PRACTICAL WIRELESS

G1! in FOR TRANSISTOR ranalos

FAULT FINDING

EUILD THIS

 PICRET PIBillise

17in.-f11.10.0
19in SLIMLINE FERGUSON-24 Gns.

TWO-YEAR GUARANTEE EX-RENTAL TELEVISIONS

free illustrated

LIST OF TELEVISIONS $17^{\prime \prime}-19^{\prime \prime}-21^{\prime \prime}-23^{\prime \prime}$
WIDE RANGE OF MODELS SIZES AND PRICES

- $\begin{gathered}\text { DEMONSTRATIONS DAlLY } \\ \text { TWO-YEAR GUARANTEED }\end{gathered}$

TWO-YEAR GUARANTEED
TUBES 100\% REGUNNED 14in.-69/6 17in.-89/6

COCKTAIL/STEREOGRAM CABINET $£ 25$
Polished walnut veneer with elegant glass fronted cocktall compartment, padded. Position for two 10 in . elliptical speakers Record storage space. Height 351/n.1 width $52 \frac{1}{n}$ in., depth $14 \frac{1}{2} \mathrm{in}$. Legs 1 gn . extra. OTHER MODELS, SEND FOR FREE LIST - CANSISTORCHASSIS TRANSISTORCHASSIS 59/6
6 Transistors, LW/MW, Tele. scopic Aerial. Brand New. Famous Britlsh Manufacturer, (LESS SPEAKERS) P. \& P. 4/6.
TRANSISTOR CASES 19/6. Cloth covered, many colours. SIze $9 \frac{1}{4}^{\pi} \times 6 \frac{1}{2} \times 3 \frac{1}{2}^{n}$. P. \&P. 4/6. Similar cases In plastlc 7/6.

SINGLE PLAYER CABINETS 19/6, P. \& P. $7 / 6$
TV TURRET TUNERS, $5 /=$. New, less valves. Press button models 19/6. P. \& P. 4/6.

VALVES $£ 1$ per 100. Assorted T.V. Surplus ex-rental dismantled recelvers. Post 4/6. Send for Ilst.

DUKE \& CO. (LONDON) LTD.
621/3 Romford Road, London, E12 Tel. 01-478, 6001/2/3

WHEN THE SQUEEZE IS ON THE PRESSURE IS OFF

High fidelity stereo starts with Wharfedale DENTONS at 30gns per pair.

The new Denton speaker system brings stereo sound withir the reach of everyone. Dentons are excellent operating at less then 10 watts from the existing amplifier in your record player or tape recorder. They are superb when driven by a high fidelity amplifier. Eacn Denton contains 2 Wharfedale speakers in a beautiful cabinet that is smal enough to stard on a bookshelf or mantelpiece. Ask your dealer for a demonstration and prove its superior quality

- The Dentons are sold in matched pairs for stereo.
- The cabinets are hand veneered ard rubbed; each pair made from the same tree-peifect matching of both sound and appearance.
- Each cabinet has two speaker units with a carefully designed cross-over network.
- The dimensions are perfect for mounting on a shelf -so the Deriton takes up virtually none of your precicus room space.
- Size $9 \frac{3^{\prime \prime}}{4}$ high $\times 14^{\prime \prime}$ wide $\times 8 \frac{3 \text { " }}{4}$ deep.
- Respense: 65 Hz to 17.000 Hz .
- Finish: Diled Teak or Polished Walnut.

RANK WHARFEDALE LTD., IDLE, BRADFORD, YORKS.

Y O U R
 .OD YSTICK
 V.F.A.

 STOCKIST

 STOCKIST}

Can't be far away - Drop in and ask him for the facts

BATH-Ryland Huntley
BIRMINGHAM-Chas. H. Young Ltd. BIRMINGHAM—R.S.C. Hi-Fi Centres Ltd. BOURNEMOUTH - National RadioSupplies BRADFORD-R.S.C. Hi-Fi Centres Ltd. BRADFORD-Radio Ham Shack BRIGHTON-Technical Trading Company. BRISTOL-R.S.C. Hi-Fi Centres Ltd. BURNLEY - Trafalgar Supplies. CARDIFF-Wesak Radio. CHELTENHAM-Spa Radio Ltd. CHESTERFIELD-J. Tweedy Ltd. COVENTRY-Swanco Products Ltd DARLINGTON-R.S.C. Hi-Fi Centres Ltd. DERBY-R.S.C. Hi-Fi Centres Ltd. DONCASTER-B. Page.
EDINBURGH—R.S.C. Hi-Fi Centres Ltd. EXETER-Electrosure Ltd.
FOLKESTONE-John Gilding Ltd. GLASGOW-R.S.C. Hi-Fi Centres Lid. GOREBRIDGE-Gilmour Stewart. HALIFAX—Albert Hind Lid. HARTLEPOOL-The Radio Shop.

HUDDERSFIELD——Radio Craft (Hudd.) Ltd HULL—R.S.C. Hi-Fi Centres Lid HULL-Short Wave (Hull) Ltd. ILFORD-Radio Developments Ltd. LEEDS-R.S.C. Hi-Fi Centres Lid. LEICESTER-S. May Ltd. LEICESTER-R.S.C. Hi-Fi Centres Lid. LIVERPOOL-R.S.C. Hi-Fi Centres Ltd. LIVERPOOL-Stephens-James Ltd. LEYTONSTONE-R.T. \& I. Ltd LONDON-Daystrom Lid.
LONDON-G. W. Smith \& Co. Ltd.
LONDON—Lasky's Radio Ltd.
LONDON-R.T.\&I. Electronics Ltd
LONDON -Alfred Imhof Lid.
LOUGHBOROUGH-Taurus Electrical Services.
LUTON-Coventry Radio Ltd. MANCHESTER—R.S.C. Hi-Fi Centres Ltd. MIDDLESBROUGH—R.S.C. Hi-Fi Centres Ltd.
NEWARK-George Francis.

NEWCASTLE-UNDER-LYME-Sidney Chadwick.
NEWCASTLE UPON TYNE-Richiey \& Freeman Lid.
NEWCASTLE-UPON-TYNE-R.S.C. Hi-Fi Centres Lid.
NEWPORT-K. F. Paull Ltd NOTTINGHAM -Pete's Electronics Lid. PLYMOUTH—Radio Parts-Components Specialists.
PORTSMOUTH-Technical Trading Co. PURLEY-G3HSC.
SCARBOROUGH-Derwent Radio Lid SHEFFIELD-R.S.C. Hi-Fi Centres Lid. SOUTHAMPTON-Technical Trading Co. SOUTH SHIELDS-J. R. Gough Electronics. ST. HELENS-Harold Stott Ltd. STOKE-ON-TRENT- (see Sidney T. Chadwick, Newcastle-under-Lyme). SUNDERLAND-The Red Radio Shop. WALSALL-Normal Service Lid. WORCESTER-Jack Porter Ltd. WORTHING-G.W.M. Radio Ltd. WORTHING-Technical Trading Co.

If you can't get there you can always write to:

PARTRIDGE ELECTRONICS LTD.
 CAISTER HOUSE, PROSPECT ROAD, BROADSTAIRS, KENT

BARGAIN OPPORTUNITIES

TRS MULLARD AMPLIFIERS
STEREO 10-10
aive amplifier to exact Mullard spec. With pre-amp tapped o/p transformer 8 and 15Ω, all controls, H.T and L.T. outiet, mono, ntereo and speaker phase awitchlag. Complete with䢒

$2+8$ Valve Pre-amp/Control Unit.
Realy Built, 13 gas. ($\mathrm{P}, \& \mathrm{P}$. 7/6)
3-3 MONO
3 valve, 3 W amplifier with controls,
sbsolutely complete kit meindin panel, knobs, etc. (P. \& P. 7/6)

VALVE AM/FM
7 VALVE AM/FM RG REPLACEMENT CHASSIS
A superbly powerful high performance instrument for the keenest enthusiasts. Provides tuning on long. medium aud F.M. Wavebsinds. Excellent sensitivity Permeability tuning on F.M. Large clear dial. A.V.C., gual neg. feedisack.
Magic eye. 3W output. A.c. $200 / 250 \mathrm{~V}$. Gircuit diagram avalable. Algned, tested and ready for use (Carr. and insurance 7/6).
B.A.E. bringe full detaits.
£13.19.6

LOUDSPEAKER OPPORTUNITIES SPECIAL
 15 OHM UNITS

 ENCLOSURE OFFER Owing to demand for our previoualy offered as an even better bargain as a "Pa's Fiat" kit which easly ansembleas to a fineprofessional hooking enclesure. All wood accurately machined. State if or loin, or Now. unt. Hole tweeter included. Now72/6
OUR NEW LISTS $\underset{\substack{\text { Ieeture } \\ \text { more }}}{\substack{\text { ere }}}$
lines than ever at money saving prices. For latest issue please send $\mathbf{G d}$.

Suitable for TRS Enclosure
Goodmans \sin Axiette Goodmans $\sin T w / n A x i e t t e s$ Goodmana Axiom 10 W.8. HF゙812. W.B. HF1012
4.12.0
$\mathbf{4} 5.15 .0$
Bin Tweeter, $17 / 6$, crose stocks last
SINCLAIR Q. 14 complete
speaker 9 in square. Fan-
tastically good in stereo.
Each £8.19.6

VEROBOARD-All standard sizes including 2 tin $\times 5 \mathrm{in}, 3 / 8 ; 21 \mathrm{in} \times 38 / \mathrm{n}$, 3/9: 21in $\times 1710$ I2/6. All accessorles /g. tools In stack $12 / 6$. All accessorles RESIST
RESISTORS-Modern ratings, full range 10 ohms th, 4d each : 20% IW, 6d each; $2 \mathrm{~W}, 9 \mathrm{~d}$ each: 5% to 10 megohms. 10% iW, 8d each; 1.210 meg. 10% i W, 4 d each; $1 \mathrm{~W}, 5 \mathrm{~d}$ each. $1 \% \mathrm{Hj}$-stab. $\frac{1}{} \mathrm{~W}$ $1 / 6$ each (befow 100 n. $2 j$-each)
WIREWOUND RESISTORS-25 Ω to lok $\Omega 5 W, 1 / 6$ each; $10 W, 1 / 9$ each 15w, $2 / 3$ each
CONDENSERS-Nilver Mlea. All values 2 pF (01.000 pF , 6d each. Ditto ceramics, 9 d Tnb. 450 V T.C.C., etc., $0.001-0.01 \mathrm{mF}$. 10 d each; 0.1350 V , 10d each: $0.020 .1 \mathrm{mF} .500 \mathrm{~V} .1 /$ each. T.C.C. $350 \mathrm{~V} 0.25 .1 / 8$ each; $0-5.2 /$ - each 1dd; $100-250 \mathrm{pF}+1 / 2 ; 270800 \mathrm{pF}, 1 / 4 ; 800-50000 \mathrm{pF}, 2 /-$. $1 /-; 1 \% 2-100 \mathrm{pF}$, PEAK SOUND SA 8-8 STEREO AMP. 14 Transibtor Kit. SW per channel (I6W nono) Integrated pre-amp to take blgh quality ceramic p.u. One of the best and tont ecnnomalcal we have ever offered. AMPLIFIER KIT $\mathbf{E 9 . 1 0 . 0}$ (P.P. 4/-): 2. 10.0 ($P . P$. 5 COMPLETE ASSEMBLY at game trae.

Transistorised FM Tuner

LATEST
 GARRARD

${ }^{8 P 25}$

 Model 3 MióoLAB80 Mis, ii \qquad
Mono dual cartridges.. Stereo ceramic cartridqes GP91-15: 25/- ER60 195/ plintes
Universal fitting de luxe Teak for 8P25, 1,000. 2,000, 59/3,000, AT80
Diew Cover, Complete $\mathbf{f 5 . 1 5 . 0}$ LAB80, 401, Superb Teak/Pergpex top fnish plinth
$\begin{aligned} & \text { Normally E12.10. }\end{aligned}$
$\mathbf{£ 9 . 1 9 . 0}$

This beautiqully compact 6
 2 ini.) will give quieter, more 1 use lrom a standard 9 volt battery or its small power requirements can be
HIGH QUALITY LOW NOISE: BATTERY OR MAINS OPERATION

REDUCED PRICE DUE TO HUGE SALES

 £6.19.0

 £6.19.0
 (3 FOR f19)

BARGAIN PARCELS

Including variable condensers, d.f. coils. loudspesiker plug/mookets, knobs, pots, oondensers, resistors, nuts. bolts, cablaet fittings, switches, tranalormer choke, reotifer, trantistors at a small fraction of list value. Due h be smaze -sizes-be amazed-liy one now.
libs. (post $3 /$ -
14 Ibs. (post 8)
$17 / 6$
$29 /-$
PFID

FANTASTICALLY POPULAR * TAPE \star

We ofer sou lully tensilised polyexter/mylar and P.V.C. tapes of identicel quality hi-ft, wide ranke recording oharacteristics as top grade

tapes. Quallty control manufacture. They are traly worth control manutacture. then acetate, sub-standard, jointed or cheap imports TRY ONE AND PROVE IT YOURSELF. $\begin{array}{ll}\text { Standard Play } \\ 150 \text { ft. } & 2 / 3 \\ 3 i n \text { Long Play } \\ 225 f t\end{array}$ | | $3 \mathrm{in}$. | $150 \mathrm{ft}$. | $2 / 3$ | 3 in. |
| :--- | :--- | :--- | :--- | :--- |
| 4 in. | 300 ft. | $4 / 6$ | 4 in. | 450 ft. |
| | | $2 / 6$ | in. | 200 ft |

 in. $1,200 \mathrm{ft} . \quad 10 / 65$ in. $1,200 \mathrm{ft}$. Double Play
$\begin{array}{ll}3 \mathrm{in} . & 300 \mathrm{ft}, \\ 4 \mathrm{in} . & 600 \mathrm{ft} .\end{array}$
$\begin{array}{lr}4 \mathrm{in} . & 600 \mathrm{ft} . \\ 5 \mathrm{in} . & 1,200 \mathrm{ft} .\end{array}$
1,20ft. $\quad 15 /-5$ in. $1,800 \mathrm{ft}$.

in.	$1,800 \mathrm{ft}$	$19 / 8$
7 in.	$2,400 \mathrm{ft}$.	$27 /-3,600 \mathrm{ft}$

Pozlages 1/- reel
Post Free less 5% on three reels.
Quantity and Trade enquiries invited
NOTE, Large dape sloche af al

100 HIGH-STABS 9/-
1% to $5 \% 100 \Omega$ to $5 \mathrm{~mm} \Omega$. 25 ds . $11 / 6$; CO-AX, low loss, 6d. yd., 25 yds. 11/6;
50 yds. $22 /-; 100$ yds. 42/6. Plugs $1 / 3$. 100 RESISTORS 6/6 SIZES-1-3 wath.
MICROPHONE CABLE. Highest quality black, grey, white, gd. per yard. 100 CONDENSERS 9/6 Miniature Ceramic, Silver, Mica etc., 3pF to $5 \mu \mathrm{~F}$. LIST VALUE OVER 84.
PLEASE NOTE. A ride range of cabinets to callers at all branches.

SPECIALS!

Factory fresh less Cartridges.
SRP 110/230V
(De Luxe Heavy Turntable).
Mono first-grade Cartridges . . 12/6
Stereo Ceramic Cartridges.
19/player 200/250V with ightweight pick-up (dual cartridges 10/- extra)

49/-

MAINS-BATTERY

Microsonic 7
7 TRANSISTOR RADIOS
Superhet, lull medium wave coverage amazing volume, clarity and sensitivity
from built-in PM speaker. Solid leather from built-in PM speaker. Solid leathe cadminm cells (2 sets) and 230 VAC oharger with 5 amp. plug. Fabulous present Huge purohase enables us to offer the com plete outfit at a fraetion of market value (If not amazed by the value and pertorm ance yoar money will be refunded 49 it returned within 14 days

GUARANTEED * VALYDS

BY RETURN OF POST-GUARANTEED 3 MONTHS Satisfaction or Money Back Guarantee on goods if returned unused within 14 days ALL VALVES ARE NEW UNLESS OTHERWISE INFORMED. FREE TRANSIT INSURANCE. POSTAGE 1 valve 9d. 8-11 8d. per valve. Free over 18

6 C

6 DB	$4 /$
6 F 1	$6 / 6$

6
$\underset{6}{6}$

6 K 70 8 K 8 O

76T	8/9	1487	15/6	EAP42	8-	EM8
6K8GT	10/6	19495	6/6	EB41	$4 / 6$	EM8
6L1	10/6	20D1	$9 / 9$	EB91	$2 / 8$	EY5
6L6G	9/6	20 F 2	$9 / 6$	EBC38	8/6	EY8

TTED	HIGHEST QUALITYCOMPARE OUR PRICES		
	GUARANTEED		
Carr. \& Ins. 12/6		6 Months	12 Months
MOST MULLARD.	12in.	£2. 0.0	£3. 0.0
MAZDA, COSSOR.	14 in .	£2.10.0	£3.10.0
EMITRON, EMI-	15-17in.	£3. 5.0	£4. 5.0
FERRANTI TYPES	19 in .	£3. 5.0	£4. 5.0
PROCESSED IN	21 in .	£3.15.0	£5.15.0
FACTORY	23in.	£3.15.0	£5.15.0

SATISFACTION GUARANTEED

NOTE: ALL TUBE ORDERS
ONLY TO PORTSMOUTH BRANCH PLEASE

DON＇T MISS THISI

Lasky＇s Birthday Draw

The following 85 numbers have been drawn for prizes in our 35th Birthday Drawn

 Please refer to Page 12 of onr Catalogue for details of entry if your number（on the Iront page of your Catalogue）is among those listed her\author{
000013
 000082
 001415
001510
001590
 001510

001582
 000887 000829
 $\begin{array}{ll}001054 & 001911 \\ 001274 & 001029\end{array}$
 $\begin{array}{ll}001274 & 001929 \\ 001288 & 001991\end{array}$
 $\begin{array}{ll}001288 & 001891 \\ 001292 & 002101\end{array}$
 | 008313 | 018603 | 084444 |
| :--- | :--- | :--- |
| 002414 | 012777 | 024818 |
| 002479 | 018626 | 024950 |
| 0080000 | 018550 | 006515 |
| 003166 | 015000 | 027000 |
| 005000 | 018001 | 027009 |
| 005016 | 01900 | 028010 |
| 005161 | 020003 | 028455 |
| 005815 | 021414 | 028490 |
| 0006788 | 021444 | 029080 |
| 006800 | 021500 | 029181 |

}

001388
The first 10 correct
029686
$\begin{array}{ll}029875 & 084717 \\ 029900 & 085900\end{array}$
$029900 \quad 038000$
$029999 \quad 037017$
$\begin{array}{ll}030168 & 038111 \\ 030744 & 038212\end{array}$
$030844 \quad 089414$
030982039565
$\begin{array}{ll}031010 & 043472 \\ 082018 & 046789\end{array}$
033417
046782
047111 047888
the 10 correct entries to be opened will receive $£ 5$ Lasky＇s Gift ouchers，the next 25 will receive $£ 1$ vouchers and the next 50 will receive 106 vouchers．

have you got your lasky＇s catalogue

Juts send yonr name，address and 11 ＇tor post only．

LAYERS

GARRARD
AUTOCHANGERS

\＆22．11． 6
$30001 . M_{1}$ with $\begin{array}{r}818.19 .6 \\ \hline 9.19 .6\end{array}$

Lab．A Manostermi
A5b．A
A 1400°
A 2000
． 13.19 .6
.214 .19 .8
815.19 .6
8.87 .7 .0
．27．17．6
SINGLE PLAYERS
Auto．start and stop．Complote with piek
 GARRARDSPe5 Mk．I Heary thable．
GAKRARDAI＇LS Mk．
Heavy t／table
．$£ 10.19 .6$
TRANSCRIPTION MOTORS
GARRARD401．．．，．．．．．．．．．． 297.19 .0
（Garrard 未P 25 ＇s are w－rariridge．．．．．$\$ 11.19 .6$
（AARRARDKRP1P
GARRARD SRP10 mains ．．．．．．．．．．．． 4.7 .6
GARRARD BASES
CLEARVIEW PERSPEX COVERS
SPECIAL INTEREST ITEMSI
LASKY＇S CLEAR PLASTIC PANEL METERS

Precision made in Japan by HIOKI．Each meter boxed and of frint panced with all fixing nuts and washers．Mizus are Type KR－52 3 － $2!2 i n$. （illuwtrated）

ma De	29／6	Type KR－6	
5 mA DC	22／6	$\therefore \mathrm{OmA}$ ） $0_{\text {！}}$	38／－
3005 DC	22／6	3015 DC	35／－
$50 \mu \mathrm{~A}$	38／－	atula	59／6
1009 A	29／6	$100 \mu \mathrm{~A}$	49／6
$500 \mu \mathrm{~A}$	$27 / 6$	כu0uA	42／6
5 ma a meter	29／6	1 mas m mpter	$39 / 6$
Type MK－45A		Type MK－65A	
5 ma D ${ }^{\text {c }}$	25／－	$1 \mathrm{~mA} \mathrm{HA}^{\prime}$	36／－
3 mA D	251－	\％Wha $\mathrm{DC}^{(}$	35 j －
$3065{ }^{\text {d }}$－	25／－	\％6\％\＇In：	35／－
$500 \mu \mathrm{~A}$	$251-$	万13tha	39／6
1 mAS Imeter	35／－	1 mas a meter	37／6

NEW INTERNATIONAL TAPE

FAMOUS AMERICAN MADE BRANO TAPE AT RECORD LOW PRICES
3un．Message tape， 150 ft ．
3 in．Mescage tape 225 ft ．
3in．Mersage tapre， 300 ft
3 in．Triple play，siooft，Mylar
4in．Truple play，pooft．My lar．
5in．Double play， 136 fift．MyJar
5in．Ling play，900it．Acetate，
5in．Triphte plas．inouft．Ms lar
$\begin{array}{rr}2 & 6 \\ 3 & 9 \\ 7 & 6 \\ 10 & 0 \\ 17 & 6 \\ 15 & 0 \\ 10 & 0 \\ 8 & 8 \\ 35 & 0 \\ 22 & 6\end{array}$ sin．Lamg pl
Sin．Standar

1．\＆P．1／－extra per ree］． 4 reels and

COMMUNICATION RECEIVERS

 Special features：Crystal controlled nseillator Variable BFO VFO AVC ANI，AN realing down to 1 kHz －Remote control socket for romnection to a tranemitter．Aruction
 cimplete with instruction mannai and service data LASKY＇S PRICE E68．0．0 Uarriage and Packing 12／6．H．P．terma avaifule．

MODEL 9R－59DE
Brief spec．： 4 band 1 ceiver covering $550 \mathrm{Kc} / \mathrm{s}$
to $30 \mathrm{Mc} / \mathrm{s}$ continuous $\begin{array}{ll}\text { to } 30 & \text { Mejs continuous } \\ \text { and } \\ \text { electrical land }\end{array}$ sypread on $10,15,20.41$ anll 80 metres． 8 valve phm output circuit． $4 / 8$ jack．Special mint phome asB．CW special festures． ariable BFO ANL －Sep，band spread diai －FF frequency $455 \mathrm{kc} / \mathrm{s}$ －Yariable RF and $\mathbf{A F}$ gain controls．For ure on 115／250 I A．C．Mains．

cautifully designed
 ASKY＇S PRICE f39．15．0

JOYSTICK VARIABLE FREQUENCY ANTENNA Revolutionary varinble frequency autena for transmixsinn and reception．With a variable outehing unit fhese antennae perform as a high＇Q＇deviere at any telected Medum ut short ERIA FAALS（7ft．6in．Long）解 Matching unite FA De Lare
$\begin{array}{lll}54 & 15 & 0 \\ 25 & 19 & 6\end{array}$
A．T．S． 3 A

HUGE PURCHASE OFFER

MODEL TRF－6 AM／FM 9 TRANSISTOR

POCKET RADIO

 9 gryik

 not in wee Uutput styled and finished cabinet in black platis with silver metal trim．Operated on one 9 V battery complete with leather purse，car－piece anl battery List Frice 13t Gus．
SCOOP Price £7．19．6 Post2／6 IDEAL FOR USE WITH THE
 ＂TOMMY＂WIRELESS MICROPHONE－BELOW
The TOMMY MODEL WO－11 WIRELESS MICROPHONE ＇This brand new wireless mic．connbines sensitivity with miracn
lous miniat ure size．Only $0 \cdot 72 \times 0 \cdot 62+2 \cdot 24 i n$ ．Easily concealed with many uses－ideal por partien，games or as a baby alarm．
 Alous FM Tuner．Brief Rper．：Shniri Runge transmitting：fre－
quen＇y 9－107 Mu／a FM．Evternal Antenna，Bat tery；Mpreury
 Lasky’s Price $£ 5.19 .6 \quad$ Pat Free

[^0]

PRESENT A NEW SENSATIONAL HI-FI UNIT TRIO Model TK-60BE TRANSISTORISEEAMIFM MUUTIPLEX STEREO TUNER AMPLIFIER

AT A PRICE YOU CAN AFFORD!

The 36' 'ransistor TRIO TK'thBE incorporates superl moderu styling with many features normally found in models costing fff's more. This great value for money $\mathrm{Hi}-\mathrm{Fi}$ unit offers the following superb features: Tuner AM/PM t-gang tuning condenser all transistor front end provides FM $2 \cdot 5 \mathrm{mV}$ sensitivity. *Atomatic FM/Stereo Mono mode silent switching circuit with Stereo signal beacon. *lluminated pinpoint AM/FM tuning meter. * diode tinte division multiplexer de-coder giving sixlB channel separation. Ampliner All silicon transistor amplifer provides wide breaker for power transistor protection. *Speaker oltput terminals and power for 2 sets of stereo speakers -switch selected (A speakers, B speakers, power for 2 sets of stereo speakers - Switch selected (A speakers, B speakers,
A $+B$ speakers, head phones). *Centre channel output. *rull range of
$\mathrm{A}+\mathrm{B}$ speakers, head phones) *Centre channel output. *itor witch for tape monitoring without changing cable connections. *DIN connector for tape recorder. Brief spec. Amplifier-Music Power 60 wa1ts (IHF standard 4 ohms). Continuous power-20 watts per channel. Signal to noise ratio-Phono 60 dB , Tape HD-60dB. Input sensitivity-Phono 2 mV , Tape HD- 2 mb , AUX 150 mV , Tape play 150 mV . Speaker Iuperlance- $4 / 16$ ohms. Controls: Input selector. Morle, HF and IF filters, separate treble and bass controls for each channel, balance, loudness, tape monitor, output selector. Tuner: FM cover $88-108 \mathrm{Mc} / \mathrm{s}$. AM cover $540-1600 \mathrm{Kc} / \mathrm{s}$. FM Harmonic Distortion- 0.6%. FM Signal to Noise Ratio-iUdB. FM Selectivity-40dB. General: For $110 / 2501$ mains. Finish-brushed alumininm with hammer cnamel case. Size $179 \times 5 \times 14 \mathrm{in}$.

LASKY'S GREAT VALUE PRICE 69 Gns.

Carriage FREE in U.K.

Branches

207 EDGWARE ROAD, LONDON, W. 2
Tel.: 01-723 3271
Open all day Saturday, eariy closing 1 p.m. Thursday
33 TOTTENHAM CT. RO., LONDON. W. 1 Tel: 01.6362605
Open all day, 9 a.m.-6 p.m. Monday to Saturday
$152 / 3$ FLEET STREET, LONDON, E.C. 4 Tel.: FLEet St. 2833
Open all day Thursday, early closing 1 p.m. Saturday
ALL MAIL ORDERS AND CORRESPONDENCE TO: 3-15 GAVELL S

High Fiderity Audio Centres
42 TOTTENHAM CT. RD., LONDON, W. 1 Tel.: 01-580 2573 Open all day Thursday, early closing 1 p.m. Saturday

118 EDGWARE ROAD, LONDON. W. 2
Tel.: 01-723 9789 Onen all day saturday, early slosing 1 p.m. Thursday

HOME RADIO (Mitcham) LTD., Dept. PW, 187 London Road, Mitcham, Surrey, CR4 2 YO Phone : 01-648 3282

Every year we acquire a number of exceptional bargains which we offer first of all to the purchasers of our Catalogue, in the form of a special bargain list. To give you a taste of these tempting bargains we reproduce a part of the list here.
The rest of the list consists of many other most interesting bargain items-Diodes, Neon Lamps, Switches, Transformers, Valves, etc. We can supply the complete list for a shilling, but better still, why not buy our 1968 Catalogue and get the list free. The Home Radio Catalogue is acknowledged as one of the finest electronic components catalogues available today-its 256 pages list over 7,000 items, more than 1,300 of them illustrated. And with the catalogue, in addition to the bargain list, you get 5 vouchers, each worth a shilling when used as directed, a voucher worth another five shillings if used to purchase a Weller Soldering Iron. an order form and an addressed envelope. All this for $9 / 6!(7 / 6$ plus $2 /-$ p \& p). Why wait? Send your cheque or P.O. with the coupon today!

