PRAGTIGAL WRiless

BUILE THIE

TRANSISTOR TESTER

IN THE JET AGE......

EFFICIENCY AND RELIABILITY,
AND CONSISTANT, SUSTAINED PERFORMANCE
ARE BASIC REQUIREMENTS.
ADCOLA SOLDERING INSTRUMENTS MEET THESE NEEDS
AND GO ON MEETING THEM, DAY AFTER DAY, YEAR AFTER YEAR, WITH UNFAILING REGULARITY.

LEADING MANUFACTURERS THROUGHOUT THE WORLD LIKE THIS, THEY ALSO LIKE THE QUICK SERVICE WHEN REPLACEMENTS DO BECOME NECESSARY. SO THEY SPECIFY ADCOLA.

WHY DON'T YOU!

AV AILABLE FROM SHOPS EVERYWHERE OR DIRECT FROM

SALES \& SERVICE DIVISION, ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD,
LONDON, S.W.4.
TELEPHONE 01-622 0291

SEND COUPON
FOR LATEST LEAFLET
INAME \qquad

SKYROVER

 Mk II
COMM ONICATIONS RECEIVER
A completely new short wave receiver exclusive to lasky's, at a real eeonomy
price. Fwur valve line up using one each up using one each
6BE6.
IBA6,
BAV6 and 6ARS, valves, gives hishly sensitive reception and power-
ful gain. Switch selected 8 w frequency range cover: 1.5 to $30 \mathrm{Mc} / \mathrm{B}_{\text {in }}$ in three AM medfum waveband cover th one range $550-1,000 \mathrm{Kc} / \mathrm{m}$. Veratir reduction drive tuning with fine halr lise cursor. Controls include voiume on/on, BFO, Band selector. Power on indicator lamp. Externad antenna connections and mains fuse at rear. 8 ohnls mains operation. strong metal cab net fnished in grey crackle with anodised silver front maniel. Alze $94 \times 5!\times 5\}$ ins. momplete with matns fead and full instructions.

TRIO
MODEL 9R-59DE Briet spec.: 4 band re ener covering $500 \mathrm{Kc} /{ }^{2}$ o $30 \mathrm{Mc} / \mathrm{a}$ continuous n $10,15,20,40$ spread metres. 8 valve plus ? diode circuit. $4 / 8 \mathrm{ohm}$ output and phone jack Special features: s8BBFO - 8 meter - sep
brequency $458 \mathrm{Kc} / \mathrm{s}$. Audin output $1-5 \mathrm{~W}$ - Variaple RF and AF gain concrols. For ure
 on $118 / 230 \mathrm{~V}$ A.C. Mainu. Beautifully deaigned control layout finlahed in light grey with dark grey case, size $7 \times 15 \times 10 \mathrm{in}$. Weight 19 lb . Fully guaranteed, complete with instrue
 Carr. FREE

TWO BAND PUSH BUTTON TRANSISTOR CAR $\begin{array}{ll}\text { RADIO } \\ \text { MODEI } & \square-8\end{array}$

MODEL all traniatator superhas car radio

A high quality all tranialitor superhes car radio that really breakn the quality/price harrier. A
unicue feature of thls set are the four M/W band station preselection buttons which you yoursels set to your owr four favourite stations-this is in addition to full M/W band cover over $1605 \mathrm{Kc} / \mathrm{s}$ and full L / W band cover over 150 $300 \mathrm{Kc} / \mathrm{s}$ (IF frequency $455 \mathrm{Kc} / \mathrm{B}$.) Externally adjustable rerial trimmera ensure maximum
 output. six transistor (including one drift type)
and one diode circult provides powertul 2 W output. The set in adjustable for use on either powitive or negative ground 12 V हyהtems (external line fuse fitted). Standard mounting size $6 i \times 51 \times 2 i n$. -tront panel th. mrger all round -finished in anodised alurninium with black push buttonn. Complete with mounting bracketa, full inntallation instructions and 2 baffle boarda (for round or elliptical speaker). Fully guaranteed

LASKY'S EQ O PRICE

MANUAL TUNING MODEL OF CR-62 AVATLABLE. 27.19.a
SPECIAL OFFER-LOCKING CAR AERIAL Model 83003 five section IE* extension heavy chrome teleacopic wing mounting zype with mique locking deviee to protect th antenna when closed. Complete with mounting bracket, lead and plug
LASEY's SPECIAL PRICE $39 / 8$ Poet Free with the CR-62. Poot Bep. $2 / 6$.

Branches

207 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 3271 Open all day, 9 a.m. -6 p.m. Monday to Saturday
33 TOTIENHAM CT: RD., LONDON, W. 1
open all day, 9 a.m.- 6 p.m. Monday to Saturday
152/3 FLEET STREET, LONDON, E.C. 4 Tel.: 01-353 2833 Open all day Thursday, early $=$ losing 1 p.m. Saturday
ALL MAIL ORDERS AND CORRESPONDENCE T0: 3-15 CAVELL ST., TOWER HAMLETS, LONDON. E. 1 Tel: 01-790 4821

WEYRAD

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.

Oscillator Coil	.P50/1AC (For OC45)	P50/1AC	(For AF117)	5/4
1st I.F. Transformer	.P50/2CC (For OC45)	P51/1	(For AF117)	.5/7
2nd I.F. Transformer	P50/2CC (For OC45)	P51/2	(For AF117)	.5/7
3 rd	P50/3CC (For OC45)	P.50/3V	(For AF117).	6/-

Rod Aerial	..RA2W........................ $12 / 6$
Driver Tran	..LFDT4/1.................... 9/6
Output Tran	.OPT110/6
Printed Circ	.PCA1 9/6

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".

T41/1E	1st I.F. Transformer	7/6
T41/2E	2nd I.F. Transformer	7/6
T41/3T	3rd I.F. Transformer	10/6
T41/3T	B.F.O. Coil	10/6

Details of these and our other components are given in an illustrated folder which will be supplied on request with 4d. postage please.

WEYRAD (ELECTRONICS) LIMITED SCHOOL STREET, WEYMOUTH, DORSET

VALUABIE NEW HANDBOOK FREE ENGINERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or
 REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS
 YOUR PET SUBJECT?

RADIO ENGINEERING
Advanced Radio - Gen. Radio - Radio \& TV Radio
Servicing - Radio
\&
Eng. TV Telecommunications- Sound Telecommunications- Sound
Recording - Automation Recording
Practical Radio - Radio Amateurs' Exam.
ELECTRICAL ENG.
Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. - Ranship - Rerigeration - Elem. Electrical Science - ElectriElecirical Science- Elecri-
cal Supply - Mining Elec. Engineering.
CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Municipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. - Hydraulics - Mining \bar{W} ater Supply - Petrol Tech.

ELECTRONIC ENG. Advanced Electronic Eng. Gen. Electronic Eng. Applied Electronics - Prac. Applied Elecironics $\overline{\text { Ela }}$ Tech. Electronics-Radar Tech. -
Frequency Modulation Transistors.
MECHANICAL ENG. Advanced Mechanical Eng. Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work -Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.
AUTOMOBILE ENG. Advanced Automobile Eng. Gen. Automobile Eng. Automobile Maintenance Repair - Automohile Diesel Maintenance - Automobile Elec. Equipment - Garage Elec. Equipment - Garage
Management.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICAL ENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE job. easily. obligation.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting
* HOW to qualify for rapid promotion.
* HOW to put some letters after your name and become a key man . . . quickly and
* HOW to benefit from our free Advisory and Appointment Depts.
* HOW you can take advantage of the chances you are now missing.
* HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE
PRACTICAL
INCLUDING
EOUIPMENT
Basic Practical and Theoretic Course for beginners in Rsdio, Radio Amateurs' Exam. R.T.E.B.Certificate P.M.G.Certiflicate Practical Radio
Radio \& Television Servicing
Practical Electronics
lectronics Engineering
Automation
TOOLS
The specialist Electronics Division of B.I.E.T. NOW offers you a real laboratory training at home with practical equipment. Ask for details.
sk jor detalls.
B.I.E.T.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now-FREE and without

! TO B.I.E.T., 453A, ALDERMASTON COURT,

- ALDERMASTON, BERKSHIRE.
- Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

THE B.I.E.T. IS THE LEADING INSTITUTE OF ITS KIND IN THE WORLD

TRANSISTORS etc.

ACl 107	$8 /-$	0 Cl 5	$7 / 6$

AClo
AFI15
AF115
AF'116
AF117
BFY18
GET113
OA5
OAS
0481
OA81
OA86
0 A91
0 C 23
$0 \mathrm{OC25}$
0 O 26

$0 \mathrm{OC28}$	$6 /-$	OC202	$4 / 6$
	$6 / 6$	TK22C	$1 / 6$

SLICON DIODE	
RECTIFIERS	
BY100 800 plv	2/10
New 500 mA	
250 plv	1/9
Avalanche 1ta	
1200 plv	4/-
Six Amp Series	
BYZ13 300 plv	8/6
BYZ12 600 plv	4/6
BYZ11900 piv	$5 /-$
BYZ10 1200 plv	5/6
Mullard Stack FW	
Bridge	
12A $100 \mathrm{piv} 88 / 6$	(3/-)
THYRI8T0R8	
5 amp series	
100 ptv	7/6
200 piv	91-
300 piv	10/6
400 piv	12/-
10 amp series	
50 piv	10/-
100 piv	18/-
100 amp series	prices

TRANSFORMERS: Sub-min Output (3Ω for OC72 etc.) $8 / 6$ (6 d .).
MULTLMETER: 20,000 Q/V D.C., 10,000 Q/V A.C. $0-5 / 25 / 50 / 250 / 500 / 1 \mathrm{~K}$ volta D.C. - $0-10 / 50 / 100 / 500 / 1 \mathrm{~K}$ volts A.C. $0-50 \mu \mathrm{LA} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C. $0-6 \mathrm{~K} \Omega / 6 \mathrm{meg} \Omega$ instructions. $10 \mu \mu \mathrm{mfd}$. $/ \mathrm{lmid}$. -20 to +22 dB . Case. Complete with test leads and JUNIOR MODEL at $85 /-(1 / 6) 1000 \Omega / V$ deacribed in free list. SOLDEPING IRON Slim Mo Brition High sped Alin.
SOLDERING IRON. Slim Mod. Britiah FIgh speed, 8 in., all parts replaceable, fully Guaranteed for profesaional, radio and general D.I.Y. use. $19 / 6$ post free. GUN TYPE DIAYOND ETYLII Replacements for B8R TCBLP
COLLARO "O" RONETTE BF40LP. GAR TC8LP, TCA BTEREO, and TC8LP/STEREO all at $7 / 6$; RON ETTE BF40LP; GARRARD GC2LP and GC8LP ; ACOS GP65/67 9TAHC, PHILIPS AG3306. All at $13 / 6$ (6d.).
SAPPHIRE all the above $7 / 6$ types only, also ACOS GP37 at $3 / 3$ each (6d.). ACOR GP91 at $6 / 9$ (6d.). No other typee at present, and no 78 rpm available in any type.
PICK-UP OARTRIDGRS, all fitted Styli and Standard fittings. Mono GP67/2, 18/6. Mono de Luxe GP91/2, 17/-. Stereo Compatible-Mono which also plays Stereo records monaurally with min. wear, GP91/8C, 18/6. Latest Stereo GP98, $28 /$-. Ceramic STRREO TYPE, 4 coil 4 penive outhts, list of thls, the lowest price high quality cartridge avallable. PP8 ELLIMAATOR (A.C.) 17/6. (1/6) TWO STATION TRANS. INTER-COM. Excellent baby alarm. Instant, easy fitting. All you require 58/6 (3/-).
FOUR TRANBISTOR 8 WATT AMPLIFIERR $2 \frac{1}{2} \times 21 \times 1 \frac{1}{1}: 9 \mathrm{~V}: 8 \Omega$ and 16Ω, excellent on 3a speakers: $45 / 6$ (1/6).
TELEPHONE AMPLIFIER, transistorised, batt. op. Fitted in seconds-leaves both hands free when phoning 58/6 (1/6)
Extra High Torque MiNI-MOTOR, 4 to $12 \mathrm{~V}, 1 \neq 7 \mathrm{zin} .5 /-$ (9 d .) 9,000 r.p.m.
Mech. REVV. COUNTER to 999, reset wheel, tor T/recorders etc. $4 / 8$ (1/-).
BATTERY CHARGERS; 8 mall , sturdy, neat; $2 \mathrm{amp} .12 \mathrm{~V} 85 /-$; $6 \mathrm{~V} / 12 \mathrm{~V}$ go/- (4/8 either type). Larger Britigh 6 V and 12 V with meter, tuse, etc. $42 / 6$ ($6 /-$), All absolutely complete (4/6 either type).

18/-. (1/3 reel). Other types in our list. $16 / 8$; MIC45, curved hand grip 17/8; stick " 60 " 20/8; Stick '39" 28/6(1/6 each type). Gream plastic hand type 7/6, or with "strut" atand, switch and 2 leads with 2.5 and 3.5 pluge 11/-. Lapel (or hand) with clip $6 / 6$ ($1 /-$). Machined metal tapered stick type with neck cord and adaptor to fit standard foor stands, 20/- (1,6). Dramic: Cream hand, Lable 14/-(1), mis Atted base $42 / 6$ ($2 / 6$) PIEZ 050 K 0 black/chrome 2 in , dia x for atand use only. ted base 42/0 (2/6). $38 / 6$ (1/6) CARDIOTD DYNAMIC OMNI-DIP
really senaible prices, Extremely perfection in sound amplification. For use in or ont of doora-full detaila in our list. Both wire-mesh screen types. For stand mounting: "Square" type, 208, 25.10 .0 ($5 /-$). "Ball Type" with built-in vol. control, on/off switch and optional hi/lo impedance ($50 \mathrm{k} \Omega$ or 6000), 55.17 .6 delivered free. An exactly similar mike bearing a world famous name la sold at over twice this price. Atl mikes are supplled with leads.
PKAKERR: $12 i n$ round, flted Tweeter, 6W, 3 or 15Ω (state which), $85 / 6$ (5/6); 21 in . 80Ω Britinh, $5 /-(1 /-) ; 21$ in. $3 \Omega 6 / 6(1 /-) ; 6 \times 4$ heavy duty $3 \Omega 18 / 6(3 / 6)$ or for 8tereo 82/6 pair, post etc. paid; 8×3 in., $3 \Omega, 8 / 6(1 /-)$. READPRONE8 High Res, 2000Ω ea. Magnetic 1/6; Crystals \&/6 (either 6d.).
MCROPHONE JNSERTS: Dlameter 1.75 in . or 0 -9in either size $5 / 6$ (6 d .).
AERLALS, Car Types: Telescopic, vandal proof, locks retracted, 2 keys and all fittinga, $2 / 6$ (2/6) Motor driven, 12V, 5 section, complete 87.10 .0 ($5 /-$).
FOR ALL PORTABLES and F.M. SET8. Telescopic 5 section $5 \frac{2}{} 22$ in. with swivel, $5 /-$. 7-8ection 5 - 32 in ., no swivel, screw hole 1 n base, $6 / 6$. 10 -section 6i- 47 inin., no swivel, crew hole in base, $18 / 6$ ($1 /-$ sll sizes).
SWITCHES: Standard toggle, metal, 250V 2A. One hole fixing: gPsT 8/8, SPDT 2/0.
DPGT 8/- DPDT 3/8. Slide types. 8ub-min DPDT "oft" 19 . DPDT 3/8. side types. $8 u b \cdot \mathrm{~min}$. DPDT $1 / 6$ each. 8 mall DPDT 3 way, centre VIBRATORs: Famous makes only. 12 volt 4 pin non-synch $2 / 6.12$ volt 7 pin synch 10/-. VIBRATORs: Famous makes only. 12 volt 4 p
6 volt 7 pin synch $10 /-(1 /-$ each, all types).
MAINS NEON TESTER: Flg leads 2/-(7d.). Pocket acrewdriver type 3/6 (6d). PLUGS: Btd. Jack, plastlc body 2/- screened 2/8. Sockets $1 / 6$ (all 7d.). VALVE HOLDERS: B7G or B9A, Moulded 6d. (7d. up to 4, 1/- over 4). CONNECTING WBRE; 5 colls asstd. cols. each 5 yds. Bolid Core 2/8. Flexible 2/6. Super thin for transistor wiring etc. 3/- (6d. all types, per 5 coils). P1CK-UP WIRE: Twin Super thin Flex, Screened, Sheathed, $1 / 8$ yd. (Gd. up to 6 yds., over 6 yds. post free). TWIN MIKE CABLE: $1 / 8$ yd, (up to 6 yds. 8 d , over post free). SINGLE MIKE CABLE: 7d. Yd. (up to 6 yds. 8 d ., over post free). Both flexible, creened and sheathed. FEEDEER CABLE: Twin r.f. bal. "ffg. 8', 80Ω, or fat 300Ω ransparent polythene insulated, either 6 d . per yd. (as mike cable).
Curkerit Lisr: gent with all orders or tree fora.a.e. details oi cable, croc., clips and leads, Continental din pugs for Grundig, Telefunken equipment, etc., dials, plugs and sockets, rsistors, teat equipment, teat prods, tape recorder, special transistors, portable sets, car radio, more switches and other components, tools, Veroboard, etc., etc. If interested in surplus equipment and units please say so. Thls advertisement cancels all previous ones and lists supplied prior to March 31st, 1969.

FELSTEAD ELECTRONICS

(PW18)
LONGLEY LANE, GATLEY, CHEADLE, CHESHIRE, SK8 4EE
TERMA: Cash with order only, No C.O.D. or caller service. Post, packing and insurance charges are shown in brackets after all items. Regret orders under $5 /$ - plus carriage cannot be acoepted. Charges apply to G.B. and Elre only. Overseas air or suriace mail extra at cost.
S.A.E. please for all erquiries.

TELEVISION BARGAINS

Due to Bulk Purchase we offer Ex Rental 12 channel T.V.s. Well maintained and tested. Tubes 100\% guaranteed. Slimline 17" Peto Scott 732, Ultra V17/70, Regentone 7en 17, Cossor 874, Alba T44, F.M. all $£ 8.0 .0$ each. $21^{\prime \prime}$ Ultra V21/70 £12.0.0. Semi slim 17" Alba T655, Regentone 7en 4 7en 8, Sobell T178, T179, Bush TV85, £7.0.0 each.

Many others available, all worth double Carriage $£ 1$ Terms C.W.O. We stock all spares for most pre-1962 T.V.s

Send S.A.E. for price list to:
> D. WEBB

> 58 Chanterlands Avenue, Hull, Yorkshire.
> Tel: Hull 43281 and 36016

Radio Communication Handbook

832 pages of everything in the science of radio communication. The Handbook's British origin ensures easy availability of components. The standard work in its field. 69s post paid

Amateur Radio Circuits Book

Dozens of clear, concise circuit suggestions with the basic constructional details. 120 spiral bound pages lie flat when open for convenience. 11s 6d post paid

Amateur Radio Techniques

All the good ideas are here. An anthology of the famous "Technical Topics" column from RADIO COMMUNICATION. Fascinating reading and an invaluable information source.

13 s 6d post paid

All these and many more, plus free details of the RADIO SOCIETY of GREAT BRITAIN

from
35 DOUGHTY STREET, LONDON, WC1 INGS) AND 5.0 p.m. SATURDAY.

AMPLIFIERS

LEAK Stereo 30

Standard
LEAK Stereo 30 in teak case
The New LEAK Stereo 70 GOODMANS Maxam QUAD 33 Preamplifier
QUAD 303 Stereo
Main Amplifier
ROGERS Cadet
Mark III
ROGERS Cadet Mark III in teak case ROGERS Ravensbourne 50 w . Stereo ROGERS Ravens-
bourne in teak case LINEAR LT. 66 Stereo Amplifier
PHILIPS GH. 925
Stereo Amplifier
F.A.L. 50 watt Guitar and Public Address Amplifier
TRUVOX TSA. 100
DULCI 207 Stereo Amplifier
DULCI 207M stereo/ Amplifier takes
magnetic P/U

TUNERS

ARENA $21 /$ Stereo
with decoder
LEAK FM Troughline
LEAK Troughline
Tuner with multi plex
GOODMANS
Stereomax AM/FM
Stereo Tuner
QUAD Stereo FM Tuner
ROGERS Cadet
Mark III Tuner
ROGERS Ravensbourne Tuner with Decoder
TRUVOX FM Tuner
DULCI FMT. 7 FM
Tuner
DULCI FMT. 7 F FM Stereo Tuner
\(\left.\left|\begin{array}{ccc|cc|}Rec. Retorl

Price\end{array}\right|\)| Comet |
| :---: | :---: |
| Price | \right\rvert\,

TUNER/AMPLIFIERS

ARENA 2500 complete
with Decoder With Decoder Decoder
ARENA 2400 with Decoder
TELETON 70 watt Stereo Tuner/ Amplifier with Amplifer with
Multiplex Decoder TELETON MX. 990 Stereo Tuner/ Amplifier with with AM/FM Multiplex Stereo Radio c/w two Speakers, each speaker containing Bin. bass, 2 in .
Bin. bass

Reservoir Road, Clough Road, Hull. Tel. 42363 Add $9 /$ for post and packing on all orders.

Here's a Selection of Models from the FREE HEATHKIT CATALOGUE

AVAILABLE AS EASY TO BUILD KITS OR READY-TO-USE MODELS

Kit K/AR-14

Ready to use A/AR-17
Kit K/AR-17
Ready uso A/AR-17
239.2.0

P.P. 11/-

260.4.0

11/-
Cabinet $£ 3.10 .0$. extra

Kit K/AR-27
£22.12.0

P.P.

11/-
Cabinet $£ \mathbf{3} \mathbf{1 0 . 0}$ extra

CHOOSE A QUALITY HEATHKIT LOUDSPEAKER SYSTEM TO GET THE BEST FROM YOUR AUDIO SET-UP.

BERKELEY LOUDSPEAKER SYSTEM
Use two for stereo. Best performance from a slim-line cabinet. Uses less than 1 sq. ft. of floor space. Available in Teak or Walnut finish.
Kit
Ready to use
£21.4.0
E24.0.0
P.P.

Top Value in a 30 Watt FM Stereo Receiver, AR-14

- 31 transistor, 10 diode circuit for cool, instant operation with the transparent, natural sound only transistors can deliver $\pm 1 \mathrm{~dB}, 15$ to $50,000 \mathrm{~Hz}$ at 10 watts per channel continuous (20 watts total). 15 watts per channel IHF music power (30 watts total) Wideband AM/FM stereo tuner plus two preamplifiers and two power amplifiers. Front panel stereo headphone jack. Compact-just $37^{\prime \prime} \mathrm{H} \times 15 \frac{1}{4}^{\prime \prime} \mathrm{W} \times 12^{\prime \prime} \mathrm{D}$. Custom install it in wall, your own cabinet, or use as a free standing unit.

```
Kit K/AR-14 (less cab.) .. kit £54.2.0. P.P. 14/-
A/AR-14 (less cab.)
£76.12.0. P.P. 14/-
Cabinet extra: Teak or Walnut finish £4.10.0
```


Unbeatable Value in a 14 Watt FM Stereo Receiver, AR-17

- 28 transistor, 7 diode circuit for natural transparent sound, instant operation, long trouble-free life. 14 watts music power, 10 watts RMS from $25-35,000 \mathrm{~Hz}$ at $\pm 1 \mathrm{~dB}$. Automatic stereo indicator light. Adjustable phase control for maximum separation. Complete front panel controls. Flywheel tuning. All critical circuits including FM "front-end" factory assembled and aligned. - Circuit board assembly. Compact $103^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W}$. - Front panel stereo headphone jack.

$$
\begin{array}{rccc}
\text { Kit K/AR-17 (less cab.) } & \ldots & \text { kit } & £ 39.2 .0 . \text { P.P. } 11 /- \\
\text { A/AR-17 (less cab.) } & \ldots & \ldots & £ 60.4 .0 . \text { P.P. } 11 /-
\end{array}
$$

Cabinet extra: Teak or Walnut finish £3.10.0

A Quality Table Radio FM Mono Receiver, AR-27

- 13 transistor, 6 diode circuit for high-fidelity sound reproduction, long life, low heat, freedom from hum, and service-free operation. 7 watts music power. $\pm 1 \mathrm{~dB}, 25$ to $60,000 \mathrm{~Hz}$ at 5 watts. - Input connectors for phonograph and auxiliary signals. Complete front panel controls. Flywheel tuning. Preassembled and prealigned FM tuner, all other critical parts factory aligned. Easy, circuit board assembly. Compact bookshelf size. 3-way installation ... wall, free standing or in a suitable cabinet. 117 v . A.C. or $210 / 240 \mathrm{v}$. A.C., 50 Hz operation.
$\begin{array}{rlll}\text { Kit K/AR-27 (less cab.) } & \text {. } & \text { kit } & \text { £22.2.0. P.P. } 11 /- \\ \text { A/AR-27 (less cab.) } & \text {. } & \text {. } & \text { £32.14.0. P.P. 11/- }\end{array}$
Cabinet extra: Teak or Wafnut finish £3.10.0

[^0]
There's Something for Everyone in the HEATHKIT Electronic Range . . .

STERED TAPE RECORDER, STR-1
A complete stereo system including speakers in one compact Transportable. Versatile recording facilities. Powerful output, 4 watts rms per channel.
Kit K/STR-1 £59.4.0 P.P. 11/-

STEREO AMPLIFIER, TSA-12
Fully transistorised. Fantastic performance at lowest cost. Many exceptional features.
Kit K/TSA-12 £32.16.0 P.P. 10/6
Cabinet $£ 3.16 .0$ extra

PORTABLE VOM. IM-17
The latest solid-state circuit, plus rugged polypropylene case. For homeowners, hobbyists, service.
Kit K/IM-17 £13.12.0 P.P. 6/-

RF SIGNAL GENERATOR, RF-IU
100 kHz to 200 MHz in six bands. The specification is outstanding for price. A dependable service instrument. Kit K/RF-1U £13.18.0 P.P. 6/-

VALVE VOLTMETER, V-7A
Popular size, 7 AC, DC, ohms range. Popular price.
Kit K/V-7A
f14.16.0 P.P. 4/6

HIGH PERFORMANCE CAR RADIO CR-1
Latest transistor circuit gives powerful output, 4 watts. For 12 v pos or 12 v neg earth systems. Kit K/CR-1 (less speaker)
£13.11.3 P.P. 4/6 LS E1.2.9 extra

Send for the

 FREE Catalogue and see for yourself,Today!This catalogue describes these and many more kits and ready-touse models for Stereo/Hi-Fi, Domestic Radio, Record Players, Amateur Radio, Short Wave, Test Instruments, Educational, Home Workshop, all at significant savings.

Aerial Wire: Coils of 25 yds. solid core, $2 / 3$ plus $1 /-$ P. \& P.

Battery Eliminators for Transistor Supplles. $9 \mathrm{v} .1 \mathrm{7} \mathrm{v} ., 6 \mathrm{v} ., 29 / 6$ plus $2 / 6 \mathrm{P}$. \& P.

Condensers: Large range available from 6d. cach.
Coax Sockets: Flush, 6d. plus 6d. P. \& P.
Cartridges: Acos GP67/2G, 14/9; BSR TC8H, 30/-; TC8M, 28/6; X1M Inserts, 22/6, etc.

Ear Pieces: $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Mag., $2 / 6$ plus $1 /-$ P. \& P. $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Crystal, $5 / 6$ plus $1 /$ P. \& P.

High Impedance Horns: $1 \frac{1}{2}$ to $4 \frac{1}{2}$ volt, ideal for alarms, $3 / 6$ plus $1 /-\mathrm{P}$ \& $\&$

Loudspeakers: Large range. 2 in . 8 ohm, $7 / 6$; din. 8 ohm, 12/6; 5 in. 8 ohm, 16/6 plus 2/-P. \& P.

Trantittors: Full range, i.e. OC44, OC45, OC71, OC82, 2/6; OC35, $9 /-$; Fet.MPF103, $9 / 6$.
Transformers: 12 volt battery charger, e1.2.6. $250-0-250$ volt $60 \mathrm{~mA}, 18 / 8 ; 0-250$ with 6.3 volt, $19 / 6$ plus 3/6 P. \& P.

Relays: 12 volt suitable for car alarm, 21/-; 6 volt $A C, 28 / 5 ; 240$ volt AC, $27 / 6$ plus $3 /-\mathrm{P}$. \& P.

Ex. Govt. Panel Meters: $0-S M / A, 17 / 6 ; 0-300 \mathrm{v}$ ACIDC, 25/6 plus 2/7 P. \& P.
Many other Items, please send S.A.E. for free price list.

\square
BOTHWELL ELEETRIC
SUPPLIRAS (Glagete
S4 EGLINTON STREET,
GLA8GOW, C.5. Tel. 041 south 2904
Member of the Lander Group

same as 4-station Intercom for two-way instant communication. Idesi as Baly Alsirm and Dor Phone. Cornplete w/th 66ft. connecting wire.
Battery $2 / 6$. P. \& P. $4 / \mathrm{h}$.
 fier. Take down long telephone messages or converre without holding the handset. A useful office aid. On/
off awitch. Volume Control. Battery $2 / 6$ extra. P. \& P, $3 / 6$. Full price refunded if not satisfied in 7 days. WEST LONDON DIRECT SOPPLIES (P/W5) 189 KENSINGTON HIGH STREET, LONDON, W.8.

NEW RANGE BBC 2 AERIALS
All U.H.F, aerials now fitted with tilting bracket and 4 element grid reflectors. $\begin{array}{ll}\text { Loft Mounting Arrays, } \\ 11 \text { element, } & \text { element, } 47 / 6 \text {. } \\ 15 / \% & 14 \text { element. } \\ 52 / 6 . & 18\end{array}$ element, 60/- Wall Mounting with Cranked Arm; 7 element, $60 /$-. 11 element, 67/-. 14 element, $75 /-$. 18 element, $82 / 6$. Mast Mounting with $2 i n$. clamp. 7 element. 42/6. 11 element, $55 /-14$ element. 62/-. 18 element. 70/-, Chimney, Mounting Arrays, Complete. 7 element, 72/6. 11 element, $80 /$. 14 element, 87/6, 18 element, 95/-. Complete assembly instructions with every unit. Low 55/- State clearly channel number required on all orders.

BBC • ITV AERIALS
BBC (Band 1), Tele-
scovic loft, $25 /$. External
 Scopic loft, 25/- External SID. 30\%-' 'Hi' e2.15.0. ment loft array, 30/-. 5 element. $40 /$-. 7 element 50/-. Wall mounting. 3 ele52/6. combined BBC/ 50/:- Loft $1+7$. $\quad 60 / 40 /-; \quad 1+5$ Wali mounting $1+3$, $57 / 6 ; 1+5$;
67/6; Chimney $1+3,67 / 6$; ${ }^{1+5,75}$ amps, 75%
COMBINED BBCL - ITV - BBC2 AERIALS $1+3+9, \quad 70 /-1+5+9,80 /-$. $1+5+14.90 /-1+7+14.100 /$. Loft mounting only. Special leaflet available 3 element, 55%. External unit ' H ', 32/6. co-ax. cable sd. yd Co-ax available. Outlet baxes 1 . 1 co-ax. olugs. $1 / 4$. Outlet boxes, 5/-Diplexer Crossover Boxes,
13/6. C.W.O. or C.O.D. P. \& P. $6 /$ Send 6 d . 13/6. C.W.O. or C.O.D. P. \&
stamps for illustrated lists.
Callers welcomed - open all dau Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE LONDON ROAD, MITCHAM, SURREY 01-648 4884

BANDREC.

Llsten to the thrills of aircralt, pilots and airports at work. Also Civil Depts., Fire and Ambulance aervices. Also taxis, Gas and Electricity services. Ideal for receiving 2 metre arnateurs. Gives super reception within the range of all $87-145 \mathrm{Mc} / \mathrm{s}$. VHF broadcasts. Rolusst attractively $87-145 \mathrm{Mc} / \mathrm{s}$ VHF broadcasts. Robust attractively
finished metal cabinet size approx. $7 \times 7 \times 3 \mathrm{in}$. Operates from a 9 volt internal battery. Speaker or earphone output. Price only 88.19 .6 , carr. and ing. $10 / 8$.

Brand new fully transistorised Communications Receiver. Specifications: 4 complete ranges $550 \mathrm{Kc} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$, covering all amateur bands, shipping and trawler bands, and broadcast bands. A highly efficient double tuned and built compriaing R/F aertal tuning section, A.V.C ared or in B.F.O. for C.W. or 88B reception. Ideal for battery mobile reception. Operates from standard 9 volt audio output. With speaker and headphone output, Hammer finished robust steel case of pieasing modern Hammer finished robust steel case of pieasing modern design with all controls on well set-out front panel. size pprox. $9 \times 6 \times 6$ in. British manufacturer. Due to huge purchase we can offer these excellent receivers at less than 816.10.0. Carr. and ins. 15/-. Headphones if required 17/6 per pair. p. \& p. 2/6.

TELEPHONE
BARGAIN
The Bargain of the year. Btandard type desk telephones complete With dial and cord. Not new but in good condition. Only $15 /=$ each, pour for $50 /-$ post free. Limited

stocks.
 NEW SHP (NOWOPEN) carr. and ins. $10 /$.

RUN your 19 SET TX and $R X$ FROM THE MAINS

We make an excellent power supply unit. Bimply plug into your 19 set, and the transmitter and receiver is fully operational. Brand new in attractive louvred steel case. Operates from 200/ 250 V A.C. Only 28.10 .0

Scooop Puechist simsione SALE

Bulk purchase enables us to offer the following transformers at these ridiculously low prices. Made by a famous manufacturer and fully tested and guaranteed. Charger Trantiformera. 0-9-15V 2A. $9 / 6$ each, p. \& p. 2/6. Two for 7/6 each p. © . $2 / 6$. 12 V at $2 \mathrm{~A}, 12 / 6$ each, o \& $\mathrm{p} .2 / 6$

MINIATURE MOVING COIL SPEAKERS 1ith. diameter. Only $8 / 6$ each, p. \& p. 1/6. Two for $8 / 6$ poot free. Four for 15/-post free.

ATR/SEEATRANS/REC.

Compact V.H.F. Trans./Rec. Fith in the pocket. Consists of Mike/speaker, amplifier, aeria, trans mitter and receiver. Were maile to operate up to 100 miles depending on terrain. Operates from dry batteries. Completely self-contaired. Cost Govt. ove e50 each. Regulations state must not be operated in UK so please mention "For Dismantling purposee only" when ordering. Price 48.10 .0 each. p. \& p. 10%. Two sets for 85.0 .0 , post free.
Four sets es. carriage free. Bulk bale of 10 sets 215 , carriage 21 . Export enquirie invited.

38 BRIDGEND, MEADOW LANE, LEEDS 1
Open 9-0am-5-30 pm daily and all day Saturday
Callers please bring copy of advert for special opening offer, a de-luxe soldering iron for only $8 / 6$ should be 27/6

POWER CONVERTER (De-iuxe model). 12 volt D.C imput gives a 240 volt, 300 watt output enabling you to rum all your AC/DC equipment and fluorescent lighting Contained in attractive louvred steel case. Complete with leads and clips and full instructions. As supplied to Hoppitals and Universities. Recommended price over $£ 30$ Our Price 34.10 .0 , carriage and insurance $10 /$. Not to be confused with Heavr Duty IVymmotor units.

$(A) \quad(1): C H|\leq 1| \mid(H)$ DEPT. P.W. 24 CAWOODS YARD. DEPT. P.W. 24 CAWOOD

Build yourself a quality transistor radio

 backed by our after sales service!
roamer seven mk IV SEVEN WAVEBAND PORTABLE

SEVEN TUNABLE WAVEBANDS-
MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE
WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size $5 \$ \times 1 \$ \mathbf{x}$ $3 y \mathrm{in}$. Tunable over both Medium and Long Waves with extended M.W. band for eabler tuning of 7 stages- F tranaletors and 2 diodes, supersensitive ferrite rod aerial, fine tone moving coil speaker, almo Personal Earplece with switched socket for private listening. Easy build plans and parts price List 1/6 (FREE with parts).

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PORTABLE WITH SPEAKER AND EARPIECE
Attractlve case with red speaker grille. Size 6\% x $4 \frac{1 \mathrm{in} .}{} \times 1 \mathrm{in}$. 7 ntages - 5 transistors and 2 d!odes, territe rod aerial, tuniag condenser, volume control, fine tone moving coll speaker also Personal Earplece with a witched socket for private listening. All first grade components. Easy baild pians and parts price
list $1 / 6$ (FREE with parta.)

super seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size $7 \frac{1}{} \times 5 \frac{1}{2} \times 1 i n$. with gilt fittinga. The tdeal radio for home or outdoors. Covers Medium and Long Waver and Trawler Band. Special circuit incorporating 2 R.F. Stages, push pull output, ferrite rod aerial, 7 transistore and 2 diodes, 3in. speaker (will drive larger speaker) and all first grade components, Easy build plans and parts price list 2/. (FREE with parts). (Peranas private listening b/-extra.)

roamer six

SIX WAVEBAND PORTABLE
WITH 3in. SPEAKER
Attractive cese with gilt fittings. gize $71 \times 5 \frac{1}{2}$ lìin. Tunable on Medium and Long waves, two short waves, Trawler Band Plus an extra M.W. band for easier tuning of Luxembourg, etc. Sensitive ferrite rod aerial and telescople aerisl for short
waves. All top srade components. 8 atages- 6 waves. All top grade components. Transistors etc. (Carrying strap $1 / 6$ extra). Easy transistors etc. (Carrying strap $1 / 0$ extra). Easy parts). (Personal Barpiece with switched socket for private listening 5/-extra.)

* Callers side entrance Stylo Shoe Shop

* Open 10-1. 2.30-4.30 Mon-Fri. 9-12.30 Sat

Total building costs

Total building costs
4718 P. \& P.

Total building costs
O8FB P. \& P.

Total building costs
7018 P. \& P.

Extrs M.W. band fo
Extrs M.W. band for
easier tuning of Iuxembourg
easier tuning of Luxembourg,
etc. Built in ferrite rod aerial for
Medium and Long Waves, 5 section $22 i n$
chrome plated telescopic aerial for Short Waves-
can be angled and rotated for peak $g . W$. listening. Socket
for Car Aerial. Powerful push pull output. 7 transistors and 2
diodes including Micro-Alloy R.F. Transistors. Famous make $7 \times 4 \mathrm{in}$. P.M. speaker for rich-tone volume. Air spaced ganged tuning conclenser. Vohume on/off control wave change awitches and tuning control. Attractive case with cacrying bandle Size $9 \times 7 \times 4 i n$. approx. First grade components. Easy to follow instructions and diagrams make the Roamer 7 a pleasure to build.
Total building costs
C P P. \& P. $\begin{aligned} & \text { Personal Earplece with switched socket }\end{aligned}$
Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK melody six

TWO WAVEBAND PORTABLE
8 stanges- 6 transiators and 2 diodes. Covers Medium and Long Waves. Top Covers Medium and Long Waves. Top output and also with Personal Earpiece with switched socket for private listening. Two R.F. stages for extra boost. High "Q". Ferrite Rod Aerial. Puah-pull output. Handsome pocket size cose with gitt flttings. Size $8 \pm \times 4 \times 2 \mathrm{in}$. Ean y build plans and parta price list 2/- (FREE with parta).

Total building costs
\& P P P \& P

RADIO $=\times$ OHANCEOO					
\| 61 HIGH STREET, BEDFORD. Tel. Bedford 52367					
I l enclose $£ \times \ldots$					
I	Roamer seven		ROAMER SIX	\square	
I	transona five	\square	SUPER SEVEN	\square	
I	POCKET FIVE		MELODY SIX	\square	
\| Parts price list and plans for \qquad Name					
Name \qquad					
Address					

BI-PAK SEMICONDUCTORS 500 CHESHAM HOUSE, 150 REGENT ST., LONDON, W.1.

KING DF THE PAKS SUPER PaKS
 Unequalled Value \& Quality
 BI-PAK NEW-UNTESTED SEMICONDUCTORS

U2	60 Mixed Germanium Transistors AF/RF	0/-
U3	75 Germanium Gold Bonded Diodes sim. OA5, OA47	10/-
U4	40 Germanium Transistors like OC81, AC128	10/-
U5	60200 mA Sub-min. Sil. Diodes	10/-
U6	40 Silicon Planar Transistors NPN sim. BSY05A, 2N706	10/-
U7	16 Silicon Rectifiers Top-Hat 750 mA up to 1000 V	10/7
U8	50 Sil. Planar Diodes 250mA OA/200/202	10/-
U9	20 Mixed Volts 1 Watt Zener Diodes	10/-
U11	30 PNP Silicon Planar Transistors TO-5 sim. 2N1132.	10/-
U12	12 Silicon Rectifiers EPOXY BY126/127	10/-
U13	30 PNP-NPN Sil. Transistors OC200 \& 2S104	10/-
U14	150 Mixed Silicon and Germanium Diodes	10/-
U15	30 NPN Silicon Planar Transistors TO-5 sim. 2N697	10/m
U16	10 3-Amp Silicon Rectifiers Stud Type up to 1000 PIV	10/-
U17	30 Germanium PNP AF Transistors TO-5 like ACY 17-22	10/-
U18	86 -Amp Silicon Rectifiers BYZ13 Type up to 800 PIV	10/-
U19	30 Silicon NPN Transistors like BC108	10/-
U20	121.5 Amp Silicon Rectifiers Top Hat up to 1000 PIV	10/-
U21	30 A.F. Germanium alloy Transistors 2 G 300 Series \& OC71	10/-
U22	10 1-Amp Glass Min. Silicon Rectifers High Volts	10/-
U23	30 Madt's like MAT Series PNP Transistors	10/-
U24	20 Germanium 1-Amp Rectifiers GJM up to 300 PIV	10/
U25	$25300 \mathrm{Mc} / \mathrm{s}$ NPN Silicon Transistors 2 N 708 , BSY27	10/
U26	30 Fast Switching Silicon Diodes like IN914 Micro-min	10/-
U28	Experimenters' Assortment of Integrated Circuits, untested. Gates, Flip-Flops, Registers, etc. 8 Assorted Pieces	20/-
U29	101 Amp SCR's TO-5 can up to 600 PIV CRSI/25-600.	20/-
U30	15 Plastic Silicon Planar trans. NPN 2N2924-2N29:26.	10/-
U31	20 Sil. Planar NPN trans. low noise 2N3707	10/-
U32	25 Zener diodes 400 mW DO-7 case mixed Vits. 3-18.	10/-
U33	15 Plastic case 1 Amp silicon rectifiers W4000 series	10/-

Code Nos. mentioned above are given as a guide to the type of
device in the Pak. The devices themselves are normally unmarked

FULLY TESTED	
ACl07.	3/6
AC126-7-8	
AF116-117	$3 / 6$
AF139	
AL102	15/-
BC107-8-8	$5 /-$
BFY 50-51-52...	$7 / 8$
BsY26-7	$3 / 6$
BSY28-9	4/6
	4/6
$0 \mathrm{Cz2-25}$	$5 /-$
OC26-35	
OC28-29	$7 / 6$
$0 \mathrm{O} 44-45$	$1 / 9$
0,71-81	1/6
OC72-75	$2 / 6$
0C81D-82D	$2 / 3$
$0 \mathrm{C82}$	$2 / 6$
OC140	5 -
OC170	2/6
$0 \mathrm{Cl71}$	$3 / 6$
0 C 201	$7 / 6$
ORP12-60	$8 / 6$
OCP71	$8 / 6$
OA5-10	1/9
0 A 47	21-
OA70	1/3
OA79	$1 / 9$
OA81-85	$1 / 6$
0 O91	1/3
OA95	1/8
OA200	$3 /-$
OA202	${ }^{3 / 6}$
2N696-7	
2N706	3/6
2N708	51-
$2 \mathrm{~N}^{2180}$	15j-
2 N 2646	15/-
2N2712	5/8
2N2926	2/8
MAT100-101	3/-
MAT120-121	3/8
8 8T140	3/-
8 T141	4/-

TESTED SCR's

TRANSISTOR EQUIVALENT BOOK
52 pages of Cross References for transistors and diodes, types include British, European, American and Japanese. specially imported by BI-PAK $10 /$ each.
PLEASE NOTE--To Avoid any further Increased Postal Charges to our Customers and ensble us to keep our "By Return Pootal Service" which la second to none, we have re-organized and strame lined our Despatch Order Department and we now request you to send all your orders postal address:-BI-PAK sEMMCONDUCTORA, Degpatch Dept., P.O.BOX 6, WARE, HERTS. Portage and Packing stili 1/- per order. Minimum Order 10/-

fro nuik. rasy redialite salldriiny
Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

From Electrical and Hardware shops. Il unobtainable, write to: Multicore Solders Ltd. Hemel Hempstead. Herts.

[^1]TYPE 13A DOUBLE BEAM OSCILLOSCOPES

pone
T.B. 2 срв- $750 \mathrm{Kc} / \mathrm{K}$ Bandwidth $5.5 \mathrm{Mc} / \mathrm{s}$ Sensitivity $33 \mathrm{mV} / \mathrm{CM}$.
Operating voltage $\mathbf{0} / 110$ Operating voltage o/10/0
$200 \% 250 \mathrm{~V}$. A.C. Supplied 200 f250V. A.C. Supplied
in excellent working conin excenlent working con-
ilition. ER2.10.0. Or complete with all accessories, probe, leads, 1 in,
225 . Carriage $30 /-$

ADMIRALTY B. 40 RECEIVERS Released by the Ministry. High quality 10 valve receiver manufuctured by Marphy.
 $500 \mathrm{Kc} / \mathrm{f}$. Incorporates R.F. and $31 . \mathrm{F}^{2}$. atages, bani-pass filter. toise Imiter. Crystal
controlled B.F.O., culicontrolled B/F.O., chir
brator. O/F output, brator. $0 / \mathrm{F}$ output.
etc. Buit- Fin speaker. output for phones. Operaton $150 / 230$ volt A.C. Size $191 \times 131 \times$
16 in . Weight 114 lbs . onered in good workhig condilon. $\mathbf{x 2 2} 10.0$. Carr. $30,{ }^{\circ}$ With 30/. Alko available B. 41 L. F. verion of 30% Alke
above. 15
$\mathrm{Kc} / 8-700 \mathrm{Kc} / \mathrm{s} .15 \% .10 .0$

R209 MK II
COMMUNICATION RECEIVER 11 valve high grade communicalon receiver AM/CW/FM operation, Incorporates precision vernier driver, BFO. Aerial trimmer, Internal gpeaker and $12 v$. D.C. internal power supply. Supplied in excellent condition, fully tested

ADVANCE

TEST EQUIPMENT
Brand new and boxed in original sealed
VM. 76 Valve voltmeter
R.F. measurements in excess of $100 \mathrm{Mc} / \mathrm{s}$ and D.C. measure-
 300 MV to 1 KV AC range 300 MV to 300 V RMs. Resistance $02-500 \mathrm{M} \Omega$
sistance
Price $\& 72$
VM. 78 A.C. MILLIVOLT METER Transistorised 1 MV-300V. Frequency $1 \mathrm{c} / \mathrm{s}$ to $1 \mathrm{Mc} / \mathrm{s}$. Price $\mathrm{E}_{55} 5$.
VM. 78 UHF MILLIVOLT METER Tranistorised. A.C. range 10 MV-3V. D.C. current range O1 $\mu / \mathrm{A}-3 \mathrm{MA}$ Resistance 125 . HIB AUDIO SIGNAL GENERATOR $15 \mathrm{c} / \mathrm{s} 50 \mathrm{Ec} / \mathrm{s}$. sine or square wave. Price £30.
J1B AUDIOSIGNAL GENERATOR
J2B $15 \mathrm{e} / \mathrm{s} 50 \mathrm{Kc} / \mathrm{s}$. Price 830 .
As per J1B except sited with outpat meter. Price 335
TTIS TRANSI
Carriage 10/- per item.

AVOMETERS Supplied in excel fully teated and checked. Complete with prods. leads and instructions. Model 47A 19.19:6 P. \& P. $7 / 6$.

