PRAGTMGAL WIRELESS
 AUGUST 1968

FOR CATALOGUES APPLY DIRECT

ADCOLA PRODUCTS LTD. ADCOLA HOUSE GAUDEN ROAD LONDON, S.W. 4
 Telephone: 01 622 0291/3

Better than

 anything you have ever used before
Abstract

This is the quicker, cheaper, tidier and more efficient way to make a modern flat-board circuit. Unique" Cir-kit" adhesive copper strip and special matrix board enable you to work to professional standards with ease. Soldering is easier too, so are modifications. That is why "Cir-kit" is also widely used by well known designers and experimenters. A 5 ft . spool, $\frac{1}{8}$ in. or $\frac{1}{16}$ in. wide, with instructions

\section*{2'-} for using on plain matrix board, costs only "Cir-kit" 0-1in. Matrix Board is available in 3 sizes: $5 \times 3 \frac{3}{4} \mathrm{in} .4 / 4$; $2 \frac{3}{4} \times 3 \frac{3}{4}$ in, $2 / 6: 2 \times 3 \frac{3}{4}$ in., $1 / 9$. "Cir-kit" and other Peak Sound products, i.e. Stereo Amplifier Kit, MiniSpeaker Kit, erc. are obtainable from good stockists. In case of difficulty, please send direct, adding $4 d$ to value of order to cover cost of postage. TRADE ENQUIRIES INVITED. "Cir "kit" is an exclusive speciality designed and made by

PEAK SOUND (HARROW) LTD.
32 St. Jude's Road, Englefield Green, Egham, Surrey Telephone: EGHAM 5316

JACKSON

the big name in PRECISION components
Precision built radio components are an important contribution to the radio and communications industry.

It's reliable if it's made by Jackson!
JACKSON BROTHERS (London) LIMITED Kingsway - Waddon - Croydon - CR9 4DG Tel: 016882754 'Grams: Walfilco, Croydon

Itmastiars Izuencio

COMMUNICATION RECEIVERS TRIO
MODEL 9R-59DE Brief spec.: 4 band receiver covering s50 Kc/s
ho $30 \mathrm{Mc} / \mathrm{continuous}$
and electrical band spread and electrical band spread
on $10,15,20,40$ and 80 metres. 8 yalve plue 7 dinue circuit. $4 / 8$ ohm Special features: gsB BFO - 8 meter - Sep
 frequency $455 \mathrm{Ke} / \mathrm{s}$ - Aldin output $1-5 \mathrm{~W}$ - Variable RF and AF gain controls. For use on $115 / 250 \mathrm{~V}$ A.C. Mains. Beautifully deqigued control layout finished in light grey with
dirk grey case, size $7 \times 1 \overline{0} \times 10 \mathrm{in}$. Veight 19 \|lss. Fully guaranteel, cunplete with itisl ruc tion Inamual and service da
Lasky's Price $£ 36.15 .0$ Carriage and Packing 12/6
MODEL JR-500SE
Brief spec.: Covers all the amsteur bands in 7 separate ranges between 3.5 and $29.7 \mathrm{Mc} / \mathrm{s}$. Circuit uses 7 valves, 2 transistors and 5 diodes plus 8 crystala; output 8 and 500 ohm and 500 ohm phone jack. Special features: Cryatal controlled oscillator Sariable BFO
YFO AVC ANL $\$$ meter SSB-CW Stand-by switch VFO AVC ANL \& meter S8B-CW - Stand-by switch - Apecial double gear thal drive with direct reating down to 1 kHz Remote cont rol gocket ior connection to at transmiter. Audio output watt in dare ong Calinet size $7 \times 13 \times 10 \mathrm{in}$. Weight 18 ibs . Fully guaranteed, complete with instruction manual and service data.
Lasky's Price £61.19.0

JUST ARRIVED

TRIO SP-5D "SPEAKER MATE' Communications speaker unit-matching both the above receivers in
lot $1 /$ style and size. Contains $5 \times$ 3in. eliptical 8Ω speaker specially hesigned to give extremily crisp rejrontuction of volee froquencies. Dark grey metal cabinet-sizc $7 \times 3 \Omega \times 5 \mathrm{f}$ in.
Lasky's Price 82/- Post $3 / 6$

MORE TRIO NEWS

Send large S.A.E. for full details of this new great TRIO system NOW AVAILABLE
 supply and speaber unit £38; VMO-5 Variable F^{F} requency Oscillator E 28 . These three

LASKY'S CLEAR PLASTIC

 PANEL METERSPrecision made in Japan by HIOKI. Each meter boxed and of front panel. Add $1 / 6$ rost on each Quotes for uuantities Type KR-52 $3 \times 21 \mathrm{im}$. (Illustrated)
 300 F.
.3816 Type MK-38A 1 gin. square $500 \mathrm{ch} A$

fimia

300 S
$50 \mu \mathrm{~A}$.
$100 \mu \mathrm{~A}$
Type MK-65A 3in. square

100 M 11 V
300 V
50 A
linas meter
$100 \mu \mathrm{~A}$
MA

-

1 mpe 1 mA 5 mA

100 mA 300 V
1 mA s raeter
$100 \mu \mathrm{~A}$
800 LA
Type KR-65 $3 \frac{3}{3} \times 3 \mathrm{in}$
5 ma
100 mA
300 V
$50 \mu \mathrm{~A}$
1 mAs
10 l
$100 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$

HEATHKIT Models for Family Entertainment

AVAILABLE READY-TO-USE OR AS KIT MODELS

Latest STEREO TAPE RECORDER, STR-1

Fully portable-own speakers
Kit £58.0.0. P.P. 10/6
Ready-to-Use $£ 70.6 .0$. P.P. $10 / 6$
FOR THIS SPECIFICATION $\frac{1}{4}$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{7}{8} i p s$. Sound-onsound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumbwheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/ headphone and external amplifier outputs . . . front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 watts rms per channel. Two high efficiency $8 \times 5 \mathrm{in}$. speakers. Operates on 230 V a.c. supply.
Versatile recording facilities. So easy to build-so easy to use.

Latest Portable Stereo Record Player, SRP-1

Automatic playing of 16.33. 45 and 78 rpm records. All transistor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8in. x 5in. special loudspeakers. For 220250 V ac mains operation. Over-
 all cabinet size $15 \frac{9}{16} \times 3$ 급 $\times 10 \frac{1}{4} i n$.

Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All soltd-state circuitry gives room filling volume.
KIT £28.6.0 incl. P.T. Ready-to-Use £35.4.0. P.P. 10/6

Latest STEREO AMPLIFIER, TSA-12

12×12 watts output.
Kit $£ \mathbf{~} \mathbf{3 0 . 1 0 . 0}$ /ess cabinet. P.P. 10/6
Cabinet 12.5 .0 extra
Ready-to-Use £38.0.0. P.P. 10/6.

FOR THIS SPECIFICATION
17 transistors, 6 diode circuit. $\pm 1 \mathrm{~dB}, 16$ to $50,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modern low silhouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished walnu! veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 transistor tuners.

Full range power . . . over extremely wide frequency range. Special transformeriess output circuitry. Adequately heat-sinked power transistors for cool operation-long life, 6 position source switch.

High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semi-conductors (6 transistors, 2 diodes). For 12 volt positive or 12 volt negative earth systems. Powerful output (4 watts). Preassembled and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembly.
Instant operation, no warm-up time. Tastefully styled to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.
KIT (less speaker) $£ 12.18 .6$ incl. P.T. P.P. 4/6.
8×5 in. Loudspeaker $£ 1.10 .0$ extra.

RADIOS for Luxury Listening

"OXFORD" PORTABLE UXR-2

This De-Luxe, 7 transistor, 3 diode portable radio covers long and medium wave-bands with an easy-tune dial and uses battery-saving circuitry to ensure longer life and more hours of listening pleasure. Choice of Brown or Black real leather case.
KIT £15.10.0 P.P. 6/-
Oxford

PORTABLE UXR-1
This luxury 6-transistor, 1 diode receiver covers long and medium wavebands. Its robust case is now available in real brown leather or choice of colours: Navy blue, coral pink, lime green (please state second choice).
KIT £12.8.0 colour case. P.P. 4/6
KIT £15.10.0 real leather. P.P. 4/6
UXR-1

SEE HEATHKIT MODELS AT

GLOUCESTER
Factory and Showroom, Bristol Road.

LONDON

233 Tottenham Court Road, W. 1 .
BIRMINGHAM
17-18 St. Martins House, Bull Ring.

Deferred terms available over $£ 10$ (UK only).
Prices quoted are Mail Order prices. Post and Packing extra.

```
Mohican" General Coverage Receiver, GC-1 U Powerful 10 transistor, 5 diode circuit. Tunes 580 to \(1550 \mathrm{kc} / \mathrm{s}\) and 1.69 to 30 \(\mathrm{Mc} / \mathrm{s}\) in five bands. Bandspread on all bands. Fixed-aligned ceramic IF transfilters for best selectivity. Pre-assembled and aligned 'front-end' for fast, easy assembly. Built-in \(6 \times 4 \mathrm{in}\). speaker. Tuning meter for pin-point tuning. Completely self-contained for portability-can be operated on 230 volt AC with Model UBE-1. Kit \(£ 2.17 .6\) extra.
Kit £37.17.6. Ready-to-Use £45.17.6. P.P. 10/6.
```


Send for Latest FREE Catalogue

36 pages, many models in colour.

Please address a/l enquiries to:
DAYSTROM LTD., Dept. PW-8, GLOUCESTER
Please send me FREE CATALOGUE
Full details of model(s)

NAME

ADDRESS
Prices and specifications subject to change without prior notice.

HEATHKIT for the 'New Look' in INSTRUMENTATION

(Available in ready-to-use or kit form)

Kit IM-25
Ready to use
£48.10.0
£59 P.P. 7/6

Kit IM-16
Ready to use
£28.8.0 £35.8.0 P.P. 6/-

$£ 37.4 .0 \quad £ 46$ Р.P. 10/6 IP-27, not illustrated, but similar in styling.

The newest and most practical innovation in electronic instrumentation is the exciting new ultra-functional styling format from Heath.

New Solid-State, High-Impedance Volt-OhmMilliammeter . . . IM-25

- 9 AC and 9 DC voltage ranges from 150 millivolts to 1500 volts full scale - 7 resistance ranges, 0 ohms centre scale with multipliers $\times 1, \times 10, \times 100$, $\mathrm{x} 1 \mathrm{k}, \mathrm{x} 10 \mathrm{k}, \mathrm{x} 100 \mathrm{k}$, and $\mathrm{x} 1 \mathrm{meg} .$. . measures from one ohm to 1000 megohms - 11 current ranges from $15 \mu \mathrm{~A}$ full scale to 1.5 A full scale - 11 megohm input impedance on DC 10 megohm input impedance on AC AC response to $100 \mathrm{kHz}-6 \mathrm{in}$. $200 \mu \mathrm{~A}$ meter with zero-centre scales for positive and negative voltage measurements without switching - Internal battery power or 120/240 VAC, 50 Hz - Circuit board construction for extra-rugged durability.

New Solid-State Volt-Ohm-Meter . . . IM-16

- 8 AC and 8 DC ranges from 0.5 volts to 1500 volts full scale 7 ohm-meter ranges with 10 ohms at centre scale and multipliers of $x 1, x 10, x 100, x 1 k$, $x 10 k$, x100k, and $x 1$ megohm - 11 megohm input on DC ranges, 1 megohm on AC ranges Operates on either built-in battery power or 120/240 VAC, 50 Hz - Circuit-board construction.

New Variable Control Regulated High Voltage Power Supply . . . IP-17

- Furnishes 0 to 400 volts DC at 100 mA maximum with better than 1% regulation for 0 to full load and ± 10 volt line variaton - Furnishes 6 VAC at 4 amperes and 12 VAC at 2 amperes for tube filaments Provides 0 to - 100 volts DC bias at 1 milliampere maximum - Features separate panel meters for continuous monitor for output current and voltage - Terminals are isolated from chassis for safety - High voltage and bias may be switched "off" while filament vcltage is "on" - Modern circuit board and wiring harness construction $120 / 240$ VAC, 50 Hz operation.
New Improved Version of the Famous Heathkit
Solid-State, Voltage-Regulated, Current-Limited
Power Supply . . IP-27
- New zener reference - New improved circuitry is virtually immune to
overload due to exotic transients - 0.5 to 50 volts DC with better than ± 15
millivalts regulation Four current ranges $50 \mathrm{~mA}, 150 \mathrm{~mA}, 500 \mathrm{~mA}$ and 1.5
amperes Adjustable current limiter: 30 to 100% on all ranges Panel
meter shows output voltage or current "Pin-balf" lights indicate "voltage"
or "current" meter reading - Up-to-date construction Unequalled per-
formance in a laboratory power supply.
Kit IP-27 £46.12.0. Ready to use £55. P.P. 9/-.

New Solid-State Volt-Ohm-Meter, IM-17

- Just right for the home owner, boater, model builder, hams, sophisticated enough for even radio and TV servicing Solid-state circuit FET input 4 silicon transistors. 1 diode circuit 4 AC voltage ranges 4 DC voltage ranges 4 ohm ranges, 11 megohm input DC, 1 megohm input AC, $4 \frac{1}{2} \mathrm{in} .200 \mu \mathrm{~A}$ Meter Self powered Rugged polypropylene case with self cover and handle. Storage space for own flex leads. PCB construction.
Kit $£ 12.12 .0$. Ready to use $£ 17.100$. P.P. $4 / 6$.

```
DAYSTROM LTD., Dept. PW-8, GLOUCESTER
```

PLEASE USE COUPON		
ON LEFT		
FOR ENQUIRIES		

SENSATIONAL VALUE IN HIGH FIDELITY STEREO SYSTEMS

 Consisting of（1）GarrardMk II SP25 4－speed Turntable
with Pick－up．Heavy 12in．turntable hydraulic lowering with Pick－up．Heavy 12 in ．turntable．hydraulic lowering Fitted C\＄30 IP，U，cartridge，Ready wired on plinth（base board）．Fitted plugs for instant use．（2）Super 30 Anmplifier Loudspeakcr（nits．Extremely attractive cabinets
finished Satin Teak Veneer．Tinted Perspex＂hinged＇lid．

AUDIOTRINE HIGH FIDELITY LOUDSPEAKERS LOUDSPEAKERS Heavy cast construction．Latest high effciency
ceramic magnets．Treated Cone sur－ round givins low．fundamental reso－
nance nance．＂D＂indicates Tweeter Cone Impedance 3 or 15 ohms．Please state choice．Response $40-18.000$ c．p．s．Ex－
 $\begin{array}{lllllll}\text { HF1001 } & 10^{*} & 15 W & \text { £5．19．9 } & \text { IF126 } & 12^{*} & 15 W \\ \text { IF1 } & 12^{*} & \text { I5W } & 69 / 9 & \text { IF126D } & 12^{*} & 15 W \\ 5 & \text { gns．}\end{array}$ HIGH FIDELITY LOUDSPEAKER UNITS Cabinets of latest styling Satin Teak or Wainut
acoustically lined（and ported where anpro－ priate）．Credit terns avallabie on all units．
 DORSET Size $16 \times 11 \times 9$ in．Response $45-$
 STANTON IIIS ${ }_{\text {Size } 18 \times 11 \times 10 \mathrm{inc} . \text { Rating }}$ 10 watts Incorporating Audiotirine HF 815 speaker with roll rubber surround
and 15.0001 in magnet．High fuxtweeter． Hand 10.001 ine magnet．High fux tweeter． Response 30－20．000 c．p．s．Impdnae 3 or 1516 Gns． ohms．Givessmoo
GLOUCESTER GLOUCESTER Size $25 \times 16 \times 10 \mathrm{in}$ ． 12 in ．High fux Rating 10 watts．Smooth response $12 \frac{1}{2}$ Gns．
$40-20.000$ c．p．s．Impedance 15 ohms．

INTEREST CHARGES REFUNDED

EXTENSION LOUDSPEAKERS $\quad 29 / 9$ Cabinet size $12 \times 8 \times 5$ in．Attractive Grey Lizard Skin
Ginish．Fitted high fux $4-5$ watt． 6 tin． 3 hm speaker． E．M．I．MAINS R／PLAYER TURNTABLES 4 Speed．with P．U．T／O Cartridge．Limited number
Maill order only．Mono
79r9．Stereo $89 / 9$ R．S．C．TA6 6 Watt HIGH FIDELITY SOLID STATE AMPLIFIER
\qquad
 Frequency Response
20,000 c．p．s．
Rad． Distortion 0．3\％at 1．000 oc．D．s． ＇lift＇and＇cut＇controls．Separate inut sockets and Treble
 for $3-150 \mathrm{hm}$ speakers．Max $\begin{aligned} & \text { sensitivity } 5 \mathrm{mv} \text { ．Fully } \\ & \text { enclosed enamelled case．} 9 \mathrm{at} \\ & \mathrm{x} \\ & 24\end{aligned}$ enclosed enamelled case． $91 \times 24 \times 51$ in．Attractive
brushed silver finish facia plate $10 t \times 3$ in．and brushed silver flish facia plate $10 t x^{31} 31 /$ and
matching knobs．Complete kit of parts with full wiring diagrams and instructions．Carr． $7 / 6$
Or factory built with 12 months Or factory built with 12 months 6 Gis．
Ruarante，Post Paid 8 Gint． Performance comparable with equipment
at twice the cont Sider at twict the cost．Substantial saving on
package deal．
Special inclusive price $\quad \mathbf{~ G n s .}$ Special inclusive price Terms：Dep． 221.12 .6 and 12 mthly pymts offs．Total｜£81．12．6．Send S．A．E．for leafet． Unit and Shure
ridge． 82 Gns．
RECORD PLAYING UNITS Ready to plug into Amplifier
 Mk II（with heavy turntable） Atted Goldringcsso his hcom－ pliance ceramic Stereo／Mono cartridge with diamond sty－
lus．plinth and cover．Nor－ mally approx \＆26． 22 Gns． RP3 ${ }_{\text {As }}^{\text {Inc．Carr．}}$ above with Goldring Lenco GL68 Trans－
cription unit and CS90 Car－ cription unit and CS90 Car－
tridge．Normally approx． Ens．Inc．Carr． $27 \frac{1}{2}$ Gns．
AUDIOTRINE PLINTHS ${ }_{\text {for }}$

Total cost of parts
with detailed wiring diagrams \＆instruc－ tions．
Carr．
iol
12
$\frac{1}{2}$
Gns． Or factory built 16if gns．Or in Teak
finished
cabinet illustrated cabinet as Terms：Deposit ${ }^{2} 5$ and 9 monthly pay－
ments E 2 ．Total 223 ．

AUDIOTRINE HI－FI SPEAKER SYSTEMS Consisting of matched 12 in． 12,0001 ine 10 watt 15 ohm high quality speaker．cross－over unit and tweeter．
Smooth response and extended frequency range en－ sure surprisingly realistic reproduction． 5 Gns．
Or senior 15 watt inc． HF ． 126 15，000 line Speaker 8 Gins．Carr．6／6
 with roll rubber cone surpouch for very low fundamental resonance，
Sin． 10.000 line middle range speaker，high flux cone type tweeter． appropriate choke／capacitor cross－overs．Imped． 15 ohms．Frequen－

HI－FI＇SPEAKER ENCLOSURES Teak veneer finish Modern design，Accoustically lined and ported．
 with any 8in．Hi－Fi speaker．
Inc．Carr
SE8 For optimum performance with any 8 in．
E4／19／9
 Sit For outstanding results SEl2Forexcellent performancewith

SOLID STATE VHF／FM RADIO TUNER

FULLY TRANSISTORISED，SOLID STATE CONSTHUCTION
HIGH FHELITY OLTIPT OF G．⿹ WATTS PER CHANNEL Hesif FLDELiTh od for optimum performance
Dith any crystal or ceramic Gran
with with any crystal or ceramic Gram
P．U．cartridge，Radio tuner．Tape re－
corder．Mike etc．$t 3$ separate switched input sockets on each chan－ nel t Separate Bass and Treble con－ Speaker Output 3－15 ohms \rightarrow Slide \star Speaker Output $3-15$ ohms A For
$200-250 \mathrm{v}$ ．A．C．mains t Frequency
Response $30-20,000$ c．p．s，$-2 \mathrm{~dB}+$ Harmonic Distortion 03% c．p．s．Hum and Noise $-70 \mathrm{~dB} \star$ Sensitivities（1） 300 mV （2） 50 mV （3） complete kit of parts with full wiring diagrams Facia and Knobs． structions．Factory built with 12 mth gatee 15 and in－ 11 Carr Deposite4． 16.0 and 9 mthly pymts． $29 /-$（Total 17 GNS ）．

 tion．\star Sharp A．M．Rejection．ADpift－free recep－
tion．\star（）utput ample for any amplifier（approx $500 \mathrm{~m} . \mathrm{v}^{\prime}$ ）．太Simple alignment inutruetions．to Out－
put available for feeding tuning meter． put available for feeding tuning meter．toutput
for feeding Steren Minitiplexer．大Tuncr head for reeding Stered Alultiplexer．tTuner head for standard so ohm co－axialinput．Visually matching our super 15 and 30 amplifiers and of the same high standard of performance and reliability The pre－wired tuning head facilitates speed and simplicity of construction Printed circuitry．Only first grade transistors and components used． quality product at half the cost of comparable units．Stereo version，a

R．S．C．SUPGRISTNHFIGMPULIER soli srate

R．SC．SUPERBOSTEREOAMPLIFEK

FULLITRANSISTURISEI）200／250y．A．C．Mauns， LATEST MHWATTSR．M．S．cont．in to $3-4$ ohms． AD149，OC127Z，OC81Z．OC44，OC44，OCB1Z，OC44，AC107 5PQSITIUN INPETS SELECTOR SWITCII Characteristics for Gram and Tape Heads．and C．C．I．R． Characteristics for Gram and Tape Heads． FEVSITIVITILS：Magnetic PGCILITINS Ceramic P．U． 400 mV ．Microphone 4.5 mV ．Tape Head
25 mV ．Radio／Aux or Ceramic P．U． 110 mV ． FIREQUENCY IRESPONSE： $\pm 2 \mathrm{~dB} 20-20.000^{\circ} \mathrm{c}$. p．s TREIBLECONTHOL：+15 dB to -14 dB at $10 \mathrm{Kc} / \mathrm{S}$ ．NEG FEEDB．ICK： 52 dB ． BASS CONTHOL：+17 dB to -15 dB at $50 \mathrm{c} / \mathrm{s}$ ．IIUM LEVEL：-75 dB ． HARMONIG DISTORTION at 10 Watts 1,000 c．p．s． 0.1% point to point wiring diagrams constructional detais and $12 \frac{1}{2}$ Gins． Supplied factory built 151 Gins．Carr．12／6．Terms：Deposit 4 Gins．and 9 monthly payments $31 / 1$（Total \＆18．3．9）．Or fitted in beautiful walnut or Teak veneered cabinet as illustrated．31 Gins．extra． ALI，COMPONENTS ETC．ARE OF A IIIGHIGTANDARD AND BRADFORD 10 North Parade．（Half－day Wed．）Tel． 25349 BRISTOL ${ }^{14}$ Lower Castle St．（Half－day Wed．）Tel． 22904 BIRMINGHAM ${ }^{30 / 31} \mathrm{Gt}$ ．Western Arcade opp．Snow H．ll DERBY 26 Osmaston Rd．The Spot（Hall－day Wed．）Tel． 41361 DARLINGTON 18 Priestgate（Hall－day Wed．）Tel． 68043 EDINBURGH 133 Leith St．（Halt－day Wed．）Tel．Waverley 5766 GLASGOW ${ }^{326}$ Argyle St，（No half－day）Tel．CITy 4158 HULL 91 Paragon Street．（Half－day Thursday）Tel． 20505

Employing CHANNEL VEIRSIUN OF THE SUPER 15 Ganged Pots，Matched Components．CROSS TAINE： CONTROB at 1,000 c．p．s． 5 position Input Selector，Bass Control．Treble
Control．Volume Control．Balance Control．Stereo／Mono Control．Volume Control．Balance Control．Stereo／Mono Switch．Tape Monitor Switch．Mains Switch．INPUT Crystal P．U．（3）RadiolAux．（4）Tape Head／Microphone． Crystal P．U．（3）Radio／Aux．（4）Tape Head／Microphone． equalisation．Rigid $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$ ．Chassis．Size approx． 12 in．Wide equalisation．Rigid 18 S．w．g．Chassis．Size approx．12in．Wide
3in．high and 8 in ．deep．Neon Panel indicator．Attractive Fa－
cia Plate and Soun Silver Matching Knobs． cia Plate and Spun Silver Matching Knobs．Above facilities， etc，except for Ganging and Balance Control．apply also to Super 15. THESE NKE MAK IIGK－CP OF MICROPHOYE（Crystal，Ceramie Magnetic，Moving Coil．Riblong．CURIRNNELY AVAILABLE
 diagrams and detailed instructions．
Unit factory built 27 （ins．Ordeposit 66.2 .0 and 9 Carr． $15 /-$ Unit factory built 27 Gins．Or deposit £6． 2.0 and 9 monthly payments $56 / 3$ ．
（Total £31．8．3）．Fitted cabinet as Super 1530 （ins．Carr． $15 /$ or Deposit Total £31．8．3）．Fitted cabinet as Super 1530 （nns．Carr． 15 －or Deposit
$\$ 6.2 .6$ and 9 monthly paymts $64 /$（Total 434.18 .6 ）．Send S．A．E．for leafet．

， MAIL ORDERS TO： 102 Henconner Lane，Bramley， Leeds 13．No C．O．D．under £1．Terms C．W．O．or C．O．D Postage 4／6 extra under £2． $5 / 9$ extra under £5 Trade supplied．S．A．E．with enquirie
please．Hi－Fi Catalogue $4 / 6$ ．

32 High Street．（Hall－day Thurs．）Tel． 56420 LEICESTER 5－7 County（Mecca）Arcade，Briggate（No half－day）Tel． 28252 LEEDS

73 Dale St．（No half－day）Tel．CENtral 3573 LIVERPOOL ${ }_{96}^{238 \text { Edgware Road．W2（Half－day Thurs．）Tel．PAD } 1629 \text { Holborn，WC1 Tel HOL } 9874 \text {（Half－day Sat）．LONDON }}$

60A－60B Oldham Street（No half－day） $\begin{aligned} & \text { Tel．CENtral } 2778 \\ & \text { MAN CHESTER }\end{aligned}$
Tel．CENtral 2778 MANCHESTER 106 Newport Rd（Hall－day Wed）Tel． 47096 MIDD LESBROUGH 41 Blackett Street（Opp Fenwicks Store） $\begin{gathered}\text {（Half－day Wed．）Tel．} 21469\end{gathered}$ NEWCASTLE UPON
${ }_{3}$ Exchange Street（Castle Market Bldgs．）SHEFFIELD Open all day Sats．except High Holborn
（Half－day Thursday）Tel． 20716° SHEFFIELD

R.S.C. STEREO/20 HI-FI AMPLIFIER Moth 10114 WATT ULTRALINEAR PUSH-PULLOUTPUT
 ON EACH CHANNEL. SUITABLE FOR "MTKH" GRAM, RADIO OR TAPE. (7) valves ECC83, (2) ECL86, Hum Level: 65 dB down. Sensitivity: 20 millivolts max.
 *Neon panel indicator. tifandsome Perspex Frontplate. tSeparate Bass and Treble controls. Output transformers are high quality seotion14 ally wound. Outputs for 3 and 15 ohms speakers. Complete set of parts, pointCarr. 12/6 9 monthly payments $£ 2$ (Total f22.10 19 gis. Or Dep. 14.10 .0 and

R.S.C. A10 30 WATT ULTRA LINEAR HI-FI

 AMPLIFIER Highly sensitive. Push-Pull Tone Control stages. Performance fitg fres equail Tone Control Stages. Performance igures aqualto most expensive ampifers to most expensive amplifers. Hum level - TodB,
Frequency response \pm 3dB $30-20,000 \mathrm{c} / \mathrm{s}$. Sect ionally wound output transformer Ali frst grade
 8or. Gzzat Separate Bass and Treble Controls, Sensitivity 12 maillivils so that nny blind of Mierophone or Pick cup is suitable. Designed or Outdoor Functions, etc. For use with Ehectronic Organ, Guitar, String Bass, etc. Gram, Radio or Tape. Reserve L.T. and H.T. For Radio Tuner. such as Gram and "Mike" can be mixed. 200-250v. $50 \mathrm{c} / \mathrm{s}$ A. C . mains. For 3 and 15 ohm speakers. Complete kit of parts with point-tor 13 Gns. point wiring diagrams and instructions. Twin-handled perforated cover 25 -. Supplied factory built with EL 34
output valves. 12 months' guarantee for 16 gns. ${ }^{\text {EERPMS }}$ Deposit 25.14 .0 output valves. 12 months' guarantee for 16 gns. TERMS: Deposit 25.14 .0
and 9 monthly payments of $28 / 9$ (Total 218.12 .9). Send S.A.E. for leaflet.
R.S.C. A11T 15 WATT HIGH FIDELITY AMPLIFIER
 DUAL PURPOSE P.A. or HI-FI. SOLID STATE for mixing p. ta input sockets. $\star 2$ vol. controls or mikers purposes. and Treble controls. Suitab onms. 太separate Bass Microphone or Guitar P.U. For Vocal and Instrumental groups. Frequency Response $20-40.000$ c.p.s. - $3 d \mathrm{~B}$. Hum level - 80 dB Harmonic Distortion 0.2% at 10 watts R.M.S. Operation on $200-250 \mathrm{v}$. A.C.
 comprehensive wiring diagrams and instructions. Carr. 9/6. Terms: Deposit Or Factory built with 12 mth e4 and 9 monthly pay-
ments $25 / 6$ (Total £15.9.6).

R.S.C. BASS-REGENT

50 WATT AMPLIFIER Anexceptionally powerful high quality all-purpose
nnit for lead rhythm, bass guitar, voes Iists, gram,

* Iwo extra heavy duty 2in. Loudspeakers. \star Four Jack inputs and two Volume Controls for simultaneous use of up to our pick-ups or "mikes" plus Bass and Treble $49 \frac{1}{2}$ Gins. Carr. ${ }^{30 /-}$ or payments of 25.10.10. (Total 55 gns.). Send S.A.E. for leaflet. Also 1320 isass inc. $15 i m$. 2w.Spkr. 29t gns. G15 ine 12in. 20w. Spkr. 194 gns.
R.S.C. BATTERY/MAINS CONVERSION UNITS Type BMI An all-dry mattery el Size 5tx4 4 . 2in.approx. Completely replaces bat teries supplying $1 \cdot 5 \mathrm{v}$. and 50 v . $50 \mathrm{c} / \mathrm{s}$ is available complete kit with diagram $47 / 9$ or assembled $59 / 11$.

\section*{| SELENIUM | F.W. |
| :--- | :--- |} RECTIFIERS (Bridged) All 6/12v. D.C. output. Max. A.C. input 18 v . 1 a . $3 / 11$ $2 \mathrm{a} .6 / 11$. $3 \mathrm{a} .9 / 8.4 \mathrm{a}$. 12/9.6a

$15 / 9$.
R.S.C. MAINS TRANSFORMERS FULLT GUARANTEED. Interlesved and Impregnated. Primaries $200-250 \mathrm{p}$. $500 / \mathrm{s}$. Soreened. MIDGET CLAMPED TYPE $2 F \times 2 \sharp \times 24 i n$. $250 \mathrm{v} ., 60 \mathrm{~mL}, 6 \cdot 3 \mathrm{v} .2 \mathrm{~s}$
$250-0-250 \mathrm{v} ., 60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}$.
FULLY SHROUDED UPRIGHT MOUNFING $250 \cdot 0-250 \mathrm{v} .60 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}$. $2 \mathrm{a} ., 0-5-6-3 \mathrm{v} .2 \mathrm{a}$. $250 \cdot 0 \cdot 250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{~m} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a}$, , 0-6-6-3v. 3 s . $300-0-300 \mathrm{v} .180 \mathrm{~mA}, 6-3 \mathrm{v}$. 48
For Mullard 510 Amplifier For Mullard 510 Amplifier $350-0.350 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0.5 .6 \cdot 3 \mathrm{v}, 3 \mathrm{a}$. $50-0.350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{a}, 0-0-6 \mathrm{v}$. 3 a $425-0-425 \mathrm{v}$ 200mA, $6 \cdot 3 \mathrm{v} .4 \mathrm{a}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 5 \mathrm{v} .3 \mathrm{a}$ $450-0-450 \mathrm{v} .250 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} .$, c.t., 5 v .3 a . TOP SHROUDED DROP-THROUGH TYPE TOP SHROUDED DROP-THROUGH TYPE $250-0-250 \mathrm{v}, 100 \mathrm{~mA}, 8 \cdot 3 \mathrm{v} .3 \cdot 5 \mathrm{sa}$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 6.3 \mathrm{v} .1 \mathrm{a}$.
$350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .2 \mathrm{a}, 10-5-6.3 \mathrm{v} .2 \mathrm{a}$. $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{~s}$. $300-0.300 \mathrm{v} .100 \mathrm{~mA}, 6-3 \mathrm{v} .4 \mathrm{a} ., 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{v}$, $130 \mathrm{~mA}, 6 \cdot 3 \mathrm{v} .4 \mathrm{a} ., 0-5 \cdot 6 \cdot 3 \mathrm{v} .1$ Buitable for Mullard 510 Amplifier

$$
\begin{aligned}
& 350-0 \cdot 350 \mathrm{v}, 100 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5 \cdot 6 \cdot 3 \mathrm{v}, 3 \mathrm{a} . \\
& 350-0-350 \mathrm{v}, 150 \mathrm{~mA}, 6 \cdot 3 \mathrm{v}, 4 \mathrm{a}, 0-5-6 \cdot 3 \mathrm{v} .3 \mathrm{a} .
\end{aligned}
$$ FLLAMENT or TRANSISTOR POWER PACE TYpes $6 \cdot 3 \mathrm{v}, 1 \cdot 5 \mathrm{a}, 6 / 0 ; 6 \cdot 3 \mathrm{v} .2 \mathrm{~s}, 7 / 8 ; 6 \cdot 3 \mathrm{v}, 3 \mathrm{a} .9 / 8 ; 6 \cdot 3 \mathrm{v}$ $6 \mathrm{a} .19 / 9 ; 12 \mathrm{v} .1 \mathrm{Aa} .8 / 9 ; 12 \mathrm{v} .3 \mathrm{a}$. or 24 v . 1-5a. 19/9; AR CHARGER TRANGFORMERS $0.9-15$ v. 1ta. 13/11 /a. 18/11; 3a. 18/1, 6玉. 21/11;6a. 25/11,8.81/11 ADTO (8tep UP/Step DOWN) TRANSFORMERS $-110 / 120 \mathrm{v} .-200-230-250 \mathrm{v} . \ldots .5 .50-80$ watts $14 / 8$ OUTPUT TRANSFORMERS

Stasdard Pentode $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Push-Pull 8 watts EL84 to 3Ω or 15Ω Push-Pull 10 watte GV6 ECLB to 3, 6, 8or 150 Push-Prill Ultra Lincar for Mullard 510 Push-Pull 15-18 watte, sectlonslly wound 6L6, KT66, etc., for 3 or 15Ω....................
Push-Pull 20 watt high quality sectionaly wound ELS34, 6L6, KT66 etc. to 3 or 15Ω. SMOOTHDNG CHOKES $150 \mathrm{~mA}, 7-10 \mathrm{H}, 250 \Omega 12 / 9 ; 100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega 9 / 11$; $80 \mathrm{~mA}, 10 \mathrm{H}, 350 \Omega 7 / 8 ; 60 \mathrm{~mA}, 10 \mathrm{H}, 400 \Omega 4 / 11$.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians' Certificates); the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms; Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks.

Please send FREE BROCHURE to:

NAME

ADDRESS...
.Please
8168
BRIIIS
National
RADIO
SCHOOL

alalowess

 MODEL 15
4 EXTREME VERSATILITY

Range of 8 interchangeable bits, from 3/64" ($047^{\prime \prime}$) to $3 / 16^{\prime \prime}$, "including new non-wearing PERMATIPS.
(4) ULTRA-SMALL SIZE

Length $7 \frac{1}{8}$ ". Weight $\frac{7}{2} \mathrm{Oz}$.
Max. handle dia. 7/16".

E EXTRA-HIGH PERFORMANCE

 Heating time 90 secs. Max. bit temp. $390^{\circ} \mathrm{C}$. Loading 15 watts - equals normal $30 / 40$ watt iron.
ALL VOLTAGES

The ADAMIN range includes five other models ($5,8,12,18$ and 24 watts), Thermal Strippers (PVC and PTFE) and a De-Soldering Tool. Please ask for colour catalogue A/10.

LIGHT SOLDERING DEVELOPMENTS LTD.

BI-PAK SEMICONDUCTORS 8 RADNOR HOUSE, 93-97 REGENT STREET. LONDON, W. 1

TRANSISTOR POWER OUTPUT STAGE OD P.C. Board (with diagram). 5 in. 12 in . I 1 fin. high. Tested and working. CC7I, OC81D and 2 I OC81 and Heat 8inks. With
O.P. Trans. for 35 ohm epeaker. Requires 5 K Pot, Speaker and 9v. aupply. Price 27/8. O.P. Trans. for 35 ohm e peaker. Requires 5K Pot, Speaker and 9v. gupply. Price 27/6
Post paid. 5 K Los Pot + gwitch 4/- 8in. x 24 in .35 ohm . Speaker16/8. Post paid. 5K Log Pot +8 witch 4/-. 8 in . $\times 2$ in. 35 ohm . Speaker 16/6.
HEW RANGE GARRARD AUTOCHANGERS. All Carr. Pd. and wthout cartridge except type 3000 (stereo) and BSR UA25 (mono), 1025-410.2.6; 2025-810.10.0 18.150 .

60 MIXED CERAMIC CONDENSERS, 1 pito $\cdot 1 \mathrm{mi} 10 /-150$ for 81 . Poot pajd,
1¥W MALS GRAMOPHONE AMPL, EZ80, ECL82, O.P. Transformer (3 ohm) Vol. $10 n$-off and Tone Control. Double wound mains transformer. $2 \mathrm{x} \times 2 \mathrm{in}$. $x 2$ in separate but wired to chassis, 4 in . x 2 in . $\mathrm{x} 4 \frac{4}{2} \mathrm{in}$. over valves, $65 /$ post pald including 6 in. Speaker. ($52 / 6$ less speaker.)

NEW F.M. TUNER. Range 87 to 107 MHz . Attrac. tively finished metal container with cast fron escutcheon. Case size 13 in . x 7in. $\times 3$ in. high Mains transformer. Metal Rectitler and Vaive ECC85, EF89, EF80, ECC82 as cathode foliower A really fantastic performer. Price 215.15 .0 tax paid and carr. paid or with Etereo, Decoder £22.10.0.

2 I 4 WATT STEREO AMPLIFIER. Printed circuit. Separate power pack. Metal rectifler. ECC83 and 2-EL84. Negative feedback. Vol, base, treble each channel Muting switeh and on/off. £5.10.0 (7/6 P. \& P.).

TAPE AMPLIFIER FOR MAGNAVOX TAPE DECKS 2 or 4 TRACK

Chassis $124 \times 51 \mathrm{x} 4 \mathrm{in}$. high Front panel "gold" Anish121 I 4in. 200-250 A.C Record/Playback amp. switch Off/On-Tone; Vol./Mic.; Vol.
Gram: Mic. Input; Gram Gram; Mic. Input; Gram. Socket Valves 6 BR7; 12AX7; EM84; EL84; 6X4 Separat power pack 2 Track 48.19.6; 4 Track 810.4 .6 ($6 /$-post each) Rexine covered cabinet (tan) $151 \times 17 \times 94 \mathrm{in}$. high with sloping front for amp; com-
plete with two apeakers, and special adapting brackets for Magnavox Deck $85 /-(8 / \cdot$ carr $) 3$ speed Magnavox 4 track tape deck Type 363 e16.10.0 carr paid.

8+8W. TEANSISTOR STEREO AMPLIFLER by Dulc. Fully built and attractively presented, Write illus. and detalis, Only $\$ 19.10 .0$ post pald.
TRANSISTOR RADIO "BABICS". (1) Variable 2-gang, (2) 6ilin. aerial with M.W. and L, W, colls (3) 5 K control and awitch. (4) Driver sand O.P. trans for OC81s into 3 -ohm. (5) 6 I 4 in speaker. (6) 2 -tone dial and $2 p$ in. persper tumer; at $40 / \mathrm{the}$ lot, pont paid, plus $10 / \mathrm{f}$ - 3 r Osc, and 3 I.F.ts, (17 mm circ.).
"SUPER gix" L. W. and 酸. W. TRANSISTOR RADIO KIT, Mark 2. Complete eet parts \&4.23 (5/-pont), PP6 batt. 2/9 extra. Instructions and list $2 /$ - (free with kit) Buperhet; berrite rod; wooden cab. $9 t$ $7 \neq 3$ in. Celeation $4 \frac{10}{}$, speaker, 6 transistors diode, etc.
SPEAEERS IN CABINETS. $20 \times 15 \times 6 \mathrm{in}$. Ftnished Vynair and Rexine, varions colours. With E.M.I, $13 \times 8 \mathrm{in}$. 3 or 15 ohm speaker $90 /$-; with 12 in . Elac 15 -ohm 15 W spealker. 88.10 .0 (post $10 /-$ on either)
1W. SKELETON POTENTIOHETERS, OHM8. $300,1.5 \mathrm{~K}, 2.7 \mathrm{~K}, 6 \mathrm{~K}, 10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}$, $25 \mathrm{~K}, 50 \mathrm{~K}, 220 \mathrm{~K}, 1 \mathrm{M}, 2 \mathrm{M} .1 /$-ea. postage 4 d , any quantity, or 25 tor 21, po pt paid. 100 IIIXED UNMAREED TRANSISTOR8, 50/-, post paid.

8 WATT, PUSE-PULL OUTPUT AMPLIFIER, $300-250$ VoltI A.C. EZ80, ECC83, 2-EL84, Bass, treble, vol/on-off. 25.15.0 (7/6 P. \& F.). Size $12 \times 3!\times$ Sin. high. For Record Player, Radio Tuner, etc.
Avaliable es a Kit at 85 (7/6 P. \& P.) ${ }^{2}$

6 PUSH-BUTTON STEREOGRAM CHASSIS

66 ELMS ROAD, ALDERSHOT, Hants.
(2 mins. trom Station and Buses). FULL GUARANTEE. Aldershot 22240 CLOSED WEDNESDAY AFTERNOON.
all Items folly butut onlegs otherwise stated

GODDMANS HIGH FIDELITY
 MANUAL A Guide to full listening enjoyment
The Manual is much more than a cataThe Manual is much more ohan a cata-speakers-it contains informative articles, including advice on stereo, special beginners page, and full cabinet drawings. You'll find it interesting as well as informative.
The Perfect Combination
MAXAMP 30
TRANSISTORISED STEREOPHONIC HIGH FIDELITY AMPLIFIER $15+15$ watts . Silicon solid state - Integrated pre-amplifier • Negligible distortion $£ 54$.

STEREOMAX

MATCHING AM/FM STEREOPHONIC FM TUNER
Transistorised - Outstanding specification Stereo de-coder (optional) $\mathbf{£ 6 5 . 5 . 0}+\mathrm{£}^{15.14 .0}$ P.T.
Both MAXAMP 30 and STEREOMAX have polished wood cases ($10 \frac{1}{2}$ " $\times 5 \frac{1}{2}$ " $\times 7 \frac{1}{4}$ " deep) in Teak or Walnut to order.
Fuil specifications of the Maxamp 30 and Stereomax are given in the High Fidelity Manual-send the coupon for your FREE copy-or pay an early visit to your Goodmans dealer.

AXIOM WORKS • WEMBLEY • MIDDLESEX. TEI: 01-902 1200

PHOTOELECTRIC KIT

CONTEMTS: 2 P.C. Chasels Boards, Chemicals, Etching Mannal, Infra-Red Phototransistcr, Latching Relay, 2 Transistors, Condenser, Reaistors, Gain Control, Terminal Block, Hegant Case, screwa, etc. In fact everything you need to build a sfeady-Light modulated-light operation.

12 PHOTOELECTRIC PROJECTS. (1) Steady-Llght Photo-8witch/Alarm, (2) Modulated-Light Alarm. (8) Long-Range Stray-Light Alarm. (4) Relay-less Alarm. (5) Warving-Tone Alarm. (6) Clobed-Loop Alarm. (7) Projector Lamp 8tabiliser. (8) Electronic Profector Modulator, (9) Maina Power Bupply, (10) Car Parking Lamp
Switch. (11) Automatic Headlamp Dipper, (12) Super-gensitlye Alarm. Bwtoh. \{11) Automatic Headlamp Dipper, (12) Euper-sensitlve Alarm.

INVISIBLE BEAM OPTICAL KIT

Everything needed (except plywood) for ballding: 1 Invisible-Beam Profector and 1 Photocell Recelver (as illustrated). Suitable for ali Photoelectric Burglar Alarms, Counters, Door Openers, etc.
lamp halder, bulldiog plans, $1 / 6$ (UK\&. Commonwealth: Eurface Mance $2 /-$: Alr Mat Mall $8 /-19 / 6$. Postage and Pack.

junior photoelectric kit

Versatile Invisible-beam, Relay-lebs, Steady-light Photo-8witch, Barglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Bensitive Phototransistor, 3 Transistors, Chasgis, Plastio Case, R.-siators, Screws, etc. Full Slae Plans, Instructions, Data Sheet " 10 Advanced

JUNIOR OPTICAL KIT
CONTENTB: 2 Lenses, Infra-red Filter, Lampholder. Bracket, Plans, ate. Everything (except plywood) to build 1 minlature Invisible beam projector and photocell recelver Price 10/6. Postage and Pack. $1 / 6$ (UK). Commonwealth : Surface Mail 2/-; Atr Mail 4/-
YORK ELECTRICS, 333 York Road, London, S.W. 11
Send a 3. A E. for full detalls, a brief deseription and Photographe of all Kut and all
5. for full detans, a brief deseription and Photographe of
52 Redio, kiectrontic and Pholoelectric Projects A asembled.

