

britank leading sournal for the radio \& Electronic constructor

Published by IPC Magazines Ltd., Westover House, West Quay Rd., POOLE, Dorset BH15 1JG

COPYRIGHT

© IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in Practical Wireless is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by Practical Wireless to ensure that the advice and data given to readers are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Practical Wireless". King's Reach Tower, Stamford Street, London SE1 9LS. All other correspondence should be addressed to the Editor, "Practical Wireless", Westover House, West Quay Road, Poole, Dorset BH15 1JG. BINDERS AND INDEXES
Binders ($£ 2 \cdot 85$) and Indexes (45p) can be supplied by the Post Sales Department, IPC Magazines Ltd., Lavington House, 25 Lavington Street, London SE1 OPF. Both prices include postage and VAT. Overseas orders for binders should include 60 p to cover despatch and postage. All remittances should be made payable to IPC Magazines Limited. Commencing with Volume 52, the Index is included in Number 1 of the following Volume.

BACK NUMBERS

Some back issues, mostly those published during the last two years, are available from our Post Sales Department (address above) at 65 p each, including postage and packing to both home and overseas destinations. Remittances should be made payable to IPC Magazines Limited.

SUBSCRIPTIONS

Subscriptions are available to both home and overseas addresses at $£ 10 \cdot 60$ per annum, from "Practical Wireless" Subscription Department, Oakfield House, Perrymount Road, Haywards Heath, West Sussex RH16 3DH. Remittances should be made payable to IPC Services Limited.

QUERIES

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We cannot offer advice on modifications to our published designs, nor comment on alternative ways of using them. We do not supply service sheets nor information on commercial radios, TVs or electronic equipment.
All queries must be accompanied by a stamped self-addressed envelope, otherwise a reply cannot be guaranteed. We cannot answer technical queries over the telephone.

NEWS \& VIEWS

18 Editorial Chicken \& Egg
19 News . . . News . . . News . . .
44 Paris Show Report David Gibson
47 PW Reader's PCB Service
Prices and details of the PCBs available
48 Hotlines
Recent developments in electronics
Production Lines
Ginsberg

Information on the latest products
Alan Martin
Kindly Note
Portable PA Amplifier, December 1977
57
Letters
Comments from PW readers
61 On the Air
Amateur Bands
Eric Dowdeswell G4AR
MW Broadcast Bands
Charles Molloy G8BUS
SW Broadcast Bands
Charles Molloy G8BUS
VHF Bands
Ron Ham BRS15744

FOR OUR CONSTRUCTORS

PW "Purbeck" Oscilloscope-5
Ian Hickman
Trigger, timebase and X amplifier circuits
μ DeCnology Project No. 5
David Gibson
Mains cable detector
Model Railway Point Motor Supply
R. A. Ganderton

A capacitor discharge system
PW "Avon" 2m Transmitter-2
B. L. Philips G8FWM Power amplifier and inter-unit wiring
Battery Power Supply for the PW Economy Timing Strobe Run your strobe from the car 12 V supply
G. Gould

Image Rejection Filter
R. A. Penfold

Improved selectivity for your short wave receiver

GENERAL INTEREST

Introduction to Logic-2
S. A. Money

NAND, OR and NOR gates
AM Receivers-Devices \& Circuits-1
M. J. Darby

Integrated circuits for t.r.f. receivers
QSL
Charles Molloy
Coilecting broadcast band QSL cards
Experimental Broadcast Satellite for Japan
Extending broadcast TV service areas
Our September issue will be published on August 4th
(for details see page 39)

FANE NEW "POP" RANGE SPEAKERS
Improved appearance - higher sensitivity

12 'POP' 40 Dunl $45 w £ 14.95$
12 "'POP' 50 H 50w $£ 16.99$
12" 'POP' 75 75w £22.95
15" 'POP' 65 70w £ 25.95
15" 'POP' 80 80w $£ 29.95$
18" ‘POP' 100 100w $£ 49.95$
18" 'POP' 150 150w $£ 55.00$
SPECIALIST RANGE Rec. Price
Each designed to pro-
duce the individual
sound requirement for
its purpose. Robust
Cast Aluminium
Chassis.
$12^{\prime \prime}$ DISCO/80 80w Fitted large Rec. Price $12^{\prime \prime}$ DISCO/100 100w Tweeter E31.95 12" GUITAR/80L 80w For Lead $\mathbf{E 2 7 . 9 5}$ 12" GUITAR/80B , Prs rec for © $\mathbf{2 8 . 9 5}$ 12" PA/80 80w $\begin{gathered}\text { Dual Cone. For } \\ \text { Beneral purpose PA. }\end{gathered} \mathbf{2 7 . 9 5}$
 Linen Cone surround. $15^{\prime \prime}$ BASS $/ 100$ 100w Guitar $\mathbf{£ 4 2 . 0 0}$ HIGH F
HORNS $J 44_{\text {Rane }}$
 2. $5 \mathrm{KHz-15KHz}$
Power: 50 w with
HP

HP $\times 2$ R
30w with HPXIR Size aporox
$3 t^{*} \times 3 t^{*} \times 3^{\circ}$
$\int 73_{\text {Range }}$ 2. $5 \mathrm{kHz}-20 \mathrm{kHz}$ Power: 50 W
with HPX IR with HPX IR
Imp: 8 ohms Imp: 8 ohms
Size epprox:
7 67.95

R11.75 MANUFACTURERS OF GROUO MOST LEADING U.K. 2 years Uracturers OF GR years guarantee on speakers \& H
Distributors (Whole sale \& Recail)

Rec. prices shown correct at 18/5/78 Manufach FANE ACO USTICS LTD, HICK

the MIGHTY MIDGETS

MINIATURE

From your Local Dealer or Direct from Manufacturers
SRB BREWSTERLTL
86-88 Union St. Plymouth PL1 3HG
Tel: 0752.65011 TRADE ENQUIRIES WELCOME

LOOK! Heres how you master electronics.

....the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

1 Buildan oscilloscope.

As the first stage of your training. you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop your k nowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,drawand understand circuitdiagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio. computors and countless other electronic devices and their servicing procedures.

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working k nowledge of testing, servicing and maintaining all types of electronic equipment, radio. t.v etc.

ERSIN

SAVBIT

handy solder dispenser
Contains 2.3 metres approx. of 1.22 mm Ersin Multicore Savbit Solder. Savbit increases life of copper bits by 10 times.
Size 5 58p
For soldering fine joints
Two more dispensers to simplify those smaller jobs. PC 115 provides 6.4 metres approx. of 0.71 mm solder for fine wires, small components and printed circuits.
PC115 69p
Or size 19A for kit wiring or radio and TVrepairs 2.1 metres approx. of 1.22 mm solder.

Size 19A 63p

Handy size Reels \& Dispensers

 OF THE WORLD'S FINEST CORED SOLDER TO DO A PROFESSIONAL JOB AT HOMEErsin Multicore Solder contains 5 cores of non-corrosive flux that instantly cleans heavily oxidised surfaces and makes fast, reliable soldering easy. No extra flux is required.
handy size reels of SAMB/T, 40/60, 60/40 \& ALU~SOL ${ }_{\text {alloys }}^{\text {solder }}$
These latest Multicore solder reels are ideal for the toolbox. Popular specifications cover all general and electrical applications, plus a major advance in soldering aluminium. Ask for a free copy of 'Hints on Soldering' containing clear instructions to make every job easy.

Ref.	Alloy	Diam. mm	Length metres approx.	Use	Price
$\begin{gathered} \text { Size } \\ \hline \end{gathered}$	$\begin{gathered} 40 / 60 \\ \text { Tin/Lead } \end{gathered}$	1.6	10.0	For economical general purpose repairs and electrical joints.	£2.16
$\underset{4}{\text { Size }}$	ALU-SOL	1.6	8.5	For aluminium repairs. Also solders aluminium to copper, brass etc.	£2,46
$\begin{gathered} \text { Size } \\ 10 \end{gathered}$	60/40 Tin/Lead	0.7	39.6	For fine wires, small components and printed circuits.	£2.38
$\begin{gathered} \text { Size } \\ 12 \end{gathered}$	SAVBIT	1.2	13.7	For radio, TV and similar work. Increases copper-bit life tenfoid.	£2.29

Pat. No. 1443913

BIB WIRE STRIPPER \& CUTTER

Fitted with unique 8 -gauge selector and handle locking device Sprung for automatic opening. Strips flex and cable in seconds. Model 8B 97p

SOLDER-

 WICK
Absorbssolde

 instantlyfrom tags, printed circuits etc. Onlyneeds 40-50 Watt solderingiron. Quick andeasytouse. Non-corrosive.Size AB10 97p

OPEN UP THE EXCITING WORLD OF SHORT WAVE LISTENING

SRX-30
For the advanced, keen short wave listener, the choice of receiver has usually been between cheap and nasty or very good but very expensive equipment. We think able cost and is the answer to this eternal problem.
The SRX-30 provides AM. CW, USB and LSB reception on all frequencies from 500 KHz to 30 MHz . All right, so does your Sooper Blooper Mk. 3 but you can't The SRX-30 tuning system is so simple to operate. You have sure that it's correct! from $0-29$ and a main tuning dial reading $0-1000 \mathrm{kHz}$. So-if you know that Radio Slobovia is broadcasting on 10.295 MHz , you set the MHz dial 1010 , the kHz dial to 295 and there you are. The MHz dial setting is not critical, as stability is guaranteed by a triple mixing drift cancelling system, thereby overcoming
another problem in your Sooper Blooper Mk. 3 : drift.
A further drawback to cheap receivers is massive image interference on the higher frequencies due to the use of a low IF, typically 455 kHz . The cure for this problem is the use of a high IF and the SRX-30 employs a first IF of around system as this in the Racal RA17 series receivers: after all, the SRX -30 has sysid as thasic the basic from this very receiver. The bis drawback to the RAl7
copied copied the basic idea from this very receiver. The bis drawback to the RAl7
(apart from the price !!) is that unless you have the muscles of a prize fighter, lifting the RA17 may send you for a holiday at Hernia Bay (staying at the Truss House?).
To summarize, the SRX -30 covers 500 kHz to 30 MHz with excellent dial readout and reset accuracy; it has all mode (AM, CW, SSB) reception and is equally at home in broadcast or amateur bands: it has all the facilities of a top class com. munications receiver, RF gain, fine tuning, selectable sidebands, built in loudspeaker. operation from ac mains or 12 v . Dc, rugged construction and super styling and all at an attractive price- $£ 158$ inc. VAT. Carr $£ 3$.
See it soon at your nearest stockist, you will be agreeably impressed
For all that's good in Amateur Radio, contact:
LOWE ELECTRONICS L.TD., 119 Cavendish Road, Matlock. Derbyshire. Tel: 06292430 or 2817.
Por full catalogue, simply send 45 p in stamps and request catalogue CPW.

Parsonal Shoppars EDGWARE RDAD LONDDN W2 Tal: $01-7238432$. $9.30 \mathrm{~mm}-5.30 \mathrm{pm}$. Half day Thursday. ACTON: Mail Order only. No cealers gOODS nOT OESPATCHED DUTSIDE UK

NEW FROM BI-KITS! ALI20 AUDIO AMPLIFIER

(WITH INTEGRAL HEAT SINK) BETTER THAN 50w RMS!

Out Power THD : $\%$
Supply Voltage Max.
Operating voltage range
Fread
Senaltivit Response $\pm 1 \mathrm{db}$
input impedance watte Into 8 ohms
THD at all power levels up to cilpping /N ratlo
Max. amblent operational temp. SIC Complement
Welght

50 watte min.
70 volts
$50-70$
$8-16$ ohm
$8-18$ ohms
$25 \mathrm{~Hz}-20 \mathrm{kHz}$
$25 \mathrm{~Hz}-20 \mathrm{mHz}$
500 mY
35 k ohms
$.05 \%$ max. typlcally - 02%
100ds: 45
13 transiators 3 diodes
$192 \times 89 \times 40 \mathrm{~mm}$
240 gms

ALSO SPM 120 Stabilised Power Supply
 AVAILABLE IN 3 ALTERNATIVE VOLTAGES-45, 55, 65 volts TO POWER THE FOLLOWING BI-PAK AMPLIFIERS:
 SPM 120/45 Two AL60's up to $25 w$ per channel simultaneousiy $\mathbf{8 4} \cdot 95+12 \frac{1}{6} \%$ V.A.T.
 SPM 120/55 Two AL80's up to. 35 w per channel simultaneously $£ 4 \cdot 95+121 \%$ V.A.T.
 SPM 120/65 Two AL120's up to 50 w per channel simultaneously $\mathrm{E5} \cdot 95+12 \frac{1}{2} \% \mathrm{~V} . \mathrm{A} . \mathrm{T}$.
 SPM 120/65 One AL250 up to $125 w 55 \cdot 95+12 \% \%$ V.A.T. Please add 25 p P \& P. to all orders AC INPUT:
 AL $120 / 4540-48 \mathrm{~V}$ - AL 120/55 50-55v - AL 120/85 60-65v - OUTPUT CURRENT 2.5 A - RIPPLE /a 1A 100mV 2 m 150 mV

USE YOUR SPM 120 WITH ANY OF THESE!

AL 60. $25 w$ (RMS) AMPLIFIER $£ 4.55+12 \frac{1}{2} \%$ V.A.T. 25p. P \& P.
AL 80. 35w (RMS) AMPLIFIER $£ 7 \cdot 15+8 \%$ V.A.T. 25p. P \& P.
AL 250. 125w (RMS) AMPLIFIER £17•25 + 8\% V.A.T. 40p. P \& P.
PA 300. Pre-amplifier for use with all the above modules $£ 16 \cdot 30+12 \frac{1}{1} \%$ V.A.T. 40 p. P \& P.

EEEGTROVALUE

All the many types of components we supply are BRAND NEWW and suaranteed and only from manufacturers direct or approved suppliers. (No surplus, no seconds)

I,C.s-TTL 7400 Series											
7400	14p	7410	$14 p$	7447	70p	7474	23	7491		74121	27p
7401	14p	7413	22p	7450	14p	7475	45p	7492	46p	123	51p
7402	14p	7414	60p	7451	14 p	7476	32p	7493	40p	74141	p
7403	14p	7420	14p	7453	14 p	7480	$41 p$	7494	$66 p$	74151	54p
7404	18p	7430	14 p	7454	14 p	7482	$61 p$	7495	57p	74151	${ }^{60} \mathrm{p}$
7405	14p	7440	14p	7460	14p	7483	58p	7496	63p	74154	1.60
7407	22p	7442	54 p	7470	24p	7485	74p	74100	73p	74190	94
7408	18p	7443	60p	7472	24p	7486	27p	74104	40p	74191	94p
7409	18p	7444	60p	7473	23p	7490	40p	74107	27p		
OUR COMPUTER TAKES											
SIEMENS CAPACITORS*											
World-famous for quality and depend-											
PCB TYPES-7.5mm PCM 0.001 zo each*: Good quontity discounts											
$0.015 p$ each: 0.15 to 0.047 6p each:											
0.068	0.1	each									
4p: 0.033, 0.047 5p each: 0.068 6p											
5 mm PCM 0.1 7p: 0.2210 p .											
ELECTROLYTICS-1/100, 10/25,											
KEEN PRICES GOOD SERVICE WIDE RANGES											
DISCOUN											
5\% if list value of order over											
10\% if list value of order over $£ 25$											
Discounts available where cash, P.O. or											
MONTHLY BARGAIN LISTS S.A.E. brings monthly list of bargains. Also current quick reference price list of all ranges.											
Cash with order (P.O. or cheque payable to Electrovalue Ltd) or your Arcess or Barclaycard number. TRADE AND INDUSTRIAL ENGUIRIES INVITED For all round satisfaction-be safe-buy if from ELECTROVALUE											

Dept PW\&, 28 St Judes Rd, Englefield Green, Egham, Surrey TW20 0HB.
Phone Egham 3603: Telex 264475
Northern Branch (Personal shoppers only) 680 Burnage Lane, Burnage. Manchester MI9 INA. Phone (061) 4324945.

Jones Supplies

TTL		
7400	0.13744	0.80
7401	$0.13 \quad 7451$	0.15
7402	0.16 7470	0.30
7403	0.16 7472	- 0.2t
7404	0.19 7473	0.30
7408	0.347474	- 0.30
7407	0.35 7475	-0.40
7408	$0 \cdot 18$	0.35
7410	$0.14 \quad 7488$	0.35
7413	0.35 7493	- 35
7414	0.74 7498	- 82
7416	0.35 74107	-0.32
7420	0.16 74141	-0.70
7442	$0 \cdot$ ct	
MAINS	TRANSFORMERS P\&P60p each	
6-0-6	100 mA	20.89
9-0-9	75 mA	¢0.93
12-0-12	50 mA	£0.93
12-0-12	100 mA	¢0.99
9-0-9	1 Amp Sh.	¢2.44
12-0-12	1 Amp	E2. 59
15-0-15	1 Amp	E2.59
30-0-30	1 Amp .,	£3.10
20-0-20	2 Amp Unsh.	84.40
30-0-30	2 Amp Unsh.	E5.50
Stereo amp module $6+6$ watts £7.99 о.p. imp. 8 8 . 34v. d.c.		
F.M. Tun	module. 9 v	¢7.99

4001	-	0.17	4047		0.95
4002	-	0.17	4049		- 48
4011	-	0.19	4050		. .53
4013	-	0.45	4070	-	0.53
4014	-	0.85	4502	-	$0 \cdot 5$
4015	-	0.85	4508	-	2.00
4016	-	0.52	4510	-	1.51
4017	-	0.85	4511	-	$1 \cdot 75$
4018	-	0.85	4514	-	2.54
4023	-	0-18	4518		1.90
4027	-	0.52	4518		1-20
4028	-	0.97	4528	-	$1 \cdot 20$
4042	-	0.85	4536	-	- 0
4046	-	1.40			

MISCELLANEOUS

U_{2} size N CAD BAT. £1.95 ($p \& p 30 p$)
8 pin $741 \quad 0.18$ Scope Probe, BNC plug £14.99 BNC Socket 0.90 Signal Injector e5.20 Multimeter 1,000 OPV. 11
ranges ($p \& p 50 p$) £6. 25 Telephone pick-up coil 0.92 $3^{\prime \prime} 8 \Omega$ Spkr. (20p p \& p) 0.98 $4^{\prime \prime} 8 \Omega$ Spkr (30p p \& p) £1-44 0-1mA panel meter $\boldsymbol{E 4} \cdot \mathbf{2 0}$ $240 v$ AC/9v $120 \mathrm{~mA} \quad £ 1.95$
Regulated supply in plastic case
Prices. Please add 8\% VAT. P. \& P. 10p, except where shown Retail \& Mail order.

Open 7.30p.m. M. Th. Fri. Sat.

Jones Supplies

588, Ashton Rd., Hathershaw, Oldham. Lancs. 061-652-9879

BADIO EXBHANGE LID.

NEW ELECTRONIC MASTER KIT

WITH SPECIAL V.H.F. TUNER MODULE TO CONSTRUCT. A completely Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts. Wood Screws etc. Also in the kit. Transistors. Capacitors, Resistors. Pots, Switches. Wire, Sleeving, Knobs, Dials, $S^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, etc. Also ready wound Coils and Ferrite Rod Aerial. These are the Projects you can build with the componencs supplied with the kit, together with comprehensive Instruction Manual
Pictorial and Circuit Diagrams. \quad PROJECTS: V.HF. Tuner Module \star A.M. Tuner Module \star M.W. L.W. Diode Radio \star Six Transiseor V.H.F. Earpiece Radio t One Transistor M.W. L.W. Radio t Two Transistor Metronome with variable beat control \& Threc Transistor and Diode Radio M.W. L. W. 太 Four Transistor Push Pull Amplifier \star Eight Transistor V.H.F. Loudspeaker Receiver $*$ Variable A.F. Oscillator $*$ jiffy MultiTester t Four Transistor and Diode M.W. L. W. Radio $*$ A.F. R.F. Signal Injector $*$ Five Transistor Push Pull Amplifier t Sensitive Hearing Aid Amplifier t Threc Transistor and Diode Short Wave Radio t Signal Tracer $*$ Three Transistor Push Pull Amplifier $*$ One Transistor Class A Output Sage to drive Loudspeaker \star Sensitive Transistor Pre-Amp \& Transistor Tester $\&$ Sensitive Three Transistor Regenerative Radio * Four Transistor M.W. L.W. and Diode Tuner \star Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. Tuner t Three Transistor Code Practice Oscillator \star Five Transistor Regenerative Short Wave Radio * Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio * Seven Transistor M.W. L.W. Radio with Loudspeaker Push Pull output

* One Transistor Home Broadcaster.

NEW ROAMER TEN MODEL R.K. 3

MULTIBAND V.H.F. AND A.M. RECEIVER.
13 TRANSISTORS AND SIX DIODES. QUALITY 4" ROUND LOUDSPEAKER.
WITH Muleiband V.H.F. section covering Mobiles, Aircraft, T.V. Sound, Public Service Band, Local V.H.F. Stations, etc. and Multiband A.M. section with Airspaced Tuning Capacitor for easier and accurate uning, covering M.W.I, M.W.2, L.W. Three Short Wave Bands S.W.I, S.W.2, S.W. 3 and Trawler Band Buittin Ferrite Rod Aerial for Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 ection Telescopic Aerial, angled and rotatable for peak Short Wave and V.H.F. reception. Push-Pull output using 600 mW Transistors. Gain, Wave-Change and Tone Conerols. Plus two Slider Switches.
Powered by P.P.9-9 volt Batery.
Complete kit of parts including carrying strap. $\mathbf{C | 4 . 7 9}$ p a pel.10
Building Instructions and operating Manuals.

NEW

MODEL
R.K.I

MultiBand A.M. Receiver. M. W. L. W. Trawler Band and Three Short Wave Bands. Sevon Transistors and Four Diodes, P
Pull Output stage. $5^{*} \times 3^{*}$ Loudspeaker. Internal Ferrite Rod Aerial. Kit includes all pares to build it up including Carrying Serap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

ELECTRONIC

 CONSTRUCTION KIT
RADIO CONSTRUCTION KIT Q7

A compact small radio kit covering Medium Wave and Lone Wave bands. Rugged Micanite construction and simple square design allows for easy carrying
 and positioning. Ideal for the Garage, Workroom. Kitchen. etc., has seven Transistors and Four Diodes, quality Loudspeaker, ready wound Ferrite Rod Aerial and Carrying Strap.

Size $47^{\circ} \times 47^{*} \times 47^{*}$.
f7. 25
All parts and plans excluding 9y PP7 Bateery.
PeP/Ins. 75p.

E.V.6. ${ }_{\text {PLUS }}^{\text {PL }}$

 Build this exciting with 7 Transistor: and 4 diodes. MW/LW Powered by 9 V batcery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in. loudspeaker. Attractive case with red speaker grille. Size 9 in. \times Stin. $\times 2 \neq i n$. approx. All parts including Case and Plans.
Total Building Cosss $£ 6.95$
+P\& Pandin. 90p
ALL PRICES INCLUDE VAT
E.C.K. 2 Self Contained Multi-Band V.H.F. Receiver Kit.

8 transistors and 3 diodes. Push pull output. 3 in . loudspeaker, gain control. 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, re sistors, capacitors, transistors, etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from 9 volt P.P. 7 battery (not supplied with kit)

Complete kit of parts £7.95 + P \& P and lns. 90p

COMPLETELY SOLDERLESS ELECTRONIC CONSTRUCTION KIT
GUILD THESE PROJECTS WITHOUT SOLDERING IRON OR SOLDER
Com-
plete
kit of
partsin-
cluding
construc-
tion plans
Tocal building
costs
$\mathbf{C 9 . 9 9}$

+ Pa Pand
Ins. fl 10
 -
- 5 Transistor Push Pull
- Transistor Push Pull - 7 Transistor Loud-
- LW. Transistor Short
- Transistor Earpiece Radio - Siznal Tracer

Wave Radio Short - Electronic - Mertronic - Electronic Noise - Electronic No

Barter
Radio
Radio Crystal One Tr
${ }_{2}$ Re Transistor Radio - Transistor Re-- Transistor Renerative Radio - Audible Continuity Tester - Sensitive Pre

- $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker | \circ | |
| :---: | :---: |
| ctors | $5^{\prime \prime}{ }^{x}$ Volume Conerols | - 3 Knobs Ready Wound

To: RADIO EXCHANGE LTD 61A High Street, Bedford MK40 ISA Tel.: 023452367

REG NO. 788372

- Callers side entrance "Lavells" Shop.
-Open 10-1, 2.30-4.30 Mon.-Fri. 9-12 Sat.
\qquad
\qquad

FANTASTIC SPEAKER OFFER
TWIN 12 " SPEAKER CABINET
PLUS PAIR $12^{\prime \prime}$ SPEAKERS
of Robust vibration-proof construction Fitted protective corner pieces. Re. movable Vynair covered front with silver effect trim. Sunken lack sockel With escutcheon at the rear.
Pair $12^{*} 20 \mathrm{w}$ speakers for
series and front While wiring in series and front While stocks last
mounting in above supplied to complete the 40 watt plete the 40 watt

£19.95

50 WATT AMPLIFIER SACRIFICE

TA/50A

to be cleared to make way for a re-
styled model.
Styled model. Solid state, 3 sep. Controlled inputs plus Master control.
Bass. Treble \& Presence Controls. Vynide covered cab Bass. Treble \& Presence Controls. Vnide covered cab;
with corner protectives. Value $£ 60$. Terms: Dep. $£ 7 \cdot 95$ \& 8 monthly payments $£ 4.72$ (Total \& 8 monthly payments £4.72 (Total
$£ 45.71$. Matching Cabinets $\times 12^{\circ}$ \& 89.95
$£ 29.95 .2 \quad 12 \neq 49.95$

TITAN GROUP/DISCO SPKRS $\begin{array}{ll} & \text { Value RSC Price } \\ \text { T12/45R 12* } 45 \mathrm{w} & £ 15.80 \quad \$ 11.95\end{array}$ T12/60R $12^{\circ} 60 \mathrm{w} \quad £ 22.50 \quad \mathrm{E} 13.95$ $\begin{array}{llll}\mathrm{T} 12 / 100 & 12^{\circ} \text { 100w } & £ 36.00 & £ 25.95\end{array}$ T15/60 15*60w $£ 26.00$ T15/70 15*70w $£ 28.00$ $\begin{array}{llll}\text { T15/100 15* } 100 \mathrm{w} & \text { £41.00 } & \mathbf{8 1 9 . 9 5}\end{array}$ $\begin{array}{llll}\text { T15/100 15* } 100 \mathrm{w} & £ 41.00 & \$ 29.95 \\ \text { T18/100 } 188^{\circ} 100 \mathrm{w} & £ 47.00 & 836.95\end{array}$

Cart. $£ 1 \cdot 20$, under $£ 18$, over this add $6 p$ per $£ 1$
CABINETS FOR ABOVE Heavy duty, finished in black Vynide with Vynair fronts, protective corner pieces, various sizes cut-outs. TE1 $1 \times 12^{*} £ 11.95$.
TE2 $22^{*} \$ 16.95$. Deposit Terms order over $£ 20$.

ALL RSC PRICES INCLUDE VAT

* DISCOMAJOR with integral Power Amplifer
- TWIN FULL SIZE GARRARD turntables with cueing device. * CARTRIDGES with Dtamond Styli. + 3 SEPARATE VOLUMECONTROLS for each turntable and Mic.
FULL HEADPHONE
MONITORING FACILITIES CONSOLE COMPLETE WITH LID

TDI DISCO CONSOLE
Incorporating twin BSR type turntables and Sonotone or Acos Cartridges with diamond styli. Separate Vol. controls for each furntable. Also MONITORING Bacilimies, Dlus Treble and for mike with vol. control. Black Vynide covered $\mathbb{C} \mid \mathbf{~} 9.95$ Cabinet with lid 18 'tntly pymts. £6.75 (Total £1 37.99) Cart. £3.50. TD2S STEREO
$\leqslant 125.00$

PRE-AMP I/TABLE CONSOLE W STAGES (2) \& (3) PAIR 100 WATT LOUDSPEAKERS including $12^{\prime \prime}$ UNITS

UD 150 Rec. Mie
£9.95 extra
with syatem only

Barclaycard a Accesa
PHONE ORDERS quoting
CARD NUMBER accepted
Tal: 0689 577e81.

OPEN ALL DAY SATS (S Day We"k) Prices correct at 18.5.78 E. \& O.E. All items subject to availability BRADFORO 10 North Parade (Closed Wed.). Tel. 25349 BIRMINOHAM 30/31 Great Western Arcade.
CARLi8LE 8 English Street (Closed Wed.) Tol. 021-238 1279 COVENTRY 17 Shelton Sa.. The Precinct
DEREY 97 St. Peter'a Street (Closed Werd) (Closed Thurs.) Tel. 25983 DEWSBURY 9/11 KIngsway (Closed Tues.) Tel. 468058 DONCASTER 3 Queensgate, Waterdale Centre. EDINBURCH 101 Lothlan Rd. (Closed Wed.) Tel. 23069 EDINBURGH 101 Lothian Rd. (Closed Wed.) Tel. 2299501
GLASCOW 326 Argyle St. (Closed Tues.). Tel. 041.2484158

HANLEY Stoke-on-Trent, 44 Piccadilly Tel. 26776 $\begin{array}{lll}\text { HULL } 7 \text { Whitefriargate (Closed Thurg.). } & \text { Tol, } 20505 \\ \text { LEICESTER } 32 \text { High Street (Closed Thura.). Tel. } 56420\end{array}$ \star LEEDS ${ }^{18018}$ County (Mecca) Arcade. Brlggat

Tel. 56420 LIVERPOOL TEMPORARILY (ClosOPERATIVE TUE 44900 OL serious fire * MANCHESTER 60A Otdham Street (Closed Wed.). Tel. 2382778

MAIL ORDERS MUST NOT AE SENT TO SHOPS RRIS C.W.O. or C.O.D. Ho. C.O.D, under tas. POgTAOF 60p PRE

MIDDLESEROUGH 103 Linthorpe Rd. (CI. Wed.) Tel. 247006 NEWCASTLE UPON TYNE 50 Gralnger St.
NOTTINOHAM 19/19A Market (Closed Wed.). Tel. 21480
SHEFFIELD 13 Exchange Street (Clastied Mkt. Bids.)
WOLYERHAMPTON © Wulfrun Way
+MUSICAL INSTRUMENTS \& ACCESSORIES in stock at these branches

SINCLAIR PRODUCTS

Microvision TV now in slock $\mathbf{\text { E200. PDM35 }}$ digital mulfimeter $£ 25 \cdot \$ 5$. Malns adaptor
E3.24. De-luxe padded case $£ 3.25$. 30 kV probe E18-35. New DM23s digital meter P.O.A. Cambrldge programmable calculator \&13.15. Prog. library \&4.85. Malns adaptor E3-20.

Fidelity Fastenings FF1 is a precision made, vibration damped wall fastening for $\mathrm{Hi}-\mathrm{Fi}$ and Stereo Speakers of up to 50 lbs weight each. Almost undetectable when fitted, the FF1 allows easy adjustment of speaker angle, and the rubber mounting ensures that they do not move accidentally. Speakers can also be quickly and easily lifted off for dusting, cleaning and redecorating. Available from all good Audio, Hi-Fi and electrical shops at £5.50

S-DECS AND T-DECS*
S-DeC f3. 39 TrDeC EA .44, μ-DeCA £4.52. μ-DeCB EA.73. 16 dil or 10 TOS with nockets Ez .14

TV GAMES KITS

Send sae for free data. Tank battle chlp AY-3-8710 plus economy kit $£ 17 \cdot 95$. Slunt motor cycle chip AY-3-8760-1
plus economy kit $£ 17$ - 8 s . 10 game paddle ${ }_{2}$ chip AY-3-8800 plus oconomy kit $£ 14$ - 78 . AY-3-8500 chip plus economy kit \&i $-\frac{85}{}$. Modined shoot kit E4.e. Rlne kit E4.gs. Colour generator kIt 87.50 . Joystick
control $\mathrm{E} 1 \cdot 70.4 \cdot 43 \mathrm{MHz}$ pal crystals 80 p .
ASSEMBLED TV OAMES Attractlvely cased. Tank battle game 4 game models (tonnls, footbalt. squash and pelota):- black and white E11.es.
Colour E14.50. TV game malne adaptor Colour
$\mathbf{~} 3 \cdot 10$.
MAINS TRANS FORMERS

JC12, JC20 AND JC40 AMPLIFIERS A range of integrated clrcult audlo ampliners supplied with free data and prinfed clrcults. JC12 8 watts E1. E0. J C20 to watts ع2. ©5. JC40 20 watte E4.20. Send sae for free data on our range of matching power
and pre-amp kits. terRANT
FERRANTI ZN414
IC radlo chlp $\& 1 \cdot 05$. Extra parts and peb for rado is.es. Cate £1. Send sae for free
PRINTED CIRCUIT MATERIALS
PC etching klts:- economy $£ 1.70$, stan dard $\mathrm{E} \cdot \mathrm{sz}$. 50 sa ins pcb 40p. 1 Ib FeC1 E1-05. Etch resist pens:- economy 45p. dalo 73p. Small drill bit 20p. Etchlng dish
6ip. Laminate cutter 75p.
BATTERY ELIMINATOR BARGAINS TV games power unit stabllized $7 \cdot 7 \mathrm{~V}$
$100 \mathrm{~mA} \& 3 \cdot 10$. 3-way models with witched output and 4 -way multi-lack:- $3 / 41 / 6 \mathrm{~V}$ $100 \mathrm{~mA} £ 2 \cdot 92.6 / 7 y / 9 \mathrm{~V} 300 \mathrm{~mA} \mathrm{ES} .30 .100 \mathrm{~mA}$ Fadlo models same slze as PP9 battery.

 recorder mains unit ifV 100 mA with 5 ${ }_{12 \mathrm{~V}}^{\mathrm{p}} \mathrm{din}$ plug dz . 85. Car convertors

BATTERY ELIMINATOR KIT
Send sae for free leaflet on range. 100 mA radlo types with press atud connectors
 c2. $50.6+8 \mathrm{~V}$ £2. $50.8+9 \mathrm{~V} \mathrm{Ez} \cdot 56$. Cas. sette type 7IV 100 mA with din plug $81 \cdot \mathrm{Ep}$.
 Translator stablilized eway types for $10 \mathrm{wh} \mathrm{hm} 3 / 4+/ 8 / 71 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA}$
 Input 12 V dc . Output $6 / 7 \mathrm{t} / 9 \mathrm{~V} 1 \mathrm{~A}$ stablized gULK
gULK BUY OFFERS
minimum purchase E 10 any mix, ${ }^{\frac{1}{2} W}$ dil 20 p . NES55 12 ohm to 10 M O. sp . 7418
 iN4148 1.9p. BC107 7p. BC109 7p. BC212 ${ }^{3} \mathrm{p}$. IN $4000 \mathrm{~A} \cdot 2 \mathrm{p} .250 \mathrm{~V}$ polyester capacltors .015 mf 1.1 p .068 mf 1.4 p 0.1 mf 1.5 p .
0.33 mf
2.5 p . Zener diodes 400 mW E24 2 V 7 to 35 V S. 5 p .
BI-PAK AUDIO MODULES
Send zae for data. S450 tuner ع23.51. ALe0 £4. 8 . PA 100 £18.71. SPM80 £4.47.
 COMPO
COMPONENTS
Resistors 5% carbon E12 10 to 10M. :W 1 p . to . 088 mf 31 p .0 .1 m capacitors 250 V E8 $\cdot 01$
 E12 63 V 15 pl to 8800 pf 21 p . Ceramic capacitors 50 V E12 22 pl to 1000 pt 2 pp . $100 \mathrm{~V} \cdot 001$. 002 , $005 \mathrm{mf} 4 \mathrm{p} . \cdot 01, \cdot 02 \mathrm{mf} 4 \nmid \mathrm{p}$. . $04,-05 \mathrm{mf}$ stp. Electrolytice $50 \mathrm{~V} \cdot 47$. $2 \mathrm{mf} \mathrm{sp}_{\mathrm{p}} 25 \mathrm{~V} 5 \mathrm{mf} \mathrm{Sp}_{\mathrm{p}} 10 \mathrm{mf} 4 \mathrm{p} .16 \mathrm{~V} 22 \mathrm{mf} \mathrm{Sp}_{\mathrm{p}}$. $33,47,100 \mathrm{mf} 6 \mathrm{p} .220,330 \mathrm{mi} 9 \mathrm{p} .470 \mathrm{mf} 11 \mathrm{p}$. 100 mf tip. Zeners 400 mW E24 $2 \mathrm{V7}$ to 33 V 7 Pp. Presets pots sub-minlature 0.1 W
horiz or vert 100 to $4 \mathrm{M7}$: 7 p . Potentlo meters $\ddagger W \mathbf{W} 41$ to 2 M 2 log or lin. Single 2 p . Dual 78p.

SWANLEY ELECTRONICS

DEPT. PW, 32 Coldsel Rd., 8 wanley, Kent BRE 8 Ez
Mall order only. Please add 30 p to the total cost of order for postage. Prices include VAT. Overseas customers deduct 7% on Items marked * and 11% on others. Officia credit orders welcome.

GLOUGESTER INDUSTRIAL SALES AND AUCTIONS LTD

Eastington Trading Estate, Nr. Stonehouse Gloucester
Tel: STONEHOUSE 4118
(M.5. MOTORWAY-EXIT No. 13)

We hold regular monthly Auction Sales of mostly New Electronic and Electrical Goods consisting of Transistors, Triacs, Integrated Circuits, Diodes, Capacitors and Resistors, together with Fractional Motors, Transformers, Power Packs, etc. etc. Phone or write to be put on our Auction Mailing List.
Why not get in touch with our Mr. Jack Bailey and enquire about our terms for the disposal of your surplus stocks etc. through our Auctions.

GREENWVELD
443 Millbrook Road Southampton SO1 OHX Tel:(O703) 772501

All prices auoted Include VAT. Add 25 p
UKBFFO postage. Most orders des. UK/BFPO postage. Most orders des onquiries please. MINIMUM ORDER VALUE \&1. Official orders accepted

DIODE SCOOP!!!

We have been fortunate to obtain a large quanity of untested, mostly
unmarked glass silicon diodes. Testing unmarked glass silicon diodes. Testing a sample batch revealed about 70% useable devices-signal dodes, high
voltage rects and zeners may all be included. These are being offered at the incredlbly low price of $\$ 1-25 / 1000-$ or a bas of 2500 for $£ 2 \cdot 25$. Bag of 10,000
E . Box of $25,000 \mathrm{£17} \mathrm{\cdot 50}$. Box of 100,000 E.E. Box of $25,000 \mathrm{E} 17 \cdot 50$. Box of 100,000

DISC CERAMIC PACK

Amazing variety of values and voltages

TTL PANEL

52 logic IC's Including 32×74181 (4 bit binary counter) +16 tant bead caps,
R's, C's, etc. Over $s 30$ worth of TTL Rs,

PC ETCHING KIT MK III

Now contalns 200 sa. Ins. copper clad board, 11 b . Ferrlc Chloride, DALO etchature drili blts, etching dieh and Instruc. tlons. $\mathbf{\$ 3} \cdot 9$

VEROBOARD

Our packs of vero officuts are one of our blogest sellers- and no wonder, they are 8 pleces to make up a total area of 100 sq. Ins. All packs are the same price. et -30 each and are avallable as follows:
Pack A all $0.1^{\prime \prime}$ pitch
Pack B all 0.15 ${ }^{\prime \prime}$ pltch
Pack D all $0 \cdot 1$ " plaln
Also avallable by welght 4 ib ce 3.95 10lbs
Regular size vero
$17 \times 31 \times 0.15 \times 2.00,10$ atrios E 15 DIP Breadboard DIP Breadboard ilze ${ }^{6}$, $15 \times 4.5^{\prime \prime}$, can
accommodate 20×14 pln ICs $\mathrm{E2} \cdot 5^{\prime}$ vo Board, $120.148 \times 75 \mathrm{~mm} \mathrm{0.1"} \mathrm{pitch}$. Copper stripe in rowe of 4 to facilitate construction with IC's. Layout sheet
provided 5_{5}.

EDGE CONNECTORS

Special purchase of these $0.1^{\prime \prime}$ pltch double-sided gold-plated connectors enables us to offer them at less than 18 way 4ip; 21 way 47p; 32 way 72p; 40 way gop.

SOLDERING IRONS

Antex model C-15W gen. purpose iron. Our bestseller at $\mathbf{C 3} 50$
Antex model CCN-15W element with ceramic shaft. Very low leakage. E3. 90 Antex MLX12. This complete with large crocodile cllps fitted + booklet "How to solder" and strong PVC carrying case E4. 20

COMING SOON

Look out for detait of the GREENWELD 100W amplifier kit
and an IC amolifier kit
and some Incredible component bargalnslli

SPECIAL TRANSISTOR OFFERS

PN108 (BC108)	18 for ${ }^{1}$
PN109 (BC109)	16 for El
PN70 (BCY70)	14 for El
PN71 (BCY71)	14 for $\mathrm{ES}^{\text {d }}$
PN72 (BCY72)	15 foret
MSPS 1218 (2N3702)	20 for $\mathrm{El}^{\text {c }}$

CLOCK CHIPS
 MK50253N E3.95.

from schools, etc. (Minimum invoice charge £5). Export/Wholesale enquiries wercome. Wholesale list now avallable ponents always wanted. SEND 45p FOR OUR $1977 / 8$ CATA-
LOGUE. CONTAINS 500° DISCOUNT VOUCHERS. AMENDMENT SHEET No. 2 GIVES DETAILS OF OVER 100 ITEMS SLASHED $50 \% 1!1$
(Send SAE if you've already got cat.) Our tatest Bargaln Sheet ta FREE, send
SAE for your copy.

COMPONENT PACKS

 400 assorted resistors, $\frac{1}{2}$, 1. 1W $£ 1 \cdot 30$ 200 electrolytics, but many unmarked $\$ 1-00$
100 Mullard C280 polyesters, $0.01-1 u F$. $51-00$
150 wirewound resistors $2-10 \mathrm{~W}$ \& 1.60 200 PC resistors, fand iW 60p 200 transistors, mostly unmarked, inc power devices. About 75% usable \&1-35

LOW COST PLASTIC BOXES

Made of hloh impact ABS. The lids are retained by 4 screwa into brass inserts. Interlor of box has PCB gulde slot: (except V219)
$\mathrm{V} 210 \quad 80 \times 62 \times 40 \mathrm{~mm}$ black
$\begin{array}{ll}\text { V213 } & 100 \times 75 \times 40 \mathrm{~mm} \text { black } \\ \text { V218 } & 120 \times 100 \times 45 \mathrm{~mm} \text { bleck }\end{array}$ $\mathrm{V} 219 \quad 120 \times 100 \times 45 \mathrm{~mm}$ white

SPECIAL SUMMER OFFERS

AUDIO IC's
76003N $£ 1 \cdot 40.76013 \mathrm{~N}$ £1.00. $76023 \mathrm{~N} \quad £ 1 \cdot 00.76033 \mathrm{~N} \quad £ 1 \cdot 40$. LM380 80p
LINEAR IC's etc.
$\begin{array}{llll}741 \text { (8DIL) } & \text { 18p } & \text { BD131 } & \text { 24p } \\ 555 & \text { 25p } & \text { BD132 } & 25 p\end{array}$ 1N4148 2p 2N3819 13p

CAPACITOR BARGAINS

$800 \mathrm{mid} 250 \mathrm{~V} 76 \times 38 \mathrm{~mm}$ 2p; 400 mid $400 \mathrm{~V} 76 \times 38 \mathrm{~mm} 78 \mathrm{p} ; 1500 \mathrm{mfd} 40 \mathrm{~V}$ PC mount $40 \times 25 \mathrm{~mm} 7$ for $\leqslant 12000 \mathrm{mfd} 10 \mathrm{~V}$ $38 \times 18 \mathrm{~mm} 10$ for E 11000 pF dIscs 100 for £1.05mfd 30 V discs 100 for El - Cf

4.7 mfd 100 V polyester 6 for Ef

POT BARGAINS

Sta ndard size pots-apindle is 12 mm long in the following values only: 10 for Ef any mix.

