A	4－2	B	2			CA3064	t－10	N	5	$\text { CMI } 303 \mathrm{~N}$	5	18	
2N1139	－ 32	2N34 ${ }^{1}$	－ 12	2N412\％	0－7	2N5203	0．4t	AF114	4.74	日Cra3LA	－ 15	CA3000 1	1	CA3065	14	LM3588N	－ 5	LMS304N	． 52	2	1－30
2N：303	\％	2N34／2	1．45	2N4123	011	2N5204	0.44	AF215	$4 \cdot 7$	Ac	－12	CA3901	－13	CA 3969		LM360N	5－tit		52	25	
2Nf：303	－ 0	2N3563	－ 25	2N4 ${ }^{2} 4$	－	2N5401	－ 14	AFt18	－ 7	BCis4l	1.95	CA3002 3	3． 30	CA3070	1－4	LM370N	30	LM 1307 N	1．27	LMT8L55cz	34
2 N 1501	0.35	2 N 3586	－ 25	2N4 125	－ 14	2 S 5416	${ }^{1} 65$	AF124	0.7	BC203	－17	CA3soos 2	2． 50	CA3071	1 ＊	LM371\％	2.35	LMI310N	2．90		
2N0614	0.3	2 N 35097	－ 2	2N4126	－ 11	2N5447	－18	AFr39	0.75	BC212A	15	CA3006	4.40	CASOTR	1．90	LM350K	4.45	LM135iN	1． 30	4 Cz	SN78110NT－34
2N153？	$0 \cdot 72$	2N3638	－17	2N4235	1－3	2N5448	$0 \cdot 11$	AF200	1.20	BC212LA	－1	CA3007 4	4.15	CA3075	170	LA3373N	15	LidT4SSN			SN76115N1 S
2N1800	－ 301	2N3038	－ 3	2N4238	15	2N549	－20	AF301	1.30	日C2138	－ 95	CA3008 2	2－35	CA3078	2－12	Lem374N	35	LM1405N	$1{ }^{\text {\％}}$		SN76116N4－4
$2 \mathrm{N1893}$	－ 36	$2 N 386$	－ 40	2N4237	1．65	2N5457	－ 55	AF゙39	9.70	BC2I3LA	017	CA3012	1.5	CA3080	1.95	L－377\％	10	LMts00N	1． 34	MC1327P 1．71	SN76131N1．${ }^{\text {a }}$
2N1901	110	2N3662	$0 \cdot 25$	2N4240	170	2N5458	073	AF240	1．8	8 BC	－ 47	CA3013 1	1.5	CA309\％A	2－18	LM378N	2.40	LM1812N		1	SN76Z28NI 5
2N2103	－ 30	$2 N 3863$	03	2N42\％0	A． 21	2N5S5S	$0 \cdot 63$	AF279	－ 13	BC2141．	－11	CA3014 2	2.29	CA3088	－ 56	LM379S	4．23			MC1352P 1－2	SN76227N1 30
2N2192	－縑	2N3702	0.14	2Na268	42	2Nstor	$0 \cdot 55$	AFz80	0．ts	8 C 2378	－ 15	CA3018	－75	CA3088F	1.17	LM390N6	－ 8	LM1820		MC1433G ${ }^{\text {S }} 5$	N76228N1－53
2 N 2217	－ 38	2 N 3703	014	2N4264	－ 30	2NB122	－-4	$A S Y 88$	1.36	EC23s8	＊ 13	CA3018A 1	$1 \cdot 10$	CA3069E		LM360N14	14	LM1g3aN	－ 0	MC1435G 2．${ }^{\text {d }}$	SN76531N4．32
2N221	－ 3	2N3704	0.14	2N4288	－ 32	2N0123	－ 45	ASYSE	－ 70	BC239C	＊ 17	CA3020	$2 \cdot 20$	CAY090	4.40	LM381				MC1439G175	SN70532N1－53
2N2219	－ 21	2N370］	0.4	2N4287	－${ }^{2}$	2N6124	0.45	BC107	d．18	BC259A	－ 27	CA3020A 2	250	CA3130	\＄－64	LM391N	1．M	LM1849		MC1440G 1.15	SN76533N1
2 N 2281	＋35．	2N3708	0.1	2N428	－ 22	2N（125	P－47	${ }^{\text {日Clios }}$	3.18	BC257A $5 C 258 日$	－18	CA3021 ${ }_{\text {CA302 }}$	2．40	CA3140		LM382N	1．${ }^{2}$			MC1456G 215	SN76544N1 ${ }^{\text {S }}$
${ }^{2} \mathrm{~N} 2723$	－ 24	2N3707	0.1	2	－ 27	2N6288	$0 \cdot 50$	$\mathrm{BC1}_{8 \mathrm{Cl}}$	0.18	EC238日 BC 2598	－ 1.24	$\mathrm{CA3022}^{2}$	2．20	ST1		LM38N	1.55	LNigStin		MC14638 3.4	118
2N2270	4 ＋ 4	$\begin{aligned} & \text { 2N3700 } \\ & 2 \mathrm{~N} 3700 \end{aligned}$	－12	2	a．J	25102 $2 S 703$	3．30 3.95	$8 C 118$ BC114	－22	BC259日	＋19	${ }_{\text {CA3 }}$	2.10	LM		L	． 13	LM1989N		C14	
2 N 23 CB	${ }^{17} 8$	2 N 3709 2×3740	－ 12	2N4303	$0 \cdot 13$	25703		BCiv	－ 6	BC202日	4	CA3029a	－${ }^{\text {a }}$	LM3	－ 30	LM3a7N	4．14	LMZ907N		MC1469R $3 \cdot 19$	
2N2493	4.20	2Na711	0.12	2N 3 ＋342		40311	－ 55	BC118	21	3C263B	－ 26	CA3023B	$1 \cdot 25$	LM309	$2 \cdot 0$	M388N	1－${ }^{\text {d }}$		1． 10		
2102013	－ 0	243712	t－31			40316	－ 45	BC1t8	－ 22	8C264B	－$\cdot 4$	CA302\％	15	LM307＊	－ 50.		1－64				57
2N2SA	－10	N3				40383	1．45	${ }_{\text {gCl }}$	－ 22	8csiot	－11	CA3029	${ }^{1}$	LM308H	1－21	L					SNTA5T0N4－＊＊
2N23048	114	2N3716	\＄－70			40339	－ 76	${ }^{\text {日c }} 136$	－ 21	日C308E	－11	CA3030	1．90	LM309N	43	LMS6SCN	1 12				AN
$2 \mathrm{~N}^{2} \mathrm{CO}_{4}$	－31	2N3704	$0 \cdot 21$			404019	－${ }^{\text {年？}}$	${ }^{8 C 137}$	122	BC309C	－1 1	CA3030A 2	2－20	LN309KC		LM7018	2 \％	LM3302N	5	MME315 4－60	
2N290	＋31	2N3319	－		$0{ }^{1} 1$	40440	4.76	BC139	0.45	8C327	－22	CA3033 ${ }^{3}$	3.70	LM317K	3.35	LH701		L		MM5332＜ 20	SNTR650Nt 2－
2 N 2006	48	$2 \mathrm{NJS2O}$	－ 31	${ }_{2 N 4898}$	－ 55	40512	171	BC140	－ 30	8 C 328	1．38	CA3034	2．73	LM318＊	\％ 215					NE5SS－ 31	SN76800N0 \％
2 N 2 CO 7	－ 25	2N3221		$2{ }^{2}$	4.43	40594	0.77	8cid	－ 32	8c33］	－ 24	CASO3\％ 1	1． 3	LM330		LMP93L	5	LM3909N	7	NE5SA ©	SN7Besiono tit
210293	0.17	2N3827	0．27	2N4002	2． 2	40585	9 9	${ }^{8 C 147}$	－ 32	$8 \mathrm{Cal4}$	d．17	CA3038	＋ 21	LA320T12	2．11	700		LM3gosk	1	NESSO 4.50	$\begin{array}{ll}\text { SLb10C } & 2.75 \\ \text { Sib11C } & \end{array}$
2 N 2924	0.17	2N3185A	0．30	${ }^{2 N 4003}$	$\frac{2}{2.73}$	40873		${ }_{8} \mathrm{BC147}$	$0 \cdot 13$	9cals	4.14		2．90	L¢1320T15						NESET i－fo	SLE11C 2.75
2N292	$0 \cdot 10$	2 N 3855	D－${ }^{\text {ct }}$	2N4909	1.15	${ }^{\text {AC1 }} 128$	${ }^{4} 4$	${ }^{6} \mathrm{C} 148$	013	$8 \mathrm{BC418}$	＊ 19	CAFO3aA	170	Leh320T24	2．13	LM700－14	－ 4				SL612C ${ }^{\text {Stanc }}$
2 N 3011	－गT	2N3856A	0.16	4P0		AC127	－ 4	BC140	－ 15	BCs47A	13	CA3030	． 73	L		M 710	87		${ }^{4}$	NF565 i 30	St820 3
2 N 3720	0.75	2 N 3858 A	－ 30			${ }^{\text {ACl }} 18$	$0 \cdot 48$	${ }^{86} 153$	0.30	BC547	－13	CA3040 3	$3 \cdot 73$			LM710－14				NE586 1－71	
2N3053	－ 23	2N3859A	0.22		${ }_{0}$	AC151	0.43	8C154	$0 \cdot 3$	BC548	$3 \cdot 13$	CA3M1 1	． 15	LM320MP		LMPITCN	${ }^{72}$			NESE7 1．to	SLi23C
2 N 3054	－ 72	2N3880	－11	2N5088	031	AC182	0.54	8C157	0 is	$8 \mathrm{BC54}$	． 14	C． 33042	$1 \cdot 5$		1.85	LHT23C				358 N － －${ }^{\text {d }}$	SL8AMC 4．${ }^{\text {S }}$
2N3053	－7	2N3886	1－4．	2N5087	0.36	AC153	$0 \cdot 5$	$8 \mathrm{Cl158}$	$0 \cdot 15$	$8 \mathrm{BC5S}$	－13	CA3043 2	2.20	LM320MP							SL641C ${ }^{\text {SLPO1C }}$
2N3108	－ 75	2N3p01	－5	2N5488	0.30	${ }_{\text {AC153K }}$	$0 \cdot 59$	BC130	017	BC5so	113	CA3045 1	1．5n		$1 \cdot 15$		－ 45	L．M76L，15C		NES71N 4.05	SL701C $2{ }^{50}$
2 N 3133	－ 5	2N3904	－ 14	2N5059	0.50	$\mathrm{ACl}^{\text {A }}$	0.54	AC160	－ 5	8СY54	24	CASCAO	． 71	LM320xP		LM780	${ }^{6} 8$		15	SAS580	TAA263 1－35
2N3242	－ 5	2N3905	08	2N5128	0.12	${ }^{\text {AC17 }}$（ ${ }^{\text {c }}$	－ 98	日C167	0．t1	${ }^{8} \mathrm{CYE} 8$	－ 71	CA3047 2	278			LM761C				$\begin{array}{ll} \text { SAS570 } & 274 \\ \text { SAS580 } & 2.40 \end{array}$	300370
2N3250	\％ 15	$2 \mathrm{Na9Od}$	$0 \cdot 1$	2N5136	－ 22	AC1B7	－5）	BC16aB	613	BCY70	－ 21	CA3047A 3	1.70	LM323K	C． 5	LMP74TC－8				5AS5a0 2．40	
2 N	＊．7	2 N 9962	0.95	2N5131	$0 \cdot 22$	${ }^{\text {AC1B7K }}$	045	BC169B	0.13	${ }^{\text {BCY}} 71$	－ 2	CA3048	2.45	LM339N LM340T5		LMTt1C740				$\begin{aligned} & \text { SAS590 } 240 \\ & \text { SN76001. } 40 \end{aligned}$	1 1\％
2 n	＊ 7 It	2 N	0.55	2N5137	0.22	${ }_{\text {A Cibs }}$	054			BC． 72	$0_{0} 18$		1．65	LM340T5 LS 4340 T 12	－ 11	LMP74CN	50			SNT6003N2	TAASSOA
2 N 3394	－17	2N4033	． 55	${ }_{2 N 5 t 80}$	0.5	ACY17	${ }^{1} \mathbf{0}$	BC172C	－ 17	80121	8.24	CA3051	－ 1	L．4340T15	\％if	LMP789＋14	． 51		． 75	\＄N7600：6KE	TAA521 1.10
N339\％	6－11	2N4030	－ 12	2N5100	$0 \cdot 4{ }^{1}$	ACY22	0.55	9¢173C	097	Di31	0.53		176	LM34bTea	－1	LM718	1.01				522 2．10
		TA		E 15								4		EM34P5		1				SM76013N6．50	T
	10	－		Pro	C	AN														SNT6012ND	$2 \cdot 8$
	PR1C	E 45p	－	Pald	A	5pt＇		ERS				Prical									

