

ADCOLA SOLDERING EQUIPMENT

THE PEAK OF EFFICIENCY!

WIDELY USED BY INDUSTRY \&
Model 64. $\frac{3^{\prime \prime}}{16}$ Bit 25 WATTS PRICE $36 /$
THE DISCERNING ENTHUSIAST FOR RADIO, T.V. \& PRINTED CIRCUIT WORK

FROM YOUR LOCAL DEALER
OR SEND DIRECT TO:-
ADCOLA PRODUCTS LTD., ADCOLA HOUSE, GAUDEN ROAD, LONDON. S.W. 4. TELEPHONE 01.622.0291

Send coupon for latest leaflet

SKYROVER

Mk II

commumcatoons recelver

A completely new
short wave recajver
short wave recolver
exclualve to Lasky's, exclualve to Lasky's,
at a real economy at real economy
price. Four valve line price. Four valve line
up uslng one each up using one each
6BE6. BBA6. BAV6 and 6AR5 valves,
gives highly sensltive gives highly sensitive
recept ton and powerful gain. Switch selected $S W$ frequency range cover: 1.5 to $30 \mathrm{Mc} / \mathrm{s}$ in three AM medium waveband cover in one range $550-1,600 \mathrm{Kc} / \mathrm{a}$. Vernier reduction drive tuning with fue hair Hne cursor. Controla include volume on/off, BFO, Band selector. Power on indtcator lamp. External antenna connections and mains fuse at rear. 8 ohms internal speaker plim standard 5 mm Jack socket for phones on front. For $220 / 240 \mathrm{~V}$ AC panel. Slze $9!\times 5 \frac{5}{i} \times 5$ ins. complete with mains lead and full Instructions.

LASKY'S PRICE
 £17.15.0

TRIO

COMMUNICATIONS
EQUIPMENT
 able BFO VFO AVC ANL \& meter BEB-CW Stand-by owitch Special double gear dia! drive with direct reading down to 1 kHz Remote control aocket for
connection to a transmitter. Audio output 1 watt. For we on $115 / 250 \mathrm{~V}$ A. Mains Auperb modern atyling and control lagout-linished in durk grey. Cabinet kize $7 \times 13 \times 10 \mathrm{in}$. modern atyling and control layout-finished in dark grey. Cabinet kize $7 \times 13 \times 10 \mathrm{~m}$.

Carr. FREE

SP-5D "SPEAKER MATE"

TR10 communications speriser unit-matching the above recelver in buth atyle and size. Contains $5 \times 3 \mathrm{in}$. eliptical 8Ω speaker specially
dealgned to give extremely criap reproduction of voice frequencies. designed to give extremely crisp reproduction of voice irequencies.

5 196 posi pedance 8 ohms, matching 4-16 ohms. Max. power 3 watts.
 get your lasky's audio-tronics pictorial FREE Send $1 / 8$ for post only ajd inclusion on our regular mailing list

NEW

AM/FM STEREO TUNER AMPLIFIER

WIEN

FMX - 1917
A new solid state AM/FM Multiplex tuner Amplifer offering excellent quality and pleasing deaign at a price you can germanium diodes, i varisble diode and 1 sillicon rectifier. Single enided push pul
 amplifier-output 5W RMS per channel into 8 ohma. Frequency response $300 / 8$ to $12 \mathrm{Ke} / \mathrm{s}$. Frequency range: $\mathrm{FM}-88$ to $108 \mathrm{Mc} / \mathrm{s}, \mathrm{AM}-535$ to $1605 \mathrm{Kc} / \mathrm{s}$. Steren separation 15 dB at $100 \mu \mathrm{~V}$ mput. Fxternal FM aeribl; built in ferrite rod antenna for AM. controls Balance, Mode, Tone, Vol /on-off, tuning. Input for ceramie phono pick-up. Powered by $220 / 250 \mathrm{~V}$ A.C. $50 / 60 \mathrm{c} / \mathrm{s}$
Extremely wade olled wainut cainet with large clear tuning dal (black/grey/silver
${ }_{\text {PRICE }}^{\text {LASK'S }} £ 29.0 .0$
Carriage FREE
LASKY'S AUDIO PLAN STEREO AMP

Made by well known British manu
facturer and incorporating the very
lateat transiator circuitr 9 . Spec: Output 5 watis per channel: 14 trangistors (7 per channel) plus rectifier and varector in each channel: frequency reaponse $25 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{Kc} / \mathrm{s}$ at 3 watte (distortion better than $\%$, mput requaslents higher output crystal cartridges); output tmp. 8-16 ohma: basa treble and balance controls with suitching for Mono or Stereo and tape monitor; outlet socket for tape recorder. For $118 / 250$ \%. A.C. mains. All circults are fully fuse protected. Very compact free standing teatk cablinet, size $13 \frac{1}{2} \times 6 \times 4 i \mathrm{n}$. wlth brushed alumluium front panel; all inputs and outleka are grouped at rear for ensy
 Post 5/-

LASKY'S "Compact" STEREO A M P
Lasky's 5×5 watt 'Compact' integrated stereo amp. with unique provision for record deck to be mounted in the top of the cabinet. Employing 10 silicon transistors and 4 diodes the amplifier de-
livers up to 5 watts RMS into 15 obin speakers, with negligible diatortion. Bass, treble, balance and volume controls plus mono/stereo mode switch. Inpats suitibble for medium ontput ceramic cartridges, radio or output. The too of the aumplifler will accept any turntable tape input, plus tape record output. The top of the surpoliner with distinctive blue/silver
 size $164 \times 3 \mid \times 14 \mathrm{in}$. For $220 / 240 \mathrm{~V}$ AC. This is certainly the ideal basis lor a low cost home stereo 'Compact' syitem-see Package offer below.
LASKY'S PRICE £21.0.0 Pat 7/6
SUGGESTED PACKAGE DEAL Lasky's "Compect" amplifiof.
2 Foster FCS-104 speakers.
Garrard 2025TC with stereo cartridge.

High Fidelity Audio Centres
42-45 TOTIENHAM CT. RD. LONDON. WA Te1.: 01-580 2573 Open all day. 9 a.m. -6 p.m. Monday to Saturday

118 EDGWARE ROAD, LONDON, W. 2 Tel.: 01-723 9789 Open all day Saturday, early closing 1 p.m. Thuscay

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values.

Oscillator Coil	P50/1	C45)	P50/1AC	(For AF117)	5/4
1st I.F. Transformer	$\cdots \quad \mathrm{P} \times \mathrm{P}$ /2	OC45)	P51/1	(For AF117)	5/7
2nd I.F. TransformerP50/2	OC45)	P51/2	(For AF117)	5/7
3rd I.F. Transformer	P50/3	OC45)	$\mathrm{P} 50 / 3 \mathrm{~V}$	(For AF117)	6/-
	Rod Aerial	RA2W		12/6	
	Driver Transformer	LFDT		9/6	
	Output Transformer	OPT1		10/6	
	Printed Circuit	PCA1		9/6	

I.F. TRANSFORMERS FOR "PRACTICAL WIRELESS" CIRCUITS

Components for several receivers are available, including the following for the "Clubman".

T41/1E	1st I.F. Transformer	$7 / 6$
T41/2E	2nd I.F. Transformer	$7 / 6$
T41/3T	3rd I.F. Transformer	$10 / 6$
T41/3T	B.F.O. Coil	10.6

Details of these and our other components are given in an illustrated folder which will be supplied on request with 4 d . postage please.

> WEYRAD (ELECTRONICS) LIMITED SCHOOL STREET, WEYMOUTH, DORSET

GOODMANS HIGH FIDELITY

MANUAL A Guide to full listening enjoyment

> The Manual is much more than a cata-
logue of Goodmans High Fidelity Loud. logue of Goodmans High Fidelity Loud. speakers-it contains informative articles. including advice on stereo, spectal beginners page, and full cabinet drawings. You'll find
> The Perfect Combination

MAXAMP 30
TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts . Silicon solid state • Integrated pre-amplifier Negligible distortion - £54.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER
Transistorised - Outstanding specification . Stereo de-coder (optional) £65.5.0 $+£ 17.5 .5$ P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1}{\frac{1}{2}^{\prime \prime}} \times 5 \frac{1}{2}^{\prime \prime} \times 7 \frac{1_{4}^{\prime \prime}}{4}$ deep) in Teak or Walnut to order.
Full specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

[^0]Name
LEWIS radio
100 Chase side, southgate. Dep. P469 LONOON, N.14. TELEPHONE PAL 373/36666

Vallabile new hanobook Finctio diongilious

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO ENGINEERING
Advanced Radio - Gen. Radio Radio \& TV Servicing - TV Eng. Telecommunicasions-Sound Recording - Alfomation Practical Radio - Radio Practical Radio

ELECTRICAL ENG.

Advanced Electrical Eng. Gen. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng.

Refrigeration - Elem. Electrical Science - Electrical Supply - Mining Elec. Engineering.

CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Municipal Eng. - Structural Eng. Sanitary Eng. - Road Eng. - Hydraullcs -- Mining Water Supply - Petrol Tech.

ELECTRONIC ENG.
Advanced Elecironic Eng. Gen. Electronic Eng. Applied Electronics - Prac. Elecironics - Radar Tech. Frequency Modulation Transistors.

MECHANICAL ENG.
Advanced Mechanical Eng.Gen. Mechanical Eng. Maintenance Eng. - Diesel Eng. - Press Tool Design Sheet Metal Work-Welding - Eng. Pattern Making Inspection - Draughtsmanship - Metallurgy - Production Eng.

AUTOMOBILE ENG. Advanced Automobile Eng. Gen. Automohile Eng. Altomobile Maintenance Repair - Aufomohile Diesel Maintenance - Automobile Elec. Equipment - Garage Managentent.

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICALENG.. AEROENG.. MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS. ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I., A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.Mun.E., CITY \& GUILDS, GEN. CERT, OF EDUCATION, ETC.

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE
job. easily. obligation.

THIS BOOK TELLS YOU

* HOW to get a better paid, more interesting
* HOW to qualify for rapid promotion.
\star HOW to put some letters after your name and become a key man . . . quickly and
\star HOW to benefit from our free Advisory and Appointment Depts
\star HOW you can take advantage of the chances you are now missing.
\star HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT CAREER - GUIDANCE
PRACTICAL
INCLUDING
EQUIPMENT
Basic Practleal and Theoretic Course for beginners : Radio,T. V , , Electronics, Etc Radio Amateura' Exam. R.T.E.B. Cerlificate P.M.G. Certifeate Practical Rewifo
Radio \& Television Servicing Practical Electronica Automation TOOLS
The specialist Electronics Division of B.I.E.T. NOW affers you a real laboratory training at home with pracrical equipment. Ast for details.

You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than $£ 30$ a week you should send for your copy now-FREE and without

$\therefore 0<1$?

TO B.I.E.T., 453A, ALDERMASTON COURT ALDERMASTON, BERKSHIRE.
1
Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interested in (state subject, exam., or career).

\qquad

THE 'YORK' HIGH FIDELITY 3 SPEAKER SYSTEM
 t Performance comparable with units costing
conslderably nore. Consists of (1) 122 m . 15 watt Bass unit with conslderably more. Consists of (1) 12 in. 15 watt Bass unit with and ceramlc magnet. (2) 3-way quarter section series cross-ove system. (3) $8 \times 5 \mathrm{ln}$. high flux middle range 'speaker. (4) High etriciency tweeter. (5) Measured welght of woollen acoustic full instructions.
R.S.C.STEREO/20 HI-FI AMPLIFIER

10/I W WATT ULTRA LINEAR PUSH-PULLODTPING ON EACH CHANNEL.
GRAM, RADIO OR TAPE (4) EZ81. Frequency Kesponse: $\pm 2 \mathrm{~dB} 30-20.000$ c.D.S. Hum Level: 65 dB down. Sensitivity; 30 millivolts max. and Input Selector Switch. Stereo/Mono switch *Neon panel indicator. tliandsone Perspex Frontplate. tSeparate Bass and Treble controls. Output transformers are high quality section15 Gound. Outputs for 3 and 15 ohms speakers. Complete set of parts, point-

R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Highty sensitive Push-Pull

 vity 36 mV so that almost any kind of
Mierophone or Pick-up is suitable. DeMifrobhone or Pick-up, is suitable, De-
signed for Clubs, Schools, Theatres, Dance IIalla or Gutdoor Functions, etc. For use with Electronie orkan, Guitar, String Ifass, etc. Gram. Radio or Tape. Reserve L.T. and H. T, for Radio
Tuner. Two inputs with associated volume controls so that two separate inputs such as Gram and "Mike" can be mixed. $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ A. C. mains. point wiring diag rams and instructions

14 Gns. Twln-handled perforated and 9 monthly payments of R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER PUSH-PULI ULTRA LINEAR OUTPET -wo imput sockets with associated controls allowing mixing of "mike" and gram, etc, etc. ERa1. High quality sectionally wound output transformer. IND. BASS AND TREBLE CON-
TROLS. Frequency response $3 \mathrm{~dB} 30-20,000 \mathrm{o}$. TROLS. Frequency response $3 \mathrm{~dB} 30-20,000 \mathrm{ols}$.
Hum level 60 dB . SENSITIVITY $40 \mathrm{millivolts}$. Hum level -60dB. SENSITIVITY 40 millivolts.
Suitable for Crystal or Ceramic PUs, all types etc. Size approx. $12 \times 9 \times 7 \mathrm{in}$. For AC mains $200-250 \mathrm{v}, 50 \mathrm{cps} 9$ Gins. Full instructions and point-to-point wiring diagrams. Carr 11/6 (or factory built 18 Gns. Twin handled metal cover 2\%/6. TERMS ON ASSEMBLED
UNITS. Deposit $87 / 6$ and 9 monthy payments of $22 /$. (TOtal $\mathbf{~ 2 1 4 . 5 - 6) . ~}$ RSG A1HT THANSIS. TORISED VEREION of abovecomplete kit 8 (ins)
(Assembled 13 (ins) A.S.C. BASS-REGENT
 AMPLIFIER An exoeption-
ally powerful ally poweriul
high quality high quality
all-purpose all-purpose
unit for lead, anit for lesd,
rhythm, bass gultar. vocalsutar, kram,
ists, adio, tape. Peak 0/P rating. * Two extra heavy duty 12 in . Loudspeakers. * Four Jack inputs and
two Volume controls for simultaneous use of up to four pick-ups or "mikes"
52 Gne Carr
52 Gis. dep. 10.1 .8 and 9 monthly payments of
£5.11. 9 . (Total 57 ! gns.). Send S.A.E. for leaflet. Wh Spki- 201 gns. Gils int. R.S.C. BATTERY/MAINS CONVERSION UNITS Tybe HM1 battery eliminator
Size $54 x 41 \mathrm{x}$ 2 in approx. Completely replaces batteries supplying $1.5 v$, and 90 v . Where A.C. mains $200 /$ Complete kit with diagram SELENIUM
F.W. RECTIFIERS (Bridged) All 6/12v. D.C. output. Max. 2a. 6/11.3a. $9 / 9$. 4a. 12/9.6a $15 / 9$.
R.S.C. MAINS TRANSFORMERS

FULLY GUARANTEED. Interleaved and Impregnated. Primaries 200-250v. 50c/s. Screened MIDGET CLAMPED TYPE 23 - 2% 2tin. $250-9-250 \%$, 10 BV A

151511
$16 / 1$
FULLY SHROUDED UPRIGET MOUNTING
$250 \cdot 0-260 \mathrm{v}, 80 \mathrm{HAA}, 6 \cdot 3 \mathrm{v}$. $2 \mathrm{~s} ., 0 \cdot 5 \cdot 6 \cdot 3 \mathrm{v}, 2 \mathrm{~s}$
$300-0-300 \mathrm{v} .100 \mathrm{~mA}$. $15 \cdot 3 \mathrm{v} .4 \mathrm{~A} ., 0-5 \cdot \$ \cdot 3 \mathrm{Y}, 3 \mathrm{k}$ $300-0.300 \mathrm{v} .130112 \mathrm{~A}, \mathrm{6}-3 \mathrm{y} .4$
For Mullani $\$ 10 \mathrm{Amplif}$ er

 TOP BHROU TOP BHROUDED DROP-TEROUGH TYPE $250-0 \cdot 250 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{c}, 3 \cdot 5 \mathrm{~s}, \ldots$ $350-0 \cdot 350 \mathrm{v}, 80 \mathrm{uIA}, 6 \cdot 3 \mathrm{v}, 2 \mathrm{a}, 0-5-4 \cdot 3 \mathrm{v} .2 \mathrm{a}$.
 $308-0-300 \mathrm{c} .130 \mathrm{~mA}, 6 \cdot 3 \mathrm{~s}, 4 \mathrm{a} . .0-5-1 \mathrm{~F} \cdot 3$ Buitable for Mallard 510 Amplifier
 FILAMENT or TRANSISTOR POWER PACE TH $4 \cdot 3 \mathrm{v}, 1.5 \mathrm{a} .7 / 9 ; 6-3 \mathrm{v}, 2 \mathrm{a}, 8 / 0 ; 11 \cdot 3 \mathrm{v}, 3 \mathrm{a} .10 / 0 ; 6 \cdot 3 \mathrm{v}$, $0-0-18 \mathrm{v}, 1 / \mathrm{H}, 27 / 9 ; 0 \cdot 12-25-42 \mathrm{v}$, 2a, 29/9
CHARGER TRANSFORMERS $0.9-16 v .1$ fa. 14/11
 AUTO (Step UP/sted DOWN) TRANSFORMERS $0.110 / 120 v .200-230-250 v, \ldots, 30-80$ watis $15 / 8$ OUTPUT TRANSFORMERS
Stamiarij Pentinle $5,000 \Omega$ or $7,000 \Omega$ to 8Ω
 Punh-Pull P144 10 3 $15010-10$ veltw $22 / 9$ Puah-Pull L'ltra Linear for Mullaril 510 . Push-Pull 15.18 watin, sect lemalty wound ilds. KThb, ete., for 3 or 15Ω................ily
Push. Pull 20 watt high quality nectinialy
 SMOOTHING CHOKES

R.S.C. COLUMN SPEAKERS

Covered two-tone Rexinel
15 ohm matconng! Vynair, Ideal for vocalists and Pubicice Address. 15 ohm matcohing
 Tyve C4ss, 30 watts, Fitted four 8 in. hish fux 8 watt speakers.

30 WATT HI-FI AMPLIFIER

Por Guttar, Voeal or Instrumiental Group arate Bass and Trebile controls. Current valve peak arate Bass and rebile conirols. current valves. Peak

12in. HIGH QUALITY LOUDSPEAKERS

LOUDSPEAKERS Limited number of heavy duty

FANE 'POP' 100 loudspeaker

18" 100 Watt

ramastic power

ARMSTRONG UNITS CLEARANCE

POWER PACK KIT Consisting of Mains trans former, Metal Rectinier. EElectrolytics, smoothing choke. chassis and circuit.
250v. A. . mains.
Output 250 v . $24 / 11$ 6omA A.3y. 2a. Suphied with case
in lieu of chassis 2811. Or as asembled $39 / 11$.

CLEARANCE LINES

HIGH QUALITY $8^{\prime \prime} \times 3^{\prime \prime}$ LOUDSPEAKERS ${ }^{1} \begin{aligned} & 10000 \text { Causs } \\ & 3 \text { ohm only } \\ & 11 / 9\end{aligned}$
14 WATT HI-FI AMPLIFIERS $\begin{gathered}\text { HIIth sensitivity. Two separ- } \\ \text { ate } \\ \text { jack indict }\end{gathered}$ Controls for mixing purposes. Separate Bass and Treble controls. valves
 EXTENSION 'SPEAKERS $29 / 9$
EMI PLAYER TURNTABLES

Cabinet size $12 \times 8 \times$ 5in

$$
\text { with P.U. } 4 \text { speed. Turnover cart }
$$

ateract hieh Alizati skin inish

\section*{PHONE AMPLIFIERS} | riage. Limitean number. |
| :--- |
| Mono |

Speak and listen with both hands
aratead. Attractive black moulded case.
59/9
1 WATT TRANSISTOR AMPLIFIERS
for 3 -5 ohm 37/9 $\begin{array}{lll}\text { PRINTED CIRCUIT KITS for making printed eircuits. } \\ \text { Complete with } 2 \text { square ins. laminated aboard and necessasy fuids. } & \text { 12/9 }\end{array}$

J.B. VHF/FM DIAL \& DRIVE ASSEMBLIES

TAPE RECORD/PLAYBACK AMPLIFIERS

\qquad Eye Recording level indicator. For 3 ohm L/s. All watrsoutput, Maxic

 JASON VHF/FM TUNER DESIGNS All parts FMTI 5 Gns . Fmtz $£ 6$.19.11..JTV $9 \frac{1}{2}$ Gns. Please state STEREO/TEN HIGH QUALITY AMPLIFIER
 ceramic stereo cartridges. Ganged Bass and
Treble Controls. Valves ECC83(2). EL84 (2), EZ81.

months' guarantee
R.S.C. $6 / 12 \mathrm{~V}$ CAR BATTERY CHARGERS

 oll components bich are of a mig standatd and SUPPLIED BY LEADING MANUFACTURERS.

BRADFORD 10 North Parade. (Hall.-day Wed.) Tel. 2539
BRISTOL 14 Lower Castle St. (Hall. -ay We.,.) Tel. 22904
BIRMINGHAM ${ }^{301313}$ Gt. Wetiden Aratado ono. Sow will
DERBY 26 osmaston Re. The Sool (tall. day Wed.) Tel.4.43891
DARLINGTON 18 Prieststate Hall-diay Wed.) Tel. 88043

 HULL Toee.) Tel. 32 23:-172

HI-FI CENTRES LTD.
MAIL ORDERS TO: 102 Menconner Lane, Bramley Leeds 13. No C.O.D, under £1. Terms C.W.O. or C.O.D $5 / 9$ extra under 85 . Trade supplled. S. A.E. withenquiries please. HI-F! Catalogue $4 / 6$

A DUAL CHANNEL, VERSION OF THE SUPER 15. Employing Twla Printed Circults. High quality
 Swltch. Tape Monitor Switch. Mains Switch. INPUT Crystal P.U. (3) RadiolAux. (4) Tape Head/Microphone Operation of the Input Selector Swltch assures appropriate 3in. high and 8in. deep. Neon Panel indicator. Attractive Faetc, except for Ganging and Balance control, apply also to Super 15 . ANY MAKE OF PICK-UP OR MICROPHONF (Crystal SUPERB SOUND OUTPUT QUALITYCRENTLY AVAILABLD USING WITHR FIRST RATE ANCILLARY
EQUIPMENT. All required parts, point to point wiring
diagram and detailed instructions. Unit factory built 28 Gns. or deposit $£ 7.5 .0$ and 9 monthy payments $56 / 3$ 1 (Total e32.18.3). Or in veneered housing 31 Gms.

Bargain-Car Radios. Our Price 9 gns. Negative or positive earth (switched) fully transistorised (12 v) medium and long waves. Speaker and fitting kit supplied at no extra cost. P/P 5/-.

Sonotone 9TA and 9TA/HC. Diamond Cartridge brand new, boxed in manufacturers' carton $49 / 6+2 / 6 \mathrm{p} / \mathrm{p}$. Acos GP 91-1 and GP 91-3 stereo compatible cartridges, new in sealed manufacturers' cartons $22 / 6+2 / 6 \mathrm{p} / \mathrm{p}$.

DULCI HI-FI UNITS

The Dulci range of tuners and amplifiers offer exceptional quallty at a sersible price. Amplifiers: 207 and 207M. Tuners: FMT7and FMT7s. SEND NOW FOR FULL DETAILS

TRIO Stereo Moving Magnet Cartridge Model AD76K. Diamond Stereo LP Stylus. Frequency response $20-20,000 \mathrm{c} / \mathrm{s}$ output. 7 mv tracking pressure 2 grammes ± 0.5 grm. Fully guaranteed. Price $85 /-\mathrm{p} / \mathrm{p}$ free.
por

- Bargain-Changer decks at lowest prices ever

Geautiful teak GARRARO
plinth and perspex 1025
$\begin{array}{ll}\text { plinth and perspex } & 2025 \\ \text { cover to suit } & \text { AT60 Mk. II }\end{array}$
$\begin{array}{ll}\text { cover to suit } & \text { AT60 Mk. II } \\ \text { these units } & \text { SP25 Mk. II }\end{array}$
5 Gns. P. \& P. Free 3500 with Son
Add 10/- p/p for each Garrard unit

SPEAKER ENCLOSURES

Type: INFINITE BAFFLE
Model 8: $8^{\prime \prime}$ plus $3^{\prime \prime}$ tweeter
Model 138: $13^{\prime \prime} \times 8^{\prime \prime}$ EMI
Both £4.19.6 each
Model 1012: $10^{\prime \prime}$ or $12^{\prime \prime \prime}$ plus $4^{\prime \prime}$ tweeter
£7.19.6
All enclosures are in olled teak, fully built.
Please add 8/-p. \& p. on each enclosure

* Bargain - Speakers, $\mathrm{Hi}-\mathrm{Fi}$ - The Baker Selhurst Guitar Group 25, 12in, round, 25 watt ratling, 12,000 gauss, 15 ohms, response $30-10,000$ c / s, solid aluminium chassis, heavy duty cone. Our price $£ 5.9 .6$.

The greatest HI-FI Budget system to-day can't be beaten-price or quality anywhere -look at these great features-then compare.
Teleton F2000 tuner amp. AM-
£8.0.0. FM with multiplex decoder and
£12.19.6. A.F.C. $-2 \times 5 \mathrm{w}$ channels R.M.S.
Bass Volume Treble Balance controls, a truly outstanding unit
Garrard SP 25 Mk II Transcription deck

$$
\begin{array}{ccc}
f & s . & d \\
43 & 1 & 0
\end{array}
$$

Teleton SA 1003 matching speaker enclosures
Sonotone 9 TA Diamond Cartridge
Plinth and Perspex cover

Exclusively offered by WALDON at the
remarkably low price of 63 gns.
E.M.I. HI-FI SPEAKERS

SET 450: 13×8 wlth two bullt-in tweeters and cross-over unit. Our Price $69 / 6$. 3 or 15 ohm, $10 \mathrm{w}, 40-13,000 \mathrm{~Hz}$.
SET 850: $6 \frac{1_{2}^{\prime \prime}}{}$ bass plus $3 \frac{1}{2}^{\prime \prime}$ tweeter and cross-over unit. 8 ohm, $10 \mathrm{w}, 65-20,000 \mathrm{~Hz}$. 79/6.
SET 250: 5" heavy duty bass plus $3^{\prime \prime}$ tweeter and cross=over unit. 8 ohm, $6 \mathrm{w}, 80-20.000 \mathrm{~Hz}$. $65 /-$ Add $5 / 6 \mathrm{p} / \mathrm{p}$ for each speaker set

F.M. TUNER

MARTIN HIGH-FIDELITY AUDIOKITS cover the widest possible range of requirements. They are available for Mono, and can be doubled up for conversion to stereo, or as complete stereo units. 3 ohm and 15 ohm systems. Special pre-amp for low output pick-ups-escutcheon panels to suit the arrangement you choose. Tuner is styled to match.

UNITS INCLUDE:

> 5-stage input selector
> Pre-amp tone controls
> 10 watt amp. (3 ohms)
> 10 watt amp. (15 ohms)
> Mains power supply
> F.M. Tuner

Trade enquiries invited
154/5 HIGH STREET. BRENTFORD
MIDDLESEX. ISlewarth 1161/2

For many years now Martln Electronics have been producing highly efficient and dependable prefabricated module-type unlts for simple assembly into reasonably priced hlgh fidelity systems. Many purchased at the time of the introduction of the Martin Audiokit system are in regular use to thls day, completely Justifying our claims for years of trouble-free service. No system gives you wider flexiblility in the choice of units available than Martin and all equipment conforms precisely to stated specification. When new units
are introduced, they are designed for adding to those produced so far, making it easy and economical to extend and improve your existing Martin Audiokit set-up. Anyone can assemble Martin equipment with ease and the foreknowledge that when finished, he will be in possession of a true hi-fil assembly of the very best kind which looks and sounds completely professional In every way-and MARTIN AUDIOKITS remain as ever, the units that have true add-on ability.

AMPLIFIER SYSTEMS TUNERS RECORDERS

EXCLUSIVE PURCHASE！

PORTABLE
 AMPLIFIER
 UNIT

BY WELL－
EMAKER ${ }^{\text {ERITISE }}$
A luxury unit a
bargan pice．Onig 35／－． \mathfrak{E}° \＆P．4／6．
Designed an it Telephone Amplifer but can be uwed in many different way－a bowter ampliffer for tranniator
 Hish gidn four trimistor amplitier unit holsealin hitrac－
tive leatherconth coveres！wooden cithinet with upward tive leatherelath covered wooden cibinet with upwari
faciug 3in．Gigh flux P．M．，sponker covered by neat plantle facing 3in．high hux P．M．，sponker covereat by neat platic grine．Firl．Size $7 \times 43 \times 3 \sharp 1 \mathrm{n}$ ．high．Operiten on dandard
 pick－up induction coil ntted suction pat，lead and 3 ．5mm jack plug
OUR grectal price ．．．35／－p．s． P ． $4 / \mathrm{t}$ ．
Or ：at abave with $3-5$ inu plug and DLR5 unit for use fon senalt ive mierophone for haby alarins，conumumuation
yystemetc．Will operate over iluntances of up to 200 it．of more when connected wilh twh fex or bell wire

$$
\text { PRICE } 40 /-\quad \text { P. \& P. } 4 / 6
$$

（Batteries and flex unt included．）
BRAND NEW 3 OHM LOUDSPEAKERS
 E．M．I． 8×5 in．．Fith high flux magnet $21 /-$ E．M．I． $131 \times$月h．with bigh flux ceramic magnet $42 /$－（ 15 ohm $45 /$－） EM．1． $13 \times$ sin．winh two nbuit 10）\＆12ln．3／6 per speaker．
BRAND NEW． 12 in ． 15 w ．H／D Speakers， 3 or 15 ohms． Current productlon by well－known British maker．Now ${ }^{\text {with }}$ Hillux ceramle ferrobar magnet ansembly $£ 5.10 .0$ ．
 dic magnet．Available in 3 or 8 ohms 15 ／－each； 15 ohing
 handing． 3 or 15 ohni，35／－P．\＆P．3／6．

FYNAIR AND REXINE SPEAKERS AND CABINET FABRICS App． $54 i n$ ．wide．Usually $35 /$－Yd．．．our priee 13／6

LATEST COLLARO MAGNAVOX 363 STEREO TAPE DECK．Three speeds 4 track，taker up to 7 in ．spools 16．10．0．Cart．10／－
gUALITY PORTABLE TAPE RECORDER CASE． Brand new．Beautifully nude．Only 49／8．P．P．8／6． Dus！Purpose Bulk Tape Eraser and Tape Head Demagnet
ser $35 /-$ P．\＆P． $3 /$ ． ACOS CRYSTAL MIKES．High tmp．for desk or hand
 OUR PRICE 21／－．P．\＆P．1／6．

NEW 8．T．C．TYPE 25 MINIATURE RELAYS－ 12 volt． $4 \mathrm{~g} / \mathrm{p}, \mathrm{c} / \mathrm{o}$ contact． 1 amp rating．Coil
resistance 185 ohms．size approx． $3 \times 1 / \times 1 \downarrow \mathrm{in}$ ．high． resistance 185 ohms．
$10 /$－emeh．$P . \& P^{3} .1 / 6$.
Also sonve aimilar to above but coil resintance 5,800 ohens 48 volt operation．8／－each．P
SPECIAL OFFER：PLESEEY TYPE 29 TWIN TUNING GANG． $400 \mathrm{pF}+146 \mathrm{pF}$ ．Fitted with trimmers and

TRANSFORMER BARGAINS

MAINS TRANSFORMER．Primary $200-240 \mathrm{~V}$ two
separate wave mecondarlen giving approx． 16 V at separate
1 amp and wave necondarles giving approx． 16 V at
and $1 \cdot 2$ amp；neca．can be connected in series for 36 V at 1.5 amp ．Ideal for transistor power supplies．Drop through mounting．stack size $2 ; \times 3!\times$ In． $15 /-$ P．\＆P． $6 /$ ．
MAN8 TRANSFORM
MAIN8 TRANSFORMER．For transistor power supplie． Pri．200／240v．Sec．9－0－9 at 500 maA ． $11 /-$ P．\＆P．${ }^{2 / 6}$ ．
 Pri．${ }^{\text {MATHED PAIR OF } 21}$ WATT TRANBISTOR DRIVER AND OUTPUT TRANSFORMERS．Stack size $1 \ddagger \times 11 \times$ in．Output trans．tapped for 3 ohm and 15 ohm output． 10／－pair plus 2／－P．P P． 7－10 watt OUTPUT TRAN8FORMERS to match pair of $\underset{P}{\text { ECLB6＇s }} \ln$ push－pull to 3 ohm output．ONLY $11 /-$ BRAND NE
RRAND NEW KAINS TRANSFORMERS for Bridge 1.5 amp．Stack eize $21 \times \frac{1}{4} \times 2 / \mathrm{in}$ ． $10 / 6$ ． P ．\＆ $\mathrm{P} 3 / 6$ ． （Special quotations for quantities）．

HIGH GRADE COPPER LAMINATE BOARDS HIGH GRADE COPPER LAMINA
$8 \times 6 \times 1 / 14$ ．FIVE tor $10 /-\mathrm{P}, \& \mathrm{P} .2 \%$ ．

TRANSISTOR STEREO $8+8$ MK II
Now using Silicon Trannistors in firat Eive stagea on each channel reaulting in even lower noise level with improved sensitivity．A really first－clavs Hi．Fi Btereo Amplifier Kit．
Uses 14 trannistors giving 8 watts push pull output per Uses 14 trannistors giving 8 watta push pull output per
channel（ 16 W ，mono）．Integrated pre－amp．with Bass， channel（ 6 W ．mono）．Integrated pre－amp．With Bass，
Treble and folume controls．Suitable for use with Treble and Colume controls．Suitable for use with
Ceramic or Crystal cartridgen．Output stage for any Ceramic or Crystal cartidgen．Output stage for any
speakers froin 3 to 15 ohms．Compact lewign，all parts supplied including drilled metal work．Cir－Kit boosd， attractive front panel，knobs，wire，solder，nuts．bolts－ no extras to buy．Simple ntep by ntep instructions enable any constructor to bullet un amplifier to be proud of． Brief specification：Frey responie $\$ 3 \mathrm{~dB} \cdot 20-20,000 \mathrm{c} / \mathrm{s}$ ． Bass hoost spprox．to $+12 d B$ ．Treble cut approx．to －16uB．Vegative feelback isaB over main amp．
Power requirementa $25 V$ at 6 ainp．
PRICES－AMPIIFIER KIT E10． 0.0 ；POWER PACK KIT e8． 0 －CABINET £3．0．0．All fost POWER PACK Circuit diagram，construction detaits and parts list（free with kit） $1 / 6$ ．（8．．．t．E．）．

SPECIAL PURCEASE！ E．M．I．4－SPEED PLAYER Heary sith．metal turutable． Low Hitter performance 200 ／
250 v．shauled motor（ 90 v ． tap）．Complete with latest type lightweight pick－up arm and mono cartrldge with t／o stylii for LP／78．LIMMITED NUMBER ONLY 63／－，P．\＆ P， $6 / 6$ ．
4－SPEED RECORD PLAYER BARGAINS
Msing models．All brand new in maker＇s packing E．M．I．MODEL 999 Single Player with unit mounted piok－up arm and mono orrtridge \＆5．5．0
£6．19．6 B．S．R．ANS Wil plus Carriage and Paoking $6 / 6$ ． LATEAT GARRARD MODELS．All types available 1000 8P25，3000，AT60 eto．Send 8．A．E．Ior latest Bargrin Prices PLINTH UNITS cut out for Gerrard Mudels 1000，10：5 2000， 3000 ，AT60，BP25．With rigid perspex

LATEST RONETTE T／O STEREO／COMPATIBLE CARTRIDGE for EP＇LP／Btereo／78．Only $32 / 6$, P．\＆P＇${ }^{2 /-}$ LATEST RONETTE T／O MONO COMPATIBLE CART RIDGE for playing EPP／LIP78 mono＇
SONOTONE 日TAHC compallule stereo Cartrilge with
diamond atylua 50／－P．\＆P．＇2／－
FEW ONLY！ACOS GP69／h．For LP
QUALITY RECORD PLAYER AMPLIFIER MKII top－quallty record player ampllter employling heary duty double wound mains transformer，ECC83，EL84， EZ80 valves．Separate 3 sas，Treble and folume controls． speaker．Blze 7^{*} w．$\times 3^{\prime \prime}$ d，$\times 6^{\prime \prime}$ h．Ready touilt and teated PRICE 75／－I＇A P， $8 /$ ．
ALSO AVAILABLE muunted on board with output tranaformer and apeaker ready to tit into cabbuet below PRICE $97 / 8$. P．\＆P． $7 / 6$.
DELUXE QUALITY PORTABLE R／P CABINET MKII DELUXE QUALITY PORTABLE R／P CABINET MKII 5 incut motor buari wize lake above amplifier and any B．S．R．or HarRard autochanger or single Player dint except
AT60 and SP 25 ）．Size $18 \times 15 \times 811$ ．PRICE $79 / 6$ AT60 and $8 P 25$ ）．Nize $18 \times 15 \times 811$ ．PRICE $79 / 6$

FM／AM TUNER HEAD

 Beautifully designed and pre－cision engineered by Dormer © Wadsworth Ltul．Supplied ready fitted with twin 0005 tuning condenser for AM con nection．Prealigned FM see output $10 \cdot 7 \mathrm{Mc} / \mathrm{s}$ ．Complete
 ulth ECCBS（6LI2）Valve and full circuit diagram of tuner heal．A nother specisl bulk GORLER F．M．TUNER HEAD． $88-100 \mathrm{Mc} / \mathrm{M} .10 \cdot 7 \mathrm{Mc} / \mathrm{s}$ I．F． $15 /$－plus $2 / 6 \mathrm{P}^{3}$ ．\＆P．（ECC85 valven， $8 / 6$ extra）

3－VALVE AUDIO
AMPLIFTER MODEL HA34 AMPLIFIER MODEL EAB4
D signed for HiFi reproduc－ D signed for Hi－Fi reproduc－
tion of records．A．C．Malus operation．Ready built on plated heavy gauge metal
 4．${ }^{\text {h }}$ ．lacorporates ECCB3．
EL84，EZ80 valves．Heavy duty，double wound mains transformer and output trans－
former matched for 3 ohm speaker，separate Bass，Treble aud valume controls．Nega－ speaker，separate Bass，Treble aud valume controls．Nega detached and leads extended or remote mounting of controls．Complete with knobs， tested for only $£ 4.5 .0$, P．\＆P．日／－．
HSL＂FOUR＂AMPLIFIER KIT．Simllar iu appearance to HAB4 above but employs entirely different and advanced circuitry．Complete set of parts，etc．79／8．P．\＆P．6／－． BRAND NEW TRANSISTOR BARGAINS．GEF （Matched Pair）15／－；V15／10p，10／－；OC71 5／－；0C76 61 AF117 7／6．
met of multard 6 transistors OC44， $2-0 \mathrm{C} 45$ ，AC128D mistor Pack AC128I）and matched palr ACl28 12／8 sistor Pack AC1281）and matched pair ACL28
ORPI2 Cadnium Sulphide Cells 10／6．All poat free．
 Bahy Alarm，
transistor radiss etc．，also itleal for elassrooun
unit etc．Works perfectly with our special orfer ACOS
 9 volt battery．Smart two tone carryink case size $12 \times 4 \times$ 910 ．fitted atindard Input jack socket．volume controts，
7×4 in．speuker．Completely bullt asd tested，brand new $\div \times 4$ in．speuker．Completely bullt asd tested，hrand ne with full 1 Only 79／6 ${ }^{\text {pom }}$

STEREO AMPLIFIER

Incorporating 2 ECL88s and I EZ80，heavy duty，double Found mains transformer．Ontput 4 wattes per channel． Output impedance 3 ohm

－Generous aize Driver and Output Tranaformers －Output transformer tapped for 3 ohm and 15 ohm apeakera．Transibtory（GeT114 or S1 Muilard AClessD and patched pair of ACl＇28 o／p）． 9 volt operation． －Everything supplited，wire，battery clips，odder，etc， diagram $2 / 6$（Free with Kit）All parts sold weparately SPECIAL PRICE 45／－．P．\＆P．3／－Also ready bullt and lested．62／6．P．\＆P＇ 3

HARVERSDN＇S SUPER MDND

 AMPLIFIERA super quality gram amplitier using a double wound mailss transformer，EZ80 rectitier and ECLAB2 triode pentode valve ad audio amplifer sind power output stage． and tone controls．Chassia size only 7° wlde $x 3^{\prime \prime}$ deep x 6^{5} high overall．AC mains $200 / 240 \mathrm{v}$ ．Supplied absolute！y Brand New completely wired and tested with ralve日 and good quality output transformer．LIMITED NUMBER ONLY
$\begin{aligned} & \text { OUR ROCK BOTTOM } \\ & \text { BARGAIN PHICE }\end{aligned} 49 / 6 \quad$ P．$\&$ P．

Open all day Saturday
Early closing Wed． 1 p．m．
A fow minules
Tube Station

HARVERSON SURPLUS CO．LTD．
170 HIGH ST．，MERTON，S．W． 19
Tel．：01－540 3985
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES

Please write clearly PLEASE KOTE：P．\＆CHARGES GOOTED APPLY TO U．K．ONLY． CHARGED EXTRA．

in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 16th April 1969.

The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are a warded to successful students.

The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senlor Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept, PW8), 34a Hereford Road, London, W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME
ADDRESS

 1016.

THE IMP Extension shaped cibinet. Wedge fitted $7 x 41 \mathrm{n}$. speaker. Covered with attractive walnut with fawn Vynair tront. Keyhole slot in back. Onis 25/6, P, \&P.

DUO. Wedge shaped Speafitted $7 \mathrm{x} 4 \ln$. apeaker. Covered in attractlve two tone Vynair. Price $\mathbf{S R} / 6$.
P . \& $\mathrm{P} .4 / 6$.

CLARENCE. Extension BpeaKer Cabinet fitted $8 \times 5 \mathrm{~m}$. gpeaker. (3 ohmin imp.) and volume control. Size 104×8 i x 4 in . Finiahed in black and
grey Vynair. $45 / \mathrm{F}$. P . 4/6.

All oabinets are new and speakers
 are monnted on in. ohipboard
battles. All speakers eI TV re: conditioned hy tux magnet. All oarefully tested before despatoh.

SPEAKER ENCLOSURES

The Baker. slze $8 \times 151=$ 23 hin . Teak veneered top and adea. Pawn Vyalr covered iront. Cut out for
12 in. apeaker and 3 in twee ter with port and finternai ter with port and internal rubber feet : \&6.15.0, P. \& P. 10/6.

The Cowdrey. Corner cablat in natura tesk fnish for $13 \nmid \mathrm{X}$
8in. speaker aiso cut out for tweeter £3.15.0. P. \& P. 8/5.

THE STEREO. A Eujerior extension speaker cabinet fitted with 9 ite $88 \ln$. speakers. Bize 16π ∇ ynair with natural $/$ teak ends. £3. P. \& P. $3 /$

THE SOOTT. Table top or wall mounting 8peaker. Size $16 \frac{1}{x}$ ated. Fitted $13 \frac{1}{2} 8 \mathrm{in}$. Speaker with volume control. Finished in teak cloth and contrasting Vynair. (Pleame gtate 3 or 15 ohm imp .) $\mathbf{2 4 . 5 . 0}$. P. \& P.

The Teanyson. Wedgeshape for table or wall mounting $13 \times 16 \times 8 \frac{1}{i n}$. Cut out for Piniahed woad wrain port. and matching Vynalr. \&8.2.6 P . \& P. 7/8. Table top or wall monnting enclosure for 131×8 in., speaker (Simallar to The 8cott dlus, above). 37/8. P. \& P. 6/-.
The Haydon. $161 \times 16 \times 71$ in., Wood grain cloth and sultable for l2in. speaker, 72/6. P. \& P. 9/. speazer,

SPEAKERS: Elac Euavy duty Ceraraic Magnets 11,000 line, 10 in , round, $10 \times 8 \mathrm{in} .3$ ohm, or 15 ohm, $48 / 8$, P. \& P. 3/6. Sin. round 10 or 3 ohm, $42 / 6$. P. \& P. 3/6. E.M.I. $13 \mathrm{i} \times 8 \mathrm{~m}$. fitted two 21 ln . tweeters. 15 ohms, $7 / 8, P$ \& P. $4 / 6$. E.M. I $131 /$. ohm) Hi Fl Quality, £5.19.6. P. \& P. 4/6. E.M.I., Wooters, 61 x 6 tiu. square sohm 59/6. P. \& P. 4/6. E. M.I. Crosgover, 16/6. P. \& P.1/-. EAGLE Crosover units, 3 or 16 ohms, 14/6. P. ie P. 1/-. Bakers 122 in ., 25 watt, 15 ohm, 86.6 .0 . P. \& P. 3/6. All other speakers supplied-Goodmsnb, Bakers, W.B., Wharfedale, Fagle, Tripletone. VYNAIR WIdths from 40 to E4IL., $17 / 6$ EX- "PAM" TRANSISTOR RADIO yd. ofl roll. P. \& P. 1/9. I yard, 9/\%. BPEAKER MATCHING TRANSFORMERS. 3, 7, 15 ohms, 8 watt, 11/6. P. \& P. 1/6.
©ARTRIDGE: Reuter 8TD/2, $17 / 6$. GP91/1, 20/\%. Mono Bonotone, 2 T8S, 15/., Aces GP67/2 lagh output, 28/6. MICROPRONES: Xtal Hand Mikes B1201 with stand, 54/6. P. \& P. $3 / 6$. B1201 with stand, 54/6. P. \& P. 46. 18/6. Dyn. Mike DM-391, 30/-. CM21
X1al, 12/6. Telephone Plck-up, $10 / 6$. P. \& P. 1/- Xtal lapel Mike, 7/8. Guitar Mike, 12/6. P. \& P. 1)
TRANSISTOR ELECTROLYTICS: 1,2 4. $5,8,10,16,25,32,50,100 \mathrm{mad} 15$ volt working, $1 / 3$. P. \& $P, 1 /-250$ mid DO^{2} $3 /-500 \mathrm{mfd} 12 \mathrm{v}, 3 /-.500 \mathrm{mld} 26 \mathrm{v}$ DC. VACUUM CLEANER LEAD, 5 yyde.twim cable with moulded 5 amp. two ptn plug. $4 / 6$, P. \& P. $1 / 6$. CABINETS. Fitted 36in. telescople soclkela, perapex dial $12 d x$ sfin. Cabinet size $131 \times 44 \times 8 \mathrm{in}$. Anished brown and srey. 25/-, P. \& P. 4/6.
EARPIECES WITR CORD and $3-5 \mathrm{~mm}$. plug. 8 ohm magnetic, $3 /-.250 \mathrm{ohm}, 4 /-$ 180 ohm with clip. 6/8, Xtal. P. \& P. 8d. TRANSISTOR SPEAKERS 8 ohm 2in., 8/6. 3 in., 10/6. $3 / \ln$. $12 / 6$. P. \& P. $1 /-$ FERROX RODS: $6 \times{ }^{6} / \mathrm{min} ., 2 / 6 ;$ it x In.. /f: $8 \times$ 任., $2 / 6 ; 8 \times$ sin.,3/-. P. d \mathbf{P}. FERROX RODS WITH COILS, if x lin. $3 / 8 ; 8$ I ${ }^{5} / 1 \operatorname{cin}^{\text {in }} 5 / 8 ; P$. P. $1 /$ each. ROTARY SWITCEES: 2 Pole Mains 8 witeh, $3 /-; 1$ pole 12 way, 2 pole 2 way,
3 pole 3 way, 3 pole 4 way, 4 pole 3 way, 3 pole 3 way. 3 pole 4 was, 4 pole 3 way. PIANO KEY PUBH BUTTON SWITPIANO KEY PUBR BUTTON SWIT-
OHES, 7 button the. mains on off. 6 briks, 7 button inc. mains 6 P.C.O., $8 / 6$. P. \& P. $1 /$. FIERS, 250 v .350 mA ., $4 / 6$, P. \& P. $1 / \%$.

BROADWAY Electronics

 92 MITCHAM ROAD, TOOTING BROADWAY, LONDON, S.W. 17 Telephone 01-6723984 (Closed all day Wednesday) (Few minutes from Tooting Broadway Underground Station)
BI－PAK SEMICONDUCTORS
 500 CHESHAM HOUSE，
 150 REGENT ST．，LONDON，W． 1.

BI－PAK

20

 O／O UFF THESE KING SIZE PAK MAL PRICE 10／－，SALE PRICE 8／－ A14． 4 upngermawitching trans tharked akst $8 /$ A15 20 redinpot AF truna pnp fictory tested 8／－ OCT7 typ
2 N 24 A ．
Al8 4 high current gerin switching trans 020 equmelabl plunar ir
A2\％太 209417 rans eqvi AFII7 AF13
NKT67：
3 ири germ truns N KT子73－ACl：
ACl：31．ACl53，ACl27，2G339A
2 irfit trans 2N 1225 ，gerin pup 10 （ime／a
HCA AFl18
－AF／RF trans UC44／45／91／8iD plus
1 ditorde．
$06304,281322$.
439－2 OC＇1：39 non germ awitchlng trans $=$
$2 \mathrm{~N} 1090,28490$, ABY73

AC151，ACL25，AC122． 2 N 280
A43 3GT3L LF low noise germ trans pnp： AC125，NKT215 Mularil OC力 $t^{\text {ramen }}=$ NKTय12． AC151，AOL28．OC30
A5： 4 OCi－type tran＊－NKT212，ACl28．
$0 \mathrm{OC3}$
$2+28$ BSY 19
B8Y19．．．．．．．．．．．．．．．．．．．．．
AC153，ACl－24，NKT222
ACl26 germ trans pnp $=$ AClis NKT229．
Afs 2 OC73Mullardtrans $=$ NKT2 14, ACi2A $8 /$
Ahi
A
79
7 OC81 type
OCrans lisitish minde．
A81 6 TK2t20gerinswitchlng tran eqvi Oc4s $8 /$

AFl24，AF136．．．．．．．．．．．．．．．AFI27
3 AFlif ype tran
AFl13，NKT67B
A88 3 AFII7 trans type＝NkTRT，AF＇ie7．
 AF134，AFr131，NKT613
A90 3 ACl 107 germ trana TO 1 cage low nuise $8 /$ A94 3 2N 2926 rilicon epoxy trams npl mixed gains
A95 2 GET880 hww noise germ trinn．．．．．．． 81
A98 3 aflas pnphigh freq I rans it 7 ito
A 99.4 MADT＇s MAT10 \＆ST140
A100 3 MADT \＆MAT100 \＆ 2 MAT120 pup
AlOL 40 OC44 germ tran AF
A102 3 AC127 npn gerin traus ．．．．．．．．．．．．．．．．．

A10t 3 OC84，Mullard trank silicun rectifiers 400 PIV 500 mi
BY101 $=$ BY114
B18 4 Thp hat sllicun rectitlerw lian＂11
B44 4 \＄－amp sillcon recs $100-400$ РiV unmatred
B46 210 －thup ulleon rects 100 PI
C3 10 ann gold lwnded diontes all marked or
C4 20 gen purpore germ diodes unurised
C10 3 OA10 dioder Mullaril 30 PJV 1 －Binp
C14 6 IN914 silteon dieulex 75 PIV 75 mA
CL5 \times OA95 germ diodes sub－min－IN69， 0 OA85
Clt 10 OA202 nd limien milb－min $=0 \mathrm{~A} 200$ ． OA12 ${ }^{-1 N 215, ~ 1 N 4 t i 3 . ~}$
$\begin{array}{lll}\text { C17 } & \text { OA81 } \\ \text { Cliodes＝AA117，} & \text { SDD } \\ \text { OA4 } \\ \text { gold bonded diodes }=0 A 180\end{array}$
CI8 AAY13，AAY27，FD3 ．．．．．．．．．．．．．
19 OAS
2 OA：00 mif diloles sub－nin
C2：2 318113 sil rect 400 PIV 400 mA silio min
C28 2018130 mil diodem 50 PIV sulb－11in．
C24 4 BY 126 nil rect plastic
C25 3 BY 127 ail rects plistic
C40 4 OA 182 goll bohller allodes 100 PIV
C45 12 aspad germ dlodes all marked
DO2 4 zener
5\％tol …．．．．．．．．．．．．．．．．．．．．．．
Please use Pak No＇s when ordering，plus description to avoid mistakes．Please send all orders direct to our Warehouse \＆Despatch Dept．P．O．Box 6，Ware． Herts．Please add $1 /$－towards post and BARGAINS GALORE

250 DIODES stb．Min Coliss

SIL．GERM and ZENERS IDENTIFICATION CHART FREE PAK No．XB200
150 TRANS．Mised Affef Fax No．
100 SIL．DIODES
DO－7 SIM OA200－OA202 PAK No．XB100 The above devices are untested

BULK TRANSISTOR BUYS

New BI－PAK untested－uncoded
PAK No．AF TO－5 ACY17－20 Series

50）AF TO－I NKT281－AC128 Type

30 V＇HF TO－1 AF117－NKT667 Type
35 AF SO－2 2G371．OC：71－75 Type
50 RF TO－5 NKT126，OC45 Type
$40 \mathrm{AF} / \mathrm{RF}$ STC ACY $27-30 \mathrm{Etc}$ ．
40 RF TO－1 ※KT141／2－OC＋4／45
30 VHF TO－5 2 G401 Texas AF 116 30 NPN TO－1 AC127 NkTiT3 Type 40 Sil．TO－5 PN POC200， 2 S 302 Type ＜11 30 RF NPN $2 G 339,2 N 1302$
$\times 1250$ NPN Sil．Planar mixed $2 N 706$ Type

DEDUCT 10\％OFF THESE PRICES
NEW SILICON RECTIFIERS TESTED

BRAND NEW TEXAS GERM．TRANSISTORS

Coded and Guaranteed

PA			
T1	8： 2 G 371 A	EQVT．	OC71
T2	82 G 374	－	OC75
T3	8 2G374．4	，	OC81D
T4	8 2G381A	－，	OC81
T5	8 2G382T	＂，	OC8\％
T6	82 G 344 A	${ }^{\prime \prime}$	OC44
T\％	$82 \mathrm{C345}$ A	＂	OC45
T8	82 G378		0 O 78
T9	$82 \mathrm{G399}$ A	＇，	2N1302
T10	$82 \mathrm{G}+17$		AF117

25 GERM．TRANS 20／－
ALL KNOWN TYPES EQVT．LIST INCLUDED PAK No．T12

20 SIL．ALLOY TRANS EQVT．OC200－205 TO－5 2S301－304

20 SLL．PLANAR TRANS BC108，2N706， 2N697

EX－COMPUTER BOARDS

Packed with semiconductors and components min． 150. 25 Board 20／－，add 2／－postage with this PAK No．EX1．

> ALL PRICES SLASHED GENUINE REDUCTIONS

VHF/FM TUNER
$88-102 \mathrm{MHz}$. Self-puwered. Vulven ECC8s. EF89. 6BW7. ECCR2, two diodes and unetal rect. $8 \times 6 \times 5$ in high. Full instruction book. clruzit diagranıs. etc. 2/6; free with chassis FULLy BUILT e 7.10 .0 or an kit $£ 5$.

