PRAGTICAL WRELESS
 AUGUST 1969

 \section*{30}

 \section*{30}}

TRANS ET

also inside

ORGAN BUILDERS!
SILICON N.P.N. TRANSISTORS SUITABLE FOR USE IN DIVI. DER CIRCUITS-1/6 each or 55 per 100.
UNMARKED TRANSISTORS (tested) similar to:
2N753 $1 / 6$, BSY28 1/6. BSY65 1/6, OC44 1/6, OC71 1/-, OC72 1/-,
ORP12 CADMYUM'SULPHTDE LIGHT-SENSITIVE RESISTORS 9/- each.
GIANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6mA AT 6 VOLTS FROM DAYLIGHT: 67 mm . diameter 10/-each. 50 mm . x $37 \mathrm{~mm} ., 2$ for 10%.
MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE! $0.001 \mu F 400 \mathrm{~V}$ 3d., $0.0015 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0 \cdot 0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.0022 \mu \mathrm{~F}$
$400 \mathrm{~V} 3 \mathrm{~d} .0 .01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d}, 0 \cdot 15 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} .0 \cdot 22 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0 \cdot 27 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $1 \mu \mathrm{~F}=125 \mathrm{~V} 1 /-$,

RECORD PLAYER CARTRIDGES. COMPLETE WTTH NEEDLES GP67/2 Mono 15/-, GP91/3 Compatible £1, GP93/1 Crystal Stereo 25/-s GP94/1 Ceramic 30/.

TRANSISTORISED SIGNAL INJECTOR KIT 10/-
SIGNAL TRACER KIT 10/-. CAR REV. COUNTER KIT 10/-

VEROBOARD

 $5 \times 2 \frac{1}{2} 0.15$ matrix $3 / 1113$ x $22^{-} 0.1$ matrix $4 / 2$
Spot Face Cutter 7/6. Pin Insert TooI 9/6. Terminal Pins $3 / 6$ for 36. Special Offer! Spot Face Cutter and $52 \frac{1}{2} \times 1^{\prime \prime}$ boards............9/9 only PAPER CONDENSERS, Mixed bass $0.001 \mu \mathrm{~F}$ to $5 \mu \mathrm{~F}, 12 / 6$ per 100. SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted Mixed types and values. $10 /-$ per 100.
RESISTORS. Mixed types and values, $\frac{3}{4}$ to 1 watt, $6 / 6$ per $100.55 /$-per 1.000. Wire-wound resistors. 1 watt to 10 watts. Mixed values. 20 for $10 /-$ TRANSISTORS. Mixed, unmarked, mainly O.K. 7/6 for 50.

12 VOLT TRANSISTORISED FLUORESCENT LIGHTG. HALF NORMAL PRICE
8 Watt $12^{\prime \prime}$ tube. Reflector type \&2-19.6. 15 watt 18° Batten type 3 3.19.6. IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

ELECTROLYTIC CONDENSERS							
$0.25 \mu \mathrm{~F}$	3 volt	4 uF	4 volt	$10 \mu \mathrm{~F}$	25 volt	$64 \% \mathrm{~F}$	9 rolt
1 2 F	6 volt	$4 \mu \mathrm{~F}$	12 volt	20.2 F	6 volt	100 LE	9 rolt
$1 \mu \mathrm{~F}$	20 volt	$4!\mathrm{F}$	25 volt		6 volt	320 JE	4 volt
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 voit	25 ¢F	12 voit	SOLE	10 volt
$2 \mu \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$\therefore 00 \mathrm{LF}$	6.4 volt
$2 \mu \mathrm{~F}$	350 volt	$8 \mu \mathrm{~F}$	3 volt	$30 \mu \mathrm{~F}$	6 rost	AI: at	1 -each.
$2 \cdot 5 \mu \mathrm{~F}$	16 volt	8 emF	12 volt	$30 \mu \mathrm{~F}$	10 VC	20 as	dorted
3 , \%	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6%	cour se	lection)
$3 \cdot 24, \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	$2 \cdot 5 \cdot 014$	10	

Orders by post to
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFES.
Please include suitable amount to cover post and packing. Minimirm order 10I-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rocs Fxohanges, 231 Alum Rock Road, Birmingham 8.

Canand COMPARE OUR PRICES!

AT-60 MK 11

4-speed autochanger -less cartridge

LASKY'S

 PRICE f14.10.0 Post 51 .Adtochangers
1085 leas cartridge
1025 with GCM21 mono cartridge (Stereo Compat) 2025 TC with GCM21 mono cartridge (Stereo Compat) SL55 with $\mathbf{~} 2006$ stereo cart ridge
SL05 less cartridge
SL\%5 less cartridge SL95 less cartridge
A70 Mk II less cartridge BSR UA47 less cartridge
86.19.6.
87.19.6.
\&11.19.6. 214.15.0. 828.10.0. £35.0.0.
ع13.19.6.
\$5.9.6.

SINGLE PLAYERS SP25 MK II less cartridge AP75 with AD. 76 K magnetic Cartridge SRP22 Mains model less cartridge Battery model less cartriage TRANSCRIPTION DECKS 401

GARR ER.6.11; WB4 Mk II 25.8 .11 ; WB5 f5.8.11.
CLEARVIEW PERSPEX COVERS:
SPCI 88.5 .0 ; SPC4 Mk II 24.6.6.
Postage on all above 5/- extra.

DERSHI BDRRD KITS
 NEW EXPERIMENTAL AND EDUCATIONAL CIRCUIT SYSTEM

The DENSHI BOARD system enables the young experimentor and electronics hobbyist to produce a wide range of tranaiator circuits of increasing sophistication-without soldering or the use of any tools at all! Basically the system comprises a slotted circuit board into which plug-in components and bridge pieces are set to produce up to 30 different circuits. The components are incapsulated in transparent plastic blocks bearing the appropriate circuit symbol and value THESE ARE JUST A FEW OF THE thus enabling even the complete thos enabling elo mentals of circuitry after only andamoments circuitry after only a few DENSHI BOARD KIT addition each plete with an 80 page manual of circuits and data.

THESE ARE JUST A FEW OF THE
CIRCUITS YOU CAN BUILD IN MINUTES:
VARIOUS RADIO RECEIVERS, AMPLIFIERS, MORSE CODE PRACTISE DEVICE, CONTINUITY TESTER, SIGNAL INJECTOR, SIGNAL TRACER, WIRELESS MICROPHONE ETC., ETC. DENSHI BOARD KIT SR-1A comprises:
Base board; tuner block; 4 resistors; choke eoil; transformer; 28A transistor for RF; 2 diodes; 3 capacitors; battery block; morse key; antenna lead; crystal earphone; various bridge and connecting pieces and 80 page manual. This kit permits the buildiag of 16
basic circuits basic circuits.

LASKY'S PRICE £4.19.6 Post $3 / 6$

DENSHI BOARD KIT SR-2A as $S R-1 A$ but with the follawing additionat parts: 2SB transistor for AF; 2 resistors; 1 capacitor; crystal microphone; test probes; electrode;
additional connecting pieces; $9 V$ battery. This kit permits the building of 30 basic cireuits.
LASKY'S PRICE $£ 7.2 .6$ Past $3 / 6$

EXCLUSIVE FIRST THE IC 403 INTEGRATED CIRCUIT AMPLIFIER MODULE AVAILABLE NOW!
These tiny modules-size only $25 \times 10 \times 5$ millimetresrepresent the most amazing breakthrough in crrcutt desiga since the introduction of the transistor. The actual circuit-no bigger than a pin-
head-is incapsulated in solid plastic fused with the heatsink and connecting pins to makt an almost indestructible unit. The $\mathrm{IC}-403$ is an tategrated power and pre-amplifier requiring only the addition of tone and volume controls, power source and speaker to form a complete andio amplifier of 3 W output. Originally developed for computer and space projectsthere are many applications for these unique devices, wherever high efficiency and ultra compact size is required, i.e. miniature P.A. and audio amplifiers, intercoms, electronic organs, tape recorders etc. etc. ${ }^{\circ}{ }^{\circ} \mathrm{C}$): Output power typically 3 W from 250 mV input. Frequency response 20 Hz to 80 KHz) 3 dB . Power amp. distortion 0.3% (at $1 \mathrm{~W}, 400 \mathrm{~Hz}$).
 foad 7.5 ohms. Noise level -75dB. Pre-amp. input imp. $2 \mathrm{~m} / \mathrm{ohms}$. Pre-amp and power amp. D.C. input current 50 N .A.
THE IC-403 IS AVAILABLE FROM STOCK EXCLUSIVELY FROM LASKY'S-COMPLETE WTH INSTRUCTION DATA AND SUGGESTED CIRCUIT APPLICATIONS.

LASKY'S PRICE 52/6 Pate $2 / 6$

 Pastry's Fianiolminaited Frisurize:
 33 TCTIE: HAME CT. RD. LONUON, W1

ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 CAVELL STBEET, TOWER HAMLETS, LONDON. E. 1 TEL: 01780 a 921

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 3rd September 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: ' O ' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PW9), 34a Hereford Road, London,W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS \qquad

VALVES
SAME DAY SERVICE NEWI TESTED! GUARANTEED!
SETS IR5, 185, 1T4, 3S4, 3V4, DAF91, DF91, DE91, DL92, DL94.

024	4		18/6	DK96		EL34	9/6		716	F	6/8
1A7GT	$7 / 6$	20P\$	11/9	DL35	51	EL41	10/6	PCL85	91-	UC92	5/-
1H5GT	$7 / 8$	20P4	18/6	DL92	5/8	EL84	$4 / 9$	PCL86	8/-	UCC84	$7 / 9$
INEGT	$7 / 8$	25L6G	51-	DL94	$8 /-$	EL00	$51-$	PENA4	$2 / 6$	UCC85	$8 / 9$
1R5	$5 / 9$	25 U 4 GT	11/6	DL96	$71-$	EL500	12/6	PEN36	15/-	UCF880	$8 / 8$
185	418	30 Cl	6/8	DY86	$5 / 9$	EM80	$5 / 9$	PFL20	21	UCB42	9/9
$1{ }^{184}$	$2 / 9$	30 Cl 5	181-	DY87	$5 / 9$	EM81	$6 / 9$		$9 / 9$	81	
384	$6 / 8$	30 Cl 7	16/-	CABC8	6/6	EM884	$6 / 6$	PL81	$7 / 3$	UCL82	
3V4	$81-$	30018	11/6	EAF42	819	EM87	$7 / 8$	PL88	I	L	11/6
${ }^{51} 54$	$4 / 6$	30F'5	18/-	EB91	$2 / 8$	EY51	718	PL83	$71-$	UF41	$10 / 6$
5Y3GT	$6 / 9$	$30 \mathrm{FL1}$	18/9	EBC33	81-	EY86	$8 / 6$	PL	6/6		
524G	$7 / 8$	30 FL 1	14/6	EBC41	$9 / 9$	EZ40	$7 / 6$	PL500	13/		
6/30L2	121-	30 FL 1	21-	EBF80	$6 / 9$	ER41					
6AL5	$2 / 8$	30 Ll	6/6	EBF89	8/8	Ez80					
6am6	$3 / 6$	$30 \mathrm{L15}$	14/-	ECC81	$4 / 9$	GZ32					
6AQ5	$4 / 9$	$30 \mathrm{L17}$	15/6	ECC82	4/9	GZ82	8/9 9	PM84	$10 / 6$	UM84	$7 / 6$ $7 / 6$
6AU6	$4 / 6$	30 P 4	18/-	ECCC83	$71-$	GZ34	$9 / 9$ $8 / 9$	${ }_{\text {PX }}$	$10 / 6$ $5 / 6$	UY85	$7 / 6$ $6 / 0$
6AT6	4-	30P12	18/9	ECC84	519	KT6	$8 / 9$ $16 /-$	PY31	10\%-		-
6BA6	6	30 P 19	12/-	ECC85	5/9	K	161-	PY32	101-	VP4B	$\xrightarrow{10 / 7}$
$6 \mathrm{BJ6}$	71	$30 \mathrm{PL1}$	15/6	ECF80	$7 /-$	N78	14/9	PY81	$5 / 8$	Z77	$3 / 6$
6BW6	18/-	30PL1	15/8	ECF82	5/9	Pabc	$7 /-$	PY82		Tranaia	
$6 \mathrm{~F}^{1} 13$	8/8	35L6G	81-	ECH35	6/-	PC86	10/3			AC107	$8 / 6$
6Fl4	$9 /$	35 W 4	$4 / 6$	ECH42	10/6	PC88	10/8			$\mathrm{ACl}^{\text {a }}$	1 -
6 F 28	$14 / 3$	$38 \mathrm{Z4}$ G	51-	ECH81	$5 / 9$	PC96	$8 / 8$	PY800	10	AD140	$7 / 6$
6K79	$2 / 6$	6063	18/6	ECH84	$7 / 6$	PC97	$8 / 6$	PY801	$6 / 9$	AF115	/-
6K8G	4/8	AC/VP2	210/-	ECL80	$6 / 9$	PC900	$8 /$	R19	$6 / 6$	AF116	81
6L18	$6 /-$	AZ31	$91-$	ECL82	6/9	PCC84	6/6	R20	10	AF117	$8 / 8$
6V6GT	6/6	B729	12/6	ECL83		PCC85	$0 \cdot 10$	TH21	$9 / 9$	AF124	$7 / 6$
6×4	$4 / 8$	CCH35	10J-	ECL8	8/8	PCC88	$9 / 9$	U25	181-	AF126	$8 / 6$
6x59T	$5 / 9$	CL33	18/6	EF37	0	POC89	1016	U26	12/-	AF126	$71-$
787	71	CY31	$6 / 9$	EF39	$4 / 9$	PCC189	11/6	U47	$13 / 6$	AFl27	$3 / 6$
$7 \mathrm{C6}$	$8 / 9$	DAC32	7/3	EF41	$10 / 9$	PCF80	616	U49	13/6	$0 \mathrm{OC2}$	$5 / 9$
7 Y 4	676	DAF9]	4/8	GF80	4/9	PCF'82	6/8	U52	$4 / 6$	$0 \mathrm{OC4}$	18
10F1	14/-	DAF96	6/6	EF85	6/-	PCF86	9/6	U78	$4 / 8$	OC45	18
10P13	15/8	DF'9g	$7 / 9$	EF86	6/3	PCF200	18/6	U191	$12 / 6$	00^{71}	$2 / 6$
12АН8	33/-	DF91	$2 / 9$	EF89	5/3	PCF80	18/6	U801	19/6	72	8/6
12AT7	4/9	DF96	6/6	EF91	3/6	PCF80	$6 / 9$	UABC80		C75	$2 / 6$
12AU6	4/9	DH77	4/-	EF94	$4 / 6$	PCF80	916	UAF42	$9 / 6$	$0 \mathrm{C81}$	$2 / 8$
12AU7	$4 / 9$	DH81	1019	EF183	6/-	PCF805	$11 / 6$	UB41	${ }^{6 / 6}$	$0 \mathrm{C81D}$	$2 / 8$
12AX7	$4 / 9$	DK32	$7 / 6$	EF184	$5 / 6$	PCF808	121-	UBC41	8/6	0 O 82	2/8
12K8GT	T 71	DK91	$5 / 9$	EH90	6/3	PCL82	71	UBC81	${ }^{7} 1$	OC82D	2/6
19BG6	17/6	DK92	$9 / 3$	EL38	819	PCL83	9/-	0	6/-	$0 \mathrm{Cl7}$	$2 / 6$

85 TORQUAY GARDENS, REDBRIDGE, ILFORD. ESSEX.

RECORD PLAYER gild your own Hi ei Record Pleyer with the Serenade fully transistoris 酸amplitier which cames complate with $2-10^{\prime \prime} \times 6^{\prime \prime}$ spbakers and the latest BSR 4 Speed Sterm Mono Record Changer. Advanced solid state amplifier only $4 \frac{1}{6}^{\circ}$ deep, 14 transistors plus 4 diodes, separate tatal and Treble- Frequency response $50-15,000 \mathrm{t} / \mathrm{s}$.

EASY TO INSTALL.
NO TECHNICAL KNONLEDGE
Only ${ }^{\text {BEQURED }}$ Gns. +paP
H. P. terms avallable.
H. P. $£ 9.16 .0$ \& 12 monthly payments of $36 / 9$ (Total H.P. $£ 31.17 .0$). Send $£ 10.13 .6$ today. Amplffer avallable separately at only 17 Gns. "TRANSCONTINENTAL" FULLY TRANSISTORISED STEREOPHONIC RADIOGRAM CHASSIS
Complete with $2-10^{\prime \prime} \times 6^{\prime \prime}$ speakers and the latest BSR Mono/Stereo Record Changer - a complete radiogram at half normal price ONLY

10 Watts Total output $3 / 4,1 /$ GNS, P8P 17 Transistors \& 10 diodes \quad EASILY FITTED NO TECHNICAL KNOWLEDGE NECESSARY H.P. available £ 12.1 .6 dep, plus 18 monthly payments of 32/- (Total H.P. £40.17.6).

POST

 THIS COUPON NOW!
 Name -

LEWIS radio OÓ CAASE Side, SOÜTHGATE. Dep. P869 14. TIEPHONE PAL $3733 / 966 b^{\circ}$ LONDON, N.14. TELEPHONE PAL 3733/8GGD

The Premier Stereo System consists of an all transistor stereo amplifier, Garrard Model 2025 auto/manual record player unit fitted stereo/mono cartridge and mounted in teak finish plinth with perspex cover and two matching teak finish loudspeaker systems. Absolutely complete and supplied ready to plug in and play. The 10 transistor Amplifier has an output of 5 watts per channel with inputs for pick up, tape and tuner also tape output socket. Controls: Bass, Treble, Volume, Selector. Power on/off, stereo/mono switch. Brushed aluminium front panel. Black metal case with teakwood ends: Size $12^{\prime \prime} \times 5_{\frac{1}{2}}{ }^{\prime \prime} \times 3{ }_{2}{ }^{\prime \prime}$ high (Amplifier available separately if required £14.19.6. Carr. 7/6).

> WIDE RANGE OF HI-FI STEREO EQUIPMENT ON DEMONSTRATION All leading makea available including Rogers, Armstrong, Dulci, Wharfedale, Goodmans, Goldring, Rhure, etc. etc.

E.M.I. $13 \times 8 \mathrm{in}$. HI-FI SPEAKERS

Fitted two 2 fin . tweeters and crossover network. Impedance 15 ohms. Handling capacity 10 watts. Brand New. 99/6, p. \& p.
$7 / 6$. Alao available
$49 / 6$, p. \& p. $7 / 6$.
TEAK FINISHED CABINET Size $17 \frac{1}{2} \times 10 \times 7 \frac{1 i n}{}$. Ideal for above speakers $85.10 .0, \mathrm{p} . \& \mathrm{p}$. 10%.

PICK-UP CARTRIDGES AT MONEY SAVING PRIOES!
golddring groo (stereo) B \& O SP1 (Stereo)
PICKERING V15/ACZ (istereo)
SONOTONE 9TAHC/Diamond (Stereo
ACOS GP91/18C (Mono compatible)
ACOS GP93-1 (Stereo)

BSR X3M (Mono compatible)
RONETTE 105 (Stereo).

HI-FI STEREO HEADPHONES
Desigued to the highest possible standard. Fitted a)* speaker units with soft padded ear muffs. Adjuatable headband. 8ohm impedance. Com.
plete pith tift. lead and plete with bift. lead and steren jack plug.
$59 / 6 \stackrel{\text { p }}{ }$.

MONO HEADPHONES 2000 ohm 14/6 P. \& P. 2/6. STEREO STETHOSCOPE SET Low imp. 25/- P. \& P. 2/-. MONO STETHOSCOPE SET Low imp. 10/6 P. \& P. 2/-

"PREMIER'
 SPEAKER SYSTEM

Specially designed oiled teak cabinet with vynair front. size 123" high,
 sohm Bass speaker with rolled surround and matching $3^{\prime \prime}$ E.M.I. tweeter. Fully lagged.
£7.19.6 ${ }_{7 / 6}^{\text {art }}$

RONETTE 106 (Stereo)
29.19.6

All complete with mounting brackets and instructions Post and Packing $1 / 6$ each

SPECIAL OFFER OF
 SHURE

STEREO CARTRIDGES

Look at our special prices!

M3D List E8.10.6. Premier Price \$6.19.6 M44-5 List E14.9.1. Premier Price E11.11.0 M44C List cil. 19.5. Premier Price E10.10.0 M44E List E17.8.4. Premier Price E18.19. M55E List E20.10.1. Pramier Price E16.19.6 M75E List £25.18.10. Premier PTice £21.0.0 Post and Packing 1/6 each

"PREMIER"

TAPE CASSETTES

"'VERITONE" RECORDING TAPE

SPEOTALLY MANUPACTURED IN U.S.A. FROM EXTRA STRONG PRE-STRETCBED MATERIAL. THE QUALITY IS UNEQUALLED TENSILISED to ensure the most permanent base. Highly resistant to break age, moisture, heat, cold or humidity. High polished spice free flish. Smooth output throughout the entire audio range. Double wrapped-attractively boxed
 $\begin{array}{lllllll}\text { TT3 } & 3^{*} & 450^{\prime} & \text { POLYESTER } 7 / 6 & \text { TT6 } & 59^{\prime \prime} & 2400^{\circ} \\ \text { POLYESTER } 37 / 6\end{array}$ $\begin{array}{lllllll}\text { DT8 } 34^{* \prime} & 600^{\prime} & \text { POLYESTER } & 11 / 6 & \text { SP7 } & 7 \boldsymbol{\prime \prime} & 1200^{\circ} \\ \text { POLYESTER 12/6 }\end{array}$
 $\begin{array}{llllllll}\text { LP5 5 } & \text { 800 } & \text { P.V.C. } \quad 10 /-\quad \text { DT7 } 7^{\prime \prime} & 2400^{\circ} & \text { POLYESTER 25/- }\end{array}$ DT5 5* 1200 POLYESTER 15/- TT7 7" 3600° POLYESTER 50/LP6 58x" 1200' P.V.C. 12/6

Post and Packing $3^{* *} 1 /-5^{*}, 5 \frac{1}{4}^{*} 1 / 6,7^{*} 2 /-$. (3 reeis and over Post Free)

WELLER SOLDERING TOOLS

MONO GRAM AMPLIFIER
$\frac{1}{2}$ watts output. Ucen EL84 valve, donble wound mains transformer. Ideal for use with nny record deck. Volume/ on/off and tone controls on fying leidy. Output impedance onms. Size overall st ${ }^{*} \pi$. $\times 55^{\prime \prime} \mathrm{d} \times 3^{\prime \prime} \mathrm{h}$. A.C. 200/240V. ONLY 69/6. P. \& R.5/

JULIETTE NA. 50185 BAND 18 TRANSISTOR MAINS/BATTERY RADIO
Covers AM 540-1600Kc/s. Marine $16-4 \cdot 6 \mathrm{Mc} / \mathrm{s}$. FM $8 \mathrm{~B}-108 \mathrm{Mc} / \mathrm{s}$. VHF 108-134Mc/s. PB $148-174 \mathrm{Mc} / \mathrm{s}$. Ferrite bar aerial for AMI/MB. Telescopic aerial for FM/VHF/PB. ${ }^{4}$ P.M. peaker. four 1.5 F . batteries. size: ,C. by four $1 \cdot 5 \mathrm{v}$. batteries. Size: PREMLER 33 GNS. 10

TWO STATION
TRANSISTOR
INTERCOMS.
Complete with battery and 50ft. connecting wire. Compact size, two way call aystem. Ideal for
home. office, factory, etc. $49 / 6 \underset{4 /- \text {. }}{\text { P. }} \mathbf{P}$.

FOUR STATION INTERCOM. Master unit and 3 slaves Ideal for ofnce and home. Complete with battery and connecting wire $\mathbf{2 7 . 1 9 . 6}$ P. \& P. 5/6

RACAL RA-17

first ministry release of these world famous communication receivers. Frequency range $500 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Available in excellent condition, fully tested and guaranteed. f150. Carr. 40/-

CLASS D WAVEMETERS

A crystal controlled hetero dyne frequency meter Operation on 6 volts D.C. Ideal for amateur use dition. 85.18 .6 . Carr. $7 / 6$ or brand new. with acces-
sorieg. $£ 7.19 .6$. Carr. $7 / 6$.
CLASS D WAVEMETERS No. 2 Crystal controlled. $1 \cdot 2-19 \mathrm{Mc} / \mathrm{s}$. Mains or
12 V . D.C. operation. Complete with calibration charts. Excellent condition. $\$ 12.10 .0$ Carr. $30 /$

MARCONI CT/44/TF956 AF Absorption Wettmeter
$\mu /$ watt to 6 watts. 280. Carr. 10/-

LELAND MODEL 27 BEAT FREQUENCY OSCILLATORS Frequency $0-20 \mathrm{Kc} / \mathrm{s}$. on 2 ranges. Output 500Ω or $5 k \Omega$. Operation $200 / 250 \mathrm{~V}$. A.C.Sup plied in perfect order. s12.10.0. Carr. 10/-

AVOMETERS
Supplied in excel lent condition, fully tested and checked. Com plete with prods leads and instructions. Model 47A £9.19.6. P . \& P 7/6.

SOLARTRON CD-1016 OSCILLOSCOPE
Double beam. D.C. To $5 \mathrm{Mc} / \mathrm{s}$. Excellent
condition. 255 each. Carr. 20/-.

AM/FM SIGNAL GENERATORS

Oscillator Test No,
2. A high quality
precision
instra precision $\begin{aligned} & \text { instrin } \\ & \text { ment made for the }\end{aligned}$
met ministry by Airmec. ${ }_{20-80}{ }^{\text {Frequen }}$ $\mathrm{CW} / \mathrm{FM}$ /s. AM orates precision dial, level meter, precision atteniato 1μ 110m. Operation from 12 Folt D.C. or $0 / 110 / 200 / 250$ Yolt A.C. Size
$12 \times 8 \frac{1}{2} \times 9$ in. Supplied in brand new dition complete with all connectors fully tested. $\$ 45$. Carr. $20 /$ -

GEARED MAINS MOTORS Paratux type SD19 230/250.. A.C. Rever aible. 30 r.p.m, 40 lb / ms. Complete with capacitor. Excellent condition. 99/6. Carr

 SINCLAIR EQUIPMENT
 Z12 12 watt amplifier, 89/6 PZ4 Power Supply Unit 89/6 ($\begin{gathered}\text { Q14 } \\ \text { Speakers } \\ \text { Micromatic }\end{gathered}$ 49/6. Built 59/6 SPECLAL OFFER
 Two Z12 Amps., PZ4 Power Supply, Stareo 25 speakers, 237.
 NEW SINCLAIR 2000 SYSTEM 35 watt Integrated Amplifier, eza. Carr. $5 /-$ ECHO HS-G06 STEREO HEADPHONES

 Wonderfuily comfort wet wit vinyl headtand 6 ft . cable and stereo $\mathbf{j a c k}$ plug $25017,000 \mathrm{cps}$. $\stackrel{\text { ohm }}{\text { P. } \& \text { P. }}$ imp.

UNR-30 4-BAND COMMUNICATION RECEIVER
Covering $550 \mathrm{Ke} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built in speaker and phone jack. Metal cabinet. Operation 2200 instructions. \quad Carr. $7 / 613 \mathrm{gns}$.

TRIO COMMUNICATION

RECEIVER MODEL 9R-59DE
4 band receiver covering $5 \overline{50} \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. 40 and 80 metres. 8 valve plus 7 diode circnit. $4 / 8$ ohm output and phone jack. SSB-CW - ANL - Variable BFO S meter Sep bandspread Viariable RF and AF gain controts. 15 $15 / 250 \mathrm{~V}$. A.C. Mains. Beautifully designed, Size: $7 \times 15 \times$ 10n. With instruction manual and service dath. 442.10 .0 , calriage paid. TRIO commuN-
IOATION TYPE HEADPHONES. Normally $£ 5.19 .6$. OUR PRICE $£ 3.15 .0$ if purchased with IOATION TYPE HEADPHONES. Normally 55.19 .6 . OUR PRICE $\mathbf{x 3 . 1 5 . 0}$ if purchased with
above receiver. above receiver
TRIO JR-500SE 10-80 METRE AMATEUR COMMUNICATION RECEIVER IN STOCK £69.10.0. Carr. paid. SPECIAL BONUS OFFERI TRIO SP5D Matching Speaker Mate and TRIO HS4 Communication Headphones Normal Value f10.7.0., FREE OF CHARGE with every JR.500SE purchased.

HAMMARLUND SP600JX COMMUNICATION RECEIVER
High quality professional dual conversion communication receivers avalable for the first time in this country at a reasonable price. Frequency range $540 \mathrm{Kc} / \mathrm{s}-54 \mathrm{Mc} / \mathrm{s}$. in 6 bands variable tuning or 6 channel orystal controlled. $2 \cdot 5$ watt output into 600 ohms. Input $110 / 230 \mathrm{~V}$. A.C. 20 valve circuit incorporating: Xtal filter B.F.O. A.N.L.
X tal calibrator, $\$$ meter etc. $\mathrm{Size} 19 \times 12 \times 22 \mathrm{in}$. (List \&520). Offered in excellent condition, fully tested and checked. $£ 100$ each.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, IHF music power, 30 W 19 transistors, 8 diodes, IHF music power, 30 W
at 88. Reppons $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Dis at 8Ω. Response $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Dis
tortion 1% or less. Inputs 3 mV and 250 mV , tortion 1\% or less. Inputs 3m . Separate L and R . volume con trols. Treble and bass control. Stereo phone jack Brushed aluminium, gold anodised extruded front panel with complementary metal case. Size $10.2 \times$
$39 / 16 \times 713 / 16 \mathrm{in}$. Operation $115 / 230 \mathrm{~V}$. A .

MARCONI TEST EQUIPMENT EX.MILITARY RECONDITIONEDD TF. 144 G STANDARD SIGNAL GENERATORS, 85 Ke/s TOR $0.5 \mathrm{Mc} / \mathrm{s} \& 45 \mathrm{Carr}$. $30 /-$. TF. 195 M BEAT FRE TOR O- 5 Mols \& 45 Carr. $30 /-$ TF. 195 M BEAT FREQ20 Carr. 30/-. TF, 142E Distortion Factor Meter, e20 Carr. 20/-. All above offered in excellent condi-
tion, fully tested and checked. TF. 1100 VALVE VOLTMETER, Brand New, e50. TF. 1267 TRANSAIS SION TEST SET, Brand New, i\%5. TF. 1371 Wide Band Milivolt Meter, Brand New. 550 .

MULTIMETERS for GYERY purpose/

LAEAYETPE DE-LUXE 100K $\Omega /$ FOLTT
 aeter protection $0 / 5$ $\cdot 5 / 10 / 50 / 250 / 500 /$
, 000 V D.C. $0 / 3 / 10 / 50$ 50/500/1,000V A.C. $0 /$ $10 / 100 \mu A / 10 / 100 /$ $500 \mathrm{~mA} / 2 \cdot 5 / 10 \mathrm{~A}$. $\mathrm{K} / 10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M} /$
$10 \mathrm{M} \Omega .-10$ to $49 \cdot 4 \mathrm{~dB}$
$818.18 .0 . \mathrm{P}, \& \mathrm{P} .5 / \mathrm{m}$

MODEL TE-80 50,000 O.P.V. mirror scale overload protec D.C. 0/6/30/120/300/1200v. D.C. $\quad 03 / 6 / 60 / 600 \mathrm{~mA}$. D.C $16 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 / 16 \mathrm{meg} \Omega . \quad-20$
to $+63 \mathrm{~dB} . \mathrm{c}^{2} .10 .0$ P. \& P. $3 /-\mathrm{C}$

MODEL TE-70, 30,000 O.P.V. $0 / 3 / 15 / 60 / 300 / 600$ $60011,200 \mathrm{~V}$. A.C. $0 / 30 \mu \mathrm{~A}$ $3 / 30 / 300 \mathrm{~mA} .0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $1 \cdot 6 \mathrm{M} / 16 \mathrm{Meg} . \Omega$
$\mathbf{5 5 . 1 0 . 0 . \mathrm { P } . \& \mathrm { P } . 3 / -}$.

TE-900 20,000 $6 / V O L T$ GIANT MULTMETER
mirror scale End overload protection. 6 in. full view $2 \cdot 5 / 10 / 250 / 1,000 / 5,000$ v. AC. $0 / 25 / 12 \cdot 5 /$ $10 / 50 / 250 / 1,000 / \overline{5}, 000 \mathrm{v}$. D.C.O/50 LA/110/100. $1500 \mathrm{~mA} / 10 \mathrm{amp}$. D.C ${ }^{+}$ $02 \mathrm{~K} / 200 \mathrm{~K} / 20$
OHM. $£ 15 . \mathrm{P}$ \& $\&$ P. $5 /-$ OHM. \&15. P. \& P. 5/

LAFAYETHE 5\% Range Super $50 \mathrm{k} \Omega /$ volt Multi- meter. D.C. volts 12 mV -1000 V

 -1000 V . A.C. volts $1-5 \mathrm{~V}$-1000 V D.C. current $25 / \mathrm{LA}-10 \mathrm{amp}$ ohms $0-$
$10 \mathrm{meg} \Omega \mathrm{dB}-20$ to +81 $10 \mathrm{meg} \Omega \mathrm{dB}-20$ to +81
dB . Overload protection. \$12.10.0. Garr. $3 / 6$.

MODEL TE-12 20,000 O.P.V. $0 / 0 \cdot 6 / 6 / 30 / 120 /$ $600 / 1,200 / 3,000 / 6,000 \mathrm{v}$
$0 / 6 / 30 / 120 / 600 / 1,200 \mathrm{v}$ $0 / 6 / 30 / 120 / 600 / 1,200$
$0 / 60 \mathrm{uA} / 6 / 60 / 600 \mathrm{~mA}$ $600 \mathrm{~K} / 6 \mathrm{Meg} / 60 \mathrm{Meg} . \Omega 50 \mathrm{FF}$ $0 \cdot 2 \mathrm{mFd}$. $\mathbf{2 5} .19 .8$. P. \& P. $3 / 6$.

TO-2 PORTABLE OSCILLOSCOPE A general purpose low
cost economy oscillosost economy oscilloscope for everyday use.
Y amp. Bandwidth
Bap-1 $\begin{array}{llll}2 & \text { CPS-1 } & \mathrm{mHza} \\ \mathrm{imp} & 2 & \text { Input } \\ \mathrm{man} & 25 & \mathrm{pF}\end{array}$
 tube. $115 \times 180 \times$
230 mm.
Weight
glb. $220 / 240 \mathrm{~V}$. a.c. Supplied brak. £22.10.0. Carr. 10/-.

FIELD TELEPHONES TYPE L

Generator ringing, metal cases. Operates from two $1 \cdot 5 \mathrm{~V}$ batteries (not supplied). Excellent condition. 84.10.0 per pair. Carr. 10/-.

TE-40

HIGH SENSITIVITY A.C. VOLTMETER 10 meg. input 10 ranges: $100 / 300 \mathrm{~V}$. R.N. $40 / 30$ $1-2 \mathrm{Mc} / \mathrm{s}$. Decibels -40 to +50 dB . supplied brand new complete with leads and instructions. Operation $230 \mathrm{~V} . \quad$ A.C.
Carr. $5 /-$.

AUTO TRANSFORMERS
$0 / 115 / 230 \mathrm{~V}$. Step up or step down. Fully shrouded.
150 W.

TE22 SINE SQUARE WAVE AUDIO GENERATORS
 Sine: $20 \mathrm{c} / \mathrm{s}$ to
$200 \mathrm{Ke} / \mathrm{s}$ on 4
bands. Square: bands
$20 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{Kc} / \mathrm{s}$ $20 \mathrm{c} / \mathrm{s}$ to
Output imped ance 5,000 ohms $200 / 250 \mathrm{~V}$. A.C supplied brand new and guaran tion manual and leads, £16.10.0. Carr. $7 / 6$

TE111. DECADE RESISTANEE ATTENUATOR

Variable range 0
111dB. Connections

Unbalanced T and
Bridge T. Impedance 600Ω range $(0.1 \mathrm{~dB} \times$ $10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$ Frequency: d.c. to 200 kHz (-3 dB). Accur acy: 0.05 dB . + Tndication $\mathrm{dB} \times 0.01$.
Maximum input less than $4 W$
$(50 \mathrm{~V})$. Built in 600Ω load resistance with internallexterna 600Ω load resistance with internal/externa
switch. Brand new $\$ 28.10 .0$. P. \& P. $5 /-$.

TE-20D RF SIGNAL GENERATOR

CAR LIGHT FLASHERS

Heary duty light
fasher employs flasher employs a
condenser discharge principle operating on electro mechani cal relay. (As inset) Housed in strong rate between 60-120 Der minute. Maxi mum load 6 amps. size $2-11 / 16 \mathrm{in}$. dia. x 4in. cost. 6/6 each P. P. 2/6. (3 for 17/6 P. P. 4/6)

Full range of all components • valves semicondustors - test equipment receivers - hi-fi equipment - all at discount prices.
G. W. SMITH \& CO (RADIO) LTD. Also see oppos. page

GARRARD

BEAM OSCILLOSCOPES

excellent general put pose D/B oscilloseope Bandwidth $5.5 \mathrm{Mc} / \mathrm{s}$ Sensitivity $33 \mathrm{mV} / \mathrm{CM}$ Operating voltage 0/110 200/250V. A.C. Supplied in excellent working con-
dition. 222.10 .0 . Or complete with all accessories 825. Carriage 30/-

ADIMIRALTY B. 40 RECEIVERS Released by the Ministry. High quality a valye recelver manuifactured by Murphy Coverage in $\overline{5}$ bands $650 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. I.F
 $500 \mathrm{Kc} / \mathrm{s}$. Incorporates ${ }_{2}$ R.F. and 3 I.F. stages, band-pass filter, noise limiter, crystal controlled B.e.'.O., calibrator. O/F output, ete. Built-in speaker,
output for phones. Operation $150 / 230$ volt A.C. Size $192 \times 132 \times$ A.C. Size $19 \frac{1}{2} \times 13 \frac{1}{2} \times$ offered in good working condition. jiza.10.0. Carr. 301-. W.F circuit diagrams. Also available B. 41 L.F.
version of above. $15 \mathrm{Ke} / \mathrm{s}-700 \mathrm{Kc} / \mathrm{s}$. $\mathbf{8 1 7} .10 .0$. Carr. 30/-

R209 MK II
COMMUNICATION RECEIVER 11 valve high grade communication receiver sudtable for tropical use. $1 \cdot 20 \mathrm{Mc} / \mathrm{s}$ on 4 bands. AM/CW/FM operation. Incorporates pre-
cision vernier driver, B.F.O., aerial trimcision vernier ariver, B.F.O., aeriai tintern
 speaker and
$12 \mathrm{v} . \quad \mathrm{D} . \mathrm{C}$. internal power supply.
Supplied in excellent condition,
fully tested and checked玉15.0.0.
Carr. $20 /$

ADVANCE TEST EQUIPMENT Brand new and bozed in original sealed cartons VM. 76 VALVE VOLTMETER. R.F. measurements in excess of $100 \mathrm{Mc} / \mathrm{s}$ and D.C. measurements up to 100 V with accuracy of
$+2 \%$ D.C. range 300 MV to 1 KV . A.C. range 300 MV to 300 V RMS. Resistance $.02-500 \mathrm{M} \Omega$. Price £ $\ddagger 2$.
VM.78 A. ©. MTLLIVOLT METER. Tran. sistorised 1 MV-300 V. Frequency ic/s to $1 \mathrm{Mc} / \mathrm{s}$. Price $\mathbf{5 5 5}$.
 sistorised. A.C. range $10 \mathrm{MV-3}$ V. D.C. current range $01 \mu \mathrm{~A}-3 \mathrm{MA}$. ${ }^{1}$
1 ohm-10 megohms. Price fite
H1B AUDIO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{s}-$
50 Kols . Sine or square wave. Price EmO . $50 \mathrm{Ko} / \mathrm{s}$. sine or square wave. Price
J1B ADDO SIGNAL GENERATOR. $15 \mathrm{c} / \mathrm{s}-$ 51 K AUDIO SIGNA.
SOKC/G. PTice 230.
J2B AUDIO SIGNAL GENERATOR. As per J1B except fitted with output meter. Price TTIS TRANSISTOR TESTER. \&87.10.0. Carriage 10/- per item.

SOLARTRON MONITOR
 OSCILLOSCOPE TYPE 101

An extremely high quality oscilloscope with time base of 10μ /sec to $20 \mathrm{~m} /$ sec. Internal Y ampliffer. Separate mains power supply $200 /$ 250v. Supplied in exeellent condition with cables, probe, etc., as
\&8.10.6, carriage $30 /$.

LAFAYETTE SOLID STATE HAGOO RECEIVER 5 BAND AM/CW/SSB AREATEDR AND SHORT WAVE $150 \mathrm{Kc} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{s}$ and $550 \mathrm{Ke} / \mathrm{s}-30 \mathrm{Me} / \mathrm{s}$ F E T front end © 2 mechanical filters \bullet Huge dial - Product detector e crystal calibrator Variable BFO Noise limiter © \& meter - 24in

 e45. Carr. 10/- S.A.E., for full details.

LAFAYETTE PF-60 SOLID STATE VHF FM RECEIVER

 152-174 Me/s. Fully tunable or crystal controlled not suppled INTEGRATED CIRCUITS. Built corporates 4 n illuminated dial. Bquelob and tol in speaker and illuminated dial. Bquelch and volume controls. Tape recorder output. 75Ω aeria.
input. Headphone jack. Operation 230 V . A.C. 12V. D.C. Neg. earth. \&37.10.0. Carr. 10/-

Variable Votage ThAHSTOHMER

Brand new, guaranteed and carriage paid.
High quality construction. $0 \cdot 260$ volts. Bulk quantities available 1 amp. $-25.10 .0 ; 2.5 \mathrm{amp}$. $-56.15 .0 ; 5 \mathrm{amp}$. $\mathbf{8 9 . 1 5 . 0 \text { ; }}$
8 amp.-£14.10.0; $10 \mathrm{amp}-\mathbf{2 1 8 . 1 0 . 0 ; 1 2 \mathrm { amp } . - £ 2 1 . 0 . 0 \text { ; }}$

CLEAR PLASTIC PANEL METERS

NOW OPEN IN EDGWARE ROAD

Oar new walk around shop is now open at 311 Edgware Road fully stocked with all Hi-Fi, Communication and Test Equipment. Call hoto your nearest shop-

MODEL ZQM TRANSISTOR CHECKCR
 complete with instructions, baltery and lead. $\mathbf{8 5 . 1 9 . 6}$. P. \& P. 2/6 TE-2ORF SIGNAL GENERATOR Accurate wide range signal generator cover-
 ing 120 Directly calibrated
Variable R.F. atVariable R.F. attenuator. Operation 200/240v. A.C.
Brand new with inBrand new with in-
structions. $£ 15.0 .0$. P. \& P. 7/6, : .A.E.

ARF-100 COMBINED AF-RD SIGNAL GENERATOR
 A.F. SINE WAYE Square wave $20-$
spo 30,000 e/s. $0 / \mathrm{P}$ HIGH IMP. 21V $\mathrm{P} / \mathrm{P} 600 \Omega 3 \cdot 8 \mathrm{~V} . \mathrm{P} / \mathrm{P}$.
TF 100 K $\mathrm{TF} 100 \mathrm{Kc} / \mathrm{s}-300$ Mc/a. Variable R.F attenuation int/ex. hodulation. Incorpor ates dual purpose meter to monitor AF out-
put and $\%$ mod. on R.F. $220 / 240$ V. A.C 880.0.0. Carr. $7 / 6$

LAFAYETTE TE-46 RESISTANCE CAPACITY ANALYSER
$2 \mathrm{pF}-2000 \mathrm{mFi}$
2 ohms 200 meg

E.A.L. Phase ${ }_{\text {E }}$	
You mus	
hear thissuperb	
superb	
$15+15$	
HIGH	
OUTPUT	
SOLID STATE STEREO AMPLIFIER	
 \star Excellent performance	
\star High grade components and transistors	
\star Attractive appearance	
\star Modest cost	
Housed in Teak veneered Cabinet,	for futhy
Switched selection of Mic., Mag- netic P.U., Ceramic P.U., Radio	Descriptive
Available from your local Hi-fi Dealer	
FUTURISTIC AIDS LTD, 103 Henc	nner Lane, Leeds 13

New Edition-Now Out

Thinking of High Fidelity-first read Goodmans 28 page High Fidelity Manual. It contains interesting articles on Sterea; an Introduction to High Fidelity; Stage-built systems; as well as full details of Goodmans High Fidelity audio products.

Send for your free copy

Please send me a free copy of Goodmans Manual
Name
Address
PW8
Goodmans Loudspeakers Limited
Axiom Works, Wembley, Middlesex. Tel: 01-902 1200

Build yourself a quality transistor radio

 after sales service!
roamer seven mk IV SEVEN WAVEBAND PORTABLE

SEVEN TUNABLE WAVEBANDS-. MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE
AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size $5 \frac{1}{x} 11 \times$ $s_{1} \mathrm{in}$. Tunable over both Medium and Long Waves with extended M.W. band for easier tuning oo 7 stages- 5 transistors and 2 diodes, supersensitive lerrite rod aerial, fine tone moving coll speaker, also Personal Earpiece with switched socket for private Histening. Easy build plans and parts price ist $1 / 6$ (FREE with parts).

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. Sice $6 \pm x$ 4in. x 14 in. 7 stages- 5 transistors and 2 diodes, fine tone noving coil speaker also Personal Earpiece with switched socket for private listening. All first stade components. Easy build plans and parts price let 1/6 (FREE with parts.)

super seven

three waveband portable
WITH 3in. SPEAKER
Attractive case size $7 \frac{1}{2} \times 5 \frac{1}{3} \times 1$ in. with gitb attings. The ideal radio for home or outdoors. Covers Medium and Long Waves and Trawler Band. Speclal circuit incorporating 2 R.F. Stages, push pull output, ferrite rod aerial, 7 transiators speaker) and all first grade components. Easy build plans and parts price list $2 /$ - (FRES with parts). (Personal Earplece with switched socket for private listening $5 /-$ extra.)

roamer six

six waveband portable WITH 3in. SPEAKER

Attractive case with gilt fittings, size $7 \frac{1}{1}$ x 5 1 in. Tunable on Medium and Long waves, two for easier tuning of Tuxembourg, etc. Sensitive ferrite rod aerial and telescopic aerial for Short waves All top and telescopic aerial for short transistors and 2 diodes including Micro-Alloy R.F. Transistors etc. (Carrying strap 1/6 extra). Easy build plans and parts price tist $2 /$.

* Callers side entrance Stylo Shoe Shop

* Open 10-1, 2.30-4.30 Mon-Fri. 9-12.30 Sat

Extra M.W. band for
easier tuning of Luxembourg,
etc. Built in ferrite rod aerial for
Medium and Long Waves. 5 Section 22in.
chrome plated telescopic aerial for Short Waves-
can be angled and rotated for peak S.W. listening. Socket
for Car Aerial. Poweriul push pull output. 7 transistors and 2
diodes including Micro-Alloy R.F. Transistors. Famous make 7 x 4 in. P.M. apeaker for rich-tone volume. Air spaced ganged tuning condenser. Volume on/off control wave change switches and tuning control. Attractive case with carrying handle. dize 9 x 7 X 4in. approx. First grade components. Easy to follow instruetions and diagrams make the noamer 7 a pleasure to bulld.

Total building costs

$$
\text { Pa, P. \& P. } \begin{gathered}
\text { Personal Earpiece }
\end{gathered} \begin{aligned}
& \text { Fith switched socket }
\end{aligned}
$$

Parts price list and easy build plans $3 /$ - (Free with parts).

NEW LOOK melody six

TWO WAVEBAND PORTABLE
8 stages- 6 trankistors and 2 diodes. Covers Medium and Long Waves. Top Covers Medium qud Long Waves. Top
quality
3 fin. Lotadspeaker for quality qutput and also with Personal Earpiece with switched socket for private listen ing. Two R.F. sfages for extra boost High "Q". Ferrite Rod Aerial. Push pu . output. Handsome pocket size case with gilt fittings. Size $6 \frac{1}{1} \times 4 \times 2$ in. Kasy build with parts) pal

Total building costs
8@18 P. \& P.

