

## CONSTRUC

THIS MIXER


ALSSO SLIMLINE SUPERHET
7
8
8
8
8

## THE RELIABLE SOLDERING INSTRUMENT!



SEND COUPON FOR LATEST LEAFLET ADCOLA PRODUCTS LTD ADCOLA HOUSE GAUDEN ROAD LONDON SW4


## JACKSON

_-the big name in PRECISION components

## BALL DRIVES

Thousands of Jackson dualratio ball drives are in daily use. Type 4511 DRF provides 6:1 fast ratio and 36:1 "reverse vernier" on one spindle. A flange for carrying a pointer, is ideal for use in receivers and measuring instruments. Other Jackson ball drives provide simple 6:1 reduction or combined 1:1 and 6:1 reverse vernier movements.
*High torque. *Low backlash. *Simple fixing. *Take standard $0.25 i n$ spindles.
*Utterly reliable of course!

## INTERNATIONAL LONDON

 ELECTRONIC COMPONENTS SHOWOLYMPIA MAY 20-23
See our range of variable Capacitors, Tuning Controls and Terminals on Stand E 221.

JACKSON BROS. (London) LIMITED
Dept. PW, Kingsway, Waddon, Croydon, CR9 4DG Phone: (01-688) 2754-5

Grams; Walfico, Croydon
US Office: M. SWEDGAL, 258 BROADWAY NY, NW 10007


THREE NEW TMK METERS
These meters by the famous TMK Co. of Japan tncorporate the very latest developments in dealgo and set a new standard in quality and accuracy. The new shape permits a more cablneta with carrying handles and are complete with test leads, batteries and full

Instructions.

## Model PL-436

20,000 O.P.V. Multiteater for the amateur or profeslonal. Features mirror acale and wood gratn finthh front panel. SPRC.: DC/V ranges: $0 \cdot 6,3,12,30,120,600 \mathrm{~V}$ at $20 \mathrm{~K} / \mathrm{O}$.P.V. AC/V ranges: $3,30,120,600 \mathrm{~V}$ at $8 \mathrm{~K} / \mathrm{O}$.P.V DC current: $50 \mu \mathrm{~A}, 0 \cdot 6,60,600 \mathrm{~mA}$. Resistance: 10 K $100 \mathrm{~K}, 1 \mathrm{M}$ and 10 M ohms end acale ( $65,650,6 \cdot 6 \mathrm{~K}$ and 65 K ohms centre scale). Decibels: -20 to +57 dB in cour ranges. Operates on $2 \times 1.6 \mathrm{~V}$ U7 type batteries. Bize: 6 1 $\times 44 \times 2{ }^{2} \mathrm{in}$


## $\underset{\text { PRICE }}{\text { LASKY'S }}$ f7.19.6 ${ }^{\text {pont }}$

## Model 5025

50,000 O.P.V. Multitester suitable for all. pro fespional and educational uses. Features sceuracy on full scale DC). High speed range election, polarity reversal switch and over losd meter protection circuit. SPEC.: DC/V ranges: $0-125$ to 1000 V in 12 ranges $(0.25$ to 500 V at $50 \mathrm{~K} / \mathrm{O} . \mathrm{P} . \mathrm{V}$.$) . AC/V ranges 1.5 \mathrm{~V}$ to 1000 V in 10 rangea ( 1.5 to 500 V at $5 \mathrm{~K} / \mathrm{O}$.P.V.) DC current: $25 \mu \mathrm{~A}$ to 10 A . Ohms: 0 to 10 M ohms. Decibels: -20 to +81.5 dB In 10 ranges. Operates on $2 \times 1$

 100,000 O.P.V. "LAB" Model A highly accurate yet rugged Multi tester uing a $10 \mu \mathrm{~A}$ meter hand calibra ted to a DC accuracy or $\pm$ or cale $62 \times 31 \mathrm{in}$ incorporating an entirely new type of range selection panel which givea Instant range identification with out taking your eyea from the meter. An audible buzzer is provided for casy ahort testing. 8PEC.: DC/V ranges: $0.5,2.5$ $10,50,250,500,1000 \mathrm{~V}$ at $100 \mathrm{~K} / \mathrm{O} . \mathrm{P} . \mathrm{V}$ $A C / V$ ranges: $3,10,60,250,500,1000$ at 5K/O.P.V. DC current: $0-10,100 \mu \mathrm{~A}$, $0-1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 10 \mathrm{M}, 100 \mathrm{M} /$ ohm Declbels: -10 to $+49 \cdot 4 \mathrm{~dB}$. Continuit teat: Audlble huzzer Operates on 1 $1.5 V$ U2 and $1 \times 15 \mathrm{~V}$ B. 154 type batter les. Cabinet size $7 \frac{1}{6} \times 6=3 \frac{1}{6} \mathrm{~m}$. Weight


## $\operatorname{LASKY'S~P19.10.0~}_{\text {PASK }}$ <br> 



## Branches

207 EDGWARE ROAD, LONDON. W. 2 : Tel.: 01-723 3271
Open all day, 9 a.m. -6 p.m. Monday to Saturday
33 TOTIENHAM CT. RD., LONDON, W. 1 Tel.: 01-636 2605 Open all day, 9 a.m. 6 p.m. Monday to Saturday
152/3 FLEET STREET, LONDON, E.C. 4 Tel.: 01-353 2833 Open all day Thursday, early closing 1 p.m. Saturday
 Mk II

COMMUNICATIONS RECEIVER
A cotapletely new short wave eceiver exclualve to Lasky" at a real economy price. Four valve line up uaing one each GBE6, 6BAB, 6AV8 and 6AR raves, gives higuly ond Switch selected SW frequency range cover: 1.5 to 30 $\mathrm{Mc} / \mathrm{s}$ in three separace bandspread ranges and full AM medium waveband cover in one range $550-1,600 \mathrm{Kcfs}$ the tahir line cursor. Controle include volume onfor BFO, Band selector. Power on indicator lamp. Extercal antenna connections und mains fuse at rear. 8 ohms internal speaker plus stisndard bmm jack socket for phones on front. For $220 / 240 \mathrm{~V}$ AC mains operation. Atrong metal cabinet finshed in grey crackle with anodised silver front panel. Bize $91 \times 5 ? \times 5$ ins. complete witli mains lead and full instructions Previously listed at e17.15,0 (A credit note for the differemce in price will be piven to customert

## ${\underset{c}{\text { LASKY's }} \text { PRICE }}^{\text {P13.13.0 }}$ <br> Post

MIDLAND Model 10-502 VHF AIRCRAFT BAND CONVERTER
An entirely new ltem for the radio enthusiast bringing instant reception of the ground-to-air, air-to-gromnd wavebabd. For use with any standard AM or FM radio covering 535 to 160 Kcha, 8 tion required. The Model 10-502 вelf powered by one 9V (PP3 typer battery is merely placed close to the recelving sett and then tuned over 110 to $135 \mathrm{Mc} / \mathrm{s}$ which covers the whole aircraft communications band. Volume and reception effectiveness is adjusted by moving both seta to the most favourable position and balancing the vol. controls of each accoriingly. The Model $10-502$ has a panel and 18 in . chrome telescopic antenna, aize only $4 \times 27 \times 2$ in. (inc. knobs). Complete with battery and full instructions.


| LASKY'S | $79 / 6{ }^{\text {Port } 5 t}$ |
| :--- | :--- |
| PRICE |  |

TWO BAND PUSH BUTTON TRANSISTOR CAR Raido CR-62
MODEL
A high quality all transistor superhet car radio that really breaks the quality/price barrier. A
unique feature of this set are the four M/W band unique feature of this set are the four m/ W band station preselection buttons which you yourself
set to your own forr favourite entations-this is in addition to full $\mathrm{M} / \mathrm{W}$ band cover orer 535 $1605 \mathrm{Kc} / \mathrm{s}$ and full $\mathrm{L} / \mathrm{W}$ band cover over $150-$ $300 \mathrm{Kc} / \mathrm{s}$ (IF' frequency $455 \mathrm{Kc} / \mathrm{s}$. ) Externally
 adjustable aerial trimmers ensure maximum output. Six transistor (including one drift type) and one diode circuit provides powerful 2 W output. The set is adjustable for use on either positive or negative ground 12 V systems (externa line tuse fated). Standard mounting
 lack push bafle (tor round or elliptical epeaker) Fully guaranteed


``` PRICE
```

MANUAL TUNING MODRL OF CR-B2 AVAILABLE. 57.19 .8 .
SPECLAL OFFER-LOCKING CAR AERIAL Madel B3003 five section $42^{\circ}$ extension heavy chrome telescopic wing mounting type with undque locking device to protect the IASKY'S SPECIAL PRICE $20 / 8$ Pot Thee with the CR-62. Post Sep $2 / 6$

## High Fidelity Audio Centres

42-45 TOTIENHAM CI. RD., LDNDDN W. 1 Tel.: 01-580 2573 Open all day, 9 a.m. -6 p.m. Monday to Saturday

118 EDGWARE ROAD, LONDON, W. 2 Tel: 01.7239789 Open ail day Satulday, early closing 1 p.m Thursday

# Open the pages of The RADIO CONSTRUCTOR this month for . . . 

## A HOST OF CONSTRUCTIONAL PROJECTS



## Articles include

## WATER OPERATED ALARM

Using simple silicon semiconductor circuitry, this novel device sounds a bell to warn of excessive water level-cover feature.

## LIGHT OPERATED RADIO SWITCH

## $\star$

PRINCIPLES OF METAL DETECTION
The first part of a 2 part article dealing with an application of electronics not normally encountered in the technical press.

## 丸 $\quad \star$ <br> MAINS POWER FOR TRANSISTOR EQUIPMENT <br> * $\star$ * <br> LOW-NOISE PRE-AMPLIFIER

This a.f. pre-amplifier is very simple in design. but can carry out a number of useful functions.

MAY ISSUE

## PHOTOELECTRIC KIT

CONTENTS: 2 P.C. Chassig Boards, Chemicals, Etching Manasl, Intra-Red Phototransistor, Latching Relay, 2 Transistors, Condensers, Resiators, Gain Control, Tarminal Block, Fhlegant Case, Screws, etc. In fact evergthing you need to build a modified for modulated-light operation.


PHOTOELECTRIC KIT

Postage and Pack. 2/8 (UK) Commonwealth gURFACE MALL 3/6 AIR MAIL $£ 1.0 .0$ Australia, New Zealand S. Africa, Canada and U.s.A. Also Easentia! Data Circuits and Pians for Building
10 Advanced Designt

## INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for building: 1 Invisible-Ream Prolector and 1 Photocell Receiver (as illustrated). Suitable for all Photoelectric Burglar Alarma,
CONTENTB: 2 lenses, 2 mirrors, 245 -degree wooden blocks, Infra-red filter, projector lamp holder, building plans, performance data, etc. Price 19/6. Postage and Pack.
$1 / 6$ (U K.). Commonreaith : Surtace Mail 2/-; Air Mail $8 /-$.
long range invisible beam optical kit
CONTENTS: As above. Twice the range of standard kit. Larger Lenses, Filter etc. Price 29/6. Pontage and Pack. 1/6 (U.K.). Commonwealth: Surface Mall 2/6; Air Mail 10/
JUNIOR PHOTOELECTRIC KIT
Versatile Invialble-beam, Relay-less, ateady-light Photo-8witch, Burglar Alarm, Door Opener, Counter, etc., for the Experlmenter.
CONTENTB: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassis, Plastic Case, Resistors, \&crews, otc. Full size Plans, Instructions, Data Sheet ' 10 Advanced Price 10/6. Portage and
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenses, Infra-red Filter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 mindature invisible beam projector and photocell receiver for use with Junior Photoelectric Kit
Price $10 / 6$. Pont and Pack 1/B (U. K

## YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full details, a brief description and Photographs of all $K$ its and all 2 Radio, Electronic and Photolectric Projects Assembled.


# Valuabie new hanobook FDEETO AMBilious ENGINEERS 

## Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

## On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

## WHICH OF THESE IS

## YOUR PET SUBJECT?

RADIO ENGINEERING Advanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng. -Telecommunicafions-Sound Recording - Automation Practical Radio - Radio Amateurs' Exam.
ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Iluminating Eng. - Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Elec. Engineering.
CIVIL ENGINEERING Advanced Civil Eng. - Gen. Clvil Eng. - Municipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. - Hydraulics -- Mining Water Supply - Petrol Tech.

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. Applied Electronics - Prac. Electronics - Radar Tech. Frequency Modulation Transistors.

MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work-Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Proship - Met
duction Eng.

AUTOMOBILE ENG.
Advanced Automobile Eng. Gen. Automoblle Eng. Automobile Maintenance -Repair -'Automobile Diesel Maintenance - Automobile Elec. Equipment - Garage Management.

We have a wide range of courses in other subjects inCLUDING CHEMICAL ENG., AEROENG., MANAGEMENT, INSTRUment technology, works study, mathematics, etc.

Which qualification wouid increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.
British Institute of Engineering Technology
 obligation.

| THIS BOOK TELLS YOU |  |
| :---: | :---: |
| HOW to get a better paid, more interesting job. |  |
| t HOW to qualify for rapid promotion. |  |
| t HOW to put some letters aiter your name and become a key man . . . quickly and easily. |  |
| HOW to benefit from our free Advisory and Appointment Depts. |  |
| * HOW you can take advantage of the chances you are now missing. |  |
| * HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering. |  |
| 132 PAGES OF EXPERT |  |
| PRACTICAL INCLUDING |  |
| EQUIPMENT |  |
| Basic Practical and Theore- |  |
| Ho Courae for begtnnern in tronics Division of |  |
|  |  |
| A.M.I.K.R.W. Clty t Guilds. NOW offers you a |  |
| Radio Amateurs Hinms real laboratory train- |  |
| P.M.G. Certificate ing at home with |  |
| RadiodTelevislonServicing practical equipment. |  |
| Practical Blectronica Ask for deta |  |
| Blectronice lingineering Antomation |  |
|  |  |

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now-FREE and without


## WITME GOMMD SALE MART

## BRAND NEW FAMOUS BRITISH FM TUNER BARGAINS

TRUVOX FM100 transistorised Tuner
List price
E34,17.
SALE
PRICE
24.10.0 P. \& P. 10/-

ALSO AVAIL. A FEW TRUVOX TSA 100 transistorised amps. List price £51.9.0. SALE PRICE £37.10.0. P. \& P. 10/- and TRUVOX LS 100 loudspeaker systems. List price f26.0.0. SALE PRICE £19.10.0. P. \& P. 10/- (per unit)
ARMSTRONG Model 224
$\underset{\substack{\text { List price } \\ \text { \&24.15.0. }}}{\text { Lit }}$ SALE PRICE $£ 19.0 .0$ р. \& p. 10/Please note there are very limited stocks of these fine units Hi-Sky HS-30 Cassette Recorder High quality transistorised cassette recorder. Features include: Push button operation Record level meter Safety record button Operates on $4 \times \cup 11$ type batteries Complete with Real Leather case with carrying handle and accessory compartment. Dynamic remote control microphone and $C-60$ cassette. Brand new and boxed.
$\underset{\substack{\text { List Price } \\ \text { L21.0.0 }}}{\text { SALE }}$ PRICE $£ 17.10 .0$
P. $9 \mathrm{P} .6 / 6$

## FIRE/BURGLAR ALARMS

Type A. Industrial fire alarm. Emits loud warning note if air temp. exceeds $125^{\circ} \mathrm{F}$, wall mounting. Operates on $2 \times \mathrm{U} 2$ type batteries. Size $6 \times 2 \frac{1}{2} \times 1 \frac{1}{2} \mathrm{in}$. Grey enamel finish.

## SALE PRICE 22/6

P. \& P. $2 / 6$

Type B. Domestic fire alarm. As Type A but with louvered front and red

## crackle finish. <br> SALE PRICE 30/- <br> P. \& P. 2/6

Type C. Fire or burglar alarm. As types A and B but with alarm switch which may be connected in a door or window frame etc. Fire operation as types $A$ and $B$. White enamel finish
SALE PRICE 34/6
P. \& P. $2 / 6$

[^0]

SPEAKERS: Elac Heary duty Ceramic Magneta 11,000 lne, $10 \ln$, round, $10 \geq 6 \mathrm{in} .3$ ohm, or $13 \mathrm{ohm}, 48 / 6$, P. \& P. 3/6. 8in. round $15 \mathrm{or} 3 \mathrm{ohm}, 42 / 6$. P. \& P. 3/6. E.M.I. E.M.I. $18 \downarrow \times 8 \mathrm{in}$. fitted two 24 in . i weeters. 16 ohms, $77 / 6$. P. \& P. $4 / 6$. E.M.I. 131 I
 3 or 16 ohms, $18 /=$, P. \& P, $1 /=$. Bakers $12 \ln$., 25 watt, 15 ohm, £6.6.0. P. \& P. 3/6.

CAK PLITTE AND PERSPEX DUST COVER for SP25 ete. 25.5.0. P. \& P. $5 /-$ yd. ofl roll. P. \& P. $1 / 9$. I Yard, $9 /-$ P. \& P. $1 / 9$. Eend $1 /$ - stamps for samples 8PEAKER MATCEING TRANS FORMERS. $3,7,15$ ohms, 8 watt, $11 / 8$ mTeropeo
MTCROPHONRS: Xtal Hand Mikes B1201 with atand, 54/6. P. * P. $9 / 6$ 18/6. Dyn. Mike DM-391, 30/-. CM2 xtal, 12/6. Telephone Pick-up, 10/6 P. \&'P. 1/-. X (abl lapel Mike, 7/8. Guitar Mike, 12/6. P. d P. $1 /$
FERROX RODS: $6 \times 1 / 16 \ln .2 / 6 ; 41 \times 1 \mathrm{in}$.

EERROX RODS WITH COILS, $4 \frac{1}{x}$ 辛 1 n /6; $8 \times 8 / 1$ gin. $5 / 6 ; P$ \& P. $1 /$ - each. Fwitch $3 /-1$ pole 12 wiy 2 pole 2 win whele 3 way 3 pole 4 way, 4 pole 3 way $8 / 6$ esch. P. P. $1 /$-. 8/6. $3 \ln ., 10 / 6$. $3 \nmid \mathrm{ln} ., 12 / 6$. P. \& P. $1 /$.

## CARTRIDGES

Stereo: Sonotone 9TA H/C Diarnond 47/6, 9T A 8apphire, 37/6. 8TA 8spphire, 80/-, Ronette s105 Medium Output, $28 / 6$. 8108 High Output $28 / 6$. $\mathrm{DCL}_{24}$ Stereo Compatible $22 / 6$. Acos GP93/1 Bapphire, 87/6. GP94/i 8apphire, 89/8. OP81 Diamond 42/-. GP91 Stereo Compatible (High, Medium or Philipa Ao3301, Aa3308 to Bert SX1H. Plug-In head complete with carsxidge $50 /-$. TA 700 equivalent to B.B.R. SXIM, $85 /-$, Japanese equivalent to B.8.R. TC8, 35/-

Mono: Acos GP67/2 will replace Collaro and Garrard Mono cartridges, $18 / 6$. T.T.C. Cryatal High Gain, 15/-. B.S.R. TC8H Jap. equivalent, 16/6. Bonotone 2T88, $15 /$ - Post and Packing $1 / 6$. EARPIECES WITH CORD and 3.5 mm . plug. 8 ohm maguetlc, $3 /-.250$ ohm, $4 /-$ PLANO KEY POSE 8OTTON 8WITCLERS, 7 button inc. mains on off. 6 banks of 6 P.C.O., 8/6. P. $\boldsymbol{a}$ P. $1 /$ -

##  92 MITCHAM ROAD, TOOTING BROADWAY

LONDON, S.W. 17 Telephone 01-6723984 (Closed s/l day Wednesdey) (Few minutes from Tooting Broadway Underground Station)

## TEST BIPOLAR AND FIELD EFFECT TRANSISTORS with the BOURNLEA DYNAMIC Transistor Tester

invaluable tester for Checking Matching © Belecting bipolar and fleld effect (depletion mode) tranaistors.
The BOURNLEA Teater measures he ( $\beta$ ) Irom 5 to 750 (NPN and PNP devices) - gro (Y fs ) Ir
0.5 to 76 manos (N. and P-channel FET's)

Sockets enable multimeter to be used for Transistor and diode leakage Zero bias FET drain current (IDss) - Pinch-off Voltage ( $V_{p}$ ),
and many more testa.

Supplied complete with 9 Volt battery, leads and instructions. Price 15 gns. plun 5/-p. 曹 p. CWO.
the Cardon instrument co.
Earls Colne, Colchester, Essex.


# Fine design superlative performance 

# Р...ооив|E12 <br> As described in this month's Practical Wireless 

## Top line integrated hi-fi stereo amplifier featuring

## PEAK SOUND "CIR-KIT"

Peak Sound are indeed proud to be associated with this superb P.W. design and that so much of it is made possible because of Peak Sound products and design techniques. Basically, the "P.W Double 12 " demonstrates the value of using "Cir-Kit" in modern circuit board units either for single or prototype examples, but in this instance, Peak Sound have contributed much more to the success of this project. This includes the remarkable power amplifiars, the power pack and the ingeniously styled cabinet which almost assembles itself, it is so simple to build. Read about the "P.W Double 12 " in this issue right now. Then when you build this exciting new design be sure you do it with authentic, exact-to-specification Peak Sound kits as described.

A SIMPLIFIED UNIT CONSTRUCTION

- INGENIOUS TEAK

CABINET DESIGN
$\triangle$ PROFESSIONAL IN EVERY WAY AND MONEY SAVING TOO!

## This is your"'P. W.Double

 12'" shopping listAs you follow through stage by stage with P.W. these are the Peak Sound kits you will require. They are exact to specification. Transistors included.
2 Spools of "Cir-Kit" at 2/-each 40
2 Pre-amp and tone controlkits 4130
4 Pre-amp matrix boards
2PA.12-15 Power Amplifier Kits
2 Heat Sink assemblies
2 P.A. matrix boards
1 PS. 45 K 45 volt power supply kit
1 Pack-flat afrormosia teak finished Cabinet kit
5 Controls as specified
TOTAL COST
7190
120
120
8
4100
2126
200
£23 56
Metal work (make or buy), knobs, plugs and sockets, fuses etc. allow $£ 3.0 .0$. From your local dealer.

## Go to your Dealer NOW

for your authentic Peak Sound Kits. In case of difficulty, please send direct, giving the name and address of your usual supplier where possible and add $11 /$ - postage for complete assembly, or 5/6 if without power pack.
TRADE ENQUIRIES INVITED

A Abridged specification
Formation-Two pre-amp panels, two tone contro panels, two power ampllfer modules, power supply unit on chassis, housed within teak finished cablnet.
Controls-Bass and treble cut and lift based on Baxandall circultry/Volume/Balance/ Rotary selector. Input Sensitivity-Magnetic P.U. (per channel) 2.5 mV Into 68 k Д. Ceramic P.U.-25mV Into 27K. equallsed for flat response. Radio/Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response- 20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall.

"Cir-Kit" is at the heart of building this fine design. Made from almost $100 \%$ pure copper with unique adhesive backing, it is the suparb circuit builder for all require ments. In 5 ' spools. $\frac{1}{18}$ " wide, 2/-each.
"CIR-KIT" makes it possible!

Output-12 watts per channel Into $15 \Omega$ (8 $\Omega$ speakers may be used).
Negative Feedback-43dB over each section.
Power required-45V D.C. (supplled by bullt-In power unlt).
Cabinet-Afrormosia teak fintsh, pack-flat, easy to

Transistors-Ultra low nolse in pre-amp and tone control stages.
PERFORMANCE CHARACTERISTICS, PARTS REQUIRED. ETC., SEE OTHER PAGES IN THIS ISSUE

## THESE PEAK SOUND PRODUCTS WILL HELP



PA.12-15 POWER AMPLIFIER
As specifled for "P.W. Double 12" and avallable ready built compiete with heat slink for mounting directly into position as described, but can also be used In other applications. Also availabie as alt less heat sink and board

Built E5.19.6
KIt (less heat slink, board and "CIr-Kit") 79/6 Heat slnk and baseboard assembly 10/Please add $2 / 6 \mathrm{p} / \mathrm{p}$ elther model if ordered direct, or 5/- for two.

ES. 10-15
BAXANDALL
SPEAKER
Thls easy to bulld loudspeaker provides genulne hi-fi standards by the use of unique equallsing princlples. Frequency response $60-14,000 \mathrm{~Hz}$ $(100-10 \mathrm{kHz} \pm 3 \mathrm{~dB})$. Easy-tobulld kit Including $18 \times 12 \times 10 \mathrm{ln}$ cabinet.
(Carr. 12/6). Leaflet available

£10.2.3
$+£ 1.2 .9$ P/Tax

PEAK SOUND (HARROW) LTD., 32 ST JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY, Phone EGHAM 5316

THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM
$\star$ Moderate size, only $25 \times 14 \times 10 i n$. Complete Kit
19 Gns.

* Performance comparable with units costing

19 Carr 12 considerably more. Consists of (1) 121 in . 15 watt Bass unit with cast chassis, Roll rubber cone surround for ultra low resonance. and ceramic magnet, (2) 3 -way quarter section serles cross-over system. (3) $8 \times 5 \mathrm{in}$. high fux middle range"'speaker. (4) High
efficiency tweeter. (5) Measured weight of woollen acoustic efficiency tweeter. (5) Measured weight of woollen acoustic
damping material. (6) Teak veneered cabinet. (7) Circuit and DEMONSTRATIONS AT ALL BRANCHES.

## R.S.C. STEREO/20 HI-FI AMPLIFIER

PROVIDING


OIT WATT ULTRA LINEAR PEAK PUSH-PULI ECL86, (4) EZ81. Frequeney Response: (7) valves ECC83. (2 c.p.s. Hum Level: $65 d B$ down. Sengitivity: 30 millivolts and Input Selector switch. *Stereolhiono switch *Neon panel indicator. tHandsome Perspex Frontplate. tSeparate Bass and Treble controls. Output transformers are high quality section ly wound. Outputs for 3 and 15 ohms speakers. Complete set or parts, point 15 Gis. to-point wiring diagrams and instructions. Or factory assem

## R.S.C. A10 30 WATT ULTRA LINEAR HI-FI

 AMPLIFIER Highly sensitive Push-Pul.
 put transformer. All high grade components
Separate Bass and Treble Controls. Sensitivity 36 mV . Suitable for high impedance signed for Clubs, Schools, Theatres, Dance Halls or Outdoor Functions, etc. For use with Electronic Organ, Guftar String Bass, etc. Gram, Radio or Tape. Reserve L.T. and H.T. for Radio Tuner. Two inputs with associated volume controls so that two separate For 3 and 15 ohm speakers. Complete bit mixed. 200-250v. $50 \mathrm{c} / \mathrm{s}$ A.C. Mains. point wiring diagrams and Instructions. parts with point-to- 14 Gns. wint wiring diagrams and instructions. utput valves. 12 months' guarantee for 1 plied factory buil with ELa3 and 9 monthly payments of $31 / 3$ (Total 17 gns. TERMS: Deposit 55.14 .0

## R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER

 "PUSHEPULI ULTRA LINEAR OUTPUT "BULLT-IN" TONE CONTHOL, PRE-AMI" allowing mixing of "mike" and gram controls High sensitivity 5 valves-ECC83 (2), EL84 (2) EZ81. High quality sectionally wound output transformer. IND. BASS AND TREBLE CONHum level-60dB. SENSITIVITY 40 millivolts. For Crystal or Ceramic PUs. High Impedance "mikes". For Musical Instruments such as String Bass. सlectronic Guitars otc, Size approx 12 K $9 \times 7$ in. For AC mains 200-250v. 50 ops 9 Gns. ull instructions and point-to-point wiring diagrams. Carr 11/6 (or factory OUIIT 12 Gns.) Twin handled metal IRSC AIIT TRANSISTORESED VERAION of above complete kit 9 Gns R.S.C. BASS-REGENT 50 WATT AMPLIFIER An exee ally powerful high quality all-purpose anit ior lead. rhythm, bass guitar, roos!
ints,
gram Peak O/P rating. * Two extra heavy duty 12in. Loudspeakers. $\star$ Four Jack inputs and simultaneous Controls for simultaneous use of up to four plck-ups or 'mikes' 52 Gns. Carr. 30/- or and 9 dep. £10.1.8 £5.11.8. (Total $57 \frac{1}{2}$ gns.). Send S.A.E. for leaflet. with pr. Columns and 8 Bass Unit.Inc. 8 speakers. Slx 12, Two 15". 081 gns . R.S.C. BATTERY/MAINS

CONVERSION UNITS Type BM1 An sll-dry battery ell-
minator. Size $54 \times 4\} x$ 2in. approx Completely replaces batteries supplying $1 \cdot 6$ v. and $250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ is available. Complete kit with diagram $49 / 11$ or assembled $59 / 11$. SELENIUM
F.W. RECTIFIERS (Bridgod) All 6/12v. D.C. output. Max.
A.C. input $18 v .1 a .3 / 11$. 2a.6/11.3a. 9/9.4a. 12/9.6a.
15/9.
R.S.C. MAINS TRANSFORMERS FULLY GUARANTEED. Interleaved and Impregnated. Primariea 200-250v. 500/4. Screened MIDGET CLAMPED TYPE $2\|\times 2\| \times 2 t i \mathrm{~B}_{\text {. }}$ $250-0 \cdot 250 \mathrm{v} ., 60 \mathrm{~mA} 8.3 \mathrm{v} .2 \mathrm{z}$
PULLY GEROUDED UPRIGHT MOUFTLNG
$250-0-250 \mathrm{\nabla} .60 \mathrm{~mA}, 6$
$250-0-250 \mathrm{v} .100 \mathrm{~mA}$,
$250-0-250 \mathrm{v}$. $100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$.
$300-0-300 \mathrm{v}$. $130 \mathrm{~mA}, 6 \cdot 3 \mathrm{~F} .4 \mathrm{a} \cdot, 0-6-6 \cdot 3 \mathrm{v}$. 3a.
For Mullard 510 Amplifer
$50-0 \cdot 350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~B}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$ $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}$, , $0-5 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{~g}$. $25-0-425 \mathrm{v} .200 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{~s}$.
$425-0-425 \mathrm{v} .200 \mathrm{~mA}, 6-3 \mathrm{v}, 4 \mathrm{~s} ., 6 \cdot 3 \mathrm{v}, 3 \mathrm{~s}, .8 \mathrm{v}$. $450-0-460 \mathrm{v} .250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}$., c.t., 5 v . 3 a . TOP GHROUDED DROP-THROUGH TYPE $200-0-260 \mathrm{v} .70 \mathrm{~mA}, 6 \cdot 3 \mathrm{~F}$. $2 \mathrm{~m}, 0-6-6.3 \mathrm{v} .2 \mathrm{~s}$ $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .3 \cdot 5 \mathrm{a}$
$250-0-250 \mathrm{v} .100 \mathrm{~mA} .8$
$350-0-350 \mathrm{v}, 80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{~s} ., 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{a}$
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6-3 \mathrm{v}, 4 \mathrm{~s}, 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$.
$300-0.300 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~A}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{~s}$.
Buitable for Mulland 510 Amplitier
$350-0-350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v}, 3 \mathrm{~A}$.
$50-0-350 \mathrm{v} .150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{z}, 0.5 \cdot 6 \cdot 3 \mathrm{v} .3 \mathrm{~s}$
HLAMRANT or TRANSISTOR POMER PAOE 4011 $3 \cdot 3 \mathrm{v}$. 1.5 s . $7 / 9 ; 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 8 / 8 ; 6 \cdot 3 \mathrm{v}$. 3 s . $10 / 9 ; 6 \cdot 3 \mathrm{v}$ 6s. 21/9; 12v. 1a. 8/8; 12 v . 3a. or 24 v . $1 \cdot 5 \mathrm{ba} .21 / 9$; -9-18v. 1\&a, 17/0; 0-12-25-42v. 2A. 20/g
CHARGER TRANSFORMERS $0-9-15 v$. 1fa. 14/11; £®. 17/9; 3a. 19/11; 58. 23/9; 6a. 27/0; 88. 33/0. AUTO (8tep UP/step DOWN) TRANSFORMERS $\begin{array}{llll}0-110 / 120 v . ~ 200-230-250 v . . . .50-80 ~ w a t t a ~ & 15 / 9 \\ 150 \text { watts, } 29 / 11 ; 250 \text { wates } 49 / 9 ; 500 \text { watts } & 99 / 9\end{array}$ OUTPUT TRANSFORMER
tandard Pentode $5,000 \Omega$ or $7,000 \Omega$ to $3 \Omega$
Push-Pull 8 watta ELS4 to 3 ด or $15 \Omega$
Push-Pull 10 watts 6 V6 ECL 86 to $3,5,8$ or is Push-Pull EL84 to 3 or $15010 \cdot 12$ watts Push-Pull Ultra Lhaear for Mullard 510 , e KTA6, KT06, etc., for 3 or 150
wound EL34, 6 L 6 , KT6 KT etc to 3 tectionally 8MOOTH1NG CHOKES
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \mathrm{D} 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 10 / 9$ $80 \mathrm{~mA}, 10 \mathrm{H}, 35008 / 9 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 40004 / 11$.

## 

R.S.C. COLUMN SPEAKERS
S.C. C57 is watts inc Ave $7 \times 44 \mathrm{n}$ speakers Address. 15 ohm matching. Type C48s, 30 watts. Fitted four 810. high fix 8 veral size approx. $42 \times 10 \times 51 \mathrm{n}$. Or deposit $85 /$, watt speakers. and 9 m thly pmists 34/9 (Total \&18.17.9) Carr. 10/- 16 Gns .
 Or Deposit E4.13.8 and 9 monthly payments or 5 $8 / 6$ (Total £28.5.0).

## 30 WATT HI-FI AMPLIFIER

for Guitar, Vocal or Instrumental Group
A 2 or 4 input, 2 vol. control H1-Fiunit Gith arate Bass and Treble controls. Current valves. Peak output rating. Strong Rexine covered cabiner with handles. Attractive black/gold perspex facla. Neon indicator. For $200-250 \mathrm{~V}$. A.C. Mains. For 3 or 15 ohm speakers. Send S.A.E. for leafiet. Deposit 3 gns . and 18 Gns Carr.


## 12in. HIGH QUALITY LOUDSPEAKERS


LOUDSPEAKERS Limited number of heavy duty

Brand new, guaranteed. Terms avallable over £8. Carr. 10/-extra. | $12 i n$ |
| :--- | :--- | :--- | :--- |



## (a) FANE <br> 'POP' 100 <br> loudspeaker

$18^{\prime \prime} 100$ Watt
Fantastic power
handling. Guar-
19 Gns


POWER PACK KIT Consisting of Mains transformer, Metal Rectifler, Electrolytios. smoothing choke. chassis and circuit. 200j | 250 v A. A. mains. Output 250 v. |
| :--- |
| 60 mA |
| 6.3 v . 2 A . Supplied with case |
| 11 |

## CLEARANCE LINES

HIGH QUALITY $8^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKERS 10000 gauss $11 / 9$ 14 WATT HI-FI AMPLIFIERS High sensitivity. Two ls for mixing purposes. Separate Bass and Treble Controis. Valves ECC83, ECL86. ECL86. EZ80 Output for 15 ohm Loudspeaker. 200-250v 50 c. p.s. A.C. mains operation. Size approx. $8 \times 8 \times 61 \mathrm{n}$. Factory $\mathrm{f7}-19-11$ Carr bullt and fully guaranteed. Limited number to clear at $\mathbf{f 7 - 1 9 - 1 1}$ 10/-
E.M.I. HIGH FIDELITY LOUDSPEAKERS 1

Gauss 13,000 lines. Formed fiexible P.V.C. cone surround for very
EXTENSION 'SPEAKERS 29/9
Cabinet size $12 \times 8 \times 5$ in.
attractive grey lizard skin finish
Fitted high fux 5 watt 30 ohm
speaker.

## PHONE AMPLIFIERS

ree. Standard dry battery operated atra listen with both hands 59/9
1 WATT TRANSISTOR AMPLIFIERS

## loudspeakers. Miniature size. Brand new boxed. ${ }^{\text {for } 3-5}$ Post free $37 / 9$

PRINTED CIRCUIT KITS for making printed circuits. $12 / 9$
Complete with 72 square ins! laminated board and necessary fluids. Post $2 / 9$
J.B. VHF/FM DIAL \& DRIVE ASSEMBLIES ONLY 9/9

Complete with escutcheon. Size $7^{\circ} \times 44^{\circ}$. Escutcheon $7 t^{\circ} \times 2 i^{\circ}$. Post $2 / 9$ TAPE RECORD/PLAYBACK AMPLIFIERS
watts output. Masio Eye Recording level indicator. For 3 ohm L/S. All normal $\mathbf{~ E 8 . 1 5 . 0}$ HEAVY DUTY 15 in .40 WATT LOUDSPEAKERS 14 GNT in substantial Rexine/Vynair covered cabinet. Carr. 15/-

14 Gns.

## MINI-8 HI-FI LOUDSPEAKER UNITS


JASON VHF/FM TUNER DESIGNS

STEREO/TEN HIGH QUALITY AMPLIFIER

TEREO/TEN HIGH QUALITY AMPLIFIER 5watts high quality peak output on each channel
Sensitivity 50 millivolts. Sultable all crystal or Sensitivity 50 millivolts. Sultable all crystal or ceramic stereo cartridges. Ganged Bass and $\begin{array}{ll}\text { For } 2-3 \text { ohm speakers. } & \\ \text { Assembled with } 12 & \text { Carr. } \\ \text { months' guarantee } & 7 / 9\end{array}$
6/12V CAR BATTERY CHARGERS
Complete kit of parts with Ammeter and Circult. $4 \mathrm{amp} 49 / 9 \quad 6 \mathrm{amp} 69 / 9$

All types $220-250 \mathrm{~V}$, A.C. Mains. Bullt 10/- extra


## TEGHIGAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how ?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

## MEM/SElF-BUILD RADIO courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

## POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.




The Premier Stereo Sy mem consists of an all transistor sterco atmplifier, Garrard Model 2025 autofmanual record player unit fited ntereo/mono cartridge and maunted in teak finish plinth with perspex cover and two matching teak Anish loudspeaker systems. Absolntely complete and supplied reauly to plug in and play. The 10 transistor Amplifer has an output


## GARRARD RECORD UNITS

1026 stereo/mono cart 2025 stereo/Mono car 3000 with 9TAHCD Carriage 7/6 extra AT60 MKII less cart. BP'25 MKII less cart.

AP75 less cart.
AP75 less cart.
BL75 less cart.
$\left.\begin{array}{l}\text { £18.0.0 } \\ \text { \&29.0.0 }\end{array}\right\} \begin{aligned} & \text { perspex cover } \\ & \text { £7 10.0. Carr. } 7 / 6\end{aligned}$

GOLDRING RECORD UNITS
GL68 less cart. $£ 22.7 .0$. GL7D leas cart. 835.15 .5 Carriage 10/- extra

## PICK-UP CARTRIDGES

SHURE M3D (Btereo)
13.8.0. BPl (8tereo)

PICKERING V15/AC2 (Btereo
gONOTONE 8TABC/Diamond (Steren)
ACOS (GP91/18C (Mono compatible)
AC08 GP94-1 (Stereo)
B.S.R. X3M (Mono compatible)
B.S.R. X3H (Mono compatible)

RONETTE 105 (Btere)
88.10.6 Teak Plinth with 88.19.6 perspex cover an
 218.18.6
£11.19.6 Carr. $6 / 6$ extra £11.19.6

RON ETTE 106 (Btereo)
All complete with mounting bre..................
Post and Packing 1/6 each


## EI-FI STEREO HEADPHONES

Designed to the highest powaible mandard. Fitted Fitted 2!" speaker unita with soit padded ear snulis. Adibstable hear Complete with 6 ft, lead and atereo lack plug. and stereo fack plug.
S9/6 P. \& P. $5 /-$

MONO HEADPHONES 2000 ohm $14 / 6$ P. \& P. $2 / 6$. gTEREO BTETHOBCOPE BET LOW Imp. 25/-P. \& P. 2/MONO STETHOSCOFE \&ET Low lmp. $10 / 6$ P. \& P. 2f.

## 'PREMIER

SPEAKER SYSTEM 8pecially designed olled teak cabinet with vynair (ront. Bize 121" high,
$7!^{\prime \prime}$ wide, $6 z^{-~ d e e p . ~ F l t t e d ~ 64, ~ E M I ~}$ 8ohm Bass ppeaker with rolled 8ohm Bross apeaker and matehing $3^{*}$ E.M.I. tweeter. Fuily lagged. 27.19 .6 . Carr. 7/6.


## MULTI TESTERS



MODEL D14. A really versatile inatrument that makes a handy pocket size
tool, Mearures AC or DC voltige in three ronges of $0-15-150-1000$ volta. Resistance $0-100,000$ ohma. Current $0-150 \mathrm{~mA}$ D.C. size only: $3 \mathrm{i} \times 2 \ddagger \times 1 \mathrm{itin}$. Complete with battery, teat leads and instructions 49/B. P. \& P.' $2 / 6$.

POCKET SIZE MODEL. with wide angle, je welled meter movement. ceriamic long-ilite, low-lons suitching, tough impact
resinting case, Sensitvity 20,000 ohms/ resishing case, sensitrity
volt D.C. 10,000 ohms/volt A.C. 19 Rankes: $0.5-25 \cdot 50 \cdot 250-500-2500$ volta DC. $0 \cdot 10-50-100-500-1000$ volts AC. $0.50 \mathrm{uA}-2-5 \mathrm{~mA}-250 \mathrm{mADC} .0-\mathrm{H000} \mathrm{ohras}-$ 6 megohms, 10 u uf- -0.001 mid- 1 mfd .
${ }^{20}$ to +22 dB . Complete battery, test -20 to +22 dB . Complete battery, test
lead and instructons. 44.19 .6 P. \& P. $3 / 6$.

WIDE RANGE OF HI-FI STEFEO EQUIPMENT ON DEMONSTRATION All leading makes available includng Rogers, Armistrong,
Dulci, Wharsedale, Goodmana, (boldring, shure, etc. etc. Dulci, Whartedale, Goodmans, (boldring, shure, etc. etc.

SPECIAL OFFER

## BALFOUR

"PRINCESS"
4 speed Autochanger fitted AcO8 Mono compatible Completo cartridge. Complete with TEAK BA8E. 7/6.

MONO GRAM AMPLIFIER
21 watts output. Uses ELLS4 valve, double wound mains transformer. Ideal for use with any record deck. Volume)
on/off and tone controla on Hying leads. Outper impedance 3 ohms. Size overal $54^{-w}$. x $54^{\circ} \mathrm{d}^{2} \times 3^{3} \mathrm{~h}$. A.C. 200 P 40 V . ONLY 49/6. P. \& P. 5/-

JULIETTE NA. 50185 BAND 18 TR.ANSISTOR MAINS/BATTERY RADIO

 $108-134 \mathrm{Mc} / \mathrm{s}$. PB $148-174 \mathrm{Mc/s}$. . Fer-
rite bar aerial for $\mathrm{AM} / \mathrm{MB}$. Telescopic rite bar aerlal for AM/MB. ${ }^{\text {aerial for FM/VHF/PB. } 4^{-} \text {P.M. }}$ Speaker. Operates on AC 250v. or $91^{-} \times 69^{-} \times 31^{-}$. PREMIER PRICE ${ }_{3} \mathrm{gna}$. P. \& P . $10 /-$


TWO STATION TRANSISTOR INTERCOMS.
Complete with battery and 50 ft . connecting wire. Compact size, two way call aystem. Ideal to home, office, lactory, etc.

FOUR STATION INTERCOM FOUR STATION INTERCOM. Master unif. and 3 slaves ldeal for offlee and home. Complete with battery and
connecting wire $£ 7.19 .6$ P. \& P. 5/6.

## "'VERITONE" RECORDING TAPE

SPECIALLY MANUFACTURED IN U.S.A. FROM EXTRA STRONG PRE-STRETCHED MATERIAL. THE QUALITY IS UNEQUALLED. TENSILISED to ensure the most perinanent baze. Highly reaistant to breakage, moist ture, heat. cold or humidity. High polithhed splice free finish. Smooth output throughout the entire uudio range. Donble wrapped-atirachvely bozed
 DT3 $34^{\prime \prime} 600^{\circ}$ POLYESTER $11 / 6$ SP7 $7^{\prime *} 1200^{\circ}$ POLYESTER 18/6 SP5 $5^{\prime \prime} 600^{\circ}$ P.V.C. $\quad 8 / 6$ LP7 $7^{*} 1800^{\circ}$ P.V.C. 15/LP5 55 $900^{\circ}$ P.V.C. $101-\quad$ DT7 $7^{\circ} \quad 2400^{\prime}$ POLYESTER 25/DT5 5' 1200 POLYESTER 15/- TT7 $7^{* *} 3600^{\circ}$ POLYESTER 50/LPS 54* 1200' P.Y.C. $\quad 12 / 6$
TAPE SPOOLS $3^{\circ} 1 /-, 5^{\circ}, 69^{\circ}, 7^{\circ} 1 / 9$. TAFE CASES $5^{\circ}, 57^{*}, 7^{\circ} 2 / 6$.
Puet and Packing $3^{*} 1^{\prime}-5^{*}, 5 z^{*} 1 / 8,7^{*} 2 /-$. ( 3 reels and over Post Free).



Have a look at your present soldering irons. Are they really giving you the performance and service you're paying for? Is there really a model suitable for your size of work? Or are you making do with a tiny bit in a big iron? Or vice versa? Do they have the cool, comfortable feel, the elegance, of a LITESOLD ? Drop one on a concrete floordoes it survive? Can you easily and cheaply replace the bits? Can you service it yourself? Are the models you want available for any voltage? Are they listed at 32 shillings or so each, with discounts for quantity?

Yes? Then we must be preaching to the converted, for you are surely a LITESOLD user already.
Well, if you are, or even if you're not, you may be interested in the new PHILIPS ELECTROLYTICALLY IRON COATED BITS. They last up to 75 times longer than copper, and are a big advance on all previous iron coatings.

Please ask for literature L10

## LIGHTSOLDERING DEVELOPMENTS LTD

28 Sydenham Road, Croydon, CR9 2LL
Telephone: 01-688-8589 \& 4559

TRANSISTORS etc.
AC107 3/- 0 0035 7

| A0107 | 8/- | 0035 | $7 / 6$ |
| :---: | :---: | :---: | :---: |
| AC126 | 8/- | $0 \mathrm{C4} 4$ | $2 / 0$ |
| AFl15 | 8/- | $0 \mathrm{C45}$ | $2 / 0$ |
| AF116 | 81- | 0070 | $2 / 8$ |
| AF117 | 2/9 | 0071 | 21- |
| BPY18 | 4/6 | 0072 | $2 / 8$ |
| BFT 51 | 4/- | 0073 | $2 / 8$ |
| GET118 | 8/6 | 0075 | 2/2 |
| OAJ | 1/6 | 0 C 81 | 2/- |
| OAP | 1/8 | OC81D | 21- |
| OA81 | 1/8 | 0C82D | 2/3 |
| 0485 | 1/8 | OC140 | 5/- |
| OA91 | $1 / 9$ | OC169 | 8/6 |
| 0028 | 6/6 | 0 Cl 70 | 2/8 |
| 0020 | 5/- | OCl71 | 8/8 |
| 0026 | 5/- | 00202 | 4/6 |
| 0088 | $6 / 6$ | TK22C | 1/6 |


| 8HIOOD DIODE |  |
| :---: | :---: |
|  |  |
| BY100 800 ply | 2/10 |
| New 500 ma |  |
| 250 plv | 1/9 |
| Avalanche 1ta |  |
| 1200 plv | 4/- |
| Six Amp Beries |  |
| BYZ13 300 piv | 8/6 |
| BYZ12 600 piv | 4/6 |
| BYZ11 900 plv | $5 /-$ |
| BYZ10 1200 piv | 5/6 |
| Mullard stacir FW |  |
| Bridge |  |
| 12A 100 piv 89/6 | (3/-) |
| THYETSTORS |  |
| 5 amp moriea |  |
| 100 plv | 7/8 |
| 200 piv | 9/- |
| 300 ply | 10/6 |
| 400 piv | 12/- |
| 800 ply | 851- |
| 10 amp saries |  |
| 50 plv | 10/- |
| 100 piv | 12/- |
| 100 amp series | prices |

$\begin{array}{ll}100 \\ \text { available } & \text { series pric } \\ \text { an }\end{array}$

Abso $8 \mu \mathrm{~F} 350 \mathrm{~V} 1 / 8,25 \mu \mathrm{~F} 25 \mathrm{~V} 1 / 8$ and $50 \mu \mathrm{~F}$ ह0V $1 / 9$. Other electrolytics in current list Pontage, Paciting and Insurance all above 7d. up to $3 ; 1 /$ - from 4-11; 12 and over paid 8 GAlG VAR. COIDIGNsiHR: Mod., alr-spaced, $0005 \mathrm{ea} . \mathrm{sec} .5 /-(1 /-)$.
8UB-MIMIATURE TRAMSFORMERS Ontput ( 8 Q for 0072 etc.), Almo Driver $9 / 6$ each (7d). MULTEMEMER: 20,000 Q/V D.C., 10,000 Q/V A.C. $0-5 / 25 / 50 / 250 / 500 / 1 \mathrm{~K}$ Folts D.C $0-10 / 50 / 100 / 500 / 1 \mathrm{~K}$ volts $\mathbf{A . C .}$. $0-50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 260 \mathrm{~mA}$ D.C. $0-8 \mathrm{~K}$ a/8 mega - Over-load protected 1969 - 20 to +22 dB . Complete with teat leada and ingtructions at $38 / 8$ ( $1 / 6$ ) $10000 / V$ described in free list.
SOLDERING IROY 8 llm Mod Prition Hien
guaranteed for pros. sim 8 in., all parts replaceable, fully cianted for profesional, radio and general D.I.Y. use. 19/8 post free.
COLLARO "O" RONETACements for BSR TC8LP, TCS and TC8LP/STEREO
 On at 76 each (6d.). ACOS GP91 ST/LP; BRR 8T4 and 8T9; BONOTONE 9TA and 9TAHC, PHILIPG AG3306, All at $18 / 6$ (6d.).
 GP91 at $6 / 8$ (6d.). No other types at present, and no 78 rpm available in any type
PIOK-UP CARTRIDGES. all ftted Styll and Standard fttings, Mono GP67/8, 18/6. Mono de Luxe GP91/8, 17/- Stereo Compatble-Mono which also plays Stereo records monaurally with min. Wear, GP91/80, 19/6. Whatest Btereo GP98, 28/-. Ceramlc Stereo, top quality for expensive outits, GP94, $88 / 6$ (all $1 /-$ ).
PP8 RLIMMAATOR (A.C.) $17 / 6$. (1/6) TWO STATION TRANS. INTHR-COM. Eircelient
baby alarm. Instant, easy fitting with leads, pluga and battery. Al you require $59 / 6(3 /-)$. baby alarm. Instant, easy fitting with leads, pluga and battery. All you require $58 / 6(3 /-)$. TRANSI8TORISED AMPLIFRERS, 3 watt, 9 V operatlon, $45 / 6$ ( $1 / 6$ ); 71 watt, 6 trans. 24V operation, $67 / 6$ (2/6).