FULLY BUILT STEREO AMPLIFIER. 2×3 watts, mains trans., metal rect., UCL82, 2 o.p. trann. for 3 ohm, vol/on-off, tone, balance. chawsis tjpe with 3 cont fols on front. $11 \times 3 \mathrm{j} \times 4 \mathrm{in}$. high. $88(8 / \mathrm{p}$. \& p.)

DULCI SOLID STATE TRANSISTOR AMPLIFIER. 2×7 watts, radio, tape and gram inputs. For outputs of 4 to 15 ohms. $£ 19.19 .0$ or with input for magnetic cartridges £23. B.A.E. for colour leaflet

F'ull range of Garrard auto and gingle record deeks usually in stock
TRANSISTORISED F.M. TUNER A1005. Size $6 \times 4 \times 24 \mathrm{in} .31$.F. stages, double tuned diseriminator, cap. tuned, 86.17 .6 post puid, corresponding stereo decoder A1005M $\mathbf{5 5}$ post paid or $£ 11$ the two items if purchased together. $88.108 \mathrm{me} / \mathrm{s}$.

BUILT PRINTED CIRCUIT BOARD. $8 \frac{1}{2} \times 3 \mathrm{in}$, with ose., 3 i.f. stages, driver trans ready for output transistors (can be provided at $6 / 6$ extra the 3). Includes $0 \mathrm{C} 44, \mathrm{tw}$ OC45. A bargain at $30 /-$ poat paid

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS - 2 or 4 TRACK

Frunt 12 $\times 31 \times 4 \frac{12}{}$, high Front panclalum and black $124 \times 4 \ln$. $200-250$ A.C Malns Trans, On/On-Tone: Vol./Mic: Vol./Gram.; Mic.
lnput: Gram. Input ; MoniInput; Gram. Input; Moni EM84, EL84 and Rect. 2 Trick E10.10.0: 4 Track 212 ($12 / 6$ p. \& p.). Really for bolting direct to Magnavor deck. 3 speed Magnavox 4 Track tape deck, Type 363. £16.10.0 carr. paid. 2×2 Steren deck
"SUPER SIX" L.W. and M.W. TRANSISTOR RADIO KIT, Mark 2. Complete get parts £4.2.8 (5/, post). PI's bait. $2 / 9$ extra. Instruction and list $2 /$ (free with kit) parts £4.2.6 (5/- post). PP' batt. $2 / 9$ extra. Instruction and list $2 /$ (free with kit), diode, etc.

The "IMMEDIATE" bulk tape eraser and recorting head difmagnetiver, only 34/post pirid.
SPEAEERS IN CABINETS. $20 \times 15 \times 6!\mathrm{m}$. Finished brnair and Rexine, varioue coloura. With E.M.1. $13 \times 8 \mathrm{in}$. 3 or 15 ohm speaker $90 /-;$ with 121 m . Elac $15-0 \mathrm{hm}$ 15W speaker. $£ 8.10 .0$ (post 10 , on either). Top quality speakers $8 \times 4 \mathrm{in}$. (3 or 15 ohm),
 (3 or 18 ohm) $42 / 6$ (pust $3 / 6$) all others pust $1 / 6$ each. $12 i n$, heavy duty Elac loud
speaker 15 ohin, 20 wati, $£ 6.8 .0$ ($10 /$ post).

8 W. PEAK PUSH-PULL OUTPUT AM PLIFIER, 200-250 Volts A.C. ER80, EUC83. 2-ELR4, Baks, treble, vol/on-off, £7.17.6 (pont paid). Slze $12 \times 34 \times 5 i n$. high. For Recoril Player, Radin Tuner, etc. MAINS TRANS. o.p. trans for 3 ohm
 brown. Controls beneath dial, Tone Volume on oft MW LW Gram tining Ferrit rod aerial, Valves UY85 rect.. ['CLE:2, ['BFR9. ['CH81. Limited qumtity. £9.9.0 carr. patd.

1! W MAINS GRA MOPHONE A MPLIFIERS. EZ8U. ECL8:2, O.P. Transfornter (; ahm) fol/On-ont and Tone Control. Double wolund matns transformer $21 \times 21 \times 24$ aeparate but wired to chassis, $4 \times 2 \pm \times 4$ in over ralvea $65 /$ - Including कin. Sperker
$(52 / 6$ less speaker.) (Post $4 / 6$ on either).

6 PUSH-BUTTON STEREOGRAM CHASSIS

M.W.: B.W.1; S.W.2: V.H.P Tram: Beren Gram; Vol. Tone: Maln Tranm: 200 .
250 Volts: 2
o.p. for 3 Aleo operatea with two Apeakers on Rallo. Chasain wize: $15 \times 7 \times$ fitln. high. Dia diver and black $15 \times 3 \mathrm{in} .190$ 550 M ; $18-51 \mathrm{M}: \quad 80-187 \mathrm{M}$ CHF 86-100 Mc/a, Valven $\begin{array}{ll}\text { ECCRS. } \\ \text { ECLAE, } & \text { ECH81, EFB9, 2x } \\ \text { EM }\end{array}$ ECLR6, EM84 and Rect Price £18.19.0, carr. palt 87.10.0 extra.

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants

(2 mina. from Btation and Buses). FULL GifarANTEE. Alderahot 22240 CLOSED TUESDAYAND WEDNESDAY.

TRANSISTORISED R.F. SIGNAL GENERATOR

SPIN WHEEL TUNING
(ADD SUFFIX -/SPIN)

EXTRA £1.0.0
U.K. Post and Packing 7/6d.
To: NOMBREX LTD. - EXMOUTH - DEVON
Please send leaflets of MODEL 29 and other NOMBREX
instruments to:
NAME
ADDRESS
PLEASE ENCLOSE STAMPS $6 d$.

A NEW NOMBREX INSTRUMENT TO THE SPECIFICATION YOU REQUIRE AT A PRICE YOU CAN AFFORD

STANDARD MODEL 29-S

- 150 KHz to 220 MHz -all on fundamentals.
- Eight clear bandspread scales. Total length 40in.
- Smooth vernier tuning control-ratio $7 \frac{1}{2}: 1$.
- Magnifier cursor for clarity and accuracy.
- Scale accuracy and discrimination $\pm \mathbf{1 . 5 \%}$ or better.
- Unique electronic scale calibration control.
- Rapid spin wheel tuning as optional extra.
- Modulation-variable depth and frequency.
- Variable A.F. signal available externally.
- Provision for external A.F. modulation.
- Stabilized supply for long-term accuracy.

XTAL CHECK MODEL 29-X

Includes all the versatile advanced features of the Standard Model 29-S

AND

Integral Crystal Oscillator providing calibration check points throughout all ranges, for adjustment of scale accuracy to $\pm 0.02 \%$. The crystal marker signal is available at R.F. socket for use externally.

PRODUCTION RELEASE - FEBRUARY 1969 WE ARE NOW BOOKING SAMPLE AND QUANTITY ORDERS: DELIVERY IN STRICT ROTATION.
TRADE AND EXPORT ENQUIRIES INVITED OUR CURRENT MODEL 31 WILL CONTINUE TO BE AVAILABLE

There's Something for Everyone in the HEATHKIT Electronic Range . . .

STEREO TAPE RECORDER, STR-1
A complete stereo system including speakers in one compact Transportable. Versatile recording facilities. Pawerful output, 4 watts rms per channel.
Kit K/STR-1 £58.0.0 P.P. 10/6

STĔRE0 AMPLIFIER, TSA-12
Fully transistorised. Fantastic performance at lowest cost. Many exceptional features. Kit K/TSA-12 £32.16.0 P.P. 10/6 Cabinet $£ 3.16 .0$ extra

PORTABLE VOM, IM-17
The latest solid-state circuit, plus rugged polypropylene case. For homeowners, hobbyists,
service.
Kit K/iM-17 £.13.12.0 P.P. 6/-

RF SIGNAL GENERATOR, RF-IU
100 kHz to 200 MHz in six bands. The specification is outstanding for price. A dependable service instrument. Kit K/RF-1U £13.18.0 P.P. 6/-

VALVE VOLTMETER, V-7A
Popular size, 7 AC, DC, ohms range. Popular price.
Kit K/V-7A
£14.16.0 P.P. $4 / 6$

HIGH PERFORMANCE CAR RADIO CR-1
Latest transistor circuit gives powerful output, 4 watts. For $12 v$ pos or 12 v neg earth systems. Kit K/CR-1 (incl. speaker)
£14.12.0 P.P. $4 / 6$

Send for the FREE

 Catalogue and see for yourself,Today!This catalogue describes these and many more kits and ready-touse models for Stereo/ $\mathrm{Hi}-\mathrm{Fi}$, Domestic Radio, Record Players, Amateur Radio, Short Wave, Test instruments, Educational, Home Workshop, all at significant savings.

Open the pages of The RADIO CONSTRUCTOR this month for . . .

100/10 Kc/s FREQUENCY SUB-STANDARD UNIT

This unit provides frequency marker points at every $100 \mathrm{Kc} / \mathrm{s}$ up to $32 \mathrm{Mc} / \mathrm{s}$.

Additional features are a switchable $10 \mathrm{Kc} / \mathrm{s}$ multivibrator and a stabilised h.t. power supply.

The whole unit is attractively housed in an Eddystone diecast aluminium alloy box.
$\star \quad \star \quad \star$
Also in this issue
CAR OIL CHANGE INDICATOR LIGHT SENSITIVE OSCILLATOR

HIGH VALUE OHMMETER

* $\quad \star$

Plus detachable
SOUND FREQUENCY/WAVELENGTH TABLE

MARCH ISSUE

17in.-f11.10.0
19in. SLIMLINE
SOBELL-24 Gns.

TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

FREE ILLUSTRATED
LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS SIZES AND PRICES
DEMONSTRATIONS DAILY

- = = = = =- nere

TWO-YEAR GUARANTEED
TUBES 100\% REGUNNED
141n.-69/6 171n.-89/6
21In. and ALL SLIMLINE TUBES 99/6 EXCHANGE BOWLS. Carr. 10/6
EX MAINTENANCE TESTED TUBES
17in.-35/-. Carr. 5/- (not slimline)
COCKTAIL/STEREOGRAM CABINET £25
Polished walnut veneer with elegant
 glass fronted cocktall compartment, padded. Posltion for two 101n. elliptical speakers. Record storage space. Helght $35 \frac{1}{2}$ In., width $52 \frac{3}{4}$ in. depth $14 \frac{1}{2} \mathrm{in}$. Legs 1 gn . extra.
 Speakers 6/6: $2^{\prime \prime}-75 \Omega$. $2 \frac{1}{2}^{\prime \prime}-35 \Omega$. P. \& P. 2/6. Acos Mics. 35/-Standard: Stick Mic, 2 gns. P. \& P. $3 / 6$. Asstd. Condensers: 10/- for 50. P. \& P. 7/6. Asstd. Reslstors: 10/for 50. P. \& P. 4/6. Asstd. Controls: 10/-for 25. P. \& P. 7/6. Transistors: Mullard matched output klt $9 /-$
OC81D-2 OC81's. OC81D-2 OC81's. P. \& P. FREE.
Ferrite Rods $3 / 6: 6^{\prime \prime}, 8^{\prime \prime} \times \frac{3^{\prime \prime}}{}$ complete with LW/MW Coils. P. \& P. FREE.
TRANSISTOR CASES 19/6. Cloth covered, many colours. Size $9 \frac{1}{2}^{\prime \prime} \times 6 \frac{1}{2}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime}$ P. \& P. 4/6. Similar cases in plastic 7/6.

TRANSISTOR RECORD PLAYER CABINETS 19/6. DIm. $11^{\prime \prime} \times 144^{\prime \prime} \times 5 t^{\prime \prime}$. P. \& P. 7/6.

SINGLE PLAYER CABINETS 19/6. P. \& P. $7 / 6$.
STRIP LIGHT TUBES $3 / 9$ each. $11^{\prime \prime}$ (284 mm .) $230 / 240$ volts, 30 watts. Ideal for cocktall cabinets, illuminating pictures, diffused Ilghting etc. 6 for $£ 1$. P. \& P. free

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E $\{2$
Tel. 01-478 6001/2/3

VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

,		19BG6G17/6	DL92 5/9	EL90 5/	PENA4 12/6	UCC84	
1A74T	$7 / 6$	$20 \mathrm{~F} 2 \quad 13 / 6$	DL94 5/8	RL95 5/-	PEN36C15/-	UCO85	6/8
1H5GT	7/3	$20 \mathrm{P} 311 / 9$	DL96 7/-	EM80 5/9	PFL20012/-	UCF80	8/3
1N5GT	$7 / 9$	$20 \mathrm{P} 418 / 6$	DY86 5/8	EM81 6/9	PL36 9/6	UCH 42	9/9
1R5	$5 / 8$	25U4GT11/6	DY87 5/9	EM84 6/3	PL81 7/8	UCH81	6/6
185	4/3	$30 \mathrm{Cl} \quad 8 / 9$	EABC80 $8 / 8$	EM87 7/8	PL82 6/6	UCL82	71-
1T4	2/9	$30 \mathrm{Cl} 1513 /-$	EAP42 8/9	EYbi 7/-	PL83 6/6	UCL83	11/0
384	$5 / 8$	30 C 18 9/-	EB91 2/3	EY86 6/8	PL84 6/3	UF41	$9 / 8$
3 V 4	$5 / 8$	30F5 13/6	EBC33 7/6	EZ40 7/6	PL500 12/-	UF80	7/-
5 U 4 C	4/6	$30 \mathrm{FL1} 12 / 6$	EBO41 8/3	EZ41 716	PL504 $12 / 6$	UF85	6/9
5Y3GT	5/9	30FL12 14/6	EBF80 6/-	EZ80 4/6	PL508 15/-	UF89	8/3
5Z4G	$7 / 8$	30FL14 10/6	EBF89 6/3	EZ81 4/9	PLB02 $14 / 6$	UL4I	$9 / 6$
6/30L2	$12 / 6$	30 Ll 6/-	ECC81 3/9	GZ32 8/8	PM84 7/8	UL44	20/-
6ALs	$2 / 8$	$30 \mathrm{LIF} \text { 14/- }$	ECC82 $4 / 9$	KT32 5/-	PX25 10/8	UL84	$8 / 6$
6AM6	$3 / 6$	$30 \mathrm{L17} 13 /-$	ECC83 \% 7 -	KT61 8/8	PY31 5/6	UM84	$7 / 6$
6AQS	$4 / 8$	30 P 4 12/-	ECCP4 5/6	KT66 16/-	PY32 10/-	UY41	71
6 6T6	$41-$	$30 \mathrm{P} 1211 / 8$	ECC85 51-	ME140015/-	PY33 10/-	UY85	$5 / 9$
6AU6	$4 / 8$	$30 \mathrm{P19}$ 12/-	ECC804 $12 / 6$	N78 14/9	PY81 5/3	VP4B	$10 / 6$
6BA6	$4 / 8$	30PLI 12/6	ECF80 71-	PABCS0 7 \%	PY82 51-	VP132	$21 /-$
6BE6	4/3	$30 \mathrm{PL13} 14 / 6$	ECF'82 8/9	PC88 9/6	PY83 519	Z77	3/6
$68 \mathrm{J6}$	$71-$	30PL14 15/-	ECH35 81-	PC88 9/6	PYR8 6/8	Trant	ors
68W6	13/-	35L6GT 8/-	ECH42 10/6	PC96 818	PY800 $6 / 9$	AC107	3/6
6 F 13	3/8	35 W 4 4/8	ECH81 5/9	$\begin{array}{ll}\text { PC97 } & 8 / 6\end{array}$	PY801 6/8	AC127	$2 /-$
6 Fl 14	$9 /-$	3524GT 51-	ECH84 6/9	PC900 8/8	R19 6/6	AD140	716
6 Fr 23	13/6	6063 12/6	ECL80 6/9	PCC84 6/-	R20 12/6	AF102	$181-$
6K7G	2/6	AZ31 9/-	ECL82 6/9	PCC85 $6 / 8$	TH21C 9/8	AF115	
6K8G	4/3	${ }^{\text {B728 }}$ (12/6	ECL83 9/-	PGC88 9/9	U25 13/-	AF'16	$31-$
$6 \mathrm{L18}$	6/-	CCH35 10/-	ECL86 8/8	PCC89 10/6	U26 121-	AF117	$3 / 3$
6 Y 6 G	51-	CL33 18/6	EF39 3/9	PCC189 9/9	U47 13/6	AF124	718
6V6GT	6/6	CY31 6/9	EF41 9/8	PCF80 $6 / 9$	U49 13/6	AF125	$3 / 6$
6×4	3/6	DAC32 $7 / 3$	EF'80 4/8	PCF'82 6/-	U52 4/6	AF126	$71-$
$6 \times 5 \mathrm{GT}$	8/9	DAF91 4/3	EF85 5/6	PCF86 9/3	U78 $\quad 3 / 6$	AF127	$3 / 6$
7B6 1	10/9	DAF96 8/-	EF86 6/3	PCF80013/6	U191 12/8	$0 \mathrm{O}_{26}$	5/9
7B7	71	DF33 7/9	EF89 5/8	PCF801 7/-	U301 13/6	$0 \mathrm{OC4} 4$	$2 / 8$
7C6	6/8	DF91 $2 / 8$	EF91 3/6	PCF802 $9 / 6$	U801 18/-	0 C 45	$2 / 3$
7 Y 4	8/8	DF96 6/-	EF94 $4 / 8$	PCF805 9]-	UABC80 $6 / 3$	0 O 71	$2 / 6$
10 Fl 1	15/-	DH77 4/-	EF183 6/-	PCF80611/6	UAF42 9/6	$0 \mathrm{C72}$	$2 / 6$
10 Pl 31	15/6	DH81 10/8	EF184 5/9	PCF80810/6	UB41 8/6	OC75	$2 / 6$
12AT7	3/9	DK32 7/8	EH90 6/8	PCL82 7 /-	UBC41 719	$0 \mathrm{C81}$	$2 / 3$
12AU6	$4 / 9$	DK91 5/6	EL33 8/9	PCL83 9/-	UBC81 7\%-	OC81D	2/3
12AU7	4/9	DK92 9/8	EL34 916	PCL84 $7 / 6$	UBF80 6/-	$0 \mathrm{C82}$	$2 / 3$
12AX7	4/8	DK96 7-	EL41 9/8	PCL85 8/3	UBF89 6/9	OC82D	$2 / 6$
12 K 8 GT	71	DL35 5/-	EL84 4/9	PGL86 8/8	UC92 5/-	OC170	$2 / 6$

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel. 01-550 7441
Postage on ivalve 9d. extra. On valves or more, postage 6d. per

DOOR INTERCOM Know wha la exlling and apeak or thern without leasing hetl, or chins. Outht comphene with call purb buthon, connectors and niaster Interion. Simply pluge together, originally noll at $£ 10$. Special snip price 49/6, plus 3/6 poatage.

MINIATURE WAFER SWITCHES 4 pole, 2 way -3 pole, 3 way- 4 fothet pole, 3 way 2 pole, 4 way- -3 pole, 4 way- 2 pole, 6 way- 1 pole, 12
way. All at $3 / 6$ esch. $36 /-$ dozen,
vour asoortment.

\squareWATERPROOF HEATING 3 yards ELEMENT 28 yarus length 70 . Self-regulating temperature control. 10/- post free.

BLANKET SWITCH rouble pole with neon let ideal for dark room light or fo une with waterproof element-n piastic casc. $5 / 6$ each. 3 heat mod
MAINS TRANSFORMER SNIP Making is power pack for amplifer or ther equip ers have normal mains primarjes ($230 / 40$ v.) and lsolated secondrries two types (2) 12 v .500 mA .at
$8 / 8 ;(2) 15 \mathrm{v} .500 \mathrm{~mA}$. at

PP8 ELIMINATOR. Play your pocket radio trom the mains! save \&s. Complete component kit comprises 4 rectifiers-msins dropper resistances amoothing condenser and
tions, only $6 / 6$ plus $1 /$ pont
BECKASTAT
This is an instan thermontat, simply plug your appliance inwall plug. Adjustable setting for normal air setting for normal air loading. Will save ita cost in a meason 19/6 Post and Ins. $2 j 9$.

KETTLE ELEMENT $230 / 240 \mathrm{~V} \quad 1500$ watt. Masle by Beat for kettles with $1 \% / 18$ in. dia, hole Chalfont, Davidson, Dintplex, Grafton, Hawkius, Jurbmald, Mirroware, Monogram, lifco. Revo, Towen, Swan. Normally $32 / 6$. Our price $15 /$ - plus $2 / 6$ pomt.

QUICK CUPPA Miny Immersion Heater, $350 w$. $200,240 v$. Boils full cup in about two minutes. Use any socket or lamp holder. Have at bedside for tea, baby's food, etc. 19/8,
pos and tagurance $1 / 6$. 12 v . car model alao available

MAINS TRANSISTOR POWER PACK Designed to operate transistor sets and amplifiers. Adyuntable output $6 \mathrm{~V} . \mathrm{g}^{9} 9 \mathrm{~V}$., l2 volts for up to 600 mA (clans B working). Takes the place of any PP7, PP9, and others. Kit comprises: mains transformer rectifer, smoothing and lond realsior, condeusent and instructions. Real snlp at only 18/6, plus $3 / 6$ portinge

THERMOSTATS
Type "A" 15 rimp. for controlling room heaters,
 $9 / 6$ plus $1 /$-pont. Bultable lox for wall mounting TyDe "B made by the famous Sunvic Co. Spindle adjusts the tamous Sunvic Co. Spindle adjusts this from $50-550^{\circ} \mathrm{F}$. Intermal acrew
alters the setting so this could be alters the setting so this could be
adjuatable over 30° to $1000^{\circ} \mathrm{F}$. Suitable for contrulling furnace, oven kiln immersion heater or to make Harne-start or flre alarm. $8 / 6$ plus $2 / 6$ post and insurance Trpe "D". We cail this the Ice-stat as it cute in and out at around freezing point, $2 / 3$ amps. Has mauy unes ofle of whinh would be to exep the pipes from reezing, if a length of our blarket wire

$(16 \mathrm{yds} .10 /-)$ is wound round the pipes. $7 / 6$. | $(16 \mathrm{Sds} .10 /-$) is wound round the pipes. $7 / 6$. |
| :--- |
| E. | Type "E". This in atandaril refrigerator thermo stat. spindle adjustraents cover normal refrigera tor temperature. 7/6, plun $1 /$ - post.

Type "F". Ghass encesed for controlling the temp of liquid-particularly thore in glass tanks, vats or ainks-thermostat is held (half submerged) by rubber sucker or wire clip-ideal for this tanksAdjuatable over range 50° to $150^{\circ} \mathrm{F}$. Price $18 /$ plus 2/-post and insarance.

ELECTRIC CLOCK WITH 25 AMP. SWITCH
Made br Amith's these unita are as fitted to many top quality cookers to control the oven. The clock is muin driven and cookers to control the oven. The controlled so it extremply accurate. The two mmall diak enable switch on and of thimes to be accurately set. Ideal tor ar'itching on tape recorders. Offered at ouly 4 fraction of the regular price--new and unused only 39/6. less thrn the value of the elock alone-pont and inguruce 2/9.

2 $\frac{1}{2} k W$ FAN HEATER Three ponition awitchlng to sult chsnges in the weather Suitch up for fuil heater hal kw), 告itw switch central blows cold for suramer coollas -adjustable thermostat acte as autocontrol and safety cut
out. Complete kit $£ 3.15 .0$ out. Complete kit $£ 3.15 .0$
Pcest and ins. $7 / 6$.

SNIPERSCOPE

Famous war-time
'cat'n eye'. used INFRA-RED
Make up one of these latent trpe
heaters. ideal for bathroom, etc. They are aimple to tnake from our cany-to-follow instruction-uses silica
enclosed elements designed for the cor
rect infra-red wravelength (3 microns). Price for 750 watts element, ali parts, metal ecting, as Illustrated. 18/6, pluy 4/- post

ELECTRICAL BARGAIN

5A, 3 pin switch sockets

An excellent opportunity to make that bench lis hoard you have needed or to stock up for future Jobs. This month we offer 6 lsritish made (Hieraft) hakelite flush mounting shuttered 3 A awitch sockets for only $10 /$ plus $3 / 6$ post and insurance. (20 boxes post free).

DRILL CONTROLLE approsimately 10 reves. to max
mum. Full power at all apeeds an park, care, everything and tull

S SNIP
CASSETTE LOADED DICTATING MACHINE Battery operated and with all uccessorien, Really funtuatic offer a British made e31 outfit tor only
e4.19.6, brillanntly deaigned for speed and ethelency-cassett takes norinal spools, drops in and uut for eusy loading-all norms
functions-accessorien include Iunctions-accessorien include
stethoscopic earpiece-cryst stethoscopic earpiece-crystal
nicrophone has on/ofl switchtelephone yick ur-j)ON'T M18s THIS INREPEATABLE OFFERSEND TUDAY £4.18.6 plus $7 / 6$ post anif

THERMOSTAT WITH PROBE
 This has a sensor attached to i 15 A switch by a
14in. length of flexlble copiliary tubing-control rainge is $20^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$ so it is sultable to control soil heating and lietuid heating especially when in buckets or portable vespels as the selisor can be raiseti out ind lowered into the vessel. This thermostat could also be used to
sound a bell or other alarm wheu crittcal temp sound a bell or other alarm wheu critccal temp.
18 reached in stack or heap subject if 18 reached in stack "r heat subject it
apontaneous combustion or it fiquid in being ppontaneous combustion or if hquid if beinig by the switch. Mide by the famous Teduingtun Co.. we offer these at $18 / 6$ each by the gwitch. Made by the
Fiostage and inaurance $2 / \theta$.

ELECTRIC CLOCK WITH 3A

SWITCH

Electric Clock witl 3 anpp nwitch miade by Bmiths for Dreamland. These are mana driven and frequency controlled so are extremety accurate. The dial chables "switch-on" time to be hccurately set. Swltch of in 3 hours later or by manual control. Intended for switching electric blankets this needs only one settiog for the seanom. Bultable aiso to conllo and lamp etc. up to 600 W . In rectrder, radlo and lamp etc. up to 600 . In
neat plastic case with naine lead and two out let plugs. New and unusel, $38 / 6$, pont and out let plugs. New anit unusell, 38/8, pont and
fnsurance $3 / 6$.

HI FI BARGAIN

FULL PI 12 INCH LOUDSPEAKER. This in undoubtediy one

 of the finest loudgpeakers that we have ever ofered. produced by one of the country's nont fatmous makers. It has a die-caat metal frame and is at rongly recomm Rhythm Gultar and public auldress. Flux Denslty 11,000 gauss-Total Flux 44,000 MaxwellsPower Hanilling 15 watt R M.s. Cone Moulded fibre-Freq. repponve $30-10,000$ c.p.s.-specity 3 or 15 ohms-Main resonance 60 c.p.s. - Chaseth Diam. 12 in , 12 fin . over mountling dinm-Bathe hole I lin . Diam.-Mounting holes 4 , holes- iln . speaker oftered circle $11 / \mathrm{in}$. diann, - Overali height sin. A this speaker offered for oniy 83.9 .6offer. 15 in. 30 watt 87.19 .6 .

INDICATOR LAMP
Panel mounting, consists of neon lamp in red Plantic lens with resistor in leads for mains opera-
tion $2 / 6$ each $24 /$ - (lozen.

12 V BLOWER
Heavy duty motor with centrifugal blower coupled to one end. Ideal for car heater. 12/6. plus 4/6 post.

> Where postage is not atated then orders over 83 are post free. Below 23 add $2 / 9$. sem-conductors add if-ires ple:sse post iree 8.A.E. with enquiries please

		$[\square] \sqrt{4}$	9 E \square_{5}^{\square}
Send S.A.E. for full liats. Other rangea available. Please include postage. Special quotation for quantities.			
		\$mA $37 / 6$	300v. D.C. . . $87 / 6$
		10 ma $37 / 6$	15V. A.C.... $37 / 6$
	CLEAR	50 mA $37 / 6$	300 V , A.C... 37/8
		100 mA $37 / 8$	8 meter 1mA. 39/6
	LASTIC	300 mA $37 / 6$	VU meter . ${ }^{\text {a }}$ 59/6
		$1 \mathrm{amp}{ }^{\text {a }}$. $37 / 6$	1 amp A.C.* - 37/6
	METERS	5 amp. 3776	5 amp A.C.* ${ }^{\text {¢ }}$ - $37 / 6$
		10V. D.C. . . $37 / 6$	$10 \operatorname{amp}$ A.C. ${ }^{\text {c }}$, 37/6
		20V. D.C. . . $37 / 6$	20 amp A.C. $37 / 6$
		60V. D.C. . . 37/6	$30 \mathrm{amp} \mathrm{A.C}=.37 / 6$
Type MR. $38 P$. $181 / 32 \mathrm{in}$. square fronts.		Type MR.85P. 44 in. $\times 4$ itin. fronts.	
50-0-50 1.4 . 35j-	1 amp. 25/-	80んA 69/6	15 amp 49/6
$100 \mu \mathrm{~A}$. ${ }^{\text {a }}$, 35/-	2 amp...... 25/-	$50-0-50 \mu \mathrm{~A}$. $59 / 6$	30 amp 49/6
100-0-100 2 A 32/6	$5 \operatorname{amp}{ }^{\text {a }}$ 25/-	$100 \mu \mathrm{~A}$ … $59 / 6$	20V. D.C. . . . 59/6
$200 \mu \mathrm{~A}$ … $82 / 6$	3V. D.C. 25j-	$100-0-100 \mu \mathrm{LA} 58 / 6$	50v. D.C. . . . $49 / 8$
$500 \mu \mathrm{~A}$ … $37 / 8$	10V. D.C. . . $25 /-$	$200 \mu \mathrm{~A}$.... $55 /-$	150 V . D.C. . . $49 / 6$
$500-0-500 \mu \mathrm{~A}$ 25/-	20V. D.C. ... 25/~		300v. D.C. . . $49 / 6$
$1 \mathrm{~mA} \ldots \ldots .9$ 25/-	50V. D.C. . . $25 /-$	$\begin{array}{ll}500-0-800 \mu \mathrm{La} \\ 1 \mathrm{~mA} & 49 / 6 \\ 49 / 6\end{array}$	15V. A.C.. ... 49/6
${ }_{1-0-1 \mathrm{ImA}}^{1} \times 2$.	${ }_{150 V}^{100 V}$. D.C. . ${ }^{\text {2 }}$ 25/-		300v. A.C... 49/6
$2 \mathrm{~mA} \cdot \ldots .{ }^{251-}$	$150 V . D . C . ~ . ~$ 300 V . D.C. 25/- 25/-		8 meter 1 mA . $55 /-$
$5 \mathrm{~mA} \ldots \ldots{ }^{25 /-}$	600V. D.C. . . $26 /-$	10 mA …… $49 / 8$	vU meter... $69 / 6$
$10 \mathrm{~mA} \cdot . . .{ }^{551-}$	750 v. D.C. . . $25 /-$	50 mA 4976	1 amp A.C.: ${ }^{\text {c }}$ - 49/6
20 mA $25 /-$	15V. A.C. . . . $25 /-$	100 mA … $49 / 6$	5 amp A.C.* ${ }^{\text {a }}$ - 48/6
$50 \mathrm{~mA} \ldots . .885{ }^{\text {- }}$	50v. A.C.'. . . $25 /-$	500 mA $49 / 6$	10 amp A.C.* 49/6
$100 \mathrm{~mA}251-$	150V. A.C... $25 /-$	1 amp. 49/8	20 amp A.C. ${ }^{\text {c }}$ - $49 / 6$
150 mA	300V. A.C.... 25/-	5 amp....... 49/6	$30 \operatorname{amp}$ A.C. ${ }^{\text {a }}$ 49/6
$200 \mathrm{~mA} \mathrm{...} 25 /$.	500v. A.C... $25 /-$		
300 mA 25/-	8 meter 1 mA . $29 / 6$	G01LA $65 /-50 \mathrm{~V}$ D.C. $39 / 8$	
$500 \mathrm{~mA} \mathrm{...}. \mathrm{25/-}$	VU meter ... 39/6		
Type Mr.45P. 2in. square ironts.		$50-0-50 \mu \mathrm{~A}$. $52 / 6$	150Y. D.C. .. $39 / 6$
50\%A $42 / 6$	10V. D.C. . . 27/6		300V. D.C. . 39/6
$50-0-50 \mu \mathrm{~A}$. $39 / 8$	20V. D.C. . . $27 / 6$	100-0-100 2 A 49/6	15V. A.C.... $39 / 8$
$100 \mu \mathrm{~A}$	50V. D.C. ... $27 / 6$	500\% ${ }^{\text {a }}$. ${ }^{\text {a }}$. $45 /-$	50V. A.C.... 39/8
100-0-100 1 A 35/-	300V. D.C. . $27 / 6$		150V. A.C... 39/6
${ }^{500} \mu \mathrm{~A}$. . . . ${ }^{\text {29/8 }}$	$15 \mathrm{~V} . \mathrm{A.C.C..} 27 /$.	${ }_{10 \mathrm{ma}}^{50}$. $\cdot \cdots \cdot{ }^{39 / 6}$	300V. A.C. .. 39/6
lmA....... $27 / 6$	300V. A.C.... $27 / 6$		500V. A.C. . . $89 / 6$
$\mathrm{JmA}_{10 \mathrm{ma}} \ldots . . .{ }^{27 / 6}$	8 meter $\operatorname{lma} .35 /-7$	50 mA 100 mA $\cdots \cdots \cdot 38{ }^{39 / 6}$	8 meter 1 mA . $45 /-$
$10 \mathrm{~mA} \cdot . . .{ }^{27 / 8}$	VU meter $\cdots \frac{42 / 6}{}$	100 mA \cdots $39 / 6$ 500 mA 1	VU meter ... 85/-
${ }_{10}^{50 \mathrm{~mA}} \times \cdots \cdots{ }^{27 / 6}$	1 amp A.C.: ${ }^{27 / 6}$		$50 \mathrm{~mA} \text { A.C. } \quad 39 / 6$
$\begin{array}{llll}100 \mathrm{~mA} & \cdots . . & 27 / 6 \\ 500 \mathrm{~mA} & . . . & 27 / 6\end{array}$	$5 \operatorname{amp}$ A.C.* 10 amp A.C. $87 / 6$ 276		100mA A.C. $=39 / 6$
$1 \operatorname{arap}{ }^{\text {a }}$ 27/6	20 mmp A.C.- $27 / 6$	10 amp...... 39/6	200 mA A.C.* $39 / 8$
	30 arap A.C.* 27/6	15 arpp.... . . 3916	500mA A.C.* 39/6
Type MR.58P. 2 Iin.	quare frouts.		1 amp A.C.* $38 / 9$
$50 \mu \mathrm{~A}$...... 59/6	100-0-100 $\mathrm{L}_{\text {A }}$ 45/-	30 amp...... ${ }^{39 / 8} \mathbf{3 9 / 6}$	
$50-0-50 \mu \mathrm{~A}$. $49 / 6$	$500 \mu \mathrm{~A}$. . . ${ }^{\text {a }}$ 42/6	10V. D.C. ... 39/8	20 amp A.C.* 89/8
$100 \mu \mathrm{~A}$..... 49/6	1 mA 37/8	20V. D.C. ... 39/6	30 amp A.C.* 39/8
BAKELITE PANEL METERS			
Type MR.65. 3 ¢in. squere Ironts.			
	$25 \mu \mathrm{~A}$. . . . $67 / 6$	500 mA . . . $32 / 6$	30V. A.C.*. . 32/6
	$50 \mu \mathrm{~A}$. ${ }^{\text {c }}$. $45 /-$	1 smp....... 32/6	50V. A.C.*'. . $32 / 6$
	$30-0-50 \mu \mathrm{~A}$ - $42 / 8$	5 amp...... 32/6	150V. A.C.*. . 32/6
		$15 \mathrm{smp}382 / 8$	300V. A.C... $82 / 6$
	$\begin{array}{ll}100-0-100 \mu \mathrm{~A} & 48 / 6 \\ 500 \mathrm{~A} & 38 / 6\end{array}$		$1 \operatorname{arpp}$ A.C.- ${ }^{\text {c }} 32 / 6$
	1mA $\cdot \cdots . . .{ }^{38 / 6}$	${ }^{\text {60 amp. }}$ S. ${ }^{32 / 8}$	5 amp A.C.* $82 / 8$
-	$1-0-1 \mathrm{~mA} \ldots 32 / 6$	10V. D.C. ' ${ }^{\text {c. }}$. 32/6	$10 \operatorname{amp}$ A.C.* 32/6
	$5 \mathrm{~mA} \ldots . .{ }^{\text {a }}$ 39/6	20V. D.C. ... 32/6	20 amp A.C-* 32/6
Moving Iron,	$10 \mathrm{~m} \mathbf{A} \cdot . . .{ }^{32 / 6}$	50V. D.C. ... 32/6	30 amp A.C. $32 / 6$
	$50 \mathrm{ma} \cdot$.... 32/6	$150 \mathrm{~V} . \mathrm{D.C} . .38 /$.	50 amp A.C.* 32/6
other moving coll.	$100 \mathrm{~mA} \ldots . .3818$	300V. D.C. .. 32/6	VU meter . . . 59/6

AVO CT. 38 ELECTRONIC MULTIMETERS

 High quality 97 range lnstrument which messures A.C. and D.C. Voltiuge. Current. Resistance and Power Output Ranges D.C. volts 250 mV ,000. (10 meg $\Omega-110$ meg Ω input). D. A.C. volt $100 \mathrm{mV}-250$ V ${ }^{\text {O }}$ (with R.F. measuring head up to $250 \mathrm{Mc} / \mathrm{s}$) A.C. current masuring amps. Power output 250 Mc .C. current $10 \mu \mathrm{~A}-25$ Operation $0 / 110 / 200 / 250 \mathrm{~V}$. A.C. Watts-5 watts perfect condition complete with circuit lead and

TYPE 13A DOUBLE BEAM
AM/FM SIGNAL GENERATORS OSCILLOSCOPES

An excellent general pur
pose D / B oscillascope T.B. $2 \mathrm{cps}-750 \quad \mathrm{Kc} / \mathrm{s}$ $\begin{array}{lll}\text { Band width } & 5-5 & \mathrm{Mc} / \mathrm{s} \\ \text { Gensitivity } \\ 33 \mathrm{mb} / \mathrm{ClM}\end{array}$ Operating voltage 0/h10 $200 / 250$ V. A.C. Eupplled in excellent working condition. £22.10.0. Or com plete with all accessories probe, leads, lid, etc 285. Car riage 30/-

ADMIRALTY B. 40 RECEIVERS Just released by the Minintry. High quality 10 walve recelver manufactured by Mur
 Onctlantor Tent No.

	An excellent general pur
	pose D/B oscilascope.
	Bandwidth 5-5 Mc
- ($6 \times+$	gensitivity $33 \mathrm{mV} / \mathrm{CM}$
	Operating voltage 0/110/
+ W	200/250V. A.C. Supplled
	In excellent working con-
- $30-h$	dition. E82.10.0. Or com.
- 0110	plete with all acceasories,
otes.entad	probe, leads, lid, etc.
-	285. Cartiage 30/-

 2. A high qualty ment made for the ministry by Airmec Frequency coverage CW/FMMc/s. AM porates precision dial, level meter, precision attenuator $1 \mu V-100 \mathrm{mV}$. Operatlon from 12
volt D.C. or $0 / 110 / 200 / 250$ 12×8. or 0/110/200/250 volt A.C. Size $12 \times 8, \times 9 i n$. Supplied in brand new conteated. 845. Carr. 20

Suppliest in excel. lent condltion, fully tested and checked. Complete with prods, leads and Model $7 \quad$ £13.10.0 P. and P. 7/6.

TE-16A Transistorised Signal Generator. 5 ranges
$400 \mathrm{kHz}-30 \mathrm{mHz}$. An inex-400kHz-30mHz. An inex-
pensive instrument for the handyman. Operates on 9 v battery. Wide eary to read scale. 800 kHz modulatlon. $5 i \times 5 I \times 3 i$ in.
Complete with Complete with instruc-
tions and leads. 27.19.6. P. \& P. 4/-.

CLASS D WAVEMETERS

\ldots dyne frequency meter

MARCONI TEST EQUIPMENT

ITARY RECONDITIONED. GTANDARI) SIGNAL GENERATORS, $85 \mathrm{Kc} / \mathrm{s}$ $25 \mathrm{Mc} / \mathrm{s}, \mathrm{c}_{2} 5$ Carr. $30 /$ - T.F. 885 VIDEO O8CILLAFREQUENCY OSCILLATOR 0- 40 Kc/a. $200 / 250 \mathrm{~V}$. A.C., E20 Carr. 30/-. T.F.142E Distortion Facto comilton, fuliy teated and checked. T.F. 1100 VALNE
VOI.TMETER, Brand New, E50 T.F. 1267 TRAN\&MIS

gION TEST SET, Brand New, 875 T.F. 1371 Wide Bund Mill volt Meter. Brind New, 850.

Variable Vortage THANBEDMEBIS

Brand new, guaranteed and carriage pald
High quality construction. Input 230 V . $50-60$ cycles.
Output full vardable from $0 \cdot 260$ volts. Bulk quantities avallable 1 amp . $£ 5.10 .0 ; 2.5 \mathrm{amp}$. $\$ 6.15 .0 ; 5 \mathrm{amp}$, 49.15 .0 ;
$8 \mathrm{amp} .-214.10 .0 ; 10 \mathrm{amp}-218.10 .0 ; 12 \mathrm{amp}-$ - $121.0 .0_{i}$
20 smp. - 287.0 .0 .

ADVANCE
TEST EQUIPMENT
Brand new and boxed in original sealed
VM. 76 VALVE VOLTMETER R.F. Measurements in excess of ments up to 100 V . with aecuracy of $\pm 2 \%$ D.C. range 00 MV to 1 KV . A.C. range istance .02 $500 \mathrm{M} \Omega$

VM. 78
Price MIL\&IvOLT METER Transistorised 1 MV-800V Frequency $1 \mathrm{c} / \mathrm{s}$ to 1 Mc
VM. 79 URIC MILLIVOLT METER Transigtorised. A.C. range 10
$\mathrm{MV}-8 \mathrm{D}$
$\mathrm{D} . \mathrm{C}$.
current range $\begin{array}{cc}\text { MV-8V. D.C. current range } \\ 01 \mu / A-3 M A . & R e s i s t a n c e ~\end{array}$ hm-10 megohms. Price £185. HIB AUDIO SIGNAL GENERATOR
$15 \mathrm{c} / \mathrm{s} 50 \mathrm{Kc} / \mathrm{s}$, sine or square $15 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$,
wave. Price
AUDIO SIGNAL GENERATOR $15 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc} / \mathrm{s}$. Price $£ 30$. AUDIO SIGNAL GENERATOR output meter. Price 235
TTIS TRANS18TOR TESTER
C37.10.0
Carriage 10/- per item.

AMERICAN TAPE First gride quality American 31 n . 225 ft . L. P. Beetate 3/6 3 in .2251 t. L. P. beetate
31 ln .600 ft . T.P. mylar. $5 \ln .600 \mathrm{ft}$. std. plastic. Sin. 900 ft . L. P. racetite Sin. 1,200ft. D.P. mylar 5 in . 1,800ft. T.P. myiar 5_{2}^{3} in. $1,200 \mathrm{ft}$. L. P. acetat $5 \operatorname{lin}^{2} \mathrm{in} .1 .200 \mathrm{ft}$. L.P. my mar
$5 \mathrm{Im} .1,800 \mathrm{ft}$ D.P. my'ar 5 In. $1,800 \mathrm{fl}$. D.P. my'ar 7in. $1,200 \mathrm{ft}$. std . acetate 7 in . 1,8001t. L.P. acetat 7in. 1,800tt. 1..P. mylat 7 In . 2.400 ft . D.P. mylat
7 ln . $3,600 \mathrm{ft}$. T.P. mylar
 TAPE CASSETTES C80-60 minites

[^1]
MULTIMETERS for GYERY purposel

LAPAYETTE DE-LUXE 100K a/VOLT

meter protection $0 / .5$ $2 \cdot 5 / 10 / 50 / 250 / 500 /$ $1,000 \mathrm{~V}$ D C. $0 / 3 / 10 / 50$
$250 / 500 / 1,000 \mathrm{~V}$ $10 / 100 \mu \mathrm{~A} / 10 / 100$ $500 \mathrm{~mA} / 2 \cdot 5 / 10 \mathrm{~A}$. $1 \mathrm{~K} / 10 \mathrm{~K} / 100 \mathrm{~K} / 10 \mathrm{M} /$ 10 Ma . 10 to $49 \cdot 4 \mathrm{~dB}$ 218.18.0 LAFAYETTE 57 Range meter. D.C. volts 12 mV
-1000 V . A.C. volts 1.5 V 10007 $25 \mu \mathrm{~A}-10 \mathrm{rmp}$ ohms 0 $0 \mathrm{meg} \Omega \mathrm{dB}-20$ to +8 B. Overload prote

NEW MODEL 50030,000
 O.P.V. with overload
 $10 / 25 / 100 / 250 / 500 /$ 1,000v. A.C. $0 / 50 \mu \mathrm{~A} / 5 / 50$ 500 mA .12 amp D.C $0 / 60 \mathrm{~K} / 6 \mathrm{Meg} . / 60$
28.17.6. Post paid. 28.17.6. Post
50,000 0.p.y

MODZL TE-90 50,000 O.P.V tion $\mathrm{H} / 3 / 12 / 60 / 300 / 600 / 1200 \mathrm{v}$. b.C. $03 / 6 / 60 / 600 \mathrm{~mA}$. D.C. $16 \mathrm{~K} / \mathrm{L} 60 \mathrm{~K} / 1-6 / 16 \mathrm{meg} \Omega .-20$ to +63 dB .87 .10 .0 . P. \& P
 MODEL TE-18 20,000 O.P.V. $0 / 0 \cdot 6 / 6 / 30 / 120$ $6 \mathrm{CO} / 1,200 / 3,000 / 6,000 \mathrm{v}$. D.C. $0 / 6 / 30 / 120 / 600 / 1,200 v . \quad$ A.C.
$0 / 60 / \mu \mathrm{A} / 6 / 60 / 600 \mathrm{~mA} . \quad 0 / 6 \mathrm{~K}$ $600 \mathrm{~K} / 6 \mathrm{Meg} . / 60 \mathrm{Mcg} \cap \quad 50 \mathrm{pF}$ $0 \cdot 2 \mathrm{mFd}$. 25.19 .6 . P. \& P. $3 / 6$.
$\underset{\text { Volt. }}{\text { MODEL }}$ TE-10A. $20 \mathrm{k} \Omega$ b.C. $10 / 50 / 100 / 500 / 1,000$
A.C
$0 / 50 \mu \mathrm{~A} / 2.5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C $0 / 6 \mathrm{~K} / 6$
$10 \cdot 0,100 \mathrm{mFd}, 0 \cdot 100 \cdot 0 \cdot 1 \mathrm{mFd}$

MODEL PT-34. 1,000 $500 / 1,000 \mathrm{v}$ A C. znd D.C. $0 / 1 / 100 / 500 / \mathrm{mA}$
D. D.C. $0 / 100 \mathrm{~K} \Omega$. $39 / 6$

TE-20D RF SIGNAL GENERATOR

Accurate wide range sig-
 6 hands. Directly cailbrated. Variable H.F. it tenuator, audio output Xtal socket for calibra tion. $220 / 240 \mathrm{~V}$ Brand new with Instruc

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 A.F. SINE WAVE $20-200.000 \mathrm{c} / \mathrm{s}$.
Bquare wave $20-$
30 . $\begin{array}{lll}30,000 & \mathrm{c} / \mathrm{s} & 0 / \mathrm{P} \\ \mathrm{HIGH} & \mathrm{MP} & 21 \mathrm{~V}\end{array}$ $\begin{array}{ll}\text { HIGH IMP. } 21 \mathrm{~V} \\ \mathrm{P} / \mathrm{P} 600 \Omega & 3.8 V . \mathrm{P}\end{array}$ $\mathrm{P} / \mathrm{P} 600 \Omega \mathrm{~S} \cdot \mathrm{gV} . \mathrm{P} / \mathrm{P}$
$\mathrm{TF} 100 \mathrm{Kc} \mathrm{F}-300$ Mc/a. Variable R.F monitor AF out put and \% mod. ou R.F. $220 / 240 \mathrm{~V}$
新0.0.0. Cart. $7 / 6$.
TE-65 VALVE VOLTMETER

High quality instrument with 28 ranges. D.C. wolty
$1.5-1,500 \mathrm{v}$. A.C. volts $1.5-$ $1.5-1,500 \mathrm{v}$. A.C. volts $1 \cdot 5-$
$1,500 \mathrm{v}$. Reatatance up to $1,500 \%$. Realstance up to
1,000 megohns. $220 / 240$: A.C. operation. Complete with prohe and Additional probes able: R.F. $35 /-$. H.V. $42 / 6$.

TE-900 20,000 1 /VOLT GIANT MULTIMETER mirror scale and overload protection. tiin. fult view meter. 2 colour scale. $0 /$
$2 \cdot 5 / 10 / 250 / 1,000 / 5,000 \%$ A.C. $0 / 25 / 12.5 / 10 / 50 / 250$ $1,000 / 5,000 \mathrm{v}$ D.C. 0 $50 \mu \mathrm{~A} / 110 / 100 / 500 \mathrm{~mA}$ 10 amp. D.C. O2K
$200 \mathrm{~K} / 20$
MEG. OHM 200K/20 MEG. OHM
216. P. \& P. $5 /-$.

PRORSSIO PROFESSION-
AL 20,000 op LAB. TYPE Automatic tection, mirror scale. Ranges: $1 / 10 / 50 / 250 / 500 / 1,000$ volts
D.C. and A.C. $0-500 / 2 \mathrm{~A}, 10 \mathrm{~mA}, 200 \mathrm{~mA}$ Current: $0 / 20 \mathrm{~K}, 200 \mathrm{~K}, 2$ megohm, Decibels -20 to +22 dB . $£ 5.19 .6$.

