Wily $=08$

T.T.L. 74 I.C's By TEXAS, NATIONAL, I.T.T., FAIRCHILD Etc

7400	14p	7413	30p	7432	25p	7454	15p	7490	350	74121	25p	74139	100p	74156	70p	74474	100p	74189	350p
7401	14p	7414	60 p	7437	25p	7460	15p	7491	75p	74122	40 p	74141	60p	74157	70 p	74175	75p	74190	140p
7402	14p	7496	30 p	7438	25p	7470	30p	7492	45p	74123	60p	74142	270 p	74160	90p	74476	100p	74191	140 p
7403	14 p	7417	30 p	7440	15p	7472	25p	7493	409	74125	50p	74143	2700	74161	909	74177	100p	74192	120p
7404	$14 p$	7420	45p	7441 7442	65p	7473	30p	7495	60p	74126	50p	74144	2700	74.62	90 p	74178	140p	74193	120p
7405	14p	7422	20p	7442 7445	${ }_{80 \mathrm{p}}^{65}$	7474	30p	7496	79p	74130	130p	74147	230p	74163	90p	74179	1400	74194	103p
7408	40p	7423	25p	7445 746	85p	7475	30 p	74104	40p	74131	100p	75148	160 p	74164	125p	74180	100p	74195	$10 \% p$ 100 p
7408	20p	7425	25p	7447	75 p	7475	30p	74105	40 p	74132	65p	74150	120p	74165	125p	7181	209 p	74196	100p
7409	209	7426	25p	7448	70 p	7483	85 p	74107	30 p	74135	100 p	74151	$65 p$	74166	125 p	74982	75p	74197	
7410	15p	7427	25p	7450	150	7485	400p	74109	50 p	74136	80p	74153	65p	74167	325	74184	150p	74197	100p
7411	20p	7428	40p	7451	150	7486	30p	74118	90p	74137	109p	74154	120p	74170	2000	74185	150p	74198	485
7412	20p	7430	15p	7453	15p	7489	250p	74120	909	74138	125p	74155	70 p	74173	150p	74188	350p	74199	185p

SEMICONDUCTORS

 by MULLARD, TEXAS, MOTOROLA, SIEMENS, I.T.T., R.C.A.

HIGHBURY CORNER, LONDON, N. 1

TELEPHONE 01-226 1489

PLEASE NOTE ALL PRICES INCLUDE POSTAGE
AND V.A.T. AT 8 OR $12 \frac{1}{2} \%$ AS APPROPRIATE

[^0]
JANUARY 1978 • VOLUME 53 • NUMBER 9

BRITAINS LEADING JOURNAL FOR THE RADIO \& ELEGTRONIC GONSTRUGTOR

Published by IPC Magazines Ltd., Westover House, West Quay Road, POOLE, Dorset BH15 1JG

News and ViewsEric Dowdeswell G4AR

```
SW Broadcast Bands Charles Molloy G8BUS
MW Broadcast Bands Charles Molloy G8BUS
VHF Bands Ron Ham BRS15744
For our ConstructorsDIRECT CONVERSION RECEIVERMike Tooley BA, G8CKT
```

THE PW 'JUBILEE' ELECTRONIC ORGAN-5 M. J. Hughes MA, C.Eng, MIERE

```PROPORTIONAL POWER CONTROLLERC. Toms
```

AERIAL PERFORMANCE TEST SET F. C. Judd
DESIGN YOUR OWN PROJECTS-5 Toby Bailey and Bob Whitaker
General Interest

```SO YOU WANT TO PASS THE RAE?-5 . . John Thornton-Lawrence GW3JGA and Ken McKoy GW8CMY POTENTIAL BREAD
```


COPYRIGHT

(c) IPC Magazines Limited 1978. Copyright in all drawings, photographs and articles published in 'Practical Wireless' is fully protected and reproduction or imitation in whole or in part is expressly forbidden. All reasonable precautions are taken by 'Practical Wireless' to ensure that the advice and data given to readers are reliable. We cannot, however, guarantee it and we cannot accept legal responsibility for it. Prices are those current as we go to press.

Sparritamp Capacitive discharge electronic ignition kit

vOTEDEST OF ESYSTEMS tested ay poptlar.

Smoother running

* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Optimum fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.
Beceuse of the superb design of the Spark rite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the operrent to about $1 / 50$ th of the norm it will perform equally well with current to about $1 / 50$ th of the norm. It will perform equally well win new, old, or even badly pitted points and is nor dependent upon the dwell time of the contact breakers for recharging the system. Sparkriter incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of
blowing the transistors or the SCR. (Most capacitive discharge lgnitions blowing the transistors or the SCR. (Most capacitive discharge Ignitions
are not completely foolproof in this respect). All kits fit vehicles with are not completely foolproof in this respect
coil/distributor ignition up to 8 cylinders .
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready dritled base and heat-sink, top quality 5 year quaranteed transformer
 and components, cables, con coniectors, printed circuit board, n bolts, siticon grease, ful instructions to make the ki
positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch.
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes also switch connectors, mounting bracket and instructions. Cables excluded Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).

CALLERS WELCOME. For Crypton tuning and fitting service phone (0922) 33008
PRICES INCLUDE VAT, POST AND PACKING.
IMPROVE PERFORMANCE \& ECONOMY NOW
Note-Vehicles with current Impulse tachometers (Smiths code on dial Note-Vi) will require a tachometer pulse slave unit. $\mathbf{~ K} 3 \cdot 35$ inc. V.A.T. p \& p. E.D.A, 82 BATH STREET, WALSALL, WSI 3DE.

Quick installation Ho engine modification required

Electronics Design Associates, Dept., P.W. 1 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652
\qquad
Address

Mk. 2 DIY Ass. Kit@ $£ 11.80$	QuAntrafor
Mk. 2 Ready Built Negative Earth @ $£ 14.97$	
Mk. 2 Ready Built Positive Earth @ $£ 14.97$	
1gnition Changeover switches @ $£ 4.30$	
R.P.M. Limit systems in above units @ $£ 2.42$	

enclose cheque/pós for 8
Cheque No.

Sand SAE if brochur only required.

ALL RSC PRICES INCLUDE VAT

TD1 DISCO CONSOLE Incorporating twin BSR typ turntables and Sonotone or Acos Cartidges with diamond styl Separate Vol. controls for each turntable. Also MONITORING FACILITIES, plus Treble and Bass Controls, Separate Inpu Black Yynide win vol. contro Black Vynide covered $\mathbf{C} \mid 19.95$ Cabinet with lid
Or Dep $£ 16.49$ \& 18 f'tntly pymts £6.75 (Total £137.99) Carr. $£ 3.50$. TD2S STEREO VEASION OF ABOVE E125.00 Terms DEPOSIT $£ 20$ and 18 fortnightly payments $£ 6 \cdot 8$

DISCOMAJOR/IOO TWIN TURNTABLE POWER CONSOLE EI39.95

 Twin Full size BSR turntables. Sonotone or Acos Cartridges withCarr, $£ 3.50$ ower Amplifier complete with lid. Terms: Deposit $£ 19.95$ and 18 fortnightly payments $\& 7 \cdot 70$ (Total $£ 158 \cdot 55$)
DISCOMAJOR/200 $1 \mathbf{1 5 9 . 9 5}$ Carr. $£ 4.00$ 200 watt version of above.
Terms: Dep. $£ 29.95$ and 18 Terms: Dep. £29.95 and 18 fortnighty payn
(Total $£ 184 \cdot 75$)
RSC PHANTOM 50 COMBO AMP.
Rating 50 watts. 3 inputs, 2 vol controls289.95 Bass. Treble Presence. Suitable for Lead or Rhythm Gurr. £1•50. Radio, Tape, etc. Inc. High Flux $12^{\prime \prime}$ 50w Speaker. Dep. $£ 10.95$ \& 8 monthly payments $£ 8.71$ (Total $£ 80 \cdot 63$).

IOOW POWER (SLAVE) AMPLIFIER

Suitable for use with DISCO-Consoles. Also for increasing output of lower-powered Ampifier £6.05 (Total $£ 57.40$) Carr, $£ 1.50 \quad \mathbf{4 9 . 9 5}$
$100+$ IOOW MODEL $£ 69.95$ Carr. 11.50
TITAN TA/50A 50W AMPLIFIER Solid state, 3 sep. controlled inputs plus Master control. Bass, Treble \& Presence Controls, ynide covered cab. with corner protectives. List price $£ 60$. Terms: Dep. $£ 9$ \& 8 monthly payments $£ 6.05$. Total £57.40) Carr. £1
$£ 49.95$

INTEREST REFUNDED

\author{
TITAN TA/IOOA IOOW AMPLIFIER

} TWIN CHANNEL-4 INPUTS $\mathbf{C 6 9 . 9 5}$ (NORMAL OR BRIGHT) Carr. 1.50 many tacipities. R MS Reting Matcin | many |
| :--- |
| $2 \times 12^{\prime \prime} 120 \mathrm{w}$ | $2 \times 12^{\prime \prime} 120 \mathrm{w}$ Cabinet speaker $£ 49.95$ with

above only. Carr. $£ 1.50$
on Credit Purchases settled in 3 mths TITAN ‘ADD-ON' HIGH FREQUENCY HORN UNITS

TITAN IOOW BASS BINS £99.95 vellue

 High quality $15^{\prime \prime}$ high flux Bass Unit and J104 Horn Tweeter in folded horn enclosure providing amazing leve of sound output. Terms Dep. $\mathbf{1 1 4 . 9 5}$ and 18 fortnightiy payments. $\mathbf{£ 5} 58$ (Total $£ 115 \cdot 39$) Carr. $£ 3.50$.FANE HIGH POWER SPEAKERS
Powar ratinga R.M.S. Cont. 2 YRS GUARANTEE
POP 33T 12" 33w f12.95 Dual cone.
*POP 50/2 12" 50w E15.99 Deposit

for Pair $£ 8.00$ and 8 monthly payments ± 3.54 (Total $£ 36.32$) *POP $75 \mathbf{1 2 "} \mathbf{7 0 v y} £ 19.99$ Gauss 17,000 lines. Deposit $\mathbf{6 5} \cdot 00$ and 8 monthly payments $£ 2.38$ (Total $£ 24.04$)
*POP 60 15" 60 w £25.95
Deposit $\mathbf{E 7} .00$ \& 8 monthly *POP $10018{ }^{\prime \prime} 100 \mathrm{w}$ (44.95 payments $\mathbf{E 2 \cdot 8 7}$ (Total $£ 29.96$)

Deposit $£ 10.00$ \& 8 monthly

RSC

Stockist of LIGHTING by PULSAR

GROUP
Equipment by
CARLSBRO and F.A.L.

FULL
RANGE OF SPEAKERS by

FANE

 TITAN GROUP/DISCO SPEAKERS GUARANTEED Carr. $£ 1 \cdot 20$, under $£ 18$, over this add $6 p$ per $£ 1.5$ YEARST12/45 12" 45 w T12/60A 12" 60 w T12/100 12" 100 w T15/60 15" 60 w T15/70 15" 70 w T15/100 15"100w
 CABINETS FOR ABOVE Heavy duty, finished in black Vynide with Vynair fronts, protective corner pieces Various
sizes and cut-outs. TE $1 \times 12^{\prime \prime} £ 10.95$. sizes and cut-outs. TE1 $1 \times 12^{\prime \prime}$ £10.95.

TE2 $2 \times 12^{\prime \prime} £ 16.95$. Low Deposit Terms on orders over $£ 20$

TITAN TA/IOOC COMBO 100w R.M.S. Amp. incorporating a fabulous Fane Crescendo 12 " 100 watt spkr for really superlative results with Lead Guitar $\mathbf{C l | l |} \mathbf{~} \mathbf{9} \mathbf{9 5}$

Carr.
$£ 17.95 \& 18 f^{\prime}$ tntly Or Dep $£ 17.95 \& 18 \mathrm{f}^{\prime}$ tntly
payts $£ 6.69$ (Total $£ 138.37$)

MODEL TS2H Inc. Pair of highly sensitive Horns. Range $3.15 \mathrm{kHz} \operatorname{Imp}_{12 \prime} 16 \Omega$. Use with 8 or $1502 \times 12^{\prime \prime}$ or $1 \times 15^{\prime \prime}$ or $8^{\prime \prime}$ Drive Unit for increased sound clarity and projection. Rating 100 watts.
Either model
$\mathbf{2 7 . 9 5}$ Curr. 75p

MODEL T1H With single super efficient Horn Range 3.15 kHz . Imp 8a. Use with max $892 \times 12^{\prime \prime}$ or single $15^{\prime \prime}$ or $18^{\prime \prime} 8 \Omega$ Drive Units. Maximum amplifier power output to be 100 watts. Terms: Dep $\pm 6.95 \& 8 \mathrm{mth}$ y pyts $£ 3.12$ (Total $£ 31.91$) units at twice RSC MAINS TRANSFORMERS TYPKS FOR VALVA RADIOA OtTPUT TRANAFORMERS), As vrovloumly adverthed still avallable.
HLLAMERT OR TRAKGIGTOR POWER PAOK \mid AOTO (STEP TP/BTEP DOWF)

FANE HIGH FREQUENCY HORNS 'J' SERIES

 watts Range 3.15 kHz 17.95 $\underset{\text { Free }}{\text { Carr }}$

FAL DISOO LIGHTING 8Y8TEMS lrom £58.95
Incl 2 Spotbanks and bulbs IINGLE MACHINES from ECHO CHAMBERS from COLUMN SPEAKERS from GROUP DISCO SPKRS in CABINETS from MODEL J 73 Imp 882 Size approx 7 " $7 \times 3^{\prime \prime} \times{ }^{2 \prime} \times$ Range $2-20 \mathrm{kHz}$

437.95 853.95 $t 29.95$ C 11.95

BARCLAYCARD Barclaycard $\begin{aligned} & \text { PR }\end{aligned}$

MODEL J104 Imp 8 R $\times 74^{\prime \prime}$ Rex 104×5 $\times 7 t$
watts Range $2-15 \mathrm{kHz}$

Carr, Free 61.75

 \begin{tabular}{c} Carr. Free

\&

\hline
\end{tabular} 5.50

 \& 15.50 HICH POWER CROSS OVER' (valua ©3.25) SUPPLIED WITH ABOVE 1 mpedance or total impedance of $12^{\prime \prime}$ impedance Drive units must not exceed series. Pair J44, Single J73 or 3104 suitable for amplifier power up to 100 watts subject for amplifier power up to 100 watts subject
to ubove and with HPX2R 'Cross-over'

MALL ORDERS \& EXPORT EKROIRIES TO:-
AUDIO HOUSE,
HENCONRER LANE, LEEDS, Tel: 0532 E77681,

All items subject to availability. HANLEY Stoke-on-Trent, 44 Piccadiliy HULL 7 Whitefriargate (Closed Thure), Tel. 20505 LEEDS 5-7 County (Mecca) Arcade, Brlogate LIVERPOOL TEMPORARLLY INOPERATIVE due LONDON 239 Edgwario Road, W.2. (Closed Thurs.) MANCHESTER 60A Oldham Street (Closed Tel. 7231629 osed Wed,)

WOLVERHAMPTON

OPEN ALL DAY SATURDAYS (5 Day Week) BRADFORD 10 North Parade (Closed Wed.). Tel. 25349 BORMINGHAM 30/31 Great Western Arcadi
CARLISLE 8 English Street (Closed Thurs) (Closed Wed,) COVENTRY 17 Shelton S Closed Thurs.). Tel. 38744 DERGY 97 St. Peter's Street (Closed Wed.). Tel. 25983 DARLINGTON 19 Northgate (CI. Wed.). Tel. 68043 DEWSBURY 9/11 Kingsway (Closed Tues.). Tel. 468058 DONCASTER 3 Queensgate, Waterdale Centre, (Closed Thurs). Tel 63069 EDINBURGH 101 Lothlan Rd. (Cl. Wed.). Tel. 2299901
GLASGOW 326 Aroyle St. (Cid Tues.). Tel. 2484158

New Branches at HANLEY

and

WA

MAIL ORDERS MUST NOT BE SENT TO SHOPS TERMS C.W.O. or C.O.D. No. O.O.D. under A3. POSTAGE 60p PER
ORDER OR AS GUOTED. Phone or Wrlte tor FREE CATALOGUE. MIDDLESAROUGH 103 Linthorpe Rd. Tel. 247096 (Closed Wed.)
NEWCASTLE UPON TYNE 59 Grainger St. ${ }_{\text {(Closed }}$ Wed.). Tel. 21460 NOTTINGHAM 19/19A Market Street
PRESTON (Closed Thurs.). Tel. 48068 41 Frlargate Walk, St. Georges Shoppg Prec. Tel. 51979 SHEFFFELD 13 Exchange Street (Castle Mkt. Blds.) STOCKPORT (Closed Thurs.). Tel, 20716 8 Little Underbank (Closed Thurs.). Wel. 4aver 5 Market Sa. (Closed Wed.). Tel. 7057 WOLVERHAMPTON 6, wulfrun Way

SUPERSOUND 13 HI-FI MONO AMPLIFIER

A superb solid state audio amplicr. Brand new components throughout. 5 silicon transistors plus 2 power outpu transistors in push-pull. Full wave rectification Output approx. ohms. Frequency re-
sponse $12 \mathrm{~Hz} 30 \mathrm{KHz} \pm$ 3 db . Fully integrated separate Yolume. Bass boost and Treble cut controls. Suitable for $8-15$ ohm speakers. Input for ceramic or crystal cartridge. Sensitivity approx. 40 mV for full output. Supplied ready built and tested, with knobs, escutcheon panel, input and output plugs. overal Size ${ }^{3}$ high \times. P. \&ide $£ 1 \cdot 20$.
HARVERSONIC MODEL P.A.

TWO ZERO

An advanced solid state genera purnose mono amplifier suitable

 for Public Address system,Disco. Guitar, Gram., etc. Features 3 individually controlled inputs (each input has a separate 2 stage pre(suitable for use with mic. or guitar etc.). Input 3 suitable for use with mic. or guitar etc.). Input
100 mv into 1 meg . suitable for gram. tuner, or tape etc. Full mixing facilities with full range bass \& treble controls. All inputs plug into standard jack sockets on front panel. Output socket on rear of chassis for an 8 ohm or 16 ohin speaker. Output in excess of 20 watts R.M.S. Very attractively finished purpose built cabinet made from black vinyl covered steel, with a brushed anodised aluminium front escutcheon. For ac mains
operation $200 / 240 \mathrm{v}$. Size approx. $12 \pm^{*} \mathrm{w} . \times 5^{\prime \prime} \mathrm{h} . \times 74^{\prime} \mathrm{d}$. Special introductory Price $\mathbf{2 2 8} \cdot \mathbf{0 0}+\mathbf{5 2} 250$ carr. \& pkg. Mullard LP1159 RF-IF Module 470 KHz £2.25+ Mullard LP159 Full spec, and connection details supplied. Pye VHF/FM Tuner Head covering $88-108 \mathrm{M} / \mathrm{Hz}$. $10 \cdot 7$ M/Hz I.F. output. $7: 8$ Volt + carth. Supplied preFM gang and 323Pf + 323Pf A.M. Tuning gang only $£ 3 \cdot 15+$ P. \& P. 35p.
STEREO DECODER
SIZE 2" $\times 3^{\prime \prime} \times \frac{1}{2}^{\frac{1}{2}}{ }^{\text {n }}$ ready built. Pre-aligned and tested for 9.16 V neg. earth operation. Can be fitted to almost any FM VHF radio or tuner. Stereo beacon light can be fitted if required. Full details and instructions (inclusive of hints and tips) supplied. $\mathbf{£ 6 . 0 0}$ plus
$\mathbf{P} . \&$. Stereo beacon light if requited 40 p extra.

SOLID STATE O TUNER 200/240V Mains operated Solid State FM AM Stereo Tuner. Covering
M.W. A.M. $540-1605$ $\begin{array}{lll}\text { MHz } & \text { V.MF/FM } & \text { S40-1605 } \\ \text { K8-108 }\end{array}$ MHz .
Buit
Built-in Ferrite rod aerial for M.W. Full AFC and AGC on AM and FM. Indicator. Built in Pre-amps with variable output Indicator Built in Pre-amps with variable output $600 \mathrm{~m} / \mathrm{V}$ RMS into 20 K . Simulated Teak finish cabinet. Will match almost any amplifier. Size $8 \frac{1}{4}{ }^{\prime \prime} \mathrm{w} \times 4^{\prime \prime} \mathrm{h} \times$
$91^{1} " \mathrm{~d}$ approx.
LIMTED NUMBER ONLY at $£ 28.00+£ 1.50 \mathrm{P} . \& \mathrm{P}$. Push Button Switch bank. 8 Buttons giving 16 S/P C/O interlocked switches plas 1 Cancel Button Plus 3 dip cio. Overall size $5^{\prime \prime} \times 2 t^{\prime \prime} \times 1^{\prime \prime}$. Supplied complete with
chrome finished switch buttons. 2 for $£ 1.80+20 \mathrm{pP} . \& P$. 10/14 WATT HI-FI AMPLIFIER KIT
A stylishly finished monaural amplifier with an output of 14 watts from 2 EL84s in push-pull. Super reproduction of both music and speech with negligible hum. Separate inputs for mike and gram allow records and announcements to follow each other. Fully shrouded
section wound output transformer to match $3-15 \Omega$ section wound output transformer to match $3-15 \Omega$
speaker and 2 independent volume controis, and separate bass and treble controls are provided giving good lift and cut. Valve line-up 2 EL84s, ECC83, EF86 and EZ80 rectifier. Simple instruction booklet $25 \mathrm{p}+\mathrm{SAE}$ (rree with parts). All parts sold separately ONLY £13.50 P. \& P. £1.40. Also available ready
built and tested $£ 18 \cdot 00 \mathrm{P}$. \& P £ 1.40 . built and tested $£ 18 \cdot 00$ P. \& P. £1 140 .
"'POLYPLANAR" WAFER-TYPE, WIDE RANGE ELECTRO-DYNAMICSREAKER
Size $114^{*} \times 14 \frac{16^{\prime \prime}}{} \times 17^{\prime} 6^{\prime \prime}$ deep. Weight 19 oz . Power handling 20 W r.m.s. (40 W peak). Impedance 8 ohm only, Response $40 \mathrm{~Hz}-20 \mathrm{kHz}$. Can be mounted on
ceilings, walls, doors, under tables, etc., and used with or without baffle. Send S.A.E, for full details.
Only $£ 8 \cdot 40$ each + p. \& p. (one 90 p , two $£ 1 \cdot 10$).
 rectangular. 10 watts RMS $60 \mathrm{~Hz}-20 \mathrm{KHZ}$ E5. $25{ }^{8}+$ P. \& P. (one 65p. two 75D).

SPECIAL OFFER. $6 \frac{1}{2}{ }^{*}$ long throw, roll surround, ceramic magnet 8 ohm 10 watt speaker chassis $\xrightarrow[2^{\prime \prime} \text { PIASTIC CONE HF TWEETER } 4 \text { ohm, } £ 3 \cdot 50 \text { per }]{\text { Speclally suitable for } \mathrm{Hi} \text {. } 33 \cdot 95+75 \mathrm{P} \text {. \& }}$ $2^{\prime \prime}$ PLASTIC CONE HF TWEETER 4 ohm, $£ 3 \cdot 50$ per
matched pair +50 P P. \& P.

HARVERSONIC SUPERSOUND

10 + 10 STEREO AMPLIFIER KIT
A really first-class Hi-Fi Stereo Amplifier Kit. Uses 14 transistors including Silicon Transistors in the first five level with improved sensitivity. Integral pre-amp with Bass, Treble and two Volume Controls. Suitable for use with Ceramic or Crystal cartridges. Very simple to modify to suit magnetic cartridge-instructions in cluded. Output stage for any speakers from 8 to 15 ohms. Compact design, aII parts supplied including circuit board with component identification cleariy marked, smart brushed anodised aluminium front panel with matching knobs, wire, solder, nuts, boltsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of, Brief specification: Power output: 14 watts r.m.s. per channel into 5 ohms. Frequency response $\pm 3 \mathrm{~dB}$; Full nower bandwidth; better than 80 dB into Bass boost approx to +12 dB . Treble cut approx to -16dB. Negative feedback 18 dB over main amp Power requirements 35 v . at 1.0 amp .
Overall Size $12^{\prime *} w . \times 8^{\prime \prime} \mathrm{d} . \times 27^{\circ} \mathrm{h}$.
Fully detailed 7 page construction manual and parts list free with kit or send 25p dlus large S.A.E.
AMPLIFIER KIT ..
£13.50 P. \& P. 80p AMPLIFIER KIT $\begin{array}{lll}\text { POWER PACK KIT } & . & \text { \&5-50 P. \& P. 95p } \\ \text { CABINET }\end{array}$
SPECIAL OFFER-only $\mathbf{f 2 3} \cdot 75$ if all 3 items
ordered at one time plus $£ 1 \cdot 25$ p. \& p.
Also a vail. ready built and tested service 25, P. \& P. £1. 50. HARVERSONIC STEREO 44
A solid state stereo amplifier chassis, with an output of $3-4$ watts per channel into 8 ohm speakers. Using the latest high technology integrated circuit amplifiers with built in short term thermal overload protection. All components including rectifier smoothing capacitor, fuse, tone control, volume controls. 2 pin din speake sockets \& 5 pin din tape rec./play socket are mounted on the printed circuit panel, size adprox. max depth. Supplied brand new \& tested, with knobs. brushed anodised aluminium 2 way escutcheon (to allow the amplifier to be mounted horizontally or vertically) at only $£ 9.00$ plus 50 D P. \& P. Mains transformer with an output of 17 Y a/c at $500 \mathrm{~m} /$ a can be supplied at $£ 1 \cdot 50+$
40 p \& P if required. Full connection details supplied. HA34 3 Valve Audio Amp. $4 \frac{1}{2}$ w. output ready built and tested $£ 8.50+£ 1.40$ P. \& P . Also HSL 'FOUR' amplifier kit. $\mathbf{2 8} \cdot \mathbf{0 0}+£ 1 \cdot 40$ P. \& P.

HARVERSON SURPLUS CO. LTD.
All prices and specifications correct at time of press and sublect to at time of press and
(Dept. P.W.) I70 HIGH ST., MERTON, LONDON, S.W.19. Tel.: $01-5403985$
Open 9.30-5.30 Monday to Friday. 9.30-5 Saturday. Clozed Wednesday.

PLEASE NOTE: P. \& P. CHARGES QUOTED APPLY TO U.K. ONLY. SEND SAE WITH ALL ENOUIRIES.

Sound to Light MASTER UNIT ${ }^{\text {Waris }}$
 Mound to Lig
MASTER UNIT
B.C. Fitting E.S. Fitting £1.95.4.4 $£ 2.12$

TWIN BANK12LCGHT

ALEEN ENCINEERING COLTD

DEPTP PW THE CRIESCENT, WORSTHORNE,
BURNLEY. LANCS. Tel Burnley 20940

Complete digital Clock Kits TEAK OR PERSPEX CASE

TIMER FACILITY: Stopwatch use up to 9 min 59 secs .. extra 50p.

DISPLAYS : FND $500 \frac{1}{2}$ "LED $£ 1 \cdot 49$ each: 6 for $\mathbf{£ 6} \mathbf{4 8}$ NSB5430 $\frac{1}{\frac{1}{2}}$ red LED stick of $4 £ 4 \cdot 32 \quad$ SLTO2 $\frac{1}{2}$ green phosphor stick of $\mathbf{4} \mathbf{£ 5} \mathbf{4 0}$ CLOCK CHIPS: 50253N Alarm 12/24hr. 4/6 digit $\mathbf{£ 5} \mathbf{5 7}$ 50362 N Calender clock $£ 7.75$ MM 5385 N 12 hr, 4 digit Alarm $£ 4.32$
MICROPROCESSOR : Z80 C.P.U. £22-68

RECHARGEABLE BATTERY SET Super Value $\mathbf{8 8} \mathbf{1 0}$
Includes: $4 \mathrm{AA}(1-2 v)$ Nickel Cadmlum batterles (separately $£ 1 \cdot 08$ pach)
3/6/9v switched Universal Mains Adaptor with 4 plug connector for most
ELECTRONIC DOORBELL. Warbling tone. Runs off PP3
$\mathbf{2 5} .40$
payment with order to:
BARON (P.W.)
SOUTHVIEW HOUSE, 6 GOWER ROAD, ROYSTON, HERTS Tel. ROYSTON 43695

Builda microprocessor electronic musical door chime which can play 24 different tunes!

Acomplete chnoma chime Rit far ouly E18 inc. p.\&p. \& VAT.

* A great intraduction to the fascinating marld of micracamputers.
* Saue pacunds an normal retail price by building yourself.

Please send \square Chroma-Chime Kits at $£ 18.00$ each including VAT and post and packing
please use block capitals

Name

Address
\qquad
I enclose cheque/PO value f \qquad
or debit my ACCESS/BARCLAYCARD account No.

I TITIDITIIIU
 Signature
 N.B. The CHROMA-CHIME is also available, fully assembled, price $£ 24 \cdot 95$ inc VAT and postand packing.
 Please allow 7-21 days for delivery.

Plays:
Greensleeves
God Save the Queen
Rule Britannia*
Land of Hope and Glory
Oh Come All Ye Faithit
Oranges and Lernons
Westminster Chimes
Sailor's Hornpipe
Beethoven's "Fate Knockng"
The Marseillaise
Mozart
Wedding March

Cook House Door
The Stars E Stripes
Beethoven's Ode to Joy
William Tell Overture
Soldier's Chorus
Twinkle. Twinkle Litile Star
Great Gate of Kıev
Marytand
Deutschland wher Alles
Bach
Colonel Bagie
The Loralle

- These tunes play longer if the push button is kept pressed

* Handsome purpose built ABS cabinet

* Easy to build and install
* Uses Texas Instruments TMS1000 microcomputer
* Absolutely all parts supplied including I.C. socket
* Ready drilled and legended PCB included
* Comprehensive kit manual with full circuit details
* No previous microcornputer experience necessary
* All programming permanently retained is on chip ROM
$*$ Can be built in about 3 hours!
* Runs off 2 PP3 type batteries.
* Fully Guaranteed

The Chroma-Chime is the world's first electronic musical door chime which uses a pre-programneed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

The CHROMA-CHIME is exclusively designed by

CHROMATREORES

River Way, Harlow, Essex

638

15-240 Watts!

The HY5 is a mono hybrid amplifier idealiy suited for all applications. All common input functions (mag Cartridge, tuner, etc) are catered for internally. The desired function is achieved and tone circuits merely require connecting to external potentiometers (not Included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is supplied with each pro-amplifier.
FEATURES: Complete pre-amplifier in single pack-Multi-function equallzation-Low noise -Low distortion-High overload-Two simply combined for stereo.
APPLICATIONS: Hi-Fi-Mixers-Disco-Guitar and Organ-Public address SPECIFICATIONS:
NPUTS. Magnetic Pick-up 3 mV ; Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV ; OUTPUTS. Tape 100 mV ; Main output 500 mV R.M.S
ACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at 100 Hz .
DISTORTION. 0.1% at 1 kHz , Signal/Noise Ratio 68 dB .
OVERLOAD. 38dB on Magnetic Pick-up. SUPPLY VOLTAGE $\pm 16-50 \mathrm{~V}$.
Price $\mathbf{5} 5 \cdot \mathbf{2 2}+65 \mathrm{p}$ VAT P\&P free.

15 Watts into 8Ω

The HY30 is an exciting New kit from 1.L.P. It features a virtually indestructible I.C. with short capacltors, mounting kit, together with easy to follow construction and operating instructions. This amplifter is ideally suited to the beginner in audio who wishes to use the most up-fo-date technology available.
FEATURES: Compiete Kit-Low Distortion-Short, Open and Thermal Protection-Easy to
APPLICATIONS: Updating audio equipment-Guitar practice ampllfier-Test amplifieraudio oscillator.
SPECIFICATIONS
OUTPUT POWER 15 W R.M.S. into 8Ω : DISTORTION 0.1% at 1.5 W .
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE \pm 18V
Price $\mathbf{£ 5} \cdot \mathbf{2 2 + 6 5 p}$ VAT P\&P Iree.

25 Watts into 8Ω

60 Watts into 8Ω

The HY50 leads I.L.P.'s total integration approach to power amplifier design. The ampllfier
features an integral heatsink together with the simplicity of no external components. During the features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been renined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World.
FEATURES: Low Distortion-Integral Heatsink-Only flve connections-7 amp output tran-sistors-No external components
APPLCATIONS: Medium Power Hi-Fi systems-Low power disco-Gultar amplifter
SPECIFICATIONS: INPUT SENSITIVITY 500mV at 1 kHz INALNOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 1055025 mm

$$
\text { Price £ } 6 \cdot 82+85 \text { p VAT P\&P free }
$$

The HY120 is the baby of I.L.P.'s new high power range. Designed to meet the most exacting requirements Including load line and thermal protection this ampilfler sets a new standard in modular design.
FEATURES: Very low distortion-Integral heatsink-Load line protection-Thermal protec-lon-Five connections-No external components
APPLICATIONS: Hi-Fi-High quality disco-Public address-Monltor amplifier-Guitar and organ
SPECIFICATIONS
INPUTSENSITIVITY 500 mV
OUTPUT POWER 60W RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 60 W at 1kHz SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE士 ${ }^{\text {SIZV }} 1145085 \mathrm{~mm}$
Price £15•84 + £1-27 VAT P\&P free.
The HY200 now improved to give an output of 120 Watts has been designed to stand the most rugged conditions such as disco or group while still retaining true Hi-Fi performance.
FEATURES ; Thermal shutdown-Very low distortion-Load line protection-Integral heatsink
FEAT external components
APPLICATIONS: Hi-Fi-Disco-Monitor-Power siave-Industria-Public Address
SPECIFICATIONS
OUTPUT POWER $120 W$ RMS into 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.05% at 100 W at 1 kHz . SIGNOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 d B$ SUPPLY VOLTAGE SIZE 1145085 mm
Price $£ 23 \cdot 32+£ 1.87$ VAT P\&P free.
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco address applications. It the amplifier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: Thermal shutdown-Very low distortion-Load line protection-No external components.
SPEIFATIONS: Public address-Disco-Power slave-Industrial
OUTPUT POWER 240W RMS into 4Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.1% at 240 W at 1 kHz NOISE RATIO 94 dB FREQUENCY RES PONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE 11410085 mm
Price £.32.17 + £2.57 VAT P\&P free.
PSU36 suitable for two HY30's $\mathbf{5 5} 22$ plus 65p VAT. P/P free
PSU50 sultable for two HY50's 56.82 plus $85 p$ VAT. P/P free PSU70 suitable for two HY120's $£ 13 \cdot 75$ plus $£ 1 \cdot 10$ VAT. P/P free. PSU90 suitable for one HY200 £12-65 plus £1-01 VAT. P/P free. B1 $10 \cdot 48+£ 0.06 \mathrm{VAT}$.

I.L.P. ELECTRONICS LTD., CROSSLAND HOUSE, NACKINGTON, CANTERBURY, KENT, CT4 7AD.

Please Supply
Total Purchase Price 1 Enclose Cheque \square Postal Orders \square Money Order $\square]$
Please debit my Access account \square Barclaycard account \square
Account number
Name and Address
Signature

92 Broad Street, Chesham, Bucks. Tel. (02405) 75154
P. \& P. 30p-Overseas 90p-Matching 20p per pair 1970.

TTL 7400 SERIES

RETURN POST ACCESS \& BARCLAYCARD

 Socketu, Varoboard/cases, Indicators, Knobs, Switches, Wirs and Books at prices you can afford.

741 $O N 2 Y$ $30 p$
 All prices include

Name
Address
Get on ASEup your sleeu!
tors, I.C's, Resito Top quality Transis.
GAIALOGUE/PRDER FOATM SEND S.A.E

C

ACE MAILTRONXX LTD Dept pw Toutal Street Wakefield, W.Yorkshire WFI 5.AR

HAVE YOU DONE IT LATELY!

new nita and trast and performance of
 your tape

recorder

Full Catalog ue 25p

01 mono cereo cassette glass/ferrite record/playback $£ 9.84$
812-01 mono cass, playbk. £1.60 824- $\mathbf{~ 1} 1$ stereo cass. playbk. £2.80
$5 / 7$ Church St, Crewkerne, Som. Tel. (0460) 74321

```
For Semi-Conductors
including
    Small Signal Transistors
    Power Semi-conductors
    TTL, CMOS, I.Cs
    Linear I.Cs
    Signal and Power Diodes
    Zener Diodes
    Magneto Resistors
    Hall-effect devices
    Magnetic Proximity Switches
    Opto-electronic devices
```



```
        ELEGTRONALUE
    TO MAKE THE BEST OF
For Semi-Conductors
including
Small Signal Transistors
Power Semi-conductors
TTL, CMOS, I.Cs
Signal and Power Diodes
Zener Diodes
Magneto Resistors
Magnetic Proximity Switches Opto-electronic devices
ELEGTROTALIE
TO MAKE THE BEST OF
```

For passive components including

Plastic Film Capacitors
Electrolytics
Semi-precision capacitors
Transformers
Pot Cores
R.M. Cores

Ring Cores, etc.

The Open Door to Quality

It's the Electrovalue Catalogue No. 8 (4th edition black and white cover) with completely up-dated prices. 144 pages, well illustrated. 40 p post free with 40 p voucher usable on orders for $£ 5$ or more. Send for yours now and order in confidence.

GOODS SENT POST FREE IN U.K.
FOR C.W.O. ORDERS. Keenly competitive prices plus ATTRACTIVE DISCOUNTS and only bes quality goods.

ELECTROALDE LTD

(Dept. PW.I) 28 St. Jude's Rd., Englefield Green, Egham, Surrey TW20 0HB.
Phone: Egham 3603. Telex: 264475.
North-680 Burnage Lane, Burnage, Manchester. Phone: (061) 4325945

SAXON ENTERTAINMENIS LTD

SYSTEM 7000—GUARANTEED MODULES FOR ALL DISCO/PA APPLICATIONS

POWER AMPLIFIER MODULES 30-240 WATTS

Fully tested \& guaranteed. Full RMS Sine Wave output, pistortion typically 0.2%
10 Response 30 HZ -30 KHZ. Fully short $\&$ open circuit proof. Sensitivity suits most mixers. Builit-in surge suppression \& compensation. Twin D.C. \& output fuses.

30 Watts rms	60 Watts rms		120 Watts rms		240W rms
SA308 $30 \mathrm{Wrms} /$ 8 ohms £9.95	SA604 60 W rms/ 40 hms £13. 25	SA608 60W rms/ 8 ohms £14. 25	SA1204 120W rms/ 8 ohms 814.95	SA1208 120W rms/ 80 hms £21.00	SA2404 240W rms/ 4 ohms £29.50

POWER SUPPLIES FOR THE ABOVE MODULES-READY WIRED \& FUSED ON GLASS FIBREPCB

PM301 For $1 / 2$ SA 308 $£ 10.90$	$\begin{aligned} & \text { PM601/4 } \\ & \text { For } 1 / 2 \\ & \text { SA604 } \\ & \text { E } 13.50 \\ & \hline \end{aligned}$	PM601/8 FOr $1 / 2$ SA608 £13.50	$\begin{aligned} & \text { PM1201/4 } \\ & \text { For } \\ & \text { SA } 12014 \\ & \text { f13-50 } \end{aligned}$	$\begin{aligned} & \text { PM1201/8 } \\ & \text { For } \\ & \text { SA1023 } \\ & \text { £13.50 } \end{aligned}$	PM12 SA1204 £22.50	PM1202/8 SA120 £22.50	

SYSTEM 7000 COMPLETE DISCO MIXERS (With Autofade) Mono or Stereo

The choice of the professional D.J.
Controls: Mic volume, Bass, Treble, A/Fade Depth, Tape, L/Deck, R/Deck volumes, Bass,
Mono 18V $\mathbf{£ 3 9 . 5 0 ~ M a i n s ~} £ 45.75$ Stereo 18 V £57. 50 Mains $£ 63.75$
IN MODULAR FORM—All you require is front panel (see below) knobs \& sockets Spedfcation as for complete miter All

- Low cost do it yourself with step by step easy to follow instructions.

Mono $£ 22.50 \quad$ Stereo $£ 33.50$ Panel $£ 3.95$ Supplyunit $£ 9.50$
SYSTEM 7000 LIGHTING CONTROL UNIT MK II (Four channel)

CUSTOM MIXER MODULES (Complete of in printed circuit form only)
Make your own mixer, mono or stereo, up to 2 channels, with full monitoring facilities. and provision for echosend/return etc.

- Inputs for low and high 2 mic, ceramic \& magnetic cartridge etc.
- Up to 20 input modules per single mixing module - Feed most types of amplifer-accepts all inputs E Professional low noise circuitry $20 \mathrm{~Hz}-30 \mathrm{kHz}$ - Infinitely adaptable-Extremely economical

COMPLETE MODULES with facia panel, Knobs \& sockets, Monitor buttons, Ready wired \& tested

circuit

Mono input $£ 8.95$ Mono mixing stage $\mathbf{£ 8 . 9 5}$

> Full range bass/
> treble controls

Stereo input £12.50 Stereo mixing stage £12.50 - Noise-80dB
PRINTED CIRCUIT MODULES With controls fitted, requires only sockets,

$$
\begin{array}{llll}
\text { Mono Input } & £ 5 \cdot 95 & \text { Mono mixing stage } & £ 5 \cdot 95 \\
\text { Stereo Input } & £ 9.50 & \text { Stereo mixing stage } & £ 9.50
\end{array}
$$

Power supply for up to $\mathbf{2 0}$ channels-PPM48-£B•50

SYSTEM 7000 SOUND-LITE (3-CHANNEL) IN COMPLETE OR MODULAR FORM (Modular form illustrated)

- Complete unit similar to Mk II unit above E Long established \& proven design
E 3 Channels- 400 W per channel
- RCA 8A Triacs-Individual channel fuses
- 1-240 W Input-master audio level plus Bass/Middle/Treble

COMPLETE UNIT-Fully
cased with rear terminations-just
£26.75

MODULAR FÓRMi Facia \& knobs etc. Needs only 11 simple connections
£19•75 (Panel £2.95)

COMPLETE DISCO SYSTEMS

FROM ONLY £16.05
WIth two year guarantee-LOW Interest credit
DEPOSIT
CENTAUR 100W

STEREO

with TWIN LOUDSPEAKERS, SOUND to LIGHT SEQUENCER PLUS DISPLAY
$225+$ £10 carr. (Dep. $£ 28 \cdot 80,12$ months at $£ 21 \cdot 38$ or 24 months at $£ 12 \cdot 01$)
SUPER CENTAUR 200 W STEREO
As above but with 200 WATTS OUTPUT \& larger TWIN CABINETS $\mathbf{£ 2 7 5}+£ 10$ carr. (Deposit $£ 32 \cdot 80,12$ months at $£ 29 \cdot 39$ or 24 months at $£ 15 \cdot 21$)

GXL CENTAUR 200W STEREO

As the SUPER CENTAUR but with extra large twin 200 WATT CABINETS, DECK LIGHTS, EEK STARTS \& SUPERIOR DECKS.
$£ 349+£ 10$ carr. (Deposit $£ 42 \cdot 72$, 12 months at $£ 36 \cdot 58$ or 24 months at $£ 20 \cdot 54$)
Cue Light +
Head Phone
Monitoring
Mic \&Tape
Inputs
Crossfade \&
Override
Logic Circultry
Lightshow
Complete and
ready to use
Extremely
Rugged
construction
Twin BSR
Decks

Send today for Free llustrated
Leaflet on Saxo Complete Discos \& Package PA Systems.

All Equipment subject to a Two Year Guarantee.

Deliveries in the UK by our own vans.

50W MINIDISCO $£ 139 \cdot 50+£ 5$ carr. (Dep. $£ 16 \cdot 06,12$ months at $£ 13 \cdot 30$ or 24 months at $£ 7 \cdot 46$) 100W MINI DISCO $£ 159 \cdot 50+£ 5$ carr. (Dep. $£ 22 \cdot 65,12$ months at $£ 14 \cdot 73$ or 24 months £8-27)
Two extremely compact mono systems complete with loudspeakers and leads

- TWIN BSR DECKS HEADPHONEMONITORING MICINPUT

100W PACKAGE P.A. $£ 145+£ 7.50$ carr. with twin loudspeakers and PIEZO HORNS Dep. $£ 19 \cdot 70,12$ months at $£ 13 \cdot 70$ or 24 months at $£ 7 \cdot 73$

SEND YOUR SPECIAL REQUIREMENTS FOR A CUSTOM DISCO QUOTATION

SYSTEM 7000

MINOTAUR 100-AII Purpose Wide Range Amplifier

STROBES \& PROJECTORS (We stock the full Pluto range) Send for details

SUPERSTROBE $£ 2 \mathbf{2} \cdot \mathbf{5 0}$

150 WATT LIQUID
 150 WA

PROJECTOR

- Accepts all accessories
- C/w with wheel \& moto

Plate Sturdy steel construction
Remarkabse value-
Sold elsewhere at
$£ 39-50$ Our price
is only: $£ \mathbf{~ S 3 7 . 5 0}$

ACCESSORIES Condenser mics ECM77600 ohm $£ 15 \cdot 00$
ECM 81 Dual Impedance $£ 14 \cdot 85$. Crown headphones $£ 7 \cdot 50$ Heavy duty boomstand $£ 14 \cdot 50$

All prices subject to VAT @ 8\% except SA303/PM301, mics. \& head phones (12\%)
 By Telephone -Access, Barclaycard or coD Ring (01) 684 6385/00
By post or send in your Access/Barclaycard NUMBER ONLY
327-333 Whitehorse Road, Croydon, Surrey CRO 2HS
24 House Ansafone service (01) 6346385

PIEZO HORNS!! UP TO 150 WATTS HANDLING.
NO X-OVER REQUIRED E7. 50 ea.
Exporters to 17 countries-enquiries welcomed
Ring Sue Abegg on (01) 6846385 for U.K. trade enquiries

CHINAGLIA DINO - ELECTRICAL AND ELECTRONIC TEST EQUIPMENT MANUFACTURERS

PRESENT THE

DOLOMITI
$20 \mathrm{k} \Omega / \mathrm{V}$ a.c. and d.c.
A NEW HIGH SENSITIVITY MULTIMETER WITH ALL THE FEA. TURES YOU WILL.
 EVER NEED
Accuracy: D.C. ranges, $\pm \mathbf{2 . 0 \%}, \mathrm{A}, \mathrm{C}$ \& Ω ranges $\pm \mathbf{2} \cdot \mathbf{5} \%$.
39 ranges: d.c. $V, 0.150 \mathrm{mV}, 500 \mathrm{mV}, 1.5 \mathrm{~V}, 5 \mathrm{~V}, 15 \mathrm{~V}, 50 \mathrm{~V}, 150 \mathrm{~V}, 500 \mathrm{~V}, 1 \cdot 5 \mathrm{kV}$; d.c.l,
 $\Omega 0.05 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 5 \mathrm{M} \Omega, 50 \mathrm{M} \Omega ; \mathrm{PF} 50 \mathrm{kpF}, 500 \mathrm{kpF}$.
Automatic overload profection and high current range fusing.
Scale mirror and fine pointer for accuracy of reading. Single knob main range
switching and all panel controis. C. E.I. Class 1 movement with sprung ewel bearings. Extended 92 mm scale length for extra clarity. Compact ABS case 125 $\times 131 \times 37 \mathrm{~mm}$. Weight 750 g with batterles. Supplied complete with carrying case, fused leads, handbook and full 12 -month guarantee. Optional 30kV d.c. probe availabio.
Meter £45. 90 incl. VAT (£1 P. \& P.)
30kV Probe £ $£ 12 \cdot 85$ incl. VAT
For details of thls and the many other exciting instruments in the Chinaglia range, including multl-meters, component measuring, automotive and electronic instruments please write or telephone.

