

AUDID SIGNAL GENERATOR

MWNMWWMWM
 WNWMNWMAMMVNM

ADCOLA

THE RELIABLE SOLDERING INSTRUMENT!

SEND COUPON FOR LATEST LEAFLET

ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4

JACKSON

the big name in PRECISION components MINIATURE TUNING CAPACITORS

The Jackson ' O ' range contains six basic types of different air-dielectric tuning capacitors with a wide variation of capacities available in each type. In addition, there are optional extras such as concentricspindle slow-motion drives, built-in trimmers and plastic covers. The

TYPE "OO"
 maximum capacitance per
section ranges from 12, 18 or 24 pF for FM types to 420 pF for AM types.
\star Type 00 miniature twin capacitor at
12/6 each

* Type OFM two-gang for FM at
12/9 each
\star Type O two-gang for AM at
12/9 each

Write for literature

JACKSON BROS. (Lonoon) LTD. (Dept. P.W.) KINGSWAY-WADDON, CROYDON, CR9 4DG
Phone Croydon 2754-5 (01-688) Grams: Walfilco, Croydon U.S. Office:-M. SWEDGAL

258 Broadway, New York. N.Y. 10007

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chaqaiq Boarda, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Relay, 2 Transistors, Condensers, Reaistors, Gain Control. Terminal Block, Elegant Case, Screws, etc. In fact everything ynu need to build a meady-Light hoto-swich/Counterglar Alarm, etc. (Iroject No. 1) which can be light operation.

PHOTOELECTRIC KIT

39/6
Postage and Pack. 2/6 (UK) Commonnealth: GURFACE MAIL 3/6 AIR MAIL $£ 1.0 .0$ Australia, New Zealand
S. Airica, Canada and U.S.A.

Also Essential Data Circuite and Plans for Building

INVISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for huilding: I Invisible-Ream Projectror and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Donr Openers, etc.
CONTENT'S: 2 lenses, 2 mirrors, 245 degree wooden blocks, Infra-ret Blter, projector lamp holder, building plans, performance data, etc. Price 19/6. Postage and Pack. 1/6 (UK.). Commonwealth: Surface Mail 2/-; Air Mail 8/-.
long range invisible beam optical kit
CONTENTS: As above. Twice the range of standard kit. Larger Lenges, Filter, ete. Price 29/6. Postage and Pack. 1/6 (U.K.). Commonwtalth: Surface Mail 2/6; Air Mail $10 /$-.
JUNIOR PHOTOELECTRIC KIT
Versatile Inviaihle-heam, Relay-less, Steady-light Photo-switch, Burglar Alarm, Door Opener, Counter, etc. for the Experimenter
CoNTENTS: Infra-Red Sensitive Phototransistor, 3 Transistnrs, Chassis, Plastic Case, Resistors, Screws, etc. Full Size Plans, lastructions, bata Sbeet ' 10 Advanced Price 19/8. Pogtage and
and Pack. 1/6 (U.K.). Commonwealth 2/-; Air Mail 4/-
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniature invisible beans projector and photoced receiver for use with Junior Photoelectric Kit.
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealth: Surface Mail $2 /$-: Air Mail 4/-

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
send a S.A.E. for full details, a brief description and Photographs of all Kits and all 52 Radio, Electronic and Photoelectric Projects A ssembled.

 Thit new AUDIO DEVELOPMENT precision counterbalanced pick-up arm-ready fitted with the

 outatanding AD-76K magnetic cartridge offera a truly remarkable breakthrough in quaitity and value for the $\mathbf{H i}$-Fi enthusfast. The arm is constructed of brass throughout, heavily chrome plated; unes needie has standard $\quad \mathrm{fin}$. mounting centres and is finished in balance adjustment is provided. The fixed hean details: Overall fength 285 mm ; needle to plvot length 223 mm ; olfset angle 24°; overhang 10 mm . Requires single ${ }_{18}$ in. dia. mounting hole. Completely wired, with all fixing nuts and washers. Arm reat Also supplied.BRIEF DETAILS OF AD-76K. Mrgnetic cartidges: High compljance with stereo diamond LP stylus/
Output binv, frequency response: $20-20 \mathrm{KHz}$, tracking weight 2 grammes,

LASKY'S PRICE $\mathbf{£ 9 . 1 9 . 6 \text { Pot } 5 \text { - } - ~}$

7MK METER KITS ANOTHER LASKY'S EXCLUSIVE

These two meter kits by TMK offer both the professional, electronics hobbyist and student moving in cost. The impact reslatant bakelite cabinets are supplied with the meter scole while morempht mounted in onsition; the model 200 also has the rotary range selector in posi

MODEL $200 \quad \begin{gathered}20,000 \\ \text { tures } \\ 24\end{gathered}$.p.v. Multimeter. Fear mirror scale. Large $3 \times 2 \mathrm{in}$. meter. Full scale accuracy 24 measures with current: $\pm \mathbf{2} \%, \mathrm{ACV} ;+3 \%$, resistance $+3 \% .8$ speclal 0.6 V and range for $\frac{}{\text { transistor circuit measurements. }} \pm 3 \%$. Speclal 0.6 V DC

LASKY'S PRICE 85/- Pot $3 / 6$

MODEL 5025

50,000 O.P.V. FEATURING 57 MEASUREMENT RANGES
A highly reliabre nostrument using an entirely new range selection mechavism which permits the use of a really large meter in a more compact cabinet. The range selected is clearly indicated on the actual meter face facilitating instant identincation without taking your eyes from knob; also features polatity reverasl switch, hielded meter movement with overload pro tection circutt; Special uA and mA menaure ment ranges.

SPECIFICATION DCV: 0.0.25-2.5-10-50-250-1,000V at $25 \mathrm{~K} / \mathrm{OPV} .0 .0125$ $1 \cdot 25.5 \cdot 0.25-125-500 \mathrm{~V}$ at $50 \mathrm{~K} / \mathrm{OPV}$. ACV $0.3 \cdot 10-50 \cdot 250 \cdot 1,000 \mathrm{~V}$ at $2.5 \mathrm{~K} / \mathrm{OPV}, 0-1.5$ $5-85-125.500 \mathrm{~V}$ at $5 \mathrm{~K} / O P V$, DCuA: $0-25 \mathrm{uA}$ at $125 \mathrm{~mA}: 0-50 \mathrm{MA}$ at 250 mA . DCmA $0-2 \cdot 5-25.250 \mathrm{~mA}$ at 125 mV ; $0-5.50-500 \mathrm{~mA}$ at 250 mV , DC Amp: $0-5 \mathrm{~A}$ at 125 mV scale). Output: Capacitor ($0.1 \mathrm{uF}, 400 \mathrm{VW}$) in series prith ACV rangenms at centre -20 to $+81 \cdot 5 \mathrm{~dB}$ in 10 ranges. Operates on two 1.5 V (U. 7 type batteries), Black lake Iite cabinet, size $5 t \times 6 \frac{1}{2} \frac{2}{4} \mathrm{in}$. Strong, resilient plastic handle. Complete with teat leads

LASKY'S PRICE £10.10.0 Poot 6 .

LSO AVAILABLE READY BULLT AND TEBTED 518.10 .0 . Post 5
Garrard
SP25 Mkil
LASKY'S PRICE $£ 11.19 .6$

AUTOCEANGERS
1025 lese cartridge
1026 with GCM2I mono car ridge. Stereo compat $2025 T \mathrm{C}$ with GCM21 tron cartridge. 8tereo compat. 8L85 less cartridge 8 L 75 less cartridge SL85 less cartridge A70 Mk II leas cartridg AT 80 MkII
BRR UA47 leas cartridg
8INGLE PLAYERS
88.9 .8
cartridge
AP75 less cartridge
SRP22 Mains model less cart-
ridge
SRP22 Battery model less cartridge
TRANSGRIPTION DECKS 401
GARRARD BASES 85.8.11. WB4 Mk II 85.8 .11 ; WB5 CLEARVIEW PERSPEX COVERS SPCl es.5.0; SPCA MK I/ $£ 4.6 .6$.
Postage on all above $5 /-$
221.10.0 218.10 .0 £16.12.10 £7.15.3
828.10.0
tion. The highest quality components and 1% tolerance resistors are used throughout Both offer profengionsl standards of accuracy. Supplied complete In every detall with full constructional, oircnit and operating instruetions.
SPECIFICATION DCV: $0 \cdot 0 \cdot 6 \cdot 6 \cdot 30-120 \cdot 600 \cdot 1200 \mathrm{~V}$ at $20 \mathrm{~K} / \mathrm{OPV}$ Current: $0-0 \cdot 06-6-60-600 \mathrm{~mA}$. Resistance: $0.10 \mathrm{~K}-100 \mathrm{~K}-1 \mathrm{M}-10 \mathrm{M}$. mid-reale). Capacitance $0 \cdot 002 \cdot 0 \cdot 2 \mathrm{uF}$ (AC 6 V range). Decibelis -20 to +68 dB . Output 0.05 uF blocking capacitor. Uses two 1.5 V (U. 7 type) batteries. Black bakellte cabinet-siz $5 \ddagger \times 34 \times 1 \frac{1}{2} \mathrm{in}$. Complete with test leads.

DEnSHI BIARD KITS

NEW EXPERIMENTAL AND EDUCATIONAL CIRCUIT SYSTEM

The DENSEI BOARD gystern enables the young experimenter and electronics hobbyist to produce a wide range of transistor circuits of increas ing sophistication-without soldering or the use of any tools at all। Badcally the syatem comprises a alotted circult board into which plug-in components and bridge pleces are set to produce up to 30 different circuits. The components are incapsulated in transparent plastic blocks bearing the appropriate circult symbol and value THESE ARE JUST A FEW OF THE thus enabling even the complete C/RCUITS YOU CAN BU/LD IN novice to visually grasp the funda- $M / N U T E S$: mentals of circuitry after ooly a few VARIOUS RADIO RECEIVERS, AMP momente study. In sadition esch LIFIERS, MOFSE CODE PRACTICE DENSHI BOARD KIT comes com- DEVICE, CONTINUITY PESTER, plete with an 80 page manual of SIGNAL INJECTOR, SIGNAL TRACER, circuits and dats.

DENSHI BOARD KIT SR-1A comprise
Base boaid; tuner block; 4 reaistors; choke coil; transformer: 29A transistor for RF; 2 bridge and connecting pieces and 80 page manual. This Lit permits the building of 16 basic circuits. Post 3/6

LASKY'S PRICE £4.19.6 Poot $3 / 1$

DENSHI BOARD KIT SR-2A

$a x$

SR-1.4 but with the following adsitional paris 2sB tranaigtor for AF; 2 resistory; 1 capacitor; crystal microphone test probes electrode additional connecting pieces; 9 V battery. This kit permite the bailding of $\mathbf{3 0}$ basic circalta

LASKY'S PRICE £7.2.6 Pot $2 / \mathrm{s}$

GETYOUR LASKY'S AUDIO-TRORVCS PICTORIAL
16 colour page catalogue in large $16 \times 111 \mathrm{n}$. format packed with 1,000 's of tems Irom our vast stocks, Hi-Fi, Radio. Electronics, Test Equipment, Componenta etc., et Send $1 /-$ for post only and inclusion on our regular mating list ($5 /-$ owdrseas)

Eramches		High Fitelity Audio Centres	
207 EDGWARE ROAD, LONDON. W. 2	Tel 01.72333271		
33 TOTTENHMM CT. AD, LONDON, W. 1	Teli 0163682605		
$152 / 3$ FLET STREET, LONDON. E.C.4	Teli 0135332833	118 EDGWARE ROAD	
ALL MAIL ORDERS AND CORBESPO	IDENC	AVEL STREL	

 festival

Photo-Cine FAIRS

 OCTOBER 16-22Hear and compare the world's finest sound producing equipment for the home. The top loudspeakers, amplifiers, tape-recorders, pick-ups, tapes and accessories have been brought together under one roof to give you a superb Festival of Sound and Sight. Both newcomer and expert . . . everyone who takes pleasure in using and listening to Hi-Fi equipment of the Highest Standard must visit this International Audio Fair.
Lovers of music of all types, if they are true to their enthusiasm, can hear for themselves, how exactly and faithfully their favourite passage can be played back to them.

Admission 4/-

OLYMPIA

10 a.m.-9 p.m.
Not Sunday

London W 14

a complete stereo system for only 28 gns!

Integrated Transistor Stereo Amplifier
The Duetto is a good quality amplifier, attractively styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
Specification: R.M.S. power output: 3 watts per channel into 10 ohms speakers. Input Sensitivity: Suitable for medium or high output crystal cartridges and tuners. Crosstalk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$. Controls: 4 -position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control. Tone Control: Treble lift and cut. Separate on/off switch.

4 Gns.
$+7 / 6 \mathrm{p}$ 品
The new Duo general purpose
2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally.

Type 1 Specification: Impedance 10 ohms. It incorporates Goodmans high flux 6" $\times 4$ " speaker and $2 \frac{1}{2}$ " tweeter. Teak finish. $12^{\prime \prime} \times 6 \frac{3^{*}}{} \times 5 \frac{33^{*}}{}, 4$ gns each, p \& $p 7 / 6$. Type 2 as Type 1 . Size $17 \frac{1}{2}$ " $\times 10 \frac{z^{\prime \prime}}{} \times 6 \frac{z^{2}}{}{ }^{\prime}$. Incorporating Elac $10 \frac{1^{\prime}}{} \times \times 6 \frac{1^{*}}{}{ }^{\prime \prime}, 10,000$ lines \& $2 \frac{1}{2 "}^{\prime \prime}$ tweeter. 3 ohms impedance. 51 $\frac{1}{2}$ gns p \boldsymbol{q}^{2} p7/6
Garrard Changers from $\mathbf{£ 7 . 1 9 . 6 p \& p 7 / 6}$
Cover \& Teak finish Plinth £4.15.0p \& p 7/6

$$
8 \frac{1}{2} \text { Gns. }+7 / 6 \mathrm{p} \text { \& p }
$$

Controls: Selector switch Tape speed equallsation switch (3izand $7 \frac{1}{1} \mathrm{l}, \mathrm{p} . \mathrm{s}$.). Volume. Treble. Base. 2 position scratch filter and 2 position rumble filter.

8pecification: Sensitivitles for 10 watt output at 4 KHz . Tape head: 3 mV (at $3 z \mathrm{l}, \mathrm{p}, \mathrm{s}$), Mag. P.U.: 2 mV . Cer. P.U.: 80 mV . Radio: 100 mV . Aux.: 100 mV . TapelRec, output: 100 mV . Equallsation for each Input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total d/stortion: (for 10 watt output) $<1.5 \%$. Signal nolse : $<-60 \mathrm{~dB}$. A.C. mains $200-250 \mathrm{v}$. Bullt and Tested. Size 12ifin. long, 4iln. deep, 2itin. high. Teak finlshed case.

SPECIAL OFFER!

Complete stereo system comprising BALFOUR 4-speed autoplayer with stereo head, 2 duo speaker systems, size 12 in . x 6 izin . $\mathbf{x} 5 \mathrm{in}$. Plinth (less cover) and the DUETTO stereo amplifier. All above items

O/he M/iscount
131 $\frac{1}{2}$ Gns. $+7 / 6 \mathrm{p} \& \mathrm{p}$
Integrated High Fidelity Transistor Stereo Amplifier Specification-Output: 10 watts per channel into 3 to 4 ohms speakers (20 watts monaural). Input: 6 position ratary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. Out. Sensitivities: All inputs 100 mV into 1.8 M ohm. Frequency Response: 40 Hz $20 \mathrm{KHz} \pm 2 \mathrm{~dB}$. Tone Controls: Separate bass and treble controls; treble, 13 dB lift and cut (at 15 KHz); Bass, 15 dB lift and 25 dB cut (at 60 Hz). Volume Controls: Separate for each channel. AC Mains Input: 200-240v. $50-60 \mathrm{~Hz}$. Size, $12 \frac{1^{\prime \prime}}{} \times 6^{\prime \prime} \times 2 \frac{3^{\prime \prime}}{4}$ in teak finished case. Built and tested.

PRICE 5 GNS. $+7 / 6$ p. \& p.

THE DORSET (600mW Output)

7-tramsistor sully tunable M.W.-L.W. superhet portable -with baby alarm facility. Bet of parts, The latent modulised and pre-slignment techniquea makes this aimple to build. Sizcs: $12 \times 8 \times 3 i n$. MAINS POWER PACK EIT: 0/6 EXTRA.

THE ELEGANT SEVEN MK III

 (350mW Output)7-transiator fully tunable M.W.L.W. portable. Set of paris. Complete with all components, including ready etched and drilled printed circuit board-back printed for oolproof construction
MAINS POWER PACK KIT: $0 / 6$ extra,
Price f4.9.6 plus $7 / 6$ p. \& p.
Clreuit $2 / 6$ FREE WITH PARTs

EXTRACTOR FAN 27/6

plus 7/6 p.p.
AC mains $230 / 250 \mathrm{v}$. complete with pull switch Size $6 \times 6 \times 4 \mathrm{n}$

10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP
pecifications: Poller Gudput (into 3 ohms speaker) 10 watts. Sensilitify (for rated output): 1 mV into 3 K ohms (0.33 microamp). Todal Diflortion at $\mathbf{1 K H z}$. It of watts $0 \cdot 35 \%$, at rated ondup oleage: 24 V de at 800 m ($6-24 \mathrm{~V}$ mey be used) (Supply
Control asambly: tncluding resistors and capacitors

1. Volume: PRICE $6 /-$
2. Treble: PRICE 5/-.

The above 3 items can be purchased for use with the X10I

Price 69/6 plus $2 / 6 \mathrm{p}$. \& p.

Power Supplies for the X101:
P1018 (for atereo) $42 / 6$ plus $4 / 6$ p. \& p
CAR TRANSISTOR IGNITION SYSTEM (by famous manufacturer)
For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resistor and hardwear (screws, washers etc.). PRICE £4.19.6. (post and packing $5 /$ extra).

50 WATT AMPLIFIER A.C. MAINS 200-250V

An extremely reliable general purpose yet space age styling and design matren it by far the best value for money. TECHNICAL SPECIFICATIONS
3 electronicaliy mixed channels, with 2 inputes yer channel, enables the use of ti separate instruments at the same time The volume controls for each channe ponding input sockets. SENSITIVITIES Price 27 gns. Panding input sockets sensitivimie Plus $20 /-\mathrm{p} \& \mathrm{p}, 24 \mathrm{mV}$ at 470 K . These 2 channels (4 gitars. Channels \& 4300 mV at 1 m . Suitable for most high output instruments (gram uner, orgall etc.). Input sensitivity relative to 10 w output. TONE CONTROLS ARE COMMON TO ALL INPUTS. Bass Boost +12 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Bass Cut -13 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Treble Boost +11 dB at $15 \mathrm{~K} \mathrm{Hz/s}$. Treble Cut -12 dB gt $15 \mathrm{KHz} / \mathrm{s}$. With bass and treble controls central - 3 dB points are $30 \mathrm{Hz/8}$ and $20 \mathrm{KHz/s}$. POWER OUTPUT. For apeech For sinc wave 38.5 watts rma . Nearly 80 watts peak. Total distortion at rated output $3 \cdot 2 \%$ at $1 \mathrm{KHz} / \mathrm{s}$. Total diatortion at 20 watts 0.15% at $1 \mathrm{KHz} / \mathrm{g}$. Output to match into 8 or 15 ohms speaker symtem. NEGATIVE FEED BACK 20 dB at $1 \mathrm{KHz} / \mathrm{s}$. SIGNAL TO NOISE RATIO 60dB. MAINS VOLTAGES. Adjustable from $200-250 \mathrm{v}$. A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is lreated at the rear of unit. Output impedance 3,8 and 15 obms.

 THE RELIANT SOLID STATE GENERAL PURPOSE AMPLIFIER

8PEGIFICATIONS
Output-10 wata Output Impedance- 3 to 4 ohms
Imputs-1. - Itail mic 10 mV Tone Controls-Treble control range $\pm 12 \mathrm{~dB}$ at 10 KH Bass control range +13 dB at 100 H (with tone controls central) Minua 3 dB points are 20 H 2 and $40 \mathrm{KH2}$ Bignal to Noiso Rato-better than -80 dB . Transistors- 4 allicon Planar type and 3 catmanizm type. Mains input- $-220-250 \mathrm{~V}$. A.C. Bize of chassia- $10 t^{*} \times 41^{*} \times 2 \frac{1}{3}$ A.C. Maina, 200-250V. For use with str. or L.P, records, musical instruments, all maxes of pick-ups and mikes. Separate bass and treble lift control. Two inputs with control for gram and mike. Built and teated. $8^{\prime \prime} \times 5^{\circ}$ speaker to suit price 14/6 plua $1 / 6$ P. \& P. Crystal mik to suit $12 / 6$ plus $1 / 6$ P. \& P.
Reliant Mark I. 51 $\frac{1}{2}$ gns. plus 7/6 p. \& p.
As above less teak case
Reliant Marl: II. $6 \frac{1}{2}$ gns. plus 7/6 p. $\&$ p.
In teak finished case.

CYLDON 2 TRANSISTOR U.H.F. TUNER

Brand new. Complete with circuit diagram.
£2.10.0 plus $1 /-\mathrm{p}$. \& p .

THREE-IN-ONE HI-FI 10 WATT SPEAKER A complete Loud Speaker syatem on one frame, combining three matched ceramic naguet speakers with a low loss cros 10 watts Impedance 15 ohms Flus density 11,000 gauss. Reannance 40 $60 \mathrm{c} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$ Slae $13 \frac{1}{2} \times 8^{1} / 16 \times 41$ inches. By famous manutacturer. List Price e7. Our price $74 / 6$ plus 5/ P. \& P.
Similar speaker to the above without tweeters in 3 and 15 ohma $44 / 6$ plu 5/P. P. \mathbf{P}.

RECORD PLAYER SNIP A.C. MAINS 240V

The "Princeas", 4-tpeed automatic record changer and player engineered with the utmost preclaion for beauty. long life, and trouble free service. Will take up to ten records which may be mixed $7^{\prime \prime}$ to 10° or playing and af shut off the cleans stylus siter each Ita recess, a monat useful feature with portable equip-ment-other fratures include pick-up helght adjustment and atylos pressure adjustment. This truly is a fine instrument which you can purchase this month
 at only ${ }^{5} 5,19$.f complete with cartridge and ready to play. Poat and insurance $7 / 6$ extra

POCKET MULTI-METER
gize $37 \times 2\} \times 11 \mathrm{in}$. Meter size $2 \frac{1}{} \times 1 \mathrm{in}$. Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. $0-15,0-150,0-1000$ D.C. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Complete $3 / 6$. FREE GIFT for limited period only. 30 watt Electric Soldering Iron value 15/- to every purchaser of the Pocket Multi-Meter.

B.S.R. TD-2 TAPE DECK

takes 5 3in. spools, fitted with B.S.R $\frac{1}{2}$ Track Heads. Size $13 \neq i n$. long by 8 inn. wide. $£ 6$ 19s. 6d. plus $7 / 6$ p.p.

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in . spool. Incorporating 3 motors.
A.C. mains, 240 volts, listed at $£ 21.0 .0$.
Our Price £9.19.6, plus $10 /-\mathrm{P} . \&$ P.

RADIO \& TVCOMPONENTS (ACTON) LIMITED

All orders by post to our Acton address
21c High Street, Acton, London, W.3. and also at 323 Edgware Road, London, W.2.

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.

O	P50/1AC (For OC45)	P50/1AC	(For AF117)
1st I.F. Transformer	P50/2CC (For OC45)	P51/1	(For AF117)................... 5
2nd I.F. Transfo	P50/2CC (For OC45)	P51/2	(For AF117)....................5/7
3rd I.F. Transformer	P50/3CC (For OC45)	P50/3V	(For AF1 17)6/

Rod Aerial	..RA2W.........................12/6
Driver Transformer	LFDT4/1.................... 9/6
Output Transformer	..OPT110/6
Printed Circuit	PCA1 9/6

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".

1 E	ransformer7/6
T41/2E	2nd I.F. Transformer7/6
T41/3T	3rd I.F. Transformer10/6
T41/3T	B.F.O. Coil ..10/6

Details of these and our other components are given in an illustrated folder which will be supplied on request with 4d. postage please.

WEYRAD (ELECTRONICS) LIMITED sChool street, weymouth, dorset

audo effect

5 SHAW LANE, HALIFAX

Buy with confldence and get results. Refund If not delighted.

RHYTHM GENERATOR. 29 silicon translators and 119 dlodes. Finger tip selection of seven Instruments in nine basic rhythms in any sequence. Self contained in an attractlve case $14 \times 13 \times 71 / 2 n$. Retalls at over $£ 74$. Our Price Only set.e. $\mathbf{C l}_{\text {plus } 10 / 6 \text { p.p. \& ins. S.A.E. for }}$ Illustrated leaflet.
REVERBERATION AMPLIFIER. Self contalned transistorised battery operated. An entlrely different approach to sound reproduction. Normally sound reproduction from a single source has a flat one dimenslonal effect. With this, proper sound delay through reverberation, tones, are created with a truly third dimension for concert hall orlginality. Two controls adjust volume and reverberation. Simply plug microphone, gultar etc., In and the output Into your amplifier. Supplied in a beautiful walnut cabinet $7 \times x \times 4 \times 1 \mathrm{in}$. E10.4.0, p.p. a ins. 6/-.

POWER CONTROLLER. Power at your finger tips. Not just half wave control but full wave. One varlable control glves zero to full power. Uses latest 15 amp 3 kW triac and speclal triggering device. Complete with box, power socket etc. Ideal for flood-ilghts, fires, motors, etc. In kit form es.9.f. Ready bullt £9.4.f plus 5/6 p.p.
VOX SWITCH KIT. This sound operated switch is Ideal for moblle TX work, tape recorder switching, etc., etc. You'speak, it swltches. High \& med Imp. Inputs. AF take off polnt. Drives your 12 volt relay, 42/6, p.p.2/6.
METRONOME KIT, Varlable beat. Usten whilst you play and keep in the groove. Easy to bulld, pocket $81 z e$ with personal mini earphone. 25/-, p.p. 2/6.
MORSE OSCILLATOR KIT. PC board, translstors, (high stab. componente, battery carrler, ear plece Adj. tone. Just attach your key, Drives phones or peaker. 15/3, p.p. 2/-.
Freellste with every order. For llsts only send $\mathbf{1 / - P . O}$. deductable from flrst order).

The Ideal, economical and safe way of running Transistor Radlos, Record Players, Tape Recorders, Ampllflers etc. from A.C. Malns. All unlts are completely Isolated from mains by double wound transformer ensuring 100% safety.
PLUS-3
MAINS UNIT
Provides three separate awltched output voltages by 7iv and Oy OC es $6 \mathrm{~V}, 7 \mathrm{yv}$. and 9 v . OC. attractlve case with indica-
tor light, mains lead tor light, mains lead
output socket, plug and lead.

Slize 4t $\times 3 \frac{1}{2} \times 24 \mathrm{in}$.
$57 / 6$ P.\& P. 2/6 (Extra lead with DIN plug for Cassette Recorders 7/6)

POWER PLUS MAINS UNIT for Cassette Tape Recordere using 7ity. Complete with DIN plus for recorder power socket. Can alsobe power socket. Canalsobe aupplied for a 6 -volt out*
put complete with sultable plug. (Please state make, model and voltage

Also avaliable-Unit to run your Cassette Recorder from 12v. Car Battery 32/4. P. \& P. 2/6. MAINS UNIT for FI-CORD 202A TAPE RECORDER P.\&P.5/-.
$£ 4.15 .0$

MAJOR POWER PLUS

MAINS UNITS
For single outputs, $6 \mathrm{v}, 9 \mathrm{v}, 12 \mathrm{v}, 18 \mathrm{v}, 3 \mathrm{i} / \mathrm{f}$. For two separate outpute, $41 v+4 v_{1}$ $6 v+6 v ., 8 v+9 v .42 / 4$. P. \& P. $2 / 8$ per unit. (Please state outputs reqed).
R.C.S. PRODUCTS (RADIO) LTD. (Dept. P.W.). 31 Ollver Road, London, E.17

Learn at home... First Class Radio and TV Courses

After brief, intensely interesting studyundertaken at home in your spare timeYOU can secure a recognised qualifcation or extend your knowledge of Radio and TV. Let us show you how. FREE GUIDE
The New Free Guide contains 120 pages of information of the greatest Importance to both the amateur and the man employed in the radio industry. Chambers College provides first rate postal courses for Radio Amateurs' Exam., R.T.E.B. Servicing Cert., C. \& C. Teiecoms., A.M.I.E.R.E. Guide also gives details of range of certificate courses in Radio/TV Servicing, Electronics and other branches of engineering, together with particulars of our remarkable terms of
'Satisfaction or Refund of Fee'
Write now for your copy of this valuable publication. It may well prove to be the turning point in your career.
Founded 18s5-Over 150,000 succeases
CHAMBERS COLLEGE (Incorp, Natlonal Inst. of Engineerling)
(Dept. Wenf) 14 Holbo

LINDPAIRTPTRONICSLTD

See our vast range of Electronic Components and Accessories at our enlarged Component Centre 25 Tottenham Court Road

MAINS KEYNECTOR SAVES TIME-SAFELYI

One mains "Kesnector" instantly and maing aupply without the use of a plug A number of appliances may be used mimultaneously up to the full 13 ump rating of thas device. A red light glows when "llve". The "Keynector" is fused and has Its own robust awitch which is interlocked to prevent connections
when "live". Invaluable to handymen, sarvicemen, demonstrators etc.
39/6 VEC AIRORAFT BAND CONVERTOR. of a MW band radio full coverage of VHF Air-
craftBaud $108.135 \mathrm{Mc} / \mathrm{s}$. can be obtained. All transistor, 9 ov battery operation. Fully tunable 18fln. $\times 7$ section tele$\times 1 / \mathrm{ln} .78 / 6$. P. \& P 3/6

MODEL MAKER'S MOTOR No. 18RN. Voltage 11-5v. arrent 400 mA . Torque.
12 cm . Body size $12 \mathrm{~g}-\mathrm{cm}$. Body size
lif long $\times \mathrm{i}^{\prime \prime}$ dia.
Shaft s/
 ymall models and small models and
toys.

- S/ P. \&
P. $2 / 6$. P. \& P. 1/3. 3 for $15 /-$. P. \& P. $2 / 6$.

DE-LUXE 8TEREO
HEADPHONES
With soft rubber earpieces. Impedance 8-16 ohms. Frequency
response $23-13,000 \mathrm{cps}$. With lead and stereo plug.
Only Only 58/8. P. \& P. 3/6.

NEW STEREEOJMONO HEADPEONES
SDH-7. Soft rubber arpleces with sidde witch for monol thereo listening and Impedance $8-16 \mathrm{ohm}$ Freq. response $25-$ $15,000 \mathrm{cpe}$. Withlead
and stereo plug.

SINOLAIR IC-10 INTEGRATED CIRCUIT

10 watt Amplifer. Blze only $1 \times 0.4 \times 0.2 \mathrm{~m}$. A true hi-fl amplifer complete with manual giving details of a wide range of appliea (ions and instructions, Guaranteed 5 years.

TRANEFDRMERS

AUTO WOUND TRANSFORMERS

All Winding Voltage Ratinga and Tapping 0-115-200-280-240v except MT118--116-210-240v.

 MT84 1000W Size $4 \nmid \times 5 \ddagger \times 5$ in. Wgt 16 Lb Price $148 / 8$ Carr.ex.

LOW VOLTAGE 12 VOLT RANGE

MT111 0.6Arop 8 ize $3 \times 2 \downarrow \times 1$ inn \quad Wgt $\quad 1202$ Price $15 / 8 \quad$ P\&P $2 / 6$

LOW VOLTAGE 24 VOLT RANGE

Primary R00/850v. Secondary 24v
MT68 1 Amp gize $21 \times 21 \times 24 \mathrm{ln}$.

Wgt 3lb 6oz Price $38 /-\quad \mathbf{P} \& \mathrm{P} 8 / \mathrm{C}$ Wgt $7 \mathrm{lb} 80 z$ Price $72 / 7$ P\&P $8 /$ Wgt 11 ib 1302 Price 95/- P\&P11/
LOW VOLTAGE 30 VOLT RANGE

MT79 1 Amp Size $2 \mathrm{q} \times 2 \neq 2 \mathrm{kin}$. Wgt $2 \mathrm{lb} \quad$ Price 23/- P\&P6/-

 MT89 10 Amp Size $5\{\times 4 \times 4 \ddagger \mathrm{ln}$. Wgt 12 lb 2 oz Price $108 / 6$ P\&P11

LOW VOLTAGE 50 VOLT RANGE

Primary 200-250v SECONDARY TAPPED 19 25-88-40-50v

MT102 0.5 Amp gize $21 \times 2 \frac{2}{2} \times 24 \mathrm{~lm}$. Wgt $1 \mathrm{lb} 110 z$ Price $21 / 3 \mathrm{Pap} 6 /-$

 MT110 10 Amp Size $6 \ddagger \times 4 \ddagger \times 6 \frac{1}{2}$. Wgt 19 ib 120 z Price 185/- PsP $15 / 6$

LOW VOLTAGE 60 VOLT RANGE

Primary 200/250v. Secondary Tapped 24-80-40-48-60
MT124 0.5Amp Size $34 \times 24 \times 2 i \mathrm{ln}$. Wgt 2 lb 40 y Price $24 /-\mathrm{P} \& \mathrm{P} 0 /-$ MT127 2 Amp gize $4 \times 3 \downarrow \times 3$ in. Wgt 5 lb 602 Price $52 / 10$ PsP $8 /-$ MT122 10 Amp size $4 \neq \times 3 x \times 4$ in. Wgt 10 Wibl Wat 23 It 202 Price 158/- Carr.es

MAINS H.T. RANGE

5 81ze $81 z e$
$3 \nmid \times 3 \times 3 \mathrm{in}$.

 BATTERY CHARGER TYPES

Primary							
M77	1 Amp	Size $2 i \times 2$ ¢ $\times 2$ in.	Wgt	11b, 602	Price	15/-	P\&P 4/6
MT45	1.5 Amp	8ize $27 \times 2 \mathrm{x} \times 2 \mathrm{zin}$.	Wgt	1 lb 902	Price	21/9	P*P 4/6
MT46	2 Amp	Size $31 \times 24 \times 21 \mathrm{ln}$.	Wgt	2 lb 402	Price	25/4	P \mathbf{P} P 6/-
MT47	3 Amp	Size $4 \times 3 \times 3 \mathrm{i}$ in.	Wgt	3 lb 802	Price	28/4	PaP 8/-
MT5	4 Amp	Size $4 \times 2{ }^{2} \times 3 \pm i \mathrm{i}$.	Wgt	3 lb 11 oz	Price	381-	P*P61-
MT78	5 Amp	Size 4×3	Wgt	8 lb 4 az	Price	48/-	PEP 61-
MT86	6 Amp	Size $4 \times 3 \mathrm{t} \times 3 \mathrm{zin}$.	Wgt	$5 \mathrm{lb} \mathrm{120z}$	Price	481-	P*P81-
MT48	7 Amp	Size $4 \times 4 \times 3 \mathrm{lin}$.	Wgt	6 lb	Price	58/7	P8P9/-
MT146	8 Arop	Size $31 \times 4 \times 4 \mathrm{in}$.	Wgt	$6 \mathrm{lb} 40 z$	Price	751-	PaP9/-
MT49	9 Amp	Size 41×3 \% $\times 4 \mathrm{in}$.	Wgt	7 tb 80 z	Price	991-	P\&P9]-
MT147	10 Amp	Bize $41 \times 3 i \times 4 \mathrm{in}$.	Wet	9 lb 302	Price	105/-	P\&P $9 /-$
MT50	12.5 Amp	Size $51 \times 4 \hat{2} \times 43 \mathrm{in}$.	Wgt	111b 140z	Price	185/-	P\&P11/-
Ampers	ges are	th nominal sole	m br	\% rectif			

Visit our Brand New HI-F! Demonstration Room, Tape, Record Bar and Sclentific Show of Microscopes, Binoculars,
Telescopes and Watchos a 18 Tottenham Court Road

20,000 in leather caee 10 50, $250,1,000 \mathrm{v}$. DC volts 5.25, 128,
$500,2500 \mathrm{v}$. D.C. Cur$500,2500 \mathrm{v}$. D.C. Current $0-50 \mu \mathrm{~A}, 0-260 \mathrm{~mA}$
Resistance $0-60 \mathrm{~K}, ~ 0-6$ Resistance 0 -60K, 0 -6
Megohm. Decibels -20 Megohm. Decibels -20
o +22 dB . Size of meter
$85 /-$.
\mathbf{P}.

SGIRA 62D MULTI-
TESTER 20,000 0.p. DC voltage: $5.25-50-250$ $500.2 \cdot 5 \mathrm{~K}$ (80,000 ohms per volt). AC Voltage: $10-50-$ ohms per volt). DC Currents per volt). DC Cur250 mA . Resistance: $0-6 \mathrm{~K}$ $0-6 \mathrm{Mg}$ (300 ohm and 30 K
at centre scale.) Capacitance : 10pt. to 001 +22 dB . Bize $\$ \times 34 \times 1 \mathrm{ln}$. Complete with
case $77 /-\mathrm{P} . \$ \mathrm{P} .3 / 6$. 8-DeO BRRAD

British Made
Bolderless breadboard panels, for fant re able component connectlona
single DeCs. One 8-DeC with Control Pane, Jig and Accessories for aolderiess "Profects on g -Deg'" givlng construction detalls for a variety of circults. 29/6. P. \& P. 2/6.

4 -DeC KIT. Four s-DeCa with two Control Panels, Jigs and Acceasories and the book let "Prolecta on S -DeC" all contalned In a atrong attractive plastlc case. Ideal tor the IGAFFAAFD DECKS

[^0] 1025 Stereo Mono with cart. 30008 8tereol Mono with cart. 3000D Stereo/Mono with cart SP2s lese cartridge
SP2 5 with Decca Deram cart.
SLS5 leas cartridge
gL55 with Decca Deram cart
Covera for above
Bases for above
AP75 less cartridge
sL75 lesa cartridge
SL95 less cartridge
Baser for above .
SP25 less cart., with base
P. \& P. Decks 12/6, Cover 4/6, Base. 4/6. P. \& P. Deck/Cover/Base 17/-.

MINIATURE SOLDERING IRON

British raade and designed for use with transistor circuitry but Ideal for many ther use. AO Heng $3^{3} /{ }^{\text {in }}{ }^{\text {P }}$, tin. sidde on bit. Price 88/8

30 WATT OUTPUT Goldring Transeription Turntable on Plinth * Shure or Goldring Magnetic Pick-up Cartridge * Super 30 Amplifier in venecred housing \star Pair of Stanton Loudspeaker Units Special total price. Four fully wired TERMSAVAILABLE \qquad	HIGH FIDELITY STEREO 'PACKAGE' \square Matching as recommended for optimuin per. formance. Send for coloured brochure showing 30 WATT OUTPUT * Garrard SP官 Mk 11 Turntable on Plinth o K Goldring CS90 Ceramic P.U. Cartridge * Super 30 amplifier in * Pair Stanway Speaker Units "plug-in" Wired units ready to 76 Gns. ${ }_{30 /-}^{\text {Carr }}$
TRINE HIGHFIDELITY LOUDSPEAKERS Heavy construction. Latest high efficiency ceramic magnets. Treated Cone sur-	
providing extended frequency range $40-15,000$ c.p.s. Impedance 3 or 15 ohms. Please state cholce. Excep-	
8110 ${ }^{8}$	
HF102\% $10^{\circ} 10 \mathrm{~W}$ 65/- HFI26D 12-15W25.15.0	Goldring csso high compli- FULLY TRANSISTORISED, SOLID STATE CONSTRUCTION
$\begin{aligned} & \text { IGII FIDELITY LO } \\ & \text { inets latest style Satin } \end{aligned}$	
r.Acoustica	lus. Mounted
	RP3 As above but with nel ${ }_{\text {Goldring }}^{\text {Lenco }}$ GL68arate Bass and
Cone spkr. 1 mp . 3 or 15 ohms $\mathbf{~} 19.9$	${ }_{\text {Transeription }}$ Cartrige.
, 11.000 line magnet. H1gh	
	pym $31 / 6$ (Total 19.6 .0) Or in Teak or Afrormosia veneer hous-
	AUDIOTRINE HI-FI SPEAKER SYST
12,000 line speaker. Cross-over unit and Tweeter Rating 10 watts. Frequency range $12 \frac{1}{2}$ Gns.	isting of matche
E2 EQUIPMENT CABINET	sure surprisingly realistic reproduction. $£ 5.15 .0$ Or Senior 15 watt inc. HF 126 15,000 line Speaker 86.15 .0 Carr. 6/6
	Gns. HI-FI SPEAKER ENCLOSURES Teak or Afro
transp. plastic cover. Sat1n Teak	ust
or Afrormosia veneer	${ }^{\text {de }}$
MOTOR BOARDS cut for $\begin{aligned} & \text { Garrard Turntables and } \\ & \text { many other units. Price }\end{aligned} 12 / 9$	CS REFUNDED on Credit
R.S.C. TA6 6 Watt HIGH FIDELITY SOLID	Sales settled in 3 months.
	R.S.C. TFM1 SOLID STATE VHF/FM RADIO TUNER
	${ }_{\text {Inc. }}^{\text {Carr. }} 14 \mathrm{Gns}$.
	Or
.	
Or factory bullt with 12 months guarantee. £8.19.9	ments 22. Total 223. Stereo version, all parts 20 gns. Inc. carr. Assombled 22% Ens. inc.

R.S. B. SU, $72,1,1,3,1,12$

FULLYTRANSISTORISED 200/250v. A.C. Maing.
OUTPUT 10 Watts R.M.S. per chan. cont. Into 15 ohms

SPECIF

 CONSIDNITS COSTING
 -52dB at Pots. Mat.
CONTROL.
CONTROL: 5 position Input Selector. Bass Control. Treble Control. Volume Control. Balance Control. StereolMono SoCKETS (Matched Pairs). (1) P. U. (2) Tape Amp. (3) Radiof Aux (4) Mic. or R/P Head. Operation of the Input Selector Shitch assures appropriate equalisation. Fisid 18 s.w.g. Panel indicator. Attractive Facla Plate and Spun Silver Panel indicator. Attractive Facia Plate and Spun Sllver
Matching Knobs. Above facilitles. etc., except for Ganging TRANSISTORS. 9 current types of high quality by leading manufacturers.
5POSITION INPUTSELECTOR SWITCII EQUALISATION to Standard R.I.A.A. and C.C.I.R. Characteristics for Gram and Tape Heads.
FULLTAPE MONITOIING FACILITIES. SENSITIVITIES: Magnetic P.U. 4 mV . Crystal or Ceramic P.
2.5 mV . Radiol Aux or Ceramic P.U. 110 mV . FREQUENCY RESPONSE: $\pm 2 \mathrm{~dB} 20-20,000 \mathrm{c}$.p.s.
TREBLECONTROL: +15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$. NEG FEEDBACK $: 52 \mathrm{~dB}$. BASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. HUM LEVEL: - 75 dB . FARMONIC DISTORTION at 10 Watts 1,000 c.p.s. 0.2%
Complete KIt of parts with full constructional details and point to point wiring diagrams. Supplied factory built 15 Grams. Carr 12/6. Terms Carr. $12 / 612 \mathbf{2 G B S}$. monthly payments $31 / 1$ (Total s18.3.9). Or in Teak or Afrormosia veneer housing as illustrated. 19 Gins.
ALL COMPONENTS ETC. ARE OF A HIGH STANDARD AND
SUPPLED BY LEADING MANUFACTURERS.

BRADFORD 10 North Parade. (Half-day Wed.) Tel. 25349
BLACKPOOL (Agent) O. \& C. Electronics, 227 Church Street BIRMINGHAM ${ }^{\text {30/31 Gt. Western Arcade opp. Snow Hill }}$ DERBY 26 Osmaston Rd. The Spot (Half-day Wed.) Tel. 41361 DARLINGTON 18 Priestgate (Hali-day Wed.) Tel. 68043 EDINBURGH 133 Lelth St. (Half-day Wed.) Tel. Waverley 5766 GLASGOW 326 Argyle St. (Half-day Tues.) Tel. CITy 4158 HULL 91 Paragon Street. (Half-day Thursday) Tel. 20505

HI-FI GENTRES LTD.
MAIL ORDERS TO: 102 Henconner Lane, Bramley, Leeds 13. No C.O.D. under E1. Terms C.W.O. or C.O.D. Postage 4/6 extra under 52. 5/9 extra under x5. Trade supplled.S. A.E. wlth enqulries
please. Open all day Sats.
Mail Orders must not be sent to shops
and Balance Control, apply also to Super ISITABLE FOR USE WITH THESE UNITSAREKME MAE OF PICK-UP OR MICROPHONE (Cry Stal, Ceramic, Magnetic, Moving Coil. Ribbon). CURRENTLY AVAILABLE SUPERB SOUND OUTPUT QUALITY CAN BE OBTAINED BY USING WITH FIRST RATE ANCILLARY
EQUIPNENT All required parts, Doint to polnt wiring
diagrams and detailed instructions.
Carr. 15/diagrams and detailed instructions.
Unit factory built 28 Gns. or deposit 57.0 and 9 monthly payments $56 / 3$. (Total £2.13.3). Or in veneered housing 31. Gns. Carr. $15 /$ - or Deposit
£7.3.6 and 9 monthly paymts $64 /$ (Total $£ 35.19 .6$). Send. S.A. for leaflet.

32 High Street. (Half-day Thurs.) Tel. 56420 LEICESTER 5-7 County(Mecca) Arcade, Briggate (Half-dayWed) Tel 28252 LEEDS 73 Dale St. (Hatt•day Wed.) TeI. CENtral 3573 LIVERPOOL 238 Edgware Road, W2 (Half-day Thurs.) Tel. PAD 1629 LONDON 60A Oldham Street (Half-day Wed.) MANCHESTER d) Tel. 47096 MIDDLESBROUGH 106 Newport Rd (Half-day Wed) Tel. 47096 MIDDLESBROU GH 41 Blackett Street (Opp. Fenwicks Store) $\begin{aligned} & \text { (Hali-day Wed.) Tel, } 21469 \text { NWCASTLE UPON } \\ & \text { NYNE }\end{aligned}$ (Hail-day Wed.) Tel. 21469
13 Exchange Street (Castle Market Bldgs.) SHEFFIELD

THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM

* Moderate size, only $25 \times 14 \times 101 n$, Complete Kit 20 GnS.
* Response $30-20,000$ c.p.s. Impedance 15 ohms. 20 * Performance comparable with units costing Carr. 12/6 considerably more. Consists of (1) $12 i n$. 15 watt Bass unit with considerably more. Consists of (1) 12in. 15 watt Bass unit with and ceramic magnet. (2) 3-way quarter section series cross-over system. (3) $8 \times 51 n$. high fux middle range 'speaker. (4) High efficiency tweeter. (5) Woollen acoustic damping materlal. (6)
Teak veneered cabinet. (7) Circuit and fullinstructions. Terms: Dep. £5.10.6 and 9 monthly payments $39 /$ (Total £23.1.0). DEMONSTRATIONS AT ALL BRANCIIES
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIER Highly sensitive. Push-Pull Tone Control Stages. Performance figures of factory built units: Hum level-70dB. Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. Sectionally wound out put transformer. All high grade components. Valves EF86, EF86, ECC83, 807. 807, GZ34. Separate Bass and Treble Controls. Sensiti-
vity 38 mV . Suitable for high impedance microphones, Crystal or Ceramic P.U's. Designed for Clubs, Schools, Theatres, Dance Halls or Outdoor Functions, etc. For use with Electronic Organ, Guitar, String Bass, etc. Gram, Radio or Tape. Reserve L.T. and H.T. for Radio inputs such as Gram and "Mike" can be mixed. $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ A.C. Mains. For 3 and 15 ohm speakers. Complete kit of parts with point-to- 15 GnS. Twin-handled perforated cover 27/6. Supplied factory built with EL34 out put valyes. 12 months' guarantee for 18 ms. TERMS: Deposit 26.3 .0 and 9 monthly payments of 34/- (Total 221.9.0). Send S.A.E. for leafet.

FIDELITY 12-14 WATT AMPLIFIER
PUSH-PULL ULTRA LINEAR OUTPUT "BUILT-IN" TONE CONTROL PRE-AMP. Two input sockets with associated controls allowing mixing of "mike" and gram, etc, etc. High sensitivity 5 valves-ECC83 (2), EL84 (2), transformer. IND. BASS AND TREBLE CONTROLS. Frequency response $+3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. Hum Ievel 60 dB . SENSITIVITY 40 millivolts. For Crystal or Ceramic PUs. High Impedance mikes". For Musical Instruments such as String Bass. Electronic Guitars etc. Size approx. 12 x 9 x $71 n$. For AC mains $200-250 v .50 \mathrm{cps} 9 \frac{1}{2}$ GnS.
Output for 3 and 15 ohm spkrs. SAE for leaflet. Complete kit. Full instructions and point-to-point wiring diagrams. Carr 11/6 (or factory built 12t gns.) Twin handled metal cover 2\%/6. TERMS ON ASSEMBLED UNITS. Deposit 9916 and 9
RSC TORISED VERSION Of above complete kit 9 Gins R.S.C. BASS-REGENT 50 WATT AMPLIFJER
 An exceptionsilly powertal high quality high quality unit for lead, rhythm, band gultar, vocalradio, gram, Pear Of tape.
高 Two extra heavy duty oudspeakers * Four Jack inputs and simultaneous use of up to four plck-ups or "mikes". Bass and Treble controls. 55 Gins. Carr. 301 dep. or and 9 monthly payments of 95.11.9. (Total 801 gns.). Send S.A.E. for leafet. with Pr. speaker columns and a Bass Unit (Six 12" and Two 15" Spkrs). 1 ht men R.S.C. BATTERY/MAINS CONVERSION UNITS
 Type BMI An all-dry
battery eliminator. Size 5 ix4ix
2 in.approx 2in.approx. Completely replaces bat90 v , where A.C. mains $200 /$ 250 v . $50 \mathrm{c} / \mathrm{s}$ A. is available. Complete kit with diseram $49 / 1$ or assembled $59 / 11$. SELENIUM RECTIFIERS (Bridged) All 6/12v. D.C. output. Max.

R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interleaved and Impreg. nated. Primaries $200-250 \mathrm{z}$. $50 \mathrm{c} / \mathrm{s}$. Screened MIDGET CLAMPED TYPE $21 \times 8 \$ \times 24 \mathrm{in}$. $250 \mathrm{v} ., 60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}$.
$250-0-260 \mathrm{v} ., 60 \mathrm{~mA}$.
6.3 v.
FULLY SEROUDFD OPRIGHT MOUNTING $250-0.250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6-3 \mathrm{v} .2 \mathrm{a}$. $250 \cdot 0 \cdot 250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$
$300-0.300 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 0-5 \cdot 6.3 \mathrm{v}, 3 \mathrm{~s}$ $300-0 \cdot 300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s} .0-5 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{a}$.
$300 \cdot 0 \cdot 300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., \mathrm{c} . \mathrm{t}, 6 \cdot 3 \mathrm{v} .1$ $300 \cdot 0 \cdot 800 \mathrm{v} .130 \mathrm{~mA}, ~ B \cdot 3 \mathrm{v} .4 \mathrm{a}$.
For Mullard 510 A mplifer
$350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 0 \cdot 5 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{~g}$ $350-0.350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 3 a . $425-0-425 \mathrm{v} .200 \mathrm{~mA}, ~ B .3 \mathrm{v} .4 \mathrm{a}$., c.t., 5 v . 3 a . $425 \cdot 0 \cdot 425 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 6 \cdot 3 \mathrm{v}, 3 \mathrm{a}, 3 \mathrm{v} .3 \mathrm{~s}$.
$450-0.480 \mathrm{v}, 250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~s},, \mathrm{c}, 5 \mathrm{v}, 3 \mathrm{~s}$. TOP SHROUDED DROP-THROUGH TYPE $250-0-250 \mathrm{v} .70 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{~s} ., 1$
$250-0.250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{~s}$
$250 \cdot 0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 6 \cdot 3 \mathrm{v} .1 \mathrm{a}$
$350-0-350 \mathrm{v}, 80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 2 \mathrm{a}, 0 \cdot 5-6 \cdot 3 \mathrm{v} .2 \mathrm{~B}$.
$250 \cdot 0-250 \mathrm{v}$, $250 \cdot 0-250 \mathrm{v} .100 \mathrm{~mA}, \beta \cdot 3 \mathrm{v} .4 \mathrm{~s} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0 \cdot 5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$.
$300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} . . \mathrm{0}-5-6 \cdot 3 \mathrm{v}$. Suitsble for Mullard \$10 Amplifle

$28 / 8$ $87 / 8$

 12. $87 / 8$ $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s},, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{si}$.$350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$ 50-0-350v. 150 mA , $3 \cdot 3$. $0-5.6 \cdot 3 \mathrm{v}$ 32 $45 / 11$ FILAMENT or TRANSISTOR POWER PACK TYpe $6.3 \mathrm{v} .1 \cdot 5 \mathrm{a} .7 / 9 ; 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 8 / 0 ; 6.3 \mathrm{v}$. 3 a . $10 / 9 ; 6.3 \mathrm{v}$. $6 \mathrm{a} .21 / 9 ; 12 \mathrm{v}, 1 \mathrm{~s} .8 / 9 ; 12 \mathrm{v} .3 \mathrm{a}$. or $24 \mathrm{v} .1-5 \mathrm{a} .21 / 9$;
$0.9-18 \mathrm{v} .14 \mathrm{~s}, 17 / 9 ; 0-12-25-42 \mathrm{v} .2 \mathrm{a}$. $29 / 8$. 0.9-18v. 12.176 , 0-12-26-42.

CHARGER TRANGFCPMERS $0-9-15 v, 118,14 / 11$;
 AUTO (Step UP/tep DOWN) TRANSFORMERS $0-110 / 120 \mathrm{v}, 200-230-250 \mathrm{v} . \ldots-80-80$ watts $16 / 9$
150 watts, $29 / 11 ; 250$ watts $49 / 9 ; 500$ watts $99 / 9$ OUTPUT TRANBFORMERS
Gtandard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Push-Pull 8 watts ELS4 to 3 O or 15Ω Push-Pull 10 watts 6V6 ECL 86 to 3, 5,80 Puah-Pull ELs4 to 3 or 15 a $10-12$ watta Push-Pull Ultra Linear for Mullard 510, etc.
Push-Pull $15-18$ watts, gectionally wound 6 L 6 , Push-Pull $15-18$ watts, gectionally wound 6 L 6 ,
KT66, etc. for 3 or 150 KT66, etc., for 3 or 15 a Push-Pull 20 watt high quality sectionaily SMOOTHLNG CHOKES
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \mathrm{\Omega} 18 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 10 / 8$; $80 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega 8 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \mathrm{Q} 4 / 11$.

6/12V CAR BATTERY CHARGERS
Complete kit of parts with Ammeter and Circuit.