AD MIRALTY B. 40 RECEIVERS Just released by the Ministry. High quality 10 valve receiver manufactured by Murphy. Coverage in 5 bands $650 \mathrm{Kep} \times-30 \mathrm{Mc} / \mathrm{s}$ 1.F. $500 \mathrm{Kc} / \mathrm{s}$. ncorporates 2 R.F. and 3 l.F. stages, bandpass miter, noise himiter, crystal controled $150 / 230$ volt A.C. Size $19 \frac{19}{} \times 13 \pm \times 16 \mathrm{in}$. Weight $114 \mathrm{I}_{1 / 4}$. Offered in good working condition. E22.10.0. Carr. $30 / \%$. With circuit diagrams. Also available B. 41 L.F. version of alove. $15 \mathrm{Ke} / \mathrm{s}-$ $700 \mathrm{Kc} / \mathrm{s}$, , $817,10.0$. Carr. $30 /$

POWER RHEOSTATS

Figh qualliy ceramic construction. Windings embedded in Fitreous enamel. Heavy duty brush wiper. Continuous rating. Wide range
available ex-stock. Bingle bole fixing, $\frac{1}{4}$ in. dis, sbafts. ßuls quantities
available.
25 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 1500 / 2500$ or 5000 ohms, 14/6. P. \& P. $1 / 6$
50 WATT. $10 / 25 / 50 / 100 / 250 / 500 / 1000 / 2500$ or 5000 ohms, $21 /$. P. \& P. 1/6. 50 WATT. 10/25/50/100/250/500/1000/2500 or 5000 ohms, 21/-. P. \& P. 1/6 100 WATT. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1000$ or 2500 ohms, $27 / 6$. P. \& P. $1 / 6$
AVO CT. 38 ELECTRONIC MULTIMETERS Higb quality 97 range instrument which measures A.C. and D.C. Voltage. Current, Resistance and Power Out put Ranges D.C. volts $250 \mathrm{mV}-10,01 . \mathrm{V}$. (volt $100 \mathrm{mV}-250 \mathrm{~V}$. (with R.F. measuring head up to $250 \mathrm{Mc} / \mathrm{s})$. A.C. carrent $10 \mu \mathrm{~A}$ - 25 amps. Power output 50 micro-watts- 5 watts. Operation $0 / 110 / 200 / 250$ V A.C. Supplied in perfect condition complete with circuit lead and R.F probe. £25. Carr. 15/-.
MARCONI TEST EQUIPMENT EX-MILITARY RECONDITIONED. TF. 1446 STANDARD SIGNAL GENRRATORS, $85 \mathrm{Kc} / \mathrm{s}$ $25 \mathrm{Mc} / \mathrm{s}$, 225. Oarr. 30/-. TF. 885 VIDEO O8CILLA FREOUEVCY OSCLI A C 280 Carr 30% All above offered in excellent A.C. 2zo. Carr. 3 ondition, fulty teated and checked. TF. 1100 VALVE VOLTMETER, Brand New, 850 , TF. 1267 TRANS MISSION TEST BET, Brand New, $\mathbf{8 7 5}$.
AM/FM SIGNAL GENERATORS TYPE 13A DOUBLE BEAM
 Oscilistor Test No 2. A high quallty preciaion linstru-
ment made for the ministry by Airmec Frequency coverage
$20-80 \mathrm{Mc} / \mathrm{s} . ~ A M / 2$ 20-80 Mc/s. AM/
CW $/ \mathrm{FM}$ porates preciaion dial, level meeter, precision volt D.C. or $0 / 110 / 200 / 250$ volt A C Size $12 \times 8 \frac{1}{2} \times 9$ in. Supplied in brand new condition complete with all connectors fully
ed. £45. Carr 20/
An excellent genersi pur pose D/B oscilloscope. $\begin{array}{cc}\text { T. B. } & 2 \mathrm{cps}-750 \\ \text { Bandwidth } & \mathbf{5 . 5} \\ \mathrm{Kc} / \mathrm{s} \\ \mathrm{Mc} / \mathrm{s}\end{array}$ $\begin{array}{ll}\text { Bandwidth } & 5.5 \mathrm{Mc} / \mathrm{s} \\ \text { Sensitivity } & 33 \mathrm{~m} V / \mathrm{CM} \\ \text { Oper }\end{array}$ Operating voltage 0/110 $200 / 250 \mathrm{~V}$. A.C. Bupplied in excellent working condition. £22,10.0. Or complete with all accessories, probe, leails, lid,

Variable Voltage Thandionumir

Brand new, guaranteed and carriage pald.
High quality construction. Input 230 . 50-60 cycles
1 tput fulk variable from $0-260$ volts. Bulk quantities a vailable $8 \mathrm{amp} .-814.10 .0 ; 10 \mathrm{amp} .-\$ 18.10 .0 ; 12 \mathrm{amp} .-221.0 .0$; 20 вшр.-287.0.0.

TRIO COMMUNICATION RECEIVER MODEL 9R-59DE

4 band receiver covering $550 \mathrm{Kc} / \mathrm{s}$ to 30 on $10,15,20,40$ and 90 metres 8 pread plus 7 diode circuit. $4 / 8$ ohm output and phone jack. S8B-CW ANL - Variable $\mathrm{BF} O$ - s meter Eep. Bandspread dial IF $455 \mathrm{Kc} / \mathrm{A}$ Audio output 1.5 W . Fariable PF and AF gain controls. 115/250 V. A.C. Mains, Besutifully designed. Size;
$7 \times 15 \times 1$ iin. With Instruction manual and $7 \times 15 \times 10 \mathrm{~m}$. Withinstruction manual and

AUTO TRANSFORMERS $0 / 115 / 230 \mathrm{~V}$. Bte
Fully Fully shrouded.
500 W. 23,10.0. P. \& P. $6 / 6$.

$3,000 \mathrm{~W}$.
7,500 W. \&15.10.0. P. \& P. 20/-

SOLARTRON MONITOR

 OSCILLOSCOPE TYPE 101 An extremely high quality oscilloscope Internal Y base of $10 \mathrm{Q} / \mathrm{sec}$, to $20 \mathrm{~m} / \mathrm{sec}$. power supply $200 / 250 \mathrm{~V}$. Supplied in excellent condition with cables, probe etc., as received frow Ministry. eps.19.6. 2 Carriage 30/

TRANSISTORISED
TWO-WAY TELEPHONE INTERCOM
Operative over amazingly long distances. Separate cal and preas to talk buttons,
2 -wire connection, 1000° os of applicstions. Beautifully fin ished in ebony. Supplied complete with batteries and \& 8.19.6. P. \& P. 3/6.

SINCLAIR EQUIPMENT
Z12 12 watt amplifier, 89/6. PZ4 Power supply Unit, $99 / 6$. Stereo 25 Preamp 29.19 .6. Q14 8peakers, 87.19.6. Micromatio Radio Kit, 49/6. Buit, 58/6. Miero FM

intercom/baby sitter

Transistorised Intercoms, ideal for bome / office / Fork shop etc. 2-way
buzzer call system buzzer call system
For desk or wal mounting or wapplied complete with con necting wire, bat terics, instructions, 2 station $59 / 6$.
$2 / 6.4$ station $\$ 6.12 .6$. P. \& P. $5 /-$

SPECIAL OFFER 2 Z12 Amps., PZ4 Power Supply, Stereo 25 f2? Preamplituer.
Speakers 8 \$7.

8in. 3 ohm speakers in metal case. Black crackle fininh to match our 88 Receivers
Available brand new and boxed with leads 59/6. Carr. 7/6.

MAINS INTERCOMS

 -

R.C.A. AR88 SPEAKERS

CAPACITY ANALYSER

$2 \mathrm{pF}-2,000 \mathrm{mft}$ 2 whtns 200 meg-
olturs. Also checks impedance, turus ratio, insulation 200/250V Brand Now 217.10
Carr. 7/6.

T.E. 40 HIGH SENSITIVITY A.C VOLTMETER 10 meg. input 10 ranges: $-01 \cdot 003 / \cdot 1 / \cdot 3 / 1 / 3 / 10 / 30 /$ /00/300V. R.M.S. $4 \mathrm{cps} .-$
$1.2 \mathrm{Mc} / \mathrm{s}$.
Decibels -40 to $1 \cdot 2 \mathrm{Mc} / \mathrm{s}$. Decibels - 40 to
+50 dB . Supplied brand tow complete with leads and instructions. Opera. tion 230V. A'.C. 217.10.0. Carr. $5 /$

2-WAY RADIOS	
Super qualit	Brand new
and guaranteed.	
3 transistor	26.15 .0 pr .
4 transistor	¢6.19.6 pr.
5 transistor	87.19 .8 p
6 trausistor	£8.12.6
6 transiator De Luxe	
	\$12.10.0
10 transistor	222.10.0
sistor 500	281.10 .0

NOMBREX TRANSISTORISED TEST EQUIPMENT All Post Paid with Bettery

Model 22. Power Supply 0-15V DC 814.10 .0 Model 30 Aulio Generator. $\$ 18.10 .0$ \begin{tabular}{lr}

Model 31. R.F. Signal Generator. \& | \&12.10.0 | |
| :--- | :--- |
| | |
| 10.100 | |

\hline
\end{tabular}

 Model 33. Inductance Bridge. Model 66. Luductance Bridge Model 61. Power Supply.

COSSOR DOUBLE BEAM OSCILLOSCOPES

£20.0.0
\&18.0.0 ع6.10.0

EVERSHED VIGNOLES SERIES II 500 VOLT MEGGERS. lerfect condition \&\&1. CT. 58 SIGNAL GENERATORS. 8-9-15-5 and $20-300 \mathrm{Mc} / \mathrm{s}$. Output $1 \mu \mathrm{~L}-100 \mathrm{mV}$ Mains
operated. Perfect condition less charts. 212.10.0. Carr. 15/

WS. 88 TRANS/RECEIVERS. A and B sets available. Complete with valves. $39 / 6$ each.

NO. 10 MICROPHONE AND HEADSET. Moving coil Accessory for 19 set. Cnused.

ARF-100 COMBINED AF-RF SIGNAL GENERATOR

AF. SINE WAVE 20-200,000 c/a.
8quare wave $20-$

30000 , $\begin{array}{lll}\text { 8quare wave } & 20- \\ 30,000 & \mathrm{c} / \mathrm{s} . & 0 / \mathrm{P}\end{array}$ | 30,000 c/s. O/P |
| :--- |
| HIGH IMP. 21 V |
| $\mathrm{P} / \mathrm{P} 600$ | $\mathrm{F} / \mathrm{P} 600 \Omega 3-8 \mathrm{~V}$ P/P.

$\mathrm{T} \mathbf{F} / 100 \mathrm{~K} / \mathrm{B}-300$ TF $100 \mathrm{Kc} / \mathrm{B}-300$
Mc / s. Variable R.F. attenuation int/ext, modulation. Incorporates dual purpose meter to monitor AF output and \% mod. on R.F. 220/240V A.C.
e27.10.0. C8rr. $7 / 6$.

TE-20RF SIGNAL GENERATOR

TE22 SINE SQUARE WAVE AUDIO GENERATORS

First grade quality American tapes.			
Brand new. Diveount on quantities. 3/6			
3tin. 600ft . T.P. mylar $10 /-$			
5 in.			
5 l (900ft. L P. acetale 10/-			
Sin. 1,2001t. D.P. mylar 15/-			
$5 \mathrm{Sin}. \mathrm{1,800ft}. \mathrm{T.P} .\mathrm{mylar} \mathrm{}. \mathrm{} 32 /$.			
$5 \frac{3}{1} \mathrm{in}$. 1	1,200ft. L P. acetat		
5isin. 1,200ft. L.P. my			
5 gin in 1,800ft. I).P. mylar			
$7 \mathrm{in} .1,200 \mathrm{ft}$. std, mcetate $12 / 6$			
Tin. 1,800ft. L.P. acetate 15/-			
7in. 2,400ft. D.P. mylar25/-			
$7 \mathrm{in} .3,600 \mathrm{ft}$. T.P. mylar $45 /$			
Postage 2/-. Over 23 post paid			
TAPE CASSETTES C60-60 minutes . $12 / 6$			
C90-	90 minutes		
Over			
EVERSHED VIGNOLES SERIES II 500			
VOLT MEGGERS. lerfect condition 281.			
-	-10.-		
CT. 58 SIGNAL GENERATORS. 8-9-15-5 and			
$20-300 \mathrm{Mc} / \mathrm{s}$. Output $1 \mu \mathrm{~V}-100 \mathrm{mV}$. Mains operated. Perfect condition less charts.			
212.10.0. Carr. 15/.			
WS. 88 TRANS/RECEIVERS. A and B sets available. Complete with valves. $39 / 6$ each. P. \& P. 4/6. Acceasories available .			
No. 10 MICROPHONE AND HEADSET. Moving coil Accessory for 19 set. Lnused. 15/-. P. \& 1'. 4/-.			
DUBILIER NITROGEL CONDENSERS. Brand new. 8 mfd. 800V. 8/6. P. \& P. 2/-; 2 infd. 5,000 V., 42/6. P. \& P. 5/-,			
LUCAS 20/0/20 AMMETERS. Brand new boxed. Suitable car/motorcycle. 12/6. P. \& P. 2/-.			

Type 1035. General purpose. A.C. Coupled
Type 1049. L.F. D.C. Cotupled. $£ 35$ each Carr. 301

LELAND MODEL 27 BEAT

 FREQUENCY OSCILLATORS $0-20 \mathrm{Ke} / \mathrm{s}$. Output 5 K or 500 ohms. 200/25 V. A.C. offereci in excellent condition
GEM PANEL WMETERS

Send S.A.E. for full lista. Other ranges a vailable. Please inolude postage

Type MR.38P. $121 / 82 \mathrm{in}$. square ${ }^{\text {Pronts }}$

A	. $87 / 6$	750 mA
$50-0-50 \mu \mathrm{~A}$.35/-	1 amp
$100 \mu \mathrm{~A}$. $35 /-$	2 amp
100-0.100 AA	.32/6	
$200 \mu \mathrm{~A}$.32/6	10v. D
$500 \mu \mathrm{~A}$.37/6	$20 \mathrm{~V} . \mathrm{b}$.
500-0-500 A A	.25j-	50 v . $\mathrm{D} . \mathrm{C}$
1 mA	.25]-	100V. D.
${ }^{1}$-(1)-1mA	.25]-	$150 \mathrm{~V} .10 . \mathrm{C}$
2114	.25/-	300 v .1 ce
5 ma	.251-	$500 \mathrm{~V} . \mathrm{D} . \mathrm{C}$.
10 mA	251-	750 V. D.c.
20 mA	251-	15v. A.C.
50 ma	.25)-	50V. A.C.
100 mA	.251-	150V. A.C.
150 mA	.251-	300 V. Ac.
200 mA	251-	500 V . A.
	.251-	S meter
		S

Type Mr.45P.

$60-0-50 \mu$

 $100 \mu \mathrm{~A}$ $1000-10-100$ $500 \mu \mathrm{~A}$ $\operatorname{limA}_{\operatorname{mim}}$10 mA
100 mA

100 mA . | 1 aup. $.27 / 8$ | 10 anp. A.C.". $27 / 6$ | 20 аmp. |
| :--- | :--- | :--- | 30 amp. A.C. $27 / 6$

Type MR.52P. 20/6, square fronts $50-0-60 \mu \mathrm{~L}$
$100 \mu \mathrm{~A} .$.

CLEAR PLASTIC METERS
$5 \mathrm{~mA} \ldots$.
$10 \mathrm{~mA} \ldots$
$50 \mathrm{~mA} \ldots$
100 mA.
500 mA.
1 amp.
5 amp.
$10 \mathrm{~V} . \mathrm{B} . \mathrm{C}$
$20 \mathrm{~V} . \mathrm{D.C}$
$50 \mathrm{~V} . \mathrm{D} . \mathrm{C}$
$.87 / 6$
$.37 / 6$
.376
$.37 / 6$
$.37 / 6$
$.37 / 6$
$.37 / 6$
$.37 / 6$
$.37 / 6$
 $.37 / 6$
$.37 / 6$
$.37 / 6$
$.39 / 6$
$.59 / 6$
$.37 / 6$
$.37 / 6$
$.37 / 6$
$.37 / 6$
$.87 / 6$

Tgpe MR.85P. $41 \mathrm{in} . \times 4$ in. fronts. $50 \mu \mathrm{~A} . .$. $100 \mu \mathrm{~A}$ $100-0 \cdot 10$ $500 \mu \mathrm{~A}$ $500 \mu \mathrm{~A} \cdot \mathrm{b0} 0 \mu \mathrm{~A}$ ${ }_{1-0-1 m A}$ 5 mA . 10 mA
50 mA
100 mA 100 mA . 1 amp.
5 amp.

$50 \mu \mathrm{~A}$
$50.0-50 \mathrm{CA}$ $100 \mu \mathrm{~A}$ $100 \cdot 0-100 \mu \mathrm{~A}$
$500 \mu \mathrm{~A}$

TE-51. NEW 20,000 $/$ / VOLT MULTIMETER with overioad protection and
mirror scale, $0 / 6 / 60 / 120 /$ 1,200v. A.C. 0/3/30/60/3001 $600 / 3,000 \mathrm{v}$. D.C. $0 / 60 \mu \mathrm{~L} / 12$ 300 mA . D.C. $0 / 60 \mathrm{~K} / 6 \mathrm{meg}$ ohm. 85/-, P.\& P. 2/6.

MODEL 250J. 2.000 Q.P.V. \quad O/ $10 / 50 / 500$ 2,500 ₹. D.C. O/10/50/ $\begin{array}{lll}\text { Meg. } \Omega \text {. } 0 / 250 & \mathrm{~mA}\end{array}$ 49/8. P. \& P. 2/6

MODEL AS-100D 100K Ω / VOLT bin., mirror scale. Built-in meter
protection. $0 / 3 / 12 / 60 / 120$ 1300/600/1,200 v. D.C 0/6/30/120/300/600 v 12 Amp. $0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$ $12 \mathrm{Amp} .0 / 2 \mathrm{~K} / 200 \mathrm{~K} / 2 \mathrm{M}$ \&12.10.0. P. \& P. $3 / 6$.

NEW MODEL $500 \quad 30,000$ MODEL PT 34 1,000 $500 / 1,000 \mathrm{v}$. A.C. D. $0.011 / 100 / 500 \mathrm{~mA}$ D.C. $0 / 100 \mathrm{~K} \Omega 39 / \mathrm{t}$.
 P. \&. P. 1/6.

MODEL TE-10A. 200k Ω MODEL TE-10A, 200k Ω
Volt $5 / 25 / 50 / 250 / 500 / 2,500 \mathrm{v}$ Volt $5 / 25 / 50 / 250 / 500 / 2,500$
D.C. $10 / 50 / 100 / 600 / 1,000$ D.C. $10 / 50 / 100 / 600 / 1,000$
A.C. $0 / 50 \mu \mathrm{~A} / 2 \cdot 5 \mathrm{~mA} / 250 \mathrm{~mA}$ D.C. $0 / 6 \mathrm{~K} / 6$ meg. ohm. -20 to +22 dB . $10 \cdot 0,100 \mathrm{mFd} .0 \cdot 100-0 \cdot 1 \mathrm{mFd}$. 69/6. P. \& P. $2 / 6$.

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

LAFAYETTE LR-500T

 4, 8 or 16 ohms plus convenient output for tor direct stereo taping. 9 verastile controls. Responge $22-22,000$ cpe $\pm 1 \mathrm{~dB}$. H.D. less than 1%. Brushed sluminium, gold anodised extruded front panel. Simulated operation. 247.10.0. Carr. 10\%.

BAKELITE PANEL METERS

A	Type MR.65. 3in. square Ironts.		
	${ }^{2} 5 \mu \mathrm{~A}$. 6776	500mA $32 / 6$	30V. A.C.* . . $32 / 6$
	$50 \mu \mathrm{~A}$. $45 /-$	$1 \mathrm{amp}32 / 8$	50V. A.C.* . . $32 / 6$
	$50-0-50 \mu \mathrm{~A}$. . . $42 / 8$	5 amp $82 / 6$	$150 \mathrm{~V} . \mathrm{A}, \mathrm{C} \cdot$ - . 32,6
	100	$15 \mathrm{amp}32 / 6$	300V. A.C.* . $82 / 6$
	$100-0-100 \mu \mathrm{LA}$. $42 / 6$	30 amp. $32 / 6$	1 amp . A.C.* . $82 / 6$
	500 LA 39818	$50 \mathrm{amp}32 / 6$	
	1 mA $82 / 6$	6V. D.C. $32 / 6$	10 amp. A.C.*.32/6
	1-0-1mA32/6	10V. I.C. - . . $32 / 6$	20 mmp . A.C.* $32 / 6$
	$5 \mathrm{~mA}32 / 6$	20V. D.C.32/6	30 amp A.C.*.32/6
	$10 \mathrm{~mA}82 / 8$	50V, D.C.32/6	50 amp A.C. ${ }^{-} .82 / 6$
*Moving iron, all	50 mA $32 / 6$	150 V . D.C. - . $32 / 8$	VU meter. . . . $59 / 6$
other moving ooil.	100ma $32 / 6$	300V. D.C. ...32/8	

NEW RANGE OF "SEW" EDGEWISE METERS

MODEL, PE70. Dimensions $317 / 32 \times 111 / 32 \times 2$ in deep overall. Available as follows
50 microamp. $57 / 8 \quad 500$ microamp. $49 / 8$
$50-0-50$ microamp....57/ $\quad 500$ microamp. $49 / 8$ $\begin{array}{ll}100 \text { microamp......55/- } & 300 \text { volt A.C.45/- } \\ 1000-100 \text { microamp } 52 / 6 & \text { VU meter }62 / 2 ~\end{array}$ 200 microamp......52/6

Post extra

COMMUNICATION RECEIVER BHoring for CW' Kc/s-30 Mc/s. Incorporates variable phune jack. Metal cabinet. Operation $240 / 240 \mathrm{~V}$. A. | Supplied brand new, guaranteed with |
| :--- |
| instructions. |

LAFAYETTE MODEL HA-700 AM/CW/SSB AMATEUR COMMUNICATION RECEIVER FILTERS for exceptional selectivity and genaitivity Frequency coverage on 5 bands $150-400 \mathrm{Kc} / \mathrm{s}$, $550 /$ $1,600 \mathrm{Kc} / \mathrm{s}, 1 \cdot 6-4 \cdot 0 \mathrm{Mc} / \mathrm{a}, 4-8-14 \cdot 5 \mathrm{Mc} / \mathrm{s}, 10 \cdot 5-30 \mathrm{Mc} / \mathrm{s}$. limiter, B.F.O. product detector, electrical hand spread, \& meter, slide rule dial. Output for phones, low to $2 \mathrm{k} \Omega$ or speaker 4 or 8Ω. Operation $220 / 240 \mathrm{~V}$
$\mathrm{~A} . \mathrm{C}$. Size $79 \times 15 \times 10 \mathrm{in}$ \& A.C. Size $71 \times 15 \times 10 \mathrm{in}$. Supplied brand new and
 g.A.E. for leaflet.
-

GARRARD DEGKS
Brand New and Guars Brand New and Guaranteed
1025 with cartriage 87.10 .0 1025 with cartrilge 87.10 .0
A70 Mk II less cart. $\mathbf{2 1 2 . 1 2 . 0}$. LA B 80 Mk II léss cart. 223.10. LAB 80 Mk . II with bawe. £27.10.0. 401 Transcription lesh cart. 287.6.0. Carr. $7 / 6$.
WOODEN PI, WOODEN PLINTH fir diarrard Series $1000,2000,3000$ ete. with perspex
24.io.c. P. \& P. $4 / 6$.

DE LUXE PLAYYRS pordable To it standard $69 / 6$ RCS AMPLIFIER 3 WATL Ready made and tested with UCL82 triode pentode valve and loud- 59/6 speazerion
AMPLIIIER.
Built and teated. Eetter sonnd.
Trandormer 3 watt ECL8 8 triode pentod Volnre and tone controis with knobs. Quality 89/6 Loudmpeszer.
SINGLE PLAYERS MONO AUTOCHANGERS MONO 8tarar (6 volt) 22.19.6 Garrard 8RPE2 $\quad 8.19 .6$ $\begin{array}{lr}\text { Garrard 8P25 } & \text { els.19.6 }\end{array}$ Philips AG1016 811.18 .6 $\begin{array}{ll}\text { Garrard LAB80 } & \text { 2E4.10.6 } \\ \text { Garrard } 401 & 20.19 .8\end{array}$ All fitted LP/78 atylii and piokup orystal complete. GARRARD TEAK WOOD BASE W.B.1. Ready 65/= outonitormonnting 1000, GAR

SANGAMO 3 inch SCALE METER 45/-ea Varions calibrationg and movements, 100 Mioroamp 1. Milliamp; 50-0-60 Mieroamp, ete. S.A.E. Ior list.

RETURN OF POST DESPATCH
RADIO COMPONENT

THF E.A.R. RECORD PLAYER CABINET 53/6 strongly built wooden cabinet oovered in Blae and Grey leathercloth. Size $16 \times 17 \times 8$ in. Motor Board $14 \pm \times 12$ in. deoks. Amplifier space sire $14 \times 7 \times 8 \mathrm{in}$. The baifle is out out lor a $6 \nmid \mathrm{in}$. dia. speaker.

NEW TUBULAR ELECTROLYTTCS CAN TYPES 2/850 \%. 2/3 100/25 \%. $2 /-\quad 8 / 600$ ₹. TYPE8 $4 / 850$ ₹. . $\quad 2 / 3$ 250/25 $7 . . .2 / 6 ~ 16 / 600$ ₹. $\begin{array}{lllllllll}8 / 450 & \nabla . & 2 / 3 & 500 / 25 & \nabla . . & 4 /- & 16+16 / 500 & \% & 9 /- \\ 18 / 450 & \nabla . & 8 /- & 8+8 / 450 & \nabla . & 8 / 6 & 32+32 / 850 & \nabla . & 3 / 6\end{array}$ | $18 / 450$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $92 / 450$ | | | |
| ∇ | \cdots | $3 / 9$ | $8+16 / 450$ | $25 / 25$ ₹. .. $\quad 1 / 9 \quad 16+18 / 450$ ₹. $4 / 8,60+100 / 850$ ₹. $11 / 6$ $50 / 50$ ₹. . $2 /-32+32 / 850$ F. $4 / 8100+200 / 875$ ₹. $12 / 0$

 CERAMIC. 500 v .1 pF , to 0.01 mld , 9 d . Dises $1 /-$.
$350 \mathrm{v} .-0.19 \mathrm{~d} ., 0.52 / 8 ; 1 \mathrm{mid} .8 /-; 2 \mathrm{mid} .150 \mathrm{v} .8 /-$.
1,000 च. $-0.001 .0 .0022 .0 .0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$. E.H.T. CONDENSERS. 0.001 mid., $7 \mathrm{kV} ., 6 / 6 ; 20 \mathrm{kV} ., 10 / 6$. SILVER MICA. Close toleranoe $1 \% .5-500 \mathrm{pF} 1 /-560-2200 \mathrm{pF}$ 2/-: $2,700-5,600 \mathrm{pF} \quad 3 / 8 ; 6,800 \mathrm{pF}-0.01 \mathrm{mld} 6 /-$ eaoh. TWIN GANG. "0-0" $208 \mathrm{pF} .+178 \mathrm{DF} ., 10 / 6 ; 365 \mathrm{pF}$., miniature $10 /-; 500 \mathrm{pF}$ standard with trimmers, $9 / 6 ; 500 \mathrm{pF}$. midget less trimmers, 7/6; 500 pF . slow motion, standard 9/-;
 $100 \mathrm{pF} ., 160 \mathrm{pF} ., 5 / 6$ each. Can be ganzed. Couplers 9 d , each, TUNING. 8 olid dielectric. 100 pF ., $300 \mathrm{pF} ., 500 \mathrm{pF} ., 5 /-$ each. TRIMMERS. Compression oeramic $30,{ }^{1} 50,70 \mathrm{pF}, 1 /-$
 850v. RECTIFIERS.8eleninm $\frac{1}{1}$ wave 100mA5/-; BY100 10/CONTACT COOLED $\frac{1}{2}$ Wave $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$. CONTACT COOLED $\frac{1}{2}$ WAVE $60 \mathrm{~mA} 7 / 6 ; 85 \mathrm{~mA} 9 / 6$.
Full wave $75 \mathrm{~mA} 10 /-$; $150 \mathrm{~mA} 19 / 6 ; \mathrm{T} . \mathrm{V}$. reote. from $10 /-$.
'SONOCOLOUR' CINE RECORDING TAPE $5^{\prime \prime}$ reel, 900^{\prime} with $L P$ strobe markings also cine light de-
fiector-mirror for aynohranisation.
$14 /-$ each. JACK 8OGKET std. open-cirenli 2/6, closed cirouit 4/6; Chrome Lead Socket 7/6. DIN 3-pin 1/8, 5 -pin $1 / 6 ;$ Lead 3/6 Phono Plugs 1/-. 8ooket 1/-. JACK PLUGS Std. Chrome 8/
 2 p .2 -way, or 8 p. 6-way, or 8 p .4 -way $4 / 6$ es ch.

 PICK-DP ARM Complete with ACOS LP-78 Turnover GP67 and 8tylli 25/-; ACOS GP67 15/-; Stereo 85/-.

BAKER MAJOR £8

30-14,500 e.p.s., Ietest double cone, wooler and tweeter cone together with a speoisl B A K ER magnet assembly having a fux density of 14,000 gauss and a total fux of 145.000 Marwells. Bass resonance 45 a,p.1, Reted 20 watts. Voive coils available 8 or 8 or 16 ohms. Prioe 28, or Module an illus. $80-17,000$ o.p.s. with tweeter, crossover, baffe and instruotions s10.18.6. "BONDACOUST" CABINET WADDING 18in. wide, $2 / 6 \mathrm{tt}$. BAKER "GROUP SOUND" SPEAKERS-POST FREE 'Group 25' 'Group 35' 'Group 50'

E.M.I. Cone Tweeter $31^{\prime \prime}$ qquare, $3-20 \mathrm{ke} / \mathrm{s} .10 \mathrm{w} .17 / 6$ Quality Horn Tweeters 2-18ke/s. 10w. 29/6. Crossover $16 / 6$. LOUDSFEAKERS P.M. 3 OHM8. $2 \frac{1}{1 i n}$. $31 \mathrm{in.} ,4 \mathrm{in}$. , 5in.,
 Double cone 3 or $15 \mathrm{ohm} 85 /-; 10 \times 6 i n .30 /-; 8 \times 6 i n . ~ 21 /-$

MINETTE

 AMPLIFIERFor Hi-Fikecord Players

Chassis ive $7 \times 81+4$ in. high. Valves ECL82, E280 Two stage negative loedbsok. Quslity outpat 8 ohm matobing. Bargain offer complete with engraved control panel, valvan knobs, volume and tone controls,
wired and tested.
Post $5 / 6$. wired and tested.

CALLERS WELCOME
VEST CROYDON 337 WHITEHORSE ROAD. WEST CROYDON

VALVES

SAME DAY SERVICE
NEW! TESTED! GUARANTEED!

F.M. TUNER

You can do so much with MARTIN kits. The system of using pre-fabricated transistorised units which can be interlinked in a variety of ways enables you to assemble the combination of your choice and then extend it unit by unit until you possess a full stereo gramophone and radio assembly. When new units are produced, they can be added to existing equipment very easily with the advantage that you can continue to use equipment you already have,
so that your installation is always up to date. Most important of all is the power and quality which MARTIN Audiokits give you. Their sturdy construction assures compactness without sacrifice to quality or efficiency. They offer excellent value, are very easily installed and will give years of unfailing service. That is why people prefer MARTIN - it's simple to install, good to listen to, and looks completely professional.

AMPLIFIER SYSTEMS • TUNERS • RECORDERS

ONLY FROM MARTIN MARTIN AUDIOKITS are available for Mono, and can be doubled up for stereo, or as complete stereo units. 3 ohm and 15 ohm systems are available. There is a special pre-amp for low output pick-ups and escutcheon panels to suit the arrangement you choose. The tuner is styled to match.
Start by sending for leaflet at once

UNITS INCLUDE:
\square-stage input selector
\square Pre-amp/tone controls
10 watt amp. (3 ohms)
10 watt amp. (15 ohms)
\square Mains power supply
F.M. Tuner

Trade enquiries invited

MARTIN ELECTRONICS

154 High Street, Brentford, Middlesex
Please send Recordakit/F.M. Tuner/Audiokit Hi-Fi Leaflets. (Strike out items not wanted)

Name
Address \qquad

P.W. 8/68

\qquad

You'll find it easy to learn with this outstandingly successful NEW PICTORIAL METHOD-the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoontype drawing. The books are based on the latest research into simplified learning tech-
niques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects.

To TRY IT, IS TO PROVE IT.

The series will be of exceptional value in training mechanics and technicians in Electricity, Radio and Electronics.
WHAT READERS SAY
"The books are the best I have ever seen on this subiect. It did not take me lonp to decide they were just what I had beem looking for." G.E.C., Belfast.
"These are remarkably sound books-and should speed up the aequindion of a quife sextentive "Bate" knowoledge."
"Truly a mindful of information."
"The Marvals are out of this worid for simplicity in I.J., ADtrim.
"The Mantuals are out of this worid for simplicity in learning about
"Hay I stats how delighted I am with the booke, and uhat a contran
to the I many how dolighted I am with the books, and what a contras
have attampted to struggle inrough.
A TEOH-PRESS PUBLICATIOT.
POST NOW FOR IHIS OFFER!

To the SELRAY BOOX CO., 60 HAYES HILL, BROMLEY, BR2 7HP
Please send me WITHOUT OBLIGATION TO PURCHASE, one of the above sets on 7 DAYS FRER TRIAL. I will either return set, carriage pald, In good condition within 7 days or send the following amounts. Basio ELECTRIOITY 72/- Cash Price or Down Payment of $15 /$ followed by 4 fortnightly payments of 15/-each. BAsIC ELECTRONICs 84/-, Cosh Price or Down Payment of 15/-followed by 5 fortnightly payments of 15/- each. This ofter appliea to UNITED KINGDOM ONLY. Overseas custumers cash with order, pricen as bove.
Tiok set required (Only ONE set allowed on free trial)
BASIC RLEOTRICITY \square
Prices include Postage and Packing.
BASIC FLEETRONICS

Signsture
(If under 21 signature of paroni or guardian)

HAME

BLOCX LETTYR'
FULL POBTAL
ADDRES8...

VIKING AMPLIFIER

50 WATT AMPLIFIER

An extremely reliable general purpose valve amplifier. Its rugged construction yet space age styling and design makes it by far the best value for money
TECHNICAL SPECIFICATIONS ATIONS
 inputs per channel, enables the use of 8 sep-
arate instruments at the same time. The volume controls for each channel are located directly above the corresponding input sockets.
SENSITIVITIES AND INPUT IMPEDANCES
Channel $1 \quad 4 \mathrm{mV}$ at 470 K These 2 channels (4 inputs) are suitable for Channel $2 \quad 4 \mathrm{mV}$ at 470 K \{ microphone or guitars.
Channel 3200 mV at $1 \mathrm{~m} \quad\{$ Suitable for most high output instruments Channel 4200 mV at 1 m$\}$ (gram, tuner, organ etc.). Input sensitivity relative to 10 w output.
TONE CONTROLS ARE COMMON TO ALL INPUTS
Bass Boost +12 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Bass Cut -13 dB at $60 \mathrm{~Hz} / \mathrm{s}$.
Treble Boost +11 dB at $15 \mathrm{KHz} / \mathrm{s}$. Treble Cut -12 dB at $15 \mathrm{KHz} / \mathrm{s}$. With bass and treble controls central - 3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and $20 \mathrm{KHz} / \mathrm{s}$.

POWER OUTPUT

For speech and music 50 watts rms. 100 watts peak. For sustained music 45 watts rills. 90 watts peak. For sine wave 38.5 watts rms. Nearly 80 watts peak. Total distortion at rated output $\left.\begin{array}{l}3.2 \% \\ 0.15 \%\end{array}\right\}$ at $1 \mathrm{KHz} / \mathrm{s}$

Price
27 gns
P \& P 20/- Output to match into 8 or 15 ohms speaker system.

POCKET MULTI-METER

gize $37 \times 21 \times 1$ in Meter size 21×1 in Sensitivity 1000

 O.P.V. on both A.C. and D.C. volts. $0-15,0-150,0-1000$ D.C. current $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} \Omega$. Cormplete Fith tert prods, battery and fullinstructions, $42 / 6$. P. \& P. /6. FREE GIFY ior $15 /$ - to every purchaser of the Pocket malting rron value 15/- to every purchaser of the Pocket
CYLDON
 U.H.F.TUNER

Complete with PC88 and PC86 Valves. Full variable tuning. New and unused. Size $41 \times 51 \times$ 1 inn. Complete with circuit dlagram. 35/= p. \& p. 3/6

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Lond Speaker system on one trame, combining three matched ceramic magnet speakers with a low loss cross over network. Peak handling power density 11,000 gauss. Resonance $40-$ $60 \mathrm{e} / \mathrm{s}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $\% 0 \mathrm{kc} / \mathrm{s}$. Size $13 \frac{1}{2} \times 81 / 16 \times 4 \frac{1}{2}$ inches. By famous manufacturer. List Price 27 . Our price
$69 / 6$ plus $3 / 6 \mathrm{P}$. P .

600 mW FOUR TRANSISTOR AMPLIFIER

Features N.P.N. and P.N.P. complementary symmetrical output stage, $2 \downarrow^{\prime \prime} \times 7^{\prime \prime} \times \frac{7}{8}^{\prime \prime}$ Speaker. Output impedance 12 ohms frequency response 3 dB points $90 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{Kc} / \mathrm{s}$. Price $19 / 6$ plus $1 /-$ P. \& P. $7 \times 4^{\prime \prime}$ Speaker to suit, $13 / 6$ plus $2 /-$ P. \& P.

2 $\frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

 Semi conductors, two OC 75's two AC 128's and two stabilizers AA129. Tone and volume controls on tying leads. $£ 2.10 .0$ plus P. \& P. $3 / 6$. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high flux speaker, $18 / 6$ plus $2 /-\mathrm{P}$. \& P .

NEW TRANSISTORISED
 SIGNAL GENERATOR

Size $51 \times 3 t \times 1$ in. For $I F$ and RF alignment and $A F$ output $700 \mathrm{c} / \mathrm{s}$ frequency coverage $460 \mathrm{kc} / \mathrm{a}$ to $2 \mathrm{mc} / \mathrm{s}$ Elegant Aeven and Musette. Built and tested. to our
P. \& P. $3 / 6.4$

FIRST QUALITY P.V.C. TAPE

$58 "$	Std.	850 ft	9/-	5	L.P.	850ft.	
$7{ }^{\prime \prime}$	Std.	1200 ft .	11/6	$3^{\prime \prime}$	T.P.	600 ft .	10/6
3 "	L.P.	240		$5^{\prime \prime}$	T.P.	1800 ft .	25/6
$54^{\prime \prime}$	L.P.	1200ft.	11/6	5番"	T.P.	2400ft.	32/6
7 "	L.P.	1800 ft	18/6	$7^{\prime \prime}$	T.P.	3600 ft .	42/6
59"	D.P.	1800 ft	18/6		T.P.	900 ft .	15
P. \& P. on each $1 / 6,4$ or more post free.							

THE RELIANT 10W SOLID-STATE HIGH QUALITY AMPLIFIER gPECIFICATIONS
Output-10 watts RMS Sine-wave Output Impedance- 3 to 4 ohms 13 watts RMS Music-puwe Tone Controls--Treble control range +12 dB at 10 KH 2 Iuputs-- -xtal mic 10 mV . Tone Controls-- Breble controlrange $\pm 12 \mathrm{~dB}$ at 100 H 2 Frequency Response-(with tone controls central) Minus 3dB pointa are 20H2 and 40KH2 Bignal to Noise Ratio-better than-60dB. Transistors-4 silicon Planar type and 3 Germanium type. Maing input- $-220-250 \mathrm{~V}$. A.C. Size of thassis- $10^{\circ} \times 32^{\prime \prime} \times 2^{\prime}$.
A.C. Mains, $200-250 \mathrm{~V}$. For use with Std or L. P. records, musical instruments, all makrs of A.C. Mains, $200-250 \mathrm{~V}$. For use with 8 td or L.P. records, musical instruments, all makres of pick-ups and mikes. Separate bass and treble lift contrul. Two inputs with control for gram.
and mike. Built and tested. $8^{*} \times \overline{5}^{* \prime}$ speaker to suit price $19 / 6$ plus $1 / 6$ P. \& P. Crystal mike and mike. Built and tested. $8^{* *} \times 5^{\prime \prime}$ speaker to suit price $19 / 6$ plus $1 / 6$ P. \& P. Crystal mike
to suit $12 / 6$ plus $1 / 6 \mathrm{P} . \& \mathrm{P}$.

LESLIE TREMOLO SPEAKER UNIT

Model 10C3. Made in U.S.A. by Electro Musie Corp., Passdena, Calif. Cornplete with $8^{\prime \prime}$ change). Dimensinns: baffle size $181^{\prime \prime} \times 19^{*}$. Rotor size $15^{* \prime}$. A. C. mains $110-2200-24050 \mathrm{c} / \mathrm{s}$. suitable for organs.

PRICE \& 30 plus £2 P. \& P.

50 WATT POWER AMPLIFIER

Manufactured by Livingstone Labs. at a cost price of £90. In two units, Amplifier gize $15\}^{*} \times 9^{* \prime} \times 7^{\prime \prime}$.Heat sink size $14 \xi^{* *} \times 9^{* \prime} \times 4^{\prime \prime}$. Output into 15 ohrm Apeaker. Transistors eight OC28s. Two 2G374. Sensitivity 1V. RMs at 6K input impedance. Power Response $5 \mathrm{H} 2-15 \mathrm{~K} \mathrm{HZ} \mathrm{(} 50 \mathrm{watts}$). Ideal for Tannoy Systems or organs where constant use is essentlal.
PRICE 28gns, plus $£ 2 \mathrm{P}$. \& P .

Also at 323 EDGWARE ROAD, LONDON, W.2. Personal shoppers only. Early Closing Thursday. All orders by post to our Acton address.

10 WATTS (RMS) SOLIDSTATE HI-FI AMP WITH WTEGRAL PRE-ANP

Its great versatility ranges from: A simple intercom, to a modern HI-FI
STEREO AMPLIFIER (2 are required for Stereo). The X101 is a brilliant new addition to our highly successful range of products. Its professional performance and advanced solid-state cir-
cuitry techniques encuitry techniques ensures reliability comreproduction at AN
SPICLFICATIONS
R, M,S, I'ovver output: 13 W (music power), 10 W (Sine Wave). Sinsilivity: for rated output 1 mV into 3 K ohms load. roquency fesponse: minus 3 dB points are 20 Hz and 40 KHz .
Ontpur impudance: 3 ohms ($3-15$ ohms may be used)
Sulply Voh1age: 24 V D.C. at 800 mA ($6-24 \mathrm{~V}$ may be used) output at Size:2 14 - X C. Supply with 3 ohms speaker. 7 watts.
Size. ${ }^{2}$,
The fully comprehensive instruction manual does not only show the basics, such as circuit diagram and connections, but also gives practical easy-to-understand detailed information about the X101. ventional inputs. They include: Tape Head, Mag. P U X X P . P . Tuner, Mic, etc. $\mathbf{4 9} / 6+2 / 6$ p. \& p .

Control assembly: (Including resistors and capacitors).

1. Volume: PRICE 5/- 2, Treble: PRICE 5/-

The above 3 items can be purchased for use with the xlot
POWER SUPPLIES FOR THE X101

Bi (I)/LI AHIGH qualITY MONAURAL

Particularly suitalle for use with the X101 if a ready-built. comprehensive, multi-input system is desired.

CONTIROLS

Selector Switch. Tape Speed Equalisation Switch (39 and 7t i.p.s.), Volume, Treble, Bass, 3 position scratch filter and

SIECLEICATION

Sensitivities for 200 mV output at 1 KHz .
Tape Head: 3 mV (at 3i i.p.s.) Ikallio: 100 mV
Mar. IPU: 2 mV
Iux.: $\quad 100 \mathrm{mV}$
Cer. IPU.: 80 mV Tive/Ree. Out put: 100 mV
Tape/Ree, Outiput: 100 mV
Equalisation for each input is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.)
Tone Control Kange: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz
Total Distortion : (for 200 mV output) $<0.02 \%$
Signal Noise: > -60dB
Supply Voltage: 24 V D.
79/6 plus $2 / 6 \mathrm{D} . \& \mathrm{~d}$.
A STEREO VERSION (PR101/S) WILL BE ANNOUNCED SHORTLY

The F 1 RSCD HIGH qUALITY SOLID-STATE AMPLIFIER (MONO)

SPECIFICATMON

Switched inputs for: Tape Head, Mag. P.U., Cer P.U., Radio and Aux.
 Mains lnput: $9 \% 0$. 504 a C 50 Hz THE CLASSIC IS THI: COMBINATION OF THE ABOVE DESCRIBED ITEMS (N101, P101/M AND PR101/M) ON ONE COMMON CHASSIS: ITS PERFORMANCE AND SPACE-AGE STYLING MAKIE IT THE IDEAL CHOICE FOR THE VALUE-CONSCIOUS HI-FI ENTHUSIAST. Size $12 \frac{1}{2}$ in. long, $41 i n$. deep, $2 \frac{3}{2}$ in. high:
Teak finished case.
p. \& p. free

NET! TME Dorset PRANGSTIOR
PDTMBUERDIO

CAN BE USED AS BABY ALARM

600 milliwatt solid state 7 fransistor plus diode and thermistor. Completely modulised high quality portable radio featuring eomplementary NPN and PNP outpu stage. The comprohensive easy-to-follow drawings supplied make this the easiest-ever transistor radio set ol parts, with the following features:

- Simple connections to only 6 tags on the R.F./L.F. module, 3 I.F. stages. 0sc. coil and 3 transistors which - Only 4 cornections on the A.F. module to complete the 4 translator 600 milliwatt solid state amplifier.
- Pre-aligned IL.F./I.F module built and tested.
- A.F. modlule built and tested
- Fully tunable over M.W. and L.W. bands. M.W.

540-1640 Kc/a (557-183 metres). L.W. 1050-275 Kc/a (2000-1100 metres).

- Intermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$.

Sensitivity: M. Wi at Mc/s 10 microvolts plus or minus 1 als

- Fligh (internal ferrite rod aerial on
- Class ' B^{\prime} modulied

Class ' 13 ' output stage ensures long battery life. Current dratn is propilisation. to the output level. Total current drain of the reveiver urider proportonal conditions is $10-12 \mathrm{~mA}$. At reasonable listening level $20-30 \mathrm{InA}$. 110 signal - Extension sockets for car aerial input, tape recorder output (I

- All components (except speaker) mpunt on the
to-follow instructions. Size of cabinet 12 in the printed circuit board. Easy-to-follow instructions. Size of cabinet 12 in . long 8in. high and Fin . deep.
Special Ofer-Power Supply Kit to purchasers of Dorset Portable Radio parts
incorporating mains transformer incorporating mains transformer, reetifler and smoothing oondenser, AC mains $200 / 250 \mathrm{~V}$ output 9 V 100mA, $9 / 6$ extra.

ELEGANT SEVEN Mk III

COMBWEDPORT193 and CAR RADDO

Buy yourself an easy to builu 7 transistor tadio and save at least £10.0.0. Now gou san huild this superb transistor superhet radio for under $\mathbf{E 4}, 10,0$. No one clse can offer such a fantastic radiu with so many de uxe star teatures.

SPECIAL OFFER

£4.9.6

POWER SUPPLY KIT To purchawers of Elegant
Noven' parts, incorporatiny hains tranaformer,
reotitiler and amoothing rectititer and amoothing
conslenacr. $A . C$. mains $20 / 250$ volta Output 9 y 100 ma 9/5 extra.
Plus $7 / 6 \mathbf{P}$. \& P Prarts List and
cireuit
llagran $2 / 0$ FREE with parts.
\star le luxe wooden cabinet size $81^{-1} \times 31^{*}$
\star Horizontal easy to read tuning scale printed grey with black * High 'Q' ferrite rod acriat.大 L.F. neutralization ou eac separate stage.

* D.C. coupled push pull output stage with separate A.C. negative feedluack.
\star Room tilling output 300 mW
\star Realy etched and drilled printed circuit board back printed for foolproof construction.
* F'ully comprehensive instructions and point-to-point wiring diagrams
- Car aerial socket.
* Fully tunable over medium and long wave. 108-535 thetres and l:350-2000 metres.
* All cotmponente ferrite rod and tuning assembly mount oll printed board. * $5^{\prime \prime}$ P.M. speaker.
* Parts list and circuit diagram 2/6, free with parts.

RADIO \& TV COMPONENTS (ACTON) LTD.
210 HIGH STREET , ACTON , LONDON . W3
OPEN 9 a.m.-6 p.m. INOLUDING SATS, EARLY OLOSING WED. GOODS NOT DESTATOIED OUTSIDE U.K. TERMS C.W.O. All enquiries stamped addressed envelope
All orders by post to be sent to our Aoton address
323 EDGWARE ROAD, LONDON W2
323 EDGWARE ROAD, LONDON W2
Personal shoppers only. Early closing Thursday.

S-DeCs are a professional breadboard which are used in their thousands in industrial and Government research laboratories and being used increasingly in educational establishments from degree level electronics courses to the teaching of electricity to primary school children. This breadboard is sold world wide, and over 50% of current production is exported.

The diagram shows the layout of the contacts on S-DeC. Each S-DeC contains two of these panels, permitting most electronic building blocks to be accommodated. DeCs may be joined using the keying method provided to form a stable area of any size. The connection points are on a $\frac{3}{8} \mathrm{in}$. matrix. Components are simply pushed into the contacts and may be withdrawn at will.

Experiment and Project Guides: S.D.C. Products provide a series of experiment and project guides for educational users. These are available to the enthusiast and full details can be supplied, either from 'Electroniques' (Edinburgh Way, Harlow, Essex) or the manufecturers, S.D.C. Products (Electronics) Ltd.
Accessory Kits: With every S.DeC kit purchased there are included accessories. A control panel is supplied for mounting such things as potentiometers, and this panel simply slots into the S-DeC base. Other accessories include small compression springs for making solderless connections to controls and clips for mounting such things as ferrite rods on the panel. Also included with each kit is an instruction leaflet and booklet of projects.