DIALS

List No. Description
1BG29 Elegant Bronze Dlal $27^{\prime \prime \prime}$ dia. engraved M.W. and L.W. Station Names
1BG30 Combined knob and dial $2 \frac{1^{\prime \prime}}{2}$ Combined knob and dial $2 \frac{1}{2}$
clear perspex knob with clear perspex knob with
separate gold M.W. scale DIODES
1BG31 OA5 Diode
1BG32 High quality diode. suitable F.M.

JACKS
1BG34 Jacks G.P.O. type
MICROPHONES
4BG38 High quality Carbon Microphone inserts, 4 for 5/-, 10 for 10/- or each
MOTORS
1BG40 Small $4 \frac{1}{2}-6$ volts D.C.
1BG41 Small $1 \times 1 \frac{1}{2} \times 18,1-3$ volts D.C.

NEON LAMPS
1BG42 Small neon lamp suitable 200-240 AC/DC
PILOT LIGHT HOLDERS
1BG43 PLH2 Pilot lamp holders M.E.S. with bracket, 3 tor

PRINTED CIRCUIT BOARDS

1BG45 BTS43 Suitable for the Mullard ECL86 amplifier
1BG46 BTS44 As above but Push
Pull
Resistor Packs, 60 assorted resistors, 30 different pre-
ferred values

SWITCHES
1BG48 Toggle Switch centre of 4 pole change over WS97 Bulgin S594 Heavy duty on/off switch

MAINS TRANSFORMER
1BG51 Primary 0-240V. L.T. sec. TV at 1 amp. L.T. sec. 7 V at $\frac{3}{4}$ amp. Ideal for Transistor Power Pack

VALVES

BG53 EF92 Mullard
18G54 EF86 Mullard
5/6
18G55 EZ81 Mullard
1BG56 EF80 Mullard
1BG57 ECC83 Mullard
1BG58 EL84 Mullard

AUDIOTRINE HI-FI TAPE RECORDER KIT
REALISMATINCREDIBLY Low cost Please send S.A.E. CAN BE ASSEMBLED INAN IHOUR F FOR leafetive Incorporating latest Magnavox Tapedeck. High quality Tape High Flux P.M. Speaker, empty Tape Spool. Reel of Best Quality Tape and handsome Portable Cabinet of latest and circuit. Purchased separately would total approx. 834. Performance equal to units in the £50-£60 class. $9 \mathbf{1}$
peposit 4 gns. and 9 monthly payments $59 / 62 \frac{1}{2}$
(Total zis mns). 4 Track Model 3 gns, extra. Carr. $19 / 6$

STEREO/TEN HIGH QUALITY AMPLIFIER
AnN volts. Suitable all crystal or ceramic stereo heads. Gansed Bass and Treble Controls. Valves ECC83. (2) EL84, (2) EZ81. For 2-3 ohm speakers. Complete kit with full wiring diagrams and
instructions. Or supplied factory assembled With 12 months' guarantee for $1 I$ gns. Carr. 11/6 (Total £13.\%.9).
Terms: Dep. 3 gns, and 9 monthly payments 22/9 (Tomer
R.S.C. STEREO/20 HI-FI AMPLIFIER

PIKOVIDING IO/14 WATT ULTRA LINEAR PUSIIPULL
OUTPUT ON EACH CHANNEL. SUITABLE FOR "MIKE". OUTPUT ON EACH CHANNEL. SUITABLE FOR "MIKE". Frequoncy Response: $\pm 2 \mathrm{~dB} 30-20.000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. Hum Level: 65 dB down. Sensitivity: 20 millivolts max. Harmonic Distortion : $0 \cdot 2 \%$ down. Sensitivity: 20 milivolts max. Harmonic instortion compensation and Imput Selector SWitch. HStereo/Mono switeh. tNeon panel indicator.
tHandsome Perspex Frontplate. tSeparate Bass and Treble controls. Output trans formers are high-quality sectionally wound. Outputs for 3 and 15 ohms speakers. Complete 14 Ens. set of parts, point-to-point wirlng diagrams and instructions. Or factory assem-

R.S.C. $4 / 5$ watt A5 HIGH GAIN AMPLIFIER
 R.S.C. anstive 4valve quality ampulfer for the home small club

 etc. Suitable for all crystal or ceramic P.U. heads and most "mikes". Feedback 15dB. For A.C. Mains $200-250 \mathrm{v}$. SDeaker output $\mathbf{3}$ ohms.
Complete Kit with point-to-polnt wiring diagrams and $£ \mathbf{4 . 1 7 . 9}$
instructions.
R.S.C. A10 30 WATT ULTRA LINEAR HI-FI AMPLIFIER Hizhly sensitive. Push-Pull hilk output, with Pre-amp,/Tone Control Stages. Performance

 millivolisso that any kind of Mi Tro prione or or Plek -unis suitable. Desisged for Clubs, Schools.Theatres. Dance Hulls or outioor
Functions etc. For use with Electronic organ, Gultar, String Hunctions, etc. For use with Electronic organ, Guitar, Hiridio Tuue. Two Induts with associated volume ontrols so that two
 3and 15 ohm speakers. Compiate kito parts

R.S.C. A11 HIGH FIDELITY 12-14 WATT AMPLIFIER

PUSILPULL ULTRA LINEAR OUTPUT"BULT-N" TONE CONTROL PRE-AMP

 Transformer. INDIVIDUAL CONTROLS FOR BASS AND TREELE
 types "mikes". Comparable with the best designs. For Musical

 Full instructions and point-to-potnt wiring diagrams Carr. $11 / 6$ Le. 5.0 Tor leatat:
 R.S.C. AIIT TRANSISTORISED VERSION

R.S.C. BASS-REGENT 50 WATT AMPLIFIER AN EXCEPTIONALLY POWERFUL HIGH QUALITY ALL-PURPOSE UNIT For lead, rhythm, bass gultar and all other musical instruments.
For vocalists, gram, radio, tape, and general public address.

* UNUSUALLY POWERFUL LOUDSPEAKER COMBINATION consisting of a FANE HiGH FLUX 12in. 30 watt unit PLUS
a FANE 121 n . 20 watt unit with extended frequency response. * 4 Jack inputs and two Volume Controls for simultaneous use of up to 4 pick-ups or "mikes" Controls giving "lift" and "cut".
 ALSO B20 BASS inc. 15in. 25w. SPKR $29 \frac{1}{2}$ Gns. G15 inc. 12in. 20 w. SPKR $19 \frac{1}{2}$ Gns.

G80 80 WATT AMPLIFIER

R.S.C. BATTERY/MAINS CONVERSION UNITS Type BM1. An all-dry battery eliminator. Size $5 \& x 4 \times 2 i n$ approx.
Completely replaces batteries sup-
plying 1.5 v and 90 v . where A.C. plying 1.5 v . and 90 v . where A.C.
mains $200 / 250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ is available. mains $200 / 250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ is available. POWER PACK KIT for use $59 / 11$. former, Metal Rectifier. Electrolytics, smoothing
 mains. Output 250 V . 60 mA . 3 JV 2a. Suppired
with case in lieu of chassis 26ili. Or assembled $38 / 11$.

LINEAR TREMOLO/PRE-AMP UNITS

 Suitable for use with any of our Amplifiers. Controls:Speed (frequency of interruptions) Depth $4 \frac{1}{2}$ Gns.
(for heavy or light effect) Vol and Switch. SELENIUM RECTIFIERS F.W. (Bridged) All 6/12v. D.C. output. Max. A.C. Input 18v. 1a. 3/11.
2a. 6/11. 3a. 9/9. 4a. 12/9. 6a. 15/9. 10a. 25/9.

R.S.C. $6 / 12 v$ CAR BATTERY CHARGERS Complete kit of parts incl. 4 amp . with varlable charge rate selector 49/9
 Both types $200-250$ A.C. mains. Ready bult 101-extra.

LONDON-GLASGOW
New branches now
R.S.C. COLUMN SPEAKERS Covered in two-tone Rexine/Vynair. Ideal for vocallsts
and Public Address.
is
ohm matching. Type C48, $25-30$ watts. Fitted four 8 in . high

 line 10 watt speakers. Overall size 22 Gns. Or Deposit £3.13.0 and 9 monthly payments
30 WATT HI-FI AMPLIFIER for Guitar. Vocal or Instrumental Group A 2 Input, 2 volume control H1-Fi unit with
 controls. Peak rating 60
watts. Latest valves. cabinet with handles. At gold perspex facia. Neon indive black $200-250$ v. A.C. mains. 18 CnS Carr. For 3 or 15 ohm speak- 18 E.S. $12 / 6$
$\frac{3 \text { gns. and } 9 \text { monthly payments of } 89 / 8 \text { (Total } 22 \text {. }}{12 \text { in. HIGH QUALITY L'SPEAKERS }}$ In teak veneered cabinets. Slze $15 \times 15 \times 7 \mathrm{in}$.
10 Watt Model. Gauss $12,000 \quad 5$ Gins.
lines. 3 or 15 ohms. lines. 3 or 15 ohms .
20 Watt Model. 15 ohm Size 8 Gns.
Rexine covered £1 extra. Terms available.

LOUDSPEAKERS

 Limited number at fraction of Brand new, guaranteed. Terms available over £8. £5.15.0
12in. Hevy dury 30 watts.
Dual cone Nomally sis apprixax $\mathbf{f 6 . 1}$ Carr. 6/9
$15 i n$. EXTRA HEAVY DUTY 40 watts 12 Gns.

FANE 'POP' 100 L'SPEAKER

 18" 100 Watt ${ }_{\text {Prese }}^{\text {post }} 19$ Gns.Fantastic power handling. Guaranteed 2 years.

R.S.C. GRAM AMPIMFIER KIT, 4 watts output. Nega-

 tive feedback. Controls: Vol. Tone and Switch. Mains op-eration $200-250 \mathrm{v}$. A.C. Fully isolsted chassis. $49 / 11$
TWO-WAY TELEPHONE AMPLIFIERS
Speak and Listen with both hands free. Com- $\mathbf{E 3} \mathbf{1 9 . 9}$
pact transistorised Dry Battery operated.

transistor

 SALE Mulard Ocr1

OC75. $7 / 9$.
AF117, $6 / 9$.
Post 6d. for 3
INTEREST
CHARGES
REFUNDED

on H.P. and

Credit Sale
Accounts
settled in
3 months.

R.S.C. MAINS TRANSFORMERS

FULLY GUARANTERD. Interleaved and Impreg-
 MIDGET CLAMPKD TYPE $81 \times 21 \times 24$ in.
$250 \mathrm{~F}, 60 \mathrm{~mA}, 6.3 v .2 \mathrm{a} . \ldots \ldots \ldots \ldots \ldots \ldots$
$14 / 11$ FULLY SHRODDED UPRIGHT MOUNTTNG $250-0-250 \mathrm{v} .60 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a} ., 0-5-6.3 \mathrm{v} .2 \mathrm{~s}$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~s} ., 0-6-6.9 \mathrm{v} .3 \mathrm{a}$. $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-6-6.3 \mathrm{v} .3 \mathrm{a} . \ldots$ 300-0-300v. $130 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}$ For Mullard 510 Amplifer, $0.1 . .$. $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{~s},, 0-5-6.3 \mathrm{v} .3 \mathrm{a}$. $425-0-425 \mathrm{v}, 200 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{~s}$, c.t., $5 \mathrm{v}, 3 \mathrm{~s}$,
$425 \cdot 0-425 \mathrm{v} .200 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{~s}, 6.3 \mathrm{v}, 4 \mathrm{~s}, 5 \mathrm{v} .3 \mathrm{~s}$. $450-0-450 \mathrm{v}, 250 \mathrm{~mA}, 6.3 \mathrm{~F} .4 \mathrm{~A}$, c.t. 5 F . 3 B . TOP SHROUDED DROP-THROUGH TYPE $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .3 .5 \mathrm{~s}$.
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{~s} ., 6.3 \mathrm{v} .1 \mathrm{a}$. $350-0-350 \mathrm{v} .80 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{z} ., 0-5-6.3 \mathrm{v} .2 \mathrm{~s}$ $250-6-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v} .3 \mathrm{~s}$ $900-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{z}-, 0-5-6.3 \mathrm{v}, 3 \mathrm{3}$. $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.37$. 4 a ., $0-5-6.3$
Suitable for Mullard 510 Amplifler Suitable for Mullard 510 Amplifier
$360-0.500 \mathrm{v}, 100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} ., 0-5-6.3 \mathrm{v}$. 350-0-350v. 150mA, 6.3v, 4a, 0-5-6.3v. 3a. $39 / 11$ 6 a . $19 / 8 ; 12 \mathrm{v} .1 \mathrm{~s} .8 / 9 ; 12 \mathrm{v} .3 \mathrm{a}$. or $24 \mathrm{v} .1 .5 \mathrm{a} .19 / 8$; $0-9-18 \mathrm{v}$. $1 \frac{\mathrm{~s}}{} \mathrm{a} .15 / \theta_{i} 0-12-25-42 \mathrm{v} .2 \mathrm{a}$. $27 / 8$. 19. AUTO (Step UP/Step DOWN) TRANSFORMERS $0-110 / 120 \mathrm{v} .-200-230-250 \mathrm{v}$. $50-80$ watts 160 watts, $29 / 11 ; 250$ watte 49/9; 500 watts $99 / 9$ UTPUT TRANBFORMERS
Push-Pull 8 watts $5,000 \Omega$ or $7,000 \Omega$ to 3Ω Push-Pull 10 watte $6 V 6$ GCY 88 to $3,5,8$ or 15Ω Push-Pull EL84 to 3 or $15010-12$ watte.
Pubh-Pull Uitra Linear for Mullard 510 , et ubh-Puil $15-18$ watte, gectionally wound 6 L 6 , XT66, etc., for 3 or 150
Push-Pull 20 watt high quality sectionally SMOOTHING CHOKES
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 250812 / \mathrm{g}$
$100 \mathrm{~mA}, 10 \mathrm{H}, 200 \Omega \mathrm{~g} / 11$
$80 \mathrm{~mA}, \quad 10 \mathrm{H}, \quad 350 \Omega 8 / 9$ $60 \mathrm{~mA}, 10 \mathrm{~F}, 400 \Omega \mathrm{a}, 11$

HI-FI CENTRES ITD

100 ํx
 Fon ร0.

KA Series Educational Kits. 10 personal science adventures for the youngsters. Each a complete, easy, safe school tested project already over half a million in use by Students. Practical kits to observe and learn why motors turn; bells ring; how Firemen get pressure in a hose. Explore the power in a magnet; Ifght bouncing from a mirror; how telegraph signals are formed; how to make scientific measurements. Verify basic physical laws by demonstration. A new world of practical education is opened with EAGLE'S fascinating KA Kits. Visit your EAGLE Dealer to inspect this exciting new range-such good value at $7 / 6$ to $8 / 6$

FOR VERSATILITY RELIABILITY AND SOUND VALUE INSISTON

[^1]
LIND-AIR COMPONENT BARCAMS

TRANSISTORS SVALVES HDFODES
WE HAVE A COMPLETE RANGE OF NEW AND OLD TYPES OF VALVES, TRAN-
SISTORS AND DIODES. FULL LISTS AVAILABLE ON APPLICATION.

TEANSISTORS	V60201P 81-	EZ80 $6 / 6$
	V6030 101-	EZRI 6/6
003 6/-	BFY50 8/8	1'CC84 8/6
$0 \mathrm{Cl6}$ 201-	136Y51 71-	PCL85 11/6
$00^{0} 315 /$	BFY5 6 -	PCL82 10/6
0028 12/6	BYZ12 10/-	PCL86 11/6
0 C 22 S 10/-	BYZ13 10/-	K T66 $\quad 27 / 6$
OC24 17/6	HCY33 7/6	KT88 27/6
0 O 25 9/6	BCY34 816	DY86 9/6
$0 \mathrm{C29}$ 15/-	BCY10 7/6	EBC43 9/6
OC35 12/6	13CY38 9/6	DK96 9/6
OC36 12/6	BCY39 12/6	DAF96 $7 / 9$
OC41 81-	BCY12 $7 / 8$	DL96 8/6
OC42 5/-	$\mathrm{ACl}^{\mathbf{7}} \mathbf{7}$ 14/6	DF9n 8i-
OC44 5l-	AClor $91-$	PY\&1 $7 / 6$
$0 \mathrm{O} 45 \quad 2 / 6$	ACY17 8/6	$\begin{array}{ll}\text { Pl } L \text { 1 } & 8 / 6\end{array}$
(1) 19/6	AClis 6/6	$\begin{array}{ll}\text { PY33 } & 1016\end{array}$
0C70 4/-	ACY20 5/6	PL36 15/6
$0 \mathrm{C71}$ 4/-	ACY:1 8/-	
0072 51-	ACY'22 4/B	
0078 6/6	AF102 18/-	arcoses
0075 6/-	AFllit 710	
OC76 5 5-	AFl15 6/6	OA5 4/6
0477 71-	AFlif 7/-	OA3 3/-
0 O 7 5/-	AFlif 5/-	$0 A^{-1} 13 / 8$
$0 \mathrm{C78D} 5 /-$	AF118 17/6	OA8 1 2/6
$0 \mathrm{C8} 1$ 5/-	AF124 10j-	OA95 $1 / 8$
OC81D 5/-	AF125 10/-	OA200 3/3
Oc82 6/-	AF126; 10/-	OA202 4/3
Oc123 11/6	$\begin{array}{ll}\text { AF127 } & \text { 9/6 }\end{array}$	0 O303 4/-
OC139 8/-	AF'139 10/-	OA210 7/8
OCL40 10/-	AF186 $17 / 6$	OA9 $4 / 6$
OCITO 6/-	AFZ11 17/-	OA10 3/-
OC15 7\%	AFZI? $12 / 6$	OA47 3/-
Ot20, 7/6	A8Y26 6/6	0 OA70 2/-
OC201 12/6	MATi00 719	OA79 2/6
OC202 13/6	MAT1018/6	1 N 91 3/-
OC203 10/6	MAT120 7/9	1N253 7/-
$0 \mathrm{O} 20415 /-$	MAT121 8/6	1 N 254 4/-
OC:05 15/-		1 12555616
OC206 1916		1×537616
OCP'I 19/6	VAlves.	IN64\% 5/-
		1\$2373 5/6
\$T723 10/-	F!L8. $9 / 6$	152374 15/-
ST140 41-	181.8\% 9/6	1N2379 25/-
STI41 81-	EY86 9/6	1N58 3/6
Vitur 60 -		INU59 3/6
V 64 R $\quad 8 / 6$	ECC83 8/6	GEX44 2/6
Vtwis 7-	LCC* 516	GEXS4 21-
Y1050A 6/-	FABC81 8i8	
V15201'10/-	1184816	PGT Power
V1530P 10/-	EFt $10 / 6$	Monnting
V130:01.8/-	UY41 8/6	Kits 3/9

6.3 D.C. Motor. 10.900 T.p.m. at visurn
a lin. dianueter. shat

9v. D.C. Gram deck replacement motor, Shaft int diameter. $3 / 3^{* 2} \mathrm{iu}$. $17 / 6$. $\mathrm{H} . \mathrm{S}^{2}$

SYNCHRONOUS CLOCK
 MOTORS Geared fur 40 revolu tions per hout. 230 y . a0 eycle, with montuting Hanges Size approximately
13in. deep $x 2$ in dameter, ONLY 22/6. P. \& P.

be on for 10 pulges arull off for 15 . An Auxiliary contact is tarmatly on but off 1 in every 25 . Chmplete with suppressor, tinuous uperation. Hieal window dis. Hlavs, switching lamps, modets, ete.
12 F or $24 v$. $\mathrm{I} . \mathrm{C}$ mrand hew and boxed 12/6. P \& I 2/6.
$\frac{1}{8}$ H.P. MAINS MOTOR

Made loy Cromplem Parkingons. Single phase th h.p. Motor. $230 / 250 \mathrm{~s}$. 50 tinusins ruting. Spindle $1_{6} \mathrm{x}$ x.m. ConOverall size less spindle approx: 8 x tian Perfert condition, A bargain for the 4fork bernch. ONLY 79/6. Carr. 20/: (b h.p. Motot also available, $99 / 6$.

DELAY ACTION TIME SWITCH

finte telays from $0-10$ minutes size
 itia spindle. BARGAIN PRICE $17 / 6$

Guterit	1101.	
50 W	\&1.7.6	
75 W	£1.17.0	1,500W' £15.15.0
100 W	£2.5.0	
150W	£2.15.0	3,000W £25.10.0
200w	£3.5.0	$4,0001{ }^{\text {¢ }}$ £34.18.0
3004	£4.5.0	$0 \cdot 30 \mathrm{~V}, 1 \mathrm{~A} 30 / \mathrm{C}$
400 W	£4.19.6	0.30V, + A $17 / 9$
5001	£5.9.6	0.30以. 2 A 37/B
600W	£6.9.6	(0-301, 34 42/*

MAIME THANBFORMERS

Tuput $20 \mathrm{n} / \mathrm{s} 50 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. $\begin{array}{llllll}24 & 5 \mathrm{~A} & \text { £3.25.0 } & 24 & 12 \mathrm{~A} & 25.15 .0\end{array}$ Pust extra
Mains and Output Transformen liste availalile on reques

GARRARD DECKS

An iteal basis for building your own portable
record player. Juat add speaker and turntable and you will have an alove-average model for a mere fraction of the cost. 2.3 watt printed circuit with control panel on tying lead.
ON, OFF, TONE CONTROL, AND YOLUME, colourful egenteheon. lirimar valves: EZ80, Oill 85 COLLA forward and rewish control; digital commter: fast induction motor: interlocking keyw. Size of top

\section*{

MABTIN TAPE AMPLIFIERS
FOR USE WITH ABOVE DECES. 2 track model 214.19 .6 ; 4 track model £15.19.6. Carriage

MODEL TTC. 1030. D.C. D.C. Volts, 0.3,
$12,80,120,300$,
$600,1,200 v$, Volts, $6,10,120$, 600, 1.200w, D.C. proils and warrying case. ONLY
f11. 19.6 £11.19.6

UNREPEATAELE BARGAINS I

 12in.in 25 WATT 25 WATT

LOUD

 BPEAK-ERSWVIth ERS.WIth
bigh efliciency
Antistropic Antistropic 17,000 gause. Inp, $3-5$ ohme. Brand new AIR PRICE 28.19.6. \boldsymbol{v}. COM. COMBINATION LODD SPEAKERS. 133 a 8 in. Ellipticat with 8 ohms Power handling 10 watte. Brand new and guaranteed. List price PRICE 89/6. FIND-AIR Also available without tweeter $58 / 6$.

FANE 301
TWEETERE
Imp. $3-5$ ohms. IT,000 Dilaranted. list price
D-AIR PRICE 59/6. P. © I' $3 / 6$. GOODMANS SPEAKER BARGAINS: 5 in .3 ohilis, $15 / 6 ; 6 \mathrm{in} .3$ ohm, $29 / 6: 8 \mathrm{in}$
$3 \mathrm{ohm} .32 / 8 ; 10 \mathrm{inh} .5 \mathrm{hm}, 65 /-10 \mathrm{in}$. $\mathbf{x i n}$ 3 olin, 32/6. Tweeter, 19/6. P . \& P. $3 / 6$

SEE DPPOSIE

$9 \ln 1$ ELECTRONIC KIT

Truild nine different project, from one basic kit-simple instrucinus, nu technlcal know. ledge required for you to build a Police Siren, Massager, W/T Transmitter, Iardio TeleMassager, WiT Transmitter, Radio TeleRadio, Electronic Music Kit. Completely safe-operased on 9v. PI'3 battery. Hours of fun for boys and dads of all ages. Complete with all parts anal simple step by step
instructions. ONLY $60 / 6$. P. \& P. $5 /-$.

ABRIALS. TVIUHTMMIFISAEO

Vantena Table Top Y Aeribl $13 \mathrm{BJ} \mathrm{C} / \mathrm{ITV}, 28 / 8$. Cresta Room Aerial Band I/II/LII. Cream or Black. $28 / 6$.
Veemaster Table Top YHF/UHF Thuable Aerial, Chrome or Grey, 76/b. TAGI all (hammel Table Top Aerial BBCI/2l HL523 Lolt Aerial HiLo V +5 ior vertical. Baird I/L11. With mounting arin and bracket, New Major 10 element B13C2 Aerial for lof or or ontiloor fixing. With roller bracket for up to
2int dia. mast, $45 / 9$.
H1, Hunter 13 element BBC^{2} Aerial as above, E1, Explorer 18 element BBC2 Aerial as E1, Explor
alyove, $69 /-$.
Loft Six- 6 element $1313 C 2$ Aerial for loft or outdoor fixig. With arm and bracket, Stere) Aerial. With mast, 87/-.
Please add $4 /$ postage

STEREO HEADPHONES

Cojoy Rit-ren Somm as yon have never heard it
hefore. MODEL TTC. G1111 as illustrated. Hoft pardied earphones.
Adjustable headband. Impedance 8 ohms per phone. Frequency range $25-13,000$ c.p.s. With 5 ft . lewt. Price 69/6. P. \& P 4/6. Other simikar types
available. AKAI ASE8S. available. AKAI ASE8S.
8 ohtus, E6.6.0. CORAL E102 16 whins. 25.19 .8 . EAGLE SET 1 to ohtus, 79/6, T.T.C. Stetho-
scope 8 ohith $49 / 6$. P. \& P. $\$ / 6$ each.

TEAK FINISK PLINTHS With fersper cover 1 Ens. P. \& P. 1F/4. Agents for Thorens, Dual

3000 with Bonotnine 9TALC Stereo Cartrige....
3000 with Sonotone 9TAHC Diamond Stereo Cartridge
28.19.8 £9.19.6
AT60 MK. I leas cartriuge
£10.19.6

 SP. 25 MK. II leas cartrilge.
 Mono Cartridge $17 / 6$ extra. Stereo Cartridge $22 / 6$ extra.

TRANSISTOR F:M. TUNER

SAVE £2.2.0!

6 Transistor FM tuner. Freduelicy tange
$88-108 \mathrm{Mc} / \mathrm{s}$. Size $6 \mathrm{x} 4 \times 2$ in. Rualy built for $88-108 \mathrm{Mc} / \mathrm{s}$. Size $6 \times 4 \times 2$ in. liwaly built for use with nost amplifters, 9 v hattery operatwo. LIND-AIR LIND-A
PRICE

7 Gns.

BARGAN OFFER! FANTAVOX CASSETTE TAPE PLAYER

Specially deaigned to replay the well known and popular Musicassettes-prerecorded tape cassettes offering a wide choice of all types of music from pop to classical. Up to 40 misutes of quality reproduction through built-in apeaken. Simple orf/play and vohume controts. Fully transistioniand operating on 6 penlight batteries Modern conplact styling with earpiece socket and wrist atrap. Size $61 \times 41 \times 2 \mathrm{ma}$.

COMPLETE HI-FI STEREO SYSTEM

ALI, TRANSIS'COR
WATTS PER CHANNEI, STEREO HI-FI SYSTEM OFFERINGA PERFORMANCE EQUAL TO, IF NOT BETTER THAN, HIMILAR SYBTEMS NOL'BLE TIIE PRICE. WOLBLE TIIE PRICE. Modern styling plus ad-
vanced circuitry using latest
 giticon transistors through ont. The fanous GARKARD 3000 Record Change filted lightweight tubular arm with SONOTONE 9TAHC ETEREO/MONO DIAMOND CARTRIDGE mill play all sizes of records. (4 speeds 78,45 , $331 / 3$. Ik $2 / 3$ r.p.ni.) Whil play up to θ recorida antomatically. also provision for manual play. Amplitiers and controls are mounted below record piayer and
 eparate hasq gpeakirs and high freduency wits prith crossover wetwork provide full ireusency reprudicion and are complete with 10 ft . leats and plugs for connection to amplitier. Will fit easily on to booksbelves, room dividers or existing fursiture, BRIEF
 Inputs for Radio Tuner/Tape Recorder also outputs for Tape Recorder. Loudspeaker Inputs ior Raw systelas. Teak
 and insurance. (Rogewood 3 gns. extra.) (Clear Perupex Coyer 3 gus. extra.)
LNEAR AMPLIFIERE

COILS \& TRANSFORMERS FOR CONSTRUCTORS

Special versions of our P50 Series are now available for AF117 or OC45 Transistors. They can be used in the standard superhet circuit with slight changes in component values, details of which are given in the latest edition of the Constructors' Booklet priced at 2/-.