19 MULBERRY WALK , LONDON SW3 6DZ TEL. : 01-352 1897

FANE NEW "PPOP" RANGE SPEAKERS

12" 'POP' 4045 w Efili. 45 12" 'POP' 50H 50w $\mathfrak{1 6 . 9 9}$ 12" 'POP’ 75 75w E22.95 15" 'POP' $65 \quad 70 \mathrm{w}$ ع 25.95 15" ‘POP' 80 80w E29.95 18 " 'POP' 100 100w 449.95 18" 'POP' 150 150w 65500 SPECIALIST RANGE
Each designed to produce the $+12^{\prime \prime}$ DISCO/80 80w Fitted large Rec. Prico individual sound requirement $\mathbf{x}^{1} 12^{\prime \prime}$ DISCO/100 100w Tweater Cone $\mathbf{3 0 . 9 5}$ for its purpose. \star Robust $\nrightarrow 12$ GUITAR/80L 80w For Lead $\$ 26.95$ Cast Aluminium Chassis. Linen Cone surround, Extra strong six strut sted chassis with plunged win-

人12" GUITAR/80B, Prs rec for
$+827.95$
H 12 " PA/80 80w Duel Cone, For $\$ 26.95$ 15" BASS/85 85w general purpose P.A. ${ }^{\text {For Bass }}$ (76*95 15" BASS/100100w Guitar $\quad \mathbf{~ K 3 9 . 9 5}$ dows on $15^{\prime \prime}$ models.

HIGH FREQUENCY HORNS
$\int 44$ Range: $2.5 \mathrm{KHz}=15 \mathrm{KHz}$ HPX2R 30w with HPXIR $1 \mathrm{mp}: 8$ ohm Size approx
$3+\frac{1}{2} \times 3 \frac{1}{2}^{\prime} \times 3^{\prime \prime}$ 173 Range: $2.5 \mathrm{kHz}-20 \mathrm{kHz}$ Power: 50w
with HPX IR With HPXIR
Imp: 8 ohms Imp: 8 ohms $7 \pm^{\prime \prime} \times 3^{\prime \prime} \times 6 \pm^{\prime \prime}$
 ANE SPEA TOS SUPPIED TO MOST LEADING U.K MANUFACTURERS OF GROUP \& DISCO EQUIPMENT 2 years guarantee on speakers \& Horns
 $\begin{array}{ll}\text { Size approx } & \text { Rec. } 659.95 \\ 14^{\prime \prime} \times 9^{\prime \prime} \times 15^{\prime \prime} & \text { Price }\end{array}$ HIGH POWER "CROSS-OVERS" $\begin{array}{ll}\mathrm{HPX1R} & (3.5 K H z) \\ H P X 2 R & (5 \mathrm{KHz}) \\ \mathrm{HP} \cdot \mathbf{2 5}\end{array}$ HPX2R $(5 \mathrm{KHz})=3 \cdot 25$ Impedance or total impedance of Bass Drivers not to exceed 8Ω. Otherwis vided with HPXIR and HPX2R Distributors (Wholesale \& Retail) Rec. Prices INCLUDE VAT. LINEAR PRODUCTS ITD, Rec, prices shown correct at 30/10/77 Manufacturers \& Export enquiries to: FANE ACOUSTICS LTD, 286 BRADFORD ROAD, BATLEY, YORKS

You can work wonders with your free time.

There's immense satisfaction in making your own equipment. And you'll get excellent results with Heathkit.

Every kit is absolutely complete down to the last nut and bolt. The quality is the best. And each kit has an easy to follow instruction manual that explains exactly what to do at each step.

So you enjoy assembling your kit and you finish with first-class equipment every time.

That's why Heathkit are so successful. And that's why the range is the biggest in the world.

It's all in the new edition of the free Heathkit catalogue. Everything from the simplest to the most sophisticated. Alarms, digital clocks, testers, transceivers and lots more...even the tools are there!

See for yourself. Send the coupon now.

NEW CATALOGUE NEW TEST INSTRUMENTS NEW DIGITAL BATHROOM SCALES NEW AMATEUR RADIO EQUIPMENT NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS

The new Heathkit catalogue. Out now. FREE.

To:Heath (Gloucester) Ltd.,Dept. PW1-8, Gloucester, GL2 6EE. Please send me my Heathkit catalogue. I enclose an 11p stamp for postage.
setinuturysur
Name Address

STRIKE YOUR OWN BARGAIN WITH NO EXTRAS TOPAY FOR POSTAGE OR N.AT. 50und
 Britain's most go-ahead module manufacturers

CHOOSE THE ITEMS YOU WANT AND BUY THEM THE STIRLING SOUND
BARGAIN WAY whether for a new system, to up-grade what you use now, to build a disco or P.A. outfit, perhaps even a domestic intercom or any other device where an amplifier could be used. Whatever it be, there's a Stirling Sound power amp for it up to 100 watts R.M.S. together with stereo tone control/pre-amps if required. Build

UNIT ONE

Combined stereo pre-amp and active tone control unit. Input sensitivity 50 mV for 200 mV out. $10-16 \mathrm{~V}$ operation. Bass $\pm 15 \mathrm{~dB}$ at 30 Hz ; Treble $\pm 15 \mathrm{~dB}$ at 10 KHz ; Balance control; Volume control. For ceramic p.U., Volume control. For ceramic p.U.g radio or tape inputs. WITH FREE CONTROL PANEL FASCIA.

UNIT TWO

With control facilities similar to UNIT ONE but for magnetic cartridge input input sensitivity- 5 mV for 200 mV ou (can be varled) WITH FREE CONTROL PANEL FASCIA
CONTROL PANEL FASCIA FOR UNITS ONE OR TWO

SS. 100

Basic active stereo tone control module to provide $\pm 15 \mathrm{db}$ on bass at 30 Hz and on $£ 3.00$ treble at 10 KHz .
SS.IOI
Stereo pre-amp suitable for ceramics, tape, $£ 2.75$ radio, etc.

SS. 102

Stereo pre-amp for mag, pick-ups
WHEN ORDERING
ALL PRICES QUOTED INCLUDE V.A.T. AND GOODS ARE SENT POST FREE IN U.K. Owing to time between sending our ad. to this journal and the time it appears prices may be subject to alteration without notice. E.\&O.E.

Pay by Access or Barclaycard-Simply let us have your No.

Dept PWI78

37 VANGUARD. WAY, SHOEBURYNESS, ESSEX Telephone (03708) 5543 Shop-220-224 West Road, Westcliff-on-Sea, Essex SO 9DF Phone Southend (0702) 351048

AMPLIFIERS 3 to 100 WATTS R.M.S.

Ready assembled on P.C.Bs;; tested and guaranteed. Easy to connect. With instructions. Output ratings $\pm 1 \mathrm{~dB}$.
SS. 103 Typically 3 watts R.M.S. using $14 \mathrm{~V} / 4 \Omega$ I.C. amp. Input $100 \mathrm{mV} \quad$ £2.85 SS.103-3 Stereo version of above, 2 l.C.s
SS. 1055 watts R.M.S. Into 3Ω using 13.5 V , Sensitivity -30 mV . THD $-0.3 \% 3 \frac{1}{4}_{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$
SS.110 10 watts R.M.S. into 4Ω using 24 V . Sensitivity -60 mV . THD $-0.3 \% 3 \frac{1}{4}^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$
SS. 12020 watts R.M.S. into 4Ω using 34 V . Sensitivity -80 mV . THD $-0.3 \% 3 \frac{1^{\prime \prime}}{} \times 2^{\prime \prime} \times$
$\cdot 10525$ RMS into 8Ω using 50 E Sensitivity- 140 mV . Distortion-Less than 0.05% into $8 \Omega \mathrm{~S} / \mathrm{N}$ better than $70 \mathrm{~dB} . \mathbf{£ 7} \cdot \mathbf{2 5}$ SS. 14040 watts R.M.S, into 4Ω using 45 V . Sensitivity- 300 mV . Distortion typically $0.1 \% .5^{\prime \prime} \times 3 \frac{1}{4 \prime}^{\prime \prime} \times 1 \frac{1}{4^{\prime \prime}}$. $£ 6.50$ SS. 16064 watts R.M.S. into 4Ω using 50V. Sensitlvity -350 mV Distortion typically Sensitvity- $350 \mathrm{mV} \mathrm{F}_{1 \prime \prime}^{\prime \prime}$ Distorto $0.1 \% .5^{\prime \prime} \times 3 \frac{11^{\prime \prime}}{} \times 1 \frac{1^{\prime \prime}}{\prime \prime}$, 5 , into 4Ω e8.50 SS. 1100100 watts R.M.S. into 4Ω using $70 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity- 500 mV . Distortion at half-power, typically $0.1 \% .5^{\prime \prime} \times 3 \frac{1{ }^{\prime \prime}}{}$ $\times 1 \frac{1}{\frac{1}{2}}$. $\quad £ 10.50$ HS. 160 Multi-finned heatsink for SS. 140 or £0.75p
HS. 1100 Ditto for SS.1100.
£0.75p
HFO. SHEETs the INFO. SHEETS-the new way to build a useful Stiring Sound catalogue. About CARGE S.A.E. stamped for planned and the frst bat
2후 for your free copies.

TO STIRLING SOUND

Please supply \qquad NAME
\qquad
\qquad

My Access / Barclaycard No. is

POWER UNITS

Every unlt is tested under working conditions before despatch, and guaranteed. All units except SS. 312 include a stabilised low voltage take off point ($13-15 \mathrm{~V}$) for pre-amp, tone control units etc. Outputs quoted are minimal unloaded ratings.

$\mathbf{S S} .312$	$12 \mathrm{~V} / 1 \mathrm{~A}$	$\mathbf{£ 6} \cdot \mathbf{6 0}$
$\mathbf{S S . 3 1 8}$	$18 \mathrm{~V} / 1 \mathrm{~A}$	$\mathbf{£ 6 . 9 5}$
$\mathbf{S S . 3 2 4}$	$\mathbf{2 4 V} / 1 \mathrm{~A}$	$\mathbf{£ 7 . 6 5}$
$\mathbf{S S . 3 3 4}$	$\mathbf{3 4 V} / 2 \mathrm{~A}$	$\mathbf{£ 8 . 7 5}$
$\mathbf{S S . 3 4 5}$	$\mathbf{4 5 V} / 2 \mathrm{~A}$	$\mathbf{£ 1 0 . 7 5}$
$\mathbf{S S . 3 5 0}$	$\mathbf{5 0 V} / 2 \mathrm{~A}$	$\mathbf{£ 1 1 . 7 5}$
$\mathbf{S S . 3 6 0}$	$\mathbf{6 0 V} / 2 \mathrm{~A}$	$\mathbf{£ 1 2 . 7 5}$
$\mathbf{S S . 3 7 0}$	$\mathbf{7 0 V} / 2 \mathrm{~A}$	$\mathbf{£ 1 4 . 7 5}$

SS.310/50 Stabilised power supply; variable in output from 10 V to $50 \mathrm{~V} / 2 \mathrm{~A}$ and shortcircuit protected $£ 17.75$

SS.300 Power stabilising unit variable from 10 to $50 \mathrm{~V} / 8 \mathrm{~A}$ max. for adding to existing unstabilised supply units.

TTLs by TEXAS				74L's74LS00	30 p	CMOS 4000	$\begin{gathered} 20 p \\ 20 p \end{gathered}$	OP. AMPS. CA3130 103p CA3140 108	$\begin{array}{ll}\text { NE531V } & \text { 140p } \\ 709 & 40 \mathrm{p} \\ 733 & 450 \mathrm{p}\end{array}$	MEMORY I.Cs				MPSA56MPSU05$72 p$ MPSU06 7Bp		2N2907/A 25p 2N2926RB 9p 2N2926OG 14p		$\begin{array}{lr} \text { PIODES } & \\ \text { BY127 } & \text { 12p } \\ \text { OA47 } & 9 p \end{array}$	OA202 10p iNg14 4 p NS16 7 D
7400	14p	7497	290p							1702A	EPR		350						
7401	14p	74100	140p	74LS02															N916 ${ }^{\text {N4001/2 }}$
7402	16p	74104	75p	74LSO4	30p	4006	99p		741 25p	2112-2			70 p	MPSU56	98 p	2 N 3054	65 p	OA85 15p	N4003/4
7403	16p	74105	75p	74LSOd	30 p	4007	29 p	LM318N 40p	747 75p	21			E10	OC28	96	${ }_{2}{ }^{\text {N3055 }}$	65 p	OA90 9p	N4003/4 N $4005 / 7$ 8
7404	24p	74107	${ }^{365}$	74LS10	32p	4008	115 P	LM324N 130p	748 40p	AY6-1093			600p	$\mathrm{OC}^{0} 516$	${ }_{90 p}$	2 N 3442	451 p	OA91 9p	IN4148 40
7405	25 p	74109	60 p	74LS13	55 p	4009	50p	LM348N 1400	216 p	RO3-2513	RO		150p	0 C 71	32p	2N3643	$54 p$	OA95 3p	N510y/3 15p
7406	400	74110	${ }^{68 p}$	74LS20	33 P	4010	20p	MC1458P 75p	3900 70p					R20088	225p	2N3644	54 p	OA200 Op	N5404/7 20p
7407	40 p	74111	75p	74LS22	34 p	4012	20 p	MC1458 7 15p						R2010B	225p	2N3702/3	14p		
7408	22 p	74116	219p					L				TEXAS		T1P29A	50 p	2N2704/5	14p	BRIDGE REC	TIFIERS
7409	22 p	74118	${ }^{1609}$	74-S30	30 p	4013	55 p $\mathbf{1 1 5 p}$				12p		36p	TlP29C	62 p	2N3706/7	14p	1 A 50 V 25p	A 400V 96p
7410	18 p	74119	${ }_{130}^{225}$	74LS47	150p	4014	115p	-1313 775 p		14 pin	13 p	24 pin	40p	TIP30A	60 p	2N3708/9	14p	1 A 100 V 27p	6A 50V 96p
7411	26 p	74120	${ }^{130 p}$	74LS55	45p	4015	50p	AY-1-1313 7175	$\begin{array}{ll}\text { NE555 } & \text { 36p } \\ \text { NE556 }\end{array}$	16 pin	40p	28 pin	48 p	TIP30C	72 p	2N3773	320 p	1A 400V 31p	6A 100V 108p
7412	25 p	74121	32p	74LS73	60 p 60 p	4016	100 p	AY-3-8500 775p	NE561B 450p	18 pin	30 p	40 pin	60p	TIP31A	56 p	2N3819	$27 p$	2 A 50 V 40p	6A 400V 120p
7413	40p	74122	52 p	74LS74	${ }_{750}$	4017	100 p	AY-850 515p	NE562B 450p					TIP3iC	68 p	2N382C	50p	2A 100V 45p	10A 400V 270p
7414	$85 p$	74123	75 p	74LS75	75p	4018		AYY-5-1317A	$\begin{array}{ll}\text { NE5628 } & \text { 450p } \\ \text { NE565 } & \text { 140p }\end{array}$	TRANSI	ST			TIP32A	63 p	2N3823	700	3 A 200 V 70p	25A 400V 432p
7416	40p	74125	70p	74LS83	120p	4020	52 p 120 p	AY-5-1317A 650 p	NE566 200p	AC125/6	20p	BFI94	13p	TIP32C	$85 p$	2N3866	37p	${ }^{80 \mathrm{p}}$	VM18
7420	18 p	${ }_{74128}$	82p	74LS86	65p	4021	115 P	CA3028A 112p	NE567 180p	AC127/8	20p	BF195	11p	TIP33A	97p		22p		
7421	43p	74132	$81 p$	74LS90	80 p	4022	100p	CA3046 85p	RC4151N 432p	AC176	20p	BF196	17p	TIP33C	12p	2N		RIACS	
7422	28p	74136	81 p	74LS93	80 p	4023	22p	CA3048 250p	SG3402N 275p	AC187/8	20 p	BF197	18 p		12			3 A 400 V	
7423	36 p	74141	85	74LS 107	55p	4024	$80 p$	A3053 75p	SN72710N		${ }_{6}^{60}$		40 p	TIP35	243 p	2N4123/4	22 p	6 A 400 V 10	15A 500V 225p
7425	33p	74142	300p	74LS112	120p	4025	220	CA3065 200 p	3N 275	AD161	48 p	${ }_{8 F 2563}$	60	T	2909	2N4125/6	$22 p$		T30 T066
7426	43 p	74145	95 p	$74 \mathrm{LS123}$	110 p	4026	170p		SN76013N ${ }^{\text {S }}$ 175p	AF114/5	22 p	BF257	${ }_{34 \mathrm{p}}$	TIP36A	297p	2N4401/3	34p		p
7427	40 p	74147	205 p	74.5138	50p	4027	680	CA3090AQ 425 p	SN76013ND 160	AF116/7	22 p	BF258	39 p	TIP36C	380p	2N4427	97p		669 T0220
7428	40p	74148	160 p 130 p	74LS139	110p	4028	980 $420 p$	ICL8038CC 400 p	SN76018 280	AF127	40 p	BF259	48 p	T	70p	2N4871	60 p	10A 500V 160p	130p
7430 7432	18p	74150	${ }_{\text {81p }}$	74LS15	200p	4030	55p	LM339N 175p	SN76023N 175p	AF139	$40 p$	BF337	32p	Tip41C	84 p	2N5179	75p		
7433	43p	74153	89p	$74 \mathrm{LS157}$	130p	4033	250p	LM377N 200p	SN76023ND 160 p	AF239	48p	BFR39	34 p	TIP42A	76p	2N5245	40 p	Sc	
7437	37 p	74154	160p	74LS158	50p	4034	240p	LM380N 112 O	Sp8515 710 p	BC107/B	10 p	${ }_{\text {BFR }}{ }_{\text {BFP79 }}$	${ }^{34} \mathrm{p}$	T1P42C	96 p	2N5296	58 p	B	p
7438	37p	74155	97p	74LS160	180p	4035	130p	LM381N 190	TCA940 200					TPP	76 p	2N5457/8		CR104	0p
7440	18p	74156	97p	74LS161	180p	4040	120p	LM389N	T	B	10 p	B		TP	40 p	2N5459	40 p	2N4444	Pastic 200p
41	85 p	74157	97p	74LS		42		M259AA 8000	TBA641B 300p	${ }^{8} \mathrm{BC} 47$	9 p		000		20p	2N5460	65 p	2N5060/2	092 40p
7442	75p	74159	250p	74LS163	$180 p$	4043	${ }_{600 p}$	MC1310 ${ }^{\text {M }}$	TBA651 225	BC148	8 p	BFX29	30 p	2N686/7 2N698	2.5	2N5485	45p	2N5064	092 45p
7443	120p	74160	100p	74LS164	${ }^{1295}$	4044	100 p	MC1351P 110p	TBAB00 112p	BC157	19 p		34 p	2N698	43 p	2N6107	70p		
7444	120	74161	0p		230p	4046	1400p	MC1495L 490p	TBAB10 125p	BC158/9	13 p	$8 \mathrm{FX54/5}$	30 p	${ }_{2}$	43 p	2N6027		OPTO-ELECT	RONICS
744	10\%p	7416	op	74LS174	160p	4049	55p	MC1496L 12p	TBA820 100p		15p	8FXeb/7	30 p	2N930	19p	2 N 6247	200 p	OCP 71 130p	ORP 61 90p
7447	75 p	74164	120p	74LS175	160p	4050	57p	MC3340P 180p	TAA621A 310p	${ }^{\text {BC172 }}$	$11 p$		22 p	$2 \mathrm{~N} 1131 / 2$	25p	2N6254		ORP 12 75p	2N5777 48p
7448	85p	74165	150p	$74 \mathrm{LS181}$	375p	4051	1100	$\begin{array}{ll}\text { MC3360P } & 160 \mathrm{p}\end{array}$	TDA2020 380	${ }^{8} \mathrm{C} 177$	29 p		22 p	2N1304/5	75 p	3N1	p	ORP 60 90p]	16 90p
7450	13 p	74166	160p	74LS190	250p	4054	120p	NE3401	$\begin{array}{ll}\text { ZN434 } & 140 \mathrm{p} \\ \text { ZN425E } & 420 \mathrm{p}\end{array}$		20 p	BFY90	$90 p$	2N1306/7		3N140	97 p	LEDS	
7451	48 p	74167	320 p	74LS191	200p	4055	140p	Nest0L 225p		8С192/3	12 p	ERY39	48p	2N1613	22 D	3N141	900	TIL209 Red 14p	$0 \cdot 2^{\prime \prime}$ Red 16p
7453	18	74170	260p				135p	VOLTAGE REGUL	ATORS -mixed	BC184	14p	BSX19/20	20p	${ }^{2 N} 17111$	${ }_{32 \mathrm{P}}$	3N187	2000	TIL211 Green	0-2"Green 20p
7450	18p	74173	190p		25p	4060	650p	1A +ve Tatio	1A -ve T0220		32 p	MJE340	70 p	2N1893 2N2102	32 p 60 p	40360	43p	36p	0.2"Amber
7470	38 p	74174	120p	$74 \mathrm{CO2}$	25 p	4067	425 p	5 V 7805145	5 V 7905180 p	${ }^{3 C 212}$	${ }_{120}$	MJ481	175 p 2160	2N2160	120 p	40469/10		TIL32 B1p	$36 p$
7472	32 p	74175	97 p	$74 \mathrm{CO4}$	27 p	4068	24p	6V 7806 115p	12 V 7912160	8C214	12p	M ${ }^{\text {M } 2501}$	2509	2N2218A	$25 p$	$40411{ }^{\circ}$	325 p	DISPLAYS	DRIVERS
7473	36 p	74176	130p	$74 \mathrm{CO8}$	27 P	4069	278	8V 7808 115p	15 V 7915	BC.461	40 p	M 22955	130 p	2N2219	22p	40594	96	3015F 200p	75491 84p
7474	37 p	74177	${ }^{20 p}$	74 C 10	${ }_{90}^{270}$	4070	65	12V 7812 915p	Heat Sin	BC478	32 p	MJE2955	130p	2N2222	22 p	40595	97p	FND500/507	75492 96p
7475 7476	43 sp	74180	${ }^{120 \mathrm{p}}$	14	90p	4071	270	15V 7815 119p		BCY70	20 p	M J 3001	250p	2N2369	15 p	40635	60 p	1300	${ }^{9368}$ 200p
7480	54 p	74182	1500	74 C 48	230 p	4073	30 p	18V 7818 115p	suitable for	BCY7t	24 p	MJE3055	90 p	2N2484	32p	40836	140p	$1704{ }^{160 p}$	9370 200p
7481	108p	74184	250p	74 C 73	75 p	4076	170p	24 V 7824 115p	T0220	B0124	140p	MPF102/3	45p	2N2646	52p	40			TlL311
7482	90 p	74185	${ }^{4909}$	$74 \mathrm{C74}$	70 p	4089	210			BD135/6	64p	SA06	37p	2N2905/A		40872	85	DL747R/G	TiL321 430p
7483	${ }^{98 \mathrm{p}}$	74188	${ }^{3900}$	$74 \mathrm{C85}$	${ }_{650}^{200}$	4082	P		5 V 79L05 80p	${ }^{8}$	${ }_{56 \mathrm{p}}$	MPSA12	62 p	2N2906/A		40872	90 p	250p	TIL322 130p
77484	${ }_{108}^{108}$	74190	1200	$74 \mathrm{C86}$	65 p	4093	94 p	${ }_{6} 25 \mathrm{~V} 784.62 \mathrm{70p}$		80140	609	-							
7485	${ }_{\text {129p }}$	74191	120p	74C90	90p	4098	120 p	$12 \mathrm{~V} 78 \mathrm{~L} 12 \mathrm{70p}$	12V 79L12 80p	BDY56	225p								
7489	340 p	74193	100p	74 C 107	125p	14503	\%0p	15V 78L15 70p	5V $79 \mathrm{~L} 158 \mathrm{80p}$		24 p								
749	36 p	74194	160 p	74C151	280p	14507		LM309K 150p	LM320-12 160p	BF67 BF170	25p								
749	${ }^{98 p}$	74195	190p	74 C 157	155	14508	300 p 130	LM323K 700 p	TBA625B 120p	BF173	270		ER						
	36p	741		74.	155p	14511	180 p	N 275p	156 p	BF178	30p								
74	$90 p$	74198	250p	74 C 162	65p	14516	120p	VARIABLE	317 T022	179	35 p 350								
74985	75	7419	175	74 C 163 74 C 16	$\begin{aligned} & 155 p \\ & 1400 \end{aligned}$	515	130	$\begin{array}{ll} 723 & \text { DIL } \\ 78 M G T 2 C & 145 p \end{array}$	TL430 T092 ${ }^{325 p}$	BF180/1 BF184/5	24p		54 S	dhurst Ro	oad,	London N		Te1. 01-204 4333	1x 92280

MINIATURE POWER EQUIPMENT

The NEW P2 SUPER DRILL

More powerful, specially designed for the Electronic Design Engineer who needs a small, low voltage drill with high capacity. £16.50 pp 86 p.
S2 DRILL STAND A robust, all metal stand with ample throat dimensions. Will take both P1 and P2 Drills. $\mathbf{£ 1 8} \mathbf{5 0} \mathbf{~ p p ~ 1 0 6 p . ~}$
SUPER 30 KIT 30 tools incl. Drill P1without stand. $£ 19 \cdot 39 \mathrm{pp} £ 1$.

P1 DRILL

```
                    &9.67 pp 38p
```


S1 DRILL STAND $\mathbf{£ 5} \mathbf{1 3} \mathbf{~ p p} \mathbf{3 8 p}$

 FLEXIBLE DRIVE SHAFT £5.94 pp 34pTRANSFORMERS
Continuous a/c 12v. D/C
£7.56 pp $81 p$
Variable speed a/c 12v. D/C £9.50 pp 81 p Saw Blades, Burs etc. 40p each. Circular P\&P any quantity 250 . Please send $9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. for leaflet and order form.

PRECISION PETITE LTD
II9a HIGH STREET
TEDDINGTON MIDDLESEX TWH 8HG
Tel. 01-977 0878

Solve your communica-4-statiou Transister Intercom system (1 master and 3 Subs), In robust plastic cabinets for deand or wabs to Master. Ideally suitable for Buefness, Surgery, Schools, Hospitals and Office. Operates on one 9 V battery. On/ott owitch. Yolume control.
Gomplete with 3 conuecting wires each 66ft. A Battery
 W £14.95 $+V \Delta T \& 1 \cdot 20$

[^1] plug-in speaker. Placing the receiver on to the cradle activates a swltch for immediate two way conversation time. Increage efficiency in office, shop, workshop. Perfect time "conference conlls: leaves the uatr's hande free to make notes, consult fles. No long waiting, saves time with long-

10-day price refund guarantee on all items.
WEST LONDON DIRECT SUPPLIES (PWi)
169 KENSHGGTON ZIGH STREST, LOKDON, W8

BDODOEGHANGETID.

 NEW ELECTRONIC MASTER KIT

 NEW ELECTRONIC MASTER KIT
 WITH SPECIAL MULTI-BAND Y.H.F. TUNER MODULE TO CONSTRUCT. A completely

 Solderless Electronic Construction Kit, with ready drilled Bakelite Panels, Nuts, Bolts, Wood Screws etc. Also in the kit: Transistors, Capacitors, Resistors, Pots, Switches, Wire, Sleeving, Knobs, Dials, $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker and Speaker Case, Crystal Earpiece, ete. Also ready wound Coils and Ferrite Rod Aerial. These are the Projeces you can build with the components supplied with the kit, together with comprehensive Instruction Manual Pictorial and Circuit Diagrams.
PROJECTS: Y.H.F. Tuner Module $\&$ A.M. Tuner Module $\&$ M.W. L.W. Diode Radio \& Six Transistor MultiBand V.H.F. Earpiece Radio $*$ One Transistor M.W. L.W. Radio t Two Transistor Metronome with Mariable beat control * Three Transistor and Diode Radio M.W. L.W. * Four Transistor Push Pull Amplifier \star Eight Transistor MultiBand V.H.F. Loudspeaker Receiver \star Variable A.F. Oscillator \star Jiffy MultiTester * Four Transistor and Diode M.W. L:W. Radio. \& A.F. R.F. Signal Injector \& Five Transistor Push Puli Amplifier + Sensitive Hearing Aid Amplifier \star Three Transistor and Diode Short Wave Radio \star Signal Tracer \star Three Transistor Push Pull Amplifier * One Transistor Class A Output Stage to drive Loudspeaker \neq Sensitive Transistor Pre-Amp \star Transistor Tester \star Sensitive Three Transistor Regeneracive Radio t Four Transistor M.W. L.W. and Diode Tuner \& Five Transistor M.W. L.W. Trawler Band Regenerative Radio \star Five Transistor V.H.F. MultiBand Tuner \star Three Transistor Code Practice Oscillator \star Five Transistor Regenerative Short Wave Radio \star Four Transistor and two Diodes M.W. L.W. Loudspeaker Radio t Seven Transistor M.W. L.W.Radio with Loud- $\mathbf{E} \mathbf{1 4 - 9 9}+\mathrm{P} \boldsymbol{8}$ P it 10 speaker Push Pull output K One Transistor Home Broadcaster.

NEW ROAMER TEN MODEL R.K. 3

MULTIBAND Y.H.F. AND A.M. RECEIVER.
I3 TRANSISTORS AND FIVE covering Mobiles, Airsraft, T.V. Sound, Public Service Band, Local V.H.F Stations, Mutc and Multiband A.M. section with Airspaced Slow Motion Drive Tuning Capacitor for easier and Stations, etc. and Multiband A.M. section W.W.W. Three Short Wave Bands S.W.1, S.W.2, S.W. 3 and Trawler accurate tuning, covering Marial for Medium Wave, Long Wave and Trawler Band, etc., Chrome Plated 7 Band. Buitt-in Ferrite Rod Aerial for Medatle for peak Shott Wave and V.H.F. reception. Push-Pull output section Telescopic Aerial, angled and rotatabe for peak Controls. Plus two Slider Switches. Negative Feedusing 600 mW Transistors ${ }^{\text {G Gain, }}$,
Powered by P.P.9-9 volt Battery.

$$
\begin{aligned}
& \mathbf{£ 1 4 . 7 9 + P \& P £ 1 . 1 0}
\end{aligned}
$$

NEW

MODEL

R.K.I

MultiBand A.M. Receiver. M. W. L. W. Trawler Band and Three Short Wave Bands. Seven Tran-
 sistors and Four Diodes. Push
Pull Output stage. 5" $\times 3^{\prime \prime}$ Loudspeaker. Internal Pull Output stage. $5^{\prime \prime} \times 3^{\prime \prime}$ Loudspeaker. Internal
Ferrite Rod Aerial. Kit includes all parts to build it up including Carrying Strap, Rubber Feet and ready-drilled Panels. Comprehensive Instruction Manual for stage by stage construction. Uses P.P. 9 Nine Volt Battery.

NEW

MODEL

R.K. 2

MW, LW and Air Band Receiver. Eight Transistors and Four Diodes. Telescopic Aerial, Internal Ferrite Rod Aerial. Complete with Carrying Strap and ready-drilled Panels and all components necessary for construction. A sensitive Receiver with the additional luxury of an Air Band section to pick up Aircraft from many miles away. Full instruction Manual enables stage by stage construc*
19.99 £8.99 ${ }_{9}{ }_{90 \mathrm{P}}^{\mathrm{PR}}$

ELECTRONIC CONSTRUCTION KIT

[^2]
E.C.K. 2 Self Contained Multi-Band E.C.K. 2 V.H.F. Receiver Kit. B transistors and 3 diodes. Push pull output. 3in. loudspeaker, gain control, 7 section chrome plated telescopic aerial V.H.F. tuning capacitor, resistors, capacitors, transistors etc. Will receive T.V. sound, public service band, aircraft, V.H.F. local stations, etc. Operates from a 9 volt P.P. 7 battery (not supplied with kit)

Complete kit of parts $\boldsymbol{£ 7} \cdot \mathbf{9 5}+\mathrm{P} \& \mathrm{P}$ and Ins .90 p

EDU-KIT MAJOR
 COMPLETELY SOLDERLESS
 ELECTRONIC CONSTRUCTION ${ }^{K}$
 WILD THESE PROJECTS ITHOUT SOLDERING IRON OR SOLDER

 Push Pull
Comm plete kit of
parts inparts in-
cluding construe-- 4 Transistor Earpiece Radio - Signal Tracer - Signal Iniector - $\mathbf{W W}_{\text {Transistor Shor }}$ tion plans - Transistor Tester Wave Radio Transistor - Eectronic

5 Transistor Push Pull - 5 Transist

- Batteryless Radio
- One Transistor Crystal - 2 Transistor Radio - 2 Trenerativistor Re-- 3 Transistor Re Total buildine cost
$\$ 9.99$
- Transistor Push Pull - Electronic Noise
Amplifier
Generator - generative Radio - Audible Continuity Audible - Sensitive Pre-
$+P$ \& P and - 24 Resistors 21 Capacitors 10 Transistors $5^{\prime \prime} 5^{\prime \prime} \times{ }^{3 \prime \prime}$ Loudspeaker Ins. $\mathrm{fl} \cdot 10$ 12 Slider Switches 1 Tuning Condenser ${ }^{3}$ Knobs Ready Wound

E.V.6.

Build this exciting new design. E.V. 6 6 Transistor and 2 diodes MW/LW Powered by 9 y battery. Ferrite rod aerial, tuning condenser, volume control, and now with 3 in loudspeaker, Atractive case with red speaker grille. Size 9 in. $\times 5 \frac{1}{4} \mathrm{in}$. $\times 2 \frac{3}{i} \mathrm{in}$. approx. All parts including Case and Pians.
Total Building Costs $\mathbf{£ 5} \mathbf{9 5}+\mathrm{P}$ \& P and ins. 90 p
ALL PRICES INCLUDE VAT

V.H.F. AIR CONVERTER KIT

Build this converter kit and receive the aircraft band by placing it by the side of a radio tuned to medium wave or the VHF baind and operating as shown in the instrustions supplied free with all parts.

Uses a retractable chrome plated telescopie aerial, gain control, V.H.F. tuning capacitor, transistor, etc.
All parts including case and plans
$\mathbf{4 4 . 9 5}+\underset{\mathrm{P} \text { \& } \mathrm{P} \text { P and } 60 \mathrm{p}}{ }$

To: RADIO EXCHANGE LTD 6IA High Street, Bedford MK40 ISA Tel.: 023452367

REG NO. 788372 - Callers side entrance "Laveils" Shop. - Open 10-1, 2.30-4.30 Mon.-Fri, 9-12 Sat.
\qquad
\qquad
\qquad
\qquad PWI78

GREENWVELD
443 Millbrook Road Southampton SO1. OHX Tel:(O703) 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
* SAVE ON MONEY-Bulk buying means lowest prices-just com pare with others!
* HAVE THE RIGHT PART-No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC BRAND NEW MARKEO DEVICESINCLUSIVE PRICES.
K001 50 V ceramic plate capacitors, 5%. 10 of each value 22 pF to 1000 pF . K002 Extended range, 22pF to $0.1 \mu \mathrm{~F}$, 330 values $£ 4$ - 90
Ke03 Polyester capacitors, to each of these values: $0.01,0.015,0.022,0.033$, $\begin{array}{lllll}0.047, & 0.068, & 0.1, & 0.15, & 0.22, \\ 0.47 \mu \text { F } & 110 \text { altogether for } \\ £ 4.75 & 0.33 \text {, }\end{array}$ $0.47 \mu \mathrm{~F}$. 110 altogether
K 004 Mylar capacitors, min 100 V type.
trom 1000 F to 10 each all values from 1000 pF to
$10,000 \mathrm{pF}$. Total 130 for $£ 4 \cdot 45$ K0000 Polystyrene capacitors, 10 each $5 \% 150 \mathrm{~V}$. Total 370 for $£ 12 \cdot 30$ K006 Tantalum beard capacltors. 10 each of the following: $0.1,0.15,0.22$,
$0.33,0.47,0.68,1,2.2,3.3,4.76 .8$, ali 35 V ; $10 / 25$ 15/16 22/66 33/10 47/6 100/3. Total 170 tants for $£ 14 \cdot 20$
Korking Electrolytic capacitors 25 V of these sopular yalues: $1,2.2,4.7$ 10, 22, $47,100 \mu \mathrm{~F}$. Total 70 for $£ 3 \cdot 50$ Kion Extended range, as above, also 100 for 25.90
K021Minlature carbon film 5% resistors, CR25 or similar, to of each value from
10R to $1 \mathrm{M}, \mathrm{E} 12$ series. Total 610 resistors.
K8.00. Extended range, total 850 resistors from $1 R$ to 10 M \&8. 30 etc. 10 of each value from 27 V to 36 V , Etc.
E24 series. Total 280 for
$K 15 \cdot 30$
s 16042 As above but 5 of each value c8. 70
7Ib BARGAIN PARCEL
Hundreds of new components-pots, switches, resistors, capacitors, PC Boards with semicondictors, ${ }^{\text {odds }} \mathbf{4 5}$.

PC ETCHING KIT MK III
Now contalns 200 sq. ins. copper clad
board, 11 b . Ferric Chloride, DALO etchresist pen, abrasive cleaner, two miniature drill bitts, etching dish and Instruc-
tlans. $£ 4.15$

FERRIC CHLORIDE
Anhydrous technical quality in $1 / \mathrm{b}$ double sealed packs; $1 \mathrm{lb} £ 1 \cdot 00$
$£ 2 \cdot 18 ; 101 \mathrm{~b} £ 5 \cdot 60 ; 100 \mathrm{lb} £ 39.00$

MOTORS
240 V ac 60 rpm . High torque, drive to 6 mm shaft 20 mm long, Sizo 70 mm dia ${ }^{5} \mathrm{~mm}$ £ 2.20 . LED DIGIT DRIVER ITT type 7105. 16 pin DIL package. Suppled with data sheet, hor

VERO OFFCUTS
Pack A, All $0.1^{\prime \prime}$
Pack B, All $0.15^{\prime \prime}$
Pack C, Mlxed
Pack D, Ali $0 \cdot \gamma^{\prime \prime}$ plain
Each pack contalns 7 or 8 pleces with
a total area of 100 sq . in. Each pack is $£ 1$. 40 . Also avallable by weight.
1ib $\mathbf{£ 3} 45 \mathrm{fb} \mathrm{£31}$. We are also VERO
 from Bone Fide Companies.

Our retall shops at 21 Deptiford Broad way, London, SEE (01-692 2009) and 38 Lower Additscombe Road, Croydon
(01 -698 2950) stock some of the (01-688 2950) stock some or the
advertised goods for personal callers advertised goodsor details. All prices quoted include VAT and
UK/BFPO postage. Most orders despatched on day of receipt. SAE wlth enquililes please. MINIMUM ORDER from schools, etc. (Minimum Invoice charge e5). Export/ Wholesale enquiries welcome. Wholesale list now avallable for bona-fide traders. Surplus com-
ponents always wanted.

SIRENS

 Work off $4 \times$ HP7 batteries, emit veryloud nolse. Overall size $110 \times 75 \times$ 60 mm . Use as Burglar Alarm in car
house, workshop, etc, ONLY E1.95 VEROCASES
Plastic top and bottom, ally panels front and back.
Type
$1410205 \times 140 \times 40 \mathrm{~mm} \quad \mathbf{~} \mathbf{3} \mathbf{3} \mathbf{7 0}$
$1411205 \times 140 \times 75 \mathrm{~mm} \quad \mathbf{~} \mathbf{4 . 1}$
$1412 \mathbf{2 0 5} \times 140 \times 110 \mathrm{~mm} \quad \mathbf{~} 5.20$
$1237154 \times 85 \times 40 \mathrm{~mm}$
$1238154 \times 85 \times 60 \mathrm{~mm}$
62.83
63.05

VERO PLASTIC BOXES
Professional quality, two tone grey
polystyrene with threaded inserts for polystyrene with threaded inserts for mounting PC Boards
Type
$\mathbf{5 1 8 1 2 0 \times 6 5 \times 4 0 \mathrm { mm } \quad \text { £2. } 2 4}$
$2520150 \times 80 \times 50 \mathrm{~mm} \quad$ E2. 6 相
$2522188 \times 110 \times 60 \mathrm{~mm}$ £3.72 sloping front version.
Type
$2523220 \times 174 \times 100 / 52 \mathrm{~mm}$
$1798171 \times 121 \times 75 / 37.5 \mathrm{~mm}$
*6.90
$798171 \times 121 \times 75 / 37.5 \mathrm{~mm} \quad £ 4 \cdot 65$ Gen. purpose plastic potting box
$71 \times 49 \times 24$. In black or white 40 p . Hand Controller box, shaped for ease of use in the hand, $94 \times 61 \times 23 \mathrm{~mm}$ 84p.
RELAYS and SOLENOIDS 12V DC enclosed, 210 A c/o contacts $£ 1$ Open construction relay with 2 10A c/o well on 6 V DC 60 p . 11 pin plug in base 240 V ac enclosed, 11 pin p
10 a c/o contacts, $£ 1-20$. 310 A c/o contacts,
240 V ac open, 215 A clo contacts $£ 1 \cdot 50$. ing, $0 \cdot 1^{\prime \prime}$ pitch. 2 pole c/0 137R collRS price $£ 2 \cdot 71$-our price $£ 1.00$.
Solenoid, rated 48 V DC, but work on 24 V . 10 mm push or pull actlon. Single hole fixing. Size $27 \times 18 \times 15 \mathrm{~mm}$
Made by Varley. Only 40 p .

WIRE AND FLEX
Flex pack- 5 m of 5 diff. colours, thick or thin. 25 m for 25 p . 25 way ($14 / 0076$) cable with braided overall screen and C sheath. $40 \mathrm{p} / \mathrm{m}$

EDGE CONNECTORS

 Special purchase of these $0 \cdot 1^{\prime \prime}$ pltchdouble esidided gold-plated connectors enables us to offer them at less than one-thlrd their originai list pricel 18 way $41 \mathrm{p} ; 21$ way $47 \mathrm{p} ; 32$ way $72 \mathrm{p} ;$
40 way $90 \mathrm{p} ; 43$ way $97 \mathrm{p} ; 49$ way 111 p.

SOLAR CELLS

As used on space labs, etc., these tiny cells give $50 \mathrm{uA} @ 0.5 \mathrm{~V}$ in sunflght. Ideal for powering small C-MOS prolects, etc. Can be banked together for 3 for $£ 1$; 10 for $£ 3 ; 25$ for $£ 7 ; 100$ for $£ 25$. POWER PACK
Wood grained metai case $90 \times 80 \times$ 75 mm contalning mains transformer glving 5 V @ 200 mA 2 co-ax. sockets,
PC board with $11_{4}^{\prime \prime}$ fuseholder R's C's, etc. Only e1.

S-DECS \& T-DECS
S.DEC Bread board
£2. 10
T.DEC Breadboard £3.75

1977/78 CATALOGUE NOW AVAILABLE - MUCH BIGGER AND BETTER, WITH 50p DISCOUNT VOUCHERS ONLY 30p, Plus 15p POST,

COMPONENT PACKS

400 assid. carbon resistors $\quad £ 1.50$ 100 Wirewounds 2-15W 81.50
\&1. 50 200 Miniature resistors, $\frac{1}{7}, \frac{1}{4}$, and $1 \mathbf{W}$

200 poif, mica, ceramic caps $\mathbf{£ 1} \cdot \mathbf{3 0}$
$\mathbf{£ 1} \cdot \mathbf{2 0}$ 100 polyester $.01-2.24 F$ 81.00 200 PC resistors

FIBREGLASS PCB
Large quantity of offcuts, all usable
pieces. 200 sq . Ins. singlewsided, double pieces. 200 sq . ins, sing
sided of mixed $\mathrm{fi} \cdot 50$.

5V 12A REGULATED POWER SUPPLY
Erand new boxed fully stabilized PSU. Complete with instruction manual Load regulation 0.15% Thermal Eletron
524.00 .

Technical Training in Radio, Television and Electronics

ICS have helped thousands of ambitious people to move up into higher paid, more secure jobs in the field of electronicsnow it can be your turn. Whether you are a newcomer to the field or are already working in the industry, ICS can provide you with the specialised training so essential to success.

Personal Tuition and Guaranteed Success
The expert and personal guidance by fully qualified tutors, backed by the ICS guarantee of tuition until successful is the key to our outstanding record in the technical training field. You study at the time and pace that suits you best and in your own home. In the words of one of our many
successful students: "Since starting my course, my salary has trebled and I am expecting a further increase when my course is completed."

City and Guilds Certificates
Excellent job prospects await those who hold one of these recognised certificates. ICS can coach you for:
Telecommunications Technicians
Radio, TV Electronics Technicians
Technical Communications
Radio Servicing Theory
Radio Amateurs
Electrical Installation Work
Also MPT Radio Communications Certificate

Diploma Courses

Colour TV Servicing
Electronic Engineering and Maintenance
Computer Engineering and Programming
Radio, TV and Audio, Engineering and Servicing
Electrical Engineering, Installations and Contracting
Qualify for a New Career
Home study courses for leading professional examinations and diploma courses for business and technical subjects:-
G.C.E.

60 subjects
at "O" \&
" A " levels
Accountancy
Air
Conditioning
Building

POST OR PHONE TODAY FOR FREE BOOKLET.