VEROCASES

Plastic top and bottom ally panele front

 and back1237

1237	$154 \times 85 \times 40$	
1238	$154 \times 85 \times 60$	$\underline{22.7}$
1239	$154 \times 85 \times 80$	E3. 32
3007	$180 \times 120 \times 40$	c3. 30
3008	$180 \times 120 \times 65$	[3. 50
3009	$180 \times 120 \times 00$	E3.74
1410	$205 \times 140 \times 40$	C3. 51
1411	$205 \times 140 \times 75$	84.05
1412	$205 \times 140 \times 110$	E5.12

VERO PLASTIC BOXES

Professional quality two tone grey polystyrene with threaded inserts for mounting PC boards
$\begin{array}{lll}2518 & 120 \times 85 \times 40 & £ 2.17 \\ 2520 & 150 \times 80 \times 50 & \kappa 2.45 \\ 2522 & 188 \times 110 \times 60 & £ 3.23\end{array}$

SLOPING FRONT BOXES

$\begin{array}{lll}1798 & 171 \times 121 \times 75 / 37.5 & \text { E4.19 } \\ 2523 & 220 \times 174 \times 100 / 53 & \text { E. } 60\end{array}$
Pottlng box. $71 \times 49 \times 24 \mathrm{~mm}$ black or
white $40 p$
Hand controller box $94 \times 01 \times 23 \mathrm{~mm}$
While sip White bip

We keep a very large range of VERO products, including their recently il boxes. SAE for thetr catalogue. Come and get a great deal
Call in and see us $9-5.30$ Mon-Fri 9-5.00 Sat
Express Mail Order Tel orders on credit cards S10 min. Trade and export enquiries welcome
A. Marshall (London) Ltd, Dept: PW Head Office mail order: Kingsgate House, Kingsgate Place, NW6 4TA. Tel. 01-624 0805. Retail Sales London: 40-42 Cricklewood Bdwy, NW2 3ET. Tel. 01-452 0161/2. Telex, 21492. London: 325 Edgware Rd, W2. Tel. 01-723 4242. Glasgow: 85 West Regent St, G2 2QD. Tel. 041-332 4133. Bristol: 1 Straits Pde, Fishponds Rd, BS16 2 LX. Tel. 0272 654201.

2N929
2N930
2N1131

$\frac{2}{2}$

2 N 2 N 2 N

$2 N$ $2 N$, $2 N$,

そそzz

$2 \mathrm{~N}_{2}$
2 N 2
2 N 2

$2 \mathrm{~N}_{2}$
2 N 2
2 N 2
2 N 22

$2 \mathrm{~N}_{2}$
$2 \mathrm{~N}_{2}$
2 N 2
2

2 N 28
2 N 20
2
2
2 N 29
2 N 29
2 N 29
$2 \mathrm{~N}_{2}$
2 N 29
2
2N292
2N292
2N301
$2 N 3011$
$2 N 3020$
$2 N 3053$
$2 N 305$
$2 N 3055$ 2 N,
2 N,
2 N
2
2
2 N 3
2 N 3
2 N 3
2

2N3301
$\begin{array}{l}\text { 2N302 } \\ \text { 2N332 } \\ \text { 2N } \\ \text { 2N394 }\end{array}$

MAINS TRANSFORMERS

All these have 230/240v $50 \mathrm{H}_{2}$ voltage	z Pimary CURRENT	REF.	PRICE
iv	2 amp	TM 1	£1.94
$2 \cdot 4 \mathrm{v}$	5 amp	TM 2	¢1-62
4 V	7 amp	TM 32	£2.70
5	\dagger amp	TM 3	85
6.5v	1 amp	TM 37	85
6.5 v	200 ma	TM 21	E1.62
6.5v-0-6.5v	100 mA	TM 21	E1. 62
$6 \cdot 5 \mathrm{v}-0-6.5 \mathrm{v}$	750 mA	TM 7	£2.16
6. $3 \mathrm{v}-0-6 \cdot 3 \mathrm{v}$	100 mA	TM 33	£1.62
6.3 v	2 amp	TM 4	E1.35
$8 \cdot 5 \mathrm{v}$	1 amp	TM 12	£1. 62
$8 \cdot 5 \mathrm{v}+85 \mathrm{sep}$ winding	\dagger amp	TM 12	£1.62
9 v	1 amp	TM 5	£1.62
9v	1 amp 'c' core	TM 6	£1.50
9 v	3t amp	TM 11	£2.70
sv	5 amp	TM 38	£3.24
10v	25 amp	TM 15	£4.36
10v-0-10v	12t amp	TM 15	E4.35
12v-0-12v	4 amp	TM 27	E4.32
12v	$t \mathrm{amp}$	TM 9	E1.05
13 v	t amo	TM 7	£2.18
12v	1 amp	TM 10	E1. 38
12v-0-12v	50 mA	TM 19	E1. 62
12v-0-12v	1 amp	TM 41	E3. 24
15v tapped 9v	2 amp	TM 19	¢2. 70
15v	7 amo	TM 27	64.32
15v-0-15v	3i amp	TM 27	E4. 32
15v-0-15v	31 amp	TM 35	E4. 36
17 v	amp	TM 12	${ }^{\text {c }} 1.62$
18 v	amp	TM 13	¢1.90
20 v	$t \mathrm{amp}$	TM 14	£1.62
20v	5 amp	TM 27	E4.32
20 v	12t amp	TM 15	E4. 36
20v-0.20v	6 amp	TM 15	ع4.86
13 v	100 mA	TM 21	¢1. 62
24v	$1 \% \mathrm{amp}$	TM 16	f.2. 12
24 v	2 amp	TM 17	£2.70
$24 \mathrm{v}+2 \mathrm{v} 7 \mathrm{amp}$	2 amp	TM 39	£2.97
24 v	4 amp	TM 40	E.3.78
25v	1) amp	TM 18	£2.43
26v	2 amp	TM 39	£2.98
30v tapped 24, 20, 15 \& 12	34 amp	TM 27	¢4. 32
30 r	8 amp	TM 15	
37 v	37 amp	TM 34	£31.86
40 v tapped at 30v, 200 c \& 10 v	6 amp	TM 15	E4. 85
bev-2 amp with 6.3 v shrouded		TM 22	£4.86
50 V	8 amp	TM 29	£11-65
60 v	5 amp	TM 24	£.7.02
$75 \mathrm{v}-3 \mathrm{amp}$ with 6.3 v shrouded		TM 23	E. 10
75v	4t amp	TM 24	£ 87.02
80 v tapped 60 v \& 75v	4 amp	TM 24	£7.02
100 v	1 amp	TM 25	E.7.02
100v-0-100	\dagger amo	TM 25	£7.02
130 v tapped 120 v	- amp	TM 28	£3.78
200 V	1 amp	TM 25	£ 7.02
250v-0-250v with 6.3 v 2 A	50 mA	TM 36	£.3.78
250 V	100 mA	TM 36	E3.78
500 v	50 mA	TM 36	£.3.78
260 V	60 mA	TM 26	E3.24
1 Kv		TM 44	P.O.A.
2 Kv		TM 44	P.O.A.
${ }_{5}^{5 \mathrm{KV}}$ 8.	5 mA	TM 30	£.7.02
$8 \cdot 5 \mathrm{Kv}$	10 mA	TM 31	£10.28

Quantity prices available. Please, unless you are calling. Quick Cuppa. Mini immersion heater ideal carriage. Quick Cuppa. Mini immersion heater, Ideal for taking on
holiday, for making a "quick cuppa" tea, or tor having by the bedside for baby's feed etc. 250 w heater 2330 volts or approxlmately 90 watts $Q 110$ volts. Price $\mathbf{E 2} \cdot 95$.
Neon $\mathbf{S c r e w d r l v e r s . ~ T w o ~ u s e f u l ~ m o d e l s : - ~} 7 \mathbf{1}$ " price 70ρ and $5 t^{*}$ price 550 .
$240^{\circ} 1 \mathrm{~mA}$ Moving Coll Panel Meter. A large instrument. size approximately $4 i^{N}$ square at the front and $4 t^{\prime \prime}$ deep.
Intended for panel mounting, Its scale is calibrated $0-7$ and it was intended to be used as rev. counter, £14 each
Presture Switch. Adjustable through a range of pressures from where it can be operated by sucking or lowing to
approx. 50 psi-10 amp changeover microswitch, meta! body approx. 50 psi-10 amp changeover microswitch, meta! body Push-Push Switch. Fixed through panel this is a ratchet actlon, double pole changeover switch, the contacts we
understand are hard gold plated. Spindle is t" diameter so that a standard radio knob can be fitted. Price $30 \mathrm{p}+3 \mathrm{p}$. Good quantity available at usual ditcounts.
C.R.T. Display Unit. We feel this would be easy to convert
to an oscilloscope, it has all the necessary Ingredients. It to an oscilloscope, it has all the necessary In oredients. It
is in a case size $15^{\prime \prime} \times 10^{\prime \prime}$ a $11^{\prime \prime}$ approx. with a carrying is in a case size ${ }^{15^{\prime \prime}} \times 10^{\prime \prime}$ " ${ }^{11^{\prime \prime}}$ approx. with a carrying
handle and a front protection hap. Plenty of controls and is hande and a tront protection flap. Plenty of controls and is
mains operated through step down transformer. Size of the mains operated through
tube is $3^{\prime \prime}$. Price $£ 16 \cdot 75$.
VU Meter Edgewise mounting. through hole size $1 \frac{1}{\prime \prime} \times x$
$t^{\prime \prime}$ approx: these are 100 microamp fsd and fitted with internal $t "$ approx: these are 100 micro amp isd and fitted with internal
6 volt bulb for scale illumination, also have zero reset. The scale is not calibrated but has very modern appearance.
Price $£ 1$. 5 . Cassette Mechanlem. Jap. made to rigid speciflcation.
These will fit many music centres and cassette players. These will fit many music centres and cassette players.
Chassis size approx. $4 t^{\prime \prime}$ wide by 5$\}^{\prime \prime}$ deep, 6 v motor and chas position counter at the rear. The six levers for "'play"'
"last forward". "rewind", "stop", record and elect are ali "hast forward" " "rewind". "stop"", record and eject are ali
at the front, as is the auto mechanlsm to stoo the motor when at the front, as is the auto mechanlsm to stop the motor when
tape end is reached. These are new and unused and have
and record playback and erase heads. Limifed quantity. Price
$\mathbf{£ 1 5} 50$. Shortened 3kw Tangential Heater. This is in fact
near enough the same size as the normat 2 kw tangential. Motor runs a bit faster to compensate for the increased heating and the fan lmpellers are metal to save any possi-
billiy of extra heat distorting them. The heater element is tapped so that 1, 2 or 3 kw 's of heating can be used or of
course this will biow cold. Price £ $8 \cdot 55$, post $£ 1 \cdot 50 p+12 p$. Omron 410 Relay, Built like a contactor. this has a elear plastic cover over the working parts but the terminals are all brought out of the front so that connection may be made without removing the cover also the relay may be fitted Into
position and the wires brought to it afterwards, generously rated at 10 amps the contacts are really more like 15 amps. they are changeover and there are 4 sets of them. A really robust relay which looks as though it will give a lifetime of
service. Size $3 i^{\prime \prime} \times 3^{\prime \prime} \times 3 \mathrm{~m}^{\prime \prime}$ high. Price £4 so. service. Size $3 \mathbf{l}^{\prime \prime} \times \mathbf{3}^{\prime \prime} \times 3 \mathbf{1 "}^{\prime \prime}$ high. Price E4.50.
track Carifidge Players. In car units with ampliffers but
this amplifler may need attention. mechanism guaranteed O.K. £. $\cdot \boldsymbol{\omega}+19 \mathrm{p}$.

Low rom Crouz et Melers. Two more types have just come in; these are 2 rDm and 15 rDm, both 115 v motors but as these
consume only two to three watts it is a simple matter to divide the mains voltage using a mains working condenser, resistor auto transformer or of course use them in pairs.
Price $£ 2.25, ~$
2 Price $£ 2 \cdot 25, £ 2 \cdot 00+16 \mathrm{p}$ each.
12 volt Minlature Relay. Gold plated contacts with plastic
dust covers 4 sets of changeover contacts, 9 p , bases 45 p .

MULLARD UNILEX A mains operated $4+4$ stereo
system. Rated one of the finest periormers in the stereo field this would make a wonderiul oif for almost anyone in eaty-to-
assemble modular form and
 complete with a pair of Plessey
speakers this should sell at about
speakers this should sell at about $\varepsilon 30-$ but due to a special
bulk buy and as an incentive for you to bulk buy and as an incentive for you to buy this month we
offer the system complete at only $£ 15$ including VAT and postage.
SPIT MOTOR WITH CARTER G/BOX
Probably one of the best spit motors $\begin{gathered}\text { Probab OrIginaly Intended to be used } \\ \text { made. }\end{gathered}$ In very high priced cookers, however
inls can be put to plenty of oiner uses, drive a tumbler for stone polishing: In fact there are no ends

PP3/PP9 REPLACEMENT MAINS UNIT
Japanese made in plastic container
with leads slze $2^{2} \times 1 t^{\prime \prime} \times 1 \frac{1}{n}^{\prime \prime}$, this is Ideal to power a calculator or radio.
it has a full wave rectifled and amoothed it has a full wave reclifed and smoothed of Up to $100 \mathrm{~mA} . £ 2 \cdot 53$.

SHORTWAVE CRYSTAL SET
Although this uses no battery it gives
really amazing resulis. You wlil receive an amazing assortment of
stations over the 19, $25,29,31$ metre bands. Kit contains chassis front panel and all the parts fl.g4-crystal
earphone 35 p Including VAT and postage

RADIO STETHOSCOPE

Easlest way to fault find, traces signal from aerial to speaker when signal stops you've found the fauft. Use it on Radio transistors and parts including probe tube, twin stetho-set. £3.95.

BREAKDOWN PARCEL

Four unused, made for computer units and these components contike those and these component most computer panels, have wire ends of usable length. The iransistors for instance have leads over $1 "$ long-
the dtodes have approx. " leads.
major c components is as follows:-17 assorted transistors-38 assorted diodes- 60 assorted resistors and condensers- 4 gold plated plugs in unlis which can serve as multipin plugs or as hook up boards for experimental
or quickly changed clrcults (note we can supply the socket or quickly changed clrcults (note we can supply the socket
boards which were made to receive these units). The price boards which were made to recelve these units), The price siderably less than value of the transistors or diodes alone)
OON'T MISS THIS SPLENOIO OFFER.
INFRA RED BINOCULARS
Made for military purposes during and
immediately after the last war to enable snlpers. vehicle drivers, etc. to see In the dark. The binoculars have to
be fed from a high voltage source (5 KV approx.) and providing the oblects are In the rays of an Infra red beam then the binoculars will enable these objects to be seen. Each binocular eyo tube
contains a complete ootical lens contains a complete optical lens
system as well as the infra red cell. The binoculars are unused belleved to be in good order. Sold without

SOUND TO LIGHT UNIT
Add colour or white itght to your ampliffer,
Will operate 1,2 or 3 lamps (maximum
450)

MINI-MULTI TESTER

 Amaring, deluxe pocket size pre clsion moving coit instrument-lewelled bearings-1000 opv-mirrored scale.
11 Insant ranges measure:-
DC volls 10, $50,250,1000$
$A C$ volts 10, $50,250,1000$ AC volts 10, $50,250,1000$
OC amps $0-1 \mathrm{~mA}$ and $0-100 \mathrm{~mA}$ OC amps $0-1 \mathrm{~mA}$ and $0-100 \mathrm{~mA}$
Continulty and resiztance $0-150 \mathrm{~K}$ onms.
Complete with insulated probes,
leads, battery, circuit dlagram and leads, battery,
Unbellevable value only $£ 5.500+50 p$ post and insurance.
FREE Amps ranges kit enable you to read AC current from
$0-10$ amps directly on the $0-10$ seale. It's tree if you purchase quickly, but it you already own a mini tester and would like

Terms: Prices include Post \& VAT. But orders' under $£ 6 \cdot 00$ please add $50 p$ to offset packing. Bulk enquiries-Please Phone for Generous Discounts 6881833.

J. BULL (ELECTRICAL) LTD
 (Dept. P. W.), 103 TAMWORTH RD., CROYDON CR8 1 SG

IT'S FREE!
Our monthly Advance Advertising Bargains List gives details of bargains arriving or just arrived-often bargains sell out before our advertisement can appear-lit's an interesting list and it's free-just send S.A.E. Below are a few of the Bargains still available from previous lists.
Mains Transformer. Small 2 secondarles, 115 volts at 10 mA and 8.3 voit $@ 1 A$. a uselul transformer for manyinstruments.
$\sum 2.70$.
25 Witt Audio $S y s t e m s ~ i n ~ C a b i n e t s . ~ C o m p r i s i n g ~$
$8^{\prime \prime}$
woofer 25 Wat Audio Systems in Cabinets. Comprising $8^{\prime \prime}$ wooter mounted in simulated teak finlah cabinet with fabric front. These are extremely good quality units comparable with those selling at twice the price. Cabinet size approx. $20^{" 1}$ hlgh
$10\}^{\prime \prime}$ wide and 8$\}^{\text {" }}$ deep, heavy cablnet made of thick blockboard. Price £25. ©o the pali, well worth your coming In to collect them but if you cannot collect them, then still worth adding f 5.00 the pair for carriage.
Another $\mathbf{S p e c i a l}$ ltem, for callers
Another Special liem, for callers thls month is a pen re-
corder. Mains operated this is biggish in fiument which corder. Mains operated this is biggish intirument which
probably cost originally several hundreds of pounds. We pre having a reverse auction on this. The starting price is $£ 50$ but the price will come down $£ 5 \cdot 00$ per week until it is sold. Electronics. Two special bargains in this field, the Opto Electronics. Two special bargains in this field, the
OPCP 70 price 75 p and the ORP 12, price 85 p .
Tlit Swltch 15 mm . Meant to swlth ofl heater should it be knocked over; this pendulum operated switch is on only when it is in the upright position. If could be Incorporated in burglar alarm, car alarms etc. Contacts look quite able to Neon Indicator Lamp. Two features about this particular one are-it has screw down terminal connectors for wiring
and is fixed by a single threaded screw. The lens is clear oy you could colour to sult your needs. Price 35 p ndicator Lamp Holders. For low voltage lamps (Lillpui) ype, we have these in five difle.
Twin Padded Flex, 5 amp Ideal for some electric irons and appliances which require very fiexible lead, 10 metre lengths.
Price $£ 1 \cdot 50$.
Heating Pads. These measure $11^{\prime \prime}$ long $\times 83^{\prime \prime}$ wide and are nat. Look rather like pleces of thick blotting oaper. Wire ended 250 watt or joined in serlas they would be approxi-
mately 60 watt each. Oozens of uses. Price top or two for
Rod Thermostat. For high temperatures up $10550^{\circ} \mathrm{F}$. This is djustable either at the head or remolely by a length of flexible
Interval Timer. As used in achools and simflar establishments to trigger oft the bell which sounds the end of Jassons, lunch breaks etc. This is another one off llem we feel for callers only. It is in pollsh hardwood case. glase fronted.
comprises a 24 hour switch, a large brass disc and other comprises a 24 hour switch, a large brass disc and other intervals and a pair of contacts to s witch a bell or something slmllar at precise times during the week. Price $£ 55 \cdot \mathbf{0 1 .}$.
Two More Mullard Modules. Pre amp module ref. 1181/, 183 , Two More Mullard Modules. Preamp module ref. $1181 / 1183$, stereo or mono. It is on a printed eircult board with wire
connectlons. Supplied complete with connection diagram. Price 99p.
Mullard IF Module Type 1181. In a metal case $2 t^{\prime \prime}$ Iong x
$1 t^{\prime \prime}$ wide x thick. Can be mounted on a printed circuit board connection to wire lead outs. Price $£ 1 \cdot 25$.
Silfeon Dlodes. Two special bargains this month. 400 volt Sllicon Dlodes. Two special bargains this month. 400 volt
$1 \mathrm{amp}, 10$ for $\kappa 9.25$. 50 volt $1 \mathrm{amp}, 20$ for $£ 1-25$. Large quanitimp, avallable at very much discounted prices.
Flex Cable Bargains. Core size Smm 2 white pve outer, pve covered cores. Coloured coded with the usual blue, brown Electrlcal Instaliation Work. We have good stocks of all the mains items required for ring malns and light installations, or example we have 2.5 mm twin and earth pre covered ai
$£ 12.50+£ 1 \cdot 00$. Carriage $£ 2.00+16 \mathrm{p}$. We hope to make a complete list of the Installation items we have in thme for our nex! newslatter but if there is anything you are wanting by all means give ut a ring.
Plastic Case Sactions, Smatl very tough plastic casea at
 288 's or an A and a B to get difererent deths. 1e. . 11^{\sim}. $1 N^{N}$ or $2^{\prime \prime}$-note these are external dimensions, the wall the
the case of $15^{\prime \prime}$ thick. Price. section A 25 p , B 34 p.
Computor Capacitors. Made by famous American companles for working under very exacting conditions. These are
large condensers In Alicans for upright mounting. Ideal if you want to make a large storage bank 15,500 uf 10 volts work. ing, 15 volts surge, 10 for £f.
Alarm Bells. Holiday fime can otten be a heyday for house breakers; why not fit a really loud alarm as good a method
as any is to use trigger mats under carpets, at windows and as any is to use trigger mats under carpets, at windows and
doorways. Join them all in serles through a latchling circult to sound off a really loud bell or hooter. prices of these various parts are as follows:
Loud RInging $\mathbf{B e l l}$, industrial type with $6^{\prime \prime}$ gong. 24v, OC operated, price $\varepsilon 7$. 50
Switch Trigger Mat, size $24^{\prime \prime} \times 18^{\sim}$ for going under carpe 24v Relay with latching contacts. Price 850 .

24 v 1 amp DC Power Supply Price $£ 5.50$.
Circult Diagram. No charge, just request.
Circult Diagram. No charge, Just request.
Mouth Operated $\mathbf{S w l t c h . ~ P r o b a b l y ~ n o t ~ m a d e ~ w i t h ~ t h i s ~ u s e ~}$ Mn mind, more likely made for washing machines to control water level etc. thls is a sensitive low phesture device which operates three 1 pole changeover switches at different levele of pressure but all within a normal persons blowing capacity-
blow gently Into it and No. 1 swlth operates, blow a little blow gently Into it and No. 1 witch operates, blow a little
stronger and No. 2 operates, blow harder still and No. 3 operates. The switch is airtiont so welght of water or other
fuld substance could operate it. Undoubtedly a swltch with fluld substance could operate it. Undoubtedly a swlteh with
very many applications. Oisctype consiruction, this is approxivery many applications. Olse type construction, this as approxi-
mately 31^{\sim} dia. x if mately $3 / 10^{\prime \prime}$ diameter-electrical contacts we estimate a PS.4. Price E1-95. Large quantity available.
Powerful Induction Motor. 1i" stack, double ended, would drive a small lathe, drisi or grinder or would power a blowing or extracting fan. Fit sultable pulleys and it would drive a
pebble pollsher or similar, being double ended it will drive in either direction. Can also be fixed from either end, fixing bolts are fitted and these are 1 il apart. Spindles $\mathrm{i}^{\prime \prime}$ diameter. extend is" beyond each end plate. A motor like this would cost at least $£ 3$ from makes but w
offer at $£ 2 \cdot 50$, Order Ref. MM. 10.
Can any reader holp! We urgently need some reasonably priced decoders to go with the f.M. Yuner we hall. You can try to do you a good turn some day-thank you.

B. BAMBER ELECTRONICS

OSMOR 10V REED RELAY COILS 1 k ohm coil) to fit " reeds (not supplied) 2 for 50 p . 4 for ${ }^{4} \mathrm{CH}$
VHF CHOKES wound on 6 -hole tubular lerfites. 5 for A"p.
DUAL TOIE HEANK $1^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$ with screw-In clamps. 3 tor 50 p .
MAINS TESTER SCREWDRIVERS 100

DIAGONAL SIDE CUTTERS \& ${ }^{\circ}$ E2-20. DIAGONAL SIDE CUTTERS \&i" £2-20. e4.00. LJ7 (with wire holding device) $\mathrm{E4} \cdot \mathrm{se}$. MINIATURE FILE SETS. Set of $6 \mathrm{Ez} \cdot 20$. Set of 10 es ch (Round, flat. etc.)
TAP AND DIE SETS (18 piece) contaln 1 each of $0,2,4,6,8$, BA SIZES in DIes, Plug Taps. Taper Taps + American type tap
wrench, Ttypetap wrich, Die Holder. E12. 50 LARGE ELECTROLYTIC PACKS. COnLARGE ELECTROLYTIC PACKS. Contain rande of large electrolytic capacitors,
low and high voltage types, over 40 pleces, ع3-00 per pack ($+125 \%$ VAT).
Slider Switches. 2 pote make and break for Slider Switches. 2 pote make and break (or the two centre plns), 4 for 50 p .
ANEWRANGE OF QUALITY BOXES A Aluminium Boxes with lids.

VInyl Coated Instrument Cases
Light Blue tops and plain lower sections. Very smart finis
WB1

WB1	$5 \times 2 t=2 t$	75 p
W82	$6 \times 4\} \times 18$	E1. 35
W83	$8 \times 5 \times 2$	\&1. 80
WB4	$9 \times 54 \times 24$	¢200
WBS	$11 \times 62 \times 3$	E2 25
WB6	$11 \times 7 \pm \times 3 t$	E2. 50
W87	$12 \times 6 \frac{1}{2} \times 5$	¢2. 85
WB853	$8 \times 5\} \times 3 t$	E2. 25

MAINS TRANSFORMERS. Type 15/300 240 V input. 15 V at 300 mA out put . 11 - 50 oach. $240,220,110$, 0 V Input. 45 V at 100 mA . ef 50 ench

PLEASE ADD 8% VAT UNLESS OTHERWISE STATED
A NEW RANGE OF SPEAKERS \& AT BARGAIN PRICES. CELESTION PRICES. n. EIPTICAL CELESTION $8{ }^{3 \prime \prime}{ }^{*} \times{ }^{\circ \prime \prime}$ ELIPTICAL TYPEL2 +12 YRIANGULAR CORNER CABI. NETS. Smart woodgrain Formica type finish with nylon grille. Overall height $23^{\prime \prime} x 12^{\prime \prime}$ wide. Contain three $15 \mathrm{ohm} 61^{\prime \prime} \times 4^{\prime \prime}$ Full
range speakers In parallel +100 V line transformer (easily disconnected for 5 ohm 12 peratlon . $£ 7.50$ each (or 2 for $£ 14.00$) + 121\% VAT.
YPPE MTOA CEILING SPEAKERS. White piastle fascla $10{ }^{\prime \prime}$ square, top recess mounting peaker. 54.00 each $+12 \%$ VAY. TYPE LI PORTABLE SPEAKER CABINET. Smart woodgrain Formica type finigh with nylon orille, $15^{\prime \prime}$ high $\times 14^{\prime \prime}$ wide $\times 7^{\prime \prime}$
deep (tapering), Containing $10^{\prime \prime}$ round 15 ohm full range soeaker +100 V line transormer. $\mathbf{5 7} \cdot 00$ each +121 VAT. TYPE'HTAHOTEL SPEAKER CABINET, Wood veneered, $12 t^{\prime \prime}$ wide x st $5 t^{\prime \prime}$ high x $31^{\prime \prime}$ deep, with aluminium grlile + volume
control and 4 way + ofl switch panele on front. Very mart. Contains 3 ohm $5^{\prime \prime} \times 3^{\prime \prime}$ allptical apeaker +100 V line transformer. 55-0ieach + 121% VAT.
TYPE toT9 FULL RANGE SPEAKER, 10^{*} dia, 15 ohm, es.00 each (or 2 for $£ 9.00$) +

SEMICONDUCTORS
$8 \mathrm{~S} \times 20$ (VHF O C / M Mult). 3 for 50 p .
PBC108 (plastic BC108), 5 for 50p.
BFY51 Transistors. 4 for 4 p.
BCY72 Transistors. 4 for 5pp.
PFP audio type TO5 Transistors, 12 for 25 p F152 (UHF amp/mixer). 3 for 50 p . 2N38to Fot., 3 for 60 p .
BC158 PNP SILICON, 4 for 50p.
BAY 31 Signal Dlodes, 10 for 35 p . IN4148 (INO14) 10 for 25 p .
SCRt 400 V at 3A, stud type, 2 for $£ 1 \cdot 00$. TIP2955 SIlicon P'NP power transistor, 60 V at 15A. 00 Watts, Fiat pack type, 2 for $£ 1.50$. GERMANIUM DIODES, approx 30 for 30 p .
741 CG op ampa by RCA. 1 for ft .

SPEAKER CABINET TYPE M321, Whit matt finish wood cabinet with white sprayed cloth grille, $9^{\prime \prime} \times 9^{\prime \prime} \times 41^{\prime \prime}$ deep. contalning 63 , + 121% VAT. with internal mains psu and 25 watt mono amplifler (100 V in B). To play standard 8-track cartridges. All contained in a smar
 cliccuits. Brand new and boxed. SPECIAL OFFER E.35-00 each. $+121 \%$ VAT
VIDICON SCAN COILS (Transistor tyo but no data) complete with vidicon base Es 50 each, Brand New.
12V CONTINENTAL TYPE PLUG-IN RELAYS, 2 pole change-over, tep each Bases for above (only suppiled with relays) GLASS EEAD FEEDTHROUCH INSU GLASS EEAD FEEDTHROUCH INSU LaTORS. Solder-in type, overall dia DIE-CAST ALUMINIUM BOXES

Sond for Latest Price Liel

PLASTIC PROJECT BOXES with acrew on llds (in black ABS) with brass inserte. Type NB1 approx $3 \ln \times 2 \neq \ln \times 1+\ln 45 p$ each Type NE3 approx4i.! $\times 3$ in \times itinsspeach ro3 transistor Inaulator sets, 10 for Step PLUGS AND SOCKETS
BNC Plugs, new Sop each.
N-Type Plugs 50 ohm, 60p each, 3 for E1-5t. reducers, 75p each hand new, packed with SO239 Sockets (PTFE), brand new (4-hole fixing type). $60 p$ eac
SOLDER SUCKERS (Plunger type). Stan dard Model. ES 50. Sklrted Mode EK. Spare Nozzlos cop each
NEW MARKSMAN RANGE OF SOLDERING IRONS.
S1400 40 W 240 V e. 50.
S125DK $25 \mathrm{WW} 240 \mathrm{~V}+$ bite atc., KIT ¢5. 30. Markam 8 TAND with spring and sponge fo Spareblts MTP (for 15 W) 60 p . MT5 (for 25 W) 50p. MT10 (for 40W) 55p.

TCPZ TEMPERATURE CONTROLLED RON.
Romperature controlled Iron and PSU. ess + SPARE TIPS
Type CC ingle flat. Type K double flat flne thp. Type P, very fine tip $£ 1.50$ each $+V A T$
(8 P). MOST SPARES AVAILABLE.

WELLER SOLDERING IROM
EXPERT. Bullt-In=spotiloht illuminates work. Pistol grip with fingertip telgoer. High EXPERT SOLDER CUN
EXPERT SOLDER GUN MOOD E12.00.
EXPERT, SOLDER GUN KIT (spare bits.
pare bits 40p palr.
MIXED COMPONENT PACKS, containIng resistors, capaclitors, pots, etc. All new. ast.
BSR AUTOCHANGE RECORD PLAYER for $7^{\prime \prime}, 10^{\circ}, 12^{\prime \prime}$ cuecords. device, ${ }^{33-45-78 R P M}$, Stereo Ceramle cartridge and styll Siand how $£ 14 \cdot 0+12 \%$ VAT GARRARD AUTOCHANGE RECORD PLAYER DECKS, Model $6 \cdot 300$, with cue device, $33-45-78$ ip.m.m. for 7^{*}, $10^{\prime \prime}, 12^{\prime \prime}$
records. Fitted with KSi 18 Stereo Ceramlc records. Fitted with KSA1B Stereo Ceramle
cartridge and styll Brand new $\mathrm{El} \cdot 00+12 \dagger \%$ cartridge and styll Brand new $£ 1 \cdot 00+12 t \%$
$V A T$. Pleae note, record decks sent by Roadine, allow 14 days for delivery.
FULL RANGE OF BERNARDS/BABANI ELECTRONICS BOOKS IN STOCK. VARICAP TUNERS Mullard typo ELC1043/ 05. Brand New. $E 5 \cdot 60+12 t \%$ VAT.

BARGAIN PACK OF LOW VOLTAGE 50 V working. Seatronle Manufacture. Approx 100 . E1. 50 per pack +12$\} \%$ VAT.
Dubiller Electrolytice, $50 \mu \mathrm{~F}, 450 \mathrm{~V}, 2$ for 50 p . Dubtlier Electrolytlcs, $100 \mu \mathrm{~F}, 275 \mathrm{~V}, 2$ 1or 50 p . Plessey Electrolytics, 470 ufF, 63 V , 3 lor 50 p . TCC Electrolytics, $1000 \mu \mathrm{~F}, 30 \mathrm{~V}$, 31 1or 60 P . Dubiller Elecirolytles, $5000 \mathrm{uF}, 35 \mathrm{~V}$, 50 p each.
Dubilfer Electrolytics, 5000 F , 50 V , 60 p each Dubilier Electrolytice, $5000 \mu \mathrm{FF}, 50 \mathrm{~V}$, 90 p each screw terminals, with mounting clips. S0p each.
PLEASE ADD 124% VAT TO ALL

J. BIRKETT Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF
 Tel: 20767

50 ACI28 TRANSISTORS. Branded but Untested @ 57p. MAINS TRANSFORMERS 240 Volr Inpur, 22-0-22v 500mA@ cl .60. 2200 uf 100 v .w. ELECTROLYTIC CAPACITORS at 60 p each.
JACKSON TYPE 5pf YARIABLE CAPACITORS (a) 75 p.
100. C280 CAPACITORS Assorted for 57p.

ERIE RED SUB-MINIATURE - Oluf 100v.w. CAPACITORS@ $5 p$ ea 502 WATT ZENERS Assorted Untested for 57p.
MOLLARD PRE-AMP I.C. TAA 435 with date @ 35p.
ITT. I5uf 400v.w. POLYESTER CAPACITORS @ 20p doz
400 mW UNMARKED GOOD ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}$, $24 \mathrm{v}, 30 \mathrm{v}, 33 \mathrm{v}, 36 \mathrm{v}$. All $2 t 10$ for 40p.
ZTXIOB FERRANTI TRANSISTORS at 7 for 50p.
MAINS TRANSFORMERS 240 Vole Input, 24 Vole Tapped 14 Vole I amp @ E1.25 (P \& P 25p).
MAINS TRANSFORMERS 240 Vole Input, 55 Volt 10 Amp out @ $\mathbf{4 5} 50$. AUDIO I.C. LM 380 with circuits @ 80p.
CAR RADIO IN LINE FUSEHOLDERS for $1 \frac{1}{\prime \prime}$ Fuses @ 22p.
1 MHz Plus 100 KHz CRYSTAL with C-MOS Calibrator Circuit @ $2 \boldsymbol{2}$. 20 PHOTO TRANSISTORS, DARLINGTONS Assorted Untested @ 51 .
50 VARICAP DIODES LIKE BAI02 etc. Untested @ 57p.
10 HIGH CAPACITY YARICAP DIODES Untested 300pf for 57p.
TVWALL OUTLET BOXES at ISp each.
S.C.R's 10 Amp Type. 100 PIV @ 25p, 400 PIV @ 50p, 800 PIV @ 60p. SUB-MINIATURE TANTALUM CAPACITORS $4.7 \mathrm{Jf} 10 \mathrm{v} . \mathrm{w}$. (@) 5p, 6 for 25 p .
2 GHz STRIPLINE NPN TRANSISTORS at $£ 1$ each.
PHONO SOCKETS, Single @ 5p, Double @ 10 p , Triple @ $15 \mathrm{p}, 4$ way @ 20p.
$3 / 16^{\prime \prime}$ COIL FORMERS with core @ 5p each, 6 for 25p.
SMALL R.T. TELESCOPIC AERIALS @ 60p each.
McMURDO 8 Pin Plugs @ 20p. 8 Pin Sockets (a) 20p, Covers @ 15p. 30 ASSORTED $10 \times A J$ CRYSTALS 5100 to 7900 KHz @ $\mathrm{El} \cdot 10$. 72 MHz IF TRANSFORMERS ${ }^{2 \prime \prime} \mathrm{z}^{\prime \prime} \frac{3}{\prime \prime}^{\prime \prime}$ at $15 p$ each.
IOOK TENTURN POTENTIOMETERS ar
IOOK TENTURN POTENTIOMETERS a $£ 1 \cdot 50$ each.
MULLARD ELECTROLYTICS 2240uf $40 \mathrm{v} . \mathrm{w}$. (a 40 p , $4500 \mathrm{uf} 25 \mathrm{v} . \mathrm{w}$. @)
 DUAL GATE MOS FET LIKE 40673 @ 33p, 4 for El 10 .

- Oluf $125 v . w .1 \%$ CAPACITORS at 10 p each.
VARIABLE CAPACITORS $125+125 \mathrm{p}$. 55

VARIABLE CAPACITORS $125+125$ pf @ $55 p$, 100 +200 pf @ 55p,
$250+250+20+20+20$ pf $95 p 500+500+25+25$ ($250+250+20+20+20$ pf @ $75 p, 500+500+25+25 p f @ 55 p_{0}$.
RCA VERSION OF BFY $90(2 N 2857)$ TRANSISTORS
RCA VERSION OFBFY90 (2N2857) TRANSISTORS @ S5p.

- Iuf $100 \mathrm{v} . \mathrm{w}$. POLYESTER CAPACITORS 20p doz.

Please add 20 p for post and packing, unless otherwise stated, on U.K. orders under $\mathbf{6 2}$, Overseas orders at cose.

7) Wilmslow Audio
 THE firm for speakers!

SEND 15P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

ATC AUDAX BAKER BOWERS \& WILKINS - CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC - FANE GAUSS - GOODMANS - HELME - I.M.F. ISOPHON - JR JORDAN WATTS - KEF - LEAK LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD RAM RICHARD ALLAN SEAS - TANNOY - VIDEOTONE WHARFEDALE

WILMSLOW AUDIO

(Dept. P.W.)
SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILHSLOW 26213 FOR HIFI

The automatic Logic Monitor LM-1.

Just clip it over your IC.
It instantiy and accurately shows both static and dynamic logic states, on a bright, 16-LED display.

It finds its own power.

It cuts out guesswork, saves time, and eliminates the risk of short-circuits.

LM-1 is suitable for all dual-inline logic ICs; DTL, TTL, HTL, CMOS; up to 16 pins.

LED on = logic state 1 (high), LED off = logic state 0 (low), and each LED is clearly numbered 1 to 16 in the conventional IC pattern.

Brief specification

	Brief specification
Input Threshold	$2 \mathrm{~V} \pm 0.2$ volts.
Input Impedance	100.000 Ohms
Input Voltage Range	4 volts minimum 15 volts
	maximum across any two
	or more input leads
Maximum Current Drain	$200 \mathrm{~mA} \omega 10$ volts
Maximum Input Frequency	$10,000 \mathrm{~Hz} 50 \%$ duty cycle
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Weight	$300 n c e s(85$ grams $)$
Maximum Dimensions	$4.0 \times 2.0 \times 1.8^{\prime \prime}$
	$102 \times 51 \times 45 \mathrm{~mm}$
LM-I will respond to signals up to 0.1 MHz when the input	
signal swing exceeds the threshold voltage by more than	
0.5 volts.	

Applications

Design, breadboarding. testing and checking new logic systems. Direct real-time monitoring of logic function in operating equipment. Long-term testing of individual ICs. Identification of unused elements, to find room for an extra gate. clock etc. Observing relationships between ICs on different boards of multiple board systems (you need more than one LM-1 to observe simultaneously. of course).
Plus dozens of other uses. You'll find them.

Try the LM-1 and you won't know how you ever managed without it!

It's Easy to Order
Ring us (01-8900782) with your Access, Barclaycard or American Express number and your order will be in the post that night. Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days.
Otherwise ask for our complete catalogue.
CONTNENTAL SPECIALIES CORPORATON
 REG IN LONDON: 1303780 VAT NO: 224807471 "TRADE MARK APPLIED FOR CCSC (UK) LTD 1977. DEALERENQUIRIES WELCOME IELEX: 8813669 CSCLTD.

TWIICE ROE: Mut rumertas

The I.C.E. range of multimeter provide an unrivalled combination of maximum performanse within minimum dimensions, at a truly low cost. Plus, a complete range of add-on accessories for more ranges, more functions.

Supertester 680R (illustrated)

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 1 \%$ fad on dec. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fid on ac.
* 80 Ranges - 10 Functions
* $140 \times 105 \times 55 \mathrm{~mm}$
$\mathbf{£ 3 2 . 0 0}+\mathbf{V A T}$
(fIFo Mani Dither add 80 p PR P)

Supertester 680G

* $20 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ fsd on d.c. $4 \mathrm{k} \Omega / \mathrm{V}, \pm 2 \%$ sd on ac.
* 48 Ranges - 10 Functions
* $109 \times 113 \times 37 \mathrm{~mm}$
£24.50 + VAT
(For Mall Direr add 80p P\&P)

Microtest 80

* $20 \mathrm{k} \Omega / \mathrm{N}, \pm 2 \%$ fad on dec. $4 k \Omega / V, \pm 2 \%$ sd on ac.
* 40 Ranges - 8 Functions
* Complete with case only $93 \times 95 \times 23 \mathrm{~mm}$
$\mathbf{E 1 6 . 6 0 + V A T}$
Electronic Brokers Ltd.
49-53 Pancras Road, London NW1 2QB
Tel: 01-837 7781

You'll learn a lot from the Heathkit catalogue.

The Heathkit catalogue is packed with scores of top quality electronic kits. Educational, practical and fascinating items which you can build yourself.
Send for the catalogue now.
To Heath (Gloucester) Limited,
Department PW78, Bristol Road,
Gloucester, GL 2 2 EE. (Registered number 606177. .)
Name.

Address

Please tick the literature you want and enclose the appropriate
amount in postage stamps.
Heathkit catalogue only \square (enclose 20p).
16 page computer brochure only \square (enclose 20p).
N.B. If you are already on the Heath kit mailing list you will
automatically receive a copy of the latest catalogue without having to use this coupon.

NEW Deluxe 12"CRT Ignition Analyser

When you receive your catalogue you'll get details of this free offer worth approximately $£ 4.75$.

heath

The world's biggest producers of electronic kits.