SUBSTITUTION BOXES, Capacitance 84/9 (1/B). Resistance $32 / 8$ ( $1 / 6$ ). Both full range and complete. Fuil details in list
TRGT PROD8: Flexible, unbreatable $24^{\prime \prime}$ Red and Black leads, thin $4 \xi^{\prime \prime}$ prods, $1 \xi^{*}$ plugs 4/9 (9d).
REOORDLG TAPE: Finest quallty Britigh Mylar. STANDARD: Bin. 600ft. 7/8, Bitin $850 \mathrm{ft} .8 / 9,7 \mathrm{in}$. 1200tt. $11 / 3$. LONG PLAY $5 \mathrm{in} .900 \mathrm{tt} .10 /-$. $81 \mathrm{in} .1200 \mathrm{tt} .11 / 8,7 \mathrm{in}$. 1800 tt . 18/-. (1/3 reel). Other types in our llat.
" 60 " $20 / 8$; Stick- CRYBRAL. MIC91, Desk, $18 / 8$; MIC45, curved hand grip 17/8; gtlek "80" 20/8; 8tick "39" 26/6(1/6 each type). Cream plastic hand type 7/6, or with "strut" stand, switch and 2 leads with 2.5 and 3.5 pluga $11 /$. Lapel (or hand) with clip $8 / 8$ ( $1 /-$ ).
 Adaptor and Necls Cord $87 / 8$ (2/6). M811, aimlar, but fixed on ferdble Bwan neck to awitchfitted base 42/6 (2/6). DM128 Uni-directionsi, $50 \mathrm{~K} / 600$ ohms imp , stand adaptor, very high quality $6 \frac{1}{} \times 2 \times 11^{*}$, 85.9 .6 ( $5 /-$ ).
OARDIOID DYNAMIC OMPI-DIRECHIONAL: Two recently introduced highiy auccestal mikes "GQUARE" 208, \$5.10.0. "BALL" type, 209, with built-in vol. control, awitch $50 \mathrm{~K} / 600$ ohms imp., 5.17 .6 (either type $5 /-$ ). Full detaila in list.
SPEAKFRR: 12 in round, ftted Tweeter, $6 \mathrm{~W}, 3$ or 150 (state which), $85 / 6$ ( $6 / 6$ ); $21 \mathrm{in} .3 \Omega$ $8 / 8(1 /-) ; 6 \times 4$ heavy duty $3 \cap 18 / 6$ ( $3 / 6$ ) or for Stereo $88 / 6$ pair, post etc, paid; 8 x 3 in ., $3 \mathrm{a}, 8 / 6$ (1/-). Limited quantity powerful 21" PM tranglstor replacement speaker, high
ohms, excellent, $8 / 6$ ( $1 /-$ ). HEADPHONES High Rea. $2000 \Omega$ ea. Earplece $18 / 6(1 / 6)$
 Stereo Dyn 8-16R, $68 /$
Crystal 4/9 (either 7d.).
HCROPHONE INBERT8: Diameter 1.76in. or 0.9 in either size $5 / 6$ (6d.)
Akrilids, Gar Trpas: Teleacopic, vandal proof, locks retracted, 2 keys and all êttings. 88/6 (2/6) Motor driven, 12V, 6 sectlon, complete 87.10 .0 ( $5 /-$ ).
FOR ALL PORTABLES and F.M. sErYs. Teleacopic b section 5 t-28in. with swivel, 5/-.
 SWITCHES. Gtandard (0ite mes)
EWITCEBS: Standard toggle, metal, 250 V 2A. One hole fixing: SPST 2/8, SPDT $2 / 9$. "of"" 1/9. Reed magnetic on/oft $1 / 9$ (7d each, DT $1 / 6$ each. gmall DPDT 3 way, centre VIBRATORS: Famous makes only. 12 volt 4 pin non-synch 2/6. 12 volt 7 pin synch 10/-. 6 volt 7 pin aynch $10 /-(1 /-$ each, sll types).
MAIM8 NRON TMSTERR: Ply leads 2/- (7d.). Pocket screwdriver type 8/8 (6d). PLUGS: Atd. Jack, plastic body 2/- Bcreened 2/9. Sockets $1 / 8$ (all 7d.). VALVE HOLD FRS: B7G or B9A, Moulded 6d. (7d, up to $4,1 /-$ over 4 ). COINETHTMG W1RE: 6 coils asatd. cols, each 5 yds. Bolid Core 2/8. Flexible 8/6, Super thin for tramsistor wring etc. 3/- (8d. all typea, per 6 colls). PIOK-UP WIRE: Twin Super thin F'lex, Screened, 8 heathed, $1 / 8$ yd. (6d. up to 6 yds, over 6 yds. post free). TWIN MIEE CABLE: $1 / 8$ yd. SIf GLA MIKE CABLE: 7d. yd. Both flexible, screened and sheathed. FFEEDKR CABLE: Twin r.f.bsl. "fig. $8^{\text {" }}$, 80 a , or flat 300 o transparent polythene insulated, either 6d. per yd. (all cables up to three yards 8 d., each additional yard, 1d. extra).
CURBENTT LIST: Sent with all orders or free for a.s.e. details of cable, croc., clipe and ieads, Continental din plugs for Grundtg, Telefunken equipment, etc., dlals, plugs and socketa, panel meterg, record players and tape recording acceasories, rectifiers, relays, wire wound sistors, portable sets, car radio, more switches and other components, toolser, Veroboard etc. etc. If interested in arrplus equipment and units please say so. This advertisement cancels all previous ones and lista suppled prior to April 30th.
R.F. IMDICATOR, 5-Band, with meter antenna, monitoring cryatal earpiece etc., $48 / 6$ (1/8). Detaila in list.
BETRACTABLE FLEXIBLE LEADS. Space saving 'Curly', many useg in car and home: with phono plug each end, $6 \mathrm{ft} ., 4 / 6 ; 12 \mathrm{ft} ., 7 / 9$. With phono plug one end, phono socket at other, $6 \mathrm{ft} ., 5 /-, 12 \mathrm{ft} ., 8 / 8$ (9d. on any).

## FELSTEAD ELECTRONICS

(PW19)
LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE, SK8 4EE
TERMS: Cash with order only. No C.O.D. or caller service. Poat, packing and tharance charges are shown in brackets after all items. Regret orders under $5 /$ - plus carrlage cannot be acoepted. Chargen apply to G.B. and Bire only. Oversead air or surtace mall extra at cost. 8.A.E. please for all enquirics.

# Here's money-making repair duta for over 1000 POPULAR MODELS <br>  <br> This big RADIO \& TELEVISION SERVICING 

 repair library will help you speed up your repair work and increase your earnings. Packed with circuits, repair data and vital information it covers all the popular 1965-1969 TV's. Radios, Radiograms, Car Radios, Record Players and Tape Recorders-including the latest data on COLOUR TV.Four volumes handsomely bound in maroon and gold. 2,180 pages written by a team of expert Research Engineers-there's no other publication like it! Speeds up repair work year after year. Examine this latest edition at home free for a week. Send no money-just post coupon below-there's absolutely no obligation to buy.

## COLOUR TV

All aspects of Colour TV are covered-installing receivers, the explanation of new terms, adjustments on purity, colour balance, static and dynamic convergence, etc. The vital information in the colour section makes this repair library invaluable to the service engineer.

## SERVICING DATA ON ALL THESE MAKES <br> Aiwa, Alba, Baird, Beogram, Beolit, Bush, Carousel, Cossor, Dansette, Decca,

 Defiant, Dynaport, Dynatron, Eddystone, Ekco, Elizabethan, Ever Ready, Ferguson, Ferranti, Fidelity, G.E.C., Grundig, H.M.V., Kolster-Brandes, Hitachi, Invicta, McMichael, Marconiphone, Masteradio, Motorola, Murphv, National, Newmatic, Pam, Perdio, Peto-Scott, Philips, Portadyne, Pye, Radiomobile, R.G.D., Regentone, Roberts' Radio, Sanyo, Sharp, Smith's Radiomobile, Sobell, S.T.C., Sony, Standard, Stella, Stereosound, Teletron, Thorn, Trans Arena, Ultra, Van Der Molen, World Radio.
## SENT TO YOU BY POST ON

 7 DAYS FREE TRIAL
## JUST OUT I

New 12th Edition of ELECTRICAL ENGINEER'S REFERENCE BOOK
Over 2,000 pages, more than 2,400 Diagrams, Photographs, and Tables. A comprehensive reference work on modern theory, practice, equipment and latest developments written by 75 leading experts.

Main Sections include-
Theory and Calculations. Power Station Practice. Cables and Wires. Lighting, Heating Lifts. Motors, Wiring and Installation. Applied Electronics. Automatic Control. Computers. Latest I.E.E. Reg. requirements. Education, Training, City \& Guilds, etc.


To: Buckingham Preas Ltd., 18-10 Warren Street. London, W. 1
To: Buckingham Proas Ltd., 18-10 Warren 8treet. London, W.1. Please send RADIO \& TV BERVICING-4 val ormest:
application. I will return the booka in 8
Tick (ل) $\square \frac{\text { Full cash price of } 116 \text { or }}{\text { here }}$-deposit and 16 montbly payments of $20 /$ paying 817 in all.
here $\square \frac{20 / \text {-deposit and } 16 \text { montbly paymenta of } 20 / \text { - paying } 217 \text { in all. }}{\text { me on } 7 \text { days trial Electrical Engineer's Reference Book. Cash price as } 8 \text {. (or }}$ $\square$ Also send me on 7 days trial Electrical Engineer's Reference. If you are under 21 your father must All in coupon.

Please tick (in) here The address on lefl is



## ARR/SEATRANS/REC.

Compact VHF Trans./Rec. Fits in the pocket. Consists of Mike/Speaker, amplifier. aerlal, operate up to 100 miles depending made to Operates from dry batteries. Completely selfcontained. Cost Govt. over $£ 50$ each. Regulatlous state mast not be operated in UK so piease mentlon "For Dismantling purposes only ${ }^{1 "}$ when ordering. Price $\pm 2.10 .0$ each, P. \& $\mathbf{~} 10 / \mathrm{F}$. Two sets for £5.0.0, post 1ree. Four seta $£ 8$, carriage free. Bulk sale of 10 sets el5, carriage fl . Export enquiries
Invited.

PRECISION PANEL METERS
Brand new, boxed and fully guaranteed. With fixing nuts and boits. Eize approx. 31 in . square.
$0-500$ volts FSD . As used by leading laboratories. $0-500$ volts F8D. As used by leading laboratories.
Ex-stock, only $35 /-$, w. \& p. 5/-. Two for $£ 3$, post free
 Bulk Purchase. Famous manufacture. Muat have cont nearly $£ 40$ euch. Input $200 / 250$ volts $50 \mathrm{c} / \mathrm{s}$ a.c.
Output 250 volts d.c. it approx. $175 \mathrm{~m} . \mathrm{a} .6 \cdot 3 / 12$ volts output 250 volts d.c. it approx. $175 \mathrm{~m} . \mathrm{a} .6 \cdot 3 / 12$ volts
at approx. 4 amps a.c. Robust metal rack mounting cabinet, size approx. $19 \times 16 \times 8 \mathrm{in}$. Price only $85 /-$. carriage and insurance $15 /-$. All units are fully fused and metered.

## WIRCAFT- <br> AIRCRASA

 TELECOMMUNICATIONS Lateen to thi thrili at BANDREC. Aircraft Pilots $\qquad$ Airports at work. Also Civil Depts, Fire and Ambulance bervices. Gas and electricity depts. Ideal forreceiving 2 meter amateurs. Glves super reception withing the range of all transminsions. A fully iransintorised recelver covering $97-147 \mathrm{mc} / \mathrm{a}$ VHF brosdcasta. Robust attractive 2 -tone finish metal cabinet size approx. $7 \times 4 \times 4 \mathrm{in}$. Operates from a 9 volt internal battery. Speaker or earphone output plus chrome telescople aerial. Only $\mathbf{2 8 . 1 9 . 6}$ carr, and
insurance $10 / 6 \mathrm{C}$.W.0. or C.O.D.

SURPLUS BARGADNS HEAFY DUTY ACCUMULATORS $10 \times 9$ ( 6 volt) 40 AH . In metal cabinet. Size approz atrap. A $9 \times 6$ in. Complete with output aocket, carrying Price $55 /-$, carriage and insurance $15 /-$
Type 2 ( 6 volt) 16 AH . In atudy wooden cabinet with carrying atrap. Worth 87 each. Brand new and boxed,
only $32 / 6$ each,
p. A $12 / 6$. PIELD TELEPH. p . p .
TYDe F HOUFONES
ydoor outdoor in a portable woolen case. Ideal por y brand new. Price only e5. 19.6 to 10 miles. Absolute nsurance 15/.
19 Set Headphones and Mike. Not new but in working order. Only $7 / 6$ per set. p. \& p. $4 / 6$.
Tannoy Mikes. As new, $9 / 6$ each, p. \& p. $3 / 6$ (heavy Guty, ideal tor P.A. work).
High Quality moving coll headphones and mike. Brand new, only $17 / 6$, p. if p. $5 / 6$. Sultable for most
applications (cost approx. es per pair) applications (cost approx. e3 per pair)


The most economical method of running transistorine equipment from $\mathbf{A C}$ mains. Power radlos, record players, etc. MK. 1 model replaces all 9 volt batterien. Price 71 and 9 polte. BT B/. MK. 2 model. Output 6 volte, 7 and 9 volts. BTABILISED. This model is ideal for RUN YOUR 18 SET TXIRX FROM AC ATVS We manufacture a 18 TX/RX FROM AC MAINS 19 set Trans/Rec direct from the madna Complete ath full connecting tnatructlons. Contained in an attractive steel cabinet. Price $£ 6.10 .0$, carr. $\&$ jins. $10 \%$ attractiv RECEIVER VERSION ONLY \& 4.10 .0 cart SHIPPING/80/160H BAND REC.
Listen on the worlds shlpping. Hams at word. Covers the complete Maritime, and Trawler Band, plus tom band and 80 m . Attractive hammer finished case, size $7 \times 5 \times 5 \mathrm{in}$. A neat Itttle auperhet. Fully tranheadphone output. Brand new from makerg PRIC £9.10.0 carr 10\%. SMOOTHING UNIT
Beautifully made pleces of equipment. 12 volta or 24 volts d.c. input gives a fully moothed fully regulated d.c. output. Worth 230 each. Robust metal cabinet with provision tor standiby battery. Brand new in maker's cartons. Price 65/-, p. \& p. 15/

Brand new fully transistorised Communications Specifications: 4 complete ranges $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. covering all amateur bands, shipping and trawler banda, and broadcast bands. A highly efficient double tuned superhet, comprising $\mathbf{R} / \mathbf{F}$ aerial tuning section, A.V.C and built-in B.F.O. for C.W. or 888 reception. Ideal for fixed or mobile reception. Operates from Standard 9 volt audio output. With speaker and headphone output Hammer finished robust steel case of pleailng modern deaign with all controls on well set-out front panel. Bize approx. $9 \times 7 \times 6$ in. British munulacture. Due to huge purchasing we can offer these excellent receivers at less than half their normal worth. Complete with handbook 216.10.0. Carr. and ins. 15/. Headphones if required

## MINIATURE

## TRANSISTORIS

B.F.O. DNIT

This is a miniature transis. torlsed B.F.O. unit (tunable) that will enable gour set to receive C.W. or S.S.B. recep.
tion. Compact. Slagle hole tion. Compact. Slagle hole
fixing. Thia small unit will fit anywhere. Ideal for all Ex-Govt. Communication Receivers and most Commercial Types. Complete with fitting instructions. 48/6, post free.
18 SET
18 SET CONTROL BOXES brand mew and boxed 10/-; p. \& p. 5/-. Two tor $27 / 6$ post phones and mike, deduct $5 /$ phones and
from total.

MINIATURE MOVING COIL SPEAKERS. $1 /$ in. dia, Only 8/6 each, p. \& p, 1/6. Two 12 VOLT HEAVY DUTY DPDT RELAYS. HIgh current double pole contacts plus auxiliary low current to 20 amp handling capacity. Worth nearly e3. Make ideal aerial changeover unita, car* or house burglar alarms, switching relays. Size only $3 \times 2 \times 2$ in. Price $17 / 6$ each, p. \& p. 2/6. 2 for 30/- port RECTIFIER SALE 6/12 volt full wave bridge. 4 ampa. Brand new manufacturers surplus only $4 / 6$ each, p.\& p. 1/6. 2 for 10/-post free.

# MARTIN IS HIGH-FIDELITY 



FM. TUNER


MARTIN HIGH-FIDELITY AUDIOKITS cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amp for low output pick-ups-escutcheon panels to suit the arrangement you choose. Tuner is styled to match.

For many years now Martin Electronlcs have been producing hlohly efficient and dependable prefabricated modute-type units for simple assembly Into reasonably priced high fidellty systems. Many purchased at the tlme of the introduction of the Martin Audloklt system are in regular use to thls day, completely justlifyng our clalms for years of trouble-free service. No system gives you wider flexlbllity in the choice of unlts avallable than MartIn and all equlpment conforms precisely to stated specification. When new units

## AMPLIFIER SYSTEMS • TUNERS • RECORDERS

are introduced, they are designed for adding to those produced so far, making it easy and economical to extend and Improve your exlsting Martin Audloklt set-up. Anyone can assemble Martin equipment with ease and the foreknowledge that when finlshed, he will be In possession of a true hi-fi assembly of the very best kind which looks and sounds completely professlonal In every way-and MARTIN AUDIOKITS remain as ever, the unlts that have true add-on abillty.

UNITS INCLUDE:

- 5-stage input selector
- Pre-amp tone controls

E 10 watt amp. ( 3 ohms )
E 10 watt amp. ( 15 ohms)

- Mains power supply
- F.M. Tuner

MARTIN ELECTRONICS
154 High Street. Brentford, Middlesex
Please send Audiokit Hi-Fi/F.M. Tuner/Record-
akits Leaflets. (Strike out items not wanted)
Name .
Address . .
PW6



## PRACTICAL!

 VISUAL! Nm 4 m EXCITING!$$
\begin{aligned}
& \text { a new 4-way method of mastering } \\
& \text { 료TRPMPS } \\
& \text { by doing - and - seeing ... }
\end{aligned}
$$



a modern and professional CATHODE RAY OSCILLOSCOPE


## 3 READ and DRAW and

UNDERSTAND CIRCUIT DIAGRAMS


## CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK. <br> INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT
- COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory - no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc. To: BRITISH NATIONAL RADIO SCHOOL, READING, BERKS. Please send your free Brochure, without obligation, to : we do not employ representatives

NAME
BLOCK CAPS
ADDRESS PLEASE PW 6

## TOPIC OF THE MONTH

## Standardisation

OBSERVANT readers will have noticed that P.W. is changing over from $\mathrm{c} / \mathrm{s}$ to Hz . Much of industry has already made the change and most technical journals have followed suit, some of these decisions having been made, as was P.W.'s, not for choice but for conformity.

The idea was to honour the pioneer Hertz, celebrated for his work on radio waves. Thus changing $15 \mathrm{kc} / \mathrm{s}$ for 15 kHz makes some kind of sense, but $50 \mathrm{c} / \mathrm{s}$ to 50 Hz does not, for these are audio frequencies. Blumlein or another audio pioneer would have been a better choice!

But this is only one small item in the move towards Continentalisation (what an ugly word!), the abandoning of a perfectly understandable and descriptive term for one that is not. Already we are taking our medicine, if not our beer, in millilitres, our currency is being decimalised, temperature is given in both $C$ and $F$ and we are being generally geared to the Common Market, even if we never join that confederation.

This movement has led to outbreaks of midsummer madness and perhaps the choicest example was in a recent issue of a contemporary radio trade journal. In big bold headlines it was proclaimed that a certain " maker's TV sets were now "metric ready". Reading on, no more than that the cabinet dimensions were specified in centimetres instead of inches! So help us, it's true.

At least one other journal has abandoned inches per second for tape speeds in favour of metric figures. Here we find, for instance, that the fairly roundish $7 \frac{1}{2}$ i.p.s. becomes 19.1 cm , although the actual figure is 19.05 cm . Some standard! Advertisements in the same journal show that the actual makers are still, however, specifying in i.p.s.

We are, though, all for standardisation in practical matters. For instance, the sooner everyone goes over to the DIN specifications for plugs and sockets the better. Then there will be no need for a caseful of odd leads carrying phono, coaxial, DIN, banana and "special" plugs and sockets. There are many fields in which acceptance of standard interchangeable components would be a blessing for everyone concerned. We'd like to see more of it. W. N. STEVENS-Editor

## NEWS AND COMMENT

Leader ..... 95
News and Comment ..... 96
Letters to the Editor ..... 119
Practically Wireless by Henry ..... 131
On the Short Waves
by Christopher Danpure andDavid Gibson, G3JDG132, 135
MW Column ..... 140
CONSTRUCTIONAL
Comprehensive Audio Mixer by Andrew Dicks ..... 98
P.W. Double-12, Part 3
by Hal Moorshead ..... 102
Slimline Superhet by F. G. Raver ..... 113
Take 20 by Julian Anderson ..... 120
Comprehensive Transistor Tester, Part 2 by J. A. Jebb ..... 123
OTHER FEATURES
P.W. Guide to Components, Part 6 by M. K. Titman, B.Sc. ..... 106
Transistor Output Stages by I: R. Sinclair ..... 116
Aerials, Part 3by A. J. Whitaker127
Basic Semiconductor Technology, Part 2 by M. F. Docker, M.Sc. ..... 136
JULY ISSUE WILL BE PUBLISHED

ON JUNE 6th

[^1]
S.D.C. Products (Electronics) Limited, have extended their range of modular, solderless breadboarding systems to include two new DeCs specifically designed to accommodate integrated circuits as well as discrete components and to have an increased contact capacity- 208 contact points per DeC-as compared to the original S-DeC.

The layout of the contacts consists of two panels of parallel rows of electrically linked contacts spaced 5 mm . apart. This spacing enables short lead devices to be inserted directly into the boards. The new DeCs may be interlocked to give a stable area of breadboard of any desired size and each DeC has slots to accommodate two control panels.

The DeCs are formed from glass-filled nylon enabling temperature cycling tests to be carried out and contacts are of heavy gauge phosphor bronze in natural finish, in either silver plated or gold over nickel plated finish.

DeCs are supplied in two packs. The single pack contains one DeC, one control panel (with bushes for reducing the diameter of drilled holes in the panel) and a jig (for pre-forming components). The 6-DeC pack contains six DeCs, six control panels, sets of bushes and jigs, $50 \times 1 \mathrm{~mm}$. plugs and eight links for joining power rails in neighbouring DeCs.

## Whitby television and vhf radio relay STATION

The BBC has placed an order for the construction of the building for the television and v.h.f. radio relay station which is being built to serve Whitby, Yorkshire.

This new relay station is being built near Abbey Lane, Whitby. It will transmit BBC 1 television on channel 4 , with vertical polarisation, and v.h.f. radio on the following frequencies: Radio 289.6 MHz , Radio 391.8 MHz , Radio 494.0 MHz .

## PRESTON MOBILE RALLY

We of the Preston Amateur Radio Society are again basing our mobile rally on Kimberley Barracks, Deepdale Road, Preston, and this year's rally will be held on Sunday, 31st August, 1969.

For further details send s.a.e. to Press and Contest Sec. : Mr. G. Wright, 56 Queensway, Bamber Bridge, near Preston, Lancs.

## BORDER AMATEUR RADIO SOCIETY

This new radio society has been formed to serve the Southern Borders and North Northumberland. The Secretary. J. Nairn, asks all who are interested to contact him at 5 Murrayfield, Gordon, Berwickshire or the Chairman, G. Shankie. GM3WIG. Meetings are held in the Cross Keys Hotel, Greenlaw.

## TRISTAN CALLING

Mr. Roy Folgate whose callsign G3KDY is well known on the bands, will now have a new callsignZD9RF, for he is now resident on Tristan da Cunha, the volcanic island in the South Atlantic where he has taken up the post of Superintendent of Posts and Telegraphs.

## "HEMEL HEMPSTEAD RADIO-NEWSLETTER"

This is the bi-monthly newsletter of the Pathfinder Radio Group. They also publish and circulate from time to time Pathfinder DXer. Since forming in 1964, the subscription has been free, but as from April 1969, the group are charging 10 s . to new members. The Hemel Hempstead RadioNewsletter is circulated in 9 European countries. For further details, s.a.e. to Alexander Lex-Arnold, c/o 13 Little Road, Hemel Hempstead, Herts.

## MINI 15 MHz OSCILLOSCOPE



What is thought to be the smallest portable solid state oscilloscope of its sort with 15 MHz bandwidth, has been announced by Dynamco and is available at $£ 355$.

It consists of a 7100 display unit, with a new 1 Y 7 single channel amplifier measuring only $2 \frac{3}{4} \mathrm{in}$. and a new $1 \times 6$ timebase module, also of a similar width.

The $1 Y 7$ is a general purpose single channel amplifier having a basic deflection factor of $50 \mathrm{mV} /$ division at full bandwidth and a maximum deflection factor of $5 \mathrm{mV} /$ division with a switched X10 a.c. coupled preamplifier. When the 1 Y 7 is used for horizontal deflection, the deflection factor remains the same and the frequency response is nominally d.c. to $4 \mathrm{MHz}-3 d B$.

The $1 \times 6$ timebase module is intended to provide, in a minimal width, most of the facilities required for general purpose applications. The calibrated sweep rates are $0.5 \mu \mathrm{~S} / \mathrm{div}$. to 0.2 secs/div. in 19 calibrated steps of 1,2 and 5 sequence and a fine control provides continuous uncalibrated variation between steps and extends the range to 0.5 secs/div.

A switched $\times 10$ magnifier gives a maximum sweep speed of 50nS/div.

NEW FOR TWO-METRE FANS
Now joining the Hallicrafter CRX101 pocket-size solidstate aviation frequency receiver already available from Electroniques is the companion model CRX102.

Hallicratters' CRX102 ranges from 144 to 174 MHz (the high-band), tuning to the two-metre Amateur band.

Like the CRX101, it features a superhet circuit with three i.f. stages and five tuned circuits. It receives both a.m. and f.m. An r.f. stage boosts sensitivity and push-pull class $B$ amplification combines high efficiency and power with long battery life (standard 9V battery).

Other features are: automatic gain control, telescopic aerial, provision for external aerial and earphones.

Price of the CRX102, like the 101, is $£ 17$ 9s. 6d., plus 7 s. 6d postage. From Electroniques, Edinburgh Way, Harlow, Essex. (Harlow 26777.)

## THE GOSCUT PISTOL-GRIP SHEAR

The Goscut single-handed shear, only six inches long from tip to tip, is adjustable to cut almost all sheet materials from paper to steel. It has three interchangeable blades. The blade bears down through a slot in a flat surface, so that the tool provides its own anvil or workbench. Close support at the point of cut prevents distortion or fracture of the material and leaves a clean-cut edge

Adjustment of the slot width enables materials of varying thicknesses below $\frac{1}{8}$ in. to be cut. Cutting speed is about 30 seconds a foot run or a little longer for the heavier gauges of metal.

## VHF MOBILE TX TRANSISTORS

Two new high-gain, $n-p-n$ silicon planar transistors announced by Mullard have been specially developed for use in v.h.f. mobile transmitters. Types BLY83 and BLY84, they are electrically equivalent to the TO-60 types BLY35 and BLY36 respectively.

Emitters in the new transistors are composed of several interdigitated structures, each with its own currentsharing resistor. Consequently, they are so robust electrically that they can be used in circuits containing no protection against aerial mismatch or variations in the supply voltage.

The transistors are enclosed in capstan type encapsulations that minimise lead inductance and lend themselves to efficient r.f. circuit design. They are designed primarily for use with a nominal supply voltage of 13.8 V , and are intended for output stages-the BLY83 in a.m. and the BLY84 in f.m. transmitters.

## 12 VOLTS FROM 6

Philips new EN5013 transistor converter unit (suggested selling price $\mathbf{£ 4} \mathbf{1 0}$ s) enables a 12 volt car radio, when switched to negative earth, to be used in vehicles with a 6 -volt electrical system.

The new converter unit has a power rating of 12 watts and can be inserted in the supply lead of the radio and operated with a separate on/off switch or, alternatively, wired to the radio switch so that it can be switched on/off with the radio.
W. Norman Stevens, the Editor of Practical Wireless and Practical Television magazines opened the proceedings by welcoming readers to Caxton Hall and introducing Ian Nichalson of the Mullard Films and Lectures Division, and A. T. Collins, Managing Editor of the "Practical" group of magazines.

Ian Nicholson then introduced the film entitled, It's the Tube that Makes the Colour
 which described the manufacture and operation of the Mullard Colour Screen colour tubes and also described how the pictures are received. It is being used in the BBC Trade Test Transmissions.

After the film. Mr. Nicholson delivered a lecture entitled "Purity, Convergence and All That". He explained that deviation from ideal picture reproduction occurs for one main reasonthe fact that the three guns cannot all be mounted on the axis of the tube itself. It is because of this that geometrical errors between the three rasters that are produced and some means of correction must therefore be provided.
"It is with these means of correction that we are primarily concerned tonight", he said. "We find moreover that the prime components required to effect these corrections are all mounted externally around the tube itself. There is the magnetic shield, the deflection coil assembly, radial convergence magnets, the purity magnets and the blue horizontal or lateral shift magnets. The adjustment of static and dynamic convergence may at first seem rather complex but it is not nearly as difficult as it may appear. After all, purity adjustment consists merely of setting a couple of ring magnets for purity of colour near the screen centre. The position of the scanning coils should then be adjusted along the neck of the tube to give pure colours away from the centre. Static convergence is achieved simply by adjusting five permanent magnets on the tube neck to bring the red, blue and green beams together to give a white crosshatch pattern at the centre of the screen. Finally, dynamic convergence
is the manipulation of a dozen or so controls for the two line standards in a generally established sequence in order to bring the separate red, green and blue crosshatch line patterns together to give single white lines at the top, bottom and sides of the picture."

As yet there is no standardised terminology for the controls involved and each manufacturer has his own ideas about how and in what sequence these operations should be tackleddependent usually on his own particular circuitry. Mr. Nicholson presented a broad picture of the principles involved in colour television receivers so as to make it easier to understand the individual service procedures.

After his talk, Mr. Nicholson opened the meeting to questions from the audience.

On the question of the kind of developments we can expect to see in the future of colour TV, Mr. Nicholson said the main developments would be in the use of integrated circuits which would give greater reliability and improved performance. Integrated circuits would be the subject of Filmshow' 70 and Mullard Ltd are at present working on the production of the film.

A. T. Collins, W. N. Stevens and lan Nicholson.

## comprehensive



MOST of the small audio mixers that are available to amateur audio enthusiasts have very limited applications. Many people who own these will have realised their incapability of accommodating all the various input sources that the amateur may use. One usually resorts to "hooking up" arrangements of attenuators, transformers and other devices to match sources to inputs.
The purpose of this mixer is to provide such comprehensive facilities that almost anything can be plugged into it without alteration. It is the wide range of available inputs that make this unit such a comprehensive piece of equipment. If good quality components are used the results will be no less than hi-fi and the price and appearance of finished unit will compare favourably with any commercially obtainable instrument.

## General Principles

Broadly speaking, audio mixers may be classified into "active" or "passive" types. High quality devices are usually "active", that is, they incorporate some form of amplification. A block diagram of an "active" type of mixer is shown in Fig. 1, and the mixer to be described is based on this system. The inputs are fed to four emitter-followers which


Fig. 1: Block diagram of an active mixer.
incorporate faders to control the level of each channel. The four sound channels are mixed by an adding circuit and the level of the composite signal is controlled by one master fader. The composite signal is then fed through a further stage of amplification to compensate for losses due to the adding circuits and attenuators.

The most difficult problem in designing audio circuits of this sort is the matching of input impedances and voltages. Fortunately, the matching of impedances is not too critical and values that are reasonably close will do, provided the voltage ratings match fairly well. The classes of impedances that are met with in practice are as follows:
High (up to $2 \mathrm{M} \Omega$ ): crystal microphones, ceramic and crystal pick-ups.

> Medium ( $50 \mathrm{k} \Omega$ ):

Line (500 $)$ :
Low (3-30ת): some magnetic and crystal microphones, tuner units, tape recorder outlets, magnetic pick-ups. magnetic microphones. magnetic microphones, loudspeakers.


Fig. 2: Three types of resistive attenuator-L, $T$ and $\pi$.
The easiest way of matching levels is to use attenuators. These can be purely resistive, the simplest of which are the $\mathrm{L}, \mathrm{T}$ and $\pi$ networks illustrated in Fig. 2. It is not proposed to discuss these circuits in detail as they can be found in standard textbooks, but suffice it to say that the L and T types of attenuator are used in this mixer.


## Description and Specifications

The mixer is based on the idea outlined in Fig. 1; an additional facility has been incorporated (dotted lines) to enable the composite signal to be monitored using phones.' The complete circuit of the unit is given in Fig. 3. A few points should be made regarding the input circuits-these are most prone to noise and for this reason only good quality components should be used for resistive attenuators. This also applies to the switches and electrolytic capacitors. The transistors used for the emitter follower stages are AC128 low noise a.f. types; these were found to be the most suitable low-priced transistors available.

The channels are mixed by a simple adding circuit and are given further amplification by $\operatorname{Tr} 5$ and Tr 6 , producing an output of up to 300 mV at Sk7. The treble-cut control VR8 is perhaps a luxury item included primarily so that surface-noise on old records could be removed by cutting the upper frequencies. It will also be found useful when recording from a.m. radio.

The input sensitivities of the mixer are tabulated below:

| Channels | Inputs | Sensitivity | Impedance |
| :--- | :--- | :--- | ---: |
| $1,2,3,4$ | Microphone | $0 \cdot 5 \mathrm{mV}$ | $300 \mathrm{k} \Omega$ |
| $1,2,3,4$ | Mic. or Mag. P.U. | 5 mV | $50 \mathrm{k} \Omega$ |
| 3,4 | Crystal P.U. | 100 mV | $50 \mathrm{k} \Omega$ |
| 3,4 | Radio, Tuner, etc. | 200 mV | $100 \mathrm{k} \Omega$ |

Comparison of these impedances with the list of impedances given before shows that the mixer will accommodate a wide variety of inputs.

## Plugs and Sockets

Before describing the actual construction of the mixer, it is worth while discussing plugs and sockets. Both professional bodies and amateurs are beginning to acknowledge the use of the German DIN system (Deutscher Industrie Normenausschus) for radio
and electronics. The commonly used plugs are the 3-pin, 5-pin, and loudspeaker 2-pin. The convention as agreed by DIN for wiring these is shown in Fig. 4,



2-Pin DIN speaker

Fig. 4: Pin connections for 2, 3 and 5-pin DIN plugs.
and these should be followed although in particular cases it is advisable to check with the maker's instructions in case the pin order is non-DIN. The diagrams show the plugs as viewed from the free end or the sockets from the solder tags end. It should be noted that in each case, pin 2 is connected to earth. The 3-pin plug will fit the 5 -pin socket and also the plugs are lugged so they are irreversible. The 5 -pin sockets are used on the mixer so that inputs with 3 -pin or 5-pin plugs may be used.

## Construction

The complete mixer is housed in a compact wooden cabinet and to simplify construction this should be made first. The drilling of the various pieces is shown in Fig. 5. The base is made of $\frac{1}{2} \mathrm{in}$. plywood and the side panels are of 4 in . plywood. The side and front panels are fixed to the base with glue and screws, the other panels being fixed by suitable lengths of $\frac{1}{2} \times \frac{1}{2} \mathrm{in}$. wooden strips; the top is made so that it can be screwed onto the side panels. The photograph shows how the cabinet looks when assembled. A sheet of Formica is glued to the top panel, which not only improves the appearance of the finished unit but also enables markings to be made in pencil which can easily be erased; this is useful for noting down volume levels etc.

In a design of this sort attention has to be paid
to screening so as to reduce noise, hum, and crosstalk. Screens made of 18 s.w.g. aluminium cover each of the emitter-follower stages, the details of which are also given in Fig. 5.


Fig. 5: Dimensions of cabinet, side panels and screens.
Most of the hardware is mounted on the top panel and so the switches and faders should be mounted first (see Fig. 7). The emitter-follower stages should be constructed next. These are most easily made on Veroboard, four of them being required and the wiring details are given in Fig. 6. It is perhaps a good idea to use different coloured wires for the connections A, B, C and D. Having made these stages, they can be secured to the top panel using screws and insulated washers. These are positioned as outlined in Fig. 7, when the main panel can then be wired up. Screened leads should be used to all of the sockets and to the input on the preamp. Fairly long leads should be used to connect
the sockets on the front panel to the top panel to enable the top panel to be easily removed should this become necessary. Once the top panel has been wired up the screens can be fitted over the emitterfollower circuits.


Fig. 6: Wiring of the emitter follower stages. Note the necessity for screened input and output leads.

The 5 -pin sockets on the front panel are wired so that a 5 -pin stereo source may be used and also to allow 3-pin plugs to be used. To do this, on each socket the tags 3 and 4 are connected together; tags 2 should be connected to the outer braid of the leads connecting to the top panel, and it is also advisable to connect the number 2 tags on each socket together and to take the positive battery supply to these tags. The output socket Sk7 is mounted on the rear of the cabinet.
The remainder of the circuit which consists of the pre-amplifier and the monitoring amplifier is assembled on a single piece of Veroboard which is then mounted on the base of the cabinet. The details of this board are given in Fig. 7 and the construction should present no problems.
The potentiometer VR9 can be mounted in a suitable position on the base of the cabinet; it is of the pre-set type and will vary the output to the phones. The output provided by this two-stage amplifier should be ample for most purposes.
When the amplifier has been made it can be screwed to the base of the cabinet and any remaining wiring completed.

Finally, the cabinet can be finished-the top


Fig. 7: Wiring of the main panel.

| Resistors: |  |  |  | C6 | 0.04 | $\mu \mathrm{F}$ disc cer | ic, 20V | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R1 | $68 \mathrm{k} \Omega$ | R17 | $68 \mathrm{k} \Omega$ | C7 | 100 | F, 15V elect | ytic |  |
| R2 | $330 \mathrm{k} \Omega$ | R18 | $47 \mathrm{k} \Omega$ | C8 | 500 | F, 15V elect | ytic |  |
| R3 | $390 \mathrm{k} \Omega$ | R19 | $330 \mathrm{k} \Omega$ | C9 | 100 | F, 15V elect | ytic |  |
| R4 | $10 \mathrm{k} \Omega$ | R20 | $390 \mathrm{k} \Omega$ | C10 | $8 \mu \mathrm{~F}$, | 15 V electrol |  |  |
| R5 | $27 \mathrm{k} \Omega$ | R21 | $10 \mathrm{k} \Omega$ | C11 | 100 | F, 15V elec | lytic |  |
| R6 | $68 \mathrm{k} \Omega$ | R22 | $27 \mathrm{k} \Omega$ | C12 | $8 \mu \mathrm{~F}$, | 15 V electrol |  |  |
| R7 | $330 \mathrm{k} \Omega$ | R23 | $10 \mathrm{k} \Omega$ |  |  |  |  |  |
| R8 | $390 \mathrm{k} \Omega$ | R24 | $10 \mathrm{k} \Omega$ | Potentiometers: |  |  |  |  |
| R9 | $10 \mathrm{k} \Omega$ | R25 | $1 \mathrm{k} \Omega$ | VR1, VR2, VR4, VR6 |  |  | $300 k \Omega \log$., with switc $10 \mathrm{k} \Omega$ lin., with switch |  |
| R10 | 27k $\Omega$ | R26 | $6.8 \mathrm{k} \Omega$ | VR3, VR5, VR7 |  |  |  |  |
| R11 | 68 k ת | R27 | $390 \mathrm{k} \Omega$ | VR8 |  |  | $25 k \Omega$ log. |  |
| R12 | $47 \mathrm{k} \Omega$ | R28 | $220 \mathrm{k} \Omega$ | VR9 |  |  | $100 \mathrm{k} \Omega$ lin. |  |
| R13 | 330 k ת | R29 | $1 \mathrm{k} \Omega$ |  |  |  |  |  |
| R14 | 390k $\Omega$ | R30 | $220 \mathrm{k} \Omega$ | Transistors: |  |  |  |  |
| R15 | 10k $\Omega$ | R31 | $6.8 \mathrm{k} \Omega$ | TR1-4 |  | AC128 |  |  |
| R16 | 27k $\Omega$ | R32 | $1 \mathrm{k} \Omega$ | TR5, TR6 |  | OC44 |  |  |
| All $\frac{1}{8}$ or $\frac{1}{4} \mathrm{~W}, 10 \%$ |  |  |  | TR7 |  | OC71 |  |  |
|  |  |  |  | TR8 |  | 0 C 81 |  |  |
| Capacitors: |  |  |  |  |  |  |  |  |
| C1 |  |  |  | Miscellaneous |  |  |  |  |
| C2 |  |  |  | Seven 5-pin DIN sockets; fourswitches; Veroboard; 18s.w.g. |  |  |  |  |
| C3 | $2 \mu \mathrm{~F}, 15 \mathrm{~V}$ eletrolytic |  |  |  |  |  |  |  |
| C4 |  |  |  | battery or equiv.; clips for batter |  |  |  | w |
| C5 | $16 \mu \mathrm{~F}, 15 \mathrm{~V}$ electrolytic |  |  | plywo | od; F | ormica for ca | net; knob |  |



Fig. 8: Layout of the amplifier panel.
panel being fastened and the back panel screwed in place.

A 9V power supply is required and a PP7 powerpack will fit into the cabinet. Alternatively a simple power-supply can be made to run off the mains,


Fig. 9: A suitable power supply.
details being provided in Fig. 9. This should preferably be mounted in a separate case to prevent any mains hum being picked up by the circuits.

## Testing

To test each of the channels a number of suitable sources are required. Plug a pair of head-phones into the phones socket and switch the mixer on by turning the master fader VR7 clockwise. Plug a microphone into socket Sk1, Sk2, Sk 3 or Sk5 and turn on the appropriate channel. For high impedance microphones (crystal) the appropriate toggle switch (S3, S5, S7 or S10) should be off and conversely on for lower impedances, the actual sensitivities having been previously given in the table. Adjust the faders to full volume then adjust the pre-set control VR9 so that a reasonable listening level is obtained without undue distortion. The attenuators VR4 and VR6 should be off when using microphones.

To use crystal pick-up, radio, tuner etc. channels 3 and 4 are used: plug a suitable source into Sk4 or Sk6 and turn on the attenuators VR4 and VR5; these can be adjusted to give a suitable volume level with the faders turned fully clockwise.

Obviously the number of possible combinations of devices that can be used with this instrument is quite large and it would be pointless enumerating them all; the specifications given before will give the user a good idea of the range of applications for which this could be used.


# DUUULE-12 HI-FI AIMPLIFIER <br> <br> HAL MOORSHEAD 

 <br> <br> HAL MOORSHEAD}


#### Abstract

IN THE PREVIOUS ARTICLES DETAILS WERE GIVEN ON THE CONSTRUCTION OF THE PREAMPLIFIER AND THE METALWORK FOR THE COMPLETE UNIT. THIS FINAL PART WILL DESCRIBE THE BUILDING OF THE MAIN AMPLIFIERS AND POWER SUPPLY AND A DESCRIPTION OF THE CABINET USED FOR THE PROTOTYPE.


AS the P.W. Double-12 is a stereo unit obviously two main amplifiers are needed. As mentioned in the previous articles a wide range of ready built amplifiers are available at very small cost, in fact the cost of ready built units is so low that some readers may be suspicious of the claims made for them, but the author has tried several and found them excellent. For the reader who only requires a $\mathrm{Hi}-\mathrm{Fi}$ amplifier and finds construction laborious ready built modules may be used. However, many constructors, like the author, prefer to build projects completely.
After considering several designs the one chosen finally was based on the Peak Sound P.A. 12-15 module, available either as a kit or as a ready built unit; this gives very high quality at a cost below buying the individual components. However a complete parts list and building details are given for anybody wishing to start from scratch.
The performance of the P.A. 12-15 easily exceeds the new European DIN standard for $\mathrm{Hi}-\mathrm{Fi}$ amplifiers; specially selected high gain output transistors are used in closely matched pairs which, together with the high degree of negative feedback ( 43 dB ), contribute to the excellent performance figures which were given in some detail in the first part. In addition to having very good characteristics the module is easily built into a neat and compact unit.

## The circuit

The theoretical circuit of one channel of the main amplifier is shown in Fig. 1. The circuit is a
fairly common configuration for $\mathrm{Hi}-\mathrm{Fi}$ amplifiers and the method of working has been described before in Practical Wireless but for those unfamiliar with the basic operation a brief description will be given.

The signal from the preamplifier is fed to Tr 1 ( 2 N 4289 ) which is arranged as a common emitter amplifier, the output is d.c. coupled to Tr 2 which further amplifies the signal (again arranged as a common emitter amplifier) to drive the complementary pair of driver transistors Tr3 and Tr4. C5, which is connected from the collector to the base of Tr2, applies a.c. negative feedback and allows the top frequencies (above $50 \mathrm{kc} / \mathrm{s}$ ) to fall away. R10, TH1 and VR2 provide the correct base biasing for the complementary pair. The thermistor (TH1) alters the biasing to compensate for temperature changes.

The complementary pair act as phase splitters, each driving one of the power transistors Tr5 and Tr6 with half the signal, the two outputs appear together at the junction of R15 and the collector of


The chassis holding the power amplifiers on the side with the power supply and output capacitors in the centre.

Tr6. This combined signal is applied via C 7 , a $1,000 \mu \mathrm{~F}$ capacitor to the loudspeaker.

Since the entire amplifier is directly coupled d.c. feedback is applied to stabilise the circuit from the output to the base of $\operatorname{Trl}$ via R2 and R11. Negative feedback is applied through C6 enhancing the performance and making the output more linear than it would be otherwise.

## Construction

Like the preamplifier and tone control panels, the main amplifiers are built on a matrix board, $5 \times$ $3 \frac{3}{4} \mathrm{in}$., the interconnections being made using Cir-Kit self adhesive copper strip. First lay the strip following the layout in Fig. 2 observing the rules given in the first article. Insert the components and carefully solder. The output transistors are mounted on a heatsink which covers the entire matrix board. It is necessary to insulate the bodies of these transistors (these are connected to the collector) from the heatsink using mica washers, first having spread both sides with a little silicon grease (provided in the kit) to ensure good heat conductivity.