Oscillator Coil	P50/1AC (For OC45)	P50/1AC	(For AF117)	5/4
1st I.F. Transformer	P50/2CC (For OC45)	P51/1	(For AF117)	5/7
2nd I.F. Transformer	P50/2CC (For OC45)	P51/2	(For AF117)	5/7
3rd I.F. Transformer	P50/3CC (For OC45)	P50/3V	(For AF117)	6/-
	Rod Aérial12/6	
	Driver TransformerLFDT4/^		9/6	
	Output Transformer................. OPT1		10/6	
	Printed Circuit...........................- ${ }^{\text {PCA1 }}$		9/6	

I.F. TRANSFORMERS \& COILS FOR VALVE CIRCUITS

Production of Tuning Coils (Type " $\mathrm{H}^{\prime \prime}$) and I.F. Transformers is being continued and details of these and our other components are given in an illustrated folder which will be forwarded on request with 4d. postage please.

WEYRAD (ELECTRONICS) LIMITED SCHOOL STREET, WEYMOUTH, DORSET

BI-PRE-PAK LTD

222-284 WEST ROAD, WESTCLIFF-ON-SEA. ESSEX PHONE: SOUTHEND (OSO2) 46344
 Flend for our PREE libts and catalogue of all our producte Check equivaients with our free substitution chart
FIRAT EVER LOGIO KITS. Learn for yourself how computers work, even make one for sourmelf. Full iastructiong for a noughts and crosses machine, make one for yourneif. Full ibstructiont for a noughts and crosses machine,
binary counters, timers, etc. L. 15 gns . L. 210 gns . No need to purchase both kita, you can start with L.2, which incorporates L.1. need to purchase both NO CONNEGTION WITH ANY OTHER FIRM. MINIMUM ORDER 10/-. CASH WITH ORDER PLEASE, add $1 /$ post and packing ITH ORDER PLEASE, add $1 /-$ post and
OVEREEAB ADD EXTRA FOR AIRMAIL.

MORSE INSTRUCTION on Compact Cassettes

We can now supply two tapes on standard 17 ips Compact Cassettes:
Morse Course, C90 Cassette
36s. 0 d .
Morse Practice, C60 Cassette
20s. 9d.
For the same prices we can also provide the Course and Practice recordings on normal $\frac{1}{4} \mathrm{in}$. tape at $3 \frac{3}{4} \mathrm{ips}$.

A full range of books is available, covering the hobbies of
Radio and Amateur Radio, some of which are listed below:
RSGB Radio Data Reference Book
. 14s. 0d.
RSG B Amateur Radio Call Book
6s. 7d.
Service Valve and Semiconductor Equivalents (RSGB)

5s. 6d.
World at their Fingertips (the story of
Amateur Radio in the UK):
Paperback 14s. 0d.

A Course in Radio Fundamentals (ARRL) ... 48s. Od.
Radio Amateur's Operating Manual (ARRL) 11 s . 6d.
Understanding Amateur Radio (ARRL) .. 21s, 6d.
Simplified Maths for the Hamshack (73) .. 5s. 6d. Short Wave Antennas

10 s .6 d .
World Radio TV Handbook, 1968 (a list of broadcast stations and frequencies

43s. 0d.
Great Circle Map, Coloured (Admiralty)
9s. Od.
A full list of books available will be posted on request.

[^2]RADIO SOCIETY of GREAT BRITAIN, Dept. PW
28 LITTLE RUSSELL STREET, LONDON, w.c. 1

Build your own Heathkit Electronics

A kit for every interest - Home Workshop - Hi-fi - Radio - Test - Amateur

Latest STEREO TAPE RECORDER, STR-1

Fully portable-own speakers
Kit $£ 45.18 .0$
Ready-to-Use £55.10.0
FOR THIS SPECIFICATION
$\frac{1}{4}$ track stereo or mono record and playback at $7 \frac{1}{2}, 3 \frac{3}{4}$ and $1 \frac{7}{1}$ ips. Sound-on-sound and sound-with-sound capabilities. Stereo record, stereo playback, mono record and playback on either channel. 18 transistor circuit for cool, instant and dependable operation. Moving coil record level indicator. Digital counter with thumbwheel zero reset. Stereo microphone and auxiliary inputs and controls, speaker/headphone and external amplifier outputs . . - front panel mounted for easy access. Push-button controls for operational modes. Built-in stereo power amplifier giving 4 watts rms per channel. Two high efficiency $8^{\prime \prime} \times 5^{\prime \prime}$ speakers. Operates on 230 V a.c. supply.
Versatile recording facilities. So easy to build-so easy to use.

Latest STEREO AMPLIFIER, TSA-12

12×12 watts output. Kit $£ 30.10 .0$ less cabinet
Ready-to-Use $£ \mathbf{3 8 . 0 . 0}$
Cabinet $£ 2.5 .0$ extra

FOR THIS SPECIFICATION

17 transistors, 6 diode circuit. $\pm 1 \mathrm{~dB}, 16$ to $50,000 \mathrm{c} / \mathrm{s}$ at 12 watts per channel into 8 ohms. Output suitable for 8 or 15 ohm loudspeakers. 3 stereo inputs for Gram, Radio and Aux. Modem low silhouette styling. Attractive aluminium, golden anodised front panel. Handsome assembled and finished walnut veneered cabinet available. Matches Heathkit models TFM-1 and AFM-2 transistor tuners.

Full range power . . . over extremely wide frequency range. Special transformerless output circuitry. Adequately heat-sinked power transistors for cool operation-long life, 6 position source switch.

High-performance CAR RADIO, CR-1

Superb long and medium wave entertainment wherever you drive. Complete your motoring pleasure with this compact outstanding unit.

8 Latest semi-conductors (6 transistors, 2 diodes). For 12 volt positive or 12 volt negative earth systems. Poweriul output (4 watts). Preassembled and aligned tuning unit. Push-button tone and wave change controls. Positive manual tuning. Easy circuit board assembly. Instant operation, no warm-up time. Tastefully styled to harmonise with any car colour scheme. High quality output stage will operate two loudspeakers if desired. Can be built for a total price.

KIT (less speaker) $£ 12.17 .0$ inc. P.T.
$8^{\prime \prime} \times 5^{\prime \prime}$ Loudspeaker $£ 1.10 .0$ extra.
|||

Latest Portable Stereo Record Player, SRP-1

Automatic playing of 16, 33, 45 and 78 rpm records. All transistor-cool instant operation. Dual LP/78 stylus. Plays mono or stereo records. Suitcase portability. Detachable speaker enclosure for best stereo effect. Two 8in. x 5 in. special loudspeakers. For 220250 V ac mains operation. Over-
 all cabinet size $15 \frac{9}{16} \times 3 \frac{7}{6} \times 10 \frac{1}{4} \mathrm{in}$.
Compact, economical stereo and mono record playing for the whole Family-plays anything from the Beatles to Bartok. All solid-state circuitry gives roam filling valume.
KIT £27.15.0 incl. P.T. Ready-to-Use $£ 33.18 .0$
"Mohican" General Coverage Receiver, GC-1U Powerful 10 transistor, 5 diode circuit. Tunes 580 to $1550 \mathrm{kc} / \mathrm{s}$ and 1.69 to 30 Mc / s in five bands. Bandspread on all bands. Fixed-aligned ceramic IF transfilters for best selectivity. Pre-assembled and aligned 'front-end' for fast, easy assembly. Built-in $6 \times 4 \mathrm{in}$. speaker. Tuning meter for pin-point tuning. Completely self-contained for portability-can be operated on 230 volt AC with Model UBE-1. Kit £2.17.6 extra.
Kit $\quad \mathbf{£} 37.17 .6$ Ready-to-Use $£ \mathbf{~} 45.17 .6$.

Send for Latest FREE Catalogue

36 pages, many models in colour.
HEATHKIT
Please address all enquiries to:
DAYSTROM LTD., Dept. PW-5, GLOUCESTER
\square Please send me FREE CATALOGUE
\square Full details of model(s)

NAME

ADDRESS

Deferred terms available over $£ 10$ (UK only).
Prices quoted are Mail Order prices.

The BERKELEY SLIM-LINE SPEAKER SYSTEM, fully finished walnut veneered cabinet for faster construction. Special $12^{\prime \prime}$ bass unit and 4" mid/high frequency unit. Range $30-17,000 \mathrm{c} / \mathrm{s}$. Size $26^{\prime \prime} \times 17^{\prime \prime}$ only $7 \frac{3}{6}$ " deep. Modern attractive styling. Excellent value. Kit $£ 19.10 .0$. Ready-to-Use $£ 24.0 .0$.

SEE HEATHKIT MODELS AT

GLOUCESTER

Factory and Showroom, Bristol Road.
LONDON
233 Tottenham Court Road, W. 1 .
BIRMINGHAM
17-18 St. Martins House, Bull Ring.
I.E.A., LONDON, May 13-18th. Stand 418.

N

EWMAR Dept PW16 30/32,SHUDEHIL MANCHETTER 4. Telephone.(061) 8327710

 FREE GIFT OFFEROF A BRAND NEW WORLD FAMOUS E.M.I. FISK SOLARISCOPE VALUE £2.2.0 WITH EVERY ORDER VALUE Q5 AND OVER. THIS UNIQUE INSTRUMENT WHICH IS A BOON TO SHORT WAVELISTENERS CLEARLY SHOWS THE AREAS OF DAYLIGHT AND DARKNESS ALL OVER THE EARTH AT ANY GIVEN HOUR MINI-MOTORS $3 V$ to $4-5 V$ oneration. Ideal for mini-racing "ars, ete. "Large". $(11 / 5$

GENUINE DIAMOND STYLUS at \%/11 plus 6d. P.P. Available as replacements for the following popular types only at present: BSR TC8LP-BSR TC8 STEREO-P-ACOS GP65/67 LP-RONETTE BF40/LP—GARRARD GC2 LP. Alf these type now available in Sapphire. Vithu at only $3 / 11$ each
SPEAKERS. 12in, ronnd high qualitr British Heted tweeler cone. fo watis, in 3Ω or $15 \Omega, 35 /-$ P.P. 3/6. ROUND $12 i n$, R. \& A. 3 Ω, 25/6. P. P. 3/6, Many uther speaker sailable. 8 in. 3 or $15 \Omega, 20 / 6$. 10 in .
 MICROPHONES. LAPEL/HAND MITKE $1 \frac{1}{\text { in. flia. Lajpel Clip, ideal ior tape record }}$ ag. With lead. Very bensitive, 7/6.
CRYSTAL EAND MIKE. Robust and sensitive. Craas plastice case. Just the thing or tape recorders, 8/6. P. \& P. I/ti. Simiar with tmalt-in stanid. $10 / 6$.
STUDIO CRYSTAL MIKE. Professional. Otmi-directionai, uroviding ieatures usuljuy

 ACOS MIC 40 -World famous Desk Mike, $16 / 6$ plus $\mathrm{P} . \mathrm{A}^{2} \mathrm{P} .1 / \mathrm{s}$. ACOS MIC 40-World famous Desk Mike, $16 / 6$ plus
ACOS MIC 45-8plendid Curved Hand (irip Orvatal Mike, $18 / 3$ plus 1'. \& P. 1/t
ACOS MIC 60 - "Gtick* Trpe Crvatal Mike $21 / 3$ pas

TELESCOPIC FLOOR STAND. HEAVY BASE. Stathart threain
TELEPBONE PICX-UP COIL Por recording or amplifying both sides oit conversation. Suctiou cup fitling to tolephone, with lead, z/6. I. \& P. 1/.. SIREN MODELES. Encapsulated wolidstate circait Only rembires 3Ω speraker.wwituh and battery (9ve) to complele. (oives surpaning siren note. spectal half price oflo e NTER-COMMS-DE-LUXE MODEL 2-WAY. Highly etricient, wafe Ideal BABY ALARM. Transistariacol. Remmbentation call crall master with latter switched ofl Gery easils fitted. Complete uith battery, calje amt phign, 77/6. P. \& P. -2/i.
We cau also offer a limited supply of a montel made by philips tn refail at ti gne. Laud and Clear-Our I'lle $59 / 11$. I' \& P. 2/-. Completro with calle and pligg Niamland
 eontrols attached by hy teanls, over 2 watts out put. $55 /-$
4 TRANSISTOR 3W AMPLIFIER.

GARRARD RECORD PLAYER DECKS

 Model 2000. Mono cartridge. $\begin{array}{llll} & 2 & 6 \\ \text { Model } 3000 \text {. }\end{array}$ Model 300, Stereo cartridge $\begin{array}{rrr}£ 9 & 16 & 6 \\ \text { AT60 Mk. II }\end{array}$ (12 180
 SP25 Mk. II Heavy Turntable $£ 1215$

Cartridges for these players Mono
Garrard Plinths
Perspe: Covers
$\begin{array}{rr} & 18 \\ £ 8 & 18 \\ \mathbf{~} 8 & 17\end{array}$

CAR RADIOS Pugi complete. Posituve or negative earth. 12! gas. Premat mindulal funing. A lao available mannally uperated, wherwisu as ahove, 9 gns

MAGNAVOX " 363 " TAPE DECKS. LATEST MODELS. WORLD FAMOUS. 134 I $11 \times 5 \mathrm{fin}$. below hard. For 200 上501V 50 eveles A.C. 3 speed. digit counter Wiano key control
TAPE RECORDER. Maghificut portable sulid slatc, battery tape recorder the
 PICK-UP CARTRIDGE REPLACEMENTS (Standard Fitting for all Record Pigyers) ACOS GP/67-2 MONO 15/-. ACOS (1P/73-28TRREO 30/-. ACOS GP/91-1 MONO Finest Quality British made MYLAR Recording Tape. Fully Guaranteed. In 3in. 240ft. Mespage . 5/- 5 in. 1200 ft . Long Play 5in. 600 ft . Stantlard piay 9/9 7in. 1 80oft. Long Play Slift. Ranft. Standard Play........ $12 / 6 \quad$ Sin. 1:00ft. Double Pla
Fin. 1200ft. Standard l'lay Iin. 1300ft, Standard I'lay...... $15 / 9 \quad 5_{a}^{3} \mathrm{in}$. 1800 ft . Double Play $15 / 9$
 POCKET MULTI-TEST METER. 1000Ω per volt. Tape splieer $17 / 6$ plus P \& P . $1 / \mathrm{Cl}$. and D.C. Gurrent: $0-1-100-500 \mathrm{~mA}$. Resistance. $0-100 \mathrm{k}$. $1 / 50 / 250 / 500 / 1000 \mathrm{~A} . \mathrm{C}$ prols, instructions, 37/6. P. \& P. 1/6. De-Luxe mudel, large stale, 55/11 plis P.P. I/6. MULTITESTER-Pocket size: with druit in meter protection. Wide angle. jespelled $50,250,500,2500$ volts $\mathrm{D} . \mathrm{C} .0,10,50,100,500,1000$ volts A.C. 19 ranges - $0,5,25$
 Mirror seale. Complefe in oloth-lined leather case with carry strap and teat leads Exeeptional value at £4.11.6 (P . \& P. 3/fif).
TRANSISTORS: Some popular tppes from thir range: OCHt and $\overline{0} C 453 / 8$ each

cajable of operatine un to $700 \mathrm{Mc/s}$. ALSO MAT1007/9. MAT1018/6. MA?1207/9

R.F. FIELD INDICATOR. For use with radio controlled models. Checks radiation from existing antenna. Thnes I to 250 Mc in 5 hands. Sensitive 300 mA met moveNoto battery requirell. Complete with instructinna and cryatal earpiece
TERMS. Cash with urder. No C.O.D. Orderstulal $t 5$ and over sent carriage (excepting recorll player clecks where carriage is show'n). Guaranteen muney refulut if goods returned periect within 7 days of despatich.

Solder with the NEWEIMPROVED PRIMAX OR PRIMAXA SPOTLIGHT SOLDERING GUN

Distributors:
S. KEMPNER LIMITED

384A Finchley Road - LONDON•N.W.2.
Tel : 01-794 2371—01-4356365

BUILD YOURSELF A QUALITY TRANSISTOR RADIO-GUARANTEED RESULTS BACKED bY OUR SUPER AFTER SALES SERVICE!

Haxaman Zin

SEVEN WAVEBAND PORTABLE AND CAR RADIO WITH A SUPER SPECIFICATION GIVING OUTSTANDING PERFORMANCE!

- 7 FULLY TUNABLE WAVEBANDS-MW1, MW2, LW, SW1, SW2, SW3 AND TRAWLER BAND.
- Extra tuning of Jaxembnarg, etc
- Built in rearite rod acerial for Mextimn atmi Lollg Wiaves.
- 5 Sectam 22 inch chrnmp phated teleagic aerial fur shart waves can be angled ant rotated for protk S. W. listening
- Sucket for Chir Aeriat
- Prowerfisl punh juill ontput
- 7 ifansiators and twor dimen including
 - Fanamis mak. in
that Pal syeak r fis

Total building costs

TRANSONA FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE

Attractive chace with rat spaker grille. Nize 612 x $4!\times 1$ in Folly tumable. 7 atares -à tranaistors and 2 d dimbes, territe coul aerial, toming combenser. volume control, lise tome kiper Avatamic sizi speaker, all tirst grade componems. Eass brilel plans and parts price list $1 / 6$. (w'RELC with biats)

Total building costs
39'6 ${ }^{\rho_{3,6} b^{6} b^{\circ}}$

POCKET FIVE

MEDIUM WAVE, LONG WAVE AND TRAWLER BAND PORTABLE Attractive hiack and gold case. size ${ }^{2} \frac{1}{2} \times 1 \frac{1}{4} \times$ 3lin. Finlly tumabe orer foth Mestimn and Long Waves with extended M.W. hatnd for easier thining of Luxemhourg, etc. All tirst gracle com-pouents- 7 stages- 5 transistors and 2 diodes. superversative ferrite iod arrial, the tone shit. moving cuil speaker etc. Bayy buikt plans and parts price lisi. 1/G (FII EE with parts).

NEW MELODY MAKER SIX

3 WAVEBAND PORTABLE
8 stages-6 transistors and 2 diodes a extra band for easier tuning of luxemboturg, etc. Top quality sin. Loud-
 proket size case wilh gilt fitting fize rages fur ext-

This amazing receiver may be built for only

Parts Price List and easy build plans 2/(Free with parts).

Total building costs $7816 \quad$ P. \& P.

ROAMER SIX

SIX WAVEBAND PORTABLE WITH 3in. SPEAKER
Attractive case with gite littinge, size it x 5h X 1iin, Work wile reception. Thualle on Meeltum and long waves, two ghot waves. Trapler liand
Plus an exira $\$$. W. band for easier tuning of Luxpulburg. ett: Sensitive ferrite rod aerial and teleserpic acrial for shoth waves. All lup grade
 including Philco Mierto.Aloy R.. Trausishors ele
(Carrying strap 1/6 extra.) Easy lunild plans and (Carrying strap $1 / 6$ extra.) Easy

Total building costs

SUPER SEVEN

THREE WAVEBAND PORTABLE WITH 3in. SPEAKER

Attractive case size $74 \times \overline{5} \frac{1}{2}$ 앤, with gilt littings. The ideal rafir for hine. car or outdoors Covers Medium ant Long Waves ant Trawler
Band. Speciat circnit- incorporating 2 R.F. Stages Band. Speciat circhitincorporating 2 R.F. Stages,
push pull output, fermile rou autrial. 7 trunsistors

 parts).

VIKING AMPLIFIER

50 WATT AMPLIFIER

An extremely reliable general purpose valve amplifier. Its rugged construction yet space age styling and design makes it by far the best value for money. TECHNICAL SPECIFICATIONS 4 electronically mixed channels, with 2 inputs per channel, enables the use of 8 sep
arate instruments at the same time. The volume controls for each channel are located directly above the corresponding input sockets
SENSITIVITIES AND INPUT IMPEDANCES
Channel $1 \quad 4 \mathrm{mV}$ at 470 K$\}$ These 2 channels (4 in puts) are suitable for Channel 24 mV at $470 \mathrm{~K}\{$ microphone or gnitars.
Channel 3200 mV at 1 m \{Suitable for most high output instruments Channel 4200 mV at 1 m$\}$ (gram, tuner, organ etc.)
Input sensitivity relative to 10 w output.
TONE CONTROLS ARE COMMON TO ALL INPUTS
Bass Boost +12 dB at $60 \mathrm{~Hz} / \mathrm{s}$. Bass Cut -13 dB at $60 \mathrm{~Hz} / \mathrm{s}$.
Treble Boost +11 dB at $15 \mathrm{KHz} / \mathrm{s}$. Treble Cut -12 dB at $15 \mathrm{KHz} / \mathrm{s}$.
With bass and treble controls central -3 dB points are $30 \mathrm{~Hz} / \mathrm{s}$ and $0 \mathrm{KHz} / \mathrm{s}$
POWER OUTPUT
For speech and music 50 watts rms. 100 watts peak
For sustained music 45 watts rms. 90 watts peak.
For sine wave $38 \cdot 5$ watts rms. Nearly 80 watts peak
Total distortion at rated output $\left.\begin{array}{r}3.2 \% \\ 0.15 \%\end{array}\right\}$ at $1 \mathrm{KHz} / \mathrm{s}$
Total distortion at 20 watts $0 \cdot 15 \%$, 0 ater
NEGATIVE FEED BACK 20 dB at $1 \mathrm{lH} \mathrm{Hz} / \mathrm{s}$.
SIGNAL TO NOISE RATIO 60dB.

MAINS VOLTAGES

Adjustable from $200-250 v$ A.C. $50-60 \mathrm{~Hz} / \mathrm{s}$. A protective fuse is located at the rear of unit. VALVE LINE UP
Double purpose ECC83 x 3, EL34 x 2 and G234.

Price
27 gns
P\&P20/-

FOUR PLUS FOUR Stereo Amplifier

A superb high quality, yet inex pensive stereo amplifier. Due to the great demand we are now able to offer this precision made instru ment at a fantastically low price. The high quality, reliability and styling has been maintained in spite of its low price.
SPECIFICATIONS
Elegant styled cabinet (sizes 16^{n} wide $5^{\prime \prime}$ bigh $8 \frac{1}{2 "}^{\prime \prime}$ deep) in black rexine and woodgrained sides. Brushed aluminium front panel with contrasting black/silver knobs. CONTROLS
Stereo/Mono switch. Gram/Aux switch. Volume left. Volume right. Treble (cut and lift). Bass (cut and lift). Separate on/off switch. Neon pilot indicator.
INPUTS AND OUTPUTS (per channel)
Gram, aux, tape out and speaker out. A switched mains socket is
also provided at the rear of unit Employs Mullard valves throughout ECC83 and $2 \times$ ECL 86 with a metal bridge rectification
TECHNICAL SPECIFICATIONS Gram sensitivity 40 mV at 1 KHz . Aux sensitivity 50 mV at 1 KHz . (Sensitivities are given for rated output). 4 watts r.m.s.
(8 watts r.m.s. in monoral position) Output matches in to standard 3 obms speaker sysiems speaker sysiem. Suitable 10 x 6
speakers are availspeakers are avai able at $29 / 6$ each, plus 5/- p. \& p. Bass control at 100 Hz lift +9 dB cut -10 dB . Treble control at 10 KHz lift +8 dB cut -13 dB . Total harmonic distortion 0.35% at 3 watts and 2% for rated output at 1 KHz . Negative feedback 13 dB at 1 KHz . Mains supply $220-250 \mathrm{~V}$ A.C. $50-60 \mathrm{~Hz}$.

8 -watt 4 -valve PUSH-PULL

 AMPLIFIER \& METAL RECTIFIERSize: $9^{\prime \prime} \times 6^{\prime \prime} \times 1 \frac{9}{4}$ ". A.C. Mains, $200-250 \mathrm{~V}, 4$ valves, For use with Std. or L.P. records, musical instru ments, all makes of pick-ups and mikes. Output 8 watts at 5 per cent of total distortion. Separate

Price 13 gns P\& P 15/-

 an bass and treble lift control 'Two inputs with controls for gram. and mike. Output transformer tapped for 3 and 15 ohm speech coils. Built and tested. £4.4.0. P. \& P. 11/-, $8^{\prime \prime} \times 5^{\prime \prime}$ speaker to sui price $14 / 6$ plus $1 / 6$ P. \& P. Crystal mike to suit $12 / 6$ plus $1 / 6$ P. \& P.

GEC KETTLE ELEMENT

3,000W WITH AUTOMATIC EJECTION
$200 / 240 \mathrm{v}$. Size of hole required 1 贯
List Price 32/-. Our PRICE
15/-. P. \& P. $1 / 6$

RADIO \& TV COMPONENTS (Acton) LTD

21c High Street, Acton, London, W3
Shop Hours 9 a.m.-6 p.m. Early Closing Wednesday Goods not despatched outeide U.K. Terme C.W.O All enquiries Stamped Addressed Envelope

[^3] Early Closing Thursday. All orders by post to our Acton address.

STAR SR 150 COMMUNICATION RECEIVER

Frequency range $535 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ four wave bands, four valve plus metal rectifier superbet circuit incorporates B.F.O. band spread tuning, " S " meter external telescopic aerial - ferrite aerial, built-in 4^{*} speaker, easy to read
dial. For $240 \vee$ A dial. For 240V A.C. operation complete brand new with full instructional manual. 17 gns. plus 10/- P. \& P.

POCKET MULTI-METER

Size 3 i $2 t$ x 1 in Meter size $2 \sharp$ I 1 in Sensitivity 1000 D.C. eurrent $0-150 \mathrm{~mA}$. Resistance $0-100 \mathrm{k} 0-150,0-1000$ with test prods, battery and full instructlons, $42 / 6$. P. \& P 3/6. FREE GIFT for limited period only. 30 watt Electrl Soldering Iron value 15/- to every purchaser of the l'ocke Multi-Meter.

THREE-IN-ONE HI-FI 10 WATT SPEAKER
A complete Loud Speaker system on one frame, combining three matched ceranic magnet speakers with a low loss crose 10 watts. Impedance 15 ohms. Fiux density $\mathbf{2 1 , 0 0 0}$ gauss. Reaonance 40$60 \mathrm{c} / \mathrm{h}$. Frequency range $50 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Size $131 \times 81 / 18 x$ at inches. By famous manufacturer
$69 / 6$ plus $3 / 6$. \mathbf{P}. \& \mathbf{P}.

3 to 4 Watt AMPLIFIER

3-4 watt Amplitier built and tested. Chassis size $7 \times 3 \& \pi$ wound masiug transformer, metal rectifier and output wound mains tranaformer, metal rectifier and output
transformer for 3 ohms speaker. Valves ECC81 and 6 V 6. £2.5.0 plus 5/6 p. \& p

600 mW FOUR TRANSISTOR AMPLIFIER

Features N.P.N. and P.N.P. complementary symmetrical output stope $2 \frac{4}{\prime \prime}^{\prime \prime} \times 7^{\prime \prime} \times z^{\prime \prime}$ Speaker. Output impedance 12 ohms frequency response 3 dB points $90 \mathrm{c} / \mathrm{s}$ and $12 \mathrm{Kc} / \mathrm{s}$. Price $15 /-$ plus $1 /-P . \& \mathrm{P} .7 \mathrm{x} 4$ " Speaker to suit, $19 / 6$ plus 2/-P. \& P.