MODEL TE-70. 30,000 O.P.V. 0/3/15/60/300/600 $600 / 1,200 \mathrm{v}$. A.C. $0 / 30 \mu \mathrm{~A}$ $13 / 30 / 300 \mathrm{mLA} .0 / 16 \mathrm{~K} / 160 \mathrm{~K}$ $11.6 \mathrm{M} / 16$ Meg. ${ }^{\mu}$
25.10 .0. P. \& P. $3 /-1$

TE-51. NEW 20,000 』/ VOLT MULTIMETER with overload protection and
mirror scale. $0 / 6 / 60 / 120 /$ mirror scale $\quad 0 / 6 / 60 / 120 /$
$1,200 \mathrm{v}$. A.C. $0 / 3 / 30 / 60 / 300 /$ $1,200 \mathrm{v} . \mathrm{A.C} 0 / 3 / 30 / 60 /$.300
$600 / 3,000 \mathrm{v}$. D.C. $.60 \mu \mathrm{~A} / 12$ 1300 mA . D.C. $0 / 60 \mathrm{~K} / 6 \mathrm{meg}$. ohm. $98 / 6$. P. \& ohm. 92/6. P. \& P. 2/6.

TY75 AUDIO SIGNAL GENERATOR
Sline Wave 20 CPg-200
Kc/a. Square Wave 20 CPB-30 Kc/e. High and low impedance output. Output variable up to 6
volty, $220 / 240$ volts A.C

Brand new with Instruc Brand new with Instruc Size $210 \times 150 \times 120 \quad$| 216, |
| :---: |
| mm |

transistorised l.c.r. a.C. measuring bridge

A new portable
bridge offering ex-
cellent

$\pm 1110 \mathrm{mFU} .6$ Ranges $t 2 \%$. TURNB RATIO
$1: 1 / 1000-1: 11100$. 6 Ranges $1: 1 / 1000-1: 1100$. 6 Ranges 1%, Bridge
voltage at $1,000 \mathrm{cpn}$. Operated from 9 volts $100 \mu \mathrm{~A}$. Meter indication. Attractive 2 tone metal case. Size $78 \times 5 \times 2 \mathrm{in}$. $£ 20$. P R209 MK. II COMMUNICATION RECEIVER 11 valve high grade communication receiver suitablefor tropical une. I-20 Mc/a on 4 bands. AM/CW/FM operation. Incorporates precision vernier driver, BFO. Aerial irmmer, internal speater and 12 v . D.C. interual power suppty and checked. $£ 15.0 .0$. Carr. 20/.

cARRARD

FULL CURRENT RANGE OFFERED BRAND NEW AND G

 - 1025 Mono. *1025 Stereo *2025 Stereo

* $2025 \mathrm{~T} / \mathrm{C}$ Mono/sterco
- ${ }^{\text {SPP}}$ P5 MKII.

ALD MK II

- AT60 MKII
- SLis
AP75

401.

SL95
27.19 .8
e8. 8.0
£8. 8.0
£8.17.8
£8.17.6
£9.19.6 £9.19.6
\& 11.19 .6
$£ 11.19 .6$
812.10 .0
e14.14.0
e19.
0
e18. 0.0
2.68.
£29. 0.0
e35.
0.0
235. 0.0

WB4 Bases £3.19.6 Perspex Cover £3.10.0 Carriage/insurance $7 / 6$ extra any model *gpecial offer base ind cover available for these models at $\mathbf{~ 4 . 1 5 . 0 . ~ C a r r . ~ 5 / - . ~ F u l l ~ r a n g e ~ o f ~ G a r r a r d ~ a c c e s s o r i e s ~ a v a i l a b l e . ~}$

UNR-30 4-BAND
COMMUNICATION RECEIVER
Covering $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates BFO. Built in speaker and phone jack. Metal cabinet. Operation 220 lostrictions. Supplied brand new. 13

LaFAYETTE SOLID STATE HAGOO RECEIVER 5 BAND AM/CW/SSE AMATEUR AND SHORT WAVE $150 \mathrm{Kc} / \mathrm{s}-400 \mathrm{Kc} / \mathrm{s}$ and $650 \mathrm{Kc} / \mathrm{e}-30 \mathrm{Mc} / \mathrm{s}$ F E T front end 2 mochanical Elters Euge dial Product detector Crystal calibrator Variable BFO Noise lmiter S meter 24 in . Bandapread 230 V . A.C./12V. D.C. neg. earth operation RF gain control. Size 15in. $\times 9$ gin. \times e45. Carr. 10/-. S.A.E. Ior full details.

new Star SR-200 SSB AMATEUR RECEIVER
An exciting new receiver covertng 6 amateur bands $180 / 80 / 40 / 20 / 15 / 10$ metres. Illuminated side rule dial 8 meter Crystal cilibrator e Product detector Automatic nolse limiter RF turing and gain controis. Speaker or phone ontputs 8 valvea, 2 tran-
sistors, 2 diodes. $220 / 240 \mathrm{~V}$. A.C. Supplied brand new nd guaranteed. $\mathbf{2 4 0 . 0 . 0}$. Cars. $10 /$-.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER 19 transistors, 8 diodes. IHF music power
30 W at 8 ohms. Res. $30-20,000 \pm 2 \mathrm{~dB}$ at 30 W at 8 ohms. Res, $30-20,000 \pm 2 \mathrm{~dB}$ at 1 W . Distortion : and B volume controls Treble and bass L. and R, volume controls. Treble And basa aluminium, gold-rnodined extrudell front panel with metal case. $10 \frac{1}{2} \times 3^{2} / 18 \times{ }^{-13} / 18$ in $115 / 230 \mathrm{v}$. A.C. £28. Carr. 7
MODEL ZQM TRANSISTOR CHECKER It has the fullest eapacity for
checking on A, B and lco. Equally adaptable for checking diodes, etc,
Spec.: A: $0.7-0.9967$. B: 5-200.
microampa
Resistince
Resistince for diode
$200 \Omega \cdot 1 \mathrm{M} \Omega$. guppliei
complete with instruc
\star TRANSISTORISED FM TUNER \star
 6 TRANBIBTOR
HIGH QUALITY HIGH QUALITY
TUNER. $81 Z E$
 3 I.F. Atrges. criminntor. Ample output to feed most ates on 9 V battery. Coverage 88-108Mc/s. Ready built remiy tor use. Fantartic value Stereo multiplex adaptors $97 / 6$

TO-3 PORTABLE OSCILLOSCOPE

KHZ . Synchronization. Internalexs 300 Illuminated scale $1+0 \times 215 \times 330 \mathrm{~mm}$. Welg new with handbook $£ 35$. Suppled brand new with handbook. $£ 35 \cdot 0.0$. Carr

COTER FOR 150 \& 80 METRES TZ RECEIVER FOR AMATEUR BANDS
 4 macie io nome recelver, Emc. Carr. 4/6. moblis or home ONLY £15.17.6. Carr. 4/8.

CRGS MAINS T.R.F. SHORT-WAVE CRAS MAINS T.R.F. RECEVER Separate olectrical bandRECEIV whe recepilon. * Separa. * Output 3 wath World wis slow motion drive $\mathrm{ECCB}, \mathrm{EL}, \mathrm{EL4}, \mathrm{E} 280$.
 S12e $12^{\circ} \times 51^{\circ} \times 7^{7}$ ". CoD metres). £9.15.0. Carr. (10-28, $25-75,60-176$ mer. 54) 11.19 .6 61. or read 514 eachir

R.F. PRE.SELECTOR MODEL P.R.JI 1.5-30Me/s 200 gain plus subutantal selac-
 rejection, Power requltements $180^{-20} 5^{*} \times 4^{4 \prime}$. Roady built 6.3 volts. 3 amp L.T. Size 6.3 volts, with cables, plust all Pored P.R.30x E5.19.6. Carr. 4/6. Seli-power ${ }^{£ 7.19 .6 .}$ Carr. $4 / 6$.

Please supply (1ck as required)

Renter
 Win Ele ss

TOPIC DF THE MONTH

Time for review

THE Monopolies Commission has its ever vigilant eye on matters of take-overs and lack of competition, yet it has never looked at radio broadcasting-the attitude seems to be that monopoly by semi-state organisations is no evil.

Before readers draw the conclusion that we are about to change our policy and jump on the bandwagon of the "pirate station lobby" we say straightaway that we will never support anarchy of the airwaves (or anywhere else for that matter). All we are suggesting is that it is time to review the situation on sound broadcasting, to see whether there isn't a good case for the licensing of radio stations independent of the $B B C$, their revenue obtained by advertising.

We know the arguments against this; that the programme material would descend to the lowest common denominator, that there aren't the available frequencies, that local papers would suffer from the competition for advertisers and that the BBC is doing a grand job anyway. We have said that we are suggesting ideas, not acting as a pressure group, but let us take these arguments one by one, taking the last one first.

There is no need to commit Auntie to euthanasia, she is doing a grand job, and independent stations could be complementary to the existing four services. There could be room for them, on v.h.f., (125 channels are available). Most American cities of any size have at least fifteen f.m. stations, so we could presumably do the same without interference to or from European stations. As for the argument that commercial radio would rob local papers of advertising, this has not been borne out abroad where this has happened, nor were national newspapers hit by the introduction of Independent Television.

We are very lucky in having a body such as the BBC to control our broadcasting services as they stand at the moment, but Auntie can stand competition-she has done it in the past and can do it again. The Conservative Party has pledged to review the situation if they are returned at the next election and the big debate on this subject is likely to grow.

Let's start talking about it now; we welcome readers' comments.
W. N. STEVENS—Editor

NEWS AND COMMENT

Leader 905
News and Comment 906
MW Column by C. Molloy 932
Practically Wireless by Henry 941
Letters to the Editor 942
On the Short Waves
by Christopher Danpure and David Gibson, G3JDG 945
CONSTRUCTIONAL
Cir-Kit 908
P.W. Double-12, Part 1 by Hal Moorshead 910
Progressive Superhet, Part 2 by F. G. Rayer, G3OGR 916
The Mite by Julian Anderson 924
One-Sixty Superverter, Part 2 by A. S. Carpenter, G3TYJ 937
OTHER FEATURES
Aerials. Part 1-Transmitter Aerials
by A. J. Whittaker 914
Satellite Earth Station, Part 1 by Richard Collins 923
Relays and their Uses, Part 1 by K. T. Wilson 928
Home Workshop Practice, Part 2 by P. Hamley 933
Magnetic Sound Recording, Part 3
by W. S. Fowler 949
MAY ISSUE WILL BE PUBLISHED ON APRIL 8th

TRANSISTOR TESTER TT 1

The model TT 1 transistor tester is a portable, battery operated instrument for checking the leakage current and current gain of bi-polar transistors. Its main feature is that current gain may be measured anywhere within the range of 5 microamps to 100 milliamps, ensuring that circuit operating conditions may be reproduced. An expanded scale is provided for indicating leakage current, covering the range 0 to 100 milliamps, mid-scale 100 microamps. All measurements are made with a collector voltage of 9 V .

Specification: Measurement facilities-d.c. current gain, Collector-base leakage current, Diode leakage current, Internal battery check. d.c. current gain ranges-10-1000. Collector current ranges- $0-100$ microamps, 0-1 milliamp, $0-10$ milliamps, $0-100$ milliamps. IndicationOn 3in. moving coil meter and calibrated dial. Polarity-$\mathrm{n}-\mathrm{p}-\mathrm{n}$ and $\mathrm{p}-\mathrm{n}-\mathrm{p}$. Collector voltage- 9 V . Power supplyFrom internal 9V PP7 battery, duration 6 months. Case-Hammer-grey finish with screened front panel, "lay flat" carrying handle and rubber feet. Weight-3 lb. Size$9 \times 6 \times 3$ in.

The price is $£ 32$. R.M.S. Instruments Limited, 24 Guildford Street, Chertsey, Surrey.

the ravensbrook stereo amplifier

The Ravensbrook is based in many respects on the Ravensbourne design with a nominal output of $10+10$ watts.

The whole amplifier is constructed on a single printed circuit board made from high grade fibreglass.

A four-way push-button input Selector provides selection of disc, tuner and tape inputs. The fourth button provides for mono/stereo operation. In the mono position the left-hand input channel is fed to both speakers. The
output from a compatible stereo pickup is connected in parallel tor playing mono records.

Total harmonic distortion is less than 0.1% at 10 watts into 15 ohms .1 kHz ; and less than 0.25% at 10 watts into 15 ohms. $100 \mathrm{~Hz}-10 \mathrm{kHz}$. Output impedance matching is 8-16 .

A low noise pickup input stage using a special low noise p-n-p transistor, in conjunction with a high output second stage, achieves a very wide dynamic range. This avoids distortion on peak recorded passages. Two special quadrifilar wound transformers are used to drive two pairs of high current gain output transistors giving very low distortion. The technique of winding quadrifilar transformers, where all four windings are wound simultaneously, results in maximum coupling and perfectly balanced windings. These transformers are smaller versions of those to be found in the Ravensbourne amplifier. Silicon transistors are used throughout apart from one germanium device which forms part of the regulated power supply.

Recommended UK retail prices: Chassis model 14210 s . Case model $£ 4710$ s. Teak case alone E5. Purchase tax 10 s .1 d .

Rogers Developments (Electronics) Limited, 4-14 Barmeston Road, Catford, London, S.E.6.

COURSE FOR BEGINNERS AND ADVANCED

Readers might be interested to know that the Leyton Senior Evening Institute, Essex Road, E. 10 runs a radio and TV maintenance class on Wednesday and Thursday evenings dealing with the principles and practice of our hobby. This caters for beginners and the more advanced.

Enrolment is through the normal evening institute channels, and, although the course started in September, new faces are always welcome.

MOTOROLA DATA BOOK OF ICs

Motorola Semiconductors Limited, York House, Wembley, Middlesex, has announced publication of the first edition of The Integrated Circuits Data Book. It contains complete data sheet specifications and other applications and test data for all standard Motorola integrated circuits (both digital and linear) manufactured at the time of publication.

A valuable interchangeability guide to all major manufacturers of digital and linear integrated circuits is included. Manufacturer type numbers are listed in alphanumerical order by product family and cross-referenced to the Motorola direct replacement. A description of the circuit function is also included for each manufacturer's part number.

Other items in the 960-page reference include a digital applications selection guide, arranged by function, for Motorola's eleven logic families, and an alphanumeric index to all Motorola type numbers. Separate sections are devoted to MECL, MHTL, MTTL, MDTL, MRTL, MOS and linear integrated circuit data sheets, plus a 12-gate complex array

Supplements to The Integrated Circuits Data Book will be available, and an updating service subscription coupon printed in each copy gives the subscriber the opportunity of receiving complete data sheet information for all new Motorola IC introductions.

The book can be obtained from The Modern Book Company, 19-21 Praed Street, London, W.2, at a cost of £2 10s, plus 5 s. postage and packing.

new And comment...

For nearly 50 years listeners have been reporting to broadcasters on reception of transmissions. In return, the $B B C$ and other broadcasters have sent cards to verify correct reporting, the card issued by BBC External Services being known throughout the world as the "Big Ben" card.

Now, for the first time, the $B B C$ is offering an award to listeners who carrectly report on a number of BBC transmissions reccived from different transmitting sites. The reports will be analysed by BBC engineering staff and the certificates will be issued by the programme, World Radio Club. This award scheme applies to the one frequency schedule period only-2nd March to 3rd May, though there's a possibility that the scheme will be repeated.

To qualify for the award, listeners must give evidence of reception of three $B B C$ transmissions from each of the following: Great Britain and the Atlantic, East Mediterranean and Far Eastern relay stations. These twelve reports (which must be received in one envelope before the end of Niay) should contain the following information. location, date, time, frequency and a few words about programme content. In return, the award will contain the
four verifications required by the serious DXer.
To be eligible for the award, a DXer must be a member of World Radio Club, the programme for DXers and shortwave enthusiasts which is broadcast in BBC World Service on Sundays at 0930 GMT, Thursdays 1245 GMT, Fridays 2345 GMT and on the North American Service on Mondays at 1515 GMT. To become a member you need simply write to World Radio Club, BBC, Bush House. London, W.C.2.

The picture shows Doug. Crawford, the World Radio Club compère.

CONFERENCE

DIGITAL SATELLITE COMMUNICATION

A major impact on all aspects of satellite communication over the next five years is expected to result from the introduction of digital techniques, especially pulse code modulation. In recognition of the economic and technical implications of this, Intelsat, the international consortium of over 60 nations is to sponsor a conference entit/ed "Digital satellite communication". The IEE is to co-sponsor the conference which will be held at Savoy Place, London, W.C.2, from the 25th to 27th November 1969.

The aim of the conference is to provide a forum for the presentation and exchange of information on digitalcommunication techniques, and the programme will embrace: systems aspects including performance targets and comparisons with analogue systems, coding and modulation, signalling and switching including interface with terrestrial networks, demand assignment and multiple access techniques, error control, interference aspects.

The programme will also include some invited papers from international authorities in this field.

The technical programme committee invite contributions from all nations, and intending authors should submit synopses written in English (preferably) or French of 500 to 1000 words in length by the 1st April 1969.

Further details of the conference and registration forms will be available in due course from the Intelsat-IEE Joint Conference Secretariat, Savoy Place, London, W.C.2, England.

CASSETTES FROM LONDON TO SYDNEY

Fifteen of the cars which completed the London to Sydney Marathon carried the Cassette Car Radio and other Philips car entertaining equipment. They included one of the six official Ford Cortinas, driven by Britain's Roger Clark with Ove Andersson as co-driver, which was all-set to win the marathon before mechanical trouble on the last lap put it into 10 th plàce.

THE LECTURE:

About calour TV, covering the setting-up procedure and dealing in detail with degaussing, purity, convergence and grey scale tracking.
THE FILM:
Entitled "It's the Tube that makes the Colour" and describing the
manufacture of Mullard "ColourScreen" TV picture tubes.
THE NOSH:
Free refreshments will be served during the interval.

THE VENUE:

Caxton Hall, Caxton Street, Westminster, London, S.W.1.

THE DATE:
Friday, March 28 th at 7.15 p.m.

THE TICKETS:

They're free too! send a s.a.e. now to: FILM SHOW, Practical Television, Tower House, Southampton Street, London, W.C.2.

HOW TO USE YOUR FREE GIFT TO BEST ADVANTAGE

Like all good inventions, Cir-Kit is the kind of product which makes you wonder why it was not invented years ago. It is remarkably simple, cheap and efficient and in this article ways will be described of using your free length of Cir-Kit to its best advantage.

CYIR-KIT, which is the invention of Mike Wheals, is produced by his company "Peak Sound (Harrow) Ltd.". As you will see from your free sample, it comprises 99.5% pure copper strip one-sixteenth inch wide. This copper strip, which is only two-thousandths of an inch thick, is backed by a layer of special adhesive
protected by easily removed silicon release paper. The surface of the copper is covered by a flux assist lacquer making soldering easy.

Being inexpensive and easy to apply, either to plain or matrixed paxolin board, alterations and modifications are quickly carried out.

APPLYING CIR-KIT

If there is not a circuit layout to follow, refer to the theoretical circuit diagram and if necessary decide how you wish the components to be arranged on the board. The overwhelming number of semiconductor circuits are low impedance operated and the layout is therefore relatively unimportant. Normally articles in Practical Wireless give details of whether layout is important and this may be taken as a reliable guide.

Fig. 1: The component leads should be passed through holes adjacent to the strip; Fig. 2: Leads may be doubled back if convenient, Fig. 3 and 4: Bends or curves are easily incorporated. Fig. 5: T-junctions are made by joining the strips and soldering afterwards, Fig. 6: Components of different sizes may be mounted on two parallel strips by using holes on alternative sides; Fig. 7: Crossovers may be used; Fig. 8: For quick "bread-boarding" components may be mounted on the same side as the copper strips.

Because of its economical rate of use and its long life the lengths of Cir-Kit sold on cards should last the experimenter a considerable time. Another advantage is that the adhesive will be found to strengthen with age making it suitable for both permanent and experimental work.

The length presented is sufficient to enable you to build either the $\mathrm{Hi}-\mathrm{Fi}$ preamp or the tone control for the P.W. Double-12 project described on page 910 .

Laying the Cir-Kit strip is a simple matter of peeling back the protective backing and pressing it onto the matrix board.

A very easy and convenient way to work out the layout is to draw the proposed positions on one-tenth inch graph paper and, using the same pitched matrix board, transfer the final layout to the board. Using one-tenth inch matrix board, the one-sixteenth Cir-Kit strip will fit exactly between the holes.

Cir-Kit may of course be used with plain board such as paxolin, but here it will be necessary to drill the required holes with a No. 60 drill, these holes may be either adjacent or through the strip.

ADVANTAGES OF CIR-KIT

One distinct advantage of Cir-Kit is that cross-overs can be incorporated in the design; it is only necessary to lay clear adhesive or insulating tape over the strip nearest the board and lay the cross-over strip on top of that. Right-angles and curves are readily made by gently bending the Cir-Kit as it is laid.

SOLDERING

Soldering presents no more difficulties than with any other form of wiring. It will however be necessary to bear in mind the rules that apply to good transistor soldering techniques. These are:

1. You should have a hot soldering iron to start with.
2. Low melting point solder should be used.
3. Apply the solder and iron together leaving them there just as long as necessary (one or two seconds is about right as long as the solder has begun to flow).
4. Once the joint has been made ensure that the component is not moved whilst the solder is setting.
5. Too long an application caused by using an iron which is too cool will cause the :oopper strip to expand and possibly lift off the board.

QUICK BREADBOARDING

When quick experimental circuits are required the Cir-Kit strip and the components may be applied to the same side of the board, making alterations and modifications very quick.

POINTS TO REMEMBER

Cir-Kit, exactly as supplied as the free gift, is widely used by industry, research organisations and educational authorities for experimental and development work.

Watch out for the

NEW LARGE-PAGE PRACTICAL TELEVISION

April issue on sale March 21

Contents include

The Videoscope MV3

A new P.TV oscilloscope design with wide bandwidth to meet the requirements of colour receiver and videotape equipment servicing.

\star Understanding Colour Faults

The first requirement in trouble-shooting in the chroma and tube-drive sections of a colour receiver is an understanding of colour faults: are you faced with a case of distortion, phase error, low gain in one channel or the complete absence of one or more of the colour signals? The diagnosis of colour faults and how to quickly pinpoint their causes is simply explained.

\star Aerial Design

Constructional details of a Band I/II! aerial for loft or outdoor use with a combined downlead. Also how to make a simple balun.

\star Flywheel Sync Circuits

Commonly-used circuits are examined with an outline of fault-finding and adjustment procedures and off-screen illustrations of fault effects.

PLUS ALL THE REGULAR FEATURES

THE

DOUURE•12 H-FI AIMPLIFIER

 HAL MOORSHEAD
PART 1

THE term "High Fidelity" has been grossly misused for a considerable time in some quarters and the amateur constructor may have been very disappointed at some of the results achieved after building amplifiers claiming to fall into this category.
The Practical Wireless "Double-12" was designed as a true hi-fi project, that is its performance had to fall within certain specifications for frequency response, distortion etc. If the electrically measured characteristics are good on an amplifier it follows that the final results when listening to records, tape or f.m. radio will also be good. In addition to being excellent in performance the "Double- 12 " is easily made from reasonably priced components, all readily available and the associated metalwork and cabinet are as simple as possible, compatible with rigid construction and pleasing appearance.

The equipment used for testing the P.W. Double-12.
This month's article deals with the building of the panels for the preamplifier and tone control using the free gift of Cir-Kit presented in this issue. The length supplied is sufficient to build either of these units. Next month we will be describing the connecting of these panels to the controls and the
metalwork for the complete preamplifier. The following issue will deal with the main amplifiers and power supply and details of a suggested cabinet.

Although this short series will be dealing with a stereo project, there is no reason why it cannot be used for mono and here, of course, only one preamp. and one main \approx mplifier are needed.

Specification

To be considered as hi-fi an amplifier must have sufficient output, and for this reason an output of 12 watts (r.m.s.) was considered necessary. Obviously it is no good having plenty of power if it is distorted and the total distortion at 10 watts is about 0.06% and at 1 watt a tenth of that figure. To provide a wide range of tone control separate bass. and treble controls give a 12 dB boost or cut at $100 \mathrm{c} / \mathrm{s}$ and $10 \mathrm{kc} / \mathrm{s}$ with reference to $1 \mathrm{kc} / \mathrm{s}$. With no fre-

A 1kc square wave after having been passed through the entire amplifier.

The very slight slope on the square wave at 10 kcs shows that response at this frequency is also very good.

Fig. 1: Graph showing the control of the tone controls. The horizontal line is with both treble and bass controls in the centre position.

Fig. 2: The equilisation of the unit for a Deram pickup.

The front panel of the completed unit.
quency correction applied the response is within $\pm 3 \mathrm{~dB}$ between $30 \mathrm{c} / \mathrm{s}$ and $45 \mathrm{kc} / \mathrm{s}$.

An amplifier of this sort needs switched equilisation for magnetic or ceramic cartridges. The output from an f.m. tuner should already be equalised as should the low level output from a tape-recorder and in these cases frequency correction is not needed.

An attractive feature incorporated in the preamplifier is the overload factor, that is the factor by which the input may be overloaded without incurring unacceptable distortion. The following figures give the input sensitivities for full output and the overload figures in parentheses: Magnetic pickup $-2.5 \mathrm{mV}(45 \mathrm{mV})$, Ceramic pickup -25 mV $(250 \mathrm{mV})$, Radio or auxiliary -60 mV (1 volt).

The most severe test that may be applied to an amplifier is to observe on an oscilloscope the reproduction of a square wave. Any deficiencies in the system will show up clearly: photographs of the response at two frequencies show how well the "Double-12" performed.

Preamplifier circuit design

In the preamplifier low-noise silicon transistors were chosen and the plastic encapsulated versions were used, $B C 169 \mathrm{C}$, these are available for about $2 s .6 d$. each. The actual types used are not critical and if slightly less gain can be tolerated the following types may be used BC109, BC149, BC172, BC184L, BC151, BC154, 2N930 and 2N3391A. Some of these types are exact equivalents but, as mentioned, others have less gain.

Transistors $\operatorname{Tr} 1$ and $\operatorname{Tr} 2$ form a directly coupled pair, the base voltage of $\operatorname{Tr} 1$ is derived from the emitter of $\operatorname{Tr} 2$ through $\mathrm{R} 7,220 \mathrm{k} \Omega$. By using this arrangement a high impedance input can be obtained making matching a simple matter by selecting suitable resistors on the input switch; another advantage of this arrangement is the stabilisation achieved and an improvement in the signal-to-noise ratio.

To obtain the necessary equalisation for the various inputs, negative feedback is taken from the collector of $\operatorname{Tr} 2$ through a switched RC network to the emitter of Tr 1 . In switch position A (magnetic cartridge) the equilisation is within $\pm 1 \mathrm{~dB}$ over the complete audio range for the RIAA replay curve.

For ceramic cartridges the low and high turnover points can be adjusted by altering the input resistor R3. The value shown gives a good response for the Sonotone 9TAHC, while the graph shows the curve for a Deram pickup.
Careful selection of the components in the feedback circuit will give a good signal-to-noise ratio on all inputs (60 dB down) and a high overload point (26 dB on magnetic pickups).

Tone control circuit design

The tone control is built on a separate board and, in addition to giving wide control over the tone, gives a voltage gain of four times. Linear rather than reverse logarithmic controls are used because of the difficulty of matching such controls. If the tone control is to be used on a monaural system reverse logarithmic controls may of course be used.
The operating point of Tr 3 is controlled by R4, R5 and R6, while a.c. feedback is removed by C7. Tone control is achieved by means

\star components list

PRE-AMP

Resistors:

R1	$82 \mathrm{k} \Omega$	R9	$15 \mathrm{k} \Omega$
R2	$4 \cdot 7 \mathrm{k} \Omega$	R10 $18 \mathrm{k} \Omega$	
R3	$27 \mathrm{k} \Omega$	R11 $220 \mathrm{k} \Omega$	
R4	$82 \mathrm{k} \Omega$	R12 120Ω	
R5	$820 \mathrm{k} \Omega$	R13 $15 \mathrm{k} \Omega$	
R6	$220 \mathrm{k} \Omega$	R14	820Ω
R7	$220 \mathrm{k} \Omega$	R15 $18 \mathrm{k} \Omega$	
R8	330Ω		
VR1 $10 \mathrm{k} \Omega$ log-Double ganged			

Capacitors:

C1	$2 \cdot 5 \mu \mathrm{~F} 64 \mathrm{~V}$ Mullard
C 2	$6 \cdot 4 \mu \mathrm{~F} 25 \mathrm{~V}$ Mullard
C3	20 or 22 pF
C4	$80 \mu \mathrm{~F} 2.5 \mathrm{~V}$ Mullard
C5	5000 pF Mylar film
C6	$0.1 \mu \mathrm{~F}$ Mylar film
C7	$0.02 \mu \mathrm{~F}$ Mylar film
C8	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ Mullard
C9	$2.5 \mu \mathrm{~F} 64 \mathrm{~V}$ Mullard
C10	$80 \mu \mathrm{~F} 25 \mathrm{~V}$ Mullard

Transistors:

Two of any of the following silicon types-BC169, BC184, BC149, BC109 in gain groups-high gain are recommended.

Miscellaneous:

Board- 0.1 in. matrix or plain paxolin $2 \times 3 \frac{3}{4} \mathrm{in}$. Four-pole Three-way selector switch. Cir-Kit 17 in .

Fig. 4: The component layout of the preamplifier showing the positioning of the Cir-Kit strip.

Fig. 5: The circuit of the tone control.

components list

TONE CONTROL CIRCUIT

Resistors:

R1	$220 \mathrm{k} \Omega$	R5	15 k ת
R2	$22 \mathrm{k} \Omega$	R6	$47 \mathrm{k} \Omega$
R3	$22 \mathrm{k} \Omega$	R7	$3 \cdot 3 \mathrm{k} \Omega$
R4	$47 k \Omega$	R8	$6 \cdot 8 \mathrm{k} \Omega$
VR1	Treble 100ks	VR2	Bass 250ks 2

[VR1 and VR2 should be double ganged types for stereo].

Capacitors:

C 1	3300 pF	C 5	$10 \mu \mathrm{~F} 16 \mathrm{~V}$
C 2	3300 pF	C	$10 \mu \mathrm{~F} 16 \mathrm{~V}$
C 3	$0.01 \mu \mathrm{~F}$	C 7	$10 \mu \mathrm{~F} 16 \mathrm{~V}$
C 4	$0.01 \mu \mathrm{~F}$	C 8	$10 \mu \mathrm{~F} 16 \mathrm{~V}$

Transistor:

BC169C or any of series quoted for preamp.

Miscellaneous:

Baseboard $0 \cdot 1$ in. matrix board or plain paxolin $2 x$ $3 \frac{3}{4} \mathrm{in}$. Cir-Kit 17in.
of frequency selective feedback one network giving treble boost and cut, the other providing bass boost and cut. The output from the unit is taken via C8 to the input of the power amplifier, the volume having been controlled at the input to the tone control unit.

Layout considerations

As mentioned in the article dealing with Cir-Kit, layout is uncritical and the one suggested may be altered if desired. No attempt has been made at miniaturisation and the layout roughly follows the circuit diagram. For those wishing to make the units smaller it is perfectly possible to have the preamp and the tone control on one panel for each channel.

The actual assembly of the units should be as described in the introductory article on CirKit, the points made on soldering being observed in construction.

Next month details will be siven on the physical layout of the units and the construction of the pre-amplifier as a complete unit.

Fig. 6: The arrangement of the components for the tone control panel.

PART 1-TRANSMITTER AERIALS

THE basic principles of radiation of wireless waves were first investigated by Clerk Maxwell in 1864, and from the general laws of magnetism, he deduced that: "A detachment of electromagnetic energy must occur whenever the current in a circuit changes, i.e., whenever an electron has its velocity altered by the action of an accelerating force."

Fig. 1: The electric field with no aerial current.

Fig. 2: The start of aerial current coincides with the electrostatic field collapsing.

Fig. 3: Energy being radiated from the aerial in cycles. See text for explanation.

This article sets out to give the near-beginner an insight into the design and functioning of aerials, and in particular shows how to juggle the formulae associated with them. Before embarking on the study of theory, however, there are a couple of terms which will crop up frequently that should be explained.
The polarisation of the wave is the plane of the electrostatic field of the radio wave which corresponds to the voltage of the wave. Therefore, waves radiated from a vertical aerial have their electrostatic field in a vertical plane, and are said to be vertically polarised. The electromagnetic field, of which the wave is also composed, is at right angles to the electrostatic field, and corresponds to the current of the wave.
Field strength is a measure of intensity and is the voltage developed between the ends of a length of wire, one metre in length, placed with its axis parallel to the axis of polarisation. This voltage is produced partly by the electrostatic field which, in cutting the wire at right angles, induces a voltage in it. As both the electrostatic and electromagnetic fields are in time phase with each other, the induced voltages will add.

Dipole or Hertzian Oscillator

Professor Hertz, in 1880 , in a series of classical experiments succeeded in producing waves of the type predicted by Clerk Maxwell. He developed a form of dipole aerial for detecting and radiating electromagnetic oscillations and showed that the waves produced obey the same laws as light waves.
A dipole is a symmetrical aerial, the two ends of which are at opposite potential, with respect to a central earth point. Figure 1 shows the distribution of the electric field when the current in the aerial is zero.
When the moment of maximum potential has passed the electrons will start to flow upwards, constituting an electric current, and giving rise to the electromagnetic field. At this point in time the electrostatic field starts to collapse. Figure 2 illustrates this condition.
Due to the property of electric inertia, summarised by Lenz's and Faraday's Laws "the current in a circuit continues to flow after the potential across the condenser is reduced to zero"' and in so doing starts to charge up the capacitor in the opposite direction giving rise to new lines of force in a reverse direction to the previous field. If we regard the collapse of the initial field as lagging a little on the changes in potential which caused it to take place, then it is clear that the new electric field starts to build up before the first one has disappeared. The first disturbance is then forced outwards in the form of closed loops, by the build-up of a new electric field. Figure 3 shows the detachment of radiated energy. The direction of the lines in the inner surface of the first loop, and the outer surface of the second are the same and accordingly mutual repulsion takes place.

In addition to the electric fields, we must regard the circuil as being surrounded by rings of magnetic stress, the intensity of which, at any point, will vary with the current strength and whose direction alternates.

In the immediate neighbourhood of the current carrying wire (aerial) the magnetic lines of force are in the horizontal plane and at right angles in space to the electricflux. This essential spacequadrature is maintained in the radiated field. The electric and magnetic inductive fields are in time and space quadrature i.e., 90° out of phase in time and in space at right angles. Figure 4 illustrates.

OZ Oscillating electric field
OX Oscillating magnetic tield
or Direction of propagation at right angles to the wave front

Fig. 4.

When a wave arrives at the surface of another medium and the direction of propagation is perpendicular to the surface, it is then completely reversed and the wave travels back along its original path, but it suffers a 180° phase change. The direction of the magnetic or electric fields will be reversed, but not both. Usually it is the electric field which reverses in direction.

Velocity of Propagation

The amplitude of the electric field " X " measured in electrostatic units is numerically equal to the amplitude of the magnetic field " H " measured in electromagnetic

Fig. 5: The wavefront HQR moves out from the source of radiation.
units. When " X " and " H " are expressed in the same fundamental units the relation connecting them is

$$
\frac{\mathrm{X}}{\mathrm{H}}=\mathrm{C} \text { Where } " \mathrm{C} \text { " }=3 \cdot 10^{10} \mathrm{~cm} / \mathrm{sec}
$$

The general formulae in r.m.s. values is " X " $=300 \mathrm{H}$.

Polarisation and Wave Front

With reference to Figure 5, all points along the surface, HQR experience the same moving flux at the same time. HQR represents the wave front which is the surface joining together all points that experience the same flux at the same time. The direction of propagation is always at right angles to the wave front. Detached loops move outwards with ever increasing heights, but preserving a constant width.
The frequency with which successive maxima will follow each other is given by,

$$
\mathrm{f}=\mathrm{c} / \lambda
$$

or $c=f \lambda$ where λ is the wavelength.
When the electrostatic flux lines are vertical the wave is said to be vertically polarised. This occurs when the transmitting aerial is vertical in space. Conversely when the electric field is horizontal the wave is said to be horizontally polarised. The amplitude of the radiated wave varies inversely as the square of the distance from the transmitter aerial.

Total Power Radiated

Radiation from a dipole may be summed up by assuming it to be placed at the centre of a large sphere, the surface of which will be continually penetrated by outgoing moving fields. The electric and magnetic fields represent a storage of energy evulated from $\frac{1}{2} \mathrm{CV}^{2}$ (energy in capacitive component) and $\frac{1}{2} \mathrm{LI}^{2}$ (energy in inductive component). Both of these may be put in a form more useful and reduced to

Energy in electric field $=\frac{\mathrm{KX}^{2}}{8 \pi}$ per unit volume
Energy in magnetic field $=\frac{\mu \mathrm{H}}{8 \pi}$ per unit volume
Since these two energy densities are equal and complementary the total energy density may be written as

$$
\frac{\mathrm{KX}^{2}}{8 \pi}(\mathrm{I}+\mathrm{I}) \text { per unit volume }
$$

Having arrived at an expression for " X " at such a distance from the transmitter that the inductive field may be neglected we can add up mathematically the energy flowing through the whole sphere, which gives,

Total power radiated

$$
=320 \pi 1^{2} 1^{2} / \lambda^{2}
$$

where I and λ are in the same units and I is in amps.

Radiation Resistance

As the power radiated is proportional to the current squared (1^{2}) it may be considered that the power is expended in heating a fictitious resistance R such that,

$$
\begin{gathered}
\mathrm{I}^{2} \mathrm{R}=\frac{1^{2}\left(320 \pi^{2} I^{2}\right)}{\lambda^{2}} \\
\text { Whence } \mathrm{R}_{\mathrm{r}}=\frac{\left.320 \pi^{2}\right|^{2}}{\lambda^{2}}
\end{gathered}
$$

This is defined as that fictitious resistance which when multiplied by the square of the aerial current $\left(I^{2}\right)$ measures the power radiated.

Where
R_{r}. . . Radiation resistance
1... half length of dipole
$\lambda \ldots$ wavelength (lambda).

References

Short Wave Radio (Ladner and Stoner)
Admiralty Handbook, Wireless Telegraphy
RSGB Handbook
to be continued

PART 2
 LAST MONTH THE BASIC RECEIVER WAS DISCUSSED. THIS MONTH THE ADDITIONAL FEATURES ARE DESCRIBED.

Aligning I.F. Circuits

The i.f. cores will usually need slight adjustment for best results. Each i.f.t. has two cores, one reached from below the other from above. The correct tool should be used or a No. 10 plastic knitting needle, carefully filed to engage the cores. Any of several

F. G.RAYER G3OGR

progressive
 2

methods can be used. If a modulated signal of
$460 \mathrm{kc} / \mathrm{s}$ is available from a generator, cores can be adjusted for maximum audio output.

Satisfactory alignment is easily possible without these instruments. Tune in a station and adjust the cores for maximum S-meter reading, or if the S meter is not fitted, clip voltmeter leads from the i.f. stage cathode to chassis, and put the meter on a 2.5 V range. Then adjust for minimum cathode voltage, which corresponds to minimum anode current and maximum a.v.c. voltage. Repeat with a weak signal.

As a.v.c. is derived from the last i.f. anode, the final i.f.t. diode winding is peaked for maximum audible output, which will be seen to correspond to a slight dip in a.v.c. voltage or slight rise in cathode current. The i.f.t. cores may be peaked in two positions. With one, the cores are outwards, and separated from each other. With the other, one core is nearer the other, the latter position gives less selectivity and should not be used. This position will not be encountered unless the cores have been rotated considerably or moved unnecessarily.

Coil Trimming and Alignment

Since each waveband is separate from the others, only adjustment of one band will be described in detail.

Switch to Band 2 (medium waves), with the ganged capacitor open, rotate the oscillator trimmer to set the h.f. band end to $1,500 \mathrm{kc} / \mathrm{s}$ and adjust the grid trimmer for best results. Close the tuning capacitor and rotate the oscillator coil core to set the i.f. band end to $525 \mathrm{kc} / \mathrm{s}$. Roughly adjust the grid core for best results.

Repeat these adjustments to make sure coverage will be suitable. The grid circuit is then trimmed at a point a little removed from the h.f. band end, and the grid circuit core similarly adjusted a little clear of the l.f. band end. Signals may be from a generator or stations, with indication of best output by the S-meter or cathode meter.
When the r.f. stage is fitted, note that the panel trimmer peaks for best results near the h.f. end of the band. Leave the trimmer in this position, tune to the l.f. end of the band, and adjust the aerial coil core
for best results, re-adjustment of the panel trimmer should only occasionally be necessary. Trimmers and cores should be touched up as necessary later, after all work is finished, with the cover plate fitted, and with weak signals.

In the case of the higher frequency ranges, if primary interest is in amateur band reception, then range 3 can be trimmed at $3.7 \mathrm{Mc} / \mathrm{s}$, and the cores adjusted at $1.9 \mathrm{Mc} / \mathrm{s}$. Similarly, range 5 can be trimmed at $28 \mathrm{Mc} / \mathrm{s}$, and cores adjusted at $14 \mathrm{Mc} / \mathrm{s}$, but satisfactory tracking should in any case be found throughout the bands.

Note that on the higher frequencies, second channel responses will become more apparent as frequency increases, this is always so with a receiver of this kind. Bands $1,2,3$ and 4 should be significantly clear of such effects, but at the h.f. end of band 5 it is easily possible to tune the oscillator circuit to the wrong side of the signal frequency. The oscillator should be at a higher frequency than that of the signal. If a signal generator is used, tune the generator slowly in the l.f. direction, after alignment. If a second response is found at twice $460 \mathrm{kc} / \mathrm{s}$ (nearly $1 \mathrm{Mc} / \mathrm{s}$) below the frequencies the oscillator has been adjusted below the signal frequency. Correct this by adjusting the oscillator coil trimmer to lower capacity, and re-align this band.

Aerial and Earth

Random aerial lengths for any band can be used. An outdoor wire, high and clear of obstructions if possible, is suitable for any frequency, however indoor and short aerials will generally give good results. For maximum short wave efficiency some improved form of aerial is often employed. If the receiver will be employed exclusively with low impedance feeders, aerial coils with low impedance primaries may be fitted instead, and are for 75 ohms. The specified coils are for about 600 ohms, so give good general results with all aerials, including dipoles. Distant stations should normally be received satisfactorily with any reasonable aerial when conditions allow. For maximum possible results with very weak signals, an aerial matching unit may be connected in the usual way.

USE THE SOLDERING IRONS THE PROFESSIONALS USE
 If you want the best in soldering. Antex irons are for you. Pin point precision, fingertip control, interchangeable bits that slide over the elements and do not stick, sharp heat at the tip, reliable elements and full availability of spares. World-wide users, both enthusiasts and professionals solder with Antex. It's time you joined them. Antex soldering irons are stocked by quality electrical dealers, or you can arder direct from us. A free colour
 catalogue will be supplied on request
 COMPLETE PRECISION SOLDERING KIT
 Supplied in its own compact, rigid plastic container

CN 15 watts, fitted $\frac{3}{32}$ Ferraclad bit. The leading fron for miniature and micro miniature assem blies: 18 interchange able bits from .040 (1 mm) up to $\frac{3}{16}$ " for 240, 220, 110, 50 or 24 volts.

PRECISION miniature SOLOERING IRONS
Made in Enyland
Aritex. Mayflower House, Plymouth. Devon
Telephone: Plymouth 67377/8
Telex: 45296 Giro No 2581000
and includes all of these items. CN 15 watts 240 volts miniature model ($\frac{3}{16}$ ") bit - 2 interchangeable spare bits ($\frac{5}{32}$ " and $\frac{3}{32}{ }^{\prime \prime}$) - reel of resin-cored solder - heat sink for soldering transistors - felt cleaning pad - soldering iron stand" - storage space for lead and plug

Model G-13 watts. Fitted with $\frac{3}{3}$ bit. Interchangeable spare bits t" $\frac{1}{10}$ " and t For 240,220 or 110 volts. $32 / 6$

Model E-20 watts. Fitted with t" bit. Interchangeable spare bits $\frac{3_{1}}{}$ ", " " and tit". For 240,220 or 110 volts. FROM 351.

Model ES - 25 watts. Eitted with f" bit. Interchangeable spare bits ² $^{\prime \prime}$. $\frac{1}{10}{ }^{*}$ and \boldsymbol{t}°. For 240. 220. 110. 24 and 12 volts FROM $35 /$

Model F-40 watts. Fitted with tr $^{\prime \prime}$ bit Interchangeable spare bits $\frac{1}{4}, \frac{1}{6}$ ", ${ }^{1}$, $\frac{1}{15}$ For 240, 220, 110, 24 and 20 volts. FROM $42 / 6$.

Fully guaranteed Individually packed VALVES

PERSONAL CALLERS WELCOME
Open 9-12.30, 1.30-5.30 p.m. Thursday 9-1 p.m. MANY OTHERS IT STOCX inclade Cathode Ray Tubes and Speoial Valves. U.E. Orders

ALL valves guaranteed

| A2134 | 8/- | ECF82 | 6/8 | KT66 | 18/6 |
| :--- | :--- | :--- | :--- | :--- | :--- | AR8

ARPP
ARTP
ATP4

AZ31 | BD78 | $9 / 6$ |
| :--- | ---: | BD78

BL63 $\begin{array}{ll}\text { BT45 } & 150 /- \\ \text { BT83 } & 35 /-\end{array}$ $\begin{array}{lr}\text { BT83 } & 35 /- \\ \text { CV102 } & 8 /-\end{array}$ CV103
CV315
(matehe patre) 120/CV315 (Single) CY 31
D41

DA100 DAF90

 DD41 DET20 DET25 DF91DF92
DF96 DF9
DK9
DK9 DK92
DK9
DL63 DL63
DL92
DL93 DL93
DL94 DL94
DL96
DL810 DL810 DY87
E80F E80F E900
E918
E920 E1800 E182C E1148
EA50
EA76 EABC EAF4! EB91
EBC3: EBC33
EBF EBF EC53
EC70 EC70
EC90
EC91 ECC
ECC
ECC ECC35 15/6 ECC81 $4 /$ ECC82 4/ ECC8 ECO8
ECC8
ECC8

P. C. RADIO LTD.
 170 GOLDHAWK RD., W. 12

(01) 7434946

\qquad

$2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ round panel

29/4ift. AERIALS each consisting of ten 3 ft . $\frac{7}{6} \mathrm{In}$. dia. tubular screw-In sections. 11\$t. (6-section) whip aerial with adaptor to fit the 7 in. rod, Insulated base,
stay plate and stay assemblies, pegs, reamer, hammer. etc. Absolutely brand new and complet
erect, In canvas bag. £3.9.6. P. \& P. 10/6.
FIELD TELEPHONES TYPE "F" housed in portable wooden cases. Excellent for communlcation in- and teries and $1 / 6$ th mile field cable on drum. Completely new, £6.10.0. Sllghtly used, £5.10.0. Carriage 10/-.

$5 /-$	$5 A 174 \mathrm{C}$	$5 /-16 A C 7$

-18
 184
185
$1 T 4$
$2 A 3$
$2 D^{2} 21$
$3 A 4$
$5 R 4 W$
$3 B 7$
$3 B 24$
$3 D 6$
$3 E 29$
$3 Q 4$
$3 Q 5 G$
384
$3 V 4$
$4 D 1$
$4 / 8$
$4 / 8$
$3 /-$
$5 /-$
$4 / 9$
$4 /-$
$\mathrm{GA}^{27 / 6}$
$5 /-$
$14 /-$
$3 /-$
$50 /-$
$8 /-$
$8 /-$
$5 / 9$
$8 / 6$
$4 /-$
$5 /-$

5A174G 5/-	
5 B 251 M	40/-
5B252M35/-	
5B254M 40/-	
$5 \mathrm{~B} / 255 \mathrm{M}$	
	35/-
5R4GY	$91-$
5 T 4	$71-$
5U4G	$4 / 6$
5 V 4 4	2/6
$3 \mathrm{X4G}$	$8 / 6$
5 YBGT	5/6
5Y3WGB	
	15/-
5Y3WGTB	
	9/-
5Z4C	716
6AB7	4/-

$1-|$| 6CW |
| :--- | :--- |
| 6 D 6 |

- ECW4

6CW4	$12 /-$
$6 \mathrm{D6}$	$3 /$

\qquad $161 \begin{aligned} & 77 \\ & 78\end{aligned}$ | 77 | |
| :--- | :--- |
| 78 | |
| 80 | |
| 81 | |
| 83 | |
| 8 | 84 |
| | $85 A .2$ | $6 / 6$

$5 /-$
5 199 9ia

R.F. Stage

The circuit for this is shown in Fig. 6 with an aerial coil for one band only. VCl is that section of the ganged capacitor nearest the panel and the parallel trimmer is a 50 pF air-spaced variable capacitor, the spindle being extended by a short length of fin. shaft and a flexible coupler. The shaft runs in a bush fixed to the panel. It was found necessary to wire up the valveholder and associated components first, then fit the trimmer, and afterwards the coils. The circuit is checked on the appropriate band, after wiring in one coil to avoid complicated mistakes, finally add the other coils, checking on each band as it is fitted.

VRI provides manual control of r.f. gain as this is necessary for very strong a.m. signals, c.w. and s.s.b., and reduced background noise. R.F. and mixer stages must be fitted with screening cans. When the r.f. stage is not present, the primaries of the mixer grid coils are returned to the chassis. This circuit is now by-passed to chassis by the $0.1 \mu \mathrm{~F}$ capacitor, and h.t. applied through the primaries from the $2.2 \mathrm{k} \Omega$ resistor.

The valveholder, with cathode, grid and screen grid components. occupies the first section of the coil box. The valveholder is placed with pin 5 near the runner between this compartment and the central compartment, so that a lead from the anode, pin 5 , runs directly through a hole to the band-switch. R.F. stage tuning is satisfactory if the 50 pF panel trimmer can be peaked for best results throughout all bands, but aligning the aerial coil cores as explained reduces the need to adjust this.

Asditional I.F. Stage

Figure 7 shows the circuit of this stage which is placed between the frequency changer and the existing i.f. amplifier. The primary of i.f.t. 1 now supplies the frequency-changer stage with h.t. through the $1.5 \mathrm{k} \Omega$ resistor by-passed by a $0.1 \mu \mathrm{~F}$ capacitor. After fitting the new i.f.t., transfer the mixer anode lead to it.

The 6BA6 anode is now connected to the
existing transformer primary and the a.v.c. bias is obtained from the a.v.c. line. The r.f. gain potentiometer controls the cathode voltage of this stage and the r.f. stage. Manual control of the r..f. and first i.f. stages in this way is normally sufficient and the second i.f. stage, to which the S-meter is connected, does not have manual control of cathode bias. When the extra stage has been added, a considerable increase in sensitivity and selectivity should be found; the i.f.t. cores are adjusted for best results, as described previously.

S-Meter

This reads in an upwards direction, employing a cathode bridge circuit shown in Fig. 8. The i.f. valve and $47 \mathrm{k} \Omega$ resistor are two arms of the bridge, and the cathode resistor and portion of the zero control the other arms. With no signal and thus no a.v.c. voltage the zero potentiometer is adjusted so that no voltage is present across the meter, which consequently reads zero.
When a signal is present, a.v.c. reduces the cathode current. The voltage drop across the cathode resistor

Fig. 7: The circuit of the additional i.f. stage.
falls, and the meter pointer rises in accordance with the signal level. Changing the resistor in series with the meter allows any degree of sensitivity. The values shown give approximately 6 dB per S point. The S-meter is actually a 1 mA movement, and a suitable scale can be made for an ordinary milliammeter.

Changes which improve signal strength will raise the meter reading. These include internal adjustments, such as trimming or peaking the panel aerial trimmer or external causes, such as the efficiency of the aerial-earth system. With many transmissions, readings change continuously due to propagation conditions, and this does not indicate a fault.

Fig. 8: The S-Meter circuit.

Beat Frequency Oscillator

Figure 9 shows the circuit for the b.f.o. which employs a 6 C 4 triode with large capacitances from anode and grid circuits to earth. The b.f.o. coil, three capacitors, and resistor are ready included in the HSO-460 b.f.o. unit can. The c.w./a.m./s.s.b. switch brings the b.f.o. into action, and its frequency is adjusted by the panel trimmer VC1.

With the 3 -position switch in the a.m. position, the b.f.o. is not in use, and a.v.c. operates normally, this is for the reception of voice and other amplitude modulated signals. With the switch in the c.w. position, the automatic volume control circuit is out of use, and the panel r.f./i.f. gain potentiometer must be operated to give the required sensitivity, and especially to reduce the strength of strong signals. The heterodyne control VCl is rotated above or below the zero beat position, as required for best reception of the code signals.

Reception of S.S.B. Signals

When the switch is placed in the s.s.b. position, the a.v.c. characteristics are changed and the injection level raised to provide carrier insertion. VCl is adjusted as necessary for upper or lower sideband. For exceedingly weak s.s.b., the c.w. position may be chosen. For strong s.s.b., keep audio gain well up, but reduce r.f. gain with the panel control. The s.s.b. position can be used for very strong c.w.