1/1/78

L-L To: International Correspondence So: Inte
 Dept 276R Intertext House, London
 SW8 4UJ or telephone 6229911
 Subject of Interest.
 Name
 Address
 Telephone Number

BRED-CIRCUIT BOARD
Combines versatility of Breadboard with usefulness of BlobBoard

BCB2 board size $6^{\prime \prime} \times 2^{\prime \prime}$ with 516 DIL Sockets Pack of 3 boards with 15 sockets

SOCKETS
16 DIL IC Sockets with stepped legs

Normally 20p each
Pack of 20 for only $£ 2.00$ + 35p Post and VAT

I.C. BREADBOARD

U DeC B Breadboard + 212 IC Blob Boards

Normally $£ 14.00$
HALF PRICE OFFER $£ 7.00$ + £1.30 post \& VAT
normally $£ 3.84$
ONLY $£ 1.92+50$ p post $\&$ VAT

SEMICONDUCTORS-COMPONENTS

BABANI BOOK OFFER

Purchase books to the value of $\mathbf{E S} \cdot \mathbf{0 0}$ from
and choose any 60 p pak from this page FREE.
and choose any 60p pak from this page FREE.
BP2 Handbook of Radio, TV \& Industrial \& Transmittin Tube \& Valve Equivalents
Handbook of Tested Transistor Circuits
BP7 Radio \& Electronic Colour Codes and Data Char
BP7 Radio \& Electronic Colour Codes and Data Chart
BPIO Modern Crystal and Transistor Set Circuits for Beginners
Second Bo
BP14 Second Book of Transistor Equivalents Home
Handbook of Electronic Circuits for the Ame
Photographer
18 Boys and Beginners Book of Practical Radio and 22 Electronics
BP22 79 Electronic Novelty Circuits
$\begin{array}{ll}\text { BP23 } & \text { First Book of Practical Electronic Projects } \\ \text { BP24 } & 52 \text { Projecrs Using IC741 (or equivalents) }\end{array}$
BP26 52 Projects Using IC741 (or equivalents)
BP27 Giant Chart of Radio Electronic Semiconductor and Logic Symbols
BP32 How Solid State Audio Hi-Fi Construction Projects BP34 Practical Repair \& Renovation of Colour TVs BP35 Handbook of IC Audio Preamplifier \& Power Amplifier Construction
BP36 50 Circuits Using Germanium, Silicon \& Zener Diades
BP37 50 Proiects Using Relays, SCR's and TRIACS BP37 50 Proiects Using Relays, SCR's and TRIAC
BP39 50 (FET) Field Effect Transistor Proiects
129 Universal Gram-motor Speed Indicator
160 Coil Design and Construction Manual
196 Radio, TV and Electronics Data Book Handbook of Integrated Circuits (ICs) Equivalents and Substitutes
05 First Book of Hi-Fi Loudspeaker Enclosures 3 Electronic Circuits for Model Railways Audio Enthusiasts Handbook
Electronic Gadgets and Games
Solid State Power Supply Handbook
Solid State Power Supply Hand
0 Build Your Own Solid State Hi-Fi and Audio Acces
Sold State Short Wave Receivers for Beginners 50 Projects Using IC CA3130
50 CMOS IC Projects
A Practical Introduction to Digital IC's How to Build Advanced Short. Wave Receivers RCC Resistor Colour Code Disc Calculato

THMRTSTS					
600mA TOI8 CASE			7 AMP TO48 CASE		
			Volts		
1020	No. ${ }^{\text {THY600/10 }}$	60. 15	50	THY7A/50	c0.48
	THY600/10 THY600/20	60.16	100	THY7A/100	40.51
$\begin{aligned} & 20 \\ & 30 \end{aligned}$	THY600/30	c0. 20	200	THY7A/200	60.57
50	THY600/50	¢0.22	400	THY7A/400	60.62
$\begin{aligned} & 100 \\ & 200 \end{aligned}$	THY600/100	60.25	600	THY7A/600	60.76
	THY600/200	c0. 38	800	THY7A/800	40.92
400	THY600/400				
			10 AMP TO48 CASE		
I AMP TOS CASE			Volts	No.	Price
				HYIOA/	
Volts50	No. ${ }_{\text {THYIA/50 }}$	Price	100	THY10A/100	60:57
		60.26	200	THY10A/200	60.62
$\begin{array}{r} 50 \\ 100 \end{array}$	THYIA/50 THY/A/100	60.28	400	THY 10A/400	60.71
$\begin{aligned} & 100 \\ & 200 \end{aligned}$	THYIA/200	c0. 32	600	THY10A/600	60.99
400600	THYIA/400	60.38	800	THY10A/800	41.22
	THYIA/600	40.58			
800	THYIA/800		16 AMP TO48 CASE		
			Volts	No	Price
3 AMP TO66 CASE			50	THY16A/50	60.54
Volts	AMP TO66 CA		100	Y6A	
	THY3A/50	Price	200	THY16A/200	60.62
$\begin{array}{r} 50 \\ 100 \end{array}$		20.38	400	THY16A/400	60.77
200	THY3A/200	¢0.33	800	THYI6A/800	¢1.38
400	THY3A/400	60:42			
800	THY3A/600THY3A/800	60.5060.65	30 AMP TO94 CASE		
			Volts	No.	Price
			50	THY30A/50	41.18
5 AMP TO66 CASE			100	THY30A/100	41.43
			200	THY30A/200	¢1. 63
Volts	No.	Price	400	THY30A/400	4. 79
50	THY5A/50	60.36	600	THY30A/600	43.50
100	THY5A/100	40.46			
200	THY5A/200	40.50	No. BTIOI/500R		
400	THY5A/400	60.57			60.80
600	THY5A/600	60.69	BT102/500R		60.80
800	THY5A/800	40.81	BTI 06		¢1. 25
			BTIO7		60.93
5 AMP TO220 CASE			BTI 08		40.98
			2N322		40.70
Volts	No.	Price	2 N 352		60. 77
400	THY5A/400P	40.57	BTX30	/50L	60.33
600	THY5A/600P	40.69	BTX30	/400L	40.46
800	THY5A/800P	40.81	C106/4		60.60

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED PLET FORGETTING TO INCLUDE OUR PART NUMBER

VAT

ADD $12 \frac{1}{2} \%$ TO PRICES MARKED *. ADD 8% TO OTHERS EXCEPTING THOSE MARKED t. THESE ARE ZERO RATED

POSTAGE AND PACKING
Add 25p for postage and packing unless otherwise shown. Add

SUPER UNTESTED PAKS

Pak		
No.	Qty.	Germ. gold banded OA47 diode
U51	150	Germ. OA70/81 diode
U52	100	Silicon diodes 200 mA OA200
U53	150	Diodes 75mA INA
U54	50	Sil rect top hat 750 mA
U55	20	Sil rect stud type 3
U56		400 mW zeners $\mathrm{DOT}^{\text {d }}$
457	30	NPN trans BC107/8 pla
$\begin{aligned} & \text { U58 } \\ & \text { U59 } \end{aligned}$		PNP trans BCI77/178 plast NPN TO 39 2N697/2N1711
U60	25	PNP TO59 2N2905 silicon
U61	30	NPN TOİ82N706
U62	25	NPN BFY50/51
U63	30	NPN plastic 2N3906 silicon
U64	30	PNP plastic 2N3905 silicon
U65	30	Germ. 0071 PNP
U66	15	Plastic power 2N3055 NPN
U67	10	TO3 metal 2N3055 NPN
U63	20	Unijunction trans TIS43
9	10	$1 \mathrm{amp} \mathrm{SCR} \mathrm{TO39}$
U70		3 mpP SCR TO66 ca

Order
No.
16130 16131 16131 $\begin{array}{ll}6132 & 80.60 \\ 16133 & 50.60\end{array}$

Manufacturer's 'Fall Outs" which include Functional and part-Functional Units. These are classed as "out-of-spec" from the maker's
very rigid specifications, but are ideal for learning about ICs and experimental work. $709,741,74$ U721-30 Assorted Linear Types 709, 741, 747, 748, 710,588 , etc.
ORDER No. 16227 *\&1-50 U76SD FM STEREO DECODER
5 ICs 76110 equivalent to MCI310P-MA767
Data supplied with pak.
ORDER No. 16229 WER OUTPUT *EI-50
U76A AUDIO POWER OUTPUT AMPLIFIERS
8 assorted types. SL403, 76013, 76003, ett.
Data supplied with
ORDER No. 16228

74 SERIES PAKS

Manufacturer's "Fall outs" which include Functional and part-Functional Units. These are classed as "out-of-spec" from the maker's very rigid specifications, but are ideal for learning 74G-100 Gates assorted 7400-01-04-10-50-60, etc. ORDER No. 16224
74F-50 Flip-Flops assorted 7470-72-73-74-76 104-109, etc. ORDER No. 16225 74M-30 MSI. Assorted Types. 7441-47-90-154, etc. \quad \& 1.20

VEROBOARDS PAKS
VBI_Approx. 30sq. in various sizes. All o-lin matrix.
ORDER No. 16199 VB2-Approx. 30sq. in various sizes. 0.15 in matrix.
ORDER No. 16200 60p

ELECTROLYTIC PAKS
A range of paks each containing 18 first quality, ECI-Values from 0.47 mF to 10 mF . ORDER No. 16201
EC2-Values from 10 mF to 100 mF .
ORDER No. 16202 mF to 680 mF *60p $\begin{array}{lr}\text { OR3-Values from } 100 \mathrm{mF} \text { to } 680 \mathrm{mF} \text {. } & 60 \mathrm{p} \\ \text { ORDER No. } 16203\end{array}$

C280 CAPACITOR PAK
75 Mullard C280 capacitors, mixed values ranging
from $0 \cdot 01 \mu \mathrm{~F}$ to $2 \cdot 2 \mu \mathrm{~F}$ complete with identification sheet.
ORDER No. 16204

CARBON RESISTOR PAKS

These paks contain a range of Carbon Resistors, assorted into the following groups:
ORDER 60 mixed $100-820$ ohms.
R2-60 mixed IW 1-8.2k
R3-60 mixed 16214 10-B2kS.
ORDER No. 16215
R4. 60 mixed $16100-820 \mathrm{k} \Omega$. $\quad * 60 \mathrm{p}$

ORDER No. 16217 *60p

R6-40 mixed iW $1-8 \cdot 2 \mathrm{k} \Omega$.
ORDER No. 16218
OR
R7-40 mixed iN $10-82 \mathrm{k} \Omega$. 460 p
ORDER No. 16219
R8_40 mixed $1 \mathrm{~W} 100-820 \mathrm{k} \Omega$.
ORDER No. 16220
R9-60 mixed tW 1 - $10 \mathrm{M} \Omega$.
R9-60 mixed tW $1-10 \mathrm{MR}$
ORDER No. $16231{ }^{\text {1-10M }}$.
ORp

WORLD SCOOP! JUMBO SEMICONDUCTOR PAK

Transistors, Germ: and Silicon Rectifiers, Diodes. Triacs, Thyristors, ICs 2 and Zeners.
Approx. 100 pieces. Offering the amateur a fantastic bargain PAK and an enormous savingidentification and data sheat in every pak. ORDER No. 16222
$62 \cdot 25$

Just a selection from our
huge stocks!

SEE OUR 1977 CATALOGUE

126 pages packed with
valuable information
ORDER NOW
ONLY 50p
plus 150 p

Dept. P.W.I, P.O., Box 6, Ware, Herts SHOP 18 BALDOCK STREET, WARE, HERTS AT: OPEN 9 to 5.30 Mon. $/$ Sat.

THE 'NUTS \& BOLTS' OF THOSE PROJECTS

NUTS AND BOLTS
BABOLTS-packs of BA threaded cadmlum-plated screws, slotted cheese head.

1
1
1
2
2
2

STANDARD MAINE Pilmary 240 V
Multi-tapped secondary mains transformers availabte in $\frac{1}{3}$ mmp, 1 amp and 2 amp current rating. Secendary thpa are
$0-19-25-33-40-50 \mathrm{~V}$.
Voltages avalabie by use of taps:
$4,7,8,10,14,15,17,19,25,31,33$
$4,7,8,10,14,15,17,19,25,31,33,40,50,25-0-25 \mathrm{~V}$

No.	Rating	Price	
2031	1 amp	63.42*	P. \& P. 30p
2032	1 amp	2.40*	P. \& P. 5 ¢p
2033	2 amp	c5.45*	P. 4 P. 83 P

AUDIO LEADS

$\mathbf{5 1 2 7} 5$ pin DIN plug to 4 phono plugs length $1 \cdot 5 \mathrm{~m} \quad £ 1 \cdot 30^{*}$ S128 5 pIn DIN plug to 5 pin DIN socket length 1.5 m £t.05* $\mathbf{S 1 2 9} 5 \mathrm{p}$ pin DIN plug to 5 pin DIN plug mifror image length
 S131 8 pin DIN plug to 3 pIn DIN plug 1 \& 4 and 3 a 5 length S132 2 pin DIN plug to 2 pin DIN aocket tength 10 m 24p*
 fength 1.5 m
S134 5 pln DIN plug to 2 phono socketa connected to pins 3
S135 5 pln DIN socket to 2 phono plugs connected to pln 3 \& S138 Colled stereo headphones extension cord extends to 7 m S124 3 pin DIN plug to 3 pin DIN plug length $1.5 \mathrm{~m} \quad 75$ p* S125 5 in DIN plug to 5 pin DIN plug length $1.5 \mathrm{~m} \quad$ 75p* Sil3 3.5 mm Jack to 3.5 mm Jack length $1.5 \mathrm{~m} \quad 75 \mathrm{p}^{*}$ S114 5 pin DiN plug to 3.5 mm dack connected to plas $\mathbf{3} \mathbf{4} \mathbf{4} 5$

G.P. SWITCHING TRANS.

TO18 SIM. TO 2N706/8
BSY27/28/95A. All usable devjces. No open and thorts.
 When orderlng please state NPN or PNP

SIL G.P. DIODES
300 mW 40 FIV (min) SUB-MIN
FULLY TESTED
30 for $50 \mathrm{p}, 100$ for $£ 1 \cdot 50,500$ for $£ 5,1,000$ for $\Sigma 5$

L.E.D.s				
Typen	Size	Orajer Mo.	Colaur	Price
TLL 209	$0 \cdot 1251 n$	1801	RED	12 p
TIL211	$0.1251 n$	1502	GREEN	25p
TIL213	$0 \cdot 1251 n$	1503	YELLOW	25p
FLV115	0.2 in	1504	RED	12P
FLV310	$0 \cdot 2 \mathrm{in}$	1505	GREEN	25 p
FLV4io	$0 \cdot 2 \mathrm{in}$	1506	YELLOW	25p

2nd Grade L.E.D.s

 A pack of 10 standard sizes and colours which fail to performto thelr very ridged specification; but which are ideal for experiments. 1507

	L.E.D. CLIPS	
$\text { Pack of } 5$ $\text { Pack of } 5$	Size $0 \cdot 125 i n$ 0.2 in	Order No. 1508/0. 125 1508/0. 2

EA WASHERS-ullat cadmlum plated plain stamped washers supplied in multiples of 100

$\begin{aligned} & \text { Type } \\ & 08 \mathrm{BA} \\ & \text { 2BA } \end{aligned}$	$\begin{aligned} & \text { No. } \\ & 860^{2} \\ & 880 \end{aligned}$	Price $40 \cdot 20$ co. 15	$\begin{aligned} & \text { Type } \\ & \text { 48A } \\ & \text { 6BA } \end{aligned}$	No. 861 862	$\begin{aligned} & \text { Price } \\ & 60.15 \\ & 60.42 \end{aligned}$
SOLDER TAEs-hot tinned supplied in mutiples of 100					
Type	No.	Price	Type	No.	Price
OBA	851	80.12	4BA	853	c0. 30
28A	859	¢0.36	6BA	154	c0. 30

ALUMINIUN BOXES. Made from bright all., foided construction each box complete with half inch evep lid and ecrewn

FUSE HOLDERS AND FUSES

Destription

${ }_{11}^{20 m m} \times 5 \mathrm{~mm}$ chassis mounting
1in x In chassis mounting
Panel car Inine type
Panel mounting 20 mm
Panel mounting 1 tin
QUICK BLDW 20 mm

QUICK BLDW 20 mm			
Type	No.	Type	No
150 mA	811	1 A	615
250 mA	612	1.5A	818
550 mA	613	2A	817
800 mA	614	2.5A	618
ANTI-SUREE 20 mm			
Type	No.	Type	No.
100 mA	622	1 A	625
250 mA	623	2 A	626
500 mA	624	$1.6 A_{A}$	$\begin{aligned} & 627 \\ & 7 \mathrm{p} \text { each } \end{aligned}$
Quick BLOW 4 tin			
Type	No.	Type	No.
Type	No.	Type	No.
1 A	635	2.5A	638
1.6A	636	3 A	639
2A	637	All 6	each

500
507
508
509
510

Pric Price

Positive Regulators TO220 ease MVR 7805
MVR 781212 V
Ef. 25
Negative Regulators Tozzo case
 1.85

MVR 782424 V \&i-25 MVR 7915 15V E1.

ORDERING

PLEASE WORD YOUR ORDERS EXACTLY AS PRINTED, NOT FORGETTING TO IN. CLUDE OUR PART NUMBER.

VAT
ADD $12 \frac{1}{2} \%$ TO PRICES MARKED*. ADD 8% TO OTHERS EXCEPTING THOSE MARKEDt. THESE ARE ZERO RATED

POSTAGE \& PACKING

Add 25p for postage and packing unless otherwise shown. Add extra for alrmall. Min. order £1.

EDITOR

Geoffrey Arnold

ASSISTANT EDITOR

Eric Dowdeswell G4AR

ART EDITOR

Peter Metalli

TECHNICAL EDITOR

Ted Parratt, BA
NEWS \& PRODUCTION EDITOR TECHNICAL ARTIST

Alan Martin
TECHNICAL SUB-EDITOR Frank Ogden

SECRETARIAL
Linda Walji
Belinda Mould

EDITORIAL OFFICES
Westover House, West Quay Road POOLE, Dorset BH15 1JG

ADVERTISING MANAGER

 01-261 5000Roy Smith

CLASSIFIED ADVERTISING 01-261 5762

Colin R. Brown

ADVERTISING OFFICES

King's Reach Tower, Stamford Street, London SE1 9LS

BINDERS

Binders, for either the old or the new format are $£ 2 \cdot 85$ and Indexes are 45p (inc VAT) and can be obtained from the Post Sales Department, IPC Magazines Ltd., Lavington House Lavington Street, London SE1 OPF. Remittances with overseas orders for binders should include 60 p to cover despatch and postage.

BACK NUMBERS

We are very glad to announce the re-establishment of a PW Back Numbers Service for our readers. In future back numbers dated from June 1977 only will be available from our Post Sales Department for 65p, which includes postage and packing. Cheques and Postal Orders should be made payable to IPC Magazines Ltd.
Send your orders to:- Post Sales Department, IPC Magazines Ltd., Lavington House, Lavington Street, London SE1 OPF.

A Logical Step?

,ICROPROCESSORS, as those of you who read our competitor magazines will know, are all the rage. As so often happens with modern developments in electronics (and, to a certain extent, in other fields) much thought has been devoted to finding new applications for this answer to all our problems.

The replacement of electro-mechanical control systems in things like cars, sewing machines, washing machines, etc., is a fairly logical step, giving great scope for improvement in reliability, and some reduction in cost. Other applications, such as the "computerised door-chime" reviewed last month, for things which were simply not practicable before, are also obviously valid.

When we get into the realm of the replacement of ranks of logic packages by a microprocessor and its memory, the advantages become more questionable. On a production line, considerable savings in assembly time are possible, though for the home constructor this is not quite so important. Systems can become more flexible, providing you can afford the memory required to store all the different programs-but what are you going, to use this flexibility for? For control systems in a space capsule, or for some of the newer and more interesting TV games, all well and good. But for domestic control systems, I wonder.
If you are talking about central-heating controllers, burglar and fire alarms and the like, most of the cost and complexity is in the input/output devices and the sensors and controls, and these remain the same, by and large, whatever form the central processing unit takes. The idea of one box of electronics in a house, controlling a multiplicity of appliances and systems, doesn't really seem to be the answer. Even some microprocessor experts are now admitting that a separate processor in each application is likely to be a better solution. So what price flexibility? Each appliance and system will contain a single microprocessor chip with the necessary memory built in, dedicated to that one purpose and incapable of doing anything else.
For these reasons, we do not think that microprocessors have much application for the home constructor as yet, though obviously they are of interest, especially for anyone also involved professionally in electronics. We will not be ignoring them; one thing for sure, they aren't going to go away. But what do you, our readers, think about the subject? We would love to hear.

Geoffrey Arnold

PLEASE NOTE

We do not operate a Technical Query Service except on matters concerning constructional articles published in PW. We do not supply service sheets or information on commercial radios, TV's or electronic equipment.
All queries must be accompanied by a stamped self-addressed envelope otherwise a reply cannot be guaranteed.

Catalogue with a Plus

Available now from Plustronics, is their latest catalogue containing all the gen on the latest range of portable radios, radio/cassette recorders, tape decks, headphones, in-car units, digital watches and electronic calculators.

Many of the products in the catalogue are listed under the "Plustron" brand name, including the recently announced MC1500 Music Centre, which is featured on the front cover. Other brand names handled by Plus-

tronics include Fair mate, Roxy, Aiko and Dansk.

For a copy of the Plustron catalogue which is called "A World of Entertainment", contact Plustronics Ltd., Hempstalls Lane, Newcastle, Staffs. ST5 0SW.
Tel: 0782615131 or call at their London Showroom at 235-241 Regent Street, London, W1.

Showtime

Aiwa, one of the fastest growing Japanese HiFi manufacturers have recently opened a new London Showroom. Growth of the company has continued since Aiwa were first marketed and distributed by Johnsons of Hendon, and continued growing when Aiwa decided to do their own marketing by opening up a new office,
warehouse and distribution complex at Leeds.
Well known for their pioneering work in the compact cassette market, Aiwa were first with such innovations as automatic cassette loading; oil-

damped ejection; full automatic stop; synchronised recording between cassette and turntable; and the first full HiFi music centre. Another 'First' by Aiwa, is a unique insurance scheme whereby the company offer, free of charge, insurance against fire, theft and accidental damage on every HiFi separate or music centre sold between November 1st 1977, and October 31st 1978. Insurance cover lasts for two years and costs purchaser absolutely nothing. The full range of Aiwa products can be seen, inspected, heard and whatever else you need to do, at the new showroom which is sited at the New Brunswick Shopping Precinct, a short step from Tottenham Court Road and an even shorter step from Russell Square tube station.
Aiwa Sales and Service (UK) Ltd., 56-58 Brunswick Centre in Bloomsbury, London WC1. Tel : 01-278 2081.

Stocking-up?

As the old saying goes "stock is as good as money", and by the look of the latest stock list published by Watford Electronics, they would appear to be potential millionaires considering the extensive and varied range of components included in the list. Now available to PW readers, this stock list contains just about everything for the electronic enthusiast, is clearly set out with components under headings and listed by
type number. Ratings, where applicable are also shown, together with the type of package and the cost per unit. As the list is about $210 \times 300 \mathrm{~mm}$, when ordering, please enclose an SAE.
Watford Electronics, 33 Cardiff Road, Watford, Herts. Tel: Watford 40588

Light work

A new family of Silicon Photovoltaic Cells are now available from National Semiconductors Ltd., and are accompanied by claims of good stability, high efficiency and excellent short circuit current linearity over wide ranges of illumination.

Available in TO18, TO5 and $\frac{1}{2}$ in diameter hermetically sealed packages these cells also feature low leakage currents of $10 \mu \mathrm{~A}$ max. when reversed biased by only 1.5 V , and fast response rates of typically $8 \mu \mathrm{~S}$. Operating temperature range extends from $-60^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
National Semiconductors Ltd., Stamford House, Stamford New Road, Altrincham, Cheshire. Tel: 061 928-3417.

Keep-il-clean!

You've heard what they do to old warships to stop the elements getting to them-they 'mothball' them. Although the 'Mothballing' material differs slightly, you can now protect your records in a similar manner, with a new product called 'Sound Guard'. Originally developed for NASA, as a dry lubricant for the moving parts of space craft, it can now be obtained in a Hi-Fi form which is sprayed onto the surface of records. When buffed up immediately following application it leaves a five-millionth-of-an-inch thinfilm solid lubricant of low shear strength bonded to the record groove. Other advantages are that while Sound Guard bonds to record surfaces, it will not bond to itself, so re-application will not cause a build-up of the coating. Also it contains an anti-static property, which all goes towards helping keep the groove clean and free from dust.

Marketed in the UK by Pyser Ltd. a $20 z$ bottle with a pump sprayer and buffer pad (sufficient for 25 LP's) costs around £4.99.

DIRECT CONVERSION

M.H.TOOLEY B.A.G8CKT

Short wave listening can be an interesting and absorbing pastime. High performance SSB/CW short wave receivers do however tend to be very complex and rather expensive; it is unfortunate that the complexity of a receiver which has all the desirable features can be somewhat daunting to anyone but the most experienced constructor.
The basic receiver described here covers the popular $20 \mathrm{~m}(14 \mathrm{MHz})$ amateur band. This band offers a considerable long distance (DX) potential. This project is equally suitable for the beginner who requires a simple yet effective design, and the experienced short wave listener who requires a second, highly portable receiver. The unit may also be used in conjunction with a 2 m converter having an intermediate frequency (IF) of 14 to 16 MHz . The receiver will then cover the bottom end of the 2 metre band (144.0 to $144 \cdot 4 \mathrm{MHz}$) in which there is a great deal of VHF signal sideband (SSB) activity. Component changes and circuit modifications are also provided for coverage of the other amateur bands between $3 \cdot 5 \mathrm{MHz}$ and 30 MHz .
Single band design makes for considerable simplicity as regards coil winding and calibration; it also avoids problems associated with multi-band construction. Furthermore, the direct conversion technique ensures that the receiver is less prone to spurious signals, such as image channel interference, which can often be a problem with conventional superheterodyne receivers using single conversion and a low intermediate frequency.
The receiver uses a minimum number of semiconductor devices and is assembled using a single printed circuit board. The receiver may be built for a modest outlay of around $£ 10$ to $£ 13$ and alignment can readily be carried out using a signal generator or a second receiver.

Why direct conversion?

The vast majority of amateur activity in the HF bands is either single sideband (SSB) or morse (CW). Conventional receiver designs fall into two main categories. These are tuned radio frequency (TRF) and supersonic heterodyne (superhet). TRF receivers are relatively insensitive and unselective and thus some form of regeneration is needed. A TRF receiver cannot receive SSB or CW signals unless the regeneration is increased to a level which allows the receiver to oscillate continuously. This arrangement lacks frequency stability. The level of regeneration must also be frequently varied according to the strength of the incoming signal.
Superhet receivers, although selective and sensitive, tend to be complex and difficult to align. Further-

more, if SSB or CW signals are to be received using a superhet, it is necessary to incorporate a beat frequency oscillator (BFO) stage and a suitable detector.

The direct conversion receiver is halfway between a TRF receiver and a superhet. The incoming signal is mixed with a local oscillator signal operating on the same frequency. This should be clearly distinguished from the arrangement in a superhet where the local oscillator and signal frequencies differ by an amount equal to the intermediate frequency of the receiver. Thus the direct conversion receiver can be thought of as a superhet receiver with zero intermediate frequency. This may sound rather odd but it simply means that the incoming signal mixes with the local oscillator signal to produce an audible beat frequency. When SSB signals are to be received, the local oscillator is tuned to exactly coincide with the incoming carrier frequency. The result is correctly demodulated audio regardless of whether upper or lower sideband is being used. When a CW signal is to be received, the local oscillator is tuned to a very slightly different frequency from that of the incoming carrier.

Fig. 1: Block diagram of simplest direct conversion receiver.

Fig. 2: Block diagram of circuit used in this receiver.

Thus the CW signal is converted to a beat note within the audio frequency range.

The basic form of direct conversion receiver is shown in Fig. 1. This incorporates a separate local oscillator stage. A worthwhile improvement in sensitivity can be achieved by the addition of a radio frequency amplifier stage. This offers the further advantage of providing a degree of isolation between the local oscillator stage and the aerial, thus helping to minimise the amount of local oscillator radiation from the receiver. The block schematic of the receiver is shown in Fig. 2. The AF amplifier has a tailored frequency response and is important in setting the selectivity characteristic of the receiver.

Balanced Detector

There is nothing new in the concept of a receiver which uses a phase synchronous detector. The technique is used in both colour TV receivers and in stereo decoders. In order to provide best results, the local oscillator (or reference) should be phase locked to the incoming signal carrier. This is necessary for the reception of AM signals where even a small phase error can be disconcerting due to the presence of an audio image which is unavoidable when a double sideband signal is demodulated. In advanced receivers, a frequency reference is derived from the signal by means of a threshold gate and PLL but this is not necessary for reception of single sideband and CW signals. Furthermore, provided that the detector exhibits a high degree of linearity, the selectivity of the receiver is determined solely by the frequency response of the audio stages. This eliminates IF filters which are found in superhet receivers.

Fig. 3 : Balanced detector circuit.
The simplified circuit of the balanced detector is shown in Fig. 3. It should be noted that, in practice, the reference provides a much greater voltage than that of the signal applied to the detector. D1 and D2 are effectively alternately switched "on" and "off"
at the frequency of the reference oscillator. D2 conducts on positive going half cycles and D1 on negative half cycles. R_{s} represents the source impedance of the reference oscillator circuit amounting to a few hundred ohms. T_{1} provides signal voltages which are supplied to D1 and D2 in antiphase. C_{1} is chosen so that it has negligible reactance at the reference frequency and a very high reactance at audio frequency and thus behaves as a high pass filter. L_{1} and C_{2} form a low pass filter preventing both the reference output and signal input from reaching the audio stages.

Fig. 4: The upper trace shows SSB signal 100% modulated by a square wave. Note the phase reversals. Without the reference carrier inserted by the receiver local oscillator (middle trace) speech would be received at double the natural frequency and hopelessly distorted. Square wave modulated SSB signals would not be resolved in any form. The lower trace depicts the recovered modulation from the upper trace.

When the signal and reference voltages are in phase, the balance of the detector is preserved and the output voltage after the low pass filter is zero. When a constant phase error exists between the signal and reference voltages the detector no longer remains balanced and a constant DC output voltage is produced. This may be positive or negative depending on the relative phase. When the phase error is not constant but changing, a corresponding alternating output voltage will be produced. Finally, if the signal and reference voltages differ by a constant frequency, say 1 kHz , an audio signal is produced at this frequency. Fig. 4 shows a 100% modulated SSB signal applied to the detector.

Circuit description

A dual gate FET is used as the RF amplifier. The gain of the stage is made variable by adjusting the bias voltage applied to gate-2 of the transistor. The input tuned circuit, $\mathrm{L} 1 / \mathrm{Cl}$, is damped by means of

Fig. 5: Circuit diagram.

R13 to broadly tune to the 14 MHz band. Its " Q " is however kept sufficiently high in order to reduce strong out of band signals. The RF stage is followed by a balanced detector arrangement using two germanium diodes, D1 and D2. Coupling from the RF amplifier stage to the detector is via a broadband transformer arrangement with damping provided by R4. Adjustment of the balance of the detector stage is provided by RV1. This compensates for any variation in the characteristics of the two diodes and is adjusted for maximum rejection of breakthrough from strong amplitude modulated signals which may otherwise be demodulated in a conventional manner.
The local oscillator uses a junction gate field effect transistor. Silicon diode, D3, provides automatic negative bias for the gate of the transistor. The supply voltage for the oscillator is stabilised by means of the zener diode, D4. The complete circuit diagram is shown in Fig. 5. The oscillator frequency is varied by means of VC1. The initial adjustment of operating frequency is carried out by means of the ferrite dust core of L2.
The demodulated audio signal is passed to the AF pre-amplifier. RFC2 and C11 operate as a low pass filter. C12 and C13 are used to define the operating frequency range of the pre-amplifier stage, Tr3. The audio power amplifier stage is straightforward and uses an LM380. It produces ample output from a 6 V supply.

Construction and layout

With the exception of the controls, VRI, VR2, VCl and S1, the battery holder and sockets SK1, all components are mounted on a printed circuit board. The component layout is fairly important and the use of a printed circuit board is highly recommended. Other forms of construction (matrix board, Veroboard or point-to-point wiring) may give rise to poor performance or instability unless great care is taken. Where a printed circuit board is not used, a good common earth connection to all parts of the circuit is essential.
The input circuit, comprising L1 and associated
components, must be screened from the rest of the circuit. This is accomplished by using a small piece of 20 SWG tinplate cut out and bent as shown in Fig. 6. The printed circuit board (copperside) is

Dimensions in mm
Fig. 6: This screen is essential for good stability,
shown in Fig. 7, the corresponding component overlay is shown in Fig. 8.

Care should be taken to keep all the internal connecting leads short. The leads to the volume control, VR2, should be screened. The loudspeaker is mounted on the lid of the case and, when the lid is in place, care should be taken not to trail the loudspeaker leads across the circuit board. The aerial and converter input socket, SK1, is mounted on the rear panel of the chassis. The tuning capacitor, VC1, is mounted on a small aluminium bracket. The bracket is secured to the front panel of the receiver by means of the same two screws and nuts which retain a vernier drive mechanism. The "live" connection from VC1 to L2 on the printed circuit board should be made using stiff wire, preferably 18 or 20 SWG; this helps improve the frequency stability. The earth tag of VCl is returned to the common rail on the printed circuit board by means of a short length of copper braid. The outer conductor removed from a short length of 50 ohm or 75 ohm coaxial cable is ideal for this purpose. The lid of the case should also be earthed to the common rail. This prevents hand capacitance effects.
In the prototype, the printed circuit board is held in place by means of four 25 mm spacers which are

Fig. 7: The printed circuit board shown copper side. People are strongly recommended to use this board layout having been developed and checked with several prototypes. Board's may be obtained from the Readers' PCB Service (0658) if required, quoting Ref. D043. The price is $£ 1 \cdot 85+15 p \rho \& p$

Fig. 8: The PCB overlay 'showing component locations.
secured to the bottom of the chassis by countersunk screws. The battery holder is made from suitably bent aluminium and then lined with a strip of foam rubber. The battery holder fastens to the back of the case by two nuts and bolts.

Coil winding details

Both coils, L1 and L2, are wound on 7 mm diameter coil formers fitted with dust cores. L1 comprises a main tuned winding of 20 turns of 26 SWG enamelled copper wire closewound with an aerial winding of 4 turns 30 SWG enamelled copper wire as in Fig. 9a. A thin layer of PVC tape is used to hold the main tuned winding in place while the aerial winding is completed.

L2 consists of a single tuned winding of 24 turns of

(a) L1

Fig. 9: Coil winding details for L1 and $L 2$.
(b) L 2

26 SWG enamelled copper wire closewound as in Fig. 9b. After winding, both coils are liberally coated with a quick setting epoxy resin adhesive. This seals the winding in place and provides a very effective protective coating.

Fig. 10: Details of detector transformer (see text).
The interstage coupling transformer is wound according to Fig. 10. The transformer is wound on a miniature ferrite ring of approximate diameter 12 mm . The drain winding (primary) consists of 10 turns 30 SWG enamelled copper wire. The mixer winding (secondary) consists of 5 turns 30 SWG enamelled copper wire. The transformer is similarly sealed with quick setting epoxy resin adhesive. If a ferrite ring is not available, the transformer may be wound using a $17 \mathrm{~mm} \times 8 \mathrm{~mm}$ diameter dust core. The

thread on the core facilitates a guide in which the transformer may be wound. The drain winding (primary) consists of 12 turns 26 SWG enamelled copper wire. The mixer (secondary) consists of 6 turns of 30 SWG overwound in the centre of the core. The transformer should be sealed with quick setting epoxy adhesive. The performance of the receiver is slightly better when a ferrite ring is used for the interstage transformer.

components

Resistors	
R1	$10 \mathrm{k} \Omega$
R2	$33 \mathrm{k} \Omega$
R3	330Ω
R4	$2 \cdot 2 \mathrm{k} \Omega$
R5	470Ω
R6	$47 \mathrm{k} \Omega$
R7	330Ω
R8	$10 \mathrm{k} \Omega$
R9	$1 \mathrm{M} \Omega$
R10	$3 \cdot 3 \mathrm{k} \Omega$
R11 $1 \mathrm{k} \Omega$	
R12 $22 \mathrm{k} \Omega$	
R13	$10 \mathrm{k} \Omega$
All $\frac{1}{4} \mathrm{~W} 5 \%$	carbon

Capacitors
C1 47pF
C2 10nF
C3 100nF
C4 100 nF
C5 47 pF silvered mica
C6 68pF
C7 100pF
C8 10nF
C9 220pF
C10 470pF
C11 22nF
C12 100pF
C13 $1 \mu \mathrm{~F} 63 \mathrm{~V}$
C14 $100 \mu \mathrm{~F} 10 \mathrm{~V}$
C15 $1 \mu \mathrm{~F} 63 \mathrm{~V}$
C16 1000pF
C17 100nF
C18 $100 \mu \mathrm{~F} 10 \mathrm{~V}$
C19 $\mathbf{1 0 0} \mu \mathrm{F} 10 \mathrm{~V}$
Semiconductors
Tr1 40673
Tr2 2N3819
Tr3 BC108
IC1 LM380N
D1 OA90
D2 OA90
D3 1 N4148
D4 BZY88 C3V9
Potentiometers
VR1 $10 \mathrm{k} \Omega$ lin
VR2 $5 \mathrm{k} \Omega \mathrm{log}$
VR3 $5 \mathrm{k} \Omega$ preset
Miscellaneous
VC1 15 pF Jackson type C804. S1 SPDT miniature toggle switch. RFC1, RFC2 1 mH RF chokes. T1 miniature ferrite ring or dust core, two coil formers 7 mm diameter fitted with dust cores, vernier dia, 50 mm , loudspeaker $50 \mathrm{~mm} 8 \Omega \frac{1}{3} \mathrm{~W}$. Case $127 \mathrm{~mm} \times 152 \mathrm{~mm} \times 89 \mathrm{~mm}$, 14 pin low profile dual-in-line IC socket, battery holder for $4 \times$ HP7 1.5 V cells plus snap connector to suit. Knobs. Mounting pillars. Double sided push fit pins. Coax socket for aerial and jack socket for 'phones.

Initial checks and alignment

After completing the wiring and assembly of the receiver, a careful visual check should be made for any faults. A 6V battery ($4 \times \mathrm{HP} 7$) should be connected and the current consumption measured. If the receiver is working correctly, the supply current should be approximately 12 mA . A slight variation should be noticed when the RF Gain control, VR1, is adjusted.
Alignment of the receiver can be carried out by using either an RF signal generator or an existing short wave receiver. The signal generator should be set for an unmodulated output at 14 MHz . The tuning capacitor, VC1, should be set to maximum capacitance. L2 should then be varied until a beat note is heard. Carefully adjust L2 for zero beat (ie: the apparently dead spot at the centre of the two ranges in which an audible beat is heard). Note that it should not be necessary to have the signal generator directly coupled to the receiver for this purpose. Stray coupling, using a short throw-out aerial, should be sufficient to produce a strong beat signal. After locating the zero beat position corresponding to $14 \cdot 0 \mathrm{MHz}$, re-set VC1 to minimum capacitance. Vary the signal generator frequency until a zero beat is found and note the new frequency. This will be approximately $14 \cdot 4 \mathrm{MHz}$; it should extend to $14 \cdot 35 \mathrm{MHz}$ if the whole of the 20 metre band is to be covered.
To align the RF amplifier stage, adjust L1. Switch the signal generator to give a modulated carrier at $14 \cdot 2 \mathrm{MHz}$ but leave the setting of VC1 at minimum capacitance (do not search for a beat note). A tone should be heard in the receiver's loudspeaker. If this is not the case, increase t^{3} e output level of the signal generator accordingly. Note that the tone should not vary in frequency as VC1 is adjusted. Now adjust L1 for maximum loudspeaker output. If necessary, reduce the output level of the signal generator as resonance is approached. Finally adjust VR3 for minimum output-it should be possible to null the tone out almost completely. The alignment procedure should be repeated once again after which the cores of L1 and L2 should be sealed. An antenna may then be connected to the receiver and its "on-air" performance can be checked.

Where a signal generator is not available, the frequency of the local oscillator can be set using a calibrated receiver. The receiver should be set to $14 \cdot 0 \mathrm{MHz}$ and VC1 adjusted to maximum capacitance. L2 is then adjusted until a strong signal is heard in the main receiver, this will of course appear as an unmodulated carrier. The two receivers should be in fairly close proximity for this purpose and, if necessary, a short length of wire can be used to link the two aerial sockets so that sufficient coupling of the local oscillator signal is obtained. If more than one signal is heard on the main receiver (corresponding to two different positions of the core of L2) make sure that the stronger of the two is selected. This phenomenon is due to the image channel of the main receiver. Re-set VC1 to minimum capacitance and find the new local oscillator frequency by re-tuning the main receiver. This should be above 14.35 MHz . Next connect an aerial to the unit and adjust VC1 to a signal which is fairly strong and continuous. A teleprinter signal is ideal for this purpose. Carefully adjust Ll for maximum output from the loudspeaker. If necessary, reduce the RF gain control accordingly. VR3 should be set to mid-position, but if break-
through from strong amplitude modulated broadcast signals on adjacent frequencies is subsequently experienced, the pre-set should be adjusted for a null to minimise the effect.
If the local oscillator frequency coverage is found to be too low even after adjustment of L2, C5 should be replaced by a 33 pF silver mica capacitor. If the local oscillator frequency coverage is found to be too high, C5 should be similarly replaced by a 68 pF silver mica capacitor or alternatively a 15 pF silver mica capacitor can be wired directly in parallel with VCI.

If adequate screening is not used between the oscillator and RF circuits, a form of RF instability may occur. This is due to local oscillator radiation entering the RF amplifier and may only manifest itself when the RF gain control is turned fully up. Detuning L1 will usually cure this problem; however, the best solution is to ensure that a screen is fitted and that the lid of the case is adequately earthed (this is usually accomplished by the four securing screws).

Should audio frequency instability be noticed, particularly when not using the recommended printed circuit layout, a 100 nF miniature polyester capacitor in series with a $4 \cdot 70 \mathrm{ohm}{ }^{1}{ }_{4} \mathrm{~W}$ carbon resistor should be wired directly between pin 8 and the integrated circuit holder and the common earth rail. Also, when not using a printed circuit board, C19 should be wired as closely as possible between pin 14 of the integrated circuit holder and the common earth rail.
Instability may also occur which manifests itself as a howling at maximum gain settings when headphones are being used. This can be cured by using an RF choke, consisting of 6 turns 30 SWG (or 8 turns 26 SWG on a ferrite ring) wired directly between the loudspeaker output on the PCB and the headphone jack socket, SK4. However, few problems should be experienced if the recommended layout and printed circuit board is used.

Using the receiver

The performance of any short wave receiver depends greatly on the quality of the aerial system with which it is to be used and on the expertise of the user. This design gives acceptable results with a short "throw-out" aerial (15 ft of flexible wire is ideal for this purpose). A good earth may improve performance further. If a dipole is available (this should be approximately 33 ft in length and fed in the centre) results should be excellent.
Tuning an SSB receiver often presents difficulties to the uninitiated. The newcomer to short wave listening will however find that his ability to resolve SSB signals will improve considerably with practice. The

signal needs to be slowly tuned through until the speech appears normal. An incorrectly tuned signal will make you think that you are listening to Donald Duck. This is, of course, due to a shift in the frequencies of the speech components. With a little practice, the correct tuning point will easily be found. When incoming signals are very strong, the RF gain control should be backed off. This will assist in resolving signals.

In the first few days of use, and with a very modest aerial, over twenty countries were logged with the receiver. These included DK, EA, EI, F, G, GW, HB, I, K, OE, ON, PA, SM, UA, UB, VE, W, YU. Propagation conditions on 20 metres vary considerably during the day and night. Seasonal variations are also noticeable. Thus do not expect instant long distance (DX) reception! A few days listening will soon tell constructors when and where to listen.
This simple receiver was developed with low cost and portability in mind. It will not outperform a complex communications receiver. However, when used with an efficient aerial system, it gives an extremely good account of itself.

appendix

Table of component changes for alternative frequency coverage
RF TUNED CIRCUIT

\left.| Band | Turns on L1 | | | Cl |
| :---: | :---: | :---: | :---: | :---: |
| | sec. | SWG | pri. | |$\right]$

Fig. 11: Oscillator circuit modification for lower frequencies (see note below).

OSCILLATOR TUNED CIRCUIT

Band	Turns on L2 SWG	$\mathrm{VC1}$	C5
$3 \cdot 5-3 \cdot 8 \mathrm{MHz}$	30^{*} see note 30	100 pF	220pF
7.0-7.1 MHz	22 *see note 26	15 pF	100 pF
$21 \cdot 0-21 \cdot 5 \mathrm{MHz}$	1626	15 pF	47 pF
$28 \cdot 0-30 \cdot 0 \mathrm{MHz}$	$10 \quad 26$	15 pF	47pF

*Note: Use modified circuit for oscillator shown in Fig. 11. Also increase the primary turns on T1 to 20 (30 swg) and secondary to 15 turns (30 swg). The use of a ferrite ring as the core of T1 is strongly recommended for the $3 \cdot 5 \mathrm{MHz}$ and 7 MHz bands.

Issue	Project	Ref	Price P/P	
Dec 75	Sound-To-Light Display	DN0798	1-15+12	\square
Dec 75	Disco System, Amp. (2 req'd) each	'd) each AM0421	$4 \cdot 40+22$	\square
Dec 75	Disco System, Light Modulator	lator AM0423	$3 \cdot 50+22$	\square
Mar 76	CMOS Crystal Calibrator	AM0438	$1 \cdot 19+12$	\square
Apr 76	Wobbulator	AM0443	$1 \cdot 08+12$	\square
Apr 76	Auto. Slide Synchroniser A	AM0441	$2 \cdot 33+15$	\square
June 76	Dig. Freq. Meter (set of 5) A015 and 4	A015 and 4x A004	$3 \cdot 17+15$	\square
July 76	Transistor Tester	A002	$3 \cdot 08+18$	\square
July 76	Disco Preamplifier	A003	$0 \cdot 65+12$	\square
Aug 76	Cassette Player Power Supply	pply A001	$0 \cdot 65+12$	\square
Sep 76	Capacitance Meter	A009	$2 \cdot 59+14$	\square
Oct 76	Digital Car Clock (set) A011/	A011/012/013	$2 \cdot 58+12$	\square
Oct 76	Interwipe	DN8JM	$0 \cdot 80+12$	\square
Oct 76	Video-Writer (set) D002/3/4/	D002/3/4/6 A007	$21 \cdot 44+50$	\square
Oct 76	Hazard Flasher	D005	$0 \cdot 76+12$	\square
Nov 76	Low Level Battery Indicator	r A016	$0 \cdot 40+12$	\square
Nov 76	Electronic Thermostat	A017	$1 \cdot 30+12$	\square
Nov 76	Cirtest Probe	A018	$0 \cdot 48+12$	\square
Nov 76	Burglar Alarm	A019	$0 \cdot 50+12$	\square
Dec 76	Chromachase	A021	5-70+22	\square
Jan 77	Oscilloscope Calibrator	A023	$1 \cdot 25+12$	\square
Jan 77	Icelert	A020	$1 \cdot 45+12$	\square
Jan 77	Polyphon, motor and main boards	boards A025/4	$7 \cdot 90+20$	\square
	Polyphon, tune disc blank, (SRBP)	(SRBP) A008*	$0 \cdot 90+15$	\square
Feb 77	Transistor Checker	A026	1-18+12	\square
Mar 77	FM Stereo Touch Tuner D	D023/4/5	$7 \cdot 50+20$	\square
Apr 77	Tug 'o' War (set) A	A029/030	$2 \cdot 88+12$	\square
Apr 77	Gas/Smoke Sensor Alarm	A028	$0 \cdot 65+12$	\square
May 77	2-Way Intercom	D019	$1 \cdot 28+12$	\square
May 77	Protected Battery Charger	A027	$2 \cdot 38+12$	\square
May 77	Seekit Metal Locator	A031	$3 \cdot 38+12$	\square
June 77	Reverberation Amplifier	A032	$2 \cdot 38+12$	\square
June 77	Versatile AF Generator	A033	$2 \cdot 38+12$	\square
June 77	Tele-Games	D029	$3 \cdot 22+18$	\square
July 77	20W IC Amplifier	A034	$1 \cdot 38+12$	\square
July 77	Radio 2 Tuner	A035	$1 \cdot 68+12$	\square
July 77	Digital Clock Timer	A036	$3 \cdot 28+12$	\square
Aug 77	Shoot (Telegames)	D035	1-55+15	\square
Aug 77	Atomic Time Receiver	D036	$2 \cdot 65+15$	\square
Aug 77	Morse Code Tutor Cards (SRBP)	SRBP) A037	$4 \cdot 75+15$	\square
Sept 77	Jubilee Electronic Organ	A038	$19 \cdot 00+75$	\square
Sept 77	Electronic Car Voltage Regulator	ulator D037	$1 \cdot 25+12$	\square
Oct 77	Audio Level Indicator	D039	$0.98+12$	\square
Oct 77	Sine-Square Wave Generator	or D040	$2 \cdot 35+15$	\square
Nov 77	Laboratory Power Supply	A039	$3 \cdot 50+12$	
Jan 78	Proportional Power Controller D	ller DN9JM	$0 \cdot 78+12$	
Post and packing is for one board or set of boards. Prices include VAT. Remittances with overseas orders must be sufficient to cover despatch by sea or air mail as required.				
1 enclose Postal Order/Cheque ACCESS welcome.				
No...................... Send card number only, for £........... made payable to READERS PCB SERVICES LTD				
NAME				
ADDRESS				
... Post Code.............				
Any correspondence concerning this service must be addressed to READERS PCB SERVICES and not to the Editorial offices.				