Projects on S-DeC: In every kit a booklet of circuits is supplied with full instructions for assembly of the circuits on DeCs. The circuits include a three transistor reflex radio with diode detection, morse practice oscillator, electronic flasher, a monostable multivibrator, a three stage audio amplifier, (picture of amplifier mounted on a DeC below) and circuits for a number of oscillators.

Insertion/Withdrawal Farce......... 90 gm.wt. Capacitance between adjacent rows of contacts. Resistance between adjacent contacts $10 \mathrm{~m} \Omega$ Resistance between adjacent rows of contact
$10^{10} \Omega$

4-DeC Kit: Four S-DeCs with two Control Panels, Jigs and Accessories and the booklet 'Projects on S-DeC' all contained in a strong attractive plastic case. Ideal for the professional user, $£ 5.17 .6 \mathrm{~d}$. retail.

Single DeCs: One S-DeC with Control Panel, Jig and Accessories for solderless connections to controls, etc., with booklet 'Projects on S-DeC' giving construction details for a variety of circuits. 29/6d. retail.

Available from leading suppliers and 'Electroniques' dealers

In case of difficulty DeCs may be purchased direct from the manufacturers. Include 6d. (in the case of single DeCs) and 2/6d. (in the case of 4-DeCs) to cover postage and packing.
S.D.C. PRODUCTS (Electronics) LTD Corn Exchange : Chelmsford : Essex TELEPHONE OCH 556215

TOPIC OF THE MONTH

Impressed but unperturbed

THE recent Electronics and Automation Exhibition at Olympia has been called "the greatest technical show on earth", and with justification. Let us sprout a few figures...

It attracted more than 112,000 visitors, including 9,000 from 80 different countries. Equipment worth more than $£ 50 \mathrm{M}$ was displayed by the near- 1,000 exhibitors from 15 countries in the 12 acres of floor space. The industries supporting the exhibition had a turnover of $£ 2,420 \mathrm{M}$ last year, of which $£ 430 \mathrm{M}$ came from exports (averaging no less than $£ 1 \cdot 75 \mathrm{M}$ exports every day). There are 900,000 people employed in the industry, meaning that at least 2.5 M people rely on the electrical, electronics and allied trades to live.

These are cold, hard facts-impressive but impersonal. Yet they spotlight the way in which the industry is now in many ways affecting, controlling and fashioning our lives and environment; making its impact industrially, economically and socially.

Without electronic aids to support production and commercial activities, our industrialists would face a bleak future in this competitive world, for without modern scientific methods they are doomed. On the domestic and industrial front, TV and radio communications continue to progress. Techniques developed in space research are finding industrial and domestic applications; techniques devised for industry are being adapted for medicine and surgery. So it goes on-a great interplay and flexibility.

It is remarkable how the garden-shed set-ups of the early days of wireless have ballooned into one of our greatest growth industries, and one which will exert an ever-increasing influence in many spheres as the years go by. Yet one fringe activity seems to have been content to maintain a dignified aloofness to this headlong acceleration.

In the "cottage industry" days, enthusiasts were building their own radio sets. And today, even amidst all the technical magnificence of modern electronics, enthusiasts are still building their own radio sets. Which goes to show, if it shows anything at all, that it's a splendid hobby!
W. N. STEVENS—Editor.

NEWS AND COMMENT

Leader 239
News and Comment 240
I.E.A. Exhibition 245
Club Spot-Paddington and District Amateur Radio Society 257
Practically Wireless by Henry 263
Your Questions Answered 268
On the Short Waves
by Christopher Danpure and David Gibson, G3JDG 271
Letters to the Editor 284
CONSTRUCTIONAL
A Simple Signal Generator by James Hossack 242
Simple Receivers for Beginners by T. Simon 246
Preamplifier for Radio 2 by J. B. Willmott 250
1 Watt Integrated Circuit Amplifier
by A. J. McEvoy, B.Sc. 260
Portable Keyless Organ, Part 2 by G. W. Hardy 275
OTHER FEATURES
Five Steps to Hi-Fi, Part 4 by lain Smith 258
Repairing Radio Sets, Part 5 by Gordon J. King 264
SEPTEMBER ISSUE WILL BE PUBLISHED ON AUGUST 9th

[^0]... AND SO AD INFINITUM!

The vanishing species? Will they get so small in the end that they'll disappear altogether ? Nobody knows, but they're certainly having a jolly good try. The "they" are the integrated circuits. You can see (just about) one in the photograph being poked through the proverbial eye of a needle. This one is a Mullard unencapsulated TTL decade counter performing its special trick of jumping through the eye of a number 5 sewing needle; the circuit contains over 120 components, and the "rope" is 40 gauge sewing cotton.

GRUNDIG MUSICOLOR

The Music Boy de luxe is now available in leatherstyled padded finish and a choice of four colours. This portable receiver covers long, medium, short and v.h.f. wavebands, and runs from a PP9 battery from which 150 hours' life is expected. It contains 15 semiconductors, has telescopic aerial for v.h.f. and s.w., and a ferrite aerial for the other wave bands. Price is $29 \frac{1}{2}$ gns.

TON-UP TAPPERS

sometmes appeare to deceive the ear, too. That is, wo correctly understand the latast piece of potty niggling by the GPo.

The Radio Services Department of that august Poos
bat lataly been mailing letters of complaint to licensed amateurs who are sending their callsigns faster than the specified 12 w.p.m. (it usect to be 20 w.p.m.). Why it should suddenly become necessary to throw the boek at operators is beyond understanding. yutess the GPO momtorstmue so declined inai hay can only copy dead slow morse, It comes to somathing when the professionals ask the amateus to slow down!
We did it-or did we ? Either way it does seem a coincidence that no sooner does our Leader raise an evebrow at the GPO's attitude to c.w. speeds on the amateur bands (page 817. March 1968) than that very same government body announce that the speed restriction is raised to 20 w.p.m. Whoever it was who used super red tape solvent to get this one through-your very good health Sir, and to all you amateurs-whip those weights off the bug keys lads, we're having a c.w. ball.

VANISHING SPECIES

Things in the electronic world are getting smaller and smaller. With integrated circuits coming in one wonders whether the days of the common transistor are numbered. But even transistors
 themselves are shrinking.
The larger photograph shows the Motorola Quad transistor 2 N5146 which houses four transistors in a 14 pin TO-86 flat package measuring $0.25 \times 0.25 \times 0.07 \mathrm{in}$. exclusive of leads. Typical electrical characteristics for each of the four transistors are: $\mathrm{h}_{\mathrm{FE}} 40$ at $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$ d.c.; V_{CE} (sat) 0.7 V d.c. at 1 A d.c.; $\mathrm{f}_{\mathrm{T}} 250 \mathrm{Mc} / \mathrm{s}$ at $\mathrm{Ic}=50 \mathrm{~mA}$ d.c.

A low-level, high-speed switch and an r.f. amplifier have been added to Motorola's new Micro-T transistor line. These are only $0.08 \times 0.058 \mathrm{in}$. as the small photograph indicates. This is about one-tenth the size of a TO-18 can. For a v.h.f./u.h.f. amplifier mixer, or oscillator application, the MMT918 offers a high current gainbandwidth product of $600 \mathrm{Mc} / \mathrm{s} \mathrm{min}$. measured at $100 \mathrm{Mc} / \mathrm{s}$; output capacitance of $1.7 \mathrm{pF}(0.1-1 \mathrm{Mc} / \mathrm{s})$, and a collector-emitter breakdown voltage of 15 V d.c. min.

Further details of both these units from Motorola Semiconductors Ltd., York House, Empire Way, Wembley.

FACE-LIFT FOR AVO

The AVO Digital System is completely new. It comprises a main display unit which is designed to accept a number of plug-in modules. The measured value is automatically presented in digital form by four in-line neon indicators having a numeral height of 14 mm . The polarity and over-range indication is also presented automatically and the decimal point is automatic with range switching.

A built-in Weston reference cell provides a reference voltage which enables the calibration of the lower ranges to be corrected to the initial accuracy. The stability of the cell is 0.01% per year and the temperature co-efficient over the range $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is less than $\pm 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\left(\pm 0.0005 \% /{ }^{\circ} \mathrm{C}\right)$.

The specifications are impressive: d.c. voltage from 0.1999 to $1.999 \mathrm{~V} \pm 0.05 \%$ of indication $\pm 0.05 \%$ of full range at $20^{\circ} \mathrm{C}$. The input impedance on the higher ranges is $10 \mathrm{M} \Omega$ and greater than $1.000 \mathrm{M} \Omega$ on the two lower ones. D.C. current from 0.1999 to 1.999 mA ; resistance from 0.1999 to $1,999 \mathrm{k} \Omega$ with similar coverage for the a.c. voltage and current ranges.

The unit has other ranges and applications. Further details may be obtained from the makers.

INVISIBLE MOTORS

Well, not quite but darned near. High output efficiency and low weight combined with extreme miniaturisation are the features of two new groups of d.c. electric motors in the revised and expanded Micromotors range from $B \& R$ Relays Ltd. There are three models in each groupdesignated 050 and 030 -but all have a common configuration. These really are small, for instance, those in
the 050 range have a diameter of 15 mm and a casing length of 16 mm . By employing skew-winding with three rectangular coils and an ironless bell-shaped armature, the starting time can be speeded and the spindle diameter can be very small. This helps reduce friction losses at the commutator and gives low contact resistance between the precisely matched gold alloy bushes and the 95% silver alloy collector. The 050/0055 motor has a no-load running speed of 19.100 r.p.m. which can be reduced by slip-on gear-boxes in the ratios $3 \cdot 45: 1,11 \cdot 8: 1,141: 1$, and 5.750:1. With an armature resistance of 5Ω and a measuring voltage of 3 V , the $030 / 010$ motor develops a specific torque of $16.90 \mathrm{cmp} / \mathrm{A}$.

RADIONETTE MULTICORDER

This tape recorder is claimed to be the first in the world to use only one single reel. It has two speeds and gives up to 12 hours' playing time-enough for 18 big L.P. records. It will also accept pre-recorded tapes and tapes recorded on conventional tape recorders, with tracks in the opposite direction.

The Multicorder is fully portable and transistorised, and a companion battery eliminator is a vailable too. Another accessory is the vinyl carrying case which also accommodates the microphone. The mike is a dynamic type, and can be used as a "pillow phone".

Outlets are provided for extension speaker, earphone and radio. It has an output/recording/battery meter and a tape-position indicator. There are four tracks, any one of which is instantly selectable by the track selector control thus obviating the need to turn the reel over.

Power required is 9 V obtained from six U2 cells. Current consumption is $80-100 \mathrm{~mA}$ at low volume rising to $200-250 \mathrm{~mA}$ at 1 watt output. Circuitry uses seven transistors and two diodes; wow and flutter less than 0.2%; tape speeds $1 \frac{7}{8}$ and $3 \frac{3}{4}$ i.p.s.; reel size 5in.; microphone input 700Ω with a sensitivity of 1 2 mV ; radio input is 470Ω with a sensitivity of 20 mV ; amplifier outlet $20 \mathrm{k} \Omega, 50-100 \mathrm{mV}$. Price with mike is 49 gns , case to suit costs an extra 5 gnn .

A SIMPLE SIGNAL GENERATOR James Hossack

THE signal generator described here uses a conventional twin-triode oscillator circuit for both the r.f. and a.f. sections, and has a frequency coverage of $120 \mathrm{kc} / \mathrm{s}$ to $50 \mathrm{Mc} / \mathrm{s}$, thus enabling tests to be carried out on most domestic radio and television apparatus (with the exception of u.h.f. receivers), harmonics being used to cover up to $200 \mathrm{Mc} / \mathrm{s}$. The method of construction is somewhat unusual in that it employs the "Cir-kit" technique, enabling an extremely satisfactory printed circuit board to be made without the use of chemicals or other etching medium.

CIRCUITRY

The theoretical circuit is shown in Fig. 1, and apart from resistor and capacitor values, both halves of the signal generator are identical. Briefly, damped oscillations set up in the grid inductance of the lefthand triode of each valve are maintained by feedback of the correct phase supplied from the righthand anode via the appropriate coupling capacitor. In the case of the a.f. section, a tightly-coupled coil, actually the primary of the a.f. transformer T1, whose secondary comprises the audio oscillator coil, picks up the oscillation and employs it to modulate the anode of the r.f. section when a modulated output is required. Final calibration of the generator is simplified if a second, calibrated,

generator can be borrowed, although an alternative, but less accurate, procedure is described later.

THE CASE

Although a suitable die-cast metal box can be purchased for a reasonable cost, it was decided to press into service a discarded metal container measuring $8 \times 6 \frac{1}{2} \times 4 \frac{1}{2} \mathrm{in}$., replacing the ebonite base with an aluminium sheet $8 \frac{1}{2} \times 6 \frac{1}{2} \mathrm{in}$. which then becomes the front panel. Drilling details for the latter are shown in Fig. 2.

A small metal sub-frame $6 \times 4 i n$. constructed of angle aluminium and bolted to this panel at XX carries the printed circuit board, the coils being bolted directly to the lower part of the front panel, or else supported on a small strip of Bakelite, as in Fig. 3. Coil-winding details are given in Table 1. Figure 3 also indicates a convenient method for mounting the coils. The three lowest-frequency coils are supported on a length of $\frac{3}{8} \mathrm{in}$. ferrite rod bolted to the front panel, while coils 4 and 5 can be wound on a suitable short-wave coil former from which the core has been removed. The coil for the highest range, which is self-supporting, is best inserted after

Fig. 1: Circuit diagram of the simple signal generator.

Fig. 2 (above): Drilling details of the front panel.
Fig. 3 (below): Suggested method of mounting the ferrite coils.

the generator has been set up and calibrated on the lower ranges as in this way it can be checked that the coverage is complete without excessive overlap. Since two-terminal coils are used, coverages for all coils may in any case be altered fairly easily, after construction has been completed, owing to the "open", nature of the printed circuit layout. For example, if a more conventional type of mounting is desired for the l.f. coils in preference to the ferrite rod method, the turns for coils $1-3$ should be increased by about 30%, and adjusted finally, by removal of turns, to give the desired coverage.

After mounting coils, range switch, and output terminals, the remaining front panel components, consisting of on/off and modulation switches, output control, and indicator lamp, are bolted in position. The lamp, though not essential, is a desirable addition, since it has been found, in practice, that test equipment may be inadvertently left switched

Fig. 4: Wiring diagram of the underside of the "chassis" using Cir-kit copper strip.
on for long periods, with possible overheating. As a further precaution in this respect, due to the poor ventilation consequent upon nearly complete screening, it was considered desirable to include the 1Ω dropping resistor, R7, which reduces the heater voltage to a safe 5.8 V .

CONSTRUCTION

The next step is to cut and drill the paxolin "Cir-kit" board to take valve holders (B9G, printed circuit type), tuning capacitor, mains transformer, and all fixed capacitors and resistors, including the silicon diode, D1, but excluding C8 and C9, which are mounted on the back of the sub-chassis. C3 and C4 are soldered respectively across the primary and secondary of the modulation transformer, which is also bolted directly to this chassis. Make sure that the tuning capacitor is efficiently earthed with a piece of heavy gauge wire do not rely on the "Cir-kit" strip for this purpose, since oscillation may be impaired on the highest-frequency range.

Now, lay the copper strip on the underside of the board, following the layout of Fig. 4, and taking care to leave sufficient overlap at corners to facilitate subsequent soldering. Finally, the "Cir-kit" strips are pierced with a pin where they underlie the component holes, and all resistors, capacitors, etc. can be threaded through and soldered into position. R5 and the silicon rectifier should be spaced about $\frac{1}{2} \mathrm{in}$. above the paxolin board to assist heat dissipation. At the same time, solder the valveholder pins to the appropriate strips, insert and

Range	Coverage	No. of turns	Wire gauge s.w.g.	Former
1	$120-300 \mathrm{kc} / \mathrm{s}$	250	32	$\}\}^{\frac{3}{8} \text { in. ferrite }} \begin{aligned} & \text { rod } \end{aligned}$
2	$300-650 \mathrm{kc} / \mathrm{s}$	120	32	
3	600-2000kc/s	64	32	
4	$1.9-6.0 \mathrm{Mc} / \mathrm{s}$	50	32	$\begin{aligned} & \text { pile wound } \\ & \text { on } \frac{1}{4} \text { in. } \\ & \text { former } \end{aligned}$
5	$5 \cdot 1-22 \mathrm{Mc} / \mathrm{s}$	14	28	
6	20-50Mc/s	4	16	self-supporting

Table 1. Winding details for the coils.
solder the mains transformer leads, and place a spot of solder at each strip junction, as previously mentioned.

The flying leads connecting the p.c. board to the under chassis components (coil, range switch, modulation transformer, and smoothing capacitors) and to those above chassis (modulation switch, indicator lamp, and other controls), can also be soldered on at this stage, leaving sufficient lengths to reach the appropriate connections on the front panel (compare Fig. 4).

ASSEMBLY

The completed circuit board is now screwed on to the sub-chassis frame, the latter bolted to the front panel, and all flying leads soldered into position. Figure 5 is a top view of the completed assembly. Unless a separate signal source is available and it is desired to use the heterodyne method of calibration, with headphones, it will probably be better to leave the generator out of its cabinet meantime, since this will enable sufficient output to be picked up on
a nearby receiver without the necessity for a coupling lead or dummy aerial．

Initial calibration is best carried out with the modulation off．Switch to the lowest frequency range （range 1），and tune the generator for zero beat with the long－wave light programme on the adjacent receiver．This enables the $200 \mathrm{kc} / \mathrm{s}$ point to be accur－ ately marked．Leaving the generator set to this point，tune in the harmonics of $200 \mathrm{kc} / \mathrm{s}$ on the receiver at 600,800 ，and $1,000 \mathrm{kc} / \mathrm{s}$ ．Leaving the receiver set to the latter frequency，switch on the internal modulation，and tune the generator，on range 3 ，for maximum response from the receiver

Fig．5：Top view of the completed unit． at this new frequency．Mark this point $1 \mathrm{Mc} / \mathrm{s}$ ．Har－ monics will now be available at 2，3， 4 etc． Mc / s ， and the receiver can be tuned to detect any or all of these frequencies，depending on its short－wave coverage．After each setting has been found on the receiver，leave the latter untouched，and retune the generator for maximum response on the

＊components list

Resistors：			
R1	$1 \cdot 5 \mathrm{k} \boldsymbol{\Omega} \frac{1}{2}$ watt	R5	$3 \cdot 5 \mathrm{k} \Omega 5$ watt
R2	$22 \mathrm{k} \Omega 1$ watt	R6	$45 \Omega 1$ watt
R3	$2 \cdot 2 \mathrm{k} \Omega \frac{1}{2}$ watt	R7	$1 \Omega 1$ watt
R4	$47 \mathrm{k} \Omega 1$ watt	VR1	$10 \mathrm{k} \Omega$ pot．
Capacitors：			
C1	20pF	C7	0．0047pF
C2	$0 \cdot 0047 \mu \mathrm{~F}$	C8	$16 \mu \mathrm{~F} 350 \mathrm{~V}$ electrolytic
C3	100pF	C9	$8 \mu \mathrm{~F} 350 \mathrm{~V}$ electrolytic
C4	$0.01 \mu \mathrm{~F}$	C10	$0 \cdot 1 \mu \mathrm{~F} 650 \mathrm{~V}$
C5	10pF	C11	$0.01 \mu \mathrm{~F}$
C6	$0.01 \mu \mathrm{~F}$	VC1	300 pF variable
Valves：			
V1	ECC83	V2	ECC83
Inductors：			
L1－L6 see table			
T1 3：1 or 5：1 intervalve transformer			
T2	$0-250 \mathrm{~V}$ at 25 m	， 6.3 V	at $1 \cdot 2 \mathrm{~A}$
Switches：			
S1 1 pole 6 way			
S2 2 pole 3 way			
S3 SPST mains toggle			
Miscellaneous：			
Silic coil two chas	on rectifier type ormers and wire co－ax sockets； sis and case；n	3Y600	dial bulb and holder； two B9A valve holders； pper strip；materials for olts；solder etc．

receiver，this representing the fundamental of the frequency to which the receiver is tuned．

Although this procedure will not produce accuracy comparable with the use of a second（calibrated） generator，nevertheless，it should be sufficiently accurate for general testing purposes．A useful check can be made by graphing frequency against dial reading for each range，and this will also ensure that spurious responses－particularly troublesome when the receiver used is a small transistor type－ are not confused with the fundamentals or main harmonics．

T⿴⿱冂一⿰丨丨丁口内 DODKS

三 AMATEUR RADIO CIRCUITS BOOK
Compiled by G．R．Jessop，G6JP．Published by Radio Society of Great Britain， 28 Little Russell Street，London，W．C．1． 119 pages．Size $8 \frac{3}{4} \times 5 \frac{1}{2} \mathrm{in}$ ．Price 10 s 6 d ．

THIS second edition is packed with circuits for the Ham．It does not give full details of how to build each project，but supplies the circuit and sufficient information for most amateurs to con－ struct the units described．Just about every aspect of amateur radio is catered for and circuits are given for a．t．u．＇s；front ends；speech amplifiers；oscillators； transistor transmitters；test gear etc．A large number of the circuits are transistorised and one depicts a 70 and $144 \mathrm{Mc} / \mathrm{s}$ converter using field effect tran－ sistors．
This edition is a decided improvement on its pre－ decessor in that it appears to contain even more detailed information．For the amateur enthusiast or ham who likes all those useful circuits in one place this is a good ten－and－sixpence worth，and can be confidently recommended．－DLG．

三 WORLD AT THEIR FINGERTIPS
 产 By John Claricoats，G6CL．Published by Radio Society of

DEFINITELY a must for the Historians，the curious and for those radio enthusiasts who like to read an interesting book which is devoid of maths and other such features which makes some works rather heavy going．This book is the story of Amateur Radio in the United Kingdom and a history of the Radio Society of Great Britain．John Clari－ coats is certainly to be congratulated on producing some interesting and informative reading，coupled with a huge number of facts many of which are quite an eye－opener．

Scene 1 commences with the very first meeting of a group of enthusiasts with their＂coherer＂＿－＂．．a a $\frac{1}{2}$－inch diameter glass tube，I inch long，filled with iron filings．Corks were pressed into the ends of the tube and copper wires were passed through into the iron filings so that they did not quite meet＂．Finally， after chapters of interesting facts and photographs， the book arrives at the present－day．

One is often surprised by the odd snippits of information which come out，for instance the various people who have held membership in the Society－ Sir Oliver Lodge，Senatore Guglielmo Marconi to name just two．
Just who were the first amateurs and what did they get up to．Well，there was．．．no，you buy the book and read for yourself．$-D L G$ ．

I.E.A. EXHIBITION 1968

THE Seventh International Instruments, Electronics and. Automation Exhibition held at Olympia, London, from May 13 to 18 was one of the greatest technical exhibitions of its kind ever staged. A thousand companies from 15 different countries occupied the 695 stands spread over 250,000 square feet (around 12 acres!).

The equipment shown ranged from homely connectors to highly complex factory automation systems and much of it was on show to the public for the first time, some having only arrived from the development departments just in time for the exhibition.

Obviously it is impossible to deal with this exhibition in detail in the space available but we have selected some of the more interesting items touching on aspects of appeal to readers of Practical Wireless.

FREQUENCY CONTROL

An interesting frequency-controlled oscillator was shown by Pedoka Ltd.; consisting of a small encapsulated unit, capable of printed circuit mounting, housing a miniature tuning fork to which piezoelectric elements are strapped. The crystals are energised at a low voltage, transferring energy to the fork which vibrates at its natural frequency. The oscillations are then passed on to built-in amplifying circuits. Frequency accuracy, in the range 300 to $3,000 \mathrm{c} / \mathrm{s}$, is normally better than $0 \cdot 1$ of a cycle. They can be built as oscillators or filters.

PRECISION MEASUREMENT

A displacement transducer and digital display giving reading accurate to one part per million was featured by Automatic Systems Laboratories.

The firm also showed a number of displacement transducers possessing a resolution of 0.25 micron and an accuracy of 0.5 micron. These are digitised sequentially, the measurements printed out on tape.

CHEQUE CHECK

Verification of cheques which need to be examined at more than one location in banks is speeded up by the Epsylon Telecheque system, operating with closed circuit television. The unit is so designed that the camera not only views the surface of the cheque but also sees through it to give warning of attempts to forge either signature or the amount payable. When the authorising officer at the remote station has approved the cheque, he presses a button which activates electromagnetic equipment at the bank counter to emboss the cheque with a mark indicating that it is approved.

LONG LIFE RELAY

Astralux Dynamics Ltd. featured their Reedac reed relay which can switch up to 15 A at 250 V a.c. with a life expectancy of 500 million operations (approx. 16 years of once-a-second operation). It is controlled by $6-24 \mathrm{~V}$ d.c. and the control circuit requires a power of only 125 mW .

FLAMEPROOF FLASH

An electronic flash unit which is flameproof and allows conventional photography to be carried out in explosive atmospheres (mines, oil refineries, etc.) was exhibited by Ernest Turner Ltd.

TAPE WOUND CORES

Ross \& Catherall Ltd. showed for the first time cut tape wound transformer cores, epoxy resin covered but not impregnated to preserve the electrical properties. The new process is claimed to give an improved core with no increase in cost.

VIBRATING C

The type XL7900 shown by Mullard Ltd. is a vibrating capacitor with which extremely small voltages can be measured. Electrometers using this capacitor have measured currents as small as 8×10^{-17} Amp., the equivalent of the flow of 500 electrons per second.

It contains four metal plates in parallel, the outer ones fixed, the inner ones mechanically linked to preserve constant spacing but able to vibrate as a pair with respect to the fixed plates. A.C. is applied between one vibratory and one fixed plate. The voltage to be measured is applied to the other two plates.

ELECTRONICS FOR CARS

A. B. Electronic Components Ltd. showed microcircuits for use in the electric systems of cars, designed as part of the Lucas alternator equipment which will ultimately replace the conventional d.c. generator. Thick film resistive and conductive elements are fired to a refractory base and then Lucas "hybridise" the circuit by fitting semiconductors of their own manufacture.

LONG LIFE BITS

Harrison Clark Ltd. showed a new type of soldering bit with a 500 micron electrolytic coating within the diameter and a protective nickel coating over the top. Cost is high but it is estimated that their life is 75 times that of a standard copper bit. One specimen has been in use for six months and completed 600,000 joints and is still operating. The c!aim is for up to $4,000,000$ joints without undue wear.

MINI COMPUTERS

Muldivo Ltd. displayed a range of desk-top computers. The most sophisticated was the IME86S featuring seven registers all with check-back factors after calculation. Cost, £740. The most compact weighed only 28.51 b . and had an average speed of calculation of 0.2 seconds, or 2.5 mS for an elementary addition.

MINIATURE MAINS SWITCH

A. F. Bulgin \& Co. Ltd. exhibited a mains switch needing only a $1 / 32 \mathrm{in}$. $\times \cdot 0 \cdot 512 \mathrm{in}$. panel cut out and projects only 0.2 in . It weighs 17 gm . and carries an illuminated legend with a brilliant-glow neon lamp.

C) What TRANSISTOR

3 RECEIVERS
 FOR
 Beginners

NUMBER THREE . . . is the last in this series and describes the construction and alignment of a three transistor five stage receiver covering the medium waveband.

T\rceil HE final receiver in this short series, especially for the beginner, differs from the other two. The previous designs have been t.r.f. receivers standing for tuned radio frequency-whereas this receiver is called a super heterodyne or superhet.

The T.R.F

What is the difference between the two types? Well, let us look at Fig. 1. The radio frequency signal (r.f.) comes into the set via the aerial to the r.f. amplifier stage. Here it is amplified and passed to the detector where it is converted to audio frequency (a.f.) and from here passes to the a.f. amplifier for further amplification.

If we drew a similar block diagram of the first receiver in the series it would look like Fig. 2. The first stage amplifies the signal at r.f., passes it to the

Fig. 1: Block diagram of a t.r.f. receiver.

Fig. 2: A reflexed t.r.f., note the signal passes through the first stage twice.

by T. Simon

detector stage which converts it to a.f., and it is then fed back to the first stage again for further amplification. Note that the first time it passed through the first stage it was amplified at r.f. and the second time at a.f. We say that the stage is reflexed or that it is a reflex stage. Figures 1 and 2 depict t.r.f. receivers since the signal is amplified at the frequency it is received at, i.e. it is not changed or converted to a different r.f. frequency.

The Superhet

Now look at Fig. 3. This is a block diagram of a superhet receiver. Note that the last two blocks marked DET and AF are the same as the last two in Fig. 1. But what about the first three marked MIX, IF and OSC? This is the difference between the simple t.r.f. and the superhet.

The signal is again received via the aerial and fed to the mixer-which might be thought of as an ordinary r.f. amplifier stage, just like the first box in Fig. 1. Let us suppose that the signal received is at a frequency of $2,000 \mathrm{kc} / \mathrm{s}$. The box marked OSC is an oscillator-a tiny transmitter which emits a signaland this also is fed with the aerial signal to the mixer. Just as its name implies, the mixer mixes the two signals together and at the output of the mixer there will be two main signals, the sum and the difference of the two signals fed in.

Let's take an example to clarify matters. We are receiving a signal from the aerial at $2,000 \mathrm{kc} / \mathrm{s}$ (say) and our oscillator is tuned to give a signal of $2,460 \mathrm{kc} / \mathrm{s}$. Therefore, at its output, there will be two signals, $2,000 \mathrm{kc} / \mathrm{s}$ plus $2,460 \mathrm{kc} / \mathrm{s}=4,460 \mathrm{kc} / \mathrm{s}$, and 2,460 minus $2,000 \mathrm{kc} / \mathrm{s}=460 \mathrm{kc} / \mathrm{s}$. If we put a tuned circuit in the output and tune it to $460 \mathrm{kc} / \mathrm{s}$ it will pass the $460 \mathrm{kc} / \mathrm{s}$ signal and reject the $2,460 \mathrm{kc} / \mathrm{s}$ signal.

Suppose that we couple the tuning of our aerial circuits and those of our oscillator so that the oscillator is always tuned to a frequency $460 \mathrm{kc} / \mathrm{s}$ above the frequency to which the aerial circuit is tuned to. Then, no matter where we tune in the band, there will always be a signal of $460 \mathrm{kc} / \mathrm{s}$ at the output of the mixer. This is just exactly what happens in the superhet.
The i.f. stage is nothing more than an r.f. amplifier tuned to amplify at the i.f. (intermediate frequency) which in this case is $460 \mathrm{kc} / \mathrm{s}$. From here the signal is detected and the resultant audio is amplified by the a.f. amplifier just as it was in the t.r.f.

Reflex Circuit

Figure 4 shows a block diagram of the receiver described here. The first transistor is arranged to function as both mixer and oscillator. The second stage is reflexed, and the i.f. signal at $460 \mathrm{kc} / \mathrm{s}$ is first amplified at this frequency and then passes to the detector where it is converted to a.f. The a.f. signal is now passed back again to the i.f. stage which this time amplifies a signal at audio frequencies and passes it to the a.f. audio output stage to feed the speaker or headphones.

The Receiver

The complete circuit for the receiver is shown in Fig. 5. The signal is fed to the small coupling coil between pins 8 and 9 on L1. The tuned circuit $\mathrm{VC1} / \mathrm{L} 1$ tunes in the station and this is then coupled to the base of Tr 1 by the second coupling coil, pins 5 and 7. Coil L2 also has three windings. The two sets between pins 8 and 9 , and 5 and 7 cause the circuit to oscillate by feeding back some of the r.f. energy, while the tuned circuit VC2/L2 governs the exact frequency at which the stage will oscillate. We arrange this oscillator frequency to be $460 \mathrm{kc} / \mathrm{s}$ above the incoming signal frequency, and since $\mathrm{VC1}$ and VC2 are ganged together, they will alter the tuned

Fig. 5: Circuit diagram of the reflexed superhet receiver.

Fig. 3 (above): Block diagram of a simple superhet.
Fig. 4 (below): Superhet with a reflexed i.f. stage.
circuits by the same amount thus ensuring that the oscillating frequency is always $460 \mathrm{kc} / \mathrm{s}$ above the incoming signal.

The tuned circuit marked i.f.t. 1 is tuned to the intermediate frequency ($460 \mathrm{kc} / \mathrm{s}$) in order to select this difference signal and reject all others. Note that the lead from pin 8 of L2 is connected to pin 2 of the i.f.t., i.e. the signal is tapped into the coil. If it were taken to pin 1 of the i.f.t. there would be a mismatch between the collector and the i.f.t. tuned circuit which would make the circuit tune very broadly. In this case it would be very undesirable since we only want our i.f.t. to tune sharply to $460 \mathrm{kc} / \mathrm{s}$.

The coupling winding on i.f.t. 1 (which is not tuned) couples the signal to base of the i.f. stage Tr2. Here it is amplified at $460 \mathrm{kc} / \mathrm{s}$ and appears at the collector of $\operatorname{Tr} 2$ which is again tapped into the tuned load formed by i.f.t.2. The small untuned coupling winding feeds the signal to the diode detector which in turn feeds the resultant audio signal to the volume control VR1. Capacitor C4 couples this (now audio) signal back again to the base of Tr2 which now acts as an audio amplifier. The amplified audio appears across the $1 \mathrm{k} \Omega$ resistor R8, the tuned circuit of i.f.f. 2 will not affect this audio signal since it is tuned to $460 \mathrm{kc} / \mathrm{s}$ which is well outside the audio range. From R8 the audio signal is fed, via C6, to the base of Tr 3 , which amplifies the signal and feeds it to the miniature loudspeaker or headphones.

The dial was made from a small scrap of scraper board, obtainable from most good art shops, a small packet
costing 2 s . 6d. Alternatively, a piece of white card marked with Indian ink etc., would prove equally suitable.

Construction

First, take a piece of aluminium $4 \frac{5}{8} \times 4 \frac{1}{2}$ in. and cut out, bend and drill as indicated in Fig. 7. Either 18 or 20 gauge aluminium will suit, 20 gauge being used in the prototype. The lighter gauge makes cutting and drilling a little easier and is quite good enough since the chassis does not have to bear any great weight.

Next, mark out and drill the front panel. The larger holes may be first drilled with the largest drill to hand, usually a $\frac{1}{4}$ or $\frac{3}{8}$ in., and then enlarged carefully with a half-round file. Any plastic material will do but extra care is needed since plastics, especially Perspex, is easily cracked and chipped.

Take the veroboard and drill the four 6BA mounting holes, again exercising care. Now, fix together the front panel and chassis. Mount the three items on the front panel-VC1/VC2, VR1/on-off and the "speaker".

Wiring of the veroboard is the next job, so first insert pins into the board as indicated. Carefully drill the board and mount the coils and i.f.t's. The

* components list

Resistors:

| R1 | $56 \mathrm{k} \Omega$ | R5 | $82 \mathrm{k} \Omega$ | R9 $47 \mathrm{k} \Omega$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| R2 | $10 \mathrm{k} \Omega$ | R6 | $10 \mathrm{k} \Omega$ | $\mathrm{R} 10 \quad 1 \mathrm{k} \Omega$ |
| R3 | $1 \mathrm{k} \Omega$ | R 7 | $1 \mathrm{k} \Omega$ | $\mathrm{VR1} 5 \mathrm{k} \Omega$ |
| R4 | $1 \mathrm{k} \Omega$ | R8 | $1 \mathrm{k} \Omega$ | edgewise pot. |
| | | | | with switch |

Capacitors:

C1	$0 \cdot 1 \mu \mathrm{~F}$
C2	$0.01 \mu \mathrm{~F}$
C3	$0.1 \mu \mathrm{~F}$
C4	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C5	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C6	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
C7	$10 \mu \mathrm{~F} 16 \mathrm{~V}$ electrolytic
$\left.\begin{array}{l} \mathrm{TC} 1 \\ \mathrm{TC} 2 \end{array}\right\}$	30 pF miniature ceramic trimmers
vC1 $\}$	
VC2 3	$300+300 \mathrm{pF}$ twin gang variable

$\mathrm{CP} \quad 350 \mathrm{pF}$ padder $(300+50 \mathrm{pF}$ in parallel)

Semiconductors:

| Tr1 | AF115 Mullard | Tr3 | OC71 Mullard |
| :--- | :--- | :--- | :--- | :--- |
| Tr2 | AF115 Mullard | D1 | OA81 Mullard |

Inductors:

\(\left.\begin{array}{ll}L1 \& Miniature transistor Type 2T Blue

L2 \& Miniature transistor Type 2T Red

IF1 \& Type IFT 14

IFT2 \& Type IFT 14\end{array}\right\}\)| Denco |
| :---: |
| (Clacton) |
| Ltd. |

Miscellaneous:

Veroboard $3 \frac{3}{4} \times 2 \frac{1}{2}$ in.; material for front panel $4 \frac{3}{4} \times$ $2 \frac{3}{4}$ in.; aluminium $4 \frac{1}{2} \times 4 \frac{5}{8}$ in.; dynamic mike insert (L.S.) $2 \mathrm{k} \Omega$ impedance, model MM2 (Henrys Radio); nine 6BA and two 8BA nuts and bolts; dial to suit; white pointer knob; solder tags; screened leadabout 6in.; wire; solder, wire for aerial and earth; 9 volt battery (PP3); battery terminal clip; strip of aluminium to hold battery $2 \frac{3}{4} \times \frac{5}{8} \mathrm{in}$.

Fig. 6 (above): Drilling details of the front panel and battery clip.
Fig. 7 (below): Chassis drilling and under-chassis wiring.
cut-outs for the i.f.t's are made by drilling a number of small holes with a $3 / 32 \mathrm{in}$. drill, and then filing to the final size with a small thin file. The i.f.t's are held in place by bending over the lugs connected to the metal screening cans. Make sure to earth these lugs or the screening will be ineffective and instability could easily result.

Wire in the transistors and diode last of all and use a heat shunt for the purpose. The finished wiring should be carefully checked against the circuit and layout diagrams, Figs. 5, 7 and 8. Note that the coils are held in position by a small plastic nut which should be only finger tight since it is easy to crack the nut or even sheer off the thread if too much force is applied.

Finally, wire in the battery but do not connect the terminal clips until you have checked the completed wiring against Fig. 5. Check carefully the connections to the transistors and the diode. Now connect the battery and the set is ready for alignment.

Alignment

If you have a signal generator and know how to use it then you should experience no difficulty in alignment. If not, and you do not have any experience in aligning superhet receivers, it would be wise to enlist the aid of the local radio dealer who might do this for you at a small fee. It is possible to align the receiver by ear and for this purpose you will need an insulated trimming tool plus, of course, an ear! A plastic knitting needle filed to the shape of a screwdriver will do. A metal screwdriver is no use since the metal would de-tune the circuitry.

With a suitable aerial and earth connected, the core of the oscillator coil (L2) is adjusted until a station is heard at the low frequency end of the dial i.e., with the vanes of VC1/VC2 almost completely enmeshed. When a signal has been located, the core of the blue coil (LI) is adjusted for maximum volume.

VC1/VC2 are now tuned to the other end of the band so that you should seek a signal which comes in when the vanes are now almost fully open. Now, gently adjust the oscillator trimmer (TC2) for maximum volume after which the other trimmer (TC1) is also gently adjusted for a further possible increase in output. Now return to the first station with the vanies of the gang more enmeshed, and again slightly adjust the cores of the coils for any slight increase in volume. After this the other station is returned to and the trimmers again adjusted. These adjustments will get smaller and smaller until no further improvement can be realised. At this point you should turn the set over and very carefully adjust the cores in the tops of the i.f.t's starting with i.f.t.2. The adjustment will be extremely small since these are aligned before dispatch, so it may be that very little improvement will be effected. This adjustment will, in any case, be very slight and it would probably be in order to leave the cores of the i.f.t's alone.

The small "speaker" should give reasonable volume for bedtime listening; however, with the prototype, a pair or $2,000 \Omega$ headphones connected

Fig. 8: Layout and wiring of components above chassis.
in its place worked extremely well if not as good as the speaker.

Aerials from 30 to 150 ft . were tried and all gave good results, several foreign stations coming through very well after dark including Radio Luxembourg. A case would be easy to make, and this is left to individual constructors. Any plastic, wood, or even aluminium would suit and should present no problems. It would be in order to fit a headphone jack for late night headphone listening.

Although this receiver is the most complicated of the three in this series, if you think of it as three separate one-transistor circuits, then the wiring is not really so difficult. The circuit, as it stands, is not considered suitable for conversion to other wavebands.

SOUND LIGHT \& COLOUR

in the
PRACTICAL ELECTRONICS

JULY ISSUE
on sale JULY 12th

PRACTICAL TELEVISION
 TRANSISTORISED U.H.F./V.H.F. AERIAL DISTRIBUTION SYSTEM

Constructional details of a wideband u.h.f./v.h.f. amplifier system for driving a number of receivers from a common aerial system.

VIDICONS

A practical account of the camera tube most used by amateur enthusiasts with setting up details and tips on buying rejects.

TIME-DELAY FAULTS

How to diagnose those puzzling faults that develop some time after the set is switched on.

AUGUST issue on sale JULY 19th.

Preamplifier for 'RADIO2' on 1500 metres

AS a result of the recent reorganisation of BBC programmes and in particular the allocation of the 247 metres wavelength to transmitters radiating the new "Pop Music" programme "Radio 1", listeners in many parts of the country who formerly enjoyed good reception of the Light Programme on 247 metres from their local medium waveband transmitter, are now faced with reception of the "Radio 2 " programme on 1500 metres, unless of course they are fortunate enough to possess a v.h.f. receiver, in which case Radio 2, 3, and 4 are readily available (but an a.m. receiver is still necessary for reception of Radio 1 !).

Whilst the Radio 2 transmitter on 1500 metres is an extremely powerful one, being rated at 400 kW radiated power, its situation at Droitwich inevitably means that some parts of Great Britain are situated at a considerable distance therefrom, and as a result, listeners in these areas are finding that reception of Radio 2 on 1500 metres compares very unfavourably with their former reception of the Light Programme on 247 metres. Not everyone is prepared, or financially able, to face the expense of purchasing a combined f.m. a.m. receiver to ensure reception of all four BBC radio programmes; this problem is particularly acute in the case of elderly persons, frequently pensioners of modest means, to whom radio is a great boon. Equally understandably, this section of the community tends to rely on radio receivers which have seen many years of service and which do not possess v.h.f. facilities.

Aerial systems

However, before going to the expense of installing a preamplifier such as is described later in this article, it is advisable to first of all ensure that as good an aerial system as possible is in use. The proverbial piece of flex dangling at the rear of the set, or hooked to the nearby picture rail, which sufficed for reception of the local 247 metres transmitter, just will not do to provide a reasonable signal from Radio 2 at a range of 150 miles or more.

The days when practically every house boasted an "L" type aerial reaching from chimney stack to a pole (or convenient tree) in the back garden are long past, but if an outdoor aerial of this type can be erected, using good quality aerial wire and porcelain insulators, it is amazing the degree of improvement in reception which results. A good second best is a vertical rod aerial, mounted on a chimney stack, or on a stand-off bracket from the wall of the house as high above the ground as possible. Suitable copper aerial rods and fixing brackets can be obtained from suppliers advertising in this magazine. Another effective alternative is an aerial mounted in the loft, using the maximum feasible length of good quality aerial wire and proper porcelain or glass insulators. The downlead should

Underside view of the preamplifier.
be taken out at the base of the roof, and carried down the side of the house (separated as widely as possible from any metal rainwater pipes etc.).

None of the abovementioned suggestions can be readily used by people living in flats, bed sitting rooms etc. Modern blocks of flats frequently have a communal TV aerial system, with an outlet in the living room of each flat. This outlet forms a reasonably satisfactory aerial connection for radio purposes, but it is absolutely essential to ensure that the radio receiver to be used has no direct connection between the mains supply and the aerial and earth sockets, i.e., the power supplies to the receiver should be by means of a fully isolating mains transformer, or, if a.c./d.c. techniques are used, both the aerial and earth sockets must be isolated by means of high voltage working capacitors, otherwise there is danger of mains voltage finding its way into the TV aerial distribution system, with possibly costly, and dangerous, results. If no TV aerial outlet is available, one can only "make do" with a picture rail aerial;

Fig. 1: Circuit of the preamplifier.

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-GUARANTEED RESULTS BACKED BY OUR SUPER AFTER SALES SERVICE!

THE MAGNIFICENT ROAMBE Z

 SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE!- 7 FULLY TUNABLE WAVEBANDS—MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.
- Extra tuning of Luxembourg, etc.
- Built In ferrlte rod aerial for Medlum and Long Waves.
- 5 Section 22 inch chrome plated telescoplc aerial for short waves-can be angled and rotated for peak S. W. listening.

Bocket for Car Aerial.

- Poweriful push pull output.

7 transistors and two diodes including Philco Miero-Alloy R.F. Transistors.

- Famous make 7in. I 4in. P.M. speaker for rich-tone volume.
- Air spaced ganged tuning condenser
- Separste on/off switcli, volume control, wave change switches and tuning control
- Attractive case with hand and shoulder straps. Size 9in. x 7in, x 4in. approx.
- First grade componenta.
- Easy to follow instructions and diagrams make the Roamer 7 a pleseure to build with
guaranteed resulte.

Total building costs

Hi-Fi Earpiece with awitched socket for private listening $5 /$ - extra.

Total building costs
$44^{\prime} 6 \underset{\substack{\text { P. } \\ 4 / 6}}{\text { \& }}$

POCKET FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE WITH SPEAKER AND EARPIECE
Attractive black and gold cane. Size $51 \times 1 \neq x$ 3yin. Fully tunable over both Medium and Long tuning of Luxembourg. etc. All firse grade com-ponents- 7 stages- 5 transintors and 2 diodes, supersensitive ferrite rod aerial, fine tone moving coil apeaker, also Hi Fi Earplece with switched socket for private listening. Easy build plans and parts price list. 1/6 (FBEE with parts).

NEW MELODY MAKER SIX

3 WAVEBAND PORTABLE
8 stages- 6 transistors and 2 diodes
Covers Medinm and Long Waves and ExTRA BAND FOR EASIER TUNING OF LUEEMBOURG, eto. Top quality 3 in. Loudapeaker for quality output. Two RF stagea for extra boost. High " Q ". Ferrite Rod Aerial. Poeh-pall output. Handsome pocket size case with gilt fittings. Bize $6 \ddagger \times 3 \pm \pm 1+i n$.

This amazing receiver 8 Parts Price List and easy build plans 2/may be built for only (Hil-Fi Earpicce with switched socket for private listening, 5/-extra)

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE WITH SPEAKER AND EARPIECE Attractive case with red speaker grille. Size $6+\mathbf{x}$ $4 \frac{1}{2} 1$ lin. Fuliy tunable. 7 gtages- δ transistora and 2 diodes, ferrite rod aerial, tuning condenser, volume control, fine tone moving coil speaker also listening All first grade component. Eary build plans and parts price list 1/6 (FREE with parts).
(Free with parts).

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case size $7 \frac{1}{} \times 1$ I 1ila. with gilt fittings. The idenl radio for home, car or outdoors Covers Medium and Long Waves and Trawle puih pull output, ferrite rod aerial, 7 transistors and 2 dioden, 3 ln . mpeaker (will drive larger speaker) and all first grado components. Easy build plans and parta. Prlce list $2 /$ - (FREE with parts). (Hi-F1 Earplece with awitohed socket for private listening 5/-extra.)

[^1]
7Q P P \& \& P

WITH 3in. SPEAKE Attractive case with gilt fittings, aize $71 \leq 51 \leq$ litin. World wide reception. Tunable on Medium Plas an extra M. Wand for easier tuning of Lar Plusan extram. W. band for easier tunlag on Laxtelescople gerial for khort waves. All top grade componente, 8 stages- 6 transistora and 2 diodes meluding Philco Micro-Alloy R.F. Translators ete. Carrying 8 trap 1/6 extra.) Easy bulld plans and parts price list 2/- (FREE with parte). (HI-Fi Earpiece with switched socket for private listenlag

ROAMER SIX

SIX WAVEBAND PORTABLE

 (-extra.)69'6 ${ }^{\text {citite }}$

Total building costs

PADGETTS RADIO STORE OLD TOWN HALL, LIVERSEDGE, YORKS. Telephone: Cleckheaton 2866

[^2]Top Grade Mylar Tapes. 7^{*} standard 11/6. 7^{*} Long Play 14/7^{*} Double Play 19/6. 5^{*} Standard $7 / 9.5^{*}$ Long Play 10/-. Plus post on any tape $1 / 6$.
Jap Ear Piece small or large plug $1 / 11$. Post paid.
Sulitcon Rectifier 500 M.A. 800 P.I.V. No duds 2/6. Post paid. 24/doz. P. \& P. paid.
G.P. Diodes all perfect. Guaranteed. 3/6 doz. P. \& P. paid.