The valve, b.f.o. coil, and other items occupy space on the chassis near the output stage, Fig. 2. When first testing this stage, tune in a carrier at a.m. for maximum S-meter reading, reduce r.f. gain to give moderate volume only, set VCl about half

Fig. 9: The beat frequency oscillator.
closed, switch to c.w., and rotate the coil core for zero beat. VCl then allows the b.f.o. to be set either above or below the i.f.

Rear view of the completed receiver.

Other Circuits

When the receiver is used with a transmitter in particular, a "standby" switch is often handy. This leaves heaters on, but the receiver mute. A suitable method is to place an on/off toggle switch in the h.t. positive circuit. In some receivers the standby position leaves the r.f. and i.f. circuits operating at very low sensitivity. For this method, the switch may be placed in series with the r.f./i.f. gain control, and have a $47 \mathrm{k} \Omega$ to $68 \mathrm{k} \Omega$ resistor in parallel, when this switch is opened, cathode bias then rises to a high value.

Some constructors may favour separate control of a.v.c. for best results in all circumstances, for this purpose, an on/off switch may be connected from the a.v.c. line to chassis. No a.v.c. voltage is then applied to r.f. and i.f. stages with this switch closed.

A jack for phones is often convenient. A jack with open circuiting contacts will automatically disconnect the speaker, when the jack plug is inserted. It is generally satisfactory to feed medium impedance phones from the output transformer secondary. Another method is to feed the phones via a $0.01 \mu \mathrm{~F}$ mica capacitor from the output stage anode. As much more power is available than required, a resistor of between $10 \mathrm{k} \Omega$ and $33 \mathrm{k} \Omega$ should be included in series with the capacitor. This method is also satisfactory with high impedance phones.

Additional ventilation is provided for the cabinet by a row or two $\frac{1}{2}$ in. diameter holes in the back and bottom, and the cabinet is also raised on four feet. Cut-outs are made opposite speaker, aerial and earth sockets.
> P.W. GUIDE TO COMPONENTS Due to pressure on space, Part 5 in this series is held over until the next issue.
 a new 4-way method of mastering ELECTRONICS by doing - and - seeing
1 OWN and complete range of presentday ELECTRONIC PARTS and COMPONENTS

READ and
DRAW and

UND ERSTAND
CIRCUIT DIAGRAMS

4
VALVE EXPERIMENTS
TRANSISTOR EXPERIMENTS
AMPLIFIERS
OSCILLATORS
SIGNAL TRACER

CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING . . .

- PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

Contains 5 cores of non-corrosive flux. instantiy cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

From Electrical and Hardware shops. If unobtainable, write to:
Multicore Solders Ltd.s Hemel Hempstead. Herts.

BI-PRE-PAK LTD

222-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX
PHONE: SOUTHEND (O702) 48344

SPECIAL OFFER	Tranala
Stock Clearance of Manufacturers	
Rejects. Limited Number	
F/VHF Tuner Units. Consisting of:	${ }_{\text {AD }}$
2 AF186 Transistors, Tuning Conden-	${ }_{\text {BCIM }}$
rs, Coils and Comps etc.:	${ }_{\text {OBY95 }}$
Price 5/- each	OC22
Post and Packing U.K. 2/6.	${ }_{0}^{0} \mathrm{OC} 2$
Price	${ }^{\text {OC33 }}$
	${ }_{0 \text { C42 }} \ldots$
	OCA4
	00
${ }_{89}{ }^{\text {B9 }}$ ORP 12 LIght Bensitive Cell	
	${ }_{\text {ос81 }}$
	OC810
	-
${ }_{862} 25$ BeY95a Transibtors new, unte	$\mathrm{OCl3}^{\text {C139 }}$.
B64 25 BFY50/1/2 Transiators new, untested 10/-	
	${ }_{0} \mathrm{C} 201$
25 M	
5 Power Transigtors, one AD149, one OC26 and three more	

\star ALL OUR TESTED SEMICONDUCTORS HAVEA WRITTEN GUARANTEE * Send for our FREE lists and catalogue of all our products. Check your own equivalent with our free subatitutiou chart

SATELLITE EARTH STATION

RICHARD COLLINS REPORTS... PART 1

THE Post Office recently brought a new aerial system into service at its Goonhilly 2 Earth Station, which is Britain's latest space communications station. This aerial system will work with the new Intelsat III satellite.

Goonhilly 2 will maintain a role as an earth station in the expanding system of global communications via Intelsat III satellites in synchronous orbit over the Atlantic, Indian and Pacific oceans.

Goonhilly 1 will no longer be required for the service to America. It is being provided with new equipment to enable it to operate with countries to the east of Britain via an Intelsat III satellite (to be launched in the summer) which will be positioned over the Indian Ocean.

400 Phone circuits

The giant 90 ft diameter dish aerial will carry up to 400 telephone circuits and a television programme simultaneously. Multiplex equipment has been installed to derive the first group of up to 132 circuits and additional equipment has been installed to bring this up to nearly 400 circuits, eventually providing routes not only to the USA and Canada but also to Africa and the Middle East. As more earth stations become operational the system will expand until by 1971 Goonhilly is expected to be working to 20 countries.

This Goonhilly installation, which meets the technical requirements of the International Telecommunications Satellite Consortium INTELSAT, has been built to a Post Office specification and installed at a total cost, including roads, buildings, etc., of approximately $£ 2 \mathrm{~m}$. The Marconi Company of Chelmsford were the main contractors.

The aerial covers a 210° arc in azimuth to enable it to work to either the Atlantic or the Indian Ocean satellites. The entire structure weighs nearly 1,000

The control console in the main Goonhilly station building.

The No. 2 aerial.
tons, which includes the transmitters, receivers and ancillary equipment. It is mounted on a central bearing with two massive bogie units carrying the load at the front of the structure.

The 90 ft reflector surface consists of a 24 ft diameter central section surrounded by two rings of stainless-steel panels with a surface accuracy of 0.020 in . r.m.s. Maximum distortion in a wind speed of $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. will be 0.200 in .

The spinning horn

It makes use of a Cassegrain configuration with a spinning horn at the apex of the main reflector. The spinning feed-horn is a feature of Marconi's " mode conversion scanning system " of aerial steering. It introduces a conical scan of the aerial beam only at the frequency of the satellite beacon signal. Thus it avoids unwanted a.m. of the communication carriers or significant degradation of aerial efficiency for either direction of transmission. By this means autotracking can be achieved either by servo-control of the main reflector mounting or, within a range of about ± 20 minutes of arc, by deflection of the subreflector. Provision has also been made for control of the aerial manually and for the addition of tape control facilities later if required.

The aerial and telecommunications equipment are controlled and monitored from a suite of consoles in the central building. Each carrier is monitored separately and reserve equipment is switched into use automatically if a disabling fault condition arises. Faults which cause degradation of the service but do not interrupt it can be located and eliminated by manual switching of their component sub-systems without interference with traffic. A separate console enables the television service to be monitored and tested.

TO BE CONTINUED

A MINIATURE THREE TRANSISTOR RADIO WHICH OPERATES EITHER AN EARPIECE OR LOUDSPEAKER

WITH six transistor radios available for under 40s., there are few financial incentives to build a miniature radio, but for the beginner there are few more satisfying projects. The Mite was designed as an easily built, three transistor radio covering the medium waves, the final result being an extremely small and useful radio. The size of the case is $3 \frac{1}{2} \times 2 \frac{3}{8} \times 1 \mathrm{in}$. outside measurements-which from the photograph can be seen to fit easily into the palm of a hand, yet the Mite drives a loudspeaker almost to its limit and has a separate volume control. With careful setting of the regeneration control it will receive Radios 1, 3, 4 and Radio Luxembourg, together with a number of continental stations after dark.
There is nothing very unusual about the circuit shown in Fig. 1, except that it was chosen to operate well within the tolerances of the components chosen. The disadvantage of many projects of this type is that the circuit is built around the actual transistors used in the prototype without a view to someone else copying the circuit. It will be seen that the Mite uses a reflexed OC44 with regeneration, the most sensitive circuit ever developed, signals from this being fed through a conventional volume control into a directly-coupled high gain amplifier. From the circuit it will be seen that the minimum of components are used.

The circuit

Since the Mite is intended primarily for the beginner, a thorough description of how the radio works will help. The radio waves are picked up by the ferrite rod aerial; this rod greatly increases the signal pickup of the coil around it and increases the inductance of it (fewer turns are needed). VC1 is connected in parallel with the coil and forms the tuned circuit, selecting the appropriate frequency; one side of the coil is connected to chassis. A small overwind on the
coil picks up the output of the tuned circuit and transforms it from the very high impedance of a tuned circuit to a lower one suitable for feeding into a transistor circuit, a transistor being basically a low impedance device. One side of the overwind is connected directly to the base of the first transistor, an OC44, while the other is connected to chassis via C . This capacitor avoids a d.c. connection to the base and serves another function, described later.

Tr 1 is arranged as a common emitter amplifier, and at the collector the signal is divided three ways. A tiny part of the signal is fed back to the top of the coil via VC2, a variable capacitor made from twisting two wires together, this gives a very low value. This passes again through the stages mentioned above, the result of this is known as regeneration. A second part of the signal is taken off by C 2 and is rectified by D2. The arrangement of $\mathrm{C} 1, \mathrm{C} 2, \mathrm{D} 1$ and D2 is known as a voltage doubler and it not only rectifies the amplified signal but it smooths it and doubles it-how's that for economy! The resulting audio signal (a.f.) is passed through the overwind again and fed back into the base of Tr1 to be amplified again. This is known as reflexing and was very popular in the days of expensive valves and expensive transistors but is less popular today. It is only used here to save components and consequently space.

The amplified a.f. signal now appears at the collector of $\operatorname{Tr} 1$ (VC2 and C 2 are so small in value that no appreciable amount passes through them) and passes through the r.f. choke, this will pass the a.f. but blocks the r.f. on the two previously described functions.

The a.f. signal is developed across R2 and fed via C3 (which stops d.c. passing through the volume control) and in turn is connected to $\operatorname{Tr} 2$ via C4, also arranged as a common emitter amplifier: C4 prevents the base of Tr 2 from being d.c. connected to chassis. The output from Tr 2 is connected directly to the base of $\operatorname{Tr} 3$ which in turn amplifies the signal and develops it across the loudspeaker or earphone. R3, R4 and R5 provide the correct voltages for Tr 2 and Tr3 whilst C5 smooths the voltage across R5. C6 smooths the negative line and prevents r.f. and a.f. getting where they don't belong.

To the experienced constructor two points will be noticed. First the mismatch between Tr 1 and Tr 2 ; in theory coupling in this manner tends to prevent the first stage from working properly, but due to the low value of C 3 the arrangement works perfectly well. The second point is connecting the loudspeaker with no method of transforming. Here again in practice the circuit works perfectly well and the current drain is not excessive (below 15 mA).

Component layout

Using transistors, layout is not very important, but for those wishing to use their own arrangement of components two points should be borne in mind. Firstly the ferrite rod should not be near the speaker magnet and secondly the r.f. choke should not be too near the aerial coil or the twisted wires of VC2other than these two points, layout is not critical.

The ferrite rod

Although the ferrite rod, fitted with aerial and coupling windings can be bought, it is an easy matter to construct one's own. The ferrite slab is $2 \times \frac{5}{8}$ $\times \frac{1}{8}$ in.; normally these are sold only in longer lengths although the section is fairly common. The slab is cut to size by filing a " V " shaped groove across one

of the flat surfaces and smartly snapping it at this point, no great care is needed as it will break cleanly.

The windings should be started at one end, a narrow strip of adhesive tape should be bound around this end for about three turns, one end of the wire being trapped in the tape. The wire used should be 34 gauge enamelled copper wire and 80 turns are wound tightly on to the slab, finishing it as mentioned above, trapping the wire in further turns of tape, the details are shown in Fig. 2. The overwind, or coupling wire, should be wound on top of

Fig. 1: The circuit of the Mite. All the components except the battery, the loudspeaker and the earphone jack are mounted on a piece of Veroboard. The way in which the circuit is explained in the text.

components list

Resistors:

R1	$330 \mathrm{k} \Omega$	R4	$3 \cdot 3 \mathrm{k} \Omega$
R2	$6.8 \mathrm{k} \Omega$	R5	150Ω
R3	$100 \mathrm{k} \Omega$		
All	10% tolerance,	$\frac{1}{4}$	

Capacitors:

C1	$0.01 \mu \mathrm{~F}$	C4	$0.04 \mu \mathrm{~F}$
C2	250 pF	C5	$32 \mu \mathrm{~F} 10 \mathrm{v}$.
C3	$0 \cdot 1 \mu \mathrm{~F}$	C6	$100 \mu \mathrm{~F} 10 \mathrm{v}$.

Transistors:

Tr1	OC44 etc
Tr2	OC71 etc
Tr3	OC81 etc

Miscellaneous:

VC1 $150 \mathrm{pF}+65 \mathrm{pF}$ miniature ($\left(\frac{11}{16} \times \frac{11}{16} \times \frac{7}{16} \mathrm{in}\right.$.)
VC2 See text
VR1 5K Semilog with switch-Radiospares
D1, D2 OA79, etc see text
L1, L2 Ferrite slab $2 \times \frac{3}{4}$ wound m.w. coil with secondary
L3 R.F. choke 2.5 mH , see text
Loudspeaker $75 \Omega, 2 \frac{1}{4} \mathrm{in}$. diameter
Miniature jack plug and socket, earphone 9 V battery-PP3-see text (Ever Ready) Two Soap Dishes (Boots)
Verobuard $2 \frac{1}{8} \times 2 \frac{1}{2} \mathrm{in}$. ($0 \cdot 1 \mathrm{in}$. holes spacing) Battery clips wire etc
this; here eight turns are required, fixed as before. In all cases about 3 in . of wire should be left for fixing. Unlike a superhet where the coil has to be adjusted for correct alignment, the coil can be wound directly on to the slab, no movement being required. Where a ferrite rod is bought complete with the required windings the rod will probably have to be shortened; this may be done as detailed. Some aerials available are designed for low capacity tuners and the inductance will be too high. If the correct range is not covered the rod should be shortened further and in extreme cases fitted with part of the coil over the end of the slab.

Choice of components

Miniature components should be used throughout. The tuning capacitor used is readily available as a replacement used for imported radios; similarly the volume control incorporating the on/off switch. The only component that should be chosen with care is the r.f. choke. The particular value $(2.5 \mathrm{mH})$ can be quite large and a small one should be used; the value of this component is not critical and may range from 1.5 to 5 mH . The diodes used may be of almost any type used for detection.

The knob for the tuning capacitor can be bought from certain suppliers or one intended for certain volume controls can be used, it should be about 1 in . in diameter.

Construction

All the components, with the exception of the speaker, the battery and the earphone jack are mounted on a piece of Veroboard which must be cut to the shape shown in Fig. 3. A hacksaw will cut this and it should be filed smooth afterwards. The holes for fixing the board and for the tuning capacitor should be drilled and the laminate strips broken as in Fig. 3, this may be done using a tool marketed a drill about $\frac{1}{4} \mathrm{in}$. diameter. earth strips.

Fig. 3: The layout of the components on the Veroboard panel. The shading shows the breaks in the copper strip.
by the manufacturers but can also be made by using
The tuning capacitor and volume control should be mounted first. The volume control will require small wires soldered through the holes in the connections and then these are passed through the Veroboard. The arrangement shown makes the holes in the Veroboard and wire line up quite nicely. The wires are bent over and soldered. The tuning capacitor is fitted to the board by means of two small screws (they must be small to avoid snagging the vanes in the tuning capacitor). Normally these will be 6BA but some versions on the market use a weird foreign thread-here the ingenuity of the constructor will be tested (probably by forcing a screw in!). The connections from the tuning capacitor must be bent to fit into the correct holes; the oscillator section (not used) and earth leads are bent under the body, this does not place any undue strain on them.

The battery wires are fixed next. Battery connections need not be bought as they may be taken from an old PP3 battery etc.: break the metal enclosure at the top and pull away the plastic plate to which the terminals are fitted, cutting away the wire. After this fit the two jumper wires which connect the

The other components may now be slipped in, bent over and soldered. Where a component is mounted vertically it should be made as short as possible since height is restricted. For the same reason keep the solder joints neat as some of these rest on the loudspeaker. If this is hard to accomplish, the joints may be filed flat when soldering is completed. The r.f. choke should be mounted after the other parts as these are surprisingly fragile.

The wires to the loudspeaker should next be fitted, followed by the aerial coil. The end not covered by the windings should be laid against the tuning capacitor and a piece of adhesive tape stuck from the bottom of the capacitor body to the underside of the Veroboard. The coil connections can then be wired to the board but do not fix the overwind wires permanently. Finally two pieces of thin, single core insulated wire should be fitted -these make up VC2 when twisted together.

Testing

After wiring the loudspeaker (ignore the earphone socket for the time being), connect the battery. Hey-presto! it doesn't work (unless you are very careful, very lucky or very clever). There should be a "mush" on the loudspeaker -if this is not the case the trouble is in the amplifier circuit-check the wiring. If nothing wrong is found, measure the current consumption by inserting a meter in one of the battery leads, this should read between 7 and 15 mA . If it still doesn't work the components must be checked.

Assuming there is something on the loudspeaker, work back, prodding a moist finger at the junctions C3/VR1, L3/C3, C1/L3 and the base of Tr 1 in that order-in all cases a little plop should be heard. If not, check between the point at which it is not heard and the last point at which results were achieved.

If all is well, check back on the circuit, making certain that the diodes are correctly wired the right way round. When a signal is received, twist the wires making up VC2 together. If there is a whistle after a few turns all is well. If the signal gets weaker or there is no change, reverse the overwind connections and try again. The wires should be adjusted so that there is very nearly a whistle on Radio Luxembourg or the highest frequency (lowest wavelength) that you wish to receive. In this condition the set is working at its peak and there should be a few whistles at the highest frequencies but other stations will be received satisfactorily. (Radio Luxembourg has been received perfectly well on four separate prototypes, it is no idle boast that it can be heard on the Mite.)

Variations

The circuit chosen was not one for individual transistors as is often the case with simple sets of this type. Several OC44s, OC71s and OC81s were tried with only a marginal difference in performance. Almost any similar transistors will work and WHITE and RED spot surplus transistors work perfectly well but here the performance varied (according to the individual transistors). By altering the resistance vallues virtually any types will work. This is a tedious business but even better performance can be achieved by doing this; an eye, howevf should be kept on the current consumption which should not be much over 15 mA .

Fig. 4. The case for the Mite is made from the tops of two Boots" soap boxes.

An inside view of the Mite.

The case

The hardest part about building a radio of this sort is the case. Having searched high and low the author found that the tops of two "Boots" soap boxes were perfect when placed back to back. These give the perfect size to hold all the components and they are made from polystyrene, a plastic easily worked and glued.

The drilling and shaping of the case are shown in Fig. 4. The loudspeaker holes can be drilled with a normal $\frac{3}{16 i n}$. drill and the cutouts for the dial and volume controls can be cut out by first scratching the desired shape with a sharp point and then carving out the plastic with the hot bit of a soldering iron. The rough edges can then be filed to shape. If the plastic cracks or breaks it can easily be glued with the cement used for plastic models. Heavy scratches disappear when rubbed hard with metal polish. The case, when finally finished can be painted, but care must be taken with the choice of paint and the best is that used for plastic models.

The loudspeaker is laid over the holes in the case (a piece of expanded speaker metal may be fitted between the speaker and the box itself). The earphone socket is screwed to one through the side of the box. A lin. 4BA countersunk-head screw should be fitted through the hole provided, this should come just beside the speaker. A small piece of the waste polystyrene should be glued on the inside of the box, beside the screw and opposite the loudspeaker. A small washer can be dropped over the screw and this will rest on the rim of the loudspeaker and on the plastic pad. Two nuts should then be screwed to this, holding the loudspeaker in place. The speaker is a tight fit in the box and will be held securely.

An insulated washer should be fitted over the nuts and the circuit board dropped on, another nut fitted to secure it. The hole in the back should line up and a nut in the form of a screw fitted through the hole will hold the lot together. The jack socket, if fitted as shown, should locate the bottom exactly.

A finishing touch is to cover the tuning condenser knob with a piece of white adhesive paper and mark off the stations.

The Mite should be a very satisfying project for a beginner, relatively cheap and economical on the batteries.

DESPITE the vast number of solid-state devices which are capable of acting as switches, the humble electromagnetic relay over a hundred years old, is still going strong, and in some new forms is still capable of opening up new applications.

In the older forms of relay, there are three quite distinct parts. The magnetic circuit consists of a coil of insulated wire wound round an easily magnetised ("soft") core which forms part of a complete circuit of magnetic material when the relay is actuated. When current is passed through the wire, magnetic flux (the magnetic equivalent of electric current) flows in the magnetic circuit and produces magnetic force at any gap in the magnetic circuit.

RELAYS ANDTHEIR USES

The mechanical system varies considerably from one type of relay to another but always serves the same purpose; to convert the magnetic force at a gap in the magnetic circuit into mechanical force which can open or close switch contacts. In many relays, the mechanical system takes the form of a pivoted armature, one arm of which moves to close the magnetic circuit while the other arm operates the contacts.

The contacts of the relay perform the job of switching external circuits. and are orerated by the mechanical system. Various types of switching are possible: all the contacts may close ("make") when the relay operates \$11 may open , break"), some may make and so $\%$ break or all may changeover from one circui: to another. Contacts can also be arranged so that one type of operation takes place before another, where we find the make-before-break changeover, or break-before-make (much more common). The materials used for the touching surfaces of the contacts are extremely important, as these determine the life and application of the relay

Using relays

In both amateur and professional use, there can be few components which are ㄸ. badly chosen and so poorly used as relays. Much of this misuse is an example of familiarity breeding contempt: relays have been around so long thit they are treated as something to be wired in and forgotten. Even a humble resistor must have its values of resistance and wattage calculated before it can be placed in circuit; considerably more effort is needed for the proper use of a relas. and this article outlines the choices which have to be made.

Most of these choices concern the contacts and the coil, for the mechanical system and the shape of the magnetic circuit are chosen by the designer of the relay. These choices affect the sensitivity of the relay, and may decide which type of relay is to be used, but cannot be changed.

The contacts

The number and type of contacts are quickly determined for any application by considering what
circuits are to be switched by the relay. The contact materials must then be chosen. An ideal contact material would have negligible resistance, be completely resistant to corrosion and resist damage caused by sparking and excessive current. No ideal contact material exists, as might be expected, and we must in practice choose a material which comes closest to the requirements of a particular relay. These materials are, usually, silver, palladium-silver, silvernickel or gold.

Silver is the most common contact material in small relays. Since silver has the lowest known resistivity of all metals, the contacts have a very low contact resistance and can therefore pass high currents without any risk of local welding which would cause the contacts to stick together. Silver tarnishes rapidly in the atmosphere, forming a film of poorly conducting silver sulphide, so that relays using silver contacts should have fairly high contact pressures and use quite high contact voltages in order to pierce this film each time the relay is operated. For example, silver contacts would be unsuitable for a sensitive relay switching a low voltage, such as in a model aircraft radio control circuit.
Palladium silver alloy has much higher contact resistance than pure silver, but is not nearly so easily contaminated by sulphide films. Sparking between the contacts does not readily transfer metal from one contact to another, making this a favourite material for inductive circuits.

Silver-nickel has low resistance and is not easily damaged by high currents. It is used for loads where high currents flow when contacts are made, for example, lamps (whose resistance is very low at switch-on) and capacitors (which take a high initial charging current).

Gold is used as a contact material for switching very low voltages and low currents. The contacts do not corrode in any atmosphere, but are soft and have a short life if any rubbing occurs, so that gold contäcts are used only if contact pressures are low and no rubbing action is used.

Voltage and current

The size of the contacts used determines what current rating can be applied to the relay. The voltage rating is decided by the contact material used (which must be resistant to the sparking which occurs when the contacts break), the final separation of the contacts (which must be enough to avoid continuous sparking) and the insulation of the contact leaves. In general, different ratings will be used for a.c. or d.c.. for inductive, capacitive or lamp loads.

The highest ratings of current can be used when the contacts are switching a.c. to a resistive circuit, but the voltage rating in this case must be the peak voltage, which is 1.4 times the r.m.s. voltage usually quoted for alternating voltage. D.C. resistive loads at low voltages can be used at full rated currents, but high direct voltages require some derating, due to sparking. Sparking is always a problem with direct voltage, since the voltage across the contacts is steady when they break; when alternating voltage is being broken the sparking is always extinguished as the voltage reaches zero before reversing.
A.C. capacitive, lamp and inductive loads require

some derating; d.c. capacitive lamp loads require the lowest ratings quoted as well as choice of contact material which can cope with the surges of current which take place when such circuits are made. D.C. inductive circuits are the worst possible case, because of the back-e.m.f. across an inductor when current is broken. This back-e.m.f. can cause very serious sparking unless some means of suppression is used.

Spark suppression

When an inductive circuit is broken by relay contacts, the sparking due to the back-e.m.f. can be suppressed either by using the voltage to charge a capacitor through a resistor or by using a rectifier to bypass the excess voltage. The circuits involved are shown in Fig. 1. When CR suppression is used, the values of C and R are best found by experiment, using an oscilloscope to monitor the voltage across

Fig. 1: Spark suppression of relay contacts for inductive loads.
the contacts. As a rough guide, R should be about half of the d.c. resistance of the load and C about half as many $\mu \mathrm{F}$ as the load inductance in Henrys (for example, for a load of 2 H and 1 k , use $1 \mu \mathrm{~F}$ and 500Ω to start with) but these figures are only a starting point. When a rectifier is used for suppression, the only conditions are that the peak current and voltage ratings of the rectifier must not be exceeded. This is very much easier than deciding the correct values for a CR suppression circuit, and the low price of modern semiconductors has made this method the most frequently used.

The operating coil

The purpose of the operating coil of a relay is to provide the magnetic force which operates the mechanical system. To provide the magnetic force, the coil must have a high inductance, but the steady current through the coil is determined by its resistance, and both quantities are of considerable importance in relay operation.

As the current through a relay coil is steadily increased, a value is reached at which the armature completely operates the contacts. This value of current is called the static pick-up current, and is the minimum possible current to operate the relay. To be sure of operating the relay, a rather larger current, the rated operating current is needed.

When the rated operating current is applied to the coil of a relay, the contacts will close within a short time, the pull-in time, of applying the current, and, as long as the current is applied the coil will dissipate its rated operating power, which is the resistance of
the coil multiplied by the square of the rated operating current.

Note carefully that applying excessive current improves pull-in time at the expense of contact bounce. Excessive current usually causes the contacts to come together with such force that they bounce apart again, causing irregular operation. Many cases of faulty relay operation are caused by circuit designers playing safe and specifying much more relay current than necessary.
When the current through the coil is decreased again, it eventually reaches a value, the static dropout current, at which the relay switches back again. The static drop-out current is usuatly less than the static pick-up current.

Selecting a coil

Where a relay draws current from a mains supply through a switch or through the contacts of another relay, the selection of a coil is fairly easy. The contact arrangement used fixes the steady power which must be dissipated in the coil to ensure that the armature remains pulled over. Divide this operating power by the supply voltage to find the required operating current, and then divide supply voltage by operating current to find coil resistance. The coil is now completely specified. In some cases, makers specify the operating voltage so that the correct coil may be chosen without calculation.

When a relay is being driven by a valve or a transistor, the operating current is the important factor. The lowest possible current should be used so that the voltage across the relay (resistance x operating current) is nearly equal to the supply voltage at rated operating power. If a high operating current is used, this is a severe drain on the power pack and causes high dissipation in the valve or transistor. The voltage across the relay is much less than the line voltage, again the power dissipated in the valve or transistor is high. Ideally, a relay switched by a transistor would have practically all the line voltage across the relay coil, leaving only 0.5 V across the transistor and at a low current.

The inductance of the coil becomes important when the relay is driven by a transistor. The speed with which a relay can be switched on depends on the mechanical time constant, which cannot be altered, and the electrical time constant L / R (L in Henrys, R in ohms). For a coil of 0.5 H and 5Ω this would be 0.1 seconds, or 100 mS . This time constant can be reduced by adding resistance in series with the coil, but the total voltage across coil and resistor is higher this way, and this method is best used with valve circuits.
When the current through a relay coil is switched off, there will be a surge of voltage across the switch in a direction which tends to keep current flowing. If the "switch" is a valve or a transistor. damage may be done, especially in the case of a transistor, unless the excess voltage can be removed. The problem is the same as that of spark suppression on contacts feeding an inductive load, and is best solved by using a rectifier to remove the excess voltage.

Latching Relays are so designed that when the relay operates, the armature is held by a "latch" which prevents the armature returning when the
current through the coil is switched off. The release of the latch may be done mechanically, by pressing a button or lever on the relay (mechanical delatching) or electrically by means of a second operating coil which operates the latch (electrical de-latching). Any relay may be made to latch electrically by means of the circuit of Fig. 3, which keeps current flowing through the coil even when the actuating switch is off. In this case, however, the current in the coil is not switched off as it would be in the genuine latching relay and the relay must be able to dissipate the heat produced.

Polarised Relays use a permanent magnet in addition to the electromagnetic system. The magnetic effect caused by the current in the coil either adds to or subtracts from (according to direction) the magnetic effect due to the permanent magnet so that several different effects can be obtained.

Double throw polarised relays have contacts which are normally held in one state (open or closed). When current flows in the coil so as to oppose the permanent magnet, the armature switches over, and remains over when current ceases; no switchover takes place if the current aids the permanent magnetism A biased double throw polarised relay behaves similarly, but the contacts return to the unenergised position when the current in the coil falls below some specified amount. Double throw centre neutral polarised relays have a central rest position. When the coil is energised the armature moves either to left or to right of the central position, according to current direction, making contacts on that side only. When the current is cut off, the armature returns to the central position.
Reed switches are made by sealing two blades of metal into a glass tube. The metal is nickel-iron, which magnetises easily in a magnetic field, and loses its magnetism whenever the field is removed. The reeds are made to overlap within the tube so that a circuit can be made between them when they touch. To keep the contact resistance low, the overlapping areas can be coated with any of the contact materials mentioned earlier. When a magnetic field is applied to the tube, the reeds are magnetised in opposite senses, and the overlapping ends are attracted together, making the contact. When the magnetic field is removed, the nickel iron is demagnetised and its own springiness causes the contacts to separate. The leads to the reed relay form part of the magnetic circuit, and should not be cut to size unless the operating coil can cope with the increased current which may be required to pull the relay in reliably. Two reed switches are illustrated on the second page of this article.

Reed switches have considerable advantages over the conventional relay as far as contact contamination, contact resistance, speed of operation, life and insulation resistance are concerned. The power which must be applied to the coil to operate the reed switch is also low, and the separation of switch assembly from coil assembly also means that reed relays can be made to fit almost any application provided sufficient operating power is available. When a large number of reed relays are to be operated simultaneously, it is usually possible to pack them together into a tubular former, filling in gaps with soft iron wire to concentrate the magnetic flux, and then winding a coil round the

Fig. 2: Symbols for relay contacts and coils. The coils shown are drawn as they would appear in circuit, with their reference numbers such as $A / 3$, which means relay $A, 3$ contacts. The contacts belonging to relay A are identified in circuit as A1, A2 and A3. All contacts must be shown as though the relay is unenergised.
whole assembly. The number of turns and operating current required is a matter of cut-and-try, but the circuitry simplification gained may easily make it worthwhile.

Relay diagrams and circuits

Figure 2 shows a few of the symbols from BS 3939. 1966 (reproduced by permission of the British Standards Institution, 2 Park Street, London, W.I, from whom copies of the complete standard may be obtained). The symbols are used at the point where they occur in circuit, so that the relay coil may be shown in one place and its contacts at another, the two being linked by their code numbers.

Fig. 3: An electrical latching circuit. When the reset button is pressed RLA/2 is energised, and the coil remains in this state through RLA1 closing. The circuit will not release until the supply voltage is removed.

As an example of the use of the symbols, Figs. 3,4 and 5 show some useful circuits.

Figure 3 shows a self-latching circuit in which a pair of contacts holds a relay on and interruption
of the supply de-energises the relay until it is reset. This type of circuit is found in time delay circuits (particularly in large transmitters where heaters must be on for one minute before h.t. is switched on) where the "reset" switch is a thermal switch. Such an application is shown in Fig 4

Fig. 4: A method of automatically delaying switch-on of an h.t. line. Notice that the thermal relay A/1 is taken out of circuit when B/2 operates, so that it can cool for the next time it is used.

Figure 5 shows a scale-of-two circuit using relays. This circuit seems to be little known, yet represents a considerable saving over the transistor scale-of-two driving a relay, which is so often used. Each relay coil is fed from a load resistor which must be capable of taking the full voltage of the supply across it.

Fig. 5: A relay scale-of-two circuit.
When the operating switch S 1 is closed, current flows through S1 and A2 so that A/2 is energised. B/1 is shorted out by the connection through B1 and A2. Since A/2 is energised, A1 closes and A2 opens. When $S 1$ is released, $B / 1$ is no longer shorted and B1 changes over; this has no effect since A2 is open.

When S1 is closed again, A/2 is shorted out through B 1 and S 1 so that $\mathrm{A} / 2$ releases, A 2 closes to maintain the short and Al opens. When Sl is opened again, both relays are de-energised and B1 returns to its initial position. Sequential switching can then be carried out by other contacts on either relay, and sets of "bistable" relays can be used to count in exactly the same way as transistor bistables. Note, however, that in the relay circuit either both relays are on or both are off, unlike the normal transistor circuit.

COLUMN

IIEDIUM Wave stations in West and North Africa are frequently audible in the UK in the late evening. Two regulars from West Africa are Dakar (764) in Senegal, after Sottons leaves the air at 2300 hrs GMT (except on Saturday) and Guinea (1403) which does not close down until midnight GMT. Both stations broadcast in French. Also from West Africa is ELBC (630) in Monrovia, Liberia, which comes through with programming in English after Vigra (629) has closed down. There is a nightly news bulletin at 2345 hrs . ELBC may appear in some station lists as being on 650 but it is now on 630. The Canary Islands are well represented by three stations; RNE (620) is the easiest but EAK92 (827) Radio Popular, Las Palmas, and CES4 (1097) also in Las Palmas can generally be heard. EAK92 is mixed with EAJ1 in Barcelona and CES4 is mixed with EFE14 in Madrid but both stations can peak above the QRM. From Madeira CSB91 (1529) in Funchal is best looked tor between 2330 hrs and midnight GMT.

Quite a number of stations along the North African coast come regularly. Tangier (1232) is frequently strong at 2330 hrs . Oujda (593) and Agadir (935) both in Morocco, are audible about the same hour. From Algeria there is Algiers 1 (980) with the Arabic programme and AMrs 2 (890) with the - French programme. Tunis 1 (629) and Tunis 2 (962) are not too difficult around 2300 hrs , both stations carrying Arabic programming. Benghazi (674) in Libya is rather more tricky though owing to the amount of QRM but the station peaks above it at times and has been heard at 2200 hrs . Further east in Egypt, Batra broadcast the Voice of the Arabs on 620 and the internal Arabic programme on 818 . Other Near East stations to be heard during the evening are Aleppo (746) in Syria, Baghdad (760) in Iraq (logged at 2130 hrs) and Jerusalem (677) in Israel. These three stations broadcast in Arabic.

Conditions to North America have been quite good this winter with peaks occurring from 29th November to 1st December and again from 3rd to 5th January. Robert Dinning of Ayrshire, Scotland, has heard CBN (640) at 0100hrs GMT; WNBC (660) 0105hrs; CKCM (620) 1112 hrs ; WCBS (880) $0117 \mathrm{hrs} ;$ WINZ (940) 0150hrs; WINS (1010) 0152 hrs; CBA (1070) 0201hrs: WWVA (1170) 0159 hrs ; WHAM (1180) 0150hrs; WOWO (1190) 0148hrs: WCAU (1210) 0200 hrs ; WGAR (1220) 0201 hrs and WNEW (1130) at 0030hrs. These loggings were made during the period October 1 st to January 4th, using an HRO receiver and either a 380 ft V antenna at 50 ft or an indoor loop. Thanks for the log Robert, many DXers would like to have your 380 -footer. During the peak on 4th-5th January the writer logged WJR (760) Detroit. The Great Voice of the Great Lakes; KMOX (1120) St Louis: WOAI (1200) in San Antonio, Texas. using a CR 100 receiver and an indoor loop antenna.

CHARLES MOLLOY

HOME WORKSHOP PRACTICE er rhamerer pante

IN the preceding article newcomers to the hobby were given details of a basic tool kit and some suggestions were made about possible sources of supply of components and materials with which to build equipment. It was suggested that dismantling old equipment could be a rewarding pastime, and in this article details of some special techniques which have proved in practice to be useful for dismantling and rebuilding equipment will be given.

Let us assume that an old chassis, practically complete, has been obtained, and is to be stripped for parts. Arrange your chassis on the workbench so that plenty of light falls on it, leaving as much clear space around it as possible. Just before attacking the old veteran, spend a few moments looking at the set and note the short neat wiring. Note the ample provision of anchorage points, the rigidity of the structure and the general cleanliness of the layout. The amateur can learn a great deal from good commercial design simply by looking at it.

This preliminary inspection will reveal parts which obviously have no further useful life, for example resistors which have been overrun and overheated. Components which are fractured, dented, charred or generally tatty should be ignored, although a component should not be discarded simply because it is dirty, this is easily removed and underneath may be a perfectly good part. With a little practice one learns to recognise many defective parts by their appearance.

Having decided roughly which parts are to be salvaged, start by cutting out all resistors with the side-cutting pliers. Keep the leads on all components as long as possible, but don't worry unduly if the leads are quite short as a method will be described of extending these. Do not attempt at this stage to sort resistors into values and ratings because subsequent testing might disclose a fairly high proportion of duds, and time spent sorting now would be wasted.

Having removed all the resistors, start on the capacitors. Here it is a good plan to make a distinction, certainly between electrolytics and other types, and preferably between the mica, paper and polystyrene capacitors.

During these operations remove any useful lengths of hook-up wire and any component which gets in the way. Valves and their bases should be removed carefully before turning the chassis on its back, and in the case of miniature bases it may be necessary to drill out the rivets which attach the base to the chassis. Small transformers, i.f. cans and coils of all descriptions should be carefully taken out, because even if the coils as wound are of no use. the coil formers almost certainly will be.

Diodes, rectifiers, plugs and sockets, fuses and fuse-holders, potentiometers, knobs and switches follow. Special care should be taken in removing grommets which are usually in short supply in the average workshop. Small nuts, bolts and washers, self-tapping screws and speednuts cost over a penny each to buy new and the tedium of removing these from the chassis is made more bearable when one reflects that, at a removal rate of one every five seconds, one is earning about three pounds an hour! Finally, the aluminium chassis is itself dismantled, and panels, brackets, stays and clips recovered.

During the cutting operations, it may be found that the jaws of the side-cutting pliers are frequently too wide to enter the space available for cutting. The writer overcame this problem by purchasing a very cheap pair of long-nosed pliers from a chain store and grinding a cutting-edge at the very tip of each jaw so that when the pliers were closed the ends of the jaws became, in effect, a tiny pair of shears which would work in the smallest space. Used sensibly on small gauges of wire only, the long-nosed cutters provide a very convenient means of reaching otherwise inaccessible bits and pieces.

Cutting is not, of course, the only way to recover the components. Sometimes the joints can be unsoldered, but owing to the professional practice of turning and clenching all leads firmly before soldering the method is not recommended. Printed circuit parts are somewhat easier to remove by unsoldering if they have been dip-soldered on assembly.

THE TESTMETER

Having fully dismantled the set, the various components now have to be tested. This brings us to the question of a workshop test meter; this was not included in the Basic Tools list for the simple reason that the constructor might wish to build his own multimeter. Many designs are available, including several excellent ones published in this journal. Most public libraries will have radio books containing good, simple designs for test meters. The author has built several of these to published designs, all of
which worked satisfactorily, but a proprietary test meter will almost always be better than a homemade one.

The "heart" of a test meter is the meter movement, and the quality of this movement will determine the accuracy. Moving coil meters are available, ex-equipment, having full-scale deflection of $500 \mu \mathrm{~A}$, which is quite sensitive, but these meters have no damping at all, and as often as not, do not have jewelled bearings. Furthermore, each meter has to be calibrated to suit the various circuits in which it will work, and this procedure alone calls for a sophisticated test set-up. In addition, the resistors used in a good test meter are very stable, one per cent or better and for the builder to buy these and other items new would largely offset the price advantage.

Finally, it is not at all easy to calibrate to a.c. ranges of a test meter and often the capacity across the meter rectifiers will lead to wildly inaccurate readings. All things considered, a good multimeter will prove to be a lifetime's investment.

Returning to our dismantling exercise, the test meter is set to the ohms range and one by one the resistors are checked, firstly for continuity, and secondly for actual value compared to the colourcoding. Resistors which are somewhat off tolerance are often perfectly useful if they are not to be used in a circuit where their deficiency would affect the operation of the circuit. Resistors which are widely off tolerance should be discarded, because the chances are they would be noisy, and might lead to irritating failures.

Capacitors are checked to ensure no d.c. path, and coils are tested for continuity and insulation from adjacent coils. Electrolytic capacitors cannot be fully tested by static methods, but if their resistance builds up smoothly to a few hundred $\mathrm{k} \Omega$ they are probably worth a gamble. Rectifiers can be checked for a reasonable ratio between the go and no-go sides, bearing in mind that in a test meter the positive lead is the source of electrons in the external circuit.

Valve filaments can be tested for continuity using the ohms range of the test meter after referring to a valve data book for pin connections. Care must be taken not to exceed the voltage rating of the valve filament with the meter's own voltage. The only other static test which can be applied to a valve is to ensure that no undesirable d.c. path exists between the various electrodes.

Fuses, switches, lamps, etc. are tested similarly for correct operation, and potentiometers, particularly those of the carbon track type, can be checked for smooth increments.

Eventually it will be found that an hour or so spent snipping, cleaning and testing will be rewarded with several nice piles of usable components. and the remaining scrap is consigned to the scrap bin. The problem of short flying leads remains, however. This is best tackled by preparing a few short lengths of wire, each having one end hooked like a crochet needle. The leads on the component are then similarly hooked, and the extension wire hooks are engaged and clenched firmly with pliers. The union is then soldered, using a heat shunt near the body of the component, a hot. clean iron should be used to get the job done quickly. The writer must
have reclaimed thousands of parts in this way over the years, with only a tiny proportion of failures.

MAKING YOUR OWN TOOLS

Earlier it was mentioned that certain tools and accessories could be made at home. Foremost amongst these are the punches of various types. On sale in engineers tool shops, and in certain hardware shops is a type of steel called Silver Steel, known by this name because of its chromium content. The steel is sold in thirteen inch lengths in round flat section, and in its normal state is tough, but readily worked by all the usual methods of filing, grinding, turning etc. However, when the steel is heated to a dull cherry red colour, and plunged in water it becomes very hard indeed, and can be used to cut any softer material. Thus it will be evident that if a length of Silver Steel is first formed into the shape of a chisel and then hardened, one has a useful addition to the tool kit.
However, in the fully hard condition, the Silver Steel is far too brittle for most uses and consequently they are always tempered or "let back" before use. The tool is heated, this time away from the cutting edge until a narrow band of colours begins to run away from the area of heating. The colours will be seen to be a pale yellow, dark yellow, light blue, dark blue, cherry red, and bright red. Now the object in tempering is to run the pale yellow just down to the cutting edge, and then immediately dip into clean cold water. The tool is then ready for use, although a little grinding or honing of the cutting edge will probably improve the performance of the tool and extend its life between regrinds.
It should be noted that hardened Silver Steel can be softened by once again heating to a cherry red, and allowing it to cool slowly in air. Because of this, care must be taken when tempering not to overheat the tip of the tool, nor to delay the dipping unduly. The heat treatment of Silver Steel becomes child'splay with a little practice.

The question of heating the Silver Steel to the correct colour is another matter. Those who cook by gas will have no difficulty, using a good fierce flame on the cooker, an open coal fire will also do the trick. Those, who, like the author, live in a centralheated, electric cooker type house will probably have to invest in a blowlamp of some description. The author uses a small paraffin blowlamp, which has so many other uses around the house that it is not really an integral part of the electronics tool kit. The small Butane lamps on sale will produce adequate heat to treat all but the largest steel sections.

Now we have a means of making not only standard tools such as centre punches, chisels, piercing punches, screwdrivers, gouges, scrapers and the like, but also useful specials such as extension Allen keys. socket drives, trepanning tools, boring bars and literally hundreds of others.

Another aid to good construction practice in the workshop is a pair of extension jaws for the vice. These are made from a length of angle-iron obtainable from steel stockholders. Each jaw should be about 8 in . in length, and all sides and ends are filed flat and square, and a small radius filed on the

P.W.DOUBLEI2 As described in this month's Practical Wireless

Peak Sound are indeed proud to be associated with this superb P.W. design and that so much of it is made possible because of Peak Sound products and design techniques. Basically, the "P.W Double 12 " demonstrates the value of using "Cir-Kit" in modern circuit board units either for single or prototype examples, but in this instance, Peak Sound have contributed much more to the success of this project. This includes the remarkable power amplifiers, the power pack and the ingeniously styled cabinet which almost assembles itself, it is so simple to build. Read about the "P.W Double 12 " in this issue right now. Then when you build this exciting new design be sure you do it with authentic, exact-to-specification Peak Sound kits as described.

SIMPLIFIED LNIT CONSTRUCTION
4 INGENIOUS TEAK CABINET DESIGN
\triangle PROFESSIONAL IN EVERY WAY AND MONEY SAVING TOOI

This is your" ${ }^{\text {P. W.Double }}$

12'" shopping ïst

As you follow through stage by stage with P.W. these are the Peak Sound kits you will require. They are exact to specification. Transistors included.
2 Spools of "Cir-Kit" at 2/-each 40
2 Pre-amp and tone control kits
4 3in x 2in "Cir-Kit" matrix boards
2PA.12-15 Power Amplifier Kits
2 Heat Sink assemblies
1 PS.45K 45 volt power supply kit
1 Pack-flat afrormosia teak finished Cabinet kit
5 Controls as specified
TOTAL COST £22 196
Metal work (make or buy), knobs, plugs and sockets, fuses etc. aliow $£ 3.0 .0$.

Go to your Dealer NOW

for your authentic Peak Sound Kits. In case of difficulty, please send direct, giving the name and address of your usual supplier where possible and add $11 /-$ postage for complete assembly, or $5 / 6$ if without power pack.
TRADE ENQUIRIES INVITED

"Cir-Kit" is at the heart of building this fine design. Made from almost 100% pure copper with unique adhesive backing, it is the superb circuit builder for all requirements. In 5'spools. $\frac{1}{16}$ " wide, 2/-each.
"CIR-KIT" makes it possible!
A Abridged specification

Formation-Two pre-amp panels, two tone control panels, two power amplifler modules, power supply unlt on chassis, housed within teak finlshed cablnet. Controls-Bass and treble cut and lift based on Baxandall circultry/Volume/Balancel Rotary selector. Input Sensitivity-Magnetic P.U. (per channel) 2.5 mV into $68 \mathrm{k} \Omega$. Ceramic P.U. -25 mV into 27 K . equallsed for flat response. Radlo/Aux. 60 mV . HIGH OVERLOAD FACTOR ON ALL INPUTS.
Frequency Response- 20 Hz to $30 \mathrm{KHz} \pm 1 \mathrm{~dB}$ overall,

Output-12 watts per channel Into 15Ω (8Ω speakers may be used).
Negative Feedback-43dB over each section.
Power required-45V D.C. (supplied by bullt-In power unlt).
Cabinet-Afrormosia teak finlsh, pack-flat, easy to bulld kit. Size $9 \frac{1}{4} \times 5 \frac{1}{3} \mathrm{In}$. high $\times 9 \frac{1}{2} \mathrm{In}$. deep.
Transistors-Ultra low nolse In pre-amp and tone control stages.
PERFORMANCE CHARACTERISTICS, PARTS REOUIRED, ETC., SEE OTHER PAGES IN THIS ISSUE

THESE PEAK SOUND PRODUCTS WILL HELP

PA.12-15
POWER
AMPLIFIER
As specified for "P.W. Double $12^{\prime \prime}$ and avallable ready bullt complete with heat sink for mounting directly into position as described, but can also be used in other applicatlons. Also avallable as a kit less heat sink and board. Bullt $\quad \mathbf{f} 5.19 .6$
KIt (less heat slnk, board and "Clr-KIt") 79/6
Heat slnk and baseboard assembly
10/-
Please add $2 / 6 \mathrm{p} / \mathrm{p}$ either model If ordered dlrect, or 5/- for two.

```
ES. 10-15
BAXANDALL
SPEAKER
```

This easy to bulld loud-
speakar provides genulne hi-fl
standards by the use of unlque equallsing princlples. Frequency response $60-14,000 \mathrm{~Hz}(100-10 \mathrm{kHz} \pm 3 \mathrm{~dB})$. Easy-fo-bulld kit including
$18 \times 12 \times 101 \mathrm{n}$ cablnet.
£9.17.6
(Carr. 11/6). Leaflet avallable. + £1.2.1 P/Tax

PEAK SOUND (HARROW) LTD., 32 ST JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY, Phone EGHAM 5316

In next month's PRACTICAL WIRELESS

HOW TO SOLVE YOUR TRANSISTOR PROBLEMS

Every constructor should have a means of checking transistors and other semiconductors if he is to obtain the best from his equipment. This compact unit to be described next month determines the important parameters and will be invaluable in deciding whether cheap unmarked devices can be used in particular projects

PULSE CIRCUITS IN OPERATION

Transistors are ideal switches, thus lending themselves for use in multivibrators and digital circuitry. Bistable, monostable and astable multivibrators are described in detail in four articles starting next month which will enable those who treat these devices as black boxes to adapt them for different circuit conditions.

- THE PW ‘DOUBLE12' HI-FI STEREO AMPLIFIER

Continuing constructional details are given for building this true high fidelity project suitable for a variety of inputs. Next month's PRACTICAL WIRELESS deals with the completion of the preamplifier and the metalwork for the complete unit.

- A COMBINED LOUDSPEAKER AND S-METER

Many communications receivers are without a loudspeaker and a signal strength meter. These can easily be put into one cabinet and connected to the receiver. The Author has done this and explains his method in next month's issue.

LOOK OUT FOR THESE IMPORTANT FEATURES
NEXT NEXT MONTH IN

May issue 3/- on sale Tuesday April 8 ORDER YOUR COPY NOW!

WHESUXII A.S.CARPENTER G3TYJ SUPFEVERER
 Testing

The Superverter may be tested initially in conjunction with the station receiver switched to the medium waveband and tuned to a quiet spot at the high frequency end of its scale. When a grid-dip oscillator is available it is a simple matter to get T1, T2 and T3 roughly pre-tuned before switch-on; in other cases a signal generator may be used but when no signal frequency setting equipment is available a more tedious "test and try" procedure must be adopted and patience will be required!

Socket SK2 may be connected initially to the receiver aerial socket via screened lead and an aerial applied to socket SK1. With a 9 V battery connected acress C3-observing polarity-some noise or signals should be heard as VC1 is manipulated with VR1 at maximum. Immediately any signal is heard-and a weak one is preferred-the tuning should be left and the cores of IFT1 carefully adjusted for maximum received signal strength, attenuating as required by

S1 = 2-pole, 3-way, rotary switch.
1..... Off-aerial grounded.
2.... Superverter 'Out' but aerial through to main receiver.
3.... Main receiver fed by superverter 'On'.

$S 1$ = 2-pole, 3-way, rotary switch
1..... Off-aerial grounded
2..... Superverter 'Out' car radio 'On' and aerial connected.
3.... Car radio plus superverter "On' with aerlal to superverter.
means of VR1. When both cores have been peaked -and they do so quite sharply-they should be left: the receiver tuning should also be left untouched.

It is thereafter a matter of manipulating the cores of T3, T2 and T1 to locate the band centre and when this has been found it should be possible to tune over the whole range of $1800-2000 \mathrm{kc} / \mathrm{s}$ by using VCl and peaking as required with the panel control provided. The vanes of VCl should be almost fully disengaged at the high frequency end of the band but if they are not a slight adjustment to the core of T3 should do the trick. If it is found that the tuning range of VCl is excessive Cll should be reduced in value; similarly a restricted tuning range can be increased by making C11 larger in value. In either case the core of T3 will need slight readjustment.

When the Superverter is to be used solely for "Top Band"/M phone working, full band coverage due to $\mathrm{VC1}$ is unimportant for few such QSOs take place near the band edges. If no signals can be received TR2 may not be oscillating-although this is unlikely to be the case if the components used in this section are above suspicion and wiring is correct; alignment may be a long way out. Fixed tuning capacitors C1 and C6 may need to be modified slightly but if their values have to be reduced to get on the band either too much core is "in" the coil or insufficient turns have been removed.

