

Head Office and Warehouse HA WESTBOURNE GROVE LONDON WZ

Tol．PARK 5EA1／2／3

Z \＆I AERO SERVICES LTD．

Please send all correspondence and Mail－Orders to the Head Office
When sending cash with order，please include $2 / 6$ in $£$ for postage and handling MINIMUM CHARGE 2／6．No C．O．D．orders accepted
please note that the valves offered below are not necessarily of d．k．origin

Retall Shop 85 TOTTENHAM COURT ROAD LONDON W1
Tel．LANgham 8 m
Open all day saturday

First Quality Fully Guaranteed

ELECTRONIC VALVES

ECH84 9

UABC80 6
离気品 UBF80
UBF89
UBL！ UBL！
UBL21
UC92
UCCE5 15
38
585
5 S
5

TRANSISTORS

INTEGRATED CIRCUIT AMPLIFIERS

CA3ees RF Amplifier with $100 \mathrm{mc} / \mathrm{s}$ bandwidth．Max dissipation 26 mW ．For use as 2 F amplifier，balanced mixer product detector or self－oscillating mixer CA3012 wide Band Amplifier（up to $20 \mathrm{mc} / \mathrm{s}$ ），suitable as IF
Amplifier for VHF／FM receivers Amplifier for VHF／FM receivers CA3026 General Purpose Audio Amplifier of 550 mW output CA303s Buffer amplifier consisting of two super－alpha pair of transistors suitable ior siereo pick－up Paz22 Audio Amplifier providing a max．output of $1-2$ watis FA234 Audio A mplifier providing a max．output of 1 watt $27 / 6$ PA2572 watts Audio Amplifier
The above three I．C＇s are in epoxy moulded double four－in－ line package．
MC17ecG General Purpose operational amplifier in $\mathrm{TO}-99$
TAA263 3－stage direct coupled amplifier for use from DC to TAA293 3－srage amplifier with connection brought out to the TAA293 3－srage amplifier with connection brought out to the Output 10 mW into 150 n load $20 /$. TAA32 MOST input stage followed by a bi－polar transistor stage． 200 mW dissipation
TADICe Intezrated AM receiver circuit containing all active components，except output stage，required to build a complet receiver
SL403A 3 watts Audio Amplificr into 7.50 Loudspeaker．
Operating voltage 18 V ．Overvoltage protection Data sheets are available for all the above l．C＇s

Please note thal certain external components like resistors， capacitors，etc．are required to build complete amplifiers Circuit details are supplied free of charge with amplifiers，but are charged at $1 /-$ each if supplied separately．

MOVING COIL METERS

MODERN RECTANGULAR FACE MOVING COIL METERS TYPE 101．4in．x thin．Tace． complete with external shunt
20DA， 40 microamps
20DA， 250 microamps
120 DA ， 10 Amps ，with internal shunt

Valuabie new handbooik F 1 ECEOAMBIIIOUS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or

 REFUND of FEE' termsThis remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO ENGINEERING Advanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng. -Telecommunications-Sound Recording - Automation Practical Radio - Radio Amateurs' Exam.

ELECTRICAL ENG. Advanced Electrical Eng. Aen. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Supply - Mlning Elec. Engineering.

CIVIL ENGINEERING
Advanced Civil Eng. - Gen. Civil Eng. -_ Municipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

ELECTRONIC ENG. Advanced Electronic Eng. Advanced Electronic Eng. -
Gen. Electronic Eng. Applied Electronics - Prac. Electronics-Radar Tech.Frequency Modulation Transistors.

MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. —Press Tool Design Sheet Metal Work-Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.

AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Automobile Diesel Maintenance - Automobile Elec. Equipment - Garage Management.
 obligation.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and you should send for your copy now-FREE and without

TO B.I.E.T., 453A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).
\qquad
\qquad
\qquad
ADDRESS
\qquad
we have a wide range of courses in other subjects inCLUDING CHEMICALENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

TrThTr

TO BUILD YOURSELF

* PW Stereo Decoder (Reprint 45A 1/6d) OR with optional power supply
* PE Spring Line Reverberation Unit (Reprint 46A 1/6d).
* Repaco 15 watt Invertor Kit
* Repaco 40 watt Invertor Kit
* Tiny Tone Radio Control Receiver (Reprint 18A 1/6d).
* Henry's MW/LW Tuner (Brochure No. 5 FREE)
* PW Switched FM (Reprint 1/-)

MOST PARTS IN STOCK FOR PRACTICAL WIRELESS AND ELECTRONICS PUBLISHED CIRCUITS. ALL INTEGRATED CIRCUITS IN STOCK-LEAFLET 36A OR LATEST CATALOGUE FOR COMPLETE LIST.

HENRY'S RADIO Fully Illustrated CATALOGUES

| | |
| :--- | :--- | :--- | :--- |
| ALL TYPES | |

COMPREHENSIVE CLEAR CONCISE CATALOGUES
A. Over 300 pages fully detailed and illustrated with more than 6,000 stock items. Everything for amateur and professional use. Complete with 5 vouchers. 10/-value, for use with purchases.
ORDER AS CATALOGUE A PRICE 7/6 pp.2/-
B. New audio and high fidelity catalogue. 120 pages contain- WHY NOT ing ideas and equipment tor every application. Special low SEND prices for all leading makes. Plus 12/6 extra discount voucher. AWAY Over 40 recommended Stereo Systems. TODAY! ORDER AS CATALOGUE B PRICE 5/- pp. 1
CONTINUALLY IMPROVED AND REVISED.

INTEGRATED CIRCUITS

BP1010	3 watt Amp	25/-	$\begin{aligned} & \mathrm{SL} 702 \mathrm{C} \\ & \mu \mathrm{~L} 900 \end{aligned}$	Amplifier Buffer	$29 / 6$ $10 /-$
MC1304	Stereo Decoder	55\%	TL914	4in. Gate	11/-
TAD100	AM Radio	47/6	$\mu 910$		10/-
PA237	2 watt Amp	37/6	IC10	Amplifier	59/6
PA234	1 watt Amp	20/-	TAD110	AM/FM Radio	59/6
PA230	Preamp	22/6	CA3028	Osc/Mixer	24/6
MC1303	Stereo Preamp	52/6	CA3036	Dual Dar	18/6
LA709C	Amp	22/6	CA3020	Amplifier	$27 / 6$
SL403	3 watt Amp	49/6	CA3018	Array	22/6
TAA263	Amp	15/-	CA3014	FM	29/6

(25 watts $\stackrel{\text { PA25 }}{\mathrm{RAS}}$)

(50 watts RMS)

SILICON POWER AMPLIFIERS

WITH DIRECT COUPLED, SYMMETRICAL OUTPUT

* HENELEC 'PA25': POWER AMPLIFIER

This silicon design from Henry's Radio uses complententary transistors in he symmetrical output stage direct coupled to a loudspeaker of 8 ohms impedance or higher. Power output is 25 walts RMS wlth an 8 ohms load, or sunning is assured by the use of generously dimensioned black anodised heatsinks. Price £7 100

* HENELEC 'PA50' POWER AMPLIFIER

Basically similar to the 'PA25' the 'PA50' will deliver 50 watts RMS to a $3-4$ ohm load. Extra power is handled by complementary triplet circuits using the latest PNP and NPN silicon power transistors. As a result of extra heatsinking the 'PA50' runs as cool as the 'PA25'. Price $£ 9100$

* HENELEC MU442 POWER SUPPLY

Deslgned to run one or two 'PA25's' or one 'PA50' the MU422 connects to the amplifiers by means of plug-on harnesses. No soldering is required to connect up the system. Audlo input plug and speaker plug 90 to the pane of the MU422.

* SEND FOR FREE BROCHURES

AMPLIFIERS IN STOCK

1 watt Mullard	£2 50	PA25 25 watt	£7 100
PA7 7 watt	£3126	* PA50 50 watt	± 9100
MPA12/3 12 watt	£4100	* 100 watt PA	f49 100
* MPA12/15 12 watt	む5 50	Z30 Sinclair	5496
* MPA25 25 watt	£7100	Stereo 60	¢9 106
* MA7 7 watt Amp/		PZ5	£4 196
Preamp	£8100	Leaflets avai	equest.

PA7 7 watt

* MPA12/3 12 watt
* MPA12/15 12 watt
* MPA 2525 watt
* MA7 7 wat Amp

MA7 7 wat Amp/
Preamp
MA66 Stereo Amp
Preamp

HENELEC 5-5 STEREO AMPLIFIER

Excellent low priced British designed Stereo Amplifier for use with Record Decks, Tuners 16 transistor mains operated. Qutput $5+5$ watts for 8- 15 ohm speakers. Black, silver and wood inish, size 13in x 3 in x 6 in.
PRICE £13 100 pp . $7 / 6$ (Leaflet on request). Complete Stereo System 5-5.
Garrard 2025 TC stereo, 5-5 Ampllfier, PiInth/

Cover, Two 10 watt speakers with tweeters In polished cabinets. Size $18^{\prime \prime} \times 11^{\prime \prime} \times 7^{\prime \prime}$

HENRY'S STOCK EVERY TYPE OF COMPONENT YOU NEED - A CATALOGUE IS A MUST!

AUDIO EQUIPMENT

Mono or Stereo Audlo equpiment develsystem will compare favo - -ach unit or professional equipment selling at much higher prices.
higher prices.
COMPLETE SYSTEMS AND MIXERS from £11 126 to $£ 38176$
(all units available separately).
THE FINEST VALUE IN LOW COST HIGH FIDELITY - CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE YOURSELF POUNDS 7,12 and 25 WATT AMPLIFIERS, STEREO AND MONO PREAMPLIFIERS AND MODULES.

* SEND FOR BROCHURES No. $12 / 14$ and

303 EDGWARE ROAD, LONDON W2.
Telephone: 01-723 1008/9

ADCOLS

THE RELIABLE

 SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4
Telephone 01-622 0291/3

INAME	
IADDRESS	
IADDRESS	
\| $\cdots \cdots \cdots$	
1 ...n	
1	
I	PW177

JACKSON BROTHERS

have acquired the manufacturing rights of

WAVEMASTER VARIABLE CAPACITORS

'Wavemaster' variable capacitors have brass vanes and a single ceramic end plate. All have $.248^{\prime \prime}$ spindles, extended both ends for ganging by means of our Universal Couplings. All are designed for S.W. working and for one hole fixing.
6 mm spindles to order if required. Various capacitances.
Largest vane packs 300 pF .017 air gap, 50 pF 0.64 air gap.

Type 87
S.L.C. Law

Plain bearings $\frac{3}{8}{ }^{\prime \prime}$ fixing bush front area $1 \frac{155^{\prime \prime}}{16} \mathrm{~W} . \times 1 \frac{7}{8}{ }^{\prime \prime} h$,

Type 95
S.L.C. Law Ball bearings $\frac{7}{16}^{\prime \prime}$ dia. fixing bush front area $1 \frac{7 / 7}{8 \prime}$ W. x $1 \frac{1}{2}{ }^{\prime \prime} h$.

Type 92 Modified S.L.C. Law (S.W. Tuning) Plain bearings $\frac{3 \prime \prime}{}{ }^{\prime \prime}$ dia. fixing bush front area $1 \frac{15}{15}{ }^{\prime \prime} \mathrm{W} . \times 1 \frac{7 " 1}{8} \mathrm{~h}$.

JACKSON BROTHERS (London) LTD

Kingsway, Waddon, Croydon, CR9 4DG. 'Phone: 01-688 2754-5
U.S. Office:- M. Swedgal, 258 Broadway. New York. N.Y. 10007

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 2 Transistors, ${ }^{3}$ Diodes, Resistors, Gain Control, Terminal Block, Elegant Case, Screws, etc. In fact everything you need to buld a Steady-Light
Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation.

PHOTOELECTRIC KIT 39/6
Postage and Pack. 2/6 (UK) Commonwealth:
SURFACE MAIL 3/6 AIR MAIL $£ 1.0 .0$ Ausiralia, New Zealand. S. Africa, Canada and U.S.A Also Essential Data Circuits and Plans for Building 10 Advanced Designs

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building. 1Invisble-Beam Projector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mirrors, 2 45-degree wooden blocks, Infa-red filter, projector lamp holder, building plans, etc. Price 19/6. Postage and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2-; AIr Mall 8/-
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kil. Larger Lenses. Filter, etc. Price 29/6. Postage and Pack. $1 / 6$ (U.K.). Commonwealth: Surface Mail 2/6; Air Mail 10/-. JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Photo-Switch, Burglar Alarm, Door
Opener, Counter, etc. . for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototansistor, 3 Transistors, Chassis, Plastic Case, Resisiors, Screws, etc Full Size Plans, Instructions, Data Sheet " 10 Advanced Photoelecrict Designs ${ }^{\text {. }}$
Price 19/6. Postage and Pack. 1/6 (U.K.). Commonwealth 2/-; Air Mail 4/-.
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses. Infra-red Filter, Lampholder, Bracket, Plans, ete. Everything (except plywood) to build 1 miniature invisible beam projector and photocell receiver for (except plywod) to build 1 miniature invisible beam projector and photocell receiver
use with Junior Photoelectric Kit. Price 18/6. Post and Pack. $1 / 6$ (U

YORK ELECTRICS

335 BATTERSEA PARK RD., LONDON S.W. 11
Send a S.A.E. for full details, a brief description and Photographs of all Kits and all 52 Radio, Electronic and Photoelectric Projects Assembled.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 15th April 1970.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.

The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: ' O ' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PW12), 34a Hereford Road, London, W. 2
Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME.
ADDRESS

Cthyer for Bomponants

LINEAR INTEORATED CIRCUITS

High Performance operational Amplifiers. Texas Type SN72709N N 3709 A etc. This device is electronically similar to $M 1$
Also in stock

PA230	21/-	CA3012	$26 / 3$	TAA293	$21 / 8$
PA234	$23 /-$	CA3020	$27 / 6$	TAA310	$32 /-$
PA237	$34 /-$	CA3028A	$20 /-$	TAA320	$13 / 5$
PA246	$57 /-$	CA3028B	$37 / 6$	SL $403 A$	49/6 net
CA3000	$54 / 9$	CA3029	$26 / 3$	IC-10	596 net
CA3001	$79 / 6$	CA3035	$30 /-$	D13T1	$10 / 8$
CA3011	$20 /-$	TAA231	$\mathbf{5 6 / 8}$	2N 5306	$11 / 6$

Add V-to the above i.c.s. for data sheets if required ($1 / 9$ with SL. 403 A , free with IC $\cdot 10$) Other data sheets (apart from [C-10) may be purchased separately at $1 / 6$ per sheet post free.

1 WATT AMPLIFIER MODULE TYPE PCM1
This amplifier unit is a printed circuit module incorporating the popular and well tried PA234 i.c. amplifier. The unit is a complete AUDIO AMPI IFIER and resuires no externit components, you amply connect an 18 solt paser supply and a 15 or 16 ohm speaker or head phane, even the supply smoothing capacitor and the output capacitor are included! The overall dimensions, including capacitors, are $2^{1 / 3} \mathrm{in}$. X
The inpur for 1 watt outpul it I kHz is typically 300 m into 100 kohms. pair Send for free leaflet

SILICON TRANSISTORS FOR HIGH QUALITY EOUIPMENT

BC107	$3 / 3$	BD123	24/3	TIP32A	23/-	2N. 3055	15/9
BC108	3/-	BDY20	24/3	T1S44	1/9	2N3702	3/6
BC 109	3/3	BF 184	$7 / 6$	T1S49	2/6	2N 3703	3/3
BCIS8	$7 / 6$	BF194	$7 /$	T1S50	3/9	2N 3704	$3 / 9$
BC 182L	3/2	BFX29	10/4	2N696	4/9	2N3705	3/4
BC183L	$2 / 5$	BFX84	$6 / 8$	2N697	3/-	2N3707	4/-
BC 184L	$3 / 2$	BFX8S	$8 / 8$	2N706	3/3	2N3708	2/5
BC 212 L	3/9	BFY50	5/-	2N1132	10/9	2N3819	9/-
BC213L	$3 / 9$	BFY51	4/6	2N2906	13/-	2N3820	18/9
BC2141.	4/-	BFY 52	$5 /-$	2N2924	4/4	2N3826	5/11
BCY70	5/4	BSY95A	3/11	2N2925	5/3	2N4058	4/6
BC:71	10/4	MJ481	27/3	2N 2926	3/-	2N4059	3/5
BCY72	$4 / 6$	MJ491	32/11	2N3053	6/8	2N5457	9/9
BD121	17/3	TIP314	171-				

P \& P $1 / 6$ inland, overseas al cost (min. $10 /-$). Cash with order please, discounts may be deducted as follows: order nser $55-10 \%$ order over $\mathbf{f 1 0 - 1 5 \% \text { . Trade orders- }}$ net 30 days.
Pleise send SAF with enturies CALLERS WELCOME Open 9.00 a.ni-12 50 p $2.00 \mathrm{p} . \mathrm{m}$ to $5.00 \mathrm{p} . \mathrm{m}$. Weekdays ind Saturday mornings $9.00 \mathrm{a} . \mathrm{m} .-12.50 \mathrm{p} . \mathrm{m}$

20 Solid State Projects for The Home

R. M. Marston

From light-operated switches to metal detection and photographic timers, the versatile circuits in this manual will prove invaluable to the enthusiast. The author reflects the present-day state of semiconductor technology in his choice of devices. Triacs and silicon controlled rectifiers are included with integrated circuits unijunction transistors and field effect transistors, not to mention the more familiar silicon planar bipolar transistors.

Cased 592028674105 pages 54 illustrations 28s Limp 592028720

18s

Available from leading booksellers or: The Butterworth Group 88 Kingsway London WC2

TRANSISTOR RADIOS TO BUILD YOURSELF

Backed by after sales service

NEW! roamer eight mkI WITH VARIABLE TONE CONTROL

7 Tuasble Wavebands: Medium Wave 1, Medlum Wave 2, Long Wave, fW1, sW2, sW3 and Trawler Band. Buitt in Ferrite Rod Aerial for Medium and Long Waves. Five sectlon $28 i n$. chrome plated Teleacopic aerial for Short Waven can be angled and rotated for marimum persocket. Gelectivity switeh. Switched earplece socket complete with earpiece for private record ting. Etght tranaintors plua 3 dioden. Famous make 7 in . x 4in. Speaker. Air spaced panged turitig condetaser. On/Oft switch volume oontrol. Wave change switch and tuning control Attractive case in rich chestnat shade with gold blocking. Size 9 I $7 \times 4 i n$ approx. Rasy to follow inatract lons and diagrams make the Roamer Eight a pleasure to build. Total Building Costs
Partit Price Llat and Easy Build Plaus 5/. (FREE with parta).

P \& $P^{7 / 6}$.

roamer seven mkIV

BEVEN.EULXY TUNABLE WAVE BANDS-MW1, MW2, LW, 8Wl, BW, BW3 and Irawler Band. Extra Medjum waveband provides eatier tuning of Radio Luxembourg. etc. Built in ferrite rod aerial for Medium chrome plated teleacopic aerisi for Short Waveatiean be angled and rotated for peak S.W. listening Goelket for Car Aertal. Powerful pushpull output. Heven transiators and two dloden including Micro-Alloy R.F. Transiatora. Famous toalke $7 \times$ 4in. P.M. opeaker. Afr spaced ganged tuning condenser. Volutue/on/off control, wrave change switches and tuning control. Attractive case with carrying handle. Blze $9 \times 7 \times 4 \mathrm{in}$.
spprox. Easy to follow instructions and dagrams make the
Rosmer 7 a pleasure to build. Parts price list and ensy build plans 3 /-
(FREE with parts). Personal Earpiece with switched socket for (FREA with parts). Personal Earpiece with switched aocket for
grivate listentag, 5i- extra.
£5.19.6
P.\& P. $7 / 6$

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE WITH SPEAKER AND EARPIECE

Attractive black avd gold case. Bize $5 \$ x$ I x tha. Tuneble over born Medium and long Waves Lingembourg, etc. 7 . bayd for easier truing of dlodes, supernensitite tertte rodeniore and moving coll speaker, siso Personal mar fece tone witchod mocket for private lintening Enes buth plans and parta price liat $1 / 6$ (FRRE with parts).

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER

Atractive case with gilt fitioga. Sizo 7i $\times 51 \times$ hort wanable on Mediam and lotge waves, two tor easier turing of Luxembours. etc. Beanitlve ferrite rod aerial and teloacoplc aerial for short chavea. 8 stagec-o tranalatora and 2 diodea in cluding Micro-Alloy R.F. Transintore otc. (Castylng Hst $2 /$-. (FXRE With parts). plana and parta price list $2 /$-. (FRRE with parts).

Total building costs
111 P.\&P.

NEW! trans eight
SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
3in. SPEAKER
Attractive case in black Attractive case in black
with red grille and cream knobs and dial with polished brass inerts. Size 9×54 pprox. Tunable on Medin. pry Waves three Short W
ong Waves, three Short W aves and Trawler
Telescopic àive ferrite rod aerial for M.W. and L.W.
Telescopic aerial for Short Waves. Eight improved type transistors plus 3 diodes. Push pull output. Ample power to drive a larger speaker. Parts price list and easy build plans 5/- (FREE with parts). Earpiece with switched socket for private listening 5/-extra.
$\underset{\text { Total bulling costs }}{\text { F P } 5 / 6} \boldsymbol{1} 89{ }^{\prime} 6$

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE WITH SPEAKER AND EARPIECE

Attractive case with red spesker grilic. Slase

 volume control, flye tone moving condecaer, alio Portonal Earplece moving coll speaker for private listexitig. Easy build planed socket parta price list $1 / 6$ (Fi\& ER with parta). , parta).

RADIO EXCHANGE CO

1 enclose E			
- ROAMER EIGHT	\square	roamer seven	\square
transona five	\square	trans eight	\square
POCKET FIVE	\square	roamer six	口
\| Parts price list and plans for			
Name			
Address			

Complete stereo system - £29-10

The new Duo general-purpose 2.way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally
Type 1 SPECIFICATION:-
Impedance 10 ohms. It incorporates Goodmans high flux $6^{\prime \prime} \times 4^{\prime \prime}$ speaker and $2{ }_{4}^{\prime}$ "tweeter. Teak finish $12^{\prime \prime} \times 6 z^{\prime \prime} \times 5 \frac{z^{2}}{}$ ". 4 guineas each. $7 / 6 \mathrm{~d} . \mathrm{p} . \& \mathrm{p}$ Type 2 as type 1 Size $17 \frac{1}{2}^{\prime \prime} \times 10 \frac{1}{2}^{*} \times 6 \frac{1}{4}^{\prime \prime}$. Incorporating $10 \frac{1}{2}^{\prime \prime} \times 6 t^{\prime \prime}$ bass unit and $2 f^{\prime \prime}$ tweeter 3^{2} ohms impedance $\mathbf{E 6 - 6 - 0}$ plus 15/- p. \& p.

Garrard Changers from $£ 719.6 \mathrm{~d}$ p. \& p 7/6d.
Cover and Teak finish Plinth £4.15.0d. $7 / 6 \mathrm{~d}$. p. \& p.

The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
SPECIFICATION:
R.M.S. power oulput: 3 watts per channel into 10 ohms speakers.

INPUT SENSITIVITY: Suitable for medium or high output crystal carridges and tuners. Cross-talk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$.
CONTROLS. 4 - position selector switch (2 pos mono and 2 pos. stereo) dual ganged volume control.
TONE CONTROL• Treble lift and cut, Separate on/off switch. A preset balance control

Integrated Transistor Stereo Amplifier plus 7/6d. p. 8 p.

The above 5 items can be purchased together for $\mathbf{E 2 9 . 1 0}+\mathbf{E 1 . 1 0 . 0}$ p. \& p.

Whe Glassic

Controls: Selector switch Tape speed equalisation switch (3is and 7ifi.p.s.). Volume. Treble. Bass. 2 position scratch filter and 2 position rumble filter.
Specifleation: Sensitivities for 10 watt output at 1 KHz into 3 ohms. Tape head: 3 mV (at 3 夅1.p.s.). Mag. P.U.: 2 mV . Cer. P.U.: $: 80 \mathrm{mV}$. Tuner: 100 mV . Aux.: 100 mV . Tape/Rec.output: Equalis ation for each Input 19 correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 1 \mathrm{AdB}$ at 15 KHz . Total distortion: (for 10 watt output) $<1.5 \%$. S/gnal nolse: $<-60 \mathrm{~dB}$. A.C. malns $200-250 \mathrm{v}$. Built and tested. SIze $12 \frac{1}{2} \mathrm{in}$. long, 4 id . deep, 2 z I n . high. Teak finished case.

Ohe O/iscount
Integrated High Fidelity Transistor Stereo Amplifier. Specification-Output: 10 watts per channel into 3 to 4 ohms spakkers (20 watts monaural). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, position rotary selector switch (3 pos. mono and 3 pos. stereo), P. U, Tuner,
Tape and Tape Rec. out. Senalivities: All inputs 100 mV into $1 \cdot 8 \mathrm{BM}$ ohm. Frequency Response: $40 \mathrm{~Hz}-20 \mathrm{KHz} \pm 2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls; treble, 13 dB lift and cut (at 15 KHz); Bass, 15 dB lift and 25 dB cut (at ${ }_{60 H z}$). Volume Controle: Separate for asch channel. A.C. Maine Input: 200240 V . $50-60 \mathrm{~Hz}$. SIze, $121^{\prime \prime} \times 6^{\prime \prime} \times 24^{\prime \prime}$ In teak finished case. Bultt and tested.
ViscOUNT MARK il for use with magnetic pick-ups specification as above. Fully equalised for magnatic plck-ups. Sultable for cartridges with minimum output of $4 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$. at 1 kc . Input Impedance 47 k . $£ 15.15 \mathrm{plus} 7 / 6 \mathrm{p} . \& \mathrm{pe}$

SPECIAL OFFER!

Complete stereo system comprising BALFOUR 4 -speed autoplayer with stereo head, 2 Duo speaker systems, alze 12 in . $\times 6$ bin. $\times 5 \mathrm{z}$ in. Plinth (less cover) and the DUETTO stereo amplifier. All above items
$£ 25$ plus £2 p. \& p.

NEW COMPLETE HI-FI STEREO SYSTEM - £41

comprising SP 25 Garrard Mk II with dlamond cartridge, or 2025 TC, Viscount Mki amplifier. two type 2 speakers, plinth and cover

Circuit 2/6
FREE WITH PARTS.

The ELEGANT SEVEN Mk. III (350 mW Output)

7 tranaistor fully tunable M.W.-L.W. saperhet portable. Set of parts. Complete with alt componnts, including ready etched and drilled printed circuit board-back printed for foolproof con struction.
MAINS POWER PACK KIT: 9/6 extra.
Price $£ 4.9 .6$ plus 7/6 P. \& P.

The DORSET (600 mW Output)

7-transistor fully tuaable M.W.-L.W. superhet portable-with baby alarm facility, Set of parts The latest modulised and pre-aligment techniques makes this simple to build. Sizes: $12 \times 8 \times 3$ in.

Price $\mathbf{8 5 . 5 . 0}$ olus 7/6 P, \& P. MAINS POWER PACK KIT; 9/6 extra

EXTRACTOR FAN

A.C. mains $230 / 250 v$. complete with pull switch. Size: $6 \times 6 \times 4$ in.
Price 27/6 plus 7/6 P. \& P.

X101

10W SOLID-STATE HI-FI AMP

 WITH INTEGRAL PRE.AMPSpecifications: Power Output (into 3 ohms speaker) 10 watts. Sensilivlty (for rated output): 1 mV into $\mathbf{3 K}$ ohms (0.33 Sensilvity (Ior rated output): 1 m into 3 K ohms (microamp).
Total Dlsiortion at 1 KHz at 5 watts, 0.35%, at rated
Total Distortion at 1 KHz at 5 watts, 0.35%, at rated
output 1.5% -
Speaker: 3-4 ohms (3-15 ohms may be used).
Supply voltage: 24 V . DC. at 800 mA ($6-24 \mathrm{~V}$, may be used).
Price $69 / 6$ plus 2/6 P. \& P.
Control assembly: including resistors and capacitors. 1. Volume: PRICE 5/2. Treble: PRICE 5/-. 3. Comprehensive bass and treble: PRICE 10/- The above 3 items can be purchased for use with the X101.

Power Supples for the X101: 4/6 p. \& p. p. \& p.

CAR TRANSISTOR IGNITION SYSTEM

by famous manufacturer

For 6 volt or 12 volt positive earth systems, Comprising: special high voltage For 6 volt or 12 ally sealed silicon transistor mounted in flined heat-sink, high output ignition coil, ballast resistor and hardwear (screv. s. washers, etc.).

Price £4.19.6 plus 5/- P. \& P.

50 WATT AMPLIFIER

An extremely reliable general purpose vaive amplifer. Its rugged consiruction it by far the hest yalue for money. it by far the best value frr money: 3 electronically mixed channels, with 2 inputs per channel, enables the use of 6 separate instruments at the same time. The volume controls for each channel are located directly above the corres-
 Channels $1 \& 24 \mathrm{mV}$ at 470 K . These Price $828.10 \quad 2$ channels (4 inputs) are suitable for plus $20 /-$ p. \& p. microphone or suitars. Channels $3 \& 4300 \mathrm{mV}$ at 1 m . Suitable for most high output instruments gram. tuner, organ, etc.). Input sensitivity relative to 10w output. TONB CONTROLS ARE COMMON TO ALL INPUTS. Bass Boost +12 dB at 60 Hz . Bass Cut -13 dB at 60 Hz . Treble Boost +11 dB at 15 KHz . Treble Cut -12 dB at 15 KHz . With bass and treble controls central - 3 dB points are 30 Hz and 20 KHz . Puwtaned OUTPUT: For speech and music 50 watts rms. 100 watts peak. Fer sustaned music 45 watts rms. 90 watts peak. For sinc wave 38.5 watts rms. Nearly 80 wats peak. Total distortion at rated output 3.2% at 1 KHz . Total distortion at 20 wats
 FEEDBACK 20dB at 1 KHz . SIGNAL TA.C. $50-60 \mathrm{~Hz}$. A protective fuse is located at the rear of unit. Output impedance 3,8 and 15 ohms.

B.S.R. TD-2 TAPE DECK

Takes 54 in . spools, fitted with B.S.R. $\frac{1}{2}$ Track Heads. Size 134 in . long by 8 8inin: wide. Price 88.19 .6 plus 7/6 P. \& P.

TERMS C.W.O.
All enquiries S.A.E.

P101 M (for mono) $35 /{ }^{\circ}$ plus Plo1 S (for stereo) $42 / 6$ plus $\beta / 6$
A.C. Mains 200-250V

SPECIFICATIONS
Output- 10 watts \quad Ouiput Impedance- 3 to 4 ohms Inputs-1. -xtal mic 10 mV Tone Controls-Treble control range $\pm 12 \mathrm{~dB}$ at 2. -gram/radio 250 mV

10 KHz .
Bass control range $\pm 13 \mathrm{~dB}$ at 100 Hz
Frequency Response-(with tone controls central) Minus 3 dB points at 20 Hz and 40 KHz . Signal to Noise Ratio-better than -60 dB . Iransisiors-4 silicon Planar npe and 3 Germanum type. Maisi hpul-220/2soV. A.c. Size of chassis $10 x^{\prime \prime} \times 44^{\prime \prime} \times 2 z^{\prime \prime}$. For use with Std. or L.P. records. musical instruments, all makes of pick-ups and mikes. Separate bass and reble lift control. Two inputs with control from gram. and mike. Built and tested.

REIIANT Mk. I
As above less teak case
$\mathbf{£ 5 . 1 5}$ plus $7 / 6$ P. \& P.

REIIANT Mk. II
In teak finished casc.
£6.16 olus $7 / 6$ P. \& P.

RECORD PLAYER SNIP

The "Princess", 4-speed automatic record changer and player engineered with the utmost precision for beauty, long life, and trouble free precision for beauty, long life, and trouble free mixed $7^{\prime \prime}$ to 10° or $12^{\prime \prime}$. Patent stylus brush cleans stylus after each playing and at shut off, the Dick-up locks itself into its recess, a most usefu feature with portable equipment--other features nclude pick-up height adjustment and stylu pressure adjustment. This truly is a fine instru ment which you can purchase this month at only $\mathbf{2 5 . 1 9 . 6}$ complete with cartridge and ready to play. Post and ins. $7 / 6$ extra.
ONLY £5.19.6 plus 7/6 P. \& P.

POCKET MULTI-METER

Size $37 \times 27 \times 1$ in. Meter size 24×1 tin. Sensitivity 1,000 O.P.V. on both A.C. and D.C volts $0-15,0-150,0-1,000$ D.C. curren $0-150 \mathrm{~mA}$ Resistance $0-100 \mathrm{k} \Omega$ Complete with test prods, battery and full instructions.

42/6 plus 3/6 P. \& P
FREE GIFT for limited period only. $\mathbf{3 0}$ watt Electric Soldering Iron value $15 /$ - to every purchaser of the Pocket Multi-Meter

40W FLOURESCENT LIGHT KIT

Incorporating GEC Choke size $84 \times 1 \pm \times 1 \frac{1}{1} \mathrm{in}$, 2 bi-pin holders.
Similar to above: 80W. Fluorescent Light Kit in corporating GEC choke size 11ม $\times 1 \pm \times 1$ in 2 bi-pin holders, start and sterter holder. $\begin{array}{lll}\text { P. \& P. 6/6 } & 17 / 6\end{array}$

THREE-IN-ONE HI-FI 10 WATT SPEAKER

A complete Loud Speaker system on one frame, combining three matched ceramic magnet speakers with a low loss crossover network. Peak handing power 10 watts. Impedance 15 ohms. Flux density 11,000 gauss. Resonance $40-60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s}$. Size $13 \frac{1}{2} \times 8 \frac{1}{16} \times 4 \frac{1}{2} \mathrm{in}$. By famous manufacturer.

List price £7 OUR PRICE 74/6 plus 5/- P. \& P.
Similar speaker to the above without tweeters in 3 and 15 ohms $44 / 6$ plus $5 /-$ D. \& D.

PYE CAR RADIO

Push Button Tuning Heart
This PRESTOLOCK 5 station Push-Button Tuner Heart with Manual Over-ride is an ideal basis for a quality AM car radio. Size $6 \frac{1}{\prime \prime}^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$.
As illustrated but without knobs.
25/-plus.3/- P. \& P.

QUALITY MAINS TRANSFORMER

Indut 250 volts. OUTPUT (All RMS values) 4 windings of ${ }_{11} 5$ volts connected in series total 46 volts at 4.5 amps (conservatively rated). The following combinations may be used. 1. 23-0-23 volts. 2.46 volts.
Both of these above voltages are commonly used in medium to high powered transistor amplifiers, power supplies, etc.

Price 35/- plus 7/6 P. \& P.

Goods nor despatched outside UK
RADIO \& T.V. COMPONENTS (ACTON) LTD
21c High Street, Acton, London W.3.
Also at 323 Edgware Road, London W.2. ALE ORDERS BY POST TO OUR ACTON ADDRESS

FULLY TESTED AND MARKED

AC107	3/-	OCI70	3/-
AC126	$2 / 6$	0 Cl 17	4/-
AC127	2/6	OC200	3/6
${ }^{\text {AC }} 128$	2/6	OC201	7/-
${ }^{\text {ACl }} 176$	5/-	2G301	2/6
ACY17	3/-	2 G 303	2/6
AF14	4/-	2N1302-3	4/-
AFI15	3/6	$2 \mathrm{~N} 1304-5$	5/-
AF116	3/6	2Ni306-7	6/-
AFI17	3/6	2N1308-9	9/-
AF239	12/6	2N3819 FET.	9/-
AF186	10/-	2N3844A	5/-
AF139	10/-	Power	
BFY50	4/-	Transistors	
BSY 25	7/0	OC20	10/
BSY26	3/-	OC 23	10/
BSY27	3/-	$\mathrm{OC}^{\mathrm{OC} 25}$	8/-
BSYY28	3/-	$\mathrm{OC}^{\mathrm{OC}}$	5/-
BSY 29	3/-	$\mathrm{OC} 28^{\text {O }}$	7/6
BSY95A	3/-	$\mathrm{OCS}^{0} 5$	5/-
OC41	$2 / 6$	$\mathrm{OC}^{\text {O }} 36$	7/6
OC44	2/6	AD149	10\%-
OC45	2/6	AUY 10	30/-
$0 \mathrm{OC71}$	2/6	2N3055	15/-
$0 \mathrm{OC72}$	2/6	2 S 034	10/-
$0 \mathrm{OC73}$	3/6	Diodes	
$\mathrm{OCP}^{0} 1$	2/6	AAY42	2/-
${ }^{\text {OC81D }}$	2/6	OA91	2/-
$\mathrm{OCS3}^{8}$	4/6	OA79	1/9
OC139	$2 / 6$	OA81	1/9
OC140	3/6	IN914	1/6
15	Packs of your own choice up to the value of $10 /$ with orders over $£ 4$.		

FREE! up to the value of 10% with orders over $£ 4$.

NEW UNMARKED UNTESTED PAKS

B78 12 Integrated Circuits, Data and $10 / \mathrm{Circuits}$ of Circuits of types, supplied with $10 / \mathrm{m}$
orders.
${ }^{\text {B80 }} 8 \begin{aligned} & \text { Dual Trans. Matched O/P pairs } 10 /= \\ & \text { NPN. Sil, in TO-5 can. }\end{aligned}$
B82 10 OC45., OC81D and Trans Mullard glass type. $0 C 8110 /=$
B83 200 Trans. Makers rejects. NPN/ 10/= B84 $100 \begin{aligned} & \text { Silicon Diodes DO-7 glass equiv. 10/ } \\ & \text { to OA200, OA202. }\end{aligned}$
B66 $150 \begin{aligned} & \text { High quality Germ. Diodes. Min. } 10 / \mathbf{m p e}\end{aligned}$
B86 $50 \begin{aligned} & \text { Sil, Diodes sub, min. IN914 and } 10 / a \\ & \text { IN916 types. }\end{aligned}$
B87 $100 \begin{aligned} & \text { Germ. PNP Trans. equiv. to } 10 /= \\ & \text { OC44, oC45, OC81, etc. }\end{aligned}$
B88 $50 \begin{aligned} & \text { Sil. Trans. NPN, PNP, equivalent } 10 /- \\ & \text { to OC200/1,2N706A, BSY95A, etc. }\end{aligned}$
B60 $10 \underset{\substack{7 \\ \text { voltages. }}}{\text { Want }}$ Diodes. Mixed 10/-
H5 $16 \begin{aligned} & \text { t Amp. Plastic Diodes, } 50-1,00010 /= \\ & \text { Volts. } 6 \text { large. } 10 \text { small }\end{aligned}$
H6 $40 \quad \begin{aligned} & 250 \mathrm{~mW} \text {, Zener Diodes DO-7 } \\ & \mathrm{min} . \text { Glass Type. AV. } 40 \% \text { Good. }\end{aligned}$

NEW TESTED \& GUARANTEED PAKS

B2 4 | Photo Cells, Sun Batteries .3 to $10 /$. |
| :--- |

B77 2 AD161-AD162 NPN/PNP Trans $10 / \mathrm{m}$
$\begin{array}{ll}\text { B79 } 4 & \text { 1N4007 Sil. Rec. Diódes. } 1,00010 / \mathbf{l} \\ \text { P.I.V. } 1 \text { amp. Plastic. }\end{array}$ P.I.V. 1 amp. Plastic.

B81 10 Reed Switches, mixed rypes, $10 / \mathrm{m}$
B89 $2 \underset{\text { Light }}{\text { SSPs. } 400 \Omega \text { Dark } 1 \mathrm{M} \Omega}$ Cells. $10 /=$
${ }^{\text {B91 }} 8$ NKTI63/164 PNP Germ. TO-510/-
B92 4 NPN, Sil. Trans. AO6 BSX2010/m GET113 Trans. equiv. to ACY1710/a to ACY21 PNP Germ.
B96 $5 \quad \begin{aligned} & \text { 2N3136 PNP Sil. Trans. TO-18.10/ } \\ & \text { HFE } \\ & \text { 100-300 }\end{aligned}$ 200 MHz ,
 OC71/2, NK271, ete

B99 $200 \begin{gathered}\text { Capacitors, Electrolytics, } \\ \text { silver mica, etc. Post and pack- }\end{gathered}$ ing, this Pak $2 / 6$.
H4 250 Mixed Resistors, Post and pack-10/-
H7 $40 \begin{aligned} & \text { Wirewound Resistors. Mixed } 10 /= \\ & \text { Values. Postage } 1 / 6\end{aligned}$

P.O. RELAYS	8 FOR
Various Contacts and Coil	$\mathbf{2 0} /=$
Resistances.	
Post \& Packaging 5/-	

Post \& Packaging 5/-

* ALL OUR TESTED SEMICONDUCTORS HAVE A WRITTEN GUARANTEE

SEND FOR OUR FREE LISTS AND CATAYOUR OWN EOUIVALENT WITH OUR FREE SUBSTITUTION CHART.

NO CONNECTION WITH ANY OTHER FIRM MINIMUM ORDER 10/-, CASH WITHH ORDER PLEASE. Add $1 /$-post and packing per order OVERSEAS AND EXTRA FOR AIRMAIL.

Complementary Set. NPN/PNP Germ. trans., Pak F. 3.

P.O. RELAYS

8 FOR
20/

RETURN OF THE UNBEATABLE P. 1 PAK. NOW GREATER VALUE THAN EVER
Full of shors lead semiconductors and electronic components, approx. 170. We guarantee at least PNP and NPN, and a hosi of diodes and rectificrs. Mounted on printed circuit panels. Identification chart supplied to give some information on the transistors.

TRANSISTORISED STEREO HI-FI RECORD PLAYER Build your own Hi-Fi Record Player with the Seranade fully transistorised emplilior which comes camplate with 2-14" x " speskers and the latest BSR 4 Spead Stereol Hono Recard Changer. Advanced solid state amplifier only $4 \frac{1}{*}^{\prime \prime}$ detep. 14 transistors plus 4 diodas, teparate Bass and Trable -10 watts total power, Fraquancy response $50-15.000 \mathrm{c} / \mathrm{s}$.

EASY TO INSTALL NO TECHNICAL KNOWLEDGE REOUIREO Ony 28 Gns. $+\underset{17 / 6}{\text { PsP }}$ Credit terms available, first monthly payment f3.6.2 followed by 9 monthly paymants of £3.6.2. (Total "Credit Sale" Price $£ 33.1 .8$) Sand f4.3.8 today.
fantastic bargain offer!

'TRANSCDNTINENTAL'

FULLY TRANSISTORISED STEREOPHOMIC RADIOGRAM CHASSIS
Complete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest BSR Mono/Stereo Record Changer-a completo radiogram at half normal price ONLY

10 Watts Total output $2 \rightarrow 10$ P\&P 17 Transistors \& 10 diodes -31 - $11.17 / 6$ - EASILY FITIED NO TECHNICAL KNOWLEDGE NECESSARY Credit Terms avaliabie. Firat monthly payment $\mathbf{x 4 . 2 . 2}$ followed by 2 monthly paymente of $\mathbf{8 4 . 2 . 2}$.

BUUILD YOUR GIRGUITS
 On
 veroboaro
 -the Universal Wiring Boardobtainable from your local Retailer Trade enquiries to: NORMAN ROSE (ELECTRICAL) LTD.

8 St. Chad's Place, Gray's Inn Road, London, W.C. 1 Technical enquiries to:
VERO ELECTRONICS LTD.
Industrial Estate, Chandler's Ford, Hants

H.A.C. Electronic Kits DID YOU KNOW?

That we have specialized in the supply of kits for the Amateur Constructor for over 35 years. (Established 1934.)

That we now have available a full range of Complete transistor kits with comprehensive instruction manual, for constructing--Radios-Resistance Bridge-Lightmeter-Elec. tronic Counter-Voltmeter-80 metre Converter, etc. etc. (Details for 40 different electronic circuits are available.) Complete kits from 54/-. Fully guaranteed. Illustrated brochure upon application. send S.A.E. please.
H.A.C. Prodncts, 29 Old Bond Street, Loudon W.1.
 - Complete Free price list of over 800 items on request.

Open Daily to the public from 9 a.m. Closed Tuesday 1 p.m. Mon. \& Sat. 5-30 p.m. Open until 8 p.m. Wednesday, Thursday \& Friday

ARENA 210 Amplifer
ARMSTRONG 521
DULCl 207
GOODMANS Maxamp
LEAK Stereo 30 Plus
LEAK Stereo 30 Plus in teäk ${ }_{\text {case }}$
LEAK Stereo 70
LEAK Stereo 70 in teak case LINEAR LT.66
PHILPS RH 591
PHILPS RH 590
PHILIPS RH 590
PHILIPS RH 580
QUAD 33 Pre-amplifler
QUAD 303 Main Amplifier
ROGERS Ravensbourne .in
toak case...
ROGERS Ravensbrook
ROGERS Ravensbrook In
teak case.
TELETON 203E
TRUVOX TSA. 200

TUNERS

ARENA F211 with decoder ARMSTRONG 523 AM/ ARMSTRONG M8 decoder DULCI FMT. 7 FM
DULCI FMT. 73 Stereo
GOODMANS STEREOMÄX
LEAK Troughline with MPX
LEAK Stereofetic Chasals
LEAK Stereofetic In teak case
PHILIPS RH 890
QUGD Siereo FM ..
OGERS Ravensbourn
Tuner with Decoder
SINCLAIR $200000 /{ }^{\circ}$ with decoder

TUNER/AMPLIFIERS
ARENA 2400 with MPX
ARENA 2600 with MPX
ARENA Tg00 with MPX
ARMSTRONG 525
ARMSTRONG 526
ARMSTRONG 127
ATask Case for 127
GOODMANS 3000
PHILIPS RH781
PHILPS RH790
TANDBERG Solvsuper
TELETON F.2000.
TELETON TATI
COMPLETE HI-FI SYETEMS
TELETON MX. 900
TELETON R.8000
TELETON CMS 300
GOODMAN 3000 sulte
MARCONI UNIT 4 WYNDSOR Syatem VIDEORAMA
${ }^{264} 18$

speakers

ARENA HT 21
ARENA HT 7
ARENA HT ${ }^{10}$
ARENA HT 20
Ba W DM3
Baw DM
CELESTION DItton io
CELESTION Ditton 15
DULCIAS 3

Rec. Retall Comel
Price
Price
Price

1834		0	123
¢52	0	0	54218
E25	0	0	817
£30	0	0	E20 13
¢ 534	0	0	54119
£53	0	0	1424
$¢ 591$	10	0	24719
¢63	0	0	E4t 19
$£ 69$	10	0	205 19
£181	18	0	81419
$£ 73$	0	0	85
E49	0	0	23712
628	0	0	EtO 19
$\underline{4} 4$	0	0	$\underline{535} 19$
¢55	0	0	c46 18
$\underline{459} 1$	10	0	E46 19
\&64	0	0	85213
£44	0	0	23619
549	0	0	
230	9	0	$\underline{324} 19$
£28	7	6	221 15
¢54 1	12	0	83719

239	10	0	$\mathbf{8 3 3} 18$
$\mathbf{8 5 2}$	0	0	244

6
0
0

$\$ 6117$ s52 12 £26 $14 \quad 6$ £19 4

GOODMANS Malesta GOODMANS Maxim GOODMANS Magnum-K GOODMANS MIrimba GOODMANS Mambo GOODMANS 3005 (palr) KEF Celeste
KEF Concord LEAK Sandwich LOWTHER L.I.P. wlth PMB
QUAD Electrostatic

THE COODMAN 3009 HUBIC AUDIO BUITE A complete Audlo Sulte with Stereo Radio, complete with Speakere, Turntable and magnetlc cartridge. All Wired and ready to go. £140.9.0. COMET PRICE $\$ 111.0 .0$.

CARTRIDGESAI MAKES SIOCKED

TURNTABLES

ARENA SP25 with base, cover and cartrid9e GARRARD SP. 25 , MK II GARRARD AP. 75 GARRARD SL. 55 GARRARD SL. 65B GARRARD SL. 75B
GARRARD 401
GARRARD SL. 72B' GARRARD 3500 with GKS Cartridge GOLDRING GL 69 GOLDRING GL. 75 GOLDRNG 75P GOODMANS 3025
GOLDRING COVERS for 69P and 75 P THORENS TD. 125 THORENS 125 AB
THORENS TD 150 THORENS TD 150 B THORENS 150A MK II THORENS 150AB MK 11 THORENS TD. $124 / 11$ Bases, pllnthe and covar.

MI-FI ETEREO TAPE DECKS AND TAPE RECORDERS
AKAI 150D
AKAI X-360
AKAI X-360 D deck
AKAI 1710
AKAI 1800SD
AKA $1800 S D$
AKAI 4000 d deck
ARAV 4000 D deck
MARCONI 4218 Stereo tape MARCONI 4238 4-track tape Recorder
TRUVOX R52 \& R54
3-8peed 2-track

Roc. Reta
Prlce
Comet
Price

peaker

PICKUP ARMS
GOLDRING Lenco L75
GOLDRING Lenco G65
SME 3009 with S2 thell
SME 3012 with S2 hell

CHASSIS
Goodmans Axiette 8
Goodmans Twinaxiette 8
Goodmans Axlom 10 Goodmans Axiom 201 Goodmans Axiom 301 Goodmans Audlom 51 Goodmans Audlom 61 Goodmans Audlom 81 Goodmane Audiom 91
Goodmans Audiom 91/100 Goodmans ARU 180 Goodmant ARU 180 Goodmans ARU 280 Goodmans ARU 480
Goodmans ARU 172 Goodmane ARU 172
Goodmane Trebax 100 Goodman Trebax 5K/20KZ̈ Goodmans MIdax Goodmans: Attenuator Goodmans Crosesover
Notworks XO/950/5000 Goodmane Crosaover Network XO/950 Goodmane Crosesper
Networke
XO/5000 Networke XO/5000
Wharfedale $8^{\prime \prime}$ Bronze/RS/DD Wharfedale Super 8/RS/DD Wharfedale Super 10 Matching Transformer.

CARTRIDGES

Goidring G65 Plck-up Arm $£ 716$ 1 \& 4 Goldring L75 Transcription Arm.
Goldring 800 Cartridge
Goldring 800H
Goldring 800 E . Goldring 800 Super
Goldring Cs00 Stereo
Ceramic Cartridge
Goldring CS91/E
Ortofon SL 15E Ortoton 2X 15K Shure M3DM Shure N3D Shure M31E Shure N31E Shure M32E
Shure N32E Shure M32-3. Shure N32-3. Shure M44-5 .. Shure N44-5 .. Shure N44-7... Shure M44-C. .
Shure N44-C. .
Shure M4SE .
Shure N44E
Shure M55E .
Shure N55E ..
Shure M75G ..
Shure N75G .
Shure M75-6 .
Shure N75-6 .
Shure M75EJ. .
Shure N75EJ..
Shure M75E-95G
Shure N75E .
Shure V15-11
Shure VN15E
Shure V15-11-7
Shure VN7
$\begin{array}{cc}\text { Rec. Retall } \\ \text { Price } & \text { Comed } \\ \text { Price }\end{array}$
5126 sta 10

2	
0	
8	
8	
10	
16	
6	
7	
7	
12	
5	
	17
	17
5	8
7	17
8	8
1	4
3	1
8	8
8	7
2	8
	8
	12
2	14

7
0
0
0
0
0
0
0
0
8
8
5
8
0
0
0
4
 13
14
7
7
6
5
14
6
2
18
18
1
18
11
6
6
 *4 15 8114 $\begin{array}{ccc}\Sigma 1 & 14 & 6 \\ \text { Es } & 18 & 6 \\ \text { Ef } & \end{array}$ 13
$\$ 121010 \quad 510$ • $\begin{array}{llllll}\Sigma 13 & 0 & 0 & \$ 1 & 7 & 8\end{array}$ £10 13 ¢ E 10 E \&2t 0152015
$\begin{array}{llll}25 & 4 & 0 & 5\end{array}$
$\begin{array}{lllll}57 & 16 & 1 & \text { Es } & 4\end{array}$
£29 1211 E23 1211
£7 0 0 ES 5

$\begin{array}{lllll}£ 5 & 11 & 2 & \text { E4 } & \text { ह } \\ \text { ¢12 } & 19 & 5 & \text { E10 } & \end{array}$
$\begin{array}{rrrrrr}£ 12 & 19 & 5 & £ 10 & 0 \\ £ 9 & 5 & 3 & £ 7 & \end{array}$
£12 011 CS 12
\&8 69 ES 13
£11. 24 ef 17

511	2	4	上s	17
£7	8	3	E	

£10 310
$\begin{array}{lllll}26 & 8 & 8 & 5 \\ 5 & 5 & 3\end{array}$
$\begin{array}{llll}\text { £10 } & 3 & 10 & \text { ES } \\ 5\end{array}$
$\begin{array}{lllll}514 & 16 & 8 & 51 & 3\end{array}$

$\begin{array}{lrrrr}516 & 13 & 6 & 814 & 53\end{array}$
$\begin{array}{lllll}11 & 2 & 4 & 68 & 17\end{array}$
17121 E140
$E 95$
$\begin{array}{lllll}16 & 13 & 6 & 218 & 6\end{array}$
\&8 69 \& 18
2419 sis 4

| 27 | 2 | 4 | 11 |
| :--- | :--- | :--- | :--- | :--- |
| 27 | | | |

271511 e2z 3
21219 5 810
2401535810
$\begin{array}{llll}216 & 13 & 6 & 814 \\ 538 & 18 & 3 & 511\end{array}$
$\begin{array}{lll}\text { c38 } & 18 & 3 \\ \text { £ } 14 & 6 & 616\end{array}$

COMET HIFI DISCOUNT WAREHOUSES

Reservoir Road, Clough Road, Hull. Tel 407906 68a Armley Rd (Artist St) Leeds LS12 2EF Tel 32055
 Customers are welcome to call personally. Ample Car Parking facilities

R.S.C. SENSATIONAL HIGH FIDELITY STEREO ‘PACKAGE’ OFFERS

* Super 30 Amplifier (30 watt) in veneered housing
* Goldring Transcription Turntable on Plinth
\star Shure or Goldring Magnetic Pick-up Cartridge
* Pair of Stanway ÎI Loudspeaker Units Special total price. Four fully wired

86 Gns.
 AUDIOTRINE HIGH FIDELITY LOUDSPEAKERS construction. Latest high efficienc ceramic magnets. Treated Cone sur round. D indicates Tweeter Con to 15,000 cops imequency range ud ohms. Please impedance 3 or 1 . ohms. Please state choice. Exceptional performance at low cost Prices include carriage. HF100D 10" 15W £4.19.9 $\begin{array}{llllllll}\text { HF510L } & 5^{\prime \prime} & \text { 10W } & 49 / 9 & \text { HF120 } & 12^{\prime \prime} & 15 W & 79 / 9 \\ \text { HF801D } & 8^{\prime \prime} & \text { BW } & 59 / 9 & \text { HF120D } & 12^{\prime \prime} & \text { 15W } & 89 / 9\end{array}$ $\begin{array}{llllllll}\text { HF801D } & 8^{\prime \prime} & \text { 8W } & 59 / 9 & \text { HF120D 12" } & \text { 15W } & 89 / 9 \\ \text { HF811D } & 8^{\prime \prime} & \text { 10W } & 4 \text { gis } & \text { HF126 } & 12^{* \prime} & 15 W & 5550\end{array}$ $\begin{array}{cccccccc}\text { HF811D } & 8^{\prime \prime} & \text { 10W } & 4 \text { gns. HF126 } & 12^{* \prime} & \text { 15W } & \text { £5.5.0 } \\ \text { HF102D } & 10^{\prime \prime} & \text { 10W } & \text { 65/- } & \text { HF126D } & 12^{\prime \prime} & \text { 15W } & \text { £5.15.0 }\end{array}$

HIGH FIDELITY LOUDSPEAKER UNITS
Cabinets latest style Satin Teak or Afrormosla veneer Acoustically lined or filled acoustic damping. Ported

DORCHESTER Size $16 \times 11 \times 9$ in. ADpr Range 45-15,000 c.D.s. Rating 8-10 watts. Fitted High flux 13×8 in. Dual
Cone spkr Imp 3 or 15 ohms. $£ 8.19 .9$ Cone spkr. Imp. 3 or 15 ohms. $\mathbf{C 8 . 1 9 . 9}$ STANWAY II Size20x104x94in.approx. Rating 10 watts. Inc. Fane 13×8 in. speaker with highly fexibe cone sursung High fux tweerer. Handsome Scandin avian design cabinet. Range 35-20,000 c.D.s. Imp. 15 ohms. Gives
smooth realistic sound output. 16 Gns.

R.S.C TA6 6 Watt HIGH FIDELITY SOLID

STATE AMPLIFIER

200-250v. AC mains operated. Frequency Response 3020,000 c.p.s. -2dB. Harmonic Distortion 0.3% at 1.000 c.D.s. lift' and 'cut' controls. 3 input sockets for Mike. 3-15 ohm sokrs. Max. sensitivity 5 mV . Output rating I.H.F.M. Fully enclosed enamelled case, $9 \pm \times 2 \neq x 5+i n$. Atractive brushed silver finish facia plate $10 \pm \pi 3$ tin. and matching knobs. Complete kit of parts with full wiring diagrams and instructions. 7 Gns. Carr. 7/6 Or factory built with 12 months guarantee. $\mathbf{x 8 . 1 9 . 9}$

Matching as recommended for optimum performance. saving offers.
Packafe prices apply pro viding all individual unita are purchased from any

EXTREMELY ATTRACTIVE PLINTHS finished in Teak or Afrormosia vencer. Trans. plastic cover.

RECORD PLAYING UNITS

 Money saving units. Mounted ransoarent. Supplied with rransparentReady to plug into Amplifier or Tape recorder
RP2C Garrard SP25 Mk II table) fitted Goldring CSM high compliance ceramic Stereo/Mono cartridge with 23 Gns ncis Carr. Garrard 2025 Auto Unit steren Citted Garrard diamond tip. Plinth \& Cover as 15 Gns. Other typea arailable
with Magnetic cartridges and with alternative dealgn pllnths. Cimited Number or CLEAR ANCE LINES in leading make of HI-FI equip. at Branches only R.S.C. PLINTHS

Record Playing units, Garrard 1025.
2025.
3000.

AT 60°
SP $25^{\text {ectec }}$
Available $\quad 59 / 9$ Inc. Carc with trans. plastic cover. 6 Gns.
INTEREST CHARGES
REFUNDED On Credit Sales settled in 10 Gms. months.
\star Super 30 amplifier ($\mathbf{3 0}$ watt) in veneered housing

* Garrard SP25 Mk II Turntable on Plinth
\star Goldring CS90 Ceramic P.U. Cartridge with diamond stylus
* Pair Stanway II Speaker Units

Four fully wired units ready to 76 Gns. Carr

* TA12 Amplifier (13 watt) in reneered housing \star Garrard SP25 Mk II 4 sD. player unir on plinth ¿ Goidriag CS90 Ceramic P.U. Cartridge 53 Gns Or Dep $£ 10$ Special total price Total 59 eny) Trand 9 mithly. payments 85.15 . Toial 59 ens. Transparent plastic cover 3 end extra. As above but with Garrard 3000 Autochanger (fitted Sonotone 9 TA Cartridge) in licu of SP25 £56.2.9). Transp. plastic cover 3 gns. extra inc, carr

47를 Gns.

R.S.C. TAI2 MKII 13 WATT STEREO AMPLIFIER

FULLY TRANSISTORISED, SOLID STATE CONSTRUCTION HIGH FIDELITY OUTPUT OF 6.5 Designed for optimum performance P.U. cartridge. Radio tuner, Tape recorder, "Mike' $\begin{aligned} & \text { etc. } \\ & \star \quad 3\end{aligned}$ switched inpul sockets on each channel \star Separate Bass and Treble controls \star Slide Switch for mono use 200-250v. A.C. mains ohms \star For
 $200-250 \mathrm{v}$. A.C. mains \star Frequency
Response $30-20,000$ c.p.s $-2 \mathrm{~dB} \star$ Harmonic Distortion 0.3% at 1000 c.D.S. Hum and Noise 70 dB \& Sensitivities (1) 300 mV (2) 50 mV (3) 100 mV (4) 2 mV . Output rating I.H.F.M. \& Handsome brushed silve $\left.\begin{aligned} & \text { finish Facia and Knobs. Complete kit of parts with full } \\ & \text { wiring diagrams \& insiructions. Factory built with } 12\end{aligned} \right\rvert\, \begin{array}{ll}1 & \frac{\text { Carr. }}{2} \mathrm{Gns}\end{array}$ wiring gntee 17 Gas or Deposiit $\mathbf{E 5} 2.6$ and 9 milhly pymis mith gntee 17 Gns or Deposicas 1.6 and 9 mosia veneer housine Dep. $£ 5.10 .6$ and 9 monthly payments $£ 2.1 .7$ (Total $£ 24.4 .9$).