4 amp 49/9
6 amp 69/9
14 WATT HI-FI AMPLIFIERS
High sensitivity Two controls for mixing purposes. Separate Bass and Treble Controis. Vaives ECC83. ECLB6, ECLB8, EZ80. Output for 15 ohm Loudspeaker, 200-250y 60 c.p.s. A.C.mains operation, Size approx. $8 \times 8 \times 61 n$. Factory
f7-19-11 carr

 R.S.C. COLUMN SPEAKERS Covered in two-tone Rexinel vynar, taeal for vocallats and Public Addros, 15 oom matchings. C57 15 watts inc. five $7 \times 4 \mathrm{Ln}$. speakers $£ \%$. 19.11 TIPE C48S 30 W ATTS. Fitted four 81 n . high iux 8 watt speakers. Overall size approx. $42 \times 10 \times 51 n$. Or deposit $67 /-16$ GnS. and 9 mthly pmts $34 / 9$ (Total \&18.19.9) Carr. 10/-. speakers. Overall slze $56 \times 14 \times 91 \mathrm{n}$. approx. Carr. 15/-. 20 G 1 S Or Deposit $£ 517.5$ and 9 monthiy payments of $54 / 8$ Total £30.7.0):
30 WATT HI-FI AMPLIFIER

or Guitar, Vocal or Instrumental Group Arate Bass or 4 input, 2 vol. control H1-F1 unit with Sepoutputrating. Strong Rexine covered cabinet with. Pandles. Attractive black/gold perspex facia. Neon indicator or $200-250 \mathrm{v}$. A.C. nuains. For 3 or 15 ohm speakers. Send
 S.A.E. forleaflet. Deposit 5 gns. and
9 mthly vayments of $39 / 8$ (Total 29 gins) 19 GnS. Carr. $12 / 6$
F.A.L. 'Phase Fifty' PUBLIC ADDRESS AMPLIFIER Solid State Circuitry. 50 Watts Peak Output. 3 separately controlled inputs for mixing purposes. Separate Bass and Treble Controls. Output for loudSpeakers 3- 30 ohms. Suitable for Dynamic, Ribbon or Crystal Mikes. For Clubs, Theatres, Restaurants, Hotels, Schools, etc. For only 29 Gns.
Vocal or Instrumental Groups. Send S.A.E. for leafiet. one

HIGH QUALITY LOUDSPEAKERS

1n Teak or Arrorm
$\mathrm{L} 1313^{*} \times 8^{*} 10 \mathrm{Watt}$

FANE ULTRA HIGH POWER LOUDSPEAKERS
All power ratings are R.M.S. continuous. 2 year guarantee. High

		POP 50
0 Watt	$15^{\prime \prime} 60$ Watt	12
21 Gxss.	12 gns . Carr.	10

POWER PACK KIT Consisting of Mains transformer, metal Rectifler. Electrolytics. smoothing choke. chassis and circuit. $25 / 11$
2001250 v . A.C. malns. Output 250 v . 60 mA 6.3 v . 2 S . Supplied with case in lieu of chassis $29 / 11$. Or assembled $39 / 11$.
MINI-8 HI-FI Loudspeaker Units Special Offer

 Build your own Hi-Fi Recerd Player with the Serensde fully transistorisad amplifier which comes complote with

'TRANSCONTINENTAL'

FULLY TRANSISTORISED STEREOPHONIC radiogram Chassis $2-10^{\prime \prime} \times 68$ spasked Sterso/ Mono Record Changer. Advanced solid state amplifier only $4 t^{*}$ deep. 14 transistors plus 4 diodes. separate Bass and Treble - 10 watts total powar. Freque
$50.15 .000 \mathrm{c} / \mathrm{s}$
EASY TO INSTALL NO TECHNICAL KNOWLEDGE

Complete with $2-10^{N} \times 6^{N}$ speakers and the latest BSR Mono/Stereo Record Changer - a complete radiogram at half normal price ONLY

10 Watts Total output 17 Transistors \& 10 diodes

P\&P 2GNS. $17 / 6$ H.P. available 5121.6 dep plus 18 monthly pay ments of 32/- (Total H.P. £40.17.6) NO REQUIREO

AERIAL HANDBOOK (second edition) 176 pages, 144 illustrations.
Price (semi-stiff cover) 15/- (16/6 post free). Cloth bound $\quad 22 / 6$ ($24 /$ post free).

CABINET HANDBOOK

112 pages, 90 illustrations.
Price 7/6 ($8 / 6$ post free). Semi-stiff cover. Cloth bound $15 /-$ (16/6 post free).

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. Cloth bound.
Price 25/- (27/- post free).
MUSICAL INSTRUMENTS AND AUDIO 240 pages, 212 illustrations. Cloth bound. Price 32/6 (34/6 post free).

LOUDSPEAKERS

Fifth edition- 336 pages, 230 illustrations. Cloth bound.
Price 30/- ($32 / 6$ post free).
A to Z in AUDIO
224 pages, 160 illustrations. Cloth bound.
Price 15/6 (17/- post free).
PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound.
Price 18/6 (20/- post free).

AUDIO AND ACOUSTICS

168 pages, 140 illustrations.
Price 12/6 (13/6 post free). Semi-stiff cover.

ABOUT YOUR HEARING

132 pages, 112 illustrations.
Price (semi-stiff cover) 15/6 (16/6 post free).
Cloth bound 22/6 (24/- post free).

LETTERS FROM ABROAD

Extract of letter from Mr. Wendell C. Ward of Texas, U.S.A. September 1968.
I have recently read through Mr. Briggs' book " A to Z in Audio" and found it most interesting. It's refreshing to find a man who can write about what could be a dry subject with enthusiasm and humor.
Extract of letter from Mr. R. G. Bernaldez of Madrid, Spain.
Many thanks for the copy of "About Your Hearing" that you were so kind to send to me. I have found your book to be really interesting. As always, it is puzzling the way you manage to make any subject easy to read, in that delightful style of your own.

Please send orders and enquiries to:

RANK WHARFEDALE BOOK DEPT. B.W.S 13 WELLS ROAD, ILKLEY, YORKSHIRE

Telephone: ILKLEY 4246

Published by

RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKSHIRE

Mainline ELECTRONICS LIMITED

Service with the personal touch

Mainline Electronics is a new Service for users of electronic equipment and components in the field of experimental work.
Backed by one of Europe's leading Distributors and enjoying the support of the Industry, Mainline Electronics specialises in quality components from leading manufacturers. These products are characterised by excellent materials and workmanship, proved reliability and known performance. Service is the watchword of Mainline Electronics' activities. The company not only supplies the right components at the right price but, also supplies the necessary data through the data service published in the component guide.

Send today for Europe's finest, most up-to-date and most comprehensive Price List of Semi-conductors and associated components, with details of manufacturers full application data

Get this invaluable reference now - to RCA - IR-SGS Emihus - Semitron - CCL - PlesseyMorganite - Litesold to name but a few.

A DOZEN OF THE BEST

HIVAC 工\%요
KEVEWITCH RELAYS

70 Watts of Audio

Mainline introduce a trio of amplifiers the Mainline '12', Mainline '25', Mainline '70,
The design of these audio amplifiers was the result of SGS and RCA combining their tremendous resources to produce these quasi circuits.
Each Kit complete with circuit diagram contains all semiconductors - resistors - capacitors and printed circuit board.

Mainline 12A-£7.0.0
Prices: Mainline 25A-£8.5.0.
Mainline 70A- $\mathbf{f} 10.10 .0$.

Mainline Electronics Limited,
Thames Avenue, WINDSOR, Berkshire.
(A member of the ECS Group of Companies)

Quality Transistor Radios to build yourself

backed by our after sales service

NEW! roamer eight mkI WITH VARIABLE TONE CONTROL
 6 Tunable Wavebands: Medium Wave, Long Wave, Trawler Band, sw1, sw2, BW3. Built in Ferrite Rod Aerial for Medium and Long Waves. Five sectlon 22 in. chrome plated Teleacople aerlal for Short Waves can be angled and rotated for maximum performance. Push pull output Switched earplece socket complete with earplece for private listenlag. Eight tranaistors plus 3 Switched earplece socset complete with earplece for private listening. Eight transistors plus 3 diodes. Famous make 7 in . x in. Speaker. Air spaced ganged tuning condenser. On/Off switch volume control. Wave change switch and tuning control. Attractive case in rich cheatnut shaule with gold blocking. size $9 \times 7 \times 4 i n$. approx. First grade components. Easy to follow instructions and Hagrams make the Roarmer Eight a pleasure to build.
 Parte Price List and Easy Buitd Plans 5/-(Free with parts).
 $\mathbf{P} \& \mathbf{P}^{7 / 6}$.

roamer seven mkIV

GEVEN FULLY TUNABLE WAVE-BANDS-MW1, MW2, LW, SW1, SW2, SW3 and Trawler Band. Extra tuning of Radio Luxembourg, etc. Built in ferrite rod aerial for Medium and Long Waves. Five Section 22 in . and Long Waves. Five section zin. Short Waves-can be angled and rotated for peak S.W. Ilstening. Bocket for Car Aerial. Powertul pushpull output. Seven transistors and two diodes including Micro-Alloy R.F. Transistors. Famous make $7 \times$ din. P.M. speaker. Air spaced
ganged tuning condenser. Volume/on/off control, wave change switches and tuning control Attractive case with carrying handle. Bize $9 \times 7 \times 4$ in approx. First grade components. Easy to follow instructions and diagrams make the Roma 7 a pleasure to buld.
 Parts price list and easy build plans 3/- (FREE with parts)
peranal Earpiece with switched socket for private tistening. $5 /$ - extra.
£5.19.6
P. \& P. 7/6

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size $51 \times 14 \times$ with extended M.W. band for easier tauling of Luxembourg, etc. All first grade components7 stages- 5 transistors and 2 diodes, aupersensitive ferrite rod aerial, fine tone moving coil speaker, alioo Personal Earpiece with awitehed acket for private ligtening. Easy build plans and parts price
liat $1 / 6$ (FREE with parts). list 1/6 (FREE with parts).

Total building costs
448

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER
Attractive ease with gilt fittings. Size 7\% x Bt x 1hia. Tumable un Medium and Long waves, two short waves, Trawler Band Plus an extra M.W. band for eagier tunink of Luxembourg, etc. Bensitive
ferrite rod aerial and telescopic aerial for short ferrite rod aerial and telescopic aerial for short transiftors and 2 diodea including Micro-Allog R.F. Transistors etc. (Carrying strap $1 / 6$ extra). Riagy build plans and parts price llat $2 /$.

Total building costs 7818 P. \& P.

* Callers side entrance Stylo Shoe Shop
* Open 10-1. 2.30-4.30 Mon-Fri. 9-12 Sat

NEW!

trans eight
 SIX WAVEBAND

 PORTABLE WITH 3in. SPEAKER Attractive case in black with red grille and cream knobs and dial with polished brass inserts. Size $9 \times 5 \frac{1}{4} \times 2 \frac{3}{b}$ in. approx. Tunable on Medium and Long Waves, three Short Waves and Trawler Band. Sensitive ferrite rod aerial for M.W. and L.W. Telescopic aerial for Short Waves. Eight improved type transistors plus 3 diodes. All top grade components. Push pull output. Ample power to drive a larger speaker. Parts price list and easy build plans 5/- (FREE with parts) Earpiece with switched socket for private listening $5 /$ - extra.
transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. size $6{ }^{6} \times 4 \ddagger \times 1$ in. 7 atage 6 transistore and 2

 ponents Easy bulld plans and parts price list 1/6 (FREE with parts.)

RADIO EXCHANGECO

CAR LIGHT FLASHERS
 Heavy duty light flasher employs a condenser discharge principle operating on electro mechanical relay. (As inset).
Housed in strong plastic case. Flashing pate between 60-120 per minute. $12 V$ mum load 6 amps. Slae $2-11 / 16 \mathrm{in}$. dia. $x 4 \mathrm{in}$. Supplied brand nev at a fraction of original cost. 6/6 each P. P. 2/6. (3 for 17/6 P. P. 4/6).

R209 MK II

COMMUNICATION RECEIVER 11 valve high grade commanication recelver cuita ble for tropical use. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. AM/CW/FM operation. Incorporates prechion vernier driver, B.F.O., serial trim-

mer,internal
apeaker and
12 v . D.C.
internal po-
wer supply.
supplied
supplied
in excellent
condition,
fully tested
fully tested
and checke
i15.0.0.
Carr. 20/-
TYPE 13A DOUBLE BEAM OSCILLOSCOPES
 An excellent generai pur.
pose D/B oscilloscope $\begin{array}{lll}\text { pose } & \text { D/B oseilloscope. } \\ \text { T.B. } & { }_{2} & \text { cps-750 } \\ \text { Kc/e. }\end{array}$ $\begin{array}{ccc}\text { T.B. }{ }^{2} & \text { cps-750 } & \mathrm{Kc} / \mathrm{s} . \\ \text { Bandwidth } & 5.5 & \mathrm{Mc} / \mathrm{s} .\end{array}$ Bandwidth $5.5 \mathrm{Mc/s}$. Bensitivity $33 \mathrm{mV} / \mathrm{CM}$.
Operating voltage $0 / 110 /$ 200/250V. A.C. Supplied in excellent working condition. 828.10.0. Or complete with all accemsories, probe, leads, lid, eto
*sb. Carriage $30 /-$.

MARCONI T/44/TF956
AF Absorption Wattmeter
$\mu /$ watt to 6 watts. 820. Carr. 10

SOLARTRON CD-1016 OSCILLOSCOPE
Double beam. D.C. To $5 \mathrm{Mc} / \mathrm{s}$. Excellent condition. 455 each. Carr. 20/-

CLASS D WAVEMETERS

A cryatal controlled hetero-
dyne frequency meter (0) - 8
 Available in good used condition. 85.19.6. Carr. $7 / 6$.
Or brand new with accesOr brand new with acces-
sorles. 87.19 .6 . Carr. $7 / 6$. BAVEMETERS No. 2
CLASS D WAVEMETERS No. 2 Crystal controlled. $1 \cdot 2-19 \mathrm{Mc} / \mathrm{s}$. Mains or tion charts. Excelient condition. $\mathbf{8 1 8 . 1 0 . 0}$ Cart. 30/-

SOLARTRON CD.711S. 2 OSCILLOSCOPES
Double beam. D.C. to $9 \mathrm{Mc} / \mathrm{s}$. Perfect order 65. Carr. 60/.

TO-2 PORTABLE OSCILLOSCOPE

 A general purpose lowcost economy oscillo-
ecope for everyday use. Fope for overyday une. 2 CPs-1 mHz. Input imp 2 meg $\Omega 25$ pr.
Illuminated
acale.
$21 n$ $\begin{array}{lll}\text { Illuminated } & \text { scale. } & 210 \\ \text { tube. } \\ \times 115 & 180 & \times\end{array}$ tube. 115 Weight 8180 $220 / 240 \mathrm{~V}$. a.c. supplied brand new with hand

TRANSISTORISED L.C.R. A.C. mEASURING BRIDGE

A new portable bridge offering excellent range and cost. Ranges: R. $10-11 \cdot 1$ mega $\begin{array}{ll}6 & \text { Ranges } \\ \text { L. } 1 & \pm \\ H & 1 \% \\ \text { H } & 111\end{array}$ | HENRYg 6 Ran- |
| :--- |
| ges -2%. C. 10 pF | $\pm 1110 \mathrm{mFd}$. Ranges $\pm 2 \%$. TURNS RATIO $1: 1 / 1000-$

$1: 11100.6$ Rangee $\pm 1 \%$. Bridge voltage at $1,000 \mathrm{cps}$ Operated from 9 volts. $100 \mu \mathrm{LA}$. Meter indication. Atractive 2 tone met
case. 8 ize $78 \times 6 \times 2 i n$. 480 . P. \& P. $5 /-$.

UNR-30 4-BAND COMMUNICATION RECEIVER Covering S50 $\mathrm{Kc} / \mathrm{b}-30 \mathrm{Mc} / \mathrm{A}$. Incorporates BFO. Bullt in apeaker and phone jack. Metal a ablinet. Operation 2201 240V. A.C. Supplied brand new, guaranteed with
matructions.
Carr. $7 / 613$ gins.

Carr. 7/6 13 gns.

LAFAYETTE SOLID STATE HAGOD RECEIVER 5 BAND AB/OW/BSB AMATEUR AND SHORT WAVE $150 \mathrm{Ko} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{s}$ and $500 \mathrm{Kc} / \mathrm{s}-80 \mathrm{Mc} / \mathrm{m}$ dial Prodnct detector Vartable BFO Noteplimiter 8 meter $84 \ln$ Bandapread 230V. A.C./1e\%. D.C. neg. earth operation RI gain control, Sies $15 i i_{0} \times 9$ in. $\times 8$ tin. Weight 18 lbe. EIXCIFPTIONAL $\nabla A L U E$. A45. Oarr. 10/8.A.E. for full detaila.

TRIO COMMUNICATION

RECEIVER MDDEL 9R-590E
4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ continuoua and electrical bandspread on $10,15,20$ 40 and 80 metres. 8 valve plus 7 diode circuit,
$4 / 8$ ohm output and phone jack. S8B.CW $4 / 8$ ohm output and phone jack. SsB-CW ANI dial IF $455 \mathrm{Kc} / \mathrm{s}$ - Audio output 1.5 W . Variable RF and AF galn controls. 115/250V A.c. Mains. Beautifully deaigned. slize: $7 \times 15 \times$ 10 in . With instruction manual and service data. 842.10 .0 , carriage psid. TRIO commuNICATION TYPE EEADPEONES. Normally 25.19.6. OUR PRICE 88.16.0 if purchased with above receiver.

TRIO JR-500SE $10-80$ Metre AMATEUR RECEIVER

TRIO TS 510 AMATEUR TRANS GEIVER with ppeaker and mains P.8.O.
\$812. IN STOCK!
Covers all the amateur bands in 7 separate ranges between $3 \cdot 5$ and $29 \cdot 7 \mathrm{Mc} / \mathrm{s}, 7$ valves, 2 transistor
and 5 dindes plus 8 crystals: output 8 and 500 ohm and $5,000 \mathrm{ohm}$ phone jack. Crystal controlled oscillator. Variable BFO. VFO. AVC. ANL. $\$$ meter gsB-CW. Stand-by awitch. Special double gear dial drive with direct reading down to 1 kHz . Remote control socket for connection to a transmitter. Audio output 1 watt. $115 / 250 \mathrm{v}$. A.C. mains. Superb manual and service data 869100 .

SPECIAL BONUS

 OFFERTRIO SP6D Matching Speaker Mate and TRIO H84 Commanication Headphones. Normal Falue \$10.7.0

HAMMARLUND SP600JX

 COMMUNICATION RECEIVER High quality profosional dual converaion coramunication reoolvers avajable for the first time in this country at areasonable prics. Frequency range $540 \mathrm{Kc} / \mathrm{s}-54 \mathrm{Mc} / \mathrm{M}$. In reasonable price. Frequency range $540 \mathrm{Kc} / a-54 \mathrm{Mc} / \mathrm{m}$. In
6 bands variable tuning or 6 channel crystal controlled. $2 \cdot 5$ watt output into 600 ohms. Input $110 / 230 \mathrm{~V}$. A.C. 20 valve circuit incorporating: Xtal ilter B.F.O. A.N.L.
X tal calibrator, $\$$ meter etc. Size $19 \times 12 \times 22 \mathrm{in}$. (List etal). Offered in excellent conditlon, fully teated and checked. 8100 each.

RCA COMMUNICATIONS
RECEIVERS AR8BD
Latest release by ministry BRAND NEW in original cases. $110-250 \mathrm{v}$. A.C. operation. Frequency in 6 Bands. $535 \mathrm{Kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{A}$ continuous. Output Imnolse limiter, variable BFO , variable selectivity, etc. Price 887.10.0. Carr. 82 .

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER A completely new transistorised recelver covering (not supplied) for fuxed irequency operation. Incorporates 4 INTEGRATED CIRCUITS. Built in speaker and tluminated dial. Squelch and volume controls. Tape recorder output. 75 a aerial 12V. D.C. Neg. earth. A87.10.0. Carr. 10/-

CLEAR PLASTIC PANEL METERS Finst grade quality Moving Coll panel meters. Type MR 38 P . ${ }^{121} I_{\mathrm{az}} \mathrm{in}$. square fronts.

$500.0-500 \mu A 86 /-$	50 mA $85 /-$	160V. D.C. . $28 /-$
1 ma 2601 -	100 mA85/-	300V. D.C.. .88/-
1-0-1mA $85 /-$	150mA ... $25 /-$	800V. D.C. . $25 /-$
$2 \mathrm{~mA}88 /-$	200 mA 85 -	750V. D.C. . 85/-
5 mA $25 / \mathrm{m}$	$300 \mathrm{~mA} \mathrm{..} 28 /$.	15V. A.C. . . $85 /-$
10 mA $25 /-$	500 mA25/-	50V. A.C.. . . 85/-
750 ma . . . $855 /-$	3V. D.C. 25/-	150V. A.C. . $25 /$ -
$1 \mathrm{mmp}25 /-$	10V. D.C. . . $26 /-$	300 V . A.C. . $85 /$ -
$2 \operatorname{amp}85 /-$	10V. D.C. . . $20 /-$	500 V . A.C. 850
${ }^{5} \operatorname{amp}85 /-$	20V. D.C.... 25/-	8 meter $1 \mathrm{~mA} 89 / 6$
20 mA $285 /-$	100V. D.C. . $25 /-$	VU meter . . 39/6

FULL RANGE OF OTHER SIZES IN STOCE. SEND 8.A.E. FOR LEAFLET

Vaviable Voltage TRANSFDiMIITS

Brand new, guaranteed and carriage paid.
High quality construction. Input 230 V . $80-80$ cycles
output full variable if rom 0.260 volts. Buik quantitiea available $8 \mathrm{amp}-810.0 ; 2 \mathrm{mmp}-86.15 .0 ; 5 \mathrm{amp} .-15.0 ;$
20 amp. $\mathbf{8 8 7 . 0 . 0}$.

RACAL RA-17
First ministry release of thase world famous communication receivers. Fraquency rangs $500 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Available in excellent condition, fully tested and guaranteed. f150. Carr. 40/-.

AVOMETER MOVEMENTS

Gpare movement for Model 8 or 9. (Fitted with Model 8 scale) or basis for any multimeter. Brand New \& Boxed, 69/6. P. \& P. 3/6.

TE-40 HIGH SENSITIVITY
A.C. VOLTMETER 10 meg. input 10 ranges: 100/300V. R.N.S. 4cps. $\mathbf{1 - 2} \mathrm{Mc} / \mathrm{s}$.

+ sodB. Bupplied brand new complete with leads and instructions. Opera | tion 230 |
| :--- |
| Carr. |

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / \mathrm{s}$. on 2 ranges. Output plied in pertect onder 31810.0 Cat. plied in periect order. 818.10.0. Carr. 10/-TE-65 VALVE VOLTMETER

High quallty instrument $1.8-1,500 \mathrm{v}$. A.C. volts $1.5-1,500 \mathrm{v}$. Reaistance $\mathrm{up}_{200 / 240 \text { to }} 1,000$ megohms. $200 / 2407$. A.C. operation Complete with probe and instructions.
A17.10.0. P. \& P. $8 / \%$. Additional probes avall
able:R.F. $85 /=, H . V .48 / 6$.
COSSOR 1049 DOUBLE BEAX OSOILLO SCOPims. D.C. coupled. Band width $1 \mathrm{Kc} / \mathrm{s}$ Perfect order. 886. Carr. $30 /$

AM/FM SIGNAL GENERATORS

Oscillatos Test No. 2. A high quality precision made for the miniatry by Alrmeo Frequency coverage $30-80 \mathrm{Me} / \mathrm{B}$. AM CW/FM. Incor porates precision dial, level meter, precision attenuator $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Operation from 12 $12 \times 8+\times 9 \mathrm{in}$ gupplied in volt A.C. Size dition complete with ill brand mew con tested. 245. Carr. 20/-.

GEARED MAINS MOTORS Paralux type sD19 280/250V. A.C. Reveratble. 30 r.p.m. 40 lb ./ins. Complete with capsei
10/-.
 TEF-16A Transtetorised $00 \mathrm{kHz}-30 \mathrm{mHz}$. An inex zensive instrument for the handyman. Operates on 9v battery. Wide easy to read scale. 800 kHz modu lation. $5: \times 81 \times 8+1 n$ cions and losds. \$7.19.6.

IELD TELEPHONES TYPE L
Cenerator ringing, motal casea. Operates from two 1.6V betteries (not aupplied). Excellent condition. e4.10.0 per pair. Carr. 101-

AUTO TRANSFORMERS $0 / 115 / 230 \mathrm{~V}$. Step up or atep down. Fully shrouded.

300 W .	88.
00 W	
,000 W	
	87.1

G. W. SMITH 8 CO (RADIO) LTD. Also see oppos. page

ARF-100 COMBINED AF-RD SIGNAL GENERATOR
 A.F. SINE WAFE日quare wave $20-$ $30,000 \mathrm{c} / \mathrm{s}$. $0 / \mathrm{P}$.
HaH IMP . 81 v . ${ }_{\mathrm{P} / \mathrm{P} 600} \mathrm{~S} 3.8 \mathrm{~V} . \mathrm{P} / \mathrm{P}$ $\mathrm{TF} 100 \mathrm{Kc} / \mathrm{s}-800$ attenuation int/ext. modulation. Incorpor ates dual purpose moter to monitor AF out put and \% mod.
TE-20RF SIGNAL GENERATOR Accurate wide range signal generator cover*

 Directly calibrated Variable R.F. at-
tenuator, Operation tenuator. Operation
$200 / 240 \mathrm{v}$. A.C. Brand new Brand new with $\mathrm{ln}-$
atractions.
\&15.0.0. P. \& P. 7/6, 8.A.E. for details.
PEAK-BOUND PRODUCTS. Full range of Amplifers, Kits, Speakera in stock.
TE22 SINE SQUARE WAVE AUDIO GENERATORS
 Sine:
200
$\mathrm{Kc} / \mathrm{s} / \mathrm{s} / \mathrm{on}$
to
4 bands. 8 gquare: $20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{Kc} / \mathrm{s}$.
Output Output impedance
$200 / 250 \mathrm{~V}$. A.C. 2001250 V A.C.
supplied brand new and guarantion manual and leada, sib.10.0. Carr. 7/6.
MARCONI TFI4RE DISTORTION FACTOR METERS. Excellent condition. Fully tegted. 480. Carr. 15/-

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER

$2{ }_{2}^{2} \mathrm{pF}-2000 \mathrm{mFd}$ ohms. Also checkre impedance, turns ratio, insulation, ${ }^{200 / 250 \mathrm{~V} \text {. }}$ Brand New Brand New

Carr. 7/6.
mODEL ZQM TRANSISTOR CHECKER Thas the fullest capacity Equally adaptable for
checking diodes, etc.
B: $5-200$. $0.7-0.9967$. microamps Ico: 0 0-50 Resigtances $0-8 \mathrm{ma}$. $2000-1 \mathrm{Ma}$. Supplied complete with instruc-

ADVANCE TEST EOUIPMENT Brand now and bozed in original soaled cartons menta in exces of 100 Mc. 20 . meamaremeasurements up to 100 V MC/h accuracy of $+2 \%$ D.C. range 300 MV to 1 KV . A.C.
range 300 MV to 300 V RMS. Redstance range 300 MV to 300.
$.02-500 \mathrm{Ma}$. Price $\$ 72$.
$-02-500 \mathrm{Mo}$. Price 778. VM. 78 A.O. MILLIVOLT METER. Trannistorised I MV-300 V. Frequency I c/s to 1 Moja Price Ebs.
VM. 76 UHF MLLLIVOLT METER. Tranourrent range $\cdot 01 \mu \mathrm{~A}-3 \mathrm{MA}$. Resistance 1 oha-10 megohma. Price E185.
G1B AUDIO SIONAL GKNKRATOR. $18 \mathrm{c} / \mathrm{s}-$
 J1B AUDIO SIGNA
$50 \mathrm{Kc} / \mathrm{P}$. Price 880 .
$50 \mathrm{Kc} / \mathrm{m}$. Price 880 .
JRB AUDIO SIGNAL GENERATOR. As per J1B AUDIO SIGMAL GMEERATOR. As per tas. TRANSISTOR TERTER. s87.10.0. Carriage 10/-per Item.
SONOTRONIC PORTABLE OSCILLOSCOPES. Hx govt. scope, general purpose. 3in. CRT. 818.10.0. Carr. 7/6.

SOLARTRON MONITOR
OSCILLOSCOPE TYPE 101
An extremely high quality oscilloscope with time base of $10 \mu / \mathrm{sec}$ to $20 \mathrm{~m} / \mathrm{sec}$. Internal Y^{\prime} 250 v . Bupplied in excellent condition with cables, probe, etc., en received from Ministry. \&8.19.6, cartiage 30/-

GARRARD

FULL CURRENT RANGE OFPERED BRAND NEW AND GUARANTEED AT FANTABTIC sAvinas

8RP22 Stereo $85.19 .6 \quad$ *BP25 MK II 811.18 .8 \begin{tabular}{llll}

- 1025 Mono \& 87.10.0 *SL5 \& A \& \&11.10.6

\hline
\end{tabular} - 1025 Stereo 87.15.0 *AT0MK II e12.10.0 $\begin{array}{llll}2025 \text { Stereo } & \mathbf{2 7 . 1 9 . 6} & \text { *2L65 MK } \\ & \text { AP75 } & 814.14 .0 \\ 817.17 .0\end{array}$ 2025T/C AP75 \quad E17.17.0

 * 3000 Stereo 89.19 .6 \$L.95 285. 0.0 Carriage/insurance $7 / 6$ ertra any model. WB4
 Bases 108 Perspex models at 84.15.0. Carr. 5/. Full range of Garrard accessories available.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

 19 transistors, 8 diodes, IHF music power, 30 W
at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Disat 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 16 . Dis-
tortion 1% or less. Inputs 3 mV and 250 mV . Output $3-16 \Omega$. Separate L and R. volume controls. Treble and bass control. Stereo phone Jack. Brushed a luminium. gold anodised extruded front
panel with complementary metal case. Size lot x panel with complementary metal case. Size $10 t \times$
$39 / 16 \times 7 \quad 13 / 16 \mathrm{in}$. Operation $115 / 230 \mathrm{~V}$. A.C. 3 $9 / 16 \times 7$ 13/16in.
28. Carriage $7 / 6$.

MULTIMETERS for EIVERY purposel

TEE51. NEW 20,000 0 VOLT MOLTIMETER with overload protection and
mirror acale. $0 / 6 / 60 / 120 /$

 $3060 \mu \mathrm{~A} / 12 / 300 \mathrm{~mA}$
$0.0 . C$.
D.C. $0 / 60 \mathrm{~K} / 6$ meg. ohm. $98 / 6$.
P. 世P. $2 / 6$. P. \&P. $2 / 6$.

MODEL A8-100D. 100 K

acale. Built-in meter
protection. $0 / 3 / 12 / 60 /$

$\mathbf{P} .3 / 6$.

MODEL TE-90 50,000 OPV mirror scale overlond protection $0 / 3 / 12 / 60 / 300 / 1000 / 1200$
$0 / 6 / 30 / 120 / 300 /$ 1200 v . DC. $.03 / 6 / 60 / 600 \mathrm{~mA}$. DC. $16 \mathrm{~K} / 160 \mathrm{~K} / \mathrm{I} \cdot 6 / 16 \mathrm{meg}$. O. $-20 \mathrm{to}+63 \mathrm{~dB}$. 87.10 .0 .
P. \&P. $3 /-$.

MODEL TE-70. 30,000 OPV. $0 / 3 / 15 / 60 / 300 / 600$
1200 vC
$0 / 6 / 30 / 120 /$ 1200 v DC. $0 / 8 / 30 / 120 /$
$600 / 1200 \mathrm{v}$ AC. $0 / 30 \mathrm{u}$ $600 / 1200 \mathrm{v}$ AC. $0 / 30 \mu \mathrm{~A}$
$13 / 30 / 300 \mathrm{~mA} .016 \mathrm{~K} / 160$ $\mathrm{K} / 1 \cdot 6 \mathrm{M} / 16 \mathrm{Meg} . \mathrm{B}$

TE-900 20,000@/VOLT GIANT MULTTMETER mirror scale and overload
protection. 6 in . full view protection. 6 in . H . vi .
meter. 2 colour scale. of meter. 2 colour scale.
$2 \cdot 5 / 10 / 250 / 1,000 / 5,000$ - A.c. $0 / 25 / 12 \cdot 8 /$ 10/50/250/ $1,000 / 5,000 \mathrm{v}$. D.C. $0 / 50 \mu \mathrm{H} / 110 / 100$ $1500 \mathrm{~mA} / 10 \mathrm{amp}$. D.C. $02 \mathrm{~K} / 200 \mathrm{~K} / 20$ MEG.
$0 \mathrm{HM} .815 . ~ P . ~ \& ~ P .5 /-. ~$
 D.C. $10 / 50 / 100 / 500 / 1,000$
$0 / 50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C. $0 / 6 \mathrm{~K} / 6$
+22 dB meg. ohm. $+22 \mathrm{~dB}$. 69/8. P. \& P. $2 / 6$.

LAFEYETTE 57 Range Super $50 \mathrm{ka} /$ rolt Mange motor. D.C. volts 12 mV -1000 V. A.C. volts 1.5 V -1000 V D.C. current $25 \mu \mathrm{~A}-10 \mathrm{amp} .0 \mathrm{hms} 0-$
$10 \mathrm{meg} \Omega \mathrm{dB}-20$ to +81 dB . Overload protection. s12.10.0. Carr. $3 / 6$.

A LONG COOL LIFE

for your valuable components with the

 S.D.C. DeC range of SOLDERLESS breadboardsS-DeC Available as single packs with accessories and control panel @ 29/6d or the DeCSTOR double pack containing 2 S-DeCs, accessories, control panel, all in a plastic storage container. Only 67/6d. A 4 DeC pack is available, only $117 / 6 \mathrm{~d}$.

Abstract

T-DeC Now available to the amateur. 208 connection points. 38 independent junctions. Accommodates I.Cs using standard carriers. Three times the capability for only twice the pricel Unit pack with control panel 50/-d.

μ-DeC Primarily for use with integrated circuits; further details on request.

T-DeCs, S-DeCs and Accessories are all obtainable
from leading suppliers throughout the U.K. In case of difficulty complete the coupon and mall without delay.

Post to:
S.D.C. Electronics (Sales) Ltd.,

34, Arkwright, Astmoor Industrial Estate, Runcorn, Cheshire. Tel: Runcorn 5041

Please send me:

T-DeC Pack \qquad S-DeC Single Pack ..DeCSTOR Pack 4-DeC Pack Tick here if you require further details of the μ-DeC I enclose PO/Cheque/Money Order value $£ /$ / d. Money refunded if not satisfied.

Name.

Address

COMET DISCOUNT WAREHOUSE

M. \& B. RADIO

15a HUNSLET ROAD, LEEDS LS10 1JQ

Telephone: 0532-35649

R210 RECEIVER. Modern 14 miniature valve receiver. $2-16 \mathrm{Mc} / \mathrm{s}$ in 7 bands each 50 in , film strip scale. $10 / 100 \mathrm{Kc} / \mathrm{s}$ xtal calibrator. BFO CW filter. Internal 24 V psu. Supplied c / w handbook and home-made mains psu. £30, carr. 25/-.
VHF MOBILE TX/RX. Miniature valve trans-receiver with 12 V transistor power unit. Double conversion receiver. Xtal controlled but easily converted to tuneable. High or low band models (2 or 4 metres). Please state which when ordering. Positive or negative earth. Supplied c/w circuit and notes. TESTED $£ 9.10 .0$, carr. $27 / 6$.
TRANSISTORISED 2-METRE CONVERTERS. 2 RF stages TRANSISTORISED 2-METRE CONVERTERS. 2 RF stages. £7. I5.9, plus $5 /-\mathrm{pp}$.
12 VOLT TRANSISTOR INVERTERS. Gives 240 V DC at 40 watts. Ideal for caravan fluorescent lighting. $\mathrm{f6}$, plus $7 / 6 \mathrm{pp}$.
Various other transistor inverters. Please send SAE for details.
RADIOTELEPHONE press to talk microphones. Used. $5 / \mathrm{l}$, plus
SPRING LOADED mobile whip base sections. Chrome finish. Brand new. 6/6, plus $1 / 6 \mathrm{pp}$.
GRANADA 4. Transistor amps in cabinet with speaker. Tested. 62/6, plus 7/6 pp.
GPO Telephones with dial, 17/6, plus 6/-pp. Modern style telephone $42 / 6$, plus $6 /-\mathrm{pp}$.
QQV03/10 6/-tested. QQV06/40A 37/6 tested. 800piv 16 amps silicon diodes on heat sink. 6/-, BY128 2/6. $2 \times$ OC35s on heat sink, $10 /$ OC35 on small heat sink 5/-, 1/- pp.
STETHOSCOPE HEADSETS. Brand new. Ideal for stereo or mono. Low imp. $27 / 6$, plus $3 / 6 \mathrm{pp}$.
2-METRE TRANSISTOR P.A. £7.10.0.
Transistor amplifiers, modulators, mic pre-amps. VHF transmitters Scopes. Aerials. Valves. Etc.
TELEMETER. A well finished cabinet containing lots of useful items for the constructor. Tape unit and head, 2 motors, speaker, auto and mains transformers, miniature valve I.F. unit etc. Ideal for stripping or modifying. 77/6 plus 7/6 carriage.
STEREO CABINETS. A beautifully finished polished wood cabinet supplied in original carton. NEW. 47/6 plus 6/6 carr. LISTS 6d., plus SAE

over

Now in its second printing

Radio Communication Handbook

832 pages of everything in the science of radio communication. The Handbook's British origin ensures easy availability of components. The standard work in its field.

69s post paid

R.S.G.B. INTERNATIONAL RADIO

 ENGINEERING \& COMPONENT EXHIBITION
Royal Horticultural Society's New Hall,

Greycoat Street, Westminster, S.W.1.

- Come and see everything in international radio, from a threepenny resistor to a thousand pounds worth of ssb - equipment. The world's Premier Radio Show in London.

OCTOBER 1-4, 10 a.m. to 9 p.m.

Don't miss this one!

Free Publications list, plus free details of the RADIO SOCIETY of GREAT BRITAIN from RSGB PUBLICATIONS 35 DOUGHTY STREET, LONDON, WC1

BIGGEST BREAKTHROUGH IN RADIO KITS!

THE REVOLUTIONARY APOLLO "'6' CAN BE BUILT

SPECIALLY made for the thousands of discriminating people who want the finest easy-to-build radio. . . at a reasonable price! This is a different breed-it will startle you! EIGHT MONTHS AGO our two designers were briefed to produce a radio kit that would fill these technical demands:-DEMAND-A. IT SHOULD BE POSSIBLE TO BUILD PAINLESSLY IN ONE EVENING ANSWER-the Apollo "6" has simplified, well illustrated step-by-step plans.

CONTAINS FEATURES THAT CAN'T BE BOUGHT IN READY MADE SETS—AT ANY PRICE

- receives medium wave \& trawler broadcasts.
- every component brand new-no surplus rejects or "seconds".
- uses latest Silicon Planar Epitaxial Epoxy transistors.
- six stage stable reflex-2 R.F., 1 Diode demodulation, 3 A.F.
- simplified illustrated plans.
- fromparts to programmesin anevening ... PLUS MANY MORE!

No soldering iron is necessary and you don't have to have a magnifying glass and a pair of tweezers. DEMAND-B. IT SHOULD Apollo " 6 " uses latest rugged Silicon Transistor Circuitry and every single transistor, sistor Circuitry and every single transistor,
diode capacitor, resistor, inductance etc. is brand new and fully tested-no surplus parts, no manufacturers
rejects, no manu- FOR facturers"seconds"
and uses "Ever
Ready" battery.
DEMAND-C. ITT
MUSTHAVETHE
POWER TO OPEMUSTHAVETHE
POWER TO OPE-
AL LOUDSPEAKER . . DEMAND -D. IT MUST GIVE GOOD RECEPTION IN DIFFICULT AREAS ... DEMAND-E. IT MUST WORK ON ITS OWN MNTERNAL FERRITE ROD AERIAL - E ETC : ETC. ANSWER-The Apollo " 6 " does all this-and much more!
REVOLUTIONARY ${ }^{\text {Ore! }}$ SILICON PLANAR EPOXY CIRCUIT DESIGN
Apollo "6" will probably be bang up-to-date well into the seventies! it bristles with latest technical innovations. Six stage stable reflex N.P.N. and P.N.P. circuit consisting of 2 Radio Frequency stages, I Diode demodulation stage and 3 Audio Frequency stages. Uses latest Silicon Planar Epitaxial Epoxy transistors (similar to types used in America's Space IRON CLAD GUARANTEE Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full. at once and without quibble or question. .
Project). The first two transistors give amplification of 100 to 400 each, (at only 100 Microamps collector current approx). Output transistor gives amplification

of 235 to 470. Stable reflexing gives the Apollo "6" staggering selectivity, uncanny sensitivity, true-to-life sound reproduction-in fact its range, power and selectivity must be experienced to be believed.
Enter a new magic world of reception-station after station (home and abroad).
THRILLING SOUND OF AN SOS AT SEA Listen to the thrilling sound of an SOS at sea-tune in to a world you've never heard before . . . NOTE. Because members of our own Staff (and their friends) are enthusiastic and have already bought Apollo " 6 " parts we know demand will be enormous. DON'T DELAYSEND FOR YOURS NOW, send $59 / 6+3 / 6$ P. \& P. for all parts, illustrated plans, personal listening earpiece etc. (all parts can be bought separately)
MONEY BACK GUARANTEE (see panel).
Orders despatched in strict rotation.
(Dept. PW4) 18 Little Preston St, Brighton, 1. Sussex.

NEW! HSL. 700 MONO TRANSISTOR AMPLIFIER

panel. AD161-AD162 operating
in symmetrical complementary pair. Output transformer coupled to 3 ohm and 15 ohna speaker sockets. Atandard phono input cockets. Ful wave brige rectifer power supply ior AC matis $200-240 v$. Controls; Basa, Trebio,
Volome/on/ofl. Function selector for PU1, PU2, Tape, Redio. The HiLL, 700 ts strongly constructed on rigid steel chasals bronse hammer enamel finish, etse $91 \times 5 \times 4+$ in. Portormance figures:
Sensitivity : PUJ- $60 \mathrm{~m} / \mathrm{v}$. 66 K input Impedance.
PU2-110m/v, 1 meg input hopedance.
Tape- $110 \mathrm{~m} / \mathrm{v}, 1$ meg input impedance.
Output power measured at $1 \mathrm{Kk}-6.2$ watt RMM into 3 ohons, 6.8 watis RMS into 15 ohm. Overall trequency res. pomse $30 \mathrm{o} / \mathrm{edb} \mathrm{Kc} / \mathrm{s}$: Continuously variable tone controbs; -10 db at $10 \mathrm{Kc} / \mathrm{s}$. The H8L. 700 hss been designed for true high fidelity reproduction from Radio Tuner, Gramophone deck and Tape Recorder preamp. Suppled ready built and teated, complete with knobs, attractive anodised stuminium front escutcheon panel, full circuit diagram and opersting instructions.

LOUDAPEAXER BARGAINS
5in. $8 \mathrm{ohm} 18 /-$ P, \& P. $3 / \cdot .7 \times 4 \mathrm{in} .3 \mathrm{ohm} 21 /-\boldsymbol{P}, \& P$.
 $131 \times 8 \mathrm{tn} .3 \mathrm{olm}$ with bigh fux ceramic magnet $48 /-$
 with two inbalt tweeters sand crososorer net work 4 gns . P. \& P. $6 /$.

BRAED IEW. 12 in . 15 w . H/D speakers, 3 or 15 ohmas. Current production by well-known British maker. Now Whth Hifux ceramic terrobar magnet assembly 85.10.0. P. \& P. 7/8. Gultar modela : 25 w . $86.0 .0,35 \mathrm{w}$. \$8.0.0.

EY. Y. 8 tin. EIRAVY DUTY TWINETERS. Powerful ceramic mafpet. Avalable in 3 or $8 \mathrm{ohm} 15 /$ each; 15 ohms 18/6 each. P. A P. 2/6.
181n. "RA" TWIM OONE LOUDSPRAKERR. 10 watts peak bandling. 3 or $16 \mathrm{ohm} 87 / 6$. P. \& $P, 6 / \mathrm{F}$

ThTH Coletion RPEDLAL OFPTR
 P. \& P. $8 / 8$.

QUALITY PORTABLA TAPE RECORDER OASE. Brand new. Bemutifully made. Only 49/6. P. \& P. 8/6. DUAL PUPPOE BULK TAPR ERABER AND TAPE

OPTBTAL Mrikis. High imp, for desk or hand use. High gensitivity. 18/6, \boldsymbol{P}. \& $\mathcal{P} .1 / 6$.
HIGE MPPEDANOE ORYBTAL STIOX MIEES. OUR PRICE ${ }^{1} /-$. P. \& P. 1/6.
g.T O. TYPE 85 MILATURE RRLAY8-48 volt. 4 $/$ /p,

SPROLAL ORTAR! PLIEAET TYPT 89 TWIN TUING GANG. $400 \mathrm{pH}+146 \mathrm{pF}$. Fitted with trimmers and 6:1 integral slow motion. Sultable for nominal $470 \mathrm{kc} / \mathrm{s}$
I.F. Bise approx. $2 \times 1 \times 1$ in. Only $8 / 6 . \mathrm{P}$. \& $\mathrm{P} .2 / 6$.

BRAMD FIW IULTI-RATIO MATM8 TRANSFORMERS
Giving 13 adternativen. Primary: $0-210-240 \mathrm{v}$, Secondary combinations. $0-5-10-16-20-25-30-36-40-60 \mathrm{v}$, half wave combinations. $0-6-10-10-20-20-30-36-90-60 \mathrm{v}$. hall wave Wave. Bise 8 in. long $\times 8$ 8in. Wide \times 3in. deep. Price $88 / 6$. P. \& P. 6/-

MATE TRAMEPOMEBR For transiator power supplies. PTI. $200 / 240 \mathrm{v}$. Bec, $9-0-9$ gt 500 mA . $11 / \mathrm{F}$. \& P. $2 / 6$.
 BRADD netw raiti Transpormirng for Brtdg Reotlder. Pri. $240 \mathrm{v}, \mathrm{AC}$ gec. 240 v . at 60 mA and $6 \cdot 3 \mathrm{v}$, at $1 \cdot 1 \mathrm{amp}$. Stank lise $2 \frac{1}{} \times 1 \times 2 \mathrm{j} \mathrm{m}$. 10/6. P, \& P. $3 / 6$. (Epeclai quotations for quantities.)

HIGH GRADL OOPPLR LAMTNATE BOARDS

Open all day Saturday

 Early closing Wed. 1 p.m. A fow minutes from soult Wimbledon Trube stationTRANSISTOR STEREO $8+8$ MK It

Now using Billicon Transistors in firat five atages on each channel renulting in even lower nolse level with improved sensitivity. A really first-clasg Hi-Fi itereo Ampilfier Kit. Uses 14 transistora giving 8 watts push pull output pe channel (16W. mono). Integrated pre-amp. with Basa, Treble and Volume controls, Sultable for use with Ceramic or Crystal cartridges. Output stage for any peakera from 3 to 15 ohms. Compact design, all parta upplied includlng drilled metal work. Ctr-Kit bosrd, siractive front panel, Enobs, wire, solder, nuts, boltsno ertras to buy. simple step by step instructions enable Brief specification: Freq. responis $+3 \mathrm{~dB} .20-20,000 \mathrm{ch}$ Bass boost spprox. to +12 dB . Treble out approx. to -1 bdB. Negative feedback 18 dB over main amp Power requirements 25 V at $\cdot 6$ amp.
PRICHE: AMPLIFIER KIT E10.10.0; POWER PACK KIT 88.0 .0 ; CABINET 88.0 .0 . All Post Free.
Also avallable GTEREO $10+10$. As above but 10 watts per channel. PRICES: AMPLIFIER KIT 318 , POWEF PACK KIT \&3.10.0.
reul

Onficial stockists of al
PEAK BOUND HI-FI EQUIPMENT
Including the
P.W. DOUBLE 12 sTEREO AMPLIFIER as featured in Practical Wireless April, May and June issuea. Component pack as specifled. Total cost ess8.5.6 Plus P. \& P. $11 /$-. (Excluding metalwork, knobs, plugs
and societs and tuses.)

SPECTAL PORCHASE
EM.I. 4-SPRED PLATER Heavy 8\%in, metal turntable. Low flutter performance 200 / 250 v. rhaded motor (90 v. tap). Complete with latert type lightweight pick-up arms and mono cartridge with tio
tyli for LP/78. ONLY $68 / \%$ P. \& P, 6/6.

QUALITY RECORD PLAYER AMPLIFIER MEII A top quality record player amplifier employing heavy duty double wound maina tranaformer, RCC83, EL84, RZ80 valves. Beparate Bass, Treble and Volume controbs.
Complete with output transformer matched for 3 ohm Complete with output transformer matched for 3 ohm
speaiker. gize 7 in, wide $\times 3$ in deep $\times 6$ in. high. Ready bullt speaker. Rile 7 in, wide \times sin deep $\times 6 \mathrm{in}$
and teated.
and tested. PRICE 75/-. P \& P. 6/-.
ALSO AVAILABLE mounted on board with output ALso AVAILABLE mounted on board Fith output PRICE 97/8. P. \& $\boldsymbol{P}, 7 / 6$. DELUXE QUALITY PORTABLR R/P CABNKET MKII Uncat motor board alae $14 \frac{\times 12 i n}{}$, clearance 2 in . below. 5 hn above. Will take above ampilier and any B.B.凡. or GARRARD autochanger or Single Player Unit (except
AT60 and BP26). Size $18 \times 15 \times 8$ in. PRICB 79/6.P \& P.9/6.

8-VALVE AUDIO
 Deangned ror Hi-F reproduc-
tion of records. A.C. Mans operation. Rendy built on plated hesvy gauge metal chassin, sixe 71 1° w. $\times 4^{\circ} d, \times$ 4tíh. Incorporates ECC88, KL84, EZ80 valves. Heavy duty, double wound mains fransformer and output transspeaker, Beparate volume control and now with improved wide range tone controls giving bass and treble lift and cut. Negative feed back line. Output if watts. Front panel can be detached and leads extended for remote mounting of controle. Complete with knobs, valves, etc., wired and tested for only P4.15.0. P. \&P, ${ }^{\text {P/ }}$
HSL "FOUR" A PMLDIER EIT, Bimilar in appearance to HA34 above but employs entirely different and advanced
circuitry. Complete set of parte, etc. $79 / 6$. P \& P. 6/-.

BRAMD NEW TRANGISTOR BARGAINS. GET 15
 AF1178/8; 2G339 (NPN) $8 /-$
Set of Mullard 6 tranalstors OC44, 2-OC45, AC128D matched pair AC128 25/-; ORP12 Cadmium Sulphide Cella 10/6. All pot free.
VYAAIR AND REXINE GPRAKIRR AND CABINEI FABRICS. Approx, 54in. Fide. Usually 85/- yard. Our PRICE $13 / 6$ per yard length. P. P. $2 / 6$ (mll. one yd.) B.A E. for samples.

BRAND NEW! PARMEHE MAINS TRAMGYORMERE Primary $110 \mathrm{v}-250 \mathrm{v}$. Secondary $380-0-830 \mathrm{v}$. 100 mA and 0.3 v at 2 amps, 6.3 v at 2 ampt and $8 \cdot 3 \mathrm{v}$. at 1 amp. Con-
sorvatively rated. Fully impregnated Electrostatic screen. Suitable for vertical or drop through mounting. Overall Suitable for vertical or drop through mounting. Overall
alze $4 \frac{1}{x} \times 34 \times 34 \mathrm{~lm}$. Weight 8 lb . Llmited number only at
$87 / 6$. P. \& P, $8 /-$.

DE LUXE STEREO AMPLIFIER

 \times Ez80 as tall up: $-2 \times$ ECLL86 Triode Pantodes. ren trele voed for bang and treble control, glving base and treble borat and cut. A Dual volume oontrol is used adjusted by means of a separate ' Balance' control can be at therear of the chate Inpur seneltivity te control fitten $300 \mathrm{~m} / \mathrm{v}$. for tull pealk output of $\&$ watte per ehannel (8) watto mono), into 3 ohm apeakers. Fuli negative feedback in wearefully calculated ctrcuit, allows high volume levela to be ued with negligible diatortion. Supplied complete Ith knobs. Chasis aize $11^{\prime \prime} \times 4{ }^{\prime \prime} \mathrm{d}$. Overall heigh ncluding valves 5°. Ready built and teated to a bigh standard. PRIOE 8 gnll. P. \& P. $8 /$

4-SPEED RECORD PLAYER BARGAIM

B.8.R. UAPs with latest mono oompatiolo cart. packing All plua Carriage and Faling $6 / 6$
LATEST GARRARD MODRLS. All types avalleblo 1025 8025, BPP5, 8000, AT60 ato. 5ond 8AME for latest Pricen PLINTH UNITY cut out for Garrard Modela, 1025, 2025 2000, 3000, AT60, 9P25. W1th transparent plastic cover OUR PRICE I gns. complete. P \& P. 8/6.
LATEST RONETTE T/O STRREO/COMPATIBLE CARTRIDGE for EP/LP/Btereo/78. Only ze/B. P. \& P. 2/LATEET RONETTE T/O MONO OOIPATLBLE CARTRIDGE for playing EP/LP/78 mono or Etereo recordi on mono equipment. Only $80 /=$. P. \& P. $2 /$.
sonotone orarid compatible Btereo Cartridge with diamond atylus $50 /$. P. \& P. 2/-
EEW ONLY 1 ACOS High-G for EP and LPP. Only 10/P. \& P. 2\%.

printed circuit panel slse $6 \times 3 \mathrm{~m}$

- Generous alze Driver and Output Tranalormers. - Output traniformer tapped for 8 ohm and 15 ohm and matched palr of 10108 orer and matched palr of ACl28 o/p). 9 volt operation. - Comprehensive easy to follow matructions sad dircuit diagram $8 / 6$ (Free with Kit). All parta sold meparately. SPZOLAL PRICE 45/-. P. \& P. 8/
Also ready built and teated, 6s/6. P. \& P. $3 / \mathrm{m}$

HARYERSON'S SUPER MONO AMPLIFIER

 A maper quality gram ampllfer using a double wound mains transformer, EZ80 rectifier and FCL89 triode pentode valve as audto amplifer and power output diage, onence 3 ohms. Output approx. $8 \cdot 6$ watts. Volume 8 kn . Brand New completely wired ind teuted with zalve and good quality output transformer, FWW ONLY.OUR ROCK BOTTOM
BARGAIN PRICE
49/6 ${ }^{\text {Patit. }}$?

match 8-15 0 speakerion Found output tranaformer to and soparate base and treble controlis are provided aiving good lift and cut. Valve line-up 2EL84s, ECCA8, EF86 and EZZ 80 rectlfer. Simple Instruction boothet $2 / 6$ (Free with parts). All parts sold tepartoly. ONLY 87-9.6. P. \& P, 8/6. Also avallable ready built and tested complete with atc.
input socliets. $\mathbf{~ a . 5 . 0 . ~ P . ~ \& ~ P . ~ 8 / 6 . ~}$

There are Catalogules

 AND Gatalogues!
OIIF IS THIS kind...

the kind that's

INDEXED THOROUGHLY. F'rinstance "Aerials Telescopic" under " A " and "Telescopic Aerials" under " T ".