GARRARD
FULL GURRENT RANGE OFFERED BRAND NEW AND GUARANTEED AT YANTASTIC savings
SRP22 Mono 86.10.0 *gP25 MKIl 511.19 .6

 -1025 sterco $\begin{array}{ll}\text { E7.15.0 } & \text {-AT60 MK II } \\ \text { E18. } \\ \text { E14.14.0 }\end{array}$ | -2025 |
| :--- | :--- | :--- | :--- | -2025T/C $\begin{array}{llll}\text { Mono/Stereo } & \text { 28.17.6 } & \text { S1.75 } & \text { £29. } \\ \text { £28.0. }\end{array}$ $* 3000$ Btereo $\quad 29.19 .6 \quad 81.95 \quad 835.0 .0$

 Carriage funsurance $7 / 6$ extra any model. Speial offer base and cover available for these
Bases e3.19.8. Perspex covers $\pm 3.10 .0$. Special models at 24.15.0. Carr. 5/. Full range of Garrard accessories available
SOLARTRON MONITOR OSCILLOSCOPE TYPE 101

An extremely high quality oscilloscope with

 time base of $10 \mu / \mathrm{sec}$ to $20 \mathrm{~m} / \mathrm{sec}$. Interial y amplifer. Separate mains power supply $200 /$ 250 v . Supplied in excellent condition with cables, probe, etc., as recelved from Ministry. 28.19.6, car riage 30/-UNR-30 4-BANO COMMUNICATION RECEIVER Covering $550 \mathrm{Kc} / 8-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built in speaker and phone Jack. Metal cabintet. Operation $220 /$
240 V . A.C. Bupplied brand new, guaranteed with instructions. Carr. 7/6 13 gns

LAFAYETTE SOLID STATE HAGOO RECEIVER 5 BAND AM/GW/SSB AMATEUR AND SHORT WAVE $150 \mathrm{Kc} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{s}$ and $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ FET Iront end 2 mechanical filters Huse disl - Product detoctor Crystal calibrator Variable BFO - Noise Hmiter o 8 meter - 24 in Bandspresd - 230V. A.C./12V. D.C. neg. earti operation © RF gain control. Size 15 in . \times gily. 45e. Carr. 10/-. S.A.E. for full details.

Variable vortage Thansphimelib
 pald

H igh qually construction. Input $230 \mathrm{~V}, 50-60$ cycles
Output full variable from $0-260$ volts. Bulk quantities available
1 amp - $-85.10 .0 ; 2 \cdot 5 \mathrm{amp} .-£ 6.15 .0 ; 5 \mathrm{amp}-\mathbf{£ 8 . 1 5 . 0 ;}$
$8 \mathrm{amp} .-114.10 .0$,
$20 \mathrm{amp} .-187.0 .0$.

CLEAR PLASTIC PANEL METERS Firs grade quality Moving Coil panel meters avasiable ex stock. B.A.E. for illustrated leatlet. Discounts for quantity.
Type MR $38 \mathrm{P} .1^{21} / 3 \mathrm{I}_{2} \mathrm{In}$. square fronts. Type $500 \cdot 0-500$. 425 /

	50 mA
	100 mA
	150 mA
	200 mA
	300 mA
	500 mA 25
	3V. D.C. . . . 25
	10V. D.C. . . 25
	20 V . D.C.
	100 V . D

TRANSISTORISEO L.C.R. A.C. measuring brioge
 bridge offering ex cellent range and
sccuracy at low cost. Ranges: R
$1 \Omega-11 \cdot 1 \quad$ meg Ω $1 \mathrm{Q}-11$
6 Rang
L. 1μ

Ranger $\pm \mathbf{2 \%} \%$. TURNS EATIO $1: 1 / 1000$

 1:11100. f Ranges 1%. Bringe voltiage \quad, $1,000 \mathrm{cpp}$. Operated from 9 volla. $100 \mu \mathrm{~A}$. Meter indication. Attrictive 2 tone metalcase size $7 \hat{1} \times 6 \times 2 \mathrm{in}$ \& 20 . P. \& $\mathrm{P}, 5 \%$.

D WAVEMETERS A crystal controlied hetero dyne trequency meter
covering $\quad 1.7-8 \quad \mathrm{Mc} / \mathrm{s}$ covering $1.7-8 \mathrm{Mc} / \mathrm{B}$
Operitlon on 6 volts D.C Ideal for umateur use Aveal for ingate us use
Avaliable in good Carr.
dition. e5.18.8. Carr. Or brand new with acces

TE-20RF SIGNAL GENERATOR

gas generator cover $\operatorname{lng} \mathrm{Kc}$ $120 \mathrm{~K}-280$

 Mc/s on 6 bands. Barectly falibrated teniator. Operation 200/240v. A.C. struction. £15.0.0 for detaild.

ARF-100 COMBINED AF-RD SIGNAL GENERATOR

A.F. SINE WAVE $20-200,000$ c/8.
Square wave $20-$ $30,000 \mathrm{c} / \mathrm{s}$. $0 / \mathrm{P}$ HIGH IMP. $21 V$ P/P690 $\quad 3.8 \mathrm{~S} . \mathrm{P} / \mathrm{P}$
$\mathrm{TF} 100 \mathrm{Kc} / \mathrm{s}-300$ Mc/s variuble Mc/s. Variable R.F attenuation int/ext. Modulatlon. Incorpor ates dual purpose meter to monitor AF out put and \% mod

FM TUNER TRANSISTOR HIOH QUALITY
TUNER,
OIZE ONLY $B \times 4 \times 2 \mathrm{kin}$ OML.F. atagen
Double tuned dis. criminator. Ample output to feed most
ampHfers. ampHflens. Oper ates on $9 v$ battery, Coverage 88-108 Ready built remay for P . $/ \mathrm{s}$. Stereo muitiplex endeptors $99 / 6$. TRANSISTORISED TWO-WAY TELEPHONE INTERCOM Operative over zumazingly
long diatances. Soparate call and press to talks buttons, 2.wire connection. 1000 s of application, seali Gupplied complete with batteries and complete with \&6.19.6. P. \& P. $3 / 6$.
 NEW MODEL $\$ 0030,000$
$0 . P^{2} . W$ With OPerlog O.P. With overlosd
pronection, mirror scale $0 / 5 / 2 \cdot 5 / 10 / 25 / 100 /$ $\begin{array}{ll}250 & 300 / 1,000 v . ~ D . C . ~ 0 / 2-5 / ~\end{array}$ $1,000 \mathrm{v}$. A.C. $0 / 50 \mu \mathrm{LA} / 5 / 50$) $500 \mathrm{~mA} \quad 12$ ump. D.C $0 ; 60 \mathrm{~K} / 6 \mathrm{Meg} .160 \mathrm{Meg} \mathrm{M}$ 28.17.6. Poat picid.

MODEL TE-10A. $20 \mathrm{k} \Omega$ $5 / 25 / 50 / 250 / 500 / 2,500 \mathrm{v}$
$10 / 50 / 100 / 500 / 1.000 \mathrm{v}$. $10 / 50 / 100 / 500 / 1.000$ v. A.C.
$0 / 50 \mu \mathrm{~L} / 2.5 \mathrm{~mA} / 250$ mA D.C $10 / 50 / 2 / 2 \cdot 5$ mA/250 mA D.C.
$0 / 6 \mathrm{~K} / 6$ meg. hm. -20 to +22 dB.

$10.0,100 \mathrm{mFd} .0$ $69 / 6 . \mathrm{P} . \& \mathrm{P} .2 / 6$

MODEL ZQM TRANSISTOR CHECKER checking on A, B and reo. checking on A, B and reo Equally axiaptabl checking diones, ef $\begin{array}{ll}\text { Spec.: A: } & 0.7-0.9957 . \\ \text { B: B-200. } & \text { lco: } \\ \text { B-60 }\end{array}$ $\begin{array}{cc}\text { Bicroamps } & 0-5 \mathrm{~mA} \text {. }\end{array}$ Reaistance for diode $200 \Omega-1 M \Omega$ supplied complete with ins*ruc
 tions, battery and lead. £5.18.8. P. \& P. $2 / 6$

LAFAYETTE LA-E2AT TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 diontes. IHF music power 30W at 8 ohms. Res. $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Dis tortion 1\% or lesa. Inputs: 3 MV and 250 Mi Ontput : 3-16 ohmas. Boparate L. ind R. Sterphone lack. Brushed aluminium, goldphodined extruded front panel with metal case. $10 \frac{1}{4} \times 3^{9} / 18 \times 7^{13 / 16^{i n}}$ in. $115 / 230 \mathrm{~V}$. A.C. case. $10 \frac{1}{2} \times 3^{9} /$
228. Carr. $7 / 6$.

TEGINIGAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEM SELF-BUILD RADIO courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

Post $1 /$ - per reel. Orders of 6 reels and over POST FREE.
Philips Moving Coil Mic. Inserts
Type EL.6081/04. Self contained complete with diaphragm. 50 ohms imp. Size: $\frac{7}{1} i n$. dia. $\times 1 \frac{1}{2} \mathrm{in}$. long. Brand new in protective case.
SALE PRICE 19/6 Р. \& Р. 1/-

Siemens Moving Coil Mic.

Brand new hand or desk mic. with remote control switch. 500 ohms. imp. Size: $3 \times 2 \times 1 \mathrm{in}$. complete with 7 ft . screened cable and 5 pin DIN plug. SALE PRICE 55/P. \& P. 2/-

Tape Rec. Position Indicators

3 digit type with reset. Surface mounts on deck with two screws or with special clip provided. Couples to tape spool by flexible cable (included).
SALE PRICE 29/6
P. \& P. 2/6

3 digit type with reset as used on many famous tape decks. Flush mounting type. Size: $1 \frac{3}{4} \mathrm{in}$. wide $\times 1 \times 1 \frac{1}{4} \mathrm{in}$. Driven from take-up spool.
SALE PRICE 4/6 Р. чр.1/-

WHARFEDALE BARGAINS
 Reflex Baffle Extension Speaker
 6 in . L/speaker unit in palished walnut veneered wood cabinet, size $10 \times 8 \times 4 \mathrm{in}$. Volume control fitted. $1 \frac{1}{2}-5 \mathrm{ohms}$ imp. Complete in maker's carton with 5 ft . flex.
 List price 76/11 SALEPR/CE 45/- Р. \& P. 3/6

Wharfedale Super 3

3in. H.F. unit-accepted as one of the finest tweeters ever made. Cloth surround. Max power cap. 6 W RMS. Freq. range 1 Kc to $20 \mathrm{Kc} / \mathrm{s}$. 6-8 ohms imp.
List price 6.8 .3 SALE PRICE 69/6 p.\& p.5/Wharfedale Super 5
5 in . Mid/high range unit. 1 in . aluminium voice coil. Max. power capacity 6 W RMS. Frequency range $400 \mathrm{c} / \mathrm{s}$ to $17 \mathrm{Kc} / \mathrm{s}$. $10-15$ ohms impedance. List price 6.14 .5 SALE PRICE £4.9.6 p. \& P. 5/Wharfedale "Truqual"
Constant impedance volume control. Provides attenuation from 0 to -24 dB in 5 steps plus OFF. For $1 \frac{1}{2}$ to 5 ohm speaker systems. Flush mounting.
List price 20/- SALEPRR/CE $/ 6 / 6 \quad$ P. \& P. 2/6
$100 ' s$ and 100's of Other Bargains
There's something for everyone in our vast stocks of new, shop
soiled and first-class reconditioned equipment-
COME AND LOOK TODAY (Open 6 days a weekI)
PERSONAL CALLERS TO:
48 TOTTENHAM CT. RD., W. 1
MAIL ORDERS TO:
378 HARROW ROAD, PADDINGTON, LOND ON, W. 9
PLEASE NOTE: Owing to increased handling charges - $01-6360647$
MINIMUM Mail Order value 1 (including postage).

THE＇YORK＇HIGH FIDELITY 3 SPEAKER SYSTEM
\star Moderate size，oniy $25 \times 14 \times 10 i n$ ．Complete Kit 19 Gns． \star Response $30-20,000$ e．p．s．Impedance 15 onms．Carr． $12 / 6$ considerably more．Consists of（1） 12 in． 15 watt Bass unit with and ceramic magnet．（2） 3 －way quarter section series cross－over system．（3） $8 \times 5 \mathrm{in}$ ．high flux middle range＇speaker．（4）High efficlency tweeter．（5）Measured welght of woollen acoustic damping materlal．（6）Teak veneered cabinet．（7）Circuit and ull instructions．

R．S．C．STEREO／20 HI－FI AMPLIFIER PROVIDING
 ONTEA LINEAR PFAK PUSH－PULE＇OUTPUT GRAM，RADIO OR TAPE．（7）valves ECC83，（2）ECL 86 Hum Level： $65 d B$ down．Sensitivity： 30 millivolts max Harmonice Distortion： 0.2% t Four－position tone compensation and Input Selector Switch．太Stereo／Mono switch太Neon paneI imdicator．＊Handsome Perspex Frontplate．\＃Separate ass ant Trebir controis．Ontput transformers are high quality section 15 wind．to－point wiring diagrams and instructions or farts，point 15 Gins．bled with our usual 12 mths gintee 18 gns ．Or factory assem Carr． $12 / 69$ monthly payments $£ 2$（Total £22．10．0）．Send S．A．E．for leafet
R．S．C．A10 30 WATT ULTRA LINEAR HI－FI AMPLIFIER Highly sensitive $\begin{gathered}\text { Pubh－Pull } \\ \text { high output．with } \\ \text { Pre－amp．／}\end{gathered}$ Tone Control Stages．Performance figures of factory bullt units：Hum level－70dB．Frequency put transformer，All higectionally wound out put transformer，All high grade components． Separate Bass and Treble Controls．Sensiti vity 36 mV so that almost any kind of signed for Clubs，Sehools，Theratres．Dance－ Halls or Outdoor Functions，etc．For use with Electronic organ，Guitar， String Hass，etc．Gram，Radio or Tape．Reserve L．T．and H．T．for Radio inputs such as Gram and＂Mike＂can be mixed． $200-250 \mathrm{v}$ ． $50 \mathrm{c} / \mathrm{s}$ A．C．mains FOr 3 and 15 ohm speakers．Complete kit of parts with point－to－ 14 Gins． point wiring diagrams and instructions，Supplied factory built with Twin－handled perforated cover 27／6．Supplied factory bulit with EL34 and 9 monthly payments of $31 / 3$（Total £18．15．3）．Send S．A．E．for leaflet，

R．S．C．AT1 HIGH
 FDELITY 12－14 WATT AMPLIFIER ＂BUILPE＂，CLTRA LINEAR OETPLT Two input sockets with associated controls allowing mixing of＂mike＂and gram，etc，etc． High sensith ${ }^{5}$ valves－ECC83（2），EL84（2） EZ81．High auality sectionally wound output transiormer．IND．BASS AND TREBLE CON Hum level -60 dB ．SENSITIVITY 40 millivolts ． Hum level－60dB．SENSITIVITY 40 millivolts．
Suitable for Crystal or Ceramic PUs，all types For AC mains $200-250 \mathrm{v}$ ． 50 cps 9 Gme Output for 3 and 15 ohm spkrs．SAE for leaflet．Complete kit． 9 GIS． Full instructions and point－to－point wiring diagrams．Carr $11 / 6$（or factory built 12 Gns．）Twin handled metal cover 27／8．TERMS ON ASSEMBLEED
UNITS．Deposit $87 / 6$ and 9 monthly payments of $22 /$ ．（Total £14．5．6） IRSC AIIT TRANSIS－ TOIRISED VERSION OF above completekit 9 Gins
（Assembled 13 Gins） R．S．C．BASS－REGENT 50 WATT AMPLIFIER
 An exc An exception－
ally powerful ${ }_{\text {ally }}$ high querful high quality unit for lead， unit for lead，
rhythm，bese guitar．vocal－ ists，gram， radio，tape． \star Two extra heavy duty ouspakers t Four Jack inputs and simultaneous use of up to four pick－ups or＂mikes＂ Bass and Treble controls． 52 Gins．Carr． $301-$ or and 9 monthly payments of £5．11．9．（Total 571 gns．）． Send S．A．E．for leaflet． Also Beo bass inc 1 inin． 25w Spkr． 291 gns．（in15 inc R．S．C．BATTERY／MAINS CONVERSION UNITS Type BMI An all－dry minator． 2in．approx． Completely replaces bat－ teries supplying 1.5 v ．and 90 v ．where／A．is available． Complete rit with 49／11 or assembled SBILI SELENIUM｜F．W， RECTIFIERS（Bridged） All 6／12v．D．C．output．Max． 2a．©／11．3a．9／9．4a．12／9．6a． $15 / 8$.

R．S．C．MAINS TRANSFORMERS
FULLY GUARANTEED．Interleaved and Impreg－ MIDGET CLAMPED TYPE $81 \times 21 \times 21 \mathrm{in}$
$250 \mathrm{v}, 60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}$
$250.0-250 \mathrm{v} ., 60 \mathrm{~mA} 6.3 \mathrm{v}$ ，
FULLY SHROUDED UPRIGHT MOUNTING
此－0．250v． $00 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$ ． $2 \mathrm{a} ., 0 \cdot 5 \cdot 6 \cdot 3 \mathrm{v}$ ． 2 a ．
$00.0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~m} ., 0-5 \cdot 6 \cdot 3 \mathrm{~V} .3$
$300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$ ． $4 \mathrm{a} ., \mathrm{c} . t ., 6 \cdot 3 \mathrm{v}$ ． 1 s. For Mullard 510 Amplifier
$350-0-350 \mathrm{v} .100 \mathrm{~mA}, 5 \cdot 3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}, 3 \mathrm{a}$ ． $350-0-350 \mathrm{v}, 150 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{a},, 0-5-6 \cdot 3 \mathrm{v} .3$ $425-0-420 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} .$, e．．．．． 5 v .3 s.
$425 \cdot 0-42 \mathrm{v} .200 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} .6 \cdot 3 \mathrm{v} .3 \mathrm{a} ., 5 \mathrm{v} .3 \mathrm{~s}$ $50-0-450 \mathrm{v} 250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4$ TOP SHROUDED DROP－THROUGH TYPE $250-0.250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} \cdot 2 \mathrm{a} . \mathrm{m}^{0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{a}}$ $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{~s}, 6 \cdot 3 \mathrm{v}$ ．1a $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .2 \mathrm{a}$ $50-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{~s}, 0-\mathrm{b}-6 \cdot 3 \mathrm{v}$ ． 3 B $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{a}, 0-5-6-3 \mathrm{v}$ ． 3 a ． $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6-3 \mathrm{v}$ ． $4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$ ． 1 a Stitable for Mullard 610 Amplifier $550-0 \cdot 350 \mathrm{v}$ ． $100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$ FILAMENT or TRANSISTOR POWER PACK Typea $6 a .21 / 8 ; 12 \mathrm{v}$ ． $1 \mathrm{la} .8 / 9 ; 12 \mathrm{v}$ ． 3 a ．or 24 v ． $1 \cdot 5 \mathrm{sa} .21 / 8$ ； 0－9－18v．1 fa．17／9；0－12－25－42v．2a．29／9． CHARGER TRANGPORMERS 0－9－15v．14a．14／11； $24 \mathrm{~s} .17 / 9 ; 3 \mathrm{a} .19 / 11 ; 5 \mathrm{a} .23 / 9$ ；6a．27／9；8a．33／8． AUTO（Step UP／ated DOWN）TRANSFORMERS $0-110 / 120 \mathrm{v} .200-230 \cdot 250 \mathrm{v} . . . \quad 50-80$ watts $15 / 9$
150 watts， $29 / 11 ; 250$ watts $49 / 9 ; 500$ watts $99 / 9$ OUTPUT TRANSFORMERR
Standard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Push－Pull 8 watts EL84 to 3 Q or 15Ω Push－Pull 10 watts 6V6 ECL 86 to 3， 5,8 or Puah－Pull EL84 to 3 or 15Ω（10－12 watts Push－Pull 15－18 watts，sectionally wound etc． KT66，etc．，for 3 or 15Ω
Push－Pull 20 watt high quality sectionaliy wound EL34，6L6，KT66 etc．to 3 or 15Ω SMOOTELNG CHOKES
$80 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \mathrm{O} 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \mathrm{O} 10 / 9$

BLACKPOOL o．AGENT APPOINTED
R．S．C．COLUMN SPEAKERS

Covered in

two－tone Rexine／ Vynair，ideal for vocalists and Public Address． 15 ohm matching Cs7 15 watts inc．five $7 \times 41 \mathrm{n}$ ．speakers $£ 7.19 .11$ Overall size approx． 42 x $10 \times 51 \mathrm{n}$ ．Or deposit $65 /=$ watt speakers． and 9 mthly pmts 34／9（Total 218.17 .9 ）Carr．10／－． 16 Gns． Type C41\％， 50 watts．Fitted four $12 i n$ ． $11,0001 \operatorname{line} 15$ watt 24 Gns． speakers．Verall size $56 \times 14 \times$ gin．approx．Carr． 15 ／－
30 WATT HI－FI AMPLIFIER
for Guitar．Vocal or Instrumental Group arate Bass and Treble controls．Current valves．Peak les．Attractive black／gold perspex facia Neon indicato For $200-200 \mathrm{~V}$ ．A．C．Mains．For 3 or 15 ohm speakers．Send S．A．E．for leaflet．Deposit 3 gns．and 18 Gins．Carr
9 mthiy payments of $39 / 8$（Total £21）．

12in．HIGH QUALITY LOUDSPEAKERS

LOUDSPEAKERS Limited number of heavy duty
Brand new，guaranteed．Terms available over £8．Carr．10／－extra．

FANE
＇POP＇ 100 loudspeaker
$18^{\prime \prime} 100$ Watt
Fantastic power
handling．Guar－
anteed
POST FREE 19 Gns

CLEARANCE LINES

HIGH QUALITY $8^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKERS ${ }_{3} 10000$ ghm onss $11 / 9$
14 WATT HI－FI AMPLIFIERS $\begin{gathered}\text { High sensitivity．Tho separ－} \\ \text { ate }\end{gathered}$ controls for mixing purposes．Separate Bass and Treble Controls．Valves A．C．mains A．C．mannsoperation．Size approx． $8 \times 8 \times 61$ ．Factory
built and fully guaranteed．Lfmited number to clear at
£7－19－11
Carr－
10－－

EXTENSION＇SPEAKERS 29／9
Cabinet size $12 \times 8 \times 5$ in
Cabinet size $12 \times 8 \times \operatorname{xin}$ ． Fitted
speaker
PHONE AMPLIFIERS
PHONE AMPLIFIERS
Speak and listen with both hands $59 / 9$
1 WATT TRANSISTOR AMPLIFIERS
PRINTED CIRCUIT KITS $\quad 12 / 9$
Complete with 72 square ins．laminated making printed aircuits． $12 / 9$
J．B．VHF／FM DIAL \＆DRIVE ASSEMBLIES only 9／9
Complete with escutcheon．Size $7^{\circ} \times 45^{*}$ ．Escutcheon $75^{\circ} \times 22^{\circ} \quad$ Post $2 / 9$ TAPE RECORD／PLAYBACK AMPLIFIERS Eye Recording level indicator．For 3 ohm L／S．All normal $\mathbf{f 8 . 1 5 . 0}$ HEAVY DUTY 15in． 40 WATT LOUDSPEAKERS
in substantial Rexine／Vynair covered cabinet．Carr． 15 － 14 Gns MINI－8 HI－FI LOUDSPEAKER UNITS Teak veneered cabinet，size approx $102 \times 66 \times 71$ n．Peak
power handing 8 watts or 15 ohms．
Clearance Price

JASON VHF／FM TUNER DESIGNS

All parts FMT1 5 Gns．fytz $£ 6$ ．19．11．JTv2 $9 \frac{1}{2}$ Gns．Please state
STEREO／TEN HIGH QUALITY AMPLIFIER

watts high quaty output on each channel． Sensitivity 50 millivolts．Suitable all crystal or ceramic stereo cartridges．Ganged Bass and
Treble Controls．Valves ECC83（2），EL84（2），EZ81 Treble Controls．Valves
For $2-3 \mathrm{ohm}$ speakers．
Assembled with 12
months＇guarantee
£11．19．6
R．S．C．6／12V CAR BATTERY CHARGERS
Complete kit of parts incl．Ammeter and Circuit
4 amp
with variable charge rate selector
49／9
6 amp $\begin{aligned} & \text { heavy } \\ & \text { duty }\end{aligned}$ with variable charge rate $\begin{gathered}\text { selector } \\ \text { sut }\end{gathered}$
All types $200-250 \mathrm{v}$ ．A．C．mains．Ready built $10 /$－oxtra．

SENSATIONAL R．S．C．HIGH FIDELITY STEREO PACKAGE OFFERS

＂PACKAGE 3＂ 30 WATT SYSTEM
＊Goldring Transcription Turntable on Plinth \star Shure Magnetic Prick－up Cartrid

Matched for optimum performance．Send for

Illustrated with TFMI Mk II Tuner fitted EXTREMELY ATTRACTIVE AND VERSATILE PLINTHS finished in T Perspex＂hinged＂

PACKAGE 2＂ 30 WATT SYSTEM
＊Garrard SP25 Mk II Turntable on Plinth ＊Goldring CS90 Ceramic P．U，Cartridge \star Super 30 Amp ．in cabinet． 75 Gns．${ }_{20}^{\text {cartr }}$－ Special inclusive price．Full
wired units ready to＂plug－in \qquad Plus small P．T．Su ＂PACKAGE 1＂＂ 13 WATT SYSTEM －Garrard SP25 Mk II 4 sp player unit on Goldring CS90 Ceramic P． TA12 Amplifier in cabinet
Pair of Dorchester Loudspeaker $49 \frac{1}{2}$ GNS
Units Special inclusiveprice．

Or Dep．E10 and 9 monthly payments $\mathbf{8 5 . 4 . 0 \text { ．（Total }}$ 256．16．0．）Perspex cover
3gns．extra．

10 W HIGH FIDELITY AMPLIFIERS LINEAR L10 Separate Pre－ 10 GNS amp and Main Amp．Matched to Magnetic PU．To clear

RSCTAIR IB WAIT STEREO AMPLIFIER

 RP2 Tlup into Ampilifer sisting of Garrard SP25 Mk I （with heavy turntable）fitted Goldring CSgo high compli－ ance ceramic Stereo／Mono cartridge with diamond sty－lus．Mounted on Plinth．Inc． lus．Mounted on Printh．Inc． surcharge．
RP3 As above but with Transcriotion unit and CS90 Crartridge．Supplied with Perspex cover．E28 Carr．
Inc．P．T．${ }^{\prime}$＇charge
R．S．C．PLINTHS

FULLY TRANSISTORISED，SOLID STATE CONSTRUCTION Designed for optimum periormance with any crystal or ceramic Gram
P．U．cartridge，Radio tuner．Tape re－ P．U．cartridge，Radio tuner，Tape re－ switched input sockets on each chan－ nel \star Separate Bass and Treble con－ trols \star Slide Switch for mono use \star
Speaker Output $3-15$ ohms \star For $200-250 \mathrm{v}$ A．C．mains t Frequency
$200-250 \mathrm{v}$ A．C．mains Response $30-20,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$ ． $2 \mathrm{~dB}+\mathrm{Harmonic}$ Distartion 0.3% at 1000 c．p．s．Hum and Noise－ $70 \mathrm{~dB} \star$ Sensitivities（1）300mV（2） 50 mV （3） 100 mV （4） 2 mV Output rating I．H．F．M．大 Handsome brushed silver finish Faciaand Knobs．Completekit of parts with full 191 Carr． wirlng diagrams \＆Instructions．Factory built with 12
mth gntee 16 GNS or Deoosit $£ 4.16 .0$ and 9 mthly mth gntee 16 GNS or Deposit 24.16 .0 and 9 mtio
 inc 18 Gns．Del．AUDIOTRINE HI－FI SPEAKER SYSTEMS

Consisting of matched12in．12，000 lune 10 watt 15 ohm high quality speaker．cross－over unit and tweeter． Smooth response and extended frequency range en－ sure surprisingly realistic reproduction． 5 Gins．
Or Senior 15 watt inc．HF 126 15,000 line Speaker 6 Gns．Carr． $6 / 6$
3000．AT6．AT60，SP25 or Gold ring GL68．Available with clear Perspex co－ 6 Gns．
ver as ill．Inc．Carr． Perspex cover sold separatelv at 3 Gins．Limited number of covers slightly damaged but
repaired by makers．$\quad 39 / 9$ GES REFUNDED on Credit Sales settled in 3 months．

HI－FI SPEAKER ENCLOSUAES Teak or Afrormo－ sia veneer finish．M
ported．Inc．carr．
IEs Size $16 \times 11 \times 91 n$ ．Pressurlsed．Gives pleasing results with any bin．Hi－Fi＇speaker．

4 Gns．

$$
\text { SF\& For optimum performance with any } 81 n .5 \mathrm{Gns} \text {. }
$$ H1－F1＇speaker．Size $22 \times 15 \times 91 n$ ．

SE10 For outstandingresults SE For exclnt prfmnce with $121 \mathrm{Hi} \mathrm{Hi}-$

R．S．C．TFM1 SOLID STATE VHF／FM RADIO TUNER Total cost of parts with detailed wiring
diagrams $\&$ instruc－ diagrams \＆instruc－
tions．
Inc．
Carr． 14 Gns． Or factory built $16 \mathrm{gms}$. Or in Teak
Anished cabinet as inished cabinet as Terms：Deposit 85 and 9 monthly pay－
ments $£ 2$ ．Total 223 ．

tion．太 Sharp A．Mi．Ikejection．太 Drift－free recep－ tion．大 Output ample for any anaplifier（approx． 500 m ． F ．）．t Simple alignment instructions．t Out－ put available for feeding tuningmeter．t output
for feeding Stereo Multiplexer．\quad Tuner hexd using silicon Planar Transistors．t Designed for standard 80 ohm co－axial input．Visually matching our Super 15 and 30 amplifers and of the same high standard of performance and reliability． The pre－wired tuning head iacilitates speed and simplicity or construction， Printed circuitry．Only high grade transistors and components used．A quality product at considerably less than the cost of comparable units．

YL LLY＇ERANSISTURISED $200 / 250 \mathrm{v}$ ．A．C．Madns
（）UTPET＇ 10 WAT＇S R．M．S．cont．into 15 ohms． 15WATTS R．M．S．cont．into $3-4$ ohms TRANSISTORS． 9 current types of high quallty by leading manufacturers． IDQUALISATION to Standard R．I．A．A．and C．C．I．R． Characteristics for Gram and Tape Heads §ENSITIVITIES：Magnetic P U 4 mV ．Crystal or Ceramic P．U． 400 mV ．Microphone 4.5 mV ．Tape Head 2.5 mV ．Radio／Aux or Ceramic P ．U． 110 mV ． FREQUENCY IRESPONSE： $\pm 2 \mathrm{~dB} 20-20,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$ ． TREBLECONTROL：+15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{s}$ ．NEG FEEDPACK： 52 dB ． 1HASS CONTHOL：+17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$ ．HUM LEVEL：－75dB， IAIRMONIC DISTORTION at 10 Watts 1,000 c．p．s． 0.2%
COmplete Kit of parts with full constructional details and $1 \frac{1}{2}$ complete Kit of parts with rull constructional details and $\overline{2}$ GllS． Supplied factory built 151 Gns．Carr，12／6．Terms：Deposit 4 Gns．and 9
monthly payments $31 / 1$（Total \＆18．3．9）．Or in Teak or Afrormosia veneer monthly payments 31／1（Total 18.3 .9 ）．Or in Teak or Afrormosia veneer ALL COMPONENTS ETC．ARE OF A HIGHI STANDARD AND
SUPHLED BY LEALING MANUFACTURERS．
BRADFORD 10 North Parade．（Hall－day Wed．）Tel． 25349 BLACKPOOL（Agent）©．\＆C．Electronics， 227 Church Street BIRMINGHAM ${ }^{30 / 31}$ Gt．Western Arcade opp．Snow HIII DERBY 26 Osmaston Rd．The Spot（Hall－day Wed．）Tel． 41361 DARLINGTON 18 Prisestgate（Hall－day Wed．）Tel． 68043 EDINBURGH ${ }_{133}$ Lelth St．（Hall－day Wed．）Tel．Waverley 5766 GLASGOW ${ }^{326}$ Aroyte St．（Half－day Tues．）Tel．CITy 4158 HULL 91 Paragon Street．（Hali－day Thursday）Tel． 20505 Henconner Lane，Bramley， Leeds 13．No C．O．D．under £1．Terms C．W．O．or C．O．D． Postage $4 / 6$ extra under $£ 2$ ． $5 / 9$ extra under 25 ．Trade please．Open all day Sats． Mail Orders must not be sent to shops

A IDUAL CILANNEL，VERSION OF THE SUPER 15. Employing Twin Printed Circuits High quality Ganged Pots．Matched Components．CROSS TALK CONTKOL： 5 position Input Selector．Bass Control．Treble Control．Volume Control．Balance Mains Switch INPUT Switch．Tape Monitor Switch．Mains SWitch．inpic Crystal P．U．（3）Radio／Aux．（4）Tape Head／Microphone． Operation of the Input Selector Switch assures appropriate equalisation．Rigid 18 s ．w．g．Chassis．Size approx．12in．Wide， 3ln．high and Bin．deep．Neon Panel indicator．Attractive Fa－
cia Plate and Spun Silver Matching Knobs．Above facilities， $\|$ etc．，except for Ganging and Balance Control，apply also to Super 15 ． THESF UNITS ARE EMINENTLH SUITARLE FOR USE WHTH Magnetic，Moving Coll， SH GUR SOUD OUTPUT QUALITY CAN RE OBTAINED BY USING WITH FIRST RATE ANCILI．NRI diagrams and detailed instructions． Unit factory built 28 Gns．or deposite $\% .5 .0$ and 9 monthly payments $58 / 3$. （Total £32．13．3）．Or in veneered housing 31 Gins．Carr．15／－or Deposit \＆7．3．6 and 9 monthly paymts 64／－（Total E35．19．6）．Senc S．A．E．for leaftet．

32 HIgh Street．（Hali－day Thurs．）Tel． 56420 LEICESTER

 5－7 County（Mecca）Arcade，Briggate（Hall－dayWed）Tel 28252 LEEDS 73 Dale St．（Haif－day wed．）Tel．CENtral 3573 LIVERPOOL 238 EdgwareRoad，W2（Half－day Thurs．）Tel．PAD 1629 LONDON 60A OIdham Street（Hali－day Wed．）．MANCHESTER 106 Newport Rd（Hall－day Wed）Tel 47096 MID DLESBROU GH 41 Blackett Street（Opp．Fenwlecks Store）NEWCASTLE UPON （Hail－day Wed．）Tel． 2146913 Exchange Street（Castle Market Bldgs．） $\begin{array}{r}\text {（Half－day Thursday）Tel．20716 }\end{array}$ （Half－day Thursday）Tel． 20716

a new 4-way method of mastering ELECTRONICS by doing - and - seeing

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC		
- Valve experiments	- PHOTO ELECTRIC circuit	- A.C. EXPERIMENTS
- TRANSISTOR EXPERIMENTS	- computer circuit	- D.C. EXPERIMENTS
- AMPLIFIERS	- basic radio receiver	- SIMPLE COUNTER
- oscillators	- ELECTRONIC SWITCH	- time delay circuit
- SIGNAL tracer	- SIMPLE TRANSMITTER	- SERVICING PROCEDURES
This new style course will enable anyo no maths, and a minimum of theoryto test, service and maintain all types	to really understand electronics by a previous knowledge required. It will Electronic equipment, Radio and T	dern, practical and visual methodenable anyone to understand how ceivers, etc.

TOPIC DF THE MONTH

 Seven Ages (so far)

 Seven Ages (so far)}

ACCORDING to what we hear, there are seven ages of man. If this is true, it doesn't apply to readers of P.W. who-to our knowledge-range from seven to seventy, or thereabouts. But if it is impossible to split readers into seven ages, an attempt could be made with the subject itself.

There are still a few readers who can remember Age 1, the dawn period when you had to make most, if not all, of the components before wiring could begin. The next generation of enthusiasts was luckily able to buy most of the bits and pieces and was no doubt considered rather effete by the old guard!

Later on, in Age 3, the purists were even more affronted because complete units, including communications receivers, could be obtained. The rot had set in. For Age 4 let us nominate the immediate post-war years wher the flood of surplus equipment swamped the stores and found its way into thousands of radio dens.

The next generation (Age 5) grew up in the kit era. There had been kits before, but now they proliferated and if you could solder a joint you could become a member of the fraternity. The pace accelerates to Age 6 when printed circuits and transistors burst on the scene simplifying construction and bringing in real miniaturisation for the first time. The present generation (Age 7) sees modules and ICs beginning to make an impact.

At each of these stages in the evolution of the radio hobby, it was perfectly understandable for the preceding generation to shake its collective head and remark that "things are not like they used to be" and "Today everything's far too easy". Yet, the hobby continues to flourish!

One strong reason why this should be so is that radio fans are usually very adaptable and fired with curiosity. Thus, even today there is room for experiment and ingenuity, and this cannot be better exemplified than by a new series of articles we have commissioned under the generic heading of TAKE 20. Each part will describe a constructional project using 20 or less components and costing 20 or less shillings to build. Turn to page 49 for the first instalment.
W. N. STEVENS-Editor.

NEWS AND COMMENT

Leader 17
News and Comment 18
MW Column by C Molloy 25
On the Short Waves
by Christopher Danpure and David Gibson, G3JDG 26
CQ CQ CQ CO CQ CQ 32
Practically Wireless by Henry 43
Letters to the Editor 65
CONSTRUCTIONAL
Comprehensive Transitor Tester by J. A. Jebb 20
Combined Loudspeaker and S-meter by F. G. Rayer 24
P.W. Double-12, Part 2 by Hal Moorshead 35
Calibration Oscillator by R. F. Graham 46
Take 20 by Julian Anderson 49
Integrated Circuit Stereo Amplifier by L. McNamara, B.Sc. 61
OTHER FEATURES
Basic Semiconductor Technology, Part 1 by M. F. Docker, M.Sc. 28
Pulse Circuits in Operation, Part 1, by I. J. Kampel 40
P.W. Guide to Components, Part 5, Transistors, by M. K. Titman, B.Sc. 44
Aerials, Part 2by A. J. Whittaker50
Satellite Earth, Station, Part 2 by Richard Collins 57

[^2]
news and comment...

"MOXEY" PISTOL-GRIP HAND DRILL

Main feature of the new pistol-grip hand drill made by the Moxey Manufacturing Co., is the enclosed gear mechanism. This eliminates the chance of pinching vour fingers on the open cogwheel which is a disadvantage of so many hand drills on sale today. The gears of the Moxey drill are hidden in the aluminium casing and the $3 \frac{3}{6} \mathrm{in}$. driving handle is made to come off for easy storage.

The drill is named after Bernard A. Moxey, aged 39, a Herts. toolmaker who set up on his own in 1953. Now, after having made millions of parts for other firms he has embarked upon manufacture of a finished product of his own design.

The drill measures $8 \frac{3}{4}$ in. from the chuck tip to the handle extremity and weighs 180 z . The casing may be opened for lubricating the moving parts but the makers claim they are not likely to require lubrication for some years.

The Moxey drill is available at ironmongers stores and departmental stores and costs 32s. 6d.

THANET MOBILE RALLY

On 18th May the Thanet Radio Society Mobile Rally will be held at Ramsgate, Kent. An added attraction this year is the SRN-4 hovercraft at nearby Pegwell Bay. Further details, send s.a.e. to Dick Trull, G3RAD. Hon. Treasurer and P.R.O., 1 Approach Road, Broadstairs, Kent.

TANDBERG HI-FI SYSTEM 15

The Hi-Fi System 15 comprises a 12 in . woofer, a 5 in . midrange and a 2.5 in . tweeter. The impedance is 4Ω and the handling capacity is 30 W . The speaker is available in teak and a rosewood version will be available shortly. Price (teak) is 64019 s .

MULLARD FILMSTRIP ON INTEGRATED CIRCUITS

New from the Mullard Educational Service is a 36 -frame, 35 mm . colour filmstrip called "Integrated Circuits". It acts as an introduction to the subject for students of semiconductor technology and for those with a wider interest in electronics. Although an elementary knowledge of semiconductors is desirable, it is not essential and the notes provided with the filmstrip can easily be edited to suit varying audience levels.

Also available as a set of slides mounted in 35 mm . frames, the film is obtainable from The Slide Centre Ltd., Portman House, 17 Broderick Road, London, S.W.17. The cost is $£ 2$ for the filmstrip and $£ 210$ s. for the slides. Good value as a club investment.

DRY JOINT LOCATOR

Techmation Ltd. announce their dry-joint locator. It is manufactured in the UK by Davian Instruments Ltd. and is basically a linear-scaled ohmmeter of variable sensitivity which is normally preset. By using a high current to measure low resistances, any dry joints show up as the current tends to accentuate the resistance of the joint. On any resistance greater than 4 times f.s.d. (including o / c) an active protection circuit reduces the current from its preset value to about $10-15 \mathrm{~mA}$ total. In order to protect both meter and circuitry under test, the maximum applied voltage is limited to less than 1 V .

A good soldered joint should have a resistance of less than $50 \mathrm{~m} \Omega$ and dry joints normally have a resistance greater than 0.5Ω. Any joint of greater resistance than 0.1Ω is a potential source of trouble and should be re-soldered.

Other possible applications of the unit are: investigation of earth loops and return paths, relay contacts, measurement of contact resistance, determination of wire lengths etc.

The price of the battery-powered version is $£ 17$ excluding batteries. The mains version is $£ 1910$ s. and post and packing are 7s. 6d. extra. Techmation Ltd., 58 Edgware Way, Edgware, Middlesex.

OFF-THE-SHELF "'MINIS"

A new off-the-shelf range of miniature power transformers has recently been introduced by The Belclere Co. Ltd. Outputs range from $3-0-3 \mathrm{~V}$ to $20-0-20 \mathrm{~V}$ and each transformer delivers up to 600 mW . Standard construction is p / c pin mounting, varnish impregnated, but clamped versions with or without electrostatic screen are also available.

Prices start at less than 10 s . each for quantity, and "specials" using the same frame size can also be designed and supplied.

Full details are available from The Belclere Company Ltd., 385/387 Cowley Road, Oxford. Tel.: Oxford 77266.

KNIGHT-KIT REDUCTIONS

The Electroniques new list of Knight-Kit prices shows a reduction-in many cases up to or exceeding $\mathbf{2 0 \%}$. Electroniques say that they have been able to do this because of their record 1968 sales figures.

RADIO AMATEUR LEADS AFRICA EXPEDITION

David Dunn, GW3XRM, aged 25 and a senior design draughtsman with Hydraulic Machinery (G.B.), is off on an 8-month trans-Africa safari. He and his team will study the reliability of low-powered short wave radio communications and carry out geological investigations of the Rift Valley area of East Africa.

David (pictured) will make daily QSOs en route with a radio operator based at Cardiff University. Both the university and Students' Union have provided grants for the provision of the radio gear which is installed on the ex-Army Commer cross-country truck the team purchased for $£ 100$ to take them on their 12,000 mile journey. He has also applied for licences to transmit from each country the team visits.

ANNUAL DINNER FOR SUTTON \& CHEAM The Sutton \& Cheam Radio Society announce their 21 st Annual Dinner and Ladies' Festival to be held at The Crown Inn, Morden, Surrey, (just by Morden station at end of Northern Line Underground) on Saturday, 12th April 1969. Reception at 6.30p.m.

The President of the RSGB, Mr.J.W. Swinnerton, G2YS, has kindly accepted their invitation to attend as guest of honour, and it is expected that a number of other well-known personalities in the field of Amateur Radio will be present.

A really first-class evening, including cabaret, is planned and a heavy demand for tickets is anticipated. Please contact Roy Scott, G2CZH, 140 Seymour Avenue, Morden, Surrey, as soon as possible for bookings, at 35s. per person, and further information.
"CHIP" CAPACITORS

From The Radio Resistor Company Limited comes a new range of multi-layer capacitor "chips" for incorporation into integrated circuits. Available in a wide range of capacitance values to order these new capacitors can be supplied with or without tin-plated electrodes.

In addition, the range is also available as complete components with radial terminations and synthetic-coated finish in a capacitance range of from 470pF to 47,000pF.

Tolerance on capacitance on both types is $\pm 20 \%$ and $+10 \%$; Working voltage is 63 V d.c.; Loss factor is equal to or less than 25×10^{-3}.

These multi-layer capacitors are manufactured by Rosenthal Isolatoren G.m.b.H. for whom The Radio Resistor Company Limited, 9-11 Palmerston Road, Wealdstone, Harrow, Middlesex, are the sole UK representatives.

MULLARD DATA HANDBOOK 1969

The 1969 Mullard Data Handbook gives abridged data on the extensive range of Mullard valves, picture tubes, semiconductors and components used in the consumer electronics industry.

Each product has been printed on different coloured pages to facilitate quick reference, and although some of the earier devices are not listed due to lack of space the handbook will prove invaluable to the serviceman or the amateur constructor. The cost of the handbook is $\mathbf{3 s} .6 \mathrm{~d}$.

T|HE specification sheet of a particular transistor may, at first sight, seem a little forbidding, and perhaps give theimpression that the evaluation of a transistor is a difficult task. The important parameters are, Ic for a certain Ib, the bottoming voltage, and the serviceability of the junctions. These quantities are related to β (also known as Hfe), Vce (sat) and Iceo.

Basic Tests

The transistors considered will all be n-p-n types, for the sake of argument, that is, wired with collector to positive.

Test for Iceo. This is essentially an insulation test of both the junctions, see Fig. 1. A good silicon transistor will have Iceo $<0 \cdot 1 \mu \mathrm{~A}$. A good germanium transistor has Iceo about $0 \cdot 1 \mathrm{~mA}$, but this varies from device to device, and also depends on the temperature (Iceo doubles for every $10^{\circ} \mathrm{C}$.

Iceo rise, and even on the intensity of light illumination at the time of testing.)

Fig. 1: Test for /ceo.
Test for Icbo. Again an insulation test, but this time over only one junction. Icbo is always $<20 \mu \mathrm{~A}$, even for germanium transistors, see Fig. 2.
Test for Vce (sat.). This is a measure of the turn-on voltage of the transistor. It will be about 0.7 V for silicon and 0.2 V for germanium. A meter is included in

Fig. 6: The circuit for the 1 mA and 10 mA constant current source.

Fig. 7: The circuit for the 100 mA constant current source.

The Circuit

The unit described in this article has a constant current source in the collector circuit, and a meter in the base circuit. The constant current source is switchable to 1 mA , 10 mA , and 100 mA , and the meter is shunted from $100 \mu \mathrm{~A}$ to 1 mA by independent switch, and 10 mA by switch ganged to the 100 mA range.

There are two separate constant current sources used in the instrument, one providing 1 mA and 10 mA , the other 100 mA : Fig. 6.

The differential amplifier formed by Trl and 2 drives a series transistor $\operatorname{Tr} 3$, which is of opposite polarity to Tr 1 and 2 . In the 1 mA and 10 mA circuits, the series transistor is an OC203, an obsolete p-n-p junction type. The differential pair are 2 N 2926 green (the green refers to the gain grouping), with a gain of approximately 250 . The OC203 was chosen because of its low leakage current and its gain, which is substantially constant over 1 mA 10 mA . A germanium OC81D was tried and worked, but the specimen used was a glass-encapsulated one, and its Iceo was greatly affected by changes in temperature and ambient light conditions, resulting in poor stability. There is a fair amount of switching to be done to change 1 mA to 10 mA , but stability considerations made this essential.