There are Heathkit Electronics Centres at 233 Tottenham Court Road, London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

－Q VALVE MAIL ORDER CO． CLIMAX HOUSE，FALLSBROOK ROAD， LONDON SW16 6ED

SPECIAL EXPRESS MAIL ORDER SERVICE

SEMICONDUCTORS

1119	－ 20	ASY	0.45
	－ 13		
		AS	5
AAZ17	0.25	ASZ20	75
AC107	0.75	ASZ21	50
		A	
AC128	0.25	Aus	1.70°
AC127	0.25	AuY	
AC128	0.25	Balds	$0.15{ }^{\circ}$
AC14	0.20	BA148	${ }^{\circ}$
AC141K	0.35	BA	10
AC142	0.20	BA155	
AC142K	－ 30	BA1	0.13
AC178	0.25	BAW65	
AC187	0.25	BAX13	
AC188	25	BAX16	7
ACY17	0.65	BC107	0.12
ACY18	0 S	BC108	12
ACrio	0.65	BC109	
	0.65	BCl^{8}	－ 0.15°
		BC114	
	1.25	BC115	0．19＊
AD149	0.70	BC116	0.10°
${ }^{\text {AD }} 161$	0.75 0.75	BC	
AD162	． 75	BC118	$0 \cdot 10^{\circ}$
AF106	0.45	BC125	0.18°
114	0.25	BC126	－ 25.
AF115	0.25		
AF116	－ 25	BC138	$0 \cdot 10^{\circ}$
AF117	0.25	BC137	$0 \cdot 16^{\circ}$
F139	0.40	BC147	－ 110°
188	1.50		
	． 45		
AF211	2.75	8C158	，
			0.11

$\begin{array}{ll}\mathrm{BC} 159 & 0.13 \\ \text { BC167 } & 0.13\end{array}$

BF194
BF195
BF196
BF197
BF200
BF224
BF244
BF257
BF258
BF259
BF336
BF337
BF338
BFS21
BFS28
BFS61
BFS88
BFW10
BFW 19
BFX84
BFX85
BFX87
BFX88
BFY50
BFY51
BFY52
BFY84
BFY

 \qquad

－0 o O O O O
｜

2N697
$2 N 698$

VALVES ＜

－4．E				$\begin{aligned} & \text { EL32 } \\ & \text { EL33 } \end{aligned}$	$\begin{aligned} & \text { 1-50" } \\ & 3-50^{\circ} \end{aligned}$
AZ31	1．10＊	ECC83†	0.55°	EL41	1－25＊
CBL31	1.50	ECC84 \dagger	0．60＊	EL42	1．75＊
CL33	$2 \cdot 00^{\circ}$	ECC85 \dagger	0．55＊	EL81	1 1．10＊
CY31	1．00＊	ECC88 \dagger	－ $75{ }^{\circ}$	EL84 \dagger	$0.45{ }^{\circ}$
DAF91＋	0.40°	ECC01t	$0.55{ }^{\circ}$	EL86 \dagger	$0.75{ }^{\circ}$
DAF96	1．00＊	ECC189	1．00＊	EL91	4.35°
DF91t	0．40＊	ECF80＋	$0.40{ }^{\circ}$	EL95 \dagger	－ $80{ }^{\circ}$
DF6	$1.00{ }^{\circ}$	ECF82 \dagger	－70＊	EL360	$2.75{ }^{\circ}$
DK91才	0.55°	ECH35	2．00＊	EM80	1.10^{*}
DK92	1． 25°	ECH42	1．15＊	EM81	$1.00{ }^{\circ}$
DK8	$1{ }^{10}$	ECH81†	$0.55{ }^{\circ}$	EM84	$1.00{ }^{\circ}$
DL92	$0.75{ }^{\circ}$	ECH83	0．35＊	EM85	$1 \cdot 25^{\circ}$
DL94	1．20＊	ECH84 \dagger	$0.85{ }^{\text {c }}$	EM87	1．50＂
OLOS	$1 \cdot 10^{\circ}$	ECL80 \dagger	$0.60{ }^{\circ}$	EN91 \dagger	$2.24{ }^{\circ}$
OY88／7t	0．55＊	ECL82†	$0.60{ }^{\circ}$	EY51 \dagger	$0 \cdot 75^{\circ}$
DY802	0.60°	ECL83	1－50＊	EYB6 \dagger	$0.50{ }^{\circ}$
Es8CC \dagger	1．00	ECL86 \dagger	$0.85{ }^{\circ}$	EZ40	1．25＊
EABC80	0．50	ECLL800	7．00＊	EZ41	1．25
EAC91	0.50	EF37A \dagger	$2.50{ }^{\circ}$	EZ80 \dagger	$0.50{ }^{\circ}$
EAF42	1－25＊	EF39 \dagger	1．60＊	EZ819	$0.50{ }^{\circ}$
EAF801	$1.75{ }^{\circ}$	EF40	1．15＊	EZ90	－ 6.60°
EB41	2．00＇	EF41	1．20＊	GZ32	－${ }^{\circ}{ }^{\circ}$
Ebolt	－ $40{ }^{\circ}$	EF42	2．00＊	G233	4.60°
EBC33	1．75＊	EF50¢	－60＇	G234 \dagger	1.52°
EBC41	$1{ }^{125}$	EF80；	0.50°	KT61	3.50°
EBC81	1－10＊	EF83	1．75＊	KT66	$5.00{ }^{\circ}$
EBC90	0．75＊	EF85 \dagger	0.50°	KT88	$6.25{ }^{\circ}$
EBF80	0．50＊	EF88 \dagger	0.60 －	KTW61	$1{ }^{175}$
EBF83	1．25＊	EF80	－ 600°	KTW62	1．75 ${ }^{\circ}$
EBF89 \dagger	0．45 ${ }^{\text {\％}}$	EF91t	－70＊	KTW63	1．75＊
EbL31	2.50°	EF92 \dagger	$0.75{ }^{\circ}$	MU14	1．00＊
ECC40	1．25＊	EF98	$125{ }^{\circ}$	N78	－00＊
ECC81t	0.50°	EF183 \dagger	0.70°	OA2 \dagger	0.55
ECC82 \dagger	0.47°	EFIB4 \dagger	0．70＊	OB2 \dagger	0.60

INTEGRATED CIRCUITS

7454
7460
7470
7472
7473
7474
7475
7476
7480
7482
7483
7484
7486
7490

WNNNNNN NNNNNNN NNNNNNNNNNNNN NNNNNNN NNNNNN $\begin{array}{ll}\text { 92AV } & 7.16 \\ 15082 & 1.80\end{array}$ $\begin{array}{ll}150 \mathrm{~B} 2 & 1.16 \\ 150 \mathrm{C} 2 & 1.50 \\ 150\end{array}$ な－4くな 0.30
0.1
0.2
0.26
0.26
0.26
0.37
0.37
.4
0.4
0.50
0.50
0.60
0.80
0.3
.5
0.3
1.4
1.65
0.3
0.4
.3
0.2
2
75
0.17
0.21
2
 7.18
1.80
1.50
2.30
$150 \mathrm{C4}$
211 ${ }_{807}^{723 A B} \dagger$
 5.00
5.00
1.00

3.80 | $2 A$ | $3 \cdot 39$ |
| :--- | ---: |
| 8.35 | |
| | 10.00 |

SEMICONDUCTORS POTS \& IRONS

SOCKETS
$\begin{array}{ll}1611 & 8 \text { pin DIL } \\ 1812 & 14 \text { pin DIL }\end{array}$ 181214 pin DIL $\begin{array}{ll}1613 & 16 \text { pin DIL } \\ 1614 & 24 \text { pin DIL }\end{array}$ $\begin{array}{ll}1614 & 24 \\ \text { pin DIL } \\ 1615 & 28 \text { pin DIL }\end{array}$ 1816 TO18 Transistor 1817 TU3 Transistor 16117 TOS Transistor

60.13 50.14 | co-14 |
| :--- |
| co |
| 0 | $\begin{array}{ll}\mathrm{C} & 15 \\ \mathrm{c} & 15 \\ 40\end{array}$ 6040 $E 045$ $\mathrm{CO} \cdot 12$ E 0.35 $£ 0.35$ $£ 0.12$

VOLTAGE REGULATORS

Positive

MVR7805 v.a. 7805 TO220 $£ 1.00$ MVR7812 v.a. 7812 TO220 £ $£ 100$ MVR7815 v.a. 7815 TO220 ह1 00 MVR7824 v.a. 7824 TO220 $£ 100$ Negative
MVR7905 v.t. 7905 TO220 $£ 140$ MVR7912 v.a. 7912 TO220 £. 40 MVR7915 v.a. 7315 TO220 $£ 140$ MVR7924 v.a. 7924 TO220 $\quad £ 1 \cdot 40$ v.a. 723 C TO99 LM309K TO3
$45 p$
45

ZENER DIODES

 400mw (8zy88! DO7 Glass encap-sulated range of voltages avail-
able. $13 \mathrm{v}, 22 \mathrm{v} .2 .7 \mathrm{v}, 3.3 \mathrm{v}, 3 \mathrm{vv}$ able. $13 v, 22 v, 2 \cdot 7 v, 3 \cdot 3 v, 39 v$,
$4.3 v, 47 v, 5-1 v, 5-6 v .62 v, 6-8 v$,
$7.5 v, 8-2 v, 9-1 v, 10 v, 11 v, 12 v, 13 v$, $15 \mathrm{v}, 16 \mathrm{v}, 38 \mathrm{v}, 20 \mathrm{v}, 2 \mathrm{v}$,
$30 \mathrm{v}, 33 \mathrm{v}, 39 \mathrm{v}$.
No. 224 tp ea. $1 \mathrm{w}-1$. ww Plasl/c and melal encap
sulated Range of voltage sulated Range of voltage
available. $1 \cdot 3 \mathrm{v} .22 \mathrm{v}, 27 \mathrm{v}, 3.3 \mathrm{v}$
$3 \cdot 9 \mathrm{v}$
 24 v .27
$68 \mathrm{v}, 72$

10w Melal slud tyoe sorn case. Range of voltages avaliable. $1 \cdot 3 v$ $5.1 v, 5 \cdot 6 \mathrm{v}, 62 \mathrm{v}, 68 \mathrm{v}, 75 \mathrm{v}, 82 \mathrm{v}$
$9.9 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 15 \mathrm{v}, 16 \mathrm{v}$
$18 \mathrm{v}, ~$ $4 \mathrm{vv}, 47 \mathrm{v}$.
$91 \mathrm{v}, 100 \mathrm{v}$ No. Z1035p صa.

SILICON RECTIFIERS	
200 mA	
IS920 50\%	¢0.06
IS921 100 v	£0.07
IS922 150 v	¢0.03
15923 200v	£ 009
IS924 300v	¢0 10
1 Amp	
IN4001 50y	60.04t
IN4002 100v	co. 05
IN4003 200\%	¢0.06
IN4004 400v	¢0.07
IN4005 600v	co. 08
IN 4006800 v	coo 09
IN4007 1000v	¢0 10
$\begin{aligned} & \text { 1.5 Amp } \\ & \text { IS015 } 50 \mathrm{v} \end{aligned}$	20.03
ISO20 100	6010
IS02t 200v	E0 11
15023 400v	20.13
15025600 v	E0. 41
15027800 v	¢0.16
150271000 v	60.20
IS031 1200v	6025
3 Amp	
1N5400 50v	E0. 14
1N5401 100V	5015
IN5 402 200v	C0 16
IN5404 400v	c.0. 17
INS 109630%	c.0. 21
IN5407800y	C0. 25
IN5408 1000r	E0. 30
10 Amp	
IS10150 50v	¢0 19
IS $10 / 100100 \mathrm{r}$	E0.21
IS10/200 200v	E0.23
1S10/400 400	60.35
IS10/600 600v	80. 42
IS10/805 800V	¢0 51
1510/1030 1000v	¢,0.60
IS10/1200 1200v	¢0.69
30 Amo	
1530/50 50v	¢0 56
IS32/100 100v	£0.69
1S39/200 200v	¢0 93
1530/400 400v	E1. 25
1539/600 600v	£1.76
1532/800 800v	K1.94
IS30/1000 1000w	E2 31
IS30/1200 1200v	¢2. $\mathbf{8 t}$
so Amp	
1570/50 50v	¢0 75
IS $70 / 100$ 100v	E. 6.8
IS70/200 200v	E1 80
IS70/400 400v	$E 175$
IS701600 600v	c.2. 25
IS70/800 800v	E.250
IS 7010001000 v	¢.300
BYX $38 / 30064300 v$	50.45
8Y $\times 38 / 60064600 \mathrm{~V}$	c.0. 80
8YX $38 / 300$ Rev 6A 300 v	c.0. 45
BYX $38 / 600$ Rev 8A 600v	E0 6

POTENTIOMETERS

CARBON POTS (Linear Track)
Single gang with wire end terminations, 6 mm " 50 mm plastic $\$$ haft 10 mm bushes supplied with shake proof washer \& nut. Tolerance \pm
1831 1k ohms $£ 0.26^{\circ} 183647 \mathrm{kohms}$ E0 25°

 $18412 \mathrm{M} 2 \mathrm{EO} 26^{\circ}$

CARBON POTS (Log Track)
 1844 22kohms $£ 026^{\circ} 1848470$ kohms $£ 0 \cdot 26^{\circ}$ 1945 47kohms $£ 026^{\circ} 18491 \mathrm{Meg}$

DUAL CARBON POTS (Lin Track) These high quality dual gang pots are fitted 50 mm plastic shaft 10 mm , bush ind sup plled with shake proof washer \& nut track tolerance $\pm 20 \%$ but matched to wlthin 2db of each other. VC3

DUAL CARBON POTS (Log Law) 1860 4k7ohms $£ 078^{\circ} 1864$ 100kohnis $£ 0.78$ 1861 10kohms £0 78. 1865 220kohms $£ 0.78^{\circ}$ 1862 22kohms $£ 075^{\circ}$. 186 K 470kohms $£ 0.78^{\circ}$ $186347 \mathrm{kohms} \mathrm{£0} \mathrm{73.1867} \mathrm{Mog} £ 0.78^{\circ}$ $18682 \mathrm{M} 2 £ 0.78^{\circ}$

SINGLE GANG SWITCHED (LIN Law) These potentiometers are filled with incordorated within the rolary action of the pot. Specification of pot is as VC1.
Switch rating 1 famps at 250 v AC

SWITCHED POT (Loo Track) Specification as VC2 but track having (log)
 1881 22kohm $£ 0.60^{\circ} 1885470 \mathrm{kohms} £ 060$
 1887 2M2 £0 60°

DUAL GANG LOG.ANTI-LOG POT 1888 Track specification as dual gang pot VC3 as above, but track mounted to log

SPECIAL VOLUME CONTROLS
A miniature 16 mm type replacemen volume control incorporating single pole On-off switch. Resistance value skohms

MINIATUAE ROTARY VOL

CONTROL
Skohms log law with on $/ 0$ ff switch. 20 mm dia. Supplied with fixing nut. Used mainly for replacement.
E0.54* VC9

WIRE WOUND POTS

A range of wire wound single gang pots with 10 mm bush and supplied wating, fitted proof washer and nut.
VCE
1891 toohms $£ 0.10 \quad 18952200 \mathrm{hms}$ £ $\mathrm{E} \cdot 10$
 1893470 hms £0. $80 \quad 1897$ 1kohms $£ 0.10$ $1894200 \mathrm{hms} £ 0.80 \quad 1898 \quad 2 \mathrm{k} 2 \mathrm{hmms} \mathrm{EO.50}$

18994 k 70 hms EO. 50

HURIZONTAL MOUNTING

Miniature type for transistor circuits. The wiper of the preset is provided with a slo for screw driver adjustment. The tags of
the preset will fit printed wiling boards with a plich of 2.54 mm . All tracks are linear law.
VC7

 $18052 \mathrm{k} 2 \mathrm{ohms} \mathrm{C0} 0 \mathrm{E}^{\circ} \cdot 1812470 \mathrm{kohms} \mathrm{E} 0.05^{\circ}$

PRE-SET POTS

VERTICAL MOUNTING

Miniature type for transistor circuits Wiper adjustment is made by a screw driver slot. Designed 10 ft 2.54 mm pltch
board. All tracks are linear law VC7
1816 100ohms $£ 000^{\circ} \cdot 1823$ 22kohms $£ 008^{\circ}$ $18172200 \mathrm{hms} \mathrm{E0} 08^{\circ}{ }^{\circ} 182447 \mathrm{kohms} \quad £ 0.08^{\circ}$

 1822 10kohms $£ 008^{\circ} 18292 \mathrm{M} 2 \mathrm{ohms} \mathrm{E} 0.08$

ANTEX IRONS

O/No. 1943. 15 watt high quality soldering iran totally enclosed element in a ceramic shaft fitted with $3 / 32^{\prime \prime}$ bft.
O/No. 1947 Replacement element for 1943 ron $£ 190$ O/No. 1944. Iron coated bit $3 / 32^{\prime \prime}$ for 1943 /No. 1945. Iron coated bit $1 / 8^{\prime \prime}$ O/No. 1948 tron coated bit $3 / 16^{\circ}$ for 1943 O/No. 1948. General purpose 18 watt iron fltted with iron coated bit. E. 40 O/No. 1952. Replacement element for 1948
Fion. 1.90 O/No. 1949. Iron coated bit $3 / 32^{\prime \prime}$ tor 1948 O/NO 1950 Iron colted bit 1/8" 2046 Iron 1950 . Iron coated bit $1 / 8^{\prime \prime}$ for 1948 O/No 1951. Iron coated bit $3 / 16^{\circ}$ for 1948
iron. 0046

\square

0000 0000080 00000080 0080 0800000 00080000
Draw your own boards witl the lues B: PAK etch-resist transters. Lay the symbols on the board, rub over with a solt pencll. The transler will adhere to the board. Then complete the circult with your BI-PAK

LED: DISPLAYS \& OPTOs

O/no.			Colour
1501	Til209 led		RED
1502	TlL211 led		GREEN
1503	TIL213 led		YELLOW
1504	FLV115 jed		RED
1505	FLV310 led		GREEN
1508	FLV410 led		YELLOW
1510	BDL707 display		RED
1511	BDL747 display		RED
1512	${ }_{\text {BRL }}$ ORP12 $^{\text {dight dependent }}{ }^{3}$		RED
1514			
1520	resistor		
	LED CLIPS		
$1508 / 125$ $1508 / 2$	pack of 5 pack of 5	125 elips 2 clips	

 2nd GRADE LEDS
A pack ef 10 standard slies and colours which fail to perform to their very rigid specification, but which are ideal tor amateurs who do not require the full spec
0 no 10790 p

0 no 107 90p
NUMERICAL INDICATORS
Cold cathode ITT 5087ST Side viowing indicator tubes Operates from 180 v with 16 Kohmis series anode resistor Character height 16.5 mm . Pin connectors and supply details on pack.

Ono 1513 60p

BRIDGE RECTIFIERS				
SILICON 1 amp				
$\begin{aligned} & \text { Type } \\ & \text { SOV RMS } \end{aligned}$		Order No. BR1/50		Price E0. 20
100 V RMS		BR1/100		¢ C 0.22
200 V RMS		BR1/200		E0.28
400 V RMS		BR1/400		20.30
SILICON 2 amp				
50 V RMS		BR2/60		50.48
100 V RMS		BR21100		E0.48
200 V RMS		BR2/200		E0. 2
400 V RMS		BR2 400		E0. 58
1000 V RMS		BR2/1000		¢0.6
2 AMP METAL STUD MOUNTING				
No. KBS005		50 volt		c.0.30
No. KBS01		100 volt		¢0.35
No. KBS02		200 volt		¢0 40

ORDERING. Do not forget to state order num ber and your name and address.
V.A.T. Add $12 \frac{1}{2} \%$ to prices marked.. 8% to those unmarked. Items marked are zero rated.

P\&P 35p unless otherwise shown.

74 SERIES TTL IC＇S

Price，Type

Price	Type
c0－17＊	BD185

品罟
 crice Type

 Type
77772
7473
7474
7475
7476
7480
7481
1782
7483
7484
785
7486
7489
7400
7491
74482
7493
7494
7495
74400
7
 Type
74105
74107
74110
74111
74118
74119
74121
74122
74123
74141
7
74136
77145
7
7
7
74150
7
7

CMOS ICs

20020068020耳 202020020202 20020000202 0000000000－1 	

LINEAR IGS

DIODES

TRIACS					
2 amp Volts	Tos Case No．	Price	10 Amp volts	TO48 Case No．	Price
			100	TR110a／100	6077
100	TR12a／200	20 51	200	TR100a／200	． 80
400	TR12a／400	CO 71	400	TR100a／400	¢1 12
－Amp	TO6s Caso		10 A mp	TO220 Plastt	Caso
Volts	No．	Price	Volts	No．	Prica
100	TR16a／100	80.51		TR110a／400p	E1 12
250	TR18a／200	c0 ${ }^{51}$		DIACS	
400	TR16a／400	8077	BR100	£0．20 D32	co． 20

ORDERING Do not forget to state order number and your namp and and addrese． V．A．T． Add 12% to prices marked． 8% to those unmarked．Itenis marked t are zero rated． $P \& P$ 350 unleas otherwles atated	BI－PAK CATALOGUE NEW EDITIJN NOW AVAILABLE Send for your copy of our revised satalogue and price list NOW：It contalne 127 pagoe packed with literally hundrede of semi－ conductors，component and our famous range of BI－KITS audio modules． ONLY 65p POST FREE

DEPT．PW8，P．O．BOX 6，WARE，HERTS．
SHOP
AT
18 BALDOCK ST．，WARE，HERTS．
OPEN 9 to 5.30 MON－－SAT．

EDITOR
Geoffrey C. Arnold

ASSISTANT EDITOR Dick Ganderton C. Eng., MIERE

ART EDITOR
Peter Metalli
TECHNICAL EDITOR
Ted Parratt, BA

NEWS \& PRODUCTION EDITOR Alan Martin

TECHNICAL SUB-EDITOR
Peter Preston
TECHNICAL ARTIST
Rob Mackie
LAYOUT ARTIST

SECRETARIAL

Keith Woodruff

Sylvia Barrett
Debbie Chapman

EDITORIAL OFFICES

Westover House,
West Quay Road,
POOLE, Dorset BH15 1JG
Telephone: Poole 71191

ADVERTISEMENT MANAGER

Telephone: 01-261 6671
Roy Smith
REPRESENTATIVE
Telephone: 01-261 6636 Dennis Brough
CLASSIFIED ADVERTISEMENTS
Telephone: 01-261 5762 Colin R. Brown
MAKE UP \& COPY DEPARTMENT Telephone: 01-261 6570 Dave Kerindi
ADVERTISEMENT OFFICES
Kings Reach Tower, Stamford St., London, SE1 9LS
TELEX: 915748 MAGDIV-G

Chickn \& Egg

NEW developments in electronics tend to fall broadly into two categories. Some appear to be the result of someone saying "Here's an idea or an i.c. that will do something that's never been possible before-what can we use it for? The results are often rather gimmicky and pointless and remind me of a course in "Design" which I attended a few years back. There, each project team was given a portable videotape recorder and camera and told to go out and find something to record. A definite case of a means looking for an application.

Other new pieces of equipment seem to announce that their designers have done a tremendous amount of research into what people need, and then proceeded to pack the maximum facilities possible into the product.

Happily there were several examples of the latter type among new items on display at the recent round of London radio and TV trade shows. Perhaps it is a little unfair to mention some without mentioning all, but two particularly took my fancy. From Ferguson somes a clock radio which they have nicknamed (with some justification) "The Great Little Time Machine". This has two time zone settings (BST and GMT?), two alarm time settings (husband and wife?), day and month calendar, forward and reverse setting facility (no more advancing $23 \frac{1}{2}$ hours to achieve a half-hour earlier call) and Long, Medium and v.h.f. bands, (ready for the new frequency plan in November). Add to this all the usual facilities and the bonus of auto-dimming of the clock display and you have a very handy item for the bedside table.
Those of you who have ever caught the end of a radio announcement and thought "That sounded as if it could be of interest, I wonder what it was", may find their salvation in a fascinating new system by Intermetall Semiconductors of the ITT group. Based on "bucket-brigade" i.c.s., this continuously stores the last 15 seconds or so of a sound transmission, which may be repeated at the press of a button. So that subsequent announcements are not missed, the recorded speech is compressed in time by removing pauses between words. This process continues until the replayed speech catches up with real time and then normal speech is resumed. Altogether very cunning, and a delightful example of someone recognising that a new technique could be adopted to solve an age-old problem!

Geoffrey C. Arnold

PRINTED CIRCUIT BOARDS SERVICE FOR PW PROJECTS

It has now been decided, commencing with our issue dated September 1978, to enlarge the facilities for the supply of p.c.b.s to readers by authorising additional suppliers. It is hoped that readers may benefit from being able to purchase boards as part of component kits, thereby reducing the number of separate orders for a project.

For some time, most p.c.b.s published in Practical Wireless have been available exclusively from Reader's PCB Services Ltd., P.O. Box 11, Worksop, Notts, who will continue to be a supplier and to whom we would wish to say thank you for helping us to get the service started.
Applications for permission to reproduce boards for resale purposes must be made to the editor.

RAE

The Mid-Warwickshire College of Further Education notify us that they will be offering the City \& Guilds, RAE Course No. 765 in September 1978.

Enrolment will be on September 7th and 8 th. The course will be one evening each week for approximately 30 weeks and is intended to prepare students for examination No. 765-1-02. Mid-Warwickshire College of Further Education, Department of Engineering, Warwick New Road, Leamington Spa CV32 5JE. Tel: (0926) 311711.

Hello Thistle

North Sea oilmen in the Brent oilfield will soon be able to telephone each other thanks to new equipment now being installed by Marconi engineers.
Shell (UK) Ltd placed a contract worth over $£ 300,000$ with Marconi Communications Ltd, a GEC-Marconi Electronics company, for the installation of radio equipment that will establish a communications link between offshore stations, and also back to the mainland.

Phase one of the contract will be to link Dunlin and Brent A, B and D by line-of-sight radio equipment and also to connect Dunlin to BNOC's Thistle platform, Thistle having a troposcatter terminal relaying back to the new Post Office terminal in South Shetland. Phase two will connect Brent C and Cormorant into the system and establish a line-of-sight microwave link between Cormorant and Thistle.
Finally, there will also be a troposcatter link from Cormorant to South Shetland and the line-of-sight microwave link between this platform and Thistle will complete the triangulation for alternate path operation.

Computer Clubs

I am informed of the existence of two northern sub-groups of the Amateur Computer Club, whose object is to help anyone who has an interest in computers, microprocessors etc.

For details of joining the groups those in the North East should contact: Thomas Turnbull, 49×9 th Row, Ashington, Northumberland NE63 8JY, and those in the North West: David Wade, 26 Wolsey Close, Radcliffe, Manchester M26 OAG.

Special Event

Yeovil Amateur Radio Club will be running a special event station for Air Day at RNAS Yeovilton, Somerset on Saturday 5th August. Call-sign GB3FAA. For further information contact: John Howard, 127 Goldcroft, Yeovil, Somerset BA21 4DD.

Diary notes

The Telford Mobile Rally Group are organising a rally for radio amateurs at Town Centre Malls of Telford, New Town, Salop, on Sunday 10th September, 1978-starting at 11am. There will be many trade stands and exhibits. Details from: Martyn Vincent G3UKV, 9 Sleapford, Long Lane, Telford, Salop.

The British Amateur Electronics Club are holding their Amateur Electronics Exhibition this year at the Centre of the Esplanade, Penarth, S. Glamorgan, between 15th and 22nd July 1978. As before all proceeds will be given to the Cancer Research Campaign. Further information from: Cyril Bogod, "Dickens", 26 Forrest Road, Penarth, Glam.

The British Amateur Radio Teleprinter Group is holding its annual convention at Harpenden Public Hall, Harpenden, Herts. on Saturday 15th July, 1978-starting at 11am. There will be trade stalls, demonstrations and lectures, including one on Microprocessors by G3PLX, which is expected to attract particular attention. Details from: J. P. G. Jones GW3/GG, Heywood, 40 Lower Quay Road, Hook, Haverfordwest, Dyfed SA62 4LR.

The 1978 Harrogate International Festival of Sound is to be held at The Harrogate Exhibition Centre, Harrogate. The public are invited on Saturday 19th and Sunday 20th August from 11.00 am until 9.00 pm and admission will be free of charge. Trade days are Monday 21st and Tuesday 22nd August, when admission will be by ticket, available from the organisers in a special dealer invitation pack. Further information from Stan Smith and Peter Hainsworth of: Exhibition and Conference Services Ltd., Claremont House, Victoria Avenue, Harrogate, North Yorkshire. Tel: (0423) 62677.

Microprocessor terminal

Soon to be launched on the home market is the SR100 series Minitype computer terminal from Warren Lógic Ltd.
Designed specifically as a low cost teletype or v.d.t. replacement, it is expected to cost less than $£ 300$.

A teletype compatible keyboard with full ASCII capabilities is used. The display section consists of fifteen alphanumeric sixteen segment l.e.d. elements which utilize a sixty-four character ASCII subset. The On-Line mode of operation is full duplex and a local facility is also provided. Both E.I.A. and 20 mA current loop operation are standard and any baud rate between 50 and 240 baud may be selected by an eight pin d.i.l. module.
For further details contact: Warren Logic Ltd., Hockley Road, Brosley, Salop, TF12 5HT. Tel: (0952) 883010.

PW "Avon"

Those constructors of the "Avon" 2 m Transmitter, who intend purchasing transistor types 2N4427 and BLY83 from Watford Electronics should note that the prices quoted in their advertisement are wrong. The correct prices for these transistors are: 2N4427 90p plus 8\% VAT and BLY83 $£ 8.50$ plus 8% VAT.

'purbeck'

Part 5

IAN HICKMAN

This month's instalment deals with the trigger circuits, timebase generator and X output amplifier, all contained on board 4. Figs. 2 and 4 show the component and wiring side of the board and Fig. 1 gives the complete circuit diagram.

The trigger input (either from front panel SKT5 or 6 or from the trigger pick-off stage of the Y amplifier board) is first buffered, amplified and squared up and then passed to a polarity selector gate IC403a which inverts it or not under control or front pane] switch 85.

So now we have a squared-up waveform at standard TTL logic levels applied to trigger gate IC402d.

Let's assume the time base hasn't been triggered for some time, so that flyback is complete. Then the output of the control bistable will be a logic 0 (about $+0 \cdot 2 \mathrm{~V}$) and the emitter of $\operatorname{Tr} 406$ will be negative by a few hundred millivolts.

As the current through its emitter resistor always exceeds the current supplied by the constant current generator Tr404, diode D404 will hold C12 at about 0 V and the inverting input of the end-of-flyback comparator IC406 will be slightly negative. IC406 will therefore apply a logic 1 (about $+3 \cdot 8 \mathrm{~V}$) to the trigger gate.

The control bistable IC404a is positive edge trig. gered. Therefore when the output from IC403a goes negative, causing the output of the 2 input nand gate IC402 to go positive, IC404a's Q output will go to a logic 1. D404 will therefore be cut off and the con-
stant current source will start to charge up Cl 2 linearly.

Meanwhile, once triggered, further edges will have no effect on the control bistable and anyway, shortly after the start of the scan, the inverting input of IC406 will go positive, putting a logic 0 on IC402d. The latter's output will therefore sit at logic 1 until the end of retrace (flyback). When the scan reaches +3 V , the output of IC405 will change from a logic 1 to logic 0 , resetting IC404a. The Q output will therefore fall to 0 V , cutting off Tr406, the whole of the current through R429 then being available to charge Cl2 back down negative.
As soon as the recharge commences, of course, the output of IC405 returns to a logic 1, removing the reset from IC404a.
However, not until the end of flyback will IC406 re-enable IC402d by applying a logic 1 to it, preventing early retriggering of the scan. It doesn't matter whether IC403a output is positive or negative when IC406 re-enables trigger gate IC402d, either way the first edge out of the latter will be negative going.
The control bistable will only be retriggered on a positive edge, i.e. on the first negative edge from IC403a following the appearance at IC402d of a logic 1 from end-of-flyback comparator IC406.
With a basic understanding of the circuit operation, we can now look in more detail at the complete circuit diagram. Emitter follower Tr 401 drives the trigger amplifier IC401 via two 150Ω resistors in

Fig. 1: The circuit diagram of the trigger circuits, timebase generator and X output amplifier, all on board 4
series, providing a low source impedance. At their junction a current injected via R405 provides a variable offset voltage at pin 3, giving control of the trigger level. The gain and bandwidth of the 710 are so great that despite the low source impedance there is a possibility of oscillation as a low
frequency input is passing through the triggering point.

This would lead to false triggering and is prevented by applying a small amount of positive feedback via R406, thus introducing a small hysteresis. The output of IC401 drives IC402a, a two input nand Schmitt
trigger circuit used as a buffer. The 710 will only drive one standard TTL load and so cannot drive both IC402b and IC403a directly.
The sudden change in loading on the 710 when IC402a switches can cause the 710 to retrigger falsely. This is prevented by the retardation network R407, C404.
The brightline circuit IC402b to IC403b works as follows. If IC402a is producing a squared-up trigger waveform, the output of IC402b will be detected by D401 and 402, charging C406 up positive. Current through R409 will keep Tr 402 bottomed and the output of IC402c must therefore remain permanently high (logic 1). If the other input of exclusive or gate C403b is low, its output will be high. Under these conditions the output of IC403a will be an inverted version of its input. Conversely, if pin 12 of IC403b is high, IC403a output will not be inverted. This provides trigger polarity selection.
If there is no trigger input to the board or RVI is right at either end of its travel, IC402a output will sit permanently at either a logic 0 or a l. With no a.c. output from IC402b for the diodes to detect, after about a second, C406 will be discharged and Tr402 will turn off.
With pin I now high, IC402c will oscillate, since if its output is high, C407 will charge up via R410 until pin 2 reaches the trigger point and the output drops to a 0 and conversely. As IC403a and b are exclusiveor gates, the output must change whenever one of the inputs changes.
The square wave generated by IC402c will thus be passed to the trigger gate IC402d, operating the
timebase and providing a trace when there is no trigger available.

If the square wave produced by $\operatorname{Tr} 402 \mathrm{c}$ were of a very low frequency, on the fast time-base setting a very rapid scan would be followed by a much longer pause before retriggering.

This would result in a very dim trace. IC402c therefore oscillates at a very high frequency, giving a nontriggered trace brightness independent of time-base speed setting.

Note that IC402c output could have been taken straight to pin 10 of IC403a and IC403b inserted between the latter and IC402d.

However, mixing the polarity control in with IC402c "off line" minimises the number of gate delays in the main trigger path. This in turn enables more of the leading edge of a wave form to be seen.

The basic operation of the ramp generator section has already been described, but there are several points of detail worth noting. The D input, pin 13, of IC404a is tied to +5 V , i.e. logical. Therefore the " Q " output, pin 9 , will go high when a positive edge appears at pin 11. IC403c is a non-inverting buffer and the pull-up resistor R415 takes its output right up to +5 V when high, taking the emitter of $\operatorname{Tr} 406$ to about $+4 \cdot 4 \mathrm{~V}$.

The end of trace comparator IC405 resets the control bistable when the ramp reaches +3 V , so there is no danger of D404 tending to turn on before the end of the ramp. VR401 is set so the end-of-flyback comparator only re-enables the trigger gate when the ramp voltage is within a per cent or so of the value at which it would rest if IC404a was never triggered.

* components

Resistors $\pm W 5 \%$ carbon film			Capacitors Ceramic	
47S2	2	R407, 437, 438	33 pF	C404
10052	6	R401, 419, 430, 435, 439, 440	47pF	C421
120Ω	1	R434	150pF $\quad 1$	C407
$150 \Omega 2$	2	R403, 404	820pF	C411
18052	2	R432, 433	$1 \mathrm{nF}(500 \mathrm{~V}) 1$	C408
220Ω	1	R431		
390Ω	1	R410	30 V disc ceramic	
470Ω	1	R423	$0 \cdot 1 / \mathrm{f} \quad 13$	C402, 403, 409, 410, 412, 413, 414, 415,
1 kS	3	R411, 416, 436	Electrolytic $416,417,418,419,420$	
$2 \cdot 2 \mathrm{k} \Omega$	5	R413, 415, 418, 422, 429		
3.3k Ω	3	R414, 424, 428	$8 \mu \mathrm{~F} \quad 16 \mathrm{~V} 2$	C405, 406
3.9k ${ }^{\text {d }}$	1	R412	$100 \mu \mathrm{~F} \mathrm{10V} 1$	C401
$4 \cdot 7 \mathrm{k} \Omega$	1	R402		
10 kS	1	R405	Semiconductors	
12 kS	2	R420, 425	Diodes	
39 k /2	1	R426	1N4148	D401, 402, 403, 404
47kR	2	R406, 408	Transistors	
82 kS	1	R427	BC108	Tr 401, 402, 403, 406, 407, 408, 409
100kS	3	R409, 417, 421	BC109C	Tr404
5W Wire Wound			$\begin{array}{ll}\text { BC214K } \\ \text { BF336 } & 1 \\ \end{array}$	Tr410, 411
$6.8 \mathrm{k} \Omega$	2	R441, 442		
			Integrated circuits	
Potentiometers			SN72710 3	IC401, 405, 406
Miniature vertical skeleton preset			SN7474	IC404
			SN7486 1	IC403
$4 \cdot 7 \mathrm{k} \Omega$	1	VR408	SN74132 1	IC402
$22 \mathrm{k} \Omega$	3	VR402, 403, 404		
$47 \mathrm{k} \Omega$	1	VR405	Switches	
$100 \mathrm{k} \Omega$	1	VR406	1p. 6 w .	S401
$\frac{1}{4}$ inch diameter spindle			Miscellaneous	
$1 \mathrm{k} \Omega$	1	VR407	Printed circuit	ard (1) (Watford Electronics)

Fig. 2: Component layout of board 4. Note that the components are mounted on the copper ground plane side of the board

To ensure clean operation of IC406, a small amount of hysteresis is built in by applying positive feedback via R421.

Time base speed is selected by S 4 (in 10 to 1 range steps), by S 401 (providing multipliers of $\times 0 \cdot 5, \mathrm{x} 1$, x 2 , x 5 and x 10) and by RV3 (continuously variable $x 1$ to $x 3$ approx., fully clockwise-x 1-being the Calibrated position).

The Q output of IC404a is buffered by IC403d and made available at front panel socket SKT 8 as a negative going pulse which "frames" the scan period.

It is also divided by two by IC404b and made available at SKT9 as an "alternate sweep gate"-logic 0

Several readers have enquired about the possibilities of using alternative tubes for Purbeck. We cannot advise anyone as to the suitability of components other than those specified. Not only will the mechanical construction need alteration, but revised amplifiers and e.h.t. supplies will also be required.

Fig. 3: The copper ground plane pattern of board 4
and 1 on alternate traces. IC403d also drives $\operatorname{Tr} 403$. which is cut off during the scan and bottomed during retrace. The collector wave-form is used to blank the c.r.t. during flyback.

Besides driving the comparators IC405 and 406. emitter follower $\operatorname{Tr} 404$ makes the ramp wave form available at SKT 7 (sweep output) via R416 and drives the X deflection amplifier

This is basically similar to the Y deflection amplifier, but driven unbalanced at $\operatorname{Tr} 408$ with the X shift voltage fed in at Tr409.

In view of the more limited frequency response

WARNING

Extra care must be taken when working on any part of this instrument while power is switched on. 1100 volts can kill. When delving into the insides of the scope for any reason with power on keep one hand in your pocket.
which suffices for the X amplifier, a single frequency compensation capacitor C4ll is used in the emitter circuit. The Calibrated position for VR407 is fully anticlockwise, corresponding to minimum gain. RV408 allows this value of gain to be set to the required value.

Owing to the larger deflection voltage required for the X plates, the collector resistors of TR410 and 411 are returned directly to +150 V .
With a higher supply voltage than the Y amplifier, the current is reduced, about 10 mA in each transistor, to keep the dissipation of the BF336s the same.

Having completed the construction of Board 4, check each power supply pin to 0 V with an ohmmeter to make sure none is short circuit and centre all preset potentiometers except VR401, which should be set with the wiper at the earthy end. Set VR407 fully anticlockwise.

Plug the board into the mainframe, remove the temporary $47 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistor chain and con-

Fig. 4 : Back wiring of board 4 in relation to the components. This layout of the wiring should be followed to avoid any possibility of instability occurring
nect the X plates via R21 and R22 and sockets to pins X1 and X2 of the board.

Connect one lead of CI8 to c.r.t. pin 3 (one of the tube base mounting holes-which are not used-can be fitted with a solder tag to support the lead) and the other via a socket to the blanking output of the board.

Set RV3 fully clockwise, S4 to position 2 and S401 to position 5. Plug in briefly and check that all stabilised supply voltages are normal, indicating no shorts anywhere.

A trace should appear on the screen-the tube may need rotating a little if it is not horizontal, but the spigot should be somewhere near the top. It is safest to turn off first, remember there is -800 V around! Next, set S401 to position 2 and connect SKT3 to SKT1. With S3 and S301 both in position 3, two or
three cycles of the 50 Hz Cal. square wave should appear on the screen.

If the waveform is running through, adjusting RV1 should synchronise it, provided of course that $S 6$ is in the Internal position.

The trace should start with a positive or with a negative edge according to the position of S5. Now set S401, Timebase Multiplier, to position 5 (X $0 \cdot 5$). Rotate the wiper of RV401 away from the earthy end of its track until the trace stops running and then set it back just a few degrees beyond the point where the trace starts to run again.

These tests show that Board 4 is basically operational; setting up is covered in next month's instalment.

Next month we will deal with the case and other mechanical details.

J-DeCnology

This month's circuit uses the 741 op. amp. in a closed loop inverting mode to form a sensitive mains cable detector. A simple but very useful device it can save certain disaster when deciding where to bang nails, etc., into walls.

When a.c. mains current flows in a conductor there is a magnetic/electric field surrounding the conductor, albeit a very weak field. If this field comes within range of our search coil (L1) then the fluctuating 50 Hz field from the conductor will induce tiny voltages and currents in the coil Ll. These can be quite clearly heard in the earpiece.

On test, the circuit shown could easily and positively detect the presence of a mains cable to a small Ni Cad battery charger laid on a bench at a distance of 12 inches. A simple, small bar magnet could also be 'heard' when passed within some 3 to 4 inches of the search coil.

The complete circuit of the mains cable detector is shown in Fig. 1, it can be built on a $\mu \mathrm{DeC}$ in less than 15 minutes and takes only 20 minutes to transfer to a piece of matching Blob Board. The inverting closed loop amplifier IC1 has its output fed to C3. By connecting the earpiece recommended between the positive plate of C 3 and the negative line the circuit will function well, although it would be wise to reverse the polarity of C3 if this circuit configuration is settled as permanent. In Fig. 1 an additional stage of amplification is afforded by the addition of only two components, R4 and Trl.

The total measured current drawn by the circuit with 3 V applied was only 0.6 mA and battery life should be very long indeed if the device is used intermittently. A magnetic microphone was tried as a small loudspeaker in place of the earpiece. This worked well but increased the current drawn to 1.4 mA . The microphone had an impedance of 300Ω. Note that a lower impedance should not be used and
that small 8Ω loudspeakers would be unsuitable in the circuit as shown.
The value of C 2 should be found by experiment for optimum results. This is extremely simple with the $\mu \mathrm{DeC}$ because one simply 'plugs in' different values of capacitor in turn. The capacitance shown will work well but various values from 10 pF to $0 \cdot 1 \mu \mathrm{~F}$ were tried. In general, the best value will lie between about 80 pF and 350 pF . The effect of adding this capacitor across the feedback resistor R3 is to make it frequency conscious and to attenuate the higher frequencies.

This is sensible for two reasons. Firstly we are only interested in 50 Hz , which is a very low frequency. Secondly, without this capacitor the circuit becomes a h.n.c. circuit (Horrible Noise Oscillator!). The values of the input and output capacitors Cl and C3 are not all critical. Low values were selected because they would present less resistance/impedance to the lower frequency of interest. However, even using $0 \cdot 1 \mu \mathrm{~F}$ in each case still gave excellent results.

Fig. 1 : Circuit diagram of the cable detector

Fig. 2: Layout of the mains cable detector on a $\mu \mathrm{DeC}$. The same layout can be used to build the circuit permanently on a.matching Blob Board

The search coil Ll was simply an old relay. The contacts connections were ignored. The one used was a midget 700Ω type, but almost any kind should work well. For the constructionally-minded a few hundred turns of, say, 30 s.w.g. enamelled copper wire wound higgledy-piggledy on a 2 inch piece of ferrite rod (any diameter) should also work.

The circuit might also be used as a telephone amplifier. This can be useful where you might require another person to listen to a conversation. One of the small telephone pick-up devices with a little rubber sucker may be plugged in directly in place of L1. The

components

R1	$100 \mathrm{k} \Omega$	IC1 741 op amp (8-pin DIL)
R2	$100 \mathrm{k} \Omega$	Tr1 BC107
R3	2. $2 \mathrm{M} \Omega$	L1 relay coil 700Ω
R4	$560 \mathrm{k} \Omega$	EP1 earpiece Acos red spot $1 \mathrm{k} \Omega$
C1	$47 \mu \mathrm{~F}$	$\mu \mathrm{DeC}$
C2	170pF	$\mu \mathrm{DeC}$ jumper leads
C3	$330 \mu \mathrm{~F}$	3 V battery

telephone pick-up could also double as the search coil for the cable detector operation.

Sensitivity of the circuit can be damped by reducing the value of R3 to $820 \mathrm{k} \Omega$. Experimenters might like to insert a potentiometer in place of R3. Connect the outer tags on the potentiometer to $\mu \mathrm{DeC}$ holes L32 and 035 (i.e. in place of R3), and connect the middle tag to either of the others. It is suggested that a $1 \mathrm{M} \Omega$ potentiometer be used.

For best results, the earpiece should be an Acos red spot $1 \mathrm{k} \Omega$ type. All others tried were found to be inferior in terms of sensitivity. A crystal microphone was also tried in place of the earpiece and this worked tolerably well provided that a $560 \mathrm{k} \Omega$ resistor was wired in parallel with it to provide a d.c. path for the collector of Trl.

If (like the writer) a permanent circuit is required, the device could be transferred to a matching piece of Blob Board and the components then soldered into position. The Blob Board is then stuck directly to the
inner wall of the case using a generous blob of Bostick to its plain side. You will also need an on/off switch-not shown in Fig. l, the search coil should be mounted inside the case for protection and two small (3 mm) holes drilled just above the coil and in both sides of the box.
When using the device, the wall is swept for maximum pick up. A long knitting needle is then pushed gently through both holes and the container drawn away up the knitting needle to reveal a locating point. This can then be marked lightly with a pencil and a further sweep made to trace the cable.

Mntroduciion to LDGIG~ロ

 S.A.MONEY

 S.A.MONEY}

Last month we started our exploration of digital logic by examining the characteristics of digital signals and the AND gate circuit. In a real logic system the AND type gate alone will not allow us to perform all of the operations that we might need. Obviously we shall need some other types of logic gate if we are to produce a logic system.

The OR Gate

Let's go back to our simple electrical lamp and switch circuit. This time however, instead of having the two switches connected in series, we shall have them in parallel as shown in Fig. 9. Now we have produced a different type of logic gate function. Here the lamp will light if either of the switches is closed. In logical terms, the output is 1 when input A OR B is at 1. As one might expect, this type of gate is called an OR gate.

We can of course make up an OR gate by using discrete diodes, using the circuit shown in Fig. 10. If we compare this with a diode AND gate, we see that it is in effect an AND gate which has been turned upside down whilst the diodes have had their polarity reversed.

If input A goes to 1 diode D1 conducts and pulls the output up to 1 by driving current through resistor R . Input B will have the same effect upon the output. Only if both A and B inputs are at 0 will both diodes turn off to leave the output at the 0 level.

We can now draw up a truth table to show the various logic states that can exist in a 2 -input OR gate (Table 3).

Table 3

Input		Output
A^{2}	B	Y
0	0	0
1	0	1
0	1	1
1	1	1

In fact the OR gate is effectively complementary to the AND gate. For an AND gate the output is 1 only when all of the inputs are at 1 , whilst for the OR gate the output is at 0 only when all of the inputs are at 0 . If we changed all of the 1 s for 0 s and vice versa in the OR-gate truth table, we should end up with the same set of logic conditions as we had in the AND-gate truth table. For an OR gate we can also say that if any one or more of the inputs is at 1 the output will be at 1 .