THE＇YORK＇HIGH FIDELITY 3 SPEAKER SYSTEM
\star Moderate size，only $25 \times 14 \times 10$ in．Complete Rit $19 \frac{1}{2}$ Gns． ＊Performance comparable with units costing \qquad Carr． $12 / 6$ considerably more．Consists of（1）121n． 15 watt Bass unit with cast chassis，Roll rubber cone surround for ultra low resonance， and coramic magnet．（2）3－way quarter section series cross－over system．（3） $8 \times 5 i n$ ．htgh flux middle range＇speaker．（4）High efficiency tweeter．（5）Measured weight of woollen acoustic damping material．（6）Teak veneered oabinet．（7）Circuit and full instructions．Terms：Dep．f5．10．6 and9 monthly payments
$39 /$（Total 223.1 .0 ）．
DENGTRATIONS AT ATL BRANCHES．

R．S．C．STEREO／20 HI－FIAMPLIFIER

1014 WATT UKTRA LINEAR PEAK PUSH－PULL OUG ＇MIKE＇GRAM，RADIO OR TAPE．（7）Valves ECC83，（2 c．p．s．Bum Level： 60 as down．Sensitivity： 30 millipolts

 Gass and Treble controls．Output transformers are high quality section－ ally wound．Outputs for 3 and 15 ohms speakers．Complete set of parts，point－ 15 Gins．to－point wiring diagrams and instructions．Or factory assem－

R．S．C．A10 30 WATT ULTRA LINEAR HI－FI AMPLIFIER 音ighly sensitive Push－Pull Tone Control Stages．Performance figures of factory builtiunits：Hum level－70dB．Frequency response $13 \mathrm{dB3} 30-20,000 \mathrm{c}$／f．Sectionaly wound out－

Vat transiormer．All high grae component．

 microphones，cristal or Ceramic Pres，Dance Halls or Outdoor Functions，，tcc．For use with Electronic Organ，Guitar， String Bass，etc．Gram．Radio or Tape．Reserve L．T．and H．T．for Radlo Tuner．Two inputs with assoctated volurne con trols so that two separate Inputs such as Gram akers．Complete kit of parts with point－to． 14 Gns． point wring diagrams and instructions．
Twin－handed perforated cover 27／6．Supplied factory bulit with ELS4

R．S．C．A11 HIGH FIDELITY 12－14 WATT AMPLIFIER
 RUSH－PULL ULTRA LIEAR OUTPUT Two input sockets with associated controls TYo input socket with，＂and gram，etc otc． allowing mixing of＂品ike＂＂and gram，etc，otc． Hith sensitivity 5 valves－ECCB3（2），ELS4（2） E ．
 Hum level fodB．SENSITIVITY 40 millivolts． For Crystal or Ceramic PUS．High Impedance ＂mikes＂．For Musical Instruments such as String Bass，Electronic Guitars etc．Size approx． $12 \times 9 \times 7 \mathrm{in}$ ．For AC mains $200-250 \% .50 \mathrm{cps} 9$ Gns． Output for 3 and 15 ohm spkrs．SAs for leanet．Complete kinstructions and point－to－point wiring diagrams．Carr $11 / 6$（or factory Fuilt 12 Gins．）Twin handled metal cover 2y／6．TERMS ON ASSEMBLED UNITS．Deposit $97 / 6$ and 9 monthly payments of $22 /$ ．（Total \＆14．15．6）． RSC A11T TRANSIS－ above complete kit 9 Gns above complete kit 9 Gns
（Assembled 13 Gns） R．S．G．BASS－REGENT 50 WATT AMPLIFIER
 An exception ally powerfuI
high anality hikh grality all－purpose unit for lead，
rhythm，bass rhgthm，bass
guitar，voeal guitar，vooal－
ists，
gram， radio，tape． ＊．Two extra heavy duty 2in，Loudspeakers． ＊Four Jack inputs and two Volume Controls for simultaneous use of up to four pick－ups or＂mikes＂ 52 Gins．Carr，301－or and 9 monthily payments of 5．11．8．（Total $57 \frac{1}{2}$ gns．）． Send S．A．G．for leafiet． Gi00 100 watt peak output with Pr．speaker columas and a Rass Unit（Six 12＂ and Two 15 SDKr：）．e日t gn CONVERSION UNITS Type BMI An all－dry minator Size $51 \times 41 \times x$
2 in．approx． 2 in．approx． Completely replaces bat teries supplying 1.5 V ．and 900 F ． $50 \mathrm{c} / \mathrm{s}$ is available． Complete kit with diagram Complete kit with diagram
$49 / 11$ or assembled $59 / 11$ ． 49／LI Or assempled 5911.
SELENIUM
F．W． RECTIFIERS（Bridged） All 6／12v．D．C．output．Max． A．C．input 18v．1a．4／3． 2a． $6 / 11$.
$68.15 / 9$.

R．S．C．MAINS TRANSFORMERS
FULLX GUARANTEFED．Interleaved and Impres－
nated．Primaries $200-250 \mathrm{v}$ ． $50 / \mathrm{s}$ goreened MIDGET CLAMPED TTPE 9 ：$\times 25 \times 81 \mathrm{in}$ ．

FULLY SHROUDED UPRIGET HOUNTTRG $250-0-250 \mathrm{\nabla} .60 \mathrm{~mA}, 6 \cdot 3 v .2 \mathrm{~B}, 0-6-6 \cdot 3 \mathrm{v}, 2 \mathrm{a}$ ． $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s},, 0-5-6 \cdot 3 \mathrm{v}$ ． 3 am ． $300 \cdot 0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s} ., 0-5-6 \cdot 3 \mathrm{v}$ ． 8 a ． $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 688 \mathrm{8}$ ． $4 \mathrm{a} .$, ，c．t．， 6.3 v ． 1 a ． For Mullard 810 Amplifier $350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0.6 \mathrm{c}-3 \mathrm{v} \mathrm{v}$ ． 8 s ． $350-0.350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ $425-0.425 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}$, ，c．t．， $5 \mathrm{v} .3 \mathrm{a} . .2$
$425-0.425 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 6 \cdot 3 \mathrm{v} .3 \mathrm{a}$, ， 5 v .3 a. $425-0.425 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s} ., 6 \cdot 3 \mathrm{v} .3 \mathrm{a} ., 5 \mathrm{v}$.
$450-0-450 \mathrm{v}, 250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., \mathrm{c} . \mathrm{t} ., 5 \mathrm{v} .3 \mathrm{~m}_{\text {．}}$ TOP SEROUDED DROP－THEOUGH TYPE $550-0-250 \mathrm{v} .70 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 0$
$50-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .3 \cdot 58$.
$350-0-350 \mathrm{v}, 80 \mathrm{~mA}, 6.3 \mathrm{v}$ ．2a．，0－5－6．3v． 2 s $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 8 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 8 \mathrm{v}, 3 \mathrm{a}$ $300-0.300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s} ., 0-5-8 \cdot 3 \mathrm{v}, 3 \mathrm{R}$ ． $300-0-300 \mathrm{v}$ ． $130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$ ． $4 \mathrm{Aa.} 0-5-.6.3 \mathrm{v}$ ．is． Sultable for Muliard 510 Amplifier
 0－5．35 3a．．． $45 / 11$ FILAMIENT OT TRANEISTOR POWHR PACE Typen
 $6 \mathrm{a} .21 / 9 ; 12 \mathrm{v} .1 \mathrm{a} .8 / 9 ; 12 \mathrm{v}$ ，38．or 24 v ．
$0-9-18 \mathrm{v} .12 \mathrm{c} .179 ; 0-12-25-42 \mathrm{v} .28 .29 / 9$. CHARGER TRANSFORMERS 0－9－15\％． $1 \frac{3}{4}$ a．14／11； 21a．17／9；3а．19／11；ба．28／9；6а．27／9；8a．88／8． AUTO（Btep UP／etep DOWN）TRANGFORMERS $0-110 / 120 \mathrm{v} .200-230-250 \mathrm{v}$. 150 watts， $29 / 11$ ； 250 watts $49 / 8 ; 500$ watts $09 / 9$ OUTPUT TRAFSFOBMEER
Gtandard Pentode $5,000 \cap$ or $7,000 \Omega$ to Push－Pull 8 watts ELL84 to 30 or 15Ω
Push－Pull 10 watts 676 ECI， 86 to $3,5,8$ Pugh－Pull EL 84 to 3 or 15Ω 10－12 watte Push－Pull Ultra Linear for Mullard 510， Puah－Pull $18-18$ watts，geetionally wound 6 L 6 ， KT66，etc．，for 8 or 15Ω Pusho，etc，for 80 watt high quality sectionaily
wound EL $34,6 L 6$, KT6B etc．to 3 or 15Ω ．． SMOOTELNG CEOKES
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \Omega, 2 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 10 / 9$ $80 \mathrm{~mA}, 10 \mathrm{H}, 36008 / 0 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 \mathrm{fI}$.

 0．\＆C．ELEECTRON

R．S．C．COLUMN SPEAKERS Covered in two－tone Rexine！ Tynair，1deal for vocalists and Pubic Addross， 15 ohm matching．
 Overail size approx $4 \times 10 \times 511$ ． 1

30 WATT HI－FI AMPLIFIER

for Guitar Vocal or Ingtrumental Group arate Bass and Treble controls．Current valves．Peak arate Bass and Treble controls．Current valves．Peak les．Attractive black／gold perspex facia．Neon indicator． For 200－250v．A．C．mains．For 3 or 15 ohm speakers．Send 9 mthly payments of $39 / 8$（Total 21 gns）． 16 Gis． $12 / 6$

F．A．L．＇Phase Fifty＇PUBLIC ADDRESS AMPLIFIER Solid State Circuitry． 50 Watts Peak Output． 3 separately controlled inputs for mixing purposes．Separate Bass and Treble Controls．Output for
speakers $3-30$ ohms．Suitable for Dyamic．Ribbon or Crystal Mikes．For speakers
OLubs，Theatres，Restaurants，Hotels，Schools，etc．For only 29 Gis．
Vocal or Tnstrumental Groups．Send S．A．E．for leaflet．on

12in．HIGH QUALITY LOUDSPEAKERS

FANE ULTRA HIGH POWER LOUDSPEAKERS

POWER PACK KIT Consisting of Mains transformer，Metal
 case In iten of chassis 29111 ．Or assempled 39711.

CLEARANCE LINES

15 ＂ 40 WATT LOUDSPEAKERS IN CABINET 14 Gns Heary construction．Covering Rexine and Vynair

14 WATT HI－FI AMPLIFIERS High sensitivity．Two controls for mixing purposes．Separate Bass and Treble Controis．Valves

EXTENSION＇SPEAKERS 29／9
Cabinet size $12 \times 8 \times 8$ xin approx． Fitted high fuux 5 watt 3 ohm speaker．
PHONE AMPLIFERS
free．Standard dry battery operated．Attractive black moulded case．
1 WATT TRANSISTOR AMPLIFIERS ${ }_{\text {for } 3-5 ~ o \mathrm{om}}$
loudspeakers．Miniature size．Brand new boxed．Post free $37 / 9$ PRINTED CIRCUIT KITS for making printed circuits．

12／9 Complete with 72 square ins．laminated board and necessary fuids．Post $2 / 9$ J．B．VHF／FM DIAL \＆DRIVE ASSEMBLIES ONLY 9／9 Complete with escutcheon．Size $7^{*} \times 4 t^{*}$ ．Escutcheon $7 \xi^{*} \times 22^{*} . \quad$ Post $2 / 9$ TAPE RECORD／PLAYBACK AMPLIFIERS ${ }_{4 \text { wattsoutput．Masic }}$ Eye Recording level indicator．For 3 ohm L / S ． All normal $\mathrm{f8} .15 .0$
facilities．Less Fecia plate．For $200 / 250 \mathrm{~A}$ ． C ．mains．Carr $8 / 6$ ．

ARMSTRONG UNITS CLEARANCE

 Our Price MINI－8 HI－FI LOUDSPEAKER UNITS
Teak or Afrormosla veneered cabinet，stze approx． 101 x 6×7 xim． $59 / 11$
Peak power handing 8 watts 3 ohms．Carr． 5 ．Clearance price JASON VHF／FM TUNER DESIGNS
Total cost
5Gns．fmTz f6．19．11．נTv2 $9 \frac{1}{2}$ Gns．Please state of parts STEREO／TEN HIGH QUALITY AMPLIFIER 5 wattshigh quaility peak output on each channel Sensitivity 50 millivolts．Suitable all crystal or

 6／12V CAR BATTERY CHARGERS
 $\begin{aligned} & \text { 3oth models with variable charge rate selector } \\ & 4 \mathrm{amp} 49 / 9\end{aligned} \quad 6 \mathrm{amp} 69 / 9$ All types $200-250 \mathrm{v}$ ．A．C．Matns．Built 10／－ $9 x$ tra．

FULLY TRANSISTORISED $200 / 250 \mathrm{v}$. A.C. Mains. FUTPUT 10 WATTS R.M.S. cont. into 15 ohms. TRANSISTORS. 9 current types of high quality by leading manufacturers, Characteristics for to Standard R.I.A.A. and C.C.I.R. FULLL TAPE MONITORING FACRITIES. SENSITIVITHES: Magnetic P.U. 4 mV . Crystal or
Ceramic P.U. 400 mV . Microphone 4.5 mV . Tape Head Ceramic P.U. 400 mV . Microphone 4.5 mV
2.5 mV . Radio/Aux or Ceramic P.U. 110 mV . FREQUENCY RESPONSE: $\pm 2 \mathrm{~dB} 20-20,000 \mathrm{c.p}$.s. TREBLECONTROL: +15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$. NEGFEEDBACK: 52 dB . BASS CONTROL: +17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$. HUM LEVEL: -75 dB . HARMONIC DISTORTION at 10 Watts 1.000 c.p.s. 0.2% Complete Kit of parts with full constructional details and $1 / \frac{1}{2}$ Gns.
point to point wiring diagrams. Carr. 12/6 \quad Guilt 15s Gns. Carr, 12/6. Terms: Deposit 4 Gns. and 9 monthly payments $31 / 1$ (Total (118.3.9). Or in Teak or Afrormosia veneer housing as illustrated. 19 Gns.
ALL COMPONENTS ETC ARE OF A HIGH STANDARD AND ADING MANUFACTURERS.
BRADFORD 10 North Parade. (Haif-day Wed.) Tel. 25349
BLACKPOOL (Agent) o. \& C . Electronics, 227 Church Street BIRMINGHAM ${ }^{30 / 31}$ Gt. Western Arcade opp. Snow Hill DERBY 26 Osmaston Rd. The Spot (Half-day Wed.) Tel. 41361 DARLINGTON 18 Priestgate (Half-day Wed.) Tel. 68043 EDINBURGH 133 Leith St. (Half-day Wed.) Tel. Waverley 5766

HULL ${ }_{91}$ Paragon Street. (Half-day Thursday) Tel. 20505

HI-FI CENTRES LTD.

MAIL ORDERS TO: 102 Henconner Lane, Bramley, Leeds 13. No C.O.D. under £1, Terms C.W.O. or C.O.D. £1, Terms C.W.O. or C.O.D.
Postage $4 / 6$ extra under 22. $5 / 9$ extra under $£ 5$. Trade supplied.S.A.E.withenquiries please. Open all day Sats. cia Plate and Spun Silver Matching Knobs. Above facilities etc. except for Ganging and Balance Control. apply also to Super 15 . ANY MAKE OF PICK-UP OR MICROPHONE (Grystal, Ceramic Magnetic, Moving Coil, Ribbon). CURRENTLX AVAILABLE USING WITH FIRST RATE ANCILLARY EQUIPMENT. All required parts, point to point wining 21 Gns. Unit factory built 28 Gins. or deposit $\mathbf{7 7 . 5 . 0}$ and 9 monthly payments 56/3. (Total 232.13 .3). Or in veneered housing 31 Gns. Carr. $15 /-$ or Deposit £7.3.6 and 9 monthly paymts 64/-(Total £35.19.6). Serd S.A.E. for leaflet. Mail Orders must not be sent to shops 5-7 County(Mecca)Arcade, Briggate (Half-dayWed) Tel 28252 LEEDS 73 Dale St. (Half-day Wed.) Tel. CENtral 3573 LIVERPOOL 238 Edgware Road.W2 (Half-day Thurs.) Tel. PAD 1629 LONDON 60A Oldham Street (Half-day Wed.) MANCHESTER Tel. CENtral 2778 NOLESBROUGH 106 Newport Rd (Half-day Wed) Tel. 47096 NID 41 Blackett Street (Opp. Fenwleks Store) $\begin{array}{r}\text { (Half-day Wed.) Tel. } 21469 \text { NEWCASTLE UPON } \\ \text { TYNE }\end{array}$

13 Exchange Street (Castle Market Bidgs.) SHEFFIELD (Half day Thursday) Tel. 29716 SHEFFLE

Cherevat

SOLDERING INSTRUMENTS

Have a look at your present soldering irons. Are they really giving you the performance and service you're paying for? Is there really a model suitable for your size of work? Or are you making do with a tiny bit in a big iron? Or vice versa? Do they have the cool, comfortable feel, the elegance, of a LITESOLD ? Drop one on a concrete floordoes it survive? Can you easily and cheaply replace the bits? Can you service it yourself? Are the models you want available for any voltage? Are they listed at 32 shillings or so each, with discounts for quantity?

Yes? Then we must be preaching to the converted, for you are surely a LITESOLD user already.

Well, if you are, or even if you're not, you may be interested in the new PHILIPS ELECTROLYTICALLY IRON COATED BITS. They last up to 75 times longer than copper, and are a big advance on all previous iron coatings.

Please ask for literature L10

LIGHT SOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688-8589 \& 4559

TRANSISTORS etc
AC107 ACl
ACl 26 AFII5 AFI16 AFII7 BFY18 BFY51 CET113 OA5 049 OA81 OA85
$0 A 91$
OC23 0025 $0 \mathrm{C26}$ $0 \mathrm{C} 28 \quad 6 / 6$
Crystal Diodes Dhodes-6 for 2/6.(7d.) available on reques $\begin{array}{lll} & \\ 4 /-\end{array}$ arrant 10 mA gain $70-4 /$ and AF150, 24V. Lirger envelo
Also $8 \mu \mathrm{~F} 850 \mathrm{~V} 1 / 2,25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 3$ and $50 \mu \mathrm{pF} 50 \mathrm{~V} 1 / 9$. Other electrolytics in current list.

Postase, Packing and Insurance all above fi, up to $3 ; 1 /-$ from 4-11; 12 and over paid 2 GANG VAR. CONDENSER: Mod, air-spaced, 0005 ea. sec. 5/- (1/-).
SUR-WIN TRANSFORMERS Output (3Ω for 0 C 72 etc.) 2/6. Driver $2 / 9$ (either 7d).
MULTIMETER: ${ }^{20,000}$ Q/V D.C., $10,000 \Omega / V$ A.C. $0-5 / 25 / 50 / 250 / 500 / 1 \mathrm{~K}$ VOlts D.C. - $0 \div 10 / 50 / 100 / 500 / 1 \mathrm{~K}$ Volts A.C. $0-50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C. $0-6 \mathrm{~K} \Omega / 6 \mathrm{meg} \Omega$ - Over-load protected 1969 model with every refinement. \&4.7.6 (2/6). JUNIOR MODEL at $47 / 8$ (2/6) $1000 \Omega / V$ described in free list.
SOLDERING IRON. Slim Mod. British High speed, $8 \frac{10}{}$, all parts repiaceable, fully guaranteed for professional, radio and general D.I.Y. use. 19/6(1/-) \quad TC8LP/STEREO: DIAMOND STYLII Replacements for BSR TC8LP, TCS and TC8LP/STEREO: GOLLARO 'O": RONETTE BF40LP; GARRARDGC2LP and GC8LP; ACNS GPGA GA, all at 7/6 each (6d.). ACOS GP91 ST/LLP: BSR, 8T4 and ST9; SONOTONE 9TA and short type. all at $13 / 6$ (6d.).
SAPPHIRE all the above $7 / 6$ types only, also ACOS GP37 at $3 / 3$ each (6d.). ACOS GP91 at $6 / 9$ (6 d .). No other types at present, and no 78 rpm available in any type.
PICK-UP GARTRIDGES, all fitted Styli and standard ittings. Mono Grb7/2, 13/6. Mono de Luxe GP91/2, 17/-. Stereo Compatible M Mono which also plays Stereo records monaurally with min, wear, GP91/SC, 19/6. © Latest Stereo GP98, 28/\%. Ceramic Etereo, top quality for expensive outfits, GP94, $38 / 6$ (all $1 /$-).
PP3 ELIMINATOR (A.C.) 17/6. (I/6) TWO STATION TRANS. INTER-COM EXcellent baby alarm. Instanat, easy fitting with leads, plugs and battery. All you require 58/6 (3/-)4V operation, $67 / 6$ (2/6)

SU BSTLTUTION BOXES, Capacitance 24/9 (I/6). Resistance $32 / 6$ (1/6), Both full range and complete. Full details in list.
TFEST PRODS: Flexible, unbreakable 24" Red and Black leads, thin $44^{\prime \prime}$ prods, $1 \frac{1}{4}^{\prime \prime}$ plags
R/9 (9d). $30 \mathrm{ft} .8 / 9,7 \mathrm{in}$. 1200 ft . 11/3. LONG PLAY 5in. 900 ft . 10/-, $5 \frac{3}{3} \mathrm{in} .1200 \mathrm{ft}$. 11/8. 7in. 1800 ft 8/- ($1 / 3$ reel). Still the finest quality and value obtainable.
"60" 0 M
 Machined metal tapered stick type with neck cord and adaptor to find) with clip $6 / 6$ (1) $35 /-(1 / 6)$. DYNAMiC: Cream hand/table 14/-(1/-). MSIO 50K Ω, 3 y fandin. with Base, Adaptor and Neck Cord $37 / 6$ (2/6). MS11, similar, but fixed on flexible 8 wan neek to switch Atted base $42 / 6$ (2/6). Dni 128 Uni-directional, $50 \mathrm{~K} / 600$ ohms imp, stand adaptor, very high quality $6 \frac{1}{4} \times 2 \times 1{ }^{\prime \prime}$, $85.9,6$ ($5 /-$).

O OMNI-DIREGTIONAL: Two recently introduced highly successful mikes "SQUARE'" 208, 55.10 .0 . "BALLL" type, 209, with built-in vol. control, switch $50 \mathrm{~K} / 600$ ohms imp, s5 176 (either bype 5/-). Full details in list
MICROPHONE INSERNS: Dtameter 1.75 in , or 0.9 in either aize $5 / 6$ (6 d.$)$
SPEAKERS: 12in round, fitted Tweeter, $6 \mathrm{~W}, 3$ or 15Ω (state which), $35 / 6(5 / 6) ; 21 \mathrm{in} .3 \Omega$ $6 / 6(1 /-) ; 6 \times 4$ heavy duty $3 \Omega 13 / 6$ (3/6) or for Stereo $32 / 6$ pair, post etc. paid; $8 \times 3 \mathrm{in}$, $3 \Omega, 8 / 6(1 /-)$. Limited quantity powerful $2 \frac{1}{2}^{*}$ PM transistor replacement speaker, high hms, excellent, $5 / 6$ ($1 /-$). HEADPHONES High Res. 2000Ω ea. Earpiece $18 / 6$ ($1 / 6$); Stereo Dyn 8-16 $\Omega, 63 /-(3 /-)$; EARPIECES with lead etc., Min. Plug Magnetic 1/6; Crystal $4 / 9$ (either 7d.).
AERLALS, Car Types: Telescopic, vandal proof, locks retracted, 2 keys and all fttings,
 7-Section $5 \frac{1}{2}-32 i n$, no swivel, screw hole in base, $6 / 6, ~ 10$-section $6 \frac{1}{8}-47 \frac{1}{8} \ln$., no swivel, screw hole in base, $12 / 8$. DISAPPEARING 8 section, swivel fixing assembly, $6 \frac{1}{2} / 33 i n 10 /-$ New 6 section $5 \frac{1}{2} / 25 \frac{1}{2}$ in, serew hole in base, no swivel 4/-. (1/- all sizes).
SWITCEES: Btandard toggle, metal, 250 V 2A. One hole fixing: SPST 2/3, SPDT $2 / 9$, DPGT $3 /-$. DPDT 3/8. slide types. Sub-min. DPDT $1 / 6$ each. Sman DPDT 8 way, centre "off" $1 / 9$, Reed magnetic on/off $1 / 9$ (7d. each, all types), Rotary Switches etc. in ist. Yuralt 7 min synch 10/-(1/- each, all types) 6 volt 7 pin synch 10/- ($1 /$-- each, all types).
Jack, plastic body $2 / 3$. Screened $8 /-$. Sock 8/-. Sockets $1 / 6$ (all 7d.). VALVE HOLDERS: B7G of Fi, Moulded 6i, (7d. up to 4, 1/- over 4). CONNECTING WIRE: 5 cotls asetd. cols. each 5 Yds. Solid Core 2/6. Frexible 3/-. Super thin for transistor wiring ete. 3/- (6d, all types, per 6 coils). PICK-DP WIRE: Twin Super thin Flex, Screened, Sheathed, $1 / 8$ Yd. (0 d. up to 6 yds., over 6 yds. post free). TWIN MIKE CABLE: $1 / 8$ yd. SINGLE MIKE CABLE: 7 A . Fd. Both flexible, screened and sheathed. FEEDERR GABLEE: TWin r.f. bal. "fig. 8 ", 80Ω, or fat 300Ω transparent polythene insulated, either $6 d$. per yd. (all cables up to
(1/6). Details in list.
 at other, 6 ft., $5 /-, 12 \mathrm{ft}, 8 / 6$ (9d. on any).
CAR RADIO: Splendid new All-British dash-mounting radio using Mullard transistors and cirouit. M. and L. wave Separate speaker and baffe. Absoluzely complete, for + or - chassis. $811.11 .0(6 / 6)$

CURRENT LIST: Sent with all orders or free fors.a.e. details of cable, croc., ulips and leads Continental din phggs for Grundig, Telefunizen equipment, etc., diais, plugg and ockets. panel meters, record playerand tapercording accessories, tape recorder, special transistors, portable sets, more switches and other components, tools, Veroboard etc., etc. This advertisement cancels all previous ones and lists supplied prior to May 81 st .

FELSTEAD ELECTRONICS

(PW21)

longley lane, gatley, cheadle, CHESHIRE, SK8 4EE

TERMS: Cash with order only, No C.O.D, or caller service. Post, packing and insurance charges are shown in brackets after all iteros. Regret orders under $5 /-$ plus carriage cannot only. Overseas air or surface mail extra at cost, plus $3 / 2$ registration or insurance fee. S.A.S. please for all enquiries, otherwise regret cannot be replied to.

 - ALL ITEMS OFFERED ARE FULLY GUARANTEED AND BACKED BY CDMET.
 OPENING HOURS: OPEN DAILY UNTIL 5.30 p.m. ($0.0 \mathrm{p} . \mathrm{m}$. THURS. AND FRI, EVENINGS) AND $5.0 \mathrm{p.m}$. SATURDAY.
 CDMPLETE FREE PRICE LIST CONTAINING OVER 500 ITEMS ON REQUEST

AMPLIFIERS

DULCI 207 Stereo Amplifier DULCl 207M Stereo Amplifier takes magnetic P/U DULCI 220 Princess GOODMANS Maxamp New LEAK Stereo 30 Plus.. New LEAK Stereo 30 Plus In teak case
Now LEAK Stereo 70
LINEAR LT. 66 Stereo Amplifier
QUAD 33 Preampllfier
QUAD 303 Stereo Main Amplifier ..
ROGERS Ravensbourne
50 watt Stereo
ROGERS Ravensbourne
In teak case
ROGERS Ravensbrook
TRUVOX TSA. 200
WHARFEDALE GP 50
Mark II P.A. Amplifier.

TUNERS

ARENA 211 Stereo with decoder
DULCI FMT. 7 FM Tuner ..
OULCI FMT.7S FM Stereo Tuner
GOODMANS Stereomax
AM/FM Stereo Tuner
LEAK FM Troughline
LEAK Troughline Tuner
with multiplex
QUAD Stereo FM Tuner.
ROGERS Cadet Mark III
Tuner
ROGERS Ravensbourne
Tuner with Decoder
TRUVOX FM 200/IC Tuner

TUNER-AMPLIFIERS

ARENA 2400 with Decoder ARENA 2500 complete with Decoder
TELETON MX. 990 Stereo Tuner/Amplifier with AM/ FM Multiplex Stereo Radio c/w two Speakers each speaker containing 8in. bass, 2in. tweeter .. TELETON 502X AM/FM Stereo Tuner/Amplifier 40 Watts RMS
TELETON F. 2000 AM/FM Sterec Tuner/Amplifier
2×5 watts RMS with silicon transistors TELETON R. 8000 AM/FM Stereo Tuner/Amplifier 2×6 watts RMS, com. plete with 2 speaker boxes TELETON CMS. 400 AM/ FM Multiplex Tuner/Amplifier with 2 speaker boxes and turntable

Rec. Retail Prlce	Comef Price
52320	818 00
52760	E24 190
£44 20	E34 496
25400	¢45 180
£52 00	£44 0
± 58100	£48 140
${ }^{863} \mathbf{0}$	£55 0
£15 150	¢53 10
£43 00	£38 11
${ }_{655} 00$	£49 15
± 59100	${ }_{\text {¢ } 50 ~}^{12}$
£64 00	£54 8
£41 00	£35 19
¢51 90	£42 9
Special Price	± 5000

$£ 39$	18	0	$£ 34$	18	0
$£ 22$	1	0	$£ 19$	0	0
$£ 29$	8	0	$£ 23$	0	0
$£ 80$	19	0	$£ 70$	19	0
$£ 35$	15	4	$£ 30$	10	4
$£ 50$	11	4	$£ 42$	19	6
$£ 50$	0	0	$£ 45$	15	0
$£ 20$	12	6	$£ 17$	13	0
$£ 60$	15	3	$£ 52$	2	0
$£ 52$	0	0	$£ 42$	0	0

$£ 90$	6	0	$£ 75$	0	0
$£ 97$	0	0	$£ 79$	0	0

LEAK MIni-Sandwich

| 564132 | 554160 |
| :--- | :--- | :--- |

$\begin{array}{lllllll} & 107 & 8 & 3 & £ 64 & 0 & 0\end{array}$

$£ 43$	0	0	$£ 37$	0	0

$£ 60$	19	6	$£ 49$	19	6

TURNTABLES
GARRARD SP.25, Mark II GARRARD AP. 75 .. GARRARD SL. 55 GaRRaRD SL. 65 in teak, at a low. price of only speakers in teak cabinets. bookshelf speakers. pleasing design.

 WHARFEDALE New "Airedale"WHARFEDALE Denton WHARFEDALE Super Linton
WHARFEDALE Melton .. WHARFEDALE New
Dovedale 3 count prices

£126	0	0	$£ 99$	0	0

BUDGET HI-FI STEREO SYSTEMS GARRARD 3500 Turntable. Amplifier 8 watts per channel. VHF Tuner and pair of matched speakers beautifully finished

£65 00

Also available without radio $£ 5400$ VAN DER MOLEN stereo system with Garrard SP25 mounted in teak case and perspex. cover. Fitted with Sonotone cartridge and integrated stereo amplifier (12 watts RMS). Complete with 2

Special price $£ 5200$
LL NOVA with VHF Radio. Garrard 2025TC Autochanger with cueing device. 10 watts RMS amplifier and 2 matched

Rec. price $£ 729$ 6. Comet price $£ 59196$ WINDSOR 1500 S Solid Teak plinth with Garrard 2025TC unit, solid state amplifier, 10 watts RMS and 2 speaker units with 9×5 ellipticals, complete with tweeter domes housed in solid teak cabinets of

Rec. price $£ 57150$. Comet price $£ 49196$ Also available with Garrard SP25 turntable. Rec. price $£ 61190$. Comet price $£ 5200$ PHILIPS STELLA ST 8008 with Philips Autochange turntable. Integrated transistorised stereo amplifier and 2 separate speakers. All in attractive teak cabinets. Rec. price £51 190 . Comet price $£ 4400$

CARTRIDGES AI MILEKESNTTOCKED Bowers and Wilkins Speakers also availate at

Rec. Retai/ Price	Comet Price
£20 156	£17 16
£30 12	£26 5
${ }^{2} 880$	¢6 19
£20 05	£16 19
¢ 5018	¢25 13
£40 20	£32 49
£26 00	£21
£19 t9 0	£15
£43 100	£35 19
£29 150	£24 10
£69 100	55714
£16 60	£13 18
£20 130	£17 90
£29 10 0	¢25
£39 100	£32 19
s aiso available at dis-	
£15 64	E11 10
42381	¢18 19
£13 1011	¢11 12
£17 194	£15

GARRARD SL. 75 .. GARRARD 3000 GARRARD 3500 GOLDRING Lenco GL. 68 ., GOLDRING Lenco GL. 75 . GOLDRING 75P THORENS TD. 125 THORENS TD. 150. THORENS TD. $150 B$ THORENS TD. 150 AB THORENS TD.124/11

Rec. Retail Price	Comet Price
£34 411	£29 10
211 41	¢9 10
¢11 1810	£10 110
c22 72	5171911
5155	122815
£4618 8	E38
26349	¢55
528 1617	£25 7
£32 17	${ }_{5}^{2} 2818$
838 17	£33 19
245181	£40 7

HI-FI STEREO TAPE DECKS AND TAPE RECORDERS

AKAI X-150D deck 4 track AKAI X-300 2 track. AKAI X-300 4 track. AKAI X-360 4 track. AKAI X-360D deck 4 track AKAl 17404 track w/o acc. AKAl 18004 track. AKA1 1800SD 4 track AKAI 3000D deck 4 track. AKAI X-V 4 track AKAI M-9 4 track wio acc. FIDELITY HF Playmaster 2 track
FIDELITY Braemar 2 track FIDELITY Braemar 4 track MARCONI 4214 twin-track Tape Recorder
MARCONI 4216 4-track Tape Recorder MARCONI 4218 Stereo Tape Recorder MARCONI 42384 track Tape Recorder PHILIPS battery operated tape recorder Model 42:00 SHARP 504 battery/malns tape recorder, complete with all accessories guaranteed 5 years
SHARP RD. 707 Stereo Tape Recorder
TELETON 7D 70 Stereo Tape Deck
TELETON FXB501D Stereo Tape Deck and preamplifier
TELETON $401 \times$ FM Multiplex Stereo tuneramplifier 20 watts RMS
TELETON 7AT1 AM/FM automatic multiplex stereo tuner/amplifier 50 watts RMS with F.E.T. . TRUVOX R54 3 speed 4 track
TRUVOX R52 3 speed \quad 2track

$£ 130$	2	4	£109	0								
:---	:---	:---	:---	:---	:---	$\begin{array}{lll}\text { £130 } & 2 & 4 \\ \text { £263 } & 0 & 0\end{array}$ - 0 E220 0	$£ 263$	0	0	£220	0	
:---	:---	:---	:---	:---		$£ 339$	0	0	$E 284$	0	0	
:---	:---	:---	:---	:---	:---	£290 000 E243 0	$£ 109$	0	0	$\Sigma 91$	0	0
| :--- | :--- | :--- | :--- | :--- | :--- | $£ 158 \quad 0 \quad 0 \quad$ £133 00 £196 0 0 $\begin{array}{llllll} & 899 & 10 & 0 & £ 83 & 0\end{array}$ | $£ 180$ | 0 | 0 | $£ 154$ | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $£ 198$ | 0 | 0 | $£ 158$ | 0 | 0 |

$\begin{array}{llllll} & 526 & 15 & 6 & 519 & 19\end{array}$ | 226 | 15 | 6 | E19 | 19 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 230 | 9 | 0 | 524 | 17 | 5 | $\begin{array}{llllll}233 & 12 & 0 & £ 27 & 11\end{array}$ $\begin{array}{lllllll}£ 35 & 16 & 0 & \text { 玉34 } & 0 & 0\end{array}$ | 54 | 5 | 0 | $\mathbf{5 3 5}$ | 19 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | | x 88 | 0 | 0 | $£ 77$ | 19 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | | $\mathbf{2 5 8}$ | 11 | 0 | $\mathbf{5 4 9}$ | 19 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | 2356

$$
\begin{array}{ccc|ccc}
£ 35 & 5 & 3 & £ 24 & 18 & 6 \\
£ 96 & 12 & 0 & £ 81 & 0 & 0 \\
£ 85 & 10 & 3 & £ 62 & 0 & 0 \\
£ 65 & 0 & 8 & £ 49 & 0 & 0 \\
& & & & & \\
£ 67 & 2 & 6 & £ 49 & 0 & 0
\end{array}
$$

2	33	1	9		29

| £ 22 | 2 | 0 | c52 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$£ 72$	2	0	$£ 52$	2	0

PICKUP ARMS
GOLDRING Lenco L75 GOLDRJNG Lenco G65 SME 3009 with $\mathbf{S 2}$ shell SME 3012 with S2 shell

> | 512 | 6 | 6 | 510 | 10 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

> $8713 \quad 6 \quad 86 \quad 10$
> $\begin{array}{llllll}\text { £27 } & 19 & 2 & \text { £23 } & 17\end{array}$

\title{

a complete stereo system for only 28 gns!
 styled and finished. It gives superb reproduction previously associated with amplifiers costing far more.
Specification: R.M.S. power output: 3 watts per channel into 10 ohms speakers. Input Sensitivity-Suitable for medium or high output crystal cartridges and tuners. Crosstalk better than 30 dB at $1 \mathrm{Kc} / \mathrm{s}$. Controls: 4 -position selector switch (2 pos. mono and 2 pos. stereo) dual ganged volume control.
Tone Control: Treble lift and cut. Separate on/off switch.
A preset balance control.

The new Duo general purpose
2-way speaker system is beautifully finished in polished teak veneer, with matching vynair grille. It is ideal for wall or shelf mounting either upright or horizontally.
Specification: Impedance 10 ohms. It incorporates Goodmans high flux $6^{\prime \prime} \times 4$ " speaker and $2 \frac{21^{\prime \prime}}{}$ tweeter. Teak finish. $12^{\prime \prime} \times 6 \frac{3}{4} \times 5 \frac{3}{4}{ }^{\prime \prime}, 4$ gns each, p \& $p 7 / 6$

Garrard Changers from f7.19.6

p\& $\mathrm{p}^{7 / 6}$
Cover and Teak finish Plinth £4.15.0 p \& p 7/6

$$
8 \frac{1}{2} \text { Gns. }+7 / 6 \mathrm{p} \text { \& } \mathrm{p}
$$

Controls: Selector switch Tape speed equalisation switch ($3 \frac{3}{2}$ and $7 \frac{1}{2}$ i.p.s.). Volume. Treble. Bass. 2 position scratch filter and 2 position rumble filter.
Specification: Sensitivities for 10 watt output at 1 KHz . Tape head: 3 mV (at $3 \frac{3}{4} \mathrm{i} . \mathrm{p} . \mathrm{s}$.). Mag. P.U.: 2 mV . Cer. P.U.: 80 mV , Radio: 100 mV . Aux.: 100 mV . Tape/Rec. output: 100 mV . Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total distortion: (for 10 watt output) $<1.5 \%$. Signal noise : $<-60 \mathrm{c}$ B. A.C. mains $200-250 \mathrm{v}$. Bull and Tested, Size 12年in. long, $4 \frac{1}{2} \mathrm{ir}$. deep, $2 \frac{2}{4} \mathrm{in}$ high. Teak finished case.

Re W/iscount

131 ${ }^{1}$ Gns. $+7 / 6 \mathbf{p}$ \& p

Integrated High Fidelity Transistor Stereo Amplifier Specification-Output: 10 watts per channel into 3 to 4 ohms speakers (20 watts monaural). Input: 6 position rotary selector switch (3 pos. mono and 3 pos. stereo), P.U., Tuner, Tape and Tape Rec. Out. Sensitivities: All inputs 100 mV into 1.8 M ohm. Frequency Response: 40 Hz $20 \mathrm{KHz} \pm 2 \mathrm{~dB}$. Tone Controls; Separate bass and treble controls; treble, 13 dB lift and cut (at 15 KHz); Bass, 15 dB lift and 25 dB cut (at 60 Hz). Volume Controls: Separate for each channel. AC Mains Input: 200-240V. $50-60 \mathrm{~Hz}$. Size, $12 \frac{1}{\frac{1}{2}^{\prime \prime}} \times 6^{\prime \prime} \times 2 \frac{3^{\prime \prime}}{4}$ in teak finished case. Built and tested

RADIO \& TV COMPONENTS (ACTON) LIMITED
 All orders by post to our Acton address

21c High Street, Acton, London, W.3. and also at 323 Edgware Road, London, W.2.

THE DORSET (600 mW Output)

7-transigtor fully tunable M.W.-L.W. superket portable -with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to build. Sizes: $12 \times 8 \times 3 \mathrm{in}$. MAINS POWER PAGK KIT: $9 / 6$ EXTRA. PRICE 5 GNS. $+7 / 6$ p. \& p. CIRCUIT $2 / 6$ FREE WITH PARTS.

THE ELEGANT SEVEN MK III

 (350mW Output)7-transistor fully tunable M.W.L.W. portable. Set of parts, Complete with all components, including ready etched and drilled printed circuit board-back printed for toolproof construction.

MAINS POWER PACK KIT: 9/6extra.
Price f4.9.6 plus 7/6 p. \& p.
Circuit 2/6 FREE WITH PARTS.

$2 \frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V . Size $7^{\prime \prime} \mathrm{x} 44^{\prime \prime}$ " $\times 13^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ Semi conductors, two OC 75's two AC 128's and two stabilizers AA129. Tone and volume controls on flying leads. $£ 2.10 .0$ plus $P . \& P .3 / 6$. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high tux speaker, $18 / 6$ plus $2 /-{ }^{\circ}$. \& P

X101

10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP

Syecifleations: Power Output (into 3 ohms speaker) 10 watts. Sensitivity (for rated output): 1 mV into 3 K ohms ($0 \cdot 38$ microamp). Total Distortion at 1 KHz . at 5 watis $0 \cdot 35 \%$, at rated
output 1.5%. Frequeney Response: Minus 3dB points 20 Hz and 40KEz. Speaker: 3-4 ohms (3-15 ohms may be used). Supply voltage: 24 V d.c. at 800 mA ($6-24 \mathrm{~V}$ may be used).
Control assembly: including resistors and capacitors.

1. Volume: PBICE 5/-
2. Comprehensive bass and treble: PRICE 10/-.

The above 3 items can be purchased for use with the X101.

Price 69/6 plus 2/6 p. \& p.

CAR TRANSISTOR IGNITION SYSTEM

 (by famous manufacturer)For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resistor and hardwear (screws, washers etc.). PRICE $£ 4.19 .6$. (post and packing $5 /-$ extra).

50 WATT AMPLIFIER A.C. MAINS 200-250V

Pius 20/- p. \& p.

An extremely rehable general purpose aive amplifier. Its rugged construction yet space age styling and design make value for money TEOHNICAL SPEOLEICATIONS
4 electronically mixed channela, with inputs per channel, enables the use of 8 separate instruments at the same time The volume controls for each channe are located directly above the corres ponding imput sockets. SENiSITIVITIE 2 AmV HipadANOES. Channels I 24 mV at 470 K . These 2 channeis (uitars. Channels 3 \& 4200 mV at 1 m . Sultable for most high output instruments (gram umer organ etc.). Input sensitivity relative to 10 w output. TONE CONTROLS ARE Treble Boost +11dB at $15 \mathrm{KHz} / \mathrm{s}$. Treble Cut -12 dB at 15 KHz/s. With bass and treble Treble Eoost controls central -3dB points are $30 \mathrm{Kz} / \mathrm{s}$ and $20 \mathrm{KHz} / \mathrm{s}$. POWER OUTPDT. For speech and music 60 watts rms. 100 watts peak. For sustained music 45 watts rms, 90 wratts peak. For sinc wave 38.5 watts rms. Nearly 80 watts peak. Total distortion at rated output $3 \cdot 2 \%$ at $1 \mathrm{KHz} / \mathrm{s}$. Total distortion at 20 watts $0 \cdot 15 \%$ at $1 \mathrm{KHz} / \mathrm{s}$. Oratput to match into 8 or 15 ohms speaker system. NEGATIVE FFiED BACK 20 dB at $1 \mathrm{KEz} / \mathrm{s}$. SIGNAL TO NOISE
 tective fuse is located at the rear of unit. Output impedance 3,8 and 15 ohms.

THE RELIANT SOLID STATE GENERAL PURPOSE AMPLIFIER

SpECHICATIONS

Output Impedance- 3 to 4 ohms Inputs-1.-xtal mic 10 mV Tone Controls-Treble control range t 12 dB at 10 KH 2 . gramiradio 250 mV Bass control range +13 dB st 100 H 2 Frequency Response-(with tone controls centra Minus 3aB points are 20 H 2 and 40 KHz signal to Noise Ratio-better than - 60 dB . Transistors-4 silicon Planar type and Germanium type. Mains input- $-220-250 \mathrm{~V}$. A.C. Size of chassis $-10 \sum^{2} \times 4 y \times 2 \xi$ A.C. Mains, $200-250 \mathrm{~V}$. For use with Std. or L.P. records, musical instruments, all makes of plek-ups and mikes, Separate bass and treble lift control. Two inputs with control for gram and mike. Built and tested. $8^{* \prime} \times 5^{*}$ speaker to suit price $14 / 8$ plus $1 / 6 \mathrm{P}$. \& P. Crystal mike to suit 12/6 plus 1/6 P. \& P.
Reliant MK. I. $5 \frac{1}{2}$ gns. plus 7/6 p. \& p.
As above less teak case.
Reliant Mark II. $6 \frac{1}{2}$ gns. plus $7 / 6$ p. \& p.
In teak fnished case.

CYLDON 2 TRANSISTOR U.H.F. TUNER

Brand new. Complete with circuit diagram.
£2.10.0 plus $1 /-\mathrm{p} . \& \mathrm{p}$.

B.S.R. TD-2 TAPE DECK

This tape deck takes $5 \frac{3}{4} \mathrm{in}$. spools complete with two-track heads. Size 13 in. long by 8 各in. wide. $\mathbf{2 8 . 1 9 . 6 \text { plus } 7 / 6 \text { p. \& p. }}$

RECORD PLAYER SNIP
 A.C. MAINS 240V

The "Princess" 4 -speed automatic record change and player engineered with the utmost precision for beauty, long life, and trouble iree service. Wil tak up to ten records which may be mixed $7^{\prime \prime}$ to $10^{\prime \prime}$ or 12^{*}. Patent stylus brush cleans stylus after each playing and at shut off, the pick-up locks itself into its recess, a most useful feature with portable equip ment-other features inchade pick-up This this truly is a ment and stylus pressure ad cas purchase this mont at only $\mathbf{2 5} 5.19 .6$ complete with cartridge and ready to play. Post and insurance $7 / 6$ extra.

POCKET MULTI-METER
Size $3 \frac{7}{8} \times 2 \frac{1}{3} \times 1 \frac{3}{3}$ in. Meter size $2 \frac{1}{5} \times 1$ in. Sensitivity 1000 O.P.V. on both A.C. and D.C. volts. $0-15,0-150,0-1000$ D.C. current -100 mA . Resistance $0-100 k \Omega$. Complete With Fest prods, Gathery and inion Soidering Trom value 15/- to every purchaser of the Pocket Multi-Meter Multi-Meter.

FIRST QUALITY P.V.C. TAPE

544"	Std.	850ft.	11/6	5 "	L.P.	850 ft .	12/-
$7{ }^{\text {" }}$	Std.	1200 ft .	13/-	3"	T.P.	600 ft .	$12 /$
$3^{\prime \prime}$	L.P.	240 ft .	$5 / 6$	5 "	T.P.	1800 ft .	27/
$5{ }^{\text {P/ }}$	L.P.	1200 ft .	13/-	$5{ }^{\text {² }}$	T.P.	2400 ft .	34/
$7^{\prime \prime}$	L.P.	1800 ft .	20/-	$7{ }^{\prime \prime}$	T.P.	3600 ft .	4
594*	D.P.	1800 ft .	20/-	4 "	T.P.	900 ft .	16/6

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7in. spool. Incorporating 3 motors.
A.C. mains, 240 volts, listed at $\ddagger 21.0 .0$.
Our Price \&9.19.6, plus $10 /-\mathrm{P} . \&$ P.

a new 4-way method of mastering ELECTRONICS by doing - and - seeing .

4CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING ...

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

TOPIC OF THE MONTH

First things first

THERE is currently a good deal of talk about the shape of broadcasting, and the general concensus of opinion is that radio broadcasting in the UK finds itself in some need of reorganisation. Most of the discussion, however, seems to be centred around the constitutional basis of broadcasting and what services are required. This is rather putting the cart before the horse.

The most important aspects-which must be sorted out before considering the question of programmesrevolve around engineering problems. In a recent speech, the BBC Director-General, Mr. Charles Curran, elaborated on this theme. En passant, he said ". . . the long term future for radio in this country-and by long term I mean the next ten years-lies principally with v.h.f." Medium wave broadcasting will continue, he went on, but only in face of growing interference, until there is a new frequency allocation conference. But, as he pointed out, at such a conference we will do well to hold on to what we have and consequently there must be a greater exploitation of v.h.f.

Mr. Curran made three major points. First, local broadcasting on medium wave is unlikely to be a viable proposition ten years hence. Secondly, it would not be right to use the present international common frequencies for a very limited number of local stations in some areas and rely on v.h.f. in all other areas. Thirdly, it would not be right to redistribute some of the present national and regional channels for local station use; this would inevitably lead to the invasion of these frequencies by continental broadcasters

Some sources have suggested invoking Article 8 of the Copenhagen agreement (which allows the use of a frequency allocated to another country provided there is no serious interference with that country's service). This, however, would be tacit admission that the Copenhagen allocations were inadequate (whereas they are generally favourable to the UK), provoking a new frequency allocation conference from which we would certainly emerge worse off.

Obviously, v.h.f. must play a key role in any revised broadcasting shake-up and it has been suggested that v.h.f. coverage be made obligatory on all receivers made. In the USA, u.h.f. TV only got off the ground after legislation to ensure that all receivers had u.h.f. coverage.

NEWS AND COMMENT

Leader239
News and Comment 240
Practically Wireless by Henry 254
On the Short Waves-
The Amateur Bands by David Gibson, G3JDG 257
International London Electronic Component Show 266
Letters to the Editor 279
CONSTRUCTIONAL
Transet Three-Band Portable by F. G. Rayer, G3OGR 242
Take 20, Electronic Organ, by Julian Anderson 258
A Versatile Intercom System by J. E. Barrett 260
AC/DC Meter by H. T. Kitchen 271
OTHER FEATURES
The Cult of the Junk Box by James Hossack 246
Basic Semiconductor Technology, Part 3 by M. F. Docker, M.Sc. 249
P.W. Guide to Components, Part 8 by M. K. Titman, B.Sc. 263
Pulse Circuits in Operation, Part 3 by l. J. Kampel 280
SEPTEMBER ISSUE WILL BE PUBLISHED ON AUGUST 8th

[^0]
B. H. Morris \& Co. (Radio) Ltd., the sole UK distributors for "Trio", "Teac", "Sonics", and "Audio Development" announce some new items of equipment in their range. Amongst the range are the items illustrated above. The speakers are type AS-57 bookshelf models. Power handling capacity is 10 W music power. Voice coil impedance is 8Ω. Frequency response is $70-18,000 \mathrm{~Hz}$. Enclosure dimensions are $5 \frac{7}{8} \times 15 \frac{3}{4} \times 8 \frac{1}{4}$ in. deep. Speaker compliment is a $5 \times 7 \mathrm{in}$. elliptical. Price is $£ 15$ per pair.

The pickup cartridge illustrated at the top left is the "Trio" Supreme 20 photoelectric model. It uses a lamp and screen attached to the cantilever to which is fitted the stylus and photoelectric diodes and a preamp. The movement of the screen controls the amount of light passing through it to the diodes. Therefore stylus movement on the record varies the amount of light through the screen to the diodes thus modulating the current from the cartridge. Retail price is $£ 644$ s. 1d. plus $£ 1315$ s. 11 d. p.t.

An inexpensive magnetic cartridge in the B. H. Morris range is the $A D 76 \mathrm{~K}$ with a sensitivity of 5 mV at 1 kHz and frequency response of $20-20,000 \mathrm{~Hz}$ priced at 90 s.

Full information of the complete range of equipment may be obtained by contacting B. H. Morris \& Co. (Radio) Ltd., 84-88 Nelson Street, London, E.1. TeI.: 01-790 4824.

RADIO AND TELEVISION COURSES

The London Borough of Brent Stonebridge Evening Institute, Brentfield Road, London, N.W. 10 announce their 1969/70 Radio and TV Course. It commences on 22nd and 24th September, Mondays and Wednesdays $7.0-9.0 \mathrm{p} . \mathrm{m}$. The fees are 50 s . for one or two evenings weekly for session which ends 22nd May, 1970. The course covers some theory and practical work and is mainly intended for amateurs. Cheques and P.O.s should be made payable to "The Brent Borough Treasurer" and students may enrol now by post to : 44 Worcester Crescent, Mill Hill, London, N.W.7.

RADIO CONTROL FANS

The London Radio Controlled Models Society is holding a meeting on 10 th July at $7.30 \mathrm{p} . \mathrm{m}$. Venue is "The Two Chairmen", Dartmouth Street, London, S.W.1. Further details may be obtained from the Secretary, H. C. Farley, 24 Dacre Crescent, Kimpton, Hitchin, Herts.

VERY CONVENTIONAL

 Every year the Radio Society of Great Britain sponsors a convention for v.h.f.-minded radio amateurs and enthusiasts. It is usually held at the "Winning Post Hotel" near Twickenham in Middlesex, which is an ideal venue with a large car park that was completely filled at the latest convention on 26th April. Things started at $11 \mathrm{a} . \mathrm{m}$, with an exhibition of home-constructed and commercial equipment: there was very little on show, but the quality of workmanship of the private exhibits was superb, especially a little s.s.b. transceiver for 144 MHz which won D. Dall, G5AHK, the V.H.F. Committee Cup. In the afternoon, two lecture sessions ran in parallel; one was started off by Jack Hum, G5UM, who talked on how to start on v.h.f. with the minimum of trouble and expense and this was followed up with lectures on the technique of listening on v.h.f., the design and construction of 70 and 144 MHz converters and general principles of the design of v.h.f. transistor transmitters. Slightly longer lectures in the other room were led by Arnold Mynett, G3HBW, who talked on v.h.f. s.s.b. phasing transceivers, followed up by G3MED discussing a spurious-free v.h.f. receiver, and in a very similar vein how to measure spurious radiation down to -90 dB by G3FZL. Among the guests who sat down to an excellent dinner in the evening were Colonel I. St. Q. Severin of the cabinet office, and Dr. J. A. Saxton, director of the Radio and Space Research Station.
NEWS FROM THE CLUBS

GB3SUA will be operational 11 th-13th July on 80,20 , 15 , and 10 m bands using s.s.b./a.m./c.w. modes. Run by Stratford upon Avon ARC to celebrate the 700th anniversary of the Guild of the Holy Cross which was the first recorded form of local government in the town. A special OSL card will be issued via the RSGB Bureau. Further details from M. J. W. Webb, G3OOQ, 14 Townsend Road, Tiddington, Stratford upon Avon.

Pudsey and District Radio Club will be running their first Mobile Rally-the White Rose Mobile Rally-on 27th July. The OTH is Allerton Girls High School, Leeds, Yorkshire. Talk-in stations will be on 160 and 2 m . There will also be a.m. and s.s.b. demonstration stations. Other attractions are: raffle prizes, easy car parking, refreshments, amusements for wives and kids and the whole rally is under cover. Further details: R. Short, G3YEE, 10 Tyersal Grove, Bradford 4, Yorks.

NORTHERN RADIO SOCIETIES' ASSOCIATION

 CONVENTION \& EXHIBITIONThis event was held at Belle Vue, Manchester on 27th. April, several hundred visitors attending. Mr. John Graham, G3TR, Immediate Past President of the RSGB presented the G8AYD Trophy for the best stand put on by a radio club belonging to the Association. The award was made jointly to the Manchester and District Amateur Radio Society and the South Manchester Radio Club. These two clubs put on show stands that gave a complete picture of the hobby from the very beginning.

Another stand of particular interest was that of the Wirral ARS on which were shown their group constructional projects, their latest being a 160 m s.s.b. Rx/Tx

news And comment...

EDDYSTONE'S NEW 10-BAND BABY

A new solid state receiver-the EC958-covering a range of 30 MHz to 10 kHz has been announced by Eddystone Radio-a member of GEC-Marconi Electronics. For best possible accuracy in frequency setting an optical projection method of displaying the frequency scale is used. This gives an effective length of 50 in . for each display scale. Silicon transistors are used throughout and microcircuits and f.e.t.s have been employed where advantageous.

Reception facilities are c.w., m.c.w., a.m., (d.s.b.) and s.s.b. in A3A, A3H and A3J modesupper or lower sideband. F.S.K. (F1) facilities are available when optional module (type LP. 3058) is fitted. Keying speeds up to 200 bauds with shifts of $85-850 \mathrm{~Hz}$ can be accommodated.

Further details may be obtained from Eddystone Radio Ltd., Eddystone Works, Alvechurch Road, Birmingham 31.

COMARK MULTIMETER

The Comark Multimeter 1231 is the latest addition to the new 1000 Series. The overall accuracy is $\pm 2 \%$ of f.s.d. for d.c. measurements and $\pm 3 \%$ of f.s.d.for a.c. measurements over a bandwidth from 10 Hz to $100 \mathrm{kHz}(3 \mathrm{~Hz}$ to 250 kHz for -3 dB). Voltage sensitivity is from 1 mV f.s.d. to 300 V in 12 ranges with an input resistance of $1 \mathrm{M} \Omega / \mathrm{V}$ at d.c. the maximum current sensitivity is $1 \mu A$ f.s.d. with a meter volt drop of less than 12 mV . Resistance is measured to an accuracy of $\pm 5 \%$ of reading from 1Ω to $100 \mathrm{M} \Omega$. The UK list price is $£ 50$.

NEW PREMISES FOR HOME RADIO

Home Radio have moved from their original shop in London Road, Mitcham, to the top floor of an office block 400 yards away at 240 London Road. They now have 2,400 square feet of extra space, from which to run their mail order business.

A.S.E.E. CHANGE

"The Association of Supervisory and Executive Engineers" -that is the new name for the Association of Supervision Electrical Engineers. Membership is now no longer restricted to electrical engineers.

ON 'PHONE?

Amateurs in the United States, because of changes in the Bell System telephone regulations can now legitimately operate "phone patches" connecting overseas stations to telephone subscribers.

THE MULLARD MEETINGS

At Southampton on 5th May, the 1969/70 season of Mullard meetings for the radio and television trade opened. This year's talk is devoted almost entirely to integrated circuitry and between now and 1970 it will be given at 76 centres in the UK.

The talk deals in a general way with the development of integrated circuits, analyses their advantages and emphasises the radical changes in thinking of design. It then studies the applications of integrated circuits to colour TV receivers. I.C. manufacture is then covered and the talk finishes with a glimpse into the future and what it is likely to hold so far as I.C. applications are concerned.

The programme for July is: 9th: Dolphin Hotel, Swansea; 10th: Park Hotel, Cardiff.

All meetings start at 7.45 p.m. and any readers wishing to attend should apply for tickets to lan Nicholson, Films and Lectures Organisation, Mullard Ltd., Torrington Place, London, W.C.1.

NEW FROM MARCONIPHONE

Five new models from Marconiphone include two small portable receivers, two radiograms and a record player. The two portables are similar-the 4166 having v.h.f./m.w./l.w. coverage and the 4169 covering l.w./m.w./s.w. Both have push-button waveband selection and an output of 300 mW . Prices are: 4166 (£14 15s.) and 4169 ($£ 11$ 10s.). The photograph shows model 4169.

WITH a receiver covering long, medium and short waves, it is of advantage to use an internal ferrite rod aerial for long and medium wave reception, and a telescopic or other external aerial for short waves. The circuit used here is of this type, and gives reception of hundreds of short wave transmissions, in addition to medium and long wave coverage. Bands actually tuned are approximately $14-6 \mathrm{MHz}$ s.w. $(21-50 \mathrm{~m}), 1,500-575 \mathrm{kHz}$ m.w. ($200-$ 530 m) and $260-160 \mathrm{kHz}$ 1.w. ($1,150-1,900 \mathrm{~m}$).

Some simplification is possible by using a common oscillator coil for m.w. and I.w., and the way in which bandswitching operates can be checked with the aid of Fig. 1.

For s.w. reception, S1 earths C, tag 1 of L1, L3 and L4 being shorted out. L1 is tuned by VC1. S4 shorts

A, $\operatorname{tag} 7$, to earth, so that only the base winding of L1 is in use. S3 places VC2 across L2, for oscillator tuning, and S2 switches Tr1 collector to the collector winding of L2.

For m.w. reception, S1 leaves L3 in circuit, S4 introducing the base coupling winding. S 3 provides oscillator tuning of L5, with the series m.w. padder C 4 while S 2 brings into use the collector winding of L5.

L 5 is also used for l.w. reception, with the extra capacitor C5 to obtain suitable frequency coverage. The l.w. section of the ferrite rod, L4, is also in use.
L1 and L2 are individual s.w. aerial and oscillator coils. L3 and L4 are m.w. and l.w. sections of a dualwave ferrite rod aerial. By using a series circuit as shown, no switching of Trl emitter is required.

Fig: 1. The Transet theoretical circuit. The aerial, oscillator and i.f. stages-

The telescopic aerial is coupled through T1, and also operates on m.w. and l.w., if extended, though it is normally not required on these bands.

T4 is the s.w. oscillator trimmer, T2 the m.w./l.w. trimmer, and T3 allows adjustment of 1.w. oscillator coverage. To give maximum efficiency on all frequencies, a small manually operated panel trimmer VC3 is used in the aerial circuit. This avoids loss of results due to poor trimming, and also compensates for changes caused by extending the aerial, or using an external aerial. VC3 is simply rotated for best results, and only need be adjusted occasionally.

IF AMPLIFIER

I.F.T. 1 and i.f.t. 2 are both double tuned, the diode i.f.t. being single tuned. This results in high gain and selectivity, with enough sensitivity for good reception of many transmissions. The i.f. is 465 kHz .

AUDIO AMPLIFIER

Tr 4 is the first a.f. stage, followed by Tr 5 as driver. Tr6/7 are the output pair, with feedback and base bias via R21 and R22. This type of circuit has the advantage that suitable transistors are readily available, and the operating conditions of each stage are independent of other stages. This avoids difficulties sometimes arising in directly-coupled and similar circuits. There is plenty of amplification and enough power output for loudspeaker reception of most signals, with good tonal quality.
The volume control VR1, ganged capacitor $\mathrm{VC1} / 2$, trimmer VC3, and switch are fixed to a $7 \times$ 3in. flanged aluminium plate, also used as a positive
line or earth return. Other parts are fitted to a paxolin circuit board $7 \times 2 \frac{3}{\frac{3}{9}} \mathrm{in}$., which is bolted to the flanged plate.

CONSTRUCTION

Figure 2 is a top view of the paxolin board. VC3 is directly under $\mathrm{VC1} / 2$, and the fixed plates tag of VC3 is connected to the underneath tag of VC1. VR1 fits on the aluminium plate to the left of VC1/2, and the four-pole three-way switch occupies a similar position to the right.

The paxolin board was prepared by scribing lines at $\frac{1}{4} \mathrm{in}$. intervals with a sharply pointed tool, then drilling $\frac{3}{67} \mathrm{in}$. holes for all leads. L1 and L2 need $\frac{1}{4} \mathrm{in}$. holes. The board is also drilled to clear the pins of L5, i.f.t.1, i.f.t.2, i.f.t.3, and the fixing feet of T2. Drilling positions for the i.f. transformers and L 5 can be marked by pressing paper against the pins, holding this on the paxolin, and marking through with a sharply pointed tool. A central hole to allow core adjustment is needed under each i.f.t. Two bolts secure the paxolin to the flange, and tags were put under the nuts to provide the MC points.

A slow-motion action is essential with $\mathrm{VC} 1 / 2$, and is provided by concentric spindles in the component listed. A ball drive could be fitted to the ordinary type of capacitor, a little extra space then being needed between the aluminium plate and the inside of the cabinet front. The tuning capacitor also had trimmers fitted. The trimmer for VCl is fully unscrewed, then ignored. The other trimmer is TC2, Fig. 1. A capacitor without trimmers is equally suitable, and TC2 would then be a separate trimmer, connected from frame to VC2. A $100-470$ ohms resistor may be needed between 9. L2. and S2. if the circuit is trimmed for maximum s.w. coverage.

-and above, the detector, first a.f., driver and output stages.

WIRING

This can be carried out with 22 s.w.g. or similar tinned copper wire, with insulated sleeving where necessary. In most places the wire ends of the resistors and capacitors are long enough to reach the various connecting points.

The diode D1, and electrolytic capacitors, must be fitted with the polarity shown. C6 lies under C2 and C16 is underneath C15.
Figure 3 shows all connections under the paxolin board.

L5 and the i.f.t.s have small tags which earth the screening cans. These are connected as in Fig. 3. The core of T2 is also earthed.
A red flexible lead from the switch of VR1 is fitted with a positive battery clip. Battery negative is the centre-tap of the primary of T2, Fig. 3. Twin flexible leads from $\mathbf{T} 2$ secondary will go to the loudspeaker.

TRANSISTORS

It is probably as well to leave these until most other wiring has been done. $\operatorname{Tr} 1$ is behind the fourpole switch, allowing short leads from collector to $\mathbf{S 2}$, and emitter to tag 5 of L2. The base lead goes to C1, R1, R2.
$\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ can have $\frac{1}{2} \mathrm{in}$. lengths of coloured sleeving on emitter, base and collector leads, for insulation, and to identify them. These wires should not be unnecessarily long.

The remaining transistors can conveniently have about $\frac{3}{4} \mathrm{in}$. of lead above the circuit board. Many alternatives will operate satisfactorily in this type of audio amplifier. A poor transistor should on no account be used for Tr 4, as noise generated in this stage is considerably amplified. As the listed transistors are readily available, it is recommended they be used if transistors are to be purchased. But this does not mean that equivalents already to hand could not be fitted. Some might need different base or emitter resistor values.

FERRITE ROD

This may be 6 in . or 7 in ., of the usual type for m.w./l.w. ferrite aerials. A bracket is bolted to the paxolin board, Fig. 2. This supports a vertical strip of paxolin 3 in . high and $\frac{5}{8} \mathrm{in}$. wide. A strip of flexible insulating material passes round the ferrite rod, and is bolted to the paxolin strip.

When connecting the ferrite rod windings, note that the m.w. tuned section is from points C to D , Fig. 1. The m.w. base coupling winding is from A to B. The l.w. tuned section L4 is from D to earth line. Should a rod with separate base winding be used, instead of a tapping on L4, this winding is connected between the m.w. winding at B, and earth line. Should tuning difficulties arise on l.w., this might be caused by L4 being in the reversed phase to L3, and this can be corrected by reversing connections. to L4. Windings intended for 208 pF tuning capacitance and OC44 type transistors are usually satisfactory provided the base coupling is reduced by removing a few turns. Four turns should suffice for m.w. base coupling. L.W. coupling need not be changed unless instability arises.
components list

Resistors:

R1	$10 \mathrm{k} \Omega$	R12	47k
R2	2.7k Ω	R13	.12k Ω
R3	150Ω	R14	8-2k Ω
R4	$1 \mathrm{k} \Omega$	R15	470Ω
R5	$68 \mathrm{k} \Omega$	R16	$82 \mathrm{k} \Omega$
R6	$8 \cdot 2 \mathrm{k} \Omega$	R17	$22 \mathrm{k} \Omega$
R7	680Ω	R18	680Ω
R8	$22 \mathrm{k} \Omega$	R19	$4 \cdot 7 \Omega$
R9	$4 \cdot 7 \mathrm{k} \Omega$	R20	82, 5\%
R10	$1 \mathrm{k} \Omega$	R21	10k』 5\%
R11	$120 \mathrm{k} \Omega$	R22	10k $\Omega 5 \%$

VR1 $5 \mathrm{k} \Omega$ log. pot. with switch
All $10 \% \frac{1}{4}$ watt except where stated
Capacitors:

C1	$0.01 \mu \mathrm{~F}$
C2	$0.5 \mu \mathrm{~F}$
C3	$0 \cdot 01 \mu \mathrm{~F}$
C4	200pF 2\% silver mica
C5	175pF 2\% silver mica
C6	$10 \mu \mathrm{~F} 6 \mathrm{~V}$
C7	$0.04 \mu \mathrm{~F}$
C8	$0 \cdot 02 \mu \mathrm{~F}$
C9	$0.02 \mu \mathrm{~F}$
C10	$0.01 \mu \mathrm{~F}$
C11	$2 \mu \mathrm{~F} 6 \mathrm{~V}$
C12	$100 \mu \mathrm{~F} 12 \mathrm{~V}$
C13	$8 \mu \mathrm{~F} 6 \mathrm{~V}$
C14	$2 \mu \mathrm{~F} 6 \mathrm{~V}$
C15	$100 \mu \mathrm{~F} 6 \mathrm{~V}$
C16	$100 \mu \mathrm{~F} 12 \mathrm{~V}$
$\mathrm{VC1} /$	VC2 Jackson 00 208/176pF slow motion
VC3	25pF or 30pF miniature air-spaced variable
TC1	30pF pre-set
TC2	30 pF pre-set
TC3	60pF pre-set
TC4	30pF pre-set

Inductors:
L1 s.w. aerial coil, Denco transistor range 4 Blue
L2 S.w. oscillator coil, Denco transistor range 4 Red
L3/L4 l.w./m.w. ferrite rod aerial
L5 I.w./m.w. oscillator coil, Weyrad P50/1AC
IFT1 Denco IFT18/465
IFT2 Denco IFT18/465
IFT3 Denco IFT14
T1 Osmor QXD1
T2 Osmor 0×02

Semiconductors:

Tr1 OC170
Tr2 AF117
Tr3 AF117
Tr4 OC71
Tr5 OC81D
$\left.\begin{array}{ll}\text { Tr6 } & \text { OC81 } \\ \text { Tr7 } & \text { OC81 }\end{array}\right\}$ Matched pair
D1 OA81

Miscellaneous:

2/3 ohm $3 \frac{1}{2} \mathrm{in}$. or similar speaker; four-pole threeway rotary switch; $7 \times 3 \mathrm{in}$. flanged plate (Home Radio); $7 \times 2 \frac{3}{4}$ in. paxolin sheet; four knobs; $6 \frac{1}{2} /$ $35 i n$. telescopic aerial.

Note that the receiver can be tested on s.w. with the ferrite rod omitted, and on m.w. with L4 omitted. This may help localise wiring faults, if any arise.

BANDSWITCH

The position of this allows short leads from 1, L1, to S 1 and earthed return to $\mathrm{VC} 1 / 2$, from 1, L 2 to S 3 and VC2, and from 4, L 2 to $\mathrm{VCl} / 2$.

C4 and C5 are mounted vertically on the paxolin board, to reach the switch tags. There should be no difficulty if tags and connections are correctly identified.

When first testing the receiver, a meter may be
included in one battery lead. Current should be around 9 mA to 12 mA with no signal or at low volume. If it is excessive, switch off at onde and look for an error in wiring or other fault. During normal listening, current peaks will be about 20 mA to 40 mA , according to volume.

IF AMPLIFIER

This is most readily aligned with a signal generator, set to give a modulated signal at 465 kHz . Adjustments can then be for maximum battery continued on page 262

Fig. 2: View of components on the upper side of the paxolin board.

Fig. 3: Wiring on the underside of the paxolin component board.

THECULT OFTHE JAMES HOSSACK

THE modern meaning of the word "cult", like that of others such as "juvenile", etc., has become debased by common usage in association with a more sinister partner (e.g. "juvenile delinquent'), and one imagines the adherents of a cult as supporting it with a sort of fanatical, and frequently misplaced, semi-religious fervour. It is useful to remember that the word itself shares a common origin with "cultivate", which basically means to "make good use of", and this is precisely what possession of a junk-box (or perhaps one ought to use the more elegant term "spares box") implies to those readers who have come, to a greater or lesser degree, to rely on one as providing a valuable addition to the resources available for pursuing their favourite hobby.

To many experimenters, who may have been introduced to radio construction via the influence of a big brother, the junk-box comes, in a sense, readymade. In other words, virtually a family heirloom. Other less fortunate (or more affluent) members of the radio fraternity commence operations by purchasing everything the hard way, down to the smallest nut, bolt, or resistor. Gradually, however, even those who pursue their hobby in a very modest way will acquire, over the years, a small stock of components which, while perhaps not quite as good as new, will serve them adequately for all normal constructional purposes. There is no doubt that a junk box of this type has much to recommend it.
There is, however, a more positive approach to this subject which was pursued some time ago by the writer, and which has paid handsome dividends in terms of component acquisition at bargain prices, and, what may be even more important to those residing in rural areas, complete and immediate availability of components "off the shelf" as and when these are required.
The plan is quite simply the purchase, or similar legitimate acquisition, of unwanted electronic gear, followed by a careful, painstaking, and thorough dismantling of all the usable components therein. Sources of such components are many and varied. Some dealers, for example, will gladly dispose of old TV equipment for a nominal sum. On the other hand, constructors are frequently presented with the opportunity of procuring quite complex pieces of electronic gear which have ceased to function, or merely become obsolete, on the understanding that these are removed from the premises forthwith and "broken up"-hardly a euphemistic term for the extremely delicate dismantling operation to which they will be subsequently subjected on arrival back at the "shack".

A word of warning should, perhaps, be given here
about all equipment containing c.r.t.s of any description. In general, these are not worth salvaging, but it is imperative, before commencing operations on any chassis, that they be carefully removed and placed on one side for subsequent disposal via the refuse collection.

Do not succumb to the temptation to break a c.r.t. in order to facilitate its subsequent disposal, since the danger of flying glass from the resultant explosion (more correctly, implosion, since the tube collapses inwards) can be a very real one. The same advice applies to large glass valves, with the additional consideration that they may, in fact, prove worth preserving with a view to possible future use as transmitting tubes.
Having discussed how to collect, we now come to the question of what to collect. The answer would appear to be, whatever can be easily removed from a discarded chassis, but one or two points must be borne in mind, and it will be advantageous to consider the dismantled items in turn.

Transistors

While examples of discarded gear containing transistors are, of course, comparatively limited at the present time, there are excellent opportunities for procuring, very cheaply, surplus computer panels and such like which often consist of masses of identical transistors embedded in a printed circuit matrix. These transistors are frequently mounted in such a position that by "unwinding" the transistor, so to speak, the wires can be cut off close to the board, leaving 1 inch or more of connecting lead. A snag with most boards of this type is that no details are generally available regarding the components, but, frequently, a meter check, or insertion of one transistor into a simple amplifying circuit (a.f. or r.f.) will be sufficient to identify the type satisfactorily. A number of excellent transistor testers, suitable for determining beta, leakage current, and other characteristics of unknown transistors, have been described in past issues of PW.

Valves

The position as regards reclaimed valves is less satisfactory, particularly when one remembers that, after a few years' hard wear, the average rectifier or power output valve has completed perhaps twothirds of its useful life, although its characteristics may still be entirely satisfactory for use in experi-

TABLE 1

Valve	Description	Heater		Anode Volts	Screen Volts	Maximum Rectified Current	Peak Inverse Volts (Rect.)	Base Connections
		Voltage	Current					
807	Power Tetrode	$6 \cdot 3$	0.9A	500	200	-	-	A
6 L 6	a.f. Power Tetrode	$6 \cdot 3$	0.9 A	350	250	-	-	B
6F6 6	a.f. Power Pentode	$6 \cdot 3$	0.7 A 0.45 A	250	250	-	-	B
6×6 6×5	Rectifier	$6 \cdot 3$	0.7 A 0.6 A	325	-	70 mA	750	C
83 V	Rectifier	5	2 A	575	-	175 mA	1100	D
5 R 4	Rectifier	5	2 A	750	-	250 mA	2800	E
$5 \vee 4$	Roctifier	5	2 A	375 350	-	175 mA	1100	F
$5 \nvdash 4$	Rectifier	5	2A	350	-	125 mA	1100	

TABLE 2

Valve Type	Description	Heater Volts*	Pin Connections (B9A bases)								
			1	2	3	4	5	6	7	8	9
PCC 85	v.h.f. double triode	$9 \cdot 0$	$\mathrm{a}^{\prime \prime}$	$\mathrm{g}^{\prime \prime}$	${ }^{\prime \prime}$,	h	a^{\prime}	g^{\prime}	k^{\prime}	s
PCF 80	Triode-pentode mixer	$9 \cdot 0$	a_{t}	g_{1}	g_{2}	h	h	a_{p}	k_{p}	k_{t}	g_{t}
PCF 82	Triode-pentode mixer	$9 \cdot 5$									
PCL 82	Triode output-pentode	16	g_{t}	k	g_{1}	h	h	a_{p}	g_{2}	k_{t}	at_{t}
PCL 83	Triode output-pentode	$12 \cdot 6$	a_{t}	g_{t}	k_{t}	h	h	a_{1}	k_{p}	g_{2}	g_{1}
PCL 84	Triode video output-pentode	15	g_{t}	a_{t}	k_{t}	h	h	ap_{p}	k_{p}	g_{1}	g_{2}
PCL 85	Triode output-pentode	18	a_{t}	$\mathrm{gt}^{\text {t }}$	k_{t}	h	h	a_{p}	g_{2}	k_{p}	g_{1}
PCL 86	Triode output-pentode	$13 \cdot 3$	g_{t}	k_{t}	g_{2}	h	h	a_{p}	k_{p}	g_{1}	a_{t}
PL 82	Output pentode	$16 \cdot 5$		g_{1}	k	h	h		a	-	g_{2}
PY 82	Rectifier (half-wave)	19	-		k	h	h	-	-	-	a

*Heater current is 0.3 A in all cases.

Fig. 1: Valve base connections A-F are for Table 1. All valves in Table 2 have 9 pin bases (B9A.).
mental hook-ups, or as test replacements for the diagnosis of circuit faults. Unless one is an ardent collector of vintage components (see, for example, The Radio Collector by P. N. Wood in the June 1966 issue of PW), it is probably wisest to consign all valves of the pre-octal-base era to the dustbin before they have the opportunity to ruin a perfectly good circuit. The same may be said to apply to most octal-base specimens, with the exception of a few such as 6L6, 6X5, 807, and some others; also, power rectifiers of the 5 volt series, such as $5 \mathrm{Z4}$, may come in useful, provided they are known to be in good condition. Characteristics and base connections for some of these are given in Table 1. Miniature battery valves based on B7A may prove of some
interest to the radio control enthusiast. B9G television valves are sometimes designed to operate from a standard 6 volt heater supply; more often they are designed to run from a higher voltage, and can be neatly pressed into experimental service by adapting a suitable transformer (see next section).

Transformers

Unlike valves, these seldom deteriorate with age, and, in fact, probably represent the most valuable components in any chassis, from the reclamation point of view. A good mains transformer can cost anything from $£ 2$ upwards, so that the initial price of an old chassis is repaid several-fold if it happens to contain a mains transformer likely to be suitable to one's requirements. Television line and field transformers are unlikely to be of great use unless one is especially interested in audio oscillators, but the output transformer should certainly be salvaged, particularly if it is one of the multi-tapped variety.

Table 2 shows the heater voltages and general applications of some popular television valves, and it is frequently possible to utilise two or even more heater windings, connected in a suitable manner to obtain the required power for circuits using such valves, as described earlier. Sometimes, other lowvoltage windings can be interconnected to provide between 12 and 20 volts at a few amps., a useful
feature for those interested in building their own transistor power supplies.
I.F. transformers were, generally designed for $465 \mathrm{kc} / \mathrm{s}$ operation, and are therefore worth preserving unless they happen to incorporate the old-style compression trimmers, which were notoriously unreliable. Television i.f.t.s are usually somewhere in the $20-30 \mathrm{Mc} / \mathrm{s}$ region, and as such can prove of interest to potential constructors of amateur v.h.f. equipment. In this context, old f.m. mixers or TV turret tuners can sometimes be dismantled as complete units, and are very easily adapted for 70 or $144 \mathrm{Mc} / \mathrm{s}$ amateur band operation.

Coils

Unless these are of fairly modern design, the trouble of removing them is scarcely justified, although, if a complete unit with wavechange switch can be salvaged intact, it may well come in handy at a later date. Old wafer switches, by themselves, are seldom of much value, since they will almost certainly be badly worn.

Potentiometers

These have the merit of being amenable to direct assessment with a simple test meter. They will usually fall into two classes-good and bad-the worn track of the latter showing up immediately the control is turned backwards and forwards a few times. Keep the good ones carefully, since a wide selection of values on the experimenter's shelf is a very decided asset at all stages of construction. (The writer has a circuit in operation at present with about a dozen variable resistors-most of which will finally be replaced by fixed values once the optimum circuit constants have been determined.

Variable Capacitors

Check these, also, with a meter, to locate faulty insulation, rubbing vanes, etc. Do not, in this case, be in too much of a hurry to dispose of ancient types. Many of the best transmitters use tank coils which are tuned by components once gracing the panel of a 1930 battery two-valver, whose designers appeared to imagine that the presence of 120 volts across the vanes rendered a spacing of less than $\frac{1}{8}$ in. completely unacceptable. Needless to say, you will be unlikely to recover any components small enough to incorporate in that projected transistor portable, although occasionally, old valve-operated car radios can be found which were provided with astonishingly small, neat, and efficient tuning mechanisms and capacitors, which are well worth saving for future use.

Switches

Test routine is the same as for potentiometers. Subject the switch to a continuity test and also an insulation test to earth, especially if it is likely to be used for mains switching. Into this category we can
include relays, which may be found on some old television sets, or more probably on surplus or exW.D. equipment of more recent vintage. Do not neglect the possibility of using these on, for example, radio control equipment, or for similar purposesthe experimental potentialities of a sensitive relay coupled with a photo-cell or photo-sensitive transistor are endless.

Metal Rectifiers

These can provide useful accessories, together with heavy duty resistors, for receiver and even transmitter power supplies, although, with the advent of silicon rectifiers at very reasonable prices, their potential usefulness is likely to be less than it might otherwise be.

Resistors and Capacitors

These should be cut off as near the terminals as possible (not unsoldered), but unless at least 1 inch wire ends remain after this operation, they are unlikely to be worth keeping. There is undoubtedly a point where thrift ends and parsimoniousness begins, and it may be that we are in danger of reaching that point now. The fact remains that, with the low cost and high reliability of new components of this sort, it may prove false economy to store what may turn out to be less than 95% perfect material-remember that a good junk-box must never live up to its name!

Other Components

Finally, an example of one component which it is usually wise to hang on to, and, in contrast, one which is almost never worth storing. The former is the loudspeaker, especially if it is the small elliptical type popular in most TV receivers. These actually improve with age, since the cone suspension becomes less stiff with use, and the undesirable bass resonance can therefore drop, sometimes by as much as an octave. The component to avoid is the highvoltage electrolytic capacitor. Even when these test satisfactorily, their subsequent failure rate, when incorporated into constructional projects, can be alarmingly high, and they are best consigned to the dustbin forthwith-new ones, besides being considerably smaller than their older counterparts, are surprisingly cheap nowadays, and represent extremely good value for money.

In conclusion, a word about storage. Even the smallest "shack" can accommodate a reasonably wide range of components, provided these are stored in a methodical manner. Shelves are a necessity, as are stout wooden boxes for all heavier pieces of equipment such as transformers, etc. The best guide here is commonsense, the point being that the "junkbox" must never consist of a single large container into which material is deposited haphazardly. Far better a series of small, neatly labelled boxes, even if these do take up a little more space. Sensibly handled, the cult of the junk-box, besides reducing costs, can add considerably to the pleasure of all aspects of radio construction.

IN Part 2 the processes involved in the production of pure semiconducting materials were described． This leaves the device manufacturer in possession of his basic raw material，a uniformly doped slice of germanium or silicon．With this he can produce an enormous range of devices，from simple diode recti－ fiers to complex integrated circuits．This month the principles involved in the theory and manufacture of the diode will be discussed．

In Part 1 it was shown that the energy states in a semiconductor are arranged in bands separated by a certain band gap．At a temperature of $-273^{\circ} \mathrm{C}$ ，or absolute zero as it is called，electrons in all atoms are in the valence band and none are in the con－ duction band．In this case it may be said that there is a one hundred per cent certainty of a level in the valence band being filled but a zero probability of a level in the conduction band being filled．Con－ sequently a curve like the one in Fig．1（a）can be drawn．At higher temperatures electrons are excited into higher energy states so that the probability of an electron being in the conduction band is in－ creased，as shown at（b）in the same figure for a temperature of $27^{\circ} \mathrm{C}$ ．

The Fermi level

As can be seen，both curves go through the same energy level at the point where there is a fifty per cent probability of this level being filled．This energy level is called the Fermi level and in the case of intrinsic（i．e．undoped）semiconductor material it is as shown midway between the valence and con－ duction bands．

The curves are symmetrical about the Fermi level

Fig．1：Probability of occupancy of energy levels at different temperatures．
as can be seen．This is because the probability of occupancy of conduction band levels increases as the probability of occupancy of the valence band levels decreases．In practical terms this means that electrons which reach the conduction levels have come from the valence band since the number of electrons in the material is constant．

ーーーーーーーーーーーーーーーー－－Fermi level at very high temperatures

Fig．2：Movement of Fermi level with temperature in doped semiconductor material．

With doped semiconductors however the Fermi level moves as the temperature is raised．With n－type material at absolute zero all the donor states are filled so that these behave like the valence band and the Fermi level lies between the donor level（see Fig．2）and the conduction band．At higher tempera－ ures however these states become vacant as elec－ trons move to the conduction band and the Fermi level moves towards the level it has in intrinsic material．An analogous situation exists in p－type material．Here at low temperatures the Fermi level lies between the valence and acceptor levels．

The rate at which the Fermi level moves down－ wards depends on the doping level and on the host material．In typical combinations of these the Fermi level lies at room temperature just below the donor level or just above the acceptor level．

The p－n junction

If a piece of p－type material and a piece of n－type material could be brought together it could be shown that their Fermi levels would coincide，as shown in Fig．3（a）．Initial contact would not show this correspondence，as the Fermi level of the n－type material would be higher than that of the p－type material．However when contact is established on the atomic scale electrons diffuse from the material of n－type which has a high concentration of excess electrons to the p－type material which has a deficit

Fig. 3: (a) Energy levels and carrier flow in an unbiased diode. (b) Conditions at the p-n junction with forward bias applied. (c) Conditions with reverse bias applied to the diode.
of electrons. These electrons set up an electric field, the n-type side having a more positive potential than the p-type side. This is because the region to the right of the junction in the diagram then contains ionised donor atoms whilst the region to the left of the junction contains ionised acceptor atoms, with positive and negative charges respectively.

This field opposes the diffusion of electrons, itself giving rise to a drift of electrons in the opposite direction to the diffusion. Eventually an equilibrium is set up when the number of electrons diffusing from the n-type is equal to the number returning from the p -type material by the drift process. When this situation is established it is found that the Fermi levels at each side of the junction are equal (as shown in Fig. 3(a)). At the same time that the motion of electrons is under consideration it is also necessary to consider the diffusion and drift of holes in the opposite directions.

Depletion region

The positive donor ions and the negative acceptor ions are fixed in the crystal lattice and consequently in the region of the junction there is a deficiency of mobile current carriers and the term "depletion layer" is usually applied to the region. The ionised atoms compose a space charge which extends mostly into the region with lowest impurity, that is into the region of higher resistivity. Some consequences of this will be seen later when the punch-through effect in transistors is discussed.

Although there is an electric field across the junction this cannot be measured with a voltmeter because of effects which occur at the metal-semiconductor junctions. If it were possible to make this measurement the system would constitute a form of perpetual motion machine which unfortunately is not feasible.

Forward bias

Consider now what happens when a voltage source s connected across the junction with the positive erminal attached to the p-type material and the regative terminal attached to the n -type material. The Fermi levels will be displaced by a potential
proportional to the voltage applied, as shown in Fig. 3(b). In this situation electrons from the n-type material have a much smaller potential hill to climb and consequently a much larger current will flow due to diffusion. However the thermally generated electrons from the other side will still produce the same drift current since their number depends on the temperature alone and they are all collected by the drift field. A current will flow through the p-n junction diode when it is connected in this forward direction. This current consists of electrons and holes although only the electrons have been considered here.

Reverse bias

If the voltage is connected in the opposite direction the potential hill against which electrons from the n-type region have to flow is increased as shown in Fig. 3(c). This results in a reduction of the diffusion current. Again the current due to thermally generated electrons from the p-side remains constant. Consequently when a reverse bias is applied to the system in this way only a small current flows, this time in the opposite direction to the current flow with forward bias. When a large reverse bias is applied this current approximates that due to thermally generated electrons alone and is independent of the bias. This is called the saturation current of the diode.

Diode characteristics

A typical voltage-current curve for a silicon and a germanium junction diode is shown in Fig. 4. It can be seen that the reverse saturation current $I_{\text {sat }}$ is several times larger for germanium than for silicon; this is a consequence of the larger band gap of silicon. The offset voltage $V_{\text {os }}$ is the value of forward bias for which the forward current is greater than some small threshold.
The current through the diode can be shown to be given by the equation:

$$
I=I_{\mathrm{sat}}\left(e^{a V \mathrm{app}}-1\right)
$$

where a is a constant which increases with temperature, $V_{\text {app }}$ is the voltage applied to the diode and $e=2.7$. This exponential increase explains the appearance of the offset voltage, and the larger value of

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can order direct from us. A free colour
catalogue will be supplied on request.

CN 15 watts, fitted $\frac{3}{32}$ * Ferraclad bit. The leading iron for miniature and micro miniature assemblies: 18 interchangeable bits from .040 (1 mm) up to $\frac{3}{16}$ " for 240, 220, 110, 50 or 24 volts.

PRECISION miniature SOLDERING IRONS
Made in Engiand Antex, Mayflower House, Plymouth, Devon
Telephone: Plymouth 67377/8
Telex: 45296 Giro No. 2581000

COMPLETE PRECISION SOLDERING KIT

Supplied in its own compact, rigid plastic container and includes all of these items: CN 15 watts 240 volts miniature model ($\frac{3}{16}$ ") bit - 2 interchangeable spare bits ($\frac{5}{32}{ }^{\prime \prime}$ and $\frac{3}{32}{ }^{\prime \prime}$) - reel of resin-cored solder - heat sink for soldering transistors - felt cleaning pad - soldering iron stand - storage space for lead and plug.

[^1]

This $12+12$ watt integrated stereo hi-fi amplifier and preamp is proving one of the most successful P.W. designs ever. With good ancillary equipment, you will find it one of the best you have ever heard, and it is a delight to build and handle. Basically, the design of the "P.W. Double 12" as described in P.W. April, May and June demonstrates the value of using "Cir-Kit". However, Peak Sound have contributed more besides to the success of this project. This includes the power amplifiers, the power pack and the ingenious cabinet which almost assembles itself. Go right ahead and build this exciting new design now with authentic, exact-to-specification Peak Sound kits as recommended by the designers.
This is your PW Double 12 Shopping List

These are the Peak Sound units with which you can build this excellent design. Transistors included.

2 Spools of "Cir-Kiz" at 2/. each
2 Pre-amp and tone control kits
4 Pre-amp matrix boards
2 PA.12-15 Power Amplifier Kits
2 Heat Sink assemblies .. 120

2 P.A. matrix boards.. .. 8 1 PS.45K 45 volt power supply kit .. $\ddot{\text { Packeflat }}$ nosia teak finished Cabinet kit 5 Controls as specified $\quad 212$

TOTAL COST $£ 23 \quad 5 \quad 6$ Hardware Kit of knobs, plugs, sockets, switches, fuses, screws, wire, etc. Metalwork cut. shaped and punched. £2 126

P.W. Double 12 abridged specification

Controis--Bass and treble cut and lift based on Baxandalf circuitryf Volume/Balance/Rotary selector
Input Sensitivity-Magnetic P.U. (per channel) 2.5 mV Into $68 \mathrm{k} \Omega$ Ceramic P.U. -25 mV into 27 K . equalised for flat response. Radiol Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response- 20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall.
Output-12 watts per channel into 15Ω (8Ω speakers may be used). Negative Feedback-43dB over each section.
Cabinet-Afromosia teak finish, pack-flat, easy to build kit. Size $9 \frac{1}{4} \times 5 \frac{3}{2} \mathrm{in}$. high $\times 9 \frac{3}{2} \mathrm{in}$, deep.
Transistors-Ultra low noise in preamp and tone control stages.
for your authentic Peak Sound Kits. In case of difficulty, please send direct, giving the name and address of your usual supplier where possible and add $11 /$ - postage for complete assembly, or $5 / 6$ if without power pack
TRADE ENQUIRIES INVITED
PEAK SOUND (HARROW) LTD
32 ST. JUDES ROAD, ENGLEFIELD GREEN,
EGHAM, SURREY.
Egham 5316

Et E	ESSEX
RETURN OF THE UNBEATABLE P.1. PAK. NOW GREATER VALUE THAN EVER	Transistors Price AC126
	AC127........... $2 / 6$
Full of short lead semiconductors and electronic compo-	AC176.......... $51-$
nents, approx. 170. We guarantee at least 30 really high	AD149.......... $10 /-$
quality factory marked Transistors PNP and NPN, and a	BC107-8.9....... $4 / 6$
host of diodes and rectifiers. Mounted on printed circuit panels. Identification chart supplied to glve some	BCL71 $4 /$ -
panels. Identification chart supplied to glve so information on the transistors.	
. 1 PLEASE ASK FOR PAK P.1. ONLY $1 \mathbf{1 / - P}$ \& P -	OC22 $\ldots{ }^{6 /-}$
	0C25 $7 / 6$
Pak No. NEW, UNMAREED, UNT, STED PAKS	OC28 $10 /-$
$37812 \begin{aligned} & \text { Integrated circuitt, Mixed types } \\ & \text { data supplied with orders. }\end{aligned} 10 /$	
	OC45 $2 / 6$
$\frac{\text { Matched output pairs. }}{\text { OC45-0081D-0081 Transistors, }} 10 /$	0 OC 3 OC139 $2 /-$ $2 / 6$
Mullard glass types.	0¢139 ${ }^{\text {O/6 }}$
383200 Mixed PNP/NPN (erm. \&i Sil. $10 /$	0c201......... ${ }^{3 /-}$
	2N4284 8/6
NEW, TESTED AND MAREED PAKS	2N4285 8/6
379 4 TN4007 Silicon Piodes, $100010 /$	2N $4286{ }^{3 / 6}$
B81 $10 \begin{aligned} & \text { Reed Switches, mived types, } \\ & \text { large and smath. }\end{aligned}$	2N4288 ${ }^{3 / 6}$
- barge and smatl.	2N4290 $\ldots{ }^{8 / 8}$
899200 Capacitors, electrolytici, paper, $10 /$	2N4292 ${ }^{\text {2N3/8 }}$
	28034. 101
* ALL OUR TESTED SEMICONDUCTORS HAVE A WRITTEN GUARANTEE *	
Send for our FREE lists and catalogue of afl our products. Check your own equivalent with our free substitution chart.	
NO CONNECTION WITH ANY OTHER FIRM MLNIAIUM ORDER 10/-. CASH WITF ORDER PLEASE, add 1-post and packing. OVERSEAS ADD EXTRA FOR AIRMAIL	

JACKSON

the big name in PRECISION components

Incorporating the Dual Ratio Ball Drive providing 36-1 Slow drive and 6-1 Fast drive under one knob with co-axial control. Scale is calibrated $0-100$ and an extra blank scale is provided for individual calibration. Overall size $4 \frac{7}{8} \times 3 \frac{3}{4} \mathrm{in}$.
The unit consists of aluminium back plate, drive unit, scale, spare scale, transparent cover, hair-line pointer, escutcheon and knob. Fits in front of panel which may be any thickness up to $\frac{1}{2}$ in. (or more by providing longer screws).