The connections to the output transistors are taken by means of wires to the matrixed board; this is shown clearly in the photograph.


Fig. 1: The circuit of the power amplifier.

Fig. 2: The component layout of the power supply board. Like the preamp. pane/s they are mounted on matrix board and use Cir-Kit for interconnection.


## The power supply

The power supply shown in Fig. 3 is very simple and any mains transformer with a secondary of 33 volts at 2 amp . could be used. The bridge rectifier is composed of a single unit which is wired directly on to tags of the transformer. The mounting of the transformer, bridge rectifier and smoothing capacitor are clearly shown in the photographs of the unit; their layout is uncritical and self explanatory.

The 20 V supply to the preamplifier section is taken from the output of the power supply ( 45 V ), the voltage being dropped by inserting a $5.6 \mathrm{k} \Omega$ resistor in the supply line.


Fig. 3: The circuilt of the power supply

## Interconnection

The outputs from the preamplifiers are wired directly to the power amplifier boards. The output from the amplifiers are taken to C 7 , the $1,000 \mu \mathrm{~F}$ output capacitor and the other side of this is fed firstly back to the board providing negative feedback and secondly to the loudspeaker output socket through a fuse. It is important that a 1 amp . fuse is fitted into the loudspeaker circuit as shorting the output will damage the output transistors. The reader should refer to the metalwork (in the last issue) for the location of the fuse holders and the loudspeaker output sockets.

## Setting up the power amplifiers

It will be noted that there are two preset potentiometers in the main amplifier circuits and it is important that these are correctly set. Before switching on set VR1 to the mid-position and VR2 to minimum resistance. Switch on and measure the voltage applied (this should be between 38 and 50 V ) to the amplifiers. Set VR1 so that the voltage between chassis and the amplifier side of $\mathrm{C} 7(1,000 \mu \mathrm{~F})$ is

## * components list

## (POWER SUPPLY, MISCELLANEOUS AND EXTRA CIRCUITS)

Power Supply: Mains transformer, 250V primary 33 V secondary, 2 amp ; Silicon bridge rectifier (four BY100 rectifiers may be used if difficult to obtain); $1,000 \mu \mathrm{~F}$ smoothing capacitor, 50 V working; 1 amp . fuse holder.
Filter Networks: Top cut: $1 \mathrm{k} \Omega, 15 \mathrm{k} \Omega$ (both $\frac{1}{4}$ watt, $10 \%$ ) ; $6,800 \mathrm{pF} ; 2,200 \mathrm{pF}$; double pole slider switch. Rumble filter: $0.47 \mu \mathrm{~F}$ (or $1 \mu \mathrm{~F}$-see text); double pole slider switch.
Miscellaneous: Two 1 amp. fuses with fuse holders (for loudspeaker circuit), mains cable, wire etc.
half the applied voltage plus half a volt. Thus, if the applied voltage is 42 V VR1 should be set to read 21.5 V . VR2 should be set to provide an emitter current in Tr 5 of 50 mA in quiescent conditions, that is with no signal applied.

## Additional features

MONO/STEREO SWITCH. Previously it was mentioned that a mono/stereo switch should not be necessary, but if one is required it is only necessary to fit a small slider switch to couple together the outputs from the preamplifier panels. There is plenty of room to fit the switch on to the front panel.

SCRATCH FILTER. Some constructors may want a scratch filter, especially when old records are played. The circuit shown in Fig. 4 provides a cutoff at $9 \mathrm{kc} / \mathrm{s}$ at the rate of 8 dB per octave and is switched in and out by means of a double pole slider switch (one section being used for each channel) which again may be fitted to the front panel.

RUMBLE FILTER. Although a cut-off at the lower frequencies is incorporated in the design, it is possible to fit a rumble filter giving a sharp cut-off at the lower frequencies. All that is necessary is to incorporate a slider switch which switches out C6 in the tone control panel and substitutes a $0.47 \mu \mathrm{~F}$ capacitor in its place. This will begin to cut at $50 \mathrm{c} / \mathrm{s}$ and cuts sharply below $30 \mathrm{c} / \mathrm{s}$. If a lower cut-off frequency is required a $1 \mu \mathrm{~F}$ paper or polystyrene capacitor should be used, this will cut sharply below about 20c/s.


Fig.4: Additional circuitry for the scratch and rumble filters

## CORRIGENDA

In part one components list, the value of R4 in the preamplifier was given as $82 \mathrm{k} \Omega$ : this should read $68 \mathrm{k} \Omega$ as in the circuit diagram. Also all resistors in the preamp. and tone control circuits are $\frac{1}{4}$ watt, $10 \%$ miniature types. Alternatives to the BC169C were given and among these was the BC154; this is not suitable

In the second part the wiring of the input plugs was shown incorrectly. Numbering the pins 1-5 clockwise, on both the magnetic and ceramic inputs pins 1 and 2 should be joined together and pins 4 and 5 joined. In Part 2, Fig. 2, the spacing of the back panel from the bottom of the front panel is shown as 厚in. This should read $1 \frac{1}{4} \mathrm{in}$.


One of the power amplifiers with the heatsink raised.

## components list

## (MAIN AMPLIFIERS)

Resistors:

| R1 | $22 \mathrm{k} \Omega$ | R10 | $120 \Omega$ |
| :--- | :--- | :--- | :--- |
| R2 | $27 \mathrm{k} \Omega$ | R11 | $1 \cdot 8 \mathrm{k} \Omega$ |
| R3 | $33 \Omega$ | R12 | $100 \Omega$ |
| R4 | $1 \mathrm{k} \Omega$ | R13 | $100 \Omega$ |
| R5 | $1 \mathrm{k} \Omega$ | R14 | $27 \Omega$ |
| R6 | $2 \cdot 2 \mathrm{k} \Omega$ | R15 | $1 \Omega 1$ watt |
| R7 | $3 \cdot 9 \mathrm{k} \Omega$ | R16 | $1 \Omega 1$ watt |
| R8 | $1 \mathrm{k} \Omega$ | VR1 | $25 \mathrm{k} \Omega$ preset skeleton pot |
| R9 | $5 \cdot 6 \mathrm{k} \Omega$ | VR2 | $1 \mathrm{k} \Omega$ preset skeleton pot | All resistors except R15 and R16 $\frac{1}{4}$ watt miniature, 10\% tolerance.

Capacitors:

| C 1 | $25 \mu \mathrm{~F} \mathrm{25V}$ | C 5 | 470 pF |
| :--- | :--- | :--- | :--- |
| C 2 | $250 \mu \mathrm{~F} \mathrm{25V}$ | C 6 | $1,000 \mathrm{pF}$ |
| C 3 | $250 \mu \mathrm{~F} \mathrm{50V}$ | C 7 | $1,000 \mu \mathrm{~F} \mathrm{50V}$ |
| C 4 | $50 \mu \mathrm{~F} \mathrm{25V}$ |  |  |
| emiconductors: |  |  |  |
| Tr1 | 2N4289 | Tr4 $\quad$ 2N3704 |  |
| Tr2 | 2N4286 | Tr5 and Tr6 AD149 |  |
| Tr3 | 2N3703 | (All available from Peak Sound) |  |

## Miscellaneous:

Matrix board $5 \times 3 \frac{3}{4}$ in., Cir-Kit strip, TH1 (Thermistor) Siemens K151; Heatsink (Peak Sound), mica washers.

## The cabinet

The cabinet for the Double-12 is extremely simple and can be made in an hour or two. The heat output from the unit, even at full output, is so small that ventilation holes are unecessary. It is suggested that good quality plywood is used and if desired Mahogany or Gaboon-faced ply could be used. The arrangement of the chassis enables it to be slipped into the cabinet, slightly recessing the front panel and allowing it to be screwed in. Details are shown in Fig. 5.


## Conclusion

The P.W. Double-12, when completed, should be an excellent amplifier capable of faithfully reproducing the input. If used with good speakers, many of which are now available at reasonable prices, the builder will have an excellent $\mathrm{Hi}-\mathrm{Fi}$ set-up at a very low cost. Any queries will be answered by the author if accompanied by a current query coupon and a stamped, self addressed envelope.

[^2]
#  <br> PART 6 <br> M. K.TITMAN, B.Sc.(Eng) 

IN Part 5 last month basic transistor operation was outlined and the simple alloy-junction transistor described. This month we shall look at the more refined types of transistor giving improved performance.

## Mesa Transistors

Drift transistors differ from alloy transistors in that the impurity concentration varies across the base region. This is achieved by diffusing the base region on to the main collector region and thus obtaining a greater concentration of impurity at the emitter, which is subsequently alloyed to the base region. The base thickness is carefully controlled and the varying concentration has the effect of a drift field which reduces the transit time of electrons or holes in the base region. The frequency response is considerably increased and operation up to $1,000 \mathrm{Mc} / \mathrm{s}$ has been achieved.


Figure 1 shows a drift transistor construction which derives its name from its shape. This resembles a flattopped mountain or mesa. In this construction a slice of p-type material is heated and placed in an atmosphere of n -type impurity such as aluminium until the aluminium has diffused into the slice to form an n-type base region. The base connection is made by alloying an $n$-type pellet whilst the emitter junction and connection is made by alloying a p-type pellet. The resulting p-n-p transistor is then bonded to a metal header which often forms part of the encapsulation to give good heat dissipation. The whole unit is hermetically sealed in a metal encapsulation of the familiar TO-5 or TO-18 style shown in Fig. 2 or for power transistors the TO-3 or TO-66 encapsulations shown in Fig. 3. Other encapsulations are used but these are almost regarded as the standard casings except for special purpose applications.

Mesa construction is used for both germanium and silicon transistors but as the diffusion of p-type impurities into n-type germanium is long and impractical germanium n-p-n transistors are not formed by diffusion techniques. Both p- and n-type diffusions are possible
with silicon and hence silicon transistors of either type are available. Also the double-diffused mesa construction shown in Fig. 4 is used extensively in order to control the emitter junction thickness and impurity level. And as the reverse leakage current is considerably lower and the maximum operating temperature considerably higher for silicon transistors they are rapidly superseding germanium transistors as general purpose devices.


Fig. 3: Power transistor encapsulations.

Fig. 4: Double diffused silicon $n-p-n$ transistor.
For power transistors the drift transistor construction brings difficulties due to secondary breakdown. This phenomenon is due to currents which flow in the transistor during switch-off. The current on rapid switch-off is localised at the circumference of the junction and in power devices the high currents cause the junction to break down. This effect is minimised if a drift field is not used and hence a homogeneous, rather than drift, epitaxial or surface layer is diffused. These homotaxial transistors using the mesa construction are used for power devices.
With the popularity of silicon mesa transistors a further step in construction was to produce transistors by diffusion techniques alone-using the production of silicon dioxide, which resists diffusion and is also a good insulator, to form the basis of a photographic and etching method of construction. This resulted in the planar epitaxial form of construction.

## Planar Transistors

Planar transistors are formed by the epitaxial planar construction shown in Fig. 5. The name derives from planar, meaning in planes; and epitaxial, for surface. The technique starts with n-type material which forms the collector region. A silicon dioxide layer is then formed by passingsuperheated steam over the slice which ultimately will produce several hundred transistors. The silicon dioxide is selectively etched away and the base

# SOLDER ON 

 WITHCN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}(1 \mathrm{~mm})$ up to $3 / 16^{\prime \prime}$ For $\mathbf{2 4 0}, \mathbf{2 2 0}, \mathbf{1 1 0}, 50$ or $\mathbf{2 4}$ volts:
from
32'6

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them.
Antex soldering irons are stocked by quality electrical dealers, or order direct from Antex by sending Cash. A free colour catalogue will be supplied on request.


PRECISION MINIATURE SOLDERING IRONS

Antex, Mayflower House. Plymouth, Devon
Telephone : Plymouth 67377/8. Telex 45296. Giro No. 2581000


Complete precision soldering kit


This kit-in a rigid plastic "tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted $\frac{3^{\prime \prime}}{10^{\prime}}$ bit.
- Interchangeable spare bits. $\frac{e^{2}}{12}$. $\frac{3}{32}$ ".
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stawage of lead and plug
PLUS 36 -page booklet on "How-to-Solder"-a mine of information for amateur and professional.

From Electrical and Radio $\begin{gathered}\text { Shops or } \\ \text { sond cash } \\ \text { to Antex }\end{gathered}, 9 / 6$ to Antex.


C 18 watts. Ideal for mirinture work on production lines. Interchengeable spare bits, $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$. For 240 . 220 or 110 volte. $32 / 6$.


E 20 wates. Fitted with $1 / 4^{\prime \prime}$ bir
Interchangeabie spara bits $3 / 32^{\prime \prime}, 1 / 8^{\prime \prime}$. $3 / 16^{\prime \prime}$. For 240, 220, 110 or 24 volts. from 35/-


ES 25 watts. Fitted with $1 / 8^{\prime \prime}$ blt. Interchangeable bits $3 / 35^{\circ}, 3 / 16^{\circ}$ and $1 / 4^{*}$ Ideal for high speed protuction lines. For $240,220,110,24$ or 12 voles. from 35 /.


F 40 watte. Fitted 5/18"s sit
Interchangeable bits $1 / 4^{\prime \prime}, 3 / 16^{*}, 1 / 8^{\prime \prime}, 3 / 32^{\prime \prime}$ Vory high temperature is on. Available for $240,220,110,24$ or 30 volts, from $42 / 6$ Spare bits and elemants for all modals and voltages immediatery available trom stock.

Fully guaranteed Individually packed VALVES

PERSONAL CALLERS WELCOME
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m.


brand

A2134 8/- $|$| ECF8 | $6 / 6$ | KT86 | 18/6 |
| :--- | :--- | :--- | :--- |

| A2134 8/- | ECF82 | 6/6 | KT68 | 18/6 | RG1-240A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AR8 5/- | ECE35 | 11/- | KT67 | 45/- | 28/- |
| ARP3 8/- | ECH42 | 10/- | KT71 | 7/6 | SP61 8/8 |
| ARP12 8/6 | ECH81 | 8/9 | KT76 | $7 /$ | STV280/40 |
| ARTP1 6 - | ECE88 | 8/6 | KT88 | 27/- | 60/- |
| $\triangle$ TP4 8/8 | ECL80 | $7 / 6$ | KTZ63 | 71- | STV280/80 |
| AZ31 9/6 | HCL82 | 6/- | L83 | 6/- | 901- |
| BD78 401- | ECL83 | $10 / 9$ | MH4 | 5)- | 8U2150A |
| BL63 10/- | ECL86 | 8/6 | MH41 | 8/- | 101- |
| BT35 151- | HE36 | $8 / 6$ | MHLD6 | 7/6 | TD04-20 |
| BT46 150]- | EF37A | $81-$ | ML6 | 6/- | 701- |
| BT83 35/- | EF39 | 8/- | N34 | 81 - | TP22 5/- |
| OV102 8/- | EF40 | $9 / 9$ | N78 | 15/- | TP25 5/- |
| OV103 4/- | EF41 | 919 | OA2 | 8/- | TT11 8/- |
| CV315 | EF42 | 18/6 | OB2 | 6/- | TT15 55/- |
| (matched | EF50 | 4/6 | 038 | 71 | TTR31 45/- |
| patra) 180/- | EF80 | $4 / 6$ | 0 O 3 | $8 /-$ | TZO502 4/- |



## TRAN

$$
\begin{aligned}
& \text { OA5 } \\
& \text { OA7 } \\
& \text { OAl }
\end{aligned}
$$

$$
\begin{array}{ll}
A N S \\
8 /-100
\end{array}
$$

14 7/-1



 DL92 \begin{tabular}{ll|l}
DL96 \& $8 / 6$ \& <br>
\hline

 

DL96 \& $8 /-$ <br>
DLS10 \& 18/-

 $\begin{array}{ll}\text { DY86 } & 6 /- \\ \text { DY87 } & 8 / 6\end{array}$ $\begin{array}{cc}\text { DY87 } & \text { 8/6 } \\ \text { F880F } & \text { 18/- } \\ \text { R }\end{array}$ 

R900C \& $8 /-$ <br>
R91H \& $7 /-$ <br>
\hline
\end{tabular} E18000 $7 /-$ $\begin{array}{lll}\text { E1820C } & 18 /- \\ \text { 玉1148 } & 2 / 6\end{array}$ FA76 EABC8

EAC91 $\begin{array}{ll}\text { FAF42 } & 8 / 8 \\ \text { RB01 }\end{array}$ RB91

## EBC

 $\begin{array}{ll}\text { RBC81 } & 6 / 6 \\ \text { RBF80 } & 7 / 6\end{array}$ \begin{tabular}{ll}
RBEF89 \& $8 / 6$ <br>
RES3 \& $8 /-$ <br>
R \& <br>
\hline

 

$\mathrm{RC630}$ \& $8 /-$ <br>
RC 90 \& $4 /-$ <br>
\hline
\end{tabular}

$\qquad$

| $\mathrm{ECC91}$ | $8 /-$ |
| :--- | :--- |
| $\mathrm{ERCC33}$ | $12 /-$ |

$\begin{array}{ll}\text { FCC36 } & 16 / 6 \\ \text { ECC40 } & 10 / 9\end{array}$

| ECC81 | $4 /-$ |  |
| :--- | :--- | :--- |
| ECC82 | $1 / 8$ |  |


분
$\begin{array}{ll}\text { RCC86 } & 8 / 6 \\ \text { ROC88 } & 7 /- \\ \text { RCC91 } & 4 /- \\ \text { RCC189 } & 9 / 9\end{array}$

## P. C. RADIO LTD. 170' GOLDHAWK RD., W. 12

(01) 7434946
erect. In canvas bag. es.9.6. P.\& P. 10/6.
FIELD TELEPHONES TYPE "F" housed in portable wooden cases. Excellent for communication In- and out-doors for up to 10 mlles. For pair Including bat-
terles and $1 / 6$ th mile field cable on drum. Completely
terles and $1 / 6$ th mile field cable on drum. Completely
new, e7.10.0. Sllghtly used, $£ 6.10 .0$. Carriage $10 / \%$.

## ALL OVERSEAS ENQUIRIES AND ORDERS Please address to <br> Colomor (Electronics) Ltd. 170 GOLDHAWK ROAD, LONDON W12. Tel.: 01-7430898

## 10w AMPLIFIER

G8AR3, 10 W. PUSH•PULL OUTPUT. TW99 OUTPUT TRANSFORMER. 4 VALVE: EF94, ECCC81, EL90 (2). FULLY CONSTRUCTED ON CHAS8IS. NEW AND BOXED WITH CIRCUIT DRAWING. \&2.10.0. P. \& P. 10/-
MIXER UNITS, Type 18. H.F. M.F. L.F. Valve V882. 10/-. P. \& P. $2 / 6$.
FLEXIBLE METAL TUBING. Galvanised. fin. int. diam. 35/-, 100ft. P. \& P. 7/6. FIELD TELEPHONES TYPE "F". 82/6. P. \& P. 7/6.
CHA8sIS UNIT. 13 valves: ECC82 (5), EB91 (6), EF91 (2). 60 Resigtors. Capacitors RESISTORs. Mixed parcel of $200.20 /-$, P. \& P. $2 / 6$.
REgISTORS. Variable. Mixed parcel of $30.20 /-$. P. \& P. 2/6.
TRANSFORMERS. $85 T R$ 894. Pri. 220-230-250V. Elecondary 6.3V ( 2 a ), 300-350$390 \mathrm{~V}(35 \mathrm{~mA}), 80-80-100 \mathrm{~V}(10 \mathrm{~mA}) .30 /-$ P. \& P. $5 /-$
88TR078. Primary 220.230 V . Secondary $85 \mathrm{~V}(0.5 \mathrm{a}), 6.3 \mathrm{~V}(2 \mathrm{a}), 225-0-225 \mathrm{~V}(27 \mathrm{~mA})$
8.A.E. FULL L18T

STATUS SUPPLIES
STATUS EOUSE, WILKINSON AVENUE, BLACKPOOL


Fig. 5: Epitaxial planar transistor construction.
region formed by using a p-type impurity which diffuses where the silicon dioxide was removed. The slice is then re-oxidised to renew the dioxide layer and the emitter region etched away, an n-type diffusion then forming the emitter region. The slice is next diced into the separate transistor chips and the chips bonded to a metal header to which the lead-out wires are connected. The connections are joined to the lead-out wires by fine wires ultrasonic or heat bonded to the separate regions on the chip.

The whole device is encapsulated in a metal case of the TO-5 or power TO-3 type. Alternatively the chip is encapsulated in the new plastic encapsulations some of which are shown in Fig. 6. These plastic encapsulations are of very recent origin and have considerably lowered the price of industrial and commercial transistors but are at present not acceptable for military ratings.

The advantage of the planar construction is reliable control of physical parameters and hence better yields of the desired types of transistor. They have good high frequency characteristics, and by using a technique of producing multi-emitter regions to reduce the effects of

Table 1: Standard Semiconductor Designations

|  |  |
| :--- | :--- |
| First | Letter |
| A | Germanium |
| B | Silicon |
| C | Group III-V material |
| R | Photoconductive cells and Hall effect devices |
|  | or materials |
| Second Letter |  |
| A | Diode |
| C | A.F. transistor |
| D | Power transistor, a.f. |
| E | Tunnel diode |
| F | H.F. transistor |
| H | Field probe |
| K | Hall generator |
| L | H.F. power transistor |
| M | Hall generator (modulator or multiplier) |
| P | Control and switching device, low power |
| S | Switching transistor |
| T | Power control and switching device |
| U | Switching power transistor |
| Z | Zener diode |
|  |  |



Fig. 6: Common epoxy resin encapsulations.
secondary breakdown high power operation can be obtained.

The construction shown in Fig. 5 is a low frequency device: for higher frequencies a more complex geometry is used.

## Designation

With all transistors the device number is printed on the case. Initially, numbering was individual to each manufacturer as was the order and spacing of the leadout wires. Now however some standardisation of casing in the TO-3, TO-5 etc. style has been achieved and leadout wire connections are as shown in Figs. 2 and 4. Plastic cases have yet to be standardised.
Designations have standardised around the JEDEC system in the USA., such as the 2 N 1132 or 2 N series, and in Europe the standard ACY, BFY etc. series. It is hoped that the European standard will prevail since the 2 N series carries no meaning in the number whilst the European standard contains worthwhile information in the first two letters. The first letter indicates the material used in the construction and the second the general device type. The convention is detailed in Table 1.

## Parameters and Cost

Thousands of different types of transistor are produced and this profusion is bewildering to say the least. If however we examine the main circuit parameters we find that in all but the most specialised applications a great many are interchangeable. The fundamental parameters to be considered in connection with interchangeability are: (1) construction and material (n-p-n, p-n-p - $\mathrm{Si}, \mathrm{Ge}$ ); (2) maximum voltage (Vceo max); (3) maximum current (Ic max); (4) power rating ( $\mathrm{P}_{\mathrm{T}}$ ); (5) frequency response ( $\mathrm{f}_{\mathrm{T}}$ ); ( 6 ) current gain ( $\mathrm{h}_{\mathrm{FE}}$, $\mathrm{h}_{\mathrm{He}}, \propto^{\prime}$ ).

The construction and material are important since $n-p-n$ and $p-n-p$ transistors arenot interchangeableunless all the transistors are reversed--together with polarised components and the supply voltage. Although silicon transistors can be used in place of germanium ones, often the bias supplies require alteration as the base emitter volt drop is $0 \cdot 2-0.3 \mathrm{~V}$ for germanium and $0.6-0.7 \mathrm{~V}$ for silicon.

Provided the maximum voltage and current are not exceeded any transistor may be used and the frequency characteristics should match. Power rating is important and in general for the same case size silicon transistors can replace germanium types. Providing these require-
ments are met current gain matching can be determined by simple substitution.

In specialist applications, such as switching, the saturation volt drop $\mathrm{V}_{\mathrm{CE} \text { sat }}$ is important but again substitution is usually a sufficient test.

Many transistors are interchangeable and the experimenter should never be deterred from trial and error as a means of determining whether an available type can be !used.

Why there are so many different types is a question which is highly relevant. This is due to the large number of manufacturers and the yield of several types from each basic production unit. From this it can be seen that the cost of a transistor depends largely on the production yield, parameters and market requirement for a given type. Specialist devices are expensive but general purpose widely used transistors are cheap. Transistors with specialist parameters are often expensive simply because the demand is small. Therefore only popular devices should be used in circuit design.

General purpose low frequency transistors are available at 2 s .6 d . to 5 s . but $£ 5$ can be the price of similar devices. Power transistors range from 7 s . to $£ 2$ for low frequency types but from $£ 5$ to $£ 37$ for high frequency working. Low power high frequency types are available at from 10 s . to $£ 10$ for $1,000 \mathrm{Mc} / \mathrm{s}$. High voltage devices at low power are available from 4 s .6 d . to $£ 3$. For silicon transistors generally n-p-n types are cheaper than p-n-p and plastic encapsulated devices are often half the price of their metal-cased counterparts.

## The Future

As techniques improve and demand increases transistor prices will fall. Plastic encapsulation will find widespread application whilst the demand for germanium devices, exept in specialist applications, will fall.

It is entirely probable that improved manufacture of f.e.t.s will considerably affect transistor usage whilst further inventions are likely to render obsolete the construction and application of transistors as we know them today.

## TO BE CONTINUED

## PRACTICAL TELEVISION

## IN THE JUNE ISSUE

## integrated circuit TV HEARING AID

Aneasy-to-assemble hearing aid which is completely independent of the TV set. Uses a high-impedance f.e.t. i.c. input stage.

## A.G.C. FAULTS

A thorough survey of contrast and gain faults with rapid fault location guide.

## EARLY TV CAMERA TUBES

An account of the development of the first broadcastquality TV camera tubes.

## VIDEO CIRCUIT TESTING

How to trace faults in the video amplifier, detector, interference limiter and tube biasing circuits.

ON SALE MAY 23

THE
MW COLUMN


ALTHOUGH when we are talking about MW DX we are generally referring to signals from North or South America, Africa or Asia, there are some interesting and rare catches to be had within continental Europe. There are 34 distinct countries in Europe with MW broadcasting stations (two countries, San Marino and Liechtenstein have none) and of course many of these are easily heard even during daylight. During the evening the band is crammed with over a thousand stations and to pick out the unusual ones takes perhaps even more skill and patience than waiting until conditions are favourable for transatlantic signals.

Listen out for the Azores, Portuguese islands in the Atlantic with four stations, CSA97(836); CSB81 (1570); CSB80(1394) and the US Forces Station (1500). The Faroes, Danish islands north of the Shetlands, can sometimes be heard before close down at 2000 hrs . on 548 . Iceland can be heard fairly easily over its LW stations but for the purist there are several MW stations, most of these are of fleapower but the stations on 665 and 737 are occasionally heard.
Gibraltar has been heard, but very rarely, on 1484, the International Common Frequency, broadcasting in English and Spanish. Although Manx Radio using only 50 W is heard fairly well in Lancashire and North Wales on good equipment it can be heard during daylight throughout the country on 1295 when the BBC European Service on the same frequency is not on the air.

The only other countries that could possibly be classed as DX areas are Greece, Malta and Turkey, Greece broadcasting on $665,728,791$ and 1007. There are several other low-powered stations but these are rarely heard. The VOA station on Rhodes can easily be heard on 1259 in a variety of languages. Turkey has two stations in Europe, a high power one on 701 and a 2 kW one on 963 . Malta can be heard occasionally through the BBC Relay on 1178 in Arabic but there are two other stations, BFBS on 1425 and Radio Malta on 1214; due to BBC Radio $I$ using 1214 Radio Malta would indeed be a prize catch.
Searching for these Europeans should be ideal for the enthusiast who doesn't fancy the idea of waiting till after midnight before even starting.
Radio Andorra on 701 is reported to be testing with English programmes after midnight and if this ever gets off the ground they may try to become a second Radio Luxembourg. Several of the European stations have English programmes in the late evening as a limited sort of overseas service, and all these will readily confirm and will send schedules. In the case of the Eastern European stations they will often send literature for years. The author is still receiving programme schedules, free records and competition forms from Radio Budapest even though only one report was sent-eight years ago!

European stations can also often provide a guide to the general conditions. If stations in Portugal and Spain are heard clearly the reception path across the Atlantic will usually be good.

# Build yourself a quality transistor radio 

 backed by our after sales service！
# roamer seven mk IV SEVEN WAVEBAND PORTABLE 

SEVEN TUNABLE WAVEBANDS－
MW1，MW2，LW，SW1，SW2，SW3 AND TRAWLER BAND．

## pocket five

MEDIUM WAVE，LONG WAVE AND TRAWLER BAND（to 50 metres approx．）PORTABLE
WITH SPEAKER AND EARPIECE
Attractive black and gold case．Blas $51 \times 1 \% 2$ 3yin．Tunable over both Medtum and Long Wavea With extended K．W．band for eaaler tuning of 7 starges－$\$$ tranaitorars and 2 dilodes，supenvenaltive ferrite rod zerial，fine tone moving ooll cpeater， atmo Personal Karplece with switched sooket for private listentug．Rany build plane and parts price Hint 1／8（FRREX with parts）．

## transona five

MEDIUM WAVE，LONG WAVE AND TRAWLER BAND（to 50 metres approx．）PORTABLE WITH SPEAKER AND EARPIECE
Attractive egese with red ppoaker grille．B1se 6 I I
 territe rod sertal，tuning condenser，volume control， Ans tone moving coll rpeasizer aiko Parsonal kiarploce Tride componente．Eisey build plane and parts price Hint 1／6（FRERE with parta．）

## super seven

THREE WAVEBAND PORTABLE WITH 3in．SPEAKER

Attractive case sise 71 $x$ Bt $x$ 1ifin．whth gith ftuinga．The lieal railo for home or ontdoorv． Covers Medium and Long Waver and Trawier Band．Bpeciel clrcult incorporethog 2 R．F．8tares， puah pull output，forrite rod sorial， 7 transintorn and 2 diodes，8in，mpaaker（will drive Larcer build plans and parts price Het $2 /$－（FRREB Fith parta）（Permonal Earploce with switched socket for private Hatentog $5 /-$ extra．）

## roamer six

SIX WAVEBAND PORTABLE WITH 3in．SPEAKER
Attractlve case with gilt fitting Blase 71 $\times 6$ lith．Tunsble on Medium and Long Waves，two short waves，Trawler Band Plos an extra，W．Wand for cader rod serial and tolesooplo aerial for Bhort waves．All top grade componente． 8 etageo－ 6 traviistorn and 2 dioder tncluding Mioro－Alloy R．F． Translotor otc．（Carrying etrap $1 / 6$ extra）．Fiva build plans and parte price lint $2 /-$（FREE with party）．（Porsonal Earplicee with awliched nocket for Ivato Untening 8／－extra．）
＊Callers side entrance Stylo Shoe Shop

[^3]

Total building costs

$3 / 6$


Total building costs


Total building costs


Total building costs


Extra M．W．band for
easier tunting of Luxembourg
etc．Built in ferrite rod aerial for
Medlum snd Long Waves． 5 Section $22 i n$
chrome plated telescople aerial for Short Waven－
can be angled and rotated for peak S．W．lintenine．Socket
for Car Aerial．Poweriul push pull output． 7 framsigtore and 2
dlodes inchuding Micro－Alloy R．F．Transistors．Famous main 7 I 4 in ．P．M．spesker tor rich－tone volume．Air speced genged tuning oundenser．Volume on／off control wave change sike ain tuning contro．Altractive reane with carrying handle ．Easy to follow instructions and dragrams make the Roamer a pleagre to bulld．

## Total building costs

$$
50 \text { P. \& P. } \begin{gathered}
\text { Personal Farjtece with awitched socket } \\
7 / 6
\end{gathered}
$$

Parts price list and easy build plans $3 /$－（Free with parts）．

## NEW LOOK melody six



TWO VAVEBAND PORTABLE
8 stage－ 3 transistors and 2 diodes． Covers Meilum and Long Wavea．Top quality 3 3in．Loudspeaker for quality output and also with Peraonal Esarpiece With switched socket for private lioten－ ing．Two R．F．atages for extra boost． migh output．Handanme pocket gitze cuse with glit fittingt．Bire $8 \frac{1}{1}$ I \＆$x$ 2in．Eesy bulld plans and parta price list 2／－（FRER with parta．

Total building costs
$69 / 6{ }^{\circ}$

## RADIO EXCHANGE CO

｜ 61 HIGH STREET，BEDFORD．Tel． 023452367 ｜
I enclose f ．．．．．．．．．．．．．．．．．．．．．．．please send items marked

| ROAMER SEVEN | $\square$ | ROAMER SIX | $\square$ |
| :--- | :--- | :--- | :--- |
| TRANSONA FIVE | $\square$ | SUPER SEVEN | $\square$ |
| POCKET FIVE | $\square$ | MELODY SIX | $\square$ |

｜Parts price list and plans for ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．｜


｜．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
Lーーーーーーーーーーーーーーーーーーーー」

## another

## amazing newmart scoop purchase

A frustrated manufacturers French export order enables us to give you what is undoubtedly the finest package deal in this country today.
The world famous British made Deluxe Balfour 4 speed auto change record player deck (grey finish) incorporating an automatic stylus cleaner and unique arm locking device, compatible cartridge enabling you to play stereo records on mono without damage to the record, or for an extra 15/-you may have the stereo version of this cartridge. In addition there is supplied, at no extra charge, a 45 r.p.m. auto change adaptor which will enable you to dispense with the centres of your 45 r.p.m. records should you desire to do so. This unit is mounted on a magnificent luxury teak veneered plinth which will accept the Garrard SPC1 cover or similar type.


All this comes to you for the amazingly low price of $9 \frac{1}{2}$ gns. (post and packing $10 /-$ ). which cuts normal prices by $50 \%$. Deck with cartridge less plinth (template for cut out supplied) 7 gns . (post and packing 10/-).
Remember this offer is exclusive to NEWMART

## BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W.1.

## KING OF THE PAKS <br>  <br> Unequalled Value \& Quality <br> Bl-PAK NEW-UNTESTED SEMICONDUCTORS

Satisfaction GUARANTEED In Every Pak, or money back.


PAK NO.

| U2 | 60 Mixed Germanium Transistors AF/RF |  |
| :---: | :---: | :---: |
| U3 | 75 Germanium Gold Bonded Diodes sim. OA5, OA47 |  |
| U4 | 40 Germanium Transistors like OC81, AC128...... |  |
| U5 | 60200 mA Sub-min. Sil. Diodes |  |
| U8 | 40 Silicon Planar Transistors NPN sim. BSY95A, 2N706 |  |
| U7 | 16 Silicon Rectifiers Top-Hat 750 mA up to 1000 V |  |
| U8 | 50 Sil. Planar Diodes 250mA OA/200/202 |  |
| U9 | 20 Mixed Volts 1 Watt Zener Diodes |  |
| 11 | 30 PNP Silicon Planar Transistors TO-5 |  |
| U12 | 12 Silicon Rectifiers EPOXY BY126/127 |  |
| U13 | 30 PNP-NPN Sil. Transistors OC200 \& 2S104 |  |
| U14 | 150 Mixed Silicon and Germanium Diodes |  |
| U15 | 30 NPN Silicon Planar Transistors TO-5 sim. 2N697 |  |
| U16 | 10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV |  |
| U17 | 30 Germanium PNP AF Transistors TO-5 like ACY 17-22 |  |
| U18 | 8 6-Amp Silicon Rectifiers BYZ13 Type up to 600 PI | 10 |
| U19 | 30 Silicon NPN Transistors like BC108 |  |
| U20 | 12 1.5 Amp Silicon Rectifiers Top Hat up to 1000 PIV | 10 |
| U21 | 30 A.F. Sermaniumalloy Transistors 2G300 Series \& OC71 | 10 |
| U22 | 10 1-Amp Glass Min. Silicon Rectifiers High Volts |  |
| U23 | 30 Madt's like MAT Series PNP Transistors |  |
| U24 | 20 Germanium 1-Amp Rectifiers GJM up to 300 PIV | 10/- |
| U25 | $25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2N708, BSY27 | 10/- |
| U28 | 30 Fast Switching Silicon Diodes like IN914 Micro-min | 10/0 |
| U28 | Experimenters' Assortment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, etc. 8 Assorted Pieces | 20/- |
| U29 | 101 Amp SCR's TO-5 can up to 800 PIV CRSI/25-600 | 20/ |
| U30 | 15 Plastic Silicon Planar trans. NPN 2N2924-2N2026 | 10/2 |
| U31 | 20 Sil Planar NPN trans. low noise 2N3707 | 10/- |
| U32 | 25 Zener diodes 400 mW DO-7 case mixed Vlts. $3-18$ | 10\% |
| 33 |  |  |

Code Nos. mentioned above are given as a guide to the type of
device in the Pak. The devices themselves are normally unmarked

| FULLY TESTED |  |
| :---: | :---: |
| AC107 | 8/6 |
| AC126-7-8.... | $2 / 6$ |
| AF116-117 $_{\text {AF139 }}$ | 8/6 |
|  | ${ }_{151-}^{101-}$ |
| BC107-8-9 | $8 /$ |
| BFY50-61-52... | 718 |
| B8Y26-7 | $3 / 6$ |
| B8Y28-9 | $4 / 6$ |
| B8Y95-954 | 4/6 |
| OC22.23 | $5 /-$ |
| OC26-35 | $5 /-$ |
| $0 \mathrm{OC28-29}$ | $7 / 6$ |
| OC44-45 | $1 / 9$ |
| $\begin{aligned} & \mathrm{OC71.81} \\ & \mathrm{oc} 72-78 \end{aligned}$ | l/6 |
| OC81D-82D | $2 / 3$ |
| OC82 | 218 |
| OC140 | 5/- |
| Oc170 | $2 / 6$ |
| $0 \mathrm{Cl71}$. | 3/8 |
| 0 C 201. | $7 / 8$ |
| ORPP12-60 | $8 / 8$ |
| OCP71 | $8 / 8$ |
| OA5-10 | 81/9 |
| OA47 0 OA70 | 2/8 |
| OA79 | 1/9 |
| OA81-88 | 1/8 |
| OA91 | 1/3 |
| OA95 | 1/9 |
| OA200 | 818 |
| OA202 | $3 / 8$ $5 /-$ |
| 2N700 | 3/6 |
| 2N708 | $5 /-$ |
| 2 N 2160 | 15/- |
| 2N2646 | 15/ |
| ${ }^{2 N 2712}$ | 5/6 |
| 2N2926 | $2 / 6$ |
| MAT100-101. | 3/- |
| MAT120-121. 8T140 | $3 / 6$ $8 /-$ |
| 8T141 ........ | 4/- |



## TESTED SCR's



## INTEGRATED CIRCUITS

I.c. Oporational Ampiffier with zener output.
Type 7010. Ideal for P.E. projects. 8 Lemd TO-5 case each. 5 od $11 /$-each. Iarge each prices quoted for Is. Fairchild Epoxy TO-5 Fead. I.C. uL. 000 Butfer L.914 Der 10/6 uL923 J.K. Fup-Flop 14/I.C. Date Circuits etc. 1/6 Mullard I.C. Amplifiers ${ }^{7}$ TAA263 Min AF Amp 18/6 TAN293 G. P. Amp 28/TAL293 G.P. RCA CA3020

## TRANSISTOR EQUIVALENT BOOK

2 nages of Croas Reterences for tranaintora and dlodes, ypes include British, European, American and Japanese. Specially imported by BI-PAK $10 /-$ each
PLEASE NOTE.-To Avold any further Increased Postat Return Postal Bervice" which is second to none, we hare reorganized and ur "By lined our Deapatch Order Denartment and we now request yoo to send all pour order together with your remiltance, Direct to our Warehouse and Despatch Department, postaladdress :-BI-PAK EBMICONDUCTORS, Despatch Dept., P.O. BOX B, WARE, HERTS. Poatage and Paching Stili $1 /$ - per order. Minimum Order iof-


POCKET receivers often use reflexed t.r.f. circuits, and although these can give good results, some constructors may prefer a superhet. The one described here is built with standard and readily available transistor type components, and is approximately $4 \frac{3}{8} \times 2 \frac{7}{8} \times 1$ in. external dimensions, including battery. It is a 4 -transistor superhet circuit giving excellent headphone results.

Figure 1 is the circuit, the aerial L1 and oscillator coil L2 being tuned by a midget $192 / 78 \mathrm{pF}$ ganged capacitor, fitted with 15 pF trimmers. AF1 17 transistors are used in mixer and i.f. stage, and IFT1 is double-tuned. IFT2 is single-tuned, and works into the emitter detector/ amplifier $\operatorname{Tr} 3$. Automatic gain control bias to $\operatorname{Tr} 2$ is through R6. This type of circuit performs very well, and Tr4 is an audio amplifier, giving adequate output for phones or a personal earpiece.
The receiver is wired in three sections, and fitted together afterwards.
(1) $4 \frac{3}{8} \times 2 \frac{7}{8} \mathrm{in}$. front panel, carrying ferrite rod, volume control with switch, and ganged capacitor.
(2) Mixer and intermediate frequency amplifier, assembled on an insulated board $3 \frac{1}{18} \times \frac{7}{8} i n$.
(3) Detector/audio amplifier, on a $1 \frac{3}{2} \times 1 \mathrm{in}$. board.

If alternative components are used, it would be wise to see that these will fit, as there is only a little free space.

## Front Panel

The panel is wired as in Fig. 2, the mixer, i.f. and audio sections being omitted. VR1 is mounted with a small bolt so that it will project through a slot in the case side. $\mathrm{VCl} / 2$ is attached with two bolts.
The aerial listed is for a longer rod, and the ferrite rod actually needed here is $2 \frac{3}{8}$ to $2 \frac{2}{2} \mathrm{in}$. long, and $\frac{3}{3}$ in. in diameter. A piece this size was broken from a longer rod by gripping the rod quite tightly $2 \frac{8}{8} \mathrm{in}$. from one end in a vice, and snapping it off. The rod is fixed by a band of insulating material, which passes round it at one end, and is secured with a bolt.

The aerial and oscillator coil L2 are of a type intended for 208 pF aerial tuning, and 176 pF with a series padder in the oscillator section. The ganged capacitor used here has an aerial section tag A, rotor tag E, and oscillator section tag O, Fig. 2, and alignment was found satisfactory. No series padder is used with L2. For the AF117 mixer transistor, the base coupling winding requires four turns. Aerials made for other transistors may have more turns here. If so, turns should be removed.

Leads to L1 can be solid wire, arranged to permit a little movement of L1 on the ferrite rod, if required later.

## The Mixer/IF Section

A piece of $\frac{1}{16} \mathrm{in}$. paxolin sheet is cut and drilled to
 take the components as in Fig. 3. With the oscillator coil L2, a coloured dot is between pins 1 and 6. Pins on the i.f.t.s have closer spacing between 1 and 2, and 5 and 6. These components need to be fitted over holes so that the cores can be reached. Tags from the metal cans of L2, IFT1 and IFT2 are wired together and to the positive or "earth" line of the receiver.

Insulated sleeving should be placed on all leads. The transistors are fitted last, passing their leads down through the correct holes. Put on suitable pieces of sleeving, bend the leads over, and solder them to the other circuit points, afterwards snipping off unwanted wire. Be sure that transistor leads on top of the board cannot touch each other, or bare parts. Pieces of sleeving about $\frac{1}{4}$ to $\frac{8}{8}$ in. long can be put on these leads in advance.


Fig. 1: Circuit of the Slimline Superhet, suitable for driving headphones or a personal earpiece.

The finished mixer/i.f. section is later attached to the panel by two small, countersunk 8BA bolts, which pass through the brackets in Fig. 3. These brackets are cut from thin metal, drilled, and soldered in place. One is soldered to the can tag of IFT1, while the second bracket is soldered to a can tag and pin 5 of IFT2.

C2, C3, C5, R3, R7, VC1/2 (E) and VR1/S1 are all joined near IFT1 (Fig. 3), and a lead passes down through the board to the earth (positive) line, Fig. 2.

When the mixer/i.f. section is fixed to the panel, the four adjustable cores can be reached with a suitable insulated tool.

C 1 is wired to L1 green tag, and the earth circuits made to VC1/2 and VR1/S1, as mentioned (Fig. 2). A wire is prepared to run from pin 6 of IFT1 to R6. Other leads will run to the negative line at R8 and R10, and from the positive line of the i.f. section to positive on the audio circuit board.

## Detector and Amplifier

Tr3 and Tr4 are on the audio amplifier board, Fig. 4. This is cut away to clear the milled rim of VR1. When this section is completed, it is mounted with a small bolt and spacer.

A lead passes from Tr3 emitter to pin 4 of IFT2. R6 is connected to pin 6 of IFT1. Leads run from C7 to VR1, and from C8 to R9, which is soldered directly to VR1 as in Fig. 2.

Battery negative goes to R8/R10, and also the mixer/ i.f. section at pin 3 of IFT2. Battery positive is connected to S1, as in Fig. 2. The insulated strip, with snap fasteners, from an old battery can be used as battery connector. Remember to observe the polarity shown on the battery.

Two leads run from R10 (negative line) and the collector of Tr4. These connect to a miniature jack, for the headphones or a personal earpiece.

When the two small circuit boards have been fixed to the panel, the receiver should be tested, and i.f., aerial and oscillator circuits adjusted.

## $\star$ components list

## Resistors:

| R1 | $47 \mathrm{k} \Omega$ | R7 | $1 \mathrm{k} \Omega$ |
| :---: | :---: | :---: | :---: |
| R2 | $6.8 \mathrm{k} \Omega$ | R8 | 27k $\Omega$ |
| R3 | $1 \cdot 2 \mathrm{k} \Omega$ | R9 | 2-2k $\Omega$ |
| R4 | $10 \mathrm{k} \Omega$ | R10 | $47 \mathrm{k} \Omega$ |
| R5 | $1 \mathrm{k} \Omega$ | R11 | $10 \mathrm{k} \Omega$ |
| R6 | 47k $\Omega$ | R12 | $1 \mathrm{k} \Omega$ |

VR1 $5 \mathrm{k} \Omega$ miniature log. pot. with switch All resistors $\frac{1}{4}$ watt $10 \%$

## Capacitors:

| C1 | $0.02 \mu \mathrm{~F} 150 \mathrm{~V}$ Hunts miniature |
| :--- | :--- |
| C 2 | $0.04 \mu \mathrm{~F} 150 \mathrm{~V}$ Hunts miniature |
| C 3 | $0.02 \mu \mathrm{~F} 150 \mathrm{~V}$ Hunts miniature |
| C 4 | $10 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic |
| C 5 | $0.04 \mu \mathrm{~F} 150 \mathrm{~V}$ Hunts miniature |
| C 6 | $0.01 \mu \mathrm{~F} 150 \mathrm{~V}$ Hunts miniature |
| C 7 | $4 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic |
| C 8 | $2 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic |
| C 9 | $32 \mu \mathrm{~F} 6 \mathrm{~V}$ electrolytic |

VC1/VC2/TC1/TC2 Jackson Delemin 192/78pF with 15pF trimmers

Coils and Transformers:
L1. Weyrad RA2W (medium wave only)
L2 Weyrad P50/1AC
IFT1 Denco IFT 18/465
IFT2 Denco IFT 14/465
Transistors:

| Tr1 | AF117 | Tr3 | NKT252 |
| :--- | :--- | :--- | :--- |
| Tr2 | AF117 | Tr4 | NKT252 |

## Miscellaneous:

$\frac{1}{16} \mathrm{in}$. sheet paxolin. Miniature jack and plug. PP3 battery. Knob, 1 mm sleeving, etc.


Fig. 2: General layout and inter-module wiring.
edge to about 600 kHz (or so that Radio 3 is tuned with VC1/2 nearly closed). At the same time move L1 on the rod for best results.

Open $\mathrm{VCl} / 2$ to near minimum capacity, and adjust TCl and TC2 for best results with a $1,500 \mathrm{kHz}$ signal from the generator, or for reception of Radio Luxembourg.

Adjustments should be repeated, and checked over the band, for best results.

## Case

Using $\frac{1}{16}$ in. thick paxolin throughout, the top and bottom of the case are cut to $4 \frac{3}{8} \times \frac{7}{8} \mathrm{in}$., one piece being cut to clear VR1. The sides are $2 \frac{3}{4} \mathrm{in}$. long by $\frac{7}{8} \mathrm{in}$. wide, and are cemented to the panel.

The terminal head X , Fig. 2 , is fixed to the panel by

## Alignment

A modulated 465 kHz signal may be injected at the base of Tr1, and the cores of IFT1 and IFT2 rotated for best volume. If alignment is so far in error that no signals are obtained by this means, inject at 5 on IFT1 and adjust the core of IFT2. Then inject at 2 on IFT1 and adjust the second core. Afterwards inject at Trl base or collector, and adjust the first core of IFT1, and check adjustment of all cores.

To make these adjustments without a signal generator, tune in a transmission and rotate the cores for best volume. This is afterwards checked with a weak signal.