$2 \frac{1}{2}$ watt ALL TRANSISTOR AMPLIFIER

AC mains 240 V . Size $7^{\prime \prime} \times 44^{\prime \prime} \times 19^{\prime \prime}$. Frequency response $100 \mathrm{c} / \mathrm{s}-10 \mathrm{Kc} / \mathrm{s}$ Tone and volume controls on flying leads and two stabilizers AA120. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high flux leads. £2.10.0 plus P. \& P. $3 / 6$. Suitable $8^{\prime \prime} \times 5^{\prime \prime} 10,000$ line high flux speaker, $18 / 6$ plus $2 /-$ P. \& P

NEW TRANSISTORISED
SIGNAL GENERATOR

Size $5 \frac{1}{2} \times 34 \times 1$ in. For IF and RF alignment and $A F$ output $700 \mathrm{o} / \mathrm{s}$ frequency coverage $460 \mathrm{kc} / \mathrm{s}$ to $2 \mathrm{mc} / \mathrm{s}$ Elegant Seven and Musette. Built and teated to our P. \& tested. $39 / 6$

BSR TAPE DECKS

200/250V A.C. mains
Type TD2 Tape speed 3 年 twin track, 16.19 .6 . Type TD10 2 -track, 3 speed, plus rev. countere7.19.6.
Type TD10 4 -track, 3 speed, plus-rev. counter£9.5.0. P. \& P. on each 7/6.

R \& TV

FIRST QUALITY P.V.C. TAPE

$5{ }^{\text {5 }}$	Std.	850 ft	9/-	5"		850 ft .	10/6
7"'	Std.	1200 ft .	11/6	3 "	T.P.	600 ft .	10/6
$3^{\prime \prime}$	L.P.	240 ft .	41.		T.P.	1890 ft .	25/6
$5{ }^{\prime \prime}$	L.P.	1200 ft .	.11/6	$5{ }^{\text {² }}$	T.P.	2400 ft .	32/6
	L.P.	1800 ft .	.18/6	$7{ }^{\prime \prime}$	T.P.	3000 ft .	42/6
59"	D.P.	1800 f	.18/6		T.P.	900 ft .	15/-

EXTRACTOR FAN

AC MAINS
MOTOR
1400 R.P.M.
$230 / 250 \mathrm{v}$
PRICE
9/6
P. \& P. $3 /$

R.M.S. Power Output: 13 W (music power), 10 W (Sine Wave). Sensitivity: for rated output 1 mV into 3 K ohms load.
Frequency Response: minus 3 dB points are 20 Hz and 40 KHz . Total Distortion: at 1 KHz for rated output 1.5%, for 5 W output Output impedance: 3 ohms ($3-15$ ohms may be used).
Supply Voltage: 24 V D.C. at 800 mA ($6-24$ V may be used) output at stze 14 VD C. supply with 3 ohms speaker. 7 watts
Stze: $24^{\circ} \times 3^{\circ} \times 10{ }^{\circ}$
The fully comprehensive instruction manual does not only show the basics, such as circuit diagram and connections, but also gives practical easy-to-understand detailed information about the X101. Standard equalisation networks are given for most types of conventional inputs. They include: Tape Head, Mag, P.U., Xtal P.U., Tuner. Mic. etc. $49 / 6+2 / 6 \mathrm{p}$ \& p .

Control assembly: (Including resistors and capacitors).

1. Volume: PRICE $5 /-2$. Treble: PRICE $5 /-$
2. Comprehensive bass and treble: PRICE $10 /=$
The above 3 items can be purchased for use with the X101. POWER SUPPLIES FOR THE X101

PIIOM
 a hieh quality MONAURAL PRE-AMP \& CONTROL UNIT

Particularly suitable for use with the X101 if a ready-built, comprepartive, multi-input system is desired.

CONTROLS

Selector Switch. Tape Speed Equalisation Switch (3z and 7 th i.p.s.). Volume. Treble, Bass, 3 position scratch fliter and 3

SPECIFICATION

Sensitivities for 200 mV output at 1 KHz .
$\begin{array}{lll}\text { Tape Head: } 3 \mathrm{mV} \text { (at 3a i.p.s.) Radio: } 100 \mathrm{mV} \\ \text { Mag. P.U.: } & 2 \mathrm{mV} \\ \text { Aux.: } & 100 \mathrm{mV}\end{array}$
$\begin{array}{ll}\text { Mag. P.U.: } & 2 \mathrm{mV} \\ \text { Cer. } & \mathrm{Un} . \mathrm{mv}\end{array}$
Cer. P.U.: $\quad 80 \mathrm{mV}$
Tape/Ree. Output: 100 mV
Eqpe/Rec. Output: 100 mV is correct to within $\pm 2 \mathrm{~dB}$ (R.I.A.A.)
Equal 20 Hz to 20 KHz . input is correct to wit
from
Tone Control hange: Bass $\pm 13 \mathrm{~dB}$ at 60 Hz
Total Distortion: (for 200 mV output) $<0.02 \%$
Signal Noise: $>-60 \mathrm{~dB}$
Supply Voltage: 24 V D.C.
$59 / 6$ plus $2 / 6$ p. \& p.
A STEREO VERSION (PR101/S) WILL BE ANNOUNCED SHORTLY

Alis4l
 HIGH QUaLITY solid-state amplifile (MONO)

SPECIFICATION

Switched inputs for: Tape Head. Mag. P.U., Cer. P.U., Radio and Aux. Mains lnput: $220-250 \mathrm{~V}$ A.C. 50 Hz .
THE CLASSIC IS THE COMBINATION OF THE ABOVE DESCRIBED ITEMS (X 101, P101/M AND PR101/M) ON ONE COMMON CHASSIS: ITS PERFORMANCE AND SPACE-MALUE-CONSCIOUS HI-FI ENTHUSISST. AVAILABLE WITHIN 4 WEEKS.
p. \& p. free

WEW! THE Dorset TRANESISTO
PDRIGUERIDIO

CAN BE USED AS BABY ALARM

600 milliwatt solid state 7 transistor plus diode and thermistof. Completely modulised high quality portable radio leaturing complementary NPN and PNP output stage. The comprehensive easy-to-follow drawing supplied make this the ensiest-ever transistor radio set of parts. with the followine estures

- Simple connections to only 6 tags on the R.F./T.F. module, 3 I.F. stages, osc-coil and 3 transintors which With thelr associated components are completely wired, only 4 connections on the A.F. module to com
- Pre-aligned R.F. $/$ I. F. module built and tested
- A.F. module built and teated
- Fully tunable over M.W. and L.W. bsinds, M.W. $540-1640 \mathrm{Ke} / \mathrm{s}$ (557-183 metres). L.W. 150-275 Kc/s (2000-1100 metres).
Intermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$
- Intermediate Frequency $470 \mathrm{Kc} / \mathrm{s}$. Ke/s 40 merovolt plus or minus 4 dB
- Clgh Q internal ferrite rod aerial on both wavebands.

Class 'B' modulised output atage with thermistor controlled heat stabllisation. Class ' B ' output stage ensures long battery life, Current drain is proportionai to the output level. Total current drain of the recelver under no signal conditions is $10-12 \mathrm{~mA}$. At reasonable latening level $20-30 \mathrm{~mA}$.

- Extension sockets for car aerial input, tape recorder output (Independent
of volume control) and External Bpeaker
- All components (except speaker) mount on the priated circuit board. Basy-- Finger-tip controls.

Special Orier-Power Supply Eit to purchaseri of Dorset Portable Radio parts incorporating maing transformer, rootifer and amoothing condenser, AC mains $200 / 250 \mathrm{~V}$ output $9 \mathrm{~V} 100 \mathrm{~mA}, 9 / 6$ axtra.

ELEGANT SEVEN Mk III

 QONBWED PORTIBEand GAR RADIO

Buy yourself an easy to bulld 7 ransistor radio and save at least $\mathbf{\$ 1 0 . 0 . 0 \text { . Now you can bulld this }}$ auperb translstor superhet radio for under \$4.10.0. No one else can offer such a fantastic radio with so many de luxe star featurea.
t De luxe woolen cabinet size SPEC/AL OFFER

POWER SUPPLY KTT To purchasers of 'Elegant Seven' parts, incorporat-
lig mains transformer rectifer and amoothing condenser. A.C. mains 200/250 7olts. Output 9v lua $7 / 6$ P. \& \mathbf{P} Parts . Plus $7 / 6$ P. \& \mathbf{P}. Parts List and parts.

* Horizontal easy to read tuning scale printed grey with black etters, size $11 \frac{1}{2}^{2} \times 2^{*}$
\star High 'Q' ferrite rod aerial.
- I.F. neutralization on each aeparste stage.
\star D.C. coupled push pull output stage with separate A.C. negative feedback.
\star Room ellling output 300 in W.
* Ready etched and drilled printed circult board back printed for foolproos construction.
\star Fully comprehensive ingtructions and point-to-point wiring diagrams.
\star Car serial socket.
* Fully tunable over medium and long wave. 168-835 metres and 1250-2000 metres
* All componenta ferrite rod and tunin's assembly mount on printed board * 5° P.M. speaker.
* Parta list and circult diagram 2/0, free with parts.

RADIO \& TV COMPONENTS (ACTON) LTD. $21 C$ HIGH STREET . ACTON . LONDON . W3
OPEN 9 a.m.-6 p.m. INCLUDING SATS, EARLY CLOSING WED. GOODS NOT DESPATCHED OUTSIDE U.K. TERMS C.W.O All enquiries stamped addressed envelope
All orders by post to be sent to our Acton address 323 EDGWARE ROAD, LONDON W2
Personal shoppers only. Early closing Thursday.

UNDERSTAND CIRCUIT DIAGRAMS

4 CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK . . . INCLUDING ...

- VALVE EXPERIMENTS
- TRANSISTOR EXPERIMENTS
- AMPLIFIERS
- oscillators
- SIGNAL TRACER
- PHOTO ELECTRIC CIRCUIT - COMPUTER CIRCUIT
- BASIC RADIO RECEIVER
- ELECTRONIC SWITCH
- SIMPLE TRANSMITTER
- A.C. EXPERIMENTS
- D.C. EXPERIMENTS
- SIMPLE COUNTER
- TIME DELAY CIRCUIT
- SERVICING PROCEDURES

This new style course will enable anyone to really understand electronics by a modern, practical and visual methodno maths, and a minimum of theory - no previous knowledge required. It will also enable anyone to understand how to test, service and maintain all types of Electronic equipment, Radio and TV receivers, etc. send your free Brochure, without obligation, to : we do not employ representalives NAME

TOPIC OF THE MONTH

End of the Road

N hope that just because the manufacture and Vimport of certain radio equipment became illegal as from April 1 st, owners, or prospective owners, of such equipment will not be tempted to become April Fools!
P.W. long campaigned for some action on the question of illicit walkie-talkies and last year, at long last, the Postmaster-General introduced a Bill covering the situation.

Under Section 7 of the Wireless Telegraphy Act, 1967, importers and manufacturers must seek the authority of the PMG to make or import apparatus designed to transmit between 26.1-29.7 and 88-108 Mc / s. Most of the trouble was caused by $27 \mathrm{Mc} / \mathrm{s}$ walkie-talkies which created interference with other (legitimate) services and since $27 \mathrm{Mc} / \mathrm{s}$ is not available for amateur use their operation was in any event iflegal.

A curiosity of the law is that it is still not illegal either to sell or to buy such equipment, but only illegal to use it. Thus unscrupulous dealers could sell the units to innocent purchasers; or buyers, knowing the risks, could buy them over the counter with no questions asked.

One suggestion we made (*) to end this anomaly was that any transmitting equipment should only be sold to purchasers able to produce a transmitting licence for the frequencies covered. The PMG chose to tackle the problem by tightening up on the manufacture and import side. At the same time, the 1967 Act raised the maximum fine for operating such equipment without a licence to $£ 400$, while retaining the maximum penalty of three months' imprisonment.

Readers, particularly newcomers, should bear these facts in mind if they are tempted to buy, or use, such equipment from any source whatsoever! The only licences issued to use walkie-talkies and other small radio transmitters are for such users as police, fire and other public services, organisers of sporting events, yachtsmen, the press, schools, entertainers and various business (factories, building sites, etc.). Even so, a condition is that the equipment must meet performance requirements and operate on specified frequencies.

Amateur licences and frequencies, of course, remain unaffected by the provisions of the Act.

> W. N.STEVENS-Editor

[^4]NEWS AND COMMENT
Leader 17
News and Comment 18
Practically Wireless by Henry 35
On the Short Waves by Christopher Danpure and David Gibson, G3JDG 44
Your Questions Answered 46
The MW Columnby Alistair Woodland57
Letters to the Editor 61
New Books 62
CQ! CQ! CQ! CQ! CQ! 66
CONSTRUCTIONAL
TRF5 Pocket Portable by R. F. Graham 20
Simple Automatic Switch
by J. E. Kasser 23
Modulated Crystal Marker by Hugh Wagner 28
End Fed Aerial Tuner by F. G. Rayer, G30GR 31
Midget I.C. Amplifier by L. McNamara, B.Sc. 38
A Comprehensive Checker by C. R. Bradley 40
The "Clubman" Part 5by J. Thornton-Lawrence,GW3JGA48
Simple Musical Toy by J. M. Watt 65
OTHER FEATURES
Repairing Radio Sets, Part 2 by H. W. Hellyer 24
Five Steps to $\mathrm{Hi}-\mathrm{Fi}$ by lain Smith 36
The Semiconductor Diode by Barry C. Francis 50
A Method of Repetitive Morse Broadcasts by J. McCarthy 58

[^5]
"BETTER SOUND"

There will be four programmes in a new series "Better Sound" which will be broadcast on Fridays at 7.00-7.30 p.m. in Study Session, Radio 3 from May 3 to 24. Listeners will be invited to send questions of general interest, or requests for more information on particular topics covered in the series and these will be dealt with in two extra programmes which will follow the repeat of the series later in the year.

The series will be repeated on Radio 4 on Saturday mornings at 11.00-11.30 a.m. from August 17 to September 14. There will be no programme on August 31 (Bank Holiday weekend), but there will be two additional programmes on Saturdays, September 21 and 28.

The series is planned for home enthusiasts and those who use sound equipment as a teaching aid, or in amateur dramatics and so on. The aim is to help them to get the best out of their hi-fi equipment, tape-recorders and radios. This will be done by giving information about the basic principles involved in the transmission, recording and reproduction of sound, and practical advice on the choice and use of different types of equipment. Advice on particular makes cannot be given and the construction and repair of equipment will not be dealt with.

Speakers will include Donald Aldous, technical editor of Audio Record Review, John Borwick, technical editor of The Gramophone, John Crabbe, editor of Hi-Fi News and members of the BBC's staff.

Each programme will focus attention on one area of this wide field. A number of topics (e.g. microphones, loudspeakers, stereo) will therefore be treated in more than one programme.

Programme 1: Transmission and reception of radio, including stereophonic broadcasting. Explanation of a.m. and f.m., etc. Programme 2: The nature of sound, and room acoustics, with demonstrations of the effect of different placings of microphones and loudspeakers. Programme 3: The reproduction of music in mono and stereo; hi-fi equipment. Programme 4: Tape-recording for the amateur.

The diagrams in the Study Notes (BBC Publications, 2 s . 6d. plus 5d. postage) will be helpful in following the broadcasts and the explanations in the text of the basic principles of the transmission, recording and reproduction of sound in mono and stereo will be useful for reference, particularly for the less knowledgeable listeners.

GB2LO AT CITY OF LONDON FESTIVAL

An unusual feature of the 1968 City of London Festival, July 8-20, will be the Amateur Radio station installed and operated by the RSGB.

The location is still under negotiation, but the station will be in a very prominent place within the 1.03 square miles of the City of London, and easily accessible to the public.

The GPO have granted the use of the callsign, GB2LO.

Equipment will be loaned by Messrs. K. W. Electronics Ltd. and will be operated by volunteers on the amateur frequencies in the 10, 15, 20, 40 and 80 metre wavebands. The society's public relations personnel will be on hand to explain the station and its function to visitors. Operation will be on single sideband only.

SPRING IS HERE!

We were delighted to snip the following from the price list of a well-known semiconductor manufacturer:

1N34A-C Geranium Diode 4s 6d
Zenobia diodes, of course, cost more!

RADIO SPEEDS UP RAIL MAINTENANCE

With increased efficiency as the prime objective, British Rail Eastern Region have introduced a new system of v.h.f. communication between their London Area Electric Traction Engineer's mobile maintenance units and the overhead line depots at Romford, Cheshunt, Pitsea and Colchester, via a control at Romford, Essex.

This system operates over an area bounded by London, Bishop's Stortford, Colchester, Walton-on-the Naze and the Essex Coast.

There are two fixed radio stations and aerials at Danbury in Essex and Highgate in Middlesex. Any signal transmitted from a mobile unit, all of which are on a common frequency, is received simultaneously at each aerial and, after automatic comparison for strength, the station receiving the stronger signal feeds it direct to Romford Control.

Here the switchboard operator can communicate with all mobile maintenance units and extend calls between selected extensions in overhead line depots to such units.

Each mobile unit is equipped with a receiver/transmitter which is operated by the car-starter battery carried by the vehicles. Incoming calls are heard on a loudspeaker mounted in the cab and a telephone handset is used for carrying on conversations.

VERSATILE POWER UNIT FROM R.C.S.

R.C.S. Products Ltd., 11 Oliver Road, London, E.17, announce the latest in their range of power units. It is called the "Plus Three" and provides three separate switched voltages of $6 \mathrm{~V}, 7.5 \mathrm{~V}$ and 9 V d.c. at 250 mA .

It is ideal for most types of transistor equipment including record players, tape recorders and radio receivers, and makes a good test bench power supply. It is housed in an attractive rexine-covered wooden cabinet measuring $4 \frac{1}{4} \times 3 \frac{1}{2} \times 2 \frac{1}{2}$ in.

An indicator lamp is standard fitting to ensure that the unit is not left running when the equipment has been switched off, and an optional extra is a lead fitted with a din plug so that the unit can be used in conjunction with the Philips battery operated tape recorders. Also, the makers state that connection leads can be made up to individual specifications.

The "Plus Three" costs 57 s . 6d, p.p. is 2 s .6 d.

The R600 is a f.m./a.m. transistor portable. A transformerless audio amplifier is employed and press-button switches are provided for waveband selection, automatic frequency control for the v.h.f. band and treble cut.

The circuit employs 11 transistors and 5 diodes and the output stage delivers power in excess of 1 W to a $7 \times 3 \frac{1}{2} \mathrm{in}$. elliptical speaker.

A hinged and rotatable telescopic rod aerial is provided for f.m. reception, and a built-in ferrite rod aerial for the a.m. bands. Sockets are provided for use with a car-type aerial and an earpiece.

The receiver is housed in a wooden case covered with black leathercloth set off with silver trim and natural teak end-panels and is mounted on a ball-bearing turntable.

Approximate size is $11 \frac{1}{4} \times 6 \frac{1}{8} \times 3 \frac{1}{2}$ in., weight is 5 lb . and the recommended price, including battery and purchase tax is 23 guineas.

HEATHKIT AT IDEAL HOME EXHIBITION

The feature of the Heath stand was a presentation in a domestic setting of music in the home. Items from their $\mathrm{Hi}-\mathrm{Fi}$ range were demonstrated under simulated home conditions.
$\mathrm{Hi}-\mathrm{Fi}$ audio equipment on view included a.m./f.m. tuners, both mono and stereo, amplifiers and speaker systems for reproducing sound from these sources and from record and tape decks: portable and car radio receivers, stereo record players and stereo tape-recorders were also shown.

BBC RADIO DURHAM

The BBC has placed an order with Bovis Ltd., of Harrow, Middlesex, for building work at the headquarters of BBC Radio Durham, Park House, Durham. Studio and ancillary accommodation will be formed here for this new local radio station, which is expected to be brought into service early this summer.

Radio Durham will transmit on $96.8 \mathrm{Mc} / \mathrm{s}$ in the v.h.f. band, from a transmitter at the BBC's Pontop Pike station. The area served will cover most of the County of Durham, except the western part, and will include the City of Durham, Sunderland, Bishop Auckland, Chester-le-Street and the greater part of Consett.

INDUSTRIAL TRAINING FILMS

A comprehensive catalogue of audio visual material for industrial and other training uses has been published by Rank Audio Visual Limited. In its sixty-four pages it lists a wide range of audio visual material on a multitude of training applications in industrv, commerce and education.

It includes a total of 346 titles of 16 mm . films, 8 mm . concept loop films, 35 mm . filmstrips, and sound filmstrip kits. The catalogue is available free of charge from Rank Audio Visual Limited, P.O. Box 61.3, Woodger Road, Shepherd's Bush, London W. 12.

NEWS FROM THANET

GB2MHE will be operated by the Thanet Radio Society at the Hobbies Exhibition run by the Rotary Club of Margate at the Lausanne School April 24-27. A.M. Phone on $80-40-20-1 \mathbf{5 - 1 0 m} 4$ and 2 m . Special OSL's. Contacts and reports will be appreciated. Dick Trull, G3RAD.

BBC RADIO STOKE-ON-TRENT

So that the start of the local broadcasting service for the Stoke-on-Trent area, on March 14, would not be delayed, the $B B C$ brought into service a temporary low-power transmitting installation. This was on the site of the permanent transmitter, at Alsagers Bank, near Newcastle-under-Lyme.

Radio Stoke-on-Trent transmits on $94.9 \mathrm{Mc} / \mathrm{s}$ in the v.h.f. band. The local programmes are originated from the new BBC premises at Conway House, Cheapside, Hanley.

SIFAM METERS FOR AMPEX TAPE RECORDERS

The picture shows special "VU" meters for use in a new, portable professional tape recorder being tested at the Torquay factory of Sifam Electrical Instruments Co. Ltd.

Sifam have received a large initial contract from Ampex Electronics Ltd., Reading, Berks., for these meters for fitting to the new Ampex $A G-20$ battery-operated audio recorder. Built into a modified Sifam "Director 24 " instrument case, the meter movements have specially designed ballistics based upon the stringent USA Standards Institute specification for volume measurement of electrical speech and programme waves.

The meters were subjected to severe tests both in the UK and by the Ampex parent corporation in the United States. The most dramatic of these was an environmental test of the recorder in which an interview was taped by skydivers from the British Green Jackets Parachute Club during free fall from an altitude of 12,000 feet.

TRF5 paCket PDRTRBLE R. . .GRARAM

THE t.r.f. type of receiver avoids the more complicated circuits and alignment difficulties of the superhet, yet will normally give good loudspeaker volume plus a reasonable selection of stations. This circuit has five transistors in a 6-stage reflexed arrangement which is sensitive, easy to build, and provides excellent volume from an economical single-ended push-pull output stage.

Figure 1 shows the circuit, and a personal phone or headphones may be used to test it in three sections, during construction. This ensures that progressive wiring is correct. Tr 1 acts as r.f. amplifier, with regeneration through TCI controlled by the potentiometer VR1. R.F. is blocked by the r.f. choke and passes to diodes D1 and D2; the demodulated signal passing through L1 to Trl, which furnishes audio signals across R1, taken through C6 to Tr2. When the circuit is wired as far as C6, phones from C6 to battery positive give moderate phone volume from some local stations, while tuning and regeneration will be found in order if this section is working correctly.

Tr 2 and Tr 3 are audio amplifiers, connected to obtain d.c. stabilisation of their working conditions.

Fig. 1: Complete circuit of the TRF5 pocket portable.
For example, assume $\operatorname{Tr} 2$ collector current is too high. The voltage drop across R 4 rises, moving Tr 3 base positive and $\operatorname{Tr} 3$ emitter current falls, reducing the voltage drop across R6, and moving Tr2 base positive through R 3 , to restore working conditions. Should Tr2 collector current be too low, the reverse arises. With Tr3, excess collector and emitter current increases the voltage drop across R6, shifting Tr 2 base negative, increasing Tr 2 collector current and the voltage drop across R4, which in turn moves Tr 3 base slightly positive, to restore conditions.

With Tr 2 and Tr 3 added, phones from Tr 3 collector to battery negative should give more than enough volume, with good quality of reproduction, thereby showing this section is in order. Transformer Tl drives $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ in a popular and economical push-pull circuit, operating directly into a 75Ω speaker.

Components

There is some latitude in transistors and some other items, but miniature transistor receiver type components have to be used throughout. All resistors are 10% (silver band) except R7, R8, R9 and R10, which must be either 5\% (gold band) or selected with a reliable meter for accuracy. VRI is a midget pot with switch and actual results are the same with $10 \mathrm{k} \Omega$ or $20 \mathrm{k} \Omega$. VCl is a midget solid-dielectric (300 pF) but there is space for a midget air-spaced capacitor, if to hand, and 365 pF or other larger value can be fitted.

Various transformers for single-ended pushpull, for use with OC71 and $2 \times O C 72$, or OC81D and $2 x O C 81$, or similar transistors, are satisfactory for T1. The ratio is generally about $7: 1+$ 1 , to $3 \cdot 5: 1+1$. Tags are
numbered in Fig. 1 and a wiring plan shows location of tags or pins and must of course be for the actual transformer, if different from that listed.

The speaker is a $75-80 \Omega 2 \mathrm{in}$. or similar unit, but 35Ω units are also in order, while a 25 or 35Ω speaker is particularly suitable for 2 xOC 81 or similar transistors. The receiver is easily accommodated in a plastic case which is approximately $5 \frac{1}{2} \times 3 \frac{1}{4} \times$ ${ }^{\frac{1}{3}}$ in. external dimensions.

Chassis and Case

This is $5 \times 3 \mathrm{in}$., $\frac{1}{16}$ in. paxolin, with all components except VR1 and the speaker mounted on the back as in Fig. 2. Cases of the type mentioned have three projections inside, tapped 6 B.A. Bolts in holes X, Fig. 2, secure the finished receiver in its case. These three holes can be positioned by cutting thin card 5 x 3in., placing it in the case, piercing over the tapped holes, then using the card as a template for drilling the paxolin. Should any holes be inaccurately placed, they can be elongated with a small round file. The two holes marked S are for bolts with extra nuts, which secure the speaker. Somewhat similar cases are made with tapped holes to fix a speaker inside, and two flexible leads can then run from speaker to receiver.
The speaker opening, Fig. 2, is about $1 \frac{3}{4} \mathrm{in}$. in diameter, to clear the speaker. As many holes as possible should be drilled before fitting any components to the panel.

Ferrite Rod Aerial

This has 88 turns of 26s.w.g. enamelled wire,
side by side on a $5 \times \frac{3}{8} \mathrm{in}$. ferrite rod. Glued paper is wound round the rod, and the wire fixed at A with tape, adhesive, or cotton. After winding 76 turns, the small loop B is made, and winding continued in the same direction for a further 12 turns, the wire being fixed at C.

A loop of some insulating material, such as cardboard, leather or plastic is cut to go round the rod, and drawn tight with a bolt, which also goes through the panel. Extra nuts or a spacer lifts the rods so that the winding clears the trimmer TCl . Note that a wire also passes from the moving plates of VCl through the panel to the "earth" o- battery positive circuits the other side.

If the receiver is to be tested in sections as mentioned, insert components up to C6.

The underside of the panel (or front when the receiver is in its case) is shown in Fig. 3. VR1 is fixed with a small bolt. The simplest method of wiring is to use $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. or similar bare tinned

Fig. 2: Component layout. The volume control VR1 is mounted on the reverse side (see Fig. 3).

Fig. 3: Underside wiring of the paxolin panel.
copper wire, with 1 mm red sleeving for "earth" and black sleeving for negative line. Joints (especially for transistors and diodes) are soldered rapidly, the iron being removed immediately the joint is formed.

To test the first stage, connect phones from the free end of C6 to battery positive and unscrew TC1. Set VRI at about half its travel. Tune in a signal with VC1 and screw down TC1 until the receiver just begins to oscillate, backing off VR1 slightly should then control regeneration. A meter in one battery lead should show a current of about $1-1.5 \mathrm{~mA}$, falling
by about $0 \cdot 2 \mathrm{~mA}$ on tuning in a strong signal, due to increased base bias from the diodes. Regeneration becomes less easy towards the low frequency end of the waveband, so TCl can be readjusted slightly later, for best over-all reception.

During normal use, VR1 must be adjusted as a regeneration control, not as a simple audio volume control. Rotating VR1 towards maximum builds up volume, until oscillation begins. Sensitivity is very high just below this oscillating point. Should no results be obtained, connections in this part of the circuit should be checked.

When $\operatorname{Tr} 2, \operatorname{Tr} 3$, and associated components have been added, it is worth checking results by connecting, phones between the collector of Tr3 and the battery negative line. This corresponds to points 5 and 6, Fig. 1. Volume on local signals should be very great, and more stations may be heard. There should be no audio distortion. If results are poor or distortion has arisen since adding Tr 2 and Tr 3 , check resistor values and connections here.

Current drain with $\operatorname{Tr} 1, \mathrm{Tr} 2$ and Tr 3 in use depends somewhat on transistors, but can be ex-

* components list

Miscellaneous:

Ferrite rod, wire, solder, paxolin $5 \times 3 \times \frac{1}{16}$ in., 75Ω speaker, case to suit, knob, dial, 9 V battery.