So you want to pass the R.A.E. (Radio Amateur's'rxamination) 2 *

John ThorntonLawrence GW3JGA \& Ken McCoy GW8CMY

Before we consider the behaviour of alternating current and voltage in circuits containing inductors and capacitors, we will have a look at the phenomenon of capacitance.

Capacitance

If we place two metal plates close to one another and separate them with a piece of insulating material, we have an arrangement which will store electricity in the form of a charge. The capacitance of the arrangement depends on a number of factors:-
i. Area of the plates
ii. Distance between the plates
iii. The nature of the insulating material occupying the space between the plates (specifically the Dielectric Constant or relative permittivity)
The unit of capacitance is the farad-an uncommonly large unit for the purposes we require-so that the values found in radio work are micro-farads (10^{-6}), nanofarads (10^{-9}) and picofarads (10^{-12}).

Dielectric Constant

If we measure the value of capacitance of two metal plates, separated by a certain insulating material, and repeat the measurement keeping area of plates and distance apart the same but having a vacuum separating them, then the ratio between the two values of capacitance will be equal to the dielectric constant of the insulating material. This constant is usually denoted by the letter K and the capacitance of a capacitor is given by the relationship:- C is proportional to $\frac{K A}{d}$, where A is the area of the plates and d the spacing between them.
A capacitor is classified by the material used as the dielectric and the table below shows some types of dielectric used together with their dielectric constants.

Material	Dielectric Constant
$\overline{\text { Air }}$	1-
Dry paper	2.5 approx
Polyester	5 approx
Mica	5-7 approx
Aluminium oxide (electrolytic)	7.5 approx
Ceramic (Lo K)	up to 20
Ceramic (Hi K)	up to 10,000

The Dielectric Strength is the voltage at which the dielectric breaks down and this and its thickness determines the maximum safe working voltage which may be applied to the capacitor.

Capacitor Ratings

The two most important practical ratings of a capacitor are its capacitance and its working voltage
and these are almost invariably marked on the capacitor. The required value of capacitance depends on the purpose for which it will be used and the voltage rating on the maximum voltage that will be present across the capacitor under all operating conditions.

The required accuracy or tolerance of the capacitance value depends on how critical the circuit is to this. For example, the capacitance of an electrolytic capacitor, providing the smoothing in a power supply, could be greater or less by 20 per cent of its stated value without causing any significant change in performance, but a silvered mica capacitor in the oscillator tuning circuit of a communication receiver would cause serious tuning errors if its value was in error by this amount. In some applications therefore, the tolerance is also an important factor.

There are other factors too, such as insulation resistance, temperature stability, physical size, etc., which affect the suitability of a particular type of capacitor for a particular use.

Air Dielectric Capacitors

These are usually in the form of variable capacity tuning capacitors having a set of fixed plates with a set of moving plates that swing into mesh between the fixed plates. This enables the effective area of the plates, and so the capacitance, to be varied.

Air dielectric tuning capacitors for use in receivers, where the maximum voltage may be only a few volts, can have very close spacing between the plates, but types for use in transmitters where high voltages are present, must have significantly greater spacing to avoid voltage breakdown or flashover. The breakdown voltage of air is about $25,000 \mathrm{~V} / \mathrm{cm}$ and the spacing between the plates of a tuning capacitor for a receiver would be about 0.2 mm (mainly limited by the mechanical accuracy) and for a 150 W HF transmitter about 1.5 mm .

Mica Capacitors

The mica capacitor uses thin sheets of mica as the dielectric and offers the best electrical properties possible but for a given capacity it tends to be large and fairly expensive. Mica is a very stable material naturally, after all it has been lying in the ground stabilising for millions of years, so the capacitor using it as a dielectric will also have excellent stability. The mica capacitor is therefore, ideal for use in tuning or other critical circuits.
The silvered mica capacitor has the electrodes deposited as a film of silver on the surfaces of the mica and so enables very thin blades of mica to be used. The blades are stacked with interconnecting foils and are then clamped or riveted together which gives them their characteristically flat "postage stamp" shape. Silvered mica capacitors are available in values from 1 pF to about $10,000 \mathrm{pF}$ and usually
have a voltage rating of 250 to 500 V although higher voltage ratings are available for use in transmitters. They are very suitable for use in RF tuned circuits up to several hundred MHz and will carry appreciable RF currents in transmitter applications.

Some "compression type" trimmer capacitors use mica as a dielectric and in these the mica is sandwiched between spring foil electrodes. The capacitance is varied by squashing the sandwich with an adjusting screw and so changing the dielectric from partly air and partly mica to just mica. These capacitors, which were once seen only in radio receivers are now being used in transistor VHF and UHF transmitters where their very low inductance and low losses make them ideal.

Ceramic Capacitors

Ceramic capacitors are made in various forms, the most popular being the tubular and disc types. The tubular type consists of a small ceramic tube which has silver deposited on the inside and outside surfaces, the capacitance being determined by the area of the surface, the tube wall thickness and the ceramic dielectric constant. The disc type consists of a flat disc of ceramic with silver deposited on each side of the disc. Ceramic dielectric material can be made to have particular characteristics by adjusting the proportions of the ingredients.

The low K ceramic material usually used in the tubular capacitors provides good stability with a fairly low and a predictable temperature coefficient (change of capacitance with temperature) so that in some circumstances they can be used with advantage in a tuned circuit to compensate for the opposite temperature effects in other components in the circuit. Their small physical size and low inductance makes them suitable for use in receivers and low power circuits in the VHF and UHF range.
Tubular ceramic capacitors are also made in a lead-through form for decoupling supplies passing through a screening box or plate and they have a soldering flange or screwed bush for mounting Variable tubular ceramic capacitors have the internal silvering replaced by a concentric adjusting screw and these are suitable for operation up to several hundred megahertz.
Disc ceramic capacitors are usually of the Hi K ceramic type and have the advantage of very high capacity with small physical size and very low inductance. Hi K ceramic material has a high temperature coefficient which makes these capacitors unstable in value and so unsuitable for use in tuned circuits. They suffer from losses at high frequencies but can be used successfully in bypass and decoupling applications up to $1,000 \mathrm{MHz}$.

Wound Capacitors

Polystyrene, polyester, polycarbonate and paper capacitors are made by winding two strips of metal foil into a roll, insulated by two strips of dielectric film or paper. Connection strips or edges are brought out to form suitable lead-out connections. Polystyrene is a high-grade dielectric having characteristics approaching those of mica; polystyrene capacitors are used in LF, MF and HF circuits where stability is important. Polyester and polycarbonate capacitors are suitable for most LF and MF applications up to a few MHz . Paper capacitors are mainly used in LF applications and for high voltage power supply use where
working voltages up to several thousand volts are available. Capacitors of this type are usually hermetically sealed in a can with special high voltage terminals.

Polystyrene capacitors are available in values from 10 pF to $1 \mu \mathrm{~F}$ and polyester, polycarbonate and paper capacitors from $1,000 \mathrm{pF}$ to $10 \mu \mathrm{~F}$ approximately.

Now follows the last major theoretical section, but a very important one, leading up to the resonant tuned circuit, an essential part of every transmitter and receiver.

Inductors and Capacitors in series and parallel

(i) Inductors (not mutually coupled)

Series

$$
\mathrm{L}_{\text {total }}=\mathrm{L}_{1}+\mathrm{L}_{2}
$$

Parallel

$$
\frac{1}{\mathrm{~L}_{\text {total }}}=\frac{1}{\mathrm{~L}_{1}}+\frac{1}{\mathrm{~L}_{2}} \text { or } \mathrm{L}_{\text {total }}=\frac{\mathrm{L}_{1} \mathrm{~L}_{2}}{\mathrm{~L}_{1}+\mathrm{L}_{2}}
$$

W567
Fig. 20 : Inductors in series.

Fig. 21 : Inductors in parallel.

The arithmetic is the same as for resistors, in series they add and in parallel the total value is less than the smallest. Whereas for capacitors it is just the opposite, as shown below.

(ii) Capacitors

Series

$$
\frac{1}{C_{\text {total }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}
$$

Parallel

$$
\mathrm{C}_{\text {total }}=\mathrm{C}_{1}+\mathrm{C}_{2}
$$

W569

Fig. 22: Capacitors in series.
Fig. 23 : Capacitors in parallel.

In parallel they add and in series the total value is less than the smallest. We are now in a position to look at the behaviour of resistors, capacitors and inductors in circuits where alternating currents are flowing.

AC Circuits

Resistors in an AC Circuit.

In this case both voltage and current are "in phase" with one another, i.e. they both reach maximum or minimum values at the same instant of time. When calculating current and voltage, the r.m.s. values are used, thus $I_{r m s}=V_{r m s} / R$

Fig. 24: The voltage and current in a resistive circuit are in phase.

Capacitors in an AC circuit (Capacitive Reactance).

When an alternating current is applied to a capacitor it will charge it, first in one direction and then in the other. The maximum current will be flowing in or out of the capacitor when the applied voltage is changing most rapidly (i.e. as it goes through zero volts) and the current will fall to zero when either peak of the cycle has been reached and the voltage is virtually steady for an instant.

Since the current is at a peak I_{4} cycle before the voltage it is said to "lead" the applied voltage by 90° (one full cycle being 360°-see section on sine waves). The energy which is stored in the capacitor during the ${ }^{1} 4$ cycle charging period is returned to the circuit in the following ${ }_{4}$ cycle. The current flowing is known as Wattless Current as no power is dissipated in the conventional I ${ }^{2}$ R sense.

W572

Fig. 25: In a capacitive circuit, the current which flows leads the applied voltage by 90°.

If the relationship between voltage and current is investigated, the frequency of the alternating current must be taken into account, together with the value of the capacitance in the circuit. In fact, the current flowing is proportional to capacitance, frequency and voltage. By arranging these factors we can extract a quantity which is akin to resistance in a DC circuit. This quantity is known as Capacitive REACTANCE and its unit is the ohm.

Capacitive REACTANCE (Xc) $=\frac{1}{2 \pi \mathrm{fC}}$ where $\mathrm{f}=$ frequency of alternating current, $\mathrm{C}=$ Capacitance and $\pi=3 \cdot 142$.

Using Ohm's Law and reactance we can calculate the voltage or current in an AC circuit containing a capacitor:-

$$
I=\frac{V}{X_{c}} \quad X_{c}=\frac{V}{I} \quad V=I X_{c}
$$

(note that E and I are r.m.s. values)

Inductors in an AC Circuit (Inductive Reactance)

When an alternating voltage is applied to an inductor the resultant current causes a back or induced e.m.f. to be generated which is proportional to the rate of change of the current. In the inductor, as in
the capacitor, the maximum current occurs when the voltage is changing most rapidly (as it goes through zero), except that in the case of the inductor the current "lags" the voltage by ${ }_{4}$ of a cycle or 90°.

It will be realised that if the frequency of the alternating current increases, so will the rate of change of current, thus the value of the e.m.f. generated in the inductance will be proportional to the frequency and the current flowing inversely proportional to the frequency. From this we can extract a quantity known as the Inductive REACTANCE, unit-again the ohm.

Inductive REACTANCE $\left(\mathrm{X}_{\mathrm{I}}\right)=2 \pi \mathrm{fL}$ where $\mathrm{f}=$ frequency, $L=$ inductance and $\pi=3 \cdot 142$.

Fig. 26: In an inductive circuit, the current lags the applied voltage by 90°. The induced e.m.f. is in anti-phase (180° different) to the applied voltage.

Again we can use Ohm's Law and calculate current and voltage in the inductive circuit using REACTANCE in the place of resistance:-

$$
\mathbf{I}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{L}}} \quad \mathrm{~V}=\mathrm{IX}_{\mathrm{L}} \quad \mathrm{X}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{I}}
$$

(note that V and I are in r.m.s. values).

Reactances in Series and Parallel

Reactances of the same kind, Inductive OR Capacitive can be treated similarly to resistors:-
Series $\quad X=X_{1}+X_{2}+X_{3}$
Parallel $\quad \frac{1}{X}=\frac{1}{X_{1}}+\frac{1}{X_{2}}+\frac{1}{X_{3}}$
Reactances of opposite kinds, Inductive and Capacitive:-
Series $\quad X=X_{L}-X_{c}$
Parallel $\quad \mathbf{X}=\frac{-\mathbf{X}_{\mathbf{L}} \cdot \mathbf{X}_{\mathbf{c}}}{\mathbf{X}_{\mathbf{L}}-\mathbf{X}_{\mathbf{c}}}$
This follows because when reactances of opposite kinds are combined in a circuit, the currents lag and lead the voltages, in the inductive and capacitive sections respectively, by 90° and consequently they must first be subtracted from one another to find the total reactance. For this purpose, Inductive reactance is normally considered 'positive' and Capacitive reactance 'negative'.

Impedance

In any circuit containing reactances there will be some resistive element in the wires, for example, in the inductor windings thus when we consider the resistance to current flow presented by reactances we must add that presented by the ohmic resistance of the circuit. When we consider all these elements together, inductive reactance, capacitive reactance and resistance, it is known as IMPEDANCE. The resistive element of the impedance may be either in series or in parallel with the reactance.

Series

The impedance Z in this case is $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$ where $\mathrm{Z}=$ Impedance (ohms), $\mathrm{R}=$ Resistance, and $\mathrm{X}=$ Reactance (inductive or capacitive).

Parallel

$$
\mathrm{Z}=\frac{\mathrm{R} \cdot \mathrm{X}}{\sqrt{\mathrm{R}^{2}+\mathrm{R}^{2}}}
$$

In circuits which contain impedances, Ohm's Law can be applied as follows:- $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}$ and $\mathrm{V}=\mathrm{IZ}$ and $\mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}}$. (use r.m.s. values of V and I).

W574
Fig. 27: Resistance and rereactance in series.

Fig. 28: Resistance and reactance in parallel.

Resonance

The next characteristic of the AC circuit, that we are going to examine, is RESONANCE. This is a most importance effect which is employed many times over in every radio transmitter and receiver. As the AC frequency, applied to a circuit containing inductance and capacitance, is increased, the value of the inductive reactance increases, whilst that of the capacitive reactance decreases, as shown in the graph below:-

Fig. 29: Capacitive and inductive reactance plotted as a function of frequency. At the resonant frequency, fr, the two reactances are equal in value.

From this it is apparent that at a certain frequency, f_{r}, the capacitive reactance equals the inductive reactance.

Series Resonant Circuit (Acceptor Circuit)

If the frequency of V changes between f_{1} and f_{2} then the current flowing in the circuit will rise to a maximum at f_{r}. The impedance, on the other hand, falls to a value equal to R. To summarise this in an expression:-

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=2 \pi \mathrm{fL} \text { and } \mathrm{X}_{\mathrm{c}}=\frac{1}{2 \pi \mathrm{fC}} \\
& \text { at } \mathrm{f}_{\mathrm{r}} \quad 2 \pi \mathrm{fL}=\frac{1}{2 \pi \mathrm{fC}} \\
& \therefore \mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
\end{aligned}
$$

Where $\mathrm{f}=$ frequency in $\mathrm{Hz}, \mathrm{L}=$ Inductance in henries, $\mathrm{C}=$ Capacitance in farads and $\pi=3 \cdot 142$.

The value of the current flowing in the circuit is found as follows:-

$$
I=\frac{V}{Z}=\frac{1}{\sqrt{R^{2}+\left(X_{L}-X_{c}\right)^{2}}}
$$

Thus, at resonance, the impedance of a series resonant circuit is equal to the resistive component R, X_{L} and X_{c} having cancelled each other out.

Fig. 30: A series resonant circuit.

Fig. 31: When a series RLC circuit is at resonance, the impedance is at a minimum, and the current is at a maximum.

Parallel Resonant Circuit (Rejector Circuit).

This arrangement is awkward for the purposes of investigating the variation of current and impedance with frequency, so an equivalent parallel circuit is used in which a perfect inductor and a perfect capacitor are in parallel with an assumed resistance, known as the dynamic resistance R_{D}, R_{D} being equal to $\frac{L}{C_{r}}$ at resonance. The expression for the resonant
continued on page 669

Minin-priced breadboards for

 projects.Experimentor* low-cost solderless breadboards are the first in the world specially designed for $0.3^{\prime \prime}$ and $0,6^{\prime \prime}$ pitch DIP's,
They clip together by an exclusive interlocking system in any configuration, (just like dominoes), so you arrange the breadboards to suit your circuit, not vice-versa.
They are precision moulded from durable, flame-retardant plastic, and feature alphanumeric coding for easy circuit building, and non-corrosive, pre-stressed nickel-silver alloy contactsreliable for well over 10,000 insertions.

Get your hands

on an Experimentor
EXCLUSIVE INTERLOCKING SYSTEM

\qquadhe

Can YOUR Antenna do all this?

A SMALL SELECTION FROM OUR HUGE FILE OF TESTIMONIAL LETTERS ON THE JOYSTICK VARIABLE FREQUENCY ANTENNA ($5-30 \mathrm{MHz}$).

Carl V. Guest, Mount Vernon, Ohio, writes-"'l set the Joystick antenna on the floor of my operating room which is at street level. On 40 meter CW I worked out to a distance of 700 miles in the afternoon."
"CQ" Magaxine-."If you are high enough the antenna will operate (especially at $15-20$) as well as the well-known 3-element beam with which we compared it. The tests were 'operational, not theoretical!' We find that if we can hear 'em we can work'ern-mand in most cases with a 100 watts input."

K6MDJ-"Early results are astounding. I've been using a trap dipole for $\mathbf{4 0 - 2 0 - 1 5}$. This JOYSTICK out-performs the dipole 2×1."

G3UGB_-_"Extremely good reports on 160 meters and 80 meters."

W5CJV-.."Do I like the JOYSTICK! I guess so! ! took five antenna down and now use the loystick alone!"'
IN USE BY AMATEUR TRANSMITTING AND SWL STATIONS WORLD-WIDE AND IN GOVERNMENT COMMUNICATION

SYSTEM "A" £36.00
250 w. p.e.p. OR for the SWL.

S YSTEM "J"

£42.60
500 w. p.e.p. (improved ' Q ' on receive).

PARTRIDGE SUPER PACKAGES complete radio stations for any location

All Packages feature the World Record Joystick Aerial (System ' A '), with 8 ' feeder, all necessary cables, matching communication headphones. Deliv. Securicor our risk. Assembled in seconds! BIG CASH SAVINGS!

PACKAGE No. I As above with, R.300RX $\quad \mathbb{E 2 1 0 . 5 5}$

PACKAGE No. 3 New-low priced package. $£ 154.86$ The all solid state SMC73 RX with all the Partridge extras. SAVE f17-28!

RECEIVERS ONLY, inclusive delivery, etc.

R. $300 £ 184 \cdot 50$ FRG7 $£ 162 \cdot 00$ SMC73 $£ 128.81$

Ali prices are correct at time of going to press and include VAT at $12 \frac{1}{2} \%$ and carriage.

Just telephone your card number Phone 084362535 (or 62839 after office hours)

or write for details, send 9p stamp

Box 5, Partridge House, Prospect Road, Broadstairs, CTIO-ILD. (Callers by appointment).

MAIL ORDER DEPT:-

CRESCENT RADIO LTD I ST. MICHAELS TERRACE, WOOD GREEN, LONDON, N22 4SJ
 TELEPHONE: 888-4474

3 KILOWATT PSYOEEDELIC LIGHT CONTROL UNET
1000 WATT PER CHANNEL.
Three channel: Bass, Middle, Treble. The input of this unit is conneeted to the loudspeaker terminals of an amplifier and the required lighting is conuected to the
output terminals of the uait thus enabling you to produce a fascinating sound to ilght display.
Full instructions supplied or S.A.E. for detalls.
Fantastic Value at $\mathbf{2} \mathbf{2 0 . 0 0}+8 \%$ VAT.

LOUDSPEAKER SELEGTION

 122% VAT$24^{\prime \prime} 8,40$ and 76 ohm at $21 \cdot 10$
(Please state which impedance is required) $5^{\prime \prime} 8 \mathrm{ohm}$ CERAMIC at $81 \cdot 70$
$8^{\prime \prime}$ GOODMANS Audiom 8PA' 8 ohm
10 " 'ELAO' Dual Cone 8 ohm 10 watt at $\AA 4 \cdot 7$

BFFECTS PROJECTOR " 150 " (150 watt Ideal for disco work, this versatil machine takes a range of aceessories and is of a sturdy metal construction. Come
complete with bulb and $6^{\prime \prime}$ Liquif Wheel Ready to use.
A bargain at $£ 34.00+8 \%$ VAT
PIEZO ELECRRIC HORN ONITS 100 watt New High Quality, Bigh Power Tweeter.
No Xover required. Freq. Responsc. 3.8 KHz to 28 KHzz , Spec. Sheet sent on receipt of S.A.E.
OUR PRICE: 5760 each $+8 \%$ VAT,

POWER SUPPLY UNITS $+8 \%$ VAT PP1-Switehed $3,44,6,73,9,127$ at $500 \mathrm{~m} / \mathrm{a}$ with on/oft switch and phiot light Approx size: $130 \times 55 \times 75 \mathrm{~mm}$. ONLY
${ }^{26} \cdot 00$.
PP2-Switched 6, 7i, 9v at $300 \mathrm{ma} / \mathrm{A}$. This 3 pin 13A maing plug. Appros, size $75 \times 55 \times 45 \mathrm{mam}$. ONLY 44.00 . PP3-DC/DC Power supply for cars. DCinput. Approx. size: $125 \times 68 \times 45 \mathrm{~mm}$ ONLY £E25.
PP4-Stabilized Power supply. Swltched 3, $6,7,9 \mathrm{y}$ at $400 \mathrm{~m} / \mathrm{A}$ with on/ot swited and pilot light. Approx, size: $115 \times 78 \times$
PP5-Heary duty 12
1.5 A at 12 volt. Approx. size: $106 \times 90 \times$ 98 mm . ONLY 88.00 .
ALUMINIUM BOXES + 8\% V.A.T.
$A B 7=55^{\prime \prime} \times 2 t^{\prime \prime} \times 11^{\prime \prime}=888$
$A B 8=4^{\prime \prime} \times 4^{\prime \prime} \times 11^{\prime \prime}=88 \mathrm{p}$

AB9 $=4^{\prime \prime} \times 22^{\prime \prime} \times 11^{\prime \prime}=880$
AB10 $=53^{\prime \prime} \times 4^{\prime \prime} \times 11^{\prime \prime}=81.00$
AB11 $=4^{\prime \prime} \times 21^{\prime \prime} \times 2^{\prime \prime}=88 D$
AB11 $=4^{\prime \prime} \times 21^{\prime \prime} \times 2^{\prime \prime}=880$
$A B 12=3^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}=75 p$
AB13 $=6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}=81.00$
$A B 13=6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}=\$ 1 \cdot 00$
$A B 14=7^{\prime \prime} \times 5^{\prime \prime} \times 22^{\prime \prime}=\$ 1 \cdot 20$
$\mathrm{AB14}=7^{\prime \prime} \times 5^{\prime \prime} \times 2{ }^{\prime \prime}=81 \cdot 20$
$\mathrm{AB15}=8^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}=81 \cdot 79$
$\mathrm{AB} 16=10^{\prime \prime} \times 7^{\prime \prime} \times 3^{\prime \prime}=81 \cdot 92$
AB17 $=10^{\prime \prime} \times 41^{\prime \prime} \times 9^{\prime \prime}=51 \cdot 86$
AB18 $=12^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}=81.86$
(please note: all sizes are approx.)
BARGAIN TRANSFORMEES

240 v primary, $12.0-12 \mathrm{v} 500 \mathrm{~mA}$ secondary. Approx size: $60 \times 40 \times 50 \mathrm{~mm}$. Firing centres 75 mm . PRICE: $£ 1.80+8 \%$ VAT, Also available Mains transformer with
18 v 500 m sec. Price and size same as above.
ACCESK AND BARCLAYCARD ACOMPTED-PHONE ORDERS WELCOMED ALL PRICES INCLUDE POSTAGE-PLEASE ADD Y.A.T. AS SHOWN-G.A.E. WITH ALL ENQUIRIES PLEASE.
Personal callers welcome at: 164-186 EIGH ROAD, WOOD GREEN, Na2. Phone: 888-3206 and 13 SOUTH MALL, EDMONTON N8

Phone: 803-1885

 are one or two minor layout differences.

The accompaniment keys (bottom octave of the 4 octave keyboard) require two separate busbars. One commons together the poles of C, C $\$, D, D *, E$ and F while the other commons $F \#, G, G \geqslant, A, A \geqslant$ and B. Use the wiring instructions shown in Fig. 1 to connect between the board pins and the contacts of each key (note) switch-not forgetting the three busbar connections. Use lacing cord to neatly tie the keyboard loom into a bundle.

The rear panel wiring is slightly different from the calculator key version. A stereo jack plug and socket is used to route the Minor and Seventh select wires
external "push to make" pair of foot switches. Although expensive, an electronic piano "Soft/ Sustain" pedal pair worked well.

A single pole toggle switch was put in series with the internal loudspeaker connections so that the internal speaker can be muted. The output for the external Phono lead is connected via an extra stereo jack socket. This enables an external foot controlled volume control (swell pedal) to be used. The wiring is such that the control (which should be $10 \mathrm{k} \Omega \log$) can be plugged into the jack socket if needed but, if unplugged, the signal is left unaffected at the DIN socket.

Adjustments for both versions

The most obvious problem will be caused by constructors trying to get too much out of the internal amplifier. Remember-it is only capable of putting out about IW (about the same total volume as a portable radio). When playing a single melody note, it is possible to turn up the gain of the melody pre-amp and produce a very loud sound but as soon as you introduce a chord from the accompaniment, the internal amplifier overloads and produces distortion. This is made even worse by the drums-particularly the bass drum. The secret is to turn all the front panel volume controls to maximum and then switch all the voicing switches to their "on" position. Put the vamp switch in the "off" position and select a rhythm-say "Waltz". With one hand, depress bottom " C " of the melody keyboard and the chord of " G " from the accompaniment. Adjust the preset gains of the three preamplifiers (VR8, 14 and 18) to get a good balance between melody, accompaniment and drums respectively and set the levels so that the sound is as loud as possible without distortion. It might be necessary to adjust VR15, 16 and 19 to get the best compromise between level and tonal quality of the cymbals, snare drum and bass drum respectively. Listen, particularly, to the bass drum sound. This is very low frequency and might not be very prominent when heard over a small loudspeaker but it could have a high electronic amplitude driving the drums preamplifier and the internal power amplifier into clipping. Having set the maximum level, do not expect very loud signals if you select the melody string voice unaccompanied.

The "brightest" cymbals sound is heard when VR15 is near its earthy end; likewise for the snare drum control (VR16). The best bass drum setting for VR19 is just before the onset of oscillation; take care, however, not to have too long a decay on the latter otherwise it will sound more like a percussive tone rather than a deep "thump".

Melody sustain length is increased by increasing the value of C 6 by a small amount. Conversely reducing the value shortens the period. If you get no melody sustain, D2 may be short circuit. Check that D2 is in the right way round and the VR5 wiper is making good contact with the track.

Sustain length of the alternating bass is set by C16. Failure of the bass note to cut off completely is an indication that D3 is faulty, the wrong value or inserted the wrong way round.

Chord sustain is set by the value of C20 (which must be a polyester type). If the chords do not die away completely $\operatorname{Tr} 5$ probably has very low gain and it might be best to replace it. Alternatively you can reduce the value of R44 but if you do this you will have to increase the value of C20 to keep a reasonable sustain time constant. If the chords do not sound at all, D5 may be the wrong way round or $\operatorname{Tr} 5$ faulty.

Clicks on the attack of the bass note and melody notes can be removed by careful adjustment of VR10 and VR5 respectively. A hesitation on a cymbal stroke is caused by Tr8 having too high a gain and this can be rectified by reducing the value of R 58 to $4 \cdot 7 \mathrm{k}$.

If you wish to alter the amplitude balance between the cymbals, snare and bass drum without changing their tonal quality (the two parameters are linked to some extent) you can change the values of R61, R75 and R86 respectively. Reducing the value by a small amount will increase the volume for that instrument.

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ $(+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

 $31 / 2$ digit resolution. Sharp, bright, easily read LED display, reading to ± 1.999. Automatic polarity selection. Resolution of 1 mV and 0.1 nA (0.00014 A). Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 MrL. 1% of reading accuracy.Operation from replaceable battery or AC adaptor.
Industry standard $10 \mathrm{M} \Omega$ input impedance.

Compare it with an analogue meter!

The PDM 35's 1\% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of $10 \mathrm{M} \Omega$ is 50 times higher than a $20 \mathrm{k} \Omega /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count. Note: $10 \mathrm{Mr} s$ input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current (6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nA .

Resistance (5 ranges)

Range: 1 s to 20 Mn .
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 1 / 2$ in.
Weight: $61 / 2 \mathrm{oz}$.
Power supply: 9 V battery or Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-fuxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ PO for the correct amount (usual 10-day money-back undertaking, of course), and send it to us.

We'll mail your PDM35 by return! Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ, England. Regd No: 699483.
To: Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE17 4HJ. Please send me___ (qty) PDM135(s) (at $£ 33.00$ (inc $\{2.40 \mathrm{VAT}$ and $65 \mathrm{p} \mathrm{P} \mathrm{\& P}$)

\qquad
(qty) De-luxe padded
carrying case(s) © $£ 3.00$ (inc VAT
and $P \& P$) each:...............................
240 V 50 Hz power @ $£ 3.00$
(inc VAT and P\&P) each:......................
I enclose cheque/PO made payable
to Sinclair Radionics Ltd for
(indicate total amount):
I understand that if I am not completely satisfied with my PDM35, I may return it within ten days for a full cash refund.

PW/1
\qquad
Address..
\qquad

64

World leaders in fingertip electronics

MINI CONSOLES Ideal for small desk control panels and consoles. Moulded in orange, blue, black and grey ABS. incorporates slots for holding 1.5 mm thick peb's Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes. MC $161 \times 96 \times 58 \mathrm{~mm} \quad £ 1.53(1.9) \quad$ £ $1.50(10+\}$ MC $215 \times 130 \times 75 \mathrm{~mm} \quad £ 2.20 \quad(1-9) \quad$ £ 2.17 ($10+1$ Add $\mathbf{2 5 p}$ per $£ 1$ order value for Post \& Packing	Stop wasting time soldering The NEW MW BREADBOARD accepts Transistors, LED's, Diodes, Resistors, Capacitors and all DIL packages with 6 to 40 pins	SC BOXES (square corners) Easily drilled or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Aluminium panel sits recessed into front of the box and held by screws running into integral brass bushes. $\begin{array}{lrr} \text { SC } 85 \times 56 \times 36 \mathrm{~mm} & 80 \mathrm{p}(1 \cdot 9) & 77 \mathrm{p}(10+) \\ \text { SC } 111 \times 71 \times 48 \mathrm{~mm} & £ 1.07(1.9) & £ 1.04(10+) \\ \text { SC } 161 \times 96 \times 59 \mathrm{~mm} & £ 1.49(1.9) & £ 1.46(10+) \\ \text { Add } 25 p \text { per } £ 1 \text { order value for Post \& Packing } \end{array}$
ECONOMY QUALITY LED's 50 for only $£ 5-100$ for only $£ 9$ Mixed bags, all sizes, various colours	400 individual sockets, plus Vcc and Ground Bus Strips Price $£ 9.72$ (includes VAT \& P.P.)	240 VOLTS MINI HAND DRILLS Ideal for drilling pcb's, chassis etc as well as model making. Supplied with 3 collets that accept tools and drills with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ and $1 / 8^{\prime \prime}$ dia shanks. $£ 9.72$ (includes VAT \& P.P.) Accessory tools... 5 Burrs, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 1 / 8 \mathrm{th}$ Drills, 3/32" Collet Price £ 1.75 (Includes VAT \& P.P.)
FULL SPECIFICATION LED's Red (specify size) 75p per pack Green, Yellow, Orange (specify size) $£ 1.20$ per pack (Each pack contains 5 LED's, Mounting Clips and Data)	Supplied with resistor for 240 Volts opera 150 mm leads, held in 6.4 mm hoie by n Red, Amber, Clear, Opal 20 p each	
TYPE A NEON INDICATORS	SEVEN SEGMENT DISPLAYS Economy Quality Common Anode - 0.3" - Left Decima! Red, Yellow and Green @ 45p each Full Specification Common Anode -- 0.3" - Left Decimal Red@98peach Green and Yellow @ $£ 1.35$ each (Data supplied with Full Spec. displays only)	RC BOXES (round corners) Easily drilied or punched, orange, blue, black and grey ABS. Incorporate slots for holding 1.5 mm thick pcb's. Close fitting flanged lids held by screws running into integral brass bushes.
12 VOLTS MINI HAND DRILL Ideal for drilling peb, chassis etc as well as model making. Supplied with 2 collets that accept tools and drills with $3 / 32^{\prime \prime}$ and .050" dia. shanks. £7.56 (includes VAT \& P.P.)	Quantity quotations on request P.P. Note Untess included in price add 25 p Post \& Packing for orders totalling under $£ 10$. All prices include VAT and are valid in UK only for 2 months from journal issue date Mithael Williams Electronics 47 Vicarage Av. Cheadle Hulme, Chashire SK8 7JP	

ORCHARD ELECTRONICS

SERVIGE SECOND TO NONE TRY US AND SEE
 NEW BIG CAT $50 \mathrm{p}+$ Refundable

 VouchersFlint House, St. Martins Street, Wallingford, Oxon (Tel. 0491 35529)

SUPPLIERS TO D.O.E., A.E.R.E., U.K.A.E.A. Government Depts., Universities, Schools and equipment manufacturers. Stock list FREE with S.A.E.
Post \& Packing 25p. Discounts $£ 5=5 \%, £ 10=$ $7 \frac{1}{2} \% £ 15=10 \%$. VAT * add $12 \frac{1}{2} \%$. Rest at 8%

Trouble shooting

We have already mentioned that the master oscillator operates from a lower supply rail than the dividers and during the constructional tests this was likely to give trouble. Generally the loading on the unstabilised +15 V rail-when all the ICs have been inserted-will clear this problem but it is possible, in some instances, that some instability remains (diagnosed by an irregular or distorted quality of some notes. This can be overcome by increasing the value of +15 V rail dropping resistor (R93) to 10 ohms. Remember this must still be a 1_{2} watt device!

In the unlikely event of total failure you must check the system carefully in a systematic manner. Total failure is most likely to be associated with the power supply, internal amplifier, or master oscillator. Test procedures have been dealt with in previous issues.

It is difficult to decide whether the AY-1-0212 is faulty (IC2) without using an oscilloscope; if you can be certain that the master oscillator is working with no audio tones from the output pins of this IC, there is a high chance that the integrated circuit is faulty. In the absence of a scope there is a simple, but effective, test to check the master oscillator. Place a medium waveband transistor portable radio very close (within an inch or two) to Tr1 and Tr2. If you tune over the band, you should hear heterodyne whistles at several points. These may be identified as coming from the master oscillator by turning up the Vibrato Depth control. The whistles turn into chirrups.

Failure of the vibrato oscillator is most likely to be due to incorrect setting of VR2.

As with any printed circuit board project most problems are caused by poor soldering giving rise to dry joints, connections that have been missed-particularly under the large integrated circuits-solder blobs bridging conductor tracks, components put in the wrong holes and components inserted the wrong way round.

It is very unusual for components to be faultyprovided they have not been misused or abused. Remember that it is easy to damage MOS integrated circuits by handling them wrongly. In a complicated design such as the Jubilee Organ, there are bound to be occasions where a component on the extreme end of its tolerance can effect the final performance.

Postscript

Some people might wish to carry out a simpie modification which enables the accompaniment section to memorise the last key that was depressed. If this is done, the rhythm and accompaniment sections will continue to repeat the same vamp without the player having to keep his finger on the key. To change the key of the vamp requires a single depression of the next key which is then memorised. Only major chords can be memorised. The modification requiries a two pole change-over switch and a break in the printed wiring on the pcb at pins 5 and 35 of IC13 (the Chord Generator). Normally both these pins are strapped to ground 0 V . Connecting them to the +15 V rail through the switch activates the latch circuitry associated with each chord select key.

SO YOU WANT TO PASS THE RAE?

frequency of the parallel tuned circuit is, in practical terms, the same as for the series tuned circuit,

Fig. 32: A parallel resonant circuit.

Fig. 33: The equivalent circuit of Fig. 32.

Fig. 34: In a parallel RLC circuit at resonance, the impedance is at a maximum, and the current is a minimum.

Magnification Factor "Q"

In the circuit shown in Fig. 30, at resonance, the voltage across the inductor (or the capacitor) can be considerably greater than the applied voltage V. As we have seen, the current at resonance is defined by the value of the resistor R, but the voltage across the inductor (or the capacitor) is given by the product of the current and the reactance in question, which is usually very much greater than R. The ratio of the voltage across the reactance to that across the resistor is called the Magnification F"actor or " Q " of the circuit.

The " Q " of a practical tuned circuit depends mainly on the quality or "goodness" of the coil as the capacitor normally has very low losses associated with it. A high " Q " tuned circuit has the ability to respond to one frequency whilst rejecting others. In a receiver, this would imply "selectivity", the ability of the receiver to select a wanted signal and reject unwanted ones.

An example of the practical use of a simple resonant circuit is in an Absorption Wavemeter. In this device the resonant frequency of a tuned circuit is used to check the output frequency of a transmitter.
In the next section we will be dealing with diodes, transistors and valves, also block and circuit diagrams.

A REVIEW OF RECENT DEVELOPMENTS

In general, the author does not have any more information on products than appears in the article.

Pocket-it

With "in" words like Teletext and Oracle commonly in the news these days, one tends to be on the lookout for anything new in this field. The most exciting piece of news this month is that a manufacturer is concentrating its efforts on producing a Teletext receiver which will fit into the coat pocket. Although the company (in Germany) has primarily aimed at producing a portable radio size unit, the pocket version is hot on its heels. It is planned that the unit should be complete i.e. you do not need to plug it in or connect it to a TV receiver in any way. The coat pocket version (it is planned) will have its own aerial and tuner, IF amplifier and Teletext decoder. This will feed a display of LEDs (for the mains version) or liquid crystal cells (battery model) and thus avoid using a conventional cathode ray tube. For anyone following the stock market, this looks a good bet-as and when it becomes available.

After remembering using the old PO 3000 type relays for early model control, I am pleased to note that a new DPDT relay, housed in a dual inline package and standing only 0.38 in high, has appeared on the American market. It fits standard $16-\mathrm{pin}$ DIL sockets which is very useful, constructionwise. Even nicer is the extreme sensitivity of these little beasties; the coll requires 200 mW maximum to pull in. On the business side, the contacts will switch a resistive load of 1 A at up to 28 V DC and will carry 5 A . It is amusing to note that the manufacturers of this little relay have the address; 100 Relay Road! Clearly an address which should click with those who are really switched on.

Smarl alecs!

It seems that we will have to live with the word microcomputer for a while longer-until something even more wonderous takes its place, no doubt. The newest and most interesting development in this field comes from Japan. One of the electronics giants over there is to market a mini-computer-type kit which is aimed at
school children between 12 and 14 years old. With a starting production schedule of producing some 4,000 kits a month, the company seems confident it can sell a large number. The price (converted very roughly) would be around £85-£95. Costly, perhaps, but the kit does contain quite a lot. There's a microprocessor (you know of a home without one?), a random access memory and a readonly memory, arithmetic/logic unit, 8 -bit latch, audio amplifier, two static RAM chips, keyboard, displays and drivers, and even a loudspeaker. One of the exercises for users is to become an electronic composer. You can compose a tune and enter it into memory. At the touch of a button your masterpiece will be played back using oscillators (yes, these are included in the kit) Tunes of up to 127 notes are possible and are restricted to a maximum of three octaves. This takes in most if not all of the popular melodies for those who might prefer to stick to known tunes. I can see the time when a hush will descend on the Royal Albert Hall, and the soloist will emerge, tuck a 16-pin DIL under his chin and "give forth". Ah, come back Lionel Hampton, all is forgiven!

Valve size?!

New things are often labelled "best" or"biggest"etc. A new semiconductor just released looks as though it could fairly claim to be the biggest transistor in the world. It will handle a peak current of 200 A with voltage rating of 550 V . These devices have a gain of 15 at the 50A mark and could doubtless do nasty things to loudspeakers in disco systems where power is all. Transistors have certainly come a long way since those "red spot" semiconductors | bought in the Edgware Road many summers ago (and they cut off at about 800 kHz).

Sunset strip

The recent Energy Exhibition in London highlighted (for me) just how sadly inefficient solar cells are. Manufacturers get excited at anything which exceeds 10% efficiency. While it is almost certain that newer and better
materials and techniques will come, there is some work in hand to maximise what is already available. For example, one American company is aiming to get the costs down to fifty cents per watt of power produced. The approach here is to perfect further the technique of "pulling" a ribbon of silicon to get as wide a strip as possible. Up until now, lin and even 2 in wide strips have been produced. Now, the aim is to get 3 in widths. The thickness involved is around half a millimetre but by using improved techniques it is hoped to get this down to less than 8 thou.

The strip itself is produced by touching the surface of a molten pool of silicon with a little "seed" bar of silicon. The seed is then very slowly withdrawn. As it rises it "pulls" silicon with it rather like pulling the surface layer of a bowl of hot chewing gum! The cooling length is pulled slowly through a die to form a strip and the silicon allowed to cool at a controlled rate from over $1,200^{\circ} \mathrm{C}$ down to $600^{\circ} \mathrm{C}$. When it is completely cool, it is scribed and broken up into individual cell sizes.

A filter for all occasions

Readers interested in audio filtersparticularly electronic music enthusiasts, will find the new SSM 2040 DIL device of interest. It comprises a voltage-controlled monolithic filter and it can be made to synthesize almost any kind of active filter from low-pass to high-pass, band-pass or notch. The manufacturer is offering samples only at the moment and these are quite expensive. Like most things, the price should drop once production increases and the devices would then probably become available to the home constructor. At present, I am waiting further information but it seems possible to use just the one, single filter and to "switch" it to get numerous effects in an electronic musical instrument. Watch this space.

Also: Active Tone Control

A three-transistor circuit based on the well-known Baxandall tone control, ideal for use in disco or public address systems. A wide variety of source and load impedances can be accommodated.

MediumWave Tuner/Amplifier

This unit is designed to provide preamplifier input facilities plus medium wave AM broadcast coverage for feeding into an existing power amplifier, which also furnishes the necessary power - supply. Prealigned IF transformers ease the setting-up procedure.

PRDPDRTIDNAL POV

Due to the ever increasing cost of electricity the need was seen for a reliable and efficient method of controlling an electric fire by reference to temperature. It was thought that the control should be the same, if not better than, that of a gas fire. It should be proportional and automatic, i.e. adjusting to a preset level room heat. When switching large currents of 12-15 amps for up to 3 kilowatt fires, radio frequency interference can be a problem when using thyristors or triacs. With this in mind advantage was taken of the fairly new zero voltage switch integrated circuit, which will give very good proportional control with minimum interference. This is the basis of the circuit shown in Fig. 1.

Zero Voltage Firing

With zero point firing the current in the load is turned on at the zero voltage point; this has the effect of reducing radio frequency interference. The power in the load is controlled by the number of half cycles reaching the load in a given period. This technique
can only be applied to certain loads, but is particularly suited to heater elements, which have a slow thermal inertia. The type of system described allows just sufficient bursts of power to reach the load, to make up system losses. This is achieved by using an internal generated ramp voltage (see Fig. 2 diagram). The result is very accurate control of the power produced in the load and hence, in this case, the temperature of a room.

Circuit Description

The principle of the operation of the zero voltage switch integrated circuit can be seen in Fig. 2. Here a ramp voltage is generated and used to turn on bursts of current in the load at the control voltage which is determined by, and related to, the temperature of the room, detected by the thermistor's resistance. This reference voltage, set up by the control circuitry, is fed into an operational amplifier. R1, R3, R4 and TH1 form the control circuit to give

Fig. 1: The circuit diagram of the power controller.

VER CONIROIIER crious

a means of controlling the related voltage. The width of the ramp voltage is set using the external components RI- and Cl. When Pin 2 is at a lower voltage than the bottom of the ramp voltage, the heater is on, and when the voltage is higher than the top of the ramp the heater is off. Therefore voltages lying between the top and bottom of the ramp produce bursts of power to the load thus maintaining the

Fig. 2 : Basic operational principle of the zero-switching device,

temperature set by the control. The values of VR1, R4, TH1 type, have been chosen to give a temperature range in the region $40^{\circ} \mathrm{F}$ to $80^{\circ} \mathrm{F}$. The output pulse width is controlled by C2, and was chosen to suit the type of triac used, and is therefore fairly critical to ensure that the triac fires correctly. The economy part of the circuit is effected by R8 and S2, R8 being lower in value than the minimum resistance of the thermistor at the high temperature. This ensures a very low load current at low or high temperatures.

Practical Operation

The load can be any electric heater up to 3 kilowatts, with the exception of those using electric motors, i.e. fan heaters. Due to the values of R1, C1, used for good control of an element (bar type), the motor will operate in bursts, and not run smoothly. The 3 kilowatts could be extended using a larger triac and modifications to the gating circuitry. But 3 kilowatts was thought to be adequate. The sensing ele-

Fig. 4 : Details of the PCB and overlay.

Fig. 5: Graph showing relationship between consumption and temperaüure.

components

Resistors
 R1 220401 W
 R2 47 kS . W
 R3 $82 \mathrm{k} \Omega \mathrm{W} \mathrm{W}$
 R4 27 kS . W
 R5 6.8 ks 10 W
 R6 $1500 \frac{1}{2} \mathrm{~W}$
 R7 $10 \mathrm{k} \Omega \frac{1}{3} \mathrm{~W}$
 R8 2200 I W
 VR1 100 k 21 hn ,
 TH1 GM472

Capacitors
 C1 470nF Polyester.
 C2 68nF
 C3 $100 \mu \mathrm{~F} 25 \mathrm{~V}^{1 \prime}$ electrolytic
 C4 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ electrofytic
 C5 33nF Polyester
 Semiconductors
 T1 2N5574
 lC1 305/800

Miscellaneous: mains voltage neon, 2 SPST minature toggle switches; minature lack plag and socket, 13 amp plug and socket, 13A fuse, fuseholder or fuse clips (20mm), 100 mA fuse (20 mm). PCB (Readers PCB Service), suitable case.

Fig. 6: Further graph indicating stable temperature level at mid-control position.

Fig. 7: Details of heatsinking for triac (7a and 7b), method of mounting thermistor (7d), and chart to show the approximate link between current and temperature conditions in the circuit environment (7c). C5 and R6 are mounted on T1, using the shortest possible leads.