PLANNED LOGICALLY. Having over 8,000 items it needs to be! Components are listed alphabetically in logical sections.

ILLUSTRATED PROFUSELY. Over 1,800 pictures. Some are photos, some are drawings, but all clearly show the features you look for.

PRINTED CLEARLY. No eyestrain here. Large easy-to-read type, on 330 sensible-size pages- $9 \frac{3}{4} \times 7 \frac{1}{4} \mathrm{in}$. (ignore our artist's enthusiastic exaggerationl)

BOUND SECURELY. This catalogue is bound to receive long and frequent use. Glossy laminated covers don't show fingerprints, don't tear easily.

PRICED REASONABLY. Just 8/6d plus $3 / 6 \mathrm{~d}$ for post, packing and insurance. Folk tell us it's worth twice the pricel We quite agree.

By the way, every Catalogue contains six Vouchers, each worth 1/- when used as directed, and we supply free a 30-page Price Supplement, a Bookmark giving electronic abbreviations and, of course, an Order Form.

POST THIS COUPON NOW with cheque or P.O. for 12/-

[^1]

TOPIC DF THE MONTH

Them-and us

MAGINE, if you can, a radio, TV and audio exhibition at which the general public (some 700,000 of them) are encouraged to enter into the spirit of the event by seeing rehearsals of favourite TV and radio shows, meet show business personalities, and even try out their own talent (or lack of it) in front of the cameras. Add to this studios for hi-fi dems., displays of telecommunications equipment and special features for the amateur radio enthusiast.

Then consider colour TV promotion which includes a $7,500 \mathrm{sq} . \mathrm{ft}$. screen showing colour shots of the exhibition scene, and colour programmes of shows and amateur talent displayed throughout the exhibition in special viewing lounges. For good measure, let us also imagine supporting social activities such as fashion shows, promenade concerts, cable car trips, a miniature railway, and an amateur dancing contest. Not forgetting the static displays mounted by 120 manufacturers.

No, this is not an LSD-inspired fantasy. It is this year's German Radio Exhibition at Stuttgart. And while the Germans justifiably grow prosperous on expanding sales, our own dull and unimaginative industry slithers further into the doldrums, admittedly hindered by restrictive Government measures, and reduced to an uncoordinated splatter of exhibitions in hotel suites which are held together only by the vague concept of "traditional show time" yet from which, perversely, the paying customers, the general public, are strictly barred.

With colour on three channels imminent and extended v.h.f. radio in the offing, to name just two selling tags, the industry is missing an opportunity it seems foolish to ignore. From the outside it appears that they don't want the business.

There is, however, one crumb of comfort to readers of P.W. We still have the RSGB exhibition. It does not have the glamour of a Stuttgart or the glitter of our erstwhile public radio shows, but it stands unrivalled as an exhibition and social get-together combined, where everyone you meet is interested in amateur radio. Make a note in your diary-October 1-4 inc.and support the one event still left. P.W. will be there; we hope you will be, too.
W. N. STEVENS-Editor.

NEWS AND COMMENT

Leader387News and Comment 388
On the Short Wavesby Malcolm Connah anaDavid Gibson, G3JDG401
Practically Wireless by Henry 408
Letters to the Editor 424, 426
Your Questions Answered 438
CONSTRUCTIONAL
Audio Signal Generator by C. John Courtney 390
Mono-Stereo Amplifier by James Hossack 396
Adding Squelch
by C. R. Bradley 409
Medium Wave DX Receiver by D. Gibson, G3JDG 412
Take 20, One transistor radio by Julian Anderson 418
Beginner's TransistorCapacitance Bridgeby Keith Johnson429
A Versatile Intercom System, Part 3
by J. E. Barrett 437
OTHER FEATURES
Printed Circuit Design by A. G. Blewett 394
Pulse Circuits in Operation, Part 5 by I. J. Kampel 405
Basic Semiconductor Technology, Part 5
by M. F. Docker, M.Sc. 416
P.W. Guide to Components, Part 10
by M. K. Titman, B.Sc. 419
NOVEMBER ISSUE WILL BE PUBLISHED ON OCTOBER 3rd

[^2]
broadcasting in the 'SEVENTIES-BBC RESHAPING PLAN

The BBC plan for reshaping radio in a way planned to best meet the requirements of the 1970s has now been submitted to the Postmaster-General for approval. It features improved m.w. coverage, a further step towards v.h.f. expansion and a scheme for setting up a 40-station local broadcasting network.

A high priority in the plan is to improve m.w. coverage of Radio 1 and Radio 4 and this is to be achieved by making better use of m.w. channels released by discontinuing Radio 3 on m.w. and by eliminating the English Regional "opt-outs" from Radio 4 which will be no longer needed with the proposed new network arrangements.

Radio 1: This is planned as a popular music programme with news summaries on the half-hour, transmitted on m.w. only. Despite reallocation of frequencies there will continue to be night-time interference from Continental stations, but the new plan will make Radio 1 available to $4 \frac{1}{2}$ million more people.

Radio 2: Light music programme with news summaries on the hour, transmitted on l.w. and v.h.f. The l.w. coverage is 98% during the day and 83% at night, a situation it will be difficult to improve upon. A BBC spokesman told PW that a good deal of stereo is planned for the v.h.f. channel.

These two networks will be kept separate during the daytime and possibly late in the evening but will combine during the main evening periods.

Radio 3: This is to be shifted completely to v.h.f., but the BBC assures us that a m.w. facility will be available until such times as the m.w. outlets can be phased out. Programmes will consist of mainly classical music with some drama and speech in the evenings.
Radio 4: Mainly speech, with emphasis on news and current affairs, and with plays, discussions and light entertainment, to be transmitted on m.w. and v.h.f. Night-time reception on the m.w. band will be improved for some 11 million people; the daytime coverage being substantially total.
It is proposed that the v.h.f. transmitters should also be used part of the time for the Open University ($28 \frac{1}{2}$ hours per week) and the schools and further education programmes (5 hours per week); the m.w. transmission of these latter would then be discontinued.

This complete overhaul of the m.w. services is estimated to cost some $£ 400,000$, phased over two years, including the construction of a new 150 kW station at Stagshaw.

Audiences: Some interesting figures have been supplied by the BBC on listening habits. For Radio 1 and 2 the main audience is during daytime, between 0700 and 1500 , peaking to 14 million. After 1500 the audience tails off to an average of 1 million in the evenings. Radio 4 peaks to 7 million at 0800 and 1400 and again at 3 million at 1800 . Radio 3 has an average audience of only 100,000 , but this is quite evenly spaced throughout the hours of
broadcasting.
Local Radio: One of the main proposals in the plan is to expand the present experimental group of 8 v.h.f. local broadcasting stations to a system of 40 stations reaching nearly 90% of the population of England. This would be basically a v.h.f. service but during the transitional period some m.w. support may be provided. The first phase would be to launch 20 stations, covering 70% of the population, within a year of approval.
Additional v.h.f. channels would be required to accommodate the complete chain of stations. These would be in the band of $95-97.6 \mathrm{MHz}$ in which the BBC now only have 7 frequencies, the remainder being used for nonbroadcasting services. These are being cleared gradually and will be completely free within five years. The type of local stations envisaged by the plan will have an e.r.p. of 5 kW and will cost around $£ 80,000$ each.

Although these local stations would broadcast local news, information and commentary programmes, it is anticipated that many would want to carry the Radio 1 broadcasts as a main evening sustaining programme. Provision has been made to arrange this facility.

Fourth V.H.F. Service: The band $97 \cdot 6-100 \mathrm{MHz}$ is now used exclusively by non-broadcasting services. It is planned to make these eventually available for a fourth national BBC v.h.f. network at a capital cost of $£ 4$ million.

Drive Against Car Radio Licence Dodgers

A huge drive against car radio licence evaders is likely in the near future. A recent estimate gives the number of car radios at over 3 million, yet only a third of that number of licences have been issued.
At present a licence is required only if the radio is a fixture in the car, that is permanently installed and powered by the car battery; ordinary portable radios,
even if they use a proper car antenna, have been exempt. It is probable that this anomaly will disappear and licences will be necessary whenever a radio is used in a vehicle. The cost of a car radio licence is available for 25 s. from major post offices.

$$
£ 1,000,000,000
$$

This is not the first prize for spotting all the mistakes in News and Comment but the output of the British electronics industry during 1968. The actual output
rose 19% over the previous year to reach a figure of $£ 1,047$ million.
Of this, exports and re-exports totalled $£ 222$ million while imports were worth $£ 196$ million. Consumer electronics are of course only a small part of the total industry and accounted for just under $£ 150$ million. The armed forces were the single largest customer spending $£ 142$ million. Computers and related equipment totalled $£ 110$ million of which $£ 39$ million was exported.

P. F. and A. R. Helme have been appointed sole UK distributors for Peerless Fabrikkerne A/S of Denmark. The company is the largest speaker manufacturer in Scandinavia and amongst their range are a wide variety of speakers, crossover networks and speaker kit systems.

Illustrated above is the Peerless 2-8 which consists of a $6 \frac{1}{2} \mathrm{in}$. woofer and $2 \frac{1}{2}$ in. tweeter. Frequency response is claimed as $50-18,000 \mathrm{~Hz}$ with a handling capacity of 8 watts. Price, less cabinet and baffle board is $£ 67 \mathrm{~s} .10 \mathrm{~d}$. The impedance of the entire range is 8Ω.
P. F. and A. R. Helme, Summerbridge, Harrogate, Yorks.

IC FM TUNER KIT

The first f.m. tuner available in kit form using i.c.s. with pulse counting techniques is being marketed by General Avionic Associates Ltd.

The circuit was developed by Marconi-Elliott Microelectronics in conjunction with the distributors. The pulse counting technique eliminates the need for complex discriminator and i.f. transformers and removes the problems associated with the alignment and stability of this type of receiver.

The tuner has built-in automatic frequency control (a.f.c.) and with the inherent stability
of the i.c.s. a reliable and easily set up circuit is offered to the home constructor. The circuit in effect contains 44 transistors including those in the integrated circuits and although a fairly high number of discrete components are used, the entire tuner is built on a board measuring approx. $4 \times 5 \frac{1}{4}$ in. The price of the complete kit is $£ 919 \mathrm{~s}$. 6d. plus 5 s . postage from General Avionic Associates Ltd., 9 Wimpole Street, London, W.1.

HI-FI AND RADIO AMATEURS COURSES

The Brentford Centre for Adult Education is running two courses starting in late September which will be of interest to readers. The first deals with $\mathrm{Hi}-\mathrm{Fi}$ and Tape Recording which includes both theory and construction; the series will include a section on film sound recording. The Radio Amateurs Course prepares students for the City and Guilds examination which qualifies successful candidates to become licensed "Hams".

Enrolment is in mid-September; further details from the Adult Education Office, Hounslow Manor School, Holloway Street, Hounslow.

Sony Radio TFM 8o3oL

New to the Sony range of portable radios is the TFM 8030 L a three band portable designed especially for the British market. At a recommended retail price of $£ 29$ 15s. 0d., the radio covers m.w., l.w. and v.h.f. bands-in the case of the latter a.f.c. is incorporated. It will operate from three power sources, internal battery, car battery or from a.c. mains using an optional adaptor. The case is finished in a black padded leatherette.

TWO NEW TUNER-AMPLIFIERS

Two new stereo tuner-amplifiers (it seems wrong to call them radios) will be available from late August from Armstrong Audio Ltd. The 525 FM is a v.h.f. only model, while the 526 AM-FM (illustrated) includes coverage of the medium and long waves.
Both models have an excellent specification: power output of 25 watts per channel; inputs for magnetic and ceramic pickups and tape playback; tape recording and headphone outputs; bass and treble controls; bass and treble filters; a loudness control and tape monitor. There is a suppression control for f.m. inter-station noise and automatic mono-stereo switching on f.m.

The recommended prices are $£ 87$ 16s. 9d. for the 525 FM and $£ 9815 \mathrm{~s} .6 \mathrm{~d}$. for the 526 AM-FM.

IIANY circuits for sine-wave audio signal generators have appeared in the popular technical journals but few with both sineand square-wave output have ever been presented particularly in simplified form and suitable for home construction from readily available components. This design (Fig. 1) is based on a transistorised Wien bridge oscillator published some time ago by Mullard Limited. The original circuit employed p-n-p transistors and delivered a sine-wave only output of approximately 1 V r.m.s. The writer has retained the original Wien bridge circuitry which has been suitably modified for operation with silicon $n-p-n$ transistors (except Tr 2) and to which has been added a squaring circuit, switching for sine- or squarewave output and an attenuator network.

CIRCUIT DETAILS

The oscillator employs a Wien bridge network with fixed capacitive elements, frequency variation over the range 15 to $100,000 \mathrm{~Hz}$ being obtained by varying the resistive elements (VR1 and VR2).

audio signal win generator
 C. JOHN COURTNEY

The n-p-n/p-n-p pair of transistors $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ between them form a high gain amplifier coupled to a n-p-n emitter follower. Feedback is provided by the unbypassed emitter resistors of Tr 1 and Tr 2 and also via the thermistor (TH) between the output and the emitter circuit of Trl. The thermistor also ensures constant amplitude output regardless of small variations in supply voltage and temperature.

For sine-wave output the signals are taken from the emitter of Tr3 via S3 and S4 to VR3 which is the variable section of the output attenuation network formed by $\operatorname{Tr} 7$ (emitter follower) and the switched ladder attenuator R17, R18, R19, R20 and R21. This switched attenuator allows r.m.s. output levels of 1 volt, 100 mV and 10 mV , each range being continuously variable from zero to maximum. The variable attenuator VR3 is a linear control so that with a dial calibrated $0-10$ the output signal levels can be determined with reasonable accuracy.

For square-wave signals, an overdriven amplifier (Tr4 and $\operatorname{Tr} 5$) has been employed ending with an emitter follower (Tr6). Note that the large value coupling capacitors (C12 and C13) are essential for

Fig. 1: Complete circuit of the sine and square wave audio signal generator.
a perfectly uniform square-wave right down to 15 Hz . The square-wave signal from $\operatorname{Tr} 6$ is switched via S 4 to the output network. The adjustment of the pre-set resistors VR4 and VR5 will be dealt with later.

The generator could be operated from batteries (12 V) since the total current is only 30 mA . An incorporated power supply does however ensure a constant voltage and is more economical if the generator is to be run for long periods. No stabilisation is necessary as the thermistor (TH) takes care of small fluctuations in supply voltage. However, more than adequate smoothing is essential to reduce a.c. ripple to an amount which can be considered as negligible, hence the use of the large reservoir and smoothing capacitors C 15 and C 14 respectively.

CONSTRUCTION

The prototype shown in the photographs was constructed to fit comfortably into an Electroniques Dinki-case type DD6106. A case of similar dimensions $10 \times 6 \times 6 \mathrm{in}$. could of course be constructed from aluminium or mild steel. Details for drilling the front panel are given in Fig. 2 and for the mounting of components on the panel in Fig. 3. The two transistor and components boards are also attached to the front panel as in Fig. 4 by means of aluminium angle $\frac{1}{2} \times \frac{1}{2}$ in. Plain Veroboard with a $0 \cdot 15 i n$. matrix is used for the component boards. Component board 2 contains the transistors and components for the squaring circuit (TRs, 4, 5 and 6) and the output stage $\operatorname{Tr} 7$. The output attenuator network resistors, R17, R18, R19, R20 and R21 are wired directly to the switch S 5 . Component board 1 contains the Wien bridge oscillator Trl, Tr 2 and Tr 3 and appropriate components including the thermistor TH. Board 2 measures $4 \times 3 \frac{3}{4} \mathrm{in}$. and board $1,44 \times 3 \frac{3}{4}$ in.

Fig. 2: Front panal dimensions and drilling details.
The power supply chassis is simply a small sheet of 16 s.w.g. aluminium mounted on pillars or threaded rod so as to clear the panel components beneath it (see Fig. 3). Some idea of the layout for components on the two boards and for the power supply can be obtained from the photographs. VRI and VR2 however call for comment regarding the wiring. To obtain the requisite increase in frequency with clockwise rotation VR1 and VR2 must be wired as shown in Fig. 5. Note that RX which is

Fig. 3: Layout of panel components, viewed from rear. The power supply panel is shown on right.

Fig. 4: The two transistor and componont boards are attached to the front panal as shown on loft. Details of the Perspex dial cover are also shown.

The above photograph shows the internal view of the assembled instrument and below, befors the power supply unit is fitted.

nominally 680 ohms is wired directly to VR1.
In order to give the finished instrument a nice appearance a circular Perspex cover was made for the frequency dial. This is optional of course and could be cut from celluloid or clear cinemoid. For the original, as shown in the photographs, $\frac{1}{8}$ in. thick Perspex was used; the $4 \frac{1}{4} \mathrm{in}$. disc being first cut with a fretsaw. The disc was then mounted on an electric drill and the edge smoothed and bevelled with a Surform tool. The hair-line pointer was also fashioned from $\frac{1}{8} \mathrm{in}$. Perspex and fitted to a $1 \frac{1}{2} \mathrm{in}$. diameter control knob.

ADJUSTMENT AND TEST

First ensure that the Wien bridge section is operating correctly and producing a pure sine-wave. This can only be done correctly with an oscilloscope for although a small error in wiring or a faulty component might not stop the oscillator from working, one or the other could be the cause

Fig. 6: Layout and wiring of the power supply.
of a poor waveform. The maximum output signal should be 1 V r.m.s. plus or minus a few milivolts but can only be accurately checked with a

Fig. 5: Showing front panel wiring and layout.
 valve voltmeter. To obtain an accurate 1 V r.m.s. sinewave output signal level some adjustment to the value of the nominally 82 ohm resistor Ry in series with the thermistor TH may be necessary. However, this should not be increased to greater than 120 ohms otherwise the waveform will become distorted.

The square-wave mark/ space ratio is controlled by VR4 and again an oscilloscope is necessary to check the waveform. VR4 should be adjusted to obtain a 1 to $1 \mathrm{mark} / \mathrm{space}$ ratio. The output from the squaring circuit is pre-attenuated by VR5, which should be adjusted to obtain 1 volt

Fig. 7: Layout and wiring of component board 2 (oscillator). All transistor connections are viewed from the underside.

Fig. 8: Component board 1 layout and wiring (squaring circuit and emitter follower output stage).
r.m.s. at the generator output socket with the switched attenuator S 5 in the 1 V position and VR3 fully clockwise

The preceding tests are best made at a frequency of $1,000 \mathrm{~Hz}$ as the settings of the controls should then hold good for the full frequency range of the generator. It is possible however, that the output attenuator network may require some adjustment, i.e., a small variation of R18 and R19 may be necessary to obtain an exact 100 mV and 10 mV respectively with VR3 fully clockwise. Otherwise the output voltages should be within $\pm 5 \%$ of the rated output using the resistor values quoted.

\star components list

Resistors:			
R1	$3 \cdot 9 \mathrm{k} \Omega$	R13	$2 \cdot 2 \mathrm{k} \Omega$
R2	820Ω	R14	$5 \cdot 6 \mathrm{k} \Omega$
R3	$1 \cdot 2 \mathrm{k} \Omega$	R15	22k Ω
R4	82Ω	R16	560Ω
R5	$5 \cdot 6 \mathrm{k} \Omega$	R17	680Ω
R6	$5 \cdot 6 \mathrm{k} \Omega$	R18	$5 \cdot 6 \mathrm{k} \Omega$
R7	$1 \mathrm{k} \Omega$	R19	$6.8 \mathrm{k} \Omega$
R8	68Ω	R20	680Ω
R9	$47 \mathrm{k} \Omega$	R21	680Ω
R10	$2 \cdot 2 \mathrm{k} \Omega$	R22	270Ω
R11	$1 \mathrm{k} \Omega$	RX	680Ω (see text)
all $10 \% \frac{1}{4}$ watt.			
Potentiometers:			
VR1/VR2 $10 \mathrm{k} \Omega+10 \mathrm{k} \Omega$			
Colvern CLR5018/15F type G			
VR3 5		ire w	und
VR4, VR5 $10 \mathrm{k} \Omega$ miniature pre-set			
Capacitors:			
C1 $1 \mu \mathrm{~F}$ pa			
C2 $0 \cdot 1 \mu \mathrm{~F}$			
C3 $\quad 0.01 \mu \mathrm{~F}$			
C4 0.001μ			
C5 $\quad 1 \mu \mathrm{~F}$ pa			
C6 $\quad 0 \cdot 1 \mu \mathrm{~F}$			
C7	$0.01 \mu \mathrm{~F}$		
C8	$0 \cdot 001 \mu$		
C9	1000μ	elect	olytic
C10	$500 \mu \mathrm{~F}$	lectro	ytic
C11	$250 \mu \mathrm{~F}$	lectr	lytic
C12	1000μ	elect	olytic
C13	1000μ	elect	olytic
C14	5000μ	elec	olytic
C15	2000 μ	elec	olytic

Semi-conductors:
Tr1, Tr3 BSY51
Tr2 OC72
Tr4, Tr5, Tr6, Tr7 BCY42
Switches:
S1/S2
S3/S4
S5
two-pole four-way rotary two-pole two-way slide single-pole three-way

Miscellaneous:

Case (see text) $10 \times 6 \times 6 \mathrm{in}$.; Thermistor TH, STC type R53; H.T. transformer T1, Henry's Radio type PS12; H.T. rectifier MR, Henry's Radio type 1 H3 contact cooled; $0 \cdot 15 \mathrm{in}$. matrix plain Veroboard.

Frequency range	Range 115 to 150 Hz .
Sine-or square-wave:	Range 2150 to $1,500 \mathrm{~Hz}$.
	Range 31,500 to $15,000 \mathrm{~Hz}$.
	Range 415,000 to $100,000 \mathrm{~Hz}$.
Output level:	Max. 1 volt r.m.s. with attenuation to 100 mV and 10 mV . Each range continuously variable.
Sine-wave:	Distortion less than 0.75\%.
Square-wave:	Uniform 15 to $100,000 \mathrm{~Hz}$. Rise time better than 1 microsecond. Mark space ratio 1 to 1.
Output level:	$\pm 0.5 \mathrm{~dB} 15$ to $100,000 \mathrm{~Hz}$. Sine-or square-wave.
Output impedance:	Nominal 600 ohms.
Note: Output load mus 1 volt range.	not be less than 600 ohms on the

Fig. 9: The calibrated dial. This may be scaled-up to $4 \frac{1}{4} \mathrm{in}$. diameter to give actual size.

CALIBRATION

The calibration of testing instruments always presents a problem unless one has another by which to check. For really accurate calibration it will be necessary to employ another generator and an oscilloscope and use the Lissajous pattern method to determine the requisite spot frequencies. This is how the prototype of the generator described here was calibnated and from which the dial given in Fig. 9 was obtained. Note that a small adjustment to frequency can be made by variation of RX (nominally 680 ohms).
continued on page 395

PRIITEE EIRC비T. Design
 A.G:BLEWETT

IIOME-built transistor designs are invariably built on some form of printed circuit, the tendency these days being to use the readily available SRBP perforated board, or that with copper strip bonded to it.

Although this makes for rapid assembly, the result is by no means professional looking, works out comparatively expensive, and is not as compact as it might be by other means. The copper strip type of board costs about 5 d . per sq. in., whereas ordinary copper laminate board can be obtained at around $\frac{1}{2} \mathrm{~d}$. per sq. in.; 10 times cheaper!

Besides these considerations, a great deal of satisfaction can be gained by designing and preparing a tailor-made printed circuit, the finished job can then be said to be completely "home brewed."

PLANNING AND LAYOUT

In circuits where the capacitance of the copper is not significant, i.e., below v.h.f., such as a.f. low r.f. and switching circuits, almost any layout can be adopted, but the writer has found the best method being to follow the circuit diagram as far as is practical, with regard to the relative positions of components.
Knowing the size of the components, and the required distance between lead-out wires etc., a rough layout and connection diagram can be drawn, full size. All points to be connected together are supplied with this connection in the form of copper "blocks". Figure 2 shows the final design of a Wien bridge oscillator, which is one of the P.C. boards used in the construction of an a.f. sine/square generator, and shows the use of these copper "blocks". The circuit from which the design was evolved is given in Fig. 1. Note that those components not labelled on the theoretical diagram are external to the P.C. board. The drawing in Fig. 2 is shown full size.
The optimum position and size of these copper "blocks" is determined by trial and error, the writer having found that 3 drawings were necessary; (1) the rough layout as per the circuit diagram, (2) the layout drawn as neatly as possible taking into consideration component size and best use of space on the P.C. board, and (3) the final design, which is drawn on tracing paper, having ironed out any anomalies that may have arisen in designs 1 and 2. Difficulty may be experienced where far-reaching feedback paths or cross-connections are required, such as in bistable circuits in the latter case. Here, the best solution lies in using "link" wires, an example of which occurs between the collector of Tr 3 and the emitter of Tr 2 in Fig. 1.

Fig. 1: Circuit of a wien bridge audio oscillator. The points marked A, C, D etc. are explained in the text.

A link wire is used to connect the thermistor and Tr2 emitter together (Fig. 2). Had this not been done, a thin copper strip would have had to be designed to wend its way through the other copper blocks. The link wires go on the side of the board away from the copper.

TRACING AND ETCHING

The laminate board is cut to the required size with a fine saw and the edges cleaned up with a file. The copper should now be scrupulously cleaned using domestic wire wool. Cleanliness at this stage is most important, as any oxide impedes the etching process.

The final design on the tracing paper is then lined up on the board, and with carbon paper interposed between paper and board, the design is traced to the copper. During this process the paper can be folded and stuck at the back with Sellotape, to hold it steady on the board. There is no need to mark the position of the holes at this stage. Transparent tape (Sellotape) is then stuck in strips over the copper, so as to cover it completely. The board can now be handled with no danger of the design being rubbed off.

Using a steel rule and a sharp modelling knife, the areas to be retained after etching (the blocks) are now cut out, and can be removed with a pair of
tweezers. Care should be taken to apply only such pressure to the knife that is required to cut the Sellotape, and not mark the copper underneath excessively.

The copper side of the board is now painted, car touch-up enamel is ideal for this as it dries rapidly. The remaining adhesive tape will have acted as a mask, and when the paint is dry it is removed, again using tweezers. to leave the accurate design in paint on the copper surface.

The etching solution used comprises 30% ferric chloride, 1% dilute hydrochloric acid, and 69% water, per unit volume. These chemicals are readily available from the larger chemists, and may be ordered from the others. The acid can be omitted if desired, but is included to speed up the chemical etching process. A depth of about half an inch of this solution is poured into a shallow plastic or glass container, and the prepared board put in. Avoid physical contact with the etchant-rubber gloves should be worn to protect the hands.

Left alone a circuit board such as given in the example will take about 45 minutes to etch completely, but if the solution is agitated frequently, etching can be complete in around 25 minutes. Inspection will determine when it is complete, ensure there are no "spots" or "hairlines" of copper left exposed, and that the edges of the painted areas are clean cut in appearance.

The board is now washed in water to remove all

AUDIO SIGNAL GENERATOR

The photograph above shows oscilloscope traces of square and sine wave outputs at 1 kHz , that below shows square wave output at 15 kHz .

The oscillograms show actual photographs of the generator waveforms displayed on a Cossor 1049 Mk. III Oscilloscope.

One final point concerns the h.t. voltage. This must be as near 12 volts as possible at the junction of R22 and C14, with the generator operating on sine-wave output. If not, then adjust the value of R22 by a small amount as necessary. The recommended mains transformer (Tl) only should be used.

RS G B EXHIBITION 1-4 October 1969

10 am-9 pm daily

Don't forget to visit the PRACTICAL WIRELESS stand at the RSGB EXHIBITION, Royal Horticuitural New Hall, Greycoat Street, Westminster, London. S.W.1.

T|HE newcomer to stereo, unless he has previously been an enthusiast in the field of mono hi-fi and consequently knows precisely what his requirements are likely to be, is usually a little bewildered by the wide choice of equipment available. Most record players sold today, even those in the medium or lower price range, are fitted with a stereo pick-up cartridge with provision for adding an external amplifier, so that advantage may be taken of the stereo characteristics of modern recordings. It would be necessary to construct or purchase a small transistor amplifier and speaker, which, suitably positioned and wired to the player, will be capable of providing a surprisingly inexpensive introduction to the exciting dimension of "stereo sound". Unfortunately, perhaps because of its simplicity, this solution is not always the best one. In the first place, there are now two sets of batteries to be replaced (assuming the built-in amplifier were also transistorised). and, secondly, the volume and tone controls for each channel are independent, and have to be manipulated simultaneously when alterations of the settings are required, with the result that correct balance between the two channels is difficult to maintain. It is then that thoughts begin to turn to the possibility of procuring a single amplifier for both channels.

There is a further consideration. V.H.F. radio broadcasts are now transmitted in stereo over a large part of the country, and can be made available by the addition, to the average radio or tuner, of a simple decoder arrangement, provided a 2-channel amplifier is available to handle the resulting dual signals. Finally, and perhaps of more direct interest to the experimenter, is the possibility of feeding a stereo signal simultaneously to the amplifier from microphones, tape head, or even musical instrument pick-up coils. For this latter purpose, a fairly high-gain amplifier is necessary, and since matching transformers may have to be used before the input, special precautions will have to be taken as regards pick-up of extraneous hum and other noise by careful screening of the input to this section of the equipment.

The amplifier which is described here will be found eminently suitable for experimental applications of the type mentioned, as well as providing a useful stand-by

View of the assembled amplifier.
amplifier for a hi-fi stereo system. It was designed, originally, for use with a mono v.h.f. tuner, with the additional consideration that it could also be used as the "second channel" for a cheap record player of the type described above. Valves were chosen in preference to transistors, because the record player in question used a valve line-up.

Although v.h.f. stereo broadcasts had not reached the writer's area, and a mono amplifier was therefore considered at the time to be sufficient, it was decided to make provision for the future, and sufficient room was left on the chassis for the construction of a duplicate amplifier. In addition, the original intention having been to provide mixing facilities for microphone or tape input for announcements, etc, as required, a low-noise, high gain audio pentode, together with the appropriate mixing controls, was included in the amplifier circuit. Partly to preserve the symmetry of the layout, and partly with an eye to possible future applications, these mixing facilities were duplicated when the second channel was constructed. The result is a very useful and versatile amplifier with a performance in the medium to highfidelity range and an output of about four watts per channel, which can, moreover, be built up in sections and added to as time and the available budget permit.

A chassis must be chosen of sufficient size to accommodate, eventually, both channels, together with a power supply of ample reserve capacity. The amplifier can then be constructed in one of four ways; as a simple record player/tuner amplifier for one channel only; as a dual microphone and p.u./tuner mono amplifier with mixing facilities; and finally as a stereo amplifier using one or both of the preceding arrangements. Further modifications to suit the individual experimenter's needs are also possible.

Circuit

The circuit of the complete stereo amplifier, including both microphone preamplifier sections, is shown in Fig. 1. It will be observed that, though dual-purpose valves are used, none of these is common to both channels, which can thus be constructed and operated quite independently of each other. For descriptive purposes, it is convenient to divide each channel into a main amplifier and two preamplifiers. The main amplifier comprises one-half of an ECC83 feeding into an ECL82 triode-pentode, which provides an output power of about four watts, with an overall distortion figure of under 2% when the normal negative-feedback circuit in the output stage is fully operative. The remaining half of the ECC83 forms a preamplifier for use with a record pick-up or high-output tuner. In order to bring the total harmonic distortion figure down to less than 1.5%, two further negative feedback circuits were incorporated, one over each ECC83 half-triode. Despite the resulting reduction in gain, full power output can still be obtained with $50-60 \mathrm{mV}$ of input signal.

Fig. 1: Complete circuit of the mono-stereo amplifier.

For inputs down to four or five millivolts, the second preamplifier section, involving an EF86 will provide full power output, without matching problems, from the average crystal microphone, low power tuner, or tape head, although certain types of magnetic pick-up or microphone may require a matching transformer for best results. Independent volume controls permit full mixing facilities to be simultaneously achieved on both channels if desired.

Before considering the circuit in detail, mention should be made of the system of component identification used in Fig. 1. All components associated with the left-hand channel are numbered in the usual way; corresponding components in the right-hand channel are prefixed by the same reference number, but increased by 50 . Thus, the bias resistors for the left and right channel output pentodes (V3B and V53B) are numbered R15 and R65 respectively.

Preamplifiers

The following description refers to the left channel, the right one being identical. V1 an EF86 is operated at full gain, with the usual cathode bias and without negative feedback. Consequently, it is rather susceptible to overloading, and care should be taken to limit the maximum input to about 50 mV . Capacitor C5, which shunts VR1, the preamplifier volume control, compen-
sates for any harshness due to a non-linear response; if exclusive use of a low-level high-quality input is envisaged (for example, from a variable-reluctance pickup of $10-15 \mathrm{mV}$.) C5 may be reduced in value, or removed completely.

For the high-input preamplifier, one-half of V 2 (ECC83) is used, with negative feedback via C14 and R17. The volume controls for each channel (VR4 and VR54) are ganged, in contrast to the low-level controls VR1 and VR51) which are separate. The reason for this is as follows: In the "mono" mode, where each channel is functioning as a straightforward amplifier, one would normally take advantage of mixing facilities to "fadein" for example a microphone announcement or other material of the sort. If both volume controls were ganged, hum would then be likely to appear in the other channel, when operating on stereo, as the microphone volume control was advanced, since the unused input lead would be "floating" above earth potential. It is, of course, a simple matter to introduce additional switching either to isolate this unused input, or to parallel the microphone etc. signal through both channels, as is done with the high-level input; and if it is envisaged that facilities of this sort will be frequently required, ganged controls and switching of the type mentioned can easily be incorporated, provided screened cable is used throughout. In the prototype, this was not felt to be necessary, and the mono-stereo switch S1 is therefore a simple one-pole type controlling the high-level input.

Main Amplifier

C6 is the coupling capacitor which feeds both preamplifier outputs to the second ECC83 half-triode, this functioning as the first stage of the main amplifier. Like the first half of the ECC83 this triode also has a proportion of its output fed back, via R8, in order to obtain a more linear characteristic. C8 is used to couple this stage to the triode section of the ECL82. The values of both capacitors C6 and C8 have been purposely kept smaller than is usual with a circuit of this type in order that some attenuation of bass will be obtained. Since bass boost is incorporated at a later stage, the overall effect is to provide a "normal" bass response at about mid-position of the boost control; but, if boost only is desired, with no attenuation, this can easily be achieved by increasing the value of these capacitors slightly. Do not go however, above about $0.05 \mu \mathrm{~F}$.

There are no unusual features in the triode-pentode circuit. R14 is necessary to prevent parasitic oscillation, and should not be omitted. If the amplifier is being constructed for stereo operation from the outset, the impedance and power-handling capacity of the loudspeakers, together with a pair of matched transformers, will probably already have been chosen. Even if the second channel is to be added at a later stage, it is a good plan to obtain a suitable pair of transformers, similar though not necessarily indentical, since matching of components in the two output stages will ensure more satisfactory operation of the bass and balance controls, which, as explained in the next section, are incorporated in the negative feedback line to this stage.

Controls

The arrangement of the gain controls (two single and one ganged) has already been dealt with. Potentiometer VR2, in conjunction with C10, is a conventional treble cut arrangement, and provides equalisation for records and v.h.f. radio. Treble boost was felt to be unnecessary. The arrangement of bass and balance controls, although a little unusual, has been found completely satisfactory in practice, although it does call for one or two special precautions. Examination of Fig. 1 shows that one side of the output transformer secondary is taken directly to the ECL82 triode cathode, which is earthed via R11. The feedback voltage is thus developed directly across this resistor. However, no actual feedback can result unless the other secondary lead is also at, or near, earth; any impedance present at this point being regarded by the transformer as if it were directly in series with the feedback line. The mode of operation of VR3 and VR5 will now be clear. The latter controls the degree of feedback distribution operating on each channel; the former renders this feedback frequency-selective, so that, for each channel, the setting of VR3, in conjunction with the reactance of C 12 , determines the extent of feedback reduction, and hence the boost, at the lower frequencies. It will be seen, therefore, that in order to obtain an equal degree of lift on both channels in the bass region of the response curve, the balance control must be in approximately the correct position at the outset, otherwise, feedback may be insufficient on one channel to permit satisfactory boost to be obtained.

The second precaution is to ensure that no external earth connection is made directly to the speaker or the output transformer secondary. This is important if the amplifier is being used, for example, in a small hall.

Resistors:

R1	R51	$100 \mathrm{k} \Omega$	R12 R62	$100 \mathrm{k} \Omega$
R2	R52	$1 \mathrm{M} \Omega$	R13 R63	$1 \mathrm{M} \Omega$
R3	R53	$2 \cdot 2 \mathrm{k} \Omega$	R14 R64	$1 \mathrm{k} \Omega$
R4	R54	$270 \mathrm{k} \Omega$	R15 R65	$470 \Omega 2$ watt
R5	R55	$270 \mathrm{k} \Omega$	R16 R66	$100 \mathrm{k} \Omega$
R6	R56	$8 \cdot 2 \mathrm{M} \Omega$	R17 R67	$2 \cdot 2 \mathrm{M} \Omega$
$R 7$	R57	$100 \mathrm{k} \Omega$	R18 R68	$8 \cdot 2 \mathrm{M} \Omega$
R8	R58	$100 \mathrm{k} \Omega$	R19 R69	$220 \mathrm{k} \Omega$
R9	R59	$12 \mathrm{k} \Omega$	R20 R70	$470 \mathrm{k} \Omega$
R10	R60	$8 \cdot 2 \mathrm{M} \Omega$	R21 R71	$820 \mathrm{k} \Omega$
R11	R61	100Ω	R22 R72	220k Ω
(All	resist	are $\frac{1}{2}$	tt carbon,	10\% tolerance

Capacitors:

C1	C51	$0.1 \mu \mathrm{~F}$
C2	C52	$25 \mu \mathrm{~F} 25 \mathrm{~V}$ elec.
C3	C53	$0 \cdot 1 \mu \mathrm{~F}$
C4	C54	$32 \mu \mathrm{~F} 350 \mathrm{~V}$ elec.
C5	C55	100pF
C6	C56	$0.015 \mu \mathrm{~F}$
C7	C57	$0.022 \mu \mathrm{~F}$
C8	C58	$0 \cdot 015 \mu \mathrm{~F}$
C9	C59	$0.1 \mu \mathrm{~F}$
C10	C60	$0 \cdot 022 \mu \mathrm{~F}$
C11	C61	$25 \mu \mathrm{~F} 50 \mathrm{~V}$ elec.
C12	C62	$4 \mu \mathrm{~F} 9 \mathrm{~V}$ elec.
C13	C63	$0.015 \mu \mathrm{~F}$
C14	C64	$0 \cdot 027 \mu \mathrm{~F}$
C15		$32 \mu \mathrm{~F} 350 \mathrm{~V}$ el
C16		$32 \mu \mathrm{~F} 350 \mathrm{~V}$ elec

(All capacitors paper, 350V wkg. except where stated)

Potentiometers:

VR1 VR51, $250 \mathrm{k} \Omega$ log.
VR2 VR52, $50 \mathrm{k} \Omega$ log. ganged
VR3 VR53, $25 \mathrm{k} \Omega$ log ganged
VR4 VR54, $500 \mathrm{k} \Omega$ log ganged, with switch (S2)
VR5, $1 \cdot 5 \mathrm{k} \Omega$ linear
VR6 (if used), $500 \mathrm{k} \Omega$ linear (see text)
Transformers:
T1 T51 Output transformers, pri. matched to ECL82, sec. to 3 or 15Ω speaker
T2 Mains transformer 250-0-250V 150200mA; 5V 2A; 6.3V 5A

Valves:

V1 V51	EF86
V2 V52	ECC83
V3 V53	ECL82
V4	GZ34 or alternative

Miscellaneous:

S1 Single-pole rotary or toggle switch; L1 Smoothing choke, 20 H 150 mA ; several 3, 4, and 5-way etc tag strips; Screened cable; Co-axial sockets (coloured stereo type); L/S output sockets; 6 B9A valve-holders; 1 octal-base holder; 1 clip for upright-mounting double can electrolytic; 6 pointer knobs.

Here, facilities are sometimes provided for a low-voltage extension speaker connection which dispenses with the
continued on page 411

PLEASE FILL IN THE COUPON FOR * FREE FLOG LIST No. 4

\author{

*
 A FEW EXAMPLES QUANTITY
 * GUARANTEED NEW GOODS
}

TRANSISTOR RADIOS. Large 11 waveband AM/FM Radios 39 GNS. many refinements, limited number. Recommended Ilst prlce over $£ 60$. Many Others LIsted from only 49/-1 AMPLIFIERS. 10 watt hlgh quallty. Type $A C$ to Transistor- $9 \frac{1}{2}$ GNS. Power Pack. Many Others Listed from only 49/-1 AM/FM STEREO TUNER AMPLIFIERS with Stereo Multiplex. Famous make. 10W output. Full length S.M. scale. "Rosewood" case. Recom- 24 GNS.
mended list price over E40. Absolutely complete In sealed case LOUDSPEAKERS. Bookshelf slze In Heavy Veneered "Rosewood"', Teak or
Mahogany. Infinite Baffle Cases with most attractlve Tyoan Fronts. Size Mahogany. Infinite Baffle Cases with most attractlve Tygan Fronts. Size $12 \times 8 \times$ 6In. High compllance "PIston" wide frequency. 8 ohms Drive Unlt (8 watts USA). Most excellent reproduction for the price. Ideally matched for 5 GNS.
the above Tuner Amplifier.

AND 100's MORE! !

POST NOW FOR FREE "FLOG LIST"

NAME
Block Capltala Please
ADDREss

ANNUAL STOCKTAKING

SUMMER
 $S^{\text {ALES }}$

including
'FLOG LIST'" ITEMS NOW ON AT ALL Branches

CALLERS-ENQUIRIES WELCOMEO WITHOUT OBLIGATION
t LONDON: 10 Tottenham Court Road Tel:MUS $2639 \quad \star$ SOUTHAMPTON: 72 East Street Tel: 25851 * PORTSMOUTH: 350-352 Fratton Road Tel: 22034 t BRIGHTON: 6 Queens Road Tel: 23975 - BRIGHTON: Devonian Court, Park Crescent Place

HFIII

* TAPES *

We offer you fully tenslllsed polyaster/Myla and PVC tapes of Identical quallity hl-fi, wide range recording characteristics as top grade tapes. Quallity control manufacture. They ar truly worth a few more coppers than acetate sub-standard, jointed or cheap Imports. TRY ONE AND PROVE IT YOURSELF.

ard		long	
3 in .150 ft	2/3	31n. 225ft.	$2 /$
4 in .300 ft .	4/6	4in. 450 ft .	
51 n .600 ft .	7/6	5 in .900 ft	
5\}in. 900tt.	10/6	5inis. 1,200ft.	13
7in. 1,200ft. Double	12/6	7in. 1,800ft. Tripl	
3in. 300ft.	3/-	41 n .900 ft	
4 in .600 ft .	8/-	Sin. 1,800ft.	
$51 \mathrm{~m} .1,200 \mathrm{ft}$.	15/-	Silin. 2,403ft.	34
53iln. 1,800it.	19/-	7in. 3,600ft.	44
$7 \mathrm{in} .2,400 \mathrm{tt}$.	27/-	Quadrupl	
Postage 1--reel.		3 in .600 ft .	
Post free less 5% on three reels.			
Quantily and Trade enquiries invited.			
NOTE. Large tape slocks at all branches.			

0.0005 mFd TUNING CONDENSER Proved design, Ideal for atralght or
reflex circuita $2 / 8$ each. $24 /$ - doz.

ELLIOT SEALED

CONTACT REED RELAY
Three circuits closed by 3 V or 100 MA . $9 / 6$ each SLIM TUBULAR MICROPHONE For hand holding or frontal suspension-lever witch-high impedance with lead and pluge for cassette tape recorder but aultable for most
amplifiers. $19 / 6$. 500 MICRO AMP MOVING COIL METER
2 in . flush mounting round meter, ex Government but unued and perfect. 17/6.
PP3 BATTERY ELIMINATOR
Run your small translator radio from the mains-full wave circuit-made
up ready to wire into your set and $8 / 6$ adjuble high or low current. $8 / 6$ each.
5000 mFd 12 V
CONDENSER
Tubular size 3in, \times lin. dia. made by Plessey.
5A, 3 PIN SWITCH
SOCKETS An excelient opportunity to make that bench dis board you have needed or to stock up tor future yobs. This month we offer 6 British made (Hicraft) bakelite fush mounting dautered sB swito and Inarance. (20 boxes pout and lisarance. (20 boxes post
Sin. x Sin. Printed Circuit Board Ideal for dozens of profects. Heavy copper on $3 / 32 \mathrm{in}$. sheet, $1 / 6$ each or $16 /$ - per dozen

MAINS MOTOR Prectaion made - a used in record deak and tape recorders fan, blower, heaters lan, New and perfect Snip at 9/6, Poatage $3 /$ - for first one then ordered. 12 and ordered. 12 and

DIGITAL CLOCK
An imposlng instrument Ideal for modern reception centre or for Managing Director's office-defnitely a showplece to create interest and efficlency-mains frequency controlled so always keeps right time without adjustment-in black semi-matt perspex case-made up, tested and guarantee

A Fluorescent Ughting unit made by the famous unit made by the famous
Atlas company, with Atlas company, with
super silent polyester Buper silent polyester
flled choke and radio spring uppressed starter. The tube beautifully made and finisbed white enamel. Amazingly conomical. If left on all the flmiabed white enamel. Amazingly usea init). Measures 2 eft. long. Is ideal In Kitchen, Bedryom, Hallway, er, $30 / 8$ with tube. Assembled ready to install. Postage and insurance $6 / 6$ extra.

1 WATT AMPLIFIER \& PREAMP 5 transistors-hlghly efficient, made for use microphone or pick up-limited quantity $39 / 8$ Full circuit diag. also shows tape coutrola

DREAMLAND CLOCK SWITCH

The wonderful DREAMLAND mains operated clock switch will sutomatically awitch your blanket on and off each evening and you wil always have a warm bed. It's luminous you can a!ways see the time and It's a really beautiful unit. An Ideal gift. Can also contro tape recorder, radio, lamp, etc., up to 500 watto. 39/6 plus 3/6 post \& ins.

FLEX CABLE BARGAIN
$23 / 0076$ triple core P.V.C. covered, circular, normally sold at $1 / 6$ yd. Our price 100 yd. coll 28.19.6. Pont and insurance 6/6

Where postage is not stated then orders Where postage is not stated then orders
over \&3 are post free. Below \&3 add $2 / 9$.
 post free, B.A.E. with enquiries please.

IHAVE, at short notice, taken the position of temporary editor of this column. I would like to receive many reports and letters from readers of the column so I can estimate exactly what you require from these articles. This particular column is inclined more towards the DX side of the hobby than previous articles and I would be interested to hear if this is what the readership requires.

The Limerick City Short Wave Radio Club now issues certificates for the verification of 15,30 and 50 countries on the Broadcast Bands. The awards can be obtained by sending a list of the QSL's that you hold and a 1s. postal order to: Limerick City SWRC, 7 Colbert Park, Janesboro, Limerick City, Ireland.

Propagation forecast for the month of September is as follows: Europe 7 and 9 MHz ; North America 17 and 21 MHz ; South America 17 and 21 MHz Africa 11 and 15 MHz ; Asia 11 and 15 MHz , and Oceania 11 MHz . These figures apply to reception in Europe during the period $1700-2100$, figures for the remainder of the 24 hours are easily estimated if you remember that darkness anywhere on the path lowers the frequency whilst daylight increases the frequency.

AFRICA

Biafra: Radio Biafra is often heard at this QTH on 6144 between 2300 and 2315 .
Liberia: ELW A, Monrovia, Liberia has changed frequency to 15095 and can be heard in Arabic from 2130 until 2200 when they close down. Identification in English is given at close down.

Morocco: Radio Rabat has three new frequencies of 6045, 6170 and 6190 .

Ruanda: The new 250 kW relay of Deutsche Welle is testing from 0000 to 0300 on 17865.

ASIA

Kuwait: The most recent programme schedule available for the Kuwait Broadcasting Service is as follows: 0400-0600 English for India on 15150; 0900-1100 Arabic for Europe on 15430; 1300-1905 Arabic for N. Africa on 21685; 1600-1900 English for Europe on 15405.

Nepal: Radio Nepal is making test transmissions between 0220-0700 and 1300-1600 on 11970.

Syria: Radio Damascus has replaced 15165 by 15270 for the Foreign Service transmissions from 1730-2100.

UAR: Radio Cairo is requesting reports on its test transmissions on 9630.

THE BROADCAST BANDS Malcolm Connah

EUROPE

Andorra: Radio Andorra is reported to be using English from 2300 until 0400 on 5995. I would like to hear from anyone who can confirm this.
Portugal: Radio Portugal has a new transmission to Africa at 1715 on 15345 in parallel with 21700 .

NORTH AMERICA

Hawaii: The Billy Graham Evangelistic Association is planning to build a 500 kW Short Wave station on the island of Maui.

Grenada: The Windward Islands Broadcasting Service (WIBS) is now using the frequency of 21690 up to close down at 2245 .

OCEANIA

Australia: The $A B C$ has changed frequency from 15180 to 15160 for the 2000 to 0830 transmission.

SOUTH AMERICA

Guatemala: Dennis M. Evans, an ex-member of the ISWL, is now a volunteer technician at La Voz de Nahuala. The station operates on 3360 between 2300 and 0300 except Tuesday, Thursday and Sunday when it opens at 2000 . The transmitter used by the station is a Philips 1 kW . Several reports have been received from American listeners and Dennis hopes to receive the first report from a European listener in the near future.

Netherlands Antilles: The Radio Nederland transmitter at Bonaire does not use the frequency of 9715 despite several reports to the contrary.

In conclusion here is a list of special Latin American holidays (my thanks go to the Cimbrer DX Club for this item). These holidays often lead to extended schedules and good DX. September 14 Nicaragua; Sept. 15 El Salvador, Guatemala, Honduras, Costa Rica and Nicaragua; Sept. 16 Mexico; Sept. 18 Chile; Sept. 24 Dominican Republic; Sept. 29 Paraguay. October 3 Honduras; Oct. 9 Ecuador; Oct. 12 Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Argentina and Chile; Oct. 20 Guatemala; Oct. 21 Honduras. November 1 Guatemala and Peru.
73 s , good listening and hoping to hear from you soon.

THE AMATEUR BANDS David Gibson, G3JDG

MUCH the same conditions as last month prevail and, alas, no real improvement in 10 metres. The short skip on 20 has been rather more noticeable. There's always something weird about hearing odd G stations at $S 9$ on this band. One scribe informed that the sunspots were rather reluctant to decline and that the count was still high. However, at my QTH, 10 metres has been very quiet indeed. The JDG solid state tx, running a cool 30 milliwatts (v.f.o. and buffer only) has produced results on the home receiver but not on anyone else's apparently.

Almost all the logs sent in were for 20 and 15 , although one or two did reckon to have heard a mumble or two on 10 . Nobody even mentioned topband (shame on you all) and 40 metres was only referred to in a highly offensive fashion. Data available under plain cover!

TWENTY/FIFTEEN

Quads and beams proved useless compared to a 380 ft . long wire according to Robert Dinning (Scotland) who made the practical comparisons. Verticals on 15 and 20 fared better though. The earth system is a car radiator buried 6 ft . down below the spring line of a nearby river. (What happened to the driver?) The back-up equipment is an HA350, RQ10, PR3OX and a pair of stereo headphones. On 20 metres s.s.b. the \log reads-CP5DB, HB9FC/P/VP9, HBØAG, HP9FC/MM, JX10M, KP4AMI, LZ1XA, MP4TCN, OX3MT, OY9LV, PJ2CJ, PJ6ZF, TI2TH, VK6FD, VP2KF, YA1DAN, ZAIKAA, ZP5CE, 3A1TL, 5A1TL, 5H3MA, 5Z4DW, 6Y5AK, 8R1G, 9A1K.

Fifteen s.s.b. produced-AP2MR, CEØAE, CN8HL, CR7IC, CT2AU, CX7BF, EL ØC/MM, ET3USA, FL8DJ, HBøAFM, HR1KAS, HS1AF, JA2AHV, JA4WI, JA7GIV, JH1QLW, KZ5MC, MP4BGX, PZ1BX, UJ8AJ, VK2FU, VK9KY, VK9XI, VP8KL, VS6AA, WB6AGZ/MM (U.S. hospital ship off 3 W 8 coast), XE1CE, YA1AR, YAIDAN, $1 \mathrm{JM}, ~ Y B \emptyset A C C, ~ Y N 1 F R, ~ 7 P 8 A B$.

John Moore (Leics), found topband and 80 useless, while a peep at 40 produced PY-type signals promptly blotted out by BC or EU's. John favours 15 which, he says, is open to $9 \mathrm{M} 2 / 9 \mathrm{~V} 1$ from around 1500 hrs onwards. In the evenings the CR6/JA contingent are a constant feature. John's best on 15 were-CN8HL, CR6CA, EL2I, ET3USA, F6ABP/FC, JA3LVT, JA3MIY, JH1FZM, KG4AA, KV4AD, MP4BHL, VE3ACD, VS6AA, VS9MB (Gan), W6FEX, YAlJK, 4X4GT, 4Z4HF, 6W8DY, $7 \mathrm{Z} 3 \mathrm{AB}, 9 \mathrm{H} 1 \mathrm{R}, 9 \mathrm{M} 2 \mathrm{BD}, 9 \mathrm{~V} 1 \mathrm{OE}, 9 \mathrm{X} 5 \mathrm{AA}$. All these s.s.b. except the MP4 on a.m. Gear is a CR100/2 plus 60 ft . end fed.

Ian Poole (Yorks), sent a picture of a very neat shack. Equipment spotted by your scribe included a KW/Geloso converter fed into a 19 set which, in turn, is fed by a 60 ft . long wire. (So, it was a big picture!) The 15 -metre \log reads-AP2MR, CE $\varnothing A E$, HS3 ML, KR6VX, MP4TAF, VP2AW, VS6AL, XW8CS, YA1AR, YA1SG,

ZS3HX, 7P8AB, 9M2BD, 9N1MM, 9V1CN.
If you've been taking "A" level exams and you reside at Spalding in Lincolnshire, you stand a very good chance of being \mathbf{K}. Tatnall. If you are he, then, you'll know all about your modified "Clubman" receiver and 65 ft . aerial not to mention you hearing-EA6AR, EA8FG, EP2BQ, EL2Y, HI8LA, HK1BQR, HP1XS/MM, JA1PNA, JA1 WEK, JA3ERG, JA3MNP, JA4DGG, JA8DO, KP4DEY, KR6DI, MP4TAF, PY1TX, SV $\varnothing W J J$, TF2WLJ, VP5AA, VP8KD, VS5PH, VS9MB, YV4RZ, ZF1GC, ZP5CN, 4X4RQ/AM, 5N2ABG, 5Z4LS, 7Q7RM, 9G1DY, 9M2BO. Oh yes, you heard that on 15 s.s.b. remember?