Internal view of assembled receiver (less loudspeaker).
pected to be around $3-4 \mathrm{~mA}$. Should there be any fault, correct this before wiring the output stage.

Output Stage

As mentioned, connections to Tl in Fig. 3 are for the listed transformer, and tag 1 is red. Other transformers have tags in different positions, but are equally suitable.

Resistor values R7 to R12 are suitable for OC72's, OC81's, and many similar transistors, in addition to those listed. The output transistors are best purchased as a matched pair. It should then be found that the voltage at the junction of R8 and R9 is about half the supply voltage. This will not be so with unmatched transistors in $\operatorname{Tr} 4$ and $\operatorname{Tr} 5$ positions or with an error in value in R7, R8, R9 or R10. In practice, it is usually found that results are satisfactory if transistor voltages lie within about 20% of each other, if the transistors are otherwise matched.

Current taken by the whole receiver should be about $8-10 \mathrm{~mA}$, rising to $12-20 \mathrm{~mA}$ peaks with good volume. Should current be around $8-10 \mathrm{~mA}$ but extreme distortion spoil results after adding the output stage, check connections to T1. In particular, leads to one half secondary may need to be reversed. Should current be much under 8 mA , with weak, distorted reception, check that a mistake is not made in reading the values of R7-R11. Should current be much over 10 mA , with no signals tuned in, but reception nevertheless good, R8 or R10 may be too high in value, or R 7 or R 9 too low. This is not expected with 5% resistors.

Loudspeaker Mounting

There is space for the usual 9 V miniature battery, and receiver leads should have correct positive and negative:clips. If the speaker is bolted to the paxolin panel, a plece of thin felt, thick blotting paper, or similar material with a central hole can be placed between speaker and cabinet, to prevent vibration sounds. The tuning scale is drawn on card, afterwards cemented to the case front. A knob of fairly large diameter is most suitable for tuning.

THIS simple but useful device is an all solid state switch, i.e., it has no moving parts to go wrong, such as relays etc., although it can easily be made to utilise a relay if desired. However, the unit as described here may be used without a relay to control load currents of up to 2.5 amps . The unit can be used with a variety of input circuits for a wide range of applications requiring a switch which is not self-latching, i.e., is only activated as long as the original trigger input lasts.

No signal

The circuitry is very simple, but a brief description might prove useful for those not familiar with this type of device. When there is no signal applied to the input (i.e., the base terminal of Trl) Trl is switched off and is in a non-conducting state. Current flows through the potentiometer formed across the supply lines by R1, R2 and R3. Because of this flow of current, the base terminal of Tr 2 is forward biased due to the voltage drop across R 3 , and thus $\operatorname{Tr} 2$ is conducting, or is switched on. The collector current of Tr2 is controlled by VR1, while R4 functions as a limiting resistor to set the limit for maximum current through the transistor. Since $\operatorname{Tr} 2$ is conducting and the emitter drawing current, and because of the direct connection to the base of $\operatorname{Tr} 3$, Tr3 is conducting also and thus current flows through the load, its maximum value being approximately $\mathrm{h}_{\mathrm{fe}} \times \mathrm{I}_{\mathrm{b}}$.

Fig. 1: Circuit of the simple automatic switch.
The choice of transistor for Tr 3 is made according to the power dissipation required. In the prototype it is an OC35 for high power applications. The prefix VL is the load supply voltage and this can be made any value within the $\mathrm{V}_{\text {max }}$ of the transistor Tr 3 . It can, in fact, be connected to the 12 volt negative rail if required.

Signal applied

If an input signal is applied to the base of Trl the transistor will conduct, and the potentiometer network ($\mathrm{R} 1, \mathrm{R} 2$ and R 3) is now starved of current, the current now flowing through the transistor Trl. The effect on $\operatorname{Tr} 2$ base is that it drops to a potential of
practically zero volts and thus, being robbed of its forward bias, transistor $\operatorname{Tr} 2$ cuts off and ceases to conduct. Since Tr3 base potential is more or less dependent upon whether $\operatorname{Tr} 2$ conducts, i.e., it is connected directly to Tr 2 emitter, it (Tr 3) now ceases to conduct and thus cuts off. Obviously if $\operatorname{Tr} 2$ is not conducting then the potential presented at Tr3 base by virtue of the current flowing through $\operatorname{Tr} 2$ emitter is removed. Since it was this bias which caused $\operatorname{Tr} 3$ to conduct, once $\operatorname{Tr} 2$ cuts off and ceases to draw current, then $\operatorname{Tr} 3$ also will cease to conduct and will become cut off. It is plain that with $\operatorname{Tr} 3$ not passing any current, the load will be robbed of

Fig. 2a: Suitable input circuitry for a parking lamp.
Fig. 2b: The same circuit using a photo-transistor.
current too and will thus switch off the device to which it is attached. This means that current is flowing in the load circuit as long as there is no input to the base of $\operatorname{Tr} 1$. Directly a signal is applied, Tr3 will cut off, and thus no current will. flow in the load.

Transistors

Silicon transistors were used in the prototype mainly because they were to hand, however, there is nothing really critical about the circuit and most transistors should work. It should be borne in mind, however, that changing the transistors could easily vary the switching sensitivity.

Parking light

This type of circuit would be ideal as a parking light if the load was furnished by a suitable lamp and the input circuit triggered by a photocell or photo-transistor as suggested in Fig. 2. The potentiometer regulates the sensitivity of the device and, if preferred, Trl might be replaced with a phototransistor direct, such as the OCP71.

Burglar alarm

The photo-transistor will also prove very useful if a burglar alarm is envisaged, since the breaking of the light beam will switch on the alarm. Other uses include any sort of alarm or level detector, and the unit will replace a relay but only with one set of terminals. The actual switching speed is dependent only on the characteristics of the transistors used.

repairing radio sets

PART 2

H. W. HELLYER

Last month we dealt with the basic operation of the transistor. We go on to discuss their identification, handling and replacement

HALF the trouble of servicing transistorised equipment lies in the difficulty of handling small and often unfamiliar parts. It is all very fine for the professional to whom experience has given confidence and who, let it be whispered, may have access to an immediate replacement for the part he damages by haste or clumsiness! For the ordinary chap, however, transistor radio repairs pose a very real problem.

IDENTIFICATION

The first requirement is identification. There are literally hundreds of different sorts of semiconductor devices already in use. Components, likewise, have proliferated; and in doing so have shrunk to very

Fig. 11: Popular encapsulation shapes, with bottom view of electrode connections. Examples: Non-standard; OC71. OC74. OC81, OC82, TO1; OC45M, ОС81M; TO7; OC170; TO5: 2G401, NKT162; TO18: AF127; TO3: OC26, AD140; TO8:

NKT303.

small proportions. A magnifying glass, tweezers and a pencil-bit soldering iron are obligatory, no longer optional, servicing aids.

Because of this problem of identification much of the space available for this article has been taken up by diagrams which may seem superfluous to our more experienced readers. Figure 11 shows the actual shape and size (to scale) of the more popular transistors. with the electrode arrangement of their bases. The code is c collector, b base, and e emitter, with the letter s denoting screen where this applies. On some of the power transistors the collector is internally connected to the outer casing, which forms the collector connection, and some care must be taken when dealing with these for the mounting is often arranged so that the maximum heatsink operation takes place. A very thin film of insulant is fitted between the outer casing and the plate on which the transistor is mounted, giving maximum heat transference, but electrical insulation. Obviously this must be treated with great care. A split, a crease, or even a slight sideways movement during reassembly, may cause a shorted electrode and irrevocable damage.

Similarly, insulating sleeves, bushes and washers will be found that serve the same purpose, to keep the wire pins away from the main chassis while permitting electrical connection. When removing one of these power transistors always take great care to retain the bits and pieces as these must not be omitted later.

REFITTING TRANSISTORS

When refitting such a transistor a smear of silicon grease on the mica, porcelain or other insulant will aid heat transference and help prevent cracking. Remember that there is often a good deal of heat to be transferred. A finger on the casing of the output transistors of a car radio, for example, will soon convince one that these are not "cold-running" devices. The important factor is the ambient temperature. In the specifications for transistors one finds the power output given for a particular ambient temperature, with the symbol $\mathrm{T}_{\text {amb }}$ denoting this figure and perhaps a symbol $\mathrm{T}_{\text {case }}$ or perhaps twice as much denoting the temperature at which the outer casing is designed to operate. The other relevant operating currents depend on this rating and will be drastically altered if it changes.

To emphasise this point Fig. 12 shows some of the heatsink mountings in common use. Note the insulating bushes, etc., and always remember that good thermal contact must be made. Even a bit of
swarf, or a dirty surface beneath the mounting, will be enough to raise the operating temperature perhaps beyond safety limits. In Part 1 last month Gordon J. King dealt with the phenomenon of thermal runaway and I need only add that in some receivers it is a very real threat so that all efforts must be made to keep operating temperatures within the design limits.

An example would be the modification of a receiver to use perhaps a transistor preamplifier stage. If this is fitted near a heat-generating source such as a valve or power transformer great care is needed to remove the heat before it can do any damage to the vulnerable semiconductors.

WATCH SPECIFICATIONS

I apologise for this Jeremiah-like note, but bitter experience of certain car radios which had their output transistors mounted on the back of the case inviting fitting methods that put them in areas of a very poor ventilation-sometimes right in the air-stream of the heater of the car-taught the author that makers' parameters must be respected if breakdown is to be avoided.

Even the simple heatsink, the brass or copper clip that apparently floats in mid-air, is a vital part of the design and should not be omitted. A popular trap is the temptation to "open" these with a knife or screwdriver blade to facilitate removal of the transistor. When the new transistor is fitted, the case is loose within its heatsink, and if a little extra trouble is not taken to tighten this thermal contact operating conditions may be altered. Pinch the curl of the heatsink slightly before re-insertion of the transistor, but make sure that the pinching is even, i.e. over the whole length of the casing, so that no heat spots are caused. If the original was bolted to the chassis, then do the same with the new fitting, even if it is a little more trouble.

Always remember that manufacturers work to very tight costing schedules. The fraction of a penny that the heatsink costs may be a significant figure when multiplied by mass-production quantities. It was not put there for fun?

LEAD-OUT WIRES

Another point is the lead-out wires on some semiconductors. For r.f. and i.f. transistors, particularly in frequency-modulated receivers, the length of the lead can be important. When fitting a new transistor try to keep to the original dimensions even if this is a bit more trouble to do. In particular try to simulate the routing of the wire ends, do not cross collector and base leads just because it makes a neater fitting, do not bend wires too close to the capsule, and avoid running screen connectors to the nearest convenient place. The specific point that comes to mind is that of mounting a transistor on the opposite side of a printed circuit board from which it was removedoften easier to do. Nine times out of ten you may get away with it; the tenth time, however, there will be an increase in noise level or the chance of instability.

Microphonic transistors may seem a contradiction in terms. But longer leads than necessary on replacement transistors can cause this trouble, which again emphasises the need to keep leads to the right length.

On the other hand, the mounting lead is some-

Fig. 12: Power transistor heat-sink mountings. It is important that the electrode pins do not touch sides of clearance holes and that good contact of the transistor with insulating washer and the latter with chassis is ensured.
times employed as a primitive sort of heatsink. This was a popular technique in fitting semiconductors in some television receivers. The wire ends of silicon rectifiers and other diodes were twisted into small loops and the components wired to tag strips. So cutting leads shorter simply invited overheating. The curl was to provide a mechanically stable mounting and had nothing to do with inductance!

Mechanically stable mountings-how important that phrase can be. The encapsulation of tiny components often means delicate leads in confined spaces, and to succumb to temptation and bend these leads sharply is to ask for trouble. Sharp bends should be avoided. Once again, the emphasis is on the proper tool for the job. A good pair of fine-nosed pliers or strong tweezers are part of the standard equipment of anyone wanting to work on transistorised equipment.

SOLDERING

Soldering transistor leads is perhaps the most difficult part of the job. To attempt this task with a clumsy bit is to invite disaster. We have already pointed out that heat is a danger-both in operation and in handling. A fine bit, just enough heat exactly where it is wanted, and the use of some form of heat shunt should be standard procedure. In emergency quite simple heat shunts can be made. Even a twist of wire around a transistor lead, between iron and component can be of some help.

Correct preparation of the job is more important with transistorised equipment than with receivers using valves. The joint to be soldered should be cleaned, the printed circuit board prepared, and any fixing hole thoroughly cleared (a match-stick inserted into the hole to clear it immediately the solder is molten is most useful) before the transistor itself is
brought anywhere near the board. Soldering should be quick, direct and efficient. The greatest mistake is to use an inadequate iron for a greater length of time than is desirable. You will melt the solder, true, but you could possibly melt a few components also in the process!

SMALLER ITEMS

Some of the problems of repair arise from the disparity between the original components and whatever replacements are available. There has been a steady shrinking of components-and, despite oldfashioned opinion, a steady increase in quality. This is underlined by the current attention given to integrated circuits. Fortunately my brief stops short at the discrete bits and pieces more often associated with the common transistor radio.

Removing these smaller items very often means damaging or destroying them. It is a hard fact, but one that must be faced. It is thus more than ever important to make in situ tests rather than to remove components. This procedure was stressed by Gordon J. King and the theoretical tests need not be repeated here. Some of the practical points arising from them are, however, worth a few lines.

First-servicing transistor radios needs a totally different approach from previous methods used for dealing with valved equipment. Careful diagnosis and correct measurement are much more important. While it is easy and the common practice to remove and replace a valve for test, and often quicker than taking the measurements that would prove its failure, the opposite situation holds with transistor radio testing. Therefore it is vital to know what we are testing, what readings to expect, and how to prove the fault without unnecessarily disturbing the circuit.

But there is a catch here. Suppose a transistorised circuit has broken down and preliminary inspection reveals a burnt-out resistor, what then? A logical approach is needed. We must ask ourselves Why? and indulge in a little theoretical conjecture before grabbing the tools. What could cause the failure; what secondary symptoms would we expect to find; what "cold" measurement tests will help us to prove the fault before we switch on again?

EXAMPLE

To take an example, the output stage burnout of a high quality and expensive tape recorder. The obvious signs were blackening of two emitter resistors, indicating that the output transistors had been passing heavy current. These were low-ohm components and their exact value had to be observed. But preliminary tests could be made with temporary resistors, all "cold" measurements giving readings that appeared normal. By hooking up several seriesparallel "christmas-tree" arrangements. the working values were simulated. (This is where a good resistor/ capacitor substitution box is a very handy workshop aid. The actual components do not need to be fixed into place; flyleads serve the temporary purpose.)

Applying power and taking measurements of current and voltage we found that the output transistors had indeed been damaged. Input conditions, at d.c., were apparently normal.

A simple pair of tweezers aids in the handling of small parts, such as transistors.

A suitable heat-shunt such as a pair of long-nosed pliers between capsule and solder joint prevents damage.

Removing transistor from congested circuit board is made easier by tweezers with blade end.

Now comes the trap. If we replace the output transistors and damaged components, then resume operation, all seems to be in order. But in a short while the equipment is returned to us with the selfsame components burnt out. Why? The answer, in this particular case, was failure of a small-signal transistor some five stages earlier. This was permitting larger signal current swings than the design parameters should have allowed. The intermediate stages could handle this overload, which gradually increased toward the output section. The output pair handle quite heavy currents, and the large input signal swing drove them way beyond their limits on a strong signal. The trouble was cumulative and until we got to the root of it by more careful measurements under dynamic rather than static conditions the fault could not be proved. Now we fly straight toward the known culprit and replace the ACl 28 with an ACl 53.

CARE NEEDED

This example is given only as a warning that testing needs to be more careful than we may have been accustomed to in previous times. A valve voltmeter is now an accepted part of the bench rig, in general rather than intermittent use. An oscilloscope is even more useful for taking spot measurements of incoming signals without disturbing the circuit. But even where the only gear one has is a multimeter, the need to use this diligently becomes obvious. If a manufacturer says there is $2 \cdot 1 \mathrm{~V}$ at the base of a transistor he means this--and the difference of even point one of a volt can be significant. Gordon J. King is treating the important subject of signal testing
more fully in the next part. His advice is well worth studying.

From the practical point of view, and even at the risk of repetition, we must stress the dangers to transistorised equipment in making the tests themselves. A careless probe can damage a transistor irrevocably in less time than it takes to curse one's clumsiness. If we accidentally slip and short-circuit a transistor's base to collector, or, in some cases, its emitter to chassis, we can write off that transistor almost immediately. If we apply too great a signal from our generator or other source, small-signal stages in the earlier part of the circuit will suffer, and again transistors may saturate on negative peaks (assuming p-n-p types with positive chassis). Thermal runaway can occur when leakage current rises, a rise in junction current causing more heat, causing more current, and so on.

HIGH IMPEDANCE

It is essential that we do not bring about these conditions by our tests. The volt-meter, for example, should be at least 20,000 ohms/volt to give accurate readings down to one-tenth of a volt or even less without disturbing the circuit. This is because to read these voltages one must switch to a low-voltage range, and the meter imposes a greater load on the lower ranges. Hence the very obvious advantages of the valve volt-meter, which has a very high impedance.

But the valve voltmeter is often a main-powered item, and here another snag arises. Leakage currents can be caused if unearthed test equipment is usedor if earthed equipment and test gear is used with phase-change differences in wired connections. Figure 13 shows the connection of a signal generator to an a.c. operated radio or amplifier. Both the chassis of the signal generator and the set should be earthed, and this means properly bonded from the metal parts, not just from the earth connector of a threewire lead.

One reason is that the dotted capacitor shown is actually a distributed capacitance between the windings of the transformer and the core, and perhaps across any r.f. filter that may be included in the mains circuit of the test gear. Connecting the test gear to the set, even via the isolating capacitor C2 whose job is to prevent transients that can also damage transistors, does not remove the danger as the coupling is electrostatic.

If we now apply a soldering iron to the set, even with the set switched off, and if the metal bit of the soldering iron itself is not adequately earthed, a fairly large current can flow from the iron to earth via the transistor. Soldering a base connection of a radio with an unearthed iron is simply inviting trouble. So the prime rule, before commencing, is to make sure that all the equipment is earthed to a common point. Five minutes extra in setting up before starting work can save quite a bit of trouble later.

Any output meter used should be of correct load

Fig. 13: Leakage currents due to electrostatic charges between mains wiring and chassis can be transmitted to the receiver from test gear, despite isolating capacitors. The great danger is the use of an unearthed soldering iron, which can cause heavy leakage current to pass through transistors to chassis and back to earth.
impedance. Conditions with transistor output stages in respect of possible damage are virtually opposite to valve stages. A short-circuit across the output will cause breakdown. A load lower than that required in the design will draw extra power from the output circuit. Hence the need to observe correct loading when fitting extension loudspeakers. Hence also the reason that some amplifiers are rated at higher power output for lower impedance loudspeakers.

Finally, any ohmmeter used will be powered by a small battery. On the $\times 100$ ranges, this can be several volts more than the circuit may handle. This is a point that should be considered when testing.

TO BE CONTINUED

FAULT FINDING CHART No. 2

The fault finding chart presented with this issue is to be used in conjunction with last month's chart. This month the chart, however, deals with diagnosis. The two charts together form a comprehensive guide to fault diagnosis and tracing, and will be found useful either on their own or used in conjunction with the new series of Repairing Radio Sets.

DURING odd sessions of experimentation in the workshop, the writer came across some stubborn crystals that would not easily oscillate in conventional valve circuits, but would sometimes do so in transistorised circuits. Accordingly, an attempt was made to put together a simple transistorised oscillator, using the minimum of parts, that could be used for sub-standard crystals. The circuit shown works well in spite of the fact that no tuned circuits are used.

For prolonged use a fairly large 9 volt battery should be used since the drain of the oscillator alone is about 10 milliamps, whilst it is double this when the modulator is in use. A 12 volt battery may be used provided attention is paid to the dissipation of the audio transistor used.

It is preferable to use a meter, which may be either a 1 or 2 mA unit. A meter does give one an idea if the crystal is functioning, and some indication of its activity. To set up the meter, use, initially, a $2 \mathrm{k} \Omega$ potentiometer and set this to give almost f.s.d. with the hottest crystal in stock. A fixed resistor of that value (R7) is then soldered into the circuit.

The type of modulation is simple and the low level; nevertheless it is very effective. The wave shape should ideally be sinusoid, and if the constructor is keen on this he can insert, temporarily, a $15 \mathrm{k} \Omega$ potentiometer in place of the 470Ω resistor shown in the circuit diagram, and adjust it to give a good wave shape. However, the note produced may not be as distinctive and pleasing as that obtained at a sacrifice in wave-shape. In the prototype, and a copy that was built later, the most suitable note (to the writer's ear) was one of a little less than 1800c/s.

Construction

A glance at the circuit diagram shows that, contrary to usual practice in p-n-p transistor circuitry, positive is not at ground potential. Battery negative is grounded to the chassis and covering box, and the on-off switch is in the positive line. It is worth while cutting the three holes for the commonest valveholders, as this enables most crystal types to be accommodated

The two-pole switch shown in the diagram was a two-pole six-position wafer switch, as it happened to be handy. The unused tags are used for supporting components. If this system is copied, make sure the stop lugs on the switch are bent into position, so that the switching range is restricted to two positions only. Likewise, the unused pins on the valve-holders may also be put to good use. Quite apart from driving the first stage of a transmitter, there are other uses for this useful unit, and most

Fig. 1: Circuit diagram of the modulated crystal marker.

VALUABIE NEW HANDBOOK E1 EFTO AMBIIIOUS CIC ENGINEERS

Have you had your copy of "Engineering Opportunities"?

The new edition of "ENGINEERING OPPORTUNITIES" is now available-without chargeto all who are anxious for a worthwhile post in Engineering. Frank, informative and completely up to date, the new "ENGINEERING OPPORTUNITIES" should be in the hands of every person engaged in any branch of the Engineering industry, irrespective of age, experience or training.

On 'SATISFACTION or REFUND of FEE' terms

This remarkable book gives details of examinations and courses in every branch of Engineering, Building, etc., outlines the openings available and describes our Special Appointments Department.

WHICH OF THESE IS

YOUR PET SUBJECT?

RADIO ENGINEERING
Adsanced Radio - Gen. Radio - Radio \& TV Servicing - TV Eng. -Teleconimunications-S Sourd Recording - Allomatio' Practical Radio - Radio Amateurs Exam.

ELECTRICAL ENG.
Advanced Electrical Eng. Gco. Electrical Eng. Installations - Draughtsmanship - Illuminating Eng. -Refrigeration - Elem. Elecirical Science - Electrical Supply - Mining Elec. Engineering.
CIVIL ENGINEERING Advanced Civil Eng. - Gen. Civil Eng. - Municipal Entg. - Structural Eng. Sanitary Eng. - Road Eng. -Hydraulics - Mining Water Supply - Peirol Tech.

ELECTRONIC ENG.
Advanced Electronic Eng. Gen. Electronic Eng. Gen. Electromi Eng. Applied Electronics -- Prac.
Electronics-- Radar Tech. Electronics-Radar Tech
Frequency Modtation Frequency
Transistors.

MECHANICAL ENG Advanced Mechanical Eng.Gen. Mechanical Eng. Mainfenance Eng. -- Diesel Eng. - Press Tool Design.Sheet Metal Work - Weclding - Eng. Patlern Making Inspection - Draughtsmanship - Metallurgy - Procluction Eng.

AUTOMOBILE ENG
Advanced Automobile Eng.Gen. Auromohile Eng. Automobile Maintenance Repair - Athomobile Diesel Maintenance - Alltomobile Elec. Equipment - Garage Management

WE HAVE A WIDE RANGE OF COURSES IN OTHER SUBJECTS INCLUDING CHEMICALENG., AERO ENG., MANAGEMENT, INSTRUMENT TECHNOLOGY, WORKS STUDY, MATHEMATICS, ETC. Which qualification would increase your earning power? B.Sc. (Eng.), A.M.S.E., C.Eng., A.M.I.E.R.E., R.T.E.B., A.M.I.P.E., A.M.I.M.I, A.R.I.B.A., A.I.O.B., P.M.G., A.R.I.C.S., M.R.S.H., A.M.I.E.D., A.M.I.MUn.E., CITY \& GUILDS, GEN. CERT. OF EDUCATION, ETC

British Institute of Engineering Technology
453A ALDERMASTON COURT, ALDERMASTON, BERKSHIRE job. easily.

WRITE IF YOU PREFER NOT TO CUT THIS PAGE

THIS BOOK TELLS YOU

\star HOW to get a better paid, more interesting

* HOW to qualify for rapid promotion.
* HOW io put some letters alter your name and become a key man . . . quickly and
* HOW to benefit from our free Advisory and Appointments Depts.
t HOW you can take advantage of the chances you are now missing.
t HOW, irrespective of your age, education or experience, YOU can succeed in any branch of Engineering.

132 PAGES OF EXPERT
CAREER - GUIDANCE

PRACTICAL	INCLUDING
EQUIPMENT	TOOLS

Basic Practical and Theoretic Courses for begmuery it K I I E R E City \& Guilds A,M.E. R.E. Ciry © Exam. R.T.E.B Certhlicate P.M.t Certitheate Practical Radio
Radio \& Televisionservicing I'ractical Electronits Electronicg Englneering utonation

The specialist ElecIronics Division of B.f.E.T NOW affers vou a real laboratory iraining at home with practical equipment Ask for derails. B.I.E. You are bound to benefit from reading "ENGINEERING OPPORTUNITIES", and if you are earning less than £30 a week you should send for your copy now-FREE and without obligation.

TO B.IE.T. 453A, ALDERMASTON COURT
 d. stamp if posted in

 ALDERMASTON, BERKSHIREan urtsealed envelope.

Please send me a FREE copy of "ENGINEERING OPPORTUNITIES." I am interesled in (state subject, exam., or career)

NAME
ADDRESS
exam., or career)

\qquad

MINIATURE WAFER SWITCHES

4 pole, 2 way- 3 pole, 3 way- 4 pole, 3 way-2 pole, 4 way- 3
pole, 4 way- 2 pole, 6 way- 1 pole, 12 way. All at $8 / 6$ each, $36 /-$ dozen, your assortment.

WATERPROOF HEATING 6 yards length 70 W . Self-regulating temperature control. 10/- post free.

SPECIAL BARGAINS

60 OHM 50 WATT WIRE WODND POT-METER. $8 / 6$ each.
1 MEG MINLATURE. Pot-meter Morganite standard. in. spind le $1 /$ - each, $9 /-$ per dozen. meg miniature pot-meter Morganite prese screwdriver control, 9 d , each, $8 /$ - per dozen.
PRE-SET 100K by Welwyn with intrical bakelit nob, 1/ each. $9 /$ per dozen
ole 8 witch and standard tin type with double spindie, by Mor BLANKETSTAT GLASS. Enclosed, normally closed circuit, will open should blanket overheat. 4/8 each.
THERMAL RELAAY. Can be used to delay the sapply of HT while heaters warin up, or wil switches or relays. Regular list price over $£ 2$, price $7 / 6$ each. coils. Platinum points changeover contacts-E equegres sumay
TOGGLE SWITCH BARGAIN. $10 \mathrm{amp} .250-$ ELECTRIC LOCE 24 v. coll, but rewindable to other voltares. $4 / 6$ each. COMPRESSION TRIMMERS. Twin $100 \mathrm{pF} .1 /-$ each, $1 /$ per dozen.
PRECISION WHEATSTONE BRIDGE. Oppor tunity to baild cheapply. 100 K wire wound pot 15 W. Trating, only $\mathrm{S/-}$
12 panels each 5 in . Ideal for transistor projects. 12 panels each 5 in. $\times \sin .5 /$
13/6. PM LOUDSPEAEER. 3 ohm. 12/6. 80 ohm, transistor ferrite slab aerlal with medium and long wave coils. 7/8 each.
SLDE SWITCH. Sub minlature double pole changeover. $2 /-$ each. $18 /-$ per dozen.
Naber rubber, most pliable but very tough, $24 / 36$ Cores.
Normaliy $1 / 9$ per yard, offered at e8 per 100 yard coil, post and ingurance 8/6.
 purpose type with gold-plated leads, $1 /$ - each or MEssAGE TAPES, 225ft. Tape on 3 in. spools, normslly $4 / 6$ each, we offer 4 tapes for $12 / 6$. WHITE CIRCULAR FLEE. Ideal for lighting drope, twin made by Bicc. Usually $8 \mathrm{~d} . \mathrm{yd} .100$ yd CDCEWLEE CONTROL Mor

5 or 5 K with , as fitted many ratis 127 INVERTER. Full transistorised for operating a 20 -watt tuoreacent tube, slze bin. long $\times 18 \times 1$. 83/10/-. Post and inkurance $3 /-$
SIIICON RECTLFIER equiv. BY100 750 mA . 400 V . 10 for $20 /$ IER equi. 10 . Cint osyme olly, 3/9 or 38/- dor.
TELESCOFIC AERIAL for radio or trangmitter TELESCCOPIC AERLAL for radio or tranamitter, chrome plated, 6 section extends from 7 in in. to
$47 \mathrm{in} .7 / 6$ each, e 4 doz. 47in. 7/6 each, é doz.
each or 18/-doz mains indicators, etc. $1 / 8$ each or $12 /$-doz.
1 in, \times lin. \times lin. 4 pairs ohm colls, size approx. $7 / 6$ erch.
P.O. TYPE RELAY. Twin 200 ohm coils, size pprox. 3 in $\times 2$ in. \times in. 4 paira changeover ontacto
PRINTED CIRCOIT BOARD, EDGE CONNECTOR, solder terminations, 32 contacts, standard cut. $7 / 6$ each, $80 /$ doz. dot. bin. long but easily 1,000 W. FIRE SPIRA Ares. 1/8 each, $12 /-$ doz

PP3 Eliminator. Play your pocket radio from the mains! Bave ta. Comradio from the mains save ks. Com-rectifiers-mains dropper resistances, smoothing condenser and instructions. Only B/6 plue $1 / 6$ post.