The 100 mA range was designed round a BFY 50 , n-p-n transistor, with a maximum dissipation of 800 mW . A heat flag was originally fitted but this proved unnecessary. $\mathrm{P}-\mathrm{N}-\mathrm{P}$ transistors are required in the differential pair, and 2N 3702's were used for reasons of availability and price. One disadvantage

Common transistor symbols and abbreviations

$B V$ сво	Collector-base breakdown voltage	Icbo(max)	Maximum collectorbase cut-off current with
$C B$	Common-base circuit		emitter opencircuit
Ccb	Collector-base capacitance	/Cm(max)	Maximum peak collector current
CC	Common-collector circuit	$\begin{aligned} & \text { IE } \\ & \text { IEBO } \end{aligned}$	Emitter current Emitter-base leakage current, collector opencircuit
$C E$	Common-emitter circuit		
cob	Maximum commonbase output capacitance	$\begin{aligned} & I \mathrm{~F} \\ & / \mathrm{R} \\ & P \mathrm{c}(\text { max }) \end{aligned}$	Forward current Reverse current Maximum collector dissipation
$c_{\text {tc }}$	Collector depletion capacitance		
f T	Transition frequency	Ptot(max)	Maximum total dissipation
$h \mathrm{fe}$	Small signal common-emitter signal current gain with output short-circuited to a.c.	Tamb	Ambient temperature
		Tc	Case temperature
		$T \mathrm{j}$	Junction temperature
		Tj(max)	Maximum junction temperature
$h_{\text {FE }}$	Large signal common-emitter signal current gain with output short-circuited to a.c.	$V_{\mathrm{BE}}$$V_{C B}$	Base-emitter voltage Collector-base voltage
		V свм(max)	Maximum peak collector-base voltage
$h \mathrm{FEL}$	Large signal current amplification factor	$V \mathrm{CB}$ (max)	Maximum collectorbase voltage
/B	Base current	$V \mathrm{CE}, \mathrm{etc}$.	Collector-emitter voltage, etc., as for collector-base
IC	Collector current		
$I C(A v) \max$	Maximum mean collector current	$V \mathrm{Ce}$ (sat)	Collector-emitter voltage for saturated (fully conducting) operation
/сво	Common-base collector-base current with emitter opencircuit (leakage current)		
		V_{F}	Forward voltage
		$V_{\text {R }}$	Reverse voltage

Fig. 8: The complete circuit of the transistor tester. The constant current sources are shown as two interlocking circles.
of these is that the gain varies from between approximately 10 .at $100 \mu \mathrm{~A}$ to 60 at 10 mA , however, the stability of the circuit is quite adequate.
The switch used to change the constant- current circuit (Sw) is is ganged to others which alter the meter shunts. Most transistors which will take 100 mA Ic have a gain of between $10-100$, so a meter shunted to 10 mA gives a useful scale. This only applies to this range, and an independently switched 1 mA shunt is employed on other ranges. Transistors with a gain of $10-1000$ may be tested at 1 mA or 10 mA .
After some weeks of usage, it was noticed that the tester often showed a transistor to be excessively leaky, even when it worked satisfactorily in practical circuit. This was traced to the rather high value of battery voltage used. Since the leakage currents are quite small, the constant current supplies will not operate and the full 30 V will be placed across the device under test. Accordingly, the circuit was modified so that, when Sw2 was set to Iceo or Icbo, the setting of Swl determines the battery voltage applied. Setting Swl to 1 mA gives a voltage of 15 V , setting to 10 mA or 100 mA gives 30 V . For the Vce (sat) and Hfe tests, voltage is always 30 V .
The switch Swl selects the test required, also the type of metering required (current or voltage).

To obviate the need for extra poles on the polarity switch, a bridge rectifier was placed around the meter. This was most convenient, and introduced no non-
linearity on the current ranges, but on the Vce (sat) range, it was found that no useful reading was obtained. This was attributed to the non-linear current/voltage characteristic of the diodes. The solution to the problem lies in the introduction of an off-set voltage of just enough strength to turn on the diodes. This is effected by the insertion of a resistor in series with the transistor under test, having such a value that the meter just begins to register a reading when the appropriate current from the constant current source is passed with collector and emitter terminals shorted.

When a transistor is inserted, Vce (sat) is added to the off-set voltage and can be measured on the meter. Three resistors are required, one for each Ic range, and these are switched by the current switch Sw2. Owing to variations in diode characteristics, the value of resistor cannot be predicted accurately, but for the 1 mA it is a good start to try $1 \mathrm{~K} \Omega$ and then 4.7 K , $3.9 \mathrm{~K}, 3.3 \mathrm{~K}$ and 2.7 K in turn, in parallel with this, with collector and emitter shorted. The other current ranges decrease the resistor value by $1 / 10$ each time.

This test does not give a very accurate voltage check (within about 10%), but it is good enough to distinguish 0.2 V from 0.7 V , and hence decide on the structure of an unknown transistor.

The Hfe test connects collector and emitter to the constant current source, and base to the metering system. At 1 and 10 mA , current ranges of $100 \mu \mathrm{~A}$ and

1mA are satisfactory for Hfe up to 500 and down to about 2. However, at 100 mA , the problem is different, owing to the relatively small range of Hfe encountered in transistors that will take this current without damage. Most fall within the range $10-100$, i.e., a 1 mA or $100 \mu \mathrm{~A}$ meter system is not satisfactory.
It was decided that 10 mA would be an appropriate sensitivity, and that a pole on the current range switch could be ultilised to bring in the appropriate resistor.

This has the advantage that it is now more difficult to grossly overload the meter through using the highcurrent range. Overloading is possible, of course, on the 10 mA range, if the meter is set at $100 \mu \mathrm{~A}$.

Next Month the article will be concluded with full constructional and comprehensive operating details.

Resistors:

R1	see text	R12	$2 \cdot 2 \mathrm{M} \Omega$
R2	see text	R13	220Ω
R3	see text	R14	$2.7 \mathrm{k} \Omega$
R4	150Ω preset pot.	R15	220Ω
R5	15Ω preset pot.	R16	$2 \cdot 5 \mathrm{k} \Omega$ preset pot.
R6	$10 \mathrm{k} \Omega$ preset pot.	R17	$1 \cdot 8 \mathrm{k} \Omega$
R7	$2.5 \mathrm{k} \Omega$ preset pot.	R18	$100 \mathrm{k} \Omega$
R8	$2 \mathrm{k} \Omega$ preset pot.	R19	47Ω
R9	10 k ת	R20	47Ω
R10	$1.8 \mathrm{k} \Omega$	R21	220Ω
R11	220Ω		

Semiconductors:
Tr1 and 2 2N2926G Z1 and $2 \quad$ BZY88
Tr3 OC202 D1, 2, 3 and 4 OA47

Tr4 and 5 2N3702
Tr6 BFY50
Miscellaneous:
C1 $0 \cdot 1 \mu \mathrm{~F}$; Meter, $100 \mu \mathrm{~A}$ movement, $1 \mathrm{k} \Omega$ coil resistance; SW1 Six pole, three way switch; SW2 Seven pole, four way; Batteries to give 30 Volts, 100 mA ; Veroboard; Eddystone diecast box type 6827P; two miniature toggle switches; transistor sockets as discussed in text.

RECENT PROPOSALS FOR COMMERCIAL RADIO

Two days before last month's publication date Paul Bryan M.P., the Opposition spokesman on broadcasting made a speech which was very much in line with our last leader. As the consequences of this may alter broadcasting in this country greatly we are publishing the main proposals made in the speech without comment.

THE "pirate" radio stations showed that people want commercial radio in addition to the B.B.C. programmes. The Government are determined to stop us having it. A Socialist Government will always prefer the B.B.C. monopoly, over which it has some measure of control. The Post Office conveniently asserts that the technical problems of establishing many more radio stations are very great. No independent experts agree with them.
The next Conservative Government will set up 100 or more local commercial radio stations. These will come under the general supervision of the I.T.A., which is already highly skilled and experienced in the control of broadcasting programmes and of advertising. The Independent Television Authority would become the Independent Broadcasting Authority and would be responsible, in co-operation with Local Authorities, for the selection of programme contractors and for the transmission of programmes.
There would be a limit to the number of stations available to any one contractor. The levy money paid by the station contractors could profitably be put to use locally on all the social and cultural activities which are, at present, starved for funds, such as the repertory theatre, playing fields, swimming baths, etc. Local newspapers should be allowed to take a financial interest, but not a controlling financial interest, in local radio. This would not only compensate for the advertising revenue they may lose, but their news-gathering facili-
ties would be a great help to the radio station.
The Government's local radio experiment has been a completely irresponsible venture. These stations were certain to have some programme success, for they are well run and have no competition and who is to say if a programme is a success when only a quarter of the homes can hear it?

But typically, the Labour Government never faced the problem of who would pay for local radio. The last P.M.G. but two, Mr Short, told us that the money for the stations would be raised "locally but not through the rates", and that it would be wrong for the B.B.C. to pay, except in the experimental stages, and then only the cost of actually setting up the stations. In any event, and precisely as we Conservatives warned the Government, practically no money has been raised locally except through the rates and the B.B.C. has had to pay much more than was intended.

Local Authorities will not go on paying for the stations and it would be wrong if they did. I do not favour a system of finance which smacks of sponsorship. What does a Local Authority do when the station it subsidises is over-critical of its doings?

As Lord Hill has rejected raising funds by advertisement and the Postmaster General has said that the B.B.C. ought not to pay for local radio from its general licence revenue, and sufficient money is not forthcoming locally, the experiment is heading for a totally foreseeable financial collapse.

combined Iuulspazeker and s-meter F. G. RAYER

MANY commercial communications receivers have no internal speaker or S-meter, and most users find that they have to provide these themselves. They can easily be combined in a neat and compact unit, and with receivers such as the Eddystone 640, 740, 750 and 888 A , the S-meter connection can simply be made via an octal plug in the rear socket provided. With other receivers however, such as the CR100, an internal connection will have to be made.

A ready-calibrated S-meter was fitted in the unit shown, this simply being a 1 mA moving coil meter, with an appropriate scale. It is therefore possible to use an ordinary 1 mA meter, or a $500 \mu \mathrm{~A}, 250 \mu \mathrm{~A}$, or $100 \mu \mathrm{~A}$ instrument. The latter can provide increased sensitivity, if required, but means that the scale will have to be calibrated by the constructor.

The speaker fitted was a $3 \frac{1}{2} \mathrm{in}$. moving coil unit, and this allowed everything to fit in a $6 \times 4 \times 4$ "Dinkicase". There is, of course, no reason why this size speaker has

Fig. 1: (Left), An S-meter operated from the cathode circuit of the last i.f. amplifier
Fig. 2: (Right). An S-meter connected to the anode circuit.
to be used, and it might be possible merely to fit the Smeter in an existing speaker cabinet.

Figure 1 is the circuit used, but Fig. 2 may be more convenient with some receivers. Both employ a bridge arrangement in which the meter reads zero for minimum signal strength, the reading rising as signal strength increases.

Cathode Circuit

The meter is connected to the cathode of a valve which receives automatic gain control bias (generally an i.f. stage). R1 and R2 form a potential divider, with VR1 for zero adjustment. With no signal present, VR1 is adjusted so that the voltage drop across the cathode resistor R_{k} equals that in the lower part of the resistor network, so no voltage is present across the S-meter.

When a signal is present, a.g.c. bias reduces cathode current. Current through $\mathbf{R}_{\mathbf{k}}$ falls, resulting in a smaller voltage drop in R_{k}. The meter negative terminal thus moves negative, giving a reading. Movement of the meter pointer depends on the a.g.c. voltage, and thus on the strength of the received signal.

R 2 needs to be similar to R_{k} in value, and can be 330Ω for many valves of the 6 K 7 and similar type, but should be 68Ω for the 6BA6. R2 can be omitted if VR1 is adjusted carefully, a portion of VR1 then substituting for R2.

Anode Operated

In Fig. 2, C1 and R1 may be present. If not, these or similar values can be fitted. When anode current falls (with increased signal strength) reduced voltage drop in R 1 results in the application of a positive voltage to the meter.

In both circuits VR1 need not be 500Ω. VR1 should be wire-wound, and preferably not over about $2 \mathrm{k} \Omega$, or its adjustment becomes critical.

Should values in a receiver be such that VR1 does not allow the meter to read zero, with no signal input, this can be corrected by changing R1 or R2 in Fig. 1, or R2 and R3 in Fig. 2. Actual values are not too important, provided the circuit can be balanced for no voltage across the meter, with no signal.

The sensitivity of either circuit may be reduced by placing a resistor in series with the meter. A pre-set will allow adjustable sensitivity.

Construction

The few components can be fitted in any suitable case, similar to Fig. 3. The speaker circuit is quite separate to that for the S-meter, and it is wise therefore to colour code the flexible leads for the latter: red for h.t. positive, green for cathode (or C1, Fig. 2) and black for chassis return.
For the Eddystone receivers mentioned, connections can be to an octal plug or the base of an old octal valve. Viewing this plug from the pins, and counting clockwise from the key-way, take red to pin 1, green to pin 2, and black to pin 8. As a series diode is present, set the meter pointer mechanically a little below zero. Short receiver aerial to earth, and adjust VR1 for zero on the meter.

Fig. 3: The wiring in the box used by the author.
With other receivers, locate the cathode or h.t. side of an i.f.t. in a stage controlled by a.g.c. bias, and connect as in Fig. 1 or Fig. 2. If the unit needs to be readily detached, any convenient means could be used, such as a valve base, B7G miniature plug or 3 -pin plug, and socket to match.

CO! CO! CO! CQ! CO! CO!

APPARATUS REQUIRED
...pressure roller for a Walter 101 tape recorder.-D. Burke, 51 Carna Drive, Glesgow, S.4.
.. an $\times 79$ radlo vaive. All the normal sources have been tried with no success.E. Pennington, 4 Northdown Road, Longfield, Kent.

CORRESPONDENTS WANTED

... anyone using an Eddystone S640 with an interest in s.s.b.-H. Bolwell, Ivanhoe, Lodge Lane, Wraxall, Nr. Bristol,
... someone of about my own age (151) who simply adores physics.-M. Mcnally, 17 Crosslees Park, Thornliebank, Glasgow. Scotland.
. . . any female ($16-18$) who is interested in any form of radlo, electronles, organic chemlstry or any other science,-W. Gunn, 9 Brannen Terrace, Dornoch, Sutherlandshire. Scotland.
. anyone of my own age (15) who shares my Interests in semiconductor circuitry and amateur radio in general.-D. Hogon, 4 Priors Croft, Walthamstow, London, E.17.

TAPESPONDENTS WANTED

. . . any Engilsh-\$peakIng female of my own age (i5). My tape recorder Is a Philips four-track with speeds of 17 and $3 \frac{3}{4}$ i.p.s. Maximum reel size is 71 n . My Interests are radio, tape recording, electronics, and pop records.-S. Isherwood, 3 York, Nr . Langho, Blackburn, Lancashire.
any female about my own age (15). I have a HMV recorder with four tracks, and a speed of $3 \frac{2}{2}$ i.p.s. Spool size Is up to $5 \frac{1}{2}$ In. I am Interested In electronics, music and photography.-M. McClushey, 23 Woodley Grove, Ormesby, Teesside.
|||

WHEN the writer expressed the hope earlier in the season that a fall in sunspot activity might lead to improved conditions on the medium waves he was hardly prepared for what followed. December and January brought the finest North American DX for several years. Joe Stephenson of Hull reports: "On New Year's Eve CBA (1070) was interfering with Paris at 2100 hrs GMT-at midnight on the 3rd January WOWO (1190) in Fort Wayne, Indiana was a fantastic S8-S9." Other items from Joe's log include CFCY (630) Charlottetown, Prince Edward Island; WJR (760) Detroit; WHAS (840) Louisville, Kentucky; WABI (910) Bangor, Maine; WCFL (1000) Chicago; WTIC (1080) Hartford, Connecticut; KMOX (1120) St. Louis; WWVA (1170) Wheeling, West Virginia; WGAR (1220) Cleveland; CKCW (1220) Moncton, New Brunswick; ZBM1 (1235) Hamilton, Bermuda; CKBL (1250) Matane, Quebec; CKOY (1310) Ottawa; WEGP (1390) Presque Isle, Maine; WENE (1430) Endicott, N.Y.; WPTR (1540) Albany, N.Y.; WQXR (1560) New York City. Joe uses a Hammarlund SP600, a TV aerial and an aerial tuning unit.

The writer's best catch came from the Caribbean when he heard St. Vincent (705) in the Windward Islands close down at 0218 hrs GMT on December 19th. This station is only 500 watts and it verified with a quite specific but rather unattractive QSL card. Although the good conditions of mid-winter ended with a fadeout in February the indications are that we are 'over the hump' and we can look forward to some good DX as sunspot activity continues to decrease.

Traditionally, medium wave DXing is a winter occupation to be abandoned as the days lengthen, though in actual fact the hobby can be pursued throughout the year. North American stations are often audible in midsummer for about an hour before sunrise. Static from local thunderstorms can be troublesome but QRM from Eastern Europe is much less severe than in winter since this area is in daylight. DX from East and South Africa is often possible in May and June. South Africa has been heard on 782 and 1286 between 0200 and 0300 hrs .; Mozambique on 917; Dar es Salaam, Tanzania on 638.

It is from South America though that the bulk of summertime DX is obtained. This continent is, of course, having its winter during this period. From June to September for about 2 hours before sunrise is the time to look for YVKS (750) Radio Caracas, Venezuela; HJKC (850) Bogota, Colombia; CX16 (850) R. Carve, Montevideo; PRA3 (860) Rio de Janeiro; CX20 (930) R. Montecarlo, Montevideo; PRF4 (940) R. Journal, Rio; LR3 (950) R. Belgrano, Buenos Aires; OAX4U (1010) R. America Lima, Peru; LS10 (1030) R. Libertad, Buenos Aires. When conditions are favourable some remarkably strong signals can be heard.

CHARLES MOLLOY

THE BROADCAST BANDS

 by CHRISTOPHER DANPUREHERE we are in the month of April, with the good DX conditions which come with spring. But the only problem I find is that directly the h.f. bands of 25,21 and $17 \mathrm{Mc} / \mathrm{s}$ stay open later at night, we get swamped by R. Free Europe in Lisbon with 250 RW blotting out all we have gained with better conditions. Still that's the way the conditions play, it all comes back to the need for frequency control by an international committee to halt thechaos before it goes too far.

Next on the list comes the month's propagation conditions as prepared by Cable and Wireless of London.

South Africa: 0800-1400 25, 21 and $17 \mathrm{Mc} / \mathrm{s}$; 1400 $170025,21,17$ and $15 \mathrm{Mc} / \mathrm{s} ; 1700-180025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 2000-2200$ $17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2200-020015,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0200-04009,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s} ; 0400-0600$ 11,9 and $7 \mathrm{Mc} / \mathrm{s} ; 0600-080021,17$ and $15 \mathrm{Mc} / \mathrm{s}$.

South Asia: 0800-1200 21, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1200-1400$ $21,17,15$ and $11 \mathrm{Mc} / \mathrm{s}$; 1400-1600 21, 17, 15, 11 and $9 \mathrm{Mc} / \mathrm{s} ; 1600-180015,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 1800-200015$, 11, 9, 7, 6 and $5 \mathrm{Mc} / \mathrm{s} ; 2000-220011,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s}$; 2200-2400 11, 9, 7, 6, 5, 4 and $3 \mathrm{Mc} / \mathrm{s} ; 2400-0200$ 9, 7, 6 and $5 \mathrm{Mc} / \mathrm{s} ; 0200-040011$ and $9 \mathrm{Mc} / \mathrm{s} ; 0400-060015$ and $11 \mathrm{Mc} / \mathrm{s} ; 0600-0800.17$ and $15 \mathrm{Mc} / \mathrm{s}$.

South East Asia: 0800-1200 21 and $17 \mathrm{Mc} / \mathrm{s} ; 1200-1400$ 21,17 and $15 \mathrm{Mc} / \mathrm{s} ; 1400-160021,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s}$; 1600-1800 17, 15, 11, 9 and $7 \mathrm{Mc} / \mathrm{s} ; 1800-200015,11,9$, 7, 6 and $5 \mathrm{Mc} / \mathrm{s} ; 2000-220011,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2200$ 240011,9 and $7 \mathrm{Mc} / \mathrm{s} ; 2400-02009 \mathrm{Mc} / \mathrm{s}$ only ; 0200-0400 $11 \mathrm{Mc} / \mathrm{s}$ only; $0400-060015 \mathrm{Mc} / \mathrm{s}$ only; $0600-0800$ $17 \mathrm{Mc} / \mathrm{s}$ only.

North East Asia: 0800-1400 17 and $15 \mathrm{Mc} / \mathrm{s}$; 1400$180011 \mathrm{Mc} / \mathrm{s}$ only; $1800-200011$ and $9 \mathrm{Mc} / \mathrm{s} ; 2000-2200$ 11 and $9 \mathrm{Mc} / \mathrm{s} ; 2200-0200$ circuit closed; 0200-0400 $11 \mathrm{Mc} / \mathrm{s}$ only; 0400-0600 circuit closed; 0600-0800 $15 \mathrm{Mc} / \mathrm{s}$ only.
E. Australia via Asia: 0800-1000 $21 \mathrm{Mc} / \mathrm{s}$ only; $1000-$ $120017 \mathrm{Mc} / \mathrm{s}$ only; $1200-140015 \mathrm{Mc} / \mathrm{s}$ only; $1400-1600$ 15 and $11 \mathrm{Mc} / \mathrm{s} ; 1600-180011$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800-2000$ 11,9 and $7 \mathrm{Mc} / \mathrm{s} ; 2000-220011$ and $9 \mathrm{Mc} / \mathrm{s} ; 2200-2400$ $11 \mathrm{Mc} / \mathrm{s}$ only; $2400-0800$ circuit closed.

West Coast of South America (North of Chile): $1200-160021$ and $17 \mathrm{Mc} / \mathrm{s} ; 1600-200021,17$ and $15 \mathrm{Mc} / \mathrm{s}$; 2000-2200 17,15 and $11 \mathrm{Mc} / \mathrm{s} ; 2200-240015,11,9$ and $6 \mathrm{Mc} / \mathrm{s} ; 2400-060011,9,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 0600-0800$ $15,11,9$ and $6 \mathrm{Mc} / \mathrm{s} ; 0800-100011$ and $9 \mathrm{Mc} / \mathrm{s} ; 1000-$ 120015 and $11 \mathrm{Mc} / \mathrm{s}$.

Now what information have.we next for the DX-tips? Firstly, Radio Nederland has a very useful DX Information Catalogue listing all the free publications which interest DX-ers that \boldsymbol{R}. Nederland publish. The address is R. Nederland, English Section, P.O. Box 222, Hilversum, Holland. R. Nederland have also issued a special Red, White and Blue QSL card for the full
operation and opening on their relay base at "Bonaire Noord". Reports on the new transmissions from Bonaire in May will be QSL'd by the new card first, before the Lopik reports receive the new card, if any are left. So now down to those DX-tips.

AFRICA

Ethiopia: Radio Voice of the Gospel, station ETLF, is now on the following schedule: 0300-0425 11,730; 0330-0425 9,680; 0430-0555 15,400; 0445-0525 15,180; $0530-055511,890 ; 1230-1300 \quad 17,760$ or 17,815 ; $1300-$ $1510 \quad 15,315$; $1330-1625 \quad 15,400$; $1515-1555 \quad 15,315$; $1600-17106,065 ; 1630-165511,770$ or 11,$735 ; 1700-1755$ 9,$695 ; 1715-201511,910 ; 1800-19009,705 ; 1900-1945$ 15,410.

South Africa: There have been last minute alterations to Radio R.S.A. transmissions, the last published details are correct except for these transmissions: 0956-1050 now $21,535,17,825$ and 15,220 , and $1156-1250$ now 17,$825 ; 15,220$ and 11,900 .

PACIFIC AREA

Australia: R. Australia's booster station at Darwin is now on the following test transmissions with reduced power of 100 kW on beam 300° directed to Central S.E. Asia. 0030-1000 Sundays only on 15,355 in English, Mon.-Sat. from 0830-1000 only in English on 15,355, daily from 1000-1130 in Indonesian on 6,050 and 11301330 in Mandarin and Vietnamese on 9,650. The other alterations to Shepperton and Lyndhurst transmissions, is now the $1000-1212$ service on 9,580 to N.E. Asia stops at 1100 and the East Coast N. American service from 1212-1315 now starts at 1112-1215 on 11,710 and 9,580 . And the Mid-Pacific service from 0830-1212 now runs on 7,205 instead of 7,190 .

EUROPE

Fed. Rep. Germany: The Deutche Welle at Cologne has had a complete shuffle of all its transmissions from the Jüilich transmitters. In brief, the German transmissions are now only 2 hours 10 minutes' duration instead of 2 hours 55 minutes. There is now a daily Japanese service and the Chinese and English broadcasts have been extended. The English transmissions are now: 0120-0200 on 11,965 and 9,545; 0130-0250 on $9,735,6,185$ and 6,$130 ; 0345-0405$ on 9,545 and 7,290 ; $0435-0555$ on $11,945,9,545$ and 6,$145 ; 0600-0630$ on $17,845,15,275$ and 11,$785 ; 0920-1020$ on 21,560 , $17,845,17,740$ and 11,$795 ; 1045-1055$ on 15,315 , 11,905 and 9,$605 ; 1700-1735$ on 17,875 and 15,275 ; $1900-1910$ on $17,790,15,405$ and 11,795 and then 21002200 on $15,275,9,765$ and 7,290 . The new Japanese service is transmitted from $1120-1220$ on $21,580,17,705$ and 15,275 .

Well that's all the space we have, so remember those DX-tips to be in by 18 th -April, good DX-ing and 73s.

THE AMATEUR BANDS

MIXED conditions seem to be the verdict for this past month on the amateur bands, but on the whole very satisfying for those who persisted. Twenty metres has become almost a 24 hour band although there were times when one seemed ear-deep in EU stations all calling CQ DX.

Fifteen has really come into its own and provided some juicy prefixes. It hasn't stayed open as long as 20 and at the time of writing it opens around 0700 and fades at 2100 . Its stable-mate, 10 metres, has been a bit of a disappointment. The first part of the month saw 10 as a very slow starter but it did make the effort later. It opened about the same time as 15 but seemed to close an hour or so earlier.
A very excellent month for the l.f. sections, and there was quite a lot of activity on 40,80 and 160. A number of W stations have been prominent on 160 , while on 80 and 40 some sleuths have detected some very nice DX.
A good tip for all bands is to listen during that twilight time when the band is just starting to close. Very often one can catch some very good DX about this time although it is admittedly usually weak, and certainly c.w. offers the best bet for hooking something really good.
Reports tell tales that the infamous Citizens' Band is peaking very well. Tune from 27 to $28 \mathrm{Mc} / \mathrm{s}$ for interesting dialogue and quite startling revelations. Rumours that ZL stations are peaking on 80 at 0730 but my receiver just won't confirm this.

A number of letters query how to send in reports. Just for the record here's the basic requirements: date, time (GMT), frequency, call-sign, mode (c.w./ s.s.b./a.m.), gear in use, aerial and last but most important-call-signs in alphabetical order please; it makes it so much easier.

LF LINGERINGS

A 5RV aerial entwined around the rhubarb and the loan of an AR88LF add up to a log from David Pick (Leicester). He confesses to passing R.A.E. (welcome to the club OM) and to great concentrations on c.w., meanwhile his s.s.b. \log for 160 reads -EI4AN, GC3UJE, GD6IA, GI6TK, GM3YCB, GW3UCB, HB9CM, HB9T.
P. Tomes (Dorset) has a B40 and a quarter-wave aerial for 160 . His efforts to read c.w. resulted in sigs from-DL9KRA, HB9CM, K1LMO, K2GNC, K4WUY, KV4FZ, OK1AES, OK1ATP, OK1FAB, OK2BOB, OK3BU, OL6AKP, W2CRS, W2EQS, W2FJ, W3DPJ, W3EOP, W3FE, W3IN, W3TV, W8AH, WA3EPT, WA8EMJ.
"Why are 80 metre logs so sparse in your columns?" W. Wright (Staffs) writes this query and promptly furnishes a log to prove what's about. He claims that there's plenty of DX on the band and he's logged-CO2DC, CT2AP, CT2AS, EL8J, F9UC/FC, HI7VDC, HK3AIS, HP1JC, K1CEC, K2DPA, K3NPV, K3UZE, K8HZU, KP4CL, KZ5WH, KZ5JQ, LA2PH/MM, OD5BA, OH $\varnothing N C$, PJ7JC, SL7AY/MM, UH8AE, UI8LM, VE1ARY, VE2AFM, VE3BSU, VOIFX, VP7NH, VP9BK, W1BL, W1BGD/2, W2LV, W3MSK, W4IHK, WA8LEO, XE1ZB, XE3EB, YV5ANF, ZD8Z, ZL4AK, 4X4UF, 6Y5CC, 6Y5DW, 9E3USA,

9H1BL. The receiver is an RG-1 and the aerial a 180 ft . end fed.
N. Thornley (Northampton) plans to be 14 years old in one year's time. He is passing the time with an R107 plus 80 ft . end fed. Rewards for his labours on 80 metres include-CM2DC, CT1LN, F9UC/FC, HV3SJ, K3UZE, KZ5RP, KZ5WH, VE1AMJ, VE3DJE, VE8RCS (Ellesmere Island), VO1FX, W5IOU, XE1KB, XE3EB, ZL2BCG, 4X4GV. Cor, wish I was 13 and had an R107.

Mock GCEs and Christmas are said to have seduced D. Henbry from proper care and listening on his HA500. Still, the 7 ft . rod aerial at 30 ft . is still standing faithfully to attention and during a weak moment David confesses to hearing-CR6GA, K6AHE, KR6JD, PYICAD, OD5EJ, PY2PA, PY7VKZ, W6KG, W6QV, ZD8Z, ZL1ATS, ZL3LE, 4X4VL, 6W8DY, 9J2VX.

HF HAPPENINGS

After reading David Henbry's log for 40 I thought I stood a good chance with my 20 metre bests. However, I can't even boast of these coz S. Mummery presented me with this basket of goodies all on 20 s.s.b.-CR6LF, EP3AM, H18LA, JA5HB, OY7S, PJ2PJ, PZ1BG, VK3AKP, VK6MN, VK9BJ, XE3AT, XE1EA, YV5ANF, ZFIGC, ZLIKN, ZL3JO, ZP5KN, ZS1YF, ZS5KAL, ZS6BJ, 5A5TS, 5R8AS, $6 \mathrm{Y} 5 \mathrm{~GB}, 8 \mathrm{P} 6 \mathrm{CV}$. I'd just sipped my gripe water when I saw his log for 15-JAIKXY, OD5AT, OH \varnothing NI, PY2CYT, SVØWN, TF5TP, VK2EK, VK2XT, VK5BB, WA5EQN/MM (China Seas), YV1EL, YV5CMQ, ZC4HS, ZL2KD, 4X4RW. The mode was s.s.s. and the receiver a B34.
L. Bousher (near Swansea), has been reported as "at it" on 20 s.s.b. Thirty feet of wire and an R1155 is all that stood between him and-CN8GE, CN8MJ, CR6IV, EA6BI, EL8J, ET3REL, JA2BTV, MP4TCF, OA8RT, OX5BA, OY7Z, PY7ASQ, PZ1BG, SU1IM, TF2WLM, VE1KG, VE3BZK, VE7IL, VE8RCS, VK2AVA, VK6XW, VP8KD, VS6DR, YA5RG, ZB2AY, ZC4TK, ZD9BE, ZEIBP, ZL1AXB, ZL4BX, ZS3HF, ZS6OY, 3A2CO, 5A4TF, 5H3KJ, 6W8DY, 9G1GD, 9H1M, 9K2CF, 9L1HT, 9X5AA.
D. Honeywood (Surrey) CR300/1, dipole, $20-$ JA1JBB, TF2WLM, VK2AVA, VK2XQ, VK3MO, VK4HR, ZL1AHT, ZL5VK, 3A2CL, 5N2ABG.
J. Moore (Leicester) CR100/2, 60ft. end fed, claims that the following are only radiating one sideband on 15-CO8RA, CP5DM, CR8AH, EA6AR, HC2HM, HI3AGS, HR1KS, K6SHA, MP4MBB, TF2WLM, VE6AAV, VK2FA, VK3VK, VK5GF, XE1LLS, YA1HD, ZD3D, 9Y4EH.

HERE AND THERE

Quite a few happenings in April. On the 6th is the ARMS mobile meeting at Lydd Airport in Kent; 12th-13th, 4 metre contest; 20th, North Midlands mobile rally at Drayton Manor Park in Staffs; 26th, VHF/UHF convention at the Winning Post Hotel, Whitton, near Twickenham; 27th, The Belle Vue Convention at Manchester. May 3rd-4th, 2 metre portable contest. That's all for now, and benu all again next month.

Bisic

SEMICONDUCTOR

by M.F.DOCKER, M.Sc.

 Iifilinoint

EVERY material is composed of submicroscopic particles called atoms. Some materials contain only a single type of atom, these substances being called elements. Other materials, called compounds, contain several types of atom combined to form molecules. No matter how much a compound is chemically refined it will still contain the same ratio of atoms of the different elements of which it is composed. The molecule thus contains a certain fixed number of each type of atom; for example a water molecule contains two hydrogen atoms and one oxygen atom.

The atom has been shown to contain various elementary particles-electrons, protons, neutrons and others which will not be of concern to us in these articles. The electron has a very small mass, $9 \times 10^{-28} \mathrm{gram}$, and a negative charge of 1.6×10^{-12} e.s.u.; the proton has a mass 1,840 times that of the electron and a charge equal to that of the electron but of opposite sign. The neutron has a mass equal to that of the proton but carries no charge.

Figure 1 shows a model of an atom of helium which has two electrons encircling a nucleus composed of two protons and two neutrons. The nucleus

Fig. 1: Representation of a helium atom, showing the electrons E in orbit around the nucleus.
thus has a charge of plus two which is precisely balanced by the negative charge on the electrons, leaving the whole atom electrically neutral. The mass of one helium atom is equal to four times that of the proton, neglecting the masses of the electrons.
Many atoms can be shown to have masses which differ although they are chemically the same. These are isotopes of one element, having the same atomic structure as each other except that the number of neutrons is different. Thus hydrogen has three isotopes; hydrogen, deuterium and tritium; having one neutron, two and three neutrons respectively. As the chemical properties of the atom are determined mainly by the electrons, and as their number remains unchanged from isotope to isotope, the properties of isotopes of the same element are virtually the same as each other.

The electrons of an atom move in orbits around the nucleus. They are not clearly defined paths, such as planetary orbits, but more regions in which the electrons may be expected to be found. Another finding of modern atomic theory is that the electrons are arranged into certain groups called shells. Those atoms that have just sufficient electrons to completely fill a shell are particularly stable. Examples of these are helium, neon and argon. These substances do not form compounds easily.

Electrovalent Bonding

In atoms not containing the "magic" numbers of electrons it is the electrons which are not in a full shell that account for most of the properties of the atom. Thus sodium with one excess electron combines with chlorine which has seven excess electrons to form sodium chloride. In this case the sodium donates its excess electron to the chlorine atom, leaving itself positively charged; the chlorine atom accepts one electron to make up a complete group of eight electrons, the chlorine atom then having a net charge of minus one. Since one electron has changed hands the sodium and chlorine are both said to have valencies of unity. Other atoms have valencies of $2,3,4$ and 5.
This type of atomic bonding is called electrovalent bonding. Other types of bonding are possible, the most important being covalent bonding where two or more atoms share electrons in order to make up the full shells which give a stable atomic structure. This occurs in hydrogen which has one electron per atom: two atoms combine to form a single hydrogen molecule, the electrons being shared between the two atoms to give a stable structure with the first shell, which contains two electrons, being filled.

Crystal Structure

Most inorganic substances have a crystalline structure. The atoms of which the crystal is composed are bound together by covalent forces. For example carbon which has a valency of four forms a well known crystal, the diamond structure, in which each atom is surrounded by four other atoms. Each carbon atom has four electrons in its outer shell and shares one from each of its neighbours to make up the stable structure with eight electrons in the outer shell. Figure 2 shows the arrangement of the atoms in the diamond structure. Many other elements such as germanium and silicon have similar structures.

The outer shell of electrons is called the valence shell for reasons which should by now be obvious.
—continued on page 31

Get up-to-date with the latest Mullard Data Book-just published. It contains details ors components for Radio. picture tubes, semiconductors. Each section, colour TV, Audio and HiFi applicationses comparables and coded for quick reference, inclus details of the latest devices equivalents information plus detal in the replacement market.

Min? $\begin{aligned} & \text { Buy your cooy from your loca tage and } \\ & \text { or send 3/6 plus 9'd for postag }\end{aligned}$ packing direct to Mullard Ltd.

BENTLEY ACOUSTIC CORPORATION LTD.

ALL GOODS LISTED BELOW, ACTUALLY IN STOCK, ALL GOODS ARE NEW, BEST QUALITY MANUFACTURE ONLY, AND SUBJECT TO makers' full guarantee, please note that we do not sell items from used eaulpment nor manufacturers' seconds and rejects, which are dFten described as "New and tested" but have a short and unreliable life.

MATCHED TRANSISTOR SETS 1—OC44 and 2-OC45 8/6;1-OC81D and 2-OC81 7/B; 1-OC82D and 2-OC828/6; Bet of three-OC83 (GET118/119)8/6; LP15 package (AC113, AC154, Acl57.AAl20) 10/6; Postage 6rl. per set. 8.T.C. 1 watt Zener diodes. $2 \cdot 4 \mathrm{v}: 2 \cdot 7 \mathrm{v}: 3 \cdot 0 \mathrm{v}: 3 \cdot 6 \mathrm{v}: 4 \cdot 3 \mathrm{v}: 13 \mathrm{v}: 16 \mathrm{v}: 18 \mathrm{v}: 30 \mathrm{v}$. All $8 / 6 \mathrm{~d}$. each

We reaulre for prompt cash settlement all types of above goods loose or boxed, but must be new
ELECTROLYTICS. Can types: $8 \times 8 \mathrm{mfd} / 500 \mathrm{v} 7 / 6 ; 8 \times 16 \mathrm{mfd} / 500 \mathrm{v} 7 / 9: 16 \mathrm{mfd} / 500 \mathrm{v} 6 /-; 16 \times 16 \mathrm{mfd} / 500 \mathrm{v} 8 / 9 ; 16 \times 32 \mathrm{mfd} / 450 \mathrm{v} 9 / 9 ; 32 \mathrm{mfd} / 500 \mathrm{v} 8 /-; 32 \times 32 \mathrm{mfd} / 450 \mathrm{v} 4 / 9 ; 50 \times 50 \mathrm{mfd} /$ $350 \mathrm{v} 5 / 6 ; 60 \times 250 \mathrm{mfd} / 275 \mathrm{v} 9 / 9 ; 50 \times 50 \mathrm{mfd} / 275 \mathrm{v} / \mathrm{s} / 6 ; 64 \times 100 \mathrm{mfd} / 450 \mathrm{v} 21 /-; 64 \times 120 \mathrm{mfd} / 350 \mathrm{v} 8 / 6 ; 100 \times 200 \mathrm{mfd} / 275 \mathrm{v} 8 /-; 100 \times 200 \mathrm{mfd} / 350 \mathrm{v} 10 / 8 ; 100 \times 200 \times 60 \mathrm{mfd} / 300 \mathrm{v} 18 / 6 ; 100 \times 300 \times$ $100 \times 16 \mathrm{mfd} / 275 \mathrm{v} 24 / 9 ; 100 \times 400 \mathrm{mfd} / 275 \mathrm{v} 12 / 9 ; 100 \times 400 \times 16 \mathrm{mfd} / 275 \mathrm{v} 23 / 3 ; 100 \mathrm{mfd} / 100 \mathrm{v} 5 / 8 ; 200 \mathrm{mfd} / 350 \mathrm{v} 12 / 3 ; 200 \times 200 \times 100 \mathrm{mfd} / 350 \mathrm{v} 27 / 9 ; 300 \times 300 \mathrm{mfd} / 300 \mathrm{v} 31 / 6 ; 1000 \mathrm{mfd} / 50 \mathrm{v} 9 / 6 \mathrm{i}$ $2000 \mathrm{mfd} / 50 \mathrm{v} 13 / 3 ; 5000 \mathrm{mfd} / 25 \mathrm{v} 15 /-; 5000 \mathrm{mfd} / 50 \mathrm{v} \mathrm{27/9;} \mathrm{8mfd} / 600 \mathrm{v} 11 / 3 ; 16 \times 16 \times 16 \mathrm{mfd} / 275 \mathrm{v} 7 /=; 50 \times 50 \times 50 \mathrm{mfd} / 350 \mathrm{v} 12 / 3 ; 16 \mathrm{mfd} / 600 \mathrm{v} 15 / 9 ; 10000 \mathrm{mfd} / 30 \mathrm{v} 29 / 6$.

Tubular types: $1 \mathrm{mfd} / 25 \mathrm{v} 2 / \mathrm{-} ; 1 \mathrm{mfd} / 500 \mathrm{v} 2 / 6 ; 2 \mathrm{mfd} / 150 \mathrm{v} 2 /-; 2 \mathrm{mfd} / 500 \mathrm{v} 2 / 9 ; 4 \mathrm{mfd} / 150 \mathrm{v} 2 /-; 4 \mathrm{mfd} / 500 \mathrm{v} 3 /=; 5 \mathrm{mfd} / 50 \mathrm{v} 2 /-; 8 \mathrm{mfd} / 150 \mathrm{v} 2 / 3 ; 8 \mathrm{mfd} / 450 \mathrm{v} 1 / 9 ; 8 \mathrm{mfd} / 500 \mathrm{v} 3 / 6 ; 8 \times 8 \mathrm{mfd} / 450 \mathrm{v} 2 / 9 ;$ $8 \times 16 \mathrm{mfd} / 450 \mathrm{v} \mathrm{3/-;} 10 \mathrm{mfd} / 50 \mathrm{v} 2 / 3 ; 16 \mathrm{mfd} / 450 \mathrm{v} 2 / 6 ; 16 \mathrm{mfd} / 500 \mathrm{v} 4 / 6 ; 16 \times 16 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 16 \times 32 \mathrm{mfd} / 350 \mathrm{v} 3 / 6 ; 25 \mathrm{mfd} / 25 \mathrm{v} 1 / 6 ; 25 \mathrm{mfd} / 50 \mathrm{v} 2 / 6 ; 32 \mathrm{mfd} / 350 \mathrm{v} 3 /-; 32 \mathrm{mfd} / 450 \mathrm{v} 3 / 6 ; 32 \times 32 \mathrm{mfd} /$	

express postal service! all Orders despatched same day by first class mail

[^3]

Fig. 2: Crystal structure of diamond. Each atom has four near neighbours as can be seen for those inside the crystal lattice structure.

Electrons in this shell are attached to the atom by electrostatic forces. If one of the electrons receives sufficient energy it may be able to reach the next highest band, the conduction energy band. The use of the term energy band calls for some explanation.

Energy Bands

When two systems having the same energy states, such as two pendula, are brought together they interfere with each other and the energy level is split into two. Thus in a crystal the energy levels which are discrete in the atom are split into millions of levels all close together. These constitute the energy bands of which more will be heard and which are illustrated in Fig. 3.

Fig. 3: Energy levels in a semiconductor atom and in semiconductor crystal.

These bands are separated in semiconductors and insulators, the difference in energy between the valence and conduction bands being called the energy band gap. In germanium the band gap is 0.67 eV . (One electron-volt, or eV , is the energy that an electron gains when it is accelerated by a potential difference of one volt. About $3 \times 10^{+19}$ or three times ten million, million, million electron volts are required to warm one gram of water by one centigrade degree.)

The separation of these bands determines the conducting nature of a given material. In insulators the separation is large, the band gap being several eV wide. In order to lift these electrons from the valence to the conduction band a potential difference of several volts would thus have to exist across each atom. If this situation existed the insu-
lator would break down. In metals either there is no band gap, the valence and conduction bands being in contact, or else the valence band is only half full. A third alternative as seen in copper is that both these conditions are present. These three circumstances each lead to a high conductivity.

In semiconductors the band gap is quite small as mentioned previously for germanium. In this case thermal vibrations in the crystal lattice can lead to the excitation of electrons to the conduction band. This results in a small current flowing through the crystal when a field is applied to the sample. However the number of electrons liberated depends almost entirely on the thermal vibrations and not on the applied field. So when a voltage is applied across the crystal a current flows which does not vary with voltage. However it does depend on the temperature, being called temperature-saturated current. The number of electrons increases exponentially with temperature, the saturated current increasing similarly. This accounts for the reverse leakage currents experienced in solid-state diodes and transistors (Icbo).

n- \mathcal{G} p-type Semiconductors

If an atom of phosphorus or another pentavalent element is introduced into a pure or "intrinsic" semiconductor crystal such as germanium there will be one electron which cannot enter into the covalent bonding. This electron will be only weakly bound to the atom since the presence of the surrounding atoms will substantially modify the local electrostatic fields, lowering the attraction by about a factor of ten. This electron thus requires only a small fraction of an electron volt to lift it to the conduction band, and this is easily supplied by heat in the crystal. Such an atom is called a donor atom and gives rise to a local donor state in the crystal. The material so formed is said to be doped with phosphorus and to be an n-type semiconductor.

Conversely if an atom having only three valence electrons such as aluminium is introduced into the lattice there will be a vacancy which can easily be filled by an electron from the valency band. Such an atom is called an acceptor atom. As before, the energy required to fill this acceptor state is very small. However a difference is apparent. Since electrons move from the valence band into these acceptor states these latter states must be near to the valence band rather than to the conduction band. The various states and energy bands are shown in Fig. 4. The vacancies result in electrons

Fig. 4: Acceptor and donor energy levels.
moving from the valence band to fill them. These electrons leave behind them holes. The states into which the electrons move are called acceptor states. A material doped with aluminium is said to be a p-type semiconductor.

Hole conduction can be likened to the movement of cars in a circle of parking meter spaces, where the cars represent the valence electrons and the spaces the holes. If there are only a certain number of meter bays and they are all full no movement of cars can occur since no car is allowed to move into a bay which already contains a car. However if one car leaves the circle a bay becomes vacant and the cars can proceed around the circle step by step. It is obvious that the hole or vacant bay seems to move in the opposite direction to that in which the electrons or cars move.

Electrical conduction in a semiconductor can be due to movement of electrons in the conduction band or else to the movement of holes in the valence band. Conduction can occur by both holes and electrons in the same sample of material. When this occurs the current carrier which is in the majority is called the majority carrier, the other being called the minority carrier.

The simple addition of p - and n -type dopents in equal quantities will not result in an equal part of the conduction being shared by the holes and electrons. Compensation is said to occur, electrons from the donor states filling the vacancies in the acceptor states. This mechanism only occurs efficiently at low levels of doping.

Measuring Semiconductor Properties

When semiconducting substances are manufactured it is necessary to know certain of their physical properties. Such things as resistivity, type of doping (that is whether the crystal is p - or n-type) and the band gap of the intrinsic material need to be measured.

The resistivity of a sample of a semiconductor is measured by making use of Ohm's law. Two probes, P1 and P2 in Fig. 5, from a source of

current are placed on the surface of the sample. Two further probes, P3 and P4, are placed on the suface of the sample and coupled to a valve voltmeter. The resistivity of the sample can be shown to be proportional to the ratio of the measured voltage and current. This method overcomes the difficulties encountered because of contact potentials.

Hall Effect

The Hall effect is very important in measurements on semiconductors and will be briefly described. As is well known a wire carrying a current is deflected when in a magnetic field. This effect is used in

Fig. 6: Demonstration of the Hall effect.
moving-coil.galvanometers. The same effect occurs when electrons flowing in a semiconductor are subjected to a magnetic field. In Fig. 6 the electrons would be deflected upwards towards face A. The electrons which accumulate near to this face set up an electric field which opposes the electron motion since the top surface becomes negative. An equilibrium situation is thus developed, the Hall voltage being measured with the valve voltmeter.

Holes are deflected in the same way. However as they have a positive charge the Hall voltage is of opposite polarity. Thus by measuring the voltage developed it is possible to determine if the conduction is due to holes or electrons.

The Hall effect has many other applications. Among these are the use for measuring magnetic field strengths and as a multiplying device in computers.

Other Properties

As mentioned previously the number of carriers excited to the conduction band varies exponentially with temperature. As the conductivity is proportional to the number of carriers this too varies exponentially. By measuring the temperature dependance of the conductivity of the material the band gap can be calculated.
The degree to which a semiconductor needs to be purified can be judged from the fact that at room temperature intrinsic germanium contains only one electron-hole pair per thousand million atoms. So in order to be able to study the intrinsic behaviour of germanium a purity of one part in 10^{9} is required.
In silicon with the wider band gap of $1 \cdot 1 \mathrm{eV}$ a purity of one part in 10^{12} is required. This refinement is not possible and other techniques are required to obtain intrinsic behaviour. The methods used in the purification of semiconducting material will be discussed in Part 2.