Untested Semt Slim Masteradio T.V. Sets. Fitted with AW43/ 88 tube complete fair cabinet \&4. Carrlage 15)-
Just off Rental. Ferguson $406 T$ 17in. T.V. sets 13 -channel fitted with good AW43/80 tube. Sets in good working order. Some may want cleaning. Cabinet fair. £5, Carriage and Insurance $£ 1$

VALVE LIST

Ex Equipment, 3 months' guarantee
Single valves post 7d. over 3 valves p. \& p. paid.
10F1, EF80, EB91, ECL80, EF50, PY82, PZ30, 20P3. All at $10 /$ - per doz. Post paid.

ARP12	1/8	PCC84	$2 /-$	U282	5/-	${ }^{6 \mathrm{P} 28}$	5/-
Eb91	9d.	PCF80	2/-	U301	$5 /-$	10C2	5/-
EFP80	3/-	PCL82	4/-	U329	$51-$	10P13	$2 / 6$
ECC81	$3 / 2$	PCL83	$5 /-$	U251	$5 /-$	185BT	816
${ }_{\mathrm{ECC}}^{\mathrm{ECO}}$	4/:-	${ }^{\text {PL }}$ P61	${ }^{51-}$	U801	816	$20 \mathrm{L1}$	3/\%
ECL80	1/6	PY33	5i-	5U4G	4/-	${ }_{20 \mathrm{P} 1}^{201}$	5%
EF50	$1 / 0$	PY81	$1 / 6$	${ }_{688}^{68} 7$	1/8	20 P 3	2/6
EF91	9 d .	PY82	1/6	$6 \mathrm{K7}$		30 PL 1	$51-$
EL36	51.	PZ30	5/-	6 K 25	$5 /$	30 P 12	$51-$
EY51	$2 / 6$	U^{25}	51.	6P25	$5 /-$	30F5	$2 / 6$
EY86	$5 /-$	U191	$5 /-$	6U4	$5 /-$	$30 \mathrm{FL1}$	5/-
KT36	51-	U281	$5 /-$	6V6	1/9	6/30L2	5/-

EF50, 10/-doz. Post paid.
New valves ex units, 807, $5 / 6 ; 6 \mathrm{K7} 7,2 /-6 \mathrm{~K} 82 / 6 ; 6 \mathrm{X} 5,3 /-; 6 \mathrm{SN} 7,3 /-$
 6BH6 2/- CV valves ali at 2/- each. CVi31, CV136, CV138, CV137. CV261. CV4025, CV4063. CV140, CV3998 CV858.
Untest TV Sets complete 12 channel. 17 ins. $50 /-$, carriage $15 /-$ 14 ins. sets $30 /$-carriage $15 /-$. 12 ins. sets $20 /-$, carriage $15 /$-.
Chassis with spares including 3 miniature relays $10 /-$, plus P.\& P. $6 /-$

FREETO AMBITIDUS EvEITIEFRS

Have you sent for your copy?

 ENGINEERING OPPORTUNITIES is a highly informative 132 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio and Electronic Courses, administered by our Specialist Electronics Training Division-the B.I.E.T. School of Electronics, explains the benefits of our Appointments Dept. and shows you how to qualify for five years promotion in one year.
SATISFACTION OR REFUND OF FEE

Whatever your age or experience, you cannot afford to miss reading this famous book. If you are earning less than $£ 30$ a week, send for your copy of "ENGINEERING OPPORTUNITIES" today-
FREE.

Radio
Television
Electronics
Electrical
Mechanical
Civil
Production
Automobile
Aeronautical
Plastics
Building
Draughtsmanship
B.Sc.
City \& Guilds
Gen. Cert. of
Education
etc., etc.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

344B, Aldermaston Court, Aldermaston, Berks.
this should be confined to the length of not more than two walls of the room, extending the wire to completely circuit the room usually provides a weaker rather than a stronger signal.

If after everything possible has been done to improve the aerial system (attempts to provide a more efficient "earth" connection seem to have little beneficial results in the case of mains operated receivers, at any rate, on Long and Medium wavebands), the 1500 metres programme is still weak, and suffers from excessive background hiss and hoise, consideration should be given to the provision of a preamplifier, which for cheapness and simplicity, can be designed to provide r.f. amplification ahead of the main receiver at the predetermined frequency of $200 \mathrm{kc} / \mathrm{s}$ (1500 metres), being switched out of action when any other frequency is desired. Such a unit was constructed by the author, firstly using valves, and then later a transistorised version was built; both have given excellent results in two difficult reception areas in which they have been tried out. It is the latter, the transistorised unit, which will probably appeal to most constructors, and full details of this unit are accordingly given.

Preamplifier circuitry

The circuit was designed around an AF117 transistor, which is capable of a high level of gain at radio frequencies, yet has a commendably low noise level, and has been found inherently stable in use. After a number of trial and error adjustments to the breadboard prototype, the circuit values shown in Fig. 1 were adopted, and the entire unit re-constructed in a plastic box, with removable lid, measuring approximately $4 \frac{1}{2} \times 2 \times 2$ in. A metal container should not be used, as this could seriously lower the "Q" of the coil L1, quite apart from possible insulation problems.

The circuit (see Fig. 1) operates as follows. Signals from the aerial are fed to section (a) of the changeover switch; with this switch in the "off" position, signals are bypassed, via section (b) of the switch, direct to the coaxial link feeding into the radio receiver's aerial and earth sockets. With the switch in the "on" position however, signals are fed to the aerial coupling winding of L1, this being a Denco Transistor Coil, Type Blue, Range 1, specifically designed to cover the Long Waveband. Signals are induced in the tuned winding (between pins 6 and 7), where, as only a frequency of $200 \mathrm{kc} / \mathrm{s}$ is required to be tuned in, the more usual variable capacitor is replaced by a fixed capacitor Cl connected across the winding.

Denco Ltd., in their data sheet, indicate that a fixed capacity of about 260 pF is required to tune to the Radio 2 frequency, but in the prototype the author

Fig. 2: Lavout of main components. Fig. 3 (right): AF117 connections.
found that a value of 180 pF provided resonance at a midway setting of the coil core. This may possibly have been due to excessive external capacity in the rest of the circuit, constructors should therefore be prepared to experiment with the value of Cl to find the most suitable value. The coupling winding (between pins 5 and 6) provides the necessary low impedance coupling link to the base of TrI, whose correct working conditions for r.f. amplification are set by the values of R1, R2 and R3 in conjunction with their respective bypass capacitors. The amplified r.f. signal appears at the collector of Trl, and the choke/capacity coupling provided by L2 (an r.f. choke of approx. 10 mH) and $\mathrm{C} 4(0 \cdot 1 \mu \mathrm{~F})$ is used to couple the output to the radio receiver via the aforementioned section (b) of the changeover switch.

Fig. 4: Wiring and component layout of the tagboard.
Output is via the shortest convenient length of standard coaxial cable, terminated at the receiver end by suitable plugs to fit the aerial and earth sockets. The inner conductor is of course connected to the aerial plug, and the screening braid to the earth plug.

It will be noticed that sections (c) and (d) of the changeover switch provide a double pole, on/off switch

* components list

Resistors:

Capacitors:

$$
\begin{aligned}
& \text { C1 see text (silver mica) } \quad \text { C3 } 0.05 \mu \mathrm{~F} 150 \mathrm{~V} \\
& \text { C2 } \\
& \text { C } \\
& \text { atl } \\
& \text { all } \\
& \text { miniature foil, unless otherwise stated. }
\end{aligned}
$$

Transistor:
Tr1 AF117 Mullard

Miscellaneous:

Plastic container (with lid) approx. $4 \frac{1}{2} \times 2 \times 2$ in.; 4 pole-2 wayswitch; Denco Blue, Range 1 (transistor) type coit L1; PP3 battery and connector clip; aerial socket; pointer type control knob; 9 -way miniature group panel; r.f. choke approx. 10 mH ; connecting wire; coaxial cable.
The following additional components would be required for the mains supply system in Fig. 7:
$6 \cdot 3 \mathrm{~V}$ pilot bulb and holder; 2-OA81 diodes; $3-25 \mu \mathrm{~F} 25 \mathrm{~V}$ capacitors; $1-2 \cdot 2 \mathrm{k} \Omega \frac{1}{2} \mathrm{~W}$ resistor (see text); twisted flexible wire; tagboard to mount the aforementioned components.
for the battery supply, so that in the "off" position, the battery is completely disconnected, and simultaneously, any signal received by the aerial is bypassed around the preamplifier direct to the radio receiver.
Current consumption was found to be 2.5 mA , so that a PP3 battery, which fits snugly into the space available, will give many hours of useful life. It is a simple matter to remove the lid of the container to replace the battery when necessary.
All the capacitors, resistors, and the transistor, are mounted on a standard miniature 9 -way group panel, only 8 ways being used, the 9 th pair of tags being either bent flat or removed, thus providing a space for the PP3 battery to stand in an upright position. Wiring of the group panel is clearly shown in Fig. 4, whilst Fig. 5 gives wiring details of the changeover switch. In conjunction with Fig. 1, and the layout indicated in Fig. 2 which was used in the prototype, the intending constructor should have no difficulty in assembling this unit.

Connect approx. 6in. of insulated wire, or coaxial cable where applicable, to the changeover switch tag as shown in Fig. 5 before mounting this component through a $\frac{8}{8} \mathrm{in}$. hole in the front of the plastic container. These leads are subsequently shortened as required, to connect to the group panel, battery etc. Smaller holes, $\frac{1}{2} \mathrm{in}$. dia, are drilled in the rear of the container to accommodate the aerial socket and the exit of the coaxial output cable, and a OBA hole is required in the side to allow for fixing of L1. Mount all resistors, capacitors and Tr1 on the group panel (do not shorten the leads of Tr1, and do not forget to use a heat shunt when soldering these leads). Place the completed group panel on the "floor" of the container, and make all external connections from the panel as shown. Lastly, mount L1, and make the necessary connections to its pins, referring to the coding shown in Fig. 1. Cl is soldered directly across pins 1 and 6 . Note that both pins 1 and 9 are connected to the positive "earth" line of the unit, using tag J of the group panel for this purpose. It was not found necessary to secure the group panel to the plastic case in the prototype, as stiffness of the external wiring retained it firmly in position. The fact that the battery stands upon the unused end provides additional anchoring; the battery can be wedged securely in position with scraps of plastic foam pressed down between it and the walls of the container.

Testing

When assembly has been completed, and all wiring checked, set the changeover switch to the "off" (anticlockwise) position. Insert battery, and connect battery clip. Take great care that polarity is correctly observed (a reversed battery will almost certainly cause instant destruction of Trl). Replace lid of container. Remove aerial from socket of receiver, and re-insert in aerial socket at rear of preamplifier.
Connect the preamplifier coaxial output lead to the aerial and earth sockets of the receiver. Switch on the radio receiver, and tune to "Radio 2 " on 1500 metres, which should be received exactly as before the preamp was placed in circuit. Now turn the switch to "on", and adjust core of L 1 , as resonance is neared, a very distinct improvement in reception will take place. The increase in volume will be partly masked by the a.v.c. action, but a big drop in background noise will be noticed. Adjust L1 for best possible reception. Return switch to "off", and the dramatic diminution

Fig. 5 (left): Connections to SW1. Fig. 6 (right): View of the complete unit.
in performance will be immediately apparent. The preamplifier is left connected at all times, but is of course only switched "on" when listening to "Radio 2". There is only one drawback to the unit, namely that it is possible to inadvertently switch off the main receiver, yet leave the preamplifier switched "on", with consequent unwanted drain on the internal battery. A small pilot lamp could be fitted to show when the preamplifier was "on", but the consumption of even the smallest pilot lamp would be almost ten times that of the unit itself!

Mains power unit

It is possible to obtain a suitable supply for the preamplifier from the radio receiver, provided this is of the fully isolated a.c. mains type (with double wound mains transformer) using 6.3 V heater supply to the valves. The theoretical circuit of such a supply is shown in Fig. 7. As one side of the receiver's heater supply is normally connected to chassis, as shown in Fig. 7, it will be necessary to insert a $0.1 \mu \mathrm{~F} 150 \mathrm{~V}$ capacitor in the "earth" lead from the preamp. (point X Fig. 2). Switching off the main receiver would of course automatically remove the power supply to the preamplifier. The author has not tried out this modification, but there is no reason why it should not be satisfactory. Some adjustment of the value of the $2 \cdot 2 \mathrm{k} \Omega$ smoothing resistor (in the negative supply lead) might be required to ensure a supply as near as possible to 9 V "on load".

Fig. 7: Circuit of the mains power unit.
However, in view of the low price and long life of a PP3 battery, many constructors may feel it would not be worth while to go to the added expense of a mains power supply for the unit. On no account should any attempt be made to supply the unit from an a.c/ d.c. receiver with series heaters and a live chassis.

25 \＆ 53 TOTTENHAM CT RD，LONDON W．1．Tel：：01－5801116／1117 4534／7679

Open 9 a．m．-6 pm Monday to Saturday inclusive．Open Thursday until 7 pm

ALL POST
ORDERS TO
Dept．PW 868
25 Tottenham
Court Road，
London，W． 1

BARIGAINS ！ FANE $122 / 17$
2in．in 25 WATT HEAVYDUTY LOUD GPEAK $\underset{\text { high effi－}}{\text { ERS．With }}$ high ely
ciency Antistropic 17,000 gauss．Imap． $3-5$ ohms．Brand new and Guaranteed．List Price E．M．I．COMBINATION x 8pin．Elliptical witn 3 in ．dia．Tweeler，Imp 8 ohras．Power handung
10 watte．Brand new＇and guaranteed．List price
 （Also available without 40^{2}
4

FRNE 301

TWEETERS
Imp． $3-5$ rohms． 17,000
ga．uss． 12 watt．Brand new
and guaranteed．List price GOODMANS SPEAEER BARGAINS 5 in． $30 \mathrm{hm}, 15 / 6 ; 6 \mathrm{in}$ ． $3 \mathrm{ohm}, 29 / 6$ ； 8 ln ．
 3 ohm， $32 / 6$ ，Tweeter， $19 / 6$. P．\＆P． $3 / 6$ per Speaker．
 RHONES

Enjoy Stereo Sound as you have never heard it before：MODEL TTC．
G1111
as illustrated． G1111 as illuartrated
Solt padded earphones． and padald earphoned
Adjustable headband Impedance 8 ohms per phose．Frequency range ph－13，000c．p．s．With 6 fit．
lead．Price $89 / 6$. P． P ． lead．Price 6日／6．P．\＆ P ．
$4 / 6$ ．Other similar typee 4／6．Other similar typee
available．AKAI ASE8S available．AKAI ASE8S．
8 olms， E102 16 ohms， 84.19 .6. EAGLE SE1 16 ohms，

A solid state Casaette recorder with a built－In MW Band Radio Listen and record at the same time－play back anytime any
where．Usee standard Compact Cassettes，Complete Where．Uses standard
with Dynamic microphone with remote control switch，

TEAK FINISH PLINTH， with Perspex cover 6 Ens． （for LAB80 81 gns．） P．\＆P．12／6．
Agenta for Thorens，Dua Agents for Th
Goldring，

An ideal basis for building your own portalsle record player．Just add speaker and turntable tor a mere fraction of the cost． $2-3$ watt printed circuit with control panel on flying lead． Circuit with control panel on dying lead． colourful escutcheon．Brimar valves：EZ80， ECL82 and composite inatallation booklet PRICE 85／－P．\＆P． $3 / 6$

TRANSISTOR F：M．TUNER

SAVE £2．2．0！

6 Transistor FM tuner．Frequency range $88-108 \mathrm{Mc} / \mathrm{s}$ ．Size $6 \times 4 \times 2 \frac{2}{\mathrm{in}}$ ．Ready built for use with most amplifiers， $9 v$ battery operation．
Complete with instructions．List Price 9 gns．

INEAR AMPLIFIEA？

Latest A．C．Mains Models offering Lighest quality at modest cost．
LTB6．All Transistor 12 watts Stereo．Inputs for Tuner，Gram．Mike，Beparate Bass，Treble， Teak case 83.10 .0 extrs
PTA 15 （as illus．）．All Transistor， 15 watts Mono． Inputs for Tuner，Gram，Mike，Cuitar，Bass，Treble and two volume controls，$\varepsilon 15,15.0$ ．Carr．7／6．Teak case £3．10．0 extra．LT45， 2 Valve 8 watta Mono． Inputs for Tuner，Gram，Bass，Treble and volume

Build nine different projects from one vastc kit－simple instructions，no technical know－ ledge required for you to build a Police siren， Metronome，Morse Code Amplifer，Electronic Massager，w／T Transmitter，Radio Tele－ phone，Onc－transistor kadio，Two－transigtor safe，operated on 9\％PP3 battery．Hours of fun for boys and dads of all ages．Complete with all parts and simple step by step instructions．ONLY 69／6．P．\＆P． $5 /$

 Ideal
makers record players，tape decks，etc． 6．3 D．C．Motor， 10,900 r．g．m．at 230 mA ． 1 jnin． zin．long x 3／64in．dia－ meter，9／6．P．\＆P． $2 / 6$ 9v．D．C．Gram deok replacement moto 2m．Ifin．diameter
 $\begin{array}{cc}\text { TWO } \\ \text { FOR } & 30 /=\end{array}$ P．\＆P．2／6 R．H．Take up Cotlor made for Collaro Decks，Many other wses，sup－ resistor for 240 V A．C．operation spindle 1 in $x^{3} / 18$ tn diam．ONLY 24／8

SYNCHRONOUS CLOCK MOTORS Geared for 40 revolu－ tlons per hour． 230 F 50 cycle，with Bize approximately $1 / \mathrm{in}$ ．deep x 2然保． SELECTOR

Anciliary contant pulses and of on but an Auriliary contact is normally suppressor，reststors，plus series contact for continuous operation．Ideal window dis－ plays，switching lamps，models，etc． $12 \mathbf{v}$ ．or P．P． $2 / 6$ ．
ELECTRIC

Made by Crompton Parkinson．Single phase th h．p．Motor $230 / 250 \mathrm{~F} .50$ cycles． $1 \cdot 3 \mathrm{amps}$ ． 1,425 r．p．m．Continuous rating．Spindle $1 \frac{1}{3} \mathrm{x} \frac{1}{2} \mathrm{in}$ ．dia．Overall size less spindle approz． 8 a 6 in．Perfect condition．A bargain for the
work bench．68／6．Carr．12／6．

DELAY ACTION TIME SWITCH

Made by smiths． A．O．operation 200／250v．Double time delays from
0－10 minutes．Size 2 fin．dia． $\mathbf{x} 27 \mathrm{in}$ ．long inc． in．$\times 3 / 16 \mathrm{in}$ ．dia．spindle．BARGAIN PRICE 1778．P．\＆P．2／6．

R.S.T. VALVE MAIL ORDER CO. BLACKWOOD HALL, 16a WELLFIELD ROAD, STREATHAM S.W. 16

All valves brand new

OA2	5/8	6BH6	$7 / 6$	6K6GT	5/-	
0 C 3	5/-	8BJ6	9/-	6K7M	5/9	
147	7/9	6BQ7A	71.	6K7G	21.	
1D5	7/-	6BR7	8/6	$6 \mathrm{K7GT}$	4/6	
1H5	71	6BR8	\$/6	6K8M	$8 / 6$	
1LD5	$51 /$	$6 \mathrm{BS7}$	18/9	BK8G	3/-	
1N5GT	8/-	6BW6	14/-	6K8GT	$71-$	
1R5	6/6	6BW7	14/-	6K26	20/-	
184	b/-	6C4	219	6L1	9/6	
185	4/-	6C5G	4/-	6L6G	$7 / 6$	
1 T 4	3%	6C6	$8 / 9$	6L18	51.	
3A4	3/6	6C8G	6J-	6Q7G	6/-	
304	$6 / 6$	6CDBg	22/-	6Q7GT	$8 / 6$	
$3 \mathrm{Q5}$	6/6	6CE6	$5 / 9$	6SA7M	71.	
384	418	6CW4	121-	6807	$7 /$	
3 V 4	6/9	6D6	$2 / 9$	6SG7	$5 /$.	
6R4GY	$8 / 9$	6 E 5	716	68H7	$8 / 3$	
6U4G	4/-	6F1	9/-	6SJ7	5/-	
5V4G	$8 /$	$6 \mathrm{~F}^{\prime} 5 \mathrm{G}$	8/-	6SK7GT	T $4 / 9$	
6Y8GT	$5 / 6$	6F6G	4/-	68L7GT	4/9	
5Z4G	B/8	6F8G	4/8	6SN7GT	4/6	
6/30L2	13/-	$6 \mathrm{Fl1}$	71.	$6 \mathrm{BQ7}$	6/-	
6 A7	15/-	6 Fl 3	5/-	6U40T	12/-	
6489	12/6	6 F14	12/6	6U59	7/6	
$6 \pm C 7$	3/-	6 F 23	$13 / 6$	6V6M	$8 /$	
6AK5	$4 / 6$	6 F 24	121-	6V6G	$4 / 6$	
6AL5	8/-	$6 \mathrm{~F}^{2} 25$	121-	6V6GT	$8 / 6$	
6AM5	$2 / 6$	6F28	11/6	6×4	$3 / 6$	
6AM6	8/6	6G6	2/6	$6 \times 5 \mathrm{G}$	4/6	
6AQS	6)-	6H6	21.	$6 \times 5 \mathrm{GT}$	6/-	
6AS7G	15/m	6J5M	6/6	7B6	11/6	
6AT6	4/6	6J5G	$2 / 6$	7B7	$7 / 6$	
6AU6	6/-	6J5GT	4/6	$7 \mathrm{C5}$	15/-	
6B8G	21-	6 6 6	3/-	$7 \mathrm{C6}$	15/-	
6B4G	151-	6 J7M	$7 / 6$	7D5	81-	
6BA6	5/-	6 J 7 G	4/8	$7 \mathrm{H7}$	6/6	
6BE6	61-	6J7GT	6/6	7R7	17/6	

SPECIAL 24 HOUR SERVICE
OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Postage 6d. per valve.
C.W.O. No C.O.D.

737	20/-
7 Y 4	8/6
9BW6	$7 /$ -
10 Cl	$12 / 6$
10C2	12/6
10Fl	9/-
10F3	8/-
10F9	$9 / 8$
10 F 18	9/-
10L1	8/-
10LD1	15/-
10P13	15/6
11E3	42/-
12AT6	4/6
12AT7	$3 / 9$
12AU6	5/9
12AU7	4/9
12AX7	6/3
12BA6	61-
12BE6	$5 / 9$
12C8GT	$4 / 6$
12E1	17/6
12J5GT	2/6
12J7GT	$71-$
12K7GT	8\%
12K8GT	$81 /$
12Q7GT	4/6
12847	6/8
128G7	4/3
128H7	31-
128J7	8/9
128K7	4/9
128R7	5/-
$14 \mathrm{H7}$	97 -
19AQ5	5/-
20D1	10/-
20 F 2	14/-

Manufacturers and Export Inquiries Welcome

EM80

| $8 / 8$ | E |
| :--- | :--- | :--- |
| 4/6 | |

6/8	ECF'82	7/-	EM80	7/6
4/6	ECH21	12/6	EM81	$7 / 8$
$7 / 9$	ECE35	11/-	EM84	7/6
$5 / 8$	ECH42	11/-	E8U15	020/-
8/-	ECH81	5/9	EY51	7/6
$7 / 8$	ECE83	8/6	EY86	7\%
15/-	ECL80	$7 /=$	EZ35	4/6
4/9	ECL82	$7 /$ -	EZ40	8/-
3/6	ECL83	10/8	EZ41	10/-
$5 / 9$	ECL86	9/-	EZ80	$5 / 6$
6/6	ECLL80	00	EZ81	5/6
7/6		801-	G230	10/-
7%	EF9	201-	GZ32	$9 / 6$
6/-	EP37A	7 -	Q234	11J-
6/-	EF39	6/-	KT36	$17 / 6$
12/-	EF41	101-	KT61	$12 / 6$
2/-	EF50	$2 / 6$	KT66	$17 / 8$
C80 7/-	EF80	$61-$	KT81	35/-
42 10/-	EF85	6/6	KT81	7C5)
4/6	EF86	619		15/-
$3 / 2$	EF89	$5 /-$	KT88	$27 / 6$
7/8	EF91	3/6	KTW81	101-
$9 / 9$ $4 / 6$	EF92	$2 / 6$	KTZ41	6/-
7/6	EF98	10/-	ML4	$17 / 8$ $6 /-$
$8 / 3$	EF183	$6 / 6$	MSP4	10\%-
8/6	EF184	6/6	MU14	776
14/-	EL32	3/8	MX40	$12 / 6$
21 11/-	EL33	12/6	N78	15/-
31276	EL34	$10 / 6$	N108	251-
$2 / 9$	EL41	101-	NGT1	3/6
$3 / 8$	El42	10\%-	NGT7	55/-
$4 / 8$	EL84	4/8	OA2	$5 / 9$
$6 / 3$	EL90	8/-	0C3	5/.
6/-	EL95	5/6	OZ4	4/6
7%	ELL80	20/-	PC86	11/6
6/8	EM34	25/-	PC88	11/6

Special 24 Hour Express Mail Order Service

JOHN'S RADIO

LARGE QUANTITY OF SARAB V.B.F. TRANS/
available for mmediate export
General Information. This set is normally carried in the life facket of Airmen. It is a complete miniature light weight radio Trans/Receiver, which is used to give a of finding themselves in the ses. It comprises as event of Anding themselves in the sea. It comprises a Trans supply either Battery or Transiator. These three items are permanently interconnected and all units are completely sealed and water tight using a combined speaker/mike Preas to talk or listen buttons, fold up aerial, a total of three valves are used, power required $6 \cdot 3$ volta LT 90 volts sad 435 volts D.C. HT. Frequency $243 \mathrm{Mc} / \mathrm{B}$ Trangmitter output pulae power. Beacon 15 watts, Talk condition singly at $45 /-$, post $5 /$ with circuit. New condition singly at $45 /$ p pos

B44MEIII TRANSRECEIVERS

We have a few of these V.H.F. 12 valve transrecelver operating on 3 switched channels between $60 \mathrm{Mc} / \mathrm{s}-$ $95 \mathrm{Mc} / \mathrm{s}$ complete with all 6 crystais, headphones, mike mobile aerial and dipole aerial, all connectors plus alloy tripod for mounting the set on. Power input 12V D.C. TX output 3 watts, internal speaker (all valves BG7). f10.0.0. each, carr. $30 / \mathrm{F}$. Also available in matched pairs

OLD CO-OP, WHITEHALL ROAD, DRIGHLINGTON, BRADFORD

TRANS/RECEIVER TWO TWO
This is one of the latest releases by the govt. of an extremely recent R / T set covering $2-8 \mathrm{Mc} / \mathrm{s}$ in two switched bands, containing 13 valves (3 EL32s in TX output) which can be used for morse CW or R/T. Also bas netting trimmer, BFO, RF and $\triangle F$ controls, switched meter for checking all parta of set, size 17 I 8 I 12in. Power reand boxed with headphones and mike also two spara and boxed with hesdphones and mike also two spare New plug in powersupply made by us for either 12 V D.O. input 88.10 .0 or $200 / 250 \mathrm{~V}$ A.C. 88.17 .6 .

FAMOUS ARMY SHORT-WAVE TRANSRECEIVER
This set is made up of 3 separate units: (1) a two valve amplifter using a 6 V 6 output valve; (2) (some only, not buit in the very lateat models) a V.H.c. tranarecelver covering 220-241 Mc/a using 4 valvea; (3) the mainshort wave transmitter/receiver covering in two switched bands, Just below $2 \mathrm{Mc} / \mathrm{s}-4 \frac{1}{\frac{1}{2}} \mathrm{Mc} / \mathrm{s}$ and $4 \ddagger \mathrm{Mc} / \mathrm{g}-8 \mathrm{Mc} / \mathrm{g}$ (approm. MC.W metred) uing valves. For R.I., C. w, and
stage, frequency changer, two I.F. (465 Kc/s) signs detector, A.V.C. and output stage, A B.F.O. included for C.W. or single side.band reception. T.X. output valve 807, other valves octal bases. Many extras, e.g. netting quirements LT 12 volts, HT receiver 275 volts D.C. HT transmitter 500 volte D.C., size approx, $17 \frac{x}{5} \times 7$ 1lins. Every set supplied in new or as new condition in carton with book including circuits, only 84.10 .0 , or Grade 2 alightly used $50 /-$ Grade 3, used but complete, 85/E. Cart. ALL 15/.. WE MAKE A MAUNg 200/250 VOLT POWER UNIT in louvted metal case to plug direct into set power socket to run (1) receiver, 70/-, post P.U. (orlginal). FAIR CONDITION, $40 /=$ Carr 5% A P.U. (original). FAIR CONDITION, 40/-, Carr. 5/. A sets is made only if requested. Hesdphones and Mise 15/-, new and boxed.

V.H.P, TRANSRECEIVER MK. I/L

This is a modern seli contained tunable V.H.F. Jow powered frequency modulated transreceiver for \mathbf{R}.T.
communication up to $8-10 \mathrm{miles}$. Made for the Ministry communication up to $8-10$ miles. Made for the Ministry of Supply at an extremely htgh cost by well known British makera, using 15 midget B.G. 7 valves, recelver Slow motion R.F. amplifier. Double auperhet and A.F.C. 8low motion tuning with the disl calibrated in 41 chan-
nels each 200 Kc/a apart. The frequency covered is $39 \mathrm{Mc} / \mathrm{s}-48 \mathrm{Mc} / \mathrm{s}$. Also has built-in Orystal calibrator whlch gives pips to coincide with marks on the tuning dial. Power required LT 41 volta, HT 150 volts, tapped at 90 volts for recelver. Every set supphed complete with valves and crystals, New in carton, complete with adjustable whip aerial, and circuit. Price $\$ 4.10 .0$. , carriage
$10 /$.

THE Society, formed in January 1960 by 6 stalwarts living in the district, now holds its regular weekly meetings on Thursdays at the Beauchamp Lodge Settlement, 2 Warwick Crescent, London W.2. The meetings cater for all interests commencing with c.w. tuition from 7 to 7.45, and then follows a meeting consisting of lectures, quizzes. film and slide shows, junk sales etc.

The club is on the air most Thursday nights with its own callsign-G3PAD which it also uses regularly in contests, field days, demonstrations at local events etc. The equipment includes a 160 metre home-brew transmitter for phone and c.w.; the "Buccaneer" multiband h.f. transmitter (as described in Practical Wireless, September 1964 (jolly good show-Ed.) for all bands 80 to 10 metres; an HRO receiver; 4 and 2 metre transmitters with complimentary crystal-controlled converters working into a common 10 to $12 \mathrm{Mc} / \mathrm{s}$ i.f. strip.

Antennas include a 400 ft . long wire for 160 and 80 metres; a T2FD (terminated tilted folded dipole) for the h.f. bands; fully rotatable six element yagi for 2 metres mounted on the roof approximately 80ft. up; while a 3 element beam for 4 metres with a 14 element 70 cm beam are to be mounted shortly. The club also possesses a 300 watt generator for portable use.

Membership includes a wide variety of types from topband addicts to DX operators. There is also a v.h.f. section. All these are in addition to the manv

Lorry (G8AZX) operating the 2 metre station.
keen s.w.l's who attend the club. Many of the s.w.l's have benefited, from practical experience gained at the club, in their careers. There is also an active group of G8 plus 3 's on $432 \mathrm{Mc} / \mathrm{s}$, and $1296 \mathrm{Mc} / \mathrm{s}$ equipment is at present under construction.

Being situated in the centre of the town, many overseas visitors find their way to the club and are often persuaded to give impromptu talks on amateur radio operation from their own country. Due to the large number of members who live in flats and are thus deprived of constructional facilities, the club holds a constructional evening on Wednesdays at 8 p.m. with a workbench and test

Eric (G3MHQ) and Alan (G8AOO) at the 1966 Club Field Day. equipment provided.
The club gave a demonstration on amateur radio to the Hackney group Queen's Scouts at Gilwell Park last year, and also intends to enter for the 70 cm contests to be held this year, and v.h.f. n.f.d., also to hold its own h.f. field day.

The club has its own quarterly news letter Key Klix edited by Alex Summers, G3AWS. Each year the Beauchamp Award is presented to the member who has served the club best in the past year. This year it was awarded to s.w. 1 Terry Collins.

Visitors are always welcome and full details are available from the Hon. Secretary, M. A. Pawley, G8AWV, who is known to lurk at 52 Sumatra Road, West Hampstead, London, N.W.6. Why not drop in and see us?

PART FOUR LOUDSPEAKERS

IAIN SMITH

SO far in this series I have given some general notes on pick-ups and amplifiers, two links upon which lie a great deal of responsibility for the performance of the whole system. Together, of course, with the turntable drive. These links, however, besides giving a good flat, distortion free, overall response have little else about them to determine the final sound, the tonal balance, of the system. This is the job of the loudspeaker. The quality of the loudspeaker and its enclosure is of the utmost importance. The loudspeaker is the second weakest link in the reproducing chain but whereas one pick-up can sound the same as another, loudspeakers can sound as different as Beethoven and The Beatles. Let us now examine why choice of a loudspeaker is so important. Remember that at one time the loudspeaker was the weakest link. This does not mean that pick-ups have degenerated, rather that loudspeaker design has advanced in leaps and bounds. Research has concentrated on the past weaknesses of loudspeakers and made discoveries and improvements.

Principles

A loudspeaker works on the motor principle. It consists of a frame with a magnet assembly attached. Within this frame is a wax paper cone with a coil wound on impregnated paper. This coil is suspended in the magnet air gap and the a.c. signal is fed to the coil. This causes the coil to move in and out at varying distances and speeds depending on the signal.

Fig. 5: Cross - section of a typical loudspeaker assembly.

The paper cone, being attached to the coil, moves in sympathy and displaces similar airwaves around the speaker. A cross-section of a loudspeaker assembly is shown in Fig. 5.

Response

Generally speaking, loudspeakers vary in size according to the job they have to do. Smaller units, 5 in . diameter or less, are usually designed to handle higher frequencies above $3,000 \mathrm{c} / \mathrm{s}$ because these frequencies require smaller mechanical masses to reproduce with minimum distortion. Larger units; of 10 and 12 in . diameter, are better for lower frequencies in the middle and bass register, because these frequencies require larger volumes of air to be moved due to the longer wavelengths involved. Specially designed high frequency units can handle frequencies from $3,000 \mathrm{c} / \mathrm{s}$ to $20,000 \mathrm{c} / \mathrm{s}$ quite efficiently. The same applies to low frequency units in the $20 \mathrm{c} / \mathrm{s}$ to $3,000 \mathrm{c} / \mathrm{s}$ region.

So we have two individual units which if used together can reproduce the whole audio spectrum. How, then do we connect them? We cannot just connect both units in parallel across one signal source. This is because the high frequency unit output will be distorted by the fact that it is being fed by low frequency signals and vice versa for the low frequency unit. Obviously, then, a frequency selective circuit is required and this brings us to the L-C Crossover Filter network.

Figure 6 shows a schematic diagram of a network. Speaker LS1 is the low frequency unit, LS2 is the high frequency unit. High frequencies cause capacitors to present a low reactance and inductors a high reactance and vice versa for low frequencies. Use is made of these reactive properties in this network. High frequencies are easily passed by C2 into speaker LS2 while L2 shunts off the low frequencies. Meanwhile low frequencies are easily passed by L1 into speaker LSI while Cl shunts off the high frequencies. By careful choice of capacitors and inductors the response of LS2 can be made to fall off at the same point as the response of LS2 rises, say, $3,000 \mathrm{c} / \mathrm{s}$. This point is known as the crossover frequency or point, hence the name of the circuit.

A unit becoming increasingly popular is the dual cone unit. This is a low frequency type cone with a small high frequency unit attached to the centre. Although more efficient, as far as power consumption is concerned, than a crossover system, the frequency range does not extend as far, either end of the spectrum. However, development goes on and in the future the crossover network may disappear.

Two main drawbacks of conventional loudspeakers are "cone break-up" and "Doppler distortion". Let us deal first with cone break-up. This occurs due to movement of the cone distorting its shape and hence distorting the waveform produced. Aluminium cones help overcome this problem, being stiffer, and one manufacturer sandwiches aluminium between two layers of conventional cone material, a development which has met with success.

Most readers will be familiar with the Doppler effect, when a moving object emitting sound, shortens the wavelengths in front of it and lengthens those at the rear. The effect is to make, say, the engine note of an approaching car appear to rise in frequency and suddenly decrease as the car passes the listening point. Now imagine a loudspeaker cone emitting two frequencies $100 \mathrm{c} / \mathrm{s}$ and $6,000 \mathrm{c} / \mathrm{s}$. During one cycle of the low note, sixty cycles of the higher note occur, half of them with the cone approaching the listener, the other half with the cone receding. From the explanation of the Doppler effect it can be seen that this is a form of f.m. distortion that can only be produced by the loudspeaker in any sound system.

Fig. 6: A simple crossover filter network.
Cone break-up can be overcome, Doppler distortion is a little more difficult but one new development which should help both is the Electrostatic speaker. In this type of speaker an electrostatic charge is applied to two diaphragms. Application of the signal between the two diaphragms alters the stress between them and hence produces an audio note. At the moment these speakers are mainly used for treble units.

Returning to the conventional type speaker, some points to remember when making a choice. It should be large enough, both in power handling capacity and diameter, to satisfy your needs. Its impedance should be matched to the output impedance of your amplifier. The low frequency resonance should be between $30 \mathrm{c} / \mathrm{s}$ and $45 \mathrm{c} / \mathrm{s}$ for a good low frequency response. The magnet should be a high flux magnet, say 15,000 lines. The cone surround should be flexible but not too sloppy.

No matter how good your speaker is it will only be as good as the enclosure which houses it. For small enclosures the infinite baffle or IB enclosure is the best. The only opening is the speaker aperture and the enclosure must be carefully designed to be tuned to a reasonably low frequency. An enclosure for the home constructor is the bass reflex enclosure. This type of enclosure relies on the fact that most of the bass notes come from the rear of the speaker. Below the speaker is another aperture or port through which the bass notes are reflected to appear in front of the speaker with the treble notes.

The area of this port should be approximately equal to the working area of the speaker cone.

What size should the cabinet be? Approximately $2 \frac{1}{2}$ to $3 \mathrm{cu} . \mathrm{ft}$. minimum for a 10 in . speaker and 5 to 6 cu . ft. minimum for a 12 in . speaker. An ideal material is $\frac{3}{4} \mathrm{in}$. thick chipboard because of the high density and sound absorbent properties. A speaker cabinet should not resonate or reverberate. This adds "coloration" to the sound and can alter the resonant frequency of the enclosure, usually making it higher. An ideological example is a cabinet of concrete but most wives would strongly object to this purely from an appearance point of view!

Internal damping of the cabinet to prevent resonance can be done with acoustic wadding but the amount must be determined by trial and error. Glasswool lin. thick is another good material and in a small unit I have used $\frac{1}{2}$ in. thick foam rubber sheeting with some success. To prevent the speaker aperture being seen through the speaker fabric, paint the board, under the fabric, matt black. To ensure that the speaker fabric is taut use a synthetic material known as Tygan. This can be tightened after the glue has dried by holding an electric fire in front of it for half a minute or so.

Remembering that a good speaker and cabinet is worth the expense, I would summarise as follows:

1. If using a dual cone unit choose one with the widest frequency response.
2. For a good low frequency response the cone resonance should be $30 \mathrm{c} / \mathrm{s}$ to $45 \mathrm{c} / \mathrm{s}$.
3. The magnet should be high flux around 15,000 lines.
4. The impedance should be matched to the amplifier.
5. The power rating should be matched to the amplifier.
6. With separate units for bass and treble a crossover filter network will be required.

To be continued

TECHNICAL QUERIES

While we will do our best to help readers with technical problems, there are certain rules which must be observed.

Under no circumstances do we answer queries over the telephone.

We cannot guarantee to answer any query not accompanied by a current query coupon PLUS a stamped addressed envelope.

These are the two most violated rules of our query service. So please, before you write, read the few simple rules carefully. These are printed next to the query coupon in every issue.

1 WATI INT

A.J. MCEVOY, B.SC.

RECENTLY we read in P.W. of the RCA CA3020. This is a neat little product, providing 500 mW in a single-ended push-pull circuit. The unit appears in a transistor style TO-5 twelve lead container, and is quoted as being capable of operation from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. In consumer and industrial products, however, the ruggedness specified for military applications is unnecessary, but a little more power would be appreciated, and it is at this point that the General Electric Corp. makes a challenge with its PA222, now available in the UK at 42 s . It can provide up to 1.2 watts into a load of not less than 15Ω. As in most things, however, the result is reached by a compromise, and it should not be concluded that the CA3020 amplifier, described some time ago in these pages by L. McNamara, is superseded by the design which follows. The earlier circuit operated from a 9 volt battery, and therefore was compatible with portable transistorised apparatus, whereas the G.E. unit requires a 22 volt supply for full output. Similarly, some form of heatsink proves essential, as a result of the greater power dissipated in the circuit, and the extremes of temperature which the CA3020 can tolerate would endanger the PA222. None the less, it is an example of competent semiconductor engineering, and the manufacturer is justified in recommending it for record players, radio sets and intercoms. In the circuit to be described, the power supply is not included on the circuit board, as some constructors may wish to use the unit on batteries, e.g. two PP9's in series; a suitable power unit could consist of a transformer with a $15-18 \mathrm{~V}$ secondary, plus 0.5 A bridge rectifier and a $5000 \mu \mathrm{~F}$ smoothing capacitor.

Circuit operation

Now to examine the circuit itself. It is somewhat larger than the integrated circuits the constructor may already be familiar with, being a full 0.77 in . long! This epoxy moulded shell is a G.E. modification of the 14-pin "dual in-line" package, introduced in the USA for more economical integrated circuits not subjected to environmental extremes. The modification consists in the reduced pin requirement, and the provision of a heatsink tab at the end of the unit. In fact, this tab extends right to the centre of the moulding, and the chip of silicon, into which all the components of the circuit are integrated, is
mounted on it. In use, the tab is soldered to an area of copper foil, which should be as extensive as is convenient for better heat dispersal. However, even with a good thermal contact, at full rating it is still possible for the tab to reach $50^{\circ} \mathrm{C}$.

Electrically, the circuit follows established IC practice, being a monolithic epitaxial silicon unit with a preference for $\mathrm{N}-\mathrm{P}-\mathrm{N}$ transistor configurations. Seven active elements are integrated into the chip-six transistors and a diode, as well as six resistive areas.

As can be seen in Fig. 1, the signal is first applied to the base of Tr 1 , a conventional common emitter amplifier stage. Here provision is made for an external load resistor, and due to the spread of characteristics between individual units, no definite value for this resistor is specified in the components list. Instead, as part of the test programme at the factory, a suitable value is determined by the manufacturer, and this is stamped on the plastics moulding of each IC. The resistor will be $68 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$, or $150 \mathrm{k} \Omega$, so the moulding will be marked $R 68 \mathrm{k}, \mathrm{R} 100 \mathrm{k}$, or R150k. The amplified signal developed across this resistor, R 7 in the circuit diagram, then enters the base of Tr2, a split load phase splitter. It may be objected that the resistive elements serving as emitter and collector loads here are unequal; but then, so also are the impedances into which the signals developed across them are fed, and signal equality is thus maintained.

It is now possible to regard $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$, and Tr3 and Tr6, as super alpha pairs in series connected single ended push pull. Since a low output impedance is a characteristic of this type of circuit,

Fig. 1: Diagram of the G.E. PA222 integrated circuit.
a good match to a 15 to 25Ω loudspeaker will be obtained. The diode D1 operates as a latching diode in the negative half of the output signal cycle, maintaining full drive.

The performance of the unit in a practical amplifier is in great measure controlled by the external elements used with the IC, and in the circuit to be described, two separate feedback loops are used. First there is a d.c. feedback through $\mathbf{R 8}$; this is in fact the base bias supply for Trl, which due to the internal circuitry of the IC, is dependent on the currents in the emitters of Tr 2 and Tr 3 . Should these increase, the base bias will increase; since then the current in RI will increase, the base voltage on Tr 2 will drop, tending to restore the original situation. The effect on the overall d.c. stability of the amplifier is obvious. Further, the reader will now realise the importance of the correct choice of R7; if it is too low, the power dissipated in the circuit will be unnecessarily large, whereas if it is too high, the output stages are starved, resulting in distortion.

The question of a.c. stability should also be considered. As is well known, the epitaxial transistor excels at high frequencies, and in a direct coupled amplifier such as this, there is no inherent frequency limitation. An r.f. suppressor C4 is therefore added across the input terminals, and together with the impedance of the signal source, it introduces a time constant limiting high frequency performance. (If necessary, with a very high impedance source, a $27 \mathrm{k} \Omega$ resistor may be placed across the input terminals.) To this high frequency cut-off eliminating r.f. instability there is added an a.c. feedback loop to correct the performance of the unit for audio frequencies. R9 and R11 form a potential divider across the audio output of the unit, and the signal developed across R11 is returned to pin 1 of the IC, the emitter of Tr1. This transistor acts as a common base amplifier towards this feedback signal, and therefore the performance of the circuit over the audio range is linearised. Other r.f. suppression components are C 7 in the collector circuit of Trl , and R10-C6 across the audio output.

Construction

With this understanding of the operation of the circuit, construction can begin. The regular reader will be familiar with the procedure for preparing printed circuit boards, using lacquer paint to protect the conductor areas of copper foil on a sheet of laminated paxolin while removing the unwanted areas with a concentrated FeCl_{3} solution. Remembering the function of part of the copper foil as a heatsink as well as an electrical conductor, it will be realised that veroboard is unsuited to this application, unless a separate square of copper, lin. square, is soldered to the reverse side of the board, bridging several of the conducting strips, close to the tab of the IC.

\star components list

Resistors:

R7	see text	R10	22Ω
R8	$22 \mathrm{k} \Omega$	R11	10Ω
R9	470Ω		

(R1-R6 are contained within the integrated circuit).

Capacitors:

C 1	$0.1 \mu \mathrm{~F}$	C 5	$10 \mu \mathrm{~F} 25 \mathrm{~V}$
C 2	$200 \mu \mathrm{~F} 25 \mathrm{~V}$	C 6	$0.001 \mu \mathrm{~F}$
C 3	$10 \mu \mathrm{~F} 25 \mathrm{~V}$	C 7	350 pF
C 4	$0.001 \mu \mathrm{~F}$		

Integrated circuit type G.E. PA222, Jermyn Industries, Vestry Estate, Sevenoaks, Kent.
Price is $42 /-$ plus p. \& p.

Fig. 2: Circuit diagram of the complete amplifier, suitable for use with a medium impedance microphone or pick-up.

Fig. 3: Layout of the printed circuit board (copper side). Only the PA222 is mounted on this side.

Actual assembly of the unit on the circuit board follows standard methods. It might be well to mount
the IC last, to avoid damage due to overheatıng. The soldering of the tab should be done with special care as it is to be a thermal and electrical conductor, so that a generous amount of solder, on the tab and the surrounding copper, is worth while. This area should be pretinned, so that the solder will be in place when the IC is inserted, and only the proximate area will require remelting to adhere to the tab. Then the rest of the solder will rapidly dissipate the heat in the melted zone.

Testing

All will now be ready for test, and a signal source, power supply and loudspeaker can be connected. As already mentioned, the speaker should be of at least 15Ω, and there should be vigilance to prevent accidental short circuits of the loudspeaker connections; should these be allowed to persist for more than a very short time, there will be excessive dissipation in the chip, with the possibility of damage. When switching on for the first time, it would be wise to insert a milliammeter in the power supply line; the current drawn should be approximately 25 mA . with no signal. This will rise immediately any audio output is drawn from the circuit, a characteristic of all class B push-pull amplifiers, reaching a maximum of 115 mA at full output. This figure, for 1 watt output, indicates an overall efficiency for the amplifier of almost 50%, a quite creditable performance.