To align L1 and L2, first unscrew TC1 and TC2 about half-way. Set VC1/2 at maximum capacitance, and rotate the core of L2 to set the low-frequency band


Fig. 3: The r.f. and i.f. amplifier component board.
means of a very short countersunk bolt. A screw is run into this terminal head from behind, to hold the back of the case.

Patterned material as used for covering boxes, etc., was cut to cover the front panel and sides, and to fold over about $\ddagger \mathrm{in}$. or so inside the case.


Fig. 4: The detector and audio stages.

## Tuning Dial

The dial had white markings on a black background, from Set 6(Dials) "Radio Constructor" panel transfers.

The tuning knob is a 1 in diameter knob, with a white spot placed near the edge, to read against the tuning scale. A very small knob makes tuning rather critical.
The back of the receiver is $2 \frac{7}{8} \times 4 \frac{3}{3} \mathrm{in}$., with a hole drilled opposite terminal head $X$. Some small pieces of paxolin are cemented to the inside of the back, and rest inside the case when the back is in place. It is then held correctly in position by the single bolt.

IIANY engineers who could build a valve amplifier without the need to refer to a circuit diagram feel totally lost when tackling transistor power output stages. Part of the trouble is due to the nature of the transistor, so easily damaged by excessive current and requiring heatsinks to avoid excessive temperature rise, and part to the confusing stream of different transistor characteristics which have been used in the past. This article attempts to clear up some of those difficulties.

## The Need for Power Output

When an amplifier is used to drive the deflection plates of a cathode ray tube, the amplifier has to raise and lower the voltage on the plates, but, because the plates have no other connections, the amplifier does not have to supply any current. If the same amplifier had to raise and lower the voltage across a resistor, it would also have to raise and lower the current through the resistor, because the voltage across any resistor is its resistance times the current through it ( $V=I R$ ), which is Ohm's law.

When an amplifier has to supply both voltage and current signals, and the maximum voltage signal occurs at the same time as the maximum current signal (as it must with a resistor) or nearly at the same time (with loudspeakers), then the amplifier is supplying power. This power can be measured in a variety of ways. If
oscilloscopes, will give readings for voltage and current which cannot be multiplied so readily, and a conversion table is given.

The need to supply both voltage and current restricts the sort of amplifier which we can use. Suppose, for example, we have a valve with an anode load of $100 \mathrm{k} \Omega$ and a line voltage of $1,000 \mathrm{~V}$. Then with no current through the valve, the anode voltage is $1,000 \mathrm{~V}$, and with 10 mA flowing the anode voltage is 0 V . This stage can give a voltage signal of $1,000 \mathrm{~V}$ but a current signal of only 10 mA , since these are the ranges of voltage and current available, so that it would be totally unsuitable for delivering large amounts of power to a load of 3 ohms (for example).

## Matching Loads

Any amplifying device, valve or transistor, has an internal impedance, which measures its resistance to current flowing through it and in some cases restricts the amount of signal current flowing. When triode valves are used, the maximum power output is obtained when the load resistance $R_{1}$ equals the internal resistance Ra . This piece of advice was so thoroughly drilled into the heads of designers in the valve era that it still persists even now that the use of triodes for output stages is practically obsolete. Pentode valves deliver a signal current that is almost constant despite changes in

the amplifier supplies its power to a resistor, the resistor will be heated by the power and the temperature rise can be used to measure the amount of power used or dissipated, provided we know what amount of power causes a given temperature rise. This method is often used for microwave amplifiers when other readings are difficult: Alternatively we may measure the voltage across the resistor and current through it with a meter which reads r.m.s. units and multiply the two together to give power. When volts d.c. are multiplied by amps d.c., the result is power in watts. R.M.S. meters are a.c. meters which are scaled so that the same multiplication gives the correct result in watts for a sine wave, but other waveforms, and other meters or cathode ray

## Table I

When using a meter which measures in peak volts and is scaled in R.M.S. volts (for example, any moving coil and rectifier type of meter).

| Waveform | To find power |
| :--- | :--- |
| Sine | $\mathrm{V} \times \mathrm{A}$ as read on meter |
| Sawtooth | $2 / 3 \times \mathrm{V} \times \mathrm{A}$ |
| Square | $2 \times \mathrm{V} \times \mathrm{A}$ |

anode voltage, which is another way of saying that they have a high internal impedance.

On the maximum power theory, they would require a very high load impedance for maximum power. This is true, but a slightly smaller power can be delivered at much less distortion into a smaller load, and this is the value of load recommended for such valves. Transistors are a separate case again; the signal current is almost independent of collector voltage (high impedance) but very high currents can pass at quite low voltages.
This point often causes confusion; the "high impendance" transistor passes high currents at low voltages, which seems to indicate low impedance, but we are talking of two different things. The impedance is represented by the change of current with collector voltage for a fixed bias; impedance $=$ voltage change When we bias the transistor full on and measure the voltage across it and the current through it and do the same sum of $\frac{\text { volts }}{\text { current }}$ we are simply measuring the resistance of the transistor to d.c., not to signals. This quantity should be called Perveance. It is well known to the user of transmitting valves used with positive grid voltages because it indicates the current which the valve can supply at low anode voltages.

All this means that our matching of transistors must be for best undistorted output and that it is unwise to
bias a transistor hard on while the full line voltage is on the collectors, since a very high current will flow.

## Single-ended Stages

When a single valve or transistor or a group wired in parallel is used to deliver power to a load, this is termed a single-ended stage. We bias such a stage so that the bias current is about half the maximum current we wish to take from the output, and we load so that the voltage at anode or collector is minimum (about 30 V for a valve, 1 V for a transistor) at maximum current. If the load we wish to use differs from the calculated ideal load, we use a transformer for matching, with a turns ratio $\mathrm{N}: 1$ equal to $\frac{\text { Primary load }}{\text { Secondary load }}$ where N is the ratio of primary turns to secondary turns. With valves, this procedure is quick and straightforward; with transistors, almost always impossible. To start with, when a valve is biased, and no signal is being amplified, there is power dissipated in the valve equal to anode voltage times anode current. This power appears when the current in the valve strikes the anode and heats it up; this heat must be lost by radiation, but does not affect the working of the valve, since electrons move through the vacuum unaffected by the temperature of their surroundings. When a transistor is biased in this way, the heat is generated inside the semiconductor crystal and
spreads throughout it. The effect of this is to make the crystal more conducting so that more heat is generated, and the situation can end up with the whole crystal melting, a catastrophe called Thermal Runaway.

A fair degree of protection can be obtained if the bias can also change with temperature, or can be regulated to keep the current fairly constant. This may involve a thermistor to reduce bias (Fig. 1) as temperature increases (the thermistor being attached to the transistor to short its temperature) or biasing with a network which holds the base at a constant voltage and using an emitter resistor so that any increase of emitter current automatically reduces bias (Fig. 2). The second method is better, since the emitter resistor can be chosen to prevent excessive current ever flowing, but the emitter resistor dissipates some power so that less can be used in the load.

Another method which has been used is to rectify some of the output signal and use it to increase the bias current when large signals are being amplified. In this way a low bias can be set for normal use without excessive distortion on large signals. This method, called sliding bias, is seldom seen due to the difficulties of setting the time constants of the rectifying circuit so that the response is quick enough to avoid undue distortion at the start of a loud passage and yet slow enough to avoid oscillation due to feedback of signal. A typical sliding bias circuit is shown in Fig. 3.

Single-ended output stages are wasteful in the sense


Fig. 2: A transformer coupled output stage. R3 is usually small. 1-100, depending on the bias current so that about 0.5 voit is dropped across it. R1 and R2 are low value resistors, and R2 may be a thermistor for greater protection. R3 could be a torch bulb.
Fig. 1: A single-ended stage using thermistor compensation. If the voltage at $A$ is less than half the line voltage, thermal runaway cannot cause damage. R3 may be used as the load if bias current can be passed through the load (not suitable for use with a loudspeaker)



Fig. 3: A sliding bias amplifier. The current fed back by the rectifier must exceed the input signal current, and C1 must be chosen so that there is not too much time-lag between the signal and bias. Too small a value of $C$ will cause severe distortion of low frequencies.
that the bias causes most of the wattage to be dissipated in the transistor and very little in the load, though they are fairly cheap in terms of component costs. Their main application is in car radios, where the bias current is only a small load on the power supply. When power is supplied by rectifying a.c., single-ended stages are seldom used because the large steady current demand makes it very difficult to obtain a supply free from mains hum.

## Push-Pull Transformer-coupled

The basic circuit is shown in Fig. 4. The transistor may be biased in Class A, meaning a bias current of about half of the maximum signal current required, in


Fig. 4: A push-pull transformer coupled amplifier.
which case the disadvantages are the same as for the single-ended stage, excessive heat, danger of thermal runaway and large standing current drawn from the power supply. The use of push-pull does, however, avoid the hum from the power supply appearing in the output signal (provided it is not present in the input signal).

The bias can be reduced, so that the transistors work


Fig. 5: A re-arrangement of Fig. 4 which is useful where a low supply voltage has to be used. The voltage at each collector becomes double the supply.
in Class AB , with both conducting but not passing as much as half of maximum signal current or in Class B where the bias current is almost zero, and each transistor conducts only when the signal input is in the forward direction of bias. The class AB circuit of Fig. 5 is capable of good results, and the transformer is easily made, yet this circuit does not seem to have been widely used, despite its very close resemblance to the equivalent valve circuit. Perhaps this has been due to the wide publicity given to circuits (dealt with later) which use no transformers, but which do not necessarily benefit thereby. The circuit of Fig. 5 is extremely useful where supply voltage is limited, as the effect of the transformer is to make the maximum voltage at each collector double the supply voltage.
Class B circuits can be used, but distort badly at low signal levels. They are useful in devices such as loud hailers or guitar amplifiers but not when close resemblance to the original sound is required.

## The Totem-pole Circuit

Officially this circuit is known in this country as the "single-ended Push Pull", but the American name is much more descriptive. In outline, the circuit is as in Fig. 6. Two transistors are connected in series and driven so that they conduct alternately. Such an arrangement could be used in Class A, but is usually used in Class AB or B, and is the output stage used in the majority of transistor amplifiers. No output transformer is required, though, in some American designs, an autotransformer output is used so that loads of different impedances can be used. When the load is coupled directly, one transistor connects the load to line voltage when conducting and the other connects the load to earth. In most designs, the load is the


Fig. 6: A single-ended pushpull or totem-pole amplifier. greatest impedance in the circuit, and very large currents can flow through the output transistors if a signal is applied to them with a low impedance load connected or the load shorted. For this reason, output circuits of this type need protection against excessive current, usually in the form of low ohmage resistors, fuses or lamps in the emitter of the output transistors.
Summing up the output power and transistor dissipation for transistors used in this circuit:

$$
\begin{array}{ccccc}
\text { Power Out }=\frac{\mathrm{V}_{\mathrm{c}}{ }^{2}}{\mathrm{R}_{1}} & \text { Power Dissipated }=\mathrm{A} \times \frac{\mathrm{V}_{\mathrm{e}}{ }^{2}}{\mathrm{R}_{\mathrm{I}}} \\
& \text { Sine wave } & \text { "Music" } & \text { Square wave } \\
\mathrm{A} \text { is } & 1 / 40 & 1 / 50 & 1 / 30
\end{array}
$$

The Totem-pole circuit can be seen in three distinct forms, depending mainly on the way in which the input is applied: by a transformer, by driving transistors, or as a single phase input to a complementary pair output.

## Turning a deaf ear!

At the risk of making a complicated situation even more incomprehensible I would like to call attention to certain aspects of Mr. Iain Smith's letter published in February.

He states that, apart from certain cheap amplifiers which include a "loudness" control as a gimmick, many manufacturers provide this facility on their equipment under the misconceived notion that some compensation should exist to boost bass frequencies when the volume is reduced. In practice he suggests that this is not required because, for example, during a live concert if one moved from the front towards the back of the auditorium the sound would normally appear to fall with more noticeable loss in the lower frequency range. This, of course, is quite true. But then it presupposes that the situation is always of this form and that the intention is to make the sound seem a long way off whenever an amplifier has its gain reduced. It further suggests that it should be normal to shift the apparent sound source every time we adjust the volume control! And perhaps, even more ludicrously, that whenever an orchestra decides to play quietly it suddenly moves on masse to perform in some remote position outside the hall!
Fundamentally (provided we remain seated) none of these "loudness" distortions seem to occur during a live performance-why? We are all aware that an orchestra can deliberately create the illusion of playing a long distance away, but it can equally well play quietly and not give this impression. This, I suggest, is brought about by the effect of normal audition among the members of the orchestra; i.e. they are only able to create these effects by consciously monitoring (in conjunction with the conductor) the sounds they make and adjusting the amplitude accordingly. All these amplitude adjustments are necessarily made with reference to what the conductor's concept is of the sound produced by his orchestra playing at "full voice".
However, "we in our living rooms" cannot use the "full voice" reference without blowing several windows out, so naturally we keep the volume level much lower. By
doing this, though, we automatically change the reference point, but forget that our hearing response remains substantially the same. Therefore if, for example, we are listening to a recording of some music which up till now has remained at a satisfactory level, and then suddenly drops to a low intensity during a quiet passage, it will now sound far off and quite unrealistic. The only way in which this can be countered is by judicious use of a loudness control. It then matters little where the initial reference is.

Incidentally, Mr. Smith does not seem to mention that to a slightly less extent the ears' response also falls off with reduction in the intensity of treble. Most manufacturers take care of this in their design of loudness correction cir-cuits.-G. C. Brown (Hampshire).

## A lady replies

While leafing through my husband's copy of Practical Wireless, the contents of which are invariably beyond the comprehension of my housewife's brain, I noticed among the letters one concerning loudness control.

I would point out to any reader who considers that the further away one sits from an orchestra at a live performance, the less bass one hears, that this is not entirely true. Casting my mind back to my school days, when I was a regular concertgoer, it seems to me that one's distance from the orchestra is compensated for by the acoustics of the concert-hall. I am thinking in particular of the Free Trade Hall in Manchester, where our pocket money limited us to the cheapest seats, either the very back of the "Gods" or the front eight rows of the stalls. I can't honestly remember noticing any difference in the amount of bass that came over nor did it seem to me that the sound heard at the very back was murky or obscure, as Mr. Iain Smith suggests. This may, of course, be due to the fact that I am a musiclover, not an electronics enthusiast.

Having made this admission I would like to state my reasons for writing. My husband is at the moment, constructing a hi-fi unit, and since he asked my opinion as to whether the loudness control
was an improvement, I gave the matter a little consideration and now feel that I am as well qualified as most electronics experts and amateurs to state my views on what is, after all, a matter of individual taste.-Susan Jebb (Warwickshire).

## The (w)hole truth?

That you should publish an article and a letter (B. R. Meredith, March P.W.) stating that hole theory is fiction shows editorial irresponsibility, I believe. To compare thermionic valve action to transistor action is as irrelevant as to compare the working of steam and diesel engines. It is a fact (unfortunately?) that the action of semiconductor devices cannot be explained quantitatively without holes. Current flow in semiconductors does take place by two distinct mechanisms. I can just believe that Mr. Meredith may be able to describe qualitatively transistor action without direct reference to holes. I defy him to produce a plausible explanation of the Hall Effect without introducing the concept of holes. Simple experiments based on this effect prove that there are in deed two different conduction processes in semiconductor materials.
lt is certainly beyond the scope of your magazine to consider the band theory of solids in sufficient quantitative detail to demonstrate the existence of the hole. But you should not lead your readers astray by printing such dogmatic letters as Mr. Meredith's without comment.

1 do not class myself as an "acknowledged expert": I am a third year undergraduate studying for the "Electrical Sciences Tripos".
I have read Practical Wireless regularly for about seven years. As a result, my interest in electronics has steadily increased. R. F. Pannett (Trinity College, Cambridge)

## Anybody heard of these?

I recently acquired some TK3IC JY and TK3IC NB transistors and can find no reference to them in any of the books I have.

1 wonder if any fellow readers could possibly supply me with simple circuits which use such devices?-J. Boot (38 Gowing Road, Hellesdon, Norwich, NOR 4OM).

A SERIES OF TRANSISTOR PROJECTS, EACH USING LESS THAN TWENTY COMPONENTS AND COSTING LESS THAN TWENTY SHILLINGS TO BUILD.

#  

No. 2 an audio oscillator


Fig. 1: The circuit of the phase shift oscillator. The voltage is 9 v , supplied by any battery.


Fig. 2: The component layout; there are no breaks in the Veroboard copper strip.

If one is lucky enough to have an oscilloscope the unit may be used very successfully for tracing the waveform through an amplifier. In addition it may be used to feed a Schmitt trigger for producing square waves.

The actual building of the phase shift oscillator presents no problems, all the components can be mounted on a piece of Veroboard $1 \frac{3}{4} \times 1 \frac{3}{8} \mathrm{in}$.; no breaks are necessary in the copper strip.

If the unit is built into a copper tube about 1 in . diameter, a small push button can be mounted at one end and a probe protruding from the other, an extremely useful audio signal injector will be added to your test gear.

# "Listen in" on the World with HEATHKIT shortwave receivers 

treat yourself TO A WORLD TOUR...WITHOUT LEAVING HOME!



LOW COST 4 BAND SHORTWAVE RECEIVER GR-64 Makes an ideal present for the youngster. It has high performance features plus world-wide reception, shipping, aircraft, radio amateurs plus the popular medium broadcast band. It covers 1 MHz to 30 MHz plus 550 KHz to 1620 KHz AM, with sleek "low-boy" styling, operates on 115-250V $50 \mathrm{~Hz} \mathrm{AC}$.

Kit K/GR-64 £22.8.0. Carr. 9/-

GENERAL COVERAGE RECEIVER GC-1U

A welcome traveller wherever you gol Covers 580 to 1550 KHz and 1.69 to 30 MHz in 5 bands with calibrated bandspread scales for
 80, 40, 20, 15 and 10 metre amateur bands. Completely solid state and self contained for portability. Operates on two internal PP6 batteries (not supplied) or 230V AC with a suitable power supply.

Kit K/GC-1 U £38.8.0. Carr. 11/-

## DELUXE 5 BAND SHORTWAVE RECEIVER GR-54

This receiver offers exceptional performance and many special features at such a low price. It covers 2 MHz to 30 MHz plus 550 KHz to 1550 KHz AM broadcast band and 150 KHz to 420 KHz aeronautical and radio nạvigation band. Receives AM/CW/SSB, $6 \times 4 i n$. PM speaker and sleek, 'low-boy" styling. Operates on $115-230 \mathrm{~V} 50 \mathrm{~Hz}$ AC.
Kit K/GR-54 £44.0.0. Carr. 9/-


GR-64

## AMATEUR BANDS RECEIVER RA-1

Unequalled value for the radio amateur. Covers 160 to 10 metres. High quality lattice crystal filter for optimum communica-
 tions selectivity. Optional 100 KHz crystal calibrator plugs in inside receiver. 8 valve and 2 diode circuit. Operates on $115,200-250 \mathrm{~V}$ $\mathrm{AC}, 50 \mathrm{~Hz}$.

Kit K/RA-1 £39.16.0. Carr. 9/-

## Free Catalogue!



See these models and many more in our 1969 catalogue. Models for Stereo/ $\mathrm{Hi}-\mathrm{Fi}$, Industry, Education and the Home Workshop. Heathkit -the world's largest selling selection of electronic kits and equipment.


## fity

FANTASTICALLY POPULAR大
We ofter you inlly tensilised polyonter／mylar and P．F．C．tapes of Identical quality hi－h，Filde range recording aharacteriatics as top Erade tapen．Oualtity control manuicture．copter sre tray worth intow chesp imports．TRI ONTAND PROVEIT YOUR8EIN ${ }^{2}$ Standard Play $9 / 8$ Long Play 3 in $\begin{gathered}\text { tandard Piay } \\ 150 \mathrm{tt} \text { ．} \\ 2 / 8\end{gathered}$ $\begin{array}{ccc} & \text { Long Pisy } & \\ 8 \mathrm{in} & 225 \mathrm{ft} . & 8 \\ \mathrm{sin} . & 450 \mathrm{ft} . & 5 \\ 5 \mathrm{in} & 900 \mathrm{ft} . & 10 \\ 5 \mathrm{tm} & 1,200 \mathrm{ft} . & 18\end{array}$
$\begin{array}{lll}\text { Sin．} & 300 \mathrm{ft} & 4 / 6 \\ 8 \mathrm{fm} . & 600 \mathrm{ft} . & 7 / 6\end{array}$
拏的． 900 ft ．10／6
7in． $1,200 \mathrm{ft}$ ． $18 / 6$
atn．
$\begin{array}{lrr}\text { in．} & \text { 600ft．} & 8 /- \\ 5 i n . & 1,200 \mathrm{ft} . & 16 /-\end{array}$
急的．1，800tt． $19 / 6$

Postages 1／－reel
Postages 1／．Freel．
Orantity and Trade enquiries invited．
NOTE：Large tape stocke al all branches．


## NEW and SPECIAL Lines at

 the keenest pricesA $/$ IFM $\operatorname{BTKREO}$ IULTIPLRX RMONVERS 18 tranaistors， 9 diodes， 1 varishle diode， 8 gilicon Rectifart．Pubh－pall 8torso Ampliters．FI Stareo
 Beartilol Wooden plinth cent－sprcorimatels
 Belance，Baeo／Treble Control，Volume，Tuing．Fine
 machtnet of femone mare at a ridiculounly low prico． Unrepentable ofter at a traction of list prioe ．．．only 28 GNP．POBT FREES．

SHARP RDSO4 R Litins Battory Tape 28 gns acorder，Lint 88 gmi
 GARRARD 1025 Ohangert with JASON 1812．Diecest fall range twin
 AJAX Radio

27 gns
f810s
f4 10 s
12 gns
WELESMERE AM／PME Hith Sonstitvity 7 gns
HITACHI Wrss7a Xll－wave，full sise． 13 gns HI－F｜By Lesk，Whartedalo，Goodman，WB， By Lesk，Wharfedale，Goodman
Dulci，Arom，Teleton，etc．，etc．


RETAIL BRANCHES：
LONODN， 10 Tottonham Court Rd．（MUS 2639）
PORTSMOUTH．350－352 Fratton Road
（Tel．22034）
SOUTHAMPTOM， 72 East Streot（Tel．25851）
BRIGHTON， 6 Quean＇s Road（Tel．23975）
MAIL ORDER WAREHOUSE：
Devonian Court，Park Crescent Place，Brighton， （Tel．680722）

## BARGAIN PARCELS

Including vardable condentera，1．I．coily，loadrpentrer plug／socirets，knobs，pots，condezsert，realstort，nuts bolts，cebinet fittings，witcher，transformor choke，
 Due to heary demand wo now prick them in reveral ises－be amased－iny one now．
8 Ibs．（post $8 /-$ ）
$9 /-$
$17 / 6$
14 lb 1 ．（port $6 /-$ ） $201-$

Aerlal Whe：Colls of 20 yds．solid core， $2 / 3$ plus $1 /-P_{1} \& P_{\text {．}}$
mattery Ellminatore for Traneftor Supplies． 9V．，7iv．，6v．，2／f／plus 2／6 P．\＆P．

Condensers：Large range avallable from odi each．
Coar Bock Bta：Fluah，©d．plus 6d．P．\＆P．
Cartridges：Acos GP67／2G，14／s：BSR TC8H． 30／－；TC8M，2t／e；X1M inserts，22／6，etc．

En Pleces： $2.5 \mu / \mathrm{m}$ or $3-5 \mu / \mathrm{m}$ Mag．， $2 / 4$ plus $1 /-$ P．$\&$ P． $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Cryatal， $5 / 6$ plus $1 /-$ P．$\&$ P．

High Impedance Horne： $1 \frac{1}{2}$ to $4 \frac{1}{1}$ volt，Ideal for alarme，3／8 plus 1／－P．\＆P．
Loudspeskers：Large range．2in． 8 ohm，7／4； 4in． 8 ohm，12／0；5in． 8 ohm，t／／6 pius 2／－P．\＆P．

Transistors：Full range，I．e．OC44，OC45，OC71， OC82，2／0；OC35，\％／－；Fet．MPF103，／／6．

Traneformers： 12 volt battery charger，eil．2．t． $250-0-250$ volt 60 mA ， $18 / 9 ; 0-250$ with $6-3$ voit， $19 / 8$ plus 3／6 P．\＆P．

Relays： 12 volt cultable for car alarm， $21 / \mathrm{Fi}$ 6 volt $A C, 28 / / 4 ; 240$ volt $A C, 27 / 6$ plus $3 /-P$ ． 4 P．

Ex．Govt Panel Meters：0－SM／A，17／0：0－300v AC／DC，25／4 plus 2／7 P．\＆P．

Many other Items，please send S．A．E．for free price Ilst．


BOTEWINL BHECTRIC
80PPLIES（Glatgow）LTD．
64 BGLIVKO ETREFT
GLABGOW，C．5．Tel． 041 sOUth 2904
Tember of the Lender Groug

game as 4－8tation Intercom for two－way instant oommonication．Ideal as Baby Alarm and Door Phone．Complete with 68ft．connecting wire． Bettery 2／6．P．\＆P．4／6．
 busimess eff． diency with this incredible De－luxe Telaph ore ampli－ Ater．Tare down long telephone mesages or oonverse without holding the handset．A useiul ofmoe sid．$O$ m $8 / \mathrm{B}$ ．Full price refunded if not sintiafed in 7 days． Whet LOIDO2 DPPME AOPPLIES（P／W0）


## For the Home Constructor

R．M．MARSTON， technical author and design consultant

This is a book which will appeal equally to the electronics amateur and to the professional engineer． 110 different circuits are described and the operation of each one is explained in simple and precise terms．The main feature of the book is that it fulfils a long－awaited need for readable in－ formation on these devices．

## CONTENTS

30 Silicon－Planar Transistor Projects
15 Field－Effect Transistor Projects
20 Uni－Junction Transistor Projects
15 Silicon Controlled－Rectifier
Projects
30 Integrated－Circuit Projects
124 pages 110 illustrations
25s net case 26 s $4 d$ by post
18s net student edition 19s 4d by post

## ILIFFE BOOKS LTD

```
42 RUSSELL SQUARE LONDON，W．C． 1
```

Last month the circuits for the transistor tester were given. This month the second part gives the constructional details and uses.

THE constant current supplies are the first things to be built and tested, as these are one of the most complicated parts of the apparatus. A meter is inserted in series with a resistor and a battery (preferably the battery to be used in the completed instrument), and the trimming resistor is adjusted to give approximately the right current. The resistor is now carefully shorted out, whereupon the current should not change.

Remember that the resistor used depends on the current range being tested, and that the electronics of the supply need about 6 V to operate at all, so this fixes a maximum on resistor Rx depending on the battery voltage. For 30 V , the resistor should be about $20 \mathrm{k} \Omega$ for $1 \mathrm{~mA}, 2 \mathrm{k} \Omega$ for $10 \mathrm{~mA}, 200 \Omega$ for 100 mA . No overheating should occur, even on the 100 mA range. Once this is completed, the switching circuitry is constructed.
The prototype was built in an Eddystone Box, type 6827 P with the Veroboard circuit fastened to the lid by 2 in . 6BA machine screws. The "function" switch and the current range switch were fixed to the lid first, and the Veroboard was positioned. 6BA machine screws were then passed through the Veroboard, secured with nuts, then further brass nuts were soldered to the frame of the switch. This secures the current switch to the board, and wiring can commence.

In view of the size and number of wafers required

inserting the diode into the collector and emitter sockets of one of the transistor holders, selecting Iceo and 1 mA on the switches (shunt the meter to 1 mA ). Operation of the polarity switch should give the result that the diode conducts one way, but not the other. Switching to Vce should give the usual 0.2 V or 0.7 V reading depending on the diode construction.
The mode of operation of this device demands more complicated circuitry than is required for other types of tester, but it is felt that the tests offered are more


The interior of the transistor tester, note the batteries lain across the base and the way in which the Veroboard panel is sited.
valid and meaningful. Quite apart from this is the illustration of the techniques used in design of constant current sources, and also of the theory of transistor operation.

## Operating instructions

1. Insert the device in the slot. The colours on the extension leads go: red $=\mathrm{e}$ black $=\mathrm{b}$.
2. Having set switches to Iceo and 1 mA , select the polarity required, and shunt the meter. If the meter fails to register a reading, remove the shunt and repeat. If there is still no reading, replace the shunt, switch to 10 mA , and press button. If there is no reading, remove the shunt. A perfect transistor will pass all tests.
3. (a) Set the switch to Vce (sat) and the other switch to $\operatorname{ImA}$. Press the button. Germanium may read $0 \cdot 1 \mathrm{~V}$, silicon may read 0.5 V .
(b) Set to 10 mA . Germanium reads $0.25-0.4 \mathrm{~V}$, silicon reads $0.6-0.8 \mathrm{~V}$.

A short-circuited transistor always gives a low reading. An open-circuit


To various sockets on front panel

Fig. 1 (above): The location of the main components.

Fig. 2 (left): The copper side of the Veroboard showing the switch connections and the breaks in the laminate. Note that S6 was incorrectly labelled R5 in the circuit last month.
transistor always gives a very high reading.
4. Set to Icbo, and use switches as for Iceo. By noting which junction fails the leakage test (Icbo tests collector/base, and Iceo tests both) a fault may be traced to a particular junction, and the device used as a diode.

## Testing Diodes

1. Set to Iceo and 1 mA , then shunt the meter. Insert the device or connect it to c and e terminals. Now switch on and operate the polarity switch. The diode will conduct one way and not the other. Remove the shunt and measure the leakage at 15 V or 30 V .
2. Set to Vce (sat) and 1 mA . A germanium diode will give a reading $0 \cdot 1-0 \cdot 5 \mathrm{~V}$, depending on the current. A silicon diode will give $0.5-0.7$, depending on the current.

PROTECT VALUABLE DEVICES


From thermal runing. Thyrintors, recing. Thyriators, recetc., which use heatsinks can easily be protected; simply maire the contact of the heat-sint of the beat-sink. Motora and equipcan also be adequately protected by having thermostats in atracontart thermostat has a callbrated dial for setting betwe $90^{\circ}-190^{\circ} \mathrm{F}$. or with the dial removed range setting ls between 80 to $800^{\circ} \mathrm{F}$. Prlce $10 /$ -


## ROTISSERIE

## MOTOR

Very powerful 7 r.p.m., operates from standserd A.C. mains. 89/6, ,

NOTN 230 VOLT SOLENOID fin. stroke. Size 2 in. $x$ ${ }_{2 / 9}{ }_{2 / \mathrm{in} .} \times 1$ in. $14 / 6$, postage

Sea in the Dark INFRA-RED BINOCULARS


These infra-red binoculars when fed from a high yotage source will enable objecta to be seen in the dark, providing the objects are in the rays of an infra-red beam. Each eye tube contains a complete. optical lens syatem as well as the infra-red cell TV cameras-light cells, etc. (details supplied) The binoculars form part of the Army night driving (Tabby) equipment. They are unused and believed to be in good working order but aold without a guarantee. Price 83.17 .6 , plus $10 /$-carr. and ins, Handbook 2/6.


MAINS MOTOR Precision made - as used in record decks ideal also for extractor fans, blower, heater, etc. New and perfect, Snip at $9 / 6$. Portage )- for flrst one then 1/-for each one ordered. 12 and
over post free over post free.

## 16 RPM GEARED MOTOR

Made by Smith's Electrics, these are almost silent running, but are very powerful. They operate from $16 \mathrm{r} . \mathrm{p} . \mathrm{m} .15 /-$. Post \& ins. $2 / 9$.

Miniature wafer switches


4 pole, 2 way- 3 pole, 3 way- 4 pole, 3 way- 2 pole, 4 way- 3 pole,
4 way-2 2 pole 6 way- 1 pole, $12, ~$ way. All at $3 / 8$ each. $88 /-$ dozen, your assortment.

## WATERPROOF HEATING

 ELEMENT 26 yards length 70 W . Belf-regulating temperature control. 10/- poit free.KETTLE ELEMENT
$230 / 240 \mathrm{~V} \quad 1500 \quad \begin{gathered}\text { watt. }\end{gathered}$ Made by Best for kettles fncluding: Beat, Besco, Chalfont, Davidson, DimJurymaid Mirroware plex, Graiton, Hawkins, Towen, swan. Normally 32/6. Our price $15 /-$ plus $2 / 6$ post.

## AC FAN

Small but very powerful mains motor with 6yin. cooling Ideal tor cooling equiptor, gllent but very efficient. 17/6, pors 4/6. Mounts from back or front with 4BA acrews.

ELECTRIC CLOCK WITH 25 AMP. SWITCH
Made by Smith'a these units are as fitted to many top quality cookers to control the oven. The olock is mains driven and small dials enable switch on and off times to be sccurately set. Ideal for switching on tape recorders. Offered at only a fractlon of the reguiar price-new and unused only 39/6, less than the value of the clock alone-post and insurance $2 / 9$.


FULL FI 12 INCH LOUDSPEAKER. This is undoubtedly one of the finest loudspeakers that we have ever offered, produced by one of the country's most famous makers. It has a die-cast metal frame and is atrongly recommended for Hi-Fi load and Rhythm Guitar and public address.
Flux Density 11,000 gauss-Total Flux 44,000 MaxwellsPower Handling 15 watts R.M.S. Cone Moulded flbre-Freq. response $30-10,000 \mathrm{c}$.p.s. dpecity 3 or 15 ohms-Main re-
monance $60 \mathrm{c.p.g}$.-Chasisis Dlam. 12in.- 12 in. over mounting lugs-Bafic hole 11 in. Dlam.-Mounting holes 4, holes-ing. diam. on pitch circle 11 init. diam.-Overall height 5 tin. A $£ 6$ speaker oftered for only $\mathbf{\& 8 . 9 . 6}$ plus $7 / 6$ p. \& p. Don't miss this offer.


## THIS MONTH'S SNIP

## G.E.C. 13A SOCKETS

Opportunity to re-equip your house or worikshop, or if a contractor, to stock up for future jobs. We offer bakellte 13A sockets for flush or surface mounting made by the yoU CAN HAVE A BOX OF 12 flush type $24 /$-, surface type $29 / 6$ post and ins. 4/6. (Gross or more carr., iree).


PROCESS TIME CONTROLLER
Made by Smiths, motorised and mains driven, enables 15 A circuit to be started up to 18 hours in advance and to
stay on for a period from 15 minutes to 3 hours. Totally enclosed in metal box with glass front and chrome surround. 48/6 plus $4 / 6$ post and ins.


NICAD RECHARGEABLE BATTERIES
3.6 V 500 mA size 11 x 1 iln. dia. type ref. DKZ500 really powerful will dellver 1 amp for $\frac{1}{\text { a honr. Regular price } 32 / 6 \text { our }}$ siogle cell $1 \cdot 2 \mathrm{~V}$ 6/6. 8 cell $6 \mathrm{~V} 29 / 6$.


CASSETTE LOADED DICTATING MACHINE Battery operated and with all accessories. Really fantastic offer a Britisb made $\mathcal{E 3}$, outtit for only speed , briliantly designed for takes normal apools, drops in and out for easy loading-all normal functions-accessortes include: stethoscopic earplece-crystal telephone pick-up-DON'T MISs THI8 UNREPEATABLE OFFER8END TODAY 84.19 .6 plus $7 / 6$ post and insurance. Foot switch $18 / 6$ extra Spare Cassettes at $4 / 6$ each, three for $10 /$-.

## REPAIRABLE RADIOS

7 transiator Key chain Radio In very pretty case, size $2 \underset{2}{ } \times 2 t \times 1 \frac{1}{2}$. - complete with soft leather zipped bag. Specification:-Circuit: 7 transsistor superheterodyne. Frequency range: 530 to $1600 \mathrm{Kc} / \mathrm{s}$. Sensitlvity: $5 \mathrm{mv} / \mathrm{m}$. Kntermediate trequency: $465 \mathrm{Kc} / \mathrm{g}$, or 455 ferrite rod, Loudspeaker: Permanent mas. net type.
These radios require attention. Circuit diagra
These radios require attention. Circuit diagram post and insurance. 4 radios 88 post free.

## VARYLITE

Will dim incandescent lighting up to 600 watts from full brilliance to out. Fitted on M.K. fiush plate, same size and fixing as standard wall switch so may be fitted in place of this, or mount on surface. Price complete in heavy plastic box with control knob 98.19 .6


需
Panel mounting, consists of neon lamy in red Plastic lens with resistor ln leads for majns opera-
tlon. $2 / 6$ each. 24 - dozen.

12V BLOWER
Heavy duty motor with centrifuga] blower coupled to one end. Ideal for car heater. 12/6, plus 4/6 post.

TELESCOPIC
AERIAL
for portable, car radio ted-ar transmitter. Chrome pla. screw. $7 / 8$.

MOVING COIL METER BARGAIN Panel meters are always being needed and they are jolify coatly when you have to buy them in a in moring coil fins mountion meters oner These are actually R.F. meters mind cost only $9 / 6$. These are actually R.F. metera and coot about 28 you have to do ta to remove the thermocouple and you will bave a $2-3 \mathrm{~mA}$. meter which you can make into a imost anything by adding shunts of series resistor. New and unused

## MAINS TRANSISTOR POWER PACK

Designed to operate translator sets and amplifiers Adjustable output $6 \nabla_{0}, 9 \nabla_{\text {., }} 12$ volta for up to 500 mA (Class B working). Takes the place of any PP7, PP9 owng batteries: PP1, PP3, PP4, PP6 ranatormer rectifier amoothing and load resistor condensers and instructions. Real snip at only 16/6, plus 3/6 poatage.

## REED SWITCH

Suitable for dozens of different applications, such as burglar alarms, conveyos belt switching. These are simply glass encased switches which can be perated by a pasing permanent mascuet col. 4 24/- dozen. Suitable magneta are 1/- each.

## MINIATURE RELAY

American make- 630 ohre coil 20-30 volt opera-tion-2 pole change over $4 / 6$ each, $48 /$ - dozen.


5A. 3 PIN SWITCH SOCKETS
An excellent opportunity to make that beach dis board you have needed or to stock up for fnture jobs. Thas month we offer 6 British made Hicraft) bakelite fus mounting sbuttered 5 s. switch
sockets for only $10 /-$ plus $3 / 6$ posit and imsurance. ( 20 boxes post
(ree.)

## QUICK CUPPA

Mini Immersion Fleater, 350 w . $200 / 240$ v. Boils full cup in about two minutes. Use any socket or lamp holder. Have, at bedside for tea baby's foed, etc. 19/8, post and insurance

## HEADPHONES

Ex-W.D. unused and perfect, aingle with headband 4/6. Double with headband 8/6. Multi Purpose Neom Test Unit. Robust, useful and instructive, testa i isulation, capacity, continuity, resistor, volume eontrols, also acts as signal injector and L.T. tault finder, kit comprises neon indicstor, 4-way waler switch, ebonite tubes resistors-condensers, terminals etc., with dis, gram, only $9 / 8$, phas $2 /$-post and insurance
Taning Condenser, solid d-electric .0005 md Taning Condanser, solid dl-electric $\cdot 0005 \mathrm{mdd}$
variable $2 / 6$ each. $24 /$-dozen. A.E.I. Fractionai H.P. Motor. 200/250 v. 50/60 c.p.s. enclosed, whtinuous rating $1 / 40 \mathrm{~h} . \mathrm{p} ., \mathrm{ex}$. equiprnent. Perfect order, 18/6, plus $4 / 6$. Experimenting with altra violet P Philips U.V. lamp, $16 / 6$; bolder and control gear $19 / 6$. G.E.C. Black Lught Tabe for experiments and special lighting effects- 40 watt 2 itt. tubes only 14/6 each; holders and control gear, 19/6, plus 4/6 post.
Clock Motor. 330 v . 50 c.p.s. synchronous-seli starting. $6 / 6$.
Pentode Outpat Traniformer. Standard size, 40-1 ex-equpment but $0 K, 4 / 3$ each, $48 /$ - doz. Post E.H.T. Condenwer. 0-1 mfd, $5 \mathrm{kV}, 8 / 6$ each Neon Hains Tester, $1 / 8$ each, $12 /$ - doz.
Flood Lamp Control. Our dim and full switch is ideal for controlling photo flood lamps; it give two lampe in series, two lamps full brilliance and lamps off. Sinails control of other appliances can be arranged where used in pairs or where circult k known as a double-pole change-over with ofl Our price $4 / 6$. Sub-iliniatuse silicon Diodes. General purpose type with guld-plated leads, $1 /$ each or $7 / 6$ per
dozen.

Where postage is not stated then orders over 43 are post free. Below 28 add $2 / 9$. Semi-conductors add $1 /$ - post. Over $\& 1$ post free. S.A.E. with enquiries please.

## TRADER SERVICE SHEETS

5/- each plus postage
We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios, Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

## OAKFIELD ENTERPRISES

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

| Make Mode/ Radio/TV <br>    <br>    <br>    |
| :--- |
| 1969 List now <br> available at $2 /-$ <br> plus postage |
| If list is required <br> indicate with $X$ |

From
Address
anclose remittance of..
(and a stamped addressed envelope)
MAIL ORDER ONLY (June PW)

NEW RANGE BBC 2 AERIALS
All U.H.F. aerials now ftted with tilting bracket and 4 element grid reflectors. Lort Mounting Arrays, 7 element, 37/8. 11 element. $45 /$. 14 element. $52 / 6$. 18 element, $60 /-$ Wall Mountins with Cranked Arm, 7 element, 60/-. 11 element. 67/-. 14 element, 75/- 18 element, 82/6. Mast Mounting with 11 in. clamp. 7 element. 42/6. 11 element, $55 /-$ - 14 element, $62 /-18$ element, 70/-. Chimney Mounting Arrays, 14 element, 87/6. 18 element, $85 /=$. Complete assembly instructions with every unit. Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps from $75 /$ - State clearly channel number required on all orders.

## BBC - ITV AERIALS



BBC (Band 1). Telescopic loft. 25/: External
 ment loft array. $30 /-5$ element. 401 -. 7 element 501 -. Wail mounting. 3 element, 47/8. 5 element, 58/6. Combined BBC ITV: Loft $1+3,40 /-; 1+5$.
 mounting $1+3,57 / 6 ; 1+5$;
$67 / 6 ;$ Chimney $1+3,67 / 6 ;$ $67 / 6 ;$ Chimney $1+3,67 / 6$;
$1+5,75 /$-transistor pre-
VHF VHF m tra
COMBINED BBCI - ITV - BBC AERIALS $1+3+9, \quad 70 /-1+5+9$, $80 /-$. $1+5+14,90 /-1+7+14,100 /-$ Loft mounting only. (Band eanet available.
F.M. (Band 2). Loft S/D, $15 /$ - "H"! $32 / 6$. Co-ax. cable 8d. yd. Co-ax. plugs, 1/4. Outlet boxes, $5 \%$. Diplexer Crossover Boxes, 13/6. C.W.O. or C.O.D. P. \& P. 6/-. Send 6d. stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884

ค SHORT-WAVE WORLD-WIDE RECEPTION


Famous for over 30 years for short-Wave Equipment of quality. "H.A.C." were the Original suppliers of short-Wave Receiver Kith for the amateur constructor. Over 10,000 atisfled pitals, Public Schools, $A$ A

## IMPROVED 1969 RANGE

One-valve model "DX", complete kit—price $58 / 6$ (Postage and packing $8 / 6$ ).
Customer writes:-'Deflnttely the best one-valve 8.W. Kit available at any price. America and kit contains all genuine ahort. drilled chassis, valve accessorles and full instructions. Ready to mssemble, and of course, as all our product-fully guaranteed. Full range of other g W kith atill available, Lacluding the famous model " K " (recommended by radlo cluba). All ordera despatched by return. (Mall order only.) Bend now for a deacriptive catalogue, order form.
"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

A TECH-PRESS PUBLICATION
To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT BR2 7HP Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of 20/- followed by 3 fortnightly payments of $20 /-$ each. BASIC ELECTRONICS $90 /-$ Cash Price, or Down Payment of $20 /$ / followed by 4 fortnightly payments of $20 /$ - each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
T Tick Set required (Only one set allowed on free trial) BASIC ELECTRICITY BASIC ELECTRONICS $\square$
Prices include Postage and Packing. am more than in my job as Hospital maintenance electrician.'" A. B., Birmingham.
"I am entirely satisfied with the books, they are everything you claim them to be."
S.S., Cardiff.
"An extremely marvellous set of books."
C.B., London.

D Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS


## A. J.WHITTAKER

## PART 3-DIPOLE AERIALS

PARTS one and two in this series have described the basic theory of dipole aerials and the properties of vertical arrays when used for transmission of radio waves. This part will discuss effects of adding director and reflector elements to the basic dipole, and how to put the technique into practice by describing the construction of a v.h.f. loft aerial for receiving f.m. transmissions.

## The Reflector Aerial

Consider Fig. 3.1, which is of a dipole " A " with the reflector " $B$ " spaced $\frac{1}{4}$ wavelength behind. Assuming the dipole to be a transmitter aerial fed with r.f. energy, the action is as follows:
(i) By the time that the voltage wave radiated from the main aerial " $A$ " has reached the reflector " $B$ " it has changed in phase by $90^{\circ}$;
(ii) The back e.m.f. in the reflector lags $180^{\circ}$ on the cause producing it (i.e., the voltage radiated by " $A$ ");
(iii) The reflector voltage, therefore, lags $270^{\circ}$ behind the main aerial voltage;
(iv) A phase lag of $270^{\circ}$ is equivalent to a lead of $90^{\circ}$ and so the reflector may be regarded as a directly energised aerial producing a radiated wave $90^{\circ}$ or $\frac{1}{4} \lambda$ ( $\lambda$ wavelength lambda) in advance of the main aerial radiation;
(v) As the reflector is a $\frac{t}{t} \lambda$ behind the main aerial, by the time the radiation therefrom has travelled through $\frac{1}{4} \lambda$ it is in phase with the main aerial and so augments the forward radiation;
(vi) The polar diagram of radiation is a cardioid (Fig. 3.2):

(vii) A receiving aerial behaves in the same way but in reverse. The wavefront arriving at the main aerial induces a voltage into it. A $\frac{1}{4} \lambda$ after this, a voltage is induced into the reflector element. This sets up a current in it, and it re-radiates, the radiated wave lagging $180^{\circ}$ on the cause producing it, implying that the
reflector radiation is again $270^{\circ}$ lag on the main aerial voltage. As in the transmitter aerial, a lag of $270^{\circ}$ is equivalent to a lead of $90^{\circ}$, and as the reflector element is $\frac{4}{4}$ behind the main aerial, its radiated field is in phase with it and so augments the forward pickup. The polar diagram is a cardioid and use may be made of this when siting the aerial to improve the signal-to-noise ratio.

## Dipole with reflector and director

Figure 3.3 shows a dipole with director and reflector elements. The director augments the pickup in the dipole and adding several further improves the dipole gain. Owing to transformer action of directors and reflectors, however, this lowers the matching impedance to as little as 10 ohms.


Fig. 3.3.

## The Folded Dipole

The $\frac{1}{2} \lambda$ dipole is a balanced aerial requiring in practice a feeder wire of 75 ohms impedance to connect it to the receiver. As has just been mentioned, when reflectors and directors are coupled to it they lower the dipole input impedance, so to overcome this the dipole length is increased to a full wavelength and folded over. The feeder is now connected to the ends of the aerial which may be arranged, by adjustment of the reflector and director elements, to have an impedance of 75 ohms, thus avoiding the use of a matching element. The folded dipole behaves like two dipoles in parallel and an impedance step up of about $4 / 1$ may be obtained.

The forward gain is seriously affected by the spacing of the reflector which is normally about $\frac{1}{4} \lambda$. A considerable change in the feed impedance also takes place when the spacing is varied. The reflector element is usually $\frac{1}{2} \lambda$ long but may. be $0 \cdot 475 \lambda$ long for closer spacing than $\frac{1}{4} \lambda$.

Directors are usually about $0.43 \lambda$ long and spaced about $t \lambda$ or less from the main dipole. If a number of directors are employed as in the Yagi array, making each progressively shorter in the direction of the transmitter broadens the bandwidth. For an aerial of 18 elements including the reflector and main dipole, the forward gain may be 14 dB higher than a single dipole (i.e. about $4 \cdot 5 / 1$ ). The gain of a Yagi with one director and reflector is typically 8 dB .

## Construction of a practical v.h.f. aerial

A 3 element aerial for the reception of v.h.f. f.m.


Fig. 3.4: The folded dipole.
Fig. 3.5.
Fig. 3.6: The complate aerial.


Fig. 3.7.

broadcasts, suitable for use in a loft, will be described.