J．BIRKETT

Radio Component Suppliers

25 The Strait，Lincoln LN2 1JF Tel： 20757

 SÜR－MINEATURE 10＋10pf DIFFERENTIAL AIRSPACED TRIMMERS 道 22p． COMPRESSIONTRINMERS TOpt，30p1，50ai，1000pI All al top each．

502 WATT ZENERS A ssorted Untesited for 570

VHFFETS J310 氏 26p，G．P．AHPLIFIER FETS E 201 绘 12p
G．P．P CHANNEL FETS wilh circuith． 10 for 75p．

UNWARKED GOOD 400mW ZENERS 3 bv, S． $\mathrm{By}, 10 \mathrm{v}, 11 \mathrm{y}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{y}, 24 \mathrm{y}, 30 \mathrm{y}$ ，

OUE－HINIATURE TAFTAEHM CAPACFTORS

2N JHE VHF POWER TRANEJSTORS Unimarhed GaOd 3 Ior 750 ．

 500 mA （as $\mathrm{E} 160(P)$

VERNITRON 10－T MHX CERAMIC FILTERS at $50 p$ esch
X BAND GUNN DIODEg with data Ge El ts．
\Rightarrow foXAs CRYSTALS Botween 5100 To 7800 KHz 3 for 50 p
so mí 107－i－9 TRANSISTORS ABsorted Untested \％ 570.
 TV CO－AXPLUGS S， $15 p .2$ PI SPEAKER SOCKETS \＆ 10 p 1A AgSORTEDPUSH DUTTON BANKS OF SWITCHES No knobe fot Es 30.

GTO FFACCTIOH SLOW MOTIOH DRIVE ISP ．

SOC A．12x TRANBJETORS Branded bul
Z0 PHOTO FRANSISTORS，DARLINGTONS Untested in Ef

NEW PRODUCTS NEW PRODUCTS

POWERAMP KIT

The hit Includes all melalwork，heatainks and hardysre io houae any two of our power amp modules pius a power supply．It is contemporapily styled and fi＇s quality is consiglent
with thet of our other products．Comprehensive instructions and tull back－up service enablos a novice to build if with conflente tin a few hours．

ADVANCED PRE－AMP CPR

 Is delayed for 10 seconds．No enotrols are ntted．

MOVING COIL PRE－AMP MC1

This stereo module usen multple input transiatora to achleve $65 \mathrm{da} \mathrm{a} / \mathrm{h}$ ．Senalltutiv is

POWER SUPPLY

The requiator modult，REG 1 provides $95.0-15$ to power the CPR 1 and MC 1．It esa bo used with any of our power amp supplies or dup smalt trangformar TR \mathbb{B} ．The powet amp