Underside view of the complete amplifier showing layout of components, other than the I.C.

As most of the assembly of electronic elements in the circuit is completed in the manufacturing of the IC, it is unlikely that any troubleshooting will be necessary. The following points are, however, worth noting. Provided the correct value for R 7 is used, the most probable cause of excessive dissipation, or high quiescent current, is a leaky capacitor C3 changing the base bias applied to Tri. Should distortion occur, suspect the capacitor C5, which is intended to ensure full drive during the positive half of the output signal. (Diode Dl has this function for the negative half.)

The applications of the amplifier are left to the initiative of the reader; it is hoped that successful assembly and operation of this IC amplifier will inspire the same enthusiasm for these components in the constructor as it has in the writer of this article.

SEPTEMBER ISSUE OUT AUGUST 9TH
AND.. more constructional projects plus all the usual features.
ORDER YOUR COPY-NOW!

practically Wireless commentary by IENTI

LAST month's venture into the hurly-burly of wireless politics may be expected to give Henry-and the Editor-a few bruises. So, while the liniment is still out, let's look at the parallel problem of wired systems.

Problem it is, for the Radio and Television Retailers' Association is still, at the time of writing, having a bitter wrangle with the Greater London Council over an award of a contract to Rediffusion that involves a cool $£ 600,000$. This was a 15 year contract awarded early in the year for wiring a v.h.f. distribution system for television and sound to 9,000 council dwellings and 8,000 homes by private developers.

Let me block in a few details. By 1970 all three existing television programmes should be radiated on 625 lines u.h.f., and duplicated (BBC and ITA) on 405-lines v.h.f. This means that all dual-standard receiver owners will be able to receive the broadcast programmes, provided that they have an adequate aerial installation and live within the 99.5 per cent coverage area. For those that don't, and for many others that receive unacceptable quality of picture or sound, the various relay systems will be a necessity.

An adequate aerial installation

But-and it is a big butrelay systems are formidably costly when translating u.h.f. signals, and relaying u.h.f. is out of the question because of cable losses. And whereas the BBC is battling hard for better u.h.f. coverage, and has evinced an optimism about future developments which members of the Royal Television Society regarded with some scepticism at a recent forum, the ITA appears to be thinking along different lines.

The radio retailer wants to be able to sell a set that satisfies his customer aesthetically, as well as being capable of picking up the programmes in any given area, whether these are broadcast or piped. Which argues that v.h.f. wired systems are the answer. The normal dualstandard television receiver will pick up the radiated u.h.f. and v.h.f. signals, plus any piped signal from a relay company on an unused v.h.f. channel. A relay network should work with normal sets, they say.

But Rediffusion are battling hard for h.f. systems. At an earlier Royal Television Society meeting, R. P. Gabriel, technical director of Rediffusion Research, brought up some impressive arguments for h.f. systems. Even on grounds of costs in rural areas, he asserted that wired sound-and-vision could hold its own. A feasibility study at Wooler showed that transmitter costs could be up to $£ 50$ per home, while the network cost, based on three-core cable, reed switches and diode logic, and even assuming new cable posts for all remote areas, could be reduced to $£ 32$ per home. He forecast that purely broadcast reception would eventually nullify any of the advantages at present enjoyed by the higher frequency bands and lead to the
sort of chaos we are all familiar with on the medium waves.

Moreover, he argued, the wired systems eliminated the real weak spot of the average receiver, the tuner unit, if h.f. relay rather than v.h.f. wired systems were employed.

Which is where we came in, for it was a v.h.f. system that was agreed in principle by the G.L.C. for the Thamesmead contract. Five firms tendered for this (including Rediffusion,

There are hot words flying
we should add), and then the committee decided to extend the invitation to h.f. systems, and Rediffusion collared the award.

Mr. Michael Keegan, director of RTRA, is understandably up in arms. H.F. systems rule out Woolwich and District Traders TV Relay Ltd., and prevent the ordinary dealer from selling any set 'from the shelf'. But Rediffiusion argue that normal sets are simplified front ends can always be used, and that special sets are available from a number of firms, and can be installed by local dealers.

Altogether, there are hot words flying. Henry has tried to be objective, and feels sure that readers with a vested interest in wireless reception will have a few opinions to offer.

The floor is yours, gentlemen.

repairing radio sets

PART 5

Abstract

We have now arrived at the stage where we will examine, step by step, the servicing of a six transistor domestic receiver.

NOW that we have a reasonable grounding in the elementary theory of semiconductor diodes and transistors and a fair knowledge of the static and dynamic conditions under which "circuit blocks" in transistorised equipment operate, we are in a good position to concentrate more on the servicing angle, based on the popular transistor radio.

It has already been intimated that general servicing resolves to three basic actions. These are (i) locating the faulty stage or section (fault diagnosis), (ii) finding the faulty part or wiring in the located stage and (iii) making the repair (such as clearing the shortor open-circuit or replacing the component). Sometimes action (i) will reveal some maladjustment, like misalignment of the tuned circuits, in which case the "repair" will be to restore the tuning by realignment and so forth.

Mr. Hellyer, in his parts, is telling about making the actual repair, soldering and the mechanical aspects of the exercise, so this final article dealing mostly with the electronics of radio will focus most attention on actions (i) and (ii).

A block diagram of a typical "domestic" transistor set is given in Fig. 22. Recapitulation on the process involved will not be amiss: the aerial, which is a ferrite rod, abstracts the electromagnetic component of the passing radio wave and produces an r.f. signal voltage across its appropriate winding(s). This is fed to the frequency changer to produce the i.f. signal by heterodyning with the local oscillator signal. The oscillator is tuned "in gang" with the aerial tuning to maintain a frequency-difference equal to the i.f., and this signal is then amplified by the i.f. stage.

The detector rectifies the modulated i.f. signal and delivers an a.f. signal corresponding in nature to the envelope of the modulation. It also produces a d.c. voltage from the i.f. carrier-wave, which is fed back to the i.f. stage as a.g.c. bias.

The a.f. signal is applied to the a.f. stage and thence to the output stage which drives the loudspeaker. In other words, the output stage converts the a.f. signal to power required by the loudspeaker. Power for the transistors is usually given by a battery or series of cells, although some sets have mains power packs.

FIRST CHECK— TOTAL CURRENT

Now, if we are presented with a "dead" set, the first move is to discover where the discontinuity exists. However, before this trend is commenced, it is just as well to make sure that the battery or power supply is "energising" the circuits. The quickest action here is to break the supply positive lead and introduce a current meter in series, as shown in Fig. 23. An average transistor set passes about 14 mA when there is no output from the loudspeaker. This is called the quiescent current, and when delivering about 250 mW (about maximum for a small set) the current can rise to almost 50 mA .

Since the set is "dead", we should not get a reading anything like 50 mA . Indeed, the reading could be below the quiescent current value as a result of the fault. On the other hand, it could be well above the quiescent value even with zero loudspeaker output if the fault is caused by a bad electrical leak or short in component, transistor or circuit

If the current is substantially above the quiescent value, the battery should be disconnected and an attempt made to locate where the extra current is being dissipated. Large current means that something must be getting pretty warm, and this might be a transistor. A transistor warm to the touch when the set is quiescent is a fair indication either
that the transistor is faulty or that its biasing is seriously incorrect.

This is where our grounding in the static conditions of transistor circuits will pay dividends, and it is not intended here to repeat what has already been said on this subject.

If there is a zero current, check the battery voltage under load conditions. This requires the connection of a resistor across the battery, as shown in Fig. 24, for open-circuit voltage measurement with a high resistance voltmeter means nothing! The resistor should have a value to pass about 50 mA , but do not leave it connected across the battery too long. Calculation is easy, calling for the application of Ohm's law. That is, dividing the battery voltage by the current in amperes. The resistance value is then in ohms. A value of 180 ohms will thus pass 50 mA at 9 V . Use the nearest preferred value. If the battery then measures more than 1 V below its nominally rated voltage, its resistance is rising; but it would still work. If the voltage falls by 25 per cent or more the battery should be replaced.

Fig. 23: Showing how the total current of a transistor set is measured.

Fig. 24: A transistor battery should be checked under load, as this diagram shows.

Assuming now that the quiescent current is reasonable we can start hunting for the faulty stage. There are two basic ways of doing this: (i) using the loudspeaker as an indicator of signal and (ii) using a separate indicator which can be moved from stage to stage. Let us take (i) first.

STAGE-BY-STAGE TESTING

The plan is to apply suitable signal to each stage in turn until (a) we get an output from the loudspeaker or (b) until the output ceases; (a) and (b) depend on whether the test signal is applied at the front working towards the loudspeaker or at the loudspeaker working back towards the aerial. If we use (a) we would (1) apply modulated r.f. signal to aerial circuit, (2) to the frequency change, (3) modulated i.f. signal to the i.f. stage, (4) audio signal to the a.f. stage, (5) audio signal to the output stage and, finally, (6) audio signal (power) to the loudspeaker. At some point along the line we would get a response from the loudspeaker. Say there was no response with input at (1) or (2) but response with input at (3), the trouble would obviously lie in the frequency changer or coupling to the i.f. stage.

By using scheme (b) we would apply the audio first to the loudspeaker and then work back towards the aerial until the response ceases. If, for instance, we get a response with the input at point (5) but not at point (4), the discontinuity would exist in the a.f. stage or coupling to the output stage. The signal injection point numbers used above are indicated on the block diagram in Fig. 22.

Whether scheme (a) or (b) is used is essentially a matter of preference. One is not particularly quicker than the other, for if we use scheme (a) and find that the loudspeaker is open-circuit we would not have used any more time than if (b) were used and the aerial was found to be open-circuit. Many technicians, including H.M. Forces, prefer scheme (b). The practising service technician is used to employing both schemes. If one is measuring the performance of the equipment, stage by stage, then by establishing a calibrated output meter in place of the loudspeaker, the level of test signal required to give a "standard" output can quickly be determined at each stage.

SIGNAL TRACING

Method (ii), involving the use of a signal detector, or signal tracer as it is called, has much in its favour from the domestic transistor set point of view. In many cases the signal as picked up by the set's aerial can be used, and the idea is to tap the probe, stage by stage, from the aerial towards the loudspeaker, listening for the signal at each point.

Very sensitive probe-type detectors use headphones or earpieces, and the signal actually at the ferrite rod aerial winding can be heard on some of them. This equipment consists of a simple rectifier followed by a stage or two of a.f. amplification, terminating across the 'phones or earpiece.

The plan, then, is to tap along the circuit until the signals cease, at which point the break exists. If we use Fig. 22 for illustration again, signal at (1), (2) and (3) but not at (4) would indicate discontinuity somewhere between the i.f. and a.f. inputs. A signal tracer can also be used to "test" the detector stage more conveniently than the schemes previously outlined. This is because this sort of instrument is designed for switching straight into its audio stages, thereby permitting amplification of any audio present across the set's detector load.

For example, if i.f. signal is "heard" at the detector input, while no signal can be heard across the load, the detector diode is probably shorting or opencircuit.

In practice, it is rarely necessary to run through the whole sequence of signal tracing or stage-by-stage testing because the set itself, even in its "dead" condition, often yields clues. Most sets give a "thump" from the loudspeaker when switched on due to the output transistors passing a current pulse through the loudspeaker. If this occurs on the faulty set, one can be sure that the loudspeaker and output transistors are passing current, at least; also, of course, that the power supply is active.
The first move in this event, therefore, would be establishing that the rest of the audio section is active. This can be done by applying an audio signal to point (4) in Fig. 22. If this signal gets through to the loudspeaker, then one would signal-trace or stage-by-stage test in the r.f. and i.f. stages.

A quick test for audio "liveliness" in valved sets is to touch the control grid of the a.f. valve with a finger or with the blade of a screwdriver with a finger resting on the blade. A very loud hum is produced by the loudspeaker if all is well. This same test does not work so well in transistor sets or amplifiers because there is no mains input, and the hum that is heard is mains hum. Nevertheless, a weak hum is often present when the set is being serviced in mains-
wired environments, and when a finger-connected screwdriver blade is used very loud crackles (if not hum) should emanate from the loudspeaker when the blade is scraped on the a.f. transistor base.

Complementary to the signal tracer is the "signal injector". This is a small transistorised testing probe or box containing a multivibrator. This is rich in harmonics of the fundamental frequency, and wherever applied to a transistor signal circuit will give an output from the loudspeaker. Thus, it is a simple matter to work to and fro' along the stages until the point where the signal appears or ceases is located. More detailed testing might then be needed to reveal the actual component responsible for the defect.

One disadvantage of this instrument is that it can give an output when applied to the aerial circuit, even though the set is otherwise dead. This is when the trouble is due to failure of the local oscillator; so really the instrument could be used indirectly to tell whether the local oscillator section is at fault !

TRANSISTOR SET CIRCUIT

So much for stage-by-stage testing and signal tracing in transistor sets. Let us now try to tie this in with the circuit. Figure 25 shows a circuit of a fairly recent transistor portable, and this is divided into the stages shown in Fig. 22.
The ferrite rod aerial contains two main sets of windings, one tuning the medium-waves and the other the long-waves. The top winding allows the connection of a car-type aerial.

The signals are tuned by the aerial section of the gang, C3, and applied to the base of the frequency changer transistor Tr . The collector/emitter circuit
of this transistor is also arranged in the form of an oscillator in conjunction with the oscillator coils, and tuning here is by C8, ganged to C3.

The i.f. signal developed in the collector circuit of Tr 1 is tuned by the first i.f. transformer (i.f.t.1) and thence coupled to the base of the i.f. transistor $\operatorname{Tr} 2$. The second i.f. transformer (i.f.t.2) tunes the signal again in the collector and couples it to the detector diode D2. R11, in conjunction with the volume control R12, forms the detector load, with C16 acting as the i.f. bypass.

The a.f. section consists of the complementary transistors $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$, the collector of the former in d.c. connection with the base of the latter. $\operatorname{Tr} 5$ and $\operatorname{Tr} 6$ are the output transistors, also in complementary mode. These complementary circuits were considered in Part 3.

The loudspeaker is coupled to the junction of Tr5 and Tr6 emitters through the electrolytic capacitor C23. The jack socket for headphones or tape recorder coupling disconnects the loudspeaker when a jack plug is inserted.

Tr1-Tr4 are in the common-base emitter (signalwise), $\operatorname{Tr} 1$ having R4 and R5 to set the base bias and Tr3 having R13 and R14. Base bias for Tr4 is achieved by the d.c. coupling, as explained in Part 3, while the bias for the i.f. transistor $\operatorname{Tr} 2$ is obtained by the potential-divider effect (across the supply) of R8 in the upper leg and the series combination of R10, R11 and R12 in the lower leg.
This is where a.g.c. is applied, for across the detector load (R11 and R12) develops a positive potential of magnitude depending on the strength of the i.f. signal applied to the detector diode D2. This potential counters the negative position at Tr 2

Fig. 25: Circuit diagram of a commercial transistor set, showing the stages detailed in Fig. 1.
base fixed by the potential-divider, and the stronger the i.f. signal (i.e., signal picked up by the aerial), the greater the counteracting effect. This reduces the gain of the i.f. stage accordingly, and thus sets the gain to suit the strength of the input signal.

This is called reverse a.g.c. Sometimes forward a.g.c. is applied. In this case the a.g.c. potential adds to the potential at the base supplied by the potential-divider. This causes an increase in collector current, and a resistor in series with the "cold" side of the collector load produces a greater, volts drop, which is reflected as a decrease in collector voltage. Special transistors are also available for optimum forward a.g.c. effect.

Diode D1 assists the a.g.c. action by damping the tuned circuits when the input signal is very strong. This diode is biased from the emitter of Tr2, and the circuit is arranged so that the damping increases when the diode conduction increases, as happens when Tr2 collector (and hence emitter) current falls due to the a.g.c. action earlier described.

The transistors in Fig. 25 circuit are alloy-diffused type, and the high gain possible from the i.f. stage satisfies the requirements for a small set. Some sets, especially earlier models using alloy-junction transistors, feature two i.f. stages. The line-up would then be OC44 frequency changer followed by two OC45 stages.

The low value of feedback capacitance of the alloy-diffused AF117 makes i.f. neutralisation unnecessary, but some earlier models will be found to have neutralised i.f. stages. These were illustrated in Part 3.

So far, we have investigated the action necessary with a "dead" set. In practice, the connection of instruments and test probes is nowhere near as easy as verbal description implies! Most sets are built upon printed circuit boards, making it very difficult to establish connection to the required circuit. Fortunately, the components are numbered on the printed circuit boards (in many sets, anyway!), so it is really essential to have to hand a circuit diagram on which the components carry the same reference numbers. It is then relatively simple to locate the circuit to which instrument or test connection has to be made.

CONNECTING-IN

It is virtually impossible to clip on to a conductor, or even component wire, of a printed circuit board assembly, so once the required circuit has been located it saves a great deal of time to solder on a short length of 22 s.w.g. tinned copper wire as a "test point". This facilitates the connection of test equipment.

Signal from a generator can easily be coupled to the aerial from the "car aerial" socket if fitted. Alternatively, a loop of three or four turns of wire placed near the ferrite rod should be connected across the generator output lead. On no account should the generator be connected direct to the aerial coils themselves, as this practice heavily damps the tuned circuits and makes alignment and tuning tests virtually impossible.
Tests in the i.f. stages can be at either base or collector, depending on the requirements. But it is best to feed the generator signal to points such as these through a capacitor of about $0.01 \mu \mathrm{~F}$ (a higher
value is needed to couple-in and extract audio signal).

There should be no problem in identifying the positions marked on the block diagram in Fig. 22 with the actual circuit positions in Fig. 25. All sets follow the general pattern outlined.
So much, then, for the "dead" set; let us now investigate other faults that occur in transistor sets.

LOW SENSITIVITY

This is a fairly common symptom, and the most common cause is a battery nearing exhaustion. This should be the first test, as shown in Fig. 23. Transistors, unlike valves, rarely lose "conductivity" (emission, so to speak), so while it is desirable to check valves on a tester or by substitution, this should not be one of the initial actions when testing a transistor set for low sensitivity. Indeed, it is often a watchmaker's job extracting transistors from small sets.
D.C. testing, as explained in Part 1, will generally bring to light a defunct transistor without having to remove it from circuit. Open-circuit bypass capacitors in the base or emitter circuit will cut sensitivity without affecting the d.c. conditions. The best check is by shunting each suspect in turn with a test capacitor of about $0.5 \mu \mathrm{~F}$.

The stage gain of a section can be measured, if one has the equipment, by applying a signal of known level to the input and measuring the signal on a valve-type voltmeter (or transistor-type voltmeter) at the output. The gain, of course, is given by dividing the output signal by the input signal. and this can be converted to decibels if required. Input and output impedance is important with this kind of test, especially when decibels are used to express the gain.
If the gain appears to be low in a stage or stages containing a tuned circuit, misalignment could well be responsible, and this may come about by alteration in value of a fixed tuning capacitor as well as by unskilled tampering with the tuning cores. For example, C6, C10 or C12 in Fig. 25 (across the i.f. transformer windings) could have altered in value. This is shown up, however, by the associated core failing to bring the circuit into proper tune. A word of warning here: it is bad practice simply to "peak" the i.f. tuning to improve sensitivity, for in some sets the tuning is staggered and peaking could encourage instability.

When realignment of transistor sets becomes necessary (or if it has to be checked), it is bighly desirable to refer to the maker's manual or to a service sheet for the correct procedure, as this differs between sets. Remember, though, that the sensitivity of the aerial is adjusted by sliding the coils along the ferrite rod (in addition to the trimming of the aerial coils). This action changes the inductance, being maximum with the coils in the middle of the rod and decreasing as they are slid towards either end.

A broken ferrite rod will impair the sensitivity considerably. The best action here is to replace the rod. If a replacement is not available, however, it is possible to cement the broken pieces together, using a commercially produced cement that adheres without heat treatment. The broken section or sections should be pushed very tight together and it is important that the rod remains straight when repaired.

INSTABILITY

Open-circuit decoupling capacitors can cause this symptom, especially in the audio stages. (Such effects are given on Bands 6 and 7 of the fault symptoms record).

Open-circuit C18 or C24 in Fig. 25 are a common source of instability, especially noticeable as the internal resistance of the battery rises.

Peaking i.f. transformers which are designed for "stagger tuning" is another cause in which the amateur becomes involved. Sets with neutralising of the i.f. stages are particularly prone to instabilty if the i.f.'s. are maladjusted or if the neutralising capacitor changes in value. When replacing i.f. transistors in sets of this kind, it may be necessary to re-neutralise, depending on the stability of the basic design.

It is often necessary to replace older transistors with more recent ones of higher gain. This can encourage instability, and to overcome this the base potential-divider values should be altered to reduce the base bias (i.e., increase the value of the top arm). When a higher-gain frequency changer transistor is used, the set may burst into oscillation towards the high-frequency end of the medium wave band. Again, reduce the base bias; but if this does not cure the trouble, the value of the emitter capacitor should be reduced. This is C7 in Fig. 25. Incidentally, this capacitor controls the amplitude of local oscillator signal, and when a lower gain transistor is used, the value may have to be increased to sustain oscillation over the bands.

Lack of oscillation is a common fault, particularly with older sets. The oscillator coils are sometimes responsible, but in some. cases the older type frequency changer transistor has a reluctance to oscillate. Oscillation can be checked by connecting a voltmeter across the emitter resistor and shorting out the oscillator tuning capacitor (C8 in Fig. 25). If the stage is oscillating, a change in meter reading should occur when the oscillator tuning is shorted (see Test 1 in Fig. 25).

DISTORTION

Distortion (Symptom 9) mostly results from unbalance or incorrect biasing in the audio sections. Low-level distortion is often caused by unbalance of the two output transistors. This causes secondharmonic distortion at low as well as high levels.

Another common distortion, explained in Part 3, is crossover distortion due to the quiescent current of the output transistors being too low. Crossover distortion is also present at low levels, and can be seen by monitoring the signal across the loudspeaker on an oscilloscope when a sinewave signal is applied to the driver stage.

Remember, also, that low battery voltage greatly encourages distortion, and the first action, therefore, should be to test the battery or replace that in use with one known to be in good condition.

Other causes of distortion have already been given in Part 3.

We have now covered almost all aspects of transistor radio servicing, but it is essential for the amateur and student to read this final electronics article in conjunction with Parts 1 and 3 , which deal with d.c. and signal operating conditions.

TO BE CONTINUED

Youn

QUESTIONS ANSWVERED

Audio Thump!

Is there any way of eliminating the "thump" in the loudspeaker when switching on a mainsenergised transistor amplifier?

This appears to be due to the smoothing capacitor in the power supply being uncharged at the moment of switching on and therefore momentarily inoperative.
If, having switched on, the amplifier is then switched off and then immediately on again, there is no thump. However, if a few seconds are allowed to elapse before switching on again, the thump returns.-S. Pinder (Weston-super-Mare).

If the thump is due to the charging action of the capacitors in the power supply, then we suggest that you check that these capacitors are in good condition. You might also try the effect of including a small resistor of suitable wattage rating between the output of the rectifier and the reservoir capacitor which will limit the charging current. The value of this resistor might prove fairly critical and perhaps a value of 47Ω would be a suitable value to start.

You should also investigate the possibility of employing a suitable Thermistor in series with the feed to the capacitors. This would give a high series resistance until current was drawn from the power supply. Suitable Thermistors are made by firms such as Standard Telephones and Cables Limited, Footscray, Sidcup, Kent.

Technical Terms

Could you please send me a complete list of the technical terms in use in wireless and electronics today as I am a comparative newcomer to the world of electronics?-J. Edwards (Anglesey, N. Wales).

It is far beyond the scope of our query service to supply a complete list of technical terms. We suggest, however, that you obtain a copy of our Practical Wireless Radio and Television Reference Data from your local bookseller. A nother useful book is Dictionary of Radio and Television which is also published by this company.

S.W. Converters

I am hoping to build a shortwave converter but I am not sure of the principle involved. Each time the tuning capacitor in the converter is altered to cover a different frequency its output frequency will alter and therefore the broadcast receiver, which it is feeding, will need to be re-tuned for each station received. Is this so?-C. Reading (Ruislip).

Converters for use with broadcast receivers, in effect, enable the broadcast receiver to be used as an i.f. amplifier. All of the incoming signals are converted, and appear at the output of the converter at one single frequency-often $1: 6 \mathrm{Mc} / \mathrm{s}$. In effect, a converter is the front-end of a normal superhet receiver, in which the role of the i.f. amplifier is played by the broadcast receiver which remains tuned to the unvarying i.f. of the output of the converter. Thus the output of the converter remains constant.

O原
 INPUT 230/240v. A.C. 50/60OUTPUT VARIABLE $0-260 \mathrm{v}$ BRAND NEW

Keenest prices in the country All Types (and Spares) from $\frac{1}{2}$ to 50 amp. from stock. SHROUDED TYPE 1 amp, €5. 10. 0. \&6. 15.0 . 4 amps .59 amps 5 amps, \&9. 15. 0. 8 amps f14. 10. 0. 10 amps, $£ 18$. 10.0 . 12 amps, $£ 21.0$. 0. 15 amps, 12 amps, $£ 21.0 .0$. 15 amps,
$\pm 25.0 .0 .20 \mathrm{amps}, ~ £ 37.0,0$. $37.5 \mathrm{amps}, ~ £ 72.0 .0 .50 \mathrm{amps}$, \&92. 0.0. OPEN TYPE (Panel Mounting) $\frac{1}{2}$ amp, £3. 10.0. I amp, E5. 10.0. 21 $\frac{1}{2}$ amps, £6. 12. 6.

PORTABLE TYPE

1.5 amp . portable fitted metal case, voltmeter, lamp, switch, etc. 69.5 .0 .

RHEOSTATS (NEW)
 $\overline{100}$ WATT POWER RHESSTATT (NEW)

AVAILABLE IN THE FOLLOWING VALUES

1 ohm, 10 a.; 5 ohm, $4.7 \mathrm{a} . ; 10$ ohm, 3 a. 25 ohm, 2 a.; 50 ohm, 1.4 a.i 100 ohm, 1 a. 250 ohm, 7 a .; 500 ohm, . 45 a.i I, 000 ohm $280 \mathrm{~mA}: 1,500$ ohm, $230 \mathrm{~mA} ; 2,500 \mathrm{ohm}, 2 \mathrm{a}$. Diameter tin. Shaft length $\bar{n} i n .$, dia. 15 in . All at $27 / 6$ each
${ }_{50}^{\text {P. \& P P }}$ WATT. $1 / 6$. $1 / 5 / 10 / 25 / 50 / 100 / 250 / 500 / 1,000 / 1,500 / 2,500$ ohm, $21 /-$. P. \& P. I/6. ohm, I4/6. P. \& P. I/6. 200-250 v. A.C. 20 amp. contacts twice on, wice off, at any manually preset time. Spring reserve (in ease of power cut) fully
ested $£ 3 / 9 / 6$. P. \& P. $4 / 6$. Or complete tested $£ 3 / 9 / 6$. P. \& P. 4/6. Or complete
in weatherproof metal case (illustrated) \&3/19/6, plus 4/6 P. \& P. Can'be supplied with solar dial, on at dusk-off at dawn Prices as above.

INSULATED TERMINALS Available in red, white, yellow, black, blue
and green. New $17 /=$ per doz. $2 /-$ P. \& P and green. $\frac{\text { New }}{\text { AO }} 17 /$ per

$230 / 250 \mathrm{~V}$. A.C. SOLENOID

 Heavy duty type, app.$17 / 6$ plus $216 \mathrm{P} . \& \mathrm{P}$.

12:24V. D.C. SOLENOID

 Approx. 8 oz. push. Price $8 / 6$ plus $1 / 6$ P. \& P.

PRECISION INTERVAL TIMER From 0-30 seconds (repetitive). Jewelled balanced movement. Lever re-set Operates 230V. A.C. 5 amp. c/o Micro switch. New. Price $17 / 6$ plus 2/6 P. \& P. CONDENSERS $2,500 \mathrm{mfd} 100 \mathrm{v}$. $12 / 6 \mathrm{I} / 6 \mathrm{P}$. \& P $4,000 \mathrm{mfd} 25 \mathrm{v} .10 /-1 / 6$ P. \& P. $4,000 \mathrm{mfd} 50 \mathrm{v}$. 15 $1 / 6 \mathrm{P}$. \& P. 10.000 mfd 35 v . $15 / \mathrm{L} / 1 / 6 \mathrm{P}$. \& P. CONSTANT VOLTAGE TRANSFORMER Input 185-250 v. A.C. Output 230 v A.C. Capacity 250 watt. Attractive metal case Fitted red signal lamp. Rubber feet.
Weight 17 Ib . Price $£ 1 / 10 / 0$. P. \& P. I5/-.

SELENIUM BRIDGE RECTIFIERS 30 volt 3 amp., $11 /$, plus $2 / 6 \mathrm{P}$. \& P.
 L.T. TRANSFORMERS

TBAISFOMETERS

LIGHT SENSITIVE SWITCH
Kit of parts, including ORPI2 Cad- (8) mium Sulphide Photocell, Relay, Transistor and Circuit, etc., 6-1
volt D.C. op. price $25 /-$ plus $2 / 6$ Poit \& P. ORP 12 including circuit. [$10 / 6$ each, plus $1 /-\mathrm{P} . \&$ P.
A.C. MAINS MODEL

Incorporate
Mains Transformer, Rectifier and specia
relay with $3,5 \mathrm{amp}$ mains c / o contacts.
Price inc. circuit $47 / 6$ plus $2 / 6$ P. \& P.
LIGHT SOURCEAND PHOTO CELL. MOUNTING
Precision engineered
light source with focusible
$0 \Rightarrow$ lamp housing, to take MBC

Separate photo cell mounting assembly for ORP. 12 or similar cell. Both units are single hole fixing. Price per pair $£ 2.15$.0. P. \& P. 3/6. RESETTABLE HIGH SPEED COUNTER. 4 figure, 1,000 ohm coil 136-48 V. D.C. operation. E3/10/-. P. \& P. 1/6. ${ }^{3}$ figure, 24 v. D.C. $81 / 12 / 6$. P. \& P. $1 / 6$. special offer of Dry Read Switches half amp. Contact. Size I \times \%. 4 for $10 /-$ Post Paid.
MINIATURE UNISELECTOR SWITCH 3 banks of II positions plus
homing bank 40 ohm coil
$24-36$ v. D.C. operation. SQ
Tested. 22/6, plus 2/6 P. \& P. -
COMPACT HEAVY DUTY 6v. D.C. RELAY | 2 change over, 30 ohm coil. 7/6 each. P. \& P. 1/6. 3 for 20/-. Post paid.

NICKEL CADMIUM BATTERY
Sintered Cadmium Type $1 \cdot 2$ V. 7AH. |Size: height $3 \frac{1}{2}$ in., width $2 \frac{3}{8} \times 1 \frac{3}{16}$ in. Weight: approx. 13 oz. Ex-R.A.F.
Tested. $12 / 6$. P. \& P. $2 / 6 . \quad$ SANWA MULTTI RANGE METERS

fad
 New Model U50D Multi tester

 20,000 OPV, mirror scaled with overload protection. Ranges-d.c. volts: 100 mV current: $5 \mathrm{MA} .0 .5 \mathrm{MA}, 5 \mathrm{MA}$, 50 MA $\mid 250 \mathrm{MA}$. Complete with battery and test probe. $£ 7 / 5 / 0$ posit paid. Three other | models available from stock. Descriptive |leaflet on request. THYRISTOR 400 piv, $5 \mathrm{amp} ., 14 / 6$
THYRISTOR 400 piv, $8 \mathrm{amp} ., 28 / 6$ |-220/240 v A.C. COOLING UNIT | 2,300 r.p.m. $6^{\prime \prime}$ blade size. All metal construction. Continuously rated. Individually tested. Offered at fraction
maker's price. $£ 2.15 .0$.

-

230 VOLT A.C., GEARED MOTORS

 Trpe DI5G 5 r.p.m. l.71b. inch, $22 / 9 / 6$. P. \& P. 3/w. Type B16G 80 r.p.m. 261b. inch, $£ 2 / 2 /-P_{1} \& P_{1} 3 /-$ Type D16G $\| 13 \mathrm{r} . \mathrm{p} . \mathrm{m}$. I. 45 ib . inch, E2/17/6, P. \& P. 3/-.
A.C. CONTACTOR

 2 make +2 break (or, 2 c/o.)$230 / 240 \mathrm{~V}$. A.C. operation. Brand new. Price 22/6 plus 20 Amp LEVER MICRO SWITCH Brand new lever operated
 che switch. 20 amp A.C c/o contacts. Price $4 / 6$ each
plus $1 / 6 \mathrm{P} . \&$ P. 5 for $\& 1$ Post Paid.

SERVICE TRADING CO

All Mail Orders-Also Callers-Ample Parking Space 57 BRIDGMAN ROAD, LONDON, W. 4 Phone 9951560 SHOWROOM NOW OPEN

CLOSED SATURDAY

Personal callers oniy 9 LITTLE NEWPORT ST. LONDON, W.C.2. Tel. GER 0576

Famous tor over 30 years for Short-Wave Equipment of quality, "H.A.C. were the original auppliers of short-Wave Receiver Kits for the amateur constructor. Over 10,060 satisfled chstomers-including Technica Colleges, Hos

TMPROVED 1988 RANGE

One-valve model 'DX', complete kit-price 58/6 (Portage and packing 3/6).
Customer writes:-"Definitely the best one-valve 3.W. Kit available at any price. America alld Australia received clearly at good volume. drilled chassis. valve, accessories and full instructions. Ready to assemble, and of course, as all our products-fully guaranteed. Full range of other S.W. kits atill available, including the famous model " K " (recommended by radio clubs). Al orders despatched by return. (Mail order only.) Send now for a descriptive catalogue, order form
"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

Trainfortomorrow'sworld in Radio and Television at The Pembridge College of Electronics.

The next full time 16 month College Diploma Course which gives a thorough fundamental training for radio and television engineers, starts on 3rd September 1968. The following course on 1st January 1969. Radio Officers are exempted from the first term of the course.
The Course includes theoretical and practical instruction on Colour Television receivers and is recognised by the Radio Trades Examination Board for the Radio and Television Servicing Certificate examinations. College Diplomas are awarded to successful students.
The way to get ahead in this fast growing industry -an industry that gives you many far-reaching opportunities-is to enrol now with the world famous Pembridge College. Minimum entrance requirements: 'O' Level, Senior Cambridge or equivalent in Mathematics and English.

To: The Pembridge College of Electronics (Dept. PW3), 34a Hereford Road, London,W. 2 Please send, without obligation, details of the Full-time Course in Radio and Television.

NAME.
ADDRESS

THE BROADCAST BANDS

by CHRISTOPHER
DANPURE

T\HE year is certainly on the move, with July upon us and with good conditions, especially during night hours those log books should be full of interesting entries. So to help you even further here are this month's propagation predictions.
West Africa: $1000-1600,25,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$; $1600-1800,25,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1800-2000,25$, $21,17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2000-2400,21,17,15$, $11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2400-0200,17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0200-0600,17,15,11,9,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s}$; $0600-0800,21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 0800-1000,2117$ and $15 \mathrm{Mc} / \mathrm{s}$.
South Africa: 0800-1400, 25 and $21 \mathrm{Mc} / \mathrm{s} ; 1400-1600$, 25,21 and $17 \mathrm{Mc} / \mathrm{s}$; $1600-1800,25,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$; 1800-2000, 21, 17, 15, 11 and $9 \mathrm{Mc} / \mathrm{s} ; 2000-2200,21,17$, $15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2200-2400,17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} 2400-0400,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s}$; $0400-0600$, 11 and $9 \mathrm{Mc} / \mathrm{s} ; 0600-0800,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$.
East Africa: $0800-1400,25,21$ and $17 \mathrm{Mc} / \mathrm{s} ; 1400-$ $1600,25,21,17$ and $15 \mathrm{Mc} / \mathrm{s} ; 1600-1800,25,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1800-2000,17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s}$; $2000-0200,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 0200-0400,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 0400-0600,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 0600-0800$, 21,17 and $15 \mathrm{Mc} / \mathrm{s}$.
South Asia: $0600-1400,21,17$ and $15 \mathrm{Mc} / \mathrm{s}$; $1400-$ $1600,21,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1600-1800,21,17,15,11$, 9 and $7 \mathrm{Mc} / \mathrm{s}$; $1800-2200,17,15,11,9,7,7,6,5$ and $4 \mathrm{Mc} / \mathrm{s}$; $2200-2400,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2400-0200,15$, 11,9 and $7 \mathrm{Mc} / \mathrm{s} ; 0200-0400,15,11$ and $9 \mathrm{Mc} / \mathrm{s} ; 0400-$ $0600,17,15$ and $11 \mathrm{Mc} / \mathrm{s}$.
South East Asia: $0600-1000,21 \mathrm{Mc} / \mathrm{s}$ only; 1000-1200, 21 and $17 \mathrm{Mc} / \mathrm{s} ; 1200-1400,21,17$ and $15 \mathrm{Mc} / \mathrm{s} ; 1400-$ 1600, 21, 17, 15 and $11 \mathrm{Mc} / \mathrm{s}$; 1600-1800, 17, 15, 11 and $9 \mathrm{Mc} / \mathrm{s} ; 1800-2200,17,15,11,9,7,6$ and $5 \mathrm{Mc} / \mathrm{s} ; 2200-$ $2400,15,11,9$ and $7 \mathrm{Mc} / \mathrm{s} ; 2400-0200,15$ and $11 \mathrm{Mc} / \mathrm{s}$; 0200-0600, 17 and $15 \mathrm{Mc} / \mathrm{s}$.
North East Asia: 0600-2000, 17 and $15 \mathrm{Mc} / \mathrm{s}$; 20002200,15 and $11 \mathrm{Mc} / \mathrm{s} ; 2200-0600,15 \mathrm{Mc} / \mathrm{s}$.
Australia via Asia: $0600-1000,21 \mathrm{Mc} / \mathrm{s} ; 1000-1200$, $17 \mathrm{Mc} / \mathrm{s} ; 1200-1400,15 \mathrm{Mc} / \mathrm{s} ; 1400-1800,11 \mathrm{Mc} / \mathrm{s} ; 1800-$ $2200,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 2200-2400$, 15 and $11 \mathrm{Mc} / \mathrm{s}$; $2400-0200,15 \mathrm{Mc} / \mathrm{s} ; 0200-0400$, Circuit closed to BC bands, $0400-0600,17 \mathrm{Mc} / \mathrm{s}$.

South America (North of the Amazon): 1200-1800, $21 \mathrm{Mc} / \mathrm{s} ; 1800-2000,21$ and $17 \mathrm{Mc} / \mathrm{s} ; 2000-2200,21,17$ and $15 \mathrm{Mc} / \mathrm{s} ; 2200-2400,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 2400-0400$, $17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 0400-0800,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s} ; 0800-1000,17,15$ and $11 \mathrm{Mc} / \mathrm{s} ; 1000-1200,17$ and $15 \mathrm{Mc} / \mathrm{s}$.
Those were propagation conditions from various parts of the world to the UK for July 1968. Now on to this month's DX-tips.

EUROPE

Belgium: Radio Belgium, Brussels, is now giving very strong signals from 2115-2300 on 6,010 daily.

Denmark: R. Denmark, Copenhagen, is now on the following schedule--Danish only daily: 1130-1155, 1330-1345, 1730-1815 all on 15,165. Danish daily and English for last 30 mins on weekdays only: 0730-0845, $1200-1315,1400-1515$, and 1830-1945 all on 15,165, $0100-0215$ on 9,520 . Danish daily and Spanish for last 30 mins on weekdays only: $2200-2315$ on 15,165 . On Saturdays and Sundays only for the UK and Europe in English on 9,520.

Monaco: Trans-World Radio, Monte Carlo, is now using 7,260 in its English transmissions on Sunday afternoons from 1415-1530.

Poland: Polish Radio, Warsaw, is now on the following schedule for its transmissions to the UK and W. Europe in English-0730-0800, 11,840, 11,725, 9,675 and 9,$525 ; 1830-1857,11,815$ and 7,$125 ; 1930-$ 2000, 11,815, 9,570 and 7,125 ; 2030-2100, 11,815, 9,570 and 9,$540 ; 2130-2155,11,815$ and 7,125; 2230$2300,9,540,7,285,6,005$ and $1502 \mathrm{Kc} / \mathrm{s}$; 2303-2330, $818 \mathrm{Kc} / \mathrm{s}$. Daily classical music concerts: $1500-1600$ on $7,285,6,005$ and $1502 \mathrm{Kc} / \mathrm{s} ; 1900-2000$ on $7,285,6,005$ and $1502 \mathrm{Kc} / \mathrm{s}$. Music by Chopin daily: $0630-0700$ on $7,125,6,005$ and $1502 \mathrm{Kc} / \mathrm{s} ; 1600-1630$ on $7,285,6,005$ and $1502 \mathrm{Kc} / \mathrm{s}$. Light and popular music programmes: $1230-1400$ on $11,955,6,005$ and $1502 \mathrm{Kc} / \mathrm{s} ; 2330-0100$ on $9,540,7,125$ and $1502 \mathrm{Kc} / \mathrm{s}$.

Sweden: Radio Sweden is now operating as follows: 0445-0615 on 17,845; 0630-0715 on 6,065; 0830-0900 on 17,800 and 15,$240 ; 0930-1030$ on 21,690 and 9,625 ; 1030-1100 on 9,$625 ; 1100-1215$ on 15,240 and 9,625 ; 1230-1330 on 21,675 and 15,310; 1400-1530 on 21,585 and 17,$760 ; 1600-1700$ on 21,585 and 15,$310 ; 1730-$ 1800 on 15,240 and 6,$065 ; 1800-1830$ on 15,240 ; 18301930 on 21,690 and 15,$240 ; 1945-2015$ on 6,$065 ; 2015-$ 2115 on 11,915 and 6,$065 ; 2130-2230$ on 11,705 and 6,$065 ; 2245-2345$ on 15,445 and 11,$705 ; 2400-0230$ on 15,275 and 11,$705 ; 0300-0430$ on 11,705. English programmes are transmitted for 30 minutes daily at $1100,1230,1400,1600,1900,2045,2245,0030,0200$ and at 0330 .

AUSTRALASIA

Australia: R. Australia has more alterations to its transmission schedule: $1800-2115$ now on 9,600 and 9,540 to the Pacific Isles in English; English to S.E. Asia now on 17,870 from 2245-0930; English to N.E. Asia now on 11,765 from 0900-1400; English to MidPacific from $0030-0830$ on 15,240, 0830-1215 on 7,190; New transmission in English from 0200-0800 to South Pacific on 15,180; The North American Service from $0100-0300$ is now on $21,740,17,840$ and 15,320 .

Many thanks for the Polish Radio schedule to A. Golics, and to others who have sent in items for use in the column. Deadline this month is the 15 th, so good listening.

THE AMATEUR BANDS by DAVID GIBSON, G3JDG

BIT of a mixed bag this month, some heard quite a lot of DX while others fished around at the wrong times. Never mind, reel in the antenna and stick another worm on. Stephen Herod (Suffolk) says that ten is best at weekends. Philip Batt (Lancs), informs of great doings on $21 \mathrm{Mc} / \mathrm{s}$ from 2115 to 2245 but says he can't often take advantage because he has to be up for school in the mornings. D. Spooner overheard 5H3JS saying that there are only eleven amateurs in Tanzania and only five of those are active.

Jim Baker has been given the go-ahead to arrange skeds between G stations and JAlPFU in Yokohama on $21 \mathrm{Mc} / \mathrm{s}$ A.M. ONLY. (Down, you s.s.b. devils.) Any G's interested should drop Jim a line, his address is- 86 Max Road, Liverpool 14, Lancs. How about trying it with the club station?

10

S. Herod (Suffolk), R1O9A, 50ft. end-fed indoors plus an R.A.P. broadcast s/het logged these on $28 \mathrm{Mc} / \mathrm{s}-\mathrm{CN} 8 \mathrm{BG}, \quad$ CR4BL, CR7CI, ET3REL, LU1DAB, KV4DC, PY4KL, ZSIAX.
M. Pasek (Notts), QP-166 into an HRO, 150 ft . end-fed, detected the following hoard on tenCR6KK, CR7GH, LU6DRB, PY2ERS, VR6EBE (Pitcairn Island), VU2FN, VU2ER, ZC4RAF, ZC4RB, ZD8Z, ZEICCF, ZE1TX, ZSIXX, 4UITTU, 5Z4JH, 9J2WR, 9J2RA.
R. Dinning (Ayrshire), HA-350 + PR 30, 252 ft . endfed b.f.o'd these s.s.b. types into intelligibility on ten-ET3FMA, KP4CRD, LUIDAB, LZ2KKZ, OD5BA, UF6CR, VP8JC, XW8BS, ZE1WPC, 5Z4LG, 9J2BC, WI-W \varnothing.
P. Baker (S. Wales), HE30, 150 ft . end-fed, says 98% of these were s.s.b-CR6BF, ET3REL, HR1JMF, IT7GAL, K6PXQ/MM, K $\varnothing V P X / M M$, OD5-BA, BZ, CN, EP, FB, PZ1AW, SV1AN, SVøWL, TI3ALV, UF6CK, VOIAI, W9IOV/MM, YV5ADI, ZC4RB, ZC4RM, ZE2JA, ZS1FH, 5Z4LG, 9 J 2 DT , and all on $28 \mathrm{Mc} / \mathrm{s}$ too.

20/15

Still the favourite for most DX chasers, probably because it is the most consistent band of the lot.
R. Pusey (London, N.2), KW201 (I just went all green), 40 ft . inverted L at 15 ft . suffers from local QRM from underground trains and a factory. At times, this beautiful QRM was almost completely spoilt due to interference from-CN8BB, CP1HB, CR6DO, HB \varnothing AG, HC5DR, HK6AWX, HL9KR, KH6FIL, OH6NS, PJ2CE, VE8ML, VK3IP, VK5HV VK5WD, W9ISN/MM, XE $\varnothing R Z W$, 9Q5HF, 9X5SP. Cor, wish I got QRM like that. It doesn't even keep to twenty, on fifteen he got savage bursts fromJA1DJL, KP4CRD, KV4AD, OD5BZ, OD5FG, PY2ARS, PY4DLH, ST4MO, SVØWM, VK9LR VK9WD, W4CQC/MM, ZE1AA, ZL1AIX, ZL1TU, 5H3JL, 6W8DY, 9M2NS, 9M2PO, 9Q5TR, 9V1MS, 9X5SP.
B. Bashford (Sussex), C52 set, 45 ft . end-fed, queries QQ7A heard in QSO with LA5YJ and claiming to be on Ganzo Island. Any comments? Brian also
sends in the following \log for twenty s.s.b.-AP2SG, CM5AFF, CR6CN, CT2AP, F9HP/M, FC2CD, FK8AU, HM1AJ, HV3SJ, IØART, UA9WJ, UB5KMS, UI8AG, UO5AM, VP2KBE, UV3TQ, VE1DW, VE7TD, VK2DI, VK6SM, VU2HL, ZE2HW, ZL1AJ, ZS1JM, ZS3HX, 4X4HQ.
D. Higgins (Lanarkshire), KT340, 40ft. end-fed indoors, is having a crack at the RAE-hope you passed OM. Meanwhile, he's been keeping his hand in on twenty and fifteen. His \log for 20 readsCE3AEV, CN8AAW, CR6BX, CT2AS, CX7AP, EA6ITU, EL4WI, EP3AM, ET3USA, HB4FE, HBøLL, HC8BY, HI3ELJ, HK7YA, HP!AA, HR1DB, HV3SJ, IZ6KDB (Ponza Island), LU4DEG, LU6AH1, OA4O, OY5NF, PI8LS, PJ2CB, PY9AI, PZ1BW, SK6AB, TF2WKM, TG9EP, UAØNM, UG6AW, UJ8AC, UL7LA, UV9OP, VK2NN, VK3XO, VK4SD, VK5HV, VK6FD, VK7RX. VP2AL, VP7NF, VP8HZ, 9H1T, 9K2AG, 9K2AM, 9M2XX, 9Q5HF, 9VINV, 9X5CG.