The radiating element is a folded dipole, bent to the shape shown in Fig. 3.4. It is made from $\frac{3}{8} \mathrm{in}$. diameter copper tube, which can be bent by plugging the ends, filling it with sand, and folding it to the desired radius. The sand can then be emptied, and the ends flattened to seal the tube and provide a suitable surface for the terminal screws. All the dimensions are given in the sketch, and if these are carefully adhered to the aerial will tune to the midband frequency of $90 \mathrm{Mc} / \mathrm{s}$.

The reflector rod should be cut to $\frac{1}{2} \lambda$, which is about $62 \frac{1}{2} \mathrm{in}$. This figure is calculated from the formula:

$$
\frac{1}{2} \lambda \text { element length }(\mathrm{ft} .)=\frac{468}{\text { freq. }(\mathrm{Mc} / \mathrm{s})}
$$

This allows for the difference in velocity of electromagnetic waves in copper wire to the velocity in free space.

The director should be cut to a length of $0.43 \lambda$, which is about 54 in . The ends of the reflector and director should be sealed off, and if the aerial is to be used out of doors, all elements should be painted.

Having prepared the aerial elements as above, they must be assembled on the wooden boom, which is cut from $2 \times 1 \mathrm{i} \mathrm{in}$. timber to a length of 45 in . The first operation is to mark off the centre of the boom at 22.5 in . from one end, and attach to it, at right angles, a strip of plywood, $6 \times 2 \times 4$ in. After screwing it on, two holes should be drilled about 1 in . from each end of the plywood to accommodate a plastic insulator pillar. These pillars are fastened to the folded dipole. The dipole can then be mounted, the ends to which the feeder is attached being fastened to the underside of the boom by two saddles fixed by woodscrews, as shown in Fig. 3.5.

In a similar fashion to the driven element, the
director is attached by cutting a piece of plywood $6 \times 2 \times \frac{1}{4} \mathrm{i}$., and drilling a 6BA clearance hole, lin. from each end to accommodate the insulated mounting pillars. The plywood should be screwed to the boom at a centre-to-centre distance of 15.5 in . from the dipole, and the rod can then be screwed to the insulators. For the reflector repeat this operation, but space it from the dipole a distance of 25 in .
The director and reflector rods should now be drilled with a 6 BA clearance hole at a position 2 in . either side of the centre line of the rod. These holes are to accommodate the fixing screws for the insulating pillars to which these rods are fixed. The sketch shows the completed aerial, Fig. 3.6.

The insulated pillars may be made from Perspex, Paxolin, or any insulating material usually found in the workshop odds-and-ends box. The dimensions are given in the sketch.

The wooden boom was purposely made about 5 in . longer than necessary to
 allow for possible adjustment of the reflector or director in the interests of getting the optimum matching conditions for the feeder.

## Reception of VHF FM Stereo

For the reception of stereo broadcasts it is desirable to have an aerial system with more forward gain than the simple aerial described above. This may be quite simply done by adding more directors to the array, as shown in Fig. 3.7 which has two more director elements. These are cut progressively shorter in the direction of the transmitter to broaden the bandwidth. The boom will have to be lengthened to 75 in . to accommodate these extra directors.

TO BE CONTINUED

THE CLASSIC
Controla: Selector switeh Tape speod equallsation switch (3z and 71 i.p.s.). Volume. Treble Bess 2 position acratch filter and 2 position rumble alter
speolfoation: Elensitivities for 10 watt output at 1 KHz . Tape head: 3 mV (at $3 \% 1, \mathrm{p.s)}$. Mag. P.D.: 2 mV . Cer. P. $\overline{\text { M. }} 80 \mathrm{mV}$. Radio: 100 mV . Aux.: 100 mV . Tape/Rec. outpul: 100 mV . Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone control range: Bass $\frac{ \pm}{1} 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Tolal diatortion: (for 0 watt output) $<1.5 \%$. Signal noise: $<-60 d B$. A.C. mains $200-250 \mathrm{v}$. Built and Tested size 12 j in . long, 44 in . deep, $2 \frac{\mathrm{in}}{} \mathrm{in}$. high. Teak finished case Price $8 \frac{1}{2} \mathrm{gns} .+7 / 6 \mathrm{p} . \& \mathrm{p}$.

DUETTO INTEGRATED TRANSISTOR STEREO AMPLIFIER SPECIFIOATION R.M.S. Power Output: 8 watts per channel into 10 ohms speakers INPUT 8ENSITIVITY: Suftable for medium or high output crystal cartridges and tunera. Crosstalk better than 30 mA at $1 \mathrm{Kc} / \mathrm{s}$. CONTROLS 4 -poeition selector 9 witch ( 2 position mono and 2 poition atereoi. Dual ganged volume control. TONE CONTROL: Treble jift and cut. Separate on/off switch. A balance preset control ts also incurporated inside amplieffered in an elegantly stried ront panel. Built and tegted. PRICE 9 Gns, plus $7 / 8$ P. \& P.

## $2 \frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V. Size $7^{\prime \prime} \times 47^{\prime \prime} \times 1$ 㝵" $^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ Semi conductors, two OC 75 's two AC 128 's and two stabilizers AA129.
Tone and volunie controls on flying leads. £2.10.0 plus P. \& P. $3 / 6$. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high flux speaker, $18 / 6$ plus $2 / . P . \& \stackrel{P}{P}$.

50 WATT AMPLIFIER A.C. MAINS 200-250V
 An extremely reliable general purpose valve amplifier-with six electronically mixed inputs. Suitable for use with: mics, guitars, inputs. Suitable for use with: mics, guitars,
gram, tuner, organs, etc. Separate bass and gram, tuner, organs, etc. Separate bass and
treble controls. Output impedance 3,8 and 15 ohms.
Price 27 gns. Plus $20 /-$ p. \& p.
X101 10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP
Specifications: Power Output (into 3 ohms speaker) 10 watte. Sensilivity (for rated output): 1 mV into 3 K ohms ( 0.33 microamp). Total Distortion at 1 KHz . at 5 watts $0.35 \%$, at rated output 40 KHz . Speaker. $3-4$ Rhms ( $3-15$ ohms msy be used) Supply valtage: 24 V det $800 \mathrm{~mA}(5-24 \mathrm{~V}$ my be used) olfage: $24 V$ (c, at 800 mA (6-24V may be used).
Control assambly: including resistors and capacitors.

1. Volume: PRICE 5/-,
2. Comprehensive hasa and treble: PRICE 10/-,

The above 3 items can be purchased tor use with the $\times 101$.


Price 49/6
Power Suppllen for the XIO1:
Power Suppllen for the X101:
P101 M (for mono) $85 /$ - plus $4 / 6 \mathrm{p} . \& \mathrm{p}$.
P1018 (for stereo) 49/6 plus 4/6 p. \& p.

## THE RELIANT

10W SOLID-STATE HIGH QUALITY AMPLIFIER

## specifications

Output- 10 watts
Onputa
Output Impedance- -3 to 4 ohms
Lnputs-1. -xtal mic 10 mV Tone Controls-Treble control range $\pm 12 \mathrm{~dB}$ at 10 KH 2 Frequency Response-(with tone controle central) Mass Montrol range $\pm 13 \mathrm{~dB}$ at 100 H 2 Frequency Response-(with tone controls central) Minus 3dB points are 20 H 2 and 40 KH .
 A.C. Malns, 200-250V. For use with Std. or L.P. records, musical instrumenta, all makes of pick-upe and mikea. Separate bass and treble lift control. Two inputs with control for gram. and mike. Built and tested. $8^{\prime \prime} \times 5^{\prime \prime}$ speaker to suit price $14 / 6$ plus $1 / 6^{\prime}$ P. \& P. Crystalmike to suit $12 / 6$ plus $1 / 6$ P. \& $P$.
Reliant Mk. I. $5 \frac{1}{2}$ gns. plus $7 / 6$ p. \& p.
As above less teak crse.
Reliant Mark II. $6 \frac{1}{2}$ gns. plus $7 / 6$ p. \& p.
In teak finished case.


## THE VISCOUNT

## Integrated High Fidelity Transistor Stereo Amplifier

SRECLFICATIONS: Output: 10 watte per channel into 3 to 4 ohms speakers ( 20 watts monoral). Input: : basition rotary selector switch ( 3 pos. mono and 3 pos, atereo), Put Tuner, Tape and Tape Rec. Sensitivities: All Inputs 100 mV Into $1 \cdot 8 \mathbb{M}$ ohm. Frequency response: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$. Tone controls: (Baxandall type), separate bass and treble controls. Treble 13 db lift and cut at 15 KHz . Bass 15 db lift and 25 db cut at 60 Hz . Volume controls: Separate for ench channel. AC Mains input: $200-240 \mathrm{v}, 50-60 \mathrm{~Hz}$. Slze $12 \mathrm{f} \times 6 \times 2 \mathrm{z} \mathrm{ln}$. in teak-finished case. Built and tested.

PRICE 184 Gns, Poatage \& Packing $7 / 6$ extra.

> RADIO \& TV COMPONENTS (Acton) LTD 21c High Street, Acton, London, W.3. All orders by post to our Acton address 323 Edgware Road, London, W.2.

THE DORSET $(600 \mathrm{~mW}$ output)


7-transistor fully tunable M.W.-L.W. superhet portable -with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to build. Sizes: $12 \times 8 \times 3 \mathrm{in}$. MAINS POWER PACK KIT: 9/6 extra.
PRICE $\mathbf{8 5} 5.0$ plus $7 / 6$ p. \& p. Circuit 2/6 FREE WITH PARTS.
THE ELEGANT SEVEN MK. III ( 350 mW output)
7-transistor fully tunsble M.W.-L.W. portable. Set of parta. Complete with all components, including ready etched and drilled printed clrcuit hosrd-back printed for toolproof construction.
MAINE POWER PACK KIT: $9 / 6$ extra.
Price f4.9.6 plas 7/6p. \& p.
CIrcult 2/6 FREE WITH PARTs.


THREE-IN-ONE HI-FI 10 WATT SPEAKER A complete Loud speaker asstem on one frame, combining three matwhed ceramic magnet speakers with a low loss crose over network. Peak handiling power denslty 11,000 gauss. Resonance $40-$ $60 \mathrm{c} / \mathrm{s}$. Frequency range $56 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. size $13 \times 8^{1} / 1841$ inches. By famous manufacturer. List Price \&7. Our price $74 / 6$ plus $5 /-\boldsymbol{P}$. \& $P$.
Slimilar spasker to the sbove without tweeters in 3 and 15 ohm 44/6 plus $0 /=$ P. \& $\mathbf{P}$

## B.S.R. TD-2 TAPE DECK

This tape deck takee $\sigma$ itin. spools complete with two-track heads. Size 131 in . long by 8 inn. wide. 28.19 .6 plua 7/6 p. \& p.

## RECORD PLAYER SNIP A.c. MAINS 240V

The "Princens" 4-speed automatic record changer and player engineered with the utmost precislon for beauty, long life, and trouble free service. Will take up to ten records which may be mixed $7^{\circ}$ to $1^{\prime \prime}$ or playing and at ahut off, the pick-up locks itself into its recess, a moat useful feature with portable equip-ment-other featurea include pick-up height adjustment and stylua pressure adjustment. This truly is a fine instrument which you can purchase this month
 at only $85.19,6$ complete with cartridge and ready to play. Poat and insurance $7 / 6$ extra.

CAR TRANSISTOR IGNITION SYSTEM
(by famous manufacturer)
For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resistor and hardwear (screws, washers etc.). PRICE £4.19.6. (post and packing $5 /$ - extra).


POCKET MULTI-METER
Bize $37 \times 2 t \times 1$ in. Meter gise $24 \times 1$ in. Sensitivity 1000 O.P.V. on both A.C. And D.O. Foita. $0-16,0-150,0-1000$ D.C. current 0-150mA. Resistance 0-100k0. Complete With teat prods, bittery and ull intiructions, $20 / 6$. P. a P. Soldering Iron value 15/- to every purchsser of the Pocket Muitj-Meter.


FIRST QUALITY P.V.C. TAPE

 P. \& P. on each $1 / 6$.


## MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in. spool. Incorporating 3 motors.
A.C. mains, 240 volts, listed at £21.0.0.
Our Price 89.19.6, plus 10/- P. \& P.


#### Abstract

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12v) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-.

DULCI HI-FI UNITS The Duicl range of tuners and amplifiers offer xceptional quality at a sensible price. Amplifiers:207and207M. Tuners: FMT7 and FMT7e. SEND NOW FOR FULL DETAILS

TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$ output 7 mv tracking pressure 2 grammes $\pm 0.5$ grm. Fully guaranteed. Price 85/- p/p free.

Bargain-Changer decks at lowast prices ever 

Add 10/- p/p for each Garrard unit

\section*{SPEAKER ENCLOSURES}

Type: INFINITE BAFFLE Modal $8: 8^{\prime \prime}$ plus $3^{\prime \prime}$ tweete Model 138: $13^{\prime \prime} \times 8^{\prime \prime}$ EMI Both $£ 4.19 .6$ each Model 1012: $10^{\prime \prime}$ or $12^{\prime \prime}$ plus $4^{\prime \prime}$ tweeter £7.19.6 All enclosures are In olted teak, fully bullit. Please add 8/- p. \& p. on each enclosure Bargain - Speakers, Hi-Fi - The Baker Selhurst Guitar Group 25, 121 n. round, 25 watt rating, 12,000 gauss, 15 ohma, res ponse $30-10,000$ $\mathrm{c} / \mathrm{s}$, solld alumintum chasels, heavy duty cone. Our price E5.e.c. 

The greatest HI-FI Budget system to-daycan't be beaten - price or quality anywhere -look at these great features--then compare. Teleton F2000 tuner amp. AM- FM with multiplex decoder and A.F.C. $-2 \times 5 \mathrm{w}$ channels R.M.S.

Bass Volume Treble Balance con- f s d trols, a truly outstanding unit Garrard SP 25 Mk II Transcription deck

151111 Teleton SA 1003 matching speaker enclosures Sonotone 9 TA Diamond Cartridge Plinth and Perspex cover | 420 |
| ---: |
| 70 |
| 781911 |

Exclusively offered by WALDON at the remarkably low price of 63 gns.

\section*{E.M.I. HI-FI SPEAKERS}

ET 450: $13 \times 8$ with two bullt-In tweeters and cross-over unit. Our Priee 89/4. 3 or $150 \mathrm{hm}, 10 \mathrm{w}, 40-13,000 \mathrm{~Hz}$. SET 850: $6 \frac{1}{2}$ base plus $3 \frac{3}{2}^{\prime}$ tweeter and cross-over unlt. $80 \mathrm{hm}, 10 \mathrm{w}, 65-20,000 \mathrm{~Hz}$. $79 / 8$. SET 250: $5^{*}$ heavy duty bass plus $3^{\prime \prime}$ tweoter and croas-over unlt. $80 \mathrm{hm}, 6 \mathrm{w}, 80-20,000 \mathrm{~Hz}$. $65 /$.

Add 5/6 p/p for aneh speaker set




CALLERS WELCOME



## Radio Communication Handbook

832 pages of everything in the science of radio communication. The Handbook's British origin ensures easy availability of components. The standard work in its field. 69s post paid

## Amateur Radio Circuits Book

Dozens of clear, concise circuit suggestions with the basic constructional details. 120 spiral bound pages lie flat when open for convenience. 11 s 6 d post paid

## Amateur Radio Techniques

All the good ideas are here. An anthology of the famous "Technical Topics" column from RADIO COMMUNICATION. Fascinating reading and an invaluable information source.

13s 6d post paid

## All these and many more, plus free details of the RADIO SOCIETY of GREAT BRITAIN

from
35 DOUGHTY STREET, LONDON, WC1

# practically Wireess commentary by ILINII 

HOW would you feel if the Time and Motion Study man came into your den with his stopwatch? More than a little aggrieved, I'll warrant. Perhaps a bit guilty about the clutter under the bench that you meant to clear up-was it last Michaelmas? Uneasily aware that reaching across for the soldering iron and sending the precariously perched valve rack toppling would not meet with his approval. Nervous about the habitual way one tips out the cocoa tin of hardware to search for a 6BA washer.

My own den, since Mrs Henry laid down the law about trailing wires and fire hazards, has expanded into the loft-where the aforesaid forewoman's incipient vertigo guarantees privacy. The rear bedroom, vacant since the Henry fledglings left the nest, is now a hi-fi centre, with equipment scattered around fairly neatly, and wires tucked away out of sight. Come to think of it, why did they fly away?

But I would hate to see Mr Slide-rule sniffing superciliously around my loft. I remember we had to saw laterally across the old washstand to get it through the hatch; its reassembly is as complete as need be, but technically imprecise. Have you ever tried to re-assemble a washstand that seems to be one of the reasons


The Time and Motion man with his stopwatch.
for Queen Victoria's lack of amusement? The fact that its slate top provides as good a base for turntable testing as one could hope to devise, and the handy little pot-sized cupboard whose door was not designed to shut, is just right for an easy cable entry, has nothing to do with efficiency or design. I feel sure Mr. David Michaelis would disapprove.

This gentleman is not a blood brother of our erudite contributor of the same name but a leading light in the TMS world. And the reason he finds himself immortalised by Henry is a trenchant article by Ann Batt of the Daily Mail, in which Mr. M. was quoted on the subject of women and housework.
"Would a man do six little batches of washing up in half an hour?" he asks. Not if he is wise enough to break the odd dish now and again, when asked. But that is not his point. He asserts that women " . . . toil on making a virtue out of hard slog by doing things the traditional way your mothers did instead of asking yourselves 'is there a better way?' There probably is; you just don't think".

Much of the way women work comes from learning in the manner that industry terms "Sitting by Nelly". That is, picking up the job as you go along, without specific training.

Be honest-when did you last remember to give that soldering iron bit a twitch, to make it easier to free when the time comes for replacement? How many pieces of your equipment are operating on supply lines stuffed into a socket and pinioned by the blades of another plug? Come to that, how much gear have you got multi-plugged to that single socket? Don't look at me-I'm only asking the questions.

My own home workshop would horrify Mr. Michaelis.


We had to saw acrass the ofd washstand.
Darn it, the place scares me at times. But even in our "official" workshop the den atmosphere persists and Nelly is lurking in every cluttered corner. One of our chaps still talks about "Anoids and Cathoids" because that was the way his mentor talked during his far-off apprentice days. Another has jumped gleefully for a recent exposition of transistor theory because he never really believed in "holes" anyway. Yet he manages to cope quite ably with repairs to semiconductor equipment.
And what about Henry's legacy from Nelly? Well, I think it must be a harkback to the Army days, when to leave a tool unattended was to invite its disappearance.

Perhaps we ought to ask Mr. Michaelis to take a long look at our dens. In one respect I know he is right. "A form of Parkinson's Law operates," he says, talking about working surfaces. ". . . your accumulated clutter responds to the stretchable space made available for it."

He could have been talking about the slate top of that old washstand. Maybe I can get Nelly to come and clear it up-one day!

TIME certainly seems to fly when conditions are good, especially during the spring season when the h.f. bands are open until late evening. Here's a good DX-tip: have a listen to R. Australia on 15,240 from about $0600-0800$. Power is only 10 kW from the Shepperton transmitter. I always get good results, some days even better than the 100 kW transmitter on $11,710$.

During the past year when I have been writing this column I sometimes wonder what you readers think of the column, especially as to how useful you find the propagation predictions which are published each month. Do you find them useful? Let's have your comments please over this one, and any other suggestions you may have to help other people in their DX-ing and SWL-ing. Talking of SWL-ing and DX-ing, during the past few years there have been confusion in the use of these words. The translation which I believe is correct is that SWL-ing is listening generally to shortwave stations from all over the world, low and high power, but mainly to listen to specific programmes and taking interest in various countries, generally listening to shortwave radio to learn about the world and for entertainment. Now the DX-er or DX-ing is literally translated as "Distance listening", that is listening to stations outside the continent he resides in unless there are low power stations in his own continent, but generally listening to low power stations on the shortwave bands, and writing out reports to get as many QSL cards as possible. So how do you class yourself as a SWL or DX-er?

Over the past year I have tried to cater for both SWLs with new station schedules and for the DX-ers with short tips. But I seem to be providing more for the SWLs than the QSL card hunters, so come on you good DX-ers let's have those "heard and noted" lists of those stations you have heard in Latin America, Africa, Asia and Pacific Area like R. New Zealand and $R$. Cordac. I'll look forward to receiving your logs.
In the October 1968 column I listed all the programmes of interest to SWLs and DX-ers, so if you haven't got a copy of this list send 3 s . postal order plus postage and ask for a copy of the October 1968 Practical Wireless. Now to bring this list of programmes up to date here are some alterations:

> Sunday-DX-ing Worldwide R. New York Worldwide $1930-2000$ on 21,17 and $15 \mathrm{Mc} / \mathrm{s}$.

Monday-Delete all details for the Deutsche Welle DX-Programme.

Tuesday-Add Deutsche Welle DX-Programme every second Tuesday from $0810-0840$, on 9,650 and 6,075 ; $1410-1440$ on 11,$765 ; 1710-1740$ on 9,655 and 6,075 .

[^4]Friday-Trans World Radio "DX-Special" from Bonaire runs from 2055-2110.

Saturday-Delete details for Trans World Radio schedule.

Now here are some listening tips on new schedules commenced on 4th May.

## EUROPE

Holland: R. Nederland is now operating on full schedule and has daily 80 -minute transmissions in English. From 0630-0750 on 11,730 via Bonaire; $0800-0920$ on 9,715 via Bonaire; 0930-1050 weekdays $21,480,17,810$ via Lopik; Sundays 9,715 and 5,980 via Lopik; 1400-1520 on 21,480, 17,810 and 6,020; 18301950 on 21,570 and 11,730 via Lopik; 15,220 via Bonaire. 2000-2120 on $9,715,6,085$ and 6,020 via Lopik; 2130-2250 weekdays on $15,425,11,730$ via Lopik; 0200-0320 on 11,730 via Bonaire; 0500-0620 on 11,730 and 9,715 via Bonaire. On Sundays the Happy Station programme is transmitted. The Spanish Happy Station programme is transmitted on Sundays at $2130-$ 2250 on 9,715, 6,085 and 6,020 via Lopik and 17,810 via Bonaire; $2300-0020$ on 15,425 and 6,020 via Lopik and 15,320 via Bonaire. $0030-0150$ on 6,085 via Bonaire, 0200-0320 on 9,590 via Bonaire; 0330-0450 via Bonaire on 11,730.

Norway: $R$. Norway is now on their summer schedule from $0700-0830$ on $25,730,21,730,21,655,15,345$ and 15,$175 ; 1100-1230$ on $25,730,21,730,21,655,17.825$ and 7,$210 ; 1300-1430$ on $25,730,21,730,21,670,21,655$, and 17,$825 ; 1500-1630$ on $25,730,21,730,21,670,21,655$ and 17,$825 ; 1700-1830$ same as $1500-1630 ; 1900-2030$ on $25,730,21,730,21,670,21,655$ and 15,$175 ; 2100-2230$ on $25,730,21,730,21,655,17,825$ and 15,$345 ; 2300-0030$ on $21,655,17,825,15,345$ and 15,$175 ; 0100-0230$ on 11,860 , 11,850 and 11,$735 ; 0300-0430$ same as at $0100-0230$.

## AFRICA

South Africa: Radio R.S.A. has now altered the timings of some 50 -minute transmissions. Now they run $0800-0850$ on 21,535 and 17,$825 ; 1000-1050$ on 21,535 , 17,825 and 15,$220 ; 1600-1650$ on 9,525 and 7,270 ; $1700-1750$ on $21,535,15,220,9,525$ and 7,270 . The UK and Eire English transmission now runs from 1800-1850 on 21,500 and 17,$795 ; 2100-2150$ on 15,360 and 11,900 . To North America from 2326-0320 on 9,705, 6,075 and 5,980 . The general service to Africa now runs from $1100-1450$ on $21,535,17,805,15,220$ and 11,900 .

Well that's about it for this month. Deadline for those DX-tips is 17 th May. So until next month good listening and 73 s .


Comet Discount Warehouse
Reservoir Road, Clough Road, Hull. Tel. 42363 Add $9 /$ - for post and packing on all orders.


UNMARKED TRANSISTORS (tested) similar to: 2N753 $1 / 6$, BSY28 1/6, BSY65 $1 / 6$, OC44 $1 / 6,0 C 711 /$, OC72 $1 /$ \% $/$, each ORPI2 CADMIUM SULPHIDE LIGHTTSENSITIVE RESISTORS 8/- each.

GIANT-SIZE SELENIUM SOLAR CELLS-PRODUCE UP TO 6 mA AT 6 VOLTS FROM DAYLIGHT! 67 mm . diameter $10 /$ - each 50 mm . $\times 37 \mathrm{~mm}$. . 2 for $10 / \mathrm{m}$

MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE! $0.001 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~V}^{2}, 0.0015 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.0018 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d}^{2}, 0.0022 \mu \mathrm{~F}$ $400 \mathrm{~V} 3 \mathrm{~d}_{\mathrm{o}}, 0.01 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d}_{.}, 0.15 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d}_{+}, 0.22 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0.27 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $1 \mu \mathrm{~F} 125 \mathrm{~V} 1 /$-.

RECORD PLAYER CARTRIDGES. COMPLETE WITH NEEDLES GP67/2 Mono 15/-, GP91/3 Compatible \&1, GP93/1 Crystal Stereo 25/GP94/1 Stereo Ceramic 25/-.

TRANSISTORISED SIGNAL INJECTOR KIT 10/-
SIGNAL TRACER KIT 10\%. CAR REV. COUNTER KIT 10/-

## VEROBOARD

$2 \neq 1^{\prime \prime} 0.15$ matrix $1 / 3 \quad 5 \times 31^{\circ} 0.15$ matrix $5 / 634 \times 34^{*} 0.1$ matrix $4 / 9$
 $5 \times 2 t^{-} 0.15$ matrix $3 / 11$ 3i x $24^{\circ} 0.1$ matrix $14 / 8$
Spot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins 3/6 for 36. Special Offer! Spot Face Cutter and $521 \times 1$ " boards.......... $8 / 9$ only

PAPER CONDENSERS, Mixed bags $0.001 \mu F$ to $5 \mu \mathrm{~F}, 12 / 6$ per 100 . SILVER-MICA, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values, $10 /$ - per 100
RESISTORS. Mixed types and values, $\frac{1}{}$ to 1 watt, $6 / 6$ per 100. $55 /$ - per 1.000. Wire-wound resistors. I watt to 10 watts. Mixed values. 20 for $10 /$.

12 VOLT TRANSISTORISED FLUORESCENT LIGHTS. HALF NORMAL PRICE.
8 Watt $12^{\prime \prime}$ tube. Reflector type £2.19.6. 15 watt $18^{\prime \prime}$ Batten type e3.19.6. IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

ELECTROLYTIC CONDENSERS

| EIAECTROLYTIC |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0.25 \mu \mathrm{~F}$ | 3 volt | $4 \mu \mathrm{~F}$ | 4 volt | $10 \mu \mathrm{~F}$ | 25 volt | $64 \mu \mathrm{~F}$ | 9 volt |
| $1 \mu \mathrm{~F}$ | 6 volt | $4 \mu \mathrm{~F}$ | 12 volt | $20 \mu \mathrm{~F}$ | 6 volt | $100 \mu \mathrm{~F}$ | 9 volt |
| $1 \mu \mathrm{~F}$ | 20 volt | $4 \mu \mathrm{~F}$ | 25 volt | $25 \mu \mathrm{~F}$ | 6 volt | $320 \mu \mathrm{~F}$ | 4 volt |
| 1-25 $\mu \mathrm{F}$ | 16 volt | $5 \mu \mathrm{~F}$ | 6 volt | $25 \mu \mathrm{~F}$ | 12 volt | $320 \mu \mathrm{~F}$ | 10 volt |
| $2 \mu \mathrm{~F}$ | 3 volt | $6 \mu \mathrm{~F}$ | 6 volt | $25 \mu \mathrm{~F}$ | 25 volt | $400 \mu \mathrm{~F}$ | $6 \cdot 4$ volt |
| $2 \mu \mathrm{~F}$ | 350 volt | $8 \mu \mathrm{~F}$ | 3 volt | $30 \mu \mathrm{~F}$ | 6 volt | All at | /-each. |
| $2 \cdot 5 \mu \mathrm{~F}$ | 16 volt | $8 \mu \mathrm{~F}$ | 12 volt | $30 \mu \mathrm{~F}$ | 10 volt | 20 as | orted |
| $3 \mu \mathrm{~F}$ | 25 volt | $8 \mu \mathrm{~F}$ | 50 volt | $50 \mu \mathrm{~F}$ | 6 volt | (our se | lection) |
| $3 \cdot 2 \mu \mathrm{~F}$ | 64 volt | $10 \mu \mathrm{~F}$ | 6 volt | $64 \mu \mathrm{~F}$ | 2.5 volt | 10 |  |

Orders by post to:
G. F. MILWARD, DRAYTON BASSETT, NEAR TAMWORTH, STAFFS.
Please include suitable amount to cover post and packing. Minimum 2/-. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rook Road, Birmingham 8.
everything brand new and to spec. no surplus SPECIALIST SUPPLIERS OF TRANSISTORS IN TYPES TO SUIT ALMOST ALL APPLICATIONS

- COMPETITIVE PRICES
- HIGH QUALITY COMPONENTS FOR TRANSISTOR CIRCUITS
- PEAK SOUND AS ADVERTISED
- CATALOGUE PACKED WITH UP TO THE MINUTE ITEMS AND INVALUABLE INFORMATION. Send $1 / 6$ for your copy now.
- DISCOUNTS-10\% on orders for components for $£ 3$ or more. $\mathbf{1 5 \%}$ on orders for components for $£ 10$ or more.
- POSTAGE on order for £1, add 1/-. FREE on orders for $£ 1$ or over.
Overseas orders welcome-Carriage charged at cost.


## ELECTROVALUE

(Dept. PW), 32a ST. JUDES RD., ENGLEFIELD GREEN, EGHAM, SURREY. Tel: Egham 5533 (STD 0784-3)

## YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S, LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Seryo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be glady sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE BROCHURE to:
NAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block
ADDRESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Caps.

6/69

TWENTY-EIGHT and twenty-one Mc/s are the bands which are usually the first to register dissatisfaction at lack of sunspots. However, with the sunspot count now on the decline, these bands are still pulling-in the stations. Strangely enough it is 21 which has been the more temperamental of the two and $28 \mathrm{Mc} / \mathrm{s}$ has had some very good moments in the past month. Both bands seem to stay open longer in the evenings so how about a listen before you settle down to tea and telly?

Twenty metres is still a firm favourite in the s.w.l. DX stakes. From 1800 to 0600 it proved very lively with so much DX at times that it paid to have a countries list handy.

The l.f. end has also been busy with 80 metres providing some very good openings. Sadly, very few dared expose their ears to 40 metres where a mid-night-till-dawn session is usually very fruitful. How about a $7 \mathrm{Mc} / \mathrm{s}$ month-go on, unsolder all the other coils in the receiver except those for $7 \mathrm{Mc} / \mathrm{s}$. You will probably hear a new country too if you persevere. Speaking of new countries and perseverance, StewW1BB has now worked over 100 countries on topband so if $7 \mathrm{Mc} / \mathrm{s}$ doesn't appeal try draping your earholes around $1.8-2.0 \mathrm{Mc} / \mathrm{s}$. Odd weak squeaks heard in this segment could well be G3JDG firing up the latest transistor r.f. oracle-or a ZL? just waiting for a report from you.

## HEARD H.F.

Stephen Cole (Newport, Mon.), Trio JR60, Joystick, claims $28 \mathrm{Mc} / \mathrm{s}$ r.f. s.s.b. emanating fromCR7DS, KR6KM, PY2HY, UA9CBW, XW8CS, 4X4HJ, 5A4TY, 5N2AAF, 9G1GG.

Meanwhile, back at the ranch, well, down in Gloucester, Chris Witts was loitering with his Trio JR-500s. Antenna used for lassooing the signals with a 100 ft . end fed 30 ft . from the terra firma. On 10 Chris hooked-KP4CL, PZ1DA, VE1ABF, VE3ETS, YN2RAC, ZC4TK, ZE1CX plus eight W's. On $21 \mathrm{Mc} / \mathrm{s}$ his antenna reported signals fromCR4BB, HC1MG, ISISCB, TF2WLM, VE3SQG, VK2FU, VK3VK, VK5GX, VQ9GA.

Over to Stourbridge in Worcestershire, where Ron Shilvock states clearly, in writing, that he has only been DX-ing since his initiation in December 1968. A search on $21 \mathrm{Mc} / \mathrm{s}$ with his Trio 9R-59DE and 60 ft . end fed plus a.t.u. raised-CE3PT, CN8HL, CR6DP, EL9C, EP3REL, G3UHR/VO2, G8KL/W6, HI8LA, HK3AUE, HK4TA, JX3DH, KP4ATS, KR6HB, PJ9PF, PY1DEM, VK3PX, VK4EF, VP2ME, VP8FL, WA6OET, WA8UYJ/KC4, W6GNP, W9BBR, YV3DA, YV5ANE, ZC4HS, ZE5JU, ZL1BEM, ZS3D, ZS4K, ZS5OB, ZS6EU, 4X4BO, 4X4RQ/AM, 5A4TY, 5N2AAU, 5Z4LX, 6W8DY, 6Y5LA, 8R1J, 9H1BI, 9Q5DA, 9X5AV.
T. Rumble (Wilts.), HA700 plus PR30 preselector, 100 ft . long wire running $\mathrm{N} / \mathrm{S}$ at 25 ft . logged this lot on $28 \mathrm{Mc} / \mathrm{s}$ and on a.m. too-CT2AP, CX3BBU, K1ILT, K3VIG, VE2ABZ, VE3CLJ, WA1KEE, WA9PP, WB2CDX, W1LGS, W9DLZ, ZE1CB, 5A1TA.

If you are in the Bromley area of Kent, and you are an r.f. signal, watch out for Simon Mummery's
antenna. Those not so fortunate, and who saw it too late to miss it were-CN8CS, CR6CA, CR6LF, CR7IC, HS3DR, JA6AA, JA8ABH, JH1JUN, KV4FA, KV4SQ, SVøWI, VP7NA, YVøAB, ZS5XA-all 10 ,metres s.s.b. The same gear, B34 plus a.t.u. and 66 ft . end fed, snared -CN 8 BB , EA9AQ, HC2OB, KH6GEL/P/W4, MP4BHG, SV $\varnothing W N, V K \varnothing S L, V O 1 G L, Z S 3 L U$.

## NOT SO H.F.

It's no good, you just can't hide from those 20 metre signals. L. Boucher is down in Welsh Wales, but what happens when he switches on his R1155 and 68 ft . end fed? Yes, that's right, s.s.b. signals on 20 from-CE3RY, CN8GE, CR4BK, CR6GA, VP5SK, VP8KD, VP8QR, VS6CO, VQ8CS, VU2GE, W6MWF, W7EPA, W7ZYC/MM (Survey ship Discoverer), ZB2BC, ZC4AK, ZD8Z, ZE1AA, ZL1ATX, ZL3AB, ZL4BX, ZS1BK, ZS6RM, 4X4KM, 5A4TR, 5A5TS, 5Z4AA, 7G1CG, 7P8YL, 7Z3AB, 9G1GD, 9H1M, 9J2GJ, 9K2AV, 9M2FR, 9Q5HF, 9X5AV.

HA350 plus PR30 plus RQ1OX plus 380 ft . end fed plus Robert James Dinning plus 20 metres plus -CN8HO, CO2FA, CR7IZ, EP1VR, FP8CS, FR7ZG, HC2GU, KG4AA, KL7EG, KV4FC, KZ5AG, PJ2CB, OX3KG, SV $\varnothing$ WEE, VE2AWE VK2APC, VK3AIF, VP2GDL, VP8HS, VQ8BZ, VU2TP, XE3EB, ZE5JS, 5H3JL, 5U7AK, 5V4AP, $9 \mathrm{H} 1 \mathrm{M}, 9 \mathrm{~K} 2 \mathrm{CF}, 9 \mathrm{Y} 4 \mathrm{AR}$.

Take away his B28, 20ft indoor antenna, anc Roger Thackery (Edinburgh), would never have heard-CE8AA, CT2AA, HI3AGS, HC2GU, LU6DZG, PJ2CB, PZ1BF, PY1MX, TN8VK, VE7PJ, VK3ARX, VK5MF, VKøKJ (Macquarie Is.), VP8JK, VP9CP, YV1EJ, ZS5TK, ZD8Z, 6W8DY, 6Y5GB, 7XøWW, 7X2ED, 8P6TV, 9Y4CP.

## EVEN LESS H.F.

S. Teague (Worcs.), modified 19 set, 67 ft . feeder with Joystick on the end, 80 metres s.s.b.-HB9KL, HV3SJ, K1KTH, MP4TAF, PJ2M1, TF3SD, VO1FG, VP2MK, VP9AT, W1CF, W4YAG, ZD8Z.
M. Pipes (Derby), "Trio RX", 66ft. end fed managed these on 160 metres-GD6IA, GM3VIO/A, HB9CM, OK1ACF, OK1TA, OK1ZW, OK2BGS, ON4WC, ZB2AY.

## HAPPENINGS

Meetings, contests and gatherings for the merry month of May include: May 3rd-4th 2 metre contest (too late, it's happened); $24 t \mathrm{~h}-25 \mathrm{th}, 432 \mathrm{Mc} / \mathrm{s}$ contest; 24 th $-25 t h, 1,296 \mathrm{Mc} / \mathrm{s}$ contest (I didn't know anyone could live at the frequency). Mobile rallies include: May 18th, Northern MR near Leeds; 18th, Thanet Radio Society's MR at Ramsgate; June 1st, A.R.M.S. rally at Old Warren Aerodrome, Biggleswade, Beds. (this will be a good 'un, see you there?), June 1st, Maidstone MR.

Deadline for logs is, as usual the 20th of the month. Keep the cans on, the antenna polished and the electricity bills high.

# BAIIC <br> SEMICOND by M.F.DOCKER, M.Sc. IfGHinuab <br>  

IAST month we showed that very pure materials were necessary for the manufacture of semiconductor devices. At present the most commonly used materials are germanium and silicon. However many devices are now being made using compounds of atoms with three and five valence electrons, such as gallium arsenide and indium antimonide, the so-called III-V compounds. These and other materials are showing great promise in device fabrication and undoubtedly their names will eventually become as common to the amateur as germanium and silicon are at present.
Germanium and silicon are each found in compound form and each needs to be very carefully purified before it can be used in a diode or transistor. Initially, chemical refining is carried out. Liquid compounds of the required element are prepared and these are then fractionally distilled in the same way that crude petroleum is distilled to separate the various compounds contained in it. This process provides a relatively pure compound which is then processed to yield the element.

## Zone Refining

In order to obtain the one part in a thousand million parts purity which is required a process called zone purification which is very important to the semiconductor industry is used. When a vertical rod of the material is suspended in a bath of molten material of the same type, as shown in Fig. 1, impurities migrate to the liquid material to a certain extent. This is because the impurity is more soluble in liquid than in solid material. Thermal motion ensures that the impurity atoms move from the solid to the liquid and vice versa and as their solubility is greater in the liquid the number moving in the first way is greater than that moving in the second way.
The time required however is very long with this

|  |
| :---: |
|  |

Fig. 1: Impurities concentrate more in molten than in solid germanium.
arrangement so that a different method is applied, the apparatus shown in Fig. 2 being used. A short r.f. heating coil is passed along a rod of the substance to be purified. This produces a short region of molten material which follows the coil along the rod and absorbs a proportion of the impurity present, carrying it to one end of the rod.


Fig. 2: Zone refining apparatus.
A single pass of the heating coil only reduces the impurity concentration by a certain fraction, this fraction depending on the type of impurity involved. In order to further purify the material the heating coil is swept along the rod several times, each pass resulting in a similar decrease in the impurity concentration. Many passes are required in order to obtain a sufficient degree of purification to permit semiconductor devices to be prepared from the material.

The various semiconductor materials tend to have different impurities depending on the ore from which they are refined. Silicon usually contains the element boron as an impurity, giving p-type material. The boron is very difficult to remove as the solubility of boron in liquid silicon is not very different from that in the solid. Consequently zone-refining is not very efficient in this case. A result of this technical difficulty was that early silicon devices had to be based on p-type material so that $n-p-n$ silicon transistors were the first to make their mark on the market. These devices are still in general cheaper than the complementary $\mathrm{p}-\mathrm{n}-\mathrm{p}$ devices.

## Crystal Defects

Having obtained a pure sample of the semiconductor, what else needs to be done to it before a transistor can be made? Last month it was shown that conduction could be due either to movement of electrons or to movement of holes; usually conduction is due to both but it is relatively easy to make one type predominate. The free current carriers in semiconductors only exist because very little energy is required to free them from their fixed positions in the crystal lattice. However there are various forms of binding which can result in the trapping of carriers and one of the most important of these is the presence of some form of crystal defect.

Defects can themselves be of many types, far too numerous to discuss here; however they often constitute discontinuities in the crystal lattice structure and this is equivalent to the presence of localised energy

TO-3 PORTABLE OSCILLOSCOPE


3in. tube. Y amp. Ben-
Bitivity
1v $\begin{array}{lll}\text { Bitivity } \\ \text { Bandth } \\ & 1 \cdot 5 & \text { p-p/cis } \\ \text { cps-1. }\end{array}$ MHZ. Input imp. meg $\Omega \quad 25 \mathrm{pF}$. $X a \mathrm{amp}$ $\begin{array}{lll}\text { sensitivity. } & 9 \mathrm{v} & \text { p-p/CM } \\ \text { bandwidth } & 1.5 & \text { cps-800 }\end{array}$ bandwidth 1.5 cps-800 KHZ . Input imp. 2
$\mathrm{meg} \Omega 20 \mathrm{pF}$. Time base.
KHZ. Synchronization. Internal/external Illuminsted scale $140 \times 215 \times 330 \mathrm{~mm}$ Weight 15 tib . $220 / 240 \mathrm{~V}$. A.C. Supplied brand new with kandbook. $£ 35.0 .0$. Carr $10 /-$

R209 MK. II
COMMUNICATION RECEIVER
valve high grade communcation receive atable for tropical use. $1.20 \mathrm{Mc} / \mathrm{B}$ on 4 band , FM operation. Incorporates precision vermer driver, BFO. Aerial trimmer, internal speaker and 12v. D.C. Internal power supply supplied in excellent condition,


## te-65 Valve voltmeter <br>  High quality instrument with 28 ranges. D.C. volts $1,500 \mathrm{v}$. Resistance up to A.C. operation. Complet with probe and instruction £17.10.0. P. \& P. $6 /$ Additional probes avai

TO-2 PORTABLE
OSCILLOSCOPE
 $220 / 240 \mathrm{~V}$ a.c. supplie book £22.10.0. Carr. 10 /

TE-20D RF SIGNAL GENERATOR

nal generator covering $120 \mathrm{Kc} / \mathrm{s}=500 \mathrm{Mc} / \mathrm{s}$ on 6 bands. Directly calibrated. Variable R.F. attenuator, audio output
Xtal socket for calibraxtal socket for calibra-
tion.
$220 / 240 V$ Brand new with instructions. £15, Carr. 7/B Size $140 \times 215 \times 170 \mathrm{~mm}$

TY75 AUDIO SIGNAL GENERATOR
Sine Wave 20 CPS-200 Kc/s. Sguare Wave 20 CPS-30 Ke/s. High and Output variable up to volts. $220 / 240$ volts A.C Brand new with inatrue-



## NOW OPEN IN EDGWARE ROAD

Our new walk around shop is now open at 311 Edgware Road fully stocked with $11 \mathrm{Hi}-\mathrm{Fi}$, Commanication and Test Equipment. Call info your nearest shop Edou'are Road for all Equipment-Lisle Streel for all Equipment and Components


TRIO COMMUNICATION RECEIVER MODEL 9R-59DE $4 / 8$ ohm output and phone jack. ssB-CW 7 dircuit - Variáble BPO $\$$ meter Sep. bandspread
 A.C. Mains. Beautifully designed. Bize: $7 \times 15 \times$ 10 in . With instruction manual and service data. $£ 42.10 .0$, carriage paid. TRIO COMMON ICATION TYPE HEADPIONES. Normally $£ 5.19 .6$. OUR PRICE $£ 3.15 .0$ if purchased with above receiver.
EX-MULITARY RECONDITIONED. TF. 144 G STANDARD G1GNAL GENERATORS, $85 \mathrm{Kc} / \mathrm{B}-$ $25 \mathrm{Mc} / \mathrm{s}$, 225 Carr. 30/- T.F. 885 VIDEO OBCILLLATOR 0-5 Mc/日, E45 Carr. 30/-. T.F.195M BEAT A C CaOr. 301- T F 142E Distortion Factor A.C., e20 Carr. 301 -. T.F. 142 E Distortion Factor condition, fully tested and checked. T.F. 1100 VALVE
gION TEST SET, Brand New, $\mathbf{E P F}^{75}$ T.F. 1371 Wide Band Millivolt Meter. Brand New, $£ 50$

## MULTIMETERS for GVERY purposel



DE-LUXE 100K $\Omega /$ VOLT


MODEL TE-80 50,000 O.P.V mirror scale overload protec tion $0 / 3 / 12 / 60 / 300 / 600 / 1200 \mathrm{v}$ D.C. $0 / 6 / 30 / 120 / 300 / 1200 \mathrm{v}$ $16 \mathrm{~K} / 160 \mathrm{~K} / 1 \cdot 6 / 16 \mathrm{meg} \Omega$. to $x$ 63dB. 2

MODEL TE-70. 30,000 O.P.V $1.200 \mathrm{C} / 3 / 5 / 60 / 300 / 60$ $600 / 1200$ C. $076 / 30 / 120$ $13 / 30 / 300 \mathrm{~mA}$. $0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $11.6 \mathrm{M} / 16 \mathrm{Meg} . \Omega$ 25.10.0. P. \& P. ${ }^{1 /-}$


MODEL PT-34. 1,000 $0 . P . V .00 / 10 / 50 / 250$
$500 / 1.000 \mathrm{v}$ A.C. and D.C. $0 / 1 / 100 / 500 / \mathrm{mA}$

band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$ 40 and 80 metres. 8 valve plus 7 on $10,15,20$
 $\begin{array}{ll}\text { TE- } 800 & 20,000 \Omega / V O L T \\ \text { GIANT MULTMMETER }\end{array}$ GIANT MULTMETER mirror scale and overload meter. 2 colour scale. 0 meter. 2 colour scale 0/
$2 \cdot / 10 / 250 / 1,000 / 5,000 \mathrm{v}$ A.C. $0 / 25 / 12 \cdot 5 / 10 / 50$ $250 / 1,000 / 5,000 \mathrm{v}$. D.C $0 / 50 \mu \mathrm{~A} / 110 / 100 / 500$ mA/10 amp. D.C. 02 K / £15. P. \& P. $\mathbf{1} /$

TE111. DECADE
RESISTANCE ATTENUATOR
Variable range


UlldB.Connections,
Uridge T. Impedance $600 \Omega$ range $(0 \cdot 1 d \times B$ $10)+(1 \mathrm{~dB} \times 10)+10+20+30+40 \mathrm{~dB}$ Frequency: d.c. to 200 kHz ( -3 dB ). Accu Maximum input less than 4W (50V). Built in $600 \Omega$ load resistance with internal/external switch. Brand new 827.10 .0 . P. \& P. 5/-.


SINCLAIR EQUIPMENT
Z12 12 watt amplifier, 89/6 PZ4 Power Supply Unit 89/8
 Micromatic Radio Kit. 49/6. Bullt 59/6.
SPECLAL OFPER Two Z12 Amps., PZ4 Power Supply, Stereo 25 Preampliter, 222 , or with two Q14 peakers, 137

## NEW SINCLAIR 2000 SYSTEM

35 watt Integrated Amplifer, £29, Carr. 5/-

## ECHO HS-606 STEREO HEADPHONES



Wonderfully com-
fortable.
weight Lightvinyl headband. 6ft. cable and
stereo jack plug.
25.17 .000 ces. 8 ohm imp. ${ }^{\text {cps. }}{ }^{8} /{ }^{8}$ P. \& P. 2/6.

AM/FM SIGNAL GENERATORS


Oscilator Test No. 2. A high quality
precision
instrument made for the ministry by Airmec. Frequency coverage
$20-80 \mathrm{Mc} / \mathrm{s}$.
AM porates precision dial, level neter, precision attenuator $1 \mu \mathrm{~V}-100 \mathrm{~m} \mathrm{~V}$. Operation from 12 attenuat D.C. or $0 / 110 / 200 / 250$ volt A.C. Bize $12 \times 8 \frac{1}{2} \times 9$ in. supplied in brand new condition complete with all connectors fulity tested. $£ 45$. Carr 20

## FIELD TELEPHONES TYPE L

Generator ringing, metal cases. Operates from two 1.5V batteries (not supplied). Exceflent condition. 24.10.0 per pair. Carr. $10 / \mathrm{F}$


0 0.016/30/120 $600 / 1,200 / 3,000 / 6,000 \mathrm{y}$ $0 / 6 / 30 / 120 / 600 / 1,200 v$ $0 / 60 \mu \mathrm{~A} / 6 / 60 / 600 \mathrm{~mA}$. $0 / 6 \mathrm{~K}$ $600 \mathrm{~K} / \mathrm{himeg} .60$ Meg. $\Omega \quad 50 \mathrm{pF}$
0.2 mFd .25 .19 .6 . P. \& P. $3 / 6$.