POWER AMPLIFIER MDDULES

CE 608 EOW／8 onms 35－0－35．
CE 100s $100 \mathrm{~W} / \mathrm{A}$ ohms $45-0-45$
CE $1706170 \mathrm{~W} / 4 \mathrm{O}^{4 \mathrm{hms}} 45-045 \mathrm{~s}$
TORDIDAL POWER SUPPLIES
CPS1 tar $2 \times$ CE 808 or $1 \times$ CE 1004
CPS 10 2 $2 \times$ CE 1004 or $2 / 4 \times$ CE 608
CPSB for $2 \times$ CE 100 or $1 \times$ CE 7704 ．
CPS4 for：\times CE 1088
CPSolar $2 \times$ CE 170 or $2 \times$ CE Tios
HEATSINKS
Llght duty， $50 \mathrm{~mm}, 2^{\circ} \mathrm{CrW} \cdot \mathrm{CO}$ ．
Diacoloroup， $150 \mathrm{~mm}, 1$ 1． 10 Cl
Fon mounted on two drilled 100 mm hestainke，
$2 \times .4^{\circ} \mathrm{C} / \mathrm{W} .85^{\circ} \mathrm{C}$ max．With two 170 W
THERMAL CHT－OUT， $70^{\circ} \mathrm{C}$
POWER AMP KIT
$C 15 \cdot 30$
$\epsilon 19.22$

These are available In fwo verstone－olls ubes atendard componenta，and the other
（the S）Uses MO resistops where racessary and tonialum capacitor

E22 98 ERIDGEDRIVER，BDI
abtain up io 340W using 2λ 17DW amps and this module．
BDi．．．．．．．．．．．．．．．．$£ 5-4 i$
E1 30

51
E2．
CIE

E29 16
$\mathbf{\Sigma 1 \cdot} \mathbf{1 0}$

CRIMSOH EIEKTRIK

A STAMFGRD STREET
Te1，（053：）537722

At prltes atown are UK onty and include VAT and pasi．COO BOp exire，efco IImit，Export s no problem，pleage write fot specifle quaie．Send farge SAE or 3 Indernstionsil Reply
Coupons for detelfed Intormation．

FOR YOUR GUIDANCE VALUE ADDED TAX

Unless otherwlse shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.
Export orders are not subject to the addltion of Value Added Tax.

SOUTHERN VALVE CO. Atwoy inirion hriotrke noad.

HAIL QRDIR ONLY, MINIMUM OADER. Hp

 Tingeram, eto,

\qquad

		4 p	P¢L200 414	PYE4	5\%	UYO
180	41PE20 42P	PCF\% 4, 41.5	PD506 4.4	PYOO	40	U25
1p\%	46pert	PCt\|or	PrLoo 1	PY		

We anterfolufn of beat itrvice. CWO ONLY, No C.O.D. MANY OTHens

AVAILABLE
 sTOP P界都

ELI9. ©te. EX תTOCK

Logically laid out to accept both $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch Oll packages as well as Capacitors, Resistors, LED's, Transistors and components with leads up to .85 mm dia.
500 individual connections in the central breadboarding area, spaced to accept all sizes of DIL package without running out of connection points.

4 Integral Power Bus Strips around all edges for minimum interconnection lengths.
Double-sided, nickel silver contacts for long life (10K insertfons) and low contact resistance $i<10 \mathrm{~m}$, ahms)

Easily removablo, non-slip rubber backing allows dameged contacts to be rapidly repleced.
What other breadboarding systam has as many individual contacts, offers all these features and only costs $£ 5.80$ inclusive of VAT and P.P. - NONE.

At $£ 5.80$ each The EuroBreadBoard is unique value for monay. At E१1 for 2 The Euro8readBoard is an indispensable design aid.

Snip out and Post

Receivers and Components

transistors, Resistors, Caps, Pots, Plugs and Sockets, Zeners, TTL, Cable, Boxes. All at very good prices, 65 Rallway Road, Leigh, Lancs. Telephone Leigh 679575.

	BPEGIAL OFFER Ex G.P.O. Micro Switcher S.P.D.T, 15p each. Podnay Gerdent, Eraintren, Ebeqz. Add 15p Postage and Packing.

BRAND NEW COMPONENTS EY RETURN

 Yertical Mounting Cerample Plate Cape. 50Y.
 Mullard Polyator, 230 V Vort, Mej E6 Sarlas.

 Minlature Plim Anniptor: Hirhitab. E12 5\% 0.250 wate 10 to 10 ma . (10% over im) 0.500 writ 10 a to 2M7 .
1.000 wate 10 to $10 M \Omega$.

1 1N4148-1p, IN4002-5p, IN400s- $\boldsymbol{j}_{\mathrm{p}}$, iN4007-8p

 Pos: 10p (frete ovar (4). Prices Vat inclusive.

THE C. R. SUPPLY CO.
127, Chesterileld Roand, Sheffield 58 ORN

SMALL ADS

The prepaid rate for classified advertisements is 22 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 7 \cdot 50$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., Londor, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Adverliammenta afe eecepted rublect to the conditions sppening on our currant advortinement rate card and on the erprens underitanding thet the Advartiser warrmite that the edvartite mont does not contrayena my Act of Parlamont nor if It an Imtelngement of the Erdilsh Code of Aduartaling Practica.
2. The publinhere reserve the flaht to rhfyct of writhdraw any adverifoment. S. Atthough every sare Ia faken, the Publinhers aball not ta liable tor ciericet quences.

LED's. Mixed bags of 4 different sizes and 4 different colours. 50 at $\$ 5.25,100$ at $£ 9 \cdot 25$ including VAT and post and packing. CWO. Michael Williams Electronics, 47 Vicarage Avenue, Cheade Hulme, Cheshire, SK8 7JP.

D.Y.M, THERMOMETER KIT	
	OVM the kit containg atodgit LCD componants and instructione to make e $0-200 \mathrm{mV}$ FSD DVM. Camponenti alao supplied to enable thls 10 be
TOUCH CONTROLLED LIGHTHG KITS	
	Difectly replace conventional lloht lighting. No maline rewiríng. Ineulated laueh plates. Easy to fallow ingtrueUona. TSO300K-Touchuwiteh with dimming lactilty. TS300K—ONJOFF Youchswitch $\mathbf{x} 4 \cdot$ od TSA 300 K - Touchswitch with preasi
OPTO COMPONENTS	NENTS
02^{*} dia. LEDa. Red 10p (a0plio) Grean 26p Yeflow 25p DL727 BuBi $0 \cdot 5^{\prime \prime} 7-7 \mathrm{Ev}$ ORP12 LDR 40 p	
24 HR. CLOCK/APPLIANCE TIMER KIT	
Switcties any appliance of un 10 kW an and ofl st preset limes once s day. K1T contalins: AY:5-1230 Cloch end tuil hatructions onLy $£ 13.75$ White box $56 \times 131 \times 71 \mathrm{~mm}$ with red Acralic window E2 20 Whita box as above ready drilled for hit	
POPULAR IMTEGRATED CIRCUIS	
QUANTITY dISCOUNTS ON REQUEST ADD B\% V.A.T. + 25P PLP. MAIL ORDER ONLY TO: T. K. ELECTRONICS th studley grange road, london wi 2lx	

MAINS TOUCH SWTTCH KIT. 400 watt load capacity, Details free, I. G, BOWMAN (Dept. PW), 59 Fowey Avenue, Torquay, S. Devon.

CRYSTALG as previousiy advertised plus: $\mathrm{HCa3} / \mathrm{U} \mathrm{I} \cdot 0,2 \cdot 0,3 \cdot 0,1 \cdot 008,1 \cdot 8432,2 \cdot 4576$, $2 \cdot 5625$, MHz $£ 3 \cdot 35,3 \cdot 579$ and $4 \cdot 433 \quad £ 1 \cdot 20$ each. HC18/U: $3.2768,4.096,4.8$, 4.9152 , $5 \cdot 12,6 \cdot 144,6 \cdot 4,6 \cdot 5536, ~ 6 \cdot 9375, \quad 18-432$, $38 \cdot 6667,116 \cdot 0, \mathrm{MHz} £ 3 \cdot 00$. Sub-miniature HF crystals, any freg. $10-180 \mathrm{MHz}$ made to order 6 weeks, $£ 3 \cdot 75$. All prices post patd, no VAT, AM/CW/SSB Communication Receiver and preselector modules and kits. S.A.E. detatls. P. R. GOLLEDGE ELEC. TRONICS, Merriott, Somerset TA16 SNS. Tel: 046073718.