On fifteen metres-CR6GM, CR6LF, EA6ITU, EA8FG, EAØAH, EL2AL, ET3NPV, FG7XT, GB2SM, HL9TG, HP1LB, IZ6KDB, K3MFJ/MM, KC4CKW, LU1VH, MP4TCE, OD5FB, PY2BGL, SVICD, UD6BD, UF6FE, VK3AMK, VS9MB, VU2JM, WIPYM/P/KP4, WA4NMA/AM, XE3PI, XW8AX, ZD8RB, ZEICX, ZL1JN, ZL1TU, ZP5JB. ZS4IO, ZS6AO, 4 S7PB, $4 Z 4 \mathrm{HF}, 5 \mathrm{~A} 4 \mathrm{TZ}$, 5 W 1 AS , $5 Z 4 \mathrm{KK}, 9 \mathrm{G} 1 \mathrm{DY}, 9 \mathrm{H} 1 \mathrm{BD}, 9 \mathrm{~K} 2 \mathrm{BV}, 9 \mathrm{M} 2 \mathrm{DW}, 9 \mathrm{M} 2 \mathrm{PO}$, 9VICN, 9U5SK, 9X5AA, 9X5SP.

40

Yep, on its lil ol' own, coz only one person sent in a log I could put in.
F. McVerry (Lanarkshire), RF24 into an R1155, 40 ft . end-fed indoors, did a "lone ranger" on $7 \mathrm{Mc} / \mathrm{s}$. His catch included-CN8AW, CTIRR, EA8EZ, K3LLR, K5DJH/4, WøNEU/P/LA, PY1TX, PY2EGA, PY6NG, PY7APS, PY7ARP, PY7GAI, PY7VNY, TF3TF, UA9KPO, W1RGB, W2DIR, W2BHK, WA2JLJ, W3NNX, W4TLI, WA4WKM, WB4DGT, W4URR/MM, ZB2AP, ZS1JA, ZS2H.

NEWS

July is a good month for contests and rallies. July 6th-7th, Topband Contest; 6th-7th, Cheltenham Festival Rally; 7th, South Shields Mobile Rally; 13th -14th, Field Day-High power h.f., this is a new contest. It is c.w. only from 3.5 to $28 \mathrm{Mc} / \mathrm{s}$ and the power limit is 150 watts; 14th, Worcester Mobile Rally; 21st, $70 \mathrm{Mc} / \mathrm{s}$ contest (portables); 21st, Cornish Mobile Rally at Newquay; August 3rd-4th, $144 \mathrm{Mc} / \mathrm{s}$ contest.
Letter from Fred (G3SVK) with all the gen on his DX-peditions (tnx OM) to the Channel Is. Pens ready? Sark:-28-31 July; Alderney:-August 1-4; Guernsey:-5-6; Jersey:-7-9. All c.w./s.s.b. $1 \cdot 8$ to $28 \mathrm{Mc} / \mathrm{s}$ with calls GC3SVK, GC3TTN, GC3LDH, GC3KNZ. QSL's via bureau or s.a.e. to home QTH except GC3SVK via G3TZZ.

Isles of Scilly, callsign to listen for-G3SVK/P August 31 -September $2,1.8$ to $28 \mathrm{Mc} / \mathrm{s}$ c.w./s.s.b. QSL's to G3TZZ with s.a.e. or via bureau.

T)
PP3 Eliminator. Play your pocket radio from the mains! save \&s. Cormplete component kit comprises 4 smoothing condenser and instrucsmoothing condenser and
tions. only $6 / 8$ plus $1 /$ - post.

FLOOD LAMP CONTROL

Our dim and full switch is ideal for controlling photo flood lamps: lamps tuil briltiance sund lampa lamps fuil briltiance and lamps ances can be arranged where used in palr or where circuit can be split exactly in half. Technicaily the switeh is known as a double-pole chsnge over with off. Our price $8 / 6$.

3 kW TANGENTICAL BLOWER

 UNITWinter is coming but act today and you won't dismay. This heater unit is the very latest type, most efficient, sud quiet running. Is as fitted in We have a few only. Units complete, wired ready to fit into cases, l.e. motor, impeller, 3 kW heuter switching 1,2 and 3 kW , and with thermo safety cut-out. Can be fitted into any metal line case or cabinet. Only needs on/off switch. 59/6. Postage and Insurance 6/6. Don't miss this.

THE TUBE IS FREE

This minnth with our 15/20 watt fluorescent k it we give a free 15in. tube. Ideal for flah tank, plant growing, or any normal lighting iituation. Costs comprises Atlas choke, TV suppressed starter, three lampholders and two terry tube clips. Only $19 / 6$ plus $4 / 6$ Post and Packing, and the tube is yours for nothing, but you must collect this.

0-1mA Full Vision Moving Coil Meter. 2In. sq. full vision. 19/8 plua 2/- poat.
300 pF Silicon Tuning Condenser, $2 / 6$ each. $24 /-\mathrm{doz}$. $0-500 \mathrm{~m} \mathbf{A} \mathbf{3 i n}$. Flush Mounting Moving Coil Meter 10/-
G.E.C. Black Light Tube for experiments and special lighting effects-40 watt 2 ft . tubes only $14 / 6$ each, holders and control gear $19 / 6$ plus $4 / 6$ post.
You never need buy another battery for your transistor radio. Stupendous offer this month-a $6-9$ V Nickel Cadmium battery stack together with a mains operated charger which you mount on the back of your aet. The mains flex unplugn so the set remains completely portable. Offered for less
than the coet of the batteries alone. ONLY 29/6 plus $3 / 6$ post.
Experimenting with Ultra Violet P Philipe UV lamp 16/6, holder and control gear $19 / 6$ plus $4 / 6$ post. Double pole push to test switoh. Spring return 10 amp. $250 \mathrm{~V} .2 / 9$ each. $30 /-\mathrm{doz}$.
A.E.I. PRACTIONAL E.P. MOTOR. $200 / 250 v$. $50 / 60 \mathrm{c} . \mathrm{p} . \mathrm{s}$. enchused, continuous rating $1 / 40 \mathrm{~h} . \mathrm{p}$. , ex. equipt. Perfect order $19 / 6$ plus $4 / 6$.
A.C. FAN, powerful mains motor with $6 \frac{1}{2}$ in. blade, ideal blow or extract. 17/6 plus 3/6.
1-2v. NICKEL CADMIUM CELLS, dia. Iin. by 1 in . OIL THERMOSTAT, Teddington type, T.B.B. with capillary tube and sensor adjustable by knob (not supplied), contruls \mid h.p. motor or up to 15 amp. resistive load, $\theta / 8$.
5 PUSH SWITCH, one push operates maing on/off switch. the other four operate various on/off and change-over s witches, $2 / 6$.

SNIPERSCOPE

Pamous war-tme "cat's eye" used for seeing in the dark. This is an
infra-red image con-infra-red image con-
verter cell with a verter cell with a
silvercaesiumscrean which lights up (like a cathode ray tube) When the electrons released by the infra-red strike it. A golden opportunity for some will be supplied with cells, if requested.

FIELD TELEPEONE ONIT. Each unit contains magneto type ringer and bell-as well as trans-former-relay and switches. A palr of these with suitable hand-telephone (not supplied) will give
two-way communication over distances of up to 5 miles. Unused but in stored condition. $19 / 6$ plus 10/6 carriage.

Multi Purpose Neon Test Unit Robust, useful and instructive-tests insulation-capacity-continuity-resistor-volume controls -kit comprises neon indicator-4-way wafer - witch-ebonite tubes-resistors-condensers-terminals, etc. with diagram only $9 / 8$, plus $2 /$ post and insurance.

HI FI BARGAIN

FULL FI 12 INCH LOUDSPEAKER. This is undoubtedly one of the finest loudspeakers that we have ever offered, produced by one of the country's most famous makers. It has a die-cast Rhythm Guitar and public address.
Flux Density 11,000 gauss-Totai Flux 44,000 Maxwells-
Power Handling 15 watta R.M.S.-Cone Moulded fibre-Freq Power Handing 15 wata R.M.s.-Cone Moulded
reaponse $30-10,000$ c.p.s.-specify 3 or 15 ohms-Main reresponse $60 \mathrm{c} . \mathrm{p}, \mathrm{s}$.-Chassis Diam. 12 in .- 12 isin. over mounting lugs-Baffle hole 11 in . Dism.-Mounting holes 4, holes-tin. diam, on pitch circle $11 \frac{3}{1} 1 \mathrm{n}$. diam.- Overall height 5 in. A $£ 6$ speaker offered for only $£ 3,9.6 \mathrm{plus} 7 / 6 \mathrm{p}$ \& p . Don't miss this offer.

GARRARD Model 3000

This is one of the latest products of the World's most experienced maker of fine record reproducers. Its playing of up to 8 mined size recordsstopping and starting without rejecting low stylus pressure-large diameter turntable for max. stability adjustments include pick-up height-pick-up dropping position and stylus pressure. Size if $13 \frac{x}{} 11$ inin., clearance $4 \frac{3}{3} \mathrm{in}$, above, $2 \frac{1}{4} \mathrm{in}$. below-Fitted with the very superior over 44 . Price complete 210.9 .6 , carr. and ins. $7 / 6$.

THIS MONTH'S SNIP

A Fluorescent Ughting unit made by the famous Atlas company, with super silent polyester filled choke and radio auppressed starter. The tube springs in and out and the whole unlt is beautifully made and finished white enamel. Amazingly economicsi. It. Measures 2 ft long. Is ideal in Kitchen, Redroom, Hallway, Forch, Loft, etc. Don't miss this amazing offer. 39/6 with tube. Assembled ready to install. Postage and Insurance $6 / 6$ extra.

bargain of the year

 MICRO-SONIC7 trangistor Key chaln Radio in very pretty case, size $24 \times 2 i \times 14 i n$. bag. Specifcation:-Circuit: 7 bag. speciacation:-Circuit, Frequency range: 530 to $1600 \mathrm{Ke} / \mathrm{s}$. Senaitivity: $5 \mathrm{mv} / \mathrm{m}$. Intermediate trequency: 465 Kcs , or 455 Kcs . Power output: 40 mW . Antenna: ferrite rod. Londspeaker: l'erma nent magnet type.
In transit from the East these sets teries were left in then as the batthis corrosion is cleared away they
 should work perfectly-offered without guarantee except that they are new 19/6 plus 2/6 pust and ins., less batteries

BATTERY OPERATED TAPE

 DECKWith Capstan control. This unit is extremely well made and measures approx. $6 \times 5 \times 2 \mathrm{in}$ deep. Has three piano key type controla for Record, Playback and Rewind. Motor is a special heavy duty type intended for opers-
tion of $4 / 5$ volts. Supplied complete with 2 tion of $4 / 5$ volts. Supplied complete with 2
apools ready to install. Recori, Replay head is the sensitive M4 type intended for use with transistor, amplifier. Price 44.15 .0 . Post and insurance 4/6.

DRILL CONTROLLER
 Electronically changes speed irom approximately 10 revs
to maximum. Full power at all speeds by finger-tip control.
Kit includes all parts, case, everything and full instrucKit includes all parts, case, everything and fult instrucand insurance. Or available made up 32/6, plus
$2 / 6 \mathrm{P} . \& \mathrm{P}$. 2/6 P. \& P.

CENTRIFUGAL FAN

GENTRIFUGAL BLOWER or extractor by Torrington, very low noise but large capacity air How, designed for central heating and air conditinning, ldeal also for fume extraction over motor, 23.18 .6 post and insurance $7 / 6$.
ELECTRIC CLOCK WITH 20 AMP. SWITCH Made by Smith's these unita are as fltted to many top quality cookers to control the oven The clock is mains driven and frequency controlled so it is extremely accurate. The two small dials enable switch on and off times to be accurately set-also on the left is another timer or alarm-this may be set in minutes up to 4 hours. At the end of the period a bell will sound. Ideal a fraction of the regular price-new and unused only 89/6, less than the value of the clock

CASSETTE LOADED DICTATING

 MACHINEBattery operated and with all accessories. Really antastic offer a British made $£ 31$ outfit for only 6.19.6, brillisntly designed for speed and eff-ency-cassette takea normal apools, drops In and out for easy loading-all normsi functions-accessories include: stethoscopic earplece-crystal microphone has on/off switch-telephone pick-up -tape reference pad-DON'T MIS\& THIS UNREPEATABLE OFFER-SEND TODAY 86.19 .6 plus $7 / 6$ post and insurance. Footswitch 18
Spare Cassettes at $7 / 6$ each, three for 81 .

MAINS TRANSISTOR POWER PACK

Designed to operate transtator sets and amplifiera Adjustable output $6 \mathrm{r} ., 9 \mathrm{~V}_{\text {., }} 12$ volts for up to 500 mA (class B working). Takes the place of any of the following batteries: PP1, PP3, PP4, PP6, PP7, PP9, and others. Kit comprises: mains ransformer rectlfler, amoothing and load resistor, condensers and instructions. Real anip at only
16/6, plus $3 / 6$ postage.
CAPSTAN DRIVEN TAPE
RECORDER. Only £5/19/6.
 speed con prevents unintentional erasures. Tape speed controlled by flywheel diriven capstan. Neat case with carrying handle, size approx. if x 7 f x
2in. Postage aud insurance $7 / 6$. Onused bud nod tested nor guaranteed. Originally sold as the "Talking Book" at £30.

MAINS MOTOR
Precision made-as used in record decks and tape recorders-ideal also for extractor fans, blower,
heater, etc. New and heater, etc. New and
Perfect. Snip at $9 / 6$. Perifct. Snip at $9 / 6$.
Postage $3 /-$ for lirst $1(1)$ one then $1 /$ for each

FLUORESCENT CONTROL KITS Each kit comprises seven items-Choke, 2 tube ends, starter, starter holder and a tube clips; ends, wiring instructions. Suitable tor normal fluorescent tubes or the new "Grolux" tubes tor fish tanks and indoor plants. Chokes are supersilent, mostly resin fllled. Kit A-15-20 w 19/6. Kit B $-30-40$ w. 19/6. Kit C -80 w. 17/6. Kit D-125 W. 22/-. Kit よ゙-65 w. 18/6. Kit MF1 is tor 6 in ., 9 in . and 12 in . miniature tubes
19/6. Postage on Kits A and $\mathrm{B} 4 / 6$ for one or two 19/6. Postage on Kits A sand B4/6 for one or two kits then $4 / 6$ for each wo kits ordered. Kits C,
D and $\mathrm{E} / 6$ on first kit then $3 / 6$ for each kit D and E4 4/6 on first kit then $3 / 6$ for each kit each two kits ordered.

ELECTRONICS (CROYDON) LIMITED

(Dept. P.W.) 102/3 TAMWORTH RD., CROYDON, SURREY (Opp. W. Croydon Stn.) also at 266 LONDON ROAD, CROYDON, SURREY S.A.E. with enquiries please

TEGHNICAL TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs--they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- Institution of Electronics \& Radio Engineers
- C. \& G. Telecommunication Techns'. Certs.
- C. \& G. Electronic Servicing
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs. in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW $\mathbf{S e l f - b u i l d ~ r a d i o ~ c o u r s e s ~}^{\text {sel }}$

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

-continued from the July issue

IIATERIALS required for the Plate Contact Board are the piece of exterior quality hardboard $18 \times 5 \frac{1}{2} \mathrm{in}$. also $2 \times 18 \mathrm{in}$. lengths of $\frac{1}{2} \mathrm{in}$. square wood (ramin is ideal), 37 half-inch 6BA round head screws and nuts, 37 half-inch 6BA cheese head screws and nuts. The latter are for fixing the contact plates, and the cheese heads will be of assistance in holding a crocodile clip, while tuning that particular note. Thirty-seven double-ended tags will also be needed for the tuning resistance strip. The $\frac{1}{4} \mathrm{in}$. square strips of wood are fixed along the back and front edges of the board underneath flush with the edges. Glue and screw with countersunk heads, these act as stiffeners.
Place the resistance strip on the board as positioned in Fig. 5. Hold firmly in position. and choosing a hole near the centre, pencil mark a small circle through the hole on to the board. With a block of wood underneath, punch in the centre and drill through and bolt together, correctly align the strip and mark similarly, about quarter way along from each end, drill through and bolt up, and similarly deal with the first and last holes. With strip securely bolted up drill the remainder of the holes, using the tops ones as a guide.

Unbolt and remove the strip, and place aside, clean level if necessary with a flat file, where the board has been drilled. We now follow on with fitting the plates. This is a prominent part of the instrument, and is well worth doing neatly. First mark a pencil line $1 \frac{13}{16} \mathrm{in}$. from the front edge of the board, and parallel to it, a piece of hardboard, or wood about 1 in . wide and 1 ft .5 in . long is required as a straight-edge, and should be temporarily fixed, with edge along this line, and covering where the sharps will come later. It could be fixed with a screw at each end or between where the plates will come, the coloured felt to be fixed later would hide any holes. Measure along the pencil line, from the bass end edge mark at $9 \frac{5}{\text { IT }} \mathrm{in}$. with a set square, draw a vertical line, from front edge up to this mark.

Place plate F No. 18 on this line, so that it passes up under the middle of the plate. The hole in the middle of the plate should now be on this line.

portable KEYLESS ORGAN

Draw a small circle through the hole to confirm. Punch and drill, and place a cheese head bolt through the two holes, put a single-headed tag and nut underneath and screw up finger tight. Should there be a gap between plate and straight-edge, or perhaps too tight, unbolt and elongate the hole in the board in the required direction to rectify the fault, using a small rat-tail file or wire file. When the plate is positioned correctly, bolt up securely. Now we need some thin cardboard spacing pieces, say $\frac{1}{8} \mathrm{in}$. wide strips of visiting card $1 \frac{1}{2}$ in. long and a few $2 \frac{1}{2} \mathrm{in}$. long, preferably cut off with a sharp knife, any spare phosphor bronze strip might serve. Take No. 17 plate and place on the left of No. 18, with a spacing piece in between and touching the straight-edge, mark centre hole as before and drill. Bolt up finger tight and correct as before if necessary. Keep proceeding in this manner, until all naturals are fixed. Tighten up with a screwdriver when satisfied all are straight and neat, remove the straight-edge.

Fix sharps as follows: Looking at D No. 3 Fig. 5 it will be noticed that the "crack" between C and D sharp is in line with a screw place a spacing strip against the top of 1,3 and 5 . The lower edges of 2 and 4 are now placed on the other side of the spacing piece and touching it, and in the correct position with a spacing piece in between them. Mark and drill as before. Looking at sharps 7, 9 and 11, it will be noticed that the "crack" between 6 and 8 is in line with the screw of No. 7, similarly with 8 and 10 , and 10 and 12 . Follow on in this way throughout.

Elongate any holes in board to shift position of plate where necessary. It is important that the finished job looks regular and neat, and with no shorts between plates.

All the plates are now removed and placed aside in order, and piece of felt laid as indicated in Fig. 5. The author used some scarlet felt as used at the back of piano keys. Use adhesive sparingly, just sufficient to hold the felt in place while fixing plates, overlap edges and trim off for a neat finish.

Commence refixing the plates with No. 18 F. Pierce through the felt into the hole, and fit up as before, keeping the felt flat and smooth, proceed until completed. The 37 holes for connecting wires are marked off in line with the plate screws, as shown in Fig. 5 and drilled with a $1 / 16 \mathrm{in}$. drill.

Now the resistance strip can be fitted on the board. Lay the strip with the holes corresponding, and start from the middle by placing a double ended tag on a screw and pushing through the two holes, place a nut on the screw under the board, and make finger tight. Soldering tags are usually stamped out on a machine, thus leaving a rounded finish on one side, and a sharp edge on the other. The rounded side should be presented to the graphite track, as the other side could cut it. Work from the centre each way, until all are in place and just finger tight.

Still working outwards from centre, tighten up with slight pressure, at same time placing the double ended tags astride the strip. Now the back part of the tags where projecting are bent down firmly over the back edge. The front part of the tags are left for later soldering a wire which will go through a $1 / 16 \mathrm{in}$. hole and then underneath to tags, on the bolts which hold the plates. Proceed to tighten up all screws securely on the resistance strip. The success of this idea relies upon rigidity and firmness of contact with the graphite surface. The author does not claim any originality in use of a lead pencil as a resistance, old hands will recollect its use as a grid leak with early detector valves.

To assist in tuning, a paper strip should be prepared with letters aligned with the spaces between the screws, and stuck down in position as in Fig. 5.

Drill a hole at the treble end to take the tuning preset control VR3. In the prototype there was just room to fit a simple on/off switch in this position. The vibrato switch is fitted towards the bass end in the position indicated. It only now remains to wire up the resistance strip tags to their respective plates. Keep wires taut for neatness.

Wiring to VR3 and tuning switch should be followed from Fig. 7. Finally drill a hole about a $\frac{1}{4} \mathrm{in}$. from each end of the board, for two fixing screws.

Making the case

Starting with the bottom of the case, we require $1 \mathrm{ft} .7 \frac{1}{4} \mathrm{in} . \times 12 \frac{1}{2} \mathrm{in}$. of $\frac{1}{8} \mathrm{in}$. plywood. The back is made with a piece of wood $\frac{1}{2} \mathrm{in} . \times 3 \mathrm{in}$. $x 1 \mathrm{ft} .7 \frac{1}{4} \mathrm{in}$. long. The two sides are 3 in . wide x 12 in . $\mathrm{x} \frac{1}{2} \mathrm{in}$. We also need some $\frac{3}{4}$ in. panel pins.

The long 3 in . wide piece is placed along the back, and flush with edge of the bottom board, and pinned together. The two side pieces are placed flush with the sides of the bottom board, and butted against
the backboard, fix with panel pins to back and bottom. This makes a shallow box with the long front piece omitted. Inside on the back piece of wood, make a pencil line $\frac{3}{3} \mathrm{in}$. down from the top, repeat each side for about 5in. from the back. A 1 ft . 6 in . length of $\frac{1}{2} \mathrm{in}$. square wood is fixed inside on the back, just below this line. Two short pieces continue round on each side. These will support the baffle board.

On the bottom board, inside the case, measure 5 in . and mark at each end and middle, parallel with the open front edge of the case. Fix across the case a piece of wood 1 ft . 6 in . long, $1 \frac{3}{4} \mathrm{in}$. wide, and $\frac{1}{2}$ in. thick along these marks with the $\frac{1}{2}$ in. edge downwards, and leaving marks just visible. Fix on the back of this piece of wood another of same thickness and length, but $1 \frac{1}{2} \mathrm{in}$. wide, so that the uppermost edge is level with the two side fillets, and thus completing the support for baffle board all round. A carrying handle should now be fitted to the right-hand side of case.

For the baffle board, a piece of $\frac{1}{8}$ in. plywood is cut to fit on these fillets and approximately 1 ft . 6 in . $x 6 \frac{5}{8}$ in., check for exact size. The aperture for the loudspeaker should next be cut out. The baffle does not need to be fixed, as the top will be screwed down and will secure it. The material for covering the speaker is later fixed on the outside of the baffle, as there will be a corresponding hole cut in the top. Measurements allow for'thickness up to $\frac{1}{8} \mathrm{in}$. for the material. The top and cover are made in three pieces. The back part is fixed to the back and sides of case with round head screws and is 1 ft . $7 \frac{1}{4} \mathrm{in}$. x 7 in . approximately. The front half is about $5 \frac{1}{8} \mathrm{in}$. wide, exact size is best arrived at by first fixing the back half, and then measuring to front of case. Similarly with the front flap. Three fancy surface fitting hinges secure the back half to the front, and another three secure the flap to the front half. These are obtainable from D.I.Y. shops, as well as the carrying handle. The front flap needs to be held down, and a simple method is to fix a small screw eye in the centre of the $\frac{1}{4} \mathrm{in}$. square wood, as described later, to be fixed along and level with the front edge of the bottom board. Where this screw eye marks the inside of the flap cut a corresponding slot to receive it, and it will then only need a turn to secure the flap.
To complete the front compartment, a small panel of aluminium is made up from a piece bent up at right angles, and large enough to take the toggle switch (mellow/bright tone), and just on its right

Fig. 5: Constructional details of the contact plate board and tuning strip.

a new 4-way method of mastering ELECTRONICS by doing - and - seeing

a modern and professional CATHODE RAY OSCILLOSCOPE

UNDERSTAND CIRCUIT DIAGRAMS
 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC
CIRCUITS AND SEE HOW THEY WORK . . INCLUDING . . .

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- OSCILLATORS
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT - BASIC RADIO RECEIVER - ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory-no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc.

Fully guaranteed Individually packed VALVES			PERSONAL CAllers welcome Open 9．30－12．30，1．30－5．30 p．m．Thursday 9－1 p．m． MANY OTHERS IN STOCK inelude Cathode Ray Tubes and Special Valves．U．K．Orders 									
				VR150／30					6H6m ${ }^{\text {\％}}$－			
						${ }_{304}^{3 \mathrm{E} 29} 8501-$	Tati ${ }^{\text {5 }}$					
82134		OB2										
						5A	${ }^{\text {6a }}$					
							6 A					
		PABC80 81										
				214								
			TRANSISTORS，ZENER DIODES etc．									
	${ }_{\text {EF183 }}^{\text {EF93 }}$											
										${ }_{\text {1921 }}^{12 \mathrm{Y}}$ 191－		
										18		
	${ }_{\text {ELIS }}$						81／35 ${ }^{10}$					
					10／－	AF1398 ${ }^{\text {A }} 178$		JK2				
	${ }_{\text {ELIA }}$	${ }_{\text {PCFF8021018 }}$	－						6SA	19		
	2	，	OA210				883／20			20		16
${ }^{\text {DFK92 }}$												－
		PC						mp				
	${ }_{\text {EL91 }}{ }^{\text {E／6 }}$	L83										－
	EL360 $18 /-$					析						
			${ }^{\text {OAZZ20 }}$				т103 4／6			－		
						${ }^{8 / 8}$	T105 8 8／6	8×645		${ }^{30 C 17} 1516$		
［17－			OAZZ22	，				Z Range				
					18 －	BYZ10 18／－	GET176 8／6		6 V	30FL1 17／8		
				IN43 $41-$	AF102 18 －		GET872 ${ }^{\text {6／－}}$			30FL12 19／6		
	EY91		${ }^{\circ} \mathrm{c} 23181818$	IN711			${ }^{1854} 9818$			$30 \mathrm{FL13}$ $30 \mathrm{FL14} 181$ 18		
		Pr	O	18113	116 8／8							$1-$
		${ }_{\text {PY3 }}$	$\begin{array}{ll}\text { OC28 } & 81 \\ \text { OCl }\end{array}$	$2 \mathrm{NEB6}$ \％／6	AF118 101－		${ }_{\text {JK9A }}$	$\underbrace{}_{\substack{\text { range } \\ 7 / 6 \\ \hline}}$	6－30L2 $14 / 8$	18		
EABOSO7 716										${ }^{30912} 19 / 9$		281－
既AC912				DC MOVING COIL METERS ${ }_{\text {O－50，}}$					${ }_{7 C 5}^{7 C 5}$			
C33	G／3	PY800 1018										
退				$\begin{aligned} & 75 \mu \mathrm{~A}-75 \mu \mathrm{~A} \\ & \hline 1 \mathrm{~A} \\ & \hline 1 \end{aligned}$			${ }^{201}$			30PL14 $18 / 4$		
			UB880 ${ }^{\text {U／6 }}$				$\overbrace{}^{\because}{ }^{30 /-}$	$\begin{array}{ll}6 \mathrm{BW7} & 11 / 8 \\ 684\end{array}$				8
				$\begin{aligned} & 1 \mathrm{~mA} \\ & 1 \mathrm{~mA} \\ & 5 \mathrm{~mA} \end{aligned}$			I．$\because{ }^{\circ} 20$		$7 \mathrm{V7}$ 5／－			
	G				1望＂round panel $21^{\prime \prime}$ round panel		．．${ }^{171 / 6}$					
			UCLS2	$\begin{aligned} & 10-0-10 \mathrm{~mA} A \\ & 10-30 \mathrm{~mA} \end{aligned}$			－1718					
	GU50						251		d			
1	2			50 mA 75 mA 100 mA	${ }_{2 \times 1}{ }^{\text {and }}$ square panel		－ 14		${ }^{10 \mathrm{F9}}$ 9／－	－		
81							17	1319	14 188			
	HLL2K ${ }^{2 / 8}$							$\begin{array}{ll}\text { 6DG } & 3 /- \\ \text { frgat } \\ 8 /-\end{array}$	${ }_{1246} 3 / 6$			
			1					${ }_{6 \mathrm{FbG}}^{6 \mathrm{GFOT}}$ 8／－		$\begin{array}{ll}57 & 8 /- \\ 88 \\ 88\end{array}$		
	${ }_{\text {KT8C }}^{\text {HVR }}$								$12 A T 7$ $12 A v 6$ $8 / 2$	${ }^{69}$		
			UY86	aerlal with adaptor to fit the 7in．rod，Insulated base stay plate and stay assemblies，pegs，reamer，hammer					${ }_{12 \Delta V 7} \mathbf{1 2 / 8}$	${ }^{75} 5$		
	${ }_{\text {KTT67 }}$			etc．Absolutely brand new and complete ready toerect，In canvas bag．E3．9．6．P．\＆P．10／6．								
	171	$811 \mathrm{E12} 10 \mathrm{j}-$	23									
P．C．RADIO LTD． 170 GOLDHAWK RD．，W． 12 （01） 7434946				wooden cases．Excellent for communication in－and out－doors for up to 10 miles．For palr Including bat－ terles and $1 / 6$ th mile field cable on drum．Completely new，$£ 6.10 .0$ ．Slightly used，$£ 5.10 .0$ ．Carriage $10 /-$ TELEPHONE HANDSET．Standard G．P．O．type； new 12／－．P．\＆P．2／－．				all overseas enquiries and orders Please address to Colomor（Electronics）Ltd． 170 GOLDHAWK ROAD，LONDON W12． Tel．：01－743 0899				

New Editions from RSGB

Amateur Radio Techniques（new edn RSGB）13s 6d
A complete and practical book dealing with all aspects of Amateur Radio．Includes hundreds of practical circuit diagrams．

Amateur Radio Circuits Book（new edn RSGB）11s 3d
A new enlarged second edition of a very popular book．Within 120 pages are circuit diagrams from which constructors both old and new will be able to construct the moment inspiration strikesl

Guide to Amateur Radio（new edn RSGB）

6s 9d
A new revised edition giving an insight to Amateur Radio as a hobby， with practical circuit diagrams for the novice．Also contained are general
formulae for radio circuits and what is required to obtain a licence．If you have a question on the hobby，this book will answer it．
Available soon at the RSGB Amateur Radio Exhibition，2－5 October 1968，the Fourth Edition of the RSGB Amateur Radio Handbook，with well over 800 pages of text，photographs and circuit diagrams．

Other RSGB titles include：

Radio Data Reference Book $14 s$
Service Valve and Semiconductor Equivalents
World at their Fingertips（the story of Amateur Radio in the UK）Paperback

A full list of World Wide publications available from us will be posted on request．
Details for becoming a member of RSGB will also gladly be sent on

Radio Society of Great Britain，Dept PW 28 litle russel street，london，wat
the expression (volume) control. The panel is recessed inside the compartment, so that knobs do not project out of line with the front of the case. A short piece of $\frac{1}{2} \mathrm{in}$. square wood is fixed along the bottom edge of the small piece of plywood, and when pinned to it, is placed behind the expression control and fixed to bottom board with a couple of screws through the $\frac{1}{2} \mathrm{in}$. square wood. On the right hand side a similar panel is fitted up with the main on and off toggle switch, and also enclosed with a small piece of plywood. A 1 ft . 6in. length of $\frac{1}{4} \mathrm{in}$. square wood is fixed flush with the front edge of the bottom board. Bostik No. 1 will hold it well without pins. The compartment now left will later house the two wands etc.

A cover for the resistance strip is made with a piece of matching coloured plastic, similar to formica, purchased as an off-cut. Cut a length to just cover the length of the resistance strip, and wide enough to cover it and the tags with their wires and also allow for fixing two strips of $\frac{1}{4} i n$. square wood along and level with the two edges, and to rest on the hardboard. Attach the wood to the plastic with Bostik No. 1. This cover needs to be easily removed for tuning, and the method used by the author works quite well. About 4in. from each end of the front strip of wood, screw in a small brass screw from underneath. Snip off the head, file clean and slightly round. Fit the two spigots thus left into two corresponding holes of a close fit drilled in the hardboard.

Finishing the case

The author removed all the components and glasspapered all over the exterior, making a slight radius on all edges and corners. File down any protruding pins or screws, fill in as required with Polyfilla. After this has hardened and been glass-papered level, remove all dust and give two coats of emulsion paint all over. The colour should be as near as possible to the finishing colour which was cream in the author's case. With fine glass-paper, give all exterior a gentle rub down and good dusting, and the job will be ready for a finishing coat of any good enamel or paint. Refix the carrying handle.
It is advised that a small square of thick felt be placed and fixed with Bostik at each corner on the bottom of the case. The front half of the top with flap attached will need a support to keep it from closing up the loudspeaker aperture. A narrow strip of leather about 6 in . long should be fixed to the front half with a small screw and washer and the other end similarly fixed to the contact board, say at the extreme bass end. When fixed the front half should be held up at an angle similar to a music desk, leaving the loudspeaker well clear. When closed the leather should fold in half, out of the way.

Two more square pieces of felt should be fixed, one at each end, just inside the front compartment. These should receive an occasional rub with the wands to clean the contacts at the ends.

Making the wands

Two are recommended, and their use will be gone into fully later. Two strips of wood about $5 / 16 \mathrm{in}$. wide and $3 / 16 \mathrm{in}$. thick of ramin or hardwood, are required, both 9 in. long. A $\frac{1}{4} \mathrm{in}$. from one end, in the centre of the widest side, drill a
hole to take a $\frac{1}{8} \mathrm{in}$. aluminium rivet, held firmly. A piece of wood, end grain uppermost is fixed in a vice. A $\frac{1}{8} \mathrm{in}$. round head rivet is placed head down, held in small pliers and tapped firmly with a hammer to form a depression to match in the wood. Place the rivet head held in the wand to fit into this depression, place a soldering tag on the stem, pointing down the wand. Push down on the tag firmly with a pointed awl, snip off the stem all but $1 / 16 \mathrm{in}$., this should now be gently tapped with a hammer all round to form a burr to hold the assembly firmly together. This end of the wand is now tapered and filed around the end and close to the rivet head. Drill a $1 / 16 \mathrm{in}$. hole $\frac{1}{2} \mathrm{in}$. from the end of the tag. The fine plastic-covered stranded wire from the tag will go through the hole to the underside of the wand and along its length, to be Sellotaped the other end where it is soldered on to the miniature twin cored and screened cable.

Wand 2 is made in the same way, but this one has a simple on and off switch connected to the control circuit on the output panel, so that the preamp can be controlled to give a gradual decay of the sound, as required. Normal playing will be done with the switch closed with the forefinger.

To make the switch, measure $3 \frac{1}{2} \mathrm{in}$. and $4 \frac{5}{8} \mathrm{in}$. from the rivet and mark the wood. At each mark drill through the wood to take an 8 or 6BA screw, preferably round head. At the $4 \frac{5}{8} \mathrm{in}$. marked hole, put a round head screw through from the top of the wand, and place a soldering tag on underneath and nut, with the tag pointing away from the rivet. Prepare a piece of p / b bonze or spring brass $1 \frac{3}{4} \mathrm{in}$. long $x \frac{1}{4} \mathrm{in}$. wide, drill two holes, one at $3 / 16 \mathrm{in}$. and another at $\frac{1}{2}$ in. from one end. The latter should have a round head screw pushed through the spring and the hole in the wood ($3 \frac{1}{2}$ in. from the rivet), put a soldering tag on underneath also pointing from the rivet and fit the nut.

The remaining hole in the spring metal only needs a small round head wood screw to be driven into the wood after the spring metal has been correctly aligned down the wand and resting on the head of the first R.H. screw. The spring metal is now lightly bent upwards so that it is easy to make and break

View of the organ with the loudspeaker panel removed.
contact with the latter screw head. To complete wand 1, as this only requires one conductor, the two cores and screening are soldered together and joined to the thin stranded conductor from the rivet contact, in a neat bundle near the end of the wood farthest from the rivet contact.

Wand 2 should have a length of thin stranded connecting wire soldered to the tag on the rivet contact, and cut off at the other end of the wand. We now need two-core screened wire, one yard for each wand, which must be plastic covered. Solder the screening to the wire from the rivet and the two cores to the two tags underneath the switch. Make a neat bundle and bind tightly down on the wood, with coloured Sellotape and along the length of the wand leaving the switch and contact rivet clear.

Testing panels and wiring up to controls

The note generator panel should be tested by inserting a meter in the negative battery lead that goes to the panel. A connection from the positive tag on panel is taken to battery positive. Reading should be about 2 mA . The vibrato circuit is similarly tested in a similar fashion. Vibrato switch should be closed, or the terminal tags on the panel shorted temporarily. Reading should also be about 2 mA and if oscillating the needle should fluctuate. If all is in order connect up to the output panel, and to loudspeaker as shown in Figs. 2 and 4. The two tags which will later take wand 2 switch should be temporarily shorted. 4.5 V negative goes to the tag provided. The positive potential should be provided through the interpanel connection. Before a note will sound it is necessary to connect a wire from 4.5 V negative on the generator panel to tag connected to R7 where VR3 will ultimately be connected.

Assuming that the two panels are working all right we can proceed with the wiring up of batteries and controls. The two panels and batteries are all fitted into the back compartment under the baffle board. The note generator panel to the right against the back, and the output panel to the right and against the back. The loudspeaker magnet should occupy the space between the panels. Batteries are held in position with the three aluminium clips, fixed to the top of the dividing board which should have recesses cut into it, and clips fixed

Fig. 6: Details of battery connection.
with countersunk screws, so as not to interfere with the bedding down of the baffle board.

The first battery clip to hold the two 4.5 V batteries will need to be about 6 in . long by about $\frac{3}{4} \mathrm{in}$. wide. One end will be screwed down on the dividing board at about 3in. from the bass end. The two batteries are laid on their sides, Sellotaped together. The clip can then be pushed down and over them and bent out at the other end to rest on the bottom board to which it can eventually be screwed.

The second clip should be placed about halfway along the dividing board, a $\frac{1}{2}$ in. wide strip $3 \frac{1}{2}$ in. long will be needed and after fixing as before is bent down and over a 4.5 V battery lying on its side. Only the one fixing should be necessary for one battery. The third clip is fitted same as the second one and the 4.5 V battery is positioned at the treble end with the clip about 3 in. from the end.

Fig. 7: Wiring of the tuning switch and pre-set tuning control.
Proceed with the wiring up of the expression control as detailed in Fig. 4. It will be necessary to cut a slot in the dividing board to take the cable. The vibrato switch will also need a small slot cut out to take two leads which go to the tags provided on the panel. See Fig. 7 for details of wiring to tuning switch and preset control, more slots or holes will be needed in the dividing board to take the wires. The two wands will need holes drilled at each end of the front stowage compartment, through the dividing board. A hole will also be necessary for the wires to the main switch.

All that now remains is to connect up the batteries to the panels. Commence with the two separate 4.5 V batteries, by connecting their positives together and taking to one pole of the main switch, the positive of the 9 V battery goes to the other pole of the double-pole switch. While proceeding with the negative connections to panels, see that the main switch is off. It is necessary to have a double-pole switch in this position, as with a single-pole one there would be a difference of potential between the 4.5 V and the 9 V batteries, causing a continuous slight leak, in spite of the switch being off. The other two connections on the switch are joined together and the wire is taken direct to the positive tag on the output panel, this is detailed in Fig. 6. It only now remains to bring out two wires from the tags marked "to VR3" with an extra one from the tag marked "to top C plate", these can be stranded bell wire, and all three twisted together and brought

SEND FOR A FAB. COL. ILLUSTRATED SOUND AND SCIENCE CAT.. 88 PAGES CRAMMED WITH PICTURES AND INFORMATION ON ALL THE LATEST ELECTRONIC AND SCIENTIFIC GADGETS. ACCESSORIES AND EQUIP. MENT. ONLY $1 / 6, P$. \& P. $1 /-$
MINI-MOTORS 3V to $4.5 V$ operation. Fdeal for mini-racing cars, ete. "Large" $\left(1{ }^{1} / 5 \times\right.$ $\frac{\left.1 / 10 \times 1^{2} / \mathrm{in} .\right)}{}$ 3/11. Medium ($\times 3 / 5 \times 1$ in.) $3 / 9$. 1 . it P. 9 d . the fullowink palular types only at present: BSR TC8LP-BSR TC8 STEREO-
BSR TCS LP/STEREO-COLLARO STUDIO "D" LP/RONETTE-GARRARD GC8 BSR TCS LP/STEREO-COLLARO STUDIO "D" LP/RONETTE-GARRARD GC8
LP-ACOS GP65/67 LP-RONETTE BF40/LP-GARRARD GC2 LP. All these types LP-ACOS GPB5/67 LP-RONETTE BF40/LP-GAR
now ivailable in Sapphire. Value at only $3 / 11$ eaih.
SPEAKERS. 12 in. round high quality British fittel t weeter cone, 6 watts, in 3Ω or $15 \Omega .35 /-$ P.P. 3/i, ROUND 12in. R. \& A. $3 \Omega, 25 / 6$, P.P. 3/6. Many other speakers available, 8 in. 3 or 15Ω, $29 / 8.10 \mathrm{in} .3$ or $15 \Omega, 35 / 6$. 10 watt hass speaker by E. M.I.
 TWEETER. $2 \frac{1}{2} \mathrm{in}$. Black plastic cote, Aquare Frame, E.M.1. 3Ω, 12/6. plap $1 / 6 \mathrm{f}$ P. \& P.
 Ing. Very selisitive, 7/6, P. \& $\mathrm{F}, 1 /-$, Similar but atick tye AM4, $14 / 6$.
CRYSTAL HAND MIKE. IRobust and sensitive. Cream plautic case. Jugt the thing CRYSTAL HAND MIKE. IRobust and sensitive. Cream plastic case.
for taye recorders, $8 / 6$. P. \& ${ }^{\prime}$, 1/6. Simllar with built in stand, 10/6. STUDIO CRYSTAL MIKE. Professional, Ormit-directional, providing features usually only available at many times the price. Sensitivity- 50018 . Response- $50-12,000$
 ACOS MIC $40-$ Warld famons Desk Mike. $16 / 6$ plas P. \& P, $1 / 3$,
ACOS MIC $45-$ Splendid Cursed Hand (irip Crvatal Mike, $18 / 3$ plus P. \& P. $1 / 6$.
 ACOS 39-1-High Quality Stick Mike. High Impedarice, 33/-plua P. \& P. 1/ti. ACOS ROUND Crystal Mire insert. Thin. dia. 7/6. I'. \& P. ©d.
TELESCOPIC FLOOR STAND. HEAVY BASE. Standard threa
49/6, ('arriage and Packing 4/6. Desk sland firr stick mikes, 7/8.
SIREN MODULES. Encapsulated solid atate circuit. Only requires 3Ω mpeaker switel and battery $\left(9_{v}\right)$ to complete. (ives screaming siren note. Snecial half price offer List 25/- Our price 12/6. p.p. 1/-, Mabe inleal burglar atarth ur uarning system INTER-COMMS-DE-LUXE TRANSISTORISED PHILIPS "VOXIPHONE" 2 Way.

contrala at lached by fly leads, over 2 watts output. 59/6. P. \& P. 4/6. 4 TRANSISTOR 3W AMPLIFIER. Size $2!x \geqslant 41$ in., 3. 8 or 15Ω output, 9 rolt battery operated. Ilighly senaitive. Price (less battery) 52/6. P. \& P. $1 / 6$

NEW "QUICK-CONNECT" RANGE OF TRANSISTORISED MODULAR UNITS Belf contaned compact units with integral fixing holes for "any-attitule" mounting; or in confunction with other equipnent. Size only $3{ }_{4}^{2} \times 2 y^{3} \mathrm{I}$ lin. overall.
or in confunction with other equignent. Size why AUDIO AMPLIFIER MODULE. Jesigned output 8 - Lf ohms. With 9 volt battery, output is 700 mV into 8 ohus speaker; works with if wolt baltery at readuced power output. Regnires only battery, record player with crystal cartridge and speaker to buill a complete mono record player. $37 / 6$. P. \& P. 1/GRAM PRE-AMP MODULE. I'rovilles correct matching for magne tic cart rillges up to 50.000 ohms. Imp. Outputs up to $1.5 v$ designed for use with AUDIO AMP MODULE to provide Mone Reproduction from PRE-AMPLIFIER TAPE MODULE. Amplifies and equalizes the sutput from tape heads to playback fre-recorded taper clírect to an audio amplifier. Matches all kinds CODE OSCILLATOR MODULE. Operatemfrom i-6 volt battery ahli 3-1tionm speaker and telegraph key to make a connlete Morse cole ractice unit 20/-. P \& P $1 /-$
PICK-UP CARTRIDGE REPLACEMENTS (Standard Fitting for all Record Players)

 DELI AE 21/- BONOTONE NTACRRAMICSTEREO 37/6. NONOTONE GALC CRVATAL, 48/B. P. \& P. Od. Finest Quality British made MYLAR Recording Tape. Fully Guaranteed. In Cartons,
 5 in. booft. Standari ${ }^{2}$ lay..... $5 / 6$ Tin. 1800 ft. Long Play. 5 in. b00it. Standard Play $10 / 3 \quad 5 \mathrm{in} .1200 \mathrm{ft}$. Double Play $\begin{array}{llll}5 \text { in. } 850 \mathrm{ft} \text {. Standard Play..... } & 13 /-\quad \text { Stin } 1800 \mathrm{ft} \text {. Double Play } \\ \text { 7in l200ft Standaral Play.... } & 18 / 3 & 7 \mathrm{in}, 2400 \mathrm{ft} \text { Double Play }\end{array}$
 5in, 900/t, Long Play.......... 13/3 Leader tape varions colours ... $3 /$ P. \& P. Per reel. Four reela and over post paid. Tape sple $0 / 10 / 60 / 250 / 500 / 1000$. POCKET MOLTI-TEST METER. 1000Ω per volt. Volts $0 / 10 / 20 / 250 / 500 / 1000$ A.C.
 protw, instructions. 37/6. P. \& P. 1/6. We-Luze model, large scale, $55 / 1$ pius P.P. $1 / 6$. MULTITESTER- \quad meter moverment. $20,000 \Omega$ per volt $0 . C .10,000 \Omega$ per volt A.C. 19 ranges- $0,5,25$ $50,250,500.2500$ wolts D.G. $0,10,50,100,500,1000$ volts A.C. $0-50 \mu \mathrm{~A} \cdot 2 \cdot 5 \mathrm{~mA}-$ 250 mA D.C. 0 -ti000 $\Omega-6$ megohima, $10 \mu \mu F-0.001 \mathrm{mFd}$ - 20 to +22 dB Mirror sicale. Complete in cloth-tined leather case with carry strap and test leais. Exceptional value at 44.11 .6 (P \&. $3 / 4$).
TRANSISTORS: Bome popular fypes from our range: oc44 and $\overline{04} 453 / 6$ each OC71 2/9. OC74 3/8. OC81 and On41) 3/-each. OC1693/9. OC170 3/6. AF1174/-
 capable of operatiog up to 700 Mris. ALSO MAT100 7/9. MAT $1018 / 6$. MAT120 $7 / 9$ BAKER SIPEAKERS at apecial low price. Heavy luty 25 watt hasa speaker "(7roup

 TERMS. Cash with order, No C.O.D. Orders total 25 and over sent carriage paid
(excepting record player decks where carriage ia shown). Guaranteed money refunded (excepting record player decks where carriage ia shown). Guaranteed money refunded

Open the pages of The RADIO CONSTRUCTOR this month for . . . a dOUBLE CONVERSION COMMUNICATIONS RECEIVER

An outstanding constructional project for the radio amateur By R. Murray-Shelley

Otherconstructional features include:

F.E.T. Voltmeter for Beginners Simple Substitution Boxes 80/160 metre Tx Aerial Tuner SPECIAL 21st BIRTHDAY EXTRA

 ANNUAL INDEX 1967/68 FREEAlso
DETACHABLE DATA SHEET

RADIDGONSTRUGTOR

JULY ISSUE NOW ON SALE 3/-

required now for vital work in

Air Traffic Control

Join the National Air Traffic Control Service, a Department of the Board of Trade, and play a vital part in the safety of Civil Aviation. Work on the latest equipment in Computers, Radar and Data Extraction, Automatic Landing Systems and Closed-Circuit Television, at Civil Airports, Air Traffic Control Centres, RadarStations and other engineering establishments in the South of England, including Heathrow, Gatwick and Stansted.