Switchery

The wiring of the selector switch and SKI and SK2 must be left to individual requirements but some suggestions are given in Fig. 8, SI being the appropriate switch.

At Fig. 8a the Superverter is associated with a mains receiver itself not capable of tuning "Top Band" and in this case a small dry battery can be located on the chassis for powering purposes.
In Fig. 8b the Superverter is associated with a 12 V car radio both items being powered by the car battery via a fuse. In cars of recent manufacture a single wire supply line is possible the "return" being made through the car frame. A positive earth is supposed. Aerial switching is also shown in Fig. 8.

In Fig. 9 a more elaborate switching system is adupted for a full mobile "Transmit/Receive" function permitting single switch control. The transmitter depicted is the popular "Ten-Five" which was described in the January, 1967 issue of Practical Wire

LESS. This transmitter has attracted many praiseworthy reports and has proved an excellent little rig within the range of its capabilities. All legends in Fig. 9 are thus identified with the "Ten-Five" Transmitter

Ganged switches SA, SB, SC and SD (a four-pole, four-way banked rotary component) permit of the following conditions; switch positions are:

1 All units "dead" and the aerial disconnected.
2 Car radio "On" alone via fuse F2. Aerial connected to receiver.
3 Car radio "On" plus Superverter "On". Aerial through to the Superverter. Protection by fuse F2.
4 Car radio "On". Superverter "On" via fuse F2 and transmitter switch SId. Transmitter heaters "On" and aerial through to Superverter via transmitter switch Sla. Looking now at transmitter panel function switch Sld it is seen that when "Transmit" is selected both the Superverter and the car radio receiver "die" instantly for lack of power which is automatically transferred by this switch to the relay coil at "X". The relay operates and 12 V d.c. passes via fuse F1 to a d.c.-d.c. transistorised inverter which starts up instantly to provide 300 V d.c. for the transmitter. Simultaneously, since transmitter function switches Sla and Sid are ganged together the aerial is applied to the transmitter tank circuit.* Use of a car with positive "earth" is assumed. The functions in this connection can be readily understood if the plan of Fig. 9 is compared with the original "Ten-Five" Transmitter design, the only additional item required being a small transmitter panel-controlled switch connected between tag "T" of S1d and pin 7 of SK4; this switch will provide h.t. for "Netting" purposes.

Tuning other bands

Although it may be possible to make the Superverter tune bands other than " 160 " this has not been

[^2]

Note: A panel-fitted on/off switch is also required between
tag'T'Sid and pin 7. SK4 to produce HT for 'Netting' when
necessary
Fig. 9: A complete "Mobile" Transmit/Receive (single switch function) Switching system. The transmitter is the "Ten-Five".
attempted, the aim being to produce a first-class item of equipment for / M working. Some suggestions regarding other bands are included, however, but results obtained are quite problematical.

To tune a different band both r.f. and interstage circuits plus the oscillator section must be adjusted and different coils will be needed. The intermediate frequency-and hence IFT1-remain untouched. Coils for use in the Superverter each require three windings and some suggestions regarding approximate component values required for some amateur bands and utilising ready-made coils by Denco are given in Table I. It must be again emphasised that values are only calculated and no practical tests whatever have been made.

Table 1. Calculated values are for $1.6 \mathrm{Mc} / \mathrm{s}$ output-excluding "stray" circuit capacitances.

Band centre (Mc / s)	T1			T2			T3				$\underset{\text { pin }}{\text { C }}$
	$\stackrel{L}{\mu H}$	Range No.	pF value	$\stackrel{\mathrm{L}}{\mu \mathrm{H}}$	Range No.	pF value	Osc F'cy	$\underset{\mu \mathrm{H}}{\mathrm{~L}}$	Range No.	pF value	
$3 \cdot 65$ (80)	$27 \cdot 2$	3B	70	$27 \cdot 2$	$3 Y$	70	$5 \cdot 25$	66	2W	15	2
								13.6	3W	70	3
7.05 (40)	$2 \cdot 9$	4B	175	$2 \cdot 9$	4 Y	175	865	13.6	3W	27	3
14.15 (20)	$2 \cdot 9$	4B	39	$2 \cdot 9$	4 Y	39	15.75	$2 \cdot 22$	4W	47	4
21-25 (15)	2.9	4B	20	$2 \cdot 9$	4 Y	20	22.85	2.22	4W	23	4
$29.0 \quad$ (10)	0.65	5B	47	0.65	5 Y	47	$30 \cdot 6$	$2 \cdot 35$	5W	47	6

[All coils are miniature transistor types by Denco].

BENTLEY ACOUSTIC CORPORATION LTD.

ALL GOODS LISTED BELOW, ACTUALLY IN STOCK, ALL GOODS ARE NEW, BEST QUALITY MANUFACTURE ONLY, AND SUBJECT TO MAKERS' FULL GUARANTEE, PLEASE NOTE THAT WE DO NOT SELL ITEMS FROM USED EQUIPMENT NOR MANUFACTURERS' SECDNDS AND REJECTS, WHICH ARE OFTEN DESCRIBED AS "NEW AND TESTED" BUT HAVE A SHORT AND UNRELIABLE LIFE.

Multi Purpose Neon Test Unit, Robust, useful and inatructive. tests inculation, capacity, continuity, resistor, volume controls. alao fuctm as signs injector anl L.T. tault finder, ki comprises neon
indicator, t-way wafer switch, ebonite tubes, indicator, t-why wafer switch. ebonite tubes, resistors-colndenmerb, terminals etc. with di
gran, only $9 / 6$, plus $2 /$ - puat and insurance. Granh, only 9/8, plus $2 /$ - puat and insurance
Tuning Condenser, solid d-electric 0005 mfd Tuning Condenser, solid di-electric $0005 m i d$.
variable 2/6 each, $24 /$ - dozen. A.E.I. Praotionai H.P. Motor. $200 / 250$ v. $50 / 60$ A.E.I. Fraotionai H.P. Motor. 200/250 v. $50 / 60$ equip. Perfect order, 19/6, plus $4 / 6$. Exparimenting with ultra violet? Philips U.V lamp, 16/6; holder and control gear 19/6.
G.E.C. Black Light Tabe for experiments and special lighting effects- 40 watt 21 t . tubes only, 14/6 each; holders and control gear, 10/6, plus 4/6 post.
Clook Motor. 230 v . 50 c.p.s. synchronoug-self Pentode Outpu
Pentode Output Transformer. Standard aize, 40-1, ex-equipinent but OK, 4/3 each, $48 /$-doz. Post
E.H.T. Condenser. 0-1 mid. $5 \mathrm{kV}, 8 / 6$ each

Neon Maing Tester, $1 / 3$ each, 12/-doz.
Flood Lamp Control. Our dirn and fuli switch is ideal for controling photo flood tampa: It given two hamps in series, two lamps full brilliance and lamps off. Similar control. of other appliances can be arranged where uned in parr or where circuit can be split exactly in half. Technically the awitch is known a double-pole change over with off. Sub-Miniature
Sub-Miniature Silioon Diodes. General purpose type with goid-plated leads, $1 /$ - each or $7 / 6$ per dozen. mally $4 / 6$ each. 225 ft . Tape on 3 in . 3 po White Circular Fles. Ideal for lightilg drops, twin made by BICC. Nsually 8d. yd., 100 yd. coil for $30 /-$, plus 6/- pustage.
Edgewise Control. Morganite, as itted many tranaistor radins, 2 K or 5 K with switch, $2 / 6$ each or 24/-per dozen.
12V Inverter. Full transistorised for operating a
 £3.10.0. Post ard insurance 3/-.
Stlieon Reotifer. Equiv. BY100 750 mA 400 V . 10 for $20 /$
Miniature Pickup for 7 in . records made by Cosmo"wie, crystal cartridge with supphire stylus only $3 / 8$ or 36/-dozen
Headphones. Ex WD. unused and perfect, low resiatance. Bingle with headhand $4 / 6$, Double with
heidband $8 / 6$. headband $8 / 6$.
Midget Neons for mains indicators, etc.. 1/3 each Compression Trimmers. Twin $100 \mathrm{pF}, 1 /$ - each; 3 in . PM Loudspesker. $3 \mathrm{ohm}, 12 / 6 ; 80 \mathrm{ohm}, 13 / 6$.

MAINS MOTOR

Precision made-as used in record decka and tape recorders-ideal alsu for extractor fans, blower; for first one then $1 /=$ for each one orderal 12 and - for each one ordered. 12 and

WORKSHOP OR REFRIGERATOR?

 Many readers will have found to their diamay that the ioft, garage or shed, which they so carefully converted into a workshop, is Just a because it never gets warm until it is time to finish. The answer is "RADIANT ZONE HEATING Benefit from this type of heathing fs Immediate and low in cont Our Radiant Zone Heatera (made by the famous Philips Company) are internally mirrored glass tubes with built in 500 watt hest and light elements. Four of these over the sverage size bench la all you need and will coast only about 4d. an buur to rin. Ideal aitso under typiata' destas. Keepa legs and knees warni, no inatter how mini the "rmini". Price is 27/6, pust and insurance $4 / 6$ on one or any quantity.
RADIO STETHOSCOPE

Easiest way to fault find-traces signal from aerial to apeaker -when slgnas stops you've found the fault. Use it on Radio, TV, amplifler, anything-complete kit comprises two special transiators and all parts Including probe tube and crystal arplece. 2976- i win atethoset instead of earplece $11 /$-extrapost bind ins., $2 / 9$.

VARYLITE

Will dim incandeacent lighting up to 600 watt from full brilliance to out. Fitted on M.K. fiush plate, same size and fixing at standard wall switch so may be fitted in place o his, or mount on surface. Price consplete in heavy plastic box

DEAC RECHARGEABLE BATTERIES

$3-6 V-500 \mathrm{~mA}$ hr,-size $13 \times 1 \mathrm{lin}$. dia, really powerful will deliver 1 amp for hour. Regular price $32 / 8$ each-our price $18 / 8$ each. New and guaranteed. Other voltages
available-single cell $1.2 \mathrm{~V} 6 / 6,5$ cell 6 V 29/6.
Preoision Whatstone Bridge. Opportunity to build cleaply. 100 K wire wound pot. 15 W rating, only $5 /$.
Sheet Paxolin. Ideal for transistor projects. 12 panels each bin. $\times 8 \mathrm{in} ., 5 /-$
Transistor Ferrite Sleb Aerial with medium and long wave coils, $7 / 6$ each

Rotary Cam Operated Switoh. 12 positions each of which close a separate pair of contacts except the lant which leaves them all open. Contscts rated at 250 V 16 amps, $15 /-$ each.
Rotary Cam Operated Switch. 4 ponitions: 1st position all contacts open; 2nd contact 1 closed; 3 rd contacts 1 and 2 closed; ith contacts 1, 2 and 3 closed. Contact rated $250 \mathrm{~V} 16 \mathrm{amps}, 8 / 6$ each. Pocked Test Meter, mearurey $A C$ voits (3 ranges). DC Volte (3 rangea), ohms, mill ampe, ideal to carry around. Complete with instructions and est prods. $38 / 6$ plus $2 / 6$. \& p.
Breast Miorophone. Fine American made dyommic type, adjustable on breast plate with neck straps, /8, post $4 / 8$.
Ciroular Fluoresoent. 22 watt, $9 i n$. diam. tube complete with choke, starter, holders and chrome clips, 29/6, past, etc., 4/6.
Midget Relay twin 250 ohm coils, size approx $\frac{1}{}$ in $\times \operatorname{lin} . x \operatorname{lin} .4$ pairs changeover contacts, 16 each.
Rotisserie Motor very powerful 7 r.p.m. operates rom stanuard Printed Ciroait Board, Edge Conneotor, solder erminstions. 6 in long but easily cut $7 / 8$ each 80/-doz. ach, 12 - doz.
50 ohm 50 watt Wire Wound Pot-meters, $8 / 8$ each. 1 Meg Miniature. Pot-meter Morganite standard in. spindle $1 /$ - emeh; $9 /-$ per tozzen. 1 Mog Miniature. Pot-meter Morganite preset screwdriver control. 8 d . each; $8 /$-per dozen. Pre-Set 100 K by Welwyn with intrical bakelite nob, 1/- each; 9$]$ - per dozen
00K Pot-meser. Miniature type with double pole switch and standard !in. spinule, by Morganite, 2-each, 18/-per dozen.
3 b upwards, reversible, apeed varlable by changing voltitge or renistince $\$ / \beta$ each. $50 /$ - doz. Thermal Relay. Clan be used to delay the supply of HT whlle heaters warm up, or will enable 15 A loads to be controlled by minlature awitches Or relayk. Regular list price over £2, price 7/6 esch. Platinum piemens Bigh sped Relay. Twin 1,00 ohm coils. Platinum polnts changeover contacta-Ex Toggle Switoh Barga
hole fitting $2 / 9$ each; or. 250 V normal ote Eleotric Lock. 24 V coil, but rewindable to other voltages, $4 / 6$ each.

Where postage is not stated then orders over $£ 3$ are post free. Below 83 and $2 / 9$. free. G.A.E. With enquiries please.

The'New Picture-Book'way of learning

BASC ELECTRICITY(5vols.) ELECTRONICS (6vols)

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on
the latest research into simplified learning techniques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.
TO TRY IT, IS TO PROVE IT

This carefully planned series of manuals has proved a valuable course in training technicians in Electricity Electronics, Radio and Telecommunications.

WHAT READERS SAY

"For the past ten years I have spent a small fortune in technical books but seemed to get nowhere owing to the lack of mathematical knowledge. Now I am pleased to say, after only seven days sudy, I have a clearen understanding in this field than ever before." J.C., Watford.
"I am more than pleased with these publicarions and I have learnt more in Part I than I have learnt in any other books.
S., Dagenham
"May I state how delighted I am with the books, and what a contrast to the many text books 1 have grappled with." W., Huddersfield. A TECH-PRESS PUBLICATION
DOST NOW FORTHIS CFESKID

To The selray book co., 60 hayes hill, hayes, bromley, kent br2 7hp Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FREE TRIAL, I will either return set, carriage paid,ELECTRICITY 75 - Cash Price, or Down Payment of 20 - followed by 3 fortnightly payments of 20 - each BA SIC ELECTRONICS $90 /$ - Cash Price or Down Payment of 15 - followed by 4 fortnightly payments of $20 /$ each This offer applies to UNITED KINGDOM ONLY. Overseas customers cash with order, prices as above
\square Tick Set required (Only one set allowed on free trial)
BASIC ELECTRICIT
BASIC ELECTRONICS
Prices include Postage and Packing.
Signature
(If under 21 signature required of parent or guardian)
NAME
BLOCK LETTERS
FULL POSTAL
ADDRESS

practically Wireless commentary by IEENTI

WHEN Pax led me astray for the fiftieth time, the Editor was good enough to suggest that, though this column was indeed "practically" about wireless matters, some digressions could be excused by the "lighthearted approach."

Sorry, but this month Henry is far from light-hearted, and the cause is much the same as that of No. 50 , viz., the skullduggery of the Postmaster-General.
No consolation to know that he will soon be a more powerful knave-in-office either. Calling the Minister of Posts and Telecommunications by any other name would not make his misdeeds smell sweeter. Take the scandalous case of the "increased licence finesse."
Do you remember when the licences went up? That's right, at the turn of the year. Just one day after Henry's renewal date, glory be! So Mrs. Henry went with $£ 5$ in her hot and sticky little hand to see her friendly sub-postmaster. He has suddenly become an ironfaced gorgon. No licences can be paid until after 1st January. No, not even of that poor pensioner just before us in the queue who has been saving all year for the exact, exorbitant amount.

It may be all right for us-we can cut down on the au pair's chocolates, or spread a little less foie gras on the chips-but for

Cut down the au pair girl's chocolates.
the necdy that extra pound was a dastardly blow.

All right, so it had to be paid. It was due. You want stereo radio, don't you? But somewhere a line had to be drawn. At some date the rise had to be imposed, and if your licence renewal date fell just prior to that line you were dead lucky, chum. Or should have been.

In practice you-and Henry and many others-were not. For the post offices calmly refused to accept the contents of our piggy banks for several days prior to the $£ 6$ deadline.

This is sheer sharp practice. What ordinary business would have got away with such a trick? For the benefit of the reader who thought Henry was a disguised manufacturer let me assure you that he is a plain working. engineer. Imagine his customers' reaction when presented with a repaired radio priced 20% above the estimate-on the grounds that costs would be going up some time in the future! Or, for a more exact parallel, with his wireless set withheld until the price rise came into force. That is the sort of trick our lords and masters perpetrate.

There is more to protest about. And I don't mean Citizens' Band, Morse Code tests, pirate radio, local broadcasting or sponsored TV. Not even Pay-TV, which has been dropped with a dull thud of well-bred disapproval and a sneer at would-be entrepreneurs.

Point at issue is Parliament's distaste for communications, per se. We could understand a reluctance to reveal the cut and thrust of debate for the dull succession of harangues we visitors to the Strangers' Gallery know it to be. And only a very few members are as photogenic as you and I, Joe. Indeed, the sort of comedians who guffaw at jokes in the class of "Who was that lady . . . ?" would compete rather badly with

The customer's reaction .
those wits who send them up for our entertainment. (Will the real Mr. Heath please stand up!)

But it cannot be denied that many of our public guardians, though wary, can be bold when they get the chance to speak. Some contrive to sound assertive even when reading the fourth paragraph of the fifteenth amendment to the second clause of . . . etc. The performance of others makes one wonder how they ever got elected.

So it is hardly surprising to hear that the House was pretty evenly divided on the subject of being broadcast; even less certain about being ready for television. It seems a wonder that they even permit the shorthand writers to be augmented by that new-fangled device, the tape recorder.

Have you noticed that they want to spend $£ 100,000$ on equipment for a pilot scheme of excerpt broadcasts? Considering that the existing sound reinforcement scheme in the Commons is really superb-and I assure you it iswe must beg leave to wonder what they intend to spend this huge whack of public loot upon. Plush seats for the new Minister of Monopolistic Telegraphs perhaps? One correspondent in $\mathrm{Hi}-\mathrm{Fi}$ News last January worked out costs in generous detail and calculated that there was a discrepancy of some $£ 95,000$.

No wonder A. W. Benn, Esq., does not want to leave broadcasting to the broadcasters.

Annother saga?

At the risk of turning the "switchon thump" into another saga on the scale of that concerning Mr. McFarlane's (Jan. 1968) soldering iron (by the way, why did no one suggest buying a new soldering iron instead of auto-transformers, diodes or whatnots) might 1 add my practical experiences to those of Mr. Wood (Feb. 1969).

Having read the many letters recommending cures for the switchon thump, I acquired two electrolytics and proceeded to modify my amplifier as instructed. The result was very interesting: the thump remained unchanged (or did I detect a slight increase?) and the amplifier began to hum at an intolerable level. After some investigation, I decided the thump was caused by charging of capacitors in the driver stages, and cured it effectively by fitting a muting switch to the output. As for the hum, this was cured by restoring the amplifier to its original circuitry.

In conclusion, might I remark that, if Mr. Wood's amplifier does require 2 A for full output, the 10Ω resistors if inserted in the power supply line will reduce his output by about 75%, a far more serious drawback than a "thump" once a day.-P. Gray (Oxford).

The state of things

For several months now I have been following with great interest the replies printed to Mr. Tomlinson's inquiry regarding the definition of solid state.

I think, however, that Mr. Davison's interpretation (P.W. Feb. 1969) is totally unjustified. If solid state devices are to be regarded as devices in which electrons flow only through materials only in the solid phase of matter this will still include both transformers and capacitors.

In transformers electrons do not "travel between the poles in almost free air", an alternating flow is set up in the primary winding which creates an alternating magnetic flux which in turn induces electrons to vibrate in the secondary winding. Thus it is only the magnetic flux which travels through "almost free air" and this flux is usually directed and concentrated by laminations of
a conducting material in a mains type transformer.

As for capacitors, Mr. Davison must know that capacitors are infinitely resistive to direct currents, the plates becoming charged and finally saturated with electrons from one terminal and exhausted on the other. The only way in which this current can then flow is to reverse the direction of the electron flow and hence reverse the quantity of charge on respective plates. Thus a capacitor will appear to pass an alternating current but resist the flow of direct current.

I can assure Mr. Davison that the only way in which electrons can be made to "jump the gap" is to apply an excessive potential difference to the circuit and cause arcing between either the windings of the transformers or the plates of the capacitor.-J. G. Owen GW8BFT (London, W.12).

As a student of electrical engineering I feel that I should clarify certain misconceptions which Mr. Davison (February edition) appears to have concerning current flow and "solid state".

Firstly, Mr. Davison wrongly assumes that nothing impedes the flow of electrons in a "conventional" circuit. If this is so what is the purpose of resistance, capacitance, inductance, and the other circuit devices?

The vacuum valve does not allow free passage of electrons from cathode to a node. Instead the space charge, caused by emission of electrons from the cathode, provides a barrier to electron flow. This barrier must be overcome by the application of a voltage between anode and cathode. If this was not the case all the electrons emitted from the cathode would arrive at the anode without the application of any potential.
In the case of the transformer, Mr. Davison states that "electrons travel between the poles in almost free air". A transformer is constructed on a closed magnetic circuit (of laminations) and therefore has no poles. Secondly, the transfer of energy from primary to secondary is accomplished by means of a magnetic field produced in the primary winding. If this field varies (i.e. if it is produced by a varying
current) then an e.m.f. will be induced in the secondary winding (Faraday's law).

Capacitors are constructed in such a way that electrons cannot flow from one terminal to the other. The dielectric whether air or any other insulating material provides a barrier to current flow. (30,000 volts would be required across a gap in air of I centimetre to produce a current!). Current is only assumed to flow in capacitors to assist some calculations even though an electron cannot pass from one terminal to the other through the dielectric.
Thus electrons in conventional circuits do not jump across gaps (except in valves) but only pass through solid material, e.g. copper or carbon.

As far as "solid state" is concerned I can only add to the numerous explanations of this term. I would say that any circuit which uses semiconductor circuitry is "solid state" because the components used to control electron (or hole) flow are made of solid semiconductors such as germanium or silicon.-L. Macari (Lanarkshire).

Let's end it folks

In the July 1968 issue of Practical Wireless, I posed the question of a definition of "solid state". Subsequent issues produced a most interesting result. I feel that perhaps the Editorial Department would like to call a halt to the discussion and if this is so, I would sincerely like to thank all who have taken part for the views and interest.W. J. Tomlinson (London, E.17).

CR100/1328 output

1 recently purchased a CR100/ 1328 receiver from a well-known dealer with the assurance that the output was suitable for 3Ω speaker. This however was found to be for $1,000 \Omega$ output. Reference to the circuit shows that the output transformer is identical in all CR100 models and all that is required is to wire the 3Ω speaker to tags 9 and 10 which are not in use, or change over the wires from tags 5 and 6 to 9 and 10.-S. Wright (Kirkcudbrightshire).

PORTABLE CABNET Agslulplayer or sutoonsiger. Ready made and teated. This triode pentode condenser coupled
valve giving 3 watte ontput into a 3
ohm loudspeaker. trols and volumeconchassis with knobs plied with loudspes ker an ponse $60-12,000 \mathrm{cps}$. pense 60-12,000 cps. 59/6 SIMGLE PLATERS MONO GMI Junior Malns e2.10.6 Garrard 8RPE\& Garrard AT60 MK1I e12.19.6 Ali ftted LP/78 stylif and mono pickup crystal complete GARRARD TEAKWOOD BA8E WB.1. Ready 65/
out outiormonntig 1000. $000,3000,8 P 25$, AT60.
GARRARD PER SPEX COVER SPC.

DE LUXE STEREO GRAM CHASSI8 V.H.F.. MW. 5 $19-50 \mathrm{~m}$. SW 60-180ma. Maglo ere, push buttons. E 22.10
6 valve plos reet. Size $15 \times 7 \mathrm{x} \times$ Bin. high. 10 PICK UP ARM Conth ACOS LP-78 GPG? Strliig9/B Xtal GPG7 17/B. Stereo Ceramic 85/- Powerpoint $5615 /$

CRYSTAL MIKE INSERTS
$1+\times$ tin $6 / 6 ;$ ACOS 14 \times In. $8 / 6$. BM3, $1 *$ dia. $9 / 6$
MOVING dOLL MIKE with Remote Control Switoh $19 / 6$

PORTABLE

TRANSISTOR AMPLIFIER

PLUS

DYNAMIC

MICROPHONE

Fully portable mind p.s ayatom. Ideal lor Parties or Baby Alarm, Intercom Amplifier, Record itiyer rexine covered catingt,
$12 \times 8 \times 4 i n .$, gowerful $7 \times$ 4in. speaker, lour transistor one watt powe mimplifer plas rensitive battery Bry Pr: Maker's carton new in antee.

World Pamous mak

WEYRAD P50-TRANSISTOR COILS
 PCAI I.F. P50/2CC 470 צo/E. $5 / 7 \quad$ J.E. Tuning Gang Brd I.F. P50/8CC

8/- Weyrad Booklet
Teleseople Chrome
Ferrite Rods Onl

VOLUME CONTROLS
Long sptadlet. Mldget size

$21 \times 5 \mathrm{in} .3 / 8.2 \frac{1}{2} \times 31 \mathrm{in} .3 / 2,31 \times 15$ MATRI
EDGE CONNECTORS $3 \frac{1}{} \times 3!\mathrm{km} 3 / 8.3 \frac{1}{2} \times 5 \mathrm{in} .5 / 2$.
PINB 86 per packet $3 / 4$. FACE CUTTERB $7 / 6$.
S.R.B.P. Bosrd 0.15 MATRIX 21 ln , wide 6 d. per lin. 8 in . wide 9 d , per lin.; Sln. wide $1 /$-per 1 in . (up to 17 in)
B.R.B.P. undrilled $1 / 1$ in. Eosrd. $10 \times 8 \mathrm{in}$. $3 /$-.
BLANE ALUMINLUM CHASSIS, 18 B.W.g, Ein. Bides $7 \times 4 \mathrm{in}, 5 / 6 ; 8 \times 7 \mathrm{In}$., $8 / 8 ; 11 \times 3$ in.. $8 / 6 ; 11 \times 7 \mathrm{in}, 7 / 6$ 13×9 in. $9 / 6 ; 14 \times 11 \operatorname{lin}_{1}, 1 / 6 ; 16 \times 14 \mathrm{n} ., 18 / 8$ $12 \times 8 \mathrm{in} .4 / 8 ; 10 \times 7 \mathrm{in}$. $3 / 6 ; 8 \times 6 \mathrm{in}$. $2 / 6 ; 8 \times 4 \mathrm{in} .5 / 6$

Q MAX CHASSIS CUTTER

'SONOCOLOR' CINE RECORDING TAPE $5^{\prime \prime}$ reel, 900^{\prime} with LP strobe marikIngs, slso oine light defleotor-mirror for aynohronisation.
UNIVERBAL TAPE CASSETTES C60. OUR PRICE $14 /$ - 140 h . Tape Spools $2 / 6$. Tape 8plioer 5/-. Leader Tape 4/6 Reuter Tape Heads lor Collaro models 2 traol 21/- pair
"THE INSTANT BULK TAPE ERASER AND RECORDING HEAD HEAD DEMAGNETISER

BARGAIN STEREO/MONO SYSTEM
Attractive Slim PLAYER CABINET with B.8.R. STEREO Autochanger $4+4$ AMPLIFIER and TWO matched
LOUDSPEAKERS Carr. $10 / 6$ f19.19.6. (Only 4 pairs of wires to join)
19.19.6.

NEW TUBULAR ELECTROLITICS	CAN TYPES		
$2 / 350 \mathrm{~V}$	$2 / 3$	$100 / 25 \mathrm{~V}$	$2 /-$
$8 / 600 \mathrm{~V}$			

$8 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$
$16 / 450 \mathrm{~V}$
$32 / 450 \mathrm{~V}$

$32 / 450 \mathrm{~V}$	$3 /-$	$8 / 9$
$2+8 / 450 \mathrm{~V}^{\prime}$.		

 SUB.MIN. ELECTROLYTICS, $1,2,4,5,8,16,25,30,60,100$, 250mF 15V $2 /-500,1000 \mathrm{mF} 12 \mathrm{~V} 3 / 8 ; 2000 \mathrm{mF} 26 \mathrm{~V} 7 /-$ CAPRE 350V-0.1 8d. $0.6816 .1 \mathrm{mF} 3 / 0$
$500 \mathrm{~V}=0.001$ to 0.05 9d. $0.11 /-0.251 / 8.0 .58 /(200 \mathrm{~V} 3 /=$ $1,000 \mathrm{~V}-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$. SILVER MICA. Close tolerance 1%. $5-500 \mathrm{pF} 1 /-; 660-2,200 \mathrm{pF}$ $2 /-; 2,700-5,600 \mathrm{pF} 8 / 6 ; 6,800 \mathrm{ps}-0.01$, mid $6 /-$ eaoh.
TWIN GANG. " 0 - 0 " $208 \mathrm{pF}+176 \mathrm{pF}, 10 / 6$; 885 pF , ministare $10 /-5500 \mathrm{pF}$ standard with trimmers, $9 / 6 ; 500 \mathrm{pF}$ midget leas trimmera, $7 / 6 ; 600 \mathrm{pF}$ slow motion, atandard $9 /-$; small 8-gang $800 \mathrm{pF} 18 / 9.8$ ingle " 0 " $365 \mathrm{pF} 7 / 6$. Twin $10 /-$.
SHORT WAVE. Single $10 \mathrm{pF}, 85 \mathrm{pF}, 60 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}$, SHORT WAYE. Single
TUNFN, $200 \mathrm{pF}, 10 / 6$ each. 00 p . $10 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}, 7 /$ - eaoh. $100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 3 ; 250 \mathrm{pF}, 1 / 8 ; 600 \mathrm{pF}, 750 \mathrm{pF}, 1 / 9 ; 1000 \mathrm{pF}, 2 / 6$ 250V RECTIFIERS. Soleniam it wave 100 mA 8/-; BY100 10/-. CONTACT COOLED \& wave $80 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$. Full Wave Bridge $75 \mathrm{~mA} 10 /-; 150 \mathrm{~mA} 19 / 6 ;$ TV reots. $10 /-$ NEON PANEL INDICATORS. 850 p . AC/DC, $3 / 8$.

Ditto 5%. Preferred values 10 ohme to 22 meg., 8 d .
$\left.\begin{array}{l}5 \text { watt } \\ 10 \text { watt }\end{array}\right\} \quad$ WIRE-WOUND RESISTORS
$\left.\begin{array}{l}10 \text { wath } \\ 15 \text { watif }\end{array}\right\} \quad \begin{gathered}\text { WIRE-WOUND RESISTORS } \\ 10 \text { ohms to } 6,800 \text { ohms }\end{gathered}$ 10K. 16K, 20K, 25K, 68K, 10W. 8/-

> FULL WAVE BRIDGE CEARGER RECTIFIERS: B or 12 F , outnuts. 14 amp. $8 / 9: 2 \mathrm{a}$. $11 / 8: 4 \mathrm{~A} .17 / 8$. B or 12 v , outputs. $1 /$ amp. $8 / 9$; 2a., 11/8; 4 .., $17 / 8$.
CKARGER TRANSFORMERS, P. \& P. $6 /-$ Input $200 / 250 \mathrm{v}$

 WIRE-WOUND 8-WATT | POTS. T.V. Type. Values |
| :--- |
| 10 ohms to $30 \mathrm{~K}, \mathrm{SNDARD}$ SIZE POTS. |
| 16 | Carbon 30K to 2 meg. 150 ORM8 to 100 K. . $/ 6$ NEW MULLARD TRANSISTORS 6/- each 0C71, OC72, 0C81, 0C44, 0C45, 0C171, 0c170, AF117 REPANCO TRANSIBTOR TRANBFORMERS TP49. Interstage 20:1, 6/-; TT52 Output 3 ohmis, $4 \cdot 6: 1,6 /-$

TT23/4 PAIR 10 W Amp. Transformers and circuit $45 /-$. TRANSISTOR MAINS POWER PACKS. FULL WAVE $\begin{array}{ll}9 & \text { volt } 500 \mathrm{~mA} \text { Size } 41 \times 2 / \times 2 \mathrm{in} \text {. Oatput terminale. } \\ \text { Switched. Metal case, crackle finh. On/oriswitch. } & 49 / 6\end{array}$

MAINS TRANSFORMERS

 $350-0-85080 \mathrm{~mA} .8 .3 \mathrm{v} .8 .5 \mathrm{~s} .8 .8 \mathrm{v}$. 14. or 5 p . 8 a .
 MTDGET $220 \mathrm{v}, 45 \mathrm{~mA}$, , $6,3 \mathrm{v}, 2 \mathrm{a}, 2 \frac{2}{2} \times 2 \frac{1}{2} \times 8 \mathrm{in}$ HEATER TRANS, $6.3 \mathrm{v}, 11 \mathrm{a}, 8 / 8 ; 6.8 \mathrm{v}, 4 \mathrm{a},$.
Ditto tapped seo. $1.4 \mathrm{v}, \mathrm{i}, 3,4,5,6.3 \mathrm{v} .1$ amp. Dito tapped seo. 1.4v., 2, 8, 4, 5, 6.3v, 1 , amp.... $4,5,8,8,9,10,12.15,18,24$, and $307,2 \& 2 \mathrm{a}$ I. amp., $8,8,10,12,16,18,20,24,30,36,40,48,6086$ A amp., 0-12v, and 0-18v. . . -1is-230\%. Input $10 / 6$ AUTO TRANSFORMER8 $0-116-230 \mathrm{v}$. Input/Ontput,
$60 \mathrm{w} .18 / 6 ; 150 \mathrm{w}, 80 /-; 500 \mathrm{w}, 92 / 6 ; 1000 \mathrm{w}, 175 /-$. GOAXIAL PLUG 1/3. PANEL SOCEETS 1/3. LINE 2/OUTLET BOXES. SURFACE OR FLUSH 4/6.
BALANCED TWIN FEEDERS $1 /$ - yard 80 or 300 ohms. Chrome Lead Socket 7/6. Phono Plage 1/-. Phono Socket 1/IACK PLUGS Std. Chrome $3 /-8.5 \mathrm{~mm}$ Chrome $2 / 8$. DIN SOCKETS Chassla $3-$ pin $1 / 6 ;$ b-pin $2 / \%$
DIN SOCKETS Lead $8-$ pin $8 / 6 ; 5-$ pin $5 /-$.
DIN SOCKETS Lesd 8-pin 8/6; 5-pin $5 /-$
WIN PLUGS 3-pin 8/6; $5-$ pin $5 /=$.
Q p. 2-way, or 2 p. 8 -way, or 3 p. 4-way $4 / 6$ eaoh.
1p. 12-way, or 4 p .2 -way or 4 g .8 -way, $4 / 6$ eaoh. ${ }^{\text {Wavechange "MAKITS"Ip. } 12-\text { way, } 2 \text { p. } 6-\text { way, } 8 \text { p. } 4 \text {-way, }}$ 4 р. 3 -way, 6 p .2 -way, 1 wafer $12 /-, 2$ wafer $17 /-, 8$ waifor $22 / \mathrm{c}$

BAKER 12in. DE-LUXE MKII
LOUDSPEAKER
Suitable for any HI-FI System. Provides truly rich sound recreating the muslc. al spectrum virtually flat from $25-15,000 \mathrm{cps}$. Latest double cone with special "Ferroba" ceramle magnet. Flux density 14,000 gauss. Bass resonance 3238 cp . 15 W Eritish rating. Volce colls available 3 or 8 or 15 £ 9 Post 48 page Enclosure Manual 5/9 post pald

BAKER "GROUP BOUND" SPEAKERS-POST FRERE
'Group 25" "Group 35" 'GTOUP 50'
 25 watt 6 gns. 35 watt $8 \frac{1}{2}$ gns. 50 watt 18 gns. ALL MODELS "BAKER SPEAKERS" IN STOCK Quality LOUDSPEAKERB PM 30 OH 8 B .24 in , $3 \mathrm{in}, 4 \mathrm{in}, 5 \mathrm{in}, 7 \times 4 \mathrm{in}$. $15 / 8$ each ; 6 in $22 / 6 ; 10 \ln 87 / 8 ; 8 \times 5 \mathrm{in}$. 21/-:
12in. Double cone 3 or 15 ohm $89 / \mathrm{B}: 10 \times 6 \mathrm{kn} .80 /-; 8 \times 21 \mathrm{in} .21 /-$ G.M.I. Double Cone $18 \frac{1}{2} \times 8 \mathrm{in}$. 3 or 15 ohm models, $45 /-$ or With twin tweeters, crossover and oeramic magnet, 79/8 $15 / 6$ EACH $\frac{85}{\text { EYPE }}$ 81n. LOUDSPEAKER UNITS 8 ohm 27/6, Delare Ceramio 45/-; 15 ohm 27/6; Deluxe Ceramic 45/a; Twin cone 3 ohm Sin. WOOFER. 8 wstts max. $30-10,000 \mathrm{cps} .8$ or 15 ohm $89 / 6$. OUTPUT TRANS. EL84 etc. 4/6; MIKE TRANS. 50:1, $8 / 9$. SPEAKER PRET Varions Tyern samples. Bend 8.A.E.

ALL PURPOSE HEADPHONES

H.R. HEADPHONES 8000 ohms 8 aper Sensitiv LOW RESIBTANCE HHADPHONES $8-5$ ohm

MINETTE

AMPLIFIER
A.C. Main! Tranaformer

Chagil gize $7 \times 8 \frac{1}{} \times 4 \mathrm{in}$.
EZ80. Oqality
ohm. With eugraved las- Jy
cia, valves, knobs, volume and tone controls, $69 / 6$
wired and tested. 12 month gararantee. Post $5 / 6$

BARGAIN AM TUNTRR. Mediom Wave. Transistor 8 uperhet. Ferrite merial, 9 volt. $\begin{aligned} & \text { BARGAIN DE LUXE TAPE EPLICER Cuts, } \\ & \text { trims, joina for editing and repaire. With } 8 \text { blades, }\end{aligned} 1 / 6$ BARGAIM 4 CHANNEL TRANB18TOR MIXER. Add masioal highlights and sound effects to reoordinga. Will mix Miorophone, records, tepe and tuner with separate controle into single output. 9 volt. BARGAIN FM TUNER $88-108$ Mc/s Sir Transistor. Ready brilt. Printed Circuit. Calibrsted allde dial E6.19.6. tuning. Size $6 \times 4 \times 2$ in. 9 volt. BARGAIN 3 WATT AMPLIFIER. 4 Transhtor Puah-Pull Ready built, with volume control. 8 v. 45-page eagle catalogue 5/-Post Free RADIO BOOKS + (Pontage 9d.) Practioal Transiator Reoolveri Praotioal 8tereo Handbook Snpersensitive Tranaistor Pooirol Radio High Fidelity Speaker Enoloauren and Plans Radio Valve Guide, Booke 1, 2, 8, or 4 ea, $5 /$ - No. 6 ea. Pratical Redio Inside Ont Shortwave Transiator Reoeivers Transistor Commanication Seta Modern Transistor Cirouita for Beginnera Sub-Miniature Trangiator Reoeivers Wireless World Radio Valve Data At a glanoe valve equivalents. Valves, Transistors, Diodes equivalente mannal Receive Porelga T.V. by almple modifestons Transistor Circuita Radio Controlled Models

MANUFACTURERS SURPLUS! 25/-
Tape Recorder Case. Red/Cresm $15 \times 12 \times 5$ to

 Ohms 0 to 8 meg. 50 Miocrosmpa (Full list Mitore S.A.E.)

BRAND NEW QUALITY

 EXTENSION LOUDSPEAKER Black or Oresm plastic cabinet, 20ft. lead

FसFIII

FANTASTICALLY POPULAR

We offer you tully tensilised polyester/mylar and P.V.C. tapes of ideatical quality hi-f., wide range recording characteristics as top grade tapes. Quality nomirn manuiactare. They are truly worth a iew
more coppers than acetate, sub-standard, jotnted or cheap imports. TRY ONE AND PROVE IT YOURSELF

	Stendard Play			Long Play	
3 in	150 ft .	2/3	3 in	2uşf.	$2 /$
4 in .	annft.	4/6	4 in .	45 ff	$5 /$
5 in .	Hionft.	7/8	5 in .	90 กit	$10 / 6$
59 in .	900 rt .	10/6	5 in.	1.200ft	131
7 in .	1,2005t	12/6	7 in .	1.800 ft	18/6
	Double Play			Triple Pla	
3 in .	\$00rt.	4/.	4 in .	900\%	13/
4 in .	finoft	$8 /$	5 in .		$25 /$
5 in .	1,200ft	15/-	5 in.	2.40 fft .	341
57 in .	1.800 tt	19/6	7 in .	3.tiboft	44/
7 in .	$2.400{ }^{2}$	$27 /$		draple \mathbf{P}	5

Prasrayes 1/-rept
Post Free less $5^{\circ}{ }^{\circ}$, on three reels.
Quantity and Trade enquiries invited.
NOTE: Large Inpm slorkm nt all brathed

71	Highest QualityCompare Our Prices	
Carr. \& Ins.	GUAP	NTEED
12/6	6 Months	12 Month
14 in .	£2. 10.0	£3.10.0
17in. \& 19in.	£3. 5.0	£4. 5.0
21in. \& 23 in .	£3.15.0	£5.15.0

SATISFACTION GUARANTEED
Most Mullard, Mazda. Cossor. Emitron. Emiscope. Brimar. Ferrantl ty res processed in our own factory.
 pleant
NEW and SPECIAL Lines at the keenest prices
AM/FM STEREO MULTIPLEX RECEIVERS 18 transistors. θ diodes, 1 variable diode, 2 Silicon Rectitiers. Push-puli Stereo Amplifiers. FM Stereo Power output 10w R M S $220 / 840 \mathrm{~V}$ A/C Meins Power output 10W R.M.S.. Beautiful wooden plinth ease-approximately $15^{*}(w) \quad 6^{*}(\mathrm{~h}) \pi \mathbf{g}^{\prime \prime}(\mathrm{d})$. Controls: Function Switch. Balance. Bage/Treble Control. Volume. Tuning. Fine finish. Special purchase enables us to offer these superb machines of tamous make at a ridicuiously low price Unrepeatable offer at a fraction of list price. . . only 26 GNS.. POST FREE.

SHARP $\begin{aligned} & \text { RD504 Mains Battery Tape }\end{aligned} \quad 28 \mathrm{gns}$ HITACHI Marine D/F Receivers 1025 GARRARD 1025 Changers wion Cartridge JASON $\begin{gathered}\text { 12in. Diecast forl range twin }\end{gathered}$ AJAX $\underset{\text { Radio }}{\text { Mattory. AM/FM larger }}$ 12 gns
 HITACHI WH837E All-Wave. full size. 13 gns Hi-FI By Leak. Wharfedale. Goodmans. WB

All items previousavailable. HureHiFi and Component stocks at all bran ches. Please ca FGTITIGAL
RADIWG and view
obligation.

HET.1H. HKA NCHEN
LONDON, 10 Tottenham Court Rd. (MUS 2639) PORTSMOUTH. 350-352 Fratton Road

SOUTHAMPTON, 72 East Street (Tel. 25851) BRIGHTON, 6 Queen's Road (Tel. 23975)

MAI\& ORDEK U', HEんHINR
Devonian Court, Park Crescent Place. Brizhton (TMI firō̌2)

BARGAIN PARCELS

inciuding variable condensers. i.f. coils. loudspeaker plug/sockets. knobs, pots. condensers. resistors, nuts. bolts. cablnet fittings, switches. translormer choke, rectifer. trsasistors at a smail fraction of list value Due to heavy demand we now pack them in several sizes-be amazed-try one now
${ }_{7}^{3} \mathrm{lbs}$ (post (post $5 /-$ -
14 lbs. (post 6/-
$1 /-\mathrm{P}$ \& P

Battery Eliminators for Transistor Supplies 9v., 7六v., 6v., $29 / 6$ plus 2/6 P. \& P

Condensers: Large range available from fod. each Coax Sockets: Flush, 6d. plus 6d. P. \& P

Cartridges: Acos GP67/2G, 14/9; BSR TC8H 30/-; TC8M, 28/6; X1M inserts, 22/6, etc

Ear Pieces: $2-5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Mag.. $2 / 6$ plus $1 /$ P. \& P. $2.5 \mu / \mathrm{m}$ or $3.5 \mu / \mathrm{m}$ Crysial, $5 / 6$ plus i/ P. \& P

High Impedance Horns: $1 \frac{1}{2}$ to $4 \frac{1}{2}$ volt, ideal for alarms, 3/6 plus $1 /$. P. \& P

Loudspeakers: Large range. 2 in .8 ohm, 7/6; 4 in . 8 ohm, $12 / 6 ; 5 \mathrm{in} .8$ ohm. $16 / 6$ plus $2 / . P$. P

Transistors: Full range, i.e. OC44, OC45, OC71, OC82. 2/6; OC35, 9/*; Fet.MPF103, $9 / 6$.

Transformers: 12 volt battery charger, £1.2.6. $250-0-250$ volt 60 mA . $18 / 9: 0-250$ with 6.3 volt. $19 / 6$ plus $3 / 6$ P. \& P

Relays: 12 voll suitable for car alarm, $21 /-$ 6 volt AC. $28 / 6 ; 240$ volt AC, $27 / 6$ plus $3 /-P$. \& P

Ex. Govt. Panel Meters: 0-SM/A. 17/6; 0.300v AC/DC, 25/6 plus 2/7 P. \& P

Many other items. please send S.A.E. for free price list.

BOTHWELL ELECTRIC
SUPPLIES (GIasKow) LTD
54 EGLINTON STREET.
GLASGOW, C.5. Tel. 0.41 wot ith ? 2 the
Member of the Lander Group

TRADER SERVICE SHEETS

5/- each plus postage
We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios. Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

Make	Model	RadiolTV

1969 List now
available at $2 /$
If list is required
indicate with X

From

Address
enclose remittance of
(and a stamped addressed envelope) s.a.e. with enquirles please MAIL ORDER ONLY (April PW)

NEW BOOKS

FEBRUARY

FET Principles, Experiments and Projects
by Edward M. Noll
40/-net
49 Easy Transistor Projects
by Robert M. Brown and
Tom Kneite)
16/- net
Photofact Television Course
by the Howard W. Sams
Engineering Staff 40/- net
Servicing Digital Devices
by Jim Kyle
26/-net

MARCH

Understanding Electronics Units \& Standards
by Earl J. Waters
25/- net
Using Scopes in
Transistor Circuits
by Robert G. Middleton
32/- net
Transistor TV Training
Course
by Robert G Middleton 35/-net
Industrial Transistor Circuits
by Allan Lytel
24/-net

APRIL

101 Questions $\&$ Answers About Colour TV
by Lee G. Sands
15/-net
Having Fun in Electronics
by Lee G. Sands
25/-net
101 Easy Audio Projects
by Robert M. Brown and
Tom Kneitel
28/-net
Practical Design with
Transistors
by M. Horowitz
42/- net
FOULSHAM-SAMS TECHNICAL BOOKS
(W. FOULSHAM \& CO. LTD.)

YEOVIL ROAD, SLOUGH, BUCKS, ENGLAND.

THE BROADCAST BANDS

WELL, the spring transmission season is upon us, autumn south of the equator. This is the month for you DX-ers to send off reports to get that long sought after QSL card, particularly in respect of hearing R. New Zealand. The best time to try is between $0800-0845$ on the 25 mb , frequency is usually 11,780 Mc / s, they are also in the 31 mb using either $9,520 \mathrm{Mc} / \mathrm{s}$ or $9,540 \mathrm{Mc} / \mathrm{s}$. Another station which is hard to hear in the British Isles is the Voice of Free China, Taipei, this station is heard quite well during March and April during its English transmission from 1800-1900, I have heard them at poor to fair strength in the 19 mb .

In the February issue I brought up the question of the swamping of the short wave broadcast bands by R. Moscow and Russian jammers, and the large number of frequencies used by the Voice of America. But there is also another nuisance on the short wave broadcast bands, that is stations who operate off frequency and cause heterodynes on stations operating on the correct frequency. The chief culprits of this form of interference are R. Tirana operating on $15,402-3,11,863,11,858$ and 9,718 instead of 15,400 or $405,11,865,11,860$ and 9,715 . Another station is R. Tehran on $15,137 \mathrm{Mc} / \mathrm{s}$ and $11,730 \mathrm{Mc} / \mathrm{s}$. So perhaps these stations would spend some money on new frequency measuring equipment in 1969 and rid the bands of those horrible heterodynes.

Now here are this months propagation predictions.
West Africa: 0800-1600 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$; $1600-180025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17$, 15,11 and $9 \mathrm{Mc} / \mathrm{s} ; 2000-220017,15,11,9,7,6,5$ and 4 $\mathrm{Mc} / \mathrm{s} ; 2200-020015,11,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 0200-$ $040011,9,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s} ; 0400-060011,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0600-080015,11$ and $9 \mathrm{Mc} / \mathrm{s}$.

East Africa: 0800-1400 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1400-$ $180025,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800-200017,15,11$, 9 and $7 \mathrm{Mc} / \mathrm{s} ; 2000-220015,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s}$; $2200-020011,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0200-040011,9$ and $7 \mathrm{Mc} / \mathrm{s} ; 0400-060011$ and $9 \mathrm{Mc} / \mathrm{s} ; 0600-080021,17$ and $15 \mathrm{Mc} / \mathrm{s}$.

South Africa: 0800-1200 25 and $21 \mathrm{Mc} / \mathrm{s} ; 1200-1400$ 25,21 and $17 \mathrm{Mc} / \mathrm{s} ; 1400-160025,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$; 1600-1800 25, 21, 17, 15 and $11 \mathrm{Mc} / \mathrm{s} ; 1800-200021,17$, 15,11 and $9 \mathrm{Mc} / \mathrm{s} ; 2000-220017,15,11,9,7,6$ and 5 $\mathrm{Mc} / \mathrm{s} ; 2200-020015,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0200-0400$ $11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0400-060011$ and $9 \mathrm{Mc} / \mathrm{s} ; 0600-$ 080021,17 and $15 \mathrm{Mc} / \mathrm{s}$.

South Asia: 0800-1200 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s} ; 1200-$ $140025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1400-160021,17,15,11$, 9 and $7 \mathrm{Mc} / \mathrm{s} ; 1600-180015,11,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s}$; $1800-200011,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s} ; 2000-220011,9,7,6$, 5,4 and $3 \mathrm{Mc} / \mathrm{s} ; 2200-24009,7,6,5,4$ and $3 \mathrm{Mc} / \mathrm{s}$; $2400-02007,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0200-0400.9$ and $7 \mathrm{Mc} / \mathrm{s}$; $0400-060011$ and $9 \mathrm{Mc} / \mathrm{s} ; 0600-080021,17$ and $15 \mathrm{Mc} / \mathrm{s}$.

South East Asia: 0600-0800 21 and $17 \mathrm{Mc} / \mathrm{s}$: $0800-$ 100025,21 and $17 \mathrm{Mc} / \mathrm{s} ; 1000-120025,21,17$ and 15 $\mathrm{Mc} / \mathrm{s} ; 1200-140025,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1400-1600$
$21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 1600-180017,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 1800-2200 \mathrm{11}, 9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2200-2400$ 9 and $7 \mathrm{Mc} / \mathrm{s} ; 2400-02009 \mathrm{Mc} / \mathrm{s}$ only; $0200-0600$ circuit closed.

North East Asia; $0600-080015 \mathrm{Mc} / \mathrm{s}$ only; $0800-1000$ 21,17 and $15 \mathrm{Mc} / \mathrm{s} ; 1000-120017$ and $15 \mathrm{Mc} / \mathrm{s} ; 1200-$ 140015 and $11 \mathrm{Mc} / \mathrm{s} ; 1400-180011$ and $9 \mathrm{Mc} / \mathrm{s} ; 1800$ $22009 \mathrm{Mc} / \mathrm{s}$ only; $2200-0600$ circuit closed.

Australia (East) via Asia: 0600-1000 $21 \mathrm{Mc} / \mathrm{s}$ only; $1000-120017 \mathrm{Mc} / \mathrm{s}$ only; $1200-140015 \mathrm{Mc} / \mathrm{s}$ only; $1400-$ 160011 and $9 \mathrm{Mc} / \mathrm{s} ; 1600-200011,9,7$ and $6 \mathrm{Mc} / \mathrm{s}$; $2000-22009 \mathrm{Mc} / \mathrm{s}$ only; $2200-0600$ circuit closed.

On 2nd March most shortwave broadcasting stations changed over to spring/autumn transmission schedules. So now here are the latest DX-tips.