Construction

Reference to Figs. 3, 4 and 7 will show the method of construction. First and foremost it must be mentioned that mains voltages are being dealt with and a reasonable amount of care must be taken during construction. To ease the construction it is recommended that the approved P.C.B. is used i.e. Readers P.C.B. services, to minimise wiring errors. The assembly of the P.C.B. should be carried out first. The I.C. should be mounted in an I.C. socket. The case of the prototype was made out of aluminium extrusion, as used in shop fitting work, but any metal box of rigid construction and adequate size could be used. The unit could in fact be mounted flush to the wall, the brickwork giving added heatsinking to the triac. All leads should be kept away from the $6 \cdot 8 \mathrm{k} 10$ watt resistor. When mounting the triac, it should be fastened to its own heatsink, using the correct insulating kit. Figs. 7a and 7b show the mounting. The sense element in the prototype was mounted in a miniature jack plug. using epoxy resin, see Fig. 7d. There is no reason why the sense element should not be remote from the unit, say in its own small box. This however could possibly interfere with the fact that the unit is normally a portable accessory to an electric fire. If all the correct components are used there is no setting up of the unit to be done, but emphasis must be made here on checking wiring to the P.C.B. to eliminate damage to the I.C. Short circuits around the triac should be checked for, and also to make sure the case is adequately earthed.

by POINT CONTACT

Were the summers sunnier, the blooms bigger and life more exciting when you were younger? Was the beer better, were the steaks juicier and the girls prettier? However that may be, I truly believe that the inhabitants of Research and Development Laboratories were more eccentric. In many instances the pranks they got up to were frankly crazy.

In his youth Point Contact spent varying amounts of time in laboratories which were only concerned with electronics in an oblique way, the immediate object of interest being some kind of material, a dielectric or semiconductor for example. Consequently, they were staffed by a motley mixture of Physicists, Chemists and that invaluable oddity, the Tame Mathematician, as well as the occasional Electronic Engineer. PhDs were two a penny, almost every other person had a higher degree except for yours truly and one or two other undergraduates. Whether as vacation students or student apprentices we were privileged for a period to participate in the work of this or that laboratory-and in the play too!

Some of the antics which people got up to were relatively harmless, some were fairly hazardous to the prankster and some potentially dangerous to others. In the first category I remember the Plasticene ploy. Plasticene (like Meccano) is a valuable laboratory aid with a thousand and one uses, like instant

mounting for a specimen, plugging material for pipework etc. It was used again and again until it dried out and was thrown away and replaced. If you wanted some you had only to look around and there on the nearest shelf, in the cupboard, on the bench was a lump just waiting to be used. Of course, first of all it had to be well kneaded to make it soft and pliable again-and here care was necessary. The unwary were caught out by the prankster who had carefully fashioned a hollow lump and filled it with water, usually coloured with red ink, before smoothing over the hole and leaving it on the shelf.

Much more spectacular was the party trick of a certain Dr. K., which with a little prompting he would demonstrate. Pouring some liquid air from the Dewar flask of a vacuum-trap into a 50 ml beaker, he would then solemnly take a sip and roll it round and round his mouth. If one held up a smouldering taper he would breathe on it and it would burst into flame. (As liquid nitrogen boils at a lower temperature than liquid oxygen, it boiled off first, so unless replenished from a new delivery, vacuum-trap Dewars usually contained mainly liquid oxygen, as one could see at a glance from the pale blue colour.) He would then spit out the remainder, which vapourised in a flash on hitting the floor. Despite his assurances that it was quite safe if one kept the liquid on the move with one's tongue, I recount this stunt only to illustrate the
statements in my first paragraph. Please DO NOT try it yourself!

Always interested in what components are available and what you can do with them, a colleague drew my attention a few days ago to the RCA fourteen-stage COSMOS ripple counter type CD4020. This divides by up to 2^{14}, so when clocked at 1 MHz , produces an output frequency of 10^{6} divided by 16384 or $61 \cdot 03515 \mathrm{~Hz}$. A popular proprietary printed circuit board used for bread boarding digital circuits in our laboratory-it has supply rails running round and uncommitted pads for accepting i.c.s with up to 16 pins-accommodates 5 rows of 7 i.c.s. A board full of 35 CD4020s would therefore divide by 16384^{35}, which I am assured is $3 \cdot 196670156 \times 10^{147}$ (to the nearest 10 significant figures). Clock the board at 1 MHz and one cycle at the output would reach completion in $1 \cdot 01296376 \times 10^{134}$ years.
This is a good bit longer than Point Contact is capable of imagining, in fact if just four CD4020s had been switched on in the year AD 0 , then given a longlife battery and assuming a rather good MTBF (mean time before failure) for all the components including the 1 MHz clock oscillator, there would still be another 305 years to go before the output of the last i.c. clocked over!
The said colleague came back the next day with the further useful(?) information that there is a Motorola device number MC14521 which is a 24 -stage ripple counter and that a boardful of 35 of these would have an output period (when clocked at 1 MHz) of 10^{6} divided by $7.331559403 \times 10^{232}$ seconds or approximately 2.3×10^{339} years. A suitable long-life battery not being available, solar cells wouldn't help much either, he assured me, as the sun is expected to have burnt out in the odd 10^{10} years or so. Figures like these are so meaninglessly incomprehensible that the only thing to be said of them is that they do demonstrate the ample capacity of my informant's all-singing alldancing scientific pocket calculator.

HIDLY IDTE

Television

- THIRTY-CHANNEL REMOTE CONTROL

Remote control of channel changing has been a feature of some TV sets for many years, sometimes along with remote control of sound, brightness and colour. More recently however fifteen and thirty channel remote control systems have been featured on some imported sets and some export models. These are based on a set of CMOS i.c.s, and the use of these more elaborate systems is likely to spread in the near future since they can accommodate the functions required for teletext page selection. The operating principles of this type of remote control will be described, and examples of typical peripheral circuitry given.

- DECODER SERVICING

A general guide to the operation of PAL decoders, the faults that occur in them and trouble-shooting procedures, also mentioning some of the more important variations between different designs.

- TELETEXT EYEHEIGHT

What? Well, the transmission of digital teletext signals involves many differences from the well known problems of transmitting and receiving normal TV picture signals. For example, with a conventional TV signal the picture worsens gradually with reduction in signal strength, whereas with teletext reception there is an abrupt transition from correct reception to the decoder producing "scribble". It's important therefore to be able to assess the quality of a teletext signal, and for this purpose the BBC now inserts teletext test signals on lines 20 and 330. These can be scoped, and the eyeheight of the digits observed. Harold Peters explains.

PLUS ALL THE REGULAR FEATURES

ORDER YOUR COPY ON THE FORM BELOW:

Tо

(Name of Newsagent)
Please reserve/deliver the JANUARV issue of TELEVISION (50p), on sale December 19th, and continue every month until further notice.

\qquad

AERIAL PERFORMANCE

F. JUDD Assoc.IPRE A.Inst.E. G2BCX

Transmitting and receiving aerial performance is difficult to measure with any degree of accuracy particularly when the operating frequency is low and the aerial is, of necessity, very large. At frequencies as high as 28 MHz (10 m band) one would find it physically impossible to plot the vertical angle radiation pattern, or indeed the plane polar pattern, with the aerial operating in either vertical or horizontal polarisation mode. At 145 MHz (2 m band) the problem is eased somewhat since the aerials are physically small but even then they need to be mounted very high in order to obtain true "free space" radiation patterns. Further, the transmitted signal source must be a large number of wavelengths away and/or the receiving point must be at a similar distance if the aerial being tested is radiating.

It is usual to test an aerial under receiving conditions; the final result is the same. The writer has in use a 60 ft high mast that can be lowered to half way so that 2 m aerials for testing can be mounted on a special rotator system that will turn the aerial through 360° as well as from horizontal to vertical mode. The system is remote controlled from the measuring instrument position and the distant transmitters normally used are GB3VHF for horizontally polarised signals and GB3PI, or local amateur stations for vertically polarised signals. Even so, the process of carrying out polar pattern and gain measurements is laborious to say the least, and indeed somewhat hazardous, especially when large beams (a recent one was a 12 -element ZL Special) have to be hoisted to a small platform about 30 ft above ground before being raised to full height for tests. On new designs there is the added problem of making modifications, so an aerial may have to be hauled up and down several times before the design can be approved.

The Theory of Similar Structures

It is well known that aerials scaled down in frequency behave in exactly the same way as they would at the original frequency. At one time the writer used a frequency of 10000 MHz to operate a model aerial system capable of obtaining quite accurate polar patterns of both plane and vertical radiation fields. At such a high frequency however, impedance matching, with any degree of accuracy, becomes very difficult indeed.

The "theory of similar structures" is applied in many spheres of engineering. For example, for proving ship's hulls by using scaled-down models in wave tanks, models of aircraft in wind tunnels and models of bridge structures etc. It is readily adaptable to transmitting aerials and if we take a dipole for
example, its familiar figure-of-eight radiation pattern is exactly the same whether the aerial is cut to operate on 2 MHz or 200 MHz , or any other frequency. This applies, of course, to aerials of all other configurations and to directivity, gain and polarisation as well.

The author's aerial measurement set-up, with aerial under test mounted on a turntable, plus a pen chart recorder.

Scaling down makes the aerials much smaller, easier to construct and handle, reduces the distance between the source of transmission and the aerial being tested, and brings the "free space" position much nearer the real earth. If the effect of earth is required as part of the measurement then a metal ground plane of several square wavelengths extent is no great problem. As mentioned however, if the scale frequency is too high matching the aerial to its feed point becomes a problem and to overcome this frequencies of between 600 and 1000 MHz are commonly used.

Some years ago the writer used 800 MHz for the original design of the "ZL Special" end-fire beam for operation on 14 and 28 MHz and which was described in $P W$ recently for 2 m operation. At frequencies around those mentioned quite accurate matching is possible, materials for constructing the aerials can be scaled down, as can transmission lines, matching stubs and baluns etc. Even "miniature" co-axial cable, with little loss up to around 1000 MHz , is readily available.

A Model Aerial System

A system recently built by the writer and described here operates at a frequency of 650 MHz and, as with virtually all systems of this nature, aerials being tested are operated in receiving mode. The transmitter is normally placed at a distance of 10 wavelengths, in this case 4.6 m , and it is equipped with a three-element (flat plane reflector) beam aerial to concentrate the radiation forward, to provide a sufficiently large illumination area and to reduce reflected signals to a minimum.

The "receiver" consists basically of a simple diode detector to provide a DC voltage from the RF signal picked up by the aerial being tested and which is used (a) to operate a pen chart recorder to obtain either polar co-ordinate or Cartesian co-ordinate plots of radiation patterns or (b) a continuous direct display of a radiation pattern in polar or Cartesian coordinates on an oscilloscope screen.

The Transmitter

The transmitter is a simple self-excited oscillator using a Mullard TD1-100A valve to provide an RF output at 650 MHz of about 2 W . Any similar UHF valve would do and frequency stability is not critical provided drift is not more than a few MHz. Audio tone modulation can be applied for quick checks and for demonstration, in which case the model is made to radiate and the space around explored with a single dipole and diode receiver the signal from this being fed to an audio amplifier and speaker. The transmitter must, of course, be completely screened and its output (loop coupled) matched as closely as possible to the transmitting aerial. The circuit used is shown in Fig. 1 and may serve as a guide to anyone interested in embarking on a similar project.

The Measuring System

This system is rather complex in view of the facilities it provides but could be simplified by using a meter to obtain readings for plotting patterns and checking gain, in which case the receiver need consist only of a diode detector, the DC output from this being fed to a micro-ammeter via a simple attenuator.

One of the most important factors in aerial performance measurement is the "reference" to be used and this is normally a dipole. For example, in gain measurement the dipole is first set up and the signal level from this noted. It is then substituted for the aerial to be tested and the level from this ascertained. If the readings are in terms of voltage then the usual formula $20 \log _{10} \frac{\mathrm{~V} 2}{\mathrm{~V} 1}$ is used to obtain the gain in dB . In the system described here a rather more sophisticated reference system is employed, particularly in connection with continuous oscilloscope displays and this uses an "electronic dipole" to be described later.

The block diagram Fig. 2 gives some idea of the complexity of the system, which begins at the aerial being tested, picking up the signal from the transmitter. This is coupled by a rotating loop to the detector and the received signal is rectified, the output being switched to obtain positive or negative (with respect to earth) DC which is fed to a calibrated attenuator. From here the signal goes to a penrecorder for Cartesian or polar plotting, to a meter

Fig. 1: Circuit diagram of the author's 650 MHz transmitter.
for making initial adjustments, or to the oscilloscope DC " Y " amplifier for direct display of Cartesian plots (see various photos). The aerial and polar plotting table are turned by either of two synchronous motors with suitable pulley and/or gear reduction to obtain (a) a slow rotation at about 1 revolution per 30 seconds for pen chart plots or a fast rotation for oscilloscope displays at between 5 and 8 revolutions per second. Directly coupled to the aerial turning shaft are (a) a system for obtaining a sync pulse for each 360° of rotation and pulses for each 10° of rotation which are used for Z modulation (scope "bright up") pulses and (b) the components for generating the electronic dipole signal. The sync and 10° marker pulses are obtained by a light shining through small holes in a perspex disc (painted black)

The 650 MHz test transmitter with its 3-element aerial mounted above it.

Fig. 2: Block diagram of the performance measurement system.
on to photo transistors, the outputs from which are amplified and shaped into short duration pulses. The disc contains 36 holes for the 10° markers and one for the 360° sync pulse.

The electronic dipole signal is obtained by shining light through a rotating disc of Polaroid material and a fixed piece of Polaroid simultaneously on to a photo transistor. As the light fluctuates sinusoidally the transistor generates two "sinusoidal" DC voltages per revolution, the equivalent of the radiation pattern from a dipole in Cartesian co-ordinates, see Fig. 3. The signal is coupled to the Y2 DC amplifier on the oscilloscope via an attenuator so that the level can be set against that from a real "reference" dipole and, of course, retained and displayed simultaneously whilst an aerial is being tested.

A 12-element " $Z L$ Special" mounted on the rotator system atop the author's 60ft mast.

An additional feature in progress of being developed is to provide the oscilloscope (an Advance model OS250) with a controllable circular time base; controlled, that is, from the aerial signal to provide continuous display of patterns in polar form as depicted in the block diagram.

Examples of Pattern Plotting

First some examples of plots from the oscilloscope in Cartesian co-ordinate and, apart from the dipole, I have taken one or two of the aerials described in my articles in the PW July 1976 and May 1977. The pattern from a real dipole is shown in Fig. 4 and, as can be seen, compares very favourably with the "electronic dipole" readout in Fig. 3. Each bright spot represents 10° of rotation, through 360°. Now examine the scope readout, Fig. 5, from the "ZL Special" end-fire beam described in PW May 1977, operating in horizontal mode. The two minor rear lobes are displayed to the right and left respectively. Compare this with the polar co-ordinate plot in Fig. 6 taken from the same aerial and with the same equipment.

The ${ }_{8} \lambda$ ground plane is a very popular aerial but it is not as efficient as one would suppose due to its high-angle radiation. It is omni-directional and, ideally, maximum radiation should be parallel to the ground. As the vertical angle pattern Fig. 7 shows, maximum radiation is at an angle of about 30° and although some gain is obtained from this aerial over a conventional ${ }_{4} \lambda$ ground plane it is wasted in an upward direction. In fact the "gain" on a line parallel to the ground is negative with respect to a vertical dipole. The oscilloscope readout Fig. 8 shows the same pattern in Cartesian co-ordinate.

Performance Defects

With this system of testing all kinds of defects in performance can be seen readily. Taking again the $5_{8} \lambda$ ground plane, its normal omni-direction pattern

Fig. 3 : Oscilloscope Cartesian plot of the "electronic dipole". (See text)

Fig. 5 : Cartesian plot of the response pattern of a "ZL Special" array, operating in the horizontal mode.

GT117

Fig. 4: A Cartesian plot of the response pattern of a real dipole.

Fig. 6: A polar co-ordinate plot of the aerial of Fig. 5, plotted using the pen chart recorder.

Fig. 8: Oscilloscope Cartesian plot of the response of the aerial of Fig. 7.

Fig. 9: Trace A shows the distortion of the radiation pattern of an omni-directional aerial due to a nearby resonant conductor. Trace B is a reference dipole.

Fig. 10 (right) : The polar co-ordinate plot of the set-up of Fig. 9.

Fig. 11: Horizontal radiation patterns of two 12-element "ZL Special" aerials.

GT120
Fig. 12: Comparison of the vertical radiation patterns of a $\frac{5}{8}$-wave ground plane aerial and the $\frac{3}{4}$-wave "Slim-Jim".

should be a circle if the aerial were behaving perfectly. If a mismatch exists, or the aerial is off resonance, the pattern can become distorted i.e., not a perfect circle. The presence of other resonant conductors will also produce this effect. The oscillogram Fig. 9 shows this quite clearly. The lower trace (B) is a reference dipole pattern. The upper trace should be a straight line, therefore there is a loss of radiated power in some directions. The result is perhaps more clearly illustrated by the polar coordinate plot in Fig. 10 of the same aerial with the dipole pattern again for reference.
A 12 element "ZL Special" mentioned earlier, has been developed for operation on 2 m and is now operational at G2BCX, the home station. This aerial started out as a 650 MHz model and after adjustment and a few modifications to director spacing and length, yielded a gain (over a dipole) of 14 dB . The 2 m version is physically much smaller than a Yagi array having the same gain. Its radiation pattern, actually plotted operating on 2 m is-shown in Fig. 11 by comparison with the pattern obtained from the 650 MHz model, which is shown dotted.

Slim Jim

Another aerial designed and developed with the aid of the model system is an omni-directional "free space" aerial for 2 m known at the moment as the "Slim Jim". It has no ground plane radials and is vastly superior to a $5_{8} \lambda$ ground plane, due to the radiation being almost parallel to the ground. The vertical angle radiation from the full scale 2 m version is shown in Fig. 12. Compare this with vertical angle radiation from a $5_{8} \lambda$ ground plane shown dotted in the illustration. Details of both these 2 m aerials will be published in the not too distant future.
To anyone contemplating setting up a test system of this nature I must emphasise that the task is not an easy one, but the results, if they are reasonably accurate, are highly rewarding.

Blob Boards.

And if you've never heard of them, you might wonder what on earth they're for.

After all they sound more like sci fi than practical electronics.

But in fact there is a good reason for the name.

It actually describes the way these printed circuit boards work. You just put a tiny blob of solder onto circuit board and component and you've made a perfect contact.

Every time.
There are of course a few other printed circuit boards around.

Butwe thinkthe prices are abitshocking.
Our prices, we think you'll agree, are more down to earth.

These Blob Boards are about half the price of the few comparable alternatives.

And unlike those alternatives, on most Bandridge Blob Boards you won't have to break the contact rails to make your circuit. So you'll be able to use them again and again.

The roller tinned copper on Blob Board makes soldering easy, and it won't corrode, so

Whether you are stuck in the frustrating immobility of a traffic jam, or suffering the boredom of a long car journey, you are sure to find facilities for in-car entertainment a great boon. Published information on the choice and installation of mobile audio equipment has not kept pace with the rapidly growing interest in the subject. This book fills the gap in a highly informative, easy-to-read manner. Written by an expert, and illustrated with many attractive twocolour diagrams, it sets out the relative merits of mono, stereo and quad in the car, and describes cartridge and cassette players as well as giving helpful advice on choosing between the systems.

CONTENTS:
The Car Equipment Scene. Mono Stereo or Quad? Mobile Tape Players. The Cartridge Player. The Cassette Player. Cassette or Cartridge? Car. Radios. Car Antennas. Interference Suppression. Installing the System. Trouble Shooting.

$$
1977 \quad 128 \text { pages } £ 2.50
$$

A SELECTION OF OTHER USEFUL BOOKS

Beginner's Guide to Electronics - 3rd Edition
T. L. Squires and C. M. Deason

1975
240 pages
£2.25
Beginner's Guide to Transistors - 2nd Edition J. A. Reddihough

1975
160 pages
£2. 25
Beginner's Guide to Radio - 8th Edition Gordon King
$1977 \quad 240$ pages £2.75
Foundations of Wireless and Electronics - 9th Edition M.G. Scroggie
$1975 \quad 552$ pages £3.75
Radio Circuits Explained
Gordon King
1977
175 pages
£5.50

ORDER NOW

A. P. ELECTRONICS

Manufacturer and Distributor of Electronic Components

3 MILDMAY ROAD, ROMFORD, ESSEX RM7 7DA

Telephone: ROMFORD 28882

BONANZA

4 MILLION RESISTOR'S Brand new. A fabulous range of $\frac{1}{4}$ Watt, $\frac{1}{2}$ Watt, 1 Watt and 2 Watt. Carbon Film Resistor's. 1,000 mixed values. For the lowest price ever, VAT included $£ \mathbf{5} \cdot \mathbf{5 0}$ only.
This is a bargain you cannot miss, only from A. P. ELECTRONICS. Count by weight. Post \& Pack only 45p.

$\frac{1}{2}$ A MILLION MINIATURE CERAMIC PLATE CAPS. 200 for only $£ 1 \cdot \mathbf{2 5}$. Mixed values all brand new VAT included. Post \& Pack 25p. Count by weight.

$\frac{1}{4}$ OF A MILLION MULLARD C296 POLYESTER'S

Many values, 75 for only £1 VAT included. Post \& Pack 30p. Brand new. Count by weight.

MULLARD C280 75 mixed values for only £1 VAT included. Post \& Pack 20p. Count by weight.

A FABULOUS PACK OF HARDWARE. Self tappers, nuts, bolts, washers, spacers, grommet's, etc. etc. £1 VAT included. Post \& Pack 40p.

200 METRES of connecting PVC covered wire single and stranded mixed colours for only £1-25 VAT included. Post \& Pack 25p.

50 ELECTROLYTICS CAPACITORS. Mixed values for only £1 VAT included. Post \& Pack 25p.

50 WIREWOUND RESISTORS. From 2.5 Watt. Mixed values for only £1 VAT included. Post \& Pack 30p. Count by weight.

OVERSEAS POST AT COST.

EX-STOCK. Transistor's, Diodes, I.Cs, C.MOSs, Thyristors, Knobs, Pre-sets, Resistors, Capacitors, Tant's, Bridge-Rectifiers, Transformers.

Open all day from 9am till 5.30 pm .
Open all day Saturday.

DESIGN YOURO Mo.5 Continuity Tester

In part one of this series of articles we mentioned that many of the circuits that we would be describing were going to be "one off" affairs. By this we meant that every circuit built to our specification may not necessarily work first time, without some playing about with component values. In fact this is also true of designs which are far more "respectable" than our examples! The audio amplifier in part 4 should work every time whereas the courtesy light extender of the previous month probably needs different values of timing capacitor to cater for the spread in gains of the transistors.

In passing we would recommend that if you don't spend a reasonable amount of time experimenting with simple circuits like this one, then now is the time to start. It's one of the best ways of learning about electronics in practice, as of course is reading this series!

Perhaps it's time now to stop philosophising and get down to business. The circuit for this month stems from the problem of finding which wire is which in wiring harnesses and cables. Wires always seem to end up being coated with nasty mixtures of dust and gunge and usually end in the most inaccessible places. The result of this is that "colour coded" wires can appear identical to one another and that you sometimes need to be a contortionist to hold the meter probes and simultaneously look at the meter needle. To put an end to this ritual we are going to go through the design of an audible continuity tester as this month's project.

A little while ago we saw a design for such a device which pointed out the merit of using a low testing voltage (about 0.2 V) so as to avoid seeing forward biased semiconductor junctions as short circuits. Although this seems a good idea the circuit was implemented with five transistors and a Zener diode-we felt that this was rather excessive so this month we will start from scratch and "design our own".

Specification

We want to use a $4 \cdot 5 / 5 \mathrm{~V}$ supply, so that we can either use batteries or the 5 V supply which we use for driving most of the instruments on our test bench. The device should use a low testing current-certainly no more than about 5 mA -and should treat a forward biased germanium junction as an open circuit. The standby current should be as low as possible so that when the tester is left on for a few hours/days/weeks it doesn't precipitate a major energy crisis.

Design

The major problem we have to deal with is the

TOBY BAILEY \& BOB WHITAKER

magnitude of the voltages we have to sense. To push three or four milliamps through a forward biased germanium junction is going to need around $0.4 \mathrm{~V}-$ we realise that the "turn on point" is usually stated to be around $0 \cdot 2-0 \cdot 3 \mathrm{~V}$ but at 4 mA it will be a bit more. Now sensing 0.4 V is going to be quite difficult and the best solution seems to be to use the sensitivity of a transistor, at the point where it is switching on, to "catch" the small voltages in which we are interested. By far the most convenient way to do this is to work out a way of converting the input signal of a fraction of a volt into a signal of several volts, which we can then use to switch an oscillator on or off.

Early ideas

Initially all our thoughts were directed towards putting the sensing circuit in the supply to the base of the transistor. Fig. 1 shows one of our first circuits.

Fig. 1: The start of the design.

The idea is that the diode turns on a little before the transistor so that if the test probes are shorted together then the diode steals all of the base current
from $\operatorname{Tr} 1$ and turns it off. If however there is a significant resistance or a junction between the probes then Trl will keep its base current and stay turned on.

Now this circuit has all sorts of problems in reality, but the one which caused us to abandon this circuit is that it will gobble up current at an alarming rate during standby. If the collector load resistor R1 is made large so as to reduce the quiescent current then $\operatorname{Tr} 1$ will be heavily saturated and hence difficult to switch off.

Fig. 2 : A possible development using a Zener diode.

An alternative solution is to play around with Zener diodes, which alleviates the current problem (see Fig. 2). We don't like this idea since, by the time you have allowed for the $+5 \%$ Zener tolerance $(+0 \cdot 2 \mathrm{~V})$ and for about half a volt difference between a full battery and a half empty one, the build up of tolerances will produce a bit of a mess.

Anyway, whilst we were thinking about this method, we had a bright idea: why not put the sensing element in the emitter and stabilise the base voltage-which can be done roughly with a couple of diodes? Fig. 3 shows the sort of idea we are getting at-it seems altogether a lot better. The current consumption with

Fig. 3: A more effective modification involving two diodes.
the probes open circuit need be little more than the base current required to turn on Tr1-only a microamp or two. We will have to decide about the diodes by experiment but doubtless we can trim up the final circuit with a preset potentiometer. To check that this circuit is feasible suppose that we achieve an emitter voltage of 0.3 V and that Rc is say $1 \mathrm{k} \Omega$: if we short the probes and ensure that Rb is sufficiently small then $\operatorname{Tr} 1$ will saturate, whilst if we connect a 200Ω resistor across the probes then a current of about $0 \cdot 3 / 200=1 \cdot 5 \mathrm{~mA}$ will flow which means that Rc should drop only 1.5 V . This all looks very promising.

At this stage in the proceedings we can make intelligent noises about how, since we want voltage gain and aren't particularly fussed about the current gain, a common base circuit (which this is in essence) is going to be at least as useful as a common emitter circuit (which the others were). We feel that whilst this sort of observation may be quite interesting it is not particularly useful and we certainly will not follow the scientific tradition of covering up the luck and inspiration involved by pretending that the circuit was arrived at in this way.

The Oscillator

Having got so far perhaps we should turn to the design of the oscillator. Some sledgehammer solutions spring to mind, such as using a transistor or two to amplify the current available and use this to supply a multivibrator or something. With a bit of thought we can do better than this. What about using the output of $\operatorname{Tr} 1$ to control the bias supply to a onetransistor oscillator-something like Fig. 4

Fig. 4 : Here the circuit has grown into a Hartley-type oscillator.
This may well work but we have a solution which we think is even better. The complementary pair type oscillator in Fig. 5 works as follows. Assume that both transistors are turned off-then C will start charging up via R and the speaker. Soon $\operatorname{Tr} 1$ will begin to turn on; this turns $\operatorname{Tr} 2$ on and the current through the speaker raises the voltage at that end of C.

Fig. 5 : An oscillator involv. ing a complementary pair.

Now it is one of the fundamental principles of electronic circuitry that you cannot change the voltage across a capacitor instantaneously. This means that the voltage at the other end of C is pushed up even higher and so even more current flows. Eventually the capacitor loses all its charge and the current through the transistors starts to drop. Provided that the component values are within a certain range (which is very wide and we won't worry about it here) the capacitor will drag the base of $\operatorname{Tr} 1$ down sufficiently far to turn off both transistors again. The cycle can then be repeated. The current through the loudspeaker, which should be a low impedance type, flows in short pulses but is of sufficient magnitude to make a fair noise.

The major point of interest that this circuit holds for us is that the resistor acts merely as a charging source for the capacitor. If we take the supply-rail end of R and connect it to a variable voltage source, the oscillator won't run when the voltage is zero and will oscillate as before when the voltage is equal to that of the supply rail. Somewhere in between these two extremes it will struggle into life and a little experimentation with the circuit on a T-Dec showed that this occurred with $\mathrm{R}=1 \mathrm{M} \Omega$ and $\mathrm{C}=1800 \mathrm{pF}$ at around $1 \cdot 5 \mathrm{~V}$.

Keeping in touch with a fast developing technology like microelectronics can be difficult. And, like, jumping on a moving train. the initial contact can be hazardous. if not actually painful.

That's why a unique line-up of IPC Business Press. journals have got together. To organise three days. of talks and presentations plus an exhibition which. will give you a chance to come to grips with the new technology of microsystems.

That means not just meroprocessors, but also interfaces, peripherals and software. Eveivthing, in fact whein is needed to transform a microprocessor into an operatuonal system.

So clman on boad Miciosystems 78. To lean more about the world's fastest moving technology. Without berng thrown off -balance or having the door stammed in your face.

We can think of lots of reasons why you should attend Microsystems 78. But we'll give you just eight of them.

ElectronicsWeekly

 GOWPUTER WEXIIY data processing micropprocessorsFlectrical Times celectrieal review

ELECTRON wireless world

All top joumals in then fields and all sponsors of Microsystems'78. Need we say more? Except please complete and return the coupon.

I am interested in Microsystems '78.
\square Please send me details of the seminar programme, when finalised.
\square I would like to submit a paper to
be delivered at Microsystems' 78 .
$\square \mathrm{My}$ company is interested in participating in Microsystems'78 as an exhibitor.
\square My company would like to make an industry presentation at
Microsystems' 78.
(Please tick the appropriate box):

Name

Job Title
Company Name

\square
\qquad

Hi-Fi Stereo at prices

everyone can afford

All prices include VAT, POSTAGE \& PACKING. Send cheque/PO Today for immediate delivery. Goods fully guaranteed for 12 months. Easy payment terms available on request LEWIS radio 100 Chase Side, Southgate, London N14 5PL-Tel: 01-882 1644. CALLERS WELCOME-ACCESS \& BARCLAY CARD ORDERS ACCEPTED.

H.A.E. SHORT-WAVE KITS

WORLD-WIDE REGEPTION

Famous for over 35 years for Short-Wave Equipment of quality, "H.A.C." were the Original suppliers of Short-Wave Receiver Kits for the amateur constructor. Special offer AR8
valves-70D each.

1977 '"DX'" RECEIVER
Complete kit-Price $\mathbf{f 7} \mathbf{2 0}$ (incl. $\mathbf{p}, \& \mathrm{p}$, and V.A.T.).

Customer who sent us five QSL cards, one from each continent writes: "Other countries of interest which I have heard are Korea, Japan, Sri Lanka, Liberia and many others. I was very surprised at the, simplicity of the set, compared to its efficiency."
This kit is ready to assemble and contains all genuine short-wave components, drilled
chassis, valve, accessories and full instructions. chassis, valve, accessories and fuli instructions. Famous model "K plus'; (illustrated above). All orders despatched within 7 days. Send now for free descriptive catalogue of kits and components.

SORRY, NO CATALOGUES WITHOUT SAEE.
"H.A.C." SHORT-WAVE PRODUCTS
P.O. Box No. 16, 10 Windmill Lane Lewes Road, East Grinstead, West Sussex RH19 3S7

SINGLE UNITS (ID) (5ins $\times 2 \downarrow i n s \times 2 t i n s)$. £2.90 DOZEN
DOUBLE UNITS (2D) (5ins $\times 4 \frac{1}{2}$ ins $\times 24 i n s$) E4.90 DOZEN.
TREBLE (3D) $£ 4.90$ for 8 .
DOUBLE TREBLE 2 drawers, in one outer case (6D2), $67 \cdot 25$ for 8 .
EXTRA LARGE SIZE (6DI) $66 \cdot 25$ for 8.
PLUS QUANTITY DISCOUNTS!
Orders over $f 20$, less 5%
Orders over 660 , less $7 \frac{1}{2} \%$.
PACKING/POSTAGE/CARRIAGE: Add 75p to all orders under $£ 10$. Orders $f 10$ and over, please add 10% carriage.

QUOTATIONS FOR LARGER QUANTITIES
Please add 8\% V.A.T. to total remittance All prices correct at time of going to press
FLAIRLINE SUPPLIES (Dept. PWI) 124 Cricklewood Broadway, London NW2 Tel. 01-450 4844

TV GAMES IN FULL COLOUR AY-3-8500 $56 \cdot 30$. Black and
White TV games kits:--Standard model 6ll.95. Economy
model 66.95 . Colour TV model E6.95. Colour TV
kits:-Standard K 19.45 .
Economy $£ 14 \cdot 45$. Colour Generator
kit adds colour to most black and whi
Rifle kit $£ 4 \cdot 95$, Send sae for giant data.
NEW COMPONENT SERVICE
Resistors 5% sarbon $E I 2 / \Omega$ to $10 M \frac{1}{4} W 1 \frac{1}{2} p$. IW $3 p$. Preset pots subminiature $0 \cdot 1 \mathrm{WW} 100 \Omega$ to 4 M 7 9p. Potentiometers $\ddagger \mathrm{W} 4 K 7$ to 2 M 2 log or lin. Single 30p. Dual 95p. Polystyrene Capacitors El2 63 V 22pf to 47000 pf 3p. Polyester Capacitors 250 V E6 .01 to $\cdot 1 \mathrm{mf} 5 \frac{1}{2} \mathrm{p}$. $\cdot 15, \cdot 22$, 33 mf 7 p .47 mf 11 p Electrolytics $50 \mathrm{~V} \cdot 47,1,2 \mathrm{mf} 5 \mathrm{p}$. 25 V 5, 10 mf 5 p . $16 \mathrm{~V} 22,33,47 \mathrm{mf} 6 \mathrm{p}$. $100 \mathrm{mf} 7 \mathrm{p} .220,330 \mathrm{mf} 9 \mathrm{p} .470 \mathrm{mf}$ 11 p . 1000 mf 18 p . Zener Diodes 400 mW E24 3 V 3 to $33 \vee 8 \frac{1}{2} \mathrm{p}$.

MAINS TRANSFORMERS
$6-0.6 \mathrm{~V} \quad 100 \mathrm{~mA} 94 \mathrm{p} . \quad 9-0-9 \mathrm{~V} \quad 75 \mathrm{~mA}$ 94p. 0/12/15/ $20 / 24 / 30 \mathrm{~V}$ IA $\quad \mathbf{E 3} \cdot \mathbf{B 5}$. $12-0.12 \mathrm{~V}$ 50mA 94p. D/I2/15/
 IA $62.89 .30-0-30 \mathrm{~V}$ IA 63.59

PRINTED CIRCUIT MATERIALS
50 sq. ins. pcb 40 p . llb . $\mathrm{FeCl} £ 1 \cdot 05$. Etch resist pens:-
Economy type 45 p . Dalo type 83 p . Small drill bit 20 p Economy type 45 p . Dalo type 83 p . Small drill bit 20p. Laminate cutter 75p. Euching dish 68p

S-DECS AND T-DECS*
S-Dec $\mathbf{2}$ 23. T-Dec $£ 3 \cdot 98$
u-DeCA $£ 3$ 97. u-DeCB $£ 6 \cdot 67$.
IC carriers with sockecs:
16 dil $\mathrm{fI} \cdot 91$. 10 T 05 El .91
SINCLAIR CALCULATORS AND DVM* Cambridge Scientific Programmable $£ 13.95$. Prog. digital multimeter $\mathbf{£ 2 6} \cdot 95$. Mains Adaptors $£ 3 \cdot 20$.

BATTERY EL!MINATOR BARGAINS
TV GAMES POWER UNIT
Stabilized $8 \frac{1}{1} V 100 \mathrm{~mA} \mathbf{E 3} \cdot 20$.
3-WAY MODELS
Type 1: $3 / 4 \frac{1}{2} / 6 \mathrm{~V}$ at 100 mA 62.30. Type 2: $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ Type $1: 3.4 \frac{1}{2} / 0$
$300 \mathrm{~mA} \mathbf{~} 2.90$.
100MA RADIO MODELS
With press-stud connectors. $9 V$ £3-45. 6V $£ 3 \cdot 45$ +9V $£ 5 \cdot 15.6 V+6 V £ 5 \cdot 15.4 \frac{1}{2} V+4 \frac{1}{2} V \in 5 \cdot 15$
CASSETTE MAINS UNIT
$7 \frac{1}{2} V$ with 5 pin din plug $150 \mathrm{~mA} \notin 3-65$.
FULLY STABILIZED MODEL $\mathrm{E6} \mathbf{4 0}$.
Switched output of $3 / 6 / 7 \frac{1}{2} / 9 \mathrm{~V} 400 \mathrm{~mA}$ stabilized.
CAR CONVERTORS I2V INPUT
Output 9 V 300 mA \& $1 \cdot 80$. Output $7 \frac{1}{2} \mathrm{~V} 300 \mathrm{~mA}$ il $\cdot \mathbf{8 0}$
BATTERY ELIMINATOR KITS
Send sae for free leaflet on range.
100 mA radio types with press stud battery terminals. $4 \frac{1}{2} V \in 2 \cdot 10.6 \mathrm{~V} \in 2 \cdot 10.9 \mathrm{~V} \in 2 \cdot 10.4 \frac{1}{2} \mathrm{~V}+4 \frac{1}{2} \mathrm{~V} \in 2 \cdot 50.6 \mathrm{~V}+$ $6 \mathrm{~V} £ 2 \cdot 50.9 \mathrm{~V}+9 \mathrm{~V} £ 2 \cdot 50$.
Cassette type $7 \frac{1}{2} \vee 100 \mathrm{~mA}$ with din plug E2•10. Transistor stabilized 8-way type for low hum Heavy duty 13 -way types $4 \frac{1}{2} / 6 / 7 / 8 \frac{1}{2} / 1 / / 13 / 14 / 17 / 21 /$ Heavy duty $25 / 28 / 34 / 42 \mathrm{~V}$. I Amp $\mathrm{E} 4 \cdot 85$. 2 Amp $£ 7 \cdot 95$.
Car convertor kit Input 12 V DC. Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ C IA transistor stabilized $£ 1 \cdot 95$
Stabilized power kits $3-18 \mathrm{~V}$ 100mA $£ 3 \cdot 60.3-30 \mathrm{~V}$ IA

BI-PAK AUDIO MODULES
S450 tuner $£ 21 \cdot 95$. AL60 $£ 4 \cdot 86$, PA100 £14-95. MK60 audio kit $\mathbf{4 6} \cdot \mathbf{4 5 \text { . Stereo } 3 0 \mathrm { E } / 7 \cdot 9 5 \text { . SPM80 } £ 3 \cdot 7 5 .}$ 8MT80 5595 . Send sae for free data.

JCI2, JC2O, JC40 AMPLIFIERS
JC12 6 W IC audio
amp with free data $\mathbf{4 1}$. 95.
and printed circuit
Also new IC 4020 W
model with pcb

63-95. Sensacio
amp with pcb $\in 2 \cdot 95$. Send sae for free leaflet on all 3 models and associated power supply and preamp kits.

FERRANTI ZN414
C radio chip $£ 1.44$. Extra parts and pcb for radio f3.85. Case ff. Send sae for free data.

SWANLEY ELECTRONICS DEPT. PW, PO BOX 68,

 32 GOLDSEL RD., SWANLEY, KENTPost 30p. Prices include VAT. Official orders welcome. Overseas customers deduct 7% on items marked * and 11% on others.

If we connect R directly to the collector of the sensing transistor in Fig. 3 we will in fact have produced a resistance tester which will make a noise only when we haven't got continuity. Although this works it is not what we wanted when we drew up our specifications. Never mind, we can turn the circuit of Fig. 5 "upside down" if we reverse the polarity of both the transistors-the two circuits can then be fitted together as shown in Fig. 6. We have tapped the resistor to the oscillator from the potential divider of R2 and R3 so that we can arrange for $\operatorname{Tr} 1$ to be near saturation before the oscillator switches on. We have also put a preset potentiometer in the base of Trl to trim the circuit for maximum sensitivity. We could have put it in series with the probe leads, but let's leave it where it is for the time being.

Fig. 6: The "combination" oscillator circuit.

Component values

Perhaps we should justify some of the component values in Fig. 6 which have already been decided. R4 was chosen as $1 \mathrm{M} \Omega$ because our experiments with the oscillator showed that this value worked well. C1 is 1800 pF because this value made a nice noise. As for the transistor types: the 2 N 3702 and 2 N 3704 are simply cheap general purpose types and we chose a BC109C for Trl because it has high gain which will mean that we need less current in the R1-VR1 circuit and this in turn means lower standby current. What now? Well the best thing to do is to build the circuit on a T-Dec and experiment with the values of the other components.
want more than about $70 \mu \mathrm{~A}$ of combined base and diode current. The circuit was then tried without any diodes to make sure that the oscillator oscillated when the probes were shorted and stopped when they were open circuit.

We then experimented with the diodes. It turned out that with one silicon and one germanium diode in series the transistor could not be persuaded to turn on significantly at all, even with the VR1 on minimum. With two silicon diodes in series we couldn't turn the oscillator off when the probes were shorted. This is a disadvantage, as maximum sensitivity is obtained by adjusting VR1 so that the oscillator is just turned

Fig. 7: The circuit of the completed design.
on when the probes are shorted. Increasing the value of R 1 to $470 \mathrm{k} \Omega$ rectified this deficiency.

Having set the circuit to the correct operating point with a 4.5 V supply we found that resistances of more than about 20Ω did not register as shorts, neither did a selection of germanium junctions in diodes and transistors. The 20Ω figure was rather better than we dared expect and even when the supply voltage was increased to 5 V there was little degradation in performance. The complete circuit diagram is shown in Fig. 7.

Flushed with success we transferred the whole circuit directly from the Dec to a piece of Blob Board. A practical layout is shown in Fig. 8. If the transfer is done component by component then the whole process is very fast and you don't have the problem of

Fig. 8: A practical layout for the continuity tester.

Where do we start? We wanted a sensing current of three or four milliamps maximum so we want $R 2+\mathrm{R} 3$ to be in the region of $1 \cdot 5 \mathrm{k} \Omega$. We already know that we want about 1.5 V drop across R 3 when Trl is saturated, to drive the oscillator. A little experimentation showed that when $\mathrm{R} 3=470 \Omega$ and $\mathrm{R} 2=1 \mathrm{k} \Omega$ the voltages were about right. Then we dug out a $500 \mathrm{k} \Omega$ preset and soldered a couple of leads to it so that we could plug it into the Dec. R1 was chosen to be $270 \mathrm{k} \Omega$ on the grounds that we can't possibly
losing the components among the general chaos of the work bench. We then attached a pair of old probes to the unit along with two leads for the battery.
How you house the finished unit is very much up to the individual constructor, and will depend on whether you want to carry it around in your tool-box or mount it permanently somewhere on the work bench.

In the January 1976 issue of $P W$ we published an article entitled "Want Some Lolly"? which laid down the guidelines for budding authors. The response at the time, and for some time afterwards, was most encouraging so we feel that another similar, but updated, article could be of profit to magazine and readers alike.

First of all, don't imagine that just because you are a genius at developing and constructing electronic circuits you cannot possibly write them up as well. If you go about it in the right way, you can, and get paid for it! You have only to look at any copy of $P W$ to see the style we use for technical articles and then copy that. What could be simpler? The secret is to keep an accurate account of what you are doing, from the word "go". Use a notebook and not odd bits of paper which are easily lost or used, inadvertently, for lighting your pipe!

We can sometimes arrange to help an author by providing him with a prototype board, if he can supply a rough foil pattern. A project built on stripboard can be eminently suitable for conversion to a PCB, and, again, we can usually assist. It is, perhaps, pertinent to point out here that we normally accept articles for publication on a "sole rights" basis. That is, IPC Magazines retain full copyright in the article on publication and payment of the appropriate fee to the author. Note that this includes the design of any PCB in the article. PCB layouts published elsewhere and possibly already the subject of copyright, cannot be accepted as part of an article submitted for publication.

When experimenting with a circuit you are bound to make voltage or current measurements so put these values on the circuit diagram in your notebook. If using an oscilloscope to check waveforms draw these in at the appropriate points, together with their amplitudes, if these have been measured.

If you think that your brainchild is likely to be of interest to the readers of $P W$ then drop a line to the Editor with a brief resume of what it is and what it does. If its appearance is important then a colour snapshot of it can be very informative to the Editor. DO NOT SEND THE PROTOTYE UNTIL REQUESTED!

Assuming that an article is requested what does the Editor want to receive from you? Briefly, the manuscript (MS), components list, plus circuits and constructional drawings. So let us look at these requirements in detail.

1. The MS. This should start with a brief introduction describing how the project came into being and what it achieves. If a technical specification is warranted put this on a separate sheet of paper. Next, a description of the circuit/s and how they work, with references to components linked to the circuit diagrams. Adequate constructional information comes next and this should not be skimped. Refer to your drawings as necessary, remembering that we shall be adding our own photographs to assist the reader. Finally, information on the alignment or adjustments that are needed to get the project working properly, together with any notes on snags that may have arisen.
To get a good, clean and presentable MS it is imperative to write it all out beforehand, checking and correct-
ing it as necessary before typing it. A lot of work? Maybe, but then, that's what you are going to be paid for, you hope! Type the MS using double line spacing with wide margins at both sides. Here's a useful hint. Type out a whole line from a technical article in $P W$ (September 1977 onwards) and use that as a guide to the length of a line when typing the MS. Type on one side of the paper only and number the pages. Add a cover sheet with your name and address, name of article and approximate number of words.
2. The Components List. This is very important and it must be accurate. Component values and references must agree with the circuit diagrams. All components should be readily available to the home constructor, but any "difficult" ones should have at least one source of supply quoted. Look at $P W$ to see the required form of the components list. When working on a project see if the relatively unimportant components, such as decoupling components, cannot be rationalised to reduce the number of different values used. Because you have used odd values from your junk box these should not be carried on into the components list. In a big project, a reader can save money by buying similar values of resistors, capacitors etc. in bulk. When you come to reference the components as Rl, Cl etc. start at the left and work across to the right. Look at $P W$ for our style of numbering and, in particular, note that an IC my be split up on the circuit diagram and shown as IC2a, IC2b and so on but in the component list IC2 is sufficient.
3. The Drawings. All circuit diagrams, constructional drawings, graphs and the like must be on sheets of paper separate from the MS. Circuits only need to be clear and accurate and not works of art. We re-draw them anyway, so don't waste time on unnecessary elaboration. Avoid small, crabby circuits with hard-to-read component values. Naturally, circuits should agree with the working prototype but if you do make any last minute alterations don't forget to amend the circuits! If you are not too happy about your draughtsmanship then try using graph paper, it can be a great help, though sometimes poses problems when photo-copied.

Comes the day when all the bumph is ready but there is just one more very important job to do! Get it all photo-copied! The Editor, or whoever is handling the article, may, almost certainly, want to raise a point or two at some time or other but it will be a waste of time if you haven't got a copy of everything. When you post it to the Editor it is a good idea to send it Recorded Delivery.

General notes

If you don't want to have your name shown on the article when published then tell the Editor in your covering letter and suggest a nom-de-plume. If you happen to have a string of letters after your name don't be modest, we like to print them. It's good for our ego!

Ah, yes, payment! When the Editor gets the first copies of the issue containing your epic he will sit down and assess all the contributions for payment. In a couple of weeks you will get a docket to sign and return to our Accounts bods. When they get it they will issue a cheque in payment and suddenly you will realise that it has all been worthwhile. In the meantime, of course, you will have been working on yet another project for $P W$!