If you are 19 or over, with practical experience in at least one of the main branches of telecommunications, fill in the coupon now. Your starting salary would be $£ 828$ (at 19) to £1,076 (at 25 or over); scale maximum £1,242 (rates are higher at Heathrow). Non-contributory pensions for established staff.

Career Prospects. Your prospects are excellent, with opportunities to study for higher qualifications in this expanding field.

Apply today, for full details and application form.

National Air Traffic Control Service

NEW 1968 ELECTRONIQUES

 MANUAL 12 HOBBIES SECTIONS PLUS OVER 12,000 COMPONENTS AND SPECIAL VOUCHER OFFERS COULD SAVE YOU £25 IF YOU BUY THE MANUAL NOW!The 1968 Hobbies

KNIGHTKITS- a famous American range of electronic easy-to-build kits. $H A L L I C R A F T E R S$-the Number One name in communication equipment and radios. $B O O K S$-over 140 titles. $A U D I O$ and $H I-F I-a$ wide, wide range including famous names like Goodman, Sinclair. Sonotone, Acos, Discatron, etc., etc. $H O M E$ AND $H O B B Y$ something for every member of the family-microscopes, telescopes, radio controlled equipment, garage door openers. experimental and educational kits, etc. $M O T O R I N G-a$ experimental and educational kits, etc. MOTORING-a special section with money-saving engine tuning kits, useful accessorles. SHORT WAVE LISTENING exciting kits and finished equipment for world-wide reception. $T E S T$ $E Q U I P M E N T A N D T O O L S-a$ very wide range including multimeters, oscilloscopes, signal generators, soldering irons, cutters, pliers, breadboarding kits, etc., etc. $C O M P O N E N T S-$ over 12,000 items from more than 100 manufacturers. The most comprehensive range available from a single source-now bigger than ever before. $A M A T E U R$ RADIO-the best of receivers, transceivers, aerial rotators, aerials, Qoilpax modules and lots more. ELECTRONIQUES PRODUCTS-boxes and assembly systems, transistor and valve Hamband and General Coverage tuners, crystal filter I.F. amplifiers, oscillators and other modules for effortless high performance. And finally
 brand names like STC, RCA Newmarket and Brimar.

Enclosed is a cheque/postal order for 1616 (which includes the 5/- pp) made payable to Electroniques (Prop. STC) Ltd. Please rush me my 960 -page copy of the new 1968 Hobbles Manual.

NAME
ADDRESS
PW/1
Send this coupon quoting the special limited-period offer to: Electroniques (Prop. SI'C) Ltd., Edinburgh Way, Harlow, Essex

out through a hole in the dividing board at the treble end and connected up as indicated. Finish with the connections to the tuning switch, see Fig. 7.

Tuning

It is assumed the constructor has arrived at the stage where the top C sounds when tuning switch is on, and vibrato and wands working OK. The next step is to get the resistance strip tuned. With top C sounding, check with a tuning fork. The fork should be struck on the knee, while holding by the stem, and then placed near the ear and tuning control slowly rotated until beats are at zero. The result should be perfect unison, both sounding together as one. If the constructor has access to a piano tuned to pitch, or a piano accordion for this first tuning, all will be straightforward. Tuning must always start from the top note, working down in half-tone stages. It must be explained that the system recommended for this first or rough tuning, in which the strip has been completely covered with graphite, means that they will mostly have to be flattened. From experience this has been found to be the easiest way, for the initial set-up of the tuning strip.

A crocodile clip should be connected to a 2 ft . length of flex, and the other end to 4.5 V negative (B1) on the note generator panel, and clip placed on the cheese head of the second plate down from the top C. Tuning switch and vibrato should be switched off, now note B should be sounding, tune with B on the piano by rubbing off some of the graphite between the two top screws with a soft pencil rubber. This will flatten the note; if required to be sharpened, use a HB pencil and rub the lead from one tag to the next by the screw round heads, if necessary work outwards each side to the edge of strip. When roughly in tune proceed with the next note A sharp in the same way. When finished start again, check the C is still correct and proceed again downward, this time it will go much quicker, some notes hardly requiring attention. After a recommended break we can tackle the third and last tuning, taking particular care that each note is well in tune with the piano, that is with complete absence of beats.

It is possible that occasionally a case may arise when it is impossible to raise the pitch of a note beyond a certain limit short of that required, this can be the result of a poor contact under the tags
on either side, try the left-hand one first by undoing the screw, lifting tag and rubbing the pencil lead well all around the hole and just beyond the area covered by the tag, and replacing the nut very tightly. Make sure that plate screw is still tight. The note will now probably be too high, flatten with the rubber until correctly in tune. Once this tuning has been done, it will require only occasional attention afterwards. The author checks through the tuning with the piano just after that has had its periodical tuning. This takes only a few minutes, and is very pleasurable to play afterwards, when really correctly in tune.

We will now consider the case of a constructor who has no piano or is unable to have the use of one for the first tuning. A tuning fork or pitch pipe is essential, and with the top C tuning switch on, adjust the tuning control as before. Switch off the tuning switch and place the crocodile clip to B cheese head when it should be obvious if that note requires to be sharpened or flattened. Attend to this accordingly as before. It must be mentioned that it is no use humming the notes of the natural scale Doh Te Lah Soh Fah Me Ray Doh because tuning of the sharps afterwards will alter the tuning of these. If the constructor has a good ear and can hum the chromatic scale carry on tuning for a complete octave. Concentrate on this octave until satisfied that it is reasonably in tune. A musical programme from the radio might help in checking. Assuming the octave is reasonably in tune, now place the clip on C one octave below top C and using wand 2 with its switch closed, and top C switched off, touch top C plate, if this is quickly taken off and on the octave notes will sound in a rapid alternating sequence and give a fair indication of in tune-ness, flatten or sharpen as before while doing this. Proceed with the next note B (24) place a clip on this, now use Wand 2 as before, but on the octave higher B (36) proceed as before, until bottom C is reached and tuned.

It is possible to obtain a complete set of tuning forks for one octave, but these would cost a few pounds. A complete octave of pitch pipes would be a cheaper proposition. These use reeds similar to a mouth organ. A chromatic mouth organ would also serve but is fairly expensive. Your local music store might help. These are all tuned to standard pitch, but should be confirmed if one is purchased.

TO BE CONCLUDED NEXT MONTH

IMPORTANT

DON'T BU̇Y PRACTICAL WIRELESS and then allow it to become torn and dirty. Don't search frantically through your back issues for that particular article either.

Treat yourself, and your magazines, to a Practical Wireless Binder and Index. A complete year's issues all in one place with an index for quick reference. The Binder is available for just 14 s . 6 d ., and the Index costs only 1 s .6 d ., postage and packing included. State which volume number you want on the binder, if you don't, we'll send you a blank one.

Available from the Binding Section, George Newnes Ltd., Tower House, Southampton Street, London, W.C. 2

WIRELESS INDEX

The index to Volume 43 of Practical Wireless is now available from the Post Sales Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

The price is 1 s . 6 d . inclusive of postage.

Shocking affair

I wish to draw your attention to the practice of some advertisers who advise that " 50 volts is easily obtainable between the 200 and 250 volt taps of a mains transformer".

- This is extremely hazardous practice, since if the user comes into contact with an earth or negative terminal a violent shock will be experienced which may be fatal under certain circumstances.

Should a 50 -volt supply be required, for example with surplus ex-GPO equipment or servo-systems, a suitable double-wound mains transformer should be used to safeguard the user.- \mathbf{P}. White (Freckleton, near Preston, Lancs.).

P.O's and solder

This letter is intended as a warning to be careful when sending a postal order for something to be sent by mail.
I sent a P.O. for 3s. 6d. to a firm in London for a service sheet. The same P.O. was returned to me, which, I should have added, was crossed. I am still stuck with it after two weeks, so make it a s.a.e. every time men.

Also, to Mr. Parkinson of Grimsby (see letters May), a good way to remove solder without expensive gear is to give the object being soldered a quick flick and the hot solder will fly off usually on to your trousers. This is culled from a Practical Wireless from way back which I once read and never forgot.-J. Martin (Southowram, Halifax, Yorks.).

Instant silence

With reference to the comments on "instant silence" by S. G. Hill (PW, March) I feel I must point out to him that these headset assemblies for W.S. 19 are available from several of the advertisers in P.W., catalogued often as Headset Assembly No. 10, complete with mic. but I know from experience that the No. 10 does not ensure silence when there is nothing being played in the phones, merely reducing it to an inaudible level when a signal is being received. The headset, furthermore, looks so ungainly as to make many fellow train passengers
doubt the sanity of your correspondent - so I would like to dissuade him from the use of such an assembly.-R. Davenport (address supplied).

Death of a diode

On Wednesday, 3 April my crystal set suddenly died out and although I tried changing all the components it did not help. However, when I tried it today it was working all right. Could you possibly tell me why this should happen?C. Richmond (Hants.).
[Readers' post-mortems gratefully received-Editor.]

Finale

Your correspondents Finn and Moult have torn me to pieces in your June issue and quite rightly so, under the circumstances they were very polite. I had based my assumption on the fact that I use a BY 100 in series with my soldering iron to reduce bit wear when the iron is idling for long periods. My iron is, of course, a 240 volt one running from 240 volt mains.
I now realise that I should have done my "sums" before committing pen to paper and I apologise most sincerely to anyone who has been misled by my letter in your March issue.-Mark Francis (Gloucs.).

30-line television

If by any chance a reader has one of the old 30 -line mechanical television receivers from the 1930s, we would very much appreciate details, as we are forming a wireless museum in connection with our local amateur radio society.
We would particularly like one of these vintage sets in time for our exhibition of old wireless receivers at our Mobile Rally, to be held on the banks of the River Nene at Peterborough on September 2D. Byrne (Peterborough Amateur Radio Society, Jersey House, Eye, Peterborough).

Radio club-Yorkshire

Would any readers in the Morley area who would be interested in forming a local radio club please contact me. Members of all ages and all radio interests would be
extremely welcome.-B. Mellor (15 South View, Churwell, Morley, Yorks.).

19 set information

I appeal to any 19 set owners who could tell me the basic procedures of how to handle the receiver. I am having one for my 12th birthday and would be very grateful.M. Pickard (9 Robincross, Borrowwash, Derbyshire).

Turn again Whittington

One has every sympathy with Mr. McLaren who did not receive the information he requested and paid for. (Letters, May issue.)
I recognise the firm from his description, and 1 do ask him to get in touch with them again even though I know the necessity should not have arisen. I think there must be a genuine mistake because I have dealt with this firm several times recently and have found the service quick and efficient by post, and on the two occasions I have called personally I was treated with the greatest patience and courtesy by the young lads in the shop.

I am a newcomer to the hobby and cannot be the easiest of customers to help. Their time-consuming advice has been quite invaluable to me in completing my relatively simple project.—J. Hackwood (London, S.E.9).

Time Gentlemen please

Reference "MW Column" page 57 of the May 1968 issue of Practical Wireless. Alistair Woodland states: "The fact that GMT has now disappeared completely, etc., etc.". I must point out that this statement is erroneous and can be very misleading to a beginner.

It is only for an experimental period of three years that we are on British Standard Time, and it will then be decided one way or another what we finally do. However, GMT will always remain for reporting, and it is certain to remain where shipping is concerned, especially for navigation.

Further, on a point of interest, GMT is now more widely known as "Universal Time".-Lt.-Com. F. Behenna (London, S.W.1).

This wonderful little set will provide hours of listening pleasure. Listen to the thrilling sound of an SOS at sea. Super for listening to the Hams at work. A printed circuit layout makes it simple to buid in a short time. Fully comprehensive instructions. Employs the latest components and transistors. Complete down to the Post 5/-. Money back if not delighted.

MINIATURE TRANSISTORISED B.F.O. UNIT This is a miniature transistorised B.F.O, unit (tunable) that will enable your set to receive C.W. or S.S.B. reception, Compact. Single hole fxing. This small unit will fit anywhore. Complete with fitting instructions 49/6, post free.

AELRIAL TUNER UNITS

For TX/RX use. Will load almost anything. Calibrated control dial. Housed in compactsteel case. Ideal for all radio amateurs and S.W.L.'s 25/-, p.p. 7/6.

AIRCRAFT/POLICE BAND RECEIVER A small transistorised receiver that will receive civil aircrait and police/fire/ambulance broadcasts. Operates metal cabinet size approx. $5 \times 4 \times 4 i n$. Attractive front panel. Speaker or headphone output. Price £\%.10.0 carriage 10/-. Few only. Brand new and unused.

COLLAPSIBLE AERIAL

IN 5 SECTIONS
fully CLOSED $13 \frac{1}{2}^{*}$ OPEN 5

STOP PRESS

BARGAINS GALOIRE FOR EVERYONE Miniature litin. diameter moving coil speaker 3/6 each. p.p. 1/6. Two for 8/- post free. OC 45 TRANSISTORS, first grade, $2 /$ each post free 12 AMP MINLATURE SILIC
800 p. i.v., $7 / 6$ each post free.
G00 p. I.V. $7 / 6$ each post iree.
G.p. 6d. MOVING COL, MIKE INSFRTS $2 / 6$. each. p.p. 1/-. SHORT WAVE LISTENER'S STATION GUIDE, $4 / 6$ each. p.p. 1/- 10 Henry 60 mA miniature 'SMOOTHING CHOKES, $2 / 6$ each, $p, p, 1 /-$ Four for $9 / 6$ post free. MATCHBOX XTAL SET, $10 /-$ post free.
TWO WAY TALKIE PHONES. Ideal for indoor/
outdoor use. Will work up to long distences Con outdoor use. Will work up to long distances. Can be held in the hand. Clear reception. No G.P.O licence required. One complete set sid. $^{2} 10.0$ batteries 86 inc. carriage. Batteries available singly $7 / 6$ per set. BREAST MICROPHONES. 15/-, p.p. 2/6. Tw for 25/-, p.p, $2 / 6$. THR
for use with musical instruments, $7 / 6$ each. for use with musical instrumen
2N2926 EPOXY RESIN TRANISISTORS. The latest NPN silicon epoxy encapsulated devices Not seconds. Four for 10/- whilst stocks last SISTORS. (General purpose type) Ist Grade. Only $2 / 6$ each. Four for 8/6. Postage 6 d . Grade MORSE PRACTICE OSCILLATOR SET Complete with "Hints on learning morse' manual. Fully transistorised. In compact case 19/11. p.p. 3/6.
HEAVY DUTY DPDT SWITCHES. Centre off 10 amp rating. $2 / 6$ each, p.p. 6d. MOVING COIL 17/6, p $3 / 6$. WATCH THIS SPACE NEXT 176, p.p. 3/6. WATCH THIS SPACE NEXT
HEAVY DUTY 12/24 volt relays. Multiple switching contacts. Will switch up to 20 amps. Make ideal aerial changeover units. 7/6 each. p.p. 2/6. Four for $25 /-$ post iree.

TRANSVERTOR UNITS. 12 volt D.C. to 240 volts A.C. Ideal for Fluorescent lighting and A.C. only equipment. List price 8 gns . Scoop purchas price 55.19 .6 , post free.
Cracked carbon 5/- per doz Post 6d
New Component Centre open at this address.

DEPT. P.W. 14 RACAWOODSYD., MILLS'PTIREET, LEEDS, 9.

The latest version of the T.R.GDX Series. The type $25 / \mathrm{C}$ improved model. A brand new fully transistorised receiver. Four complete ranges $550 \mathrm{kc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$ covering all amateur bands, shipping bands and broadcast bands. Makes an ideal mobile receiver. It is a highly efficient double tuned superhet comprising R / F aerial tuning section. AVC and built in B.F.O. (tunable) for C.W. or S.S.B. in B.F.O. (tunable) for rebtion. Ideal for mobile reception. reception. Ideal for mobile reception.
Size only $9 \times 7 \times 6 \mathrm{in}$. Operates from Size only $9 \times 7 \times 6$ 6in. Operates from
internal 9 volt battery. Gives a high quality reproduction. With speaker or headphone output. Hammer finished robust steel case of pleasing design, with all controls on well set out front panel. The set complete with handbook, factory built and tested with 12 month guarantee 16 gns. carriage and insurance $14 /$ -
ACCESSORIES: Headphones (Moving coil) $19 / 6$ p.p. $5 /$. Fitted S meter $£ 2.10 .0$ extra. Stabilised mains power pack $£ 4.10 .0$. carriage $10 / \mathrm{F}$. This set is now available to the home constructor in kit form. With fully punched chassis, point to point wiring diagram, complete set of parts, full step by step instructions. Printed circuit boards and pre-aligned IFs. Price 14 gns. Carriage and insurance 14/-.

Latest Publication. "Easy to make Electronic Gadgets". Ideal for constructors of all ages. (10-99). Available from your local bookseller or us 12/6, post paid.

HOME RADIO (Mitcham) LTD., Dept. PW, 187 London Road, Mitcham, Surrey, CR4 2 YO Phone : 01-648 3282

Widely acclaimed at the 1968 AUDIO FAIR

a brilliant advance in high fidelity loudspeaker design

ACOUSTICALLY CONTOURED$60-16,000 \mathrm{~Hz}$$8 \Omega$ IMPEDANCELOADING UP TO 14 WATTSBRILLIANTTRANSIENT
RESPONSENEW MATERIALSNEW STYLINGALL BRITISH

When the Sinclair 0.14 was demonstrated at this year's Audio Fair, it delighted some of the world's keenest and most critical listeners. It more than held its own against far more expensive loudspeakers and proved beyond all question that research and careful design could produce a quality loudspeaker for a remarkably low price. The 0.14 measures $9 \frac{3}{4} \mathrm{in}$. square on its face and is finished in black matt with natural aluminium bar embellishment. Its unique shape allows it to be tried and used in a far wider choice of positions than conventionally shaped speakers. A pair in stereo give true "in-depth" performance with complete freedom from listening fatigue. If you missed the Audio Fair, why not hear this speaker in your own home. Should you not be pleased with it, your money including cost of return post to this office will be refunded in full, if purchased direct from Sinclair

"'The very finest

 value for moneysays the Edftor of "Twoe Recording Atagazine". June issue, page 257. "". . After a great deal of tlstunIng I have formed the poslitye and unshakeable opinion that in the Q. 14 we have the very fire it walus for money It is possibles to bay. In the B \& K graph lies the angwer to the astonishing quallily. My recommendation (to persans not ready to spend ± 100 or more on speakers) is to Invest In 9.14 B and sit back and emoy them for the next few years."

> P.G. of Newry, N. Ireland writes : ''I have always been cynlcal about letters written to manufacturers pralsing thelr goods, but i am so dellghted with the (two) Q.i4 speakers that I feel I must write thls for It sounds that you have glven me a new collection of records. I congratulate you on a marvellous

COMBINED 12 WATT HI-FI AMP AND PRE-AMP

The small amplifier with the enormous output

No constructor's amplifier has ever achieved such success as the Sinclair Z.12. It has fantastic power-to-size ratio, and far greater adaptability. It will operate from batteries or PZ. 4 mains power supply unit, and gives superb stereo reproduction for modest outlay. Thousands are in use throughout the worid-in hi-fi, electronic music instruments, P.A., intercom systems etc. This true 12 watt amplifier is supplied ready built, tested and guaranteed together with the Z. 12 manual which details control circuits enabling you to match the Z .12 to your precise requirements. For complete listening satisfaction use your Z. 12 system with 0.14 loudspeakers. It assures superb quality with substantial saving in outlay.

- IDEAL FOR BATTERY OPERATION $3 \times 1 \frac{3}{4} \times 1 \frac{1}{4} \mathrm{in}$. Class B Ultralinear output 15 r $50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$ Suitable for $3,5,8$ or 15Ω speakers. Two 3 -ohm speakers may be used in parallel Input-2mV into $2 \mathrm{k} \Omega$ Output-12 watts R.M.S. continuous sine wave (24 w peak) 15 watts music power (30w peak) Ready built, tested and guaranteed

SINCLAIR PZ. 4 STABILISED

 POWER SUPPLY UNITA heavy duty A.C. mains power supply unit delivering 18 V D.C. at 1.5 A . Designed specially for use with one or more Z.12's. Ready built and tested.

THE SINCLAIR STEREO 25 PRE-AMP/CONTROL UNIT For use with two Z.12's in stereo. With pull control and matching facilities. Attractive aluminium front panel and knobs.

BUY IT IN KIT FORM OR READY BUILT

Complete kil inctudirn magnetic earpiese
and instructions
Ready built with magnetif: earolece
59/6
Mallory Mercusy Cell RM. 675 (2 neecied') es. 2/9
$14 / 5 \times 13 / 10 \times 1 / 2$

This amazingly tiny receiver is the ultimate in personal fistening. The Micromatic as easy to have with you as your wristwatch. It has enormous power and range, and the magnetic earpiece now supplied assures marvellous quality. Hear how Radio 1 and other stations simply pour in over the whole medium waveband. Build it yourself or buy your Micromatic ready built. This is the set you will never be without once you hear it for yourself.

the sinclair guarantee

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. FULLSERVICEFACILITIESAVAILABLE TO ALL PURCHASERS.

Improve yout home wilh PRaCIICAL HOUSEHOLDER

HOW TO CONSTRUCT a SUN TRAP

This striking home improvement scheme shows you how to build an attractive sun trap with paved terrace, plant tubs and fountain, at the same time concealing the garage.

Other Outstanding Features:

- Wall-to-wall furniture for the master bedroom
- Kitchen units for beginners with power tools
- Modernising an outside toilet
- Garden lighting plan

PRACTICRL HOUSEHOLDER AUGUST ISSUE OUT NOW 2/-

S B ELECTRONICS

A better buy each month

BARGAIN PRICE STEREO AMPLIFIER-13 $\frac{1}{2}$ GNS. ONLY. 27 gns . retail value. A fully transistorised high fidelity stereo amplifier complete in free standing case. Switched input facilities. Socket (1) Tape or crystal pick-up. (2) Radio tuner. (3) Ceramic pick-up mike. Controls: volume, bass, treble, balance, input selector switch. Stereo/mono switch. Facia plate rigid Perspex with black/silver background and matching black edged knobs with spun silver centre. Output 6 watts per channel (R.M.S.), 12 watts mono. Free response $+3 \mathrm{~dB} 20-20,000 \mathrm{hz}$. Bass boost approx. $10+12 \mathrm{~dB}$. Treble cut 2-16dB. Approx. negative feedback - 18 dB over main amp. 12 months unconditional guarantee. P. \& P. 6/-.

- BARGAIN PRICE STEREO AMPLIFIER-7 GNS. ONLY. 16 gns. retail value. A high fidelity unit complete in free standing case. Ideal for crystal or ceramic pick-up, tape, radio tuner. Fully integrated. Facia plate rigid Perspex. Black/silver matching knobs. Output 4 watts per channel R.M.S. 12 months unconditional guarantee. P. \& P. 5/6.
- BARGAIN PRICE MONO AMPLIFIER-7 GNS. ONLY. 14 gns. retail value. A high fidelity unit providing excellent results at all output levels complete in free standing case. Frequency response: $30-20,000$ c.p.s. - 2 dB . Sensitivity 5 mV max. Harmonic distortion 0.5% at 1,000 c.p.s. Output 3-8-15 ohms. Input: mike, gram, radio tuner, tape recorder. Controls (5): volume, bass, treble, mains switch, input selector. Facia rigid Perspex black/silver with matching knobs. Output 6 watts R.M.S. (certified). 12 months unconditional guarantee. P. \& P. 5

CHANGER DECKS—ALL AT GARRARD 1000-1025	BARGAIN PRICES. $\text { … £6 } 50 \text { P. \&P. } 7 / 6$
GARRARD 2000-2025	£6 15 0 P. \& P. 7/6
GARRARD 3000-3500	£8 196 P. \& P. 7/6
GARRARD AT60	£12 100 P. \& P. 8/6
GARRARD SL55	£11 10 OP. \& P. 8/6
GARRARD SP25 Mk. II	£11 15 0 P. \& P. 8/6
GARRARD LAB80 Mk. II	£23 10 0 P. \& P. 10/6
GARRARD SRP22	£4.10.0 P. \& P. 5/6
B.S.R. UA25	£6.5.0 P. \& P. 7/6
Plinths to suit all the above, beauti facture. £2.5.0 ONLY. P. \& P. 5/-.	styled and of No. 1 manu-

- BARGAIN PRICE A.M. SUPERHET TUNER UNIT6 GNS. ONLY. 12 gns, retail value. Mains operated, fully transistorised, ferrite rod aerials. Simply add to any of our amplifiers for outstanding results. 12 months unconditional guarantee. P. \& P. 5/6.
- BARGAIN PRICE F.M. TUNER UNIT-8 GNS. ONLY. 16 gns. retail value. Mains operated, 6 transistor unit. S/M horizontal dial, 2 I.F. stages, coupled double tuned discriminator terminating in I.F. Ample output for all amplifiers. Highly recommended. 12 months unconditional guarantee. P. \& P. 5/6.
- BARGAIN PRICE L.W./M.W./F.M. TUNER UNIT16 GNS. ONLY. 30 gns. retail value. Mains operated, fully transistorised. Output 5 mV , exceptional sensitivity and selectivity on all bands. L.W. $180-360 \mathrm{Kc} / \mathrm{s}$. A.M. $600-1400 \mathrm{Kc} / \mathrm{s}$. F.M. 88$108 \mathrm{Mc} / \mathrm{s}$. Complete with aerials, 3 band horizontal dial. 12 months unconditional guarantee. P. \& P. 6/6.
- BARGAIN-RECORD PLAYER AMPLIFIERS--47/6 ONLY. EL84 output, 2 controls, flying panel, A.C. mains operated 230240 volt. Non-live chassis. Fully built and tested. 12 months unconditional guarantee. P. \& P. 2/6.
- BARGAIN-RECORD PLAYER AMPLIFIER UNIT-52/6 ONLY. Complete with valves (UCL82 output). Fully built and tested, mounted on board with speaker. Knobs supplied. All leads attached ready for instant connection to your turntable. 12 months unconditional guarantee. P. \& P. 3/6.
- BARGAIN-RECORD PLAYER CABINETS-52/6 ONLY. Strongly built wooden cabinet-two tone gilt fittings, carrying handle. Suitable for any amplifer. Ample space for speaker. Matching Garrard or B.S.R. cut-out board supplied free. P. \& P. 5/-.
- BARGAIN-SPEAKERS, STANDARD AND HIGH FI. DELITY, 5 in . round, $7 \times 4 \mathrm{in}$. elliptical, 8 in . round. All 3 ohms. ALL ONE PRICE, 15/-. P. \& P. 2/6.
- BARGAIN—E.M.I. 8×5 in. ELLIPTICAL-OUR PRICE 27/6 POST FREE. 12,000 lines gauss, 5 watts, Accomax magnet. Sold elsewhere at $50 /-.3$ or 15 ohms. Brand new with 12 months unconditional guarantee.
- BARGAIN-E.M.I. $13 \times 8 \mathrm{in}$. ELLIPTICAL-OUR PRICE 47/6 POST FREE. 12,000 lines gauss, 10 watts, Accomax magnet. Sold elsewhere at $£ 4$. 3 or 15 ohms. Brand new with 12 months unconditional guarantee.
- BARGAIN-BAKER-SELHURST DE-LUXE-OUR PRICE £4.19.6 ONLY. 12 in . dia. round, 15 watt rating, 12,000 lines gauss, Accomax magnet. 3 or 15 ohms. Response: $45-13,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Bass resonance 40-50 c.p.s. Solid aluminium chassis. Brand new with 12 months unconditional guarantee. P. \& P. 6/6.
- BARGAIN-BAKER-SELHURST GUITAR GROUP 25f4.19.6 ONLY. 12 in . dia. round, 25 watt rating, 12,000 lines gauss, 15 ohms. Response: $30-10,000$ c.p.s. Solid aluminium chassis. Heavy duty core. Brand new with 12 months unconditional guarantee. P. \& P. 6/6.
- CARTRIDGES-ALL AT BARGAIN PRICES.

All cartridges are supplied with fixing brackets and screws at no extra cost.
- BARGAIN-PHILIPS INTERCOM SYSTEM—OUR PRICE 59/6 ONLY. Retail value $£ 6.6 .0$. This equipment is ideal for baby alarm, office, home. Hundreds of uses. Absolutely brand new in handsome presentation case containing all leads, etc. 12 months unconditional guarantee. P. \& P. 3/6.
- BARGAIN-CAR RADIOS-OUR PRICE 9 GNS. Retail value 16 gns. Negative or positive earth (switched). Well known brand name. Fully transistorised, 12 volt, medium and long waves. Speaker and fitting kit supplied at no extra cost. 12 months unconditional guarantee. P. \& P. 7/6.
- BARGAIN-CAR AERIALS. OUR PRICE 22/6. Retail value $37 / 6$. Wing mounting, heavy chrome plate, retractable. A snip. Buy while stocks last.
- BARGAIN-CAR RADIO/PORTABLE-OUR PRICE $4 \frac{1}{2}$ GNS. ONLY. Retail value $7 \frac{1}{2}$ gns. Single waveband (medium). Fully transistorised. A beautiful radio, the performance has to be heard to be believed. 12 months guarantee. P. \& P. 4/6.
Free with this Radio-suitable window mounting car aerial.
- BARGAIN-SLIMLINE TV RECEIVERS IN MINT CONDITION. $17 \mathrm{in} ., 19 \mathrm{in} ., 21 \mathrm{in}$. Checked complete and working but less I.F. strip. OUR PRICE 99.10 .0 ONLY. I.F. strips supplied at $45 /-$ if required. Fitting charge for I.F. strip £2.2.0 if requested. P. \& P. TV Set 30/-. P. \& P. I.F. strip 5/-. If purchased together 30/-. Personal collection advised, otherwise despatched at customers risk.

BARGAIN-DIODES—OUR PRICE $£ 1$ for 750 . In 750 lots only. All assorted.

Our high fidelity equipment is not advertised due to space limitations. In stock and on demonstration all famous namesLeak, Wharfedale, Rogers, Rason, Thorens. Up to 15% discount against recommended retail prices.

Practical Wireless Classified Advertisements

The pre-paid rate for classified advertisements is $1 / 6 \mathrm{~d}$. per word (minimum order $18 /$-), box number $1 / 6 \mathrm{~d}$. extra. Semi-displayed setting $£ 4.12 \mathrm{~s}$. 6d. per single column inch. All cheques, postal orders, etc., to be made payable to PRACTICAL WIRELESS and crossed "Lloyds Bank Ltd." Treasury notes should always be sent registered post. Advertisements, together with remittance, should be sent to the Advertisement Manager, PRACTICAL WIRELESS, George Newnes Ltd., 15/17 Long Acre, London, WC2, for insertion in the next available issue.

METAL WORK
METAL WORK: All types cabinets, chassis racks, etc., 10 your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street, Loughborough.

TAPE RECORDERS, TAPES, Etc.

TAPES TO DISC-using finest professional equipment 45 rpm-18/-. S.A.E. leaflet. DEROY, High Bank, Hawk Street, Carnforth, Lancs.

SITUATIONS VACANT

RADIO and tape recorder testers and trouble shooters required. Canteen, excellent rates of pay. 8.00 a.nı. to 5.00 p.m. 5 -day week. Elizabethan Electronics Limited, Crow Lane, Romford, Essex. Phone: Romford 64101.

YOUNG MAN as Trainee Salesman in Hi-Fi/ Tape Recorder department of City retailers. Equivalent 5 day week. Apply Mr. Atkins, Wallace Heaton Ltd., 93 Fleet Street, E.C.4, Telephone 3539391.

TV and Radio, A.M.I.E.R.E., City \& Guilds, R.T.E.B. Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses (including practical equipment) in all branches of Radio, TV, Electronics, etc. write for 132 of Rage Handbook-FREE. Please state subject. page Handbook-FREE. Please state subject. TECHNOLOGY (Dept. I37 K), Aldermaston Court, Aldermaston, Berks.

ENGINEERS. A TECHNICAL CERTIFICATE or qualification will bring you security and much better pay. Elem. and adv, private postal courses for C. Eng., A.M.I.E.R.E, A.M.S.E. (Mech. \& Elec.), City \& Guilds, A.M.I.M.I., A.1.O.B., and G.C.E. Exams, Diploma courses in all branches of Engineering -Mech., Elec., Auto., Electronics, Radio, Computers, Draughts., Building, etc. For full details write for FREE 132 page guide: BRITISH INSTITUTE OF ENGINEERING TECH NOLOGY, (Dept. 169 K), Aldermaston Court, Aldermaston, Berks.

COURSES

> Barking Regional College of Technology Longbridge Road, Dagenham
> (Nearest Railway Stations, Barking and Goodmayes) Commencing September 1968 A two year full-time course of training for MARINE RADIO OFFICER

for young men aged 16 upwards
Particulars and application forms from the Principal quoting "Marine Radio and Radar courses."

FULL TIME COURSE IN BASIC ELECTRONICS A NINE MONTH COURSE, starting next September, for those wishing to work in Radio, Television, Computers or Automatic Control. Television, Computers or Automatic Control.
The course leads to City and Guilds certificates The course leads to City and Guilds certificates
and is ideal for school leavers, for whom, in most cases, no fee is payable. For details of this, or part time courses in Colour TV., etc., write to Section $47 / 58$ SOUTHALL COLLEGE OF TECHNOLOGY, Beaconsfield Road, Southall, Middlesex.

EDUCATIONAL

RADIO OFFICER training courses. Write: Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

SEISMIC OBSERVERS

with analogue or digital field experience required for overseas service on land or sea, by GEOPHYSICAL SERVICE INTERNATIONAL who offer a good salary and foreign bonus, ample leave on full pay and foreign bonus, medical insurance scheme, life insurance, profit sharing and a pension plan. Those interested please write to:

The Personnel Manager, Geophysical Service International Ltd., Canterbury House, Sydenham Road; Croydon, Surrey, quoting Ref. 12/68, or telephone 01-686-6511.

EDUCATIONAL

(continued)
CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee' terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electronics. radio, TV., automation, etc., send for 132-page Handbook-FREE. B.I.E.T. (Dept. 168 K), Aldermaston Court, Aldermaston. Berks.

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio. TV servicing and maintenance. T.T.E.B., City and Guilds, etc.: highly informative i20-page Guide-free. CHAMBERS COLLEGE (Dept. 857K), 148 Holborn, London, E.C.l.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
W'rite for FREE prospectus and find out how ICS can help you in your career.

ICS, DEPT. 541, INTERTEXT HOUSE, LONDON, SWII

MISCELLANEOUS

SOLDER TO ALUMINIUM

Special solder de-oxidiser and instructions. Use ordinary soldering iron: Solder component wires etc. direct to aluminium chassis etc. KIT 5/-, Extra solder 9d. per foot.

SALOP ELECTRONICS

9a, Greyfriars Road, Shrewsbury, Salop

ELECTRONIC sound and musical devices required for exploitation. Adequate finance available. Projects developed to pre-production stage required. Royalty payments guaranteed. Details only Box No. 74 .

ELECTRONIC MUSIC?

Then how about making yourself an electric organ? Constructional data availablefull circuits, drawings and notes! It has 5 octaves. 2 manuals and pedals with 24 stops-uses al valves. With its

Write Now for free leaflet and further details to C. sis., 20 vlaude street. Darlington, Durham. Send 3d. stamp.

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5.000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, 16 Shepherds Bush Rd., London W.6. SHE 8441.

SERVICE SHEETS. RADIO. TELEVISION, TAPE RECORDERS, 1925-1968 by return post. from $1 /$ - with free fault-finding guide. Catalogue 6,000 models 2/6. Please send stamped addressed envelope with all orders/ enquiries. HAMILTON RADIO, 54 w London Road, Bexhill, Sussex.

SERVICE SHEETS $(75,000) 4 /$ - each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

C. \& A. SUPPLIERS

SERVICE SHEETS

(T.V., RADIO, TAPE RECORDERS, TRANSISTORS)
Only 3/6d. each, plus S.A.E.
(Uncrossed P.O.'s please, returned if service sheets not available.)

71 BEAUFORT PARK LONDON, N.W. 11

We have the largest supplies of TV Service Sheets only, by return of post. Please state make and number.

Mail order only.

BOOKS \& PUBLICATIONS

A vital 'Learning With Fun' book for young radio constructors.
FUN WITH SHORT WAVE RADIO by Gilbert Davey; edited by Jack Cox. $10 \times 7 \frac{1}{1}$ in., 64 pages, fully illustrated. 16 s .
KAYE \& WARD ${ }_{\substack{\text { London E.C.2. }}}^{200 \text { Bishopsgate }}$

SURPLUS HANDBOOKS

WANTED

WE BUY New Valves, Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

WANTED: Popular Brand New Valves. R.H.S., Stamford House, 538 Great Horton Road, Bradford 7.

WANTED: New valves, transistors etc.; state price. E.A.V. Factors, 202 Mansfield Road, Nottingham.

DAMAGED Avo Meters, Models 7 and 8, Damaged Meggers, any quantity. Send for Damaged Meggers, any quantity. Send for packing instructions. Hest Croydon.

VALVES WANTED, brand new popular types boxed. DURHAM SUPPLIES (C), 175 Durbam Road, Bradford 8, Yorkshire.

WANTED NEW VALVES, televisions, radiograms, transistors, etc. STAN WILLETTS, 37 High Street, West Bromwich, Staffs. Tel.: WES 0186.

WANTED NEW VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

WANTED

(continued)
WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED, Service Sheets for Televisions (older models preferred) also sheets for Transistors, Tape Recorders. Any quantity State price. Mr. CARANNA, 200 High Road, East Finchley, N.2.

FOR SALE

SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gear-lots of unusual stuff. This Cat, is free for the asking. K. R. WHISTON (Dept. PWC), New Mills, Stockport.

MINIFLUX 4-Track stereophonic/monophonic record/playback heads. List Price 6 gns.-Special Offer 55% - each. MINIFLUX 4-Track stereophonic/ MINIFLUX 4 -Track stereophonic/
monophonic Ferrite Erase Heads. List monophonic Ferrite Erase Heads. List
Price $£ 3.10 .0$.-Special Offer $32 / 6$ each. or supplied together (one of each) at £3.17.6. SKN4 $\frac{1}{2}$-track stereophonic record/play heads for Transistor Circuits at $55 /$-each. Also a vailable t-track and full-track monophonic Ferrite Erase Heads. All heads complete with technical specifications. Send S.A.E. for details. LEE ELECTRONICS, 400 Edgware Rd., Paddington 5521.

PERSPEX clear and coloured sheet. Equipment panels drilled and cut to your specifications. Please supply accurate measurements or brown paper pattern. Send S.A.E. for quotation by return. Open all day Saturday. PARKRIVER ELECTRICS LTD., 2 Worsted Street, Mill Street, off Marsh Lane, Leeds 9.

(continued on next page)

FOR SALE
(continued)
Boxes of B.A. Nuts and Bolts, all Brand new and high grade machine cut items, in valuable to all Service men, experimenters etc. Bolts include 2.BA 4.BA and 6.BA up to $2^{\prime \prime}$ long, various heads, mainly brass, approx. 3-400 items per box, our Special Price $7 / 6 \mathrm{~d}$. plus $2 /-\mathrm{d}$. Post and Packing. WALTON'S WIRELESS STORES. 55a Worcester Street, Wolverhampton, Staffs.

RADIO KNOBS, lin. dia., fin. fitting. Black. 3/-doz. inc. post. G4MH, 8 Townend, Golcar, Huddersfield.

MORSE MADE ! !

FACT NOT FICTION. If you start RIGHT you will be reading amateur and commercial Morse within a month. (Normal progress to be expected.)
Using scientifically prepared 3 -speed records you automatically learn to recognise the code RHYTHM without translating. You can't help it, it's easy as learning atane. 18 W.P.M. in 4 weeks guaranteed.

For detalle and course C.0.D. ring, s.t.d. 01-660 2896 mp for explanatory booklet to
G8CES/P. 45 GREEN LANE,PURLEY, SURRET

ELECTRICAL

240 voir ELEETRICTTY ANYWHERE
 MOST BRILLIANT PERFORMANCE EVER

 from 12 volt Car BatteryBRILLIANT HEAVY DUTY 240 volt AMERICAN DYNAMOTOR With BIG 220 VISION, ELEOTRIC DRILES. MAINS ITGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for Fluorescent lighting. Thousands of uses Tremendous purchase makes fantastically ONLY es fach plus 101
pleasure MONEY BACK il
Please send s.a.e. for full illustrated details.
(Dept. PW) STANFORD ELECTRONICS
Rear Derby Road, North Promenade, BLACKPOOL, Lancs.

RECEIVERS \& COMPONENTS
WE ARE BREAKING UP COMPUTERS

COMPUTER PANELS (as shown) $2 \times 4 \mathrm{in} .8$ for $10 /-$ POST FREE, with min. 30 tranaistors.
100 for $65 /-\frac{1}{2}$ p. \& p. 6/6. 1,000 for $830+$ carr
GIANT PANELS $51 \times 4 \mathrm{in}$. with 20 Transistors, 30 Min Diodes, 36 Min . Resistors and 9 D6uH lnductora on each woard. 3 for $\mathrm{f1}$. l'ost Free
PANELS xith^{2} Power Transiators sim to OC28 on each board + components. 2 Boards ($4 \times$ OC28) $10 /-$
8ILICON F.W. BRIDGES on Finned Heat Sink, 150 p.i.w 20 amp . Tatty but guaranteed and a bargain at $10 /$ - each
p. \& P. 2/- each. values at $5 /$-each. $1 \frac{1}{2}, 2,3,4,5,7,8 \mathrm{amp}$
TO5 TRANSISTOR COOLERS, $7 / 6$ doz.
MINTATURE GLAB8 NEONS, $18 / 6$ doz.
LONG ARM TOGGLE SWITCHES, ex eqpt. $15 /-\mathrm{doz}$.
p. \& p. 2/f. LARGE CAPACITY ELECTROLYTICS, 4 in. 2 in . diam Berew Terminals. All at $6 /$ - each. $+1 / 6$ each. p. \& p.
 $10,000 \mathrm{Mfil} .35 \mathrm{v}$. D.C. Wkg
KEYTRONIC8, 52 Earls Court Road, London, W. 8

RECEIVERS \& COMPONENTS (continued)

PEAK SOUND SA 8-8 Kit, Ampl. and Power Pack, brand new, complete, £9. C. TOLSON, 367 Kensington Street, Bradford 8, Yorkshire.

BRAND NEW TELEVISION TUBES 2 YEAR GUARANTEE. HUGE RANGE $\begin{array}{cccc}12^{\prime \prime} & £ 3 ; & 14^{\prime \prime} & £ 4.15 .0 ; \\ & 17^{\prime \prime} & £ 5.15 .6 \\ & \text { £6.17.6, etc., etc. Carriage, }\end{array}$ Also British and Telefunken valve lists! PHILIP H. BEARMAN, 6 Potters Road, New Barnet, Hertfordshire. Tel. 449/1934

BARGAIN PARCELS of new surplus Electronic Components, $3 /-5 /-, 10 / \mathrm{F}$, post free. DOLPHIN ELECTRONICS, 5 Pooles Way, Briar Close, Burntwood, nr. Lichfield.

surpous Bancinins

TRANS/RECEIVER
Covers 2-8 Mc/s in 2 bands. 11 valve superhet P.A. Power reqs. LT 12 v .
H.T. rec. 275 V . H.T H.T. rec. $275 \mathrm{~F} . \mathrm{H} . \mathrm{T}$ transmit 500v. D.C. slightly used 55/Selected condition 85/-.
All 19 set ancillary parts available
COLLINS (U.8.A.) RECEIVER 7 valve superhet. (Int. Octal valves). Exceptionally stable for 8sB. Frequency coverage $1 \cdot 5-12 \mathrm{Mc} / \mathrm{s}$. Power required 250\%. D.C. No. 31 TRANSCEIVER. VHF $40-48 \mathrm{Mc} / \mathrm{s}$. Tunsble. No. 31 TRANSCEIVER. VHF 40-4
$\mathbf{9 0 / 6 0 / 4} \frac{1}{2} \mathrm{v}$. battery operation. 70/-.
90/60/4 V v. battery operation. 70/-
No. 88 TWO WAY RADIO. $40-42 \mathrm{Mc} / \mathrm{s}$. Crystal controlled, 4 channel. 50/- each.
B44 VEF RADIO TELEPEONE. 60-95 Mc/s. Crystal controlled. 12v. D.C. operation. E7.10.0.
NO. 62 TRANSMITTER RECEIVER. $1 \cdot 6-10 \mathrm{Mc} / \mathrm{s}$.
Tumable or cryatal controlied. 12v. D.0. operation
t18.10.0.
R.C.A. C29 TRANSMITTER RECEIVER. 2-8 Mc/s. Complete station. Brand new. 12 or $24 v$. D.C

No. 52 RECEIVER8. Few left. Used (serviceable). 87.10.0.
TUBULAR STEEL TELESCOPIC AERIAL MAST8. 20 ft . 4 section 70/-
$321 t$. as above with 12ft, whip $80 /-$
4it. 6 Bection 901 -
MAKE YOUR OWN AERIAL MAST!
6ft. 8in., 2in. dia. interlocking steel aectlons. NYLON GUY ROPES with semi-automatic NYLON GUY ROPES with gemi-automa
tensioner. $33 i t .6 / 6 ; 50 \mathrm{ft} .7 / 6 ; 60 \mathrm{ft}$. $9 /-$.
ROTARY TRANSFORMERS BY HOOVER. ROTARY TRANSFORMERS BY HOOVER. $25 /-12 \mathrm{~m}$.
65 mA .25 t
REJECTOR UNIT. For rejecting unwanted aignals. Switched 4 ranges. $1 \cdot 2-10 \mathrm{Mc} / \mathrm{s}$. $30 /=$. R.F. ANTENNA TUNER (A.T.U.). $160 / 80 / 40$ R.F. ANTEN
metres. $25 /$. MOVING COI D.L.R. BALANCED ARMATURE HEADPHONES.

HEADSET WITH BOOM MICROPHONE. As used ith 88 8et. 22/6.
MOVING COLL HEADPHONES AND MIKE 21/6. TRANSMITTER. $1 \cdot 75-16 \mathrm{Mc} / \mathrm{s} .3$ wave band t 813PA. Complete all ₹alves, circuit. 27.10 .0 POWER SUPPLY. 12v. D.C. input. 285 and 1300 v . D.C. 300 mA output. Incorporating 230 v . D.C. 80 mA vibrator pack. Circuit. \$7.10.0
ALL ITEMS CARRIAGE EXTRA MAINLAND ONLY. List giving fuller details of these and masny other surplus bargains 2/-. S.A.E. all enquiries

A.J.THOMPSON (Dept.P.W.)