AFRICA

South Africa: R. R.S.A., Johannesburg, now has English broadcasts as follows on weekdays only: 04130427 on 11,900 and 9,$525 ; 0428-0442$ on 21,535 and 17,$805 ; 0458-0512$ on 7,270 and 5,$980 ; 0513-0527$ on 21,535 and 17,$805 ; 0643-0657$ on 17,805 and 15,220 . Daily 0956-1050 on $21,535,17,805$ and 15,220 ; 10561150 on $25,790,21,535,15,220$ and 11,$900 ; 1156-1250$ on $21,535,17,805$ and 15,$220 ; 1256-1450$ on 25,790 , $21,535,15,220$ and 11,$900 ; 1556-1650$ on 15,220 and 11,$900 ; 1656-1750$ on 25,790 and 21,$535 ; 1756-1850$ on 21,535 and 17,$805 ; 1856-1950$ on 17,795 and 11,875 ; $2056-2150$ on 21,535 and 17,$805 ; 2326-0320$ on 11,875 , 9,705 and 6,075.

EUROPE

Denmark: The Voice of Denmark, Copenhagen, is now beaming its transmission to South America from 22002315 daily in Danish, but on Mon, Wed and Fri the last 30 minutes are in Spanish.

Holland: Radio Nederland now has English transmissions on weekdays for 50 minutes at the following times from transmitters at Lopik: 0730-0820 on 11,730 and 9,$715 ; 1430-1520$ on $21,480,17,810$ and 6,020 ; $1900-1950$ on 11,730 and 6,$020 ; 2000-2050$ on 11,730 and 6,$020 ; 2100-2150$ on 15,425 and 11,730

In May the length of all English transmissions will be 80 minutes for weekdays only. On Sundays the Happy Station will go out at the same times.

CARIBBEAN AREA

Bonaire: The planned full operation of this base in March has been postponed until May. There now are new programme times for R. Nederland English transmissions with new transmissions. 1900-1950 to Africa on 15,$220 ; 2130-2220$ to W. Africa and Spain on 17,810 and 15,220. From 2330-0110 the Spanish/English programme will go out on 6,085 as well as $800 \mathrm{kc} / \mathrm{s} ; 0130-0220$ on 11,730 and 9,$590 ; 0500-0550$ on 11,730 and $9,590$.

Deadline this month 14 th, so good listening and 73 s .

SPRING, when a young c.w.l.s. fancy lightly turns to topband-or does it. The sunspots are on the wane but still the DX seems to be coming through so it would seem to be a good idea to make r.f. hay while the sunspot shines.

All bands have been very good although only one report was received on the topband transatlantics. The W stations in some areas are now allowed considerably more power on this band so you stand a very good chance of hearing your first W on 160 if you listen really hard.

Ten metres going well with VK, VU, and ZD9 all coming through plus quite a few more prefixes which eluded my front end. Fifteen has been excellent and stayed open longer. At 0530 hrs the stirrings can be heard and it doesn't seem to want to hit the sack until 2200. Twenty-even better than 15 for me. It opens earlier and closes later and only dies from about midnight to 0300. Seven megs is a devil of a din but the noise was well modulated with sigs from JA, DU, VK and the likes. This last month seems to have favoured 40 metres with regards to Oceania.

Eighty and 160 have, at times, been excellent. On $3.5 \mathrm{Mc} / \mathrm{s}$ Oceania has peaked through albeit mighty weak while the African continent has featured quite prominently on this band.

A reminder, especially for anyone just starting to listen on the amateur bands. The mobile rally season is almost upon us and my diary makes the first one the North Midlands Rally at Drayton Manor Park near Tamworth in Staffs. There's nearly always a talkin station on topband so if you locate him, then you will be able to hear all the mobiles making contact. Listen for the lads who conduct QSO's on this frequency too. (Fall out the men with red faces!). Be on the look out for cars with weird looking aerials, but be careful. Rushing up to a police car and asking for a QSL just isn't appreciated.

Little birds have whispered that Italian stations are shortly to have a prefix shuffle. The I callsign stays but the number which follows will indicate the province. Another correspondent told tales of a DXpedition to Chatham Island but I didn't hear anything of them at all. Perhaps my front end is more selective than I think; anyone hear sigs from that direction?

SIGS RECEIVED

Desmond Clark (Amersham) is hoping to visit CN8 and $7 \mathrm{X} \varnothing$ this summer and says he hopes to hear G3JDG on topband-I hope he hears G3JDG on topband too! Meanwhile his P.W. progressive s'het has been modded and multi-band \log reads: 80-CT2AS, EA6BG, K1ANV, OD5BA, VE1IE, VO1AL, W1BL, ZL4KE: $40-$ HCØBU/HP1, LX1BW, XE3EB; 20-CE6EZ, CE8AA, FP8CS, FR7ZG, HS1MD, JA3IG, OA4AI, UW $\varnothing J A$, VE6TP, VE7ZA, VE8RCS, VK2WD, VK3AK, VKøIA, VP8KD, VP8KO, YBØAAB, ZL2ACP, ZL3KV, ZL4LM, 5V4EG, 6W8DY, 9K2CF, 9X5AA. 9Y4EH. All these on s.s.b.
R. Dinning (Ayrshire) HA350 plus PR30X, 380 ft . long wire (my, that is a long wire) got these on 15 s.s.b.-CT2AS, EL2J, FM7WQ, HC2HM, HR1KAS, HR1WTA, KP4AZV, KV4CF,

MP4BGY, OD5AT, PJ2CQ, SV $\varnothing W N, T F 2 W J R$, TI5CPG, VK2FA, VK2SI, VP8KO, VQ8CC, ZL3KV, 9G1GK. Ten metres s.s.b. raisedCR6KD, KP4DED, KV4FA, KZ5EK, MP4BGX, OD5BZ, SV $\varnothing W N, V P 2 L X$, YO9CN and hosts of W's.

Paul Sams (Romford) RX-60N, 55ft. end fed, had a session on 20 s.s.b. for-EL4BU, HBøLL, JA9KG, KL7EBK, PY2RE, PY7VON, VK2AYE, VK9NT, YN1HF, ZD8NK, ZL1AON, ZL2JB, ZL4BC, 7X2ARA, 9K2PS.
\mathbf{P} Cavill (Glos.), who has a CR45, received a mixture of s.s.b. and a.m. from-CT1LM, EA2DZ, TI2CMF, VE1ASN, VE3ETS, VK2PL, WA2EUA/ P1, YV1WX, 5A1TX, 6Y5JB, 9H1BG. Aerial was 130 ft . long wire and the band 10 metres.

Pat Johnson (Durham) has an unstable RX60 plus PR30 with a 60 ft . wire thrown in for good measure. Eighty metres produced s.s.b. from-CT1SQ, EA7ID, HB9XL, K2ADY, K3NPV, LX1JE, OA8VE, OD5BA, OX3WX, TF3BE, TF5TP, VE1AAW, VE1AX, VE2BBY, VO1AK, W1EFM, WB2RDO, WøHP, XE1KB, YV5DU, 9H1BL. Forty metres produced-CR7HM, CT1WA, EA3JO, HK3AIS, HV3SJ, YV1PW. (Psst! How can I make my rx unstable OM?) Pat says that EUs average 5 and 9 plus $10 \mathrm{~dB}, \mathrm{OX}$ and TF 5 and $9, \mathrm{VO} / \mathrm{VE} / \mathrm{W} / \mathrm{K}$ 5 and 7 to $9, S$. America 5 and 5. This is for 80. Best listening times- 2400 on for Canada and USA, 0630-0730 for S. America, East coast Ws and Oceania.
M. Pipes (Derby), Trio rx, 66ft. end fed is a 20 s.s.b. fan. The \log reads-CR7PC, HR2WTA, KV4EY, MP4TCE, OD5FA, PY7APS, SV1CA, TA1KT, TG9EP, VK3RZ, VK7KJ, YV5AG, ZD8Z, ZS3JJ, ZS5DC, ZL6OY, 3A2CQ, 4Z4HG, $5 \mathrm{~A} 1 \mathrm{TF}, 5 \mathrm{Z} 4 \mathrm{KL}, 6 \mathrm{Y} 5 \mathrm{~GB}, 7 \mathrm{X} \varnothing \mathrm{BF}$, 9H1I, 9Y4GM.
C. Davis (Stoke-on-Trent) confesses to neglecting his homework to hear-CN8DT, CR6LF, HI8XPM, TF2WLM, UAøBS, VK2AOF, VK3LA, W7LFA, 4X4IH, 9Y4VT. All heard on a Monarch HAM-1 and 50 ft . end fed.
A. Hall (Folkestone), 888A plus a.t.u. (ten out of ten), 110 ft . end fed, admits he has tendencies towards 80 . His best for the band includes CT1LN, GB2IBS, K1RA/P, K2INO, K3UED, K4ASA, K4GSU/P3, VE1IE, WøGEP, W1HO, W2OKI, W3AQX, W4EYM, WAØRZR, WA2APQ, 9H1BL.
J. Hill (Germany), CR70A plus PR30 logged these on $28 \mathrm{Mc} / \mathrm{s}$ a.m.-OZ1AD, W3BIW, W4CSR, W9DLC, and UA3VKT running 10 W .
C. Morgan (Wallsend) CR150/2, 25ft. vertical has been roaming topband. He hooked-GD3VWN, GI6TK, GM3HLQ, HB9CM, HB9YL, OK1ATP, OK1JOE, OM2BM, W1BB/1, W2GGL, W2RAA. He hopes to erect a 132 ft . wire soon so that it's ready and tested by next winter.

CONTESTS

Not a very active month for contest fiends. My little black book shows only two. March 8th9th, BERU contest and also 8th-9th, the YL/OM c.w. contest with the kick-off at 1800 on the Saturday.

Build yourself a quality transistor radio

backed by our after sales service!

roamer seven mk IV SEVEN WAVEBAND PORTABLE

SEVEN TUNABLE WAVEBANDS-
MW1, NW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.

pocket five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) POZTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold case. Size $5 \frac{5}{x} 11 \times 8$ 3 lin. Tunable over both Medium and Long Waves
with extended M.W. Land for easier tuning of with extended M. W. Land for eapler tuning of 7 stages- 8 tranisiotors and 2 diodes, supersensitive ferrite rod aerial, fine tone moving cuil speaker,
also Personal Earpiece with switched socket for also Personal Earplece with switched socket for private listening. Easy
liuild
list $1 / 6$ (list $1 / 6$ (FREE with parts).

transona five

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND (to 50 metres approx.) PQRTABLE WITH SPEAKER AND EARPIECE
Attractive case with red speaker grille. Size $6 \ddagger \mathrm{z}$ 4 in. $\times 1 \mathrm{in}$. 7 stages -5 transistars and 2 diodes,
ferrite roul aerial, tuning condenser, volume control, ferrite rol aerial, tuning condenser, volume coutrol,
fine tone moving coil apeiker also Personal Earpiece fine tone moving coil aptiker also Personal Earpiece
with switched socket for private listening. All first Erade components. Easy build plans and parts price list 1/6 (FREE with parts.)

super seven

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size 71 x 54×1 xin. With gilt fittings. The idenl racio for home or outdoors. Covers Medium and long Waves and Trawler Band Special circuit incorporating 2 F.F. Stages, push pull output, ferrite rod aerial, 7 transistors
and 2 diodes, 3in. spesker (will drive larger speaker) and all first grade components. Easy speaker) and all irst grade comaponents. Easy
luid plans and parts price list $2 /$ (FREE
with parts). (Pernonal Earpiace with switched socket for private listening $5 /-$ extia.:

roamer six

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gelt fithings. Bize 71 x $\overline{5} / \mathbf{x}$ Bhori waveat Trawler Biand l'lus an extra M.W, hand for easier tuming of Luxenbourg. etc. Seusltive ferrite rod atrial and telescopic aerial for short waves All top grade components. 8 gtagen-6 6 Transiators etc. (Cartring strap 1/6 extra). Easy buikd plans and parts price list $2 / \cdot$ (FREE with parts). (I'ersman Earpiere with switched socket for

[^3]Total building costs

Total building costs

Total building costs

Total building costs 7918 P. \& P. 78 \& $\operatorname{H}_{4 / 6}$ private listening 5/- exira.)

4418 P. \& P
 47ノ P. \& P.

$8918 \quad$ P. \& P

Extra M.W. band for
easier tuning of Luxembourg,
easc. Bullt in ferrite rod aerial for
Medium and Long Waves. 5 Section 22 in .
chrome plated telescopic aerial for short waves-
can be angled and rotated for peak S.W. listentng. Socket
ior Car Aerial. Poweríul push pull output. 7 tratisistors and 2
diodes incling Micro- Alloy R.F. Tranistors. Famous make $7 \times$ in. P.M. speaker for
rich.tone vilung Air rich-tone volume, Air spaced ganged tuning condenser. Separate on/ori switch, volume control, wave change switches and tuning control. Attractive cise with carrying handle. Size $9 \times 7 \times 4 \mathrm{~m}$. approx. Firsi grade components. Easy to follow instructions athl
diagrams make the Rotmer 7 a pleasure to buitl. diagrams mate the Roumer $\overline{7}$ a pleasure to buid.
Total building costs
E
Parts price list and easy build plans 3/- (Free with parts).

NEW LOOK melody six

TWO WAVEBANO PORTABLE
8 stages- 6 transistors and 2 diodes. Covers Medium and Long Waves. Top quanty $\begin{aligned} & \text { in } \\ & \text { output and ulso with Personal Earpiece }\end{aligned}$ with switched socket for private listening. Two R.F. stages for extra boust. High "Q". Ferrite Rod Aerisl. Push-pul! output. Handsome pocket size case with gilt fitt ings. Bize $64 x \times 4 \times 2 \mathrm{in}$. Easy build plans and parte price list \&/- (FREE
with parts)

Total building costs
8018 P. \& P

RADIO EXCHANGECO

| 61 HIGH STREET, BEDFORD. Tel. Bedford 52367 |
| enclose $\mathrm{f} \quad$ please send items marked

ROAMER SEVEN	\square	ROAMER SIX
TRANSONA FIVE	\square	SUPER SEVEN
POCKET FIVE	\square	MELODY SIX

Parts price list and plans for
Name
Address
PW4 |

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

Mon.-Sat. 9 a.m
Closed Sat. 1.30-2.30 p.m Open Dally to Callers

147	718	6B97A	7/-	6K7G 2/-	9BW6 7/-	$20 \mathrm{P5}$ 20/-	$80 \quad 7 / 8$	DF96 718	FCF80 5/6	EM80 \%/	PC97 8/9	R05/50080/-	-
1 DW	$7 / 6$	6BR7	171-	8K7GT 4/6	$10 \mathrm{Cl} 12 / 6$	25A6 6/8	$85 A 2 \quad 7 / 3$	DH77 $4 / 9$	ECF82 6/6	EM81 8/3	PCC84 6/8	8130 40/-	UI41 121-
$1 \mathrm{H5}$	$71-$	GBR8	$12 / 6$	6K8M 11/8	$100212 / 6$	25 L6GT 7/-	15082 11/6	DK52 $7 / 9$	ECH21 12/6	EM84 7/8	P6C89 10/6	gP4 81-	UL84 7/-
11.05	8/-	6B87	25/-	6K8G 3/-	$10 \mathrm{Fl} \quad 14 / 8$	25Y5 6/-	15004816	DK91 6/-	ECH35 11/6	ESU15020/-	PCC189 10/6	8P41 3/6	UM80 5/6
1NSAT	81-	8BW6	14/6	6K8GT 7-	$10 \mathrm{~F} 318 /-$	2524 6/3	$801 \quad 8 / 6$	9 K 92 91-	ECH42 11/-	EY51 7/0	PCF80 $6 / 8$	SP61 3/6	$\begin{array}{ll}\text { UU6 } & 13 / 6\end{array}$
1 R 5	$81-$	6BW7	13/-	6 K 2515 j	$10 \mathrm{F9} 10 / 6$	2575 81-	807 9/-	DK96 7/9	ECH81 $5 / 9$	EY86 7/-	PCF82 $6 / 6$	STV280/80	UU7 18/8
184	5/8	8C4	51-	8 Ll 12/-	10 F 18 8/-	2526816	8131/EA	DL66 25/-	ECH83 8/6	Ez35 6/-	PCF'84 8/-	95/-	$\begin{array}{lr}\text { UU7 } & 18 / 8 \\ \text { UU9 } & 8 / 8\end{array}$
185	$4 / 6$	$6 \mathrm{CL5}$	$51-$	6LAG $7 / 8$	$10 \mathrm{L1} 81-$	28D 7 7 9/3	1201-	D1.92 6/8	ECLR0 7-	EZ40 8/8	PCF86 9/-	9J25 $19 / 6$	$\begin{array}{ll}\text { UU9 } & 8 / 8 \\ \text { UY21 } & 9 / 6\end{array}$
1 T 4	41 -	606	$3 / 8$	8L18 B/-	10LD11 10/6	30 Cl 8/9	813 80/-	DL93 4/-	ECL82 7/-	EZ41 9/6	${ }^{\text {PCF'801 }} 979$	8U2150 12/6	UY41 8/6
3A4	$41-$	6C80	61-	6Q7G 6J-	10 P 131818	$30 \mathrm{Cl15} 15 /-$	8664 15/-	D194 $8 / 8$	ECL83 10/3	EZ80 $6 / 6$	PCF802 $0 / 9$	T41 $17 / 6$	UY85 618
3 Q 4	$7 / 8$	6CD80	24/-	8Q7GT 8/6	$11 \mathrm{E3} 701-$	$30 \mathrm{Cl7}$ 16/-	954 5/8	DL95 7/9	ECL8 $91-$	EZ81 5/6	PCF805 15/-	TDD4 $8 / 6$	VMP4G 17-
3 QS	$71-$	6CE 6	$7 / 6$	68A7M 7/-	12AT6 $4 / 9$	$30 \mathrm{Cl18} 181-$	1625 6/6	DL96 7/6	ECLL800	GZ30 10/-	PCF806 18/-	U10 $7 / 6$	VP4B 25j-
384	$8 / 8$	6CW4	12/-	6807 7/-	${ }^{12 A T}{ }^{\text {12AT }} 61-$	$30 \mathrm{~F} 5171-$	4022AR R $7 / /-$	DM70 6/-	30/-	GZ32 10/-	PCF80815/6	U14 7/6	VR105/30
3 V 4	$6 / 9$	6D5	3/9	$68 \mathrm{G7} \quad 8 /-$	12AU6 $5 / 9$	$30 \mathrm{FLl} \mathrm{10/-}$	5763 12/-	DY86 6/-	EF9 20/-	Gz34 11/-	$\text { PCI } 827 / 9$	U19 35/-	6/6
5R4GY	10/6	6E5	$7 / 6$	68H7 3/3	$12 \mathrm{AU7} 5 / 9$	30 FL 1219 J -	7193 2/-	DY87 6/6	EF37A 71-	KT36 18/-	PCL83 $10 / 8$	U25 15/8	$0 / 30$
5U4G	4/-	${ }_{6}^{6 F 1}$	12/6	6857 8\%	12AX7 78	30PL14 15/6	7475 14/-	E88CC 12/-	EF39 8/-	KT61 $17 / 6$	PCL84 8/6	U26 15/6	6/-
5 S 4 G	5/8	6 Fsj	81-	68K7GT 419	12846 $6 /-$	$3011517 /-$	A61 719	EA50 3/8	EF41 10/-	KT66 $21 /$ -	PCL8S $9 / 3$	$\begin{array}{ll}\text { U78 } & 4 / 6\end{array}$	VT25 15/-
${ }_{5 Y 8 G T} 5$	6/-	6F8G	$5 /-$	68L7GT 6/-	12BE6 $6 / 3$	$\begin{array}{ll}30117 & 17 /- \\ 3019\end{array}$	$\begin{array}{ll}\text { ATP4 } & 2 / 3 \\ \text { ATP } & 19 /-\end{array}$	EABC80 6/6	EF50 5/-	KT81 35/-	${ }^{\text {PCLL86 }}$ 9/3	U191 13/9	VT31 80j-
$5 \mathrm{F4G}$ 9	${ }^{7 /-}$	8F8G	$5 / 6$	68N7GT 5/6	12C8GT 51-	$\begin{array}{lll}30 \mathrm{P} 12 & 16 /-\end{array}$	ATP5 12/-	EAF42 10/-	EF80 b/-	KT81 (7C5)	PENA4 20/-	U251 16/3	VU111 8/9
6/30L2	151-	$6 F 11$ $6 F 13$	$8 / 8$ $8 / 8$	68Q7 6U4GT 18/6 18	$\begin{array}{ll}12 \mathrm{El} & 20 /- \\ 12 \mathrm{JGT} & 2 / 6\end{array}$	$\begin{array}{ll}30 \mathrm{Pl} 19 & 15 /- \\ 30 \text { Pld } \\ 16 /-\end{array}$	$\begin{array}{lr}\text { ATP7 } & 8 / 8 \\ \text { AU2 } & 80 /-\end{array}$	EB41 10/-	EF85 7/-	151-	PENB4 20j-	U301 12/6	VU120 12/6
${ }_{647} 689$	15/8	${ }_{6}^{6 F 13}$	$8 / 6$ $12 / 6$	6U4GT 6USG 1/8 18	${ }^{12 \mathrm{~J} 5 \mathrm{GT}}{ }^{2 / 6}$	30 Pld $16 /-$ 30 PLI $318 / 8$	$\begin{array}{lr}\text { AU2 } & 80 /- \\ \text { AUS } & 8 / 9\end{array}$	$\begin{array}{ll}\text { EB91 } & 3 /- \\ \text { EBC33 } \\ \text { 8/8 }\end{array}$	$\begin{array}{ll}\text { EF86 } & 8 / 6 \\ \text { EF88 } & 5 / 6\end{array}$	KT88 80/ 80	PEN45 7-	103 103 $6 / 6$	VU508 35/-
${ }_{6 A C 7}$	12/6	${ }_{6}^{6 \mathrm{FP} 23}$	12/6	$\begin{array}{ll}\text { 8USG } & 7 / 6 \\ \text { 8V6M } & 12 /-\end{array}$	$12 J 7 G T ~ 6 / 6$ $12 \mathrm{~K} \mathrm{GTT}^{\text {8/- }}$	$30 \mathrm{PL} 1318 / 6$ $30 \mathrm{PL1}$ $18 /-$	$\begin{array}{lr}\text { AUS } & 8 / 8 \\ \text { AZ1 } & 8 /-\end{array}$	$\begin{array}{ll}\text { EBC33 } & 8 / 8 \\ \text { EBC41 } & 9 / 9\end{array}$	$\begin{array}{ll}\text { EF88 } & 5 / 8 \\ \text { EF91 } & 3 / 6\end{array}$	KTW61 KTZ41 8/6	$\begin{array}{ll}\text { PEN46 } & 4 / 7 \\ \text { Pl36 } & 10 / 9\end{array}$	U404 $7 / 6$ $\mathbf{U 8 0 1}$ $23 / 6$	W81M ${ }^{\text {W }}$ (18/6
6AK5	5/-	$6 \mathrm{~F}^{2} 4$	14/-	6V6G $4 / 6$	12K8GT81-	$35 A 511 / 8$	AZ31 101-	F:BC90 4/6	EF92 2/6	MLa ${ }^{\text {M }}$ 17/6	PL81 8/-	UABC80 $/ 16$	
6AL6	4/6	$6 \mathrm{~F}^{25}$	$15 /-$	6V6GT 8/6	1297GT 6/-	35L6 5/9	CBL31 16/-	EBF80 7/8	EF98 15/-	ML6 6/-	PL82 8/6	UAF'42 10/6	X8G1-510\%-
6AM5	2/6	$6 \mathrm{EF}^{28}$	141-	$6 \times 4 \quad 4 / 6$	$1284781-$	$35 W 4 \quad 4 / 6$	CCH35 15/-	EBF83 9/-	EF183 6/6	M8P4 10/-	PL83 7/6	UBC41 9/8	Y63 7/6
6AM6	3/8	6G6	8/6	6X5G 4/8	12 SG 7 6 -	3573 10/-	CL33 201-	EBF89 8/6	EF184 7-	MU14 7/6	PL84 71-	UBC81 9/3	Tubes
6AOS	6/8	6H6	$8 /-$	6X5GT 6/-	128日7 3/-	35740 T 8/6	CY30 12/6	EBL1 14/-	EL32 3/6	MX40 1216	PL500 14/6	UBF80 7/-	3EG1 65/-
6 A876	16/-	6.15 M	91 -	$7 \mathrm{7B6} \quad 11 / 6$	128J7 $4 / 6$	$35 \mathrm{Z5}$ 87-	CY31 816	EBL21 12/-	ELS8 1276	N78 19/-	PX4 14/-	UBF89 $7 / 6$	$3 F P 7$ 291-
6AT6	4/8	${ }_{6}^{6 J 5 G}$	4/-	$7 \mathrm{B7} \quad 7 / 8$	188 CR 7 4/9	37 61-	DAC32 $7 /-$	EBL31 27/6	El34 1018	N108 25j-	$\begin{array}{ll}\text { PY33 } & 10 / 9\end{array}$	UCC84 816	5CP1 55/-
6AU6	51-	${ }^{\text {6J5GT }}$	$5 / 6$	7 Cb 151-	128875	42 61-	DAF'91 4/6	EC90 51-	EL41 $10 / 8$	NGT1 6/-	PY81 5/9	UCC85 7/6	CV1526 40)-
$6 \mathrm{B4G}$	$201-$	6 J 8	$3 / 8$	$7 \mathrm{C8} 151-$	$14 \mathrm{H7} \mathrm{ll}^{18 / 6}$	5085 6/6	DAF96 7/6	ECC81 6/-	EL42 6/6	NGT7 80/-	PY82 5/3	UCF80 8/8	ACR131100/-
6B8G	$2 /-$	6J7M	8/6	$7 \mathrm{7D}$ 8j-	19AQ5 5/-	$50 \mathrm{C5}$ 8 $8 / 3$	DCC90 10/6	ECC82 $5 / 8$	EL84 4/8	0 A 23 6/-	PY83 71-	UCH42 $10 / 8$	VCR97 35/-
6BA6	$5 /-$	6JJ7G BJTGT	6/-	$\begin{array}{rr}7 \mathrm{H7} 7 & 6 / 6 \\ 7 \mathrm{R} 7 & 13 \mathrm{l}\end{array}$	$20 \mathrm{DL} 101-$	50CD6G31/-	DF33 8/-	ECC83 613	EL90 6/8	0C3 7/-	PY800 9/6	UCH81 7-	VCR517B
6BE6 $8 \mathrm{BH6}$	5/-	6J7GGT	7/8	$78713 j-$	$20 \mathrm{~F}^{62} 1141-$	50L6GT 8/-	DF'70 9/-	ECC84 $5 / 6$	EL95 6/6	024 4/6	PY801 $9 / 6$	UCL82 $7 / 6$	46/-
68H6 6BJ6	9/-	$6 \mathrm{K6GGT}$ $\mathbf{6 K 7 M}$	6/8	$\begin{array}{cc}787 & 45 /- \\ 7 Y_{4} & 8 / 8\end{array}$	$\begin{array}{ll}20 \mathrm{L1} & 20 /- \\ 20 \mathrm{P4} & 20 /-\end{array}$	$\begin{array}{ll}75 & 9 / 6 \\ 78 & 5 /-\end{array}$	$\begin{array}{ll}\text { DF91 } & 4 /- \\ \text { DF92 } & \text { 9/- }\end{array}$	$\begin{array}{ll}\text { ECC85 } & 5 /- \\ \text { ECC88 } & 7 / 6\end{array}$	ELL80 20/-	PC86 $111 / 6$	$\begin{array}{ll}\mathrm{R} 2 & 7 / 8 \\ \mathrm{R} 19 & 718\end{array}$	UCL83 10/-	CRS17C
6 BJ 6	$9 /-$	6K7M	676	$7 \mathrm{Y} 4 \quad 8 / 8$	$20 \mathrm{P4} 201-$	78 5/-	DF92 \%/-	ECC88 $71 / 8$	EM34 21/~	PC88 11/6	R19 719	UF41 $10 / 8$	48j-

SPECIAL 24 HOUR SERVICE OBSOLETE TYPES A SPECIALITY
QUOTATIONS FOR ANY VALVE NOT LISTED Express postage 9d. per vaive
Ordinary postage id. per valve.
Complete C.W.O. No C.O.D Manufacturers and Export Inquirles Welcome

Special 24 Hour
Express Mail Order Service

DABy, DAF96, DF96, DK96, DL92 or DL94

20-plus postrge DAF96, DF96, DK96, DL96

TRANSISTORS

| $\mathrm{AC127}$ | $7 / 8$ | 0025 | $11 /-$ | $0 \mathrm{OC71}$ | $4 / 6$ | 0 Cl 1 | $4 /-$ | $0 \mathrm{C82D}$ | $6 /-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | AF114 | $7 /-$ | OC28 | $18 /-$ | $0 C 72$ | $8 /-$ | $0 C 81 D$ | $4 /-$ | $0 C 83$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AF115 | $7 /-$ | OC3 | $11 / 6$ | OC75 | $8 /-$ | OC81DM | OC170 | $7 /$ | | AF115 | $7 /-$ | OC3 | $11 / 6$ | $0 C 75$ | $8 /-$ | OC81DM | $0 C 170$ | $7 /-$ | |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| AF116 | $7 /-$ | OC44 | $4 / 6$ | OC76 | $6 /-$ | | $6 /-$ | $0 C 171$ | $8 /-$ |
| AF117 | $8 / 6$ | OC45 | $4 /-$ | OC77 | $8 /-$ | $0 C 82$ | $8 /-$ | 00200 | $7 / 6$ |

SEND S.A.E. FOR LIST OF 2,000 TYPES

HOME RADIO (Mitcham) LTD., Dept, PW, 187 London Road, Mitcham, Surrey, CR4 2Y0 Phone : 01-648 3282

W.S.FDWLER

IN THIS FINAL ARTICLE IN THE SERIES, DETAILS ARE GIVEN OF PRACTICAL CIRCUITS USED IN TAPE RECORDERS.

FIOR general usefulness, the mains powered tape 1 recorder has several advantages over battery models. A possible exception to this are the recent cassette loaded recorders which employ tape of half the normal width; $\frac{1}{8}$ instead of $\frac{1}{4}$ in. Two tracks are used and the machine thus approximates to the standard four track machines in performance. The vexed problem of capstan speed stability is tackled by the use of a transistorised "feedback" regulator Furthermore the disadvantages of d.c. bias and permanent magnet erasure are obviated by the use of a.c. bias, coupled with the use of an a.c. erase head. Again, because of power requirements this last feature is generally restricted to mains powered recorders.

Constructors who wish to build a useful and reliable mains tape recorder are referred to the article in Practical Wireless for March. 1968. Using a B.S.R. TD2 deck, this recorder can be cheaply constructed and it would be difficult to improve on this without considerable expense

The TD2 deck does however operate at a fixed speed of $3 \frac{3}{3}$ i.p.s. and for those constructors who wish to obtain increased economy on the one hand.

Fig. 11: Circuit of an add-on unit which may be used in conjunction with a record player amplifier.
and also have the availability of a higher quality performance, it is suggested that the TD2 deck should be replaced by the TD10 B.S.R. deck. Alternative decks providing similar facilities are the Thorn and the Collaro Magnavox, four track versions are also available.

FREQUENCY CORRECTION

It has been assumed so far that the frequency response of the recording tape is linear, i.e., the output of the tape will correspond to the input. In practice this is not so and the losses in the tape head itself, together with the irregular response of the tape, necessitate some form of frequency correction. Normal practice consists in reducing the bass frequencies and accentuating the treble frequencies during the recording process while on playback the bass frequencies are boosted.
Some tape recorders employ a frequency selective choke which is coninected in the grid circuit of the second stage of the amplifier and is brought into circuit when the machine is in the record position. A more common method is the use of frequency selective negative feedback.
A simple method giving good results shown in Fig. 11, consists of limiting the value of the cathode by-pass condenser of the second stage of the amplifier. The normal 25 mfd by-pass condenser should be disconnected on its positive (cathode) side. A 0.05 mfd paper condenser can then be connected across the cathode by-pass resistor. The disconnected positive lead of the electrolytic condenser is connected to a small on/off switch. The other connection of the switch is taken to the cathode. In the record position, the switch is "off" and the 0.05 mfd condenser provides any easy path to earth for the higher audio frequencies. while the low freauencies are reduced through negative feedback. In the play position, the switch is "on" and the electrolytic condenser is brought into circuit, restoring normal linear amplification.

AN ADD-ON UNIT

The B.S.R. TD2 tape deck unit can be purchased fairly cheaply and if this deck is installed in, or adjacent to, an existing radiogram or player unit, the total cost of providing recording and playback facilities need not exceed $£ 10$. The deck itself needs the normal mains connections to power the drive motor; the only other connections are those to the record/play head and to the erase head.
The signal which is to be recorded on to the tape must be derived from the main radiogram amplifier. Referring to Fig. 11 it will be seen that the signal is taken from the anode of V3 (the output valve). In this case the valve is an EL84, but this is unimportant, nor does it make any difference if the final circuit is in push-pull. All that is required is to obtain a signal from the anode side of the output transformer T1. This is fed via the capacitor/ resistor chain to the record/play head, through a two-way switch, the other lead of the record/play head is permanently connected to earth.
For replay the output of the record/play head is too low to feed directly into a gramophone amplifier and pre-amplification is provided by the add-on valve V1. This is an EF86 high gain amplifier circuit and the a.f. output is fed via a 0.01 mfd to the volume control circuit of the gram amplifier. If desired, a small transistorised preamplifier could be used here.

ERASE AND BIAS

So far, little has been said about the provision of a.c. bias and erase voltages which are necessary when an erase head is used in place of the simple permanent magnet. Basically, a small output valve such as an EL84 is used in an oscillator circuit to

Fig. 12: Circuit of an oscillator for providing a.c. bias and erase currents.
provide a frequency of about $50-70 \mathrm{kc} / \mathrm{s}$. Details of the circuit are shown in Fig. 12.
The oscillator coil, T1, shown can be purchased for about seven shillings. The coil usually has a ferrite dust core which gives some control over the actual oscillator frequency. It will be noted that this circuit also provides a.c. bias for the record/play head. Only a small amount of bias is necessary and this is fed directly from the anode through a 100 pF capacitor. This capacitor is connected permanently to the record/play head, but as the oscillator is only
brought into operation on record, it performs no function when the machine is in the play position.

The oscillator coil has a secondary winding and it is this which is connected directly and permanently to the erase head. Most erase heads function at low impedance in order to avoid the build up of awkward r.f. potentials in the recorder circuit. A simple test to ascertain if the oscillator/erase system is functioning correctly consists in connecting a 6 V flashlight bulb

Fig. 13: Arrangement using a double-triode for a push-pull oscillator.
across the erase head, in the record position enough power should be generated to light this bulb.
If an EL84 valve is not readily available, a double triode a.f. amplifier valve such as an ECC82 may be employed instead. The circuit for this type of oscillator is shown in Fig. 13 and the output is provided by the push-pull operation of the two halves of the triode. This gives a purer waveform for the bias and erase. In this circuit, variable control of

Fig. 14: The output pentode may be used in the circuit shown for providing erase and bias current while recording.

Mullard DATA 3006 for 1969

Get up-to-date with the latest Mullard Data Book-just published. It contains details of curremponents for Radio. picture tubes, semiconductors and Each section, colour TV, Audio and HiFi applications. Eas comparables and coded for quick reference, equivalents information in the replacement market.

Buy your copy from your local TV retailer
MUCR $\begin{aligned} & \text { Buy your copy from your or ocal 3'6 plus 9 for postage and }\end{aligned}$ or send $3 / 6$ plus 9 Mullard Ltd.
\qquad

TEGHNCAL trannice in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
* Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW $\mathbf{S E L F - b u i l d ~ r a d i o ~ c o u r s e s ~}^{\text {sel }}$

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

N EWMAR
 ELECTRONICS Dept. APR 9 30/32,Shudehill, Manchester 4. Tel:061:8327710 15, Whitechapel, Liverpool. Tel:051.236 0738

SEND FOR A FABULOUS COLOUR ILLUSTRATED SOUND AND SCIENCE catalogue, 88 pages crammed with pictures and information on all the latest electronic and scientific gadgets, accessories and equipment, only 1/6 p. \& p. 1/-

FREE GIFT OFFER OF A BRAND NEW WORLD FAMOUS E.M.I. FISK SOLARISCOPE VALUE £2.2.0 WITH EVERY ORDER VALUE 25 AND OVER. TEIS UNIQUE SCOPE VALUE 22.2 .0 WITH EVERY ORDER
INSTRUMENT WHICH IS A BOON TO SHORT WAVE LISTENERS CLEARLY
SHOWS THE AREAS OF DA YLIGHT AND DARKNESS ALL OVER THE EARTH AT ANY GIVEN HOUR.
ORTOSLIDE UNIT. Fits any tape recorder, 2 or 4 track. Can be fited in minutes. List price $£ 8.17 .6$. Our Price ONLY 58/11 (2/-). Send S.A.E. for Leaflet
Acos ROUND Crystal Mike Insert, 1 sin. diameter, 7/6. P. \& P. 6d.
CRYSTAL HAND MIKE. Rolunt and sensitive. Cream plastic case. Just the thing for tape recorders, 10/6. 1'. \& P. 1/6. Similar with built-in atand, $12 / 6$.
INTER-COMS. DE LUXE TRANSISTORISED HOMER. 2-Way. With cahle. Uses PP5 battery. OUR PRICE 50/11. P. \& P. 2/-. Ideal baby alarm.
4 TRANSISTOR 3W AMPLIFIER. Size $2 \mathrm{f} \times 2 \mathrm{x} \times 1 \mathrm{hin}$. 3,8 or 15Ω output, 9 volt battery operated. Highly sensitive. Price (less battery) 52/6. P. \& P. 1/6.
CAPACITANCE SUBSTITUTION BOX. Range from 0001 mFd to 22 mFd . Complete with leads. 25/-. P. \& P. 2/-. A 'must' for the bench.
RESISTANCE SUBSTITUTION BOX 15Ω to $10,000 \Omega$ low range, $15 \mathrm{k} \Omega$ to $10 \mathrm{~m} \Omega$ high range, 40/-. P. \& P. 2/-(both modela complete wlit leads)
NEW MODEL HI-F1 3 WAY VARIABLE CROSSOVER NETWORK, B3/-. P. \& P. $2 / 6$. Hi-Fi Tweeter, mod CT10. Spec. $15 \Omega 10$ Watts. $1,500-16,000 \mathrm{c} / \mathrm{s}$. Sensitivity 104 dB 32/6. P \& P. $2 /$ /.
BATTERI ELIMINATORS, replacement for PP9, 28/8 (2/-). PP3, 25/-(1/6).
GUITAR MICROPHONE. Unobtrusive, lightweight fitting slmply requiren clipping into the instrument cutout. Bize only $1 \frac{x}{x} \times \overline{1} / 1 \mathrm{in}$. thick. Gold anodised finisli. Complete with 7ft. shieided lead. High imperlance. 12/6, P. \& P. 1/-
DUVIDAL CRYSTAL MICROPHONE MODEL CM21. With built-in stand. Handsomely atyled In two-tone grey plastic case with silver trim and intended for use with most tape reconlers and stnall amplitiers. Fold out stand permits hand or table use. Complete with 4 ft . innulated screened lead and moulded standard miniature
jack plag. Size $3 \times 17 \times$ In. High Impedance. $12 / 6 . P, \& P$. $1 / 6$.
DUVIDAL DYNAMIC MICROPHONE MODEL DM391. With built-jn stand. High gracle dynamic lasert in tough, black pluatic body with grey and sifver trim. Fitted 50 K hms impedance permits use with most other equipment. Size $21 \times 1 \frac{1}{\mathrm{~F}} \mathrm{x}$ lim. 50 K ohms impedance permits use deep. Complete with 4 it. cable and standard phono plug. 25/-. P. \& P. 1/6.
MYPHONE CRYSTAL MICROPHONE MODEL CM-3. Extremely versatile stick microphone with muting switch that can be used with floor stand, desk stand. or in the hand. Finlshed in chrome and black enamel, supplied complete with lead and removable stand adaptor. High impedance onty. 37/日. P. \& P. 2/-. Base 5/-extra. DUVIDAL SLIMLINE CRYSTAL MICROPHONE MODEL CM80. A new, versatile stick microphone you can use with a desk or floor stand, neck harness or aimply hold In the hand. Beautifully finished in satin chrome and measuring only bin. Iong x inin. maximum diameter. With builinin muting switch and supplied conaple eplacement neck harners and stand adaptor that permits inatant detachment or
from the stand. High impedinne only $\operatorname{si.9.6}$. P. \& P. $2 /-$. Base $5 /-$ entrik.
MYPHONE DYNAMIC MICROPHONE MODEL MS-11. A desk microphone on pressed steel base with adjustable swan neck stand 6in. iong. Very attractive compact design with on/off switch. Microphone 3 in. long x tin. diam. Base $41 \times 3 \times \operatorname{lin}$. Impedance S0K ohms. supplied with fitted lead. 22.9.0. P. \& P. E.
DUVIDAL DYNAMIC MICROPHONE MODEL DM-301. Robust broudcast atudfo type mitcrophone, wijustable for 600 ohma and 50 K ohms impedance. Microphone pivots microphone, thijustable which includea built-in onfoft switch. Suppled with connector and cable. Maximam dimensions, including adaptor $7 \times 2!\times 1$ in. With dual impedance adjustinent. E4.11.0. P. \& P. 4/-
ARET DYNA MIC MICROPHONE MODEL DM-165. A hand stick microphone, black crackle fitish with chrome trim. Insert is housed in tunusual "golf-ball" shaped, perforated case. Ail metal construction. 50 K ohms impedance. Fitted on $/ 0$ off switch and connecting cable. Bize overall: length 61 in ., ball 1 1in. in diam. \&2.13.6. P. \& P.3/PRECISION VERNIER DIALS. Utiv, mounting ior std. In. drives. Complete range of three progressively sized preclsion planetary drives. Vernier Dials, each with approximately 8 to 1 ratio. Can be mounted on any panel surface. and requires only drilling for fixing screws and centring hole for metal insert to receive fin. drive shatc. Atcractive all-metal diats having brushed silver finish with deeply etched enamel filcd en graving that provides maximum legibility, even in poor lighting conditions. Euch dial
is graduated to 0 to 100 over 180° and fitted with large sure-grip knob and housing. is grauluated to 0 to 100 over 180° and fitted with large sure-grip knoo and housing.
 GENUINE DIAMOND STYLUS st $7 / 11$ plus $6 d$. P.P. as replacements for the following popular types: BSR TC8LP-BSR TC8 STEREO-BSR TC8 LP/STEREO-COLLARO BF40/LP-GARRARD GC\& LP. Saphire also available at $3 / 11$ each.
TWEETER. 2din. Black plastic cone, square Frame, E.M.I. $3 \Omega, 12 / 6$, plun J/ß P. \& P. EXTRACTOR FANS. Brand new 230/250 volts A.C. mains operated extractor fans. Absolutely complete except for external shrouding which can be readily made up rated, smooth ailent rumang induction motor, balanced, 2 bleded 6 im . ian. Bize rated, amooth ailent rumping
71×4 in. deep. $35 /-$ P. \& P. $4 /$
TELEPHONE PICK-UP COIL. Actualty a special, sealed induction coil with rubber ton the to telone handset housing. Lead connects to suction cup that simply attaches to tese i0/6. P. \& P. $1 /$
DUVIDAL AUTOMATIC TAPE SPLICER. Easential for editing and making im raculate joins in broken tape. Twin clamps, hoid broken ends in perfect alignment join is complete. Size only $3 \times 2 \times 1 \mathrm{in}$. high. $14 / 6$. P. \& P. 1/6
FERITONE NT200 DEFLUXER. A must for serious tape users Tape heads become VERITONE NT200 DEFLUXER. A must for serious tape users! Tape heads become permanentiy magnetiged with constant use; effect is cumulative and Highly effective, ground opise that device is simply applied to recording hean and carries magnetic condition through meries of hysteresis loops of diminishing amplitude leaving head substantalty free of magnetign. Cle:ns any tape head in seconds. 35/6. P. d P. I/6. PICK-UP CARTRIDGE REPLACEMEN 21/-
Mono 17/6. ACOS GP/91-1 Mono de-luxe 21/-

TERMS. Cash with order No C.O.D. Order total $\& 5$ and over bent carriage patid GERMS. Cash with order. No \cos goods returned perfect within 7 days of despatch
the bias voltage is also provided by the $100 \mathrm{k} \Omega$ potentiometer.

It is also possible to make an output valve do double duty, so that it performs its normal output function on replay, but is switched to perform as the oscillator during record. This system is often used on domestic recorders and for constructors who wish to experiment with this method the requisite circuit is given in Fig. 14. Here the EL84 output valve has its transformer replaced by the oscillator coil by the operation of S1 when the recorder is switched to the "record" position. It should be noted that if this circuit is employed, the tape "take-off" point cannot be made at the anode of the output valve, since this valve will not be in circuit during the recording process.

RECORDING LEVEL INDICATION

If the signal level applied to the record head is insufficient the recording made will be weak and the background level of noise high. Conversely, if the signal level is too high, severe distortion will be apparent on playback. It is therefore necessary to

provide some method of indicating the strength of the applied signal. This is frequently done by means of a "magic eye" valve and for constructors who wish to employ this method, the circuit is given in Fig. 15. The reference signal is taken via a 0.1 mfd condenser from the same point as the record signal and several experimental recordings should be made while VR1 is adjusted so that it just closes on the maximum permissible signal obtainable without distortion. Future recordings should then be made with the magic eye just failing to close on peaks. A simple alternative method of assessing recording level, which may well be employed with the

Fig. 16: A simple record level meter.
"add-on" deck, utilises the loudspeaker output signal. A 1 mA meter is connected directly across the loudspeaker connections in series with a miniature diode detector rectifier and a 25Ω potentiometer. This is set so that the meter reads just below full scale deflection (f.s.d.) on the loudest permissible signal (see Fig. 16).

Heater and h.t. supplies are required for the addon unit. This can often be done by tapping-off from the unit's own supply, provided that the gram or
player is of the a.c. only type and with 6.3 V heater valves. It must NOT be attempted with a.c./d.c. radiograms or players. In this case a small separate power pack should be constructed. Alternatively, a transistor amplifier module could be employed to amplify the head signals on replay, and a similar module should be used to provide oscillator erase and bias. The only mains connection will then be to the deck itself, for the purpose of driving the deck motors.

HOME WORKSHOP PRACTICE

-continued from page 934
sharp external corners. The jaws are smoothed off with a medium emery paper.
The jaws are used mainly to raise the edges of a chassis and where it is possible to grip only one end of the jaws in the vice because of the width of chassis being held, it is a good plan to pinch the other ends of the jaws together with one of the " G " clamps from the tool kit. The secret of successful sheet metal working is to hold the work firmly.

As and when finance becomes available to add to the tool kit, the following are strongly recommended:
One of the modern wire-strippers, which are adjustable for depth of cut. A set of taps and dies for thread cutting. It really is amazing how frequently this item is used once it is a part of the tool kit. In fact, the author never buys medium to large bolts nowadays, but simply runs a thread on to a round nail of suitable diameter, at one-quarter the price of a bolt. Most of the power tools in the author's workshop are bolted down with threaded six-inch nails and wing-nuts.

As soon as possible, add a "Pop-Rivet" kit to the workshop tools. These are extremely easy to use and the fastenings are permanent, although the rivet is easily drilled out if necessary. Pop rivets are half the price of nuts and bolts.

A good electric drill has numerous uses in the workshop. The modern two-speed type allows bits to be run at the correct speed, and the inexpensive kits which are often sold with the drill usually include a small grinding wheel which will be found essential for keeping edge tools in good condition. When the need is felt for an entirely separate power grindstone, a washing machine motor can be obtained, and a thread run on to the spindle in order to bolt the grinding wheel up tight, using large washers each side of the wheel for support. An effective cage of robust construction must be built round the grinding wheel in case of fracture at high speed.

A stand can be obtained for the pistol drill which converts it into a drill press, or pedestal drill. This allows accurate vertical drilling, and frees one hand to hold the work. However, the slight inconvenience of continually changing attachments prompted the writer to obtain another motor and fit a chuck to it. This motor is lashed to the drill stand and remains permanently in position as a drill press.

A machine vice for use in conjunction with the drill press is a useful little accessory, although the extension jaws previously mentioned, pinched together with the " G " clamps, is a makeshift substitute.

Designed specially to meet the power requirements for an assembly of two Z. 12 s and the Stereo 25,
Dhis heavy duty transistorised power supply unit has stabilised output of 18 volts d.c. at up
to 1.5 A . It is for AC mains operation $200 / 250 \mathrm{~V}$.
Supplied built, tested and guaranteed.

SINCLAIR MICROMATIC

4

Whether you buy your Micromatic in kit form or ready built for immediate use, you must
not deny yourself the thrill of owning this fantastically small British receiver. Smaller not deny yourself the thrill of owning this fantastically small British receiver. Smaller not deny yourself the thrill of owning this fantastically small British receiver. Smaller
than a matchbox, it has power, range and selectivity that must be experienced to be
believed. The high quality magnetic earpiece supplied with the set ensures excellent reproduction indoors and out. The Micromatic tunes over the medium waveband and has A.G.C. to counteract fading from distant stations. Bandpass tuning makes reception of Radio 1 easier; in fact you will find this set performing in some cases where other sets
cannot be heard at all. The Micromatic is housed in a neat black case given an elegantly modern appearance by the attractive aluminium front panel and matching tuning Buill, lested und puaran.
leed, inc.magnetic earpiece 59/6

GRADIONIC

LEARN AS YOU BUHLD

AT HOME

THE EXCITHNG WAY

Clear, simple, versatile, this rugged system can build almost any eleetronic eirit. Ideal for the experimenter; the teacher; and the complete beginner. Already used by well over 1,500 schools in the U.K.
Selected by the Council of Industriai Design for all British Design Centres. Featured in Sound and Television broadcasts.
Beautifully engincered; battery operated; no soldering; no prior knowledge peeded. Results guaranteed by our technical department. People say
"I can only describe the results as brilliant. absolutely brilliant."
"You have opened up a new world.
"Nothing could paint the picture clearer than building these sets."
"The kit has been used by my son (aged 10) with complete success." "Most impressive-a stroke of gentus whoever devised it."
UNIQUE! OUR "No soldering" printed circuit board for superhet portable. Simply insert components and tighten nuts.
No. 1 Set £7.12.9. 14 Circuits (Earphone)
No. 2 Set $£ 9.3 .3$. 20 Circuits (Earphone)
No. 3 Set £13.14.11. 22 Circuits ($7^{7} \times \mathbf{4}^{\text { L Loudspeaker Output) }}$
No. 4 Set 218.15 .5 . 26 Circuits (incl. 6 -transistor and reflex superhets) ELECTRONICS KIT: 30 plus cireuits £19.7.0.
(Prices Post Free)

Full details from:

RADIONIC PRODUCTS LIMITED ST. LAWRENCE HOUSE, 29-31 BROAD STREET, BRISTOL BS1 2HF

RADIO \& ELECTRONIC INSTRUCTIONAL SYSTEM

A No. 4 SET and 6-TRANSISTOR SUPERHET

Theoretical Circuit

Practical Layout

Comet Discount Warehouse

Reservoir Road, Clough Road, Hull. Tel. 42363

STEREOPHONIC KUBA
"ROYAL" RADIOGRAM This radiogram ohastis is offersod This radegram orefully matohed loudapeaker zytem. speakert, two 4in. co Mono/Stereo and lateat B8RR OA70 Monote qualreoord changer-a ompion at ity hereophonic rall normal price. hall normal price. 4 wave bands-A watt push-pull ceys contron channel-irequency
output per outp TO INGTALL, NO TECGRED. ONLY $£ 79.19 .6$.
H.P. terma available Deposit ex6.13.2 and 5s/7 monthly pryment.2. send ${ }^{\text {(total }} \mathrm{H}, \mathrm{P}$ exday or write tor tree iestlet.

SILICON N.P.N.TRANSISTORS. Similar to 2N2926. All individually tested. Gold plated leads for easy soldering. Unbeatable value at $1 / 6$ each or 25 per 100
12 VOLT TRANSISTORISED FLUORESCENT LIGHT. * 8 WATT 12 in TUBE. Current drain only 700 mA ! Complete and tested $£ 2 / 19 / 6$ only! Or in kit form:

*Post and Packing 3/-'
TRANSISTORS
OC200, OC203, OC204, all at 2/- each.
ASY22, 2N753, BSY28, BSY65, 2G344A, 2G345A, 2G345B, 2G371A 2G378A, all at $1 / 6$ each.
Transistors similar to OC44, OC71 and OC72, all $1 /-$ each.
Unmarked, untested transistors, 7/6 for 50
LIGHT SENSITIVE TRANSISTORS (similar OCP 71), 2/- each. 30 watt transistors (ASZ17), 10/- each.
ORP 12 Cadmium sulphide light-sensitive resistors, 9/-.
RECTIFIERS
BY100, 800 p.i.v., $2 / 6$ each, $24 /$ - per doz., $£ 7 / 10 /-$ per 100 , $£ 50$ per 1,000. BYZ13, 6 -amp, 400 p.i.v., available on same terms.

MULLARD POLYESTER CAPACITORS FAR BELOW COST PRICE!