VALVES

Radio - T. $V_{\text {L }}$ - Industrial - Transmitting
Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of past, Air or Sea mail, 4000 Types in stock, 1930 to 1976. Obsolete types a spexiality List 30p. Quaration S.A.E. Open co callers Monday to Saturday 9.30 to 5.00 closed Wednesday 1.00 We wish to purcbase all typer of new and boxed Valves, Projector Lamps and Semiconductort.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, Exit Wittering. Susrex POIO EBN
West Wittering 2023 (STO Code 024366)

EVERYONE'S A WINNER WITH CODESPEED

Full Styec. Deyletu
PACK P1 \uparrow a MMsi30 Digital Valtmeter I.C. Win full instructions on how to build a verpalióo dightal multimeler or onnel meter. 53.95
PACK ${ }^{\text {P1 }} 12$ Cetculator Keyboards 61 . 00 PACK N2 1×2102, s tosi bit atalle RAM. Tho most and amaleur electronics. Wilh full data. $51 \cdot 25$ PACKM31 x MMS 72254 f function Calkulator ChIp (not
dosigned for use wilh Pack M). With dsta book. E1:00 dosigned for ust wilh Pack M(). Whth dsta book. $E 1.00$
 Crystal calcula10: slyte diaplay. Whit binta. 8423

 plays, With full instructlons $\mathbf{E 2 \%}$
 31 sigit with ampor Indicator. An exceilent tiagalay for your digtige clock project at only $\mathrm{Et} \cdot 95$ PACK DM1 $5 \times{ }^{14}$ pin dual In line chlpz each to
talning 23 matrixad olonal dolodes. With dala. 50 p talning 23 matrixed elonal diodes. With dass. 50p PACK D1 68% GuEranteed Good) $15 \times$ OTL logle
 ${ }_{6} 1.00$ PACK D2 $25 \times 5 N 7400$ type $1 . C$ C's 100 two I/D nand gates. We puarantee at lasst 50 pood, A giverway at PACK E1 te\% Guaranteed Gaody \% × MAN3 7 2ed

 repistement or refund.
MAIL ORDER ONLY-NO CALLERS PLEAGE Postaga and Pecking please add 25p
CODESPEED, P.O. Eox 29, 34 Sanfild Rond,
Copnor, Portsmouth, Hent* PO3 5B. 1

[^4]TRREO ELECTRONICS the mail order divition of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS SLG 1HL

Radio Receivers

MW/VHF-AR POCKET SET
 WWIVFAIR (88 -108 MHz)

59.95

MW/VRF-AR EXTRA SENSITIVE, OELUXE $E 11 \cdot 45$
MWIVHF (88.108 MHz) AlR-PSB ($10 \mathrm{O}-174 \mathrm{mHz}$ (11.45
MAINS/BATTERY SETS
MWIVHF (88.108 MHz) AIR-PSB ($108-174 \mathrm{MHz}$)
MW/LW/VHF (89-10B MHz) SW (4-12 MHz) 613.95

> OTHER PRODUCTS

HEADPHONES TO SHic Any Ratro
HEADPHONES With Buill--in M,W. Radio Fulty MW/LW Sats for Spares
Matai Datector (Telorcopic Arm Type) 110.95
All prites inclufe P! P. VAT, Batceries, Guarantea
\& Accessoriss. Full Refund if not completely
taciaflald.
NOALE ELECTRONICS
24 Lloyd Strast, Altrinchem, Chashira WA142DE.

Tal. $061-9414510$

Courses

COURSEA-RADIO AMATEURS EXAMINATION, City and Guilds. Pass this important examination and obtain your GB licence, with an RRC Home Study Course. For detalls of this, and other courses (GCE, professional examinations, etc.) write or phone; THE TAPID RESULTS COLLEGE, Dept JXI, Tuition House, Londan SW29 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 (24hr Recordacall).

Educational

Go TO BEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood EY7 8JZ.

RADIO AMATEUR'S EXAHINATION A courep leading to thite exuminution wilt bo hald al: PadDinaton colleor, 25 , Paddington Grwen W2 TNE.
Twe evoringe each weok far s lerme.
ENROLMENT 11, 32. ร3 SEPTEMBER

TELEVISION TRAINING

15 MONTHS full-time course for beglnлers to include afl the undermentioned ablacte. Short courses, combining ons or more subjects, for appllants with previous elecironleca knowledge.

- 13 WEEKS ELECTRONICS AND RADIO
- 13 WEEKS MONOCHROME TELEVISION
- Is WEEKS COLOUR TELEVISION
- 13 WEEKS CLOSED CIRCUIT TV \& VCR
The training incorporites a high percentage of practteal work.
Next session starts on September 111h. Protppectus from:

LONDON ELECTRONICS COLLEGE

Dept. B10, 20 Penywern Road, London sws 98U. Tel. 01-373 B721

Service Sheets

reg. office rear 14 quens parade, north ealing w.s.
 SERYIEE SHEETS - COLOUR TV SERYREE MAMUALS

Service Sheers for Mano TV, Radion, Record Playera and Tapa Recordars 75p. Pianse send large Semped Addrested Envalope. We can supply manuala for mont makat of Colour Tolevixion Recaivars by revurn of pate B.R.C. PYE ECKO PHILIPS ITTIKE SONY G.ENC. HITACHI DAIRD ULTRA INYICTA FEAGUSON Let us quote you. Plesse sond a Sckmpod Addressed Envelopo for in mo mo
Ee sond stampod Adderesed Envelopo for
G. T. TECHNICAL INFORMATION SERVICE

10 Dryden Chambers, 119 Oxford St., London WIR IPA
sEtVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding gulde, from 50p and SAE. Catalogue 25 p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

> LARGE SUPPLIER OF
> SERVICE BHEETS
> All modela at Tip. TV. Raclo. Tapa Recorders, Reeord Playars, Yremsiniors, Stareggrams, Radlogramb, Alt

> C. CARANNA
> ग1, Beaufort Park, London NWis aEX. H-45 4st:

BELE'G TELEVISION AERVICES for Service Sheets on Radlo, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King s Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS, Radio, TV etc, 10,000 models. Catalogue 24 p , plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PR1 7HP.

Aerials

G2DYM ANTI-TVI TRAP DIPOLES

Modefn: S.W.L., E29-BI: 500 wate or S.W.L. C41-04: inc. insulasors, 75 A . feeder, VAT ind P \& P. Aeriat matching unics S.W.L. and 500 wate $10-160$ matres ine. shipping and B.C. Bands, E16.25: Ine. VAT and P \& P. Send $10^{\prime \prime} \times 7^{\prime \prime} 12 \nmid P$ S.A.E, and $3 \times 9_{p}$ gramps for full details, neriat artiele, test reports and testimonials.

G2DYM, LAMBDA, WHITEEALL, WELLINGTON, SOMERSET

Electrical

STYLI-illustrated equivalents (Lfot 28) also cartridges, leads, etc. Superb quality and service at lowest prices. Fully guaranteed. Free for SAE from Felstead Electronics (PW), Longley Lane, Gatiey, Cheadle, Cheshire SKB 4EE.

Services

COPY TYPING undertaken, S.A.E. for detalls. R, G. Hills, 20 Ditchling Rise, Yreston Park, Brighton, Sussex BNI 40L.