"EILING LODGE", CODICOTE, HITCHIN, HERTS. Phone: CODICOTE 242
Houre of business Monday to Friday 8-5. Sat. 8-18. Prices correctat time of press but subject to increase

RECEIVERS \& COMPONENTS

\section*{SUPERIOR QUALITY NEW RESISTORS
 Carbon flm Low noise High stabillty
 | Carbon | woise range | series per doz pe |
| :---: | :---: | :---: |
| 1W 5\% | to $330 \mathrm{k} \Omega$ | E24 1f10 14 |

 | W | 10% | $4 \cdot 7 \Omega$ | to $10 \mathrm{M} \Omega$ | E12 | $1 / 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $18 / 6$ | | | | | |
| $1 W$ | 5% | $4 \cdot 7 \Omega$ | to $10 \mathrm{M} \Omega$ | E24 | $2 \uparrow$ |
| 10 | $17 /-$ | | | | |
| 10% | 4.7Ω | to $10 \mathrm{M} \Omega$ | E12 | $3 / 3$ | $25 / 10$ | 1/6 leas per 100 in 100 's of one ohmic value. PLEASE atate your choice of values.
 QUALITY CARBON SKELETON PRE-8ETS: $100 \Omega, 250 \Omega, 500 \Omega, 1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 2 \cdot 5 \mathrm{k} \Omega, 5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega$, $2 \mathrm{M} \Omega, 2 \cdot 5 \mathrm{M} \Omega, 5 \mathrm{M} \Omega, 10 \mathrm{M} \Omega$.
 A vailable in horizontal or vertical mounting 1/-each. LOW COST VOLUME CONTROLS: 100Ω to $10 \mathrm{M} \Omega$ $\operatorname{lin} 2 / 3$ each. $5 \mathrm{k} \Omega$ to $5 \mathrm{M} \Omega \log 2 / 8$ each.
 CERAMICS: $100,220,170,1000,2200,4700 \mathrm{pF}$. $500 \mathrm{~V} 5 \mathrm{~d} .0 \cdot 005,0 \cdot 01,0 \cdot 02,0 \cdot 05 \mu \mathrm{~F} 50 \mathrm{~V}$ ' d . ELECTROLYTICS: $5,10,25,50 \mu \mathrm{~F} 10 \mathrm{~F}, 15$, Sub-min Mullard C426 range: all values in stock. Large or small orders despatched same day.
 EVERYTHING BRAND NEW . NO 'SURPLUS'
 SEND 1 /- for our catalogue containing data on 200 up-to-date semiconductors avallable from stock, as ents lable. Invalualie to every serious experimenter and designer.
 DISCOUNT8: 10% over $£ 3,15 \%$ over 210 .
 ELECTROVALUE
 6 MANSFIELD PLACE ASCOT BERKSHIRE}

DUXFORD ELECTRONICS (PW)
Duxford, Cambs. (Sawston 3031)
MINIMUM ORDER VALUE 5/-
C.W.O. Post and Packing $1 /-$ DISCOUNT 10% over £2
ELEGTROLFTYC CAPACITORS (Mullard). -10% to $\begin{array}{llllrrr}+50 \% & \text { Subminiature (all values in } & \mu \mathrm{F} \text {) } & & \\ 4 \mathrm{~V} & 8 & 33 & 64 & 125 & 250 & 400 \\ 6.4 \mathrm{~V} & 6 \cdot 4 & 25 & 50 & 100 & 200 & 320 \\ 10 \mathrm{~V} & 4 & 16 & 32 & 64 & 125 & 200 \\ 16 \mathrm{~V} & 2.5 & 10 & 20 & 40 & 80 & 125 \\ 25 \mathrm{~V} & 1 \cdot 6 & 6 \cdot 4 & 12.5 & 25 & 50 & 80 \\ 40 \mathrm{~V} & 1 & 4 & 8 & 16 & 32 & 50 \\ 64 \mathrm{~V} & 0.64 & 2.5 & 5 & 10 & 20 & 92 \\ \text { Price } & 1 / 6 & 1 / 3 & 1 / 2 & 1 /- & 1 / 1 & 1 / 8\end{array}$

POLYESTER CAPACITORS (Mallard)

Tubular $10 \%, 160 \mathrm{~V}: 0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033$, $0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 \cdot 068,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~d}, 0 \cdot 15 \mu \mathrm{~F}, 11 \mathrm{~d} .0 \cdot 22 \mu \mathrm{~F}, 1 /-$ $0.33 \mu \mathrm{~F}, 1 / 8.0 .47 \mu \mathrm{~F}, 1 / 6.0 .68 \mu \mathrm{~F}, 2 / 8,1 \mu \mathrm{~F}, 2 / 8$. $400 \mathrm{~V}: 1,000,1,500,2,200,3,300,4,700 \mathrm{pF}, 6 \mathrm{~d} .6,800 \mathrm{pF}$
$0.01,0.015,0.022 \mu \mathrm{~F}, 7 \mathrm{~d}$.
$0.033 \mu \mathrm{~F}, 8 \mathrm{a}$
$0.047 \mu \mathrm{~F}, 8 \mathrm{~d}$.
 $2 / 3.0 .47 \mu \mathrm{~F}, 2 / 8$.
Modular, metalised, P.C. mounting, 20%, $250 \mathrm{~V}: 0.01$, $0.015,0 \cdot 022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 \cdot 033,0.047 \mu \mathrm{~F}, 8 \mathrm{~d} .0 \cdot 068,0 \cdot 1 \mu \mathrm{~F}, 9 \mathrm{~g}$, $\begin{array}{ll}0 \cdot 15 \mu \mathrm{~F}, & 11 \mathrm{~d}, \\ 0 \cdot 68 \mu \mathrm{~F}, 22 \mu \mathrm{~F}, 1 / \\ 2 / 3 . & 1 \mu \mathrm{~F}, 2 / 9 .\end{array}$
POLISTXRENE CAPACITORS: 5% 160V (nnencapsulated): $10,12,15,18,22,27,33,39,47,56,68,82,100$, $120,150,180,220,270,330,390,470,560,680,820 \mathrm{pF}$. $6,800,8,200,10,000 \mathrm{pF}, 8 \mathrm{~d} .15,000,22,000 \mathrm{pF}, 9 \mathrm{~d}$. $6,800,8,200,10,000 \mathrm{pF}, 8 \mathrm{~s}$
$1 \%, 100 \mathrm{~V}$ (encapsulated) $=100,129,150,180,220,270$, $330,390,470,660,680,820 \mathrm{pF}, 1 /-1,000,1,200,1,500$ $1,800,2,200,2,700,3,300,4,700 \mathrm{pF}, 1 / 3,5,600,6,800$,
$8,200,10,000,12,000,15,000 \mathrm{pF}, 1 / 6.18,000,28,000$, $8,200,10,000,12,000,15,000 \mathrm{pF}, 1 / 6,18,000,22,000$,
$27,000,33,000,39,000 \mathrm{pF}, 1 / 9.0047,0.056 \mu \mathrm{~F}, 2 /-$ $27,000,33,000,39,000 \mathrm{pF}, 1 / 2.0 .047,0 \cdot 006 \mu \mathrm{~L}, 2 /-$
$0 \cdot 068,0 \cdot 082,0 \cdot 1 \mu \mathrm{~F}, 2 / 8,0 \cdot 12 \mu \mathrm{~F}, 2 / 9,0 \cdot 15,0 \cdot 18 \mu \mathrm{~F}, 8 /-$ $0 \cdot 22 \mu \mathrm{~F}, 4 /-, 0 \cdot 27,0 \cdot 33 \mu \mathrm{~F}, 5 /-0 \cdot 39 \mu \mathrm{~F}, 5 / 9,0 \cdot 47 \mu \mathrm{~L}, 6 / 8$. POTENTIOMETERS (Carbon), miniature, Itn. \times gpindle. Lin. 100Ω to $10 \mathrm{M} \Omega$, Log $5 k \Omega$ to $5 M \Omega, 8 / 3$.
SKELETON PRE-SET POTENTIOMETER
(Carbon): Lin. 100Ω to $5 \mathrm{M} \Omega$. Horizontal and vertical P.C. mounting. Miniature $(0.3 \mathrm{~W}), 1 /-$. Submin. $(0 \cdot 1 \mathrm{~W})$, 10 d .
RESISTORS (Carbon film), very low noise. Range: $5 \%, 47 \Omega$ to $1 \mathrm{M} \Omega ; 10 \%, 10 \Omega$ to $10 \mathrm{M} \Omega$. W (5%), 8d (over 99,1 d 1 d), 100 of per value $18 / 9$. IW (10%), 2 d (over $99,1 \frac{18}{} \mathrm{~d}$), 100 off per value $13 / 9$. if (5%), $2 t \mathrm{~d}$ (over $99,2 \mathrm{~d}$), 100 off per value $15 / 6$.

SEMI-CONDUCTORS: OA5, OA81, 1/6. 0C44, 2/-| OCA5, $1 / 9$. OC71, OC72, OC73, OC81, OC81D, OC82D, |
| :--- |
| $00170,0 C 171,2 / 8 . ~ O C 140, ~ A F 115, ~ A F 116, ~ A F 117, ~$ | $00170,0 \mathrm{OC171}, 2 / 8$. OC140, AF'115, AF116, AF117, 3/-. Also entire current Newmarket range.

SILICON RECTIFIERS (0.5 A): 170 P.I.V., 2/9. 400 P.I.V., 3/-. 800 P.I.V., 3/3, 1,250 P.I.V., 3/9. 1,500 P.i.v., 4/-.

Send S.A.E. for May, 1968 Catalogue

(continued on facing page)

RECEIVERS \& COMPONENTS (continued)

150 NEW ASSORTED Capacitors, Resistors, Silvered Mica, Ceramic, etc. Carbon, Hystab Silvered Mica, Ceramic, etc. Carbon, Hystab,
Vitreous, $1-20$ watt, 12/6 Post Free. WHITSAM ELECTRICAL, 33 Drayton Green Road, West Ealing, W. 13.

QUALITY NEW VALVES Guarantet six months. Post fal. Five pust free.							
$4 \mathrm{~F}^{96}$	8/6	ECL80	6/9	EL84	4/6	PL3 ${ }^{6}$	
DF96	6/6	Ecls\%	6/-	Eys6	5/9	PL81	
DK96	71	EF80	4/6	EZ8	1	PY3	$8 / 6$
DL96	$7 /-$	EF85	$51-$	EZ81	4/9	PY81	51
EAbC80	5/3	EFS6	$61-$	PCC84	8/3	PY8	
EbF49	5/6	EF89	4/9	PCC89	9/9	Uabc80	
ECC81	$3 /-$	EF91	2 2-	PCF80	8/8	UBF8	/3
ecose	41-	EF93	$3 / 6$		6/3	UCH8	
CC83	4/6	EF	2/6	PCL83		UCL82	
ECC85	5/6	EF193	81	PCL84	7/3	UL	
ECH81	5	SiF184		P	¢	Y	

SEMICONDUCTORS
Guaranteed twelve months. Post free

 \begin{tabular}{ll|ll|ll|ll}
AFI14 \& $3 / 8$ \& BF180 \& $7 / 6$ \& OC35 \& $6 / 6$ \& $0 C 75$ \& $2 / 8$

AF117 \& $3 / 2$ \& BFY50 \& $5 /-$ \& OC44 \& $2 / 6$ \& $0 \mathrm{OC8}$ \& $3 /-$

AF239 \& $11 /-$ \& BY100 \& $3 / 6$ \& OC45 \& $2 / 6$ \& 0 O 170 \& $3 / 3$
\end{tabular} Lists valves, semicmuctors, components on request.

J. R. HARTLEY

2 Waterloo Terrace, Bridgnorth, Shropshire

STELLA NINE RANGE CASES

Manufactured in Black, Grey, Lagoon or Blue Stelvetite and finished in Plastic-coated Steel, Morocco Finish with Aluminium end plates. Rubber feet are attached and there is a removable back plate. There is also a removable front panel in 18 s.w.g. Alloy.

LIST OF PRICES AND SIZES
which are made to fit Standard Alloy Chassis
Width Depth 4^{n} Height 6^{n} Height $7 \frac{1}{2}$ * Height

CHASSIS in Alqminium, Standard Sizes with Gusset Plates Sizes to fit Cases. All 21" Walls.

	8	d		s	d		s	d
$6^{4 \prime} \times 3^{\prime \prime}$	5	6	$10^{\prime \prime} \times 7^{\prime \prime}$	8	6	$14^{\prime \prime} \times 3^{\text {" }}$	7	3
$6^{*} \times 4^{\prime \prime}$	5	9	$12^{\prime \prime} \times 3^{\prime \prime}$	6	9	$14^{\prime \prime} \times 9^{\prime \prime}$	14	6
$8^{\prime \prime} \times 3^{\prime \prime}$	6	6	$12^{\prime \prime} \times 5^{\prime \prime}$	7	6	$16^{\prime \prime} \times 6^{\prime \prime}$	10	9
8** 6^{*}	7	9	$12^{* \prime} \times 8^{*}$	10	9	$16^{*} \times 10^{*}$	10	0
Chassis-Post 3s. Od.								

 walls up to 16 in . wide $\times 10 \mathrm{in}$. deep. 18 s.w.g. half hard aluminium at $7 / 6$ per sq. ft., total area. This price includes gusset corners fitted, Add $3 /$ - postage.

ALUMINIUM PANELS. Cut to size $5 /-\mathrm{sq} . \mathrm{ft}$., $18 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. 5/9, 16 s.w.g, 6/9, 14 s.w.g. Add sufficient post. Surplus refunded or send for postal rates.

E. R. NICHOLLS

Manufacturer of Electronic /nstrument cases

46 LOWFIELD ROAD STOCKPORT - CHESHIRE

Tel: STOckport 2179

RECEIVERS \& COMPONENTS (continued)

MARCONI INSTRUMENTS SIGNAL GENERATOR TFY62C/2.480-900 megacycles. £20. Carriage 11. Waveform Generators Type 51 , mains. 30 /-. Carriage $£ 1$. Indicator Type 95 , 25/-. Carriage 12/6. S.A.E. for list. NOYCE, High Laws, Silloth, Cumberland.

D.C. TO A.C.

Convertor kit 12 volt D.C. input $240-250$ volts A.C. output. 40 watt, 50 cycles. Ideal for running tape recorders, lights etc. Fully transistorised with easy to follow circuit, $£ 5.5$.0 post paid.
J. ROBINSON (Radio/TV)

Dept. (PW) 4, Highcliffe Road, Blackley, Manchester 9 Tel 061-740-1175

FOR SALE. HEATHKIT RECEIVER GR 64E, new Jan 1968. Factory aligned, perfect condition. f15. NO OFFERS. DAWBARN, 8 Daylesford Close, Parkstone, Poole.

with "NEW DIMENSIONS" effects amplifier. Adjustable echo, vibrato, tone, giving fabulous 3-Dimension musicl 9 V battery model for radio, tape or player 8 gas., speaker $25 /$ - extra. Car 10 gns. with speaker. Add $5 /-$ post and insurance.
P.W., RINGWOOD ROAD, FERNDOWN, DORSET

MOBILE S.W. LISTENERS

The Halson Mobile Antenna for AMATEUR RECEIVING and TRANSMITTING
The most efficient mobile All-Band Whip on the market OLI FOR ALL BANDE, Comple with one coil 6.17.6, plus 3/t. Extra coils $\mathbf{3 . 1 7 . 6 \text { , plus 3/- }}$

New Sprung Extension safeguards your whip from damage. From teading amateur radio stores or dired from the manufacturers:
HALSON ELECTRICAL SERVICES Dover Road, off Ansdell Road, Blackpoof

NEW RANGE BBC 2 AERIALS
All U.H.F aerials now fitted with tilting pracket and 4 element grid reffectors. 11 element, $45 /-14$ element, $5 \% / 6$. 18 element, 601-. Wall Mounting with Cranked Arm, 7 element, 60/-, 11 element $67 /-.14$ element. $75 /$-. 18 element. $82 / 6$ Mast Mounting with 21 . clamp. 7 element 42/6. 11 element. $55 /-, 14$ element. 62/-* 18 Complete. 7 element $72 / 6$. 11 element $80 /-$ 14 element, $87 / 6$. 18 element, $95 /$-. Complete assembly instructions with every unit. Low Loss Cable, $1 / 6 \mathrm{yd}$. U.II. F. Preamps from 75/-. State clearly channel number required on all orders.

BBC • ITV AERIALS

BBC (Band 1). Telescopic loft, 25/-, External ITV (Band 3). ${ }^{3}$ eiement loft array, 301-. 5 50/-. Wall mounting. 3 ele ment. 47/6. 5 element 52/6. Combined BRC ITV: Loft $1+3,40 /-; 1+5$ mounting $1+3,57 / 6 ; 1+5$;
$67 / 6 ;$ Chimney $1+3$. $67 / 6 ;$ 67/6; Chimney $1+3 ، 67 / 6$
$1+5$; 75%-iransistor preamps, 75/-.
COMIBINED BBCI - ITV - BBCZ AERLALS $1+3+9$. 70/-. $1+5+9$, $80 /-$ +o $+14,80 /-1+3,100-$ Loft mounting F.M. (Band 2). Loft S/D 15\%
.M. (Band 2). Lort S/D, 15/-. "H"', 32/6.
Co-ax. cable 81 . yd, Co-ax. plugs, $1 / 4$
Outlet boxes, 5%. Diplexer Crossover Boxes,
13/6. C.W.O. or C.O.D. P. \& P. 5/-. Send 6d.
stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade, New Addington Surrey (CRO-OJB)
LODGE HILL 2266

TRADER SERVICE SHEETS

4/- each plus postage.
We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios, Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES

LIMITED
30 CRAVEN STREET, STRAND
LONDON WC2

Make	ModeI	Radio/TV
1968 List available at 2/- plus postage	If list is required indicate with X	

From
Address

[^3]MAIL ORDER ONLY (August PW)

SUMMER BARGAIN!

harverson's super MONO AMPLIFIER

A super quality gram amplifer using a double wound mains transtormer, EZ80 rectifter and ECL 82 triode pentode valve as audlo amplifter and power output stage.
Impedance 3 ohms. Output approx. $3 \cdot 6$ watth. Volume and tone controls. Chassis size only 7° wide $\times 3^{\circ}$ deep \times 6° high overall. AC mains 200/240v. Supplied absolutely Brand New completely wired and tested with valFeg and good quality output transtormer. LIMITED NUMBEE ONLY.

Incorporating 2 ECEREO AMPLIFIER
Incorporating 2 ECL868 and 1 EZBO, heavy duty, double Full tone and volume controls. Absolutely complete.

printed clrcuit panel alze $6 \times 3 \ln$

- Generous size Driver and Output Transformers. - Output transformer tapped tor 3 ohm and 15 ohra apeakers. Transistors (GET114 or S1 Mullard OC8ID
 - Everything supplied. Wire, battery clips, solder, etc. Comprehensive easy to follow instructions and circuit gPECIAL PRICE 45/-. P. \& P. 3/-. Also ready built and tested, 52/6. P. \& P. 3/-

FM/AM TUNER HEAD
Beautifully designed and precision engineered by Dormer \&
Wadsworth Ltd. 8upplied Wadsworth Ltd. Supplied
ready fitted with twin 0005 ready fitted with twin -0005
tunlng condenser for AM connection. Prealigned FM section covers $86-102 \mathrm{Me} / \mathrm{s}$. I.F. output $10.7 \mathrm{Mc} / \mathrm{s}$. Complete
with ECC85 (6 L 12) valve and
 with ECC85 (6L12) valve and full circuit diagram of tuner head. Another special bulk purchase enables us to offer these at $27 / 6$ each. P. \& P. 3/GORLER F.M. TUNER HEAD. $88-100 \mathrm{Mc} / \mathrm{s} .10 .7 \mathrm{Mc} / \mathrm{s}$. I.F.. 15/- plus 2/6 P. \& P. (ECC85 valves. $8 / 8$ extra.) SPECIAL OFFER! PLESSEY TYPE 29 TWIN TUNING GANG. $400 \mathrm{pf}+148 \mathrm{pf}$. Fitted with trimmers and $\mathrm{E}: 1$ integral slow inotion. Suitable for nominal $470 \mathrm{Kc} / \mathrm{s}$. I.F 6. P. \& P. 2/6

NEON A.C. MADNS INDICATOR. For panel mounting, cut out alze 1 i $\times\{\times$ in. deep inc. terminal. White case with ens giving brighter VIBRATORS. Large selection of $2,4,6,12,24$ and 32 Volt Non-sync. 8/8; Bync. $10 /-$. P. \& P. $1 / 6$ per vibrator S.A.E. with all enquiries.

TRANSISTOR STEREO $8+8$. A really first-ciase Hi-Fi Stereo Ampliffer Kit. Uses 14 Transistors giving 8 watts push-puil output per channel
(16 W mono). Lntegrated preamp with Bas. Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Output stage for any speakers from 3 to 15 ohma. Compact design, all parts supplled including drilled metal-work, Cir-Kit board, attrective front panel, knobs, wire, solder, nuta, boits-no extras to buy. Simple step by atep instructions enable any constructor to build an amplifier o be proud ot.
Briel Specification: Freq. response $\pm 3 \mathrm{db} 20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. to +12 db . Treble cut approx. to -16 db . Negative leedback 18 db over main amp. Power requirements 25 V at 0.6 amp .

Amplifier Kit Built and Tested Power Paok Kit Built and Tested Cabinet (as illus. (Apecial fer-21 f9.10.0 P. \& P. 4/6 £12.10.0 P. \& P. 4/6 £2.10.0 P. \& ?.4/£3. 0.0 P. \& P. 4/214,10.0. Poat Free it all sbove walt and at same time or can be aupplied Circuit tested for 218.0.0 Post Free). partailat (free with kit) $1 / 6$ ($\mathbf{B} . \mathrm{A}$. E.)

HUGE PURCBASEI
 Heavy 8inin. metal turntable. 250 . shaded motor 90∇. tap. Complete with latest type lightweight pick-up arm and mono cartilige for LP/78. LIMITED NUMBER ONLY 63/-, P. \& P. 6/6.

4-SPEED RECORD PLAYER BARGAINS Maing modela. All brand new in maker's packing E.M.L. MODEL E.M.L. MODEL 898 Single Player with unit mounted pick-up arm and mono cartrige. 25.5.0 86.19 .8 B.8.R. UA25 With latest mono oompatible cart
 LATEST GARRARD MODELS. All types available 1000 SP25,3000. AT60 ato. Send S.A.E. Ior latest Bargain Prices!
 LATEST B.S.R. X8M MONO COMPATIBLE CARTRIDGE With turnover sapphire atrll suitable for playing 78, EP, P. POTONE PTAEC compatible Btereo Cartridge with diamond stylus 50/-. P. \& P. 2/
 MONO T/O CARTRIDGE, Complete with LP a 78 sapphire styli. Brand new 12/6. P. \& P. 2/-

QUALITY RECORD PLAYER AMPLIFIER
A top-quality record player amplifier employing beavy duty double wound mains transformer, ECCS3, EL84, EZ80 valves. Separate Bass, Treble and Volume conirols. Complete with output transformer matched for 3 ohm PR10E 75/-. P. \& P. 6/-. PRIOE 7V/-P
transformer and speaker ready to fit into cabinet bislow. PRICE 87/6. P. \& P. 7/6.
DE LUXE QUALITY PORTABLE R/P CABINET
Uncut motor board size $14 \frac{1}{x} 121 \mathrm{ln}$. ciearance 2 in , below, 5 ln. above. Will take above amplifier and any B.s.R. or GARRARD autochanger or Bingle Player Unit (except AT60 and $8 P 25$). gize $18 \times 16 \times 8 \mathrm{in}$. PRICE 28.9 .8 .
P. \& $9 / 6$.

VYNAIR AND REXINE 8PEAKER AND CABINET FABRICS app. 54in. wide. Usually 35/: yd. our price 18/6 gd. length. P. \& P. $2 / 6$ (m/n. 1 yd.). S.A.E. for samples.

BRAND NEW 3 OHM LOUDSPEAKERS
5in. 14/-;81in. 18/8; $8 \mathrm{in} .27 /=; 7 \times 41 \mathrm{n} .18 / 6 ; 10 \times 6 \mathrm{in} .27 / 6$. E.M.I. $8 \times 5 i n$. with high fux magnet 21/-, E.M.I. 131 \times 8 in . with high fux ceramic magnet $42 /-(16$ ohm $45 /-$),
P. \& P. $5 \mathrm{in}, 2 /,, 6 f$ \& $8 \mathrm{in} .2 / 6,10 \& 12 \mathrm{in} .3 / 6$ per apeaker. BRAND NEW. 12in. 18w. H/D Speakers, 3 or 15 ahrus. BRAND NEW. $12 i n$. $16 w$. H/D Speakers, 3 or 13 ahris.
Gurrent production by well-kuown Britigh maker. Oflered Current production by well-kuown Britioh maker. Onered below $25 \mathrm{w} . \mathbf{8 . 5 . 0} ; 35 \mathrm{H}$. $£ 8.8 .0$.
E.M.I. 3 in HEAVY DUTY TWEETERS. Powertul cera mic maguet. Available ln 3, 8 or 15 ohms. 15/-. P. P. $2 / 6$. 12in. "RA" TWIN CONE LOUDSPEAKER. 10 watte peak handling. 3 or $15 \mathrm{ohm}, 35 / \mathrm{-}$. P. \& P. $3 / 6$

ACOS HIGH IMPEDANCE CRYSTAL STICK MIKES. Listed at $42 /$-. Our price $21 /-$ P. \& P. $1 / 6$. High sensitivity, 18/6. P. \& P $1 / 6$. SPECIAL OFFER! MOVING coIL MIKE. Fitted on/off switch for remote control
High quality. High or High quality. High or Low BARGAIN PRICE 30/BABGAIN
P. \& P. $2 / 6$.

HARVERSON SURPLUS CO. LTD.
170 HIGH ST., MERTON, S.W. 19 Open all day Saturday Early closing Wednesday, 1 p.m. A few minutes from South Wimbledon Tube Stallon. (Please wrlte clearly) OVERSEAS P. \& P. CHARGED EXTRA. S.A.E. with all enquiries

A.R.R.L. RADIO AMATEURS HANDBOOK 1968

New Edition 45/- Postage 4/6
Colour T.V. PAL System by Patohett $40 /-$ Stereo IHandbook by Schanz. 16/-. P. \& P. I/Computer Circult ${ }^{\text {Projects you can Build }}$
by Boschen. $24 /-$ P. $\&$ P. $1 /-$. by Boschen. 24/-. P. \& P. 1/P. \& P. 1/

Electronic Novelty Designs by Kampel. $8 / 6$ P. \& P. 9d.

Practical Wireless Service Manual new ed by Hellyer. 25/-, P. \& P. 1/3.
Rapid Servicine Trangistor Equipment by
King. $30 /-$ P. \& P. 1/3.

Est. 1943 JOHNSONS Tel: 24864

VHF and Short-Wave kits for the Amateur enthusiast and constructor. For 2 and 4 metres, the unique two transistor model SR2/P, $70-150 \mathrm{Mc} / \mathrm{s}$, $69 / 6$, p.p. 4 s. New super 5 V allwave, all-band kit, also "Mini-Amp" self-contained, cabinet size, a mere $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{4}$. Write today, enclosing a stamped addressed envelope for interesting free literature, and details, direct to

JOHNSON'S (RADIO)

St. Martin's Gate, Worcester
 T-1K 38/6, p.p. 2/-: EP10K 79/-, p.p. 3/-; IT1-2 70/-, p.p. 3/-; EP30K 120/-, p.p. 4/6: EPIOKN 108/-, p.p. 4/6; EP20KN 88/-, p.p. 4/6; EP30KN 150/-, p.p. 4/6, S.A.E. for further details.

0-50 microamp Level Meters 15/-, p.p. 1/-. $\mathbf{1 \%}$ High Stability Resistors $2 /-$, watt. full range 10Ω to $10 \mathrm{~m} \Omega$. Stock list available. 1% Wirewound Resistors, 1 watt. 10 to $5 \mathrm{ka} 3 / 3$; to $20 \mathrm{k} \Omega 4 / 6$; $\%$ add 3d. Your value wound to order.

PLANET INSTRUMENT CO. 23(W) DOMINION AVENUE, LEEDS 7 annual holidays july 27 th to alg 10 th

NEW VALVES!
Guaranteed Set Tested 24-HOUR SERVICE

IRS	81	DL94	5/6	EL.84	4/6	PLN04	18/8
188	$4 / 8$	DL96	$8 / 8$	EM81	6/6	PY32	9/6
1 T 4	$2 / 9$	DY86	5/6	EY51	$6 / 8$	PY33	$9 / 6$
884	5/9	DY87	5/6	EY86	6/-	PY81	5)-
8V4	$5 / 6$	EABC80	6/8	EZ80	319	PY82	4/9
5Z4G	6/6	EBC41	81-	EZ81	4/6	PY83	5/8
$6 \mathrm{AQ5}$	$4 / 6$	EBF80	$6 / 8$	KT61	$8 / 3$	PY800	6/6
6 F 13	$81-$	EBF89	61-	N78	$14 / 6$	PY801	6/6
61.18	8/-	ECO81	$3 / 8$	PC97	$7 / 8$	R19	6/6
12K8GT	71-	ECC82	4/8	PC900	8/-	U25	12/9
20 F 2	101-	ECC83	4/0	PCC84	$5 / 9$	U26	$10 / 9$
30C18	8/8	ECCO85	4/8	PCCs9	10/8	U191	10/6
30 FLL	$12 / 3$	ECH35	5/9	PCC189	$9 / 6$	UABC80	$081-$
30 P 4	11/-	ECH42	919	PCF80	6/9	UAF42	9/8
30 P 19	11/-	ECH81	5/8	PCF82	5/9	UBC41	7/6
30 PL 1	$12 / 3$	ECIs0	618	PCF801	71-	UBF89	6/6
OOH35	$8 / 9$	ECL82	6/8	PCF805	8/9	UCC84	7/8
DAC32	6/9	ECL83	8/9	PCL82	8/9	LCC85	6)-
DAF91	$4 / 8$	ECL86	7/9	PCL83	819	UCF80	81-
DAF96	\$/11	EF39	3/6	PCL84	7/8	UCH42	9/6
DF33	$7 / 6$	EF80	4/9	PCL85	8/3	UCH81	6/3
DF91	$2 / 8$	EF85	$5 \mathrm{j}-$	PCL86	$81-$	UCL8'2	7 -
DF96	$5 / 11$	EF88	6/3	PFL2001	12/6	UCL83	$8 / 9$
DK32	718	EF89	$4 / 9$	PL3 ${ }^{\text {P }}$	913	UF41	$9 / 6$
DK91	5/-	EF183	6/6	Pl81	$7 /-$	UF89	$5 / 11$
DK96	$6 / 9$	EF184	6/6	PL82	$5 / 9$	ULA1	8/9
DL33	6/6	EH90	6/6	PL83	6/6	UL84	$5 / 9$
DL35	$4 / 8$	EL33	8/3	PL84	-6/-	UY41	6/6
DL92	5/0	EL41	$9 / 3$	PL500	12/6	UY85	$5 / 3$

GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON LONDON, N. 16

RCA MOS FET (n-channel/depletion)
3N128 18/6; 138 42/6; 139 37/6: 140 21/-; 141 20/-: 142 15/6; 143 18/6; 152 23/-. 40467 15/6; 40468 9/-; 40559 9/-. TA7149 16/-: 7150 14/-: 7151 13/6: 7152 12/-: 7153 33/-; 7189 12/-; 7310 12/-.

RCA LINEAR INTE-CCTS

CA3000 63/-; 3012 30/-; 3014 35/- ; 3020 $32 /-$; 3023 42/-; 3034 46/-; $303541 /-$: 3036 24/-. Post and pack. 1/- any quantity. Mail order only. S.A.E. for data sheet(s), or enquiries.

INTESEM

44 STATION ROAD, WOODVILLE, BURTON-ON-TRENT
hole punches

Complete Set $£ 10.2 .4$
Carriage and Packing Paid UK only
Tompkins \& Longman Ltd. 237 GIPSY ROAD, WEST NORWOOD. LONDON, S.E. 27
Tel. Gipsy Hill 5000

Aerial Wire: Coils of 25 yds . stranded 2/3 plus 6d. P. \& P.

Relays: Small for 6 to 24 volts 130 to 800 ohm, 6 and 250 volt A.C. from 13/6

Coils: OSMOR, WEYRAD, etc.
Test Meter: Full range in stock AVOTAYLOR, our speciai offer Model ITI—2 20 K ohm per volt $£ 3.9 .6$ plus $2 /-\mathrm{P}$. \& P . 1,000 ohm per voit TIK at $35 /-$ plus $2 /$ P. \& P.

Loudspeakers: $3,8,15,35$ and 70 ohm all popular sizes, example: $2 \mathrm{in} .8 \mathrm{ohm} \mathrm{7/6}$ plus $1 /-$ P. \& P. Car size $7 \times 4 \mathrm{in}$. $15 / 6$ plus 2/- P. \& P.

Transformers: Mains 250-0-250 60 mA with 6.3 volt, $18 / 9$. For small power units $0-9-15$ volt $1 \frac{1}{2}$ amps, $15 / 9$.

Ear Pieces: 2.5 mm . and 3.5 mm . magnetic, 2/6.

Transistors: OC44, OC45, OC71, OC72, OC81 all at 2/6. Power Transistors OC26, 10/9; OC28, 12/9; OC35, 13/6 (limited number at 9/- each!); OC140, 15/-; OC149, 15/-.

Write or call for Price List

BOTHWELL ELECTRIC
SUPPLIES (GlagRow) LTD.
S4 EGLINTON STREET.
GLASGOW. C.5. Tel. 041 sot'th 2904
Member of the Lander Group

Head Office and Warehouse 44A WESTBOURNE GROVE LONDON WZ
TeI. PARK 5641/2/3

Z \& I AERO SERVICES LTD.

Please send all correspondence and Mail-Orders to the Head Offle
When sending cash with order, please include $2 / 6$ in $£$ for postage and handling MINMUM CHARGE $2 /-$. No C.0.D. orders accepted

Retail Shop
85 TOTTENHAM COURT ROAD LONDON W1
Tel.LANgham 8403 Open all day Saturday
 \qquad gong

 First Quality

ELECTRONIC VALVES
 DUE TO DEVALUATION AND CONSEQUENT IN-
CREASE IN PURCHASE COSTS OF IMPORTED CREASE
MATERLALS, INCREASE IN MANUFACTURERS'
LIST PRICES AND RISE IN THE PURCHASE TAX RATE, ALL THE PRICES IN THIS SECTION ARE
SUBJET TO 15% INCREASE (APPROX. 2d. in 1s. WHEN REMITTING, MAKE SURE THAT THIS
SURCHARGE IS INCLDDED. SURCHARGE IS INCLUDED.
85 A 2
90 AG
90 AV
90 Cl
90 CZ
90 CV
108 Cl
150 B
150 C 2
715 A
715 B
7150
807
811 A
813
832
866 A
$7 / 6$
$48 /-$
$46 /-$
121
$25 /$
$25 /$
61
$11 /$
61
301
601
701
$9 /$
35
70
20
14
-

7895
9002
9003
AZ 2
$\mathrm{AC} /$
$\mathrm{AC} /$
AZ 1
AZ
AZ
CB
CB
CY
CY
DA
DA

2
HL/
VP2
1
1
1
31
135
F91
F96

国 E88CO
E180F
EABC
EAF4
EAF8
EB91
EBC3
EBC4
EBC8
EB69
EBC0
EBF8
EBE8
EBF8
EBL1
EBL2

$5 / 6$
$6 /-$
$7 /-$
$8 /-$
$11 / 3$
$8 / 6$
$11 /-$
$13 / 6$
$6 / 6$
$6 / 6$
$9 / 6$
$11 /-$
$10 /-$
$5 / 3$
$7 / 6$
$9 /-$
$7 /-$

I

$$
\begin{aligned}
& \text { PCI } \\
& \text { PCL } \\
& \text { PCI } \\
& \text { PEN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Z } \\
& \text { ar } \\
& \text { an } \\
& \hline
\end{aligned}
$$

\qquad 1
 - t

TRANSISTORS

16	201-	0 C 203	1016	AsY73 101-	JTX4A	8/6
OC23	12/6	OC204	12/6	AsY74 16/-	Mati01	1816
OC.24	15/-	Oc205	15/-	A8Z17 151-	Mati20	7/9
0 C 25	7/6	OC206	22/6	AsZ18 151-	Mati21	$18 / 6$
00^{026}	${ }^{6 /-}$	AC107	10/-	${ }^{\text {Asz20 }}{ }^{7 / 8}$	V30/30 P	
$0 \mathrm{OC28}$	12/6	AC125	3/6	AsZ21 $12 / 6$	-	
O029	14/9	ACl2 6	8/6	AUY10 $201-$	2G309	
0035	131-	AC127	$7 / 6$	${ }_{\text {BC107 }}{ }^{7 / 6}$	2 C 371 A	
C36	12/6	AC128	6/8	BC108 ${ }_{\text {BCY }}$ 6/8	or	31-
-	91-	AC176	$7 / 6$		2 C 381	8/6
OC43	9/-	ACY17	$8 / 8$ $5 / 6$	BCZ33 10%	${ }^{2} \mathbf{N} 410$	$3 / 6$ $3 / 6$
$0{ }_{0}$	${ }^{3 / 8}$	${ }_{\text {ACY }}$ A 9	${ }_{6} / 6$	${ }^{\text {BF167 }} 818$	${ }_{2}^{2 N 412}$	/6
0058 0.70 0	12/8 4	ACY20	51-			6/6
0.070 00671	$4 /-$ $3 / 6$	ACY21	${ }_{3}^{6 / 8}$	BF184 BF194 7/6	${ }_{2}^{2 N 697}$	$7 / 18$
$\mathrm{OCO}^{\text {O }}$	$5 /-$	ACY22	18/8	BFY10 $7 / 8$	2N706	8/6
0073 00675	$7 / 8$	AD149	16/-		2N763	87/-
0.775 0.76	${ }_{6 /}^{61}$	AF102	18/-	$\begin{array}{lll}\text { BFY17 } \\ \text { BFY18 } & 8 / 8 \\ 5 /-\end{array}$	${ }_{2}^{2 N 11321}$	87/-
$0 \mathrm{OCF}_{7}$	81-	AF114	8/8	BFY19 5/-	${ }^{2} \mathrm{~N} 1304$	
0 Ocis	5)-	AF115	6/-	BFY50 8/6	2N1756	15/-
Cis	51-	AF116	6/6	BFY51 4/-	2 N 2068	20/-
${ }_{0} \mathrm{OC81}$	$51-$	$\mathrm{AFP17}^{\text {AF17 }}$		BFY5 ${ }^{\text {B/6 }}$	${ }_{2}^{2 N} 232968$	
0081 D $0 \cdot 83$	$3 /-$ $5 /-$	${ }_{\text {AF112 }}$	10/-	$\begin{array}{ll}\text { BSY26 } \\ \text { B8Y28 } & 51 \\ 51\end{array}$	2N2926	$\begin{gathered} 5 / 8 \\ 13 /- \end{gathered}$
0684	$5 /-$	AF125	8/6	B8Y65 51-	2 S 002	201-
0 Cl 122	12/6	AF126	6)-	GET103 5j-	28003	20/-
${ }_{0} \mathrm{OCl}_{139}$	$7 / 6$	AF127	6/-	GET104 8-	28004	151-
OCl40	9/6	AF178	12/6	GET113 4/-	28005	501-
OCl41	$12 / 6$	AF186	17/8	GET114 4/-	28006	$201-$
OC170	$5{ }^{5}$ -	AFY19	22/6	GET115 8/6	2801214	140)
$0 \mathrm{Cl71}$	6/-	AFZ11	171-	GET11610/-	28018	601-
OC200	776	AFZ12	10/-	GET872 61 -	2S102	22/-
OC:201	10/-	AsY26	6/8	GET875 6/-	28103	25/-
OC202	13/-	A8Y28	6/6	GET880 91	28104	15/-

I.C. AUDIO AMPLIFIERS Type CA3020
 Integrated Circuit Audio Amplifier in TOS encapsulation

 (size of a small transistor), equivalent to seven n-p-n 550 mW . Total harmonic distortion 1%. Will operate on voltage from 3 to 9 volts.80/- plus 2/-p.p.

DETECTOR DIODES

Germanium Point Contact:
OA5 $8 /=;$ OA6 $4 /-$ OA7 $4 /-;$ OA47 2/6; OA70 2/-; OA79 2/8; OA81 2/-; 0 A85 2/6; OA86 3/6. Subminiature: ©A90 2/f; OA91 2/-; 0A95 2/-
Silicon Function, subminiature:
OA200 2/6; OA202 3/6.

SILICON POWER RECTIFIERS

BY100, 700 p.i.v., 450 mA , W.E.
BYZ10, 800 p.i.v., 5 Amps, S.M.
PYZ12, 400 p.i.v., 6 Amps, 8.M.
BYZ19, as BYZ13 but stud negai
DD000, 50 pii.v., 500 mA , W.E.
DD006, 400 p.i.v., 500 mA . W.E.
DD058, 800 p.W., 500 mA , W.E...................
Note: W.E.-Wire Ended; S.M.-stud Mounted.'.

THYRISTORS

$3 / 40,400$ p.i.v. 3 amp stud mounted. Gate voltage 3.0v. at 20mA max.
BLUE SPOT, 200 p.i.v. 5 amp, stud mounted.
 Gate voltage $3 \cdot 25 \mathrm{v}$. at 120 mA max. .

SPECIAL OFFER OF TRANSISTORS

AM/FM and SW KIT comprising two AF125 (mixer/ oscillator), two AF126 (1F), one ACl26 (audio) and two AC128 (push/puil output). 81/-post paid.
GERMANUM GENERAL PURPOSE. 2G371A or B, 2G813. 25/- per doz. sssorted.

COMPLEMENTARY PAIRS (PNP/NPN)
ACI28/AC176 (Germanium) 13/-; 2N697/2N1132 (silicon) 27/-; ASY26/ASY28 (Germanium) 12/-.

25 WATT SOLDERING IRONS

200-250 watt exceptionally well made lightweight soldering irons with polished wooden handles and chromium plated body. Angle bit of sufficient length for long Hife. No breakable plastics used in construction. PRICE 16/-
(P.P. 2/-).

AVALANCHE SILICON RECTIFIERS

Type RAs508AF, 960 p.i.v. at 6 amps. max., stud 10/6

DRY REED INSERTS

Glasa dry reed inserts approx. \ddagger in. dis x lin long with axial lads one make contact of 100 ma capacity at Amp.turns relay coils. PRICE 18/- per doz. post iree.

TEXAS SLLICON FULLLWAVE BRIDGE RECTIFIERS $1 \mathrm{B20K} 10100 \mathrm{piv}$, 2 amps , dimensions $1 \cdot 4 \times 1 \cdot 4 \mathrm{x} \cdot 6 \mathrm{in}$. $95 /-$ 1B100M10 $100 \mathrm{piv}, 10 \mathrm{amps}$, dimensions $2 \times 24 \mathrm{zlin} .85 /-$ Postage $1 / 6$ per rectifier.

CATHODE RAY TUBES FOR OSCILLOSCOPES

$2 A P 1-2 \mathrm{in}$. screen. EHT 500 to 1000 V . Typical sen-
sitivity at $500 \mathrm{~V}, \mathrm{X}-220 \mathrm{~mm} / \mathrm{V} ; \mathrm{Y}-260 \mathrm{~mm} / \mathrm{V}$. USM11 sitivity at 500 V . X-220mm/V; Y-'260mm/V. USM11 Base. Oversil length 7 in . 1500 V . typical sensitivity
$3 \mathrm{BPl}-3 \mathrm{in}$. screen, EHT $3 \mathrm{BPl}-3 \mathrm{in}$, screen, EHT 1500 . $\mathrm{X}-150 \mathrm{mmV} ; \mathrm{Y}-200 \mathrm{~mm} / \mathrm{V}$. B14A Base.
\qquad
Both the above types are from current manufacture, not surplus or second hand.

10-watts STUD MOUNTED ZENER DIODES

$4.7 \mathrm{~V}, 5 \mathrm{~V}, 5.6 \mathrm{~V}, 6.2 \mathrm{~V}, 6.8 \mathrm{~V}, 75 \mathrm{~V}, 8.2 \mathrm{~V}, 9.1 \mathrm{~V}, 30.0 \mathrm{~V}$ $12 \cdot 0 \mathrm{~V}, 15 \cdot 0 \mathrm{~V}, 16.0 \mathrm{~V}, 18.0 \mathrm{~V}, 20.0 \mathrm{~V}, 24.0 \mathrm{~V}$,
$33.0 \mathrm{~V}, 36.0 \mathrm{~V}, 43 \cdot 0 \mathrm{~V}, 47 \cdot 0 \mathrm{~V}-$ al at $7 / 6$.

MOVING COIL VOLTMETERS

Type 120DA: flange size 120 mm (4 sin) square:

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the blueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN INTHE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL RADIO, TV OR AUDIO EQUIPMENT.

PRACTICAL WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERY COUPON

This coupon is available until 9th August, 1968 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, AUGUST 1968

[^4]

[^0]: All correspondence Intended for the Editor should be addressed to : The Editor, "Practical Wireless", George Newnes Ltd., Tower House. Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams: Newnes Rand London. Subscription rates, Including postage: 36 s . per year to any part of the wortd. (C) George Newnes Ltd., 1968. Copyright in all drawings, photographs and articles published in 'Practical Wireless'" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or Imitatlons of any of these are therefore expressly forbidden.

[^1]: RADIO EXCHANGE CO.
 Callers side entrance Stylo Shoe Shop
 61 HIGH STREET, BEDFORD

 - Open 9-5 p.m. Saturday 9-12.30 p.m.

 Telephone: Bedford 52367

[^2]: New Boxed TV Tube. Type MW43/69. Top grade not a second. 12 months guarantee 47%. Carriage $10 /$.
 New, TV Tubes with slight glass fault all types 19 and 17 in . 50/-. Carriage 10/-. Twelve months guarantee.
 Reciaimed TV Tubes with six months guarantee 17 in types AW43/ 88, AW $43 / 80,40 /-$. MW $43 / 69$, $30 /$-. 14 in types $17 /-$. All tubes $10 /$-carr.
 Good TV Tubes tested perfect but no guarantee. Type AW43:80 and MW43/69. 17/- each plus carriage 10/-.
 Speakers Removed from TV sets all perfect 3 ohms P.M. 8in. round 6/6. P. \& P. 3/6. 6in. round $3 /-\mathrm{P} . \&$ \&.3/6. $7 \times 45 /-$ P. \& P. 3/6. Six for 34/- post paid ${ }^{2} \mathrm{in}$. round 3/- P. \& P. 2/9. $6 \times 43 /=$ P. \& P. 2/9. §ix for $22 /$ post paid. Slot speakers $8 \times 245 /-$ P. \& P. 3/- Six for $30 /-$ post paid.
 New 12in. Speakers with Built-in Tweeter, 3 or 15 ohm, 28/6. Post paid.
 Special Sale of ex W.D. Gear. R.A.F. tube unit type 266 just like
 the 62 A unit. Fitted witb VCR97 tube mu-metal screen full of E.F. valves complete with outer case. Grade $127 / \%$. Grade II $22 / \%$ Both units 10/-carriage each.
 Tube Unit type 7921. Complete with tube type 2292. Front marked in figures. Many spares less four EF91 valves $10 /$-carriage $10 /$ -
 88 sets complete with Valves, Phones and Mike less Send Receiver Switch, 20/= plus P, \& P, 10/-
 Breaking up type 19 sets. Meters 6/6. P \& P. 3/- Metal toggle switch 6d. P. \& P. $6 \mathrm{~d}, 7 / 6$ doz, P \& P irea. dack socket $8 \mathrm{~d}, \mathrm{P} . \& \mathrm{P} .{ }^{7 \mathrm{~d}}$. 12/- doz. P. \& P. free. Pointer knobs 6d, P. \& P. 6 d . 7/6 doz. P. \& P. less meter. Relays, Valves and Toggle Switches for spares, 10/-, carriage $10 i-$.
 19 Sets bench tested as a Receiver these sets will not transmit. Power Pack Required less 807, 35/- complete with valves. Carriage 101-.
 1355 Set complete with $5 \mathrm{U} 4.6 \times 5$. Six SP61 valves. New condition good break up line. 10/-, Carriage 10/-.
 Short wave TX Chassis. Two valve battery model, 8/6. P. \& P. paid. Model Makers Motor 26 volt will run from 12 or 6 volt. 7/6. P. \& P. paid.
 Motors removed from Washing Machines $\frac{7}{2}$ h.p. 1400 revs $250-200$ volt A/C complete with pulley, 26/-. P. \& P. $10 /=$
 VCR97 tube complete with mu-metal screen 10/-. P. \& P. 5/-

[^3]: enclose remittance of
 (and a stamped addressed envelope) s.a.e. with enquiries please

[^4]: Published on or about the 7th of each month by GEORGE NEWNES LIMITED, Tower House. Southampton Street, London, W. C. 2 . at the recommended maximum price shown on the cover. Printed in England by WATMOUGHS LIMITED. Idle, Bradford: and London. Sole Agents for Australia and New Zealand GORTON \& GOTCH (A/sia) Ltd. South Afrjca: CENTRAL NEWS AGENCY LTD. Rhodesia. Maiawi and Zambia, KINGSTONS LTD. East Africa: STATIONERY \& OFFICE SUPPLIES LTD. Subscription rate including postage for one year. To any part of the world f1.16.0d.