Just think, at the exact spot on the whole world map, just exactly where Michael Pipes is living, there's a Trio $9 \mathrm{R}-59 \mathrm{DE}$ as well. By the most amazing coincidence, this is also the exact location of a 66 ft . end fed too. And by the very strangest of happenings, while all these other things were together, who should come along but-AP2MR, CE3AIA, DU1LP, FH8CD, HC2MM, HBØGJ, ITØ ARI, PY7PT, TA3AB, VU2DK, VQ9EP, VS9MB, 4 S7PB, $4 U 1 I T U, 5 \mathrm{~L} 2 \mathrm{BJ}, 5 \mathrm{~N} 2 \mathrm{ABG}$, 6W8DY, 9M2BD, 9Q5GE, 9V1PA, 9 Y4VT. All s.s.b. on 15 .

ELSEWHERE

Not many logs for the other bands this month. Stephen Cole wrote while on holiday in Devon where the temperature was 80 degrees plus-and that was in the frig! Back home in Monmouthshire Stephen runs a Trio JR60 and a 25 ft . vertical. He sent a fab \log for 15 which I'm not putting in (write out 500 times-JDG's a baddie) but the list for 80 reads-F9RY/FC, PY7ASQ, WB2NCS/VP9, W1AW, VS9MB, YV4QG, 9H1BQ, 9Q5EP which just goes to show what's about.

Let's see now, Carisbrooke, Isle of Wight, JXK converter into a tuneable i.f. at $28-30 \mathrm{MHz}$ into the receiver, a GC-1U. No name at the bottom but the \log for two metres looks good. Stations $80-110$ miles away-F1RJ/P, F5NS, (both these in Normandy), G2JF (Ashford, Kent), G3KDG (Devon), G3OZF (Essex), G3UCC (Somerset), GC8AZZ/P (Jersey, C.I.). Further afield in the $140-160$ mile rangeF1APK (Brittany), F1TC (Brittany), G3OQB (Shropshire), G8BBB (Cambridgeshire), and G3GZJ at Redruth in Cornwall at 180 miles heard on c.w. The antenna is only a 6 ft . length of wire in the bedroom. Just think what an 8 over 8 would pull in.

EVENTS

Happenings for September include-6-7th, v.h.f. n.f.d.; $14 \mathrm{th}, 3 \cdot 5 \mathrm{MHz}$ field day; 21 st , national finals of the d.f. hunt at Rugby; 21st, 144 MHz contest. One mobile rally this month at Magdalene Laver, near Harlow in Essex. See any of you at this one? Owners of R1155 receivers will be pleased to hear of the 1296 MHz contest on October 5 th.

DON'T FORGET

1-4 October, the annual get-together of Radio Amateurs of the RSGB International Radio Engineering and Communications Exhibition, Royal Horticultural Hall, Greycoat Street, Westminster, London, S.W. 1 (10 am to 9 pm).

"Listen in" on the World with HEATHKIT shortwave receivers

TREAT YOURSELF TO A WORLD TOUR...WITHOUT LEAVING HOMEI

DELUXE 5 BAND SHORTWAVE RECEIVER GR-54

This receiver offers exceptional performance and many special features at such a low price. It covers 2 MHz to 40 MHz plus 550 KHz to 1550 KHz AM broadcast band and 150 KHz to 420 KHz aeronautical and radio navigation band. Receives AM/CW/SSB, $6 \times 4 \mathrm{in}$. PM speaker and sleek, "low-boy" styling. Operates on $115-230 \mathrm{~V} 50 \mathrm{~Hz}$ AC.
Kit K/GR-54 £48.16.0. Carr. 9/-

LOW COST 4 BAND SHORTWAVE RECEIVER GR-64

Makes an ideal present for the youngster. It has high performance features plus world-wide reception, shipping, aircraft, radio amateurs plus the popular medium broadcast band. It covers 1 MHz to 30 MHz plus 550 KHz to 1620 KHz AM, with sleek "low-boy" styling, operates on 115-250V $50 \mathrm{~Hz} \mathrm{AC}$.
Kit K/GR-64 £24.16.0. Carr. 9/-

GENERAL COVERAGE RECEIVER GC-1 U

A welcome traveller wherever you gol Covers 580 to 1550 KHz and to 40 MHz in 5 bands with calibrated bandspread scales for
 80, 40, 20, 15 and 10 metre amateur bands. Completely solid state and self contained for portability. Operates on two internal PP6 batteries (not supplied) or 230V AC with a suitable power supply.
Kit K/GC-1U £39.16.0. Carr. 11/-

AMATEUR BANDS RECEIVER RA-1
Unequalled value for the radio amateur. Covers 160 to 10 metres. High quality lattice crystal filter for optimum communica-
 tions selectivity. Optional 100 KHz crystal calibrator plugs in inside receiver. 8 valve and 2 diode circuit. Operates on 115, 200-250V $\mathrm{AC}, 50 \mathrm{~Hz}$.

Kit K/RA-1 £39.16.0. Carr. 9/-

Free Catalogue!

See these models and many more in our 1969 catalogue. Models for Stereo/Hi-Fi, Industry, Education and the Home Workshop. Heathkit -the world's largest selling selection of electronic kits and equipment.

MODEL 15

 MICRO SOLDERING INSTRUMENT

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $3 / 64^{\prime \prime}\left(\cdot 047^{\prime \prime}\right)$ to $3 / 16^{\prime \prime}$, including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{1}{8}{ }^{\prime \prime}$. Weight $\frac{1}{2} \mathrm{oz}$.
Max. handle dia. 7/16".

- EXTRA-HIGH PERFORMANCE

Heating time 90 secs. Max. bit temp $390^{\circ} \mathrm{C}$. Loading 15 watts - equals normal 30/40 watt iron.

- all voltages

The ADAMIN range includes five other models ($5,8,12,18$ and 24 watts), Thermal Strippers (PVC and PTFE) and a De-soldering Tool. Please ask for colour catalogue $\mathrm{A} / 10$.

LIGHT SOLDERING DEVELOPMENTS LTD.

W.E.C. LTD. New Quality Components	
A MTOST for your den, garage,	REssistors
Mains Distribution Unit. Grey hamme	
finish, steel case 4×13 A Flat Pin Socketr	$15-0-15 \mathrm{~V} 200 \mathrm{~mA}$ Superior Finish
and fitt of heary duty cable. Bench or	Shrouded. 12/8 each.
, mounting. x4,19.6.	
semiconductors	
$\mathrm{A}^{\text {A selection }} \mathrm{O}$	HARDWARE
ea. OC35 15j- ear. BFF115 41 - ea.	NBakelelite elteet etc.
	ALso in srock ${ }_{\text {Relays, }}^{\text {dapacitors, }}$ Knobs, switches,
Plags. Box of 10 for $\$ 1$ Plus p. \& p. 4/6	send stamp for latest Catalogue tainng approximately 2,000 items.
W. E. C	LTD
74 T	D, SU

 \square

Tn pulse circuitry there are various other forms of ele－ ments designed to speed up pulses in order to obtain a fast trigger pulse from a slow input trigger pulse．It is also a frequent requirement that a circuit trigger at a pre－determined level，and switch off at a predetermined level．The Schmitt Trigger will perform both of these functions．

The most basic Schmitt Trigger is shown in Fig．5．1． In its normal state no input is provided， Tr 1 is therefore in the OFF state，and since $V_{\mathrm{c}_{1}}=V_{c \mathrm{c}}, \mathrm{Tr} 2$ is switched into hard saturation．If a positive voltage is gradually increased at the input terminals，a point will be reached where Tr 1 will switch on．The circuit current in the OFF state of Tr1 is given by：

$$
I_{\mathrm{c} 2} \text { sat } \simeq \frac{V_{\mathrm{cc}}}{R_{2}+R_{3}}
$$

since only about 0.1 V are dropped by $V_{\mathrm{ce}_{2}} \mathrm{sat}$ ．From this the triggering voltage to switch Tr 1 into the ON sate may be determined by：

$$
V_{\mathrm{trIB}(\mathrm{on})} \simeq V_{\mathrm{be}}^{1} 10 ~+\frac{R_{3} . V_{\mathrm{cc}}}{\mathrm{R}_{2}+R_{3}}
$$

When Trl switches on，$V_{\mathrm{c}_{1}}$ drops to $V_{\mathrm{ce}_{1} \mathrm{sat}}+V_{\mathrm{r} 3}$
There is not sufficient voltage to support $V_{\mathrm{be} 2}$ and
practice there is a slight backlash in such a circuit，i．e． it takes a slightly different potential to switch Tr1 on than to switch it off．The loop gain should be greater than one for positive switching．
The Schmitt Trigger can be used in conjunction with a ramp generator to form a delay line．If a slowly rising positive－going ramp is applied to the input of the Schmitt Trigger，the circuit will only trigger when the ramp voltage will support $V_{\text {be }}$ ．It will thus be seen that there is a delay：the initial trigger pulse triggers the ramp to start，and the output is delayed until the Schmitt circuit triggers．

Figure 5.2 is a modified Schmitt Trigger in which a potential divider is used to set the base potential of Tr2． By making the potential of the divider adjustable by means of Vrl，the point at which the circuit triggers on a rising input may be adjusted．
Figure 5.3 also uses a potential divider，but a zener diode is employed to give a positively predetermined trigger．In this circuit，the states will change when：

$$
V_{\mathrm{ce}_{1}} \simeq V_{z}+V_{\mathrm{be}}
$$

A speed－up capacitor C 1 is used to give Tr 2 an initial overdrive of base current to drive it into hard

Fig．5．1：A basic Schmitt trigger．

Fig．5．2：A Schmitt trigger with variable setting．
thus $\operatorname{Tr} 2$ is cut off，causing a positive－going output at B ， with a corresponding negative－going output at A．Since both transistors share the same emitter resistor，during the actual switching operation，as the input pulse causes Trl collector to go negative，$I_{\mathrm{e} 2}$ starts to reduce at the same moment that $I_{\mathrm{e} 1}$ starts to increase．The reduction of emitter current in Tr 2 encourages the current to be transferred to the emitter which is now opening up， that of Trl．A regenerative effect thus occurs，the switching off of Tr 2 speeding up the switch on of Tr 1 ． Fast outputs thus occur．

Trl will stay in the conducting state for as long as a positive voltage is applied at the input．If this voltage is reduced，Trl will switch off as soon as its $V_{\text {be }}$ is not supported．The switching off of Tr 1 speeds up the switch on of Tr2 and again fast edges are realised．In
saturation initially，relaxing after the initial transient with the only base current through the zener diode．
Schmitt Trigger circuits can have very fast rise and fall times，and by modifying the design with lower loads or clamping diodes so that the transistors do not drive into saturation，switching times better than 10 mS are possible．

It should be pointed out that the formulae given on the Schmitt Trigger have been chiefly to indicate in the explanation how the circuits work．It is very difficult to exactly predict switch－on and switch－off voltages，and these should ultimately be determined experimentally． It is quite usual for circuits such as that of Fig． 5.1 to have a backlash greater than 1.5 V ．The greatly simpli－ fied expressions given earlier in the text should give voltages within the backlash voltage range．

part five the trigger and ramp generator

COMPLEMENTARY SWITCH

Figure 5.4 shows a fast switch using complementary transistors, i.e. similar n-p-n and p-n-p types, although they need not be closely matched. An advantage with this circuit is that it only draws leakage current until

Fig. 5.4: A trigger similar to the Schmitt circuit but which draws virtually no current when off.
an input voltage is applied, if the zener current is ignored. In fact, with modern silicon planar zener diodes (such as the BZY 88 C 3 V 3 for D 2) it is possible to only drive the zener diodes with a few hundred microamps, and the same applies to the v.d.r.
This circuit operates as follows. Since there is a closed loop round the emitter-base of Trl when no input is applied, Trl cannot switch on. $V_{\mathrm{c}_{1}}$ is therefore at $-V_{\text {ee }}$ volts, and since the v.d.r. ensures that the emitter of Tr2 is about 1.2 V away from the negative line, the emitter-base of $\operatorname{Tr} 2$ is under reverse bias. If a positive voltage is applied at the input terminal, it carries Tr 1 emitter positive, below the earth rail, and it then enables Trl to switch on. As it switches on, the collector voltages go positive, bringing into conduction $\operatorname{Tr} 2$. As $\operatorname{Tr} 2$ goes on it increases the voltage at the base of Trl which further increases the current through Tr1. There is thus a loop encouraging the two transistors to switch sharply on. Output A goes positive and output B goes negative.
Now the zener diode clamps the cathode of D1 at -3.3 V , thus preventing the collector of Tr1 falling below about $-2 \cdot 6 \mathrm{~V}$, and stopping it from being driven into saturation. This will result in minimal stored base charge, and will assist a fast turn-off time. When the positive input is removed, regenerative action similar to that in the switch-on encourages a fast switch-off, further enhanced since $\operatorname{Tr} 2$ tends to have its emitterbase reverse-biased.
The complementary circuit thus acts in a similar manner to the Schmitt Trigger. If the fastest switching characteristics are not required and the zener diode and the clamping diode are removed, allowing Trl to drive into saturation, an excellent switching circuit still exists with the virtue of practically no drain current when not in operation. For many purposes the circuit will operate rapidly enough if the emitter of Tr 2 is simply taken to the - ve rail through a resistor, R5 then of course not being in circuit. The emitter-base of Tr 2 will not then drive into reverse bias, but with Trl switched off, Tr2 will still be switched off, if not quite so positively.

A GATED RAMP GENERATOR

There are a number of uses for rising or falling voltage ramps, one of which, as a delay, has already been mentioned. Ramp generators are of course, the basic elements of scanning systems.
Figure 5.5 shows a simple gated ramp generator. We shall assume initially that capacitor C3 is fully charged to $V_{\mathrm{ce}}-V_{\mathrm{ce}}$ at volts. Tr 2 is initially nonconducting, as is Trl. If a positive pulse is applied via $\mathrm{C} 1, \mathrm{Tr} 1$ switches on, driving the base of $\operatorname{Tr} 2$ negative. Resistor R1, being smaller than the input impedance of Tr1, gives a more specific time constant at the input.
As $\operatorname{Tr} 1$ collector goes negative it brings into conduction $\operatorname{Tr} 2, \mathrm{C} 2$ acting as a speed-up capacitor. $\operatorname{Tr} 2$ is driven hard on and effectively shunts C3 with its low saturation impedance. C3 discharges through the transistor provided that the input pulse is long enough to ensure this. When the trigger pulse is removed, Tr1 and Tr 2 switch off and the shunt across C3 is removed. Since the voltage at the base of Tr 3 is constant, held so by the potential divider of R5 and R6, and since $V_{\text {be }}^{3}$. may be regarded as constant, the voltage across R4 is constant, and a constant current is therefore driven into Tr 3 emitter. Virtually all of this current passes out of the collector and flows into C3. C3 is thus charged with a constant current, and produces a fairly good linear ramp. The ramp will continue until Tr3 goes into saturation, or until the cycle is started again by the application of a positive trigger pulse.

Fig. 5.5: A sawtooth or ramp generator.
If a ramp generator is required to give a continuous sawtooth output, a multivibrator might be used to supply trigger pulses, or a feedback mechanism from the ramp output itself can be used so that when the ramp reaches a certain voltage, it switches on a monostable circuit which gates on Tr2. When the monostable releases Tr2, after the C3 discharge period, the ramp will start again.

CONCLUSION

In this series saturation switching, astable, monostable, bistable circuits, Schmitt triggers, complementary triggers and ramp generators have been discussed in detail. It is hoped that the original aim of clearly describing pulse circuits in operation has been achieved, and that this treatment may have assisted the beginner in particular to appreciate some of the finer points of transistors in pulse circuits.

SOME HIGHLIGHTS OF NEXT MONTH'S P.W.

PEDAL STEEL GUITAR

The popularity of "Country and Western" style music has brought about a new kind of electrical musical instrument. It stems from the Hawaiian steel guitar and has become generally known as the "pedal steel guitar".
The cost of commerciallymade pedal steel guitars ranges from around $£ 350$, but the instrument to be described in the November and following issues should not involve a total outlay of more than about $£ 30$. Within the console body a preamplifier is incorporated, and the output may be taken to a suitable external power amplifier.

IC OF THE MONTH

Integrated circuits in ever increasing numbers are now being offered by advertisers to the home constructor. A number of designs have appeared already in Practical Wireless in which an IC is incorporated. Starting with the next issue we are introducing an "IC of the Month" series, each article of which will describe the practical application of a different device. Part I will feature the construction of an IC short wave converter.

AUDIO SUPPLEMENT

With the increasing interest in audio and hi-fi equipment, a special Audio Fair supplement will be published in next month's issue of Practical Wireless. It will include details of manufacturers' products and a preview of things to come at the 1969 Audio Fair.

practicially

AT the risk of riding my hobby-horse too hard, I must revert again to the sore subject of audio output power. Not all the pundits agree on power nomenclature, it seems, though all deprecate the copywriters who make a six-watt struggler appear (in the brochure) too dangerous to couple to anything less than a pair of hundredwatt speakers.
'The greater the power, the more dangerous the abuse," quotes Editor John Crabbe in Hi-Fi News. Edmund Burke's argument is inside-out when applying politics to audio. The less the actual power the more it is made to sound good. Just now there is another trick way of defining power output. From America (of course) comes IHF $\pm 1 \mathrm{~dB}$. If a manufacturer of an amplifier can specify "so many watts, $\mathrm{IHF} \pm$ ldB" he is giving himself a scope for variations wide enough to admit a London 'bus. $\pm \mathrm{IdB}$ with a 100 W amplifier is like saying "anything between 79 and 126 watts". And those "watts", remember, are music power, not your true-blue British r.m.s.

What have I said? R.M.S.? That's taboo now, according to Mr. Myall, of Wow and Flutter fame. He would like to know, what are "Watts r.m.s.". Me too!

The product of root-meansquare voltage and current is average power. or equivalent con-

We couldn't hear the dratted noise
stant power. If we wish to express a varying power in the form of an equivalent constant power, it must be equal to the average value, not root-mean-square, which is 0.707 of peak. If the phrase "continuous sine-wave power" is to be taken literally, then half the peak value (implying a sinusoidal drive voltage) is neither r.m.s. nor average.

Continuous, in the terms of the audio boys, really means over a period of many cycles. It implies that the driving force, i.e. the sinewave voltage, is continuous, not that the power is flat and even over a long straight graph of output. The power must vary cyclically, or we couldn't hear the dratted noise it makes.

So we are asked to interpret r.m.s. power as "power arising from the r.m.s. voltage of a continuously applied sinewave signal".

We can accept that the power waveform is $\sin ^{2}$, and half the peak value becomes the average.

None of this helps us if the manufacturer, or his indefatigable Boswell, the copywriter, uses EIA terms. The Engineering Industries Association of America has a standard which permits the manufacturer to quote power output at mid-frequency at a distortion content of 5%. And if $\mathrm{IHF} \pm 1 \mathrm{~dB}$ admits a London 'bus, this so-called standard would leave room for a couple of hansom cabs also.

Frank Jones gives the best analogy I have seen to explain the difference between the various power specifications. Imagine, he says, you are in a car and wish to overtake a lorry. Your engine must produce power to accelerate and let you pass. With continuous power, you could just accelerate in time to avoid bashing your brains out on an oncoming bonnet. By comparison, no other type of power would be so effective.

You could just accelerate in time...
Music power has excellent initial acceleration, but there is no sustaining strength, and the engine "dies away" as you are abreast of the juggernaut. EIA power would simply mean that as you put your foot down, the engine would make a horrible noise, but get you nowhere, and IHF $\pm 1 \mathrm{~dB}$ would not allow you to pull out and pass; neither would any form of peak power.

He does defend one practice that has a slight whiff of embellishment. Doubling up the power because you are in stereo is legitimate because ". . . a stereo amplifier should be capable of handling power on both channels together, or on either channel by itself. Peaks can occur on one channel only." Too true, especially with some of the gimmicky records dealers have been unloading since r.p.m. was abolished.

So how do we specify power, when there are so many ways we can be fooled? Mr. Crabbe suggests we ask for continuous power for a set period of time, say two seconds. He does not mention distortion, nor specify the test frequency.

All this, and my hobby-horse hasn't even worked up a sweat. What about the vexed question of power handling (speakers) or the myth of transistor sound which usually means that the speakers now have to handle a wider response and cleaner transients . . . what about . . . well, your turn, Joe. How do you figure in the power game?

ADDING SQUELEH_M

VIRTUALLY all radio receivers and tuners incorporate a.g.c. (automatic gain control), also known less accurately as a.v.c. (automatic volume control). This works by utilising an otherwise wasted by-product of detection, the d.c. level produced by the carrier signal. This voltage depends on the strength of the carrier and is not affected by any sound modulation of the carrier. It is generally prevented from reaching the radio's audio stages by a capacitor after the detector. The principle of a.g.c. is to return this voltage to one or more r.f. stages in the receiver where it will progressively reduce gain by biasing one or more stages away from the normal Class A working point towards cut-off. Thus the carrier level reaching the detector is kept fairly constant over a wide range of received signal strengths.

The effect is that the radio is more satisfactory to use, a.g.c. can counteract atmospheric fading of radio signals, and the effect of moving a portable radio. One can tune across the wavebands without being "blasted" by strong signals and missing weak ones. Stages which are a.g.c. controlled and subsequent stages are not overloaded by strong signals. Of course a.g.c. cannot produce any improvement in the radio's maximum gain or signal-to-noise ratio and in fact must be carefully designed to avoid impairing these qualities.
A.G.C. circuits often work over a very wide range and tend to be taken for granted. It is interesting to disconnect the a.g.c. line from the detector and connect it to the radio's earth temporarily. The effect on reception of, say, Radio Luxembourg (while fading), is instructive, but be prepared for sound "blasting" if trying this on a radio with a powerful audio output.

SQUELCH

There is one defect in all a.g.c. circuits which can be remedied by a squelch circuit. The a.g.c. circuit cannot "know" whether a weak signal or no signal is being received. Therefore the r.f. stages work "flat out" (full gain) when there is no signal, and the radio reproduces interference and circuit noise at unpleasant volume, this is especially noticeable when a car radio gives a burst of crackle when driving under a bridge which shields the signal, and when a loud hiss (circuit noise) is heard between stations on a v.h.f. receiver. A squelch circuit removes this annoyance by muting the audio output until a carrier of predetermined strength is received. The squelch circuit to be described is a relay
with transistor amplifier which is connected to the radio a.g.c. line. When there is no a.g.c. feedback, indicating that no signal is being detected, the relay closes and its contacts are arranged to mute the receiver audio.

Valve and transistor a.g.c. circuits must be considered separately as the voltage levels are slightly different. Figure 1 shows the essential a.g.c. components of a typical a.m. transistor radio using p-n-p transistors. The r.f. transistor is normally biased in Class A by R1 which supplies emitter-base current via i.f.t. 1 secondary. A strong signal detected by D1 produces a swing in the positive direction in the r.f. transistor's bias, i.e., the emitter-base current is reduced and the transistor moves towards cut-off. Thus the voltage across the $8 \mu \mathrm{~F}$ smoothing capacitor which is sensed by the squelch unit varies as follows:

No signal: -1.5 volts approx.
Strong signal: 0 volts approx.
If the a.g.c. circuit is similar but n-p-n transistors are used, the voltages are positive.

Figure 2 shows a squelch circuit suitable for both $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor radios. A simple current amplifier driving a relay would not be sufficient due to the relay hysteresis or voltage lag between energised and non-energised conditions. To reduce hysteresis the relay coil RL is driven by a Schmitt trigger, $\operatorname{Tr} 2 / \mathrm{Tr} 3$.

The a.g.c. supply is tapped off by VR1. If the a.g.c. voltage is sufficiently high (no signal), Tr1 draws current through R1 and away from Tr2. Tr2 and $\operatorname{Tr} 3$ share load resistor R3 and therefore the circuit resembles a long-tailed pair in that as $\operatorname{Tr} 2$ turns off, Tr 3 is biased on by the initial reduction in voltage drop across R 3 . But Tr 2 and Tr 3 are also coupled in the same sense by R4. At a certain threshold value of input to Tr1, the loop gain of the trigger exceeds unity and $\operatorname{Tr} 3$ is suddenly turned full on by $\operatorname{Tr} 2$. When the input to $\operatorname{Tr} 1$ drops below the

Fig. 2: Sque/ch circuit suitable for transistor radios.
threshold value, $\operatorname{Tr} 2$ suddenly turns on and turns Tr3 off. With the circuit shown, the threshold input current to Tr 1 was about $1 / 25$ th of a microamp and the hysteresis was too small to measure. Since $\operatorname{Tr} 3$ turn off very rapidly, diode D1 is included to protect it from reverse transients induced in the relay coil.

The relay contacts are arranged to mute the audio when the relay is energised. This can be done in a variety of ways e.g., by breaking the h.t. supply to an audio stage or bypassing audio at some point to earth through a capacitor somewhat larger than the nearest audio coupling capacitor. For audio stages not working at peak level it is safe to interrupt the audio at the loudspeaker in the following manner.

Where there is an audio output transformer; wire the relay contacts to short the speaker terminals together when the relay is energised. Where there is no output transformer; wire the relay contacts to open-circuit the loudspeaker connection when the relay is energised. These rules must be observed to avoid damage to the audio output stage.

Fig. 3: The basic a.g.c. components of a typical valve radio.
The essential components of a valve receiver a.g.c. circuit are shown in Fig. 3. The EBC91 valve contains a detector diode which provides both a.g.c. and audio. There are many variations on this arrangement; sometimes separate diodes provide a.g.c and audio. When a strong signal is received, the detected audio and a negative voltage appear at the top end of the volume control. The $0.005 \mu \mathrm{~F}$ capacitor couples the audio to the grid for further amplification. The negative voltage passes through the $2.2 \mathrm{M} \Omega$ resistor and the secondary of i.f.t. 1 to the grid of r.f. valve EF93. As this is a variable- μ pentode, applica-

Fig. 4: The modified squelch circuit for valve radios.

\star components list

Resistors:

R1 $680 \mathrm{k} \Omega$	R3 100Ω
R2 $10 \mathrm{k} \Omega$	R4 $8.2 \mathrm{k} \Omega$

All 10%, $\frac{1}{4}$ watt miniature

Semiconductors:

Tr1 2N2926 green (Fig. 1) 2N3702 (Fig. 2)
Tr2 2N2926 green

Miscellaneous:

VR1 $1 \mathrm{M} \Omega$ carbon pot. with switch; RL $6 \mathrm{~V} 270 \Omega$ miniature Siemens relay, one set of contacts used. 9 V battery; Aluminium chassis; tagstrip; battery clips; knob for VR1, etc.
tion of increased negative bias progressively reduces the gain of the stage. Thus the voltage across the $0.05 \mu \mathrm{~F}$ decoupling capacitor varies as follows:

No signal: -3 volts approx.
Strong signal: -6 volts approx.
Actual voltages may be considerably different, depending on the circuit. The important point is that the a.g.c. voltage increases when a strong signal is received as opposed to the opposite action in a transistor radio. For valve circuits, the squelch circuit must be rearranged slightly as shown in Fig. 4. Tr1 is now a high gain p-n-p transistor which supplies current to $\operatorname{Tr} 2$ when a high a.g.c. voltage is sensed across VR1. The delay coil is therefore energised when there is no radio signal as before.

CONSTRUCTION

The layout of the squelch circuit is not criticai and it can be built small enough to fit inside almost any radio. The author's prototype was laid out on a tagstrip bolted to a piece of aluminium without any attempt at miniaturisation as shown in Fig. 5. This layout is for the circuit in Fig. 2 and the necessary re-arrangement for the circuit in Fig. 4 can be deduced easily. A piece of the aluminium chassis is bent up to carry the squelch level control VR1. The tagstrip must be clean and dry around the base connection of Trl as the circuit will trigger on the slightest leakage current here. Just touching the base and collector leads of Tr1 with a fingertip causes the relay to energise.
None of the components are critical and there is no harm in trying substitutions. Tr1 and $\operatorname{Tr} 2$ were chosen for high gain and low leakage and similar cheap silicon types should work. $\operatorname{Tr} 3$ is a general-purpose

Fig. 5 (below): The component layout of the circuit shown in Fig. 2; this will have to be slightly modified for the circuit in Fig. 4.

Fig. 6: A.G.C. circuits of valve receivers using (a) a ratio detector and (b) a discriminator.

germanium type and an OC81 would be a possible substitute. A miniature Siemens 6 volt relay was used as it is available cheaply. A 24 volt 400Ω relay was also made sufficiently sensitive to work in the circuit by stripping it of three of its four contact sets and carefully weakening the one remaining spring. Any relay coil that will pull in on about 12 mA will work in the circuit if the d.c. resistance is below $1 \mathrm{k} \Omega$.

If the relay does not energise, try reducing $R 2$ to $8 \cdot 2 \mathrm{k} \Omega$ and/or increasing R 1 to $820 \mathrm{k} \Omega$ or $1 \mathrm{M} \Omega$. If the relay remains constantly energised with no input to Tr 1 base, try increasing R 2 or reducing R1 to $500 \mathrm{k} \Omega$. These adjustments should only be necessary with lower gain transistors and/or a less sensitive relay and result in a less sensitive circuit.

CONNECTION TO RADIO

The possible ways in which the relay contacts can be arranged to mute the receiver audio when the relay is energised have been mentioned and a suitable arrangement can easily be made. With valve receivers it is best to leave low level audio circuits alone to avoid introducing hum and muting is best achieved by interrupting the h.t. supply to the output valve. In this case a $0 \cdot 1 \mu \mathrm{~F}$ capacitor should be wired across the relay contacts to minimise sparking.

On a.m. receivers, the a.g.c. decoupling capacitor to which the squelch circuit is connected is easily located by reference to Figs. 1 and 3. It is usually just "one resistor away" from the live end of the volume control.

On f.m. receivers, the way in which the a.g.c voltage is derived depends on the type of detector used. Figure 6 shows the a.g.c. circuits of typical valve receivers with ratio and discriminator detectors. The a.g.c. controlled stage(s) work in the same way as in the a.m. circuits Figs. 1 and 3 and the a.g.c. voltage varies as before for $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor, $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor and valve stages.

For normal squelch use, VR1 is set so that the relay just energises when no signal is received by the
radio. Any reasonable signal will then cause the relay to de-energise but it is often useful to set VR1 so that only strong signals can break through the squelch. In this way, the crowded medium wave band can be "weeded out" so that it is reduced to a few strong local stations separated by silence.

Although the squelch circuit is very sensitive, it is necessary to switch it off in order to receive very weak signals that do not produce any noticeable a.g.c. voltage.

The circuit draws about 15 mA when the relay is energised. In normal use the relay will not be energised for long periods and several week's life can be expected from a PP3 battery; the author's circuit continued to work with a battery voltage as low as 4 volts. It is important to switch off the circuit when the radio is off or the battery will soon be drained, especially with the valve radio circuit where the relay would remain energised.

MONO-STEREO AMPLIFIER

_-continued from page 398
usual twin wiring, and relies on a single wire, with earth return. The amplifier, as shown, will not operate satisfactorily under these conditions.

Power Supply

This is quite conventional. The only points to note are that the mains transformer and smoothing choke are sufficiently large to handle the current required. The rectifier specified (GZ34) is the octal-based nearequivalent of the popular EZ81, which can equally well be pressed into service if desired. A B9A holder is required in place of the octal base. If this valve, or an EZ80 is used in preference to the GZ34, a separate 6.3 V heater winding will not be necessary on the mains transformer, as the heater-cathode insulation of these valves is sufficient to permit using them with the heater winding which supplies the remaining valves. The EZ80 is on the low side to handle the power necessary for stereo operation but will be sufficient, initially, for a mono version of the amplifier, and has the same base connections as the EZ81, with which it can be later interchanged. Smoothing capacitors C15 and C16 should be of the rated capacity, or slightly larger. Decoupling capacitors C4 and C54 are essential for stability, and should not be omitted, although, if space is at a premium, they may be reduced to $16 \mu \mathrm{~F}$ at the rated working voltage.
to be continued

MEDIUM WAVE

- RECEIVER

D. GIBSON G3JDG

DESIGNS for various types of receiver have commonly appeared in the popular construction journals. However, these have fallen into two categories, those for the short wave amateur bands from 1.8 to 30 MHz , and those more specialist types intended for the higher frequencies such as 144 MHz .

To date, the medium wave enthusiast appears to have been sadly neglected, and the purpose of this article is to offer ideas on which a specialist receiver, intended specifically for the 0.5 to 1.5 MHz segment of the r.f. spectrum, may be founded.

The circuitry provided offers a medium wave solid state receiver, but there is room for improvement both in performance and construction. It is intended, therefore, that this article should stimulate ideas for further experiment and improvement rather than offer circuitry which should be copied parrot-fashion.

DESIGN CONFLICTIONS

Any design is, of necessity, a compromise. In dealing with a medium wave receiver the same conflictions arise as for any receiver. Perhaps the two most important are sensitivity and cross-modulation characteristics with second channel interference running a close third. Other problems, such as noise, selectivity and spurious responses must be considered.

An inherent weakness in superhet design is image interference. The recejver shown minimises this by the choice of a high i.f. frequency -1.6 MHz instead of the more usual 465 kHz . Selectivity is good because there are two tuned circuits prior to the mixer. The i.f. bandwidth at the 6 dB points is approximately 2 kHz , this narrow bandwith assists in selectivity and a reduction in noise.

An a.m. signal, which is the normal type on medium waves, has two sidebands each containing identical information. Thus if we receive only one, it is possible to achieve intelligibility, a technique used in this design.

The narrow i.f. bandwidth is achieved by the use of a half-lattice crystal filter containing two crystals. The result is a filter having response characteristics with very steep sides.

In order to minimise cross-modulation problems the gain of the receiver is purposely kept low ahead of the mixer, the main gain coming after the crysta. filter.

In designing the receiver it was envisaged that the average constructor would not have access to expensive test equipment and many would not possess a wobbulator or oscilloscope, two items needed tc align an i.f. section accurately. Thus, in the presen circuit, a commercial i.f. strip is used which is pre aligned and on setting up in the completed receive,

Fig. 1: The front end circuit of the prototype receiver. Alternative circuits are given e/sewhere in the article.

Resistors:			
R1	$2 \cdot 2 \mathrm{k} \Omega$	R13 10k 2	R25 1 k Q
R2	$27 \mathrm{k} \Omega$	R14 $2 \cdot 2 \mathrm{k} \Omega$	R26 56Ω.
R3	$1 \mathrm{k} \Omega$	R15 $1 \mathrm{k} \Omega$	R27 1Ω
R4	220Ω	R16 $10 \mathrm{k} \Omega$	R28 1Ω
R5	$2.2 \mathrm{k} \Omega$	R17 $1 \mathrm{k} \Omega$	R29 18k Ω
R6	$27 \mathrm{k} \Omega$	R18 $68 \mathrm{k} \Omega$	VR1 $5 \mathrm{k} \Omega$ 1in.
R7	$2 \cdot 2 \mathrm{k} \Omega$	R19 10k Ω	VR2 $50 \mathrm{k} \Omega$ log.
R8	$4 \cdot 7 \mathrm{k} \Omega$	R20 $33 \mathrm{k} \Omega$	VR3 $5 \mathrm{k} \Omega$ log.
R9	$4 \cdot 7 \mathrm{k} \Omega$	R21 $2 \cdot 2 \mathrm{k} \Omega$	VR4 $5 \mathrm{k} \Omega$ tin.
R10	470Ω	R22 470,	VR5 10k Ω 1in.
R11	680Ω	R23 560 ${ }^{\text {R }}$	
R12	$4 \cdot 7 \mathrm{k} \Omega$	R24 $4 \cdot 7 \mathrm{k}$,	

All resistors $10 \% \frac{1}{4} \mathrm{~W}$ miniature, all potentiometers miniature carbon

Capacitors:

C1 $0.1 \mu \mathrm{~F}$
C2 $0.1 \mu \mathrm{~F}$
C3 $0 \cdot 1 \mu \mathrm{~F}$
C4 $0.1 \mu \mathrm{~F}$
C5 $0.1 \mu \mathrm{~F}$
C6 $0.1 \mu \mathrm{~F}$
C7 30pF
C8 $10 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C9 100pF
C10 10pF
C11 30pF
C12 $10 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C13 $10 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C14 $100 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic
C15 $100 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
C16 $100 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
C17 $100 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
C18 $200 \mu \mathrm{~F} 15 \mathrm{~V}$ electrolytic
C19 $1,000 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic
C20 $1,000 \mu \mathrm{~F} 12 \mathrm{~V}$ electrolytic
VC1/VC2/VC3 310pF swing variable 3-gang capacitor

TC1/TC2/TC3 40pF trimmers (air spaced if possible)
Cx see text
Cz see text
All capacitors 125 V wkg., miniature foil or polyester unless otherwise stated.

Semiconductors:

Tr1 BF115 (or OC170 or 2N3819,
Tr2 BF115 $\}$ see alternative circuits)
Tr3 2N706; Tr4 2N706; Tr5 OC81; Tr6 OC81D;
Tr7 OC81; Tr8 AC127
D1 6.2V 5\% zener diode, 250 mW .
Inductors:
R.F. coil Denco blue transistor coil $2 T$
Mixer coil Denco yellow
using BF115s
transistor coil 2T
or OC170s
in front end
Oscillator coil Denco white transistor coil $2 T$
R.F. coil. Denco blue miniature dual purpose valve coil 2T
Mixer coil Denco yellow miniature dual purpose valve coil $2 T$
I.F.T. 1 S1/T11/1.6 Denco

Miscellaneous:
I.F. strip IFA/1.6/SSB Mk. II, Electroniques; S-meter, $0-1 \mathrm{~mA}$, Eagle: $10 \Omega-35 \Omega$ loudspeaker; two open-circuit jack sockets; tuning dial assembly, Electroniques SM2; case and chassis, Philpotts Metal Works, Chapman Street, Loughborough; panel labels, Sherrard's Training Centre Digswell, near Welwyn, Herts.; plain Veroboard, $.0 \cdot 1$ in. matrix and matching pins, r.f. board $2 \times 3 \frac{3}{4}$ in., a.f. board $1 \frac{3}{4} \times 3 \frac{3}{4}$ in.; three terminals; five knobs; two toggle on-off miniature switches; one single pole changeover switch; two PP1 batteries; battery clips.

Fig. 2: The i.f., detector and audio stages. R17 is $1 K$ in the prototype but its value will depend upon the d.c. resistance of the mater chosen.
requires only one core to be adjusted for maximum response.

FRONT END

The front end of the receiver uses four transistors, all n-p-n types. It is a little unusual in that the circuitry is turned upside down to comply with the positive earth, a requirement of the i.f. strip.

A warning here. The transistors in the r.f. and mixer stages are Mullard types BF115. These transistors have four leads. There are some transistors marked BFI15 currently on the market, usually offered cheaply, which have only three leads. These three-lead types are not suitable, having been tried and found to lead to instability. For those readers who intend to use this design as a basis for further experiment, it is strongly urged that only brand new manufacturer's semiconductors be used.

Another important consideration is the choice of device for the oscillator. The type specified is a 2 N 706 and not a 2 N 706 A . The latter type was found to emit rather more spurious squeaks than could be tolerated. Four 2N 706As were tried and all gave similar results whereas the problems vanished when the 2 N 706 was used.

The r.f. stage uses a Denco blue coil inductively coupled to the aerial via a parallel-wired potentiometer. This method of r.f. gain control was adopted in favour of the more common configuration of varying resistive values and varying voltages fed to the transistor because it offers an improvement in crossmodulation performance.

ALTERNATIVE FRONT ENDS

In order to investigate the claims that field effect transistors (f.e.t.s) gave improved cross-modulation performance, a front end was constructed using 2N3819 f.e.t.s in the r.f. and mixer stages. The oscillator and emitter follower sections were left as shown.
Although these devices certainly gave improved performance in one direction, they lacked gain and were therefore abandoned in favour of bipolar devices. There are f.e.t.s available which are superior to the 2N3819 and doubtless these would prove satisfactory, perhaps the 2 N 3829 which is a "hotted" up version of the 2 N3819.

Fig. 3: An alternative front end using f.e.t.s. Although this circuit lacks gain, the use of 2N3829's should be an improvement.

Fig. 4: Circuit for the front end using p-n-p transistors. Although providing better gain it suffers from cross modulation.

Fig. 5: The transistor connections for the types mentioned.

Fig. 6: The modification of i.f.t. 1.

For constructors who are unhappy about the use of $\mathrm{n}-\mathrm{p}-\mathrm{n}$ devices in upside down circuitry, a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ front end was tried using the trusty Mullard OC170. This circuitry gave greater gain than that shown in the final circuit but by the same token proved more susceptible to the terrors of cross modulation. It must be admitted, however, that sensitivity with the circuit configuration gave most impressive results when using ten feet of twin lighting flex as an aerial.

For the experimentally minded, the other two front ends tried are shown in Figs. 3 and 4. Again, these were wired up on a strip of Veroboard in superb "rats nest" style and would doubtless benefit from a little thought for further improvement.

One last point regarding the f.e.t. A friend working at a university offered to check the actual gain of an f.e.t. and with an untuned load found this to be only 3 dB , a result verified by his learned tutor.

LOCAL OSCILLATOR

The oscillator uses a standard Denco coil but note that this is the white one intended for an i.f. of 1.6 MHz . It is coupled to an emitter follower, also a 2N706, which gives good isolation between the oscillator proper and the mixer stage. This isolation is further enhanced by the use of very low value coupling capacitors, nominally 30 pF .

The use of a separate oscillator is common in communications receivers to avoid any slight variations in the load offered by the mixer from detuning the oscillator slightly or "pulling" it off frequency. The emitter follower is an admitted luxury but the circuit works very well and no pulling can be detected in the prototype.

Both oscillator and emitter follower are fed from a stabilised supply obtained with the aid of a 6.2 V 250 mW zener diode decoupled by a 680Ω resistor and a $10 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic. This is not the most stable of supplies but the use of further transistors in either series or shunt stabilising circuitry was not considered necessary, and to date this decision has proved correct.

A transistor mixer requires very little in the way of oscillator injection voltage and thus the low voltage to the oscillator stage plus the very low coupling capacitors are entirely adequate. No advantage was evident when either or both were increased. The coupling capacitors were increased in value up to $1,000 \mathrm{pF}$ with no apparent increase in performance and strangely enough, no apparent pulling of the oscillator.

The i.f. strip has two crystals with the resultant response centred on 1.62 MHz and not 1.6 MHz which is the frequency for which the oscillator coil is intended. No deleterious results have come to light so far, the oscillator core allowing a wide adjustment of frequency. For the purist, intent on squeezing the very last ounce of performance out of the circuit, then theoretically the padder capacitor should be made variable so that the slight variation in frequency can be adjusted with due regard for the correct LC ratio. In this case, it would be in order to use an 82 pF silver mica capacitor in parallel with a 30 pF trimmer, preferably a beehive type so that these very slight adjustments can be catered for.

THE I.F. STRIP

Coupling to the i.f. strip is via an i.f. transformer mounted separately on the underside of the chassis. The secondary winding is capacitively coupled to the
i.f. transformer on the strip. The value here is nominally 30 pF . Increasing the capacitance will result in a greater transference of signal but will load the i.f. transformer on the strip more heavily. The result is that although "better" results are obtained from the loudspeaker, the shape of the response curve is distorted and it thus becomes again a matter of compromise as to how much shape distortion can be tolerated.

In an effort to check this to the limit, the collector of the mixer transistor was taken directly to the input of the i.f. transformer on the strip itself, thus bypassing completely the separate i.f.f. The resultant distortion of the i.f. shape factor was quite marked but selectivity was still reasonable.

A very important point is the adjustment of the strip's input i.f.t. This has two cores which can be adjusted by a special plastic tool. Under no circumstances should the top core of this transformer be touched. Only the lower core, accessible from the bottom of the can, should be adjusted. This is very important since the other, the top core, is carefully pre-aligned by the manufacturers for the correct response from the crystal filter.

The strip is colour coded by little blobs of paint. These correspond to the numbers shown in the diagram. To avoid any error here, a table has been included showing which colour corresponds to which number. This information is also included in the Hobbies Manual which the manufacturer also markets.

The resistor shown in series with the meter, i.e., between the meter and point 4 on the strip was found superfluous with the particular meter used. Originally a $5 \mathrm{k} \Omega$ skeleton preset was wired in directly behind the meter for adjustment. A separate front panel control permits the meter to be set to zero.

In the manufacturer's circuitry for the strip there is an error in the wiring of the a.g.c. on/of switch. This should be wired as shown in the circuit diagram and not as in the Manual.

The original circuitry also showed a $0.1 \mu \mathrm{~F}$ capacitor wired directly across the a.f. gain potentiometer. The omission of this component will result in an increase in signal but will also be accompanied by an increase in noise. Varying the value of the capacitor will produce pro-rata results.

A.F. SECTION

The a.f. amplifier section was derived from an early Mullard design which was modified and ruthlessly pruned of components until the bare minimum workable circuitry remained. Considerable experiment was called for to get the circuit to function satisfactorily in both performance and current consumption. With the values as shown, the circuit draws approximately 8 mA in its no-signal condition. Current on peaks is far greater than this.

Two jack sockets are wired in immediately following the preamplifier stage. This was to allow headphone reception for one or two listeners or to take a lead out to a tape recorder. The speaker remains in circuit when these jacks are in use and it might be an idea to utilise jack sockets with spare contacts which could be arranged to break the supply to the other three transistors in the interests of battery economy.

In its present form the receiver covers from $0 \cdot 5 \mathrm{M}$ Hz to 1.5 MHz over a 180° dial. It has three separate
-continued on page 434

by M.F. DOCKER, M.Sc.

PREVIOUS articles in this series have shown how semiconducting materials can be made to rectify alternating current, respond to light signals by producing a varying current when the illumination is altered, and so on. These devices have all been two electrode ones, or diodes. Their electrical behaviour has been shown to be connected with the internal, atomic energy levels of the materials used, and with the distribution of impurity concentrations within the devices.

Discovering the transistor

Shockley, Bardeen and Brattain together with other research workers sought for many years to find a solid state device which would produce amplification of power; in other words a solid state version of the thermionic triode valve. They were aiming to make a device which had been theoretically predicted by Lilienfeld. In 1948 they disclosed the invention of an amplifier, different from the one that they were trying to make, but none the less an amplifier. They called it a transistor, a contraction of the term TRANSfer resISTOR. It was not until several years later, in the 1960s, that the device they were seeking, the field effect transistor, was found. This had to await the advent of higher purity materials than were at that time available.

The device which they did make was a variant of the point contact diode. They placed two metal cat's whiskers close together on the same chip of germanium. One of the diodes thus formed was forward biased and the other reverse biased. The amazing fact that came to light was that the current between the two metal contacts depended strongly on the current flowing into the forward biased junction. A large current could be made to flow across a high impedance reverse biased junction, amounting to a high power outout, simply by altering the current flowing in a low impedance forward biased junction, a low power input. The solid state amplifier was here to stay!

Basic transistor operation

In order to explain the transistor action it is convenient to discuss the p-n-p junction transistor. This is a descendant of the point contact transistor and the methods used in their manufacture will be described later. At present it suffices to say that it consists of an n-type base region, corresponding to the semiconducting chip in the point contact device, and two p-type regions called the emitter and collector corresponding to the forward and reverse biased junctions respectively. The cross section of a typical device of this form is shown in Fig. 1. The two p-type regions have to be placed very close together in order to get a good transistor action.
The voltages (batteries) shown in this figure correspond to those used in the basic common emitter
transistor circuit. The emitter to base junction is forward biased by making the emitter positive with respect to the base, and the collector to base junction is reverse biased by making the collector negative with respect to the base.

Fig. 1: Basic physical representation of a junction p-n-p transistor. The connections here correspond to the common emitter mode (emitter earthed).

At the forward biased emitter-base junction there is a flow of holes from the p-type region to the n-type region and a flow of electrons in the opposite direction. However the impurity concentration of the emitter is arranged to be much greater than that of the base so that the number of electrons flowing from the base to the emitter can be ignored in the simple treatment of the transistor. In more rigorous treatments of the device the "injection efficiency" of the emitter is involved: this is defined as the ratio of the current flowing across the emitter base junction due to the hole flow to that due to the electron flow together with that due to the holes, or more simply it is the ratio of hole current to total current.

Now consider what happens to the holes which are injected into the base region. If the base region were infinite in length all the individual holes would eventually recombine with the majority carriers, electrons, which are present in large numbers in the base region. However the holes can travel on average a certain distance through the base region before recombining. The time they exist in the base region is called their lifetime and is again an average concept. In the transistor the base region is made as narrow as possible so that a large fraction of the injected holes are able to diffuse to the collector junction.

At the collector junction they come under the influence of the electric field across the depletion layer, and because of their positive charge they are attracted to the collector which is negative with respect to the base.

Once the holes reach the collector they constitute the emitter to collector current. The holes which recombine with electrons in the base region result in the number of electrons in the base region decreasing. However the concentration has to remain constant in order to maintain equilibrium so electrons flow into the base from the external power supply, contributing to the base input current.

If by open circuiting the base no electrons are allowed to flow into the base region from the external circuit, only a very small emitter to collector current will flow. However if a small base current is permitted to flow an emitter to collector current many times this will be able to flow. In this way current amplification has been achieved. The ratio of the number of holes crossing the base junction to the number suffering recombination is called the beta of the device and given the symbol β.

Power gain

It is now possible to see how a power gain can be achieved. Considering the circuit of Fig. 2, called the common base mode of transistor operation, it is seen that the emitter current is almost the same as the collector current as just explained. The input current is the emitter current and the output current is that

Fig. 2: Circuit showing the common base transistor arrangement (base earthed this time).
flowing from the collector. However these are nearly the same in size, the ratio of collector to emitter current being called the alpha of the device and given the symbol α. So how has a power gain been achieved?
Remember that the collector junction is reverse biased so the base to collector voltage Vbc is large, perhaps 10 V in a small transistor or 100 V in a larger device. However the base to emitter voltage Vbe is very much smaller, typically 0.3 V for a germanium device and 0.5 V for a silicon device. Consequently there is a power gain between the emitter input and the collector output of several hundred times.

A simplified relationship between the α and the β of the transistor can easily be found. From the explanation so far given it is clear that the emitter current is equal to the sum of the collector and base currents. Consequently from the definitions of α and β the following equations can be written:
$\alpha=I_{c} / I_{e}=I_{c} /\left(I_{c}+I_{b}\right)=I_{c} /\left(I_{c}+I_{c} / \beta\right)=\beta /(\beta+1)$.
Alternatively the equation can be written in the form

$$
\beta=\alpha /(1-\alpha) .
$$

The equation for α shows that it is always less than 1 as β is always positive. A typical transistor could have a current gain, β, of 100 . Consequently the value of α for this device would be 0.99 . Obviously a large change in β gives rise to only a small change in α.

The manufacture of transistors

Various processes are used in the manufacture of transistors in order to produce devices of different capabilities in respect of frequency response, speed of switching, power dissipation, maximum collector voltage and so on. However many of the procedures are common to those used in the manufacture of diodes.

The starting point in the production of a transistor is once again a highly purified slice of silicon or germanium or perhaps some other semiconductor as mentioned previously such as gallium arsenide which is being increasingly used in the manufacture of devices.

Into this material the appropriate impurities are introduced in order to obtain the junctions upon which the action of the transistor depends.

The grown junction transistor

The grown type of transistor is produced by the same process used to prepare the grown diode. Either the impurity content of the melt from which the crystal is being grown is altered to obtain p- and n-type regions, or else the rate at which the crystal is pulled is altered giving the rate growth process. In either case very close control over the process has to be exercised in order to obtain a transistor which conforms to the required specifications.

A grown junction transistor might be made in the following way. Initially the collector is grown using a comparatively high purity n-type melt and a suitable seed crystal. After a short length of this material has been grown p-type impurity is added to the melt in order to over-compensate for the n-type impurity giving a net p-type behaviour to the region. A very short region of this material is proced to give a thin base. Finally the emitter is grown by adding an excess of donor impurity in order to give a region of low resistivity and a high injection efficiency. Typical resistivities of the collector, base and emitter regions might be 10,1 and $0.02 \Omega / \mathrm{cm}$. respectively. The resistivities of the regions of course vary inversely with their impurity concentration, low resistivity corresponding to a high impurity concentration. This process can be repeated several times in the growth of one crystal so that many transistors can be produced together.

The next step towards a finished transistor is to cut the crystal into slices. This means that the junctions have to be located, and this is done by etching the crystal, when the junctions are easily seen under a high power microscope. The transistor slices are then cut and divided up into small dice, perhaps one millimetre square, to give the individual transistors which are then mounted on to metal headers. Finally the leads are attached by soldering or by alloying and the complete transistor is encapsulated in its case and hermetically sealed to prevent contamination by airborne impurities.

The allov junction transistor

One of the most popular types of transistor is the alloy junction device. This is made in the case of a germanium p-n-p device by attaching two indium "dots" to an n-type germanium dice. This is then raised to an accurately controlled temperature of around $600^{\circ} \mathrm{C}$ for a short time. The indium dots melt and dissolve some germanium from the dice until they are

Fig. 3: The structure of a typical p-n-p alloy junction transistor.
saturated. After a short time the heating is removed and the wafer allowed to cool. The indium solidifies again but the germanium near the edge of the molten indium
—continued on page 423

TAKE 2®

 JULIAN ANDERSONA series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build.

EVER since I first started playing about with transistors about eight years ago I wanted to build a one-transistor radio, operating a loudspeaker without an external aerial. This was not possible in those early days as there were no transistors on the market with sufficient gain. A few months ago I had a crack at this again using the very high gain silicon transistors now costing about a couple of bob each, the result is published here.
I don't want to mislead anyone, the volume is low but it is sufficient for a child's or bedside radio.

THE CIRCUIT

With the prices of nearly all components falling -and transistors falling most rapidly, many readers will think that it would be cheaper and easier to use two transistors and do away with some of the other parts. They are perfectly correct, but until there are laws forbidding slavery in transistors there is a lot of satisfaction in getting the last ounce of work out of them.

The signal is picked up on the aerial winding L1 on the ferrite rod and tuned by VC1. L2 transforms the signal and feeds it to the base of the transistor, Cl acting as a d.c. blocking capacitor. The amplified r.f. signal appears at the collector and finding its path blocked by the inductance of T 1 , passes through C2. Now C2 and L3 are chosen so that they form a tuned circuit, which is slightly damped by the other parts of the circuit, and it encourages the r.f. through it. The diode D1 detects this signal and after being smoothed by Cl passes to the base of Tr1. The amplified a.f. signal appears at the collector and T1 acts as the load, transforms it and feeds it to the speaker. C2 is too low in value to pass much a.f. but any that does is taken straight to the earthy side of the circuit by L3. R1 provides the bias for the transistor and will vary with the one chosen; it is best found by experiment but will probably lie between $47 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$.