AUTO TRANSFORMERS
$0 / 115 / 230 \mathrm{v}$. Step up or step down. Fully shrouded.

| shrouded. |  |
| :---: | :---: |
| 150 W | £1.12.6. P. \& P. $3 / 6$. |
| 300 W | 22. 7.6. P. \& P. $3 / 6$. |
| 500 W | £3.10.0. P. \& P. b/6. |
| 1,000 W | 25.10.0. P. \& P. $7 / 6$. |
| 1,500 W. | 26.10.0. P. \& P. 8/6. |
| $3,000 \mathrm{~W}$. | £7.10.0. P. \& P. 12/6. |
| 7,500 W | £15.10.0. |

levels in the band gap. A sample of germanium may contain tens of thousands of dislocations in one c.c. of the crystal and a sample of silicon may contain millions of such discontinuities. The boundaries of individual crystallites also represent defects in the overall crystal structure. The presence of defects in semiconductors results in a large reduction of the lifetime of the current carriers as they soon become trappedin the same way that a billiard ball moving on a rough table becomes caught in the undulations.

## Crystal Growth

In order to remove these defects a single crystal is produced from the polycrystalline substance. There are several methods of doing this. The one most commonly used is probably the Czochralsky method which was developed in 1916. This involves the growth of a single crystal from a bath of molten semiconductor material as shown in Fig. 3. A small seed crystal is required and this is obtained by cutting very carefully from a polycrystalline sample a small single crystallite. This is then dipped into the melt and very, very slowly withdrawn, rates of between one-hundredth of a centimetre and sixty centimetres per hour commonly being used.


Fig. 3: The Czochralsky apparatus used to produce single crystals.

As the crystal is pulled out new material grows on to the seed. The atoms are deposited in the same orientation as that in the seed and in this way a long single crystal is produced. In order to help maintain a uniform growth rate the crystal is rotated at up to 200 r.p.m. on an axis along its length. Crystals of up to three inches diameter can be produced in this way, but more usually one-inch rods are made. This method can be used to produce single crystals of many different substances including germanium, silicon, gallium arsenide, copper, silver and lead.

In order to avoid the risk of impurities being introduced from the vessel containing the melt it is possible to produce a molten pool of the material in the solid polycrystalline substance by locally heating the required region with a beam of high energy electrons, the same crystal-pulling techniques being used as before.

Another method of making single crystals is the float-zoning process where a seed crystal is again required, but this time a slowly moving r.f. heating coil is used to produce the molten zone, in a similar way


Fig. 4: Float zoning apparatus.
to that used in the zone refining apparatus. The seed crystal is placed at the bottom of the polycrystalline rod as shown in Fig. 4 and the r.f. coil placed around the rod just above the seed. It is slowly moved up the rod and as it moves the melted and then recrystallised material forms an extension of the criginal seed crystal. This method was developed at the Bell Telephone Systems laboratory during the 'fifties.

A further method is the Bridgeman process in which the polycrystalline sample is slowly lowered through a furnace which is at a temperature above the melting point of the sample. As it comes out of the furnace it starts to recrystallise and a single crystal usually results. However in this method it is not so easy to control the orientation of the crystal faces.

Annealing of the single crystals is carried out to reduce the number of defects present in the lattice and consequently to improve the characteristics. This is done by cooling the single crystal very slowly so that defects have time to move out of the crystal.

## Doping

Having obtained a pure single crystal of the material it is then necessary to add impurities! There are various ways of doing this and the different methods are used in the appropriate circumstances. Here only the problem of obtaining a uniform doping will be considered. It should be emphasised that the impurities in a semiconductor have to be very precisely controlled. The word impurity does not in this case mean something


Fig. 5: The double-crucible mathod of growing doped crysta/s.
which is undesirable but an added atom which is different from the majority of atoms in the crystal.

Two important methods of doping are used. The first is the floating crucible in which there are two vessels, one having a small hole in its base (see Fig. 5). This contains pure material to which a small amount of the appropriate dope impurity has been added and floats in a quantity of pure material in the outer vessel. The system is used in conjunction with the Czochralsky method for producing single crystals and the resulting crystal has the required degree of doping. The reason for using the rather complicated apparatus is that if the dope were simply added to the melt the concentration of impurity in the crystal would vary as the crystal grew, the last part of the crystal to grow having a much higher doping level and consequently a lower resistivity than the rest. The double crucible compensates for this by keeping the impurity concentration constant as the crystal grows.

The second and perhaps the most important method is that of gas phase doping. This technique is used with the float-zoning method of preparing single crystals. Instead of carrying out the refining in a vacuum, the apparatus is surrounded with a gas containing the required doping atoms. The molten zone slowly absorbs some of the gas thus becoming doped. As the zone moves up the rod the doping proceeds, resulting in a uniform impurity concentration in the crystal.

The resistivity of the long round crystal is measured and it is then cut into thin slices about twenty-five thousandths of an inch thick and one inch in diameter. These are all lapped in order to provide smooth surfaces and finally they are chemically etched to remove damage, e.g. scratches, caused by the slicing process. After being carefully washed in very pure water they are ready to be used for the manufacture of devices. The final slice is about ten thousandths of an inch thick.

## Growing Epitaxial Layers

Another manufacturing term which is seen frequently is "epitaxial" and very many devices are now manufactured using the epitaxial planar process. In order to obtain a device with high frequency capabilities it is necessary to use high resistivity material. However it is a disadvantage to make the whole device of this material because of the resultant high impedances. The epitaxial process starts with a low resistivity slice on to which a thin layer of high resisitivity material is grown, the so-called epitaxial layer. The atoms deposited on the surface align themselves with the atoms in the crystal lattice so that they do not constitute crystal defects but are simple extensions of the crystal. The chemical reaction involved in the process is of the form:

$$
\mathrm{SiCl}_{4}+2 \mathrm{H}_{2}=\mathrm{Si}+4 \mathrm{HCl}
$$

Silicon tetrachloride reacts with hydrogen to liberate silicon at the surface of the slice. Doping is achieved by adding boron tribromide to the gases to produce p-type material or phosphorous trichloride for n -type material. A similar reduction reaction occurs, boron or phosphorous being deposited as impurity atoms in the epitaxial layer.
An individual transistor, diode, resistor and so on is called a device. An active device is one which can be used to amplify power; a passive device is one which produces no amplification, e.g. a resistor. Next month we shall describe methods of making diodes.

# NEXT MONTH $\mathbb{N}$ P.W. 

A.C.-D.C. METER

Constructional article giving details of a sensitive multirange transistorised voltmeter for measuring a.c. and d.c. voltages. On a.c., the lowest range has an f.s.d. of 3 mV and on d.c. 100 mV .


A CALIBRATED SIGNAL GENERATOR

A constructional pro-
 ject which overcomes one of the main disadvantages of building test gear -calibration. This simple unit operates between 450 Hz and 35 MHz and by using the specified components, calibration is simply a matter of copying from a chart provided in the article. The unit will provide modulated r.f., c.w. or a.f. signals.

## PLUS OTHER CONSTRUCTIONAL PROJECTS AND REGULAR FEATURES



All in the JULY issue on sale June 6th

ORDER YOUR COPY NOW!

NEW! HSL. 700 MONO TRANSISTOR AMPLIFIER

panel. AD161-AD162 operating
In symetrical complementary pair. Output transformer coupled to 3 ohm and 15 ohm speaker sockets. Standard phono input sockets. Full wave bridge rectifier power supply lor AC mains 200-240v. Controls: Bass, Treble, Volurne/on/on. Function selector for PU1, PU2. Tape, Radio. The 188.700 is strongly constructed on rigid stee high.
l'erformance figures:
Sensitivity-PU1-50m
U2. $110 \mathrm{~m} / \mathrm{v}$. 1 mp
Tape- 110 m . meg input impedance
Tape- $110 \mathrm{~m} / \mathrm{v}$, 1 meg Input impedance.
Output power measured at $1 \mathrm{Ke}-6.2$ wath RMg into 3 ohms, 0.8 watts RM8 Into 15 ohm. Overall frequency res ponse $30 \mathrm{c} / \mathrm{a} \cdot 18 \mathrm{Kc} / \mathrm{s}:$ Contimuoust viriable tone controls
Base, +8 db to -12 db at $100 \mathrm{c} / \mathrm{s}$. Treble, +10 db to -10 db at $10 \mathrm{Kc} / \mathrm{s}$. The H8L. 700 has been deaigned for true high fidelity Tape Record fom Rasio Tuner, Groble of being uwed in confunction with a guitar by connecting to PI'I socket and the peas output power will then be in the region of 15 watts Supplied complete with knobs, attractive anodised alu miniam front escutcheon panel, long spind les (can be cut o suit your housing requirements) full circuit diagram and

## operating instructions. Limited Number <br> Onr Specisl Price \&7.19.6

BRAND NEW 3 OHM LOUDSPEAKERS $5 \mathrm{in} .14 /-; 6 \mathrm{in} .18 / 6 ; 8 \mathrm{in} .27 /-; 7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 \mathrm{in} .27 / 6$ E.M.I. $8 \times 5$ in. with high flux magnet $21 /$ - E. E. M. I. $131 \times$ E.M.I. $8 \times$ sin. with high flux magnet $21 /$-. E.M.I. $131 \times$
gin. with high flux ceramic magret $42 /-$ (15 ohm $45 /-$ ). E.M.I. $13 \times 8 \mathrm{in}$. with two inbuilt tweeters and cruwover network, 3 or 15 ohms 4 gn
10 o $122 \mathrm{in} .3 / 6$ per speaker
BRAND NEW. $12 i n$. $15 w^{\text {. }}$. H/D 8peakers, 3 or 15 ohms Current production by well- nown British maker. Now With Hifux ceramle ferrobar maguet hasembly $\mathrm{ef}_{5} \mathbf{1 0 . 0}$ P. M. P. S $7 /$. Guitar models: HEAVY DUTY TWEETERS. Powerful cer mic magnet. Available In 3 or 8 ohms $15 /-$ each; 15 ohm $18 / 6$ each. P. \& P. $2 / 6$.
i2in "RA"' TWIN CONE LOUDSPEAKER 10 watts peak handling. 3 or 15 ohnI, 35/-. P. \& P. 3/6
3 in $12 / 6 ; 7 \times 4 \mathrm{in} .21 /-$ P. $\& \boldsymbol{\&}$ P. $2 / \cdot$ per
LATEST COLLARO MAGNAVOX 363 STEREO TAPE DECK. Three speeds 4 track, QUALITY PORTABLE TAPE RECORDER CASE. Brand Purpose Bulk Tape Eraser and Tape Head Dema 816 Dus 35/. P. \& P. $3 /$.
iser
CRYSTAL MIKES. High imp. for desk or hand use High aensitivity. 18/6. P. \& P. $1 / 6$.

NEW S.T.C. TYPE 25 MINIATURE RELAYS- 48 volt.
 SPECIAL OPFER! PLESSEY TYPE 29 TWIN TUNING GANG. $400 \mathrm{pF}+148 \mathrm{pF}$. Fitted with trimmers an


MAINS TRANSFORMER. Primary $200 \cdot 240 \mathrm{~V}$ two separate wave secondaries giving approx 16 V at lamp and 20 V at $1 \cdot 2$ amp; secs. can be connected in serles for 36 V at $1 \cdot 5$ amp. Ideal for transistor power gupplles. Drop through
mounting. Stack size $23 \times 3 / \times$ in. $15 / 6$, P. \& $\mathbf{P} .6 /-$
 Pri. 200/240v. Sec. $9-0-9$ at 500 mA . $11 / \mathrm{F}$. P. \& P. $2 / 6$ Pri. 200/240v. Sec. 12 0-12 at 1 amp. 14/6. P. \& P. 2/6 Pri. 200/240v. 8ec. $10-10$ at 2 amp. 27/6. $P$. $P$. $3 / 6 / 6$. MATCHED PAIR OF 21 WATT TRANSIBTOR DRIVER AND OUTPUT TRANSFORMERS. Stack size $11 \times$ II $\times$ in. Output trans. tapped for 3 ohm and 15 ohm output $10 /$ - pair plus $2 /-$. $P$. $\& \mathbf{P}$

HIGH GRADE COPPER LAMINATE BOARDS
$8 \times 6 \times 1 / 1 \mathrm{~B}^{\text {in. FIVE for } 10 /-\mathrm{P} . \mathrm{l}^{2}, 2 / .}$

## TRANSISTOR STEREO $8+8$ MK II

Now using silicon Transistors in first five stages on eac channel resulting in even lower noise level with improved sensitivity. A really first-class Hi-Fi Stereo Amplifter Kit
Unes 14 fransistory giving 8 wat ts push pull output Uaes 14 tranhistorn giving 8 watts puah pull output per
channel (16W. mono). Integrated pre-amp. winh Bass, Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output for use with speakers irom 3 to 15 ohms. Compact design, all parts supplied including drilled metal work. Clr-Kit board attractive front panel, knobs, wire, solder, nuta, boltsno extras to buy. Simple atep by step inatructions enable any constructor to build an amplifler to be proud of Brief spectication: Freq. response $\pm 3 \mathrm{~dB}, 20-20,000 \mathrm{c} / \mathrm{s}$ Baas boost appros. to +12 dB . Treble cut approx. t $-16 d B$. Negative feedback 18 dB over main amp PRWer requirements As at 6 amp. 1T 0 . CABINET Ka 10.0 ; POWER PACK KIT 23.0 .0 ; CABINET \&3.0.0. All loost Free
with kit) $1 / 8$. (A.E.).

## Offcial gtockiats of all PEAK SOUND HI-FI EQUIPMENT

P.W. DOUBLE

A PTEREO AMPLIFIER as featured in Practical Wireless April, May and June tagues. Component pack as apecified.
Epools of "Cir-Kit
2 Pre-ump and tone control kits 4 3iin. $\times$ 2in. "Cir-Kit" matrix
Boards $5^{*} \times 31$
Heat Sink pasermblies
1 P8.45K \% power supply kit
1 Pack-flat affrormosia teak flnished
Cubinet kit
5 Controla as specified
Total cost E 23.5 .6
Plus $\mathbf{P}$. \& $\mathbf{P}$. I

## s, plugs and sockets and

SPECIAL PURCHASE E.M.I. 4-SPEED PLAYER Heavy 8 in. metal turntable Low thutter perlormance 200 250 v. shaded motor 190 v typ). Complete with latest and mono cartridge with t/o and mono cartridge with t/ P. \& P. $6 / 6$

QUALITY RECORD PLAYER AMPLIFIER MKII A top quality record player amplifier employing heavy duty double wound mains transformer, ECC83, EL84 Complete with output tranaformer matched controns peaker gize $7^{\circ} \mathrm{w} . \times 3^{\prime \prime} \mathrm{d} \times 6^{*}$ h. Ready luilt and to

ALSO AVAILABLE mounted on board with output ransformer and speaker ready to fit into cabinet belou.
PRICE 97/6. P. \& P-7/6.
DELUXE QUALITY PORTABLE R/P CABINET MKII DELUXE QUALITY PORTABLE R/P CABINET MKI Uncut motor bourd size $14!\times 12 \mathrm{im}$. clearance 2 in . below
5 in. above. Will take above a mplifier and any B.S.R. or 5in. above. Will take above a mplifier and any B.S.R. or
GARRARD autochanger or Bingle Player Unit (ercept GARRARD autochanger or Bingle Player Unit (ercept
ATG0and SP25). Size $18 \times 15 \times 8$ in. Plice $79 / 6$. ${ }^{\prime}$. 2 P. $9 / 6$

FM/AM TUNER EEAD Beautifulty designed and pre cisionengineered by Dormer \&
Wadaworth Ltd. supplied Wadsworth Ltd, supplied
ready fitted with twin 0005 ready fithed with tor AM connection. Prealigned FM sec output $10.7 \mathrm{Mc} / \mathrm{s}$. Complete with FCC85 ( 6 LI 2 ) valve and
 full circuit diagram of tuner head. Another special bulk purchase enables us to offer these at 27/6 each. I'. \& P. 3/GORLER F.M. TUNER HEAD. $88-100 \mathrm{Mc} / \mathrm{s}, 10 \cdot 7 \mathrm{Mc} / \mathrm{s}$.
$1 . \mathrm{F}, 15 /-\mathrm{plug} 2 / 6 \mathrm{P}$. $\&$ P. (ECC8S valves, $8 / 6$ extra)
 3-VALVE AUD1O AMPLIFIER MODEL HA34 pealgned for Hi-Fi reproduc operation. Feady built on plated heavy gauge melal chassis, size $71^{\circ} w . \times 4^{*} d . x$
$4 y^{\circ} h$. Incorporates ECC83, 41" h. Incorporates ECC83,
EL84, EZ80 valves. Heavy duty, double wound maln transiormer and output trans
lormer matched for 3 ohn speaker. separate Bass, Treble and volume controls. Nega tive feedback line. Output 41 watts, Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs,
tested for only 84.5 .0 . P. d P. 6/-.
HSL "POUR" AMPLIFIER KIT. simitar in appearance to HA34 ubove but employn entlrely different and advanced circuitry. Complele act of parts, etc. 70/6. P. \& P. 6/ERAND NEW TRANSISTOR BARGAINS, GET 15 AF1I7 $3 / 6 ; 2$ G 939 (NPN) 3/-.
get of Mullard 6 transintors oC44, 2-0C45, AC128D Set of Mullard ${ }^{6}$ transistors OC44, 2 -OC45, AC128D
matched pair ACl28 $25 /-$ ORP12 Cadmiurn Sulphide matched pair ACl28
Cells 10/6. All poet free

DE LUXE STEREO AMPLIFIER
 hum. Valve line up: $-2 \times{ }^{\text {Emoothing with negligible }}$ $1 \times$ EZ80 as full wave rectifler. Two Dual potentiometer are provided for bass and treble control, givind bass and Balance of the left and right hand channels is used adjusted by mears of a separate 'Balance' control fitted at therear of the chassis. Input senalivity is approximately $300 \mathrm{~m} / \mathrm{v}$. for full peas output of 4 watt per channel ( 8 watta mono), Into 3 ohm speakera, Full negative feedback In a carefully calculated circult, ullows high volume levels to be used with negligible diatortion. Supplied complete with knobs. Chaselis alze $11^{\prime} w \times 4^{\prime \prime} x$. Overall height ncluding valves $5^{\prime \prime}$. Ready buidt and tested to a high tandard PRICE 8 gns . P. \& P. 8

4-SPEED RECORD PLAYER BARGAINS
Mains models. AL brand new in makrr's packing E.M.I. MODEL 898 Single Plajer with unit mounted pick-up arm and mono cartridge $\quad$ E....... AATEST GARRARD Carriage and Packing G/8 2025, SP20, 3000, AT60 etc. Sead 8.A.E. Icr latest Prices PLINTH UNITS cut out for Gartard Models, 1025,2025 , 2000,3000 , ATB0, 8 P2 25 . With rigid perspex cover
OUR PRJCE 5 gns, complete, $P$. OUR PRICE 5 gas . complete. P. \& P. 8/6.

LATEST RONETTE T/O STEREG/COMPATIBLE CARTRIDGE for EP/L/ $/ 8$ tereo/78. Only 38/6. P. \&P. $2 /$ LATEST RONETTE T/O MONO COMPATIBLE CART RIDGE for playing EP/LP/:8 mono or stereo recorda on SONOTONE OTABC
diamond at ylus $50 /$ - $P$ with FEW ONLY! ACOS High.G for EP and LP. Only $10 /-$ P. \& P. $2 /$


- Generonis dize Dricer and Output Transformers. speakers transtormer tapped for 3 ohm and 15 ohm and matched pair of AC1:28 0/p). Mulard AC128D - Everything mupplied, wire, Datery clipw, solder, etc. - Comprehendive eany to follow instructions and circuit diagrain $2 / 6$ (Free with Kit). All parts sold separately. SPECIAL PRICE $45 / \sim$ P. \& P. $3 /$. Also ready built and teated, 52/6. P. \& P. S

HARVERSON'S SUPER MONO AMPLIFIER A super quality grianl amplifier using a double wound
mains transformer. Ez80 rectifer and ECL89 triode pentode valve as audio amplifier and power output stage Impedance 3 ohms. Output approx. $3 \cdot 5$ watts. Volume and tone controls. Chasmis size only $7^{\circ}$ wide $\times 3^{\circ}$ deep $\times$ $6^{\prime \prime}$ high overall. AC malns $200 / 440$ v. supplied absolutely Brand New completely wired and teated with valves and 10



Fuily shrouded section wound output transformer to match 3-15 2 apeaker and 2 independent volume controls, and separate oasm and treble controls are provided giving
good lift and cut. Valve lime-up 2ELSAs, ECCB3, EF86 and EZ80 rectifier. Bimple Insiruction booklet 2/6 (Free with parts). All parts sold separstely, ON LY e7.9.6. P. \& P. $8 / 6$. Also available ready buin and tested complete with std. input sockets, \&9.5.0. P. \& P. 8/6

Open all day Saturday
Early closing Wed. 1 p.m.
A jpw minutes from South Wimbledon Tube Slation

Tel.: 01-540 3985
SEND stamped addressed envelope with all enouiries

Please write clearly PLEASE NOTE: P. \& P. CHARGES QJOTED APPLY TO U.K. ONLY CHARGED EXTRA.


| The Z .12 is a most versatile integrated amplifier and pre-amp in which power, compactness and true high-fidelity standards are combined within a unit of very modest price. The most widely used unit of its kind in the world, the $\mathbf{Z . 1 2}$ has an output of 12 W R.M.S. continuous sine wave (24W peak) or 15 W music power (30W peak). It has Class B ultralinear output which can be fed into any loudspeaker from 3 to 15 ohms. (Two 3 ohm speakers can be used in parallel.) Frequency response-15 to $50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$; input sensitivity -2 mV into 2 kilohms. The $Z .12$ will operate from any power source between 6 and 20 V d.c. As such, | a car battery or the PZ. 4 are eminently suitable, giving much wider than usual scope in the applications to which the Z .12 may be put. As well as hi-fi, these include systems for P.A. electronic guitars, organs, intercom systems, laboratory, education or industry. You will find the 2.12 in use in such instances again and again. The Sinclair $\mathrm{Z}$.12 is supplied ready built, tested and guaranteed, complete with manual of circuits and instructions for matching it to your precise requirements. Two may be used in stereo when, with the Stereo 25 and PZ. 4 together with two 0.14 s , you will have an ideal high fidelity assembly. | (1) $0 / 1 / 4$ + P.T. Surcharge |
| :---: | :---: | :---: |
| $\sin _{4}-\operatorname{coc}$ |  |  |

$5-10$ + P.T. $2 / 11 d$
P.T. Surcharge



# R.S.T. VALVE MAIL ORDER co. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16 

Mon.-Sat. 9 a.m
-5.30 p.m.
Closed Sat. 1.30-2.30 p.m Open Dally to Callers

Tel. 769-0199/1649

|  |  |  |  |  |  |  | $20 \mathrm{FJ} 20 /$ | 8 |  |  |  |  |  | , |  |  | Rab/50080/- |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 7/6 | 6BR7 | 17/- | 6K7GT | 10 Cl | 12/6 | 25A6 6/6 | 85 A2 | 718 | DH | 4/8 | ECF82 | $6 / 6$ | EM81 | 8/3 | PCC84 6/6 | - | ULA1 | $1-$ |
| $1 \mathrm{1H6}$ | $71-$ | 6BR8 | 12/6 | 6K8M 11/6 | 10 C 2 | $12 / 6$ | 25LAGT 7- | 15082 | 11/6 | DK\% | $7 / 8$ | ECH21 | 12/6 | EM84 | 7/6 | PCC88 10/6 | 8P4 8/- | UL84 | $7 /-$ |
| LDE | 61- | 6B87 | 251- | 6K8G 8/- | 10F1 | $14 / 9$ | 25 Y 5 6/- | 150 C 4 | $9 / 6$ | DK9 | $6 /-$ | ECH35 | 11/6 | ESU1 | 01- | PCC189 $10 / 6$ | 8P41 8/6 | UM8 | 5/6 |
| 1N5GT | 8/- | 6BW6 | 14/6 | 8K8GT 7/- | 10F3 | 181- | 25 Z 4 8/8 | 801 | $8 / 6$ | 9K92 | 9 f- | ECH42 | 11/- | EY51 | $7 / 6$ | PCF80 6/9 | 8P61 8/6 | UU6 | $18 / 6$ |
| 1RS | 61- | 6BW7 | 18j- | 6 K 25 15/- | 10F9 | $10 / 6$ | $5 \mathrm{Z5}$ 81- | 807 | $91-$ | DK9 | $7 / 9$ | ECE81 | 5/9 | EY86 | 71 - | PCF82 616 | STV280/80 | UU7 | $18 / 6$ |
| 134 | $5 / 6$ | 6C4 |  | 6 Ll 12/- | 10 Fl 18 | 81 | 5Z6 8/6 | 813 |  | L6 | 25/- | CCE83 | 8/6 | EZ35 | 6/- | PCF84 8/- | 95/- | UU9 | $8 / 8$ |
| 186 | $4 / 6$ | 6C5 |  | $616 \mathrm{G} \quad 7 / 9$ | 10 Ll | 1 | 807 78 |  | 1201- | L9 | 8/8 | ECL80 | 71- | EZ40 | $8 / 8$ | PCF86 9/- | U25 19/6 | UY2 | $9 / 6$ |
| 1 T 4 |  | 60 | $8 / 9$ | $6 \mathrm{L18} 81$ | 10 | 016 | C1 6/9 | 813 | 801- | L9 | 4/- | ECL82 | 7/- | EZ41 | 9/6 | PCF801 9/9 | 8U2150 $18 / 6$ | UY41 | $8 / 6$ |
| 4 | 4/- | 6C8G | 61 - | 6Q7G 6/- | 10P13 | 18/6 | $0 \mathrm{C15}$ 15/- | 866 | 15/- | L94 | 6/9 | ECL83 | 10/3 | EZ80 | 5/6 | PCF802 8/9 | T41 176 | UY8 | 6/6 |
| 3Q4 | $7 /$ | 6CD6 | 24/- | 6Q7GT 8/6 | 11 ES | $701-$ | $0 \mathrm{Cl7}$ 16/- | 954 | $5 / 8$ | DL9 | $7 / 8$ | ECL86 | 9\%- | EZ81 | 5/6 | PCF805 15/- | TDD4 $/ 6$ | VM | 7/- |
| 3Q5 | 71 | 6CH6 | $7 / 6$ | 68A7M 7/- | 12AT6 | 4/8 | 30 C 18 15/- | 1625 | $8 / 6$ | L9 | $7 / 6$ | ECLL80 | 00 | GZ30 | 10/- | PCF806 18/ | U10 7/6 | VP4 | 25 |
| 384 | $8 / 8$ | 6CW | 12/- | $68 \mathrm{C7}$ 7- | 12AT7 | 8)- | 30F5 17/- | 4022A | 67\%- | DM70 | 6/- |  | 801 | GZ32 | 10/- | PCF80815/6 | U14 7/6 |  |  |
| 3 V 4 | 6/9 | 6D6 | 8/9 | 6FG7 6/- | 12AU6 | 5/9 | 30FL1 10/- | 5763 | 12/- | DY86 | 6/- | EF9 | 201- | GZ34 | 11/- | PCI 82779 | U19 35/- |  | 6/6 |
| $5 \mathrm{R4GY}$ | 10/8 | 6E5 | $7 / 6$ | 68 BH 7818 | 12AU7 | 5/8 | 30FL12 19/- | 7198 | 2/- | DY87 | 6/6 | EF37A | 71 - | K T36 | 181- | PCL83 $10 / 8$ | U25 15/6 |  |  |
| 5U4G | 4/- | 6F1 | 12/6 | 6837 61- | $12 \mathrm{AX7}$ | 8/8 | 30FL14 15/6 | 7475 | 14/- | E88C0 | 12/- | EF39 | 81- | KT6 | 17/6 | PCL84 816 | U26 15/6 |  | 8/- |
| 5V4G | 5/8 | 6 FSG | 81 | 68K7GT 4/9 | 12BA6 | \% | L15 17/- | A61 | $7 / 9$ | EA50 | 8/6 | EF4 | 10\%- | KT6 | 21/- | PCL85 $9 / 8$ | U78 4/6 | VT | 15- |
| 5Y3GT | 61- | 6F6G |  | 6SL7GT 6/- | 12BE | 6/8 | $17 /$ | ATP | $2 / 8$ | ABC | 8/6 | EF50 | 5- | K T81 | 35/- | PCL86 9/3 | U191 18/9 | VT3 | 80\% |
| 5Z4G | 71- | 6F8G |  | 68N7GT 5/6 | 12 CB | 5/- | 161 | ATP | 121- | EAF4 | 10/- | EF80 | 5- |  | 7C5) | PENA4 201- | U251 16/8 | 11 | 8/8 |
| $6 / 30 \mathrm{~L} 2$ | 15/- | 6 F 11 |  | 68Q7 7/6 | 12E1 | 201- | 19 15/ | ATP | 8/6 | B41 | 101- | EF85 | 7- |  | 15/- | PEN84 801 - | U301 12/6 | VU120 | 12/6 |
| 6 A7 | $15 /$ | 6 F 13 | $6 / 6$ | 6U4GT 12/- | 12 J 5 GT | 2/6 | 30 PL 1 16/- | AU2 | $801-$ | B91 | $8{ }^{81}$ | EF86 | $6 / 6$ | KT88 | $801-$ | PEN45 71- | U403 6/6 | VU508 | $85 /-$ |
| 6A8G | 12/6 |  | 12/6 | U5G 7/6 | 12 J 7 GT | 6/6 | $30 \mathrm{PL} 1318 / 6$ | AUS | 8/8 | EBC3 | $8 / 6$ | EF89 | $5 / 6$ | K TW61 | $8 / 6$ | PEN46 4/- | U404 7/6 | W811 | 12/6 |
| 6 A | 41- | 6 F 23 | 16/- | V6M 12/- | 12K7GT | 6/- | $30 \mathrm{PL14} 15 /-$ | Z1 | 81- | EBC4 | $9 / 9$ | EF91 | $8 / 6$ | K TZ41 | 6/- | PL36 10/9 | U801 23/6 | XH1 | $5 /$ |
| 6AK | $51-$ | 6 F 24 | 14/- | V6G 4/6 | 12K8GT | 8/- | 35AS 11/6 | AZ31 | 10/- | EBC90 | 4/6 | EF92 | 2/6 | MLA | 17/6 | PL81 8/- | UABC80 $8 / 6$ | XP1 | 5/- |
| 6 AI . | 4/6 | 6 F 25 | 151- | 6V6GT 6/6 | 12 Q 7 GT | 6/- | 3516 | CBL31 | 16/- | EBF80 | 716 | EF98 | 15/ | ML6 | $61-$ | PL82 816 | UAF42 $10 / 6$ | XSG | 101- |
| 6 AM | $2 / 6$ | $6 \mathrm{~F}^{28}$ | 14/- | $6 \times 4$ 4/6 | 128A7 | 81- | 35W4 4/6 | CCH35 | 150- | EBF83 | $91 /$ | EF183 | 6/6 | M8P4 | 10/- | PL83 7/6 | UBC41 9/3 | Y 63 | 7/6 |
| 6AM6 | 3/6 | $6 \mathrm{G6}$ | $2 / 6$ | $6 \times 5 \mathrm{G}$ 4/6 | $12 \mathrm{SG7}$ | 6/- | $35 \mathrm{Z3} 10 /-$ | CL33 | 20/- | EBF89 | 6/6 | EF184 | 71 | MU1 | $7 / 6$ | PL84 7/- | UBC81 $9 / 8$ | Tube |  |
| 6AQ5 | 6/3 | 6H6 | $31-$ | 6x5GT $8 /-$ | 12847 | 3/- | 3574 GT 8/6 | CY30 | 12/6 | EBL1 | 14/- | EL32 | $3 / 6$ | MX4 | 12/6 | P1500 14/6 | UBF80 $7 /$ | $3 \mathrm{EG1}$ | - |
| 6 A87G | 161- | 6 J 5 M | O | $7 \mathrm{B6}$ 11/6 | 128 J | $4 / 6$ | $35 \mathrm{Z5}$ 8/- | CY31 | 8/8 | EBL2 | 12/- | EL.33 | $12 / 6$ | N78 | 19/- | $\times 4$ 14/- | UBF89 $7 / 8$ | 3 FP 7 | 291- |
| 6AT | 4/9 | 6 J 50 |  | $787 \quad 7 / 6$ | 128 | 4/9 | 37 6/- | DAC32 | $7{ }^{7}$ | EBla | $27 / 6$ | FL34 | $10 / 6$ | N108 | 251- | PY 331019 | UCC84 8/6 | 6CP1 | 551- |
| BaU6 | $51-$ | 6 JbG |  | $15 /-$ | 123 R |  | 6 | DAF91 | 4/6 | EC90 | $51-$ | EIA1 | 10/6 | NGT1 | 6/- | PY81 619 | UCC85 $7 / 6$ | CV15 | 401- |
| 6 B | 201- | 6 | $8 / 6$ | 7 CB 15/ | 14H7 | $9 / 6$ | $50 \mathrm{B5} 56 / 6$ | DAF96 | $7 / 6$ | ECC81 | 81- | EL42 | $6 / 6$ | NGT7 | 801- | PY82 $\quad 1 / 8$ | UCF80 8/6 | ACR | 100\% |
| 6B8G | $21-$ | 6.5 |  | 7D5 8/- | 19AQ5 | $51-$ | ${ }^{5008} 6818$ | DCO90 | 10/6 | ECC82 | $5 / 9$ | ELY4 | $4 / 9$ | OA2 | $61-$ | PY83 7/ | UCH 42 10/6 | VRR | 85/- |
|  |  | 6.576 | 61- | 7H7 6/6 | 20D1 | 10/- | 50CD6G31/- | DF33 | 8/- | ECC83 | $6 / 8$ | EL90 | $6 / 3$ | 0 O 3 | 71 | PY800 9/6 | UCH81 7/- |  |  |
| 6BE6 | 5 - | 6.J7GT | $7 / 6$ | $7 \mathrm{H7}$ 13/- | $20 \mathrm{~F}^{2}$ | 14/- | 50L6GT 6/- | DF'70 | 91 - | ECC84 | 5/8 | EL93 | 6/6 | OZ4 | 4/6 | PY801 9/6 | UC1.82 7/6 |  | 46) |
| 6BH6 | 91- | 6K6GT | 5/- | 787 45/- | 20 Ll | 201- | $75 \quad 9 / 6$ | DF91 | 4/- | ECC85 | $5 /-$ | ELL80 | 201- | PC86 | 11/6 | R2 $\quad 7 / 6$ | UCL83 10/- | VCR51 |  |
| 6BJ6 | 91- | 6K7M | 6/6 | 7Y4 8/B | 2014 | 201- | 78 5j- | DF92 | $9 /$ | ECC88 | $7 / 6$ | EM34 | 21/- | PC88 | 11/8 | R19 7/9 | ITF41 $10 / 6$ |  | 48/- |

SPECIAL 24 HOUR SERVICE OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Express postage 9d. per valve Ordinary postage 6d. per valv Manufacturers and Export inqulries from | 4.5.0. |
| :--- |

Special 24 Hour Express Mail Order Service

SETS OF VALVES DAF91, DF91, DK91, DL92 or DL94

201- plus postage DAF96, DF9世, טK96, DL96

TRANSISTOR

| AC127 | $7 / 6$ | 0 OC 25 | $11 /-$ | 0 C 71 | $4 / 6$ | 0 C 81 | $4 /-$ | 0 C 82 D | $6 /-$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | AF114 | $7 /-$ | OC28 | $16 /-$ | OC72 | $6 /-$ | OC81D $4 /-$ | OC83 | $6 /-$ |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- |
| AF115 | $7 /-$ | OC35 | $11 / 6$ | $0 \mathrm{OC75}$ | $6 /-$ | OC81DM | OC170 | $7 /-$ |
| AF116 | $7 /-$ | 0 OC44 | $4 / 8$ | OC76 | $6 /-$ |  | $6 /-$ | OC171 |
| $8 /-$ |  |  |  |  |  |  |  |  | | AF116 | $7 /-$ | OC44 | $4 / 8$ | OC76 | $6 /-$ |  | $6 /-$ | $0 \mathrm{OCl71}$ | $8 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AF117 | $8 / 6$ | OC46 | $4 /-$ | 0 C 77 | $8 /-$ | 0 C 82 | $8 /-$ | 0 C 200 | $7 / 6$ |

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS


Chassis $12 \ddagger \times 51 \times 4$ in, high Front panel alum and black$121 \times 44 \mathrm{in}, 200-250$ A.C Mains Trans, Of/On•Tone vol./Mic.; Vol./Gram.: Mic Input: Gram. Input; Monitor; Valves 6BR7, ECC83 EM84, EL84 and Rect. 2 Track e10.10.0; 4 Track 812 pg direct to Meany lox deck.

FULLY BUILT STEREO AMPLIFIER. $2 \times 3$ watts, mains trans,, metal rect., $2 \times$
UCL82, $2 \times$ o.p. trans for 3 ohm, vol/on-0f, tone, bslance, chassis tppe with 3 controls on front. $11 \times 31 \times 4$ inh, high. $26(8 /-$ p. $\quad$ p.).

8W. PEAK PUSH-PULL OUTPUT AMPLIFIER, 200-250V A.C. EZ80. ECC83, 2-EL84, Bass, treble, vol/on-off, 27.17 .6
post paid). Bize $12 \times 3 \frac{1}{2} \times 5$ in. high. For (post paid). Size $12 \times 31$
Record Player, Yadio Tuner, etc
Maine Trans. o.p. trans. for 3 ohm

6 PUSH-BUTTON STEREOGRAM CHASSIS


## GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.
(a mins. from station and Buses). FULL GUARANTEE. Aldershot 22840 CLOBED WEDNESDAY.

## STRONGHOLD steel shelving that adjusts every inch of itsheight!

Immerisely strong-completely adjustable, every inch. Delivered free, mainland, with spanner provided for erection in minutes. Buy it by the bay! Cash with order $73^{\prime \prime}$ high $\times 34^{\prime \prime}$ wide $\times 12^{\prime \prime}$ deep unit with six shelves in heavy-gauge steel, stove enamelled grey or green! £3.15s.-Brand New! See the rest of the N.C. Brown range!


## EEBE N.C. BROWNLTD. <br> pacesetters in storage equipment

[^5]DE LUXE PLAYERS
POETABLECABLKET Anillus
 RCSAMPLIFIER \& WATT. Ready made and tested This is a e-stage unit ueing a coopled valve gliving 8 wattl outpot into a
8 ohm loudapeaker Tone and volame controle monnted on chasals with knobs. Supplied with
Foudspeaker and valve
LCL82. Frequeney reaponse $\begin{aligned} & 50-12,000 \mathrm{cps} . \\ & \text { Sonsitivity } 200 \mathrm{mV},\end{aligned} \quad 59 / 6$ SINGLE PLAYERS MONO EMI Junior Mains 29.18 .8 Garrard 8RP\&2... e6.19.6 UA70Tramecription \&12.19.6
 All fttod LP/78 stylii and pickup cartridge completo. stereo/mono pickap 20/- extra except 80D0.
GARRARD TRAXWOOD BASE WE.1. Ready 65/=

DE LUXE STEREO GRAM CEABEIS Y.H.F.. MW, 8 W
 British made. Detaila B.A.E.
E.M.I. PICE-UP ARY Complete with mono eartridge 29/6; Xtal GP67 17/8; Btereo Ceramlo $\mathrm{e} 5 /$-. Powerpoint $5815 /$. CRYSTAL MIKE INSERTS
 PORTABLE TRANSISTOR
AMPLIFIER PLUS
DYNAMIC MICROPHONE A mell-contained fally portsble mini p.a. syttem Many unea - ideal for Partes, or as intercom, Tolophone or Record Player, Amplifier, etc Attrective rexim coversd cabine sige $12 \times 9 \times$ in, with powerful $7 \times 1$ spesirer and four transigtor one watt power amplifior plai tultra monsitive milcrophone Uses PPG, battery. Brand new in Makers' carton with full makern'
guarantee. World famous make. Oniy $90 /-$ Post
 cuarantee. World lamous make. Oniy $90 /-$ Post $_{\text {Fres }}$

WEYRAD P50-TRANSISTOR COILS
 Oso. PKO/LAC 1.F. P50/2CC $470 \mathrm{ko} / \mathrm{s} . . \quad$ 6/7 J.B. Tuning Gang 8rd I.F. P50/300 Weyrad Booklot Teleesoplo Chrome Aeriale din. oxtende to 23 in . 5 Fertite Rode Only. 8 , in. $4 /-; 8 \geq$ in. $5 /=$,
VOLUME CONTROLS 180 ohm COAX $8^{D}$ yd. Long spindles. Midget size
SE, ohms to 2 Meg, LOA or AEABH AERIALITE SE, ohm to 2 Meg. LOA or AERAXIAL AIR 8PACED
LIN. L/8 $8 /=$ D.P. $8 /-40$ Yd. $80 /-80$ Id. $80 /$.


 | POTs. T.V. Type. Values | STANDARD SIZE POT8. |  |
| :--- | :--- | :--- |
| 10 ohms to 80K. | $4 / 6$ | LONGBPINDLE |
| Carbon 80 K to 2 meg. | $7 / 6$ |  |


 KDGE CONNE 3 per pasket $8 / 4$. FACE CUTMERS $7 / 6$.

 ©.B.B.P. undrillod $1 / 10$ in. Board. $10 \times 8 \mathrm{in}$. $8 / \mathrm{f}$.
BLARE ALOMINIVM CHABSIS, 18 gw.g. 24 in . sideg $7 \times 4 / \mathrm{m} . \mathrm{F} / 8 ; 9 \times 7 \mathrm{im} .$, 日/6; $11 \times 8 \mathrm{in} ., 6 / 6 ; 11 \times 7 \mathrm{in}, 7 / 6$
 $18 \times 8$ in. $4 / 8 ; 10 \times 7$ in. $8 / 8 ; 8 \times 6$ in. $2 / 8 ; 8 \times 4$ in. $1 / 6$.

## O MAX CHASSIS CUTTER

Complete: a die, s panoh, an Allen sorew and key



## 'SONOCOLOR' CINE RECORDING TAPE

 foreel, $900^{\prime}$ with LP strobe markinga, also oine light defieotor-mirror sor cinohronizetion. THREE FOE 30/-. Tape spools 2/6. Tape 8plioer 5/-. Leader Tepe 4/6 Reuter Tape Heads ior Collaro models 2 traok 21/- pair "THE INSTANT' BULK TAPE ERASER AND RECORDING HEAD DEMAGNETISER 200/R50 v. A.C. LBARGAIN STEREO/MONO SYSTEM

Atractive Slim PLAYER CABINET with B.S.R. STEMREO Antochanger $4+4$ AMPLLFIER and TWO matched | Autin. LOUDSPEAKERS Carr. 10/6 |
| :--- |
| $\begin{array}{l}\text { O19.19.6. } \\ \text { (Only } 4 \text { pairs of wires to join). }\end{array}$ |

 $\left.\begin{array}{l}10 \text { watt } \\ 10 \text { watt }\end{array}\right\} \begin{array}{r}\text { WIRE-WOURD RESISTORS } \\ 10 \text { ohms to } 6,800 \text { ohms }\end{array}$ PULL WAVE BRIDGE OHARGRR RIVMMPIMRS; CHAEGER TRAHSFORMEARS, P. \& P. 5/\%. Inpat 800/2007


BRAND NEW TRANSISTORS 6/- each OC71, OC72, OC81, OC44. OC45, OC171, OC170, AF117
MAT 100, 7/9: MAT $101,8 / 8 ;$ MAT $120,7 / 9 ;$ MAT $121,8 / 8$. MAT 100, 7/9: MAT 101, 8/8; MAT 180, 7/9; MAT 18
REPANCO TRANSIBTOR TRANSFORMERS TT45. Push Pull Drive, $9: 1$ CN, 6/-. Ti 48 Output, OT8:1, 6/TT49. Interatage $20: 1,8 /-$; TT'6 Outpat 8 ohma, $4.5: 1,6 /=$
TT23/4 PAIB 10 wath Amp. Tranaformera and circnit $45 /-$ TT28/4 PAIR 10 wati Amp. Tranatormers and cirenit $45 /=$

TRANBISTOR MAINS POWER PACKS. FDLL WAVE 9 volt 500 mA 8 ive $41 \times 84 \times 2 i n$. Oatput terminala, $\quad 49 / 6$ Switched. Metsicase, cractio finish. On/on switch.
Hali Wave 9 volt 80 mA Size $2 \dagger \times 1$ im 8nap terminals $88 / 6$.
 BEACH POWER PACK 280-R50v. A.C. with $\mathbf{I} 7$
Meter for $6-8-12 \mathrm{y} .1$ amp D.C.

## MAINS TRANSFORMERS

 $850-0-36080 \mathrm{~mA} .6 .87 .8 .5 \mathrm{~s} .6 .8 \mathrm{v}$. 12. or 5 z . 8 A .
 MIDGET $820 \mathrm{v} .45 \mathrm{~mA}, 6.8 \mathrm{v} .2 \mathrm{~A} .81 \times 2 \mathrm{E} \times 8 \mathrm{in}$. HEATER TRANS. 6
 $4,5,8,8,9.10 .18,15.18,24$.and 80 e it 20
 8 amp., $0-12 \mathrm{p}$. snd $0-18 \mathrm{v}$. AUTO TRANSFORMERS $0-11 \mathrm{~s}-880 \mathrm{w}$. Input
$60 \mathrm{w} .18 / 6 ; 150 \mathrm{w} .80 /-; 500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w} .175 /-$.

COAXIAL PLUG 1/8. PANEL SOOKBFY 1/8. LINE 8/OUTLET BOXES. SURFAOE OR FLUSE $4 / 6$.
BALANGED TWIN FEHDERS $1 /-$ Fard 80 or 800 ohme. JACE SOCKEMS 8td, open-cirenit 8/6, closed circuit 4/6. Ghrome Lead Societ 7/6. Phono Pluga $1 /-$ - Phono Socket $1 /-$ JACK PLUGS Std. Chrome $8 /-; 3.6 \mathrm{~mm}$ Chrome $2 / 8$. DIN 80CKETS Chasain 8-pin 1/6; DTM PLUGB 8-pin 8/6; 5-pin $5 /-$. Lead 8-pin 8/6; WAVR-CHANGE SWITCHES WITH LONG GPINDLES. $2 \mathrm{p} .2-\mathrm{way}$, or 2 p .8 -way, or 8 p . 4 -why $4 / 6$ eaoh. $1 \mathrm{p} .18-$ way, or 4 p. 8 -way, or 4 p .8 -way, $4 / 6$ emoh Wavechange "MAKIrg" 1 p. 18 -way, 8 p. 6 -way, 3 p. 4 -way,
4 p. 8 -way, 6 p. 8 -way, 1 wafer $18 /-, 8$ wafor $18 /-8$ wgior $24 /$ 4 p. 8-way, 6 p. \&-way, 1 wher $18 /-, 8$ waler $18 /-, 8$ wa TOGGLE 8WITCEMS, $8 \mathrm{p} .2 / 6 ; \mathrm{sp}$. dt. $8 / 6 ; \mathrm{dp} .3 / 6 ; \mathrm{dp} \mathrm{dt} .4 / 6$.

## MINI-MODULE LOUDSPEAKER KIT

## ${ }^{10}$ watt <br> 55 /

Cart.
$5 /-$
Triple speaker system combining on ready eut batile. Itm. chlp-board $10 \times 8$ inin. 8eparate Bass, Middle and Treble Bass Woofer unit has a low bsas remonsnce cone. The Mid-Rauge nnit is specially designed to add drive to the middle register and the tweoter recreatea the top ond of the masicsl spectrum. Total response $80-16,000 \mathrm{cpa}$. Fall ingtructions lor 8 or 8 ohm

Teak Veneered Bookshelf Enclosure
$171 \times 101$ x 7tin. Specially designed for above 25.10 .0 ertra.