AUDIOTRINE HI-FI SPEAKER SYSTEMS

Consisting of matched 12 in .11 .000 line 15 Watt 15 ohm high quality speaker, cross-over unit and twa Smooth response and extended frequency range ensure
 Or Senior 15 watt inc. HF
15,000 line Speaker $\mathbf{2 6 . 1 5 . 0}$. Carr. $6 / 6$ Carr. 5/9
HI-FI SPEAKER ENCLOSURES Teak or Afrormosia
veneer flnish. Modern design. Acoustically lined. A Al sizes approximate Size $16 \times 11 \times$ Prices inc. Carr. $£ 4.14 .6$ pleasing results with any 8 in . Hi -Fi 'speaker SEB For oplimum performance with any 8in
 SE10 For outstanding results SE12 For exclnt prfmnce with 12 in
 THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM \star Moderate sire, only $25 \times 14 \times 10 \mathrm{in}$. Complete Kit 20 Gns . \star Performance comparable with units costlag Carr. $12 / 6$ considerably more. Consists of (1) 12 in. 15 watt Bass unit with cast chassis, Roll rubber cone surround for ultra low resonance, and (3) $8 \times 5 \mathrm{Sin}$. high flux middle range speaker. (4) High efticiency
 20 KF/FM RADIO TUNER * High-mensilivity Relection. \star Drift-free recention. \star Out put ample for

)eerer (5). Approniate quantiy acoustic damping material (6) To cabinet. (7) Circuit and full instructions. Terms: Dep. £5,10.6 and 9 monthly and of the same high standard of performance and reliability. Printed circuitry.
A quality product at considerably less than the cost of comparable units. Factory builit 18 gns . Or in Teak finished cabinet as illustrated 21 gns . Terms: Deposit £6.1.0 and 9 monthly payments. 2 gns . Total $£ 24.19 .0$. Stereo version. 234 gns payments 39/- (Total £23.1.(0) DEMONSTRATIONS AT ALL. BRANCHES
R.S.C. BATTERY/MAINS

RS.C. SUPER 3OMkII HIGH FIDELITY STEREO AMPLIFIER

 CONVERSION UNITSHigh Grade Components Specifications comparable with units costing considerably more. TRANSISTORS 9 high quality types in cach channel.
OUTPUT 10 Watis R.M.S. continuous into 15Ω (per channe
INPUT SENSITIVITIES Mag. P.U. 4 mV. Ceramic P.U. 35 mV . Tape Amp $400 \mathrm{mV} . \mathrm{H}^{\text {Aux }}$. 100 mV . Mic. 5 mV . Tape FREQUENCY RESPONSE $\pm 2 \mathrm{~dB}$. $10-$ 20,000 c.p.s.
TREBLE CONTROL +17 dB to -14 dB TREBLE CO
at $10 \mathrm{Kc} / \mathrm{s}$. BASS CONTROL +17 dB to -15 dB HUM LEVEL - 80 dB .
HARMONIC DISTORTION 0.1% at 10 walls 1.000 c.p.s.

Employing Twin Printed Circuits. 200/250v. A.C. mains oderation. CROSS TALK 52 dB at 1,000 c.p.s. CONTROLS 5 Position Input Selector, Bass. Treble, Vol., Bal. Stereo/Mono Switch. Tape Monitor Switch, Mains INPUT SOCKETS (1) P.U. (2) Tape Amp. (3) Radio. (4) Mic. or Tape Head. (Operation of Input Selector assures appropriate equalisation).
CHASSIS Strong Steel construction
Approx. $12 \times 3 \times 8$ in.

FACIA PLATE Attractive design in rigid Perspex. Spun silver finish matching control knobs as available.

COMPLETE KIT OF

PARTS
Carr. 15/.
22 Gns.
Point to point wiring diagrams and detailed instructions.
Eminently suitable for use with any mak of Plck-ud or Mic. (Ceramic or Magnetic Moving Coil, Rihbon or Crystal) currently available. Superb sound output quality can be obtianed by equlpment. UNIT FACTORY BUILT 29 Gns With 12 miths. guarantec.
or Deposit $£ 7.5 .0$ and 9 monihly pay ments 58/9 (Total $£ 33.13 .9$) or in Tcal or Afrormosia veneer housing 32 Gns Carr. 15/\%. Terms: Deposit $£ 7.3 .6$ and 9 monthly payments of $66 / 6$ (Total
$\mathbf{~} 37.2 .0$). Send S.A.E. for leaflet.
 Completely replaces 2in.approx teries supplying 1.5 v . and 950 y where A.C. mains 200 Complete 50 cit is available 5216 or R.S.C. SUPER IS HIG FIDELITY SOLID STATE AMPLIFIER
Apdrox. as Super 30 but single channel. Complete kit with full constructional derails and point to point wiring diagrams. Carr.
$12 / 6$ 12 $\frac{1}{2}$ Gns. or factory buitt $15 t$ Gns Carr. 12i6. Terms 4 Gns. and 9 monthly pay in Teak or Afrormosia veneere housing.

PARTRIDGE "JOYSTICK" SHORT WAVE AERIALS AND TUNERS AT ALL. BRANCHES (S.A.E. for full list)

BRADFORD 10 North Parade. (Hall-day Wed.) Tel. 25349 BLACKPOOL (Agent) O. \& C. Electronics. 227 Church Street BIRMINGHAM ${ }^{30 / 31 ' G t . ~ W e s t e r n ~ A r c a d e ~ 021-236-1279 ~}$
DERBY 26 Osmaston Rd.. The Spot (Hall-day Wed.) Tel. 41361
DARLINGTON
EDINBURGH
is Priestate (Half-day Wed.) Tel. 68043 133 Leith St. (Hall-day Wed.) Tel. Waverley 5766 GLASGOW 326 Argyle St. (Half-day Tues.) Tel. City 4158
HULL 91 Parzzon Street (Hall-day Thursday) Tel. 20505

 yndeutris.
EARnchey opan all day sate MAIL ORDERS MUST NOT SENT TO SHOPS

32 High Street (Half-day Thurs.) Tel. 56420 LEICESTER
5-7 County (Mecca) Arcade, Briggate (Half-day Wed.) LEEDS 73 Dale St. (Half-day Wed.) Tel. Ceneral 3573 LIVERPOOL 238 Edgware Road, W2 (Hall-day Thurs.) Tel. PAD 1629 LONDON
${ }^{\text {60A }}$ Oldham Street (Hall/dyy Wedi) MANCHESTER 106 Newport Rd. (Hallodiy Wed, MIDDLESBROUGH 41 Blackett Street (Opp. Fenwicks Store) NEWCASTLE UPON 13 Exchange street (Castie Market Bldgs.) SHEFIELD
R.S.C. AIO 30 WATT ULTRA LINEAR HI-FI
 AMPLIFIER Highly menidve. Puab-Pull Tone Control Stagh ourput, Performance prures of Tone Control Staftes. Performance parures of factory built unis: Hum level - $70 d B$. Freatuency response \pm 3dB $30-20,000 \mathrm{cig}$. Sectionamy wound
 Separate Base and Treble Controls. Sensitivity 36 mV . Suitable for high jmpedance microphones. Crystal or Ceramic P.U's. Designed for Clubs, Schools, Theatres. Dance Halls or Outdoor Functions, etc. For use with Electronic Orgat Guitar, Sung Two inputs Gram, Radio or Tape. Reserve L.T. and H.T. for Radio Tuner. Two inputs
 apeakers. Complete kit of parts with point-to-point wiring 15 Gns. Carr. diagrams and inatructions. valves. 12 months' guarantee for if Gne. TERMS: Depopit $\mathbf{2 6 . 3 . 0}$ and 9 monthly payments of 34/- (Total $\mathbf{2 1 , 9 . 0}$). Send S.A.E. for leafiet.

R.S.C. AII HIGH FIDELITY I2-14 WATT AMPLIFIER

PUSH-PULL ULTRA LINEAR OUTPUT "BUILT-IN" TONE CONTROL PRE-AMP. Two input sockets with mixins facillties High senaltivity, 5 valves. Independent basd and treble
controls. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{I}$. Hum levei -60 dB . Sensilivity 40 millivolte. For Crystal or Ceramic PUs. High Impedance "mikes". For husical Instumnents etc. Std. AC maing. For 3 \& 15 ohm $9 \frac{1}{2}$ Gns. spkrs. SAE for leafel. Complete kit. Fuli instructions and $9 \frac{1}{2}$ Ons. point-io-point wirling diagrams. Carr. $11 / 6$. Twin handled metal cover $27 / 6$.
Price Factory built 134 Gns. or Depoast $99 / 6$ and 9 monthly payments of 26:CTotal 116.13.6. . (Assembled 13 Gns .)

30 WATT HIFI AMPLIFIER

FOR GUITAR, VOCAL OR INSTRUMENTAL GROUP A 2 or 4 Input, 2 vol. control Hi-Fi unit with Separate Bass and Treble controle. B. Y.A. valves. Peak output ruinge Strone Rexine covered cabinet with handices. Atrractive black/gold perspex facia. Neon indicator. For S.A.E. for leaflet. Deposit 5 gas. and 919 Gns Carr.

FANE ULTRA HIGH POWER LOUDSPEAKERS All power ratings are R.M.S. continuous. 2 years guarantee. High Flux ceramic magnets. Heavy cast
 21 gns. 12 gns. 10 gns.
 FANE loudspeakers 'P0P' 30C $12^{\prime \prime} 25$ Watt Duan cona
$£ 5-19.9$ Carr free

F.A.L. P.A. AMPLIFIERS
S.A.E. for leafels.
50

R.S.C. COLUMN SPEAKERS Covered in two-tone Rexine/Vynair, Ideal for vocallsts and Public Address, 15 ohm matching.
C57 15 wattainc. tive $7 \times 4 \mathrm{in}$. spenkers $\mathbf{8 7 . 1 9 . 1 1}$

TYPE C4SS 25/30 WATTS. Fitted four 8 in . high fux 8 watt peakers. Overall size 16 Gns.Cerr. 10/Or deposit 67/-and monthly payment 3419 (Tocal tis. 199) TYPE C412S, 50 WATTS Fitted four 12in. 11,000 line 15 watt speakers. Overall size $56 \times 14 \times 91 \mathrm{n}$, approx.
Carr. 26 Gns. Or Deposit 9 monthly payments of 54/6 Total 130.7.0).
HIGH QUALITY LOUDSPEAKERS In Teak or veneered Cabinets $L 1313^{\prime \prime} \times 8^{*} 10$ 3 or 15,000 line 3 or 15 Carr. $7 / 6$ 15 ohms. Carr. $8 / 0,000$ lines
R.S.C. BASS-REGENT

50 WATT AMPLIFIER

 An exceptionally powerful high quality anit for lead, rhythm, bass quitar, vocal-
ists, ists, gram,
radio, tape. Peak O-P rating. © Two extra heavy duty 12in. Loudspeakers. \star Four Jack inputs and two Volume Controls for simultancous use of up 10 : four pick-ups or "mikes" 55 Gns. Carr. 301 . or and 9 monthly payments of f5.11.9. (Total $60 \mathrm{t}_{\mathrm{t}} \mathrm{gns}$.). Send S.A.E. for lealie G100 100 watt peak output a Bass Unit (SLx 12" and Two 15*' Speakers). 99y ans.
R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interioaved and ImMIDGET CLAMPED TYPE $2 \$ \times 2 t \times 2 \mathrm{fin}$
250v., 60mA, 6.3v. 2a $17 / 11$ $250-0.250 \mathrm{v} ., 60 \mathrm{~mA}$ 6.3v.2............................ 18/11 FULLY SHROUDED UPRIGHT MOUNTING
 $250-0-250 \mathrm{v} .100 \mathrm{~mA} .6 \cdot 3 \mathrm{v} .4 \mathrm{a} . \mathrm{O}_{2} 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{z} . \quad 39 / 9$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}$, , 0-5-6.3v. 3a.
$300-0.300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~m}$, c.t., 6.3 v .1 s . 300-0-300v. 130 mA . $6 \cdot 3 \mathrm{v} .4 \mathrm{a}$, , c.t., 6.3 v . 1a.

 $350-0.350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~A} ., 0-5-6.3 \mathrm{v} .3 \mathrm{a}$. $89 / 9$ $425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{~m} ., 6$-3v. 3i., 5 v .
 TOP SHROUDED DROP-THRO' TYPE 250-0-250v. 70mA. 6.3v. 2a., 0-5-6.3v. 2a.

$$
250-0.250 \mathrm{v} .100 \mathrm{~mA} .6 \cdot 3 \mathrm{v} \cdot 3.5 \mathrm{a} .6
$$ $250-0-250 \mathrm{v} .100 \mathrm{~mA} .6 \cdot 3 \mathrm{v} .3 \cdot 5 \mathrm{a}$.

 $\begin{array}{llll}300-0-300 v & 100 \mathrm{~mA} .6 .3 \mathrm{v} .4 \mathrm{~m} . . \\ 6-5-6.3 \mathrm{v} .3 \mathrm{z} . & 39 / 9 \\ & 0-5-6.3 \mathrm{v} .3 \mathrm{a} . & 39 / 9\end{array}$ $300-0-300 \mathrm{v}, 130 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 1 a . Suitable for Multard 510 Amplifier \ldots. $46 / 9$
 FILAMENT or TRANSISTOR POWER PACK Types
$6.3 \mathrm{v} .1 .5 \mathrm{a} .8 / 9: 6.3 \mathrm{v} .2 \mathrm{a} .9 / 9 ; 6.3 \mathrm{v} .3 \mathrm{a} .13 / 9 ; 6.3 \mathrm{v}$. $6 \mathrm{a}, 22 / 9$; 12 v .1 a . $9 / 11$; 12 v . 3a. or 24 v . 1 .
$0.9-18 \mathrm{v} .1 \mathrm{za}$. $19 / 11: 0-12-25-42 \mathrm{v}$. 2 a . $31 / 9$.
CHARGER TRANSFORMERS 0-9-15v. CHARGER TRANSFORMERS 0-9-15v. 14a. 18/9; 24a. 19/11; 3a. 21/11: 5a. 25/11; 6a. 29/9
AUTO (Step UP/step DOWN) TRANSFORMERS
$0.110 / 120 \mathrm{v}, 200-230-250 \mathrm{v} .,{ }^{50-80}$ watts $0-110 / 120 \mathrm{v}$. 200-230-250Y., $50-80$ watts
150 watts, $33 / 6 ; 250$ watts $49 / 9 ; 500$ watts
$105 /-$ OUTPUT TRANSFORMERS
OUTPUT TRANSFORMERS
Standard Pentode $5,000 \Omega$ or $7,000 \Omega$ to $3 \Omega 8 / 9$ Push-Pull 8 watts ELB4 to 3Ω or $15 \Omega \ldots . .14 / 9$ Push-Pull 10 watts 6 V6 ECL86 to 3, 5, 8 or

| 15Ω | |
| :--- | :--- | :--- | :--- |
| Push-Pull ELis4 io 3 or is Ω io-iz waitia... | $24 / 9$ |
| $23 / 9$ | | Push-Pull Ultra Linear for Mullard 510, etc. 39/9

 Push-Pull 20 wati high quality sectionality wound EL34, 6L6, KT66 etc. to 3 of 15Ω
SMOOTHING CHOKES $150 \mathrm{~mA}, 7-10 \mathrm{H}$, SMOOTHING CHOKES $130 \mathrm{~mA}, 7-10 \mathrm{H}$ $250 \Omega 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 109 ; 80 \mathrm{~mA}$,
$10 \mathrm{H}, 350 \mathrm{R} / 9: 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega$ SELENIUM RECTIFIERS F.W. (Brided) All 6/12v. D.C. output. Max. A.C. input 18v.

Tollichfilafan Toars The'New Picture-Book'way of learning BAS C ELECTRICITY(5vols)
 You'll find it easy to learn with this out-
 the latest research into simplified learning

standingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

This carefully planned series of manuals has proved a valuable course in training technicians in Electricity, Electronics, Radio and Telecommunications.

WHAT READERS SAY

played an important part
These Manuals have played an important part in my career . . K.W., West Drayton.
. a sound basis . .
These books create a sound basis on which to build a successful future . . . R.G., Lowestoft.
well set out
I am well pleased with the series. Everything is well set out in self-explanatory diagrams ...D.D., West Ham.

A TECH-PRESS PUBLICATION

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP
Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of 20/- followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS 90/- Cash Price, fortnightly payments of $20 /$ - each. BASIC ELECTRONICS $90 /$ - Cash Price, or Down Payment of $20 /$ - followed by 4 fortighty payments of $20 /-$ each. cash with order, prices as above.

- Tick Set required (Only one set allowed on free trial)

BASIC ELECTRICITY
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

＊EXPERIMENTORS MODULE
Brand new STC tlme delay lectronic unlte．Relay output．Adjustable 3－15 ecs．9－12 volt operated Supplled complete with sees and clrcults 8TC Medule Price 35／－or 3 for $90 /$－

＊MULTIMETER

Refurn of a popular model． $20000 \mathrm{hms} / \mathrm{V} \quad 0 / 10 / 50 / 500 \mathrm{j}$ $1000 \mathrm{~V} \mathrm{ac} / \mathrm{dc} . \quad 0 / 50 \mu \mathrm{~A}$ ． $0 / 10 / 250 \mathrm{~mA}$ d．c． $0 / 10$ ． dB cales Size $5 \times 3+1{ }^{\prime \prime}$ cales．Size $5 \times 3 \frac{1}{2} \times 1 \frac{1}{2}$ Complete with leads Complete with leads． THL3le．Price $2 / 1$ 2／6．Leather case－Price
 22／6．
＊GRID DIP METER
Alt translator grid dip meter，absorptton and ec．detector．Frequenc ange $440 \mathrm{kc} / \mathrm{s}$ to $280 \mathrm{Mc} /$ fo colta．Uees 3 transis tore plus diode with $50 \mu \mathrm{~A}$ meter．Interna TE 15 Price eit．10．e p．p．3／6．

＊MULTI－METER 20K Ω / V

Popular model but with extra scale range 20,000 ohms per volt． $0 / 5 / 25 / 50 / 250 / 500 / 2500 \mathrm{~V}$ d．c． $0 / 10 / 50 / 100 / 500 / 1000 \mathrm{Va}$ ．c． $0 / 50 \mu A_{1} 0 / 2+/ 250 \mathrm{~mA}$ ．Resis－ tance $0-6 \mathrm{~K} \Omega$ and $6 \mathrm{M} \Omega$ Also dB scales and capaci－ Ance．
2hH．Price $77 / 6$ p．p．2／－．
Leather case，Price $15 i-$ ．

，ni 16 PAGE BROCHURE COVERING LOW COST TEST EQUIPMENT FULLY DETAILED AND ILLUSTRATED．OVER 50 UNITS DETAILED ASK FOR PUBLICATION＇T＇－REMEMBER IT＇S FREE

＊SINE／SQUARE WAVE AUDIO

 GENERATORProvides audio output on 4 bands．＇Sine wave $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{kc} / \mathrm{s}$ ，output up to 7 V ； square wave 60c／s to $30 \mathrm{kc} / \mathrm{s}, 7 \mathrm{~V} \mathrm{p}-\mathrm{p}$ ．Distor－ tion under 2% ．Output Impedance $1 \mathrm{k} \Omega$ ． Variable output amplltude control．Supplled with leads and Instructions．A．C．mains perated．
TE2 Price sit．10．0．Carriage，etc．，10／－
＊LOW COST VaCUUM TUBE Valve VOLTMETER
New Model Multt－Range and easy to use． DC and AC．Volts 0／1 $1 / 5 / 15 / 50 / 150 / 500 / 1500$ ． AC p－p 0／4．2／14／42／140／420／1400／4200．Resls－ ance 0.2 ohm to 1000 Megohm－ 7 ranges． dBm
ance： DC
11 Meg MC $\pm 5 \mathrm{Meg}$ ．Response： $\pm 1 \mathrm{~dB} 20 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ ．Complete with probe and handbook．Size $10 t^{\prime \prime} \times 5 \pi^{\prime} \times 4 \frac{\xi^{\prime \prime}}{}$ ． VT8SO Price E16．10．0 p．p．7／6．

New printed circult design with ull power output．Fully tuneable on both mw／Iw．bands． 7 Mullard Y（OURSELF Room Filling Power．Easy to bulld with terrific results．Two colour leathercloth cablnet with silvered front．All local and continental stations．Complete detalled Instructlons．
TOTAL CO8T 26.19 .6 p．p．4／6．

SCOOP！STAAR RECORD

PLAYER

Deck play 33，45，78，R．P．M．records． 9 volt operated，with mono cartrldge BRAND NEW ．．．．as illustrated．

＊FIELD STRENGTH METERS

$5-$ ranges $1-250 \mathrm{Mc} / \mathrm{s}$ ．Fitted $200 \mu \mathrm{~A}$ meter． Earphone output．Callbrated tuning gcales． Also non callbrated type peaking F／S Meter FSI Price 45／－p．p．2／6

＊TRANSISTOR CHECKER

Complete capaclty for check－ ing all transistors npn and pnp for alpha．beta and reak－ ape．Also diodes complete ZQM－2 Price 55.1 ． p．p．3／6．
 A
QUALITY RADIO

MULLARD I WATT AMPLIFIER Portable Translator Unit－Ideal for Intercoms，Baby Alarms， Telephone，Record Players or Guitar Practice． 9 Volt 5 transietore with volume con－ trol，output 3 ohms．Ideal for use with STAAR RECORD
DECK．
Price 45／－，p．p．2／6．
\qquad

LIED
 －

＊QUALITY PANEL METERS （D．C．RANGES）
$3 /$ Serles．Face size $42 \times 42 \mathrm{~mm}$（1 1 in．$\times 1$ ifin）
$5_{0} \mu \mathrm{~A}, 37 / 6 ; 10 \mu \mathrm{~A}, 35 /-200 \mu \mathrm{~A}, 32 / 6 ; 500 \mu \mathrm{~A}$
 $500 \mathrm{~mA}, 25 /-$ each； $10 \mathrm{~V}, 20 \mathrm{~V}, 50 \mathrm{~V}, 100 \mathrm{~V}, 300 \mathrm{~V}$＇， and $500 \mathrm{~V}, 25 /-$ each； $1 A$ and $5 A, 25 /-$ each． ＇S＇＇meter， 1 ma ，29／6；VU meter， $37 / 6$. 65 Series．Face silxe； $88 \times 78 \mathrm{~mm}(37 \times 3+1 n)$ ． $50 \mu A, 62 / 6 ; 100 \mu A, 52 / 6 ; 200 \mu A, 47 / 6 ; 500 \mu A$ ， $45 /-11 \mathrm{~mA}, 5 \mathrm{~mA}, 10 \mathrm{~mA}, 500 \mathrm{~mA}, 37 / 6$ each． ＂＇ $\mathrm{S}^{\prime \prime}$ meter， $1 \mathrm{~mA} \dot{\text { a }}$ ，42／6．Other ranges and
slzes in stock．Leaflet No． 33 ．
＊10 in I TEST UNIT A NEW DESIGN
TESTS MOST TESTS MOST
CIRCUITS Model SE400

＊AC／DC Volts（4K／Volt）0／15／50／150／ 500 ．\pm Resistance $0 / 10 \mathrm{~K} / 100 \mathrm{~K} / 1 \mathrm{Meg}$ ．末Five values resistance and capaci－ tance aubstitutlon．\＃RF F／S Meter
1 to $140 \mathrm{Mc} / \mathrm{s} \star \mathrm{DC}$ Ammeter $0 / 500 \mathrm{~mA}$ 1 to $140 \mathrm{Mc} / \mathrm{e}$ सDC Ammeter $0 / 500 \mathrm{~mA}$ ．
$\$ 455 / 700 \mathrm{ke} / \mathrm{s}$ RF Generator $\$ 400 \mathrm{c} / \mathrm{s}$ Audio Generator．Size $7 \frac{1}{2}$＂$\times 3 \frac{2}{2 \prime}^{\prime \prime} \times 3$ 每＂

POMPDNENTS UK＇s LARGEST STOCKISTS
ASK FOR QUOTES－SEE LATEST CATALOGUE

HENRY＇S FAMOUS CATALOGUES－SEE BACK COVER FOR DETAILS

HI－FI equipment to suit EVIRYPOGKI

Hi FI AUDIO EOUIPMENT CATALOGUE 5／－pp．1／－

Demonatrations Ouotatlons FREE

VISIT OUR Hi－FI CENTRE AT 309 EDGWARE ROAD，for all leading makes of AMPLIFIERS，TUNERS，DECKS，SPEAKERS，MICROPHONES，TEST EQUIP． MENT．ALL WITH DISCOUNTS－IT WILL PAY YOU TO PAY US A VISIT． AUDIO SYSREMS £40－£300 TO SUIT．SEND FOR BROCHURE 16／17．

ELECTRONIC ORGANS

＊MODERN ALL BRITISH TRANS－ ISTORISED DESIGNS AVAILABLE AS KITS OR READY BUILT．
太TEAK VENEERED CABINETS FOR ALL MODELS．
＊ 49 NOTE， 61 NOTE SINGLE MAN－ UAL DESIGNS ALSO TWO MAN－ UAL 49 NOTE．
＊KITS AVAILABLE IN SECTIONS AS REQUIRED．
$\star H P$ and CREDIT SALE FACILITIES． WHEN IN LONDON CALL IN AND TRY FOR YOURSELF．
FREE 16 PAGE ORGAN BROCHURE COVER－ ING ORGANS IN KIT FORM AND READY BUILT－WRITE OR PHONE TO ORGAN DEPT．ASK FOR PETER ELVINS．

BRAND NEW FULLY GUARANTEED TRANSISTORS \& DEVICES

Send for Free Copy of 1970 Transistor List (36) of a 1,000 Types Today!

INTEGRATED		CIRCUITS		
BP1010	23/-	PA424	$59 / 6$	DISCOUNTS
	29/6	PA464	52\%	10\% on $12+$ and 19\% on $25+$ anyone type
CA 1020	29/6	Mc1304	${ }_{\text {55 }}^{5 /-}$	QUANTITY PRICES 100+
CA ${ }_{\text {caz }}$	23/6	TAA263	151-	
icio	59/6	SLi03	40/6	hone 01-723-0401 Ex. 4.
PA ${ }^{\text {P/30 }}$	20/6	UL990	101-	
PA237	3716	บL914	12/6	add $2 / 6$ on your orde

Conds $10 \mu \mathrm{f}$ 150v tantalum 4 for $3 /-$, Paper conds tubular by Seimens $20 \mu \mathrm{f} 400 \mathrm{v} 6 /-16 \mu \mathrm{f} 400 \mathrm{v} 5 /-, 4 \mu \mathrm{f} 800 \mathrm{v} 5 /-, \mathrm{H} . \mathrm{V}$. conds. $.1 \mu \dagger 1.6 \mathrm{Kv} 3 / 6, .05 \mu \dagger 2.5 \mathrm{Kv} 3 / 6$, Plug \& Sk 28-way with cover 4/6, Swts 2p 6w min 3/-, Toggle 2p c/o 3 for 5/-, Inst 2p 22w 2b with knob 7/6, Ledex coll 1K 3p 11w 3b 11/6, Meters 1 mA edgewise scale 0 to $2000 y \mathrm{ds} 10$ div $20 / \mathrm{m}, 500 \mu \mathrm{~A}$ scale 0 to 521 OSD 20/-, Control panel with 6×1 meg, $8 \times 100 \mathrm{~K}$ \& 1 K min type 15/6, Min panel fuse holders take tin fuses 3 for 5/4, Pot Cores type LA. 68 wound 3/6 ea, Yax Swts 6p 11w 6b with 271% resistors 12/6, 4p 12w 4b with $29 \times 1 \%$ res 10/., Coax plugs \& sk T.V. type 6 pairs for 6/-, Relays coil 2 K as 2 N.O. \& 2 N.C. H.D. with cover 6/6, Inst handles chrome 9×2 in 7/- pair, Miniature plugs \& Sks with cover $26 \mathrm{w} 4 /-$, 18w 3/-, 14w 2/6 pair, Junction box $6 x 4 x 3 i n$ with cover 6 v 2 p c/o relay, Ledex $8 w t$ 6v etc $13 /-$, Helical pots 500 ohm, $2.5 \mathrm{~K}, 50 \mathrm{~K}$ all $16 / 6 \mathrm{ea}$, Osc unit with $293 \mathrm{c} / \mathrm{s}$ tuning fork OC71 \& OC72 drive \& pick of coil 30/r, Small boxes with lid size overhaul $3 \frac{1}{3} \times 2 \mathrm{t} \times 1 \mathrm{t}$ plain all 10 for 10/*, Gear unit with 24 v DC motor 9000 RPM \& 2 phase gen 30/*, Trans Pria 200/250 Sec 50 v 1 amp 6.3 v .3 a potted C core 29/6, Choke to match . 25 H 12/6, Panel with valves $12 \mathrm{~A} 7 \times 2,6 \mathrm{BR} 7,6 \mathrm{BS} 7,12 \mathrm{BH} 7$ relay close tol res etc 12/-. Trans. 200/240v Pria. C core Sec 650-550-0-550-650 (a) 650 Ma E4. also L.T. 6.5 v (9) 5 amps ct 5 times 37/6.

The above goods are either new or ex equipment in good condition and are post paid.

A. H. SUPPLIES

> 57, Main Road, SHEFFIELD. S9.5H.L.

COCKTAIL/STEREOGRAM CABINET 15 gns.
 Pollshed walnut veneer with elegant glass fronted cocktall compartmant,
padded. Position for two 10in. elliptlcal speakers. Record storage spacs. Helght $35 \frac{1}{i n}$., width 52 l in. depth $14 \frac{1}{2} \mathrm{in}$. Lege 1 gn . extra. Speakers 101-:31 - $250,4^{2}-100$. $7^{\prime \prime} \times 4^{\prime \prime}-3 \Omega$. Brand new. P. \& P. 2/6 Asstd, Condensere: 10/. for 50. P. \& P. 7/6. Asstd. Retalatort: 10/for 50. P. \& P. 4/6. Aestd. Controle: 10/-for 25. P. \& P. 7/6. Tranthetore: Mullard matched output kit $9 /$ OCs1D-2 OCA1's. P.\& P. FREE.

Ferrite Rods 3/6; $\mathbf{6}^{\prime \prime}$, complete with LW/MW Colls. P, \& P. FREE,
TRANSISTOR CASES 19/6. Cloth covered, many colours. Size 9t" $\times 61^{* 1} \times 3$ f $^{\prime \prime}$ P, \& P. 4/6. Similar cases in plastic 7/6.
 any modern autochanger. P. \& P. $7 / 6$.
any modern autochanger. P. \&P. $7 / 6$.
SINGLE PLAYER CABINETS 10/t. P. \& P. $7 / 6$.
 STRIP LIGHT TUBES $3 / 9$ each. 11 (284 mm.) 230/240 volts, 30 watts. Idewi
for cocktail cabinets, liluminating plctures, diffused lighting etc. 6 for $\mathrm{E1}$. P. 8 P. iree.

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E12
Tel. 01-478 6001/2/3

Audio Tronics 70

The 1970 edition of Lasky's famous AudioTronics catalogue is now available-FREE on request. The 28 tabloid pages-many in full colour-are packed with 1000's of tems from the largest stocks in Great Britain of everything for the Radio and HiFI enthusiast. Electronics Hobbyist, Serviceman and Communications Ham. Over half the pages are devoted exclusivaly to every aspect of $\mathrm{Hi-Fi}$ (including. Latky's budget Stereo Systems and Package deals), Tape recording and audio accoseries PLUE Lanky'e amazing money anving vouchort worth over est. All goods are available by Mai Order-bringing the benefits of shopping at Lasky's to you in the comfort of youf home.

SEND TODAY

Your name, addreas and'2/for postage only and innegular melling llet.

DON'T MISS THIS MONTHS

VOUCHER WORTH 30/- !

Project 4 ls e renge of modules which eonnect together to form a complete stereo amplitior. The moduse are: 2 as high peln power amp. 2. stareo-4 pro-amp. control unit. 3. The PZ-5

STCREO BPCOIFICATION

aput sansitivities: Radio up to 3 mV . Magnetic Pick-up 3 mV : correct to R.I.A.A curve $\pm 1 \mathrm{~dB} ; 20$ to $25,000 \mathrm{~Hz}$. Caramic Pick-up up to 3 mV
Auxiliary up to 3 mV Output: 1 volis Signal to noise
better than
ع9.19.6
with black knobe and controls Size. $8 / 4 \times 11 / 4 \times 4 \mathrm{in}$ post $3 / 6$
2-30 PPCEPFEATION
Power output 15 w . A.M.S. info 8 ohms using a 35 voli supply Frequency response 30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Distortion: 0.02% Signal to noise: better than 70 dB inpu sensitivity: 250 mV into 100 K ohme Loudspeakar imp
3 to 15 ohms Power requirements, from s to 35 V 0 C
The 230 will operate from batteries if required)
Size. $31 / 2 \times 21 / 4 \times 1 / 2 i n$.
$\because /=$ post $3 / 6$
V unstabilised - sufficient to drive two
pe8 Z-30's and a Stereo 60 for domestic
35 V stabilised - ideal for driving two
Z-30's and a Stereo 60 for tow afficienc
$\because 4$ poskers. - $/$ Post $2 / 6$
87.19 Post $2 / 6$

FOSTER "Criterion" MkII HIGH FIDELITY 2 SPEAKER TWO WAY BOOKSHELF SPEAKER SYSTEM

Another high quaility sub-miniature bookshelf sysiem from Foster. The "Criterion" MkII is a seaied inlinate baffle type enclosure using 5kin. basa/mid-range woofer with roltad cloth adge and a 2 y in. HF cone type tweeter. The compact cabinet is constructed of Yin. laminate with handsome oiled walnul venee finish and biack woven acoustic gaus-froni pane with $80-200 \mathrm{~Hz}$ Power Handing 10 watts Impedance ohms HF croseover Screw Teg connections at rear Size $121 \mathrm{~h} \times 7 \times 6 \times 63 \mathrm{in}$. The pertormance of the ' Cize $12 \mathrm{~h} x$, \times is superior to many larger and more expensive units and at Lasky's exclusive price offers absolutely unbeatable value.

51 II BS AS 57

ELEGANT BUDGET PRICED

 BOOKSHELF SPEAKER SYSTEMSThe AS-57 is a real space saver. This fine booksheff high-fidelity speaker syatem will provide good quallity eound anywhere in your home at remarkably low cost. Desloned tor ues where space ie at a premium, the AS-57 tyatem is ideal for the smali apartment or ieolated listening area. The special high efficiancy $5 \times 7 \mathrm{in}$, full range speaker hea m frequency range of $70-18,00 \mathrm{~Hz}$ with a peak handting capacity of 10 watte. Imp. © ohme. Finish: oiled walnut. Size: $5 \% \times 15 \% \times 81 / 4 \mathrm{in}$. (May be ued upright or longwayt).

 THIS MONTH ONLY SUPERB-WHARFEDALE

DENTON

A compact system sold in matched pairs for a perfectly balanced stereo system Each Denton contans an sin. bass unit with 3 in. H.F. pressure unit, coupled by a Wharfadale cross-over network: Rated input 15 watts maximum. Frequency roaponse $65-17,000 \mathrm{Mz}$. Impedance $4 / 8$ ohms. Gabinet 9 . x 14 x ity in these most attractive unila are blend in with most surroundinga.

LIST PRICE NORMALLY EJS PAIR

OUR PRICE 533 PAIR
 Post 15/-

MIDLAND 10-502 VHF AIRCRAFT BAND CONVERTER
An ontirely new item for the radıo enthusiast bringing instant reception of the ground-to-air, air-to-ground waveband For use with any standard AM or FM radio covering 535 to tion reauired. The Model 10-502 self powered by one 9V (PP3 type) battery is meraly placed close to the recerving set and then uned over 110 to 135Mc/s which covers the whole aircraft communications band. Volume and reception effectiveness is adjusted by moving both aets to the most favourable position and balancing the vol. controls of each accordingly. The Model 10-502 has a smartly designed bleck plastic cabinat with brushed matal front panel and
LASKY'S PRICE 72/6

ost 26

Fully guaranteed Individually packed VALVES

MANY OTHERS IN STOCK inelude Cathode Ray Tabee and Spectal Valves. U.K. Orders

TRANSISTORS, ZENER DIODES etc.

ALL valves guaranteed

ADAPTOR-CONNEGTOR-SCREENED LEADS

9ft screened leads ready wired to terminations. A few from our Comprehensive Component Catalogue--send for your FREE illusirated copy

Phono Plug - to - Phono Plug 3/10d Standard Jack Plug - to - Standard Jack Plug
Standard Jack Plug - 10 - Phono Plug . . . 3 pin DIN Plug - 10 - Phono Plug

Phono Plug - to - Phono Couplet
Co-ax Plug - to - Cu -ax Plug
Car Aerial Plug - to - Car Aerial Line Socker
Indispensable for amplifiers. tape recorders. test instruments, laboritories, hospitals. etc

W.E.C. LTD. (APW)
 74 THE STREET, ASHTEAD, SURREY

ELECTRO-TECH. SALES
264 PENTONVILLE ROAD, LONDON, N. 1 (ONE MIN. FROM KINGS X STATION) T*I. 01-837 7401

peak sound

developed out of the highly successful PW. $12+12$ and now in complete kit form to save you still more

The Peak Sound Englefield is a system offering great flexibility whilst providing cost-performance ratios which have never been bettered in high fidelity. Here top-flight circuitry is housed in a cabinet of elegantly original styling which is both beautiful and completely practical front and back. Now we carry design standards further by offering a $12+12$ watt version completely in kit form. The resultant specification surpasses that even of the original PW.12+12 which again was based on Peak Sound design. In this Englefield kit, printed circuit boards are supplied for you to mount the components on. Standards of input sensitivity and overload factor on all channels as well as filter performance are all improved. By giving you the satisfaction of building the Englefield this way, you save considerably and finish with a completely professionally styled instrument. Go to your dealer and start building now, or send direct for delivery by return in case of difficulty.

and this is the Peak Sound Specification Guarantee

Peak Sound guarantee that their equipment meets all specifications as published by them and that these are written in the same terms as used in equipment reviews appearing in this and other leading British hi-fi journals. Audio output powers are quoted at continuous sine wave power in terms of Root Mean Square values (R.M.S.) into stated loads at stated frequencies.

The specification that tells you everything (See guarantee)

Using two Peak Sound PA. 12-15's, driven simultaneously at 1 KHz from 240 V . malns supply.
Output per channel: 11 watts Into 15 2 : 14 watts Into 8Ω.
Frequency bandwidth: 10 Hz to 45 KHz for 1 dB at 1 watt.
Total Harmonic Distortion at 1 KHz at 10 watt into $15 \Omega-0.1 \%$.
Input sensitivities: Mag. PU.3.5 mV. R.I.A.A. equalized into $68 \mathrm{~K} \Omega$: Tape, 100 mV linear into $100 \mathrm{~K} \Omega$: Radio, 100 mV linear into $100 \mathrm{~K} \Omega$.
Overioad factor: 29 dB on all input channels.
Signal/noise ratio: -65dB on all inputs. Vol. control at max.
Controls: Volume, Treble, Bass, Low-pass Filter, Mono/Stereo: On/off; Balance.
Complete kit of parts including cabinet assembly, knobs, transistors, well-prepared instructions and wire to length, colour coded and stripped at ends as well as built-in mains power supply. (Post free in U.K.)
£33.2.0
Englefield assembly as above, but in easy-to-put-together modules.
(Post free in U.K.)
638.9.0

Peak Sound ES.10-15 BAXANDALL LOUDSPEAKER. Fantastic performance and value. Ideal with your Englefleld. Cabinet $18^{\prime \prime} \times 12^{\prime \prime}$ $\times 10$ natural teak finish. Ready bulit-18 $\frac{1}{2}$ ons. Parts available separately for bullding yourself with appreciable saving. Leaflet on request.

peak sound

PEAK SOUND (HARROW) LTD., SAINT JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY. Egham 5316

```
To Peak Sound, Saint Judes Road, Englefield Grean, Egham, Surrey
Details of Englefield systems, please and,..............................................................
```

1

```Name ......................................................................................................................
```

Address

```1
```

- Write your stockist's name and address in margin below and cut out with coupon if necessary

CAR LIGHT FLASHERS
 Heary duty light condenser dincharge principle operating principle operating
on olectro mechanical relay. (An linset). Housed in atrong plastic case. Flashing rate between $00-120$ per molnute, 12 V mum losd 6 amps. Size $2-11 / 16 \mathrm{in}$. dic. I 4 in Supplied brand new at a fraction of original
en. $6 / 6$ each P. P. $2 / 6$. ($\$$ for $17 / 6$ P. P. 4/6).

CLASS D WAVEMETERS

A crystal controlled hetero$\begin{array}{ll}\text { A cris trequency } \\ \text { dyneter } \\ \text { covertag } & \text { m-7-8 } \\ \text { Mc/s. }\end{array}$ Operation on 6 volte $\mathrm{D} . \mathrm{C}$ Ideal for amateur use Available in good used condition. 85.19.0. Carr. 7/6 Or brand new with acces sories. 87.19.6. Carr. 7/6
CLASS D WAVEMETERS No. 2 Crystal controlled. $1 \cdot 2-19 \mathrm{Mc} / \mathrm{s}$. Mains or 12V. D.C. operation. Complete with callbration charts. Excellent condition. \$18.10.0. Carr. 30/-

R209 MK II

COMMUNICATION RECEIVER 11 valve high grade communication recelver anitable for tropical use. $1-20 \mathrm{Mc} / \mathrm{h}$ on 4 bands. dilon vernier driver. B.F.O., aerial trim-

TYPE 13A DOUBLE BEAM

 OSCILLOSCOPES An excellent general purpose D/B osellloscope. Band width ${ }^{2}$ eps-750 Kc/s. Bandwidth $5.5 \mathrm{Mc} / \mathrm{s}$.
genaltivity
$33 \mathrm{~m} / \mathrm{CM}$. Oporating voltarso $0 / 110$ i 200/250V. A.O. Buppled in excellent worling conditlon. 8 . 10.0 . Or complete with all aocessories, probe, leade, IId, etc. 295. Carriage'30/-.

MARCONI

T/44/TF956

AF Abeorption

 Wattmeter$1 \mu /$ watt to 6 watts. 880. Carr. 10/-

GEARED MAINS MOTORS Paralux type SD19 230/250V. Reversible. . 30 r.p.m. lb./Ins. Complete Ith eapacitor. Excellent condition. 99/8.

Carr. 10/-.

TO-3 PORTABLE OSCILLOSCOPE
 3in. tube. Y amp. Bensiti-
 Input imp. 2 meg $\Omega 25 \mathrm{pF}$, p -p/CM. Bandwivth 1.5 cpg -900 KHz Input 1 mp . 2 meg $\Omega 20 \mathrm{pF}$. Time base 5 ranges 10 epps-300 EHz Bynchronization. Internal
insted acale $140 \times 215 \times 330$ external. Illuminated ncaje $140 \times 215 \times 330$ brand new with handbook. 13.10.: Carr. 10 /.

TRANSISTORISED L.C.R. A.C. MEASURING BRIDGE
A new portable
 bridge offering ex accuracy at low coat. Ranges; \mathbf{R} $10-11 \cdot 1$ mego
 L.
ges -2% R
G
C.
Ran${ }^{\text {Les }} 1110 \mathrm{mF}$. C .10 pF Ranges $\pm 2 \%$. TURNS RAT10 $1: 1 / 1000-$ $1: 11100.6$ Ranger $\pm 1 \%$. Bridge voltage at
$1,000 \mathrm{cps}$. Operated from 9 volta. 100 kA $1,000 \mathrm{cps}$. Operated from 9 volta. $100 \mathrm{\mu A}$
Meter indication. Attractive 2 tone metal case. Size 7 \% $\times 5 \times 2$ in. $\mathbf{2 8 0}$. P. \& P. $5 /-$.

UNR-30 4-BAND COMMUNICATIOM BECEIVEA

Covering $550 \mathrm{Kc} / \mathrm{s}-\mathbf{3 0} \mathrm{Mc} / \mathrm{m}$. Incorporates BRO. Bailt in apeakar and phone jack. Metal anbinet. Operation 220 240 V. A.C. Bupplied brand new, guaranteed with instructlons. Carr. 7/6.13g/ns.

TRIO JR. 120 New Amateur Band 10-80
Metre Receiver in stock. 877.10.0.

LAFAYETTE SOLID STATE HAGOO RECEIVER 6 BAID AD/OW/88B AMATEUR AND BHORT
 Hinl P Prond eot dotector or Vartable Bro Folso limitter of motor ortin Banduproed
 gain control gite isin. $\times 9$ ofin $\times 8$ gin. Weight 18 B.A.E. Ior Iull dotalia.

UR-1A SOLID STATE COMMUNICATION RECEIVER

4 bands covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{me} / \mathrm{s}$ continuous: Spectal reatures are use of FET ransistors. S meter built in speaker and lelescopic aerial. variable BFO for SSE receppion. noise limiler. bandspread control. sensitivily control. Oulpul for lou impedance headphones. Operation

TRIO COMAMUNICATION RECEIVER MODEL 9R-59DE
4 band recelver covering $500 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ contlinuour and electricel bandippread on 10, 16, 200, $4 / 8$ ohd output and phone jack. SBB-CW © ANL © Vartable BFO or meter 8 gep. bandigpreed dial \varnothing IF $400 \mathrm{Kc} / \mathrm{C}$ Andio output 1.5 W . ${ }^{\circ}$ A.C. Matna. Beautifally designed. Slse: $7 \times 15 \times$ 10in. With Instruction manual and service data. A49, carriage pald. TRIO coicrivFIOATION TYPE HEADPHONERS. Normally A5.19.6. OUR PRICE $\mathbf{8 8 . 1 5 . 0}$ it purchased with above recelver

TRIO JR. 500SE 10-80 Metre Receiver $\mathbf{£ 6 9 . 1 0 . 0}$

TRIO TS E10 AMATMUR TRAMS-

RCA COMMUNICATIONS RECEIVERS AR88D

Latest release by miniotry RRAND NEW in original casea. 110-250v. A.C. operation. Froquency in 6 Banda. $535 \mathrm{Kc} / \mathrm{B}-32 \mathrm{Mc} / \mathrm{a}$ contlinuous. Output trapedance 2-5-600 ohms. Incorporating eryntal filter, noise limiter, variable BFO, varlable selectivity, etc. Price 887.10 .0 . Carr. 22 .

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new tranaistorised recelver covering
$152-174$ Mc/a. Fully tunable or crytal cont rolled (not supplied) for dixed frequency operation. Incorporates 4 INTEGRATED CIRCUITS. Bullt in apeaker and lifuminated dial. Aquelch and volume controls. Tape recorder output. 75 a aerial Input. Headphone Jack. Operation 230V. A.C./ 12V. D.C. Neg. earth. 887.10.0. Carr. 10/-

TELETON CR-10T AM/FM STEREO TUNER AMPLIFIER

A new model from Teleton. 31 solid state devices. $4+4$ watt output. Frequency range AM $540-1600 \mathrm{KHz}$ FM 88 -108MHz. Automatic $\mathbf{F M}$ FM 88-108MHz. Automatic FM Controls: Tuning, function selector, Tone snd R \& L volume controls. AFC switch. Stereo headphone

CLEAR PLASTIC PANEL METERS
First grade quality Moving Coll panel meters. Type Mr 38P. ${ }^{21} / \frac{10}{}$ in. square fronta

500-0-500 1 A87/6	
1 ma	87/6
1-0-1mA	$87 / 6$
2 mA	97/6
5 mA	87/6
10 mA	87/6
750 mA	27/8
1 amp	87/6
2 amp	87/6
5 amp	27/6
20 mA	87/6

50 mA	
100 mA	
150mA	$87 / 8$
200 ma	27/8
300mA	$27 / 6$
500 mA	27/8
3v. D	87/8
10V. D	27/6
20 V . D	87/6
100v. D.	87/6

150V. D.C. . $27 / 8$ 300V. D.C....27/8 500V. D.C.. $87 / 6$
50V. D.C. $87 / 6$ 15V. A.C....8776 50v: A.C: . . $87 / 8$ $150 \mathrm{~V} . \mathrm{A} . \mathrm{C} . .27 / 6$ $300 \mathrm{~V} . \mathrm{A.C.C}$.
$8007 / 6$
$87 / 8$ 300V. A.C. . $87 / 6$

$$
\text { 100V. D.C. . } 87 / 6
$$

8 meter lin

Variable Voltage TRANSFORMEAS

Brand new, guaranteed and carriage paid.
High quality construction. Input 230V, $50-60$ cycles.
Output full variable from 0.260 volts. Bulk quantitles available. $8 \mathrm{amp}-85.10 .0 ; 2.5 \mathrm{amp}-88.15 .0 ; 5 \mathrm{amp} .-29.15 .0 ;$ 20 amp. 887.0 .0 .

CAYSTAL CALIERATORS ND. 10
 mall portable crystal controlled wavemeter. Bize x $7 \boldsymbol{x}$ 4in Frequency range $300 \mathrm{Kc} / \mathrm{a}-10 \mathrm{Mc} / \mathrm{s}$ (ap to $30 \mathrm{Mc} / \mathrm{s}$ on harmonless). Calibrated dial Power require ments 300 V . D.C 15 mA and 12 V C. 0.3 A

Excellent condition. 89/6. Carr. 7/6.
TE-40 HIGH SENSITIVITY
A.C. VOLTMETER

10 mog. laput 10 ranges: $01 \cdot 00 \mathrm{~S} / \cdot 1 / 3 / 1 / 3 / 10 / 300$ $100 / 300 \mathrm{~V}$. R.N.S. 4 cpp. $1-2 \mathrm{Mc} / \mathrm{s}$. Decibels - 40 to + toodB. Supplled braud and comylete with lead 30n 230 V A.C. 817.10 .0 Carr. 5/-.

LELAND MODEL 27 BEAT
 FREQUENCY OSCILLATORS

Frequency 0-30 Kc/s. on 2 ranges Outpat 5009 or $5 \mathrm{k} \Omega$. Operation 200/250\%. A.C. Supplied in perfect order. 818.10.0. Carr. 10/-

TE-65 VALVE VOLTMETER

High quality instrument Ith 28 ranges. D.C. volts $1 \cdot 5-1,500 \mathrm{v}$. A.C. Folth Ip to 1,000 megohms. $200 / 240 \mathrm{v}$ A.C.operation. Complete with probe and nstructions.
17.10.0. P. \& P. 6/. Additional probes avall-

COSSOR 1049 DOUBLE
BEAM OSCILLOSCOPES
D.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{m}$. Perfect order. 285. Carr. 30/-

AM/FM SIGNAL GENERATORS

Oscillator Teat No. 2. A high quality mrecision
ment madru-
for the ment made for the minigtry by Airmec. Frequency coverage
$20-80 \mathrm{Mc} / \mathrm{a} . \mathrm{AM}$ CW/FM. Incorporates preclaion dial, level meter, precision attenuator $1 \mu V-100 \mathrm{mV}$. Operation trom 12 rolt D.C. or $0 / 110 / 200 / 260$ volt, A.C. Size
12×8. $\times 9 / \mathrm{n}$. Supplied in brand new con$12 \times$ or tented. 245. Carr. 20/h.

EDOMTONE VHF RECEIVER8 Model 770R. 19-165 Md/s. Excellent condition. I1St.

PLEAETY SLata 3 wa!! Integrated Amplifier Circuit 2/6 Post Paid.

HOSIDEN DH-08S DE-LUXE STEREO HEAOPHONES Fealures unique mech. anical 2 way units and fitted adjustable level controls. 8 ohm im pedance. $20-20.000 \mathrm{cps}$ Complete with sprin.

AUTO TRANSFORMERS

$0 / 118 / 230 \mathrm{~V}$, Step up or stop down. Fully shrouded.

G. W. SMITH \& CO (RADIO) LTD Also see oppos. page
 A.F. BIEIT WAFE $20-200,000$ c/s.
Gquare wave $20-$
gity $30,000 \mathrm{c} / \mathrm{s}$. O / P HiGH IMP. 21V. $\mathbf{P / P 6 0 0}$ O 3.8 B . \mathbf{P} / \mathbf{P} TF $100 \mathrm{Kc} / \mathrm{s}-300$ Mc/s. Variable R.F. attenuation int/ext. modulation. Incorpor ates dual purpose meter to monitor AF out put and \% mod. 10.0 . Carr. $7 / 6$.

TE-20D RF SIGNAL GENERATOR

Accurate wide range wis 120 generator covering $120 \mathrm{Kc} / \mathrm{B}-500 \mathrm{Mc} / \mathrm{s}$ on 6 bands. Directly calitenuator, audio output tenuator, audio output. Xtal rocket for calibra-
tion. $220 / 340 \mathrm{~V}$. A.C. tion. 220/240V. A.C Brand new with instruc
tions. 816 . Carr. $7 / 6$. Size $140 \times 215 \times 170 \mathrm{~mm}$

PRAK-SOURD PRODDCTS. Full range of Amplifiers, Kits, Bpeskers in stock.

Y75 AUDIO SIGNAL

 GENERATORBine Wave 20c/s to 200 o 30kcis. High and low mpedance output. Output variable up to 6 volts. 220/240 volta A.C. Size $210 \times 150 \times 120 \mathrm{~mm}$. Brand new with instruc tions. 818. Carr. 7/6.

GARCONI TFIARE DISTORTION FACTOR METRRAS. Excellent condition. Fully tested. 820. Carr. 15/-

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER $2 \mathrm{pF}-2000 \mathrm{mFd}$ 2 ohms 200 meegohms. Alac checks
impedance. turns atio, insulation, $200 / 250 \mathrm{~V}$. A.C. Brand New 0
17.10 .0

817.10 .0

TODEL ZQM TRANSIETOR CHECKER It has the fullest capaclty for checking on A, B and Ico. Equally adaptable for checking diodes etc. $\begin{array}{ll}\text { Bpec: A: } & 0 \cdot 7-0 \cdot 8967 . \\ \text { B: 200. } & \text { Ico: } 0-50\end{array}$ $\begin{array}{cc}\text { B: } \\ \text { 5-200. } \\ \text { Ico: } & 0-50 \\ 0-5 \mathrm{~mA}\end{array}$ Remietance tor diode $200 \Omega-1 \mathrm{M} 日$. Bupplted
tions, battery and lead. s5.19.6. P. \& P. 2/6
ADVANCE TEST EQUIPMENT
Brand nev and boxed in original sealod cartons
J1B. AUDIO SIGNAL GENERATOR. 600 ohms or 5 ohms . $£ 30$ wave. Qutpu VM79. UHF MILLIVOLT METER. $100 \mathrm{Kc} / \mathrm{s}$ to $1,000 \mathrm{Mc} / \mathrm{s}$. AC. 10 mV to 3 v . DC. 10 mv to 3 v . Current 0.01 uA to 0.3 mA . Resistance 1 ohm to 10 megohm .

E125.0.0. TRANSISTOR TESTER. Fuli

GARRARD

EIIL CURRF.NT RANGEOFFERFD BRAND NFW AT FANTASTICSAVINGS

3. For SP25 etc. to operate with lid in place $\mathbf{8 6 . 1 9 . 6 \text { . Carriage } 7 / 6 \text { extra each }}$ type. Full range of Garrard accessories available
LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 dioder, $1 H \mathrm{~F}^{\text {music }}$ power, 30W
 at 8 R. Response $30-20,000$ 2dB at 1 W . Dls tortion 1% or less. Inputa 3 mV and 250 mV . Output 3-16 a. Separate L and R. Volume conrols. Treble and bass control. Btereo phone jack Brushed aluminum, gold anodised extruded ron $391+i v 713 / 1$ fin. Operation $115 / 230 \mathrm{~V}$. e2 Carriage $7 / 6$

MULTIMETERS for GUERY purposel

range of facilities for testing PNP or NPN transistors in or out of circuit £37.10.0.
Carriage 10/-per item.

AVOMETER MOVEMENTS

Spare movements for Model 8 or 9. (Fitted meter. Brand New \&Boxed. B9/6. P. \& P. 3/6

MODEL TE-90 50,000 OPV mirror soale overlond protec-
tion $0 / 3 / 12 / 60 / 300 / 600 / 1200$ tion $0 / 3 / 12 / 60 / 300 / 600 / 1200$
$v . D C . \quad 0 / 6 / 30 / 120 / 300 /$ 1200 v . DC. $03 / 6 / 60 / 600 \mathrm{~mA}$. DC. $16 \mathrm{~K} / 160 \mathrm{~K} / 1-6 / 16 \mathrm{meg}$ Q. -20 to +63 dB .87 .10 .0.
$\mathrm{P} . \& \mathrm{P} .3 /-$

MODEL TE-70. 30.000 OPV. $0 / 3 / 15 / 60 / 300 / 600$
1200 DC 0/6/30/120 $800 / 1200 \mathrm{v} \mathrm{AC} .0 / 30 \mathrm{LA}$ $13 / 30 / 300 \mathrm{~mA}$. $0 / 16 \mathrm{~K} / 160$ K/1-6M/18 Meg. Ω.
85.10 .0. P. \& P. $3 / \%$.

YODEL PT-84 1,000 OPV, $0 / 10 / 50$ 250/500/1,000v AC and DC. 0/1/100/ ת. \$9/6. P. \& P.1/6.

TK-61. NEW $20,000 \Omega$ / VOLTMULTMETERE with overload protection and $\begin{array}{lll}\text { mirror } & \text { acale. } & 0 / 6 / 60 / 120 \\ 1,200 v & \text { A.C. } & 0 / 3 / 30 / 60\end{array}$ $300 / 600 / 3,000 \mathrm{v}$.
$0.60 \mathrm{LAN} / 12 / 300 \mathrm{~mA}$. D.C $0.60 \mu \mathrm{LN} / 12 / 300 \mathrm{~mA}$.
$0 / 60 \mathrm{~K} / 6 \mathrm{meg} . \mathrm{ohm}$.
D8/6. $0 / 60 \mathrm{~K} / 6$ me
P. \& P. $2 / 6$.

MODEL Ag-100D. 100K n/VOLT. $5 \ln$. mirror
Bcale. Built-in acale. Built-in meter $120 / 300 / 800 / 1,200 \mathrm{v}$ DC $0 / 6 / 30 / 120 / 300 / 600 v$ AC. $0 / 10 \mu \mathrm{~A} / 6 / 60 / 300$ mA/12 amp. 0/2K/200K $/ 2 \mathrm{M} / 200 \mathrm{Ma}-20$ to +17 dB
$\mathrm{P} .3 / 6$.

TE-800 20,000@/VOLT GIANT MULTIMETER mitror acala and overload protention. bin. full viev meter a colour acale. 0 v $25011,00070,000$ V / C C. $0 / 85 / 12 \cdot 5 /$
$10 / 50 / 250 / 1,000 / 5.000 \mathrm{v}$. D.C.0/50 $/ \mathrm{A} / 110 / 100$ $1500 \mathrm{~mA} / 10 \mathrm{smp}$. D.C. OHM. \&15. P. \& P. 5

MODEL TE-10A. $20 \mathrm{k} \Omega$ Volt $5 / 25 / 50 / 250 / 500 / 2,500 \mathrm{v}$ D.C. $10 / 50 / 100 / 500 / 1,000 \quad v$ A.C. $0 / 8 \mathrm{~K} / 6 \mathrm{~m}$
+22 dB.
$+220,100 \mathrm{mFd}$.
69/6.

LAFEYETTE 57 Range graper 501Ω /volt Maltimetar. D.C. volta 12 mV -1000 V. A.C. volth 1.6 V
-1000 V . D.C. current $25 \mu \mathrm{~A}-10 \mathrm{amp}$. Ohms $0-1$ 10 ioeg $\Omega \mathrm{dB}-20$ to +81 dB. Overload protection. 212.10.0. Carr. 3/6.

 GWASITH:\&GO(RADYO) IFD

MODEL TEF-18
20,000 O.P.V. $0 / 0 \cdot 6 / 6 / 30 / 120 /$ $600 / 1,200 / 3,000 / 6,000 \mathrm{v}$. D.C $\begin{array}{ll}0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{~V} . & 0 / 6 \mathrm{~K} \\ 0 / 60 \mu \mathrm{~L} / 6 / 60 / 600 \mathrm{~mA} .\end{array}$ $0 / 60 \mu \mathrm{~K} / 6 / 60 / 600 \mathrm{~mA} . \quad 0 / 6 \mathrm{~K}$ $600 \mathrm{~K} / 6 \mathrm{Meg} . / 60 . \mathrm{Meg} . \Omega 50 \mathrm{pI}$
0.2 mFd .8 .19 .6. P. \& P. $3 / 6$

* TRANSISTORISED FM TUNEA t
TRANBIGTOR HIGH QUAMTY
TUNE B
OIZ
 3 I.F.stagea. Doubly tuned dir. oriminat to foed mont ampilfera. Operaten on 9Vbattery. Coverage 88 $-108 \mathrm{Mc} / \mathrm{B}$ Ready built ready for use. Fantastic value for money. ©6.7.6. P. \& P. 2/6. Bterso muitiplex adaptors 00/8.
TRANSISTORISED TWO-WAY
TELEPHONE
INTERCOM
Operative over amszingly tong diatances. Beparate call sad press to talk buttons, applications. Beautifully finlshed in ebony. Suppliod cumplete with bstteries and wall brackets. *8.18.6. P. \& P. $3 / 6$

SINCLAIR EOUIPMENT

 and PZ 5 Power Supply I19 Carr. 7/6 Micromatic Radio Kil
Micromatic Radio Built
SINCLAIR JC/IO IN STOCK 2000 Amplifier \qquad Neoteric Ampltie \qquad 223.10 .0

ECHO HS-606 STEREO

Wondertully fortable. 1 Lightveight adjuatable vinyl besuband fitt. cable and steren jack plug
$25 \cdot 17,000$ $25 \cdot 17,000$ eps. 88
ohin imp. $87 / 6$ ohin imp.
P. \& P. 2/6.