Be first this year SEED AND PLANT RAISING
soil heating wire and transformer. Suitable for atandard $\begin{array}{ll}\text { size garden trame. } & 19 / 6 . \\ \text { plus } 3 / 6 \text { post and ins. }\end{array}$

```
When postage is not definitely stated as an extra then orders over e3 are post free. post. Over £I post free, 8.A.E. with enquirles please.
```


4 speed, gram. motor with lightweigh and free from wow and flutter. Apeed change by push button- $16,33,45,78$ r.p.m. Price, including mono cartridge 49/6. 2 Valve amplifler 32/6
Elliptical Elliptical Speaker 9/6. plus $4 / 6$
poat and insurance. FREE poat and insurance. FREE this complete kit.

RADIO STETHOSCOPE

Gasiest way to fault find-traces aignal from aerial to speaker TV wen signal stops you've round the fault. Use it on Radio, special transistors and all complete kit comprises two crystal earpiece ag/6-and 7/6 extra-post and ins. $2 / 9$.

new, 19/6, plus $2 / 6$ post and ins., less batteries.

BATTERY OPERATED TAPE DECK

With Capstan control. This unit is extremely well made and measures approx. $6 \times 5 \times 2$ in deep. Has three piano key type controls for speclal heavy duty type intended for or is a special heavy duty type intended for opera
tion off $4 / 5$ volts. Supplied complete with spools ready to ingtall. Record, Replay head is the sensitive M4 type intended for use with transistor, amplifier. Price £4.15.0. Post and Insurance 4/6

RECORD PLAYER SNIP

The "Princess" 4 speed automatic
record changer and player engineered with the utmost precision for
beauty, long life, and trauble free beauty, long life, and trouble free
aervice. Wili take up to ten records which may be mixed 7in.-10in. or 12in. Patent stylus brush cleans atylua after each playing and at shut off, the pick-up locks Itself into its recess a most useful feature with portable equipment-other features include pick-up height ad justment and atylus pressure ad ment which you can purchase thi
 with cartridge and ready to play. Post and inaurance $7 / 6$ extra

CASSETTE LOADED DICTATING MACHINE Battery operated and with all accessories. Really fantastic offer a British made \&31 outft for only $26 / 19 / 8$ brilliantly detakes normal spools, drops in and out for easy loading-all normal tuactions - accessories include:- stethoscopic asplece-crystal microphone has on/of awitch-telephone pick-up-tape reference pad-DON'T MIES THIS UNDAY 28/18/6 plus $7 / 6$ post and insurance. Footswitch $18 / 6$ extra. Spare Capgettes at $7 / 6$ each, threefor 21 .

SOLID STATE IGNITION

Big thingsare claimed of Electronic lgnition syatema and if you would like to try for yourself a circuit was described in "Practical Electronics" (Sept. 1966). This available as a kit. Price $88 / 15 / 0$ posit free. 2

ELECTRONICS (CROYDON) LIMITED

[^6]

ACOUNT of amateur stations contacted on 80 metres shows that over half are using some form of end-fed aerial, and that a large percentage of these aerials are near a $\frac{1}{2}$-wavelength long, that is, roughly $125-130 \mathrm{ft}$. Many kit and commercial transmitters have a pi output circuit which should work into a fairly low impedance circuit, and it is commonly found that a $\frac{1}{2}$-wave end-fed aerial cannot be operated from these transmitters unless a tuner is added. The tuner described here is extremely simple and can be assembled in a very short time. It is suitable for 150 watts, but could be scaled down for lower powers.

The circuit is shown in Fig. 1. Ll is tunable to 80 m , and can be 26 turns of $18 \mathrm{~s} . \mathrm{w} . g$. enamelled wire, on a ribbed former $2 \frac{1}{2} \mathrm{in}$. in diameter, the winding being spaced to occupy about $3 \frac{1}{2}$ in. (An easily obtainable Eddystone former of this size can be purchased.) Other coils of about equal inductance should be equally satisfactory. The coupling loop L2 is 3 turns of stout, well insulated wire, overwound on the earthed end of L1.

For tuning, a 150 pF or similar capacitor is used, and it should have plate spacing at least equal to that of the transmitter p.a. anode tuning capacitor. The capacitor actually fitted was a 2 -gang component with sections wired in parallel. Non-miniature receiver type capacitors will do for low power only. If the capacitor sparks over in use, this shows its spacing is too small, for the power and aerial employed.

LAYOUT

The tuner can be built on a piece of varnished hardboard or pegboard about $5 \frac{1}{2} \times 9 \mathrm{in}$. with wooden runners to give clearance for fixing bolts etc., with components placed as in Fig. 1. A coaxial socket was used for connecting up the transmitter. A standoff insulator or insulated terminal is provided for the aerial. The aerial lead itself should be well insulated, by passing it through sleeving, if necessary.

Many transmitters have a coaxial socket for output. The connection between the transmitter and
tuner can then consist of a piece of 75Ω transmitter grade coaxial cable with a coaxial socket each end. It is as well to place the tuner near the entry point of the aerial, but within reach, so that it can be adjusted.

AERIAL LENGTH

An aerial which is a $\frac{1}{2}$-wave at about the middle of the 80 m band is approximately 128 ft . long, although the actual length is often increased to as much as 138 ft ., because this is a multiple of $\frac{1}{2}$-waves on some higher frequency bands, and may be convenient for multiband operation. This includes the horizontal section, down lead, and connection to the tuner. Height, bends, and other features also modify the effective length. The aerial may be 14 s.w.g. hard-drawn, or $7 / 26$ or similar covered aerial wire. All joints should be soldered.
 Signal strength is increased by having the whole as lar from earthed objects as possible.

If the receiver has a 75Ω input and a signal strength meter, the aerial tuner can be adjusted by observing the strength of some station tuned in. It should then be possible to load the transmitter pi output circuit into the tuner, without changing the tuning of the latter. In other cases, it may be found that the tuner has to be adjusted, as the setting of Cl considerably modifies loading on the transmitter. If a 75Ω non-inductive dummy load is available, a check can be made by loading the transmitter into it. Then connect the aerial tuner instead, and adjust
it for similar loading, with the transmitter funing untouched.

Another method is simply to adjust the aerial tuning and pi output capacitor of the transmitter until the p.a. anode current is at the wanted loaded figure, with the p.a. capacitor dipped for minimum current. If this is done, the same loading can be achieved with a number of settings of the aerial tuning capacitor and pi output capacitor. These correspond to different impedance conditions in the coaxial line from transmitter to tuner, but have no practical result on efficiency, as can be checked with a field strength meter.

OTHER BANDS

As an end-fed wire is easily used for other bands, the top half of L1 may be shorted out, for 40 m . (Join X and Y in Fig. 1.) A comparison of signal strength showed no difference if the 80 m coil were used in this way, or a coil wound for 40 m only was substituted.

For still higher frequencies, relatively few turns are needed, so it was decided to employ a separate coil and capacitor. Using the same size former, a $15 / 20 \mathrm{~m}$ tuner had 8 turns of 14 s.w.g. wire, occupying $2 \frac{1}{2} \mathrm{in}$., for L1, and 2 turns for L2. A 100 pF capacitor was sufficient to tune the coil to resonance.

The tuned circuit naturally provides some harmonic suppression. In addition, the transmitter pi output circuit can now work into the low impedance

Fig. 2: Layout of the tuner used in the prototype. This is uncritical and other arrangements should prove equally satisfactory.

coaxial line, and this further reduces any harmonics which may be present. If a standing wave indicator or harmonic filter should be available, these can be included in the coaxial line. Tuner adjustment can then be for the minimum s.w.r., and this is also necessary to match the harmonic filter impedance, if used. When a filter or s.w.r. indicator is not used, the presence of standing waves in the coaxial line has no practical result on the signal radiated from the aerial. This is because the line is short, and the transmitter pi output can always perform satisfactorily with some standing waves present.

Should available space result in the aerial being rather more or less than a $\frac{1}{2}$-wave, or multiple of $\frac{1}{2}$-waves or some bands, then its end impedance will no longer be very high. As a result, it should be tapped down L1, until loading is satisfactory.

MODULATED CRYSTAL MARKER

-continued from page 28

Internal view of the modulated crystal marker.
constructors interested in this type of unit will already have thought of them.

If the valveholders are used for both crystal and components, it is mandatory that the vacant sockets be plugged with sealing-wax or plastic cement. How-

components list

ever, this treatment should not be given to the B7G socket.

PRACTICAL TELEVISION
 ON SALE APRIL 19th

X-RAY RADIATION METER

Because of the high e.h.t necessary with shadow-mask tubes, very large X-ray dose rates are produced, hence the importance of being able to detect X-ray radiation in experimental work.

The meter described in this article has been designed to fulfil this requirement.

TELEVISION RECEIVER TESTING

The first part of a new series on television receiver testing techniques, concentrating on the test procedures adopted by the professional service technician.

IMAGE INTENSIFIERS AND CONVERTERS

An interesting group of devices ensures that today no scene is "untelevisable". The image intensifier produces brilliant images by light amplification so that we can see in the dark.

CLEAR PLASTIC METERS
First grade quality Moring Coil panel meters available exuantity. Available as follows: Type MR $38 \mathrm{P}, 1^{21} / 32^{2}$ in. 8, pluare fronts. 100-0-100 LA 32/6
 $1-0-1 \mathrm{~mA} \ldots .25 /-\quad 500 \mathrm{~mA} \ldots . .25 /-\quad 300 \mathrm{~V}$ D.C

$37 / 6$
$.35 /-$
7/6

ADMIRALTY B. 40 RECEIVERS

Just released by the Ministry. High quality 10 valve receiver manufactured by Murphy. Coverage in 5 bands $650 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. I/F. $500 \mathrm{Kc} / \mathrm{s}$. 1 ncorporates $2 \mathrm{R} . \mathrm{F}$, and $3 \mathrm{I} . \mathrm{F}_{\mathrm{F}}$ stages, band pass filter, noise limiter, erystal coniralled B.F.O., calibrator $1 / \mathrm{F}$, output, etc. Buit-in speaker, output for phones. $150 / 230$ volt A.C. Size 191 X 13% X $16 i n$. Weight
Offered in good working condition, 222.10 .0 . Carr. 30 circtit diagrame. Aiso available 13.41 L.F. version of aluove $15 \mathrm{Kc} / \mathrm{s} .700 \mathrm{Kc} / \mathrm{s}$. $\mathbf{E 1 7 , 1 0 . 0}$. Carr. $\mathbf{3 0}$ /-

UNR-30. 4-BAND COMMUNICATION RECEIVER

 variable BFO for CW/SSB reception. Built in apeaker and phowe jack. Metal cabinet. Operation 220,940 v, A.C. supp 12.10. new, guar
structions.
$\underset{\text { Carr. } 7 / 6 \text {. }}{\substack{\text { with } \\ \text { in }}} \mathbf{£ 1 2 . 1 0 . 0}$

LAFAYETTE LA-224T TRANSISTOR STEREO AMPLIFIER

19 transistors, 8 diodes, $111 F$ music power, 30W it 8Ω. Response $30-$
$20,000+2 \mathrm{~dB}$ at 1 W . Distortion $\mathrm{i} \%$ or less. Inputs 3 mV and 250 mV Output $3-1$ li Ω. geparate L. and R. volume controls. Treble ani bas control. Stereo phone jack. Brushed a luminium, gold anodise! extruded
front panel with complimentary meta front panel with complimentary taetial
case. Size $101 \times 3^{10} / 6 \pi 7^{13} / 16$. Op. case. Size $101 \times 3^{9} / 18 \pi 7^{13} / 1 e^{\text {in. }} 0 p$
eration $115 / 230 \mathrm{~V}$ A.V. $£ 25$. Carr. $7 / 6$

AMERICAN TAPE

 First grade quality American t Brand new. Discount on quantities 3 in., 2225 ft . L.P. acetate3 tin 600 ft T. P. mylar 5 in 600it, swh. p'astic. 5 in . 900 ft . F^{2}. acetate $5 \sin .1,200 \mathrm{ft}-\mathrm{D} . \mathrm{F}$. mylar 5in. 1,800ft. T.P. mylar. 5 in. 1,200 th. L. P. bectate
5 inn $5 \ln , 1,200$ d. L. P. mylar.

5 in. 1,800 A. ID. P mylar | 5 tin. 1,800 A. |
| :--- |
| $5 \sin .2 . P . P . ~ m y l a r ~$ | 7 in. $1,200 \mathrm{ft}$. std. acetate. $7 \mathrm{in} .1,800 \mathrm{tt}$ L. P , acetate $7 \mathrm{in}, 1,800 \mathrm{ft}$ L. . P. mylar.

$7 \mathrm{in}, 2,400 \mathrm{ft}$ D. P. mylar. $7 \mathrm{in} .2,400 \mathrm{ft}$ D. P. mylar
$7 \mathrm{in} .3, \mathrm{k} 00 \mathrm{ft}$ T. P. inylar

P'ostage $2 /-$. Over \& 3 post paid

BREX TRANSISTORISED EQUIP-
$\underset{\substack{\text { NOMB } \\ \text { MENT. }}}{ }$ apes. tapes
$. .3 / 6$ $3 / 6$
101
10 $3 / 6$
$\cdots .3 /-10 / 6$
$.8 / 6$ $8 / 6$
$101-$.816
$107-$
$15 t-$ $151-$
$32 / 6$
1218 $32 / 6$
$12 / 6$ $12 / 6$
$16 /-$ $18 /-$
$22 / 6$ 38/6 Model 22 PGU 0-15y DC. \&14 Model 30 $\begin{array}{ll}38 / 6 & \text { Model } 22 \text { P.S.U. } 0-15 v . ~ D . C . ~ E 14 . ~ M o d e l ~ \\ 12 / 6 \\ \text { Audio Generator } 10 \mathrm{c} / \mathrm{s}-100 \mathrm{Kc} / \mathrm{s} & 219.10 .0\end{array}$ $15 /-$ Model 31 R.F. Generator $150 \mathrm{Kc} / \mathrm{s} .-350 \mathrm{Mc} / \mathrm{s}$. E12.10.0. Model 27 Sigras! Generator 150 - $\mathrm{Kc} / \mathrm{s} .-350 \mathrm{Mc} / \mathrm{s}$. 21010.0 . Model fi2 C. R , (- Brislge \&9. Model 66 Inductance Bridge 818. Mringe £9. Model 66 Cuductatice Bridge
Model 61 P.S.U. $0 \cdot 5-15 v$. D.C. $£ 6.10 .0$.

MODEL ZQM TRANSISTOR CHECEER
 TE-20RF SIGNAL GENERATOR

Mc/s on $120 / \mathrm{s}-260$ Mres on 6 hamis.
Dizectly calibrated Variable R.F. at
tenuator. Operation $200 / 240 \mathrm{v}$. A Prand new with in-
structions. $£ 12.10 .0$ P. \& P. $7 / 6$. B.A.E SPECIAL GARRARD OFFERS! $\mathrm{Sl} \cdot 25 \mathrm{Mk}$. II less cart.
A 70 Mk il lesa cart $£ 11.11 .0$
$£ 1212.0$ At AB80 Mk. II less cart ± 23100 401 Transeription less cart...............27.6.0
Carriage $7 / 6$ extra.

With antomatic overload pro tion, mirror Bcale. Ranges: $1 / 10 / 50 / 250 / 500 / 1,000$ volts,
D.C. and A..$~$
$0-500 \mu \mathrm{~A} .10 \mathrm{~mA}, 250 \mathrm{~mA}$ D.C. and A.C. $0-500 \mu \mathrm{~A} .10 \mathrm{~mA}, \quad 250 \mathrm{~mA}$ Current: $0 / 20 \mathrm{~K}, 200 \mathrm{~K}, 2$ megohm. Bec
-20 to $+22 d \mathrm{P} . \mathbf{£ 5 . 1 0 . 0}$. P. \& P. $2 / 6$.

ARF-100 COMBINED AF-RF SIGNAL GENERATOR
 tion. Incorporates dual purpose meter to $220 / 240 \mathrm{~V}$ A.c. $£ 2 \%, 10.0$. Carr. $7 / 6$.

TF144G STANDARD SIGNAL GENERATORS $85 \mathrm{Kc} / \mathrm{A}-25 \mathrm{Mc} / \mathrm{s}$. £25. Carr. 30

> VARIABLE VOLTAGE TRANSFORMERS

2-WAY RADIOS guper quality. Brand new and guaranteed

3 transistor $\quad 88.15 .0 \mathrm{pr}$ 4 transistor \quad e6.10. pr 6 transistor \quad £8.12.6 pr. 6 transistor De Luxe | 10 transistor |
| :--- |
| 222.10 .0 pr |
| ansistor 500 mw |
| 231.100 | Post extra These cannol be operated in $U, \mathrm{~h}$.

* TRANSISTORISED FM TUNER \star

 6 TRANBIETOR HIGHQUALITY
TUNER, SIZE
ONE,
 Double tuned dia. criminator. Ample output to feed Operates on 9 volt battery. Coverage 88 $108 \mathrm{Mc} / \mathrm{s}$. Ready built reads for use. Fan-
tastic value for money. $£ 6.7 .6$. P. \& P. 2/6. astic value for money. £6.7.6. P. \&P.
STEREO MULTIPLEX ADAPTORS 5 Gns.

SINCLAIR EQUIPMENT Z12 12 watt amplifier. 89/B.
PZ4 I'ower Supply Unit $98 / B$ Stareo 25 Presmep., \&9.10.6

Micromatio Radio Kit,
49/6.
Bullt $59 / 6$

Micro FM Ralt $59 / 6$
Radio Kit ALL POST PA15 SPECIAL OFFER
2 Z12 Anps., PZ4 Power Supply, Stereo 25 Preamplifier, éa

AVOMETERS
Supplied fri ex cellent condlition fully tested and checked Com plete with prods tions.
Model 47A
Model 8 29.19.6
$\begin{array}{lll}\text { Model } 8 & 218.0 .0 \\ \text { Model } 9 & £ 20.0 .0\end{array}$

Model 9 . $\sum_{\text {P }} 20.0 .0$

LAFAYETTE HI-FI STEREO HEADPHONES \star Air cushioned headband. \& Solt rubber ear pads. ${ }^{2}$ Frequency
response, 25 to 15,000 cycles. t High sensitivity. Impedance 88 obrus per phone Sup-
plied complete with all cables, wirce, overlosd junction box a
3 -connection plug.
3-connection plug.
$79 / 6$. P. \&

R.S.T. 144-146 WELLFIELD ROAD, STREATHAM, S.W. 16

OA2	6/8	6BH6	2/6	6K69T	5/10	787	201-	20
OC3	5/8	6BJ6	91.	6K7M	$5 / 8$	$7 \mathrm{Y}_{4}$	8/6	20
1.47	$7 / 8$	6BQ7A	71 -	6 K 7 G	$2 /-$	$9 \mathrm{BW6}$	$7 /-$	20
105	71-	6BR7	8/6	6K7GT	4/6	10 Cl	12/6	25 A
$1 \mathrm{H5}$	$71-$	6BR8	5/6	6 K 8 M	8/6	1002	$12 / 6$	251
1LD5	$5 /-$	$6 \mathrm{B8} 7$	16/8	6K8G	3/-	10F'1	9/-	25 Y
1NEGT	81.	6BW6	14/-	6K8GT	7-	10F3	81-	252
1R5	5/6	6BW7	14/-	6 K 25	201-	10F9	$9 / 9$	2
184	$5 /-$	6C4	218	6 Ll	$9 / 6$	10F18	91-	2
185	$41-$	6C30	4/-	6L6G	$7 / 6$	10LI	8/-	28 D
$1 T 4$	$3 /-$	6C6	3/9	6L18	5/-	10LD11	15/-	30 C
3 A 4	$3 / 6$	6084	6/-	6Q7G	6/-	10P13	16/8	30 C
$3 \mathrm{Q4}$	6/6	6CD6G	22]-	6Q7GT	$8 / 6$	11E3	42/-	30 C
306	6/6	6 CH 6	$5 / 9$	6SA7M	$7 /$	12AT6	$4 / 6$	30 C
384	4/8	6CW4	12/-	$68 \mathrm{C7}$	71.	12AT7	$3 / 9$	30 F
3×4	$5 / 9$	6D6	$2 / 9$	$68 \mathrm{G7}$	$51-$	12AU6	5/9	30
BR4GY	$8 / 9$	6E5	7/6	68 H 7	8/3	12AU7	4/8	30 F
5 CHA	4/-	6 Fl	9/-	6857	$5 /-$	12AX 7	8/3	30 F
5 V 4 G	81-	6F5C	81 -	68K7GT	T $4 / 8$	12BA6	$81 /$,
6Y3GT	5/6	6 FbG	4/-	68L7GT	$4 / 9$	12BE6	$5 / 9$	30 L
5749	$8 / 9$	6F8G	$4 / 6$	68N7GT	4/6	12C8GT	4/8	30 P
$6 / 30 \mathrm{Lz}$	18/-	6 F 11	$7 /-$	6 SQ 7	6/-	12E1	$17 / 6$	30 P
6 67	15/m	6 F 13	51.	6 U 4 GT	12\%	12T5GT	$2 / 6$	30 P
6A8G	$12 / 8$	6 614	$12 / 6$	6Uธ̆	7/6	$12579 T$	7/-	30 P
6AC7	3/-	6 F 23	13/8	6 F 6 M	8/-	12K7GT	6/-	30
6AK5	4/6	6 F 24	181-	6V6G	4/6	12K8GT	81-	35 A
6 6AL5	8/-	$6 \mathrm{~F}^{2} 25$	12/.	6 VGGT	6/6	12Q7(it	4/6	35 L
6AM5	$2 / 6$	6 F 28	11/6	6 C 4	3/6	128A7	6/6	35 W
6AM6	$8 / 6$	606	2/6	6X5G	4/6	128G7	$4 / 3$	35 Z
6AQ5	81	6H6	$2 /-$	6X5GT	8/-	128H7	31.	35 Z
6AB7G	151-	6J5M	6/6	7B6	11/6	12857	$8 / 9$	35Z
6at6	4/6	6J5G	$2 / 6$	$7 \mathrm{B7}$	$7 / 6$	$12 s \mathrm{~K} 7$	$4 / 9$	37
6 6U6	$8 /-$	6J5GT	4/6	7 Cb	15/-	12SR7	51.	42
6B8G	2/-	6J6	8/2	706	6/8	14H7	8/-	50 B
${ }_{6 B 49}$	15/-	6J7M	7/6	715	81	19AQ5	51-	50 C
${ }^{8 B A 6}$	5%		4/9	7旦7	6/6	20D1	101-	50 C
6BE6	5/-	6.57 GT	6/6	7R7	17/6	20F2	14/-	501
SPECIAL 24 HOUR SERVICE								
OBSOLETE TYPES A SPECIALITY								
QUOTATIONS FOR			AN	Y VALVE		LISTED		
Postage 6d, per valve.				C.W.O. No C.O.D.				

C.W.O. No C.O.D.