TO BE CONTINUED

CORRIGENDA

January issue-Simple Capacitance Bridge

In the multivibrator circuit certain component values were inadvertently transposed: R1 and R4 should be $2 \cdot 2 \mathrm{k} \Omega$ and R2 and R3 $10 \mathrm{k} \Omega$.

SOLDER ON WITH

 $A X T X X X$CN 15 Watts. Ideal for miniature and micro miniature soldering. 18 interchangeable spare bits available from $.040^{\prime \prime}$ (1 mm) up to $3 / 16^{\prime \prime}$ For 240, 220, 110, 50 or 24 voits.

from
 3216

If you want the best in soldering, Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them.
Antex soldering irons are stocked by quality electrical dealers, or order direct from Antex by sending Cash. A free colour catalogue will be supplied on request.

PRECISION MINIATURE SOLDERING IRONS

Antex. Mayflower House, Plyroouth, Devon
Telephone : Plymouth 67377/8. Talex 45296. Giro No. 2581000

Complate pracision soldering kit

This kit-in a rigid plastic 'tool-box" - contains everything you need for precision soldering.

- Model CN 15 watts miniature iron, fitted商" bit.
- Interchangeable spare bits. $\frac{6}{12}{ }^{\prime \prime}$ - 青"
- Reel of resin-cored solder
- Felt cleaning pad
- Stand for soldering iron
- Space for stowage of lead and plug
PLUS 36-page booklet on How-to-Solder"--a mine of information for amateur and professional

From Electrical and Radio Shope or end cash 498 to Antex.

G 18 watts. Ideal for miniature work on production lines. Interchangeable spart bits, $3 / 32^{\prime \prime}, 1 / 8^{\prime}, 3 / 16^{\prime \prime}$, and $1 / 4^{\prime \prime}$. For 240 . 220 or 110 volts. $32 / 6$.

E 20 wetts. Fittad with $1 / 4^{4}$ blt. Interchangeable spare bits $3 / 32^{\prime \prime} .1 / 8^{\circ}$. $3 / 18^{*}$. For $240,220,110$ or 24 volts.from $35 /$.

ES 25 wates. Fitted with $1 / 8^{*}$ bit.
Interchangeabie bit $3 / 32^{\circ}, 3 / 16^{\circ}$ and $1 / 4^{*}$ Ideal tor high speed production lines. For $240220,110,24$ or 12 volts. from $35 /$ -

F 40 wats. Fitted $5 / 18^{\prime \prime}$ bit.
Interchsngeable bits $1 / 4^{\prime \prime}, 3 / 15^{\prime \prime}, 1 / 8^{\circ}, 3 / 32^{*}$ Very high temper ature fron. Availeble for $240,220,110,24$ or 20 vo is, from $42 / 6$ Spare bis and elemente for all models and voltages immodiately aviluble from stock

INPUT 230/240v. A.C. 50/60- I OUTPUT VARIABLE 0-280v.

 BRAND NEWKeenest prices in the country. All Types (and Spares) from 1 to 50 amp. from stock.

SHROUDED TYPE

1 amp, £5.10.0 2.5 amps , 86.15 .0 . 4 amps, £9.0.0. 5 amps, E9.15.0. 8 amps, £14.10.0. 10 amps, £18.10.0. 12 amps, £21.0.0. 15 amps, £25.0.0. 20 amps, $£ 37.0 .0$. $37 \cdot 5 \mathrm{amps}, ~ £ 72.0 .0$. 50 amps, £92.0.0.
OPEN TYPE (Panel Mounting) t amp, £3.10.0. $1 \mathrm{amp}, ~ £ 5.10 .0$. 21 amps, £6.12.6.
PORTABLE TYPE
1.5 amp . portable fitted metal case, voltmeter, lamp, switch, etc. E9.5.0. Similar to above 2.5 amp , £11.7.6.

100 WATT POWER RHEOSTATS (NEW)

 AVAILABLE IN THE FOLLOWING VALUES$1 \mathrm{ohm}, 10 \mathrm{a} . ; 5 \mathrm{ohm}, 4 \cdot 7 \mathrm{a} \cdot ; 10 \mathrm{ohm}, 3 \mathrm{a} ; 25 \mathrm{ohm}$ $2 \mathrm{a} . ; 50 \mathrm{hm}, 1.4 \mathrm{a}, i 100 \mathrm{ohm}, 1 \mathrm{a}, \dot{250} \mathrm{ohm}$, 1,500 ohm, $230 \mathrm{~mA}: 2,500 \mathrm{ohm},-2 \mathrm{a}$. Dlameter 31 ln . Shaft length $\frac{7}{8}$ in., dia. $\frac{1}{6} \mathrm{in}$. All at 27/6 each. P. \& P. 1/6. 50 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500 / 0 \mathrm{hm}, 21 /$. . P. \& P. $1 / 6$.

25 WATT. 10/25/50/100/250/500/1,000/1,500/2,500 ohm, 14/6. P.\& P. 1/6

200/250v AC HORSTMAN 20A TIME SWITCH
2 onloff every 24 hours at any pre-set time. Fitted in metal case. 36 hr . spring reserve. Used but fully tested. Fraction of maker's price. E3.19.6 plus 4/6 P. \& P. Avallable with solar dial, on request.

> INSULATED TERMINALS

Avallable In red, white, yellow, black, blue and green. New $17 /=$ per doz, $2 /-P$. \& P. $230 / 250$ V. A.C. SOLENOID
Heavy duty type, approx. 3 lbs. pull. Price 17/6 plus 2/6 P. \& P.
12/24V. D.C. SOLENOID Approx. 8 oz. push. Price $8 / 6$ plus $1 / 6 \mathrm{P} . \& \mathrm{P}$. PARVALUX TYPE SD 19 230/250 VOLTS A.C. REVERSIBLE GEARED MOTOR. 30 r.p.m. 40lb. ins. Position of drive
spindle adjustable to 3 different angles. Mounted on substantial cast aluminium base. Ex-equlpment. Tested and In first class running order. A really powerful motor offered at a fraction of makers
 price. 6 GNS. P. \& P. 10/-.
CONSTANT VOLTAGE TRANSFORMER
Input $185-250$ v. A.C. Output 230 v. A.C. Capacity 250 watt. Aftractive metal case. Fitted red signal lamp. Rubberfeet. Welght17lb. Price £11.10.0. P. \& P. 15/-.

SELENIUM BRIDGE RECTIFIERS

$$
30 \text { volt } 3 \text { amp., } 11 /- \text {, plus } 2 / 6 \text { P. \& P }
$$

$$
---30 \text { volt } 5 \text { amp., } 16 / \mathrm{H}, \text { plus } 2 / 6 \text { P. \& }
$$

All prlmaries 220-240 volts.
Type No. Sec. Tap
1 30, 32, 34, 36 v . at 5 amps
$230,40,50 \mathrm{v}$. at 5 amps
3 10, $17,18 \mathrm{v}$. at 10 amps
4 6, 12 v , at 20 amps.
5 17, 18, 20 v . at 20 amps
6, 12, 20 v. at 20 amps.
. $4,5,24,32 \mathrm{v}$, at 12 amps .
DOUBLE WOUND VARIABLE E TRANSFOR Input 230 v. A.C. OUTPUT CONTINUOUSLY VARIABLE 0-36 v. A.C.
0-34 v. at 5 amp. E9.12.6. P. \& P. 8/6.
$0-36$ v. at 20 amp. E21.0.0. P. \& P. 15/

LIGHT SENSITIVE SWITCH

KIt of parts, Including ORP12 Cadmium Sulphide Photoceli, Relay, Transistor and Circult, etc., 6-12 volt D.C. op, price 25/- plus $2 / 6$ P. \& P. ORP 12 Including clicuit, 10/6 each, plus $1 /-\mathrm{P}$. \& P.
A.C. MAINS MODEL Incorporates MaIns Transformer, Rectifler and special relay with 3, 5 amp mains c/o contacts. Price Inc. clrcult $47 / 6$ plus $2 / 6$ P. \& P.
LIGHT SOURCE AND PHOTO
CELL MOUNTING Precistion engineered light source with focusible lens assembly and ventliated
lamp housing, to take MBC bulb. Separate photo cell mounting assembly for ORP 12 or similar cell. Both units are single hole fixing. Price per pair £2.15.0. P. \& P. $3 / 6$.
miniature uniselector switch 3 banks of 11 positions plus homing bank. 40 ohm coil. 24-36 V. D.C. operation.
Tested. $22 / 6$, plus $2 / 6$ P. \& P.
COMPACTHEAVY DUTY Bv. COMPACT HEAVY DUTY 6v. D.C. RELAY 2 change over, 30 ohm coll. $7 / 6$ each. P. \& P. $1 / 6$. 3 for $20 /-$. Post paid.
NICKEL CADMIUM BATTERY. SIntered Cadmium Type 1.2 v . 7AH. Size height 3 in. width $2 \frac{3}{18} \times{ }^{\frac{3}{1} / \mathrm{I}} \mathrm{In}$. Welght approx. 13 or. ExR.A.F. Tested. 12/6. P. \& P. 2/6.

A.C. CONTACTOR

2 make +2 break (or, 2 c/o.) 15 amp. contacts. $230 / 240 \mathrm{~V}$ A.C. Operation. Brand new. Price 22/6 plus $1 / 6$ P. \& P.

STROBE! STROBE! STROBE!

Bulid a Strobe Unit, using the latest type Xenon white light flash tube. Solld state tlming and triggering circult. 230/250v. A.C. operation.
ECONOMY KIT. Flash rate 1-38 flash per second. All components including Unijunction, thyristor, tube and clrcult. $£ 5 / 5 / 0$ plus $3 / 6 \mathrm{P}$. \& P
INDUSTRIAL KIT. Flash race 1-80 f.p.s. Ideally sultable for schools. laboratories etc. Incorporates double wound transformer which isolates both tube and timing clrcult from mains. Stabilized timing circult and higher power tube. Es/a/0 plus $6 /-\mathrm{P}$. \& P . of in. POLISHED REFLECTOR. Ideally sulted for above Strobe kits. Price 8/6 post paid. Regret NOT sold separately.

RELAYS

Bulk purchase enables us to offer the follow ing new SIEMENS, PLESSEY, etc. miniature plug in relays complete with base, at a fraction of maker's price.

Coil Worklng			
Ω	Voltage	Contacts	Price
280	6-12	$2 \mathrm{c} / \mathrm{o}$	14/6
280	9-18	$4 \mathrm{c} / \mathrm{O}$	15/6
700	12-24	2 clo	12/6
700	16-24	4 clo	15/6
700	16-24	4M 2B	12/6
1250	20-40	$2 \mathrm{c} / 0 \mathrm{H} . \mathrm{D}$.	12/6
2500	30-50	$2 \mathrm{c} / 0 \mathrm{H.D}$.	12/6
5800	50-70	$4 \mathrm{c} / 0$	101-
9000	40-70	$2 \mathrm{c} / 0$	101-
H.D. - Heavy Duty. POST PAID			

'AVO' METER MODEL 7 Supplied fully checked and tested on all ranges and In excellent condition. Complete with batterles and leads. Price £13.10.0. P. \& P. 7/6. Avo Leather Carry-
ing Case 30/-. Regret not supplied ing Case

SERVICE TRADING CO

All Mall Orderg-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 SHOWROOM NOW OPEN

Phone 9851560
Closed saturday

Personal callers only - LITTLE NEWPORT STREET LONDON, WC.2. Tel. GER 0578

FसHIM

FANTASTICALLY POPULAR

+

TAPE

We ofler you fully tonsilised polyeater/myler and
P.V.O. tapes of identical quality hi-f wide range recording characteristics as top grads tapes, euange control manufaciure. They are traly worth a lew more coppers than acetste, sub-standard, jointed or cheap imports. TRY ONE AND PROVE IT YOURSELF

8 tandard Plsy		
8in	150 ft .	$2 / 8$
4 in.	300 tt.	$4 / 6$
810.	600 ft.	$7 / 6$
Stin.	900 ft .	$10 / 6$
7 in.	1,200ft.	12/8
	Double Pisy	
8 in .	300 ft .	4/-
4 in.	600 ft .	8/-
8 in.	1,200tt.	15/-
Satin.	1,800ft.	19/6
$7 \mathrm{7in}$.	2.400 t.	$271-$

Postages 1/- reel.
Post 5 ree leasi 5% on three reele.
NoTE:

Most wallard, Mazda, Cossor, Emitron, Emiseope, Brimar, Ferranti types processed in our own lactory. NOTE: ALL tube orders only to Portamouth branch please

NEW and SPECIAL Lines at the keenest prices

AM/FM STEREO MULTIPLEX RECEIVERS 18 tranaistorn 9 diodes, 1 varisble diode, 2 silicon Rectiners. Push-pall Stereo Amplifiers. FM Stereo
Separation 15 dB . AN Separation L5dB. Avi Mediam Wave 180-650 Miftres. Besatiful wooden plinth case-approrimately $1 \delta^{\prime \prime}(w) \times 6^{n}(\mathrm{~h}) \times 9^{\circ}(\mathrm{d})$. Controls: Function 8witch, Balance, Base/Treble Control, Volume, Tuning. Fine finigh. Specisi purchase enabler us to after these superb machines of famous make at a ridicnlounly low price. Unrepeatable ofler at a fraction of list price . . . only
26 GN8. POST FREE.

SHARP RD504 Mains Battery Tape HITACHI Marine D/F Rocolvers GARRARD 1025 Changers with JASDN 121n. Diecatt full range twin AJAX MainilBattery, AM/FM larger AJAX Radio 12 gns WELESMERE AM/FM EMgh Sonsitivity 7 gns HITACHI Wrsa7E All-Wave, full size. 13 gns HI-FI By Leak, Whariedale, Goodmans,

RETAIL BRANCHES:
LONDON. 10 Tottonham Court Rd. (MUS 2639) PORTS用OUTH, 350-352 Fratton Read
(Tel. 22034)
SOUTHAMPTON, 72 East Streat (Tel. 25851)
BRIGHTON, 6 Queen's Read (Tel. 23975)
MAIL ORDER WAREHOUSE:
Devonian Court, Park Crescent Place, Brighton. (Tel. 680722)

BARGAIN PARCELS

Including varisble condensers, i.f. coils, loudspeaker plug/sockeks, knobs, pots, condensers, resistors, nath, rectifer, tranaistors at a small traction of list vaiue Dre to hespy demand we now pack them in ceveral sises-mbe smesed-try one now.
8 lba (post $8 /-$)
7 lbs . (post $5 /$)
$9 /-$
$99 / 6$
98

HAL MOORSHEAD

PART 2

Abstract

Last month details were given on the construction of the preamplifier and tone control panels. This month we are dealing with the completion of the preamplifier as a complete unit and the metalwork for the whole unit.

HAVING built up the preamplifier and tone control panels, these have now to be mounted together with the input sockets and controls into a complete unit. For those wishing to use the preamplifier with an existing power amplifier or one of another design this unit will be all that is required apart from a supply of 20 V ; this can generally be taken from the main amplifier power supply.

As the photographs of the unit show, all the controls are mounted on the front panel enabling the preamplifier to be permanently fitted into a cabinet. The four panels described last month are fitted vertically behind this front panel, bolted to another panel forming the back of the unit. They are arranged so that the tags on the boards are in close proximity to the variable pots controlling the treble, bass, volume and balance. The other ends of the panels have the contact pins for the selector switch inputs and the power supply.

The matching resistors for the input circuit are mounted on the actual input plugs. An additional plug is incorporated with the three inputs; this is a low level output from the preamplifier unit for feeding into a tape recorder or external amplifier, the output to this plug is not controlled by the volume control.

The P.W. Double-12 is not provided with a mono/stereo switch, a feature often provided on stereo amplifiers. This facility is not required as any
mono input, such as an a.m. radio tuner or standard record player input will be fed to the preamplifier by means of a DIN plug. Where the input is mono all that is necessary is to fit a jumper wire inside the plug paralleling the inputs. The actual plugs chosen were the Philips 5 -pin or DIN type, these having become almost universal for this kind of equipment.

In order to bring all the active controls to the front panel, the on/off switch and the indicator neon are also mounted on the front.

Layout of the preamplifier unit

Figure 1 showis a block diagram of the connections for the preamplifier as this is fairly involved and mistakes can easily be made. After having made up

The two sections of the completed amplifier before being bolted together.
the metal work for this unit mount the necessary items on it, that is the on/off switch, the input and output sockets, the selector switch and the variable pots. Potentiometers are sold with spindles of varying lengths and it is advisable to cut these to the required length before mounting them as cutting spindles in situ can damage the equipment. Clasp the spindle firmly in a vice and cut with a sharp

Fig. 1: Schematic diagram showing the interconnection of the panels. The DIN sockets are viewed from the rear and note that the balance control should be wired so that the chassis connection for one of the sections is fed from the left hand tag (viewed from the front) and in the other case from the right hand tag. It does not matter which section of the balance control is used for which channel.

Front view of the completed amplifier.

components list

Balance control-10k Ω double gang, one section ${ }^{-}$ $\log .$, the other anti-log.

Two $4 \cdot 7 \mathrm{k} \Omega, \frac{1}{4}$ watt miniature resistors.
Four DIN input sockets; knobs; Mains switch toggle; indicator neon; Eight way tag strip (if used as a separate unit); 6BA nuts and bolts; screened lead.

Metalwork as shown.

Fig. 2: The meta/work details for the preamplifier section.
through the pins as shown. The attenuating resistors are mounted on the DIN plugs, their chassis connections being taken to the bus-bar.

The feeds from the input sockets are taken to the selector switch as shown in the diagram. In turn the output from the switch is fed to the preamplifier panels which are mounted behind the selector switch.

It is advisable firstly to do the necessary wiring between those points on the front panel and to also solder the wires which will later lead to the boards, this will save at least fixing both ends of the inter-connecting wires when the unit is assembled.

Mounting the boards

The preamplifier and tonc control boards should next be mounted on the back panel. Each of these are held by means of four 6BA screws half an inch long, quarter-inch tubular spacers support the panels themselves and prevent the connecting pins from touching the chassis.

For those wishing to use the preamplifier by itself it is suggested that an eight way tag strip is mounted on the back of the rear panel to which the wires of the mains, supply voltage and outputs may be taken; if the preamplifier is to be used with the main amplifiers and power supply suggested this will not be required as the leads will connect directly to points on the other chassis. Screened leads are only necessary for the final outputs from the tone control panels and on the feeds from the top of the volume control to the low level output. In wiring the unit it is strongly recommended
hacksaw, finally filing off the rough edges. The actual length of spindle will depend upon the knobs chosen, but about $\frac{3}{3} \mathrm{in}$. should be right. Arrange the pots in such a way that the contacts are facing upwards.
A small solder tag should be fitted to one of the bolts holding the DIN plugs and a bus-bar threaded
that wire of several different-colours is used; this will greatly help in reducing mistakes.
The secret of wiring such a unit is to work logically, starting at the input and working through to the output and once the job is done leave it for a couple of hours and start with a fresh mind and follow through the sequence again.

Fig. 3: The metalwork for the centre section which should be bent as shown in the photograph on page 35. This section will hold the power amplifiers and power supply in the completed unit.

Fig. 4: Details of the drilling required for the back panel. The loudspeaker sockets fit into the影in. diameter holes. The power amplifier fuses fit into the two centre $\frac{{ }_{3}^{3}}{} \mathrm{i}$ in. holes while the top two $\frac{3}{8}$ in. holes are used for the mains input lead and the mains fuse.

All unmarked holes $\frac{1}{8}$ "dia.

The metalwork

As mentioned before, the design of the metalwork has been kept as simple as possible. Aluminium sheet, 16 s.w.g., should be used which is available from component suppliers, it can easily be cut using metal shears. All holes should be carefully marked and drilled, the resulting scurf being removed by a countersink bit. Chassis bending can easily be done in a vice although the aluminium should be protected from the jaws by sandwiching between cardboard.

Practical Wireless have made arrangements with H. L. Smith and Co. Ltd. of 287/289 Edgware Road, London W.2, to supply the basic metalwork, as specified complete with the six holes of over $\frac{3}{8} \mathrm{in}$. diameter already punched for $26 / 2 \mathrm{~d}$ plus 4 s 6 d p. \& p. All that is necessary is to drill the smaller holes detailed in the drawings.

Top view of the completed preamplifier section.

Next month, the final article will deal with the construction of the main amplifiers, the power supply and a suggested design for a cabinet.

HERE'S YOUR LINE-UP FOR NEXT MONTH'S PRACTICAL WIRELESS

A COMPREHENSIVE AUDIO MIXER

Most small audio mixers have very limited applications and the audio enthusiast has to resort to hookups of attenuators, transformers and other devices to match sources to inputs. The P.W. mixer to be described next month provides comprehensive facilities so that almost anything can be plugged into it without alteration. Facilities are also provided for monitoring the composite signal.

TRANSISTOR POWER OUTPUT STAGES

Transistor amplifiers look simple enough, but once you deviate from a published circuit design not only can performance be disappointing but components can be easily damaged. This article explains the peculiarities of various output circuits.

P.W. DOUBLE-12

The final article in this series deals with the building of the power amplifiers and power supply. Together with the preamplifier (for which you will find completion details in this issue), the unit described next month will build up into a complete hi-fi system at a considerable saving over ready built units.

A SLIMLINE SUPERHET

This simple medium wave superhet receiver using just four transistors and two i.f. transformers is designed to feed a personal earpiece or headphones. Measuring only $4 \frac{1}{2} \times 3 \times 1 \mathrm{in}$., it is easy to build and full wiring instructions are given.

3/- June issue on sale Friday May 9

T1HIS is the first in a short series of articles dealing with the theory behind the operation of pulse circuits. All the familiar, and some of the not-so-familiar circuits are discussed in a detailed analysis. The descriptions of how these circuit elements function should be of great assistance to the beginner with a basic knowledge of semiconductors as practical illustrations of how semiconductors work together in switching circuits. These basic building blocks are frequently taken for granted, perhaps not considered worthy of detailed appraisal, but an intimate knowledge of how such circuits operate must lead to improved design techniques in even modest pulse circuitry. Since saturation switching plays such an important role in pulse circuitry, this subject will be dealt with before more practical pulse circuits are discussed.
voltage approaches the line voltage since only minimal voltage is developed across the load by this small leakage current.

To take two examples, a germanium transistor having a leakage current of $5 \mu \mathrm{~A}$ at a line voltage of 10 V might have an effective saturation resistance of only 4Ω. The impedance in the ON state is thus 4Ω, and in the OFF state it is determined by the leakage current and the line voltage, since $V_{C E}$ sat may be considered negligible compared with V_{cc}, the line voltage. The OFF state impedance is $10 /\left(5 \times 10^{-6}\right)=2 \mathrm{M} \Omega$. Therefore,

$$
\text { - off-to-on ratio }=\frac{10}{4 \times 5 \times 10^{-6}}=0.5 \times 10^{6}
$$

If we consider a typical silicon transistor, the saturation resistance will be higher, but the leakage current will be lower, and a similar ratio results. Taking a silicon

pulse circuits in oper

The ultimate aim in switching circuits is to obtain a means of effectively switching between the two states of zero impedance and infinite impedance, upon the application of electrical stimuli. The electromechanical switch, the relay, gives the closest approximation to this as is possible, since it switches between contact resistance, perhaps milliohms, to a true open-circuit. The relay thus has an infinite off-to-on impedance ratio.

Whilst a useful off-to-on impedance ratio is obtainable with a relay, there are many applications where a relay is quite impracticable, due to its severe limitations. As an electromechanical unit with moving parts it is subject to wear and has a limited lifetime. The mechanical parts limit its speed of operation, the unit is bulky, and it is also expensive. The transistor on the other hand provides an inexpensive form of switching which is silent, fast, reliable, with almost infinite lifetime, and it is also very small. It is true that a transistor cannot have an infinite off-to-on impedance ratio, but more than adequate ratios are obtainable.

When a transistor is overdriven in terms of base current, and made to bottom, the collector voltage drops to $V_{\text {ce }}$ sat, usually of the order of one or two hundred millivolts for a typical silicon transistor. The normal emitter-base voltage for a silicon transistor is six to seven hundred millivolts, indicating that when a transistor is saturated the collector voltage is below the base voltage, i.e. the transistor is driven into a state where the normally reverse-biased collector-base junction is now forward-biased.

When a transistor is cut off, only the leakage current $\mathrm{I}_{\text {cbo }}$ flows through the collector load, and the collector
transistor with a leakage current of 100 nA at $\mathrm{V}_{\mathrm{cc}}=10 \mathrm{~V}$, and a saturation resistance of 200Ω,

$$
\text { off-to-on ratio }=\frac{10}{0.1 \times 10^{-8} \times 200}=0.5 \times 10^{6}
$$

Similar ratios are thus possible with silicon and germanium transistors. Power transistors have lower saturation resistances but higher leakage currents.

From the above considerations it is seen that transistors make useful switches, and switching speeds may be over a thousand times better than with high speed relays. The mode of switching will normally be common emitter, for in the common base mode, a current almost as large as the current to be controlled in the collector must be applied to switch. In common emitter the necessary switching current is reduced by the factor of the transistor's current gain, h_{FE}, and a small current in the base can control a much larger current in the emitter-collector circuit.
Figure 1.1 shows the output characteristics of a typical silicon transistor, and a load line is drawn for a line voltage of 20 V , not exceeding the maximum power rating, while another load line passes through the region where the power rating is exceeded. We shall consider the former initially, $\mathrm{R}_{\mathrm{L} 1}$. Point A represents the upper limit for the transistor to be in the OFF state, where $\mathbf{I}_{\mathrm{B}}=\mathbf{0}$. If a small negative bias is applied to the base of an n-p-n transistor (or positive bias for a p-n-p transistor), this will cause a negative current $I_{B}=I_{C o}$ to flow, and the transistor is switched into a more definite OFF state.

Point B on load line $R_{L 1}$ represents a point in the ON state where the transistor is non-saturated since the
effective collector-emitter voltage is seen to be 6 V , and in fact the transistor in this state, with a base current drive of $250 \mu \mathrm{~A}$, dissipates a power of $50 \times 10^{-3} \times 6=$ 300 mW . Point C on the load line represents the transistor in saturation, and it will be seen that here the power dissipation is very small since the collectoremitter voltage is very small. With this particular load resistance, any base current in excess of about $400 \mu \mathrm{~A}$ will drive the transistor hard into saturation.
The maximum power dissipation curve plotted on the diagram indicates the area on the graph which should not be exceeded by the load line in normal operation. In the case of a fast switching operation, there are situations where it is quite acceptable to exceed this power curve, however. First of all consider point E on this new load line, $\mathrm{R}_{\mathrm{L} 2}$. This point represents the transistor operating with a base current drive of $350 \mu \mathrm{~A}$ at a collector current of nearly 70 mA , i.e. the power dissipation is in excess of the maximum rating throughout the period of the ON state. Point E must never be used therefore. Point F, however, is slightly different.

元 ation part
 FIG. 1.1 saturation switetingi

Although the load line.intersects the limiting power curve, the operating point is within the power limit. It is possible to operate a switching transistor in this mode, but careful design is necessary, since the switching time is critical-the transistor must not spend any great time in the region of the load line where the power rating curve is exceeded. Where switching from point A to point F occurs rapidly, this is acceptable.

Point G indicates another saturated point for the transistor on $\mathrm{R}_{\mathrm{L} 2}$, and provided that switching occurs rapidly, although the load line exceeds the maximum power rating, the transistor should not dissipate excessive power, since most power is dissipated during the switching operation. A base current greater than about $800 \mu \mathrm{~A}$ would be required to switch the example transistor into definite saturation with load $\mathrm{R}_{\mathrm{L}_{2}}$. In the design of such circuits, the duty cycle of the pulse must be carefully considered.

Switching Speed

The switching speed of a transistor is considered when an ideal square wave, or step function is applied to the base, in Figure 1.2. The voltage applied to the base is shown in (a). For a transistor to repeat this step function precisely it would have to have an infinite bandwidth, since a perfect step function with a vertically rising edge is made up from the harmonics of an infinite number of frequencies. To switch the transistor on fast, the base current is overdriven, that is to say, referring to the saturated position of point C in Figure 1.1, instead of

Fig. 1.2
applying minimum base current for saturation, namely $350 \mu \mathrm{~A}, 500 \mu \mathrm{~A}$ or more are driven into the base. The base current resulting from a given emitter-base voltage will vary with transistor spreads, and to take up this spread it is usual to use a constant current source to switch the base current. The transistor cannot have infinite bandwidth, and hence follow the step function exactly since it takes a finite time for the transit of carriers, and minority carriers have to be swept out of the base region before switch-off is complete.

Figure 1.2 shows how a transistor will respond to a step function input. As the base voltage rises at ton so the base current immediately responds, rising to the programmed constant current level. Since carriers must travel across the base region before a collector current can flow, a turn-on delay results, and collector current does not immediately respond. Electrons travelling to the collector all have their own individual paths through the lattice structure, some short paths, some long, some undergoing many collisions, others few. There is thus a delay in the rise time before anything like a constant and maximum current can flow. (The rise time is defined as the time taken for the current to rise from 10% to 90% of its maximum value). The delay time is measured from the beginning of the input pulse to the 10% point of rise, and is denoted t_{d} in the figure.

Since the transistor is driven into saturation, the col-- lector now will emit electrons into the base region, just as the emitter does normally. This has the effect of flooding the base region with minority carriers, and before the transistor can be turned off, all these excess carriers, the stored base charge, have to be removed. When the step function reaches its falling edge, for a finite delay time, the storage time, the base region rich in minority carriers supports the original collector current and there is no instantaneous response to the switch-off at the base. Again the time interval over which the last carriers leave the collector is drawn out as they follow dissimilar paths, and the fall time results (90 to 10%). The stored charge due to the minority carriers in the base region causes the base to go negative at the switchoff point until the minority carrier storage has ceased. This is shown in (b). By driving a reverse current into the emitter-base, in fact overdriving in the reverse direction, the switch-off time may be improved, just as overdriving speeded up the switch-on time.

Overdriving to turn a transistor sharply on may, in certain circumstances, dissipate too much power in the

Fig. 1.3
(a)
(b)
transistor if excessive overdrive is employed for too long a period. To get over this problem and yet still maintain a high overdrive current, the ideal input to the emitterbase is shown in Figure 1.3a. The forward current is seen to be a step function, driving initially up to the overdrive value, remaining at this level until the transistor is in the ON state, then dropping to $I_{B} \operatorname{sat}(\min)$ to maintain the saturation, but at reduced power dissipation.

Such a waveform can be approached by the use of a speed-up capacitor, and in Figure 1.3b a speed-up capacitor is shown shunting the resistor R1. The speedup capacitor C_{s} is chosen such that the current through it takes up the difference between the required overdrive current, and the minimum base current for saturation, I_{B} Sat(min). The battery V_{bb} in Figure 1.3b holds the transistor cut off when no pulse is supplied at the input, thus ensuring that only $I_{c \rightarrow o}$ flows through R_{L} and that switching is substantially between $V_{c c}$ and $V_{C E}$ sat at the collector.

If the input voltage is sufficiently large in order that the voltage dropped across R 1 is large compared to V_{BE}, substantially constant current will be driven into the emitter-base circuit.

In Part Two of this series, the multivibrator family will be considered. The precise operation of various forms of multivibrator will be explained, and a method of speeding up the inherently slow rising edge will be discussed.

PRACTICAL TELEVISION-MAY

* VIDEO AMPLIFIERS

Video amplifiers are required to operate over a frequency range from d.c. to 6 MHz : details are given of the problems involved in obtaining this wide bandwidth and the circuit techniques used.

* PROGRAMME PRODUCTION

An account of the processes involved from the acceptance of an idea through to the final broadcast stage.

FOCUS ON AGC

Many new a.g.c. techniques have been introduced with the advent of hybrid and transistorised models: these are fully described and illustrated.

* UHF AERIALS

The special problems of aerials for use at u.h.f. are outlined and details given of practical systems.

practically wireless commentary by IENKY

MY mate Bob is a practical man. He says. Not for him the involved calculations on a bench-side jotting pad to prove the profundities of some designer's quirk. He does not waste his time with deep diagnosis, conjuring the whys and wherefores of a burned-out resistor.

Bob is a practical man: he belongs to the "suck-it-and-see" brigade. And, like many another hardworking technician, he achieves a very fair proportion of successes.

Before I get a heap of textbooks heaved at my head, let me state that this measure of success is not merely because the empirical method is superior to logical progression in fault-finding. Nor that I believe experiment to be a good idea when equipment breaks down for no obvious reason. In these days of directcoupled transistor amplifiers, where a faulty component sets up a domino-effect chain of disasters, guesswork can have catastrophic results. One does not even connect the test-meter without offering up a silent invocation.
In his first few months with us, Bob made some overeager bloomers that looked too much

A heap of textbooks at my head.
like guesswork. At odd moments we could see him racking his brains for possible solutions, and it was as well that he did not have too much pride to ask for guidance. Only in that way can experience be built up-and too often a failure in the workshop happens because some engineer has become "bogged down" in a mess of dead-ends.

Of course, here and there we come across the old hand whose experience, like moss on a boulder, has so encrusted the basic man that he is incapable of taking in anything new. This is the type of chap who derides transistors because-he aversthey are noisy, untrustworthy, too vulnerable, cannot be replaced without major surgery, and are as likely to be swept under the bench with the rubbish as put back neatly into store. He says: "You know where you are with valves." What he really means is that he simply cannot grasp the concept of holes and barriers.

There is a danger nowadays that the new men will take the opposite view, forgetting that there are still many fields where valved equipment can do a better job. Worse still, the characteristics of the later devices are being taken for granted. "Suck-it-andsee" is a dangerous philosophy when a complicated piece of electronic gear is on the bench.

And as technology scoots along breathlessly we can rely much less often on experience. Almost daily, the engineer is confronted (confounded?) with a circuit that incorporates some new technique.

Sceptics may think Henry unduly alarmist. Some of my colleagues in the Society of Service Managers have already seen the red light. They are pressing ever more vehemently for increased industrial training. We cannot,

An élite of engineers
they say, allow the technician to gravitate into a dead-end groove. The more science becomes the province of the specialist, the more is there a need for the chap in the workshop to learn his groundwork thoroughly. And be better supervised.

Readers in the radio repair trade will have seen the change that colour TV has brought. An élite of engineers is growing up, trained by the manufacturer, flushed with the novelty of it all, keen as can be. Despite all the foolproofing that a designer can dream up, there will always be room for the technical man with a diagnostic flair and a good solid grounding in the fundamentals. There is less time today to gather that moss of experience.

Despite all, there will always be room for blokes like Bob, who have a keen nose for the possible fault and a good memory for symptoms. We could do with a few more in the editorial office, answering readers' queries. Although I sometimes feel an inspired omniscience would be more useful, with letters that begin: "My receiver went dead last Saturday. What do you think can be wrong?"

 PART 5
 M.K.TITMAN, B.Sc. (Eng)

T| RANSISTORS are used extensively as amplifying components in electronic circuits and have almost displaced thermionic valves in this role. Only in the specialist fields of high frequency power circuits and high voltage circuits are transistors unable to meet the circuit requirements. Nevertheless it is entirely possible that solid state circuits will in time replace the valve even in these fields.

Transistors are three terminal amplifying devices of semiconductor material. Semiconductor material with the required electrical characteristics is obtained by adding impurities to pure silicon or germanium crystal structures. By suitable choice of the chemical element used as the impurity an excess of positive charges or

* negative charges is established in the material. This results in the two basic forms known as p-type or n-type material respectively (p-type with an excess of positive charges-holes, and n-type with an excess of negative charges-electrons).

When a single junction is formed between a p-type and an n-type semiconductor the resulting structure is known as a p-n junction, and has the properties of a diode. A two junction structure as shown in Fig. 1 has amplifying properties-providing the centre or base region is very thin. Two basic forms of amplifier are possible, the p-n-p transistor or n-p-n transistor. The structure and circuit symbols for each type are shown in Figs. 1 and 2 respectively.

In order to understand the reason for the methods used in transistor construction let us examine further the mechanism by which amplification is achieved. Figure 3 illustrates the diode properties of each junction individually and clearly the transistor appears as a back-toback diode combination as shown in Fig. 3(c). When a voltage is connected between the collector and emitter no conduction can take place. However if the base region is very thin then conduction across the baseemitter junction obtained by biasing the base with respect to the emitter results in current flow between collector and emitter. This can be regarded in the n-p-n configuration shown as due to electrons flowing into the base region and thereby establishing a conduction path
between collector and emitter. In order to make the base-emitter junction conduct it must be forward biased and this is achieved by applying bias to overcome the natural junction barrier potential of $0 \cdot 2 \cdot 0 \cdot 3 \mathrm{~V}$ for germanium transistors and $0 \cdot 6-0.75 \mathrm{~V}$ for silicon.

Fig. 3: N-P-N transistor junction characteristics.
Once this barrier voltage has been overcome a small increase in the voltage between the base and emitter will drastically increase the collector-emitter current flow. The relationship between base-emitter voltage and collector current for a germanium transistor is shown in Fig. 4 and it can be seen that a change of 25 mV results in an emitter current change of 4 mA giving an effective gm of $160 \mathrm{~mA} / \mathrm{V}$. Therefore a very small base-emitter voltage change-once the barrier voltage is overcomegives a change in collector current which when passing through a suitable load resistor results in a large voltage change. Hence the transistor has voltage amplification properties due to its capacity for current or power gain.

The mechanism of operation depends on current gain because current flow into the base produces current flow from collector to emitter and this is the reason for

Fig. 4: Base-emitter voltage/emitter current characteristics.

the designation of transistors as current-operated devices. However as we have seen from Fig. 4 the transistor can equally be regarded as voltage-operated.
The relationship between collector current and collector-emitter voltage is shown in Fig. 5 and it will be noticed that the general shape of the curves of constant base current resembles very closely those of pentode valve characteristics. This feature of base current operation further explains the term "currentoperated" for transistors though this expression has tended to produce a psychological barrier for those more familiar with valve operation. In fact amplification is achieved in the same way and the transistor and valve amplifiers shown in Fig. 6 are analogous.

A small positive increase at the base (in the case of an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor) or grid results in an increase in collector or anode current and produces a change in collector or anode voltage. Polarities, phasing and operation of the amplifiers shown is identical-it is only the voltage levels and impedances that differ.

As transistor characteristics are basically given in terms of current it is usual for the current gain, which is change in collector current for change in base current, to be quoted. The current gain approximates to the values given for $\mathrm{h}_{\mathrm{fe}}, \alpha^{\prime}$ or β in transistor characteristics. The gm can however be determined and is defined as the change in base-emitter voltage for a given change in collector current. This corresponds to the slope of the characteristic shown in Fig. 4.

Having briefly covered the method of operation of transistors of the basic p-n-p or n-p-n two-junction structure, let us now examine how this structure is manufactured in practice and the advantages and limitations of different forms of construction.

Alloy Junction Transistors

Transistors first became commercially available with the alloy junction form of construction and well-known examples of this type are the OC70 series. Initially germanium was used as the base material as its melting point of $950^{\circ} \mathrm{C}$ is lower than silicon $\left(1,400^{\circ} \mathrm{C}\right)$ and it is therefore easier to work with.

The transistors from 1950 were germanium p-n-p types made fiom n-type material formed by purifying germanium to an impurity concentration of 1 part in 10^{6} and then adding arsenic or antimony to give the n-type characteristic. The single crystal material was cut and diced into chips $0 \cdot 1 \mathrm{in}$. square and 0.005 in . thick. The two junctions were then formed by alloying beads of p-type impurity-normally indium-to both sides of the chip as shown in Fig. 7.

(a) NPN transistor amplifier

(b) Triode amplifier

Fig. 6: Comparison of simple transistor and valve amplifiers.
Alloying was achieved by heating the indium pellets to their melting point at which stage a solid bond was obtained and some of the indium diffused into the n type slice to give p-type material. The depth of penetration was determined by the time and temperature and thus the base thickness was controlled.
The transistor characteristics of all transistors are determined by base thickness, material, impurity concentrations, resistivity etc., and by using the alloying technique fairly wide tolerances occurred. As a result useful transistors of like characteristics are obtained by individual selection within acceptable limits. Thus each production line produces a range of transistors such as the OC70, 0C71 and OC72, and the yield of each type differs. The cost of each type of transistor therefore is largely determined by the numbers required and the production yield.

Fig. 7: Alloy junction transistor construction.

Fig. 8: Glass encapsulation.

Silicon alloy junction transistors, which are still produced in fairly large quantities, utilise aluminium as the p-type impurity to alloy with the silicon slice. N-P-N transistors were more difficult to produce and like silicon more expensive than the p-n-p germanium transistor. With n-p-n transistors this was due to the use of arsenic or antimony as the n-type impurity which had to be alloyed to lead to make the pellets.

The finished transistor slices of the early transistors were encapsulated in glass, as shown in Fig. 8, after soldering the lead-out wires to the centre slice and the two pellets. The glass formed an efficient hermetic seal and was coated with paint to prevent light penetration to the junction. The device was marked with its designation and the collector lead indicated by a coloured paint spot.

Glass encapsulations however are not efficient for heat dissipation, although grease is inserted to give additional conduction between the chip and the glass, and later devices used metal containers of the same basic shape.
-continued on page 54

CAIIBRAION OSCIILITIOR R. F. GBAHAM

ACALIBRATION oscillator of this type provides calibration signals at a large number of fixed frequencies, so that the tuning scales of receivers and other equipment can be marked. The actual frequencies available fall into three ranges, as follows:
$5 \mathrm{Mc} / \mathrm{s}$ and its multiples $10,15,20,25$ and $30 \mathrm{Mc} / \mathrm{s}$, to provide signals at 5 megacycle intervals from 60 to 10 metres.
$1 \mathrm{Mc} / \mathrm{s}$ and multiples to give signals at $1,2,3,4$, $5,6,7 \mathrm{Mc} / \mathrm{s}$ etc., permitting calibration at 1 megacycle intervals from 300 to 10 metres.
$100 \mathrm{kc} / \mathrm{s}$ and multiples for calibration of medium waves from 500 kilocycles to 1,500 kilocycles (600 to 200 metres) and for short wave bands where required. A typical use is calibrating at $1,800,1,900$ and $2,000 \mathrm{kc} / \mathrm{s}$ for the 160 M amateur band, or 3,500 , $3,600,3,700$ and $3,800 \mathrm{kc} / \mathrm{s}$ for the 80 M band.

In such equipment, crystals are generally employed. In view of the cost of these, inductors are used instead, with a combination of fixed and pre-set capacitance in parallel. These circuits are set on frequency with the aid of the $200 \mathrm{kc} / \mathrm{s}$ BBC Radio $2(1,500 \mathrm{M})$ transmission, and the National Physical Laboratory $5 \mathrm{Mc} / \mathrm{s}$ signals. There is no great difficulty in obtaining an accuracy far higher than that which can be observed on the tuning scales of any general coverage communications type or other receiver.

Figure 1 is the calibration oscillator circuit. The pentode section of the ECF80 has cathode feedback from the taps on coils L1, L2 and L3, with electron coupling to the anode output circuit. This gives isolation of the tuned circuits, and quite a large r.f. output.

The ECF80 triode section is an audio oscillator, allowing tone modulation when required. This gives ready identification of the calibration oscillator output.

Power can generally be borrowed from the receiver. If not, a small power pack, giving 6.3 V at 0.43 A , and about 10 mA at 220 V , will be required.

Harmonic Output

Figure 2 shows some of the outputs available from the calibration oscillator, and will help to clarify the way in which it is used. The fundamental outputs $5 \mathrm{Mc} / \mathrm{s}, 1 \mathrm{Mc} / \mathrm{s}$ and $100 \mathrm{kc} / \mathrm{s}(0 \cdot 1 \mathrm{Mc} / \mathrm{s})$ and multiples of them will be heard on a receiver. The multiples grow progressively weaker, the upper frequency limit depending either on the coverage of the receiver, or its sensitivity. The outputs of $5 \mathrm{Mc} / \mathrm{s}, 1 \mathrm{Mc} / \mathrm{s}, 100 \mathrm{kc} / \mathrm{s}$ and their multiples, are selected by the calibration oscillator bandswitch. With a typical communications receiver, all can be heard up to $30 \mathrm{Mc} / \mathrm{s}$.

[^4][^5] .

Fig. 1: Complete circuit of the calibration oscillator.

The harmonics may be used for trimming and aligning purposes, or to correct errors in dial readings of a ready-made receiver. When dealing with the h.f. bands, first check at $10,15,20,25$ and $30 \mathrm{Mc} / \mathrm{s}$, for positive identification of these frequencies by the $5 \mathrm{Mc} / \mathrm{s}$ oscillator harmonics. Appropriate $1 \mathrm{Mc} / \mathrm{s}$ points can then be located by tuning up and down from the $5 \mathrm{Mc} / \mathrm{s}$ multiples, as required.
With a completely uncalibrated receiver, a similar method is used. First mark the receiver scales at $5 \mathrm{Mc} / \mathrm{s}$ intervals, omitting the numbering if not known. The $1 \mathrm{Mc} / \mathrm{s}$ coil is then switched in, and lighter marks made at $1 \mathrm{Mc} / \mathrm{s}$ intervals. This gives a scale similar to a portion of Fig. 2, but without numbers. It is now necessary to identify one frequency on each receiver band, and to count up and down from this, to fill in all marks on that band. This is generally easy, but the following notes may be useful.
The National Physical Laboratory signals on $2 \cdot 5 \mathrm{Mc} / \mathrm{s}$ and $5 \mathrm{Mc} / \mathrm{s}$ identify these frequencies. Amateurs will be heard on the low frequency side of the $2 \mathrm{Mc} / \mathrm{s}$ mark in the $1 \cdot 8-2 \cdot 0 \mathrm{Mc} / \mathrm{s}$ band. Amateurs also use $3 \cdot 5 \cdot 3 \cdot 8 \mathrm{Mc} / \mathrm{s}$, so will be heard a little l.f. of a $4 \mathrm{M} / \mathrm{cs}$ mark, and this and other bands can be calibrated by counting the $100 \mathrm{kc} / \mathrm{s}$ signals between $1 \mathrm{Mc} / \mathrm{s}$ markings already put on the receiver scale.
For higher frequency ranges, identification can if wished be from amateur bands. Since one $5 \mathrm{Mc} / \mathrm{s}$ mark will be $15 \mathrm{Mc} / \mathrm{s}$, a $1 \mathrm{Mc} / \mathrm{s}$ harmonic l.f. of this will be $14 \mathrm{Mc} / \mathrm{s}$, and the 20 M amateur band is 14 $14.35 \mathrm{Mc} / \mathrm{s}$. Another $5 \mathrm{Mc} / \mathrm{s}$ harmonic is $20 \mathrm{Mc} / \mathrm{s}$, and a mark $1 \mathrm{Mc} / \mathrm{s}$ h.f. of this will be $21 \mathrm{Mc} / \mathrm{s}$, or the l.f. end of the 15 M or $21-21 \cdot 45 \mathrm{Mc} / \mathrm{s}$ amateur band.

For medium waves, mark the dial at $100 \mathrm{kc} / \mathrm{s}$ intervals throughout the tuning range. Identify one mark by noting its relationship to a BBC transmission or any other station. Then count up and down from this, writing in the frequencies, as for the short wave bands.

Construction

This should be rigid. Figure 4 is under the chassis, and Fig. 5 above the chassis. Each coil has a parallel fixed capacitor, and smaller pre-set or variable control for narrow frequency adjustment around the wanted spot frequency. If coils and capacitors are as shown, the correct frequencies can easily be found. Except for this, there is no need that capacitor values are exactly as shown, so it might be possible to utilise trimming and other capacitors already to hand.
Various intervalve coupling transformers and tapped output transformers will produce an audio tone. A single tapped winding, such as available on an output transformer, can be used by taking the tapping to h.t. positive (switch). One outer tag then

Fig. 2: Chart showing output frequencies of calibration oscillator.

goes to the triode anode (via modulation switch) and the other outer tag to C7. Transistor type transformers are unsuitable. If no oscillation is obtained by using a transformer having two windings, reverse connections to one winding.

Inductors

These are wound on $\frac{1}{2}$ in. diameter formers having adjustable cores. The smallest coil L3 has 20 turns of 24 s.w.g. enamelled wire, side by side. Begin at A, Fig. 3, the start of all coils being as near the tagged ends of the former as possible. Bare and tin the wire, thread it through the pin A, and solder at the tip. Tapping B is a loop, and C is the end of the winding. For L3, tapping B is five turns from earthed end C. All turns are in the same direction. Pressure should not be exerted on the pins while they are hot.