TE111. DECADE

hesistance

ATTENUATOR

Variable range $0-$

Undsilanced T and
Unbalanced T and
Bridge T. Impedance 600Ω range ($0 \cdot 1 \mathrm{~dB} \times$ $10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$,
Frequency: d.c. $\mathbf{t o} 200 \mathrm{kHz}(-3 \mathrm{~dB})$. Accur: Frequency: d.c. to $200 \mathrm{kHz}(-3 \mathrm{~dB})$. AccurMaximum input less than 4 W (50 V). Built in 600 n load resiatance with internal/external 600 n.tch. Brand new 587.10 .0 . P. \& P. B/~.

RECORDING HEADS

00sMO00RD t-track heada. Hlgh lmp. record/playbsek 65)-. Low imp. erase 80/ecord/playback 65/-. Low Imp. erase 80/Pont extra.

AMERICAN TAPE

Firat grade quallty American tapes. Brand new. Dlscount on quantletea.
3 in. 236t. $\mathbf{3}, \mathbf{P}$. P. ace tate
in. B00tt. std. plastic
in. 900 ft . L. P. acetate
5 in. 1,200ft. D.P. mylar
6ilin. 1,200ft. L.P. acetate
inin. 1,200ft. L.P. mylar
6 in. 1,800ft. D.P. mylar
5ing. 2,400ft. T.P. mylar
$7 \mathrm{in} .1,200 \mathrm{ft}$. t d. acetate
7in. I,800tt. L.P. acetate
7in. 2,400ft. D. P. mylar
7in. 3,600ft. T.P. mylar
Postage 2/-. Over 23 post pald.

TAPE CASSETTES

Top quality in plastic library boxes.
$6060 \mathrm{~min} 8 / 6$. 3 for 24
C $120120 \mathrm{~min} \mathrm{15/6} 3$ for $35 /$
Cassette Head Cleaner 11/3. Pour Exfra.

a new 4-way method of mastering ELECTRONICS by doing - and - seeing

\(\left.$$
\begin{array}{|l|}\hline 1 \rightarrow \\
\hline\end{array}
$$ \begin{array}{l}OWN and

HANDLE a\end{array}\right\}\)| conflete range of present- |
| :--- |
| day ELECTRONIC PARTS |
| and COMPONENTS |

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

TOPIC OF THE MONTH

Behind the times

WHAT on earth are the BBC and the Government up to? Having decided to open twenty local radio stations by the Autumn and twenty more within the next few years, and having found accommodation for them in Band II, the Minister of Posts and Telecommunications decides that these stations will also operate partly on m.w.

A government decision in the face of BBC opposition? Certainly not, for lan Trethowen, managing director of BBC Radio, "warmly welcomes" the Minister's decision. The justification for using m.w. channels is said to be the shortage of suitable car radios and lack of v.h.f. portables. This is largely nonsense, although our set makers have been somewhat tardy in producing v.h.f. car radios.

But who can blame them for this, when the BBC still clings pathetically to a.m. For if the BBC is not seen to be convinced that v.h.t.-f.m. radio is the medium of today then how can set makers and the general public be swayed?

The BBC has been bold enough to set a target for the phasing out of 405 -line v.h.f. television and this, of course, has given the industry and the public clear guide lines. What we need is a similar declaration on the future of sound broadcasting. As it is, the grandiose BBC plan of "Broadcasting in the Seventies" could be construed as meaning the Eighteen Seventies! Not to labour the point our sound broadcasting is twenty years or so behind the times. Whereas, after the war, Europe and the USA in particular, put their faith in v.h.f.-f.m. we have largely dragged our heels, seemingly reluctant to take the final decisive plunge.

The local stations will use a.m. only during daylight, so that the best those without v.h.f. receivers will have is half a service. This is futile and half baked! So much so, that one can be excused for suspecting ulterior motives. And the only one we can think of at the moment is that the BBC and/ or the Government have agreed to estabilsh squatters rights on the two m.w. channels to thwart pirate and/or commercial stations from setting up house.

Whatever the case, the decision to use m.w. part of the time is a negative one and not in the interests of the development of sound broadcasting in this country.

> W. N. STEVENS—Editor.

NEWS AND COMMENT

Leader 931
News and Comment 932,
MW Column by C. Molloy 941
Practically Wireless by Henry 942
On the Short Waves by Malcolm Connah and David Gibson, G3JDG 945
Letters to the Editor 961
CONSTRUCTIONAL
Transistor Minigenerator by R. F. Graham 934
I.C. of the Month, Sanken Audio Amplifiers by L. A. J. Ireland 938
FET's and their Uses, Part 2 by T. Snowball 949
Electronic Thermometer by C. R. Bradley 952
FET Preamp by W. T. Morris, B.Sc., Ph.D. 956
Audio Noise Limiter by R. F. Graham 960
Radioactivity Detectorby L. McNamara964
Take 20, Lie Detector by Julian Anderson 970
General Coverage Receiver, Part 2 by F. G. Rayer, G3OGR 973
OTHER FEATURES
Repairing Transistor Radios, Part 2 by V. Capel 954
Sums plus Circuits equals Understanding by Leslie Moore 958
Medium Wave DXingby Charles Molloy962
What do you know about Meter Shunts? by H. A. Cole, C.Eng., M.I.E.R.E. 966
P.W. Guide to Components,Part 16 by M. K. Titman, B.Sc.981

Part 16 by M. K. Titman, B.Sc.

[^0]
Mews... NEWS... NEWS...

Brema figures

Colour television deliveries to the Trade continued to rise during November (when three channel colour broadcasts officially began) according to the Economic and Statistical Division of the British Radio Equipment Manufacturers' Association. 28,000 colour sets were delivered, bringing the total for the period Jan-uary-November to 129,000 sets.

On the other hand, for the sixth month running deliveries of monochrome sets fell below the comparable month for 1968 165,000 monochrome sets were delivered in November, 9%, below November 1968 (181,000).

The slight recovery in deliveries of radiograms has continued and for the third month in a row deliveries for the month have improved on the same month for 1968-deliveries in November were 25,000 as against 24,000 in November 1968.

No end to the fall in deliveries of radios $(67,000)$ and car radios $(20,000)$ was experienced in November; for the period January to November the figures continue to be 28% and 15% respectively below 1968.

These estimates are net figures of deliveries by manufacturers to the home market on firm and other accounts including those to specialist rental and relay companies.

A trio from Trio

At the November 1969 R.S.G.B. Exhibition, Trio (B. H. Morris \& Co. (Radio) Ltd.) introduced a new transceiver-the TS510 together with a companion v.f.o. and power supply/speaker unit.

The TS-510 Transceiver, on the right of the picture, employs a highfrequency crystal filter and covers all Ham bands from 3.5 to 29.7 MHz . Both Rx and Tx sections employ the dual conversion configuration. The receiver is a dual-conversion superhet in which the r.f. and local oscillator are independently tuned. A selectivity switch is provided for s.s.b. and c.w. modes and the a.g.c. circuit features signal strength meter indication independent of r.f. gain adjustment. Type of emission is s.s.b. (A3J), c.w. (A1). Rated input: 160 W at $3 \cdot 5-21 \mathrm{MHz}, 120 \mathrm{~W}$ at 28 MHz . The transceiver uses 14 valves, 2 f.e.ts, 13 transistors and 29 diodes. Dimensions: $13 \times 7 \times 13 \frac{5}{8} \mathrm{in}$.

Stability is assured in the v.f.o. type 5D through the use of two f.e.ts plus two other transistors. This unit is equipped with the same precision double-gear drive as the TS- 510 transceiver which tunes a 25 kHz range in one rev. Crystal controlled operation permits spot channel communication and built-in RIT circuit permits slight shifting of receive/transmit frequencies when desired. Frequency range on 80 m is $3 \cdot 5-4 \cdot 1 \mathrm{MHz} ; 40 \mathrm{~m} 7 \cdot 0-7 \cdot 6 \mathrm{MHz} ; 20 \mathrm{~m} 14 \cdot 0 \cdot 14 \cdot 6 \mathrm{MHz} ; 15 \mathrm{~m} 21 \cdot 0-21 \cdot 6 \mathrm{MHz} ;$ 10 m (A) $28 \cdot 0-28 \cdot 6 \mathrm{MHz} ; 10 \mathrm{~m}$ (B) $28 \cdot 5-29 \cdot 1 \mathrm{MHz} ; 10 \mathrm{~m}$ (C) $29 \cdot 1-29 \cdot 7 \mathrm{MHz}$.

The PS 510 power supply speaker unit measures $7 \frac{1}{2} \times 9 \times 12 \mathrm{in}$. approx. Further details may be obtained from B. H. Morris \& Co. (Radio), 84-88 Nelson Street, London, E.I, or your nearest amateur radio equipment stockist.

The new President, Dr. Saxton

The present and past

Dr. J. A. Saxton, DSc., PhD, CEng, FIEE, FInstP was installed as the 36th President of the Radio Society of Great Britain on January 16th.

Dr. Saxton, before, during and after the last war, was working on propagation studies and research in radio meteorology. He was appointed Deputy Director of the Radio Research Station in 1960 and in 1964 to 1966, he held the post of Deputy Director of the U.K. Scientific Mission and scientific counsellor at the British Embassy, Washington, U.S.A. Upon returning to the U.K., Dr. Saxton was appointed Director of the Radio \& Space Research Station.

Immediate Past President, J.W. Swinnerton.

Mews... NEWS... NEWS...

Oh to be in Finiand
Christmas in Helsinki, Finland. was made a little livelier in 1969 due to the medium of TV. Finnish people were shocked when a pornographic film was shown over the air. Apparently the film was meant to be a closed-circuit test picture but it was put out on the air because a technician did not pull the right switch!

Bromsgrove move

The Bromsgrove \& District Amateur Radio Club, G3VGG, (Club Spot February) now meet at the Royal Oak pub, Catshill, Bromsgrove. Meetings are held the second Friday of the month at 8 p.m.

Mobile radio systems

A conference on "Mobile Radiocommunication Systems" is to be held from June 30th to July 2nd. The conference which is being organised by the Society of Electronic and Radio Technicians will be held at Brunel University, Uxbridge.

The conference will deal principally with vehicular and personal mobile systems. The increase of this field of communication, makes the subject of very wide interest not only to those already operating such systems but also to those contemplating such a step. The conference will cover all aspects of mobile radiocommunication including propagation problems, system planning and design, statutory requirements and manufacturer and user experience.
This will primarily be a nonresidential conference although hostel accommodation has been reserved for those delegates who are unable to travel to and from Uxbridge each day. The registration fee including lunch and refreshments each will be £7 7s. Od. for members of the Society and f 1010 s . Od to nonmembers.

Further information and registration forms may be obtained from: The Conference Secretary, Society of Electronic and Radio Technicians, Faraday House, 8 10 Charing Cross Road, London, W.C.2.

Lasky's Pithentre

Europe's biggest $\mathrm{Hi}-\mathrm{Fi}$ and audio centre was officially opened in London recently. The Chairman of the company which operates the 5,000 sq. ft. store, Mr. Harry Lasky told over 150 electronics company guests from all over the world, "Our customers will have the choice of more than 10,000 items of equipment-that is the biggest selection outside the USA.
The centre in Tottenham Court Road, W.1. contains a demonstration studio where customers, with the aid of a custom-built comparator. can instantly compare the latest $\mathrm{Hi}-\mathrm{Fi}$ installations exactly as they will sound in their own homes. Experts staff the new centre and they will plan a 'customised' system to suit the home and pocket of the prospective customer.

Mr. Lasky said, "Our new centre is designed to cater for the absolute beginner as well as the enthusiast with thousands of pounds to spend and it is an important landmark in the continuous process of introducing Hi -Fi to an ever-widening circle of the public."
The address of the new centre is: 42-45 Tottenham Court Road. London, W.1. Another Hi-Fi audio centre is at 118 Edgware Road. London, W.2. and the seven-branch group headquarters is 3-15 Cavell Street, London, E. I.

The photograph shows the Lasky demonstration studio which enables customers to make a balanced comparison of equipment.

Motorola semiconductior data book

Motorola have just announced the availability in the U.K. of the fourth edition of 'The Semiconductor Data Book'. The price is $£ 3$ (plus 6s. postage) and it is available through the Modern Book Co., 19 Praed Street, London, W.2.

This latest edition has been enlarged (it now includes 2,160 pages) and the format has been redesigned to make it easier to retrieve data. Instead of a number of product catagories, dis-
creet device specifications are presented in alphanumeric sequence in three major sections, namely: ' 1 N ' numbered devices, ' 2 N ' and ' 3 N ' numbered devices, and devices with Motorola house numbers. Also included is a $50-$ page section of selection guides which enable application needs to be directly related to semiconductor device numbers. Furthermore, the Data Book lists all EIA registered $1 \mathrm{~N}, 2 \mathrm{~N}$ and 3 N devices along with their shortform specifications.

In all, more than 12,700 types are listed together with details of their characteristics.

ASIGNAL generator is extremely useful for trimming, aligning and testing receivers, and testing amplifiers. The transistor signal generator described here is of small size, and has three tuned ranges:
(1) $190-375 \mathrm{kHz}$ (approx. $1600-800$ metres).
(2) $375-1000 \mathrm{kHz}$ (approx. $800-300$ metres).
(3) $1 \cdot 1-2 \cdot 8 \mathrm{MHz}$ (approx. $275-105$ metres).

These frequencies are available as c.w., or modulated with an audio tone. In addition, the audio tone is available, for amplifier and audio circuit checks. The ranges cover 470 kHz . 1.6 MHz and similar intermediate frequencies, as well as medium and long waves, while harmonics can be used for higher frequencies.

Circuit Details

Figure 1 is the circuit. Trl being the audio oscillator, with feedback from primary to secondary of the transformer T1. Tr2/Tr3 are in the r.f. oscillator circuit, tuned by VCI. S3/S4 is a 2-pole switch. selecting coils L1, L2 or L3. for the required band.

S1/S2 is a further 2 -pole switch. When S1 is at "C.W." the base of TrI is shorted to the positive line, cutting off $\operatorname{Trl} . \operatorname{Tr} 2 / \operatorname{Tr} 3$ then provide an unmodulated r.f. signal, via C7, S2, and R9. With S1/S2 in the "Mod" position. Trl oscillates at audio frequency, and modulates $\mathrm{Tr} 2 / \mathrm{Tr} 3$ due to the a.f. impedance of C2/R10. This gives an audible r.f. signal. With SI/S2 at "A.F." Tr2 base is shortend and moved positive, while a.f. from C4 is taken by S2 to R9. In all cases VRI is an attenuator. and C8 gives d.c. isolation of external circuits.

Each kind of output signal-c.w., modulated, or a.f.-has its own particular uses, described later.

The coils LI, L2 and L3 are of fixed inductance. and manufactured to a high degree of accuracy. So provided VCI is the capacitor listed, band coverage and calibration can be expected to agree well with that given. If wished, individual calibration can be made in the way described.

Panel and Case

The completed generator is $5 \times 6 \times 2 \mathrm{in}$. and the case is made from "universal chassis" members. The box has a $5 \times 6 \mathrm{in}$. front, and sides $5 \times 2 \mathrm{in}$., top and bottom being $6 \times 2 \mathrm{in}$.
Sides, top and bottom are flanged, so they can be fitted later. This allows all construction and wiring to be done with the front and bottom only fitted together as in Fig. 2. Holes should be punched in

Fig. 1 : Complete circuit of minigenerator

gemerator R.F.GRAHAM

the front for VCl , the switches, output socket, and VR1. VCl is bolted to the bottom runner, which is then fixed to the panel. A countersunk bolt with extra nuts is passed through the panel and a hole in the top corner of the frame of VCl , the tag MC being locked here.

L1, L2 and L3 are held with countersunk bolts, through the panel and base into the mounting strips. The socket for C 8 provides an output insulated from the metal.

The items in Fig. 2 are wired as shown, with sleeving on all leads. Note that the circuit has a negative earth (metal box), not positive as in much transistor equipment.

Fig. 2: Major component layout and wiring
The other components are assembled on a paxolin panel $5 \times 1 \frac{1}{2}$ in., as in Fig. 3. The holes $X-X$ of the circuit board match holes $X-X$ in the metal panel, Fig. 2. Countersunk bolts pass through the panel, and are locked here. Extra nuts are put on the bolts, and the finished circuit board can then be put into place, and held with further nuts, resting behind VRI and the rotary switches.

The transformer is a driver type for OC81D/ $2 \mathrm{xOC81}$, and if a different transformer is fitted, it may be necessary to reverse connections to one winding, to obtain audio oscillation.

Wiring of the circuit board should be quite straightforward. Take thin red flex from R10, for the battery positive connection. Leave flying leads from the points shown, for S1, S2, etc.
 and the leads cut and soldered to S1, S2 and S3. The MC or negative connection is to the tag at VCl , and metal cabinet. The board can then be pushed right on the bolts, and held with nuts, leaving a little space between it and the tags of the switches.

Case

The generator can be tested before finishing the case, by setting the switch to "Mod" and swinging VCl on Range 2, when an audio tone should be heard in a nearby receiver on medium waves.

Elastic holds a PP 3 9V battery to a bracket behind the on/off switch. Current drain is about $2-3 \mathrm{~mA}$ at "Mod" with about $4 \frac{1}{2} \mathrm{~V}$ working voltage due to drop in R10. The back is beld in position with self-tapping screws.

Calibration

By fitting the specified coils, and tuning capacitor VC1, coverage about as listed can be expected. The pointer knob is fully clockwise with VCl closed, so goes a little beyond the mark at the other end of the scales.

CALIBRATION POINTS

Range 1	0	Range 2	0	Range 3	\bigcirc
180 kHz	179	375 kHz	169	1.1 MHz	166
200 "	147	400 "	$149 \frac{1}{2}$	$1 \cdot 2$	1431
250	95	450 \%	123	$1 \cdot 3$ "	127
300	58	500 "	99	$1 \cdot 4$ "	112
350	$27 \frac{1}{2}$	550 ,	82	$1 \cdot 5 \quad$ "	98
375	149	600 "	68	1.6	87
		700 "	$56 \frac{1}{2}$	1.7	761
		800	42	1.8	671
		900 "	24	$2 \cdot 0$	51
		1000	3	$2 \cdot 5$ "	30
				2.8 "	13

The frequency markings are copied on the card, before finally adding the perspex, and knobs. If the scales are to be individually calibrated, first put frequency markings directly against the pointer position, then add the perspex later.
For individual calibration of the scales, one of several methods can be used, according to the equipment available. The brief details following should be helpful.

With Signal Generator. If a calibrated generator can be borrowed, tune it to various frequencies, tune in the signal with a receiver, and adjust the Minigenerator tuning to the same frequency and mark its scale.

With Calibrated Receiver. If an accurately calibrated receiver is to hand, set this at various frequencies, tune the Minigenerator to the same frequencies, and mark its scales. This is the easiest and most accurate method when harmonic pips from a 100 kHz crystal marker are available to give exact receiver tuning throughout.

With Uncalibrated (or poorly calibrated) Receiver. Tune in the BBC on 200 kHz . Tune Minigenerator to same frequency, and mark 200 kHz . Leave Minigenerator tuning untouched, and tune receiver to harmonic heard on 400 kHz . Leave receiver tuning untouched, tune Minigenerator to 400 kHz , and mark its scale. Repeat the procedure each time for 600 kHz , $800 \mathrm{kHz}, 1,000 \mathrm{kHz}$, etc., up to $1,400 \mathrm{kHz}$ for a MW receiver, and up to $2,800 \mathrm{kHz}(2.8 \mathrm{MHz})$ for an allwave receiver.

Use of Harmonics. Tune the receiver to a known high frequency, such as MSF, or $2,000 \mathrm{kHz}$ derived from the 200 kHz BBC transmission as mentioned. Leave the receiver tuning, and tune the Minigenerator progressively towards lower frequencies. Harmonics will then be heard when a multiple falls on $2,000 \mathrm{kHz}$ (or other chosen frequency). As example, on $1,000 \mathrm{kHz}\left(\mathrm{x}^{2}\right), 500 \mathrm{kHz}$ (x 4), 400 kHz (x5), and so on. This allows calibration over $400-$ 500 kHz , for intermediate frequencies.

\star components list

Resistors:

Capacitors:

C1	$0.25 \mu \mathrm{~F} 150 \mathrm{~V}$
C2	0.25 F 150V
C3	$0.02 \mu \mathrm{~F}$ 150V
C4	$0.02 \mu \mathrm{~F}$ 150V
C5	250pF silver mica
C6	$0.25 \mu \mathrm{~F}$ 150V
C7	18pF silver mica
C8	$0.02 \mu \mathrm{~F} 350 \mathrm{~V}$

VC1 Jackson 500 pF variable, Home Radio Cat. No. VC5.

Semiconductors:

Tr1	NKT251
Tr2	NKT152
Tr3	NKT152

Miscellaneous:

L1, L2, L3. COB3A, COB3G, CO83F, Home Radio; $5 \times 8 \times 2$ in. Universal chassis CU13, Home Radio; Two 2-pole 3-way rotary switches; On/off toggle switch; T1 Type RS.T/T6, Home Radio; KN9 type knob; PK4 insulated socket; PK3 plug; BTS33 perforated eyelet board, Home Radio; PP3 battery; sleeving; bolts; etc.

fig. 3 : Circuit board component layout and wiring

Generator Output

The c.w. output resembles that of a transmitter during a silent interval in programmes. It will heterodyne with another c.w. signal (as from a crystal marker) or can be heard with a receiver having a b.f.o. It operates a tuning meter or indicator. It is used for critical alignment.

The modulated output has an audio tone accompanying the r.f., so can be tuned in with any receiver, and heard with the loudspeaker.

The a.f. output is used for audio circuit tests only, by injecting a.f. into various amplifier points, working backwards from the loudspeaker. When signals cease, the last coupling circuit or stage introduced is the one at fault.

To Align I.F.T.'s

Set the generator to the wanted intermediate frequency. Should the i.f.t.'s be badly out of alignment, work backwards from the detector, dealing with them in turn. Then inject at the mixer base or signal grid, and check all i.f.t. cores. With all such work, keep signal strength well down. Output can be checked with a meter in one battery lead, with push-pull transistor receivers. or with an a.f. meter, or by watching the a.v.c. voltage.

Checking Band Coverage

To adjust a receiver band coverage, set oscillator trimmers at the h.f. end of each band, and coil inductance at the 1.f. band ends. In this way each band can be adjusted to have the wanted frequency range.

R.F. Alignment

To adjust aerial or r.f. circuits for best results, deal with each band separately, in the manner described for the receiver. This usually requires that trimmers are set for best results near the h.f. end of a band, and coil inductances are adjusted near the 1.f. end of each band.

Coupling

Coupling from the signal generator to a receiver should always be very loose. With portables, a short lead can be plugged into the generator output socket, and placed near the receiver or its ferrite aerial. For other receivers, connect a short lead to the aerial socket, and place this near the generator output lead, or lightly twist the insulated wires together.

Use of Harmonics

There are two main uses for the harmonic outputs of the signal generator. Such outputs are on multiples of the frequency to which the generator is tuned. For example, if the generator is tuned to 1 MHz , a signal will be heard on $1 \mathrm{MHz}, 2 \mathrm{MHz}$, $3 \mathrm{MHz}, 4 \mathrm{MHz}$, and other multiples, the limit depending on receiver sensitivity. If the generator were tuned to 1 MHz , a home-built receiver could thus be tuned from 1 MHz upwards, and its scales marked to indicate $2 \mathrm{MHz}, 3 \mathrm{MHz}$, etc. In this particular case. the 0.5 MHz points could be found as harmonics of 0.5 MHz , or 500 kHz , if wanted.

Harmonics also allow exact calibration of small frequency bands. As example, if the generator is tuned to 200 kHz , harmonics will appear on multiples of this. Those on $1,800 \mathrm{kHz}$ and $2,000 \mathrm{kHz}$ would set the limits of the $1 \cdot 8-2 \cdot 0 \mathrm{MHz}$ amateur band.

With a completely uncalibrated receiver, harmonics may if needed by identified by using the generator on two frequencies. As example, if all 1 MHz points are marked, but not known, 5 MHz can be identified by tuning the generator to 2.5 MHz , as the 2 nd harmonic falls on 5 MHz . Or 6 MHz could be identified from 2 MHz on the generator (3rd harmonic), which would also give 4 MHz as 2 nd harmonic. When one frequency has been identified in a receiver tuning range, the remaining 1 MHz points can be counted up and down from this.

Audio Circuits

These are tested by injecting a.f. With some equipment, an earth return is required, from equipment chassis to generator case. The earth terminal allows this.

Tests should not be made on a.c./d.c. equipment. having a live chassis.
Where little or no amplification is available, the full generator output will be wanted. But when tests bring into circuit one or more amplifier stages, output must be reduced with the generator potentiometer VR1, to avoid overloading the output or other stages in the receiver or amplifier.

PRAGTIGAL TELEVISION in the APRIL issue

STROBE-TRIGGER TIMEBASE UNIT

For detailed design work and TV experimentation strobe-trigger operation of the oscilloscope is necessary. This unit has been designed for use with the PTV Videoscope MV3. An output is available from the master multivibrator so that the unit can be used as a general-purpose squarewave signal generator.

REGULAR LONG-DISTANCERECEPTION

There are many areas where satisfactory signals can be obtained from more than one ITA or BBC transmitter, giving a worthwhile increase in the programmes available. The conditions necessary for reliable long-distance reception are examined, with an account of how to decide on its practicability in a given area.

EHT MULTIPLIERS

EHT multipliers of the simple ladder variety have been in use for some time now in monochrome receivers. A slightly different configuration provides considerable advantages in colour receivers. A full account is given of these advantages and the basic operation of this type of circult.

PLUS-Servicing the
BUSH-MURPHY TV161U-V191OU SERIES
On Sale MARCH 20th
price 3s. 6d.

190
 퐁․ ©

The Sanken SI-1020A/50A Audio Amplifiers

JAPANESE electronic firms have always been quick to follow on the heels of their American and European counterparts and the same trend is becoming evident in the world of microcircuits. Lately the Sanken Electric Co. of Tokyo has introduced two rather advanced hybrid i.c.'s one of which can give an audio output power in excess of 50 watts. A very attractive feature of the units is that they comprise virtually the complete amplifier, the only external components required being a power supply, loudspeaker of 8Ω impedance and coupling capacitor. They provide therefore an ideal beginners project in electronics since with so few components involved, success is virtually guaranteed and a firstcłass hi-fi amplifier obtained.

A look at Fig. 1 shows that the amplifier itself is fairly orthodox and straight forward in design. The common emitter input stage Trı, provides a typical input impedance of $70 \mathrm{k} \Omega$ and degeneration from the output can be applied across its emitter resistor via pin 3 of the i.c. The signal is then r.c. coupled to $\operatorname{Tr} 2$ which acts as a driver for the complementary pair $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$ and these in turn are direct coupled to the power output stage. Provision is made for the inclusion of a ripple filtering circuit in the 1050A version which is not included in the 1020A.

Characteristic	Symbol	SI-1020A	Si-1050A
Supply Voltage	$V_{c c}$	48 V	62 V
Maximum Continuous Output Power (distortion < 0.5%)	P_{0} max (rms)	25W	50W
Voltage Gain	Gv	30dB typ.	30dB typ.
Frequency Range (output 1W)		$\begin{gathered} 20 \mathrm{~Hz}- \\ 100 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 20 \mathrm{~Hz}- \\ & 100 \mathrm{kHz} \end{aligned}$
Input Impedance	$Z_{\text {In }}$	70k Ω typ.	$70 \mathrm{k} \Omega$ typ.
Output impedance	$Z_{\text {out }}$	0.2Ω typ.	0.2Ω typ.
S/N Ratio		90 dB typ.	90 dB typ.
Idling Current CONDITION : 2	$5^{\circ} \mathrm{C}$ ambi	30 mA typ. ent, 1kHz, R	30 mA typ. $=8 \Omega$

Electrical characteristics of the two ampllfiers

Fig. 2: Graph showing required signal inpul for a given power output

BENTLEY ACOUSTIC CORPORATION LTD.

Suppliers to H.M. Government
38 CHALCOT ROAD, LONDON, N.W. 1 Telephone 0 0-222.9980
EXPRESS POSTAL SERVICE, SAme day despatch by first class mail.
All goods are offered subject to the standard three month guarantee.
NO EXPORT ORDEAS

OA	5/9	6ES	7/6	12 AC	90AY $67 / 6$	1/6	EL83 6/9	PCC89 9/6	UB	W101 2	26/2	8Alls 2/4	OA47
082	6/-	6 F 1	\% 9	12AD6 6/-	90 CG 34)-	EA76 13/-	EL.84 4/9	PCC189 19/6	UBF80 3/9	W107	71/	BA116 5\%	OA70 3/-
OZ ${ }^{4}$	$4 / 6$	6F6G	4/-	12AE6 7/6	$90 \mathrm{CV} 33 / 6$	EABC80 6/-	E1.85 7/6	PCC805 13/9	UBF89 69	W729	101-	BA129 2/6	OAP3 3-1
1 A 3	46	6F6m	12/6	12AT6 $4 / 6$	90 Cl 16/-	EAC91 3/-	E1.86 8/-	PCC806 15/6	UBL21 9/-	X 241	16/6	BA130 2/-	OAT9 1/9
iAs	5/-	6 F 12	3/3	12AT7 3/9	150B2 14/6	EAF42 8/9	El95 5/3	PCF80 6/4	UC92 5/6	X41	10/-	BCrio \$1-	OA81 1/9
1A7GT	$7 / 3$	6 F 13	3/6	$12 \mathrm{AU6}$ /4/9	150 C 2 3/9	EB34 3/-	EM80 7/-	PCF82 ${ }^{\text {P/3 }}$	UCCS4 8/-	$\times 61$	5/9	8CY12 5/-	OABS 1/6
iCl	$5 / 6$	6 F 15	101-	12AU7 4/6	301 201-	E841 4/6	EM81 $7 / 6$	PCF84	UCC8S 69	$\times 63$	56	BCY33 5/-	OA86 4/-
1 C 2	9/-	6 F 18	7/6	12AV6 5/6	302 16/6	E891 2/3	EM84 616	PCF86 9/-	UCF80 813	X64	12/6	BCY34 416	OA90 216
$1{ }^{1} 3$	7-	6 F 23	13/3	12AV7 8/-	303 15/-	EBC41 9/6	EM85 11/-	PCF87 16/-	UCH21 9/-	$\times 65$	5/-	BCY38 5/-	OA9] 1/9
1 Cs	49	6F24	11/9	12AX7 4/6	305 16/6	EBC81 5/9	EM87 7/6	PCFF00 13/-	UCH42 13/-	X66	7/6	BCY39 4/6	OA95 1/9
1 DS	$6 / 9$	6 F 25	13/-	12AY7 9/9	$30613 /-$	EAC90 41-	EYS1 7/6	PCF801 71-	UCH81 6/6	$\times 101$	$30 / 6$	BCZ211 3/6	OA200 1--
106	$9 / 6$	6F26	5/3	12BA6 6/-	807 11/9	EBC91 3/6	EY81 7/-	PCF802 91-	UCL82 71-	$\times 1092$	26/-	BC107 4/-	OA202 $2 /$
1FD 1	6/6	6 F 28	14/-	12BE6 5/9	956 21-	EBF80 6/9	EY83 8/3	PCF805 $11 / 6$	UCL83 10/-	$\times 119$	$6 / 6$	BC108 3/6	OA210 9/6
IFD9	43	6 F 29	6/-	128H7 6/-	1821 10/6	E8F83 81-	EY84 7/6	PCF806 11/6	UF41 10/-	X719	3/9	8C113 51-	OA211 13/6
$1 \mathrm{G6}$	6/-	6F30	$61-$	12 El 17 -	5763 10;-	EBF89 6/3	EY86 6/6	PCF808 12/6	UF42 9/-	263	4/9	BClis 3/-	OA2200 12/-
1 HSG	7-	6 F 32	3/-	12JSGT 2/6	6060 3/6	Ebl21 11/-	EY87 6/6	PCL82 7-	UF80 6/9	Z77	3/3	-6C176 5/-	OA2201 10/6
114	$2 / 6$	6H6G7	1/9	$1277 \mathrm{GT} 6 / 6$	7193 10/6	EC53 12/6	EY88 7/6	PC1.83 9-	UF85 6/9	2152	4/6	BC118 416	OA2202 9/-
ILDS	5/-	${ }^{6 J 5 G}$	$3 / 9$	$12 \mathrm{K5} 10 /$ -	7475 4/-	EC54 61-	EY91 3/-	PCL184 716	UF86 9--	23291	16/-	BD119 9/-	OAZ203 96
ILNS	8/-	6JSGT	$4 / 6$	12K7GT 3/9	A1834 201-	EC70 4/9	E235 5/-	PCLE85 9/-	UF89 6/9	2719	4/6	BFY50 41-	0az20s \%-
insG	7/9	656	$31 /$	1207GT 4/6	A2134 10/-	EC86 12/6	EZ40 716	- PCLE 1868	UL41 $10 / 6$	2729	6/3	BFYS1 4i-	OAZ205 9/-
IP1	$7-$	$6 \mathrm{J7G}$	$4 / 9$	125A7GT6/9	$43042 \quad 15 /-$	EC88 12/-	E241 8/6	${ }^{\text {PCLL }} 888150$	UL46 12/6	27491	13/3	BFY52 4/6	0 O 2200 9/-
!PI0	3/9	6J7GT	6/6	$12 \mathrm{SC} 781 /$	AC2	EC92 6/6	EZ80 4/6	PCL800 15/6	UL84 616	2759	451-	BF154 5/-	0A2207 10/6
tPI]	$3 / 9$	6K7G	3/-	125G7 3/-	19/6	ECC31 13/6	E281 4/9	PCL801 15/-	UM80 $6 / 6$	Transistors		日FIS9 5/-	$0 \mathrm{OA2210} 7 /$
iRS	5/6	6K7G	4/6	${ }^{225 H 7} 73 /-$	ACDPEN/	ECC32 ${ }^{\text {4/6 }}$	E290 4/3	PEN45 7-	URIC $10 / 6$	and diodes		$\mathrm{BF}^{8 \mathrm{l} 63}$ 4/-	$0 \mathrm{OAZ213} 71-$
154	$4 / 9$	6 L 1	1916	$12 \mathrm{SJ7}$ 4/6	DD 19/6	ECC33 31/6	FC4 ${ }^{12 / 6}$	PEN4SDD	UUS 71-	IN124	16/6	BF173 76	OA2224 16/6
iss	$4 / 3$	6L6G	719	125 K 7 4/9	AC6PEN 4/9	ECC34 29/6	FW4/500 6/6	12/-	UU8 14/-	2G225 1	$10 / 6$	BF180 \%	OC19 23/-
$1 \mathrm{~T}^{4} 4$	$2 / 9$	${ }_{6}^{6} 7$	12/6	12S07GT7/6	AC/PEN(5)	ECC40 $9 / 6$	G230 7/-	PEN46 $41-$	UU9 7/3	${ }^{2} \mathrm{~N} 4 \mathrm{O}_{4}$	6/-	BFI81 :/-	OC22 5/-
$1 \mathrm{U}_{4}$	5/9	6 L 12	516	14H7 9/6	19/6	ECC81 3/9	G232 9/-	PEN453DD	UU12 4/9	${ }^{2} \mathrm{~N} 961$	10/6	BF185 8/-	$0 \mathrm{O}^{13} 5$
2 A 7	12/6	6L18	6\%-	1457 15/-	N(7)	$\begin{array}{ll}\text { ECCB2 } & 4 / 6\end{array}$	G233 12/6	19/6	UYIN 9/-	2N1756	101-	BTX34/400	OC24 3/-
2 D 13 C	71	6 L 19	19/-	$18 \quad 12 / 6$	19/6	ECC83 416	GZ34 10/-	PENA4 19/6	UY21 9/6	${ }^{2} \mathrm{~N} 21471$	17/-	401	OC2s 5/-
2D21	$3 / 6$	6 LD 12	6 -	19AO5 4/9	AC/TH110/-	ECC84 516	G237 14/6	PEN/DD	UY41 7/-	2 N 2297	4/6	BY 100 3/6	OC26 5i-
2×2	$4 / 9$	6 LD 20	9/6	19H1 40/-	AC/TP 19/6	ECC85 5	H30 5/-	4020 17/6	UYBS 5/9	2N2369A	4/3	BY101 3/-	OC28 3/-
3A4	3/6	6N7GT	$6 / 6$	20Di 13/-	AC/VP2 10/6	ECC86 8/-	HABC80 81-	PFL200 12/6	U10 9/-	${ }^{2} \mathrm{~N} 2613$	719	BY105 3/6	OC29 23/6
3A5	10/-	${ }_{6 P 1}$	12-	2004 20/5	ARP3 7-	ECC88 71-	HLI3C 4/-	Pl. 33196	U12/14 716	${ }_{2} \mathrm{~N} 3053$	6/6	BY114 3/6	OC35 5/-
387	5/-	${ }_{6 P 15}$	$4 / 9$	20 F 2 14/-	ATP4 ${ }^{2 / 3}$	ECC91 3/-	HL23 6/-	PL.36 96/	U16 15/-	${ }^{2} \mathrm{~N} 312150$	50/-	BY125 3/-	OC36 716
$3{ }^{3} 6$	319	${ }_{6 P 25}$	12/-	2021 13/-	AZ1 8/-	ECC189 9/6	HL.41 3/9	PL.81 713	U17 5/-	2 N 3703	3/9	BY127 3/6	OC38 8/6
304	$6 / 6$	${ }_{6}{ }^{\text {P26 }}$	12\%-	20P ${ }^{\text {d }}$ 17/6	Az31 976	ECCB00 12/6	HL41D	PLP1A $10 / 6$	U19 34/6	${ }_{2} \mathbf{N} 3709$	4-1	BYY23 201-	OC41 10/-
305 GT	$6 /$	6 P28	25/-	$20 \mathrm{P3}$ 18/-	AZ41 7/6	ECC807 171-	19/6	PL82 6/6	U 22 7/9	2N3866 20	20/-	BYZ10 5\%	OC42 12/6
354	5/9	6 PL12	6/-	20P4 18/6	B36 $6 / 6$	ECF80 6/6	HL42DD 8/-	PL83 616	$\mathrm{U} 25^{131}$	${ }^{2} \mathrm{~N} 3988$	10/-	BYZ11 51-	OC43 23/6
3 W 4	5/9	6.07 G	$6 /$	20P5 18/-	$8319 \quad 6 / 3$	ECFA2 6/6	HVR2 /9	${ }^{\text {PLL84 }}$-6/6	U26 11/9	${ }_{25323} 1$	10/-	BYZ12 5-	$\mathrm{OCP}^{2}{ }^{2 /-}$
4DI	3/9	607 GT	$8 / 6$	25L6GT 5/6	8719 5/6	ECF86 \%-	HVR2A 8\%	${ }^{\text {PLL } 3020812 /-~}$	031 61-	AAl19	$3 /$	BYZ13 51-	OC4PM :/3
SR4G	8	6R7G	$7 /$	${ }^{25 Y 5} 61-$	${ }^{8729} 12 / 6$	ECF804 42/-	1W3 5/6	PL500 13/-	U33 29/6	AA120	$3 / 1$	$8 \mathrm{BYZ15} 351-$	OC45 ${ }^{1 / 9}$
5046	$5 / 6$	6R7	11/-	25Y5G 8/6	BL63 10/-	ECF805 12/6	1W/4/350 3/6	PL504 13/6	U35 16/6	AA!2	3	CGI2E 4/-	OC45M B-
5 V 4 G	$7 / 6$	6SA7GT	7 7-	2524 G 6/-	CL33 18/6	ECH21 12/6	\|W4/500 6/-	PL508 27/10	$03734 / 11$	AA213	3/6	CG64H 41-	OC46 3/-
5 Y 3 G	516	6 6A7	7 -	2525 7-	CV6 10/6	ECH35 3/9	KT2 31-	PLS509 289	U43 7/6	AC107	$3 /$	FSYY1A 46	OC65 $32 / 6$
523	/-	${ }_{6 S C 7}$	6/6	${ }_{25260} 81 / 6$	CV63 10/6	ECH42 ${ }^{12 / 6}$	KT8 $34 / 6$	${ }^{\text {Pl802 }}$ PM84 $15 /-$	U45	${ }_{\text {AC }}{ }^{\text {Cl }} 13$	5/-	$\mathrm{FFSY2BA}^{4 / 6}$	OC70 2/3
524 G	71-	6SG7	6/-	30C1 616	CV271 12/6	ECH81 5/9	KT41 19/6	PM84 7/9	U47 13/-	${ }^{\text {ACl14 }}$	/-	GD4 616	OC71 2/-
6130 L 2	12/6	6 SH 7	$3 /-$	${ }^{30 C 15} 13 /-$	CY428 19\%-	ECH83	KT44 201-	$\mathrm{PX}_{4} \mathrm{Pr}^{\text {14, }}$	U49 11/9	${ }^{\text {AC }} 127$	${ }^{2 / 6}$	GD5 56	OC72 31-
6A8G	3/6	6 S 17	6/6	30 C 17 16/-	CYIC 10/6	ECH84 7/6	KT61 12/-	PY31 616	USO 516	${ }_{\text {ACIS }}$	3/-	GD6 $5 / 6$	OC73 16-1
6AC7	3/-	6SK7GT	$4 / 6$	30 C 18 11/6	CY31 716	ECL80 6/6	KT63 4/-	PY32 10/-	U52 516	${ }^{\text {ACIS }}$ A ${ }^{\text {c }}$	4/-	GD8 4--	$0 \mathrm{OC74}{ }^{2 / 6}$
6AG5	$3 / 6$	6SN7GT	4/6	3055 16/-	D1 1/3	ECL82 6/-	$\begin{array}{lll}\text { KT66 } & 17 / 3\end{array}$	PY33 101-	U76 4/9	${ }_{\text {AC1 }}$	5/-	GD9 4/-	OC75 21-
6AJS	\% 6	$6 \mathrm{SO7GT}$	$7 / 6$	$30 \mathrm{FL1}$ 151-	D41 $10 / 6$	ECL83 \%/-	KT74 12/6	PY80 6/-	U78 413	${ }^{\text {ACl }} 165$	51-	GD10 4-	OC76 2/6
6A18	5/9	6557	3/-	30 FL 12 I 16/-	D63 53 5-	ECLb4 12/-	KT76 12/6	PY81 513	41071183	${ }^{\text {ACl }} 166$	5/-	GD11 4/-	OC78 3/-
6AKg	5/-	6 U 4 GT	12-	30 FL 13 8\%-	DAC32 7/-	ECL8s 11/-	$\begin{array}{lll}\text { KT88 } & 29 \% \\ \text { KTWG1 } \\ \text { 216 }\end{array}$	${ }^{\text {PY882 }}$	U151 $71 / 6$	${ }^{A C 167}$	12/-	GD12 4-	OC78D 3-1
6AK6	6/-	${ }_{6 \times 4}^{6 \times 6}$	$3 / 6$	30 F .141216	DAF91 ${ }_{\text {DAF }}$	ECLB6 ${ }^{\text {d/- }}$	KTW61 ${ }^{8 / 6}$	PY83 PY88 3/9	U153 $5 / 3$	${ }^{\text {ACl }} 168$	76	GD14 10f-	OC79 8/-
	6/-	${ }_{6}^{6 \times 4}$	4	30158			KTW62		$\mathrm{UlS}^{5 / 5}$	${ }_{\text {ACl }}$	11/6	GD15 81-	OC81 2/-
6AL.5	$2 / 3$	6X3G	3/-	30L15 13/9	Dccso 10%	$30 /-$	KTW63 5/9	PY 3018126	U191 12/6	${ }^{\text {ACl }} 1761$		GD16 4-	OC81D 2/-
6AM6	3/3	$6 \mathrm{Y6G}$	8/-	30L17 15/6	DD4 $10 / 6$	EF22 12/6	LN152 6/6	PY800 7/6	U192 5/-	${ }^{\mathrm{A} C 177}$	3/6	GET103 4/-	$\mathrm{OCBIM}^{5 /-}$
6AOS	5/6	$6 \mathrm{Y7C}$	12/6	$30 \mathrm{P4}$ 12i-	DF33 719	EF36 3/6	L N309 9/-	PY801 619	U193 619	ACY17	$3 /-$	GET 105 18/-	$\mathrm{OC82}^{2 / 3}$
6AR6	20/-	7 A 7	12/6	30P4MR $17 / 6$	DF9! 2/9	EF37A 7/-	LN319 15/-	PZ30 9/6	U231 14/6	${ }^{\text {ACY } 18}$	3/8	GETH3 4/-	OCB2D $2 / 3$
6AT6	4/-	7AN	$6 / 3$	$30 \mathrm{Pl} 12 \quad 13 / 9$	DF\% 616	EF39 5/-	L.N339 13/-	QQVO3/10	U281 898-	${ }^{\text {ACYI }} 9$	$3 / 9$	GET119 17/-	$\mathrm{OC83}^{21}$
6AU6	5/-	786	10/9	30P18 616	DF97 101-	EF40 8/9	LZ319 6/6	$27 / 6$	U 382 8	ACY20	3/6	GET116 616	OC84 3/-
6AV6	$5 / 6$	787	7/-	30P19 12--	DH30 15/6	EF41 10/:	12329 \%/6	0575/20 10/6	U291 9/6	${ }^{\text {ACY }} 21$	$3 / 9$	GET118 4/-	${ }_{0}^{0 C 123}$
6B8G	2/6	$7 \mathrm{C6}$	$61-$	30 PLI 1815	DH63 61-	EF42 3/6	ME1400 14/9	0 OS15015 $9 / 6$	U301 11/-	${ }^{\text {ACY }} 2$	3/6	GET1199 4/-	OC139 12/-
6BA6	416	$7 \mathrm{D6}$	15/-	30PL. 13 15/6	DH76 4/6	EF54 10\%-	MHL4 12/6	OVO4/7 8/-	U329 14/6	${ }^{\text {ACY }}$ 28	4/-	GET573 7/6	OC140 19/-
68E6	4/9	7H7	$5 / 6$	30 PL .14 18/-	$\mathrm{DH}^{\text {D }} 814$ 4-	EF73 6/6	MHLD6 76	R10 13/-	U339 12/6	ADI40	$8 / 6$	GETS877 8/6	$\mathrm{OCl}^{\text {OC1 }}$ (178
6RG6C	20/3	7 7 7	12/-	$30 \mathrm{PL} 15151-$	DH81 10/9	EF80 4/6	MU12/14 4/-	R11 R12 196	U381 5/9	AD149	8	GET872 19/-	OCl^{172} 4/-
68H6	716	7 V 7	51-	35A3 9/-	DH101 25/-	EF83 9/6	MX40 $12 / 6$	$\mathrm{R} 12_{7 / 6}$	U403 6/6	ADT140 1	12/6	GET873 3/-	$0 \mathrm{OC200}$ 4/4
${ }^{6816}$	8/6	$7 Y 4$	$6 / 6$	35AS 15/-	DH $10717 / 11$	EF85 3/3	N78 40/3	$\begin{array}{ll}\text { R16 } & 34 / 11\end{array}$	U404 7/6	AF102	18/-	GET882 10/-	OC201 3/6
6 BOS	49	724	$4 / 6$	35DS $12 / 6$	DK32 7/3	EF86 6/3	N108 $27 / 10$	R17 17/6	U709 4i9	AF106 1	101-	GET887 416	OC202 4/6
6B07A	7/-	$98 W 6$	71-	35L6GT $8 / 6$	DK40 10\%	EF89 3/-	N152 713	R18 9/6	U801 19/6	AF114	4	GET889 4/6	OC203 4/6
-6BR7	8/6	9 D 7	9/-	35W4 4/6	DK91 5/6	EF91 3/3	N308 17/6	R19 \%/6	U4020 619	AFlis	$4 / 3$	GET890 4/6	${ }^{\mathrm{OC} 204} 5$
6BR8	8/-	10 Cl	12/6	${ }^{3523} 10 /-$	DK92 9,	EF92 2/6	N329 6/6	R20 11/9	VP4B ${ }^{\text {VP13C }}$	AF17	$4 / 6$	GETB98 $4 / 6$	OC205 76
6BS7	16/6	10 CL 2	101-	357.4GT 4/9	DK96 7-	EF94 5/-	N339 25/-	RGI.240A	VP13C 7/	AF119	3 3-	GET897 416	$\mathrm{OC}^{\text {O } 206}$
68W6	12/9	$10 ¢ 14$	$6 / 6$	$35259 T$ 6/-		EF95 5/-	N359 N 369 $7 / 3$ $13 / 9$	RK34 3 7/6	VP41 ${ }^{\text {VP75 }}$	AFI21 AFP4		GET898 ${ }^{\text {GEX13 }}$ 3/6	$\begin{array}{ll}\text { OC812 } \\ \text { OCP71 } \\ & 37 / 6\end{array}$
6BW7	11/-	1001	8 8-	42 51-	(1)	EF97 EF98 10/6	$\begin{array}{ll}\text { N369 } & 13 / 9 \\ \mathrm{~N} 379\end{array}$		VR10s ${ }^{\text {g/- }}$	AFI26	51-	GEX35	
68X6 6R26	6/6	10D2	$14 / 7$	43 50 Bg $10 /-$ $6 / 3$	$\begin{array}{ll}\text { DL92 } & 3 / 9 \\ \text { D.94 } & 59\end{array}$	${ }_{\text {EF98 }}^{\text {EF183 }}$ (10/6	N379		$\begin{array}{ll}\text { VR105 } & \text { S/- } \\ \text { VR150 } & \text { /- }\end{array}$	AF126 AF 39	13/-		ORP12 S6M1 S/-
6 C 4	5	10F9	9 9-1	50Cs 6/3	DL96 7\%	EF184 6i-	N709 4/9	SP42 $12 / 6$	VT61A \%	AFi78	13/6	GEX45 $6 / 6$	SM 1036 A
${ }^{6} \mathrm{CSO}$	6/-	10F18	71	$50 \mathrm{CD6GG} 43 / 3$	DLS10 9/6	EF804 $20 / 5$	P61 $1 / 6$	SP61 3/3	VTS01 3-	${ }_{\text {AF }} 179$	13/6	GT3 3/-	10/-
6 C 6	3/9	10FD12	$6 / 9$	$501.6 \mathrm{GT} 9 /-$	DM70 6-5	EFP60 10/-	PABC80 713	TH48 ${ }^{\text {4 }}$	VU111 73	AFI80	9/6	M1 $2 / 10$	
${ }^{6 C 9}$	$14 / 6$	10 L 14	$6 / 9$	$52 \mathrm{KU} 14 / 6$	DM71 76	EH90 7/6	${ }^{\text {PC86 }} 10103$	TH233 7-	VU120 12]-	AFI81	$111 /$	M3 ${ }^{2 / 19}$	SX1/6 3/6
${ }_{6} 612$	3/9	10LD3	8/6	53KU 14/6	DY86 819	EL32 3/6	$\begin{array}{ll}\text { PC88 } & 10 / 3\end{array}$	TP22 5--	VU120A12/-	AF186	11/-	MATt00 7/9	U14706
${ }^{6} \mathrm{CD6}$	18/6	10LD ${ }^{1}$	10/-	72 b/6	DY87 3/9	EL33 12/-	PC95 :3	TP25 5/-	vu133 7/-	AF239	716	MAT $1018 / 6$	$\times 230$
${ }^{6} \mathrm{CH} 6$	6/-	10 P 13	13/-	77 6/6	E8dF $24 /-$	EL34 10/6	${ }^{\text {PC97 }}$ P69	TP2620 ${ }^{8 / 9}$	W42 $10 / 6$	ASY27	8	MATI20 7/9	Y 9433316
${ }_{6} \mathrm{C}$	8/6	${ }_{10 P 14}$	$12 / 6$	78 4/9	${ }^{\text {E83F }}$	${ }_{\text {ELL }} \mathbf{3 7}$ 17/3	PC900 $81 / 3$	UABCB0 6 -	${ }_{\text {W63 }} \mathbf{6} 10 / 8$	${ }_{\text {ASY }}$	${ }^{6 / 6}$	MAT 121816	${ }_{\text {Y }}$
${ }_{6}^{6 C W} 4$	12/-	${ }^{10 \mathrm{P} 18}$		$\begin{array}{ll}85 \mathrm{~A} 2 & 8 / 6 \\ 85 \mathrm{~A} & 8 /-\end{array}$	${ }_{\text {E88CC }}{ }_{\text {E180CC }} 12 /-$	${ }_{\text {EL4 }}$ EL4 $9 / 9{ }^{\text {10/3 }}$	PCC84 PCC85 $6 / 3$ 686	UAF42 9 ¢/6-					2E12V7 1/9
6D3 6D6	7/6	$10 \mathrm{Pl.12}$ 12 A 6	7/16	$\begin{array}{ll}85 A 3 & 8 /- \\ 904 \mathrm{~A} & 67 / 6\end{array}$	${ }_{\text {E180CC }}^{\text {E180F }}$	EL429/981-	$\begin{array}{ll}\text { PCC85 } \\ \text { PCC88 } & \text { \%/9 }\end{array}$	UB4 ${ }_{\text {URC41 }}$ 8/68	$\begin{array}{ll}\text { W77 } \\ \text { W81M } & \text { 2/6 }\end{array}$	$\begin{aligned} & \text { B1 } 181 \\ & \text { BA102 } \end{aligned}$	10/-	$\begin{array}{ll}\text { OA9 } & \text { 2/6 } \\ \text { OA10 } & 8 / 6\end{array}$	

MATCHED TRANSISTOR SETS 1-OC44 and 2-OC458/6; 1—OC8ID and 2-OC81 7/6: 1-OC82D and 2—OC82 8/6; Sct of three-OC83 IGET118/11918/6; LPI5 package IACII3, AC 154. AC157.
We require for prompt cash settlement all types of above goods loose or boxed, but must be new

Tubular types: $1 \mathrm{mfd} / 15 \mathrm{v} 2 / 3 ; 1 \mathrm{mfd} / 25 \mathrm{v} 2 /-; 1 \mathrm{mld} / 500 \mathrm{v} 2 / 4 ; 2 \mathrm{mtd} / 15 \mathrm{v} 2 / 3 ; 2 \mathrm{mld} / 150 \mathrm{v} 2 / 3 ; 2 \mathrm{~m} / \mathrm{d} / 500 \mathrm{v} 2 / 1 / 4 \mathrm{mfd} / 15 \mathrm{v} 2 / 3 ; 4 \mathrm{mfd} / 150 \mathrm{v} 2 / 3 ; 4 \mathrm{~m} / \mathrm{d} / 500 \mathrm{v} 2 /-; 5 \mathrm{mfd} / 15 \mathrm{v} 2 / 3 ; 5 \mathrm{mfd} / 50 \mathrm{v} 2 /-;$ $8 \mathrm{mfd} / 15 \mathrm{v} 2 / 3 ; 8 \mathrm{mtd} / 150 \mathrm{v} 2 / 3 ; 8 \mathrm{mtd} / 450 \mathrm{v} 1 / 9 ; 8 \mathrm{mtd} / 500 \mathrm{v} 3 / 6 ; 8 \times 8 \mathrm{mfd} / 450 \mathrm{~V} 2 / 9 ; 8 \times 16 \mathrm{mfd} / 450 \mathrm{~V} 9 /-; 10 \mathrm{mfd} / 15 \mathrm{v} 2 / 3 ; 10 \mathrm{mfd} / 50 \mathrm{v} 2 / 3 ; 16 \mathrm{mfd} / 15 \mathrm{v} 2 / 3 ; 16 \mathrm{mfd} / 450 \mathrm{v} 2 / 2 ; 16 \mathrm{mfd} / 500 \mathrm{v} 4 / 3 ;$

 12v 2/h; $1000 \mathrm{mfd} / 25 \mathrm{v} 7 / 4 ; 1000 \mathrm{mtd} / 50 \mathrm{v} / 1 / \mathrm{s} ; 2000 \mathrm{mdd} / 25 \mathrm{v} 10 /-; 2000 \mathrm{mfd} / 50 \mathrm{v} 10 /$

[^1]A diagram of the complete amplifier together with a suitable power supply is given in Fig. 3. The 1A fuse (2 A in the case of the 1050 A model) in series with the power supply provides adequate protection in the event of a short-circuit of the loudspeaker terminals. The units themselves are capable of withstanding a short-circuit of the output terminals for 5 seconds under all operating conditions and so the fuse will blow before any damage is done. The metal housing in which the amplifier is mounted provides sufficient heat dissipation and in addition it can be directly bolted to the chassis or case without the need for insulating washers as it is electrically insulated from the i.c. itself. The 1020A measures approx. $3.15 \mathrm{in} \times 1.8 \mathrm{in}$. and the $1050 \mathrm{~A} 3.9 \mathrm{in} . \times 1.6 \mathrm{in}$. approx overall.

Fig. 3: Circuit of suitable power supply:

Two very attractive features of the units are their frequency response, 20 Hz . to 30 kHz ., and harmonic distortion of less than 0.5% at the full output power levels and with a signal to noise ratio of greater than 90 dB . they should fill the requirements of the most discerning hi-fi enthusiast. One slight disadvantage however, especially if the units are to be put to mobile use is the rather high operating voltage required but even here idling current has been reduced to a mere 30 mA which ensures economical battery operation.

\star components list

Capacitors :

C1 $4000 \mu \mathrm{~F} 60 \mathrm{~V}$ (70 V for 1050 A)
C2 $2000 \mu \mathrm{~F} 30 \mathrm{~V}$ (40 V for 1050 A)

Miscellaneous :

D1-4 60V 1A (70V 2A for 1050A)
(Henry's Radio Type RS32AF)
T1 Transformer (Henry's Radio Type MT104AT) IC Type $\mathrm{SI}-1020 \mathrm{~A}$ or $\mathrm{SI}-1050 \mathrm{~A}$
(Photain Controls Ltd., Randalls Road, Leatherhead, Surrey)

The signal input levels required for various power outputs can be derived from Fig. 2.
At the present state of the art, these are the most powerful i.c.'s available and provide the obvious answer to anyone requiring a rugged and miniature audio power amplifier.
NEXT MONTH: The RCA 3052 i.c., comprising four separate amplifiers, will be reviewed. It is ideal for use ahead of the SI-1020A or SI-1050A amplifier reviewed above.

CONDITIONS on the band this winter have been the best for several years. Especially noticeable were the number of Far East stations logged in the afternoons-China on 940. 1000,1230 and 1290 kHz , Taiwan on 750 and 1200 . Ryukyu islands on 1178 and 1360, South Korea on 1190. Calcutta 1130 kHz was a regular for several weeks. Near East stations logged were Bagdad 760, Teheran 895 and 1325, Kabul 1280, Kuwait 1345 and at night the Indians-Rajkot 1070 and Jabalpur 1180. North American DX was almost unbroken all winter. The writer started the year with a fine logging of KOMO Seattle on 1000 kHz from 0740 to 0800 Hrs GMT on the 2nd January. Earlier the same morning WVOV Huntsville Alabama on the same frequency was heard doing an equipment test at 0630 . Other DX includes CBF Montreal 690 kHz , a Newfoundiand relay station on 740, WJR Detroit 760, WWL New Orleans on 870, CBM Montreal 940, WCFL Chicago 1000, CFRB 1010 in Toronto, KMOX St. Louis on 1120, WBT Charlotte North Carolina 1110, WOAI 1200 in San Antonio Texas. Some of the best North American DX occurs in the spring and autumn. Stations that have been logged in this country are $K O M O 1000 \mathrm{kHz}$ in Seattle, KING 1090 also in Seattle, KNX 1070 Los Angeles, KEX 1190 Portland Oregon. KFBK 1530 in Sacramento, California.
The Caribbean area is often heard well at this time of year. After midnight, look for CMGN 720 kHz Radio Rebelde in Colon, Cuba, St. Vincent in the Windward Islands on 705, Port Maria, Jamaicu, on 750 with the call JBC, $2 F Y$ Radio Demerara, Georgetown, Guyana, 760, ZBVI Roadtown, Tortola. British Virgin Islands on 780, PJB Trans World Radio Bonaire Netherlands Antilles on 800 (an easy one), $4 V E C$ 'La Voix Evangelique' 830 kHz Cap Haitien, Haiti in French and English, Radio Belize, British Honduras on 834, Radio Caribbean 840 Castries, St. Lucia in English and French, Radio Antilles 930 in Montserrat, Leeward Islands in French and English, TIFC 'The Lighthouse of the Caribhean' 1075 kHz in Spanish and English, WBMJ 1190 kHz in San Juan Puerto Rico with pop music and English announcements, PJD2 'The Gospel Voice of the Eastern Caribbean' 1295 kHz in St. Maartin, Netherlands Antilles in Dutch and English. A new station is Radio Anguilla on 1505 kHz with a power of 500 watts.