It's reliable if it's made by Jackson! JACKSON BROS. (LONDON) LIMITED
Dept. PW, KINGSWAY-WADDON, CROYDON, CR9 4DG Phone Croydon 2754-5 (01-688). Grams Walfilco, Croydon US office:- M. Swedgal,
258, Broadway, NEW YORK. NY-10007

Fig. 4: Typical current/voltage characteristic curves for silicon and germanium junctlon diodes.
$I_{\text {sat }}$ for germanium explains why it has a lower offset voltage.

At high reverse bias voltages breakdown of the junction occurs. There are two main effects responsible for the breakdown. First the process called avalanche multiplication, which is caused by thermally generated electrons being accelerated across the depletion layer. During their passage they collide with unionised atoms and liberate more electrons by ionising these atoms. This process is repeated by the greater number of electrons now existing and results in a large current flowing across the junction. A voltage of more than 6 V is required to produce the avalanche breakdown effect. At lower, voltages another effect can produce breakdown of the junction; this is the zener effect which is caused by the strong field across the junction. Because of its narrow width a voltage of 6 V can lead to a large potential gradient which is what the breakdown relies upon.

The manufacture of diodes

In Part 2 the production of a crystal of semiconducting material with a uniform impurity concentration was described. Because of the different segregation coefficients of different dopents various quantities of dope have to be added to the melt from which the crystal is being grown. To obtain the same doping concentration with different dopents appropriate amounts are required. If equivalent amounts of n - and p -type dopents are added it is possible to produce compensation, with acceptors and donors balancing exactly, giving no net doping.

This can be utilised in preparing a p-n junction during crystal growth. If n-type dope is added to the melt from which the crystal is being grown then the first part of crystal to be grown would be n-type. Now if sufficient p-type material is added to the melt the n-type dopent will be over-compensated so that the next part of the crystal to be grown will be p-type. By doing this it is possible to produce a p-n junction.

The segregation coefficient for different dopents changes as the rate at which the crystal is grown from the melt is changed. For antimony in germanium the segregation factor increases quickly with growth rate but with gallium it changes more slowly. If correct amounts of these dopents are added to the melt it is found that a rapid growth rate results in
antimony doped n-type material but a slow growth rate leads to gallium p-type doping. So variation of the growth rate can also be used to produce successive n - and p -type regions giving a chain of junctions. These are subsequently sliced to give discs of perhaps 1 in . diameter which are made into hundreds of diodes.

Diffused junction diodes

It has been described how impurity atoms will diffuse rapidly into the body of a semiconductor at a high temperature. This fact is utilised in one type of diffused junction diode. A coating of a p-type impurity is applied to one surface of a slice of n-type material. This is subsequently heated to $800-900^{\circ} \mathrm{C}$ for a defined time whilst the impurity diffuses into the slice. A p-n junction will be formed across the plane reached by the impurity.

The process of heating results in a decrease in the lifetime of the minority carriers and consequently to an increase in the forward resistance of the diode, making it less suitable for high current applications. However it also results in a decrease in the diffusion capacity which improves the switching characteristics. A gradient of impurity ions is obtained across the junction in this type of device so that the field strength across the junction is reduced and consequently the reverse breakdown voltage is increased. Because of this it is also possible to employ a high impurity concentration with consequent low series resistance whilst still maintaining a high reverse breakdown voltage.

Alloy diodes

Alloying is very frequently used in the manufacture of diodes. A small piece of a suitable impurity such as indium is placed on an n-type germanium slice and heated to about $500^{\circ} \mathrm{C}$. The indium melts and dissolves the surrounding germanium. As the slice is slowly cooled the mixture of indium and germanium recrystallises to give a strongly p-type region. An abrupt junction is formed at the boundary region, without any built-in impurity gradient.

Epitaxial planar diodes

Epitaxial planar diffused junction diodes are becoming available as integrated circuit techniques develop. However their method of manufacture will be described together with those of integrated circuits in a later article.

Diode connections

Leads are connected to both sides of the diode to give non-rectifying or ohmic connections so that the diode can conveniently be coupled to an external circuit. The diode is then sealed in a glass or metal case in order to avoid atmospheric contamination occurring.

In the following Part the other types of diode which are available will be described and their individual merits discussed.

TO BE CONTINUED

practically wireless commenarvathenni

IF you have ever paused to wonder why your ten-transistor portable spends more time going back to the workshop than receiving Radio One; if your brand-new amplifier develops an angry hum; if I-Cs disintegrate in your hand, don't worry-it is probably the Peter Principle at work.

Not so different really from some of the extensions to Henry's Law (inanimate objects subsection), the Peter Principle quests further afield and takes in cybernetics. It is the study of human incompetence.
Dr. Laurence Peter is a Canadian, a university professor, once a prison instructor and a school psychologist. He has collaborated with Raymond Hull, a British writer now living in Canada, to produce a wildly satirical book based on the theory: for every job there is a man somewhere who cannot do it. Sooner or later they will coincide.

In a large organisation, such as the Superset factory where your transistor radio was born, a man who shows promise at his job can expect to be offered promotion. He moves up the ladder each time he proves a success until he reaches the level where his capabilities are blocked by the demands of his new task. And there he sticks.
First of all, he was sorting out the components in the Superset stores. Then, when he had learned the colour codes and

. . . ears in the back of their heads
other fundamentals, they shifted him up to the production line. Not content with merely soldering bits into chassis, he went to night school and learned a few formulae, so they moved him to the test department.

Now the test department in the average radio factory (or, at least, those few Henry has worked in) consists of the lancejacks who carry out spot alignment, with instruments set up for them-"You just twiddle this screw till that needle reaches this line, see?"-then the corporals who do alignment and other adjustment checks, then the final test bods, who have to have ears in the back of their heads, and finally the elite warrant officer class who undertake the trouble-shooting.

There are several lines of progress. With his acquired know-how, he may just be capable of entering the planning or design department; in a mundane capacity, making up breadboard lash-ups as instructed.

In time, his breadboard efficiency is noticed and he is given a few minor modifications to do. Being wise in factory ways by now, he keeps his eyes open, follows the trend and doesn't quite make a hash of it. But we all know how late his mods are, don't we? The set we bought is very different from the model Superset market now. It is a corollary to Henry's Fourth Law that our receiver will be the Mark One with the knobs that split, the volume control that rasps, the on/off switch that flips but does not flop, the noisy transistors, the printed circuit without that link that bridges the draughtsman's error . .
Nobody notices our friend is beginning to flag. He marries the Sales Manager's daughter and becomes a fully-fiedged designer. He is the chap that was responsible for the amplifier whose output valves cooked a hole in the

. . . whose output valves cooked a hole in the cabinet
cabinet. But that was so long after production, and the design was remarkably cheap to make, so he was once more a success and now leads a subsection team.

There he sticks-and why? Because he has reached the limit of his capability. New techniques have overtaken him, his mental gate is closed to F.E.T.s, he can't even pronounce quasi-complementary and to him Darlington is just a place where the trains start from.

But the reason he eventually gets the sack-in accordance with the Peter Principle-is not his incompetence. Just the opposite, in fact. In a desperate attempt to redeem his good name he designs a tuner about which the reviewers rave. It has all the station-seeking attributes one could wish for and Superset spend a mint on advertising it before the prototype is completely unwrapped.

Our friend has made his name. He glows with pride as the first ten roll off the line-then sinks into oblivion, for the gold-plated I-C on which he based his i.f. strip can only be made in midtransvaria and the Customs and Fxcise won't release any more from bond. So the Superset tuner is modified out of all recognition, becomes uneconomic and, like its designer, is dropped.

Henry's Third Law tells us that you and I, Joe, will always get the modified type!

See our vast range of Electronic Components and Accessories at our en－ 25 Tottenham Court Road

MAINS KEYNECTOR SAVES TIME－SAFELYI

One mains＂Keynector＂instantly and safely connects electrical appliances to mains supply without the use of a plug A mumber of appatances up the fill 13 amp rating of this devjee．A red likht glows when ＂live＂．The＂K eynector＂is fused and has its own robust switch which is interlocked to prevent connections
When＂Iive＂．Invaluable to handymen． ervicen，
$39 / 6$ P．\＆P．3／－． VHF AIRCRAFT BAND CONVERTOR
When placed within Iin． of alaw band radio full
coverage of $\mathbf{V H F}$ Air－ craftBend $108-135 \mathrm{Mc} / \mathrm{s}$ ． can be obtsined．All transistor，9y battery
operation．Fully tumable 184 in $\times 7$ section tele－ scopic aerial．Size 4×24
$\times 1$ tin． $79 / 6 . P$ \＆$P 3 / 6$.

SO．15RN Vols MOTOR Current 400 mA ．Torque $12 \mathrm{~g}-\mathrm{cm}$ ．Body gize 12g－cmo Body gize
10ng $\times{ }^{\prime \prime}$ dtan
Shaft Shaft ${ }^{6 / 19 "}$ Iong x 18＂dia．Ideal for toys．${ }^{5 / 6}$ each
P．\＆P．1／3． 3 for $15 /$
DE－LUXE STEEREO HEADPHONES With soft rubber earpieces．Impedance 8－16 ohms．Firequency response 23－13，000cpa． With lead and stereo
pluy．

NEW STEEESO／MONO HEADPHONES SDH－7．Soft rubbe switoh for monol stereo listening and ind．vol．controls． Impedance 8－16 ohm 15,000 cps．Withlead and stereo plag．

VEANER SYNCHEONOUS MOTOR URIT，Brand New． 250v）vortage（200） 260v） 1 rev．per hour． （enclosed in case） self starting，silent ruming．Shaft eom－ plete with knurled clamping nut．Overall dimensions： 2 in．dia $11 / 1 i^{\text {in }}$ ．deep（lncluding
shaft）．Shaft dias shaft ．Shaft dia． $9 / \mathrm{gin}$ ．
27／6．P．$\&$ P． $3 / 6$.

HITTINE RECDRDING TAPE

TRANEFORMERS

AUTO WOUND TRANSFORMERS

All Winding Voltage Retings and Tapping 0－115－200－820－240v except MT113－ －115－920－840v

 $\begin{array}{llllll}\text { Mr95 } & \text { 2000W } & \text { Stze } 7 \times 6 \mathrm{f} \times 8 \mathrm{in}, & \text { Wgt } 40 \mathrm{lb} & \text { Price 195／－Carr．ex．} \\ \text { Price 211／2 } & \text { Carr．ex．}\end{array}$ 33 3000W Size $6 \frac{7}{8} \times 7 \frac{1}{8} \times 8 \frac{3}{c} \quad$ Wgt $45 \mathrm{lb} 80 z$ Price $300 /-$ Carr．ex

LOW VOLTAGE 12 VOLT RANGE

Primary 200－2507－secondary 12v
$\mathrm{MT111} 0.6 \mathrm{Amp}$ Gize $3 \times 24 \times 1 \frac{1 \mathrm{in}}{}$ MT71 2 Amp Size $24 \times 2 \frac{1}{4} \times 2 \frac{1}{2} \mathrm{in}$ ．
 MTV2 10 Amp Size $3 \frac{1}{3} \times 4 \frac{1}{4} \times 4$ in． MT105 20 Amp Size $4 \frac{3}{4} \times 4 \frac{4}{4} \times 4 \mathrm{in}$. MT187 30 Amp Size $54 \times 4 \frac{5}{4} \times 4 \frac{3}{2}$ in．

Wgt $120 z$ Price 15／8 P\＆P $2 / \theta$ Wgt $11 \mathrm{~b} \quad$ Price $19 /-$ P\＆P $9 / 9$

 Wgt 6 lb 30 z Price 51／－P\＆P 9／－
Wgt $11 \mathrm{lb} 130 z$ Price $95 /-\mathrm{P} \mathrm{\& P} 9 /-$ Wgt 16 ho 1202 Frice 180／－P\＆P13／6

LON VOLTAGE 24 VOLT RANGE

Primary 200／250v．Secondary 24y
MT68 1 Amp Size 29
$\times 2 \frac{2}{8} \times 2 \frac{1}{2}$
MT114 8 Amp Slize $2 \frac{1}{2} \times 3 \times 3 \mathrm{in}$ ．
$\begin{array}{llll}\text { MT72 } & 5 \mathrm{Amp} & \text { Slze } 4 \times 3 \frac{3}{2} \times 3 \mathrm{inn} \\ \text { MT17 } & 8 \mathrm{Amp} & \text { Size } 43 \times 3 \times \times 4 \mathrm{in} .\end{array}$
MTII6 10 Amp §ize $4 \times 4 \frac{1}{3} \times 4 \mathrm{in}$
Wgt $1 \mathrm{bb} \quad 702$ Price 23／9 \quad P\＆P $4 / 6$ $\begin{array}{ll}\text { Wgt } 3 \mathrm{lb} & 602 \\ \text { Price } 88 /- & \text { P\＆P 6／－} \\ \text { Wgt } 5 \mathrm{lb} 1202 & \text { Price 53／10 } \\ \text { P\＆P } 6 /-\end{array}$ $\begin{array}{cccc}\text { Wgt } 5 \mathrm{lb} 1202 & \text { Price 58／10 } & \text { P\＆P } 6 /- \\ \text { Wgt } 7 \mathrm{lb} & 80 z & \text { Price } 72 / 7 & \text { P } \& P 9 /-\end{array}$

LON VOLTAGE 30 VOLT RANGE

Primary 900／250y Secondary Tapped 18－15－20－24－30
MT112 0．5 Amp Size $37 \times 2^{7} /_{10} \times \quad$ Wgt 11 lb 4of Price 17／4 P\＆P $3 / 9$
MT79．I Amp Size $2 \frac{3}{2} \times 2 \frac{1}{2} \times 2$ 青in．Wgt 2lb Price 23／－P\＆P6／－

MT89 10 Amp Size $5 \frac{1}{2} \times 4 \times 4 \frac{4}{5} \mathrm{in}$ ．Wgt 121 lb 20 z Price 103／6 P\＆P11／－

LOW VOLTAGE 50 VOLT RANGE

Primary 200－050v SECONDARY TAPPED 19－25－33－40－50V

 MT119 10 Amp Size $6 \frac{1}{2} \times 4 \frac{1}{2} \times 6 \frac{1}{2}$ in．Wgt $19 \mathrm{lb} 120 z$ Prime 185／－P\＆P 15／6

LOW VOLTAGE 60 VOLT RANGE

Primary 200／250v．Secondary Tapped 24－30－40－48－60
MT124 0.5 Amp Stae $34 \times 2 \mathrm{a} \times 2 \mathrm{jin}$ ．Wgt 2 lb 402 Price $24 /-\mathrm{P} \& \mathrm{P} 6 /-$
 MTI22 10 Amp gize $6 \frac{1}{2} \times 5 \times 6$ inim．Wgt 23 lb 202 Price 152／－Corr $11 /$

MAIMS H．T．RANCE Size PriceP\＆P

MT1AT $250-0-250 v$ 80MA $6.3 \mathrm{v} 3-5 A .3 / 6 \cdot 3 \mathrm{v} 1 \mathrm{~A} \quad 3 \frac{1}{2} \times 3 \times 3 \mathrm{in}$ ． $88 /-\quad 6 /-$
 MT110 $250-0-250 \mathrm{~V} 120 \mathrm{MA} \quad 6 \cdot 3 \mathrm{~V} \quad 3 \cdot 5 \mathrm{~A} \quad 5 / 6 \cdot 3 \mathrm{~V} 1 \mathrm{~A} 4 \times 4 \times 31 \mathrm{in}$ ． $44 / 9 \quad 6 /$

BATTERY CHARGER TYPES

M77	1 Amp	Sfze $2 \frac{7}{} \times 21 \times 2$ 者in．	Wgt	1 lb 60 z	Price	15／－	P\＆P 4／6
MT45	1.5 Amp		Wgt	11b 902	Price	21／9	P\＆P 4／6
MT46	2 Amp		Wgt	2 lb 402	Price	25／4	P\＆P $6 /-$
MT47	3 Amp	Stize $4 \times 3 \times 3$ itin．	Wgt	8 lb 8 cz	Price	28／4	P\＆P60
MT5	4 Amp	Eize $4 \times 2{ }^{2} \times 3$ in．	Wgt	$8 \mathrm{lb} \mathrm{110z}$	Prlce	381－	$\mathbf{P} \& \mathrm{P}^{6 /-}$
MT78	5 Amp		Wgt	5 nb 403	Price	421－	P\＆P6／－
MT86	6 Amp	Slze $4 \times 3 \frac{1}{2} \times 8$ 2in．	Wgt	$515120 z$	Price	481－	P\＆P6／－
MT48	7 Amp	Size $4 \times 4 \times 3$ gin	Wgt	6 lb	Price	86／7	P\＆P91－
MT146	8 Amp	Size 3 \％$\times 4 \times 4 \mathrm{in}$ ．	Wgt	6 Ib 40 z	Price	751－	P\＆P9／－
MT49	9 Amp	Size $4 \times 3 \times 4 \times 4 \mathrm{in}$ ．	Wgt	$71 \mathrm{~b} 80 z$	Price	991－	P\＆P9／－
MT147	10 Amp		Wgt	91 b 30 z	Price	105／－	P\＆P 9／－
MT50	12.5 Am	Size $51 \times 4 \frac{1}{4} \times 4 \frac{3}{4}$ in	Wgt	$1116140 z$	Price 1	125／－	P\＆P 11／－
Amper	ges are	th nominal		e reetifl			

Visit our Brand New HI－Fi Demonstration Room，Tape， Record Bar and Scientific Show o Microscopes．Binoculars， Telescopes and Watches at 18 Tottenham Court Road

TTC． 01001 MULTITTMTER in leather case．

SHIRA 6OD HOLTI－ TESTER 20，000 0．p．7． $600-2 \cdot 5 \mathrm{~K}(20,000$ ohms per volt）．AC Voltage：10－50－ $100-500-1000$ volts（ 10,000 ohms per volt）．DC Cur－ rent： $0.50 \mu \mathrm{~A}, 0-2.5 \mathrm{~mA}, 0$ 0.6 Mg ．Resistance：0－6K， $0.6 \mathrm{Mg}(300$ ohm and 30 K at centre scale．）Capacitance： 10 pf to 0.001 ro， ase 7\％．Size $4 \frac{1}{8} \times 3 \frac{1}{2} \times$ lin．Complete with －DeC BREAD

Solderless breadboard panels，for fast re－ nable component connections．
Single DeCs．One G－DeC with Control Panel，Jig and Accessorles for solde rless ＂Projects on controls，etc．，Widh bookle letails for a variety of circults $89 / 8$ P．\＆P．2／6．
4－DeC KIT，Wour S－Decis with two Control Panels，Jigy and Accessories and the book－ et＂Projects on s－ideC＂all contained in a strong attractive plastic case Ideal for the ［RAFARAFD＂］EDKS

SRP22 less cartridge 25． 9.6 1025 Stereo／Mono with esit 3000 S Stereo／Mono with cart． 3000 D Iterec／Mono with oart． P25 less cartridge． SP25 with Decca Deram cart． L55 less cartridge ．．．．．．．．． L55 with Decea Deram cart．．． SL65 less cartridge ．．．．．．．．．．．． Covers for above． Bases for above． L75 less cartridge L95 less cartridge Bases for above
 P25 less cart，with base P．\＄P．Decks $12 / 6$ ，Cover $4 / 6$ ，Base 4／6 MINIATURE SOLDERING IRON

Britigh made and designed for use with other uses．AC 240 v ． 18 watt．Lementh

RADIO TELEMETER UNIT

These are a low frequency Rx working on 120 Kc for use on 230 v . mains, they can easily be modified to 200 Kc Radio 2, or provide basis for Swt tuned radio or gram amp. Uses valves ECF82×3, 6BE6, 12BH7, 6BA8 as $3 \frac{1}{2}{ }^{\prime \prime}$ Spk., 2 low speed motors, Tape Rec head with tape loop, 3 relays, 3 Rot swts, 2 solenoids, 2 mains trans., coils, timers, knobs etc. Complete in neat cabinet size $14 \times 7 \times 6^{\prime \prime}$ modern make in good condition with circ \& mods for 200 Kc . Price $£ 3.5 .0$, plus 7/6 carr.

A. H. SUPPLIES
57 Main Road,
Sheffield 9.

MOBILE S.W. LISTENERS

The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING

The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil £6.17.6, plus $\mathbf{3 / 6}$. Extra coils $£ 3.17 .6$, plus $3 /-$.
From leading amateur radio stores or direct from the manufacturers:

HALSON ELECTRICAL SERVICES Dover Road, off Ansdell Road, Blackpool.

Est. 1943 JOHNSONS Tel: 24864

VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, $70-150 \mathrm{Mc} / \mathrm{s}$, 75/-, p.p. 4s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)

St. Martin's Gate, Worcester

IT'S all very confusing really. The propagation Confuciuses say: "When sun is spotty, l.f. bands grotty." True as this may theoretically be, it becomes rather difficult to explain the W stations on c.w. regularly heard happily squeaking away on 1.8 MHz . The PY stations on 3.5 MHz , not to mention the African stations, all seem to indicate that theory and practice do go together-but you need quite an imagination at times to believe it.

John Moore (Leicester) says that LGSLG is near Magnor in Norway. He also tells that this month he logged a station at every hour of the day and night except 0400 hrs GMT. Never mind John, I never have any luck at 0400 , probably 'cos I'm fast asleep in bed!

Various scribes have written in with titbits of info. One tells of rumours that OY stations are hoping to be on 1.8 MHz soon. Foreign parts to tune for when switching on are Tokelau Island (listen for ZM7) and Manahiki (ZK1).

Barry Weston (Poole) informs that Chatham Island is going strong, but this is rather a sore point with me since my Chatham Is. signals were almost certainly emanating from the spotty faced s.w.l. of 12 moons who, I feel sure, is "at it" with a transistor rig about 800 yards from my long wire.

Twenty metres offers an easy way to log half the world in one go. Best times for VK/ZL have been the wee small hours till breakfast time. The JA stations seem to arrive later around lunch time. Twenty's stablemate, 21 MHz , is good from breakfast until midnight and peaks very well at times. Ten metres comes and goes, but early mornings to tea time usually produce some good sigs with DX sneaking through and peaking to 5 and 9 plus. Late night listening has produced noises like frying eggs in the cans and has been no good at all.

Nobody listens on 70 MHz and 144 MHz , or if they do, they keep jolly quiet about it. As soon as you've read this sentence, stand up and shout "Listen on 4 and 2 metres", and then go and do it. Don't forget to let me know what you hear-when I'm sure it's safe, I'll have a listen too. Incidentally, for those who think these are just cross-town bands, the recent SM7/ZL1 2-metre contact would take a bit of explaining.

MULTIBAND LOGS

Most s.w.l.s listen on more than one band, although usually they have a favourite. Because of space considerations I usually put in one-band reports only and select the best one from the log. But, this month, I'm setting down all the logs for a change (Ooh! Isn't he bold).
A. Hall (Kent) lists among his possessions one modified Eddystone 888 A plus a.t.u., a 110 ft . long wire, and a multiband folded, loaded dipole. On $1.8 \mathrm{MHz}-\mathrm{GI}$ and $\mathrm{GM} ; 3.5 \mathrm{MHz}-\mathrm{CT} 2 \mathrm{AT}, \mathrm{EP} 2 \mathrm{BQ}$, GI, GM, GW3XTA, running 6 watts, HB9ABM, HB9ALG, I1AHO, K1CTA, MP4TAF, OH, ON, OZ, OY4OV, OY6NRA (club station), PAø, PY7ASQ, PY7GV, SK, SM, UA3KAA, UP2TB, VO1FG, VO1FX, W2BL, W4BFA, YO5TI, YU2HPE, ZB2BS, 5 A1TN: $7 \mathrm{MHz}-\mathrm{GB} 2 \mathrm{SM}, \mathrm{I} 1 \mathrm{LAI}$, MP4TAF, YV4IQ, YU3TGI, W4PHE, WA1FKS, WA3FWJ, WA5ORK. All on s.s.b. except the last four W stations.
W. Harper (Staffs) describes 40 metres as ". audible fog". The gear comprises an 840 C , Joystick plus Joymatch at 36 ft . with a 66 ft . feeder. Forty s.s.b. -CT1GD, CT2AK, EA3HF, EP2BQ, HC4ME, HB9UD, HI2HH, K4RUG, MP4TAF, OZ5VT, PY8VA, SK5AA, SL3ZV, UF6CR, UV9KAG, W2EWT, W3IGK, W4QR, W5GTP, W5OVR, WA2GLH, WA3PSJ, WA4VWX; 20 s.s.b.-EA1CRP, F2UX, FP8CS, KP4AST, HV3SJ, KV4DL, KR6AF, KZ5NF, OA4JRT, OZ8QX, PI1GHK, PY8MG, SVøDD, TI4JM/P7, UM8IKZ, VE2DC, VE3CRP, VE6AFJ, VK1RD, VK2BSM, VK2DY, VK3TG, VK4UC, VK5MS, VK7AZ, W7SFA, YV4VA, ZC4MA, ZL4BX, ZL4LD, 4S7AS, 9G1YJ, 9E3USA, 9V1PB.

Stephen Cole (Monmouthshire) has a trio JR60. An indoor wire (man that's living) raised these on 28 MHz - CX4IX, FG7XT, KV4AD, PZ1DA, VP8KL, VS6AL, YA1AR, ZS1YX, 7Q7WW, 9N1MM, 9X5AA; $7 \mathrm{MHz}-\mathrm{CO} 2 \mathrm{DC}$, K2RTH, MP4TAF, PY7EC, W8UM, YV1BI, ZC4HS, 5A2TR, 9H1BA.

TWENTY METRES

R. Dinning (Ayrshire), HA350 Mk2, PR30X and RQ10, 380ft. long, long wire, logged this lot on 14 MHz s.s.b.-CT2AK, CT3AW, DU1ZAG, ET3USA, HR1DB, HV3SJ, JA3GZN, KX6FA, HL9UU, LG5LG, PZ1DD, SU1MA, TI2AP, VK2XG, VK3XI, VK6ID, WA4DUC/HS, XE1DE, ZL1KM, ZL1NB, VP2LA, VP9FE, VR6AL, VU2OLK, 3AØCU, 3V8AC, 5N2AAX, 6Y5DB, 8P6AF, 9E3USA, 9K2AM, 9Q5HS, 9Y4LP.
J. Moore (Leics.), CR100/2, 60ft. end fed, had two weeks off from school. Homework on 20 s.s.b. gets him ten out of ten for logging-CE3FH, CE6CA, CP1GN, CX6CG, DU1FH, F9UC/FC, HK5BDS, HS3RT, JA4AS, K7BCX, KR6KN, LG5LG, M1B, OA4OS, OY6NRA, PJ2CC, PJ7JC, SV $\varnothing W N$, TA1MGP, TA3RF, TF2WLT, TI2MEF, UA9KDL, UF6CR, VE3EQI, VE5BV, VE6XJ, VE7PV, VK2EK VK5MO, VP7NH, VQ8CPR, VR6TC, W2FHO/W7, W5HE, WA4PUC/P/HS, WA6BMG, WB6MOS, W7AEK, XE1IX, XW8AX, YS1O, YS2RAR, YV2HQ/P/3, ZL4BX, 4S7PB, 4Z4HF, 5R8AN, 8P6CV, 9Q5IA.

HAPPENINGS

If you are thinking of having a rest in July, don't bother. It's quite a busy month for the keen types who can stand the pace. July 5th-6th, topband contest; 5th-6th, 2 metre contest; 6th, South Shields mobile rally; 12 th -13 th, high power field day; 13 th, Worcester mobile rally; $20 \mathrm{th}, 70 \mathrm{cms}$, contest; 27th, Cornish mobile rally.

Please remember that logs must reach me by the 20th of the month, otherwise they miss out no matter how good they are. Those in alphabetical order are always at the top of the list, while those with no mention of which band or mode etc., are right at the bottom.

Warning well in advance. A letter from G3FSN says listen for GB3WRA from the annual Wycombe Show, all bands 160-4 metres on Saturday, September 6th.

TAKE 2중

A series of simple transistor projects, each using less than twenty components and costing less than twenty shillings to build. This month's project is described more fully than usual and should prove popular with both our musical and unmusical readers.

The Take 20 prototype of the electronic organ.

PERHAPS we are cheating a bit this month as, although we are still within our 20s. limit we are using more than 20 components. As an excuse 1 offer that if only a single octave version is required we remain strictly within our category.

In building it I had a problem, apart from unsuccessfully attempting to vamp a guitar and successfully reproducing the drone of Lancaster bombers by depressing one note of a foot-pumped organ, I have never played a musical instrument. On seeking advice I learnt that about 15 notes including sharps and flats were necessary to play the simplest tunes and this our project achieves.

Last month a metronome was described and it was while playing about with this that the idea was born. If, instead of using a $30 \mu \mathrm{~F}$ capacitor a $0.1 \mu \mathrm{~F}$ was substituted, a high note is reached, varying with the setting of the potentiometer. A version based on this circuit however has disadvantages; stability was hard to achieve and the resistance scale followed no known law, probably due to the leakage etc. of the transistors.

THE CIRCUIT

A unijunction transistor 2 N 2646 was used instead with very much better results and one is used in the final circuit. However, the volume from the

The working of the unijunction has been described recently in an article in Practical Wireless (Nov. and Dec. 1968) and there is no point in duplicating this information-all that need be said is that the unijunction has two bases and one emitter, but no collector. The amplifier section is completely standard and needs no explanation.

The actual frequency depends on the value of the resistance selected between the positive rail and the emitter of the unijunction; the combination of the resistance and the $0.1 \mu \mathrm{~F}$ capacitor determines the note.

THE OUTPUT

Either an 80Ω impedance loudspeaker or a balanced armature earpiece may be used: funnily enough in this circuit the latter was not only louder but produced a more pleasant note (this doesn't apply of course to normal audio). This is probably due to the waveform which takes the shape of a spike when displayed on an oscilloscope.

Although the volume is more than adequate, the battery drain is only about 15 mA from a 9 V battery. If one wants to use an external amplifier the takeoff points are across R16, 100Ω, but the input impedance of any such amplifier should be fairly

Fig. 2: The layout of the components on the Veroboard. The balanced armature earpiece is held by two short screws.
high otherwise a damping effect takes place on the oscillator.

Difficulty may be experienced in obtaining the correct value resistors as some, such as the 620 , $750 \Omega, 910 \Omega$ and $1 \cdot 1 \mathrm{k} \Omega$ are not preferred values. One way is to select these values from a batch of 20% tolerance resistors but arrangements have been made with Electrovalue Ltd. of Egham to supply a pack of R1 to R15 to the specification inclusive for 3s. 4 d . including postage.

CONSTRUCTION

All the components are mounted on a piece of Veroboard $5 \frac{1}{2} \times 2 \frac{1}{2}$ ins, one end of this forming the "keyboard", the other holding the battery, the loudspeaker and the main components. The actual keys are made by using short lengths of Cir-Kit adhesive copper strip bent over the end of the board to bring the "keys" to the top. To differentiate between the ordinary notes and the semitones the latter strips were cut shorter than the others.

The layout is completely uncritical and many constructors may wish to build the unit into a small cabinet. Figure 2 shows the suggested layout.

PLAYING THE ORGAN

The actual notes are played using a probe (one from an old testmeter was used by the author) to select the correct notes.

VR1 is a $2 \mathrm{k} \Omega$ trimmer pot. which will tune the instrument to another such as a piano. A volume control is fitted and unfortunately, because of the simplicity of the circuit, this very slightly affects the note, but no problem will be experienced if the volume is set before tuning up. Extra octaves can be added by placing a carefully matched capacitor either in series or in parallel with Cl .

The range of the basic keyboard can be extended by adding further resistors to the chain (these will have to be chosen by experiment). The tone of the instrument can be altered by removing or changing

\star components list

Resistors:

R1, R2 1-2k Ω 5
R3, R4 1-1k Ω 5\%
R5, R6 $1 \mathrm{k} \Omega 5 \%$
R7, R8 $910 \Omega 5 \%$
R9, R10 820 25
R11 750 ${ }^{5} 5$
VR1 $2 k \Omega$ lin. preset
R12, R13 680 5%
R14 620』 5\%
R15 10k Ω 5
R16 100』 10\%
R17 27k Ω 10\%
All $\frac{1}{3}$ or $\frac{1}{4}$ watt miniature
VR2 $5 k \Omega \log$ with switch
Capacitors:
C1 $0.1 \mu \mathrm{~F} 12 \mathrm{~V}$
C3 $0.04 \mu \mathrm{~F}$ (optional)
C2 $2 \mu \mathrm{~F} 12 \mathrm{~V}$

Miscellaneous:

Tr1 2 N 2646 or equiv. Tr2 0 C 81 or equivalent Veroboard, 0.15 in . matrix $5 \frac{1}{2} \times 2 \frac{1}{2}$ in.; Balanced armature earpiece or 80Ω loudspeaker; 9 V battery; Cir-Kit strip; test probe; heatsink.
the value of C 3 , also extra volume will be achieved, but with it removed the notes are harsh and unpleasant-at least to my unmusical ears.

An attractive point that this circuit has because of the use of a unijunction is that the note emitted is virtually independent of battery voltage; the prototype was stable even when the battery was reading only 4.5 V .

Next month our project is a transistor tester designed to sort out the good, fair and dud transistors sold in the surplus 10s. packs for leakage and gain in both $\mathrm{p}-\mathrm{n}-\mathrm{p}$ and $\mathrm{n}-\mathrm{p}-\mathrm{n}$ types. In addition it checks its own battery, measures other battery voltages under load, measures resistance between 500Ω and about $50 \mathrm{k} \Omega$, acts as an electrolytic capacitor check and checks continuity; in fact it should prove an extremely useful addition to your testgear. For this a moving coil meter with a movement of 3 mA or better is needed (details of adapting any meter with a greater sensitivity are given). Meters with a 3 mA movement are advertised in this issue for 9 s . 6 d . and these should be ideal.

When the distant receiver is lifted, switch A changes over to complete the speech circuit. Replacing the receivers causes both switches to revert to normal, and the keys or buttons to cancel. Only the battery at the local end is used for a call, and the person on the extension need not operate any of the keys or buttons to receive an incoming call.

The circuit in Fig. 1 is that for the key units shown in the photograph. For the button units, the ring switches (complete depression of the selector button) will need to be paralleled together and coupled between X and Y in Fig. 1.

Wiring of the key units

After removing the outer casing it can be seen that the unit consists of:
(i) The main frame carrying a G block with some 12-20 terminals and two buzzers.
(ii) A front panel carrying the key switches.
(iii) An intermediate portion containing a miscellany of transformers, condensers etc.
The simplicity of the circuit makes the capacitors and transformer unnecessary and these are best removed, also remove the multicore cable and receiver. Next, trace the wires from the key switch contacts to the G block and disconnect all others. It is best to adopt a logical approach to the rewiring of the G block so that faults may be remedied easily at a later date if necessary. The receiver will have four wires connected to it. Strap the Blue and Green on the G block and connect the Red and White to

Basic system

Any number of the basic units may be connected together (see Fig. 1) depending upon the availability of the switches. Lifting the receiver causes the restswitch, A, to change over to the receiver contact. A selector key or button is then operated to select the desired station. Pressing the ring key now provides a path between the local battery and the buzzer at the distant end via the appropriate loop wire and the common return wire.

Fig. 1: Circuit of basic system showing three units.

Fig. 2: Wiring diagram for key units.
make/release to break" button in any convenient position. In the units used one of the pilot indicator lamps was removed to facilitate insertion of such a switch.
The ring button is wired to the small G-block within the telephone instrument itself. Whilst in some cases there may be room within the instrument to house a battery, some of the later models do not permit this and the battery must be located in the junction box.
There are nominally four types of extension which the author has incorporated in his system although the variation within these types makes the list almost endless.

Incoming calls only

This extension utilises any of the ordinary GPO type phones with or without a dial. The circuit is arranged so that a call incoming,
the unit. The sidetone produced by coupling the transmitter and receiver in series is not too distracting.

The receiver rest switch consists of three leaves each side of a rubber roller which causes the three leaves to short together-the upper set when the receiver is lifted and the lower set when the receiver is "on". In order to make a single-pole change-over switch from this arrangement it will be necessary to common one leaf from each of the sets (see Fig. 2).

Button units

Several types of these units are available but all the later ones incorporate basically the same type of switching facility. Some may have junction boxes containing up to three relays which are not required. The author has found that the variation between these units involves the "receiver rest" switch. In the simpler kind the switch consists of one or two change-over contacts which are actuated when the receiver is lifted. Later versions have a spring set containing two change-over contacts. These change over when the receiver is lifted for an incoming call but revert to normal when a "station select" key is depressed. The wiring diagram in Fig. 1 must therefore be modified to allow for this.

When a caller wishes to contact a button unit of this type 4.5 V is applied across the outgoing loop wire and the common return wire. Switch A changes over when the receiver is lifted and conversation may proceed. Should an outgoing call be made from a button unit of this type, the receiver is lifted which results in the switch A changing over and a "station select" key is operated. This switch will cause the switch A to revert to normal by a mechanical arrangement so that ringing and speaking can proceed in the usual way.
None of the button units the author has come across has a spring return "ring button' as such and rather than modify one of the existing buttons it is considered preferable to install a separate "press to

Fig. 3: Typical arrangement of button selectors.
say, to a large room may be answered at the main unit or at the extension on the other side of the room (but not both), it is not possible to make an outgoing call from the extension. The circuit is shown in Fig. 4.

The "works" of the telephone used will vary but are best removed as only the receiver rest switch is required.

Fig. 4: Circuit for incoming calls only type extension.

Fig. 5: Wiring for a "parented" extension.

Parented extension

This extension which can be "parented", meaning directly connected to and dependent upon, on to any of the standard units enables the extension to call that unit by using a dial telephone or an auxiliary key switch mounted near the telephone. The circuit for this is shown in Fig. 5.
If a dial phone is used, the method of operation is to lift the receiver and dial 0 . Ten rapid pulses of 4.5 V will be sent over the line to operate the buzzer at the parent main unit. When wiring up the dial, strap F and D and connect E and C to contacts 1 and 2 in the diagram. The receiver rest switch will be connected so that the bell is in circuit when the receiver is "on". Any number of these extensions may be parented on to one main unit.

TO BE CONTINUED

THE TRANSET

continued from page 245

current (best volume) but signals should be kept down so that continuous current is not over 25 mA or so.

If no generator is available, tune in a signal on any band, even if this requires an external aerial. Then adjust the five i.f.t. cores for best volume.

Should no signals be obtained, it is not wise to make large adjustments to the i.f.t. cores at random, as the fault may be elsewhere. It is possible for wrong alignment alone to prevent signals passing through the i.f. amplifier. Should there be no fault except unnecessary disturbance of the cores, the best solution is to inject 465 kHz at 5 of i.f.t. 2 , and adjust i.f.t.3. Then inject at 2 of i.f.t.2, and adjust the secondary of i.f.t.2. Follow by injecting at 5 of i.f.t.1, and adjust both cores of i.f.t.2. Then inject at Tr 1 base and adjust i.f.t.1.

When all the i.f.t. cores are peaked, using a reduced signal input or weak signal, they are left untouched during subsequent trimming.

SW range

Unscrew the trimmer across VC1, and set TC2 about half-closed. With VC1/2 nearly fully open, adjust T4 until the trimmer VC3 can be peaked for best results, and is well open when this is done.
Tune towards the l.f. end of this band, meanwhile adjusting the core of L1 for best results, and to minimise the need for any readjustment of VC3. Actual band coverage depends also on the cores of L1 and L2, which should be locked with 6BA nuts.

If T 2 is adjusted for m.w. trimming, T 4 may need resetting. This is unavoidable with T2 incorporated in $\mathrm{VC1} / 2$, but would not arise if T 2 is separate and connected for L5 only.

MW range

Adjust the core of L5 for suitable frequency coverage, and slide L3 on the rod for best volume at the 1.f. end of the band. At the h.f. end, VC3 should peak up for best volume near the fully open position. If VC3 needs to be completely open, screw TC2 down slightly. Check the position of L3 on the rod, so that much adjustment of VC3 is not required when tuning over the band.

LW range

Adjust TC3 for a suitable tuning point for 200 kHz , or near the l.f. end of the band. Move L4 on the rod, for best volume, and least need to readjust VC3 when tuning over the band.
It should be found that normal m.w. and l.w. tuning can be obtained with no need to adjust VC3, but that it is almost impossible to find alignment which does not result in some improvement, at some frequencies, by means of VC3. This is quite usual.
On the extreme h.f. end of the s.w. band, adjustments to VC3 tend to become sharp, and to pull tuning slightly. This cannot be avoided here, and is not important.
The trimmer TC1 can be set to about one-third of maximum capacitance, for the telescopic aerial. For a long aerial, such as an outdoor wire, it should be reduced. The telescopic aerial is normally sufficient. Alignment should allow VC3 to be peaked up for best volume with the aerial extended, or closed, on m.w. and l.w.

Cabinet

This is about 7in $\times 8 \mathrm{in}$. inside dimensions, and $3 \frac{1}{2}$ in. deep. It was made from $\frac{3}{16}$ in. plywood, glued at all joints. It is glass-papered, well dusted, then covered with self-adhesive material of any preferred colour.

The telescopic rod bracket is fixed with two bolts through the side of the case. T1 is soldered to a short, stiff lead from VC1, and the second tag of T1 has a lead which is taken to one bolt holding the aerial. The receiver is used with a PP9 or similar 9 volt supply.

 PART 8

 M.K.TITMAN, B.Sc.(Eng)

 M.K.TITMAN, B.Sc.(Eng)}

Most meters are retailed for specific requirements and consequently have series resistors or shunts incorporated to give the required voltage or current range required, with the scale suitably engraved. The accuracy of most meters is between $\pm 1 \%$ and $\pm 2 \%$ of full-scale deflection. It must be remembered that this figure does not account for reading errors which may be between $\pm 1 \%$ and $\pm 5 \%$ depending on the type of scale and engraving. Generally a meter is only as accurate as the smallest division on the scale. Another point worth noting is that accuracy is based on full-scale deflection (f.s.d.) and thus a reading at $1 / 10$ of full scale has a percentage accuracy of $\pm 10 \%$, i.e. measuring with a $10 \AA 1 \%$ f.s.d. meter, a 1A reading can be within the actual limits of 0.9 to 1.1 A and this excludes further errors due to reading inaccuracies.

Meters are available at a wide variety of prices which rise with quality and also figure of merit. Thus $1-10 \mathrm{~mA}$ ($1000-100 \Omega / \mathrm{V}$) meters can be obtained at from 10s. to £ 3 depending on mirror scale and size whilst $20-100 \mu \mathrm{~A}$ ($50,000-10,000 \Omega / \mathrm{V}$) meters cost from $£ 1$ to $£ 10$. Precision series resistors are available from 1s. to 10 s . depending on value and tolerance whilst meter shunts are available from 5 s . to $£ 1$.

Loudspeakers

Loudspeakers are devices which convert electrical energy into acoustical energy by utilising electromagnetic forces to provide physical movements. A very considerable amount of work has been carried out into the improvement of loudspeakers with the result that there are many different varieties and configurations. Since the permanent magnet, moving-coil or electrodynamic loudspeaker is by far the most widely used, only this type will be considered here.

The basic features of a moving-coil loudspeaker are

Fig. 1: Basic features of a moving-coil loudspeaker.
illustrated in Fig. 1 and the circuit symbol shown in Fig. 2(a). The electrical audio output is fed to a voice coil suspended by means of a cone in a magnetic field generated by the permanent magnet. The electromagnetic field interacts with the permanent magnetic field to produce a movement of the coil and cone.

(a) Loudspeaker

(b) Headphone

(c) Microphone

Fig. 2: Circuit symbols for acoustic transducers.
Ideally the acoustical power output should be identical to the electrical signal fed to the voice coil but unfortunately this cannot occur except over a very limited frequency range. The deficiency is due to the mechanical construction of the speaker as a whole. If the cone is large then the mass and inertia of the cone damp out the higher frequencies whilst a small cone results in a loss of low frequency tones due to the compliance (inverse of stiffness). The coil mounting and cone stiffness characteristics lead to a bass resonant frequency which varies from $20-30 \mathrm{~Hz}$ for large cone speakers to $200-300 \mathrm{~Hz}$ for smaller stiffer cones. Below this frequency damping forces reduce the acoustical output.

Large cone speakers however suffer at high frequencies due to the mass of the cone and phasing of the sound waves which can be more than 180 deg . out of phase between the coil and periphery of the cone. For this reason corrugations are introduced to reduce the effective cone area at high frequencies. Alternatively changes in cone thickness can be used to increase efficiency at high frequencies. In all cases the transient response is increased by increasing the permanent magnetic field in order to damp out oscillatory tendencies.

Essentially therefore loudspeaker design is a compromise between large size and cone stiffness (compliance) together with voice coil mountings and permanent magnetic strength. To give wide frequency coverage the most popular means is to use two speakers in parallel, together with a crossover network, or a double cone speaker. The double cone speaker has a small cone attached directly to the voice coil whilst the large cone is flexibly coupled. At low frequencies the large cone gives the required output, whilst at high frequencies the flexible coupling ceases to operate and the small cone alone produces the acoustical output.

For efficient operation loudspeakers must be operated on baffles which eliminate the out-of-phase sound component from the rear of the speaker. Loudspeaker enclosures are many and varied since over-all efficiency, particularly the bass response, can be increased by
suitably mixing low frequency components from the rear of the speaker such that addition is caused by the phase relationship.

We have seen how loudspeaker performance depends largely on mechanical considerations; let us now look at parameters and prices of speakers. The standard voice coil impedances are $3 \Omega, 8 \Omega$, and 15Ω with some $35 \Omega-$ 75Ω speakers available for transistor circuits. Standard sizes vary from $2 \frac{1}{2} \mathrm{in}$., having a bass resonance of 400 Hz , to 14 in ., having bass resonances of $20-50 \mathrm{~Hz}$. Low cost units have flux densities of 5,000 to 8,000 gauss (G) whilst wide frequency range speakers have flux densities of 10,000 to $14,000 \mathrm{G}$ and employ both single and double cone construction.

Maximum power depends upon size and construction and is usually $1-2 \mathrm{~W}$ for small low cost speakers and 2-4W for larger (5in.-8in.) low cost units. Wide frequency, high gauss speakers are capable of handling power levels up to 20W although it must be remembered that the maximum power is the value which if exceeded results in physical damage to the coil and cone assembly and consequently bears no relation to the distortion. For example for 7 W power at 30 Hz the cone must move $2 \cdot 3 \mathrm{in}$. for a 5 in . speaker, lin. for an 8 in . speaker or $0 \cdot 6 \mathrm{in}$. for a 10 in . speaker.

Loudspeaker prices vary widely and largely depend upon power capability and frequency response. General purpose speakers are available from 10s. to $£ 2$ depending upon size, whilst high flux, wide frequency response speakers vary from $£ 3$ to $£ 15$. Twin cone and other complex cone and coil construction speakers can be obtained in the price range $£ 3$ to $£ 25$.

Headphones

Headphones consist of an earpiece behind which is a diaphragm. The earpiece traps a small volume of air and consequently the power requirements to give satisfactory acoustic power levels are very low. Many forms of drive for the diaphragm are utilised, including: direct electromagnetic action on the diaphragm; moving-armature types; moving-coil; crystal; ribbon (for high fidelity reproduction) and inductor. Headphones vary in price in the range 10 s. to $£ 5$ depending on quality and availability. The British Standard symbol is shown in Fig. 2(b).

Microphones

Microphones are essentially transducers which convert sound pressure waves into electrical energy and the circuit symbol is shown in Fig. 2(c). Many different types of microphone are used and unlike loudspeakers no one type is pre-eminent. Basically microphones can be divided into two categories: those which are pressure operated and velocity operated types. The pressure operated microphones are by far the most common and operate by the displacement of a diaphragm. The velocity operated types have a response to the particle velocity or pressure gradient. The velocity ribbon microphone, which consists of a free ribbon suspended in a magnetic field, has by far the best frequency response characteristics and is widely used in studio hi-fi systems, but is very expensive. The great majority of microphones are of the pressure operated variety.

The common forms of pressure operated microphone are the carbon, crystal, dynamic (or moving-coil), and condenser microphones. All incorporate a diaphragm
which is physically moved and consequently alters the electrical characteristics of the microphone.
Carbon microphones are used in telephone systems and the output is derived from a change in the carbon resistance. Crystal microphones are common for radio and other uses and derive an output through an effective capacitance change. Condenser microphones similarly derive an output from capacitance variations between two plates, one of which is the diaphragm.