Fig. 9: Electrical OR gate

Fig. 10: Diode OR gate

Fig. 11: A typical CMOS OR gate

Fig. 12: A typical TTL OR gate
In CMOS logic devices, the OR gate arrangement looks similar to the CMOS AND gate except that it has effectively been turned upside down so that the p transistors are now in series and the n transistors are in parallel. A circuit for a typical CMOS 2 -input OR gate is shown in Fig. 11. If either of the inputs is at 1 , then either $\operatorname{Tr} 3$ or $\operatorname{Tr} 4$ will be turned on to bring point X down to the 0 level. This produces a 1 level at the output because of the inverting action of the output stage itself.
In the case of the TTL type devices, the circuit of an OR gate is rather different from that of an AND gate and is shown in Fig. 12.

OR Gate Symbol

Once again, because of the complex nature of the gate circuit, a special symbol is used to denote an OR gate. This one takes the shape of a shield, with the output line coming from the pointed end of the shield as shown in Fig. 13(a). For convenience in drawing an OR gate with a large number of inputs this symbol may be modified to that shown in Fig. 13(b). The symbols we shall use in this series are those of American MIL STD 806B. Alternative symbols are used in other standard systems.

Actual OR-gate integrated circuits come in a similar range of combinations to the AND-gate types. In the CMOS range we have the 4071 which is a quadruple 2-input OR gate arrangement. Then there are the 4075 (triple 3 -input OR gate) and the 4072 which contains two separate 4 -input OR gates. These are shown together with their connections in Fig. 14.

In the TTL series, the OR gate is not very popular and only one variety is available. This is the 7432 which contains four separate 2 -input OR gates as shown in Fig. 14(d).

When designing actual logic systems we shall, from time to time, want to use OR gates which have more inputs than those available as standard circuits. These larger OR gates can be built up by cascading several smaller OR gates as shown in Fig. 15. Here an 8input $O R$ gate has been produced by using two 4 -input gates feeding a 2 -input gate. If any input of Gl goes to 1 then its output goes to 1 and hence the output of G3 will also go to 1 . Similarly a 1 applied to any of the inputs of G 2 will produce a 1 at the output. Thus the combination will behave as if it is an 8 -input OR gate.

Using OR Gates

How might we use OR gates in practice? Let us once again consider our automatic hot drinks machine, and see how it might be organised using logic. For a start we'll assume that some mechanical valves are used to control the flow of coffee, tea, milk etc. into the cup and that these valves are operated by solenoids driven from the logic.

When a 1 signal is applied to a solenoid the associated valve will deliver a metered amount of coffee, tea, etc. into the cup. If a 0 signal is applied to the solenoid the valve will remain closed.

Suppose we allow for six basic drink combinations, each of which is selected by a push button on the front of the machine. In this case these will give black or white coffee, which may be sweet or not as desired. Other options will be tea (with milk) which may be either with or without sugar. There are six inputs to our logic system and four outputs to control the valves for tea, coffee, milk and sugar. A suitable arrangement for the logic is shown in Fig. 16.

Let us start by looking at the coffee output line. This must go to 1 whenever any of the buttons calling for a coffee drink is pressed. We can produce the output required by feeding the signals from the four buttons selecting coffee combinations to a 4 -input OR gate (G1). The output from this gate drives the coffee control valve.

If we consider the milk output signal this must be set to 1 when white coffee or tea has been selected. Again we have four inputs which are fed to an OR gate G2 to provide the drive for the milk control solenoid.

Fig. 13: OR gate symbols

Fig. 14: Some actual OR gates

Fig. 15: Cascading OR gates to provide more inputs

Fig. 16: Logic circuit for a hot drinks machine

For tea there are only two combinations which need a 1 output so here a 2-input OR gate G4 is used for the tea control signal. Finally for sugar control we can OR together all of the inputs that require sugar and here we need a 3 -input OR gate G3 to produce the output.

This basic logic scheme could now be extended to allow for more combinations such as lemon tea, chocolate and maybe even cold drinks such as Coca Cola or lemonade by adding more inputs and more OR gates.

The Inverter

Apart from the AND and OR type gates, we need one more basic logic function which is called the inverter. This produces a 1 output for 0 input and vice versa.
Suppose we have a 2 -input AND gate with signals A and B applied to its inputs. Now assume that we want to achieve a 1 output when A is at 1 but B is at 0 . In a simple AND gate the output would be 0 . Now suppose we invert the B input so that a 1 is applied to the input of the gate when the actual B input is 0 , then we shall get a 1 out of the gate if A is 1 and B is 0 .
A logic inverter might be a simple transistor stage as shown in Fig. 17. When 0 is applied at the input the transistor is cut off and the output line will go to the 1 level. If a 1 input is applied, the transistor will turn on and its collector voltage will fall to zero to give a 0 output. Such an inverter stage might have been used with discrete diode logic in the days before integrated logic circuits appeared.
In TTL and CMOS logic an inverter usually consists of simply the output stages of a gate circuit which with most logic types gives a logical inversion.
The symbol used for an inverter is shown in Fig. 18. Here the triangle indicates an amplifier whilst the small circle on the output line indicates that the logic signal has been inverted.
Actual inverter devices usually come in groups of six to a package. In the TTL range the standard version is the 7404 which is shown in Fig. 19(a) whilst the CMOS equivalent is the 4049 shown in Fig. 19(b).

Logic Equations

The theory of logic systems is by no means new. The ancient Greeks had already worked out many of the ideas but in the mid 19th century mathematicians, such as George Boole, developed logic as a branch of mathematics. Now a logic system could be reduced to mathematical equations and operated upon by special algebra called Boolean algebra. We shall not go into the theory of logic in a mathematical sense, but it is useful to understand the shorthand used to describe a logic system.

If we take a simple 2 -input AND gate we can write down its operation as the equation

$$
\mathrm{Y}=\mathrm{A} \cdot \mathrm{~B}
$$

Here the inputs have been named as A and B and the output is called Y. In a logic system the signals may be denoted by letters such as A. B, etc. or they may be given names such as DATA, CLOCK etc. In the equation for the AND gate the full stop between A and B signifies an AND function, so the equation can be translated as output Y equals input A AND input B.

For the OR function a + sign is used, so that for a 2 -input OR gate the logic equation would become,

$$
Y=A+B
$$

If there were three inputs to the OR gate the equation would then become,

$$
\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}
$$

We can make up much more complex logic equations by mixing both OR and AND functions so that we might have,

$$
\mathrm{Y}=(\mathrm{A} \cdot \mathrm{~B})+(\mathrm{C} \cdot \mathrm{D})
$$

Here brackets have been added to make it clear which of the logic operations go together. In this case if both A AND B go to $1,0 \mathrm{R}$, if both C AND D go to 1 , the output Y will go to 1 . The logic arrangement which will produce this equation is shown in Fig. 20.

What happens if we put an inverter into the system? Any logic signal which has been inverted is denoted by a bar drawn over the name of the signal. So for a simple inverter the logic equation will be

$$
\mathbf{Y}=\frac{\bar{A}}{}
$$

Such an inverted signal might be referred to as BAR A or alternatively NOT A, where A is the name of the signal. Thus we might have,

$$
\mathrm{Y}=\overline{\mathrm{A}} \cdot \mathrm{~B}
$$

This means that output Y will go to 1 when input A is $0(\bar{A}=1)$ AND B is at 1 .

Now by using only these three types of logic unit, the AND gate, the OR gate and the INVERTER we can build up virtually any logic system.

Fig. 20: Combining gates to produce a more complex function

The NAND Gate

If you look up a data book of TTL devices, the first one you are likely to meet is the 7400 which is described as a quadruple 2 -input NAND gate. So what is a NAND gate and why should we need one anyway? Basically the NAND gate is simply an AND gate followed by an inverter, built up as a single device. One advantage of this type of gate is that we can produce all of our logic systems by using just one type of gate rather than three.
In the NAND gate the function is similar to that of an AND gate except that the output is inverted so that the truth table becomes as shown in Table 4.

Table 4

Input		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
1	0	1
0	1	1
1	1	0

The symbol used for a NAND gate is similar to that for the AND type except that it has a circle at its output to indicate logic inversion. This is shown in Fig. 21. The logic equation for a NAND gate will be,

$$
\mathrm{Y}=\overline{\mathrm{A} \cdot \mathrm{~B}}
$$

where the bar over the A.B indicates the inversion of the complete logic signal at the output of the gate.
-If we take a NAND gate and join all of its inputs together in parallel it will become a simple inverter. If we feed the output of a NAND gate through an inverter it will perform the same function as an AND gate, since the extra inverter will cancel out the action of the one inside the NAND gate. By inverting each of the input signals to a NAND gate we can produce the OR function. Here if any of the inputs goes to 1 the actual signal applied to the NAND gate goes to 0 and hence the output of the NAND gate must go to 1 , thus producing the same result as an OR gate. You can check all of these actions by looking at the truth tables and working out the various states of the inputs and outputs of these combinations of NAND gates.

In TTL the NAND gates come in the same combinations as the AND types, giving four 2 -input gates (7400) three 3 -input gates (7410) and two 4 -input gates (7420). Each of these arrangements has the same pin layout as the AND counterpart. In NAND gates however we can also have an 8 -input gate (the 7430). For CMOS the 2,3 and 4 -input gates are the 4011, 4023 and 4012 respectively, and they have the same pin configuration as the AND versions. There is an 8 -input gate in CMOS which has the number 4068.

The NOR Gate

Having produced a NAND gate we might now consider the possibility of combining an OR gate with an inverter. This will in fact produce what is called a NOR gate. Like the NAND gate it has the advantage that you could build up any logic system by using just NOR gates instead of having AND, OR and INVERT functions.

In the NOR gate a 1 applied to any of its inputs will produce a 0 to the output. Conversely the output can only become 1 when both inputs are at 0 . This producès the truth table shown in Table 5.

Table 5

Input		Output
\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	1
1	0	0
0	1	0
1	1	0

Fig. 21 : A NAND symbol

Fig. 22: A NOR symbol

As we might expect, the symbol for a NOR gate is like that for OR but with a circle on the output line to show that the output is inverted. This is shown in Fig. 22. We can write down the action of a NOR gate as

$$
\mathrm{Y}=\overline{\mathrm{A}+\mathrm{B}}
$$

Practical devices are the 4001, 4025 and 4002 in CMOS, which are the NOR equivalents of the 4071, 4075 and 4072 respectively and have the same pin connections. In addition to these there is the 4078 which is an 8 -input NOR gate. In TTL there is also quite a range of NOR gates giving two inputs (7402), three inputs (7427) and four inputs (7425).

By inverting the output of a NOR gate we can get an OR gate and by inverting its inputs we can produce an AND gate, so the NOR gate alone can be used to build up almost any logic function.

Changeover Gate

Let's see how we might use some of the gates that have been described. One frequently used function is to simulate a changeover switch. Here we want to pass either input A or input B through to the output according to the state of a control line C. Such a circuit can be built up from NAND gates as shown in Fig. 23, which also shows the equivalent switch circuit.

When control input C is a 0 , gate G3 is effectively closed and its output remains at 1 irrespective of the state of the B input. Gate G1 acts as an inverter and 32 is therefore held open and allows input A to pass through to the input of G4. Since the other input of G4 is at 1 , signal A passes through to the output. The inversions in gates G2 and G4 cancel out to leave A uninverted at the output. When C goes to $1, \mathrm{G} 2$ closes and G3 opens to let input B pass through to the output.

Fig. 23: Logic circuit of a changeover gate, and its electrical equivalent

This changeover gate function can of course be made up by using other combinations of gates and inverters and as an exercise you might like to work out some of these alternatives. Generally the circuit shown is convenient because it can be implemented by using a single 7400 .

The Multiplexer

We can expand the idea of a changeover switch to produce a multiway switch similar to our old friend the rotary switch. Such an arrangement of logic is normally called a multiplexer.

In Fig. 24 we show the logic for a 4-way multiplex switch. The control signals Cl to C 4 are arranged so that only one of them can be at 1 at any time. If Cl were at 1 then signal A would pass through Gl and since G5 is an OR gate it will also pass through G5 to the output. Gates G2, G3 and G4 will be off because one of their inputs is at 0 and hence they will have no effect on the state of G5. The number of inputs can be expanded by adding more AND gates and having more inputs to the final OR gate. If desired, multibank switches can be produced by having a series of parallel multiplexer circuits with the control inputs connected in parallel across the banks.
Because multiplexers are often used, special logic devices are available such as the 74151 which is an 8 -input single-bank multiplexer in one package.

Fig. 24 : Logic circuit of a multiplexer, and its electrical equivalent

Fig. 25: A logic circuit for an EXCLUSIVE OR gate

Fig. 26: EXCLUSIVE OR gate symbol

PLEASE MENTION

A.M. RECEIVERS

M.J. DARBY

The construction of an amplitude modulation (a.m.) receiver can be considerably simplified by the use of one of the semiconductor devices which have been especially developed for this particular application. This and future articles will review the various types of device available and include a selection of typical circuits which the reader can construct and with which he can experiment.

Practical constructional details will not be included, since a variety of circuits are covered and constructional details for specific receivers are regularly included in our pages. Audio amplifier sections will not be included since the audio output from any of the receiver circuits can be fed into a standard audio amplifier. Integrated circuits will be used throughout, since this reduces the number of components used compared with discrete (separate) transistor designs.

Amplitude Modulation

The amplitude of an a.m. signal varies at the frequency of the audio signal concerned. For example, one may consider a 1 MHz radio frequency carrier wave (which is far above the level of human hearing) and which varies in amplitude at an audio frequency of 1 kHz . When a receiver is tuned to this signal, the 1 kHz frequency will be heard from the loudspeaker.

Amplitude modulation is used on long, medium and short wave transmissions. Frequency modulation can be used at much higher frequencies (e.g. f.m. sound at about 90 MHz) for high quality reception, but cannot be used with advantage at relatively low frequencies.
A.M. receivers are usually simpler than f.m. receivers and it is therefore sensible for a beginner to commence with a.m. circuits. Signals at the high f.m. frequencies cannot be received from distant transmitters, so if you wish to receive a signal from a station more than about 50 to 100 miles away, it will be an a.m. signal you will select. However, the fact that distant a.m. signals can reach your aerial inevitably means that one is much more likely to experience interference from unwanted signals than with f.m. reception.

T.R.F. or Superhet?

There are two main types of a.m. receiver, the socalled "t.r.f." (tuned radio frequency) and the superheterodyne or "superhet". The t.r.f. type is far simpler than the superhet, so the beginner who wishes to experiment is strongly advised to commence with a t.r.f. circuit.

In a t.r.f. receiver the incoming signal is amplified, detected or demodulated in a stage which converts
the radio frequency wave into an audio signal and the audio signal is then amplified so that it can feed a loudspeaker or an earphone.

In a superhet the incoming signal is changed in frequency to another radio frequency signal known as the intermediate frequency. It is convenient to obtain most of the selectivity (or ability to reject interference from adjacent signals) at this intermediate frequency before the signal is demodulated and fed to an audio amplifier and hence to a loudspeaker.

A t.r.f. receiver can give good audio quality provided there are no interfering signals, thus if you require a simple bed-side or kitchen receiver for local programmes, a t.r.f. circuit will be satisfactory.

If, however, you wish to receive stations from Europe on medium waves or even from other continents on short waves, one will normally obtain much better results using a superheterodyne receiver.

T.R.F. Circuits

The remainder of this article will be devoted to t.r.f. circuits mainly for the purpose of helping the beginner. Numerous t.r.f. circuits have been published using discrete transistors, but a unique integrated circuit was released some years ago which has been designed especially for use in t.r.f. receivers.

This device is the Ferranti ZN414 which is ideal for use by the home constructor and is readily available. It requires only a low voltage power supply and provides a very high gain when used in a simple circuit.

The ZN414 is encapsulated in a simple transistor metal envelope, and the pin connections are shown in Fig. 1. There are only three leads, these being input, earth, and a common lead for output and the positive voltage supply.

Fig. 1 : Pin connections of the ZN414

ZN414 basic circuit

A basic t.r.f. receiver circuit using the ZN414 device is shown in Fig. 2. The inductance L1 is a winding on a ferrite rod or slab aerial which will be described in detail later. This inductance must

Fig. 2: A basic t.r.f. receiver circuit using the ZN414
resonate with the variable capacitor VCl at the frequency of the desired station; in other words, VCl is the receiver tuning capacitor.

The upper end of resistor R 2 is fed from a positive supply of about $1 \cdot 3 \mathrm{~V}$, normally a single cell or a potential divider circuit. A small bias current passes through R1 and the winding of Ll to the input (pin 2) of the ZN414. This input stage has a very high input impedance so that a negligible load is imposed on the tuned circuit; the selectivity of this tuned circuit is therefore almost unaffected by the connection of the ZN414.

The input stage is capacitively coupled to three internal cascaded r.f. amplifiers which in turn feed a transistor detector stage. The output capacitor in conjunction with the load resistor R 2 filters radio frequencies from the output, but leaves the audio signal almost unaffected. There are ten transistors fabricated on the ZN414 chip.

Fig. 3: Gain characteristics of the ZN414

As shown in Fig. 3, the gain of the ZN414 is dependent on the voltage applied to the upper end of R2 in Fig. 2. It is therefore necessary to stabilise this voltage if one does not wish the gain to vary with the state of discharge of the battery used.

The current taken by the ZN414 circuit itself is only about 0.3 mA , but when a strong signal is being received this can rise to about 0.5 mA . The additional current taken in the presence of a strong signal results in a greater voltage drop across R2 of Fig. 2 so that the ZN414 operates at a slightly lower voltage; thus the gain is reduced in the presence of a strong signal and one has automatic gain control built into the circuit.

The audio output from the Fig. 2 circuit is relatively small. It can be used to operate a sensitive earpiece, but generally it is better to feed it into an audio amplifier circuit. It is important that the output capacitor C 2 should be soldered as close as possible to pins 1 and 3 of the ZN414 and that the device leads should be kept fairly short, or the high gain of the device may result in instability. This is of the order of 4,000 times voltage gain or some 72 dB .

Fig. 4: A simple radio receiver circuit using a ferrite rod aerial

Earpiece Radio Receivers

The circuit of Fig. 4 shows one of the simplest possible radio receiver circuits for use with a ferrite rod aerial, L1. The load resistor R2 of Fig. 2 has been replaced with a sensitive earpiece which should have an impedance of not less than 250Ω.

Fig. 5: Adding a single transistor amplifier stage

Radio and Television Servicing 1977-1978

Editor R. N. Wainwright, T.Eng. (CEI) F.S.E.R.T.

Circuit Analysis of Colour Television Designs

Reference Charts for Pye, Ekco, Ferranti, Invicta, Dynatron Models and I.TT. Ltd. Adjustment Procedures Unusual Fault Symptoms

Receiver Alignment
This latest volume in the Radio and Television Servicing series reflects the servicing data produced during the year prior to publication or relating to domestic entertainment equipment currently available.
The information contained within this volume continues to provide a valuable tool to both amateur and professional service department alike in ensuring a high and safe standard of repair and maintenance. An essential reference book for all service engineers.

£10.50

Special Price for six volume set $£ 45.00$.
Consisting of vols. 72/73,73/74,74/75,75/76,76/77,77/78
From booksellers or, in case of difficulty, please use the form below:
To: The Sales Manager, Macdonald and Jane's Publishers, 8 Shepherdess Walk, London N.1.
From: Name. \qquad
Address. \qquad
Please send me. \qquad .copy(ies) of Radio and Television Servicing 1977-78 Models. I enclose cheque/PO made out to Macdonald and Jane's for. \qquad
\qquad
GIRO A/C NO 205/4221 Macdonald and Jane's.

TRA			$\text { p\| }{ }^{\mathbf{B C O}} \mathbf{C l}$BC181				$\left\lvert\, \begin{aligned} & 8 F 273 \\ & 8 F 338 \\ & 8 F 337 \end{aligned}\right.$			$\begin{aligned} & 45 \mathrm{p} \\ & \hline 5 \mathrm{p} \\ & \hline 7447 \mathrm{~A} \\ & \hline 100 \end{aligned}$		Mpl94 PIn DIL: 20p $1+$					PRECISION POLY. CARBONATE CAPACITORS			
	RS:																			
AC	30 P					$4_{40}^{4 p}$				$\begin{aligned} & 495 \\ & 88 p \\ & 88 p \end{aligned}$	$\left\lvert\, \begin{aligned} & 7447 A \\ & 7450 \\ & 7453 \end{aligned}\right.$	$\begin{aligned} & 20 p \\ & 20 p \\ & 20 p \end{aligned}$			$400 \mathrm{~mW}+-5 \%{ }_{\text {gop each: }}^{3 \mathrm{~V} \cdot 33 \mathrm{~V}} 10 / 8 \mathrm{sp}$		All High stability-extremely			
AC	32 p 8 Cl 25		BC186			44^{4}									IW					
${ }^{\text {AC1 }}$	$32 \mathrm{P} 8 \mathrm{BC126}^{2}$		${ }^{8 C 187}$		8D140	P	${ }^{8 F 458}$	52 D	ORP12	1.	7470		100	13 p		ach: 10/¢1.75				
AC12	$32 \mathrm{PBC132}$		${ }^{8 C 204}$	$16 \mathrm{p}^{\circ}{ }^{\circ}$	$8{ }^{80145}$	P	8F596	${ }^{222} \mathrm{p}^{4}$	R20088	E1. 5	7473									
${ }^{\text {A C C }}$ C128 ${ }^{\text {c }}$	P ${ }^{\text {PCC13 }}$	${ }^{19}$	${ }^{8 \mathrm{BC2O}}$	${ }^{18}{ }^{18}{ }^{\circ}$	80163	${ }^{85}$	8F539	${ }_{27}{ }^{27}{ }^{\circ}$	R20108		7474	35				8UB				Price
A						81.03	BFR		${ }_{\text {TiP31A }}$			52	15							
AC141	$44^{\circ} \mathrm{BC} 137$		BC212	$15{ }^{\circ}{ }^{\circ}$	BD184	${ }_{\text {ci }} 1.25$	BFT4	$4{ }^{1}$	TIP32A	570	7488	4				(Verical or Horizontal			12.7	
AC142	${ }^{26} \mathrm{p}$ 8C138				-		BFT43	40 p		\$p	7490	ct		${ }_{13} 3$. $00^{\circ} .100$ for 85.00^{89}	0.15	27 27	$\begin{aligned} & 12.7 \end{aligned}$	$21 \cdot 34$
${ }^{\text {A }}$ AC142K			${ }^{8}{ }^{8} \mathbf{C 2 1 3}$			${ }^{85}{ }^{\circ}{ }^{\circ}$	BFW1	${ }^{85}$			7492		100				0.22	33	12	
AC154	20 BC 142	34 p	${ }_{8}{ }^{2148}$					2	TIP								0.25	33	16	¢1.78
AC176	35 P 8C143		${ }^{8} \mathrm{BC214L}$		-	E2. 35	BFX85	29	TiP3055	¢1-15	74121						0.33	33		\$1.82
${ }^{\text {A }}$ AC178	${ }^{\text {p }}$		${ }_{8}^{8 C 23}$		B0x		8Fx86	3	Tis43	38p	${ }_{71122}$					II	0.47	33	19	¢2.08
	-								TISS90								0.5	33	19	\&2.24
AC187	P	10°	${ }^{\text {C2525 }}$			\&1.05	BFY50	22,	2N705		${ }^{74156}$		Ba	$1{ }^{18}$		ne valu	0.68	50.8	22	¢2.49
${ }^{\text {A }}$ A ${ }^{\text {c }} 1888$	37 P		$8 \mathrm{BC253C}$			${ }^{25}$	BFY51	22	2N2846			¢1.70		15 p		ne value. SPECIAL	1.0	50.8	22	. 4
AC193K	${ }_{49}{ }^{4} \mathrm{PC1488}$		BC258A			75p		32			7192	E1.76	BAX13 Bax16				1.5	50	25	¢3.14
${ }^{\text {A C C }}$ A	419 8C149C	$12{ }^{10}$	8с2618		8F123	33 P	BFYT2	51 p	2N2005A			¢1.26		50 p						4
	${ }_{84}{ }_{4}{ }^{\text {a }}$				${ }^{\text {PF125 }}$	33 P	BFY77			22 p	SN76001N					IREWOUND RESISTORS	b3V D.	RAN		
AD142	$1{ }^{10} 8$		${ }^{1} \mathrm{C} 267$	${ }_{25} 25$		${ }_{25}^{35}$	8FY901	${ }^{1} 1.10$	2N2907A	+	SN76013	E1. 76	BY127	18 P			Value $\mathrm{s}^{\text {F }}$		$\pm 2 \%$	$\pm 5 \%$
AD143	${ }^{\text {P }}$		BC287C	${ }^{28 p}$	$8 \mathrm{Cl3}$						SN7601	${ }^{2} 1$	OA10			(1)	0.01-0.2	51.8	¢1.22	6p
AD161	-	$12{ }^{\circ}$				17 p	8R	40 P		170°	SN76023N	C1. ${ }_{6}$				-	$0 \cdot 22-0.47$		¢1-24	
AD162	58 p BC158日							${ }_{30}$	2N3033	42 P	SN76033N		OAs0					c2. 21	${ }_{\text {c1 }}$	
AF114	32 p 8C159	-	301	30 p	BF161	25 p	BS×20	25p	2 C 3055	${ }^{650}$	SN76228DN	${ }_{\text {ck }}$	OA91	70		CAPACITORS:			ci	81.08
${ }_{\text {AFP116 }}$	32 p 32 p $\mathrm{BCL159C}$			330	BF18	250		33 p	2N3702	17p ${ }^{\circ}$	SN76227N	E1.23	${ }^{\circ} \mathrm{OA250}$	9			$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	E2.	E1.94	¢1.20
AF117	${ }^{32 \mathrm{p}}{ }^{\text {BCC1 }}$			$1{ }^{10} \mathrm{p}^{\circ} \mathrm{p}$	8F168	35 p		${ }_{48}{ }^{2}$	${ }_{2}{ }^{\text {N3703 }}$	170.		E1.15	OA202	10 p		0/F at $25 / 35 \mathrm{SV}-18 \mathrm{P}^{\circ} ; 1.5 \mu \mathrm{~F} / 35 \mathrm{~V}$	$3 \cdot 3$	c3	£2.30	¢1.84
A	${ }_{53}{ }^{2} \mathrm{p}$ 88C			$15 \mathrm{p}{ }^{\text {c }}$		${ }_{27} 2$	8SY5	55p		p°	TAA263	$\varepsilon 1.310$ $\kappa 1.10$	T11209			10 ${ }^{0} \cdot 2 \cdot 2 \mu \mathrm{~F} / 35 \mathrm{~V}-12 \mathrm{p}^{*}$:	$4 \cdot 7$	¢4.	¢2.72	E2.24
AF124	${ }^{48}{ }^{\circ} \mathrm{BC} 188$	$14{ }^{\circ}{ }^{\circ}$		17		380	BT106	\&1.50	2 N 37	$17{ }^{\circ}$	TAA550g	${ }^{53}$		Red)			8.8	E4.	13.38	E2.68
${ }^{\text {AF }} 125$	$38 \mathrm{P} \mathrm{BC}^{\text {B }}$	${ }^{230}{ }^{2}$		42°		${ }_{3}^{42}$	8u108	c2,	2N3707	1770.	TAA570	E2. 20.	T1L211					\&	ct.er	c3.54
AF127	$3{ }^{3} \mathrm{P}$ OC170					33 c	${ }^{\text {BU }} 128$	E1.94	2 N 3819	42 p						21 $\mathrm{p}^{\circ}: 88 \mu \mathrm{~F} / 3 \mathrm{~V}-17 \mathrm{p}^{\circ} ; 100$		¢ 813.122		
AF139	${ }^{45} \mathrm{PBC17}$	$15{ }^{1}$	C337	450		33 p 38 p	84200 84205	E2.30	${ }_{2 S 321}$	${ }^{75 p}$	TBA	${ }_{\text {E3 }} 23^{\text {25 }}$	1 NaO			21p. ${ }^{\circ}$				
${ }_{\text {AFF79 }}$	$7_{78}{ }^{\text {P }}$	14		${ }^{150}$		40 p	BU208	E2.30	RCA4065	S54 78p	TBASb0Ca									
F180	75p BCi71A		${ }^{\text {BC3474 }}$			27 P	BU208	E2. 05								Alal or Radial Leads:	of ad	to		
${ }_{\text {AF181 }}$	${ }^{75 \mathrm{p}}{ }^{38} 8 \mathrm{BC171}$	${ }_{12}^{15}{ }^{\circ}$	8C384	${ }_{180}{ }^{\circ}$		${ }_{428}^{24}$	${ }^{\text {C1129 }}$	${ }_{15}$				\&2. 80°	N4003					fus		
AF239	45 p BC172					$12{ }^{4}{ }^{\circ}$	GET	15 p	ORA		$T 8$	E2. 15°				12.2				
	${ }^{80} \mathrm{p}^{3} \mathrm{BC}$					13	GET882		CIRCUI		TBA800	${ }_{\text {ci }} 132^{\circ}$				2tp ${ }^{\text {: }}$: 220-15				
AU110 ${ }^{\text {A }}$	${ }_{81} 1.75 \mathrm{BC173B}$		BC548	$12{ }^{\circ}$	8F195	${ }^{12}{ }^{\text {p }}$	MEE002			178	tbabioas	¢1.420				80. 1000			ADD 8	VAT
U11	${ }^{1} 1.45 \mathrm{BC176}$	18 p	${ }^{8 C 358}$	${ }^{3}{ }^{\circ}$		95p.	ME8001	25	7402	170	TCA27	80°	1200			2200	TO ALL	tems	CEEPT ${ }^{\text {T }}$	hose
BC10	12p ${ }_{\text {12 }}$					${ }_{15 \mathrm{p}}{ }^{\text {c }}$	M	2	740	17 p	NE556							WITH	WHICH	are
BC107B	14 p BC178	20	${ }^{8 C Y 42}$			20 p .	MuE370	62 c	7405	24 P	741 (B pln DIL)	L) $38 \mathrm{P}^{\circ}$				20		ASE	D	
8 B	$12 \mathrm{p}{ }^{\text {BC178 }}$	21 p	8CY7		8F200	${ }^{380^{\circ}}$	MJE5	5	7709	25 p		${ }^{85}{ }^{1}$	N40	7 p		27		to	orders.	
	14 P BC179		${ }^{8} \mathrm{Cl}^{2} 2$			${ }_{35 \mathrm{p}^{*}}{ }^{25}$	MuEz	¢1.40	7410	20 P			1Na1	$1{ }^{1}$						
${ }^{8 C 10}$	${ }^{14 p} 8{ }^{\text {cli79A }}$		$8 \mathrm{BCZ11}$	1.11	$8{ }^{\text {8220 }}$	$20{ }^{\circ}{ }^{\circ}$	MJE3000	7	7413	40 P			1 N	17 p		$40 \mathrm{~V}-1,2.2,3.3,4.7,6$.				
	12 p 14 BC 182				8	${ }^{185}{ }^{\circ}{ }^{\circ}$	MP		7414	${ }_{20} 7$				18 p						
BC109	14 p BC1828	${ }^{13 \mathrm{p}}{ }^{+}$	8 B 12	87 p	8F255	$2 \pm p$ *	Ocal	${ }_{75} \mathrm{p}$	7430	20 P	SPIn DIL:		1N5408	22 p						
	45p ${ }^{\text {chels }}$	${ }^{142}{ }^{\text {12 }}$	8D124		8F257	40 P	${ }^{\circ} \mathrm{OC4}$		7438		$1+$	20p					Wem	shrop		
${ }^{8 C 114}$	15p ${ }^{\text {BC1838 }}$	${ }^{13 \mathrm{P}}{ }^{\circ}$			BF239	448	OC45	${ }_{40}{ }_{0}$	7441	P	$10+$	18 P	NS44	p						
18		${ }^{\text {P }}$	8D133	54 p	8F232	40 P	C70	40	742		$50+$	17p	S920			100-2700: 150, 220				
		$4^{5}{ }^{\text {+ }}$	8D135	38 p	8F263		C71			21.20	100+		15\%	10p		330, 470, 1000-43p ${ }^{\text {c }}$.	Prop	ic	Trading	

THE COMMUNICATIONS RECEIVER THAT HAS IT ALL...

The finest general-coverage synthesised communications receiver on the market

$£ 184.00$ i....ar

Also available from us with special 2 m converter, all for just an extra $£ 15 \cdot 00$

\star
AMATEUR RADIO EXCHANGE 2 Northfield Road, Ealing, London, W.I3.

Tel: 01-5795311

| Easy terms up to |
| :---: | :---: | :---: |
| 3 years |\quad| Credit Card Sales |
| :---: |
| by Telephone |\quad| Closed all day |
| :---: |
| Wednesday |

Why use half a system?

When for the same price you can have a complete system
PB Breadboards and Blob-Boards are the only Bread board system in the world which enable you to
Design, Test Develop, Prove the Circuit working and produce a professional printed circuit board.

S-DeC + matching Blob-Board + Project Booklet £3.50 T-DeC + matching IC Blob-Board + Project Book $£ 4.50$ U-DeC A + matching IC Blob-Board + Project Book £4.65 U-DeC B + matching IC Blob-Board + Project Book £6.99

DeC-IT and Blob-IT
P.B. Electronics (Scotiand) Ltd., 9 Radwinter Road, Saffron Walden, Essex CB11 3HU

It is normally preferable to employ at least a single transistor amplifier stage (such as that shown in Fig. 5) so that the requirements of the earpiece are far less critical and a cheaper earpiece is satisfactory. A volume control is also incorporated in the Fig. 5 circuit, whilst the two forward biased diodes limit the voltage across the ZN414; the Ferranti BAW 37A double diode may be used here.

Loudspeaker circuits

The audio output from a ZN414 circuit can be fed to almost any audio amplifier which can drive a loudspeaker. Audio amplifiers using discrete transistors have been published for use with the ZN414, but simpler circuits can be made using an integrated circuit audio amplifier.
A small loudspeaker radio receiver circuit is shown in Fig. 6. In this circuit the ZN414 device is fed from a simple single transistor voltage stabiliser circuit so that the gain is almost independent of the power supply voltage used. If no stabiliser circuit is used, the gain will fall considerably as the battery ages. The supply voltage to the ZN 414 , and therefore the gain, can be set by means of VR2. The audio signal passes through the d.c. blocking capacitor C3 to the input of an integrated circuit audio amplifier. C4 helps to remove any radio frequencies from the audio signal and prevents spurious noise.
The LM380 was selected for this circuit partly because an extremely simple circuit can be employed, but also because it contains protection circuits. If the output of this device is shorted to ground accidentally, the output current will be limited to a safe value so that the device is not destroyed. In addition, if the device becomes so hot that it is in danger of failing, the output current is automatically reduced until it cools to a safer temperature.

Diode stabilisers

An alternative to the transistor voltage stabiliser of Fig. 6 involves the use of two series connected forward biased silicon diodes in the circuit of Fig. $6(a)$. The larger the value of R, the greater the gain

Fig. 6: A small loudspeaker radio receiver circuit, using a single transistor voltage stabiliser circuit

Fig. 6(a): An alternative voltage stabiliser using two silicon diodes
of the ZN414. The voltage drop across this resistor is added to the voltage drop of about 1.3 V across the two forward biased diodes.

It is also possible to employ a small light emitting diode instead of the two silicon diodes of Fig. 6(a), but the current required to enable the light emitting diode to provide a reasonable light output will be greater than that required by the Fig. 6(a) circuit. In other words, the value of R must be reduced.

Frequencies

The variation of the ZN414 gain with frequency is typically similar to that shown in Fig. 7. The peak gain is at about 1 MHz , but the device can be used with a reasonable gain from about 100 kHz up to about 3 MHz . However, one should remember that the gain is much reduced near these limiting frequencies. The lowest frequency for reasonable gain is set by the values of the internal coupling capacitors shown in Fig. 2, whilst the maximum practicable frequency is determined by the properties of the internal transistors in the device.

Fig. 7: Frequency response of the ZN414
It can be seen from Fig. 7 that there is a considerable difference in the output voltage as the input rises from 1 mV up to 3 mV , but any further increase in the input voltage produces a relatively small change in the audio output level owing to the a.g.c. action.

Aerial

The aerial may consist of a ferrite rod about 12 cm in length with 55 to 65 turns of 28 gauge wire wound as a single layer for medium wave. The long wave coil may consist of some 250 turns of 38 gauge single silk covered wire wound in a random way with turns on top of one another, as indicated in Fig. 8. The exact number of turns will depend on the value of the tuning capacitor placed in parallel with the coil (typically 200 pF).

Fig. 8: The ferrite rod aerial with I.w. and m.w. coils
Only one aerial coil has been shown in the circuits of Figs. 2, 4, 5 and 6. If both medium and long wave coils are required, the switched circuit of Fig. 9 may be used with any of these circuits. It is important that the aerial coil should have a high Q (magnification) so that reasonable selectivity is obtained.

If one requires an extremely small receiver (possibly using the circuit of Fig. 4), there will not be

Fig. 9: Switching circuit for I.w. and m.w. coils
enough space for a reasonably long ferrite rod aerial in the case. One can employ a ferrite slab with only a medium wave coil wound on it in such receivers; the slab should not be less than about 3 cm in length unless one intends to use the receiver only fairly close to a transmitter. A longer ferrite slab will produce a greater signal voltage.

Fig. 10: A double tuned circuit for greater selectivity
If greater selectivity is required, a double tuned circuit can be used before the ZN414 as shown in Fig. 10, but this requires careful alignment for optimum performance. The Q factors of the two tuned circuits should be similar. If the two tuned circuits are not correctly matched, each station may be received at two points in the band. This type of double tuned circuilt is especially useful when one has a larger external aerial coupled to the ferrite rod. The lead from the external aerial should be connected to a few turns of wire around the ferrite rod, the other end of the winding preferably being connected to earth.

Fig. 11 : A six position switching circuit
The circuit of Fig. ll shows how four pre-selected stations may be selected by the push buttons Sl to S4. The buttons S5 and S6 enable the normal medium and long wave bands respectively to be tuned by means of the variable capacitor C5.
Next month we will consider superheterodyne receivers for a.m. reception.

Entertain the family
WITHTHE $\mathbb{U}_{\text {WIMEDANEI }}$

This attractive unit incorporates three-speed turntable with choice of magnetic or ceramic cartridge, stereo cassette deck, and long-wave, medium-wave and f.m. stereo tuner with automatic frequency control.

The high-quality amplifier provides an output of 11 watts per channel into 4 ohms.

Cabinet parts will be available, to let you build a music centre fit to grace your lounge.

SIMPLE HIGH~RESISTANCE VOLTMETER

An economical design based on the CA3130 operational amplifier, with ranges of $100 \mathrm{mV}, 1 \mathrm{~V}, 10 \mathrm{~V}$ and 100 V d.c. full scale. Input impedance is $10 \mathrm{M} \Omega$ on all ranges.

ELECTRONIC FISH~FEEDER

Does your fish go hungry while you're away getting your suntan? Build our automatic fishfeeder and ensure that just the right amount of food reaches him at regular mealtimes. Easy to build, it suits all fish from guppies to piranhas!

Abbre- viation	Question
QSK	Can you hear me between your signals and if so can I break in on your transmission?
QSM	Can you acknowledge receipt?
Shall I repeat the last telegram which I sent you (or some pre- vious telegram)?	

Question

Can you hear me between your signals and if so can I break in on your transmission?

Can you acknowledge receipt?

Shall I repeat the last telegram which I sent you (or some previous telegram)?

Answer or Advice

I can hear you between my signals; break in on my transmission.

I am acknowledging receipt.

Repeat the last telegram which you sent me (or telegram(s) number(s) . . .).

CHARLES MOLLOY

In official lists of the " Q " codes-the comprehensive system of abbreviations used by professional telegraphy operators to speed the exchange of traffic -the meaning of each code is clearly defined.

Many of these codes have been adopted by other services, such as broadcasting, and by the amateur radio fraternity. For each class of user, the same abbreviation can have a quite significantly different shade of meaning.

To the transmitting amateur, a QSL is an acknow(edgment of a successful two-way radio contact established with another amateur, and normally takes the form of a specially printed card. To this are added a note of the date, time and frequency of the contaot, and brief technical details of the equipment used.

For the broadcast band listener, the radio contact is, of course, strictly one way, and the situation therefore differs again.

Broadcast Band QSLs

What is a QSL? is a question sometimes asked by newcomers to the hobby. According to the March 1978 bulletin of the International Short Wave Club, "a QSL is an acknowledgement". International broadcasters like to hear from their listeners, many of whom are not DXers and in reply these stations issue QSL cards which are really mementos of the occasion. The cards themselves are often colourful. On one side there may be a photograph, a design of some sort or even the station's callsign, while on the other side there will be the acknowledgement and perhaps some information that would confirm that the listener did in fact hear the broadcast.

It is the last factor that causes difficulty for some DXers. Though many will be content to have a card that can be shown to others and perhaps kept in a photograph album, the serious DXer who is interested in obtaining a diploma from a DX club, or who simply wants to be able to prove his reception, will be disappointed. As the ISWC puts it, "To prove reception the document that one receives from the station should be plainly endorsed with the date, time and frequency". Such a reply is called a verification (verie for short) and this is what the majority of DXers hope to receive in return for a reception report.

The current QSL card from Radio Australia is an example of a pleasant QSL that is also a verie. It is a card with a colour photo on one side and the sort of details that the serious DXer would want, on the other side. Even here, the purist might complain that it should have stated my address. The card came inside an envelope!

DX clubs consider QSLs and Veries to be a major part of their activities. The Twickenham DX Club for example, recently produced a 16 -page QSL Survey which summarises verification details submitted to their "QSL Report". Broadcasting stations are listed by country. The frequency band verified, number of verifications received from 1974-76 and 1976 to March 1978, the type of verification (card, letter, folder), whether return postage is recommended and the time taken to receive a reply, are all listed in this comprehensive survey. Copies can be obtained from the TDXC, 13 Tennyson Avenue, Twickenham, TWl 4QX for four 7p stamps in the UK or for 3IRCs surface mail or 5IRCs airmail to any other part of the world.

A final word on QSLs comes from Peter Gatehouse of Buckingham, who refers to a recent communication from Radio Canada International which says that to receive a QSL card from Radio Canada International one has to be on the mailing list! Programme schedules will be sent free but QSLs will not be sent to people not on the mailing list. Write to RCI Publicity and Audience Relations, PO Box 6000, Montreal, Canada H3C 3A8. Clearly, this type of QSL is intended for listeners rather than DXers.

Medium Wave

The medium wave DXer invariably resides outside the service area of his DX and this should be kept in mind when writing to a station. The reception report is unlikely to be of any value to the station and one is depending on goodwill for a reply. So, always include return postage, either an International Reply Coupon, currently 25 p at main Post Offices, or as unused postage stamps of the country concerned. These are obtainable from stamp dealers (philatelist shops).

Send the reception report to the Chief Engineer, if possible in the language of the country, as there will not be an international department to deal with listeners' letters. Many radio clubs supply report forms in a number of languages, Spanish and Portuguese being the most useful. Try to convince the station that you really did hear them as they may be surprised to hear from you. Station announcements, slogans, weather report details, time checks, news items are the sort of material to mention and these can be heard at programme changes which usually occur on the hour or half hour.

model railway
 PONTMOTORSUPPLY

R.A.GANDERTON

Introduction to the Problem

Many model railways use the solenoid type of point motor to operate the point blades from a central control panel. Although the manufacturers claim that these units will operate at a supply of 12 to 20 volts they rarely do so reliably and it is generally better to operate them at around 30 volts. This ensures that they throw properly and overcomes any resistance due to mechanical deficiencies inherent in the design. A typical point motor is shown in the photograph, along with the unit which forms the subject of this article.

The coils forming the solenoids have a d.c. resistance of around 2Ω each and it does not take much imagination to see what happens when 30 volts is applied to the motor. If the armature sticks or the operator leaves the switch on for any length of time then some 15 amps will flow (assuming that the power supply is capable of delivering this current) and 450 W will be generated as heat. The end result is that the solenoid coil burns out.

Solution and Circuit Description

The situation can be avoided by using a capacitor discharge system to provide enough energy to ensure that the armature is thrown over but not enough to burn out the coils if the operating switch is left on.

The circuit shown in Fig. 1 uses a transistor to switch off the charging current to the operating capacitor C2 whenever the output is connected to the 0 V line by a low resistance such as a motor coil.

Fig. 1 The complete circuit diagram
When the load is removed from the output the base of Tr 1 is unclamped and $\operatorname{Tr} 1$ is turned on allowing current to flow through R2 to charge C2. The low value resistor R 2 is used to limit the maximum charging current and its value is not critical. R1 limits the current which flows when the load is left applied and C2 has fully discharged. When C2 is fully charged and there is no load on the output, Trl is turned off via D6. Any small loss of charge due to leakage is made up automatically. Diode D5 provides reverse voltage protection for C 2 , preventing back e.m.f. damage due to the transients produced when the current in the solenoid coil changes rapidly.

Power Supply and Switching

The power supply is a conventional bridge rectifier circuit with a large reservoir capacitor Cl. The input

Fig. 2: The component lay. out. (Note; The two unmarked holes are for alternatively mounting C1 remote from the p.c.b.)

The prototype of the Model Railway Point Motor Supply Unit, shown with a typical point motor

Fig. 3: PCB viewed from the copper side. This board is available from the PW Readers PCB Service
voltage to the bridge rectifier can be between 20 V and 25 V a.c. giving a d.c. level on C2 of between 28 V and 35 V .