The new 1000 kW station at Beida, Libya, is now on the air on 1124 kHz and has been heard in North America. Another powerful North African is Azilal Morocco on 209 kHz on the Long Waves. This station is the only African on this band and it can be heard in Spanish, French and English as well as in Arabic. The Spanish station audible at sunset on 1140 is ECS11 Radio Centro Madrid which has moved from 1394 kHz . Another member of the same network is ECS13, La Voz de Ciudad Real, currently on 1145 kHz .

practically wireless

IDO not know Mr. Matthews. And he knows Henry only by the odd effusions he occasionally picks up in this column. Odd. it would seem, is hardly a strong enough term. My informant is Mrs. Matthews, whose bus-top confidences to Mrs. Henry sparked off the idea for this month's contribution.

You see, Mr. Matthews is one of our unsung electronic heroesa radio enthusiast, an avid constructor, a lonely wielder of the soldering iron who does not believe in flaunting his merits abroad. In the privacy of his own two-up, two-downer, he struggles with the intricacies of transistor testers, knocks up a record player for his younger daughter, modifies the family radio set and will one day provide his doted-on grandson with a personal communications receiver.

Henry would never have heard of him if it were not for his distressing tendency to drop hot solder on the tufted living-room carpet. One can almost hear the whoops of commiseration as the two ladies swopped horror stories.
'It's just the same in our house! Once he gets his nose into that book, and spreads his wires all over the floor, there's no stopping him.'
That book, as you will have guessed, is Practical Wireless, which, if the ladies get the emancipation they are militating for

"My informant is Mrs. Matthews"
and rule our lives in deadly earnest, will soon join the Fahrenheit 451 list of banned, subversive literature. And what will Henry do then, poor thing?

Well, I'll tell you what he may do. He may join Mr. Matthews and others of like bent in the formation of a radio-dabblers underground movement. One of the basic rules is that members shall have suffered at least a single eviction from what they thought was going to be a snug den, to a draughty corner of the potting shed or equivalent.

The ladies, bless them, just do not understand. Poor Mr. Matthews, I am told, has suffered the final indignity of having his precious equipment jocularly dismissed as 'toys'. He is 'permitted" to play at set hours, in carefully circumscribed places, so long as he does not make too much noise. That he still manages to derive a great deal of fun from his hobby is as much a tribute to his sense of humour and tolerance as to the well-known attraction of the electron. A few spots of solder on the Cyril Lord are a small price to pay for such peace of mind that our hobby can giveand, after all, flourishing pliers and tin-snips does not drag us away from the family hearth. That is surely a plus-point. madam?

Reading this, Mr. Matthews will realise I am joking-having mastered the initial shock of my intrusion into his privacy. Indeed. I would not have known about him at all-though he, apparently , has the advantage of me-were it not for his wife's very obvious pride in her lord and master's prowess.
The fact that a chap can string two wires together and make an invisible power give voice smacks something of witchcraft and we all know how superstitious the hausfrau can be.

Mrs. Henry, for example, has little regard for my prowess as a

"Programmed to yell 'don't touch me!
gardener. She prefers to remember the time I uprooted a corner of dormant 'busy-lizzie' in the belief I was ridding the world of convolvulus rather than the birdactivated pea-protector that very nearly was successful. Only the switching time of an OC71 was the best we could do in those days..
But the communications corner of my den still scares her. In this last refuge, from which I am still winkled when the approach of visitors demands I turn it back into the spare bedroom, I can at least be sure of some isolation. I believe my advantage stems from the time Joe and I were experimenting with an intriguing-and probably quite illegal-voiceoperated CQ switch, and Mrs. H. was interrupted in the middle of a private tidying-up session by the clicking of relays and a disembodied Joe asking: 'Hallo there, are we together?'

It would not be much trouble for Mr. Matthews and me to collaborate in the design of a series of proximity switches that could activate a solenoid-switched tape recorder programmed to yell 'Don't touch me!' loud and clear. Now that would be a toy worth having. Even better than that electronic shoehorn (bootstrapped circuit, of course) that young Bob has promised to make me.
 main ampiiters which offer a wide range of facilities to suit al
types of applications.
Model Pre-4. Thls is a four channel fully mixable pre-amp. with separate treble, bass and master volume controls, and is completely self powered. An tour inpition of inputs 3 and 4 being duplicated on the back panel, with two paralleled outputs also featured for versatility in use.

Specification:
\(\left.\begin{array}{lll}Inputs. \& Vol. 1. \& 10 \mathrm{mv} at 50 \mathrm{k} Ohms

Vol. 2. \& 10 \mathrm{mv} at 50 \mathrm{k} Ohms

Vol. 3. \& 50 \mathrm{mv} at 500 \mathrm{k} Ohms

Vol. 4. \& 50 \mathrm{mv} at 500 \mathrm{k} Ohms\end{array}\right\}\)| Other |
| :--- |
| Impedances |
| can be made |
| to special order. |

Frequency Response: $\mathbf{3 0 - 2 0 , 0 0 0 ~ H Z} \pm \mathbf{3 d b}$.
Signal/Noise Ratio: - 65db.
Bass: continuously variable 20 db . at 100 HZ .
Treble: continuously variable 20 db . at 10 KHZ .
Output: variable up to 1 volt RMS at 25 k Ohms.
Size: front panel $12 \frac{1}{2} \times 5 \frac{1}{2}$ cut out required $11 \frac{1}{2} \times 4 \frac{1}{2}$.
Completely built and tested.
PRICE $£ 18.0 .0$ inc. P, \& P.

M B/ DISCOSOUND 70 MAIN AMPLIFIER

This ia a 70 watts RMS (8 Ohms) High Fidelity power Amplifier which utilises all silicon transistors of modular construction and features, full automatic overload protection against short or open circuits. The High output is ideally suited for discotheques, groups, clubs, etc., or anywhere where reliability and quality are required. This unit is the companion model for use with our control pre-amp Discosound PRE-4, or can be used with any other high quality dreamp control unit.
Specification:
Power Output: 70 watts RMS into 8 Ohms.
Frequency response: $20-20,000 \mathrm{~Hz} \pm 2 \mathrm{db}$.
Harmonic distortion: less than 0.5% at 70 watts RMS.
Input Impedance and Sensitivity: 700 mv at $\mathbf{2 0 - 3 0 k}$ Ohms.
Size: $7^{\prime \prime} \times 9^{\prime \prime} \times 6^{\prime \prime}$.
Completely built and tested on steel Chassis.
PRICE $£ 30.0 .0$ inc. P. \& P.

DJ 30L PSYCHEDELIC LIGHT CONTROL UNIT

3 channel light control unit that handies up to 1,000 watts per channel. Separate bass, middic and treble controls for full frequency separation.

Completely built and tested.
PRICE £37.10.0 inc. P. \& P.

NTDJOSINTEGRATED

One of the finest units available on the market today, regardiess of price. The front end of the unit consists of a four channel mixer Dtice. The front end of the unit consists of a four channet mixer with separate inputs and volume controls, plus a separate bass, treme and mastifier is its elaborate protection against short and remarkabic ampliner is its elaborate protection against short and open circuit and we can guarantee that it is virtually indestructabic. Allied io this and digtortion that is well below 10 even at full that sutput P.A., clubs etc., or anywhere that high quality high output is required.

SPECIFICATION
Power output 70 watts R.M.S. $\pm 1 \mathrm{db}$ at 8 ohms
Frequency response $\mathbf{3 0 - 2 0 , 0 0 0} \mathbf{H Z} \pm 3 \mathrm{db}$.
Signal/noise ratio Better than 65 db at full output,
Harmonic distortion Less than 1% at full output.
Inputs 1 \& $2-\mathrm{MIC} 8 \mathrm{mV}$ at 50 k ohms.
50 or 600 ohm mic Inputs can be ordered at extra cost to special order.
Bass. Continuously variable 20 db at 100 HZ
Treble Continuously variable 20 db at 10 KHZ
Size $\quad 15 \frac{1}{2}$ in $\times 5$ in $\times 6$ in.

PRICE ${ }^{5} 55.0 .0$ inc. P. \& P.

Also available DJ105S 30 watt P.A. Amplifter. Similar specification to above.
PRICE £35.0.0 inc. P. \& P.

For full details of these and all Discosound Products write direct to :-
DISCOSOUND, 122 BALLS POND ROAD, LONDON, N.1. Tel: 01-254 5779
Full money back guarantee if returned within 10 days.
All Discosound Products are guaranteed for 12 months.
Demonstrations given at any time.

MARCH ISSUE

RADIO GOISTTRUGTOR

"DISCOVERY"- BEGINNER'S RECEIVER

Written especially for the beginner, this 2 -valve 4 -stage design - ECC83, ECL82 - has an integral power supply (BY100 silicon rectifier) and features a grounded-grid input stage. An efficient reaction circuit with absence of "dead spots" is a feature of the design. Coverage is from 30 to 1.7 MHz (approx), also the medium wave-band.

FREE

A four-page art paper cut-out colour supplement featuring Workshop Plans, Circuit, Point-to-Point Wiring Dlagram and Testing Tables for this receiver.

PLUS
 SPECIAL WORKSHOP EQUIPMENT OFFER

OTHER CONSTRUCTIONAL PROJECTS DATA SHEET 36 SUPPORTING FEATURES

RADIO COISTRTLUTOR

 ON SALE NOW 3/-Copies may also be obtained direct from the Publishers-3s. 6d, including postage. Published by:

DATA PUBLICATIONS LTD.;
57 MAIDA VALE, LONDON, W.9.

TRANSISTORS etc.

AC107 AC126
AF115 AF116 AF117 BFY 18 BFY5I GETII OAS OA9 OA47 OA81
OA85 OC 23 OC25
OC26

Crystal Diodes-6 for $2 / 6$ (7d.)

SILICON DIODE	
BY 100800 piv	2/14
500 m A 250 piv	1/9
Avalanche 11/4 A	
Sir Amp Series	
BYZ13 300 piy	$3 / 6$
BYZ12 600 piv	4/6
BYZ11900 piv	5/-
BYZ10 1200 pir	5/6
Mullard Stack FW	
Bridge	
12A 100 piv	39/6 (3/-)
THYRISTORS	
5 amp serles	
100 piv	$7 / 6$
200 piv	9/=
300 piv	10/6
400 piv	12/-
800 pir	25/=
10 amp serles	
50 piv	10/-
100 piv	12/-
100 amp series prices avail-	

Midget Electrolytic Conds. Wire Ends

Conds. Wire Ends At Gd. ench	
0.8MF	25 volt
$4 \mu \mathrm{~F}$	150 volt
$640 \mu \mathrm{f}$	2.5 voli
At 9d. each	
$2 \mu \mathrm{~F}$	350 volt
${ }_{4}{ }^{\text {F }} \mathrm{F}$	12 volt
$8 \mu F$	12 voll
$16 \mu \mathrm{~F}$	16 volt
30, F	10 volt
$100 \mu \mathrm{~F}$	6 volt
$125 \mu \mathrm{~F}$	4 volt
At 1/- each	
164 F	250 volt
$50 \mu \mathrm{~F}$	90 volt
$100 \mu \mathrm{~F}$	12 volt
100mF	25 volt
$200 \mu \mathrm{~F}$	10 volt
$320 \mu \mathrm{~F}$	10 vol

2000 MFD. $30 \mathrm{~V} \quad 5 / 6$ 1500 MFD. 30 V

Additional Transistors-AF147 and AF150, 24V. Larger envelope, 4 leads, collective current 10 mA, gain $70-4 /-$ each. $A F 149-g a i n$ 225- $-4 / 6$ each.
Also $8 \mu \mathrm{~F} ~$
$350 \mathrm{~V} \quad 1 / 2,25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 3$ and $50 \mu \mathrm{~F} 50 \mathrm{~V}$. Other elecirolytics in current list. Also $8 \mu F 350 V 1 / 2,25 \mu F 25 V 1 / 3$ and $30 \mu F \mathbf{5 0 V} 1 / 9$. Other eiecirolyics
Postage, Packing and Insurance all above $1 /-u p$ to 11,12 and over charges paid.
Postage, Packing and Insurance all above $1 /-$ up to 11,12 and over charges paid.
2 GANG VAR. CONDENSER: Mod., air-spaced. 0005 ea . sec. $5 /-(1 /-1,3$ GANG, $7 / 6$ (1/6).

 $001 \mathrm{mfd} / 1 \mathrm{mfd}$. -20 to +22 dB . Complete with test teads and instructions. OV protected 1970 mode! with e very refinement, 44.10 .0 (2/6). JUNIOA MODEL al $47 / 6(2 / 6): 1000 \Omega / \mathrm{V}$ described in free list.
SOLDERING IRON. Slim Mod. British High speed, $81 / 4 \mathrm{in}$., all paris replaceable, fully guaranteed for professional, radio and general D.I.Y. use, 19/6 (1/6).
1AMOMD STYL Replacements for BSR TCBLP. TC8/S and TCRLP/STEREO GC8LP: ACOS GP65/67; all at 7/6 each (1/-). ACOS GP73 BF G40L.P; GARRARD GC2LP and TONE \&TA 9TA 13/6 (1/-).
SAFPHIEE all the above $7 / 6$ types only ulso ACOS GP37 at $3 / 3$ each ($1 /-$-). ACOS GP91 at 7/6 1/-). No other lypes at present, and no 78 rpm available in any type.
PCKaIP CAPTRIDC - All fitted Siyli and Standard fittings. Mono GP67/2, 15/-. records monaurally with min, wear, GPOI/SC, 21/- Watest Stereo GP*3, 24/6 so plays Stere top quality for expensive ouffits. GP94, $\mathbf{3}$ - -6 (all $1 /-$). PPS ELIMINATOR (A.C.) I7/6 (1/6). TWO STATION TRANS. INTER-COM. Excellent baby alarm. Inslant, easy fitting with leads, plugs and baltery. All you require $52 / 6(3 /-)$. TZANSISTORISED AMPLIFIERS, 3 watt, 9 V operation, $45 / 6$ ($1 / 6$): $71 / 2$ watt, 6 trans. 24 V
operation 69/6 (2/6).
Exira High Torque MINI-MOTOR, $41 / 2$ to $12 \mathrm{~V}, 1 / 2 \times{ }^{7}$ sin. $5 /-$ ($1 /-$), 9,000 r.p.m.
SUSSTITUTION BOXES. Capacitance $25 / 6(1 / 6)$ Resistance $32 / 6$ (1/6). Both
SUESTITUTION BOXES. Capacitance $25 / 6$ (1/6). Resistance $32 / 6$ ($1 / 6$). Both fuil range and complete. Full details in list.
TEST PRODS: Flexible, unbreakable 24in. Red and Black leads. thin 41/4in. prods, $11 / 4 \mathrm{in}$. plugs 4/9 (1/-). CROC. CLIPS: Plated with screw, or with red/black handles, ©d. each. $5 /-$ doz. (1/-)
 $1200 \mathrm{ft} .11 / 3$. 7 in . 18000 f . $18 /-(1 / 3 \mathrm{ree})$. Still the finest quality and value obrainable.
MICROPHONES_CRYSTAL. MIC9I. Desk, 16/3; MIC45, curved hand grip 17/6; Stick "60" 20/3; Stick "39" 23/6 (1/6 each type). Cream plastic hand lype 7/6, or with "sirut" stand, switch and 2 leads with 2.5 and 3.5 plugs $12 / 6$ ($8 / 3$). Lapel (or hand) with clip $6 / 6$ ($1 /-$). Machined meta) lapered stick lype with neck cord and adaplor to fil standard floor stands. 25-(1/6). DYNAMIC: Cream hand/lable 15/5 (1/6). MS10 50K 3 . 31/ $x^{7}{ }^{7}$ in. with Base. Adaptor 37/6 (2/6). MS11, similar but fixed on fiexitle Swan neck to switch-hitied base $w, 6(2)$). metal, for hand or stand use at new low price of 23.13 .6 (1/6)
CARDIOID DYNAMIC OMNI-DIEECTIONAL: Two highly successful mikes "SQUARE" 208, 5.10.0. BAL type, 209 , with 30×600 ohms imp.. 5.17 .6 (elther type $5 /-$). Fuil detatis in tiat. SPEAEPRS:
6/- per pair (charges paid); $24 / 3 \mathrm{in}$. 3Ω ($6(1 /-) .6 \times 4$ heavy duty 3Ω). pair (charges paid). Limited quantity powerful $213 / 2 \mathrm{in}$. PM transistor replacement speaker, high ohms, excellent 5/9 (1/-). HEADPHONES: High Res. 2000n ea. earpiece 10/6 (1/6); Stereo Dyn -16ת 63/-(3/-). EARPIECES with lead amd min. jack plug, magnetic 1/9. Crysial $4 / 5$ (up to 3 for 1 - on either). Slate if 2.5 mm . or 3.5 mm . plug required. (Crystal 3.5 mm . only.)
AERLALS, Car Typen: Telescopic, vandai proof, locks retracted, 2 keys and all fittings, 21/6 (2/6) Motor diven, $12 V$. 5 section, complete $87.10 .0(5)-$).
in. . no swivel, screw hole in base, 6/6. O-section 6 iNG 8 section, swivel fixing assembly, $12 / 6$.
screw hole in base, no swivel $4 /-(1 /$-all sizes $)$.
DPDT DPDT 3/3. Side type, Sub-min. DPDT $1 / 6$ each. Small DPDT 3 way, centre "off"' 1/9. Reed magnetic orvoff 19 (up to three, $1 /-$; id each all additional). Rotary switches eic. in list, $12 / \mathrm{l} / \mathrm{l}$ VIB青ATORS: Famous makes only, 12 volt
each either type). No other types a vailable.
MAINS NEON TESTER: FIy leads 2 2-. Pocket screwdriver type 3/s. PLUGS: Std, Jack, plastic oody 2/3. Screened 3/-. VALVE HOLDERS: B7G or B9A, Moulded 6d. (all above, $1 /-$ up to three) Connecring Wine: 5 coils assid, cols. each 5 yds. Solid Core $\mathbf{2 / 6}$. Flexible $3 /$-. Super thin for Sheathed, $1 / 3$ yd. (Gd, up to 6 yds, over 6 yds. post free) TWIR MIEE CABLE: $1 / 3$ yd. SINGLE MIKE CABLE: Ad, yd. Both flexible, screened and sheathed. (Up to 3 yds. 8d., each additional yard ld. extra.)
R.F. FIELD INDICATOR, s-band with antenna, monitoring crystal earpiece, visible indicator RETRACTABL ELETIRL
RETRACTABLE FLEXIBLE LEADS. Space saving "Curly", many uses in car and bome: with phono plug each end, 6ft., 4/6: 12ft., 7/9; With phono plug one end. phono socket at other, $6 \mathrm{ft} . .3 / \mathrm{m}$, CAR RADIO: Splendid new All-British dash-mounting radio using Mullard iransistors and circuit M. and L. wave. Separate speaker and baffle. Absolutely complete for + or - chassis, $\mathbf{\$ 1 1 . 1 1 . 0}$ (6/6). A huge success since introduction
CURRENT LIST: Sent with all orders or free for s.a.e. details of cable, croc. clips and leads, Continental din plugs for Grundig. Telefunken equipment, etc., dials, plugs and sockels, panel meters, record player and tape recording accessories. Battery chargers, test equipment, terminals. special transistors, portable sets, more switches and other componnens, eroboard etc., etc. This advertisement cancels all previous ones and lists supplied prior to Feb. 28th, 1970

FELSTEAD ELECTRONICS

(PW29) LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE, SK8 4LE
TERMS: Cash with order only. No C.O.D. or caller service. Posi. packing and insurance accepted, and a minimum charge of $I /$ - is now made. Charges apply to G.B. and Eire only. Overseas orders welcomed. Air or surface mail at cosi. Sent al buyer's risk, unregistered and uninsured untess specified and min. insuranceireg. Fee of $3 / 2$ sent.

This month I have enough DX News and logs to fill several pages so I will start with :-
Peter Giles of Wolverhampton has a Heathkit RG-1 and a 70 foot end-fed aerial which enabled him to send in the following log:-

11855 S. A rabia in English from 0430 to 0530
11970 R. Lebanon in English from 0230 to 0300
15105 WIBS in English (weak signal), 1945 to 2130
17705 Havana, Cuba in English from 2010 to 2138
17920 UAR in English from 1315 to 1430.
N. G. Pope of Chesterfield also heard the Saudi Arabian station in English on 11855 but at the earlier time of 1716-1730.
Mr. Pope also mentions that the Voice of Denmark will continue to broadcast in Danish in accordance with the following schedule:-

On 15165 at 0730-0815, 0945-0950, 1130-1155, $1200-1245,1330-1345,1400-1445,1730-1815,1830-$ 1915 and 2100-2145 also on 9520 from 0100-0145.

The station will only answer letters and reports which are written in Danish.
Mr. T. R. Gibbs of Swindon sent me his log which included: Radio Portugal on 17895 and 21495 at 1350-1415: Radio Australia on 9570 at 2100-2130 and All India Radio on 7215,11775 and 15435 at $2200-2230$.
Michael R. Preston of London, NW11 used his HMV Domestic and 12 metre wire to send in one of the best logs this month:-

9540 R. Lubumbashi, Katanga, Congo in French at 2200

9605 Athens at 1832
11925 Tashkent at 1400.
Michael also mentions that Radio Finland now uses 11755 instead of 11805 in all transmissions including English from $1800-1830$ which is also on 9550 and 15185. Another news item from Michael says that Radio New Zealand plans to increase its power from 7.5 to 20 kW .
Robert Hanstock of Sheffield sent me the English schedule of Radio Belgrade which reads:-

1530-1600 on 9620, 11735 and 15240; 1830-1900 on 6100 and 2000-2030 on 7200 and 9620 .

Another good log came from Mr. R. Ellis of Stroud with his Hammarlund receiver and 49 metre ' V ' dipole:-

7250 Vilnius, Lithuania from 2230 to 2300
11855 S. Arabia, good signal from 1830 to 1900
15150 Radio Kuwait, 55455 from 1600-1615
15180 ETLF in English sign on at 1600
15255 HCJB, Ecuador, 54343 from 1900 to 1915
17750 Karachi, Pakistan, 44344 from 1500 to 1511
17850 Bucharest, Rumania, 44233 from 1315 to 1330.

Kevin Goulding of Bath informs me that the

World Radio-TV Handbook Co. Ltd. (see December 1969 issue) has changed its address to: S ϕ liljevej 44. 2650 Hvidovre, Denmark.

Africa

Sierra Leone: The latest schedule from Radio Sierra Leone indicates that all transmissions are on the frequency of $3316(10 \mathrm{~kW})$ and the hours of broadcasting are: $0600-0930,1245-1330$ and 15452300 Monday to Friday; 0600-1000 and 1200-2330 on Saturday and 0600-2230 on Sunday.
South Africa: Radio RSA continues to broadcast in English to the U.K. from 1756 to .1850 on 15250 and 21480 but has dropped the frequency of 17795.

Asia

Nepal: Radio Nepal signs on at 0120 on 7105 and 11970 and also at 1220 on 7165 and 11970, the power used is 5 or 100 kW .
Mongolia: According to a new programme schedule from Radio Ulan Bator the station now broadcasts in English from 1220 to 1250 on 15445 and 17785 and also from 2200 to 2230 on 9540 and 11860.

Qatar: Radio Qatar is now using the new frequencies of $5150,6135,9550,9770$ and 11710. This should make reception easier as the station used to be on the very crowded channel of 9570 only.

South Vietnam: Radio Vietnam in Hue broadcasts in Vietnamese on 9667 until sign off at 1500, this station is not listed in the World Radio-TV handbook.

Oceania

Australia: Radio Australia has a new broadcast in English for the Pacific area on 15140 from 0900 to 1400. The station is also testing the frequency of 11920 between 2000 and 2055.
Gilbert and Ellice Islands: Radio Tarawa can be heard on 4912.5 and the following schedule is given:-
English and Vernaculars from 1845 to 2000 Monday to Saturday and in English from 0700 (0630 on Sunday) to 0745 daily.
New Zealand: Radio New Zealand has been picked up in England between 0700 and 0845 with fair strength on 11780.

Tahiti: Radio Tahiti, Papeete has been heard around 0600 on 11825 with strong interference from several adjacent stations.
Many thanks to all of you who sent in your logs for the benefit of the other readers, I hope that you will continue to do so and will be joined by many other contributors.

73 and good DX until the next time.

THE AMATEUR BANDS David Gibson, G3JJG

IT has been one of those months on the amateur bands. Such a mixture of logs and contradictions that it's difficult to decide just what is what.
One s.w.I. claims that the l.f. bands have been very good and appeared to be getting better towards the end of the month. Another tells harrowing tales of evenings spent listening to long slices of noise, and at times even the arrival of a solitary European station was enough to cause a minor celebration.

The same tale has been repeated at the other end of the spectrum. Some have described ten metres as an r.f. cemetery while others have praised its service in the interests of amateur radiq Perhaps some of us have listened at the wrong times.
At the home QTH, the I.f. bands, forty metres and below, have appeared reasonable. Hoards of W stations have been heard s.s.b-ing to each other and a number of EUs have been logged both calling and working Oceania, although it must be confessed that VK stations and the like could not be received and so don't count.
In the v.h.f. region we scooped an all-time recordtwo logs received. One exponent of these frequencies threatens to listen on seventy centimetres. Any one doing anything with lasers yet?
P. Knisely (Surrey) informs of two more stations now active from Anguilla, VP2EQ and VP2EM. Owls may care to QRX on twenty and fifteen from midnight on most nights.
John Morris, G3ABG, sends details of the Worked All Britain award. Interesting to note that there are certificates for s.w.ls. Interested enthusiasts, and sheepskin hunters, should drop John a line at 24 Walhouse Street, Cannock, Staffs.
P. Flatman (Suffolk), NCX100 plus PR30 preselector, admits to plundering 80 . The swag includes: CN8HD, EA6BG, OHめNC (Aaland Is.), VEIIE, VOIFG, W2HBW, 4 X 4 GV , all s.s.b.
Pearls of wisdom from Pat Johnson regarding the where and when on 80 . For W/VE/VO, any time after 2300 up until 0800 . Best DX frequencies are 3.790 and 3.80 MHz . Pat advises to QRX for LA5KG or ON4UN and listen to their QSOs. He also reckons that the best EU DXers seem to favour a half-wave vertical with ground radials. So if you can plant a 130 odd feet of vertical in your back yard, you're in business. Pat used an Eagle RX60, PR30, a.t.u. and 35 ft end fed running N/S, or a 70 ft wire running $\mathrm{N} / \mathrm{E}-\mathrm{S} / \mathrm{W}$ for s.s.b. sigs from: CN8MN, EASJK, HK3WO, KIKTH, K2ADY, K3UZE, K4JY, LXIGP, OA8V, OJøMR (Market Reef, between Aaland Is. and Sweden), OY2Z, TA3RF, UW9AF, VEIBU, VE3AYS, VOICC, VS6DO, WICF, W3AGM, W4OKL, W9WIB, WB2LWH/VP9, YंV4UA, 4S7PB.
J. Jackson (Leeds), TCS13, a.t.u. plus "wire in the loft" detected 80 metre s.s.b. from: CN8MN, CR4BC, HK3WO, KV4FZ, OJøMR, TA3RF, UW9AF, VE1AUC, VE2MY, VE3HJ, VOICV, VP2VI, WAIAIM/P/VO2, W1FZ. W2PV, W4AQW, WSIOU, YV4UA. He also logged YT3OV, a special Yugoslavian station.
Stephen Champion (Herts) has an R1155 with a 60 ft end fed. He claims that 80 is packed with EUs but that the DX is there for the patient. Stephen's
best were HK3WO and VK3MV.
Tom Maxwell (Lanarkshire) CR7OA and 18 ft end fed had a long, lingering lugfull on fifteen and twenty. Rewards incude: CN8MN, CR6IS, CT2AK, EA3JE, ITITTH, KV4FZ, LXIBA, OK4PI/MM, PY4AS, PY8OL, TF2WLM, TI2JCC, UB9KAG, UNIKAM, VE3GKH, VO9JJ, VP2AA, VR6GX, YV4WT, ZB2BV, ZP5CF, ZS6AJS, 3V8AL, 6Y5GB, 8RIU, 9 K 2 CM , all on 20 s.s.b.
David Robbins (Warwick), CR7OA, 6oft of mains cable "looped vertically up to 20ft." (The Electricity Board shall hear of this!) The following procession passed through the hoop on 15 s.s.b.: CN8HD, CN8HL, CR4BB, CT2AT, HCIMG, ISILIO, JX3DH, KP4RK, KV4FZ, OJØMR, PY4AKR, TF2WKI, TF3HS, TU2BB, VP2AA, W6-QI, YDK, YWQ, ZFN, FDR, HGU, ZB2BY, ZL3JC, ZS6BRK, $4 \mathrm{X} 4 \mathrm{AX}, 4 \mathrm{X} 4 \mathrm{FC}, 4 \mathrm{Z4HG}, 9 \mathrm{H} 1 \mathrm{BL}, 9 \mathrm{Q} 5 \mathrm{SN}$, 9X5SP.
N. Richardson (Bucks) CR70A, PR30, 30ft end fed at 18 ft , queries RA3BCF claiming to be in Moscow. His best on ten metres s.s.b. were: CR6LX, KV4AD, UV3DN and ZS6HR.
John Moore (Leicester) is eavesdropping on two metres. A home brew (good lad) G3BKQ f.e.t. convertor into a CR100/2 tuning $24 \cdot 9 \cdot-26 \cdot 9 \mathrm{MHz}$ is fed with a 6 -element Yagi indoors. (What happens when you want to have a bath, OM?) Signals bearing the a.m. label received from: G3GJY, G3JXN, G3PYG/A (near Sheffield), G8CB, G8BPO, G8BRT/P (near Sheffield), G8BYW/P (Derbyshire). Two independent squeaks of s.s.b. heard from G3OCH and G6NB.
"Tell Glyn Richards he isn't the only 2 metre fan in G.B.", says L. Coombes who lives in Cwmbran. (I don't know either, it's certainly not near St. Albans.) Listening on an Interceptor 1880 raised: G3YRN, G8AFA, G8DCK, GW3IJE, GW5NF, GW8CCA. The antenna is an inverted L about $75 f t$ long.
Quite an active month for contest enthusiasts. March 7-8th BERU contest; 7-8th ARRL phone contest: 21-22nd ARRL c.w. contest; April 5 th 80 metre QRP contest.
A special one on March 28-19th April is the IARC propagation research contest, which is a phone only one. Don't forget that it's nearly mobile rally time. The first in my diary is the North Midlands Rally on 19th April. Listen for a talk-in station at all these rallies on topband. For the c.w. types, National Field Day this year will be on the 6-7th of June. Just time to get a bit of practice in on the key.

BINDERS AND INDEX

Don't let your copies of PRACTICAL WIRELESS become torn and dirty : hard-cover binders are available at 148. 6 d. from:
binding section,
ipC magazines, ltd., SOUTHA MPTON STREET. LONDON, W.C. 2.

Indexes to Vol. 43, 1967-8, are also available at 1s. 6d.
These prices include post and packing.
 transformer coupled to 3 ohm and 15 ohm speaker
sockets. Standard phono input sockets. Fuil wave bridge rectifier power supply for AC mains 200-240v. Controls: Bass, Treble. Volume/on/off. Function selector for PU1. PU2. Tape, Radio. The HSL. 700 is strongly constructed on rigid steei chassis bronze hammer enamel finish. size $9 \mathrm{~A}: 5 \times 44 \mathrm{in}$. high Sensitivity: PU1-50m/v. 56 K input impedance.
Tape- $110 \mathrm{~m} / \mathrm{v}$ I mem input impdance Radio- $110 \mathrm{~m} / \mathrm{v}$, 1 meg input impedance. Output power measured at $1 \mathrm{Kc}-6.2$ watts R MS into ohms. 5.8 watts RMS into 15 ohm . Overall frequency response $30 \mathrm{c} / \mathrm{s}-18 \mathrm{Kc} / \mathrm{s}$: Continuously variable tone controls: Bass, +8 d , $0-12 \mathrm{db}$ at $100 \mathrm{c} / \mathrm{s}$. Treble. tese to 10 d at $10 \mathrm{Kc} / \mathbf{s}$. The HSL. 700 has been Radio Tuner Gramophone deck and Tape Recorder preamp. Supplied ready built and tested compiete with snobs, attractive anodised aluminium front escutcheon panel, onk spindies (can be cut to suit your housins requs.
tions.

$$
\left.\begin{array}{l}
\text { Our Speclal } \\
\text { Price }
\end{array}\right\} 7.19 .6
$$

LOUDSPEAKER BARGAINS
Sin. ${ }^{3}$ ohm 161 . P. \& P. $3 /-{ }^{3} \times 41 \mathrm{n} .{ }^{3}$ ohm $21 /-$
 E.M.I. $134 \times 8 \mathrm{in} .3$ ohm wish hish flux ceramic maknet
$42 /-(15 \mathrm{ohm} 45 /-)$. P . P . $6 /-$ E.M.I. $13 \times 8 \mathrm{in}$. 3 or 15 ohm with two int
network 4 ges. P. $\$$ P. $6 /-1$
 Currens production by well-known British maker. Now with Hiflux ceramic ferrobar magnet assembly 25.10 .0 . P. \& P. $7 / 6$ Guitar models: 25w, \&6.0.0, 35w. \&8.0.0. E.M.I. 3 Hin. HEAVY DUTY TWEETERS. Powerful ceramic magnet. Available in 3 or 8 ohms $15 /$ - each. 15 ohms $18 / 6$ each. P. \& P. 2/6.
12 nn . "RA" TWIN CONE LOUDPEAKER. 10 watts 12in. "RA"' TWIN CONE LOUDSPEAKER. 10 wa
peak handling. 3 or 15 ohm $37 / 6$. P. \& P. 6/-.
 High Flux Magnet. 2 iin. dia. 12/-each. P. \& P. 1/6. BALANCED ARMATURE EARPHONE
Approx 70 ohm impedance. Can be used as ultra sensitive mike or speaker. ONLY 3/6. P. \& P. 1/6.
CRYSTAL MIKES, High imp. for desk or hand use High sensitivity 18/6. P. \& P. 1/6. OUR PRICE 21/- P. \& PY $1 / 6$.
HIGH IMPEDANCE DTICK MIKES. High sensitivity. 39/6. P. \& P. 2/6
PYE MICROSWITCHES S/P. ClO. Lever roller $1 x \in x \neq \operatorname{lin} .4250 v$. AC at 5 amps. Size approx. $1 \times{ }^{4} \times$ Hin. 4/- each. P. \& P $1 /-$ (6 or more post free).
HONEYWELL MICROSWITCHES. S/P. C/O.
 Size approk. $1 \frac{x}{3}$
(6 or more post free).
TELESCOPIC AERIALS WITH SWIVEL JOINT. Can be angled and rotated in any direction. 12 section Heavy Chrome. Extends from 7in. to approx. 56 in. Maximum diameter tin. 101- each. P. \& P. 16. section Lacquered Brass. Extends from 6 . to $22 t i n$.
approx. Maximum diameter tin. $5 /-$ each. P. \& P. 1/BRAND NEW MULTIRATIO MAINS TRANSFORMERS. Giving 13 alternatives. Primaty: $0-210-$ 240 v . Secondary combinalions $0-3-10-15-20-25-30-$
$35-40-60 \mathrm{v}$. half wave at 1 amp . or $10-0-10,20-0-20$. $35-\mathbf{0 - 6 0 v}$. half wave at amp. or 2 amps full wave. Size 3 in . long $\times 34 \mathrm{in}$. wide $\times 3 i n$. deep. Price 32/6. P. \& P. $6 /$-.
MAIS
TRANSFORMER. For transistor power supplics
Pri. $200 / 240 \mathrm{v}$. Sec. $9-0-9$ at $500 \mathrm{~mA} .11 /-$. P. \& P. $2 / 6$. Pri. 200/240v. Sec. $9-0-9$ at 500 mA . $11 /$. P. \& P. $2 / 6$.
Pri. 200/240v. Sec. $12-0-12 \mathrm{at} 1 \mathrm{amp}$. $4 / 6$. P. \& P. $2 / 6$.
Pri. 200/240v. Sec. $10-0-10 \mathrm{at} 2 \mathrm{amp}$ 27/6. P. \& P. $3 / 6$.
 12/6.P. \& P $2 / 6$.
BRAND NEW: PARMEKO MAINS TRANSEORBRAND NEW! PARMEKO MAINS TRANS $\mathbf{M 3 0 - 3 3 0 v}$. 100 mA and 6.3 v , at 2 amps, 6.3 v at 2 amps and 6.3 v . at Electrostatic screen. Suitable for vertical or drod
 Weight 81b. Limited number only at $37 / 6$, P. \&P. $8 /-$ -
HIGH GRADE COPPER LAMINATE BOARDS HIGH GRADE COPPER LAMINATE BOARDS
$8 \times 6 \times$ in. FIVE for $10 /-$. P. $\$ 2,2 /$.

SPECIAL OFFER!!

Your opportunity to acguire a first class HI-FI
LOUDSPEAKER SYSTEM at extremely Loderate price!
Beantifully made teak fintsh enclosure with most attractive Tygan front. Size 16$\}^{\prime \prime}$ high $\left.\times 10\right\}^{\prime \prime}$ wide \times $6^{\prime \prime}$ deep. Fitted with E.M.I. Ceramic Magaet
$13^{\prime \prime} \times 8^{\prime \prime}$ hass unit, two M.F. tweeter units and $13^{\prime \prime} \times 8^{\prime \prime}$ hass unit. two H.F. tweeter units and
crossover. Power banding 10 watts. Available crossoyer, Power band
3 or 15 obm Inapedance. OUR PRICE WHILE LMITED STOCKS LAST

8 GNS

TRANSISTOR STEREO $8+8$ MX II

Now using Silicon Transistors in Arst five stages on each channel resulting in even lower nolse level with improved Kit. Uses 14 transistors giving 8 watts push pull output per channel (16 W . mono). Integrated pre-amp. with Bass, Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 15 ohms. Compact design, all ants supplied including drilled metal work. Cir-Kit board. attractive front panel. knots, wire, solder, nuts, bolis-
no extras to buy. Simpie sted by sied instructions enable any consituctor to build an amplitier to be proud of. Brief speciftcation: Frea. response $\pm 3 \mathrm{~dB}$ $20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 dB . Trebie cul approx. to - 16 dB . Negative feedback I8dB over main amp. Power requirement $25 V$ at 6 amp
PRICES: AMPLIFIER KIT $210.10 .0 ;$ PO
PRICES: AMPLIFIER KIT 210.10 .0 ; POWER PACK KIT 83.0.0: CABINET 23.0.0. All Post Free Also available STEREO $10+10$. As above but 10 watts per channel. PRICES: AMPLIFIER KIT \&12: POWER
Circuit diagram, construction details and parts list (free with kil) $1 / 6$ (S.A.E.).
Offeial stocisis of all EQUIPMENT
P.w. Doviluding the
P.W. DOUBLE 12 STEREO AMPLIFIER as featured in Practical Wireless April, May and June issues
Component pack as specified. Total cost 223.5.6 Plus P. \& P. 11/-. (Excluding metalwork, knobs, plugs and sockers and fuses)

E.M.I. 4-SPEED PLAYER E.M.I, 4-SPEED PLAYER
Heavy 8tin. metal turntable Heavy $8 t i n$. metal turntable.
Low nutter performance 200 i Low nuter periormance 200 ,
250 v . shaded motor (90 v . tap). 250 F shaded motor latest type
Complete with mono cartridge with t/o stylii
for LP/78. ONLY $63 /-$ P. \& P. for
$6 / 6$.
QUALITY RECORD PLAYER AMPLIFIER MKII A top quality record player ampliffer employing heavy EZ80 valves. Separate Bass. Treble and Volume controls. Complete with output transformer matched for 3 ohm sperker. Size 7 in. Wide $\times 3$ in deep \times Gin high.
Ready built and tested. PRICE $75 /-$ P. \& P. $6 / \%$. Ready built ant tested. PRiCE 75-. P. \& P. 6% transformer and speaker ready to ft into cabinet below PRICE 97/6. P. \& P. ${ }^{7 / 6}$. MKII. Uncut motor board size $14 \pm \times 12 \mathrm{in}$. clearance 2 in . below. Shin. above. Will take above ampliffer and any B.S.R. of GARRARD changer or Single PRICE 79/6. P. \& P. $9 / 6$

AMPLIFIER HAZ4 MK AMPLIFIER HA34 MK II. tion of records. A.C. Mains operation. Ready built on
plated heavy gauge metal
and plated heavy gauge metal
chassis. size $7 t^{\prime \prime} w . x 4^{\prime \prime} d . x$ chassis. size 7 n $^{\prime \prime}$ w. $\times 4^{\prime \prime} d . \times$
$4 x^{\prime \prime} \mathrm{h}$. Incorporates ECC83. EL84, EZRO valves. Heavy
duty. double wound mains transformer and output transDeaker. Separate volume control and now with improved wide range tone controls giving bass and watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs, valves, etc., wired and tested for only, \&4.15.0. P \& P. $6 /-$ HSL "FOUR" AMPLIFIER KIT, Similar in appearance to HA 34 above but employs entirely different and
advanced circuitry. Complete set of parts, etc. $79 / 6$. advanced P. \& P. 6
BRAND NEW TRANSISTOR BARGAINS. GET 15 (Matched Pair) 15/-; V15/10p 10/-: OC71 5/-: OC76 Set of Mullard 6 transistors OC44; 2-0C45; AC128D matched pair AC128 25/-; ORP12 Cadmium Sufphide Cells 10/6. All post free.
VYNAIR AND REXINE SPEAKER AND CABINET FABRICS. Approx. 54 in , wide. Usually $35 /-7$ yard.
OUR PRICE $15 /-$ der yard length. P. \& P. $2 / 6$ (min. one yd.). S.A.E. for samples.
POWERFUL COMPACT Motor for $6-9 \mathrm{v}$. Battery operation approx. 25 mA. Made originally for "Star", and "Greencoas" record player decks. Built in constant speed device. Ideal for models etc. Overall size appro
1 it $\times 17.7 / 6$ each. P. \& P. $1 / 6$ (3 or more Posi Free).

DE LUXE STEREO AMPLIFIER

${ }^{4} \mathrm{~A} . \mathrm{C}$ minins ${ }^{200024}$ heavy duty fully isolated mains
iransform er with full wave recti-
licstion fication
giving ede a u ete with negli Vaive line up: $-2 \times$ ECL86 Triode Pentodes $1 \times$ EZ80 as full wave rectifier. Two dual potentiometers are provided for bass and trebic control, giving bass and treble boost and cut. A dual voiume control is used
Balance of the left and riant hand channels can be adjusted by means of a separate 'Balance' control fitted at the rear of the chassis. Input sensitivity it approximately $300 \mathrm{~m} / \mathrm{v}$ for fuil peak output of 4 waits pe channel (8 watts mono), into 3 ohm speakers. Full negative feedback in a carefully calculated circuit. allows high volume levels to be used with negligible distortion. Supplied complete with knobs, chassis size $11^{\prime \prime} w \times 4^{\prime d}$. Overall height including valves $5^{\prime \prime}$. Ready
built and tested to a high standard. PRICE 8 gnin built and tested to a high standard. PRICE 8 हो
P. \& P. $8 /-$. 4-SPEED RECORD PLAYER BARGAINS Mains models, All brand aew in maker's packing All plus Carriage and Packine $6 / 6$
LATEST GARRARD MODELS. All types avallable
1025,2025, SP25. 3000 . AT60 efc. Send S.A.E. fot Intest Prices
PLINTH UNITS cut out for Garrard Models, 1025 2025, 2000, 3000, AT60. SP25. With transparent plasti cover. OUR PRICE 5 gms , complete. P. \& P. 8/6
SONOTONE 2539 High output Stereo Cartridge T/O stylus for Stereo/LP/78. Complete with universal Mountig
SONOTONE 9TAHC Compatible Stereo Cartrida with diamond stylus 50/-P. \& P. 2/\& CARTRIDGE for EP/LP/Stereo/78. 32/6. P. \& P. 2/ LATEST RONFTTE T/O MONO COMPATIBLE CARTRIDGE for playing EP/LP/78 mono or stered records on mono equipment. Only $30 /$. P. \& P. 2/HIGH GAIN 4 TRANSISTOR PRINTED CIRCUIT
AMPLIFIER KIT
Type TAI
in Peak outpu
in excess of if

watts

All standard
British
nents.
nents.
printed circui
parel size $6 \times 3 i$

- Generous size Driver and Uutput Transformers Output iransformer tapped for 3 ohm and is ohm
speakers. ACl28D and matched pair of ACi28 o/p). Mulard operation. Everything supplied, wire, battery clips solder. etc. Comprehensive easy to follow inttuc tions and circuit diagram 2/6 (Free with Kit). All parts Sold separately.
Also ready buith and iested 526. P. \& P. 3/-.
HARVERSON'S SUPER MONO MMPLIFIER
A super quality gram amplifier using a double wound mains transformer, E280 rectiffer and ECL82 triode
pentode valve as audio ampliffer and power output pentode valve as audio amplifter and power outpu Volume and tone controls. Chassis size only 7 in . wide $\times 3 \mathrm{in}$. deep $\times 6 \mathrm{in}$. high overall. AC mains 200/240v. Supplied absolutely Brand New completely wired and
tested with valves and good quality output transformer. FEW ONLY
OUR ROCK
OUR ROCK BOTTOM
BARGAIN PRICE
$\mathbf{S 5 / =}$
P. \& P.
$6 /-$

Open alf day Saturday
Early closing Wed. I p.m.
A few minutes from South Wimble-
don Tube Stalion.

HARVERSON SURPLUS CO. LTD.

I70 HIGH ST., MERTON, LONDON, S.W. 19 Tel.: 01-540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. ${ }^{\text {P }}$ PARGES TOUGK ONLY. P. \& P. ON OVERSEAS ORDERIS CHARGED EXTRA.

for fast, easy, rellable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

SAVBIT ALLOY ALSO REDUCES COPPER BIT WEAR.

Ecomically packed for
general electrical and electronic
soldering. 75ft. 18 gauge on plastic reel Recommended retail price 15/-

A RANGE OF SOLDERS IN HANDY DISPENSERS.

THIN GAUGE SOLDER, ESSENTIAL FOR
soldering small components and thin wires. High tin

content, low melting point, 60/40 alloy, 170 ft . 22 gauge on plastic reel. Recommended retail price 15/

INVALUABLE FOR STRIPPING flex, THE NEW AUTOMATIC OPENING BIB WIRE STRIPPER AND CUTTER, easily adjustable for all standard diameters. Plastic covered handles can also be used as wire cutter. Recommended retail price 8/6

亥 From Electrital and Hardware shops. If unoblainable, write tu:

 Multicore Solders Ltd., Hemel Hempstead, Herts.
YOUR CAREER in RADIO \& ELECTRONICS ?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Seryo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send free brochure to
NAMEns. \quad... Block
ADDRESS ... Caps.
Please
1/70

BRITISH
 NATIONAL RADIO
 SCHOOL

PART 2
LAST MONTH THE PARAMETERS OF F.E.T'S WERE DISCUSSED TOGETHER WITH A TESTER SUITABLE FOR DETERMINING THESE. THE SECOND PART DESCRIBES A NUMBER OF CIRCUITS USING F.E.T'S.

F.E.T. CASCADE WITH TRANSISTOR AS A PRE-AMP FOR CRYSTAL OR CERAMIC PICK-UP

A very useful combination that presents a high input impedance and low output impedance suitable for other transistor stages and provides gain is shown in Fig. 7.

The output transistor is set at a collector current of 0.5 mA if the output is at plus 8 V and $\mathrm{R} 1+\mathrm{R} 2$ is $16 \mathrm{k} \Omega$. As it is a feedback amplifier, putting in a signal of 0.1 V means that for the circuit to be satisfied, $0 \cdot 1 \mathrm{I}$ must be fed back to the source from R2. If 0.1V occurs across R2, then the current change must be $0 \cdot 1 / \mathrm{R} 2$, and to the voltage across $\mathrm{R} 1+\mathrm{R} 2$ must be $0 \cdot 1 / R 2 \times(R 1+R 2)$; so this voltage, which is the output voltage, will be $\frac{R 1+R 2}{R 2}$ times the input voltage, or in the other words the gain is $\frac{\mathbf{R} 1+\mathbf{R} 2}{\mathrm{R} 2}$

$$
\begin{equation*}
\text { Gain }=\frac{15+0.68}{0.68}=20 \tag{11}
\end{equation*}
$$

Taking a typical MPF103 with a V_{P} of 3 V at a bias of $2 \cdot 5 \mathrm{~V}$, I_{D} will be about $100 \mu \mathrm{~A}$. I $\mathrm{I}_{\text {Dss }}$ will be about 3 mA . Thus from (3)

$$
g_{\mathrm{m}}=\frac{2 \times 3}{3}\left(1-\frac{2.5}{3}\right)=0.34 \mathrm{~mA} / \mathrm{V}
$$

The output impedance will be much lower than in Fig. 6 because the g_{m} is multiplied by the transistor gain, say times 50 .

Fig. 7: A high input impedance/low output impedance preamplifier.

$$
\mathbf{R}_{\mathrm{out}}=\frac{15000}{1+(15 \times 0.34 \times 50)}=\frac{15000}{250}=60 \Omega
$$

And input impedance is of course $2 \cdot 2 \mathrm{M} \Omega$.
At $0.5 \mathrm{~mA} \mathrm{I}_{\mathrm{C}}$ for the output transistor plus the 0.1 mA through the f.e.t. only 0.4 V is produced across the 680Ω resistor, so the rest of the f.e.t. bias of 2.5 V must be made up by a source resistor in the f.e.t. This is $2 \cdot 1 \mathrm{~V}$ at $100 \mu \mathrm{~A}$ i.e.. approximately $22 \mathrm{k} \Omega$ which must be by-passed by a capacitor to prevent negative feedback. The $100 \mu \mathrm{~A}$ drain current must not be allowed to go into the transistor base, which with a gain of 50 will only need about $10 \mu \mathrm{~A}$. This gives a value of drain resistor equal to $6.8 \mathrm{k} \Omega$ but this may need adjustment to set the output voltage at approximately 8 V .

Hi-Fi- TONE CONTROL

Figure 8 shows a $\mathrm{Hi}-\mathrm{Fi}$ tone control circuit which gives up to $\pm 15 \mathrm{~dB}$ of bass and treble control. It is a big improvement over ordinary circuits because most of the capacitors are a tenth of the normal value, these being the most bulky items and so a much smaller unit is possible.

Once again an N-channel f.e.t. is used, source bias is chosen to set the f.e.t. at a low value of I_{D} to allow a high drain resistor for good gain. At present N -channel f.e.t.'s are the most common and cheapest. For instance, taking a Newmarket type NKT0213 with a typical V_{P} of 1 V and $\mathrm{I}_{\text {Dss }}$ of 0.4 mA , if we bias it at $100 \mu \mathrm{~A}$ from equation (2)

$$
\begin{aligned}
& V_{\mathrm{BS}}=1.0\left(1-\sqrt{\frac{0.1}{0.4}}\right)=0.5 \mathrm{~V} \\
& \therefore R_{\text {source }}=\frac{V_{G S}}{I_{\mathrm{D}}}=\frac{0.5}{0.1} \simeq 4.7 \mathrm{k} \Omega
\end{aligned}
$$

If the supply voltage is 12 V and we let the drain voltage be $3 V$ then $R_{L}=\frac{9}{0.1} \simeq 82 \mathrm{k} \Omega$
Then from (3)

$$
g_{m}=\frac{2 \times 0.4}{1}\left(1-\frac{0.5}{1}\right)-0.4 \mathrm{~mA} / \mathrm{V}
$$

Fig. 8: A hi-fi tone control-see text.

So gain from (7) $=0.4 \times 82=33$
This figure of 33 is the inherent gain of the stage but the feedback tone controls reduce this to a low level at middle frequencies and the gain is used to give the treble and bass boost.

F.E.T. VOLTMETER

If f.e.t.'s are used to drive a meter, then a voltmeter with a very high input impedance will result.

For instance, Fig. 9 shows a voltmeter with $20 \mathrm{M} \Omega$ input impedance on all ranges, using a $100 \mu \mathrm{~A}$ meter. In this circuit the tester should be used to get two f.e.t.'s matched so that, at the drain current used, the gate bias is within 10 per cent.

Using a 9 V battery and a potential divider which sets the gate of the right hand f.e.t. at +3 V with respect to the negative terminal of the battery, is the starting point of design.

If lmA is chosen as a useful operating current, then measuring VGs on typical Motorola MPF103's will give a bias of about 1 V . Thus the sources should sit at about +4 V . With the zero set pot. at its mid-position of $2.5 \mathrm{k} \Omega$, then to make 1 mA flow the fixed source resistor must be $1.5 \mathrm{k} \Omega$.

Fig. 9: F.E.T. voltmeter circuit.
These sums shown here are to enable the constructor to redesign the circuit should he not have f.e.t.'s of similar ratings.
Setting-up procedure consists of adjusting the set pot. for zero meter reading with the scale pot. set at zero resistance.
Then apply a known test voltage on the correct range and adjust the scale pot. to correct meter reading; this is a pre-set adjustment and should not require changing again.
This meter drifts very little with temperature, time or battery voltage down to about 6 V , due to the long tailed pair circuit configuration.
In passing it should be mentioned that due to the high impedances involved, pick-up can be troublesome and it is suggested that a metal box be used for construction and a screened lead for the probe.

SENSITIVE F.E.T. MILLIVOLTMETER

If the constructor does not wish to use a sensitive $100 \mu \mathrm{~A}$ meter or requires greater sensitivity, then the addition of two transistors as amplifiers will allow the use of a 1 mA meter with a sensitivity of 30 mV f.s.d.

Figure 10 shows such a circuit with an input impedance fixed only by the input attenuator, which can be as high as $50 \mathrm{M} \Omega$.
The circuit will be recognised as a doubling up of Fig. 7 with some extra complications.

The meter used is made up to 100Ω resistance, which means that 100 mV is required to give f.s.d. The $2.7 \mathrm{k} \Omega$ and $1.5 \mathrm{k} \Omega$ resistors give a gain of 2.8 times but the shunt of $18 \mathrm{k} \Omega$ and the gain set pot. means this can be increased and set accurately to times 3.3 so the input signal required for f.s.d. is only 30 mV .
This sensitivity can be reduced to read any higher voltage in a similar manner to the earlier circuit. But in order to reduce the effects of amplifier drift, it is recommended that the first set of range switching to say 1 V , is carried out by inserting series resistors in the meter circuits. The test meter runs from three 9 V batteries and consumes about 6.5 mA . The f.e.t.'s can be selected on the meter for matched $V_{G S}$ at an I_{D} of 1 mA . The lower f.e.t. is used as a constant current source for the amplifier. If the voltage on the drain of an f.e.t. is varied, then the current through it will not vary by more than a few per cent, as long as the voltage is greater than V_{P}. In this case the tester is used to select an f.e.t. with an $I_{\text {DSS }}$ equal to 6 mA and it is put in the circuit with $\mathrm{V}_{\mathrm{GS}}=0$, or simply gate and source strapped together, so now variations of battery voltage will not change the current fed to the amplifier. Should it prove difficult to get an f.e.t. with the correct $I_{\text {DSS }}$, then select one with greater than 6 mA and insert a source resistor as calculated from Fig. 5 a to give an I_{D} of 6 mA .
The transistors should be silicon types but are not critical as regards frequency response.

Fig. 10: Circuit for a sensitive f.e.t. voltmeter.

TAPE PRE-AMPLIFIER

In replaying tapes, the aim of the amplifier is to present a high impedance at least ten times the head reactance and if possible, upon switching on, not

Fig. 11 : Tape preamolifier equalised for 34 i.p.s. The transistor should be shown as a 2 N2926.
introduce any capacitor charging currents or d.c. into the head circuit, because these will cause noise to be impressed on the tape.

Most normal transistor circuits inevitably do cause charging currents to flow, however they can be made high impedance enough with some trouble; but an f.e.t. pre-amplifier gets around all these troubles. The tape head can be fed directly into the gate, and so no capacitors are involved; also the high input impedance is unquestioned.

Figure 11 shows a circuit with $120 \mu \mathrm{~S}$ equalisation for normal 3 in. recorded tapes.

Fig. 12: The equalisation curve used in Fig. 11.
The f.e.t. is run at an I_{D} of 0.5 mA and R_{s} is calculated from the tester measured characteristics as in Fig. 5a. The $2.7 \mathrm{k} \Omega$ and 100Ω resistors give a medium to high frequency gain of 27 times, while the capacitor in series with the $2.7 \mathrm{k} \Omega$ gives the low frequency rising characteristic as needed for tape replay, as shown in Fig. 12.

The time constant should be $120 \mu \mathrm{~S}$ for normal 3 in . tapes, so with the $2.7 \mathrm{k} \Omega$ resistor

$$
C R=120 \times 10^{-6}
$$

$$
\therefore \mathrm{C}=\frac{120}{2.7 \times 10^{3}} \mu \mathrm{~F} \bumpeq 0.04 \mu \mathrm{~F}
$$

The rest of the voltages and currents as calculated are all shown on the circuit diagram.

MAGNETIC PICK-UP PRE-AMPLIFIER

Shown in Fig. 13 is a pre-amp for a high fidelity magnetic pick-up cartridge.

Fig. 13 : Preamolifier for a hi-fi magnetic pick-up cartridge.
Here the f.e.t. is used to present a very high input impedance and then a resistor is put across the input to match the pick-up in use. Otherwise with a normal transistor circuit one would have to design a high input impedance, say $100 \mathrm{k} \Omega$ circuit and then put a resistor in parallel to bring it down to the correct value; this would be all right if the input impedance could be relied upon to stay constant over the audio band and also be constant from unit to unit despite transistor variations; however the f.e.t. overcomes all these problems.
The f.e.t. is biased at 0.5 mA as previously discussed, followed by a grounded emitter stage to give some more gain, and an emitter follower to provide low output impedance and to drive the equalisation components which feed back into the source to give the correct piay characteristics. The transistor pair are coupled together in a d.c. feedback configuration with the a.c. signal removed by the $1 \mu \mathrm{~F}$ capacitor.

The circuit gives a gain of 100 at 1 kHz with an outpat swing of about 2 V r.m.s., enough to fully drive any normal power amplifier, response is within $\pm 1 \mathrm{~dB}$ of the RIAA characteristic from 20 Hz to 20 kHz . Output impedance is less than $1 \mathrm{k} \Omega$.

Design voltages and currents are shown on the circuit diagram.

The previous notes should now have given a good idea of how to use f.e.t.'s to their best advantage, but we finish now with the warning that they are, especially m.o.s.f.e.t.'s, rather fragile as regards stray voltages in handling, and it is recommended that plug-in sockets be used whenever possible and leave the f.e.t.'s out of circuit whenever soldering.

ARE YOU BUILDING THE P.T.V. SINGLE - STANDARD RECEIVER?

* Latest Mullard 20in tube
* Stabilised e.h.t.
\star Flywheel sync.
* Noise-cancelled sync. separator
* Clamped black level
* Isolated chassis

FULL CONSTRUCTIONAL DETAILS STARTING
IN THE MARCH ISSUE OF
PRACTICAL TELEVISION
ON SALE NOW

THE temperature of a piece of intrinsic semiconductor material determines the number of electrons and 'holes' (spaces left in the structure by departed electrons) available for electric conduction. Therefore the resistance of the material depends on temperature. A thermistor is a component consisting simply of two leads joined by a piece of suitable semiconductor material. The instrument to be described measures the temperature-dependent resistance of a thermistor designed specifically for thermometer use and displays the corresponding temperature on a meter. The electric thermometer possesses several features which make it more versatile than the ordinary mercury- or alcohol-in-glass types, viz:
(i) The temperature-sensitive thermistor is connected to the measuring instrument by ordinary twin flex and may be almost any distance from it. This makes the thermometer suitable for many remote temperature sensing applications.
(ii) A meter scale is generally easier to read than the engravings on a glass thermometer.

Fig. 1 : (top) panel layout (bottom) probe construction
(iii) The piece of semiconductor material in the specified thermistor is roughly the size of a pinhead. This means that the thermistor has a small heat capacity and can follow a rapidly changing temperature, and that temperature readings can be taken without delay.
(iv) The thermistor is small enough for insertion in many otherwise inaccessible places, although it is rather fragile.