COMPONENT NOTES

Almost any m.w. ferrite rod aerial may be used but the larger the better. If you want to wind your own, the aerial winding should consist of about 70 turns and the secondary, wound either beside or on top, of about 7 turns. Any transistor output transformer will suffice for T 1 , most of these are centre tapped but this should be ignored. L3 is the primary of an i.f. transformer; take off the can protecting this and cut off the small capacitor if one is fitted; in this case the centre tap and secondary are ignored. The larger the loudspeaker the better and although suffi-

Fig. 1: The circuit of the one transistor radio.

* components list

R1—see text	T1 Transistor output
C1 $0 \cdot 04 \mu \mathrm{~F}$	transformer
C2 100 pF	L3 i.f. transformer
VC1 250pF variable	Ferrite rod with m.w.
VC2-see text	winding
Tr1 2N2926 or similar	9V battery, loudspeaker,
D1 OA70, OA79,	Paxolin board
OA81 etc	

cient volume is obtained with a 2 in . speaker, the larger ones are far better. A volume control, if needed, is best fitted across the secondary of the output transformer-a 10Ω pot should do. If this were fitted into any other part of the circuit it would affect the working conditions.

CONSTRUCTION

Care must be taken in the layout. Owing to the very high gain it is easy for the circuit to break into oscillation and L3 must be kept well away from L1 and L2 and the collector of Tr1 must be away from the aerial coil. This explains VC2; regeneration can be applied by feeding a tiny part of the signal back to the aerial coil, but the value of such a capacitor will be in the order of 0.5 pF and its value is critical. It is best to keep the two apart as much as possible and then with a wire fixed to Trl collector to lay this near the winding. If the radio fails to oscillate reverse the connections of L2. If Veroboard is used even the capacitance between the strips may send it into uncontrolled oscillation.
The current consumption is between 4 mA and 15 mA and a battery should last a fair while under these conditions.

After switching on, adjust the core in L3 for best results over the section of the band you will normally be using.

D.W. GUIDE TO Cox Pouncild
 PART 10
 M. K.TITMAN, B.Sc.(Eng)

Part 9 last month dealt with temperature-sensitive transducers. This month a number of transducers sensitive to other physical effects are described.

Proximity Detectors

Proximity detectors are used to sense mechanical changes in objects, including the measurement of length, position and movement. Among the most prominent components used for these applications are microswitches, reed relays, capacitive and inductive probes.

Microswitches

The simplest form of proximity detector is the mechanically operated microswitch and these devices are widely used for control and safety applications. Basically they are mechanical switches operated by a small movement of a plunger and a typical microswitch is illustrated in Fig. 8. Single or double contact

Fig. 8: Typical microswitch.
versions are available including normally open, normally closed or changeover. The contact is usually made by a wiping action rather than a contact closure as in relays and thus microswitches tend to be self cleaning and consequently more reliable. The actual movement is a sprung snap action which generally requires a small button plunger movement of less than $0 \cdot 1 \mathrm{in}$.

Most microswitches are available with various add-on lever movements for depressing the button and some are also available for rotary activation. These are illustrated in Fig. 9 and can usually be modified by the designer to fit a particular require-

Fig. 9: Microswitch movements.
ment. As the force requirement to operate the button is usually from 2 oz . to 10 oz . for small microswitches, the mechanical advantage of a lever allows extremely sensitive, low force operation. Indeed low torque devices requiring torques of less than $10 z$. are available.

Contacts are usually of silver or gold and in common with relays maximum current and voltage ratings are given. However it must be remembered that the actual power which can be reliably switched is considerably less than the product of these two maximum ratings. Maximum contact ratings vary from $0.2 \mathrm{~A}, 250 \mathrm{~V}$ d.c. and $2 \mathrm{~A}, 250 \mathrm{~V}$ a.c. to $1 \mathrm{~A}, 250 \mathrm{~V}$ d.c. and $10 \mathrm{~A}, 250 \mathrm{~V}$ a.c. Power levels for these contacts would generally be 20 W and 100 W respectively for reliable operation. Contact and mechanical life are generally 10^{5} to 10^{6} operations.

Since microswitches are mechanical in operation they are inherently unreliable components as they have a definite lifetime. However they are widely available at prices from 5 s . to 20 s . for domestic types, to 10 s. to $£ 10$ for robust and special purpose industrial units. Disadvantages include the low speed of operation-usually less than 500 operations per minute-and the switch bounce associated with contact closure. Operating time including snap action and switch bounce is usually $5-15 \mathrm{msecs}$.
Microswitches are used in electronic equipment for safety applications such as the disconnection of dangerous h.t. voltages when panels and casings are removed and also as the switching element of push buttons. They are particularly suitable for button arrays where their size contributes to high button density on front panels. In domestic and industrial applications they are used to sense the closure of doors and guards and as limit switches for machinery.

Reed Relays

Reed relays in conjunction with permanent magnets are being used increasingly in applications where high reliability and noncontact conditions are required. Since the construction, rating and design limitations of reed relays have been discussed in Part 7 in this series we will consider only the transducer aspects of their operation.
The reed operation when activated by a permanent magnet is shown in Fig. 10. It should be noted that the axis of the magnet should be in the same plane as the reed axis for correct operation. As the magnet approaches the reed the contact is closed (Fig. 10(a)) and the minimum distance for reliable operation for a given magnet and reed is termed the just operate distance. When the magnet moves away

Fig. 10: Reed relay operation.
from the reed the contact opens (Fig. 10(b)) and this distance is known as the just release distance and is greater than the just operate distance. Typical spacings are $0.2-0.4 \mathrm{in}$. and $0.3-0.6 \mathrm{in}$., just operate and release distances respectively, for small $0 \cdot 2 \mathrm{in}$. diameter, 1 in . long magnets and average reeds to $1-2 \mathrm{in}$. for larger $0 \cdot 5 \mathrm{in}$. diameter 2 in . long magnets.

Permanent magnet and reed combinations are used as proximity detectors for applications where high speed switching or noncontact operation is required or for high reliability. Reed switching times are an order better than microswitches at $1-5 \mathrm{msecs}$ and operating rates are higher with maximum greater than 100 operations per second. Lifetime is also increased to $10^{7}-10^{8}$ operations, however the contact ratings are considerably reduced at 3-10W.

Capacitance Probes

Whilst capacitance probes are not generally available as components they are useful as proximity detectors particularly for metal detection. They consist of a. plate connected to an oscillator circuit whose capacitance, with respect to the earthed object being detected, increases as the probe approaches. This alters the oscillator frequency and by feeding into a tuned circuit and detection stage a voltage variation is achieved which can operate a meter or switch a relay. The operation is illustrated in the block diagram of Fig. 11.

Fig. 11: Capacitance probe system.
The advantage of this form of proximity detector is that a proportional signal results and can be used for measurement and in addition the probe is very robust and easily constructed. Disadvantages are that the probe requires additional circuitry for control purposes and can be affected by atmospheric conditions such as humidity.

Inductive Probes

Inductive probes are used for precise linear measurement and a typical probe is shown in Fig. 12. The inductance of the coil is varied by the movement of the plunger which moves the coil core. The inductance variation is used to vary the frequency of an oscillator and the frequency variation is

Fig. 12: Inductive proximity transducer.
monitored by a frequency to d.c. converter. Hence a proportional signal can be achieved and used for position or thickness measurement. The spring loading of the plunger allows a continuous surface or thickness variation measurement to be made.

Such transducers are generally used for fine linear measurement in the region of 0.001 in . to 0.02 in . Consequently they are precision made and extremely expensive. They are not robust and consequently are not generally used for control applications.

Pressure Transducers

By far the most interesting pressure transducers to the electronic engineer are those used for sensing and producing acoustical air pressure variations. However since loudspeakers and microphones have been discussed in a previous part in this series no further discussion is necessary. The remaining pressure transducers are not generally used in electronic equipment as components and have specialist applications only. Consequently they will be discussed only briefly.

Mechanical Pressure Transducers

Standard pressure gauges are used as electrical transducers when fitted with electrical contacts, mechanically operated. Two basic configurations are used as illustrated in Fig. 13. The Bourdon pressure gauge consists of an elliptical cross-section tube which tends to uncoil as the pressure increases and this results in the pointer moving: at a specific point the contacts close. Both normally-open and normally-closed versions are available as well as changeover types.

Fig. 13: Mechanical pressure gauge and transducer.
The diaphragm pressure gauge is the basis for most pressure transducers and in Fig. 13(b) the
electrical output is obtained from contacts which close when a pressure increase forces the diaphragm outward. Adjustment of the pressure at which the contacts close is achieved by screw adjustment of the contact. Since the diaphragm displacement is proportional to pressure any form of linear displacement transducer may be used. The basic methods used however are: the alteration in air gap of a transformer which gives a variation in transformer output; the resistance method in which carbon piles are used and connected in bridge form with resistors to give a balanced output; and the piezoelectric method which uses changes in the characteristic of a crystal and hence an oscillator frequency to give the required output variation.

Many miniature pressure transducers utilise a semiconductor strain gauge element connected as a bridge to give a proportional electrical output signal. Such a device is illustrated in Fig. 14. The pressure

Fig. 14: Miniature pressure transducer.
range for all these devices is dependent largely upon the mechanical properties of the diaphragm and varies from $0-10$ p.s.i. to $0-1000$ p.s.i.. Prices vary considerably and are generally in the range $£ 5-£ 50$.

Load Cells

Load cells are basically diaphragm pressure gauges using piezoelectric, semiconductor strain gauge or potentiometric electrical outputs for the direct measurement of force or weight. Such devices are generally available in miniature form at prices from $£ 5$ to $£ 25$.

Light Operated Transducers

Since light operated transducers can be used in a wide range of measurement and control applications a very large number of devices is available. The applications include density measurement and control, colour matching and mixing, exposure meters, counting and pulse speed measurement and control, proximity detection, infra-red sensing and security applications. Three basic types of photoelectric cell are used and these are known as photovoltaic devices, photoemissive cells and photoconductive elements.

Photovoltaic Devices

These are essentially e.m.f. generators and are the only devices which do not require an externally applied voltage. The voltage generated across the cell terminals is proportional to the light intensity and although small can be used to drive a current meter since it is generated at low source impedance.

Selenium Cells

The selenium cell is one of the most widely used light sensing mechanisms especially since its spec-
tral response is very like that of the human eye. The response peaks in the region of yellow-green and falls off in infra-red and ultra-violet.

The construction of a selenium photovoltaic cell is illustrated in Fig. 15. The selenium is spread whilst

Fig. 15: Selenium photocell construction.
molten across an aluminium base plate and then annealed. The annealing produces a barrier layer on the surface on to which is deposited an extremely thin layer of gold to form a translucent surface electrode. The surface is then protected by a transparent glass or plastic window. Since the voltage is produced by light impinging on the selenium surface the cell is essentially a surface operated device and for high power output levels a large surface area is required. This can be an advantage in some applications since it can average light intensity over a large surface.

The mechanism by which the e.m.f. is generated depends upon the semiconductor characteristics of the device. The barrier layer formed on the surface of the selenium produces a barrier potential between the translucent conductor and the selenium and this is broken down by photon bombardment: the greater the light intensity the greater the breakdown and consequently the higher the e.m.f. produced. Since the impedance is low only low e.m.f. levels are generated but the current is sufficiently large to drive sensitive current galvanometers. Alternatively the e.m.f. can be amplified to give reading and control signals. However the response characteristics can vary with external influences and with time and in consequence they are generally only used for non-critical measurements and control functions. Another disadvantage is that the cells suffer from fatigue when subjected to light for long periods.
Selenium cells are widely available at prices ranging from 10 s. to $£ 5$ depending on construction and size. They are also available in multifocus panel form and as simple panels. The are fairly large and commonly 1 in . square or larger in panel size since they are primarily intended to give direct readings of light intensity to galvanometers.

Photovoltaic cells are also manufactured using alternative semiconductor materials in order to operate in other spectral regions. Notable amongst these materials are cuprous oxide and iron selenide. Another important device is the gallium arsenide photovoltaic detector which has an extremely high amplification factor and is considerably more sensitive than photomultipliers. These devices do not suffer from lack of sensitivity at high light levels
and can operate at temperatures in excess of $100^{\circ} \mathrm{C}$. They are however very expensive.

Photoemissive Devices

Photoemissive devices are valve-like structures in which the flow of electrons is regulated by the light intensity on the cathode. The cathode is surfaced with a light sensitive material such as caesium, which when bombarded with photons releases electrons which are attracted to the anode which' is maintained at a high positive potential. Figure 16 illustrates this construction and the circuit shows the load resistor. The assembly is encapsulated in a glass envelope and is either evacuated or filled with an inert gas such as argon.

Fig. 16: The photoemissive valve.
The vacuum photocell is used for precision luminosity measurements since the current flow is independent of anode voltage provided this is maintained at a sufficiently high level to catch all the electrons emitted from the cathode. The current is also linear with light intensity which makes it particularly suitable for critical measurement and indication. A further important advantage is that the vacuum cell can operate at frequencies up to 10 MHz .

The gas filled photoemissive cell operates in the same manner as the vacuum cell but providing the anode is at a sufficiently high potential electron collisions with the ionised gas particles releases further electrons. Consequently a current magnification is achieved and a magnification of 10 is possible. However these cells suffer from lack of linearity and are limited to operating frequencies below 10 kHz .

The spectral response depends upon the cathode material and response peaks from the infra-red region (caesium on silver oxide) to the ultra-violet (caesium antimony) can be obtained. Disadvantages of this type of device are generally due to their large size and relative fragility. They are widely available at prices ranging from $£ 1$ to $£ 15$.

Photoconductive Elements

These are basically light dependent resistors of which cadmium sulphide and cadmium selenium cells are widely used. Most of the photovoltaic devices can also be used in conductive modes of operation such as selenium and silicon. A typical miniature cadmium sulphide cell is illustrated in Fig. 17 and the deposited CdS track can clearly be seen.

Fig. 17: The cadmium sulphide cell.
When no light reaches the conductive element the resistance is high and this is known as the dark resistance and the minimum value for a particular device is quoted. Typical values are from $100 \mathrm{k} \Omega$ to $10 \mathrm{M} \Omega$. The resistance decreases rapidly with light intensity falling to values of from 50Ω to $2 \mathrm{k} \Omega$. Since they are capable of high power dissipation--from 200 mW to 1 W -they can be used at current levels which are sufficient to drive meter movements or relays. Consequently they can be used in conjunction with low voltage batteries in direct control systems, for example the automatic exposure control of cameras. They are also small and very robust which makes them particularly suitable for portable apparatus.
The spectral response is generally biased towards the red and infra-red regions but covers the visible spectrum. The peak is in the orange-red region. However since the response continues into the infrared region precautions must be taken when this is not required. The operating temperature range is wide and $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ is normal. Cadmium sulphide cells are readily available at prices ranging from 5 s . to 40 s . and are available with either end view operation, as illustrated, or with side view. The variation in price is determined largely by method of construction and quantity requirements.

Photodiodes and Phototransistors

The photodiode is essentially a photovoltaic device since it operates by current flow due to incident light breaking down the barrier potential of the diode junction. However since the current flow is dependent upon light it can be operated in the photoconductive mode. Both germanium and silicon photodiodes are available but silicon devices have now largely superseded germanium devices due to the wider operating temperature range and increased power dissipation. In addition modern fabrication techniques have resulted in a higher frequency response of up to 150 kHz compared with germanium devices having cut-off frequencies of $3-10 \mathrm{kHz}$. The dark current is in the region of $50 \mathrm{nA}-10 \mu \mathrm{~A}$ for silicon devices and $15-300 \mu \mathrm{~A}$ for germanium.

The spectral response peaks in the red to infrared region but covers the visible spectrum up to ultra-violet. Since the sensitivity is high in the infrared region they can be used as infra-red detectors in such applications as fire and smoke detection.
The phototransistor is essentially a photodiode which amplifies the current generated at the baseemitter junction by incident light. Consequently the operation and spectral response are similar whilst the power output is considerably increased. The frequency response however tends to be limited and is usually less than 100 kHz .

Figure 18 shows typical encapsulations for plastic encapsulated silicon diodes and transistors. Generally the lens is also of plastic, moulded to give the

Fig. 18: Photodiode and phototransistor encapsulations.
correct focal characteristics. Glass encapsulations are used for applications where humidity is critical. The circuit symbols are shown in Fig. 19 for both p-n-p and n-p-n phototransistors.

Both photodiodes and phototransistors are readily available at prices ranging from 10 s . to 60 s . Multiple arrays for such purposes as computer character

H Fig. 19: Photodiode and phototransistor circuit symbols.
Fig. 20 (left): Circuit symbol for the light-activated s.c.r. (l.a.s.c.r.).
recognition and readouts are also available and the price depends largely upon the complexity. Photodiode and phototransistor arrays are now used for a large number of applications such as paper tape and card readers, interfaces and even in an extremely complicated matrix form as a television camera tube replacement.

Light Activated S.C.R.

The gate diode of an s.c.r. can be operated by incident light by the same mechanism as the phototransistor and consequently these devices are a logical extension of phototransistor applications. Since the s.c.r. or thyristor behaves essentially as a switch these devices cannot be used for light intensity measurement but are extremely useful in power control circuits. Light activated s.c.r.s (l.a.s.c.r.) can directly switch power levels up to 2 kW and are therefore the most powerful light operated component. They are used in industrial applications for motor and heat controls as well as high power lamp controls. The circuit symbol is shown in Fig. 20.

Since the applications of l.a.s.c.r.s are limited they tend to be relatively expensive control elements. Prices range from $£ 2$ to $£ 20$ and only a few of the major semiconductor suppliers manufacture them. However as their application becomes more widely known it is expected that prices will fall.

The Future

Transducers are perhaps one of the least known groups of electronic components in the electronic industry. Since they largely measure and monitor physical phenomena in fields unfamiliar to the electronic engineer this is to some extent understandable.

Conversely as they are essentially electronic, engineers of other disciplines are likewise uninterested. However it is in this group of components that some of the most spectacular advances may be made, since they can be linked directly with electronic complexes such as computers. This should give increased stimulus to their development, particularly since the breakthrough of thyristors into the domestic equipment field will increasingly require direct transducer control.

Among the advances likely in the very near future are integrated circuit photodiode arrays to replace television camera tubes, especially for computer interface uses such as character recognition and drawn information. Similarly pressure sensing and temperature controlling elements will be incorporated in linear integrated circuits to give direct electronic outputs. All these advances will be stimulated by increased interest by electronic and other engineers and it is for this reason that an understanding of transducer mechanisms is essential in electronics today.

to be continued

BASIC SEMICONDUCTOR TECHNOLOGY

-continued from page 417

recrystallises into the main lattice. As the recrystallised germanium contains indium as an impurity it is of the p-type near to both of the indium dots. Consequently at the boundaries between each of the p-type zones and the n-type zones there are $\mathrm{p}-\mathrm{n}$ junctions and the device is now a p-n-p alloy junction transistor. Fig. 3 shows the structure of such a p-n-p alloy transistor.

The two dots used for the emitter and collector regions are either punched from a very thin sheet of indium or else formed in small drops from molten indium. The collector is made several times larger than the emitter to improve the efficiency of collection of the holes injected into the base from the emitter. In this way only a small percentage of holes are lost by diffusion to the surface of the base region where they recombine with electrons on the surface.

In the alloy junction transistor difficulty is experienced in precisely controlling the width of the base region during manufacture. The slightest variation in the heating process can produce a base which is too wide or too narrow. If it is too wide the frequency characteristics of the device are poor because injected holes take a long time to cross to the collector junction, and also the alpha of the device will be reduced because the number of recombined holes increases with the transit time across the base. If the base is too thin the maximum voltage which can be applied to the base-collector junction will be reduced since if too large a voltage is applied the collector junction depletion layer will reach right through to the emitter and short out the transistor. This means that it is difficult to achieve a very close tolerance during manufacture and in many cases devices are prepared in families and selected into individual types after they have been completed. Finally, the device has leads attached and is then encapsulated in a suitable container depending on the power dissipation expected in the device.

Despite their limitations this type of transistor is used extensively in low frequency amplifiers, power control circuits and so on, although they are slowly being replaced by the newer epitaxial devices.

TO BE CONTINUED

Ex-Meter

Why do radio enthusiasts place the S meter so high in the list of receiver requirements? On tuning the bands, one so often hears remarks like, ". . coming in S7 here, Jack . . using AR88 plus 40 m dipole." Very well, Jack knows his signal is getting out, but he knows nothing about his field strength at that location. No doubt he and his contact both relate it with S readings, so they continue with the ragchew quite happily.

Looking closer at this business, we find that on a receiver, when a particular level of signal is present at the aerial terminal, a particular reading is given on the S meter; but this is only true if the r.f., i.f., and aerial atten. circuits are in the same condition as when the S meter was calibrated, i.e. all gains unchanged and all r.f. and i.f. circuits in tune. Even with such a receiver, we find that different aerials will give different S readings for the same field strength. To give useful signal strength information to a contact, all front end controls must be set to maximum gain, and average S meter reading taken over a short period, and the result sent back with full details of the aerial type, length, height, direction along with details of its special peculiarities due to surrounding objects. From what I hear on the bands, nothing approaching this is given, which is understandable. Personally I dislike touching the controls after reaching a good balance between r.f., i.f., and a.f. gains. I am not against operators having a rough guess at the signal strength, but am merely pointing out that there is no need for a \mathbf{S} meter. If one wants to start using instruments then use a proper field strength meter and give the figures in volts/metre-not in meaningless S units.

Someone may say "Well I use the S meter to find a peak while tuning in weak signals". Speaking for myself, I have rarely come across any DX which did not require slight offset tuning to avoid adjacent channel interference or to increase intelligibility.

Take my advice, disconnect that worthless gadget, add a switch and a shunt, and use it to measure something worthwhilelike the h.t. current in each sec-tion!-R. Mitchell (Glasgow).

Take 20

I have built the electronic organ by Julian Anderson (August issue) and while I am extremely pleased with the results, I feel that the claim that it can be built for twenty shillings is highly misleading as my components cost 39 s ., the 2 N 2646 alone cost 16 s !

I realise one can buy components at one shop cheaper than at another, but the differences are small. Would it not be better for the author to either confine himself to the limit or to change the title of the series?-S. King (York).

The author replies

The business of costing projects is very difficult and this is why prices are rarely given. The object of Take 20 is to provide each month a simple constructional project which will fall within the pocket of most readers. I am sorry that Mr. King had to pay 39s. for his components but I can assure him that this project was costed out from components available from advertisers in Practical Wireless. In the August issue OC81 transistors were advertised for prices between $2 s$. and $5 s$. (excluding untested cheaper ones). Many shops charge $6 d$. for resistors yet the same ones are available for under $2 d$. from other advertisers.

The reasons for these price differences are not usually due to one retailer making a thumping great profit but because a lot of the components sold are surplus in one form or another.

Because of this readers are well advised to obtain as many lists and catalogues as possible, especially if component cost is a major consideration in whether to build a project or not.

Can I take this opportunity to thank all the readers who have written to me on Take 20 giving various suggestions-these are genuinely welcome especially the ones asking for particular pro-jects.-Julian Anderson.

Availability of Integrated Circuits

We continually hear that new integrated circuits are being introduced and that soon most constructional projects will be based on them.

Your excellent magazine has given a number of circuits utilising i.c.s. yet the component stockists in my area do not have them and I am told that manufacturers are reluctant to make these generally available.

I wonder why this is so? I am sure that in the past amateurs like the readers of P.W. have contributed to the growth of the electronics industry, why should we now be deprived of the latest devices for experimenting?-J. Pope (London E.12).

Jack's alright

I agree in the main with your comments in the June leader, although I would prefer to see your magazine carry on using cycles. However, one point which did strike me was your comment on DIN plugs. As one who has spent many hours making special leads and soldering phono plugs I see a need for standardisation. However, I wonder why not the GPO Jack, which has been used by the BBC and others for years. The two versions, two way and three way, provide most normally needed connections, in addition to which they are very strong, easy to fit and enable switched sockets to be used. Equivalent DIN plugs and sockets are also usually at least 2 s . more than their counterpart jack sockets.R. J. Paulton (Birmingham, 26).

Old Name?

I wonder how many readers have thought about the name Practical Wireless? "Wireless" as a word has almost fallen from our vocabulary and "Radio" has taken its place, yet our most progressive magazine sticks to its title. I am not complaining, in fact I think it is rather a pleasant link with the early days-but it is a bit odd isn't it?-K. Matthews (Cambridge).

RADIO SOCIETY GREAT BRITAIN

SEE world's finest communication receivers \& RADIO EQUIPMENT

 AT THE
INTERNATIONAL RADIO ENGINEERING COMMUNICATIONS EXHIBITION

ROYAL HORTICULTURAL NEW HALL

 Greycoat Street, Westminster, London S.W.1.> Wednesday to Saturday 1 to 4 OCTOBER 1969

OPEN 10 a.m. to 9 p.m.
ADMISSION 3/6

DISPLAYS BY

- CABLE \& WIRELESS
- ROYAL AIR FORCE

ROYAL SIGNALS

- ROYAL NAVY
- POST OFFICE
- HOME CONSTRUCTION AND

DESIGN COMPETITION \& DISPLAY
COMPLETE TRANSMITTING STATIONS
WORKING THE WORLD

- EDUCATION AND TRAINING INFORMATION

WIN
 £185

HO 170A \& V.H.F. HAMMARLUND RECEIVER
by
exchanging this advert for free raffle entry form at EXHIBITION

Can't stand the din!

Whilst agreeing with most of your June editorial concerning changing standards your appraisal of the DIN plug does nothing but arouse my utmost wrath.

Admittedly the "dreaded DIN plug" does have the advantage of multiple connections compared with, for example, that other horror, the cheap ' n ' nasty phono plug. However just thinking about all those close packed pins waiting for the stray strand of wire or blob of solder to short them out makes me shudder, not to mention those two pieces of metal casing which will inevitably collapse between the fingers or that tenacious plastic cover which never budges an inch (sorry $25 \cdot 4$ $\mathrm{mm}!$!) in an emergency. Even one of my friends-a most staunch supporter of the beast, was somewhat daunted when, after carefully rewiring all the DIN sockets on his tape recorder to the international convention, he found that the machine would not match anyone else's leads.

Anyone with any great respect for his equipment should stick to that good old stalwart, the standard jack plug. Reliable, almost indestructible and easy to connect, with switched sockets, screening and 3 -way (stereo) systems all easily available this is quite simply unbeatable. And if this is a little on the expensive side another frequently neglected plug (and, incidentally, the only other species known to survive a year of university parties, dances and amateur dramatics!) is the metal TV co-ax plug, which I and several friends have independently concluded to be the next best thing, both on grounds of performance, availability and cheapness.

So all I have left to say to you, DIN plug is go home and never darken these shores again!-J. Dowson (Trinity College, Cambridge).

It is with regret that I see you are lending your support to the abominable DIN plug system. The spread of these connectors is one more example of the current trend towards choosing the
worst conceivable alternative and making it a "standard"; a trend which has already given us meaningless mains flex coding and an inconvenient unit of length (millimetres, used for dimensions of cabinets), and will doubtless introduce peak music power before long.

Quite apart from the poor construction, reliability and endurance of the DIN plugs available at present-a thing which could be remedied-the system possesses inherent faults. The plugs must be angularly aligned, which in their usual inaccessible position is difficult. The simultaneous use of different pins results in a loss of versatility. Some twelve different plugs exist, which makes separate leads necessary for each function even when functions are not required together; and within the common five-pin 180° plug, variations are still necessary to accommodate the morass of reversed connections, pin bridges and series resistors. Did somebody say standard?-R. A. Lyons (Reading, Berkshire).
[We agree that the DIN plug system is not perfect but at least it is a standard-something that UK audio manufacturers have not bothered to devise as yet.Editor.]

No Mars bar here

Now you DX experts, having on your splendid equipment received hosts of stations, look about 11 pm towards the east! There is a splendid prize for you, the acme of man's most earnest endeavours, to contact any intelligent beings, outside his own planet. It is the red planet Mars!

I believe that Lowell's ideas are nearer the truth even today, than are all those of his opponents! I am convinced there are a few Martians left, safely ensconced within some great castle-like refuges, inside covered craters.

Go down the garden path to your quiet den. Put on your phones. At once the sweet silence is subdued by babel. Yet may there not still be some small unexplored "windows"? Through one of these a clattering, staccato, intensive message may be
received? The well informed operator will know it can be from nowhere on earth. He will be the lucky guy to receive the first "message from Mars!"

During the quite early days of wireless, during Martian oppositions, there were quite earnest and some even desperate attempts to contact Mars. "Popular Wireless" even made a 24 -valve set as early as 1924. The results were rather inconclusive. Some people actually claimed to have received signals; even the great Marconi did! Nothing however could be proved ábsolutely. Equipment today is so much more powerful, that success may be at last attained!

With my little one to four valve sets I myself have tried. My finest results have generally ended with a sweet little voice announcing, "this is Sydney, etc, etc." That however was a well worth while achievement. - A. Trowbridge (Middlesex).

The secret of success

I'm in rather a desperate situation at the moment and I wonder if any of your readers could help?

Having used valves in all my constructional projects up till now I have been blessed with about 99% success, but being more and more tempted by gleaming transistors (and incidentally the almost complete absence of valve designs in P.W.) I decided to have a go with semiconductors. So far I have attempted about a dozen designs of one sort and another and the only one that worked was a crystal set!

My latest project has been a complementary push-pull ampli-fier-could I get anything out of it?-not a !!!! I adjusted biasing resistors, substituted transistors, checked the wiring till I was blue in the face and I still couldn't even get a mA of quiescent current. Meanwhile my friends design these contraptions, which always work perfectly, and then even sell their designs but still not a sausage out of my own designs.

Please, what is the secret?Richard Ross (Warwickshire).

60 r.g.m. Geared Motor. This is a powerful unit, driven by a maina motor of similar type to, but rather larger than the average Tape Deck or Record Player motor. The gear boxes may be detached. It in, in fact, a unit measuring approxi-
mately $3|\times 2| x 1 \nmid \mathrm{in}$, thtck. The final drive shaft mately $31 \times 21 \times 13 \mathrm{in}$, thtc
is fin. wide, lin. long. $35 / \mathrm{m}$
is fin . wide, lin. long. $35 /$.
A Micro Mister bargain. Limited quantity oniy, A Micro Matar bargain. Limited quantity only,
centre zero $50-0-50$ micro ampe. Thle is a Weston centre zero $50-0-50$ micro ampe. This is a
Meter enclosed in clear perspex case for flush mounting. Dial size approximately 2 łin. wide. The acale is not engraved but has a red part in the centre and a green part to the left of centre. Scale could be cleaned off and re-written to suit your particular requirements. Regular price probably over 15 each, our price $29 / 6$ each.
Battory Record Plager. Made by Collaro. This ita made up on a unit plate with speed selector and pick-up. The turntable is a heavy one and measures approximately 9 ing. Pick-up is fitted with postage and lasurance 6/6. cartridge. Price 69/6, E.H.T. Condonser. 28 Kv. $0 \cdot 0011 \mathrm{mfd}$. Sultable for transmitting test conditions 6 A at $300 \mathrm{k} / \mathrm{c}$. Bakelite case. $18 / 6$ each
85 Watt Tubular Element. Very well made unit. The element is wound on a porcelain former then encased in a brass tube terminated with beaded eads 12in. long. Normal maina voltage. Price 6/- each or $54 /-$ per doz,
Press to Make 8 witch. Double pole, 5 amp contacts or can be used as single pole, 10 amp, contacta 84/- dozen. 8oor Sozen.
Door Swltoh. Contacts open when plunger is depreased. Preventa lights being left on. 15 amp each, 88/- per dozen
Rotary Appliance Bwitoh. $18 \mathrm{amp}, 230$ volt on moulded ceramic base. Opersted by pointer knob (not aupplled). 2/- each, $18 /-$ per dozen.
1/40th b.p. Motor. Made by the French (Cassor) Company. This is an excellent totally enclosed motor, powerful enough to operate small lathe, Is $1,450 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Made for normal 50 cycle , $230 / 250$ volts malns, totally ezelosed, aize $2 \dagger \times \$+\ln$. dia. with 1 n . of $\ddagger 1 \mathrm{n}$. spindle. Price $10 / 6$ plus $4 / 6$ postage and lnsurance.
Burglar Alarm Kit. Protect your home and family by frightening awsy the intruder. With our clrcult a maina operated bell rings loudly directly the door
or window is opened. Kit compraees 12 reed or window is opened. Kit comprases 12 reed switches, 12 magnets, relay, m
bell with circult. Price $40 / 6$.

NICAD

RECHARGEABLE

BATTERIES

 $8 \cdot 6 \mathrm{~V} 500 \mathrm{~mA}$ size $1+x 11 \mathrm{in}$. dla. type ref DKZ500. Regular price $32 / 6$. Our price $17 / 6$ each 1 hour. maranteed. Other voltages available, aingle cell 6/6. 10 cell $12 v 60 /$
ELECTRIC CLOCK

 WITH 25 AMP SWITCH Made by Smith's, theare units are ookera to control the oven. The clock is mains driven and irequency controlled so it is ex tremely accurate. The two small dials enable uwitch on and of times to be accurately set. Idea or awitching on tape recordera. Offered at only a 89/6, lese than the value of the clock alone-post and insurance $2 / 9$.

INDICATOR LAMP
Panel mounting, consist of neon lamp in red Plantic lena with reaistor in leads
malns operation. $8 / 6$ each. $24 /-$ dozen.

BECKASTAT
This is an instant thermoatat. simply plug your appllance into it plug. Adjumtable netting fornormal air temperatures, 13A loading Will rave ita coat in a Inaurance $2 / 8$

A must for every buny man. Gives almost lnatant heat; a loo itlumieaves you over $90 /-$), post \& Ins, $4 / 6$. (eaves you over $90 /-$), post ${ }^{2} \mathrm{ins}, 4 / 6$.
BIG JOB 250 watt model $99 / 6$ (uave. you over $4 \$.10 .0$), pont \& ins. $6 / 6$.

FLEX BARGAINS

Sorsoned 8 Oore Flez. Esoh core 14/0076 Copper PVC ingulated and coloured, the 8 coren laid together and metal bralded overall. Price 88.16 . per 100 yd. coll.
is Amp 8 Core Non-kini Mex. 70/0076 Inaulated coloured coren, protected by tough rubber hemeth, then black cotton bralded with white tracer, A
 Regular price $8 / 6$ per yd. 50 yd.
cut to your length $2 / 6$ per yerd.
10 Amp \& Oote Mon-kink Flex. An above but oorea are $28 / 007 \mathrm{f}$ Coyper. Normel price $2 / 6$ per 100 yd . coll $\mathbf{H y}^{2} 10.0$, or cut to your leagth $1 / 9 \mathrm{yd}$, 6 Amp 2 Dore Flex. Ah sbove, but 2 Coree esoh $29 / 0076$ as used for Vacuum Clemers, Electrlo Blankete, atc. 89/8 100 yd. ooll.

ELECTRIC TIME SWITCH
Made by Smilth thene are $A C$ msins operated, NOT CLOCK WORK. Ideal for mounting on rack or shelf or can be bullt tinto box Fith 13 A sociket. 2 completely contacts will ewitch circuit on or of during thene periods. 69/6, post and ins, 4/6. Additional time contacts 10/-pair.

The Full-Fi STEREO SIX
The amplifier
sensation of the year
You will be amazed at the failness of reproduction and at the added qualitiea yout records or tuner will reproduce. Built into metal cabloet elegantly styled and modern furnishings, this amplifier uses an integrated solid state clrcult with an output power of 6 wat to R.M.S. aplit over the two channela. The amplifier is ideal for use with normal plck-ups and tunera, It has a donble wound mains transformer and ganged volume and tone controls-also awitching for Mono to Stereo, tuner or plck-up. Other controls include "rireble lift and cut". "bslance" and aeparate mains on/on switch. Price is si.9.0 plus $7 / 6$ post and lnurance. Speakern (with tweetera) in olled teak finiah cabinets to match amplifier, 88.8.0 per pair.

THIS MONTH'S SNIP

- TAGE PERMEABIJTV TUNER

This Tuner is a precision instrument made by the famous Cyldon" Company for the equally famous Radiomobile Car valla he medium wave tuner (but net of longwave coll $1620 \mathrm{Kc} / 4-625 \mathrm{Ko} / \mathrm{s}$ and fintended to a frequency soverage yalue of $470 \mathrm{Kc} / \mathrm{s}$. Extremeive compact (slse only $24 \times 2 \times 1 \mathrm{im}$ thick) with reduction gear for flne tuning. Bnip price this as a general pur ose tuner for use with Amplifer. Post Free.

Horstmann "Time and Set" Switch
(A 15 amp switch.) Juat the thing if you want to come home to a warm house without it oosting you a fortune. You can 14 hours from setting time or your electrio nirel, etc., up to a boost period of up to 3 hours. Equally autable to 0 give procesaing, Regular price probably around e5. Special unlp price 89/6, p. © in. $4 / 6$.

DISTRIBUTION PANELS
Juat what you need for work banoh or lab. tandard 18 amp fued plugh. supplied complete with 6 feet of hoavy cable and 13 amp plug. 8 limilar advertised at $£ 5$. Our price 89/8, $+4 / 6$ P \& I

VARYLITE

Will dira lacandeacent lighting up to 800 watte from full brilliance
 dard wall switch so may be fitted in place of this, or mount on 88.19.6.

BUY TIME SLOT METERS
If you hire out equipment such an TV asta by the bour then these siot meters are what you require. We have 3 typen,
$8 d$ an hour, $1 /-$ an hour and $1 / 6$ an hour. Brand new. Mede by the famous Wenton Company. Prioe A3.19.6, postage and insurance $\mathbf{6} / 6$.

THERMOSTAT WITH PROBE

 This has a senfor attached to a 164 awitoh by 14in. Jength of fexdble caplilary tubing-controlrange range in $20^{\circ} \mathrm{F}$ to $160^{\circ} \mathrm{F}$ so it it sultable to contro soil heating and liquid hoating ospecially when ln raloed out and lowered into the vensel. Thle ther mostat could aleo be used to mound a bell or other alarm when critionl temp. it reached in stack or heap subject to ip ontaneour combuatlon or is liquid k being beated by gan or other means not controllable by the awitch. Made by the famour Teddington Co., we offer these at $18 / 8$ each Pontage and innurance $2 / 9$.

HI FI BARGAIN

FULL F1 18 IMOH LOUDBPEAKER. Thla 15 undoubtedly one of the finest louddgeakere thet we have ever ofiered, proo duced by one of the countr's mont famous masers. At hat an load and Rhythma Gultar and pubil addreas.
Flux Donalitity 11,000 gaues-Total Flux 44,000 MaxwellePower Handling 15 watta R.M.B. Cone Moulded Abre-Freq. reaponse $80-10,000$ o.p.i.- ppecify 9 or 16 ohme-Malni ro. sonance 60 C.D.s.-Chamis Diam. $121 \mathrm{n},-12$ inn over mount. ing lugs-Baffio hole 11 in. Dlam.-Mounting holes 4 , holee Giln. A 26 speaker offerad for only dam. -Overall helght

Where postage ls not stated then ordere over 23 gre post free. Below
Bemi-conductora add
add
Bel Bemi-oonductors add $1 /$ pont. Over AI
post free. S.A.E. with enquiries please

TECHNOAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination. ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how ?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.t.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEMV SELF-BUILD RADIO courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

AMAZING MINI•DRILL

Indispensable for precision drilling, grinding, polishing, etching, gouging, shaping. Precision power for the enthusiast. Shockproof. Completely portable power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL. Super Kit (extra power, interchangeable chuck) 79/6, p.p. 2/6. De Luxe Professional Kit with 17 tools 130/-p.p. 4/6. Money ref. g'tee.

B1-PRE-PAK LT		
既		

PRACTICAL INTEGRATED CIRCUITS

Constructional projects in Microelectronics for the amateur experimenter New from Newnes-Butterworth by A. J. McEvoy, M.Sc. and L. McNamara, B.Sc.

> 1969144 pp. many illustrations 18 s by post $19 \mathrm{~s} .6 d$.

THE BUTTERWORTH GROUP 88 Kingsway, London, WC2

a beginner's TRANSISTOR CAPACITANCE BRIDGE PART 1

NUMBER of useful LCR bridges suitable for the home constructor have been described in the past, some with fairly complex circuitry, and therefore suitable as accurate laboratory standards. The author, however, felt the need for a quite simple instrument which would constitute a useful addition to the average home workshop. The present bridge was built up on Cir-kit board, with used components which were immediately to hand in the spares box. All parts can, of course, be purchased new if necessary.

Of the three constants, inductance, capacitance, and resistance, commonly encountered in electronic circuits the one most likely to require test facilities which are not immediately available is capacitance. Generally, coils and resistors can be satisfactorily tested, at least for continuity and resistance, with a good ohmmeter. Even larger value electrolytic capacitors of $16 \mu \mathrm{~F}$ and above can be roughly examined in this way, by comparing the size of the "flick" registered on the ohmmeter due to the charging current with that shown by a sound capacitor. D.c. leakage is, in this case, detected by the presence of a steady current, or a fixed value of high resistance, which is generally greater in one direction than the other. It is when dealing with small values of capacitor, in the range, say, from 10 pF up to a few microfarads, that difficulties may be encountered with the usual meter tests, and it is therefore in this range that the present instrument fulfils its most useful purpose.

While the bridge principle will probably be familiar to experienced constructors, a brief summary of the basic principles involved may not be out of place for those encountering this type of circuit for the first time. Referring to Fig. 1, a typical

Fig. 1: A basic Wheatstone bridge.

Wheatstone bridge, the application of a voltage of, for example, 3 V , between points A and B results in no voltage appearing across C and D with the values of resistance shown, so that no reading is shown on the meter, M. This is because the bridge is in what is known as the "balanced state". In actual fact, the voltages at C and D are each 0.3 V with respect to A , and are therefore zero with respect to each other. The circuit would now become unbalanced if, for example, resistance R2 were replaced by either a
higher or lower value. In these cases, the voltage at D would differ from that at C , and this unbalance would be registered by a reading on the meter.
A little consideration will show that, in Fig. 1, the condition of balance is obtained when $\quad \frac{\mathrm{R} 1}{\mathrm{R} 2}=\frac{\mathrm{R} 3}{\mathrm{R} 4}$ so that $\mathrm{R} 1=\frac{\mathrm{R} 2 \times \mathrm{R} 3}{\mathrm{R} 4}$ when the bridge is in balance. This basic circuit can, therefore, be used to determine the value of an unknown resistance when the other three are known.
If we now replace R3 and R4 by capacitors, and the source by an alternating voltage, the circuit becomes that of Fig. 2, where, in the unbalanced state, an a.c. signal appears between C and D , resulting in an audible note in the headphones, H .

Fig. 2: A Wheatstone bridge adapted for reactance balancing, using an a.c. source and headphones for detecting balance.

Now, let us consider how to use this arrangement to determine the value of an unknown capacitor. If $\mathrm{R} 1=\mathrm{R} 2$, by making the unknown capacitor Cl in the figure and substituting different values in turn for C2, we would eventually achieve a balanced state (as indicated by silence on the phones) when $\mathrm{C} 1=\mathrm{C} 2$, as only then would the above ratios be equal. Note that the resistance of a capacitor to d.c. is inversely proportional to its capacitance. Obviously, this would be a rather clumsy procedure, and a much better scheme is to fix C2 at some convenient value, not greatly differing from the expected value of Cl , and make one of the resistors variable. This will enable an equally satisfactory condition of balance to be obtained. Then, by measuring the value of the resistance at this balance point, and either having a calibrated scale, or calculating from the above equation, the value of Cl can be determined. In practice, since we wish to be able to carry out measurements over quite a wide range of capacities, C 2 becomes a switched bank of capacitors increasing in steps of 10 from 10 pF to $100 \mu \mathrm{~F}$. In this way, capacitors from 1 pF to $100 \mu \mathrm{~F}$ can be tested, and measurements carried out on cable and even valve inter-electrode capacitances. Some typical applications are discussed at the end of the article.

To return to the circuit of Fig. 2, this could be made the basis of a very simple bridge, merely by employing a 50 Hz mains input (obtained, for
example, from the secondary of a mains transformer), retaining the headphones for detection purposes. However, the slightly more elaborate arrangement employed in the present bridge, as shown schematically in Fig. 3, was considered well worth while. The three main sections are an audio oscillator, the bridge itself, and an audio amplifier feeding into an indicating meter. The choice of this arrangement has three advantages. First, the tester is completely portable, being operated from two 9 V batteries; second, the operating frequency can be chosen to enable the most suitable resistance-reactance combination to be employed on all ranges; and third, by amplifying the signal following the bridge, the use of a meter becomes possible, enabling higher accuracy to be obtained than would be the case with a simple audio detector. A further advantage concerns the testing of a capacitor for leakage.

Fig. 3: A practical arrangement for a capacitance measuring bridge, with an amplifier and meter to give a more positive reading than Fig. 2.

This test is especially important in the case of the sub-miniature type of coupling capacitor (usually 4 or $8 \mu \mathrm{~F}$) used in transistor audio circuits, as a partially leaky component here can easily introduce sufficient bias voltage variation to ruin a transistor. The presence of leakage in a capacitor of this type is immediately indicated with the present instrument.

Oscillator and Amplifier

Figure 4 shows the oscillator circuit. Only one transistor is used, and the transformer can be any audio type which is conveniently to hand. Separate batteries are used for the oscillator and amplifier, so as to avoid unwanted feedback, or the effect of the signal being picked up directly from the oscillator instead of through the bridge. Since the instrument is a nullpoint detector, it can be realised that a small amount of pickup of this type would have a serious effect on accuracy. Using a separate battery also means that the oscillator portion can be checked immediately after construction, which, in any case, is advisable, for some adjustment to the values of R1 and Cl may have to be made if oscillation is difficult to obtain. If this is the case, try also reversing the connections to the windings of the audio transformer, or reversing the windings themselves. RI and Cl will also vary the frequency, so these should be altered, if necessary, to provide a note of about 800

Hz indicated by headphones across R2. The current should be approximately 1 mA . Headphones could be used directly to the bridge after this oscillator circuit, but some amplification enables a meter to be used, as already explained.

Fig. 4: A simple 800 Hz audio oscillator suitable for driving a bridge.

A straightforward push-pull amplifier circuit was decided upon, as the transformers and transistors were available from an old amplifier which had just been dismantled. The circuit is shown in Fig. 5, and presents no novel features. It should be tested with a speaker first, by injecting a signal from any a.c. source. The no-signal current should be about 8 mA . A diode in series with the secondary of the output transformer is used to rectify the d.c. signal and provide a d.c. voltage to operate the microammeter. In the original bridge, an army surplus moving-coil

Fig. 5: A push-pull amplifier, detector and meter.

PRACTICAL!

VISUAL!

EXCITING!

a new 4-way method of mastering
ELECTRONICS
by doing - and - seeing
by doing - and - seeing.

$$
=
$$

1 | OWN and |
| :--- |
| HANDLE a | complete range of presentday ELECTRONIC PARTS and COMPONENTS

4

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

[^3]
LOW PRICE, HIGH QUALITY SPEAKER SYSTEMS

All cablnets are new and carefully designed acousticaliy with speakers mounted on Inn. chlpboard bafies. All speakers are ex-TV high quality with hi-flux magneta carefully matched and tested.

THE COWDREY FIVE. Speclally designed Corner Cablnet. Fitted rubber feet. $20 \frac{1}{2} \times 13 \times 7$ 峦 1 n. deep. FInlshed in teak wood grain cloth with Vynair front. Fitted 8×3 in. 7×4 in. and three 5in. round speakers wired In serles to match. 15 ohm Impedance (handles 15 watts).
Ef.6.0. P. \& P. $8 / 6$ each.
THE IMP. Wedge shaped extension speaker cablnet is fitted with $7 \times 41 \mathrm{n}$. speaker. Covered In walnut wood graln cloth with fawn Vynalr front keyhole slot In back. 7 it $^{\prime \prime} \times 61^{\prime \prime}$. Only 25/6. P. \& P. $4 / 6$ each.
SPEAKERS: Elac Heavy duty Ceramic Magnets 11000 line 10 in , round, $10 \times 6 \mathrm{ln}$. 30 hm or $15 \mathrm{ohm}, 48 / \mathrm{m}, \mathrm{P}$ \& P. 3/6. 8 in , round 15 or $3 \mathrm{ohm}, 42 / 6$, P. \& P. 3/6. E.M.I. $134 \times 8 \mathrm{in} .3 \mathrm{ohm}, 45 / \mathrm{F}, 15 \mathrm{ohm} 4 / 8, \mathrm{P} .4$ P. 3/6. E.M.I. 3in. tweeter 17/6, P. \& P. 1/6. E.M.t. $13 \frac{1}{} \times 8 \mathrm{in}$. fitted two $2 \frac{1}{2}$ In. tweeters. 15 ohm 77/6, P. \& P. 4/6. E.M.I. $13 \frac{1}{2} \times 81 \mathrm{n}$.
 59/6, P. \& P. 4/6. E.M.I. Crossover, 18/6, P. \& P. 1/-. EAGLE Crossover units 3 or 16 ohms, 18/-, P. \& P. 1/-. Bakers 12/n., 25 watt 15 ohm \&6.6.0, P. \& P. 3/6.

THE CAXTON COLUMN. This is a column cabinet $237 \times 5 \frac{1}{2} \times$ 51 in. deep fltted with three speakers. Handies 8 watts and will Improve the quallty of any tape recorder or record player. FInlshed In wood graln cloth with sandstone Vynalr front it is a real bargaln at 59/5. P. \& P. 10/6 each.

THE TENNY SON. Wedge shape for table or wall mounting slze $16 \times 134 \times$ $8 \mathrm{i} / \mathrm{In}$. deep, finished in grey cloth with matching Vynalr front. 12In. Keletron speaker is fltted with bulit-In tweeter. \&4.7.6. P. \& P, 7/6 each.

THE SCOTT. The elegant tapered cablnet, for table or wall mounting measuring $101 \times 16 \times 5 \frac{1}{2} \mathrm{ln}$. deep, is attractively finished in black cloth with a strlped grey Vynair front. Fitted with $13 \frac{1}{1} \times 8 \mathrm{in}$. speaker with volume control. Please state Impedance re-quired-3 or 15 ohm. £4.5.0. P. \& P. 7/6 each. Fitted with two E.M.I. $13 \times 81 \mathrm{n}$. speakers and tweeter, 15 ohm Impedance capaclity 10 watts $\mathbf{3 0}$ /- extra.

TEAK PLINTH AND PERSPREX DUET
 VYFAIR Widths from 40 to $541 \mathrm{n}, 17 / 6$
7d. of roll. $P, \& P .1 / 9$. yard, $9 /-$. 7d. oil roll. P. \& P. 1/9. ys y SPEAEES MAMGHING TRANE FORMFARS. 8, 7,15 ohmal, 8 watt, $11 / 6$ P. \& P, $1 / 6$.

MICROPHONER: Xtal Hand Mikes. B1201 with stand, 54/6. P. © P. $3 / 6$ ACOE Mike 45, 21/-. ACOB Mike 40, 18/6. Dyn. Mike DM-391, 80/-, CM21
Xtal, 12/6. Telephone Pick-up, $10 / 6$.
P. \& P, 1/-. Xtal lapel Mike, 7/6. Guitar Mike, 18/6. P. P. $1 /-$
FERROX RODS: $6 \times 5 / 1$ in., $2 / 6$; $44 x$ /in. $8 /-; 6 \times 1 \mathrm{in} ., 8 / 8 ; 8 \times$ inn., $8 /-$ - each.

FERRROX RODS TITH COILS, $41 \times 1 \mathrm{ln}$., $8 / 6 ; 8 \times 1 / 18^{\text {th., 5/6. P. \& P. } 1 / \text {. each. }}$ ROTARE SWITCHES: 2 Pole Mains Switch, 8/-: 1 pole 12 way, 2 pole 2 way, $\$$ pole 3 way, ${ }^{3}$ pole 4 way, $3 / 6$ each. P. \& P. $1 /$.
TRANGISTOR BPEAKERS 8 ohm 2 in.
$8 / 6,3 \mathrm{In}_{\mathrm{n}}, 10 / 6$ P. \& P. 1/..

CARTRIDGES

Stereo: Bonotone 9TA H/C Diamond 47/6. 9TA Bapphire, 87/6, 8TA Elapphire 301-. Ronette Slos Medium Output. 88/6. S106 Eigh Output 28/6. DC284 Stereo Compatible 22/6. Acoa GP93/1 Gapphire, 87/6. GP94/1 Sapphire, 89/6. GP81 Diamond 48/-. GP91 Stereo Compatible (High, Medium or Low Outpat), $85 /-$. TA800 converts Phllips AG3301, AG3306 to B.S.R. BXIB. Plug- in head complete with cariridge

85/-, Japqnese equivalent to B.s.R. TC8. 85/-.
Mono: Acos GP67/2 will replace Collaro and Garrard Mono cartridges, 18/6. T.T.C. Cryatal High Gain, 15/-, B.S.R. TC8H Jav. equivalent, 88/-. Aonotone 2TEE. 15/-. Post and Packing $1 / 6$.
FARPIECES WITE CORD and 3.5 mm . plug. 8 ohm magnetic, $8 /-$, 260 ohm, 4/-, PIANO KET POBE BUTTON SFITPIANO KEI POSE BUTMON 8WITCHERS. 7 button inc. mains on on.
benks of 6 P.C.O., $8 / 6$. P. \& P. $1-$.
 (Few minutes from Tooting Broadway Underground Station)

R.S.T. valve mail order co. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

Mon.-Sat. 9 a.m
losed $5.30 \mathrm{p.m}$.
Closed Sat. $1.30-2.30$ p.m. Open Dally to Callers

Tel. 760-0109/149

Fig. 6: The complete capacitance bridge capable of measuring from 1 pF to 100μ. The accuracy of the bridge can be improved by decreasing the coverage of each range, revised component values being given in Table 1.
meter of $0.5 \mathrm{~mA}(500 \mathrm{~mA})$ f.s.d. was used; constructional details are therefore given using this meter, but, if a commercial meter is preferred, the front panel cut-out can be modified accordingly (see Fig. 8).

The complete theoretical circuit is shown in Fig. 6. Note that a 3Ω resistor (R 10) and switch (S3) are inserted so that the full-scale deflection can be reduced on the higher capacitance ranges, and the null-point dip more readily detected. This dip switch was purposely chosen to be a "push-push" type. Initially, the 3Ω shunt resistance is switched in to act as a shunt across the meter. This is the "safe" position, as the meter is protected from over-

\star components list

Resistors:			
R1	$56 \mathrm{k} \Omega$	R7	220Ω
R2	$8 \cdot 2 \mathrm{k} \Omega$	R8	$4 \cdot 7 \mathrm{k} \Omega$
R3	500Ω preset	R9	$4 \cdot 7 \Omega$
R4	$8 \cdot 2 \mathrm{k} \Omega$	R10	3Ω
R5	$10 \mathrm{k} \Omega$	VR1	$5 \mathrm{k} \Omega 10$
R6	$47 \mathrm{k} \Omega$		
Capacitors:			
C1	$0.1 \mu \mathrm{~F}$	C7	$0.1 \mu \mathrm{~F}$
C2	$1 \mu \mathrm{~F}$	C8	$1 \mu \mathrm{~F}$
C3	10pF	C9	$10 \mu \mathrm{~F}$
C4	100pF	C10	$100 \mu \mathrm{~F}$
C5	1,000pF	C11	$2 \mu \mathrm{~F}$
C6	$0.01 \mu \mathrm{~F}$		
Semiconductors:			
TR1	OC71	TR4	$0 \mathrm{C81}$
TR2	OC81D	D1	0 O 91
TR3	OC81		
Transformers:			
T1 Intervalve transformer			
T2 Driver transformer			
	Output transf		
Miscellaneous:			
B1, two waf	B1, B2 PP3 or equiv.; M, Meter,		

loads imposed by the relatively large current on the higher ranges, the switch then being operated as the condition of balance is approached, to enable the dip to be detected more accurately. Since the on-off positions are not indicated, there is a natural tendency to return it to the "safe" position after use.