Situations Vacant

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with appropriate expertence of using and maintaining radlo and electronic test gear.
DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of rado and radar telecommunications equlpment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunicatlons Part 1 (Intermediate) Certificate or equivalent $H M$ Forces quallfication.
SALARY (inc. supps.) from $£ 2,927$ at 19 to $£ 3,700$ at 25 (highest pay on entry) rising to $£ 4,252$ with opportunity for advancement to higher grades up to $£ 4,706$ with a few posts carrying stil! hlgher salaries.
Opportunities for service overseas.
Further particulars and application forms avallable from:

GCHQ

Recruitment Offleer, (Ref PW/10),
GCHQ, Dakley,
Priors Road, Cheltenham, GL525AJ.
Cheltenham (0242) 21491 Ext 2270

BBC MONITORING SERVICE OPERATIONAL ASSISTANT WORLD SCHEDULES MONITOR

(£3,525-£4,350 p.a. plus Shift Allowance)

Duties include checking of voice transmissions, compiling schedules, writing listening observations and ensurlng that language monitors obtain the best possible reception of foreign broadcasts. Shift work, including nights, and periodic overseas duty involved.
Applicants must have a keen lnterest in broadicasting developments outside the U.K. and be able to operate communications receivers and other monitoring equipment. Ability to identify the main languages is essentlal and knowledge of at least one foreign language an advantage. Interest in foreign affairs desirable. Shortlisted candffates will be required to take listening and written tests.
Based at Caversham near Reading, Berks.
Please telephone or write immediately, enclosing addressed envelope, for application form quoting reference 78.G.1479PW, to Appointments Department, BBC, London WiA IAA. Tel: 01-580 4468 Ext. 4619.

$\pm \pi / \square$

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $\mathbf{E A} \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarkshire.

THE END OF COMPUTER CONFUSION: what point have we reached-where are we going? Read Computer Lib/Dream Machine by Ted Nelson. From your Local Computer Store 85.95 or sead $£ 6.45$ to Computer Bookshop. Temple House (P), 43-48 New Street. Birmingham.

HOW TO START A BUSINESS. By popular demand a fully illustrated manual has now been produced, showing, in easy, step by step, stages, how to rewird ARMATURES \& FIELD COILS as used in Vacuum Cleaners, Drills and Portable Tools. Chapters on taking data, materials required, test instruments required, rewind instructions, charts, etc. How to cost ingtruction manual 44.00 plus $30 \mathrm{p} P$ \& P. CWO. COPPER SUPPLIES, 102 Parrswood Road, Withington, Manchester 20. Dept. PWA.

WOULD YOU LIKE to understand computtig? Send S.A.E. for leaflet of $£ 3 \cdot 45$ for our new book "A FAST INTRODUCTFON TO COMPUTING" post free. Dept. P.W. Industrial Training Press, Ringwood Way, Winchmore Hill N21 2RA.

For Sale

NEW BACK YSSUES of "PRACTICAL WIRELESS" available 65p each post free. Open P.O./Cheque returned if not in stockBell's Television Services, 190 Kirgs Road, Натrogate, N. Yarks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5000 odds and ends Mechanical/Electrical Cat free. WHISTON (Dept. PW), New Mills, Stockport.

ELECTRONIC KITS-S.A.E, for new cataElectRonic Kirs-S.A.E, for new cataAMTRON UK, 7 Hughenden Road, Hastings, Sussex.
"PRACTICAL WIRELESS" 1934-1978. Over 700 issues. 19341939 weekly. Then manthly. £210. WILSON, 54 Chepstow Villas, London w11.
"RUN YOUR OWN BUSINESS as an extra home activity. A genuine opportunity to success." Fuli details on receipt of SAE. Industrial Supplies, 102 Parrswood Road, Withington, Manchester 20. Dept PW.

Tapes

CASSETTE TAPES; C60 six for el-60. C90 four for $£ 1 \cdot 60$. Case and index included. VAT paid. Please add 10% postage. West, (A2) 56 Frankwell Drive, Coventry CV2 2FB.

C60 MORSE TAPES. Beginners to 27 wpm. £3.50. Radio College, Chorlton Road, Manchester.

Wanted

WANTED: Clean new semiconductors, I.C.'s etc. Good prices paid. Hewitts, 52 Barkby Road, Syston, Leicester.

Miscellaneous

MORSE CODE TUITION AIDS

Casselte A: $\hat{1}$. $\mathrm{w} . \mathrm{p} . \mathrm{m}$, for arnalpur fadio examinatian Cassette B; 12-24 w.p.m. for protesslonal exsminallon Gfeparation
tinit for sending praclice.
Prices each cespacice.
Key and Buxzer £4-5i (inctuding bnoklets) C4 50. Morse Prifes Include postag
extra.
MHEL ELECTROMICS (Dap PW) 12 Longthore Wry, Miltofi, Partamouth PoA ilis.

DART STATIONERY

Presents For the Amateur
OSL CARDS Personalliged to your awn choice, atso LOG GOOKS, Leoso leal binfer nlus 100 printed 108 sheets $£ 2 \cdot 50$, exlra patkets of 100 sheets E 150 . Cata loguter syailable cortalaing complete sange of redio stationery, pfice 45 p .

For the D'Xer

RECEPTION REPORT LETTERB. Proiessionsily blyled letters printed in two coloure and supplied in

EVEFY ORQER CARRIES A MONEY AACK ASSURANCE IF NOT COMPLETELY SATISFIED MAIL ORDERS ONLY PLEASE
Please send cheques or P.O. payable to:
DART STATIONERY
20 Bramley Read, LONDON E17 4PS

PRINTED CIRCUITS and HARDWARE

Readily syadiable nupplles of Conatructors' Mardware. Prinled elreut hoarda, top quality for individual dasigne. Prompt faryice. Send $75 p$ tor catalogue from:

RAMAR CONGTRUCTOR BERYICES
Mesonf Road, Strakfordonn-A von. Warwletike TH1: 4:79

ATTENTION SWLs \& DYers superiar aerial wire 20swg, copper plated, steel core, tough pvi insulation. 4 p per metre +2 p per metre carr. AMTEST. 55 Vauxhall Street, Worcester WR3 BPA.

ENAMELLED COPPER WIRE Incluslve of pAp and VAT. SAE bringe Calaloguig ol copper and realintance wifat In all coveringe. THE ECHENTIFIC WIRE COMPANY PO Bax 3g, Landan E4 3 BW R*0. Offics: 22 Conlsanby Grident,					

SUPERE INSTRUMENT CASES by Bazell manufactured from P.V.C. faced stee. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p, chassis punching facilities at ver's competitive prices. 400 models to choose from, frec literature (stamp would be apprecjated). BAZELLI. Dept Na 25, St, Wilfrld's. Foundry Lane, Halton, Lancaster LA2 6LT.

NO LONG WAVE?

NEW: 700 KHz to Med. Wave Converter, buist-sn artenna, inducrive (place near receiver)
 wbistles and cw with a Tunable Audio Natch Filter, spazer amplifier, only 69.90.
V.LEF $10-150 \mathrm{KHz}$ Receiver onjy $\mathrm{E} 10 \cdot 70$.

NEED THE TBME? MSF 60 kHz Receiver buslt-in antenaa, 613.70, or with parts \{no case or pcb) for sequential YEAR. MONTH, DATE, DAY, HOURS, MINUTES, SECONDS display, $24 \cdot 40$.
PROGRAMYOUR OWN tunes on a MUSICAL DOORBELL, new jingle every day, just meeds beil transformer and speaker, $\mathbf{6} 19 \cdot 50$.
Each easy-assembly kit includes all parts, prined circuit, case, postoge etc, instructions, money back assurance, so SEND off NOW.

CAMBRIDGE KITS
45(PK) Old School Lane, Milton, Cambridet
OUTSTANDING 2200 HI-FI FM TUNER. Latest silicon superhet design, Varicap Tuning, Full Coverage $88-102 \mathrm{MHZ}$. Ideal for Push button/Manual tuning. Supplied Built \& Tested with full instractions only £9.95 (P\&P 50p). GREGG ELECTHONICS, $8 \mathrm{~s}-88$ Parchmore Rd, Thornton Heath, Surtey.

ALFAC etch resist transfers and other p.c. board drawing materials available from stock. S.A.E. details. Ramar Construcfrom stock. S.A.E. details. Ramar Construc-
tor Services, Masons Rd, Siratford on Avon CV37 9NF.