THERMISTOR

The thermistor specified is a Mullard Varite VA3705 which has a miniature glass bead construction. For general use it can be mounted in a holder made from a hexagonal shape ballpoint pen ('BIC') case (Fig. 1.). The pen cap is used to protect the fragile 'business end' of the thermistor when not in use. Twin flex is connected to the thermistor leads as shown using plastic sleeving to insulate them. This must be done carefully as the leads are fragile. Individual thermistors vary somewhat, but average values of resistance for the VA 3705 are: $6.8 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$. $\left(77^{\circ} \mathrm{F}\right.$.) 700Ω at $90^{\circ} \mathrm{C}$. $\left(194^{\circ} \mathrm{F}\right.$.) i.e: resistance decreases with increasing temperature.

CIRCUIT

The circuit of the thermometer is shown in Fig. 2. B1 and B2 are two small dry cells connected in series to give about 3 volts. Current passes through current limiting resistor R1 and through zener diode D. The zener diode operates in its reverse breakdown condition so that the voltage drop across it is virtually constant (2.4 volts). This ensures the voltage supply to the thermistor is constant in spite of battery wear. The current passing through the thermistor is

Fig. 2: Circult of thermometer
measured by meter M which can be directly calibrated in temperature. VRI is part of the current limiting resistance in series with the thermistor and is preset to give full scale meter deflection (1 mA) at $90^{\circ} \mathrm{C}$. $\left(194^{\circ} \mathrm{F}\right.$.). When S is in the BATT TEST position, the battery voltages under load can be checked on the meter. The dissipation constant of the VA3705 is about $1 \mathrm{~mW} /^{\circ} \mathrm{C}$ which means that the heating effect of the current passed through it will not introduce an inaccuracy greater than $\pm 1^{\circ} \mathrm{C}$.

CONSTRUCTION

The instrument can be constructed in any convenient cabinet and the few components wired direct. The front panel carries rotary switch S , insulated terminals T1 and T2 and 1mA moving coil meter M , which can be any cheap surplus meter, as large as possible for easy reading. ,VRI is mounted inside the cabinet as it only has to be set once; it can be any type of potentiometer, a salvaged volume control from a defunct transistor radio will suffice. The author made a simple holder for the two U12 cells (B1 and B2) from a matchbox, a scrap of metal and two drawing pins (Figs. 3a, 3b).

Fig. 3a: Panel wiring

Fig. 3b.: Battery holder

CALIBRATION

The instrument is easily calibrated using an ordinary mercury thermometer. With VR1 set to maximum resistance, connect the probe to Tl and T2 and place it in water heated to exactly $90^{\circ} \mathrm{C}$. ($194^{\circ} \mathrm{F}$.) as measured with the mercury thermometer. Adjust VR1 for ImA deflection and use a dab of glue or wax to fix it in this position. Now place the probe in water, cooled to exactly $20^{\circ} \mathrm{C} .\left(68^{\circ} \mathrm{F}\right.$.) and note the meter reading. Now plot these two readings
on a graph (Fig. 4). As the temperature coefficient of the thermistor is linear between these two limits, the two plots have only to be joined by a straight line to provide a complete calibration graph. If a clinical thermometer is available it can be used to provide a third calibration point at $36.7^{\circ} \mathrm{C}$. $\left(98^{\circ} \mathrm{F}\right.$.).

Fig. 4: Construction of graph

components list

```
Resistors:
R1 10\Omega 支W 10%%
R2 2.2k\Omega +W 10%
R3 1.5k \Omega ! % W 10%
R4 3-3k\Omega 支W 10%
D 2-4V 1W zener diode
M 1mA f.s.d. moving coil meter
VR1 5k \Omega pre-set pot.
S Two-pole three-way rotary switch
B1, B2 Ever Ready U12 cells
Thermistor Mullard VA3705
```

The graph can be used to calibrate the meter scale directly, if desired. Open the meter unit carefully and away from dust to avoid damage to the movement. A piece of paper suitably calibrated in degrees centigrade and/or fahrenheit is then slipped under the needle and glued in place. Mark the scale with a green area above 0.80 mA . When the needle fails to reach this area on BATT TEST, the batteries should be replaced. If the thermistor is damaged and has to be replaced, the temperature calibration must be repeated.

USE

The instrument is now complete and will continue to give accurate measurements provided the thermistor temperature does not pass outside the range $20^{\circ} \mathrm{C}$. $\left(68^{\circ} \mathrm{F}\right.$.) to $90^{\circ} \mathrm{C}$. $\left(194^{\circ} \mathrm{F}\right.$.). The author's original use for the instrument was measuring transistor heat sink temperatures. Merely touching the probe tip to the heat sink was found to give fairly accurate readings. Overall accuracy of the instrument is better than $\pm 1.5^{\circ} \mathrm{C}$. if a good thermometer is used for calibration. The procedures for converting degrees fahrenheit to centigrade and the reverse are as follows: To convert degrees F. to degrees C., subtract 32 from the F. value, multiply by 5 and divide by 9 ; to convert degrees C. to degrees F., multiply by 9 , divide by 5 , and then add 32 to the result. Degrees Kelvin or Absolute are degrees centigrade plus 273 degrees.

IN the last part we saw that speed is essential in repairing the cheaper transistor radios if an economic job is to be done. Whatever short cuts may suggest themselves in diagnosis and repair should be used even though these may not always be considered to be good practice with more conventional jobs.

Distortion and no-signal faults were dealt with, but now we will consider the symptom of low sensitivity. Almost any stage could give rise to this, but rarely the output stage as faults here generally produce distortion as well. Before getting too involved though, as with other faults, always check the battery first. Although more usually producing distortion, many modern circuits allow the battery voltage to fall to quite low levels before distortion sets in, but sensitivity is bound to suffer.

A quick check can be made by detuning the set and turning up the volume full. A fairly strong background hiss would suggest that the audio circuits were in order and that the trouble probably lay in an early stage, the mixer or the first i.f. A too silent background would indicate that the fault was in the latter stages.

The most usual causes of low sensitivity are mechanical damage, faulty transistors or misalignment. Of the first, a broken ferrite rod is perhaps the most frequent example. A visual examination will soon reveal this. When replacing. make sure that the diameter is the same as well as the length.

In cases where the ferrite rod has broken free from its mounting not only can the fine connecting wires be broken away from the print as described in the previous issue, but the coils themselves can sustain damage. The long-wave coil, being layer wound often suffers with other sharp components digging in and penetrating several layers. This may cause a complete open-circuit or a short-circuit of several turns. This short can be reflected into the medium wave windings and cause low sensitivity on both bands.

Faulty transistors can be diagnosed by voltage readings and shunting a replacement across the suspect as described before. Some idea as to the operation of the i.f. stages can be obtained by detuning each i.f. transformer in turn. There should be a sharp tuning peak in each case with the possible exception of the last one which may be damped by the detector. If it is possible to rotate the core with very little drop in volume, then the associated stage would appear to be faulty. Sometimes a stage may be completely inoperative yet low-volume results can still be obtained due to stray coupling from a preceding stage. Thus the signal 'jumps" the offending stage. Where a good peak is obtained, there is unlikely to be a fault in that part of the circuit. Restore each coil to its correct tuning point before dealing with the next.

Coming back to the ferrite rod aerial again, the
aerial coils may simply be loose on the rod and therefore out of their optimum position. Aligning and sealing will bring back the sensitivity to normal.

Mis-alignment can come about in many ways. Portable radios are obviously subject to more shock and stress than others, hence there is plenty of opportunity for coils to become loose and slip as well as coil cores to turn. If the few quick checks we have outlined here fail to come up with the answer. try re-aligning. Not only may an alignment cure the trouble, but if a circuit fault exists, aligning will often reveal it, as something does not tune up which should do.

Conventional alignment procedure calls for the use of signal generator and output meter, but the simple circuits we are dealing with here do not require these. As we have seen, speed is all important and it is quite possible to do an alignment in just a few minutes without wasting time setting up an array of equipment, by using broadcast signals and the ear. Results are little inferior to those obtained when doing it 'properly', if at all.

ALIGNMENT

As with more conventional methods, the first step is to align the i.f. s. A broadcast transmission should be chosen that is weak in order to avoid a.g.c. action, but it should be steady. One of the more distant BBC Home services will usually serve the purpose. Volume should be turned down to a fairly low level as the ear is more sensitive to volume changes at lower levels.

It can be assumed that the i.f. coils are already near the correct i.f. frequency, or perhaps all except one that has been affected by a fault condition which is now cleared. If it is suspected that all or most of the coils are some way out, as would be the case if the receiver had been tampered with, then a signal generator would have to be used to align to the correct i.f. frequency.

Normally though. the broadcast signal can be used. So starting with the last i.f., the cores are tuned for maximum volume. With a weak station there will be a background hiss due to the local oscillator, and as this is steady, it is often easier to listen to this for making the adjustments rather than the programme content which of course will be varying.

In most cases all i.f. coils will be peaked, but there are some that are stagger tuned. These are usually in the better type of receiver, and stagger tuning is rarely if ever found in the types we are discussing. If stagger tuned coils are peaked, then instability will most likely result. The adjustments should be repeated, especially if it was found that one coil was some way out of tune.

Now we come to the oscillator. Circuits differ widely at this point, but with the simpler portable, differences are not so great as to affect alignment much. Most circuits employ a single oscillator coil

QUICK ALIGNMENT SEQUENCE FOR RADIOS WITHOUT L.W. OSCILLATOR TRIMMER

Tune to:	Adjust:
Weak m.w. station	3rdi.f.transformer for max. volume 2ndi.f.transformerfor max. volume 1sti.f. transtormer for max. volume then repeat procedure.
Radio 2, 1,500m. Radio 3, 364 m. BBC West, 206m. or Radio 1, 247.	Oscillator coil for compromise dial setting Oscillator gang trimmer for cor- rect dial setting then repeat procedure
Weak I.w. station	L.W. aerial coil for max, volume
Radio 3, 464 mm. or nearby weak station BBC West 206m. or nearby weak station	M.W. aerial coil for max. volume Aerial gang trimmer for max. volume then repeat procedure

QUICK ALIGNMENT SEQUENCEE FOR RADIOS

 WITH L.W. OSCILLATOR TRIMMER| Tune to: | Adjust: |
| :--- | :--- |
| Weak m.w. station | 3rdi.f. transformer for max.volume
 2ndi.f.transformerfor max.volume
 1sti.f. transformerfor max.volume
 then repeat procedure |
| Radio 3, 464m.
 BBC West, 206m. or
 Radio 1, 247m.
 Oscillator coil for correct dial
 setting
 Oscillator gang trimmer for cor-
 rect dial setting
 then repeat both procedures
 BBC 2, 1,500m.
 L.W. Oscillator trimmer for cor-
 rect dial setting
 Weak l.w. station
 BBC 3, 4, aerial coil for max. volume
 nearby weak station
 BBC West,206m. or
 nearby weak stationM.W. aerial coil for max. volume
 Aerial gang trimmer for max.
 volume
 then repeat procedure | |

for both wavebands. As it stands, it works the medium waveband, and for the long waveband an additional capacitor is switched in. In some cases a trimmer is switched in as well, and the alignment procedure depends on whether this trimmer is present or not.

The first thing to do then, is to look for a trimmer apart from the two appearing on the gang tuning capacitor. Sets having a bandspread medium waveband in addition to the normal medium wave, will have extra trimmers in which case they will have to be identified. This can be done by giving each a slight turn back and forth and seeing which band is affected. Oscillator trimmers tune sharply whereas aerial trimmers are flat.
Going back to the straightforward two-waveband job, if the separate long wave trimmer is present, we start with the medium wave. Tune in a station at the low frequency end of the scale (gang at maximum capacitance), the Third programme on 464 metres is suitable. Adjust the oscillator coil core to bring the station to the correct point on the scale. Now tune to the other end of the band and tune in
a suitable station, the West Home Service on 206 metres or Radio One on 247 metres. Adjust the oscillator trimmer on the gang for correct scale calibration. Repeat both adjustments if necessary.

Switching now to the long wave, tune in the Light programme on 1500 metres and adjust the long wave trimmer.

If there is no long wave trimmer, we start on the long wave. Tune in the Light programme and adjust the oscillator coil core to give correct scale reading. Then we switch to the medium wave and check that the Third programme or other station at the l.f. end comes in the right place. If it does not, the coil is adjusted to give a compromise between the two. With this type of set, scale markings are not very precise purposely. Next the h.f. end of the medium wave is aligned using the West programme or Radio One with the oscillator gang trimmer as in the previous case. A check will then have to be made on both l.f. end of medium wave and long wave and a re-adjustment made if needed. In practice, it will be found that the gang trimmer has very little effect on the long waveband.

Finally, the aerial circuits are lined up. Weak stations are best for this, if the ones used for oscillator alignment are weak they can be used, but if not, others nearby should be found. On the long wave, all that is required is to slide the long wave aerial coil (the largest, most likely layer wound) along the ferrite rod for maximum volume. The medium wave is aligned with the medium wave aerial coil at the l.f. end, then the aerial trimmer on the gang capacitor is used to line up the h.f. end. It is useful to remember that with both oscillator and aerial circuits, induction is used to tune the l.f. and capacitance to tune the h.f. end of a waveband.

All that is needed now is to seal the coils on the rod by melting wax over them and so complete an economical repair.

ISSUES WANTED

... any lssues of P.W. containing circuits, constructional articles on electronic musical Instruments, particularly the P.W. Electronic
D. E. Bray, 104 Fulmerston Road, Thetford, Norfolk. on the RAE (1984 ' 65).-C. J. Bourne, 111 Woodhouse Lane, Blshop Auckland, Co. Durham.
... October 1882 issue of P.W. contalning part 2 of the Tuder valve recelver.-M. J. Dorby, 268 Canley Road. Coventry, Warwickshire, CV5 6AP.
No. the following lasues of P. W.: Jan. JDec. Inclusive i964. Jan. /Aug. incluslve 1985 Nov. JDec. Inciusive 1865. Lem-fJune inclusive 1986. Augut 1966. Ala the following 1s8ues of P.E.: Jan./ Oct. Inclusive 1906, Dec. 19e8. Jan., Feb., April, May and July Crescent. Worcestor Park, Surrey.
...January 1987 Isaue of P.W. contalning Explorer Rx.-S. Marklew, 4A George Street, Wombwell, Nr. Barnsley, Yorks.
Carter, Rosemary, Shakespear Avenue, Langdon Hillo the of WS 38 to top band.-Alan Carter, Rosemary, Shakespear Avenue, Langdon HIls, Basil don, Essex.
Suffolune t965 issue of P.W.-N. Taylor. 21 Tower MII Road, Millfleld Estate, Bungay, Suffolk.
... April 1966 issue of P.W. dealing with mods to the is set.-Thomaa Smith, 50b Aldershot Road, Guildiford, Surrey.
world -s. Saether of Practical Wireless and the September 1967 Issue of Wireless World.-S. Saethern, Box 336, N-3101 Tonsberg, Norway.
Swift D.G., ${ }^{\circ}$ B' (S.C.S.) R.A.F. Stanbridge, Lelghton Buzzard, Bed
\ldots the lasue of P.W. containing E. J. Wotton'e t.r.f, recelver. I think it was February 1981.-V. Reed, 25 Aclington, Ashford, Kent.
B. ' \ddot{W}. \mathbf{F}. Msinpitse, Vine Cottage, Exminster, Exeter.
...the September 1957 Issue of Practical Wireless and the circuit diagram of the 266 indlcator unit.- Paul Dorinington, 383 Spen Lane, Leeds, 16, Yorks.
Mi..October and November 1864 issues of P.W.-John McGregor, 20 Lorton Close. Mirehouse, Whitehaven, Cumberland.

EELI. PREAMP

敬: W.T.MORRIS B.Sc.,Ph.D.THE matching of ceramic and crystal pickups to transistorised amplifiers often presents a problem to the constructor. The outputs of these transducers, in common with those of crystal microphones, most valve pre-amplifiers and valve f.m. tuners, must be fed into amplifiers with input impedances of $1 \mathrm{M} \Omega$ or higher in order to achieve good bass response and a low background noise level. This requirement is easily met with valved amplifiers, but not with most transistorised designs, which have input impedances of a few kilohms only. Remedies such as inserting a high resistance in series with the amplifier input are generally unsatisfactory, since most of the signal is lost, especially the treble frequencies, and the signal to noise ratio is usually very poor.

The achievement of high input resistances with "ordinary" bipolar transistors, even silicon types, demands a fairly complex circuit (see Fig. 1), and even then noise levels can be high, particularly if "oheap" transistors of doubtful origin are used.
Field Effect Transistors (f.e.t.'s) offer an ideal solution to this problem. They have an extremely high input impedance and a very low noise level when driven from a high impedance source such as a ceramic or crystal cartridge. Also, their cost is now low enough to make them a most attractive proposition for the $\mathrm{Hi}-\mathrm{Fi}$ enthusiast and experimenter. Figure 2 shows a simple circuit using an N-channel f.e.t. Note that this requires a positive voltage supply, like an n-p-n transistor. The input impedance is over $2 \mathrm{M} \Omega$, as recommended by the manufacturers of such cartridges as the "Deram" 9 TAHC, CS 90 etc. The performance of the circuit is excellent.
The high frequency response extends into the radio-frequency range. (A roll-off at ultrasonic frequencies above 20 KHz can be arranged if required simply by adding a resistor R1 of $330 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ as close as possible to the pre-amp. input). Distortion is very low, rising to one per cent only at signal levels of 1.5 V to 2 V r.m.s. Noise is so low as to be virtually unmeasurable: this feature alone makes the slight extra cost of f.e.t.'s seem worthwhile!
The output voltage of the pre-amp. is typically nine-tenths of the input, i.e. there is a ten per cent loss of voltage. However, it is current gain that we require here, and this is of the order of 1,000 times. In conjunction with the f.e.t. pre-amp.; the 300 mV maximum output of a typical valve f.m. tuner would appear as about 250 mV into the load of $2 \mathrm{k} \Omega$ provided by the input of a transistor power amplifier. In other words, the current output of the tuner, $0.3 / 2 \times 10^{6} \mathrm{amps}$., i.e. $0.15 \mu \mathrm{~A}$, is amplified by the

Fig. 1: The circuit configuration necessary for achieving a high impedance using bipolar transistors.
f.e.t. pre-amp. to a current of $0.25 / 2 \times 10^{3} \mathrm{amps}$., i.e. 0.125 mA , a current gain of 800 times! Without the aid of the f.e.t. pre-amp., the f.m. tuner could supply only a few millivolts to the power amplifier; bass frequencies would be lost, and there would probably be a high level of background noise.

CONSTRUCTION

The pre-amp. is readily accommodated on a piece of 0.15 in . matrix "Veroboard", 8 holes (about 1 ins.) square. Figure 3 gives a convenient layout. Connect the resistors first, then the capacitors, and lastly, the f.e.t. Do not shorten the leads of the transistor, and observe the usual precaution of gripping them with pointed-nosed pliers or crocodile clip while soldering. to avoid overheating the transistor. All connec-

Fig. 2: The circuil of the f.e.t. preamp.

Fig. 3: The component layout on Veroboard.
tions to the pre-amp. can be made using the spare row of holes at the edge of the board remote from the f.e.t. again, of course, completing the job quickly to avoid overheating the components. Note that if an f.e.t. different from the one suggested is tried in the circuit, the base connections may not be in the same order as given in Fig. 2, the correct connections for the particular type must of course be known with certainty if an expensive mistake is to be avoided!

The values of the capacitors are not critical. Any value between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ will do for Cl : miniature polyester types with voltage ratings of 100 V to 400 V are especially suitable. C2 should not be less than $8 \mu \mathrm{~F}$ to avoid any loss of bass: on the other hand there is nothing to be gained by using values above $25 / \mathrm{F}$ for audio signals. A voltage rating of 25 V is adequate for C 2 .

POWER SUPPLY

A negative-earth power supply of 18 V to 24 V at 1 to 2 mA is required. The exact value of the current drain will depend on the particular f.e.t., but the circuit is designed to compensate to a large extent for transistor variations. Two 9 V batteries connected in series can be used, and large types such as the PP9 will have a very long life even when supplying current to a pair of pre-amps. in a stereo set-up. If a mains power pack is used, it must be very well smoothed, and decoupling capacitors of $1,000 \mu \mathrm{~F}$ are recommended if the main amplifiers power supply is used. (Before attempting to use the main amplifier's power pack, check that it is of the correct polarity, i.e. it must be positive, with the negative line earthed.)

CONNECTION AND MOUNTING

Input and output connections should be made with screened microphone lead. the input lead being kept short to avoid hum pick-up. The pre-amp. fits

Fig. 4: The circuit of the attenuator necessary when high oulput cartridges are used. The actual value of the unmarked resistor will depend upon the attenuation required.

When built on a small piece of Veroboard the complete unit is very small.
neatly into a matchbox, and an ideal mounting position is near the tag-strip under a record-player deck. The output lead can be up to 20ft. long, and likewise there is no restriction on the length of the battery leads. If hum is troublesome, it can usually be cured by wrapping the matchbox in aluminium cooking foil, and earthing the foil.

The circuit given in Fig. 2 will handle signals of at least 1.5 V r.m.s., and will therefore accept the outputs of low and medium-output cartridges. Some crystal cartridges, however, give more than 250 mV per cm per sec recorded velocity (i.e. maximum outputs of more than 2.5 V r.m.s. are possible). In such cases. an attenuator should be fitted as shown in Fig. 4. This will be necessary only if the output of the cartridge is quoted as being $200 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$ or more. The use of a volume control, a 1 or $2 \mathrm{M} \Omega \log$. potentiometer, across the input is also possible: if this is done the pre-amp. must be positioned as close to the volume control as possible to minimise loss of treble frequencies. It is normally preferable to place the volume control across the output of the pre-amp., i.e. across the input of the power amplifier, a 5 or $10 \mathrm{k} \Omega$ log. potentiometer being suitable.

Fig. 5: An even simpler circuit for an f.e.t. preamp.

A SIMPLER CIRCUIT

The even simpler circuit of Fig. 5 can be used with lower supply voltages, down to 6 V if required. However, the current drain varies widely according to the particular f.e.t. sample, and if the current is found to be less than 0.7 mA , the attenuator of Fig. 4 will be necessary even with low-output cartridges ($50.80 \mathrm{mV} / \mathrm{cm} / \mathrm{sec}$), though not with f.m. tuners and crystal microphones. The circuit of Fig. 5 is therefore ideal for use with these latter sources, and has the advantage of being insensitive to quite large amounts of ripple on the power supply.

SIM8

alus
GIRCUITS equals UNDERSTANOING

BUILDING electronic circuitry can be an extremely interesting and worthwhile past time. The functions of many of these circuits can be explained in simple terms, provided a basic knowledge of component operation has been attained. More complex circuits, however, cannot be described so precisely and an alternative exact method must be found.
Mathematics can provide a means of describing a circuit function, can be used to determine exactly how a circuit will operate under all conditions and must be used in design techniques, again, assuming an understanding of component operation with, of course, the availability of relevant component data.

The aim of this series is to introduce the reader to several basic mathematical theorems and explain the applications of these theorems to electronic circuitry.

Algebraic Manipulation

One of our aims should be to be able to predict the operation of a circuit given any necessary manufacturer's design data for the components used. A simple example of the use of algebraic manipulation is in the determination of the gain of a thermionic triode amplifier stage, of which a circuit diagram and an equivalent circuit are shown in Fig. 1.1. The equivalent circuit considers the operation of the amplifier under signal conditions. Internal resistances of the h.t. power supply are assumed negligible compared with other resistances in the circuit, hence the effective signal output voltage is developed across R_{L}. The value r_{a}, or "anode resistance" is the effective resistance of the valve under given bias conditions, and μ, or "amplification factor," is the ratio by which the valve will amplify a signal applied to the grid.

Fig. 1.1 (a) Typical amplifier circuil.
(b) Equivalent circuit.

Quantities r_{a} and μ are supplied in manufacturer's data, but they can be measured. Voltage gain of the amplifier, A , is defined as output voltage, V_{o}, divided by input voltage, V_{g}, or:-

$$
A=\frac{V_{0}}{V_{g}}
$$

The valve is represented by a voltage generator in the equivalent circuit, producing a voltage of $\mu \mathrm{V}$. Therefore the amplifier output voltage will only be a fraction of $\mu \mathrm{V}_{\mathrm{g}}$. Considering Kirchoff's law (explained in detail later) which states that the sum of potentials in a circuit is zero, then :

$$
\begin{align*}
& -V_{a}-V_{o}+\mu V_{\mathrm{g}}=0 \tag{1}\\
& \quad \text { or } \mu V_{\mathrm{g}}=V_{a}+V_{o}
\end{align*}
$$

This equation is obtained from the equivalent circuit because of the potential directions (indicated by arrows). A simple rule is :

Follow current direction in the circuit. For all those potential arrows opposing current flow, subtract; for all those in the same direction as the current, add.

From Ohm's Law

$$
\begin{align*}
& V_{a}=i_{a} r_{a} \tag{2}\\
& \text { and } \\
& V_{o}=i_{a} \mathbf{R}_{L}
\end{align*}
$$

substitute equations (2) and (3) in equation (1) gives $\mu V_{g}=i_{a} r_{a}+i_{a} R_{L}$
Because both r_{a} and R_{L} are multiplied by i_{a}, this equation may be re-written as

$$
\begin{equation*}
\mu V_{g}=i_{a}\left(r_{a}+R_{L}\right) . \tag{4}
\end{equation*}
$$

Now, we wish to determine a relationship between V_{o} and V_{g}.

Equation (3) states that $\mathrm{V}_{\mathrm{o}}=\mathrm{i}_{\mathrm{a}} \mathrm{R}_{\mathrm{L}}$ and equation (4) states that $\mu V_{g}=i_{a}\left(r_{a}+R_{R}\right)$.

To obtain a relationship for V_{g} alone, we divide both sides of equation (4) by μ to give

$$
\begin{equation*}
\mathbf{V}_{\mathbf{g}}=\frac{\mathbf{i}_{\mathbf{a}}\left(\mathrm{r}_{\mathrm{a}}+\mathbf{R}_{\mathrm{L}}\right)}{\mu} \tag{5}
\end{equation*}
$$

By dividing equation (3) by (5) the required result:

$$
\frac{V_{o}}{V_{g}}=\frac{i_{a} R_{L} \mu}{i_{a}\left(r_{a}+R_{L}\right)}
$$

or, because the effect of i_{a} cancels:-

$$
V_{\mathrm{V}}=\frac{\mu \mathrm{R}_{\mathrm{L}}}{\mathrm{r}_{\mathrm{a}}+\mathbf{R}_{\mathrm{L}}}=\mathrm{A} \begin{gathered}
\text { (Voltage gain of the } \\
\text { amplifier }
\end{gathered}
$$

From the above example it can be seen that algebraic manipulation can be broken down into three parts which are:
(1) Developing an equivalent circuit to represent a circuit under its working conditions.
(2) Deriving equations from the equivalent circuit.
(3) Manipulating the derived quantities into the required form.

Firstly, a familiarity with electronic components and their principles of operation is an important factor. Numerous text books give many standard equivalent circuits, but a good understanding of how these are obtained will prove to be an asset.
Secondly, the derivation of equations from an equivalent circuit requires a knowledge of the more common network theorems, a précis of which is given here:
(1) Ohm's Law:

The voltage V, developed across a resistance R, is directly proportional to the current I, flowing through that resistance. (see Fig. 1.2).
(2) Kirchoff's Laws, of which there are two:
(A) The sum of the currents flowing into a junction must equal the currents flowing away from it. (see Fig. 1.3 (a)).
(B) As before, the total sum of potentials in a circuit is zero. (see Fig. 1.3 (b)).

Fig. 1.2: Ohm's Law.

Fig. 1.3: (a) Kirchoff's Law A.
(b) Kirchoff's Law B.
(3) Method of mesh currents:

Derived from Kirchoff's Laws but, in fact, can provide a simpler solution to complex problems.
(4) Thevenin's Theorem:

This is used for determining the current flowing in a branch of a network and is applied in the following manner:
(a) Make a break in the branch in question.
(b) Determine the voltage which would appear across the break.
(c) Reduce all sources of e.m.f's. (or voltages) to zero and replace them by their internal resistances.
(d) Determine the impedance looking into the break.
(e) Divide the result of (b) by the result of (d)
to give branch current.

An example of the use of Thévenin's Theorem is given in Fig. 1.4.

Example:

Determine the current i_{2} shown in Fig. 1.4(a)

Fig. 1.4: (a) Current iz unknown.

Step (a)

Fig. 1.4: (b) Make a break in the branch.

Step (b) There is now no current in the 10Ω resistor so the voltage looking into the break is equal to V_{3}

$$
V_{3}=\frac{20}{20+20} \times 10 \text { Volts }=5 \text { volts. }
$$

Step (c)

Fig. 1.4: (c) Determine the resistance looking into the break, vollages reduced to zero.

Step (d)

$$
\text { Resistance }=10 \Omega+\frac{20 \times 20}{20+20}=20 \Omega
$$

Step (e)

$$
i_{2}=\frac{5}{20}=1 \text { Ampere }(250 \mathrm{~mA})
$$

(5) Norton's Theorem

This is similar to Thévenin's Theorem but uses equivalent constant current generators.
Such a list could be used to include many more complex theorems, however, if those mentioned were understood completely they wourd provide a good background to enable the formation of mathematical equations from circuitry.
Thirdly, the manipulation of equations obtained. This may be broken down into three logical steps:-

What is the problem, or what is to be found?
Which pieces of information are required to solve the problem?
How should the equations be manipulated to give this information?
To demonstrate them consider the further example of a transistor amplifier stage using the standard hybrid parameter equivalent circuit as shown in Fig. (1.5).

Fig. 1.5 (a) Typ/cal amplifier circuit.
(b) Equivalent clrcuit neglecting biasing resistor:

From the equivalent circuit which employs voltage and current generators to represent the inherent characteristics of the transistor, the following equations may be derived.

$$
\begin{align*}
& \mathrm{V}_{\mathrm{i}}=\mathrm{i} \mathrm{~h}_{\mathrm{ie}}+\mathrm{h}_{\mathrm{rc}} \mathrm{~V}_{\mathrm{o}} \tag{1}\\
& \begin{aligned}
V_{o} & =-\mathrm{i}_{\mathrm{o}} \mathrm{R}_{\mathrm{L}} \text { (due to current direction) } \\
\mathrm{i}_{\mathrm{o}}= & \mathrm{ih}_{\mathrm{fe}}+\mathrm{V}_{\mathrm{o}} \mathrm{~h}_{\mathrm{oe}} \ldots \ldots . .
\end{aligned}
\end{align*}
$$

Note that the units of h_{oe} are those for conductance or the inverse of resistance.

Suppose we wish to know the input resistance of the circuit (i.e. at a frequency where capacitive components have negligible reactance to the signal). From Ohm's Law, the input resistance to the circuit is given by the relation:

$$
r_{i}=\frac{\mathbf{V}_{i}}{i}
$$

Equation (1) gives an equation containing both \mathbf{V}_{i} and i, but V_{o} is also present. Therefore we must substitute other quantities to give a relation between input resistance and other circuit constants: From equation (2) we have

$$
V_{o}=-i_{0} R_{L}
$$

and from equation (3)

$$
i_{o}=h_{f e} i+V_{\mathbf{o}} h_{\mathrm{oe}}
$$

Substituting for i_{o} in (2) gives

$$
\begin{align*}
& V_{\mathrm{o}}=-\mathrm{R}_{\mathrm{L}}\left(\mathrm{~h}_{\mathrm{fe}} \mathrm{i}+\mathrm{V}_{\mathrm{o}} \mathrm{~h}_{\mathrm{oe}}\right) \\
& \therefore \mathrm{V}_{\mathrm{o}}\left(1-\mathrm{R}_{\mathrm{L}}^{\mathrm{oe}}\right)=-\mathrm{R}_{\mathrm{L} \mathrm{~h}_{\mathrm{fe}} \mathrm{i}} \\
& \therefore \mathrm{~V}_{\mathrm{o}}=\frac{-\mathbf{R}_{\mathrm{L}} \mathrm{~h}_{\mathrm{fe}} \mathrm{i}}{\left(1+\bar{R}_{\mathrm{L}} \mathrm{~h}_{\mathrm{oe}}\right)} \cdots \cdots \tag{4}
\end{align*}
$$

Substituting equation (4) in equation (1) gives

$$
\begin{gathered}
V_{i}=i h_{i e}-\frac{R_{\mathrm{L}} h_{\mathrm{fe}} h_{\mathrm{re}} i}{1+\mathrm{R}_{\mathrm{L}} h_{\mathrm{oe}}} \\
\therefore \mathrm{~V}_{\mathrm{i}}=\mathrm{i}(1) h_{\mathrm{ie}}-\frac{R_{\mathrm{L}} h_{\mathrm{fe}} h_{\mathrm{re}}}{1+\mathrm{R}_{\mathrm{L}} h_{\mathrm{oe}}}(1) \\
\text { or } \frac{V_{i}}{i}=r_{i}=h_{i e}-\frac{R_{\mathrm{L}} h_{\mathrm{fe}} h_{\mathrm{re}}}{1+\mathbf{R}_{\mathrm{L}} h_{\mathrm{oe}}}
\end{gathered}
$$

Thus giving the relationship required.

Fig. 1.6: Determination of true input voltage,

Fig. 1.6 shows the importance of being able to determine an amplifier input resistance. All signal sources will have an output impedance which can be represented as a series impedance with the source. The actual amplifier input voltage V_{i}, will then be only a fraction of the signal source voltage V .

Then the amplifier input voltage will be given by:

$$
v_{i}=\frac{r_{i}}{R_{s}+r_{i}} V
$$

The usefulness of algebraic manipulation applied to circuits does not end here. It is hoped, however, that these examples have served as a good introduction and that further articles will help give a complete picture of how mathematics can become another tool of the enthusiast.

TO BE CONTINUED

R.F.GRAHAM

FOR short wave reception and personal listening, headphones are frequently used. The output stage of communications type and other receivers will provide enormously more volume than required, so that almost continuous manipulation of the audio gain control is required. Even then, while tuning or listening, bursts of interference, or powerful transmissions, can be very uncomfortable when searching for weaker signals.

This discomfort, and the need for much adjustment of the receiver volume control, can be eliminated by the audio limiter circuit in Fig. 1. Audio is taken from the usual phone outlet of the receiver.

The series resistor RI limits power reaching the diodes with very strong signals. The diodes conduct to clip positive and negative audio peaks, the residual amplitude depending largely on the diode resistors R2 and R3. The potentiometer VR1 allows a suitable signal level to be taken off for the phones.

The components may be wired on a small panel. or in a box. with twin leads and a jack plug to provide the audio input from the receiver. The phone jack plug is inserted in a socket on the limiter.

Fig. 1: Limiter for high impedance headphones.
Tune in a signal, adjust the receiver volume control until distortion commences, and turn it back somewhat from this point. VR1 is then adjusted for the required headphone volume. It will then be found that headphone volume does not increase if the receiver gain conrol is advanced, though there is a deterioration in audio quality due to the clipping action. For most signals the receiver volume control can be left in a suitable middle position, giving enough volume with weak transmissions, without serious loss of quality on strong transmissions. The circuit also limits some types of static and similar interference.

Values in Fig. I were for high impedance phones. Values could easily be modified if necessary. D1 and D2 were GD9 or OA91 diodes. Others are suitable.

Where output is taken from an extension circuit attached to the secondary of a speaker transformer, and the speaker is out of use, a 10Ω or similar 1-watt resistor may be connected across the a.f. input points, this provides some loading to reduce a.f. peak voltages in the transformer primary.

Space signals

I cannot agree with Mr. R Hall, Cornwall that we shall not receive signals from other planets. We can, and do receive signals from the planet Jupiter.
Unintelligible signals, but signals' nevertheless, which can be picked up on any domestic receiver, which covers the 21 to 14 metres band.
Electrical or magnetic storms in the atmosphere of Jupiter are thought to be the cause of the signals received.

Other rich sources are the Crab Nebula, and the galaxy Andromeda.

The simplest form of radio telescope could be a television set with directional aerial, steerable and used when the local stations are off the air.

For those who would like to take up this absorbing branch of radio, there are excellent text books in your local libraries. giving constructional details of receivers which are quite easy to construct and operate, together with details of galaxies to search, frequencies, etc.

Who knows, some day or night, we may receive the kind of signals, from many light years away, to reawaken us to revise our whole concept of life as we know it.-E. Furlong (Cheshire).

Points of view

After reading the letter in your December issue from Mr. E. W. Baigent on the "old days," I became rather dissatisfied with putting "supplied components into holes in a printed circuit board." It seems that construction today is a rather automatic process-I wonder how many of your readers would ever dream of modifying any of your circuits other than by changing slightly the odd capacitance or resistance value. It seems that individuality is a thing of the past-I am no exception to this.

I find it rather harder to agree with his other points, however. One of the greatest and most constantly overlooked needs in electronics is that of standardisation, ("Practically Wireless" No.

63, December issue). In the case of "c.p.s.," what would that mean to a Frenchman or a German? Once established, the use of a name tends to become international and readily understandable to many more people.

As for the new colour coding. this is another example of international standardisation. The colours now coming into use are of necessity a compromise. Though the use of red for live would have been very desirable from our point of view, quite a large number of Continental firms had until recently been using red for earth! In any case, brown is not very far removed from red, and if we remember that on mains wires. the only two-tone wire is the earth, it takes very little adjustment to adapt ourselves to the new system.
The case for the Hertz is very debatable, I agree, but the new wiring takes into account people's lives, no mean commodity, in this country and abroad; we should be glad to have at last an acceptable compromise, and think before we shout.-A. L. McLeish (Durham).

What, no chips?

Much has been written on the subject of Integrated Circuits (Chips) and I would like to add my own comments.
Having purchased one with the intention of making a record player amplifier, I was amazed at the difficulty of setting it up. One is obliged to experiment with component values and to add this and that to prevent instability. Really, it is reminiscent of tinkering with a regenerative receiver to make it operate correctly!
The small physical size of these chips seems to me to be of no advantage as they need quite a few added external components including large electrolytic capacitors.

Cost-wise too, there is no advantage. For the cost of constructing a 5 W mono amplifier using a "chip," I am able to build the P.W. Double 12 in mono which gives 12 W (both powers in r.m.s.). I refer to constructing the respective chassis without cabinet
trimmings etc. If the integrated circuit amplifier goes wrong, I have to purchase a new chip but if my P.W. Double 12 packs in, I pay, at the most, a few shillings for a new component.

I do not think "chips" pose any threat to our fascinating hobby and to those constructors like myself. who like to build equipment from scratch.-Frank Casson (Teeside).

No Denial!

Re Mr. R. Hall's letter in the January issue. I well remember that towards the end of the active career of Marconi, the newspapers reported that when he was cruising on his yacht 'Electra' in the Mediterranean, some mysterious long wave signals were being received by him. The reports were really quite reserved. Their general tone was: 'where do the peculiar wireless signals received by Marconi, come from? A few went further and mentioned the possibility of Mars!

Though Marconi did not actually claim they did come from Mars. he in no way said they did not! "He would investigate fur-ther."-A. Trowbridge (Middlesex).

PRACTICAL WIRELESS QUERY SERVICE

Before using the query service it is important to read the following notes:
The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or eircuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment. or to supply circuitry.
(c) it is usually impossible to supply information on imported domestic equip. ment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) it helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

MEDIUM
 WAVE
 DKIINECHARLES MOLLOY

INTEREST has been growing recently in the medium waves. DXers who look for something different, something more exacting or who are simply curious to sample local broadcasting from other parts of the world are turning to the 'broadcast band'. The medium waves do offer a real challenge. In Europe the main problem is interference: several hundred stations broadcast on unauthorised frequencies or use excessive power. Many are on the air 24 hours a day, so the band is never quiet after dark. Directional aerials help to counteract the problem. Loop antennas, based on the frame aerial that was popular in the early days of radio are now standard equipment for the majority of MW DXers. The second problem is knowing the right time to listen. Most parts of the world, with the exception of Australasia, can be logged at some time of the year. The hobby is not seasonal and is not restricted to the winter months. All that is required for success is a path of darkness between transmitter and receiver and of course, favourable propagation conditions. Broadly speaking the best DX to be had in the UK will be trans-equatorial in summer and from the northern hemisphere in winter. The Far East is only heard in winter while stations in East and South Africa are usually only logged in summer. There is no lack of stations, in fact there are many more of them on the medium waves than on all of the Short Wave broadcast bands put together-over 5000 in the United States alone. Canada, United States, Caribbean, Central and South America, Africa, Near East, India, China and Japan, have all been logged on numerous occasions by DXers in this country.

PROPAGATION

The medium waves are used almost exclusively for local broadcasting, propagation being by ground wave. During the daytime the sky wave is absent since high angle radiation is absorbed by the lowest part of the ionosphere-the ' D ' layer. This layer disappears at sunset enabling refraction from higher regions to take place; even vertical radiation is returned. The sky wave interferes with the ground wave to produce severe fading in areas where the two are comparable in strength. As distance increases from a MW transmitter, an area is reached where selective fading and distortion occur after dark limiting the useful night-time range of the transmitter. The ground wave diminishes in strength as the distance from the transmitter increases and finally it disappears. Beyond this point after dark, only the sky wave can be received, we are now out of the normal service range of the transmitter and the signal is becoming DX.

Anti-fading aerials are used by large numbers of medium wave transmitters. This type of aerial, which is a vertical, puts out maximum signal at low angles to the horizon and minimum signal at high angles. The reduction in high angle radiation reduces the amount of sky wave into the service area, con-
sequently fading decreases and the night-time range is extended. Low angle radiation is of great interest to the DXer. It enters the ionosphere at a shallow angle and can ravel up to 1500 miles in a single hop after reflection by the ' E ' layer. Often it continues for thousands of miles in successive hops when propagation is favourable. Conditions on the medium waves are more variable than on the short waves, a factor which frequently causes disappointment to the newcomer. Persistance and patience are the qualities required of the MW DXer. If you do not hear North America at the first attempt then try again a few days later. If conditions are poor they are unlikely to remain so for long.

AERIALS

No serious MW DXer would be without a loop (Fig. 1). This type of aerial is directional, maximum pick-up is along the plane of the windings, minimum pick-up is along a line at right angles to the windings. The depth of the null (degree of signal suppression) depends on the electrical balance of the windings so it is important that they should be symmetrical. The loop is very simple to use. Tune in a station on the receiver, peak it with the loop tuning control and rotate the loop for optimum reception. Frequently it is possible to null-out different stations on the same frequency e.g. on 1070 kHz CBA in Canada can sometimes be heard free of interference if the null is pointing towards LR1 in Buenos Aires and similarly LR1 can be heard with CBA nulled-out. There are additional benefits to be had from a loop. Static is reduced, in early summer when much of it comes from thunderstorms to the south, it can be eliminated when listening to the west. Overloading and crossmodulation are reduced leading to the unlikely, but quite correct, claim that audio quality is sometimes better when using a loop. Direction finding can be a help to station identification. Turn the loop until the unidentified station disappears, when its direction will be along a line at right angles to the windings. The 40 in . loop is a compromise between pick-up and convenience. A larger loop will have greater pick-up. Alternative sizes can be constructed using approx. 100 ft . of plastic covered wire of about $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. for the main winding which should be wound to a whole number of turns. If the loop will not tune to the h.f. end of the band there are too many turns. If it will not tune to the l.f. end then add turns or increase the value of the tuning capacitor.
If anyone has space to erect a long wire aerial several wavelengths long he will find it is directional along the length of the wire and the pick-up will be far greater than that of a loop. DXers in New Zealand achieve remarkable results using long wires. Few of us in this country will have the space for this type of aerial and it is doubtful if one would be of value in the presence of strong QRM. No-one should be deterred from DXing on the medium waves through lack of an outside aerial. The

Fig. 1: The loop aerial.
ordinary TV aerial gives excellent results when used in conjunction with a good earth at the receiver. Connect the inner wire of the co-ax downlead to the aerial socket and earth the outer braiding. In some locations better results will be obtained by using the co-ax outer as the aerial.

DXING

Winter is the time of year for Asiatic stations and there are three periods of the day when reception is possible. The first is in the afternoon from approx. 1500 hrs to 1700 hrs GMT. Stations heard recently include Taiwan on 750 kHz ; Bagdad (760); Teheran (895); Iran (985); Anwhei, China (940); Peking (1000); Calcutta (1130) in English 1530 to 1600hrs; Philippines (1140); VOA, Okinawa (1178); Korea (1190); Kabul, Afghanistan (1280); China (1290); Teheran (1325); Kuwait (1345). The second period is in the evening from 2000hrs onwards:-Saudi Arabia (588); Jerusalem (677); Allepo, Syria (746); Amman, Jordan (800); Beirut (836); Bagdad (908); Damascus (957); Diyabakir, Turkey (1061); Haifa (1205). The last period is after midnight when stations in India are sometimes logged. The easiest is Rajkot 1070 kHz but others have been heard on $910,1020,1060$, and 1330.

North Americans can be heard throughout the year. In summer those along the east coast of Canada and the United States are audible for an hour before sunrise and are usually free of interference since the greater part of Europe is in daylight at this time. During the winter stations from this area appear regularly after 2300 hrs GMT, the time when most Europeans sign-off for the night. If conditions are favourable the following should be heard between 2300 hrs and midnight ;-WOR (710) and

WINS (1010) in New York City: WHDH (850) Boston; CBH (860) Halifax, Nova Scotia; CJON (930) St John's, Newfoundland; CBA (1070) Moncton, New Brunswick; WBAL Baltimore on 1090. More stations appear as the night progresses but at 0300 hrs when Eastern Europeans sign-on QRM starts to become troublesome. The following may be heard during this period-WNBC (660), WABC (770), WCBS (880), WHN (1050), and WNEW (1130) all in New York City; CHER (950) Sydney, N.S.; CHNS (960) Halifax; KDKA (1020) Pittsburg; WOWO (1190) Fort Wayne, Indiana; WKBW (1520) Buffalo N.Y.; WCKY (1530) Cincinnati Ohio.
South American stations are at their best in summer. From June to September (when it is winter in the southern hemisphere) during the two hours before sunrise, look for stations from the deep south and the east of the continent such as CX16 (850) Radio Carve, Montevideo Uruguay; PRF4 (940), PRE8 (980) and PRE3 (1180) Radio Globo, Rio de Janeiro; PRB9 (1000) Radio Record in Sao Paulo; CB106 (1060) Radio Mineria in Santiago de Chile; OAX41 (1320) Radio Cronica Peru. These are but a few of the stations that can be heard and sometimes they come roaring in, especially the Brazilians.

In winter, the Caribbean area and parts of South America are heard regularly after midnight including YVKS (750) Radio Caracas Venezuala; Jamaica also on 750 in English; Georgetown, Guyana (760); PJB (800) Bonaire; WKVM (810) in Spanish, and WBMJ (1190) in English of San Juan, Puerto Rico; Radio Caribbean (840) St. Lucia in French; Radio Belize (835) British Honduras; LR3 (950) Radio Belgrano and LR1 (1070) Radio el Mundo, both in Buenos Aires; HJHN (960) Barranquilla, Colombia; PJD2 (1295) St Maartin (in Dutch and English).

During the late evening in winter look for the following West Africans:- Tenerife, Canary Islands on 620 and 894; Monrovia, Liberia (629); Radio Sahara (656) in Spanish Sahara; Dakar (764) in Senegal; Luanda, Angola (1088); Conakry, Guinea (1403); Funchal, Madeira (1529). Conakry broadcasts in French and is often quite strong at 2300 hrs . In summer, the following have been logged from East and South Africa between 0200 and 0400 hrs :Dar es Salaam, Tanzania (638); Lourenco Marques, Mozambique (917); Kitwe, Zambia (1070); Pretoria (1268); Johannesburg (1286).

Medium wave stations in Europe are spaced 9 kHz apart while in other parts of the world, including North America, they are usually on 'channels’ 10 kHz apart. Co-inciderice occures every 90 kHz , namely on $620,710,800,890,980,1070$, 1160, 1250, 1340, 1430, 1520 and exceptionally, 1570 kHz . This set-up is significant; if a European DXer wants to listen to North America he will find it easier if he listens on those sections of the band

radioactivit? DETECTOR

 L.McNamara

 L.McNamara}

THE high voltage required to operate geiger tubes in portable equipment is usually obtained from h.t. batteries. This article describes a method for operating one of these tubes from a 7.5 V battery and eliminates the need for rather large and cumbersome power supplies. The pulses produced by the radioactive particles are heard as "clicks" in the loudspeaker or, if the constructor so wishes, they can be fed into a scaler and counted in this way.

Referring to the circuit diagram, Fig. 1, it can be seen that basically the design consists of a static inverter followed by a voltage doubler circuit to give the high tension required to operate the tube. The inverter is an astable multivibrator with regeneration provided by R3 and R4. The primary of the transformer forms the load for Tr1 and Tr2 while resistors R1 and R2 ensure that the transistor leakage current is kept to a minimum.

For correct operation of the tube 400 V is required. If the voltage is too low the tube will fail to trigger when a radioactive particle enters it. If on the other hand it is too high a continuous discharge will take place. To control this voltage a 100Ω pre-set resistor was inserted between one terminal of the battery and the inverter and this can be adjusted to give the correct operating voltage on the tube.

Whenever a radioactive particle enters the tube it ionises some of the gas particles. The negative ions produced in this way will move towards the anode while the positive ions move to the cathode. Some of these charged particles accelerated by the high voltage will collide with other gas molecules causing further ionisation and so a rapid discharge of the tube follows. This pulse is taken from across R5 and fed via C3 to the transistor amplifier. R6 acts as a buffer resistor to limit the current drawn from the geiger tube. If too much current were drawn then the voltage across C2 would drop below 400 V with the result that if a number of particles
were to follow in quick succession some would fail to register.

The super alpha pair $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$ further increase the input impedance of the amplifier and biasing resistors were found to be unnecessary as the input pulse was of a sufficiently high amplitude to bias the transistors on. In the absence of a pulse no current flows through Tr 3 and Tr 4 . Consequently the voltage across R7 will be virtually zero and this ensures that Tr5 is biased off and so no current flows through the loudspeaker. When the tube is triggered the negative going pulse biases $\operatorname{Tr} 3$ and Tr 4 on, and the current flowing through them causes a voltage drop across R 7 which in turn biases Tr5 on and this gives rise to a 'click' in the loudspeaker.

Some constructors may find the pulse amplifier

\star components list

Resistors :			
R1	470Ω	R5	2.2M Ω
R2	470Ω	R6	$330 \mathrm{k} \Omega$
	$2 \cdot 2 \mathrm{k} \Omega$	R7	$4 \cdot 7 \mathrm{k} \Omega$
R4	$2 \cdot 2 \mathrm{k} \Omega$	VR1	100Ω preset
Capacitors:			
C1	$0 \cdot 1 \mu \mathrm{~F} 250 \mathrm{~V}$	C3	$0.05 \mu \mathrm{~F} 250 \mathrm{~V}$
C2	$8 \mu \mathrm{~F} 450 \mathrm{~V}$		
Semiconductors:			
Tr1	2N2926	Tr4	OC81
	2N2926	Tr5	2N2926
Tr3	OC81	D1, D2	2 BY100
Miscellaneous:			
Geiger tube type CV2247 (G5H)†; Loudspeaker			
30Ω to 80Ω type; Transformer type MT98, primary $0-250 \mathrm{~V}$, secondary $9-0-9 \mathrm{Vt}$; copper laminate			
printed circuit board etc. ${ }_{\text {a }}$ Available from Henry's Radio Ltd.			

Fig. 1: Circuit of the radioactivity detector.

unnecessary, especially if they may wish to operate the unit to drive a scaler or an earphone. Conse quently the prototype was built on two separate printed circuit boards and Fig. 2 shows the layout pattern which should be painted on a copper laminate board and etched in a solution of ferric chloride.
When the unit is switched on for the first time a
meter should be inserted in the battery leads to monitor the current drawn. It should be in the region of 25 mA . VR1 can then be adjusted to give the correct operating voltage. The background radiation with the type of tube specified should give a count of approximately 40 per minute but this will vary considerably depending upon the location.

MEDIUM WAVE DXING

 - continued from page 963where the North American channels are clear of Europeans. For Example, CBA (1070) cannot usually be heard until Paris II signs-off at 2300 hrs . On the other hand CJON, St John's Newfoundland on 930 kHz can often be heard earlier in the evening since the nearest European frequencies (and QRM) are 926 and 935 . Schedules of European stations are important. Many Europeans close down late on Saturday nights but have shorter broadcasting hours on a Sunday. Most, including the BBC, sign-on late on Sunday mornings and many sign-off early on Sunday evenings as well.

DX signals on the medium waves nearly always suffer from slow cyclic fading. The fast fluttery type of fading that can be counted in 'fades per minute' is seldom encountered by the MW DXer. If two stations are heard simultaneously on a channel, it will be found that their relative strengths are changing continually. If the DXer is patient (and lucky) he may hear each station in the clear for a short while during a fade of the other one.

RECEIVERS

It is not necessary to own an expensive communications receiver to DX on the medium waves, especially if a loop is used. Both the R1155 and the PCR receiver are satisfactory. Good sensitivity and selectivity are desirable but freedom from overloading and cross-modulation are of paramount importance and in this respect oldish ex-service equipment excels. The AR88D and the CR100 are popular with MW DXers in this country. The writer uses a CR 100 and a BC314, the latter being an l.f. version of the well known BC312. It covers 150 kHz to 1500 kHz in 4 bands and the i.f. is only 90 kHz which gives good selectivity without a crystal filter. The MN26C is similar and more readily available but unfortunately does not have a tuning scale as it was designed for remote control.

Modern communications receivers perform well on
the medium waves but beware of double or triple conversion as some are prone to spurios on this band. It is not unknown for modern receivers to have their performance degraded on the MWs, probably to make them suitable for entertainment purposes. If in doubt examine the circuitry and look for damping resistors in the r.f. and mixer stages.
When tuning across the band, switch off the a.g.c. otherwise weak stations close to strong ones may be overlooked. In order to protect the ears use an audio limiter of the type connected between the receiver and headphones.

REFERENCES

There are a number of specialist publications that provide news and information about the MWs. Broadcasting Stations of the World Part 2 published by the US Government Printing Office, Washington D.C. 20402, lists by frequency all broadcasting stations in the range 150 kHz to 28 MHz except for those in the USA. World Radio and TV Handbook, published annually in Denmark but available in bookshops in the UK, lists MW stations throughout the world as well as containing a mine of information of use to the general DXer. Medium Wave News, the club Magazine of the Medium Wave Circle appears eight times a year and contains recent loggings, station news and information on loops and receivers. Further information can be had from the editor, Ken Brownless, 7 The Avenue, Clifton, York YO3 6 AS. For readers in the United States there are the International Radio Club of America, 5421 Clinton Court, Englewood, Colorado 80110 USA and the National Radio Club of America, PO Box 99. Cambridge Mass. 02138 USA. Both clubs specialise in the MWs.

Peak MW DX occurs in years when solar activity is low and since we are currently on a declining part of a sunspot cycle, further outlook is good. Several years of good and improving conditions lie ahead and will no doubt attract many newcomers to the oldest DX band, the medium waves.
 \title{
PART 1
}
 \title{
PART 1
}

IT is presumed that many readers could set about calculating separate shunt resistor values for a multirange milliammeter but one wonders how many could do the same thing for a universal shunt? Where does one start? What value should be chosen for the shunt? And having selected a value, how does one then go about calculating the various sections of the shunt?

This article hopes to clear up these points and enable the reader to calculate both types of shunt.

The basic ammeter

The great majority of indicating meters used in testmeters are of the moving coil type where a coil of very fine wire is wound over a drum-shaped former and suspended between the poles of a permanent magnet (the pole peices are specially shaped to fit the contour of the drum). When current is passed through the coil a magnetic field is set up around it which interacts with that from the permanent magnet. The interaction is such that the drum carrying the coil is forced to rotate, hence the name 'moving coil' for this type of meter.

Two small coil springs, one at each end of the drum, provide a partial restraining force against the rotation and hold the drum stationary when the deflecting force produced by the interaction of magnetic fields exactly balances that of the two springs. The springs also serve to conduct the current into and out of the coil. A very thin lightweight pointer is attached to one end of the drum so that it rotates with it, and a graduated scale positioned behind the pointer enables the deflection to be measured.
The amount of coil current required for the pointer to reach full scale deflection (f.s.d.) depends, other factors being equal, upon the number of turns in the coil. A coil with many turns may, for example, require only $25 \mu \mathrm{~A}$ for f.s.d., whereas a coil consisting of much fewer turns may require 10 mA or more to produce the same deflection. Meters requiring very little current for f.s.d. are said to have a high sensitivity, whereas those requiring larger currents (about 1 mA or more) are considered to be low sensitivity types. High sensitivity meters e.g., 50μ A f.s.d., have coil resistances of the order of $1,000-2,000 \Omega$, whereas low sensitivity types e.g., 10 mA , are of the order $50-10052$. The difference is in the number of turns and the gauge of wire used in the construction of the moving coil: the thinner the wire and the greater the number of turns, the higher the resistance.
For multi-range testmeter applications of the moving coil meter, it is desirable to be able to use the same basic meter to measure a wide range of currents. To do this one must first select a meter which has an f.s.d. suitable to the smallest range of currents to be covered by the testmeter. For example, if the lowest range on the test-
meter is to be $0-100 \mu \mathrm{~A}$, then one must use a meter whose f.s.d. is not greater than $100 \mu \mathrm{~A}$. The next step is to provide means for bypassing that portion of the current to be measured which is in excess of the meter f.s.d. For example, for a $100 \mu \mathrm{~A}$ meter to indicate $1 \mathrm{~mA}(1,000 \mu \mathrm{~A})$ full scale, it is necessary to by-pass $900 \mu \mathrm{~A}$. By-passing current in this way is called shunting, and is achieved by connecting a resistor of appropriate value in parallel with the meter; such resistors are called shunts.
Shunting in practice can be achieved by either of two methods. In the first a separate shunt resistor is used for each current range to be covered by the meter, and the appropriate shunt selected by a switch. In the second method a single shunt resistor is permanently connected across the meter and tapped at intervals along its length so as to provide the required amount of shunting for the ranges to be covered; this form of shunt is known as a universal shunt.

The separate shunt method

Assume a $50 \mu \mathrm{~A}$ moving coil meter (a very popular choice) which has a coil resistance of $1,000 \Omega$, and that this meter is to be used in a testmeter having d.c. ranges of $0-200 \mu \mathrm{~A} ; 0-1 \mathrm{~mA} ; 0-25 \mathrm{~mA} ; 0-100 \mathrm{~mA}$ and $0-500 \mathrm{~mA}$. For the first range it is necessary to provide a $150 \mu \mathrm{~A}$ shunt so that only $50 \mu \mathrm{~A}$ is allowed to flow in the meter (remember, ALWAYS ensure that not more than $50 \mu \mathrm{~A}$ is allowed to flow in the meter, no matter what range is to be covered.) The required arrangement is shown in Fig. 1. (\mathbf{R}_{s} is the shunt resistor and \mathbf{R}_{m} is the meter coil resistance). The total current (I_{t}) applied through the input terminals of the testmeter divides so that $50 \mu \mathrm{~A}$ flows in the meter, I_{m}, and $150 \mu \mathrm{~A}$ flows in the shunt, I_{s}. Now to derive a simple but very useful formula which can be used to calculate the value of \mathbf{R}_{5} for any values of $\mathrm{I}_{\mathrm{t}}, \mathrm{I}_{\mathrm{m}}$ and R_{m}.