When working on the MS avoid the use of colloquial expressions such as " 7 megs" (7 MHz), "mike" (microphone), "amp" (amplifier) etc., it is much better to spell them out properly.

Measures should be in the Metric System but it helps to put the equivalent Imperial figures in brackets, especially for items such as boxes, cabinets and the like. There are many people around who, understandably, have not yet been able to come to terms with the Metric system.

If you are clever enough to supply photos, ensure that they are half-plate, black and white and properly identified but, frankly, we much prefer to take our own!

does electronics interest you? discover, learn, perfect, and..BMJOY yoursself
Teaching Kits represent, without a doubt, the most economical and most absorbing method of understanding Electronics perfectly, even starting at zero, without effort, while practising your favorite pastime. Each kit allows you to make more than 100 experiments, which will lead you to master the theory and practise of circuits. Only the quantity, supply, and direct sale allow us to maintain these prices, so don't wait, we will obliged to raise the price.
a economic and passionate method, from introduction to new job opportunities!
The manuals teach you the techniques of the kit clearly and in detail, at its most recent level, starting from zero, and guide you in making an infinite number of experiments, assemblies, apparati, enjoyable, of ten useful, always instructive, and absorbing.
A laboratory in your home : mini, to be sure, but serious and technically important : Electronic voltmetre, logic indicators. On epoxy resin board, you wire the assemblies using the numerous parts furnished. You are sure to understand everything and succed, and if any point remains unclear, our engineers will reply to all your questions, send only a envelope with your name and adress for an answer.
ik2 semiconductors:
Including the most advanced techniques.
The kit also constitutes an excellent base, even for preparation for official exams. And everything one needs too know to approach specialization in the best conditions.
Everything one needs to know in theory as well. as practise(an infinite number of experiments) about : diodes, transistors zener, phototransistor, FET, MOS, thyristors, triacs,diacs, etc. to use them rationally, to conceive assemblies, and master the theory of semiconductors needed in the repair of any apparatus.

the material :

1 EPOXY RESIN experiment board, large size. All componants needed to make your own : -Ahelectronic voltmeter,-í LF Measures Amplifier, - 4 logic indicators.

And also numerous componants needed to make assemblies and experiments: diodes, transistors, (small kignal and power), diac, zener, triac, LEDs, phototransistor, MOS, Integrated circuit; Resistors, capacitors, loud speaker, $V C, c o i l$ former, potentiometers, ammeter, operational amplifier, etc. .

the manual:

Large size, abundantly illustrated, particullary wel detailed.
CERTAIN TITLES ONLY : -Introduction, laboratory, electricity, resistors capacitors, alternating phenomena, diodes, transistors, amplifier, MOS and CMOS technology, filters, oscillators, applications, transistors changing state, thyristors, triac, AM broadcasting, AM Receivers, radio control, troubleshooting, etc.. More than A HUNDRED experiments explained.

possibilities:

SOME EXANPLES : beyond the lab : amplifier-oscillator- games, caterpillar effect, light modulator, broadcasting, radio Receiver, measuring instruments, radio control, gadgets, etc. ..

 WD4 9PB
SAGA FRANCE : 1 RUE PROSPER DELFAU \Longrightarrow 30160 besseges france.

complete and mail coupon today (Block letters)

Please send me_(QTY) IK2 teaching Kit(s)
I enclose Cheque/Postal order for \qquad ε NAME

ADRESS

QUALITY FOR CHRISTMAS

Superb CASIO watches-probably the best value for money available. Constant LCD display of 7 functions plus light plus automatic calendar plus STOPWATCH to 13 hours and, except $31 R-Q 12 \mathrm{~B}$, plus DUAL TIME ZONE. All stainless steel cases. WATER RESISTANT to 100 ft . Mineral glass faces.
Not illustrated: As above but ultra-slim ($1^{\prime \prime}$) on bracelet, 31 CS -10B. N59.95. On strap, 31CS-15L £49.95. Also other models. LADIES CASIO, as above but without dual time zone. 5 models from $£ 29.95$ to $£ 79.95$.

Timeband Ladies LCD. 5+3 functions, plus light, Superb styling from $\mathbf{8 2 3} .95$. New ultra-slim Iblco 407. 6 digit, hrs, mins, secs (or date), day, £39.95. $\mathbf{8 5 4} \mathbf{5 0}$. Now other digital 701 Four functions, luminous, Precise second clock, etc. fany other digital and analogue watches, stopwatches, ciocks, car cors.

Dept. P.W. 19/21 Fitzroy Street, Cambridge CB1 1EH Tel. 0223312866

THE firm for speakers!

SEND 10P STAMP FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS, CROSSOVERS ETC. AND DISCOUNT PRICE LIST.

ATC - AUDAX - BAKER - BOWERS \& WILKINS - CASTLE - CELESTION - CHARTWELLL COLES - DALESFORD - DECCA EMI EAGLE ELAC - FANE GAUSS - GOODMANS - HELME - I.M.F. - ISOPHON - JR JORDAN WATTS - KEF - LEAK - LOWTHER MCKENZIE - MONITOR AUDIO - PEERLESS - RADFORD - RAM - RICHARD ALLAN SEAS - TANNOY - VIDEOTONE - WHARFEDALE

WIMSLDW AMDID (Dept. P.w.)

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE SK9 1HF
Discount HiFi Etc. at 5 Swan Street and 10 Swan Street TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

by Eric Dowdeswell G4AR

Quite a few reports have accumulated since last month but pride of place must go as usual to a reader who has just got his nice new callsign. Andrew Work of Beverley, E. Yorks, often wrote to the column as A9091 but now he is G8NPT and has already been on the air on 2 m with some borrowed gear. Regretfully, Andrew has quite rightly decided to forget the code test until his " O " level exams are out of the way next year. Andrew is full of praise for our new RAE series in PW and feels sure it will bring on a new batch of licencees in due course.

Chas. Mason, subject of my November editorial is now GW4GJD and active with a KW Vanguard on CW using a 132 ft wire, plus an AR88. Chas. is in a very isolated spot in Pembroke, W. Wales, so the DX potential ought to be excellent. Simon Robinson (Stocksfield, Northumberland) was on holiday on the Isle of Mull where he met local GM4EHB. Simon's DX is still not too good, being stuck with an inside aerial around the lamp fittings!

Alan Doherty BR34968 of Portrush, Co. Antrim has not had too much time for DXing but nevertheless found something on all the HF bands. WB6NCO/VQ9 on Diego Garcia was a good find on 15 m and FK8CR on Noumea (Box 544) on 20 m will be hard to beat. From Farnham, Surrey, Paul Pasquet reports that fellow listener Iain is now radio cadet with BP and away on a course, but Paul seems to have managed quite well on his own! Weirdest call of all time was 4079WARC which turned out to be in YU-land! Another of Paul's weirdies was $\mathrm{Z44N}$ reported to be on an island near ZC4. A more familiar prefix was KS6 in the shape of KS6FL a pretty good catch on 15 m SSB.

It was good to hear from Dave Peck BRS37621 of Cambridge once again with a short list of his RTTY finds on 20 m . Dave happened to find out that his neighbour is an Ex-RAF radio op so Dave can now do about 12wpm! Better get him into the local club OM! In Braunton, N. Devon. Paul Bradbeer now has a new FRG7 to feed from his V-3jr vertical aerial. Wisely, he has added earth radials rather than rely upon the natural earth. His favourite band is 15 m although 20 m and 40 m get their share of his attention. First time writer John Stephen of Glasgow recently bought a Hallicrafters SX140 and is very pleased with results so far but would like to get hold of a manual for it, so if anyone can help write to John at 74 Shakespeare Street, Glasgow G20 8TJ.

Up in Dringhouses, York, some CW has been copied by John Hague but he hopes to do better soon with a DX160 which is on the way. John mentions that he is taking his code test very soon but I am not sure that this is very wise. As far as I know the code test certificate is only good for a year so unless John gets his RAE in that time
he might have to take the code test again. With the astronomical rise in the cost of taking the code test and the RAE it behoves every candidate to make quite sure that he is 100% ready for the exams before entering.

An interesting letter from 16 -year-old Kevin Jones in Nuneaton, Warks, who is shortly entering the Navy as an electrician. He has been busy on communications in the Sea Cadet Corps where he has been able to play around with some of the gear. From Rotherham comes a first letter from Neil Clarke who has succeeded in copying SSB on 40 m with two domestic receivers, using one as a BFO! Anyway I think that the bug has bitten Neil hard enough to ensure that he will be getting a set soon that is better suited to the job in hand! One callsign, a G8, caused Neil to ask why he was operating on 40 m as he thought G8's were confined to VHF and up. Well, this G8 was G8RY, an old-timer licenced around $1937 / 38$, the other G8's have three letters popularly known as $\mathrm{G} 8+3$'s. Similarly, my own call G4AR was issued in January 1939, the new licencees are G4+3's.
Old-faithful Robin Bayley keeps going up in Shropshire with his EC10 and long wire aerial. Even in summer he still logs DX like HK0 and FP8 on 80 m and a VK9 on 40 m , with KH6 on 20° and 15 m . From Redruth in Cornwall, Bill Caulfield tells me he has been reading PW for years but only now has taken the plunge and bought some gear for the SW bands. It is only what I would call a "glorified" domestic receiver but, like Neil Clarke mentioned earlier, I hope it will lead to better things before long. Bill admits to being 58 which gives him plenty of time to get his ticket and settle down to the greatest of all hobbies!

CLUB NEWS A new radio club for those of you in Devon, namely the Exmoor Radio Club which meets on the second and fourth Thursday each month at the South Molton Community College. They plan to start RAE courses based on the new PW series. Thanks for the compliment, hope it leads to a lot of new tickets. Contact Chairman Dave Stone, 47 Oakford Villas, North Molton, Devon or Secretary Ted Bruns, Loughrigg, East Street, South Molton, Devon

Log extracts

R. Bayley:- 80 m AP2AD CT2AP EA9CR FP8DA HK0COP 40 m DU1DBT FP8DH JA1JRK JW7BK VK9XI 20m KH6BB TG9AD 15m HK0CAT KH6PP TG9TL
P. Bradbeer:- 20 m VP2DLF VP8PM 15 m HM1JA HR3JJR KG6SS P29JS VP2GAH YB3KA 5T5JD 10m FM7AV VP8NO 8P6FX 9J2BO
A. Doherty:- 80 m JA6BSM 5Z4NI 8P6GN 9G1ARS 40m KA2BAY TU2EF 20 m FK8CR KS6FL KX6BU ST2SA VP8MX VS5XU YB7AAA ZK1DR 3B8DS 15m P29JW WB6NCO/VQ9 (Diego Garcia) ZD7PV 7P8BC
P. Pasquet:-20m KA6KN 9N1MM 15m J28AM KS6FL VP8NO ZD7SD 8Q7AD (Maldives)
D. Peck:-RTTY 20m A9XCC EA8IY EA9FJ FP8DF KH6FKG LU9CN PY2BXA SL6A VE3FQD YV7DU 7X4MD
J. Stephen:- 20m CP1BP HR3JJR TR8JVC TU2GO 15m VP2SAG
B. Harrison:- 80m VP2LDD 20m KC6BS 15m S88TH VR4DN 8Q7AD 10 m VP8CZ VP8LP

All reports are SSB.

MEDIUM WAVE DX

by Charles Molloy G8BUS

A useful log of MW DX comes from John McFadden of Belfast who has recently acquired a Yaesu FRG-7 communications receiver. When connected to a 35 ft longwire aerial it pulled in CJCH in Halifax, Nova Scotia on 920 kHz , CJYQ (ex-CJON) on 930 and three broadcasts from New York City, WINS on 1010, WNEW on 1130 and WQXR on 1560 , all heard between 0100 and 0230 GMT. Other DX logged includes Ain Beida in Algeria on 529 at 0014, Istanbul on 1016 at 0216 and an unidentified CBC Radio discussion programme on 630 at 0205 . This could be CFCY in Charlottetown, Prince Edward Island which is occasionally heard in the UK. Although privately owned, CFCY may well have been relaying a programme from the CBC (Canadian Broadcasting Commission). Privately owned stations do this, a practice which can easily mislead the DXer.

John says he is interested in US medium wave stations and asks if it is a good idea to concentrate on one area or just to browse around for anything that happens to be on. Surprise and the unexpected await those who browse around the medium waves. New stations are always appearing and propagation is sometimes favourable to quite unexpected parts of the world. On the other hand, DXing North Americans has an attraction of its own.

There are large numbers of stations, over 4000 in the United States. There is no trouble with identification or language and the majority of stations will QSL. Propagation as usual is the deciding factor on the medium waves. The North American specialist will sometimes find the band alive with stations that interest him while at other times not a single North American will be heard. When this occurs he will have to "browse around" or pack in DXing until the North American path picks up again.

Neal Cartwright (London) who uses a Ecko A239 valve receiver, would like to know how to immobilise its AGC (automatic gain control). Locate the AGC line and connect it to the chassis via a switch. The AGC can then be switched on or off as required. Although the AGC is useful when turning across the band, as it prevents the receiver from being overloaded by strong signals, it can be a disadvantage when one is trying to listen to a weak station that is close to a strong one. The AGC will respond to the strong signal, reducing the receiver gain and the weak station now appears to be weaker than it really is.
The usual technique to use when the AGC is ON, is to set the RF gain control to maximum and adjust the volume by means of the audio gain control. With AGC switched OFF then a different procedure is called for. Adjust the audio gain for a comfortable volume from the loudspeaker and follow the signal with the RF gain control, backing it off on strong signals to avoid overloading and crossmodulation.
Is there a book giving details of radio stations in North and South America including powers of transmitters, callsigns, identifications and addresses, asks John Faulkener from Mansfield. The World Radio and TV Handbook, published annually and distributed in the UK by Billboard Publications, contains this information for the majority of broadcasting stations on the long, medium and short wave bands, throughout the world. The 1977 edition cost $£ 5 \cdot 50$. John already possesses a copy of the World's Short Wave, Medium and Long Wave, FM and TV Listing which covers 1500 medium wave stations in the

United States and another 300 in Canada. This paperback, which is published by Babani, costs 60 p and is available from bookshops in the UK.
John does his DXing with a Trio 9R59D communications receiver, a Codar PR40 preselector and a 100 ft longwire. North Americans heard with this set-up are CFRB in Toronto on 1010 kHz , KMOX St Louis on 1120, WHAM Rochester NY on 1180, Ft Wayne Indiana on 1190 and WOAI San Antonio Texas on 1200. DX from other parts of the Americas include ZDK St Johns in Antigua on 1100, Rio de Janeiro on 1180 and Radio el Mundo in Buenos Aires on 1070.
Jim Robinson of Selby in Yorkshire is building a loop aerial. He has an unmarked variable capacitor and asks if is possible to find out its value. An indication of the value can be obtained by substituting it for one of known value in a tuned cirouit, such as the tuning capacitor in a radio receiver, though this may not be too easy to do in practice. The unknown capacitor will be lower in value than the known one if the tuned circuit resonates at a higher frequency than before, with the vanes fully meshed.
Why not try the unknown variable on the loop? With the vanes unmeshed, adjust the number of turns on the loop so that it resonates not lower than 1600 kHz . When the vanes are fully closed the loop should tune to 540 kHz . If it tunes to a higher frequency then the capacitor is too low in value. It can be increased by using a fixed capacitor (try 220 pF) in parallel via a switch, and the band can now be covered in two ranges. DXers who find it difficult to cover the whole band even when using a 500 pF variable, should try this method.

Harold Emblem (Mirfield, Yorkshire) has been busy during the evening with his Eddystone 730/4 and loop. Stations heard include Riyadh in Saudi Arabia on 597 kHz at 2145, Ouagadougo, Upper Volta on 746 at 2330, Enugu in Nigeria on 1320 at 2240 and Conakry, Guinea on 1403 at 2245 . No need to stay up late to DX on the medium waves!
Harold mentions that all the stations in the CJON network, $(610,670,680,930,1350)$ are now using the call CJYQ which is abbreviated at times to "CJ Radio". He has sent a reception report to St John's (930) which increased power recently to 50 kW and the reply should indicate whether the callsign too has been changed from CJON to CJYQ.
Robin Harvey of Halesworth, Suffolk has heard the medium wave outlet of Mebo 2 under the Spanish station on 733 kHz . It is on the air nightly between 1900 and 2300 , in parallel with 6205 in the 49 m band. Announcements are in English between non-stop music and the broadcast is from a ship anchored in the harbour of Tripoli in Libya. During the day it relays the programmes of Libyan Radio. Reception was with a Telefunken TS101 portable and a telescopic aerial.
T. Cridge of Farndon, Cheshire recently purchased a CR100 and has a great deal of pleasure from it. "I have been experimenting with different aerials and at present have a half folded dipole. I don't really know what I am doing but it is great fun finding out". A loop is now under construction which should give some direction to the experiments!

SHORT WAVE BROADCASTS

by Charles Molloy G8BUS
The reference in the October issue of Practical Wireless to Radio Australia's transmission on 21570 kHz in the 13 m band has brought an interesting reply from George Hew-

LOOK! Heres how you master electronics.

 the practical way.

This new style course will enable anyone to have a real understanding of electronics by a modern, practical and visual method. No previous knowledge is required, no maths, and an absolute minimum of theory.

You learn the practical way in easy steps mastering all the essentials of your hobby or to further your career in electronics or as a selfemployed electronics engineer.

All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write, at any time, for advice or help during your work. A Certificate is given at the end of every course.

Buildan oscilloscope.

As the first stage of your training, you actually build your own Cathode ray oscilloscope! This is no toy, but a test instrument that you will need not only for the course's practical experiments, but also later if you decide to develop you knowledge and enter the profession. It remains your property and represents a very large saving over buying a similar piece of essential equipment.

2 Read,drawand understand circuit diagrams.

In a short time you will be able to read and draw circuit diagrams, understand the very fundamentals of television, radio, computors and countless other electronic devices and their servicing procedures

3 Carry out over 40 experiments on basic circuits.

We show you how to conduct experiments on a wide variety of different circuits and turn the information gained into a working knowledge of testing servicing and maintaining all types of electronic equipment, radio, t.v etc.

All students enrolling in our courses receive a free circuit board originating from a comouter and containing many different components that can be used in experiments and provide an excellent example of current electronic practice.

To find out more about how to learn electronics in a new, exciting and absorbing way, just clip the

British National Radio \& Electronic School

P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS \qquad Block caps please

EASY build Speaker diy kits Specially designed by RT.VC for costconscious hi.fi enthusiasts. these kits incorporate two teak-simulate enclosures. two EMI 13" $\times 8^{8 \prime}$ (approx.) wooters, two twesters and a pair of malching crossovers. Supplied complete with an easy-to-Follow
£2800 circuit diagram, and crossover companants. STEREOPAR Input 15 watts rms, 30 watts peak. each unit $+p \& p$ f5.50 Cabinet size $20^{\prime \prime} \times 11^{\prime} \times 9 \frac{1}{\frac{1}{\prime \prime}}$ (approx.).

SPEAKERS AVAILABLE WITHOUT CABINETS. It's the units which wa supply with the enclosures illustrated
 tweater, and matching crossover components. stereo pair Power handling 15 watts $\mathrm{ms}, 30$ watts peak. + p \& $\mathrm{P}\{3,40$
COMPACT FOR TOP VALUE These infinite baffle enclosurés coma to you ready mitred and protessionally finished. Each cabinet measures approx. per stareo pair $12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime}$ deap, and is in wood simulate, $\quad \quad \mathbf{g} 50$
Complete with two $8^{\prime \prime}$ ((0pprox.) spaakers for Complete with two $8^{\prime \prime}$ (approx.) speakers for $\quad \mathrm{E}^{850}$ maximum power handling of 7 watts. $8 Q$. $+p \& \rho £ 2.20$.
SPEAKERS Two modeis-Duo llb, teak venear 12 watts SPEAKERS Two modelis- Buo 1 , teak venaer. 1 rms, 24 watts peak. $18 \frac{1}{3} \times 13$ 13 $\times 7$ (approx.)
Duo 111,20 wattsrms. 40 watts peak. $27^{\prime \prime} \times 13^{\prime \prime} \times 111^{\prime \prime}{ }^{\prime 2}$ appx
 decca 20 WATIS STEREO SPEAMER stereo pair This matching loudspeaker systom is hand made, kit comprisas of two $\mathrm{B}^{\prime \prime}$ diameter approx. base drive unit. with heavy die cast chassis laminated cones with rolled P.V.C. surfounds, two $3 \frac{1}{2}$ " diameter approx. domad tweeters complefe with crossover networks $B \Omega$. $£ 4.00 \mathrm{p} \&{ }^{2} \mathrm{f} . \mathrm{E} 0^{00}$

PERSONAL SHOPPERS
STERED CASSETTE record/raplay fully built P.C. board $\boldsymbol{2}^{75}$ AM, FM. TUNER P.C.B. with Mullard L.P. 1186 . Eg50
1185, 1181 modules.
100 K Multiturn Varicap tuning pots, 6 for $£ 100$
PAIR STEREO B WATT SPEAKERS
$8^{\prime \prime}$ bass units with $3 \frac{1}{2}$ " approx. tweeters Size $16 \frac{1}{2} \times 11^{\prime \prime} \times 8 \frac{1}{\frac{1}{2}}$
12 Plinth $\&$ cover BSR or Garrard teak finish $\quad \mathbf{6 0}^{00} 0$ DECCA OC1000 Stareo Cassette P.C.B. complete with switch osciliator coils and tape-heads AM. FM. Stareo Multiplex Cbr Radio/cassette $\mathbf{5 6 0 0}$ player in dash fixing Negative garth 5 watts output I.C. Stereo 8 Track to Cassette adaptor converts, $\quad 18 \mathbf{8 9 5}^{95}$ any 8 tractk player to cassette player.

20×20 WATt Stereo amplifien
Superb Viscount IV unit in teak-finishad cabinst. Silver fascia with aluminium rotary controls and Silver fascia with aluminium rotary controls and \quad p \& p
pushbuttons, red mains indicator and stereo jack 129^{90} socket. Function switch for mic. magnetic and crystal pick-ups, tape, tuner. and auxiliary Rear panel features two mains outlets. OIN speaker and input sockets. plus fuse. $20+20$ watts rms, $40+40$ watts peak.
30×30 WATT A MPLIFIER KIT
Specially designed by RTVVC for the experienced constructor, complete in evary dotail. Same facilities as
Viscount IV amplifier. $60+60$ peak. P \& p $£ 2.50 \quad £ 2900$ NOW AVAILABLE fully built and tested. $\quad \mathbf{3 5 0 0}$ Output $30+30$ watts rms. $60+60$ peak. \quad \& $\& \mathrm{p} 52.60$
32 To cash or cheque personal shoppers Vis A 4 channel Steres Adaptor to all buyers of the

add- on stere cassette tape deck kit Designed for the experienced D.l.Y. man. This kit comprises of a tape transport mechanisem. rady buitt and tested record/replay elactronics with twin V.U. meters and level control for mating with mechanism Specifications: Sansitivity - Mic. 0.85 mV a 20 K OHMS: Din. 40 mV a 400 K OHMS : Output -300 mV RMS per channol'ra 1 KHz from 2 K OHMS source: Cross Talk - 30 db : Tape Counter 3 Digit. Rasottable : Frequency Response $-40 \mathrm{~Hz}-8 \mathrm{KHz} \pm 6 \mathrm{db}$ Deck Motor - 9 Volt DC with electronic spead ragulations: Kay Functions - Record, Rewind; Mains Transtomer $£ 1 \mathbf{g}^{95}$ Fast Forward. Play, Stop \& Eject. $£ 2.50+£ 1 \mathrm{p} \& \mathrm{D} ; \mathrm{p}$ \& $\mathrm{O} \mathrm{£2} .50$ Opt. extres: Pair of Dynemic microphones $£ 3.95+£ 1.000$ D $\& p$.

$\rightarrow \infty \rightarrow \square \rightarrow \begin{aligned} & \text { All enquities } \\ & \text { andressed }\end{aligned}$

323 EOGWARE ROAD LONOON W2 21c HIGH STREET. ACTON W3 GNG ALL PRICES INCLUDE VAT AT 12 $\frac{1}{2}$ \%
All iems subject to availability. Price correct sat 1.10 .77 and sublect to change wifhoul nalice

45 watts rms, 90 watts peak output. Big features include two disc inputs, both for ceramic cartridges. tape input and microphone input. Level mixing controls fitted with integral push.pull switches. Independent bass and treble controls and mastar volume.

70 \& 100 WATT MOND DISCO AMP size approx.
$14^{\prime \prime} \times 4^{\prime \prime} \times 10$ Brushed aluminium fascia and rotary controls.
Five vertical slide controls-mastervolume tape level, mic leval. deck lavel. PLUS INTER-DECK FADER for perfect graduated change from record deck No. 1 to No. 2, or vice versa. Pre fade level control 70 watt E 57 (PFI) lets YOU has next dise before fading 40 wor peek $\begin{array}{ll}\text { it in. VU mater menitors output level. } & \text { A \& p f4.00 } \\ \text { Output } 100 \text { wott's RMS } 200 \text { watts peak. } & 100 \text { watt } \mathbf{E} 5\end{array}$ CHASSIS AECORD BSR 日DS 95 SERIES Thus f 2495 layer deeks
 Bolt drive turntable unit, 2 speed, semi automatic p \& p f2.55 BSR MP60 TYPE Single
$\begin{aligned} & \text { play record deck }\end{aligned} \mathbf{5}^{95}$. less cartridge. p\&p\&2.55 Carifidges to suit above Acos, magnetic stareo $\mathbf{4 4 . 9 5}$ Caramic stereo $£ 1.95$ cueing device and stereo ceramic had. o \& p f 2.55 £ \mathbf{g}^{95} BSR MP 60 type, complete with magnetic cartridge, $£ 29$ diamend stylus, and de luxe plinth and cover, p\&pC4.50
 with the Viscount IV $9^{\prime \prime} \times 8^{\prime \prime} \times 3 \frac{1}{2}$ ". p \& $\mathrm{p}\left\{2.50 \quad £ 16^{50}\right.$
Tourist IV
CAR RADIO KIT
For the axperienced
constructor only
Output 4 watts into $40 h m s$.
12 volts pos or neg (altered internaliy) $\mathbf{¢ 1} \mathbf{2 5 0} \mathrm{p}$ \& $p \mathbf{£ 1 . 5 0}$ FREE TO PERSONAL SHOPPERS BUYING CAR RADIO KIT worth ELECTROMATE Rear window heater, modern line element, $£ 3,00$

FIRST GRADE DEVIGES by MAJOR MANUFAGTURERS * Special Xmas Offer of por Recuiar itens silicied

TEXAS TTLs

00	12p	74123	60p	4009	P	
7402	12 p	74141	60p	4011		
7404	15p	74151	100p	4013	35p	
7408	16p	74153	100p	4016	35	
7410	12p	74154	90p	4017		
7413	28p	74157	100p	4024		
7414	60p	74160	65p	4046		
7420	12p	74164	90p	4046 4049		
7430	12p	74190	90p	4049		
7441	60p	74192	75p	4510		
7442	45p	74193	75p	4518	0p	
7447	60 p	74196	70p	4528	75p	
7474	25p	AY-5-1013P UART RO-3-25I3 ROM				
7475	34p				P	
7486	25p				650p	
7490	30p	LOW PROFILE SOCKETS				
7493	30 p					
7496	60p	14 pin	\\|p	24 pin	24p	
74121	26p	16 pin	12p	40 pin		

We stress the fact that we are totally quality conscious and do not offer sub-standard or rebranded products for sale.

STAR OFFERS

7418 pin DIL 18p 5558 pin DIL 72314 pin DIL 2102-2 RAM I25p LM309K TO3 110p TIL209 LED 10p

Voltage Regulators

Plastic TO-220

$1 \mathrm{Amp}+\mathrm{ve}$			1 Amp -ve		
5 V	7805	85p	5 V	7905	110p
12V	7812	85p	12 V	7912	110p
15 V	7815	85p	15 V	7915	110p
100 mA -TO92 $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$					each

301A	$\mathbf{2 8 p}$	OPTO-DEVICES			
748	$\mathbf{2 8 p}$	LEDs: $0.2^{\prime \prime}$	Red 14 p	Green 16p	
LM380N	$\mathbf{7 5 p}$	DISPLAYS: FND 357	$0.37^{\prime \prime}$	100 p	Red C.C.
TBA800	$\mathbf{8 0 p}$	FND 500/507	$0 \cdot 5^{\prime \prime}$	100 p	Red C.C./C.A.
TBA8105	$\mathbf{8 5 p}$	TIL 321/322	$0.5^{\prime \prime}$	110 p	Red C.A./C.C.

Minimum order $£ 10$ exc. VAT.
DISCOUNTS $\left\{\begin{array}{l}10 \% \text { on orders over } £ 50 . \\ 20 \% \text { on orders over } £ 100 .\end{array}\right.$
OFFER CLOSES ON 21st JANARY, 1978.
MAIL ORDER
ONLY
lett of Torquay who is a Monitor to the Broadcasting Branch of Telecom Australia (Radio Australia and VNG). He refers to the antenna bearings which appear in Radio Australia's transmission schedule and in the World Radio Handbook. For British listeners, bearings of 308 and 325, both across the short route, offer the best reception while 110,118 and especially 128 give the best reception over the long route across the Pacific. Reception of transmissions on other bearings can occur but are more difficult with much depending on time of year and day.
George refers to the Australian Time and Frequency station VNG which can be heard on 12.0 and $7 \cdot 5 \mathrm{MHz}$ between 0600 and 0800 and on $7 \cdot 5$ and $4 \cdot 5 \mathrm{MHz}$ between 1600 and 2000 . Reception is possible throughout the year, the morning times being latest and the evening times earliest, in mid-winter. Station announoements are given a few seconds before each hour, quarter hour, half hour and quarter to the hour. The transmission on 4.5 MHz , which appears 30 minutes later than the one on 7.5 should be of interest in Tropical Band DXers as an indicator of propagation conditions across S.E. Asia.

The International Short Wave Club is offering to send a free sample copy of their monthly bulletin to readers of Practical Wireless. The bulletin presents news and highlights of the short wave world and there is also a section covering the amateur bands. The October issue gives details of the well known ISWC short wave station popularity poll. The voting, for 1977, favoured Radio Nederland in all six continents. Request should go to the President, Jim Malone, 19 Seventh Avenue, Manor Park, London E12 and return postage, although not asked for, would no doubt be appreciated.

Brian Steele (Sheffield) has recently purchased a Sony ICF 5900 W receiver with which he pulled in the Voice of Turkey on 9515 and 11880 kHz , Radio South Africa on 11900 and Radio Canada on 15325. Brian is very pleased with his new receiver which has a military style cabinet, a crystal calibrator and has DX/Local, BFO and bandspread controls.
Harold Emblem (Mirfield, Yorkshire) has been trying his Eddystone 730/4 on the short waves and he reports hearing Trans World Radio, Bonaire on 15275 kHz (19 m band) at 2215, Sri Lanka on 15425 at 0400, AFRTS on 15430 at 2255. On 16 metres he logged "WINB Red Lion on 17720 signing off at 2000 with announcement of this frequency which is not listed in the WRH, and WYFR Family Radio on 17845 at 2025. Harold Brodribb (St Leonards) has been busy again on the higher frequencies with his CR100 and longwire. On the 11 m band he heard Radio Israel in Russian and Yiddish on 25605 kHz between 1430 and 1630. On 13 metres, Radio RSA was heard on 21535 at 1435, Radio Australia on 21570 at 0840 with DXers Calling (also on 9570), Radio Israel on 21625 at 1640, BBC World Service on 21710 at 1403 and Radio Norway with Listeners Choice on 21730 at 1345.

Derek Taylor (Preston, Lancs) has been trying out his new Yaesu FRG-7 on the short waves. When connected to a 30ft longwire via an aerial tuning unit, it pulled in Radio Pyongyang on 9420 at 2000, The Voice of Vietnam on 10040 (out of band) at 1820, Bangladesh 11650 at 1830, ELWA Liberia on 11950 at 0625 , Tokio, Japan on 15310 at 0610 and Kinshasa, Zaire on 15350 at 2115. John Hill (Swindon) has a Realistic DX160 receiver which he uses either with a 40 ft longwire or connected to the bedspring (not to be recommended with a mains operated receiver!) Stations logged include Radio Australia on 9570 kHz at 0830. John, who is new to the short waves is not sure whether his conversion from MHz to kHz is correct. It is very easy to do, just shift the decimal point three places to the right; $9 \cdot 57 \mathrm{MHz}$ is the same as 9570 kHz .
Newcomers to the short waves may be confused by the reference to "bands" which are expressed in metres and to individual frequencies which are in kHz or MHz . The conversion between the two is simple, especially if a pocket calculator is available. Divide 300,000 by the frequency in kHz to obtain the wavelength in metres, and vice versa
e.g. Radio Australia on 9570 kHz has a wavelength of $31 \cdot 35$ metres. The limits of the international short wave bands are:-

49 metre band from	5950 kHz to 6200 kHz	
41 mb	7100	to 7300
31 mb	9500	to 9775
25 mb	11700	to 11975
19 mb	15100	to 15450
16 mb	17700	to 17900
13 mb	21450	to 21750
11 mb	25605	to 26095

and this table should help readers whose receiver is marked in metres, to locate stations mentioned in this column which are in kHz .

Roy Patrick (Mackworth, Derby) sends news of WYFR Family Radio who expect to start testing the first 100 kW transmitter from the new transmitting site at Okeeshobee, Florida soon. The Scituate station will continue to broadcast until the middle of 1978 when it is scheduled to close down and all Family Radio programmes will then come from Florida. Roy used a Joystick antenna with ATU connected to a Trio 9R59D or a National 1400 portable. With this set-up he logged Radio Rumbos on 4970 kHz at 0600 , Malta on 5990 on Saturdays only, Radio Nova (Mebo 2) on 6205 with test transmissions in the evening, Radio Andorra on 6280 in French during the morning, the Voice of Iran 9022 from 2000 to 2030 in English, Voice of Turkey on 9515 at 2200 with DX tips nightly at 2230, WYFR on 11805 in Spanish at 1800, Kuwait on 12095 with a good signal from 1800 onwards, WINB 15270 with a good signal at 2130 and the Voice of Greece on 17780 in English at 1200. Thanks Roy for a very useful log.

The last word this month is from John Faulkener of Mansfield who mentions that the World DX Club has its own weekly programme in Adventist World Radio, broadcast over the 100 kW station at Sines in Portugal. The programme is on a Sunday from 0835 to 0945 on 9670 kHz on the $31 m$ band and was received by John at a SINPO rating of 55555 with his Trio 9R59D receiver and 150ft longwire.

by Ron Ham BRS15744

Despite many overcast periods, Cmdr, Henry Hatfield, Sevenoaks, continues to produce valuable information about the sun's behaviour with his spectrohelioscope and his radio telescope. Frequently, during the latter part of September, John Smith, Cranleigh, Henry, and myself recorded radio noise from "active" events on the sun which were no doubt responsible for the widespread ionospheric disturbance, reported by the BBC World Service on the 24th, the auroral openings on the 22 nd , 24th and 26th observed by John Branegan, Saline, Fife, and Charlie Newton, G2FKZ, London, and the good 10 m conditions.

Henry identified 3 sunspot groups on October 2, 4 groups on the 3rd and 5th, witnessed 6 bright plages on the 2nd, a spray of gas and a pillar prominence on the 5th, 2 "Enormous" filaments on the 9th, and 4 plages and 16 filaments on the 18th. In view of this it is not surprising that John Smith, Henry and myself often recorded strong *solar noise, (136 MHzz), from the lst to the 15th and severe noise on the 16th, 17 th, and 18th. An ionispheric disturbance was reported by the BBC World Service during the early hours of the 19th.

During the auroral events, John Branegan heard 2m
signals from DL, EI, GM, GW, LA, and the UK beacons from Lerwick, GB3LER, to Cornwall, GB3CTC. Like other observers in the UK, confirmed by G2FKZ, RSGB auroral co-ordinator, John uses GB3LER, 144.955 MHz , for early auroral warning. Readers reports will be passed on to G2FKZ and Ron Livesey, Co-ordinator for the British Astronomical Association.
It's good to hear the DX from both hemispheres on 10 m again. On October 5, Henry Hatch, G2CBB, told BBC World Radio Club listeners that VK stations were currently being worked from the UK and at 0930 on the 8th I heard YB0ACP, and VK8CC/M. During the early mornings of the 10th and 14th I received strong signals from Japanese stations working into Europe. John Branegan heard stations from Italy, Portugal, South Africa, South America, Japan, both coasts of the USA and the USSR on the 8th and 9th, and at 1600 on the 9th the US Citizens Band was wide open and tuned to $27 \cdot 155 \mathrm{MHz}$, USB, John heard signals from Brazil, California, Louisiana, Novia Scotia, Ontario and Texas.
Harold Brodribb, St. Leonards-on-Sea, Nigel Golds, BRS 36910, West Chiltington, Sussex, Lawrence Hobden, Brighton, and myself frequently heard strong signals from the Cyprus beacon, $5 \mathrm{~B} 4 \mathrm{CY}, 28 \cdot 220 \mathrm{MHz}$, between the 8th and the 18th. At 0843 on the 10th I heard, amid QSB, the Bahrain beacon, A9XC, $28 \cdot 245 \mathrm{MHz}$, and on the 11 th, 14th, 16th, 17th and 18th I received signals around $28 \cdot 330 \mathrm{MHz}$ from an experimental propagation beacon ZE2JV. On the 13th, Lawrence Hobden heard the Florida beacon, N4RD, $28 \cdot 207 \mathrm{MHz}$, on his 1937 receiver which is still going strong, and Nigel heard several VP stations.
Around 1600 on September 27 and 28, Anthony Mann, Applecross, Australia, heard strong signals from the Bahrain beacon on 10 m and on October 2 there was a strong opening toward UK and western Europe. During the early morning of October 4, and on several days after, the 10 m band was open between Australia and the USA and some of the American CBers on 27 MHz were almost at local strength.

Frank Luman, Donald Bassnet, John Thorburn, John McCarra, from Glasgow and Fred Dinning, Dunlop, have formed a club called, The Scottish VHF AND SW DXers, and currently meet every first and third Saturday afternoons at Frank's home, 2, Ormonde Drive, Netherlee, Glasgow. New members are welcome, enquires to Frank Luman. Frank, Donald and Fred have an early warning arrangement which was used on September 22 when 7 Norwegian stations, some in good stereo, were heard in Band II via what may have been the last event of the 1977 sporadic-E "season".

While on a hill some 600 ft ASL Nr Dumfries, using a beam aerial 16ft AGL, Mark Deutsch, G3VJG, Kettering, could not make any contacts on 2 m SSB, so he moved down the hill, about 1 mile away, at 250 ft ASL and worked G2HFC, Wigan, via the Welsh repeater, GB3MP, with a $5 / 8$ whip aerial on his car. Mark could also hear the Central Scotland repeater, GB3CS, where there was no trace of its signals at the 600 ft level.

Congratulations to George Zitterstein, G8ITS, who, from his difficult location in the City of London, with his beam aerial fixed south on his balcony, has received his Four Metres and Down Certificate from the RSGB for 70 cms . His achievement includes contacts with stations in northern G and his best DX was GW8CFQ, Wrexham. George now plans to do the same on 23 cms .

On September 21, Alf Lee, G4DQS, Brighton, worked a G8 station on 2 m via the Bristol repeater, GB3BC, from his car in Haywards Heath car park. At 0930 on the 30th, Alan Baker, G8LGQ, Newhaven, heard F1CIX working DCIWO via the German repeater, DBOUT.

Around 0800 on October 12 the atmospheric pressure began a gradual rise reaching $30 \cdot 2$ in by noon on the 13 th and at 0400 on the 14th it started to fall. True to form, a tropospheric opening occurred which lasted until late afternoon on the 15 th when the AP was levelling off at $30 \cdot 05 i n$. The event covered a wide range of frequencies. Derek Knight, Storrington, and Harold Brodribb, both reported co-channel interference on UHF-TV and that both
the BBC and IBA warned their viewers about the prevailing disturbance.

From midday on the 14th to mid-morning on the 15th I received strong signals from the Sutton Coldfield, GB3SUT, and Emley Moor, GB3EM, beacons on 70 cms , a good picture on Channel 8, 189 MHz , from Lichfield, and several continental broadcast stations in Band II, with only dipole aerials feeding the respective receivers. At 2035 on the 14th, Harold Brodribb, using a 2 element beam into his Bush VHF-80 heard French and Dutch stations in Band II and at noon on the 15th he counted 20 French stations between 88 and 101 MHz , strong enough to obliterate the BBC signals.

During the morning of the 14th, Alan Baker worked several German stations on 2 m via the Stuttgart repeater, DB0WR, and F1CIX, ON5QL/M, and DJ2HH/M via DB0UT on R7 while located on Beachy Head where both repeater signals were consistently 58. At 1700, Alan called on Ern Hoare, G8BDJ, Brighton, and they both watched Kojak on French TV via Ern's 70 cm beam. Around 0200 on the 15th, Alan worked G8LCK, London, via both the Birmingham, GB3BM, and Hampshire, GB3SN, repeaters on R5, at the same time. Alan suddenly realised what was happening when the Birmingham repeater signal faded out and he could still hear the $1^{1} 2$ watt signal coming from G8LCK. At 1600 he heard the signal from a GM/M through the Kent repeater, GB3KR, and during the event he worked DC6TY, Cologne, about 500 km on 2 m SSB.
From 1800 until midnight on the 14th, John Heys, G3BDQ, Hastings, proved the value of a morse key and worked a host of DMs, 3 SPs, 4 OEs, 1 OZ , and in a half hour stint between 1935 and 2005 he contacted 6 OKs on the trot, all on 2 m . His best DX was more than 1000 km , on a mainly overland path with OK3CDI/P. John said it was his best evening for 20 years and looks forward to another tropo-opening when he can go for YU, YO, HA, and $I 1$.
During the August leg of the RSGB 3 cm Cumulative Contest, Sam Jewell, G4DDK, Stone, worked G8AXE/P on Winter Hill, Bolton, from Brown Clee, Shropshire, a distance of 124 km with torrential rain at both ends which had little effect on the signals. Several days later, encouraged by this, G8AXE and G8AFC wanted to try for their Microwave Awards by working over 150kms. Sam set up his gear on the Long Mynd, Shropshire, and G8AXE, G8AFC, G3SMU and G4BBU climbed to the top of Fair Snape Fell in the Calder Fells, Lancs, to establish their stations. The two groups used their TR2200s for talk-back over the 151 km path.

A signal on 3 cms was received quickly from G8AXE/P but only a weak signal was received from G4DDX. The contact began at 1930, and as the sun set around 2045, a temperature inversion oocurred and the signals came up at both ends allowing them to complete the formalities in relative comfort. On October 2, G8AFC and G4DDK set up their 3 cm equipment on Axe Edge in the Derbyshire Peak District and exchanged signals over a 149 km path with GW4BRS/P on Pumlumon Fawr, near Aberystwyth.
My thanks to you all for your fascinating reports, best wishes for Christmas, and let us look forward to another interesting year above 28 MHz .

> Reports on the various bands are welcome and should be sent direct, by the 15 th of the month, to-
> AMATEUR BANDS EIC Dowdeswell GAAR, SIVer: Firs, Leatherhead Road, A shtead, Surtey KT21 2TVA, Logs bybands, each in alphabeitical order. MEDIUM and SW BANDS Charles Molloy GZBUS. 132 Segars Lane, Southport, PR8 3IG. Repotts tor: both bands must be kept separate.
> VHF BANDS Rom Ham BRS 15744 , Raraday, Greyfriars, Storington, Sussex RH20 4HE.

тне DYMamIC ovo

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaker leads and in conjunction with our speakers $\mathbf{S} 15$ produces a system of incredible performance.
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit hence alleviating the need for an on/off switch.
The amplifler is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process. The $\mathbf{S} 15$ has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15

15 Watts per channel into 4Ω
Distortion 0.2% at 1 KHz at 15 watts
Frequency response $50 \mathrm{~Hz}-30 \mathrm{KHz}$
Input impedance 8Ω nominal
Input sensitivity 2 volts R.M.S. for 15 watts output
Power line 10-18 volts
Open and Short Circuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches
$\mathbf{C 1 5 / 1 5}$ Price $£ 17.74+£ 2.21$ VAT P \& P free

Data on S15
6 6" Diameter
$5 \mathbf{5 1}^{1 / 4}$ Air Suspension
$2^{\prime \prime}$ Active Tweeter
$200 z$ Ceramic magnet
15 watts R.M.S. handling
$50 \mathrm{HZ}-15 \mathrm{KHz}$ frequency response
4Ω Impedance
two years' guarantee on all of our products

```
I.L.P. Electronics Ltd.,
Crossland House,
Nackington, Canterbury,
Kent CT4 7AD.
```

Tel. (0227) 63218.

Please Supply
Total Purchase Price
I Enclose ChequePostal Orders Money Order \qquad \square Please debit my Access account \square Barclaycard account \square Account number Name \& Address

vat incilisive phictes
Items followed by a * include V.A.T. (13) 8% all others include 12.5% ALWAYS PLEASED TO SEE PERSONAL CALLERS TRADE AND EXPORT CUSIOMERS MOST WELCOME Overscas Customers deduct $2 / 27$ from items marked with a * 1,9 from others

BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000's of capacltors, resistors, translistors. Ex equipment panels etc. covered ln valuable components. No tlme to sort. Must sell by weight 7 lbs-£4.95; $14 \mathrm{lbs}-67.95 ; 28 \mathrm{lbs}-\mathbf{f 1 2} \cdot 00$ $56 \mathrm{lbs}-£ 20 \cdot 00 ; 112 \mathrm{lbs}-£ 30 \cdot 00$.

BARGAIN PACKS

Handy Packs
4 aluminium boxes $128 \times 44 \times 38 \mathrm{~mm}$ ideal for signal njectors, etc. £f-00 swg on 2 oz reels. 2 for $\mathrm{E} 1 \cdot 10$. wire 18 \& 22 100 minlature reed switches ideal for burglar alarms, model rall ways, etc. $22 \cdot 20$.
15×2 pote reed relays on board operate at 15×2-pole reed relays on board operate at
12 volts $£ 2.45$.
20 6×6 pole 12 volt reed relays on board
£2.45. 6×6.
£2.45.
High qua
High quality computer panels smothered in top grade components 5 lbs $£ 4 \cdot 75$. 10 lbs
£ 9.95 .

New U.H.F. translstor TV tuners 4 pushbutton type $£ 2 \cdot 50$
Rotary type with slow motion drive $52 \cdot 50$. Aluminium TV coax plugs 10 for $£ 1.00$. Miniature 5 K log pots with s/p switch 4 for £1. Hardware Packs each containing 10015 of
items Including Sems includIng BA nuts and bolts, Nylon, clamps. Fuse holders. Spire nuts etc., E1 per pound. foo assorted "Pr" cllps \&i.
Belling Band 1, Band 2, 30p each 3 for $£ 1$.

DE LUXE FIBRE GLASS PRINTED CIRCUIT ETCHING KITS
Includes 150 sq. ins. copper clad f / g board, 1 lb ferric chloride, 1 Dalo etch resist pen, abraslue cleaner, 2 mini drill bits, etch tray and instructions/only $\mathbb{£ 5} \cdot \mathbf{3 0}$.