100 WATT GUITAR/PA/MUSIC

 AMPLAFIERWth auperb Ireble, bave. Ouerdrlue, slimilne, 12 monthe Wurantee. Untastable ofter si E39. Also iwin channel with saparate irbblelonsa per channel cta. Maney rDfurted not obaldisly dailghted within 7 dsys. Alto $1 u z z$

All inctualy of P.P. Fend cheque or P.O. To:
WILLAAMSON AMPLIFICATION
82 THORNCLIFFE AVERUE, DUKJNFIELD.
CHESHIRE. TEL: 061-344 5007

Ladders

LADDERS, Varnished 20ft 9in extd., $829 \cdot 72$, carr, $£ 2 \cdot 70$. Leaflets. Also alloy ext. up to 62ft 6in. Ladder Centre (WLS2), Halesfield (1) Telford. Tel: 586644, Callers welcome.

PLEASE MENTION PRACTICAL WIRELESS
WHEN REPEYING TO
ADVERTISEMENTS

NEW FROM GASIO

Experience has convinced un that for quality, rellability and value for money, CASIO are unbeatable. CASIO have now increased their superb range.

All Casio wstchas have a calendar dliplay, might illumination, minerat plaze and atalnless itael cases, Water
resiatant to 100 teet (oxeept Sports Watches-60 feet)

3GR-20R Round. Stopwatch (23) 95) $\mathbf{5 2 5} \cdot \mathbf{5 5}$ S1QR-IsB Round. 6 digita. Selectabla 12 or 24 hour SAQg-1EB Square. Aa above (,44 85) E34 th

4scs-22B Chronagraph. Nel, lop and 1zt a 2nd phace

DRESS WATCHES. Square. Stopwatch. Dual time.
 sucs-18B Barrel ($569 \cdot 95$) $\mathbf{2 5 4} 55$

All theae watches ond full detalls should be avalinble in eprly September,

NEW LOW COST WATCHES

ALARM WATCH AND ALARM/ CHRONO
Her, Mins;
Saces
date) AM
dat
Ifate) AM,
Phat
Day.
perpoeluasi
Cs lendar
£29.95
Alarm! $1 / 100$
zecond
sloowatich.
Lap times.
£ $\mathbf{3 7} \cdot \mathbf{5 0}$

AQ- $\mathbf{1 0 0 0}$
CALCULATING
ALARM CLOCK PLUS
3-WAY STOPWATCH
Hours, minutas, seconds, am
 and 2nd place timeas from $\mathrm{I} / 10 \mathrm{ih}$ abcond to 10 hours, Calculator 4 hey mermory, \%, 1 year battorlas,
 £21-95

Iic DISCOUNT SPEAKERS
Impo ar 15 ค as app. Guarantana: ANE LIFETIMA OTHERS I Yotr ALL PRICES INC. VAT

HI-FI TYPES
Prices correct at 26.7 .78 ListiVasue
Sp. Price FANE 501 Mid or Full ranse
and $^{\prime \prime}$ A.F. Modet 60 Duat Cone * A.F. Model B3 Dual Cone FANE B"BOBT Dual Cone 10^{-1} DENTON $2 \times P$ KIT Pair A.F. FRI 日" SPK KiT ai FANE MODE ONE KIT Sp. Price Pair CABINETS (TEAK VENEERED)
$20^{\circ} \times 111^{\prime \prime} \times 9{ }^{\prime \prime}$ Suirable for Made 1 or FRI Kizt and Madels BO, 63 or B08T Spkrs.
GROUP/DISCO TYPES

EXTRA SPECIAL MAIL ORDER OFFER TITAN TA/50A 50w AMPLIFIER

High sensitivity Multi purpose
shree ind.
contralled ingurs Controls Bats. Trable presencs. Robust, well styled compact cabinet, Black Vynide
covered. Arcractive Brack/Silver Fascia. $\mathbf{3 9 9 . 9 5}$ covered. Actrackive Brack/Silver
12 months Guafancoe. Carr El
PAIR FANE POP 15 12* $\$$ PEAKERS
Suitable for use with above when wired $\mathbf{£ 9 . 9 5}$ in series and housed in seesed cabinet
SUITABLE TWIN SPEAKER CABINET

Also for perionat shopperi only
ANPS, T'TABLES, JINGLE MACHINES, DISCO CONSOLES, LIGHTIMG, CABINETS, CREDIT TERMS AYAILABLE ordart t 20 Phone ordert mecepted from Accena Barclay card holdert.
403 SAUCHIEHALL STREET
GLASGOW
Tel: 0413320700

- 24 Newete
 Shopping spente, or kits. Oharwise did $f 125$ ($32^{*} 5$ pkr). Ki.50 (15*) 62.50 (1才")

WATFORD ELEBTRONIES
33／35，CARDIFF ROAD，WATFORD，HERTS，ENGLAND
MAIL ORDER，CALLERS WELCOME．TUl．Wattord $40588 / 9$

VAT Exaor orsan no VAT．Appliceble io U．K．Cuttomorn only．Uniont

 POLYESTER RADIAL LEAD \｛Yaluay In $\mu \mathrm{If}$ ）25aV
 ELECTROLYTIC CAPACITORS：Axial lead type（Values are ln $\mu \mathrm{F}$ ）

 3\％p： $5000,49 p ; 25 V: 10,22,47,6 p ; 80,100$
$27 p: 1500,30 p ; 2200,41 \mathrm{p} ; 3300.58 p ; 4700$,

\qquad

MYLAR FILH CAPACITORS

$\begin{array}{llll}3.3,4,7,6.5,10,12,18, & 5 . O E C & 223 \mathrm{p} \\ 32.27,93,47,50,8,18, & \text { T－DEC } & 423 \mathrm{p} \\ 32.85,100.120,150, & \end{array}$

JACKSONS VARIABLE CAPS．
OHalacttle 140 P 102385 DF with low 100300 pF
BOOHF

 $0-1-363 p F$

CERAMICTRIMMER CAPACITORS

CAPACITORE
NINIATURE TYPE： 2． $\mathrm{H}-\mathrm{ADF} ; 3-10 \mathrm{pF} ;$
$\mathrm{S}-30 \mathrm{pF}: 10-40 \mathrm{pF}$ COMPRESAION
 AUDIELEF Waring
Buzzara BV or 12 $2 \mathrm{~F}^{\circ}$$\left\{\begin{array}{l}8033333 \\ 1 \mathrm{aMHz}\end{array}\right.$ TRANSFORMERS＂（MAInK Pdm．220－240V）

 $\begin{array}{llll}0-120.120 .5 A & 260 p+ & 0-80-6 V & \mathrm{VA} \\ 243 \mathrm{p}\end{array}$ $\begin{array}{lll}15-0.15 \vee & 0.5 A & 266 \rho+ \\ 24-0-24 V & 0.5 A & 266 D^{2}\end{array}$
$\begin{array}{lll}9-000 \mathrm{~V} & 1 \mathrm{~A} & 2750+ \\ 12-0-12 \mathrm{~V} & \mathrm{~A} & 275 \mathrm{p}+ \\ \text { Transformarisen }\end{array}$
 4． 41111 applingu
$50-24-20-15-12-9$

〔Plase add 48p pap charge to all grices
marked + ，above out normal potial cherpe．） DENCO COLES DENCO COIL8
Dual Puppio
VALVE TYPE
$\begin{array}{ll}\text { RALVE TYPE } & \text { ROT2 } \\ \text { RFC5 chokes } & \text { inp }\end{array}$
 ＇J＇Type（Trmen tun－iFT $18 / 1$－ 6 or 465 \＄5p
＋ns）
RRD，1－S E，Y，R，W，TOC1
MW SFR

POTEMTIOMETERS（AB or EGEN） Carbon Track， 0.25 W Log \＆ 0.5 W Linatar valuga SK』－2Ma aingle gang D／P awith $5 \mathrm{Ka} \mathrm{a}-2 \mathrm{Mal}$ dual ganp atereo \qquad			
SLIDEA POTENTIOMETEFS 0.25 W lape end II near values 00 mm treck 10xa－stoka Dual geng Sell－Slleth graduated Alum．Bozely 2tp			
$\begin{aligned} & \text { PRESET } \\ & 01 W \mathrm{SNOR} \\ & 025 W \\ & 0.25 W \end{aligned}$	$\begin{aligned} & \text { POT } \\ & 2 \cdot 251 \\ & 2-3 \cdot 3 N \end{aligned}$		
REASTORS－Erim make 5% cartoon Minialure HIgh Stahility，Low Nolot			
HEAT	5^{*}	TO5 $85^{\circ} \mathrm{C}$	－
OS	9\％	\＄1ficon Gramee	
T0S	52p	5 ml ．Tub	
T018	12p	20 ml ，Syringe	125p
TO220	22p		
	22p	Toss or TO220	