Fig. 1 Simple meter shunt

Referring to Fig. 1 , since $\mathbf{1}_{m}$ flows through \mathbf{R}_{m} then a voltage (V_{m}) will be developed across R_{m} equal to $\mathbf{I}_{\mathrm{m}} \times \mathbf{R}_{\mathrm{m}}$ i.e.,

$$
\begin{equation*}
V_{m}=I_{m} \cdot R_{m} \text { (by Ohms law) } \tag{i}
\end{equation*}
$$

Now, since R_{s} is connected in parallel with R_{m}, then V_{m} must also appear across R_{s} and therefore the current in $R_{s}=I_{s}=\frac{V_{m}}{R_{s}}$ or, by substituting for V_{m} from equation (i), $\mathbf{I}_{\mathrm{s}}=\frac{\mathrm{I}_{\mathrm{m}} \cdot \mathbf{R}_{\mathfrak{m}}}{\mathbf{R}_{\mathrm{s}}}$ Transposing for R_{s} :

$$
\begin{equation*}
R_{s}=\frac{I_{m} \cdot \mathbf{R}_{m}}{I_{s}} \tag{ii}
\end{equation*}
$$

Now, since $I_{s}=I_{t}-I_{m}$, one may substitute $I_{t}-I_{m}$ for I_{s} so that the equation becomes; $R_{s}=\frac{I_{m} \cdot R_{m}}{I_{t}-I_{m}}$

Now divide top and bottom of this equation by $\mathbf{I}_{\mathbf{m}}$:

$$
R s=\frac{\frac{I_{m}}{I_{m}} \times R_{m}}{\frac{I_{\mathrm{t}}}{I_{\mathrm{m}}}-\frac{I_{\mathrm{m}}}{I_{\mathrm{m}}}}=\frac{\mathbf{R}_{\mathrm{m}}}{\frac{I_{\mathrm{t}}}{I_{\mathrm{m}}}-1}
$$

Finally, since the ratio $\frac{I_{t}}{I_{m}}$ is really the multiplying factor of the f.s.d. of our basic meter, call this factor ' N ' and write the equation as;

$$
\begin{equation*}
\mathbf{R}_{\mathrm{s}}=\frac{\mathbf{R}^{\mathbf{m}}}{\mathbf{N}-1} \tag{iii}
\end{equation*}
$$

Now to use this equation to calculate the value of R_{s} for the $105 \mu \mathrm{~A}$ shunt in Fig. 1 (some may prefer to use equation (ii), which is equally valid, by substituting $\mathrm{I}_{\mathrm{m}}=50 \mu \mathrm{~A}$ and $\left.\mathrm{I}_{\mathrm{s}}=150 \mu \mathrm{~A}\right)$.

$$
\text { Since } \mathrm{N}=\frac{200 \mu \mathrm{~A}}{50 \mu \mathrm{~A}}=4, \text { then } \mathrm{R}_{\mathrm{s}}=\frac{1,000}{4-1}=333 \Omega
$$

Summarising, in order to use the $50 \mu \mathrm{~A}$ meter to indicate $200 \mu \mathrm{~A}$ at f.s.d. (range 1), one must provide a shunt resistor (R_{s}) of 333Ω.

Now consider the requirements of the second range $\left(1_{\mathrm{m}} \mathrm{A}\right)$, making use of equation (iii):

$$
\begin{aligned}
& \mathrm{N}=\frac{1 \mathrm{~mA}}{50 \mu \mathrm{~A}}=\frac{1,000 \mu \mathrm{~A}}{50 \mu \mathrm{~A}}=20 \\
& \mathrm{R}_{\mathrm{s}} 2=\frac{\mathbf{R}_{\mathrm{m}}}{\mathrm{~N}-1}=\frac{1,000}{20-1}=52.6 \\
& \mathrm{R}_{\mathrm{s}} 2=52.6 \Omega
\end{aligned}
$$

For range $3(25 \mathrm{~mA})$,

$$
\mathrm{N}=\frac{25 \mathrm{mAA}}{50 \mu \mathrm{~A}}=\frac{25,000 \mu \mathrm{~A}}{50 \mu \mathrm{~A}}=500
$$

$R_{s} 3=\frac{1,000}{500-1}=\frac{1,000}{500}=2$ (ignoring 1 in the denomi-

$$
\mathrm{R}_{\mathrm{s}} 3=2 \Omega \quad \text { compared to } 500 \text {). }
$$

For range $4(100 \mathrm{~mA})$,

$$
\mathrm{N}=\frac{100,000}{50}=2,000 \text { and } \mathrm{R}_{\mathrm{s}} 4=\frac{1,000}{2,000}=0.5
$$

$$
\mathbf{R}_{\mathrm{s}} 4=0.5 \Omega
$$

An important point should be noted at this stage, and that is the fact that since 100 mA is 100 times 1 mA , then 100 times as much shunt current is required for the 100 mA range as was required for the 1 mA range. Therefore, since current is inversely proportional to resistance ($\mathbf{I}=\mathrm{V} / \mathrm{R}$), then a 100 mA shunt will be 100 times smaller in value than a lmA shunt. Having already calculated $\mathbf{R}_{\mathrm{s}} \mathbf{2}$ for 1 mA and found it to be 52.6Ω the value of $\mathbf{R}_{\mathrm{s}} 4$
for 100 mA will be $\frac{52.6}{100}=0.526 \Omega$ or, approximately
$0 \cdot 5 \Omega$. This agrees well with the value obtained for $R_{s} 4$ using equation (iii).
Next calculate $\mathbf{R}_{5} 5$ for range $5(500 \mathrm{~mA})$ using equation (iii), or derermine its value by observing that 500 mA is 5 times greater than 100 mA , and therefore $\mathrm{R}_{\mathrm{s}} 5$ (for 500 mA) will be $1 / 5 \mathrm{th}$ of the value of $\mathrm{R}_{5} 4$ (for 100 mA), i.e., $\mathrm{R}_{\mathrm{s}} 5$ for $500 \mathrm{~mA}-\frac{0.5}{5}=0 \cdot 1 \Omega$. Checking this answer by using equation (iii); $N=\frac{500,000}{50}=10,000$, therefore $R_{s} \frac{1,000}{10,000}=0.1 \Omega$. $R_{5} 5=0.1 \Omega$.
Fig. 2 shows a suitable arrangement for incorporating the shunts just calculated to provide the desired ranges on the testmeter.

Fig. 2: Final circuit using separate shunts
The big disadvantage with this type of circuit is the contact resistance introduced by the switch. This may not be very important with a new good quality switch but after a period of use the contacts of most switches become dirty causing an increase in the resistance between the contacts, thus introducing measurement errors. The problem is not very important on the lower current ranges because the shunt resistors associated with these ranges are usually so large compared with the contact resistance that its effect may be ignored. On the high-current ranges, however, this is not the case and the contact resistance is comparable in value with that of the shunt (we have just shown that a shunt of only $0 \cdot 1 \Omega$ is required for the measurement of 500 mA).
The problem of contact resistance may be alleviated considerably by artificially increasing the resistance of the meter (\mathbf{R}_{m}). From equation (iii), the shunt resistance is directly proportional to $\mathbf{R}_{m}\left(\mathbf{R}_{s}=\frac{\mathbf{R}_{m}}{N-1}\right)$, so if we increase the value of R_{m} then the value of R_{s} can be increased in the same proportion. Achieving this will not only reduce the importance of contact resistance but it will also avoid the need for fractional ohmic values of shunt resistance (it is never a simple matter to produce, or obtain, resistor values of less than 19). To illustrate how this can be done, take the same $50 \mu \mathrm{~A}$, $1,000 \Omega 2$ meter, and deliberately increase its resistance tenfold i.e., make $\mathrm{R}_{\mathrm{m}}=10 \mathrm{k} \Omega$; by connecting a $9 \mathrm{k} \Omega$ resistor in series with it. Now repeat the testmeter design procedure, using equation (iii), for the same current ranges of $200 \mu \mathrm{~A} ; 1 \mathrm{~mA} ; 25 \mathrm{~mA} ; 100 \mathrm{~mA}$ and 500 mA .

For range I $(200 \mu \mathrm{~A})$.

$$
\begin{gathered}
\mathrm{N}=4 \text {, therefore } \mathrm{R}_{s} \mathrm{I}=\frac{10,000}{4-1}=3,333 \Omega . \\
\mathrm{R}_{\mathrm{s}} \mathrm{l}=3,330 \Omega
\end{gathered}
$$

For range $2(1 \mathrm{~mA})$.

$$
N=20, \text { therefore } R_{s} 2=\frac{10,000}{20-1}=526 \Omega
$$

$$
\mathrm{R}_{\mathrm{s}} 2=526 \Omega \text { and so on. }
$$

It will be noticed that the values of $R_{s} 1$ and $R_{s} 2$ are now ten times greater than what they were when R_{m} was $1,000 \Omega$. In other words, multiplying R_{m} tenfold has enabled us to multiply the shunt resistor values tenfold also. This means that $R_{5} 5$ for 500 mA is now 1Ω instead of 0.1Ω, and this is a standard value which can be obtained without great difficulty. The same applies to the 100 mA range; $\mathrm{R}_{\mathrm{s}} 4$ is now 5Ω instead of 0.5Ω, which again is readily obtainable. The values of $R_{s} 1-R_{s} 5$ are now large enough, except perhaps for the 500 mA range, to make contact resistance of the switch negligible.

All this sounds very convenient, so what are the snags? The big snag is that the effective resistance of the testmeter i.e., the resistance which would be measured between the two input terminals, is now much larger than it previously was, and this resistance may introduce errors into measurements, particularly when measuring large currents derived from low voltages. To demonstrate this, consider the simple circuit shown in Fig. 3.

Fig. 3: Simple circuit.

Fig. 4: Effect of adding meter

A $3 V$ battery is connected across a 6Ω resistor (this could be a torch bulb, for instance) causing a current of 500 mA to flow ($I=3 \mathrm{~V} / 6 \Omega$). Now connect the testmeter, switched to the 500 mA range, in scries with this circuit so as to measure the current flowing and we shall be adding a resistance of about 1Ω to the circuit (this is the calculated value of $R_{5} 5$ for 500 mA ; we can neglect the value of R_{m} which is $10 \mathrm{k} \Omega$ because it is so large compared with $\mathrm{R}_{5} 5$). The circuit now appears as shown in Fig. 4 and the current (I) now equals

$$
\frac{3 \mathrm{~V}}{\mathbf{R}_{\mathrm{s}} 5+\mathrm{R}}=3 / 7=0.43 \mathrm{~A}(430 \mathrm{~mA})
$$

This is the current which will be indicated on the meter, although it is known that the true circuit current without the meter in circuit is really 500 mA . The presence of the meter has therefore introduced an error of

$$
\frac{500-430}{500} \times 100 \%=14 \% ;
$$

and this is quite substantial!
Now consider what would happen using the testmeter fitted with the original value of $\mathrm{R}_{\mathrm{s}} 5$ for 500 mA i.e., $0 \cdot 1 \Omega$. The circuit current would now be

$$
I=\frac{3 V}{6 \Omega+0 \cdot 1 \Omega} \times 10^{3} \mathrm{~mA}=491 \mathrm{~mA}
$$

NEXT MONTH IN

PRAGTEAL

F.M. STEREO DECODER

With the ever increasing interest in the B.B.C.'s stereo broadcasts on the v.h.f. band, it is natural that the demand for stereo equipment is also on the increase. One of the most important items in the stereo set-up is the decoder. The author describes the construction of an inexpensive unit, which nevertheless has an excellent performance. A indicator lamp is included to indicate the presence of a stereo transmission. Full constructional details and wiring diagrams are included.

AERIALS FOR MOBILES

With that long warm summer to look forward to the mobile enthusiast will be going over his gear to see how he can best improve it after the mediocre results of last season. But whatever the equipment in use it is not much good if the weakest link in the chain, the aerial system, is not up to scratch.
Fred Judd, G2BCX, a very experienced 'mobileer' describes various practical arrangements and methods to ensure that the aerial system is really tuned up 'on the nose'.

A 3-BAND TRF-4 RECEIVER

Not the usual 3 band set but incorporating band spread coverage of the h.f. end of the medium wave band where the 'pop' stations are to be found, not forgetting the future m.w. local stations, and including the interesting radio amateur's Top Band.
In addition the BBC's Radio 2 service on I.w. plus continuous extended m.w. coverage from 150 to 620 m . Full constructional details in the April issue.

PLUS THE REGULAR FEATURES AND OTHER CONSTRUCTIONAL ARTICLES.

May issue on sale April 3rd.
3/6
The measurement error is now

$$
\frac{500-491}{500} \times 100 \%=1 \cdot 8 \% \text {. }
$$

this is still significant but much more acceptable.
The price to pay for high meter resistance is reduced measurement accuracy-especially on the high-current ranges. It is interesting to note here that the AVO model 7 , which has a lmA (effective) indicating meter, is much more suitable for measuring low-voltage high-currents than is the AVO model 8, which has a $50 \mu \mathrm{~A}$ (effective) indicating meter. This is because the effective resistance of the model 7 is lower than that of the model 8, due to the lower resistor values used for the current shunts (the 1 amp shunt on the model 7 is about 0.14Ω, whereas the equivalent shunt on the model 8 is about 0.5Ω.)

TO BE CONTINUED

The serious amateur should never be without this comprehensive price list and guide to semiconductors and electronic components from RCA, IR, SGS, Emihus,Semitron,Keyswitch,Plessey, Morganite, Litesold and others (together with manufacturers' application data) which you can buy direct from us atmanufacturers' prices e.g. IN914 1/3d. \square IN916 1/11d. $\square 2 N 697$ 4/5d. \square 2N706 2/3d. \square 2N706A 2/9d. \square 2N929 5/8d.口2N1613 4/8d.■2N3011 9/1d.ロ2N3053 6/2d. \square 2N3055 15/9d. \square 3N140 15/3d. BFY50 4/8d. \square BFY51 3/9d. $\square B S Y 27$ 18/BSY95A 3/3d. \square C407 4/6d. \square CA3012 k 18/3d. \square CA3014 25/6d. \square CA3020 25/9d. \square OA200 1/9d. \square OA202 1/11d.

Build the NEW Mainline Audio Amplifier kits - UP TO 70 WATTS

The result of the combined resources of SGS and RCA, these quasi circuits set new standards in quality and performance. Each kit is complete with circuit diagram, all semiconductors, resistors, capacitors and printed circuit board

12A
25A
40A
70A
Any two will make an outstanding stereo equipment.

No. 12
 LIE DETECTOR

JULIAN ANDERSON

A series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build.

ASSUMING that the reader has a multimeter, this month's project should cost no more than five shillings since it consists simply of a single transistor with no associated components "pepping up" the performance of the resistance range on a multimeter.

Lie detectors are not very accurate pieces of equipment but they do work in a vague sort of way using a very simple principle and they provide endless hours of fun. The principle of simple lie detectors is that the skin resistance of a person varies with changes of emotion. These changes can easily be measured and are surprisingly rapid especially when the emotion is fear.

Many readers will know that a reading of skin resistance can be obtained using the high resistance range on a multimeter simply by holding the probes, one in each hand: The actual resistance varies enor-mously-between about $20 \mathrm{k} \Omega$ and $300 \mathrm{k} \Omega$ but under most conditions the resistance is between $100 \mathrm{k} \Omega$ and $250 \mathrm{k} \Omega$. Cheaper multimeters will certainly show a reading for this sort of resistance but it will almost certainly be at the extreme end of the scale and to observe changes of about 5 per cent is very hard.

It is however very easy to increase the sensitivity of the meter just by connecting a transistor's collector and emitter to the meter and taking the probes from the base and collector. The battery inside the meter (1.5 V in most cases with additional 9 V or 15 V ones in the better types) provides the supply voltage and it will quickly be seen from Fig. 1 that a very high resistance in the basecollector circuit of the transistor brings about a greater current flow through the meter and thus effectively registers a lower resistance. Note that the positive connection to a meter is actually the negative connection to the battery and so the connections to the transistor are made in what appears to be the wrong way around.

A silicon $n-p-n$ transistor should be used (so here the meter positive lead goes to the emitter) and a $2 \mathrm{~N} 2926, \mathrm{BCl} 109$ or BC169 or any similar type is ideal. These transistors have very low leakage and very high gain and will bring the meter reading to the centre portion of the scale.

The same circuit is also applicable for measuring very high resistances or checking insulation. Using the circuit shown most meters will give a decent reading for $20 \mathrm{M} \Omega$ - something quite outside the scope of most meters. Your scale will of course bear no relationship to the resistance being measured but it is a relatively easy matter to plot points on a graph using known resistances for calibration.
The transistor itself should be mounted on solder tags fixed to a small panel of perspex or polythene. The resistance of wood or similar sorts of material

Fig. 1: The circuit of the lie detector. The components inside the dotted line are those within the multimeter itself.

Fig. 2: The connections to the transistor.
will upset the readings. The hand held probes can be made from brass or copper rod and when used these should be firmly held.

The use of the lie detector can be very amusing and provide hours of fun at parties. There is an admirable solution to the inevitable sceptic who mocks the test--pour your drink over his hands! The surprise itself should be enough to produce the reaction but what he will probably not know is that the liquid will improve the probe contact and increase the reading. (Use water with a little salt in for this emergency measure-it looks quite like gin or vodka and after all you don't want to waste your drink do you!)

Next month's Take 20 project is a two transistor radio. The circuit is designed specifically for miniaturisation by the constructor.

Never Built a Kit Before? Why not prove how easy it is the HEATHKIT way. Build one of these beginner kits.

- GUITAR PRACTICE AMPLIFIER
- ELECTRONIC METRONOME
- AMBASSADOR SPEAKERS
- AUTO-TUNE-UP METER
- AIRCRAFT MONITOR RECEIVER
- CAR RADIO
- TECHNICIANS

LOW-COST 'VVM'

- SEVERN

AM/FM RADIO

- FABULOUS STEREO HI-FI COMPACTS
- STEREO RECORD PLAYER
- D.I.Y. SPEAKER SETS
- GENERATORS
- POWER SUPPLIES
- D.I.Y. RADIOGRAM PACKS
- MANY OTHER MODELS TOO NUMEROUS TO MENTION

Send for this
 FREE Catalogue and see for yourself, Today!

MODEL 15

 MICRO

SOLDERING INSTRUMENT

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $3 / 64^{\prime \prime}\left(\cdot 047^{\prime \prime}\right)$ to $3 / 16^{\prime \prime}$, including long-life PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{1}{8}$ ". Weight $\frac{1}{2}$ oz.
Max. handle dia. 7/16".

- EXTRA-HIGH PERFORMANCE

Heating time 90 secs. Max. bit temp $390^{\circ} \mathrm{C}$. Loading 15 watts - equals normal 30/40 watt iron.

- All Voltages

The ADAMIN range includes five other models ($5,8,12,18$ and 24 watts), Thermal Strippers (PVC and PTFE) and a De-soldering Tool. Please ask for colour catalogue $\mathrm{A} / 10$.

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Telephone 01-688 8589 and 4559

THE RSGB AMATEUR RADIO CALL BOOK
 1970 edition containing 120 pages.

Complete up to date listing of all amateur stations in the U.K. and Eire together with much operating information including beam headings and list of prefixes.

7s 3d post paid

Radio Communication Handbook

832 pages of everything in the science of radio communlcation. The Handbook's U.K. origin ensures easy availability of components. The standard work 1 n its field.

69s post paid

THE VHF-UHF MANUAL

By George Jessop, G6JP

A complete manual for frequencies above 30 MHz . Covers aerials, receivers, transmitters and test equipment. The first book of its kind outside the USA.

23s post paid

Obtainable from:
 RADIO SOCIETY of GREAT BRITAIN 35 DOUGHTY STREET, LONDON, WC1

RANGE OF SOLID STATE A.C. mains Amplifiers Employing only high grade components and transistors.

Recommended
Retall price $\quad \mathrm{f} 10$
Slse $91 / 4 \times 23 / 4 \times 51 / 4 \mathrm{in}$.
Controle (5) Volume, Bass, Treble, Mains Switch, Input Selector Switch.

LT55 6 WATT AMPLIFIER
A HIGH FIDELITY UNIT PROVIDING EXCELLENT RESULTS AT MODEST OUTPUT LEVELS.
Senaltivity $5 \mathrm{mv}(\max)$.
Frequedcy Respome $30-20,000 \mathrm{cps}-2 \mathrm{~dB}$ Hemmonic Detortion 0.5% at $1,000 \mathrm{cps}$ Oretput Rating I.H.F.M.
Imput Soctets for "Mike," Gram and Radio Tuner/Tape Recorder Suitable for speakers 3-15 ohms
LT66 12 WATT STEREO AMPLIFIER
A TWIN CHANNEL VERSION OF THE LTSS PROVIDING UP TO 6 WATTS I.H.F.M. HIGH FIDELITY OUTPUT ON EACH CHANNEL Swlectied laput Faclilides
Socket (1) Tape or crystal PU
(2) Radio Tuner (3) Ceramic PU
(2) Radio Tu
Microphone

Controls (6) Volume, Bass, Treble, Balance, Mains Switch, Input Selector Switch. Stereo/Mono Switch.
Facte Plate Rigid Perspex with black/silver background and matching black edged knobs with spun silver centres.

[^2]please send a stampeo adoresseo envelope for FULL DETAILS DF ABOVE UNITS AYAILABLE FROM YOUR LOCAL MI-FI OEALER

LINEAR PRODUCTS LTD, Electron Works, Ammley, Leeds

GENERAL COVERAGE

SSB • CW • AM
 550 kHz to 30 MHz
 F. G. RAYER G30GR

Continued from last month

FIXING holes for the drive are located with the paper template included with it. The S-meter is fitted to the right, Fig. 4. Holes are punched to take the controls under the chassis, as in Fig. 5. An aperture is cut in the chassis to take the flywheel and drive. Holes are positioned for aerial and earth sockets, etc., and under each section of the ganged capacitor. Each coil needs a 4 in . dia hole and they will be placed as in Fig. 5.

The chassis flanges are fixed to the panel with chromed bolts, the bottom of the chassis being $\frac{1}{\text { I }}$ in. higher than the bottom of the panel, to allow for the cabinet flange.

Leads are soldered to the bottom tags of the variable capacitor, and passed down through the holes mentioned. Capacitor and drive spindles are carefully lined up and joined with a flexible coupling. Spaces or extra nuts are needed under the capacitor, to raise it.

Space is left for a PP9 battery, Fig. 4. When the audio panel is completed, it is fitted a little clear of the chassis as in Fig. 4. This is done with two bolts with extra nuts. One bolt also provides the earth return connection from amplifier positive to chassis.
The i.f. and S-meter amplifier panel is secured with two small brackets, Fig. 4. This allows all cores and underneath wiring to be reached, with short connections where necessary. Positive is returned to the chassis at a bracket.
The small b.f.o. and produce detector panel is also fixed with two brackets, Fig. 4. The b.f.o. coil

Fig. 4: Layout of main components on the top of the receiver chassis.

core is reached from the underside, so it is necessary to have a short adjusting tool, or make one from a strip of paxolin or insulated rod.

Bandswitch

This has a mechanism with moving stop, which is placed to give four positions. The three wafers are placed with their identification marks all the same way, and are threaded on the shaft. The screwed rods are then put in, with spacers allowing the wafers to come approximately as in Fig. 5.

Each wafer is three-pole four-way, and the switch cannot work if any is reversed, or has its rotating section wrongly placed on the shaft. If there is any doubt about its operation, this will be clarified by examining a wafer, and checking with a meter, with the switch in each of its four positions in turn. Also test the receiver with the three coils for one band only actually connected, with the switch in the appropriate position.
The front wafer is S1, S2 and S3. S3 is nearest the chassis, and wired to VC1 (and VC4). Trl base goes to $\mathbf{S} 2$ as in Fig. 5. The remaining section is S1, used for aerial.

The central wafer is S4, S5 and S6. Tr1 collector goes to S4, Tr2 emitter to S5, Fig. 5, and again the tag nearest the chassis has a short lead through to VC2.

The rear wafer is S7, S8 and S9, Tr2 emitter and collector going to $S 8$ and S7, positioned as in Fig. 5, with a short lead from VC3 to the remaining section S9, near the chassis. This allows short leads where required.

Coils, etc.

These are positioned as in Fig. 5, for short leads on the h.f. ranges, while keeping similar coils well separated. The wiring is largely duplicated from one band to the next, as follows:

Blue (Aerial) Coils. 1 and 9 joined on all, and to chassis. 7 joined on all, and to $\mathrm{Cl} . \mathrm{Cl}$ goes directly from S.W.1, pin 7, to chassis, Fig. 5. S1 tags, S2 tags and S3 tags are then wired in sequence to 8,5 and 6 , of S.W.1, S.W.2, S.W. 3 and M.W. coils.

Yellow (Mixer) Coils. All tags 1 to chassis. Tags 8 joined and to C3. Tags 7 joined and to C5 at S.W.1, Fig. 5 . S4, S5 and S6 then go to 9, 5 and 6. for each range, as before.

Fig. 5: Layout and part wiring of components on the chassis underside.

Red (Oscillator) Coils. Tags 8 joined, and to 2 on i.f.t.1. Tags 7 to C6 at S.W. 1 (Fig. 5). S7, S8 and S9 to tags 9, 5 and 1. Padders as described, and in Fig. 5.

Chassis returns for S.W. 1 and S.W.2, including those via capacitors $\mathrm{C} 1, \mathrm{C} 5$ and C 6 , must be very short and direct. For these ranges, 20 s.w.g. connections are suggested, with 26 s.w.g. for the lower frequency coils. Different colours of 1 mm sleeving will help identify the leads.

Coils were placed to allow a screen between blue and yellow types, but this was found unnecessary. Shorting type wafers to earth all unused windings are not available in the three-pole type. Small absorption effects were found to arise at about 12,17 and 24 MHz . Since 12 MHz is available on both S.W. 1 and S.W.2, this may be neglected. The others would be cured by using shorting wafers. This would require more wafers, as they are only available in two-poles per wafer type. Alternatively, the offending coils could be placed in the cans supplied by the maker, for screening.
Tr 1 and Tr 2 are close to their connecting points, and with each the shield lead goes to the chassis. Actual wires are emitter, base, shield, collector, in line and with extra spacing for the collector lead.

Individual mixer coil trimmers are not shown in Fig. 5 for clarity. These are soldered directly from
pin 1 to pin 6 on each yellow coil, the plate adjacent to the adjusting screw-head going to 1 (chassis).

Constructional Points

Amplifiers and product detector with b.f.o. are assembled on insulated eyelet board having holes at 0.2 in. centres. Plain board could be drilled to suit.

Some 26 s.w.g. tinned copper or similar wire may be used throughout, with 1 mm sleeving. It is helpful to identify external and other connections by colour, and to use red for chassis (positive) and black for

Fig. 6: I.F. amplifier and meter amplifier board.

BSR 4-SPEED SUPERSLIM MODEL UA25 RECORD CHANGER
Phaya $12^{*}, 10^{\prime \prime}$ or $7^{\prime \prime}$ record
Auto or Manual. A high
quality mnit hactrad by Bif reliability with 12 monthi'

11 in . Above
molor board 8 ff in
HONO 12 AC 800/2507.
MONO $\mathbf{\text { MRICE }} \mathbf{5 . 1 9 . 6} \quad$ PREREO $6.19 .6 \quad$ Post B8B UA70 Stereo/Mono Transcription $\mathbf{6 | 2 . 1 9 . 6}$
Anto Changer. Calibrated stylus Presiñe ER Minichanger UA50 Stareo/Mono
 GAREARD PLAYFRS with sonotone GTA Cartridgel. Stereo Dlamond/Mono sapphire. SP25 Mk II \$14.19.6. ATHO ME II 414.19.6. Model 3000 12.19.6. Posः $5 / 8$. RRCORD PLAYER PORTABLE CABINET fpace for amplifer and autochanger, Poat 5 RCS DE-LUZE 3 WATT AMPLIFIER. Ready made and testod. A 2 -itage unit using trode pentode valve, giving I watte outpat, Tone and volume controle. Imolated maine Granifor mer, With Enobs, iovdapaker and valves ECLSE, E280. Freanoncy reaponse $50-12,000 \mathrm{cps}$. Sensitivity 200 my . Post $\mathrm{B} / 6$.
$89 / 6$
GAKRARD TEAEWOOD BASE WB.1, Ready GARRARD PLAETIC COVER SPC. 1 Ior WB. 1

77/6
77/6
EMI PICE-DP $A R M$. Completo mith mono cartridee 2q/G.
HII JUIIOR 4 日PEED RECORD PLAYER
Hains operated motor, tarntable and pick up $\quad 59 / 6$
complete. Poit $5 / 6$.
GP9 $55 /=;$ GI-FI PICK UP CARTAIDGES
L.P. only 10/6. Au standard falng eomplete with atylan.

CRYSTAL MIKE INSERTS

11" dia. 8/6. ACOS 14"dis. 12/6. BM\&, 1° dia. $9 / 6$
PORTABLE AMPLIFIER
Portable mini p.a. cyatom,
Yany uegs - tdesl for
Paries, or at a Babs Thone or Record Pleter Shone ot Record Plarer
Anginior, eto. Attractive roning covirel cablaet, tise $18 \times 0 \times 41 \mathrm{n}$. powntuly \times 位, apother
and four transtator one 1
power amplifior. Unes PPO battery
anti now in migeri oarton with

WEYRAD P50-TRANSISTOR COILS tatw Forrito Aerial .. 12/8 8pare Corel .
 Trd I.F. PEO/sco P51/1, P51/2 Perrite $8-$; Telescopio Aerials oin. to estan $5 /-$

VOLUMECONTROLS 800hm Coax 8d. yd. Lons apindlen. Midret sito BRITXBE A RRIALITIE 5 E, ohmi to 2 Mer. LOG OD AERAEIAL-AIR SPACED
 Edre 5K. g.P.Trangistof, 5/e. 1 Idoal 686 linos $/ 6_{y d}$

Imall byo with mall knob.	Talues 10Ω to $30 \mathrm{~K} ., 4 / 6$	LONG SPITDLE
Carbon 80 K to 2 meg.	$7 / 6$	TRBOBOARD 0.15 YATRIX

s.R.B.P. Board 0.15 MATRIX 2 41 . wide Bd. por 1 In.

 1Hinch DIAMETER WAVE-CRAMGE SWITCHES

ALL PURPOSE HEADPHONES

H.R. HEADPHONES 2000 ohms Super Sonitive.

DE LUXE'PADDED BIEREO PHOEES 8 ohms
"THE INBTANT
BULK TAPE
ERABER AND
RECORDING

HEAD
 DEMAQNETIBER

200/250 v. A.C. Leallet S.A.E. 4 Pont $2 / 6$ (4)

AUDIO EFFECTS

5 SHAW LANE, HALIFAX YORKS
Buy with confidence and obtain the right results. Refunds without question if any of our products fail to give 100^{0} sat isfaction.
AMATEUR BANDS ALL TRANSISTOR SUPERHET RECEIVER KIT. No fuss, no drilling. Just fit the components on our drinted circuit. Slow Motion tuning. Simple IF alignment. Perspex front panel. Push pull AF amp drives your $8-15$ ohm speaker. Amp AF amp drives your 8-1 ohm speaker. Amp
can be used seperately. Designed to accept a can be used seperately. Designed to accept a BFO signal. Uses Denco Dlug in coils 2 T .
0.5 to $1.54 \mathrm{Mhz} 3 \mathrm{~T}, 1.67$ to 5.3 Mhz 4 T . 0.5 to $1.54 \mathrm{Mhz} 3 \mathrm{~T}, \mathrm{M}_{1} .67$ to 5.3 Mhz 4 T .
5.0 to 15 Mhz ST. 10.5 to 31.5 Mhz Range 3T 5.0 to 15 Mhz ST. 10.5 to 31.5 Mhz Range 3 T
normally supplied with kit. Uses 9 volt battery. Easy step by step instructions. Complete Kit. £8.19.6 plus 5/6 P. P. \& Ins. Extra ranges 12/per range.
POWER CONTROLLER. Power at your finger tips. Not merely half wave control but full wave. A single variable control gives zero to full power. Uses latest 15 amp 3 kW triac and special triggering device. Ideal for all and special trigecring device. Ideal for all
types of lighting, fres, motors, drills, etc. types of ighing, fres, motors, drills, etc. Complete with box, power socket, cabies. etc.
In kit form with easy to follow instructions in kit form with easy to follow instructions
E6.9.6. Ready built \&9.4.6 plus $5 / 6$ P. P. \& Ins. 86.9.6. Ready built 29.4 .6 plus $5 / 6$ P. P. \& Ins. REVERBERATION AMPLIFIER. Self con-
tained transistorised. battery oderated. An tained transistorised. battery operated. An entirely different approach to sound reproduction. Normally, sound reproduction from a single source. has a flat one dimensional effect. With this unit. proper sound delay through reverberation, tones. are created with a truty third dimension for concert hall originality. Two controls adjust volume and reverberation. Simply plug microphone. guitar, etc., in, and the output into your amplifier. Supplied in a beautiful walnut cabinet $7 \mathrm{tin} \times 3$ in $\times 4$ ikin. V10.4.0 plus 6/-P. P. \& Ins.
VOX SWITCH. This sound operated switch is ideal for mobile TX work, tape recorder switching, etc. You speak, it switches. High and medium imp. inputs. AF take off point. Drives your 12 volt relay, In kit form with fuli inatructions 42/6. Ready built, tested and guaranteed. 62/0, plus $2 / 6$ P. P.
METRONOME UNIT. Variable beat. Listen while you play and keep in time. Easily built, ocket size with personal mini earphone. In kit form 27/6. post paid. Ready built in an attractive black and white polythene case. 37/6 post paid.
MORSE OSCILLATOR. PC board, transistors, high stab. components, battery carrier, car piece. Adjustable tone. Just attach your key. Drives phones or speaker. In kit form 17/6 post paid. Ready built in similar case as above 25-pose pald.
STRAIGHT FROM THE PRESS. Latest Mullard manual: Audio Amps. FM tuners, Stereo decoder, Receiver circuits. Hi Fi Tape, etc. elc. $32 / 6$ post paid.
JUST ARRIVED IN STOCK. Texas transistors. Complementary symmetry. Driver. NPN. PNP oulput. The set of three ONLY $6 / 6$ posi paid.
Free llsts with every order. For lists only send $1 / 6$ (deductible from first order).

NEW VALVES!
Guar anteed and Tested 24.H OUR SERVICE

1R:5	618	DL9*	7/-	EYJ1 7/6	PLuO4	13/3
185	$4 / 8$	DYAB	4/9	EY86 6/3	PY3	10\%-
174	2/0	DY87	$4 / 9$	E280 4/8	PY93	10/-
384	$5 / 9$	Fin Buso	5/9	EZ81 4/6	PY8:	86
$3 V_{4}$	8/6	EBC33	$7 / 9$	KT81 $\quad 9 / 8$	PY82	6/m
6/30 L.	11/8	EBC41	9/8	KT66 16/6	PY88	6/6
6Aq5	$4 / 8$	EBF80	$81-$	N78 17/-	PY88	$0 / 6$
BVeg	8/-	FBr89	$8 / 6$	PABCM0 6/9	PY800	6/6
2GLAGT	4/6	HCLAS	$8 / 6$	PC86 10/6	PY801	8/8
$30 \mathrm{FL1}$	18/6	ECCH2	4/-	PC88 $10 / 8$	R19	6/8
30 FL 12	14/8	Fexess	410	PC97 8/8	U2i	18/9
30 P 4	11/6	FCCMS	$81 /$	PC900 7/-	U26	11/6
30 P 19	11/6	ECHSA	5/6	PCCH4 $6 / 8$	U19]	121-
30 PL 1	18/6	ECHB1	$5 / 9$	PCC89 8/11	U198	8/6
30 PL 3	14/11	ECLAO	B/8	PCFRo 6/11	U451	14:-
CCH35	13/-	KCL82	6/8	PCF'801 $6 / 8$	U301	10/-
CL33	17/6	ECL83	8/-	PCFB02 $8 / 9$	U329	14/-
DACAO	6/8	ECL86	716	PCL82 6	UABC8	06/-
DAF91	4/8	EF37A	61-	PCL83 $9 / 9$	URC41	8/8
DAF96	8/8	EFP39	4/8	PCL84 $7 /-$	U8F89	0/8
DF33	7/8	EFSO	$4 / 8$	PCLB: 8 8/6	UCC85	78
DF91	$2 / 8$	EF85	4/9	PCL4 88 8-	UCH81	6/-
DF96	6/8	LPP88	8/8	PFL20011/-	UCL82	8/9
DK32	6/9	EF89	$4 / 9$	PLath 9/8	UP41	10/6
DK91	6/6	EFIN:	\$/6	PLS1 8/-	UF89	6/-
DK9A	$7 / 8$	L1F184	8/2	PLAE 5/9	UL41	10/8
DL3 ${ }^{\text {d }}$	4/9	EHF90	81-	PL83 8/8	UL84	6/8
DL9:	$5 / 8$	EL33	918	PL84 6/-	UY41	71.
DLed	6/6	ELA4	4/8	PLajon 12/9	UY80	B/8

GERALD BERNARD
83 OSBALDESTON ROAD STOKE NEWINGTON LONDON, N. 16
H.A.C. ${ }_{\text {shon-Trisve }}^{\substack{\text { kis }}}$

WORLD-WIDE RECEPTION

Farnous for over 35 yesrs for short-Wave Equipment of quality, "H.A.C." were the Original supplier of Ehort-Wave Recelver Kit for the amateur constructor. Over 10,000 gatisfled pitais, Puble gehools, R.A.F., Army, Hams, etc.

INPROVED 1970 RANGE
One-valve mode! "DX', complete lit-price 58/6 (Postage and packing 3/6)
Customer writea:-"Deftitely the beat one-valve S.W. KIt available at any price. America and Australia received clearly at food volume." This cit contsins ail genuiue short-wave componenta, driled chassib, vaive, sccessorien and full instruc* producta-fully guaranteed. Full range of other S.W. Irith including the farnous model "K" and "K plus" (illustrated above.) All ordera deapatehed by return. (Mail order only.) Send now for a descriptive catslogue, order form.
'"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

1,750 COMPONENTS FOR 65/- ? ?

YES, QUITE TRUE.
READ ON
BUMPER BARGAIN PARCEL
We guarantee that this parcel contains at least 1,750 components. Short-leaded on panels, includink a minimum of 350 transistors (mainly NPN \& PNP germanium, audio and switching types--data supplied). The rest of the parcel is made up with: rest of the parcel is made up with:
Resistors 5% or better (including some 1%) mainly metal oxide, car. some 1% mainly metal oxide, car-
bon film, and composition types. bon film, and composition types.
Mainly $t \&$ watt Mainly $t \& \frac{1}{4}$ watt diodes,
miniature silicon types OA90, OA91, miniature silicon types OA90, OA91,
OA95, IS130, etc. . . capacitors including tantalum, electrolytics. ceramics \& polyesters . . . inductors, a selection of values . . . also the odd transformer, trimpot. etc. etc. . - . These are al! miniature. up to date professional, top quality up to date. protessional, top quality of our best offers yet!! Price. 65/-. of our best offers vet!! Price. 65/-.
Post and Packing 6/6d U.K. New Zealand 20/: post and packing. Limited stocks only.

KEYTRONICS, PW

52 Earls Court Road, London, W8 Tel. 01-478 8499
MAIL ORDER ONLY. Retail and Trade supplied. Export enquiries particularly welcome.

BY RETURN SERVICE
S.A.E. for list of other goods

PADGETTS RADIO STORE

OLD TOWN HALL, LIVERSEDGE,
YORKS. Tel. Heckmondwike 4285
AW48-80 TV Tubes good picture-no guarantee El plus 12/- carriage
Aircraft Sighting Head, with Gyro Unit, Condition Fair 18/6, carriage B.R.S. 12/-
Small 12-way Plug and Socket, $1 / 6$ each p.p-1/-. 15/- per doz. p.p. 3/6. Ex unit.
Panel of 19 mixed pots. 5/-post paid. Ex unit. Panels of Resistors and Condensers 8/- per doz., post paid. Ex unit.
Bombsight-Computors containing a large selection of gears. A delight for The Model Maker. 55/- carriage paid
Complete untested 17 inch TV Sets 12 channel $50 /$-, 15/-carriage.
Small Sub Chassi containing small 12-way Plug and socket. Few Resistors and Condensors 5/-, p. p. 1/6.
Speakers removed from T.V. Sets. All PM and 3 ohm . 6 in . round $3 /-$, p. \& p. $3 /-; 6$ for 24/-, post paid $6 \times 4 i n .3 /-$ p. \& p. 3/-; 6 for $24 /$ /-, post paid. Sin. round $3 /-1$ p. \& p. $3 /-$; 6 for $24 /-$ Dost daid. $7 \times 4 i n, 5 /-$ D. \& D. $3 /-$ 6 for $34 /$ - post paid. Slot Speakers 8×2 tin. $5 /$-, D. \& D. $3 /-; 6$ for $30 /$ - post paid.
Reclaimed T.V. Tubes, with 6 months' guarantee 17in. Type AW43/80. AW43/88 kuarantee MW43/69 30/-. 14in. Type 17/.. All Tubes $12 /$ - carriage.
Silicon Rectifter 500 mA 800 PIV, $2 / 6$ DOst paid. 24/- per dozen, post paid.
Jad Easplece. Marnetic 8 ohm. Small and Large Plug $1 / 11$ post paid.
G.P. Diodes 3/6 per dozen, post paid,

Top Grade Mylar Tapes, 7in Standard 11/6. 7in, Long Play 14/-, Sin. Standard 7/9. Sin Long play $10 /-$, pius post on any tape $1 / 9$.
VALVE LIST-Ex Equipment, ${ }^{3}$ months' guarantee. Single Valves Post 7d., over 3 Valves p. \& p. paid

ARP12	$\mathbf{1 / 6}$	PCL82
EB91	9 d	PCI 83

EB9
EF85
EBF80
$\underset{\mathrm{ECC}}{\mathrm{EC}} \mathrm{E}$
ECC83
EC5
EF8
EF9
EY8
PCC8
PCF80

$4 /-$	6 B 8
$5 /-$	6 BW 7
$5 /-$	6 K 7
$6 /-$	6 U 4
$4 /-$	6 P 28
$5 /-$	10 P 13
$1 / 6$	185 BT
$1 / 6$	20 D 1
$5 /-$	20 P 1
$5 /-$	20 P 3
$5 /-$	30 PL 1
$5 /-$	30 P 12
$5 /-$	30 F 5
$5 /-$	30 FL
$5 /-$	$6 / 30 \mathrm{~L}$

$1 / 8$
$2 / 6$
$1 / 9$
$5 /-$
$5 /-$
$2 / 6$
$8 / 6$
$3 /-$
$5 / 6$
$5 /-$
$5 /-$
$2 / 6$
$5 /-$
$5 /-$

Est. 1943 JOHNONS

Tel: 24864
New! CV2-a unique triple-purpose VHF kit for the Amateur enthusiast. Integrated converter, receiver, and tuner-feeder. Fantastic single transistor performance! Comprehensive kit of high grade parts with three coils covering $80-178 \mathrm{MHz}, 9 v$ battery, etc., together with simplified diagrams and instructions. Price complete, f4, post, packing and insurance paid, direct from makers. S.A.E. for literature.

JOHNSON'S (RADIO)
St. Martin's Gate, Worcester

Please mention

 PRACTICAI wrinicsswhen replying to advertisements
negative circuits.
Short pieces of sleeving will also identify transistor leads when these are fitted. Black is suggested for base, yellow for emitter, and red for collector.
I.F./Meter Amplifier. This is the largest unit, shown in Fig. 6. It mounts vertically by two brackets used as chassis return. Figure 6 shows the "top" of the board, with i.f.t.s, resistors, etc. Wiring under the board is shown with broken lines.
It is convenient to fit the i.f.t.s first, with central holes to reach the cores later. All the cans are earthed. If each component and lead is marked with coloured pencil as fitted and soldered it will be easily clear what has been done, and nothing is likely to be omitted.

Later, leads are passed through the chassis to the function switch, 8 on oscillator coils, and other items as shown. A check should be made against Fig. 2 as required. R18 to R21, Tr5 and the meter may be omitted until later.

Fig. 7: The audio amplifier board.
Audio Amplifier. Figure 7 shows components and wiring. The heatsink is fixed with two $\frac{1}{2}$ in. or similar bolts, and a tag under one nut serves as chassis return. Extra nuts are put on, and the finished board can then be clamped to the chassis, with a little clearance.

Tr 11 and $\operatorname{Tr} 12$ occupy clips bolted to the heatsink. The connections given for T 5 are for the particular transformer listed, and if an alternative is fitted, the maker's data should be followed.

A black flexible lead with negative battery clip runs from C26. The lead Y supplies the i.f. amplifier. VR2 slider runs to R31.
The whole amplifier can be tested by taking an audio input to R31, with battery positive as earth return.

If the receiver is to be temporarily or permanently used for ordinary a.m. reception (speech, music) only, VR2 can be fed from diode D2 via a capacitor. as described.
Product Detectar and B.F.O. Connections are shown in Fig. 8. The completed panel again mounts vertically on brackets, and is placed to allow quite short leads from C14 and VC5. A hole is necessary under the b.f.o. coil to reach its core.
The circuit provides a.m. detection when the b.f.o. is off, and the function switch breaks this circuit,

Tr6 and $\operatorname{Tr} 7$ run from the reduced voltage available from Y at the i.f. amplifier. The b.f.o. receives the regulated supply from the 5.6 V Zener diode. When the completed panel is fixed in place, remove the temporary coupling capacitor used to give a.m. reception from D2, if previously fitted.

IF Alignment

The intermediate frequency is 465 kHz . If a signal generator is available, loosely couple it to the base of Tr 2 , and rotate all the cores for best results with a 465 kHz input. A c.w. signal will operate the meter, so i.f.t. cores can be adjusted for best meter reading. Input should be kept well down.

With a modulated signal from the generator, adjustments can be for naximum audio output, with gain controls at maximum; or for maximum battery current, shown by a meter in one lead. Input must again be kept well down.

If no generator is available, a stable signal should be tuned in (such as a BBC transmission, with a very short aerial). The five cores are then carefully adjusted for best results.

A properly shaped core adjusting tool is best employed for the i.f.t.s. Final alignment should be with a weak signal. These cores are then left and need no further adjustment.

BFO

With VC5 half closed, and the b.f.o. switched on, a strong heterodyne should be heard when the b.f.o. coil core is rotated with a tool. Ignore any weak whistles produced at other core settings, and place the core so that it is at the central or zero beat position. A whistle, which rises in pitch, will then be heard if VC5 is opened or closed. During these adjustments, a steady carrier should be present, from a signal generator or transmission.

Fig. 8: Product̃ detector and b.f.o. board.

RF, Mixer and Osc

It is necessary to describe adjustment's to only one range, as each range is dealt with separately.

TC5 is about two-thirds or so closed. Its setting primarily determines band limits at the high frequency end of the band. The red coil core is adjusted to obtain a suitable band limit at the low frequency end of the band.
The coils are normally packed with the brass screws set right in, so it is as well to unscrew them all so that roughly $\frac{1}{2}$ in. of 6 BA rod projects, to begin.

Set VC4 (aerial trimmer) about half closed, and rotate the cores of blue and yellow coils for best results, near the 1.f. end of the band (ganged capacitor nearly fully closed). Tune to the h.f. end of the band, this time adjusting the yellow coil trimmer for best results.

Repeat these adjustments, as necessary, for suitable band covenage, and best performance. VC4 will not need continuous adjustment, when the blue cores are suitably placed, but this trimmer is helpful when changing aerials, or bringing up weak signals.

Notes on Operating

The dial reads $0-500$, to \log particular s.w. transmissions, etc. s.w. reception, especially on the h.f. bands, varies greatly from hour to hour, daily, and has seasonal and other variations.
For normal reception, put the function switch to a.m. with a.v.c. When very strong transmissions overload early stages, VR1 must be turned back. VC4 is simply peaked for best results, and should never be fully open or fully closed.
In some cases manual control of r.f. gain only is required, and 3rd and 4th positions of the switch provide this, the latter with the b.f.o. on. In the 4th position, s.s.b. and c.w. do not control gain via the a.v.c. circuit. In the 5th position, these signals provide a.v.c. bias.
With the switch in the 5th position, c.w. and s.s.b. can be resolved over a considerable level of signal strengths. Rotating VC5 one way or the other, from the central or zero position, will resolve an s.s.b. signal, the direction of rotation depending on whether upper or lower sideband is being transmitted. With exceptionally strong or local signals, gain must be reduced with VR1.

With c.w., the b.f.o. acts as a pitch control, and may also be above or below the carrier frequency, as giving best results.
In all cases VR2 controls volume, and it is as well to keep current peaks down to $30-40 \mathrm{~mA}$ or so, which should give ample output.
S14 can be closed during noisy static conditions, or when wearing headphones. The limiting is fairly heavy, to avoid blasting on phones.
VR3 should originally be set at about its middle position, with VR1 at maximum gain. With no aerial, and no signal tuned in, adjust VR3 for zero on the S-meter. If wished, VR3 can be made up from one or more resistors in series with a potentiometer of lower value, though using $5 \mathrm{k} \Omega$ as shown is not too critical when adjusting zero.

For very long distance reception, one of the numerous external short wave aerials of improved type may be used-a dipole, doublet, tuned end-fed wire, etc.
For general results, any end connected wire may be taken to the aerial socket. It will probably be
found that a long wire is best avoided for medium and low frequencies.

A telescopic 30in. or similar aerial, fixed to the case but insulated from it, will give very good results over medium and high frequencies, though naturally not with extremely remote stations. A flying lead from the aerial can be taken to the aerial socket, or directly to the fixed section of VC1.

With some frequencies and transmissions, adding an earth will bring about no significant improvement. With other signals (such as weak Top Band amateurs) adding an earth will increase volume very considerably.

Photographs show underside and above views of the complete receiver.

Other Points

R38 and R9 are chosen to drop just over 3V with a current slightly in excess of 10 mA . Since D1 maintains $566 \mathrm{~V}, 3.4 \mathrm{~V}$ must be dropped with a 9 V supply. The fairly high resistor values are to help reduce current lost through D1.

Though the values shown should prove satisfactory with 10% resistors and some variation in the actual controlled voltage of D1, a stabilised supply may no longer be obtained, when the battery voltage falls even slightly. If so, R9 should be slightly reduced. Battery drain, with no signal, should be about $20-25 \mathrm{~mA}$, with VR1 at maximum.

ELEGTRO/ALUE

Everything brand new and to

 specification - Large stocks - Good service
RESISTORS :

Code P

Code	Power	Tolerance
C	$1 / 20 \mathbf{W}$	5%
\mathbf{C}	$1 / 8 \mathbf{W}$	5%
C	$1 / 4 \mathbf{W}$	10%
\mathbf{C}	$1 / 2 \mathbf{W}$	5%
MO	$1 / 2 W$	2%
\mathbf{C}	$1 \mathbf{W}$	10%
$\mathbf{W W}$	$1 \mathbf{W}$	10%
$\mathbf{W W}$	$3 W$	$5 \%+1 / 20 \Omega$
	$7 W$	5%

Range
$82 \Omega-220 \mathrm{~K} \Omega$
$4.7 \Omega-830 \mathrm{~K} \Omega$
$4.7 \Omega-10 \mathrm{M} \Omega$
$4.7 \Omega-10 \mathrm{M} \Omega$
$10 \Omega-1 \mathrm{M} \Omega$
$4.2 \Omega-10 \mathrm{M} \Omega$
$0.22 \Omega-3.3 \Omega$
$12 \Omega-10 \mathrm{~K} \Omega$
$12 \Omega-10 \mathrm{~K} \Omega$
Values
available
E12
E24
E12
E24
E24
E12
E12
E12
E12

1 to 9	10 to	
99		100
SEE	NOTE	BELOW
18	16	15
2.5	2	1.75
2.5	2	1.75
3	2.5	2.25
9	8	7
6	5	4.5
15d all quantities		
15d all quantities		
18d all quantities		

Codes : $\quad \mathrm{C}=$ carbon fitm, high stability, low noise $\mathbf{W O}=$ metal oxide. Electrosil TR5, ultra low noise

Values: E12 denotes serjes: $1,1.2,1.5,1.8,2.2,2.7,3.3,3.9,4.7,5.6,6.8,8.2$ and their decades E24 denotes series: as E12 plus $1.1,1.3,1.6,2.2 .4,3,3.6,4.3,5.1,6.2,7.5,9.1$ and their decades. Prices are in pence each for quantities of resistors of same ohmic value and dower ratiug Nor mixed values. (lgnore fractions of one penny on total resistor order.)

COLVERN 3 WATT WIRE-WOUND POTENTIOMETERS :
$10 \Omega, 15 \Omega, 25 \Omega, 50 \Omega, 100 \Omega, 150 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{~K} \Omega, 1.5 \mathrm{~K} \Omega, 2.5 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 10 \mathrm{~K} \Omega, 15 \mathrm{~K} \Omega, 25 \mathrm{~K} \Omega$ $50 \mathrm{~K} \Omega$. Price only $5 / 6$ each.

CARBON TRACK POTENTIOMETERS: Double wiper ensures minimum noise level.
Long plastic spindles.
Single gang linear: $220, \Omega 470 \Omega$, 1 K etc. to $2.2 \mathrm{M} \Omega 2 / 6$
Single gang lom: 4 K 7 . 10 K .22 K , etc. to $2.2 \mathrm{M} \Omega \quad 2 / 6$
Dual gang linear: $4 K 7$. $10 \mathrm{~K}, 22 \mathrm{~K}$ etc. to $1 \mathrm{M} \Omega$
Log/Anti-log: 10K, 47K, $1 \mathrm{M} \Omega$ only
Dual anti-log: 10K only
Any type with $:$ amp. double pole main $8 / 6$
switch
mains
extra $2 / 3$
PLESSEY INTEGRATED CIRCUIT POWER AMPIIFIER pose $2 \mathrm{~N} 5163,25$ volt, only $5 /$-each. Audior.f. Texas 2N3819 8/6, Motorola 2N5459 (MPF105) 9/9 each. Motorola 2N5457 (MPF103) 9/9 each.

NEW PLESSEY INTEGRATED CIRCUIT POWER AMPLIFIER TYPE SLA03A. Only $48 / 6$ nett. Operates with 18 V power supply. with two or more, PE Nov. 69 Stereo Amplifer kit less metal work £11/18/- NET complete.

30 WATT BAILEY AMPLIFIER COMPONENTS

Transistors for one channel $£ 7 / 5 / 6$ list with 10% discount only $£ 6 / 11 / 0$.
Transisiors for two channels $\mathrm{f} 14 / 11 / 0$ list, with 150 discount on/y $£ 12 / 7 / 5$.
Transisiors for two channels $\operatorname{Capacitors~and~resisiors~for~one~channel~lisi~} £ 2$. 15% discount only $£ 12 / 7 / \mathrm{s}$.
Printed circtit board free with each transistor set
Complete unregulated power supply kit $£ 4 / 17 / 6$ mono or stereo, subject to discount
Complete regulated power supply kit $\mathbf{f 9 / 5 / - s u b j e c t ~ t o ~ d i s c o u n t . ~ F u r t h e r ~ d e t a i l s ~ o n ~ a p p l i c a t i o n . ~}$
SINCLAIR IC. 10 Integrated Circuit Amplifier and Pre-amplifier. This remarkable monolithic Integrated circuit amplifter and preamp now available from stock. The equivalent of 13 transistor,
18 resistor circuit plus 3 diodes and the first of its kind ever It is d.c. coupled and applicable to an unusually wide range of uses as detailed in the manual provided with it. As advertised, post free 59/6 NET.

CARBON SKELETON PRE-SETS Small high quality. type PR: Lincar Small high quality, type PR: Lincar
only, $100 \Omega .220 \Omega, 470 \Omega, 1 \mathrm{~K} \Omega \quad 2 \mathrm{~K} 2$, $4 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K} .220 \mathrm{~K}$, $470 \mathrm{~K}, 1 \mathrm{MS}, 2 \mathrm{M} 2,5 \mathrm{M}, 10 \mathrm{M} \Omega$, vertical or horizontal mounting, $1 /=$ each.

S-DeCs put an end to "birdsnesting". Components just plug in. Saves valuable time. Use components again and again. S-DeC only $30 / 6$ Dost free. Compact T-DeC, increased capacity, may be temperature-cycled

CAPACITORS: All new stock
High ripple current types:
Fish ripple current types: \quad Medium electrolytics \quad Small electrolytics $25 \mathrm{~V} 12 / 6 ; 5000 \mathrm{cF} 50 \mathrm{~V}$ 21/11. 11/4; $5000 \mu \mathrm{~F}$ 16/3: $2000 \mu \mathrm{~F}$ 100V $28 / 9: 5000 \mu \mathrm{~F} 70 \mathrm{~F} 100 \mathrm{~V}$ $5000 \mu \mathrm{~F} 100 \mathrm{~V} 58 / 3$. $1000 \mu \mathrm{~F}$ F $50 \mathrm{~V} 36 / 2$ $\begin{array}{lllll}2500 \mu \mathrm{~F} & 64 \mathrm{~V} & 15 / 5: 2500 \mu \mathrm{~F} & 70 \mathrm{~V} & 19 / 6 \text {. }\end{array}$ Axial leads; Values ($\mu \mathrm{F} / \mathrm{V}$): $50 / 50$ 2/-: $100 / 25$ 2/-: $100 / 50$ $\begin{array}{lllllll}2 / 6: & 250 / 25 & 2 / 6 ; & 250 / 50 & 3 / 9: \\ 500 / 25 & 3 / 9: & 1000 / 10 & 3 / 3: & 500 / 50\end{array}$ $\begin{array}{lllll}500 / 25 & 3 / 9: & 1000 / 10 & 3 / 3: & 500 / 50 \\ 4 / 6: & 1000 / 25 & 4 /-: & 1000 / 50\end{array}$ 2000/25 6/-; $3030 / 25 \quad 2 / 6$.

Small electrolytics
Axial leads: $5 / 10,10 / 10$,
$25 / 10.50 / 101 /-$ each, $25 / 25$ $\begin{array}{lll}\text { A5/20. } & 50 / 101 / \text {-each, } 25 / 25, \\ 47 / 25, & 100 / 10 . & 220 / 101 / 3\end{array}$ each.

MULLARD Sub-min electrolytic C426 range: Price $1 / 3$ each. Axial leads, Values ($\mu \mathrm{F} / \mathrm{V}$): 0.64/64: 1/40: 1.6/25: 2.5/16: $2.5 / 64 ; 4 / 10 ; 4 / 40 ; 5 / 64 ; 6.4 / 6.4 ; 6.4 / 25$;
$8 / 4 ; 8 / 40 ; 10 / 25: 10 / 16: 1064$; $125 / 25 ;$ $8 / 4 ; 8 / 40 ; 10 / 2.5 ; 10 / 16 ; 10 / 64 ; 12.5 / 25$;
$16 / 40 ; 20 / 16 ; 20 / 64 ; 25 / 6.4 ; 25 / 25 ; 32 / 4$; 32/10; 32/40; 32/64; $40 / 16: 40 / 2.5$: $50 / 6.4$: $50 / 25 ; 50 / 40 ; 64 / 4 ; 64 / 10 ; 80 / 25$; 80/16: $80 / 25 ; 100 / 6.4 ; 125 / 4 ;$ 125/10; $125 / 16 ;$ $160 / 2.5 ; 200 / 6.4 ; 200 / 10 ; 250 / 4 ; 320 / 2.5$ $320 / 6.4 ; 400 / 4 ; 500 / 2.5 \mu \mathrm{~F} / \mathrm{V}$.

Wavechange switches: 1P 12W: 2P 6W: 3P 4W: 4P 3W long spindles, $4 / 9$ each

SIIder switches, double pole double throw
3/- each.

BARGAINS IN NEW TRANSISTORS

All power types supplied with free insulating sets

2N696	5/6	2N5192	25/-
2N697	5/6	2N5195	28/3
2N706	2/9	4036	12/6
2N1132	9/9	40362	16/-
2N1302	4/-	AC126	6/6
2N1303	4/-	AC127	6/-
2N1304	4/6	ACl28	6/-
2N1305	4/6	AC176	11/-
2N1306	6/9	ACY22	3/9
2N1307	6/9	ACY40	4/-
2N1308	8/9	AD140	19/-
2N1309	8/9	AD149	17/6
2N1613	6/-	AD161	16/-
2N1711	7/-	AD162 ${ }^{\text {a }}$	comp. pr.
2N2218	9/3	AF118	16/6
2N2147	18/9	AF 124	7/6
2N2369A	5/3	AF127	7/-
2N2646	10/9	BA102	9/-
2N2924	4/-	BC107	2/9
2N2925	4/6	BC108	2/6
2N2926R	2/3	BC109	2/9
2N2926O	2/3	BC147	3/6
2N2926Y	2/3	BC148	3/3
2N2926G	2/3	BC149	3/6
2N3053	5/6	BC153	10/-
2N3054	14/3	BC154	11/-
2N3055	16/-	BC157	3/9
2N3391A	6/3	BC158	3/6
2N3702	3/6	BC159	3/9
2N3703	3/3	BC167	2/6
2N3704	3/9	BC168	2/3
2N3705	3/5	BC169	2/6
2N3706	3/3	BC177	6/3
2N3707	4/-	BC178	5/8
2N3708	3/-	BC179	6/-
2N3709	3/-	BD121	18/-
2N3710	3/6	BD123	24/3
2N3711	3/11	BF178	10/6
2N3904	7/6	BFX29	10/9
2N3906	7/6	BFX85	8/3
2N3731	24/-	BFX88	6/9
2N4058	5/3	BSX20	3/9
2N3325	10/9	BFY50	4/6
2N3794	3/3	BFY51	4/3
2N4284	3/3	MJ480	21/-
2N4286	3/3	MJ481	27/-
2N4289	3/3	MJ 491	30/-
2N4291	3/3	P346A	4/6
2N4292	3/3	V405A	7/9
2N4410	4/9	NKP403	15/6
		NKP405	15/-

MAIN LINE AMPLIFIER KITS as advertised. Prices Net. Authorised dealer.

COMPONENT DISCOUNTS
0% on orders for components for $£ 5$ or more. 15% on orders fot components for $£ 15$ or more (No discount on nel items.)
POSTAGE AND PACKING :
Free on orders over $£ 2$
rease add 16 order 13 under $£ 2$
Overseas orders welcome : carriage charged at cost

F.A.L.'PHASE 50' Public Address Amplifier

A superb solid state A.C. Mains unit for vocal and Instrumental groups and General Public Address use.