REFILL PACKS FOR ABOVE
$\begin{array}{llll}150 \mathrm{sq.in} . \text { fibre glass board } & \mathbf{£ 2 . 0 0} & 5 \mathrm{lbs} \text { ferric chloride to mil spec } & \mathbf{9 4 . 0 0} \\ \text { Dalo pen. } & \mathbf{9 0 p} & \text { instruction sheet } & \mathbf{2 0 p}\end{array}$ Dalo pen.
oride to mil spec
TV SURPLUS "Bradford"' chassis $\& 2,50$ each. 5 for $£ 10$. Pye and Phillps "G8"C.T.V. panels,
varlous types. All incomplete but invaluable for spares or completing, 6 assorted
penela for \& $\mathbf{~ T h} \mathbf{5 0}$. T.V. bottom panel " 950 " serles, manufacturers surplus $\Sigma 1 \cdot 50$ each. Pye 11 u contrast controls. 10 for $£ 1$.
Thorn tape motors mains $\mathrm{E1} \cdot 20$ each.
Pye EHT basls, DY5 etc. 10 for $\mathrm{E1}$. Ceramic P/C mountlind valve basis.
For PL50, PL508 atc. 10 for E1. For PL509, PL508 atc. 10 for E1.
Semiconductor Bargalns
TH3 Thermisters 10 for $£ 1$.
100 new \& marked sillcon and germanium transistors including BC148, BF194, BC183. etc. $£ 3.95$
200 new \& marked transistors including
$2 N 3055, \mathrm{AC} 128, \mathrm{BFY} 50$. BD 131 , etc. $£ 6.95$ 100 mixed dlodes iN4148, ete. $\mathbf{£ 1} \cdot 20$.
100 mlxed dlodes including zener, power and bridge types $£ 3 \cdot 30$.
$2 \cdot 5$ amp 4 for $£ 4$
200 unmarked mixed transistors, lots of Interesting types inciuding power. Send
60 for samples $£ 4.50$.
25 New a marked integrated circuits including 555, 741, 7400, 7490, TBA 800, BR 101 fuil spec, 5 for $\boldsymbol{E 1} \cdot \mathbf{0 0}$ DY 51 EHT Rectifler $£ 1 \cdot 00$. TBA 120A 50p each 20 mm anti-surge fuses your selection
500 mA to 3.15 A . 12 for E 9.00 Component Bargains 300 mixed resistors $亠 \& \frac{1}{2}$ watt $\boldsymbol{£ 1} \cdot 00$ 200 modern mixed caps most types $£ 3 \cdot 30$. 125 mixed resistors mostly 1 \& 2 watt. $£ 1$. 100 mixed polyester caps $£ 1 \cdot 40$ 100 mlxed modern miniature ceramic plate caps most values to 100 PF $23 \cdot 30$
100 mixed polystyrene caps to 5000 PF $\mathbf{8 2} .20$.
100 mixe

100 mlxed wirewounds $£ 1-00$. 200 printed circuit reslstors $£ 1 \cdot 00$
25 mixed pots \& presets $£ 1 \cdot 00$.

40p P \& P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY, DEPT PW, 20A WADDON ROAD, CROYDON, SURREY.

FRG-7

The receiver that has it all for a basic price of just
inc. VAT
Mode
A.M./S.S.B. (U.S.B. \& L.S.B.)/C.W.
Frequency $0.5 \mathrm{MHz}-29.9 \mathrm{MHz}$.
Sensitivity S.S.B./C.W. better than $0.7 \mu \mathrm{~V}$ for 10 db S / N at 30% modulation
Selectivity $3 \mathrm{kHz}-6 \mathrm{db} 7 \mathrm{kHz}-50 \mathrm{db}$

> Also avallable
> from us with
speclal 2 m
> converter and accessories for
just
f170.00 £17900 inc VAT

AMATEUR RADIO EXCHANGE

2 Northfield Road, Ealing, London, W.13. Tel: 01-579 5311

poly-planar

20-Watt Full Range Speaker

Completely replaces the conventional cone speaker Super-thin construction permits new installation ideas.
Power capability : 40 watts peak. Frequency range: $40 \mathrm{~Hz}-20 \mathrm{KHz}$ Sensitivity: $85 \mathrm{~dB} / \mathrm{M}$ for 1 watt electrical input. Input Impedance: 8 ohms. Operating temperature range: $-20^{\circ} \mathrm{F}$ to $+175^{\circ} \mathrm{F}$. Size (W×D×L): $1 \cdot 7 / 16^{\prime \prime} \times 11 \cdot 3 / 4^{\prime \prime} \times 14 \cdot 11 / 16^{\prime \prime}$. Weight: 19 Ounces.
$£ 9.50$ each Stereo pair $£ 18.50$
inclusive of vat and postage
web europa
PO Box 9, Bryn Goodman, Ruthin Clwyd

\rightarrow VALVE MAIL ORDER co. CLIMAX HOUSE, FALLSBROOK ROAD, LONDON SW16 GED

 SPEGIAL EXPRESS MAIL ORDER SERVICE

Electronics. Make a job of it....

Enrol in the BNR \& E School and you'll have an entertaining and facinating hobby. Stick with it and the opportunities and the big money await you, if qualified, in every field of Electronics today. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY AND GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E:R. Exam; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also coúrses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

Become a Radio Amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure without obligation to:

British National Radio \& Electronic School
 P.O. Box 156, Jersey, Chȧnnel Islands.

NAME
ADDRESS

MULLARD UNILEX

A mains operated $4+4$ of the finest performers in the stereo field this would make a wonderful gil for almost any one in easy-toassemble modular form and
 complete with a pair of Plessey
speakers this should sell at about 830 -but due to a
special bulk buy and as an incentive for you to buy special bulk buy and as an incentive for you to buy this
month we offer the system complete at only $£ 14 \cdot 00$ month we offer the system
including VAT and postage

WINDSCREEN

WIPER

CONTROL

Vary speed of your wiper to suit conditions. All Darts and instruc.
tions to make. 23.75 post and tions to ${ }^{\text {n }}$
VAT paid.

ROOM THERMOSTAT

Famous Satchwell, elegant design, Intended fol wall mounting. Will switch up to 200 amps al mains yotage. .eovers the range, 30 C. specia
snip this month \&3. Of post und VAT paid.
MICRO SWITCH BARGAINS
Rated at 5 amps 250 volts. Xdeal to make a switch panel for \& calculat
dozens of other applications dozens of other applications.
Parcel of 10 for
$\chi 1 \cdot 00, ~ V A T$ and post

RADIO STETHOSCOPE
Easiest way to fault find, traces, signal from aerial to speaker, when signal stops you've found the fault. Use it on Radio, TV, amplifier, anything. Complete kit comprises two special transistors and all parts including
stetho-set
probe
\&3.00 VAT twin and

MICRO AMPLIFIER

Ex behind the ear deaf aids, complete with volume control $\$ 2 \cdot 16$.

CONTROL
 DRIL
 SPEEDS
 5

DRILL CONTROLLER

Electronically changes speed from approximatet; 10 revs to maximum. Full power at all
speeds by finger-tip control. speeds by finger-tip control.
Kit includes all parts, case, verything and full instructions.
$£ 3.45$ including post \& VAT. Made up model $£ 1$ - 00 extra.
SOUND TO LIGHT UNIT Add colour or white light to your
amplifer. Will operate 1,2 or 3 lamps amplifier. Will operate 1,2 or 3 lamps (maximum 450 W). Unit in box al1
ready to work. 27.95 plus 95 p VAT ready to
$\&$ Postage.

SWITCH TRIGGER

MATS

Wiring dig supplled for complete house Away'.

MULTISPEAD MOTORS

Six speeds are avallable 500,850 and 1,100 r.p.m. and $7,000,9.000$ and 11,000 rip.m,
Shaft is ${ }^{2}$, 1 ismeter and approximately $1^{\prime \prime}$ Shaft is $3^{\prime \prime}$ diameter and approximately iner $^{\prime \prime}$
long. $230 / 240 v$. Its speed may be further controlled with the use of our Thyrititor controller. Very powerful and useful motor size
approx. $2^{\prime \prime}$ dia. $\times 5^{\prime \prime}$ long. Price 22^{100}

MAINS RELAY

With triple 10 amp changeover con-tacts-operating coll wound for 230 voits AC. chassis mounting, one screw
fling, ex unused equipment 0 op each, fixing, ex unused equipment
10 for 5 post and VAT paid.

SHORTWAVE CRYSTAL SET

Although this uses no battery it
gives really amazing results. Xou gill receive an amazing assortment of stations over the 19, 25, 29,31 metre bands. Kit contains chassis front panel and all the parts $\mathbf{2 1 . 9 0}$ $\overline{\text { VAT }}$ crystal earphone 55 postage including

HUMIDITY SWITCH

American made by Ranco, their type No. Jh. The action of this device depends upon the dampness causing
a membrain to stretch and trigger a a membrain to stretch and trigger a
sensitive microswitch adjustabie by a screw, quite sensitive-breathing on
 at
approx. $3 \xi^{\prime \prime}$ long $1^{\prime \prime}$ wide and $11_{t^{\prime \prime}}^{\prime \prime}$ deep. 65 p.

8 POWERFUL BATTERY MOTORS

For models. Meccano's, drills, remote
control planes, boats, etc., etc. \&2.00.

ROTARY PUMP

(25)
$\frac{8}{8}$

Self priming, portable. fits drill or

 electric motor, pumps up to 200 gallons per hour depending upon revs. Virtually uncorrodable, use to suck water, oll, petrol, fertiliser,chemicals, anything liquid. Hose connectors each end. $\leqslant 2 \cdot 00$ Post Paid.

MERCURY BATTERIES

Bank of 7 Mercury cells
type 625 which are approx. ${ }^{\text {b/pe }}$ diameter by $\boldsymbol{q}^{\prime \prime}$ thick in plastic tube giving a total of 10.7 volts. Being in a plastic tube it is very easy to break up
the battery into separate cells and the battery into separate cells and
use these for radio control and simila use these frrad.
equibment. Carton of 25 batteries
$\& 1.60$.

AMPLIFIER PANEL

6 photo sockets and d.p. changeover slide switch all mounted on insulating board. Glossy black finish slze $2^{\prime \prime} \times 83^{\prime \prime}$ approx.-silly price 35 p, or $£ 1$ for six

THIS MONTH'S SNIP

is a miniature sealed relay 12 v dc operated with two sets of change over contacts. The unique feature of this relay is its heavy lead out wires,
these provide adequate support and therefore the these provide adequate support and therefore the relay needs no fxing; on the other hand there is a axing bolt protruding through one side so if you wish you can flx the relay and use its very strong lead outs to secure circuit components-an expen-
sive relay; but we are offering it for only 87 p each. Don't miss this exceptional bargain!

MULLARD AUDIO AMPLIFIERS All in module form, each ready built complete with heat sinks and connection tags. data supplied. Model 1153 ding Post \& $\&$ VAT. Model 1172 1W, power outpu
\&1. 85 including Post \& VAT. Model EP9000 4 watt power outEP 9001 twin channel or stereo pre"
TANGENTIAL HEATER UNIT

3KW MODEL 25.95
$+\quad 81.50 \mathrm{P}$ \& P

A most efficient and ning blower-heater by Sola-tron-same type as is fitted to many famous name heatersComprises malns induction motor-long turbo fan-split $\underset{\text { thermostatic }}{2 \mathrm{~kW}}$ safety tripthermostatic safety trip-
simply connect to the mains simply connect to the mains
for immediate heat-mount for immediate heat-mount case or mount direct onto base of $5 a y$ xitchen unit-
price 4.95 post $\$ 1 \cdot 50$ control price é4-95 post 2 kw . 1 kw , cold switch to glve $2 \mathrm{kw}, 1 \mathrm{kw}$, cold
blow or of avaliable 60 og extra

FLUORESCENT TUBE

 INVERTOR

For camping -ciar repairing-emergency lighting from a $12 v$ battery you can't beat fuorescent lighting, it will
offer plenty of well diatibuted Iight and is economical. Ofer plenty of well distributed ight and is economical. We ofrer Phiss invertor for 12 only 82.75 with tube and tube holders as well.

SPTT MOTOR WITM EARTER

GEAR BOX

Probably one of the best spit motors made. Originally intended to be used in very high priced cookers however or instance your garden barbeque or to tumbler for stone polishing; in fact there are no ends to its uses. Normal mains operation. $\mathbf{e 4} \cdot \mathbf{3 2}$ including POST \& VAT.

TERMS:

Cash with order-prices includes VAT and carriage Cash with order-prices included but orders under $\mathbf{5 6}$ must add 50 p to offset packing etc. BULK ENQURIES WELCOMED. Phone 01-688 1833

J. BULL (EEECTRCAL) LTD
 (Dept. PW), 103 TAMWORTH RD. CROYDON CR9 1SG

IT'S FREE

Our monthly Advance Advertising Bargains List gives details of bargains arrivins or just arrived-often bargains which sell out before our advertisement can appar-mit an interesting list and it's free-just send SiA.E. Bolow are a few of the Eargains still avaliable from previous lines.
Starlet 9" T.V. Mains Battery Model time based tested and in our odinion repairable. Complete except for small knobs. telescopic aerial and plug for mains battery input. Price
packing $£ 2+16 \mathrm{p}$.
Spares for Starlet. Tuners $\mathbf{2 3} \cdot \mathbf{5 0 p}$, loud speaker $\mathbf{£ 1} \cdot \mathbf{5 0}$ complet power unit (base unit) 26, printed circuit " T.V. Tubes for
T.5. Tubes for the Rigonda Starlet. £9•00. Post and 12 Vol ,
12 Volt Heavy Duty Relay. Plug in type has three pairs cover. price $\& 1+8 \mathrm{p}$. Suitable 11 pin base $27 \mathrm{p}+2 \mathrm{p}$. 4 Changeoper Mains Relay. Unright mounting with perspex type dust cover, the really interesting feature is 4 sets of 10 amp changeover contacts. Price $\mathbf{~} 1.62 \mathrm{p}$ is 4 sets
12Volt Pump. Iesigned we beluw :hat bike pump, this is 12 volt AC/DC motor coungicit hy a lond enclosed shaft to a submersible puinp. suitable or water or most any fluids. Price £11.75p. Post 80p.
Just Arrived. Fruit Machines-woriking order-very impressive, choice of several but very heavy so you must collect. $\mathbf{E S O} 0$.
High Load 24 Hour Clock Switch. Made by the famous AEG Company for normal mains but with clockwork
reserve has load capacity of 80 anins at 240 v 50 hz . Therefore suitable for dealing with large loads of say Hop ighting, water heating. stornte 1Haters etc. etc triggers will be available. Price $£ 1.50 \mathrm{p}$ per pair. Size of clock approximately $8^{\prime \prime} \times 5^{\prime \prime} \times 5^{\prime \prime}$, totally encased but has lift up flap for ease of altering switching times Price, new and unused $\mathbf{8 1 0} \mathbf{6 5}$ p or used but guaranteed $0 . \mathrm{k} . \mathrm{£} 6 \cdot 50 \mathrm{p}$.
Enclosed 24 Hour Clock. With contacts for breaking $10-12$ amps at 240 volts. This one has two sets of on/off Der 24 hours. price $£ 7.60$.
Smiths 24 hr . Timers-Heart only with over-ride similar to those used in the auto set etc. $\mathbf{£ 4} \cdot \mathbf{7 5 p}+38 \mathrm{p}$.
Ditto but in grey plastic wall mounting case, with leads ready for attaching to plug and socket. price $\mathbf{\& 6} 98$. Light Dimmer. Our timer module with small mods makes an excellent light dimmer Contains a 4 amp 400 v SCR so it should be suitable for loads approaching Ikw Price of module with variable resistor and instructions Push Pu
Push Pull Solenoids. For mains operated solenoid which will push as well as or instead of pull. Very heavy duty, We estimate this at $201 b s$ push or pull,
made by Magnetic Devices Co. $£ 7 \cdot 50$.
Flashing Lights, chasing lights, random flashes, strobe ffects etc. etc. can easily be achieved using our disco switches and with Christmas just around the corner you can do something special for your home or business. These switches are offered at approximately one-ffth of their Droper price, are ex-equipment but guaranteed perfect and supplied with an adaptor suitable for mains working. To get some idea of the loading number, each model could handte over 12 kw 's. For the light plpe or Catherine Wheel effect we suggest 12 switch model nterconnecting the switches to give fastest speed 6 Switch model eS, 9 Switch Model $89.75,12$ Switch model 56.20. Also add 50p per switch. If you want the light pipe diagram please request this.
Always in Stock. Turntables with pick up lift, ideal for disco's at \&11-95; post $£ 225$. We are also expectíng some professional belt drive type at f 25 . Call or ring us for more information
Reed Switches, standard 60 watt glass type. Notmal

Flat Reed Switches for stacking, greater quantity in Flat Reed Switches for stacking greater quantity in
confined space. Price 50p each +4 p .
F.M. Tuner and Decoder-two very well made (Japani) Single Ended Tryes for lobs where it is not
Single Ended Types for jobs where it is not easy to bring lead to each end. 750 each.
All these switches are normally opon but can be adjacent. The reed switch would then be opened by a masnet of opposite polarity being bought up to it Ceramic Magnets sultable for operating reed switches, central fixing hole. 10 for 21 . 62 p .
Music Centre Transformer $12-0-12$ at 1 amp and 9 volt at- $\frac{1}{2}$ amp. Normal primary, upright mounting. Impregnated and varnished for quiet operation. Price $\mathbf{5 2}$.95p. 'W' Shape
W' Shaped Fluorescent Tubes for porch IIght, box signs or where you want light evenly spaced over a confined
area of approx. $10^{\prime \prime} \times 10^{\prime \prime}, 30$ watts. made by Phillios area of approx. 10
price 81 . 62 p. Post 540
Plinth for BSR Record Player still available at the record price of $95 \mathrm{p}+12 \mathrm{p}$. This is excellent value but unfortunately being a bulky and delicate item the postage has to be $£ 1 \cdot 50 \mathrm{D}+12 \mathrm{p}$ so this is obviously only a bargain for callers.
(2) A similar model also available at the same price,
this is somewhat larger and has a cut out for an amplifler.
Our
Our Smokey Cover can be used with the above plinths, four small locating pins are fitted to the motor board, Size approx. 12
Extension Speakers 8 ohm $4-5$ watts handling power We have 5 or 6 different models in stock, cheapest being the Partytime at $23.95 p$ each. again only really a bargain for callers as postage is $£ 1 \cdot 50$ p per speaker

TRANSFORMERS
ALL EX-STOCK—SAME DAY DESPATCH. VAT 8\%

荷
 NED
Vots
$3-0-3$
$0-5$,
$50-0$ MIN
Its
-3
$5,0-6$

 \qquad
 \qquad

HIGH QUALITY MODULES

 10 Watts RMS AMPLIFIER25 Watts RMS AMPLIFIER 25 Watts RMS AMPLIFIER
35 Watts RMS AMPLIFIER
125W RMS AMPLIFIER 125W RMS AMPLIFIER
PRE-AMP for $5-10 W$ PRE-AMP for 25 W POWER SUPPLIES 5-10W
POWER SUPPLIES 25W PRANSFORMER 5-10W
TRANSFORMER 25W

\qquad soldering needed £7-29. VAT $8 \% \mathrm{P}$ \& P 70p
COMPONENT PACKS 200 Mixed value reslstors (count by weight)
150 Mixed value capacltors (count by weight) 30 Mixed value precision resistors $\frac{1}{\$} \mathrm{~W} 2 \% \mathrm{~m}$) 15 Assorted pots
10 Reed switches 10 Reed switches
1 Pack wire 50 metres assorted colours 25 pre-sets assorted types and values Please statepack required, 60p per pack
$V A T 121 \% P \& P 40 p$ VAT 12 $\frac{1}{2} \%$ P \& P 40p Prices correct 31
$V A T$ after $P \& P$.

Our wide range of transformers are too numerous to IIst, piease cali (open 9am-5pm Mon-Fri) or send your requirements.
Electrosil \& semlconductor stockists. Panel, Multi Meters, Audio accessories, send 15 p sfamps for $l \mathrm{lsts}$.

Telephone: 01 440/8641 MAIL ORDER ONLY
ALL NEW \& BOXED "QUALITY" BRANDED VALVES GUARANTEED 3 MONTHS,
BVA ETC. (TUNGSRAM ETC.). 6% ALLOWED IN LIEU OF GUARANTEE, ALREADY BEDUCTED FROM OUR PRICES. Note: Prices are only correct at time of going to press. PLEASE VERIFY CURRENT PRICES. MIN, 75p
Some leading makes avallable. VAT invoices issued on request.

 One valve post 12 p , each extra valve $6 p$. MAX 75p. LISTS \& ENQUIRIES, SAE PLEASE! Large valves 14p each. ALL PRICESINCLUDE VAT @ 12,
We offer return of post service. CWO ONLY, No C.O.D. Post free over £15, £5 to £15 75 p (max). Items in stock at time of golng to press but subject to market fluctuation
without notice. ENQUFRIES WELCOME FROM TRADE \& RETAIL (same prices).

PRAGTICAL WIRELESS T.V. SOUND TUNER

(Nov. 75 article by A. C. Ainslle) Copy of orlginal article supplled on request IF Sub-Assembly (G8) $\mathbf{£ 6 . 8 0}$. P \& P 75p.
Mullard ELC1043 V'cap UHF Tuner£4.50. P \& P35p.
3-way Station Control Unit £1-20. P \& P 25p.
6 -way Station Control Unit (Special Offer) £1.00.
Power Supply Prtd Circuit Board £1.00. P \& P 30p.
Res, Caps, Semiconds, etc. for above $£ 5 \cdot \mathbf{8 0}$.
Mains Transformer for above £2-50. P \& P 30p. Add 121 $\%$ VAT to price of goods. P \& P all items 85p.
.aw

MANOR SUPPLIES

172 WEST END LANE, LONDON NW6
(Near W. Hampstead Tube Stn.) Tel. 01-794 8751

IMATIDISS hethminilsin

A SEMICONDUCTOR POWERHOUSE. TRAMPUS ELECTRONICS LTD,' 5860 GROVE ROAD, WINDSOR, CALDES WELCOME MON-SAT OAM-SPM. Fast service, on Ex Stock product, normally 24 hour turn around, Quality dovices to manufacturers spec|ficatlons. Barciaycerd $\&$ Access by post or telephone e5 minimum, Send C.W.O. Add 200
post \& packing plus 8% VAT to ltems marked 12% VAT to unm marked items. No minimum order charge for cheque or postal orders. Government depts., sehools, N.M.A. E 5 min order. FREE CATALOGUE SALE LIST. Send SAE. Money back if not
satisfled. (Prices may change).

[^3]
WIRELESS TIME:

approx. $3 / 4$ full size digits shown here
National's MA1012 LED digital clock module is a complete clock \& alarm unit, operating from 50 or 60 Hz mains, and offering all the features you would expect: Hours-minutes display in bright $0.5^{\prime \prime}$ leds with optional seconds, sleep and snooze alarms, fast and slow setting, AM/PM indicator, switched alarm outputs - but best of all no RFL Thus the MA1012 is suitable for use in any radio/tuner applications, and requires Just $1.75 \times 3.75 \times 0.7$ " total. (Ex. transformer). $\mathbf{£ 9 . 4 5}$ per module, isolating mains transformer $£ 1.50$ each. ($* 8 \%$ vat) Two modules, and two transformers for $£ 20.00(+8 \%$ vat) In the latest Ambit catalogue: more TOKO coils, chokes, filters etc., data on the short wave coil sets, a revised price list, micro-microphone inserts, special offer lines etc.

DETECKNOWLEDGEY

Metal locator principles and practise, including some of the facts and information manufacturers of $\mathrm{E} 100+$ detectors would rather you didn't know. $£ 1.00$ each.
The Bionic Ferret 4000 - a VCO metal locator based on the PW seekit, including all parts, plasticwork, ready wound coil ete. Inc. free copy of detecknowledgey. 534.26 in pp and VAT at 8%. Spacial announcement. The Blonic Radiometer metal locator is at last to be released. A full VLF discriminator, with simultaneous display of ferrous, non-ferrous and foil objects. With a little prectise, you can actually find objects obscured by lunk. Outperforms unis costing $£ 150+$. Digital control. Demo available at Brentwood, on sale soon for less than E75.SAE info:

COMPONENTS

Herewith the list of first quality parts and modules for wireless, inc. Europes largest range of signal coils and inductors. $1 / 2 \mathrm{~m}$ in stock ! $\begin{array}{lllllll}\text { CA3089E FMIF } & 1.94 & 8 C 413 & \text { lo noise } & 0.18 & \mathrm{MFL} 2.4 \mathrm{KHz} \text { ssb mech. } \\ \text { KB4402 } & \text { FMIF } & 1.94 & 40238 & \text { shld } \mathrm{FF} & 0.25 * & \text { fiter for }\end{array}$ KB4402 FM IF 1.94 40238 shld RF $0.25 *$ filter for ssb gen/IF 456 kHz HA1137W FM IF 2.20 SF224 Eghz RF 0.22 with matching transf's. 9.95 TBA120 FM IF 0.75 BF274 $\quad 7 \mathrm{ghz}$ RF 0.18 MFH series $4 / 5 / 7 \mathrm{kHz}$ bandTBA120S FM IF $1.00 \quad$ ZTX $212 \quad 50 \mathrm{v} / 3 \mathrm{w} 0.17$ width @ $455 \mathrm{kHz} \quad 1.95$
 $\begin{array}{llllll}\text { ua720 } & \text { AM rad } 1.40 & Z T \times 214 & 30 \mathrm{~V} / 3 \mathrm{~W} & 0.17 & \text { Modules/tunerheads etc. } \\ \text { CAB123E } & \text { AM rad } & 1.40 & 2 T \times 451 & 60 \mathrm{~V} / 1 \mathrm{w} & 0.38\end{array}$
 TBA651 AM rad 1.81 BD515 $45 \mathrm{~V} / 10 \mathrm{w} 0.27$ EF5600 5cct v/cap fm 12.95

 $\begin{array}{lllllll} \\ \text { ca3090ag } & \text { as above } 2.20 & \text { BD610 } & 80 \mathrm{~V} / 90 \mathrm{~W} & 1.20 & 7253 \text { complete } \mathrm{fm} \text { stereo }\end{array}$ $\begin{array}{llllll}\text { ca3090ag mpxdec4.35 } \\ \text { HA1196 } & \text { mp256 } & 1 \mathrm{ghz} \text { fet } & 0.34 & \text { tunerset. afc, age, mute } 26.50\end{array}$

 $\begin{array}{lllllll}\text { LM381 } & \text { preamp } 1.81 & \text { MEM614 } & \text { (40822) } & 0.38^{*} & 7030 \text { linear phase } \mathrm{fm} \\ \text { MEM616 } & \text { (40673) } & 0.67 * \\ 93090 \text { ca3090ac dec } & 8.36\end{array}$ | tda2020 | 15w AF 2.99 | MEME | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| tca940E | $10 w$ AF 1.80 | MEM | IO noise | $0.75 *$ | 923101310 decoder | 8.95 |

 LM301an op amp 0.39** BA121 vhf varic $0.30 \quad 71223 \mathrm{mw} / \mathrm{cmw}$ v/Cap tun. $11.3 \mathrm{~m}^{2}$ $\begin{array}{llllll}\text { ua741 } & \text { op amp 0.34* B8104 } & \text { dual var, } 0.45 & \text { KIT } 15 \mathrm{v} \text { tuning } & 9.00 \\ \text { LM3900 } & \text { op amp } 0.68 * & 8 B 105 & \text { uhf varic } 0.40 & 810 k & \end{array}$

 ua723cn variable 0.80* TOKO Coils \& Filters All mpx decoders feature NE550a as above 0.80* 10 mm \& 7 mm (rad cont) Tuners; complete

 NE560B hf pll 3.50^{*} YHCS11100AC2 0.30 Audiomaster amp. Matching $\begin{array}{llllll}\mathrm{NE} 501 \\ \text { NE561B } & \text { hf pill } & 3.50^{*} & \text { KALS4520A } & 0.33 & 25+25 w r m s a m p . \\ 79.00\end{array}$ $\begin{array}{lllll}\text { NE561B } & \text { hf pll } & 3.50^{*} \text { KALS4520A } & 0.33 & \text { carriage on above } £ 3 \text { extra ea. } \\ \text { NE565K } & \text { If pil } & 2.50^{*} \text { KACSK586HM } & 0.33 & \end{array}$ $\begin{array}{lllllll}\text { NE565K } & \text { If pil } & 2.50 * & \text { LLC238 } & 7 \mathrm{~mm} & 0.33 & \text { Misc. } \\ \text { MC1312 } & \text { quad } & 1.50 & \text { LLC }\end{array}$ $11 \mathrm{C90} \quad 650 \mathrm{mhz} 14.00$ +LC4827 7mm 0.33 FX1115 beads \qquad 10.0 .25 $\begin{array}{llllll}\text { ZTX107 } & 50 \mathrm{~V} / .3 \mathrm{w} 0.14 & \text { CFS10.7 ceramic } & 0.50 & \mathrm{~min} \text {. foil trimmers (see pl) }\end{array}$ $\begin{array}{lllll}\text { ZTX108 } & 30 \mathrm{v} / 3 \mathrm{w} 0.14 & \text { BLR3107N mpx } & 1.90 & 22 \mathrm{t} 100 \mathrm{k} \text { pots for tuning. } 45\end{array}$ ZTX109 $30 \mathrm{~V} / 3 \mathrm{w} 0.14$ BBR3132 6pole fm 2.25 RFchokes: 14 H to 120 mH
VAT is extra at $121 / 2 \%$, except where otherwise shown (*8). PP now 25p per order. Catalogue 45 p (inc). Pse send A5 or larger SAE with enquiries. Price lists free with an SAE. Full range of components etc available to callers at our new easy-to-get-to premises.

ambit international

Number 2, Gresham Road, Brentwood, Essex. CM14 4HN telephone (0277) 216029
Our new premises are only 200 yards from Brentwood * station - with parking facilities outside the door !!

NOTICE TO READERS

When replying to Classified Advertisements please ensure
(A) That you have clearly stated your requirements.
(B) That you have enclosed the right remittance.
(C) That your name and address is written in block capitals, and
(D) That your letter is correctly addressed to the advertiser.
This will assist advertisers in processing and despatching orders with the minimum of delay.

Receivers and Components

BARGAIN SUPPLIES

1. New PCB's Long Lead Components includes Thyristors, Plastic Power, TO3 Power Transistors 4 for $£ 1$ - $\mathbf{5 0}$
2. Mains Transformers

$$
12 \mathrm{v}-0-12 \mathrm{v} 100 \mathrm{~m} / \mathrm{A} 4 \text { for } £ 5 \cdot \mathbf{0 0}
$$

1 for $£ 1$ - 40
3. U11 Typè re-chargeable Ni . Cad. ceils 3 for £2.00
4. ТОЗ Power Transistors 7 for $£ 1.00$
5. Push to make switches 4 for $£ 1.00$
6. Amplifier/tuner cases 25p for details Terms. Prices inclusive P\&P 20 p per line extra.

R. JONES SUPPLIES

3 CENTRE VALE CLOSE
LITTLEBOROUGH, Lancs OL. 15 9EZ
PACKS FOR DIY ENTHUSIASTS. Resistors 100 fl . Mixed semiconductors large bag £1-20. Capacitors various $£ 1 \cdot 10$. Thyristors 0.8 A 100 V £1. Rectifier Bridges 3 A 50 V 6 £1. 741 OP Amps 5 £1. Many other items. SAE with enquiries please. CWO under $£ 2$. Add 20p. ELECTRONIC CENTRE (STOCKPORT) LTD., 45 Lower Hillgate, Stockport. Tel: 061-480 9791 .

BRAND NEW COMPONENTS BY RETURN.
Electrolytic capacitors $16 \mathrm{~V}, 25 \mathrm{~V}, 50 \mathrm{~V}$ - $0.47,1 \cdot 0,2 \cdot 2$,

Subminiature bead tantalum electrolytics- $0.1,0.22$
 $47 / 6 \mathrm{~V}, \& 100 / 3 \mathrm{~V}-15 \mathrm{p}$.
Mullard miniature ceramic E12 sories $\mathbf{2 \%} \% \mathbf{6 3 V}$. 10 pf. to $47 \mathrm{~d}:-3 \mathrm{p}$. 56 pf . to $330 \mathrm{p},-4 \mathrm{p}$.
Vertical mounting ceramic plate 50 V .
Vertical mounting ceramic plate 50 V .
E12 series $22 \mathrm{pf}-1000 \mathrm{pf}$. E6 series $1500 \mathrm{pf}-47000 \mathrm{pf}$.-2p.
Polystyrene E12 series 63 V horizontal mounting. 10pf to $1000 \mathrm{pf}-3 \mathrm{p}$. 1200 pf . to $10000 \mathrm{pt} .-4 \mathrm{p}$.
Muliard polyester 250 V vertical mounting E6 series.

Mylar (Polyester) Film 100V vertical mounting. $0 \cdot \mathrm{co1}$,
$0.002,0.005-3 \mathrm{p} .0 .01,0.02-4 \mathrm{p} .0 .04,0.05-4 \frac{1}{2} \mathrm{p}$. $0.002,0 \cdot 005-3 p .0 \cdot 01,0.02-4$ p. $0 \cdot 04,0.05-4 \frac{1}{3}$ p.
Miniature resistors Highstab E12 series 5\% Carbon Film 0.25 W 10 to $10 \mathrm{M} \Omega$. 10% over $1 \mathrm{M} \Omega$)- 1 p . Metal Film
0.125 W
O. Metal Film $0.125 \mathrm{~W}, 0.25 \mathrm{~W} \& 0.5 \mathrm{~W} 10 \Omega$ to $2 \mathrm{M} 2 \Omega$. $-1 \frac{1 \mathrm{p}}{\mathrm{p}} \mathrm{p}$. Metal Film
$\mathrm{iW} .27 \Omega^{2}$ to $10 \mathrm{M} \Omega$.-2p ea. 1 N4148-3D $1 N 402-5$

THE C. R. SUPPLY CO.
 [27, Chesterfield Rd., Sheffield 58.

SMALL ADS

The prepaid rate for classified advertisements is 20 pence per word (minimum 12 words), box number 60p extra. Semi-display setting $£ 6.80$ per single column centimetre (minimum 2.5 cms). All cheques, postal orders etc., to be made payable to Practical Wireless and crossed "Lloyds Bank Ltd". Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, Practical Wireless, Room 2337, IPC Magazines Limited, King's Reach Tower, Stamford St., London, SE1 9LS. (Telephone 01-261 5846)

CONDITIONS OF ACCEPTANCE OF CLASSIFIED ADVERTISEMENTS

1. Advertisements are accepted subject to the conditions appearing on our current advertisement rate card and on the express understanding that the Advertiser warrants that the advertisement does not contravene any Act of Parliament nor is it an infringement of the British Code of Advertising Practice.
2. The publishers reserve the right to refuse or withdraw any advertisement. 3. Although every care is taken, the Publishers shall not be liable for clerica or printers' errors or their conse quences.

VALVES

Radio - T.V. - Industrial - Transmitting We Dispatch Valves to all parts of the world by return of post, Air or Sea mail, 2700 Types in stock, 1930 to 1976 . Obsolete cypes a speciality. List 20p. Quotation S.A.E. Open to callers Monday
to Saturday 9.30 to 5.00 closed Wednesday 1.00 . to Saturday 9.30 to 5.00 closed Wednesday 1.00 . Valves.

COX RADIO (SUSSEX) LTD.
Dept. P.W. The Parade, East Wittering,
Sussex PO20 8BN
West Wittering 2023 (STD Code 024366)
BARGAIN BOARDS. Pack 1 includes 28 transistors, 130 assorted components, 11 ; Pack 2 includes 45 transistors, 220 components, $£ 1 \cdot 50$. Add 15p P\&P. POs to Autoquip, 191 Upper Richmond Road West, East Sheen, London S.W. 14.

Nos VINTAGE RADIO
 1920 to 1950

Receivers, valves, components, service data, historical research, books, magazines, repairs and restorations. A complete service for the collector and enthusiast of vintage radio.
S.a.e. with enquiries and for monthly newsheet. Full 1977 catalogue, 70p post paid.
TUDOR REES (Vintage Services): 64, Broad Street, Staple Hill, Bristol, BS16 5NL. Tel. Bristol 565472.

RECEIVER UNIT-small personal type battery operated covers 500 Kc to $18 \mathrm{Mc} / \mathrm{s}$ in 4 bands uses 5 miniature valves in superhet circ. with BFO, requires 1.5 and 67.5 volts d.c. has o/p for earphone, uses single 4 way plug in coil unit, has $25 \cdot 1$ ratio dial cal 0 to 100 \& supplied with copy of cal chart \& circ., size $6 \frac{1}{2} \times 3 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$. req. ext. batteries made for use by Army. Price $£ 10 \cdot 80$ inc. VAT \& post. SAE for enquiry or List 18.

A. H. SUPPLIES

122 Handsworth Road, Sheffield S9 4AE.

Tel: 444278 (0742)
TEST METER PANELS, £2. Ex-GPO pliers and cutters, 75 p each. Transistor Amplifiers, 75p each. P\&P 50p per order. ARCHER, Box 139

ORCHARD ELECTRONICS

I.C.s TTL. C/Mos, Linear. Capacitors. Resistors. (E12) SIL/Rectiflers. Diodes. LED. Thyristors. Zeners. Voltage Reg. DIL Sockets. Bridge Rectifiers. Potentiometers, Presets. Triacs. Diac. Plugs. Sockets. Cable. Vero. Carefully selected range, excellent despatch service Same day turn round. S.A.E. List. Suppliers to A.E.R.E.
U.K.A.E.A. Governments Depts. Schools. Universities. U.K.A.E.A. Governments Depts. Schools. Universities Manufacturers. Accounts opened ior trade and amateur.
Join the professionals. Phone by 4 p.m. Goods out Join the professionals. Phone by 4 p.m
1st class by 5 p.m. Try us and prove it!

ORCHARD ELECTRONICS
Flint House, High Street, Wallingford, Oxon. Telephone 0491-35529

TOUCH CONTROLLED
 LIGHTING KITS

These klTS repiace conventionat ight switches and
control 300 W of lighting. No mains rewlring required. Insulated Touch Plates. Easy to follow instructions, TSD $300 \mathrm{~K}-$ TOUCHSWITCH \& DIMMER combined.
ONE touch plate to switch light on or off. Brightness ONE touch plate to switch light on or off. Brightness controled by smat knob-e.es.20. OFF EA .00 .
TSA300K-AUTOMATIC. ONE touch pite LIO
off after preset delay- $\mathbf{5 4 . 0 0}$.
LD300K-LIGHT DIMMER KIT-£2.80.
 Plastic
Plastic
$3 A$
$8 \cdot 5 \mathrm{~A}$
12 A
16 A
20 A
6.5A with
trigger

CLOCK ${ }^{1 K}$
LED dispia

QUANTITY DISCOUNTS ON REQUEST
$8 \%\left(* 12 \frac{1}{2} \%\right)$ VAT +25 p P\&P. Mail Order Only to
105 Stud. K. ELECTRONICS (PW)
106 Studiey Grange Road, London W7 2LX

Books and Publications

SIMPLIFIED TV REPAIRS. Full repair instructions individual British sets $£ 4.50$, request free circuit diagram. Stamp brings details unique. TV Publications (Ause PW), 76 Church Street, Larkhall, Lanarkshire.
THE DALESFORD SPEAKER BOOK

by R. F. C. Stephens

This book is a must for the keen home constructor. Latest technology DIY speaker designs. Contalns fuli plans for infinite baffle and reflex designs for 10-100 watts, also unusual centre-bass system for those who paid. \$5 Overseas).

VANKAREN PUBLISHING
WILMSLOW
YOU CAN'T HELP BUT MAKE MONEY. If you follow the planned and detailed information on how to start your own business rewinding Armatures, set out in the new manual which is profusely illustrated and leads you through easily understood stages of fault diagnosis, taking data, test procedures, laying down new windings, where to obtain work, how to cost jobs etc. NO PREVIOUS ELECTRICAL KNOWLEDGE REQUIRED. Complete instruction manual, £4, plus 30p P\&P. CWO. Copper Supplies, 102 Parrswood Road, Withington, Manchester 20. Dept. PWB.

Ladders

LADDERS. Varnished 20ft 9in extd., £28, carr. £2•40. Leaflets. Also alloy ext. up to 62 ft 6in. Ladder Centre (WLS2), Halesfield (1) Telford. Tel: 586644 . Callers welcome.

Service Sheets

SERVICE SHEETS - COLOUR TV SERVICE MANUALS

Service Shaets tor Mono TV, Radios, Record Players and Taps Recordars 73p. Please send large Stamped Addrassed
Envetope. We can supply manuals for most makes of Colour Television Recelvers by return of post.
E.R.C. PYE ECKO PHILIPS ITT/KB SONY G.EC. HITACHI BAIRD ULTRA INYICTA FERGUSOK

Let us quote you. Please send a Stamped Addressed Envelope for a prompt reply. Also comprehenslve T, V. repalr
manuals by J. M. Court. S.A.E. for detalls. MAlt ORDER ONLY
G. T. TECHNICAL INFORMATION SERVICE

10 DRYDEN CHAMBERS, 119 OXFORD ST., LONDON WIR 1PA

BELL'S TELEVISION SERVICES for Ser vice Sheets on Radio, TV, etc., 75p plus SAE. Colour TV Service Manuals on request. SAE with enquiries to BTS, 190 King's Road, Harrogate, N. Yorkshire. Tel: (0423) 55885.

SERVICE SHEETS for Radio, Television, Tape Recorders, Stereo, etc. With free fault-finding guide, from 50p and SAE. Catalogue 25 p and SAE. HAMILTON RADIO, 47 Bohemia Road, St. Leonards, Sussex.

SERVICE SHEETS, Radio TV, etc., 10,000 models. Catalogiue, 24 p , pIus SAE with orders, enquiries. Telray, 154 Brook Street, Preston PR1 7HP.

Radio Receivers

MULTBAND RADIOS. 12 band . . . Marine, Aircraft, LPSB, HPSB, UHF "(430/470), SW1/4, MW, LW, FM, RF gain, BFO. £ 150 GRUNDIG SATERLITT £199. BFO Units, £16.50. SHARP MW/Aircraft, £13. Langtons, High Street, Rocester, Staffordshire. SAE lists.

For Sale

NEW ISSUES of "Practical Wireless" available from April 1974 edition up to date. Price 65p post free. Bell's Television Services, 190 Kings Road, Harrogate, N. Yorkshire. Tel: (0243) 55885.

Wanted

WANTED. New Valves, Transistors. Top prices, popular types. Kensington Supplies (C), 367 Kensington Street, Bradford 8, Yorkshire.

SURPLUS??? Turn it into cash. Phone 0491 35529 (Oxon).

WANTED. Rank Bush mono cassette recorder model TP 66. Working P.C.B. case, manual. Denis, 7493524 after 6 p.m., or write 103 Fitzneal Street, W12 0BA.

WANTED NEW Valves, transistors, I.Cs, amplifiers, receivers, televisions (Anything Useful) any quantity. Stan Willetts, 37 High Street, West Bromwich. Tel: 021-553 0186.

Electrical

STYLI, CARTRIDGES, AUDIO LEADS, etc. For keenest prices send SAE for free list to: Felstead Electronics (PW), Longley Lane, Gatley, Cheadle, Cheshire SK8 4EE.
TMESWITCHES. CHEAP TIMESWITCHES. Sangamo 20 amp reconditioned, guaranteed for one year. Only £3.70. Also electric eyes. Write:-J, Donohoe, 1 Upper Norfolk Street, North Shields, Tyne \& Wear.

Aerials

G2DYM ANTi-T.v.I. AERIALS

Individually designed by Ex-B.B.C. Transmitter and Aerial Engineer. All custom bull for the transmitter or S.W.L. G5RV's, G2DYM's, Wideband S.W.L. types, Design and Advisory Service. Details-7" $\times 10^{\prime \prime} 12 \frac{1}{2} p$ S.A.E. $+3 \times 9 \mathrm{p}$ stamps.

LAMBDA ANTENNA STUD FARM, WHITEBALL, WELLINGTON, SOMERSET

Educational

GO TO sEA as a Radio Officer. Write: Principal, Nautical College, Broadwater, Fleetwood FY7 8JZ.
COURSES-Radio Amateurs Examination, City \& Guilds. Pass this important examination and obtain your G8 licence, with an RRC Home Study Course. For details of this, and other courses (GCE, Professional examinations, etc.), write or phone: THE RAPID RESULTS COLLEGE, Dept. JXI, Tuition House, London SW19 4DS. Tel: 019471102 (24 hr recording service).

Amateur Club

THE BRITISH AMATEUR ELECTRONICS CLUB for all interested in electronics. Four Newsletters a year with help and special offers for members. Major projects sponsored by the B.A汭.C. designed and made by members, currently the B.A.E.C. Z-80 Computer. Membership fee for 1978: $£ 3.50$ UK, overseas $£ 4 \cdot 50$ surface and $£ 5 \cdot 50$ airmail, payable in sterling. S.A.E. for detalls and application form to the Hon. Sec. J. G. Margetts, 42 Old Vicarage Green, Keynsham, Bristol.

Miscellaneous

MORSE CODE TUITION AIDS

Cassette A: 1-12 w.p.m. for amateur radio examination. Cassette B: 12-24 w.p.m. for professional examination preparation.
Morse by light system avallable. Morse Key and Buzzar Unit for sending practice.
Prices each Cassette (including booklets) 44; Morse Prices each Casset
Key and Buzzer .4 .
Prices include postage etc., Overseas Airmall $£ 1.50$ extra.

MHEL ELECTRONICS (Dept PW)
12 Longshore Way, Milton,
2 Longshore Way, Milton,
Portsmouth PO4 BI.S
IMMEDIATE BY RETURN DELIVERX, Large range of miniature synchronous motors, many speeds 1 rev per hour to 1 rev per 2 days. $£ 1 \cdot 10$ to $£ 2 \cdot 50$ each. 3 and 4 digit mechanical counters, 45 p to 85 p . 10 amp micro switches at 20p. SAE for list. WALES (ELECTRICAL) LTD., Queen St., Newton Abbot.

100 Resistors 75p	
$\frac{1}{4} \mathrm{~W} 5 \%$ c/FILM $2 \cdot 2 \Omega \cdot 2 \cdot 2 \mathrm{M} \Omega$ (E12)	
Send stamped envelope	REE SAMPLE
C60 CASSETTES 30p	All Cassettes in Plastic
C90 CASSETTES 45p	Case with Index and
Quantity Discounts	Screwed Assembly,
10 Units 5\%	Salop Electronics,
50 Units 7\%	23 Wyle Copr
100 Units 10\%	Shrewsbury,
All prices include VAT.	Tel. 53206

SUPERB INSTRUMENT CASES by Bazelli, manufactured from P.V.C. faced steel. Hundreds of people and industrial users are choosing the cases they require from our vast range. Competitive prices start at a low 90p, chassis punching facilities at very competitive prices. 400 models to choose from, free literature (stamp would be appreciated). BAZELLI, Dept No 25, St. Wilfrid's, Foundry Lane, Halton, Lancaster LA2 6LT.

H. M. ELECTRONICS 273 FULWOOD ROAD, BROOMHILL,

BEC. CAEINETS (Illus'd)

METAL CASES

DRY TRANSFER LETTERING
Send 15p for leafleta (Refundable)
Trade enquirlez invited
LOW COST BOXES, instrument cases, aluminium, self tapping screws, BA nuts, bolts and washers. Send a stamped self addressed envelope for pamphlet to Harrison Bros., P.O. Box 55, Westcliff-on-Sea, Essex SS0 7LQ.