Special 24 Hour
Express Mail Order Service

Manufacturers and ExportInquiries Welcome

20 Ll	18/9
20P4	18/-
20P5	19/6
25A6	5/9
25L6GT	T 5/6
25Y5	6/-
25Z4	613
2525	71.
2526	8/6
28D7	$5 /-$
30 Cl	6/3
30 Cl 5	13/6
$30 \mathrm{Cl7}$	15/8
30 Cl 8	13/6
30 F 5	15/6
30FLl	161-
30 FL 12	161-
$30 \mathrm{FL14}$	13/6
$30 \mathrm{L15}$	15/3
$30 \mathrm{Ll7}$	14/3
30 P 12	13/6
30 P 19	13/-
30PL1	15/-
30 PL 13	171-
30PL14	16/3
35A5	12/6
35LB	5/9
35 W 4	4/6
$35 \mathrm{Z3}$	10/-
35Z4GT	5/6
3575	5/6
37	$5 /$.
42	6/-
50B5	6/6
50C5	9/3
50 CDGG 50 L 6 T	31/

\qquad

71	DF96	619	ECF82	7/-	EM81	$7 / 6$
5/-	DH77	4/8	ECH21	12/6	EM84	$7 / 6$
5/-	DK32	$7 / 9$	ECH35	11/-	ESU15	201-
$7 / 8$	DK91	5/6	ECH42	11/-	EYS1	$7 / 6$
$9 / 6$	DK92	8/-	ECH81	$5 / 9$	EY86	$7 /-$
$7 / 6$	DK96	$7 / 10$	ECH83	8/-	EZ35	$4 / 6$
6/-	DL66	15/-	ECL80	71-	EZ40	81-
$7 /-$	DL92	$4 / 9$	ECL82	71-	EZ41	10\%
301-	DL93	3/6	ECL83	10/8	E280	$5 / 6$
751-	DL94	$5 / 9$	ECL86	9/-	EZ81	5/6
$18 / 6$	DL95	6/6	ECLL80	$0{ }^{0}$	GZ330	101-
4/8	DL96	7/6		301-	G732	9/6
$5 / 6$	DM70	5/-	EF9	201-	GZ34	11/-
AR 601-	DY88	$8 /$	EF37A	3/-	IR5	5/6
101-	DY87	6/-	EF'39	6/-	KT36	$17 / 6$
2/-	E88CC	12/m	EF41	101.	KT61	12/8
410	EA50	2/-	EF5	$2 / 6$	KT66	18/-
$7 / 9$	EABC80	$07 /$	EF80	5/-	KT81	35/-
$2 / 3$	EAF42	101-	EF85	$8 / 6$	KT81	705)
$7 / 1$	EB41	4/6	EF86	${ }_{8 / 9}$		15/-
$5 / 6$	EB91	3/-	EF89	$5 /$.	KT88	$27 / 6$
80/-	EBC33	7/-	EF91	8/6	KTW61	10/-
$7 / 6$	EBC41	919	EF92	$8 / 6$	KTZ41	6/-
81-	EBC90	4/6	EF98	10/-	ML4	17/6
9/6	EBF80	7/-	EF183	${ }_{8 / 6} 10$	ML6	6/-
1 15/*	EBF83	$8 / 3$	EF183	8/6	MSP4	10/-
5 21/-	EBF89	6/6	EL3*4	$6 / 6$ $8 / 6$	M U14	$7 / 6$
201.	EBL1	14/-	EL33	$8 / 6$ $12 / 6$	MX40	$12 / 6$
$16 / 8$	EBL21	11/-	EL33	$12 / 8$	N37	17/6
10/-	EBL31	27/8	EL34	$10 / 6$	N78	151-
71	EC90	$2 / 9$	EL41	10/-	N108	15/-
4/-	ECC81	$3 / 9$	EL42	10/-	NGT1	3/6
$8 / 9$	ECC82	4/8	EL84	4/9	NGT7	$55 /-$
71.	ECC83	$6 / 3$	EL90	6/-	OA2	6/3
81 -	ECC84	6/-	EL95	9/6	Ods	$5 / 6$
7/	ECC85	51.	ELL80	80/-	OZ4	4/6
$8 /$	ECC88	71	EM34	15/-	PC86	11/8
$2 / 6$	ECF80	8/6	EM80	2/6	PC88	11/8

and boxed

P'C97	819	RG5/500	UF89	7/6
PCC84	8/3	80/-	UL, 1	$9 / 6$
PCC89	11/-	\$130 25j-	UL84	$71-$
PCC189	11/6	SP4 8/-	UM80	6i/-
PCF80	7%	SP41 3/6	UU6	13/6
PCF82	8/-	8Pfi 3/6	UU7	13/6
PCF84	8/-	STV280/80	UU9	8/-
PCF86	91.	90/-	UY21	$9 / 6$
PCF801	10\%-	$\begin{array}{lll}\text { SU25 } & 19 / 6\end{array}$	UY41	$7 /$
PCF802	10/-	SU2150 12/6	UY85	6/6
PCF805	13/6	T41 15/-	VMP4G	17/-
PCF806	13/6	TDD4 10/-	VP4B	25/-
PCF808	11/8	U10 7/6	VR10	
PCL82	7/9	U14 7/6		5/-
PCL83	$9 / 3$	$\mathrm{U19}$ 35/-	VR 15	
PCL84	$7 / 9$	U25 13/6		5/-
PCL85	$9 / 3$	U26 13/6	VT25	15/-
PCL86	9/-	U78 3/6	VT31	$80 /$
PENA4	20/-	U191 13/6	VU111	716
PENB4	20\%-	U251 12/6	VU120	12/6
PEN45	7j-	U301 16/3	VU508	35/-
PEN46	2/9	[7403 6/6	W81M	6\%-
PL36	10/-	U404 11/9	$\times 79$	41/-
PLSI	81.	U801 23/6	X $\mathrm{X} 1-5$	$5 /-$
PL82	$7 / 6$	UABC80 6/-	XP1-5	5/-
PL83	8/-	UAF42 10/3	X8G1-	$1-$
PL84	$6 / 9$	$\begin{array}{ll}\text { UBC41 } & 8 / 6 \\ \text { UBC81 } & 8 / 3\end{array}$	Y63	8
PL500	15/-	UBF80 $6 / 9$	TEGEI	
PX4	14/-	UBF89 $7 / 3$	3FP7	19/-
PY33	$9 / 6$ $8 / 6$	UCC84 816	6FP1	$35 /-$
PY81	8/8 81.	UCG85 $7 /-$	CV1626	401-
PY83	$8 / 6$	UCF80 8/6	ACR13	1001-
PY800	101-	UCH42110/8 UCH81	VCR97	35-
PY801	101-	UCL82 81.	VCR517	${ }_{46}$ /-
R2	$7 / 6$	UCL83 10/-	FCR517	
R19	$7 / 9$	UF41 10/-		46/-

G65/500 $\left\lvert\, \begin{array}{ll}\text { UF89 } & 7 / 6\end{array}\right.$ $7 / 6$
$9 / 6$
$7 /$

DAF91, DF91, DK91, DL92 or OF VALVES DAF96, DF96, DK96, DL96

19/- the set BRAND NEW TRANSISTORS

NEW TRANSISTORS								
AC127	7/6	0025	11/*	$0 \mathrm{C71}$	$4 / 6$	$0 \mathrm{C81}$	OC82D	-
AFl14	71	0 C 28	18/-	$0 \mathrm{C72}$	8/-	0C81m/pr	$0 \mathrm{C83}$	$6 /$.
AF'15	$7 /-$	0 C 38	11/6	$0 \mathrm{OC75}$	6/-	12/6	00170	7
AF116	71	$0 \mathrm{OC4}$	$4 / 6$	$0 \mathrm{C76}$	6/-	OC81D 4/-	0 Cl 71	8/-
AF117	\$/-	OC4	4/-	0 C 77	8/-	OC82 6/-	OC200	8/6

\qquad

You'll find it easy to learn with this out- standingly successful NEW PICTORIAL METHOD -the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon- type drawing. The books are based on the latest research into simplified learning tech-
 You'll find it easy to learn with this out- standingly successful NEW PICTORIAL METHOD -the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon- type drawing. The books are based on the latest research into simplified learning tech-
 You'll find it easy to learn with this out- standingly successful NEW PICTORIAL METHOD -the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon- type drawing. The books are based on the latest research into simplified learning tech-
 You'll find it easy to learn with this out- standingly successful NEW PICTORIAL METHOD -the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon- type drawing. The books are based on the latest research into simplified learning tech-
 You'll find it easy to learn with this out- standingly successful NEW PICTORIAL METHOD -the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon- type drawing. The books are based on the latest research into simplified learning tech-
 You'll find it easy to learn with this out- standingly successful NEW PICTORIAL METHOD -the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon- type drawing. The books are based on the latest research into simplified learning tech-
 COMPLETE PROGRAMMED You'll find it easy to learn with this out- standingly successful NEW PICTORIAL METHOD the essential facts are explained in the simplest language, one at a time, and each is illustrated by an accurate, cartoon- latest research The books are based on the simplified learning tech-

8
niques. This has proved that the PICTORIAL APPROACH to learning is the quickest and soundest way of gaining mastery over these subjects. Each Chapter has a unique PROGRAMMED supplement for you to test and check your knowledge before proceeding.

The series will be of exceptional value in training mechanics and echnicians in Electricity, Radio and Electronics. WHAT READERS SAY
"After reading section on Filter Circuits once, I underatood more about them than in a whole year from the obscurities of ot her manuals." -I must say they are the beat books on the subject as they explain in simple language what other books make hard going of. C. B., Hartlepools. "They have a wonderful system of imparting the subject to the beginner." H. C. L., Leicester. through." J. (t., Rugby. A TECE-PRESS PUBLICATION.

To The SELRAY BOOK CO., 60 HAYES HILL, HAYES, BROMLEY, KENT
Plege send me WITHOUT OBLIGATION TO PUROHASE, one of the above sets on 7 DAY FRER, TRIAL I will ether return set, carriage paid in good condition within 7 days or send the following amounts: BABIC ELECTRICITY including Programmed Eupplement Cash Price 95/- BASIC ELECTRONICS including Programmed Supplement Cash Price 112/-, All prices include P. \& P.
Deferred Terms readily available. This offer applies to UNITED KINGDOM ONLY. Overseas customers Cash with order.
Tick Set required (Only ane set allowed on free trial).
BASIC ELECTRICTTY
Programmed Supplement $\quad \square$
BABIC ELECTRONICS

Signature \qquad
(if under 21 signature required of pareni)

NAME
BLOGK LETTERS
FULI POBTAL
ADDRESS

practically $\underset{\substack{\text { Wireless } \\ \text { commentar by by } \\ \text { HENRY } \\ \text { In }}}{ }$

WHEN Henry began indulging his penchant for airing his views, the long period between submission of some journalistic gem and the almost inevitable thud of its rejection on the doormat was hardly endurable. Offering a crumb of comfort, Mrs Henry used to say: "I'll bet they have taken your ideas and pub lished them under someone else's name." Something of the same idea must haunt those who design some electronic wizardry and then try to take out a patent.

Between the final flourish of the soldering iron and the yacht off the Bahamas and sports car with built-in blonde there lies a tedious, obstacle-strewn road that is enough to deter all but the most diligent Blumlein. Looking at some of the conditions and restrictions recently to check the amazing resemblance between two colour-TV circuits, convinced this experimenter that it would be better to stick to garden-shed hook-ups and leave the breakthroughs to those more adequately equipped. But let us follow the fortunes of a humble back-alley inventor. We will call him Bill Smith; after all, his parents did!

Bill had been tinkering with a relaxation oscillator when the thought of the musical mousetrap occurred. Unlike Prof. Geiseling and his zoological researches on animal response, he had no

A musical mousetrap.
notions of lulling the rodents to sleep, or measuring their responses. He was more concerned with trap clearance.

In short, Bill had a disposal problem. All very fine setting the coiled wire mechanism with the best Double Gloucester. All very fine bribing the laziest cat in New Malden not to pinch said D-G. All very fine triumphantly removing the mangled remains of some pathetic Mickey and burying it where said lazy cat would not bother to dig it up. But Bill was not always on hand, and mice, though nocturnal creatures, did not always conveniently make their rendezvous with the Big Spring when they heard his flat feet approaching. Then, it was as likely that Mrs Bill Smith would come across said mangled etc., and dissolve in a fit of the vapours. Women are like that.

So it was necessary to organise some form of warning that would alert Bill, and only Bill, when the poor mus domesticus tripped the catch. A buzzer was out of the question; a bell might have been mistaken for the telephone; chimes were the front door early warning system and the construction of a voice-pulsed gadget that shouted "Hey You" was, Bill felt, somewhat beyond the resources of Practical Wireless Advisory Service. (Not according to some readers!-Ed.)

The solution came as he tried to attract his wife's attention from the kitchen transistor radio. She was oblivious, lost in a world of Jimmy Young-probably waiting for the telephone to ring! He snapped the switch and she blinked to the surface like a cod coming into warm waters. That was the answer: a transistorised alarm on her deaf side, to beat out a rhythmic signal, preferably in discordant tones. He would leap with jarred nerves; she would never notice!
Soon he was off to the Patents Office to register the unique, un-

"Show us a working model."
parallefed musical mousetrap, only to be met with a frosty-faced glare and the remark: "You cannot simply patent an idea. Show us a working model."

More midnight oil, more curious noises behind the wainscot, more wailing protestations from Mrs S and Bill had his "vendible product"-a new process of doing something. He was ready to file his patent.

Sixteen years is the protection period, and then even the best musical mousetrap becomes public property. And during that time, the renewal fee has to be paid. Just to apply, and then write Pat. Pending, or Pat. Applied For and a string of fancy numbers, can be quite meaningless, as Bill discovered. Moreover, just because a device does not bear that magical six or seven figure number, it does not signify the patent is invalid, or does not exist.

Bill gave up the day his wife came back from the supermarket humming The Sound of Music. Somewhere there must be a sale for musical mousetraps, Patent Applied For-1/432.666. Perhaps if Bill had fitted a d.f. loop and a homing device, he could have interested some party behind the Iron Curtain, or in the Common Market or somewhere . . .

Five steps to hi-fi

PART ONE PICK-UPS

IAIN SMITH

AHIGH fidelity sound system can be considered as a chain with the pick-up, turntable, amplifier and loudspeaker each being the individual links making up the chain. It is often said that the amplifier is the strongest link in the chain, which is true. It is also said that the loudspeaker is the weakest link in the chain. This is not true. The loudspeaker is suspect for several reasons; one being that the average loudspeaker is between 5 and 10 per cent efficient, another being the loudspeaker's tendency to produce Doppler distortion (more of this later in the series).

There is, however, a far weaker link producing far more distortion, namely, the pick-up. The pickup transducer itself does not produce any significant distortion. Most distortion is produced at the point of contact between stylus and groove, the stylus mounting and cantilever with pick-up arm construction providing another distortion factor. An important feature of any pick-up head is its "compliance".

Compliance

The compliance of a pick-up transducer as used in record reproduction can be defined as "the ability of the stylus to trace accurately the pattern of modulations of the recorded groove without damage to the groove walls". Compliance is measured as the distance in centimetres that the stylus will move for a thrust of 1 dyne. This distance is usually very small and normal compliances are in the order of units $\mathrm{x} 10^{-6}$. Two compliances are usually stated for stereo pick-ups; a lateral and a vertical compliance. All pick-ups have a lateral compliance but for safe tracking of stereo records, a vertical compliance is the one and only essential factor. This is because stereo records have modulations on each groove wall, which are at forty-five degrees to the vertical, therefore, some vertical motion is unavoidable.

By the above definition a good compliance is one which allows the pick-up to track the record without damage to the grooves. A figure of $5 \times 10^{-\cdots} \mathrm{cm} /$ dyne laterally and $2 \times 10^{-6} \mathrm{~cm} /$ dyne vertically is about the minimum acceptable to meet this condition. Obviously, higher figures than this are better. The compliance of a pick-up determines, to some extent, the output from the pick-up. With high compliance pick-ups there is so much flexibility in the stylus cantilever or coupler that a movement of the stylus by the groove only produces a small movement of the transducer hence a smaller output. This is why high output crystal pick-ups used with low sensitivity amplifiers, found in portable record
players, have a low compliance. Because of the low compliance a high tracking weight, around the 10 gramme mark, is usually necessary which is not very healthy for records.

Stylus Tip Mass

Another factor affecting the wear on records by pick-ups is the stylus tip mass. It is thought by some authorities to be the most important factor and experiments carried out so far confirm this. Tip mass is the mass of the stylus as seen by the groove of the record. This is not related to tracking weight, as mass is effective in all directions not just vertically. Many expensive pick-ups have a tip mass of 3 milligrammes. Experiments have shown that this, even when combined with a high compliance, produces measurable record wear. It is thought that something less than $1 \frac{1}{2}$ to 2 milligrammes is desirable. The Decca Deram ceramic stereo pick-up has a tip mass of 0.6 milligrammes. This pick-up shows no measurable record wear after 250 playings under a 400 times magnification. Its compliance 9.0×10^{-6} lateral and 50×10^{-6} vertical is also somewhat less than some expensive pick-ups with a 3 milligramme tip mass, whose performance cannot compare.

Other factors affecting performance are tracking weight and electrical impedance. Tracking weight should be as low as the compliance allows but within the manufacturer's specification. Too little tracking weight causes more record wear, slightly more than is necessary.

Impedance

The electrical impedance required by the pick-up as a load should be matched by the input impedance of the amplifier. If the impedance, presented as a load to the pick-up, is too low, then a loss of the lower frequencies will result. Little effect will be noticed by putting a larger load than required across the pick-up. The minimum voltage required by the amplifier to drive it should also be matched by the maximum output of the pick-up.
Pick-up heads should be mounted in a lightweight shell coupled to a lightweight arm. This is to reduce the effective mass of the arm as seen by the stylus, thereby reducing lateral forces which cause record groove deformity. Friction in vertical and lateral pick-up arm bearings should be as low as possible, again to reduce lateral and vertical forces. Certain bearings such as brass bush and spindle types have limitations in this respect. Bear-
ings should at least be of the small ball type.
The type of pick-up arm material affects pick-up performance. Plastic is notorious for causing resonance and die-cast aluminium is only one step better. Best materials are tubular aluminium or low resonance wood.

Another way in which pick-up arm construction affects performance is the angle at which the head is offset. Unless the stylus cantilever is tangential to the portion of the groove beneath it, distortion in the output waveform will be set up (see Fig. 1). The

Fig. 1: An illustration of how tracking error occurs through the pick-up being incorrect/y offset.
reason for the distortion is that it is direct lateral movement of the stylus that creates the output and the resultant movement of the stylus in the diagram would not conform to the recorded pattern.

A method of checking for tracking error is as follows. Take an old disused 78 r.p.m. disc and draw a line across the diameter. Mark a point on this line $2 \frac{1}{2} \mathrm{in}$. from the record centre. With the stylus placed on this point the pick-up head should be at right angles to the diameter. If there is more than a three degrec error, this should be corrected if the arm is of sufficient length. Correction can be made by either moving the pick-up head along the arm or by adjusting the arm length. Distortion caused by tracking error will be more noticeable towards the centre of the record.

Buying Guide

To sum up here are the main points to look for when purchasing a pick-up.

1. The pick-up should have a high compliance.
2. The tip mass should be less than two milligrammes.
3. The electrical impedance and output should be matched to the amplifier.
4. The pick-up arm bearings should be of the low friction type.
5. The pick-up arm construction should be of low resonance material.
6. The pick-up arm construction should be of such a length as to avoid tracking error.

Obviously a book could be written on this subject but the points outlined in this part should prove helpful.

to be continued

SATELLITE EARTH TERMINALS

APRIL ISSUE, PAGE 915

[^7]
SIMPIE RECEIVERS

Starting a brand new Beginner's Construction Series on simple radio receivers. Full details for building the first project-a single transistor receiver. A compact, easy-to-build, economical to run midget. Ideal for the novice.

I.C. PREAMPLIFIER

Build this high impedance miniature preamp. Uses the very latest integrated circuit techniques and printed circuitry.

Typical circuits for use as an amplifier/detector stage for a.m. receivers, and for stereo applications.

PORTABLE KEYLESS ORGAN

Solid state musical organ with unique "keyless" notes. Has built-in vibrato, its own preamp and output stage. Full instructions ircluding tuning-up, playing techniques etc. . . and Building a variable frequency oscillator; Five steps to hi-fi; Repairing radio sets ... plus all the regular features and news.

All IW NEET MONTH'S

sum for which this device can be obtained, it is certainly money well spent. In all, it contains the equivalent of seven functional transistors (a word about the diodes DI-D3 in due course), with nine resistors, arranged to provide the functions given in the block diagram, Fig. 2. We find five separate functions-a high impedance buffer amplifier, a voltage regulator, a phase splitter, and a pair of power output transistors, all n-p-n silicon planar epitaxial types, with identical characteristics except for Tr6 and $\operatorname{Tr} 7$ which are specially designed and fabricated for the higher currents they carry as output transistors.

The Integrated Circuit

The operation of this rather complex unit deserves fuller attention. The first block in Fig. 2 represents the transistor $\operatorname{Tr} 1$, which functions as a single emitter follower amplifier stage. With a higher input impedance than the conventional common emitter stage, it provides a better match to the output of a signal source such as a crystal gram cartridge. In a practical circuit, there is an emitter load resistor external to the I.C. (R13 in Fig. 3), and the signal developed across it is applied to the following differential amplifier type phase splitter, with its two transistors Tr2 and Tr3. The chain of diodes D1, D2 and D3 are actually further silicon transistors with their collectors unconnected; it would therefore be expected that the voltage developed across each would be the characteristic emitter-base voltage of a good silicon transistor, about 0.7 volts. Con-

Fig. 1: Complete theoretical circuit diagram of the CA3020 integrated circuit. Component values are not listed, as these are not included in the manufac-
turer's data (see text).

Fig. 2: Block diagram showing the functions of the I.C.
sequently these diodes perform the voltage regulator function, setting the base and collector voltages of the transistors of the phase splitter stage. The driver and output stages are therefore controlled also, as they are direct-coupled to the phase splitter. As for the operation of the differential amplifier, Tr2 produces out-of-phase signals in the collector and emitter load resistors, R1 and R2. As the base of Tr3 is by-passed by an external capacitor, this transistor acts as a common base amplifier, producing a signal at the collector in phase with that applied at the emitter. It follows that the audio signal in R3 will be equal in amplitude but opposite in phase to that in R1. The driver transistors Tr4 and Tr5 are directly coupled across these resistors, and act as emitter follower amplifiers; although in this mode they do not provide as much gain as in a common emitter amplifier, they are also performing an impedance matching function which eliminates the need for a transformer to drive the output pair. They are also responsible for providing a suitable level of base bias for these transistors.

Performance

Now that the operation of the I.C. has been considered, it is possible to devote some attention to the performances which could be expected from the unit. The values of the resistors and parameters of the transistors in the monolithic chip of the I.C. are not given in the supplier's data on the unit. This is perhaps because the tolerance to which a resistor can be fabricated by epitaxial diffusion is not yet as great as that expected in discrete components, and should any values be quoted, they could be no more than typical values. On the other hand, the ratios of resistances are very closely controlled in this type of manufacture, and the circuits are such that this ratio is more important than any absolute values of components. As a result, while the resistances found in individual circuits may vary, all samples will give a maximum power output of 550 mW , and a power gain of 58 dB . As the components within the chip are all direct coupled, there are no components to limit the bandwidth of the unit; the figure quoted of $6 \mathrm{Mc} / \mathrm{s}$ is probably set by the structures of the higher power output transistors. As a result there can be no loss of fidelity at audio frequencies due to phase distortion in the I.C., and it will be the components external to the chip which will provide the frequency limitation, e.g. the inductance of the output trans-
components list

Resistors:

R12	$470 \mathrm{k} \Omega$	R14 $4 \cdot 7 \Omega$
R13	$4.7 \mathrm{k} \Omega$	All $10 \% \frac{1}{4} \mathrm{~W}$

Capacitors:

C1	$0.1 \mu \mathrm{~F}$	C3	$0.1 \mu \mathrm{~F}$
C2	$0.01 \mu \mathrm{~F}$	C4	$5 \mu \mathrm{~F}$ electrolytic

all miniature, 12 V minimum $\mathbf{w k g}$.

Miscellaneous:

Output transformer Ardente D3027; RCA* integrated circuit type CA3020; VR1 $500 \mathrm{k} \Omega$ with s.p. switch; VR2 $50 \mathrm{k} \Omega$.

- RCA Great Britain Ltd., Lincoln Way, Windmill Road, Sunbury, Middlesex.

Fig. 3: Complete circuit of the I.C. gram amplifier.

Fig. 4: The printed circuit. When viewed from the underside the tab on the I.C. can indigates lead 12.
former used to couple the output transistors to a loudspeaker. The transistors themselves are high quality types, as would be expected from silicon epitaxial units, and this contributes to the good noise figures claimed for the I.C., typically a signal-to-noise ratio of 70 dB . The input impedance of, typically, $50 \mathrm{k} \Omega$ ensures that the loss of signal in feeding a CA3020 amplifier from a gram pickup is minimised. However, perhaps the most striking aspect of the performance of the unit is in the efficiency of the voltage regulator system, which ensures efficient running of the circuit over a wide range of supply voltages and thermal and load conditions. The CA3020 will operate at line voltages
-continued on page 43

A

 COMPR CHECKE
C. R. BRADLEY

An economical instrument which tests p-n-p and $n-p-n$ transistors for relative BETA (current gain) and leakage. It will also test diodes and give useful voltage, current and resistance measurements.

ISING new parts and an easily obtainable surplus 1 mA meter movement, this simple instrument was built for less than $£ 2$. It is designed to fill the needs of servicing home-built and commercial transistor equipment and will give a positive good/bad test for commonly used low voltage transistors. It will also prove its worth in weeding out the "junk box" which, in the author's case, provided most of the components.

Before the transistor testing circuit can be considered one must have a basic understanding of the operation of a transistor. The basic properties of a typical small p-n-p transistor are illustrated in Fig. 1. Here it is seen that a small current (e.g. $50 \mu \mathrm{~A}=50 \times 10^{-6} \mathrm{amps}$) is drawn out of the base of the transistor (I_{b}) while a larger current (e.g. $2 \mathrm{~mA}=2 \times 10^{-3} \mathrm{amps}$) is drawn from the collector (I_{c}). The sum of the currents ($\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{\mathrm{c}}$) is the emitter current (I_{e}) which flows in the direction indicated by the arrow inside the transistor symbol.

The amplifying properties of the transistor depend on the fact that a large change in I_{c} may be produced by a small change in l_{b}. The graph in Fig. 1 shows a signal with a current swing of $25_{\mu} \mathrm{A}$ applied as input to the

Fig. 1: Basic amplifying properties of a typical $p-n-p$ transistor. The graph shows how I_{c} depends on I_{b} and is for a fixed collector voltage.
base producing an output signal from the collector with a current swing of 1 mA . Thus a current amplification has taken place. The amount of amplification depends on the current gain of the transistor or the steepness of the I_{c} / I_{b} graph. The current gain or BETA (β) of the transistor is defined mathematically by: $\beta=\frac{\delta \mathrm{I}_{\mathrm{c}}}{\delta \mathrm{I}_{\mathrm{b}}}$ where $\delta \mathrm{I}_{\mathrm{e}}$ $\frac{I_{\mathrm{c}}}{\delta \mathrm{I}_{\mathrm{b}}}$ is merely calculus notation for the ratio: change in Ic corresponding change in I_{b}.
$\beta=1 \mathrm{~mA} / 25 \mu \mathrm{~A}=40$.
Note that when $\mathrm{I}_{\mathrm{b}}=0$ there is still a small collector leakage current. In a small germanium transistor this should not exceed 0.15 mA and will generally be much less; certainly so for silicon transistors. For a useful listing of values of $\mathrm{I}_{\mathrm{cbx}}$ see the article "In-circuit Transistor Tester" (P.W. Dec. 1967, p. 605).

Transistor tests

The transistor testing circuit is shown in Fig. 2. When S 1 is open the base and emitter of the transistor under test are at earth potential and no current should flow across the reverse biased base-collector junction. What does flow is a small leakage current which is indicated on the meter; we are at point $/$ on the graph in Fig. 1. Discard the transistor if this exceeds 0.15 mA . The leakage current may be too small to indicate on the meter at all.

When S1 is closed ("BETA TEST") a small emitterbase current flows (assuming this junction is good) and a substantial collector current should result. Remember that a transistor's action is as follows: a small increase in the emitter-base current produces a large increase in the emitter-collector current. The meter reading should rise by about 0.5 mA , the amount depending on the BETA of the transistor. We are now at point 2 on the graph. If the current does not rise, or only slightly, the transistor is faulty. But the budget-minded user will not discard it yet as either the emitter-base or collector-

base junctions may be usable as a diode!
As a low battery voltage (1.5 volt cell) is used, small transistors cannot be damaged by excessive currents. This does however limit the tester's use to common low voltage transistors. It will be found that even new transistors of the same make and type have widely varying BETAS; the tester makes it possible to select high gain transistors for critical circuits and find matched pairs for push-pull output stages. The same circuit is used for testing n-p-n transistors with the battery polarity reversed. The low voltage means that incorrect setting of the $\mathrm{p}-\mathrm{n}-\mathrm{p} / \mathrm{n}-\mathrm{p}-\mathrm{n}$ switch in the final circuit is unlikely to damage the transistor under test.

Additional ranges

The 1 mA meter used in the transistor testing circuit may also be used for simple voltage, current and resistance measurements. For d.c. voltage tests a resistor is placed in series with the meter as in Fig. 3 and by
Ohm's law: $\mathrm{R}_{\mathrm{v}}(O H M S)=\frac{\text { (voltage for f.s.d.) }(\mathrm{voh} / \mathrm{s}) .}{1 / 1000 \quad(\mathrm{amps})}$
In this instrument the voltage ranges shown in Table I were obtained.
Ordinary 10% resistors were used for R_{v} by the author as the simplicity of the instrument and the small 1 mA meter used did not seem to justify closer tolerance (and more expensive) resistors. However 5\% or even 1% components can certainly be used for greater accuracy. The 1,000 volt range is optional and if it is built into the tester then proper insulated terminals and test prods must be used and great care taken in making
high voltage measurements. A 500 volt range ($\mathrm{R}_{\mathrm{v}}=$ $500 \mathrm{k} \Omega \dagger$) might be thought more useful although this range would not match the existing $0-1.0$ meter calibrations so easily.
Only the basic 1 mA d.c. current range is provided as this will suffice for many transistor circuit measurements. Higher current ranges are obtained by the use of "shunts" or resistors in parallel with the meter as shown in Fig. 4 where $\mathrm{R}_{\mathrm{e}}(O H M S)=\mathrm{R}_{\mathrm{i}} /$ (current for f.s.d. (milliamps)-1). The internal resistance (R_{i}) of the meter must be known and will probably be 100 2 . Shunts may be built into the instrument to give additional ranges or wired externalle when required. The author finds a 10 mA range obtained with an 11Ω shunt (near enough to $11 \cdot 11 \Omega$ given by the formula for $R_{i}=100 \Omega$) occasionally useful.

Fig. 2. Circuit of transistor leakage and beta tester. Close S1 for "BETA TEST".

Fig. 3: Voltage measurement Fig. 4: Current measurement circuit. circuit.
A single resistance measurement range is obtained by the circuit in Fig. 5. The two test leads are first shorted together and the potentiometer VRI adjusted for full scale meter deflection (zero ohmst. The leads are then connected across the test resistance and a reduced current flows. The resistance may then be calculated from the formula: $R($ ohms $)=1500\left(\frac{1-I}{I}\right)$ where

TABLE 1

$R_{v} *$	f.s.d. volts
$10 \mathrm{k} \Omega$	10 V
$100 \mathrm{k} \Omega$	100 V
$1 \mathrm{M} \Omega$	$1,000 \mathrm{~V}$

Fig. 5a: Resistance measurement circuit.

$R_{a} \Omega$	$R_{b} \Omega$
$2 \cdot 5 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$ $2 \cdot 2 \mathrm{~K}$ $2.2 k$
$5 \mathrm{k} \Omega$	$1.5 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$	$1.2 \mathrm{k} \Omega$

Fig. 5b: Use of alternative potentiometer values.

Fig. 6: Additional calibration of the 1 mA meter for resistance measurements using formula in text.