Details of the Bridge Circuit itself

The bridge consists of variable resistor, VR1, which in association with the test capacitor, fixed resistors R3 and R4, and the switched bank C3-C10, constitute the balancing bridge circuit by means of which the null-point (dip) is obtained. A pointer knob and scale, graduated in capacitance from 1 to 10 are affixed to VR1. It was found originally that the readings of capacitance tended to be cramped to one end of the scale, and the pre-set resistor, R3, was therefore added in series with VR1. Although this does not completely prevent cramping, it does tend to distribute the readings more evenly over the entire scale. Once the optimum position for this pre-set has been determined, it can be waxed in position.

Since there is only one basic scale for all eight ranges, the fixed capacitors, $\mathrm{C} 3-\mathrm{Cl} 0$, must be chosen with care, so as to ensure reasonably correct agreement with the scale on all ranges. The use of close tolerance capacitors is one possible way of tackling this problem. However, the author considered this to be an unnecessary refinement in a bridge which is not, in fact, designed as an accurate standard, and finally the following compromise was adopted.

Consider three capacitors of the usual tolerance (5%) with a 10 times ratio in their values, e.g. $200,2,000$ and $20,000 \mathrm{pF}$. On the $\times 100$ range, with the first of these connected in the test position, the bridge should of course, register a null indication at a point corresponding to 2 on the capacitance scale. Let us assume that we start with a blank scale and a reasonably accurate capacitor bank, then this point can be pencilled in as 2 , which, unless we were particularly unlucky in the choice of this first capacitor, ought to represent a reasonably correct marking. Now switch to the $\times 1$ range, and substitute the $2,000 \mathrm{pF}$ capacitor which should result in a minimum reading at the same point on the scale. If it does not,
vary C5 by substitution until the scale does register 2 at this point. Similarly, C6 on the $\times 10$ range, using the third capacitor for testing, can be adjusted to give the correct reading. This procedure is repeated for all ranges. The author was fortunate in having a fairly large stock of capacitors. For the constructor lacking this facility, the use of close tolerance capacitors in the fixed bank might prove a better, and possibly cheaper, solution.

On some of the ranges, it may not be possible to obtain a reading in both the 1 and 10 positions on the scale, but, with the large coverage of the instrument, this is unavoidable. If the reader wishes to make a more accurate bridge, and is willing to accept reduced test facilities, say, equivalent to the first six ranges from 10 pF to $1 \mu \mathrm{~F}$, this can be achieved by using the full number of positions in the range switch (which, in the original design, is a 12 -pole type, with four poles unused. See Fig. 6), and reduc-

Table I

Components	Value for full range coverage	Value for half coverage
C3-C10	10pF, 100pF etc.	$10 \mathrm{pF}, 50 \mathrm{pF}$, 100 pF etc.
four additional capacitors	-	$0.1 \mu \mathrm{~F}, 0.5 \mu \mathrm{~F}$,
VR1	5000Ω pot.	2000Ω pot.
R4	$8.2 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$

ing the capacitance coverage on each range by half. Suggested alterations to component values are given in Table 1.

TO BE CONTINUED

M.W. DX RECEIVER—continued

gain controls for r.f., i.f. and a.f. The a.g.c. may be switched in or out and a b.f.o. is also available at the

TABLE I

Connection and colour codes for the IFA/1.6/SSB Mk II i.f. strip.

Connection Number	Function	Colour code
1	Input	Brown
2	Input (Earth)	Plain
3	"S" Meter	Plain
4	"S" Meter	Red
5	"S" Meter	Black
6	B.F.O. control	Plain
7	B.F.O. control	Orange
8	B.F.O. control	Yellow
9	A.G.C. on/off	Green
10	A.G.C. on/off	Blue
11	A.G.C. on/off	Violet
12	A.F. output	Grey
13	A.F. output (earth)	Plain
14	Negative line-12V	Black
15	Positive line (earth)	Plain
16	B.F.O. on/off	White
17	B.F.O. on/off	Black
18	I.F. gain	Black
19	I.F. gain	Pink

NOTE: All numbers without colour, i.e., plain, are connected to earth. All numbers coloured black are connected to the negative line.
flick of a switch. The " s " meter may be zeroed and is useful for signal strength comparisons. The aerial circuitry is wired for a single wire feed, but by a simple modification can offer a balanced input. This will be useful for devices such as balanced loop aerials and the like.
Next month we will consider the construction of the receiver followed by the alignment procedure. A signal generator will be needed since the set must be aligned carefully because of the very narrow bandwidth of the i.f. strip.
to be continued

PRACTICAL TELEVISION in the ОСTOBER issue transistor and diode ANALYSER

Not just a tester-an analyser! This tester will not only carry out the normal diode and transistor tests, including a test of transition frequency to establish the frequency limitations of a device, it can also be used to determine all the information required for experimental purposes on a transistor that is unmarked and whose connections, type and purpose are unknown. You don't even have to know whether it is a pnp or npn, germanium or silicon device.

HEAT EFFECTS IN TV RECEIVERS

Heat is the cause of more trouble in a TV set than any other shortcoming. The faults attributable to excess heat are examined and the steps that can be taken to reduce heat described.

TOMORROW'S SETS

Next month we shall be looking at the effects on TV receiver design of the increased use of integrated circuits over the next few years. The problems of design, the setmakers, the retail trade and servicing will all be considered.

TRANSISTOR LINE OSCILLATORS

Basic waveform generating circuits described, including the flywheel sync techniques invariably used with modern line oscillator stages.

SERVICING TV RECEIVERS

The next chassis to be tackled is the STC VC11 chassis as used in the KB Featherlight portable and associated models.

PLUS ALL THE REGULAR FEATURES on sale

September 19th

DE LUXE PLAYERS

PORTABLE CABINET Agillus
trated. To ft standard trated. To fis standard

player or autochanger RESAMPLIFIER 3 WA Ready made and tested This in a 8-stage unit using a coapled valve giving 3 watts output into a ohm loudspeaker. controls mounted on panel. Supplied with and valves UCL88 UY85. Frequency reuponie | $50-18,000 \mathrm{cps}$. |
| :--- |
| Sensitivity 200mV. |
| $99 / 6$ | 8INGLE PLAYERS MONO EMI Junior Mains 82.18 .6 Garrard 8RP28 . E6.19.6 Garrard 8P25 MkII 818.19.6 Garrard 3000 with Sonotone All fitted LP/78 stylii and pickup Diamond e12.19.6 Stereo/mono pickup $80 /$ - extra except 3000 .

GARRARD TEAKWOOD BASE WB.1. Ready 65/GARRARD PMRSPEX COVER SPC 1 Fr WB
BASE. Darable tinted attractive appearance.
E.M.I. PICK-UP ARM Complete with mono cartridge 29/6;
Xtal GP67 17/6; Stereo Ceramic 35/-. ACOS LP only. 10/8.

CRYSTAL MIKE INSERTS

Ifin. dia. $8 / 6 ;$ ACOS $1 \neq \mathrm{in}$ dia. 9/6. BM3, 1 in dia. 9/6
QUALITY RIBBON MIKE WITH GOOSENECK 211.11 .0 .
PORTABLE TRANSISTOR AMPLIFIER PLUS
DYNAMIC MICROPHONE
A aelf-contained fully Many uses - ideal for Parties, or as a Baby Alarm, Intercom, TeleAhone or Record Player Amplifier, etc Attractive rexine cowerful 7×4 in power amplifer plus ultra sensitive microphore one watt battery. Brand new in Makers' carton with full makars' Only $\left.90 /=\begin{array}{c}\text { Post } \\ \text { Free }\end{array}\right)$ Worantee. World famons make. WEYRAD P50-TRANSISTOR COILS
 With oar serial $0011 . . .{ }^{12 / 6}$ Driver Trans. LPDT4
 8rd I.F. P50/3CC

6/- J. Weyrad Booklet
 VOLUME CONTROLS 80 ohm Coax $8 D$ Long apindlea. Midget 8ize BRITISH AERIALITE 5K. ohms to 2 Meg. LOG or AERAXIAL AIR SPACED
 Edge. 5K. S.P. Transistor \$/ PRINGE LOW LOSS $1 / 6_{\text {gd }}$.
Idesi 625 lines

Knurled knob T.V. Type.	STANDARD SIZE POT8.	
Values $10 n$ to $80 \mathrm{~K},$,	$4 / 6$	LONG 8PINDLE
Carbon 30 z to 8 meg,	$7 / 6$	

8.R.B.P. Board 0.15 MATRIX 2jin. wide 6d. per 1 in .
 BLANE ALUMINIUM CHASSIS. 18 g.W.g. 8 2in. gideI $7 \times 4 \mathrm{in}$., $6 / 6 ; 9 \times 7 \mathrm{in}$., $6 / 6 ; 11 \times \sin$., $6 / 6 ; 11 \times 7 \mathrm{in}$. $7 / 6$; AL OMINIUMPANELSi8 18 .w.g. $12 \times 12 \mathrm{in} .6 / 6 ; 14 \times 8 \mathrm{in} .5 / 6$; $12 \times 8 \mathrm{in} .4 / 6 ; 10 \times 7 \mathrm{in} .8 / 6 ; 8 \times 6 \mathrm{in} .2 / 6 ; 6 \times 4 \mathrm{in}, 1 / 6$. Q NAX CHASSIS CUTTER Complete: a die, s punoh, an Allen sorem and key
 iin. $16 / 91^{2} /$ gin $10 / 6$ 1/in. $21 / 6$ 2in. 39/-1in. sq. $38 / 6$ WA VE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p. 2-way, or 2 p. 6-way, or 8 p. $4-$ wiy $4 / 6$ eaoh. $1 \mathrm{p} .18-\mathrm{way}$, or $4 \mathrm{p} .8-\mathrm{wsy}$, or $4 \mathrm{D} .8-\mathrm{wsy}, 4 / 6$ eaoh Waveohange "MAEITS"' 1 p. 12 -way, 8 p. $6-$ way, 8 p. $4-$ why. 4 p. 8-way, 6 p. 8 -way. 1 wafer 12/-, 8 wafer 18/-, 8 wafor 24/-. 4 waier 30/-, 5 wafer $36 / 2$. $/ 6$; sp. dt. $8 / 6 ; \mathrm{dp} .3 / 6 ; \mathrm{dp} \mathrm{dt}$. $4 / \mathrm{C}$.

MINI-MODULE LOUDSPEAKER KIT

10 WATT 55/- CARRIAGE 5/.

Triple apeaker aystem combining on ready cat bafile. 1 in. chiphoard 15 in. $\times 8 \frac{8}{\mathrm{i}} \mathrm{in}$. Separate Bass, Yiddle and Treble loudspeskers and crosiover condenser. The heary duty 5 in. Bass Woofer onit has a low resonance
cone. The Mid-Range unit is apecially designed to add cone. The Mid-Range unit is apecially designed to add drive to the midde reginter and the tweeter recreates the top end of the musical spectram. Total response
$80-15,000 \mathrm{cps}$. Full instructions for 8 or 8 onm. TEAK VENEEBRD BOOKSHELF ENCLOSURE $\begin{array}{ll}16 \times 10 \times 9 \mathrm{in} \text {. Specially } \\ \text { denigned for Mini-Module above. } & \text { 世4.15.0 Post. } \\ 5 /-\end{array}$

BAKER 12in.

'SUPERB

LOUDSPEAKER

Suitable for all Hi-Fi Systoms. Providesrich clear reproduction of the deepest bass and remaricable efficiency in the upper
ragister. Response $80-17,000$ cps. "Baker" double cone with special "Ferroba"' cersmic
magnet. Flux donsity 16,500 gauss. Bass resonance \&2-26 cps, 20 watts rating. Volce coil Cohme or 15 ohms.

f1 5 Prest

48 page Enclosure
Manual 5/9 post paid
LOUDSPEAKER CABINET

BAKRR "GROUP SOUND" SPEAKERS-POST FREE
'Group 25' 'Group 35" 'Group 50'

ALL MODELS "BAKER 8PRAKER8" IN 8TOCK
troodmens Tweeter 87in. 8 ohm $85 / \mathrm{F}$; E. M.I. $2 \frac{1}{2} \mathrm{in} .8$ onm
17/6. Horn Tweeteri 2-18kc/s, 10 W is ohm $89 / 6$.
LOUDBPMAKERS P.M. 30 KHMs .2 in . 3 in . $4 \mathrm{in}, 5 \mathrm{in} .7 \times 4 \mathrm{in}$, $1 \% / 6$ each; $6+$ in $22 / 6: 8 \times 5$ in. $21 /-10 \times 6$ in. $30 / \sim ; 8 \times 2+$ in. $21 /-$ 10 in or 12 in. Double cons 3 or 15 ohm 39/6;
E.M.I. Double Cone $18 t \times 8 \mathrm{in}$, 8 or 15 ohm models, $46 /-$ Ditto with twin tweeters and X/over. 8,8 or $15 \mathrm{ohm}, 79 / 6$. SPECLAL OFFER! $8 \mathrm{ohm}, 21 \mathrm{in} ; 6 \times 4 \mathrm{in} ; 80 \mathrm{ohm}, 2 \mathrm{in}, 8$ gin; $15 / 6$ TACH $25 \mathrm{ohm}, 6 \times 4 \mathrm{in}$; $85 \mathrm{ohm}, 8 \mathrm{in}$ 8 in . LOUDSPEAKER UNITS 8 ohm \&7/6, 15 ohm 30/8 in . De Luxe Ceramic 8 ohm $45 /-15$ ohm $50 /-$
8 in . LOUDSPEAKER TWIN CONE $30 h \mathrm{~m} 85 /$.
8in. WOOPERA. 8 watt max. $20-10,000 \mathrm{cpa}, 8$ or 16 ohm $89 / 6$. Sin. WOOFER. 8 wattg max. $20-10,000 \mathrm{cpA}, 8$ or 16 ohm $89 / 6$.
OUTPUT TRANS. ELS 8 etc. $4 / 6$; MIKE TRAN8 $50: 1,3 / 8$. SPEAKER COVERING MATYRIALS. Smmples large 8.A.E.

ALL EAGLE PRODUCTS

8UPPLIED AT LOWEST PRICES
5-page Eagle catalogue 5/- Posi free
BARGAIN AM TUNER. Madiam Wave.
79/6
BARGAIN DE LUXE TAPI SPLICER Cute,
trima, joing for editing and repairs. With 3 bledes. $17 / 6$ musiosl highlights and mound efieots to recordinge. Will mix Miorophone, reverds, tspe and toner
with meparate oontrols into singie outpat. 8 volt. BARGAIN FM TUNER 88-108 Mc/E 8ix Transintor. Ready built. Printed Circuit. Calibrated alide dial $\mathbf{f 6 . 1 9 . 6 .}$
tuning. Sies $6 \times 4 \times 84$ in. 8 volt. BARGAIN \& WATT AMPLIEIER, 4 Trangigtor $69 / 6$
\rightarrow RADIO B00Ks \star (Postege 9d.)

Praotical Transistor Reoeive

Praotioal Stereo Findbook
Superansitive Tranistor Pooket Radio
High Fidelity Speaker Enolosures and Plani..............
Radio Valve Guide, Books $1,2,3$, or 4 es. $5 /$ No. 5 ea.
T.V. Favit Finding 405/685 lines

Shortweve Transistor Reseivers
Transistor Communication Sots -........
Sub-Miniature Transistor Receivers
Wireleas World Radio Valve Data
At a glance valve equivalents.
Receive Foreign T.V. by imple modifications
Tranistor Circuite Radio Controlled Models
MANUPACTYRERS GURPLUS! TRpe Recorder 25/-
Cabinet. Grey/Red or Grey 2-Tone. Rexine covered. 25/-
$8 \mathrm{ine} 15 \times 12 \times 5 \mathrm{th}$.
8ine $15 \times 18 \times 51$ in.
POCEET MOVING COLL MULTMAETER. Poatifee
$49 / 6$
$0-1,000$ AC./DC. ohmg o to 100k, eto.
SUPERIOR MOVING COIL MULTMETER
$0.9-600-6 / 6$
Ohme 0 to 6 meg. 50 Mioroampe (Full liet Meters 8.A.E.)
BRAND NEW QUALITY
EXTENSION LOUDSPEAKER
Handsome plastic cabinet, 20ft. lead
and adaptors. For any radio, intercom,
tape recorder, etc. 8 to 15 ohme. $30 /$
tape recorder, etc. 8 to 15 ohma. 30/-
sire: $7 \mathrm{f} \times 5 t \times 8 \mathrm{in}$.

CUSTOMERS FREE CAR PARK CALLERS WELCOME

(Export—remit cash and exira postage, no C.O.D.) Buses 133, 68 pass door. S.R. Stn. Selhurst Tal. 01-634-16es

BUILD AND ENJOY THE PV DOUBEE 12

This $12+12$ watt integrated stereo hi-fi amplifier and preamp is proving one of the most successful P.W. designs ever. With good ancillary equipment, you will find it one of the best you have ever heard, and it is a delight to build and handie. Basically, the design of the "P.W. Double 12" as described in P.W. April, May and June demonstrates the value of using "Cir-Kit". However, Peak Sound have contributed more besides to the success of this project. This includes the power amplifiers, the power pack and the ingenious cabinet which almost assembles itself. Go right ahead and build this exciting new design now with authentic, exact-to-specification Peak Sound kits as recommended by the designers.
This is your PW Double 12 Shopping List

These are the Peak Sound unite with which you can bulld this excellent deslon. Transletors Included.
2 Bpoole of "ClroKit" at 2/-
2 Epoole of "Clrokit" at 2/-
2 Preamp and tone control kite
4 Pre-amp matrix boards ..
2 PA.12-15 Power Amplifier K1te

120

2 P.A. matyix boads . . . ह 1 P8.45K is volt power supply kit
1 Peck-hat ufrormosin toak
Anished Cablnet kit .. 212 $\begin{array}{lllll}\text { sinished Cabinot kit } & . & 212 & 0 \\ 5 & & 2 & 0 & 0\end{array}$

TOTAL COBT A2s 5
Hardware Kit of knobs, plugs, sockets,
ewitches, fuees, acrews, wire, etc.
Motaiwork cut, shaped and punched.
Metaiwork cut, shaped and punched.
ged specification
Controls-Baes and treble cut and Ilft based on Baxandall circultry/ Volume/Baiance/Rotary selector.
Input Seneitivity-Magnetic P.U. (per channel) 2.5 mV Into $\mathbf{8} 8 \mathrm{k}$. Ceramic P.U.-25mV Into 27K. ©qualleed for flat response. Radlo/ Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response- 20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall.
Output-12 watte per channel Into 15Ω (8Ω speakers may be used). Negotive Feedback-43dB over each section.
Cobinet-Afrormosia teak finlsh, pack-flat, eay to bulld kit. Size Cabinet-Afrormosia teak fln
ot \times Stin. high \times otln. deep.
Transistors-Ultra low nolse in pre-amp and tone control etages.
GO TO YOUR DEALER NOW
for your authentic Peak Sound Klts. In case of dificulty, please send direct, giving the name and addrees of your usual supplier where poselble and add 11/- postage for complete aseembly, or 5/6 if without power pack.
TRADE ENQUIRIE INVITED
PEAK SOUND (HARROW) LTD
32 ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM Egham 5316 SURREY.

WOW! a FAST EASY WAY TO LEARN BASIC RADIO and electronics

*

Build as you learn with the exciting new TECHNATRON Outfit! No mathematics. No soldering-but you learn the practical way. Now you can learn basic Radio and Electronics at home-the fast, modern way. You can give yourself the essential technical 'know-how' sooner than you would have thought possibleread circuits, assemble standard components, experiment, build . . . and enjoy every moment of it. B.I.E.T's Simplified Study Method and the remarkable new TECHNATRON SelfBuild Outfit take the mystery out of the subject-make learning easy and interesting.
Even if you don't know the first thing about Radio now,
you'll build your own Radio set within a month or so!
and what's more, YOU'LL UNDERSTAND EXACTLY WHAT YOU ARE DOING. The Technatron Outfit contains everything you need, from tools to transistors . . . even a versatile Multimeter which we teach you how to use. You need only a little of your spare time, the cost is surprisingly low and the fee may be paid by convenient monthly instalments. You can use the equipment again and againand it remains your own property.
You LEARN-but it's as
fascinating as a hobby,
Among many other interesting experiments, the Radio set you build-and it's a good one-is really a bonus; this is first and last a teaching Course. But the trainirg is as rewarding and interesting as any hobby. It could be the springboard for a career in Radio and Electronics or provide a great new, sparetime interest.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Dept. 372B, Aldermaston Court, Aldermaston, Berkshire.

A 14-year-old could understand and benefit from this Course-but it teaches the real thing. Bite-size lessonswonderfully clear and easy to understand, practical projects from a burglar-alarm to a sophisticated Radio set . . . here's your chance to master basic Radio and Electronics, even if you think you're a 'non-technical' type. And, if you want to carry on to more advanced work, B.I.E.T. has a fine range of Courses up to A.M.I.E.R.E. and City and Guilds standards.
Send now for free 164 -page book. Like to know more about this intriguing new way to learn Radio and Electronics? Fill in the coupon and post it today. We'll send you full details and a 164-page book -'ENGINEERING OP-PORTUNITIES'--Free and without any obligation.

PART 3

Two units on two-wire extension

It was found useful at a later stage to add a second extension to the two-wire extension so that incoming calls could be received by either extension and similarly outgoing calls could be made to the parent by either.

Fig 10: Two extensions having access to two-wire line to parent
Note that calls cannot be made from one extension to the other, since lifting the receiver of either extension cuts out the other. The circuitry is simple and involves the use of two GPO type dial phones. Only the dial springs and receiver rest switch are needed so the remainder of the equipment may be removed, the battery may be housed in either unit. If the units are in close proximity, only one bell will be required but an extra one may be added as shown if required.

Auto-extension

It was found convenient for an extension to call another unit without access to the parent unit. The block diagram in Fig. 11 clarifies this point.

Fig. 11: Block diagram showing connection of auto-extension.

(b) Relay circuit

Fig. 12: Circuit diagram of auto-extension.

The extension is wired to the parent in such a way that dialling out from the extension causes the call to route to the prewired main unit. The facility is useful, for example, when the main unit is on a desk with the extension by the bed. The extension is a GPO dial phone, the circuit is shown in Fig. 12.
The relay, RLA, is operated from a 6 V dry battery which, with moderate use, should last six months or more.

Lifting the receiver has no effect on the circuit at the moment. As soon as the dial is moved off normal, the contacts complete the circuit for RLA to the battery. RLA1 operates and latches the relay through the receiver rest switch A. RLA2 switches the outgoing line selector to the main unit being called (prewired) RLA4 operates to cut out the main unit

Fig. 13: Modification of circuit for a.c. ringing.
and a path is set up for the receiver through RLA3. When the dial is released, after dialling 0 , ten pulses are sent along the outgoing loop wire to operate the buzzer at the distant end. Conversation may proceed on lifting the receiver of the called unit. At the termination of the call the relay, RLA, is deoperated by the receiver rest switch A when the receiver is replaced and all the contacts restore to normal.
If a large intercom is to be constructed for an office or small works, the reader may be interested in using a transformer to supply ringing current instead of relying on the 4.5 V battery on which there is quite a considerable current drain during ringing. The part of the circuit to be modified is shown in Fig. 13. One side of the transformer (6.3 V sec) is permanently connected to the common return wire and an extra wire carrying the ringing current is run with the loop wire,

PRACTICAL WIRELESS QUERY SERVICE

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERYCOUPON

This coupon is available until 10th October, 1969 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, OCTOBER 1969

Youn
QUESTIONS ANSWERED

Altering Charging Rate

I have a battery charger that charges at 2 amps (12 volts). I also have a radio set (ex-army) that requires 12 volts plus 14 V for the wobbulator network.

The battery I have six 2 volt batteries wired up together in series to give 12 , volts. On the side of these batteries it has printed "...charge at 1 amp".
Is it possible to alter the charge from my battery charger from 2 amps to 1 amp ?-H. Waite (Staffs).
In order to reduce the charging current of your battery charger, it will be necessary to add a resistor in series with one of the leads between the charger and the battery. The resistor will have a value of a few ohms only, but will need to be rated at a suitable wattage. The procedure is to connect an ammeter in the circuit and gradually reduce the value of the resistor until the charging current is 1 amp .

A.M., F.M. and S.S.B.

When one uses an a.m. transmitter, the books state that one transmits the r.f. carrier and also the sidebands. With an f.m. transmitter the frequency varies with the a.f. but I do not understand this with a.m.
If you could explain these things to me, I would be extremely enlightened about many radio topics, i.e., s.s.b.-H. Mason (Bolton).

It is really beyond the scope of a letter, and our query service, to examine a.m./f.m. transmission in detail, however, we hope the following will help regarding s.s.b.
Suppose the transmitter is operating on a frequency of $1,000 \mathrm{kHz}$. Suppose also that the signal is modulated with an audio signal of 1 kHz , say, a sine wave. It can be shown that there are now three frequencies involved apart from the 1 kHz tone. These frequencies are: the $1,000 \mathrm{kHz}$ carrier, and two sidebands at 999 kHz and $1,001 \mathrm{kHz}$. The point to remember is that the carrier frequency of $1,000 \mathrm{kHz}$ is unaltered and this is the reason why, in single sideband (s.s.b.), it can be left out, although it must be reinserted at the receiver so that the information contained in the sidebands can be extracted. Again, since reception of either sideband will give exactly the same information, then one of the sidebands can be eliminated also which is what happens in s.s.b., both carrier and one sideband are removed.

CORRIGENDA

TAKE 20 No. 5 Transistor Tester Plus. Julian Anderson.

The author has drawn our attention to an enror in the text of this article. R1 and R2 are referred to in the text as 330Ω; this should have read $330 \mathrm{k} \Omega$ as in the circuit.

INCREASE YOUR KNOWLEDCE

MANY COURSES TO CHOOSE FROM incl.
RADIO \& TV ENGINEERING \& SERVICING,
TRANSISTOR \& PRINTED CIRCUIT SERVICING,
CLOSED CIRCUIT TV, ELECTRONICS,
NUMERICAL CONTROL ELECTRONICS,
TELEMETRY TECHNIQUES, SERVOMECHANISMS PRINCIPLES OF AUTOMATION, COMPUTERS, ETC.

ALSO EXAMINATION COURSES FOR

C. \& G. Telecommunication Technicians' Certs C. \& G. Electronic Servicing
R.T.B.B. Radio/TV Servicing Certificate
P.M.G. Certificates in Radiotelegraphy

Radio Amatenrs' Examination
General Certificate of Education, etc
BUILD YOUR OWN RADIO AND INSTRUMENTS With an ICS Practical Radio \& Electronics Course you gain a sound knowledge of circuits and applications as you build your own 5 -valve Superhet Receiver, Transistor Portable, and highgrade test instruments, incl. professional-type valve volt meter (shown below). Everything simply explained. All components and tools supplied. For illustrated brochure, post coupon below.

THERE IS AN \int cOURSE FOR YOU

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialized knowledge, ICS can help you with a course individually adapted to your requirements.
There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY

You will receive the FREE ICS Prospectus listing the oxam/nation and /CS technical courses in radio, telavision and olectronics PLUS details of over 150 specialized subjects.

the world's most advanced high-fidelity amplifier

> This remarkable amplifier has been in production for some months, and now that we have caught up with the backlog of orders, we can supply the IC-10 promptly. We wish to apologise for the delay in reaching full production. which was due to circumstances beyond our control. We hope that now you can purchase the IC-10 without difficulty, you will enjoy to the full the great possibilities this unique Sinclair device offers.

The SInclair IC-10 is the World's first monolithic integrated circuit high fidelity power amplifier and pre-amplifier. The circuit itself, which has an output power of 10 Watts , is a chip of silicon only a twentieth of an inch square by one hundredth of an inch thick. This tiny chip contains 13 transistors (including two power types), 2 diodes, 1 zenor diode and 18 resistors, all of which are formed simultaneously in the silicon by a series of diffusions. The chip is encapsulated in a solid plastic package which holds the metal heat sink and connecting pins.
Monolithic I.C's. were originally developed for use in computer and space applications where their extraordinary toughness and reliability were even more important than their minute size. These same advantages make them ideal for linear applications such as audio amplifiers, but hitherto they have been confined to low power applications. The IC-10 thus represents a very exciting advance. Not only is it far more rugged and reliable than any previous amplifier, it also has considerable performance advantages. The most
important are complete freedom from thermal runaway due to the close thermal coupling between the output transistors and the bias diodes and very low level of distortion.
The IC-10 is primarily intended as a full performance high fidelity power and pre-amplifier, for which application it only requires the addition of the usual tone and volume controls and a battery or mains power supply. However, the IC-10 is so designed that it may be used simply in many other applications including car radios, electronic organs, servo amplifiers (it is d.c. coupled throughout) etc.
The photographic masks required for producing monolithic l.C's. are expensive but once made, the circuits can be produced with complete uniformity and at very low cost. So we are able to sell the IC-10 at a price far below that of the components for a conventional amplifier of comparable power. At the same time, we give a 5 year unconditional guarantee on each IC-10 knowing that every unit will work as perfectly as the original and do so for a lifetime.

10 WATT MOMOUTMMC NTIETRMAED CIREUITS AMPIIIER

Specifications

Power Output
10 Watts peak, 5 Watts R.M.S. continuous.
Frequency response $\quad 5 \mathrm{~Hz}$ to 100 KHz 1dB.
Total harmonic distortion Less than 1% at full output. Load impedance 3 to 15 ohms.
Power gain $110 \mathrm{~dB}(100,000,000,000$ times $)$ total. Supply voltage 8 to 18 volts.
Size
Sensitivity
Inputimpedance
$1 \times 0.4 \times 0.2$ inches.
5 mV .
Adjustable externally up to
2.5 M ohms for above sensitivity.

Circuit Description

The circuit diagram of the $\mathrm{IC}-10$ is shown on the right. The first three transistors are used in the pre-amp and the remaining 10 in the power amplifier. The output stage operates in class $A B$ with closely controlled quiescent current which is independent of temperature. A high level of overall negative feedback is used round both sections and the amplifier is completely free from crossover distortion at all supply voltages. Thus battery operation is eminently satisfactory.

Construction

The monolithic I.C. chip is bonded onto a gold plated area on the heat sink bar which runs through the package. Wires are then welded between the I.C. and the tops of the pins which are also gold plated in this region. Finally the complete assembly is encapsulated in solid plastic which completely protects the circuit. The final device is so rugged that it can be dropped thirty feet on to concrete without any effect on performance. The circuit will also work perfectly at all temperatures from well below zero to above the boiling point of water.

Applications

Each IC-10 is sold with a very comprehensive manual giving circuit and wiring diagrams for a large number of applications in addition to high fidelity uses. These include public address, loud-hailers, use in cars, inter-com., stabilised power supplies, electronic organs, oscillators, volt meters, tape recorders, solar cell amplifier, radio receivers.
The transistors in the $1 \mathrm{C}-10$ have cut off frequencies greater than 500 MHz so the preamp section can be used as an R.F. or I.F. amplifier making it possible to build complete radio receivers without any additional transistors.

SINCLAIR IC-10
 The complete IC. 10 with the manual and 5 yoar guaranteo costs just?

Post free

SINCLAIR Z.12
 12 WATT INTEGRATED HI-FI AMPLIFIER \& PRE AMP

12 watts R.M.S. continuous sine wave output

This is the recommended amplifier for those requiring greater power than that provided by the IC.10. This eight transistor amplifier is the most successful of its kind ever designed. It has an excellent power to size ratio and is easily adapted to a wide variety of applications. The $Z .12$ performs satisfactorily from a wide range of voltages and it can easily be run from car batteries. This true 12 watt amplifier comes to you ready built, tested and guaranteed together with useful manual of circuits and instructions for matching the $Z .12$ to your precise requirements. Two may be used for stereo, when the Sinclair Stereo 25 will be found the ideal control unit for use with it.

$$
\begin{aligned}
& \text { Size- } 3 \text { in } \times 1 \frac{\mathrm{in}}{\mathrm{z}} \times 1 \frac{1}{\mathrm{~d}} \mathrm{in} \text { Class B Ultralinear Output: Frequency } \\
& \text { response from } 15 \text { to } 15,000 \mathrm{~Hz} \pm 1 \mathrm{~dB} \text { : Output suitable for loud- } \\
& \text { speakers from } 3 \text { to } 15 \text { ohms impedance Two } 3 \text { ohm speakers may } \\
& \text { be used in parallel: Input } 2 \mathrm{mV} \text { into } 2 \mathrm{~K} \text { ohms: Output } 12 \text { watts } \\
& \text { R.M.S. continuous sine wave (} 24 \text { watts peak); } 15 \text { watts music } \\
& \text { power (} 30 \text { watts peak) Power requirements } 6 \text {. } 20 \mathrm{~V} \text { d.c. from }
\end{aligned}
$$ battery or PZ. 4 Mains Supply Unit. Ready built, tested and guaranteed.

SINCLAIR STEREO 25

De Luxe Pre-amp and Control Unit to use with Z.12 Stereo assemblies. Switched input for PU (equalized to R.I.A.A. curve from 50 to $20,000 \mathrm{~Hz}$ $\pm 1 \mathrm{~dB}$), Radio and auxiliary. Supplied ready built with very attractive solid brushed and polished aluminium front panel. Control knobs for Bass/Treble/Volume/Balance/Input are solid aluminium. Size- $6 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. plus knobs. Built, tested and guaranteed.
£9.19.6

SINCLAIR PZ4

Stabilised mains power supply unit

Heavy duty transistorised power supply unit to deliver 18 V d.c. at $1 \cdot 5 \mathrm{~A}$. Designed specially for use with two Z.12 or IC. 10 Amplifiers together with Stereo 25. Built, tested and guaranteed.

This fantastic litile British pocket receiver is available in kit form to build for yourself or ready built, tested and guaranteed Its range and selectivity must be experienced to be believed; its power and quality everything you could want The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of 1 Radio 1 easier; in fact, you will find your Micromatic performing where other sets cannot be heard at all The neat black case with aluminium front panel and tuning control give the Micromatic elegantly modern appearance.

THE SINCLAIR 0.14 LOUDSPEAKER has a seamless sealed acoustic pressure chamber contoured to ensure forward sounding presence and wide dispersal of sound. The driver unit employs a massive ceramic magnet special cone suspension and aluminium speech coil resulting in brilliant transient response. The input impedance of 8 ohms makes the 0.14 particularly suitable for use with transistor amplifiers. It can be used as a bookshelf speaker, a corner reflect or flush mounted on any appropriate flat surface, etc.

GUARANTEE Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. Full service facilities available to all purchasers.
ORDER FORM BRINGS PROMPT DELIVERY SENT TO YOU POST PAID

ELECTROVITUE
 RAPID
 MAIL ORDER SERVICE

AMPLIFIER KITS

PEAK SOUND P.W. DOUble 12
Complete stereo kit including cabinet, but less panel and other metalwork. $£ 23$ net. Available in separate packages as follows: Main amplifier kit $\mathbf{£ 3 . 1 9 . 6}$ per channel, net. Accessories 19/mono, 36/- stereo.
Pre-amplifier kit $£ 1.7 .0$ per channel, net. Accessories $\mathbf{1 3 / 6}$ mono, 27/3 stereo
Tone contral kit 19/- per channel, net. Accessories $8 / 9$ mono, 22/6 stereo.
Power supply kit $£ 4.10 .0$ mano or stereo, net.
Cabinet kit $£ 2.12 .6$ net. Metalwork available separately from other sources, details on request.

30 WATT (designed by Dr. A. R. Bailey). Published May 1968 W.W., modified November 1968 W.W.

Full kit for main amplifier $£ 9.9 .6$ (less power supply). Transistors only for main amplifier £7.9.6. PC board supplied free with above kit. Heat sinks for Output transistors $8 / 6$ extra.
Power supply kit, unregulated, November 1969 circuit £4.14.0. Regulated version, 60V 1.6 A or 0.8 A , current limiting, re-entrant characteristic: does not need re-set button £8.10.0. Transformer only: 0-25-45-50V 2A 58/-
8×8 watt Stereo only. Peak Sound SA 8×8 kit. Sensitivity 50 mV into $1 \mathrm{M} \Omega$, output into 5Ω. Complete with cabinet and power supply. Kit complete $£ 16.10 .0$ net. Built and tested $£ 21$ net.

BARGAINS IN BRAND NEW ELECTRONIC COMPONENTS

Ultra low-noise resistors (under $0.1 \mu \mathrm{~V} / \mathrm{V}$) Electrosil TR5 Metal oxide, 2% tolerance, range 10Ω to $1 \mathrm{M} \Omega$. All values in E24 series available. $\frac{1}{2} W$ rating. 1-24 10d. each; 25-99 9d. each; 100 up 8 d . each. (Ohmic values may be mixed to obtain quantity price.) Potentiometers, carbon track, long plastic spindles: Single gang linear 220Ω to $2 \cdot 2 \mathrm{M} \Omega 2 / 6$ each; $\log 4 \cdot 7 \mathrm{~K} \Omega$ to $2 \cdot 2 \mathrm{M} \Omega 2 / 6$ each. Dual gang stereo-matched lin or $\log 10 \mathrm{~K}$ to $1 \mathrm{M} \Omega 8 / 6$ each. Stereo balance $\log / a n t i-\log 10 \mathrm{~K}, 47 \mathrm{~K}, 1 \mathrm{M} \Omega$ only, $8 / 6$ each. All types available with $\frac{1}{2}$ A D.P. switch $2 / 3$ extra.

TRANSISTORS, etc.

2N696	5/6	2N3704	3/9	BC107	3/6	BFY54	4/3
2N697	6/-	2N3705	$3 / 5$	BC108	3/-	MC140	6/3
2N706	3/5	2N3707	4/-	BC109	3/6	MJ480	21/-
2N1302	4/-	2N3794	2/11	BC125	12/-	MJ481	27/-
2N1303	4/-	2N4286	2/11	BC126	12/-	MJ491	31/-
2N1304	4/-	2N4289	2/11	BC148	$3 / 3$	MPF103	11/8
2N1305 2N2447	4/-7	2N4291	2/11	BC149	4/3	MPF105	7/6
2N2926yellow	1/9	cheape	5i, $\}$	BC169	2/3	OA47	1/8
2N2926green		2N5163	51-	BC183L	21-	OA90	1/3
2N3053	5/3	40364	12/6	BCi84L	2/3	OA91	1/3
2N3054	15/6	40362	16/9	BD124	16/-	OA202	2/-
2N3055	16/6	AD149	17/6	BFX85	$8 / 3$	P346A	5/9
2N3702	3/6	AD161	14/-	BFX88	7/9	TPMD	
2N3703	3/3	AD162	pr.	BFY50	4/9	($=$ ORP12	6/-

Large capacitors, high ripple current types. $2000 \mu \mathrm{~F} 25 \mathrm{~V} 7 /-$; $2000 \mu \mathrm{~F} 50 \mathrm{~V} 9 / 3 ; 5000 \mu \mathrm{~F} 25 \mathrm{~V} 10 / 3 ; 5000 \mu \mathrm{~F} 50 \mathrm{~V} 17 / 6$. S-DeC 30/6; 2-DeC DeCstore 69/6; 4-DeC 119/6.

- DISCOUNTS (on all but net items): 10% for total order value of $£ 3$ or over. 15% for total order value of $£ 10$ or over.
- POSTAGE and packing: on orders up to $£ 1$ add $1 /-$. Over $f 1$ post free in U.K. Overseas orders welcomed: carriage charged at cost.
- CATALOGUE gives further details of above products and much information on semiconductor characteristics etc. $1 / 6$ post free.

28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY.

Tel: Egham 5533

F.A.L.'PHASE 50' Public Address Amplifier

A superb solid state A.C.
Mains unit for vocal and Instrumental groups and General Public Address use.

29 Gns

Recommended Retail price
$\star 50$ Watts Output (Music Rating) $\quad \star$ High Sensitivity \star Output matching for speakers from 3-30 ohms

* 3 separately controlled inputs
* Separate Bass and Treble Controls
* Frequency Response 22c.p.s. to 30Kcs.

Available from your local Dealer
SEND S.A.E.
FOR FULLY DESCRIPTIVE

LEAFLET

FUTURISTIC AIDS LTD, 103 Henconner Lane, Leeds 13

VALVES
 SAME DAY SERVICE NEW! TESTED! GUARANTEED!

	4/6	128N7GT	DK92 9/8	/6	$7 / 8$		-
147GT	7/8	718	DK96 7/-	EL41 10/6	9/-	4	9
1H5GT	$7 / 8$	96G17/6	DL35 5/-	EL84 $4 / 9$	1868	55	19
1N5GT	$7 / 8$	20 F 21318	DL92 5/8	EL90 5/-	PENA412/6	CF80	13
1Ns	$6 / 8$	$\begin{array}{ll}\text { 20Ps } & 11 / 9\end{array}$	DL94 6/-	EL500 12/6	PFL20012/6	CH42	
155	$4 / 8$	$20 \mathrm{P} 418 / 6$	DL96 7/-	EM80 7/6	PL86 $9 / 9$	UCH81	$8 / 8$
1T4	$2 / 8$	25L6GT 5/-	DY86 5/9	EM81 $7 / 8$	PL81 7/8	UCL82	-
364	$6 / 9$	1/8	DY87 5/8	EM84 6/8	L82 71-	UCL83	11/6
3V4	6/-	30	EABC80 6/6	6	83 71-	F41	10/6
6U4	4/6	30 C 17 16/-	EAF42 8/9	EY86 6/6	84 8/6	UF80	$1-$
5 Y 30	8/8	$\begin{array}{ll}30 \mathrm{Cl} & 16 /- \\ 30 \mathrm{Cl} & 11 / \mathrm{B}\end{array}$	EB91 2/3	$\begin{array}{ll}\text { EY86 } & \text { 6/6 } \\ \text { EZ40 } & 7 / 6\end{array}$	$\begin{array}{ll}\text { PL500 } & 13 /- \\ \text { PL504 } & 13 / 8\end{array}$	UF88	6/9 $8 / 8$
5Z4G	718	$\begin{array}{ll}30 \mathrm{F5} 5 & 16 /-\end{array}$	33 8/-	EZ41 7/8	$\begin{array}{ll}\text { PL504 } & 13 / 8 \\ \text { PL508 } & 88 / 6\end{array}$	ULS 41	618 1016
$6 / 30 \mathrm{~L} 2$	12/-	$30 \mathrm{FL1}$ 18/9	C41 919	EZ80 4/6	$\begin{array}{ll}\text { PL508 } & \text { 28/6 } \\ \text { PL802 } & 14 / 6\end{array}$	ULA1	${ }_{201}^{10}$
6ALS	2/8	$30 \mathrm{FL12} 14 / 6$	F80 6/9	81 4/8	84719	L8	,
6AQS	$4 / 9$	$30 \mathrm{FL14} 12 /-$		19	PX25 10/6	M	1 -
6ATB	4/-	6/8	CC82 4/9	19	5/6	41	/8
6AU6	4/6	/	CC83 7/-		PY32 $10 /$		
6BA6	4/6	${ }_{30 P 4} 12 /-$	5/8	ME140015/-	$\begin{array}{ll}\text { PY33 } & 10 /- \\ \text { PY81 } & 5 / 8\end{array}$		$10 /-$
6BE6	$4 / 8$	30P12 18/9	FCOC80412/-	N78 17/6	$\begin{array}{ll}\text { PY81 } & 5 / 8 \\ \text { PY82 } & 5 / 3\end{array}$		3/8-
6BJ6	8/6	30 P 19 12/-	ECF80 8/6	PABC80 $7 /-$	$\begin{array}{ll}\text { PY82 } & 5 / 3 \\ \text { PY83 } & 5 / 9\end{array}$	Z7	8/6
W	18/-	30PL1 13/9	ECF82 $5 / 8$	PC86 10/3	88	龶	
6 F 13	8/8	30PL13 15/6	ECH35 8/-	PC88 10/3		10	3/6
6 F14	91-	30PL14 15/6	ECH42 10/6	РС98 8/8		C1	8/6
8 F 23	$14 / 8$	35L6GT 8/6	ECE81 5/9	PC97 8/6		D1	$7 / 6$
-	2/6	36W4 4/8	ECH84 716	PC900 8/-		AF115	1
8K8G	4/3	35Z4GT 5/-	CL80 6/8	PCC04 6/B	R20 12/8	116	$81-$
$6 \mathrm{L18}$	B/-	$606312 / 6$	6/8	PCC85 6/6	918	F117	
G	3/6	AC/VP-210/-	9	PCC88 $81 / 8$	18/	Fl	6
6V6G	8/6	AZ31 9/6	$81-$	PCC89 10/6	26 181	F125	$8 / 8$
$6 \times$	4/3	B729 12/6	EF374 6/6	PCC189 11/6	U47 18/6	AF12	71-
$6 \times 5 \mathrm{G}$	5/9	OCH35 10/-	EF39 4/9	PCF80 6/8	U49 18/6	AF12	$8 / 8$
7B7	71	CL33 18/6	EF41 10/9	PCF82 8/8	U52 4/6	C2	/8
706	$6 / 9$	CY31 0/9	EF80 4/6	PCF'86 9/6	U78 4/8	0044	
7 Y 4	8/6	DAC32 7/3	85 6/-	PCF200 13/6	U191 12/6	OC45	$2 / 8$
10F1	14/-	DaF91 4/8	6 6/8	PCF'80013/6	U301 12/6	0071	2/6
10P13	15/6	DAF96 8/6	89 5/8	PCF801 8/9	U801 19/6	OC72	$8 / 6$
AH8	33/-	DF33 719	F91 3/6	PCF'802 0/6	UABC80 6/6	0075	2/6
AT7	$3 / 8$	DF91 2/8	EF94 4/6	PCF80611/8	UAF42 9/6	$0 \mathrm{C81}$	2/8
AU6	$4 / 8$	DF96 8/6	EF183 6/-	PCF80818/-	UB41 6/6	$0 \mathrm{C81}$	$2 / 3$
U7	4/9	DH77 4/-	EF184 5/6	PCL81 0/-	UBC41 8/8	$0 \mathrm{C82}$	2/3
X 7	4/9	DK32 7/6	EH90 6/3	PCL82 7/-	UBF80 8/6	OC82D	2/6
K8G	7/-	DK91 6/9	L33 8/8	PCL83 9/-	UBF89 6/8	170	2/

READERS RADIO
85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel. 01-550 7441
Postage on I valve 9id. extra. On 2 valves or more, postage 6d. per

NEW PRICES OW NEW COMPONENTS

ELECTROLYTIC CAPACITORS (Mullard). $\mathbf{- 1 0} \%$ to $+\mathbf{5 0} \%$

RESISTORS
High stability, carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm.): Body: $\ddagger \mathbf{W} ; 8 \times 2.8$
$\frac{1}{3} \mathrm{~W} ; 10 \times 4 \cdot 3$
Leads: 35
10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series).
5% ranges; $4 \cdot 7$ Ohms to 1 Megohm (E24 Renard Series). Prices-per Ohmic value.

		each	10 off	25 off	100 off
4W	10\%	2d.	1/6	3/3	10/4
+W	5\%	2dd.	1/9	3/8	11/8
W	10\%	2 d d.	1/9	3/8	$11 / 7$
W ${ }^{\text {W }}$	5\%	3d.	2/-	4/-	12/10

CAPACITORS

Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads.
$\pm 10 \%$ tolerance. 100 Volt Working.
Prices-per Capacitance value ($\mu \mathrm{F}$)
$0.001,0.002,0.005$,
$0.01,0.02$
0.05
0.1
$0 \cdot 2$ Polystyrene film, Tubular, A
tolerance. 160 Volt Working.
Prices-per Capacitance value Polystyrene film, Tubular, A
tolerance. 160 Volt Working. Polystyrene film, Tubular, Axial lead
tolerance. 160 Volt Working.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$)
$10,12,15,18,22,27,33$, each
$39,47,56,68,82,100,120$.
$180,220,270,330,390$
$470,560,680,820,1,000$
1,500
$2,200,3,300,4,700,5,600$.
$6,800,8,200,10,000,15,000$
22,000

6d.
 6d.

10 off
$4 / 3$
$6 /-$
$7 / 1$
$10 /-$
$17 / 6$
25 off
$8 / 4$
$12 / 6$
$15 / 6$
$20 / 10$
$37 / 6$

100 off
$301-$
$30 /-$
$41 / 8$
$68 / 6$
$125 /-$
${ }^{125 /-}$

POTENTIOMETERS (Carbon)

Miniature, fully enclosed, rear tags, carbon brush wiper. Long life, low noise, Minature, fully enclosed, rear tags, carbon brush wiper. Long ife, low noise.
Body dia., $\frac{8}{\text { in }}$. Spindle, lin. \times tin. $\ddagger W$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{5} \mathrm{M}, \pm 30 \%$ over $\ddagger \mathrm{M}$. Lin. 100 ohms to $10 \mathrm{Megohms}$. Log. 5 Kohms to 5 Megohms. $\begin{array}{lcccc}\text { Prices-per ohmic value } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 2 /- & 18 / 4 & 41 / 8 & 150 /-\end{array}$

GANGED STEREO POTENTIOMETERS (Carbon)

$\frac{1}{3}$ W at $70^{\circ} \mathrm{C}$. Long Spindle.
Logarithmic and Linear: $5 \mathrm{k}+5 \mathrm{k}$ to $1 \mathrm{M}+1 \mathrm{M}$.

SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality pre-sets suitable for printed circuit boards of 0.1 in . P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2}$ M, $\pm 30 \%$ above $\$ \mathrm{M}$. Horizontal ($0.7 \mathrm{in} .+0 \cdot 4 \mathrm{in}$. P.C.M.) or Vertical $\left(0.4 \mathrm{in} . \times 0 \cdot 2 \mathrm{in}\right.$. P.C.M.). Subminiature: 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above.
Prices-per ohmic value
Miniature (0.3 W)
Subminiature ($0.1 \dot{\text { w }}$)

each	10 off
$1 /-$	$8 / 9$
10 d.	$7 / 1$

25 off	100 of
$18 / 9$	$66 / 8$

POLYESTER CAPACITORS (Mullard)

Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$
 $0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .1$
$0.68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 8$.
$0 \cdot 68 \mu \mathrm{~F}, 2 / 3,1 \mu \mathrm{~F}, 2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015$, $400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF},{ }^{0.01,} 0.015$,
$0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2$. $0.22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}, 2 / 3$. $0.47 \mu \mathrm{~F}, 2 / 8$.
Modular, metalised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 / \mathrm{-} .0 .33 \mu \mathrm{~F}$, $1 / 5.0 \cdot 47 \mu \mathrm{~F}, 1 / 8.0 \cdot 68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 9$.

JACK PLUGS
tin. Type P1. Standard. Screened. Heavily chromed.
in. Type SE/P1. Side-entry version of Type P1.
tin. Type P2. Standard. Unscreened. Unbreakable moulded cower.
tin. Type P3. Tip-Ring-Sleeve Stereo version of Type P1.
in. Type P4. Tip-Ring-Sleeve Stereo version of Type P2.

3.5 mm . Type P6. Standard. Unscreened. Unbreakable moulded cover. 3. 5 mm . Type P6. Standard. Unscreened. Unbreakable moulded cover.
Prices
each
enf
2

JACK SOCKETS

tin. Type S3. Stereo version for use with P3 or P4 plugs. tin. Type S5. Standard. Moulded body. Chrome insert. 3.5 mm . Type S6. Standard. Moulded body. Chrome insert $\begin{array}{lllll}\text { Available with make or break contacts on Tip. Ring and Sleeve. } \\ \text { Prices } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ \text { P } 3 & 3 / 3 & 30 /- & 68 / 9 & 250 /-\end{array}$

S53				$3 / 3$	$30 /-$	$68 / 9$	$250 /-$	
S3	\cdots	\ldots	\ldots	\cdots	$2 / 3$	$25 /-$	$56 / 8$	$216 / 8$
S5	\cdots	\ldots	\cdots	\cdots	$1 / 6$	$13 / 4$	$33 / 4$	$100 /-$

SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81, OC81D, OC82D, 2/- OC70, OC72, 2/3. AC107, OC75, OC170, OC171, OC81D, OC82D, 2/-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171, 2/6. AF115, AF116, AF117, ACY19, ACY21, 3/3. OC140
$5 /-$. OC139, $5 / 3$. OC $25,7 /-$. OC35, $8 /-$ OC 23, OC $28,8 / 3$.

SILICON RECTIFIERS: (0.5A). 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V. 3/3. 1250 P.I.V.. 3/9. 1500 P.I.V., 4/-. (0.75A); 800 P.I.V., $3 / 3$. (6A); 200 P.I.V., $3 /-.400$ P.I.V., 4/-. 600 P.I.V., $5 /-.800$ P.I.V., $6 /-$.

THYRISTORS (5A): 100 P.I.V., 8/-. 200 P.I.V., 10/-. 400 P.I.V., 15/-
SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125V. Push Buttons: Push-on or Push-off, 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/-.

PRINTED CIRCUIT BOARD (Vero).
 Sin. $\times 3 \frac{8}{4}$ in., 5/6.
 5/3.

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS (PW)

97/97A MILL ROAD, CAMBRIDGE
Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale and Retail Premises)
MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 / 6$

NEW RANGE BBC 2 AERIALS
All U.H.F. aerials now fltted with tilting bracket and 4 element grid reflectors Loft Mounting Arrays, 7 element, 37/6, 11 element, $45 /=14$ element. $52 / 6$. 18 element, 601-. Wall Mounting with Cranked Arm, 7 element, $80 /$ - 11 element, $67 /$. 14 element, $75 /$-. 18 element. 82/6. Mast Mounting with 2 in . clamp. 7 element. 42/8. 11 element. $55 /-14$ element, $62 /$-, 18 Complete, 7 element. 72/6, 11 element, $80 /$-. 14 element, $87 / 6.18$ element. $95 /$ - Complete 14 element, $87 / 6$. 18 element, 851 -. Complete Loss Cable, $1 / 6$ yd. U.H.F. Preamps from 75/-, State clearly channel $\dot{\text { fumber required }}$ on all orders.