Recommended Retail price
$\star 50$ Watts Output (Peak Rating) $\quad \star$ High Sensitivity
\star Output matching for speakers from $\mathbf{3 - 3 0}$ ohms
$\star 3$ separately controlled inputs
\star Separate Bass and Treble Controls
\star Frequency Response 22 c.p.s. to 30Kcs.
Available from your local Dealer
Wholesale and Retail enquiries to Manufacturers

SEND S.A.E.
FOR FULLY descriptive
LEAFLET

VALVES SAME DAY SERVICE NEW! TESTED! GUARANTEED

SETS 1R5, 185, 1T4, 384, 3V4, DAF91, DF91, DK91, DL92, DL94. get of 4 for 18/6, DAF96, DF 98, DK96. DL96, 4 FOR 27/-.

OZ4	倍	12K8GT 7/8	DK82	18		/8		14,	UBC41	9
1A7GT	7/6	18GN7GT	DK91	$5 / 8$	EF184	5/8		7/8	UBF80	/8
1H5GT	$7 / 8$	6/6	DK92	$8 / 8$	EH90	8/8	PCL83	101-	UBF88	8/9
1N5GT	$7 / 8$	198G6G17/6	DK96	$7 / 8$	EL39	$0 / 8$	PCL84	$7 / 8$	00c84	7/-
1R5	$5 / 9$	$20 \mathrm{~F} 2 \quad 18 / 8$	DL35	5/-	EL34	9/6	PCL85	$8 /-$	UCC85	7/8
185	4/8	20P3 11/8	DL92	$5 / 9$	EL41	11/-	PCLS 6	$8 / 8$	UCF80	$7 / 8$
114	2/9	20P4 18/6	DL94	6/9	EL84	4/9	PENA4	18/6	UCE42	2/-
384	$5 / 0$	25LBGT 5/-	DL96	$7 / 8$	EL90	4/6	PFL2	11/9	UCE81	6/8
8 V 4	$6 / 9$	$25 \mathrm{U} 4 \mathrm{GT11/6}$	DY86	6/9	EL500	12/6	PL30	$9 / 9$	UCL82	71
5 Y 3 GT	$5 / 9$	80C1 6/6	DY87	5/9	EM80	7/6	PL81	8/8	UCL83	1/8
5Z4G	$7 / 6$	30C15 18/-	EABC8	6/6	EM81	7/6	PL81A	$8 / 9$	UF41	10/6
6/30L2	12\%	$30 \mathrm{C17}$ 16/-	EAF42	0/-	EM84	$8 / 8$	PL82	6/6	UF80	$7 /-$
6AL5	$2 / 8$	$30 \mathrm{Cl8}$ 14/-	EB91	2/8	EM87	$7 / 6$	PL83	6/6	UF85	8/8
6AM6	$2 / 8$	30 Fb 16/-	RBEC33	8/-	EY51	$7 / 8$	PL84	6/6	UFP9	$8 / 8$
6AQb	4/6	30FLI 18/9	EBC41	9/6	EY86	$6 / 6$	PL500	18/-	UL41	0/9
6AT6	1/-	30FL12 14/6	EBF80	6/8	EZ40	6/-	PL504	18/6	UL44	20/-
8AU6	4/6	30FL14 14/8	EBF89	8/8	EZ41	$8 /-$	PL508	28/6	UL84	7/-
68A6	4/6	30L1 6/6	ECC81	8/8	EZ80	4/6	PM84	7/6	UM84	8/6
6BE6	4/9	$30 \mathrm{L15} 14 /-$	ECC82	4/9	E281	4/9	PX25	10/8	UY41	7/8
6BJ6	8/6	30 L 171518	ECC83	7/-	GZ32	$8 / 9$	PY82	10/-	UY85	$5 / 8$
6BW6	18/-	30P4 12/-	RCC85	61-	GZ34	$8 / 8$	PY35	10/-	VP4B	10/-
6F13	$3 / 6$	30 Pl 12 18/8	ECC91	8/-	KT01	$9 / 9$	PY81	5/8	W118	-
6 F14	9)-	30 P 19 12/-	ECC804	12/-	K T68	16/9	PY82	6/8	277	$8 / 0$
6 F 23	14/8	30PL1 12/9	ECP80	8/6	N78	17/8	PY88	6/9	Transi	
$6 \mathrm{FP}^{20}$	12/-	30PLIS 15/6	ECF82	$5 / 8$	PABC	7/-	PY88	6/0	AC107	8/6
6,56	$8 /$	30PL14 16/6	ECH35	6/-	PC88	$10 / 8$	PY800	$7 / 6$	AC127	$2 / 6$
6 K 76	$8 / 6$	35L6GT 8/6	ECH42	18/6	PC88	$10 / 8$	PY801	6/9	ADl40	76
6K80	2/9	30 W4 $4 / 6$	ECH81	5/8	PC86	8/8	R19	8/8	AFllö	/-
6 618	6/-	3524GT \$/-	ECH83	8/8	PC97	$8 / 6$	R20	12/6	AF118	/-
6SN7GT	4/8	6068 12/6	ECH84	776	PC900	$7 / 6$	U25	181-	AF117	/-
6V6G	3/3	AC/VP210/-	ECL80	7/-	PCC84	8/6	U26	12/-	AF125	/8
6V8GT	6/6	AZ31 9/6	ECL82	6/9	PCCB5	$6 /-$	U47	18/6	AF127	$8 / 6$
6×4	4/3	B729 12/6	ECL83	8/6	PCC88	9/-	U49	18/8	OC26	6/6
6XjQT	6/8	CCH35 18/6	ECL86	8/w	PCC89	10/6	U78	$4 / 8$	0044	18
7B7	7/-	CL83 18/6	EF37A	6/6	PCC189	11/6	U191	18/6	0 O 45	$2 / 8$
$7 \mathrm{C6}$	6/9	CY31 6/9	EF39	$4 / 9$	PCF80	6/6	U198	$8 / 8$	$0 \mathrm{C71}$	2/6
10F1	14/-	DAC32 $7 / 8$	EF41 1	$10 / 9$	PCF82	6/6	U251	14/6	OC72	$2 / 6$
$10 \mathrm{Fl8}$	7/-	DAF91 $4 / 8$	EF80	4/8	PCF86	13/-	U301	10/6	$0 C 75$	2/6
$10 \mathrm{Pl3}$	12/-	DAF96 $7 / 8$	EFPB	5/8	PCF200	18/6	U329	14/8	OC81	$2 / 8$
12AT7	$8 / 9$	DF33 7/9	EFP86	6/8	PCF800	18/6	U801	19/8	0cs11	$2 / 8$
12AU6	$4 / 9$	DF92 8/0	EF89	5/8	PCF801	$8 / 8$	UABC80	6/8	0082	$2 / 3$
12AU7	4/9	DF96 7/8	EF91	2/9	PCF802	91-	UAF42	10/8	0C82D	2/6
12AX7	4/9	DE77 $/ 1-$	EF94	4/6	PCF806	14/-	UB41	6/6	$0 \mathrm{Cl70}$	2/6

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD,

 ESSEX.Tel. 1-550 7441.
Postage on 1 valve 9d. extra. On 2 valves or more, postage $6 d$, per ralve extra, Any Parcel Incured against Damage in Transit Bd. extra

HOME RADIO (Components) LTD. Dept. PW, 234-240 London Rd., Mitcham, CR4 3HD. Phone 01-648 8422

[^3]
INTEGRATED

CIRCUITS

AN integrated circuit may be defined as a multielement circuit module constructed and encapsulated in such a way that the individual elements cannot be isolated by normal bench techniques. They can be divided into various groupings categorised by the constructional methods employed in manufacture. Figure 1 illustrates diagrammatically the basic groupings.
The two basic categories of integrated circuits are thin film circuits-which contain no active semiconductor devices-and semiconductor circuits which contain active semiconductor components. Two methods of construction are used to produce semiconductor integrated circuits and these are known as monolithic and hybrid integrated circuits. Hybrid circuits consist of many discrete circuit elements, such as diode and transistor chips bonded to a header and interwired, whilst monolithic circuits consist of a single silicon die with both active and passive components diffused into the surface.

Fig. 1: Basic groupings of integrated circuits.
At present the great majority of integrated circuits available commercially are of monolithic construction, as this form is best suited to mass production techniques. Thin film and hybrid circuits are usually manufactured to suit a particular requirement and are more suitable for small production runs. For example, a manufacturer of, say, missiles would use hybrid or thin film circuits for special applications such as i.f. amplifiers, whilst for switching or logic functions standard monolithic logic circuits would be used. The i.f. amplifiers would be built to the manufacturer's requirements of performance, and in all probability could not be used by other manufacturers.

It follows therefore that the majority of integrated circuits available are of monolithic construction. However thin film techniques are used in monolithic construction for the formation of end connections, resistors and capacitors.

Thin Film Circuits

Thin film circuits are manufactured by depositing layers of metals or metallic compounds on to the surface of a high resistivity substrate to form resistor combinations, capacitors or inductors. A typical thin film circuit is shown diagramatically in Fig. 2. Three types of substrate are in common use: glass, ceramic and glazed ceramic. When compatible thin film circuits are deposited on monolithic silicon structures then the substrate is a layer of oxidised silicon.

Fig. 2: Typical thin film circuit.
The required materials are deposited on to the substrate by a variety of methods of which the most common are vacuum evaporation, sputtering, gas plating and silk screening. Silk screen layers are deposited in the required pattern by the actual process whereas in all the other processes further work is required, patterning being achieved by a photographic (photoresist) and etching system.

Perhaps the most common deposition system is vacuum evaporation and this is used for gold, silver, aluminium and nichrome (NiCr). The pure metals are used for capacitor plates, inductor windings, and connections and interwiring-whilst nichrome forms the basis of most thin film resistors. Vacuum evaporation is achieved by the evacuation of a glass bell-shaped chamber and rapidly heating the material to be deposited by an electric current through a separate filament. The substrate is positioned near the material, which vaporises, and
collects part of the condensate as a thin film over its surface. Subsequent etching then produces the required pattern to give the desired characteristics.
Cathode sputtering is used to deposit tantalum to form resistors or oxidised to form capacitors. In this case deposition is due to bombardment of a tantalum cathode by high energy inert gas particles (often Argon). The substrate is placed at the anode of a highly evacuated jar and the released tantalum atoms are attracted by a high d.c. (or occasionally a.c.) potential difference between anode and cathode. The tantalum atoms impinge on the substrate and adhere, thus building a thin film on to the surface.
Gas plating is used for the production of films of silicone dioxide $\left(\mathrm{SiO}_{2}\right)$, aluminium silicate $\left(\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{SiO}_{2}\right)$ and aluminium oxide ($\mathrm{A} 1_{2} 0_{3}$), which are used as dielectric layers for capacitors. The chemical reactions are complex and depends upon either hydrogen reduction or thermal decomposition of compounds. The compound in vapour form is passed over the heated substance and decomposition or a chemical reaction takes place to leave the required dielectric layer.

Fig. 3 : Cross section of thin film circuit.
We have seen how resistors, capacitors and inductors may be formed and Fig. 3 shows a cross section through a typical thin film surface. Only passive components, however, can be produced by these techniques and although passive filters, attenuators etc. are often required system flexibility is limited. In order to combat these limitations transistor chips, which are manufactured separately, can be bonded to the surface of the film. Wire interconnections are used and hence extremely flexible circuits can be produced. A typical thin film r.f. amplifier is shown in Fig. 4.

Now ideally all-integrated circuits should display the same characteristics as equivalent discrete component circuits, but in practice, because of the close proximity of components, parasitic capacitive and inductive effects are present. These parasitic effects require careful consideration in the initial design.

Another problem resulting from the close proximity of components is leakage paths along the surface of the substrate. Substrates are specifically chosen to reduce surface leakage and these effects are further reduced by careful layout. One considerable advantage of thin film circuits lies in the close component tolerances and wide range of values which can be achieved.

Hybrid Circuits

Hybrid semiconductor circuits are formed by bonding discrete components to a header and interwiring with wire. A typical hybrid circuit is shown in Fig. 5. The header forms part of a TO-5 size transistor case with 10 leads. The discrete transistor chips are usually normal production line transistors whilst the capacitors, resistors and inductors are specially produced to fulfill the circuit requirements.

Interwiring with gold wire is carried out by hand using special micromanipulators and microscopes. This form of fabrication results in an expensive component. However, the yield is high because each component is tested prior to assembly. Hybrid

Fig. 4: Some of the components of a thin film r.f. amplifier.
circuits are therefore similar to conventional circuits except that fabrication is carried out in a microminiature assembly. Development is thus considerably simplified as breadboard models can be constructed and the layout tested without investing in costly processes. Because each component is manufactured separately the flexibility of the system is considerable, since every transistor can be chosen for individual characteristics and no component relies on the characteristics of other components. Thus hybrid construction is the costliest production system as a result of the non-automatic assembly techniques but requires considerably less development time to produce.

Fig. 5: Hybrid integrated circuit.
Hybrid circuits therefore are particularly suitable for small quantity requirements and production runs. Because of the flexibility, elaborate and close

DOOR INTERCOM

Know who is calling and speak to them without leaving bed. or chair. Outfit comprises
microphone with call push microphone with call push button, connectors and master inter-com. Simply plugs tosether. Orisinally sold at $£ 10$ postage.

5A, 3 PIN SWITCH

 SOCKETSAn excellent opportunity to make that bench dis board you have needed or to stock up for future made (Hicraft) bakelite flush mounting shuttered 5A switeh sockets for only $10 /$ - plus $3 / 6$ post and insurance. (20 boxes posi and
(ree).

TELESCOPIC
for portable, car radio
or iransmitter Chrome pla-ted-six sections, extends from 7t to 47 in . Hole in bottom for 6 BA F.M.9/6.

PHILIPS TRIMMER
-30 pf an old design but one which has rever been bettered

PP3 BATTERY ELIMINATOR

Run your small transistor radio from
the mains-full wave circuil-made up ready to wire into your set and adjustable high or low current. $8 / 6$ each.

5

TOGGLE SWITCH

$\operatorname{amp} 250 \mathrm{v}$. with fixing ring. $1 / 6$
DRILL CONTROLLER
Electronically changes speed from approximately 10 revs. to maximum. Full power at all speeds by finger-tip control. Kit inludes an paris, case, everyhing and fult instructions. 19/6 plus 2/6 post and inurance. Made up model 37/6 plus 2/6p. \& D.

230 VOLT SOLENOID
 $2 i n$.
$2 / 9$.

13 A MP FUSED SWITCH

Made by G.E.C. For connectine water heater etc., into 13 amp
ring main. Flush type $3 / 6 \mathrm{amch}$ ring main. Flush type $3 / 6$ each mounting $1 / 6$ each $15 /$. doz

MICRO SWITCH

ISOLATION SWITCH

 20 Amp D.P. 250 volts. Ideal to other appliance. Neon or andicato hows when current is on, $4 / 6$ 48/- per dozen.
SUPPRESSOR CONDENSERTCC

1 mfd .250 v. A.C. working. metal cased with fixing lue $1 / 9$ each 18 doz.

Polythene insulated 12-way Polythene insulated $12-2 / 6$ each $24 /$-doz.
strip.

MAINS MOTOR Precision made - as used in record decks and lape recorders also for extractor fan. blower. heaters elc. New and perfect,
Snip at $9 / 6$. Postage 3:- for first one then ordered. 12 and one over post free.

0.005 mFd TUNING

CONDENSER
Proved design, ideal for straight or
exex circuits $2 / 6$ each. 24/- doz.
250V AC working condensers for power factor cortection, motor starting etc. 3.5 mfd . $6 / 6$ eac $6.9 \mathrm{mfd}, 8 / 6$ cach, $8 \mathrm{mfd} .9 / 6 \mathrm{cach}$

3 amp battery charger kit comprises copper backed circuit board, 3 amp mains transformer $29 / 6$ inc. wiring diagram, post \& ins. 4/6.
or. by micro-switch $22 / 6$ mpie lever. would operate

VARYLITE

Will dim incandescent lighting up to 600 watts from full brilliance to out. Fitted on M.K. flush plate, same size and or mount on surface. Price complete in heavy plastic or with or mount on surface. Price complete in heavy plastic box with control knob £3.19.6.

VARIAC CONTROLLERS

With these you can vary the voltage applied to your circuit from zero to full mains without generaing undu heat. One obvious application therefore is to dim lighting. We offer a range of these, ex-equipment but little used and in every way as good as new. Any not so, will be exchanged or cash refunded.
2 amp £4.19.6. $5 \mathrm{amp} £ 7.19 .6$. 8 amp £12.19.6. $10 \mathrm{amp} £ 15.19 .6$.
Note : Some of these are panel mounting types

HOUR COUNTERS

If you wish to know how long your equipment has been switched on then this is what you need. Counts running time up to 9999 hours. $50 \mathrm{c} /$ mains operation. $49 / 6$ plus $3 / 6$ post $\&$ insurance. Resettable type $69 / 6$
plus $3 / 6$ post $\&$ insurance.

24 HOUR TIME SWITCH

Mains operated. Adjustable Consacts give 2 on/offs per 24 hours. Contracts rated 15 amps. repeating mechanism (anti-burglar precaution) while you swe on holidits Made by the precaution Smitie you are on holiday Made $39 / 6$ with Perspes cover company. This mont insurance, a real snip which should not be missed.

DISTRIBUTION PANELS

Just what you need for work bench or lab.
$4 \times 13 \mathrm{amp}$ sockets and on/off switch with neon warning light in metal box. Takes standard 13 amp fused plugs Supplied complete with 7 feet of heavy cable.
$39 / 6$ wired up, ready to work plus $4 / 6$ post $\&$ insurance.
1 WATT AMPLIFIER \& PREAMP
5 transistors-highly efficient. made for use
With tapehead G4 but equally suitable for
Full circuit diag. also shows tape conirols $5 /$ -

THIS MONTHS SNIP

HOUR MINUTE TIMER
Made by famous Smiths company, these have a large clear dial, size 44×34, which can be set in minutes up to 1 hour. After preset period the

MINIATURE EXTRACTOR FAN

 Geautifully made by famous German Company. PAPST System. $230 / 240$ A.C. Mains operated, size $3 \frac{1}{2}$ in. $\times 3 \frac{1}{2}$ in. Y in. Made for instrument cooling but ideal to incorporate in a cooker hood, etc. 65)-.
STANDARD WAFER SWITCHES
Standard Size 13 , wafer-silver plated 5 amp contact standard ${ }^{\prime \prime}$ " spindie 2 in . long-with lock-
ing washer and nu:

1 pole	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$
2 poles	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$10 / 6$	$10 / 6$
3 poles	$6 / 6$	$6 / 6$	$6 / 6$	$6 / 6$	$10 / 6$	$10 / 6$	$14 / 6$	$14 / 6$
4 poles	$6 / 6$	$6 / 6$	$6 / 6$	$10 / 6$	$10 / 6$	$10 / 6$	$18 / 6$	$18 / 6$
5 poles	$6 / 6$	$6 / 6$	$10 / 6$	$10 / 6$	$14 / 6$	$14 / 6$	$22 / 6$	$22 / 6$
6 poles	$5 / 6$	$10 / 6$	$10 / 6$	$10 / 6$	$14 / 6$	$14 / 6$	$26 / 6$	$26 / 6$
7 poles	$6 / 6$	$10 / 6$	$10 / 6$	$14 / 6$	$18 / 6$	$18 / 6$	$30 / 6$	$30 / 6$
8	poles	1016	$10 / 6$	$10 / 6$	$14 / 6$	$18 / 6$	$18 / 6$	$344 / 6$
9 poles	$10 / 6$	$10 / 6$	$14 / 6$	$14 / 6$	$22 / 6$	$22 / 6$	$38 / 6$	$38 / 6$
10 poles	$10 / 6$	$10 / 6$	$14 / 6$	$18 / 6$	$22 / 6$	$22 / 6$	$42 / 6$	$42 / 6$
11 poles	$10 / 6$	$14 / 6$	$14 / 6$	$18 / 6$	$26 / 6$	$26 / 6$	$46 / 6$	$46 / 6$
12 poles	$10 / 6$	$14 / 6$	$14 / 6$	$18 / 6$	$26 / 6$	$26 / 6$	$50 / 6$	$50 / 6$

15, 30 \& 100 WATT H-FI SPEAKERS

FULL FI 12 INCH LOUDSPEAKER. This is undoubtedly one of the finest ioudspeakers that we have ever offered produced by one of the country's most famous makers. It for Hi -Fi load and Rhymm Guitar and public addreas Flux Density 11,000 gauss-Total Flux 44,000 MaxwellsPower Handling 15 watts R.M.S. Cone Moulded fibreFreq. response $30-10.000$ c.p.s.- Specify 3 or 15 ohms-
Mains resonance 60 c.p.s. - Chassis Diam. 12 in .- 12 tin. over mounting lurs-Baffe hole 11 in . Diam.-Mounting holes 4. holes- 4 in . diam, on pitch circle 11 tin. diam.nius $7 / 6 \mathrm{p}$. \& p . Don't miss this offer. 15 in . 25 wat nius $7 / 6$ p. or
\&.19.6 18 in .100 watt $\mathrm{E19}$.10.0.

This heater unit is the very latest type. most efficient, and quiet running. Is as fitted in Hoover and blower heaters costing $\mathcal{E} / 5$ and more. We have a few only. Comprises motor, impeller, 2 kW . switching 1,2 and 3 kW and with switching safty cut-out. Can be fitted nto any metal line case or cabinet. Only need control switch. 79/6. Posiage and insurance 6/6. Don't miss this.

3kW TANGENTIAL HEATER UNIT

TEOHNIGAL trannicg in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Cartificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW ${ }_{\text {self-build radio courses }}$

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

RETTE Bargains Service FROM TRS

BUILD THIS FINE VERSION OF THE PW.12-12 WITH A TRS KIT

T.R.S. have produced their own kit ver io of this outstanding combined stereo amp and pre-amp. It conforme precleely to Practical Wiraless' excellent circult but is atyied for a flatter, mora conventional cabinet which will be avaliable shortly. KitIncludes two-tone front panel and control thobe components and transistors.

Inputa-Mag. P.U. (R.I.A.A.) 2.5mV into 88 Kohms; Ceramic P.U. and Radlo; Response 20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$. Output-12 watts per channel. R.M.S. Into 15 ohms.

Kit complete,
less cablnet less cablnet L-4. (Carr. 7/6) S.A.E. brings /ist.

AMPLIFIERS

Styled and kitted by T.R.S., using quality components, including valves or transistors as nacessary and excellent instructions. Backed by T.R.S. sarvice.

MULLARD 5-10. Basic kit (requires pre-amp). Input Sensitivity-40mV Response $20 \mathrm{~Hz}-15 \mathrm{KHz} \pm 1 \mathrm{~dB}$; Output 10 watts R.M.S. at 3 or 15 ohms . KIT £10.10.0. BUILT £ ${ }^{7} \mathbf{3 . 0 . 0}$ (Carr. either, 7/6).
MULLARD 2 VALVE PRE-AMP. Switching for 5 Inputs; baes/treble/ volume controls; etc. Sensitivity at Input-4mV max. Into 80K-1 Megohm; Responas $20-25,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$. KIT $\mathbf{\varepsilon 6 . 1 9 . 6}$. BUILT E9.10.0 (Carr. elther 5/5) MULLARD $10-10$ STEREO AMPLIFIER. Input senelitivity- 210 mV per channel; Response $12 \mathrm{~Hz}-35 \mathrm{KHz} \pm 3 \mathrm{~dB}$; 10 watts R.M.S. output per channel Into 3 or 15 ohms. KIT £1s.10.0. BUILT $£ 22.10 .0$ (Carr. elther 12/6).
Basic Kit (no panel or controls) £17.0.0. Bullt £2t.0.0. Pre-amp must be used here.
MULLARD $2+2$ STEREO PRE-AMP with same characteristics per channel as mono pre-amp (+ belance). BUILT £13.19.s (Carr. 7/6).
T.R.S. $4+4$ ECONOMY STEREO. Modular assembly. With cabinet power supply and Din plugs. 4 watte per ch. Into 8-15 $£$

50 \& 100 WATT R.M.S. VALVE AMPLIFIERS for mic, P.A and instru-

ments, etc. 4. $8 / 15 \Omega$ output Available shortly

TUNERS

T.R.S. 6 VALVE AM/FM. Self-powered, large scale; push-buttons. Magle eye. Med. Wave and F.M. Dlode output per tape. COMPLETE KIT £12.t0.0 (Carr. 7/6).
T.R.S. FM TUNER. Transistors, Inter-station suppression. A.F.C. etc. Modular assembly. Modules, chassis, drive etc. come to Ei5.15.0 (Carr. 7/6) Cablnet to match T.R.S. $4+4 \quad \mathrm{Ef.17.6}$ (Carr. 2/6)
Power aupply
62.5.0 (Carr. 3/-)

Decoder for Stereo
£10.10.0 (Carr. 2/6)

GRAMO UNITS \& PLINTHS

GARRARD SP. 25 MK. H. Manual: Arm and 10iln. die-cast t/table, cueing device, etc. less cartridge. Brand new in maker's carton £12.7.6.
GARRARD LM.2025. With Sonotone 9TA/HC Stereo Cartrldge and Ift control £,10.19.6 (Carr. 7/6)
Garrard WB. 1 Plinth E3.12.0(Carr. 5/-)
Garrard CLEARVIEW Cover SCP. 1 23.12.0(Carr. 5/-)

Garrard Scandlnavian Type Plinth
£5.5.0 (Carr. 5/-)

ALWAYS IN STOCK

Resistors in all values; wirewound resistors; volume controls log or IInear, $10 \mathrm{~K}-2 \mathrm{meg}$. Mono $3 / 6$ (wlth switch 5/-). Stereo s / s (with awltch, certaln values f0/6). Log/antilog balance controls $9 / 8$, capacitors and electrolytics; Vinalr speaker covering 481n.-30/- yd; Bondacoust 18 In . x 1 In . thick $7 /-$ yd; Veroboard; Clr-KIt; valves transistors, SInclair products, etc., otc. S.A.E. with enaulrles please.

TRS

RADIO COMPONENTS 70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY

Open Sats.
Close early Weds.
-
$\frac{1}{2}$ min. Thornton Healh Stn. (Southern)

Phone: 01-684 2188
tolerance circuits can be achieved. Hybrid construction is consequently rarely used for general purpose mass produced devices.

Monolithic

The vast majority of integrated circuits available to the amateur are of monolithic construction as this construction is best employed for mass production. Initial design is difficult and costly whilst the actual manufacture is reasonably economic and hence economically priced units are possible only for large demand circuits.

The fabrication of most monolithic structures combines the planar epitaxial transistor process and thin film technology. Only thin film materials and processes which do not damage the basic structure or impurity concentrations, can be employed, and such films are known as compatible thin films. Let us now examine the steps involved in the fabrication of a circuit using both $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p} \mathrm{n}$. transistors. Most other components are manufactured during one or more of these stages.

(a)
(b)

Fig. 6: Monolithic integrated circuit wafer.
(a) wafer, (b) enlargement showing dice.

The starting point consists of a p - or n -type silicon wafer such as that illustrated in Fig. 6(a). Fig. 6(b) shows how ultimately the wafer will be subdivided to give individual dies. We will consider only one of the dies and it should be appreciated that in each process perhaps $10-20$ wafers each with $100-200$ individual integrated circuits are treated simultaneously. In consequence true mass production is carried out in processes which require laboratory standards of accuracy, measurement and cleanliness.

Initially a p-type impurity is diffused into the surface of the basic n-type slice to give the cross section shown in Fig. 8(a). At the end of the diffusion steam is passed over the wafer and forms a layer of silicon dioxide on the surface. The surface is coated with photoresist and the areas to be diffused next masked with an extremely accurate photographic mask. The photoresist is set by exposing the wafer to ultra-violet light and the silicon dioxide is then etched off where the diffusion is required, since diffusion does not penetrate the silicon dioxide layer. The resulting structure is shown in Fig. 8(b).

The second diffusion is known as the isolation diffusion since the areas which are to become com-ponents-in this case a p-n-p and an n-p-n transistor -are masked by silicon dioxide. The diffusion is of n-type impurity and is of such a depth as to penetrate through to the n -type substrate, thus forming islands of \mathbf{p}-type in the basic n-type sub-
strate as illustrated by Fig. 8(c). At the end of this diffusion a layer of silicon dioxide is again formed to give the structure of Fig. 8(d). The collector of the p-n-p transistor has now been formed by the original p-type diffusion and is isolated from other components by the n -type substrate. This isolation is only effective providing the resultant p-n junction is reversed biased. In consequence an n-type substrate is always electrically connected to the most positive supply voltage and a p-type one to the most negative supply voltage.
In order to reduce the number of diffusions to a minimum it would now seem logical to diffuse the n-type base of the p-n-p transistor and the collector of the n-p-n transistor simultaneously. Unfortunately this is not possible as the impurity concentrations required differ considerably. The $n-p-n$ collector is masked and etched to remove the silicon dioxide. Great care is taken in the alignment of the mask since the final characteristics depend on physical dimensions as well as impurity concentrations. Alignment is aided by instruments but final adjustments are carried out by eye. The n-type diffusion is carried out and a further silicon dioxide layer formed to give the structure shown in Fig. 8(e).
Further masking and diffusions produce the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor base shown in Fig. 8(f) and then by simultaneous p diffusions the $\mathrm{p}-\mathrm{n}-\mathrm{p}$ emitter and n - $\mathrm{p}-\mathrm{n}$ base shown in Fig. 8(g). The final n diffusion completes the two-transistor structure shown in Fig. $8(\mathrm{~h})$. The interconnecting to other components is carried out by a further mask and etch of the silicon dioxide and the formation of a thin film (often aluminium) interconnection pattern.
Figure 7 shows the schematic of the structure which has been fabricated. Clearly isolation can only be maintained if the isolation diodes Di are reverse biased. Also it will be noted in Fig. 8(h) that the substrate and $\mathrm{b}-\mathrm{n}-\mathrm{p}$ transistor form a p-n-p-n structure (or thyristor) which would fire to the

Fig. 7: Schematic of fabricated structure.
saturated condition unless reverse biased. In addition parasitic effects of leakage current, capacitance and inductance are present and these will be discussed later.

Resistors

As far as possible resistors are formed of semiconductor material usually during the resistive base diffusion which results in medium resistivity semiconductor. Occasionally the low resistivity emitter diffusion is used for low value resistors. Fig. 9 illustrates the structure of such a resistor. Isolation is again achieved by reverse biased pn-junctions. Resistor values of from 100Ω to $30 \mathrm{k} \Omega$ with tolerances of $\pm 10 \%$ can be achieved by this method.
Compatible thin film resistors are manufactured from nichrome, tin oxide, tantalum, aluminium,
P Layer
(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Flg: 8 : (a) portion of starting wafer, (b) silicon dioxide masked for transistors, (c) isolatlon diffusion n type, (d) silicon dioxide grown after diffuslon, (e) collector of n-p-n transistor formed, (f) base d/ffusion of p-n-p transistor, (g) simultaneous p type base and emitter diffuslon (h) final n type emitter diffusion.
chromium and nickel. Values from 20Ω to $3 \mathrm{M} \Omega$ can be achieved with tolerances of $\pm 5 \%$. In all cases the power and voltage ratings are severely limited and are 3 mW per square mil maximum power and 20 V maximum voltage drop.

Fig. 9: Diffused res/stor structure:

Capacitors

Wherever possible capacitors are fabricated from reverse biased diodes and such a structure is illustrated in Fig. 10. However as the isolation of such diodes is achieved by reverse biased junctions considerable parasitic capacitance is present. Where necessary silicon dioxide dielectric capacitors are fabricated to overcome this disadvantage. Silicon dioxide capacitors have the added advantages that they are non-polar and their capacitance is constant with bias voltage.

Thin film capacitors of tantalum oxide and aluminium are also used and give capacitance values
of $2.5 \mathrm{pF} / \mathrm{mil}$ and 0.3 to $0.5 \mathrm{pF} /$ mil respectively. Tolerances generally are $\pm 20 \%$ and maximum voltage ratings of $20-50 \mathrm{~V}$. Q factors vary from $10-100$ and practical maximum capacitance values are 1000 pF or 5000 pF for tantalum oxide.

Fig. 10: Diffused capacitor structure.

Inductors

Inductors with practical values of inductance and Q are the most difficult components to produce. Despite the considerable research devoted to inductors it is true to say that their value as an integrated circuit component is severely limited. The maximum practical inductance is limited to $4 \mu \mathrm{H}$ with Q factors of $1-5$ in monolithic structures or $30-50$ in thin film fabrications.

TO BE CONTINUED

[^4]

the world's most advanced high fidelity amplifier

The Sinclair IC-10 is the world's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, a chip of silicon only a twentieth of an inch square by a hundredth of an inch thick, has an output of 5 watts R.M.S. (10 watts peak). It contains 13 transistors (including two power types), 2 diodes, 1 Zener diode and 18 resistors, formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins. This exciting device is not only more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of such components as tone and volume controls and a battery or mains power supply. However, it is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc. The photographic masks required as part of the process of producing monolithic l.Cs are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. This enables us to cover every IC-10 with the Sinclair guarantee of reliability.

SPECIFICATIONS

Output 10 Watts peak, 5 Watts R.M.S. continuous. Frequency response

5 Hz to $100 \mathrm{KHz}+1 \mathrm{~dB}$. Total harmonic distortion Less than 1% at full output. Load impedance 3 to 15 ohms Power gain $110 \mathrm{~dB}(100,000,000,000$ times) total. Supply voltage Size
Sensitivity
Input impedance
$1 \times 0.4 \times 0.2$ inches.
Adjustable externally up to
2.5 M ohms.

CIRCUIT DESCRIPTION

The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. Class AB output is used with closely controlled quiescent current which is independent of temperature. Generous negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages, making battery operation eminently satisfactory.

APPLICATIONS

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity. These include stabilised power supplies, oscillators, etc. The pre-amp section can be used as an R.F. or I.F. amplifier without any additional transistors.

SINCLAIR

Project 60 an exciting alternative

The buyer of an amplifier today has a remarkably wide variety to choose from. It is unlikely that a purchaser would have real difficulty in finding a unit that met all his requirements, although the price might not be as low as could be wished. The only snags are that one's needs can change and that the technically correct amplifier may be physically inconvenient. If you are confident that there is an amplifier available, of the right size and price, which will meet all your needs for the forseeable future. then that is your best buy. If not, however, we can offer you another possibility which we believe to be an exciting alternative approach. That alternative is

Project 60.

Project 60 is a range of modules which connect together simply to form a complete stereo amplifier with really excellent performance. So good, in fact, that only 2 or 3 amplifiers in the worid can compare with it in overall performance.
The modules are: 1 . The Z-30 high gain power amplifier, which is an immensely flexible unit in its own right. 2. The Stereo 60 preamplifier and control unit. 3. The PZ. 5 and PZ. 6 power supplies. A complete system comprises two Z-30's, one Stereo-60 and a PZ-5 or PZ-6. The power supplies differ in that the PZ-6 is stabilised whilst the PZ-5 is not. This means that the former should be used where the highest possible continuous sine wave rating is required. In a normal domestic application there will not be a significant difference between using either power unit unless loudspeakers of very low efficiency are being used.

In view of the very high performance of an amplifier system built with Project 60 modules, the cost may seem surprisingly low. There are two reasons for this: Firstly, we are the largest producers of this type of module in Europe and we are able therefore to use highly efficient production methods. Secondly, you are not paying for a cabinet which you may not require anyway.
All you need to assemble your system is a screwdriver and a soldering iron. No technical skill or knowledge whatsoever is required and, in the unlikely event of you hitting a problem, our customer service and advice department will put the matter right promptly and willingly.
Project 60 modules have been carefully designed to fit easily into virtually every type of plinth or cabinet to provide a complete unit of great compactness. Only holes have to be drilled into the wood of the plinth and any slight slips here will be covered completely by the aluminium front panel of the Stereo 60. The Project 60 manual gives all the instructions you can possibly want clearly and concisely.
Perhaps the greatest beauty of the system is that it is not only flexible now but will remain so in the future. We shall shortly be introducing additional modules which will include a comprehensive filter unit, a stereo F.M. tuner and an even more powerful amplifier for very large systems. These and all other modules we introduce will be compatible with those shown here and may be added to your system at any time.

Z. 30 TWENTY WATT R.M.S. (40 WATT PEAK) HIGH FIDELITY POWER AMPLIFIER

The $Z .30$ is a complete power amplifier of very advanced design employing 9 silicon epitaxial planar transistors. Total harmonic distortion is incredibly low being only 0.02% at full output and all lower outputs. As far as we know, no other high fidelity amplifier made can match this specification, no matter what the price. Thus you can be utterly certain that your Project 60 system will do full justice to your other equipment however good it may be. The $Z .30$ is unique in that it will operate perfectly, without adjustment, from any power supply from 8 to 35 volts. It also has sufficient gain to operate directly from a crystal pickup. So in addition to its use in a high fidelity system you can use a $Z .30$ to advantage in your car or a battery operated gramophone for your children, for example. These, and many other applications of the 2.30 are covered in the manual of circuits and instructions supplied with every $\mathbf{Z . 3 0}$ high fidelity power amplifier.

SPECIFICATIONS

Power output- 15 watts R.M.S. into 8 ohms using a 35 volt supply: 20 watts R.M.S. into 3 ohms using a 30 volt supply.
Output-Class AB.
Frequency response:
Distortion:
Signal-to-nolse ratio:
Input senstivity:
Dampling factor:
30 to $300,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$.
0.02% total harmonic distortion at full output into 8 ohms and at all lower output levels. better than 70 dB unweighted.
250 mV into 100 Kohms . >500.
Loudspeaker impedances: 3 to 15 ohms
Power requirements:
Sles:
From 8 to 35 V.d.c.(The $Z .30$ will operate ideally from batteries if required.) $31 / 2 \times 21 / 4 \times 1 / 2$ inches.

APPLICATIONS

Hi-fi amplifier: car radio amplifier; record player amplifier fed directly from pick-up; intercom; electronic music and instuments; P.A.; laboratory work etc. Full details for these and many other applications are given in the manual supplied with the Z.30.

Z.30 3 , tested and guaranteed, with
circuits and instructions manual
89/6

STEREO SIXTY preamplifier and control unit

The Stereo 60 is a stereo preamplifier and control unit designed for the Project 60 range but suitable for use with any high quality power amplifier. Again silicon epitaxial planar transistors are used throughout and great attention has been paid to achieving a really high signal-to-noise ratio and excellent tracking between the two channels. Input selection is by means of push buttons and accurate equalisation is provided for ali the usual inputs. The tone controls are also very carefully designed and tested.

SPECIFICATIONS

- Input sensitivities-Radio-up to 3 mV Magnetic Pickup-3mV: correct to R.I.A.A. curve $\pm 1 \mathrm{~dB}$; 20 to 25,000 Hz . Ceramic Pickup-up to 3 mV : Auxiliary-up to 3 mV .
- Output-250mV
- Signal-to-noise ratio-better than UOdB
- Channel matching-within 1dB.
- Tone controls-TREBLE + 15 to -15 dB . at $10 \mathrm{KHz}:$ BASS +15 to -15 dB at 100 Hz .
- Power consumption 5 mA .
- Front panel-brushed aluminium with black knobs and controls.
- Size $81 / 4 \times 4$ ins.

Ready tor immediate 29. 198. 6d.
installation

SINCLAIR POWER SUPPLIES

PZ-5 30 volts unstabilised-sufficient to drive
two Z.30's and a Stereo 60 for the majority of domestic applications.

Price: 54. 19s. 6d.

3 volts stabilised-ideal for driving two $Z .30$'s and a Sterao 60 whan very fow efficiency speakers are employed.

Price: ©7. 198. 6d,

GUARANTEE

If at any time within 3 months of purchasing Project 60 modules from us, you are dissatisfied with them. we will refund your money, at once. Each module is guaranteed to work perfectly and should any defect arise in normal use we will service it at once and without any cost to you whatsoover provided that it is returned to us within 2 years of the purchase date. There will be a small charge for services thereafter. No charge for postage by surface mail. Air-mati charged at cost.

SINCLAIR RADIONICS LIMITED 22 NEWMARKET ROAD, CAMBRIDGE Telephone 0223 5273:

SINCLAIR 0.16

new elegance in an outstanding loudspeaker

All the superb features which went to make the Sinclair 0.14 have been incorporated in the new 0.16 which gives an exciting new opportunity for you to match your Sinclair equipment with modern decor. Employing the same well proven acoustic system in which materials, processing and styling are used in such a radical and successful departure from conventional design, the new 0.16 presents an entirely new appearance with its attractive teak surround and all-over special cellular foam front chosen as much for its appearance as for its ability to pass all audio frequencies without loss. The 0.16 is compact and slim. Its new styling makes it eminently suitable for shelf mounting, but it is no less versatile than its famous predecessor. Listen to a pair of 0.16 s in stereo and marvel at the standards of quality and clarity they give.

The 0.16 will handle loading up to 14 watts R.M.S. and presents an 8 ohm impedance to the amplifier output. Frequency response extends from 60 to $16,000 \mathrm{~Hz}$ with exceptional smoothness. A specially designed driver system is used in a sealed and contoured pressure chamber to ensure good transient response at all frequencies. Size: $9 \frac{34^{\prime \prime}}{}$ square $\times 4 \frac{3}{4}^{\prime \prime}$ deep from front to back.

SINCLAIR MICROMATIC

£8.19.6

POST FREE

SPECIFICATIONS—Size: $1+\mathrm{H}^{\prime \prime} \times 1 \mathrm{~T}^{\prime \prime} \times \frac{1^{\prime \prime}}{2}$ ($46 \times 33 \times 13 \mathrm{~mm}$). Weight incl. batteries: 1 oz , (28.35 gm) approx. Tuning: Medium wave band (28.35 gm) approx. Tuning: Medium wave band
with bandspread at higher frequency end, with bandspread at higher frequency end,
Earpiece: Magnetic type. Case: Black plastic Earpiece: Magnetic type. Catse: Black plastic
with anodized aluminium front panel, spun aluminium dial.

Complete kit incl. earpieç, case, solder and instructions in fitted pack.
Ready built, tested and guaranteed, with earpiece.

49/6
59/6
Mallory Mercury Cell RM675 (2 req.) $2 / 9$ each

Considerably smaller than an ordinary box of matches, this is a multi-stage A.M. receiver meticulously designed to provide remarkable standards of selectivity, power and quality. Powerful A.G.C. is incorporated to counteract fading from distant stations; bandspread at higher frequencies makes reception of Radio 1 easy at all times. Vernier type tuning plus the directional properties of the self-contained special ferrite rod aerial makes station separation much easier than with many larger sets. The plug-in magnetic earpiece which matches exactly with the output provides wonderful standards of reproduction.
Everything including the batteries is contained within the attractively designed case. Whether you build vour Micromatic or buy it ready built and tested, you will find it as easy to take with you as your wristwatch, and dependable under the severest listening conditions.

SINCLAIR GENERAL GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, return the goods without delay and your money will be refunded in full, including cost of return postage, at once and without question. Full service facilities are available to all Sinclair customers.

SINCLAIR RADIONICS LIMITED
 22 NEWMARKET ROAD, CAMBRIDGE
 Tel: 022352731

The world's most successful miniature radio

MARCONI CR $\{50 / 2$ double Superhet receiver $1-5-22 \mathrm{Mc} / \mathrm{s}$ AM/CW/SSB pperatlon Xtal Fitter, BFO tast/siow motion tuning 'S' Meter, etc. Good condition. Tested and working. Separate power pack required. 222.10 .0 P.P. $30{ }^{2}$.
Ra, RECEIVER, AM/CW/FM, 1-20Mc/s. Four bands, Vernier tuning. 12 volt DC Input. Tested and working.

E $\$ 3.10 .0$ P.P. $£ 1$
COMPUTER BOARDS, Min 30 transistors and diodes and res. etc. 10 boards, 40/- and P.P. 2/6; 25 boards 22/6 and P.P. 4/6.
HEADPHONES. Chamois padded, low Impedance. Moving coil, magnetic microphone, new ex W.D., rare type, limited stock. 25/- per palr and 3/6 P.P. AERIALS; new condition, extending to 11ft fully open; whip type; 12/6 and P.P. 3/6. Whip aerials, 12 ft collapsible type; used condition 10% and P.P. $3 / 6$ Bases for above $5 / 4$ and $2 / 6$ P.P.
BARGAIN PARCELS. $14 \mathrm{lb} .29 /-$ and $6 / 6$ P.P.; $28 \mathrm{lb} .55 /-$ and $12 / 6$ P.P.; 58 lb. C0/- and $25 /-\mathrm{P}$. P. Contaln Pots. Res., Valves; Diodes, Tagboards, Chassis, Valveholders, etc. Good value saves É££s. LUCKY DIP'SERVICE.
FURZHILL BEAT FREQUENCY OSCILLATOR. 0-10Ke/s, 110/250 volt. Good condition; complete with spares.
£5.40.0 and 25/- P.P.
VHF RECEIVER TYPE 715, less crystal $60-100 \mathrm{Mc} / \mathrm{s}$, can be operated on 2 or 4 meters of made tunable 12 volt input; not tested, complete with valves and speaker.

E3.0.0 and $£ 1$ P.P
VIBRATOR POWER SUPPLY TYPE E9 by BCC for 69 T/R. Small compact 12 V input gives $250 \mathrm{~V} D \mathrm{C}$ at 80 mA and 12 V output. Good condition.

25/* and 7/6 P.P.
HOBILE POWER UNITS by PYE for the C12 T/R. Power output is 400 V DC at 140 mA and 300 V DC at 100 mA . Good condition. $£ 3.10 .0$ and £1 P.P. INEULATION TESTERE. Bench or fieldwork; speed clutch; new condition complete with leather case; 500 V , 500 megohms. $\mathcal{E 2 0}$ and $12 / 6$ P.P Also 1000 V 1000 megohme with case
£23 and 12/6 P.P
CRYSTALS AS NEW. He6U 5,345; 5,055; 5,030; 5,005; 4,945;4,875; 4,-840; 4,795; 4,$580 ; 4,660 ; 4,520 ; 4,510 ; 2,300 ; 2,295 \mathrm{Kc}$'s and $10 \times \mathrm{J} 465 \mathrm{Kc} / \mathrm{s}$.

All at $10 /=$ and $1 / 6$ P.P
METERS/MOVING COIL EX EQUIPMERT. Good condition; all from 0-10mA $30 \mathrm{~mA}, 50 \mathrm{~mA}, 100 \mathrm{~mA}, 500 \mathrm{~mA}$. All $2 \frac{1}{2} \mathrm{in}$. round.
from is amp DC, $20 \mathrm{amp} D \mathrm{C}, 40 \mathrm{amp}$ DC. All 2 in , round. $10 /-\mathrm{ea}$ and $5 /-\mathrm{P} . \mathrm{P}$. from $15 \mathrm{amp} D \mathrm{CC}, 20 \mathrm{amp}$ DC, 40 amp DC. All 2 in , round. $10 /-$ ea and $5 /-\mathrm{P}, \mathrm{P}$. SCOOP PURCHAEE OF BRAND NEW CARBON RESISTORS. 10% $1 \% /-$ per $200,27 /$ war 300 . 500 at $42 / 6$. Our selection. P.P. $1 / 6$ per 100 and 6 d per 100 .

A. H. THACKER

Radio Dept.
HIGH ST., CHESLYN HAY, Nr. WALSALL, STAFFS.

MONO GRAM CHASSIS 3 WATT

3 Wave band long-med-short. Gram, 200-250v AC Ferrite acrial. Chassis $13 \times 7 \times 5$ Sin. Dial $13 \times 4 \mathrm{in}$. Double wound mains transformer 5 valves ECH8i EF89, EBC81, EL84, EZ80. Price \&10.12.6 2 (7/6 p. \& p.) Output trans. for 3 -ohm speaker.

BAKERS' Selburst Speakers. 12 jn ., cast frame, 3,8 or 15 ohm (state which). Group 25 (25 watt) for guitars, etc. $86.6,0$: Stalwart $45-13,000 \mathrm{cps}, 15 \mathrm{~W}$ 56.6.0; de Luxe Mk2 dual cone $25-16,000 \mathrm{cps}$. $15 \mathrm{~W} \mathbf{2 9}$ (all carr. paid) less 10% for 2 speakers.

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. from Station and Buses). FULL GUARANTEE. Aldershot 22240 CLOSED WEDNESDAY. S.A.E. for enquiries please,

WOW! a fast easy way TO LEARN BASIC RADIO AND ELECTRONICS

*

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build . . . and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning casy and interesting.
Even if you don't know the first thing about Radio now, you'll build your own Radio set within a month or so!

YOU'LL and what's more, EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.
You LEARN-but it's as fascinating as a hobby. Among many other interesting experiments, the Radio set you build--and it's a good one--is really a bonus; this is first and last a teaching Course. But the training is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY Dept. 372B, Aldermaston Court, Aldermaston, Berkshire.

A 14 -year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set
here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.l.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 164 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 164 -page book -'ENGINEERING OP-PORTUNITIES'- Free and without any obligation.

POST THIS COLPON

To: B.I.E.T., Dept, 372s , ALDERMASTON COURT, ALDERMASTON, BERKS.
I would like to know more about your Practical Radio \& Electronics Course. Please send me full details and FREE 164 page book.
name.
address

LOW PRICE, HIGH QUALITY SPEAKER SYSTEMS

All cabinete are now and carofully designed acoustleally with apeakers mounted on tin. chipboard bafies, All spoakert art ex-TV high quality with hi-flux magnets carefully matched and tested.

COWDREY FIVE, Specially designad Corner Cablnet $204 \times 13 \times 74$ in. deep. Finished in natura teak veneers with Vynalr front. Fitted rubber teot. Flve speaker unltt 15 ohms. Impedence handles 15 watts). \&6.6.0 P. \& P. 8/6 each.

ADASTRA DOUBLE 5 atereo solid atate amplifier housod in hand some cabinet veneered In natural teak. Size $11+\times 8 \times 5+\mathrm{in}$. 10 Transletors - power output 5 watts peak per channel. 220-240v AC. Output impedance 121015 ohms (our Cowdrey speaker system eminently sultable). Smart blue escutcheon. E14.14.e. P. \& P. 10/6.

SCOTT. This elegant taperad cabinet $10+\mathrm{x}$ is x 5tin. deep is attractively finishod in black eloth with striped grey Vynalr front. Sultable for table or for wall mouning. Fitted with $13 \frac{1}{2} \times 8 \mathrm{ln}$. speaker unlt and volume control. 3 or 15 ohme Impedenceplease atate impedence required. $£ 4.3 .0$. P. \& P. 7/6d each. Fitted with E.M.I. 13×8 In. speaker unlt and twin tweekers. 15 ohms Impedence capacity 10 watts, 30 /- extra.

ELF. An extension speaker of quality $9 \times 5 \frac{1}{ \pm} \times 3 \pm 1 n$. deep veneered In natural teak with smart pold and brown vynalr front frimmed in white. Fitted with 3 ohm apeaker unlt mounted on $\ddagger \mathrm{In}$. baffile. Exceptional value 37/dd. P. \& P. 3/9d. each.

CAXTON COLUMM. Thle is a column cabinet $233 \times 5 \frac{1}{2} \times 5 \frac{1}{2}$ in. deep finished in black or wood graln cloth with blue Vynalr front. Keyhole slot for wall mounting. Fitted with three speaker units, 9 ohms Impadenca. Handles a watts. Makee all the difference In qualtity and volume o tape recordere and record olayere. Real bargain at 59/4d, P, \& P. 10/6d. each.

IMP. Wedge shaped exten
 (max.). Covered in wainu wood graln cloth with foam Vynair front. Keyhole slot a back. Fitted with 3 ohm spoaker unit. Oniy 2s/8d P. \&. P. 3/9d. each.

SPEAKERS: Elac Heavy duty Ceramic Magnets 11,000 Hne, 10 in . round, $10 \times 6 / \mathrm{n} .3 \mathrm{ohm}$ of $45 \mathrm{ohm}, 4 / 6 / 6$. P. \& P. 3/6, 8in. round 15 or $3 \mathrm{ohm}, 42 / 6$. P. \&P. $3 / 6$. E.M.I. $13 \frac{1}{2} \times 8 \mathrm{in} .30 \mathrm{hm}, 45 /-, 15$ ohm $48 / 6$. P. \& P. 1/6. E.M.I. 3 in , tweeter 17/6. P. \& P. 1/6. E.M.I. 13 t x \sin. fitted two 2tin. tweeters. 15 ohm 77/B, P. \& P. 4/6. E.M.I. $13 t \times$ gin.

BROADWAY Electronics (Few minutes from Tooting Broadway Underground Stn)
g2 MITCHAM ROAD, TOOTING BROADWAY, LONDON, S.W. 17 04-672 3984 (Closed all day Wednesday).

TEAK PLINTH AND PERSPEX DUST COVER for SP25 etc. 5550 P. \& P. 5/-.

VYNAIR Widths from 40 to 54 in ., $17 / 6$ d. off roll, P. \& P. 1/9. $\frac{1}{2}$ yard, 9/-, P. \& P. $1 / 9$. Send $1 /$-stamps for samples.

SPEAKER MATCHING TRANSFORMERS. 3. 7. 15 ohms, 8 watt, 13/6. P. \& P. $1 / 6$

MICROPHONES: Xtal Hand Mikes. 1201 with stand. 54/6. P. \& P. 3/6. Dyn. Mike DM-391, 30/-. CM21 Xtal. 12/6. Telephone Pick-up, 10/6. P. \& P. 1/-, Xtal lapel Mike, 7/6. Guitar Mike, 12/6. P. \& P. $1 /$-.
FERROX RODS: $6 \times \frac{1}{16} \mathrm{in}$, 2/6; 4 \times in. 2/:; $6 \times$ in., $2 / 6 ; 8 \times \operatorname{tin}, 4 / 9$. P. \& P. i/-each.

FERROX RODS WITH COILS $4 \frac{1}{} \times$ in., 3/6; $8 \times \frac{1}{16}$ in., 5/6. P. \& P. I/- each. ROTARY SWITCHES: 1 pole 12 way, Rpole 2 way, 3 pole 3 way, 3 pole 4 way, 4 pole 3 way, 3 pole each. P. \& P. 1/.
TRANSISTOR SPEAKERS 8 ohm 2 in . 8/6. 3in., 10/6. P. \& P. 1/-.
CARTRIDGES. Stereo: Sonotone 9TA H/C Diamond. 47/6. Ronette Slos Medium Output, 28/6. si06 High OutMedium Output. 28/6. Acos GP93/I Sapphirc. 37/6. GP94/I Sapphire, 39/6. GP81 Diamond 42/.. GP91 Stereo Compatible (High Medium or Low Output), 25/-. TA800 converts Philips AG3301, AG3306 to B.S.R. SXIH. Plug-in head complete with cartridge, $50 /$ - TA700 equivalent to B.S.R. SX1M, 35/- Japanese equivalent to B.S.R. TC8s, 35/-. P. \& P. $1 / 6$.
Mono: Acos GP67/2 will replace Collaro and Garrard Mono cartridges, 18/6. T.T.C. Crystal High Gain, 15/-, B.S.R TC8H Jap. equivalent, 26/-. Sonotone 2TSS, 15 - . P. \& P. $1 / 6$.
EARPIECES WITH CORD and 3.5 mm . plug 8 ohm magnetic. $3 /-250 \mathrm{ohm}, 4 /-$. 180 ohm with clip, $6 / 6$. Xtal. P. \& P. 6 d . PIANO KEY PUSH BUTTON SWITCHES. 7 button inc. mains on off. CAES. 76 bution inc. Mains 6 P., 8 . P. \& $1 /$-.

CANCELS PREVIOUS LIST

 LONDON'S LEADING BARGAIN SPECIALISTS FOR THE RADIO • HI-FI \& ELECTRONICS ENTHUSIAST

Special displays of radios, recorders. record decks, tuners, amps., meters, speakers, otc., atc. ALL faulty or damaged needing repairAT GIVE AWAY PRICES!
100's of component bargains from our easy to see and choose from self service racks.
100's OF OLD TYPE VALVES - from 2/- each ASSORTED TRANSISTORS 9d each. 7/6 per doz Huge stocks of shop soiled and reconditioned second hand radios, record players, tape recorders, etc.

SPOT CASH PART EXCHANGES WE Offes the highest rates in Lonoon

There's something for everyone COME AND LOOK TODAY (Open 6 days a weakI) all these items are avallable to callers only

PERSONAL CALLERS TO:

48 TOTEENHAM CT. RD., W. 1 Tel. 01-636 0847

M. \& B. RADIO 38 BRIDGE END, LEEDS 1
 Telephone: 0532-35649

STEREO CABINETS. A beautifully finished polished wood cabinet supplied in original porton Size approx. $22 \times 16 \times 8 \mathrm{in}$. New $47 / 6$ plus $6 / 6$ carriage.

TELEMETERS. A well finished cabinet containing lots of useful items for the constructor. Endless lape unit and tape head, 2 motors, auto and mains transformers, miniature valve I.F. strip etc. Ideal for transiormers, miniature valve i.F. strip etc.
STETHOSCOPE HEADSETS. Brand New. Ideal for stereo or mono. Low impedance. $27 / 6$ plus $3 / 6 \mathrm{pp}$.
MICROPHONES. Radiotelephone type, used. $5 /$ - plus $2 /-\mathrm{pp}$.
TRANSISTORISED 2 METER CONVERTERS. Please state preference of I.F. frequency when ordering. £7.15.0 plus $5 /-\mathrm{Pp}$. 4 metre models available at the same price. VHF Marine band mode £8.5.0 plus $5 /-\mathrm{pp}$.
12V TRANSISTOR INVERTERS. 12 vdc input. 275 vdc at 150 mA output. Size of aluminium case $11^{\prime \prime} \times 22^{\prime \prime} \times 4^{\prime \prime}$ approx. Size of aluminium case $1 \% \times 1^{\prime \prime} \times 22^{\prime \prime} \times 22^{\prime \prime}$. £3.5.0 plus
5/ to 3 WATTS INTEGRATED CIRCUITS. Tested c/w circuit. \&1 plus $1 /$ pp. 60 UNTESTED TRANSISTORS $5 /$ - plus 1/- pp.
60 UNTESTED DIODES $2 / 6$ plus $1 /-\mathrm{pp}$. BYX25 800 R Silicon diodes 800 piv 16 amps on heat sink $5 /-$ plus $1 /$-pp. $455 \mathrm{Kc} / \mathrm{s}$ FM Transistorised I.F. strips. Faulty usually low in gain but new. 6 transistors. 12/6 plus 1/-pp. USED TESTED VALVES. QQVO3/10 6/6AQ5/EL90 3/ 6B361/6, 6BH6 1/6.12AX7)
 ECC83 2/6, 5U 4 6/-, ECF80 2/-. All plus 1/6 pp. AERIAL CHANGE OVER RELAYS $6 y, 12 v$ or $50 v$ d/-plus $1 / 6 \mathrm{pp}$. UHF Coaxial AERIAL CHANGE OVER RELAYS. BNC Sockets. 27/6 plus $2 / 6 \mathrm{po}$.
BRAND NEW HEADPHONES. A well known make of headset which combines quality with comfort. Mono or Stereo. 54/- plus 4/- pp. PLEASE NOTE NEW ADDRESS. NO CONNECTION WITH FIRM PLEASE NOTE PREVIOUSLY AT THIS ADDRESS
LIST OF OTHER EQUIPMENT PLEASE SEND Gd. PLUS S.A.E.