Dynamic or moving-coil microphones operate essentially as loudspeakers in reverse and indeed loudspeakers can be used as dynamic microphones. Most portable radio links use this interchangeability to advantage. Moving-coil microphones are widely used for general purpose and domestic applications, particularly in conjunction with semiconductor circuits, where their low impedance properties allow effective matching. Condenser and crystal microphones are high impedance devices and their performance is degraded by long cable lengths or low input impedance circuits.

Moving-coil microphones have essentially 'similar frequency characteristics to loudspeakers and consequently the average domestic microphone has a relatively poor response of from 200 Hz to 6 kHz . They áre however universally available at prices ranging from 15 s. to $£ 5$. High quality, wide frequency versions using special coil mountings and acoustical matching horn and diaphragm assemblies are available at prices from $£ 5$ to $£ 100$ depending largely on quality. Of the other forms of microphone both carbon and crystal types are very cheap-from 7s. 6d. upwards-and easily available whilst condenser types are expensive.

Moving-coil indicators

Moving-coil indicators are becoming popular as replacements for lamps in situations where extremely low power is required or where a greater reliability is required. Generally however they are not used simply as lamp replacements but for fail safe and enunciator applications.

Fig. 3: Moving-coil indicator.

Basically they consist of a dial face which revolves as shown in Fig. 3 by the action of a moving-coil. The face may show any colour or design but those generally available for use in process control display units have crosses or lines which appear when activated to show the opening of a valve or closing of a switch. Such devices require d.c. levels of $1-10 \mathrm{~mA}$ which is a considerably reduced power requirement than filament bulbs. When used as indicators they are fail safe since any loss of power can result in the display of a line or cross in the fail-safe condition. They are therefore a modern approach to the flag indicators used in switchgear. Prices vary but are generally in the region $£ 1$ to $£ 5$ depending largely upon the design of the legend and quality.

Solenoids and counters

Electromagnetic counters are basically mechanical ratchet driven counters which are operated by a solenoid. A typical counter is shown in Fig. 4. The driving mechanism is a solenoid which consists of a movable core of magnetic material surrounded by a coil. The

Fig. 4: Electromagnetic counter.
core is generally spring loaded off centre from the coil so that excitation of the coil attracts the core to the centre of the solenoid. This movement is then utilised in the counter to drive a ratchet arm. The counter is essentially a totaliser but can usually be reset either electrically or mechanically. Prices of such devices vary from $£ 3$ to $£ 20$ depending largely upon the number of digits required and the type of reset. Lifetimes of such counters can be very high, up to 10^{3} counts, but they are inherently unreliable since they have a definite mechanical lifetime.

Fig. 5: Solenoid force-stroke characteristic.
Solenoids are available in many forms and are used widely for electrical activation of mechanical control circuits. The distance and force associated with the core movement is related to solenoid size, whilst the stroke length against force characteristic follows the inverse square law and is illustrated in Fig. 5. Solenoids designed for specific stroke lengths should always be used only for the design stroke since on every application of power the force-stroke characteristic applies and if the stroke is shortened excessive force levels may damage either the solenoid or the controlled object.

Prices and availability vary widely. For relatively small solenoids giving a force of 2 lb . at $\frac{1}{4} \mathrm{in}$. prices vary from $£ 2$ to $£ 10$ whilst high power solenoids are considerably more expensive. Low power solenoids of the
type used to operate chime door bells are available from 10s. to $£ 4$.

The future

We have seen how essential electromagnetic devices are to electronic circuits where often they provide the only practical interface between mechanical effects and electrical signals. Thus they are unlikely to be superseded despite many problems of reliability. Reliability can however be increased by improved materials and constructional techniques and it is in this direction that future trends lie. Speakers will be made of better materials to give greater life and frequency response, reed relays will improve in power capability and supersede standard relays, meters will improve in accuracy and clarity although eventually they may be superseded by electronic readouts such as digital tubes. Improvements are the keynote and due to size and unreliability it is likely that large strides may be made in the field of electromagnetic devices.

TO BE CONTINUED

A handy and simple-to-build item for the constructor. Enables voltages at parts of the chassis difficult to reach to be speedily checked.

* TRANSISTORS IN TIMEBASES

The timebase sections of the receiver have not so far yielded to the transistor. In this new series the problems of using transistors in this field will be outlined and the present position described, starting with sync separator stages.

* DX TV PREAMP

DX enthusiasts will find this high-gain preamp of great help. Full details along with a simple noise generator to assist with alignment.

FAULT FINDING IN LINE OSCILLATOR STAGES

A detailed look at current line generator circuits with details of common faults and their cure.

THIS year's London Electronic Component Show, held at Olympia towards the end of May, was the 21st of its kind and by far the biggest ever staged. Sponsored as usual by the Radio and Electronic Component Manufacturers' Federation, it was international for the first time, with 75 foreign firms represented.

The reasons behind the change-over to an international exhibition were clearly stated by Mr. A. F. Bulgin, chairman of the Exhibition Committee:
"The possibility of national self-sufficiency to provide all the components a country needs is now an unlikely one. The speed of progress and increase in complexity as the electronics industry gets more and more sophisticated means that no one country can provide all its own needs. Even America cannot exist as a "solo" unit: last year they bought more than $£ 14$ million-worth of components from Britain and represented our second biggest market after the European free-trade area countries, whose trade with the UK was $£ 18$ million.
"Today, no one country can expect to be the leader in all techniques-which is another reason why international co-operation is necessary."

Each Component Show seems to be more successful than its predecessors, and this year there were 436 exhibitors.

The show is very much a technical one, and some of the latest developments were not obvious to the casual observer walking round from stand to stand. However, what struck us was the greater emphasis on integrated circuits both for domestic equipment and for items such as computers. Prices of established i.c.s are coming down, while new developments give the promise of simplified circuitry and construction, and eventual reduction in the price of equipment.

PICK-UP CARTRIDGE

Acos (Cosmocord) showed a new stereo cartridge, the 104 ceramic. This is designed for the latest slim-line pick-up arms and has a weight of only 2 gm with the standard bracket. The tracking weight is 3 gm to 4 gm .
Cosmocord Limited, Eleanor Cross Road, Waltham Cross, Hertfordshire.

CLEANING FLUIDS

Two types of aerosol cleaning fluid were shown'by Automation Facilities. "Ultraclene" is a universal general cleaner, harmless to most insulating varnishes and lacquers, which rapidly removes oil, and grease. It evaporates quickly and leaves no residue. "AF-Spray" contains ICI's Arklone P, a non-flammable highly penetrating solvent which instantly removes oils, greases, and most contaminants, without harming plastics and surface coatings.
"Ultraclene" costs 30s. for three $160 z$. aerosols, and "AF-Spray" costs 20s. for a single sample aerosol (prices are reduced for larger quantities).
Automation Facilities Limited, Oxford Avenue, Slough, Buckinghamshire.

ELECTRONIC MULTIMETER EA113

On the Avo stand, an electronic Avometer was revealed. This has a d.c. sensitivity of $1 \mathrm{M} \Omega / \mathrm{V}$, a basic accuracy of 1.25%, and may be operated up to 100 kHz . There is a centre-zero facility, and resistance measurements may be made up to $100 \mathrm{M} \Omega$.
Avo Limited, Avocet House, Dover, Kent.

TRANSFORMERS

The Belclere Company showed a new range of miniature stabilised power supplies. These units are hermetically sealed and intended for printed-circuit mounting.

The three versions available are the P.S.2009, P.S.2012, and P.S.2020, which have outputs of $9 \mathrm{~V} 40 \mathrm{~mA}, 12 \mathrm{~V}$ 30 mA , and 20 V 15 mA respectively. The overload points in each case are at 5 mA over the rated output, and the output potentials are within $\pm 5 \%$ of nominal. Ripple is less than $500 \mu \mathrm{~V}$ r.m.s.
The Belclere Company Limited, 385-7 Cowley Road, Oxford.

INSTRUMENTS

The universal meter TVM1070 by B.P.L. is a versatile instrument with f.s.d.s from 100 mV to 300 V d.c. and 100 mV to 300 V a.c. Centre-zero ranges are available on d.c. volts, from $50 \mathrm{mV}-0-50 \mathrm{mV}$ to $150-0-150 \mathrm{~V}$. On d.c., the input resistance is $1 \mathrm{M} \Omega / \mathrm{V}$ up to 10 V , and $10 \mathrm{M} \Omega$ above 10 V , while on a.c., it is $200 \mathrm{k} \Omega$ on ranges up to 30 V , and $2 \mathrm{M} \Omega$ on the 100 V and 300 V ranges.

The meter also measures direct current, the most sensitive range being $1 \mu \mathrm{~A}$ f.s.d., and the least sensitive 100 mA . Centre-zero direct current ranges are also a feature, from $0.5 \mu \mathrm{~A}-0-0.5 \mu \mathrm{~A}$ to $50 \mathrm{~mA}-0-50 \mathrm{~mA}$.

Three resistance ranges are included: $0-10 \mathrm{k} \Omega, 0-1 \mathrm{M} \Omega$, and $0-100 \mathrm{M} \Omega$, with mid-scale values of $150 \Omega, 15 \mathrm{k} \Omega$, and $1.5 \mathrm{M} \Omega$ respectively.

A plug-in r.f. test-probe is supplied with each meter and gives four ranges: $0-1 \mathrm{~V} ; 0-3 \mathrm{~V} ; 0-10 \mathrm{~V}$; and $0-30 \mathrm{~V}$. The frequency range is 100 kHz to 300 MHz for -3 dB points, with an input resistance of $140 \mathrm{k} \Omega$ on each range (shunt capacity, 3 pF).

B.P.L. (Instruments) Limited, Radlett, Hertfordshire.

WIDE-RANGE RECEIVER

A professional receiver, the EC958, was the main feature of the Eddystone stand. This fully transistorised

The AVO Electronic Avometer EA113
 gowertul 7×4 in. speaker and four transistor one watt power amplifier plus ultia sensitive microphone Uses PP9 battery. Brand new in Makers'
carton with fnll makers'
guarantee. World famous make. only $90 /-$ Post guarantee, World famous make. RA2W Gin. Ferrite Aerial Spare Cores
with oar aerial coil.... 12/6 \quad Driver Trans. LfDT4. $9 / 6$ Osc. P50/1AC $\quad . . .{ }^{2}$. $5 / 4$ Printed Circuit, PCA1 R.F. P50/2CC 470 ko/s. . $5 / 7$ J.B. Tuning Gang . . 3rd I.F. P50/3CC. 6/- Weyrad Booklet
Telesoopio Chrome Aerials 6in, extends to 28 in. $5 /$

 Long spindles. Midget Size BRITISH AMRIALITE

 EDGE CONNECTORS 16 way $5 /-; 24$ way $7 / 6$.
PINS 36 per packet $8 / 4$. FACE CUTXERS $\% / 6$ S.R.B.P. Board 0.15 MATRIX $2 \frac{1}{1} \mathrm{in}$, wide 6 d , per 1 in . $3 \frac{3}{2} \mathrm{in}$. wide 9d. per 1 in ; 5 in, wide $1 /-$ per 1 in . up to 17 in .
S.R.B.P. undrilled 16 in . Board. $10 \times 8 \mathrm{~m}$. $\times 4$ in., $5 / 6 ; 9 \times 7$ in., $6 / 6 ; 11 \times$ 3in., 6/6; $11 \times 7 \mathrm{nin}, 7 / 6$

a MAX CHASSIS CUTTER
Complete: a die, a punoh, an Allen sorew and key

'SONOCOLOR' CINE RECORDING TAPE

 ${ }^{5 \prime}{ }^{\prime \prime}$ reel, ${ }^{\text {goo }}$ with LP strobe markings, also oine light
Tape Spools 2/6. Tape Splicer 5/-. Leader Tape 4/6

"THE INSTANT" BULK TAPE ERASER AND RECORDING HEAD demagnetiser
200/250 v. A.c. Leafet S.A.E.

BARGAIN STEREO/MONO SYSTEM
Attractive Slim PLAYER CABINET with B.S.R. STEREO Autochanger $4+4$ AMPLIFIER and
64 in. LOUDSPEAKERS Carr $10 / 6$
6inn. LOUDSPEAKERS Cart.
(Only 4 pairs of wires to join).

£19.19.6.

NEW TUBULAR ELECTROLYTI
$4 / 350 \mathrm{~V}$
$8 / 450 \mathrm{~V}$
$8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$
162450 V
$82 / 450 \mathrm{~V}$
32/450V
25/250V
 $100 / 25 \mathrm{~V}$
$250 / 25 \mathrm{~V}$
$500 / 25 \mathrm{~V}$
$8+8 / 450 \mathrm{~V}$
$8+16 / 450$
$16+18 / 45$
80 $8 / 600 \mathrm{~V}$ OAN TYPE
 SUB.MIN. ELECTROLYTICS. 1. 2. $4,5,8,16,25,30,50,100$ $50 \mathrm{mF} 15 \mathrm{C} 2 /-500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 6 ; 2000 \mathrm{mF} 25 \mathrm{~V} 7 /-$ PAPER $350 \mathrm{~V}-0.1 \mathrm{~T} 9 \mathrm{~d} ; 0.52 / 6 ; 1 \mathrm{mF} 3 /-2$
00V-0.001 to 0.05 9d: $0.11 /-0.251 / 8:$ $1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0 \cdot 1,2 / 6$ SIL VER MICA. Close toleranoe $1 \% .5-500 \mathrm{pF} 1 /-; 560-2,200 \mathrm{pF}$ /- $2,700-5,600 \mathrm{pF} 3 / 6 ; 6,800 \mathrm{pF}-0 \cdot 01$, mtd $6 /-$ each.
TWIN GANG. "0-0", 208pF $+176 \mathrm{DF}, 10 / 6 ; 365 \mathrm{FF}$, minia ure $10 /-; 500 \mathrm{pF}$ standard with trimmers. $12 / 6: 500 \mathrm{pF}$ midget less trimmers, $7 / 6: 500 \mathrm{pF}$ silow motion, standard $9 /$; SHORT WAVE. Single $10 \mathrm{DFF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, $160 \mathrm{pF}, 200 \mathrm{pF}, 10 / 6$ each.
UUNING. Solid dieleotric. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /-$ esch.
 50V RECTIFIERS. Selenium $\frac{1}{2}$ wave 100mA $5 /-$;BY10010/CONTACT COOLED $\frac{1}{2}$ wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$.
Fuil Wave Bridge 75mA 10/-; 150mA 19/6; TV reets. $10 /-$ NEON PANEL INDICATORS. 2507. AO/DC, 3/B.

HIGH STABLIITY. $\frac{1}{2}$ w.; 1%. 10 ohms to 10 meg. $2 /$.
Ditto 5%. Preferred values 10 ohms to 22 meg., 9 d .

FULL WAVE BRIDGE CHARGGER RECTIFIERS:

for 6 or 12 v ., $1 \frac{1}{2}$ ampps., $17 / 6 ; 2$ amps., $21 /-; 4$ amps., $30 /-$
VALVE HOLDERS, 9d; CERAMIC $1 /$-; CANS $1 /-$ BRAND NEW TRANSISTORS 6/- each OC71, OC72, OC81, OC44, OC45, OC171, OC170, AF117 AT, , MAT 101, 8/6; MAT 120, 7/9; MAT 121, $8 / 6$ REPANCO TRANSISTOR TRANSFORMERS
TT45. Push Pull Drive, 9:1 CT, 6/-. TT46 Output, OX8:1. 6/TT23/4 PAIR 10 watt Amp. Transformers and circuit 45/TRANSISTOR MAINS POWER PACKS. FULL WAVE 9 volt 500 mA Size $4 \frac{1}{2} \times 2 \frac{1}{2} \times 2$ in. Output terminals. $\quad 49 / 6$ Switched.Metal case, crackle finish. On/off switch.
 BENCH POWER PACK 230-2500. A.c. Mains $£ 7$
with Meter. Supplies 6-9-12. 1 amp D.c.

MAINS TRANSFORMERS

$250-0-25050 \mathrm{~mA} .6 \cdot 3 \mathrm{v} .2 \mathrm{a}$. Centre tapped......
$250-0-25050 \mathrm{~mA} .6 .3 \mathrm{v} .3 .5 \mathrm{a}$. 6.3v. 1a. or 5 z . 2 a.
$350-0-35080 \mathrm{~mA} .8 .3 \mathrm{v} .3 .5 \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{a}$. or 5 v .2 a
$300-0-300 \mathrm{v} .120 \mathrm{~mA} .6 .3 \mathrm{r} .4 \mathrm{a} . \mathrm{C} . \mathrm{T} . ; 6.3 \mathrm{v}$. 2 a .
 MIDGET 220v. 45 mA ., 6.8 Bv . 2 a . $8 \frac{3}{4} \times 2 \frac{1}{2} \times 2 \mathrm{in}$

 4, 5, 6, 8. 9. 10. 12.15. 18, 24. and 30v, at 2a. 3 amp..., $1,10,12,16,18,20,2$ AUTO TRANSFORMERS 0 -ils-230v, Input/Output 60w. 18/6; 150w. $30 /-$; 500 ww . $92 / 6 ; 1000 \mathrm{w}$. $195 /-$.
COAXIAL PLUG $1 / 3$. PANEL SOCKETS $1 / 3$. LINE $2 /-$ OUTLET BOXES, SURFACE OR FLUSH $4 / 6$.
OUTLET BOXES, SURFACE OR FLUSH 4/6. BALANCED TWIN FEEEDERS 1/- Yard 80 or 300 ohms Jhrome Leä̃ Socket $\% / 6$. Phono Plugs $1 /$-. Phono Socket $1 /$. JACK PLUGS Std. Chrome $3 /-; 3-5 \mathrm{~mm}$ Chrome $2 / 6$. DIN SOGKETS Chassis 3-pin $1 / 6 ; 5$-pin $2 /$ - Lead 3 -pin $3 / 6$ 5 -pin $5 /-$. DIN PLUGS 3 -pin $3 / 6$; 5 -pin $5 /$ -
WAVE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p .2 -way, or 2 p. 6 -way, or 3 p .4 -way $4 / 6$ eaoh.
W. 12-way, "MA 4.2 -way, or 4 D. -way, $4 / 6$ each.
 4 p. 3 -way, Aditional waters $6 /-$ each wafer up to 5 max. TOGGLE SWITCHES, sp. 2/6; sp. dt. $3 / 6$; dp. $3 / 6$; dp dt. $4 / 6$.

MINI-MODULE LOUDSPEAKER KIT 10 watr 55/- carr. 5/-

Triple speaker system combining on ready cat baffe. an. chibboard $15 \mathrm{in} . \times 8$ in. Separate Bass, Middle
and Treble loudspeakers and crossover condenser. The heavy duty 5 in. Bass Woofer unit has a low resonance cone. The Mid-Range unit is specially designed to add dive to the middere register and the tweeter recreates the top end of the musical spectrum. Total response $20-15,000 \mathrm{cps}$. Full instructions for 3 or 8 ohm .
TEAK VENEERED BOOKSHELE ENCLOSURE

LOUDSPEAKER CABINET WADDING 18 in . wide, $2 / 6 \mathrm{ft}$. BAKER "GROUP SOUND" SPEAKERS-POST FREE 'Group 25' 'Group 35' 'Group 50'

ALL MODELS "BAKER SPEAKERS" IN STOCK

Goodmans Cone Tweeter 3in. square, $2-18 \mathrm{kc} / \mathrm{s}$. 10 W 35/Quality Horn Tweeters $2-18 \mathrm{kc} / \mathrm{s}$, 10 W 29/6. Crossover $16 / 6$ LOUDSPEAKERS P.M. 3 OHMS. 2 isin, 3 in, $4 \mathrm{in}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}$,
 Cone $13 \frac{1}{2} \times 3$ ing. 8 or 15 ohm models, $45 /=$ or with twin tweters, crossover and ceramic magnet, 78/6.
 8in. LOUDSPEAKER ONITS $30 \times 2 \mathrm{ohm} 2 \% / 6,15$ ohm $30 /-$ 8in. De Luxe Ceramic 3 ohm $45 /-; 150 \mathrm{hm} 501-$
8in. LOUDSPEAKER TWLN
8in. LOUDSPEAKER TWIN CONE $30 \mathrm{hm} 35 /$ -
5in. WOOFER. 8 watts max $20-10,000 \mathrm{cps}$. 8 or $15 \mathrm{ohm} 39 / 6$ OUTPUT TRANS. ELS4 etc. 4/6; MKE TRANS. 50:1, $3 / 9$

Three Wavebands:
Five Valves: ECH81, EF89,
Long, Med., Short, Gram.
12-month guarantee. A.C. 200-250v. Ferrite Aerial 5 watts
 Two pilot Lamps. Four Knobs. Aligned $\mathrm{E}^{11} 1.18 .6$ DE LUXE STEREO GRAM CHASSIS V.H.F., MW, SW $19-50 \mathrm{~m}$. SW $60-180 \mathrm{~m}$. Magic eye, push butons. $\mathbf{f} 22.10$
6 valve plus rect. Size $15 \times 7_{2}^{2} \times 6 \mathrm{in}$, high. 10

ALL EAGLE PRODUCTS
 SUPPLIED AT LOWEST PRICES

BARGAIN AM TUNER. Medium Wave.
Transistor Superhet. Ferite aerial, 9 volt 79/6
BARGAMN DE
trims joins for
DUXE
Titing and
bargain 4 channel transistor mizer. ad musioal highlights and sound effects to recordings musioal highlights and sound effects to recordings.
Will mix Microphone, records, tape and tuner
with separate oontrols into single output. 9 volt. BARGAIN FM TUNGR 88-108 Mc/s Six Transistor. Ready built. Printed Circuit. Calibrated slide dial f6.19.6. BARGAIN 3 WATT AMPLIFlER. 4 Trangistor
Push-Pull Ready built, with volume control. 9 v.

\star RADIO BOOKS $*$ (Postage 9d.

Praotical Transistor Receivers
Practical Stereo Handbook
Supersensitive Transistor Pocket Radio
High Fidelity Speaker Enclosures and Pians
Radio Valve Guide, Books 1, 2, 3, or 4 ea. $5 /$ No. 5 ea
Practical Radio Inside Ont
Shortwave Transistor Reoeivers
Transistor Communication Sets
Modern Transistor Circuits for Beginners
Sub-Miniature Transistor Reoeivers Wireless World Radio Valve Data At a gianee valve equivalents.
Valves, Transistors, Diodes equivalents manial Receive Foreign T. V. by simple modifcations Transistor Circuits Radio Controlled Models

BRAND NEW QUALITY

 EXTENSION LOUDSPEAKER Handsome plastic cabinet, 20ft. lead and adaptors. For any radio, intercom, tape recorder, etc. 3 to 15 ohms. 30/-Size: $7 \frac{1}{4} \times 5 \frac{1}{4} \times 3$ in.
POST $2 / 6$
unit provides gap-free coverage between 10 kHz and 30 MHz in ten overlapping ranges.

Shown in conjunction with the receiver was the panoramic display unit, EP961, which provides a visual display of all signals which are received in a selected frequency spectrum. The spectrum covered by the display may be up to 10 MHz wide.

Further details of the receiver are given in "News and Comment" on page 241.
Eddystone Radio Limited, Alvechurch Road, Birmingham, 31.

RECORD-CHANGER

The GC10 automatic record-changer by Garrard was unveiled for its first British showing. This unit has a one-piece control panel offering simultaneous selection of record speed and size for the $12 \mathrm{in} .33 \frac{1}{3} \mathrm{rev} . / \mathrm{min}$. and $7 \mathrm{in} .45 \mathrm{rev} . / \mathrm{min}$. settings, and its facility for playing single records automatically if required.

The unit also has a self-engaging pick-up arm retaining clip which operates automatically when the arm returns to rest after playing a single record or the last of a stack. The clip disengages automatically when the "manual" or "automatic" play control is operated.
Garrard Engineering Limited, Newcastle Street, Swindon, Wiltshire.

TRANSFORMER SAFETY

Transformers incorporating a double-bobbin system were shown by Hinchley Engineering. These designs, to meet international safety standards, feature thermal fuses embedded in the windings to give short-circuit protection, and a secondary bobbin carrying a moulded skirt which completely surrounds the primary mains winding when the assembly is complete.
Hinchley Engineering Company Limited, Pans Lane, Devizes, Wiltshire.

AUDIO AMPLIFIER

Much of Mullard's display this year concerned itself with the impact of integrated circuits and thyristors on domestic TV, but also shown was experimental 30 W Class D audio amplifier. The unit shown used 30 dB of feedback and had harmonic distortion of only 0.25%. Previously published circuits operated at switching speeds in the 100 kHz to 200 kHz region, but the system shown operated at any desired frequency up to 2 MHz . The high speed enables smaller, cheaper, filters to be used with very low radiation levels, and gives reduced intermodulation distortion.
Mullard Limited, Torrington Place, London, W.C.1.

RESISTORS

Muirhead were showing what they believe to be the smallest wire-wound resistor offering a range of $1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ at an accuracy of 0.1% to 0.5%. Another of the four precision wire-wound resistors announced is mounted in the popular TO-5 transistor can, with standard lead spacing.

All four resistors use a new type of wire which enables temperature coefficients of ± 5 p.p.m. $/{ }^{\circ} \mathrm{C} \quad\left(0^{\circ} \mathrm{C}\right.$ to $100^{\circ} \mathrm{C}$) to be achieved as standard.
Muirhead Limited, Beckenham, Kent.

SCOPE

SE Laboratories revealed their portable oscilloscope SM111, which may be powered from 95 V to 130 V a.c.
and 190 V to 260 V a.c., 45 Hz to 440 Hz , and from an external 24 V d.c. source.

The SM111 uses a rectangular high brightness c.r.t. with built-in graticule. The bandwidth of the two Yamplifiers is from d.c. or 3 Hz to $18 \mathrm{MHz}(-3 \mathrm{~dB})$ at $20 \mathrm{mV} / \mathrm{cm}$, depending on the setting of the d.c./a.c. switch. The timebase speeds are calibrated from $200 \mathrm{~ns} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm}$ in 21 ranges. The circuitry features solid-state design, and uses a total of eight plug-in integrated circuits.
SE Laboratories (Engineering) Limited, North Feltham Trading Estate, Feltham, Middlesex.

VOLTAGE REGULATOR

A TO-5 linear microcircuit by SGS can be used as a series regulator, shunt regulator, switching regulator, floating high voltage regulator, or a regulated current source for both positive and negative supplies. The L123 is believed to be the first linear circuit with an n-channel f.e.t. directly on the chip.

SGS (United Kingdom) Limited, Planar House, Walton Street, Aylesbury, Buckinghamshire.

METERS

A range of meters for back-of-panel mounting was shown by Sifam. The meters are clamped behind the panel without the need for the usual fixing holes, and the panel cut-out is framed by a separate matt-black diecast surround which is also held by the clamp. Three sizes are available with scale lengths of 2.2 in ., 2.75 in ., and 3.75 in.
Sifam Electrical Instrument Company Limited, Woodland Road, Torquay, Devon.

Mullard experimental hi-fi 30W class D audio amplifier.

DUAL-BEAM OSCILLOSCOPES

Two new products from Telequipment are the D51 and D54 dual-beam oscilloscopes. The D51 is a general purpose scope with a 5 in . flat-faced tube. It is suitable for use by students working on A-level courses, or studying at technical colleges.

The D54 uses solid-state design with f.e.t. input circuitry and features wide timebase range, wide bandwidth, and calibrated deflection amplifiers. The D54 is suitable for a variety of laboratory work.
Telequipment Limited, 313 Chase Road, London, N14.

MAINS MOTOR
Precision made -as and tape recordersideal also for extractor fans, blower, heater, etc. New and perfect. Snip at 9/6. Postage $1 /-$ for each ordered. 12 and over post free.

rotisserie

MOTOR
Mery powerful 7 r.p.m., operates from standard A.c. mains, 29/6, plus $3 / 6$ P. \& P.

230 VOLT SOLENOID Zin. stroke, Size $24 \mathrm{in}, x$
$2 \mathrm{in} . \times 18 \mathrm{in} .14 / 6$, postage

Famons war-time "cat's eye" used dark. This is an infra-red image converter cell with a silver cacsium screen which lights up (like a cathode ray tabe)
when the electron released by electrons infra-red atrike it. A golden opportunity for some nteresting experiments. $8 / 6$ each, post $2 / 6$. Data

MAINS TRANSFORMER SNIP

Maktng a power pack for
amplifier or other equipment? These transformers have normal mains primaries ($230 / 240 \mathrm{v}$) and types (1) 12 v .500 mA . at types (1) 12 v .600 mA . a
$8 / 6 ;$ (2) 15 v .500 mA . a

PP3 ELIMINATOR. Play your pockei radio from the mains! save ts. Complete component kit eomprises 4 rectifters-mains dropper resistances, smoothing condenser and instruc
tions, only $6 / 6$ plus $1 /$ post.

QUADRUPLE TAPE

Quadruple tape on 3 in. spool giving f00ft. Of the finest quality by very famous maker. Especiadly Regular price $30 /$ - per spool. Our price ' $7 / 6$ pius $2 / 9$ p, \& p. ог 3 for $22 / 6$ poest paid.

SOIL WARMING ELEMFNT, 30 yards, heavy Pre eovering. 12/6

BATTERY CHARGER FOR NICADS

This is in plastic case, size $5 \times 4 \times 3$ in. appros. All vired up with 3 core output lead and 3 core mains input lead. Contains mains transifmer with 40 v Also contains fall wave tridge rectifier, neon indicator, wired up with resistors to charge 2 Nicad batteries simultaneously. Churge rates of $50 \mathrm{~mA}: a: 12 \overline{\mathrm{ma}}$ respectively. Batteries up to 30 volts nay be charged. Price $39 / 6$ each, plus $3 / 6$ postage and insurance.

VARYLITE

Will dim fluorescent or incandescent lighting up to 600 watts from full brilliance to out. Fitted on M.K. fuap plate, same place of this, or mount on surface. Priee complete in heavy plastic box with control knob $£ 3.19 .6$.

NICAD RECHARGEABLE BATTERIES

3.6 V 500 mA size $1_{6}^{1} \times 1_{6}^{3} \mathrm{in}$. dia. type ref. DKZ 500 really powerful will deliver 1 amp for $\frac{t}{2}$ hour. Regular price $32 / 6$ our are 1 avail able, single cell 1.2 V 6/6. 5 cell 6 V 29/6.

ELECTRIC CLOCK WITH 20 AMP SWITCH

Made by Smith's these units are as fitted to
The clock is mains driven and frequency con. trolled so it is extremely accurate. The two small dials enable switch on and off times to be accurately set-also on the left is another timer or alarm-this may be set in minutes up to 4 hours. At the end of the period a bell will sound. Ideal for switching on tape recorders. Offered at only a fraction of the regular price-new and unused only $45 /-$ leas than the value of the clock alone-
 post and insurance $2 / 9$

THIS MONTH'S SNIP

BATTERY OPERATED TAPE DECK

With Capstan control. This unit is extremely well made and measures approx. $6 \times 5 \times 2 \mathrm{in}$. deep. Has three piano key type controls for Record, Playback and Rewind. Motor is a special heavy duty type intended for opera-
tion off $4 / 5$ volts. Supplied complete with 2 tion off $4 / 5$ volts. Supplied complete with 2 spools ready to instail. Record, Replayhead with trausistor, amplifier. Price 59/6. Post and insurance $4 / 6$.

B $\because-1 \div 1 \div 1$

DISTRIBUTION PANELS
J ust what you need for work benoh or lab. $4 \times$ 13 amp fused plugs. Supplied complete with 6 feet of heavy cable and 13 amp phug. Similar advertised at 45 . Our price $39 / 6$, plus $3 / 6$ post and insurance.

PROCESS TME CONTROLLER

Made by smiths, motorised and mains driven, enables 15̄ circuit to be started up to 18 hours in advance and to itay on for a period from 15 minutes to 3 hours. Totally enclosed in metal box with glass front and chrome urround. 49/6 plus $4 / 6$ post and ins.

REED SWITCH

Suitable for dozens of different applications, such as burglar alarms, eonveyor belt switching. These are simply glass encased switches which can be operated by a passing permanent magnet coil. A special buy enables us to offer these at 2/6 each, or 24/- a diozen. Suitable magnets are $1 /-$ each.

MOVING COIL METER BARGAIN

Panel meters are always being needed and they are jolly costly when you have to buy them in a hurry-so you shonid take advantage of this offer: 2in. moving coil tush mounting meters only $9 / 6$. These are actually R.F. meters and cost about $£ 3$ each but if you don't want them for R.F. then all you have to do is to remove the thermocouple and you will have a $2-3$ ma, meter which you can

MOTORISED CAM SWITCH

Made by the famous meter company Chamberlain and Hookham, these have a normal mains $200-240 \mathrm{~V}$ motor which Srives a ratchet wechanism so geared to give one ratchet
action per minute on a wheel with 60 teeth thus a complete action per minute on a wheel with 60 teeth thus a complete
revolition of the cam takes place in one hour. The cam revolution of the cam takes place in one hour. The caro
operates 8 switches (6 changeover and 2 on/off thus 480 operates 8 switches (6 changeover and 2 on/off thus 480
circuit changes per hour are possible). Contacts, rated at 15 amps have been set for certain switch combinations but can, no doubt, be aitered to suit a special job. Also other switch
waiers or uevices can be attached to the shaft which extends approximately one inch. 47/6, p. \& ins. 4/6.

MAINS TRANSISTOR POWER PACK

Designed to operate transistor sets and amplifiers. Adjustable output $6 \mathrm{v} ., 9 \mathrm{v}$. 12 volts for up to 500 mA (class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PPG, PP7, PP9, and others. Kit comprises nuains transformer rectifier, smoothing and load resistor, condensers and instructions. Real snip at only $16 / 6$, plus $3 / 6$ postage.

FLEX CABLE BARGAIN
$23 / 0076$ triple core P.V.C. covered, circular, normally sold at $1 / 6 \mathrm{yd}$. Our price $23 / 0076$ triple core P.Y.C. covered, circular, \mathbf{n}
100 yd. coil 18.19 .6 . Post and Insurance $6 / 6$.

Where poxtage is not stated then orders over ± 3 are post iree. Below ex add $2 / 9$.
Semi-conductors add $1 /-$ post. Over post free. S.A.E. with enquiries please

E YOLIAGE

TRAMSFORIEERS

INPUT 230/240v. A.C. 50/60- I OUTPUT VARIABLE 0.260 v . BRAND NEW
Keenest prices in the country. All Types (and Spares) from $\frac{1}{2}$ to 50 amp. from stock. SHROUDED TYPE
1 amp, $\mathbf{~} 5.10 .0$ 2.5 $\mathrm{amps}, ~ £ 6.15 .0$. $4 \mathrm{amps}, £ 9.0 .0 .5 \mathrm{amps}, £ 9.15 .0$. 8 amps , $£ 14.10 .0 .10 \mathrm{amps}$, £18.10.0. $12 \mathrm{amps}, £ 21.0 .0 .15 \mathrm{amps}, £ 25.0 .0$ $20 \mathrm{amps}, ~ £ 37.0 .0 .37 \cdot 5 \mathrm{amps}, £ 72.0 .0$.

50 amps , $£ 92.0 .0$.

PORTABLE TYPE OPEN TYPE (Panel Mounting) amp, £3.10.0. 1 amp, £5.10.0. 2 $\frac{1}{2} \mathrm{amps}$, $\mathbf{5 6 . 1 2 . 6 .}$
PORTABLE TYPE
.5 amp. portable fitted metal case, Voltmeter, lamp, switch, etc. £9.5.0
ió WATT POWER RHEOSTATAT (NEW)
available in the following values
$1 \mathrm{ohm}, 10 \mathrm{a} \cdot ; 5 \mathrm{ohm}, 4 \cdot 7 \mathrm{a}, 10 \mathrm{ohm}, 3 \mathrm{a}, \mathrm{i} 25$ ohm, 2a.; 50 ohm, 1.4 a.; $100 \mathrm{ohm}, 1$ a.; 250 ohm , . 7 a.; 500 ohm, 45 a .; 1,000 ohm, $280 \mathrm{~mA}_{\text {; }}$, 1,500 ohm, $230 \mathrm{~mA} ; \mathbf{2 , 5 0 0}$ ohm, 2 a. Diameter $3 \frac{1}{4} \mathrm{in}$. Shaft length $\frac{7}{8} \mathrm{in} .$, dia. $\frac{15}{64} \mathrm{in}$. All at $27 / 6$ each. P. \& P. $1 / 6$.
50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500 / \mathrm{ohm}, 21 / \mathrm{m}$ P. \& P. 1/6.

25 WATT. 10/25/50/100/250/500/1,000/1,500/2,500 ohm, 14/6. P. \& P. $1 / 6$.

TRANSFORMER

(STENZYL TYPE)
Two separate removable coils tapped at 0.110 .220 volts, and 6.12.36 volts respectively. A composite apparatus designed for class demonstration. Electro magnetic induction, jumping ring, induction lamp, relationship between field intensity and ampere turns, induction melting, are just a few of the possible experiments. New modified model. £14.10.0, P. \&P. $10 /$

insulated terminals
Avaliable in red, white, yellow, black, blue and green. New 17l/ per doz. 2l-P.-A P. I
$230 / 250 \mathrm{~V}$. A.C. SOLENOID
Heavy duty type, approx. 3 lbs , pull. Price 17/6 plus 2/6 P \& P
12/24V. D.C. SOLENOID
Approx. 8 oz. push. Price B/6 plus $1 / 6$ P. \& P.

PRECISION INTERVAL TIMER

From 0-30 seconds (repetitive). Jewelled balanced movement. Lever re-set. Operates 230V. A.C. 5 amp. c/o Microswitch. New Price 17/6 plus 2/6 P. \& P.
CONDENSERS $2,500 \mathrm{mfd} .100 \mathrm{v} .12 / 61 / 6$ P. \& P. $4,000 \mathrm{mfd}$, 25v. 10/-1/6 P. \& P. $4,000 \mathrm{mfd}$, 50v. 15/~ 1/6 P. \& P. $10,000 \mathrm{mfd}$. 35 v . 15/~ $1 / 6$ P. \& P.
CONSTANT VOLTAGE TRANSFORMER
Input 185-250 v. A.C. Output 230 v. A.C. Capaclfy 250 watt. Attractive metal case. Fitted red signal lamp. Rubberfeet. Weight 17 lb . Price E11.10.0. P. \& P. $15 /-\frac{1}{L . T}$ TRANSFORMERS
All primaries 220-240 volts
Type No. Sec. Tap
30, 32, 34, $36 \mathrm{v}_{\mathrm{t}}$ at $5 \mathrm{amps} \begin{gathered}\text { Price }\end{gathered}$
$30,40,50 \mathrm{v}$, at 5 amps .
10, 17, 18 v . at 10 amps.
$6,12 \mathrm{v}$. at 20 amps .
17, $18,20 \mathrm{v}$. at 20 amps.
6, 12, 20 v. at 20 amps..
24 v . at 10 amps.
8 4, 6, 24, 32 v . at 12 amps .
DOUBLE WOUND VARIABLE L.T. TRANSFORMER Input 230 v. A.C. OUTPUT CONTINUOUSLY VARIABLE $0-36$ v. A.C.
0-36 v. at 5 amp. \&9.12.6. P. \& P. 8/6.
$0-36$ v. at 20 amp. $£ 21.0 .0$. P. \& P, 15/-

LIGHT SENSITIVE SWITCH
Kit of parts, including ORP12 Cad- x_{2} mium Sulphide Photocell, Relay, whits Transistor and Circuit, etc., 6-12 ${ }^{2}$ volt D.C. op. price $25 /$ - plus $2 / 6$ P. \& P. ORP 12 including circult,

10/6 each, plus $1 /-\mathrm{P}$. \& P.
A.C. MAINS MODEL Incorporates Mains Transformer. Rectifier and special relay with 3,5 amp mains c/o contacts. Price inc. circuit 47/6 plus 2/6 P. \& P.

LIGHT SOURCE AND PHOTO

 CELL MOINTINGPrecision engineered

light source with focus lens assembly and ventilate lamp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP 12 or similar cell. Both units are single hole fixing. Price per pair £2.15.0. P. \& P, $3 / 6$.

MINIATURE UNISELECTOR SWITCH

3 banks of 11 positions plus
homing bank. 40 ohm coil.
24-36 v. D.C. operation
Tested. 22/6, plus $2 / 6$ P. \& P.

NICKEL CADMIUM BATTERY Sinmed Cadmium Type 1.2 v. 7AH. Size height $3 \frac{1}{2} \mathrm{in}$. , width $2 \frac{3}{8} \times 1 \frac{3}{16} \mathrm{in}$. Weight approx. 13 Oz . ExR.A.F. Tested. 12/6. P, \& P, 2/6.

A.C. CONTACTOR

2 make +2 break (or, 2 c/o.).
15 amp. contacts. $230 / 240 \mathrm{~V}$, A.C. operation. Brand new. Price 22/6 plus $1 / 6$ P. \& P

-

STROBE! STROBE! STROBE!

Three easy to build Strobe Units using the latest type Xenon white light flash tube. Solid state timing and triggering circuit 230/250v. A.C. operation.
ECONOMY KIT. Flash rate $1-36$ flash per second. All components including Unjlunction, thyrlstor, tube and circuit. £5.5.0 plus $3 / 6$ P. \& P.
NEW INDUSTRIAL KIT
Ideally suitable for schools, laboratories etc. Roller tin printed circuit. New trigger coil, plastic thyristor and new improved type of tube. 1-80 f.p.s. Price 9 gns. 7/6 P. \& P.

HY-LYGHT STROEE
This strobe has been designed and produced, in response to wide public demand, for use in large rooms, halls and the photographic field. It has 4 times the light output at 30 f.p.s. and utilizes a silica plug in tube for longer life expectancy, printed circuit for easy assembly also a special trigger coil and output capacitor. Light output approx. 4 joules. Price £10.17.6. P. \& P. 7/6.

RELAYS

Bulk purchase enables us to offer the following new SIEMENS, PLESSEY, etc. miniature plug in relays complete with base, at a fraction of maker's price.

$\begin{array}{cc}\text { Coil } & \text { Working } \\ \Omega & \text { Voltage }\end{array}$

Contacts $2 \mathrm{c} / \mathrm{o}$
$4 \mathrm{c} / \mathrm{o}$ $4 \mathrm{c} / \mathrm{o}$
$2 \mathrm{c} / \mathrm{o}$ $2 \mathrm{c} / \mathrm{o}$
$4 \mathrm{c} / \mathrm{o}$ $4 \mathrm{c} / \mathrm{O}$
4 M 2 B 4 M 2 B $2 \mathrm{c} / \mathrm{OH} . \mathrm{D}$. $2 \mathrm{c} / \mathrm{OH} \mathrm{D}$
$4 \mathrm{c} / \mathrm{o}$ $4 \mathrm{c} / \mathrm{o}$
$2 \mathrm{c} / \mathrm{o}$
A.D. $-\stackrel{40}{-}$
$2 \mathrm{c} / \mathrm{o}$

SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp., $11 /-$, plus $2 / 6 \mathrm{P}$. \& P.

SERVICE TRADING CO

All Mail Orders-Aiso Cailers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 SHOWROOM NOW OPEN

Phone 9951560
CLOSED SATURDAY

Personal cailers only
9 LITTLE NEWPORT STREET LONDON, wC.2. Tel. GER 0576

fetyln

FANTASTICALLY POPULAR TAPE
We offer you fuliy tensilised polyester/mylar and P.V.C. tapes of identical quality hi-fl, wide range cecording characteristies as top grade tapes. Quality control mannfacture. They are truly worth a few more coppers than acetate, sub-standara, jointed or Standard Play
3 in
4 in
5 in,
5 in
7 in
7
3 i
4 in
5 i
5
7 in
7

Postayes 1i-reel. Post Free less 5\% on three reels.
 Quantity and Trade enquiries invited.

NOTE: Large tape slocks al all branches.

7 FIE E $\quad \begin{aligned} & \text { Highest Quality- } \\ & \text { Compare Our Price }\end{aligned}$

Carr. \& Ins.

 14in.14in. \& 19in.
2 in .823 in .

GUARANTEED | $\because 23.5 .0$ | \$4. 5.0 |
| :---: | :---: | :---: | :---: |
| 25.15 .0 | | Most Mullard, Mazda, Cossor, Emitron, Emiscope, Brimar, Ferranti types processed in our own faetory. NOTE: ALL tube orders only to Portsmouth branch please.

NEW and SPECIAL Lines at the keenest prices
AM/FM STEREO MULTIPLEX REOEIVERS 18 transistors, 9 diodes, 1 variable diode, 2 silicon Rectífers. Push-pull Stereo Amplifiers. FM Stereo Separation 15dB. AM Medium Wave 180-550 Metres. Power output 10W R.M.S., 220/240V A/C Mains. Beautiful wooden plinth case-approximately Balance, Base/Treble Control, Volume, Tuning. Fine finish. Special purchase enables us to offer these superb machines of famous make at a ridiculously low price. Unrepeatable offer at a fraction of list price . . . only 26 GNS. POST FREE.

LONDON, 10 Tottenham Court Rd. (MUS 2639) PORTSMOUTH, 350-352 Fratton Road
(Tel. 22034)
SDUTHAMPTON, 72 East Street (Tel. 25851)
BRIGHTON, 6 Queen's Road (Tel. 23975)
MAIL ORDER WAREHOUSE:
Devonian Court, Park Crescent Place, Brighton. (Tel. 680722)

BARGAIN PARCELS

Including variable condensers, i.f. coils, loudgpeaker Dlug/sockets, knobs, pots, condensers, resistors, nuts, boits, cabinet fittings, switches, transformer choke, rectifier, transistors at a small fraction of list value. Due to heavy demand we now pack them in several sizes-be amazed-try one now
3 lbs . (post $5 / \mathrm{m}$)
14 lbs . (post $6 /-)$
$8 /-$
$29 / 6$
$29 /-$

continued from the July issue

THE meter was an expensive item, and some form of protection circuit was considered mandatory. The meter protection circuit comprises D8 D9 R43 and R44, the modus operandi being somewhat as follows. The diodes on their own do not conduct until a potential difference of 600 to 700 mV exists across them. Being connected in parallel, though oppositely phased, either one or the other will conduct irrespective of the polarity of the voltage impressed across them. This property is only required when connected into the d.c. amplifier, where the terminals can be connected into an incorrect polarity circuit. The meter requires 60 mV for f.s.d., which means a current some 10 to 12 times f.s.d. would pass through the meter before the diodes conducted. This does not represent an adequate safety margin, and so the resistors R43 and R44 were included. This means that the voltage now required for f.s.d. is 250 mV or one-third of the conduction voltage of the diodes, the measure of protection afforded being proportionally greater. The resistors could be further increased to improve the degree of protection, but we are then in danger of incurring scale non-linearity as well as a further loss in the sensitivity of both amplifiers. With the selected components, the meter has only to pass a current $\times 3$ f.s.d. or $150 \mu \mathrm{~A}$ before the diodes conduct.
The purpose of C11 is to "damp" the meter needle against constantly varying outputs, such as an audio signal from the a.c. amp and therefore provide a more easily read "average" voltage.

It also serves to slow the meter needle in its progression over the scale, so that in the event of an overload it comes to rest fairly gently against the end stop.

Constructional Details

The "active" part of the complete instrument, the a.c. and d.c. amplifiers, are built on a printed circuit board to the dimensions and layout given in Fig. 4.

The passive parts of the instrument are the attenuators, incorporated round S1a-b and $\$ 3 \mathrm{a}-\mathrm{b}$. On the prototype, these consisted of Radiospares Makaswitch shafting assemblies. To ease the problem of connecting the various components associated with the a.c. attenuator, a spare single-pole ten-way wafer was pressed into service, this being suspen-
ded by means of appropriate spaces between the two twelve-way wafers. The wiring of these attenuators is shown in Figs. 5 and 6.
The meter scaling is in the now familiar, almost standard 1-3-10 sequence, the range resistors being chosen to suit. There is, quite clearly, no reason why any other sequence preferred by the individual constructor should not be used, the range resistors being altered as necessary.
The front panel carries the moving coil meter, and the various switches and potentiometers; the wiring of these are straightforward and are therefore not illustrated.