## BAKER 12in.

 DE-LUXE MKII LOUDSPEAKERSuitable for any Hi-Fi System. Provides truly rich sound recreating the music al spectrum virtually flat from 25-16,000cps. Latest double cone with special "Ferroba" ceramic magnot. Flux density 84,000 gauss. Bass resonance 323feps. 15W British rating Volce colis avallabi
e or 15 fg Post ohms. 48 page Enclosure
Manual 5/9 post paid
LOUDSPRAKRR CAEINET WADDING 18in. wide, $2 / 8$ t. AAKKR "GROUP SOUND" \&PRAKERE—POAT FREE "Group 25" 'Group 35' "Group 50"
 ALL MODELS "BAKER SPKAKYRS' IN STOCK
Goodmans Cone Tweeter 3in. square, 2.18ikc/a. 10W 35/uality Horn Tweeture $2-18 k 0,10 \mathrm{~F}$ 29/8. Crossover 16/6


M. I Double Cone $18+\times 8$ in 3 or 15 ch. $80 /-; 8 \times 24$ tn. $81 /-$ with twin tweetern, crossovin and cersmic mernet, 78 or SPECIAL OFEER! $8 \mathrm{ohm}, 2 \mathrm{Lim} ; 6 \times 4 \mathrm{jn} 80 \mathrm{ohm}, 2 \mathrm{lin}, 24 \mathrm{in}$

 Bin. De Lare Coramic 8 ohm $45 / 0 ; 15$ Dhm 501
8 in . LOUDSPRAKER T WON CONE $30 \mathrm{~km} 88 /-$ - 15 ohm $38 / 6$



ALL PURPOSE HEADPHONES


## MINETTE

AMPLIFIER
A.C. Mains Tranformor Eigh. Falves ECLA8 EZ80. Quality outpat 3 ohm. With ongraved isto ois, valven, znobs, volume and tone controls,
Fred and tented. 12 month gnaranteo. Post $5 / 6$ $\mathbf{6 9 / 6}$

## ALL EAGLE PRODUCTS

 8UPPLIED A5/. Posi free

BARGAIN AM TUNZR M Medam Wave Tramistor 8 uperhet_Farrite sarish, 9 volt 79 BARGAIV DE LOXG TAPE SPLICERR Cuts, $17 / 6$ trims, foins lor ediliag and repairs. With 8 blades.
BARGAIN 4 ORANHEL TCANSI8TOR MIXKR. Add musioal highlights and round offeots to recordings. Will min Miorophsne, reooris, tape and tuner
With coparate oontrols into sivgle output. 9 folt. $59 / 6$ BARGAIN FM TUNER 88-168 Mo/s Six Transithtor. Roady
 BARGAIN \& WATT AMPLITIER. 4 Transistor 69/6

$$
\star \text { RADIO BOOKR } \star \text { (Postege 9d. }
$$

Praotisal Transiftor Receivery
Praotionl Stereo Handbook
Praotion 8terto Handbooz $\begin{aligned} & \text { Bupertenaitive Transintor Focket Radio }\end{aligned}$
Hith Fidelity Speater Enctionarem and Plans Rsdio Valve Gude, Booke 1, 2, 3, or 4 ba. 5/-No. 5 ea Practionl Radic Inaide Oot: Shortwave Trazuiator Receiver Tranaintor Commanication 8ata Modern Tranfintor Circaida for Begin
8ub-Muntature Transintor Re seivers 8ub-mintature Tranisior Re seiver
Wirelena World Radio Vive Data
At a glance falve equivalents.
Varves. Tran Histors, Dlodes equivalent manual Receive Foreign T.V. bl timple modiflcations
Transistor Clrentt Radio Controlled Model

MANUFACTURERS SURPLUSI
TAPE BECOMDER CASE, Red/Cream or 25/-
Gruy 2-tone. Raxino covired. Size $15 \times 18 \times 8$ tin. POST FRER

 Obms 0 to 8 meg. 80 Mieroamps (Full list Metern S.A.E.)

BRAND NEW QUALITY EXTENSION LDUDSPEAKER Handsome plestic cabinet, 20Ht. lead tape recorder, etc. \#t to 16 ohms. $30 /-$
gine: $7 \pm \times 54 \times 8 i n$.
POST $9 / 6$


## PW DOUBLE 12

## Described in this issue BUY YOURS FROM TRS

All equipment supplied by $T R S$ is exact to specification
2 Spools of "Cir-Kit" at 2/- each


TOTAL $£ 2219 \quad 6$
Carriage and packing 12/6
TRS STEREO 4-4 a bargain in quality amplifiers

AMPLIFIER KIT 87.10 .6 (p.p. 8/6) TRS POWIER UNIT TRS BYYPLEX CABLNET (p.p. 2/6) 4 prs, DIN plugs and (p.p. 2/6) 4 prs. DIN plugs and sockets if purchased separately, 16/-. pack DIN plugs and socket.
112.10.0 (carr. 7/6)

Integrated 5 transistor stereo amp based on newly developed Mullard 4 watt module and EC. 108 pre-amp. Suitable also for speakers from 3 to 15 ohms. With base and treble cut/boost. Response 60 to 14 KH requires This excellently engineered layout requduies. Complate with metal chasels and aimplex teak ended cabinet for Instant asembly.

## MAKE YOUR OWN BOOKSHELF SPEAKER

With a set of matched speakers and cross-over from TRs, Comprises modern style high efficiency 5in. baes unit with apecial cone assembly, X-over and $2 \frac{1}{2}$ in. tweeter or mounting Into your own cabinet or baffle aytetn. Bmooth

79/6 reaponse from 80 to $20,000 \mathrm{~Hz}$. Loading up to 6 watts. Made by
a world-famous manufacturer. A genuline bargain for only

## TRS MULLARD AMPLIFIERS

STEREO 10-10 Kit with valves and pasaive control system. KIT 818.10.0: BUILT 88.10 .0 (cart. ellher 12/6)
$8 \times 2$ VALVE PRE-AMP. Built with valves, dial, etc. 818.10 .6 (carr. 7/6).
5-10 MONO AMPLIMIER. Basic Kit, with valven, etc. 10 gas. Built 318.0.0. (carr. Basle Kit with pasalve control system, s12.10.0. Built 15 gm, (carr. oither 7/6). PRE-AMP 2 VALVE EIT 88.19.6. Built 89.10. (earr. oither 5/6).
BAsic 5-10 AMPLIFIER AND \& VALVE PRIFAIP Aswembled, wired and teated complete 3R1.10.0 (carr. 10/-).
(S.A.E. brimgt detatls of rampe.)

WIRE WOUND RYEIETORS-COATED TYPEA stand. values 25 ohms- 10,000 ohms, $\delta \mathrm{w} .1 / 6,10 \mathrm{w} .1 / 9$ $15 \mathrm{w} .2 / 8$. SPECLAL VALUES $15 \mathrm{~K}-36 \mathrm{~K}$ ohms $5 \mathrm{w} .8 / 6$ PRR-EET WIRE WOUND POTS. Blotted Knurled Knob TV Type 26 ohm:- 30 Kohms s/8. 60Kohms $4 / 6$. Ditto carbon track $60 \mathrm{~K}-2$ Meg. $3 / 8$.
BLIDRAR PRIMERTS $\ddagger$ w. $10 \mathrm{~K}-2 \cdot 2 \mathrm{Meg} .8 / \mathrm{-} .10$ ohms6K 2/6.
STAMDARD W/WOUND POTS. Long spindle.
100 | 80,000 ohm each 8/-. 100,000 ohms each $8 / 9$. VOLUME CONTROLS 1/in. din. Long spindles Famous make. All vahues 5,000 ohm - 2 Megohms Gusranteed 12 months. Log or Linear tracks. Less $\mathrm{SW}_{\mathrm{w}}$ Megohm Log. Log or wrear tracks. Centre tapped RRSISTORg-Modern ratings, full range 10 ohme to 10 megohms, $10 \%$, $\frac{1}{W} ., 44$. ea.: $5 \%$ Hi-8tab. gl. ea.f. $1 \%$ Hingtab $1 / 6$ ea (below 100 meg.多-ea.). $\%$ Himstab, \% W., $1 / 6$ ea. (below 100 ohms, OOND FAKERE Bilver Mios. All valnas 2 pt. to 1.000 pi. bd. ©e. Ditto coramics 9d. Tab. 450 T T.0.C. ote., 001 es T.c. 0.1 m. 5 . $5 \mathrm{pf} .500 \mathrm{pf} 9 \mathrm{d}$. 600-5, $000 \mathrm{pf} .1 /-.1 \% 2 \mathrm{pt}-100 \mathrm{pt} .11 \%$ $100-250 \mathrm{pf}$. $1 / 2.270-800 \mathrm{pf}$. 1/4. $800-5,000 \mathrm{pf}$. $8 /-$ "CIR-EIT" "VRHOBOARD".
apes Do-Lure aligie reoord player, diecant turnteble Les cartridge. s18.10.6.

GARRARD PLIMTHE WB1 In fine Teak for above undts. Oloar-wiew ridid narges cover (carr. 4/6), $86 /$ -

6 Valve AM/FM Tuner
Med. and F.E.F.-metal rectifter. Masic-eye, 8 push
button controls. Dlode high output sockets. Ilfuminated dial. Chassis $114 x$ $4 \times 8 i$ in. Complete let, inc. Power Pack A.C. main \$18.0.0 (cart. 7/6). Clircult and constraction detalls

LIBTH-Right large printed
Lists- Eight large printed pages, packed with bargain find lines. Bend ed latest copy.

## TRS RADIO <br> COMPONENT SPECIALISTS Estab//shed 1946

70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY
Tel.: 01-684 2188. Hours 9 a.m.-6 p.m. 1 p.m. Wednesdays A few doors from Thornton Heath Str. (S.R. Victoria section)


## New Edition-Now Out

Thinking of High Fidelity-first read Goodmans 28 page High Fidelity Manual. It contains interesting articies on Sterea; an Introduction to High Fidelity: Stage-built systems; as well as full details of Goodmans High Fidelity audio products.

## Send for your free copy

Please send me a free copy of Goodmans Manual
Name
Address
PW6

## Goodmans Loudspeakers Limited

Axiom Works, Wembley, Middlesex. Tel: 01-902 1200

## VALVES

## SAME DAY SERVICE <br> NEW! TESTED! GUARANTEED!

SETS 1R5, 185, 1T4, 384, 3V4, DAF91, DF91, DK91, DL92, DL94. 1RK, 185, 1T4, 3B4, 3F9, DF9F, DK96, DL96, 4 for 28/-.

| OZ4 |  | 18/ | DLS5 |  | 84 |  | UCC84 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 147GT | 776 | 20Ps 11/9 | DL02 | $5 / 9$ | EL90 5/- | PEN88C15/- | UCCAS | 6/6 |
| 1H5GT | $7 / 8$ | 20P4 18/6 | DL04 | $5 / 9$ | BM80 6/9 | PFL20018/6 | UCP80 | 8/3 |
| INSGT | $7 / 9$ | 26U4GT11/6 | DL96 | $7 /$ | EM81 6/9 | PL36 9/9 | UCH42 | 9/9 |
| 1RS | $5 / 6$ | 80 Cl 0/9 | DY88 | $5 / 9$ | EM84 6/6 | PL81 7/E | UCE81 | 819 |
| 185 | $4 / 8$ | 30C15 18/- | DY87 | $5 / 9$ | RM87 7/6 | PL82 7/- | UCLS 3 | 7/8 |
| 1 T | 819 | $30 C 1718 /$ | EABC80 | 616 | RY81 7/8 | PLB3 7/- | UCL83 | $11 / 6$ |
| 384 | $5 / 9$ | 30 C 18 9/- | EAF4 ${ }^{\text {S }}$ | $8 / 9$ | EY86 6/9 | PL84 $/ 6$ | UP41 | \% 10 |
| 874 | $5 / 9$ | $80 \mathrm{~F}{ }^{\text {8 }}$ 18/- | EB91 | $2 / 8$ | EZ40 $7 / 6$ | PL800 18/- | UF80 | 7- |
| 5046 | $4 / 6$ | 30FL1 18/4 | EBCs3 | $7 / 6$ | EZ41 7/8 | PL604 $18 / 6$ | UF85 | 819 |
| SY3GT | $5 / 9$ | 30FL1214/6 | EBC41 | $8 / 8$ | EZ80 4/6 | PL608 $88 / 8$ | UP89 | 8/9 |
| 5Z4G | $7 / 6$ | 30FL1410/6 | EBF80 | $0 / 8$ | EZ81 4/9 | PL802 14/6 | UL41 | $10 / 6$ |
| 6/30L2 | 12/6 | 30 L 1816 | EBF89 | $6 / 8$ | GZ32 8/9 | PM84 719 | UL44 | 801- |
| 6AL5 | 2/8 | 30 L 1514 - | ERCC81 | 319 | KT82 5 /- | PX25 10/6 | UL84 | 71 |
| 6AM6 | $8 / 6$ | 30 L 17 15/6 | ECC82 | 419 | KT61 8/9 | PY31 5/6 | UM84 | $7 / 6$ |
| 6AQS | 419 | 30 P 4 18/- | HOC83 | 71 | KT68 16/- | PY32 101- | UY41 | 71 |
| 6AT6 | 4/- | $30 \mathrm{P} 1218 / 9$ | EOC84 | 516 | ME140015/- | PY33 101- | UY85 | 6/9 |
| 6 6U6 | $4 / 9$ | 30P19 18/- | FCCC85 | 5/9 | N78 14/9 | PY81 5/8 | VP4B | 101- |
| 6846 | $4 / 6$ | 30PL1 18/6 | FiCC8041 | 18/6 | PABCS0 $7 /$ | PY82 515 | VP18 | 81/- |
| 68E6 | $4 / 8$ | $30 \mathrm{PL13} 15 / 0$ | ECP'80 | $7 /-$ | $\mathrm{PC86}^{\text {P6 }} 10 / 8$ | PY83 | 277 | 8/6 |
| 6BJ6 | $7 /$ | 30PL14 15/6 | ECF'82 | $0 / 0$ | $\begin{array}{ll}\text { PC88 } & 10 / 8\end{array}$ | PY88 6/8 | Trande | art |
| 68w6 | 18/- | 35LagT 8/- | ECEH35 | 6/- | PC96 816 | PY800 $7 / 6$ | AC107 | 8/6 |
| $6 \mathrm{FH}^{18}$ | $2 / 6$ | 35 W 4 4/6 | ECH42 | 10/8 | $\begin{array}{ll}\text { PG97 } & 8 / 6\end{array}$ | PY801 610 | AC127 | $8 /-$ |
| 6 F 14 | $9 /-$ | 36Z4GT 8/- | ECH81 | 6/9 | $\begin{array}{ll}\text { PC900 } & 8 / 8\end{array}$ | R19 $6 /$ | AD140 | 716 |
| 6 F 28 | $14 / 8$ | 6083 12/6 | ECH84 | 7/8 | PCC84 616 | $\begin{array}{ll}\mathrm{R} 20 & 12 / 6\end{array}$ | AFF102 | 18/- |
| $6 K 7 G$ | $2 / 6$ | AC/VP210/- | ECL80 | 8/9 | PCx8s 616 | TH21C 9/9 | AF115 | 81 |
| 6K8G | $1 / 8$ | AZ81 9/- | ECL 82 | $0 / 19$ | PCC88 910 | 026 18/- | 4 AFI 16 | $8 /-$ |
| 6L18 | $6 /-$ | 8729 18/8 | ECL 88 | 9/- | PGC89 10/6 | U26 18/- | AFP17 | $8 / 8$ |
| 676GT | $8 / 6$ | CCH3s 10/- | ECL86 | $8 / 8$ | PCC189 11/6 | U47 18/6 | AF124 | 716 |
| $6 \times 4$ | 8/6 | CLs3 18/6 | EF89 | $3 / 9$ | PGF80 6 | U49 18/6 | AF'125 | $8 / 8$ |
| 6X8GT | $6 / 9$ | CY 316 | EF41 | $9 / 6$ | PCF82 6- | U52 4/6 | AF126 | 7 - |
| 786 | 10/9 | DAC32 $7 / 8$ | EFP80 | 4/8 | PCF86 9/6 | U78 8/6 | $\mathrm{AFP}^{2} 27$ | 8/6 |
| 787 | 71 | DAF91 $1 / 8$ | EF85 | \% | PCF80013/6 | U191 19/8 | 0026 | $5 / 9$ |
| 708 | $6 / 9$ | DaF96 6/6 | EF86 | $6 / 8$ | PCF801 7/- | 7301 18/6 | 0 C 44 | $8 / 8$ |
| 7 Y 4 | 6/6 | DF39 719 | EF89 | $5 / 8$ | PCF802 $9 / 6$ | U801 19/6 | OC45 | 2/8 |
| 10F1 | 16/- | DF91 2/9 | EF91 | $8 / 8$ | PCF'805 9/- | UABC80 $6 / 8$ | 0071 | $2 / 6$ |
| 10P18 | $16 / 6$ | DF96 6/- | EF94 | $4 / 9$ | PCF80611/6 | UAF42 9/6 | $0 \mathrm{C72}$ | 2/6 |
| 12AT7 | $8 / 9$ | DH77 4/- | EFF183 | 6 | PCF80810/6 | UB41 $6 / 8$ | $0 \mathrm{OC75}$ | 2/6 |
| 12A06 | $4 / 9$ | DH81 10/9 | RF184 | $6 / 9$ | PCL82 $7 /$ | UBC41 $8 / 0$ | 0081 | $8 / 8$ |
| 12AU7 | $1 / 9$ | DK32 78 | EH00 | $0 / 8$ | PCL83 9/- | UBC81 7/- | 0 OC81D | 8/8 |
| $12 \Delta \times 7$ | $4 / 9$ | DK91 5/6 | EL33 | $8 / 9$ | PCL84 $7 / 6$ | UBF'80 ${ }^{\text {d }}$ | 0 O 82 | 818 |
| 12 K 8 GT | T 71 | DK92 9/8 | ELS34 | 916 | PCL85 91- | UBF89 $/ 19$ | OC82D | $2 / 6$ |
| 198G6G | 617/8 | DK96 7/- | EL41 1 | 10/8 | PCL86 8/6 | UC92 $5 /$ | $0 \mathrm{Cl170}$ | 8/6 |

## NEW PRICES ON NEW COMPONENTS

RESISTORS
High stability，carbon film，low noise．Capless construction，molecular termination bonding．
Dimensions（mm．）：Body： $1 \mathrm{~W} ; 8 \times 2.8$

$$
\frac{1}{2} W ; 10 \times 4 \cdot 3
$$

Leads： 35
$10 \%$ ranges； 10 Ohms to 10 Megohms（E12 Renard Series）．
$5 \%$ ranges；4．7 Ohms to 1 Megohm（E24 Renard Series）．
Prices－per Ohmic value．

|  |  | each | 10 off | 25 off | 100 off |
| :---: | :---: | :---: | :---: | :---: | :---: |
| tw | 10\％ | 2 d ． | 1／6 | $3 / 3$ | 10／4 |
| ＋W | 5\％ | 21d． | 1／9 | 3／8 | 11／8 |
| 動 | 10\％ | 21 ${ }^{\frac{1}{d} \text { d．}}$ | 1／9 | 3／8 | 11／7 |
| $\frac{1}{6}$ W | 5\％ | 3 d ． | 2／－ | 4／－ | 12／10 |

## CAPACITORS

Subminiature Polyester film，Modular for P．C．mounting．Hard epoxy resin encapsulation．Radial leads．
$\pm 10 \%$ tolerance． 100 Volt Working．
Prices－per Capacitance value（ $\mu \mathrm{F}$ ）
$0.001,0.002,0.005$ ，
$0.01,0.02$

| $0.002,0.005$, | each | 10 off | 25 off | 100 off |
| :--- | :---: | :---: | :---: | :---: |
| $01,0.02$ | 6 d. | $4 / 3$ | $8 / 4$ | $30 /-$ |
| 0.05 | 8 d. | $6 /-$ | $12 / 6$ | $41 / 8$ |
| 0.1 | 10 d. | $7 / 1$ | $15 / 6$ | $51 /-$ |
| 0.2 | $1 / 2$ | $10 /-$ | $20 / 10$ | $68 / 6$ |
| 0.5 | $2 /-$ | $17 / 6$ | $37 / 6$ | $125 /-$ |

100 off

Polystyrene film，Tubular，Axial leads．Unencapsulated．$\pm 5 \%$ or $\pm 1$ pf tolerance． 160 Volt Working．
Prices－per Capacitance value（ $\mu \mu \mathrm{F}$ ）
$10,12,15,18,22,27,33$ ，each 10 off 25 off 100 off $39,47,56,68,82,100,120$ ， $180,220,270,330,390$ 470． $560,680,820,1,000$ ， 1，500
$2,200,3,300,4,700,5,600$
$6,800,8,200,10,000,15,000$
22，000

| 5d． | $3 / 7$ | $7 / 9$ | $24 /-$ |
| :--- | :--- | :--- | :--- |
| 6d． | $4 /-$ | $8 / 8$ | $26 / 8$ |
| 7d． | $5 /-$ | $10 / 10$ | $33 / 4$ |
| 8d． | $6 /-$ | $13 /-$ | $40 /-$ |
| 9d． | $6 / 9$ | $18 /-$ | $45 / 4$ |

Polystyrene film，Tubular，Axial leads．Professional Grade．Hard Epoxy Resin encapsulation．
$\pm 1 \%$ tolerance． 100 Volt Working．


## POTENTIOMETERS（Carbon）

Miniature，fully enclosed，rear tags，carbon brush wiper．Long life，low noise． Body dia．，量in．Spindle， $1 \mathrm{in} . \times$ tin．$\frac{1}{2} \mathrm{~W}$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ over 4 M．Lin． 100 ohms to 10 Megohms．Log． 5 Kohms to 5 Megohms．
Prices－per ohmic value each 10 off 25 off 100 off
SKELETON PRE－SET POTENTIOMETERS（Carbon）
High quality pre－sets suitable for printed circuit boards of $0 \cdot 1 \mathrm{in}$ ．P．C．M． 100 ohms to 5 Megohms（Linear only）．Miniature： 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ above 4 M ．Horizontal（ $0.7 \mathrm{in} .+0 \cdot 4 \mathrm{in}$ ．P．C．M．）or Vertical（ $0.4 \mathrm{in} . \times 0.2 \mathrm{in}$ ．P．C．M．）．Subminiature： 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above
Prices－per ohmic value
Miniature（0．3W）．
Subminiature（ $0 \cdot 1 \mathrm{~W}$ ）

| each | 10 off | 25 off | 100 off |
| :---: | :---: | :---: | :---: |
| $1 /-$ | $8 / 9$ | $18 / 9$ | $66 / 8$ |
| 10 d. | $7 / 1$ | $14 / 7$ | $46 / 8$ |

## JACK PLUGS

tin．Type P1．Standard．Screened．Heavily chromed．
tin．Type P2．Standard．Unscreened．Unbreakable moulded cover． tin．Type SE／P1．Side－entry version of P1 plug．
3.5 mm ．Type P5．Standard．Screened．Aluminium cover．
3.5 mm ．Type P6．Standard．Unscreened．Unbreakable moulded cover．

| Prices |  |  |  | each | 10 off | 25 off | 100 off |
| :--- | :--- | :--- | :--- | :---: | :--- | :---: | ---: |
| P1 | . | . | . | . | $3 /-$ | $26 / 8$ | $62 / 6$ |
| P2 | . | . | . | . | $2 / 6$ | $23 / 4$ | $54 / 2$ |
| SE $/$ P1 | . | . | . | $3 / 6$ | $30 / 10$ | $66 / 8$ | $200 /-$ |
| P5 | $\cdots$ | . | . | . | $2 / 2$ | $19 / 2$ | $43 / 9$ |
| P6 | . | . | . | . | $1 / 8$ | $15 /-$ | $33 / 4$ |

JACK SOCKETS
tin．Type S． 5 Standard．Moulded body．Chrome insert．
3.5 mm ．Type S．6．Specification as above．

Available with make／make，make／break，break／break，break／make contacts．


POLYESTER CAPACITORS（Mullard）
Tubular $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$. $0.068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6$ ． $0.68 \mu \mathrm{~F}, 2 / 3$ ． $1 \mu \mathrm{~F}, 2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015$ ， $0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 9 \mathrm{~d} .0 \cdot 068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2$ $0.22 \mu \mathrm{~F}, 1 / 6.0 .33 \mu \mathrm{~F}, 2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8$ ．
Modular，metalised，P．C．mounting， $20 \%$ ，250V： $0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$ ． $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}$ ， $1 / 5.0 \cdot 47 \mu \mathrm{~F}, 1 / 8.0 \cdot 68 \mu \mathrm{~F}, 2 / 3$ ． $1 \mu \mathrm{~F}, 2 / 9$ ．
SEMICONDUCTORS：OA5，OA81，1／4．OC44，OC45，OC71，OC81， OC81D，OC82D，2／－．OC70，OC72，2／3．AC107，OC75，OC170，OC171， 2／6．AF115，AF116，AF117，ACY19，ACY21，3／3．OC140，4／3．OC200， 5／－．OC139，5／3．OC25，7／－．OC35，8／－．OC23，OC28，8／3．
SILICON RECTIFIERS（0．5A）： 170 P．I．V．，2／9． 400 P．I．V．，3／－． 800 P．I．V．，3／3．1，250 P．I．V．，3／9．1，500 P．I．V．，4／－．（0．75A）： 200 P．I．V．，1／6． 400 P．I．V．，2／－． 800 P．I．V．，3／3．（6A）： 200 P．I．V．，3／－． 400 P．I．V．，4／－． 600 P．I．V．，5／－． 800 P．I．V．，6／－．
SWITCHES（Chrome finish，Silver comtacts）：3A 250V，6A 125V．Push Buttons：Push－on or Push－off 5／－．Toggle Switches：SP／ST，3／6．SP／DT， 3／9．SP／DT（with centre position）4／－．DP／ST，4／6．DP／DT，5／－．

## PRINTED CIRCUIT BOARD（Vero）．

 $5 \mathrm{in} . \times 3$ 옹．， $5 / 6$ ．
$0 \cdot 1$ Matrix： $3 \frac{4}{4} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} ., 4 /-.5 \mathrm{in} . \times 2 \frac{1}{\mathrm{~h}} \mathrm{in} ., 4 / 6$ ． $3 \frac{4}{4} \mathrm{in} . \times 34 \mathrm{in} ., 4 / 6.5 \mathrm{in} . \times$ 3管in．，5／3．

SEND S．A．E．FOR 1969 CATALOGUE
DUXFORD ELECTRONICS（PE） 97／97A MILL ROAD，CAMBRIDGE

Telephone：CAMERIDGE（0223） 63687
（Visit us－at our new Mail Order，Wholesale and Retail Premises） MINIMUM ORDER VALUE 5／－

C．W．O．Post and Packing 1／6

## Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order 20/-), box number 1/6d. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., Fleetway House, Farringdon Street, London, E.C.4. for insertion in the next available issue.

## SITUATIONS VACANT

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132 . page Handbook-FREE Please Write for 132 page Handbook-FREE. Please state subject. TECHNOLOGY (Dept. 137K), Aldermaston TECHNOLOGY (Dept. 1
Court, Aldermaston, Berks.

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C.Eng., A.M.I.E.R.E. A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I. A.IO.B Elec.) City a Guilds, A.M.I.M.1., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering Coch., Elec., Auto., Electronics, Radio, Computers, Draughts, Building, etc. For full details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K ), Aldermaston Court, Aldermaston, Berks.

## RADIO TECHNICIANS

## VACANCIES TO BE FILLED BY OCTOBER 1969

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.
Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "O" Level GCE passes in English Language, Maths and/or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A equivalent technical qualifications. A
knowledge of Electro-mechanical equipment knowledge of Electro-m
will be an advantage.
Pay according to age, e.g. at $19-£ 869$ at 25- $£ 1,130$.

Prospects of promotion to grades in salary range $£ 1,217-£ 2,038$. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.
Application forms available from:
RECRUITMENT OFFICER (RT 37/54)
GOVERNMENT COMMUNICATIONS HEADQUARTERS,
OAKLEY, PRIORS ROAD,
CHELTENHAM, GLOS. GL52 5AJ

## EDUCATIONAL

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

## EDUCATIONAL (continued)



RADIO AND TELEVISION SERVICING RADAR THEORY AND MAINTENANCE TELECOM.MUNICATIONS
This private College provides efficient theoretical and practical training in the above subjects. One-year day courses are available for beginners and shortened courses for men who have had previous training. Write for details to:
The Secretary, London Electronics College, 20 Penywern Road, Earls Court, London, S.W.5.

Tel. 01-373-8721

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C.1.

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronies, radio, TV., automation, etc., send for 132-page Handbook-FREE. B.I.E.T. (Dept. 168K), Aldermaston Court, Aldermaston, Berks.

## TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career.

ICS, DEPT. 541, INTERTEXT HOUSE, LONDON, SW11

## WANTED

DAMAGED AVO METERS, Models 7 \& 8, any quantity. Send for packing instructions. HUGGETT'S LTD., $2 / 4$ Pawsons Road, West Croydon.

WE BUY New Valves, Transistors and clean new components, large or small quantities, all new components, quotation by return. WALTON'S details, quotation by return. WALTONS Wolverhampton.
WANTED: Popular Brand New Valves. R.H.S. Stamford House, 538 Great Horton Road, Bradford 7.

## WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

## WANTED <br> (contlnued)

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.
WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.
WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0186.

## FOR SALE

£6,000 IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools, materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills, Stockport SK12 4HL.

## PRECISION POTENTIOMETERS

Multi-turn, continuous or ganged from $25 /-$; carbon from 2/.. Also resistors, malns rectifers, synchros, geared motors, chokes, capacitors, meters, mlcroswitches, semiconductors. Bd. stamp catalogue. F. HOLFORD \& CO., 6 Imperial Square, Cheltenham.

THE IDEAL Panel Mounting Meter Movement for any Sensitive Test Meter etc. 200 Micro Amp F.S.D. 4 tin. $x 4 \frac{1}{i n}$. In clear plastic case. Our special price only 39/6d. P. \& P. free. Limited number only. WALTON'S WIRELESS STORES, 55A Worcester Street, Wolverhampton, Staffs.

TOP TRADE DISCOUNTS FOR ALL

COMPONENTS VALVES TUBES TRANSISTORS
Free Trade Catalogue
Engineers \& Service Dealers Only
WILLOW VALE
THE SERVICE DEPT. WHOLESALERS,
4 The Broadway, Hanwell,
London, W. 7
01-5675400/2971

## TELEVISION TUBES

Large stocks of television tubes, London's leading wholesale suppliers, all tubes complete with guarantee card. By return despatch. Terms: Cash with order, s.a.e. all enquiries.
14in. types. AW36/20, AW36/21, AW36/80, MW36/24, CRM141, CRM144, CME1402 etc.
£4 176
17in. types. MW43/80, AW43/80, CRM173, CME1702 MW43/69 CRM172, AW43/88, AW43/89, CME1703, CME1705 etc... \& 478
19in. types. AW47/90, AW47/91, CME1901, CME1903, CME1902, C19AH £4 196
21 in. types. AW53/88, AW53/89, CME2101, CME2303 £6 120
MW53/80, AW53/80, MW53/20, CRM211/2
£8 1810
23in. types. AW59/90, AW59/91, CME2301, CME2303 ...................................................................................................... £6 12 . 0

23in. Panorama. A59/11W etc.
f 1200
19in. Twin Panel. A47-13W, CME1 906 etc.
19in. Panorama. A47/11W etc.
$\begin{array}{lll}\text { f9 } & 0 & 0\end{array}$
We stock alt types of tubes. Carriage and Packing 12/6d. per British Road Services.
Large stocks of valves, transistors components. L.O.P.T's, Electrolube, Servisol switch cleaner, Multicore solder. Service Tools.
WILLOW VALE ELECTRONICS LTD.
The Service Dept. Wholesalers, 4 The Broadway, Hanwell, London, W.7. Tel: 01-567 2971/5400
CATALOGUE TRADE ONLY. S.A.E. Please


FACT NOT FICIION. If you start RIGHT you will be reading amateur and commercial Morse within a month. (Normal progress to be expected.)
Using scientitically prepared s -speed records you eutomaticalty learn to recognime the code RHYTHM without tranisting. You can't help it, it's easy an learning a tune. 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring, a.t.d. 01 -660 2896 G8OHS (BOX 11), 45 GREEI LANE, PURLZY, SURRET

## METAL WORK

METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

## BOOKS \& PUBLICATIONS



Thls useful Handbook glves detalled Information and clrcuit dlagrams for Britlsh and Amerlcan Government Surplus Recelvers, Transmitters and Test Equlpment etc; also contalned are some uggested modification detalls and Improvements for the equlpment. Incorporated In this revised edition is a surplus/commerclal cross referenced valve Is a surplus/commerclai cross referenced valve
and transistor gulde. This book Is Invaluable to and transistor gulde. This book is Invaluable to
radio enthusiasts, padio clubs, unlversities and laboratorles. The latest edition priced at $35 /$-. per volume plus 5/-. pap is obtainable only from us at

## 

Dept. P.W., 24 Stansfield Chambors, Ot. George Street, Leeds 1.
s.a.e. with all enquirles, plaase. Extra postage for forelgn orders.

## BOOKS \& PUBLICATIONS (continued)



## FROM KAYE \& WARD FUN WITH RADIO

## BY GILBERT DAVEY Edited by Jack Cox

The book of sound, tested designs for 'home made' beginners' radio sets written in straight forward, simple language for the modern, practically minded boy-though in fact suitable for any age of radio enthusiast just starting the hobby. 10 in . $\times 7 \frac{1}{2} \mathrm{in}$., 64 pp ., photos and diagrams, 16 s . net.
194-200 BISHOPSGATE EC2

## SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Presion, Lancs.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, Ib Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc., by return post, with free fault-finding guide. Prices from $1 /$. Over 8,000 models available. Prices from $1 /-$. Over 8,000 models available.
Please send S.A.E. with all orders/enquiries. Please send S.A.E. with all orders/enquiries.
HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

SERVICE SHEETS $(75,000) 5 /$ each: please add loose 4 d . stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

## LARGE SUPPLIER OF SERVICE SHEETS

(T.V., RADIO TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS)
Only 5/- each, plus large S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

## C. CARANNA <br> 71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post). Please state make and model number alternative.

Mail order only.

## MISCELLANEOUS

RHYTHM MODULES. Build your own rhythm box--simply, cheaply. Realistic sound guaranteed. S.A.E. for details. D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

ETCHED PRINTED CIRCUTT BOARD KITS. Fuil instructions $19 / 6$ C.W.O. 'Circuitetch', 12 Cambridge Road, St. Albans, Herts.

## MISCELLANEOUS

(continued)
BUILD IT in a DEWBOX quality cabinet. 2in. $x 2$ in. $x$ any length. D.E.W. Lid., Ring wood Road, FERNDOWN, Dorset. S.A.E. for leafiet. Write now-Right now.

UFO DETECTOR CIRCUITS, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

| 4 WAT GRAM AMPS. |  |
| :---: | :---: |
| Volume and tone controls, m output, new and boxed | $\begin{aligned} & \text { ns operation, } 3 \Omega \\ & 65 /- \text { POST } \\ & \text { PAID } \end{aligned}$ |
| BIG BARGAIN PAR | ELS On |
| OF COMPONENTS | 10/- |
| SALOP ELECTRONICS | POST PAID |
| 23 Wyle Cop, Shrewabury, Shropshira. | S.A.E. for I/sts |

YOUR CALL SIGN ENGRAVED. White Letters Black Plate $6 \times 1$ in. $5 / 6.2 \times 1$ in. Badge Pin, 4/-. Post Free. C.W.O. Workshops for Disabled, Northern Road, Cosham, Portsmouth. PO6 3EP.

ELECTRONIC SOUND and musical devices required for exploitation. Adequate finance available. Projects developed to pre-production stage required. Royalty payments guaranteed. Box 87

## THE NEW

ELECTRONIC MUSIC FOR YOU
Then how about making yourself an electric orsan " Constructional data availablefull circuits. drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops-uses 41 valves. With its variable
attack you can play Classics and Swing. attack you can play Classics and Swing. Write NOW for free leaflet and further details to C. \& S., 20 Maude Street,
Darlington, Durham. Send 4d. stamp.

## ELECTRICAL

## 240 ELECTRICITY/ ANYWHERE

BEST EVER 200/240 VOLT "MAIN8" SUPPLY FROM 12 VOLT CAR BATTERY Exclusive World fcoop Purchsee. The tabulous 1 In. 8D Amerfcen Eeavy Duty Dynamotor Unit with a hamive 220 watt output and giving the most
Briliant $200 / 240$ volt performance of all time. Marvellovs for Television, Drill, Power Toole. Maint Lighting, AC Elooreacent Lughting and all 200/240 volt Universal AC/DC malns equipment. Made at tremendous cost for U.\&.A. Govt. by Delco-Remy. Not a midget convertor, this magndfcent machine is nnobtainable elsewhere. Brand New and Fully Teuted only si.19.6 pian 1076 poatage.C.O.D. With pleanare. Money back if not delighted. Please send a.s.e. for intereating illus.
detala.
Road, PW STANFORD ELECTRONIC8, Rear Derby
 A marvellous unit giving 240 volts output
from a 12 VOLT BATRERY. Runs AC/DC equipment. lighting, shavers, fuorescents. Exceptionally low battery consumption. Made at tremendous expense for Govt. by Purchase makes price NEW AND TESTED only 78/6, post/packing 10/6, Two units 48 post free, with full instructions to run TV, Drills, Power Tools, etc, Ideal for Caravans, Boat Owners, Campers.
Dept. P.W. GLOBE SCIENTIFIC LTD. 22/24 Cawoods Yard, Mill Street, Marsh

## AERIALS

## Enthusiasts

THE T.M.P. EXPERIMENTAL AERIAL KIT
A unique collection of alloy elements, dipoles, booms, clamps, mast reflectors, nuts \& bolts cables even a compass! etc., to make up various experimental aerials to cover all bands.
This includes TV transmissions, SW for the radio amateur, VHF for BBC FM. Amateurs on 2 and 4 MTrs, Aircraft, Police etc., UHF for experiments on BBC 2 and Ultra High Frequencies. These Kits can be used indoor Frequencies. These Kits can be used indoor or outdoor. Robust construction detailed plans for easy assembly.
The Wonder T.M.P. Kit costs only
89/6-no extra for carriage.
Despatched to any address in UK within 7 days.
TUBULAR METAL PRODUCTS
7 LOWESMOOR TERRACE,
WORCESTER

## RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Sivered Mica, Ceramic, etc. Carbon, Hystab, Vitreous, $\mathbf{1}-20$ watt, $12 / 6$ Post Free. WHITSAM West Ealing, W. 13.

## NEW VHF KIT

Recelvea Taleviaion Bound, Ambulances, Aircraft, Radion, 8 and 4 on $V H F$ etc.
This novel Hittle set will give you andless hours of pleasur and can be built in one evening. The Kit comes with easy Oomplete with inctions and oircuit. Powered by $9 \nabla$ Battery garphones or Amplifier.

OFIT 57/-. P. * P. FRE斯 U.K. ORLY
Postal Orders, Cheques to
Dept. P.W.I
Galleon Trading Co., 298A Lodge Lane, Romford, Fesex
BRAND NEW ELECTROLYTICS, 15 Volt $1,2,5,6,8,10,15,20,30,40,50100,200$ mfds 7/6 per doz. postage $1 /$. The C. R. Supply $7 / 6$ per doz. postage $1 /-$. The C. R. Supp
Co., 127 Chesterfield Road, Sheffield 8 .

## WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUPT PANELE $2 \operatorname{in} \times 4$ in packed with semiconductors and top quallty resistors, capacltors, dlodes, etc.
Our price, 10 boards $10 /-$. P. \& P. $2 /$-. With a guaranteed minimum of 35 transistors.
EPECIAL BAROAIN PACK, 25 boards for E1. P. \& P. 3/6. With a guaranteed minimum of 85 transietors 100 boards 65/-. P. \& P. 6/6. With a guaranteed minimum of 350 translstors.
PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ( $4 \times 0$ C28) 10/P. \& P. 2/-.

TRIM POTS, on $2 \ln \times 4 \ln$ boaids + other componente. 100 . $500 \Omega$, 15K., 20K. State requilrements. 5 boards 10/-. P. 1 P. 2/-.
NPN GERMANJUM TOS 1 WATT POWERTRAN sistors on small heat sink, on $2 \ln \times 4 \ln$ panel. 5 for 10/-. P. \& P. 2/-.
POWER TRANSISTORS sim. to 2N174 ex eqpt. for 10/-. P. \& P. 2/-.
POWER TRANSFBTORS sim, to 2N174 ON FInned Heat Sink (10D). 4 for E1. P. \& P. 5/-.
LONG ARM TOGGLE SWITCHES ex eqpt. SPST 13/6 doz. DPST $85 /=$ doz. P. \& P. all types $2 /$ doz. ORGAN BUILDERS' EPECIAL 500 TOIT TRANSIBTORS on panels. \&4, P. \& P. 6/-.
OVERLOAD CUT OUTE. Panel mounting in the fol lowing values . . . 5/-each. 2, 3, 4, 7, 10 amp . P. \& P. $1 / 8$. MINIATURE GLASS NEONB, 12/6 doz. P. \& P. $1 / 6$ 150 PIV. 10 amp . DIODE BRIDEE RECTIFIERS on HEAT SINK. $12 /-+2 /-P$. \& $P$, ©日.
LAREE CAPACITY ELECTROLYTICE
4 in, 2 in diam. Screw terminals.
All at $0 /-$ each $+1 / 6$ each $P$. $P$
$4,000 \mathrm{mF} \quad 72 \mathrm{~V}$ d.c. wkg.
$\begin{array}{ll}4,000 \mathrm{mF} & 72 \mathrm{~V} \text { d.c. whg. } \\ 10,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. wkg. }\end{array}$
$6,600 \mathrm{mF}$
$16,000 \mathrm{mF}$$\quad 45 \mathrm{~V}$ d.c, wkg.
$16,000 \mathrm{mF} \quad 25 \mathrm{~V}$ d.c, wkg.

## $25,000 \mathrm{mF}$ <br> 12 V d.c. whg.

## KEYTRONICS, 52 Earls Court Road <br> London, W.s. <br> Mail order only

## RECEIVERS \& COMPONENTS (contlnued)

D.I. Y.-All materials and components for construction of high fidelity loudspeaker systems (empty enclosures, BAF wadding. Tygan, Vynair fabric, cross-overs, etc.). Many other audio accessories and speaker kits. 6d. in stamps for lists. P. F. \& A. R. HELME, Dept. PW, Summerbridge, Harrogate, Yorks.
BAKER \& BAINES
for Television and F.M. Aeriaic
Examples of pilces: FM dipole 21/-, H 33/-, BBC
dipole $30 /-$, X $34 / \mathrm{l}, \mathrm{H} 42 / \mathrm{f}, 3$ ele $89 / \mathrm{F}$, ITA 3 ele $26 / \mathrm{l}$,
5 ele 34/-, 8 ele 47/6, 11 ele 57/6, Combined BBCl
ITA $1+5$ 45/-, H +5 59/-, $X+575 /-$, BBC2 8 ele
29/-. 14 ele $37 /$-. 18 ele $54 /-, 22$ ele $83 /-$.
Alltypes generally avallableincluding acceasories
-prices include mounting clamps and postage.
11 Dale Crescent, Now Tupton, Chesterfeld.

SIGNAL INJECTOR. Transistorised square wave generator probe, British Made, only 19/6, P\& P 1/6 S A E for details and lists WILSIC
ELECTRONICS $\mathbf{L T D . ,} 6$ Copley Road, Doncaster, Yorks.

TINY TRANSISTOR RELAY for model control, light switches, experiments etc. Only lin. square, $330 \Omega$ coil, $30 /-$ post free. H. R. RADIO, 174 Bramall Lane, Sheffield. S2 4RF.

## BARGAIN LIST

Tranalistors OC70, OC71, OC72, OC45, OC171 at a/asch. OC140, BSY28, BYZ12, BYZ16 at $9 /-$ esch. Metal Rectifers, 12 v 1amp contact cooled toc, $8 / 9$ aech. Ketal Rectifera, 12 v 2 amp at $8 / 6 \mathrm{each}$. Metal Rectifiers,
12 v 4 amp at $7 / 8$ each. TV Metal Rectiners, $250 \mathrm{v} 200 \mathrm{~m} / \mathrm{a}$ 1254 an at 4/6.
Edgewise Volume Controls 5k Jap Replacementa, $8 / 8$ each. Panel Meters, new square Clear Plastic, $1.66 \times 1.660-1 \mathrm{~mm}$ Front at 81.0 .0 each.
Panel Meters 500 micro amp at sid. 4.0 each.
New Resistances smasil i/ watt, at ad esch.
Tranaformersegubmindature output 3 ohman for $0 C 72$ etc. at $2 / 6$ each.
Tranaformera-Bubmindature Driver for above at $8 / 6$ each. Jack Pluga Btandard at 8/-. Jeck Eockets at $1 / 6$. Pax Panels 6 in . I 4 in . $\mathrm{x} 1 / 16 \mathrm{in}$. at 10 L L 8 in . I 6in. at 1/6 each.
Condensers 25 mf 25 v at $1 /$ - tin. Iron dust cores at 4d. per doz.
Alumintom sate awitches DPDT at $1 / 6$ each. Kail Order Only Poot 4 in , at $1 / 8.8 \mathrm{in}$. I 8 in , at $8 /$ - tach

## HALSE SERVICES

38 GLOUCESTER ROAD, FLLTHAK, MDDLESE

## TELEVISION I.F. BTRIP' (lew vaives)

From BBC, 2 converters ideal for hpares, contalm amoothing capactior, dropper reaistors, 7 Felve holders, I. F. translormers, coll formers, capacitors, realators, dioden, tag etrips, cholrea, etco., etc., on chaseia 11 tn. $\times$ 3 hin.,no information or circt
250 V input, outpata 10 V at $500 \mathrm{~mA}, 24 \mathrm{~V}$ at 100 mA 250 V input, outpata 10 V at $500 \mathrm{~mA}, 24 \mathrm{~V}$ at 100 mA ,
32 V at 10 mA , sire $2 \mathrm{fin} . \times 1 \mathrm{fin} . \times 1 \mathrm{in}$. (drop through 32 V at 10 mA , size 2 tin. $\times 1 \mathrm{fin}$. $\times 1$ in. (drop through 250 V input, output 22 V at 1 LA 4 , dide 2 in . $\times 2 \mathrm{in} . \times 2 \mathrm{fm}$. 11/-post pald.
MOXD bag of allver mica and ceramic capacitors, approz 150,10 -/-per beg.
RRIR Thyristors for drill speed controls 400 p.1.v. at 5A 18/8.
HUNits 0.1 mF , 350 vw paper capactors, P.C. type, upright mounting, $8 / 6$ dos., $10 /$-per 100, post pald per 100 TUBULAR ceramio capacitors, P.C. type, 8.3 pF and 500 pF, only $8 /-\mathrm{per} 100,1 / 8 \mathrm{doz}$.
TRANSIBTOR ELECTROLYTYCS $20+50 \mathrm{mF}, 350 \mathrm{vw}, 5 /-$ $20 \mathrm{mF} 6 \mathrm{VW} .50 \mathrm{mF} 6 \mathrm{Vw}, 100 \mathrm{mF} 8 \mathrm{vw}, 6 \mathrm{VW}, 4 \mathrm{mF} 64 \mathrm{VW}$
 can type, 4/-.
GPLAKKIRR COVRRRIMG $7 \mathrm{in} . \times 4 \mathrm{in}$, pertorated fleyble plantic. Sirnulated chrome on one side, $1 / 6$ esch $12 /$-dom BUFTR $2,500 \mathrm{mfd} .60 \mathrm{Fw}$, brand new, $6 / 6$
ELLVER HICA capacitors 80 pF aize only $\mathrm{in} . \times \mathrm{tin}$. OHPAPETD
Uninkich sx683 allicon diodes. 300 p.i.v. at $\frac{1}{4}$ aspap Tested and guaranteed, 9 d each, $6 /$-doz. Manufacturers marked, not rejects.
 drilled and etched, $8 / 6$ doz.
$0.47 \mathrm{mP}, 30 \mathrm{vw}$. P.C. ditc ceramics, $8 /$ - dos., 81 per 100. MAIL ORDER ONLY BAE FOR LIETS
Postal chargea: up to $21+1 / 6 ; \$ 1-\& 2+2 /-; 22-45+8 / 6$
A. J. H. ELECTRONICS

50 Waverloy Road, The Eent, Rughy, Warwilab.

RECEIVERS : COMPONENTS
(cont/nued)

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, moters, cabinets, microphones, etc. StephensJames Ltd., 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

## BRAND NEW SEMICONDUCTORS

| IN914 1/6 | 2N2005A8/- | ACl26 | 4/- | BCY 39 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IN916 1/6 | 2N2906 8/- | ACl27 | 81 | BCY70 |  |
| IE\$4007 4/6 | 2N2906A8/- | AC176 | 5/6 | BCY71 | $9 / 6$ |
| In021 4/- | 2N2926: | AC187 | 18/- | BD124 | $12 /$ |
| 18025 6/- | Green 8/6 | AC188 | 18/- | BFl15 |  |
| I8180 8/6 | Yellow 8/8 | ACY17 | $5 /-$ | BF167 |  |
| AA119 8/- | Orange 8/- | ACY 18 | $5 /$ | BF180 |  |
| BYZ10 9/- | Red 8/9 | ACY19 | 51 | BF184 |  |
| BYZ11 7/6 | Brown 2/6 | ACY20 | I | BF194 |  |
| BYZ18 81- | 2N3053 6/6 | ACY21 | b/ | BFX12 |  |
| OA6 2/6 | 2N3054 18/6 | ACY22 | 4/- | BFX13 |  |
| $04791 / 9$ | 2N305S 16/- | AD140 | 8/- | BFY50 |  |
| OA81 1/6 | 2N3391 7/6 | AD149 | 81 | BFY51 |  |
| OA88 1/6 | 2N33914 6 /- | AD161 | $7 / 8$ | BFY52 |  |
| OA91 1/6 | 2N3398 $6 / 6$ | AF114 | $5 /$ | BSX19 |  |
| 0 A 300 2/- | 2N3702 4/- | AF116 | 61 | BSX 20 |  |
| 0 A 212 2/- | 2N3703 4/6 | AF'117 | $5 /$ | BSY 28 |  |
| 2N698 5) | 2N3704 $8 / 6$ | AF124 | bl | BSY27 |  |
| 2N697 b) | 2N8705 4/6 | AF126 |  | B8Y28 |  |
| 2N706 3/- | 2N3706 4/- | AF127 | 51 | BSY29 |  |
| 2N706A 8/- | 2N8707 4/- | AF181 | 8/6 | B8Y9 |  |
| 2N1303 $4 / 6$ | 2N3708 4/- | AFF186 | 11/- | 0 O |  |
| 2N1303 4/6 | 2N8709 4/- | AgY26 | $5 / 6$ | 0 O |  |
| 2N1304 $6 / 6$ | 3N3710 4/- | AsY28 | $5 / 6$ | 0 O 36 |  |
| 2N1308 $6 / 6$ | 2N3711 4/- | A8Z21 | $2 / 8$ | C44 |  |
| 2N1306 6/6 | 2N3819 9/- | BCl07 | $8 / 6$ | C45 |  |
| 2N1307 6/6 | 2N3820 80/- | BC108 | $8 / 6$ | C71 |  |
| 2N1308 8/- | 2N3823 81/6 | BC109 | $8 / 6$ | 0072 |  |
| 2N1309 8/- | 2N4088 6/6 | BC113 | $8 / 6$ | OC75 |  |
| 2N2147 17/6 | 2N4059 6/- | BC147 | $5 /-$ | $0 \mathrm{C81}$ |  |
| 2N214818/6 | 2N4060 8f- | BC148 | $4 / 6$ | 0 O 83 |  |
| 2N2160 14/8 | 2N4061 5/- | BC149 | 61- | OC139 |  |
| 2N2369A $5 / 8$ | 2N4062 $5 / 8$ | BCY31 | 4/6 | OC140 |  |
| 2N2046 11/6 | 40250 17/6 | BCY 32 | $7 / 6$ | OC202 |  |
| 2N2904 8\%- | 40361 19/6 | BCY33 | $5 / 8$ | OC202 |  |
| 2N2904A8/- | 40362 14/6 | BCY34 | $4 / 6$ | OCP71 |  |
| 2N2905 8- | ACl07 6/6 | BCY 38 | $5 / 6$ | ORP12 |  |

## A. MARSHALL \& SON (London) LTD.

28 Cricklewood Broadway,
London, N.W. 2
01-452 0161/3


With a Dewtron "NHW DIMENBIONB" 3Dimensional effecta smplifler. Give Big Hall Btereo effect to most radios, tapes, ete. PLUB fully adjuatable echo, vibrato and tone. 9 volt model, 8 gas. Speaker, $25 /$ extra. 6/12V car model, 10 gza , incl. speaker. Post and ths, 5/- either model. Write now-right now.
D.R.W. LTD.
P.W. RINGWOOD ROAD, FERNDOWN, DORSRT

## MOBILE S.W. LISTENERS

The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING
The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil £6.17.6, plus $3 / 6$. Extra coils $£ 3.17 .6$, plus 3/-.
From leading amateur radio stores or direct from the manufacturers:

HALSON ELECTRICAL SERVICES Dover Road, off Ansdell Road, Blackpool.