RANETETOR

A A A A A A A A からか

 N

 10p axira

SPECIAL OFFER OF BRAND NEW MULTJMETERS VALID UNTIL 31st OCTOBER ONLY

	U4313	U4315
	$\begin{aligned} & 20,000 \text { o.p.v. } \\ & 2,000 \text { o.p.v. } \\ & 80 a \mathrm{~A} \cdot 5 \cdot 5 \mathrm{~A} \\ & 0 \cdot 6 \mathrm{~mA}-1 \cdot 5 \mathrm{~A} \\ & 75 \mathrm{mV}-600 \mathrm{~V} \\ & 15 \mathrm{~V} .800 \mathrm{~V} \\ & 1 \mathrm{~K}-1 \mathrm{M} \\ & 0 \cdot 5 \mu \mathrm{~F} \\ & 1 \cdot 5 \% \text { D.C. } \\ & 2.5 \% \text { A.C. } \end{aligned}$	$\begin{aligned} & 20, C 00 \text { o.p.V. } \\ & 2,0000 . p . V . \\ & 50 \mu \mathrm{~A}-2 \cdot 5 \mathrm{~A} \\ & 0.5 \mathrm{~mA}-2 \cdot 5 \mathrm{~A} \\ & 75 \mathrm{mV}-100 \mathrm{~V} \\ & 1 V-1000 \mathrm{~V} \\ & 300 \mathrm{~L}-500 \mathrm{kQ} \\ & 0.5 \mu \mathrm{~F} \\ & 2 \cdot 5 \% \mathrm{D} . \mathrm{C} . \\ & 4 \% \mathrm{~A} . \mathrm{C} . \end{aligned}$
Price camptate with prated steal carrying case and test leads．	¢10．50	¢10．50

TYPE U4324

（2）
D．C．Current：
$0 \cdot 06-0 \cdot 8-60-600 \mathrm{~mA}-3 \mathrm{~A}$
$0.3 \cdot 3-30-300 \mathrm{~mA}-3 \mathrm{~A}$
$0 \cdot 6-1 \cdot 2-3-12-30-80-120-600$－ 1200 V
D．C．Voltage：

A．C．Voitago：
Resiatance：
Acturacy：
3－6－15－60－150－300－600－900V 500 0 －5－50－500k
D．C． $2 \cdot 5 \%$ ；A．C． 4%（ot F．S．D．］
PRICE complete with test leads and fibreboard storage case $\mathrm{K} 日 \cdot \mathbf{5 0}$

TYPE U4341
COMBINED MULTIMETER \＆TRANSISTOR TESTER
Sensityily；
Current：
Voltage：
Resistance： Transistors

16．700n／V D．C． $3.360 \Omega / \mathrm{V}$ A．C．
$0 \cdot 08-0 \cdot 6-6-80-600 \mathrm{~mA}$ D．C．， $0 \cdot 3-30-30-300 \mathrm{~mA}$ AC．
O－3－1 $\cdot 5-6-30-60-150-300-900 \mathrm{~V}$ D．C．
5－5－7－5－30－150－300－750V A．C．
2－20－200k $\Omega-2 \mathrm{MR}$
Collector cut－off current $60 \mu \mathrm{~A}$ max
D．C．current gain $10 \cdot 350$ in two ranges

PRICE，complete with steel carrying ease，test lead，battery and instruc－ tion manual £9．90

TYPE U4323

COMBINED WITH SPOT FREQUENCY OSCILLATOR

$20.000 \Omega / \mathrm{V}$
$2 \cdot 5-1000$ V AC．DC
Sensitivity：
$0.05-500 \mathrm{~mA}$ DC
$\begin{array}{ll}\text { Current：} & 0.05-500 \mathrm{~mA} \\ \text { Resistance：} & 5 \Omega \text { to } 1 \mathrm{MR}\end{array}$
5\％FSO．
Oscuracy：output： 1 kHz squarewave
485 kHz sinewave modulated by
1 kHz squarewave
PRICE，in carrying case，complete with teads $£ 8 \cdot 00$ PRICE，in carrying case，complete with leads $£ 8.00$
THIS OFFER IS VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE \＆1－50 FOR POSTAGE AND PACKING AND 8\％VAT．
ANYINSTRUMENT FOUND FAULTY OR OTHERWISE UNSATISFACTORY ON RECEIPT WILL BE REPLACED FREE OF CHARGE OR FULLY REFUNDED，PROVIDED IT IS RETURNED TO US WITHIN 7 DAYS AFTER RECEIPT．NO FURTHER FREE REPLACE－ MENT OR FREE REPAJR GUARANTEE IS OFFERED．ANY FAULT OR DAMAGE DISCOVERED LATER MAY BE REPAIRED BY US IF THE INSTRUMENT IS RETURNED WITH EXACT DESCRIPTION OF FAULT．A CHARGE WILL BE MADE FOR SUCH REPAIRS AND SERVICING．

BARGAIN PARCELS SAVE POUNDS

Fuge quantitlay of afactrontc campanante muat be cleared an sasee foquiras，1009＇s of

Hindy Packe

4 inluminlum beres $182 \times 44 \times 38 \mathrm{~mm}$ Ideal corsignol falaciors，Efe． 4180.
MInialufe Edgewtea Panol Motef：
100 A Pinterare，reed awtecher
 0 of pole 12 voli fald raitye on boarti EEA4，
High quality eomputer pangie amotherasin
top trade compongnte s lbe is 7 th， 10 ibe top prede componemte is lbe 04 75． 10 ibe

 I lh fartic ehforide， 1 Dilo tich reatot oont
 and Inatructiondionly if
150 Aa ．In．Dbe
0.10 pen .0 p ．
1 ib farrle chioride to mil apec．st es

 Whroused， 240 V ．In ofanmormoft，fully Ex new saulpmont．Complitt whith malni fond and ofivi on ingut and phort leadi on qutput 4e．
Bemltanduptor 耳pranine
 ole．42．is
 and bridga fyppry $5 \cdot 2$.
 Brand naw ITT 95 ky trlolery for Deace on Eermanlum diodes，Idalal for cryatal

 me plitery ofop pedh a for as， Now U．H．F，ifanalstar TV qunorl 4 queh． button 1ype is so

Herdwats Fechi gech eontaining 100 a of frmainciusing fy nula mand bolts，Nyion， alempe Fir oadtors pilat，Cabli glampri Fute hotdera，bitrs nuts ste． 40g F \＆P ON ALL ABOVE JTEMS．BEND CHEOUE OR POSTA ORDER WITH ORDER TO GENTHEL SUPPLY，DEFT PW 14QA BROOKMILL ROAD，DEPTFORD，SEO

Alumintum TV cana pluge 8 for es os Standard wlre end ad reons 12 for if op Hindature 3 K log poti with sif ewtech 4 for
DON＇T LET YOUR ENVIRONHINT DEHYORATE YOU OR YOUR POS． BEBION憲．Buy a Horeywell Rumidily
 range of canirol，adjuitable by i＂iplinde wilh hat．Conlact Fating 3－7BA G RuOVAC， 7．BA \cos RaVAC，latai for Greenhoutes． Culld your own Humidifior or Oehydraklon Alams．EI 6t flitar ak．
Naw Minlaturi FM Ftontende BS－189MHz io－7MHz．I，F．or wilh integral Tuningrant