This circuit will switch one point motor at a time without any problems. However, it is often necessary to switch more than one motor when, for instance, interlocking or route selection systems are being used and in this case it may be necessary to increase the value of $C 2$. Provision has been made on the printed circuit board to allow additional capacitors to be wired into the circuit across C 2 using pads marked X and Y . The extra capacitance required is found by trial and error but as a suggestion it could be based on a figure of $1,500 \mu \mathrm{~F}$ per extra point motor to be switched.

Fig. 4 Circuit diagram showing switching arrangement for operating more than one point motor

components

Resistors

3W 10% wire-wound
R1 270』
R2 $4 \cdot 7 \Omega$
Capacitors
C1, C2 each $2000 \mu \mathrm{~F} 40 \mathrm{~V}$ electrolytics in common can (e.g. Erie type KB 3104)

Semiconductors
Tr1 TiP3055
D1-6 1N4004 or similar
Miscellaneous
PCB, 6BA bolt, nut and washer, connecting wire, mains transformer 20 V at 1.5 A (see text)

Construction

Construction is simple, the component layout being shown in Fig. 2 and the printed circuit board pattern in Fig. 3. Cl and C 2 are both in the same can. No case has been detailed since most modellers will mount the unit inside the control panel. The a.c. supply can be from a small transformer capable of supplying between 1A and 2A.

Using this c.d. unit it is possible to use push button switches instead of passing contact types and point selection can be easily carried out using a standard wafer rotary switch as shown in Fig. 4. If you prefer the "wandering pencil" type of selection system, then the use of this unit will prevent point motor burnouts which often happen when the operator lets the pencil drop on to the control panel.

Paris Components SHOW

DAVID GIBSON

With a record attendance by nearly 82,000 visitors, the Salon International des Composants Electroniques 1978 chalked up yet another international success. This giant electronics exhibition, held each year in Paris, attracted over 1345 registered exhibitors from 30 countries and spread itself over an area of $60,900 \mathrm{~m}^{2}$.

Exhibits ranged from Ham radio equipment and accessories to laser trimming equipment, from single components to highly complex instrumentation and, of course, microprocessors.

In this latter area it was interesting to see a microprocessor timer kit. This offered a choice of 21 programmes plus a digital readout of time. The unit has many applications but suggested text included ideas like, automatically waking you up in the morning (you can programme in different times for different mornings), switching on your egg and boiling it to perfection, switching the heating on and off plus putting lights on an off during the evenings to deter burglars. The input keyboard (supplied with the kit) has buttons for each day of the week, a one to nine set of tabs, plus an am/pm button although the digital clock can be switched to read either 12 hours or 24 hours.
Readers wanting to conduct underwater experiments in the bath (?) or elsewhere will be pleased to hear of a special transducer shown by a French company. An electret (an electrostatic transducer) for underwater applications has been developed. The air gap which is commonly present in such transducers has been replaced by a compressible, very high resistivity
material which is held in intimate contact (lovely wording those French use!) with the electret. This design suppresses the drawbacks which result from the presence of air in such trans-ducers-variation of sensitivity as a function of immersion depth for example. The advantages claimed for the new device are a sensivity higher than $30 \mu \mathrm{~V} / \mu \mathrm{Bar} \quad(-90 \mathrm{~dB}$ relative to $1 \mathrm{~V} /$ $\mu \mathrm{Bar}$), broad bandwidth, and an acoustic impedance close to that of water. The company is understood to be making some experiments with an array/antenna of electrets which could prove interesting for listening underwater.
One device causing raised eyebrows was the "Snapistor". This is a thick

Signs of things to come. A complete data terminal in an attache case. It comprises a full keyboard, all necessary electronics, and a small collapsible television screen which folds down. The station may be used over a standard telephone via a modem, and can chat to computers and data terminals anywhere in the world
film resistor network on a ceramic substrate. Pre-scribed lines on the back of the substrate divide it into ten parts. Each part can be snapped off, one by one, and each snap increases the remaining resistance by 20%. This gives a five-fold increase in resistance when all nine parts have been broken off. Applications suggested are; to set the gain of a transistor stage, or to set up the voltage of a voltage regulator. Here, one, could use one Snapistor for coarse adjustment, and another for fine setting. Various ranges of resistance values were offered. These inincluded; 100Ω to $520 \Omega, 10 \mathrm{k} \Omega$ to $52 \mathrm{k} \Omega$, $33 \mathrm{k} \Omega$ to $520 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$ to $520 \mathrm{k} \Omega$. The resistance values are $+20 \%$, TCR +100 p.p.m. $/^{\circ} \mathrm{C}$ and operating temperature range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Power handling capability depends on how much snapping you've done. If they are unsnapped (i.e. all sections are in circuit) then the power capability is 250 mW ; with just a lonely one segment, power is 50 mW . Maximum voltage is 100 V .

Trends were not hard to spot. Many people offered microprocessors either a single chip, or with a complementary keyboard, or as a complete kit of parts with a manual.

Motorised rotation of f.m. antennas featured strongly. These came complete with a nicely styled box. The box shows you which way your aerial is pointing and the whole array is controllable from your living room. Many companies showed results, including a BBC2 test card which had superb definition.

One dealer displayed an impressive array of Yaesu Ham equipment. Inter-
esting to see the FT-301D solid state transceiver. It has a digital readout and uses no valves at all, not even those ubiquitous 6146's in the final. The unit runs from 12 V direct-ideal for mobile work, although a separate mains p.s.u. is available which includes a digital clock and an automatic callsign sender for the c.w. enthusiast. Price was horrendous and interest high!

French giant Thomson-CSF took a huge number of stands, indeed their particular alleyway was signposted "Avenue de Thomson-CSF". Along this Avenue was found an "Easy-touse Super-Noticon'. This turned out to be Thomson's latest addition to its range of low-level TV camera tubes. The Super-Noticon really is super, too. It can view a scene without trouble even on a cloudy and moonless night. The French boffins mumbled something about sensitivity down to 10^{-5} lux.

Also on the Thomson stand were a number of quartz resonators which achieve 300 MHz in fundamental mode. Close by were a number of devices described as piezoelectric but using Lithium Tantalate and not quartz. These synthetic single crystal devices have inherent properties suited to the production of wideband filters in the 0.08 to 35 MHz band. A stand spokesman hinted at possibilities that this frequency could be raised to 400 MHz in the not-too-distant future.

Surface wave filters were a feature on the Siemens stand. The company has succeeded in laying these down on a lithium nobate substrate. The technique is to lay down tiny fingers of conducting pattern which intermesh (but do not touch) rather like the teeth of a comb. The result is that the signal can be made to pass along these closely coupled subminiature antennas which are frequency sensitive and thus have a filtering action. Although other materials made the surface wave filter a reality, high cost and low consistency were deterrents. Lithium Nobate is claimed to overcome these problems The filter has the great advantage that it has no coils or capacitors. First applications are in the i.f. strips of TV sets. Siemens has already manufactured filters to suit British standards and markets. The standard package size on the stand was $19 \times 16 \times 5 \mathrm{~mm}$ with five terminals brought out at one side.

The French Amateur Radio Associ-ation-Reseau des Emetteurs Français -had a real live repeater satellite on show. Unlike other repeater stations which are fired aloft from places like Cape Canaveral, the French decided to try a much cheaper method. They attached their 144 MHz repeater station to a balloon and let it loose. The

The French Ham v.h.f. radio repeater Anjou 009, which was sent up by balloon on September 25th 1977 and returned to earth via parachute. It is one of a series which have been launched by French Amateur Radio enthusiasts.
highest one of these repeaters (there have been about nine) has reached is 31,400 metres. The "flight" can be up to 24 hours long, then the balloon bursts and the repeater parachutes back to earth. The REF has around 12,000 members in France in some 250 Ham radio clubs. Annual subscription is 120 French Francs.

One normally associates Sprague with capacitors, but visitors to the stand in Paris found quite a number of useful i.c.s on display. A good one to watch for is the ULN-2283B. This is a little audio chip which offers 1 W output with 12 V applied. It will function from $-40^{\circ} \mathrm{C}$ right up to a very hot $+85^{\circ} \mathrm{C}$. Gain is claimed to be 43 dB and the i.c. will function at voltages down to only 3 V . The circuit shown on the Sprague stand gave an idea of the simplicity when using the ULN-2283B. Apart from the chip and loudspeaker, only two capacitors plus a volume control are required.

The new Philips personal bleeper system looked a good idea. The tiny pocket receiver, besides have a bleep "you're wanted" facility, also boasts an alphanumeric readout. Speech facilities can be added, too, if required. By using a standard code, say from
one to nine, a message can be sent very easily. Thus a number 3 displayed would mean outside telphone call; number 6 might mean return to the office etc.

At more official levels, the exhibition literature had some intriguing headings. How about "Universal elastic banana plug"? Upon my breathless arrival I was shown a banana plug whose spring arrangement assures good electrical contact with any diameter socket from 3.9 mm to 4.5 mm in diameter. After 100,000 pluggings in and out (no, I didn't) the plug still has a contact resistance between it and its socket of only 0.8 milliohms. Maximum current is 15 A .

A fascinating device was one which varied the inductance of a coil-useful in tuning up aerials no doubt. The main coil has its windings composed of silver-plated tape-like metal. One end of this is fixed, but the other goes across to another former, which is motor driven. When power is applied to the motor, it simply unwinds turns off the coil onto the secondary former and thus the original coil has its inductance decreased. By deriving the motor power drive command from a signal fed back from an s.w.r. bridge, aerials may be loaded automatically from transmitters even when the frequency is changed by quite a large amount.
Solar cell enthusiasts will be pleased to hear that production of professional industrial components is driving the prices down and they could well make an appearance on the Amateur market before very long. One French company is talking of 500,000 cells of 57 mm diameter for 1978, and the production has already dropped the price by 30% at the beginning of this year.
Still in terms of economical power, Lithium batteries were commonly offered. One of these would give $300 \mu \mathrm{~A}$ for 100,000 hours. Couple this with a CMOS circuit and your battery replacement problems could be over. Carrying this capacity to the 30 mA mark would give 1,000 hours of operation. The operating temperature range of these batteries is impressive; from $-65^{\circ} \mathrm{C}$ up to $+160^{\circ} \mathrm{C}$.
Smallest radar I've seen was on the Jay Electronique stand. It measures $126 \mathrm{~mm} \times 60 \mathrm{~mm} \times 70 \mathrm{~mm}$. It's called a guarding radar because its power dissipation is 22 mA at 12 V , and it is undisturbed by small things, such as passing birds, insects etc. Its range is fully adjustable from 0 to 15 metres.
In the heavier machinery part of the exhibition was a machine for winding wire onto toroids. It does this at the rate of 2,000 turns/minute. Have you ever thought-how do you automatically wind onto a ring or toroid?

Experimental Broadcasting Satellite
 Jop

A new high-power experimental broadcast satellite was launched from Cape Canaveral in April for the National Space Development Agency (NASDA) of Japan. It will doubtless be the forerunner of many new satellites designed to provide high-quality experimental colour television reception in regions of the world where the terrain makes it difficult or impossible to receive high-quality signals from normal earthbound television transmitters. The spacecraft was constructed for NASDA by the Space Division of the US General Electric Company of Valley Forge, Pennsylvania under contract to the Tokyo Shibaura Electric Company (Toshiba).

This BSE (Broadcast Satellite Experimental) craft weighs 678 kg and was sent into orbit by a Delta 2194 rocket. Onboard propulsion jets propelled the satellite into a geosynchronous orbital position at longitude $110^{\circ} \mathrm{E}$, and the control system will be able to maintain its position to $\pm 0 \cdot 1^{\circ}$ in latitude and longtitude.

Television and voice signals will be sent from the Japanese mainland to the satellite using frequencies in the 14.0 to 14.5 GHz band, and the satellite will then relay these signals back to ground using frequencies in the $11 \cdot 7$ to $12 \cdot 2 \mathrm{GHz}$ band. It will provide two high-quality colour television channels and also voice communication circuits over the whole of the Japanese mainland and over many remote islands and mountainous regions. About two per cent of the Japanese population are outside the area where reception from existing transmitters is satisfactory. Japan has many islands spread over a wide area and it is thought that a high-power relay satellite will provide an economic and effective means of sending television signals to such regions.

Receiving stations

If a satellite relay system is to be an economical proposition, it is essential that the cost of each of the numerous small receiving stations shall be minimised. This implies that the power transmitted by the satellite must be quite high-especially if the power is beamed to cover a relatively wide area of a country.

The experimental broadcast satellite has been designed with this particular objective in mind. Many satellites use a cylindrical array of solar cells which are spinning in space so that the spacecraft is stabilised. However, such spin-stabilised craft have the disadvantage that only a small proportion of the solar cells are receiving the maximum amount of energy from the sun at any one time. The experimental broadcast satellite therefore employs three-axis stabilisation with its solar cells on arrays of extended arms; all of the solar cells in such a satellite can be directed towards the sun at all times (except during eclipses of the satellite by the earth) and therefore maximum power is available. The solar cells of the satellite provide a minimum power of at least 780 W .

The receiving stations will employ parabolic antennae, but owing to the high power level transmitted by the satellite and the fact that only Japan will be included in the transmitted beam, the parabolic reflectors of the receiving aerials can be as small as 1 m in diameter. (This may be contrasted with the huge 30 m diameter aerials used for international satellite communications which provide about 900 times the gain of a 1 m aerial). In many cases, a single receiving station will be able to feed the received signals to a whole district, but cheap receivers will be able to be used in individual homes in remote districts. The satellite has an expected life of three years and many signal strength measurements will be made at various points in the reception area so that this experimental satellite can be used as a model for future craft.

Command and control signals will be transmitted to the satellite from ground stations in Japan in the S and Ku microwave bands. It is interesting to note the tendency to use higher and higher frequencies for satellite communications with earth stations in order to obtain more bandwidth and hence a greater information carrying capacity.

Future developments

The basic design of this satellite can be readily adapted to provide both expanded telephone, data and television services and in addition to incorporate educational and health care transmissions to the developing countries in future satellites. Some satellites of the future will be operated by one nation, whereas others will be jointly operated by a group of small nations. All are situated in a geostationary orbit some $36,000 \mathrm{~km}$ above the equator where they remain at the same position above the earth's surface. They are expected to have a very great impact on health and medical care in many of the developing countries.

SPECIAL anNouncement

PRINTED CIRCUIT BOARDS SERVICE FOR PW PROJECTS

It has now been decided, commencing with our issue dated September 1978, to enlarge the facilities for the supply of p.c.b.s to readers by authorising additional suppliers. It is hoped that readers may benefit from being able to purchase boards as part of component kits, thereby reducing the number of separate orders for a project.
For some time, most p.c.b.s published in Practical Wireless have been available exclusively from Reader's PCB Services Ltd., P.O. Box 11, Worksop, Notts, who will continue to be a supplier and to whom we would wish to say thank you for helping us to get the service started.
Applications for permission to reproduce boards for resale purposes must be made to the editor.

Please supply $\mathrm{PCB} / \mathrm{s}$ as indicated by tick/s in box/es......
for $£$. . made payable to READERS PCB SERVICES LTD
name
ADDRESS

Post Code..
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Editorial offices.

A REVIEW OF RECENT DEVELOPMENTS
 In general, the author does not have any more information on products than appears in the article.

Go West

If inflation is hitting you and/or you are intending to take a job in electronics, think about the USA. The IEEE (Institution of Electronic and Electrical Engineers) out there reckons that its members' salaries have kept well ahead of inflation over the past two difficult years-and they're still well ahead. Average annual salary is put at around 27,500 dollars, and some members have confessed to raking in 70,000 dollars.
No, I don't have any membership forms!

Watch what you say

Microprocessors seem to be creeping into practically everything these days. There's even one lurking in a new system under development which will recognise continuous speech. The basic unit has a 16 word vocabulary. Each word is converted/translated into a pattern generated by a spectrum analyser. This pattern, representing the word, is then stored in a memory bank.

When the system hears words, it nips along to its memory bank and rummages around comparing the words it's hearing with the words it's "learned". If it finds a match you get a response.
One particular version of the system was hooked up for a demonstration and arranged to respond to single word commands. The whole affair was coupled to the telephone network via a suitable interface. When the system was instructed to hunt through the files of the New York Times Information Bank (which was hundreds of miles away) it did just that. It took less than a minute to display, on a video terminal, abstracts of the particular topic selected.

Intelligent to credit cards

And that's not the end of the micro-processor-yet. They're doing things with them in France, too. Like one company that is actually putting one (albeit a mighty thin one) into a bank credit card. When you think that the familiar 14 or 16 -pin in-line package contains only a very tiny, thin chip, then if one can do away with all that bulky
packaging a very thin circuit indeed can be had. The exact method of fabrication is still under wraps but the future looks extremely promising. Unlike many credit type cards which can only "store" a very limited amount of information on magnetic stripe, these microprocessor beasties will be able to store lots of things, like the balance in the account which would be easily updated at every transaction. Perhaps they might even put a radio receiver chip in there somewhere: do I recognise someone saying "Hear hear"?

High Power

Hams (radio Amateurs) will remember their first experiments with transistors, particularly using them to generate r.f. Some of the early Ginsberg experiments on 1.8 MHz with these three-wire fuses were, to put it kindly, expensively disastrous! One watt was, in the early days, quite something. This contrasts with the new power field effect transistors just out which will happily give 100 W of c.w. at 175 MHz . Certain advantages are claimed by the manufacturers. For example they tell that the devices draw very little input current and things like biasing and modulating are simpler than with bipolar devices. They also tolerate load mismatches and in terms of distortion they are ahead of bipolars. Third order distortion is reckoned to be about the same as a similar size bipolar component, but because the f.e.t. devices have a square law characteristic the higher order distortion is between 5 and 10 dB less.

Spot your Tank

So there you are, peering at your video screen, looking for the enemy. But its difficult. Tanks, for example, can be camouflaged quite cunningly. One answer is to employ a computer with built-in edge detection routines. These things take the data from the sensor and tell the computer to enhance all the straight lines. This crafty dodge has the effect of outlining man-made objects quite dramatically. But we have a problem-the process involves using things called algorithms and these can take some 10 seconds. By that time, our unfriendly
tank crew could have done some very nasty things to both you and your algorithm.

However, tank spotters among you can now rest easy because a solution is at hand. The answer has been to use a charge-coupled device which acts extremely fast-almost in real time to all intents and purposes. If you want to be more precise, the manufacturers say it works up to 1,000 times faster than a general purpose computer. The technique employed is subject to a patent and is quite ingenious.

The chip receives the image signal from the electronic camera (another c.c.d. used for the sensor) and gives it to three separate parallel shift registers. Each register takes just one line at a time and so at any instant these registers hold three contiguous lines of the image. Backing these are 20 edgedetection algorithms which are so arranged that they are able to treat the three lines held by the registers as a 3×3 array of nine separate little picture elements.

The straight edge components of the signal are located simultaneously in 2D i.e. in both vertical and horizontal planes. This is achieved by part of the chip continuously calculating the difference in picture signal between the separate picture elements in the little 3×3 array.

And to think I was impressed by the first op amp.

Micropot

If I mention the word "potentiometer" you will probably have a mental picture of a pot about 25 mm diameter with a spindle which is always too long and has to be hacked off! But what about the latest potentiometers which are so small you can get a dozen or so on your fingernail? These truly minute pots are only $0 \cdot 172 \mathrm{in}$. in diameter and 0.1 in . high. Presumably a magnifying glass and micro-screwdriver come with each.

Cimbers

Board 3-Power Amplifier (Fig. 7)

If a greater power output is required, then Board 3 may be fully constructed as shown and will be found to deliver around 10 watts r.f. output with a 25 volt supply to the final two stages. It is also quite feasible to construct just one amplifier, or two, or three, etc., depending on requirements.

Merely using the single Trl on this board will produce about 1_{4}-watt, whereas including $\operatorname{Tr} 2$ will increase this to about 1 watt. In each case, the aerial filter will connect adjacent to the appropriate tuning capacitors and the remainder of the circuit is omitted.

Do not apply more than 15 volts to Trl and $\operatorname{Tr} 2$ as in this configuration $\operatorname{Tr} 2$ especially is running near to its maximum rating.
In the completed power amplifier, the two BLY83 transistors are bolted direct to the metal case and holes are drilled in the board for the transistor body to sit in ensuring good heat transfer. Pushon heat sinks are fitted to $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$, which are wired to the board conventionally.

Readers who intend to operate the Avon Transmitter should be in possession of the appropriate licence issued by the Home Office to those who have passed the City and Guilds Radio Amateurs' Examination. Details may be obtained from: The Home Office, Radio Regulatory Department, Amateur Licensing Section, Waterloo Bridge House, Waterloo Road, London SE1 8UA.

The board layout for etching is shown in Fig. 8 and Fig. 9 illustrates the component positions.

The aerial filter consists of a parallel-tuned circuit offering low attenuation to the 2 m signal, but is effective in reducing harmonic and spurious emissions to an acceptable level.

Two small inductors either side of the tuned element resonate at the second and third harmonics respectively and further reduce the possibility of radiation at these frequencies.
A small, separate board supports the filter and is mounted close to the chosen output stage.

The low level r.f. input from Board 2 is coupled to Trl base via a short length of miniature 50Ω co-axial cable. Inductor Ll provides a match into the base/ emitter junction of the transistor with L3, L5 and L7 of the following stages.

Each stage is in class C and there is therefore no d.c. bias required. Each positive half-cycle of the r.f. sinewave input turns the transistors on and the flywheel effect of the collector tuned circuits modifies this pulsed signal to a sinewave again.

To allow a d.c. path from base to emitter, small ferrite-cored r.f. chokes are used from base to ground. These are marked "r.f.c." on the diagrams and they are all wound in a smiliar manner, including the three used in the supply line decoupling.

The inductors RFCl and RFC2 are wound on ${ }^{1}{ }_{2}$ watt $1 \mathrm{M} \Omega$ resistors, their leads being used to anchor the windings.

All remaining r.f. chokes are air-spaced types and pictorial details are given in Fig. 12.
Note that the high-power output and driver are fed directly from the 25 volt d.c. supply whilst the remainder of the transmitter, with the exception of the display, is fed from an integrated circuit regulator type 7815 . This device has short-circuit and overtemperature protection, and delivers a constant 15 volts at up to 1 amp .

Its inclusion is not necessary if a reasonably stable d.c. supply is available, and of course the entire transmitter can be operated from 12 volts at reduced output.

Relay Switching (Fig. 10)

The incoming 25 volt supply has a diode D1 (BY127) inserted in series with its positive line as protection against polarity reversals. Relay RLA is the keying relay, and is operated by the microphone pressel switch or by the "send" toggle on the facia of the transmitter. The co-axial relay CO is the aerial changeover, and operates through contact RLA3 of the keying relay.

On operating the microphone pressel switch, RLA operates, RLA1 completes the circuit to the 15 volt regulator, RLA2 illuminates the status l.e.d. "send", RLA3 energises the co-axial changeover relay CO and RLA4 applies the 25 V to the BLY83 final amplifiers.
The "send" switch S3, located on the front of the transmitter merely overrides the microphone switch and provides a latching facility, enabling the transmitter to be permanently keyed.

Switch Sl "cal" enables the transmitter to be keyed at very low power by removing the 25 volts to the power amplifiers. Contacts Sla close, completing the RLA coil circuit; RLA1 closes, RLA2 changes over but the "send" l.e.d. is prevented from operating by Slc. The CO relay circuit is completed by RLA3, RLA4 closes but the 25 volts is prevented from reaching the power amplifiers by Slb, which is open.
The "tune" facility S2a again energises RLA; S2b disables the 25 volt supply to the power amplifiers and operates the "net" l.e.d., whilst S2e prevents the aerial changeover relay CO from operating.

An additional contact set on RLA can be used to provide a loop make or break facility for receiver muting and sufficient contacts on the d.c. input plug have been provided for this option.

Tuning

Each transistor collector is series-tuned to give a low impedance feed to the following stage and ultimately to the aerial. The trimmer furthest from
the board edge in each section-i.e. TCl-tunes the coil, and the other-TC2-is adjusted for maximum drive into the next stage.

This arrangement has proved to be both reliable and stable in operation. Tests with the prototype indicated that however badly out of alignment the board was, negligible stray oscillations or spurious signals were produced. Should the board be well off tune, there will be no output.

$x=1 / 16$ holes for ground leads to main board.

Fig. 10: Circuit diagram of the switch and relay wiring

Decoupling

Notice on the circuit diagram the extensive use of capacitive decoupling on the power supply lines. Various values are used to give broadened effectiveness and the specified types are particularly important here.
A characteristic of the r.f. power transistor is that generally speaking it will not withstand high switching transients, such as those produced by relays. Filters are therefore included from the supply rail to ground thus reducing the charging effects on the line as the voltage is applied and removed.

components

POWER SUPPLIES AND SWITCHING ARRANGEMENTS

Resistors

$\frac{1}{7}$ watt 20%
1kS 2 R1,3
2 watt 20%
$4.7 \mathrm{k} \Omega \quad 1$ R2

Capacitơrs

Ceramic 50 V
$0.01 \mu \mathrm{~F} \quad 3 \quad \mathrm{C} 1,2,5$
$0.047 \mu \mathrm{~F} \quad 2 \mathrm{C} 3,4$
Semiconductors
Diodes
BY127 1 D1
Regulators
$7815 \quad 1+15$ Volts
Relays
RLA 6 c.o. Siemens plug-in type 475Ω or RS CO $\quad 349.169$, with base
CO 12-24 Volt co-axial relay. Magnetic Devices or RS type 349.686

Switches

S1, 2, 3 4-pole double-throw miniature toggle RS type 316.816

Miscellaneous
4 l.e.d. indicators

Hardware Notes

The prototype was constructed in a Foxall T4108 instrument case on a Foxall T2004 chassis specifically made for this enclosure (see Fig. 11).

The boards are bolted directly to the chassis, with the exception of the oscillator (Board 1), which is supported by small insulated pillars and secured by 6BA PK screws. Construction is not too critical, provided clearance for the switches etc on the front panel is allowed and sufficient room is made available for the relays, co-axial sockets and power jack.

Three different types of 50Ω co-axial connector were used to avoid confusion or the accidental insertion of wrong cables. The aerial input is an SO239, the aerial output (to receiver) a BNC and the v.f.o. input a miniature BNC: power is applied via a 4-way McMurdo connector.

Tuning (Boards 1 and 2)

After checking for correct values and component positioning, power can be applied to Boards 1 and 2 having first made the necessary r.f. connections with miniature 50Ω co-axial cable. Temporarily solder a $60-80 \Omega{ }^{1} 2$ watt resistor across the output and ground, i.e. across TC7. Set all trimmers mid-way and the slugs in L1 (Board 1) and L1 (Board 2) to the centres of their respective coils. Do not connect Board 3 at this stage.
With a diode probe connected to a suitable meter (f.s.d. $50-150 \mathrm{~mA}$) and with power applied to both boards, check the oscillator output and tune TCl on board 2 for maximum signal at the base of $\operatorname{Tr} 2$. Loosely couple L1 to a receiver tuned to 24 MHz and a strong signal should be detected. Establish that TCl tunes this frequency by turning it through 360°, when a rise and fall in output should be produced.

Place the probe on the base of $\operatorname{Tr} 3$ and adjust TC2 or maximum. Now transfer it across TC7, adjust TC4 and TC5 for maximum level, peaking TC6 and TC7. Repeat all tuning until no further improvement can be obtained.
Signs of erratic tuning indicates either an incorrect crystal harmonic from L1 or some other source of instability.

Re-check the 8 MHz and 24 MHz signals on the receiver and also the decoupling capacitors before attempting further tuning. If a 2 -metre receiver or converter is available it will be a simple matter to prove and in-band signal at $\operatorname{Tr} 6$ and also monitor the modulation. As Board 3 is purely an amplifier, the audio quality and deviation must be correct before proceeding from here.

Next remove the dummy load resistor across TC7 and connect Board 3 into circuit. Make certain that the 25 volt and 15 volt supplies are routed to the correct positions.

Provide a suitable 10 watt load-a 10 watt low voltage lamp will suffice-across the aerial output socket. Check all trimmers are in the central position then solder a temporary link across the filter board and disconnect one end of TC9.

Tuning (Board 3)

Apply power (25 V and 15 V) to the transmitter again and, should there be no indication of output, couple the diode probe to the base of $\operatorname{Tr} 2$ and tune TC1, TC2 for maximum. Repeat the procedure with Tr3, tuning TC3, TC4 for maximum.

At this point there should be a pronounced indication of r.f. at the output: i.e. if a lamp has been used as a load, it should start to glow. Each trimmer is now adjusted for maximum output, finally peaking TC6, TC7 on Board 2.

If a v.h.f. power meter is used, the r.f. output of the transmitter should lie in the region of 8 to 12 watts. Key the transmitter and after a few minutes check the temperature of each transistor; there is no cause for concern if the heat sinks are found to be

An inside view of the 'Avon Transmitter'. Note, that while six are specified, the prototype used only 3 channels in the crystal oscillator on Board 1

Fig. 11 : Suggested chassis layout and details of transistor connections

Fig. 12: Pictorial details of inductors
quite hot, as they are designed for temperatures of $150^{\circ} \mathrm{C}$. The section of chassis around the power output transistors will become warm after a few minutes operation.

Remove the power from the transmitter and the link across the aerial filter. Re-apply voltage and adjust TC9 for maximum output: a sharp point should occur where maximum power is reached.

Remove the dummy load and couple an aerial via an s.w.r. bridge to the transmitter. Key the unit and re-adjust TC7, TC8, TC9 for maximum forward reading. The setting will most likely differ from that used when tuning into the dummy load, due to a variation of impedances.

Channel Frequencies

As previously discussed, a number of crystals covering several frequencies within the 2 -metre band can be utilised. Each crystal will have an associated trimmer and capacitor, the precise frequency being set by means of a counter or calibrated receiver.

NOTE: In compiling the components lists for part 1 , a few inconsistencies occurred. The following values are correct:
Board 1. R5-15k $\Omega, \mathrm{R} 6-8 \cdot 2 \mathrm{k} \Omega, \mathrm{Rl} 1-68 \mathrm{k} \Omega, \mathrm{R} 15-10 \mathrm{k} \Omega$
Board 2. R4-10k Ω, R13-56 , C3- $0 \cdot 1 \mu \mathrm{~F}$
Also on Fig. 3 page 46; C18 should be shown in parallel with R15.

Next month we will consider the digital display and power supplies for the Avon.

Battery Power Supply for The PW
 ECOMONY TIMING STROBE G.GOULD

If, like myself, you live on the top floor of a high rise block of flats then you will appreciate the problems involved in using the $P W$ Economy Tining Strobe featured last February.
The need to use the mains supply to power the strobe tube seriously limits its use to those who have easy access to a suitable mains socket.
If the strobe could be made to operate from the car battery then its usefulness would be improved immensely.
The power supply described here is both simple to build, cheap and can be fitted into the case used for the original version.
The inverter shown in the circuit diagram produces around 400 V and is a conventional inverter circuit using one transistor to convert the d.c. supply to a.c. ready for transforming up to 400 V at the secondary of the transformer.
As the circuit is so simple and uses few components the construction can take any convenient form such as Veroboard or a small tag strip.
The transformer bobbin is wound with about 150 turns of $29 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled copper wire which is covered with a layer of insulating tape. This winding, which is the secondary, should almost fill the bobbin leaving just enough room for the primary and feedback windings (8 turns and 4 turns respectively).

Take care to note the start and finish of the primary and feedback windings as this is important to ensure that the inverter oscillates.
The two ferrite pot cores can then be bolted together with the bobbin inside and the finished transformer secured by the central bolt to a convenient place in the box.
The small piece of Veroboard or tag strip can be bolted using the same bolt as shown in the drawing.
A standard line fuse should be inserted in the cable which is to be attached to the live terminal of the car battery to give protection against short circuits and other disasters which might possibly occur during use.
The basic circuit of the inverter can be used to power a standard 2 foot long fluorescent tube as an emergency lighting unit. In this case Dl and Cl should be omitted and R1 changed to 220Ω. The unit can then be run from a 6 V lantern battery.
The method of connecting the strobe unit to the Number 1 plug lead suggested in the original article and the subsequent Extra Data published in the April issue may prove difficult to use on some engines and a modification is to use a length of Bowden cable outer sleeving to provide a flexible take-off point instead of the rigid 4BA stud. The 4BA stud should of course be fitted to the end of the flexible cable.

Circuit diagram and layout for battery-powered strobe

PRODUCTION LINES

resist coated epoxy glass laminate sheets, developing and etching trays, label and panel materials, high-speed drill, and all the requisite developers.

The Photolab Kit has been designed for use by both the amateur constructor and the professional engineer. It has been introduced to fill the gap between commonly used ' 1 -off' prototype p.c.b. production methods and the facilities offered by the existing, larger kits currently available. However, with its pricing at only $£ 49 \cdot 50$,

Telephone Charge Clock

Trying to calculate the cost of a telephone call while you are actually making it is an almost impossible mental exercise. An attractive new unit by Monitel now makes the process simplicity itself. All that is required of the caller is to select the appropriate charge band, as listed in the Post Office dialling code book, and start the clock at the appropriate moment. The microprocessor-based circuitry does the rest, displayed the accumulating charge continuously on an l.e.d. display, and taking account of the time of day, and the day of the week. The unit is programmed by means of a punched card, and in the event of a change in charge rates, can be reprogrammed by inserting a new card supplied by the makers.
When not in use, the display functions as a conventional digital clock. Produced in similar style and colours to Post Office telephones, the Monitel Telephone Charge Clock is available in a UK version, retailing at about £29, and an International version at about £39. The latter also copes with a selection of the charge bands for overseas calls.
Further details are available from Monitel Limited, Berechurch Road, Colchester CO2 7QH.

Light work

Mega Electronics Ltd. have introduced a comprehensive kit which enables the preparation of artwork for, and the production of, both printed circuit boards and front panels or labels.

Known as the Photolab Kit, it consists of an ultraviolet exposure unit, draughting aids and film, positive
complete, and its ability to handle p.c. boards and labels of up to $228 \times$ 152 mm , it is anticipated that the kit will have wide ranging appeal in both sectors of the market.
Available from: Mega Electronics, Ltd., 9 Radwinter Road, Saffron Walden, Essex CB11 3HU. Tel: (7099) 21918.

Tele-View Module

Texas Instruments have recently announced the production in quantity of their VDP11 combined Viewdata/ Teletext decoder module. It uses a microprocessor system based on the familiar TMS 9980, which performs Viewdata decoding, and if used with a remote control system, a codeconverting PROM on the input lines enables the codes to be chosen by each customer. An internal TV sync. generator is included, and this is automatically switched in when Viewdata is selected. Auto-dialler telephone numbers are controlled by a fourpole DIL switch, and the unit also features terminal identification.

The complete p.c.b. moduls ($300 \times$ 165 mm) is available from Texas Instruments Ltd., Manton Lane, Bedford, priced at approximately $£ 250$, depend-
ing upon options selected; a version of the VDP11 with expanded memory in the microprocessor system, suitable for editing terminals, is expected to be available shortly.

PCB aids

A comparatively new product is available which will be of great benefit to engineers and amateurs who need to make their own printed circuit boards.

The Alfac Electro range of dry transfers contains almost 100 different patterns for making printed circuit layouts, quickly and accurately. As the symbols are etch resistant, they can be used for making 'one-off' printed circuits by direct application on to copper clad boards.

They are simple to use, and need no
special 'fixing' since the double action adhesive used, prevents the patterns from moving once they are laid down. The quality of the ink used avoids any cracking enabling users to obtain a very fine detailed finish.

They are available in a range of patterns and sizes and give correct spacing for integrated circuits and transistors. Also available are a range of lines and rounded corners etc., thus enabling a highly professional standard of finish to be achieved.

Alfac Electro transfers are economical in price and are avallable in handy blister packs which are ideal for storage. They do not deteriorate with age and if left on their backing sheets can be used after months of storage. Each blister pack contains 5 sheets of patterns and costs $£ 1 \cdot 30$.

Further details and catalogue can be obtained by writing to the sole UK agents for Alfac; Pelltech Ltd., Alfac Electro Division, 6 Church Green, Witney, Nr. Oxford.

A selection of some of the patterns avaliable

LETTERS

Pen-Pal

Sir: I am a Ghanaian boy of seventeen years old. I am a first year apprentice in radio and TV servicing. I plan to start a course in radio and TV servicing, and I would be happy if you can help me to correspond with any beginner or experienced radio and TV technician from anywhere and of any age.

Francis K. Acquaye
c/o Mr. K. Agyei
Box 756
Takoradi
GHANA

Band II FM

Sir: I would like to hear from any of your readers who are interested in long-distance Band II v.h.f. (f.m.) reception. I have made contact with several people in the immediate locality, and feel sure that there are others who find the possibility of alternative goodquality programmes (both mono and stereo) interesting.

Some years ago a series of articles on Band Π topics, written by Mr. Austin H. Uden, appeared in Hi-Fi News. If any reader knows of an address where Mr. Uden can be contacted, I would be grateful if they could send me details.

G. P. Stanbury
275 Meadgate Avenue
Great Baddow
Chelmsford
Essex CM2 $7 N J$

Mains Plugs

Sir: I read with interest your editorial about plugs and fuses ($P W$, May, p 18).

It may be of interest to compare the situation here with that in America. Over there, there is only one kind of plug configuration, so all appliances come with the plug already fitted. However, there are no fuses in plugs, nor switches on outlets. Most appliances have two-pin plugs, with no earth pin, though all outlets accept three-pin plugs.

Perhaps this country could combine the advantages of the two systems by standardising on a single type of plug. Then manufacturers could supply equipment with plugs and fuses already in place.
M. A. Covington
Cambridge

The proposed 16A "International" plug and socket has most of the features of the American plug described in this letter. Ed.

Sir: The recent comments in $P W$ about 13A plugs have been most interesting.

May I point out that it is good practice to wire such a plug so that there is more slack in the earth lead than in the other two. Then, if the cable is wrenched from the plug, the earth lead is the last to part company, maintaining the safety of the equipment.

Plugs like those mentioned in May's PW, which accommodate equal length leads, do not encourage this practice. They should have the earth connection point even nearer the cable grip.

> E. F. Chase
> Titchfield, Hants

Image Rejection Filter

Use of the superheterodyne principle enables highly efficient communications receivers to be produced, but these sets are not totally free from flaws. The main drawback experienced with most s.w. superhet receivers is what is termed the "image response." This is a secondary response of the set which at high frequencies is often nearly equal to the main response, or "primary" signal.

The image response is produced because there are actually two possible difference frequencies for each oscillator frequency. One is equal to the oscillator frequency minus the i.f., and this is conventionally the main response. The other is equal to the oscillator frequency plus the i.f. Thus in order to convert a 1 MHz signal to an i.f. of 455 kHz , the oscillator would operate at 1.455 MHz , and the image response would be at $1.91 \mathrm{MHz}(1.455 \mathrm{MHz}+0.455 \mathrm{MHz})$.

Reducing the Image Response

Usually the image response is attenuated by using one or more parallel tuned circuits ahead of the mixer in the basic manner shown in Fig. 1(a). Theoretically, a parallel tuned circuit has a very high impedance

Fig. 1(a) Parallel-tuned, parallel-connected tuned circuit, and Fig.1(b) parallel-tuned, series-connected tuned circuit
at its resonant frequency and a low impedance at other frequencies. By tuning the circuit to the desired input frequency the input signal should pass unhindered and the image signal should be largely shunted to earth.

A practical tuned circuit does not achieve anything like perfection, and there will be some attenuation of the desired signal and perhaps only modest attenuation of the image signal. Several factors determine just how much attenuation of the image signal can be obtained, and one of the most important is the ratio of the input signal frequency to i.f.

In our example of an image response at 1.91 MHz , produced by a 455 kHz i.f. this response is at virtually double the original. Even a single tuned circuit would be sufficient to greatly attenuate the image response. If the same receiver were to be tuned to a frequency of 10 MHz the image response would be at 10.91 MHz , which is less than 10% higher than the primary signal. Therefore, the image rejection of a receiver falls away with increasing frequency, and on many sets it falls to a surprisingly low level. For example, a typical s.w. receiver might have two tuned circuits ahead of the mixer, an i.f. of 455 kHz , and an image rejection of about 20 dB at 14 MHz , which means that the set is only ten times more sensitive on the primary frequency than it is on the image frequency. At higher frequencies the image rejection would be further reduced.

Problem Area

In practice it tends to be on the 20 metre amateur band that a lack of image rejection becomes most troublesome. This is because the image response overlaps the 19 metre broadcast band, and strong signals from that band can often largely obliterate the h.f. end of the 20 metre band. This only occurs with receivers having an i.f. in the 455 to 470 kHz range, but unfortunately this probably includes the majority of communications receivers in amateur hands. The author experienced this difficulty with his Trio QR666 receiver, and it was this that prompted the construction of the simple filter which forms the subject of this article.

Rejection Filter

Probably the most obvious way of increasing the image rejection of a set is to insert an extra parallel tuned circuit in the r.f. signal path, as in Fig. 2.

Fig. 2: The circuit of the rejection filter-a paralleltuned, series-connected tuned circuit, modified to make its response variable

Here the tuned circuit responds to the image frequency rather than the primary signal. As mentioned earlier, a parallel tuned circuit has a very high impedance at resonance, and so this should result in almost total suppression of the image signal and the wanted signal can pass with virtually zero losses.

The practical circuit of Fig. 3 clearly does not achieve perfection, but can provide a high degree of image rejection. A signal breaking through at about S9 or so can be reduced to less than S1, and the wanted signal is only very slightly attenuated.

The circuit is very straightforward with VCl and L1 forming a variable tuned circuit which can be adjusted over the range 12 MHz to 30 MHz approximately. S1 enables the tuned circuit to be shorted out when the filter is not required.

Fig. 3: A photograph of the practical layout, which is simple enough to construct from the theoretical circuit details

\star components

$$
\begin{array}{ll}
\text { VC1 } & \text { Approx. 300pF to 400pF air spaced variable. } \\
\text { L1 } & \text { See text. } \\
\text { S1 } & \text { S.P.S.T. toggle type. } \\
\text { SK1 } & \text { Red wander socket. } \\
\text { SK2 } & \text { Black wander socket. } \\
\text { SK3 } & \text { Flush mounting coax socket. }
\end{array}
$$

Miscellaneous Metal case. Control knob.

Construction

L1 consists of $6 \mathbf{1}_{2}$ turns of 0.9 mm diameter enamelled copper wire wound around the bottom part of a Denco ${ }^{3}$ in $(9.5 \mathrm{~mm})$ coil former. This is fitted with an iron dust core which is adjusted so that the threaded part of the core is flush with the top of the coil. If preferred, a ready made coil can be used. Suitable types are Denco Range 5 blue aerial or yellow r.f. coils. Use the winding between pins 1 and 6 , and ignore any others. The tuning capacitor can be any good quality air spaced type having a maximum value in the range 300 to 400 pF .

Using the Filter

The filter is coupled to the receiver via a short length of coaxial cable. When an interfering signal is noted, it is merely necessary to switch the filter in and adjust VCl to null this signal.

IC A4 BOOKLET
SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35 p + SAE IF SOLD ALONE).

TECHNICAL TRAINING IN ELECTRONICS TELEVISION AND RADIO SERVICING

ICS can provide the technical knowledge that is so essential to your success, knowledge that will enable you to take advantage of the many opportunities open to the trained person. You study in your own homie, in your own time and at your own pace and if you are studying for an examination ICS guarantee coaching until you are successful.
City \& Guilds Certificates:
Telecommunications Technicians
Radio, TV, Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
MPT Radio Communications Certificate
Diploma Courses:
Colour TV Servicing
Electronic Engineering and Maintenance Computer Engineering and Programming Radio, TV, Andio Engineering and Servicing Electrical Engineering, Installation
and Contracting
POST OR PHONE TODAY FOR FREE BOOKLET.

To: International Correspondence Schools
Dedt. No. 276x, Intertext House, LONDON
SW8 4UJ or telephone 6229911
Subject of Interest
Name
Address

Don't keep a good Antenna down!

.... put it up instead! And put a really good one up, in your shack, in the loft, on the roof or (dare we say it) up the pole. Put up the Joystick VFA and note the difference. Six bands for the price of one antenna (not forgetting to mention that it tunes continuously from . $5-30 \mathrm{MHz}$) and other benefits include the fact that it acts as a ground-plane on all bands, substantially reduces TVI and other spurious emissions including harmonic supression. SWL's shouldn't be without one -transmitting amateurs will prove that "to work them you have to hear them"

SYSTEM "A"

£36.00
250 w. p.e.p. OR for the SWL.

SYSTEM "J"

£42.60
500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES

COMPLETE RADIO STATIONS FOR ANY LOCATION
All Packages feature the World Record Joystick Aerial (System 'A'), with 8ft. feeder, all necessary cables, matching communication headphones. Deliv. Securicor our risk. ASSEMBLED IN SECONDS! BIG CASH SAVINGS!
PACKAGE No. I
As above with R. 300 RX. SAVE E17-28!
£210"55
PACKAGE No. 2
£222.00
Is offered with the FRGT RX. SAVE E12.211

PACKAGE No. 3

Here is a lowar-price, hieh-quality with all the Partridge extras. SAVE E12-21!