The complete instrument is built into a cabinet of 20 gauge aluminium to the dimensions given in Fig. 7 and held together by self-tapping screws. The cabinet, in turn, is suspended in a " U " bracket of 10 gauge aluminium by means of $\frac{1}{4} \mathrm{in}$. UNF bolts, washers and shakeproof nuts as detailed in Fig. 9.

The front panel is drilled and cut to the dimensions of Fig. 8. The legends for the front panel were drawn on white cartridge paper with red and black ballpoint pens, the red begin used only for the mV sections of the two input attenuators. This was then faced, for protective purposes, by a sheet of $\frac{1}{16}$ in. Perspex.
Construction should not be commenced until all the components are to hand, in order to allow for dimensional differences between the components used in the prototype, and those to be used by the individual constructor. Both circuits are quite stable and there was little difference between the breadboard experimental circuits and the finished article. Other forms of construction are therefore quite suitable, provided some simple precautions are observed. These consist, for the a.c. amplifier, of

SWITCH FUNCTIONS

$$
\begin{aligned}
& \text { S1 - Range switch - d.c. } \\
& \text { S2 - On/off switch - d.c. } \\
& \text { S3 - Range switch - a.c. } \\
& \text { S4 - On/off switch - a.c. } \\
& \text { S5 - AC/DC selector } \\
& \text { S6 - Norm/rev. switch. }
\end{aligned}
$$

Fig. 4: The printed circuit board for the a.c. and d.c. amplifiers, as etched by the author. The a.c. section is on the left, the d.c. section on the right.

Fig. 5: Wiring and components associated with the d.c. input attenuator.
keeping the input stage and attenuator well screened to obviate the picking-up of hum and other extraneous signals and, for the d.c. meter, of keeping the input terminals and circuitry well isolated from each other to obviate the leakages that exist undetected and unsuspected, in many circuits. The input resistance is very high, and leakage resistances can exist, of magnitudes sufficient to upset the working of the amplifier.
As far as components are concerned, there is only one thing to remember. This is a measuring instru-

Fig. 6: The a.c. attenuator switch. The wafer numbering corresponds with that given in the circuit diagrams.
ment, the yardstick of the future. Therefore only the best components must be used; components of unknown origin, of dubious characteristics, must be ruthlessly discarded. The use of "bakelite" switches for the input attenuators is to be deprecated, as the leakage resistance between adjacent pins and contacts is low enough to adversely affect the working of the d.c. amplifier.

Only the best grade of printed circuit board should be used. When the instrument is fully and satisfactorily operational, the copper side and, if desired the

Open the pages of The RADIO CONSTRUCTOR this month for . .

THESE SPECIAL FEATURES

TRANSISTOR REVERBERATION UNIT

MAIN FEATURE ARTICLE

Add a "third dimension" to reproduced music with the aid of this simple-to-build reverberation unit, which can take its input from electric guitars, medium or high impedance microphones, or any other normal sound source. The output of this unit can feed into a standard amplifier or tape recorder, and results are particularly impressive when it is employed with an electronic organ.
other articles include
COIL COVERAGE TEST UNIT
$\begin{array}{ccc}\star & \star & \star \\ \text { SIMPLE VOLTAGE TO } \\ \text { TOREQUENCY } & \\ \text { CON- }\end{array}$ VERTER
A neat circuit which provides linear change of frequency with change of input voltage.

$$
\star \quad \star \quad \star
$$

TRANSISTOR SUPERHET FOR TOP BAND This receiver incorporates Seven Transistors and One Diode and can be operated from a 9 v dry or 12 v car battery.

JULY ISSUE

techinical TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

BIGGEST BREAKTHROUGH IN RADIO KITS ! Because of the fantastic demand we have heen unable to offer this kit since the initial advertisement on March 7th.

 THE REVOLUTIONARY APOLLO" 6 ' $\mathbf{C A N ~ B E ~ B U I L T ~}$SPECIALLY made for the thousands of discriminating people who want the finest easy-to-build radio . . at a reasonable price! This is a different breed-it will startle you! EIGHT MONTHS AGO our two designers were briefed to produce a radio kit that would fill these technical demands:-DEMAND-A. IT SHOULD BE POSSIBLE TO BUILD PAINLESSLY IN ONE EVENING ANSWER-the Apollo " 6 " has simplified, well illustrated step-by-step plans.

CONTAINS FEATURES THAT CAN'T BE BOUGHT IN READY MADE SETS-AT ANY PRICE

- receives medium wave \& trawier broadcasts.
- every component brand new-no surplus rejects or "seconds".
- uses latest Silicon Planar Epitaxial Epoxy transistors.
- six stage stable reflex-2 R.F., 1 Diode demodulation, 3 A.F.
- simplified illustrated plans.
frompartsto programmes in an evening . PLUS MANY MORE!

No soldering iron is necessary and you don't have to have a magnifying glass and a pair of tweezers. DEMAND-B. IT SHOULD WORK FIRST TIME . . . -ANSWERApollo " 6 " uses latest rugged Silicon Transistor Circuitry and every single transistor, diode, capacitor, resistor, inductance etc. is brand new and fully tested-no surplus parts, no manufacturers
rejects, no manu-
FOR and uses "Ever Ready" battery.
DEMAND_C. IT
MUSTHAVETHE
POWER TO OPERATE OPTION-
AL LOUDSPEAKER...DEMAND -D. IT MUST GIVE GOOD RECEPTION IN DIFFICULT AREAS $\dot{\text { WOR DEMAND-E. IT }}$ MUST WORK ON ITS OWN INTERNAL FERRITE ROD AERIAL . . . ETC. ETC ANSWER-The Apollo " 6 ', does All
REVOLUTIONARY SILICON
$\begin{array}{lll}\text { RLANAR } & \text { EPOXY } & \text { CIRCUIT }\end{array}$

DESIGN

Apollo " 6 " will probably be bang up-to-date well into the seventies! it bristles with latest technical innovations. Six stage stable reflex N.P.N.
and P.N.P. circuit consisting of 2 Radio Frequency stages, 1 Diode demodulation stage and 3 Audio Frequency stages. Uses latest Silicon Planar Epitaxial Epoxy transistors (similar to types used in America's Space

IRON CLAD GUARANTEE

 Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full, at once and without quibble or question.Project). The first two transistors give amplification of 100 to 400 each, (at only 100 Microamps collector current

of 235 to 470 . Stable reflexing gives the Apollo " 6 " staggering selectivity, uncanny sensitivity, true-to-life sound reproduction-in fact its range, power and selectivity must be experienced to be believed
Enter a new magic world of reception-station after station (home and abroad).
THRILLING SOUND OF AN S.O.S. AT SEA Listen to the thrilling sound of an S.O.S. at sea-tune in to a world you've never heard before . . . NOTE. Because members of our own Staff (and their friends) are enthusiastic and have already bought Apollo " 6 " parts we know demand will be enormous. DONT DELAYSEND FOR YOURS NOW, send $59 / 6+3 / 6$ P. \& P. for all parts, illustrated plans, personal listening earpiece etc. (all parts can be bought separately) MONEY BACK GUARANTEE (see panel).
Orders despatched in strict rotation.
(Dept. PW2) 18 Little Preston St, Brighton, 1. Sussex.

BLACKWOOD HALL, 16 a WELLFIELD ROAD, STREATHAM S.W. 16

Mon.-Sat. 9 a.m
-5.30 p.m.
Closed Sat. 1.30-2.30 p.m.
Open Daily to Callers

Tel. 769-0199/1649

component side, should be painted over with one of the special printed circuit board varnishes. This has the effect of insulating the circuits against the dust that invariably seems to collect and that can, in time, affect the working of the circuits.

The semiconductors used have proved to be satisfactory, and whilst it is not unreasonable to suppose that similar semiconductors will work just as well, their use has not been investigated.

It was stated earlier that it is very desirable for the transistors of the d.c. amplifier, $\mathrm{Tr} 1-\mathrm{Tr} 4$, to be in close proximity, even to the extent of being physically bonded together in a common heat sink. This latter condition, quite safe with many transistor encapsulations, is not possible with the 2 N 2484 transistors used, as the TO-18 case is internally connected to the collector lead. If these cases are physically touching, the circuit will not be damaged (provided "opposite" pairs are involved) but will refuse to work.

It is suggested that one circuit at a time be built, and checked for correct functioning before the other is built and checked. Final calibration can best be carried out when the instrument is fully completed and ready for mounting in the cabinet. Thus, the d.c. amplifier can be built and checked to see that VR1 and VR2 can satisfactorily zero the meter. Ideally, they should zero the meter at the mid-point of their travel, thereby denoting component equality. If means are at hand the hfe of Tr 1 and $\operatorname{Tr} 4$ also $\operatorname{Tr} 2$ and $\operatorname{Tr} 3$ should be equal. If zero cannot be obtained by adjustment of VR1 and VR2, the transistors if not accurately matched could be changed about. Alternatively, the values of R11 R12 and R17 R18 or R15 R14 could be altered in value. Once this is achieved, then attention can be directed to the construction of the a.c. meter.

Test and Calibration

The a.c. meter can be roughly checked by replacing the secondary attenuator resistors by a $1 \mathrm{k} \Omega$

Fig. 7: Cabinet and " U " bracket dimensions. It is recommended that all metal work is carried out in 20 siw.g. material. The "U"brackethowever, should be in 10 s.w.g. if possible.

Fig. 8: The instrument front panel fabricated in 20 s.w.g. material, preferably aluminium. The cut-out for the meter will depend upon the size of unit used.

A Holes $0.86 \mathrm{~cm}\left(3 / 8^{\prime \prime}\right)$

B Holes to suit switches
C Holes to suit terminals

For owners of a CdS exposure meter, or of a camera incorporating one, a very convenient and accurate way is illustrated in Fig. 10. In this method, an RM13 or similar 1.35 V mercury cell is used. The 330Ω resistor drops the 0.35 V leaving 1 V across the $1 \mathrm{k} \Omega$ resistor. The d.c. meter is set to 1 V f.s.d. and is connected across the $1 \mathrm{k} \Omega$ resistor and VR3 is set for f.s.d. If close tolerance resistors are used for the other ranges, these will automatically be correct.
The a.c. meter requires the use of an accurate a.f. signal generator having an output constant between some 50 Hz and 10 kHz minimum, higher if possible. The output is fed into the a.c. meter amplifier and VR4 is adjusted to give an appropriate reading on the meter at 50 Hz . In order to set TC1, the frequency is next increased to at least 10 kHz and TCl is adjusted so that the meter reading at 10 kHz is the same as that obtained at 50 Hz . The reading will be higher than the 50 Hz reading if the capacity of TC1 is excessive, lower if the capacity is insufficient. Only when the time constant of TC1 \times R21 is equal to the time constant of R22 $\times \mathrm{C1}$ plus strays will the two readings be equal. In order to ensure accuracy, the higher frequency should be at least 20 times the lower frequency, and the audio generator output must be constant over the frequency range. In order to ensure absolute accuracy, the strays (capacitance) imposed by the enclosure of the circuit within the cabinet must be checked when the front panel is screwed into the cabinet. These usually cause the high frequency response to drop slightly, necessitating an increase in TCl. Accurate setting of TCl will ensure a response extending well into the multiple kilohertz region.

NEXT MONTH IN P.W.

CO2 VHF RECEIVER

This article describes the construction of an all transistor super-regenerative receiver; using a f.e.t. in the front end. Designed to cover the 2 metre amateur band, it can however, be easily adapted to cover v.h.f. aircraft band.

THE MINI-TWO

Build this miniature radio covering the m.w. band, measures only $2 \frac{3}{8} \times 1 \frac{5}{8} \times \frac{3}{4} \mathrm{in}$., and uses readily available and inexpensive components. Driving a crystal earpiece with excellent volume, the Mini-Two uses two silicon transistors in a very stable circuit.

PLUS OTHER CONSTRUCTIONAL PROJECTS AND REGULAR FEATURES

All in the SEPTEMBER issue on sale August 8th

ORDER YOUR COPY NOW!

NEW PRICES ON NEW COMPONENTS

ELECTROLYTIC CAPACITORS (Mullard). -10% to $+50 \%$.

RESISTORS
High stability, carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm.): Body: $1 \mathbf{W} ; 8 \times 2.8$高W; $10 \times 4 \cdot 3$

Leads: 35

10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series) 5% ranges; 4.7 Ohms to 1 Megohm (E24 Renard Series). Prices-per Ohmic value.

10 off	25 off
$1 / 6$	$3 / 3$
$1 / 9$	$3 / 8$
$1 / 9$	$3 / 8$
$2 /-$	$4 /-$

100 off
$10 / 4$
$11 / 8$
$11 / 7$
$12 / 10$
CAPACITORS
Subminiature Polyester film, Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads.
$\pm 10 \%$ tolerance. 100 Volt Working.
Prices-per Capacitance value ($\mu \mathrm{F}$)
$0.001,0.002,0.005, \quad$ each $0.001,0.002,0.005$,
$0.01,0.02$
0.05
0.05
0.1 0.1
0.2
0.5
each
6d.
8 d.
10 d.
$1 / 2$
$2 /-$

10 off	25 off
$4 / 3$	$8 / 4$
$6 /-$	$12 / 6$
$7 / 1$	$15 / 6$
$10 /-$	$20 / 10$
$17 / 6$	$37 / 6$

100 off
$30 /-$
$41 / 8$
$51 /-$
$68 / 6$
$125 /-$
Polystyrene film, Tubular, Axial leads. Unencapsulated. $\pm 5 \%$ or $\pm 1 \mathrm{pf}$ tolerance. 160 Volt Working.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$)
$10,12,15,18,22,27,33$, e
180, $220,270,330,390$
$180,220,270,330,390$
$470,560,680$,
$820,1,000$,
47,500
$2,200,3,300,4,700,5,600 . \cdot$
$6,800,8,200,10,000,15,000$
22,000

10 off	25 off	100 off
$3 / 7$	$7 / 9$	$24 /-$
$4 /-$	$8 / 8$	$26 / 8$
$5 /-$	$10 / 10$	$33 / 4$
$6 /-$	$13 /-$	$40 /-$
$6 / 9$	$18 /-$	$45 / 4$

POTENTIOMETERS (Carbon)
Miniature, fully enclosed, rear tags, carbon brush wiper. Long life, low noise. Body dia., $\frac{3}{4}$ in. Spindle, $1 \mathrm{in} . \times \frac{1}{4} \mathrm{in}$. $\frac{1}{4} \mathrm{~W}$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ over 4 M. Lin. 100 ohms to 10 Megohms. Log. 5 Kohms to 5 Megohms. $\begin{array}{lllll}\text { Prices-per ohmic value } & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { off } \\ & 2 /- & 18 / 4 & 41 / 8 & 150 /-\end{array}$

GANGED STEREO POTENTIOMETERS (Carbon)
$\frac{1}{2} W$ at $70^{\circ} \mathrm{C}$. Long Spindle.
Logarithmic and Linear: $5 \mathrm{k}+5 \mathrm{k}$ to $1 \mathrm{M}+1 \mathrm{M}$.
$\begin{array}{lccccc}\text { Prices-per ohmic value } & \begin{array}{llll}\text { each } & 10 \text { of } & 25 & \text { off } \\ & 8 /- & 70 /- & 162 / 6\end{array} & 100 \text { off } \\ & & 755 /-\end{array}$
SKELETON PRE-SET POTENTIOMETERS (Carbon)
High quality pre-sets suitable for printed circuit boards of 0.1 in . P.C.M. 100 ohms to 3 Megohms (Linear only). Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{1} \mathrm{M}, \pm 30 \%$ above tM. Horizontal ($0 \cdot 7 \mathrm{in} .+0 \cdot 4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0 \cdot 2 \mathrm{in}$. P.C.M.). Subminiature: 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above.
$\begin{array}{llllll}\text { Prices-per ohmic value } & & \text { each } & 10 \text { off } & 25 \text { off } & 100 \text { of } \\ \text { Miniature }(0 \cdot 3 W) & 1 /- & 8 / 9 & 18 / 9 & 66 / 8 \\ \text { Subminiature }(0 \cdot 1 \dot{W}) & \ldots & 1 /- & 10 \mathrm{~d} . & 7 / 1 & 14 / 7\end{array}$ Miniature (0.3 W)

10 d .
$8 / 9$

POLYESTER CAPACITORS (Mullard)

Tubular, $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. 0.068 , $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 \cdot 15 \mu \mathrm{~F}$, 11d. $0.22 \mu \mathrm{~F}, 1 /-.0 \cdot 33 \mu \mathrm{~F}$, 1/3. $0.47 \mu \mathrm{~F}$, $1 / 6$. $0 \cdot 68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015$, $0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.047 \mu \mathrm{~F}, 9 \mathrm{~d}$. $0.068,0 \cdot 1 \mu \mathrm{~F}$, 11d. $0.15 \mu \mathrm{~F}, 1 / 2$. $0.22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}, 2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8$.
Modular, metalised, $\mathrm{P} . \mathrm{C}$. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}$, $11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}$, $1 / 5.0 \cdot 47 \mu \mathrm{~F}, 1 / 8.0 \cdot 68 \mu \mathrm{~F}, 2 / 3$. $1 \mu \mathrm{~F}, 2 / 9$.

JACK PLUGS
tin. Type P1. Standard. Screened. Heavily chromed.
in. Type SE/P1. Side-entry version of Type P1.
$\frac{1}{2}$ in. Type P2. Standard. Unscreened. Unbreakable moulded cover.
tin. Type P3. Tip-Ring-Sleeve Stereo version of Type P1d
tin. Type P4. Tip-Ring-Sleeve Stereo version of Type P2.
3.5 mm . Type P5. Standard. Screened. Aluminium cover.
$3 \cdot 5 \mathrm{~mm}$. Type P5. Standard. Screened. Aluminium cover.

$3 \cdot 5 \mathrm{~mm}$. Type P6. Standard. Unscreened. Unbreakable moulded cover. | 3. mim. Type P6. Standard. Unscreened. Unbreakable moulded cover. | | |
| :--- | :--- | :--- |
| Prices | | |
| Pach | 10 off | 25 off | P1

SE
P2
P
P
P
P
P2
P3
P4
P5
P6

JACK SOCKETS

tin. Type S3. Stereo version for use with P3 or P4 plugs:
fin. Type S5. Standard. Moulded body. Chrome insert.
3.5 mm . Type S6. Standard. Moulded body. Chrome insert. Available with make or break contacts on Tip. Ring and Sleeve

SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71, OC81, OC81D, OC82D, 2/-. OC70, OC72, 2/3. AC107, OC75, OC170, OC171, 2/6. AF115, AF116, AF117, ACY19, ACY21, 3/3. OC140, 4/3. OC200, 5/-. OC139, 5/3. ОС25, 7/-. OC35, 8/-. OC23, OC28, 8/3.

SLLICON RECTIFIERS: $(0.5 A)$. 170 P.I.Y., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1250 P.I.V., 3/9. 1500 P.I.V., 4/̈. (0.75A); 800 P.I.V., 3/3. (6A); 200 P.I.V., 3/-. 400 P.I.V., 4/-. 600 P.I.V., 5/-. 800 P.I.V., $6 /-$.

THYRISTORS (5A): 100 P.I.V., 8/-. 200 P.I.V., 10/-. 400 P.I.V., 15/-.
SWITCHES (Chrome finish, Silyer contacts): 3A 250V, 6A 125V. Push Buttons: Push-on or Push-off, 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, $5 /-$.

PRINTED CIRCUIT BOARD (Vero).
$0 \cdot 15 \mathrm{in}$. Matrix: $3 \frac{3}{4} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} ., 3 / 3$. $5 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} ., 3 / 11$. $3 \frac{1}{4} \mathrm{in} . \times 3 \frac{14}{4} \mathrm{in} ., 3 / 11$.

$0 \cdot 1$ Matrix: $3 \frac{1}{4} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} ., 4 /-5 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} ., 4 / 6.3$ 各in. $\times 3 \frac{3}{4} \mathrm{in} ., 4 / 6.5 \mathrm{in} . \times 3 \frac{8}{2} \mathrm{in}$. 5/3.

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS (PW) 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale and Retail Premises)
MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 / 6$

BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W.1.

KING OF THE PAKS \quad Unequalled Value \& Quality
SUPERPAKS BI-PAK NEW-UNTESTED
SEMICONDUCTORS

Satisfaction GUARANTEED in Every Pak, or money back.

FULLY TESTED

FULL
AC107
AC126-
AC107.
AC126-7-8
AF116-117
AF116-11
AF199.
AF189
AL102
BC107-8.
BFY50-51-52...
BSY26-7
BSY 23.9
B8Y 95-95A
$0 \mathrm{OC} 2 \cdot 25$
OC26-35
$0 C 28-29$
$0 C 44-45$
OC47-83
OC71-81
0 O81
0
$0081 \mathrm{D}-82 \mathrm{D}$
0 C 82
0 Cl 40
0 Cl 40.
OC170.
OC171.
$0 C 201.6$
$0 R P 12-60$
OCP71.
OAS-1
$0 A 47$
-A70
OA79
$0481-85$
9A91
OA95
OA202
2N696-7
2N706
2N708
2N2160
2N2646
2N2712
2N2926
MAT100-101
MAT120-121 MAT120-1

ST140 | ST140 |
| :--- |
| ST141 |

SIL. RECTS TESTED
$\mathrm{PIV}_{50}^{750 m A} 3 \mathrm{~A}$ 10A 30 A

Announcing

The VHF/UHF Manual
 by George Jessop, G6JP

If you have any interest in the frequencies above 30 MHz then you need this book. It is the first complete manual for the metre and decimetre bands ever published outside of North America. It is probably the most comprehensive work of its kind ever produced, ranging from advanced material to simple circuits for the rank beginner to. VHF. HIustrated with over 600 drawings.

Like all of RSGB's technical books, it is British produced and thus all parts are available in this country An attractive layout and clear style make the VHF/ UHF Manual equally suitable for construction or just reading.

21/- over the counter or $22 / 6$ by post from:-

R S G B Publications

35 DOUGHTY STREET, LONDON, WC1

HI-Q!

Allowing that Mr. Floyd is entitled to his viewpoint, I feel that the letter in May's P.W. was rather harsh in its sweeping criticism. As one who works almost entirely with f.e.ts and m.o.s f.e.ts and am designing an "All-Band" "PhaseLocked" Receiver, I think my IQ is of an average level; but so far have not been upset by the content of either P.W. or P.E. which I have taken for years.
Of course many articles are "simple" and descriptive, but many are of a reasonably advanced nature as well. This is how it should be in a magazine catering to such a wide gap between newcomers and the more experienced readers. As for being too descriptive, even the advanced reader who often tries a dozen or more projects each month -simple and otherwise-can save time by broadly following the basic layout as illustrated in the articles, instead of starting from the circuit alone.
If articles and projects of an advanced nature are wanted, there are many "specialist" magatinss published which contain them. I personally take 10 radio magazines each month but still find Practical Wireless a good "threebob's worth."-M. J. Shepherd (Essex).

In reply to M. Floyd's letter I would like to say that the so called "spoon-feeding" of readers is quite often just.
I am quite keen on radio but as yet I have not indulged in it enough to fully understand the full principles of it, and I find the description in many articles very useful.
I would suggest that either M. Floyd realises that there are people like me who benefit from "spoonfeeding" or he tries to do better and make a success of it.P. Yates (Staffs.).

In reply to M. Floyd on the subject of articles published in P.W. and P.E. all I can say is that if he does not like the articles which are printed then he does not have to buy the books.

I think myself that most of the articles printed are varied and suit all tastes. After all there are not
many monthly radio magazines on sale so you really have to cater for beginners as well as those who can undertake more ambitious projects.

As to spoon-feeding the readers I agree to a slight degree that there is quite a bit of emphasis on the way projects are constructed, but to those who don't want to build up a project using the construction details they can use the construction details as a guide line and proceed from these - S. R. Cole. (Birmingham).

Write your own

As a reply to Mr. Floyd's letter, I regard his attitude as one of entire selfishness. I am sure that there are many other people like myself who prefer plodding along to streaking straight to the uttermost limits of radio success, which Mr. Floyd seems to have evidently accomplished.
Although a novice I have had some success in transistors and still prefer Practical Wireless and Practical Electronics in their old and well loved forms. There seems to be plenty to suit all tastes at the moment; and if Mr. Floyd thinks it is not intellectual enough he should consider one of the main purposes of such magazines, which, surely is to encourage more people to join in the hobby. If the magazines were to become more intellectual no raw novice or anyone with just a casual interest would be able to understand a word. I suggest that he either designs his own circuits, or, even writes his own magazine! - R. Heeley (14) (Sheffield).

Doo wot?

Dere Sur,
I bet that that Mister Floyd of Barks iss two lazi too mak isself a whyless set. Yores trooly, A Barkshire Moron.
[And on that point we must close the correspondence on this subjectEditor.]

Heat treatment

In the April issue of Practical Wireless, Mr. P. Hamley writes of the heat treatment of silver steel. He says that the easiest way of tempering is to heat away from the cutting edge until the straw colour
reaches this edge. This is very easy with, say, sections over $\frac{8}{8} \mathrm{i}$ in. dia., but on sections of say $\frac{1}{8} \mathrm{in}$. dia. or less, e.g. for small pin punches, the colours will run too fast for the man with little or no experience, to see. I find that if the punchis placed on a steel plate, which is then heated, the conductance between the two is limited, and the tempering colours will easily be seen, as they will run slowly.
This method also applies to larger sections when heating over a coal fire.
This method was shown to me by a very experienced blacksmith during my apprenticeship.-P. G. Howson (Preston, Lancashire).

Pleasing to the eye

Recently I have been experimenting with various materials from this point of view. Many materials have come to my attention, and these following notes may, I hope, prove useful to others.
Perspex can be shaped somewhat more easily than aluminium, although it is best to drill it at a fairly low speed. Various finishes can be applied, polished, satin, or an effect something like milled metal can be obtained by rubbing in small circles with a very fine emery paper. An added advantage is that it is semi-transparent, and therefore pilot lights, etc. need not be mounted through the material.

Leather cases can be obtained very cheaply from ex-govt. sources and are usually in good condition. Many of these are sufficiently rigid not to need any additional stiffening, although with some a light framework may be advisable to support component boards, etc.
Plywood makes strong rigid boxes, as long as the corners are reinforced, and looks extremely good if sanded and coated with polyurethane, or painted with "hammer" finish paints, providing the surface is sealed with a midgrey undercoat.
Aluminium foil can be stuck on the inside of all these to provide r.f. screening, and in the case of Perspex, also enhances the colour of the material.
Amateur radio has suffered too long from the "Tony Hancock" image, let's make a start on changing it with brighter cases.C. Warwick (Birmingham, 16).

puse arruts operartion I. J. KAMPEL PART 3: THE MONOSTABLE FAMILY

IN the past two articles on the subject of pulse circuits, saturation switching and various forms of multivibrator have been discussed. We shall now discuss the monostable family of circuits, which, although closely related to the multivibrator family, are at the same time distinctly different.

The multivibrator oscillates between its two quasistable states without any external stimuli, whereas the monostable requires external influence to change states. It has one stable state and one quasi-stable state, and with no external stimuli will continue to rest in the stable state. Upon the application of a pulse of the right sense, the circuit will "flip" into its quasi-stable state for a predetermined period of time, to then "flop"' back into its stable state. Hence the monostable is often referred to as the flip-flop.

The input pulse must be long enough for the circuit to switch, but once removed, the circuit will not return to the stable state until the programmed time period has elapsed. Uses of the flip-flop are in pulse shaping-a trigger pulse of any shape will deliver a square-wave output pulse; pulse amplification-a small pulse will give maximum output pulse; and as a delay-if a following circuit is triggered from the rear edge of the output pulse. The flip-flop can be useful also as a buffer trigger stage-where an input pulse in not long enough to trigger a following circuit, the flip-flop will provide the longer pulse for the shorter input pulse. The flip-flop can act as a reset in this mode, where a short trigger must cause a longer reset action, or the flip-fiop may simply be used to provide an indication of long time duration upon application of a rapid triggering pulse.
The multivibrator, or astable circuit, may be made monostable by replacing one of the capacitive couplings be a resistive coupling, and this is shown in Fig. 3.1 if C 2 is ignored for the moment. It will be seen that

Fig. 3.1: Simplest monostable with single supply.
resistor R3 provides base bias for $\operatorname{Tr} 2$ as long as $\operatorname{Tr} 1$ is in the OFF state, since then the top end of this bias resistor will be at line potential, $+V_{\mathrm{cc}}$. In the stable state, however, Tr 1 is on, and since it is driven into saturation, $V_{\mathrm{C}_{1}}=V_{\mathrm{CE}} \mathrm{Sat} \simeq 0 \cdot 1 \mathrm{~V}$. There is thus not enough voltage to allow Tr 2 to switch on and this transistor remains off. R1 programmes sufficient base current in Tr 1 to ensure that this transistor is normally in saturation, and with $V_{\mathrm{B}_{1}} \simeq 0.7 \mathrm{~V}$, the normal V_{BE}, and $V_{\mathrm{C}_{2}}=V_{\mathrm{ec}}$, capacitor Cl charges to line potential ($-V_{\mathrm{BE}_{1}}$).

To switch off Tr1, since this transistor is in saturation, sufficient triggering current must be made available to remove the stored charge in the base region, and the coupling capacitor C3 must be large enough to ensure this, while the trigger pulse must be longer than the switching time. When a negative pulse is applied to Tr1 base, $\operatorname{Tr} 1$ is cut off, its collector rising to line potential, thus turning on Tr 2 as base bias is now provided through resistor $\mathrm{R} 3 . \mathrm{C} 2$ is in fact a speed-up capacitor, and provides additional current during switching to drive Tr 2 hard into saturation, this current reducing after the initial transient until, with C2 charged, only the current provided by R3 flows through Tr2 base, this being $I_{\mathrm{B} 2} \mathrm{sat}(\mathrm{min})$ to reduce power dissipation. The subject of speed-up capacitors was dealt with in Part One of this series.

When $\operatorname{Tr} 2$ switches on, $V_{\mathrm{C}_{2}}$ drops to the level V_{CESat}, i.e., nearly ground potential, and with Cl charged to approximately $V_{\text {ec }}$ volts, $\operatorname{Tr} 1$ base is taken down to - Vec volts. When the input pulse which drove Tr2 base slightly negative is removed, C 1 keeps the base negative. This capacitor charge will gradually decay, however, just as in the case of the multivibrator, and in fact Cl now tries to charge in the reverse polarity up to the line voltage through R1. Eventually, when Trl base has gone from its negative bias to about $+0.7 \mathrm{~V}, \mathrm{Tr} 1$ switches on again, the falling collector potential cuts off the base bias to $\operatorname{Tr} 2$, and the circuit then goes back to its stable state until another trigger pulse disturbs it.

The characteristics of output B in this circuit are similar to those discussed in the case of the multivibrator, and there is the same limitation in line voltage. That is to say a slow rising edge will be seen at output B, and since $\operatorname{Tr} 1$ base is taken to the potential of the line voltage in the negative direction, $V_{\text {ce }}$ should not exceed the maximum reverse bias rating of the emitter-base of the transistor used for Tr 1 . It is pointed out that Tr 2 base will not go to this negative potential without capacitor C 2 , but with C 2 , when Tr 2 is cut off, the speed-up capacitor can cause $\operatorname{Tr} 2$ base to be taken negatively beyond earth potential which, incidentally, also helps the turnoff time. For low frequency operation this enables a saving in components as will be seen later. For the cir-

BENTLEY ACOUSTIC CORPORATION LTD.

EXPRESS POSTAL SERVICE, SAME DAY DESPATCH BY FIRST CLASS MAIL.
All goods are offered subject to the standard three month guarantee.

OA2	$5 / 9$	6 FL] 8/9	12AU7 4/6	9001 16/-	DY87 5/9	EL37 17/3	N379 6/8				
OR2	$8 / 8$	${ }_{6}^{6 F 6 C}$ 4/-	12AV6 5/6	150B2 $14 / 8$	E80F $24 / \mathrm{L}$	EL41 $8 / 8$	N389 121-	TH233 7-	VU120 12/m	$\begin{array}{ll}\text { ASY27 } \\ \text { ASY28 } & 8 / 6\end{array}$	$\begin{array}{ll}\text { OA9 } & 2 / 6 \\ \text { OA47 } & 2 /\end{array}$
OR4	$4 / 8$	6F6M 12/6	12AV7 8/-	${ }^{15002}$ 5/9	E83F $24 /-$	ELA1 818	$\begin{array}{lr}\text { N389 } & 12 /- \\ \mathbf{N 7 0 9} & \end{array}$	$\begin{array}{ll}\text { Tr2es } & \text { J\%- } \\ \text { TP2 }\end{array}$	VU120 12/-	$\begin{array}{ll}\text { ASY28 } & 6 / 6 \\ \text { ASY29 } & 101\end{array}$	$\begin{array}{ll}0847 & 2 /- \\ 0870 & 8 /-\end{array}$
143	$4 / 6$	$6 \mathrm{Fl2}$ 8/3	12AX7 $4 / 6$	$301 \quad 201-$	E88CC $1 \mathrm{C} /-$	EL81 81-	$\begin{array}{ll}\text { N61 } \\ \text { P61 } & 2 / 6\end{array}$	$\begin{array}{ll}\text { TP24 } & 5 /- \\ \text { TP25 } & 5 /-\end{array}$	VU120A12/- VU183 7-	$\begin{array}{ll}\text { ABY29 } & 101 \\ \text { BII8I } & 10 /-\end{array}$	$\begin{array}{ll}\text { OA70 } & 8 /- \\ \text { OA73 } & 3 /-\end{array}$
145	$5 /-$	6 F 18 8/6	12AY7 $9 / 9$	$30216 / 8$	E180CC $8 /-$	$\begin{array}{ll}\text { ELE83 } & 8 /- \\ \text { ELS }\end{array}$	P61 PABC80 $7 / 8$	TP28 ${ }_{\text {TP2620 }} 8 / \overline{8}$	$\begin{array}{ll}\text { VU183 } & 7 /- \\ \text { W42 } & \\ \text { Wrab }\end{array}$	$\begin{array}{ll}\text { BII81 } \\ \text { BA102 } & 10 /- \\ \text { ¢ }\end{array}$	$\begin{array}{ll}\text { OA73 } & 3 /- \\ 0879 & 1 / 9\end{array}$
147GT	718	$6 \mathrm{Fl5}$-9/8	12BA6 6/-	303 15/-	E180F $17 / 6$	EL84 4/6	PG86 9/6	UABC80 5/9	W63 10/6	$\begin{array}{ll}\text { BA102 } & \text { 8/t } \\ \text { BA115 } \\ \text { 2/8 }\end{array}$	$\begin{array}{ll}\text { OA79 } & 1 / 9 \\ 0481 & 1 / 9\end{array}$
101	$5 / 6$	$6 \mathrm{Fl8}$ \%/8	12BE6 $6 / 9$	$30516 / 8$	EASO 1/6	EL85 7/6	PC88 $9 / 6$	UAF42 $9 / 6$	W76 5/9	BA116 $9 / 5$	$\begin{array}{ll}\text { OA81 } & 1 / 9 \\ \mathbf{O A 8 5} & 1 / 6\end{array}$
102	$7 / 9$ $7 /$ 18	$\begin{array}{ll}6928 & 18 / 8 \\ 6524 & 11 / 9\end{array}$	${ }_{12 \mathrm{BH}}{ }^{\text {128 }}$ 6/-	306 18/-	EA76 13/-	EL86 8/-	PC95 8/8	UB41 $6 / 6$	W77 2/6	BA129 2/8	OA86 4/-
165	$4 / 9$	$\begin{array}{ll}6 \mathrm{~F} 24 & 11 / 9 \\ 6 \mathrm{~F} 25 & 11 / 9\end{array}$	$12 \mathrm{El} 17 /-$	807 11/9	EABC80 6/-	EL91 $2 / 6$	PC97 8/8	UBC41 $7 / 8$	W81M 6/-	BA180 8/ +	OA90 2/6
1D5	$6 / 9$	$6 \mathrm{Fr}^{28} 1016$	1257GT 6/6	$\begin{array}{ll}956 \\ 1821 & 1076\end{array}$	EAC91 FAF49 8/9	EL95 5/-	${ }_{\text {PC900 }} 818$	UBC81 $7 /-$	W101 28/2	BCY10 $5 /+$	OA91 1/9
108	$9 / 6$	6 F 32 8	12K5 10/-	5768	EAAF49 EB34 $8 / 8$ 18	EM80 $14 /$	$\begin{array}{ll}\text { PCC84 } & 8 /-1 \\ \text { PCO85 } & 8 / 8\end{array}$	UBF80 $5 / 9$	W107 7/-	BCY12 5/	04182 8/-
1FD1	6/-	6G6G 8/6	12K7GT 5/9	6060 5/6	EB41 4/6	EM80	$\begin{array}{ll}\text { PCO85 } & 6 / 6\end{array}$	UBF89 6/9	W789 10/-	BCY33 5/-	OA200 1/-
1 FD 9	$8 / 9$	6H6GT 1/9	12K8GT 7/6	7193 10/6	zPB91 $2 / 3$	EM84	PCC88 $9 / 9$	UBL21 9/-	$\begin{array}{ll}X 24 & 18 / 6\end{array}$	BCY34 $4 / 6$	0 OA 202 2/m
1G6	6/-	6J5G 8/9	12Q7GT 4/6	7475 4/-	EBC41 8/6	EM85	PCC89 9/8	U092 516	X41 10/-	BCY38 5/-	OA210 9/6
1HEGT	$7{ }^{7}$	6J5GT 4/6	128A7GT0/9	A1834 20/-	EBC81 5/9	EM87 7/3	${ }^{\text {PCC189 }}$ P6/8	UCC84 8/-	X61 5/9	BCY39 $4 / 6$	OA211 18/6
114	$2 / 6$	636	12807 4/-	AC2PENN	EBCDO $4 /$ 1	EM88	PCF80 $8 / 6$	UCO85 616	X63 516	BCZ11 3/6	OAZ20012/-
1LD5	51-	6J7G 4/9	12867 3/-	102F 19/6	$\begin{array}{ll}\text { EBC91 } & 4 / 6\end{array}$	WY61	$\begin{array}{ll}\text { PCFF82 } & 8 /- \\ \text { PCF84 } & 8 /-\end{array}$	UCP80 $8 / 8$	$\begin{array}{ll}\times 64 & 12 / 6 \\ \times 65 & 5 /-\end{array}$	BC107 4/-	OAZ20110/6
1LN5	$8 /-$	657GT 6/6	128H7 3j-	ACOPEN/	EBF80 $1 / \mathrm{m}$	$\begin{array}{ll}\text { EY81 } & 7 /- \\ \text { EY83 } & 8 / 8\end{array}$	PCF84 PCF86 $8 /-$ $1-$	UCH21 $9 /-$	$\begin{array}{ll}\mathrm{X} 65 & 5 /- \\ \mathrm{X} 66 & 7 / 6\end{array}$	BC108 $3 / 6$	OAZ202 91-
1N5GT	$7 / 8$	6K6GT 5/-	12557 4/6	DD 19/6	EBF83 8/-	$\begin{array}{ll}\text { EY83 } & 8 / 8 \\ \text { WY } & 7 / 6\end{array}$	PCFE86 PCP801 $7 /-$	UCH42 $6 / 9$	$\begin{array}{ll}\text { X66 } & 7 / 6 \\ \times 76 \mathrm{M} & 7 / 6\end{array}$	$\begin{array}{ll}\text { BC118 } & 5 /+ \\ \text { BC115 } & 8 / \dot{+}\end{array}$	OAZ203 9/6
1 PI	$71-$	6K7G $2 /-$	128K7 4/9	AC6PEN4/8	BBF89 6/8	EY86 $61-$	${ }_{\text {PCFP801 }}$	UCH81 ${ }^{\text {U/8 }}$	$\begin{array}{lr}\text { X76M } & 7 / 6 \\ \text { X81M } & 80 / 6\end{array}$	$\begin{array}{ll}\text { BC115 } & 8 / 5 \\ \text { BC116 } & 5 / 4\end{array}$	OAZ204 9/-
$1 \mathrm{Pl0}$	$4 / 9$	6K7GT 4/6	12897GT7/6	AC/PEN (5)	EBL22 11/-	EY87 6/-	FCF805 8/9	UCL83 10\%	X101 $20 / 1$	$\begin{array}{ll}\text { BC116 } & 5 / \downarrow \\ \text { BC118 } & 4 / 6\end{array}$	OAZ205 9/-
$1 \mathrm{Pl1}$	5/6	6K8G 8/-	12Y4 8/-	18/6	EC53 12/6	EY88 7/6		UF41 9/6	X109 26/-	BD119 BD1 9/-	OAZ206 9/-
$1 \mathrm{R5}$	616	6K8GT 7/-	13DI 5/-	AC/PEN (7)	ECO4 6/-	EY91 8i-	PCF808 12/6	UF42 9/-	X119 6/6	$\begin{array}{ll}\text { BD119 } & 9 /- \\ \text { BFY50 } & 4 /-\end{array}$	OAZ20710/6
184	4/8	$6 \mathrm{LL} 10 / 6$	18 D 3 9/-	18/6	EC70 4/9	EZ85 51-	PCL81 91-	UF80 6/9	X719 5/9	BFYE1 4 $/$	OAZ210 $7 /-$
185	$8 / 9$	6L6GT 7/9	14H7 9/6	AC/TH110/-	EC86 10/8	EZ40 7/8	PCL 82 7/-	UF85 6/9	Z63 4/9	BFY62 4/b	OAZ22416/6
1T4	$2 / 9$	$6 \mathrm{L7} 12 / 6$	1487 16/-	$\triangle \mathrm{AC/TP}$ 10/6	EC92 $6 / 6$	EZ41 7/3	PCI83 91-	UF88 91 -	$\begin{array}{ll}277 & 8 / 3\end{array}$	BFib4 57	$0 \mathrm{Cl} \mathrm{O}^{2}$ 25/-
10	819	${ }^{6 L 18} 5 /-$	18 18/6	AC/VP210/6	ECO31 15/6	HZ880 4/8	PCL84 716	UF899 6/8	2162 4/6	BP159 5/L	$0_{0} \mathrm{CO}^{2} 5$
105	9	$\begin{array}{ll}6 L 19 & 19 /-\end{array}$	19 10/6	ARP3 7/-	ECC32 4/6	EZ81 4/6	PCL85 8/3	UL41 9/6	Z829 18/6	BF168 4/-	0 C 23 5
20130	71 -	6N7GT $6 / 6$	19AQ ${ }^{\text {d }}$	ATP4	c33 29	EZ90 8/6	POL86 $8 / 6$	UL46 18/6	Z719 4/6	BF180 12/-	0 C 24 5)
2021	$5 / 6$	$6 \mathrm{P1}$ 12l-	${ }_{20 \mathrm{D}}^{19 \mathrm{H}}$	AZ1	ECC34 29/6	$12 / 6$	PCL 88 15/-	ULS4 6/6	7729 6/-	BF181 8j-	0026 51-
2×2	$4 / 9$	$6 \mathrm{FP}^{25}$ 121-	$20 \mathrm{D4}$ 80/5	AZS1 AZ41 $7 / 6$	ECC40 9/6	FW4/5006/6	PEN45 7/-	UM80 51-	Z749 18/8	BF185 8/-	OC26 6
3 A 4	$8 / 6$	6 P 26 12/-	$20 \mathrm{~F} 214 /$ -	${ }_{\text {B36 }}$ 4/6	EC082	1	PEN45DD	URIC 10/		BTX34/400	0 C 28
3A5	101-	6 P 28 85 -	$20 \mathrm{L1}$ 13/-	B319 6/-	ECC83		PWW 18/-	$71-$	7 T ansistors	40/-	0C29 23/6
$3 \mathrm{B7}$	$51-$	6Q7G 6/-	20P1 17/6	B339 $\quad 4 / 6$	$\begin{array}{ll}\text { ECC84 } & 5 / 6\end{array}$	38	PEASC \%-	14	and diodes	BY100 8/B	$0 \mathrm{C3O} 5$
3D6	$8 / 9$	6Q7GT 8/8	20P3 18/-	B729 12/6	ECC85 51.	$\mathrm{GZ33}^{\text {G2/6 }}$	D1	UU9 7/3	2 G 225 10/6	BY101 $11 / 6$	OC35 5/
304	6/6	6R7G 7-	20P4 18/6	BL63 10/-	ECC88 7/-	GZ34 101-	NA419/6	UYin	$61-$	BY105 10	0096 7/6
3 CbGT	61-	6R7M 11/-	$20 \mathrm{P5}$ 18/-	CK506 6/6	ECCs1 8/-	G7237 14/6	PLN/DD	UY21	1	BY114 $6 / 6$	0 C 88 11/6
354	$4 / 9$	6SA7GT 7/-	25A6G 7/6	CL4 19/6	ECO189 9/6			UY41 $6 / 9$	2N2147 17/-	BY12	$0 \mathrm{C41}$ 10/-
33^{4}	$5 / 6$	68A7 \%	$25 \mathrm{~L} 6 \mathrm{G} \quad 5 / 6$	CL33 18/6	ECC804 12/6	HABC808\%-	$402017 / 6$	$\begin{array}{ll}\text { UY41 } & 8 / 9 \\ \text { UY85 } & 5 / 6\end{array}$	2N2297 $4 / 6$	BY127 5	0C42 0/9
401	$3 / 9$	6sC7at 6/6	25 Y 5 6/-	CV6 $10 / 6$	ECc80727/-	HABC80 HL2 $7 / 6$	PFL38 PLis 19/6	UY86	2N2369A4/8	BY234 4	OC43 23/6
5R4GY	$8 / 9$	$68 \mathrm{F7}$ 6/-	25Y5G $8 / 6$	$\begin{array}{ll}\text { CV63 } & 10 / 6\end{array}$	ECF80 6/6	HLI3C 46	$\begin{array}{rrr}\text { PL38 } & 19 / 6 \\ \text { PL36 } & 9 / 6\end{array}$	$\begin{array}{ll}\text { U10 } & 9 / 7 \\ \text { U12/14 } & 7 / 6\end{array}$	2N2613 719	BY236 $4 /-$	$0 \mathrm{C44} 21-$
6U4G	49	68H7 8\%-	25Z4G $6 /-$	CV271 12/6	ECF82 6/6	$\begin{array}{ll}\text { HL13C } & 4 / \\ \mathrm{HL} 23 & 8 /-\end{array}$	$\begin{array}{ll}\text { PL36 } & 9 / 6 \\ \text { PL81 } & 7 / 8\end{array}$	$\begin{array}{ll}012 / 14 & 7 / 6 \\ \text { U18 } & 15 /-\end{array}$	2N3053 $6 / 6$	$\begin{array}{ll}\text { BY238 } \\ \text { BYY23 } & \text { 20-- }\end{array}$	OC44PM 8/8
6V4G	$7 / 6$	6sJ7 6/6	$2525 \quad 7 /-$	CV428 19/-	EGF86 9/-	HL23DD $5 /-$	PL81A $10 / 6$	$\begin{array}{ll}018 & 16 /- \\ 0 / 7 & 5 /-\end{array}$	2N3703 8/9	BYY23 20j-	OC45 $11 / 9$
5Y3GT	$5 / 6$	6SK7GT 4/8	$25 \mathrm{Z6G}$ - $8 / 6$	CY1 18/4	ECF80442/-	HLA1 3/9	$\begin{array}{lr}\text { PL81A } & 10 / 6 \\ \text { PL82 } & 6 / 6\end{array}$	$\begin{array}{lll}017 & 5 /- \\ 018 / 20 & 10 /-\end{array}$	2N3703 8/9	YZ	OC46M 8j-
6Z3	$81-$	6SN7GT 4/6	30 Cl 6/6	CY10 10/6	ECF80512/6	HIA1D ${ }^{\text {d }}$	$\begin{array}{ll}\text { PLeas } \\ \text { PL8s } & 6 / 6\end{array}$	${ }_{019} 0181818$	2N3866 20j-	$\begin{array}{ll}\text { BYZ11 } \\ \text { BYZ12 } & 5 /-\end{array}$	0048 8/-
5Z4G	6/9	68Q7GT 6/-	30015	CY81 7/6	ECH21 12/6	HR1016	PL84 6/8	U82 4178	2N3988 10/-	$\begin{array}{ll}\text { BYZ12 } & \text { bj- } \\ \text { BYZ13 } & \end{array}$	0065 29/6
6/80L2	$12 / 6$	${ }^{6887} 81$ -	$30 \mathrm{Cl7}$ 12/8	D1 1/3	ECH35 5/9	HL42DD8/-	PL302 12j-	$\begin{array}{ll}\mathrm{U} 25 & 18 / \mathrm{l}\end{array}$	28323 10/-	BYZ15 85/-	$0 \mathrm{C70}$ 2/8
6A8G	$5 / 6$	6U4GT 12/-	$30 \mathrm{C18} 8 / 8$	D41 10/6	ECH42 10/-	HN30987/4	PL500 12/-	U26 $\quad 11 / 9$	AA119 8/-	Ca128	$0 \mathrm{OC71}$ 2/-
$6 \mathrm{6AC7}$	3/-	6U7G 7/-	30 FE 18/6	D68 5/-	ECH81 5/9	HVR2 8/9	PL504 12/6	U31 6/-	AA120 3/-	CG64F 4/-	$0 \mathrm{C72}$ 8/-
6AG5	8/6	6VBG $\quad 3 / 6$	30 FLL 15/-	077 2/8	ECH83 8/-	HVR2A 8/9	PL509 28/9	U38 $29 / 6$	AA129 8j-	GD4 6 6/6	$0 \mathrm{OC78}$ 16/-
6AJ5 6	$8 / 8$ $4 / 6$	$\begin{array}{ll}\text { 6V6GT } \\ 6 \times 4 & 6 /- \\ 8 / 6\end{array}$	$30 \mathrm{FL12} 16 /-$ $30 \mathrm{FL13}$ $8 /-$	DAC32 $7 /{ }^{\text {DAF91 }}$	RCH84 7/-	IW8 $5 / 8$	PI802 15/-	U85 16/8	AAZ13 $3 / 6$	GD5 616	$0 \mathrm{OC74}$ \% ${ }^{(1)}$
6AKB	$61-$	8X5GT 5/-	$30 \mathrm{FL13} 12 /$	DAF91 8/9	ECL80 $6 / 6$	IW4/350 5/6	PM84 7/9	U37 84/11	ACl07 8/-	GD6 576	$0 \mathrm{C75}$ 8/-
6AK8	$8 /-$	6Y6G 8/-	30 LI \% ${ }^{3}-$	DAFC96	EOLB2 $67-$	IW4/500 6/-	PX4 14/-	U43 6/9	A0113 6/-	GD8 4	$0 \mathrm{OC76}$ 2/6
6AL5	$2 / 3$	6Y7G $\quad 12 / 6$	$30 \mathrm{LL5}$ 13/9	$\begin{array}{ll}\text { DD4 } 4 & 10 / 6\end{array}$	ECLE3 97	KT2 5 5/-	PY31 0/6	U45 15/6	ACI14 8/-	GDO 4)	$0 \mathrm{C78}$ 3/-
6AM5	$2 / 6$	747 12/6	$30 \mathrm{Ll7}$ 18/-	DDT4 8/8	ECLE ${ }^{\text {B }} 121$	FT8 34/6	PY82 8/6	U47 18/-	A0127 2/-	GD10 4/	OC78D 8/-
6AM6	$8 / 8$	7aN7 6/-	30P4 12/-	DF33 7/9	ECL8f 8/-	KT32 5/6	PY33 9/6	U49 11/9	A0164 5/-	GD11 4)	0 O 79 81-
6AQ5	419	$7 \mathrm{B6} \quad 10 / 9$	30P4MR	DF72 30\%-	ECLL 800	KT41 $19 / 6$	PY80 $5 / 8$	U50 5/8	AC165 6/6	GD12 A/	0081 2/-
6AR6	201-	7 F 7 7-	17/6	$\begin{array}{ll}\text { DF91 } & \text { dig }\end{array}$	80/-	KT44	PY81 $5 / 8$	U52 $4 / 9$	AC156 4/-	GD14 10\%	OC81D 8/-
6at6	4/-	$7 \mathrm{C6}$ 6\%-	$30 \mathrm{PI2}$ 13/-	DF96 6/-	EF22 12/6	$\begin{array}{ll}\text { KT63 } & \text { 4/- }\end{array}$	PY82 5/-	U76 $4 / 9$	AC167 5/-	GD15 8/	$0 \mathrm{OC81M} 5 \mathrm{~L}$
6 64U6	$51-$	$7 \mathrm{D6}$ 15f-	$30 \mathrm{Pl9} 12 \mathrm{~J}$	DF97 10/-	$\begin{array}{lr}\text { EF22 } & 12 / 6 \\ \text { EF36 } & 8 / 6\end{array}$	$\begin{array}{ll}\text { KT63 } & 17 / 8\end{array}$	$\begin{array}{ll}\text { PY83 } & 5 / 8 \\ \text { PY88 } & 8 / 8\end{array}$	$\begin{array}{ll}\text { U78 } & 8 / 8 \\ \text { U107 } & 18 / 3\end{array}$	AC165 AC166	GD16 4	0082 0082 D $8 / 8$ 018
6A76	$5 / 6$	$7 \mathrm{H7}$ 5/6	$30 \mathrm{PL1}$ 15/-	DH30 15/6	EF37A 7/-	$\begin{array}{ll}\text { KT74 } & 18 / 8 \\ \text { KTh }\end{array}$	PY888 PY $18 / 8$	U107 $18 / 8$	AC166 AC167 12/-	GET103 4/	$\begin{array}{ll}\text { OC82D } & 3 / 8 \\ \text { OC33 } & 2 /-\end{array}$
6 B 8 G	$2 / 6$	7 7 7 12/-	$30 \mathrm{PL} 1315 / \mathrm{L}$	${ }^{\text {DH63 }}$ 6 $1-$	EF39 5/-	$\begin{array}{ll}\text { KT76 } & 7 / 6\end{array}$	$\begin{array}{ll}\text { PY800 } & 6 / 6\end{array}$	U153 5/3	$\begin{array}{rr}\text { AC168 } & 12 /- \\ \text { ACl } & 7 / 6\end{array}$	GET113 4f-	
6BA6	4/6	7578	30 PL 14 15/-	DH76 4/6	EFP10 8/9	KT88 29/-	$\begin{array}{ll}\text { PY801 } & 6 / 6\end{array}$	U154 B/-	$\begin{array}{ll}\text { AC168 } \\ \text { AC169 } & \text { 8/6 }\end{array}$	GET11517i-	OC123 $4 / 6$
${ }^{68 B E 6}$	4/3/5	$7 \mathrm{V7}$ 5/-	$30 \mathrm{PL} 1515 /-$	DH77 4/-	EF'41 . 916	KTW618/6	${ }^{\text {PZ83 }}$ 9/6	U181 12/6	AC176 11/-	GET116 6f6	0 O189 18/-
${ }_{6}^{6 B G 6 G} 6$	$20 / 5$ $7 / 6$	7Y4 $6 / 6$	$354515 /-$	DH81 $10 / 9$	EF42 3/6	KTW6210/-	$\begin{array}{ll}\text { QP21 } & 5 /-5\end{array}$	U192 5/-	AC177 ${ }^{\text {A }}$ (6	GET118 4-	OC140 19/-
6BH6 6BJ6	$7 / 6$ $8 / 9$	$\begin{array}{ll}\text { 7Z4 } & 4 / 6 \\ 98 W 6 & 7 /-\end{array}$	35L6GT 35W4 3/6	DH101 ${ }_{\text {DH107 }}$	EF554 10/	KTW63 5/9	QQV03/10	U193 6/6	ACX17 8 8/-	GETI19 4/-	0 O 169 8/8
$6 \mathrm{BQ5}$	4/6	$\begin{array}{ll}\text { 9BW6 } & 7 /- \\ 907 & 9 /-\end{array}$	$\begin{array}{lr}35 W 4 \\ 3523 & \text { 10/6 }\end{array}$	DH107 ${ }_{17 / 11}$	$\begin{array}{ll}\text { EF73 } & 6 / 6 \\ \text { EF80 } & 4 / 6\end{array}$	KTZ41 $6 /-$	0975/20 ${ }^{87 / 6}$	U281 16/-	ACY18 8/8	GET673 $7 / 6$	$0 \mathrm{Cl72}$ 4/-
6BQ7A	$7 /$	$\begin{array}{ll}10 \mathrm{Cl} & 12 / 6\end{array}$	$35 Z 4 \mathrm{CT} 4 / 9$	DK32 71-	$\begin{array}{ll}\text { EFF80 } & 4 / 6 \\ \text { EF83 } & 9 / 6\end{array}$	LN152 $6 / 8$	Q875/20 ${ }_{\text {10/6 }}$	0281 $8 /-$ 0282 $8 /-$	ACY19 $8 / 9$	GET587 8/6	OC200 $4 / 4$
$6 \mathrm{BR7}$	8/6	$10 \mathrm{C2}$ 10/-	3aZ5GT 6/-	DK40 10/-	EF85 5/8	LN\$19 15/-	Q8150/15	${ }^{0282} 818 /-$	ACX20 $8 / 6$	GET87210/-	$\begin{array}{ll}0 ¢ 201 & 5 / 6 \\ 00202\end{array}$
${ }_{6 B R 8}$	81-	1001. 8/-	42 5/-	DK91 5 [/6	HF86 6/-	LN339 151-	88150/10/6	U301 11/-	ACY21 AOY22 $8 / 9$ 18	GET873 8/-	0 0 C 203 $4 / 6$ $1 / 8$
6 BSP 7	16/6	$10 \mathrm{D} 214 / 7$	43 10/-	DK92 7/9	EF89 4/9	L2319 6/6.	Q804/7 8/-	U329 16/-	$\begin{array}{ll}\text { ACYY } & 8 / 6 \\ \text { ACY } & 4 /-\end{array}$	GETT8874/6	OC204 5/6
6BW6	$12 / 9$	$10 \mathrm{~F} 115 /-$	50385	DK96 7/-	EF'91 3/3	LZ329 6/6	R10 15/-	U389 12/6	$\begin{array}{ll}\text { AD140 } & 7 / 6\end{array}$	GET889 4\%	00205716
6BW7	11/8	10 Fg 9 J	$50 \mathrm{cs} 6 / 3$	DL33 6/-	EF92 2/6	LZ339 18/6	R11 19/6	U403 6/6	AD149 8/-	GET890 4/6	0 C 206 101-
$6 \mathrm{GX6}$	4/6	10 Fr 18776	50CD6G41/-	DL35 4/9	EF94 5/-	ME140014/9	R12 6/9	U404 $7 / 6$	$\begin{array}{ll}\text { AF114 } & \text { d/ }\end{array}$	GET896 $4 / 6$	00812 8/-
${ }_{6}^{6 \mathrm{CL}} 4$	$8 /-$	10 LDS 376	50L6GT 6/-	DL72 15/-	EF95 4/6	MED4 8/3	R16 34/11	U709 4/6	AF115 3/-	GETS974/6	0 0-771 27/6
${ }_{6}^{6 C 5} 5$	$2 / 9$ $6 /-$	101. 10 P1110/-	52KU $14 / 6$	DLi75 80/-	EF97 10/	MELA $12 / 6$	R17 $17 / 6$	U801 18/-	AF'119 3/-	GET898 4/6	EM1036A
fic6	$3 / 9$	$\begin{array}{lll}10 \mathrm{Pl} \\ 10 & 13 & 12 / 6\end{array}$	$\begin{array}{lr}53 \mathrm{KU} & 14 / 6 \\ 72 & 6 / 6\end{array}$	$\begin{array}{ll}\text { DL92 } & 4 / 9 \\ \text { DL94 } & 5 / 6\end{array}$	EF98 ${ }^{\text {che }}$	MELT36 7/8	R18 9/6	U4020 8\%	AF124 7/6	GEX13 8/6	10/-
6 C 9	11/-	12A6 3/6	$\begin{array}{ll}72 & 6 / 6 \\ 77 & 8 / 6\end{array}$	$\begin{array}{ll}\text { DL94 } & \text { 5/6 } \\ \text { DL96 } & 7 /-\end{array}$	${ }^{\text {EFP183 }}$ 6/-	MU12/144-	R19 6/6	VP43 10/6	AF125 8/6	GEX35 4/6	ST1276 10/-
6CD6G	10/6	124 Cb 7/-	78 4/9	${ }^{\text {DLS10 }}$ 9/6	EF184 ${ }_{\text {EF84 }} \mathbf{6 1 / 5}$	$\begin{array}{ll}\text { MX40 } & 12 / 6 \\ \text { N78 } & 38 / 4\end{array}$	$\begin{array}{lr}\text { R20 } & 11 / 9 \\ \text { RK34 } & 7 / 6\end{array}$	VP130 $7 /-$	${ }^{\text {AFl }} 126$ 7/-	GEX36 10f-	8X1/6 8/6
6CH6	61-	12AD6 6/-	8542816	LDM70 6/-	EH90 6/6	N108 $27 / 4$	$\mathrm{SP4}^{\text {RR4 }}$ 9/-	$\begin{array}{ll}\text { VP23 } & 24 / 6 \\ \text { VR75 }\end{array}$	${ }_{\text {AF139 }}{ }^{\text {AF178 }}$ 18/6	GEX45 ${ }_{\text {GEX }}$ 866	MAT100 7/9
6 CW 4	121-	12AE6 $7 / 6$	90 AG 67/6	$\begin{array}{ll}\text { DM71 } & 7 / 6\end{array}$	E1532 3/6	N152 7/3	SP13C 12/6	VR105 5	AF178 AF179 13/6	GEX 66 15]-	MAT101 8/6
$6 \mathrm{CD3}$	776	$\begin{array}{ll}124 T 6 & 4 / 6 \\ 124 T 7\end{array}$	90AV 67/6	DW4/3508 9	EL33 121-	N308 176	SP42 12/6	Val50 6/-	AF180 9/6	M1 $2 / 10$	MAT120 7/9
6D6	$3 /-$	12AT7 3/9	90 CG 84/-	DW4/5008/.	EL34 9 9/6	N839 25/-	SP61 8/3	VTG1A 7-	AF181 14/-	M3 2/10	MAT121 8/6
6 E 5	$7 / 6$	12AU6 4/9	90CV 33/6	DY86 5/9	EL35 10/-	N359 7/8	TDD4 8/3	VT501 8/-	AFZ12 5/-	OA5 $5 / 6$	ZE12V7 1/9