TRA 18OA 保p anch
N 701TBN 24 eath
20 mm nntarpurge dusen your telectlon
Compenent Marpaine
00 madern migit atweth et
opo madorn mixad capi mont fypon en ot． 100 mixed polyopior cape ikazis．
100 mixed modgrn miniature and coramic plate ctps it $\%$ ．
f00 mixed wirowoundi $58 \cdot$ te．
 © 1.00, ， 00 tor cs．to．
28 mixid pRte \＆prusitu 4169.
100 Hiph wottage realitori，wirewound we． $2 \mathbf{1}-\mathrm{ta}$ ．
Madern Verical Prasets with itotted
 4 Facke 123 io．
 Pratarols of whtt Audlo IC MFC 2010 Motarols Whty Audq I．C MFC 5010 proof，compiato with elcculte and dota ititi ＊eh， B for A 4 ．
100K Storso sitdor Mots．Modern，silm typs．Hp ench，$\$$ for Ef．
poubla Gang A．M．Tuning Condaniera with Integrat 100 K pot For waplenp tuning on VhF af usad in madera Thoth musle EmLLRRE EY APPONTMENT ONLY

pIODE sco日pil1

We heve babl fortunate to abtain I Mrgo quanticy of untested，mperiy unmarked glans bilicon diodes．Testing ample batch ravaaled about 70% uanale daviculsignal diader，high voltage recti and zenaris may ill be included．Thate tre besing offered at the lecradidly tow price of in 23 gey of 10,000 es．Eox of 25.000 \＄17．50，3ax of 100,000682 ．

DIIC EMHAMIC PACK
Amaling variaty of veluna and votentat fram if fow of so $2 \cdot 2,45 / 3 \mathrm{~V}$ to $\mathbf{3 k y}$ 200 41， 800 －25，1000 44．00．

PC חTEHING KIT MK II Now centalni 200 cq ．int coppor cise boird，lliz．Papric Chlorida．DALO oreh zenlar pes，abrilve efancar，two mininturt drill blis，asehling dibh and Intervatome．44－25．
R@LAYE

W847 Lew proflo PC ment 10 $\times 33$ $x 20 \mathrm{~mm} 6 \mathrm{~V}$ soll，speo 3 A contact 3）
W032 Sub，min sype $10 \times 10 x$ 10 mm 12V coll DPCO ZA concert WTOI 6Y SPCO \A constgea 10×30 $\times 25 \mathrm{~mm}$ ．Only 96p．
W8t7 II pin plus in ralay，razed 24 Y ac，but Works wilf on ov DC．Con thers 3 pole to rated 10A，P5p．
W819 12V 120 R OPCO IA sentacts Slxe $29 \times 22 \times 16 \mathrm{~mm}$ ．Min pluteln typd 72
Vasp 50V Ec（ 24 V DC）coll，II pin plug in typh．$\$$ pole cfo 10 A contreth． Ofly ${ }^{23} \mathrm{p}$ ．
Was Opin canizruction matios ralay Itati loAjcio contesti， $41 \cdot 20$. Gend SAE for dup ralpy Hat－84 typal

EDGU CONNECTORE
Sprelal purchase of thent 0.1^{*} plech double－aldad coldeplered connestor：
 18 way $41 \mathrm{p}: 21$ why 47 p ； 32 way 72 pl 40 way pep．

POT BARGAIN5
tandard size potr－apindle is 12 mm lang．In the following valuet only lin ofor fl any mlx．

VEROCASES

Flatic sop and bottom allay pahel
fronc and biek
$\begin{array}{lll}1237 & 154 \times 85 \times 40 \\ 1238 & 154 \times 85 \times 60 & 47.59\end{array}$ $\begin{array}{lll}1238 & 154 \times 65 \times 60 & 4274 \\ 1239 & 154 \times 65 \times 80 & 43.32\end{array}$
$\begin{array}{lll}3007 & 180 \times 120 \times 40 & 13 \cdot 30 \\ 1008 & 180 \times 120 \times 65 & 63.50\end{array}$
$\begin{array}{lll}1008 & 180 \times 120 \times 65 & 63.50 \\ 3009 & 180 \times 120 \times 90 & 6374 \\ 1410 & 205 \times 140 \times 40 & 6351 \\ 1411 & 205 \times 140 \times 75 & 44.05\end{array}$
$\begin{array}{lll}1411 & 203 \times 140 \times 75 & 44.09 \\ 1412 & 203 \times 140 \times 110 & 12\end{array}$

rolersional quality twa cane gra olyrtyrant with thested lnasts for ourtelas PC boirdt
$2528120 \times 65 \times 40 \quad$ at 17
$\begin{array}{lll}2520 & 150 \times 90 \times 50 & c 2 \cdot 41 \\ 2522 & 188 \times 110 \times 60 & \text { cj．} 28\end{array}$
5LOFING PHONT 8 OXH $1798171 \times 121 \times 75137.5 \quad$ 4．t

CABACITOR BAROAINE
000mfd $250 \mathrm{~V} 76 \times 31 \mathrm{~mm} 82 \mathrm{p}$ $400 \mathrm{mfd} 400 \mathrm{~V} 75 \times 38 \mathrm{~mm} 78 \mathrm{r} 1500 \mathrm{mfo}$ 40 V PC mourt $40 \times 25 \mathrm{~mm} 7$ for $\mathbf{L 1}$ $2000 \mathrm{mld} 10 \mathrm{~V} 30 \times 18 \mathrm{~mm} 10$ for C 00pF disel 100 for 41.05 mld 30 V lisa
Imid 20 V dises 100 fer $R 2.16$ ．2mid 3V dise 100 for $03 \cdot 94$

EXPEMIMENT自R

CALGULATORE
Besed on the C5OO chlo．thla pack of pirtil mintiol the mert exparienced tonatrueter to make an E dibl 4 functlan calculator，Tho compret horisile date tuapliad Includes fut ala liyout of Cs taquired，eypen of intable dipplay ind keyborr included In the patk apt C300 caleuletor chip，drlyar $\mid C$ ，ilf tombo nanta for livarterfeiack cirsulici R＇s C＇，atc．All for only $\mathbf{4 7} \cdot \mathbf{9 0}$ ．

กา1R(PLIIT

 everything for the modern D.I.Y. electronics enthusiast and more.

A genuine 100W RMS oer shannel (both chan-
nels driven) stereo disto with auto fade on nels driven) sterco disto with auto fade on
microphone, VU meters, full monitoring and microphone, cuens facili-
ties and a very ties and a very
high quality high quality
lixht show. Complete con. strurtion beokletMES41 price 250
Cabinet Cabinet cotnes complete with lid and carr
ine handles.

[^0]: We regret that part 4 of our series "introduction to Loglic" has been held over due to pressure on editorlal apace

[^1]: *Davelopment Englneer,
 Electronic Laboratories Lld., Poole.

[^2]: L.M1B20/MA720/CA3123/NE 546

 Conneetlons

[^3]: DE LUXE BSR HI-FI AUTOCHANGER
 Phyy IEm. 10in. or 7in, tecotion
 coli baokfil by ESR fellobilty coorgav size 184. 1111 coosesov. 81ze 18d + 111 Io Abors whor bota sila

 WIG KAONETTC GTEAEO CARTAIDGE 621.50
 KEW DECKB
 cartrify.
 gan Rudgel Antochengez witb cermmic cattildst Gartard AP78. Slingio pleger lens cartetgen. 8SR. F163. Hett srive Tarolabls, lant caplifitge Onrzard 5800 . Autochanger with ceramic caziridge. Garrard Xindehaper. Plefi all tix wecords. Cernmis cutridge.

 B8R, P188, 斯ke arm, farted aenisble, ceramio
 enarifitie. Lattry model.

 ## 48-60

 212.95 428-b0
 227.50 114.95

[^4]: 2m MOSFET CONVERTER: Farts available for this and other projects from various oublications. Many difficult-to-obtain eomponents available for the constructor. Assembled and sested converters, power amplifiers, receivers etc. Stabilized power supplies. Portable or modular construction. 12 V at 5,8 or t 0 A (alternztiyes to order).
 Please write indicaring requirements (SAE appreciated)

 > P. N. JEYONS (ELECTRONICS) 6tI Chrintchurch Rond, Boscambe, Baurnemouth.
 > (Mail Order Only)