£191'00

RECEIVERS ONLY, inclusive delivery, etc.

R. $300 £ 184.50 \quad$ FRG7 $£ 189.00 \quad$ SRX30 $£ 158.00$

All prices are correct at time of going to press and include VAT at $12 \frac{1}{5} \%$ and carriage.

or write for details, send 9p stamp

[^0] CTIO-ILD. (Callers by appointment).

OMitochnif nition 248/250 TOTTENHAM COURT ROAD, LONDON W1. TEL: 01-637 1908

MAIL ORDER DEPT:-

CRESCENT RADIO LTD

I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4SJ. Ol-888 4474

A complete parcel of spares for a leading manufacturers portable radio set. Concents: 2 Assembled Cerrite 5 telescopic zerials, output transformers, 2 variable capacitors, 7 potentiometers, 48 15 transistors nuts, washers screws, 10 dial lamps, 8 knobs, brimmers, wire, and many other spares soo numerous to list. Ful reaty on receipt of S.A.E. This unbelievably low price.
complete parcel of spares.
ONLYE3.50 $+12 \%$ VAT
Order while stocks last!!
HEAVY DUTY XOVER
2 WAY 8 OHM
A 2 way 8 ohm H/D Xover suitable for L/S systems up to 100 watt. Fitted with screw terminals for LEVEL' switch which selects either lat. -3 dB or -6 dB . only $63.00+8 \%$

A CRESCENT 'SUPERBUY'
Goodmans 5" 8 ohm long throw H/D loudspeaker.
Mounting plate is integral with $L / 5$ chassis and has fixing holes with
centres spaced at $5 \frac{1}{2}{ }^{\prime \prime}$ (diagonally). ONLY $65.00+12 \frac{1}{2} \%$ VAT

P\&P. Orders up to £.5, add 30p. Orders c5-£10, add 50p. All orders over $£ 10$ S.A.E. with all enquiries please.

AMIAMかUR BANDS

by Eric Dowdeswell G4AR

As promised last month I should like to discuss the question of what makes a callsign or prefix "rare". It arises with those listeners who start to keep a log of stations heard in the amateur bands.

The newcomer who has just heard his first American amateur, probably on 20 m s.s.b., is a little put out when more experienced listeners do not share his initial excitement. In fact, thousands of such stations can be heard, as our beginner will soon appreciate!

He'll go on to log calls from around the world and tick them off against a prefix list. He'll notice that some countries, like the US, are divided into call areas comprising groups of states. On the other hand G2, G3, G4, G5, G6, G8 and several other derivatives could all be in the same block of flats, in England!

Some of the prefixes are hard to find but periods spent listening during the wee small hours will always produce a few more. Certain countries do not appear to have any amateurs at all, frequently due to political reasons. Some "countries" are no more than reefs or small islands that are uninhabited until a group of amateurs form themselves into a DXpedition in order to put a new country in the log of thousands of amateurs.

It is very important to note that distance does not come into the question as to whether a call is rare or not. Due to skip it might be next to impossible to log a station in GU (Guernsey) on 20 m , while capturing all the VK areas without difficulty. The purpose of the log extracts each month is to alert readers to the comparatively few rare calls that have appeared recently.

Details of time and precise frequency are not required because of the time that the information takes to get into print. The date and band and mode is sufficient. An excellent prefix list with much other useful information costs just 40p from Geoff Watts, 62 Belmore Road, Norwich NR7 OPU. No amateur can afford to be without it.

Talking about sunspot curves, a plot of rainfall against letters received here would be very interesting! Lousy weather so plenty of mail this month!

Newcomers

Having read this column for the last three years Paul Bown at 2 Sunnyside, Theale, Reading, Berks has at last acquired a receiver. Unfortunately it seems to need a bit of attention, not doing much above 20 MHz , and Paul is very keen to get on 10 and 15 m . So, can anyone help with a manual for the Skywood CX203? Replies direct to Paul, please.

Four months on the bands with an FRG7, and a good log, hardly qualifies J. S. Goodier of Marple, Cheshire as a newcomer. He is now keen enough to start studying for the RAE! He thinks he may have to go it alone but I hope my advice to contact his local radio club and technical college may avoid that.

Round the Shacks

Dave Greenhalgh BRS39965 in Poynton, Cheshire found two goodies in VK9NGE on Norfolk Is. and VRIAR in the Gilbert Is. on 10m. I hope Bill Rendell down in Truro, Cornwall won't mind if I mention him in this section. He has been lapsed for seven years but is hard at it again with a 1961 Heathkit AR3 fourvalve set plus preselector and a very short wire in the attic. Naturally, selectivity is a problem and I fear that something a bit better may be the only answer. Bill reckons the lads and lasses would do a better job communicating if they stuck to the proper phonetic alphabet instead of the "homebrew" variety.

An AR88 and l20ft of wire brought in strings of Japs on 10 m for Brian Harrison in Hastings, Sussex while in Tetbury, Glos. Jim Rowland is putting the finishing touches to a Heathkit HR1680. He finds the components a bit "fiddly" compared to those of the '20s! Dick Smith reckons he is the only SWL in Porthcawl, Mid-Glamorgan but I doubt it very much! He has a Codar MC3 t.r.f. set with pre-selector, a.t.u., 100 ft of wire and an "artificial earth" whatever that is! Could be a collection of quarter wave wires all joined to the set's chassis. A CR100 will, hopefully, be added to the strength in the holidays.

Army type Sgt. Anderson, Dennis, also BRS36591, reports back to the column after wandering around Jamaica and the Sudan. Wonder if he saw my old tribander still up there in Khartoum? Dennis now has a Venus SS2 for SSTV and getting good results, with RAE studies going on apace aided by G8LVB. John Whiting, Fareham, Hants, has done well in the Pacific area with a sort of vee beam with 90 ft legs, with the feed from one end.
G. M. Davies of Rhyl, N. Wales has been SWLing for 25 years and has reached the FRG7 stage, but wishes the Fine Tune were a lot finer and doesn"t
like a common i.f. filter for three different modes. Compromise, I suppose, against cost. E. Vaughan of 108 Micklefield Road, High Wycombe, Bucks reckons he's a bit chieeky in asking if anyone has a circuit of the Electroniques QP166 valved front-end tuner.

Another FRG7-ite is Ian Marquis in Leigh-on-Sea, Essex with a 66 ft end-fed and 10 m ground plane. Fifteen-year-old Ian recommends a net on 3780 kHz run by GW4GMA at around 1630 for "school kids like myself". Brian Smith (Barry, Glam) has the same set and would like to be able to turn down the r.f. gain sometimes but finds he only has the equivalent of a DX-Distant switch. Naughty!

Viv Thursfield has got going with the PW Direct Conversion set (Jan 78) and a "modest long wire" on 20 m . He has already taken the code test, before the RAE, so let's hope his go at the latter has been successful.

A lovely letter from Pat Painting G3OUC concerning Ted Burr of Newbury, Berks who is $80+$ and has been listening for the last two years, mainly on 160 and 80 m with an indifferent receiver. He's hoping to get something like a CR100 before long, and to study for the RAE! Good luck OM!

Clubs Calling

Lincoln SW Club has been re-formed and possibly reformed and meets second and fourth Wednesdays but fuller info from Bob Shaw G3VRD, 60 Wragby Road, Lincoln. Slight boo-boo in June column re Stevenage and District ARS as code classes are held on club nights, first and third Thursdays. "Contest Planning" is subject for July 20. Info from Trevor Tugwell G8KMV, 11 The Dell, Stevenage, Herts.

Reports on the Bury RS have resulted in several new members, I'm glad to say. Club has initiated RAE course at Bury Tech starting September. July 11 is annual Fox Hunt time so contact Eric Thirkell G4FQE, 59 Oulder Hill Drive, Rochdale, Lancs. Almost last gathering of Blackwood and District ARS before summer break is on July 7 with two ARRL films on "A visit to MARS" (Military Affiliate Radio System) and "WAlIOX-Oscars and moon bounce". It's 1900 at Oakdale Community College near Blackwood, Gwent, or write to S. Cole GW4BLE, 10 Llanthewy Road, Newport, Gwent.
"Spurious", newsletter of Silverthorn Radio Club regretfully reports death of founder member Eric Johnson G2HR, first licensed 1929. Club camp at end of August, or any Friday night at Friday Hill House, Simmons Lane, Chingford, London E4, at 1930, or write to C. J. Hoare there.
Lastly, an airing for the Newbury and District ARS who meet second Tuesday of the month at Newbury College of Further Education at 1900. Details of forthcoming meetings from Alan Wood G4EEE, 9 Hillcrest, Tadley, Basingstoke.

SPECIAL ANNOUNCEMENT

Bringing our popular series right up to date, "So You Want to Pass the RAE (New Scheme)" giving details of the new examination format for 1979, will appear in our September issue.

Log Extracts (All SSB)

I. Marquis:- 80 m CO2JA HClSC OA4RT ZL3GS ZL4AP 40m CO2DC CP5UW FM7WS VK7GK ZL3BBP 20 m HP1XYA VR3AK ZL4LR/A (Campbell Is) 15 m HK0QA HS1WR 10m KG6DX VP8PM ZD8RG.
S. Turner:- 20m C5AL (The Gambia) VP8MZ 15m WD5AJE/SU 6W8MW.
J. Whiting:- 20m J3AH (Grenada) VR3AK YB1BF/715m 5X1AA EP2II.
D. Anderson:- 20m HK5ARB VS6CZ VK7AE ZL4MG 15 m JH7TEG ZL2AUW 10m P29KW VK4NSD ZS6BP.
B. Harrison:- 20 m VK9XW ZL4LR/A (Campbell Is) 15 m YS1SRD 10 m JAlMCU A6XB VK5NAP YN1H 5H3BP.
J. Goodier:- 20m C5ABK EA9FF FK8CR HM1DW VP2KT VP8PU ZL4LR/A 8R1Q 15m HI8BMC XE2HL 8P6AH 10m C5AAL VU2KT ZS1PF.
D. Greenhalgh:- 20m FY7BC YS1RVE ZD9GG 15m 5W1BK 10 m HH2MC TU2GL VK9NGE (Norfolk Is) VRIAR.
C. Rendell:-20m J3AH (Grenada) JY9VK VP8PM VK7EB 15m VK7RX 6W8MW.

MEDIUM WAVE DX by Charles Molloy G8BUS

What is a medium wave loop, and what does it do, are two questions often asked by newcomers to medium wave DXing. A loop is a modern development of the frame aerial used in the 1920s when broadcasting first began and domestic receivers were rather primitive. The frame aerial was part of the receiver, performing the dual function of tuning coil and aerial in much the same way that the internal ferrite rod aerial does in the modern transistor portable. The m.w. loop is not part of the receiver. It is a separate aerial that has its own tuning control which is used to peak up the incoming signal. The loop is also directional. There are two directions where pickup is a maximum, these lie along the plane of the windings in opposite directions to one another. There are also two directions where minimum pick-up occurs. These are at right angles to the windings and again are in opposite directions to one another. An illustration of a medium wave loop is shown on page 8 of the Guide to Aerials, March 1978 edition of PW.
For the mathematically minded, the loop response follows a cosine law, the angle being that between the windings and the direction of the incoming signal. When this angle is zero then the cosine is 1 and signal pick-up will be at its greatest. When the angle is 90 degrees the cosine is zero and the pick-up too will be zero. When the angle is 60 degrees the cosine will be 0.5 which means that the signal will only be half its maximum value. By plotting cosine against direction it can be seen that the loop has two very broad peaks
and two rather sharp nulls. It is the nulls that are of use to the DXer. A loop is used to null out QRM. It is not used to peak up DX.

How to use the Loop

A loop is very easy to use. For example, with the loop pointing in any direction, tune the receiver to 782 kHz and peak up the mixture of stations heard, using the loop's tuning control. East Germany and Portugal are on 782 . Now rotate the loop slowly around its vertical axis. In one position East Germany should be heard reasonably clear of QRM while in another position Portugal will appear. Similarly on 989 kHz where from this QTH Madrid can be heard clear of the jamming that is normally on this channel. Similar results can be obtained with a transistor portable that has an internal aerial. The whole receiver must be rotated and the two nulls on most models will be along the length of the receiver parallel to the tuning scale.

When DXing with a loop, rotate it for optimum results. North American DX often suffers from QRM from Latin America and the two are easily separated. The loop may not always null out QRM. North American DX sometimes has European QRM coming from the opposite direction from the DXer and the loop cannot help on this occasion. On the other hand European QRM can nearly always be nulled out when listening to South America.

Advantages and Disadvantages of Loops

The only disadvantage the loop has is its low pickup compared with a long wire. My 40 inch loop has a pick-up somewhere between that of my 90 ft longwire and a ferrite rod aerial. It is claimed that the standard 40 inch loop has: a pick-up equivalent to a 30 ft longwire 10 ft above the ground and although I have not done comparative tests I think this value is about right.

The loop has a number of advantages in addition to its ability to reduce QRM. It is an indoor aerial and can be used in locations where a long wire could not be erected. Some excellent DX comes from readers who live in multi-storey flats. A loop will nearly always improve the signal-to-noise ratio and if static is coming from one direction, perhaps from tropical thunderstorms in the south in summer, then the static can be eliminated when listening to North America to the west. DXers claim that a "cleaner" signal is sometimes obtained when using a loop and surprisingly, this is true. Overloading, sideband splatter, crossmodulation, when reduced can leave a much cleaner DX signal on some receivers. Loops are not made commercially in the UK so you will have to make your own. This is not a disadvantage. A lot of satisfaction is to be had from quite a simple device that you can easily make yourself and that will on occasion produce quite startling results.

Problems with Loops

Reader John Cook of Southend-on-Sea has constructed the loop described in the 1976 edition of the World Radio and TV Handbook. The tuning capacitor is a 365 pF variable an the loop works well between 525 kHz and 1250 kHz , but on higher frequencies John
has to switch out the tuning capacitor. Try reducing the number of turns. You should then be able to tune to 1605 kHz but you may then not be able to tune as low as 525 kHz . If so, switch in additional capacitance (220 pF should do) whenever you want to reach the 1.f. end of the band. The general rule is; if you cannot tune to the h.f. end, remove turns and if you cannot reach the l.f. end, increase the tuning capacitance.

As a rough guide, 100 ft of wire will be found to be the correct length to wind most loops irrespective of size. On this basis a loop of 4 ft size would have six turns, though it might be possible to squeeze in another turn or two if the self capacitance of the winding and the minimum value of the tuning capacitor are low.

A number of readers, including John, ask for details of a suitable pre-amplifier for use with a loop. My advice is, do not use a pre-amp, at least until you have some experience handling a loop. Even then a pre-amp is of limited value. The same applies to the use of a preselector on the medium waves. DX on this band is often quite strong and it is interference, some 80 megawatts in Europe, that is the problem. High selectivity, not high gain, is what is required and a loop pre-amp or preselector may easily overload the receiver.

SHORT WAVE BROADCASTS

by Charles Molloy G8BUS
During the early days of wireless, Saturday was aerial cleaning day when enthusiasts used to scrub their aerials with steel wool to remove corrosion and hopefully, bring about improved reception. While it is not suggested that this practice should be resurrected it is a fact that outdoor aerials do require maintenance now and again and summertime, when the days are long and the weather is kind, is the time to do it. Several years ago I discovered with horror that my long wire was no more than a 10 ft lead-in, as the joint between lead and aerial had corroded away!
It can be rather annoying if an aerial comes down during the winter when the weather makes repair work difficult and even hazardous. I take down my long wire every summer to examine it for mechanical weakness or breakage. It is only the active part of the aerial between the insulators, that needs to be copper wire. The parts between insulators and supports can be of stronger material such as steel wire or nylon rope. Leakage is not a great problem when an aerial is used with a modern receiver but if the aerial is down then it only takes a moment or two to clean the insulators and it might just make a difference when you are chasing weak DX. Dirty insulators and bad connections can also cause crackles.
Summer is also the time to experiment with aerials. If you have a long wire then why not try a vertical or a whip? An ounce of practice is worth a ton of theory. If you have the space, try making your aerial longer to see if it makes any difference. Height is usually
more important than length and with an inverted " L " or a " T " aerial it may well be the vertically hanging downlead that is the effective part.
"Could you suggest an aerial which would be good on the tropical bands as well as the h.f. bands" asks Martin Liezers of Newport in Gwent who uses a 230 ft long wire, homebrew a.t.u. and Realistic DX160 receiver. Well, the 230 footer should be more than adequate on the tropical bands. It should also perform well on the main short wave bands when they are quiet; on 19 m late at night for example, but problems with overloading may occur on the h.f. bands when they are crowded with strong signals. Crossmodulation, splash and spurios can then occur. The answer, is to fit an attenuator between the a.t.u. and the receiver.

Is Your Aerial Too Long?

There was a pre-war book on DXing which had a chapter entitled "Is your aerial too long" and it was suggested there that shorter aerials would give better results with the sensitive receivers that were then coming into use. While this is correct when dealing with strong signals it is not necessarily true for weak signals. Put up the best aerial that you can. Fit an a.t.u. between the aerial and receiver so that a good match is obtained for each band. If the receiver r.f. gain control is unable to cope with strong signals or if your receiver does not have an r.f. gain, then fit a variable attenuator between the a.t.u. and the receiver.
Details on how to make an a.t.u. appeared on page 12 of the Aerial Supplement in the March 1978 issue of $P W$. A simple attenuator can be made using a 1000 ohm potentiometer as outlined in the MW DX section of last month's $P W$ or, alternatively by inserting a variable capacitor in series with the aerial. A value in the region of 200 pF will do. The latter was once the subject of a patent held I believe by John Scott Taggart who developed the famous ST range of receivers. As well as acting as an attenuator the variable capacitor will also improve selectivity.

Logs and News

News of more late evening DX on the higher frequencies come from Goff Curtis (South Harrow) who pulled in Radio Grenada on 15105 kHz , Radio Nacional Chile in 15150, Radio Jornal do Comercio Brasil on 15145, Radio TV Congolaise 15190, Taipeh Taiwan 15225, Radio Habana Cuba 15230, Radio Mexico 15385, all in the 19 m band around 2330 (details of receiver and aerial not given). Also heard and taped was a station with the call Radio Guyana with YL announcer on approx 15130 kHz at 1330 . Has anyone any information about this station? According to the World Radio and TV Handbook Guyana is only on the tropical and medium wave bands. On the 25 m band this time, N. C. Dove (Thornhill, Dumfries and Galloway) reports hearing Radio Clarin, Dominican Republic on several occasions in English on 11700 around 2200 at SIO 444 using his homebrew receiver, preselector and 15 ft indoor aerial.

On 60 m at the other end of the s.w. spectrum James Edwards (Bryn near Wigan) used his FRG7 and 60ft loft aerial to log R. Nacional Espejo in Ecuador on 4680 kHz at 0645 , ELWA Liberia on 4770 at 2230, Radio Lara Venezuela on 4800 at 0430, Radio Reloj Costa Rica on 4832 at 0650, Ecos del Combeima Colombia

4875 at 0700, Accra Ghana 4915 at 2350, Radio Brasil Central 4985 at 0630 , Radio Reloj Continente Venezuela on 5030 at 0430. "Could you tell me anything about Radio Lebanon which I have heard on the edges of the 49 m and 19 m bands around 2030?" asks James. Radio Lebanon is on 5980 with its Arabic service and according to Sweden Calling DXers it is on 15440 to Africa from 1830 to 2030. Roy Patrick has also been on 60 m with his Trio 9R59D and Joystick antenna and he reports hearing YVLK Radio Rumbos on 4970 kHz at 0600 . Roy mentions that Radio Finland is on a new channel, 15265 kHz at 1300 on Sundays which replaces 15330. Gary Ross Perry (Cardiff) DXes with a 5 -valve Philco receiver of uncertain age along with a 60 ft long wire. His log includes Radio Japan on 17825 at 0815, Radio Kuwait in English on 12085 at 1950 and the Voice of Nigeria on 15120 at 1830. An FRG7 receiver and 65 ft long wire brought in some interesting DX for Bill Iball (Billinge near Wigan). He logged Radio Australia on 6035 at 2135, R. Nac. Chile 15150 at 2205, Radio el Mundo Argentina on 15290 at 2120 , Radio Japan 17795 at 1018, and R. Nac. Chile on 17715 at 2024.

Radio New Zealand

A letter from the well-known New Zealand DXer Arthur Cushen to PW reader George E. Lee of Ossett in Yorkshire gives the latest schedule of Radio New Zealand effective from 6th May 1978. The Pacific Service is on 6105 kHz from 0500 to 1030 GMT, 9770 from 1800 to 2015, 11800 from 1800 to 2215 , 15130 from 0400 to 0730 , 15380 from 2030 to 0345,17710 from 2230 to 0445. The Australian Service is on 9620 kHz from 0745 to 1030. Arthur recommends listening in the UK on 6105 at 0600 GMT and a little later on 9620 . He says that NZ transmissions are also heard in the UK around 2000 on 11800 kHz and a little later when frequencies in the 19 m band are in use. $P W$ reader Martin Liezers heard RNZ on 15130 at 0700 and he was surprised at the strength of the signal. The RNZ transmissions are all with a power of $7 \cdot 5 \mathrm{~kW}$.

by Ron Ham BRS15744
The solar activity recorded by Cmdr Henry Hatfield, Sevenoaks, Kent, John Smith, Rudgwick, Sussex, and myself from April 23rd to May 8th was dominated by some huge individual bursts of radio noise, covering a wide range of frequencies. The largest of these, 1320 , April 28 th, lasted 34 minutes at 136 MHz and 82 minutes at 95 MHz . Almost instantaneously, Alan Baker, G4GNX, Newhaven, Barry Ainsworth, G4GPW, Sompting, Sussex, Roy Bannister, G4GPX, Lancing, Sussex, and Nell Clarke, BRS34306, Knottingley, Yorkshire, all noted a Sudden Ionospheric Disturbance (SID), which blacked out much of the h.f. bands until about 1500 . Neil was listening to a QSO between ZC4AJ and GW4GSS on 10 m when it started and the ZC4 just faded into the noise.

\title{

OSTS
 | TListandard AIDI LP SchottkY | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| | | | | | | $\underbrace{}_{\substack{\text { ciso } \\ 1500}}$ | |
| | | | | | | | |
| ${ }^{12005}$ | 180 | | | | $55_{0}{ }_{72}^{29}$ | | $\xrightarrow{74,98}$ |
| $\underset{\substack{2409 \\ 1020 \\ 7}}{208}$ | | | | | | ${ }^{\text {che }}$ | |
| ${ }^{29090}$ | | | | | | comele | |
| | | | | | ${ }_{\text {a }}^{1215}$ | | |
| | | | | | ${ }^{999}{ }^{\text {a }}$／74 | （1atise | |
| $\left.\right\|_{\substack{21020 \\ 242020}} ^{2010}$ | | | | | ${ }^{990}$ | | |
| | | 280 | | | | | |
| | ${ }_{3}^{360}$ | | | | | | |
| | 120 | | | | | 为 | |
| | | | 2a， | | d | | |
| | | coid | So | | | | |
| | | | | | | | |
| $\underset{\substack{24.38 \\ 24245}}{\substack{245}}$ | \％20 | | 边 | | | | |
| | | | | | | | |
| | | | | | ${ }_{\text {cki }}^{58}$ | | |
| 7253 | | | | | | 14190 1150 | | new tram ambit international One StapTechnology 5hopping starts here：

［1
 4000 ［m05
 All prime，all guaranteed

Return of post service whenever humanly possible－and sometimes even when it isn＇t！All our goods are manufacturers＇first quality， so you may build in complete confidence，backed with our own investment in lab facilities，for the complete Tecknowledgey service．

From the Warld＇s leading radio innouatian saurre：

The Reference series of FM tuner modules

71302 or 36 pole linear phase IF filters．The CA3189E IC two
agc＇d MOSFET IF preamps and all features． 0.07% thd $30 \% \mathrm{mod}$ ． 911968 The HA1196 stereo decoder in an optimum and aligned EF5803 The Latest EF series from 2W PA stages built in \qquad
$£ 16.25$
$£ 16.45$ exira loose inter－stage coupling and amplified LO op EF5801 The original 6 varicap（doublet）FM tunerhead with LO op
$£ 19.75$ EF5600 TOKO＇s 5 cct varicap FM tunerhead．MOS input stage EC3302 TOKO＇s budget 3 cCi FM varicap tunerhead JFET RF $\quad \mathbf{8} 8.25$ 7252 Larsholt＇s MOS frontend／CA3089E IF system HiFi complete varicap tunerset for 88－108．Mute，AFC．AGC etc
£8．25 7253 Larsholt＇s FET frontend／CA3089E／MC1310 stereo tunerset wis．50 CA3089E／KB4402 HA1137W／KB4420A as CA3089E，with improved deviation muting and S／N $£ 2.92$ $\begin{array}{llllll}\text { CA3189E KB4420A } & \text { as CA3089E，with improved deviation muting and S／N } & £ 2.20 \\ \text { Chodate．though not replacement for } 3089 \text { inc af gain } & \text { E2．75 }\end{array}$ TBA120S A720DC／CA3123E Ar gain version of TBA120A $£ 1.00$ TBA651 23E HAI197 MC1350 MC1330
LM1496／SG1496
M374N
LM374N
MC1495
TDA 1062 NEW TDA 1083 NEW
TDA 1090 NEW

K8440日 NEW $\begin{array}{ll}\text { K84412 } & \text { NEW } \\ \text { KB4413 } & \text { NEW }\end{array}$

KB4417 NEW SD6000

AM radio IC，useful gain controlied RF／IF gain block

low voltage，hi gain AM radio cum linear RF／IF gaın	Complete Hif，am raro inc detector wioe agc range	$£ 1.81$
$£ 1.40$		$\begin{array}{lll}\text { AGC wideband if amplifier block for AM／FM／SSB } & £ 1.40 \\ \text { E1．20 }\end{array}$ AGC wroband

Synchronous AM／video detector Classic double balanced mixer for DC to 300 MHz National． 5 muthmode communications if／detector Complete DC 10200 MHz tront end system f 1.25
f 3.45 E6．86 Complete DC 1030 MHz AM／FM +800 mW AF radio ic $£ 1.95$ FM IF and function system for H_{1} F，buite in 3089 type ifferent Anction system for HiFI \qquad
2 batanced mixers．agc 55 dB gain IF amp cooms device $£ 2.55$ Comp 10 KB44 12，AM，FM，SSB detecior．ANL，mule 3 mV mike preamp limiler，vogad for comms Transistors for RF．The latest UHF T pack \mid PUSH BUTTON SWITCH SYSTEMS types eg． $1,8 \mathrm{GHz}$ PNP only 0.86 o ． $2 \mathrm{N4427} \mathrm{\%}$
f1．30．BF 900 latest generation $\mathrm{MOS} 080^{\circ}$ As usual．you get the latest information and Ideas from AMBIT DAZZLING OPTO BARGAINS
 $\stackrel{200}{200} \stackrel{160}{16 \mathrm{p}} \stackrel{10}{20}$

PUSH BUTTON SWITCH SYSTEMS Easy assembley，professional quality PB type
with range of buttons Schadow compathle With range of buttons．Schadow compatible
ALP P_{5} SUB series，and the very flexible new ALPS SUB series，and the very flexible new dialistar from Lipra \＆ 1 sostat．Low cosi
eg 4 module 6 pole， $15 \mathrm{~mm}=£ 1.74$ in SUB TOKO COILS ，FILTERS，PVCs，ICs Space has run out here，but all in the
catalogue．The biggest range in Europe

The Ambit you all know and love for its unique service to wireless， now brings you the One Stop Technology Shop．A complete range of logic devices，including CMOS，TTL and the increasingly favoured Low Power Schottky versions．Plus all the usual voltage regulators \＆ linears．Combine this with our unique capability in wireless devices， ranging from coils to the latest semiconductors，the uniquely information packed＇Tecknowledgey＇catalogue（45p），and you need look no further for your semiconductors and most other types of modern components．We still want to maintain a separate identity for the unique wireless service of Ambit－so please keep orders for the OSTS（left hand side of this page）and AMBIT（right hand side） is sufficient－made out to Ambit International please payment is sufficient－made out to Ambit International，please．Postage
is 25 p per order，VAT to be added at the rate indicated $(*=8 \%)$ ．

2 CreshamRaad，Brentwand，Esser．

Solar noise was frequently heard at 28 and 50 MHz with normal communications receivers and dipole aerials on May 3rd, 5th, and 7th and large bursts were recorded at 136 MHz at 1201 (8 mins) on the 6th and 1213 (37 mins) on the 8th. Noise storms were recorded on May 1st, 4th, and 18th. On April 30th, Henry, using his spectrohelioscope, counted 5 large sunspots, 6 small ones, 3 bright plages and on May 3rd he saw a baby flare. Another look on the 17th revealed 10 spots in 5 separate groups.

Aurora

After that April 28th burst, and with more solar activity on May 1st and 3rd, it was not surprising that auroral events began during the afternoon of April 30th and rolled around, with varying intensity until the small hours of May 4th. Between 1555 and 1720 on April 30th, John Branegan, GM80XQ, Saline, Fife, heard tone-A, c.w., signals from G, GI, GM, PA0, SM and beacon signals from GB3ANG, GI, LER, and VHF on 2 m . John found it impossible to access OSCAR-8 during the aurora while the satellite was to the north of his QTH. Alan Baker heard GMs on the 30th and around midnight on May 1st/2nd, Barry Ainsworth had s.s.b. contacts with GM4COX and GM8ODN and a c.w. contact with GM4CXM. At 2354 on May 2nd, Alan worked GI5SJ, at 0013 on the 3rd he worked GM4BYF and heard GI4GVS and GM8FFX.

Around 2215 on May 1st, Neil Clarke heard tone-A beacon signals from GB3CTC, GB3GI, DLOPR and SK7VHF and auroral s.s.b. from $7 \mathrm{Gs}, 5 \mathrm{GMs}, 1 \mathrm{GI}$, 1 GW, 1 ON, 1 PA0 and 3 DCs. At the same time John Branegan heard several of his GM colleagues "piling up the Continentals on both c.w. and s.s.b., with Gs in the London area very prominent". Between 1645 and 1850 on May 3rd John heard tone-A c.w. from Russian and Swedish amateurs, meanwhile I heard auroral signals from G8LIC, Middlesbrough, G8AZA, Scarborough, 11 east-European f.m. broadcast stations (67.73 MHz), Meldrum TV sound ($58 \cdot 25 \mathrm{MHz}$), GI4GVK and Mike Rowe, G8JVE, some 10 miles south of me at East Preston, Sussex. Mike also heard GI4GVK and GI4GVS, while at nearby Lancing, Roy Bannister worked GW2HIY and GM4EYF on c.w., and further east in Newhaven, Alan Baker heard 4 Gs, 1 GI, 1 GM and a GW.

Around 0249 on the 4th Alan had auroral QSOs with a couple of GMs and a GW, and agreed with Barry, Roy and myself that GM4COK was the most consistent auroral signal in southern England. Having weighed all this up, Charlie Newton, G2FKZ, London, RSGB auroral co-ordinator, is studying the relationship between large individual solar bursts and aurora and would appreciate any information you can give him. Between 1534 and 1738 on May 9th John Branegan worked G8LIC and G8MJG via aurora and heard strong c.w. signals from G, GI, GW, LA, and beacons DLOPR, GB3GI, LER, and VHF.

10m Band

Harold Brodribb, St. Leonards-On-Sea, Sussex and Alan Baker reported that the 10 m band was dead on April 20th and, periodically, on other days ionospheric disturbances menaced the BBC's World Service transmissions on the h.f. bands. On most days between April 20th and May 18th, John Branegan, Gordon Goodyer, BRS37345, Petworth, Sussex, Neil Clarke, and myself received strong signals from the Cyprus
beacon, 5B4CY, project TESSA beacon ZE2JV, and occasionally A9XC, Bahrain, and DLOIGI when sporadic-E was present. Neil reports that on April 29th and May 3 rd , 10 m was open from 0800 until 2000 with signals from South Africa, South America, Israel and Russia. Gordon logged a host of Ws around 1840 on May 6th and Middle East stations during the afternoon of the 7th, while on the 14th he received s.s.b. signals from 30 countries from Japan to South America and Russia to South Africa.

Sporadic-E

The 1978 Sporadic-E season (northern-Hemisphere) began at 0800 on April 26th when I received both sound (56.25 MHz) and picture (49.75 MHz) on the R1 television channel with only dipole aerials feeding my R216 v.h.f. receiver and JVC 3060 television receiver. At the same time I heard strong f.m. signals from seven east-European broadcast stations (6672 MHz) and during the morning of May lst, I watched part of Russia's May Day parade on R1. A most intense Es disturbance occurred between 09001100 on May 13th when I received very strong signals from 33 broadcast stations ($65 \cdot 73 \mathrm{MHz}$), European radiotelephone signals in Band I and on Ch.Rl I watched an ice hockey match. There are many transmitters on the R1 system and periodically (typically sporadic-E) one picture would fade out and another take its place. At 1241 on the 15th, a test card appeared on R1, and reference to Roger Bunney's book, Long Distance Television, revealed that the station was Televidnie Sovietskogo Soiuza (USSR) using test card pattern 0249.

Tropospheric

Conditions on v.h.f. improved greatly between May 6th and 18th, during which time the atmospheric pressure fluctuated from $30 \cdot 0$ in to $30 \cdot 5$ in and down again. On the 6th, Mike Rowe worked $3 \mathrm{Ds}, 8 \mathrm{Fs}, 5$ ONs, and 6 PA 0 s on 2 m s.s.b. and during the afternoon of the 7th he had a 59 QSO with DK8VRA. Mike runs a TS700G, with a home-brew 50 watt linear to an 8 element crossed Yagi. At 2240 on the 9th, Neil Clarke heard a PA0 calling through his local 2 m repeater, GBJNA, R3, and on s.s.b. he heard 17 PA0s and 7 DCs working UK stations from Kent to Wales and north to Scotland.

During the afternoon of the 7th G4GNX had 2 m s.s.b. QSOs with PA0WRL/P, F1ENH/P and DC9DZA, and on the 10th both Andrew "Jim" Lyon, G8LPY, Worthing, and G4GNX heard signals through the French repeater, FZ3THF, R4. On the llth, Jim worked Roy Bannister, holidaying in Yorkshire, via GB3PI, R6. Like Mike Rowe, Jim uses a TS700G to an 8 -element crossed Yagi and they are both now equipped for 70 cm operation. In a c.w. contact on the 10th PAODOG told G4GNX that PA0MI had worked into Russia via the aurora on May 1st, and at 2028 on the 15 th G4GNX had a 2 m c.w. QSO with F6BCK.

Band II FM DX

Guy Stanbury, Chelmsford and Bob Dewick, Southminster, Essex, are keenly interested in Band II DX. Guy uses a home-brew receiver built from Ambit International modules and Bob has a Trio KT7001. Both stations use two Fuba Uka Stereo ' 8 's aerials stacked vertically and rotatable. Guy sent a detailed

15-240 Watts!

Preamplifier

The hys is a mono hybrid amplifier idoally suited for all applleations. All common input unctions (mag Cartidge, tuner, etc) are catered for Internally. The desfred function is achieved and tone circuits merely require connectnection to the appropiate plns. The internal volume and tone circuits merely require connectIng to external potentlometers (not included). The HY5 mounting a P.C. connector is supplled with each pre-amplifier FEATURES: Complete pre-ampllifier in single pack-amplifier.
-Low distortion-HIgh overload-Two slmply combined for APPLICATIONS: HI-FI-Mixers-DIsco-Guiter ind ior stereo.
SPECIFICATIONS:
INPUTS. Magnetic PIck-up 3 mV ; Ceramlc Plek-up 30 mV ; Tuner 100 mV : Microphone 10 mV : OUTPUTS. Tape 100 mV : Main output 500 mV 解
ACTIVE TONE CONTROLS. Treble +12 dB at toi
DISTORTION. 0.1% at 1 kHz . Signal/Nolso Ratlo
OVERLOAD. 38 dB on Magnetic Plck-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$ Price $55 \cdot 22+65$ p VAT P\&Pfree.
The HY30 is an exciting New kit from 1.L.P. It features a virtually indestructible I.C. with shor capacitors, mounting kitt. together with easy to follow constructlon and o. board. 4 resletors, Thls amplifier Is ldcally sulted to the beginner in audio who wlishes to use the most up-todation technology avallable.
FEATURES: Complete Kit-Low Distortion-Short, Open and Thermal Protectlon-Easy to
Build. Build
APPLICATIONS: Updating audlo equipment-Gultar practice amplifier-Test amplifierSPECIFICATION
OUTPUT POWER $15 W$ R.M.S. Into 80 : DISTORTION 0.1% at 1.5 W
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$.
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$.
Price $£ 522+65$ p VAT P\&P free.
The HY50 leads I.L.P.'s total integration approach to power amplifler design. The amplifer past three years the amplifier has been the simplicliy of no external components. During the reliable and robust Hioh Fidelity meen refined to the extent that it must be one of the mos FEATURES: Low Distortion-Integral Heatsink-Only five connectlons-7 amp output tran-sistors-No external components
APPLICATIONS: Medium Power Hi-Fi aystems-Low power disco-Gultar ampline SPECIFICATIONS: INPUT SENSITIVITY 500mV

NCE 4-16 Ω DISTORTION 0.04% at 25 W SUPPLY VOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$.
Price E6.82 + 85p VAT PEP free 5025 mm
Price $86 \cdot 82+85$ p VAT PAP free
The HY120 Is the baby of 1.L.P.'s new high power range. Desloned to meet the most exacting modular design. modular design
FEATURES: Very low distortion-Integral heatsink-Load IIne protection-Thermal protec-
tlon-FIve connections-No external components
APPLICATIONS : HI-Fi--HIgh quality disco-Publlc address-Monltor amplifier-Gultar and
organ
SPECIFICATIONS
OUTPUT POWER 6OW RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W SIGAAL/NOISE RATIO $90 d B$ FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE 1145085 mm
Price £15-34 + £1-27 VAT P\&P fres.
The HY200 now Improved to give an output of 120 Watts has been deaigned to stand the most FEATURES Conditions such as disco or group while stlll cetalning true HI-Fi periormance.
-No external components APPLICATIONS: HI-FI-
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 12OW RMS Into 8 Q LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.05% at 100W SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE士 SIZE 1145085 mm
Pilce £23. $32+£ 1 \cdot 7$ VAT P\&Piree
The HY400 Is I.L.P.'s "BIg Daddy'' of the range producing 240 W into 4Ω I th has been designed for high power disco address applications. It the amplliner is to be used at continuous high power levels a cooling fan ls recommended. The ampllice includes all the qualities of the rest of the family to lead the market as a true high power hi-flellty power module.
FEATURES: Thermal shuidown-Very low distortion-Load line protection-W No external PPLICATI
APPLICATIONS: Pubilc address-DIsco-Power slave-Induttrial
SPECIFICATIONS
UTPUT POWER 240W RMS Into 4n LOAD IMPEDANCE 4-16al DISTORTION 01% at 240 W SIGNAL NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm Pilce £ $3217+£ 2.57$ VAT P\&P fiee.
PSU36 suitablo for two HY30's $£ 522$ plus 85 p VAT. P/P free.
PSU50 suitable for two HY50's £6 82 plus 85 p VAT. P/P free. PSU70 sultable for two HY 120 's $£ 13$ 75 plus $£ 1$ - 10 VAT. P/P frec. PSU90 sultable tor one HY200 $£ 12-65$ plus $£ 1-01$ VAT. P/P free.

IWO YEARS' GUARANTEE ON ALL OUR PRODUCTS
I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NAGKINGTON, CANTERBURY, KENT, GT4 7AD.
> I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD. Tel: (0227) 64723.

Please Supply
Total Purchase Price
I Enclose Cheque $]$ Postal Orders i] Money Order []
Please debit my Access account Barclaycard account \square
Account number
Name and Address \qquad
log containing some 49 stations heard, both mono and stereo, between $87-104 \mathrm{MHz}$ on May 9th, and 68 stations on the 10th. His logs are impressive and give comparable signal strength for the British and Continental stations. The strongest signal on these two days was Lopik $3 \mathrm{~s}, 96 \cdot 80 \mathrm{MHz}$. Guy, Bob and myself would like to hear more from readers on this subject.

Microwaves

On April 2nd, Peter Kerry, G8ARO and Don Hayter, G3JHM, established their portable 3 cm equipment, with an 18in dish, on the Hogs Back, Surrey, and worked G8BDJ and G8GKV, situated 40 km away on Chanctonbury Ring, Sussex, at good strength. On May 1st, Peter set up the same gear on top of an 80 ft high residential tower block, 320 ft a.s.l., at Highgate and received the London 3 cm beacon, GB3LBH, at $25 \mathrm{~km}, 48 \mathrm{~dB}$ above the noise. Peter points out that only 30 dB of this was produced by the 18 in dish. At 0950 on May 3rd he recorded a 2 dB increase in noise when he pointed the dish towards the sun compared with cold sky.

OSCAR

John Branegan told me on May 6th "As of today, I have worked 20 countries by satellite" and at 1310 on May 9th he made his first transatlantic QSO with W2BAX, New Jersey, through OSCAR-8. John is now operational on OSCAR-7, Mode A and OSCAR-8, Modes A and J and has had over 70 QSOs via satellite in his first 10 weeks on the air.

Down under

Anthony Mann, Applecross, Western Australia, says "If sunspot activity keeps on increasing, the start of the next sporadic-E season (southern hemisphere) in October or November ought to see some really high MUFs to the north''. Between 1325-1545 on April 16th he received for the first time, via F2, signals on Ch.Rl (Russian) sound, Ch.E3 video and Japanese amateurs on $50 \cdot 1$ and $52 \cdot 0 \mathrm{MHz}$.
April 13th was another memorable day for Anthony with E 2 and R1 in around 1100 and out at 1810, and late night transequatorial skip producing Korean Broadcast Service, $44 \cdot 3 \mathrm{MHz}$, and Ch.E2 West Malaysia from 2220 to 2255 . The only other evening T.E. skip observed by Anthony this autumn was on March 12th from 1915-2015, with KBS $44 \cdot 3 \mathrm{MHz}$ and $44 \cdot 9 \mathrm{MHz}$ and Radio Peking, $45 \cdot 3 \mathrm{MHz}$. Around 35 MHz on April 3rd, 8th, and 9th he heard "This is Radio Call Paging Service of Oklahoma City".

From your letters

"I have just come back to radio as a hobby" writes R. Horsfield, Sandbach, Cheshire, "having started in the early 50s with an R1155, and after using a R210 have ordered an FRG7 digital", he is also looking for a v.h.f. receiver.

Eleven members of the Brighton and District Radio Society visited the Practical Wireless stand at the RSGB show at Alexandra Palace on May 6th. The mini-bus used for the journey was equipped with an IC240 and an Antec window-mount, ground plane aerial for contacting the exhibition talk-in station, GB2VHF, organised by the Grafton Radio Society.

Many reports exist that static-like radio interference is heard prior to an earthquake, any readers

Reports on the various bands are welcome and should be sent direct, by the 15th of the month, to:-
AMATEUR BANDS Eric Dowdeswell G4AR, Silver Firs, Leatherhead Road, Ashtead, Surrey KT21 2TW. Logs by bands, each in alphabetical order.
MEDIUM and SW BANDS Charles Molloy G8BUS, 132 Segars Lane, Southport, PR8 3JG. Reports for both bands must be kept separate.
VHF BANDS Ron Ham BRS15744, Faraday, Greyfriars, Storrington, Sussex RH2O 4HE.
who have experienced this, please let we know because Richard Hill of Tunbridge Wells is making a special study of this.
Geoff Drewe, G4CAO, Weybridge, Surrey, is operational on c.w., 625-line TV, Slow Scan TV, and Facsimile. Geoff had a 2 m FAX contact with G8ONE on April 17th using sync for the first time. The frequency is $144 \cdot 700 \mathrm{MHz}$ and Geoff says "We can now transmit two-way FAX in fine detail in sync without too much stress". He also hopes that more amateurs will become active in this field.
Many thanks for all your interesting reports on such a wide range of subjects.

PW PERSONALITY VISITS WEST KENT ARS

Richard Leman, G8CDD, challenged fellow members of the West Kent Amateur Radio Society to make a crystal set, to look again at the first principles and provide a competitive activity for the Society.

The completed set had to receive the 200 kHz BBC transmitter and any medium wave station, excluding the BBC World Service transmitter at Crowborough which pounds a signal into Tunbridge Wells. Bonus marks (10%) were awarded for not using new components, and (15%) for using wireless parts of the pre-1940 era.

Judging by G8CDD, for loudness, clarity, construction and originality (one competitor used a 30 amp antenna fuse), was carried out on top of a local multistorey car park using a long wire aerial and a connection to the fire hose rising main for earth.
The prizes were presented on May 12th, at the fortnightly meeting of WKARS, by Ron Ham, our VHF Columnist, who was the visiting speaker seen here fourth from left.

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE

R.C.S. 100 watt MIXER/AMPLIFIER ALL Valve

Four inputs. Four way mixing, mastor volume. trebte and basa chasis is sultable for all grouph, aisco, P.A., whero buth qualt power is racuirod. 6 speaker ontpals. A/C malns operatod. Bleve ontgot. Prodiced by domend for a quality valve empliter. Eend for dotalle.