We require for prompt cash settlement all types of above goods loose or boxed, but must be new

ELECTROLYTICS. Can types: $8 \times 8 \mathrm{mfd} / 500 \mathrm{v} 7 / 6 ; 8 \times 16 \mathrm{mfd} / 500 \mathrm{v} 7 / 9 ; 16 \mathrm{mfd} / 500 \mathrm{v} \mathbf{6} / \mathrm{F} ; 16 \times 16 \mathrm{mfd} / 500 \mathrm{v} \mathbf{8} / 9 ; 16 \times 32 \mathrm{mfd} / 450 \mathrm{v} 9 / 9 ; 32 \mathrm{mfd} / 500 \mathrm{v} 8 /-; 32 \times 32 \mathrm{mfd} / 450 \mathrm{v} 5 / 9 ; 50 \times 50 \mathrm{mfd} /$ $350 \mathrm{v} 5 / 6 ; 60 \times 250 \mathrm{mfd} / 275 \mathrm{v} 9 / 9 ; 50 \times 50 \mathrm{mfd} / 275 \mathrm{v} 8 / 6 ; 64 \times 100 \mathrm{mfd} / 450 \mathrm{v} 21 /=; 64 \times 120 \mathrm{mfd} / 350 \mathrm{v} 8 / 6 ; 100 \times 200 \mathrm{mfd} / 275 \mathrm{v} 8 / . ; 100 \times 200 \mathrm{mfd} / 350 \mathrm{v} 10 / 6 ; 100 \times 200 \times 60 \mathrm{mfd} / 300 \mathrm{v} 18 / 6 ; 100 \times 300 \times$

 $8 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / \cdot ; 10 \mathrm{mfd} / 50 \mathrm{v} 2 / 3 ; 16 \mathrm{mfd} / 450 \mathrm{v} 2 / 6 ; 16 \mathrm{mfd} / 500 \mathrm{v} 4 / 6 ; 16 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 25 \mathrm{mfd} / 25 \mathrm{v} 1 / 6 ; 25 \mathrm{mfd} / 50 \mathrm{v} 2 / 6 ; 32 \mathrm{mfd} / 350 \mathrm{v} 3 / \mathrm{m} ; 32 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 32 \times 32 \mathrm{mfd} ; 350 \mathrm{v} 4 / 9 ; 50 \mathrm{mfd} / 12 \mathrm{v}$ $1 / 6 ; 50 \mathrm{mfd} / 25 \mathrm{v} 4 / 6 ; 50 \mathrm{mfd} / 50 \mathrm{v} 1 / 9 ; 50 \mathrm{mfd} / 350 \mathrm{v} 6 / \mathrm{m} ; 64 \mathrm{mfd} / 450 \mathrm{v} 9 / 6 ; 100 \mathrm{~m} / \mathrm{d} / 12 \mathrm{v} 1 / 6 ; 100 \mathrm{mfd} / 25 \mathrm{v} 1 / 6 ; 100 \mathrm{mfd} / 50 \mathrm{v} 1 / 9 ; 100 \mathrm{mfd} / 450 \mathrm{v} 10 / 9 ; 250 \mathrm{mfd} / 25 \mathrm{v} 2 / \mathrm{s}$,

SAVE POSTAL COSTS. CASH AND CARRY CALLERS WELCOME!

[^2]
Fully guaranteed Individually packed VALVES

ALL valves

A2134 8/-	ECF82	$6 / 6$	KT 66	$18 / 6$

A213
AR 8

R8	8/-	ECF82	6/6	KT66	18
GCH35	11	KT67			

ARP3
ARP12
ARTP1
ATP4

ARP12	$8 / 6$	ECH42	ECE81
ERT			

ECH81 5/9 KT76 7/

UU5 7/-	X66 $7 / 6$	
UY21 10/6	X76M 7/-	
UY41 7\%	$\times 118$ 8/-	
UY85 5/8	X145 8/-	
V246A/1K	Y63 6/6	
190/-	Y65 4-	
VLS631 35/-	Z800U 29j-	
VP23 8/6	Z801U 25/-	
VP133 9/-	Z900T 12/-	
VR99 $7 / 6$	$1 \mathrm{B22}$ 30/-	
VR105/30	1G5GT 6/-	
6/-	1D8GT 6/-	
VR150/30	1G6GT 6/-	
6/-	1 L 4 2/6	
VU39 7/-	1LA6 6/-	
W118 8/-	11067	
W119 9/-	ILB4 4/-	
X 65 5/-	1R5 6/-	

DD4
DET20 $8 /-$
DET
$\begin{array}{ll}\text { DF91 } & 8 /- \\ 2 / 6\end{array}$
DF96
DK92
A品

DL63	$8 /-$	EL42	$11 /-$
DL92	$4 /-$	EL50	$8 /-$
DL93	$4 /-$	PL	
P			

DL98

	B/6	EL84	$9 / 9$	P/9
DL96	$8 /-$	EL85	$5 /-$	P
DLS10	12/-	EL91	$5 /-$	P

DLS10	$12 /-$	ELS1	$5 /-$
DY88	$6 /-$	EL95	$5 / 8$
DY87	$6 / 6$	EL360	$22 /-$
P			

DY87	$6 / 6$	E
E80F	$18 /-$	E
E88CC	$8 /-$	E

$\begin{array}{llll} & & \\ \text { E92CC } & 7 /- & \text { EM84 } & 7 /- \\ \text { E180CO } & 7 /- & \text { EM87 } & 11 /- \\ \text { E180CC } & \text { EN92 } & 5 /- \\ \text { ESO74 } & 80 /-\end{array}$ $\begin{array}{ll}\text { E182CC 18/* } \\ \text { E1148 } & 2 / 6\end{array}$
E1148

= EAT

$\frac{\text { EAA }}{\text { EAA }}$
$\begin{array}{ll}\text { EAF42 } & 9 / 8 \\ \text { EB91 } & 2 /- \\ \text { EBC }\end{array}$

EBC83	2/-	EZ4I
EZ80		
EBC41	日j-	EZ81

EBC
EBC
EBC
$\underset{\text { EBF' }}{\text { EBF }}$
EBE'8
NOC53
$\underset{\text { EC90 }}{\text { EC91 }}$

ECC33	12/-	G120/1B
ECC35	$15 / 6$	G12

RCC82	$4 / 8$	GZ32	$28 / 6$	QS9
ECC83	$5 / 6$	QZ34	$11 / 6$	QSI
ECC84	$6 /-$	H30	$3 / 6$	QS1
ECC85	$5 / 6$	HL23DD	QV	
ECC86	$8 /-$		$5 /-$	QQZ

EGC88	$7 /-$	HL41	$4 /-$
EGC91	$4 /-$	EVR2	$9 /-$
ECC189	$9 / 9$	KT8C	$32 / 6$
ECF80	$6 / 6$	KT63	$4 /-$

P. C. RADIO LTD.

170 GOLDHAWK RD., W. 12
(01) 7434445 erect. In canvas bag. $\mathbf{x}^{3.9 .6 .}$ P. \& P. 10/6. used, $\mathbf{5 6 . 1 0 . 0}$. Carriage 10/-.

Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m.

brand

PERSONAL CALLERS WELCOME

 stay plate and stay assemblies, pegs, reamer, hammer,
etc. Absolutely brand new and complete ready to

FIELD TELEPHONES TYPE "F", housed in portable wooden cases. Excellent for communication in- and
out-doors for up to 10 miles. For pair including batteries and $1 / 6$ th mile field cable on drum. Slightly
all overseas enquiries and orders

Colomor (Electronics) Ltd.

 170 GOLDHAWK ROAD, LONDON W12. Tel: 01-7430899
TRADER SERVICE SHEETS

5/- each plus postage
We can supply Trader Service Sheets for most makes and types of Radios, Tape Recorders and Televisions-Manuals for some.

Cheques and open P.O.s returned if sheets not available.

30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	Radio/TV

1969 List available at $2 /-$ plus postage	If list is required indicate with X

From
Address
enclose remittance of
(and a stamped addressed envelope) s.a.e. with enquiries piease MAIL ORDER ONLY (August PW)

PLEASE MENTION
cuit as it stands in Fig. 3.1, the line voltage should not exceed the maximum $V_{\text {EB }}$ for the transistors (usually about 5 V for silicon transistors).

The circuit is basically similar for $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors, the chief difference being that the reference rail will be of opposite polarity.

The time the flip-flop spends in its quasi-stable state may be determined approximately from $\mathrm{t} \simeq 0 \cdot 7 . \mathrm{C}_{1} \cdot \mathrm{R}_{1}$, and the derivation of this formula was given in Part Two of this series.

Since the speed-up capacitor is small, if an output is taken from A an improved rising edge may be achieved, this output 180° out of phase with output B.

The chief disadvantage of the circuit of Fig. 3.1 is that in high frequency operation, the stored base charge is not always removed sufficiently rapidly, and the leakage current through $\operatorname{Tr} 2$ collector may be too high if the circuit has to operate in high ambient temperatures. To reduce this current it is necessary to apply negative bias to $\operatorname{Tr} 2$ base. The simplest way this may be achieved is with a negative supply as well as the normal positive supply, the former being only a low voltage supply, usually -1.5 V (for $\mathrm{n}-\mathrm{p}-\mathrm{n}$ circuit, +1.5 V for $\mathrm{p}-\mathrm{n}-\mathrm{p}$).

Figure 3.2 shows this, where R4 and R5 act as a potential divider between $V_{\mathrm{CE}_{1}}$ sat and $-V_{\mathrm{bb}}$, and these may be so arranged that Tr2 base is always negatively biased. Operation of this circuit is just as previously described for Fig. 3.1, except that when Trl cuts off, the potential divider of R4 and R5 now sets a new base voltage for Tr 2 of approximately +0.7 V , set between the potentials of $+V_{\mathrm{cc}}$ and $-V_{\mathrm{bb}}$.

If a line voltage larger than the maximum reverse V_{EB} is to be used, the method previously described with the multivibrator may be employed. By placing diodes in the emitter line of the transistors, as shown in Fig. 3.3, the greater breakdown voltage of the diodes protects the emitter-bases. For low frequency operation it may not be necessary to employ a speed-up capacitor, and if this is done, diode D2 may be omitted since the potential divider formed by R4 and R5 ensures that the base only goes negative by the programmed amount, which should, of course, be less than the maximum reverse rating.

It is frequently not convenient to use two supply lines, and reverse base bias for cut off can be achieved with a single line in a number of ways. By lifting the emitters with diodes the situation is improved, and by lifting them further with say voltage-dependent resistors to just over 1V, potential dividers may be used down to the earth rail.

The voltage-dependent resistor, for those not familiar with it, may be regarded as a low current, low voltage reference diode.

Figure 3.4 shows an alternative method for lifting the emitters enough to allow a potential divider to be used. Resistor R7 is used by both transistors for their current supply, and if the saturation currents of both transistors are made the same, the current through R7 will remain substantially constant throughout the circuit's operation, since either one or the other of the transistors will draw this saturation current. V_{x} may thus be regarded as constant. Now the sense of the output at A may be wrong for some applications, or perhaps two outputs 180° apart might be required. In such a situation, a fast rising edge at output B is required, and this should be slightly faster than that at A if the diode coupling resistor method is employed, since C2 must have some effect on output A, however small.

Fig. 3.4: Modified monostable with single supply and both edges fast; for high voltage rail.
For those readers who may not have read the description of how the diode resistor coupling operates in multivibrator circuits, it will be explained again in the case of this monostable. Assume that initially Tr1 is in the ON state, Tr 2 in the OFF state. Now $V_{\mathrm{C}_{1}}=$ $V_{\mathrm{CE}_{1}} \mathrm{sat}+V_{\mathrm{F}}+V \mathrm{x}$, and $V_{\mathrm{B}_{2}} \simeq \frac{V_{\mathrm{C}_{1}} \cdot R_{6}}{R_{5}+} \frac{R_{6}}{R_{6}} V_{\mathrm{B}_{2}}$ is made $-v e$, but less than $-V_{E B}$ max. It might be

> DUE TO PRESSURE ON SPACE PART 5 OF'"AERIALS" HAS BEEN HELD OVER UNTIL NEXT MONTH
simpler here to consider some specific values, so if $+V_{\mathrm{cc}}=10 \mathrm{~V}$ and in the ON state, $V_{\mathrm{C}_{1}}=2.8 \mathrm{~V}$, with $V_{\mathrm{x}}=2 \mathrm{~V}$, we might make $V_{\mathrm{B} 2}=+1 \mathrm{~V}$, that is to say 1 V less positive than the emitter, or a 1 V reverse-bias on $\operatorname{Tr} 2$ emitter-base, holding $\operatorname{Tr} 2$ hard off. Now a negative input pulse through C 3 of say 2 V amplitude will turn $\operatorname{Tr} 1$ off, $\operatorname{Tr} 1$ collector rising to 10 V , carrying, via the potential divider, $\operatorname{Tr} 2$ base to 2.7 V , thus switching on Tr 2 . Before this switching operation, when Tr 1 base was at about 3.4 V , and diode D2 reverse biased, capacitor Cl will have charged to the potential $10-$ $3 \cdot 4=+6 \cdot 6 \mathrm{~V}$. When Tr 1 collector rises to 10 V bringing on $\mathrm{Tr} 2, \mathrm{Tr} 2$ collector falls to about $+2 \cdot 8 \mathrm{~V}$, thus taking Tr1 base down to $2.8-6.6 \mathrm{~V}=-3.8 \mathrm{~V}$.

C 1 then begins to discharge, and finally charge in the reverse polarity until $V_{\mathrm{B}_{1}}$ reaches about +3.4 V , switching on Tr1 again. Now Tr1 collector bottoms, and Tr 2 collector rises towards the 10 V rail. Without the diode D2, capacitor C1 would normally be connected directly to $\operatorname{Tr} 2$ collector, and initially has a potential of $3.4-2.8=0.6 \mathrm{~V}$ across it, and this voltage would slow the collector up in its rise towards the rail, since the capacitor must charge to the rail potential. Diode D2 acts as a gate, and with the anode at the capacitor potential, when the collector rises towards the +ve rail, the diode goes into reverse bias, blocking off the effect of C 1 to the collector, so allowing the collector to rise rapidly towards the rail, giving the improved rise time desired.
Diodes D1 and D2 serve to protect the transistors in cases where a line voltage higher than in the example taken is used. If the maximum reverse emitter-base bias is -5 V , in the example, it was seen that this was not exceeded. C2 is of course a speed-up capacitor.

The circuit of Fig. 3.5, instead of triggering from the negative edge of the trigger pulse, triggers from the positive edge, and is suitable for narrow pulse width inputs. A positive pulse input is passed by D1 and cuts on Tr 2 , which is normally held off in the stable state by the low potential of $V_{\mathrm{CE}_{1}}$ sat. C 1 will be fully charged, and take $\operatorname{Tr} 1$ base negative as $\operatorname{Tr} 2$ switches on, discharging through R1 until regenerative switching occurs and the circuit flops back to the stable state.

Fig. 3.5: Monostable for narrow trigger pulse.
The circuit of Fig. 3.6 might be triggered from a multivibrator set up as a pulse generator, and be also capable of external triggering. Tr 1 is ON in the stable state, and with only about 0.1 V at Tr 1 collector,

QUERY COUPON

This coupon is available until 4th August, 1969 and must accompany all queries in accordance with the rules of our Query Service. An s.a.e. must be included.

PRACTICAL WIRELESS, AUGUST 1969

Fig. 3.6: Pulse generator element.
with voltage to be dropped by both D6 and R6 before Tr 2 may switch on, it is of course in the OFF state. A negative input pulse switches Tr 1 off and causes $\operatorname{Tr} 2$ to go into conduction, however, in this modified circuit, while $\operatorname{Tr} 2$ collector drops fast towards earth potential, it does not go as low as $V_{\text {CE }} s a t$. This is prevented this time by diode D4 coming into forward conduction, the point V_{x} being held at a little over a volt by a voltage-dependent resistor. $V_{\mathrm{C}_{2}}$ is thus stopped just short of saturation, and in this way the base does not become flooded with minority carriers as it does when saturation occurs. The diode clamp allows the collector to go as low as possible but just prevents saturation. When this transistor is to be switched off, there is not such a large stored base charge to remove, and for high frequency operation, better switching times can be thus achieved.
Apart from this saturation prevention clamp on both transistor collectors the circuit operates in the normal manner with a diode resistor coupling to improve rise times to the optimum. As a matter of interest, if the v.d.r. is replaced by a higher voltage zener diode and diodes D3 and D4 reversed in polarity, they may be used to act as clamps in the reverse direction. In this mode they prevent the collectors rising to the line potential, restricting them to about 0.7 V greater than the zener voltage.
In the circuit of Fig. 3.6 adjustment of VR1 alters the length of the quasi-stable state.
Speed-up capacitors have been used in nearly all of the monostable circuits to be described, and the calculation of the precise value for a speed-up capacitor is quite involved, and is in any case subject to some error in practice. It is quite normal practice to select optimum values by trial and error in a particular circuit, the optimum capacitance being when the cleanest pulse is obtained at the output, i.e., fastest edges. This capacitor will usually be of the order of hundreds or thousands of pFs. As such, it does not present any particular danger in terms of reverse voltages to transistors' emitter-base as it will rapidly discharge on switching, causing only a small spike. Even momentary excess of voltage ratings is not to be recommended, however, for reliable service, particularly if high repetition rates are to be encountered.

In part four of this series, the family of bistable circuits will be discussed, and here it will be seen that the situation is somewhat complicated in the necessity of using a steering circuit for the input pulses. The Schmitt Trigger, complementary trigger, and a triggered ramp generator will also be discussed.

TREAT YOURSELF TO A WORLD TOUR . . . WITH HEATHKIT shortwave receivers

LOW COST 4 BAND MODEL GR-64
World-wide reception, shipping, aircraft, radio amateurs plus the popular medium broadcast band. It covers 1 MHz to 30 MHz plus 550 KHz to 1620 KHz AM, with sleek "low-boy" styling, operates on $115-250 \mathrm{~V} 50 \mathrm{~Hz}$ AC. Kit K/GR-64 £22.8.0. Carr. 9/-

DE LUXE 5 BAND MODEL GR-54
It covers 2 MHz to 30 MHz plus 550 KHz to 1550 KHz AM broadcast band and 150 KHz to 420 KHz aeronautical and radio navigation band. Receives AM/CW/SSB, $6 \times 4 \mathrm{in}$. PM speaker and sleek, "low-boy" styling. Operates on $115-230 \mathrm{~V} 50 \mathrm{~Hz}$ AC.
Kit K/GR-54 £44.16.0. Carr. 9/-

Free Catalogue!

See these models and many more in our 1969 catalogue. Models for Stereo/Hi-Fi, Industry, Education and the Home Workshop. Heathkit -the world's largest selling selection of electronic kits
 and equipment.

With Sinclair you can buy a total stereo assembly or choose units to add to or modify existing installations．Each of the products shown here is the result of intensive

 quality and value，while for individual radio listening，there is the very efficient Micromatic，Britain＇s smallest radio．

Z．12 12 watt high－fidelity

pre－amp

 are used．The ultra－linear Class B output is suitable for loudspeakers from 3 to 15 ohms（two 3－ ohm speakers may be used in parallel）．Output power－ 12 watts R．M．S．continuous sine wave（ 24 watts peak） 15 watts music power（ 30 watts peak）．Frequency response $15-50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ ． Input sensitivity 2 mV into 2 Kohms．Signal to noise ratio is better than 60 dB ．With power require－ ments from 6 to 20 V d．c．，the Z.12 can be run from a car battery or the PZ． 4 for example．Size $3 \times 1 \frac{3}{4} \times 1 \frac{1}{4} \mathrm{in}$ ．Supplied ready built，tested and guaranteed．
APPLICATIONS

Hi－fi system（two required for stereo）：car radio：P．A．systems： electric guitar：electronic organ：intercom system：record player： laboratory and industrial use，etc．

0.14 high－fidelity loudspeaker

SPECIFICATIONS

Compact high－fidelity loudspeaker of outstandingly good performance and value，it has smooth frequency response from 60 to $16,000 \mathrm{~Hz}$ ；loading capacity up to 14 watts R．M．S．Input impedance －4 ohms．With special drive unit in a sealed，seamless pressure chamber ensures excellent
 finish with aluminium bar trim．This is the speaker which has won so much praise from reviewers in the technical press．

APPLICATIONS

For good hi－fi audio systems：as hi－fi extension speaker（s）：for listening in conditions of restricted space．May be shelf or wall mounted or positioned to maximum advantage in any environment．

シャッ

ㄱN

 Stereo

 Stereo}
pre-amp and tone control
unit
SPECIFICATIONS
 boost/cut from +15 dB to -12 dB at 100 Hz . Stereo balance, volume and selector switch controls. Inputs-Mic. 2 mV into 50 Kohms , PU- 3 mV into 50 Kohms , Radio 20 mV into 20 Kohms. P.U. input corrected to within $\pm 1 \mathrm{~dB}$ on R.I.A.A. curve from 50 to 20 KHz . Front panel in brushed and
polished aluminium. Size $6 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \frac{1}{2} \mathrm{in}$. plus solid aluminium knobs. F4.10.8

power supply unit
 D $/ 4$
 Stadilisec

SPECF 17.5 V d.c. at 1.5 amps. Assured constant output under severest operating conditions. For a.c. mains $200 / 250 \mathrm{~V} 50 \mathrm{~Hz}$.

$49 / 8$

 Kit is fitted pack with Builtand tested with magnetic $50 / 6+1 / 1 d$ $44 / 6 \stackrel{+}{\text { P.T. Surcharge }}$ Mallory Mercury Cell RM. 675
(2 required). $2 / 9$ each.

 Should you not be completely satisfled with your purchase Britain's smallest radio. Measures only $14 / 5 \times 1{ }^{3} / 10 \times \frac{1}{2}$ in. medium waveband with bandspread on higher frequencies for good reception of Radio 1. A.G.C. counteracts fading from distant stations. The powerful output is fed to the high quality magnetic earpiece provided. Power comes from two selfwith aluminium front panel and dial.

SINCLAIR MICROMATIC

For use with two Z. 12 s and PZ.4, can also be used with other good
stereo amplifier systems.
SPECIFICATIONS APPLICATIONS

Foperwo SPECIAL

MINIATURE TRANSISTORISED
B.F.O. UNIT

This is a miniature transistorised B.F.O. unit, (tumable) that will enable your set to receive O.W. or S.s.B. reception. Compact. Single hole fixing, Govt. Communication Receivers and most Compx Govt. Communication Receivers and most Commer-
cial Types. Complete with fitting instructions. 49/6, post free

MINIATURE
MOVING COIL
SPEAKERS
1 Iin. dia. Only ${ }_{1 / 6}^{3 / 6}$ ea. p. \& $\&$ 1/6.Two
post free.

TELEPHONE BARGAIN The Bargain of the year. Standard type desk telephones complete
with dial and cord. Not new but ingood condition. Only 19/6 eaoh p.p. 51- Two for $39 / 6$ post free Four for 65/- post free. Limited stocks.

RUN YOUR 19 SET TX/RX FROM AC MAINS
We make a brand new unit ready to plug in, complete with full leads and connectors. Contained
in handsome steel cabinet of in handsome construction. Ideal for the amateur transmitter. Price only E6.10.0, carriage 10/Receiver version only 24.10 .0 . Carr. 10/-

19 SET

CONTROL BOXES
Brand new and boxed 10/-, p. p. 5/-. Two for $2 \% / 6$ post free.

, SURPLUSS 3 PORTABLE TRANS/REC'S KTYPEBCIITA

Latest surplus release. A compact VHF trans/rec. Con sists of Mike/Speaker amplifier, aerial, transmitter and receiver. Will give a good range depending on terrain. Funy transistorised. Works from standard internal bat and working. Regulations state these must not be op erated in UK, so please mention for "Dismantling or Export only,' when ordering. Must be worth $£ 40$ pe pair. Our price 5gns. each p.p. 5/-. Two for 10gns. post post free. Subject to stocks lasting. COD if required.

200 ONLY MINE DETECTORS/

METAL

 LOCATORSThese sclentific instruments will enable you to locate metal the Latest ground. Lully transis torised, transisalso be used for tracing cables pipes in walls tc. E4.19.6. $\begin{array}{ll}\text { etc. } & \text { e. } \\ \text { p. } \\ \text {. } 19 / 6 . ~\end{array}$

A brand 240 volts AC, $50 \mathrm{c} / \mathrm{s}$. Output fully gtabilised at 6 volts, 9 volts and $7 \cdot 5$ volts DC. Also 250300 DC at 100 ma , and $6 \& 12$ volts DC at 4 amps. Sturdy standard rack mounting cabinet. Price only £8.19.6, carr. 10/6. Few only.
 Listen to the thrills of Air- BANDPEC
craft, Pilots, and Airports crait, Pilots, and Airports Depts services. Gas and Electricity Depts. Ideal for receiving 2 metre amateurs. Gives super reception within the range of all transmissions. A fully transistorised receiver covering $97-150 \mathrm{mc} / \mathrm{a}$ VHF broadcast. Robust attractive fixished metal cabinet size approx. $7 \times 4 \times 4$ ins. Operates from as 9 V internal battery. Speaker or earphone output. Simple to use. Avail-
able from us at the pre-devaluation price of 88.19 .6 , able from us at the pre-devaluation price of 88.19 .6,
carriage and insurance $10 / 6$. CWO or COD.

SMOOTHING UNITS

CURE YOUR HUM PROBLEMS
Beautifully made pieces of equipment. 12 volte or 24 volts d.c. input gives a fully smoothed fully regulated d.c. output. Worth $£ 30$ each. Robust metal cabinet with provision for standby battery.
Brand new in maker's cartons. Price $55 /-\mathrm{p}$. \& p. 15/-.

TANK AERIALS

TANK AERIALS. Fully interlocking copper plated rods. One foot sections. Ideal for car or scooter aerials. Will make excellent di-poles. Six sections for only $4 / 6$, p. \& p. 1/6. 12 sections for $10 /-$.
(MGOB SbIENTIFIC LTiI
DEPT. PW. ALL ORDERS \& CALLERS TO: B8 BRIDGEND, LEEDS 1 .
38 welcome to our new showroom premises.

Same as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with
Battery $2 / 6$. P. \& P. $4 / 6$.

clency with this incredible De-luxe Telephone A mplit clency with this incredible De-luxe Telephone Ampli-
fler. Taike down long telephone messages or converse without holding the handset. A useful office aid. On/ off switch. Volume Control. Battery $2 / 6$ extra.P. \& P. 3/6. Full price refunded if not satisfled in 7 days. WEST LONDON DIREGT SUPPLIES (Y/W8)
169 KENSINGTON HIGH STREET, LONDON, W.
H.A.C.

SHORT-WAVE KITS
WORLD-WIDE RECEPTION

Famous for over 30 years for Short-Wave Equipment of quality, "F.A.C." were the Original suppliers of Short-Wave Receiver Kits for the amateur constructor. Over 10,000 satisfed
customers-including Techrical Colleges, Hos-customers-including Technical Colleges, Hos-
pitals, Public Schools, R.A.F., Army, Hams, etc.

IMPROVED 1969 RANGE
One-valve model "DX", complete kit-price 58/6 (Postage and packing $3 / 6$).
Customer writes:-"Definitely the best one-valve S.W. Kit available at any price. America and Australiz received clearly at good volume." This kit contains all genuine short-wave components, drilled chassis, valve accessories and full instruc-
tions. Ready to assemble, and of course. as all our products-fully guaranteed. Full range of other products-fuly guaranteed. Full $\mathrm{S} . \mathrm{W}$. kits still available, including the famous S.W. kits still available, including the famous
model " K " (recommended by radio chibs). All model "K" (recommended by radio chbs). All
orders despatched by return. (Mail order only.) orders despatched by return. (Mail order only.)
Send now for a descriptive catalogue, order form.
"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

NEW RANGE BBC 2 AERIALS

All U.H.F aerials now fitted with tilting bracket and 4 element grid reflectors, Loft Mounting Arrays, 7 element, $37 / 6$. ll element, $45 /-$ wail element, 52/6. 18
element, $60 /-$ Mounting with Cranked Arm, 7 element, $60 /=$. 11 element Cranked Arm, element, 60 olement, $88 / 6$. Mast Mounting with 2 in . clamp. 7 element. 42/6. 11 element, 55/-, 14 element, 62/- 18 element, $70 /$ - Chimney Mounting Arrays, Complete. 7 element, 72/6. 11 element, $80 /$ 14 element, 87/6. 18 element, 95/-. Complete Loss Cable, $1 / 6$ yd. U.H.F. Preamps from 75/-. State clearly channel number required on all orders.

ITV AERIALS
BBC (Band 1). Tele
scopic loft. 25/-, External
 ment loft array, $80 /=5$ element. $40 /$ - 7 element 50/-. Wall mounting. 3 element, $47 / 6$. 5 element. $\begin{array}{lll}\text { 52/6. Lombined } & \text { BBC/ } \\ \text { ITV: } 1+3,40 /-; & 1+5 \\ \text { 50/-; } 1+7, & 60 /-1 & \text { Wali }\end{array}$
 6y/6; Chimney $1+3,67 / 6 ;$
$1+5 ; 75 /$.
VHF VHF
amps. $75 / \mathrm{m}$.
 $\begin{array}{lll}\text { AEREALS } & 1+3+9, & 70 /- \\ 1+5+14,90 /-1+7+14, & 100 / \text {. Loft mounting }\end{array}$ only. Special leaflet available. "H". 32/6. F.M. (Band 2). Loft S/D, $15 /$-. "H"' $32 / 6$. Co-ax. cable 8 d. Yd. Co-ax. plugs, $1 / 4$. 1376. C.W.O. or C.O.D. P, \& P. 6/4. Send 6d 13 stamps for illustrated lists.
Callers welcomed - open all daty Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884
17in.-f11.10.0
19in. SLIMLINE
SOBELL-24 Gns.
TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE ILLUSTRATED
LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS SIZES AND PRICES OEMONSTRATIONS DAIIY
 TWO-YEAR GUARANTEED REGUNNED TUBES 70° and 90° 14in. $-69 / 6$, $17 \mathrm{in} .-89 / 6$, 21 in . 99/6. $110^{\circ} 17 \mathrm{in}$, 19 in . and 21 in .-99/6. 23° (not bonded)-119/6. Exchanged bowls. Carr. $10 / 6$.

COCKTAIL/STEREOGRAM CABINET 19 gns.
Polished waln ut veneer with elegant glass fronted cocktall compartment, padded. Position for two 101n. elliptical speakers. Record storage space. Height $35 \frac{1}{4} i n$. , width $52 \frac{3}{4}$ in., depth $14 \frac{4}{2} \mathrm{in}$. Legs 1 gn . extra.
 Speakers 6/6: $2^{\prime \prime}-75 \Omega$. 21'1 -35Ω. P. \& P. 2/6. Acos Mics. 35/- Standard : Stick Mic. 2 gns. P. \& P. 3/6. Asstd. Condensers: 10/- for 50. P. \& P. 7/6. Asstd. Resistors: 10/for 50. P. \& P, 4/6. Assta. Controls: 10/- for 25. P. \& P. 7/6. Transistors: Mullard matched output k/t $9 /=$ OC81D-2 OC81's. P. \& P. FREE
Ferrite Rods $3 / 6: 6^{\prime \prime}, 8^{\prime \prime} \times \frac{3}{6}^{\prime \prime}$ complete with LW/MW Coils, P. \& P. FREE.
TRANSISTOR CASES 19/6. Cloth covered, many colours. Size $9 \frac{1}{2}{ }^{\prime \prime} \times 6 \frac{4}{4}{ }^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime}$ P, \& P, 4/6. Similar cases in plastic 7/6.
RECORD PLAYER CABINET $\$ 49 / 6$. Cloth covered, size $16 \frac{3^{\prime \prime}}{} \times 14 \frac{1}{2}^{\prime \prime} \times 8^{\prime \prime}$. Takes any modern autochanger, P. \& P. 7/6.
SINGLE PLAYER CABINETS 19/6. P. \& P. 7/6.
STRIP LIGHT TUBES $3 / 9$ each. $11^{\prime \prime}$ (284 mm .) 230/240 volts, 30 watts. Ideal for cocktail cabinets, illuminating pictures, diffused lighting etc. 6 for $£ 1$. P. \& P. free.

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E12
Tel. 01-478 6001/2/3

BOOKS BY G. A. BRIGGS

OVER A QUARTER OF A MILLION COPIES SOLD SINCE 1948

AERIAL HANDBDOK (second edition)

176 pages, 144 illustrations.
Price (semi-stiff cover) 15/- (16/6 post free). Cloth bound $\quad 22 / 6$ (24/-post free).

CABINET HANDBOOK

112 pages, 90 illustrations.
Price 7/6 (8/6 post free). Semi-stiff cover. Cloth bound 15/- (16/6 post free).

AUDIO BIOGRAPHIES

344 pages, 64 contributions from pioneers and leaders in Audio. Cloth bound.
Price 25/- (27/-post free).

MUSICAL INSTRUMENTS AND AUDIO

240 pages, 212 illustrations. Cloth bound. Price 32/6 (34/6 post free).

LOUDSPEAKERS
Fifth edition- 336 pages, 230 illustrations. Cloth bound.
Price 30/- ($32 / 6$ post free).

A to Z in AUDIO

224 pages, 160 illustrations. Cloth bound.
Price 15/6 (17/- post free).

MORE ABOUT LOUDSPEAKERS
136 pages, 112 illustrations.
Price 8/6 ($9 / 6$ post free). Semi-stiff cover.
PIANOS, PIANISTS AND SONICS
190 pages, 102 illustrations. Cloth bound.
Price 18/6 (20/- post free).
AUDIO AND ACOUSTICS
168 pages, 140 illustrations.
Price 12/6 ($13 / 6$ post free). Semi-stiff cover.

ABOUT YOUR HEARING

132 pages, 112 illustrations.
Price (semi-stiff cover) 15/6 (16/6 post free).
Cloth bound 22/6 (24/- post free).