RECHARGEABLE BATTERES

 £2.43; 'D' (HP2) £3.92; PP3 £4'98, Matching chargers
£5. 81 each except PP3 charger 54 -99. Charging holders f5. 91 each except PP3 charger $24 \cdot 99$. Charging holders
for $2,3,4,5$ or 6 pencells 50 c . ' C^{\prime} \& D^{\prime} size holders, 4 cells only 80 p . Prices Include VAT. Add 10% post Dackage and Insurance orders under £20. 5% over £2st SAE for full detalls plus 75p tor Nickel Cadmlum Power' booklet. 250/12 volt inverters now avallable. Mall Orders
to Dept. PW, SANDWELL PLANT LTD. 201 Monmouth Drive, Suiton Coldfleld, West MIdfands. Tel: 021-3E84 9764. Callers to T.L.C., 32 Craven Street, Charing Cross,
LondonWC2.

ENAMELLED COPPER WIRE				
8 wg	1 lb	802	402	202
14-19			-69	- 50
20-29	$2 \cdot 45$	1.60	- 82	-59
30-34	2.60	1.70	-89	. 64
35-40	2.85		1-04	. 75
Inclusive of pap and VAT. SAE brings Catalogue of copper and reslstance wires In all coverings.				
THE SCIENTIFIC WIRE COMPANY PO Box 30, London E4 96W Reg. Offee: 22 Coningsby Gardens,				

Vero Cases $19 \mathrm{in} x$ 12in $x 4 i n$ Cat. No. ICD-2U-8, ideal for amplifiers. Test Gear. £6 each. $01-5553755$.

SINTEL KITS, COMPONENTS, CMOS etc.	
MOT. CMOS Databk $3 \cdot 50$	RCA CMOS Databk. $\quad 5 \cdot 45$
NS TTL Databk. $\quad 2.10$	
	Z80-CPU Man. $\quad 5.60$
All Items CWO (Books-No VAT) 35p p\&p.	
Fuil range in our FREE CATALOGUE which	SINTEL, P.O. BOX 75F, 209 Cowley Roac, Oxford Tel.: (0865) 49791.
will be sent by return.	Tel.: (0865) 49791.

PRINTED CIRCUITS and HARDWARE

Readily available supplies of Constructors' Hardware. Printed circuit boards, top quality for individual designs. Prompt service. Send 25p for catalogue from:

RAMAR CONSTRUCTOR SERVICES Masons Road, Stratford-on-Avon, Warwicks
Tel: 4879

HIGH QUALITY

Very Low Distortion

Audio Signal Generator

AN IDEAL INSTRUMENT FOR HI-FI TESTING
A J. Linsley Hood design

Specification. Frequency range: $10 \mathrm{~Hz}-100 \mathrm{kHz}$ in 4 steps. Output: 10 mV - 1 volt in 3 steps. Sine-and Square-wave forms: Dist. below -02\%. Attenuator: Powered by 9 V battery.
Other instruments: Millivolimeter, Frequency Meter, Reg. P.S. Units. THD Analayser. Also Hi-Fi Amp kits 10-100 F.M. Tuners, Kef Speaker Units,
S.A.E. for further information to:

TELERADIO ELECTRONICS
325, Fore Street, Edmonton, London, N.9. Telephone: 01-807-3719.

FREE DX

from QRM. Now GET RID of tiring whistles, etc., with a Tunable Audio Notch Filter, only e7 90. ADD $100-600 \mathrm{MHz}$ with an LF Converter. Antenna tunling, foeds 3.5-4 MHz recelver, only e8.80.
EXPLORE $10-150 \mathrm{KHz}$ with a VLF Recelver, only $£ 9.70$. FIND DX with a Crystal Callbrator. Swliched 1 MHz , $100,25 \mathrm{KHz}$ markers to VHF for only E13.80.
Make SURE your ANTENNA Is OKAY with an Antenna
Nolse Bridge, $1-150 \mathrm{MHz}$, only \&E-20.
Fach easy-assembly kIt includes All parts, printed circuit, etase, battery, etc., instructions, postage, monex back sssurance. Get more DX, SEND TODAY'

CAMBRIDGE KITS
45 (PA) Old Scheol Lane, Milton, Cambridge

3² DIGIT DVM MODULE kit. Autozero, autopolarity only $£ 37 \cdot 50$. SAE details. MLC, 116 College Road, Southwater, Horsham, Sussex.

OUTSTANDLNG 2200 Hi-FI FM Tuner. Full coverage $88-102 \mathrm{MHz}$. Varicap tuning. Latest silicon superhet design. Ideal for push button/manual tuning, only 69.95 . Unique 3300 stereo class A Amplifier, power 32 watts peak, complete stereo Pre-Amplifier/ 2 Power Amplifiers, all inputs accepted. Only $£ 10 \cdot 95$. 5500 Tuner Amplifier plus specification as above 2 , Only $£ 19 \cdot 95$. All equipment built, tested and guaranteed with full instructions. (P\&P 50p.) GREGG ELECTRONICS, 86-68 Parchmore Road, Thornton Heath, Surrey.

DIRECT-READING AUDIO FREQUENCY METER

* Complete kit $£ 29$. 50
\star Linear scale
$\star 6$ ranges up to 100 KHz
\star Easy to call brate-
quartz standard supplied
on loan
Send SAE
James Cooper (Elec) Ltd. 120 Castle Lane, Solihuli, West Midiands.

NOTICE TO READERS

Whilst prices of goods shown in classified advertisements are correct at the time of closing for press, readers are advised to check with the advertiser both prices and availability of goods before ordering from non-current issues of the magazine.

VALVE BARGAINS

Any 5.64p, $10-\mathrm{f} 1 \cdot 20,50-65.00$. Your choice from the list below.
ECCO2, EF80, EFI83, EF184, EH90, PCF80, PCF802, PCL82, PCL64, PCLE55, PCL86, PCL805, PL504, PY81/800, PY88, 30PLI4, 6F28, PFL200.

Colour Valves-PL508, PL509, PL5/9, PY500/A. All tested. 35p each.

Aerial Splitters-2 way, 75 OHMS, Inside Type, Al. 50 .

AERIAL BOOSTERS

Aerial boosters can produce remarkable improvemente on the picture and sound, in fringe or difficult areas.
Bll-For TH stereo and standard VHF/FM radio. BI2-For the older VHF television-Please state channel numbers.
B45-For Mono or colour this covers the complete Television band
All boosters are complete with battery with Co-ax plugs and sockets. Next to the set fitting 64. 20

100-C280/I CAPACITORS
Values from -01uF to I-5uF, 250v/w. Price Cl - 50 (mixed packs).
100-ELEETROLYTICS
From luf to above 500 uF. Mixed voltages. Price $62 \cdot 00$ (mixed packs).

All prices include VAT. PRP 30p per order. Please send uncrossed P.O. or cheques for returning if we are out of stock of capacitor returning if we are out of stock of capacitor

ELECTRONIC MAILORDER LTD.
62 BRIDGE STREET, RAMSBOTTOM, TEL: BURY, LANCS.
TEL: RAMS (070 682) 3036

B. BAMBER ELECTRONICS Dept. p.w. 5 StATION ROAD, LITTLEPORT, CAMBS., CB6 10E Telephone: ELY (0353) 860185 (2 lines) Tuesday to Saturday

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED
A MERRY XMAS \& A HAPPY NEW YEAR TO ALL OUR CUSTOMERS plus a present from us of a

10\% DISCOUNT

ON ALL ORDERS RECEIVED

 FROM 1st to 31st DECEMBERFor items in our current ads and lists only THIS OFFER IS FOR 1 MONTH ONLY Slider Switches, 2 pole make and break (or can be used as 1 pole change-over by linking the two
centre pins), 4 for 50 p.
A NEW RANGE OF QUALITY BOXES \&
INSTRUMENT CASES INSTRUMENT CASES.

Vinyl Coated Instrument Cases
Light Blue tops and White lower sections. Very smart filinish.

WB1	$5 \times 24 \times 2$	60 p
WB2	$6 \times 4.4 \times 1 \frac{1}{4}$	\&1. 10
WB3	$8 \times 5 \times 2$	E1.60
WB4	$9 \times 54 \times 2 t$	E1.80
WB5	$11 \times 6 \frac{1}{4} \times 3$	\%2.00
WB6	$11 \times 7 \times 3 \frac{1}{2}$	E2. 25
WB7	$12 \times 6 \frac{1}{4} \times 5 \frac{1}{4}$	\$2.60
WB853	$8 \times 54 \times 31$	\$2.00

MAINS TRANSFORMERS. Type $60 / 2$, Mains input $200-210-220-230-240-250 \mathrm{~V}$ a.c... output $0-20-$ $40-604 \times 4$, $7 \pm \times 44 \times 4$, fully fused (ideal for PSU) $£ 3.00$
each. MAINS TRANSFORMERS. Type $15 / 300240 \mathrm{~V}$ input, 15 V at 300 mA output, $\mathbf{\Sigma 1} \cdot 50$ each.
MAINS TRANSFORMERS. Type $45 / 100,240,220$,
$110,20$. oV input, 45 V at 100mA output, $£ 1.50$ each.

MAGNETIC OEVICES PROGRAMMERS. CONtain 9 fully adjustable cams and 9 change over
micro-switches (rated approx. 1 A at 240 VAC Needs slow-motion motor to drive (not sup plied), Ideal for disco lights, sequence switching, etc. ex equipment $£ \cdot 50$ each.
VIDICON SCAN COILS (Transistor type, but no data) complete with vidicon base $\mathbf{E 6 - 5 0}$ each.

FULL RANGE OF BERNARDSIBABAM ELECTRONICS BOOKS IN STOCK. S.A.E. FOR LIST.
NEW FOR THE VHF CONSTRUCTOR. A range of tuned circuits on formers. with slugs and screening can be Frequencies quoied are approximate, and rang parallef
Type S(tin. square, dumpy typa)
Type SA 20 to 30 MHz (when 33 Pp fitied in parallel)
Type SC 70 to 100 MHz (wth link winding
Type SD 135 to 175 MHz (with link winding)
Type M (Min. tin. square types).
Type MA 19 to 28 MHz (when 33 pF fitted in paraliel)
Type MB 22 to 32 MHz (when 3 pF 俍 Type MB 22 to 32 MHz (when 33pF fitted in paralle) Type MD 38 to 50 MHz (when 33 pF fitted in parallel) Type NE 45 to 60 MHz (when 33 pF fitted in parallel). Type MF 100 to 200 MHz (without slug) when 0 to 30 p . variable fitted in parallel.
ype) a: 50 p per pack of 5 .
SEMICONDUCTORS
3SX20 (VHF Osc/Mult) 3 for 50p.
PBC108 (piastic BC1 for 50p. 5 for 50 .
BFY 51 Transistors, 4 for 40p.
BCY72 Transistors, 4 for 50p
FF152 gudio type TO5 Transistors, t2 for 25p 2N3819 Fet., 3 for 60 p ,
BC 148 NPN SILICON, 4 for 50p.
BC459 PNP SILICON. 4 for 50p.
BAY31 Signal Dlodes, 10 for 35p
BA121 Varicap Diodes, 4 for 50p
44CG op amps by RGA 4 for $\mathbf{E 1}$
AED LEDS (Min. type) 5 for 70 p .

PLEASE ADD 8\% VAT UNLESS OTHERWISE STATED

PLASTIC PROJECT BOXES with screw on lids in black ABS) with brass inserts
Type NB1 spprox $3 \mathrm{in} . \times 2+1 \mathrm{in}$. $x 1 \neq \mathrm{in}$. 40p each.

MULLLARD $35 A 285 V$ STABILISER VALVES
(Brand New) 70p each or 2 for $₹ 1 \cdot 20$.
TO3 transistor insulator sets, 10 for 50 p
PERSPEX TUNER PANELS (for FM Band 2 luners) marked $88-108 \mathrm{MHz}$ and Channels $0-70$, clear numbers, rest blacked out, smart modern appearance, size approx. $8 \frac{1}{2}$ in $\times \operatorname{lizin}$. 2 for
35 p .

LUG8 AND SOCKETS
-Type Plugs 50 ohm, 60p each, 3 for $£ 1.50$ Pl259 Plugs (PTFE), brand new, packed with SO239 Socke each
SO239 Sockots (PTFE), brand new (4-hole fixing
SOLDER SUCKERS (Plunger type). Standard Model, $\mathbf{5 5}$. Skirted Model $\mathbf{5 5} \cdot \mathbf{5 0}$. Spare Nozzles 60 p each.
NEW MARKSMAN RANGE OF SOLDERING

S125D 25W 240V E3-80.
S140D 40W 240V E4-20.
1.

BENCH STAND with spring and sponge for Spare bits MT9 (for 15 W) 50p, MT5 (for 25W) 45p, MT10 (for 40W) 50p.
ALL PRICES + 8\% VAT.
CP2 TEMPERATURE CONTROLLED IRON
emperature controlled iron and PSU. $£ 30+$ VAT
SPARE TIPS
Type CC singie flat, Type K double flat fine tip. MDP P P very tine tip. sp each + VAT (8p)

MULTICORE SOLDE
Size 5 Sevbit 18 s.w.g. in alloy dispenser $32 \mathrm{p}+$ VAT (3p).
1 Kg . (1.11b) Savbit 18 s.w.g., 56 p . + VAT (4 p). $\frac{1}{K} \mathrm{Kg}$. (1 11 1b) $60 \times 40,20$ s.w.g. on plastic reel
$\mathrm{E} 3+\mathrm{VAT}(24 \mathrm{p})$.

WELLER SOLDERING IRONS
EXPERT. Bullt-in-spolight lliuminates work.解 Copper soldering tip
EXPERT SOLDER GUN KIT (spare bits, case, etc.) $£ 12.90$.
Spare bits 35 p pair
A LARGE RANGE OF CAPACITORS AVAILABIE AT BARGAIN PRICES, S.A.E. FOR LIST.
MIXED COMPONENT PACKS, containing resistors, capacitors, pots, etc. All new
Hundreds of items. \&2 per pack, while stock last.
ALU-SOL ALUMINIUM SOLDER (made by Multicore). Solders aluminium to (made by copper, brass, steel, nickel or tinplate, $16 \mathrm{~s} . \mathrm{w} . \mathrm{g}$ with multicore flux, with instructions, Approx. metre coil 40p pack. Large reel $£ 2$-75.
VARICAP TUNERS Mullard type ELC1043/05. Brand New, $\mathbf{8 4} \cdot 40+12+\%$ VAT
BARGAIN PACK OF LOW VOLTAGE ELECTROLYTIC CAPACITORS. Up to 50 working. Seatronic Manufacture. Approx. 100
81.50 per pack $+12 \%$ VAT.

OSMOR REED RELAY COILS (for reed relays up to fin dia., not supplied) $12 \mathrm{~V}, 500$ ohm coil, 2 for 50p.

We now stock Spiralux Tools for the electronic enthusiast. Scrowdrivers, Nut spanners, BA and
A.E. for list.
Dubillar Eectrolytics
Dubilier Electrolytics, $100 \mu \mathrm{~F}, 275 \mathrm{~V}, 2$ for 50 p
Plessey Electrolytics, 470uF, 63V, 3 for 50
TCC Electrolytics, $1000 \mu \mathrm{~F}$, 30 V , 3 for 60 p .
Dubilier Electrolytics, $5000 \mu \mathrm{~F}, 35 \mathrm{~V}$, 50 p each.
TUbiliar Electrolytics, $5000 \mu \mathrm{~F}, 50 \mathrm{~V}$, 60 p each.
ITT Electrolytics. 6200 pHF , 25 V , high grade, $\mathbf{s c r e w}$
PLEASE ADD $12 \frac{1}{2} \%$ VAT TO ALL
TV PLUGS AND SOCKETS
V PLUGS AND SOCKETS
TV Sockets (metal type), 4 for 50 .
TV Line Connectors (back-to-back sockets), 4 for

P0p.

Terms of Business: CASH WITH ORDER. MINIMUM ORDER £2: ALL PRICES INCLUDE POST \& PACKING (UKIONLY). SAE with ALL ENQUIRIES Please. PLEASE ADD VAT AS SHOWN. ALL GOODS IN STOCK DESPATCHED BY RETURN. CALLERS WELCOME BY APPOINTMENT ONLY.

s Marshall's

A. MARSHALI (LONDON) LTD. DEPT. P.W.

LONDON-40-42 Cricklewood Broadway, NW2 3ET
Tel. 01-452 0161. Telex 21492 .
and at 325 Edgware Road, W2. Tel. 7234242
GLASGOW-85 West Regent Street, G2 2QD Tel. 041-332 4133
BRISTOL-1 Stralts Parade, Fishponds Road, BS16 2LX

CALL IN AND SEE US
9-5.30 Mon-Fri.
-5.00 Saturday
EXPRESS
MAIL ORDER
Tel Orders
on Credit Cards
£10 minimum.

OPTOELECTRONICS
3 mm Red 49p, Gr 25p, Y 2 5 mm Red 2pp, Gr 26p, Y 26p
TH209 19p, ORP12 84p BPX 25 1.65 DISPLAYS 7 Segments

	Single	Double
DL704	2.00	3.60
DL707	2.00	3.00
DL747	2.50	3.40
DL750	2.50	3.40

$\begin{array}{llll} & 3.50 & 3.40 & 0.3 i n ~ R e d ~ \\ 0.5 i n ~ R e d ~ \\ 0 L 747 & 2.50 & 3.40 & 0.5 i n \text { Red } \\ \text { DL750 } & 2.50 & 3.40\end{array}$

TRIACS Plastlc Pack 400 V

WHY NOT PAY US A VISIT AT OUR NEW CENTRAL LONDON BRANCH AT 325 EDGWARE ROAD, W2, ABOUT 100 YARDS NORTH OF THE WESTWAY FLYOVER. EXTENSIVE STOCK RANGE. MANY SPECIAL OFFERS TO PERSONAL SHOPPERS ONLY.

MEM BMMAEDEDE

Stocking Distributors Officlally Appointed - NATIONAL VERO

- TEXAS - ANTLARD ELECTROLUBE
- SIEMENS SIFAM
- SESCOSEM ARROW HART

MAKES COMPONENTS BUYING EASY

"What is a microprocessor?"'

A complete teach yourself course with cassettes + brochure - £9.95 inclusive of VAT and p\&p.

WATFORD ELEGTRONICS

ALL DEVICES BRAND NEW, FULL BPEC. AND FULLY GUARANTEED. CASEREHEQUEAPIO, OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS A CCEPTED
TRAD AND EXPORT INQUIRY WELCOME. P \& PADD 2SP* TO ALL

VAT Export orders no VAT. Applicable to U.K. Customers only. Unless tated otherwise, all priegs are exclusive
to devices marked
We stock many more Items. If pays to vlait us. Weare sltuated behind Wafford Footbal, Ground, Notarest Underground/Br. Rall Station: Wattord High Street.
 $0.033,10 p ; 0.047,0.068,14 \mathrm{p} ; 0.1,15 \mathrm{p} ; 0.150 .22,22 \mathrm{p} ; 0.33,0.4739 \mathrm{p} ; 0.6845 \mathrm{p}$.
$\mathrm{I} 60 \mathrm{~V}: 0.03,0.15,0.2211 \mathrm{p} ; 0.33,0.4719 \mathrm{p} ; 0.68,1.022 \mathrm{p} ; 1.529 \mathrm{p} ; \mathrm{R.2} 32 \mathrm{p} ; 4.736 \mathrm{p}$.

 ELECTROLYTIC CAPACITORS: AXial leaci type (Values are In $\mu \mathrm{F}$) $63 \mathrm{~V}: 0 \cdot 47,1 \cdot 0,1 \cdot 5,2 \cdot 2,2 \cdot 5,3 \cdot 3,4 \cdot 7,6 \cdot 8,8,10,1522,9 p ; 47,32,50,12 \mathrm{p} ; 63,100,27 \mathrm{p} ;$
$50 \mathrm{~V}: 1 \cdot 0,7 \mathrm{p} ; 50,100,220,25 \mathrm{p} ; 470,50 \mathrm{p} ; 1000,62 \mathrm{p}, 2200,61 \mathrm{p} ; 40 \mathrm{~V}: 22,33 \mu, 9 \mathrm{p} ; 100$
 $4700,54 \mathrm{p} ; 16 \mathrm{~V}: 10,40,47,68,7 \mathrm{p} ; 100,125,8 \mathrm{p} ; 470,16 \mathrm{p} ; 1000,1500,20 \mathrm{p} ; 2200,34 \mathrm{p} ;$
$10 \mathrm{~V}: 4 \mathrm{H}, 100,640,10 \mathrm{p} ; 1000 ; 14 \mathrm{p}, 700.121 \mathrm{p} ; 50 \mathrm{~V}: 300075 \mathrm{p} ; 40 \mathrm{~V}: 2500,65 \mathrm{p} ; 25 \mathrm{~V}$: TAG-END TYPE: 70V: $2000,98 p ; 4700$. 121p; 50V: $300075 \mathrm{p} ; 40 \mathrm{~V}$
4700, 48p; $2000,37 \mathrm{p}$ 40V: $2000+2000,95 \mathrm{p} ; 350 \mathrm{~V}: 32+32,185 \mathrm{p}$.

MYLAR FILM CAPACITORS

CERAMIC CAPACITORS 50V.
Range: $0.5 \mathrm{p} F$ to 10nF
$15 n \mathrm{n}, 22 \mathrm{nF}, 33 \mathrm{nF}, 47 \mathrm{nF}, 4 \mathrm{p}, 100 \mathrm{nF} \mathbf{~ 6 p}$
POLYSTYRENE CAPACITORS:
10pF to $1 \mathrm{nF}, 8 \mathrm{p}$. $1 \cdot 5 \mathrm{nF}$ to $47 \mathrm{nF}, 10 \mathrm{p}$

JACKSONS VARIABLE CAPS

REVERS AMP

TRANEFORMERE* (MaITA PrIm

0.25 W log and linear values 60 mm $5 \mathrm{Ka}-500 \mathrm{KQ}$ single gang
10kn-500K Dual gang $\frac{\text { Self-Stick graduated Alum. Bezels }}{\text { PRESET POTENTIOMETERS }}$
$0 \cdot 1 \mathrm{~W} 50 \Omega-2 \cdot 2 \mathrm{M}$ MInI. Vert. \& Horiz

$60-6 \mathrm{~V} \quad 100 \mathrm{~mA} \quad 90 \mathrm{p} \quad 20.0 .202 \mathrm{~A} \quad 320 \mathrm{p}$

379p+ Chromachase 24 hrs. DIGItal Cloch

$\begin{array}{llll}12-0-12 V & 0.5 A & 240 \mathrm{p}+ & 30-25-20-0-20- \\ 0-12 & 0.12 & 0.5 A & 200 \mathrm{p}+ \\ 0.5-30 & 2 \mathrm{~A} & 497 \mathrm{o}+\end{array}$

 $\begin{array}{ll}0-0.9 V^{2} & 1 A \\ 0.245 B+ \\ 0-120-12 V & 1 A \\ 245 p+\end{array}$ $30-24-20-15-12-0$ 1A
Multt taponings
$380 \mathrm{p}+$ LT44 $\quad 240 \mathrm{p}$ \qquad
 $\begin{array}{lll}2 A-0-15 V 1 A & 25 p+ & 12 K . S e c .3-2 \Omega 54 p \\ 180-18 V & 1 A & 275 p+\end{array}$
 (Please add 48 n p\&p charge to all prices

$$
\left\lvert\, \begin{array}{ll}
0-10 \mathrm{~mA} & 11 \\
0-50 \mathrm{~mA}
\end{array}\right.
$$

RF CHOKES COIL FORMERS | PC |
| :--- | :--- | :--- |

 MEAER
$100 \mu A$

INDEX TO ADVERTISERS

ACE Mailtronix Ltd.	\ldots	\ldots	640
A.H. Supplies ...	\%	...	706
Alben Engineering	$8 \cdot$	"-	... 636
Alcon Instruments			... 642
Amateur Radio Exchang		\cdots	700
Ambit International			705
A.P. Electronics			... 684
adridge			83
Bamber, B.	.a.	.ax	709
Baron Electronics ...			636
Barrie Electronics			704
Bentley Acoustic Corpn.			70
Bi-Pak Ltd.			648-649
Bi-Pre-Pak Ltd. (Stirling	Soun		643
Birkett, J.			712
British National Radio School \ldots ..			$\begin{aligned} & \text { nics } \\ & 695,702 \end{aligned}$
J. Bull (Electrical) Ltd.			... 703
Butterworths	...	\cdots	... 684
Cambridge Kits		.-.	708
Chromatronics	\cdots	\cdots	637
Chromasonics		...	700
Continental Specialists			663
Copper Supplies		\ldots	708
Cox Radio (Sussex) Ltd.			706
C. R. Supply Co.			706
Crescent Radio Ltd.	\ldots	\ldots	664
Electronics Design Asso	ciates		634
Electronic Mail Order			708
ectrovalue	\ldots	a	... 640
delity Fastenings			

G3DYM Aerials \& Project G.T. Technical Information Service

Greenweld Electronics
H. A. C. Short-Wave Supplies
H. L. Smith
H. M. Electronics ..

Harversons Surplus
Heathkit
Home Radio
I.L.P. Electronics Ltd.

Intertext ICS
James Cooper (Electronics) Ltd.
Jones, R Supplies...
Juniper Electronics
Linear Products
Logic Leisure (Telecraft)
Lewis Radio
Lynx Electronics
Manor Supplies
Maplin Electronic Supplies
Marco Trading
Marshall, A. \& Sons
Mhel Electronics .. Microsystems '78 ..
Minikits Electronics
Monolith Electronics
Moulded Electronics
Orchard Electronics
..*
Partridge Electronics Ltd.
P. B. Electronics..

Precision Petite Ltd.

ook Services		706
Radio Component Specialists	\%\%.	cover iii
Raio Exchange Ltd.		... 645
amar Constructor S		... 707
R.S.C. (Hi-Fi)	\%	
R.S.T. Valve Mail Order Co.	-	... 701
Radio \& T.V. Components Lt		
Salop Electronics		... 707
Sandwell Plant Ltd.	\cdots	07
Saga Ltd.		
Saxon Entertainments		... 641
Scientific Wire Co., The		... 707
Sentinel Supply		700
Sintel	..	707
nic (Hi-Fi)	\ldots	.. 708
Southern Valve Co.		704
S. R. L. Minimeter		667
Swanley Electronics		
chno		44, 696
Teleradio Electronics		707
Tempus	\ldots	.. 692
T. K. Electronics		706
Trampus Electronics		705
Tudor Rees (Vintage Services)		.. 706
Karen Publis		706
- Electronics		.. 638
Watford Electronics		710,711
Web Europa	\ldots	700
West London Direct Supplies		. 644
Wilmslow Audio		692
Williams Michael		668
Xeroza Radio		
Z. \& I. Aero Services		

AC/DC TAUT SUSPENSION MULTIMETERS (Made in USSR)

TYPE
Sensitivity D.C Sensitivity A.C D.C. Current A.C. Current D.C. Volts A.C. Volts Resistance Capacity Accuracy

44312

667 o.p.v.
667 o.p.v.
$300 \mu \mathrm{~A}-6 \mathrm{~A}$
1.5mA-6A
$75 \mathrm{mV}-900 \mathrm{~V}$
$300 \mathrm{mV}-900 \mathrm{~V}$
$0 \cdot 02-3 \mathrm{k} \Omega$
1\% D.C.,
1.5% A.C.
$\mathbf{U 4 3 1 3}$
20,000 o.p.v.
2,000 o.p.v.
$60 \mu \mathrm{~A}-1 \cdot 5 \mathrm{~A}$
$0.6 \mathrm{~mA}-1.5 \mathrm{~A}$
75 mV -600V $15 \mathrm{~V}-600 \mathrm{~V}$
1K-1M
$0 \cdot 5 \mu \mathrm{~F}$
1.5\% D.C.,
2.5% A.C.

$\mathbf{U 4 3 1 5}$

 20,000 o.p.v. 2,000 o.p.v. 50 $\mu \mathrm{A}-2 \cdot 5 \mathrm{~A}$ $0.5 \mathrm{~mA}-2.5 \mathrm{~A}$ 75 mV -1000V $1 \mathrm{~V}-1000 \mathrm{~V}$ $300 \Omega-500 \mathrm{k} \Omega$ $0 \cdot 5 \mu \mathrm{~F}$2.5\% D.C., 4\% A.C.

Price complete with pressed steel carrying case and test leads.
£14-50
£17.50
£14.95
TYPES U4313 \& U4313 PROVIDED WITH ANTI-PARALLAX MIRROR SCALES

Sensitivity:

TYPE U4324

D.C. Current:

20,000 /V D.C.
4,000 /V A.C.
$0 \cdot 06-0 \cdot 6-60-600 \mathrm{~mA}-3 \mathrm{~A}$
$0 \cdot 3-3-30-300 \mathrm{~mA}-3 \mathrm{~A}$
$0 \cdot 6-1 \cdot 2-3-12-30-60-120-600-1200 \mathrm{~V}$
3-6-15-60-150-300-600-900V
5008-5-50-500k Ω
D.C. 2.5% : A.C. 4% (of F.S.D.)

Complete with stee! carrying case, test lead, battery and instruction manual £14.50

NO OVERLOAD PROTECTION IS

INCORPORATED IN THESE INSTRU. MENTS

PRICE complete with test leads and fibreboard storage case $\mathbf{1 1 4 . 5 0}$
THE ABOVE PRICES ARE EXCLUSIVE OF VAT (at present 8%) HANDLING AND POSTAGE CHARGES £1 25 PER INSTRUMENT
OUR NEW 1976/1977 CATALOGUE IS NOW READY AND WILL BE SENT ON RECEIPT OF REMITTANCE FOR \&O•30

J. BIRKETT

Radio Component Suppliers

25 The Strait, Lincoln LN2 1JF
 Tel: 20767

500yd. REEL OF PVC CABLE. 25 Strand 004 for $£ 3$.
NKT 214 TRANSISTORS similar to OC 71 @ $10 \mathrm{p}, 6$ for 50 p .
2 PIN DIN SOCKETS Single @ IOp, Double @ 18 p .
BD 1874 AMP NPN PLASTICPOWER TRANSISTORS 25p, 5 for El . 50 BC 107-8-9 TRANSISTORS Assorted Untested @ $57{ }^{2} 57$ p.
VARIABLE CAPACITORS Direct Drive, 5 位

@ 85p, 50 pf @ 85p, $100+200 \mathrm{pf}$ @ $55 \mathrm{p}, 5 \mathrm{pf}$ @ 75p, 10pf @ 75p, 30pf | @ 85p, 50 pp @ 85p, $100+200 \mathrm{pf}$ @ $55 \mathrm{p}, 125+125 \mathrm{pf} @ 55 \mathrm{p}, 180+180 \mathrm{pf}$ |
| :--- |
| $60 \mathrm{p}, 500+500 \mathrm{p}$ |
| 1020 p | MAINS TRANSFORMERS

88p, (20p P\&P). Type 2, 22 V 300mA , Input. Type 1.22 V I Amp Q
Type $4,9 \mathrm{~V} 500 \mathrm{~mA}$ @ 882 p (20 p P\&P), 7
Type 4. 9 V 500 mA @ $88 p$ (20 p P\&P). Type 5.12 V 300 mA (20 p P\&P).
@ 88p. Type 6. 50 V 2 Amp, 45 V 500 mA @ $63 \cdot 50$ (85p P\&P). Type 7.
500 mA @ 88 p , Type 9.14 V 2 Amp @ $£ 4.50$ (95 p P\&P), Type 8.16 V

 $@ £ 1.60$ (25 p P\&P). Type 13.22 V ; 22 Vm amp, $7.5 \mathrm{~V} 500 \mathrm{~mA}, 6 \mathrm{~V}$ IA t1. 60 (25 P P\&P)
TANTALUM BEAD CAPACITORS, Iuf $35 \mathrm{v}, \mathrm{w}$., $33 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$., 47 uf
$35 \mathrm{v} . \mathrm{w} ., 1 \mathrm{l}$ f $35 \mathrm{v} . \mathrm{w} ., 2 \cdot 2 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} ., 3 \cdot 3 \mathrm{uf} 16 \mathrm{v} . \mathrm{w} .$, . $4 \cdot 7 \mathrm{uf} 10 \mathrm{v} . \mathrm{w} .$, , $4-7 \mathrm{uf}$
$35 \mathrm{v} . \mathrm{w} ., 5 \mathrm{uf} 25 \mathrm{v} . \mathrm{w} ., 6 \cdot 8 \mathrm{uf} 25 \mathrm{v} . \mathrm{w} ., 6$. $6.8 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} ., 10 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} ., 15 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} .$,
$20 \mathrm{uf} 6 \mathrm{v} . \mathrm{w} ., 22 \mathrm{uf} 16 \mathrm{v} . \mathrm{w} ., 33 \mathrm{uf} 25 \mathrm{v} . \mathrm{w}$., $47 \mathrm{uf} 6 \mathrm{v} . \mathrm{w}$. All at 9 p each
50. AC 128 TRANSISTO'RS Branded But Untested © 57p.

MINIATURE ROTARY SWITCHES 2 Pole 4 Way @ 20p, I Pole 11 Way @ 40p
100 ASSORTED MULLARD C 280 CAPACITORS @ 57p.
BRANDED SILICON DIODES IN 914 or IN 4148 at 20 for 50 p.
10 PLASTIC BC 108 or BC 212 TRANSISTORS for 60 p
5 WATT TO39 NPN DARLINGTON TRANSISTORS @ 20p each.
F.M. TUNER FRONT END 88 To 108 MHz with details for conversion
to Aircraft Band or $144 \mathrm{MHz} @ \notin 3$.
1.C. SOCKETS DIL 8 Pin, 14 Pin, 16 Pin, 18 Pin @ 15 p each

20 PHOTO and PHOTO DARLINGTON TRANSISTORS Untested for fl .
BF 45 I SILICON PNP 300 MHz TRANSISTORS 6 for 35p.
200 ASSORTED $1 / 3$, $\frac{1}{2}$ Watt RESISTORS for 75p.
50 VARI-CAP DIODES Untested 85% good for 50p.
BCX 36 or BCX 37 TRANSISTORS at 8 for 50p.
POWER TRANSISTORS MP 8112 @ $15 \mathrm{p}, \mathrm{MP} 8512 @ 15 \mathrm{p}$.
AUDIBLE ALARM SYSTEM WITH TRANSISTORS I.C. I2V No
RCA details @ 3089 ${ }^{\text {P2 }}$.

$5 \cdot 5 \mathrm{MHz}$ CERAMIC FILTERS @ 27 p each.

Mail Order Protection Scheme

The Publishers of Practical Wire/ess are members of the Periodical Publishers Association which has given an undertaking to the Director General of Fair Trading to refund monies sent by readers in response to mail order advertisements, placed by mail order traders, who fail to supply goods or refund monies owing to liquidation or bankruptcy. This arrangement does not apply to any failure to supply goods advertised in a catalogue or in a direct mail solicitation.
In the unhappy event of the failure of a mail order trader readers are advised to lodge a claim with Practical Wireless within three months of the date of the appearance of the advertisement, providing proof of payment. Claims lodged after this period will be considered at the Publisher's discretion. Since all refunds are made by the magazine voluntarily and at its own expense, this undertaking enables you to respond to our mall order advertisers with the fullest confidence.

For the purpose of this scheme, mail order advertising is defined as:-
'Direct response advertisements, display or postal bargains where cash had to be sent in advance of goods being delivered'. Classified and catalogue mail order advertising are excluded.

U.K. RETURN OF POST MAIL-ORDER SERVICE ALSO WORLD WIDE EXPORT SERVICE
 R.C.S. 100 watt MIXER/AMPLIFIER
 BAKER DISCO SPEAKERS

ALL VALVE CHASSIS

Four inputs. Four way mixing, master polume, treble and bags
controls. Suits all speakers. This professional quality amplifer controls. Suits all speakers. This professional quality amplifier chassis is suitable for all groups, disco, P.A., where high quality power is required. 5 speaker outputs, A/C mains operated. Slave
output. Produced by demand for a quality valve amplifer. Send outpat. Produced by demand lor a quality valve amphier. Send
for dotails,
Suitable carrying eabinet $£ 16$. Carr. $£ 2$. Price $£ 94$ carr. $\{2.50$

> ANOTHER R.C.S. BARGAIN !
> ELAC $9+5 \mathrm{in}$. HI-FI SPEAKER TYPE 59RM
> This famous unit now available, 10 watts, 8 ohm. Price $£ \mathbf{3} \cdot \mathbf{4 5}$ Post 40p

10" ELAC HI-FI SPEAKER

Large ceramic magnet.
Response: $50-18,000$ eps. Response: $50-18,00$ eps
Bass resonance 55 cps. 18 ohm impedance
10 watts. Post 40 p 44.50

TEAK VENEER HI-FI SPEAKER CABINETS
MODEL "A". $20 \times 13 \times 12 \mathrm{in}$. For 12 in . dia. or 10in speaker. 14.50 Post Illustrated
MODEL "E" BOOKSHELF

R.C.S. BOOKSHELF CABMNET

LOUDSPEAKRIR CABINET WADDING
18in. wide, 20 p it.

$$
\begin{aligned}
& \text { GOODMANS CONE TWEETER }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8in. Audax } 15 \text { watts } 84 \cdot 95 \text {. } \\
& \begin{array}{l}
\text { 5in. EMI mid range g5. } \\
\text { 10in. } 30 \text { watt GODMANS woofer } 4 \text { ohm } £ 10.95 .
\end{array} \\
& \text { GOODMANS CONE TWEETER }
\end{aligned}
$$

TWO CHANNEL STEREO VERSION OF ABOVE $£ 8.50$
BARGAIM 3 WATT AMPLIFIER. 4 Transistor
Pugh-Pull Ready built with volume, trebie and bass $\mathbf{4 . 9 5}$ Push-Pull Ready buat with volume, treile end bass
controls. 18 volt battery operated or Mains Supply 22.95.
THE "INSTANT", BOLK TAPE ERASER \&
HEAD DEMAGNETISER
Suitable for cassettes. and all sizes of tape
Lesflat S.A.E.
$\pm 4.95{ }_{\substack{\text { Pogt } \\ 40 p}}^{\substack{\text { and }}}$

wafer heating elements

 THIN applications in the home, garage, greenhouse, factory (available in manufacturing quantities), Apvrox. size $101 \times 8 \pm \times$ Fin. Operating voltase $200 / 250 \mathrm{~V}$. a.c. 250 watts spyrox. Printed cireuit element enclosed in asbestos fitted with con-necting wires. Completely flexible providing safe Blaok heat. necting wires. Completely texible providng safe Braok heat.
British-made for use in photo-copiers and print drying equip-
ment.
Mdeal for home handyman and experimenters. Suitable for Heatiag Pads, Food Warmers, Convecfor Heaters, etc. Must make efficient clothes dryers, towel rails-ideal for airing cupboarñs. Ideal for anti-frost device for the garage-prerenting frozen radiators or acting as oil sump heater. Use in greenhouse for ssed raising and plant protection. Invbluable aid for bird houses, incubators, efc., ete. Can be used in series ONLY 40p EACH (FOUR FOR EI.50) ALL POST PALD-Discounts for quantity.

BLANK ALUMINIUM CHASSIS. 18 s.w.g. $2 \frac{1}{2}$ in. sides $6 \times 4 \mathrm{in}$. 70 p ; 12×3 in. $87 \mathrm{p} ; 16 \times 10 \mathrm{in}$. $51 r 70$. All boxes, many sizes in stock.

DE LUXE BSR HI-FI AUTOCHANGER Plags 19 in .10 in . or 7in. records Auto or Manual. A high quality unit backed by BSR reliability with 12 months guaranfee. A. 200/250V. Size $1312 \times 11 \frac{1}{2}$ Below motor board 2tinin.

With CERAMIC STEREOMONO CARTRIDGE $\$ 17.50$ Cueing Device, Bias Compensator, Bslareed Arm, All Post 750	GARRARD Minichanger. Plays All Records	$\begin{array}{r}9.85 \\ \text { BER P128 with Ceramic Cartrdage } \\ 819.50\end{array}$

AJOR $12^{\prime \prime} £ 15.00$

 90-14,500 e/a, 12in. donkle cone. Woist ceramic magnet assembly having a flux density of 14,000 gauss and a total fux of 145,000 maxwells. Bass resonance 40 c/s rated 25 watts. 18 ohmsMODULE KIT
$30-17,000 \mathrm{c} / \mathrm{s}$ with tweater, crossover baffle $19 \times 12 \mathrm{in}$. Please
state 4 or 8 or 16 ohms state 4 or 8 or 16 ohms.

BAKER SPEAKERS "BIG SOUND"

Robustly constructed to stand up to long periods of electronic power. As uzed by Leading groups.
Useful reaponse $30-13,000 \mathrm{cp}$
GROUP '25" 12in, 30 watt

GROUP " 35 " 12 in .40 watt
4,8 or 160 hms

GROUP "50/12"
12 in, 80 watt professional

£ 12.00
 Post $£ 1$ E 14.00
 Pgst $£ 1$ E21.00

 Wode. A, or ohmaGROUP "50/15" 15 in .75 watt
8 or 18 ohms. Post $£ 1.60$

$£ 26.00$

baker 150 WATt
QUALITY
TRANSISTOR

MIXER/AMPLIFIER

Professional amplifier using advenced circuit design. Ideal for Master treble, bass and volume controls. 3 speaker ontput sockets
to suit varfous combinations of speakers.
G-8-18 ohm. Slave output. A/C mains.
Guaranteed. Details $\mathrm{S} . \mathrm{A} . \mathrm{E}$.
100 WATT DISCO AMPLIFIER
MADE BY JENMINGS MUSICAL INSTRUMEnTS f59
4 Speaker outputs volume, treble, bass, controls
CAN BE USED AS 100 WATT SLAVE:
B.S.R. SINGLE PLAYER DECK

3 speed. Plays all size records, Stereo Cartridge. Cueing device, Ideal Diseo Deck

$$
413.50 \text { Post } 75 \mathrm{p}
$$

DRILL SPEED CONTROLLER/LIGHT DIMMER KIT. EASF to build kit. Will control up to 500 watts Ac mains. $\underset{\text { Post } 35 p}{43 \cdot 25}$ STEREO PRE-AMP KIT. All parts to build this pre-amp. 3 inputs for high medium or low gain per channel, with volume $\begin{gathered}\text { and } P . \mathrm{C} \text {. Board. Can be ganged to make multi-way } \\ \text { Post } 35 \mathrm{p}\end{gathered} \mathbf{2 . 9 5}$ stereo mixers.
P.W. SOUND TO LIGHT DISPLAY

Complete kit of parts with R.C.S. printed circuit. Three
channels. 600 to 1,000 watts each. channels. 600 Practical Wireless.
As leatnred in Practical Wireless. Price $\mathbf{4} \mathbf{\$ 1 4 . 0 0}$
Cabinet extra \&3.
200 Watt Reay Reflecting White Light Bulbs. Ideal for Disoo Lights. Edison Screw Fitting 75p. Each.
MAINS TRANSFORMERS $\underset{\substack{\text { post } \\ \text { Sos }}}{\substack{ \\\hline}}$

30 VOLT 5 AMP. ANDD 34 VOLT 2 AMP. C.T. 33.4

20 VOLT 1 AMP. 22.003 AMP. $£ 2.20$ 20-0-20 VOLT 1 AMP. 22.95 | 30 VOLT 17 AMP. $£ 2.5040$ VOLT 2 AMP . 22.95 |
| :--- |
| $0-20-40-80$ VOLT 1 AMP. $£ 3.502 \times 18$ VOLT 6 AMP. $£ 11$. | GENERAL PURPOSE LOW VOLTAGE. Tapped outputs a 2A, $3,4,5,8,8,9,10,12,15,18,24$ and $30 V$

$1 \mathrm{~A}, 8,8,10,12,16,18,20,24,30,36,40,48,60$

R.C.S.

BOOKSHELF
SPEAKERS
$13 \times 10 \times 6$ 6in. 8 watts rms. 8 ohms
$£ 16$ pair post 21-30

HIGH QUALITY-BRITISH MADE
$2 \times 12^{\prime \prime}$ CABINETS
$f_{\text {or }}$ Disco or PA all ftted with carrying handes amd cornert. Black

$1 \times 15^{\prime \prime}+1 \times 12^{\prime \prime} 100$ WATT CABINET Size $36^{\prime \prime} \times 24^{\prime \prime} \times 15^{\prime \prime} \neq 75.00$. Carr. 65 Ideal for Disco, Organ or PA work.
High quality.
Full range.

Loudgpeaker Cabinet Wadding 18in wide, 20p per ft.
$\begin{array}{l}\text { Hi-Fi Enclosure Manual containing Dlans, designs, crossover } \\ \text { data and cubic tabies, B8p. }\end{array}$

E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in}$

SPEAKER SALE!
With tweeter. And crossover.
10W.
State 3 or 8 ohm. $\underset{\text { Post } 45 \mathrm{p}}{\mathbf{~}}$
15 W model $£ 10.50$
ohms. Post 65p
GOODMANS 20W Woofer
Size 12×10 in 4 ohms. $\quad \mathbf{£ 9 . 9 5}$
Post 65p

337 WHITEHORSE ROAD, CROYDON Open 9—6 Wed. 9-1 Sat. 9-5 (Closed for lunch I.15-2.30) Cash price includes VAT. Access \& Barclay cards welcome. Rail Selhurst. Tel. 01-684 1665

[^0]: LARGE STOCKS OF NEONS, NUMICATOR TUEES, SINGLE AND MULTIPHASE HIGH CURRENT RECTIFIER STACKS, CAPACITORS OF ALL TYPES INCLUDING PHOTO-FLASH AND MOTOR START, TV TUNERS ALSO SOME HIGHLY TECHNICAL EQUIPMENT AND PARTS FOR

 INDUSTRIAL USERS AND SCHOOLS FOR PERSONAL CALRERS

[^1]: Latest tranoloturised Telephone Amplifier with detached

[^2]: tion. Uses P.P. 9 Nine Volt Battery.

[^3]: Impress the nelghbours with A game they haven't seen yet and proutly tell them you

 ## 8 GAME T.V. PROJECT

 * Basket-ball \star Grid-Ball \star Hockey \star Tennis \star Squash \star Football
 + Two -OnePlayer Games
 * Horizontal and Vertical Bat Coverage \star Automatic Ball Speed-Up \pm Players Colour Coded
 \star Three Tone Sound-Effects \star Sound from T,V,
 * All Components supplied guaranteed Including sound and vision modulator
 \star Power requlrement 9 v battery \star Just add controls and case. Basic AY-3-8600 Paddle II KIt B+W only $£ 15.00$ B+W Mint-Pack Chip + P.C.B. only £12.90
 COLOUR Mini-Pack Chip + P.C.B, only 13.90

 ## JOY STICK CONTROLS

 ## DESIGNED FOR T.V. GAMES

 6130
 (AY-3-8550-AY-3-8600) Subminiature Size UNBEATABLE LOW PRICE Two off $\ddagger 3.50$

 TELETEXT DECODER TEXAS TIFAX XMI!
 Tested and Guaranteed Only $£ 99.90$
 Full Colour Display ORACLE AND CEEFAX
 Simple to interface with most TV's
 Also in stock NEW Colour TV's complete
 with Teletext FROM £399.

 All Projects supplied with easy to follow assembly instructions
 All prices include VAT + Postage. Orders under £ 10.00 - Add 20 p p \& p
 Make all Cheques or Postal Orders payable to

 Retail Shop and Demonstrations - 14 Station Road, New Barnet, Herts.
 For further Defails and Technical Help - Phone 01-440 7033
 (French and German spoken)
 Quantity dlscount negotiable.
 For extra speed phone your order on Barclay-or-Access Cards.