L2 has 58 turns of 34 s.w.g. enamelled wire side by side, tapped at eight turns from C.

The large coil L1 has 500 turns of 36 s.w.g. enamelled wire, tapped at 50 turns from C. Cut two discs about lin. in diameter from paxolin or hardboard. Punch or make $\frac{1}{2} \mathrm{in}$. diameter holes so these discs are a push fit on the former. They are cemented as in Fig. 3, with $\frac{1}{4}$ in. winding space between them.

End A passes through a small hole in the upper disc, near the former. Wind on 450 turns, then make a loop and place sleeving on it. The loop goes through pin B, and is soldered. A further 50 turns are then wound on, in the same direction, and the coil finished at C .

Fig. 3: Coil winding details.

Windings are lightly cemented in place. The coils are held by 6 BA nuts, which are tightened after adjusting the cores.

An insulated socket is provided for the output lead. Enough coupling can be obtained on some frequencies by placing the output lead near the aerial socket of the receiver, or near a short insulated wire connected to the aerial socket. With portables, place the lead near the receiver.

Oscillator Calibration

The $100 \mathrm{kc} / \mathrm{s}$ signal should first be checked by tuning in Radio 2 on $200 \mathrm{kc} / \mathrm{s}$ on any available receiver, and rotating the coil core of L1 so that the calibration oscillator harmonic falls on the same frequency, with VC1 about half closed. Then lock the core.

Short wave conditions vary, but listening on one or two occasions should enable the "tick" of the NPL signal to be located on $5 \mathrm{Mc} / \mathrm{s}$. If necessary, first identify $1 \mathrm{Mc} / \mathrm{s}$ or 300 M in the medium wave band by using the $100 \mathrm{kc} / \mathrm{s}$ harmonic, and tune the $1 \mathrm{Mc} / \mathrm{s}$ circuit L2 to this. A $1 \mathrm{Mc} / \mathrm{s}$ harmonic will then be $5 \mathrm{Mc} / \mathrm{s}$, and will show where to tune for the NPL signal.

When the $5 \mathrm{Mc} / \mathrm{s}$ NPL signal is found, both the $1 \mathrm{Mc} / \mathrm{s}$ and $5 \mathrm{Mc} / \mathrm{s}$ circuits L2 and L3 are tuned to zero beat with this. The $100 \mathrm{kc} / \mathrm{s}$ circuit L1 may also be checked on this frequency, but after tuning to Radio 2 as described.

Check that four $1 \mathrm{Mc} / \mathrm{s}$ marker signals are obtained between each $5 \mathrm{Mc} / \mathrm{s}$ marker signal and the next, every fifth $1 \mathrm{Mc} / \mathrm{s}$ harmonic naturally falling on the $5 \mathrm{Mc} / \mathrm{s}$ harmonics. In the same way, nine $100 \mathrm{kc} / \mathrm{s}$ marker signals will be found between each $1 \mathrm{Mc} / \mathrm{s}$ signal and the next, the tenth $100 \mathrm{kc} / \mathrm{s}$ harmonic falling on $1 \mathrm{Mc} / \mathrm{s}$, and so on (Fig. 2).

Put dots on the panel to show tuning positions for the calibration oscillator controls. The equipment should be placed in a cabinet. Before accurate and permanent calibration of a receiver, switch on the oscillator in advance, and correct its circuits against the NPL signal on $5 \mathrm{Mc} / \mathrm{s}$, if necessary.

Receiver Calibration

When the calibration oscillator unmodulated harmonic falls near a radio transmission (e.g., Radio 2) a heterodyne note is heard. This falls in frequency as the difference between the two signals is reduced. With modulation off, tune for "zero beat".

A heterodyne is best heard when the two signals are reasonably similar in strength. For example, tight coupling on $200 \mathrm{kc} / \mathrm{s}$ can swamp the receiver so that the Radio 2 signal is scarcely audible.

When heterodyning the calibration oscillator with a transmission or with a signal generator or v.f.o. for calibration purposes, the receiver is merely to
-continued on page 54

-Fig. 4: Under-chassis wiring details.

Fig. 5: Above-chassis view.

A SERIES OF SIMPLE TRANSISTOR PROJECTS, EACH USING LESS THAN TWENTY COMPONENTS AND COSTING UNDER TWENTY SHILLINGS TO BUILD.

NEARLY all the amplifiers described for the constructor are for a specific purpose, either for a record player radio or tape-recorder. Again nearly all of them amplify the input to at least 350 milliwatts and do their best to faithfully reproduce the signal but these amplifiers are relatively complicated (at least compared to the design about to be described) and not inexpensive, especially as several use transformers.

The two-transistor amplifier described in this article could hardly be simpler, it certainly isn't Hi-Fi (even using that term in its present adulterated term) and it hasn't much of an output, nevertheless it has plenty of uses. Being very simple and also being capable of being made very small it is ideal for adding to miniature radios and other equipment. With no modifications it is ideal as an audio signal tracer and by adding a detector diode and smoothing capacitor it may also be used as an r.f. signal tracer.

THE CIRCUIT

The signal is fed to the base of $\operatorname{Tr} 1$ via C 1 , this ensures that whatever the input, the d.c. working conditions of the first transistor are unaffected. The output from Tr1 appears across R2 and is coupled directly to the base of Tr 2 and in turn the output appears across the loudspeaker coil. R1 is connected between the collector and base of $\operatorname{Tr} 1$ and not only provides the correct working voltage but applies both a.c. and d.c. feedback. To provide the correct working voltage at the emitter of $\operatorname{Tr} 2$ a resistor is inserted in the emitter circuit of this transistor as it is conducting all the time a voltage is developed across R3. However the conductivity of Tr 2 varies with the signal and so will the voltage, making it necessary to "iron out" the fluctuations, this is done by C2.

By using a speaker of 75Ω impedance an output transformer is unnecessary. Speakers of this impedance are very common in the smaller diameters (2in. etc.).

CONSTRUCTION

The construction is absolutely straightforward and layout is not at all important, a suggested arrangement is shown in Fig. 2. A volume control is not shown on the board but this could easily be included as could the diode and smoothing capacitor when required as an r.f. signal tracer. The transistors used are an OC71 and an OC81 but almost all germanium P-N-P transistors could be substituted-and have

No. 1 a two transistor amplifier \star components list

Resistors:	Capacitors:		
	$120 \mathrm{k} \Omega$		
R2	$4 \cdot 7 \mathrm{k} \Omega$		

Tr1 OC71, Tr2 OC81-see text. Loudspeaker, 75Ω impedance. Veroboard $1 \frac{3}{4} \times 1 \frac{3}{8} \mathrm{in}$. 9 volt battery, PP3 etc.

Extra components for r.f. signal tracer, C1, 1,000pF, C2 $0.01 \mu \mathrm{~F}$, Diode OA79 etc.

Fig. 1: The circuit of the two transistor amplifier.

Fig. 2: The component layout; note that none of the copper strips need be broken.
been by the author. An output transistor should be used in place of the OC81 as small signal types can get a bit hot and fail. Only a very small signal is needed at the input to provide an audible output and so by inserting a high value resistor (about $1 \mathrm{M} \Omega$) it can be used to trace fairly high impedance signals.

순몬돈

A. J.WHITTAKER

PART 2-TRANSMITTER AERIALS (Continued)

LAST month we discussed some of the basic principles of the radiation of radio waves from a dipole aerial. In this article we shall continue our investigation by examining the simple dipole and the Marconi quarter-wave aerials.

Radiation Height

Radiation height depends upon the current distribution in the aerial. It may be approximately linear, or sinusoidal. See Fig. 2.1 below.
The effect is to make the aerial effectively shorter because the amount of power radiated is reduced. In practice the power radiated is indicated by "metre amperes" which is equal to the radiation height multiplied by the r.m.s. current flowing in the aerial wire $=$ Lr. I.

The power radiated from a dipole, using L_{r} in the equation, is given by,

$$
\mathrm{P}=\frac{320 \pi^{2} \mathrm{Lr}^{2} \mathrm{I}^{2}}{\lambda^{2}} \quad \mathrm{R}_{\mathrm{r}}=\frac{320 \pi^{2} \mathrm{~L}_{\mathrm{r}}^{2}}{\lambda^{2}}
$$

Where,
$\mathbf{L}_{r}=$ radiation height $=\mathrm{K} \times$ physical height
$K=$ aerial form factor (see below)
λ is the wavelength in metres.
The radiation resistance of a dipole, R_{r}, may be derived by expressing the physical height in terms of the wavelength λ in use. If the dipole height is $\lambda / 2$, putting $\lambda=4 \mathrm{~L}$ and $\mathrm{L}_{\mathrm{r}}=2 \mathrm{~L} / \pi$ (form factor) we have,

$$
\mathrm{R}_{\mathrm{r}}=\frac{320 \pi^{2} 4 \mathrm{~L}^{2}}{16 \mathrm{~L}^{2} \pi^{2}}=80 \text { ohms }
$$

This value is typical for all half wave aerials erected above the ground and provides an empirical rule for estimating radiated power.

(a) Linear current distribution

(b) Sinusoidal current distribution

Fig. 2.1

Fig. 2.2

Figure 2.2 below illustrates the voltage and current patterns in a simple dipole aerial. Nodes of voltage or current are points of minimum amplitude. Anti-nodes are points of maximum voltage or current.

The aerial impedance (Z) is the ratio of r.m.s. volts/ r.m.s. current at any point and is thus a minimum in the centre, being typically 80 ohms. The aerial system, equivalent to a series resonant circuit, is current fed at the centre, and is said to be excited at its natural or fundamental frequency.

Marconi Quarter-wave Aerial

The fundamental frequency of the aerial in Fig. 2.3, is four times its physical length. This may be compared with an organ pipe with the top closed, producing a note of four times the length of the pipe.

As there is a current antinode at the base of the aerial, this is a convenient point to fix a current meter. This is usually of the thermocouple type, its purpose being to monitor the aerial current when tuning the system. The aerial is in tune when the meter shows maximum reading.

Figure 2.4 shows the voltage and current wave patterns on a quarter-wave Marconi aerial with a current meter fixed at the current anti-node point.

Fig. 2.3

Fig. 2.4

Figure 2.5 shows the radiation pattern from a Marconi quarter-wave aerial. $\mathrm{P} O \mathrm{P}_{1}$ represents the earth line and as this is not a perfect conductor, it absorbs energy from the passing wave front causing a forward tilt. This assists the wave to follow the earth's curvature (l.f. waves only, $30-300 \mathrm{kc} / \mathrm{s}$).
The power radiated from a Marconi quarter-wave aerial is given by,

$$
P=\frac{160 \pi L_{r} I}{\lambda}
$$

Again putting $\lambda=4 \mathrm{~L}$ and $\mathrm{L}_{\mathrm{r}}=2 \mathrm{~L} / \pi$ (form factor) we have

$$
\begin{aligned}
\text { Radiation resistance } \mathrm{R}_{\mathrm{r}} & =\frac{160 \pi^{2} 4 \mathrm{~L}^{2}}{16 \mathrm{~L}^{2} \pi^{2}} \\
& =40 \text { ohms. }
\end{aligned}
$$

As described in this month's Practical Wireless Top line integrated hi-fi stereo
amplifier featuring PEAK SOUND "CIR-KIT"

Peak Sound are indeed proud to be associated with this superb P.W. design and that so much of it is made possible because of Peak Sound products and design techniques. Basically, the "P.W Double 12" demonstrates the value of using "Cir-Kit" in modern circuit board units either for single or prototype examples, but in this instance, Peak Sound have contributed much more to the success of this project. This includes the remarkable power amplifiers, the power pack and the ingeniously styled cabinet which almost assembles itself, it is so simple to build. Read about the "P.W Double 12" in this issue right now. Then when you build this exciting new design be sure you do it with authentic, exact-to-specification Peak Sound kits as described.
A. SIMPLIFIED UNIT CONSTRUCTION

- INGENIOUS TEAK CABINET DESIGN
- PROFESSIONAL IN EVERY WAY AND MONEY SAVING TOOI

This is your"'P. W. Double

12's shopping list

As you follow through stage by stage with P.W. these are the Peak Sound kits you will require. They are exact to specification. Transistors included.
2 Spools of "Cir-Kit" at 2/- each
2 Pre-amp and tone control kits
4 3 $\frac{3}{4}$ in $x 2 i n$ "Cir-Kit" matrix boards
2 PA.12-15 Power Amplifier Kits
2 Heat Sink assemblies
1 PS.45K 45 volt power supply kit
1 Pack-flat afrormosia teak finished Cabinet kit
5 Controls as specified
TOTAL COST £22 196
Metal work (make or buy), knobs, plugs and sockets, fuses etc. allow $£ 3.0 .0$.

Go to your Dealer NOW

for your authentic Peak Sound Kits. In case of difficulty, please send direct, giving the name and address of your usual supplier where possible and add $11 /-$ postage for complete assembly, or 5/6 if without power pack.
TRADE ENQUIRIES INVITED

A Abridged specification
Formation-Two pre-amp panels, two tone control panels, two power amplifier modules, power supply unit on chassis, housed within teak finished cablnet. Controls-Bass and treble cut and lilt based on Baxandall circuitry/Volume/Balance/ Rotary selector. Input Sensitivity-Magnetic P.U. (per channel) 2.5 mV into $68 \mathrm{k} \Omega$. Ceramic P.U. -25 mV into 27 K . equalised for flat response. Radio/Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response -20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall,

"Cir-Kit" is at the heart of building this fine design. Made from almast 100% pure copper with unique adhesive backing, it is the superb circuit builder for all requirements. In 5 'spools, $\frac{1}{18}{ }^{\prime \prime}$ wide, $2 /$-each.
"CIR-KIT" makes it possible!

Output-12 watts per channel into 15Ω (8Ω speakers may be used).
Negative Feedback-43dB over each section. Power required-45V D.C (supplied by builtin power unit).
Cabinet-Afrormosia teak finish, pack-flat, easy to build kit. Slze $9 \frac{1}{2} \times 5 \frac{1}{2} \mathrm{in}$. high $\times 9 \frac{1}{2} i n$. deep.
Transistors-Ulitra low nolse in pre-amp and tone control stages.
PERFORMANCE CHARACTERISTICS, PARTS REQUIRED, ETC., SEE OTHER PAGES IN THIS ISSUE

THESE PEAK SOUND PRODUCTS WILL HELP

PA.12-15 POWER

AMPLIFIER

As specified for ''P.W. Double $12^{1 \prime}$ and available ready bullt complete with heat sink for mounting directiy into position as described, but can also be used in other applications. Also avaiiable as a kit less heat sink and board.

Bullt $£ 5.19 .6$
KIt (less heat sink, board and "Clr-Kit') 79/6 Heat sink and baseboard assembly 10/-
Please add $2 / 6 \mathrm{p} / \mathrm{p}$ either model if ordered direct. or 5/- for two.

ES. 10-15
 BAXANDALL
 SPEAKER

This easy to bulld loudspeaker provides genulne hl-fi standards by the use of unique equalising principles. Frequency response $60-14,000 \mathrm{~Hz}$ ($100-90 \mathrm{kHz} \pm 3 \mathrm{~dB}$). Easy-tobulid kit Including $18 \times 12 \times 10 \mathrm{In}$ cabinet.

£9.17.6

+ £1.2.1 P/Tax

PEAK SOUND (HARROW) LTD., 32 ST JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY, Phone EGHAM 5316

Fully guaranteed Individually packed VALVES

PERSONAL CALLERS WELCOME
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. EANY OTHRERS no stock inolude Gathode Ray Tubes and 8pecial Falven. D.K. Orders

brand

ALL valves
guaranteed

A2134	$8 /-$	ECF82	$6 / 6$	KT66	$18 / 6$			
AR8	$5 /-$	ECH85	$11 /-$	KT67	45/-	\triangle RP8 8/- ECE85 11/$\begin{array}{ll}\text { ARP8 } & 8 /- \\ \text { ARP12 } & 8 / 6\end{array}$ ARTP1 8/ATP4 $\begin{array}{lr}\text { AZ31 } & 9 / 6 \\ \text { BD78 } & 40 /-\end{array}$	BD78	401
:---	:---							
BLe83	101	$\begin{array}{ll}\text { BL63 } & 10 /- \\ \text { BT85 } & 15 /- \\ \text { BT45 } & 150 /-\end{array}$ $\begin{array}{ll}\text { BT45 } & 150 /- \\ \text { BT83 } & 85 /-\end{array}$	CV102	$8 /-$				
:---	:---							
CV108		CV103 4/CV315 (matahed $180 /-$ pairs) 18 (Bingle) $50 /-$ CY31						

D41
D77

D77
$\begin{array}{ll}\text { DA100 } & 8 /- \\ \text { DAF90 } & 7 / 6\end{array}$
$\begin{array}{ll}\text { DAF90 } & 7 / 6 \\ \text { DD41 } & 4 /-\end{array}$
$\begin{array}{ll}\text { DET20 } & 2 /- \\ \text { DET25 } & 10 /-\end{array}$
DET
DF92
DF9
DF92
DF96
DK92
DK96
DK96
DLB3
DL92
DL92
$\begin{array}{ll}\text { DL98 } & 4 /- \\ \text { DL94 } & 8 / 6 \\ 8 /-\end{array}$
DL810 18/-
DY86
$\begin{array}{lr}\text { DY87 } & 8 / 6 \\ \text { E80F } & 18 /-\end{array}$
ER8OC $81-$
E900
$\begin{array}{ll}\text { E980C } & 5 /- \\ \text { E1800C } & 7 /-\end{array}$
E1820C $18 /$
$\begin{array}{ll}\text { E1808 } & 2 / 6 \\ \text { E1148 } & 1 /- \\ \text { EA50 } & 1 /\end{array}$
RAs0
EA76

EAC
$\begin{array}{ll}\text { EAF42 } & 9 / 8 \\ \text { EB91 } & 8 /- \\ \text { RBC93 } & 8 /-\end{array}$
$\begin{array}{ll}\text { EBC33 } & 8 /- \\ \text { EBC41 } & 9 j- \\ \text { EBC81 } & 6 / 6\end{array}$
$\begin{array}{ll}\text { EBC881 } & 6 / 6 \\ \text { EBF80 } & 7 / 6\end{array}$
$\begin{array}{ll}\text { EBF80 } & 7 / 8 \\ \text { EBF88 } & 3 / 6\end{array}$
EBF88
RC63
EC70
EC 7
$\mathrm{EC9}$
EC
ECC33 12/-
$\begin{array}{ll}\text { ECC35 } & 15 / 6 \\ \text { ECC40 } & 10 / 9\end{array}$
38
ECC82 4/8
$\begin{array}{ll}\text { RCCO8 } & 5 / 8 \\ \text { RCC884 } & 5 / 6 \\ \text { HCC84 } & 6 /-\end{array}$
$\begin{array}{ll}\mathrm{ECCD} 84 & 6 /- \\ \text { ECC85 } & 5 / 6\end{array}$
$\begin{array}{ll}\mathrm{ECC8} & 81- \\ \mathrm{ECC8} & 71-\end{array}$
$\begin{array}{ll}\mathrm{ECC} 1 & 4 /- \\ \mathrm{ECC1} 99 & 9 / 9\end{array}$

P. C. RADIO LTD. 170 GOLDHAWK RD., W. 12
(01) 7434946

RG1.240A | OA7 | $4 /-$ |
| :--- | :--- |
| OA47 | $8 /-$ |
| OA | |

OA7
OA7
OA7

UU5 7\%-	X66	7/8	18
UY21 10/6	X76M	$7 / \mathrm{m}$	185
UY41 7\%-	X118	8/-	$1 T 4$
UY85 5/9	X145	8/-	243
V246A/1K	Y 63	6/8	2D2
190/-	Y65	4-	344
VL8631 85/-	Z800U	20]-	5R4
VP23 8/6	Z801U	$26 /-$	
VP133 8/-	Z900T	12j-	3B7
VR99 7/6	1822	801-	3B2
VR105/30	1G5GT	61-	8D6
61-	1D8GT	6/-	3E2
VR150/30	196GT	61-	3Q4
6/-	$1 \mathrm{L4}$	$2 / 6$	3Q5
VU38 71-	1 LAB	6/-	384
W118 8/-	1LC6	71	3 V 4
W119 9/-	1LH4	4/-	4D1
X68 5/-	1R5	61-	5A1

OC28	$12 / 6$	OC172	$7 / 6$	AD149	$18 /-$
OC29	$16 /-$	OC200	$7 / 6$	AEY 11	$16 /-$

\qquad

C MOVINE	
$200 \mu A$	$2^{\prime \prime}$
$500 \mu A$	$21^{\prime \prime}$
1 mA	$2^{\prime \prime}$

5 mA
$0-30 \mathrm{~mA} \quad 21^{\prime \prime}$ round
$50 \mathrm{~mA} \quad 2 \frac{1}{\prime \prime}^{\prime \prime}$ square pane
$75 \mathrm{~mA} \quad 21^{\prime \prime}$ plug-In
$\begin{array}{ll}100 \mathrm{~mA} & 1^{\prime} \text { pro)... } \\ 100 \mathrm{~mA} & 1 \frac{1}{n}^{\prime \prime} \text { round panel }\end{array}$
$100 \mathrm{~mA} \quad 21^{*}$ round panel
R.F. METERS
$120 \mathrm{~mA} \quad 21^{\prime \prime}$ round pan
$1 \mathrm{amp} \quad 2$ I" $^{\prime \prime}$ square panel
20/41f1. AERIALS each consisting of ten 3ft. 7 In.
dla. tubular screw-In sectlons. 11ft. (0-section) whip
aerlal with adaptor to fit the 7In. rod, Insulated base, stay plate and stay assembiles, pegs, reamer, hammer erect, in canvas bag. £3.9.6. P. \& P. 10/6.

FIELD TELEPHONES TYPE "F' housed In portable out-doors for up to 10 miles. For pair Including batteries and $1 / 6$ th mile field cable on drum. Completely
new, Es.10.0. Silohtly used, E5.10.0. Carrlage 10/-.

Burgess instant heat solder gun
Only the tip heats-but fast ! About 7 'seconds! Pre-focused lamp lights the job up. Exclusive fulllength trigger on pistol grip eases finger fatigue. Finger-tight is right for screw-in tips - no pliers needed. Kit complete with conical tip, chisel tip, 6 extension barrel, doubleended probe, gun and solder. £4 126. Full details and nearest stockist from: Burgess Products Co Ltd, BURGESS
Sapcote, Leicester LE9 6JW

etc.

60W4
 6 J 4
6 S 5
6 J 5 $\begin{array}{ll}8 J 5 G T & 8 / \\ 6 J 6 & 81 \\ 8 J 6 W & 61\end{array}$
$18 /-$
$8 /-$
12AT6 4 ${ }^{7}$

ALL OVERSEAS ENQURRES AND ORDERE
Please address to
Colomor (Electronics) Ltd.
170 GOLDHAWK ROAD, LONDON W12.
${ }^{8 / 6}$
$\underset{6}{8 / 8}$

\section*{$\sqrt{6 / 6}$} ${ }^{561}$ ${ }^{12 A 277}{ }^{1247}$ | - | $12 A U$ |
| :--- | :--- |
| $j-$ | $12 A V$ |
| $4 j-$ | $12 A X$ |
| $6 /-$ | $12 A X$ | 87

Where

$\mathrm{L}_{\mathrm{r}}=$ radiation height $=\mathrm{K} \times$ physical height $(\mathrm{K}=$ form factor).
$\mathbf{R}_{\mathrm{r}}=$ radiation resistance.

Fig. 2.5

Image Aerials

Figure 2.6 shows the image of a dipole aerial suspended above the ground on a mast. As in the case of optical reflection from a mirror the effect of the ground in the neighbourhood of the aerial system may be assessed by replacing the ground by an image of the aerial, from which half of the total energy is radiated. The total radiation field is then calculated by assessing the joint field so produced by the aerial and its image.

Aerial Impedance and Tuning Arrangements

The measurement and tuning of a Marconi quarterwave aerial may be done by fixing volt and ammeters at appropriate points in the circuit. Figure 2.7 shows the general arrangement. The aerial is in tune when the ratio V / l is a minimum. The value of this ratio gives the aerial impedance (Z_{1}) and is typically 40 ohms.

In the case of the half-wave aerial, end fed, the circuit at the feed point is tuned for maximum V / I ratio. This gives the aerial base resistance which is typically 3500 ohms. Figure 2.8 shows the circuit with the voltage and current meters in place.

Aerial Capacitance

If we add an extension to our quarter-wave aerial and bend this over so as to form an inverted L shape, we will increase the capacitance of the aerial. The parallel or top part of the wire forms an additional capacitor plate. The effect of this is to increase the current flowing in the vertical wire and so increase the effective height. The form of the voltage and current distribution in such an aerial system is given below, Figs. 2.9a and b.

The " T " aerial gives much the same results but is a slightly better radiator and has slight directional properties. Its form is given below, Fig. 2.10b.

Fig. 2.9

Aerial Form Factor

Aerial form factor (AFF) refers to T and L shaped aerials where the current distribution in the vertical part is no longer sinusoidal and it is impossible to arrive at an estimate of the power radiated. However, it is possible to arrive at a factor by which the actual height may be multiplied in order to obtain the effective or radiation height. This is the AFF given in the tables, which give a good approximation for the effective height for fixed ground stations.
The symbol used for effective or radiation height is L_{r}, and in the case of the dipole, it refers to the mean value of current flowing in the length of the aerial system concerned.
The AFF of the inverted "L" aerial, when the vertical and horizontal members are equal in length, gives a ratio of $\mathrm{L} / \mathrm{l}=1$, whence the $\mathrm{AFF}=0.904$ (see table below).
For the " T " aerial the horizontal or top part is twice
the length of the vertical part. Figure 2.10 (a and b) shows the general arrangement of the two aerial systems.

Fig. 2.10
Table of Aerial Form Factors

$\frac{\mathrm{L}}{l}$		AFF	$\frac{\mathrm{L}}{\mathrm{l}}$
0.0		AFF	
0.1	0.639	1.5	0.940
0.2	0.696	2.0	0.958
0.2	0.741	3.0	0.979
0.3	0.777	4.0	0.987
0.4	0.806	5.0	0.993
0.5	0.830	6.0	0.996
0.6	0.850	7.0	0.998
0.7	0.867	8.0	0.999
0.8	0.881	9.0	0.999
0.9	0.893	1.0	1.0
1.0	0.904	-	-

Aerial Capacity

All l.f. ($30 \mathrm{kc} / \mathrm{s}-3000 \mathrm{kc} / \mathrm{s}$) aerials are of necessity of the large capacity type and they are either of " L " or " T " form or earthed quarter-wave types. This is because (a) radiation resistance (R_{r}) is proportional to the square of the effective height. This is made large by erecting the aerial system as high as possible and by attaching a horizontal member, forming either an "L" or "T" shape, thereby increasing the capacity (σ) which makes the effective height nearly equal to the actual height. (b) The greater the capacity of the aerial the less inductance will be required to tune the aerial thus lowering the oscillatory potential and the less likely to brush discharge.

To increase the aerial capacity, a number of parallel wires are added in the horizontal plane well separated, usually about 3 ft . apart.

Thesimple Hertzian dipole aerial system and variations thereof are generally used for v.h.f. communication, the range being little more than optical distance depending upon a number of factors, such as aerial height, nature of terrain between transmitter and receiver.

References

Admiralty Handbook Wireless Telegraphy. Short Wave Wireless Communication.

TO BE CONTINUED

PART 3 WILE DESCRIBE DIPOLE AERIALS AND THE CONSTRUCTION OF A V.H.F. F.M. AERIAL

CALIBRATION OSCILLATOR

-continued from page 48
compare signals from the two sources, and exact tuning of the receiver has no bearing on calibration.

Exact alignment of circuits, or calibration, is best obtained with the modulation off. In these circumstances, the harmonic will be heard as an unmodulated carrier, with the receiver b.f.o. switched on.

With the modulation switch S2 closed, the audio tone will be heard accompanying all harmonics, and this is occasionally useful.
components list
Resistors:

R1	$100 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$	R3	$3 \cdot 3 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
R2	$100 \mathrm{k} \Omega 1 \mathrm{~W}$	R4	$470 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$
		R5	$220 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$

Capacitors:
C1 500 pF silver mica
C2 400 pF silver mica
C3 150pF silver mica
C4 100 pF silver mica
C5 $0.01 \mu \mathrm{~F} 250 \mathrm{~V}$
C6 47pF mica
C7 2000 pF paper, mica or ceramic
TC1 100 pF air spaced variable
TC2 75pF air spaced variable
TC3 75 pF air spaced variable
Miscellaneous:
R.F.C. Osmor QC1 all-wave r.f. choke; three Type CR22 $\frac{1}{2} \mathrm{in}$. dia. formers and cores (Home Radio, Mitcham); T1 Type TIV3 1:3 transformer (Home Radio, Mitcham); ECF80; B9A valveholder; Chassis 4 in. $\times 6 \frac{1}{2}$ in. $\times 2 \mathrm{in} ; 5 \mathrm{5in} . \times 8 \mathrm{in} . \times 5 \mathrm{in}$. Dinkicase (Electroniques); two-pole three-way rotary switch S1a, b; Four small pointer knobs; Two toggle on/ off switches S1, S2; Tagstrip, wire, etc.

When dealing with a superhet whose design or frequency coverage results in strong second channel indications, these can be identified in the usual manner. Avoid swamping or overloading the receiver with the lower order harmonics, as this may give confusing results. To calibrate a v.f.o. or signal generator, tune in the wanted calibration oscillator harmonics on a receiver, tune the v.f.o. or signal generator to zero beat, and mark its scale.

P.W. GUIDE TO COMPONENTS

-continued from page 45
Alloy transistors suffer one major drawback and this is due to the alloy process. In the process the base thickness cannot be controlled accurately enough to give very thin base regions. As the frequency response depends largely on this thickness alloy transistors are limited to operation below approximately $10 \mathrm{Mc} / \mathrm{s}$.

As a result of this limitation and with the improvement of diffusion techniques the drift transistor was subsequently introduced. This uses the mesa form of construction.

TO BE CONTINUED

SPEAKER SYSTEMS

TERE MILTON, A $\mathrm{Hi}-\mathrm{Fi}$ Bookcage
Cabinet. Bize $9 \times$ 5×6 in., with 5 in., apeaker. Finished it Teak cloth front bold silk P, 4/6.

THE STERBEO. A superior extenion speaker cablnet fitted with wo $7 \times 4 \mathrm{ln}$. sperkers. Size 16 I I 8iln. Finished in fawn
68. P. \& P. 5/
 mountling speaker. Size $10 \frac{1}{1}$ $10+x$ 5tin., tapered as Hllustrwith volume control. Finished in black cloth with matching grey Vynair. (Please 8/6.

SPEAKER ENCLOSURES

The Baker. size $8 \times 15 \$ \times$ 23 in. Teak veneered top and aides. Fawn Vynair covered Iront. Cut out for l2in. speaker and 3In. tweeter with port and internal rubberfeet. \&6.15.0. P. \& P. 10/6. SPEAKERS: Elac Heavy duty Ceramic Magnets 11,000 line, $10 \ln$. round, $10 \times 8 \mathrm{in} .3$ ohm, or 15 ohm, 48/6, P. \& P. 3/6. 8in. round 15 or 3 ohm, 49/6. P. \& P. 3/6. E.M.I, E.M.I. 131 ohm $45 /-, 15$ ohm 48/6, P, \& P. 3/6. E.M.I. 3 in . tweeter, 17/6. P. \& P. I/6.
 $8 \mathrm{ohm}, 59 / 6$. P. \& P. 4/6. E.M.I. Crossover, $18 / 6$. P. \& P. 1/-. EAGLE Crossover units, 3 or 16 ohms, $16 /$.. P. \& P. $1 /$-. Bakers $121 n,, 25$ watt, 15 ohm, 46.6 .0 . P. \& P. 3/6. All other speakers supplied-Goodmans, Bakers, W.B., Wharfedale, Eagle, Tripletone. TEAK PLINTH AND PERSPEX DUST COVER for SP25 etc. 25.5.0. P. \& P. $5 /$ FYNAIR Widthe frum 40 to $54 i n ., 17 / 6$ yd. oft roll. P. \& P. $1 / 9$. yard, $9 /-$ P. \&P. 1/9. Send $1 /-$ stamps tor samples.
SPEAKER MATCHING TRANS8PEAKER MATCHING TRANS-
PORMERS. $3,7,15$ ohme, 8 watt, $11 / 6$ Mí\&ROPHONES. Xtal Hand Mikes B1201 with stand, 54/6. P. \& P. $3 / 6$ ACOS Mike 45, 21 $/$. ACOS Mike 40 , 18/6. Dyn. Mike DM-391, 80/-, CM21 Xtal, 12/8. Telephone Pick-up, 10/6. P. \& P. 1/-. Xtal lapel Mike, 7/6. Guitar Mike, 12/6, P. \& P. 1/-
FREROX RODS: $6 \times 5 / 18 \mathrm{ln}, 2 / 6 ; 4 \frac{1}{\mathrm{l}} \mathrm{lin}$. $8 /=; 6 \times 3 \ln ., 2 / 8 ; 8 \times 1 \mathrm{n} ., 8 / \mathrm{F} . \mathrm{P} . \& \mathrm{P}$ FRRR OX RODS WITH COILS, 41 x $\frac{1}{\square} \mathrm{in}$.

 Bwitch, $8 / \mathrm{m} ; 1$ pole 12 way, 2 pole 2 way 8 pole 3 way, 3 pole 4 way, 4 pole 3 way
 PLANO KEY PUSE BUTTON SWIT
CHES, 7 button inc. mains on off. banks of 6 P.C.O., 8/8. P. \& P. 1/

The Cowdrey. Corner Cabinet in natural teak finish for $13 \pm \mathrm{x}$ out speaker also cut \&8.15.0. P. \& P.

The Tennyion. Wedge ahape for table or wall mounting $191 \times 16 \times 8 \mathrm{in}$. Cut out for
131×8 in.
mpeaker with port. Finished in Grey cloth with matching V ynair. A8.8.6. P. \& P. 7/6.

The Vernon. Table top or Wail mounting enclosure for 13ı X8in., speaker (8imllar to The Scott illus
87/6. P. \& P. $6 /-$
876. P. ${ }^{162}$

The Haydon. $16 \frac{1}{2} \times 15 \times 7 \frac{1}{2}$ in., wood grain cloth and suitable for l2ja. apeaker. 78/6. P, \& P. $9 /$

Stereo: gonotone 9TA H/C Diamond 47/8. 9TA \$apphire, 87/6. 8TA Sapphire, 80/-. Ronette S105 Medlum Output, 88/8. \$106 High Output 28/8. DC284 Stereo Compatible 29/6. Acos GP93/1 Gapphire, $87 / 6$. GP94/1 Sapphire, 89/6. GR81 Diamond 42/-, GP91 Stereo Compatible (High, Medium or Low output, AG3301, AG3306 to Bise sX1H. Plug-in head complete with cartridge $50 /=$ TA700 equivalent to B.S.R. 8X1M, $85 /-$, Japancse equivalent to B.S.R.TC8, $85 /{ }^{\text {. }}$

Mono: Acos GP67/2 will replace Collaro and Garrard Mono cartridges, $18 / 8$. T.T.C. Cryatal High Gain, 16/-, B.A.E. 2T8B, 16/- Post and Packing $1 / 6$.
FARPIECIES WITH OORD and 3.5 mm . plug. 8 ohm msgnetic, $8 /-250$ ohm, $4 /-\mathrm{F}$
180 ohm with clip, $6 / 6$. X tal. P. \& P. 6 d . TRANSISTOR SPEAKERR 8 ohm 2in., 8/8. 3in., 10/6. 3iln., 1R/6. P. \& P, 1/-,
Electronics)

BROADWAY

 92 MITCHAM ROAD, TOOTING BROADWAY,LONDON, S.W. 17 Telephone 01-6723984 (Closed all day Wednesday) (Few minutes from Tooting Broadway Underground Station)

PRINTED CIRCUIT KIT

BUILD 40 INTERESTLNG PROJECTS on a PEINTRED CIRCUIT OBABgIS with PART8 and TRAN8I8TORS from your SPARES BOX
CONTENTS: (1) 2 Copper Lambate Boards $44^{\prime \prime} \times 24^{*}$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Resist Solvent. (6) Etchant. (7) Cleanser/Degresser. (8) 16 -page Booklet Printed Circutis for Amateurs. Dosm Dats Curuits Chas Plans ote 40 TBANgIGTORIRED PROJECTG Design Data, Circuits, Chassis Plans, etc. Ior 40 T凡ANBIBTORI constructlonal ability. Many recently developed very efficient dealgns published for the first time, including 10 new circuits.

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Sond a S.A.E. for full detalls, a brief description and Photographs of all Kits and nall 52 Radio, Etectronic and Photoelectric Projeets Assembled.

SPECIAL OFFER

Stock Clearance of Manufacturers Rejects. Limited Number
UHF/VHF Tuner Units. Consisting of: 2 AF186 Transistors, Tuning Condensers, Coils and Comps etc.:

Price 5/- each

Post and Packing U.K. 2/6.

NO CONNECTION WITH ANY OTHER FIRM MINLMUM ORDER 10/-, CASH WITH ORDER PLEABE, add 1/- poet and packing.
CASH WITH ORDER PLEABE, add 1/- poet and

SATELLITE EARTH STATION

RICHARD COLLINS REPORTS... PART 2

GOONHILLY 2-TECHNICAL CHARACTERISTICS

A brief summary of the general technical characteristics of Goonhilly 2 operating to Intelsat III-F2 is as follows:

Aerial Gain: Gain at 4165 MHz (TV receive) 60 dB ; Gain at 6390 MHz (TV transmit) 63dB; Beamwidth at 4 GHz approximately 11 min . arc; Side lobe level at 6 GHz is greater than 33 dB lower than main lobe level with 1 degree arc away from main lobe.

Aerial G/T: Noise Temperature at 4165 MHz and 30° elevation 55 deg. $k ; G / T$ at 4165 MHz and 30° elevation $42 \cdot 6 \mathrm{~dB} /$ deg. k .

Aerial Tracking: Aerial steerability (a) Azimuth: 96 deg. 53 min . to 295 deg .18 min . E. of N. Tracking rate is up to 5 deg./min. (b) Elevation: 0 deg. 14 min . to 43 deg. 55 min . Tracking rate is up to $2.5 \mathrm{deg} . / \mathrm{min}$.

Tracking modes: Autotrack, manual velocity, manual position, tape control.

System Bandwidth: Nominally 500 MHz . (a) Transmit: 5900 MHz to 6437 MHz ; (b) Receive: 3685 MHz to 4225 MHz .

Polarisation: Circular.

Equivalent Isotropically Radiated Power: Up to 93 dBW at 6390 MHz (TV transmit). This is equivalent to 1 kW transmitter output power. Power stability is better than $\pm 0.1 \mathrm{~dB}$. Frequency accuracy is generally within 40 kHz of nominal at 6 GHz .

Modulation: Frequency modulation is used throughout. The deviations used are: (a) Television 23 MHz peak-peak; (b) Telephony 630 kHz rms test tone for 132 channels, 410 kHz rms test tone for 60 channels, 250 kHz rms test tone for 24 channels.

Normal CCIR pre-emphasis is used for both TV and Telephony.

First stages of the receiving system, housed in a cabin directly behind the centre of the aerial dish. The two cryogenic enclosures can be seen as white boxes with waveguide network leading to them from aerial horn feed at dish vertex.

The No. 2 aerial.

Microwave Link

A microwave radio link from Goonhilly extends the satellite circuits to the International Telephone Services Centre in London. In the central building at Goonhilly the circuits are rearranged at baseband frequencies into units of 24,60 or 132 channels as dictated by traffic requirements. Each baseband unit then modulates an intermediate frequency of 70 MHz in the modulator section of the equipment provided by GEC-AEI (Electronics) Ltd. Also injected into the circuit at this point are a 60 Hz continuity pilot, an energy dispersal signal to restrict the level of intermodulation products during light traffic loading and engineering service channels at sub-baseband frequencies. Intersite coaxial cables transmit the modulated i.f. carriers to the equipment on the aerial, where they are converted individually to their assigned frequencies on the GHz band. All carriers are then combined at low power level before amplification, in two stages, by common wideband travelling-wave-tube amplifiers. The output stage has a maximum capability of $8-10 \mathrm{~W}$ but in order to restrict the power of unwanted intermodulation products it will not normally be loaded above $1 \cdot 5 \mathrm{~W}$. A second transmitter which serves as a reserve for the telephony system can be used alternatively for television transmissions.

Parametric Amplifier

The very weak signals from the satellite in the 4 GHz band are amplified by a three-stage parametric amplifier, cooled in a closed-circuit, gaseous-helium refrigeration system followed by a tunnel-diode amplifier. The four stages have an overall gain of 40 dB over the 500 MHz band assigned for the down path from the satellite. At the output of the common amplifier the individual carriers are separated by a
selective branching network converted in frequency to 70 MHz and extended individually by coaxial cables to the feedback demodulators in the main building. Here supervision is effected by monitoring the synchronising pulses.

The main and standby parametric amplifiers are mounted in separate containers inside the low-noise receiver cabin. This cabin has a movable floor which remains horizontal at any aerial altitude and is readily accessible for maintenance. Each container is completely removable for servicing without affecting the other.

Wideband TWTs

The transmitter uses wideband travelling wave tubes to provide a final peak saturation power output of 10 kW , but in normal operation this power is limited to about 1 kW to ensure that intermodulation between carriers is virtually eliminated and to avoid overloading the satellite.

The gain of each of the TWT stages is of the order of 30 dB throughout the entire civil satellite communications band of $5,952 \mathrm{MHz}$ to $6,425 \mathrm{MHz}$.

Two TWT amplifier stages are employed in series to provide a high power output capable of transmitting three separate telephony carriers, giving the capacity for up to 400 telephone channels. The standby transmitter can be used simultaneously to provide a television videocarrier and separate sound channels in addition to the telephony channel on the main transmitter.

Extensive provision of switched redundant equip-

A logic board-old style and new. 156 of the old ones are equal to the unit held in the technician's right hand. Here the "j.c." comes into its own again.

This is the logic equipment for the steering of Aerial No. 2. Technician John Austin is seen here inspecting one of the logic board modules.

The consul in the control tower for Aerial No. 1 which can be seen through the window in the background. Visibility is normally better than this but our reporter chose the one day Cornwall had snow for his visit to Goonhilly.

Here some of the Station engineers are repairing logic fauts on the changeover equipment on the microwave link gear.
ment in the system and the comprehensive control facilities will ensure a high standard of reliability and enable maximum economy of operational manpower to be achieved.

Satellite tracking

The satellite is tracked using a beacon signal which it transmits itself. The signal from this beacon is separated from the communication carrier signals in the waveguide branching network and fed into the tracking receiver.

The tracking signal itself is derived from the rotation of the horn feed at the vertex of the dish to produce a conical scanning motion of the beam at the beacon frequency only. This conical motion, only 0.4 minutes of arc off centre, produces a modulation of the received beacon signal which reduces to zero when the beam is pointing directly at the satellite.

Key position

The Goonhilly Downs Post Office Radio Station has played an important part in the experimental and operational phases of satellite communications. With the completion of No. 2 aerial and the further modifications to the No. 1 aerial, it occupies a key position in the world-wide satellite communication network.
The latest developments in this field combine the high quality formerly available over submarine cables with the information handling capacity possessed by microwave links.

Telephone: 01.648.8422
Only 500 yds. from our old premises-but now we have much more space, much more stock!

New catalogue? Well-yet another edition of the "old faithful" that for over eleven years has presented to an ever-growing army of enthusiasts the latest and best radio and electronic components. This latest edition is no exception to our policy of making every new edition better and bigger than the one before! It has no less than 330 pages, lists over 8,000 items, illustrating over 1,500 of them. With each catalogue you get a 30 -page Price Supplement, a bookmark giving electronic abbreviations and an order form. All for only $8 / 6 \mathrm{~d}$ plus $3 / 6 \mathrm{~d}$ post, packing and insurance. Incidentally every catalogue contains 6 vouchers, each worth $1 /-$ when used as directed.

...but still the same old
 SUPERLATIVE SERVIGE

Name

Address

PW DOUBLE 12

Described in this issue BUY YOURS FROM TRS

All equipment supplied by $T R S$ is exact to specification
2 Spools of "Cir-Kit" at 2/- each
2 Peak Sound Pre-amp and Tone Control Kits
4 "Cir-Kit" Matrix Board
2 Peak Sound PA. 12-15 amp. units
2 Peak Sound Amp. Heat sinks
1 Peak Sound Power Unit PS.45K
1 Peak Sound Pack-fat cabinet kit
5 controls as specified

TRS STERED 4-4 a bargain in quality amplifiers

AMPLIFIER KIT 877.19.6 (p.p.3/6) TR8 POWER OAIT
TR8 SIMPLEX CABINET
4 prs. D1N plugs and sockets if purchased separately, 15/-.
Complete kit inc. cabinet/power pack DIN plugs and socket.
f12.10.0 (car. $7 / 6$)

Integruted 5 tranaistor stereo amp based on newly developed Mullard 4 whtt modulen and BC. 108 pre-amp. Suitable also for treble cut/boost. Response 60 to 14 KHz -3dB. This excellently engineered layout requires only wiring between controls and modules. Complete with metal chassis and simplex teak-ended cabinet for instant assembly.

MAKE YOUR OWN BOOKSHELF SPEAKER

With a set of matched speakers and cross-over from TR\&. Comprises modern style high efficiency Sin. bass unit with special cone assembly, X-over and 27 in. tweeter for mounting into your own cablnet or baffle syatem. Smooth

79/6 a world-famous manufacturer. A genuine bargain for only
(сагт. 5/-)

TRS MULLARD AMPLIFIERS

STEREO 10-10 Kit with valves and passive control mystem. KIT 818.10.0: BUILT 282.10 .0 (earr. either $12 / 6$).

5-10 MONO AMPLIFIER. Basic Kit, with valves, etc. 10 gas. Built 818.0 .0 . (earr. eilher $7 / 6$).
Basic Kit with passive control system, \&18.10.0. Bult 15 gas. (carr, either 7/6). PRE-AMP 2 VALVE KIT 86.19 .6 . Built 89.10. (earr. either $6 / 6$).
BA8IC 5-10 AMPLIFIER AND 2 VALVE PRE-AMP Aspembled. wired and tested, complete 381.10 .0 (carr. 10/-).

WIRE WOUND RESISTORS-COATED TYPES Stand. values 25 ohms- 10,000 ohms, $5 \mathrm{w} .1 / 6,10 \mathrm{w} .1 /$ Kw. 2/6.

PRE-8ET WIRE WOUND POTS. Slotted Knurled Knol TV Type 25 ohms- $30 \mathrm{Kohms} \mathrm{8/3} 50 \mathrm{Kohms} 4 /$. Ditto carbon track $50 \mathrm{~K}-2 \mathrm{Meg} .8 / 8$.
SLIDER PRESETS $\frac{2}{}$ w. $10 \mathrm{~K}-2-2 \mathrm{Meg} .2 /-, 10$ ohms$5 \mathrm{~K} 2 / 6$.
STANDARD W/WOUND POTS. Long apindie. $100 \mid 50,000$ ohms each 6/-. 100,000 ohms each 6/9. VOLUME CONTROLS $1 / \mathrm{in}$. dia. Long Bpindles. Famous make. All values 5,000 ohms- 2 Megohms, Guaranteed 12 months. Log or Linear tracks. Less $8 w$ Megohm Log, i Megohm less sw .5/- . Centre tapped 1 Megoh
RESI8TORS-Modern ratingg. full range 10 ohms to 10 megohms, 10%, $\frac{1}{1}$ w., 4d. ea.: 5% Hi-Stab -d- ea.).
CONDENEERS Silver Mica. All valuet 2 pf . to $1,000 \mathrm{pt}$ 8d. es. Ditto ceramici 9d. Tub. 4507 T.C.C. otc.. . 001 mfd, to 0.1 mif. $/ 850$ v. $10 \mathrm{~d}, .02 \mathrm{mf}$, to 0.1 mld .500 v. $11 /-$ 5 T.C.C. 1/8. 5 T.C.c. 2/-. CLOSE TOL. S/1ICS. 10% $100-250 \mathrm{pf}$. $1 / 8.270-800 \mathrm{pt}$. $1 / 4$. $800-5.000 \mathrm{pf} .2 /-$ "CIR-KIT" "VEROBOARD".