$\begin{array}{lllll}0.001 \mu \mathrm{~F} & 400 \text { volts } & \ldots & 3 \mathrm{~d} & 0.15 \mu \mathrm{~F} \\ 160 & \text { volts } \\ 0.0015 \mu \mathrm{~F} & 400 \text { volts } & \ldots & 3 \mathrm{~d} & 0.22 \mu \mathrm{~F} \\ 160 & \text { volts }\end{array}$
$\begin{array}{llll}0.0015 \mu \mathrm{~F} & 400 \text { volts } & \cdots & 3 \mathrm{~d} \\ 0.0018 \mu \mathrm{~F} & 400 \text { volts }\end{array} \quad \therefore \quad 3 \mathrm{~d} \quad 0.22 \mu \mathrm{~F} 160$ volts
$0.0018 \mu \mathrm{~F} 400$ volts
$0.0022 \mu \mathrm{~F} 400$ volts
$\begin{array}{llll}0.0022 \mu \mathrm{~F} & 400 \text { volts } & \ldots & 3 \mathrm{~d} \\ 0.01 \mu \mathrm{~F} & 400 \text { volts } & \text {.. } & \text { 3d }\end{array}$ $6 d$
$6 d$

VERY SPECIAL VALUE! Small Silver-mica, Ceramic, Polystyrene Condensers. Well assorted. Mixed types and values. $10 /-$ per 100 PAPER CONDENSERS, MIXED BAGS, 0.0001 to $0.5 \mu \mathrm{~F}$. $12 / 6$ per 100.
RESISTORS! Give-away offer! Mixed types and values, $\frac{1}{4}$ to $\frac{1}{2}$ watt $6 / 6$ per $100,55 /-$ per 1,000 . Individual resistors 3d each. Also $\frac{1}{2}$ to 3 watt close tolerance. Mixed values. $7 / 6100,55 /-1,000$.
WIRE-WOUND RESISTORS. 1 watt to 10 watts. Mixed bags only. 16 for $10 /$ -
RECORD PLAYER CARTRIDGES
ACOS

GP	67/2	Mono.	15/-complete with needles	
GP	91/3	Stereo Compatible	\&1/-1-	wi
GP	93/1	Stereo Ceramic	81/5/-	
GP	94/1	Stereo Ceramic	¢1/5/-	

UNREPEATABLE OFFER!

 GIANT SELENIUM PHOTO-CELLS PRODUCE UP TO 6ma. FROM DAYLIGHT!67 mm . Diameter ($29 \cdot 2 \mathrm{sq.cm}$.) 10/- each.
$50 \mathrm{~mm} . \times 37 \mathrm{~mm}$. ($16.5 \mathrm{sq} . \mathrm{cm}$.) 2 for' $10 /-$ each.
TRANSISTORISED SIGNAL INJECTOR KIT R.F./I.F./A.F. 10/- only
TRANSISTORISED SIGNAL TRACER KIT $10 /$ only
TRANSISTORISED REV. COUNTER KIT $10 /-$
VEROBOARD
$2 \frac{1}{2}$ in $x \quad 1$ in $0 \cdot 15$ in matrix $1 / 6$
 3 in x 3 in 0 -15in matrix $3 / 11$ $\sin \times 2$ itin 0.15 in matrix $3 / 11$ $\sin \times$ 3 ${ }^{\text {in }} 0.15$ in matrix $5 / 6$ 5 in $\times 3$ in 0.1 in matrix $5 / 6$ pot Face Cutter 7/6. Pin Insert Tool 9/6. Terminal Pins 3/6-36 MULTIMETERS. 20,000 ohms per volt.
Ranges: a.c. $1,000 \mathrm{~V}, 500 \mathrm{~V}, 100 \mathrm{~V}, 50 \mathrm{~V}, 10 \mathrm{~V}$
d.c. $250 \mathrm{~mA}, 2.5 \mathrm{~mA}, 50 \mu \mathrm{~A}$.
d.c. $2,500 \mathrm{~V}, 500 \mathrm{~V}, 250 \mathrm{~V}, 50 \mathrm{~V}, 25 \mathrm{~V}, 5 \mathrm{~V}$.

Resistance: $0 / 60 \mathrm{k} \Omega$ and $0 / 6 \mathrm{M} \Omega$.
Special price $£ 4$ only.

ELECTROLYTIC CONDENSERS								
					25			
		4	12 volt					
$1 \mu \mathrm{~F}$	20 volt	5 μ						
$1 \cdot 25 \mu$	16 volt	$5 \mu \mathrm{~F}$	6 vo	25μ	12 vo			
	3 volt	$6 \mu \mathrm{~F}$	6 volt	25μ	25 vo			
$2 \mu \mathrm{~F}$	350 volt		3 volt	30μ	6 vo			
2	16 volt		12 volt		10 vo			
$3 \mu \mathrm{~F}$	25 volt	$8 \mu \mathrm{~F}$	50 volt					
$3 \cdot 2 \mu \mathrm{~F}$	64	$10 \mu \mathrm{~F}$			2.5			
SMALL TRANSISTOR OUTPUT TRANSFORMERS $2 / 6$ each. SMALL TRANSISTOR DRIVER TRANSFORMERS $2 / 6$ each.								
Please include suitable amount to cover post and packing. Minimum $2 /$-. Stamped addressed envelope must accompany any enquiries.								

\section*{
 | REICON |
| :--- |
| BY100 |}

Y100800 piv		
W5 500		

TRANSISTORS etc.
AC107 AC126 AF115 AF1 16 F117 AF117 GFY18 ET1 OA6 0.9 0 A81
0 A85
OA91

$0_{0} \mathrm{C}^{2} 23$ | 0 | $5 /-$ | $\mathrm{OCl}^{2} 1$ | $2 / 2$ |
| :--- | :--- | :--- | :--- |
| 0 C 26 | $5 /-$ | 0 C 202 | $4 / 8$ |
| 0 C 28 | $8 / 6$ | TK 22 C | $1 / 6$ |

E
$\begin{gathered}250 \mathrm{piv} \\ \begin{array}{c}\text { Avalanche } 1 / \mathrm{A} \\ 1200 \mathrm{piv}\end{array}\end{gathered} \quad 1 / 9$

Six Amp Series
 BYZ13 300 piv

BYZ12 600 piv BYZ10 1200 piv Mullard Stack FW
Mullard
Bridge
Bridge
12 A 100 piv $39 / 6$ (3/-)

THYRISTORS

TH

Midget Electrolytic Conds. Wire Ends At 6d. each

At 6 d each	
$0.8 \mu \mathrm{~F}$	-25 volt
$2 \mu \mathrm{~F}$	150 volt
$4 \mu \mathrm{~F}$	150 volt
$640 \mu \mathrm{~F}$	2.6 volt
At 9 d. each	
$2 \mu \mathrm{~F}$	300 volt
$4 \mu \mathrm{~F}$	12 volt
$8 \mu \mathrm{~F}$	12 volt
$10 \mu \mathrm{~F}$	25 volt
$16 \mu \mathrm{~F}$	16 volt
$30 \mu \mathrm{~F}$	10 volt
$80 \mu \mathrm{~F}$	6.4 volt
$100 \mu \mathrm{~F}$	6 volt
$125 \mu \mathrm{~F}$	4 volt

25 volt
50 volt
50 volt
2.5 volt

300 volt
12 volt
12 volt
26 volt
16 volt
10 volt
$8 \cdot 4$ volt
6 volt
4 volt
$\begin{array}{cr}\text { At } 1 /- \text { each } & \\ 16 \mu \mathrm{~F} & 250 \text { volt } \\ 50 \mu \mathrm{~F} & 10 \text { volt } \\ 100 \mu \mathrm{~F} & 12 \text { volt }\end{array}$ $\begin{array}{cc}50 \mu \mathrm{~F}^{\prime} & 10 \text { volt } \\ 100 \mu \mathrm{~F} & 12 \text { volt } \\ 320 \mu \mathrm{~F}^{\prime} & 10 \text { volt }\end{array}$

TELEPHONE AMPLIF1ER, (1/6).

Mech. REY, COUNTER to 999 , long aplndle, reset wheel, for T/recorders etc. $4 / 6(1 /-)$. BATTERY CHARGERS: Small, sturdy, neat; 2 amp . $12 \mathrm{~V} 35 /-$; $6 \mathrm{~V} / 12 \mathrm{y} 39 /-$ (4/6 either type). Larger British 6 V and 12 V with meter, fuse, etc. $42 / 8$ ($6 /-$), All absolutely complet (4/6 either type).
RECORDING TAPE: Finest quality British Jylar. STANDARD: 5in. 600it. 7/3, 5 850 ft . $8 / 8$, 7 in . 1200 ft . $11 / 3$. LONG PLAY 5 in . 900 ft . $10 /$-, 5 in. $1200 \mathrm{ft} .11 / 8,7 \mathrm{in}$. 1800 ft 18/-. (1/3' reel). Other types in our list.
MICROPEONES-CRYSTAL. MIC91, Deek, 18/3; MIC45, curved hand grip 17/3: Stick "60" 20/3; stick "39" 28/8(1/6 each type). Cream plastic hand type 7/8, or with "strut" stand, witch and 2 leads with 2.5 and 3.5 plugs 11/-. Lapel (or hand) with clip $8 / 6(1 /-)$ Machimed metal tapered atcck type with neck cord and adaptor to fit alandard tioor stanas; $25 /$ - (1/6). DYNAMIC: Cream hand lable $14 /-(1 /-)$. MS $1050 \mathrm{~K} \Omega, 3 \frac{1}{2} \mathrm{X}$ in. with Base Adaptor and Neck Cord $37 / 6$ (2/6). MS11, similar, but fixed on flexible standard ineide thread 33/6 (1/6).
CARDIOID DYNAMIC OMNI-DIRECTIONAL: Professional types now avalable to all at Cardy sensible prices. Extremely handsome with every possible new feature making for perfection in sound amplification. For use in or out of doors-full details in our list. Both wire-mesh screen typer. For atand mounting: "Square" type, 208, ± 510.0 delivered free "Ball Type" with built-in vol. coutrol, on /off switch and optional hif $/ 10$ impedance ($50 \mathrm{k} \Omega$ or 600Ω), 25.17 .6 delivered free. An exactly similar mike bearing a world famous natn or sold at over twice this price, All mikex are suppled with leado.
SPEAKERS: 12 in round, Atted Tweeter, ow, 3 or 150 (state which), $35 / 8$ ($5 / 6$); 21 in 80 Q Britibh; $5 /$-(1/-): $21 \mathrm{in} .3 \Omega 8 / 6$ ($1 /-$); 6×4 heavy duty $3 \Omega 13 / 8$ (2/6) or ior Btereo $30 /$ - pair, post etc. paid; 8 天 3 in., $8 \Omega, 8 / 6$ ($1 /-)$. EAADPIECES with lead ctc., Min. Piug Earpiece 18/8 ($1 / 6$); stereo Dyn
MICROPEONE INSERTS: Dizmeter 1.75 in , or 0.9 in either size $5 / 8$ (bd.).
MICROPHONE INERTS: DiameterAERIALS, Car Types: Telescopic, vandal proof, locks retracte
 FOR ALL PORTABLES and F.M. SETS. Telescopic 8 sectionse - 7-section $51-32 \mathrm{in}$, , jo survel, screw
 SWITCHES: BLandard Logsie, metal, 2blu. DPDT $1 / 8$ each. Small DPDT 3 way, centre DPST 3/-. DPDT 3/3. Blide types. Sub-min. DFh, all types). Rotary Britches etc. in list. "ofl" 1/9. Reed magnetic onionly. 12 volt 4 pin non-synch $2 / 8.12$ volt 7 pin syach 10/-VIBRATORS: Famous makes caly. all types).
6 volt 7 pin synch $10 /-(1 /-$ each, all (7d.). Pocket screwdriver type $3 / 6$ (6d). PLUGS: Std. MAINS NEON TESTER: FIg leads 2/-(7d.). Pocket screw Jack, plantic body $2 /$ - screened $2 / 8$. Socke CONNECTING WIRE: 5 coile asstd. cols. each ${ }_{5}$ gids. Solid Core 2/3. Flextble 2/6. Super thin for transistor wiring etc. 3/- (6d. anl types, 5 yds. solid Corex-s. WIRE: Twin super thin Flex, screened, shealhed, $1 / 3$ yd. ($6 d$. up to 6 yds., over (is yds. post free). TWIN MIKE CABLE: $1 / 3$ yd. (up to 6 yds. 8 ., over post
 acreened and aheathed. © FEEDER CABLE: Twin r.f. bal. Hg. 8- 80Ω, or hat 300Ω (ransparent polythene insulated, either Bd. per yd. (as mike cable).
VOLUME CONTROLS: Limited supply of best mod. Brit. makes-most values still avail. ble without switch $1 / 9$, with d
CURRENT LIST: Sent with all orders or free fors a.e. details of cable, croc., clips and leads, Continental din pugs for Grundig. Telefunken equipment, etc., diaks, plugs and sockets. panel meters, record players and tape recording accessorles, rectiflers, relays, wire wound resiators, test equilpment, tent propw, tape recorder, special transistors, portable sets, car Fadio, more switchen and other components, toola, vero board, etc., etc. If interested surplus equipment and undta please say so. Th
and listh supplied prior to January sith, 1969 .

FELSTEAD ELECTRONICS

(PW17)
LDNGLEY LANE, GATLEY, CHEADLE, CHESHIRE, SK8 4EE
TERMS: Cash with order only. No C.O.D, or caller service. Post, packing and insurance charges are abown in brackets after all items. Regret orders under orface mail extra at cost. be accepted. Churges ayply to G.B. and Eire only. Overseas air or surface mail extra at cost.

ENGINEERS TEST EQUIPMENT AND ACCESSORIES

MULTIMETERS

Complete range of high precision instruments.
TRANSISTOR CHECKERS
For use with PNP, NPN Transistors IF and RF Resistors, Diodes, Rectifiers.
RESISTOR SUBSTITUTION BOX
CAPACITANCE SUBSTITUTION BOX

ADJUSTABLE AC DC CONVERTER

TEST LEAD KITS, etc.
We also stock large range of Microphones, Audio Units, Recording Tapes, Intercoms, Telephone Amplifiers, Car Radios. TV Spares etc.
Send S.A.E. for illustrated brochures and price lisk

D. WEBB

WHOLESALERS
61-63 Clifton Street, Hull, E. Yorkshire
Telephone 36016

Radio Communication Handbook

832 pages of everything in the science of radio communication. The Handbook's British origin ensures easy availability of components. The standard work in its field.

69s post paid

Amateur Radio Circuits Book

Dozens of clear, concise circuit suggestions with the basic constructional details. 120 spiral bound pages lie flat when open for convenience. 11 s 6 d post paid

Amateur Radio Techniques

All the good ideas are here. An anthology of the famous "Technical Topics" column from RADIO COMMUNICATION. Fascinating reading and an invaluable information source.

13s 6d post paid

[^4]

THE DORSET (600 mW output)

-transistor futly tunable M. IV.-L.W. superhet portable with baby alarm facility: Set of parts. The tatest modulised and prealignment techuigues makes this simple to build. Sizes: $10 \times 8 \times 3$ int.
MAINS POWER PACK KIT: 9,6 extra
PRICE 55.5 .0 plus $7 / 6 \mathrm{p}$. \& p. Circuit $9 / 6 \mathrm{~F} / \mathrm{RFE}$ WITH PAKTS.

THE ELEGANT SEVEN MK. III (350 mW output)

- Mral om. h. ... pmanle. sel of parts. Complete with all components, inclading readw etched and drille.t printed circuit thard-lack printed for foolprimif censtruction.
MalNs roweld Vack kit: $9 / 6$ extra
Price $£ 4.9 .6$
phas $7 /$ p p \&

X101 10W SOLID-STATE HI-FI AMP WITH INTEGRAL PRE-AMP Specifications: Poalier Oufynf (inter 3 ohuss speaker) 10 watts. Sensitivity (ot rated outputs: 1 my into 3 K ohms (0.33 microamp). Total Disfortion el $1 \mathrm{~K} 11 z$, at 3 watte 0.35%, at rated antput 15%-Frequency Keqponse: Mirus $31 / \mathrm{B}$ points 20 Hz voltage: 24V d.e at 800 mA (ri-24 (iney be tised) used). supply voltage: 24 V d.e. at 800 mA (fi-24 C (may be ased)
Control assembly: including remistors and capacitors

1. Volume: PRICE 5/-
2. Treble: PRICE 5/-

The alonve 3 iteme basa anu: trehte: PJICE 10/-
Price 49/6
Power Supplies for the $\mathbf{X} 101$
Power Supplies for the X101
P101 M (for mono) $35 /-$ plus $4 / 6 \mathrm{p}$. do p
P10 8 (for stereo) $42 / 6$ plim $4 / 6$ p. \& μ

THE RELIANT MK II

10W SOLID-STATE HIGH QUALITY AMPLIFIER

 SPECIFICATIONSOutput-10 watty \quad Output Impedance- 3 to 4 ohns 2. -gram/radion 250 mV (Bass control range $\pm 12 \mathrm{~dB}$ at 10 KA
 Bignal to Noise Ratio-hetter than-b0dB. Transistors-4 sifieon Planar type and
 A.C. Mains, 200-250V. For use with Stid. or L. P. recorids. musical instruments, all makes of pick-upannimikes. Separate hass and treble lift contro. Two inputa with control for gram

Reliant Mark II. 6id gns., plus $7 / 6 \mathrm{p} . \& \mathrm{p}$.
In teak finished carse

THE VISCOUNT

SPECIFICATIONS: Output: 10 watis Fer channel [nto 3 to 4 ohms apeakera (20 wat
 Tuner, Tape and Tape Rec. Sensititien: All inputs 100 mV into 1.8 M ohm. Frequency
response: $40 \mathrm{~Hz}-20 \mathrm{KHz}+2 \mathrm{db}$. Tone cont rola: (Bandandail type). separate bass and freble
 controlin: Se parate for each channel. AC Maing lapat: $200 \cdot 240 \mathrm{v} \cdot 50 \cdot \mathrm{HOHz}$. Size 12 ! if 2% in in teak-finished case. Built ancl tested.

PRICE 13: Gns. Postinge is Packing $7 / 6$ extria
> eak Surotone
> RADIO \& TV COMPONENTS (Acton) LTD 21c High Street, Acton, London, W. 3 . All orders by post to our Acton address 323 Edgware Road, London, W. 2.

POCKET MULTI-METER
Size $36 \times 21 \times 1$ inn, Meter size $2 k \times 1$ inn. Senwitivity 1000 O.P. W. on luth A.C. atnd D.C. volts. O-15. $0-150.0-1000$ With test primls, hattery amp full ince $0-100 \mathrm{k} \Omega$. Complete $3 / 6$. FREE GIFT fur limitell perliod oniv 30 wate Electri. goldering I rom value $15 /-$ to evers purchaser of the Puct Mait ,-Meter.

CYLDON

 4 TRANSISTOR U.H.F. TUNERBrand new. Complete with circuit diagram
£2.10.0 plus $1 /$ p. \& p.

B.S.R. TD- 2 TAPE DECK

$2 \frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V . Size $7^{\prime \prime} x 4^{\prime \prime} \times 13^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{lic}$ Semi conductors, two OC 75 's two AC 128 's and two stabilizers A.A129. Tone and volume controls on flying leads. $£ 2.10 .0$ plus 1 . \& 1 . $3 / 6$ Suitable $8^{\prime \prime} \times 5^{\prime \prime} 11,010$ line high tux speaker, $18 / 6$ plus $2 /-\dot{P}$. \& P .

FIRST QUALITY P.V.C. TAPE

50 WATT AMPLIFIER A.C. MAINS $200-250 \mathrm{~V}$

An extremely reliable general purpose valve amplifier-with six electronically mixed inputs. Suitable for use with: mics, guitars, gram, tuner, organs, etc. Separate bass and treble controls. Output lmpedance $3,4,35$ ohms.
Price 27 gns. Plus $29 /-p \& p$

RECORD PLAYER SNIP a.c. mains 240 V

The "Princess" 4 -speed automatic recurd changer and player engineered with the utmost precision for oeanty. Iong lise. and trouble iree service, wall tak i2". Pafent 日tyluy lrush cleans at clus after oach plaviug and at shut off, the pick-up looks itgels into its recess. a most use ful feature with portable equip. ment-other features huclude pick-up height atjust. ment and at ylus piessure ailjusturent. This trutr is a

CAR TRANSISTOR IGNITION SYSTEM

(by famous manufacturer)
For 6 volt or 12 volt positive earth systems. Comprising: special high voltage working hermetically sealed silicon transistor mounted in finned heat-sink, high output ignition coil, ballast resistor and hardwear (screws, washers etc.).
PRICE £4.19.6. (post and packing 5/- extra)

MOTEK

3 Speed 2 track Tape Deck complete with heads, takes 7 in . spool Incorporating 3 motors.
A.C. mains, 240 volts, listed at £21.0.0.
Our Price £9.19.6, plus 10/-P.\&P.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronics subjects only. Fullest details will be glady sent without any obligation.

To: British National Radio School, Reading, Berks.
Please send FREE BROCHURE to:
NAME Block

ADDRESS Caps.

JACKSON

the big name in PRECISION components

No. 6/36 DRIVE
Price 24/-

Incorporating the Dual Ratio Ball Drive providing 36-1 Slow drive and 6-1 Fast drive under one knob with co-axial control. Scale is calibrated $0-100$ and an extra blank scale is provided for individual calibration. Overall size $4 \frac{7}{6} \times 3 \frac{3}{4} \mathrm{in}$.
The unit consists of aluminium back plate, drive unit, scale, spare scale, transparent cover, hair-line pointer, escutcheon and knob. Fits in front of panel which may be any thickness up to $\frac{1}{2}$ in. (or more by providing longer screws).

It's reliable if it's made by Jackson! JACKSON BROS. (LONDON) LIMITED
Dept. PW, KINGSWAY-WADDON, CROYDON, CR9 4DG Phone Croydon 2754-5 (01-688). Grams Walfilco, Croydon US office:- M. Swedgal,
258, Broadway, NEW YORK. NY-10007

BIGGEST BREAKTHROUGH IN RADIO KITS!
 THE REVOLUTIONARY APOLLO " 6 ' CAN BE BUILT

SPECIALLY made for the thousands of discrimingting people who want the finest easyriminat radio..at a reasonable price! This o-build radio. .at a reasonall startle you! is a different breed-if will sta designers EIGHT MONTHS AGO our two designers were briefed to produce a radio kit that would fill these technical demands:-DEMAND-A. IT SHOULD BE POSSIBLE TO BUILD PAINLESSLY IN ONE EVENING ANSWER-the Apollo " 6 " has simplified, well illustrated step-by-step plans plus vocal

CONTAINS FEATURES THAT
CAN'T BE BOUGHT IN READY
MADE SETS-AT ANY PRICE
(receives medium wave \& trawler broadcasts.

* every component brand new-no surplus, rejects or "seconds"
uses latest Silicon Planar Epitaxial Epoxy transistors.
* six stage stable reflex-2 R.F., 1 Diode demodulation, 3 A.F
* simplified illustrated plans plus vocal instructional recording.
- fromparts to programmes in an evening .. PLUS MANY MORE!
instructional recording/ no soldering iron is necessary and you don't have to have a magnifying glass and a pair of tweezers. DEMAND-B. IT SHOULD WORK DEMST TIME . . -ANSWER-Apollo "6" uses latest rugged Silicon Transistor Circuitry and every single transistor, diode, capacitor, resistor, inductance etc. is brand new and fully tested-no
rejects, no manufacturers"'seconds" FOR and uses "Ever
Ready" battery,
DEMAND C. IT
MUSTHAVETHE
POWER TO OPERATE OPTION-
AL LOUDSPEAKER...DEMAND -D. IT MUST GIVE GOOD RECEPTION IN DIFFICULT AREAS WOR DEMAND-E. IT MUST WORK ON ITS OWN INTERNAL FERRITE ROD AERIAL -The Apollo "6" does ANSWER-The Apollo
all this-and much more! all this--and much more! SILICON PLANAR EPOXY CIRCUIT DESIGN
Apollo "6" will probably be bang up-to-date well into the seventies! it bristles with latest technical innovabristles with latest technical innova-
tions. Six stage stable reflex N.P.N tions. Six stage stable reflex N.P.N.
and P.N.P. circuit consisting of 2 Radio Fre and P.N.P. circuit consisting of 2 Radio Fre-
quency stages, 1 Diode demodulation stage quency stages, I Diode demodulation stage
and 3 Audio Frequency stages. Uses latest and 3 Audio Frequency stages. Uses latest
Silicon Planar Epitaxial Epoxy transistors (similar to types used in America's Space IRON CLAD GUARANTEE Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full, at once and without quibble or question.
Project). The first two transistors give amplification of 100 to 400 each, (at only 100 Microamps collector curren approx). Output transistor gives amplification

of 235 to 470 . Stable reflexing gives the Apollo " 6 " staggering selectivity, uncanny sensitivity, true-to-life sound reproduction-in fact its range, power and selectivity must be experienced to be believed.
Enter a new magic world of reception-station after Enter a new magic world
station (home and abroad).
THRLLLING SOUND OF AN S.O.S. AT SEA Listen to the thrilling sound of an S.O.S. at sea-tune in to a world you've never heard before ... NOTE. Because members of our own Staff (and their friends) are enthusiastic and have already bought Apollo "6" parts we know demand will be enormous. DON'T DELAYSEND FOR YOURS NOW, send $59 / 6+3 / 6$ P. \& P. for all parts, illustrated plans, instructional recording, personal listening earpiece etc. (all parts can be bought personal listening earpiece etc. (al parts can be bought
separately) MONEY BACK GUARANTEE (see panel).

PRINTED CIRCUIT KIT

BDILD 40 INTERERGTING PROJECTS on a PRINTED CIRCOIT CHA8SIS with PARTS and TRANEISTORS from your gPARES BOX
CONTENTA: (1) 2 Copper Laminate Boarda $4 t^{*} \times 2!^{\prime \prime}$. (2) 1 Board for Match box Radio. (3) 1 Board for Wristwatch Radio, etc. (4) Resist. (5) Reaist golvent. (6) Etchant. (7)Cleanacr/Degreaser. (8) 16 -page Bookiet Printed Circuits for Amateurs. Deaign Data Circuits Chas BW/MW/LW. Also free with each kit. (10) Essential A very comprehensive chelection of circuits to suit eversone's req PROJECTS. A very comprehensive selection of circuits to sult everyone's requirements and constructions ability. Many recently developed very efficient deaigna published
for the

EXPERIMENTER'S printed circuit kit 8/6
Postage \& Pack. $1 / 6$ (UK)
Commonwealth:
SURFACE MAIL 2/-
AIR MAIL $8 /$ -
Australia, New Zealand
Bouth Africa, Canada.
(1) Crystal get with bisaed Detector. (2) Crymtal Bet with voltage-quadrupler detector. (3) Crystal Bet with Dynamic Loudspeaker. (4) Cryatal Tuner with Audio Refix. (7) Mstchbox or Photocell Radio. (8) 'TRI-FLEXON' Triple self-adjusting regeneration (Patent Pending) (9) Rolar Battory Triple Reflex with The smallest 3 deagna yet offered to the Home Conatructor anywhere in the Radlo. 3 Subminiature Radio Revelvers based on the "Triflexon" circult, Let us knos" If you know of a smaller deaign published anywhere. (10) Postage stanip Radio Slize only $1 \cdot 62^{\prime \prime} \times-95^{\prime \prime} \times-25^{\prime \prime}$ (11) Wristwatch Radio $1 \cdot 15^{\prime \prime} \times-80^{\prime} \times .55^{\circ}$ ((12) Ring Radio $70^{\circ} \times \cdot 70^{\circ} \times \cdot 55^{\prime \prime}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Recelver. (15) Tranaintor P/P Amplifler. (16) Intercom. (17) l-valve Amplitier. (18) Reltable Burglar Alarm. (19) Light-8eeking Animal, Teater. (23) Human Bedy Radiation Machine. (21) Metal Detector. (22) Tranaiator (25) Signal Infector. (23) Pocket Tranacelver. (24) Man/Woman Discriminator. Volume Intercom. (28) Remote Control of Modela by Inducton (29). (27) Coustant Tranamitter. (30) Pocket Triple Reflex Radio. (31) Wristwatch Tranamitter/we-Loop Microphone. (32) Wire-less Door Bell. (33) Ultranonic Switch/Alarm (34) Stere Preamplifier. (35) Quality Ateren Puah-Pull Amplifier. (36) Light-Beam Telephone Photophone . (37) Light-Beam Transmitter. (38) Bilent TV Bound Adsptor, (39) Ultranonic Tranamitter. (40) Thyriatar Drill Speed Controller.

PHOTOELECTRIC KIT

CONTENTS: a P.C. Chassis Buaris, Chemicals, Etching Manual, Infra-Red Phototransistor, Latching Reiay, 2 Tranalators, Condensers, Resistors, Gsin Control, Terininal Photo-switch/Care, scrowh, etc. In fact everything you need to build a steady-Light modulated-light uperation,

2 PEOTOELE
(1) Steady-Light Photo-8witch/Alarm. (2) (5) Whiatd-Light Alarm. (3) Long-Range Btray-Light Alarm. (4) Relay-less Alarm. (8) Electronic Projectorm. (6) Cloned-Loop Alarm. (7) Profector Lamp Btabiliser. Swltch. (1I) Automatic Headlamp Dipper, Power Supply. (10) Csr Parking Lamp witch. (11) Auper-8ensitive Alarm
INVISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for building: 1 Invisible-Beam Projector and 1 Photocell Receiver (as illustrated). Snitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENT8: 2 lenaes, 2 mirrors, 245 -degree wooden blocks, Intra-red fller, projector lamp holder, building plans, performance data, etc. Price 19/8. Poatage and Pack. 1/6 (UK). Commonwealth : Suriace Mail 2/-; Air Mail 8/-.

JUNIOR PHOTOELECTRIC KIT

Versatile Inviaible-beam, Relay-less, Stesdy-light Photo-8witch, Burglar Alarnn, Door Opener, Counter, etc., for the Experimenter
Conten Resistors, 太crews, etc. Full Size Plans. Instrar, 3 Transistora, Chasais, Plastic Photoelectric Designs", etc. Full Size Plans, Instructions, Data sheet " ${ }^{\text {" } 10 \text { Advanced }}$ Price 19/6. Postage aud
JUNIOR OPTICAL KIT
CONTENTS: 2 Lenaes, Infra-red Fiter, Lampholder, Bracket, Plans, etc. Everything (except plywood) to build 1 miniature invisible beam projector and phntocell receiver for use with Junior Photoelectric Kit.
Price 10/6. Post and Pack. 1/6 (U K). Commonwealth: Surface Mail 2/-; Air Mail 4/-

PHOTOELECTRIC PARKING LAMP SWITCH

Automatically turna parking lamp on at duak, off at dawn. Protecta your car. Baves the battery. Ministure construction. Bimply insert in parking lamp lead. Price: $27 / 6$.
Pont \& Packing $2 / 6$ (U.K.) THYRISTOR LIGHT DIMMER
Add a touch of luxury to your bome. Adjust the light at parties, while watching TV, etc. Ideal for Children's bedroom. (100 watts max.) Replaces on-off switch. Price: 50/6. Post \& Packing $2 / 6$ (${ }^{\top}$.K.)

YORK ELECTRICS

333 YORK ROAD, LONDON, S.W. 11
Send a S.A.E. for full details, a brief description and Photographs of all Kils and all 52 Radio, Alectronic and Photoelectric Projerts Assembled.

aldarment

 MODEL 15

SOLDERING INSTRUMENT

- EXTREME VERSATILITY

Range of 8 interchangeable bits, from $3 / 64^{\prime \prime}\left(.047^{\prime \prime}\right)$ to $3 / 16^{\prime \prime}$, including new non-wearing PERMATIPS.

- ULTRA-SMALL SIZE

Length $7 \frac{1}{8}{ }^{\prime \prime}$. Weight $\frac{1}{2}$ oz.
Max. handle dia. 7/16".

- EXTRA-HIGH PERFORMANCE Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts - equals normal $30 / 40$ watt iron.

- ALL voltages

The ADAMIN range includes five other models ($5,8,12,18$ and 24 watts), Thermal Strippers (PVC and PTFE) and a De-soldering Tool. Please ask for colour catalogue $\mathrm{A} / 10$.

LIGHT SOLDERING DEVELOPMENTS LTD.

28 Sydenham Road, Croydon, CR9 2LL Telephone 01-688 8589 and 4559

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 8 \mathrm{~d}$. per word (minimum order $20 /-$), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 52$ s. Od. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Classified Advertisement Manager, PRACTICAL WIRELESS, IPC Magazines Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.
MISCELLANEOUS

RHYTHM MODULES. Build your own
rhythm box - simply, cheaply. Realistic sound
guaranteed. S.A.E. for details. D.E.W. LTD.,
254 Ringwood Road, Ferndown, Dorset.
BUILD IT in a DEWBOX quality cabinet.
2in. X 2tin. X any lengt. D.E.W. Lid., Ring-
wood Road, FERNDOWN, Dorset. S.A.E. for
leafiet. Write now-Right now.

ELECTRONIC MUSIC?

Then how about making yourself an electric organ? Constructional data availablefull circuits. drawings and notes! it has 5 octaves. 2 manuals and pearis wariable attack you can play Classics and Swing.
Write Now for free leaffet and further details to C. $\&$., ≈ 0 Maude Street Darlington, Durham. Send 3d. stamp.

CONVERT ANY TV into an Oscilinscope Instructions f1. REDMOND, P.O. Box 38397, Los Angeles, California 90038.

UFO DETECTOR CIRCUITS, data. 10 s . (refundable). Paraphysical Laboratory (UFO Observatory). Downton, Wilts.

4 WATT GRAM AMPS.

volume and tone controls, mains operation, 3Ω output, new and boxed 65/- ${ }_{\text {pasio }}^{\text {past }}$
bIG BARGAIN PARCELS only OF COMPONENTS 10/SALOP ELECTRONICS post Paid 23 Wyle Cop.
Shrewsbury, Shropshire. S.A.E. for hists

WANTED

DAMAGED AVO METERS, Models 7 \& 8 , any quantity. Send for packing instructions. HUGGETT'S LTD., $2 / 4$ Pawsons Road, West Croydon.

NEW VALVES WANTED. Popular TV and Radio types. Best cash price by return. DURHAM SUPPLIES, 367c Kensington Street, Bradford, 8, Yorkshire

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tei.: WES 0186.

WE BUY New Valves and Transistors. State price, A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED NEW VALVES ONLY

Must be now and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

WANTED
 (continued)

WANTED: New valves, transistors etc.; state prices. E.A.V. Factors, 202 Mansfield Road, Nottingham.

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.
WANTED: Popular Brand New Valves. R.H.S Stamford House, 538 Great Horton Road, Bradford 7.

EDUCATIONAL

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative 120 -page Guide-free. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.1.

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

EDUCATIONAL

(continued)
CITY \& GUILDS (electrical, etc.) on 'Satisfaction or Refund of Fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics, radio, TV., automation, etc., send for 132 -page Handbook-FREE. B.I.E.T. (Dept. 168 K), Aldermaston Court, Aldermaston, Berks.

TRAIN FOR SUCCESS WITHICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career.
ics, DEPT. 54t, intertext house. LONDON, SW11

SITUATIONS VACANT

RADIO TECHNICIANS with sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships: Single Side-Band Transmitter, Radar (Navigational), Radar Height Finding, Echo Sounders, Radio Receivers, Automatic DF, VHF and MF Low Voltage Servo Recorders, Digital Telemetering Equipment.
Salary scale $£ 782-£ 1,304$ per annum according to age, plus $£ 120$ overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British Subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone: Greenock 24291.

SITUATIONS VACANT

RADIO and tape recorder testers and trouble shooters required. Canteen, excellent rates of pay. 8.00 a.m. to 5.00 p.m. 5 -day week. Elizabethan Electronics Limited, Crow Lane, Romford, Essex. Phone: Romford 64101.

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV. Electronics, etc. write for 132of Re Handbook-FREE. Please state subject. BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137 K), Aldermaston Court, Aldermaston, Berks.

SITUATIONS VACANT

ENGINEERS, A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv. private postal courses for C. Eng., A.M.I.E.R.E., A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.I.O.B., and G.C.E. Exams. Diploma courses in all branches of Engineering -Mech., Elec., Auto., Electronics, Radio, Computers, Draughts., Building, ete. For full details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

RADIO OPERATORS, PREFERABLY WITH PMG2 CERTIFICATE, REQUIRED IMMEDIATELY FOR DUTY ON METEOROLOGICAL OFFICE OCEAN WEATHER SHIPS

Salary Scale $£ 871-£ 1,309$ per annum (revised rates under negotiation) according to age, plus $£ 157$ overtime allowance. Free food and accommodation provided on board ship.
Applicants must be natural born British Subjects.

> Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone: Greenock 24291.

SERVICE SHEETS

SERVICE SHEETS $(75,000) 5 /$ each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

C. \& A. SUPPLIERS

SERVICE SHEETS

(T,V, RADIO, TAPE RECORDERS, RECORD PLAYERS, TRANSISTORS, STEREOGRAMS, RADIOGRAMS)

Only 5/- each, plus S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of Service Sheets (strictly by return of post) Please state make and model number alternative.

Mail order only.

SERVICE SHEETS (continued)

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.
SERVICE SHEETS (1925-1969) for TELEVISIONS, RADIOS, TRANSISTORS, TAPE RECORDERS. RECORD PLAYERS, etc., by return post, with free fault-finding guide, Prices from I/-. Over 8,000 models available. Please send S.A.E. with all orders/enquiries. HAMILTON RADIO, 54 London Road Bexhill, Sussex.
RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, Ib Shepherds Bush Rd., London W.6. SHE 8441 .

ELECTRICAL

240 wor
 ELECTRICITY ANYWHERE

MOST BRILLIANT PERFORMANCE EVER from 12 volt Car Battery
BRILLIANT HEAVY DUTY 240 volt AMERICAN DYNAMOTOR with BIG 220 WATT OUTPUT. Marvellous for TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for Fluorescent lighting. Thousands of uses. Tremendous purchase of this model makes fantastONLY $£ 4.19 .6$ each plus with pleasure MONEY BA $10 / 6$ delivery. C.O.D Win Please send s.a.e. for full illustrated details. (Dept. PW) STANFORD ELECTRONICS Rear Derby Road, North Promenade, BLACKPOOL, Lancs.

SURPLUS HANDBOOKS

19 set Circuit and Notes
1155 set Circuit and Notes H.R.O. Technical Instructions 38 set Technical Instructions 46 set Working Instructions 88 set Technical Instructions BC. 221 Circult and Notes Wavemeter Class D Tech. Instr. 18 set Circuit and Notes BC. 1000 (31 set) Circuit and Notes CR.100/B. 28 Circult and Notes R. 107 Circuit and Notes AR.88D Instruction Manual AR.88D Instruction Manual
62 set Circuit and Notes
Circuit Diagram $5 /$ - each 62 set Circuit and Notes
Circuit Diagram 5/- each po Circuit Diagram 5/- each post free, R.1116/A R. $1224 / A$, R.1355, R.F. 24,25 and 26, A.1134, T.1154, CR.300, BC. 312, BC. 342, BC. $348 \mathrm{~J}, \mathrm{BC} .348$ (E.M.P.), BC.624, 22 set.

52 set Sender and Receiver circults $7 / 6$ post free
Reslstor colour code indicator $2 / 6 \mathrm{p} / \mathrm{p} 6 \mathrm{~d}$.
S.A.E. with all enquiries please.

Postage rates apply to U.K. only.
Mail order only to:
instructional handbook SUPPLIES
DEPT. PW. TALBOT HOUSE. 28 TALBOT GARDENS, LEEDS 8

This useful Handbook gives detailed information and circuit dlagrams for Brillsh and American Government Surplus Recelvers, Transmitters and Test Equipment etc; also contáined are some suggested modification details and improvements for the equipment. incorporatad in this revised edition is a surpius/commercial cross referenced valve and transistor guide. This book is invaluable to radio enthusiasts, radio cfubs, universities and laboratories. The latest edition priced at $35 /$ - per volume pius $5 /-p$ \& p is obtainable only from us at

Dept. P.W., 24 Stansfield Chambers, Gt. George Street, Leeds f .
s.a.e. with all enquiries, please. Extra postage for foreign orders

FOR SALE

£6,000 IN VOUCHERS GIVEN AWAY. See free Catalogue for details. Tools, materials, mechanical, electrical, thousands of interesting items. WHISTON, Dept. VW, New Mills, Stockport SK12 4HL.

COMMUNICATIONS RECEIVER. New.
Globe Scientific TRGDX/20.C. Matching speaker in cabinet. Box 86 . £14, delivered.

```
TOP TRADE DISCOUNTS FOR
    ALL
        COMPONENTS
            VALVES
                TUBES
                    TRANSISTORS
            Free Trade Catalogue
Engineers & Service Dealers Only
            WILLOW VALE
        THE SERVICE DEPT.
            WHOLESALERS,
        4 The Broadway, Hanwell,
                London, W. }
            01-567 5400/2971
```

THE IDEAL Panel Mounting Meter Move nent for any Sensitive Test Meter etc. 200 Micro Amp F.S.D. $4 \frac{1}{8} \mathrm{in}$. x 4 $\frac{1}{8} \mathrm{in}$. In clear plastic case. Our special price only 39/6d P. \& P. free. Limited number only. WALTON'S WIRELESS STORES, 55A Worcester Street, Wolverhampton, Staffs.

MINIFLUX HEADS

Special offer SKN4 $\frac{1}{2}$-track stereo record/playback head (list 8 gns.). Special offer 55/Miniflux LF6-0 self oscillating half-track mono erase head, list $£ 3.10 .0$. Offered at $22 / 6$. VLF4 1 -track ferrite erase head, list $£ 4.5 .0$. Offered at 32/6. S.A.E. for full lists.

LEE ELECTRONICS

400 EDGWARE ROAD. PADdington 5521

precision potentiometers

Multl-turn, continuous or ganged from 25/-; carbon from 2/-. Also resistors. mains rectifiers, synchros. geared motors, chokes. capacitors. meters, microswitches, semiconductors. 6d. stamp catalogue. F. HOLFORD \& CO., 6 Imperial Square, Cheltentham.

MORSE $\begin{gathered}\text { MADE } \\ \text { EASY } \\ \text { !! }\end{gathered}$

FACT NOT FICTION. If you start RIGBT Fon will he Realligg hmateur and commereisl
Normal prigreas to lre expectent.)
 antomatisably learn to recogruse the coude as learming a tune $18 \mathrm{~W} . \mathrm{IM} . \mathrm{M}$. In 4 week. guaranteed

1-660 2896 G3CES/P, 45 GREEN LANE, PURLEY, SURREY

METAL WORK

METAL WORK: All types cabinets, chassis, racks etc., to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

AERIALS

Enthusiasts THE T.M.P. EXPERIMENTAL AERIAL KIT

A unique collection of alloy elements, dipoles, booms, clamps, mast reflectors, nuts \& bolts, cables even a compass! etc., to make up various experimental aerials to cover all bands.
This includes TV transmissions, SW for the radio amateur, VHF for BBC FM. Amateurs on 2 and 4 MTrs, Aircraft, Police etc., UHF for experiments on BBC 2 and Ultra High Frequencies. These Kits can be used indoor or outdoor. Robust construction with simplified detailed plans for easy assembly.
The Wonder T.M.P. Kit cosis only
$89 / 6$-no extra for carriage.
$89 / 6$-no extra or carriage.
Despatched to any address in UK within 7 days.

TUBULAR METAL PRODUCTS

 7 LOWESMOOR TERRACE, WORCESTER
RECEIVERS \& COMPONENTS

COMPONENTS AT GIVE AWAY PRICES. Digital Counters, Rev Counters, Thyristors, Transistors, Valves, Tool Bags, Track Heads, Recording Tape. Aerials. Intercoms, MicroDIAMOND MAIL ORDER PRODUCTS PROSPECT HOUSE. CANAL HEAD POCKLINGTON. YORK. NO4 2NW

BRAND NEW ELECTROLYTICS, 15 Volt, 2. 6, 8, 10. $15,20,30,40,50,100 \mathrm{mfds} .7 / 6 \mathrm{~d}$ per dozen, postage 1/-The C.R SUPPLY CO. 127 Chesterfield Road. Sheffield 8
D.I.Y.-All materials and components for construction of high fidelity loudspeaker systems (empty enclosures, BAF wadding, Tygan, Vynair fabric. cross-overs, etc.) Many other audio accessories and speaker kits S.A.E. for lists: P. F. \& A. R. HELME Dept. PW. Summerbridge, Harrogate, Yorks

WE ARE BREAKING UP COMPUTERS

EX COMPUTER PRINTED CIRCUIT PANELS2" \times

 $4^{\text {" }}$ packed with semiconductors and top quality resistors, capacitors, diodes etc. Our prlce: 10 boards 10/-, P. \& P. 2/-, with a guaranteed minimum of 35 transistors.transistors.
Speciat Bargain Pack. 25 boards for £1. P. \& P. 3/6, with a guaranteed minimum of 85 transistors.
100 boards, $65 /$.. P. \& P. $6 / 6$, with a guaranteed minimum of 350 transistors.
PANELS with 2 power transistors sim. to OC28 on each board + components. 2 boards ($4 \times \mathrm{OC} 28$) $10 / \mathrm{F}$ P. \&. P.

NPN GERMANIUM TOSI WATT POWERTRANSISTORS on small heat sink, on $2^{\prime \prime} \times 4^{\prime \prime}$ panel. 5 for $10 /-$ P \& P 2
POWER TRANSISTORS sim. to 2 N174 ex-eqpt., 4 for $10 /$. P. \& P. 2%
POWER TRANSISTORS sIm. to 2N174 ON Finned Heat Sink (10D) 4 for £1, P. \& P. $3 /-$
LONG ARM TOGGLE SWITCHES ex eqpt. SPST 13/6 doz., DPDT 22/6 doz., DPST 17/- doz. P, \& P. all types $2 /-$ doz.
ORGAN BUILDERS special 500 TO18 transistors on panels E4. P. \& P. 61
OVERLOAD CUT OUTS. Panel mounting in the following values ...5/- each. 1, 11, 2, 3, 4, 5, 7, 8 amp. P. \&P. $1 / 6$

MINIATURE GLASS NEONS, $12 / 6$ doz. P. \& P. $1 / 6$. NEW MIXED DISC CERAMICS. 150 for $10 /=$ P. \& P. 2

LARGE CAPACITY ELECTROLYTICS
$4 \frac{1}{2} i n$., 21 n . diam. Screw terminals.
All at $6 /-$ each $+1!6$ each P. \& P
$4,000 \mathrm{mF} \quad 72 \mathrm{~V}$ d.c. wkg.
$10.000 \mathrm{mF} \quad 25 \mathrm{~V}$ d.c. wkg.
$6,600 \mathrm{mF} \quad 45 \mathrm{~V}$ d.c. $\mathbf{w k g}$.
$1.500 \mathrm{mF} \quad 150 \mathrm{~V}$ d.c. wigg.
$\begin{array}{ll}16,000 \mathrm{mF} & 25 \mathrm{~V} \text { d.c. } \mathrm{Wkg} . \\ 25,000 \mathrm{mF} & 12 \mathrm{~V} \text { d.c. wkg. }\end{array}$

Send 1/- stamps for list
 KEYTRONICS, 52 Earls Court Road London, W. 8. Mail order only

RECEIVERS \& COMPONENTS

 (continued)150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab Vitreous, $\ddagger-20$ watt, 12/6 Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W. 13.

15 DICTAPHONES (No Parts Removed) with all accessories. Ideal for parts. £20 o.n.o. Buyer collects. Telephone: HARRISON, Bowes Park 6172, After 5.30 p.m.

BAKER B BAINES

Examples of prices

 $\begin{array}{ll}\text { ITA } 5 \text { ele 34/- } 8 \text { ele } \\ \text { Combined BBC/ITA } 1+545 /- & H+569 /-\end{array}$ BBC2 8 ele 29/- 14 ele 37/- 22 ele 63/All types generaliy available-prices include mounting clamps and postage.
11 Dale Crescent, New Tupton, Chesterfield

SIGNAL INJECTOR. Transistorised square wave generator probe, British Made. only 19/6, w \& P P/GS A E for details and lisis WILSIC ELECTRONICS LTD., 6 Copley Road, Doncaster, Yorks

BRAND NEW SEMICONDUCTORS				
814)	BF194 816	
$180203 / 6$	ACY 17	5)	BFX29 12/6	NKT261 4
18021 4!	ACY 18	51	BFX84 81-	N K T264 4/6
2N706 31-	ACY 19	51	BFX85 10/-	N KT40315/
2N706A 31-	ACY20	4.1	BFY50 4/6	NKT40515
-2N $13024 / 6$	AD149	81	BFYE1 4/8	NKT781 6 -
2N1303 4/6	AF114	$5 /$	BFY52 4/8	OC28
+1304 $5 / 6$	AF116	$51-$	BSX 19 5/6	OC35 5/6
N1305 $5 / 6$	AF117	$51-$	BBX20 5/6	36
$2 \mathrm{~N}+160$ 14/-	ASY26	4/6	$138 Y 26$ 4/-	44
$2 \mathrm{~N}^{2} 222081-$	ABYe8	$5 / 8$	BSY27	C45
$2 \mathrm{~N} 2349 \mathrm{~A} 5 /$	BC107	3/6	B8Y28 4/	0071
2N2tith 11/6	BC108	3/8	BSY38 4/6	0C72
N $\mathrm{N} 29-2 \mathrm{Ch} 3 / 6$	1 Cl 09	$3 / 6$	BSY39 4/6	$0{ }^{0} 81$
2N3053 $8 / 6$	BCY70	$5 / 6$	BSY40 5/6	OC200
$305515 /$	BCY71	91.	BSY95A 3/6	OC201
N370-2 41	BCY72	51	BY100 4/6	OC202
N3707 4/-	BF180	816	MPF゙102 $8 / 8$	OCP71
'187 12/-	BFi81	$8 / 6$	MPF103	0481
ACi88 121-	WF184	$7 / 6$		0
Send bid. stamp for camplete list. Over 1,000 types Semileonductory in stock. Capacitors, Reaistors and Pots also available				
A. MARSHALL \& SON (London) LTD., 28 Cricklewood Brordway, London, N.W.2. 01-452 $0161 / 3$				

COMPLETE RANGE of Amateur, Aircraft, Communications receivers. Chassis, panels, meters, cabinets, microphones, etc. StephensJames Lid. 70 Priory Road, Liverpool 4. Tel. 051-263-7829.

[^5]
RECEIVERS \＆COMPONENTS

ELECTROVALUE RAPID MAIL－ ORDER SERVICE
 PROMPT delivery－Very large stocks EVERYTHING BRAND NEW AND TO SPECIFICATION

\star Unbeatable Value in SEMICONDUCTORS

30W BAILEY AMPLIFIER

MJ481 and MJ491 matched pair output，59／－i 4031

 Main hmp．D＇C board 12
enmplete tranaistor set
Total for one chamnel 47.8 .0 list with 10% discount
only 86.13 .3 ．Total for with 15% discomint onle f12．118．Conplete supply kit $£ 4.5 .0$ list．Circuit reprints $1 /$－each powe

G．E．2N2926 PLASTIC RANGE

Price redtutionts
 2／3；Yelluw spot $=150 t_{1} 3002 / 6$ ；ধi reen мpo1 $=2.35$ to $4702 / 28$.