BBC • ITV AERIALS

BrBC (Band 1). Telescopic loft, 25/-, External S/D, 30\% "H. 22.15 .0 . $\begin{array}{lll}\text { ITV (Band 3). } & 3 \text { ele- } \\ \text { ment loft array, } & 30 /-5\end{array}$ ment loft array, 30/-. 5 $50 /-$ Wall mounting. 3 element, $47 / 6$. 5 element 52/6. Comblned BBCi ITV: Loft $1+3,40 /-$ i $1+5$
 mounting $1+3,57 / 6: 1+5$;
67/6: Chimney $1+3,67 / 6$; $1+5,75 /=$ VHF transistor pre-
amps. 75%. amps. 75/-.
COMBINED $\underset{1+3+9}{\text { BBC1 }}$ ITV - \quad BHC2 AERIALS $1+3+9, \quad 70 /-\quad 1+5+9$, $80 /-$ $1+5+14,90 /-1+7+14,100 /-$ Loft mounting only. Special leaflet available. F.M. (Band 2). Loft S/D, 15/-. "H", 32/6. 3 element, 55/-. External units available. Co-ax cable $8 d$, yd. Co-ax. plugs, $1 / 4$.
Outiet boxes. $5 /-$ Diplexer Crossover Boxes. 13/6. C.W.O. or C.D.D. P. \& P. 6/-. Send 6 d . stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept, P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884
H.A.C. ${ }^{\text {shogiriris }}$

WORLD-WIDE RECEPTION

Famous for over 30 years tor Short-Wave Equipment of quality, "H.A.C." were the Original suppliers of Short-Wave Recelver Kit for the amateur constructor. Over 10,000 astisfled cuntomers-including Technical Colleges, Hos-
pltals, Public Bchools, R.A.F., Army, Hams, ete.

IMPROVED 1969 RANGE
One-valve model "DX", complete klt-price 58/6 (Postage and packing $3 / 6$)
Customer writes:--'Definitely the best oue-valve S.W. Kit avallable at any price. America and Australia recelved clesrly at good volume." This dit contains all genuine short-wave components, tions, Ready to sagemble, and of course, as all our producta-fully guaranteed. Full range of other S.W, kita stil! available, including the famous model "K" (recommended by radio clubs). All orders deapatched by return. (Mail order only.) Send now for a descriptive catalogue, order form.
"'H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

TO TRY IT, IS TO PROVE IT

This carefully planned series of manuals has proved a valuable course in training technicians in Electricity, Electronics, Radio and Telecommunications.

WHAT READERS SAY

"May I take this opportunity to thank you for such enlightening works and may I add, in terms, easily understood by the novice.
L. W. M., Birmingham.
"I find that the new pictorial method is so easy to understand, and I will undoubtedly enjoy reading the following five volumes: thank you for a wonderful set of books." C. B., London.
"They certainly confirm everything your readers say about them and I am more than delighted with them. They will be of great value to me in my job as Hospital maintenance electrician." A. B., Birmingham

A TECH-PRESS PUBLICATION

 To The SELRAY BOOK CO., 60 HAYES HILL. HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of 20/-followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS $90 /-$ Cash Price, fortnightly payments of $20 /-$ each. BASIC ELECTRONICS $90 /-$ Cash Price, or Down Payment of $20 /-$ followed by 4 fortnightly payments of $20 /-$ each.
This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
Tick Set required (Only one set allowed on free trial)

Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS －2 or 4 TRACK

Chasals $12 \frac{1}{3} \times 1 \times 4 \frac{1}{6} \mathrm{~m}$ ．high Front panel alum and black－ 121 I 4in．200－250 A．C． Mains Trans．Onf／On－Tone Vol．／Mic．；Vol．／Gram．；Mic Input；Gram．Input；Moni tor；Valves 6BR7，ECC83 EM84，EL84 and Rect． 2 Track 810．10．0： 4 Track 818 （12／6 p．\＆P．）．Ready for bolt－ ing direct to Magnavor deck．

STEREO AMPLIFIER type HV－

2×3 Watts

Fully built．On off，sep．vol，and tone each channel． 12 X $4!\times 6 \mathrm{hn}$ ．high．EZ80， $2 \times$ ECL86；for 3 ohm
speakers，double wound main trans；fixing flanges and base plate；suitable for crystal cart．r tuner etc 85． 17.6 （ $8 /-\mathrm{p} . \& \mathrm{p}$. ）．Available as kit with full thatructions at 24.17 .6 （8／－p．\＆p．）

STEREO AMPLIFIER type RC－

2×3 Watts

Fully built． $2 \times$ UCL82，metal rect；ganged vol． and tone cont；on－off，balance． $11 \times 31 \times 4 \mathrm{in}$ ．high double wound mains trans．with supporting．
brackets．For 3 －ohm speakers． 86 （ p ． p ．）．

SUPER SIX KIT
 Mk． 2

MW and LW iully tumable．Wooden cabinet $9 \frac{1}{1} 8 \frac{1}{1} \times 1 n_{\text {n }}$ ， carrying handle，two tone cabinet；4hn，speaker； 6 tran－ istors；full book of instructions． $2 / 6$（free with kit）Al parts may be purchased separately

We can accept H．P．orders for our Stereo Radiogram Chassis previously advertised and atill available at 819.19 .0 ．Terms et deposit and 6 monthly payments of 47／6 （by Banker＇s Order only）．Total H．P．Price fig1．5．0．

GLADSTONE RADIO
 66 ELMS ROAD，ALDERSHOT，Hants

（2 mins．from Station and Buses）．FULL GUARANTEE．Aldershot 8840 CLOSED WEDNESDAY．S．A．E．for enquiries please．

plus

MARTIN IS HIGH FIDELITY

ADD－ON－ABILITY

THRILLING POWER
DEPENDABILITY
GENUINE ECONOMY
Details from：
How would you like to start with a simple amplifier，say，and add to it until it became a fully stereo twenty watt amplifier with FM tuner and facilities to take the most sensitive low output pickups ever made？With Martin Audiokits it＇s easy，for with these superbly engineered all－transistor prefabri－ cated units，success is built in from the start and you build to your own preferred plan．IT＇S A MONEY SAVING SCHEME，TOO．

－Trade enquiries invited．

MARTIN ELECTRONICS LTD．， 155 High St．，Brentford． Middlesex．ISLeworth 1161

To MARTIN ELECTRONICS，155，High Streat，Brantford，Middlesex．

I have not had your leaflets before．Please send them on AMPLIFIERS \square FM TUNER \square RECORDAKITS \square （Tick as required）

NAME
ADDRESS
PW 10
\qquad

TRANSISTORS etc．

AC107	$3 /-$	OC35	$7 / 6$
AC126	$2 /-$	OC44	$2 / 0$
AF116	$8 /-$	OC45	$2 / 0$
AF116	$8 /-$	OC70	$2 / 8$
AF117	$2 / 9$	OC71	$2 /-$
BFY18	$4 / 6$	OC72	$2 / 8$
BFY51	$4 /-$	OC73	$2 / 8$
GET113	$8 / 6$	OC75	$2 / 2$
OA5	$1 / 6$	OA8	
OA9	$1 / 8$	OC81	$2 /-$
OA47	$1 / 9$	OC81D	$8 /-$
OA81	$1 / 6$	OC82D	$2 / 8$
OA85	$1 / 6$	OC140	$5 /-$
OA91	$1 / 9$	OC169	$8 / 6$
OC23	$6 / 6$	OC170	$2 / 8$
OC25	$5 /-$	OC171	$2 / 2$
OC26	$5 /-$	OC202	$4 / 6$
OC28	$6 / 6$	TK22C	$1 / 6$

Crystal Dlodes－6 for 2／6．（7d．）． avallable on request． $1500 \mathrm{MFD}, 30 \mathrm{~V} \quad 4 / \mathrm{l}$ Additional Trangiators－AF147 and AF150，24v，Larger envelope， 4 leads，collectlve current 10 mA ，gain $70-4 /=$ each．AP149－gain $226-4 / 6$ each． rolytics in current tiat． Postage，Packing and Insurance all above 7d．up to 3；1／－from 4－11； 12 and over paid． 2 GANG VAR．CONDENSER：Mod．，air－spaced， 0005 ea．sec． $5 /-(1 /-)$ ．
UB－MIN－TRAN8PORMERS Output（ 3 口 for 0 （V 2 etc）2／6．Driver $2 / 8$（either 7d） MULTDIETER： 20,000 ＠／V D．C．， 10,000 G／V A．C． $0-5 / 25 / 50 / 250 / 500 / 1 \mathrm{~K}$ Folts D．C． － $0-10 / 50 / 100 / 500 / 1 \mathrm{~K}$ volts A．C． $0-50 \mu \mathrm{~A} / 2.5 \mathrm{~mA} 250 \mathrm{~mA}$ D．C． －Over－load protected 1969 mode！with every refinement．84．7．6（2／6）．JUNIOR MODELL at $47 / 6$（2／6） $1000 口 / V$ described in tree list．
SOLDERING IRON．SHm Mod．British High speed， $8 \ddagger$ in．，all parta replaceable，fully guaranteed for profesuional，radio and general D．I．Y，use．19／6（1／－）
DIAMOND STYLII Replacements for BSR TC8LP，TC8／B and TC8LP／STEREO COLLARO＂O＂：RONETTE BF40LP；GARRARD GC2LP and GC8LP；ACOS GP65／67 all at 7／6 each（6d．）．ACOS GP91 ST／LPP；B8R BT4 and 8T9；SONOTONE 9TA and gTAHC，PHILPSAG3
tin．type，all at $18 / 6$（ 0 d ．）．
BAPPHIRE all the above $7 / 6$ types only，also ACOS GP37 at $8 / 8$ each（6d．）．ACOS
GP91 at $8 / 9$（ 6 d ．）．No other types at present，and no 78 rpm available in any type．
PICK－UP CARTRIDGF8．all fitted Styli and standard fittings．Mono GP67／2，13／6． Mono de Luxe GP91／2，17／－．Stereo Compatible－Mono which also plays stereo records monaurally with min．wear，GP91／8C，19／6．Latest Etereo GP98，28／－．Ceramic Stereo，top quality for expenaive outits，GP94，88／6（all 1／－）．
PP3 FLIMNATOR（A．C．）17／6．（1／6）TWO STATION TRANS．INTER－COM．Excellent baby alarm．Instant，easy fitting with leads，pluge and battery．Ad］you require $52 / 6$（ $3 /-$ ） TRANSISTORISED AMPLIFLERS， 3 watt， $9 V$ operation， $45 / 6(1 / 6 ; 7$ watt， 6 trans 24V operation，67／6（2／6）．
ExTra High Torque mini－motor， 4 to 12 V ， 1 I I in． $5 /-$（ 9 d.$) .9,000$ r．p．m． complete．Full detalls tn list
TEST PROD8：Flexible，unbreakable 24＂Red and Black leads，thin 4$\}^{*}$ prode， $1 f^{*}$ plugs $4 / 9$（9d）．
REROORDING TAPE：Finest quality Britigh Mylar．8TANDARD； $5 \mathrm{in} .600 \mathrm{ft} .7 / 8$ ， 6 inin．

$18 /-$（ $1 / 3$ reel）．Still the facst quality and value obtainable．
MICROPHONFS－ORYGTAL．MIC91，Deak， $16 / 8 ;$ MIC46，curved band grip $17 / 8 ;$ stick ＂60＂80／8；Stick＂39＂28／6（1／6 each t5pe）．Cream plastic hand type 7／6，or with＂strut＂ stand，awitch and 2 leads with $2 \cdot 5$ and 3.5 plugs $11 /$－．Lapel（or hand）with clip $6 / 6$（1／－）
 Adaptor and Neck Cord $37 / 6$（2／6）．W811，similar，but fixed on flexibie Swan neck to awitch－ fitted base $48 / 6$（2／6）．DM128 Unl－directionai， $50 \mathrm{~K} / 600 \mathrm{ohma} \mathrm{imp}$ ，stand adaptor，very high quality $64 \times 2 \times 11^{\prime \prime}, 25.9 .6$（ $5 /-$ ）．
CARDIOLD DYNAMHO OMNI－DIRECTIONAL：Two highly succesaful mikes＂gQUARE＂ $208,55,10.0$ ．＂BALI＂＂type， 209 ，with built－th vol．control，switch $50 \mathrm{~K} / 600$ ohms imp．， 85．17．6（either type $5 /-$ ）．Full details in list．
MICROPHONE INSERTS：Diameter $1 \cdot 75 \mathrm{in}$ ．or 0.9 in either aize $\$ / 6$（ 6 d ．）． 8PEAKERS： 12 in round，fitted TFeeter， $6 \mathrm{~W}, 3$ or 16Ω（state which）， $85 / 6$（ $5 / 6$ ）； 21 im .3 p
$6 / 6(1 /-) ; 6 \times 4$ heavy duty $3 \Omega 14 / 6$（3／6）or for Stereo $84 / 6$ pajr，post etc．paid．Limited $6 / 6(1 /-) ; 6 \times 4$ beavy duty $3 \Omega 14 / 6$（3／6）or for Stereo $84 / 6$ pair，post etc．paid．Lirnited
cuantity powertul 2 tin．PM transistor replacement speaker，high ohma，excellent， $5 / 6$ （1／－）．HEADPRONES High Res，2000 8 ea．Earpiece 18／6（1／6）；Stereo Dyn 8－16 Ω ， 68／－（3／－）；EARPIEDES with lead etc．，Min．Plug Magnetic $1 / 6$（state whether 2.5 or 3 ．5mm．）；Grystal $4 / 8$（either 7d．）．（ 3.5 mm ．only）．
AERJALS，Oar Types：「elescopic，vandal proot，locks retracter， 2 keys and all fittinga 28／6（2／6）Motor driven， 12 V ， 5 gection，complete $\$ 7.10 .0$（ $6 /-$ ）．
FOR ALL PORTABLES gnd F．A．SETS，Telescopic 5 ．gection 5t－22in．with awivel，5／6． －7－Section 5t－32in．no swivel，screw hole in base，6／6． 10 －section $61-471 \mathrm{in}$ ，no swivel，
 New 6 section $54 / 25 z i n$ ，screw hole in base，$n 0$ swivel $4 /-$ ．（1／－all sizes DPST 8／－DPDT 3／8，shde types．gub－min．DPDT $1 / 6$ each．8mall DPDT3 3 ，8PDT $2 / 9$. ＂off＂1／9，Reed magnetic on／oft i／g（ 7 d ．each，all types）．Rotary Switches etc．in list． VIBRATORS：Famous makes only． 12 volt 4 pin non－synch $2 / 6,12$ volt 7 pin synch 10／．。 6 volt 7 pin aynch $10 /$－（1／－each，all types）．
MAINS NEON TRSYER：Fly leade R／－（7d．）．Pocket Bcrewdrivertype8／6（6d）．PLUG8：std． Jack，plastic body 2／8．Screened 3／－．Sockets $1 / 11$（all 7d．）．VALVE HOLDERS；B7G or B9A，Moulded 6d．（7d，up to 4，1／－over 4）．CONNEGTHN WIRE： 5 cotls asstd．cols，each

 over 6 ydis．post free）．TWIN MIKE CABLE：1／8 Gd．SINGLE MIKE CABLE：7d，Yd．
Both flexible，screened and sheathed．FEEDER CABLE：Twin ri．bal，＂Ag．8＂， 80Ω ， or flat 300Ω transparent polythene insulated，either 8d．per yd．（all cablea up to three Fards 8d．，each additional yard，1d．extra）．
R．F．INDICATOR， 5 －Band，with meter antenna，monitoring cryatal earplece etc．，48／6 （1／6）．Details in list．
RETRACTABLE FLEXIBLE LEADB．Space saving＇Curly＇，many uses in car and home： with phono plug each end， 6 it．， $4 / 6 ; 12 \mathrm{it} ., 7 / 9$ ．With phono plug one end，phono socket at other， $6 \mathrm{ft} ., \$ /-12 \mathrm{ft} .8 / 6$（ 9 d. on any）．
CAR RADIO：Splendid new All－Britigh daah－mounting radio using Mullard tranaistora and circult．M．and L．Wave．Separate apeaker and baffe．Abeolutely complete，for +0 －chassias． volume controls，Continental din plugs for Grundig．Telefonken equlpment，etc．，diais， plugs and sockets，panel meters，record player and tape recording accessories．Battery chargers，teat equipinent，test prods，tape recorder，special transistors，portabie sets， more switches and other componenta，

all previous ones and lists supplied prior to August 318t．

FELSTEAD ELECTRONICS
 （PW23）

LONGLEY LANE，GATLEY，CHEADLE，CHESHIRE，SK8 4EE
TERMS：Cash with order only．No C．O．D．or caller bervice．Post，packing aad ingurance charges are shown in brackets after all items．Regretorders under $5 /$－plus carriage cannot be accepted，and a minimum charge of $1 /$－is now made，charges apply to ins．and fee S．A．E．please for all enquiries，otherwise regret cannot be replied to．

BI－PAK SEMICONDUCTORS 500 CHESHAM HOUSE， 150 REGENT ST．，LONDON，W．1．
 KING OF THE PAKS Unequalled Value \＆Quality
 BI－PAK NEW－UNTESTED SEMICONDUCTORS

Satisilection Guaranteed in Every Pak，or money back．

Code Nos．mentioned above are given as a guide to the type of device in the Pak．The devices themselves are normally unmarked			
FULLY TEST		TESTED SCR＇s	
AC	8	PIV 1 AMP 7A	GERM．TR
		${ }_{30}^{25}$	
AF116－1	3／6	$\begin{array}{ccccc}30 & 7 / 8 & 8 / 8 & 10 / 8 & 35 /- \\ 100 & 8 / 8 & 101 & 181-45]\end{array}$	
AF139	$10 /-$ $15 /-$		T1 8293710
		300 151－801－251－	${ }^{2} 3829374$ OC75 101－
BFYb0			T4 826381 la OCs1 10%
BEY28	$3 / 8$	500 800 80	T5 8 2 2G382T ${ }^{\text {O }}$
B8Y	$4 / 8$ $4 / 8$		T8 $82 \mathrm{SG344A}$ OC44 10%
OC26－35		SIL．RECTS．TESTED	
		\％	T10 $82 \mathrm{G417}$ AFI17 10／－
	1／8	$\begin{array}{lllll}50 & 1 /- & 8 / 9 & 4 / 8 & 9 / 6 \\ 100 & 1 / 8 & 8 / 8 & 4 / 8 & 16 /-\end{array}$	
75		$\begin{array}{llllll}200 & 1 / 9 & 4 /- & 4 / 9 & 20 /-\end{array}$	DI
$0 \mathrm{C81D}-82 \mathrm{D}$	8	300 $2 / 3$ $4 / 6$ $4 / 8$ 102	DIODES
0 C 82 OC14	$2 / 6$ 51	$\begin{array}{lllll}400 & 2 / 6 & 5 / 6 & 7 / 8 & 251-\end{array}$	400 mW ．${ }^{\text {a }}$ ．
OC170	$2 / 6$		1－5w
0 Cl	8／6	00 3／8 7／8 11／－401－	All iuily tested．State
	$7 / 8$	00 51－9／8 18／6 $501-$	Itage req
OCP71	18	1200 0／6 11／6 15／－	
A5－10	1／9		
	81		
0470	1／3	any further Increased Post	TESTED AND CODED
	1／6	Charges to our Customers	NDI20． $1-24{ }^{\text {a }} / 6$ each．
91	$1 / 3$	and enable us to keep our	T0－5iplo
		which is second to none，we	
200	$8 / 8$	have re－organized	UNIJUNCTION
	8／8	streamlined our Despatch	UT
N708．	$3 / 6$	now requeat you to send all	Eqvt．TIS43 BEN300
N708	－	your ordera together with	100
		your remittance，direct	NT
2712	5	patch Department，poutal	
26	2／6	dress：BI－PAK SEMI－	
Matio0－101		CONDUCTOR8，Despatch	Packed with
ST140 \ldots ．	8	O．BOX Cos ，WARE， Postage and pack－	10 bosrds gi
T141	4／－	ing still 1／－per order．	${ }^{\text {teed }}$ diodes 0 trann an ${ }^{\text {an }}$
		inimum order 10／．	

FULLY TESTED

AC107．
AC126－7－8
AF116－
AL102
BFYB0－81－5
BSY26－7
B8Y96－95A
OC22－25
$0 C 26-35$
$0 \mathrm{OC} 28-29$
$0 \mathrm{C} 44-45$
OC71－81
$0 \mathrm{C} 72-75$
$0 \mathrm{OC81D}-82$
OC140
OC170．
0 O 201.
ORP12－60
OA5－10
$0 A 47$.
0470
OA81－85
0491
OA200
2N696．7
2N70
2N2160
2N2712
N2926
MAT120－121
T141
2N3819

 Coded and Gurranteed Puk No．EQVT． $\begin{array}{llll}8 & 2 \mathrm{QG3710} & \text { OC71 } & 10 /- \\ 82 \mathrm{G} 374 & 0 \mathrm{C} 75 & 10 /-\end{array}$ | | | | |
| :--- | :--- | :--- | :--- |
| 8 | $2 G 374$ | $0 C 75$ | $10 / 2$ | T4 $82 \mathrm{G381A}$ OC81 10／F T5 820382 T OC82 10／－ $\begin{array}{llll}82 \mathrm{G344A} & \text { OC44 } & 10 /- \\ 82 \mathrm{G} 345 \mathrm{~A} & \text { OC45 } & 10 \%\end{array}$ $\begin{array}{llll} & 82 \mathrm{G345} & \text { OC45 } & 101 \\ 820378 & \text { OC78 } & 10 /\end{array}$ T9 82G399A 2N130210／ FULL RANGE OF ZENER DIODES

VOLTAGE RANGE $2-18 \mathrm{~V}$ ．
400 mW
 All fuily tested．State 180 VCB NIXIE DRIVER TRANSISTOR．Sim．B8X21 TESTED AND CODED D120 124 GODED －sNPN 25 up to $8 /$－each．

UT46 Eqqut．2N2646

Eqvt．TIS43 BEN 3000 ，$/ 6$ －

EX－COMPUTER

Packed with amicon． 10 bosrds give apogents， teed 30 trann and 30 diodes．Our price 10 boards
$10 /-$ ．Plus $2 /-\mathrm{P}$ ．$\& \mathrm{P}$ ．

GRAND CLEARANCE SALE everything must go

SUPER WHIP AERIALS．Brand new specially designed telescopic， chrome plated 25 in ．sectional aerials．Consists of 6 sections and screw base An ideal aerial for TX／RX use．Price only $6 / 6$ each，p．p．1／6． Two aerials for $12 / 6$ post free．Four aerials $£ 1$ post free．
PRECISION METERS．Brand new and boxed，size 31 in ．sq． Type $10-500 \mathrm{~V}$ FSD；Type $20-150 \mathrm{~mA}$ ．Moving coil movement． Fully guaranteed．List $£ 3.10 .0$ ．Sale price 30 ／－each．Two for $50 /-$ post free．
RADIATION METERS．Pocket type．Brand new in makers cartons． Only 9／6 each，p．p．1／6．Two for 17／6 post free．
TANNOY MIKES（Heavy Duty）．Ideal for P．A．work．Complete with high quality moving coil headphones．Only $17 / 6$ ，p．p．5／－．
PRINTED CIRCUIT TOP BAND SUPERHET CHASSIS．Uses standard components．Complete with circuit．Only 15／－past free． MINIATURE TRANSISTORISED B．F．O．UNIT．A compact B．F．O．unit that will enable your set to receive CW or SSB．Compact single hole fixing．The Unit will fit anywhere．Ideal for all Ex－Govt．and Commercial receivers．Complete with fitting instructions．Only 39／6， p．p．2／6．
19 SET CONTROL BOXES．Brand new and boxed．10／－，p．p．5／－． Two for 25／－post free．
HEAVY DUTY POWER SUPPLY UNITS．Famous manufacture． Input $200 / 250$ V A．C．Output 250 V D．C．at $175 \mathrm{~mA} .6 \cdot 3 \mathrm{~V} / 12 \mathrm{~V}$ at 4 A ． Robust rack mounting cabinet．List £42．Sale price 69／6 carr．10／－．
MATCHING MAINS P．S．U．for R1132 and 1392 receivers．Brand new and boxed only 59／6，carr．and insurance 10／－
GOVERNMENT SURPLUS WIRELESS EQUIPMENT HAND－
BOOK．Gives circuit details and notes on most British and American wireless equipment．Only 35／－，p．p．5／－
R．F．AMPLIFIERS No． 2 Mk．III．Increase the output from your TX．Only 79／6，carr．10／－
DOUBLE 365 pF tuning capacitors with slow motion drive．Brand new．Normally 17／6 each．Our price 6／－each，p．p．1／6．Two for 10／－post free． $\mathbf{f 1}$ for five post free．
RUBBER TELEPHONE HANDSETS．Moving coil type with press－to－talk switch and connecting cable．Brand new and boxed． 7／6 each，p．p．2／6． 2 for 15／－．post free．
RHEOSTAT DIMMER UNITS．Will control up to 50 V at 3 ． Compact metal case．Ideal for lab．work．Only $15 /-$ ，p．p． $2 / 6$ ．Two for 30／－post free．
IFT TRANSFOR MER SETS．Comprising double tuned 1 st and 2nd 3rd IF single tuned．Only 12／6 per set of three post free．
TELEPHONE SPARES． 600 TYPE RELAYS．Only $3 / 6$ each，p．p． 1／－．Ten for $£ 1$ post free．EYEBALL INDICATORS． $6 /-$ each．Four for $£ 1$ post free．TELEPHONE DIALS $4 / 6$ each，p．p． $1 / 6$ ．Four for $£ 1$ post free．
$2 \frac{1}{2}$ in．MOVING COIL SPEAKERS． 3 ohms．Brand new．Only 4／11， p．p．1／1．Two for $10 /-$ post free． 30 mfd 250 V WIRE ENDED TUB ELECTROLYTIC CAPS．f1 per doz．post free． 10 mfd 15 V working tag ended electrolytics， $1 / 6$ each．10／－per doz．，post free．
MEDIUM WAVE FERRITE SLAB AERIALS．Will fit most tran－ sistor radios．Only $3 / 6$ each，p．p．6d．Two for $6 /-$ post free．Four for 10／－post free．
TELEPHONE EXCHANGES．PMBX Type Ex－GPO in good condi－ tion．Complete and ready to use．Cordless type only £13．10．0， carriage 50／－．Cord type £12．10．0．carriage 30／－．
AIRCRAFT BAND CHASSIS．Printed circuit uses standard com－ ponents Full circuit details only $17 / 6$ post free
SMOOTHING UNITS．Cure your hum problems．Beautifully made pieces of equipment． 12 V or 24 V DC input gives a fully smoothed， fully regulated DC output．Worth $£ 30$ each．Robust metal cabinet with provision for stand－by battery．Brand new in makers cartons， price 55／－post free．
HANDY PLASTIC CASES．Size $2 \frac{1}{2} \times 1 \frac{1}{2} \times \frac{7}{⿱ ㇒ 日 勺 心 ㇒}$ your transistorised equipment into．Only $1 /-$ each，p．p．4d． 12 for $10 /$－post free． 24 for 15／－post free． 50 for $30 /-$ post free． 100 for 50／－，p．p．5／－．A very versatile little box．
ELECTRONIC CAR FAULT TRACING UNIT／BATTERY CHARGER．A wonderful piece of equipment enabling you to trace most faults on your car and a great aid to tuning your car．Meant to sell at six guineas each．Sale price $£ 4.15 .0$ ，carriage and insurance 5／－．Full 12 months guarantee．An ideal Christmas present．

Dept．PW，GLOBE SCIENTIFIC LTD， 38 BRIDGEND，LEEDS 1

Fully guaranteed Individually packed VALVES

PERSONAL CALLERS WELCOME
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. MANY OTHERS IN sTOCK inolude Cathodo Ray Tubes and spealal Valves. U.K. Orders

ALL valves guaranteed

| CY31 | $7 / 6$ | ECL80 | $8 / 6$ | ET66 | 81/- |
| :--- | :--- | :--- | :--- | :--- | :--- | DAF90 $7 / 6$ | DF96 | $7 / 6$ | ECL82 | ECL83 | KT8 |
| :--- | :--- | :--- | :--- | :--- |

\qquad
DK96

DL92 | DL92 | 4/6 EF37A $81-$ | PABC80 7/6 |
| :--- | :--- | :--- |

$\begin{array}{ll}\text { DL92 } & 4 / 6 \\ \text { DL94 } & 6 / 8\end{array}$

DL96 | DM70 | $6 /-$ | EF41 | $10 / 9$ | PC900 | $7 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DM71 | $7 / 6$ | EF42 | $18 / 6$ | PCC84 | $6 / 6$ |

	DY71	$1 / 6$	EF42	$18 / 6$	PCC84						
DY86	$8 /-$	EF80	$4 / 6$	PCC89	$9 / 6$						
DY87	$8 / 6$	EF83	$0 / 6$	PCC189			DY87	8/6	EF83	9/6	PCC189 10/8
:---	:---	:---	:---	:---							
DY802	$9 / 9$	EF85	$6 / 6$	PCE82 17/-		DY802 $9 / 9$	EF85	$8 / 6$	PCE82 17/-		
:---	:---	:---	:---								
EABL80 6/-	EF89	$6 / 8$	PCE800 15/-								
EAF42 $9 / 3$	EF89	$5 /-$	PCF82								
EA/8						EABL80 6/-	EF86	$6 / 8$	PCE800 15/-		
:---	:---	:---	:---	:---							
EAF42	$8 / 3$	EF89	$3 /-$	PCF82							
EA/8						EB91	2/-	EF91	$8 /-$	PCF84	$9 / 8$
:---	:---	:---	:---	:---	:---						
EBC33	$8 /-$	EF92	Q/6	PCF86	$9 / 3$		EBC33	8/-	EF82	E/6	PCF86
:---	:---	:---	:---	:---							
EBC41	9/8					EBC41	日/6	EF95	$5 /-$	PCF20015/6	
:---	:---	:---	:---	:---							
EBC81	$6 / 6$	EF183	$6 / 6$	PCF201 15/6							
EBF80	$7 / 6$	EF181	$7 /-$	PCF801 $9 / 9$							

 \begin{tabular}{ll|ll|l}
EBF833 \& $8 / 6$ \& EF800 \& E1/- \& PCF802 $8 /-$

EBF89 \& $6 /-$ \& EF812 \& $15 / 6$ \& PCF805 14/-

EBF89 \& $6 /-$ \& EF812 15/6 \& PCF805 14/-

ECC81 \& B/- \& EFL20015/6 \& PCF806 14/8

ECC81 \& $6 /-$ \& EFL20015/6 \& PCF80814/6

ECC82 \& $5 / 9$ \& EH90 \& $7 / 6$

PCF80814/6
\end{tabular} ECC8

ECC8
ECC8
ECC8

 \begin{tabular}{ll|ll|ll}
ECC86 \& $6 /-$ \& EL84. \& $11 /-$ \& PCL82 \& PCL

ECCC88 \& $7 /-$ \& EL85 \& $7 / 6$ \& PCL84 \& $18 /-$

ECR

ECC189 9/9 \& EL85 \& $7 / 6$ \& PCL84 \& $8 / 6$

EL95 \& $5 / 8$ \& PCL85 \& $9 / 3$

 ECC804 12/6 ECF80 8/6

ECF82 \& $6 / 6$

ECF883 \& $18 / 8$

\hline

ECF83 \& 18/6 \& EM80 \& $7 /-$ \& PL36

ECF80118/6 \& $10 / 9$

FM84 \& $7 /$ \& PL81 \& $8 / 3$

ECF80118/6 \& EM84 \& $7 /-$ \& PL81 \& $9 / 3$

ECF80218/6 \& EM87 \& $11 /-$ \& PL82 \& $8 /-$

 ECF80318/6.

ECF803 18/6 \& EY51

ECH84 $/ 6$ \&

\hline

ECH84 $7 / 8$ \& EY86

ECH35 11/- \& EY88

ECH35 11/- \& EY88

ECH42 \& 10/- \& EZ40

 $\begin{array}{ll}\text { ECH42 } \\ \text { ECH } \\ \text { E/8 } & \text { EZ40 }\end{array}$

ECH8 \& E/9 \& EZ41

\hline
\end{tabular} ECH200

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12

(01) 7434946

- $\begin{aligned} & \text { PY88 } \\ & \text { PY80 } \\ & \text { PY80 }\end{aligned}$
$\begin{array}{lr}\text { PY802 } & 9 / 6 \\ \text { PY } & 18 / 6\end{array}$
$\begin{array}{lr}\text { PY802 } & 9 / 6 \\ \text { PY } & 18 / 6\end{array}$
$\begin{array}{ll}\text { UBF80 } 9 / 6 \\ \text { UCH42 } & 10 / 6\end{array}$
$\begin{array}{ll}\text { UBF80 } 9 / 6 \\ \text { UCH42 } & 10 / 6\end{array}$

	UCH42 10/6	Z900T	12
UCH81	$7 /-$	$1 R 4$	

UCL82	$7 / 6$
UCL83	$10 / 8$
UF41	$10 / 8$

UY4
UY8 UY85 5/9 38 29/4ift. AERIALS each conslsting of ten 3ft. Tin. dia. tubular screw-In sectlons. 11 ft . (6-section) whip aerial with adaptor to fit the 7 in . rod, Insulated base, stay plate and stay assemblles, pegs, reamer, hammer, etc. Absolutely brand new and complete ready to erect, In canvas bag. E3.9.6. P. \& P. 10/6.
ME E E B Full List of our very large
QQVO6-40A

MPF102 $11 /$Zener diodeT $\left\lvert\, \begin{array}{ll}6 \mathrm{~K} 6 \mathrm{GT} & 8 /- \\ 6 \mathrm{~K} 7 & 6 / \\ 6 \mathrm{KGG} & 8 /-\end{array}\right.$
$\begin{array}{ll}6 \mathrm{~K} 7 \mathrm{GT} & 4 / 8 \\ 6 \mathrm{~K} 8 \mathrm{G} & 4 /\end{array}$6 K 8 G 4/-6 K 25 G 16/

12BE6 12B
868
964$868 \mathrm{~A} \quad 15$$15 /-$
$4 / 6$
$2 / 6$
${ }^{6} 6$

6
6L6
6P25
6 SA6SA7
68 AFGT

$8 /$$\begin{array}{ll}\text { 68A7GT } & 6 / 6 \\ \text { 68C7 } & 7 /- \\ \text { 68C7GT } & 5 /-\end{array}$| 12 CB | $8 /-$ | 9 |
| :--- | ---: | :--- |
| $12 \mathrm{E1}$ | $17 /-$ | 9 |
| 12 KS | $10 /-$ | 9 |
| 12 K 8 GT | $7 / 6$ | 991 |
| 1207 GT | $5 / 8$ | |

956
957
991
991
182235051
$5 /-$
$13 /-$
778 $10 /-$
$7 /-$
$29 / 6$$\begin{array}{ll}6857 & 6 / \\ 6857 G T & 6 / 6\end{array}$
68L7GT $6 / 6$68N7GT 6/-
7 Y 4
9 D 612A
12 A
12 AALL OVERSEAS ENOUIRIES AND ORDERS

Please address to

Colomor (Electronics) Ltd. 170 GOLDHAWK ROAD, LONDON W12. Tel.: 01-7430899

We put 23.340 cigarettes inour Budget combination storage unit!

Think what you could put in it!
Storage. Lots of it, for a thousand things you stock; replacement parts; IIght bulbs; cameras; anything up to $7 \times 8 \times 107 \mathrm{In}$. Safety drawer-stops as standard'. Smooth guide runners thro'out. All In a compact 3ft. 6in. high, 2 ft . 11 in . wide, 1 ft . deep area. Ready assembled, in stove enamelled green or grey. With 18 handy, 6 large, 8 king-sized drawers. At $£ 175$ s. worth every pennyl See the rest of the N. C. Brown rangel

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE BROCHURE to

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
SEMICONDUCTORS \\
BRAND NEW AND FULLY GUARANTEED
\end{tabular}} \\
\hline 1N914 \& \& \({ }^{2 N 2904}\) \& \& ACY18 \& \& \({ }^{\text {BDI }}\) \& 18/- \& MT491 \& 29/6 \\
\hline \begin{tabular}{l}
1 N 916 \\
18010 \\
\hline 1
\end{tabular} \& \(81 / 8\) \& 2N2904A \& 88 \& \& 51- \& \({ }_{8 F 1}^{\text {BF1 }}\) \& \({ }_{1018}^{4 / 8}\) \& \({ }_{\text {MPF103 }}\) \& \({ }_{7 / 8}^{8 / 8}\) \\
\hline \& 88 \& \& 8 \& \& \({ }_{5}\) \& \& \& \& 716 \\
\hline \& 4 - \& 2 N 29 \& 8 8- \& \({ }^{\text {ACY }} 2\) \& 4 - \& \({ }^{\text {BF }}\) \& 716 \& \& \(8 /-\) \\
\hline \& 8 \& \({ }_{\text {2N2006A }}\) \& 88 \& \({ }_{\text {Ald }}^{\text {ACY28 }}\) \& \(81-\) \& \({ }_{\text {BF181 }}^{\text {BF1 }}\) \& 8818 \& NK NT 218 \& \({ }^{8}\) \\
\hline 1881 \& 816 \& \({ }_{2 \mathrm{~N} 2907 \mathrm{~A}}^{2 \mathrm{tab}}\) \& 8 8- \& \({ }^{\text {ADI }} 149\) \& 87 \& \({ }_{\text {BFI } 184}\) \& \({ }_{76} 76\) \& NKT217 \& \({ }_{8 / 8}\) \\
\hline 18121 \& \(8 / 6\) \& \({ }^{2 N 20}\) \& \({ }^{51}\) \& \({ }^{\text {AD }} 161\) \& 776 \& \({ }^{\text {BFI }}\) \& 816 \& NKT281 \& 4/6 \\
\hline \& 816 \& \({ }_{2}^{2 N \mathrm{~N} 29295}\) \& \({ }_{6 / 8}^{81-}\) \& \({ }_{\text {AFI }}\) \& \& \({ }^{\text {BF }}\) \& \({ }^{5 / 8}\) \& NKT282 \& \(4 / 8\) \\
\hline \({ }_{18132}^{18181}\) \& \(8 / 8\) \& \({ }^{2} \mathrm{~N} 22238\) \& \& \({ }_{\text {AF116 }}\) \& \& \({ }^{\text {bF }}\) \& 18/6 \& NKT271 \& \({ }^{4 / 8}\) \\
\hline 1884 \& \%- \& ., Green \& \(81-\) \& AFP17 \& \({ }^{6}\) - \& BFx \& \(8 / 6\) \& NK 1272 \& 1/6 \\
\hline \& 4 4- \& "Yell \& \(8 / 9\) \& \({ }^{\text {AF}}\) \& 12/6 \& BF \& \({ }_{818}^{19 / 6}\) \& NKT274 \& \(4 / 8\) \\
\hline \({ }_{263}^{2 G 8}\) \& 4- \& 2 \({ }^{\text {Oranan }}\) \& \& \({ }_{\text {AFI }}\) \& \({ }_{6}^{61}\) \& \({ }_{\text {Brix }}^{\text {BrX }}\) \& \({ }_{8 / 6}\) \& \& \(4{ }^{4} 8\) \\
\hline cas \& 8 - \& \(2{ }^{\text {N }} 3058\) \& 8/6 \& P18 \& \& \& \(81-\) \& NKT281 \& 1518- \\
\hline \& S- \& \({ }^{2 N 3065}\) \& 18/6 \& \& \(8 / 6\) \& \& 101- \& NK T404 \& 16 \\
\hline \({ }_{2} 2 \mathrm{~N}\) \& 5 - \& \({ }_{\text {2N } 2702}^{2 N 3065}\) \& \({ }^{218}\) \& \& \(11 /\) \& \({ }_{\text {BFX }}\) \& \({ }_{10-}\) \& NKT405 \& - \\
\hline 2N706 \& \(8 / 6\) \& 2N3703 \& \(4 / 6\) \& \({ }_{\text {AFZ12 }}\) \& \({ }_{6 / 8} 78\) \& \& \& NKT \& 8/6 \\
\hline \({ }^{2} \mathrm{~N} 2068\) \& \(8 / 6\) \& \({ }^{2 N 3704}\) \& 816 \& \({ }^{\text {Afy }}\) \& \(5 / 8\) \& \({ }^{\text {BF }}\) \& \(4 / 6\) \& NKT6 \& \({ }_{61}\) \\
\hline \({ }^{2 \mathrm{aN} 708}\) \& 4/8 \& \& \({ }^{46}\) \& ABY2 \& \(8 / 8\) \& \& \& \& \\
\hline \({ }_{2 \text { 2N } 930}\) \& \({ }_{8 / 8}\) \& \({ }^{2} \mathbf{N 8 7 0 7}\) \& 4 \& \(\stackrel{\text { ABY }}{\text { AYY }}\) \& \({ }_{48} 8\) \& \({ }_{\text {BFY } 18}\) \& \({ }_{4 / 8}\) \& NKT \& \({ }^{18}\) \\
\hline 90 \& \(8 / 6\) \& \({ }^{2 \times 33708}\) \& 4 - \& ABZ20 \& 716 \& \({ }_{\text {BFY }}\) \& \(4{ }^{4 / 6}\) \& NKT203 \& \\
\hline 2N1091
2N1181 \& 8/6 \& \({ }_{2 \text { 2N } 37709}^{2 \times 10}\) \& \(4 / 6\) \& \({ }_{\text {ARAX }}{ }^{\text {B }}\) \& \%/8 \& \({ }_{\text {BFY }}\) \& 18/6 \& \& 6 \\
\hline 2 N 1132 \& 976 \& \({ }_{2}^{2 N 73711}\) \& 41 - \& BAX16 \& \(2 / 9\) \& \& \(1 / 6\) \& \& \\
\hline 13802 \& \(4 / 6\) \& \({ }^{2 \mathrm{~N} 3819}\) \& \({ }^{88 / 6}\) \& BAY31 \& 1/6 \& \({ }_{\text {BFY }}^{\text {BFY }}\) \& 48 \& NKT8 \& \\
\hline \({ }^{2 N 1804}\) \& 5/6 \& 2 N 3 \& 17/6 \& \({ }_{\text {BAY }}^{\text {BA }} 1078\) \& \(3 / 8\) \& BFY \& 916 \& NKT8 \& \\
\hline 2 N \& \({ }_{6 / 6}\) \& \({ }_{2}^{2 N 4}\) \& \({ }_{618}^{8 / 8}\) \& \({ }^{\text {BCCIO8 }}\) \& 386 \& \({ }_{\text {BFYY90 }}\) \& \({ }_{1816}^{11 / 6}\) \& \& \\
\hline \({ }_{2}^{2 N}\) \& 8 \& 2N440 \& \(\stackrel{51}{5-}\) \& \({ }_{\text {BC118 }}\) \& \({ }_{66} 6\) \& \({ }_{\text {B88X }}^{\text {B8X }}\) \& 5/6 \& OAs \& \(1{ }^{1}\) \\
\hline \({ }_{2} \mathbf{2 N 1 3 0 9}\) \& 8 8- \& \({ }_{2} \mathrm{~N}^{4} 062\) \& \({ }_{8 / 6}\) \& \({ }^{\text {BC118 }}\) \& \({ }_{8 / 8}^{18 / 8}\) \& \({ }_{\text {B8x } 21}\) \& - \& - 7 \& - \\
\hline \& 5/6 \& \({ }_{2 \mathrm{~N} 4258}\) \& \({ }_{818}^{918}\) \& BC125 \& 18/6 \& \({ }_{\text {B8X }}^{\text {B8X2 }}\) \& \({ }_{1018}^{10 / 6}\) \& OA79 \& 19 \\
\hline \({ }_{2} 2 \mathrm{~N} 17111\) \& \({ }_{818}\) \& 2N42 \& 8/6 \& \& \({ }_{48}\) \& B8x \& \& \({ }^{\text {OAA8 }}\) \& 188 \\
\hline \(2 N 1889\)

211893 \& 8 8- \& ${ }_{2}^{2 N 4285}$ \& \& ${ }_{\text {BC149 }}$ \& ${ }_{6} 6$, \& ${ }^{\text {B8X }}$ \& 1018 \& OA \& 1/8

\hline ${ }_{2} \mathrm{~N}_{2} 1102$ \& 18/6 \& 2N4287 \& $8 / 8$ \& ${ }^{\text {BC }}$ \& 3/6 \& ${ }_{88 Y 27}^{887}$ \& 41 - \& OA91 \& 1/6

\hline \& ${ }^{1718}$ \& 2N4 \& 8/8 \& ${ }_{8 C}$ \& 886 \& B8 \& \& \& $1 / 8$

\hline ${ }_{2 \text { 2N2 }}$ \& ${ }_{148}$ \& ${ }_{2}^{2 N 4289}$ \& ${ }_{8 / 6}$ \& BC212L \& $51-$ \& B8Y \& $1 / 6$ \& OA202 \& 8,-

\hline ${ }^{2 \times 2193}$ \& \& 2N4292 \& ${ }^{8 / 6}$ \& ${ }^{\text {BCY }}$ \& $7 / 8$ \& ${ }^{\text {B8Y }}$ 89 \& $1 / 8$ \& \& 818

\hline 2N \& ${ }_{5 / 8} 8$ \& ${ }_{\text {2N }}^{2 N 40381}$ \& $18 / 8$ \& ${ }_{\text {BCX } 92}$ \& $5 / 6$ \& ${ }_{\text {B8Y }}$ \& ${ }_{10 / 8}^{5 / 6}$ \& ${ }_{\text {OC38 }}$ \& 816

\hline ${ }^{2} \mathrm{~N}^{2227}$ \& ${ }^{6}$ i- \& 2N4288 \& ${ }^{518}$ \& ${ }_{\text {BCY }}$ \& 816 \& ${ }_{\text {B8Y }}^{\text {B8Y }}$ \& ${ }_{6}{ }^{\text {b- }}$ \& OC36 \& $8 / 6$

\hline ${ }_{2 \text { 2N2219 }}$ \& ${ }_{6}^{81}$ \& ${ }_{\text {AAIV18 }}$ \& 81- \& \& $5 / 6$ \& ${ }_{\text {B8Y }}$ \& $81-$ \& -cts \& $8 / 8$

\hline ${ }_{2 \mathrm{2N} 22}$ \& 51- \& ${ }_{\text {AAZ15 }}$ \& $88 / 8$ \& ${ }_{\text {BCY }}$ \& ${ }_{7 / 6}^{6 / 8}$ \& ${ }_{\text {Bry }}^{\text {BY96A }}$ \& 8/6 \& \& ${ }_{8 / 8}$

\hline ${ }^{2 N} 2272$ \& 51- \& ${ }_{\text {ACl07 }}$ \& 8/6 \& ${ }^{\text {BCY }} 4$ \& $8 / 8$ \& BYX10 \& 5/6 \& $\mathrm{OCO}^{\text {Ofs }}$ \& 4/6

\hline 2N23888 \& $\xrightarrow{8 / 6}$ \& ${ }_{\text {AC1 }}^{\text {AC1 }}$ \& 8 8- \& ${ }_{\text {BCY }}$ \& $7 / 6$ \& ${ }_{\text {BYZ11 }}^{\text {BYZ10 }}$ \& ${ }_{78} 7$ \& ${ }_{\text {OC83 }}$ \& 4/6

\hline 2N2389, \& 51-1 \& ${ }^{\text {ACCl28 }}$ \& \& ${ }^{\text {BCY70 }}$ \& $5 / 8$ \& ${ }^{\text {BY }}$ \& 8 8- \& OC81D \& ${ }^{1-}$

\hline - ${ }_{\text {2N23539 }}$ \& ${ }_{4}^{4 / 6}$ \& ${ }_{\text {ACl17 }}^{\text {ACl }}$ \& 12/- \& ${ }_{\text {BCY72 }}$ \& \& BYZ \& ${ }_{2018}$ \& OC139
OC140 \& ${ }_{8 / 8}^{8 / 8}$

\hline 202046 \& 11/6 \& ${ }_{4}{ }^{\text {Clib8 }}$ \& 181- \& ${ }^{\text {BD1 }}$ \& $8 / 6$ \& MJ \& $27 / 6$ \& \& ${ }_{5}^{51 / 8}$

\hline \& \& \& \& \& \& \& \& \& /6

\hline
\end{tabular}

A. MARSHALL \& SON

28 CRICKLEWOOD BROADWAY, LONDON N.W. 2 01-452 0161/2/3

CALLERS WELCOME

ORGAN TRANSISTORS

Mullard LA 2300 9/5d.

All above transistors direct from manufacturer.
Unmarked silicon planar transistors suitable for use in divider circuits: $1 / 6$ each or $£ 5$ per 100 .

LIGHT SENSITIVE DEVICES

GIANT-SIZE SELENIUM SOLAR CELLS - PRODUCE UP TO 6 mA FROM DAYLIGHT! 67 mm diameter, $10 /$ e each. $50 \mathrm{~mm} \times 37 \mathrm{~mm} .2$ for $10 /-$.
Transistors similar to OCP 71, 2/- each.
ORP 12 CADMIUM SULPHIDE LIGHT SENSITIVE RESISTORS 9/-each. Light sensitive diodes, 10/-per doz.

WIRE-WOUND RESISTORS
Mains dropper type. Up to 30 watts. Some multi-tapped. Fraction of normal price! 10/- per dozen.
MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE: $0.001 \mu \mathrm{~F}$ 400V 3d., $0.0015 \mu \mathrm{~F}$ $400 \mathrm{~V} 3 \mathrm{~d} ., 0.0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0 \cdot 0022 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d}$. , $0 \cdot 01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0 \cdot 15 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $0 \cdot 22 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d}$. , $0 \cdot 27 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $1 \mu \mathrm{~F} 125 \mathrm{~V} 1 /-$
RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES. GP67/2 Mono 15/-, GP91/3 Compatible £1, GP93/1 Crystal Stereo 25/-, GP94/1 Ceramic 30/-.

TRANSISTORISED SIGNAL INJECTOR KIT 10/SIGNAL TRACER KIT 10/-. CAR REV. COUNTER KIT 10/-.

24 \times 1. $^{-} 0.15$ matrix $1 / 3 \quad$ VEROBOARD
${ }_{3}^{24} \times 1^{\circ} 0.15$ matrix $1 / 3 \quad 5 \times 32^{* *} 0.15$ matrix $5 / 6$ 34 $\times 32^{*} 0.1$ matrix $4 / 9$

 Spectal offerl Spot Face Cutter and $52 \& \times 11^{-}$boards.........9/9 only

PAPER CONDENSERS
Mixed bags $0.001 \mu \mathrm{~F}$ to $\cdot 5 \mu \mathrm{~F}, 12 / 6$ per 100 .
SILVER-MICA
Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /$ - per 100.

RESISTORS
Mixed types and values, $\frac{1}{}$ to 1 watt, $6 / 6$ per $100,55 /-$ per 1,000 . Wire-wound resistors, 1 watt to 10 watts. Mixed values. 20 for $10 /-$

TRANSISTORS

Mixed, unmarked, mainly O.K. 7/6 for 50.
12 VOLT TRANSISTORISED FLUORESCENT
LIGHTS. HALF NORMAL PRICE
8 Watt 12 in . tube. Reflector type $\mathrm{£}^{2}$.19.6. 15 watt 18 in . Batten type £3.19.6.
IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

ELECTROLYTIC CONDENSERS

$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$10 \mu \mathrm{~F}$	25 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F}$	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$400 \mu \mathrm{~F}$	6.4 volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	All at	- each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	20 a	rted.
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	cour	ection)
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	2.5 volt		

Orders by post to:

G. F. MILWARD
 Drayton Bassett, Near Tamworth, Staffs

Please include suitable amount to cover post and packing. Minimum, order 10/-. Stamped addressed envelope must accompany any enquiries.
For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road, Birmingham 8.

for fast, easy,
reliable soldering
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required.

There is scope, variety and responsibility as a RADIO TECHNICLIAN in Air Traffic Control

Join the National Air Traffic Control Service, a Department of the Board of Trade, as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.

Entrance qualifications: you should be 19 or over, with practical experience in at least one of the main branches of telecommunications.

Once appointed and given familiarisation training, you will be doing varied and vital work on some of the world's most advanced equipment including computers, radar and data extraction. automatic landing systems and closed-circuit television. Work is based on Civil Airports such as Heathrow, Gatwick and Stansted, Air Traffic Control Centres, Radar Stations and other specialist establishments.

Starting salary is $£ 915$ (at 19) to $£ 1: 189$ (at 25 or over): scale maximum $£ 1,372$ (higher rates at Heathrow), and some posts attract shift-duty payments. From January 1970 these rates will be increased to $9985, £ 1,295, £ 1,500$ respectively. Every opportunity and assistance is given to study for higher qualifications. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

Send this coupon for full details and application form :
To::A. J. Edwards, C.Eng., M.I.E.E., M.I.E.R.E
Room 705, The Adelphi, John Adam Street.
London, WC2 marking your envelope 'Recruitment'

NATCS National Air Traffic Control Service

Thinking of High Fidelity-first read Goodmans 28 page High Fidelity Manual. It contains interesting articles on Stereo; an Introduction to High Fidelity; Stage-built systems; as well as full details of Goodmans High Fidelity audio products.
Send for your free copy
Please send me a free copy qf Goodmans Manual
Name
Address

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order 20/-), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C. 4 for insertion in the next available issue.

FOR SALE

EDDYSTONE 870A Receiver used only approximately 50 hours. Completely checked by makers before being advertised. £18. o.n.o. Korn, 15 Avenue Road. Dorridge, Warks.

SEEN MY CAT? Tools, Rod, Bar and Tube, Small Screws, mechanical and electrical gear. 21 -years' trading $£ 6,000$ in vouchers given away. Free Cat. of 5,000 items. S.A.E to: K.R. WHISTON, Dept. VCW, New Mills, Stockport.

FACT NOT FICTION, If you start RTGHT you will be FACT NOT FICTION. If you start RIGHT you will be
reading amateur and commercial Morse within a month. reading amateur and commercial M
(Normal progrees to be erpected.)
Normal progreas to be erpected.
uting scienticaly prepared 3 -speed records you uithoutily learn to recognine the code RHYTHM without transiating. You can"t help it, it"s easy as learning
ane. 18 W.P.M. in 4 weeka guaranteed.
For detalls and course C.O.D. Tlng. e.t.d. $01-6602896$ aend 8d. stamp for explanatory booklet to:
G8CE8 (BOX 11), 85 GREEN LANE, PURL G8CE8 (BOX 11), 45 GREEN LANE, PURLEY, SURREY

AMIOD $12 \mathrm{kc} / \mathrm{s}$ Mobile Radio telephone for sale, slightly damaged by water. $f 15$ o.n.o. Apply: A. J. Nicol, Estate Office, Ramsey, Huntingdon.

ELECTRICAL

240 wir

ELECTRICITY ANYWHERE

BEST EVER 200/240 VOLT "MAINS"
SUPPLY FROM 12 VOLT CAR BATTERY Exclusive World 太coop Purchase. The fabulous 15k. 2D American Feamy Duty Dynamotor Unit with a Massive 220 watt output and giving the moat Brilliant $200 / 240$ volt performance of all time. Marvellous for Televiaion, Drills, Power Tools Tains Lighstag, AC Fluoratcent Lighting and all $200 / 240$ volt Unlversal AC/DC mains equipment. Made at tremendous cost for U.B.A. Govt. by able elsewhere. Brand New and Fully Tastad, only s4.19.6, plus 10/6 prastage. C.O.D. with pleasure. Money back Hous. delighter
details.
Dept. PW gTANFORD RLECTRONICS, Rear Derby Rosd. North Promenade, Blackpool, Lanceshire.