SP25 De-Luxe single record player, diecast turntable (earr. 7/6). GARRARD PLINTH WB1 In fine Teak for above units. (Pack. and carr. 5/-). 67/6 Clear-view rigid perspex
cover (edrr. 4/6), 65/-. 6 Valve AM/FM Tuner
Med. and V.H.F.-metal rectifier. Magic eeve, 3 pushbutton controls. Diode and high output sockets. Ilinminated dial. Chassis Il: x $4 \times 5 \frac{1}{2} \mathrm{n}$. Complete kit, inc. Power Pack A.C. Mains 812.0.0 (carr. 7/6). Circuit 4/6. Free with kit
LISTS-Eight large printed pages, packed with borrain pages, packed with bargain find lines. Send 6d. for lateat copy.

TRS RADIO
 COMPONENT SPECIALISTS Established 1946

70 BRIGSTOCK ROAD, THORNTON HEATH, SURREY Tel.: 01-684 2188. Hours 9 a.m.-6 p.m. 1 p.m. Wednesdays A fere doors from Thornton Heath Stn. (S.R. V'ictoria section)

17in.-£11.10.0
19 in . SLIMLINE
SOBELL-24 Gns.
FREE ILLUSTRATED
LIST OF TELEVISIONS $17^{*}-19^{*}-21^{*}-23^{*}$
WIDE RANGE OF MODELS SIZES AND PRICES demonstrations dally
 TWO-YEAR GUARANTEED TUBES 100\% REGUNNED 14in.- $69 / 817 \mathrm{in}$ - $-9 / 6$
211n. and ALL SLIMLINE TUBES $99 / 6$ EXCHANGE BOWLS. Carr. 1016
Ex MAINTENANCE TESTED TUBES
17in. -35/-. Carr. 5/- (not slimilne)
COCKTAIL/STEREOGRAM CABINET £25
 Polished wainut veneer with elegant glass fronted cocktail compartment, padded. Position for two 10 in . elllptical speakers. Record storage space. Height $35 \frac{1}{2}$ in., width 52 in. depth 14itin. Legs 1 gn. extra.
Speakers 6/6: $2^{n}-750,2 \frac{1}{n}^{\prime \prime}-35 \Omega$ P. \&P.2/6. Acos Mics, 35/- Stand ard: Stick Mic. 2 gns. P. \& P. $3 / 6$ Asstd. Condensers: 10/- for 50 P. \& P. 7/6. Asted. Resistors: $10 /$ for 50 . P. \& P. 4/6. Asstd. Controls: 10/-for 25. P. \& P. 7/6. Transistors: Mullard matched output kit $9 /$ OC81D-2 OC81's. P. \& P. FREE
Ferrite Rods 3/6: $6^{\prime \prime}, 8^{\prime \prime} \times \frac{2^{\prime \prime}}{}{ }^{\prime \prime}$ complete with LW/MW Colls. P. \& P. FREE.
TRANSISTOR CASES 19/t. Cloth covered, many colours. Size $9 \frac{1}{2} \times 6 \frac{1}{4}^{\prime \prime} \times 3 \frac{1}{1}{ }^{\prime \prime}$ P. \& P. 4/6. Similar cases in plastic $7 / 6$.

TRANSISTOR RECORD PLAYER CABINETS 19/6. Dim. $11^{* *} \times 14 \frac{1^{*}}{} \times 5 \frac{1}{2^{*}}$ P. \& P. 7/6.

SINGLE PLAYER CABINETS 19/6. P. \& P. 7/6
STRIP LIGHT TUBES $3 / 9$ each. $11^{\prime \prime}$ (284 mm .) $230 / 240$ volts, 30 watts. Ideal for cocktail cabinets, Illuminating pletures, diffused lighting etc. 6 for £1. P. \& P. free.

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E12
Tel. 01-478 6001/2/3

VALVES SAME DAY SERVICE
 NEW! TESTED! GUARANTEED!

SETS $\begin{gathered}\text { 1R5, 185, 1T4, 354, 3V4, DAF91, DF91, DK91, DL92, DL94. } \\ \text { Get of } 4 \text { for 17/6. DAF96, DF96, DK96. DL96, } 4 \text { for 20/., }\end{gathered}$

EXPERIMENTERS CORNER

AN INTEGRATED CIRCUIT STEREO AMPLIFIER

THE G.E. (USA) audio amplifier I.C. type PA 222 was introduced to readers of this magazine in the article by A. J. McEvoy in the August 1968 issue, page 260 . On that occasion the writer centred his attention on the circuitry of the unit, describing in detail the technical design features. It is now proposed to report on a fully developed practical application of this interesting component, a stereo amplifier with one PA222 in each channel.
The amplifier is intended for use on batteries (e.g. two PP9s in series, giving 18 V) and to accept the signal from a crystal type gram pickup. That application implies a high-impedance input to the amplifier, and therefore a special preamp. stage before each PA222. (If the earlier article is consulted, it will be noted that the PA222 alone was found perfectly adequate for use from a medium-impedance source, or with a radio tuner; however, a matching stage is essential with a high-impedance source.)
In the prototype it was decided to employ an integrated circuit in the preamp. stage also, so that the complete project would be as up to date as possible, a true reflection of the state of the art as available to the amateur constructor in 1969.

A suitable I.C. for this application was found in the R.C.A. CA3036, which observant readers will identify as a development of the four transistor CA3018, introduced in the June 1968 issue of Practical Wireless.

The theory in brief

Since the theory of operation of each of the types of I.C. incorporated in this project has been dealt with in detail recently, only a brief résumé will be given for the benefit of new readers. First, the CA 3036. Assembled, like all monolithic I.C.s to date, on a silicon substratum, this unit is a variant of the CA3018 in that the four transistors are employed as two "super alpha pairs". It is common knowledge that this configuration implies a very high input impedance. Better still, the lower output impedance of the unit matches closely the requirements of the common emitter stage which forms the input element of the PA222.

It is' worth noting an advantage of the CA3036 in this particular application (see Fig. 1) since both transistor pairs are formed simultaneously by the same process in the same crystal of silicon, it follows that they must be perfectly matched, to an accuracy much higher than is easily obtained with discrete transistors. The advantage in a stereo preamplifier, where one pair acts for each channel, is obvious. Similarly, the PA222s are manufactured under closely controlled conditions, so that as long as similar loudspeakers are used in the audio system, a balance control may be omitted.

Fig. 1: The circuit associated with the pre-amplifier. The four transistors are in the I.C. CA3036.

The PA222 is a 1 -watt audio amplifier housed in an 8 -lead dual in-line epoxy package, and fitted to a heatsink tab to increase the permissible dissipation of the output transistors. For a full understanding of the operation of the unit it is advisable to consult the previous article, but the basic outline is quite simple.

In Fig. 2 it can be seen that Tr 1 is a conventional common emitter amplifier, directly coupled to the phase splitter Tr2. Careful examination of the transistor pairs $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$, and $\operatorname{Tr} 3$ and $\operatorname{Tr} 6$ will reveal the essential symmetry in their operation. Receiving opposite phases of the audio signal from the phase splitter, they amplify in class B as super alpha pairs in series connected single ended pushpull. There is then a high power, low impedance signal appearing at the emitter of Tr 5 , matching into a 25Ω loudspeaker. The diode serves to limit crossover distortion, and a.c. and d.c. feedback systems are provided.

Fig. 2: (a) The internal circuit of the output stage PA222. (b) The connections to the I.C. package.

A complete stereco system requires not only high gain with matching to signal source and loudspeaker with symmetry between the two channels, but also tone and volume controls to match the characteristics of the system to the tastes of the listener. All
these elements are incorporated in the block diagram of the system, Fig. 3. It will be observed that the CA3036 preamplifier stage, which requires a power supply of 9 V , is connected to the battery through a voltage dropper resistor.

Fig. 3: Block diagram of each channel.
This component, with the associated capacitor C17. also serves to decouple the preamplifier from any variation in the voltage supply or audio leakage on the h.t. line; these effects could be quite marked otherwise, as there will be a considerable dependence of current consumption on volume level due to the class B mode of operation of the amplifier. Mention has already been made of the possible omission of a balance control on this amplifier, due to the high degree of symmetry between the two channels. Only one component may differ between the two, and that is the resistor in the collector circuit of the first transistor in each PA222, between pins 5 and 7 on the package.

This component is specified by the manufacturer on the basis of tests during manufacture, to choose the optimum operating conditions for the individual component. Since all the transistors in a PA222 are direct coupled, this resistor sets the currents drawn

- by each of them, and hence the whole operating conditions of the amplifier channel. Use of the appropriate value will ensure equal performance from each channel. The resistor will be $68 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega$ or $150 \mathrm{k} \Omega$, the value recommended is stamped on the epoxy shell.

Nonetheless it would be better if two PA222s could be obtained for which the same value is specified. In that case the channels will be completely identical from pick up cartridge to loudspeaker, so that a balance control to equalise the outputs should be unnecessary. Should one be

Fig. 4: The circuitry associated with each output stage. The component numbers in brackets refer to the other channel. The unmarked capacitor between Pin 10 and the loudspeaker is C10 (16).
desired, though, it may take the form of a $5 \mathrm{k} \Omega$ linear potentiometer, preferably wirewound, replacing R2 and R3 in the preamp. section. The slider should be earthed, while the other two are joined to the emitters of the transistors of the super alpha pair through $1.5 \mathrm{k} \Omega$ resistors. Since the output of the preamp. is developed across these emitter resistors, a variation in the ratio of the two emitter resistors implies a variation in the relative amplitudes of the signals developed across them, and hence a "balance control" effect.

Since the completed unit can be made very small. mounting in a record player or other system should pose no difficulties; however, in view of the high input impedance, the same precautions as are employed with valve amplifiers are advisable to minimise hum pickup. Whereas a low impedance transistor amplifier can be used with quite long runs of unscreened cable without difficulty, it is advisable in this case to use screened leads from volume and tone controls if the amplifier is to be more than a few inches from the controls.

The constructor who completes this project can be satisfied that it is one of the most up-to-date devices available in terms of the components used: and further he will notice one of the chief advantages of the integrated circuit, that it permits the assembly of quite complex systems with the maximum assurance of success, since all active elements are carefully matched by the manufacturer, with close adherence to specifications. The variations, with resultant openings for malfunctions, which are associated with a similar project using discrete components. are all but eliminated. In short, commercial standards of quality control are assured, yet the constructor can still say: "I built it myself."

components list

Resistors:

R1 $2 \cdot 2 \mathrm{M} \Omega$	R9 $10 \Omega 2$
R2 $4 \cdot 7 \mathrm{k} \Omega$	R10 10Ω
R3 $4 \cdot 7 \mathrm{k} \Omega$	R11 See text
R4 $2 \cdot 2 \mathrm{M} \Omega$	R12 22Ω
R5 22k Ω	R13 180Ω
R6 See text	R14 10Ω
R7 22 Ω	R15 $8 \cdot 2 \mathrm{k} \Omega$
R8 180Ω	
(R1 3M	

VR1 $3 M \Omega$ log. twin gang. VR2 $1 \mathrm{M} \Omega$ lin. twin gang. (See text for balance control; R2 and R3 are $1.5 \mathrm{k} \Omega$ with a $5 \mathrm{k} \Omega$ linear wirewound potentiometer.)

Capacitors:
C1 $0.04 \mu \mathrm{~F}$
C2 $10 \mu \mathrm{~F}$
C3 $10 \mu \mathrm{~F}$
C4 $0.04 \mu \mathrm{~F}$
C5 $0.001 \mu \mathrm{~F}$
C6 $10 \mu \mathrm{~F}$
C7 $0.001 \mu \mathrm{~F}$
C8 $10 \mu \mathrm{~F}$
C10 $125 \mu \mathrm{~F}$
C11 $0.001 \mu \mathrm{~F}$
C12 $10 \mu \mathrm{~F}$
C13 $0.001 \mu \mathrm{~F}$
C14 $10 \mu \mathrm{~F}$
C15 $0.001 \mu \mathrm{~F}$
C16 $125 \mu \mathrm{~F}$
C17 $1000 \mu \mathrm{~F}$
$0.001 \mu \mathrm{~F}$

Miscellaneous:

IC 1 CA3036, R.C.A. \} Available from
IC 2 and 3 PA222, G.E.(USA) $\}$ Henry's Radio Loudspeakers, two identical, 25Ω impedance. On/off switch, printed circuit board, wire, etc.

RADIO STETHOSCOPE
Earient way to lanlt find-t rucea sigmul fram in rial an spaker -when signal thape yourve folloll the fantit Cate it in Radios. Tr: ampliter, angthing-ownplete kit compriees two speccial Lransiatorn amil all parts inclucarpiece 29/6-t win crystal set inuteal of earpiese 11/extra --powt and ins..02/9.

MAINS MOTOR
 and tape reconder ideal also for extractor fans, blower, heaster. etc. New suril perfect. - for firat one thent for tiryt one then ordered. 12: inal

ROTISSERIE

MOTOR
Very prwerfill or r.p.ma., "peratem
ronu atamiard A.f: maine. $29 / 6$.
play 3/51. WP.

SNIPERSCOPE

 for seeling tu the
clark. Thin in ant dark. This in an
infri-red image catl. verter cell with silver caspinman acrest
which lighta up (like which lights up (like a enthade ray tube
when thi electrons
rulenae intra-red strike it. A golden oppartimity for the sum interewting experiments. 7/6 each, powi $2 / 6$. Datat MAINS TRANSFORMER SNIP Making a power patek for amplifler or wher ctubre -ra hawe normal matins primaries ($230 / 40$ v.) and innlated mocondaries twol (ypery (1) I'2 v. 500 mA . nt typer
$8 / 6 ; 1$
$8 / 6$.

SPRING COIL LEADS

PP3 ELIMINATOR. Play sumr proke Fullo from the matins! wave Es. Coll
 rectumething condefimer ind instrin ticonn, only $6 / 6$ phis l'-gast.

AC FAN

shall hit very powerfal mains
notor with 6 fiss hodey. Wheal for conling equipharn wilent but "rite
 afticient. 17/6, pusi thite wor from from

TRANSISTOR

SET CASE
Fry molern creath canti net, kize 5! • 3, Ifin
with chrome hande, tum og knoth athl weale. Priae 4/6 plaw $\quad \because /$ pentuge Printed circuit lewitad feit t his case 2/6.

SOHL WARMING ELEMENT. ; VC cowrring. $12 / 6$.

MAINS TRANSISTOR POWER PACK

Adjentit un operate tranmintor seifa ath implifior
 of the following bitteries: PPI. PPis, PP4, PPG
 ransingmer rectither, ementhing and lomi rewistor, ohntenserv and instructions. Real snip at andy 16/6, plom $3 / 6$ powtagi'.

ELECTRIC TIME SWITCH

Mas lof ginithe thene are Al' mains operateri, Not CLOCKWORK inleal for mounting oll rack or whel aljusiable intul max with isiA woeket. 2 emonpletel
 perickis. 59/6, powt :uni ins. $+/$ fi. Alditional time contactas 10 - pair.

VARYLITE

Will dim tuorestent or incmiencent lighting ap to 600 watt Pron fall lirilliance to mut. Fitted um M.K. Hush plate, sian aize and fixing its atandurd wall witch si may be titet ith plate of this, bir monnt on anfface. Price complete in heat

NICAD RECHARGEABLE BATTERIES

 single cell $1 \cdot 29$ 6/6.

ELECTRIC CLOCK WITH 20 AMP SWITCH

Mrife by Smith"* thuse units art an mited
The clack is majne Iriven und frequeney con trolled mat it in ext remely neentite. The two wimal
 larm-this may he net in minuten no to 4 hours At the end of the pericel at ledl will shannal. Ifesil for switehing on tape recorders. Offerel al whly only $45 /$ - lean than the ville of the clock allome-
 mont and finsuranue $2 / 9$

HI FI BARGAIN

PROCESS TIME CONTROLLER
Made ly Nmithe, motorised and matins alricen, eumblew IDA circuit to loe atarterl up to 18 heotry in advance and to nelowed in metal hos with glaws fromt and chrome surmond. 49/6 blax $4 / \mathrm{th}$ pont amd inx.

MAINS TRANSISTOR POWER PACK

 12 wits for up to boom (clans B workling). Tukem the place of ang of the follow ing batterifs: PP1, PPB, PP4. PP6. PP7, PP9, and other. K it comprimes
 instruetioms. Reithnipul only $16 / 6$. phin 3 if mostage

REED SWITCH

Suitable fur dozems of different applications, suth as lurglur alarinn, convegur belt switehing. Thear arr wimply glass elluated switches which enn be operated in " passing permanent magnet coil. A special hay taables tis to offer there at $2 / 6$ awh, or 24/- a tozell. Anituble magreta are 1/-erach.

MOVING COIL METER BARGAIN

Pamel mateps are alwiys being beeded and they are jolly contly when gha have to but them in a hurry- yoy shoultitake nolvantage of this uffer: 2in. moving
 about eseh but if you don' \dagger wint them for R.F. then all you have to do is to

Multi Parpose Neon Test Unit. Rublint, Inetulankl instructive, terta insulation, capacity, continuity. injector, volume controb, alko ituth an mignal indicater 4 -w. wis wat wh reaistors-condenatm, ETan, only. 9/8, pluw 't- post and ingumaue Tuning Condenser, nolid di-ulectric 0 noosmhil. rarinhle $2 / 6$ eath, $24 /$-dozeth.
A.E.I. Fractional H.P. Motor. $200 / 250$ v. $50 / 60$ A.p.1. Fraction "quip. Perfect onter, 19/6, plus $4^{\prime \prime}$. Experimentine with altua violetp Philip lamip. 16/6; hulder and control gear $19 / 6$.
G.E.C. Black Light Tube for experiments and 14/8 eich: huldere imb inntrol gear. 19/B pline

Pentode Output Trantormer, utumitul 1
Pentode Output Transiormer. ntandarinan pain
E.H.T. Condeager. 1t-1 Imfl. of $\mathrm{kV}, 8 / 6$ steh.

Neon Mains Tester. 1/3 rach. 12/~ ifiz
Flood Lamp Control. Uur dim :1nel fulf witeh iw itleal for romtralling photer fional brops; it glves
 be arranged where uxesf in pair or where dircuit call te split exantly in helf. Technitally the switch fiv known as al dambe-palye change wer with wft Our prici-4/6.
 type with gulal-plation leads. I/ wath or $7 / 6$ per
dozen.

 Edgewise Control, Marganitt, is Atted many transivtor radion. :2k ur ik with witeh. 2/B each 24-prror.
18V Inverter. Full trankivturived for uperating it

Silicon Rectifer. Buquix By'ron 750 rai $400 \mathrm{~V}^{\prime}$. 10 inr $20 /$ -

 Headphones. Ex Whi. unused and perfect, low resiataluce - Sin
heatland $8 / 6$.
Midget Neons fur majus intivitars. ete.. $1 / 8$ eanh or $12 /-$ that'n
Compression Trimmers. Twin (ongtr. 1/- each:
3in. PM Loudspeakers. \{ whm. 12/6: 80 ohm, 13/6, Rotary Cam Operated Switch. 12 pusitionn each of lust which rewnerrm phe
 Rotary Cam Operated powithon all moperated Switch. A poritions: 1nt

 Pocket Test Meter, mesuren AC' solts (3 ranges), Le' Voltw (3 rillgess, ,hms, milli ampes, itheal to earry atomat. Complete with instructions unal test pronk. $39 / 6$ plum 2 'f p. \& p.
Breast Microphone. Fine Americall made dynamle. type. adjustable on brast plate with neek at rapos. 7/6. pumt 4/6.
Circular Fluorescent. 22 watt, gin. diam. tuhe: complete with chenke, etarter, holders and chrome
 $1 / \mathrm{jin}, \times 1 \mathrm{in} . \times \mathrm{lin}$. tairs changenver contucts.
$7 / 8$ each.
Printed Circuit Board, Edze Connector, solder terminations. 32 contacta, standard apacing for kot- loz.
1.000W Fire Spiral. replacentent for moset fires, $1 / 8$ rach, $12 /-$ donz.
50 ohm 50 watt Wire Wound Pot-meterl, $8 / 6$ ench. 1 Meg Ministure. Pof-meter Morganite standaril
I Meg Miniature. Pot-meter Morganite preset Pre-Set 100K by Welwyn with int rical bukelite knob, 1/-each; $9 /-$ per dozen.
100K Pot-Keter. Mintature type with double pole awiteh ald standaril fin. spindle., by Morganite, 2/- each: \mid /R/- perilozen.
Battery Motor 1 lin. Iong, ${ }^{\text {in }}$. dia,, operates from 3V upwaris, reveraible. speed variable by changing voltage or reaspante $4 / 6$ each. $50 /$ - doz.
Thermal Relay. Cin be used to delay the supply 15 HT while heatera warm np, or will enable 15A hatk to he controlled by ministure switches or relays. Regular lint price over $\mathrm{E}^{2} 2$. price 7/6 each. Sjemens High 8peed Relay. Twin 1.000 ohm coile. Platinum points changenver contricta-Ex equipment, $8 / 6$ ench.
Toggle Switch Bargain, 10 A 280y normal one
hole fitting $2 / 8$ each: or $80 /-\mathrm{per}$ doz. hole fitting $2 / 9$ each: ur $80 /-$ per iloz.
Electric Lock 24 V : onil, but rewindable to other
voltagen, $4 / 6$ exch.

Where mantage is not stited then orilers over e:s are powt ireu. Below tis abdid $2 / 9$. pest tree. S.A.E. with enquiries pleake.

ELECTRONICS (CROYDON) LTD
Dept PW 266 London Road, Croydon CRO-2TH also 102/3 Tamworth Road, Croydon

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be glady sent without any obligation.

To: British National Radio School, Reading, Berks.
Please sand FREE BROCHURE to:
NAME . Block

5/68

BRITISH NATIONAL RADIO SCHOOL

Field-effect Transistors at Realistic Prices

2N 3819 N-channel. RF Amplifier. Low Noise. 10/-each (5 or more 9/6 each) 2N 3820 P-channel. Complement to 2 N 3819 . 17/6 each (5 or more 16/3 each) 2N 3823 N-channel. V.H.F. Amplifier. BFW 10 N-channel. V.H.F. Amplifier. MPF 102 N-channel. V.H.F. Amplifier MPF 103 N -channel. AF Amplifier. MPF 104 N -channel. AF Amplifier. 33/6 each (5 or more 28/6 each) 45/- each (5 or more 39/- each) $8 /$ - вach (5 or more $7 / 6$ each 7/9 each (5 or more 7/3 each) 7/9 each (5 or more 7/3 each) MPF 105 N-channel. AF Amplifier/Switch. $7 / 9$ each (5 or more $7 / 3$ each 31/6 each
All of the above Items are Ex-stock dellvery at $31 / 8 / 68$.
All components offered for sale are guaranteed to be brand new first grade items only. All items are subject to the guarantee terms of their individual manufacturer, where applicable.

M. R. CLIFFORD \& COMPANY (PW) Component Stockholding Services 66, Old Oscott Lane,
 Great Barr, Birmingham, 22A.

Terms: C.W.O. MAIL ORDER ONLY. (Nett monthly a/c to approved accounts) Suppliers to: Government and Educational Establishments, H.M. Forces, etc. Please add $2 /$ - postage and packing per order.

SILICON TRANSISTORS. EX-STOCK—many others available.

BC 107	3/6	BC 172	3/2	2N 697	5/-	2N 3704	3/8
BC 108	3/-	BC 173	3/9	2N 706	2/6	2N 3705	3/2
BC 109	3/6	BC 182L	4/-	2N 706A	3/2	2N 3706	3/7
BC 115	10/-	BC 183L	3/3	2N 2926	2/6	2N 3707	3/10
BC 116	12/-	BC 184L	4/9	2N 3053	6/-	2N 3708	2/6
BC 167	3/-	BFY 50	$5 / 3$	2N 3054	15/6	2N 3709	2/4
BC 168	2/6	BFY 51	4/4	2N 3055	21/-	2N 3710	2/7
BC 169	2/9	BFY 52	5/3	2N 3391A	7/-	2N 3711	3/-
BC 170	3/-	BFY 53	4/4	2N 3702	3/6	2N 3793	3/3
BC 171	3/8	BSY 95A	3/9	2N 3703	3/2	2N 4292	3/3

We are also an Electroniques Agency (960 page Catalogue $16 / 6$ post free)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT

This carefully planned series of manuals has proved a valuable course in training technicians in Electricity, Electronics, Radio and Telecommunications.

WHAT READERS SAY

"They certainly confirm everything your readers say about them and I am more than delighted with them. They will be of great value to me in my job as Hospital maintenance electrician." A. B., Birmingham.
"I am entirely satisfied with the books, they are everything you claim them to be."
S.S., Cardiff.
"An extremely marvellous set of books."
C.B., London

To The SELRAY book co., 60 hayes hill, hayes, bromley, kent br2 7hp Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid, in good condition within 7 days or send the following amounts. BASIC ELECTRICITY 75/- Cash Price, or Down Payment of 20/- followed by 3 fortnightly payments of 20/- each. BASIC ELECTRONICS 90/- Cash Price, or Down Payment of $15 /-$ followed by 4 fortnightly payments of $20 /-$ each. This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above.
\square Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICITY \square BASIC ELECTRONICS Prices include Postage and Packing.

```
Signature
(If under 21 signature required of parent or guardian)
NAME
```

BLOCK LETTERS
FULL POSTAL
ADDRESS

My mistake

I was very surprised that my letter was so badly taken, but I realise that this was due to my being very ambiguous. I apologise to Mr. Parkinson, Mr. Thompson and Mr. Kojminihi for misleading them, but I must thank Mr. K. Smith for his obvious understanding of the matter.

1 have every intention of getting a full licence, but unfortunately I did not take the wise course used by G3XJB, that of getting his Ticket before taking his "O" Levels (may I wish him and all the rest of us who may be concerned the very best of luck in the exams), but I sincerely hope to alter this soon, and hope to take the RAE next summer. If I pass I sincerely hope he will NOT remove his PA valve as he threatens.
As Mr. Smith so accurately puts it (ESP?) our headmaster has a strong tendency to put school studies "next to God" (several of my friends had been "advised" to discontinue their extra curricular studies, lest it interfere with their work, and lessen their chances of success in the summer), and our Physics teachers weren't overenthusiastic about the idea of starting an Amateur Radio Club, although they are willing to give us whatever help they can. It is at such places that I consider the Novices' Licence would be of very great use, as the club can be operated during the lunch hour and after school, and as such is a perennial project.

Pupils who would not otherwise have the opportunity of experiencing Amateur Radio at its best can do so, and by adding a few suitable rules, e.g. make the Morse test compulsory for all people wanting to transmit, it should be possible to sort the "weeds from the flowers". Also, as the RAE is basically a cross between the " O " and " A " levels in Physics, I see no reason why the pupils should not get their Ticket gradually. It is also my firm belief that the one subject complements the other, which is why I consider Amateur Radio to be a hobby with many useful "side-effects".
I am therefore wholly in favour of the Novices' licence, or anything similar, if it is used in this way. I do NOT think that it should be run on the same lines as the "great" American Citizens Band.-C. Williams A5376 (Staffordshire).

''AA'" licence

I note that the argument(s) about the once proposed "Beginner's" Licence still goes on. I have once put it to you that a return to the pre-war "Artificial Aerial" Licence would be a good thing and you were kind enough to reply saying that you had already approached the then PMG on this subject with little avail. May I now suggest that a "Beginner's" Licence could take the same form as that as for a Driving Licence? If an enthusiast who, although capable of constructing a Tx but is not yet ready for the RAE could enroll the aid (either through his club or otherwise) of a licensed "Ham" to watch over him whilst working the rig then the problem would become easier. I have personally constructed a 40 watt rig and three friends with current licences are all prepared to work it "Stroke A". This means that when (or IF) l get a ticket I shall have all the "gen" at my finger tips. The " L " driver, if he fails his first test goes on until he does pass. Why not in radio?
I should make it quite clear that although I have built a Tx it is not ready to go on the air-this contravenes GPO regulations. or so I believe.-H. W. Boyett, BRS 30526 (Sussex)

Nothing false about this

Reading through previous copies of Practical Wireless I came across, in the Amateur Bands column, a note about false logs. Mr. Gibson also mentioned a report received on something like an OC7I into three OC72s being impossible.

I obtain good reception of the Amateurs with my receiver which is a crystal set into a one-transistor amplifier stage into a four-stage amplifier. To crown it, I use a Band III television aerial and the central heating system as an earth.B. Beord (Hampshire).

An appeal

I would like to appeal for copies (no matter how old) of Practical Wireless, Practical Electronics and any other radio magazines for use by children in the Nunthorpe County Modern School, Middlesbrough.

I am sure that many readers will be pleased to encourage this interest
and hope the children will receive as much enjoyment from reading the old magazines as their original owners did when they were new.G. M. Bartram, Head of Science Department (Nunthorpe County Modern School, Middlesbrough).

From the Opposition Benches

I am heartily sick of reading letters from people who want transmitting licences without the trouble of taking a Morse test, and would like to express an opinion from the Opposition Benches.
Far from abolishing this test, the required speed should be raised to 20 w.p.m. for, as you are well aware, the issue of a licence is not only for one's pleasure but also to enable one to train oneself to become a radio operator in the service of his country should a national emergency arise.
The crowd of "Big Jessies" who natter on for hours on the mike and never touch a key once they have got their ticket are doing nothing at all towards this end for if "telephonists" are ever required in a hurry, female voices are far more suitable for this purpose and furthermore, women could be trained to do the job in a matter of hours.

I would like to see telephony of all kinds totally abolished from 15 , 20,40 and 80 m and restricted to $70 \mathrm{cms}, 2 \mathrm{~m}, 10$ and 160 m only. This would not only leave the DX bands clear for the real radio operators but might also solve the problem of non-activity on 70 cms and 2 m and prevent these being taken from us for that reason.-W. Morris, G4HU (Cheshire).

An old friend

I was looking through some old pre-war radio magazines and QSLs the other day, when I came across a photograph of BRS 1724 and his short wave outfit. I guess the picture was taken between 1932 and 1934. It has the name F. C. Holwill, Dartmouth, impressed on the bottom of it (I expect this is the name of the photographer).
I should like to locate BRS 1724 if possible and send the photograph to him as he might be interested in it.-F. G. Sadler (19 Kithurst Crescent, Goring-by-Sea, Sussex).

The fictitious "hole"

While I thoroughly appreciate B. R. Meredith's predicament concerning the fictitious "hole", (P.W. March 1969), might I suggest that it stems from our inability to sufficiently express abstract ideas in our all-too-concrete language. To start with, the concept of energy moving and expressing mass is impossible to conceive in anything but mathematical reasoning. So we build up a theory of particles we can hold in our imagination. It is easy to think of orbits each capable of maintaining fixed energy levels, which when filled constitute a perfect electrical balance. (Where our "concrete" particle is, three dimensionally, during its transit from one orbit to another when it radiates or absorbs its quantum of energy is just as hard to understand as our "hole". Does it momentarily cease to exist in our space, or is it a fault inherent in the picture.) It is when this balance of charges is disturbed that we experience electrical phenomena. The presence of extra electrons we choose to call a negative charge. Extra gaps appearing in an orbit we call positive.

We find no difficulty discussing a hole in our bank balance as an overdraft, making it a tangible reality. Negative figures in everyday life are added together or moved from one record to another with such ease that no one needs to explain the movement of these deficiencies.

When the particle has been classified as a negative though, by reasoning, its deficiency, a minus negative, can only become positive. The fault of reasoning is therefore one of nomenclature. Were electrons classified as positive, their deficiencies, or "holes" would be negative and no one need ever make the mistake of imagining they are "nothings which are current carriers".-L. G. A. Green (Peterborough).

Ouch!

I am writing to ask whether or not it is possible to publish articles of a more intellectual nature in both your Practical Wireless and Practical Electronics magazines. Do you have to treat all your readers like blithering idiots, because I am sure a child with an IQ of minus 2
could understand your magazine in its present form.

I am sorry to be so blunt, but it seems to me that all your articles are of a descriptive nature, why? I can only conclude by saying that I think that one of your authors in a recent issue has just guessed the values of the components used in his simple circuit.

I appreciate the fact that these magazines are for the Practical application of electronics as the names suggest, but this does not mean "spoon-feeding" the readers. -M. Floyd (Berks.)
[Really, Mr. Floyd! Fancy associating with $-2 I Q$ morons by reading P.W. If you want the intellectual stuff try The New Statesman.-Editor.]

Hello, hello, hello!

Reference G3WVR and his echo effects on the air.

It seems to me that the average Amateur of today forgets two things as quickly as possible once he has obtained his licence. First, Licence Conditions, and secondly c.w. The latter is understandable the former unforgivable.

If this "Wet behind the ears" Amateur requires to experiment in this manner I suggest that he gives up the idea of ever becoming an Amateur, throws away that B.Sc., lets his hair grow, takes drugs, and joins one of those ill-mannered "groups", who, I feel sure, will appreciate his efforts to produce peculiar sounds. Those of us who can still carry out experiments in the true sense, and have long and enjoyable QSOs (both on the key and mic.) have no time for this type in our ranks.-B. J. Clark, G3BEC (Hon. President, Yeovil Amateur Radio Club).

All you need is willpower

Having followed with interest the "battle" in your columns between those advocating a "Beginner's Licence" and their critics, I feel I should offer my opinion. I am one of the many schools' pupils who are about to sit "O" Level Examinations: consequently it is necessary that I revise as much as five years' work. Nevertheless I have found adequate time to pass the RAE and the GPO Morse test-with which I might add that I am all in favourand take out an Amateur Sound Licence (A), while keeping up a
fairly reasonable standard both at school, and at various out-ofschool" activities. Living in "the wilds" as I do, I have been unable to join a radio club and benefit from its advice and guidance. My studies for the RAE were therefore with the aid of the usual text-books, and also occasional visits to an experienced and very helpful Amateur.

Armed with a licence, then, I began hesitantly to operate-and ran into most of the well-known problems-TVI, aerial loading, shortage of cash, to mention but a few, and above all, inexperience. However, having solved some of these, I made my first contacts on c.w. I believe that were it not for the compulsory Morse test, many people would ignore c.w. as a mode of transmission, and in doing so completely sacrifice an efficient, simple, interesting, and-most im-portant-cheap means of communication.

In my experience, limited though it may be, there should be no reason why someone with sufficient will power and enthusiasm should not pass with relative ease the RAE and the GPO Morse test, even when bound by inevitable commitments and examinations.

I think Amateur Radio is a marvellous hobby. It is one of the few pastimes which is enjoyable, relaxing and yet educational in so many ways.-D. M. Holburn- 15 G3XZP (Wolsingham, Co. Durham)
[We must now close the subject of the Beginner's Licence, so no more letters on that subject please.Editor]

Stop press

The author of the article "A Six Transistor F.M. Tuner," part 2 of which appeared in the March issue, has asked us to publish this additional note on alignment:

In isolated cases the tolerance of the capacitors in the oscillator tuned circuit may be such that some difficulty may be found in tuning the 1.f. end (Radio 2) owing to insufficient capacitance. The simple way to overcome this is to increase the inductance of L4 by screwing in a dust iron core. The core should be made vibration proof by using either a core locking compound, or a thin piece of rubber band screwed in with the core.

DE LUXE STEREO GRAY CHASSIS V.H.F.. MW, SW
 PICK-UP ARM Complete with ACOS LP-78 GP67 Stylii 29/6; Xtal GP67 17/6; Stereo Ceramic 35/-. Powerpoint 56 15/-. CRYSTAL MIKE INSERTS

PORTABLE TRANSISTOR
AMPLIFIER PLUS
DYNAMIC MICROPHONE
A seif-contained fully ports ble mini p.a. system. Many uses - ideal for Parties, or as a Baby phone or Record Player, ${ }_{4}$ mplifier, ete Attractive re vered cabinet, size $12 \times \theta \times 4 \mathrm{jn}$, with
powerful $7 \times 4 \mathrm{in}$. speaker and four transistor one wat power amplifier plus ultra sensitive microphone Une Wat battery. Brand new in Makers' carton with full makers
garantee. World famous make. Only $90 /$ - Post

WEYRAD P50-TRANSISTOR COILS
RA\&W 6in. Forrite Aerial Spare Cores

| I.F. P50/\&CC 470 ko/a. . | $5 / 7$ | J.B. Tuning Gang | 10/6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

3rd I.F. P50/3CC

b/f-	Weyrad Rooklet

Telescopic Chrome Aerials bin. extend to $83 \mathrm{in} .5 /-$
Perrite Rods Only. $8 \times$ in. $4 /-; 6 \times$ in.
VOLUME CONTROLS
Long apindles, Midget sise
5 K . ohms to 2 Meg. LOG or
 5R. S.P. Tramistor Sis.
POTS. T.V. Type. Valu
10 ohms to 80 K,
Carbon 30 K to 2 meg .
80 ohm Coax 8^{D}

Carbon soK to 2 meg. $\left.4 / 6 \left\lvert\, \begin{array}{l|l}\text { LONG SPINDLE } \\ \text { \$0 OHMS to } 100 \mathrm{~K} . .\end{array}\right.\right] / 6$ VEROBOARD 0.15 MATRIX
$21 \times 51 \mathrm{n} .3 / 8.21 \times 83 \mathrm{in} .8 / 2.81 \times 3$ in. $8 / 8.31 \times 5 i n .5 / 2$. EDGE CONNECTORA 16 way $5 /-; 24$ way $7 / 6$.
PINS 86 per panket $3 / 4$. FACE CUTTERS $7 / 6$. 8.R.B.P. Board $0 \cdot 15$ MATRIX 2 inn, wide 6d. per $1 \mathrm{in}, 81 \mathrm{in}$. wide 日d. per lin.; 5 in. wide $1 /-$ per lin. (up to 17 in .
BLANE ALUMINIUM CHA8SI8. 18 s.w.g 2!in. sides $3 \times 4 \mathrm{in} ., 8 / 8 ; 9 \times 7 \mathrm{in}$; $6 / 6 ; 11 \times 8 \mathrm{in}$. . $8 / 6 ; 11 \times 7 \mathrm{in}, 7 / 6$; ALUMINTU: PANELS 18 a 12×8 in. $4 / 6 ; 10 \times 7$ in. $8 / 6 ; 8 \times 6$ in. $2 / 6 ; 6 \times 4$ in. $1 / 6$;

a MAX CHASSIS CUTTER

 Complete: a die, punoh, an Allen sorew and key in. 16/- in. $17 / 6$ 1 lin. 19/6 lin. 24/- $\mathbf{2}^{3} / 32 \mathrm{in}$. 44/8

BARGAIN STEREO/MONO SYSTEM
Attractive Slim PLAYER CABINET with B.S.R. STEREO Autochanger $4+4$ AMPLIFIER and TWO matched LOUDSPEAKERS Carr. 10/6

f19.19.6. \begin{tabular}{lll|lll}
NEW TUBULAR ELECTROLTTICS \& \multicolumn{2}{|c}{ CAN TYPES }

2/350V \& \cdots \& $2 / 8$ \& $100 / 25 V$ \& \cdots \& $2 /-$

$4 / 850 \mathrm{~V}$ \& $8 / 600 \mathrm{~V}$ \& $8 / 3$ \& $250 / 25 \mathrm{~V}$ \& $8 / 6$ \& $16 / 600 \mathrm{~V}$

\cdots $\begin{array}{llllll}4 / 850 \mathrm{~V} & \cdots 2 / 3 & 250 / 25 \mathrm{~V} & \ldots & 2 / 6 & 16 / 600 \mathrm{~V}\end{array}$

$8 / 450 \mathrm{~V}$ \& \cdots \& $8 / 8$ \& $500 / 25 \mathrm{~V}$ \&.. \& $4 /-$

$16 / 450 \mathrm{~V}$ \& \ldots \& $3 /-$ \& $8+8 / 450 \mathrm{~V} .$. \& $3 / 6$ \& $38+38 / 500 \mathrm{~V}$
\end{tabular}

$25 / 25 \mathrm{~V}$	\cdots	$1 / 8$	$16+16 / 450 \mathrm{~V}$	$4 / 8$
$50 / 50 \mathrm{~V}$	$60+100 / 350 \mathrm{~V}$	$11 / 6$		

 8UB. MIN. ELECTBOLYTICS. $1,2,4,5,8,16,25,30,50,100$, $250 \mathrm{mF} 15 \mathrm{~V} 2 /-; 500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 6 ; 8000 \mathrm{~m}$ F $25 \mathrm{~V} 7 /-$ CERAMIC. 500 V 1 pF to 0.01 m F , 9 d . Dises $1 / \mathrm{m}$
PAPER 350V-0.1 $9 \mathrm{~d} ; 0.52 / 6 ; 1 \mathrm{mF} 3 /-; 2 \mathrm{mF} 150 \mathrm{~V} 3 /-$ $1,000 \mathrm{~V}-0.001,0.0022,0-0047,0 \cdot 01,0.02,1 / 6 ; 0.047,0 \cdot 1,2 / 6$. SILVER MICA. Close tolerance 1%. $5-500 \mathrm{pP} 1 /-; 560-2,200 \mathrm{pF}$ $2 /-; 2,700-5,600 \mathrm{pF} 3 / 6 ; 8,800 \mathrm{pF}-0.01$, mfd $6 /-$ egech. TWIN GANG. " $0-0$ "' $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 6: 365 \mathrm{pF}$, minis ture 10/-; 500pF gtandard with trimmers, 9/6; 500 pF midget less trimmers, 7/6; 500pF' slow motion, atandard $9 /-$ small 8-gang $500 \mathrm{pF} 18 / 9$. Single " 0 " $365 \mathrm{pF} 7 / 6$. Twin $10 /$. SHORT WAVE, Single $10 \mathrm{pF}, 25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$ TUNFNG. Solid dio each.
TUNING Solid dieleotrio. $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /$ - eaoh. TRIMMERS. Compression eeramic 80,$60 ; 70 \mathrm{pF}, 1 /-;$
$100 \mathrm{pF}, 150 \mathrm{p}, 1 / 3 ; 250 \mathrm{pF}, 1 / 6 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 8 ; 1000 \mathrm{pF}, 2 / 6$.

250V RECTIFIERS. Selenium | wave $100 \mathrm{~mA} 5 /-$; BY $10010 /-$ CONTACT COOLED \& wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$.
Full Wave Bridge $75 \mathrm{~mA} 10 /-; 150 \mathrm{~mA} 19 / 8 ; T V$ reots. $10 /$ NEON PANEL INDICATORS. 250v. AC/DC, $3 / 6$.
RESISTORS. Preferred valuen, 10 ohms to 10 meg .
 Ditto 5%. Preferred values 10 ohms to 28 meg., 8 d .
$\left.\left.\begin{array}{r}5 \text { watt } \\ 10 \text { watt } \\ 15 \text { watt }\end{array}\right\} \quad \begin{array}{r}0.5 \text { to } 8 \cdot 2 \text { ohm 8w. }\end{array}\right\} \quad$ IRE-WOUND RESISTORS
15 watt 10 K 15 K ohms to 6,800 ohms
FULL WAVE BRIDGE CHARGER RECTIFIRRS:
6 or 12 v , outputs. $1+\mathrm{amp} .8 / 9$; $8 \mathrm{a} ., 11 / 8 ; 4 \mathrm{a}, 17 / 6$.
CHARGER TRANSFORMERS, P. \& P. S/-Input $200 / 2507$. for 6 or 18v., $1 \mathrm{i} \mathrm{amph} ., 17 / 6$; 2 amps., $21 /-; 4$ amph., $30 /-$ VALVE HOLDERS, 9 d : CERAMIC $1 /-$; CANS $1 /-$
BRAND NEW TRANSISTORS 6/- each
OC71, OC72, OC81, OC44. 0C45, OC171, OC170, AP117
MAT $100,7 / 9:$ MAT $101,8 / 6$. MAT $1807 / 9$. AT MAT 100, 7/9: MAT $101,8 / 6$; MAT $120,7 / 8 ;$ MAT $121,8 / 6$.
REPANCO TRANSISTOR TRANSFORMERS TT45. Push Pull Drive, B:I CT, B/-, TT48 Outpat CT8 TT45. Push Pull Drive, $8: 1$ CT, $8 /-$. TT46 Outpat, CT8:1, 6/TTES/4 PAIR 10 wati Amp. Tranaformern and circuit $45 /-$
TRANSISTOR MAINS POWER PACKS. FULL WAVE 9 volt 500 mA Size $4 \frac{1}{2} \times 2 i \times 2$ in. Output terminals. $49 / 6$ Switched. Metal case, crackle finish. On/oft switch.

MAINS TRANSFORMERS

Post
$5 /-2 a n$
$250-0-25050 \mathrm{~mA} .6 \cdot 3 \mathrm{v} .2 \mathrm{~s}$. Centre tapped $\ldots . .$.
$250-0-25080 \mathrm{~mA} .6 .3 \mathrm{v}, 3.5 \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{a}$. or 5 v .2 a.
 $800-0-800 \mathrm{v}, 120 \mathrm{~mA} ., 8.3 \mathrm{v}$. 4a. C.T.; 6.3 v .2 a . MINIATURE $200 \mathrm{v}, 20 \mathrm{~mA}, 6.3 \mathrm{v} .1 \mathrm{~s}$. $21 \times 2 \times 1 \mathrm{I} \cdot \mathrm{in}$. MIDGET $220 \mathrm{v} .45 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} .21 \times 21 \times 2 \mathrm{in}$
HEATER TRANS. $6.3 \mathrm{v}, 1+\mathrm{s}, 8 / 6 ; 6.3 \mathrm{v}, 4 \mathrm{~s}$. Ditto tapped seo. $1.4 v ., 2,8,4,5,6.8 \mathrm{~s} .11 \mathrm{amp}$ GENERAL PURPOSE LOW VOLTAGE, Outputs 3 $4,5,6,8,9,10,12.15,18,24$, and 30 v. at 8 a
$1 \mathrm{smp} .6,8,10,12,18,18,20,24,80,38,40$,
 AUTO TRANSFORMERS $0-115-330 \mathrm{w}$. Input.
$60 \mathrm{w} .18 / 6: 150 \mathrm{w}, 30 /-; 500 \mathrm{w}, 92 / 6 ; 1000 \mathrm{w} .175 /-\mathrm{l}$
COAXIAL PLUG 1/3. PANEL BOCKETS 1/8. LINE 2/OUTLET BOXES. SURFACE OR PLUSH $4 / 6$.
BALANCED TWIN FEEDERS $1 /-$ Yard 80 or 300 ohms. JACK SOCKETS 8td. open-circuit 2/6, closed circuit 4/8. Chrome Lead socket 7/6. Phono Plugs 1/-. Phono Socket 1/-DIN PLUGS sta. Chrome $3 / ; 3-s m m$ Chrome $2 / 6$. DIN SOCKET8 Chasis 3-pin 1/6; 5-pin 2/DIN PLUGS 3-pin 3/6; 5-pin $5 /$-.

WAVE-CHANGE SWITCHES WITH LONG SPINDLES. 2 p .2 -way, or 2 p .6 -way, or 8 p .4 -w $\mathrm{wy} 4 / 6$ each. 1p. 12-way, or 4 p. 2 -way, or 4 p. 8 -way, $4 / 6$ eaoh. Waveohange "paKits"1 p. 12 -way, 2 p. 6 -wsy, 8 p. 4-way, 4 p .3 -way, 8 p .8 -way, 1 wafer $12 /-, 8$ wafer $18 /-, 3$ wafer $24 / \mathrm{F}$. TOGGLE SWITCHES, 1 p . $2 / 6$; ap. dt . $8 / 6 ; \mathrm{dp} .3 / 6 ; \mathrm{dp} \mathrm{dt} .4 / 6$.

MINI-MODULE LOUDSPEAKER KIT	(0)
Sonalico con.	
atee the top ead of the mutical	

BAKER 12in.