TEXAS SILEGT RANGE
 $\begin{array}{llll}2 N 3704 & 90 & \text { to } & 330 \\ 2 & 3 / 9 \\ 2 N 3705 & =45 & \text { to } & 165 \\ 3 / 5\end{array}$ 25 V 200 DIA phe： $\begin{array}{lll}2 \mathrm{~N} 370 \pm & =60 \text { to } 300 & 3 / 8 \\ 2 \mathrm{~N} 3703 & =30 \text { to } 150 & 3 / 3\end{array}$ small aignal n pre
${ }^{2} \mathrm{~N} 37 \mathrm{O}$ low naise $4 /$ nmill signal pup：
 BClof series
 BC 10745 V
\qquad
$125 \mathrm{t} 05002 / 9$
PMCE＇SREDUCEL 13 Cl 10820 V

125 to $9002 / 6$
BC 10920 V
125 to $9002 / 8$
 300 MHz fT, TO92）： BC16745V BC188 20V $13 \mathrm{Cl} 69=125$ to $9002 /-$ BC109 $=2401090102 / 3$ BCl 09
low nowe． Row noive．
BCith， BC
ine plastic
Betu valuesfor aboveimmethately quoted aftertypu Nos

FETs－prieps veduced

MPF105 25V max．，GM $=2$ to $6 \mathrm{~mA} / \mathrm{V}$ ，Jow nolae $7 / 6$ ； 2 N 381925 V nиж．，gm $=2$ to $6 \mathrm{~mA} / \mathrm{V}$ ．low noise $9 /$－．

MINI TRANSISTORS－Prices reduced

VN4285 pup hre 33 t． 1.50 Ht 10 mA iT $\overline{\mathrm{M}} \mathrm{MHz}$ ruin，

 IT 570 MHz typ．B50 11 Power $14.3 \mathrm{H}^{4} 100^{\circ} \mathrm{C}^{\circ}$ bise temp． 35 V ，bre over 100 it 0.5 A ．Inallated TOAF
 $13 / 6$ ．
1，010V 1．5A GENERAL PURPOSE RECTIFIER type 1 N5054 3／8 unly
type T84 $2 / 3$ ． ype T84 2／3．

ZENER DIODES 3 V to $27 \mathrm{~V} 5 \% 400 \mathrm{~mW}$ all prefericel voltages， $4 / 6$ erch

NEW TRANSISTOR BARGAINS
$\begin{array}{llllllll}2 N B S H f & 5 / 6 & 2 N 1711 & 7 / 4 & 2 \times 44080 & 4 / 3 & \mathrm{BCL} 48 & 3 / 6\end{array}$
 $\begin{array}{llllll}2 \mathrm{~N} 11322 & 13 j- & 8 / 9 & 4040 \mathrm{~N} & 14 / 6 & \mathrm{BF} 194 \\ 7 /-\end{array}$
 $\begin{array}{lllllll}2 \mathrm{~N} 1303 & 4 /-2 \mathrm{~N} 2924 & 5 /- & \mathrm{AC} 128 & 6 /- & B F X 44 & 7 / 5 \\ 2 \mathrm{~N} 1304 & 4 /- & 2 \mathrm{~N} 2925 & 5 / 9 & \mathrm{ACl} 74 & 11 /- & \mathrm{BFX} \\ \mathrm{N} / 5 & 8 / 3\end{array}$

 $\begin{array}{llllll}2 N 1309 & 8 / 9 & 5 / 6 & \text { AFI } 24 & 7 / 8 & \text { NKT4 } \\ \text { 2N } & 14 / 10\end{array}$ $\begin{array}{llllll}2 N 1613 & 6 / 6 & 2 N 3701 & 5 / 6 & \text { AFl＇24 } & 7 / 8 \\ 3 / 3 & \text { BCl } 47 & 4 / 3 & 14 / 1\end{array}$
All power typers supplied with FHEE Mica Washers．

＊RESISTORS

METAL OXIDE type TR $\overline{5} 0.5 \mathrm{~W} 2 \%$ tolerance．Very low noise，low temperiture coefficient，low trift， A Professional resistor．All E24 preferred values 10Ω to $1 \mathrm{M} \Omega$ ．Price： 1 to 1110 d ； $12 \mathrm{t} 0259 \mathrm{~d} ; 25$ un 8 d ． CARBON FILM high stah low hoise $110 \% 1 \Omega$ to $3 \cdot 3 \Omega$ and 4 W $5 \% 3 \cdot 9 \Omega$ to $1 \mathrm{M} \Omega 1 / 10$ doz．14／6 100 ．
tw $10 \%+7 \Omega$ to $10 \mathrm{M} \Omega, 1 / 9$ ।loz．， $13 / 6100$ ．

$1 / 6$ less per 100 if ordered in complete 100s of one
ohnic value． ohinic value．
please satale venisfance valuex mentred．
Carbon Skeleton pre－8ets： $100 \Omega, 250 \Omega, 560 \Omega, 1 \mathrm{k} \Omega$ $200 \mathrm{k} \Omega, 250 \mathrm{k} \Omega, 500 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 25 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ $10 \mathrm{M} \Omega$ ．Vertical or horizontat mounting $2.5 \mathrm{M} \Omega, \overline{\mathrm{M}} \Omega$ Small high yuahty， $1 /$－enwh；Subunting

＊PEAK SOUND PRODUCTS

Peak Solnt PA． $12-5$ Power Amplitier has a maximum

 distortion level of inly $0 \cdot 1_{0}^{0}$ at $11-5 W$ ，into 15Ω In kit form e3．18．6．plus 12／－for realy prepured heat sink roll mounting board．Power supply I＇g．45 Kit 4．10．0．re－imp kit $27 /$－plus controls mono： $6 / 3$ ；sterero $20 /$ Active tone fluer kit $18 /$－plus controls：thoun $5 /-$
＂P．W．DOUBLE 12＂
aif parts avaiable an
tised by Peak soumi．

＊ELECTROLYTICS

SUB－MIN．

 $10 / 154.4 / 2.5 / 25,16 / 10,4 / 4 \cdot 4,15 \cdot 4 / 25,8 / 4,10 / 2 \cdot 5,10 / 1 t i$ $25 / 25,32 / 4,32 / 10,32 / 40.32 / 64,40 / 2-5,41 / 16,50 / 6.4$ $80 / 25, \overline{0} / 40,64 / 4,42 / / 10,80 / 2 \cdot 5,80 / 16,80 / 25,100 / 6 \cdot 4$, $125 / 4,125,10,125 / 165,140 / 2 \cdot 5,200 / 6 \cdot 4,200 / 10,250 / 4$ $320 / 2 \cdot 5,320 / 6 \cdot 4 \cdot 400 / 4,500 / 2 \cdot 5$ ．＊Price retuctlon $1 / 3$ MINIATURE（ μ ド心
 $50 / 25,100 / 10,200 / 10,1 /-$ each： $50 / 50,100 / 25,1 / 6:$
$100 / 50,25 / 25,2 /-$ $100 / 50, \geqslant 5 / 25,2 /-$
LARGE ELECTROLYTICS（ $\mu \mathbf{L} / \mathrm{H}^{\prime}$ ）
1000／50 7／－：2000／50 8／3：5000／50 17／6； $5000 / 2.510 / 3$ ； $2500 / 6415 /-$ ．Vertical clips 1 fir aluve typi－4 9 d each．

＊CAPACITORS

Ueratmic diac $20^{\circ}, 500 \mathrm{~V}: 1,000 \mathrm{pF}, 2,000 \mathrm{pF}, \overline{5}, 000 \mathrm{pF}$

 ferres valuew to 820pF ALL at 5 d wach．Polyester

＊POTENTIOMETERS

Prices jpdured

 viluter．Onts 2／－riteh
Lonk spitife $4 . \mathrm{k} \Omega, 10 \mathrm{k} \Omega$ ． $2 \mathrm{k} \Omega$ ， $47 \mathrm{k} \Omega$ ， $00 \mathrm{k} \Omega 970$ $\kappa \Omega, 40 \mathrm{~K} \Omega, 1 \mathrm{M} \Omega, 2 \cdots \mathrm{M} \Omega$ ． Hn ．or lag Onlv2／8 ench

ALL GOODS BRAND NEW－NO SURPLUS

1969 GATALOGUE muw

COMPONENT DISCOUNTS

OVERSEAS ORDERS WELCOMED．
ELECTHOUALUE Dept p．w．4
32A ST．JUDES ROAD，ENGLEFIELD GREEN，EGHAM，SURREY
Telephone：EGHAM 5533 （STD 0784－3）

MOBILE S．W．LISTENERS

The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING

The most efficient mobile All－Band Whip on the market．COILS FOR ALL BANDS．Complete with one coil $£ 6.17 .6$ ，plus $3 / 6$ ．Extra coils $£ 3.17 .6$ ， plus 3／－．
From leading amateur radio stores or direct from the manufacturers．

HALSON ELECTRICAL SERVICES
Dover Road，off Ansdell Road， Blackpool．

NEW VALVES！

Guaranteed Set Tested 24－HOUR SERVICE

	1	1）Y86	5／6	E78！	$3 /$	0	
185	$4 / 3$	11785	5／6	EZ81	4／6	PL504	12／6
1 T 4	$2 / 8$	EABC80	5／9	KT61	8／3	PY32	101－
$3{ }^{3} 4$	$5 / 9$	EBC41	8／－	KT ${ }^{\text {c }}$	15／9	PY33	101－
3 V 4	$5 / 6$	EBF＇80	518	N38	14／6	PY81	5／－
6AQ5	$4 / 6$	EBF＇89	5／8	PABC	6／9	PY82	$4 / 9$
fL18	6／－	ECC81	3／9	FCds	$9 / 3$	PY83	5／3
30 Cl 8	$8 / 9$	ECC82	4／3	TC8s	$9 / 3$	PY88	
30 FLL	12／6	ECC83	4／9	PL97	$7 / 9$	PY＇800	6／6
$30 \mathrm{FLI2}$	14／3	ECC85	$4 / 9$	PC900	8／－	PY801	
30 FL	10／3	ECH35	5／6	PCC84	5／9	R19	6
30 P 4	11／6	ECH42	$9 / 9$	PCC89	$8 / 9$	U25	12／9
$30 \mathrm{P19}$	11／6	ECH81	$5 / 3$	PCCIA9	9／6	${ }^{\text {t } 20}$	11／6
301 LL 1	12／6	ECLRO	6／3	PCFP0	6／3	L＇191	12／8
CLH35	9／9	ECLH2	6／3	PCF89	5／9	VABC	$12 / 8$
CL33	18／6	ECLR3	$8 / 9$	PCF801	8／a	U＇BC41	$7 / 6$
DACS？	8／9	ECL8b	$7 / 6$	PCF805	8／8	CBF89	8／8
DAF91	4／3	EF39	3／6	PCF808	10／3	Cus 4	$7 / 8$
DAF96	5／21	EF80	$4 / 9$	PCL82	6／8	CC85	8／－
LF33	$7 / 6$	EF85	$51-$	PCL83	8／8	TCF80	$81-$
DF91	2／9	EFA6	$6 / 3$	PCL84	$71-$	${ }^{\prime} \mathrm{CHF}+2$	$9 / 6$
DF96	$5 / 11$	EF89	$4 / 8$	PCLB5	81－	LCHB	6－
DK32	6／8	EFP183	5／9	PCLAH	8）－	UCLs：	6／9
DK91	4／8	EF184	$5 / 6$	$1 \mathrm{PFL2} 001$	121－	UF41	$9 / 6$
DK96	$8 / 6$	FL33	8／3	PL36	9／3	UF＇89	5／11
DL35	4／8	EL41	9／3	PL81	$71-$	U1．41	8／8
DL9：	5／9	EL84	$4 / 6$	PL32	5／8	（1284	$5 / 9$
1 L 94	5／6	EY51	6／8	PLA33	$81-$	$1 . \mathrm{Y} 41$	$8 / 6$
DLat	6／8	EY86	6／－	PLe34	8）－	1785	$5 / 3$

GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON LONDON，N． 16

（8）（0）Co（o）©

with a Dewtron＂New dimensions＂ 3 ． Himetisional effects amplfier．（fives Big Hall Stereo effect to nogst ralios，tapey，etc．PLus milly adijustable echo，vibrato and tone． 9 volt motel． 8 gns．Speaker， $25 /$－extra，g／tel ear inotel 10 gns．iucl．apeaker．Pust ind ins，$\overline{5} /$－wither model．Write now－fight now，

D．E．W．LTD，
P．W．，RINGWOOD ROAD，FERNDOWN，DORSET

Famous for over 30 years for Short-Wave Equipment of quality, "H.A.C." were the origtna. auppliern of short-Wave Recejver kits for the amateur constructor. Over 10,000 satisfled customers-including Technical Colleges, Hos pitals, Public Schools, R.A.F., Army, Hams, eto IMPROVED 1968 RANGE
One-valve model "DX", complete klt-price $56 / 8$ (Postage and packing $3 / 6$)
Customer writes:--"Definitely the best one-valve 8.W. Kit available at any price. America and Australla received clearly at good volume. This kit contains all genuine short-wave componeate tililed chasio. Valve accesand of course, an all our producta-fully guaranteed. Full range of other products-w. kita atill sratlable, includlag the famous model "K" (recommended by radio clubs). All orders despatched by return. (Mail order only.) Bend now for a descriptive catalogue, order form.
"'H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

NEW RANGE BBC 2 AERIALS

All U.H.F. aerials now fltted with tilting bracket and 4 olement grid reflectors. Loft Mounting Arrays, 7 element, 37/6. 11 element. $45 /=14$ element. 52/6. 18 element, 60 i- Wall Mounting with Cranked Arm, 7 element. $80 /-11$ element. $67 /$. 14 element, $75 /$-. 18 element, $82 / 6$. Mast Mounting with 2 in. clamp. 7 element. 42/6. 11 element, 551-. 14 element. $62 /-18$ element, 701-. Chimney 10 ounting Arrays, Complete. element, $2 / 6.11$ element, 80 . assembly instructions with every unit. Low Loss Cable, $1 / 6$ yd. U.H.F. Preamps from 75/-. State clearly channel number required on all orders.

BBC - ITV AERIALS

BBC (Band 1). Telescopic loft, 25/-. External S/D, $\quad 30 /-1 H^{3}$ (Band 3). $\quad 3.15 .0$ element loft array, $30 /$-. 5 element, 40/-. 7, element 50/-. Wall mounting. 3 ele ment. 47/6. 5 element 52/6. Combined BBC $\begin{array}{lll}\text { ITV. Loft } 1+3,40 /-; & 1+5 \\ 50 /-; & 1+7, \quad 80 /-; & \text { Wali }\end{array}$ mol-; $1+7,60 /-3$, $1+3$ al 67/6; Chimney $1+3,67 / 6$ $675 ;$
$1+5 /$ transistor pre amps. 75/-,
COMBINED HBC1 - ITV - BIBC2 AEREALS $1+3+9,70 /-\quad 1+5+9,80 /-$ $1+5+14,90 /-, 1+7+14,100 /$-. Loft mounting F.M. Special leatet avairable.
F.M. (Band 2). Loft S/D, 15/-. "H" $32 / 6$. 3 element, 55/-. External units available. Co-ax. cable 8d. yd. Co-ax. plugs, $1 / 4$ 13/6. C.W.O. or C.O.D. P. \&P. 6/-. Send 6d stamps for illustrated lists.
Callers welcomed - open all dav Saturday
K.V.A. ELECTRONICS (Dept. P.W.) 40-41 MONARCH PARADE L.ONDON ROAD, MITCHAM. SURREY 01-648 4884

Est. 1943 JOHNSONS Tel: 24864

VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, $70-150 \mathrm{Mc} / \mathrm{s}$, 75/6, p.p. 4s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet, size a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)

St. Martin's Gate, Worcester

10W AMPLIFIER
BSAR3 10w push pull output. TW99 output trans. f valve. EF94, ECC81, two EL90. Full chassie £2.10.0. P. \& P. $10 /$
19 set power unit, new with handbook. £3.10.0 P. \& P. 10%

Mixer units type 18. HF., MF.. LF. Valve V885 101-. P. \& P. $2 / 6$.
Micro Ammeters for instrument mounting. 0-100 30/- P. \& P. $2 / 6$
Miero Ammeters Type Y. Heavy duty with leads 23. P. \& P. 5

Flexible metal tubing. Galvanised : int. diameter 35/-100ft.P. \& P. $7 / 6$
Field Telephones Type F. 32/6. P. \& P. 7/6
Chassis Unit. 7 vaives. ECC82(3) EB91(3) 6F'33(1) 45 capacitors, resistors etc.. valve bases and cans. 201-. P. \& P. $4 / 6$
Cable. Six core (75yds approx) and Drum asaembly 25 J-. P. \& P. 4/6.
Resonance Performance Testera, S. Band, 0-25db $3260-3340 \mathrm{M} / \mathrm{cs} .810$. P. \& P. $10 /$
gend us your Transformer requirements, 1000 in stock. S. A.E. full list
TEST INSTRUMENTS, ETC. S.A.E. FULL LIST
STATUS SUPPLIES
STATUS HOUSE, WILKINSON AVE., BLACKPOOL

Solve your comsnunica
tion problems with this 4-Station Transistor Intercom system (1 master and 3 Subs), in de-luxe plantic cabinete for desk or wall mounting. Cal/taik/iaten from Master to subs and gery, Schoola, Hospltal, Office and Home. Operatea on one 9 V battery. On/of Bwitch . Volume control. Complete with 3 connecting wires each 66ft. and otber accessories. P. \& P. 7/6.

WIRE-LESS INTERCOM
No bstteries-no wires. Just plug in the mains for instant two-way. loud and clear communication On/of switch and volume control. Price 12 gns

Same as 4-station Intercom for two-way instant communication. Ideal as Baby Alarm and Door Phone. Complete with 66 ft . connecting wire
Battery $2 / 6$. P. \& P. $4 / 6$.
 ciency with this incredible De-fuxe Telephone Amplifier. Take down loug tele phone messages or converse without holding the handset. A uneful office ald. On/ off switch. Volume Control. Battery $2 / 6$ extra. P. 4 P. 3/6. Full price refunded if not antified in 7 days. 169 KENSINGTON H1GH STREET, LONDON, W.8.

PLEASE MENTION
"PRACTICALWIRELESS" WHEN REPLYING TO ADVERTISEMENTS

HI-FI SOLID STATE AUDIO AMPLIFIER

10 Watts continuous sine wave out put. 15 Watts music power. Output 3-16 ohms impedance. Frequency response 15 Hz to $18 \mathrm{Khz}-1 \mathrm{~dB}$. Distortion at full power $<0.15 \%$. This instrument comes to you complete with pre-amplifier, main amplifier and power unit. (A.C. Mains) in modern styled aluminium stelvtite case.
Factory built and tested for the amazingly low price of 16 Gns. P. \& P. $5 / 6$.

PADGETTS RADIO STORE

OLD TOWN HALL, LIVERSEDGE, YORKSHIRE.

Telephone: Cleckheaton 2866
Indicator Unit type 26
Size $12 \times 9 \times 9$ in. with outer case. Fitted with $2 \frac{1}{2}$ in. tube C.R.T. type CV1526. Nine B7G valves. Clean condition, but not tested. 32/6, p. \& p. 10

Lumerator and Secant Gear Unit. Delight for the model maker. 12/6,
p. \& p. $8 / 6$. p. \& p. 8/6.

Silicon Rectifier 500 mA , 800 P.I.V. No duds. 2/6, post paid. 24/- per dozen, post paid
Jap Ear Piece. Magnetic 8 ohm. Small and large plug. 1/11, post paid. Reclaimed TV tubes with six months guarantee. 17in. type AW43/88 AW43/80, 40/-; MW43/69, 30/-. 14 in. types, $17 /$.. All tubes, $12 /$ carriage
Speakers removed from TV sets. All PM and 3 ohms. 8in. round and 8×5 in., 6/6, p. \& p. $3 / 6$
6 in . round, $3 / \mathrm{F}, \mathrm{p} . \& \mathrm{p} .3 /-; 6$ for $24 /-$, post paid
6×4 in. $3 /-$, p. \& p. $3 /-6$ for $24 /-$, post paid. $7 \times 4 \mathrm{in} ., 5 /-$ p. \& p. $3 /-$; 6 for $34 / /$, post paid. 5 in. round, $3 /-$, p. $\&$ p. $3 /-; 6$ for $24 /-$, post paid Slot Speakers, $8 \times 2\}$ in., $5 /-$ p. \& p. $3 /-; 6$ for $30 /-$, post paid.
Untested 12 -channel 14 in . TV sets, $20 /$-, carriage $15 /$-. Passenger train, double rate. Untested Pye, KB, RDG, Ekco 17 in . TV sets. Bush 17 in TV sets, 50 /- each, carriage $15 /$-. Passenger train double rate.

VALVE LIST

Ex. Equipment. 3 months' guarantee
Single Valves Post 7d., over 3 Valves p. \& p paid. 10FI, EF80, EB91, ECL80, EF50, PY82, PZ30, 20P3. All at 10/- per dozen, post paid.

ARP12	$1 / 6$	EF91	9d.	PL81	$4 /-$	U329	$5 /-$	$185 B T$	$8 / 6$

EB91	9 d.	EY51	$2 / 6$	PY33	5/-	U251	5/-	20D1	$3 /$
EF85	3/-	EY86	5/-	PY81	1/6	6B8	1/8	20P1	3
EBF80	3/-	PCC84	2/-	PY82	1/6	6BW7	2/6	20P3	2/6
ECC81	3/-	PCF80	2/-	PZ30	5/-	6157	1/9	30PL1	5/-
ECC8 ${ }_{\text {ECC }}$	3/-	PCL82	4/-	U191	$5 /-$	6U4	5/-	30 P 12	5/-
ECL80	1/6	PCL83	5/-	U281	5/-	0V6	1/9	30F5	2/6
El50	1/-	PL36	5/-	U28:	5/-	$6^{6} \mathbf{P} 28$	5/-	30FL1	5/-

GARRARD PLAYING UNITS

LM3000 Record Player with 9T.A. Stereo Cartridge. £10.10.0. AT. 60 Mk . II De-Luxe Auto-changer, die-cast turntable. Less cartridge. £13.15.0. SP. 25 De-luxe single record player, die-cast turntable. Less cartridge. £12.7.6. Brand new in makers' cartons. Packing and carriage on any one of above $7 / 6$. Plinths available.
CARTRIDGES WHEN PURCHASED WITH ABOVE -STEREO. Sonotone 9TA/HC Ceramic with diamond 55/-. Decca Deram with diamond 99/6; MONO Acos GP91-1 22/6; Goldring MX2M 28/6.
STEREO VOLUME CONTROLS. $1 \frac{1}{8} \mathrm{in}$. dia., Long Spindles. All values 5000 ohms to 2 Megohms less Sw., ea. 8/6. All values 100 K to 2 Megohms with DP Sw., ea. 10/6.
STEREO BALANCE CONTROLS. Log/Anti-Log 5K, 10K $\frac{1}{2}$ Meg., 1 Meg., 2 Meg. ea. 9/6.
TRS STEREO/MONO TUNER. Mono kit 15 gns. (p/p 3/6). Add-in stereo unit 10 gns. ($\mathrm{p} / \mathrm{p} 2 / 6$). Power Unit 45/- (p/p 2/6). Cabinet 37/6. Total £29.10.0. (Carr. 12/6). 9d. BRINGS LATEST TRS LIST of bargains in components, accessories, material and equipment. It's certain to save you money.

DUXFORD ELECTRONICS ${ }_{\text {(pw) }}$ 97/97a MILL ROAD, CAMBRIDGE Tel: 0223-63687
 (Visit us-at our new Mail Order, Wholesale and Retail Premises)

MINIMUM ORDER VALUE 5/-

C.W.O. Post and Packing $1 /-$

DISCOUNT $\begin{aligned} & \text { 10\% over } £ 2 \\ & \mathbf{1 5 \%} \text { over } £ 5\end{aligned}$
CERAMIC DISC CAPACITORS (Hunts.). $500 \mathrm{~V} \pm 20 \% ; 100,220$, 330 pF . -20% o $+80 \% ; 470,680,1,000 \mathrm{pF}$. 5 d each
ELECTROLYTIC CAPACITORS (Mullard). $-10 \% 10+50 \%$.
Subminiature (all values in $\mu \mathrm{F}$)

6.4 V

10 V
16 V
40 V
Price
8
6.4
4
2.5
1.6
1
0.64
$1 / 6$
32
25
16
10
$6 \cdot 4$
4
2.5
$1 / 3$
125
100
64
40
25
16
10
$11-$

250	400
200	320
125	200
80	125
50	80
32	50
20	32
$1 / 1$	$1 / 2$
	3,200
	2,500
	1,600
	1,000
	640
	400
	250
	$3 /-$

Price ${ }^{1 / 6}$
S (Mullard)
Tubular, $10 \% .160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d}, 0.068$, $0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}$, i1d. $0.22 \mu \mathrm{~F}, 1 /-.0 .33 \mu \mathrm{~F}, 1 / 3.0 .47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}$, 2/3. 1 μ F, $2 / 8$.
$400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}, 0.01,0.015,0.022 \mu \mathrm{~F}$, $7 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .047 \mu \mathrm{~F}$, 9 d . $0.068,0.1 \mu \mathrm{~F}, 11 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 2.0 .22 \mu \mathrm{~F}$ $1 / 6.0 .33 \mu \mathrm{~F}, 2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8$.
Modular, metallised, P.C. mounting, $20 \%, 250 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$. $0.033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 .068,0.1 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 \cdot 22 \mu \mathrm{~F}, 1 /-0.33 \mu \mathrm{~F}$, $1 / 5.0 .47 \mu \mathrm{~F}, 1 / 8.0 .68 \mu \mathrm{~F}, 2 / 3.1 \mu \mathrm{~F}, 2 / 9$.
POLYSTYRENE CAPACITORS: 5%. 160 V (unencapsulated): 10,12 , $15,18,22,27,33,39,47,56,68,82,100,120,150,180,220,270,330,390$, $470,560,680,820 \mathrm{pF}, 5 \mathrm{~d} .1,000,1,500,2,200 \mathrm{pF}, 6 \mathrm{~d} .3,300,4,700,5,600 \mathrm{pF}$, $7 \mathrm{~d} .6,800,8,200,10,000 \mathrm{pF}, 8 \mathrm{~d} .15,000,22,000 \mathrm{pF}$, 9 d ,
$1 \%, 100 \mathrm{~V}$ (encapsulated): $100,120,150,180,220,270,330,390,470,500$, $560,680,820 \mathrm{pF}, 1 /-.1,000,1,200,1,500,1,800,2,200,2,700,3,300,3,900 \mathrm{pF}$, $1 / 3.4,700,5,000,5,600,6,800,8,200,10,000.12,000,15,000 \mathrm{pF} .1 / 6$. $18,000,22,000,27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0 .047,5,000,0.056 \mu \mathrm{~F}, 2 / 6$ $0.068,0 \cdot 082,0 \cdot 1 \mu \mathrm{~F}, 2 / 3.0 \cdot 12 \mu \mathrm{~F}, 2 / 9 \cdot 0 \cdot 15,0 \cdot 18 \mu \mathrm{~F}, 3 /-0 \cdot 22 \mu \mathrm{~F}, 4 /-.0 \cdot 27$, $0.33 \mu \mathrm{~F}, 5 /-0.39 \mu \mathrm{~F}, 5 / 9.0 .47,0.5 \mu \mathrm{~F}, 6 / 3$.
JACK PLUGS (Screened): Heavily chromed, tin Standard: $2 / 9$ each. Side-entry: 3/3 each.
Standard (Unscreened): 2/3 each.
JACK SOCKETS (tin Plug): With chrome insert. 2/9 each. Available with: Break/Break, Make/Break, Break/Make. Make/Make contacts. POTENTIOMETERS (Carbon): Long life, low noise, 1 W at $70^{\circ} \mathrm{C}$. $\pm 20 \% \leqq \$ \mathrm{M}, \pm 30 \%<1 \mathrm{M}$. Body dia., $\frac{y i n}{}=$ Spindle, $1 \mathrm{in} \times \frac{1 \mathrm{in} .}{} 2 / 3$ each. Linear: $100,250,500$ ohms, etc., per decade to 10 M . Logarithmic: $5 \mathrm{k}, 10 \mathrm{k}, 25 \mathrm{k}$, etc., per decade to 5 M .
SKELETON PRE-SET POTENTIOMETERS (Carbon): Linear: 100, 250,500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C} . \pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$. Horizontal ($0.7 \mathrm{in} \times 0.4 \mathrm{in} \mathrm{P.C.M)} .\mathrm{or} \mathrm{Vertical}(0.4 \mathrm{in} \times \overline{0} \cdot 2 \mathrm{in}$ P.C.M.) mounting, $1 /-$ each.
Submin. 0.1 W at $70^{\circ} \mathrm{C} . \pm 20 \% \leq 1 \mathrm{M}_{\mathrm{C}} \pm 30 \%>1 \mathrm{M}$. Horizontal $(0.4 \mathrm{in} \times$ $0 \cdot 2$ in P.C.M.) or Vertical ($0.2 \mathrm{in} \times 0 \cdot 1 \mathrm{in}$ P.C.M.) mounting, 10 d each. RESISTORS (Carbon film), very low noise. Range: $5 \%, 4 \cdot 7 \Omega$ to $1 \mathrm{M} \Omega$ (E24 Series): $10 \%, 10 \Omega$ to $10 \mathrm{M} \Omega$ (E 12 Series).
 99,1 d), 100 off per value $13 / 9$. $\frac{1}{2} \mathrm{~W}(10 \%)$, 2 d (over $\left.99,1 \% \mathrm{~d}\right), 100$ off per value $13 / 9$. $1 \mathrm{~W}(5 \%$), 2 fd (over $99,2 \mathrm{~d}$), 100 off per value $15 / 6$.
SEMICONDUCTORS: OA5, OA81. 1/9. OC44, OC45, OC71, OC81, OC81D, OC82D, 2/-, OC70. OC72, 2/3. AC107, OC75, OC170, OC171, 2/6. AF115, AF116, AF117, ACY 19, ACY21, 3/3. OC140, 4/3. OC200, $5 /-\mathrm{OC} 139,5 / 3$. OC $25,7 /-\mathrm{OC} 35,8 /-$ OC $23, \mathrm{OC} 28,8 / 3$.
SILICON RECTIFIERS: $(0-5 A)$). 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3. 1250 P.I.V., 3/9. 1500 P.I.V. 4/-. $(0.75 \mathrm{~A})$; 200 P.I.V., 1/6. 400 P.I.V., 2/-. 800 P.I.V., 3/3. (6A); 200 P.I.V., 3/-. 400 P.I.V., $4 /$-. 600 P.I.V., $5 /-$ -
THYRISTORS (5A): 100 P.I. V., 8/-. 200 P.I. V. $10 /$-. 400 P.I.V., $15 /-$.
SWITCHES (Chrome finish, Silver contacts): 3A $250 \mathrm{~V}, 6 \mathrm{~A} 125 \mathrm{~V}$. Push Buttons: Push-on or Push-off 5/-. Toggle Switches: SP/ST, 3/6. SP/DT, 3/9. SP/DT (with centre position) 4/-. DP/ST, 4/6. DP/DT, $5 /$ -
PRINTED CIRCUIT BOARD (Vero).
 5 in $\times 3$ in, $5 / 6$.
$0 \cdot 1$ Matrix: 3 in $\times 2 \frac{2}{2} \mathrm{in}, 4 /-.5 \mathrm{in} \times 2 \frac{1}{2} \mathrm{in}, 4 / 6$. 3 in $\times 3 \frac{1}{4} \mathrm{in}, 4 / 6.5 \mathrm{in} \times 3 \frac{3}{2} \mathrm{in}$ REC
RECORDING TAPE (Finest quality MYLAR-almost unbreakable).
Standard Play: $5 \mathrm{in}, 600 \mathrm{ft}, 7 / 6.59 \mathrm{in}, 850 \mathrm{ft}, 10 / 6.7 \mathrm{in}, 1,200 \mathrm{ft}$. $12 / 6$.
Long Play: 3 in , $225 \mathrm{ft}, 4 /-.5 \mathrm{in}, 900 \mathrm{ft}, 10 / 6$. 5 名 $\mathrm{in}, 1,200 \mathrm{ft}, 13 /-.7 \mathrm{in}, 1,800 \mathrm{ft}$, 18/-

SEND S.A.E. for JANUARY, 1969 CATALOGUE

Z \& I AERO SERVICES LTD.

Please send all oorrespondenee and Msil-Orders to the Head Owice When sending cash with order, please include $2 / 6$ in $£$ for postage and handling minimum charge e/f. No c.o.D. orders aceepted.

Ratail Shop
85 TOTTENHAM COURT ROAD LDNDON W1
Tel. LANgham 8403
Open all day Saturday

	818	6at5 9/-	${ }_{68 \mathrm{BA}}^{68}$	${ }_{251}^{1216}$	6L	First Quality		Fully Guaranteed		ECF88 ECF8043			
	$8 / 8$	6AJ5 9/-	${ }_{8}^{68887}$	${ }_{18 / 6}^{25 /}$				T		ECH35 1			
OB2	${ }_{8 /-}^{8 /-}$	$\begin{array}{ll}\text { 6AJ8 } & 5 / 3 \\ \text { 6AKS } & 5 /-\end{array}$	6BW6	18/-	${ }_{6}^{6 L 12}$					ECH42 1			
${ }_{\text {OC3 }}$	8/6	6AKG 11/6	${ }_{6} \mathrm{BZ} 6$	$81-$	${ }^{6 L D} 2006$	》 -							
OD3	$81-$	6ALS 3/-	${ }_{68 \mathrm{C} 7}$	10/-				BRAND		C	$8 /-$		
OM10	11/-	${ }^{6 A M 4} 822-$	6 C 4	5/8	131			CL80					
${ }_{183}$	7	6AM6	8 C 6	$4 /-$	6 P 28 12/-					CL			
1CJat	5/-	6AM8 8/	${ }_{6} \mathrm{CBC}$	1718						clas			
194 C	81	6AN8 10--	ch	17/3	$\begin{array}{ll}\text { 68A7 } \\ 6867 & 7 /- \\ 61-\end{array}$	ELECTRONICVALVES				ECL8			
145	$7 /-$ $3 /-$	6AQS ${ }_{\text {faq6 }}$ 6/- 10	6CB6	51-	$\begin{array}{ll}6867 \\ 68 H 7 & 4 / 8\end{array}$					ECL8			
1 L	з-	$\begin{array}{ll}\text { faq6 } \\ \text { 6ARS } & 10 /- \\ 6 /-\end{array}$		22j-	$68 \mathrm{J7}$ 7/-	Combined effect of increase in Purchase Tax and S.E.T. and import restrictions forced un to introduce an increase of 1 d . per shilling which must be added to the total of each order.							
184	6)	6ARE	${ }_{6}^{6 C 67}$	81-	${ }_{68 L 79 T} 81-$								
185	4/8	6 685 6/8	${ }_{6}^{6 C H 6}$	11-	68N7GT 5/6								
114			${ }_{6}^{6 C L 8}$	151-	68 R 7 7-					EF3			
1 V 2	$81-$	A	BCW4	12/-	$6 \mathrm{~T}^{8}{ }^{8 /-}$	128H7	30 FLL 15 /-			807 8			
2 B	I	8/-	Y 5	7/-			30FI		${ }_{\text {E83F }}$	EF	13/-		
	251	$51-$	$6 \mathrm{6D3}$	${ }^{716}$	$6{ }^{\text {d }}$ 81-	$12 \mathrm{BY7}$	$30 \mathrm{FL} 1414 / 6$	${ }_{813} 71$	E88C $23 /$	EF54			
${ }^{2 \mathrm{C} 26}$)	${ }^{101}{ }^{-}$	${ }_{60 \mathrm{CL}}^{6 \mathrm{D}}$	$17 / 6$ $18 / 6$	6x4 4/6	12VQ $7101-$	$30 \mathrm{L1}$ 81-	837 151-	E88CC $12 / 6$	EF			
2 C 40		$12 /$	${ }_{6} 6 \mathrm{DLK} 6$	${ }_{81}^{18 / 6}$	6xDat $51-$	12E1 $20 /-$	$30 \mathrm{LL} 518 /$	8664141		EF			
2 CW 4		$5 / 6$	6DQA	11/-	${ }_{6 \times 8}^{8 \times 811 /}$	${ }_{12 \mathrm{~K} 5}^{12 \mathrm{~K}}{ }^{14}$	30 L 7718	884 5670 58	EAF80110;	EF86	\% 6		
2 D 21	$8 /$ -	6AW8A 11/-	$6 \mathrm{DS4}$	$15 /$	${ }_{13176}^{11 / 6}$			5751	EABC80 ${ }^{\text {/ }}$		$8 /$		
26	27/6	TB	$6 \mathrm{DT6}$	11	7 C		PL1 $15 /$	$576312 /$	EbC33 8 /	EF89	-		
${ }_{3}$	11/-				7 74 7 $7 / 6$	1207GT 5/8	$30 \mathrm{PL13} 17 / 6$	5886 40	${ }_{\text {EBC4 }} 8$ 8/8	EF91			
	$11 /$	12/6	${ }^{6} 566$	6/6	$9 \mathrm{8W6}$ \% $71-$	$\begin{array}{ll} 12807 & 4 / 6 \\ 12897 & 6 /- \end{array}$	30PL14 17/-	$\begin{array}{ll}6080 & 27 / 8 \\ 6146 & 27 / 8\end{array}$	${ }_{\text {EREP80 }}^{\text {EBC81 }}$	${ }_{\text {EF93 }}$			
828	$401-$	$6 \mathrm{Ax} 710 \%$		9/-	$\begin{array}{ll}9 \mathrm{D2} & 3 / 6 \\ 9 \mathrm{D7} & 9\end{array}$		${ }_{35 \mathrm{~B}}^{3}$	${ }^{8197}$ 20/-	EBF83 8/-	EF94			
	$7 / 6$	${ }_{6889}^{684} 15{ }^{15 /}$	${ }_{8 F 13}^{6 F 11}$	${ }_{6}^{6 / 1}$		$\begin{array}{ll} 128 \mathrm{K7} & 6 / 6 \\ 12897 & 7 / 6 \\ 13 \mathrm{D} 3 & 5 / 8 \end{array}$	${ }_{35 C 5} 818$	6360 251-	EBF89 61-	EF			
	$6 /-$ $8 / 6$		14	121-	10D2 8/-		35D5 12/-	6939 40--	EBL1 $12 /-$	EF			
32	801-	bBA7 151	${ }_{6} \mathrm{FF} 15$	11/-	10F1 $18 /$	$\begin{array}{ll}\text { 19ALS } \\ 20 \mathrm{CV} & 62 / 8\end{array}$		785	${ }_{\text {EC86 }}{ }^{\text {EBL31 }} 11 / 6$	EF183			
dex	101	C5 3/6	18	78	${ }_{\text {10FP18 }}^{10 \mathrm{Fr}}$ 10/-	$\begin{array}{ll}2001 & 9 /- \\ 20 \mathrm{~L} 1 & 18 /-\end{array}$	3573 101 10	${ }^{7} 581 \quad 22 / 6$	EC88 11/-	EF184	$8 / 6$		
$\mathrm{U}_{4 \mathrm{G}}$	5/6	6BE6 6RF5 $4 / 6$ 15	${ }_{6}^{6 F 18}$	$7 / 8$ 151	10F18 ${ }^{10 \mathrm{Ll}}$ 7/8		35 Z 4 G 4/-	7591a $201-$	${ }^{\text {ECC3 }}$ 8 $81-$	EF804			
4G1	71-		${ }_{6}^{6 F 23}$	$13 /-$	10LDI1101-	$\begin{array}{ll} 20 \mathrm{LI} & 18 j- \\ 20 \mathrm{Pl} & 10 j- \\ 20 \mathrm{P} 3 & 12 /- \end{array}$	3525 GT 81-	$81-$	ECC40 10-	EH90			
	5/6		6 F 25	14/-	10P13 12/-		50A5 12-	${ }^{\text {Az31 }}$	ECC70	EK9	${ }_{6}$		
${ }_{5} 83$	81	6B6ig 11/-	${ }^{6 F 28}$	13	$10 \mathrm{P}^{1} 14$ 18/-	20 P 3 $12 /-$ 20 P 4 $19 /-$ 20 P 5 $19 /-$	D0	${ }_{\text {CL33 }}{ }^{\text {cha }}$	${ }_{\text {ECC82 }}$ 50/9	EL.36	16		
${ }^{5240}$	$71-$	${ }_{6}^{68 H 6}$	$6 \mathrm{6H8}$	114	12 Ac		${ }_{50 \mathrm{LHGT}} 7 / 8$	$\mathrm{CY} 31^{7}$	E0c83 5/8	EL38	22/6		
${ }^{6 / 80 \mathrm{~L}}$			6G				${ }_{53 \mathrm{KU}}{ }^{\text {5 }}$ 13/6	baf9i $71-$	ECC84 5/8	EL41	9/8		
6ABG 684	8/8 $8 / 6$	${ }_{6 B K 74}^{68 \%}$	$\begin{aligned} & 6.54 \\ & 6.4 \end{aligned}$	91-	12AQ5 71	$\begin{array}{ll} 25 \mathrm{Cb} & 9 /- \\ 25 \mathrm{CU} & 12 / \end{array}$	${ }^{75 \mathrm{CL}} 81$	DF96 7-	ECCC85				
${ }_{6 A B 7}$	$4 /$	6BL7GTA	${ }_{656}^{6 J T}$	$5 / 8$ $3 / 8$	$\begin{array}{ll}12 \text { AT6 } & 4 / 6 \\ 12 \text { AT7 } & 8 /-\end{array}$			DHE101 9	ECC88 $7 / 6$	EL83			
6aC5GT				3	12AU6	$\begin{aligned} & 25 \mathrm{LBGT} \text { 6/6 } \\ & 25 Z 4 \mathrm{G} \text { 6/- } \end{aligned}$	${ }^{85} 512{ }^{\text {a }}$	DK92 8/3	ECC89 11-	EL84	4/6		
		N(${ }^{7 / 6}$	6K6GT	87-	12 l		8583776	DK96 7/6	HCC91 3/6	EL	878		
AD	15/-	6 GTB	${ }^{6 K 7}$	$2 / 6$			$\begin{array}{ll}9046 \\ 900 \mathrm{Cl} & 48 /-\end{array}$	DL68 ${ }^{\text {DL96 }}$ 7/-		EL90	-		
$64 \mathrm{F4A}$	$9 /-$	12	${ }_{6}^{6 \mathrm{~K} 23}$		$\begin{array}{ll}12 \mathrm{AXX} & 5 / 6 \\ 12 \mathrm{~B} 4 \mathrm{~A} & 9 / 6\end{array}$			DM70 6/-	${ }_{\text {ECFP2 }} 8 / 8$	EL360			
6AGS	6/-	1	6 K 26	121-	12BAB ${ }^{\text {b/- }}$		0cv 25/-	DMibo 8/-	ECF83 14	EL500	17-		

INTEGRATED CIRCUIT AMPLIFIERS

RCA Type CA3020
Integrated Circuit Audio Amplifier in TO5 encansulation (size of a amall translator), equivalent to seven n-p-n 550 mW . Total harmonic distortion 1%. Will operate on voltage from 3 to 9 volte. $\quad 30 /$-plue $2 /-$ p.p.
GENERAL ELLECTRIC Type PAE22
Epoxy moulded in-line package equivalent to six n-p-n Epoxy moulded in-line package equivalent to six a-p-1 put of up to $1-2$ watts into 15 ohms. Battery operation 22 voltw.

40/-plus 2/- p.p.
The construction of amplifier using the above integrated
circuits had been deacribed In March and August iasues of P.W. Please note that we only supply the IC's and no other parte are supplied by us.
GENERAL ELECTRIC TYPE PAZ34
1-watt Audio Amplifier suitable for supply voltage of 9 to 26 V and for out put loads of 8,18 or 22 ohrns. Only 3 capacitors and 3 reaistors are required for making up a complete amplifier delivering 1 watt for in input voltage of 600 mW . Epoxy moulded double four-in-line package. 27/6 each, plue 2/- P. \& P.

SILICON WIRE ENDED DIODES
D223, 50 pi.v. 50 mA
D233A, 100 p.i.v.. 50 mA
D223B, 150 p.i.v.. 50 mA

SILICON POWER RECTIFIERS
'TOP HAT' type, wire ended:
D $226 \mathrm{~B}, 400 \mathrm{p} .1, \mathrm{v} ., 300 \mathrm{~mA}$
STUD MOUNTED, KD202 series

$50 \mathrm{piv}, 1 \mathrm{~A}$	$3 /-$	200 p.i.v., 1A	3/8
50 p.i.v., 3A	$5 /-$	200 p.i.v.e 3 A	8/-
100 p.iv., IA	$3 / 3$	$300 \mathrm{p.l.v.}$,	3/8
100 p.i.v.. 3A	51-		

SILICON AVALANCEE RECTIFIERS (Half Wave)
RAS 310 AF, Top Hat type, $1.5 \mathrm{~A}, 1200 \mathrm{p} . \mathrm{i} . \mathrm{\nabla}$
RAS 508 AF, Stud Mounted, 6A, 960 p.i.v

C1- 2 in . screen. EHT 500 to 1000 V . Typical sensitivity at 500 V . X- $220 \mathrm{~mm} / \mathrm{V}$; Y- $260 \mathrm{~mm} / \mathrm{V}$. U8M11
Base. Orerall length 7 inn Base. Orerall length $/$ in,
3BP1-31n. screen. E1KT 1500צ. Typical sensitivity $\mathrm{X}-150 \mathrm{~mm} / V ; Y^{2}-200 \mathrm{~mm} / \mathrm{V}$. B14A Bate.
Overall length 10 in.

MULTIMETERS
 YPE MF1

C. Voltage range:
A.C. voltage range:
D.C. current range:
$500 \mu-10.100 \mathrm{~mA}$.
Reaintance ranges: $100 \mathrm{M} \Omega-1 \mathrm{M} \Omega$ The meter is almo calibrated, capa clty (1000 pF to $0.03 \mu \mathrm{~F}$) and output le vel measurements. Sensitivity C. D.C. and $\pm 4 \%$ for A.C. m

Type 108-IT: 24 range precision portable meter. 5000 Type 108-IT: 24 range precision portable ineter. Volts:
o.p.v. D.C. Volts: $25-10-50-250-500-2500$ V, A.C. $10-50-100-250-500-2500 \mathrm{~V}$; D.C. current $0 \cdot 5-5-50-500 \mathrm{~mA}$
Resiatance $2000-20.000$ ohms; $2-20$ megohms. Power output calibration in A.C. for 800 ohms line. Complete with prods and batteries, £6.5.0. P. \& P. 5/

OUR NEW 1968/1969 CATALOGUE

 IS NOW READYthe technical information section has been FURTEER EXPANDED TO INCLUDE MORE DETALIS OF SEMICONDOCTORS PLEAS

HIGH POWER STUD MOUNTED

10\% Tol. Zener Diodes
SERIES D815, 8 watts dissipation: 18.0 x SERIES D816, 5 watts diasipation: 22. $27,33,39,47,56,188,82,100 \mathrm{~V}$

All at 7/8 each
Orders for ten or more, may be mixel. 6/9 each
TRIACS TYPE 40432
Gated bi-dlrectional Silicon Thyristors with integral trigger. The triac will control up to 1440 watts at 240 V mains frequencs. supplied complete with heat sink. dsta sheet and application sheets for motor control and dimmer circuits. $37 / 6$ each.

THYRISTORS

Low current:
Blue spot; 200 p.i.v., 5 Amps. Gate voltuge 3.25 V
Blue spot: 200 p.i.v.. 5 Amps. Gate voltuge 3.25V
at 120 mA High currens

CR $80.021 \mathrm{~A}, 80$ Ampe. 25 p.i.v.
CR 100.151A, 100 Ampw. 200 p.i.
CR 100-201A, 100 Amps. 200 p. pi.v
CR $100-301 \mathrm{~A}, 100 \mathrm{Amps} .300 \mathrm{p} .1 . \mathrm{v}$.
CR 100-301A, 100 Amps. 350 p.1.v.
CR $100-401$ A, 100 Amps. 400 p.i.v.
CR 100-501A. 100 Amps, 800 p.i.v. $70 /$
For all CR series Minimum gave firing voltage is 3 V at 150 mA .
UNIJUNCTION TRANSISTORS 2N2646
Power disalpation 300 mL W R.M.S. Base-to-Base voltage 35 Y max. Peak ennitter current 20 A . Sultable for triggering of thyristors. 12/6

TRANSISTORS

Apart from the types listed in our Catalogue the following

typera	6/8	2N2477	12/8	AsY27	6/6
2N1306	6 /-	2 N 3055	201-	BC:18	$8 / 6$
2 N 2217	8/6	2 N 3704	$5 / 6$	BFX88	5/4
2 N 2218	$7 / 8$	AD161	91-	P346A	\$/-
2N2219	$8 / 6$	AD162	O/-		

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, I.P.C. Magazines, Tower House, Southampton Street, London, W.C.2.

$\left.\begin{array}{ll}\text { The Strand Amplifier } & . \\ \text { The PW Signal Generator } & . .\end{array}\right\}$	(Oct. 1962)	5/-	Transistor Radio Mains Unit 7 Mc/s Transceiver	
The Berkeley Loudspeaker Enclo-			The Citizen (December 1961)	
$\left.\begin{array}{lll} \text { sure } \\ \text { The Luxembourg Tuner } & \ldots & . \\ . \end{array}\right\}$	(Dec. 1962)	5/-	The Mini-amp (November 1961)	
			The Beginner's Short Wave Sup	Dec.
The PW Mercury Six $\}$	(May 1962)	6/-	The Empire 7 Three-band Receiv	
Beginner's Short Wave Two S.W. Listener's Guide	(Nov. 1963)	5/-	Electronic Hawaiian Guitar (June	
			Progressive SW Superhet (Februar	
The Celeste 7 -transistor Portable				
Radio	(June 1963)	5/-	Beginner's 5-Band Receiver	(D)

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN \star THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL \star RADIO, TV OR AUDIO EQUIPMENT.

PRACTICAL WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

OUERYCOUPON

This coupon is available until 7th March, 1969 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, MARCH 1969

SOLID STATE-HIGH FIDELITY AUDIO EOUIPMENT		Acclaimed by evenone mayfair electronic organ			
Men					
,		2vavavavav			
5.5.0					
		oravams			
			Nuluat want mulure		
	. \times ¢		=. ${ }^{4}$ 4 4		
צax		V	\%		
\%1696		2ataces			
Hater emober					
$=\square=$			(50)		
		scas, tom			

HIFन equipment to suit XXZkPPOGKZ

VISIT OUR NEW HI-FI CENTRE at 309 EDGWARE RD

for all leading makes AMPLIFIERS TUNERS DECKS SPEAKERS

fully
 Illust
 ated

COMPLETELY NEW 9th EDITION (1969) The most COMPREHENSIVE-CONCISE-CLEAR COMPONENTS CATALOGUE
Complete with 10/- worth discount vouchers FREE WITH EVERY COPY

32 pages of transistors and semi-conductor devices. valves and ciystals
210 pages of components and equipment
70 pages of microphones, decks and $\mathrm{H} 1-\mathrm{Fi}$

6,500 ITEMS

[^0]: PLEASE SEND ME FREE OETALIS OF YOUR RANGE

[^1]: Over $\& 2$ post pild
 OM0 minutes

[^2]: * Using the "Ten-Five"' plus car radio/Superverter current demands from the car battery are: "Transmit", 3.8A; "Net", 2A; "Receive", 0.9A (radio only): 1.5 A (Radio plus heaters of transmitter).

[^3]: * Callers side entrance Stylo Shoe Shop
 * Open 10-1. 2.30-4.30 Mon-Fri. 9-12.30 Sat

[^4]: All these and many more, plus free details of the
 RADIO SOCIETY of GREAT BRITAIN
 from RSGB PUBLICATIONS
 35 DOUGHTY STREET, LONDON, WC1

[^5]: TELEVISION I.F. STRIPS (less valves)
 From BRC, 2 converters ideal for spares. contains rmoothing capacitor, dropper resigtars, 7 valve holders 1.1'. tranaforiaers, coil formers, capacitors, resistors dionles, tiog strlps, chokes, etc., etc., on chausis 11 in 3 in. no information or circuit.
 BRAND NEW in makers boxe*, a goid mine of component for ON LY $16 / 6$ each prat paid. Reducell to $14 / 6$.
 MAINS TRANSFORMERS $500 \mathrm{~mA}, 24 \mathrm{~V}$ at 100 mA 32 V at $10 \mathrm{~m} / \mathrm{A}$, aize $2 \frac{1}{2} \mathrm{in}$, 1 in in a 13 in (drop through type) ideal for transistor power supply, $10 /$ - posit paid 250 V input, output 22 V at 14 A , size $2 \mathrm{in} \times 2 \mathrm{in} \times 24 \mathrm{ia}$
 TR/- post patid. Iriver and out put tranaformers for 3 nhm paker. suit OC818, etc., approx. 1 watt rating, onts 6/-pair or 4/- each
 As above but $500 \mathrm{~m} /$ watt rating, $4 /-$ pair. 3/- cach. MIXED bag of silver mica and ceramic capacitors. ERIE Thyrimers for srill epeed controls 400 p . v . at 5 A 12/6. 0.0i mF. 500 vw dis ceratsics, P.C. type, ${ }^{\prime} / 25$ in diat 2/-dnz. 10 - per 100 .
 HUNTS 0.1 tnF, 350 vw paper capacitors, $4 . C$. type.

 MULLARD CAPACITORS $50+50+50 \mathrm{mF}, 350 \mathrm{NW}, 51-$ TRANSISTOR ELECTROLYTICS 2 mF 6vw, 4 mF . ${ }^{\text {B4Vw, }}$
 9 ww. 9d. 1,000mF' 50vw eln typs. 4/-
 SPEAKER COVERING \sin ain perforated Hexthie plaatic. Simulated chrume on ont adde $1 / 6$ ewih $12 /$ - doz. HUNTS $2,500 \mathrm{mmtd}$ iovw, braul new $8 / 6$.
 SILVER MICA capacitors Bopli size only fin \times fin 200 vw 4-per 100
 MALLORDFK ONLY SAE FOR LISTS

 A. J. H. ELECTRONICS

 59 Waverley Road, The Eent, Rugby, Warwicks.