LETTERS FRDM ABROAD

Feb., 1969

Extract of letter from Mr. Wendell C. Ward of Texas, U.S.A. September 1968.
I have recently read through Mr. Briggs' book " A to Z in Audio" and found it most interesting. It's refreshing to find a man who can write about what could be a dry subject with enthusiasm and humor.
Extract of letter from Mr. R. G. Bernaldez of Madrid, Spain.
Many thanks for the copy of "About Your Hearing" that you were so kind to send to me. I have found your book to be really interesting. As always, it is puzzling the way you manage to make any subject easy to read, in that delightful style of your own.
Please send orders and enquiries to:

RANK WHARFEDALE BOOK DEPT. B.W.S 13 WELLS ROAD, ILKLEY, YORKSHIRE

Telephone: /LKLEY 4246

Published by
RANK WHARFED.ALE LTD., IDLE, BRADFORD, YORKSHIRE

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS -2 or 4 TRACK

Chassis $12 \frac{1}{2} \times 5 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}$. high Front panel alum and black$12 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}, 200-250$ A.C. Mains Trans. Off/On-Tone; Vol./Mic.; Vol./Gram.; Mic. Input; Gram. Input; Monitor; Valves 6BR7, ECC83, EM84, EL84 and Rect. 2 Track £10.10.0: 4 Track $\$ 12$ (12/6 p. \& p.). Ready for bolt ing direct to Magnavox deck.

STEREO AMPLIFIER type HV-

2×3 Watts

Fully built. On off, sep. vol. and tone each channel. $12 \times 4{ }^{3} \times 6 \mathrm{in}$. high. EZ80, $2 \times$ ECL 86 ; ior 3 ohm and base plate; suitable for crystal cart., tuner etc. 85.17.6 (8/- p. \& p.). Available as kit with full iustructions at $£ 4.17 .6$ ($8 / 4$ p. \& p.).

STEREO AMPLIFIER type RC-

2×3 Watts

Fully built. $2 \times$ UCL82, metal rect; ganged vol. and tone cont; on off, balance. II $x 3 \frac{1}{2} \times 4 i n$. high brackets. For 3 -ohm speakers. $£ 6$ ($8 / \mathrm{p}$ p. \& p.).

NUPER SIX KIT
 Mk. 2

MW and LW fully tunable. Wooden cabinet $9 \frac{1}{2} \times 8 \frac{7}{3} \times 3$ in. carrying handle, two tone cabinet; 4 in. speaker; 6 tran istors; full book of instructions. $2 / 6$ (free with kit) All Price of parts $\mathbf{2 4 . 5 . 0}$ ($6 /-\mathrm{p} . \& \mathrm{p}$.).

We can acept H.P. orders for our Stereo Radiogram Chassis previously advertised and still avalable at 619.19.0. Terms $\& 7$ deposit and 6 monthly payments of $47 / 6$ by Banker's Order only

GLADSTONE RADIO 66 ELMS ROAD, ALDERSHOT, Hants.

FULL GUARANTEE.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Seryo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE BROCHURE to
\qquad
ADDRESS ...

RESISTORS
 Mixed Parcel 200 fixed $20 /-$, p. \& p. 2/6 Mixed Parcel 30 variable 20/-, p. \& p. 2/6 CHASSIS UNITS

13 valves. ECC82(5), EB91(6), EF91 (2). 60 resistors, capacitors etc Valve cans and bases. Multicon plugs. 30/-, p. \& p. 6/
Flexible Metal Tubing. Galvanised $\frac{3}{B} \mathrm{in}$. int. diam. 35/- 100 ft . p. \& p. 7/6.

Field Telephones Type F. 32/6, p. \& p, 7/6.
Mixer Units Type 18. HF, MF, LF, Valve $882.10 /-$, p. \& p. 2/6. TRANSFORMERS
SSTR894. PRI. 220-230-250v. SEC. 6-3v(2a), 300-350-390v (35 ma), $80-90-100 \mathrm{v}(10 \mathrm{ma}) .30 /-$, p. \& p. $5 /-$
SSTR073. PRI. 220-230v. SEC. $35 v(0.5 a), 6 \cdot 3 v(2 a), 225-0-225 v$ (27ma). Oil filled. 25/-, p. \& p. 5/-
SSTR009. PRI. 230v. SEC $50 \mathrm{v}(50 \mathrm{ma})$. $4 \mathrm{v}(1 \mathrm{a}), 6 \cdot 3 \mathrm{v}(8 \mathrm{a}) .25 /-$ p. $\&$ p. 5/-

Two Core Cable rubber covered, $1 /-$ per yard inc. p. \& p.

STATUS SUPPLIES

Status House, Wilkinson Avenue, Blackpool

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12 v) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-.	DULCI HI-FI UNITS The Dulci range of tuners and amplifiers offer exceptional quality at a sensible price. Amplifiers : 207 and 207M. Tuners : FMT7 and FMT7s. SEND NOW FOR FULL DETAILS	
Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers' carton $49 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP 91-3 stereo compatible cartridges, new in sealed manufacturers' cartons $22 / 6+2 / 6 \mathrm{p} / \mathrm{p}$.	TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus. Frequency response 20-20,000 c/s output. 7 mv tracking pressure 2 grammes ± 0.5 grm. Fully guaranteed. Price 85/- p/p free.	The greatest HI-FI Budget system to-day-
BASF TAPE 25 \% OFF $5^{\prime \prime}$ 600ft. 14/- 900ft. 19/- 1200ft. 30/- $5 \frac{3}{4}{ }^{\prime \prime} 900 \mathrm{ft}$. 19/- 1200ft. 24/- 1800ft. 39/- $7^{\prime \prime}$ 1200ft. 24/- 1800ft. 35/- 2400ft. 57/- P. \& P. 2/-per reel.-over $£ 5$ FREE		-look at these great features-then compare. Teleton F2000 tuner amp. AMFM with multiplex decoder and A.F.C. $-2 \times 5 \mathrm{w}$ channels R.M.S. Bass Volume Treble Balance controls, a truly outstanding unit $\begin{array}{ccc}\mathbf{f} & \mathbf{s} & \mathbf{d} \\ 43 & 1 & 0\end{array}$ Garrard SP 25 Mk II Transcription deck
HI-FI SPEAKER K12TC-12in. 12 watt Offers an exceptionally smooth and extended response, with very low level of distortion from the specially designed twln diaphragms. Frequency Response: $\mathbf{3 0 - 1 6 , 0 0 0 H z}$. Impedance: $\mathbf{1 5 - 1 6 0 H m}$. oUR Special price PLUS P. \& P. 6/6 97/6	SPEAKER ENCLOSURES Type: INFINITE BAFFLE Model 8: $8^{\prime \prime}$ plus $3^{\prime \prime}$ tweeter Model 138: $\mathbf{1 3}^{\prime \prime} \times 8^{\prime \prime}$ EMI Both $£ 4.19 .6$ each Model 1012: $10^{\prime \prime}$ or 12" plus $4^{\prime \prime}$ tweeter f7.19.6 All enclosures are in olled teak, fully built. Please add 8/- p. \& p. on each enclosure	Teleton SA 1003 matching speaker enclosures Sonotone 9 TA Diamond Cartridge Plinth and Perspex cover Exclusively offered by WALDON at the remarkably low price of $\mathbf{6 3}$ gns.
Selhurst Stalwart. 12in. round, 15 watt rating, 12,000 lines gauss, 15 ohms, response $45-13,000 \mathrm{c} / \mathrm{s}$. Bass resonance $40-50 \mathrm{c} / \mathrm{s}$, solld aluminium chassis. Our price £5.9.6. $p / p 6 / 6$	Bargain - Speakers, Hi-Fi - The Baker Selhurst Guitar Group 25, 12in. round, 25 watt rating, 12,000 gauss, 150 hms , response $30-10,000$ c / s, solid aluminium chassis, heavy duty cone. Our price £5.9.6. $p / p 6 / 6$	

WALDON ELECTRONICS 707 Blackburn Road, Bolton, Lancs. Bolton 54280.

PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassis Boards, Chemicals, Etching Manual, Intra-Red Phototransistor, Latching Relay, 2 Transistors, Condensers, Resistors, Gain Control transistor, Latching Relay, ${ }^{2}$ Transistors, Iondensers, Mesistors, , Gain Coniro, Steady-Light Photo-Switch/Counter/Burglar Alarm, ete. (Project No. 1) which can be modified for modulated-light operation.

PHOTOELECTRIC KIT

Postage and Pack. 2/6 (UK) Commonwealth: surface mail 3/6 ATR MAIL £1.0.0 Australia, New Zealañ" S. Africa, Canada and U.s.A Also Essential Data Circuits and Plang for Bullding 10 Advanced Designs

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: 1 Invisible-Beam Projector and Everything needed (except plywood) for building: 1 Invisible-Beam Projector and
1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarms, 1 Pbotocell Reoceiver (as, ilte. CONTENTS: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Infra-red Alter, projector lamp holder, building plans, performance data, etc. Price 19/6. Postage and Pack. 1/6 (U K.). Commonwealth: Surface Mail 2/-; Air Mail 8/-
LONG RANGE INVISIBLE BEAM OPTICAL KIT
CONTENTS: As above. Twice the range of standard kit. targer Lenses, Filter, etc. Price 29/6. Postage and Pack. 1/6 (U.K.).Commonwealth: Surface Mail 2/6; Air Mail 10/-

JUNIOR PHOTOELECTRIC KIT

Versatile Invisible-beam, Relay-less, Steady-light Photo-Switeh, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassis, Plastic Case, Resistors, Screws, etc. Full Size Plans, Instructions, Data Sheet " 10 Advanced Photoelectric Designs
Price 19/6. Postage andi Pack. 1/6 (U.K.). Commonwealth $2 /$-; Air Mail 4/-
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniature invisible beam projector and photocell receiver for use with Junior Photoelectric Eit.
Price 10/6. Post and Pack. 1/6 (U.K.). Commonwealth: Surface Mail 2/-; Air Mail 4/-.

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full aetails, a brief description and Photographs of all Kits and all 52 Radio, Electronic and Photoelectric Projects A ssembled.

ELEGTROVALUE

eVErything brand new and to spec. no surplus SPECIALIST SUPPLIERS OF TRANSISTORS IN TYPES TO SUIT ALMOST ALL APPLICATIONS

- COMPETITIVE PRICES
- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE PACKED WITH UP TO THE MINUTE ITEMS AND INVALUABLE INFORMATION. Send $\mathbf{1 / 6}$ for your copy now.
- DISCOUNTS-10\% on orders for components for $£ 3$ or more. 15% on orders for components for $£ \mathbf{f 1 0}$ or more.
- POSTAGE on order for $£ 1$, add 1/-. FREE on orders for $£ 1$ or over. Overseas orders welcome-Carriage charged at cost.
ELECTROVALUE
(Dept. PW), 32a ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY. Tel: Egham 5533 (STD 0784-3)

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. 0 d . per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank. Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C. 4 for insertion in the next available issue.

FOR SALE

$\mathfrak{£ 6 , 0 0 0}$ IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools, materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills, Stockport SK 12 4HL.

MORSE $\begin{gathered}\text { MADE } \\ \text { EASY } \\ \text { !! }\end{gathered}$

FAOT NOT FIOTION, If you start RIGHT yon will be reading amateur and commercial Morse within a month. (Normal progress to be expected.)
Using scientifically prepared 3-speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's easy as learning a tune. 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring, s.t.d. 01-660 2896 send 8d stamp for explanstory booklet to:
G3CHS (BOX 11), 45 GREEN LANE, PURLEX, SURREY

NUT DRIVERS in 22 sizes. B.A., A/F. \& M.M. Send S.A.E. for lists to
Bargain Spot, 268 London Road, Croydon.
CODAR CR70A, PR30X RQ10, Speaker. $£ 32$. 24, Leigh Sinton Road, Malvern, Worcs.

SURPLUS to requirements various small Electronic Components. S.A.E. for list. Box No 89

CONSIDERABLE quantity of short wave transmission and receiving gear for sale owing to death of owner. Impossible to describe full range. A visit to the house will be necessary. This is in Exeter. Also very large quantity of spares of many kinds. Please write in first instance to Box 88 .

EDUCATIONAL

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C.1.

CITY \& GUILDS (electrical, etc.) on 'Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV., automation, etc., send for 132 -page Handbook-FREE. B.T.E.T. (Dept. 168K), Aldermaston Court, Aldermaston, Berks.

EDUCATIONAL (continued)

E
 RADIO AND TELEVISION SERVICING RADAR THEORY AND MAINTENANCE TELECOMMUNICATIONS
 This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training.
 Write for details to:
 The Secretary, London Electronics College, 20 Penywern Road,
 Earls Court, London, S.W.5.
 Tel. 01-373-8721

BOOKS \& PUBLICATIONS

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career.

ICS, DEPT. 541, INTERTEXT HDUSE, STEWARTS RDAD, LONDDN, SW8

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

WANTED

DAMAGED AVO METERS, Models 7 \& 8 , any quantity. Send for packing instructions. HUGGETT'S LTD., $2 / 4$ Pawsons Road, West Croydon.
WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.
WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0186.

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WANTED NEW
 VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7
SURPLUS HANDBOOKS19 set Circuit and Notes
6/6 p/p 6d.
1155 set Circuit and NotesH.R.O. Technical Instructions38 set Technical Instructions46 set Working Instructions88 set Technlcal InstructionsBC. $22!$ Circult and NotesWavemeter Class D Tech. Instr.18 set Circuit and NotesBC. 1000 (31 set) Clircult and NotesCR.100/B. 28 Circuit and NotesR. 107 Circuit and NotesAR.88D Instruction Manua6/6 p/p 6d.
5/6 $\mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
5/6 p/p 8 d .
5/6 p/p 8d.
$7 /-\mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
5/6 p/p 8 d .5/6 $\mathrm{p} / \mathrm{p} 8 \mathrm{~d}$.5/6 p/p 6 d .$5 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$5/6 $\mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.10/-p/p 9d.
7/-p/p 8 d .
62 set Circuit and Notes 18/-p/p 6d.
Circuit Dlagram 5/- each post free, R.1116/AR.1224/A, R.1355, R.F. 24, 25 and 26, A.1134,T.1154, CR.300, BC.312, BC.342, BC. $348 \mathrm{~J}, \mathrm{BC} .348$(E.M.P.), BC.624, 22 set.
52 set Sender and Recelver circuits $7 / 6$ post free
Reslstor colour code indicator $2 / 6 \mathrm{p} / \mathrm{p} \mathbf{6 d}$. S.A.E. with all enquiries please.
Postage rates apply to U.K. only.
Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
DEPT. PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

This useful Handbook gives detailed information and circuit diagrams for British and American Government Surplus Receivers, Transmitters and Test Equipment etc; also contained are some sugn gested modification details and improvements for the equipment, incorporated in this revised edition Is a surplus/commerclal cross referenced valve and transistor guide. This book Is invaluable to radio enthusiasts, radio clubs, universities and laboratories. The latest edition priced at 45/-, per volume plus $5 /-, p$ \& p is obtalnable only from us at

Dept. P.W., 24 Stansfield Chambers, Gt. George Street, Leeds 1.
s.a.e. with all enquiries, please. Extra postage for foreign orders. Circuits now available individually for most surplus equipment on request.

MISCELLANEOUS

ETCHED PRINTED CIRCUIT BOARD KITS. Full instructions $19 / 6$ C.W.O. 'Circui Kitch', Full instructions 12 Cambridge Road, St. Albans, Herts.
BUILD IT in a DEWBOX quality cabinet. 2in. $x 2 \frac{1}{\text { in in. }} x$ any length. D.E.W. Ltd., Ringwood Road, FERNDOWN, Dorset. S.A.E. for leaffet. Write now-Right now.

UFO DETECTOR CIRCUITS, data. 10 s . (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.
ELECTRONIC SOUND and musical devices required for exploitation. Adequate finance available. Projects developed to pre-production stage required. Royalty payments guaranteed. Box 87 MUSICAL MIRACLES. Send S.A.E. for pedal unit, self-contained with unique effects, kits for waa-waa pedals. Also new $50 \mu A$ meters, 25/- post paid. HURRY. D.E.W. Ltd., 254 Ringwood Road Ferndown, Dorset.
YOUR CALL SIGN ENGRAVED. White Letters Black Plate $6 \times 1 \frac{1}{2} \mathrm{in}$. $5 / 6.2 \times \frac{1}{2}$ in. Badge Pin, 4/-. Post Free. C.W.O. Workshops for Disabled, Northern Road, Cosham, PortsDisabled, Northe
mouth. PO6 3EP.

THE NEW

ELECTRONIC MUSIC FOR YOU
Then how about making yourself an electric organ? Constructional data available
full circuits, drawings and notes! It has $\frac{1}{5}$ octaves, 2 drawings and notes! It has 5 octaves, 2 manuals and pedals with 24
stops-uses 41 valves. With its variable attack you can play classics and Swing. Write NoW for free Ieaflet and further details to
Darington, Durham. ${ }^{20}$ Mad 4 d . stamp.

6 OR 12 VOLT FLUORESCENT LIGHTS

12 ins. 8 Watt tube ample light for caravan tentetc. Fully transistorised, low battery drain Unbeatable at f2.19.6
or in kit form 50/-
SALOP ELECTRONICS
23 Wyle Cop, Shrewsbury. S.A.E. for lists.

A Two-way Intercom Set. Ideal for all 2 -way communication, indoor/outdoor use, home offoe use. They will work up to great distances. No G.P.O. licence required Made to high standard Government specifications. As used in Army Communications. The complete set ready to use, nothing more to buy. Batteries supplied. Bargain offer to Practical Wireless readers. The set $£ 2.10 .0$. Post and Packing 10/-

ept. PW

4) H OBE SGIETTIFIR LID]

3B BRIDGE END,
MEADOW LANE, LEEDS 1.

AERIALS

BAKER and BAINES
 for Television and F.M. Aerials

Examples of prices: F.M. dipole 21/-, H 38/-. BBC dipole $30 /-$. $\times 38 /-$, $\mathrm{H} 42 /-$, 3 ele $89 /$-. ITA 3 ele 26/-, 5 ele $34 /$-, 8 ele $47 / 6,11$ ele $57 / 6$, double $8112 /=$, double 11 140/m. Combined BBC/ITA $1+545 /=$, $\mathrm{H}+5$ 69/-, $\mathrm{X}+5 \mathbf{7 5 / - .}$ BBC2 8 ele 29/-, 14 ele 37/-, 18 ele $54 /$-, 22 ele $63 /$, double 22 ele $142 /$. Loft spectal BBC/ITA $1+5$ with pole and brackets $37 /$. Prices include elamps and postage. CWO. State channel please. Poles, lashings, coax, diplexers, etc. avallable-SAE please.
11 Dale Crescent, New Tupton, Chesterfield

ELECTRICAL.

240 ELECTRICITY ANYWHERE

EEST EVER 200/240 VOLT "MAINS" SUPPLY FROM 12 VOLT CAR BAT'TERY Exelusive World Scoop Purchase. The fabulous Mh. 2D American Heavy Duty Dynamotor Unit with a Massive 220 watt output and giving the most Briliant $200 / 240$ volt performance of all time. Marvellous for Television, Drills, Power Tools Mains Lighting, Ac Fluorescent Lighting and all $200 / 240$ volt Universal AC/DC mains equipment Made at tremendous cost for U.S.A. Govt. by Delco-Remy, This magnificent machine is unobtain able elgewhere.
Brand New and Fully Tested, only E4.18.6, plus
$10 / 6$ postage. C. delighted. Please send pleasure- Money back if not details.
Dept. PW STANFORD ELECTRONICS, Rear Derby
Road, North Promenade, Blackpool, Lancashire.

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List $1 / 6$. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 1 b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS (1925-1969) for TELE VISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., by return post, with free fault-finding guide. Prices from $1 /-$. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

SERVICE SHEETS (75,000) $5 /$ each: please add loose 4d. stamp; callers welcome; always Oakenshaw, Bradford.

LARGE SUPPLIER OF SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS CAR RADIOS)
Only $5 /-$ each, plus large S.A.E. (Uncrossed P.O.'s please, returned if service sheets not available.)

C. CARANNA
 71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.
Free TV fault tracing chart or TV list on request.
Mail order only.

METAL WORK

METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $\frac{1}{1-20}$ watt, 12/6 Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W.13.
SIGNAL INJECTOR. Transistorised square wave generator probe, British Made, only 19/6 P \& P $1 / 6$ S A E for details and lists WILSIC ELECTRONICS LTD., 6 Copley Road, Doncaster, Yorks.
"BRAND NEW ELECTROLYTICS, 15 Volt, $\cdot 5,1,2,5,6,8,10,15,20,30,40,50,100,200$ mfds., $7 / 6$ per dozen, postage $1 /-. "$ The C.R. Supply Co., 127 Chesterfield Rd., Sheffield S8.

BRAND NEW SEMICONDUCTORS

		2N2220 51			BC	
4007	4/6				BC	
021		2 N 2222				
025		2N2369A5/6	40250	17		
S120	$2 / 6$	2N2646 11/6	4036			
130	2		40362			
IS131	$2 / 6$	-	ACl0		BCY	
18132	216		ACl26		BCY72	
19			ACl2			
BYZ10			AC17		BFI	
11			AC		BF'16	
YZ1		2N2926			BFl	
OA5		Green 316	ACY17		BF'18	
A79		Fello	ACY18		BF	
A 81		Orange 31	ACY19		BH	
A85		Red $\quad 2 / 9$	ACY20		FX	
A91	1/6	Brown 216	ACY21		FY'	
200		2 N 3053816	ACY22		BFY	
212		2N3054 12/6	AD140		BFY	
2N696		2N3055 15/-	AD14		BSX1	
N697		2N3391 $7 / 6$	AD161		SX	
706	$2 / 6$	2N3391A 6 I-	AF114		SY2	
706A		2N3393 6/	AF116		38Y2	
1137		2N3402 81	AF117		BSY2	
2N1132	$9 / 8$	2N3403	AF124			
02	4/6	2N3404 12/6	AF12		BSY	
303	4/8	2N3405 12/6	AF127			
1304	5/6	2N3708 4/-	F18			
1305	$5 / 6$	2N3703 4/6	18			
1306	6/6	2N3704 5/6	F23			
N1307	6/6	2N3705 $4 / 6$	FZ1		OC4	
N1308	81	2N3706 4/	8)2		OC45	
N1309		2N3707	ASY2		C71	
2N1613	6/	2N3708	ASZ21	$7 / 6$	O 7	
2N1711		2N3709	${ }^{3 C 10}$		0 C 75	
	8	2N3710	BC10		$0 \mathrm{C81}$	
	17/6	2N	BC10		83	
2N2148	$12 / 6$		BC113	$6 / 6$	0	
1	17/6	2N3820 20	BC147		OCl40	
2N2217	81-	2N3823 21/6	BC1		OC202	
N2218	8/	2N4058 6/6	149	,	ORP12	
and 6 d . stamp for complete list. Over 1,000 types Seminductors in stock. Capacitors, Resistors and Pots also						

A. MARSHALL \& SON (London) LTD.
28 Cricklewood Broadway, London, N.W. 2
01-452 0161/3

TELEVISION I.F. STRIPS (less valves)

From BBC, 2 converters ideal fof spares, contains smoothing capacitor, dropper resistors, 7 valve holders, I.F. transformers, coll formers, eapacitors, resistors, ditodes, tag stripa, chokes, etc., etc., on chassis 1lin. \times
$3 \frac{1}{2}$ in., no information or circuit. Brand new in boxes, $14 / 6$. $3 \frac{1}{2} \mathrm{in}$, no information or circ
MAINS TRANSFORMERS
250 V input, outputs 10 V at $500 \mathrm{~mA}, 24 \mathrm{~V}$ at 100 mA , tgpe) ideal for transistor power supply, 10/- post paid. 250 V input, output 22 V at $1 \frac{1}{2} \mathrm{~A}$, size 2 n . $\times 2 \mathrm{in} . \times 2 \frac{2}{2}$ in., 11/-post paid.
MIXED bag of silver mica and ceramic capacitors, approx. $150,10 /$-per bags.
ERIE Thyristors for drill
ERIE Thyristors for drill speed controls 400 p.i.v. at 5A, 12/6.
HUNTS $0 \cdot 1 \mathrm{mF}, 350 \mathrm{vw}$ paper capacitors, P.C. type, upright mounting, $2 / 6$ doz., $15 /$-per 100 , post paid per 100, 500 pF , only ceramic capacitors, P.C. type, $3 \cdot 3 \mathrm{pF}$ and MOLEARD CAPACITORS $50+50+50 \mathrm{mF}, 350 \mathrm{vw}, 5 /-$ TRANSISTOR ELECTROLYTICS 2 mF 6vw, 4 mF 64vw, $20 \mathrm{mF} 6 \mathrm{Fw}, 50 \mathrm{mF} 6 \mathrm{Fw}, 100 \mathrm{mF}$ 6\%w bd. each. 100 mF . $25 \mathrm{vw}, 1 /-400 \mathrm{mF} 15 \mathrm{vw}, 500 \mathrm{mF} 9 \mathrm{vw}, 9 \mathrm{~d} .1,000 \mathrm{mF} 50 \mathrm{FW}$ SPAEAKER
SPEAKER COVERING 7in. x 4in. perforated flexible plastic. Simulated chrome on one side, $1 / 6$ each $12 /-\mathrm{doz}$ HUNTS 2,500mfd. 50 vw , brand new, $6 / 6$.
SOOTw 41 per capacitors 80 pe size only $\frac{1}{2}$ in. $\times 4 i n$
UNMARKED EX633 silicon diodes. 300 p.i.v. at $\frac{3}{4}$ amp Tested and guargnteed, 9 d . each, $6 /-10 z$.
GT458 equiv. to 0C71, 0C45, etc. $1 / 3$ each, 12/- doz. Manufacturers marked, not rejects.
P.C. BOARDS 2 inin. $\times 3$ inn. Ideai for mock-pps. Ready drilled and etched, $2 / 6$ doz.
$0.47 \mathrm{mF}, 30 \mathrm{vw}$. P.C. dise ceramics, $3 /$ - doz., 81 per 100. MAIL ORDER ONLY SAE FOR LISTS
Postal charges: up to $21+1 / 6$; $£ 1-22+2 /-$; $£ 2-£ 5+3 / 6$;
A. J. H. ELECTRONICS

58 Waverley Road, The Kent, Rugby, Warwicks.

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS 2 in. $\times 4$ in, packed with semiconductors and top quality resistors, capacitors, diodes, etc. Our price, 10 boards, $10 /-$, P. \& P. $2 /-$. With a guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK. 25 boards for $£ 1$. P. \&P. 3/6. With a guaranteed minimum of 85 transistors. 100 boards 65f-. P. \& P. 6/6. With a guaranteed minimum of 350 transistors.
GIANT PANELS. $5 \frac{1}{2} \times 4 \mathrm{in}$., min. 20 transistors, $9 \times 56 \mu . \mathrm{H}$ inductors, resistors, diodes etc. 3 for £1 P. \& P. 2/-.

PANELS with 2 power transistors slm, to OC28 on each board + components. 2 boards ($4 \times \mathrm{OC} 28$) 10/-. P. \& P. 2/-.
TRIM POTS. On $2 \times 4 \mathrm{in}$. boards + Ta caps and other components. $100 \Omega, 500 \Omega 15 \mathrm{~K} ., 20 \mathrm{~K}$. State requirements. 5 boards $10 /-$. P, \& P.,2/-
NPN GERMANIUM TO5 1 WATT POWER TRANSISTORS. On small heat sink, on 2×4 in panel., 5 for 10/-. P, \&P. 2/-.
POWER TRANSISTORS. Sim. to 2N174 ex eqt Finned Heat Sink (10D). 4 for £1. P. \& P, 5/-. ORGAN BUILDERS' SPECIAL 300 TO18 TRANSISTORS +200 Si DIODE GATES on panels. £4. P, \& P. 6/-,
OVERLOAD CUT OUTS. Panel mounting in the following values ...5/- each. 2, 3, 4, 10 amp P. \& P. 1/-.

MINIATURE GLASS NEONS, $12 / 6$ doz. P. \& P 1/-.
Ex-Computer "MEMORY" FERRITE CORE STORES, 4,000 bits per plane. 25/-. P. \& P. 3/-.

PAPST FANS. Powerful Extractor/Blower fans 230/250V. 100 c.f.m., 2,800 r.p.m. 35/-. P. \& P.5/6 ea. MICRO SWITCHES, miniature button type. 10/doz. P. \& P. 1/6.
NEW RECORDING TAPE. g00ft. on 5 ln . reels, low noise fin. tape, £1 per reel post free.

NEW SPRAGUE $0.22 \mu \mathrm{~F} 250 \mathrm{~V}$. smal! capacitors. 5/- doz. P. \& P. 1/-
NEW SPRAGUE ELECTROLYTICS, $4 \mu \mathrm{~F} 150 \mathrm{~V}$. 5/- doz. P. \& P. 1/-
LARGE CAPACITY ELECTROLYTICS
$4 \frac{1 i n}{1 i n} ., 2 i n$. diam. Scrow terminals.
All at $6 /$-each. P. \& P. $1 / 6$ each.
$4,000 \mathrm{mF}$
72 V d.c. wkg.
$10,000 \mathrm{mF}$
12 V d.c. wkg

KEYTRONICS 52 Earls Court Road,

London, W. 8.
Mail order only

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels meters, cabinets, microphones, etc. StephensJames Ltd., 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

FET HI-FI PRE-AMP MODULE

 Latest low-noise FET in special circuit. Matches ANY ceramic/Xtal PU, Xtal mike valve pre-amp, FM tuner, etc. DIRECTLY into ANY transistor power amp. Input impedance 2 Meg. Dist. $<0.2 \% 25 \mathrm{~Hz}-$ $200 \mathrm{kHz} \pm 1 \mathrm{~dB}$. Power $6-15$ volts.With full instructions ONLY 25/-, post free (Stereo pair 45/-). Mail order only, c.w.o.

W. T. MORRIS

1 Birch Drive, Shawbury, Shrewsbury.

COMPONENTS

Samples from our catalogue: Geared motors 300 rpm $-1 \mathrm{r} / 24 \mathrm{H}$ from $7 / 6 ; 15 \mathrm{v}$.
300 mW Zeners $3 /, 10 \mathrm{~K}+10 \mathrm{~K} 2 \% 3$ in 300 mW Zeners $3 /-, 10 \mathrm{~K}+10 \mathrm{~K} 2 \%$ 3in
ganged pots, $20 /-, 220$ ohm 200 watt ganged pots, $20 /-, 220$ ohm 200 watt
resistors $7 / 6 ; 6 \mathrm{~d}$ stamp for catalogue. F. HOLFORD \& CO.

6 Imperial Square, Cheltenham.

RECEIVERS \& COMPONENTS (continued)

VALVE BARGAINS

Any 5-9/-, 10-14/-, $100 £ 5.10 .0$,
From the list below
ECC82, ECC83, ECL80, EF80, EF85, EY86, PCC84, PCF80, PCL82, PCL83, PL36, PL81, PL82, PL83, PY33, PY81, PY82, 30F5, 6-30L2, 30FL1, ALL VALVES SET TESTED P \& P $1 /-$

S. ASHWORTH

Velco Electronics, 62 Bridge Street, Ramsbottom, Bury, Lancs.

INTEGRATED CIRCUITS at lowest price GE Type PA234 1 Watt Audio Amplifier. Few only at $17 / 6 \mathrm{~d}$. each inc. data. P. \& P. C.W.O. JEF ELECTRONICS, 12 York Drive, Grappenhall, Warrington, Lancs.

Mail Order Only.

SITUATIONS VACANT

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for $132-$ page Handbook-FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137K), Aldermaston Court, Aldermaston, Berks.

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E.. A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering Diploma Coursec., Auto., Electronics, Radio, Computers, Draughts., Building, etc. For full Computers, Driaghts., det 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

RADIO TECHNICIANS

VACANCIES TO BE FILLED BY OCTOBER 1969

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of Electro-mechanical equipment will be an advantage.

Pay according to age, e.g. at $19-889$ at $25-f 1,130$ (highest age pay on entry) rising by four annual increments to $£ 1,304$.

Prospects of promotion to grades in salary range $£ 1,217-£ 2,038$. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from
RECRUITMENT OFFICER (RT 37/54)
GOVERNMENT COMMUNICATIONS
HEADQUARTERS,
OAKLEY, PRIORS ROAD,
CHELTENHAM, GLOS. GL52 5AJ

SITUATIONS VACANT
(continued on next page)

BARGAIN BASEMENT
BABY ALARM / INTERPHONE
Fully transistorised. Master \& sub interphone. $\begin{array}{lll}\text { Only } & 5^{\prime \prime} \\ \text { clear } & 3^{\prime \prime} & \times 1^{\prime \prime} \text {. Crystal } \\ \text { Conversations. }\end{array}$ Works over $\frac{1}{4}$ mile (house to house, etc.).
$39 / 11 \quad \begin{aligned} & \text { Post } 3 / 6 . ~ G i t e e d ~ 7-d a y ~ t r i a l ~ o f f e r . ~\end{aligned}$

NEW RELEASE
HI-FI COLUMN
SPEAKER CABINET Beautifully made, Suitable for ${ }^{7-12 "}$ speakers. Rosewood finish Screwed and glued. Attractive grey cloth front measures $24^{* \prime} \times$ 69/6 (Carr. 10/-) With $12^{\prime \prime}$ speaker as advertised above $99 /$-(carr. $10 /-$).
HI-FI HORN 10 watts. ohms unit to your existing ive sound! (P) ONIY ive sound! (P.\& \% $3 / 6$) 25/6 Variable cross-over unit (for
Horn) (P. \& I. $2 / 6$)

Your reproduction is only as good as your pick-up. Our diamond turnover unit assures quality sound
Mono 16/-; Stereo 26/-; Post
MULTIMETER
Measures AC/DC 0-1,000v., AC/DC $1,000 \mathrm{ohms} / \mathrm{v}$. DC ourrent $150 \mathrm{M} / \mathrm{A}$. checking faults in household and car electrics. Guaranteed. \& I. 3/6) 39/6

NEW VALVES!Guaranteed and Tested 24-HOUR SERVICE

IR5	5/6	DL96	6	EY86	5/9	500	
I85	$4 / 8$	DY86	5/3	EZ80	$3 / 9$	PL504	18
174	$2 / 9$	DY87	5/8	EZ81	4/6	PY32	$10 /$
384	$5 / 9$	EABC80	5/9	KT61	$8 / 3$	PY33	10/-
3 V 4	$5 / 9$	EBC41	9/9	KT66	15/9	PY81	$5 /$
6AQ5	4/6	EBF'80	6/-	N78	14/6	PY82	,
6L18	6/-	EBF89	5/9	PABC80	6/9	PY83	$5 /$
25L6GT	4/6	ECC82	4/-	PC86	10/3	PY88	$6 /$
30 Cl 8	8/6	ECC83	4/9	PC88	10/8	PY800	7
30 FLI	13/6	ECC85	5/6	PC97	8/8	PY801	$6 /$
30 FL 12	14/8	ECH35	5/6	PC900	$7 / 6$	R19	$6 /$
30 FL 14	$11 / 9$	ECH42 1	$10 / 6$	PCC84	$6 / 8$	U25	12/9
30 P 4	11/6	EC\#81	$5 / 9$	PCC89	919	U26	11/6
30 P 19	11/6	ECL80	6/3	PCC189	11/6	U191	12/8
30PL1	13/6	ECL 82	6/3	PCF80	8/3	UABC8	0 6/6
CCH35	$9 / 9$	ECL86	$7 / 6$	PCF801	8/6	UBC41	8/8
CL33	17/6	EF37A	6/-	PCF805	8/6	UBF89	8/8
DAC32	$6 / 9$	EF39	4/6	PCF808	1119	UCC84	$7 / 9$
DAF91	4/8	EF80	$4 / 9$	PCL 82	6/9	UCC85	
DAF'96	6/3	EF85	$5 / 9$	PCL83	819	UCF80	8/-
DF33	$7 / 6$	EF86	$6 / 3$	PCL84	71	UCH42	10/6
DF91	$2 / 8$	EF89	4/9	PCL85	819	UCEE81	71 -
DF96	$6 / 8$	EF183	$5 / 9$	PCL 86	$8 / 8$	UOL82	6/8
DK32	619	EF184	5/3	PFL2001	$11 / 9$	UF41	10/6
DK91	$5 / 6$	EH90	8/-	PL36	9/3	UF89	6/6
DK96	$6 / 6$	EL33	$8 / 3$	PL81	71	UL41	10/8
DL35	4/9	EL41 1	1018	PL82	$6 / 9$	UL84	$6 / 9$
DL92	$5 / 9$	EL84	$4 / 9$	PL83	619	UY41	71-
DL94	$5 / 9$	EY51	$7 / 8$	PL84	$6 / 8$	UY85	5/8

GERALD BERNARD
 83 OSBALDESTON ROAD STOKE NEWINGTON
 LONDON, N. 16

There is scope, variety and responsibility as a
 RADIO TECHNCIAN in Air Traffic Control

Join the National Air Traffic Control Service, a Department of the Board of Trade, as a Radio Technician and you have the prospect of a steadily developing career in a demanding and ever-expanding field.
Entrance qualifications: you should be 19 or over, with practical experience in at least one of the main branches of telecommunications.
Once appointed and given familiarisation training, you will be doing varied and vital work on some of the world's most advanced equipment, including computers, radar and data extraction, automatic landing systems and closed-circuit television. Work is based on Civil Airports such as Heathrow, Gatwick and Stansted, Air Traffic Control Centres, Radar Stations and other specialist establishments.

Starting salary is $£ 869$ (at 19) to $£ 1,130$ (at 25 or over): scale maximum $£ 1,304$ (higher rates at Heathrow), and some posts attract shift-duty payments. Your career prospects are excellent and every opportunity and assistance is given to study for higher qualifications. The annual leave allowance is good and there is a non-contributory pension scheme for established staff.

Send this coupon for full details and application form: To: Mr. A. J. Edwards, C.Eng., M.I.E.E., M.I.E.R.E. Room 705, The Adelphi, John Adam Street, London, WC2 marking your envelope 'Recruitment'.

Name.

PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKS. Tel. Cleckheaton 2866

Indicator Unit type 26. Size $12 \times 9 \times 9$ in. with outer case. Fitted with $2 \frac{1}{2}^{\prime \prime}$ tube C.R.T. type CV1526. Nine B7G valves. Clean condition, but not tested. 32/6, p. \& p. 10/-.
New 12" Speakers with built in tweeter 3 ohm or 15 ohm 6 watts $\max 28 / 6$, post paid.
Ex Washing Machine Motors. Single phase 230 volt $\frac{1}{2}$ H.P. 1425 R.P.M. All perfect. 26/- p. \& p. 10/-

Silicon Rectifier $500 \mathrm{~mA}, 800$ P.I.V. No duds. $2 / 6$, post paid. 24/- per dozen, post paid.
Jap Ear Piece. Magnetic 8 ohm . Small and large plug. 1/11, post paid.
Reclaimed TV tubes with six months guarantee. 17in. type AW43/88, AW43/80, 40/-; MW43/69, 30/-. 14in. types, 17/-. All tubes, 12/- carriage.
Speakers removed from TV sets. All PM and 3 ohms. 6 in. round, $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$, post paid.
6×4 in., $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$, post paid. $7 \times 4 \mathrm{in}, 5 /-$, p. \& p $3 /-; 6$ for $34 /-$, post paid. 5 in. round, $3 /-$, p. \& p. $3 / f ; 6$ for $24 /-$ post paid.
Slot Speakers, $8 \times 2 \frac{1}{4} \mathrm{in} ., 5 /-$, p. \& p. 3/-; 6 for 30/-, post paid.

Indicator Unit type 116a VCR97 tube. Mu metal screen and EF50 valves, Good condition, but not tested. 22/6. carriage 10/-. Untested Pye, KB. RDG, Ekco 17 in . TV sets. Bush 17 in . TV sets, $50 /$ each, carriage 15/-. Passenger train, double rate.

Ex Equip VALVE LIST
Ex Equipment, 3 months' guarantee
Single Va EB91 PF85 ECC81 ECC82 ECC83 ECL80 EF50 EF80 EF91 EY86 PCO84 PCF80 PCLS2
alves
$1 / 6$
9 d.
$3 /-$
$3 /$
3
3
4
1
1
1
9
5
2
2
4

| $5 /-$ | $6 B W 7$ |
| :--- | :--- | :--- |

paid
$2 / 6$
$1 / 9$
$5 /-$
$1 / 9$
$5 /-$
$2 / 6$
$8 / 6$
$3 /-$
$5 /-$
$2 / 6$
$5 /-$
55
$2 / 6$
$5 /-$
$5 /-$

LONDON'S LEADING BARGAIN SPECIALISTS FOR THE RADIO • HI-FI \& ELECTRONICS ENTHUSIAST

Head Office and Warehouse 44A Westbourne grove LONDON W2
Tel. PARK $5641 / 2 / 3$

Z \& I AERO SERVICES LTD.

Please send all correspondence and Mail-Orders to the Head Office
When sending cash with order, please include $2 / 6$ in f for postage and handling MINIMUM CHARGE 2/6. No C.O.D. orders accepted.

Retail Shop
85 TOTTENHAM COURT ROAD LONDON W1
Tel. LANgham 8403
Open all day Saturday

INTEGRATED CIRCUIT AMPLIFIERS

rCa type casoro
Integrated Cixcuit Audio Amplifier in TO5 encapsulation (size of a small transistor), equivalent to geven n-p-n silicon transistors, 3 diodes and 11 resistors. Power output
550 mW . Totail harmonic distortion. 1%. Will operate on 550 mW . Total harmonic distortion. 1%. Will operate on
voltage from 3 to 9 volts.
$30 /-$ plus $2 /-$ p.p.
GENERAL ELECTRIC Type PAZ22
Epoxy moulded in-line package equivalent to six n-p-n transistors, one diode and six resistors. It will provide output of up to 1.2 watts into 15 ohms. Battery operation 22 volts. 40/- plus 2/- p.p.
The construction of ampliffer using the above integrated circuits had been described in March and August issues of P.W. Please note that we only supply the IC's and no other parts are supplied by us.
GENERAL ELEETRIC TYPE PA834
-watt Audio Amplifer suitable ior supply voltage of to 25 V and for output loads of 8,16 or 22 ohms. Only 3 capacitors and 3 resistors are required for making up a complete amplifier delivering 1 watt for an input voltage of 600 mW. Epoxy moulded double four-in-line
package.
$27 / 6$ each, plus $2 /-\mathrm{P} . \& \mathrm{P}$.

GENERAL ELECHRIC Type PA237
Similar to PA284, but 2 watts, 40/-, plus 2/• p.p.

RCA Type CA8036

Stereo Pre-Amplifier as described in May issue of P.W. 19/-, plus 2/- p.p.
Motorola MC17090G
Operational Amplifier. Full data supplied on request. 40/-
NEW LIST OF TRANSISTORS, INTEGRATED GIRCUITS AND RECTIFYING AND ZENER DIODES IS NOW READY.
The List gives full specifications and prices of over 200 types of Semiconductors.

VALUABLE NEW HANDBOOK Fhy En io ambilious

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

RADIO ENGINEERING Advanced Radio - Gen. Radio - Radio \& TV Servicing - TY Eng. -Telecommunications-Sound Recording - Automation Practical Radio - Radio Amateurs' Exam.

ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Supply - Mlning Elec. Engineering.

CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Municipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. - Hydraulics - Mining Water Supply - Petrol Tech.

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. Applied Electronics - Prac. Electronics - Radar Tech. Frequency Modulation --. Transistors.

MECHANICAL ENG.
Advanced Mechanical Eng.Gen. Mechanical Ens. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work-Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.

AUTOMOBILE ENG. Advanced Automobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Automohile Diesel Maintenance - Automobile Elec. Equipment - Garage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AEROENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I, A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.MUn.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

British Institute of Engineering Technology

453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting job.
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and exsily.
* HOW to benefit from our free Advisory and Appointment Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

164 PAGES OF EXPERT CAREER - GUSDANCE

PRACTICAL INCLUDING EQUIPMENT
 TOOLS

Basic Practical and Theore,
 A.M.I.E.R.E.City \& Guilds Redio Amateurs' Exam. R.T.E.B. Certifcate P.M.G. Certificate

Radio\&Televisionservicing Fractical Electronics Electronics Engineering Automation

The specialist Electronics Division of B.I.E.T.

NOW offers you a real laboratory training at home with practical equipment. Ask for details.
B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and you should send for your copy now-FREE and without obligation.

```
O0ST N10M] 畆:
TO B.I.E.T., 453A, ALDERMASTON COURT,
ALDERMASTON, BERKSHIRE.
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).
```


THE B.IE.T. IS THE LEADING INSTHTUTE OF ITS KIND IN THE WORLD

[^3]| | | | |
| :---: | :---: | :---: | :---: |
| SOLID STATE-HIG AUDIO EQUIPMENT Mono or Stereo Audio, Equipment devel oped from Dinsdale Mk.ll-each unit or system will compare favourably with other professional equipment selling COMPLETE SYSTEMS FROM
 £15.5.0
 THE FINEST VALUE IN HIGH FIDELITYNEEDS AND SAVE POUNDS
 SEND FOR FREE BROC DEMONSTRATIONS DAILY | GH FIDELITY T
 lable separately
 HURE (No. 21) TODAYI | ELECTRONIC ORGANS kifs to givip rouss The maffali Acclaimed by everyone | |
| INTEGRATED TRANSISTOR AMPLIFIERS 6 WATTS MONO OR 12 WATTS STEREO We are pleased to offer two new designs with the chaice of either favour the user in so many ways-with fantastic power and qually with far greater adaptability, with freedom for battery or
 \&8.10.0 \square
 | | The Grosveno | |
| \squareNo II YounsELE | | | |
| | | | |
| | | TRANSISTORS SEMICONDUCTORS

 Field Effect Transistors from $7 / 6$ Power Transistors from $5 /-$ Power 1ransistors from 5/- Diodes and Rectifiers from $1 /-$ | |

HI-Fi equipment to suit EVZ RYPOOKI

VISIT OUR NEW HI-FI CENTRE at 309 EOGWARE ROAD
AND SAVE UP TO $£ 25$ ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE for alil leading makes
AMPLIFIERS tuners DECKS

SPEAKERS
MICROPHONES TEST EQUIPMENT HEADPHONES CARTRIDGES, atc. All with Terrific Savings
It will PAY YOU
to pay us a VISIT !

SEND HON NEW \&-RAGE ILLUSIKALD H-FI LISI $1 / 17$

Fully

fllustrated CATALOCUE
COMPLETELY NEW 9th EDITION (1969)
The most COMPREHENSIVE-
CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with $10 /-$ worth discount vouchers FREE WITH EVERY COPY

* 32 pages of transistors and semi-conductor devices, valves and crystals.
* 210 pages of components and equipment.
* 70 pages of microphones, decks and Hi-Fi

6,500 ITEMS
 320 bIG pages Send today 7 6pain

309 Edquare Yoad, London, W.2. Mail Order Dept
all 'types tf Components, Organ Dépt. (01) j23. "too's /9
309 Edgware Road, London, Wze High Fidelity
Sales, P.A. and Test Equipment, Recotd Decks(01) 723-6963

[^0]: All correspondence intended for the Editor should be addressed to: The Editor, "Practical Wireless", IPC Magazines Ltd., Tower House, Southampton Street, London. part of the world. C.

[^1]:

[^2]: Terms of business-Cagh with order only. Post/Packing 6d, per item. Orders over e5 post free No O.O.D. Any parcel insured against damage in trangit for 6d. extra per order. Howrs of business, Mon.-Fri. 900 to 530 p.m. Sats 990 to 1 p.m. Complete list of modern and obsolete valves, resistors, condensers, transformers, etc., with terms of businesa 10 d . Please enquirefor any item not hated with S.A.E. Please note that no enquiries can be answered unless a S.A. E. is enelosed for reply.

[^3]: Published on or about the 7th of each month by I.P.C. MAGAZINES LMMTED, Tower House, Southampton Street. Iondon, W.C.2. at tie reanmperzea maximum price shown on the cover. Printed in England by Index Printers, Dunstable. Beds. Sole Agents for Austraila and New Zealand: GCZDOX \& GOFCH (Asia) Ltd. South Africa: CENTRAL NEWS AGBNCY LTD. Rhodesia, Malawi anc Zambia: KINGSTONS LTD. East Africa: STATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage for one jear: To any part of the World £2.2s.0d.