DE-LUXE MKII

 LOUDSPEAKER Sultable for any Hi-Fi System. Provides truly rich sound recreating the musi al spectrum virtually flat from 25-16,000cps. Latest double cone with special "Ferroba" ceramic mag. net. Flux density 14,000 gauss. Bass resonance 3238cps. 15W British rating. Voice colis available 3 or or 15 f 9 Postohms. Fre
Manual $5 / 9$ post paid
LOUDSPEAKER CABINET WADDING 18 in . wide $2 / 6 \mathrm{ft}$ BAEER "GROUP SOUND" 8PEAKERS-POST FREE 'Group 25' 'Group 35' 'Group 50'

ALL MODELS "BAKER SPEAKERS" IN STOCX
Super Cone Tweeter 2fin. square, $8-17 \mathrm{kc} / \mathrm{s}$. $10 \mathrm{~W} 17 / 6$

E.M.I. Double Cone $181 \times 8 i n, 3$ or 15 ohm models $45 / 21 /$ With twin tweeters, crossover and ceramic magnet, 79/6 SPECIAL OPFER : $8 \mathrm{ohm}, 2 t \mathrm{in} ; 6 \times 4 \mathrm{in} ; 80 \mathrm{ohm}, 21 \mathrm{in}, 2 \mathrm{q}$ in ; $15 / 6 \frac{\text { EACE }}{\text { TYPE }} 25 \mathrm{ohm}, 6 \times 4 \mathrm{in} ; 35 \mathrm{ohm}, 3 \mathrm{in}$; 8 in LOUDSPEAKER UNITS 3 ohm $27 / 6,15 \mathrm{ohm} 30 / \mathrm{m}$; De Luxe Ceramic 8 ohm $45 /-; 15$ ohm $50 /$-.
 OUTPUT TRANS. EL84 etc. 4/6; MIKE TRANS. $50: 1,8 / 8$

ALL PURPOSE HEADPHONES

 H.R. HEADPHONES 2000 ohms Super Sensitive LOW RESISTANCE HRADPHONE 8 is ohmsDE LUKEPADDED $8 T E R E O$ PHONES 8 ohms.

MINETTE

AMPLIFIER

A.C. Maint Transformer Chasis size $7 \times 81 \times 4 \mathrm{in}$. High. Valven ECL82, EZ880. Quality output ohm. Walves, lisnobs, volume and tone controls $69 / 6$ wired and tested. 18 month guarantee. Post $5 / 6$ 69/6

ALL EAGLE PRODUCTS
 SUPPLIED AT LOWEST PRICES

BARGAIN AM TUNRR. Medjum Wisve.
Tranlistor gaperbet. Ferrite aerial, 8 volt. Trandistor 8uperhet. Ferrite abrial, 8 volt.

BARGAIN DE LUXE TAPE SPLICER Cnta, 17/6 trims, joins for editing and repairs. With 8 biados. $17 / 0$ musical highlights and sound eifeots to recordingl. | Will mix Miorophone, recorid, tape and tuner |
| :--- |
| with separate controls into single output. θ volt. | BARGAIN FM TUNER 88-108 Mc/a Siz Tranzistor, Ready built. Printed Circuit. Calibrated slide dial f6.19.6.

tuning. 8 ize $8 \times 4 \times 2$ in. 9 volt. BARGAIN 8 WATT AMPLIFIER
Puih-Poll Ready built, with volume eonkrol. 9 y . $69 / 6$
45-pAGE EAGLE CATALOGUE 5/-Post Freo
\star RADIO BOOK $\star \star$ (Postage 9d.)
Praotioal Transistor Reocivers
Pratioal 8tereo Handboo
 Radio Valpe Guide, Books 1, 2, 3, or 4 ea. $5 /$ Practical Radio Inilide Out
Shortwave Transistor Reoelvers
Tranistor Communication Sots
Tranaistor Communication Set
Modern Transistor Cireults for Beginners
Sub-Miniatnre Trannistor Sob-Miniatnre Tranuistor Reoeivers
Wireless World Radio Valve Da
Vaives, Trannistor, Diodes en
Receive Foreign TV by oimpivelents manual Tranistor Circuits Radio Controllad Models
MANUFACTURERS SURPLUS! 25/-
TAPE RECORDER CASE. Red/Cream $15 \times$ $12 \times 51 \mathrm{in}$.

OST PREE $\begin{array}{ll}\text { POCKET MOVING COIL MULTIMETER } \\ 0-1,000 & \text { AC./DC. } \\ 0\end{array}$ SUPERIOR MOVING COIL MULTIMETER 99/6 Ohms 0 to 6 mez . 50 Mieroamys (Tall Iist Moters 8.A.E.)

BRAND NEW QUALITY EXTENSION LOUDSPEAKER Handsome plaitic cabinet, gott. laad tape recorder, otc. 8 to 15 ohma $30 /=$
site: $7 \frac{1}{2} \times 5 \frac{1}{2} \times$ 3in.
POST $2 / 6$

New materials and original design from 60 to $16,000 \mathrm{~Hz}$ and outtechniques have been used to standingly good transient response. produce a speaker of fantastic quality it will comfortably handle up to at a most attractive price. Experts 14W loading and is positively and reviewers have enthusiastically brilliant in stereo. Measuring $9 \frac{3}{4} \mathrm{in}$. shape and size of the 0.14 make it speaker is finished in matt black far more adaptable to its environ- with solid aluminium bar trim.
Try the 0.14 in your own home without delay. If you are not

 immediately.

£7.99.6

ORGAN BUILDERS! SILICON N.P.N, TRANSISTORS TESTED ALECTIKNICS" ORGAN CIRCUIT-1/6 each or e5 per 100.

LATEST LIST OF TRANSISTOR STOCK. ALL BRAND NEW AND TO MANUFACTURERS SPECIFICATIONS

NKT11	$9 / 3$	NKT402	$19 / 3$	BFX86	6/6	2 N 2221	8/6
NKT12	$7 / 3$	NKT403	18/-	BFX81	8/-	2 N 2221 A	101-
NKT72	$5 /$	NKT404	$13 / 3$	BFX88	7/3	2N2222	$10 / 9$
NKT73	5\%	NKT405	14/9	BFY50	51-	2N2222A	$12 / 6$
NKT124	8/6	NKT406	$13 / 3$	BFY51	4/6	2N2297	9/3
NKT125	$5 / 9$	NKT420	401-	BFY52	$51-$	2N2368	4/6
NKT126	$51-$	NKT451	13/3	BFY53	4/6	2N2369	4/6
NKT135	$51 /$	NKT452	12/6	BFY90	$29 / 6$	2N2369A	$5 /-$
NKT137	6/6	NKT453	$81=$	BSX19	4/6	2N2483	8/6
NKT210	$5 / 9$	NKT603F	8/6	BSX20	$4 / 6$	2 N 2484	$10 / 9$
NKT211	51.	NKT613F	$7 / 3$	BSX60	16/6	2N2220A	$10 / 9$
NKT212	51-	NKT674F	$5 /-$	BSX61	10/-	2N2904	$10 / 9$
NKT213	6/6	NKT677F	4/6	BSY95A	3/9	2N2904A	12/0
NKT214	4/6	NKT713	51-	2N696	5/-	2N2905	15/6
NKT215	5%	NKT717	8\%-	2N697	$5 /-$	2N2905A	18/-
NKT216	101-	NKT734	$51-$	2N706	3/-	2N2906	12/6
NKT217	$10 / 9$	NKT736	6/6	2N706A	3/-	2N2906A	13/3
NKT219	5%	NK2773	4/6	2N708	4/6	2N2907	14/-
NKT223	$5 / 9$	NKT781	51-	2N709	11/6	2N2907A	2019
NKT224	$4 / 6$	NKT10419	5/-	2N914	$51 /$	2 N 3053	5/9
NKT225	$4 / 6$	NKT10519	5/9	2N918	11/6	2 N 3055	2019
NKT229	51	NKT10339	6/6	2N929	$7 / 3$	2 C 345	4/5
NKT237	$7 / 3$	NKT10439	7/3	2N930	8/-	2G371	$4 /$
NKT238	$4 / 6$	NKT12329	$11 / 6$	2N1131	8/6	2 G 378	4/-
NKT239	$5 /-$	NKT12429	14/-	2N1132	10/-	- 0 C 22	10/"
NKT240	$4 / 6$	NKT13329	$51-$	2N1302	$4 / 6$	OC204	6\%
NKT241	5%	NKT13429	$5 /-$	2N1303	$4 / 6$	0 O 44	$61-$
NKT242	3/-	NKT35219	22/3	2N1304	5%	OC45	6/-
NKT243	14/-	NKT16229	11/6	2N1305	$5 /-$	ASZ17	10/-
NK T244	3/-	NKT20329	12/6	2N1306	616		
NKT245	$3 / 9$	NKT20339	$8 / 6$	2N1307	616		
NKT261	$3 / 9$	BC107	4/6	2N1308	818		
NKT262	$3 / 9$	BC108	3/-	2N1309	$8 / 6$		
NKT264	$3 / 9$	BC109	$4 / 6$	2N1613	5/9		
NKT271	3/9	BCY55	70/-	2N1711	$6 / 6$ $12 / 6$	Discount	
NKT272	$3 / 9$	BCY70	51	2N1893	$12 / 6$		
NKT274	$3 / 9$	BCY71	913	2 N 2217	$7 / 3$	25/49	5\%
NKT275	$3 / 9$	BCY72	416	2N2217A	$15 / 6$	50/99	10\%
NKT281	51%	BDY20	2213	2N2218	$8 / 6$	100/299	15\%
NKT302	1616	BFX29	11/6	2N2218A	101-	300/999	20\%
NKT304	1313	BFX30	$13 / 3$	2 N 2219	1019	1.000	25\%
NKT351	$11 / 6$	BFX 84	$6 / 6$	2N2219A	$12 / 6$		
NKT401	18/	BFX85	8/-	2N2220	$7 / 3$	all one ty	

CNMARKED TRANSISTORS (tested) similar to
2N753 1/6, BSY28 1/6; BSY65 $1 / 6,0 C 441 / 6$, OC71 $1 /$-, OC72 $1 /$ LIGITT SENSITIVF THANSISTORS (SImilar to OCPT1) $2 /-$ each ORPIZ CADMILM SULIHIDE LIGHT-SENSITIVE IRESISTORS 9/- each.

GIANT-SIZE NELENILM NOLAR CELLS-PIODUCE UIP TO $6 \mathrm{~mA} A T$ ' 6 LOLTS FROM DAFIIGIIT: 67 mm . diameter 10/-each 50 mm . $\times 37 \mathrm{~mm}$. 2 for $10 /$ -

MULIARIY POLYESTEIR CAPACITORS FAK BELOW COST PRICE: $0-001 \mu \mathrm{~F} 400 \mathrm{~V} 3 \mathrm{~d} ., 0.001 . \mathrm{F}$. $0.15 \mu \mathrm{~V}$ 6d., $0.22 \mu \mathrm{~F} 160 \mathrm{~V} 6 \mathrm{~d} ., 0.27 \mu \mathrm{~F} 160 \mathrm{~V}$ 6d., $1 \mu \mathrm{~F} 125 \mathrm{~V} 1 /-$

RECORID PLATEIR CARTHIIDGES. COMPLETE WITH NEIEDLES GP67/2 Mono 15/-, GP91/3 Compatible e1, GP93/1 Crystal Stereo 25/GP94/1 Stereo Ceramic 25/-.

TRANSISTOIRISED SIGNAD IN, FCTOR KIT 10%
SIGNAL TRACER KIT 10\%. CAR REV: COENTEIK KIT 10/.

VEROBOAIRI
 3. $\times 2 y^{\prime \prime} 0-15$ matrix $3 / 3 \quad 17 \times 21^{-} 0.15$ matrix $11 /{ }^{\circ} 5 \times 2{ }^{\prime \prime} 0.1$ matrix $4 / 7$
 Spot Face Cutter $7 / 6$. Pin Insert Tool $9 / 6$. Terminal Pins $3 / 6$ for 36 .
Special Ofter! Spot Face Cutter and $52 \frac{1}{2} \times 1^{\prime \prime}$ boalds......... $9 / 9$ only

PAPER CONHENSEIRS, Mixed bags $0.001 \mu \mathrm{~F}$ to $-5 \mu \mathrm{~F} .12 / 6$ per 100. sII.VER-NICA, Ceramic. Poly'styrene Condensers. Well assorted. Mixed types and values, $10 /$ per 100.
IRFSISTORS. Mixed types and values. $\frac{1}{4}$ to 1 watt. $6 / 6$ per $100.55 /$ per 1,000. Wire-wound resistors. 1 watt to 10 watts. Mixed values. 20 for 10/TRANSISFOKS. Mixed, unmarked, mainly O.K. 7/6 for 50.

12 HOLT TRANSISTOIXISEI FLUORESCENT LIGHTS. HAIF NORMAL PliCL
8 Watt $12^{\prime \prime}$ tube. Reflector type £2.19.6. 15 watt 18^{*} Batten type £3.19.6. IDEAL FOR CAMPING OR CARAVAN HOLIDAYS! A BRIGHT LIGHT FOR VERY LITTLE CURRENT!

ELECTROLYTIC CONIDENSEIRS

$0.25 \mu \mathrm{~F}$	3 volt	$4 \mu \mathrm{~F}$	4 volt	$10 \mu \mathrm{~F}$	25 volt	$64 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	6 volt	$4 \mu \mathrm{~F}$	12 volt	$20 \mu \mathrm{~F}$	6 volt	$100 \mu \mathrm{~F}$	9 volt
$1 \mu \mathrm{~F}$	20 volt	$4 \mu \mathrm{~F}$	25 volt	$25 \mu \mathrm{~F}$	6 volt	$320 \mu \mathrm{~F}$	4 volt
$1 \cdot 25 \mu \mathrm{~F}$	16 volt	$5 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	12 volt	$320 \mu \mathrm{~F}$	10 volt
${ }_{2} \mu^{2} \mathrm{~F}$	3 volt	$6 \mu \mathrm{~F}$	6 volt	$25 \mu \mathrm{~F}$	25 volt	$400 \mu \mathrm{~F}$	6.4 volt
$2 \mu \mathrm{~F}$	350 volt	${ }_{8}{ }^{\prime \prime} \mathrm{F}$	3 volt	$30 \mu \mathrm{~F}$	6 volt	All at	1- each.
$2.5 \mu \mathrm{~F}$	16 volt	$8 \mu \mathrm{~F}$	12 volt	$30 \mu \mathrm{~F}$	10 volt	20 a	sorted
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt	$50 \mu \mathrm{~F}$	6 volt	our	lection)
$3 \cdot 2 \mu \mathrm{~F}$	64 volt	$10 \mu \mathrm{~F}$	6 volt	$64 \mu \mathrm{~F}$	2.5 volt	10	

Orders by post to:
G. F. MILWAHIB, DRAYTUN BASNETT, NEAR TAMWORTHI.

Please include suitable amount to cover post and packing. Minimum $2 /-$. Stamped addressed envelope must accompany any enquiries. For customers in Birmingham area goods may be obtained from Rock Exchanges, 231 Alum Rock Road. Birmingham 8 .

aniviliz?RANGE OF SOLID STATE A.C. MAINS AMPLIFIERS Employing only high grade components and transistors.

LTA15 15 WATT AMPLIFIER

 HIGH FIDELITY OUTPUT SWITCHED INPUTS FOR GRAM, 'MIKE', TAPE, AND RADIOFrequency Response 10-40,000 cps-3dB. Bass Control +18 dB to -16 dB at 40 cps . Treble Control + 17 dB to- 14 dB at 14 Kcs . Hum and Noise-80dB. Harmonic Distortion

Recommended
Size $9 \frac{1}{2} \times 3 \frac{3}{4} \times 5 \frac{1}{4}$ in. 3-8-15 ohm Loudspeakers.

PTA30 HI-FI
PUBLIC ADDRESS AMPLIFIER A SUCCESSOR TO OUR POPULAR CONCHORD 30 WATT UNIT
Input Sensitivity 2 mv (max.) Output 30 watts.
Output Terminals or Loudspeaker or combination of Speakers with total
 Recommended 21 GnS
Retail Price Size $12 \times 3 \frac{1}{2} \times 6$ in. ohms. Three individually controlled
ohms. Three individually controled Jack Inputs for mixing purposes. Housed in fully enclosed stove enamelled steel case. Controls Vol. (1) Vol. (2) Vol. (3) with mains switch, Treble 'lift' and 'cut'. Bass 'lift' and 'cut'.
AN IDEAL UNIT FOR VOCAL AND INSTRUMENTAL GROUPS, SUITABLE FOR ANY KIND OF 'MIKE' AND INSTRUMENT PICK-UP, ALSO FOR RADIO, TAPE OR GRAM.

If required an attrac-
tive wood cabinet with Satin Teak veneer floish can be supplied for any model. 70 s.
Prices from

Please send a stamped addressed envelope for full descriptive detalls of above units, also TUNERIAMPLIFIERS STEREO and MONO.

LINEAR PRODUCTS LTD, Electron Works, Armley, Leeds

EXCLUSIVE PURCHASE!

PORTABLE AMPLIFIER
 UNIT
 BY WELLLMAKER
 A lurary unit at a bargain price.

 a besiganed price. Only 35/-. P. \& P. 4/6 many different Telephone Amplifier but can be used in radios, a baby alarm, intercom, paging system etc. etc. Htgh gain four transistor amplifier unit housed in attractive leathercloth covered wooder cabinet with upwand grille. Fitted 3.5 mm jack socket and volume/on/ofl control. Bize $7 \times 4 \frac{1}{8} \times 3 i \mathrm{in}$, high. Operates on standard Pro or ind bupplen compleke whi telephone pick-up induction coil fitted suction pad, lead and 3.5 mm ack plug.
OUR SPECLAL PRICE
$35 /-$ P. \& P. $4 / 6$
Or as above with 3.5 nam plug and DLR5 unit for use as sensitive microphone for baby alarins, communication syitems etc. Will operate over diatances of up to 200 ft . or
more when connected with twin fex or bell wire. more when connected with twin \#ex or bell wire

> PRICE $40 /-\quad$ P. \& P. $4 / 6$ (Batteries and flex not included:

BRAND NEW 3 OHM LOUDSPEAKERS 5in.14/-;6in. 18/6;8in. $27 /=; 7 \times 4 \mathrm{in} .18 / 6 ; 10 \times 6 i n .27 / 6$. E.M.1.8 \times oln. with high tux magnet $21 /-$. E.M.I. $131 \times$ 8in. With high tux ceramic magriet $42 /-$ (15 ohm $45 /-$).
E.M. $13 \times 8 \mathrm{in}$. with two inbuilt tweeters and crossover network. 3 or 15 ohms 4 gns. P. \& P. 5 in. $2 /-6 \frac{1}{2} \& 8 i n .2 / 6$. 10 \& $12 \mathrm{in} .3 / 6$ per speaker.
BRAND NEW. 122 in . 15 w . H/D 8peakers, 3 or 15 ohms . Current productton by well-known Britioh maker. Now with Hitlux ceramic ferrobar magnet assembly $\mathbf{P} 5.10 .0$. P. \& P. $5 / /$. Gultar models: $25 w$. 86.0 .035 w . 28.0 .0 . E.M.I. 3im. HEAVY DUTY TWEETERS. Powerful ceramjc maguet. Available in 3 or 8 ohms $15 /$ - each; 15 ohms 12in. "RA" TWIN CONE LOUDSPEAKER. 10 wattes jeak handling 3 or 15 ohm, $35 /-$ P. \& P. $3 / 6$
35 OHM SPEAKERS
$3 \mathrm{tm} .12 / 8 ; 7 \times 4 \mathrm{in} .21 /-$ P. . P . $2 /$. per speaker.
VYNAIR AND REXINE SPEAKERS AND CABINET FABRICS app. 54 in . wide. Usually $35 /$ yd., our price $13 / 6$ yd. length. P. \& P. $2 / 6$ (min. 1 yd.). S.A.E. for samples

LATEST COLLARO MAGNAVOX 363 STEREO TAPE DECK. Three upeeds 4 track, takes up to 7 in . spools QUALITY PORTABLE TAPE RECORDER CASE Brand new. Beautifully made. Only 49/6. P. © P. 8/6 Dual Purpose Bulk Tape Eraser and Tape Head Demagnet iser 85/-P. \& P. $3 /$ - . uge. High senaityity. $18 / 6 . P$. \& P. I/6.
ACOS HIGE IMPEDANCE ORYSTAL STICK MIKES. ACOS HIGE IMPEDANCE ORYSTAL STICK MIKES.
OUR PRICE $21 /-$ P. \& P. $1 / 6$.

NEW 8.T.C. TYPE 25 MINIATURE RELAYS-
 reaistance 185 ohms.
$10 /-$ each. P. \& P. $/ 6$.
Also some similar to above but coil resiatance 5,800

SPECIAL OFFER: PLESSEY TYPE 29 TWIN TUNING GANG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and

TRANSFORMER BARGAINS

MAINS TRANSFORMER. Primary $200-240 \mathrm{~V}$ two

 separate1 amp and 20 V at $1-2$ amp; secs, can be connected it 1 smp and 20 V at 1.2 amp ; secs. can be connected in
series tor 36 V at 1.5 amp . Ideal for transistor power supplies. Drop through mounting. Stack size $2 \$ \times 3 \frac{1}{9} \times$ MAINS TRANSFORM
Pri. $200 / 240 \mathrm{v}$. Pri. 200/240v. Sec. 12-0-12 at 1 mmp . 11/6. P. \& P. $\mathrm{P} .2 / 6$. Pri. $200 / 240 \mathrm{v}$. Sec. $10-0-10 \mathrm{at} 2 \mathrm{amp}$. 27/6. P. \& P. $2 / 6$ MATCHED PAIR OF 2 AND OUTPUT TRANSFORMERS. Stack size $11 \times 11 \times$ in. Output trans. tapped for 3 ohm and 15 ohm output. 7-10 watt 0UTPUT © ECL86's in push-pull to SFORMERS to match pair of ECL86s in push-pull to 3 ohm output. ONLY 11/-

 (Speclarquotations for quantities)

HIGH GRADE COPPER LAMINATE BOARDS

TRANSISTOR STEREO $8+8$ MK II Now using silicon Transiators in first five atages on esch channel resulting in even lower noise level with tmproved gensitjvity. A really frat-class HI.F1 Stereo Amplifler Kit.
Uses 14 tranalatora giving 8 watts push pull output per Uses 14 tranaistora giving 8 watts push pull output per
channel (16 W . mono). Integrated pre-amp with Baw, Treble and Volume controls. Buitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 15 ohms. Compact design, all parts supplied inclading drilled metal work. Cir-Kit board, attractive front panel, knobs, wire, solder, nuta, boitsno extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of. Brief specificstion: Freq. response $\pm 3 \mathrm{~dB} .20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 dB . Treble cut approz. to -16 dB . Negative feedback 18 dB
PRICES: AMPLIFIER KIT 210.10 .0 ; POWER PACK KIT £3.0.0; CABINET $£ 3.0 .0$. All Post Free. Circuit dlagram, construction details and pa
with kit) 1/6. (B.A.E.).

SPECIAL PURCHASE! E.M.I. 4-SPEED PLAYER Heavy 8 in. metal turntable. Low flutter performance 200 250 v. shaded motor (90 ap). Complete with latent and mono cartridge with arm atylii for LP/78, LIMITED Atyln for LP/78, LIMITE
NUMBER ONLY B3/-. P.

4-SPEED RECORD PLAYER BARGAINS Mains models. All brand new in maker's packingmounted plok-up arm and mono oartridge B.S.R. DA25 with latest mono onmpatible 45.5.0 All plus Corriage comparing 8 B. 26.19 .6 LATEST GARRARD MODELS. All types available 100 P25, 3000, AT60 eto. Send S.A. E. for latett Bargain Prises PLINTE UNITS cut out for Garrard Models 1000, 1025 2000,3000 , AT60, $8 P 25$. With rigid perspex cover
OUR PRICE 5 gns, complete. P. \& P. $8 / B$.
ATEST
ARTRIDGE T/O STEREO/COMPATIBLE LATEST RONETTE T/O MONO COMPATIBLE CART IDGE for playing EP/LR/78 mono or tereo reconde mono equipment. Only 30/-. P. \& P. 2/
dtamond stylus 50/ Pompatible \&tereo Cartridge with

QUALITY RECORD PLAYER AMPLIFIER MEII A top-quallty record player amplifier employing heap EZ80 valves Separate Bans, Treble and Volume concis Complete with output transformer matched for 3 ahm apeaker. Size 7^{*} w. $\times 3^{\circ} \mathrm{di}^{2} \times 6^{\circ} \mathrm{b}$. Ready built and tested PRICE 75/-. P. \& P. 6/
ALSO AVAILABLE mounted on board with output trannformer and apeaker ready to fit into cabinet below DELUXE QUALITY PORTABLE R/P CABLNET MEII Uncut motor board alze $143 \times 12 \mathrm{in}$. clearance 2 in. below 5 in . above. Will take above amplifler and any B.a.R. O GARRARD autoch Bize $18 \times 15 \times 8$ in PRICE

FM/AM TUNER HEAD Beauthully deaigned and pre-
cisionengineered by Dormer \& ciaion engineered by Dormer \&
Wadsworth Ltd. Supplled ready fited with twin 0005 uning condenser for AM conection. Presiligued FM se output $10 \cdot 7 \mathrm{Mc} / \mathrm{s}$. Complete

full circuit diagram of tuner head. Another speclal bulk purchase enables us to offer these at $27 / 6$ each. P. \& P. 3/GORLER P.M. TUNER HEAD. $88-100 \mathrm{Me} / \mathrm{B}, 10 \cdot 7 \mathrm{Mc} / \mathrm{a}$
I.F. 15/- piug 2/6 P. \& P. (ECC85 valves, $8 / 6$ cxtra)

3-VALVE AUDIO AMPLIFIER MODEL HA34 Designed for Hi-Fi reproduc*
tion of records. A.C. Mains operation. Ready built on
plated heavy gauge metal phasala, size $7{ }^{*}{ }^{*} \mathrm{w} . \times 4^{7} \mathrm{~d} . \times$ 4is h. Incorporates ECC83, duty, double wound mains tranalormer and out put transspeaker, вeparate Bass, Treble and volume controls. Negative feedback line. Output if watts. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs,
HSL "FOUR" AMPLIFIER KIT. Similar in appearance to HA34 above but employs entirely different and advanced circuitry. Complets set of parta, etc. 79/6, P. ${ }^{2}$ P, 6/-
BRAND NEW TRANSISTOR BARGAINS. (Matched Pair) 15/-; V15/10p, 10/-; 0C71 5/-; 0C76 6/-; AF117 $7 / 6$.
Set of Mulla Set- of Mullard 6 transistors OC44, $2-0 C 45$, ACl28D, matched pair AC128 25/-; Mullard LFH3 Audio Transigtor
ORP12 Cadmium Sulphide Cells 10/6. All post free.

STEREO AMPLIFIER

Incorporsting 2 ECL86s and 1 EZ88, heavy duty, double wound mains transformer. Output 4 watts per chasnel. Output impedance 3 ohms.

HIGH GAIS 4 TRANSISTOR PRINTED CIRCUIT

AMPLIFIER KIT

Type TAl

- Peak out-
put in eroess

of 1

componeritish
compone
printed circult panel aize 6×3 in-

- Generova size Driver sad Output Transformers, - Output transformer tapped for 3 ohm and 15 ohm and patched pair of AC128 ojp). © 9 volt operation. - Everything aupplied, wire. britery cllps, solder, etc diagram 2/B (Free with Kit). All parts eold and circult diagram $2 / 6$ (Free with Kit). All parts sold separately
SPECIAL PRICE $45 /-. ~ P . ~ \& ~$
$3 /-$. Also ready built and tested, $52 / 6$. P. \& P. $3 / \%$. \& P . $3 / \%$. Aso ready built and

HARVERSON'S SUPER MONO

 AMPLIFIERA super quallity gram amplifler using a double wound mains transformer, EZ80 rectifer and ECL82 triode impedance 3 asma a amplifier and power output stage and tone controls. Chasnis size only 7° wide $\times 8^{\prime \prime}$ deep x $6^{\prime \prime}$ high overall. AO mains $200!240 \mathrm{v}$. Supplied abwolutely Brand New completely wired and teated with valves and good quality output transformer. IIMITED NUMBER $\begin{aligned} & \text { OUR ROCK BOTTOM } \\ & \text { BARGAIN PBICE }\end{aligned} 49 / 6$ Pat.
 match 3-150 speation woumd oatput transformer to and separate base and treble contrila are provided siving good lift and cut. Valve line-up 2ELS4s, ECC83, EF86 and EZ80 rectifer. Simple instruction booklet 2/6 (Free with parta). AL perts sold separately. ONLY £7.9.6. P. \& P.8/6. Also avalable ready built and tested complate with atd.
input socketa, $£ 9.5 .0$. P. \& P. $8 / 6$.

Open all day Saturday
Early closing Wed. 1 p.m.
A fetw minutea

Tel. : 01-540 3985 SEND stamped addressed envelope with all enouiries

Please write c/early PLEASE NOTE:P. \& P. CHARGES OUOTED AEPLY TO U.K. ONLY CHARGED EXTRA. ORDERS

R.S.T. valve mail order co. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

Mon.-Sat. 9 a.m.
$-5.30 \mathrm{p} . \mathrm{m}$.
Closed Sat. $1.30-2.30 \mathrm{p} . \mathrm{m}$. Open Daily to Callers
Tel. 789-0199/1849

SPECIAL 24 HOUR SERVICE
obsolete types a speciality QUOTATIONS FOR ANY VALVE NOT LISTED
Express postage 9d, per valve.
Ordinary postage $6 d$. per valve. C.W.O. No C.O.D.
Complete range of T.V. Tubes available from £4.5.0. Manufacturers and Export Inquiries Welcome

Special 24 Hour Express Mail Order Service

SET8 OF VALVE8
DAF91, DF91, DK91, DL92 or DL94 DAF96, DF96, DK96, DL96.

TRANSISTORS

$\mathrm{AC127} 37 |$| OC 25 | $11 /-$ | OC 1 | $4 / 8$ | OC81 | $4 /-$ | 0 OC 2 D | $6 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Famous for over 30 years for Short-Wave Equipment of quality, "H.A.C." were the original suppliers of Short-Wave Receiver Kits for the amateur constructor. Over 10,000 satisfied customers-including Technical Colleges, Hos-
pitals, Public Schools, R.A.F., Army, Hams, etc.

IMPROVED 1969 RANGE
One-valve model "DX", complete kit-price 68/6 (Postage and packing $3 / 6$).
Customer write: :-"Definitely the best one-valve S.W. Kit available at any price. America and Australia received clearly at good volume." This kit contains all genuine short-wave components, drilled chasais, valve accessories and full natructlons. Ready to assemble, and or course, as all our products-fally guaranteed. kits atill avaliable, including the famous model "K (recommended by radio clubs). All orders deapatched by return. (Mall order only.) Send now for a descriptive catalogue, order form.
"H.A.C.'" SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

Est. 1943 JOHNONS TeI: 24864
VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, $70-150 \mathrm{Mc} / \mathrm{s}$, $75 / 6$, p.p. 4 s . New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)
St. Martin's Gate, Worcester

SPECIAL FRINGE AREA BBC-2 \& COLOUR TV AERIAL
 Unbeatable Offer ONLY 45/(Carr. 5/-)

For loft or roof flxing. Complete with mounting arm. State Channel required or nearest transmitter. Hundreds sold. Special low-loss co-axial cable $2 / 3 \mathrm{yd}$. Socket 2/6.

SPEAKER BARGAIN!
Famous English 12in. high flux, heavy cone, 10 watts speaker with bullt-In tweeter. excellent bass response, 15 ohms.

ELECTRAMA

Dept. 93, 1 George St., Hailsham, Sussex

TRADER SERVICE SHEETS

5/- each plus postage
We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios, Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES
 LIMITED

30 CRAVEN STREET, STRAND
LONDON WC2

Make	Model	Radio/TV

1969 List now
available at 2/-
plus postage
If list is required
indicate with X

From
\qquad
enclose remittance of
(and a stamped addressed envelope)
s.a.e. with enquiries please

MAIL ORDER ONLY (May PW)

THE CLASSIC

Controls: Selector switch Tape speed equalisation switch (3y and 71 i.p.s.) Volume. Treble. Bass. 2 position fllter. 2 position rumble Specifleation: Sensitivities for 10 at 1 KHz . Tape head: 3 mV (at output Mag. P.U.: 2mV. Cer. P.V.: 80 mV, Radio: 100 mV . Aux.: 100 mV . Tape/Ree oulput: 100 mV . Equalisethon for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.) from 20 Hz to 20 KHz . Tone condrol range: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz . Treble $\pm 14 \mathrm{~dB}$ at 15 KHz . Total distortion: (for

Built and Tested
THE DORSET (600 mW output)

7-transistor fully tunable M.W.-L.W. superhet portable -with baby alarm facility. Set of parts. The latest modulised and pre-alignment techniques makes this simple to build. Sizes: $12 \times 8 \times 3 \mathrm{in}$.
MAINS POWER PACK KIT: 9/6 extra
PRICE $£ 5.5 .0$ plus $7 / 6$ p. \& p. Circuit $2 / 6$ FREE WITH PARTS.

THE ELEGANT SEVEN MK. III (350mW output) 7-transistor fully tunsble M.W.-L.W. portable. Set of parts. Complete with all components, including ready etched and drilled printed circuit board-back printed for foolproot construction.

MAINS POWER PACK KIT: $9 / 8$ extre.
Price £4.9.6 plus 7/6 p. \& p.
Circult $2 / 6$ FREE WITH PARTS

X101 10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP
Speciflcstions: Power Output (into 3 ohms speaker) 10
watts. Sensitivity (for rated out put): 1 mV into microamp). Total Distortion at 1 KHz . at 5 watta $0-35 \%$, at reted output 1.5\%. Frequency Response: Minus 3dB points 20 Hz and 40 KHz . Speaker: $3-4$ ohms (3-15 ohms may be used). Supply vollage: 24 V d.c. at 800 mA ($6-24 \mathrm{~V}$ may be used).
Control amembly: including resistora and capacitors.

1. Volurae: PRICE 6/-
2. Treble: PRICE $5 /-$
3. Comprehensive bass and treble: PRICE 10/-

The above 3 items can be purchased for use with the X 101

Price 49/6 plus 2/6 p. de p.

P101 M (for mono) 35/-plus 4/6 p. \& p
P101 3 (for stereo) 48/6 plus 4/6 p. \& p.

THE RELIANT MK II

10W SOLID-STATE HIGH QUALITY AMPLIFIER

 SPEOLFICATIONSOutput- 10 watte
Inputs-1.-xtal mic 10 mV 2. - Eram/radio 250 mV

Tone Controls Output Impedance- 3 to 4 ohm Frequency Brab Bass control range $\pm 13 \mathrm{~dB}_{\text {at }} 100 \mathrm{H2}$ Signal to Noise Ratio - wetter than - 60 dB . Gignal to Noise Ratio-better than -60dB. Transistors-4 silicon Planar type and 3 A.C. Maims, $200-250$ V. For use with Std. or L.P. records, musical instruments, $\times 4 夕^{*} \times 2 \xi^{\prime \prime}$; pick-ups and mikes. Separate bass and treble lift control. Two inputs with control forks of and mike. Buitt and tested. $8^{\prime \prime} \times 5^{\prime \prime}$ speaker to suit price $14 / 6$ plus $1 / 6^{2} \mathrm{P}$. \& P. Crystal mike to suit $12 / 6$ plus $1 / 6 \mathrm{P}$. \& P .
Reliant Mark II. $6 \frac{1}{2}$ gns. plus $7 / 6$ p. \& p.

In teak finished case

THE VISCOUNT

Integrated Eigh Fidelity Transiator Stereo Amplifier

EPECIFICATIONS: Output: 10 watts per chansel into 3 to 4 ohms speakere (20 watts monoral). Input: 6 positlon rotary selector switch (3 pos. mono and 3 pos. stereo), P.U. Tuner, Tape and Tape Rec. Sensitivitles: All inputs 100 mV into $1 \cdot 8 \mathrm{M}$ ohm. Frequency controls. Treble 13db lift and cut at controls: (Barandal type), separate basa and treble controls: separate for In teak-fanished case. Bullt and tested PRICE 13立Gns. Postage \& Packing 7/6 extra.

Goods not deapatched outaide U.K. Terms C.W.O. All enquiries Stamped Addressed Envelope
RADIO \& TV COMPONENTS (Acton) LTD 21c High Street, Acton, London, W.3.

All orders by post to our Acton address
323 Edgware Road, London, W.2.

POCKET MULTI-METER

Size $37 \times 21 \times 1$ in. Meter size $2 \downarrow x$ lim. Bensitivity 1000 O.P.V. on both A.C. and D.C, volts. $0-15,0-150,0-1000$
D.C. current $0-150 \mathrm{~mA}$. Reaistance $0-100 \mathrm{k} \Omega$. Complete with teat prods, battery and full instructions, $49 / 8$. P. \& P. 3/6. FRES GIFT for limited period only. 30 watt Electric Soldering Iron value 15/- to every purchaser of the Pocket
Multi-Meter.

CYLDON 4 TRANSISTOR U.H.F. TUNER

Brand new. Complete with circuit diagram.
£2.10.0 plus 1/- p. \& p.

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Loud Speaker system on one trame, combining three matched ceraraic magnet speakers with a low loss cross over network. Peak handling power 10 watts. Impedance 15 ohms. Flux density 11,000 gauss. Resonance 40$60 \mathrm{c} / \mathrm{a}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{a}$. size $13 \times \times 8 / 10 \times 4 \mathrm{f}$ inches. By famous manufacturer. List Price \&7. Our price Similar speaker to tweeters in 3 and 15 above without tweeters in 3 and 15 ohm $44 / 6$ plus
$5 / \cdot$ P. \& P.

B.S.R. TD-2 TAPE DECK

This tape deck takes $5 \frac{3}{3} \mathrm{in}$. spools complete with two-track heids. Size $13 \frac{1}{2} \mathrm{in}$. long by
$8 \frac{1}{2} \mathrm{in}$. wide. 28.19 .6 plus $7 / 6 \mathrm{p}$. d p.

$2 \frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

 Semi conductors, two OC 75's two AC 128's and two stabilizers AA129. Tone and volume controls on fly.ng leads. $£ 2.10 .0$ plus P. \& P. $3 / 6$. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high film speaker, $18 / 6$ phis $2 /-P$. \& P.

P. \& P. on each $1 / 6$.

Price 27 gns. Plus $20 /-$ p. \& p.

RECORD PLAYER SNIP A.c. MAINS 240v

The "Princess'" 4 -speed automatic record changer and player engineered with the utmost precision for beauty. long life, and trouble free servbce. Will take 12^{*}. Patent atylus brush cleans stylus after each playing and at shut off, the plck-up locks itself into its recess, a most useful teature with portable equip. ment-other features include pick-up height adjustment and stylus pressure adjustment. This truly is a fine instrument which you can purchase ihis month
 at only $\mathbf{\$ 5 . 1 9 . 6}$ complete with cartridge and ready to play. Post and insurance $7 / 6 \mathrm{extra}$

CAR TRANSISTOR IGNITION SYSTEM

(by famous manufacturer)
For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resistor and hardwear (screws, washers etc.). PRICE £4.19.6. (post and packing 5/- extra),

[^6]

MOTEK

3 Seeed 2 track Tape Deck conıplete with heads, takes 7in. spool.

Incorporating 3 motors.
A.C. mains, 240 volts, listed at $\not £_{21.0 .0}$.
Our Price 89.19.6, plus 10/- P. \& P.

Interested in cutting your motoring costs?

You can save a considerable amount of money by tackling some of the car maintenance jobs yourself and the PRACTICAL MOTORIST ANNUAL
is designed specially to help you. Authoritative articles and step-by-step instructions show you how to maintain the engine, ignition, cooling, carburation, transmission, suspension and steering, brakes, tyres, bodywork, electrics, etc., and give advice on simple tuning.
With holidays in mind there is a most helpful section on camping and caravanning.
EVERY MOTORIST NEEDS THE

PRACTICAL
 motorist

FULLY BUILT STEREO AMPLIFIER. 2×3 watts, mains trans., metal rect., 2 UCLA2, 2 o.p trans. fur 3 ohm , volon-off, tone, balince, chabsis type with 3 cuntrols on front. $11 \times 34 \times 4$ in. high $£ 6(\mathrm{R} /-\mathrm{p} . \& \mathrm{~s}$.

8W. PEAK PUSE-PULL OUTPUT AM PLIFIER, $800-250 \mathrm{~V}$ A.C. EZ880, ECC83, 2 FILR4. Bass, treble, vol/on-onf, \&7.17.6 (post paic). Bize 12×3, x bill. high. Por Record Payer. Kamuruner ehm Mains Trans. o.p. trahs. fur 3 whm

6 PUSH-BUTTON STEREOGRAM CHASSIS

M.W.: B.W. S: S.W.e: V.H.F.:
Gram; stereo Gram; Vol: Gram; Stere Graun; Vol:
Toue: Mains Trans; 200 Toue: Mains Trans; $200-$
$2 \overline{5} 11$ Volts; 2 n.p. for 3 ohm. Alar operates with two
speakers inn Radio. Chassia speakerk ${ }^{141}$ Radio. Chassis
size: $15 \times 7 \times 6 \mathrm{in}$. high. Dial size: $15 \times 7 \times 65 \mathrm{in}$. high. Dial
silver and black $15 \times 3 \mathrm{in}$. $190-$ silver and back $3 \times 30 \mathrm{n} .190-$
$550 \mathrm{~A} ; \quad 18-51 \mathrm{M} ; \quad 60-187 \mathrm{M}$; $1 \mathrm{HF}, 8 \mathrm{i}-100 \mathrm{Mc} / \mathrm{s}$. Valyes: ECC83, ECH81, EF89, 2x ECL86, EM84, and lect. Irice es19.19.0, ciarr. paid. With steres Decoler fitted 27,10.0 extra.

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. (rom station and buses). FU1LGUARANTEE. Aldersbot 22240 CLOAED TUESDAY AND WEDNESDAY
 in our Budget combination storage unit!

Think what you could put in it!
Storage. Lots of it. for a thousand things you stock; replacement parts; light bulbs; cameras; anything up to $7 \times 8 \times 10 \mathrm{in}$. Safety drawer-stops as 'standard'. Smooth guide runners thro'out. All in a compact 3ft. 6in. hlgh, 2 ft .11 in . wide, 1 ft . deep area. Ready assembled, in stove enamelled green or grey. With 18 handy, 6 large, 8 king-slzed drawers. At $£ 17$ 5s. worth every penny! See the rest of the
 N. C. Brown range!

몀몽 NC. BROWNLTD. pacesetters in storage equipment

Send your free broch.
URE \square or Send \square thow
Imany) Budget Slorage Units
at £17. 5 s . in green or Dept. PW Eagla Steelworks, Heywood, Lancs. Tel: 69018
grey.

NAME
ADDRESS

Dapt. PW Eagle Steelworks, Heywood, Lancs.
London: 25-27 Newton St.. W.C.2. Tel: 01 -405 7931

NEW PRICES ON NEW COMPONENTS

RESISTORS

High stability. carbon film, low noise. Capless construction, molecular termination bonding.
Dimensions (mm.): Body: $\}$ W; 8×2.8
$\frac{1}{2}$ W: 10×4.3
Leads: 35
10% ranges; 10 Ohms to 10 Megohms (E12 Renard Series). 5% ranges; $4 \cdot 7$ Ohms to 1 Megohm (E24 Renard Series). Prices-per Ohmic value.

		each	10 off	25 off	100 off
1 W	10%	2 d.	$1 / 6$	$3 / 3$	$10 / 4$
1 W	5%	$2 \frac{1}{2} \mathrm{~d}$.	$1 / 9$	$3 / 8$	$11 / 8$
$\frac{1}{2} \mathrm{~W}$	10%	$2 \frac{1}{2} \mathrm{~d}$.	$1 / 9$	$3 / 8$	$11 / 7$
$\frac{1}{2} \mathrm{~W}$	5%	3d.	$2 /-$	$4 /-$	$12 / 10$

CAPACITORS

Subminiature Polyester film. Modular for P.C. mounting. Hard epoxy resin encapsulation. Radial leads.
$\pm 10 \%$ tolerance. 100 Volt Working.
Prices-per Capacitance value ($\mu \mathrm{F}$)

$0.001,0.002,0.005$	each	10 off	25 off	100 off
$0.01,0.02$	6 d.	$4 / 3$	$8 / 4$	$30 /-$
0.05	8 d.	$6 /-$	$12 / 6$	$41 / 8$
0.1	10 d.	$7 / 1$	$15 / 6$	$51 /-$
0.2	$1 / 2$	$10 /-$	$20 / 10$	$68 / 6$
0.5	$2 /-$	$17 / 6$	$37 / 6$	$125 /-$

Polystyrene film, Tubular, Axial leads. Unencapsulated. $\pm 5 \%$ or $\pm I \mathrm{pf}$ tolerance. 160 Volt Working.
Prices-per Capacitance value ($\mu \mu \mathrm{F}$)
10. 12, 15, 18, 22, 27, 33, each 10 off 25 off 100 off $39,47,56,68,82,100,120$, $180,220,270,330,390$ 470, 560, 680, 820, 1,000. 1,500
$2,200,3,300,4,700,5,600$ $6,800,8,200,10,000,15,000$ 22,000

5d.	$3 / 7$	$7 / 9$	$24 /-$
6d.	$4 /-$	$8 / 8$	$26 / 8$
7 d.	$5 /-$	$10 / 10$	$33 / 4$
8 d.	$6 /-$	$13 /-$	$40 /-$
9 d.	$6 / 9$	$18 /-$	$45 / 4$

Polystyrene film, Tubular, Axial leads. Professional Grade. Hard Epoxy Resin encapsulation.
$\pm 1 \%$ tolerance. 100 Volt Working.

POTENTIOMETERS (Carbon)

Miniature, fully enclosed, rear tags, carbon brush wiper. Long life, low noise.
Body dia., $\frac{3}{4} \mathrm{in}$. Spindle, lin. $\times \frac{1}{\text { in }}$. $\ddagger \mathrm{W}$ at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ over \ddagger M. Lin. 100 ohms to 10 Megohms. Log. 5 Kohms to 5 Megohms.
Prices-per ohmic value each 10 off 25 off 100 off

SKELETON PRE-SET POTENTIOMETERS (Carbon)

High quality pre-sets suitable for printed circuit boards of $0 \cdot 1 \mathrm{in}$. P.C.M. 100 ohms to 5 Megohms (Linear only). Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $\frac{1}{2} \mathrm{M}, \pm 30 \%$ above $\frac{1}{4} \mathrm{M}$. Horizontal $(0 \cdot 7 \mathrm{in} .+0 \cdot 4 \mathrm{in}$. P.C.M.) or Vertical ($0.4 \mathrm{in} . \times 0.2 \mathrm{in}$. P.C.M.). Subminiature: 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \%$ below $2 \cdot 5 \mathrm{M}, \pm 30 \%$ above.
Prices-per ohmic value Miniature (0.3 W).
Subminiature ($0 \cdot 1 \mathrm{~W}$)

each	10 off	25 off	100 off
$1 /-$	$8 / 9$	$18 / 9$	$66 / 8$
10 d.	$7 / 1$	$14 / 7$	$46 / 8$

JACK PLUGS
din. Type PI. Standard. Screened. Heavily chromed. tin. Type P2. Standard. Unscreened. Unbreakable moulded cover. tin. Type SE/P1. Side-entry version of P1 plug.
3.5 mm . Type P5. Standard. Screened. Aluminium cover.
3.5 mm . Type P6. Standard. Unscreened. Unbreakable moulded cover.

JACK SOCKETS
tin. Type S. 5 Standard. Moulded body. Chrome insert.
3.5 mm . Type S.6. Specification as above.

Available with make/make, make/break, break/break, break/make contacts.