EDUCATIONAL

RADIO AND TELEVISION SERVICING RADAR THEORYAND MAINTENANCE TELECOMMUNICATIONS
This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
Write for details to:
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5.

Tel. 01-373-8721

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative 120-page Guide-free. CHAMBERS COLLEGE (Dept. 857K). 148 Holborn, London, E.C.1.

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV., automation, etc., send for 132 -page Handbook-FREE. B.I.E.T. (Dept. 168K), Aldermaston Court, Aldermaston, Berks

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies in September and January. Grants available. Day and Boarding students. Stamp for prospectus Wireless College, Colwyn Bay.

BOOKS \& PUBLICATIONS

BOOKS \& PUBLICATIONS (continued)

SURPLUS RADIO EQUIPMENT HANDBOOK

Over 120 pages of data including circuita/operating for $40+$ types; many useful mods. and ralve tranaistor equivalents list. A muet for all ubing ex-Govername sets.
from: (Mail Order Only)

SYMBOL BOOKS (Dept, 3)
810 EASTERLI ROAD, LEEDS LS8 8EER

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 16 Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., by return post, with free fault-finding guide. Prices from 1/-. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road. Bexhill. Sussex.

LARGE SUPPLIER OF
 SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS CAR RADIOS)
Only 5/- each, plus large S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

C. CARANNA

71 BEAUFORT PARK LONDON, N.W. 11
We have the largest supplies of Service Sheets (strictly by return of post).
Please state make and model number alternative.
Free TV fault tracing chart or TV list on request.

Mail order only.

SERVICE SHEETS

(continued)

SERVICE SHEETS (75,000) 5/- each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford

AERIALS

BAKER and BAINES

FOR TELEVISION and LOFT AERIALS Examples of prices: FM dipole 21/-, H $38 / \mathrm{L}, \mathrm{BBC}$ dipole 30/-. X 38/-, H 42/- 3 ele 89/-, ITA 3 ele 26/-, 5 ele 34/-, 8 ele 47/6. 11 ele 57/6, double $8112 /$-, double 11 140/-, comblned BBC/ITA $1+545 /-$, H +5 $69 /-$. $X+575 /$-, BBC2 14 ele $37 /$-, 18 ele $54 /$-, 22 ele 63/-. double 22 142/-. Loft special BBC/ITA $1+5$ complete with pole and brackets 37/-. Prices inciude clamps and P.P. CWO, state channels please. 11 OALE CRESCENT, TUPTON, CHESTERFIELD

SITUATIONS VACANT

RADIO TECHNICIANS

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, (in Cheitenham and other parts of the UK,
including London). There are also opporincluding London). There
tunities for service abroad.

Applicants must be 19 or over and be farmiliar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer " O " Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of Electro-mechanical equipment will be an advantage.

Salary. Scale is from $£ 915$ at 19 to $£ 1,189$ at 25 (highest pay on entry) rising to $\tilde{E}, 374$. (These scales are being further increased at 1.1.70.) Posts are unestablished, but opportunities exist for establishment and also advancernent to higher grades up to $€ 2,145$ with a few posts carrying still higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. No-mal Civil Service sick leave regulations apply.
Application forms available from:
RECRUITMENT OFFICER (RT 37/54)
GOVERNMENT COMMUNICATIONS HEADQUARTERS,
OAKLEY, PRIORS ROAD,
CHELTENHAM, GLOS. GL52 5AJ

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs, etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132 page Handbook-FREE. Please state subject. BRIMISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137K), Aldermaston Court, Aldermaston, Berks.

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering -Mech., Elec., Auto., Electronics, Radio, Computers, Draughts., Building, etc. For fult details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169K), Aldermaston Court, Aldermaston, Berks.

TV SERVICE ENGINEER \& Trainee for London retail business of the highest standing: estd. over 40 years: good position \& prospects for suitable applicants. State age \& detail of experience. Box 91.

MISCELLANEOUS

ETCHED PRINTED CIRCUIT BOARD KITS. Full instructions 19/6 C.W.O. 'Circuitetch', 12 Cambridge Road, St. Albans, Herts.

BUILD IT in a DEWBOX quality cabinet. 2in. $x 2 \frac{1}{\text { in. }} x$ any length. D.E.W. Ltd., Ringwood Road, FER NDOWN, Dorset. S.A.E. for leaflet. Write now-Right now.

UFO DETECTOR CIRCUITS, data. 10 s (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

5% RESISTORS 3d EACH

High stability, Carbon Film, \& Watt. 10, 11, 12, $13,15,16,18,20,22,24,27,30,33,36,39,43,47^{*}$ $51,56,62,68,75,82,91 \Omega \ldots$ etc. to $1 \mathrm{M} \Omega$.

PRINTED CIRCUIT KITS ONLY 17/6
TRANSISTORS 2N37esA $1 / 6$ EACH
Hfe $20-60$, Vce $30,200 \mathrm{~mW}, 200 \mathrm{Mc} / \mathrm{s}$. Brand new, fully guaranteed. P. \& P. 1/-.

J. M. KING

14 Acton Street, London, W.C. 1

6 OR 12 VOLT
 FLUORESCENT LIGHTS

12 ins. 8 Watt tube ample light for caravan tent etc. Fully transistorised, low battery drain Unbeatable at
£2.19.6 or in kit form 50/-
SALOP ELECTRONICS
23 Wyle Cop, Shrewsbury. S.A.E. for lists.

MISCELLANEOUS
(continued)

THE NEW

> ELECTRONIC MUSIC FOR YOU
> Then how about making yourself an electric full circuits dructionas data avallablofull circuits, drawings and notes! It nas stops-uses 41 valves. With its variable attack you can play Classics and Swing. Write NOW for free leafiet and further
Darlington, Durhem. Send 4d. stamp

YOUR RADIO KITS assembled for you cheaply. Professional Job. All Types Audio, Receivers. Transmitters, Radio Control etc Box No. 92.

YOUR TRANSISTORS TESTED. $1 /$ - each C.W.O. To: J. A. Kindex, 6 Hooker Road Heartsease, Norwich, Nor. 25 R.

YOUR CALL SIGN ENGRAVED. White Letters Black Plate 6×1 in. $5 / 6.2 \times$ tin. Badge Pin, 4/-. Post Free. C.W.O. Workshops for Disabled, Northern Road, Cosham, Portsmouth. PO6 3EP.

MUSICAL MIRACLES, Send S.A.E. for details of Rhythm Modules, versatile bass pedal unit, self-contained with unique effects kits for waa-waa pedals. Also new $50 \mu \mathrm{~A}$ meters, 25/- post paid. HURRY. D.E.W. Lid. 254 Ringwood Road, Ferndown, Dorsot,

METAL MORK

METAL WORK: All types cabinets, chassis racks etc., to your specifications, PHILPOTTS METAL WORKS LTD., Chapman Stroet Loughborough.

TECHNICAL TRAINING by ICS IN RADIO, TELEVISION AND ELECTRONIC ENGINEERING
 First-class opportunities in Radio and Electronics await the ICS trained man.

 Let I C S train YOU for a well-paid post in this expanding field,I C S courses offer the keen, ambitious man the opportunity to acquire, quickly and easily, the specialized training so essential to success. Diploma courses in Radio/ TV Engineering and Servicing, Electronics, Computers, etc. Expert coaching for: - C. \& g. TELECOMMUNICATION TECHNICIAN8' CERTS.

- C. \& G. ELECTRONIC SERVICING.
- R.T.E.B. RADIO AND TV BERVICING CERTIFICATE,
- Radio amateurs' examination
- P.m.g. Certificates in radiotelecraphy.

Examination Students Coached until Successful.
NEW SELF-BUILD RADIO AND ELECTRONIC COURSES
Build your own 5-valve receiver, transistor portable, signal generator, multimeter and valve volt meter-all under expert guidance.
POST THIS COUPON TODAY and find out how I CS can help YOU in your career. Full details of I C S courses in Radio. Television and Electronics will be sent to you by return mail.
MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

WANTED

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S details, quotation by return. ${ }^{\text {WIR }}$, Wolverhampton

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street. West Bromwich, Staffs. Tel.: WES 0186.

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WANTED NEW VALVES ONLY
 Must be new and boxed Payment by return
 WILLIAM CARVIS. LTD 103 North Street, Leeds 7

AVO METERS, MODELS 8 \& 9, ANY QUANTITY. ANY CONDITION, ALSO WEE MEGGERS. SEND FOR PACKING INSTRUCTIONS. HUGGETT'S LTD., $2 / 4$ PAWSONS ROAD, W. CROYDON.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica. Ceramic, etc. Carbon, Hystab, Vitreous, t-20 watt, 12/6 Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W. 13.

HI-FI loudspeaker systems for the home constructor, cabinet kits, the new range of Peerless speakers, speaker kit systems and cross-over networks. BAF wadding, speaker fabric (samples on request) and all other necessary components. Send 5 d in stamps to: AUDIOSCAN. Dept. PW, 4 Princes Square, Harrogate, Yorks.

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. Stephensmeters, cabinets, microphones, etc. SterphensJames Ltd., 70 P
Tel. 051-263-7829.

SILICON PLANAR TRANSISTORS. 100% tested and full data supplied with orders. NPN types for organ projects, 25 for $£ 1$. PNP types similar to 2 N 3702 and germanium similar to ACY22, 50 for $£ 1$. Post free. WESTEK. P.O. Box 7, Rickmansworth, Herts.

FET HI-FI PRE-AMP MODULE Latest low-noise FET in special circuit. Matches ANY ceramic/Xtal PU, Xtal mike, valve pre-amp, FM tuner, etc. DIRECTLY into ANY transistor power amp. Input impedance 2 Meg . Dist. $<0.2 \%$. 25 Hz $200 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Power $6-15$ volts.
With full instructions ONLY $25 /$, post free (Stereo pair 45/). Mail order only, c.w.o. W. T. MORRIS

1 Birch Drive, Shawbury, Shrewsbury.

NEW VHF KIT

Receives Television Sound, Ambulances, Alrcraft, Radio 2, 3 and 4 on VFF etc.
This novel little set will give you endleas houra of pleasure and can be buitt fu one evening. The Kit comes with easy to follow instructions and circuit. Powered by 9 v Battery. Complete with built in Jack Plug Socket for use with Farphones or Amplifier

ONLY 57/-. P. \& P. FREE O.K. ONLY
Postal Orders, Cheques to
Dept. P.W. 2
fialleon Traditg Co., 298A Lodge Lane, Romford, Essex.

RECEIVERS \& COMPONENTS

 (continued)
WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS 2In. $\times 41 \mathrm{n}$, packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards, 10/-, P. \& P. 2/-. With a guaranteed minimum of 35 transistor B .
SPECIAL BARGAIN PACK. 25 boards for EI. P. \& P. 3/6. With a guaranteed minimum of 85 transistors. 100 boards 33/-. P. \& P. 7/6. With 1 guaranteed minimum of 350 transistors.
GIANT PANELS. $54 \times 4 \mathrm{in} ., \mathrm{mln}$. 20 transistors, $9 \times 56 \mu \mathrm{H}$ Inductors, resistors, dlodes etc. 3 for E . P. \& P. 2/-.

PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times$ OC28) 10/-. P. \& P. 2/-.
TRIM POTS. On $2 \times 41 \mathrm{n}$, boards + Ta caps and other components. $100 \Omega, 500 \Omega$ 15K., 20K. State requlrements. 5 boards 10/-. P. \& P. 2/-.
NPN GERMANIUM TOS 1 WATT POWER TRANEISTORS. On small heat slnk, on $2 \times 41 \mathrm{n}$. panel 5 for $10 / \mathrm{m}$. P. \& P. $2 /$-.
POWERTRANSISTORE. SIm. to 2N174 ex eqt. On Finned Heat Sink (10D). 4 for £1. P. \& P. 5/-. ORGAN BUILDERS' EPECIAL 300 TOIS TRANSISTORS + 200 SI DIODE GATES ON panels. E4. P. \& P. 6/-
DIODES. Ex eqpt., Silicon. 150 PIV, 10 amp. 4 for $10 /$-. 150 PIV. 20 amp .4 for §1. Post free.
OVERLOAD CUT OUTE. Panel mounting In the foilowing values ... 5/- each. 2, 3, 4, 10 amp. P. \& P. 1/-.

MINIATURE GLASS NEONS, 12/6 doz. P. \& P. 1/-
PAPST FANS, Powerful Extractor/Blower tans. 230/250v. $100 \mathrm{c.f} \mathrm{f}$.m., 2,800 r.p.m. 35/-. P. \& P. $5 / 6$ ea. MICRO SWITCHEs, minlature button type. 10/doz. P. \& P. 1/6.
TOGGLE BWITCHES LONS ARM ex eqpt. SPST 13/6 doz., DPST 15/- doz., DPDT 22/6 doz. P. \& P. all types 2/- doz.

NEW SPRARUE $0.22 \mu \mathrm{~F} 250 \mathrm{~V}$. small capacitors. 5/-doz. P. \& P. 1/-.
NEW SPRACUE ELECTROLYTIC8,4 4 F 150 V . 5/- doz. P. \& P. 1/-.
LARGE CAPACITY ELECTROLYTICR
41 in. 2 In. dlam. Screw terminals.
4in.. 21 n . diam. Scre
All at $7 / 8$ Post free.
4000 mF
72 V d.c. wkg.
$10,000 \mathrm{mF}$
$25,000 \mathrm{mF}$
25v d.c. wkg
KEYTRONICS 52 Earls Court Road,
London, W.8.
Mail order only

QUALITY NEW VALVES

SEMICONDUCTORS

| $\mathrm{ACl07}$ | $4 /-\mid \mathrm{AFIl4}$ | $4 /-\mid$ | $\mathrm{BCl08}$ | $9 / 6$ | 0044 | $2 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Post pald 10/-and over, under add 6d. Orders $\& 2$ and over lesa 5%. Full price lists valves, transiators, components on request.

J. R. HARTLEY

78B, High 8treet, Bridgnorth, Shropehire.

EMSAC BASIC ANTENNA SYSTEMS. Please send SAE for comprehensive details of Antennas and Transmatches for Receiving and Transmitting. Electronic \& Mechanical SubAssembly Co. Ltd. Highfield House, West Kingsdown, Kent.

RECEIVERS \& COMPONENTS
(continued)

Video Line Amplifiers

These units contain the following useful parts, Mains trans Pria 230v Sec 250-0-250 at 80 Ma 6.3 v . 3a and $6.3 \mathrm{v} \mathrm{1a}$, smoothing choke, valves EZ80 and ECF80x2, Fuses, Toggle swt, Coax Sks complete on chassis size $8 \times 5 \times 2$ in. Good condition $32 / 6$ plus $6 / 6$ carr.

Lesdex Switches

Coil 1k ohm, 3 pole 11 way 3 bank with motoring contact, new ex equip $7 / 6$ plus $2 / 6$ post.

Uni Selectors

Coil 14 ohm will work on $12 \mathrm{v}, 17$ way 8 bank 4 pole alternate wipe. New ex equip. 17/6 plus 2/6 post.
High Grade Electrolytic Conds.
Made by Siemens fully isolated cases suitable for series connection, $1000 \mu \mathrm{f} 35 \mathrm{v}, 500 \mu \mathrm{f}$ $110 \mathrm{v} 100 \mu \mathrm{f} 250 \mathrm{v}, 50 \mu \mathrm{f} 350 \mathrm{v}, 25 \mu \mathrm{f} 350 \mathrm{v}$, $16 \mu \mathrm{f} 550 \mathrm{v}$ all at $2 / 6$ each plus $1 /-$ postage, 5 or more post paid.
Coax Plug and Socket
Standard T.V. type coax plug with socket all metal plug, these are ex equip in clean condition. 6 pairs for 6/- post paid.
Silicon Diodes
Rated 800 P.I.V. at 500 mA made by Siemens these are ex equipment. 12 for $6 /-$ post paid.

Mains Transformers

These are all 220 v Pria voltages given are for 240v mains. H.T. Sec 0-420-450-480 at 250 mA and $0-375-400-425$ at 250 mAC Core trans will give 900 v at $250 \mathrm{~mA} 35 /-$ plus 6/- carr.
L.T. Sec 0-1-22-23-24v at $2 \mathrm{amps}, 20 \mathrm{v} 2 \mathrm{a}$, $6.5 \mathrm{v} 5 \mathrm{a}, 6.5 \mathrm{v} 1 \mathrm{a}, 20 \mathrm{v} 250 \mathrm{~mA}$ open type 22/6 plus 6/-carr.
Heater Sec 6.5 v at $3 \mathrm{a}, 6.5 \mathrm{v}$ at 1 a twice 20 v 250 mA 3 times open type $12 / 6$ plus $6 /$ - carr. Med H.T. Sec 0-70-75-80-85v at 20 mA small open type $7 / 6$ plus $3 / 6$ post. The above trans are all ex equip in good condition and good quality.

Blower Units

These are a twin outlet blower unit mounted in a 19 in . Rack cabinet, Motor $115 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ 4a 2.700 R.P.M. 2 phase type with condenser blower size each end Inlet 5in. Dia Outlet $3 \frac{1}{2} \times 3 \frac{1}{2}$ in. overall size $12 \frac{1}{2} \times 8 i n$. Dia top class unit made for U.S.A.F. £2 10s plus 10/- carr.

A. H. SUPPLIES

57 Main Road, Darnall, Sheffield S9 5HL S.A.E. for lists.

Open to callers Mon, Wed, Fri and Sat.

VALVE BARGAINS

Any 5-9/-, $10-14 /$-, 100 55.10.0.
From the list below:-
ECC82, ECC83, ECL80, EF80, EF85, EY86, PCC84, PCF80, PCL82, PCL83, PL36, PL81, PL82, PL83, PY33, PY81, PY82, 30F5, 6-30L2, 30FL1, ALL VALVES SET TESTED. P \& P 1/Velco Electronics, 62 Bridge Street, Ramsbottom, Bury, Lancs.

INTEGRATED CIRCUITS at lowest price GE Type PA234 1 Watt Audio Amplifier 17/6d. each inc. data. Newest GE Silicon NPN plana transistor 2NS172. Epoxy for economy Pas sivated for reliability. 25 volt 200 mW hfe 100 min. $1 / 9 \mathrm{~d}$. each. C.W.O. P. \& P. $1 /$ d. per order. JEFF ELECTRONICS, 12 York Drive, Grappenhall, Warrington, Lancs. Mail Order Only.

PACKS of mixed 4BA and 6BA plated screws and nuts. Min. quantity of 150 items per pack. $10 /$ - per pack incl, postage, For specific requirements send SAE. WESTEK, P.O. BOX 7, Rickmansworth, Herts,

RECEIVERS \& COMPONENTS (cont/nued)

RECEIVER PANELS MW/LW. SIze $8 \times 3 \mathrm{in}$. Six rannistors, oc44, OC4S (2 off), OC81D, OC81 (2 off), twat output, contains all rebistora, capacilors, 1.F. ferrite aerial, tuning capacitor, wavechange awitch, and volume control, auppled with connecting data es brand new' made by famous British manu facturer, ONLY $88 / 6$ post paid.
TUNLNG CAPAC1TORS (Brand new and boxed). $345 \mathrm{pF}+165 \mathrm{pF}$ with two 20 pF sections for F.M. tuner, size $24 \times 2 \times 1$ in. ONLY $4 / 6$ each or $8 /-$ for two. $325 \mathrm{p} \mathrm{F}+375 \mathrm{pF}$ with two 20 pF sections for F M. tuner, size $2 t \times 1 \frac{1}{} \times 11 \mathrm{in}$. ONLY $4 / 6$ each or $8 /$ - for two.
VOLUME CONTROLS. 5k log. with 8.P. switch, tin. dia. spindle. $2 /$ - each (new).
DISC CERAMIC OAPACITORS. 0.02 mF 500v.w. wire ended, $1,800 \mathrm{pF} 1,000 \mathrm{v} . \mathrm{w}$. Wire ended, 0.047 mF 30v.w. P.C. type, all 8/- doz.
Thyristorn. 400 P.I. V. at 5 amp . ideal for drill speed controls. $12 / 6$ eacb.
TRANSIBTORS. GT45B equiv. to OC45, OC71, etc. BRAND NRW marked). $1 / 8$ each, $12 /$ doz
TRAMSFORMERS. 250 V a.c. input, 22 volts at 1 amp . output. 11/- post paid.
TAG STRIPS. 4 in. long with 9 insulated tags and 2 earth tagg. 4d. each, 8/- doz.
MIXED BAG. silver mica and ceramic capacitors, approx. 150 items $10 /-$ bag. Approx. 250 for $15 /$-.
8X638 SILICON DIODES. Unmarked 300 P.I.V. at 1 amp. tested 9 d . each, $3 /-$ doz.
ELECTROLYTICs. $32+32 \mathrm{mF} 250 \mathrm{v} . \mathrm{w} .8 /-$ each. TRANSIBTOR. Single tuned $470 \mathrm{Kc} / \mathrm{B}$ I.F. trangformers, $1 / 6$ each, 4 for $5 /$ -
VALVE. $485 \mathrm{Kc} / \mathrm{s}$ I.F. transformers $13 / 10$ sq., $1 \|$ in. high, some 2in. high, 2/- each.
HUNTS. $\cdot 25 \mathrm{mF} .350$ v.w. $7 \times$ ¢in., brand new, wire. ended, 8d. each, 4/- doz.
TELEVIBION mains dropper resistors-send for liat. $12 \cdot 7 \mathrm{Mc} / \mathrm{B}$ and $13.125 \mathrm{Mc} / \mathrm{B} \mathrm{HC} 6 / \mathrm{U}$ xtals. tested, ex-equipment, $4 / 6$ each
ALL ITEMS PLUS $1 / 6$ POBTAGE UNLESS STATED. MAIL ORDER ONLY

A. J. H. ELECTRONICS 59 WAVERLEY ROAD, THE KENT RUGBY, WARWICKSHIRE RUGBY 71066

BRAND NEW ELECTROLYTICS, $15 / 16$ volt, $0,5,1,2,6,8,10,15,20,30,40,50,100,200$ mfds. $8 /$ - per dozen, postage $1 /$-. The C.R. Supply Co., 127 Chesterfield Road, Sheffield 8.

TRADER SERVICE SHEETS

5/- each plus postage

We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.

Cheques and open P.O.S returned if sheets not available.

OAKFIELD ENTERPRISES
 LIMITED

30 CRAVEN STREET, STRAND LONDON WC2

Make	Madel	Radio/TV

1969 List
available at $2 /-$ plus postage
from
Address

[^4]MAIL ORDER ONLY (October PW)
 4-8tation Tranaiator Interoom syatem (1 mester and a Bubr), in de-luxe plastle cablnete for desk or well mounting. Call/talk/liaten from Manter to Subi and Suba to Manter. Ideally suttable for Business, surgery, Bchoola, Hoapital, Office and Home. Operates on one 9V battery. On/oft switch. Volume control. Complete with 3 connecting wires each 66ft. and other accemories. P. \& P. 7/6.

MAINS INTERCOM
No batteries-no wires. Just plug in the mains for Instant two-way, loud and clear communication. On/ofl awitch and voluase control. Price 12 gng .

Bame as 4-8tation Intercom for twoway instant communication. Ideal as Baby Alarm and Door Phone. Complete with 68ft. connecting wire Battery 2/6. P. \& P. 4/6.

clency with this incredible De-luxe Tolephons Amplifier. Take down long telephone messages or converae
without holding the handset. A naeful offce ald. Onf off switch. Volume Control. Battery $2 / 6$ extra P. \& P 9/6. Full price refunded if not satisfled in 7 day. WEST LONDON DIRECT SUPPLIES (P/W10) 169 KENSINGTON HIGH BTREET, LONDON, W.8.

ELECTRAMA FANTASTIC SPEAKER BARGAIN Famous English, $12^{\prime \prime}$ high flux, heavy cone, 10 watts speaker with built-in tweeter. 3 or 15 ohms.
(P. \& I. 4/9)

35/2 for $66 /-(\mathrm{P} . \&$ I. 6/9)
$N E W$ RELEASE NEW RELEASE- COLUMN

SPEAKER CABINET Beautifully made. Suitable for 7-12" speakers. Rose wood finish. Screwed and glued. Attractive grey cloth
front measures $24^{* \prime} \times 13^{n} \times$ $10^{\prime \prime}$ with tweeter hole above. 69/6 (Carr. 10/-.) With $12^{\prime \prime}$ speaker as advertised above 99/- (carr. 10/-) 1 George St., Hailsham, Sussex

Est. 1943 JUHNSONS

Tel: 24864
VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, 70-150Mc/s, 75/-, p.p. 4s. New! multi-range Pre-Amp all bands from SW to UHF (colour T/V!) No mods, fitted instantly aerial input. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)
St. Martin's Gate, Worcester

[^5]Head Office and Warehouse
44A WESTBOURNE GROVE LONDON W2
TeI. PARK 5641/2/3

Z \& I AERO SERVICES LTD.

Please aend all correspondence and Mail-Orders to the Head Omime
When aending cash with order, please include $2 / 6$ in $£$ for poatage and handling MINTMUM CHARGE 2/6. No C.O.D. orders accoptod.

Retail Shop
85 TOTTENHAM COURT ROAD LONDON W1
Tel. LANgham 8403
Open all day Saturday

OA2	6/6	6 AT 6 5/-	6DK6 8/6	9BW6 $8 / 6$	0			Filly			EL360 88	Pccess	PL500	16/-	U801	
0 A 3	$91-$	6AU4GTA	6DQ6B 12/-	$10 \mathrm{C}^{2} 101-$	1	IY		$1{ }^{\text {I }}$			EL803 17/-	PCC88 18/-	PLS04	16/-	UABC	0818
$0 \mathrm{B2}$	6/6	9/-	6DS4 15/-	10D1 8/-							ELR21 11/-	PCC89 10/6	PL509	$80 /-$	UAF41	$101-$
OB3	$101-$	6AU5GT	6EA8 11/-	$10 \mathrm{D}^{2} 88 /-$							EL822 18/-	PCC189 11/-	PI508	17/6	UAF42	$10 / 6$
OC3	7 -	22/6	6RH7 $6 / 6$	10 Fl 18/-							ELL80 15/-	PCC805 17/-	PL801	16/-	UB41	11/-
OD3	8/8	6aU6 5/-	6E57 71-	10F9 10/-							EM34 16/-	PCC806 17/-	PL802	14/-	UBC41	$9 / 6$
189GT	718	6AV5GTA	6F1 14/-	$10 \mathrm{Fl8} 8$ 8/-							EM71 18/6	PCE80015/-	PLL80	11/-	UBC81	8/-
1 L 4	$8 / 6$	18/-	6F6G 5/-	$10 \mathrm{Ll} \mathrm{8/-}$					AND		EM80 8/-	PCF80 $6 / 6$	PM84	91-	UBF80	7/8
1N5GT	8/6	6av6 6/-	6 F 11 6/8	10LD1111/-							EM81 8/6	PCF82 619	PX4	801-	UBF89	71-
1Q5GT	101-	6AW8A11/-	6 F 12 4/6	10P13 11/-							EM84 7/6	PCF84 91-	PX25	301-	UBLI	10/-
1 RA	6/8	6AX4GTB	6713 7-	$10 \mathrm{P14} 880$							EM87 11/-	PCF86 11/-	PY31	5/-	UBL21	18/-
$1 \mathrm{R5}$	$71-$	9/-	6 6F14 12/-	12AB5 10/-							$\begin{array}{ll}\text { ENP } & 8 / 6 \\ \text { EY51 } & 8 /-\end{array}$	PCF87 18/-	PY32	11/-	UC92	$8 / 6$
184	$6 / 8$	6AX5GT	${ }_{6 F 15} 111 /$	12AC6 $7 / 6$							$\begin{array}{ll}\text { EY51 } & 8 /- \\ \text { EY80 } & 9 /-\end{array}$	PCF800 18/-	PY33	12/6	UCC85 UCF80	8/-
185	5/8	$6 \mathrm{BA} 6^{\text {18/- }}$ 4/6	$\begin{array}{ll}6 \mathrm{CF}^{18} 8 & 8 /- \\ 6 \mathrm{~F} 22 & 8 / 6\end{array}$	12AD6 776	$\begin{array}{ll}20 \mathrm{P} 4 & 201 \\ 20 \mathrm{P} 5 & 201\end{array}$	$85 A 2$ 9049	48/8	E6SL E130L 90/-	ECL83	-6/6	$\begin{array}{ll}\text { EY80 } & 9 /- \\ \text { EY81 } & 8 /- \\ \text { EY88 }\end{array}$	PCF801 PCF802 10/-	PY80	6/6 $6 /-$	UCF80	10/6
104	8/-	6BE6 5/-	$6 \mathrm{~F}^{63}$ 15/6	$5 /-$	25 Cb 91-	90AV	48/-	E180F 19/-	ECL84	11/-	EY83 11/-	PCF805 16/-	PY82	6/-	UCH42	18/-
1U5	$9 / 6$	6BF5 16/-	$6 \mathrm{~F}^{2} 24$ 18/6	12ALS 8/-	25 L6GT 7/6	90 Cl	12/-	E280F ${ }^{\text {c }}$ 48/-	ECL85	$10 / 6$	EY84 10/-	PCP808 18/-	PY8s	718	UCH43	18/-
IV2	$9 \mathrm{j}-$	6BF6 9/-	6 F 25 15/-	12AQ5 8f-	$25 \mathrm{Z4G} 61-$	90CG	25/-	EABC80 8/8	FCL86	$8 / 6$	EY86 8/-	PCF80815/6	PY88	81-	UCH81	6/6
1 $\times 2 \mathrm{~B}$	7/6	6BG6G 12/-	6 F 26 71-	12AT6 5/-	$25 \mathrm{Z6GT} 18 /-$	90 CV	$25 /-$	EAF42 101-	EF37A	9/-	EY87 8/6	PCH200	PY500	801-	UCL81	11/-
20W4	12J-	6BH6 8/6	6 F 28 14/-	12AT7 8/6	3045 8/-	807	$9 / 8$	EAF801 9/6	EF39	81-	EY88 8/6	14/-	PY800	101-	UCL82	71-
2D21	8/6	6BJ6 8/6	6F29 6/8	12AU6 $5 / 6$	30AES 8/-	8681	14/-	EBC33 9/-	EF40	101-	EZ35 5/6	PCL80 15/-	PY801	101-	UCL83	18/-
343	11/-	6BK4 21/-	6F30 71-	12AU7 6f-	$30 \mathrm{Cl} \quad 8 / 6$	6080	27/6	EBC41 $10 / 6$	EF41	18/6	EZ40 9/-	PCL81 10/-			UD143	15j-
8A4	4/-	6BK7A 10/-	$6 \mathrm{6} 4 \quad 9 / 6$	12AV6 6/-	$30 \mathrm{Cl15} 15 /-$	6146	30/-	EBC81 6/6	EF42	14/-	EZ41 9/-	PCL82 718		48/-	UF9	11/-
3A5	101-	6BL7GTA	6J5GT 81-	12AV7 9/-	$30 \mathrm{Cl} 716 /-$	61468	$47 / 8$	EBC90 5/-	EFS5	18/-	E280 $6 / 6$	PCL83 18/-	QQVo3		UF11	10J-
3A8GT	101-	12/-	$6{ }^{657} 816$	12AX4GTB	${ }_{30 \mathrm{CL}}{ }^{3} 15 /-$	6267	8/6	EBC91 6/-	EF80		EZ81 $5 / 6$	PGL84 818		26/-	UF41	10/-
3Q4	8)-	6BL8 7\%-	0K6GT 101-	101-	$\begin{array}{ll}30 \mathrm{FS} & 17 /- \\ 30 \mathrm{FL1} & 15\end{array}$	6360		EBF80 8/-	EF85	107-	$\mathrm{EFW4}^{\text {E/500 }}$ 5/-	PCL85 9 9/8	QQVO3	-20A	2	11/-
3Q5GT	8/-	6BN4 18/-	6K7 7 6/6	$12 \mathrm{AX7} 7$ 6/-	30FL12	7189		EBF88 8/8	EF86	818	1500	PCL86 ${ }^{\text {PCL88 }} 17 / 6$		105/-	UF80	
384	7 -	6BN5 8/6	6 K 8 Cl 6/-	12AY7 18/8	30FL12 18/6	7591 A		EBF89 6/6	EF89	$5 / 6$	G847X $65 /-$	PCL88 $17 /-$	QQVOA	-40A	UF86	
3V4 5 R 4 GY	8/-	$\begin{array}{ll}\text { 6BN6 } & 8 /- \\ 68 Q 5 & \text { /- }\end{array}$	$\begin{array}{ll}6 \mathrm{~K} 23 & 101- \\ 6 \mathrm{~K} 25 & 15 /-\end{array}$	$\begin{array}{rrr}12 \mathrm{B4A} & 10 /- \\ 12 \mathrm{BA} 6 & 8 / 6\end{array}$	30FL13 10/\%	7591 A 9002	80/-	$\begin{array}{ll}\text { RBLS1 } & \text { 85/- } \\ \text { EC53 } & 10\end{array}$	EF89	$5 / 6$ $4 / 6$	G847X $65 /-$	PCL800 18/- PCL801 $16 / 8$	QQvor	110/-	UF86	8/-
5 U 4 G	61 -	6BQ6GTB	6L6GT 9/-	12BA7 $7 / 6$	$30 \mathrm{L1}$ 7/-	9003	101-		EP92	$7 / 6$	GZ30 7/6	PD500 80/-	Qvos-		UL41	18/-
5U4GB	7/6	18/-	6L7 6/6	12BE6 6/6	$30 \mathrm{L15}$ 17/-	AZ31	10/-		EF93	$4 / 6$	GZ31 6/-	PEN4DD		18/-	UL84	6/6
5V4G	8/-	6BQ74 7/6	$6 \mathrm{L18}$ 6/-	12 BH 7 6/6	$30 \mathrm{L17}$ 17/-	CBLI	10/-		EF94	$5 /$	GZ32 9/6	8/-	8 P 41	7-	UM4	81-
5Y3GT	8/-	8BR7 171-	6LDD20 6/6	$12 \mathrm{BY} 710 \%-$	30P12 16 -	CBL31	17/-	EC	EF98	$6 /$	GZ33 18/-	36	$8 \mathrm{EP42}$	18/-	UM84	4/-
573	$91-$	6BR8 13/-	6N7GT 7/-	1208 6/-	$30 \mathrm{P18} 7 \mathrm{l}$		17/6	$9 / 8$	EF96	4/-	GZ34 11/-	18/6	SP81	7 7-	UY1N	101-
8Z4G	$7 / 6$	6B87 86/-	6P1 12/-	12CU6 16/-	${ }^{30 \mathrm{P} 19} 15 /$	CY31	$7 /-$	$\begin{array}{ll}\text { EC93 } \\ \text { ECU34 } & 8 /-\end{array}$	EF97	107-	HABCR0 8/6	PEN45 7\%-	SU2150		UY11	11/-
5Z4GT	8/-	6BW6 16/-	6P28 12/6	12 J 5 GT 4 4-	$30 \mathrm{PL1} 18 / 6$	DAF41	11/-	ECC40 11/-	EF183	$6 / 8$	HBC90 5/-	PEN46DD		16/-	UY21	11/-
6/30L2	16/-	6BW7 13/6	6Q7 7/6	$12 \mathrm{KJ} \mathrm{10/-}$	$30 \mathrm{PL} 13181-$	DAF91	8/8	ECC81 $6 / 6$	EF184	801-	$\begin{array}{ll}\text { HBC91 } \\ \text { HF93 } & 6 / 6\end{array}$	PEN 15/-	TT21	481-	UY41	$81-$
6A8G	6/6	6BX6 6/-	6R7G 71-	12K7GT 7f-	30PL14 17/-	DAF92	$9 / 6$	ECC82 6/-	ErF800	201-	HF98 ${ }^{\text {H/8 }}$	PEN46 $7 / 6$	U17	$101-$	UY82	10/-
8AB4	$8 / 6$	6BZ6 6/6	682 8/-	$12 \mathrm{K8} 10 /-$	35A3 10/-	DAF96	$7 / 9$	$\begin{array}{ll}\text { ECC82 } & 8 /- \\ \text { ECC83 } & 8 /-\end{array}$	EF804	$807-$ 15	HF94 ${ }^{\text {H/6 }}$	PEN883	U18/20	18/6	UY85	${ }^{6 /-}$
8AC7	4/6	$6 \mathrm{C4}$ 6/-	68A7 7/6	1297G 5/-	$35 A B \quad 11 /-$	DC90	9/-	[EF811	15/8	$\begin{array}{ll}\text { HK90 } & 0 / 6 \\ \text { HL92 } & 7 /-\end{array}$	10/-	U20	18/6	VP23	$8 / 6$
6AF4A	9/6	6C5GT 7/-	68 Cl 68/8	$129 \mathrm{C7}$ b/-	$35 \mathrm{BC5} 18 /-$	DF96	107-	$\begin{array}{ll}\text { ECC84 } & 6 /- \\ \text { ECC85 } & 5 / 6\end{array}$	EF812	18/8	HL92 ${ }^{\text {HL94 }}$ 8/-	PEN384	U25 U26	$181-$ $181-$	VP41 VP133	71-
6407 $64 H 6$	1761-	$\begin{array}{lr}\text { 6C9 } & 17 / 8 \\ \text { 6CA } & 5 / 8\end{array}$	$\begin{array}{ll}3.57 & 7 / 6 \\ \mathrm{~K} 7 & 8 / 6\end{array}$	$\begin{array}{ll}12867 & 7 / \\ 12847 & 6 /-\end{array}$	$\begin{array}{ll}35 \mathrm{Cb} & 7 /- \\ 85 \mathrm{D} 5 & 18 /-\end{array}$	DK91	70	ECC86 9/6	EK90	5/-	KT66 27/6	10/-	U31	O1-	VR76/5	160/-
6A.J8	8/9	6CA7 10/6	68L7GT 9/6	128.57 $5 /$	36L8GT 9/6	DK92	91-	ECC89 11/-	ELS34	1076	KT88 38/-	PEN453DD	U37	$801-$	VR105/3	30
6AK5	6/-	6CB6 5/6	68N7GT 6/-	128 K 78 -	${ }^{36 W 4} 81-$	DK98	$81-$	ECC91 4/	EL36	$9 / 6$	ME140028/-	11/-	U50	6)-		71
6AK6	11/6	6CD6GA	6897 8/-	129L7GT	3523 11-	DL91	5/8	ECF80 7	EL38	$27 / 8$	MSPENT	PENA4 8/6	U52	61-	VR150/3	$30-$
6 AL 3	$8 / 6$	281-	$68 \mathrm{R} 7 \quad 7 / 6$	8/-	35240 b/-	DL92	7 -	7	EL41	11/-	10/-	PF86 11/-	U76	B/-		6/6
6ALS	$8 / 8$	$6 \mathrm{CG7} 9 /-$	6T8 6/6	128N7GT	35259T 7/6	DL93	4 4-	ECF83 15/-	EL42	$11 / 8$	MU12/14	PF818 17/-	U78	81-	VU33	101-
BAMS	$81-$	6CH6 11/-	6U4GT 18/6	$81-$	50A5 18/-	DL94	$81-$	ECP86 12/0	EL81	101-	101-	PFL20014/-	U81	181-	VU39A	101-
6AM6	4/6	6CL6 10/-	6 U8 71-	$128 Q 7$ 81-	50B5 7/-	DL95	8/-	2CF804801-	EL83	$8 / 8$	N78 21/-	PL33 71-	U191	151-	VU111	101-
8AQ5	8/6	6CU6 18/-	6VBGT 6/6	$128 \mathrm{R} 7 \quad 6 / 6$	60Cs 71-	DL96	719	ECH42 18/-	EL84	$5 /-$	PABC80 8/-	PLs6 11/-	U201	$71-$	VU120	151-
GAQ6	101-	6CW4 $12 / 8$	6X4 5/-	1487 16/-	$50 \mathrm{CD6G}$	DM70	$0 / 8$	ECH81 5/9	EL85	$8 / 6$	PC86 11/6	PL81 9/8	U281	$81-$	VV133'	101-
OAR5	8/6	6CY5 8/-	6X50T 5/6	20D1 9\%-	801-	DY70	12/-	ECH83 8/6	ELP8	$8 / 8$	PC88 18/-	PL82 $9 /-$	U282	$81-$	W729	12/-
OAR6	8/6	6CY7 18/-	6×8 11/-	20 Ll 80/-	S0LAGT 8/-	DY86	6/8	ECH84 9/-	EL90	$6 / 6$	PC97 816	PL83 8/-	U301	11/6	2309	101-
6A85	$2-$	6D3 8/-	6 Y 6 C 18/-	20P1 10/-	8341 14-	DY87	71-	ECL80 9/-	EL91	5/-	PC900 9/6	PL84 7/-	U403	101-	2819	85/-
6A87G	181-	6DC6 18/6	6 6 4 5/6	20P3 12/-	8541 25/-	DY802	101-	ECL81 8/0	EL95	71	PCC84 7%	PL302 15/-	U404	7/6	2329	17/-

INTEGRATED CIRCUIT AMPLIFIERS

CA3005 RF Amplifler with $100 \mathrm{me} / \mathrm{s}$ bandwidth. Max. dissipation 26 mW . For use as RF amplifier, balanced CA 8018 wide Band Amplifier (up to $20 \mathrm{me} / \mathrm{s}$), suttable as IF Amplifter for VHF/FM receivers
Caso80 General Purdose Audio Amplifier of 550 mW output
OAs086 Buffer amplifier consigting of two 'super-alpha
pair of trangistors suitable for stereo pick-up syatems 19/-
PAge2 Audio Amplifier providing a max. output of
1-2 watts
PA834 Audio Amplifier providing a max. output of
$\mathbf{1}$ watt
PAss7 2 watts Audio Amplifier
The above three I.C's are in epoxy moulded double four-in-line package.
aCl
T0-99 case General Purpose operational amplifier in
TAA888 3-stage direct coupled amplifier for use from DC 0 800kc/s: 70 mW dissipation. Output 10 mW Into 150 n load
TAA898 3-stage amplifier with connection brought out to the individual leads. Bandwidth $600 \mathrm{ke} / \mathrm{s}$. 160 mW

AA880 MOST input stage followed by a bl-polar tran stor atage. 200 mW dissipation.
Data sheets are avaliable for all the above I.C's.

OUR NEFW CATALOGUE 1960/1970 I8 NOW READY. IT IHCLUDIAS PRICRS OF SOME 4,000 TYPES OF VALVIES AND TUBKS AND SEMHICONDUCTORS.
MRASIIAL CHARACTRRISTICS OF KLYTRONS, TMGNELRONS, CATHODE RAI TUBES AND BEMICOMDUCTORS ARE GIVEN. THIS is A REAL REFFRENGE BOOKLET AND IS AVAILABLE FREE
OF ORARGE. PLEASE ENCLOSE QUARTO B.A.E.

WESTINGHOUSE EPOXT ENCAPGULATED WIRE 1N5399, 1,000 p.i.v. $1 \cdot 5$ ampy D.C.; Max diameter 140 in . Overall length (with leads) $2 \cdot 31 \mathrm{in}$ 4/6. 1N\$408, 1,000 p.i.v., 3 amps D.C.; max. zurge 200 A . Diameter - 210 in. ; overall length (with leads) 2-875in. 8/8.

MULTIMETERS

TYPE MF16

D.C. voltage range:

0-0.5-10-50-250-500V
A.C. voltage range:
$0-10-50-250-500 \mathrm{~V}$.
D.C. current range:

Resistance ranges; $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$.
The meter is also calibrated for cmpacity and output level measure-
ments. Bensitivity
$2000 \Omega \mathrm{~V}$. Accuracy $\pm 2.5 \%$ for D.C. and Dimensions: $4 \frac{1}{} \times 3!\times 1 \frac{1}{4} \mathrm{In}$. Price A4.6.0.
TTpe 108-IT: 24 range precision portable meter, 5000 o.p.F. D.C. Volts: 2-5-10-50-250-500-2500V. A.C. Volts: Restistance 2000-20.000 ohms; $2-20$ megohms. Power output caltbration in A.C. for 600 ohms line. Complete with prods and batteries, 28.5.0. P. \& P. 5/-. $_{\text {. }}$

ZENER DIODES

SLIDEWIRE WHEATSTONE BRIDGE
£15.15.0

Battery Powered Portable Resiatance Bridge. Range 0.5 to 50 ohms with multipller settings of $0 \cdot 1-1-100-1000$, providing a measuring range of 0.05 to 50000 ohms. Accuracy in the milddle 3 ranges- 0.6% approx.
PRICE 816.15 .0 .

TRLAC8 TYPE 40482

Gated bidirectional silicon Thyristora with integral crigger. The triac will control up to 1440 watte at 240 V data sheet and application sheets for motor heat aink dimmer circuits. $87 / 6$ each.

UNLJUNCTION TRANEISTORS EN2648
Power dissipation 300 mW R.M.S. Base-to-Base voltage 35V max. Peak emitter current 2-0A. Suitable for trigger-
ing of thyristors, 18/8. ing of thyristors. 18/6.

8PECLAL OFFER OF PNP GERMANIUN TRANSISTORS AC154, large aignal type, suitable for class ' B ' output and oscillator appllcations, Max. collector-base voltage -26 V .
Max digapation 200 mW . Max dissipation 200 mW . Audlo power output per palr
400 mW free air or 1.1 W on AC109 PNP Bian Stabilizing Transistor. Max displpation 60 mW . Max. collector-base voltage - 2 V . Max collector current 30 mA . Price, each.

SILICON MATCEED DIODE PAIRS

1N4961 Two diodes in common T092 epoxy case. Separate anode leads and joint cathode. Diodes are atatically and dynamically balanced. Max. reverse voltage 20V. Max, discriminators and nimilar applications. Price 3/-each. Considerable diacount for quantities.

Valuabie new hanobook FREEFENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or

 REFUND of FEE' termsThis remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department
WHICH OF THESE IS
YOUR PET SUBJECT?

RADIO ENGINEERING
Adianced Radio - Gint.
Radio Radio \& Radio - Radio \& TV Telecommunications - Sourd Telecommmmcations-Sourta
Recording - Aumomation Practical Radio - Radio Amatcurs' Exam

ELECTRICAL ENG:
Adianced Elecrrical Eng. Gen. Elecrical Eng. Installations - Draughismanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Elec. Enginecring.

CIVIL ENGINEERING Advanced Cisil Eng. -Gon. Civil Env. - Ahnicipal Eng. - Sirncural Eng. Sanitary Eng. - Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

ELECTRONIC' ENG
Adranced Elictronic Eng. Gen. Electronic Eng. Applied Electronics - Prac. Electronics - Radar Tech. Frequenc, Morlulation Treanency

MECIHANIC'AL ENG:
Adhanced Mechranical Eng. Gen. Mtechanical Eng. Maintenance Eng. - Diesel Eng. - Pross Tool Devign Sheet Mefal Work-Welding \rightarrow Eng. Pattern Mahing Inspection - Drawehtsmanship - Merallurg.' - Production Eng.

AUTOMOBILE ENG
Advanced Automobile Entr. Gen. Automobile Eng. futomobile Maintonance Repair - Auromobile Diesel Maimenance - Automobile Elec. Equipment - Garage

WE have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS. ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.L., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.IIE.D., A.M.I.Mun E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

* HOW to get a better paid, more interesting	
\star easily, 110 to benefit from our free Advisory and Appointment Depts.	
\star How you can take addanazage of the \star chances you are now mising	
or experience, YOU can succeedbranch of Engineering.164 PAGES OF EXPERT	
PRACTICAL EQUIPMENT	including
Pratitaran fiers	The specialis Elec-
Thememed	
atame	ama
Ematron	E.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and you should send for your copy now-FREE and without obligation.

[^6]
SOLID STĀTE-HIGH FIDELITY

 AUDIO EQUIPMENTMono or Stereo Audio, Equipment devel oped from Dinsdale Mk II-each unit or system will compare favourably with other professional equipment selling at much higher prices.
COMPLETE SYSTEMS
FROM
£15.5.0
THE FINEST VALUE IN HIGH FIDELITYCHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS

All units available separately

SEND FOR FREE BROCHURE (No. 21) TODAY! DEMONSTRATIONS DAILY AT 303° EDGWARE ROAD

 Acclaimed by everyone The MAYFAIR

PRACTICAL ELECTRONICS - ELECTRONIC ORGAN KIT
\qquad
ORGAN COMPONENTS COMPLETE RANGE IN STOCK 49 AND 61 NOTE KEYBOARDS 2105 AMP GOLD CONTACT

paths supplied
lately arable.
One
liefly available.
Once bulk the mayfair.
yes ic
Call in-Ste them for yourself

The gROSVENOR

The Detector Unit consist

NEW -MALLORY LONG LIFE MERCURY BATTERIES 50\% OFF LIST PRICES

 Pack of 8 Sire 2t $\because t$ dis. OUR PRICE 10/- each

TRANSISTORS SEMICONDUCTORS COMPLETELY NEW 1969 LIST OF 1000 types. Send for your FREE COPY TODAY (list 36)
S.C.R.'s from 5/-

Field Effect Transistors from 7/6
Power Transistors from 5

NEW
Al! below list price
2025 Mono/ Stereo GKS 25 2025 Mono Stereo GKS 25

AT60 Mk II
AP 75
SLD

A 70 Mk 15
B.S.R. UAR MONO
MAGS
MA 65
MA 70
40, Gerard
$\begin{array}{ll}\text { Carrizop Path ing 7/ } & 28 \quad 100\end{array}$

HI-FI equipment to suit EVZKTPOCKZI Fully

VISII OUR NEW HI.FI CENTRE at 309 EDGWARE ROAD
and save up to e 40 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE for all leading makes
AMPLIFIERS
TUNERS
DECKS
SPEAKERS

MICROPHONES
TEST EQUIPMENT HEADPHONES
CARTRIDGES, etc.
All with
Terrific Savings

It will PAY YOU
COMPLETE SYSTEMS from £46 -Saves $\mathbf{E 1 2 . 1 0 . 0 \text { ! }}$
to pay us a VISIT
Send for new 8 -page illustrated Hi-filist $16 / 17$.

[^0]: RP22 less
 e8. 9.6
 8.19 .6

[^1]: The price of $12 /$ - applies only to catalogues purchased by customers residing in the U.K.

[^2]: (C)IPC Magazines Limited 1969. Copyright In all drawings, photographs and articles published in "Practical WIreless' Is fully protected, and reproduction or Imitations In whole or in part are expressly forbidden. All reasonable precautions are taken by "Practical Wireless' to ensure that the advlee and data given to readers are rellable. We cannot, however, guarantee lt, and we cannot accept legal responsibility for it. Prices are those current as we go to press. All correspondence Intended for the Editor should be addressed to Tower House, Southampton Street, London, W.C.2. Address correspondence regardlng advertisements to Advertising Manager, Fleetway Mouse, Farringdon Street, London, E.C.4. Orders for back numbers should be addressed to IPC Magazlnes Ltd., Back Numbers Department, Carlton House, Gt. Queen Street, London W.C.2.

[^3]: FREE POST NOW
 for
 BROCHURE or write if you prefer not to cut page

[^4]: enclose remittance of
 (and a stamped addressed envelope)
 s.a.e. with enquiries please

[^5]: PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, Indicator Unit Type 26 , Size $12 \times 9 \times 9 \mathrm{in}$ With Outer Case fitted with 21 in. CRT Type CV1526 9 B7G Valves. Clean condition but not tested. 32/6, p. \& p. $10 /-$
 Aircraft Sighting Head with Cyyro Unit complete with Transit Case. Condition fair. 18/6, carriage B.R.S. 12/-
 Oscillator Type 37. Complete with AC230 Volt Power Pack, Circuit and Grid Ref Map condition good 37/6, carriage B.R.S. $12 /$
 N.S.F. Toggle Switches D.P.D.T. Ex Units 1/-, post 1/-; 12 for $10 /-$ post paid.
 Ex Washing Machine Motors. Single phase 230 volt 1425 R.P.M. All perfect 26/-, post and packing $10 /-$
 New 12in. Speakers with built in tweeter 3 ohm and 15 ohm 6 watts max. 28/6, post paid.
 Speakers removed from T.V. Sets. All PM and 3 ohm. 6in. round $3 /-$, p. \& p. $3 /-$ 6 for $24 /-$ post paid. $6 \times 4 \mathrm{in}$. $3 /-$, p. \& p. $3 /-$; 6 for $24 /-$, post paid. 5 in . round $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$ post paid. $7 \times 4 \mathrm{in} .5 /-$, p. \& p. $3 /-{ }^{6}$ for $34 /-$ post paid. Slot Speakers 8×2 tin. $5 /-$, p. \& p. $3 /-; 6$ for $30 /$ post paid. Reclaimed T.V. Tubes, with 6 months' guarantee 17 in . Type AW43/80, AW43/88 $40 /-, \quad$ MW $43 / 69$ 30/-, 14 int . Type $17 /-$ All Tubes $12 /$. above with slight scratch on face $£ 1$ each. above with slight scratch on face $£ 1$ each. Silicon Rectifier 500 MA 800 PIV . $2 / 6$ post paid. 24/- per dozen post paid
 Jap Earpiece. Magnetic 8 ohm. Small and Large Plug $1 / 11$ post paid.
 G.P. Diodes $3 / 6$ per dozen, post paid.

 Top Grade Mylar Tapes. 7in. Standard 11/6. 7in. Long Play 14/-. 7in. Double Play 19/6. 5in. Standard 7/9. 5in. Long Play 10/plus post on any tape $1 / 9$
 Valve List-Ex Equipment, 3 montha guarantee

 | ARP12 | $1 / 8$ | PCL82 | $4 /-$ | 6 B8 | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | EB91 | 9 d | PCL83 | $5 /-$ | 6 BW 7 | 2 |
 | EF85 | $3 /-$ | PL36 | $5 /-$ | 6 K7 | 1 |

 EB

 | ECO82 | $3 /-$ | PY 33 | $5 /-$ | 10 P 13 | 8 |
 | :--- | :--- | :--- | :--- | :--- | :--- |
 | PCO | $1 / 8$ | $1 / 8$ | 185 BT | 8 | |

 E
 E1

 EY
 $1 / 8$
 18
 $1-$
 $1-$
 $8 / 6$
 886
 $8 /-$
 $51-$
 $2 / 6$
 $51-$
 $5 /$
 $2 / 1$
 $51-$
 $5 /-$

[^6]:

 TO B.I.E.T., 453A, ALDERMASTON COURT, ALDERMASTON, BERKSHIRE.
 I
 Please send me a FREE copy of "ENGINEERING
 OPPORTUNITIES." I am interested in (sate subject,
 Please send me a FREE copy of "ENGINEERING
 OPPORTUNITIES." I am interested in (state subject, exam., or career).

 ADDRESS

 WRITE IF YOU PREFER NOT TO CUT THIS PAGE