Chanets ooly $£ 94$ curr. 25

> R.C.S. MINI MODULE KIT
> 3-way Loudspeaker System comprising of Bass, Middle \& Tweeter Units with 3-way Crossover \& Ready Cut Baffle. Full assembly instructions supplied. Response $=60$ to 20000 C.P.S. I2 watt RMS. 8 ohm. $£ 10.95$ per kit. Two kits $£ 20$. Postage 75 p.

TEAK VENEER HI-FI SPEAKER CABINETS KODEL "A", $20 \times 13 \times 12 \mathrm{ma}$. For 18in.

MODEL "B" BOOK8HELF

MODEL "C" BOOKSHELI
For 6 jic and twoter. $£ 5.95$ post 76p
LOUDSPEAKER CABLIET WADDIMG
1810. wide. 20p It.

GOODMANS CONE TWEETER ELAC TWEETER 4 obm 20 watt $22-50$

bargair 4 Chainell tranghstor ROXO MXER. Add museal hixbilights nad eound offocts to rucordinge. Will maner meth mpartio controlat into annle oatpat. 9 volt bsttery $\quad 66.75$ gorated.

TWO CEAMHEL BTEREO VERBIOM OP ABOVE 48.50

THES "HGGTATP" BULE TAPE ERASER *
Hitabia
reole. A.c. malias 2001240 v .
concot 8. $\mathrm{A} . \mathrm{s}$.

$$
\text { £4.95 }{\underset{50}{ } \mathrm{P}_{50 \mathrm{p}} \mathrm{t}}^{2}
$$

A.C. ELECTRIC MOTORS

 Two in beries $\overrightarrow{24070 V}$. 76p each. Bruab Motor. Prom 8 piadle $-0.5 \times 0.25 i n .42 .95$ ench.
 12×3 in. $21 \cdot 20 ; 16 \times 1010.28 \cdot 20 ; 12 \times 810,21-70$.
 $10 \times 7 \mathrm{in} .54 \mathrm{p} ; 12 \times 81 \mathrm{n}$. $44 \mathrm{pi} 12 \times 8 \mathrm{in} .70 \mathrm{p} ; 16 \times 6 \mathrm{in} .70 \mathrm{p}$
 ALUNGIVUZ BOZES, BARY BIZES II $1 \times 1 \mathrm{in}$.

[^1]
$90-14,500 \mathrm{cta} 1 \mathrm{~cm}$ Post 90-14,500 c/a, 18 in . double cone, Wooter caramic magnot atyombiy having a sax dondis of 14,000 gruns and s total gux of 145,000 Harwells. Bars roponatoce 40 ch rated 25 wats. roTE: 1 or 8 or ohmin mast be otated.

MAJOR MODULE KIT
$30-17.000 \mathrm{c} / \mathrm{g}$ with tweater, arossoret bathe 19×12 in. Plasis $21 \cdot 38$ state 4 or 8 or 16 ohms. Post 21.60

BAKER SPEAKERS "BIG SOUND"

Roburtly constracted to atand mp to lon pariod of alectronic power. As used by Veotul reaponsi
Basa resonalis 30-18,000 cpa
GROUP "25" 181 n .80 watt
4.8 or 16 ohma GROUP "35" $18 i \mathrm{ng} .40$ watt
4,8 or 16 ohms.

£ 12.96 Post 11 E15.12
 Port 11

GROUP "50/12"
12in. 60 witt proleasional model. 4,8 or 160 hmm.
Bospone $=30-16,000 \mathrm{cps}$ Lespoane $=30-16,000 \mathrm{cps}$.
With mlumalam presonce dome. GROUP "50/15" 18 jo .76 whtt
0 or 18 ohms. 8 or 16 ohms.
Pont $1 \cdot 80$
send for leatente on Dieco, P.A. and Groay Gear.

BAKER DISCO SPEAKERS
HIGH QUALITY-BRITISH MADE
$2 \times 12^{\prime \prime}$ CABINETS
for Disco or PA all attod with carrijigg handles and cornarr. Black ralde corered. Other cabinets in etock oAE for leadet 60 WATT R.M.S 656
With one horn E66
With two horns C674. 88
80 WATT R.M.S. 660
With one horn 668
With two horns $E 76$
Curt. 23
100 WATT
R.M.S. $£ 75$

With one horn 683
With two horns 691

SINGLE I2inch CABS COMPLETE 30 WATT R.M.S. E32. WITH HORN $£ 40$. 40 WATT R.M.S. E34. WITH HORN E42. 60 WATT R.M.S. E4I. WITH HORN \&49 CARR E3 EA.

"SUPERB HI-FI"

I2in 25 watts
A hish quality loudrpeaker, its remarkable low cone rosonance enaprese clecur geprodration of the deopeat beas. Fitted witb a rpecial coppent ditye and concentrio range reprodaction with romarkable aficioncy in the apper rerinter.
Bata Retonance 10 25ept Thax Dandty $\quad 18,500$ gauna or 16 ohme modets.

$£ 24 \cdot 75$

"AUDITORIUM"
I2in. 35 watts
A tull rageo reproducer for hirh Dowor, Ideal lor Hi-Fi and pablio address, madt-spenzar ystoms, lectric orgens. Beas Reiomace $15,00085 \mathrm{cps}$ Tur Doafty 15,000 gense Usotal response

$£ 23.60$?

"AUDITORIUM"
I5in. 45 watts
A high wattege loudipeazor of rouptional quality with love esponse to sbove $8,000 \mathrm{cgn}$. Idea Lor catronto inatramente ind the home EII-FI.
Bass Rasonince
lux Denaity
$15,000 \mathrm{kspan}$
Jox iul raiponen 16,000 gaus
$20-14,000 \mathrm{cp}$
ohm models.

Loudapeaker Cabinet Wadding 18 in wide, 20 p per fi. HI-Fi Enclosure Manual contalalag plane, dealgus, cromever
data and cubic tablea, 85 p . E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$ SPEAKER SALE! With tweter. And crong.
10W. 8 tata 3 or 8 ohm. £7.95 15W model $£ 10.50$ 8 ohm. Pot 05p GOODMANS 20W Woofer
 Ry-Fi Bast qult. Post 65p

337 WHITEHORSE ROAD, CROYDON Open 9-6 Wed. 9-1 Sat. 9-5 (Closed for lunch 1.15-2.30

[^2]| TTLs by TEXAS | | | | $\begin{aligned} & \text { 74L's } \\ & \text { 74LS00 } \end{aligned}$ | | $\begin{aligned} & 4001 \\ & 4006 \end{aligned}$ | $\begin{aligned} & 20 p \\ & 95 p \end{aligned}$ | | | MEMORY I.Cs | | | | MPSA12 MPSA50 MPSU05 | $\begin{aligned} & \text { 42p } \\ & 42 p \\ & 72 p \end{aligned}$ | $\left\lvert\, \begin{aligned} & \text { 2N2907/A 25p } \\ & \text { 2N2928RB } \% \\ & \text { 2N2920GG11p } \end{aligned}\right.$ | | $\begin{array}{ll} \text { DIODES } \\ \text { BY127 } & \text { 12p } \\ \text { OA47 } \end{array}$ | | OA202 IN914 1N916 | $\begin{array}{r} 10 p \\ 4 p \end{array}$ |
| :---: |
| 7400 | 14 p | | 209 p | $\begin{aligned} & \text { 74LS00 } \\ & 74 L S 02 \end{aligned}$ | 30p | 4007 | $\begin{aligned} & 95 p \\ & 20 p \end{aligned}$ | $\begin{array}{ll} \text { CA3130 } & 10 p \\ \text { CA3140 } & 75 \% \end{array}$ | $\begin{array}{ll} \text { RC4130 } & 139 \mathrm{p} \\ 700 \end{array}$ | | | | | | | | | | | | |
| 7401 | 14p | 74100 | 140 | 74LSo4 | 39 p | 4008 | 115 p | CA3160 129 | ${ }_{733}^{709}$ 150p | | | | | | | | | | $15 p$ | \|N4C001/2 | |
| 7402 | $1{ }^{18}$ | 74104 | 75 p | 74LS08 | 30 p | 4009 | 50p | LM301A 14p | 741 7480 | 2112-2 | RA | | 340 | MPSU55 | 70 | 2N3054 | $6^{65 p}$ | OA85 | 15p | IN $4003 / 4$ | p |
| 7403 | 18p | 74105 | $75 p$ | 74LS10 | 32 p | 4010 | 60 p | LM318N 175 | 747 75p | 8000A | | | 750 | MPSU58 | 0 P | 2 N 3055 | 44 p | OA90 | op | IN $4005 / 7$ | 8 p |
| 7404 | 24 p | 74107 | 34 p | 74LS13 | s5p | 4011 | 20 p | LM324N 35 | 748 | AY5-1013 | UAP | | 40p | OC28 | 140 | 2 N 3442 | $151 p$ | OAg1 | p | IN4148 | 4 p |
| 7406 | $23 p$ | 74409 | $64 p$ | 74LS20 | 32 p | 4012 | 20 p | LM348N 140 | 776 | RO3-2513 | ROM | | 550 | OC35/6 | 140p | 2 N 3643 | 54 p | OA95 | p | IN5501/3 | 15p |
| 7408 7407 | $4{ }^{40}$ | $\begin{aligned} & 74110 \\ & 74111 \end{aligned}$ | ${ }_{75 p}$ | 74 LS 22 74 L 27 | 14 p | 4013 4014 | 55 p 115 p | MC1458P AP | 3900 70p | | | | | OC71 | 32 p | 2 N 3644 | 34 | OA200 | Pp | IN5404/7 | 20p |
| 7408 | 20 | 74116 | 216 | 74 LS | \% | 4015 | 11 | LINEA | | | | EXA | | R20088 | $\begin{aligned} & 255 p \\ & 250 \end{aligned}$ | 2N3702/3 | | BRIDG | RE | TIFIERS | |
| 7409 | 29 | 74118 | 180p | $74 \mathrm{LS47}$ | 15pp | 4016 | \% | AY-1-0212 ${ }^{\text {¢ }}$ | NES43K 225 p | 8 pln | 12p | 22 pin | 36 p | R1P29A | ${ }^{225 p}$ | 2N3708/7 | 14 p | 1A 50 V | 25p | 4A400V | |
| 7410 | 18 | 74119 | 225 p | 74LS55 | 45p | 4017 | 109p | AY-1-1313 775p | NE555 30 | 14 pl | 13 p | 24 pin | 4 p | TIP29C | 62p | $2 \mathrm{~N} 3708 / 9$ | 14 p | 1A 100V | $27 p$ | 8A 50V | |
| 7411 | 240 | 74120 | 138 p | 74LS 73 | *p | 4018 | 190 | AY-1-5050 25p | NE556 35p | | 14 p | 28 pln | 410 | TIP30A | 60 p | 2N3773 | 324 p | 1A 400V | $31 p$ | 6A 100V | 4p |
| 7412 | 23 p | 74121 | 32p | 74LS74 | 60p | 4018 | 52 p | AY-3-8500 775p | NE561B 450p | 18 pin | 30 p | 40 pln | 0 p | TIP30C | 72 p | 2N3819 | 27p | 2 A 50 V | 10p | 6A 400V | 129p |
| 7413 | 4 p | 74122 | 52 p | 74LS75 | 75p | 4020 | $124 p$ | AY-5-1315 750p | NE502B 450 | | | | | TIP31 | 58 | 2N3820 | 50 p | 2 A 100 V | $45 p$ | 10A 400 | 270p |
| 7414 | 85 p | 74123 | $75 p$ | 74LSE3 | 124p | 4021 | 1150 | AY-5-1317A | NESES 140 | TRANS | STO | | | TIP31C | 6 | 2N3823 | 710 | 3 A 200 V | 70p | 25A40 | 432 |
| $\begin{aligned} & 7418 \\ & 7417 \end{aligned}$ | 4 p | $\begin{aligned} & 74125 \\ & 74128 \end{aligned}$ | 8 p | 74LS85 | 148 | 4022 | 190 | case2a ${ }^{\text {650p }}$ | NE56\% 180p | AC125/6 | 2ep | BF194 | 13p | TIP32A | 63 p | 2N3865 | 27p | 3 A 600V | | VM18 | |
| 7420 | 18 p | 74128 | 2 c | 74LS880 | 80 p | 4024 | 68 | CA | $\begin{array}{ll}\text { NE567 } \\ \text { RC4151 } & \text { 180p } \\ \text { 4320 }\end{array}$ | A ${ }^{\text {c127/8 }}$ | 20p | BF195 | 11p | TiP32C | 5 p | 2N3903/4 | 22 p | | | | |
| 7421 | 43p | 74132 | Bp | 74LS93 | 80 p | 4025 | 220 | CA3048 250 | SG3402N 275p | AC176 | $20 p$ | BF196 | 17p | TIP33A | 97 p | 2N3905/6 | | | | | |
| 7422 | 24p | 74138 | 8 | 74LS107 | 55 p | 4026 | $140 p$ | CA3053 ${ }^{\text {25p }}$ | SN72710N 54p | AC187/8 | 20p | BF200 | $4{ }^{4} \mathrm{p}$ | TIP33C | 124p | 2 N 4058 | 19 p | TRIACS | PI | | |
| 7423 | 36p | 74141 | 65 | 74LS112 | 120p | 4027 | \% | CA3005 201p | SN76003N 275p | AD149 | 6p | BF244B | $34 p$ | Tip34A | $124 p$ | 2N4030 ${ }^{2 N 4123 / 4}$ | 19p | 3 A 400 V | 35p | 15A 40 | p |
| 7425 | 33 p | 74142 | | 71LS123 | 110 p | 4028 | 4 p | CA3080E 27p | SN26008 200p | AD161 | $45 p$ | BF256B | | TiP | | 2N4123/4 | | 6 A 400 V | 147p | 5A 500 | |
| 7428 | 43p | 74145 | | 74LS138 | 140p | 4029 | 120p | CA3039E 250p | SN76013N 175p | AD162 | 48 | BF257 | 34 p | TIP35A | 24 p | | | 6 A 500 V | 121p | | |
| 7427 | 40p | 74147 | 205p | 74LS139 | 150p | 4030 | 55p | CA3090AO 425p | SN76013ND 140p | AF114/5 | 22 p | BF258 | $3{ }^{\text {310 }}$ | TIP36A | 201p | 2N4401/3 | 34p | 10A 400 | 149p | | |
| 7428 | 40 | 74148 | | 74LS151 | 110p | 4033 | 250 | ICL8038CC 40p | SN76018 240 | AF116/ | 22p | BF259 | 31 p | TIP36C | 360 p | 2N4427 | 60p | 10A 500 | 14p | | |
| 7430 | 17 | 74150 | 131 | 74LS153 | 2NP | 4034 | 240 p | LM339N 175p | SN76023N 175p | AF127 | 40 | BFR39 | 34 p | TIP41A | 70p | 2N5179 | | | | | |
| 7432 7433 | 37p | 74151 | 8 | 74LS157 | 139p | 4035 | 130 p | LM377N 200p | SN78023ND 16 | AF239 | p | BFR40/ | 34 p | TIP41C | 4 p | 2N5245 | \uparrow | SCR-T | R1 | TORS | |
| 7437 | 37 p | 74154 | 1400 | 74LS158 | 159 | 4040 | 120 p | LM380N 112p | 8515 | | | BFR79 | 34 p | TIP42A | $7{ }^{10}$ | 2N5290 | 5sp | BT108 | | tud | 50p |
| 7438 | 37 p | 74155 | 97 p | 74LS161 | 19p | 4043 | | LM381N 140 | TAAES1A 150p | BC108/B | | BFR80/1 | 34 p | T | \% ${ }^{\text {a }}$ | 2N5401 | 32p | C108D | | lastic | 70p |
| 7440 | 18 p | 74156 | 970 | 74LS162 | 14 p | 4044 | 100p | LM381AN 160 | TBA120 97p | BC109 | 10p | BFR88 | ${ }^{37 p}$ | TiP2955 | $7{ }^{7}$ | 2N5457/8 | 40 | MCR101 | | 092 | 30p |
| 7441 | $3^{5 p}$ | 74157 | 97 | 74LS163 | 130 p | 4048 | 140p | LM389N 18 | TBAGSB S\%p | BC109C | 11p | BFW10 | 0 \% | TiP3055 | 40 p | 2N5459 | 40 | 2N4444 | | lastic | 140p |
| 7442 | $75 p$ | 74159 | ${ }^{250} \mathrm{p}$ | 74LS164 | 1210 | 4047 | 100p | LM3911N 120p | TBA651 225p | BC147 | ${ }^{\circ}$ | BFX29 | $3{ }^{3} \mathrm{p}$ | TiS33 | ${ }^{40}$ | 2 N 5460 | ${ }^{55}$ | 2N5060/2 | | 092 | 40p |
| 744 | 120 p | 74180 | 106p | 74LS185 | 225 p | 4049 | 55 p | MC1310P 190p | TBA800 112p | BC148 | 8 | BFX30 | 3 D | 2N698/ | 25p | 2N5485 | 45p | 2N5064 | | 092 | 45p |
| 7444 | 120p | 74161 | 10 p | 74LS173 | 230 p | 4050 | 57p | MC1351P 110p | TBA810 125p | BC157 | 11p | | | 2N0 | | 2N6107 | | | | | |
| 7445 | 97 p | 74162 | | 74LS174 | 180 p | 4051 | 190p | 1120 | TBA820 10p | BC158/9 | 13p | BFX86/7 | 30 | 2N708 | 22 p | 2N6027 | | OPro | E | RONIC | |
| 7446 | 108 p | 74163 | 10 | 74LS175 | 100 p | 4054 | 120p | MC1498L 112p | TAA621A 310p | BC169C | 15p | BFY5 | 22 | ${ }_{2}{ }^{2 N} 1818$ | 43 p | 2N6247 | | OCP 71 | | ORP 81 | |
| 7447 7448 | ${ }^{75 p}$ | 74184 74185 | 12 | 74LS181 | 375p | 4055 | 140 | MC3340P 190 | TDA2020 34p | BC172 | $11 p$ | BFY52 | 220_{20} | 2N 2 1130 2N1/2 | 25p | 2N6254 2N6292 | | ORP 12 | | 2N5777 | 8p |
| 7450 | $1{ }^{18}$ | 74168 | 16 | 74LS190 | 250p | 4056 | 135p | MC3360P 190p | ZN414 140 | ${ }^{\text {BC173C }}$ | 11 p | BFY56 | 4 p | 2N1304/5 | 75p | 3N128 | 108 p | ORP 60 | | TIL118 | |
| 7451 | $1{ }^{18}$ | 74167 | 320p | 74 C | | 4066 | 135p | MF3401 ${ }^{\text {MFC4000B }} 120$ | ZN424E | B | 17 p | BFY90 | 0p | 2N1306/7 | 75p | 3 N 140 | $103 p$ | LEDs | | | |
| 7453 | $1{ }^{\text {P }}$ | 74170 | | 74 COO | 25 p | 4067 | 425p | | | BCi70 | 24p | BLY83 | 758 | 2N1613 | 22p | 3N141 | 1010 | | | 2"Red | |
| 7454 | 18p | 74172 | $750 p$ | $74 \mathrm{CO2}$ | 25 p | 4068 | 24 p | VOLTAGE REGULA | TORS - Fixed | BC182/3 | 12p | BRY39 | 4 4 | 2 N 1711 | 22 p | 3N187 | $20 . p$ | TIL21! | 0 | 2^{*} G | 20p |
| 7460 | $1{ }^{18}$ | 74173 | 140 | 74 CO 4 | 27 p | 4069 | 27 p | 1a +ve roze\| | 1A -ve rezas | BC184 | 14 p | BSX19/20 | | 2 N 1893 | 32p | ${ }^{40360}$ | 43p | | | 2 | |
| 7470 | 31p | 74174 | 120p | $74 \mathrm{C08}$ | 270 | 4070 | 65 p | 5 V 7805 100p | 5 V 7005130 p | BC187 | 32 p | MJE340 | 76p | 2 N 2100 | ${ }^{42}$ | 40361/2 | ${ }_{750}$ | TIL32 | | | |
| 7472 | 32 p | 74175 | P | 74 C 10 | $27 p$ | 4079 | 27 p | 6V 7806 100p | 12V 7912 13p | BC212 | 14p | | 1750 | ${ }^{2 N} 2{ }^{2} 218184$ | | | | | | | |
| 7473 | 38 p | 77 | | 74 C 14 | 90 p | 4072 | 27p | $8 V 7808$ 100p | 15V 7915 130p | BC213 | 12p | MJ491 | 269 $250 p$ | 2N248A 2N2219 | 250 | 40811 | $325 p$ | $\begin{aligned} & \text { DISPP } \\ & 3015 \mathrm{l} \end{aligned}$ | YS_{2} | TIL312 | $\begin{aligned} & 120 p \\ & 120 p \end{aligned}$ |
| 7474 7475 | 37p | 74177 74180 | 12 | 74 C 42 74 C 48 | 110 p 230 | 4073 4078 | ${ }^{370} \mathrm{p}$ | 12V 7812 100p | 24V 7924 | ${ }^{\mathrm{BC} 214}$ | 14 p | MJ2955 | ${ }_{105}^{250 p}$ | 2N2219 2N2222 | 2_{22} | ${ }_{40595}$ | 110 p | FND357 | 190p | TiL321 | 130 p |
| 7476 | 37 p | 74181 | 124 | 74 C 73 7 | ${ }^{230} \times$ | 4081 | 170 p | 15V 7815 100p | 1790 W 25p | 8C478 | 32 p | MJE2955 | 108p | 2 N 2369 | 15p | 40835 | *p | FNDS00 | 120 | TIL322 | 130 p |
| 7480 | 54 p | 74182 | 150p | 74 C 74 | 70 | 4082 | 24p | 18V 7818 109p | sultable for | BCY70 | 29 p | MJ3001 | 234 p | 2 N 2484 | 32p | 40836 | 144p | FND507 | 12 | DRIVE | |
| 7481 | 10 | 74184 | 25 | 74 C 85 | 200 | 4093 | 94p | 24V 7824 100p | T0220 | BCY71 | 24p | E3055 | | 2 N 246 | 52p | 40373 | 0 | DL704 | | 75491 | 84p |
| 7482 | | 74185 | | 74 C 86 | Sp | 4008 | 120p | | | BD131/2 | esp | $102 /$ | | 2N2904/A | 22p | 40841 | ${ }^{35 p}$ | DL707 | | 5492 | 38 |
| 7483 | | 74180 | | 74 C 90 | P | 14502 | 180 p | SV 78L05 48p | SV 79L05 | BD135/6 | 4p | Fiot/5 | | 2905/A | 22 p | 40872 | Sp | L747 | | | 240 |
| 7485 | 120 p | 74191 | 12 | $74 \mathrm{Ca3}$ | | 14503 | 90 | 6-25V 78L62 41p | | BD139 | $5{ }^{5}$ | | | | | | | | | | |
| 7486 | 36 p | 74192 | | 74 C 151 | 260 | 14508 | | 12 V 78L12 4Pp | 12V 70L12 80p | BD140 | | | | | | | | | | | |
| 7489 | $140 p$ | 74193 | | ${ }_{74}{ }^{\text {C15 }} 7$ | 250 p | 14510 | 130p | 15V 78L15 41p | $15 \mathrm{~V} 79 \mathrm{LL15}$ Ep | BDY56 | $2{ }^{24}$ | | | | | | | | | | |
| 7490 | 38 p | 74194 | 19p | $74 C 160$ | 155p | 14511 | 160p | LM309K 150p | LM320-12 160p | BF115 | ${ }^{24} \mathrm{p}$ | | | | | | | | | | |
| 7491 | 0 | 74195 | 110 | 74 Cl 161 | 155p | 14518 | 120p | LM323K 740p | TBA625B 120p | BF187 | 25 p | | | | | | | | | | |
| | | 74 | | $74 \mathrm{C1} 162$ | ${ }_{155}^{55}$ | 14515 | 14 p | LM340T-5 115p | 7805 K 150p | BF173 | 27p | | | | | | | | | | |
| 7494 | | 74198 | | ${ }_{74}{ }^{\text {C16163 }}$ | $155 p$ | 14518 | 190 | VARIABLE | LM317 T0220 | BF979 | 35 p | | | | | | | | | | |
| 7495 | $75 p$ | 74190 | 25 | Cmos | 1400 | 14528 | 198 | ${ }^{723}$ DIL 45 p | 325 p | BF180/1 | 35p | | | dhu | | | | I. 0 | 4338 | | |
| 7 | 0 p | 74221 | 175p | C.mos | 20 p | 14580 | 270 | $7^{8 M G T 2 C ~ 145 p}$ | M304H 159p | BF184/5 | 24p | | | anurs | Road, | dond | | d. | - | | |

PROGRESSIVE RADIO

31 CHEAPSIDE, LIVERPOOL L2 2DY. Tel: 551-238-0\%22
SEMICONDUCTORS ALL FULL SPEC. BC212, BC182, BC237, BF197 BC159 all Ep each. LM380 80p, LM381 \%3p. NE555 $33 \mathrm{p}, 7418$ PIN 23p, 741 S (wide bandwidth) 8 pin 35p. TIL305 Alpha numerical display (wlth data) E2. 50 p. BX504 opto isolators inira red led to photo MRD 3051 photo translatora 35p, FETS similar to 2N38191Ep, MOSFET similar 40873 35p, SL301 dual matched pair sil npn transistors ft. 300 mhz 30 p . Intel C1103 1024 blt mos rams $\$ 5$ p. TBA800 6Sp, CD 405145 p, 72314 pin I.C.' 35 p.
DIODES, BY127 ip. IN4002 4p, IN4005 7p. 600v 3 amp 17p, Lucas bridge recs, 400v 1.5 amp 30p.
MAN3A 3 mm led displays 50p. Min. Nixie 507 OST 75p.
Pot core unlt, has $81 \times$ pot cores including one FX2243 (45 mm) and two FX2242 (35 mm) 3 TO3 sil. power transistors on heat sink, $3-20 \mathrm{~mm}$ panel fuseholders and panel with various transistors, diodes and a 5 amp platitic SCR. E1-75p plus 75D postage.
 ع1-20p, Crouzet 115 VAC 4 r.p.m. 25 p, 12 v-d.c. 5 pol. 35 p.
HI-SPEEO MORSE KEY, ALL METAL £2•25p.
HI-IMP MONO HEADPHONES 2K IMP \&1-35p
Crysial microphone inserts 37 mm 45p, Grundig electret condenser Inserts with bult in FET preamp 51 - 50 , ELECTRET PENCIL HAND MICROP HONES $1 K$ IMP WITH STANARD JACK PLUG $82 \cdot 35$,
SOLDER SUCKER, high suction, eye protection shield \&4-野p.
PROJECT BOXES, BLACK ABS PLASTIC WITH BRASS INSERTS AND LID, $75 \times$

BUZZERS, GPO open type $3-6 \mathrm{v} 30 \mathrm{p}$. Large plastic domed type loud note 8 or 12 volta 50p Solid
TAPE HEADS, Mono Cassette Ef-30p. Stereo cassette $\mathbf{2 3} \cdot \frac{60}{}$ BSR MNI330 half track built in erase, mounted on bracket, is 20p.
Relays. Min. saaled 12 v de type 4 pole changover 35 p , Min 24 v dc 2 pole c/0 3 amp contacte 5p. Min sealed 220V AC 2 pole c/o 40p. NO 20p.
CRYSTALS, $300 \mathrm{khz} 40 \mathrm{p}, 4.43 \mathrm{mhz}$ CTV 45p. Aerosol 'Touch up' paint one colour yellow/ arey, 602 can 35p. 50 V AC cam units, motor switching ten c/o micro switches, suppled Belling Lee L4305 masthead ampliflers and mains power unit, now but only for group A UHF $£ 7.58 \mathrm{p}$.
TRANSFORMERS, 6-0-6v 100 ma , $9-09$ 75ma, $12-01250 \mathrm{ma} 75 \mathrm{p}$ oach, $12-012100 \mathrm{ma}$ 75p. 12v 500 ma e5p, $1: 1$ triac/xenon pulse transformars 32 p , CHOKES mmH 3 Amp 20 p . U.H.F. TV Tuners, push button (not varicap) now and boxed E2 $^{2} 50$ p. Miniature toggle switches. or push to break $16 \times 16 \mathrm{~mm}$ is p ach type. Slider switches, DPDT standard 15 p . M1n 12 p , Std. c/o 2 t p. Roller action micro switches 15p.
TOOLS Smail side cutters $5^{\prime \prime}$ insulated handies E1.35p. Snub nosed pliers $5^{N \prime}$ insulated handles $\mathrm{E1} \cdot \mathbf{3 5} \mathrm{p}$. Watchmakers screwdriver sets, 5 drivers in wallet Ei - wep. Large maina cester screwdrivers, fully insulated 8 itp. Test lead jumper sets. 10 eads with insulated croc clipt each end, different colours $20 p$. Telephone plek un coil, suction type with 3.5 mm placed PP3. PP6. PP7, PP9 E2.45p. Edge connectors, 0.184 way $65 \mathrm{p}, 34$ way $4 \mathrm{op}, 0.218$ way 15p. Amplifier modules, OTL410 10 watt mono into 8 ohme 28 yc max $\mathrm{E} 4 \cdot \mathrm{esp}$. 555 S Siereo module, 3 watts output into 8 ohms, $12 v$ dc $83 \cdot 35$. Tape head demagnetisers, 240 vac with on 10 f switch, straight probe $£ 2 \cdot 60$, curved probe (cassette) $\mathrm{E2} \cdot \mathbf{3 5 p}$
TERMS: cash with order, (or official orders from colleges etc). Postage 30p
wise shown, overseas post at cost. VAT inclusive prices. S.A.E. for lists.
Progressive Radio, 31 Cheapside, Liverpool L2 2DY. Tel: 0512350 efz.

EVERYBODY'S DOING IT!

Doing what? Sending for the latest Home Radio Catalogue. It's the most comprehensive components catalogue you can get. 128 pages, about 2,500 items listed, and profusely illustrated. Still only $£ 1 \cdot 40$, with a free bargain list. Send your cheque or postal order now. Home Radio

Components Ltd

Dept. P.W., 234 London Road, Mitcham, Surrey

CR4 3HD

NO BATTERIES NO WIRES £29-99 PRR PAIR
$+\quad$ VAT 33.75
The modern way of lontant 2 -Tray commonicationa. Bupplied with 3-core wire. Just plug into powor wocket. Ready for unt. Cryotal clear communications from rom to room. Volume control. Uneful as inter-omee intercom. between oflice and warehouse in eargery and in homes. P. \& P. 99p.

$£ 19.95$
solvo your commanics. 8olvo your commonics. 4-8tation Tragilator Intercom aystem (manter and 8 subs) talk/histen from Mauter to 8 ube and gube to Menter. Ideally suftable for Buainees, Surgery. Bchools, Hospltale and Omee. Operated on one 9 V battery. On/off owitch. Volume control. Complete With 3 connecting Wires each 661t. A Battery
NEWI AMERICAN TYPE CRADLE

ONLY £15.95

Lstest traubiviorised Telephone Amplliker with deteched plug.ln apeaker. Placing the recelver on to the cradle activates a sitch for immediato two-way conversatlon Fithout holding the handset. Many poople can livion at a
 notes, conrult ales. No long waiting, anves time with long. diatance calla. On/ofl withe volume control, converiation recording model at 818.95 + VAT $81 \cdot 52$. P. a P. 88 p .
 168 Khtris orom kian ETREET, LOLDOH, Ws 01.087 6548

BPAN NEN OUPPLUS MODULE

AND OTHER ITEMS
2 STAGE STEREO PRE-AMP on $6^{\prime \prime} \times 7 \frac{1}{\prime \prime}^{\prime \prime}$ P.C.B. 4 push buttons. gram, tape in/out, aux. on/of. 4 slider controls. vol., bal.. bass., treble, input approx. 100 mV for 300 mV oue with knobs.
STEREO POWER AMP to match on $6 t^{\prime \prime} x$ $5 t^{\prime \prime}$ P.C.B. $10 \mathrm{~W}+10 \mathrm{~W}$ out for 60 mV in. Includes rect., smoorhing and supply for pre-amp.

Bargain at only $\mathrm{E4}-90$
Build your own music centre SPECIAL OFFER PRE-AMP E POWER AMP Pair only \& $10 \cdot 00$ TRANSFORMER to suit $240 \mathrm{v} / 22 \mathrm{v}$
..... $<2 \cdot 70$
ELAC SPEAKERS $8^{r}, 8 \Omega$ with tweeter cone. ELAC SPEAKERS $8^{\prime \prime}, 8 \Omega$ with tweeter cone. STEREO GRAM AMP on $12^{\prime \prime} \times 11^{\prime \prime}$ P.C.B. $3 W+3 W$ for 100 mV in concrols, vol., bal., creble. bass, requires $16 v \mathrm{DC}$ for 8Ω L.S. or $25 v \mathrm{DC}$ for 15Ω L.S. $\$ 5.90$ Suitable 14v transformer and rect. ordered with ram 2 mp $\begin{array}{r}62 \cdot 00 \\ E 2.50 \\ \hline\end{array}$ MW EW RECEIVER on $6 \frac{1}{\prime \prime} \times 3^{\prime \prime}$ P.C.B. complete with drive and cursor, ferrite aerial \& knobs. Good sensitivity and volume. Needs only POWER TRANSFORMER 240v in 36v out $2 \frac{1}{2}$ continuous plus $24 v \frac{1}{4} A$ with $18 v$ tap will 28A continuous 35 Ws . $34{ }^{\frac{4}{4} \mathrm{~A}}$ with dry tap will type. Impregnated.
Quantity available. Exceprional value at $\$ 4.90$ weighs nearly $41 \mathrm{~b} \rightarrow$ hence f 3.90 to callers.
PUSH SWITCHES with modern square buttons. 8 switches on bar, 4 independent plus inter-dependent latching. As used on music centres etc. $51 \cdot 50$ diecast frame. Ball bearing shaft. Anci backlash. Geared S.M. drive $2 \xi^{\prime \prime} \times 2^{\prime \prime} \times 1{ }^{\prime \prime \prime}$, plus shaft $1^{\prime \prime \prime}$. Rear ext. shaft. \quad only 85p eiectronican supples crovoon

40, Lower Addiscombe Rd. Croydon, CRO 6AA. Tel: 01-688-2950.

WHAT'S NEW?

 by performing over

100 EXPERIMENTS

creating more than 20
practical applications

You learn all about the most up to date electronic circuits; how to calculate, repair, and design them, while pursuing your favourite hobby. Start from scratch, or improve your present knowledge, train and earn money in your spare time, turn your pastime into valuable job opportunities.
Compare our prices: you receive the entire Course, mini laboratory and components for LESS than the price of the components alone.

COMPLETE KIT: nothing else to buy*

You get:

- Instruction manual: over 200 pages of detailed sted-by-sted instructions. Start from seratch. explains basic laws and physics of Electricity.
semiconductor orincioles and circults: form diodes (including diac. zener) transistors, triacs to integrated circuits. (C.MOS. oderational amolifiers) etc.
Over 200 Electronic components: aerosoace tech. nology. Printed circuit experiment board, photo-
 capacitors, milliameter, Dotentiometers, variable capacitor. etc...etc © ett. . .
measuring instruments (you assemble yourself from among components furnished in kit). MEASURING AMPLIFIER LOGIC INDICATORS REGULATED POWER SUPPLY, MULTIAMTER.

You perform:

Over 100 different experiments: from the most basic voltage measurements to radio transmitter
circuits and including HI F\& Flio Floos, Is aoolicacircuits and including HI FI. Flid Flods, Ic adolica-
tions. Trac use, etc... eic....etc...
-
You construct:
More than 20 comolete functional systems: light modulator, high fidelity amplifier. radio control set. radio recelver and transmitter, electronic gadgets and games and many. many more

- Hand tools not furnished.

SAVE $£ 10$ - mail coupon today - SAVE $£ 10$
saga P.O. Box 401, Kingsmead, Kings Lane, Chipperfield, Nr.
Kings Langley, Herts WD\& 9 PB.

Please send me ——— (QTY) IK2 KIT(S)
I enclose cheque (money order) for
t
Name
Address

\section*{WATCH BATTERIES 65p Ray-O-Vac long life. Most types. DIY KIT 35p.
 (with battery order)
 Case opening tool, fits most watches. Tweezers, Equiv. chart, Instructions.
 SAVE £f£s WITH THE MONITEL

CASIO QUALITY AND VALUE
31QR-17B
£29.95
31QS.12B
R10ht. 7.7 mm
£39.95
Stopwateh,
Dual Time.
Wator
Resistant.
All a/e

310 R-17B

STOR-18B (Round face-not Illustrated). Luxury varsion of 31 QR-178. Only 7.45 mm thick Ers -t

ALARM WATCHES. 25 CR-18B (round) E49 © 0 ALARM WATCHES. 25
WORLD TIME WATCH. 29CS-11B E50.05
ULTRA SLIM 31CS-10B E59. OS
EEIKO CALCULATOR/WATCH ($\mathbf{(1 6 5)}$) 135
CITIZEN MULTI-ALARM ($\mathbf{E 1 3 5}$) £100
MAINS DIGITAL ALARM CLOCKS
MAINg DIGITAL ALARM CLOCKS
Fairenild Timaband CSO. Black or white $£ 9.95$
Unik TIme. Black, white, red or yellow E9.05
CASIO CALCULATORS
ST-1. Four way stopwatch E 24 - es
LCD, LC 822 £10. 85 . LC 78 E18. 85 .
CASIO SCIENTIFICS
DIGITRON: FX-31 £11.95. FX-30 $£ 15 \cdot$. 5
FX. 140 £17.95. FX-120 £19.95. FX-360 £49.95
LCD: FX-2200 £18.85. FX-3000 £2s•95
NEW

FX-8000. Available July/August. Full | scientific plus $1 / 100$ second stopwatch, 5 different timars; |
| :---: |
| ate. |
| 2095 | ate.

Send 25p for our Illustrated catalogue.
Prices include VAT and PAP. Send eheque, P.O. or phone your credit card number to:-

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronlc components must be cleared as space required. 1000's of capacitors, resistors, transistora. Ex equlpment panale etc. covered In valuable components. No time to sort. Mu
$561 \mathrm{bs}-\mathrm{fice} 0-00 ; 112$ lbs- $30-00$.

Handy Packs
4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ Ideal for slonal injectors, etc. $£ 1 \cdot 0$.
Miniature Edgewise Panel Meters
200μ A FSD. 100 minlature reed witches ideap burglat alarme moder wallches ideal for 6×6 pole 12 volt reed pelays on board feas. Migh quality computer panols smothered in
top grade componente $5 \mathrm{lbs} \mathrm{E} 4 \cdot 75.10 \mathrm{lb}$ top grade componente 5 lbe effre. 10 lb es. 85.

DE LUXE FIBRE GLAS8 PRINTED

CIRClutes 150 sa. Ins. copper clad $/ / \mathrm{g}$ board,
Inclu Includes 150 sq . Ins. copper clad f/g board,
ith ferric chloride, 1 Dalo etch resist pen, abrasive cleaner, 2 mini drill blts, etch tray abrasive civaner, 2 mini
and Instructions/only $\& 5 \cdot 30$.
150 sq . in. fibre glass board e2-00
Dalo pen. 90p.
1 Ib ferric chloride to mil spec. e1-25. 5 lbs ferric chloride to mil spec. £5.00.
Instruction sheet 20p
Minlature mains iransformers, fully Ehrouded. 240 V . In $6-0-6 \mathrm{~V}$ at 100 ma out. laad and plug on input and short leads on outout 80 p .
Semleonductor Bargalns
TH3 Thermlstofs 10 for \& $1 \cdot 50$.
TH3 Thermlators 10 for \&1 50 .
100 new \& marked silicon and germanium 100 new \& marked silicon and germanium atc. \&3.0s dlodes including zaner, power atc. mixed dlodes includ
100 mbldge types E 3.30 .
Bildga rectifer $100 \mathrm{v} 2 \cdot 5 \mathrm{amp} 4$ for Cl 1
Brand new ITT 25 kv triplers for Decce Bradford chassis \&2.50. 5 for £10. 50 Germanlum dlodes, ideal for cryetal ets. etc. e1.
Minlature Vernitron FM4 10.7 MHz Ceramic Filters 50 p ench 3 for $£ 1$.
Now U.H.F. tranalstor TV tunoe 4 pushbutton typaej. 50
Rotary type with slow driva $£ 2.50$.
Mardware Packs each contalning $100^{\prime} \mathrm{s}$ of itams Including BA nuts and bolts, Nylon, Self-tapping, Posidrive, "P"' cllps, Cable
clamps, Fuse holders. Spire nuts etc., clamps, Fuse

Aluminlum TV coax plugs 8 for ect-00
Standard wire ended neons 12 for $\mathrm{E1} \cdot \mathrm{co}$
Miniature 5 K log pots with $8 / \mathrm{s}$ switch 4 for Miniat
DON'T LET YOUR ENVIRONMENT DEHYDRATE YOU OR YOUR POS DEHYDRATE YOU OR YOUR POB.
SESBIONS. Buy a Honeywell Humidity SESSIONS. Buy a Roneywell Mumidity range of control, adjustable by $\mathrm{m}^{\prime \prime}$ spindle with flat. Contaci Rating $3.75 \mathrm{~A} @ 240 \mathrm{VAC}$. 7.5A@ 120 VAC . Ideal for Greonhouses, Centrally Heated Homes, Offices, etc. Alarme. $\mathrm{E} 1 \cdot 50$ en. 4 for ES .
Now Minlature FM Frontends $88-108 \mathrm{MHz}_{2}$, $10 \cdot 7 \mathrm{MHz}$. I.F. or with Integral Tuning-gang £2.50.
TBA 120A 50p each
SN $76115 N$ E1 each.
20 mm antl-surge fuses your selection
800 MA to $3 \cdot 15 A$. 12 for Et $\cdot \infty$ 800MA to 3-15A. 12 for E1- 0
Component Bargalns
300 mixed resistors + \&
t watt $\& 1 \cdot 50$ 300 modern mlxed caps most types $£ 3 \cdot 30$.
200 mlxed resistore mostly $1 \& 2$ watt. \&1-50. 100 mlxed polyester caps $\mathrm{fz} \cdot \mathbf{2 0}$.
100 mlxed moder miniature and
100 mlxed modern minjature and ceramic plate caps $81 \cdot 00$.
100 mlxed wrewounds $\mathrm{E2} \cdot \mathbf{2 0}$.
125 mlxed film resistors, mostly miniature £1.00, 500 for $£ 3 \cdot 50$.
25 mlxed pots \& presets $£ 1 \cdot 50$.
100 HIoh wattage resistors, wlrewound
otc. $£ 2 \cdot 20$. otc. $£ 2-20$.
Modern Vertical Presets with slotted knobs, 220n, 470K, 500K, 1 MEG, 25 for £1. 4 Packs $£ 3$. 50.
Small 50 wirewound Horlz. Convergence Mctorola 1 watt Audlo I.C. MFC 8010
 prool, complete with clicuits and data $£ 1-10$ etch, 5 for EA .
100 K Stereo Slider Pots. Modern, slim type. 50p sach, 3 for $£ 1$.
Double Gand A.M. TunIng Condensors on VHF as used in modern Thorn music centres. £i.

400 P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PW 149A BROOKMILL ROAD, DEPTFORD, SE8
CALLERS BY APPOINTMENT ONLY

H.A.G. SHORT-WAVE KITS
 WORLD-WIDE RECEPTION

'H.A.C.' well known by amateur constructors for its Short Wave receivers. now offers a
complete range of kits and accessories to suit complete range of kits and
the novice and the expert.
the novice and the expert.
£9.00 INCLUSIVE-the ever popular and e9.00 INCLUSIVE- the ever popular and easy to construct DX receiver Mark IIf; drilled chassis, valve, accessories and fuli instructions. selective, sensitive and with fantastic reception yet needing only a single PP3 battery. Special introductory offer at $£ 9.70$ inclusive-CAN
ONLY BE HELD AT THIS PRICE WHILE STOCKS LAST
Lastly the K and K plus (illustrated above) for the more advanced constructor. This receiver has recently been re-designed for even better reception. All orders despatched within 7 days. Send stamped and addressed envelope now for free descriptive catalogue of kits and accessories.

SORRY, NO CATALOGUES WITHOUT S.A.E.
"H.A.C." SHORT-WAYE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lowes Road, East Grinstead, West Sussex RH19 3SZ

OSMABETLTD $\begin{aligned} & \text { We make tranaformers } \\ & \text { amongst other things }\end{aligned}$ LOW VOLTAQE TRANSFORMERS: PrIm 240V ac. 6.3V $1.5 A £ 2.45$; 3 A £2.85; 6A CT £5.30; 12V 1.5A £2.85

TWIN SEC TRANSFORMERS: PIIm 240 V ac.
$8 V 0.6 A+6 V \quad 0.6 A: 9 V 0.4 A+9 V 0.4 A ; 12 V 0.25 A+12 V$ $0.25 \mathrm{~A}: 20 \mathrm{~V} 0.15 \mathrm{~A}+20 \mathrm{~V} 0.15 \mathrm{~A}$; all at e3.25 oach; 15 V

 $25 V 2 A+25 V 2 A \& 5.10$.
MIDGET RECTIFIER TRAN BFORMERS: 240 V ae. $6-0-6 \mathrm{~V} 1.5 \mathrm{~A}$ or $9-0-0 \mathrm{~V}$ 1A c2.45 each; $12-0-12 \mathrm{~V} 1 \mathrm{~A}$ or $20-0-20 \mathrm{~V} 0.75 \mathrm{~A}$ e2.95 each; $9-0-9 \mathrm{~V}$ 0.3A or $12-0-12 \mathrm{~V}$ 0.25 A or $20-0-20 \mathrm{~V} 0.15 \mathrm{~A}$ £ 2.95 each.