POLYESTER CAPACITORS (Mullard)

Tubular $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F} .7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, ~ 8 \mathrm{~d}$. $0.068 .0 .1 \mu \mathrm{~F}, 9 \mathrm{~d}, 0.15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1,3.0 .47 \mu \mathrm{~F} .1 / 6$. $0.68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015$ $0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F} .8 \mathrm{~d} .0 .047 \mu \mathrm{~F} .9 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2$. $0.22 \mu \mathrm{~F}, 1 / 6,0.33 \mu \mathrm{~F}, 2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8$.
Modular, metalised, P.C. mounting. 20%, 250V: $0.01,0 \cdot 015.0 .022 \mu \mathrm{~F} .7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .22 \mu \mathrm{~F} .1 /-.0 .33 \mu \mathrm{~F}$, $1 / 5.0 .47 \mu \mathrm{~F}, 1 / 8.0 \cdot 68 \mu \mathrm{~F} .2 / 3$. I $\mu \mathrm{F}, 2 / 9$.
SEMICONDUCTORS: OA5, OA81, 1/9. OC44, OC45, OC71. OC81,
OC81D, OC82D, 2/-. OC70, OC72, 2/3. AC107. OC75, OC170. OC171, 2/6. AF115, AFl16, AF117, ACY19. ACY21, 3/3. OC140, 4/3. OC200, 5/-. OC139, 5/3, OC25, 7/-. OC35. 8/-. OC 23, OC $28,8 / 3$.
SILICON RECTIFIERS (0.5A): 170 P.I.V., 2/9. 400 P.I.V.. 3/-. 800 P.I.V., 3/3. 1,250 P.I.V., 3/9. 1,500 P.1.V., 4/-. (0.75A): 200 P.I.V., 1/6. 400 P.I.V., 2/-. 800 P.I.V., 3/3. (6A): 200 P.I.V.. 3/-. 400 P.I.V.. 4/-. 600 P.I.V., 5/-. 800 P.I.V.. 6/-.
SWITCHES (Chrome finish, Silver contacts): 3A 250V, 6A 125V. Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, 5/-.
PRINTED CIRCUIT BOARD (Vero).
$0 \cdot 15 \mathrm{in}$. Matrix: 3 等in. $\times 2 \frac{1}{2} \mathrm{in} ., 3 / 3$. $5 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in} ., 3 / 11$. $3 \frac{3}{4} \mathrm{in} . \times 3$ in., $3 /[1$. 5 in. \times 3勧in., $5 / 6$.
 3gin.. 5/3.

SEND S.A.E. FOR 1969 CATALOGUE

DUXFORD ELECTRONICS (PE) 97/97A MILL ROAD, CAMBRIDGE

Telephone: CAMBRIDGE (0223) 63687
(Visit us-at our new Mail Order, Wholesale and Retail Premises) MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing 1/6

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52 \mathrm{~s}$. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

SITUATIONS VACANT

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc, write for 132 page Handbook-FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137K), Aldermaston Court, Aldermaston, Berks.

ENGINEERS, A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem, and adv. private postal courses for C. Eng., A.M.I.E.R.E. A.M.S.E. (Mech. \& Elec.). City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams Diploma courses in all branches of Engineering -Mech., Elec., Auto.. Electronics, Radio Computers. Draughts. Building, etc. For full Computers. Draughts., Building, etc. For ful details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERINC TECHNOLOGY. (Dept, 169K). Aldermaston Court, Aldermaston, Berks.

SERVICE ENGINEERS-we are an old established electronics company, but headed by a young management team and we need you to help us. Age is no barrier to a high salary to help us. Age is no barrier will find out when you join us. If you as you will find out when you join us. If you have experience in T.V., Radio or Hi-Fi Service
and want a job that looks ahead phone Michael Adler at 01-6369606.

EDUCATIONAL

CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio. TV., automation, etc., send for 132-page radio. TV., automation, etc., send for 132 -page
Handbook-FREE. B.I.E.T. (Dept. 168 K), Aldermaston Court, Aldermaston, Berks.

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies in September and January. Grants available. Day and Boarding students. Stamp for prospectus. Wireless College. Colwyn Bay.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor. Write for FREE prospectus and find out how ICS can help you in your career.
ics, DEPT. 541, intertext house, Lomdon. SW11

EDUCATIONAL
 (continued)

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C.t.

RADIO OFFICER training courses, Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

BOOKS \& PUBLICATIONS

AUDIO. America's foremost journal. Year's subscription 50/. Specimen copy 4/6. All American radio journals supplied-list free. Willen (Dept. 40), 61 a Broadway, London E. 15 .

This useful Handbook gives detaited Information and circuit diagrams for British and American Government Surplus Receivers. Transmitters and Test Equipment etc; also contained are some suggested modification detalls and improvements for the equipment. Incorporated in this revised edition is a surplus/commercial cross referenced valve is a surpisis/commercia cross reis invaluable to and transistor guide. This book is invaluable to radio enthusiasts, radio clubs, universities and
laboratories. The latest edition priced at $35 /$-, per laboratorles. The latest edition priced at $35 / \ldots$. per
volume plus $5 /-, p$ \& p is obtainable oniy from us at

Dept. P.W,, 24 Stansfield Chambers, Gt. George Street, Leeds 1.
s.a.e. with all enquiries, please. Extra postagefor foreign orders.

SURPLUS HANDBOOKS

19 set Circuit and Notes 1155 set Circult and Notes H.R.O. Technical Instructions 38 set Technical instructions 46 set WorkIng Instructions 88 set Technical Instructions BC. 221 Circuit and Notes Wavemeter Class D Tech. Instr. 18 set Circult and Notes 18 set Clicult and Notes
BC. 1000 (31 set) Circuit and Notes BC. 1000 (31 set) Circuit and Not
CR.100/B. 28 Circuit and Notes R. 107 Circuit and Notes AR.88D Instruction Manual 62 set Circuit and Notes

Circuit Diagram 5/= each post free, R.1116/A. R.1224/A, R.1355, R.F. 24, 25 and 26, A.1134, T. 1454, CR. 300, BC. 312, BC. 342, BC. $348 \mathrm{~J}, \mathrm{BC}$. (E.M.P.), BC.624, 22 set.

52 set Sender and Recelver circuits $7 / 6$ post free
Resistor colour code indicator 2/6 p/p6d. S.A.E. with all enquiries please. Postage rates apply to U.K. only,

Mail order only to:
INSTRUCTIONAL HANDBOOK SUPPLIES
DEPT. PW, TALBOT HOUSE, 28 TALBOT GARDENS, LEEDS 8

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List $1 / 6$. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 1b Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS, RECORD PLAYERS, etc.. by return post, with free fault-finding guide. Prices from 1/-, Over 8.000 models a vailable. Please send S.A.E., with all orders/enquiries. HAMILTON RADIO, 54 London Road, Bexhill, Sussex.

SERVICE SHEETS (75,000) 5/- each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

C. \& A. SUPPLIERS

 SERVICE SHEETS(T.V., RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS)

Only 5/- each, plus S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post) Please state make and model number alternative.

Mail order only.

WANTED

DAMAGED AVO METERS, Models $7 \& 8$, any quantity. Send for packing instructions. HUGGETT'S LTD., $2 / 4$ Pawsons Road, West Croydon.

NEW VALVES WANTED. Popular TV and Radio types. Best cash price by return. DURHAM SUPPLIES, 367 c Kensington Street, Bradford. 8, Yorkshire.

[^7]WANTED
(continued)

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

WANTED: Popular Brand New Valves. R.H.S. Stamford House, 538 Great Horton Road, Bradford 7.

WANTED NEW VALVES ONLY

Must be new and boxed
Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

WANTED: New valves, transistors etc.; state prices. E.A.V, Factors, 202 Mansfield Road, Nottingham.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

FOR SALE

$\mathbf{2 6 , 0 0 0}^{6}$ IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools, materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills, Stockport SK 12 4HL.

THE IDEAL Panel Mounting Meter Movement for any Sensitive Test Meter etc. 200 Micro Amp F.S.D. $4 \frac{1}{\mathrm{H}} \mathrm{in}$. x 4 4 in . In clear plastic case. Our special price only 39/6d. P. \& P. free. Limited number only. WALTON'S WIRELESS STORES, 55A Worcester Street, Wolverhampton, Staffs.

FOR SALE
(cont/nued)

PRECISION PQTENTIOMETERS

Multl-turn, continuous or ganged from 25/-; carbon from $2 /$. Also resistors, mains rectifiers, synchros, geared motors, chokes, capacitors, meters, microswliches, semiconductors. 6d. stamp catalogue. F. HOLFORD \& CO.. 6 Imperial Square, Cheltenham.

TOP TRADE DISCOUNTS FOR ALL
 COMPONENTS VALVES TUBES TRANSISTORS Free Trade Catalogue Engineers \& Service Dealers Only WILLOW VALE THE SERVICE DEPT. WHOLESALERS, 4 The Broadway, Hanwell, London, W. 7
 01-567 5400/2971

MORSE MADE I!

FACT NOT HCTION. If you start RIGHT you will be reading amateur and commercial Morae within a month. (Normal progress to be expected.)
Using scientilically prepared 3 -apeed records you automaticaly learn to recognise the code RHYTHM without translaing. You can thelp it, it*g easy as learning For details and course C.O.D. ring, s.t.d. $01-6602896$ aend 8d, atamp for explanatory booklet to: G8OHS (BOX 11), 45 GREEN LANE, PURLEY, SUEREY

ELECTRICAL

24OVIR ELECTRCITY ANWHERE

MOST BRILLIANT PERFORMANCE EVER from 12 volt Car Battery
BRHLIANT HEAVY DUTY 240 volt AMERICAN DYNAMOTOR with BIG 220
WATT OUTPUT. Marvellous for TELEVISION, ELECTRIC DRLLS LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for Fluorescent lighting, Thousands of uses. Tremendous purchase of this model makes fantastlcally low price possible. ONLY £4.19.6 each plus $10 / 6$ delivery. C.O.D. with pleasure. MONEY BACK if not DELIGHTED Please send s.a.e. for full illustrated details. (Dept. PW) STANFORD ELECTRONICS Rear Derby Road, North Promenade, BLACKPOOL, Lancs.

MISCELLANEOUS

RHYTHM MODULES. Build your own rhythm box-simply, cheaply, Realistic sound guaranteed. S.A.E. for details. D.E.W. LTD., 254 Ringwood Road, Ferndown, Dorset.

BULLD IT in a DEWBOX quality cabinet. 2 in . $x 2$ in. x any length. D.E.W. Lid., Ring2 in . $x 2$ iin. x any length. D.E.W. Ltd., Ring-
wood Road, FERNDOWN, Dorset. S.A.E. for wood Road, FERNDOWN, Do
leaflet. Write now-Right now.

UFO DETECTOR CIRCUITS, data. 10s. (refundable). Paraphysical Laboratory (UFO Observatory), Downton, Wilts.

YOUR CALL SIGN ENGRAVED. White Letters Black Plate $6 \times 1 \frac{1}{2}$ in. $5 / 6.2 \times \operatorname{lin}$. Badge Pin, 4/-. Post Free. C.W.O. Workshops for Disabled, Northern Road, Cosham, Portsmouth. PO6 3EP.

ELECTRONIC SOUND and musical devices required for exploitation. Adequate finance available. Projects developed to pre-production stage required. Royalty payments guaranteed. Box 87

THE NEW

ELECTRONIC MUSIC FOR YOU

Then how about making yourself an electrio rgan? Constructional data avallable full circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops-uses 41 valves. With its variable attack you can play Classics and Swing. Write NOW for free leaflet and further detafls to C. \& S., $\$ 0$ Maude Street. Darlington, Durham. Send 4d. stamp.

METAL WORK

METAL WORK: All types cabinets, chassis racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street. Loughborough.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab, Silvered Mica, Ceramic, etc. Carbon, Hystab,
Vitreous, $t-20$ watt, $12 / 6$ Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W. 13.

Abstract

BAKER \& BAINES for Television and F.M. Aerials Examples of prices: FM dipole 21/n, H $38 / n$, BBC dipole 30/-. $\times 38 /-$, H 42/-. 3 ele $89 / \mathrm{m}$. ITA 3 ele 26/-. 5 ele 34/-. 8 ele 47/6, 11 ele 57/5, Combined BBC/ ITA $1+545 /-, H+569 / \mathrm{m}, \mathrm{X}+5 \mathrm{75} / \mathrm{m}$, BBC2 8 ele 29/-, 14 ele 37/-, 18 ele 54/-, 22 ele 63/-. All types generally availabie including accessories -prices include mounting clamps and postage. 11 Dale Crescent, Naw Tupton, Chesterfield.

(cont/nued on next page)

TELEVISION TUBES

Large stocks of television tubes, London's leading wholesale suppliers, all tubes complete with guarantee card. By return despatch. Terms: Cash with order, s.a.e. all enquiries.
14 in . types. AW36/20, AW36/21, AW36/80, MW36/24, CRM141, CRM144, CME1402 etc.

23in. types. AW59/90, AW59/91, CME2301, CME2303 .. 12 . 0

23in. Panorama. A59/11W etc.
$£ 1200$
19 in . Twin Panel. A47-13W, CME1906 etc.
£10 10
19 in . Panorama. A47/11W etc
£9 0
We stock all types of tubes.
Carriage and Packing $12 / 6 \mathrm{~d}$. per British Road Services.
Large stocks of valves, transistors components. L.O.P.T's, Electrolube, Servisol switch cleaner, Multicore solder. Service Tools.
WILLOW VALE ELECTRONICS LTD.
The Service Dept. Wholesalers, 4 The Broadway, Hanwell, London, W.7. Tel: 01-567 2971/5400
CATALOGUE TRADE ONLY. S.A.E. Please

RECEIVERS \& COMPONENTS (continued)

SIGNAL INJECTOR. Transistorised square wave generator probe, British Made, only 19/6, $\mathbf{P} \& \mathbf{P} 1 / 6$ S A E for details and lists WILSIC ELECTRONICS LTD., 6 Copley Road, Doncaster, Yorks.

BRAND NEW ELECTROLYTICS, 15 Volt, $1,2,5,6,8,10,15,20,30,40,50,100$ mfds. $7 / 6$ dozen. postage $1 /$.. THE C.R. SUPPLY CO., 127 Chesterfield Road, Sheffield 8.

TINY TRANSISTOR RELAY for model control, light switches, experiments etc. Only lin. square, 330Ω coil, $30 /-$ post free. H. R. RADIO, 174 Bramall Lane, Sheffield. S2 4RF.

POWERFUL HI FI AMPLIFYING EQUIPMENT. Kilowatt Racked Amplifiers $£ 195$, unvalved $£ 145.30$ watt for Rack Mounting $£ 15$. Leak TL/12 Amplifiers with Pre-amp Mixers £18. Electrostatic Speakers Acoustical Mfg. £35. Voigt Corner Horns with P.M. units $£ 12$. Williamson 10 watt by Rogers $£ 10$. All perfect. Sold subject Buyer's collection, after inspection/ demonstration. Reduction for bulk purrhase. WIRED COLOUR VISION LTD. 8 Millfield Road, Whickham, Newcastle upon Tyne. Telephone Whickham 887351.

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. StephensJames Lid., 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

OFFERS FOR R1155 RECEIVER. Write: SELECTRON, 22 Spencer Road, Acton, London W.3.

Stella Nine Range Cases

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plastic-coated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy.
Now all Aluminium surfaces are coated with a strippable plastic for protection during manufacture and transit. All edges are polished.

LIST OF PRICES AND SIZES
which are made to fit Standard

Discounts available on quantities.
CHASSIS in Aluminium, Standard Sizes, with Gusset Plates
Sizes to fit Cases All $2 \frac{1}{2}^{\prime \prime}$ Walls
\qquad
Chassis-Post 3s. od. per order.
Discounts available on quantities.

E. R. NICHOLLS

Manufacturer of Electronic Instrument Cases
46 LOWFIELD ROAD
STOCKPORT - CHESHIRE
Tel: 061-480 2179

RECEIVERS \& COMPONENTS
(continued)

ELECTROVILUE
 Everything brand new and exactly as specified

BARGAINS IN NEW TRANSISTORS

All power types supdied with free insulating sets.			
2N696	5/6	2N3703	$3 / 5$
2N697	6)-	2 N 37 bF	$8 / 3$
2N706	$3 / 5$	2N370T	$4 /$
2N1132	131	2 N 3705	$2 / 3$
2N1302	4)-	2 N 3708	81
2N1303	$41-$	2 N 3710	813
2N1304	$4)$	$2 N 3711$	$8 / 11$
2N 1305	4/-	2N37:51	$21 / 6$
2N1306	8 m	2 N 3744	2/11
2N 1307	878	2N381/4	时
2N1308	818	2N400R	$1 / 8$
2N1309	89	2 N 40 ng	$1 /$
2N1613	510	$2 \mathrm{~N} 40^{\circ \prime \prime}$	$4 / 3$
2N1711	714	2 N 40 ll	$4 / 6$
2N2147	$18 / 9$	2 N 4062	21/3
2N2218	115	2N42-6	211
2N2369A	610	2N4246	$2 / 11$
2N2646	9/6	2 N 4289	2)11
2N 29.24	01-	2N4291	801
2N 2923	6/8	2N4292	2011
2N2926/R	28	2 N 4443	813
2N2926/0	218	40361	$12 / 6$
2N2926/Y	$1 / 0$	40362	16/0
2N2926/G	23	A:126	$6 / 6$
2N3053	$5 / 6$	$\mathrm{ACl}^{\mathrm{Cl} 28}$	$6{ }^{6}$
2 N 3054	15/6	人C176	615
2N3055	16/6	ACY 17	8)
2N3391A	$5 / 8$	ACYR2	2/8
2N3072	318	ACY40	3/8
2N3703	818	AD149	$17 / 6$
2N3704	$8 / 9$	AF124	76
AF127	71	BC168	2
AF186	$201-$	BC169	$2 / 8$
B5041	13/6	BD121	181
BC107	8/6	BF194	71
BC108	$3)$	$15 \mathrm{P} \times 29$	12f1
BC109	9/6	515×85	$8 / 9$
BC125	$12]$	EPX 88	79
BC126	$12)$	EFY50	$4 / 9$
BC147	$4{ }^{13}$	EFY51	48
BC148	$3{ }^{3}$	EC401	41
BC149	473	MJ481	871
BC167	2f	M 3491	817
NK T2 11	4 A	UA>5	15
NKT2\%4	4ρ	1) A. 00	$9 / 6$
NKT2\%	51	BA202	21
NKT403	14/10	${ }_{0} 0 \mathrm{C71}$	$5 \cdot 6$
NKT434	14/6	OC75	$8 / 8$
NKT40\%	15%	P346A	$6 / 9$
NKT731	61	T1560	6) ${ }^{\text {d }}$
0 A47	10	T1561	$5 / 8$
OA90	18	TS1	19
OA91	$1 / 8$	T84	$8 / 3$

RESISTORS
RESLSTORS $1 / 10$ doz. $14 / 6$ per $100.4 .7 \Omega$ to $1 \mathrm{M} \Omega$ W', $10 \%, 1 / 9$ doz. $18 / 6$ per $100.4 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega$
$\frac{1}{W}, 5 \%, 8 / 8$ doz. $17 /-$ per $100.4 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega$ W, $5 \%, 2 / 2$ doz. $17 /-$ per $100.4 \cdot 7 \Omega$ to $10 \mathrm{M} \Omega$
$1 \mathrm{~W}, 2 \%$ tin oxide Eiectrosi] TR5. 10 d each, 9 d each iW, 2% tin oxide Eiectrosi
for 25 to $99,10 \Omega$ to $1 \mathrm{M} \Omega$
MYLAR FILM CAPACITORS $10 \% 100 \mathrm{~V}$
$\cdot 001 \cdot \cdot 002, \cdot 005, \cdot 01, \cdot 02 \cdot \cdot 03 \cdot \cdot 05$, 8 d ea. $\cdot 1 \mu \mathrm{~F} 7 \mathrm{~d}$ each. CERAMIC DISC CAPACITORS 20% TOLERANCE 500 V wkg: $1000 \mathrm{pF}, 2000 \mathrm{pF}, 5000 \mathrm{pF}$. 4 d each
50 V wkg: $01 \mu \mathrm{~F}, .02 \mu \mathrm{~F}, \cdot 05 \mu \mathrm{~F}$. 4 d each MINIATURE ELECTROLYTICS
$5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}$. $25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}$ all 10 volts, 9 d each.
$5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, ~ 5 \mu \mathrm{~F}, \mathrm{all}$
${ }_{25 \mu \mathrm{~F}}^{5 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 25 \text { volts } 1 / \text { - each } .}$
PEAK SOUND PRODUCTS
PA $/ 12.15$ Amplifier kit 88.19 .6 net
KP/P2 Pre-amp kit \&1.7.0 net
KP/C2 Tone fllter kit 19/8 net
Accessories: heat sink, matrix board and Cir-kit for PA12.15, 12/-
PA12.15, 12/-
Mono tone controls $5 /$
gtereo volume and balance controla 17/-
Stereo tone controls 17/-
Input selector switch 4/9
Input selector switch 4/8 GOODS BRAND NEW-NO SURPLUS 1969 CATALOGUE now ready. Send $1 / 6$ for your copy. COMPONENT DISCOUNTS
10% on total order over $£ 3.0 .0 .15 \%$ on total order ver $£ 10.0 .0$. uniess stated otherwise
POSTAGE AND PACKING on orders up to 21, add 1/-; over, poat free in U.K.
OVERSEAS ORDERS WELCOMED. Carriage charged at cost

Dept. P.W. 4
32A St. Juder Road, Binglefleld Green, Egham, Surrey. Telephone: Egham 5533 (8TD 0784-3)

RECEIVERS \& COMPONENTS (continued)

BRAND NEW SEMICONDUCTORS				
IN914 2/-		,	BF194	,
$18020 \quad 3 / 6$	ACY17	5)-	BFX29 12/6	NKT261 4/8
18021 4/-	ACY18	5/-	BFX84 8j-	NKT264 4/6
2N706 3/-	ACY19	51-	BFX8s 10/-	NKT40315/
2N706A 81-	ACY20	4/-	BFY50 4/6	NKT40515/
$2 \mathrm{~N} 13024 / 6$	AD149	81-	BFY51 4/6	NKT781 61
2 N 1303 4/6	AF114	5/-	BFY52 4/6	OC28
2N1304 5/6	AF116	5/-	B8X19 5/6	OC35
2N1305 5/6	AF117	5/-	BSX20 5/6	0 O 36
$2 \mathrm{~N} 216014 /-$	AsY26	4/6	B8Y26 4/	$0 \mathrm{OC4}$
2 N 2220 8/-	ASY28	$5 / 6$	B8Y27 $4 /$	$0 \mathrm{OC45}$
2N2369Ab/-	${ }^{\text {BC107 }}$	$3 / 6$	B8Y28 4/-	0071
2N2646 11/6	BC108	816	BSY38 $4 / 6$	$0 \mathrm{OC7}$
2 N 2926816	BC109	$8 / 6$	B8Y39 4/6	0 C 81
2N3053 6/6	BCY70	$5 / 6$	BSY40 5/6	OC200
$2 \mathrm{~N} 305515 /-$	BCY71	$9{ }^{\text {d }}$	BSY95a $3 / 6$	OC201
2N3702 4/-	BCyir2	$5 /-$	BY100 4/6	OC202
2 N 370741 -	BF180	$8 / 8$	MPF102 $8 / 6$	0CP71
AC187 12/-	BF181	$8 / 6$	MPF103 7\%-	0 A 81
AC188 12/-	BF184	716	MPF104 7/6	OA202
Send 6d. atamp for complete list. Over 1,000 types semi conductors in stock. Capacitors, Resistors and Pots aleo available.				
A. MARSHALL \& SON (London) LTD., 28 Crichlewood Broadway, London, N.W.2. 01-452 0161/2/3				

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS in \times in packed with semiconductors and top quality resistors, capacitors, diodes, etc.
Our price. 10 boards 10/-. P. \& P. 2/-. With a guaranteed minimum of 35 transistors.
SPECIAL BARGAIN PACK, 25 boards for £1. P. \& P. 3/6. With a guaranteed minimum of 85 transistors. 100 boards $85 /=$. P. \& P.6/6. With aguaranteed minimum of 350 transistors
PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times$ OC28) 10/.. P. \& P. 2l-.

NPN GERMANIUM TOSI WATT POWER TRAN-
SISTORS on small heat sink, on 2 in $\times 4$ in panel. 5 for $10 / \%$ P. \& P. $2 /$.
POWER TRANSISTORS sim. to 2N174 ex eqpt., 4 for 10/=, P. \& P. 2/-.
POWER TRANSISTORS sim. to 2N174 ON Finned Heat Sink (10D) 4 for £1, P. \&P.3/-.
LONG ARM TOGGLE SWITCHES ex eqpt. SPST 13/6 doz., DPST 15/- doz. P. \& P. all types 2/-doz.
ORGAN BUILDERS' SPECIAL 500 TOIS TRANSISTORS on panels. \&4, P. \& P. $6 /$.
OVERLOAD CUT OUTS. Panel mounting in the following values. . . 5/- each. 2, 3, 4, 5, 7, 8 amp. P. \& P. 1/6. MINIATURE GLASS NEONS, 12/6 doz. P. \& P. 1/6. 150 PIV. 10 amp . BRIDGE RECTIFIERS ON FINNED HEAT SINK. 12/- $+2 /-$ P. \& P. ea.
LARGE CAPACITY ELECTROLYTICS
$4 \frac{1}{2} \ln , 2$ in dlam. Screw terminals.
All at $6 / \cdot$ each $+1 / 6$ each P. \& P

$4,000 \mathrm{mF}$	72 V d.c. $w k g$.
$10,000 \mathrm{mF}$	25 V d.c. $w k g$.
$6,600 \mathrm{mF}$	45 V d.c. $\mathbf{w k g}$.
$1,500 \mathrm{mF}$	150 V d.c. $w k g$.
$16,000 \mathrm{mF}$	25 V d.c. $w k g$.
$25,000 \mathrm{mF}$	12 V d.c. $w \mathrm{~kg}$.

KEYTRONICS, 52 Earls Court Road London, W.8.

Mail order only

AERIALS

Enthusiasts
 THE T.M.P. EXPERIMENTAL AERIAL KIT

A unique collection of alloy elements, dipoles, Aooms, clamps, mast reflectors, nuts \& bolts, cables even a compass! etc., to make up various experimental aerials to cover all bands. experimental aerials to cover alr bands. This includes TV transmissions. SW for the
radio amateur, VHF for BBC FM. Amateurs radio amateur, VHF for BBC FM. Amateurs
on 2 and 4 MTrs , Aircraft, Police etc., UHF for experiments on BBC 2 and Ultra High Frequencies. These Kits can be used indoor or outdoor. Robust construction with simplified detailed plans for easy assembly.
The Wonder T.M.P. Kit costs only

Despatched to any address in UK within 7 days.
TUBULAR METAL PRODUCTS
7 LOWESMOOR TERRACE,
WORCESTER

MOBILE S.W. LISTENERS
The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING
The most efficient mobile All-Band Whip on the market. COILS FOR ALL BANDS. Complete with one coil £6.17.6, plus $3 / 6$. Extra coils $£ 3.17 .6$, plus 3/-
From leading amateur radio stores or direct from the manufacturers:

HALSON ELECTRICAL SERVICES Dover Road, off Ansdell Road, Blackpool.

accurate holes in brass, steel, ALUMINIUM,FIBRE PLACTM yseasy with hole punch ACCURATE-FAST- QURRPAREI Used and trusted by engin eers, mechanics, plumbers \qquad \qquad Send now for fult detorls of specificotrons to TOMPKINS AND LONGMAN LIMITED \qquad \qquad GENUINE BARGAIN YOU CAN'T AFFORD TO MISS GARRARD SP25 MkII * Fitted Sonotone 9TA Cartridge \star Mounted on Plinth Perspex cover \star Connected ready to plug in \star Guaranteed Cash with order only Mail Order Dept., D. T. WICKS' \& CO. 49 North Station Road, Colchester, Essex. Tel: Col. 78807 (U.K. only) We guarantee your satisfaction

NEW VALVES!

Guaranteed Set Tested

 24-HOUR SERVICE| IR5 | $4 / 9$ | DY86 | 5/6 | E280 | $3 / 9$ | PL500 | 12/9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 185 | 4/3 | D Y87 | 5/6 | E281 | $4 / 6$ | PL504 | 13/8 |
| 1 T 4 | 2/8 | EABC80 | 5/9 | KT61 | $8 / 8$ | PY32 | 10/- |
| 384 | $5 / 8$ | EBC41 | 8)- | KT66 | 15/8 | PY33 | 10/- |
| $3 V^{4}$ | 5/6 | EBF80 | 6/- | N78 | 14/6 | PY81 | 51- |
| 6AQ5 | 4/6 | EBF89 | 5/9 | PABC8 | 6/9 | PY82 | 5/- |
| 6 L 18 | 6/- | ECCS1 | $3 / 9$ | PC86 | 10/3 | PY83 | 5/8 |
| 30 Cl 8 | $8 / 9$ | ECC82 | $4 / 8$ | PC88 | 10/3 | PY88 | 6/- |
| 30 FL 1 | 12/8 | ECO83 | $4 / 9$ | PC97 | $7 / 9$ | PY800 | 7/8 |
| 30 FL 12 | 14/3 | ECC85 | 5/6 | PC900 | 81- | PY801 | 6/6 |
| 30 FL 14 | 10/3 | ECH35 | 5/6 | PCu84 | 6/3 | R19 | 6/8 |
| 30 P 4 | 11/6 | ECH42 | 10/6 | PCC89 | $9 / 9$ | U25 | 1218 |
| 30 P 19 | 11/6 | ECH81 | 5/9 | PCC189 | 11/6 | C26 | 11/6 |
| 30 PL1 | 12/6 | ECL80 | 7/3 | PCF80 | 6/3 | U191 | 12/3 |
| CCH35 | $9 / 9$ | ECL82 | 6/8 | PCF82 | 5/9 | UABC80 | 0 5/8 |
| CL33 | 17/6 | ECL83 | $8 / 8$ | PCF801 | 6/8 | LBC41 | 8/3 |
| Dac32 | $6 / 9$ | ECL86 | 7/6 | PCF805 | 8/9 | UBF89 | 6/3 |
| DaF'91 | 4/3 | EF39 | 3/6 | PCF808 | 10/3 | UCC84 | $7 / 9$ |
| DAF96 | 813 | EFR0 | $4 / 9$ | PCL82 | 6/9 | UCCS5 | 61- |
| DF33 | 7/6 | EF85 | $51 /$ | PCL83 | 8/9 | UCF80 | 8/- |
| DF91 | $2 / 9$ | EF86 | 6/8 | PCL84 | 71 | UCH 42 | 9/6 |
| DF96 | 5/11 | EF89 | 4/9 | PCL85 | $8 / 8$ | LCH81 | 8/9 |
| DK32 | 6/9 | EF183 | $5 / 9$ | PCL8 ${ }^{\text {d }}$ | 8/3 | UCL82 | 8/9 |
| DK91 | 4/9 | EF184 | $5 / 6$ | PFL20 | 121- | UF41 | 9/6 |
| DK96 | 6/6 | EL33 | 8/8 | PL36 | 9/9 | UF89 | 6/6 |
| DL35 | $4 / 9$ | EL41 | 10/3 | PL81 | $71-$ | UL41 | 10/3 |
| DL9\% | $5 / 9$ | EL84 | $4 / 6$ | PL82 | 6/9 | UL84 | 6/9 |
| DL94 | $5 / 6$ | EYO1 | $7 / 3$ | PL83 | 6/8 | UY41 | 8/6 |
| DL96 | 6/8 | FY 88 | 8/6 | PL84 | 6/3 | [Y85 | 5/3 |

Postage on 1 valve 9 . extra. On 2 valves or more, poatage 6d. per valve extra. Any parcel inaured agains

GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON LONDON, N. 16

PADGETTS
 RADIO STORE

OLD TOWN HALL, LIVERSEDGE, YORKS. Tel. Cleckheaton 2886

Indicator Unit type 26
Size $12 \times 9 \times 9 \mathrm{in}$. with outer case. Fitted with $2 \frac{1}{2}{ }^{2}$ tube C.R.T. type CV1526. Nine B7G valves. Clean condition, bat not tested. 32/6, p. \& p. 10/-
Lumerator and Secant Gear Unit. Delight for the model maker. 12/6, p. Si p. 8/6.
Silicon Rectifier $500 \mathrm{~mA}, 800$ P.I.V. No duds. 2/6, post paid. 24/- pey dozen, post paid.
Jap Ear Piece. Magnetic 8 ohm. Small and large plug. $1 / 11$, post paid.
Reclaimed TV tubes with six months guarantee. 17 in . type AW43/88, AW43/80, $40 /-$; MW43/69, 30/-. 14in. types, $17 /-$. All tubes, 12/-carriage.
Speakers removed from TV sets. All PM and 3 ohms. 8 in . round and $8 \times 5 \mathrm{in} ., 6 / 6$, p. \& p. 3/6

6in. round, $3 /-$, p. \& p. 3/-; 6 for $24 / \mathrm{m}$, post paid.
6×4 in., $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$, post paid. $7 \times 4 \mathrm{in} ., 5 /-$, p. \& p. $3 /-; 6$ for $34 /-$, post paid. 5in, round, $3 /-$, p. \& p. $3 /-; 6$ for $24 /-$, post paid.
Slot Speakers, 8×2 fin., $5 /-$, p. \& p. $3 /-$; 6 for $30 /$-, post paid.
Untested 12 -channel 14 in . TV sets, $20 / \mathrm{F}$, carriage $15 /$. Passenger train, double rate carriage $15 /-$. Passenger train, double rate,
Untested Pye, KB, RDG, Eisco 17 in . TV Untested Pye, KB, RDG, Exco 17in. TV
sets. Bush 17 in . TV sets, 50 , each, carriage sets. Bush 17 in . TV sets, $50 /-$ each
$15 /$. Passenger train double rate.
valve list
Ex Equipment. 3 months' giarantee
Single Vaives Post 7d., over 3 Valves p. \& p. paid. 10FI, EF80, EB91, ECL80, EP50, PY82, PZ30, 20P3. All at $10 /$-per dozen, post pad.

ARP12	1/6	PCL83	5/-	6BW7	2/6
EB91	9 d	PL36	5/-	6K7	1/9
EF85	$8 /-$	PLS8	6/-	6 U 4	5/-
EBF80	$81-$	PL81	4/-	6 V 6	$1 / 9$
ECC81	3/-	PY33	$5 / 18$	6 P 28	1/9
ECC83	4/-	${ }_{\text {PY82 }}$	1/6	10 P 13	$2 / 6$
ECL80	1/6		51.	185BT	$8 / 6$
EF50	1/-	PZ30	5/-	20D1	$3 /$
EF80	1/6	U191	$5 /-$	20P1	$51-$
EF91	9d.	U281	5/-	20P3	$2 / 6$
EY51	$2 / 6$	U282	5/-	30 Pl 1	$51-$
EY86	$51-$	U301	5/-	30 P 12	5/-
PCC84	2/-	U329	61-	30 Fs	$2 / 6$
PCF80	21-	U251	51-	30 FLL	$5 /-$
PCL82	4/-	$6 \mathrm{B8}$	1/8	8/30L2	5/-

PLEASE MENTION PRACTICAL WIRELESS

 WHEN REPLYING TO ADVERTISEMENTS
10w AMPLIFIER

G8AR3. 10 W . PUSH-PIILL OUTPUT. TW99 OUTPUT TRANSFORMER. 4 VALVE: EFG4, ECC81, EL90 (2). FULLY CONSTRUCTED ON CHASBIB. NEW AND BOXED WITH ĆlRCUIT DRAWiNG. \&2.10.0. P. \& P. 10/-
MIXER UNITS. Type 18. H.F. M.F. L.F. Valve V882. 10/-. P. \& P. 2/6.
plexible metal tibing. Galvanised. zin. int. diam. 85/-. 100ft. P. \& P. 7/6. FIELD TELEPHONES TYPE - F"'. 32/6. P. \& P. 7/6.
CHABSIS UNIT. 13 valver: ECC82 (5), Eb91 (6), EF91 (2). 60 Resistors. Capacitors etc. Valve Cans and Bases. Multicon Plugs. 30/-. P. \& P. 6/-.
RESIBTORS. Mixed parcel of $200.20 /-$ P. \& P. 2/fi.
RESISTORS. Variable. Mixed parcel of $30.20 /-$. P. \& P. $2 / 6$.
TRANEFORMERS. B8TR 894. Pri. 220-230-250V. Secondary 6.3V (2a), 300-350 $390 \mathrm{~V}(35 \mathrm{~mA}), 80-90-100 \mathrm{~V}(10 \mathrm{~mA})$. $30 / \mathrm{I}=\mathrm{P}$ \& \& P. $5 /-$.
B8TR073. Primary $220-230 \mathrm{~V}$. Secondary $35 \mathrm{~V}(0 \cdot 5 \Omega), 6 \cdot 3 \mathrm{~V}(2 a), 226-0-226 \mathrm{~V}(27 \mathrm{~mA})$ 25/-, P. \& P. $5 /-$.

STATUS SUPPLIES
gTatug house, WILkingon avenue, blackpool

AMAZING MINI•DRILL

Indispensable for precision drilling, grimding, polishing etching, gouging, shaping. Precision power for the en thusiast. Shockproof. Com pletely portäble power from $4 \frac{1}{2}$ volt external battery. So much more scope with MINI-DRILL Super Kit (extra power, interchangeable chuck) 79/6, p.p. 2/6 De Luxe Professional Kit with 17 tools 130/- p.p. 4/6
+6TDDLS Money ref. g'tee.

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON W2
TsI. PARK 5641/2/3

Z \& I AERO SERVICES LTD.

Please send all oorrespondence and Mail-Orders to the Head Omee
When sending cash with order, please include $2 / 6$ in f for postage and handling MINIMUM CHARGE 2/6. No c.O.D. ordera aooepted.

Retail Shop
85 TOTTENHAW COURT ROAD LONDON W1
Tel. LANgham 8403 Open all day Saturday

 CF86 9/8 9/6
EL821 10/m

 $1: 25$
L26
781
U33
U76
U81
U881
U282
U403
U404 $14 / 6$

$14 / 6$		EL8821
11/-		
EL822		
ELL80		H83

H 84
L80
L82
L83
L84
185
LL 86

 | 18 | E |
| :--- | :--- | :--- |
| $1-$ | E |
| E | | $41-$

$101-$
$8 /-$ $\frac{8}{1} \frac{2}{1}$
 UBC4
UBC81
UBF80 $8 / 6$
$8 / 6$
$7 /-$
$8 / 6$ $\begin{array}{ll}\text { UF89 } & 7 /- \\ \text { UBL1 } & 8 / 6\end{array}$

INTEGRATED CIRCUIT AMPLIFIERS

RCA Type CA8020
Integrated Circuit Audio Ampllfier in TO5 encapsulation (8ize of a small transistor), equivalent to aeven n-p-n silicon transistors, 3 diodes and 11 resistors. Power output 550 mW . Total harmonic distortion 1%. Will operate on voltage from 3 to 9 volts. $\quad 80 /$-plus $2 /$-p.p. GEASERAL ELECTRIC Type PA828 Epoxy moulded in-line package equivalent to six n-p-n transistors, one diode and six resiators. It will provide output of up to 1-2 watts into 15 ohms. Battery operation 22 volts. 40/-plus 2/-p.p. The construction of amplifier using the above integrated circuits had been described in March and August issues of
P.W. Please note that we only supply the IC's and no P.W. Please note that we only
other parts are supplied by us.
other parts are supplied by us.
GENERAL ELECTRIC TYPE PA284
1-watt Audio Ampliffer sultable for supply voltage of 9 to 25 V and for output loads of 8,16 or 22 ohms. Only 3 capacitors and 3 resistors are required for making up a complete amplifter dellvering voltage of 600 mW . Epoxy moulded double four-in-line package. \&7/6 each, plus 2/- P. \& P.

SILICON WIRE ENDED DIODES Max. frequency $20 \mathrm{mc} / \mathrm{s}$	
D223, 50 p.i.v., 50 mA	
D233A, 100 p.i.v., 50 mA	$8 / 8$
D223B, 150 p.i.v., 50 mA	8/6
SILICON POWER RECTIFIERS (Hal! Wave)	
'TOP HAT' type, wire ended:	
D226B, 400 p.i.v., 300 mA	
D226V, 300 p.i.v., 300mA . 2/6	
STUD MOUNTED, KD202 Beries	
50 p.i.v., 1A 8/-	
50 p.i.v., 3A 5/-	
100 p.l.v., 1A 8/8	
100 p.i.v., 3A 5/-	

SILICON AVALANOHE REGTIFIERS
RAs 310 AF , Top Hat type, $1.5 \mathrm{~A}, 1200$ p.i.
$7 / 6$
$10 / 6$

DRY REED INSERTS

Glass dry reed inserts approx. tin . dia. x lin. long with 50 ax . Can be operated by permanent magnet or $30-50$ 50V. Can be operated by permanent magnet or $30-50$
Amp-turns relay coile. PRICE 18/- per doz. post free

CURRENT PRODUCTION

 CATHODE RAY TUBES2AP1-2in. screen. EHT 500 to 1000 V . Typlcal sensitivity at 500 V . X- $220 \mathrm{~mm} / \mathrm{V}: Y-260 \mathrm{~mm} / \mathrm{V}$. U8M11 Base. Overall length 7 tin.
3BP1-3in. screen. EHT 1500 V . Typical sensitivit 3BP1-3in. screen. EHT 1500 V . Typical sengitivity $\mathrm{X}-150 \mathrm{~mm} / \mathrm{V} ; \mathrm{Y}-200 \mathrm{~mm} / \mathrm{V}$. B14A Base.
Oversall length 10 tn . Overall length $10 \ddagger \mathrm{in}$.

MULTIMETERS

TYPE MF16

D.C. Voltage range: $0-0 \cdot 5-10-50-250-500$
A.C. voltage range: A.C. voltage range:
D.C. current range :
$500 \mu-10-100 \mathrm{~mA}$. $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$
Resistance ranges: The meter is also calibrated, caps city (1000 pF to $0.03 \mu F$) and output level measurements \& \&ensitivity $2000 \Omega \mathrm{~V}$. Accurawy $\pm 2.5 \%$ for D.C. and $\pm 4 \%$ for A.C. measurements, Dimensions: $4 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{* "}^{\prime} \times 17^{*}$. Price e4.5.0. Type 108-IT: 24 range precision portable meter. 5000 o.p.v. D.C. Volts: 2-5-10-50-250-500-2000V. A.C. Volts: 10-50-100-250-500-2500V; D.C. current 0.5-5-50-500 mA Resistance $2000-20,000$ ohms; $2-20$ megohms. Power output calibration in A.C. ©or 600 ohms
with prods and batteries, \&8.5.0. P. \& P. 5/-.

OUR NEW 1968/1969 CATALOGUE
 IS NOW READY

THE TECENICAL INFORMATION SECTION HAS BEEA FORTHER EXPANDED TO INCLUDE MORE DETALS OF gemilconductors please send s.A.E. (quarto gize) For free catalogoe.

HIGH POWER STUD MOUNTED

SERIES D815, 8 watts disuipation
$4 \cdot 7,5 \cdot 6,6 \cdot 8,8 \cdot 2,10 \cdot 0,12 \cdot 0,15 \cdot 0,18 \cdot 0 \mathrm{~V}$. SERIES D816, 5 watts diasipationt
$22,27,33,39,47,56,68,82,100 \mathrm{~V}$.
Orders for ten or more, may be mixed, 6/9 each.
TRLACS TYPE 40438
Gated bi-directional gilicon Thyristore with integral trigger. The triac will control up to 1440 watte at 240 V data sheet and anplication aheets for motor control and dimmer circuits. 37/6 each.

THYRISTORS

Low current:
Blue spot; 200 p.1.*., 5 Amps. Gate voltage 3.25 V at spot; 200 mA . High current:

CR $\mathbf{C 0} 0001 \mathrm{~A}$,
CR 100-151A ...mpe. 25 p.i.v.
CR $100-201 \mathrm{~A}, 100 \mathrm{Amps} .200$ p.i.v
CR $100-215 \mathrm{~A}, 100 \mathrm{Amps} .250 \mathrm{p} . \mathrm{i}$ v
CR 100-301A, 100 Ampe. 300 p.i.v
CR 100-351A, 100 Amps. 350 p.i.v.
CR 100-401A, 100 Amps. 400 p.i.v
CR 100-501A, 100 Ampa, 500 p.i.v $\quad . .$. For all CR series Minimum gate fring voltage is 3 V at 150 mA .

UNIJUNCTION TRANSIBTOHS 2N2646
Power dissipation 300 mW R.M.S. Base-to-Base voltage 35 V max. Peak emitter current $2 \cdot 0 \mathrm{~A}$. Suitable for triggering of thyristors. $12 / 6$

TRANSISTORS
Apart from the types linted in our Catalogue the following types are added to our stocks.

2N030	$6 / 8$	2N2477	12/6	AsY27
2N1306	$61-$	2N3055	20j-	BC118
2N2217	6/6	2N3704	5/6	BFX88
2N2218	7/9	AD161	91-	P346A
2N2219	$8 / 6$	AD162	9/-	

Abstract

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, I.P.C. Magazines, Tower House, Southampton Street, Landon, W.C.2.

The Strand Amplifier The PW Signal Generator	(Oct. 1962)	5/-	Transistor Radio Mains Unit $7 \mathrm{Mc} / \mathrm{s}$ Transceiver	(June 1964)	5/-
The Berkeley Loudspeaker Enclo-			The Citizen (December 1961)		5/-
sure The Luxembourg Tuner	(Dec. 1962)	5/-	The Mini-amp (November 1961)		5/-
The PW Britannic Two	(May 1962)	6/-	The Beginner's Short Wave Superhet (Dec. 1964)		5/-
The PW Mercury Six			The Empire 7 Three-band Receiv	y 1965)	5/-
Beginner's Short Wave Two	(Nov. 1963)	5/-	Electronic Hawaiian Guitar (June 1965).		5/-
			Progressive SW Superhet (February 1966)		5/-
The Celeste 7-transistor Portable					
Radio . .	(June 1963)	5/-	Beginner's 5-Band Receiver		
The Spinette Record Player ..			Home Intercom Unit .	(Dec. 1966)	5/-

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL RADIO, TV OR AUDIO EQUIPMENT.

PRACTICAL WIRELESS
 query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERYCOUPON

This coupon is available until 9th May, 1969 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, MAY 1969

[^0]: A welcome avaits you at the Heathkit shops and showrooms
 Retail shops with showrooms and $\mathrm{Hi}-\mathrm{Fi}$ demonstration facilities at:-

 The London Heathkit Centre, 233 Tottenham Ct. Rd., W. 1.
 The Birmingham Heathkit Centre, 17-18 St. Martins Hse,, Buli Ring. There is a showroom with HI-FI demonstration faciiities at the Daystrom Factory, Bristol Rd.. Gloucester.
 *Goods mag be purchased at the retail shops at prices alightly higher than the
 advertised mail order price.

 * Orders may be placed at the retail shops for mall order despatch from the
 factory at mall order prices.

[^1]: MARTINIS HIGH FIDELITY plus

 ADD-ON-ABILITY

 THRILLING 'POWER DEPENDABILITY

 GENUINE ECONOMY
 Details from: Trade enquiries invited.
 MARTIN ELECTRONICS LTD., 155 High St., Brentford, Middlesex. ISLeworth 1161

[^2]: All correspondence intended for the Editor should be addressed to: The Editor, "Practical WIreless", IPC Magazines Ltd., Tower House, Southampton Street, London, W.C.2. Phone: 01836 4363. Subscription rates, including postage; 42s, per year to any part of the world. (C) IPC Magazines Ltd., 1969. Copyright in all drawings, photographs and articles published in "Practical WIreless' is specifically reserved throughout the countries signatory to the Berne Convention and the U.S. A. Reproductlons or Imitations of any of these are therefore expressly forbidden.

[^3]: Terms of business-Cash with order only. Poot/Packing 6 d . per item. Orders over a5 post free. No C.O.D. All orders cleared day of receipt. Any parcel insured against damage in transit for microphones, etc. with terms of business 10 d . Please enquire for any item not listed with S.A.E. Please note that no enquirlea can be answered unless a s.A.E. is enclosed for reply.

[^4]: \qquad
 \qquad

[^5]: \qquad

[^6]: $3+3$ watt STEREO AMPLIFIER
 Available shortly. A.C. mains 240 volt in teak finished case. Size $101^{\prime \prime}$ long $\times 44^{n}$ wide $\times 24^{\prime \prime}$ deep. Price 9 gns. plus $7 / 6 \mathrm{p}$. $\&$ p.

[^7]: WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street. West Bromwich, Staffs. Tel.: WES 0186 .