Est. 1943 JOHNSONS Tel: 24864
VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, $70-150 \mathrm{Mc} / \mathrm{s}$, 75/6, p.p. 4s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

## JOHNSON'S (RADIO)

St. Martin's Gate, Worcester
SPECIAL FRINGE AREA BBC-2 \& COLOUR TV AERIAL


Unbeatable Offer ONLY 45/-
(Carr. 5/-)
For loft or roof fixing. Complete with mounting arm. State Channel required or nearest transmitter. Mundreds sold. Special low-loss co-axial cable $2 / 3 \mathrm{yd}$ Socket 2/b.


SPEAKER BARGAIN!
Famous English 121n. high flux, heavy cone, 10 watts speaker with bullt-In tweeter, excellent bass response, 15 ohms.
(P. \& I. 5/6) 35/

ELECTRAMA Dapt. PW86 1 GEORGE STREET, HAILSHAM, SUSSEX

PLEASE MENTION
"PRACTICAL WIRELESS"
WHEN REPLYING TO
ADVERTISEMENTS

| PADGETTS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RADIO STORE |  |  |  |  |  |
| OLD TOWN HALL, LIVERSEDGE, YORKS. <br> Tel. Cleckheaton 2866 |  |  |  |  |  |
| In |  |  |  |  |  |
| Size $12 \times 9 \times 9$ in. with outer case. Fitted with $2{ }^{2}$ tube C.R.T. type CV1526. Nine |  |  |  |  |  |
|  |  |  |  |  |  |
| 32/6, p. \& p. 10/-. |  |  |  |  |  |
| Lumerator and Secant Gear Unit. Delight |  |  |  |  |  |
| for the model maker. 12/6, p. \& p. 8/6. |  |  |  |  |  |
| Silicon Rectifier $500 \mathrm{~mA}, 800$ P.I.V. No |  |  |  |  |  |
| duds. 2/6, post paid. 24/- per dozen, posi paid. |  |  |  |  |  |
| large plug. 1/11, post paid. |  |  |  |  |  |
|  |  |  |  |  |  |
| guarantee. 17in. type AW/3/88, AW43/80, |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\text { and } 3 \text { ohms. 8in. round and } 8 \times 5 \mathrm{in} \text {., } 6 / 6 \text {, }$ |  |  |  |  |  |
| p. \& p. 3/8. |  |  |  |  |  |
| bin. |  |  |  |  |  |
| $8 \times 4$ in., $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$, post paid. $7 \times 4$ in., $5 /-$ p. \& p. $3 /-; 6$ for $34 / \mathrm{l}$, post paid. |  |  |  |  |  |
|  |  |  |  |  |  |
| 5 in. round, $3 /-$, p. \& p. $3 /-$; for $24 /-$, post |  |  |  |  |  |
|  |  |  |  |  |  |
| Slot Speakers, $8 \times 2$ in., $5 /-$, P. \& p. 3/-; |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Untested Pye, KB, RDG, Ekco 17in. TV sets. Bush 17in. TV sets, $50 /$ each, carriage |  |  |  |  |  |
|  |  |  |  |  |  |
| 15/-. Passenger train, double rate. |  |  |  |  |  |
| Fx Bquipment. 8 monthy' guarantee <br> Single Valven Post 7d., over 3 Valves $p$. \& p. paid. |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 10FI, EF80, EB91, ECL80, EF50, PY82, PZ30, |  |  |  |  |  |
| ${ }_{\text {ERP91 }}^{\text {ERP1 }}$ | 1/8 |  |  |  |  |
|  | 9. | ${ }^{\text {PL } 36}$ | 5 5- | 6K7 | 1/9 |
| ${ }_{\text {Reme }}^{\text {Rem }}$ | 8 | ${ }_{\text {PL }}$ | ${ }_{8}^{61}$ | $6{ }^{6} 4$ | ${ }^{5 /-}$ |
|  | 8 8- | ${ }^{\text {PL }}$ |  |  |  |
|  | 81 | ${ }_{\text {PY }}$ | ${ }^{6 / 18}$ | ${ }^{6 P 2}$ | 5/- |
| $\begin{aligned} & \text { ECC88 } \\ & \text { RCCOB } \end{aligned}$ | ${ }^{4 /-}$ | PY82 | 1/6 | 100 | 8/8 |
|  | $11 /$ | Pzs6 | $51-$ | ${ }_{20 \mathrm{D}}^{18}$ | ${ }_{8}^{8 / 8}$ |
| EF80 | 1/8 | ${ }_{\text {U12 }}{ }^{\text {U27 }}$ | 5 | ${ }^{20 \mathrm{Pr}}$ | 5 |
| ${ }_{\text {EF91 }}^{\text {EY51 }}$ | ${ }_{8 / 8}^{90}$ | U289 | ${ }_{6}^{6-}$ | ${ }_{30 \mathrm{PL1}}^{20 \mathrm{P}}$ | ${ }_{51-}^{8 / 8}$ |
|  | 6- | Usam | 5 |  | 51- |
|  | $81-$ | U389 | ${ }^{51}$ | ${ }^{30 \mathrm{Fs}}$ | ${ }^{2 / 6}$ |
|  | $41-$ | ${ }_{68 \mathrm{BH}}$ | 1/8 | 30F6L1 | 5/- |

## NEW VALVES!

Guaranteed Set Tested 24-HDUR SERVICE

| IRS | $4 / 9$ | DY85 | $5 / 6$ | HZ80 | PL500 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 185 | $4 / 8$ | DY89 | 5/6 | Ez81 4/6 | PL504 | 18/8 |
| $1 T 4$ | $2 / 9$ | EABC80 | 5 5/9 | KT61 8/8 | PYS2 | 101- |
| 384 | $5 / 9$ | RBC41 | 8/- | ET63 15/9 | PY33 | 101- |
| 3V4 | $5 / 6$ | EBF'80 | 6/- | N78 14/6 | PY81 | 5/- |
| 6AQS | 4/6 | EBF89 | $5 / 9$ | PABC80 $6 / 9$ | PY82 | 5/- |
| $6 \mathrm{L18}$ | $6 /$ | ECO381 | $8 / 9$ | PC86 1018 | PY83 | 8/8 |
| 30018 | $8 / 9$ | ECYC82 | $4 / 8$ | PC88 1018 | PY88 | - |
| 30 FL 1 | 18/6 | ECL88 | $4 / 9$ | PC97 7/8 | PY800 | $7 / 8$ |
| 30 FL 12 | $14 / 8$ | ECCS5 | 8/6 | PC900 8/- | PY801 | 6/8 |
| 30FL14 | $10 / 8$ | RCH35 | 6/6 | PCC84 6/8 | R19 | 6/8 |
| 30P4 | 11/6 | 3nctic | 1016 | PCC89 9/8 | U25 | 12/9 |
| $30 \mathrm{P19}$ | 11/6 | 20¢881 | 5/9 | PCC189 11/6 | U26 | 11/6 |
| 30 PL 1 | 12/6 | ELL 80 | 6/8 | PCF80 618 | U191 | 12/8 |
| CCE 85 | 919 | \% ${ }^{\text {che }} 8$ | $6 / 8$ | PCF82 $\quad 6 / 9$ | UABC | 80519 |
| CLss | 17/6 | KCL 86 | 7/6 | PCF801 6/9 | UBC41 | 8/8 |
| DAC32 | $8 / 9$ | EF99 | $3 / 6$ | PCF805 8/9 | UBF89 | 6/8 |
| DAF91 | 418 | EF80 | 4/9 | PCF808 1018 | UCC84 | 7/9 |
| DAF96 | $6 / 8$ | WF86 | $51-$ | PCL82 6/9 | UCC85 | 6/- |
| DF33 | $7 / 6$ | EPP86 | $6 / 8$ | PCL83 8/9 | UCF'80 | $8 /$ |
| DF'91 | $2 / 9$ | CFF89 | $4 / 9$ | PCL84 7/- | UCH42 | 10/6 |
| DF96 | 8/11 | EFF183 | $8 / 9$ | PCL85 8/9 | UCH81 | 71 - |
| DK82 | 6/8 | REF184 | 5/6 | PCL86 8/8 | UCL82 | 6/9 |
| DK91 | $4 / 9$ | EH90 | 6/- | PFL20012/- | UF41 | $9 / 6$ |
| DK96 | 6/6 | EL33 | $8 / 8$ | PL36 918 | UF89 | 6/6 |
| DLS5 | $4 / 9$ | EL41 | 1018 | PL81 7/- | UL41 | 10/8 |
| DL92 | $5 / 9$ | EL84 | $4 / 6$ | PL82 619 | UL84 | 6/9 |
| DL94 | $5 / 6$ | 2YS1 | $7 / 8$ | PL89 6/9 | UY41 | 8/6 |
| DLO6 | 619 | EY86 | 8/- | PL84 6/8 | UY85 | 6/8 |
| Postage on 1 valve 9d. artra. On 2 valvea or more, poatage 6d. per valve extra. Any parcel insured agalnat damage in transit 6d. extra. Offtee addresa, no callers. |  |  |  |  |  |  |
| $G E M A B D B E D$ |  |  |  |  |  |  |
| 83 OSBALDESTON ROAD STOKE NEWINGTON LONDON. N. 16 |  |  |  |  |  |  |

Hoad Office and Warehouse 44A WESTBOURNE GRDVE LONDON W2
TeI. PARK 5641/2/3

## Z \& I AERO SERVICES LTD.

Plonse pend all sorreopondenoe and 포il-Orders to the Kead 0Mloo
When sendtug cash with order, please include $2 / 6$ in $\mathbb{E}$ for postage and handling
MINTMUM OHARGE 2/6. NO C.O.D. orderz sooeptod.

Retail Shop 85 TOTTENKAM COURT ROAD LONDON WT
Tel. LANgham 8403
Open all day Saturday

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline OA2 \& \(81-\) \& 6AK5 \({ }_{\text {GAK6 }}\) 5/- \& \({ }_{6 B W 7}^{68} 18 /-\) \& \(\begin{array}{ll}\text { 6LD20 } \& 5 / 8 \\ 6 \mathrm{N7GT} \& 8 / 6\end{array}\) \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{First Duality}} \& \multirow[t]{2}{*}{Full} \& 6 \& ailleed \& ECH81 \& \(8 / 8\) \& EM80 \& \(71-\) \& PCir8 \& , \& U22 \& - \\
\hline 0 \& \(8 / 6\) \& 6AK6 11/6 \& 6 BZ 6 6/- \& 6N7GT \(8 / 6\) \& \& \& \& S \& aiteed \& ECH83 \& 81- \& EM81 \& \(7 / 6\) \& PCF8 \& 12/- \& U25 \& 14/6 \\
\hline OB2 \& 6/- \& 6ALS 8/- \& \(6 \mathrm{BZ7}\) 10/- \& \(6 \mathrm{P} 1 \quad 11 / 6\) \& \& \& \& \& \& ECH84 \& 91- \& EM84 \& 71 - \& PCF'808 \& 14/6 \& U26 \& 14/6 \\
\hline OB3 \& \(91-\) \& 6AM4 88/- \& 6C4 5/6 \& \(6 \mathrm{P} 25181-\) \& \& \& \& \& \& ECL80 \& \(7 /\) \& EMM87 \& 101- \& PCL80 \& 15/- \& U31 \& 8/- \\
\hline 0C3 \& 6/6 \& 6AM6 5/- \& 6C5GT 6/6 \& \(6 \mathrm{6P28}\) 12/- \& \& \& \& \& \& ECL81 \& 7/6 \& EN32 \& 801- \& PCL81 \& 91- \& U88 \& \(801-\) \\
\hline ODS \& \({ }^{61}\) - \& 6AM6 \(4 /-\) \& \(6_{688}^{4 /-}\) \& \({ }^{607}\) 7/- \& \& \& \& \& \& ECL82 \& 61- \& ENE1 \& \(61-\) \& PCL82 \& \& U76 \& 4/- \\
\hline OM10 \& 11/- \& BAM8 8/- \& \({ }^{6089} 71-\) \& \({ }^{6847} 71-\) \& \& \& \& \& \& ECL83 \& 101- \& EY81 \& \(7 /-\) \& PCL83 \& \& U81 \& 101- \\
\hline 1AX2 \& 12/- \& GAN8 10/- \& \({ }^{609} 1718\) \& 68G7 6/- \& \& \& \& \& D \& ECL84 \& 10/- \& ET80 \& \(8 / 6\) \& PCL84 \& \& U881 \& 81- \\
\hline 183GT \& \(71-\) \& 6AQ5 6/- \& 6 60B6 5/- \& 68 H 7 4/6 \& \& \& \& \& \& ECL88 \& 10/6 \& EY81 \& 71 \& PCL85 \& \& U282 \& 81 - \\
\hline 1C5GT \& 5/- \& 6AQ6 10/- \& 6CD6GA \& 6857 7/- \& \& \& \& \& \& ECL86 \& 81- \& EY88 \& 101- \& PCL86 \& \(8 / 6\) \& U403 \& \(81-\) \\
\hline 164 GT
185 GT \& 8/- \& 6AR5 \(6 /-\) \& 6CG7 88/- \& 68L7GT 6/- \& \& \& \& \& \& ECLL 80 \& \(801-\) \& EY84 \& \(9 / 6\) \& PCL88 \& 17/- \& U404 \& 51- \\
\hline 1 H 5 GT \& 7/- \& 6AR6 6/- \& \(\begin{array}{ll}\text { 6CG7 } \& 8 /- \\ 6 C H 8 \& 11 /-\end{array}\) \& 68N7GT 5/6 \& ㄹ1.E \& 01 \& \& A \& ES \& \& \(8 \mathrm{8O}-\) \& EY86 \& 6/6 \& PCL600 \& 17/6 \& UABC8 \& 0 8/- \\
\hline 11 L
1 RS \& 8/- \& 6A85 6/8 \& 6CH6 11/- \& 6897 7/- \& \& \& \& \& \& EF9 \& 8/- \& EY87 \& \(8 /-\) \& PCL801 \& 15/- \& UAF42 \& \(9 / 6\) \\
\hline 1 RS \& \(8 /-\) \& 6A86 7/- \& 6CLB 9/- \& \(68 \mathrm{R7} 7\) 7/- \& \& \& \& \& \& EF37A \& 8 81- \& EY88 \& \(8 /-\) \& PD500 \& 80/- \& UBC41 \& 8/6 \\
\hline 184 \& \(5 /-\) \& 6AS7G 15/- \& 6CL8 151- \& \(\begin{array}{ll}6887 \& 8 /- \\ 678 \& 8 /-\end{array}\) \& Combined effe \& merase \& H0 \& Tay \& 8.E.T. and \& EFF39 \& \(81-\) \& ErZ40 \& \(7 / 8\)
\(8 / 8\) \& PR06 \& ON- \& UBC81 \& \(8 / 6\) \\
\hline 185 \& \(4 / 6\) \& 6AT6 4/6 \& \(\begin{array}{ll}\text { 6CU6 } \& 18 /- \\ \text { 6CW }\end{array}\) \& \begin{tabular}{ll}
\(6 T 8\) \& \(6 /-\) \\
6 CHAT \& \\
\hline 1
\end{tabular} \& jep thilling \& at \& to \& 8 \& esach order. \& EF40 \& \(9 / \mathrm{O}\) \& RZ41 \& \(8 / 8\) \&  \& \(85 /-\) \& UBF80 \& 8/6 \\
\hline 174
\(1 \mathrm{~V}_{4}\) \& 4/- \& 6AU4GTA \& \(\begin{array}{cc}\text { GCW4 } \\ \text { 6CY5 } \& 12 /- \\ 7 /-\end{array}\) \& 6U4GT
608
608
\(6 /-\) \& per milling \& t \& to \& total \& order. \& EF4l \& 18/- \& EZ881 \& 5/- \& PEN45 \& 6/6 \& UBF89 \& 71 \\
\hline 1U4 \& \(6 / 1\)
\(8 / 8\) \& 6aU6 9/- \& \(\begin{array}{ll}\text { 6CY5 } \& 7 /- \\ 6 D 3 \& 7 / 6\end{array}\) \& \(\begin{array}{ll}\text { 6U8 } \& 6 /- \\ \text { 6F6GT } \& 6 /-\end{array}\) \& 12BY7 10/- \& \& 8124 \& 601- \& E83F 201- \& EFF42 \& 18/- \& GY81 \& 5/6 \& PEN45 \& DD \& UBL1 \& 8/6 \\
\hline 1U5 \& \(8 / 6\) \& 6AU6 5/- \& \(\begin{array}{ll}\text { 6D3 } \& 7 / 6 \\ \text { 6D4 } \& 17 / 6\end{array}\) \& 6F6GT 6/- \& 12CU6 12/- \& 30 FLI 1414 \& 813 \& \(751-\) \& E88C 28j- \& EFF5 \& 121- \& GY832 \& 9/6 \& \& 12/- \& UC92 \& 6/- \\
\hline 1 X 2 B \& 71- \& \& 6DC6 \(18 / 6\) \& \(6 \times 5 \mathrm{G}\) \& 12DQ7 10/- \& 30 LI 6/- \& 837 \& \(151-\) \& E88CC 12/6 \& EF80 \& \(4 / 6\) \& GZ33 \& 18/6 \& PEN \& 9/- \& UCC85 \& 7/- \\
\hline 122 \& 85/- \& 12\% \& 6DK6 81- \& \(6 \times 8\) 11/- \& 12E1 20/- \& 30 L 15 16/- \& 866A \& 14/- \& E130L 100/- \& EFF83 \& \(9 / 6\) \& GZ34 \& 101- \& \& \& UCH21 \& 8 \\
\hline 2026A \& 8/- \& 6AV6 5/8 \& 6DQ6B 11/- \& 6Y6G 11/6 \& \(14^{\text {2 }}\) 89/6 \& \(30 \mathrm{L17} 16 /-\) \& 884 \& \(101-\) \& E180F \(17 / 6\) \& EF85 \& 6/6 \& HL42DD \& \& \& \& CH \& \\
\hline \(2 \mathrm{C40}\) \& 81- \& 6AW8A11/- \& 6 684 15/- \& 7C5 18/8 \& \% 10/- \& 30 P 12 16/- \& 8670 \& 101- \& EAP80110)- \& EF86 \& \(6 /-\) \& \& - \& PF86 \& 101- \& UCH81 \& \\
\hline 2 CO 1 \& 8/- \& 6AX4GTB \& 6DT6 8/- \& 787 801- \& 12K8 \& \(30 \mathrm{P19}\) 14/- \& 5751 \& 11/- \& EABC80 6/- \& EF89 \& - \& \& 80 \& PF818 \& 14/- \& UCL81 \& 10\% \\
\hline 2 CW 4 \& 18/- \& 8/- \& 6EA8 11/- \& 7 Y 4 9/- \& \& \& 5763 \& \& EbC33 8/- \& \& \& \& \& \& \& UCL82 \& 71 - \\
\hline 2D21 \& 6/- \& T \& \(6^{6 E W 6} 12 /-\) \& \(7 \mathrm{Z4}\) 7/6 \&  \& \begin{tabular}{l} 
30PL13 \\
30PL14 \(17 / 6\) \\
\hline
\end{tabular} \& 6886
6080 \& \({ }_{8}^{401 / 8}\) \& \(\begin{array}{ll}\text { EBC41 } \& 8 / 6 \\ \text { EBC81 } \& 6 /-\end{array}\) \& EFF93 \& 7/6 \& MH4 \& 7 - \& PL33 \& 81- \& UCL83 \& 9/6 \\
\hline 2E26 \& 27/6 \& 12/6 \& 6F6GB \(\quad 6 / 6\) \& 9BW6 7/- \& \(\begin{array}{ll}128 \mathrm{Cl} \& 4 / 6 \\ 128 G 7 \& 6 /-\end{array}\) \& 30PL14
35A6

10/- \& 6080
6146 \& 87/6 \& $\begin{array}{ll}\text { EBC81 } \\ \text { EBF80 } & 7 / 6\end{array}$ \& EF93 \& 4/- \& MH44 \& \& PL36 \& 101- \& UF9 \& 10\% <br>
\hline 2X2 \& $5 /-$ \& 6AX7 10/- \& ${ }_{6}^{677}$ 6F1- \& 9D2 $\quad 8 / 6$ \& 128K $76 / 6$ \& $\begin{array}{ll}3586 \\ 35 B 6 & 12 /-\end{array}$ \& 6197 \& 880 \& EEBF83 8/- \& EF95 \& 5/- \& MGPENT \& \& PL81 \& $7 / 6$ \& UF41 \& $0 / 9$ <br>
\hline 3 A 4 \& 4/- \& $6 \mathrm{B4G}$ 15/- \& 6 F 11 6/- \& $9 \mathrm{D7}$ 9/- \& 12SQ7 $7 / 6$ \& $35 \mathrm{C} 50 / 6$ \& 6360 \& 251- \& EBF89 6/- \& EF96 \& 8/6 \& MoPEN \& \& PL83 \& 81- \& UF42 \& 101- <br>
\hline $3 \mathrm{B2} 28$ \& $401-$ \& ${ }_{6 B 8 G}^{6 B 6} \quad 2 / 6$ \& ${ }^{6 F 13} 13$ \& 10 C 2 l 10- \& 18D3 $5 / 9$ \& $335 \mathrm{DS} \mathrm{18/-}$ \& 6939 \& $401-$ \& EBL1 12/- \& EF98 \& 101- \& N78 \& 101- \& PL83 \& $71-$ \& UF43 \& 10/- <br>
\hline $3{ }^{3} 4$ \& $7 / 6$ \& 6BA6 $4 /-$ \& $6 \mathrm{Fl4}$ 12/- \& 10D2 8/- \& 19AQS 6/- \& ${ }^{38 L 8 G T ~ 8 /-~}$ \& 7199 \& 15/- \& EBL31 84- \& EFF183 \& 101- \& ORP61 \& 19/- \& PL84 \& 0/8 \& UF80 \& $71 /$ <br>
\hline 384 \& 6/- \& 6BA7 15/- \& $6 \mathrm{Fris}^{15}$ 11/- \& 10 Fl 18/- \& 20 CV 62/6 \& 35W ${ }^{3}$ 4/6 \& 7380 \& 801 - \& EC86 $11 / 6$ \& EFF184 \& 6/6 \& ORP60 \& 22/6 \& PL600 \& 18/6 \& UF88 \& $7 / 8$ <br>
\hline 3 V 4 \& 8/6 \& $\begin{array}{ll}\text { 6BC5 } & 8 / 6 \\ 68 \mathrm{EF6} & 4 / 6\end{array}$ \& ${ }_{6}^{6 F 17}$ 9/- \& $10 \mathrm{F9} \quad 101-$ \& 20D1 9/- \& 35 Zs 10/- \& 7551 \& $801-$ \& EC88 11/- \& EF804 \& $201-$ \& PABC80 \& $7 / 6$ \& PL504 \& 161- \& UF89 \& 71 <br>
\hline 4832 \& $801-$ \& $\begin{array}{ll}\text { 6BE6 } & 4 / 6 \\ \text { GBFS } & 15 /-\end{array}$ \& ${ }_{6 F 18}^{7 / 6}$ \& 10F18 $7 / 8$ \& 20 Ll 18/- \& $36 \mathrm{Z4G}$ 4/- \& 7681 \& $22 / 6$ \& ECC34 8/- \& EH90 \& 7/- \& PC86 1 \& 11/- \& PL609 \& 30/- \& UL41 \& $9 / 6$ <br>
\hline bR4GY \& 101- \& 6BFS 15/- \& ${ }_{6}^{6} 282315 /-$ \& 10L1 $7 / 8$ \& $20 \mathrm{Pl} 10 /-$ \& $36 \mathrm{L5GT}$ 6/- \& 7591 A \& 201- \& ECC40 101- \& EK90 \& $4 / 8$ \& PC96 \& 17/6 \& PL802 \& 18/- \& UL84 \& 6/8 <br>
\hline 6U4G \& 5/6 \& 6BF6 9/- \& $\begin{array}{ll}6 \mathrm{~F}^{24} & 18 /- \\ 8 \mathrm{~F}^{2} 25 & 14 /-\end{array}$ \& 10LD1110/- \& 2093 12/- \& 60AS 12/- \& 7895 \& 20/6 \& ECC70 171- \& ELS4 \& $9 / 6$ \& ${ }^{\text {PC97 }}$ \& $8 /$ \& PY31 \& 61- \& UM4 \& 10/- <br>

\hline 8U4GB \& $71-$ \& | 6BF7 |
| :--- |
| 68 GGG |
| $11 /-$ | \& $\begin{array}{ll}6 \mathrm{FF}^{25} & 14 /- \\ 6 \mathrm{~F} 28 & 18 /\end{array}$ \& $\begin{array}{lll}10 \mathrm{P} 13 & 12 /-\end{array}$ \& $20{ }^{2} 419 /-$ \& 50 BS 12/- \& AZ1 \& $81-$ \& ECC81 8/- \& EL36 \& $8 / 8$ \& PC900 \& $8 / 9$ \& PY 32 \& 10/- \& UM84 \& 7 7- <br>

\hline 6 U 8 \& $81-$ \& 6BG6G 11/- \& 6 F 28 18/- \& $10 \mathrm{P14} 16 /-$ \& 20P5 191- \& 50C5 6/- \& AZ31 \& 9\%- \& ECC82 619 \& EL38 \& 22/6 \& PCC84 \& 6/- \& PY33 \& 18/6 \& UU8 \& $7 /$ <br>
\hline 6Y3GT \& $5 / 6$ \& $6^{6 B H 6} 8 /-$ \& 6GE8 11/- \& 12AC6 7- \& $25 \mathrm{BQ6GTB}$ \& 50L8GT $7 / 8$ \& CCH35 \& $9 /-$ \& ECC83 5/6 \& ELA1 \& $9 / 8$ \& PCC85 \& $7 / 6$ \& PY80 \& 5/6 \& UU9 \& 7/6 <br>
\hline $5 \mathrm{K3}$ \& $81-$ \& 68J6 8/- \& 6 GK 6 12/- \& 12AD6 6/- \& 12/- \& 63KU $18 / 6$ \& CY31 \& 71- \& ECC84 516 \& EL42 \& $101-$ \& PCC88 \& 11/- \& PY81 \& 5/6 \& UY21 \& $9 / 6$ <br>
\hline 5Z4G \& $7 /$ \& 6BK4 90/- \& 6GW6 11/- \& $12 \Delta L 57 / 6$ \& 25C5 9/- \& 75 Cl 8/- \& DAF96 \& 71- \& E0085 5/- \& EL81 \& $91-$ \& PCC89 \& 976 \& PY82 \& $5 /-$ \& UY41 \& $71-$ <br>
\hline $6 / 30 \mathrm{~L} 2$ \& 14/- \& 6BK7A 9/- \& $6 \mathrm{~J} 4 \quad 9 /-$ \& $12 A Q 5 \quad 7 /$ \& 25CU6 18/- \& 80 7/- \& DF96 \& $71-$ \& EOC86 81- \& EL83 \& $7 / 6$ \& PCC189 1 \& 101- \& PY83 \& 6/6 \& UY82 \& $9 / 6$ <br>
\hline 6A8G \& 5/6 \& 6BL7GTA \& 6J6GT $5 / 6$ \& 12AT6 $4 / 6$ \& 25L6GT 6/6 \& 83A1 12/6 \& DH81 \& 101- \& ECC88 7/6 \& EL84 \& $4 / 8$ \& PCC805 1 \& 161- \& PY88 \& $7 / 6$ \& UY85 \& 6/- <br>
\hline 6AB4 \& $6 / 6$ \& 11/- \& $6 \mathrm{J6}$ 8/6 \& 12AT7 6\%- \& 25Z4G 6/- \& 85A2 7/6 \& DH101 \& 91- \& ECOC89 11/- \& EL85 \& $7 / 6$ \& PCC806 \& 16\% \& PY500 \& 201- \& VU39 \& $91-$ <br>
\hline 6AB7 \& 4/- \& 6BN6 $7 / 6$ \& $6{ }^{657} 81-$ \& 12AU7 $5 / 9$ \& $26 \mathrm{Z5}$ 8/- \& 8543716 \& DK92 \& $8 / 8$ \& ECC91 8/6 \& ELI86 \& $8 /-$ \& PCE8001 \& 16/- \& PY800 \& 9\%- \& VU111 \& 8/6 <br>
\hline 6AC7 \& 4/- \& 6BN8 8/- \& 6K6GT 9/- \& 12AV6 $6 / 6$ \& 25Z6GT11/- \& 90AG 46/- \& DK.96 \& $7 / 6$ \& ECC807 14/- \& EL90 \& 817 \& PCF80 \& 676 \& PY801 \& 9/- \& vU133 \& 81 - <br>
\hline 6AD4 \& 151- \& 6BQ6GTB \& $\begin{array}{ll}\text { 6K7G } & 8 / 6 \\ 6 \mathrm{~K} 23 & 9 /-\end{array}$ \& $\begin{array}{ll}12 A X 7 & 5 / 6 \\ 12 \mathrm{B4A} & 8 / 6\end{array}$ \& $\begin{array}{ll}3045 & 7 /- \\ 80-115 & 14 /-\end{array}$ \& 90 Cl 1812 \& DL68 \& 18/- \& $\begin{array}{ll}\text { ECFF'80 } & 6 / 8 \\ \text { RCF88 } & 8 / 6\end{array}$ \& EL360 \& 22/- \& PCFF82 \& $8 / 8$ \& QU37 \& 27/- \& W76 \& 71- <br>
\hline 6AF4A \& $8 /-$ \& $6 \mathrm{BQ7A}$ 12/- \& $\begin{array}{lr}6 \mathrm{~K} 23 & 9 /- \\ 6 \mathrm{~K} 25 & 15 /-\end{array}$ \& $\begin{array}{ll}\text { 12B4A } & 9 / 6 \\ 12 B A 6 & 6 /-\end{array}$ \& $\begin{array}{ll}80 \mathrm{C15} & 14 /- \\ 30 \mathrm{Cl7} & 15 /-\end{array}$ \& $\begin{array}{ll}90006 & 85 /- \\ 90 \mathrm{CV} & 85 /-\end{array}$ \& DL96 \& 7/- \& ECF82 $6 / 6$ \& ELL000 \& 17/- \& PCF84 \& $8 /$ \& gP41 \& 5/6 \& W107 \& $71-$ <br>
\hline 6AG5 \& 8/- \& $\begin{array}{ll}\text { 6BQ7A } & 7 /- \\ \text { 6BR7 } & 16 /-\end{array}$ \& $\begin{array}{lll}\text { 6K25 } & 16 /- \\ \text { 6L6GT } & 8 / 6\end{array}$ \& $\begin{array}{ll}\text { 12BA6 } & 6 /- \\ \text { 12BA7 } & 6 /-\end{array}$ \& $\begin{array}{ll}30 \mathrm{Cl17} & 16 /- \\ 30 \mathrm{C1} & 14 /-\end{array}$ \& $\begin{array}{ll}90 \mathrm{CV} & 25 /- \\ 150 \mathrm{~B} 2 & 11 /-\end{array}$ \& DM70 \& 6/-
$8 /$ \& $\begin{array}{cr}\text { ECF83 } & \text { 14/- } \\ \text { ECF86 } & \text { 9/6 }\end{array}$ \& EL281 \& 10/- \& ${ }_{\text {PCFP86 }}$ \& 8/6 \& SP81 \& 5101- \& W729
X 65 \& 10/- <br>

\hline 6AH6 \& 101- \& 6BR8 12/6 \& 6 L 7 6/- \& 12BE6 6/- \& $30 \mathrm{F5}$ 16/- \& 150B3 10/- \& DY87 \& 6/6 \& ECF80482/- \& ELL80 \& 15/- \& PCF800 1 \& 14/- \& TT21 \& $301-$ \& $$
\begin{aligned}
& \text { X } 65 \\
& 7769
\end{aligned}
$$ \& 91- <br>

\hline 6aj5 \& 91- \& 6B87 25/- \& 6 L 12 5/- \& 12BH7 8i- \& 80FLI 16/- \& 807 9\%- \& DY802 \& 91- \& ECH 35 11/- \& EM34 \& 15/- \& PCF801 \& 9/- \& U19 \& 401- \& Z700U \& $8 \mathrm{j}-$ <br>
\hline 64J8 \& 6/8 \& 6BW6 18/6 \& 6 L 18 6/- \& 12BT6 $4 / 6$ \& 30FLI2 17/6 \& 811 A 80/- \& E55L \& 52/6 \& ECH42 10/- \& EM71 \& 12/6 \& PCF802 \& 91 \& U20 \& 12/- \& Z809 ${ }^{\text {d }}$ \& 15j- <br>
\hline
\end{tabular}

## INTEGRATED CIRCUIT AMPLIFIERS

RCA Type 0A8020
Integrated Circuit Audio Amplifier in TOS encapaniation (size of a small transistor), equivalent to seven n-p-n sillcon trapsistors, 3 diodes and 11 resintors. Power outpat 550 mW . Total harmonic distortion $1 \%$. Will operate on
voltage from 8 to 9 volta. $80 /$ plus $2 /-$ p.p.
GENERAL BLEETRIC Type PAzes
Epory moulded in-line package equivalent to six m-p-n transistors, one diode and air resistors. It Fill provide output of up to 1.2 watts into 15 ohms . Battery operation 2 volta. 0/- plus 2/- p. p The construction of arapliffer using the above integrated P.W. Please note that we only sapply the IC's and of P. W. Please note that we only
other parts are supplied by us.

GENTERAL WLECTRIC TYPE PAR84
1-watt Audio Amplifier suitable for supply voltage of Only 3 capacitor and 3 resiators are required tor malring up a complete amplifler delivering 1 watt for an input voltage of 600 mW . Epoxy mouided double four-in-line package. 87/6 each, plus 2/- P. \& P.

SILICON WIRE ENDED DIODES

```
D223, 50 p.1.7., 50 mA .
D223B, 150 p.1. \(7 ., 50 \mathrm{~mA}\)
\(8 / 8\)
\(8 / 6\)
```

SILICON POWER RECTIFIMRS
(Hell Weve)
'TOP HAT' type, wire onded:
D228B, 400 p.1.v., 300 mA . . . . . . . . . . . . . . . . . . . . . . . $2 / 9$ D226V, 300 P.i.v., 300 mA ......
STUD $\mathbf{~ M O U N T H D , ~ K D 2 0 2 ~ s e r i e s ~}$
 100 p.i.v., 8 A ... $5 /$

## SILICON AVALAMOES RECTLIEERS



## MULTIMETERS



## TYPE MIF16

D.C. Voltage range:
$0 \cdot 0 \cdot 5 \cdot 10-50-250-500 \mathrm{~V}$ A.C. voltage range: A.C. voltage range:
$0-10-50-250-500 \mathrm{~V}$
D.C. current range
$500 \mu-10-100 \mathrm{~mA}$.
Reaistance rangea: 100Mo-1MO. The meter is also calibrated fos capacity and output level measuremente. Sensitivity $2000 \Omega \mathrm{~V}$. Accuracy $\pm 2.5 \%$ for D.C. and
$\pm 4 \%$ for A.C. measurements Dimensions: $41 \times 3 \neq \bar{x} 1$
Trpe 108-IT: 24 range precision portable meter. 5000 cype 108-1T: 24 range precision portable meter. 5000 10-50-100-250-600-2500V; D.C. current 0.6-5-50-500mA Resistance 2000-20,000 ohms; 2-20 megohms. Power output callbration in A.C. for 600 ohros ine. Complete with prods and batteries, \$6.5.0. P. \& P. 5/-

## ZENER DIODES

WIRE ENDEB 'TOP HAT' TYPE, 800 mW | K.C139A | $3 \cdot 9 \mathrm{~V} \pm 1 \cdot 0 \%$ |
| :--- | :--- |
| K. | KC147A |
| $4 \cdot 7 \mathrm{~V} \pm 10 \%$ | KC168A | KCl47A $4 \cdot 7 \mathrm{~V} \pm 10 \%$ All at $8 /-$

WIRE HNDED "TOP HAT" TYPE, 840 mW D814V 7-8.6V D814B $8-9.5 \mathrm{~V}$
D814V $9-10.5 \mathrm{~V}$

D814G $10-12 \mathrm{~V}$
All at 8/-
STUD MOUNTYD TYPE, 8 WATMS

| D815I $4.7 \pm .7 \mathrm{~V}$ | D815G $10 \pm 1.5 \mathrm{~V}$ |
| :--- | :--- |
| D815A $5 \cdot 6 \pm .84 \mathrm{~V}$ | D815D |
| $12 \pm 1.8 \mathrm{~V}$ |  |

D815A $5 \cdot 6 \pm .84 \mathrm{~V} \quad$ D815D 12土 1.8V
$\begin{array}{ll}\text { D816B } 6.8 \pm 1 \cdot 02 \mathrm{~V} & \text { D815E 15 } \pm \mathbf{2 - 2 V} \\ \text { D815V } & 8.2 \pm 1 \cdot 23 \mathrm{~V} \\ & \text { D816Z } 18 \pm 2.7 \mathrm{~V}\end{array}$
All at 7/6
STUD MOUNTED TYPE, 5 WATT8
$\begin{array}{ll}\text { D816A } 22 \pm 3 \cdot 3 V & \text { D817A } 66 \pm 8 \cdot 4 \mathrm{~V} \\ \text { D816B } 27 \pm 4 \cdot 0 \mathrm{~V} & \text { D817B } 68 \pm 10 \cdot 2 \mathrm{~V} \\ \text { D816V } 38 \pm 4 \cdot 9 \mathrm{~V} & \text { D817V } 82 \pm 13 \cdot 2 \mathrm{~V} \\ \text { D816G } 39 \pm 5 \cdot 8 \mathrm{~V} & \text { D817G } 100 \pm 16 \mathrm{~V}\end{array}$
D816D $47 \pm 7 \cdot 0 \mathrm{~V}$


# Interested in cutting your motoring costs? 

You can save a considerable amount of money by tackling some of the car maintenance jobs yourself and the PRACTICAL MOTORIST ANNUAL is designed specially to help you. Authoritative articles and step-by-step instructions show you how to maintain the engine, ignition, cooling, carburation, transmission, suspension and steering, brakes, tyres, bodywork, electrics, etc., and give advice on simple tuning.
With holidays in mind there is a most helpful section on camping and caravanning.
EVERY MOTORIST NEEDS THE
PRACTICAL


## PRACTICAL WIRELESS

## Query Service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

## QUERY COUPON

This coupon is available until 6th June, 1969 and must accompany all queries in acnordance with the rules of our Query Service.

PRACTICAL WIRELESS, JUNE 1969

[^6]
##  SOLID STATE-HIGH FIDELITY AUDIO EQUIPMENT 

Mono or Stereo Audio Equipment devel oped from Dinsdale Mk. II-each unit or system will compare favourably with other professional equipment selling at much higher prices.
COMPLETE SYSTEMS FROM
£15.5.0
THE FINEST VALUE IN HIGH FIDELITY-. CHOOSE A SYSTEM TO SUIT YOUR NEEDS AND SAVE POUNDS


All units available senarately.
SEND FOR FREE BROCHURE (No. 21) TODAY! DEMONSTRATIONS DAILY AT '303' EDGWARE ROAD


INTEGRATED TRANSISTOR AMPLIFIERS We are pleased to SEAEO We are pleased to offer two new designs with the choice of either mono or 5 tereo systems. These BRITISH
DESIGNED UNITS tavour the user in so many wayswith fantastic power and quality with far greate adaplabiity, with freedom for battery or mains opesation.
MR FOT COMDP/ete Vistening sa ing sabistaction choose either the
E8.10.0 POST PACKING 5/-

lifustrated leaflets 12 and 14 FREE ort request.
 push-pull circuit. Filled 5 inch speaker, large terite aerial and Mullard transistors. Easy to build
with terific results. All local and Conuental

$\frac{\text { To Bull } \text { Send for Brochure }}{\text { BUILD A QUALITY }}$

$\qquad$

 ThE INTRTCUTIONS MANU
ANO SUCCESS ASSURED


NEW MODELS TRANSISTORISED Test Equipment
 PRICE Leatiet
E. s d No

| c. |
| :---: |

THE MAYFAIR


## THE GROSVENOR

HE GROSVENOR is designed tor the more Ambitious musician

 board. Varibble susta in on the solo keyboardand varlable wibrat
on both keviauards. It has 15 voices in the solo tone-lorming unit
 All componente and kit sections are avail SOLE at fes. Bh.0
practical electronics - electronic organ kit We ara able to supply perie as described in Practical Efectronics Detalis on request

 Ail enquiries to : ORGAN DEPT. Mr. ELVINS


Quality car radios



BRAND NEW. All below list price
$2025 \mathrm{Mono} /$ Stereo
3000 LM with 9TAHC
3000 LM with 9
SP5 Mk II
$3500 \mathrm{Mono} / \mathrm{Stereo}$
3500 M
401
AP75
S55
AL55
SL65
SL75
SL95
A70
Send for New 8-Page Brochures

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE ROAD. AND SAVE UP TO £25 ON SEPARATE UNITS OR THE SYSTEM OF YOUR CHOICE


It will pay you complete systems from ea6-Save $£ 12.10 .0$
TO PAY USAVISITI SEND FOR NEW DETAILED HI-FI PRICE LIST $16 / \mathrm{M}$.

## Fully y trated CATALOGUE

COMPLETELY NEW 9th EDITION (1969)
The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with $10 /-$ worth discount vouchers FREE WITH EVERY COPY

32 pages of transistors and sem1-conductor devices, valves and crystals.

* 210 pages of components and equipment.
- 70 pages of microphones, decks and $\mathrm{Hi}-\mathrm{Fi}$


6,500 ITEMS
320 ilg Pages Send today 76 6en

303 Edgwař Road, Londoñ, W.2. Mail Order Dept. all types of Components, Organ Dept. (or) 723.100s is 309 Edgware Road, London, W.2. High Fidelity Sales, P.A. and Test Equipment, Record Decks(01) 723-6963


[^0]:    WIRECOMP SPECIALITIES FOR THE ENTHUSIAST

    ## Special displays of radios, recorders, record decks, tuners, amps,

    $A T G V E A W A Y P R I C E S$ !100 's of component bargains from our easy to see and choose from self service racks.
    100's OF OLD TYPE VALVES - 2/- each
    ASSORTED TRANSISTORS 9d each. 7/6 per doz
    Huge stocks of shop soiled and reconditioned second hand
    radios, record players, tape recorders, etc.

    ## SPOT CASH PART EXCHANGES

    ;WE OFFER THE HIGHEST RATES IN LONDON
    There's something for everyone
    COME AND LOOK TODAY (Open 6 days a weekl) ALL THESE ITEMS ARE AVAILABLE TO CALLERS ONLY

    ## PERSONAL CALLERS TO:

    48 TOTTENHAM CT. RD., W. 1
    Tel. 01-636 0647
    MAIL ORDERS TO
    378 HARROW ROAD, PADDINGTON, LONDON, W. 9 PLEASE NOTE: Owing to increased handling charges -
    MINIMUM Mail Order value 51 (including postage).

[^1]:    All correspondence Intended for the Editor should be addressed to: The Editor, "Practical WIreless', IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2. Phone: 018364363 . Advertisement Department: Fleetway House, Farringdon Street, London, E.C.4. Subscription rates, Including postage; 42s. per year to any part of the part of the world. (C)IPC Magazines Ltd., 196e. Copyright in all drawings, photographs and articles published in practical Wire

[^2]:    Due to pressure on space the second part of the PULSE CIRCUITS series has been held over till next month.

[^3]:    ＊Open 10－1．2．30－4．30 Mon－Fri，9－12．30 Sat

[^4]:    Thursday—Add 0730-0745 Trans World Radio "DXSpecial" on 7,295.

[^5]:    Send your free bro. 1 Name.
    CHURE $\square$ or Send $\square$ Address
    (how many) bays o steel shelving @ $£ 3.15 \mathrm{~s}$. in green $\square \square$ grey (tick which)

    Dept. PW Eagle Steelworka, Heywood, Lancs. Tei: 69018. London: 25-27 Newton St.. W.C. 2. Tel: 04-405 7931

[^6]:    Published on or about the 7th of each month by I.P.C. MAGAZINES LIMITED. Tower House. Southampton Street. London, W.C.2. at the recommended maximum price shown on the cover. Printed in England by Index Printers, Dunstable. Beds. Sole Agents for Australia and New Zealand: GORDON \& GOTCH (A/sia) Ltd. South Africa: CENTRAL NEWS AGENCY LTD. Rhodesia, Malawi and Zambia: KINGSTONS LTL. East Africa: STATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage for one year: To any part of the World \&2.2s.0d.