LT TRANSFORMERS TAPPED SEC: PrIm 240V ac.

 MAINS TRANSFORMERS SPECIAL OFFER: Prim 240 V ac.
$250-0-250 \mathrm{~V}$ 80Ma $6.3 \mathrm{~V} 1 \mathrm{~A} £ 1.50 ; 250 \mathrm{~V} 100 \mathrm{Ma} 8.3 \mathrm{~V} 2 \mathrm{~A}$ £2: 9V 3 A £2; 23 V 0.5 E £1.25; 20W Auto. $110 / 240 \mathrm{~V} £ 1.75$. SPEAKER AUTO MATCHING TRANBFORMER8 12W, 3 to 8 or 15 up or down: $£ 2.50$.
38 or 45 mm or $2 \operatorname{lin} 8 \Omega$, $2 \ln 8$ or $250,24 \ln 8$ or 80Ω,

 Instant erasure of cascettes and tape spools, any dlaInstant erasure of cassetes and, $\begin{aligned} & \text { meter, demagnetises tape heads, } 200 / 240 \mathrm{~V} \text { ac, } \mathrm{fs} .50 .\end{aligned}$ POWER 8UPPLY, TWIN OUTPUT: Prim 240Y ac. New, Britiah manufacture, moothed d.c. output 20 V
$1.5 A$, plus siablleed output of 15 V 100 Ma , plus 12 V ac
 O.5A output, comp
CONDENSERS

Electrolytle 1000/50V 30p; 2000/30V 30p: $1200 / 75 \mathrm{~V}$ 50p; $3900 / 100 \mathrm{~V}$ \&1.25; Paper tubular W/E $0.47 / 600 \mathrm{~V}, 2.2 / 250 \mathrm{~V}$ 4.7/180V, all at 25p each, eis per 100. 4-way unscreaned. malne, $10 \mathrm{p} M$
EDOW18
EDOWISE LEVEL METER FSD 200μ A
Size $19 \times 18 \times 20 \mathrm{~mm}$ 800n, E1.10.
BYNCHRONOUS GEARED MO TORS, 240 V ze. Brand new, bullt in gearbox. 1, 6. 8 or 20 RPM, all at ©1.20 each. TRANSORMERS FOR VALVE POWER AMPLIFIERS
P.P. see tapped $3-8-15$, A-A $8 K 30 W, £ 11.50$; A-A $3 K$ 50W, £17.00; 100 W (EL34, KTB8, ©tc) \&22.00.
O.E.C. MANUAL OF POWER AMPLIFIER Covers valve ampllfers 30 W to $400 \mathrm{~W}, 75 \mathrm{p}$. ALL PRICES INCLUDE V.A.T. CARRIAGE EXTRA ON ALL ORDERE Callere by appolntment only 8.A.E. enquirles, lists

46 Kenilworth Road, Edgware, Middx HA8 8YG. Tel: 01-958 9314

SUPERSOUND 13 HI-FI MONO AMPLIFIER
A superb solid state audio amplifier. Brand new components hroughout. 5 silicon tran transistors in push-Dull Full wave rectificatio watts r.m.s. into ohms. Frecuency resDonse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ ore-amplifiler integrated separate Volume Bass boost and Treble cut conew Suitable for 8 -15 ohm speakers. Indut for coramic crystal cartridge. Sensitivity output. Supplied ready built and tested, with knobs escutcheon panel, input and output plugs. Overal size $3^{\prime \prime}$ high $\times 6^{\circ}$ wide $\times 77^{\circ}$ deed. AC $200 / 250 \mathrm{~V}$
PRICE
HARVERSONIC MODEL P.A.
TWO ZERO
An advanced solid state genera
 purpose mono amplifier suitable
for Public Address system,
Disco. Guitar, Gram.. etc. Featu
Disco, Guitar. Gram. etc. Features 3 individually controled inputs (each input has a separate 2 stage pre-
amp). Input $1,15 \mathrm{mv}$ into 47 k . Input 2 , (sultable for use with mic. or gultar etc.). Input 3 200 mv into 1 meg . suitable for gram. tuner, or tape etc. Full mixing facilities wih full range bass \& treble controls. All inp.its plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohm speaker. Output in excess of 20 watts R.M.S. Very attractively finished Durpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains
 Mullard LP1159 RF-IF Module $470 \mathrm{kHz} \mathrm{22} \mathrm{\cdot 25+}$ P. \&P. 20p. Full spec, and connection details supplied Pye VHF/FM Tuner Head covering $88-108 \mathrm{M} / \mathrm{Hz}$. $10^{\circ} 7$
M / Hz I.F. output. $7-8$ Volt + earth Supplied pre aligned, with full circuit diagram with precision-geared FM gang and 323Pf + 323Pf A.M. Tuning gang only E3.15+P. \& P. 35p.
SIZE $2^{\circ} \times 3^{\circ} \times 4^{\circ}$ ready built. Pre-aligned and tested for $9-16 \mathrm{~V}$ neg. earth operation. Can be fitted to almost any FM VHF radio or tuncr. Stereo beacon light can be fitted if required. Full detalls and instructions (inclusive of hints and tips) supplied. \&6.00 plus 20D. P. \& P. Stereo beacon lisht if required 40p extra.

MAINS OPERATED SOLID STATE AM/FM STEREO TUNER

200/240V Mains Oper-
ated Solid State FM AM Stereo Tuner. Covering M.W. A.M. $540-1605$ $\begin{array}{lll}\mathrm{KHz} & \text { VHF/FM } & 88-108\end{array}$ MHz.
Built-in
Bullt-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM Buit in Pre-amos with variable outpu voltage adjustabie by pre-set control. Max old Voltage $600 \mathrm{~m} / \mathrm{v}$ RMS into 20 K . Simulated Teak trush cabinet. Will match almost any amplifier. Size $84^{\circ} \mathrm{w} \times 4^{\circ} \mathrm{h} \times$
94"d approx.
LIMITED NUMBER ONLY at $228 \cdot 00+£ 1 \cdot 50$ P. \& P. MAINS TRANSFORMER
Pri. $0 \cdot 110$ and 240 . Sec. 28 v at 1.8 amps. Also tapped at $12 \mathrm{v} \cdot 3 \mathrm{amp}$. Overall slze $24^{\circ} \mathrm{h} \times 3$. $\mathrm{m} \times 2 \mathrm{~m}^{\circ} \mathrm{d}$. £2.50 E £1.00 P. \& P.
10/14 WATT HI-FI AMPLIFIER KIT
A styltshly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super repro duction of both music and speech with negligible hum Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded section wound output trantformer to match $3-15 \Omega$ spcaker and 2 independent volume controls, and geparate bass and treble controls are provided giving EF86 and EZ80 rectifier. Simple instruction booklet $25 \mathrm{p}+$ SAE (Free with parts). All parts sold separately ONLY \&13.50 P. \& P. £1:40. Also available ready built and tested $118 \cdot 00$ P. \& P. £1 40 .
"POLY PLANAR"" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMIC SPEAKER
Size $11 \neq \times 14+\frac{1}{8} \times 1 \frac{7}{6}$ deed. Weight 19oz. Power
handing 20W r.m.s. (40 W peak). Impedance 8 ohm only. Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on ceilings, walls, doors, under tables, etc., and used with Or without baffic. Send S.A.E. for full details.
Only $18 \cdot 40$ each $+\mathrm{D} . \& \mathrm{p}$. (one 90 p , two $£ 1 \cdot 10$) Now available in either 8° round version or $44^{\circ} \times 84^{\prime \prime}$ rectangular. 10 watts RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ} \$ 5 \cdot 25+$
P . \& P . (one 65 p , two 75 p). P. \& P. (onc 65p, two 75p)

SPECIAL OFFER. $6 f^{*}$ long throv, roll surround, ceramic magnet 8 ohm 10 watt speaker chassis $\frac{\text { Specially suitable for HI Fl. } £ 3 \cdot 95+75 \mathrm{p} \text { P. \& P. }}{\mathbf{2}^{\circ} \text { PLASTIC CONE HP TWEETER } 4 \text { ohm } 83 \cdot 50 \text { per }}$ 2° PLASTIC CONE HF TW
mat hed pair +50 p P. \& P.

HARVERSONIC SUPERSOUND

10 + 10 STEREO AMPLIFIER KIT

A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors includine Silicon Transistors in the first flve stages on each channel resulting in even lower noise level with improved sensitivity. Integral pre-amp with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cariridges. Very simple to modify to suit magnetic cartridge-instructions included. Output stage for any speakers from 8 to 15 ohms. Compact design, all parts supplied including circuit board with component idenulication printed marked, smart brushed anodised aluminjum front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response. $\pm 3 \mathrm{~dB} \quad 12-30,000 \mathrm{~Hz}$ Sensitivity; better than 80 mV into MM ת: Full Dower bandwidth: $\pm 3 \mathrm{~dB} \quad 12-15,000 \mathrm{~Hz}$. Bass boost approx. to $\pm 12 \mathrm{~dB}$. Treble cut approx. to Power requirements 35 v , at 1.0 amp . over main amp. Power requirements $35 y$ at 1.0 amp.
Fully detailed 7 page construction manual and parts list free with kit or send 25 D plus large S.A.E.
AMPLIFIER KIT
$13 \cdot 50$ P. \& P. 80D
(Magnetuc Input components 33 pextra)
POWER PACK KIT $\quad . \quad 15.50$ P. \& P. 95D
CABINET

SPECIAL OFFER-only 523.75 if all 3 items
ordered at one time plus $\& 1.25 \mathrm{D} . \& \mathrm{D}$.
Full after sales service
Also avail. ready built and tested $\$ 31-25$, P. \& P. £1-50.
A solid atate stereo amplifier chassil., with an output of 3-4 watts per channet into 8 ohm speakers. Using the latest high technology Integrated circuit amplifiers with built in short term thermal overload protection. All components including reculter smoothing capacitor, sockets \& 5 pin din tape rec./play socket are mounted on the printed circuit panel, size approx. $9 \dagger^{-} \times 2 z^{-} \times 1^{-}$ max. depth. Supplied brand new \& tested. with knobs, brushed anodised aluminium 2 way escutcheon (to allow the ampliffer to be mounted horizontally or vertically) at only $29 \cdot 00$ plus 50 DP . \& P. Mains transformer with an output of 17 v a $/ \mathrm{c}$ at $500 \mathrm{~m} / \mathrm{a}$ can be supplied at $\$ 1.50+$ $40 \mathrm{D} P$ \& P if required. Full connection details supplied. HA34 3 Valve Audio Amp. 44 w. outpul ready built and tested $£ 8 \cdot 50+£ 1 \cdot 40$ P. \&P. Ai
lifter kit. $28 \cdot 00+£ 1 \cdot 40$ P. \& P .

All prices and specifications correct at time of press and sublect to alteration without notice.

HARVERSON SURPLUS CO. LTD.
(Dept. P.W.) I70 MERTON HIGH ST., LONDON, S.W.19. Tel.: $01-5403985$

PLEASE NOTE: P. \& P. CHARGES OUOTED APPLY TO U.K. ONLY. SEND SAE WITH 4LL ENQUIRIES.

SOUTHERN VALVE COMPANY

Second Floor, 8 Potters Bar Road, New Barnet, Herts.

ALL HEW \& BOXED. "OUALITY" BRANDED VALVES GUARANTEED 3 MONTHS. BVA ETC. (TUNGSRAM ETC.) ${ }^{\text {B\% M ALLOWED IN LIEU OF GUARANTEEI AL: }}$
READY DEDUCTED FROM OUR PRICESI Correct only af time of going to oress.

One valve post 13p. each extra valve 6p. MAX 80p LISTS \& ENOUIRIES, S.A.E. PLEASE1 Large valves 20 each extra No callers. Large valves 2p Large valva 2ρ each extra

Telephone 01-440/8641
MAIL ORDER ONLY MJNIMUM ORDER ${ }^{3} 0 \mathrm{p}$ Some leading makes available VAT involces Issued on request offer return of post service Poar free over $£ 20$. ع8 to $₹ 20-80 \mathrm{p}$ (max.) press but subject to possible market Auctuations if unavold5 able.

$52 p$	UL84
$70 p$	UY41
50p	UY85
$50 p$	U25

PRAGTICAL WIRELESS T.V. SOUHD TUNER

(Nov, 75 article by A, C. Ainalle) Copy of orfglnal áticle supplled on request
IF Sub-Assembly (G8) £6.80. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner £5•50. P \& P35p. 3-way Station Control Unit £1-20. P \& P 25p.
6-way Station Control Unit (Special Offer) £1.00.
Power Supply Prtd Circuit Board £1•00. P \& P 30p. Res, Caps, Semiconds, etc. for above £5•80.
Mains Transformer for above £2.50. P \& P 30p.
Add 121 \% VAT to price of goods. $\mathrm{P} \& \mathrm{P}$ all items 85p.

Callers welcome at shop premises.

MANOR SUPPLIES
172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

TWO NEW SUPERMODULES: I70W INTO 4 OR 8 OHMS

By popular demand we have designed hlgher powered versions of our well known modules. The CE 1704 which glves 170 W Into 4 ohms and the CE 1708 which glves 170 W Into 8 ohms are physlcally similar to the orlginal types and have the same combination of compatible petition and the only cholce If you have an ear for music. We have also produced sultable power supplies which again use our superb TOROIDAL TRANSFORMERS, only 50 mm high, with a 120-240 primary and single bolt fxing.
Write of phone for more Information and blased oplalons.

NOTICE TO READERS

When replying to Classified Advertisements please enturs:
(A) That you have clearly stated your requirements.
(B) That you have enclosed the righe remiteance.
(C) That your mame and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

VALVES
Radio - T.V. - Industrial - Transmitking
Projector Lamps and Semiconductors We Dispatch Valves to all parts of the world by return of post. Air or Sea mail, 2700 Types in stock, 1930 to 1976. Obsolete eypes a speciality. List 20p. Quotation 5.A.E. Open to callers Mondsy to 5aturday 9.30 to 5.00 closed Wednesday 1.00 . Ve wish to purchase all types of now and boxe Valves, Projector Lamps and Semiconductors
COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering, Suseex PO20 8BN
Wett Wittoring 2023 (STD Code 024366)

TIRRO ELECTRONICS the mail order division of RITRO ELECTRONICS UK offers a wide range of components for the amateur enthusiast. Large SAE or 20p brings list. GRENFELL PLACE, MAIDENHEAD, BERKS SL6 1HLL.

TRANSEPTORS					19
ACY\%2 ${ }^{\text {a }}$		(incoob		7413	49 p
AFZ 12 \% ${ }^{\text {a }}$	ZTX450 ${ }^{\text {15P }}$				$1{ }^{1}$
ASY50 ${ }^{\text {a }}$	21x500 17 p	NES	21p	7430	180
BC107 ${ }^{\text {P }}$	2 N 3053 S 24p	709	35	7438	970
	${ }^{2}{ }^{\text {N305S }}$				
	AAZIS ${ }^{\text {dio }}$	7400	$13^{\text {p }}$	7446	${ }_{100}$
BC214 170	BY238 24P	7402			37 p
BC413 ${ }^{\text {BFP }}$	${ }^{\text {Natal }}$	7403	188	74	
${ }^{\text {BF5 }}$		7404			
	${ }_{\text {in }}$	7407 7400	23p	${ }_{4} 4893$	
ELECTROLYTIC CAPACITIORS (V/UF) $8.3 \mathrm{~V} / 470$					
WALFFILM CAPACITORS μ F/icov					
0056, 0008, 0082 3p.-01, 012, -015, 002, -033, -037, 					
Mail order only. P. \&P. 25p. Prices include VAT. C.W.O. STE Lid., Syatom Technlques (Electronlce) Lid., PW3.					

LED's. Mixed bags of 4 different sizes and 4 different colours. 50 at $£ 5 \cdot 25,100$ at $£ 9 \cdot 25$ including VAT and post and packing. CWO. Michael Williams Electronics, 47 Vicarage Avenue, Cheadle Hulme, Cheshire, SK8 7JP.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60 p extra. Semi-display setting $£ 6.80$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE

 OF CLASSIFIED ADVERTISEMENTS1. Advertisements are accepted subfect to the conditions appearine on our current adverisement rate eard and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Aet of Parliament nor to it an Infringement of the Britiah Code of Advertising Practleq.
2. The publishers reserve the right to refuse or withdraw any advertisement.
3. Although every care It taken, the Publishere shall not beliable for clerlcal of printers' errors or thalr consequances.

TRANSISTORS, Resistors, Caps, Pots, Plugs and Sockets, Zeners, TTL, Cable, Boxes. All at very good prices. 65 Railway Road, Leigh, Lancs. Telephone Leigh 679575.

$$
\begin{aligned}
& \text { BRAND NEW COMPONENTS BY RETURN }
\end{aligned}
$$

$\begin{aligned} & \text { Vertical Mounting Ceramic Plate Capa, } 50 \mathrm{~V} \text {. } \\ & \text { E12 } 22 \text { pf. } 1000 \text { pf. ES } 1500 \text { pf.- } 47000 \text { pf.-2p }\end{aligned}$
Polystyrane 12 Serios 63 V . Hop, Mounting.
Mullard Polyaster 230 V Vert. Mt. E6 Sories.
Mylar (Polyaster) Film, 100V. Vartical MEg.
Miniature Film Resistort Highteab. E12 5\%.
$\begin{aligned} & 0.125 \text { watt } 10 \Omega \text { to } 2 \mathrm{M} 2 \Omega \text {. } 10\end{aligned}$
$\begin{aligned} & 0.250 \text { watt } 1 \Omega \text { to } 10 \mathrm{Ma} . \\ & 0.500 \text { wate } 10 \Omega \text { to } 2 M 7 \Omega . \\ & 1.000 \text { watt } 10 \Omega \text { to } 10 \mathrm{Ma} .\end{aligned}$
. 000 watt
|N4/48-3p, $1 \mathrm{~N} 4002-5 \mathrm{p}, \mathrm{IN} 4006-7 \mathrm{p}$, IN4007-3 p
$\begin{aligned} & \mathrm{BCl} 107 / 8 / 9 . \mathrm{BC} 147 / 8 / 9, \mathrm{BC} 157 / 8 / 9,8 F 194 \text { \& } 7-9 \mathrm{p} . \\ & 20 \mathrm{~mm} \text {. fuses. } \cdot 15,-25,5,1 \cdot 0,2 \cdot 0,3 \cdot 0 \text { \& } 5 \mathrm{~B}-3 \mathrm{p} .\end{aligned}$

> Post 10p (Free over \&4). Prices VAT inelusive.
> THE C. R. SUPPLY CO.
> 127, Chesterfield Road, Sheffield S8 ORN

ASSORTED small Japanese L.F. Transformers 20 for £1-25. Assorted Nuts, Bolts, Washers, Eyelets, Self Tapping, Self Cut ting Screws. A real bargain llb weight £1-75. Assorted Ceramic Capacitors 100 for £1.00. Assorted Polystyrene Capacitors 100 for $£ 1 \cdot 50$. Assorted Polyester Capacitors 100 for $£ 2 \cdot 00$. Assorted Carbon and Carbon Film Resistors 100 for $£ 1 \cdot 00$. Assorted Wirewound Resistors 100 for $£ 2 \cdot 00$. Assorted Transistors/Zeners, Diodes, all marked, 100 for $£ 2 \cdot 00$. All above prices include VAT and Postage. T. Powell, 306 St Paul's Road, London N.1. Telephone 01-226 1489.

TRANSFORMERS

TWIN PRIMARIES $115 / 230 \mathrm{~V}$ TWIN ISOLATED SECONDARIES

$$
\left.\begin{array}{ll}
0-4 \cdot 5, & 0-4 \cdot 5 \\
0-6, & 0-6 \\
0-15, & 0-15
\end{array}\right\} \text { VA }
$$

British Mado-Great Value
Inc. A.t. $£ 1 \cdot 95$ p\& ${ }_{8}^{\text {Inc. }}$
Try us for all your component requirements

T. D. COMPONENTS

Unit Four, Staincliffe Milis, Dewsbury, W. Yorks. 0924-409040

BRAND NEW, fully guaranteed Transistors over purchased at very cheap prices. Send S.A.E. D.A.C. Electronics Services, 25 Oxford Avenue, Merton Park, London SW20.

SELTRONICS LOW PRICE SEMICON-
DUCTORS BRAND NEW CODED AND DUCTORS BRA
GUARANTEED ${ }_{\text {BCI }}$ 14p. 2N2926G 10p. ZTX 300 BCl07/8/9 8p. ACl 2814 p . 2 N 2926 G 10 p . 27×300 $11 p .2 N 5458$ 31p. UT46 19p. TIS43 20p. BC212L 10 p OA4 Sp. BR $10022 \mathrm{P} . \mathrm{D}^{22} 22 \mathrm{p}$. OA202 5p. NES55 35p. A4P 20p. Postage S.A.E.

SELTRONICS
9, Rodnoy Gardons, Braintrea, Estex.

BARGAIN TIME WITH CODESPEED

Full Spec. Devices

PACK P1 $1 \times$ MMS330 digital voltmater I.C. With

PACK GI $x 22^{4}$ solar cell. Gives 0.5 V at 0.5 amps in good sunlight. E3.95.
PACK T3 $1 \times$ MMS316 diolital alarm clock I.C. 12 or 24 hour. Wilth tull instructlons. E2.75.
PACK T4 $1 \times 0.8^{*}$ glant rod LED Ciock display. 31 diglt with am/pm indicator. An exceellint display for your diloital clock project at only $\mathbf{E A}$. 05 .
 current version of the famous 2102. With full data. $\begin{aligned} & \text { Cif } \\ & \text { PACK } \\ & \text { M3 } \\ & 1\end{aligned} \times$ MM572s 4 functlon calculator chlps. (not doaligned for use with pack M1). With data book. PACK E2 1×8 digit $0.33{ }^{\prime \prime}$ high 7 segment llquid Crystal calculator style display. With data. E2.95.
PACK $\mathrm{EB} 1 \times 8$ diolt $0.5^{\prime \prime} \mathrm{high} 7$ sagment llauld Cryetal calculator style display, With data. Ca. 25 . PACK DMS 5×14 pin dual in line chipe each cont.
Sop.
PACK ES (B0\% Guaranteod Good) $5 \times$ MAN3 7 sogm ent 0.127^{*} LED displaya. Excellont value.

PACK DLI (Untested-so no guaranteee) Fantas. tie value for money. A fumbo pack of 30 mixed I.C.'.
There could be anything in this pack, Ilnear, digitalwho knowe? Guaranteod a sell-out at only $\& 1 \cdot \infty$. PACK mut (Untested-so no guarantess) Another bargaln. $2 \times$ upper half of a calculator caze with bullt-In keyboard. A sip at only epp the pair,
salls replacement or refund.
MAIL ORDER ONLY - NO CALLERS PLEASE Postage and Packing please add 23p CODESPEED
P.O. Box 23, 34 Seafield Rd., Copnor, Portsmouth, Hants. PO35BJ

24 HR. CLOCK/APPLIANCE TIMER KIT

Educational

GO TO SEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY7 8 JZ .

LEARN MORSE CODE the easy way C90 Cassette $£ 3.75$ p.p. 30 p. R. Eastland, 50 Heath Road East, Petersfield, GU3 14HN.

TELEVISION TRANING

15 MONTHS full-time course for beginners to include all the undermentioned subjects. Short courses, combining one or more sublects, for applicants with previous electronics knowledge.

- 13 WEEKS ELECTRONICS AND RADIO
- 13 WEEKS MONOCHROME TELEVISION
- 13 WEEKS COLOUR TELEVISION
- 13 WEEKS CLOSED CIRCUIT TV \& VCR
The training incorporates a high percentage of practical work. Next session starts on September 11th. Prospectus from:

LONDON ELECTRONICS COLLEGE

Dept. 88, 20 Penywern Road, London SW5 9SU. Tel. 01-373 8721

Courses

COURSES-RADIO AMATEURS EXAMINA. TION. City and Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this and other courses (GCE, professional examinations, etc.), write or phone: The Rapid Results College, Dept. JXI, Tuition House, London SWl9 4DS. Tel: 01-947 7272 (Careers Advisory Service) or for prospectus requests ring 01-946 1102 (24hr Recordacall).

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4 \cdot 50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarkshire.

THE DALESFORD SPEAKER BOOK

by R. F. C. Stephens.
Thls book is a must for the keen home conatructor. plane for Inflitite baffle end rofiex designs for $10-100$ watte, also unusual centre-bases sysfem for those who want Mi-n to be "Heard and not seen". EI- 85 ($(\mathbb{2} \cdot 20$ pos pald. \$8 Overneas).

VAN KAREN PUBLIAHING
WILAS BTREET
WILMSLOW
HOW TO START A BUSINESS. By popular demand a fully illustrated manual has now been produced, showing, in easy, step by step, stages, how to rewind ARMATURES \& FIELD COILS as used in Vacuum cleaners, Drills and Portable Tools. Chapters on taking data, materials required, test instruments required, rewind instructions, charts, etc. How to cost instruction manual $£ 4 \cdot 00$ plus $30 p \mathrm{P}$ \& P. CWO. COPPER SUPPLIES, 102 Parrswood Road, Withington, Manchester 20. Dept. PWA.

Ladders

LADDERS. Varnished 20ft 9in extd., £29•72, carr. £2.70. Leaflets. Also alloy ext. up to 62ft 6in. Ladder Centre (WLS2), Halesfield (1) Telford, Tel: 586644. Callers welcome.

Situations Vacant

Radio Technicians

Government Communications Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
STANDARDS required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear.
DUTIES cover highly skilled telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer and analytic machinery.
QUALIFICATIONS: Candidates must hold either the City and Guilds Telecommunications Part 1 (Intermediate) Certificate or equivalent HM Forces qualification.
SALARY (inc. supps.) from $£ 2,673$ at 19 to $£ 3,379$ at 25 (highest pay on entry) rising to $£ 3,883$ with opportunity for advancement to higher grades up to $£ 4,297$ with a few posts carrying still higher salaries.
Opportunities for service overseas.
Further particulars and application forms available from:

GCHQ

RecruitmentOfficer, (Ref PW/8), GCHQ, Oakley,
Priors Road, Cheltenham, GL525AJ.
Cheltenham (0242) 21491 Ext 2270

Service Sheets

> SERVICE SHEETS - COLOUR TV SERVICE MANUALS
> sorvice Sheete for Mono TV, Radlos, Record Playore and Tape Recordera 78p. Please eend large Stamped Addreased Envelope. We can supply manuale for most makes of Colour Television Recelvers by return of post. ER.C. PYE ECKO PHILIPE ITT/KE ONY E.E.C, HITACHI EAIRO ULTRA INVICTA FERCUBOM Let ue quote you. Please send a Stamped Addreesed Envelope for a prompt reply. Also comprohensive T,V. repalr manuale by J. M. Court. S.A.E. for detalls. MALL OROER ONLY G. T. TECHNICAL INFORMATION SERVICE

BELL'S TELEVISION SERVICES for Service Sheets on Radio, TV, etc., 75p plus S.A.E. Colour TV Service Manuals on request. S.A.E. with enquiries to B.T.S., 190 King's Road, Harrogate, \mathbf{N} Yorkshire. Tel; (0423) 55885.

LARGE SUPPLIER OF SERVICE SHEETS All models at 75p PO/Cheques plus s.a.e. Except Colour and Car Radios. Free TV fault finding chart or TV list. Strictly by return.
 C. CARANNA
 71 Beaufort Park, London NW11 6BX 01-4584882

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50 p and SAE. Catalogue 25 p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

SERVICE SHEETS, Radio, TV etc, 10,000 models. Catalogue 24 p , plus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PRI 7HP.

Radio Receivers

For Sale

NEW BACK ISSUES of "PRACTICAL WIRELE88' available 65p each post free. Open P.O./Cheque returned if not in stockBell's TeleviSion Services, 190 Kings Road, Harrogate, N. Yorks. Tel: (0423) 55885.

SEEN WHISTONS CAT? 5000 odds and ends. Mechanical/Electrical Cat free. WHISTON (Dept. PW), New Mills, Stockport.

ELECTRONIC KITS-SAE for new catalogue, and clearance list of obsolete kits. AMTRON UK, 7 Hughenden Road, Hastings, Suseex.

OSCILLOSCOPE. Scopex 4D10A, dual trace, 10 MHZ , new, £170. Telephone Bristol 504152 evenings.

JOY8TICK AERIAL, "system A" with A.T.U. Good condition, $£ 18$ ono. Stevenage 59637.

Wanted

WANTED. Blueprint for Eiectronic Hawailan Guitar-"Practical Wireless", June 1965. Harvey, 34 Cambridge Avenue, Peterborough. Phone: (0733) 69320.

Electrical

STYLI-illustrated equivalents (List 28) also cartridges, leads, etc. Superb quality and service at lowest prices. Fully guaranteed. Free for sae from Felstead Electronics (PW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE. (Closed holidays, Aug. 11th to 31st-no service).

Aerials

GOT T.V.I.

KILL IT DEAD, TX-Ing or swL-Ing
Models: S.W.L., E24-81: 500 watt or S.W.L., EA1-60: Inc. Inaulators, 75tt. feeder, VAT and P P. P. Aerlal matching unlte S.W.L. and 800 watt $10-160$ metres inc. hipping and B.C. Bands, ets 25 : inc. VAT and P \& P. Send $10^{\prime \prime} \times 7^{\prime \prime}$ 12tp S.A.E. and $3 \times$ go stamps for full details, aerial article, test reports and testimonlals. G2OYM, LAMBDA, WHITEEALL, WELLINETON. BOMERSET

Miscellaneous

WANT MORE DX?

LOEING DX UNDER ORM? DIG it OUT with a Tunable Audlo Notch Filter, Only Ef. \mathbf{N}. NO LONG WAVE ? $100-600 \mathrm{KHz}$ Converter feods your W. $1-6.6 \mathrm{MHz}$ receiver, only EO. EN .

WHERE'S THE RARE DX ? 1 MHz,
Calibrator, markers to VHF, only Eis 3 .
NEWI MSF Recelver glvee digital SECONDS, MINUTES and output for MONTH, DATE and YEAR, internal and output only $\mathrm{E} \mid \mathrm{sN} .70$.
WHAT'S ON V.L.F. 7 10-150 KHz Receiver, eit-76. sic. GEN. $10 \mathrm{~Hz}-200 \mathrm{KHz}$ alne/square, sit.te.
CLOBEERED? PUNCH THROUGH with a
Speech Compressor keep your audio at maximum and GET foup times TALK POWER for sele.
Each easy-assembly all includes all parts, prinited circult, case, postage elc. Instructions, money back assurance.
so SEND of NOW.

CAMBRIDGE KITS

45 (PH) Old 8chool Lane, Milton, Cembridgo

SUPERB INSTRRUMENT CASES by Bazell. manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p, chassis punching facllities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept No 25, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

COLOUR

MODULATOR

- For TANK BATTLES and all other TV Games. - Each explosion lights-up the whole field with vioient crimson flashes!
- Transforms the game with added life and excitement! When you've seen this all other versions are definitely OUT!
- Blue and orange (not pinkl) tanks on a rich green batelefield.
- RGB inputs allow colour combinations to be altered to personal taste.
- Simple interface circuit decails for this and Simple interface circuit details
- Kit complete with UHF modulator, PAL bistable and colour erystal.
ONLY $\mathbf{5 6 . 9 5}$ inclusive of VAT \& postage.
WILLIAM STUART SYSTEMS LTD.
Dower House, Herongate, Brentwood,
Essex CM13 3SD. Telephone 0277-810244

PRINTED CIRCUITS and HARDWARE

Readily avallable upplles of Conatructors' Mardwers. Printed circult boards, top quality for Indlyldual designe. Prompt earvice. Send 25p for catalogue from:

RAMAR CONSTRUCTOR EERVICES Masons Road, Etratford-on.Avon, Warwleke

100 WATT GUITAR/PA/MUSIC

 AMPLIFIERWith superb troble, base. Overdrive, alimiline, is monthe
guarantee. Unbeatable offer at $\& 39$. Also twin channal with separate treblelbass per channel E4s. Money se turned if not obsolutely dellighted within 7 deys. Also fuzz oxes great sound, robust conatruction ze.e. Also 100 watt 12 in . s peakers $\mathrm{c} 2 \mathrm{z} \cdot 5 \mathrm{~S}$.
All Inclusive of P.P. Send eheque or P.O. to:
WILLIAMBON AMPLIFICATION
62 THORNCLIFFE AVENUE, DUKINFIELD,

OUTSTANDING 2200 HI-FI FM TUNER. Latest silicon superhet design, Varicap Tuning, Full Coverage $88-102 \mathrm{MHZ}$. Ideal for Push button/Manual tuning. Supplied Built \& Tested with full instructions only E9.95 (P\&P 50p). GREGG ELECTRONIC8, 86-88 Parchmore Rd, Thornton Heath, surrey.

DART STATIONERY

Presents

For the DX'er

RECEPTION REPORT LETTERS. Protassionally styled letters, printed in two colours, on high quality paper. Made into pads of 100 letters for tidy storage.

1-5 pads Et - 20 per pad,
$10+$ pada Ef 10 per pad.
ALL PRICES INCLUDE V.A.T. and P. \& P.
First 25 orders received each month will recelve a 15% discount voucher.
EVERY ORDER RECEIVED CARRIES A 10 DAY PLETELY SATISFIED.

MAIL ORDERS ONLY PLEASE
Please send cheques or P.O. payable to:-
DART STATIONERY
29 Bromley Road, LONDON Ei7 4Ps

CRYSTALS brand new 0.002% precision HC18/U wire leads, $£ 2.95$ each, UK post paid, no VAT: $4 \cdot 0,5 \cdot 0,6 \cdot 0,7 \cdot 0,8 \cdot 0,10 \cdot 0$, $10 \cdot 7, \quad 18 \cdot 0, \quad 20 \cdot 0, \quad 48 \cdot 0, \quad 100 \cdot 0 \mathrm{MHz}$. Also $100 \mathrm{kHz} / \mathrm{HCl} 3$ and $1.0 \mathrm{MHz} 0.005 \%$, wires or pins, $£ 3 \cdot 25$. $455 \mathrm{kHz} / \mathrm{HC} 6 £ 3 \cdot 95$. Any freq $2 \cdot 5 \cdot 180 \mathrm{MHz}$, made 6 weeks, $£ 3 \cdot 50$. Also AM/CW/SSB Communication Receiver lowcost modules and kits. New range being prepared. Send SAE for detalls when ready. P. R. GOLLEDGE ELECTRONICS, Merriott, Somerset TAl6 5NS. Tel: 0460 73718.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

TRANSFORMERS

ALL EX-STOCK—SAME DAY DESPATCH. VAT 8%

Electrosll \& asmiconductor stockists. Panel, Multi Meters, Audio accessories, send 15p stamps for lists.

Your career in Electronics?

Enrol in the BNR \& E School and you'll have an entertaining and fascinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL,
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS
(Block caps please)

WATFORD ELECTRONICS
(Continued from opposite side)

OPTO ELECTRONICS*
 TIL209 Red TIL211 Grn TIL212 Yell
$0 \cdot 2^{*}$ Red
02^{*} Yed O. 2^{\sim} Yellow.
Grn, Amber Grn, Amb
ORPBI ORPBi ORP12 2N5777
OPTO
18OLATORS
TIL111/2

 TOGG
SPST
OPST

SPST OPST

 DPDT4 pole on of 8UB-MIN
TOGGLE TOGGLE
SPChangeover
SPST On SPST on of
SPST blased
DPDT 8 tags DPDT 6 tags
OPDT C/OFF
DPDT Blased DPDT ClOFF
DPDT Blased
SLIDE 2seV OLTAGE REGULATORS*

VEROB

- Pltch

VEROBOARD

Plastic (TO220) cas
$-V 80.5 A .5 V$
 8-2, 12, 15 V
-VB 1 A 8.2, 12, 15 V
HM 1 A 5 V .12 V

$$
\begin{array}{ll}
\\
21 \\
27^{\prime \prime} \times 32^{\prime \prime} & \text { (col } \\
25^{\prime \prime} & 419
\end{array}
$$

$\begin{array}{ll}\text { LM320-12-ve } & 175 \\ \text { LM320-15 二ve } & 165 \\ \text { LM341-15 +ve } & \end{array}$ LM341-15 +ve
Varialo Type
$723+2$ to +37V Vari
723
LM30
LM31
 LM326N $\pm 15 \mathrm{~V} \quad 240$

240 OOCKER: (Black) ROCKER: (wh
over centre off ROCKER: (illuminated, red) Chrome
Bezel 5A 250V SP ROT your own multiway Switth. Adjustable Stop Shafting Assembly, Adusiable Accommodates up to 6 Wafers Malne Switch DPST to fit 8raak Before Make Waters, 1 pole/ 12 way, $2 p / 6$ way, $3 p / 4$ way, $4 p / 3$ way,
$6 p / 2$ way 6p/2 way
Spacer and Screen
ROTARY: (Adjustable Stop) 1 pole/2 to 12 way, $2 \mathrm{p} / 2$ to 6 way 2 to 4 way, 4 pole/2 to 3 way
ROTARY: Malns 250 V AC, 4 Amp
PW PROJECTS
Easybuild Organ, General Coverage Recelver, Chromachase, 24 hrs . Digital Clock, 'JUBILEE' Electronic Organ, General Purpose SW Recelver, Gas a Locator, "PURBECK" Oscilloscope, Tank Battle Game. Audio Distortion Meter. 'AVON' 2 m FM Transmitter Send SAE plus $5 p$ per lisi.

TANK BATTLE
Build this fantastic TV GAME with realistic battle sounds-Steerable TanksControllable Shell Trajectory and Minefields to avoid.
A really exciting and skilful game, simply constructed with our easy to follow instructions.

IC AY-3-8710 £9.78* Basic Kit (just add controls) Only £17.98" (pdp 30p) Complete Kit incl. cases \& controls and mains detachable Power Supply. No extras required. only £24•30" (p\&p add 65p)

Announcing DM900-The DIGITAL MULTIMETER with a difference-It measures Capacitance tool (as published in E.T.I. August 1978) Throw away your analogue meters, here's digital accuracy at only half the price of an equivalent commercial Multimeter.
Incorporating:
5 AC \& DC Voltage ranges; 6 resistance ranges
5 AC \& DC Curent ranges i 4 Capacitance ranges This is an unique design using the latest MOS ICs and due to the minimal curren drain, is powered by only one PP3 battery. There is also a battery check tacllity. The DM900 is an attractive hand-held, Jight welght device, bullt into a high lmpaet case with carrying handle and has been Ingeniously designed to simplify assembly. Never belore
sIngle unit.
Leade Price: £49.95* only (p\&p insured add 75p.)

INDEX TO ADVERTISERS

Ace Mailtronix
A.D.E. Security

Alben Engineering
Amateur Radio
Ambit International

Bamber B.
Barrie Electronics
Bib Hi-Fi Limited
Bi-Pak Led.
$6,16,17$
Birkett J.
… \& R.
Brewster, S. \& R. Radio \& Electronics
British National School

3, 77
J. Bull (Electrical) L̈td.

Cambridge Kits
Caranna C.
Chromasonics
76

Codespeed
Colomor
Continental Specialists
Copper Supplies
Cox Radio (Sussex) Ltd.
Crescent Radio
Crimson Elektrik
C. R. Supply Co.
C.W.A.S. Alarm

Dart Stationary
Doram Electronics
10, cover

Electronic Brokers
Electronic Design Associates
Electronical Supplies
Electrovalue

| Fane Acoustics |
| :--- | :--- | :--- | :--- | :--- | ---: |
| Fidelity Fastenings |

G2DYM Aerials \ldots

Partridge Electronics Ltd. 60
Radio Components Specialists 69
Radio Exchange Ltd.
Ramar Constructor 76
R.S.C. (Hi-Fi) 8
15
R.S.T. Valve Mail Order Co. 15
5
Radio \& T.Y. Components Ltd
Saga Led. 71
Scientific Wire Co., The 76
74
Sentinel Supplies 72
72
Sonic (Hi-Fi)
71
60
Sonic Sound Audio 60
73
STE Ltd.
Swanley Electronics 74
8
T.D. Components 74
70
Tempus 72
T.K. Electrönics 74
Van Karen Publishing 75
Watford Electronics 78, 79
West London Direct Supplies 76
William Stuart Systems 76
76
Wilmslow Audio 12

$\begin{array}{lrlll}\text { P.B. Electronics } \\ \text { Progressive Radio }\end{array} \ldots \ldots . \quad \ldots . \quad \ldots \quad 36$
Powell T. Radio
cover II
Powell T 36
70

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2 5SF
Tel: 727 5641/2/3

Res No. 242125503
Pleate send all correspondence and Mail-Ordert to Head Office

A SELECTION FROM OUR STOCKS OF FULLY

 GUARANTEED FIRST QUALITY VALVES

VAT is not included. Please add $12 \frac{1}{2} \%$ on all items except those marked with asterisk, on which VAT is 8%. Postage and packing charges are $\mathbf{£ 0} \cdot \mathbf{1 0}$ per $£$ subject to a minimum of $\mathbf{E 0} \cdot \mathbf{3 0}$. Minjmum order charge for Approved Credit customers $\mathbf{£ 2 0} \cdot \mathbf{0 0}$. Minimum Transaction Charge for mail orders $\mathrm{El} \cdot 00$.

FOR YOUR GUIDANCE VALUE ADDED TAX

Unless otherwise shown, all prices in advertisements are inclusive of VAT. Where prices are exclusive, readers should ensure that they have added the correct amount of VAT before ordering.
Export orders are not subject to the addition of Value Added Tax.

SECURITY SUPERMARKET

WE HAVE STOCKS OF EVERYTHING YOU NEED.
CALLERS WELCOME. OPEN 6 DAYS
EXPRESS POSTAL SERVICE FREE CATALOGUE SEND S.A.E.
Maxi suard MK4 Ultra Sonic Detector 12 volts D.C. special price 637.00 + VAT

Control Unit 1006 B E19.50 plus E1-20 p\&p
(Mains/Battery unit. Batcery not supplied). Unit complete in steel asse. MAGNETIC CONTACTS from 50p TAMPER JUNCTION BOXES 24p $\begin{array}{llll}\text { MATS LARGE } 28^{\prime \prime} \times 15^{\prime \prime} & I \cdot 50 & \text { VIBRATION DETECTORS } & 2 \cdot 50 \\ \text { STAIR SIZE } 6^{\prime \prime} \times 24^{\prime \prime} & 1 \cdot 20 & \text { DOOR LOOPS COMPLETE } & 59 p\end{array}$ $\begin{array}{llll}\text { STAIR SIZE } 6^{\prime \prime} \times 24^{\prime \prime} & 1 \cdot 20 & \text { DOOR LOOPS COMPLETE } & 59 p \\ \text { WINDOW FOIL } 33 \mathrm{M} \text { \& S } & 2 \cdot 45 & \text { BELLS \& SIRENS FROM } & 6.00\end{array}$ KEY SWITCHES $2 \cdot 10$ BELL COVERS FROM from $\mathbf{4} \cdot 00$ ELECTRONIC CAR ALARM ONLY E5.00.
Please add VAT $12 \frac{1}{2} \%$. Post 70 p min.

A. D. E. (SECURITY) CO., 217 WARBRECK MOOR
AINTREE. LIVERPOOL
25-344
STOP PRESS : Trade Price List Available Applications on Official Stationery only

everything for the modern D.I.Y. electronics enthusiast and more.

[^0]: 5, Partridge House, Prospect Road, Broadstairs,

[^1]: DE LUXE BSR HI-FI AUTOCHANGER Plage 12in. 10in. or 7in. records Aato or Manual. A hish quality unit backed by BSR raliability $800 / 250 \mathrm{~V} .81 \mathrm{ze} 18 \mathrm{k} \times 11 \mathrm{in}$ 200/200V. 81 ise $13 \$ \times 11$ in Bolow motor board 2110 .
 With wanetic stereo Cartridge
 Cuelng Deriee, Bias Compengetor, Balarced MEW DECES
 B8R MP60/P128 with Golding G850 magnetic cartride.
 B8R Budget Autochanger with ceramic cartridge. Garrard AP7e. Bingle player lass cartrides.
 BSR. P163. Belt drive Taratable, less cartridse.
 Gartard 5300. Agtochanger with ceramic cartride
 Garrard Minichanger. Plays all airo records. Ceramis cartrddge.

 B8R. P182. 8azke arm, tared urntable, ceramio cartridge. Latest mode

[^2]: Min Open 9-6 Wed. 9-1 Sat. 9-5 (Closed for lunch 1.15-2.30)