R.S.T. valve mall order co. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

Tei. 769-0199/1649

1 A 7		6BR8		6K7GT		10 C 2		2516		15082		OK32				C		9	9			
1D5	$7 / 6$	6BS7	25/-	6 K 8	$2 / 9$	10F1	14/9	$25 Y 5$	6/-	150 C 4		DK91		ECH42	13/-	EY86		0	,	R19 $\quad 1 / 9$	$\begin{aligned} & \text { UF41 } \end{aligned}$	1016
1HS		6BW6	14/6	$6 \mathrm{~K} 8 \mathrm{M}$	11/6	10F3		2574	6/3	801		DK92	$9 /$	ECH8	$5 / 9$	EZ35		PCF82	$6 / 6$	RG5/50080/-	UL41	12/-
1LD5		6BW7		6K8G	3/-	10F9	1016	2575				DK96	$7 / 9$	ECH83	$8 / 6$	EZ40		PCF84	817			12/-
INSGT		6 C 4		6K8GT		10F18		2576	$8 / 6$	813USA		DL66	25/-	ECL80	7/-	EZ41	$9 / 6$	PCF88	89		UM80	5/6
1 R 5	6/-	${ }_{6}^{6 C 5}$		6K25	15/-	10 L 1		$28 \mathrm{D7}$	9/3	813	120/-	DL92	$6+3$	ECL82	$71-$	EZ80	$5 / 6$	PCF801	9/9	SP41 3/6	UU6	$21 /-$
154 155	5/6				12/-	102 ${ }^{\text {P13 }}$	$10 / 6$		6/9	813	75/-	DL93	4/7	ECL83	10/3	EX81	5/6		9/9	SP61 3/6	UU7	21/-
1T4	4/-	6 CD		6 L	$7 / 9$	10P13	13/6		15/-	866A		DL94	6/9	ECL86	9/-	GY501		PC	15/-	STV280/80	UU8	21/-
3 A 4	4/-	6CH6		6Q7G										ECLL		GZ30			1516		UU9	$8 / 3$
3 Q 4	7/9	6CW4	13/6	607GT															$15 / 6$	2519/6	UY21	$9 / 6$
305	7/-			6SA7M														PCL82	7/9	SU2150 12/6	UY41	$8 / 6$
354	6/3	6E5		6SC7 ${ }^{\text {a }}$		12AU6	$5 / 9$	30FL12		7193		DY8	6			KT36	20/-	PCL83	10/3	T41 $17 / 6$	UY85	6/6
3 V 4	6/9		12/6	6SG7		12AU7	5/9	30FL14	15/6	7475	14/-	E88CC	12/-	EF39	8)-	KT36	18-	PCL84	8/6	TDD4 8/6	VMP4	17/-
5R4GY	10/6	6F5G		6SH7	$3 / 3$			30L15	17/-	A61	9/6		3/6	EF50				CL85	9/3		V48	25/7
5U4G	5/6	6F6G		6SJ7	6/-		$6 / 3$	30 L 17	17-	ATP4	2/3	EABC	6/6	EF80	$4 / 6$	KT8:	35	PCL86	9/3	U19 35/-		
5 V 4 G	81-	6F8G		6SK7G	$4 / 9$	6	6/3		15/-	ATP5	12/-	EAF42	10\%	EF85	7/-	KT81 7	7C5)	PD500	29/-	U19 3 35/7	VR150/	15/-
5Y3GT	$6 /-$	6 F 11		6SL7GT		$12 \mathrm{C8GT}$		30 P 12	16/-	ATP7	12/6	EB41	10/-	EF86	6/6	KT81	22/6	PENA4	20/-	$\begin{array}{ll}\text { U25 } & 15 / 6 \\ \text { U26 } & 15 / 6\end{array}$	VT25 VT31	$15 /-$
574 G	71-	6F13		6SN7G	5/6			$30 \mathrm{P19}$	15/-	AU2	$80 /$	EB91	101-	EF89	6/6	KT88	22/6	PENB4	20	U26 4 15/6	VT31 VU11I	$80 / 0$
$6 / 30 \mathrm{~L} 2$	15/-	6F14	12/6	6S07	7/6	12 J 5 GT	2/6	30PL1	16/-	AUS	8/9	EBC33	$8 / 6$	EF91	3/6	KT88	12/6	PEN45	7/-	U191 4/6 U1919	$\begin{aligned} & \text { VU11I } \\ & \text { VU120 } \end{aligned}$	$8 / 9$ $12 / 6$
6 6A8	12/6	6F23	16/-	6	1		7/-	$30 \mathrm{PL13}$ 30 PL 14	18/6	AZ1	8/-	EBCA1	9/9	EF92	2/6	KTZ41	6/-	PEN46	10	U251 16/3	VU508	35/-
6A87			15/-	6U5G		12 K 8 G		L14		AZ31		EBC90	$4 / 9$	EF98	15/-	ML4	$17 / 16$	PL81	10/9	U301 $12 / 6$	W81M	13/6
6AK5	5/-	6F28	14/-	6V6G	12/6	1207GT		35L6	11/-	CCH35		EBF80	91	EF184	7/6	MSP4	$7 / 6$ $10 /-$	PL82	$8 / 6$	U403 4 6/6	XH1-5	5/-
6AM5	4/6	6F32		6V6GT		12 SA 7		35 W 4	4/6	CL3	20/-	EBF89	6/6	EL32	3/6	MU14	10/76	PL 83	7/6		XP1	5/-
6AM6	$3 / 6$	6G6				12SG7		3523		450	25/-	EBL1	14/-	EL33	$12 / 6$	MX40	12/6	PL84	7/-	UABC80 6	XSG1-5	1101
6 AQ5	6/3	6H6		6X5G	$4 / 6$	12SH7		$35 Z 4 \mathrm{GT}$	$8 / 6$	CY30	12/6	EBL21	12/-	EL34	$10 / 6$	N78	19/-	PL500	14/6	210	T	$7 / 6$
6AS7G	16/-	655 M	9/-	6X5GT	6/-	12 SJ 7		35 Z 5		CY31		EBL31	27/6	EL38	22/6	N108	25/-	PL508	29/-	UBC41 $9 / 3$	Tubes	
6AT6	4/9	655 G			$11 / 6$	12SK7				DAC32		EC90	51/	EL41	11/-	NGT1	35/6	PL509	29/-	$\begin{array}{ll}\text { UBC41 } & 9 / 3 \\ \text { UBC81 } & 9 / 3\end{array}$	3EG1	$\begin{aligned} & 65 /- \\ & 20 /- \end{aligned}$
6AU6	5/-	6J5 GT			$7 / 6$	12SR7				DAF91		ECC81	6/-	EL42	$11 / 6$	NGT7	55/-	PL802	$16 / 6$	UBF80 $7 /$	$\begin{aligned} & 3 \mathrm{FP7} \\ & 5 \mathrm{CP} 1 \end{aligned}$	
6B4G	$20 /-$				22/6	14H7		$50 \mathrm{B5}$		DAF96		ECC82	5/9	EL84	1/9	OA2	65/-	PX4	14/-	UBF89 $7 / 6$	$\begin{aligned} & 5 C P 1 \\ & C V 1526 \end{aligned}$	65/-
6BSG		6 J 7 M			$15 /-$	19AQ5		50 C 5		DCC9		ECC83	6/3	EL95	6/6	OC3	5/-	PY33	10/9	UCC84 $8 / 6$		
6BA6		657 G	6/-		8/-	20D1	10/-	50 CD 6		DF33		CC84	5/6	ELL80	20\%	$\mathrm{OZ}^{\mathrm{O} 4}$	5/6	PY81	5/9	UCC84 $8 / 6$ UCC85 $7 / 6$	ACR13	
6BE6		6J7GT			6/6	20 F 2	14/-	50 L 6 GT		DF70		CC85	$5 /$	EM34	$21 /-$	PC86	$11 / 6$	PY82	5/3			
6BH6		6K6GT			13/-	20 L 1	$20 /-$	$75^{\text {2 }}$	$9 / 6$	DF91		ECC88	$7 / 6$	EM80	$71 / 6$	PC88	$11 / 6$	${ }_{\text {PY }} \mathrm{P} 82$	5/3	$\begin{array}{ll} \text { UCF80 } & 8 / 6 \\ \text { UCH42 } & 10 / 6 \end{array}$		
68J6		6K7			45/-	20P4	$201-$		5/-	DF92		ECF80	6/6	EM81	8/3	PC97	$8 / 9$	PY500	18/6	UCH81 7/-		86/-
$\mathrm{6BO7A}^{68 R 7}$	71-	6K7M		7 Y 4		20 P 52	$201-$		$7 / 6$	DF96		ECF82	$6 / 6$	EM84	7/6	PCC84	6/6	PY800	$9 / 6$	UCL82 716	CR 5	
$6 \mathrm{BR7}$	17/-	6K7G	2/-	OBW6	71-	2546	5/9	85A2	7/3	DH77		ECH21	12/6	ESU150		PCC89	10:6	PY801		UCL83 10\%-1		461-

Manufacturers and Export Inquiries Weicome
OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Express postage 9d. per vaive.
Ordinary postape 6d. per valve. C.W.O. No C.O.D.
Special Express Mail Order Service

TUERS

```
40}
```

7 inch $\quad . \quad 2450$
19 inch 2850 21 inct 23 inch 7 lnch

SETS OF VALVES
DL92 or DL94
19/- plus postage
DAF91, DF91, DK91,
DAF96, DF96, DK96, DL96 or DL94
TRANSISTORS

AC127	51-10C25	7/6\|0C71	3/-0C81	4/-10C82D	3/-
AF114	51-OC28	12/6)0C72	41-OC81D	3/-OC83	4/6
AF115	5/-0C35	6/3 OC75	$4 / 6$ OC81DM	OC170	5/6
AF116	$4 / 610 \mathrm{OC} 4$	$4 / 60 \mathrm{OC76}$	3/-	3/-OC171	6/\%
AF117	4/6\|OC45	2/6/OC77	$8 /-10 \mathrm{C} 82$	$3 /-10 \mathrm{C} 200$	5/6

SEND S.A.E. FOR LIST OF 3,000 TYPES

SURPLUS EXVT. BARGAINS

AMPLIFIER RF NO. ${ }^{2}$ MK ItI. Increases outpu
of 19 set to 25 watts of 19 set to 25 watts.
Grand New. $12 v$ opera* Grand New. $12 v$ opera
tion. $75 /=$ Carr. $15 /$ No. 19 Set 84.5.0. Carr. 17/6. All Anciliary Equip ment available. I2v D.C. Power Units 50/-Carr. $10 /-$ MCAIT 10 -
H/MIC SETS. Used 15/-, New 22/6. P. \& P. 5/Mains P.S.U.'s for 19 TM/RC \&6.15.0, Carr
R.F. Antenna Tuner (ATU) 25/-, P. \& P, 5/-.

FEW ONLY:

No. 19 Mk. III CANADIAN TRANCEIVERS Rebuilt as new. Complete station with all connectors. headset, vareometer, control box and aerials.
£22.10.0. Carr. 50/-
B. 41 RECEIVER. LF Version of B.40. Coverage
$15 \mathrm{Kc} / \mathrm{s}-700 \mathrm{Kc} / \mathrm{s}$. Mains Operation. As received from
Ministry. $£ 8.10 .0$. Carr. 30/. Tested, working $£ 15$. Ministry.

Carr. 30\%.

R. 209 MK 11 COMMUNICA TION RECEIVERS. 11 valve Covers $1-20 \mathrm{Mc} / \mathrm{s} .4$ bands.
AM/FM. CW. BFO Internal Power Supply. Tested. $\mathbf{\Sigma 1 3 . 1 0 . 0 , \text { Carr. 15/. }}$

TELESCOPIC MASTS. 20ft. loses to Sft. 9in. 70/•, Carr. 15/35FT, AERIAL' MASTS. Seven 2 in . dia. sections nterlock 8 in. Complete with base. Nylon Guys
\&12.10.0. Carr 50% TELE 'G FIELD TELEPHONES Communication up 10 miles. Tested with batteries.
25.15.0 pair, Carr. 20/
 LIVINGSTONE LAB TRANSISTOR AM PLIFIER. 50 watts R.M.S. Size $14 \ddagger \times 9 \times$ 22 Gns.. Carr. $20 /-$.

A.J.THOMPSON (Dept P.W)

 "Eiling Lodge," Codicote, Hitchin, Herts Phone: Codicote 242C.W.O. Carrlage charges apply 10 mainland onl

NEW RAMGE U.H.F. TV AERIMLS

All U.H.F. aerials now fitted with tilting rift Mound 4 element grid reflectors Lof Mounting Arrays, 7 element 40/11 element, $47 / 6$. 14 clement, $55 /$-. 18 elcment, 62/6. Wall Mounting with Cranked frim. 7 element, 60/-. 11 clement. 67/14 element, 75/-. 18 element, 82/6. Mas Mounting with 2 in. clamp. 7 element, $42 / 6$ 11 element, 55/-. 14 eiement, 62/-. 18 element 70/-, Chimney Monnting Arrays, Complete 7 element, 72/6. 11 element, $80 /$.. 14 element 87/6. 18 element, 95/-. Complete assembly instructions with every unit. Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps from 75/-. State clearly channel number required on all orders.

BBC - ITV AERIALS

BBC (Band 1) Loft, 25/External S/D, 30/- "H" 3 element loft array, $30 /=$ $50 /$ - Wall mounting ment, 50/- 5 elcment $55 /$ Combined BBCIITV $1+3,40 /-1+5.50 \%$ $+7,60 /=$ Wall mounting $1+3,60 /-; 1+5,70 /-7$
Chimney $1+3,70 /-; 1+5$ 80/-.
VHF transistor pre-amps
COMBINED BBC1

- ITV - BBCZ AERIALS $1+3+9.70 /-.1+5+9.80 /-$ $1+5+14,90 /-1+7+14.100 /=$ Loft mounting only.
F.M. (Band 2). Loft S/D, 17/6. "H'", 35/3 element, 57/6. External units available. Co-ax. cable 8d. yd. Co-ax. plugs. $1 / 6$. Outlet Co-ax. cable 8d. Yd. Co-ax. plugs, $1 / 6$. C.W.O. or C.O.D. P. \& P. 6/6. Send 6d. stamps for illustrated lists.
Callers welcomed -- open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM SURREY 01-6484884

BI-PAK SEMICONOUCTORS

500 CHESHAM HOUSE, REGENT STREET, LONDON W.1.

SUPER PAKS
 NEW BI-PAK UNTESTED SEMICONDUCTORS

Unequalled Value and Quality
Satisfaction GUARANTEED in Every Pak, or money back.
Pak No.
U1 120 Glass Sub-min. General Purpose Germanium Diodes 10 /U2 60 Mixed Germanium Transistors AF/RF.......... 10/-
U3 75 Germanium Gold Bonded Diodes sim. OA5. OA47 10%
U4 40 Germanium Transistors like OC81, AC128 10/-
$05 \quad 60200 \mathrm{~mA}$ Sub-min. Sil. Diodes
U6. 40 Silicon Planar Transistors NPN sim. BSY95A, 2N706 $10 /$ -
U7 16 Silicon Reclifiers Top-Hat 750 mA up $101,000 \mathrm{~V} \quad \because 10 /$ -

U9 20 Mixed Volts 1 watt Zener Diodes. .
U1I 10 PNP Silicon Planar Transistors TO-5 sim. $2 \mathrm{~N} 1132 \quad 10 /-$
U13 30 PNP-NPN Sil. Transistors OC200 \& 2S104
U14 150 Mixed Silicon and Germanium Diodes
U15 30 NPN Silicon Planar Transistors TO-5 sim. 2N697. 10/-
U16 10 3-Amp Silicon Rectifers Stud Type up to 1000 PIV 10/-
U17 30 Germanium PNP AF Transistors TO-5 like ACY17-22 to/-
U18 86 -Amp Silicon Rectifers BYZ13 Type up 10600 PIV $10 /$ -U19-30 Silicon NPN Transistors like BC $108 \ldots \ldots . . .$.
U20 $\quad 12$ I. 5 amp Silicon Rectifers Top-Hat up to $1,000 \mathrm{PIV} 10 /-$ U21 30 AF Germanium alloy Transistors 2G300 Ser. \& OC71 10/-
$\overline{\mathrm{U}} 23$ 30 Madt's like MAT Series PNP Transistors 10/-
U24 20 Germanium 1 -amp Rectifers GJM up to 300 PIV.. $10 /-$
U25 25 300Mc/s NPN Silicon Transistors 2N708. BSY27.. 10/-
U26 30 Fast Switching Silicon Diodes like IN914 Micro-min. 10/U28 Experimenters' Assortment of Integrated Circuits, un-
tested. Gates. Flip-Flops, Registers, ete., 8 Assorted Pieces 20\%-
$\overline{\text { U29 }} 10$ 1-amp SCR's TO-5 can up to 600 PIV CRS $1 / 25-600 \quad 20 /-$
U31 20 Sil. Planar NPN trans. low noise Amp 2N3707.... 101 -
U32 25 Zener diodes 400 mW D07 case mixed Volts, $3-18$., $10 / *$
U33 IS Plastic case 1 amp Silicon Rectificrs iN4000 series $10 /-$
$\overline{\text { U34 }} 30$ Sil. PNP alloy trans. TO-5 BCY26, 2 S302/4 $\cdots \cdots$.
U35 25 Sil. Planar trans. PNP TO-18 2N2906
1/52

U36	25 Sil. Planar NPN trans. TO-5 BFY
U37	30 Sil alloy trans. SO-2 PNP. OC200
S 322	

$\begin{array}{lll}\text { U37 } & 30 \text { Sil. alloy trans. SO-2 PNP. OC200 } 2 \mathrm{~S} 322 \\ \text { U38 } & 20 \text { Fast Switching Sil. trans. NPN, } 400 \mathrm{Mc} / \mathrm{s} 2 \mathrm{~N} 3011\end{array}$
U39 30 RF Germ. PNP trans. 2 N $1303 / 5$ TO-5
U40 10 Dual trans. 6 lead TO-5 2 N2060
U41 30 RF Germ. trans. TO-1 OC45 NKT72 \quad.
U42 10 VHF Germ. PNP trans. TO-1 NKT667 AF117.... $10 /-$
Code Nos. mentioned above are given as a guide to the type of
device in the Pak. The devices themselves are normally unmarked.

Identical encapsulation and pin configuration to the following: SL402-3, IC10 and IC403. Each circuitincorporates a preamp and class A.B. Power amp stage capatle of delivering up to 3 watts RMS. Fully lested and guaranteed. Supplied complete with circuit details and data. CODED BP1010. OUR LOWEST PRICE 30/- cach.
10 up 25/- each.

AD61 NPN

ADI62 PNP
MATCHED COMPLEMENTARY PAIRS OF GERM FOWER TRANSISTORS stages of Amplifiers and Radio receivers.
OUR LOWEST PRICE OF 12/G PER PAIR PRICE

UNIJUNCTION

 UT46. Eqvi. $2 N 2646$.Eqvt. TIS43 BEN3000 Eqvt. STG EAC BEN3000 25.99 5/6 EACH UP 4/NPN Silicon PLANAR BC107/8/9. 2/- each/ 50-99. $1 / 10$ 100 up. 1/6 each,
1,000 off, 1/6 each. Fully 1,000 off, $1 / 6$ each. Futly
tested and coded TO-18 tested
case.
NPN DIFFUSED SILICON PHOTO-DUODIODE Tape Readoui, high switch. ing and measurement indicators, $50 \mathrm{~V}, 250 \mathrm{~mW}$, OUR PRICE 101- EACH. 50 OR OVER B/6. EACH. FULL

FET'S
2N 3819 2N 3820

Let us give you the facts
From cover to cover Goodmans Manual is packed with fascinating articles on Stereo; a beginners guide to High Fidelity: Stage-built Systems: complete details of Goodmans High Fidelity Audio products 28 pages you can't afford to miss . . . and it's yours FREE I

Please send me a free copy

Name
Address
PW4/70

Axiom Works, Wembley, Middiesex. Tel : 01-902 1200

ALL MOTORISTS ARE KEEN TO CUT COSTS

2,973,000* do something about it they read PRACTICAL MOTORIST
The most widely read motoring monthly
every month

$$
2 / 6
$$

the mational readership survey JULY '68 - JUNE '69

SEMICONDUCTORS

BRAND NEW AND FULLY GUARANTEED

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 N914 \& $1 / 6$ \& 2N2906 \& $6 / 1$ \& ACY28 \& 4/-1 \& 8D121 \& 17/6 \& M 1481 \& 27/6

\hline 1N916 \& 1/6 \& 2N2906A \& 8/- \& AD140 \& 8/- \& BD123 \& 21/6 \& MJ490 \& $22 / 6$

\hline [S02] \& 4/- \& 2N2923 \& 4/- \& AD149 \& $11 / 6$ \& BD 124 \& 12i- \& MJ491 \& 29/6

\hline 15025 \& $51-$ \& 2N2924 \& 4/- \& AD161 \& $7 / 6$ \& BF115 \& 51- \& MPFi02 \& 8/6

\hline 15113 \& 3/- \& 2N 2925 \& 3/6 \& AD162 \& $7 / 6$ \& BF117 \& 10/6 \& MPF103 \& $7 / 6$

\hline 15120 \& $2 / 6$ \& 2N2926 \& \& AF114 \& $5 /-$ \& 8F167 \& 5\% \& MPF104 \& $7 / 6$

\hline 15121 \& $2 / 6$ \& ., Green \& 3/- \& AFII6 \& 5/- \& BF173 \& 7/6 \& MPF105 \& 8/-

\hline 15130 \& 2/6 \& .. Yellow \& 2/9 \& AFI17 \& 51- \& BFI80 \& 7 A \& NKT0013 \& $8 / 6$
$8 / 6$

\hline 1S13] \& $2 / 6$ \& , Orange \& 2/9 \& - Fils \& 12/6. \& BF181 \& 6/6 \& NKT216 \& 7/6

\hline 15132 \& 2/6 \& 2N3011 \& 12/6 \& AF124 \& 4/6 \& BFIB4 \& 7/6 \& NKT217 \& $8 / 6$

\hline 1544 \& $21-$ \& 2N3053 \& $6 / 6$ \& AF12S \& 4/6 \& BFI94 \& $5 /-$ \& NKT261 \& 4/-

\hline 2G301 \& 4/- \& 2N3054 \& 12/6 \& AF 126 \& 4/- \& BFX12 \& 4/6 \& NKT 262 \& 4/-

\hline 2G302 \& 4/- \& 2N3055 \& 151- \& AF127 \& 3/6 \& BFX13 \& 4/6 \& NKT264 \& 4/-

\hline 2G303 \& 4/- \& 2N 3702 \& 3/6 \& AF139 \& $7 / 6$ \& BFX29 \& 12/6 \& NKT271 \& 4/-

\hline 2G371 \& 3/- \& 2N3703 \& 4/6 \& AF181 \& $8 / 6$ \& BFX30 \& 9/- \& NKT272 \& 4/-

\hline 2N696 \& $4 / 6$ \& 2N3704 \& $4 / 6$ \& AF186 \& 11- \& BFX35 \& 19/6 \& NKT274 \& 4/-

\hline 2N697 \& 5/- \& 2N3705 \& 4/- \& AF239 \& $7 / 6$ \& BFX43 \& 8/6 \& NKT275 \& 4/-

\hline 2N698 \& 4/6 \& 2N3706 \& 4/6 \& ASY26 \& 5/6 \& BFX44 \& $8 / 6$ \& NKT281 \& 5/6

\hline 2N706 \& 2/6 \& 2N 3707 \& 4/- \& ASY27 \& 816 \& BFX84 \& $7 / 6$ \& NKT403 \& 15/-

\hline 2N706A \& 2/6 \& 2N3708 \& 3/6 \& ASY28 \& 5/6 \& BFX85 \& $9 /-$ \& NKT404 \& 12/6

\hline 2N708 \& 4/- \& 2N3709 \& 3/6 \& ASY29 \& 5/6 \& BFX86 \& $6 / 6$ \& NKT40S \& 15/-

\hline 2N929 \& 5/6 \& 2N3710 \& 41- \& ASZ20 \& 7/6 \& BFX87 \& 616 \& NKTG13 \& 6/6

\hline 2N930 \& 7/- \& 2N3711 \& 4/- \& ASZ21 \& $7 / 6$ \& BFX88 \& 5/- \& NKT674 \& $5 /-$

\hline 2N 1090 \& 616 \& 2N3819 \& 9 -1 \& BA102 \& $6 / 6$ \& BFY 10 \& 4/6 \& NKT677 \& $51-$

\hline 2N1091 \& 6/6 \& 2N3820 \& 23/6 \& 8 8×13 \& 1/6 \& BFY 17 \& 4/6 \& NKT713 \& 5/-

\hline 2N1131 \& $6 / 6$ \& 2N3906 \& 7/6 \& BAX 16 \& 1/9 \& BFY18 \& $4 / 6$ \& NKT773 \& 5/-

\hline 2 N 1132 \& 616 \& 2 N 4058 \& 5/6 \& BAY31 \& 1/6. \& BFY'9 \& 4/6 \& NKT781 \& 6/-

\hline 2 N 1302 \& 3/6 \& 2 N 4059 \& $5 /-$ \& BAY38 \& 3/6. \& BFY 20 \& 12/6 \& NKT20329 \& $8 / 6$

\hline 2N1303 \& 316 \& 2N4060 \& 5/- \& BC 107 \& 316 \& BFY41 \& 101- \& NKT80111 \& 15/6

\hline 2N1304 \& $4 / 6$ \& 2 N 4061 \& 4/6 \& 8C108 \& 3/6 \& BFY43 \& 12/6 \& NKT80112 \& $19 / 6$

\hline 2N1305 \& 4/6 \& 2 N 4062 \& 4/6 \& BC 109 \& 3/6 \& BFY 50 \& 4/6. \& NKT80113 \& 22/6

\hline 2N1306 \& $5 /-$ \& ${ }_{2} \mathrm{~N} 4254$ \& $8 / 6$ \& BC113 \& $6 / 6$ \& BFYSI \& 4/6 \& OAs \& 2/6

\hline 2N 1307 \& $5 /-$ \& 2 N 4255 \& $8 / 6$ \& BC 116 \& 1216 \& BFYS2 \& 4/6 \& OA9 \& 2/6

\hline 2Nil308 \& 61 \& 2N4284 \& 3/6 \& BC118 \& 6/6. \& BFY76 \& 8/6 \& OA70 \& 1/6

\hline 2N1309 \& 615 \& 2 N 4285 \& 3/6 \& BC125 \& 111/- \& BFY77 \& 11/6 \& OA73 \& $21-$

\hline 2N1507 \& $5 / 6$ \& 2N4286 \& 3/6 \& BC126 \& 11/- \& BFY 90 \& 12/6 \& OA79 \& 1/9

\hline 2N1613 \& $5 / 6$ \& 2N4287 \& 3/6 \& BC 147 \& 3/6 \& BSX 19 \& 3/6 \& O.481 \& 1/6

\hline 2N1711 \& $6 / 6$ \& 2N4288 \& 3/6 \& BC148 \& 3/6 \& ESX20 \& 3/6 \& OA85 \& $1 / 6$

\hline 2N1889
2 N 1893 \& 616 \& 2N4289 \& 4/6 \& BC 149 \& 3/6 \& BSX21 \& 7/6 \& OA90 \& 1/6

\hline 2 N 1893
$\mathbf{2 N} 2102$ \& 816
$15 /$ \& 2N4291 \& 3/6 \& ${ }_{\text {BC }} 167$ \& $3 / 6$ \& BSX 26 \& 10/6 \& OA91 \& 1/6

\hline 2N2147 \& 14/6. \& 2N4292
40361 \& 12/6 \& BC 168 B
BC 168 C \& 3/6 \& BSX27 \& 10/6 \& OA95 \& 1/6

\hline 2 N 2148 \& 12/6 \& 40362 \& 14/6. \& BC 1698 \& $3 / 9$
$3 / 6$ \& BSX28
BSX29

SS \& 13/6 \& OA200
OA202 \& 2/-

\hline 2N2160 \& 12/6 \& 3N128 \& 18/6 \& BC 169C \& 3/9 \& ${ }_{\text {BSY } 26}$ \& 19/6 \& OC26 \& 6/6

\hline 2N2193 \& 5/6 \& 3 N140 \& 1916 \& BC 182 L \& 4/6 \& BSY 27 \& 4/- \& OC28 \& 6/6

\hline 2N2193A \& 5/6 \& 3N141 \& 21/6. \& BC212L \& $51-$ \& BSY28 \& 4/- \& OC29 \& 15\%

\hline 2N2194A \& $5 / 6$ \& 3N142 \& 16/6 \& BCr 30 \& 5/6 \& BSY29 \& 4/- \& QC35 \& 6/6

\hline 2 N 2217 \& 6/6 \& AAZ13 \& 21- \& BCY31 \& 5/6 \& BSY 38 \& 4/6 \& ${ }_{\text {OC }}$ \& $6 / 6$

\hline 2N2218 \& $6 / 6$ \& AAZ15 \& 2;6 \& 日CY32 \& $7 / 6$ \& BSY 39 \& 4/6 \& OC44 \& 4/-

\hline 2N2219 \& $6 / 6$ \& A A 217 \& 2/6 \& BCY33 \& 4/- \& BSY40 \& 6/6 \& OC45 \& 2/6

\hline 2 N 2220 \& $51-$ \& AC 107 \& $61-$ \& BCY34 \& $4 / 6$ \& BSYS \& 6/6 \& OC7 \& $2 / 6$

\hline 2N2221 \& 5/- \& ${ }^{\text {ACl26 }}$ \& 4/- \& BCY38 \& 4/6 \& BSY52 \& $9 /$ \& OC72 \& 2/6

\hline 2 N 2222 \& 6/6 \& AC127 \& 5/- \& BCY 39 \& 7/6 \& ${ }_{8 S Y} 53$ \& 8/6 \& OC75 \& 2/6

\hline 2N2368 \& 5/- \& AC128 \& 4/- \& BCY40 \& 6/6 \& BSY54 \& 10/6 \& OCs \& 4/-

\hline 2N2369 \& $51-$ \& AC. 176 \& 51- \& BCY42 \& $3 /-$ \& BSY95A \& 2/6 \& ${ }^{O} \mathrm{OC83}$ \& 4/6

\hline 2 N 2169 A \& $5 / 6$ \& $A^{\text {AC }} 187$ \& 121-1 \& BCY43 \& $3 /-$ \& BY 100 \& 4/6 \& OC81D \& 4/6

\hline 2 N 2539 \& $4 / 6$ \& ${ }^{\text {AC }} 188$ \& 12/- \& BCY54 \& 716 \& BYX 10 \& 5/6 \& OC84 \& $5 /-$

\hline 2 N 2540 \& 4/6 \& ${ }^{\text {ACY }} 17$ \& 5/- \& BCY70 \& $4 / 6$ \& BYZ.10 \& $9 /-$ \& OC 139 \& $6 / 6$

\hline 2 N 2646 \& 11/6 \& ACYis \& 5/- \& BCY71 \& 8/6 \& $8 \times Z 11$ \& $7 / 6$ \& OC 140 \& 6/6

\hline 2 N 2904 \& $81-$ \& ACY19 \& 5/- \& BCY72 \& 4/- \& $8 \mathrm{BYZ12}$ \& 61-1 \& OC 200 \& $6 / 6$

\hline 2N2904A \& 8 \& ACY20 \& 5/- \& BDY20 \& 25/6 \& BYZ13 \& 5/- \& OC201 \& 7/6

\hline 2N2905
2N2903A \& 8 \& ACY21 \& 5/m. \& BD116 \& 351- \& M 1480 \& $20 / 6$ \& OC202 \& 10/6

\hline 2N2903A \& $81-$ \& $4 \mathrm{Cr}^{2} 22$ \& 4/-1 \& \& \& \& \& \&

\hline
\end{tabular}

and work at the nerve centres of civil aviation

The National Air Traffic Control Service of the Board of Trade needs Radio Technicians to install and maintain the very latest electronic aids at Civil Airports. Air Traffic Control Centres. Radar Stations and specialist establishments. Vacancies exist in various parts of the United Kingdom.

This is responsible demanding work (for which you will get familiarisation training) involving communications, computers, radar and data extraction, automatic landing systems, and closed-circuit television. It offers excellent prospects with ample opportunities to study for higher qualifications in this fast-expanding field.
If you are 19 or over, with at least one year's practical experience in telecommunications, fill in the coupon now. Preference will be given to those having ONC or qualifications in Telecommunications.
Salary: $\mathbf{£ 9 8 5}$ (at 19) to $£ 1.295$ (at $\mathbf{2 5}$ or over); scale maximum $\mathbf{£ 1 , 5 0 0}$ (higher rates at Heathrow). Some posts attract shift-duty payments. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

Complete this coupon for full details and application form:
To: A. J. Edwards, C.Eng., M.I.E.E., M.I.E.R.E., Room 705, The Adelphi, John Adam Street, London WC2 marking your envelope 'Recruitment'

Name

Address
PW/B3
Not applicable to residents outside the United Kingdom.
National Air Traffic Control Service

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /$-), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 510$ s. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager. PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C. 4 for insertion in the next available issue.

MISCELLANEOUS

ALBIONS APRIL BARGAINS

SPEAKER CABINETS

 Beautifully finished in teak veneer with attractive front cloth. Measure $16 \mathrm{in} \times 8 \mathrm{in} \times 6 \mathrm{in}$. ONLY 67s 6d each; pp. 7s 6 d . Single Mic Cable, 6d yard, post/pack, 7d +1d yd. Toggle Switches, DPDT 3s; SPST 2 s 3 d . DIN plugs, 3 pin 2 s 9 d ; 5 pin 3s 9d. Standard bakelite barrel plugs 2 s 6d. POST: up to 3 , is and thercafter Id each. Eagle 4 channel Mic mixer 52 s 6d; 3 watt, 4 trans' audio amp' Ready buit 63 s . POST: both 3 s 6 d .UP TO 50 Watts WITH FAL. Yes, the fantastic FAL phase 50 PA Amplifier can give up to 50 Watts of rich sound. Suitable for use with Tape, Records, Mic, or even Bass Guitar. Incorporating three mixed inputs, Bass and Treble controls. New and Guaranteed 12 months. ONLY 29 gns. post and packing free, or as exclusively offered by us with two 25 watt Bass Guitar speakers. by us with two 25 watt Bass Guitar speakers,
ONIY 35 gns. post and packing EI . SAE. leaffet.
Send for free lists of Electronic equipment and components. Amps, Tuners, Cables, Gadgets, etc.

ALBION ELECTRONICS SUPPLIES Dept. 3, 16 Albion Rd., Birchington, Kent

THE NEW

 ELECTRONIC MUSIC FOR YOUThen how about making yourselt an electric organ? Constructional data avallable -full circuits, drawligs and notes! It has 5 ootaves, 2 manuals and pedals with 24 stops-uses 41 valves. With its variable Write Nou can play Classics and Swing. Write Now cor rree lesilet and durther. details to C. Durham. Send 4d. stamp.

NOTES ON USE of TV for UFO Detection. Optical Detector Circuits, 8s 6d. Radar \& Electronic Publications, "Mighlands," \& Electronic Publication
EXPRESS ROTARY SWITCHES. Switches for Mullard audio circuits. also switches made to customers own specifications. For details and price list, write or phone to 189 Edgware Road., London W.2. Tel. 01-723 4455.

BULLD IT in a DEWBOX quality cabinet. 2in.x 2 tin. x any length. D.E.W. Lid.. Ringwood Road, FERNDOWN, Dorset S.A.E. for leaflet. Write now-Right now.

MISCELLANEOUS
 (continued)

Be well-equipped

You need not worry about the painful and lingering minor burns that occur from time to time in leisure pursuits if you keep BURNEZE close to hand. This undque new scientific aerosol cools and anaesthetizes. BURNEZE takes the heat out of a burn in just 8 seconds, then controls the blistering and pain that steal skill from nimble fingers. Be well-equipped - buy fingers. Be wei-equipped -

Potter \& Clarke Ltd Croydon CR93LP

SERVICE MANUALS for Pre 1958 H.M.V. and E.M.I. MODELS. Radio and Record Player Manuals 5/-each. Television Manuals $7 / 6$ each. Send C.W.O. stating model required. Also limited range of components and spares. Send details of your requirements. R.D.I. Ltd.. Chilton Works, Garden Road, Richmond, Surrey.

MUSICAL MIRACLES. Send S.A.E. for details of Rythm Modules. versatile basspedal unit, self-contained with unique effects, kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters, $25 /-$ post paid. HURRY. D.E.W. Ltd., 254 Ringwood Road, Ferndown, Dorset.
JOURNAL OF PARAPHYSICS Russian experiments: telekinesis ("mind-overmatter"'); brainwaves actuate electronic matier ') brainwaves actuate elors; fransistor UFO detectors; relays; transistor fore-retectors; tachyons vision; hyperspace; ,'fime-reversal, etce. S.A.E. for list. ("faster than light") etc. S.A.E. for list.
20 s . for back 20 s. for back issues.
Laboratory, Downton, Wilts.

FOR SALE

500 I.T.A. CONVERTED TUNERS, $3 /$ - for sample. Limited Quantity of new Boxed Television Valves $7 / 6$ ea. SAE for list. E. Graley, 15 Roskell Road, Liverpool 25.

FOR SALE
 (continued)

MORSE MADE !!

FACT NOT FICTION. It you detart RIOHF you will be remding amateur and commerclal Morse within a month. Normal progress to be expected.)
Ushag scientifically prepared 9 -speed records you automatically lesm to recognise the code RHYTHM Without tranalating. You can't help it, it's easy ad learning tone. 18 W.P.M. In 4 week guaranteed. send 8d. stamp for explenatory booklet to:

SEEN MY CATT 5,000 items. Mechanical \& Electrical Gear, and materials. S.A.E. K. R. WHISTON, Dept. PW, NEW MILLS. Stockport.

WANTED

SERVICE SHEETS AND MANUALS PURCHASED. Highest prices paid. Sultan Radio. 29 Chirch Road, Tunbridge Wells, Kent. Phone T.W. 22093.

VINTAGE RADIO. 1930 era. ANY condition, Privately. 25 High Street. Olney, near Bucks.

CASH PAID for New Valves. Payment by return. WILLOW VALE. ELECTRONICS 4 The Broadway, Hanwell, London, W.7. 01-567/5400-2971.
CIRCUIT. kit or complete tuner for TV Sound. Transistorised. REES, Brendon Carlton Road, South Godstone, Surrey.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return WILLIAM CARVIS LTD. 103 North Street, Leeds 7

WE BUY New Valves and Transistors. State price: A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN W1LL: ETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0186.

WE BUY New Valves, Transistors and clean new components, large or smal! quantities, all details, quotation by return. WaLTONS WIRELESS STORES, 55 Worcester Street, Wolverhampton.

ARMY SURPLUS throat microphones; any quantity; any condition. J. Laycock, Music Depariment, University, Nottingham.

METAL WORK

METAL WORK: All types cabinets, chassis, racks etc. to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

ELECTRICAL
240 mon
ELECTRICITY ANYWHERE
BEST EVER 200/240 VOLS "MAINS"
SUPPLY FROM 12 VOLT CAR BATTERY
Exclusive World Scoop Purchase. The fabulous Mk. 2D American Heavy Duty Dynalous Mk, 2D American Eesvy Duly Dyna-
motor Unit with a Massive 220 watt outmotor and giving the most brillant $200 / 240$ pott performance of all time. Marvellous for Television, Drills, Power Tools, Mains Lishting, AC Fluorescent Lighting and all $200 / 240$ volt Untversal AC/DC mains equip. ment. Made at tremendous cost for U.S.A. Govt. by Delco-Remy. This magnificent machine is unobtainabie elsewhere
Brand New and Fully Tested, only $£ 4.19 .8$,
plus $10 / 6$ postage. C.O.D. with pleasure. Money back if not delighted. Please send s.a.e. for interesting illus. detalls. Dept. PW STANFORD ELECTRONICS, Rear Derby Road, North Promenade Black pool, Lancashire.

SERVICE SHEETS

SERVICE SHEETS (1925-1970) for Televisions, Radios. Transistors, Tape Recorders Record Players, etc. by return post, with free Fault-Finding Guide. Prices from 1/Over 8,000 models available. Catalogue $2 / 6$. Please send S.A.E. wth all orders/enquiries Hamilton Radio, 54 London Road, Bexhill, Sussex.

SERVICE SHEETS. Radio, TV etc. 8,000 models. List $2 /$-. S.A.E. enquiries. TELRAY. 11 Maudland Bank, Preston.

SERVICE SHEETS $(75,000) 5 /$ - each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 16 Shepherds Bush Rd., London W.6. SHE 8441.

TRADER SERIICE SHEETS

5/- each plus postage
We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.

Cheques and open P.O.s returned if sheets not available.

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	Radio/TV

1970 List now available at 2/ plus postage

If list is required
indicate with X

From

Address
enclose remittance of
(and a stamped addressed envelope) s.a.e. with enquiries please

MAIL. ORDER ONLY (February PW)

SERVICE SHEETS
(continued)

LARGE SUPPLIER OF
 SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS, CAR RADIOS)
Only 10/- each, plus large S.A.E.
(Uncrossed P:O. splease, original returned if service sheets not available.)

C. CARANNA
 71 beaufort park LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request with order. Mail order only.

AERIALS

BBC, dipole 30s; H 42s; 3 ele 89\%. ITA, 3 ele 26s; 5 ele 34s; 8 cle 47s 5d; 11 ele 57 s 6d. ITA doubles 8 ele 112s; 11 ele 140s; 13 ele 159s. Combined BBC/ITA D 5 45s;
 special, D 5 with loft pole and fixings 37s. UHF acrials BBC/ITA, 14 ele 37s; 18 ele 54s; 22 ele 63s; Double 22 ele 142;. Co-ax low loss at 1s 3d and 2s 3d. co-ax plugs 1s 4d. Diplexers-Triplexers-Matched UHF/ VHF Diplexers. Poles, lashings, clamps, couplers, etc. Postage paid on all aerials. couplers, etc. Postage paid on al aerials.
Extra on accessories. Please state channels when ordering.

BAKER and BAINES

11 Dale Crescert, Tupton, Chesterfield.
"WORLD ECORD winning Aerial" Joy" stick-The Stick that does the Trick! All bands MW, SW. 7ft 6 in long. Free brochure: Partridge Electronics (PW) Ltd., Broadstairs, Kent.

BOOKS \& PUBLICATIONS

RECEIVERS \& COMPONENTS

EMSAC FOR ANTENNA SYSTRMS AND CONVERTERS. Please send s.a.e. for details of 2 metre converters, antennas and transmatches for receiving and transmitting. ELECTRONIC \& MECHANICAL SUB ASSEMBLY CO. LTD., Highfield House, West Kingsdown, Kent. Tel. W.K. 2344.

BARGAIN PARCELS

Any 5, 9/-; 10, 14/-; 100, $£ 5.10 .0$ from the following:
ECC82, ECL80, EF80, EF85, EF183, EBF89, EB91, EY86, PCC84, PCC89, PCF80, PCL82, PCL83, PCL84, PL36; PL81, PY33, PY81, PY82, U191, 6-30L2, 30FL1. 30 F 5 .

U.H.F. AERIAL BOOSTER

Transistorised, cavity tuned, high-gain. All uhf channels. Complete with battery and lead, 69/-, p. \& p. 1/-. VELCO ELECTRONICS, 62 Bridge Strect, Ramsbottom, Bury, Lancs.

NEW VHF KIT

Recelves Television Sound, Ambulances, Aircraft, Radio 2,3 and 4 on VHF, etc
This novel littile set will glve you endiess hours or pleasure and can be built in one evening. The Kit comes with easy to follow instructions and clircult. Powered by $9 v$ Battery. Socket for with Earphones or Amplifter
ONLX 57/-, P. \& P. FREE U.K. ONLY. Postal Orders, Greques to:
Galleon Trading Co., 29AA
Romford, Essex.
150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab. Vitreous, $\frac{1-20}{i-20}$ watt, $15 /-$ Post Free. WHITSAM ELECTRICAL 33^{3} Drayton Green Ruad, West Ealing. W. 13.

COMPLETE RANGE of Amateur Aircraft. Communications receivers. Chassis, panels meters, cabinets, microphones, etc. Stephens James Ltd. 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

BRAND NEW ELECTROLYTICS, $15 / 16$ volt $0.5,1,2,5,8,10,20,30,40,50$ 100,200 mfds. 8s per dozen, postage 1s The C.R. Supply Co., 127 Chesterfield Road, Sheffield 8.

TO HELP THE HOME CONSTRUCTOR Heathkit now make available our surplus Resistors, Capacitors, etc. at Bargain prices. Send for lists. E. Moyle, Daystrom Ltd., Gloucester.

AUDIOSCAN-HI-FI loudspeaker systems for the home constructor, cabinet kits, new range of Peerless speakers, speaker ki systems and cross-over networks, BAF wadding and all necessary components. Froe speaker fabric samples on request. Send 90 in stamps to: AUDIOSCAN, Dept. P.W. 4 Princes Square, Harrogate, Yorks.

AT LASTII

CRYSTAL CLEAR RESOLUTION OF B.8.B.
A highly sensitive receiver specially designed
for the amateur bands on $20-40-80-160$ metres.

Build in 10 hrs . Tune in to worid Coils assembled and metred

${ }_{9} 9$ Trag-in coils 9 Transistors
Tunable Aerial coils
Push Push/pull output to 3 in .
Designed for the novice censtructor. Capable of reception previously only obtainable on very expensive equipment. Kit includes the 3in. speaker, an aluminium chassis and coils for 80 metre reception. assembly insirfctions with circuit diagram.
Coil assemblies for $20,40,160$ metres for amateur wavebands
$30 /-$ esch
Coil assemblies for commercial, shipping, aircraft wavebands
30/- ench
RADIO RAVONICS
BINGLEY ROAD, CROSSROADS, KEIGHLEY, YORKS.

RECEIVERS E COMPONENTS (continued)

Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plasticcoated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy.

Now all Aluminium surfaces are coated with a strippable plastic for protection during manufacture and transit. All edges are polished.

LIST OF PRICES AND SIZES which are made to fit Standard Alloy Chassis

Width	Alloy Chassis .						
	Depth	$4^{\prime \prime} \mathrm{He}$	ght.	$6^{*} \mathrm{He}$		$\stackrel{5}{7}{ }^{\prime \prime}$ Height	
		2 8.	6	£ \%.			
61**	$3{ }^{* *}$	12	6	15	0	18	0
64*	42"	13	6	18	0	10	0
81°	$3{ }^{\text {² }}$	15	0	10	0	11	0
$88^{\prime \prime}$	$6{ }^{6}$	11	0	16	6	111	3
101*	$7{ }^{7}$	18	6	115	6	118	9
12t"	$3{ }^{\text {\% }}$	11	0	16	6	111	0
12t"	53^{*}	18	0	114	0	117	8
12:	88°	116	0	23	0	27	3
144"	$3{ }^{\frac{7}{7} \text { \% }}$	15	0	111	6	114	0
14**	92"	23	0	215	9	218	6
164*	$6 \square^{\text {a }}$	118	6	26	3	211	6
184*	10\%"	210	0	35	a		9

Cases-Post 4s. 6d. per order.
Discounts available on quantities.
CHASSIS in Aluminium, Standard Sizes, with Gusset Plates
Sizes to fit Cases. All $2 \frac{1^{\prime \prime}}{}$ Walls

Chassis-Post 3s. Od. per order.
Discounts available on quantities.

E. R. NICHOLLS

Manufacturer of Eleetronic instrument Cases

46 LOWFIELD ROAD

STOCKPORT - CHESHIRE
Tel: 061-480 2179
5,000 TRANSISTORS. Similar BCY 71. Unmarked and untested. 20 for $25 /$ or 100 for $E 5$. \mathbf{P} \& $\mathbf{P} 1 /$ - and $2 /-$, respectively. S. E. Ward, 20 Shadwell Road, North End, Portsmouth, Hants.

A. J. H. ELECTRONICS 59 Waverley Road, The Kent, Rugby Warwickshire. Tel. Rugby 71069
 P. C. RECEIVER BOARDS
 PCR.1, 6 transistors OC44, 2/OC45, OC81D, $2 / 0 \mathrm{OC81}$, but less the audio transistors ie:OC81D, \& $2 / \mathrm{OC81}$ double traned 1st. IF. transformerless output approx speaker wat to 80 speaker will work with any impedance, size 8it similar to tess fertite aerial, tuning capacitor, etc. similar data $25 /-$ each.
 PCR.2, 7 transistors 3/AF117, 2/AC127, 2/AC128, watt output to 5 ohm speaker, size $3 t^{\prime \prime} \times 7 \frac{1}{2}$ " IF. \& audio complete, no osc. coil, tuning capacitor, ferrite aerial, etc requires 9v supply, modern board wit
 PCR.3, 6 transistors OC44, 2/OC45, OC81D, 2/OC81, transformerless output approx 400 milliwatts requires 6 v battery, edgewise volume control, \& osc. coil on this board. $3^{\prime \prime} \times 5^{\prime \prime}$ as used in pocket portables no details or circuit 25/- each.
 All boards as new and unused
 250 pf postage stamp type ceramic compression trimmers 6d each 5/- doz. (new) Screw in type car distributor \& coil suppressors 6d each (new).
 PUSH-PULL output transformers to match EL84s to 15 ohm speaker with negative feedback winding only $9 /-$ each.
 Postage add 1/6 MAIL ORDER ONLY

RECEIVERS \& COMPONENTS (continued)

JEF ELECTRONICS

New Full Specification Devices Integrated Circuits complete with data: GE PA230 Audio Preamplifier 18/6d GE PA234 1W Audio Amplificr 17/6d GE PA237 2W Audio Amplifier 32/6d Plessey SL402A Preamp \& 2 W Amp 42/MEL 11 Photo Darlington Amp 9/6d High quality low cost transistors: GE 2 N 5172 NPN 200 mW 1/9d; ME 0412 PNP 200 mW 3/9d; TI 2N4059 PNP 250mW 3/6d; MUL BFX86 NPN $800 \mathrm{~mW} 6 / \mathrm{F}_{\mathrm{G}} \mathrm{MUL}$ BD 124 NPN 15 W 12/-; S 2N3055 NPN 115 W 14/6d. Triacs for full wave power control: RCA 40669 8A 400V 24/-; RCA 40583 Trigger Diode 5/3d.
Plastic rectifiers for power supplies: IN 48201.5 A 400 V Si Rectifier 2/6d: W005 1A 50 V full wave bridge Si 7/6d; PD40 2A 400V full wave bridge Si 15/-.
C.W.O. P. \& P. 1/- per order.

York Hoase, 12 York Drive, Grappen-
hall, Warrington, Lancs. Mail order only
TRANSFORMERS. Rewound, prototypes and specials made to order. Reasonable charges. S.A.E. please, Ratcliffe, 18 Beech Avenue, Thongsbridge, Huddersfield, Yorks.
EX COMPUTER PRINTED CIRCUIT PANELS 2 in x
din packed with semi-conductors and top quatity
resistors, capacitors, diodes, etc. Our price
10 boards 10/-. P. 1 P. 1/6. With a guaranteed mini-
mum of 35 transistors. Dala on transistors included.
SPECIAL BARGAIN PACK. 25 boards for £1. P \& P.
3/6. With a guaranteed minimum of 85 iransistors
Dala on transistors included
PANELS with 2 power transistors sim to OC28 on
each board + components. 2 boards ($4 \times O C 28$)
10/-, P. \& P. 1/6
9 OA5, 3 OA 10. 3 Pot Cores, 26 Resistors, 14 Capaci-
tors, 3 GET 872. 3 GET 872B. 1 GET 875. All tong
leaded on panels $13 \mathrm{in} \times 4 \mathrm{in}$.4 tor $20 /-$. P \& P. $5 /-$.

LARGE CAPACITY ELECTROLYTICS $\left.\begin{array}{l}4000 \mathrm{MFD} 72 \mathrm{~V} \\ 16000 \mathrm{MFD} 12 \mathrm{~V}\end{array}\right\} 7 / 6$ ea. P \& P $1 / 6$ or 53:10:0 per doz. Carr, 101-

250 MIXED RESISTORS
 $12 / 6$

ka 4 \% watt
150 MIXED HI STABS 12/6
1/4. $1 / 2 \& 1$ watt 5% \& better

EXTRACTOR/BLOWER FANS (PAPST)

100 CFM 2800 RPM $41 / 2$ in $\times 41 / 2$ in $\times 2$ in. Ideal for kitchen extraction, instrument cooling, etc., etc. 50/- each. P. \& P. 5/-.

DIODES EX EAPT. SLILCON
10 AMP 150 PIV 4 for 10/- P. \& P. 16
20 AMP 150 PIV 4 for 20/- P, \& P. 1/6
35 AMP 400 PIV 4 for 45/- P. \& P. 1/6

EX COMPUTER "MEMORY’ CORE STORE PLANES

160 bits \&1 P. \& P. 2/-
4.000 bits 14 P. 8 P. 4ideal for
10.000 bits ह\% P. 8 P. $8 /-$
experiments

BARGAIN RELAY OFFER
Single pole change over sitver conlacts. 25 v to 50 v
$2.5 \mathrm{k}!$ coll. 8 for 10/- P. \& P. 1/-

> KEYTRONICS mall order only 52 EARLS COURT ROAD, LONDON W8

> 014788499

RECEIVERS \& COMPONENTS

(continued)

> Build the Prac. Electronics (Vod 4/11-12) Frabulus withM GENERATOR electronic organ or guitar 5 sounds \& 12 rhythms, each in choice of 3 percusion patterns. For simpler and neater construction use our undrilled PRINTED CIRCUIT (14tin x 5 tin) with layout diagram and instructions. Price 29/bd. C.W.O. inc. U.K postage frome ALMARY DESIGNS, i2 Lattimore Road, Wheathampstead, Herts.

CONSTRUCTOR'S BARGAIN PACK containing 10 PNP germ. transistors, 10 sil. diodes, 3 ex-computer panel (dozens of useetul components), 2 reed switches, 50 mixed resistors (1 to 1 watt), 25 condensers. All components brand new (diodes and transistors untested, not guaranteed. Unbelievable ralue at $22 / 6+2 / 6$ p.p. SATLSFACTION GUARANTEEED OR MONEY BACK. Brand new headphones complete with heavy duty hand milke. To clear at only $15 /-+5 /-$ p.p. 6 nem ARP12 Vaives-6/- post free, $12-10 /-$ post free. Carbon microphone inserts $3-3 /-+1 /-$ p.p. $6-6 /-$ post iree. $12-10 /-$ post iree. 12 GLEDHOW PARK DR., LEEDS LS7 4JT

Cathode Ray Tubes-Full 2 years guarantee -Mail order only, 14in, $\mathbf{E 6} ; 17 \mathrm{in}$, $\mathrm{E6} ; 19 \mathrm{in}$,
 19in, f12; 23 in , f15 7s 6d: Rimguard 19in, E 10 9s; 23in. $£ 13$ 14s. Carriage 12s 6d. Insurance 5s. Television Velves-Most valves available Brand New for extra performance, three months guarantee. 15% off standard price. UHF Signal Booster -High gain transistor pre-amplifiers from 75s; postage 3s. These units are powered by small 9 y battery. Mains unit available from 117s 6d.

Please state channel when ordering.
BAKER and BAINES,
11 Dale Cres., Tupton, Chesterfield.

SITUATIONS VACANT

Trainee

Tadio

Techmicians

A Progressive Career in the Field of Radio and Electronics
Applications are now invited for an intensive tralning course of two years. leading to appointment as a fully quallfed RADIO TECHNICIAN, with further prospects of ilcal Oficer Class.
Generous Pay and Conditions while under training.
Candidates must be over 16 and under 21 years of age as at 7 September, 1970, on which date training commences.
Minimum educational quallications required are pasises at GCE ' O ' Level in Bnglish Language, Mathematics and Physica (already held or expected to be obtained in the Summer, 1970). Equivalent passes in scottish or Nor Gern lreland Closing date for recelpt of applications: 27 February, 1970
Apply for full detalls and application form The Recruitment Officer (TRT/37), Government Communications Headquarters,
Oakley, Priors Road, Cheltenham, Glos.
GL52 5AJ

ENGINEER required to carry out repairs on stereophonic amplifiers-valve and uransistor. Initiative could lead to better things without having qualifications. Why not ring BATTERSEA 3245 Ex 50 or 54 for an interview.

SITUATIONS VACANT
(continued)
ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.E.R.E., A.M.S.E. (Mech. \& Elec.) City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering-Mech., Elec.. Auto. Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV. Electronics, etc. Write for 132 page Handbook -FREE. Please state subject. BRITISH INSTMTUTE OF ENGINEERING TECHNOLOGY (Dept 137 K), Aldermaston Court, Aldermaston, Berks.

> PLEASE MENTION "PRACTICAL WIRELESS" WHEN REPLYING TO ADVERTISEMENTS

APPOINTMENTS

TECHNICAL OFFICER

Home Office Police Scientific Development Group
Unestablished vacancy for a Technical Officer Grade III with knowledge and experience of workshop practice and electronic equipment. The successful candidate will work in the equipment section, which is concerned with assessment, trials and development of a wide range of equipment for police use, and will carry out construction, modification and test work in cooperation with police officers.
The post is based initially in Central London, but the section will move to Sandridge, near St Albans, later in the year.

Qualifications: Ordinary National Certificate or evidence of an equivalent standard of technical education, together with a five year apprenticeship and at least three years' practical experience. Salary: £1355 (age 25)-£1485 (age 28 or over on appointment) - $£ 1675$

Applications should be made to the Principal Establishment Officer (T.O.), Room 324, Home Office, Whitehall, London, S.W. 1 by 31st March 1970

EDUCATIONAL

RADIO AND TELEVISION SERVICING
RADAR THEORYAND MAINTENANCE TELECOMMUNICATIONS
This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to:
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5.

Tel. 01-373-8721

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds. etc.: highly informative 120 -page Guidefree. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.1.

CITY \& GUILDS (electrical, etc.) on 'Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV. automation, etc., send for 132-page Handbook-FREE. D.I.E.T. (Dept. 168 K), Aldermaston Court. Aldermaston, Berks.

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City \& Guilds (Telecoms Techn's Cert. and Radio Amateurs') R.T.E.B., etc. Many non-exam courses incl. Closed circuit TV. Numerical control \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find ous how ICS can help you in your career. ICS, DEPT. 541 INTERTEXT HOUSE,
STEWARTS ROAD, LONDON. SW8

CAREERS IN SCIENCE AND ENGINEERING

Exciting and rewarding opportunities in these fields are almost unlimited
Write now for details of the following courses offered by:-

BOUNNEMOUTH COLLEEE OF TECHOLOGY

UNIVERSITY OF LONDON

 EXTERNAL DEGREESB.Sc. General (Hons.) Mathematics, Physics, Chemistry, Botany, Zoology, Statistics
B.Sc. (Eng.) (Hons.)-Electrical (including Electronics)
These courses are suitable for both men and women
Study by the Sea in Britain's foremost international and cultural resort.
For prospectus apply to: The Principal, Room 46, College of Technology, Lansdowne, Bournemouth BH1 3JJ. Tel: B. 20844

Practial Householder

 annual
128 informative
 pages

 packed with money-saving ideas on home improvement and maintenance. Expert advice on tiling a fireplace, building a swimming-pool, fitting an underfloor ventilated fire, installing central heating from a room heater, and a beginners' guide to bricklaying and working in concrete.

> Hurry for your copy, price 3/-

[^0]: (C)IPC Magazines Limited 1969. Copyright in all drawings, photographe and articles published in "Practical Wirelesg" is fuily protected, and reproduction or imitations in whole or in part are expreasly forbidden. All reasonable precautions are taken by "Practical Wireless"to ensure that the advice tand data given to readere are reliable. We cennot, however, puorantee it, and we cannot accept bogal rosponsibllity for lt. Prices are those current as we go to prose. All correspondence Intended for the Editof费hould be addressed to Fleetway House, Farringdon Street, London, E.C.4. Address correspondence regarding advertiements to Advertisement Nanager, Fieetway House, Farringdon Street

[^1]: Terms of business-Cash with order only. Post/Packing 6d, per item. Orders over f5 post free. No C. O. D. Any parcel insured against damage in ifansit for 6 d. extra per order. Hours of business isted with S.A.E. Pleave note that no enquiries can be answered unless a S.A. E. is enclosed for reply. condensers, transformers, etc., with terms of business lod. Please enquire for any item no

[^2]: If required an attractive wood cabinet with venter finish can be supplied for any model
 Prices from 70.

[^3]: ## We're making life EASY for you
 We're making life EASY for you

 We've never seen the sense in wasting time and eneray tramping round the shops trying to locate components for radlo and electronic projects-enpeclally when the British weather turns it Into a battie worge than a lone fourney across Antarctica That's why wo lssue the Home Radio Components Catalogue which for many years has enabied thouesnds of enthuslasts to order by post. We ve buili up a mali-order service which for speed and efficlency la second to none. But recently we've gone a step further in making life ebiy for you. Now you need not even walk round to the post night, week-ends Includedl if your call comes out of shop houra a recording machine takes your mesesge for us to deal with when we open next day. For full detalle just drop us a llne or 'phone 01-648 8422 .
 After you have avalled yourself of the service for 12 months we regularly send an up-to-date catalague-FREE

 If you've not already got a Home Radlo Catalogue, send the coupon with cheque or P.O. for $12 /-(8 / 8$ plus $3 / 6$ P. \& P.). Even If you don't Intend to use our Credit Account Service you certalnly need the catalogue-It has 350 pages, Itats over 8,000 components and has over 1,500 illustrations!

[^4]: Published approximately on the 7 th of each month by IPC Magazines Limited, Fleetway House, Farringdon Street, London, E.C.4. Tel; 01-236 go80. Printed in England by Index Printers, Dunstable. Beds. Sole Agents for Australia and New Zealand-Gordon and Gotch (A/sia) Ltd.; South Africo (including postage): For one year to any part of the world f2 $5 s$ od. Ltd.; East. Africa-Stationery and Office Supplies Ltd. Subscription rate
 PRACTICAL WIRELESS ts sold subject to the following conditions, namely, that it shall not, without the written consent of the Publishers first given, be lent, resold, hired out or otherwise disposed of by way of Trade ait more than the recommended selifing price shown on the cover, and to as part of any publication or advertising. ifterary or pictorfal matter whatsoever.