Fig. 7: Complete circuit of the instrument. The 1000 V range is optional.

$\mathrm{I}(m A)$ is the meter reading. It is more convenient to have an ohms calibration on the meter. This will be a nonlinear scale ranging from infinity to zero ohms as in Fig. 6. To make the calibration, open the meter carefully and remove the scale taking great care not to damage the hairspring or pointer or let dust into the movement. The ohms scale is drawn carefully with indian ink and should not be calibrated too closely, particularly towards the high end, or legibility will be lost.

\star components list

Resistors:		Switches:
R1	$9.1 \mathrm{k} \Omega$	S1 push button type
R2	$220 \mathrm{k} \Omega$	S2 DPDT toggle
R3	47Ω	S3 SPDT toggle
R4	$1 \mathrm{k} \Omega$	
R5	$10 \mathrm{k} \Omega$	
R6	$100 \mathrm{k} \Omega$	Meter:
R7	$1 \mathrm{M} \Omega$	O-1mA d.c.
VR1	$1 \mathrm{k} \Omega$ potentiometer	

Miscellaneous:

Terminals; 1.5 V battery and holder; transistor socket; cabinet, wire, solder etc.

Construction

The complete circuit of the instrument is shown in Fig. 7. A transistor socket is provided for transistor tests while other functions are selected by connection to the appropriate terminal. COMM is the common negative terminal for all ranges.
The non-standard value of RI may be obtained by wiring $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ resistors in parallel. If a $1 \mathrm{k} \Omega$ potentiometer is not available for VRI other values may be used as detailed in Fig. 5(b). The layout of the instrument is not critical and is left to the constructor. The meter, switches, terminals and transistor socket need only be mounted on a panel and the remaining few components wired in bchind. A suitable layout is shown in Fig. 8. The cabinet could be built with a hinged back for test lead stowage. If a metal cabinet is used it should be left electrically "floating", i.e. not connected to any part of the circuit. The author used the $6 \times 4 \times 2 \frac{1}{2} \mathrm{in}$. size of a popular range of four-sided aluminium chassis as a neat cabinet. The battery (a U2 size cell) is held in a simple home-made holder as in Fig. 9.

Fig. 10: Diode polarity. When using the tester, the positive end must go to the "COLLECTOR" test point.

Fig. 9 (left): Insulated holder for the U2 battery.

Fig. 8 (above): Suggested layout of the transistor tester.
with ' + ' or red mark

Before making a resistance or transistor test the "OHMS" terminal must be shorted to the "COMM" and VRI adjusted for full-scale deflection (zero ohms) with S3 in the "OHMS" position. This adjustment compensates for the voltage drop of the battery with time although for accurate readings the battery should be fresh.

Diodes and rectifiers may be tested as follows: connect the diode between "EMITTER" and "COLLECTOR" on the transistor socket. Try both settings of the $p-n-p / n-p-n$ switch. In one direction the diode will be forward biased and a substantial current should flow $(0.6 \mathrm{~mA}$ or more) ; in the other direction no more than a tiny leakage current should flow. If the diode fails this test it is faulty. There often seems to be confusion in people's minds about which end of a diode is which; this can be cleared up by reference to Fig. 10. On this instrument the cathode (red or " + ve" end of the diode is
the one connected to the "COLLECTOR" test point if forward conduction is obtained with $\mathbf{S} 2$ in the p-n-p position.

Footnote

This instrument is intended to give a relative indication of transistor BETA only. Accurate BETA measurements are possible however if a $100 \mu \mathrm{~A}$ meter is placed at " X " in Fig. 7 to measure I_{b} when $S 1$ is closed. Hence BETA is calculated from the definition given.

- Rv actually includes the internal resistance of the meter which is usually about 100Ω. This is negligible compared with these values.
\dagger Or two $1 m \Omega$ resistors in parallel.

MIDGET I.C. AMPLIFIER

_continued from page 39
of as low as 3 V , though at a reduced power level, and as high as 9 V , though here a heat sink is advisable to hold down the temperature of the transistor junctions in the chip. Such sinks are commonly available as the I.C. is supplied mounted in a standard transistor-type format, according to the accepted TO-5 specification, and push-fit heat sinks are supplied for these transistors. Incidentally, although this property is unlikely to be of great advantage to the designer of amplifiers for entertainment and domestic purposes, the fact that the regulator keeps operation stable over the temperature range -55 deg . to $+125 \mathrm{deg} . \mathrm{C}$. is certain to be of interest to industrial and military users. In the past, too. it would have been expected that the efficiency of the circuit would be lower than that of a discrete-component amplifier of the same output power, due to the loose tolerance of integrated resistors biasing the transistors. In this circuit, however, maximum power is obtainable with a current drain of no greater than 22 mA .

Constructional Details .

Now for an actual prototype amplifier using the RCA type CA3020 integrated circuit audio amplifier. The circuit of Fig. 3 was found to be a satisfactory competitor with typical discrete-component transistor amplifiers when used in a portable record player. Construction could not be simpler, and without any crowding it is possible to mount the whole amplifier on a printed circuit board less than 3 x 2 in . As is clear from Fig. 1, all connections to the output transistors with the exception of the bases must be through external circuitry. This allows for an emitter resistor which introduces a slight degeneracy or negative feedback at that stage of the amplifier. It also allows a selection of the operating conditions for the output stage, as both the idling current, that is, the current drawn by the unit under no signal conditions, and the power output, depend on R14. Lowering it allows a greater output but increases this idling current and the dissipation in the I.C. In the prototype a value of $4 \cdot 7 \Omega$ was selected; the power output dropped to about 350 mW , which, however, is sufficient to enjoy the
reproduction of recordings on a portable gram deck. Under these conditions a heat sink was not required. The printed circuit shown in Fig. 4 contains all the necessary interconnections between the components of the amplifier except C 2 and the volume and tone controls, which are mounted separately and connected to the amplifier by screened flying leads. The output transformer whose tapped primary serves as a load to the output transistor pair, coupling them to the loudspeaker, is the only other major component on the board besides the I.C. I will not go into the details of the production of the printed circuit board by the conventional method of applying a paint pattern over the areas which are to form the conductors, and etching off the remainder of the copper foil coating of a section of clad paxolin using FeCl_{3} solution; this process has been described repeatedly, to that the experimenter capable of working with integrated circuitry will be familiar with such a basic operation. The common alternatives, Veroboard and Cir-Kit, are also acceptable, but rather more difficult to use than is common with these methods, due to the close spacing of the 12 leads from the TO-5 can of the I.C. If these techniques are chosen, the leads of the I.C. must be carefully "spidered" or bent apart close to the seals in the base of the I.C. can so that they can reach the spacing of the Veroboard. Care is necessary in this operation, lest the leads or the seals of the can are damaged by bending too close. It must be remembered that a damaged l.C. can't be disregarded like a broken transistor-it represents almost a complete amplifier, and costs a lot more than an OC72!

Of course, the amplifier described is only one of the applications of this versatile circuit, and the imagination of inventive readers will find further applications for an effective and economical unit such as this one. The writer, for one, expects to hear a lot more about it in the future, and hopes it will find the commercial success the ingenuity of the design deserves. Perhaps such success will lead its manufacturers and their competitors to follow it up with more of the same, and perhaps even more exciting developments.

[^8]THE BROADCAST BANDS

WITH the spring schedules halfway through the operation period, and DX-ing conditions good, you should now be logging the world. With sunspot prediction of 132 for April, all the broadcast bands are open at different times of the day. So first off. here are the propagation predictions for April.
West and East Africa: 0600-1800 GMT 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$ are the best bands, after 1800 and up to 2000 GMT $21,17,15,11$ and $9 \mathrm{Mc} / \mathrm{s}$, and 20000600 GMT 15, 11, 9, 7 and $6 \mathrm{Mc} / \mathrm{s}$ bands.
South Africa: 0800-1400 GMT the best bands are 25 and $21 \mathrm{Mc} / \mathrm{s}, 1400-1800$ GMT 25, 21, 17 and $15 \mathrm{Mc} / \mathrm{s}, 1800-2400$ GMT $21,17,15,11,9,7$ and $6 \mathrm{Mc} / \mathrm{s}, 2400-0400$ GMT $11,9,7$ and $6 \mathrm{Mc} / \mathrm{s}$, $0400-0800$ GMT 15, 11 and $9 \mathrm{Mc} / \mathrm{s}$.
South Asia: 0800-1200 GMT use 25, 21 and $17 \mathrm{Mc} / \mathrm{s}$, $1200-1800$ GMT up to 1600 GMT 25 , 21,17 and $15 \mathrm{Mc} / \mathrm{s}, 1600 \mathrm{GMT}$ drop 25 and $21 \mathrm{Mc} / \mathrm{s}$ and add 11 and $9 \mathrm{Mc} / \mathrm{s}$, 1800-0200 GMT 11, 9, 7, 6 and $5 \mathrm{Mc} / \mathrm{s}, 0200-0800$ GMT 11 and $9 \mathrm{Mc} / \mathrm{s}$.

South East Asia: During morning hours 25 and $21 \mathrm{Mc} / \mathrm{s}$, in the afternoon 21,17 and $15 \mathrm{Mc} / \mathrm{s}$, evening hours up to 2200 GMT $15,11,9$ and $7 \mathrm{Mc} / \mathrm{s}, 2200-$ 0800 GMT 15 and $11 \mathrm{Mc} / \mathrm{s}$.

North East Asia: 0800-1400 GMT 21, 17 and $15 \mathrm{Mc} / \mathrm{s}$ are the only bands open, $1400-1600$ GMT 17, 15 and $11 \mathrm{Mc} / \mathrm{s} 1600-2400$ GMT 15, 11 and $9 \mathrm{Mc} / \mathrm{s}, \quad 2400-0400 \mathrm{GMT} 11 \mathrm{Mc} / \mathrm{s}$ only, $0400-0800$ GMT 15 and $11 \mathrm{Mc} / \mathrm{s}$.

Australia via Asia: $0800-1200$ GMT listen on 25 and $21 \mathrm{Mc} / \mathrm{s}, 1200-1600 \mathrm{GMT} 21,17$ and $15 \mathrm{Mc} / \mathrm{s}$, $1600-2000$, GMT 15, 11, 9 and after 1800 GMT $7 \mathrm{Mc} / \mathrm{s}, 2200-2400$ on $11 \mathrm{Mc} / \mathrm{s}$ only, $2400-0800 \mathrm{GMT}$ this circuit is closed most nights, but signals may come through on $15 \mathrm{Mc} / \mathrm{s}$.

South America (North of the Amazon): From $1200-2000$ GMT $25,21 \mathrm{Mc} / \mathrm{s}$ after 1800 GMT $17 \mathrm{Mc} / \mathrm{s}$ as well, 2000-2200 GMT 21, 17, 15 and $11 \mathrm{Mc} / \mathrm{s}, 2200-0400$ GMT $17,15,11$ and $9 \mathrm{Mc} / \mathrm{s}$, $0400-0800$ GMT 15, 11 and $9 \mathrm{Mc} / \mathrm{s}, 0800-1200$ 17 and $15 \mathrm{Mc} / \mathrm{s}$.

North America: During mornings on 17 and $15 \mathrm{Mc} / \mathrm{s}$, after $1200 \mathrm{GMT} 25,21$ and $17 \mathrm{Mc} / \mathrm{s}$, evenings 17,15 and $11 \mathrm{Mc} / \mathrm{s}$, night hours and early mornings on 15,11 and $9 \mathrm{Mc} / \mathrm{s}$.

Those were the propagation conditions for April, listing the various shortwave bands which are "open" to different parts of the world.

ASIA

Rep. of Korea: The Voice of Free Korea has now the following schedule for its English programmes all over 50 kW transmitters, $0500-0530$ on 9,640 General Service to Asia, 0600-0700 on 15,130 to North America, $0800-0830$ on 9,640 and 6,035 to South East Asia 1030-1100 on 9,640

Gencral Service to Asia, 1430-1500 on 15,430 to South East Asia, $2100-2130$ on 9,640 General Service of Asia, 0300-0400 on 15,430 to North America. The only transmission to Europe from The Voice of Free Korea is one in French from $0700-0730$ on 15,130 .

Thailand: R. Thailand is now using a 100 kW transmitter on 11,910 at following times: 0415 0515 to North America in English; 0530-0600 to Europe in French; 0930-1020 to Far East in Thai, Vietnamese and Cambodian; 1025-1157 to Asia in English, Malay and Kuoyu; 1300-1400 to S.E. Asia in Thai.

EUROPE

Federal Republic Germany: The Voice of Germany is now as follows for its English Services transmitted from Jülich. 0300-0340 to South Asia oh 11,945 and 9,640; 0445-0545 on 11,945 and 9,640 to West North America; 0600-0630 on 17,845 15,275 and 11,785 to Africa; 0845-0940 on 21,650, 17,845 and 15,275 to Far East, Australia and New Zealand; $1045-1100$ on $21,560,17,875$ and 15,275 to Africa; 1045-1055 on 11,905 and 9,605 to North America; 1550-1620 on 17,875 and 15,275 to South Asia; 1900-1910 on 17,790 and 15,405 to North America; 2110-2200 on 9,765 and 7,290 to East Asia and Australia; 2145-2205 on 15,275 and 11,925 to Africa; 0130-0250 on 11,945 and 9,640 to East North America.
Norway: R. Norway transmits daily in Norwegian and on Sundays the last 30 minutes of each transmission is in English, $0700-0830$ on $25,900,25,730$, $21,730,21,655$ and 15,$175 ; 1100-1230$ on 25,900 , $25,730,21,730,21,655$ and 7,$240 ; 1300-1430$ on $25,900,25,730,21,730,21,655$ and 17,$825 ; 1500-$ 1630 same as at 1300-1430; 1700-1830 on $25,900,25,730,21,730,21,655$ and 15,175 ; $1900-$ 2030 on $25,730,21.730,21,655,17,825$ and 15,175 ; $2100-2230$ on $21,730,21,655,17,825$ and 15,175 ; $2300-0030$ on $15,345,15,175$ and 11,$850 ; 0300-$ 0430 on $11,860,11,850$ and 9,610 .

AFRICA

South Africa: R.R.S.A. has altered the frequencies for the following English transmissions, now as follows; weekdays only 0415-0427 11,900 and 9,525; 0430-0442 11,900 and 9,525; 0500-0512 7,270 and 5,$980 ;$ 0515-0527 15,220 and 11,900. Daily $1700-1750 \quad 21,535$ and 17,805 ; to North America from $2326-0020$ on 15,220 and 11,875; 0026-0320 on 11,875 and 9,705.

Many thanks for the Radio R.S.A. schedule to Mr. A. J. Jenkins, and items for the July issue please send them in by April 20th, 73 's and good listening.

1DEFINITE stirring down in the r.f. forest this past month. The sunspots are perking nicely and all the little peaks on those propagation prediction charts are getting better and better. All six bands from 1.8 to $30 \mathrm{Mc} / \mathrm{s}$ are buzzing and, if trends continue, it could well be a bumper year for DX. There should be something somewhere on one of the bands whatever time you listen at present.

Derek Pearson (Worcs), proves that you don't have to be rich to qualify as an s.w.l. His set cost one shilling at a jumble sale but he has already logged VE3, VE6, YV4 and $3 V 8$ on $14 \mathrm{Mc} / \mathrm{s}$.

SEVEN AND DOWN

F. McVerry (Lanarkshire), 7 valve s'het, 40 ft ., indoor antenna heard these on 160 metres c.w:EI9J, GM3OXX, GI3OQR, GW3FSP, HB9TTH, OKIAHZ, OKIKP, OK2BKW, OK2RZ, PA $\varnothing P N$. On $3.5 \mathrm{Mc} / \mathrm{s}$ s.s.b. his best were-CN8AW, EP2GI, HA 2 KRB, K2RBT, W1HKK, W1FZJ/KP4, 5Z4KL, $7 \mathrm{X} \varnothing \mathrm{AH}, \quad \mathrm{YU} 2 \mathrm{HDE}$. On $7.0 \mathrm{Mc} / \mathrm{s}$ c.w.-CTIMU. EA8UC, HB9AHC, HK7XI, IT1AGA, K2OTC, K3JH, PY7ARW, SL3AW, UA6KLA, UA9BN, VO2AW, WB4CIB, and on s.s.b-EA4DO, ET3FMA, HC2AM, LXIBW, YV4UA.
M. Higgins (Sussex), 19 set, 132 ft ., l.w., bagged goodies on forty-CTILN, F5TA, XEICCW, ZLIHEO, ZL2BCG, 8P6BH.
J. East (Worcs), R1475, dipole, reckons 8 a.m. for the Pacific and evenings for Africa and S. America. He also informs that the 8P6 callsign is a new one for VP6 (Barbados). On 80 s.s.h.CN8AW, CT1JH, K3UZE, VE1-ADA, AFI, IE, PL, UG, VE2XO, VE3ALX, VOIGL, VP2AA, WB2YFY/MM. ZB2A, ZB2AP/MM, ZC4MO, ZCARB, 4UIITU, $7 \mathrm{X} \varnothing$ AH. While on 40 s.s.b. CM2DC, CR6AD, CT1LN, EA3JE. ET3FMA, HB9RC/P/HP1 (in Panama City), ISIEP, ITILTF, WIFZJ/P/KP4, PY2AST, UB5KAW, W $3 Z K H / P / 3$, WB4CPW, ZSiJA, ZSINR, 4UlITU.
R. Miller (Essex), SR150, 30ft. l.w. plus an a.t.u. (good lad). logged these on 80 s.s.b.-CT1LN, CT2AA, F2RD, HB9MQ, ON5EL, OY7S, OY4OV, OZ6AE, SL3ZV, TF2PL, TI2NA. VEI- AX, APZ, IE, VOICE, WIFZJ/KP4, W2LX, W4BVV, W8MMC, W9ARV, YVIPW, YV2GK, ZB2A, ZC4MO, ZD3F, 3A2MJC, 4X4WN, $7 \mathrm{X} \varnothing A H$, plus one query-OR9SN.

FOURTEEN AND UP

K. Weston (Wales) has been an s.w.l. since Santa unobtrusively popped a Trio 9R59 in his sock. He reports hoards of W's invading $28 \mathrm{Mc} / \mathrm{s}$.
H. E. Thornton (Surrey) started radio in the 1920s with an Experimental Receiving licence (not easy to get). With his "Portable One" he was permitted to conduct experiments in the open air but not within two miles of a Government Station". His latest receiver to date is an Eddystone 940 complete with 100 ft . l.w. On twenty he reports sigs. fromCR4AJ, KP4DCP, LU7DH, PY2ALE, TF2WKW, ZL4BX. On ten metres CO2HQ, PJ2CQ, UNICP, UA3AYN, VEIATV, ZSIBV, 9J2WR. He also
reports a regular sked between the Science Museum station GB2SM and ZD9BE on Tristan da Cunha.
R. Dinning (Ayrshire), HA-350, PR-30, dipole, heard s.s.b. emanating from-CN8AB, CR61K, CR7JA, CT2AA, ET3REL, HSIAF, HS3DR, HV3SJ, KL7EBK, KR6BD, OD5BN, OX3YK, PZ1BD, PY7YN, TF2WKI, VE8RCS, VK2ON, VP8HZ, W6VPH, YV5CID, ZB2BM, ZLIAH, ZL4BX, 6Y5CB, 9Y4VT, W's 1- \varnothing.
M. Crawshaw (Lancs.), SR600 (triple conversion shet), 80 metre dipole at 20 ft . A peep at $28 \mathrm{Mc} / \mathrm{s}$ revealed CT3AO, EI5AL, F9CT, I1AIG, K3AFO, K8GLL, ON4VT, OZ1LO, VEIAKC, VE2AJV, VE3FWG, XE2BBO, ZE1BR, ZS1BV, ZS6OI all a.m. and on s.s.b-CP1LN, CTIBH, DJ5RR, K1CTQ, OE5ARL, SV1AB, VE2LY.
P. Pollak (S.W.15), 840A plus Q multiplier, 60 ft . end fed, states the case for twenty metres in no uncertain terms with-CE3ZN, CE6FK, CN8GE, CR4AJ, CR6GQ, CR7IC, CT2AA, ET3ZU, HI5BK, HK \varnothing BKW, HK3BLF, HK4PX, HSIAF (Thailand), JAlHMJ, KL7GDS, KP4BKF, KR6KN, LU5AQ, OD5EJ. OY2H, PJ4AC, PZIBW (Surinam), TG5HC, TI2ICC, VE4SA, VE7AAF, VE8IY, VK1PI, VK2BK, VK3HW, VK4SD, VK6CF, VK7TR, VP2AA (Antigua), VP2GAI, VP8JD, W6HVN, W7HEU, XE1KV, XP1AA, ZD7KH, ZD9BE, ZL1AHD, ZL2KC, ZL3OY, ZL4BX, ZP3AB, ZS1JU, ZS2EV, 4X4RW, 5H3JL, 5N2AAS, $5 \mathrm{Z4KL}, \quad 6 \mathrm{~W} 8 \mathrm{DY}, \quad 6 \mathrm{Y} 5 \mathrm{RA}$, 7Q7BN, 7XøAH (Algeria), 9LIDW, 9Y4VT. All these on s.s.b. and a very neat \log too.
M. Guest lives in Mousehole (so help me that's the address) . . (thereby hangs a tail). Anyway, it's in Cornwall and he has a CR100 and almost has a dipole for ten metres. Logged on this band-CR6QK, CX2CO, CX2BR, CX6BA, K2DPA, K9PPX, OA1MKA, OA7RP, OX3KM, VK6TXI, W $\varnothing B Q L$, W8CIQ, W9IUO, YVIWX, ZSIFH, 5N2LF, 9G1KM, 9GIFF, 9H1BA, 9J2DT, all on s.s.b.
M. Pasek (Noits.), HRO, 150 ft . l.w., logged these on ten-CR4BC, CT3AH, UV3ACI, UWIDB, VK2OXB, VK3DL, VK3AGX, VK4PJ, VK5XV, VK5NY, ZE2JA, 9J2BC.
J. Preece (Cheshire), PCR3 modified as per P.W., Jan. 1968, accuses me of having printed his logs twice before. Guilty Sir! and just to prove there's no hard feeling, here's what you heard on twenty s.s.b-CN8GE, CR6AR, CR7CR, LA9TI/MM $\left(17^{\circ} \mathrm{S} 4^{\circ} \mathrm{E}-\right.$ go on, look it up), LU5AQ, LXIAJ, OZ9DX, PY4ATG, PY7CP, TR8AJY, UA9KDL, UT5KTH, VE3AA, VK3SK, YV4QG, ZC4MO, $5 \mathrm{Z} 4 \mathrm{KL}, 6 \mathrm{Y} 5 \mathrm{~GB}$. Also reported-7P8AB located at Maseru in Basutoland.

COMPOTE DE CONTEST

Are you sitting comfortably? Then I'll begin-6th -7th April, one I haven't heard of before but it's down as c.w. only from 3.5 to $30 \mathrm{Mc} / \mathrm{s} ; 20$ th $-21 \mathrm{st}, 4$ metre contest; 27th-28th, VERON-all bandsevery man for himself; 4th-5th May, 70 and 20 cms . contest; 4th-5th May, another 3.5 to $28 \mathrm{Mc} / \mathrm{s}$ c.w. special.

YOUR
 QUESTIONS ANSWERED

Interference

In my living-room 1 have a fluorescent light which gives interference on high frequencies, especially 2 to $4 \mathrm{Mc} / \mathrm{s}$. Can you suggest what and how I can fit something to this light to suppress this interference?-P. McKay (Leeds).

First, check the contacts at the ends of the tube to make sure that they are clean and making good contact with the holders. Then try rotating the tube through 180 deg ., and reversing it end for end. Renew the suppressor capacitor, using one of, identical ratings. Earth the metalwork of the fitting and if possible, feed the unit via metal-clad cable with the cladding earthed. Suitable cable is M.I.C.C. but you will need an electrician to install it unless you know how to do it.

Also, buy two $5 \mathrm{nF}(0.005 \mu \mathrm{~F})$ capacitors 500 V a.c. working and connect them in series. Connect this combination across the tube. In fitting, connect a capacitor of $0.1 \mu \mathrm{~F} 500 \mathrm{~V}$ a.c. working across the mains supply cable. Connect two $0.5 \mu \mathrm{~F} 500 \mathrm{~V}$ a.c. capacitors in series across the mains cable, wiring the junction of these components to earth i.e., to the frame of the unit which will be earthed as above.

Rechargeable Cells

I would be obliged if you could tell me where I can obtain a charging set for mercury cells RM640 and E640.-E. Stuart (Edinburgh).

It is not possible to recharge cells of the mercury type since these are primary cells and not secondary cells. The only type of cell which looks rather like a mercury cell and which can be recharged is the nickel-cadmium cell.

Pulse Counter

With reference to the pulse counting f.m. circuit in the February, 1967, issue of P.W., and to one published a couple of years ago, I would like to know if either is suitable for use with a standard multiplex decoder. Also if the bandwidth of any pulse counting detector is sufficient, does it need a special decoder?-D. Webb (London, N.W.9).

A pulse-counting descriminator is not really suitable for use with a Multiplex decoder. There are several reasons for this, the main one being the use of a low i.f. in the receiver. If you wish to obtain really good results from stereo programmes, we would suggest you make a small tuner of a more conventional type especially for this type of reception.

Radio Teletype

On a visit to the last R.S.G.B. exhibition I noticed an exhibit by a teleprinting society.
Can you tell me if there is a society for radio teletype (R.T.T.Y.) enthusiasts, and the name and address of the secretary?-H. Beaumont (Margate).
Yes, there is a very active society, the name and address to write to is as follows: British Amateur Radio Teletype Group, D. J. Goacher, G3LLZ, 51, Norman Road, Swindon, Wilts.

Speaker Impedances

Is there any way of finding the impedance of speech coils in loudspeakers? I have two unmarked speakers but only a voltmeter for making tests.T. Cropper (Middleton).

Loudspeakers normally have impedances of 3,7 or 15Ω. These impedances are measured at $1 \mathrm{kc} / \mathrm{s}$. To find the impedances of a loudspeaker, the simple way (although it is approximate) is to measure the d.c. resistance of the speech coil. The d.c. resistances of speech coils of 2,5 and 10Ω will correspond to impedances of 3,7 and 15Ω respectively.

Short Wave Conversions

Could you please say whether there is a simple way to convert an existing receiver for short wave reception?-L. Ballard (Reading, Berkshire).

It is possible to convert short wave signals to a frequency on the medium waves in order to receive them on a normal receiver. A suitable converter for this purpose was described in our "Keybook" entitled "More Simple Radio Circuits", which you can obtain for 3 s . 6 d . from your local bookseller.

Transmitting Licence

I am keen to own and operate my own transmitting station. I understand that I will need a special licence. Can you tell me how I get a licence and what is involved?-E. Ledger (St. Albans).
We suggest that you write to Radio Service Branch, GPO Headquarters Buildings, St. Martin's le Grande, London, E.C.1, and ask for a free copy of their pamphlet "How to become a Radio Amateur".

Interference Suppression

Could you please let me have any information on any publication or literature regarding the suppression of electrical interference to a car radio from a car engine?-H. Wilkinson (Willington, Derby).

We suggest that you incorporate the following suppression measures in your car: $0.5 \mu \mathrm{~F}$ from D terminal of dynamo to chassis; $0.5 \mu \mathrm{~F}$ from D terminal of regulator to chassis; $2 \mu \mathrm{~F}$ from B terminal of regulator; $2 \mu \mathrm{~F}$ from outer terminal of coil; $0.5 \mu \mathrm{~F}$ from "live" side of any interfering accessory such as clock etc.; $5 \mathrm{k} \Omega$ cut-lead suppressors at each end of each plug lead; $5 \mathrm{k} \Omega$ cut-lead suppressor at distributor-end of lead to centre of distributor; special non-capacitive filter in F lead of regulator. You can obtain all of these components from garages and radio component stockists.

If when driving along, you switch off the ignition, and the interference continues, it may be due to static electricity. If so, paint rubber conducting-paint on the walls of the tyres (the walls not visible from the road) and use a conducting grease such as a graphite-based type in the wheel bearings.

Earthing

I have just installed a shortwave receiver and I have been told that I should take the earth lead to one of the metal pipes in the house which will be a better earth. Is this in order please?-F. J. McDonald (Walsall, Staffs.)
We strongly advise against earthing any electrical apparatus to metal pipes in the house. Many water pipes are now of the plastic variety outside the building and thus would be a poor earth. On no account should a metal gas supply pipe be used as an earth.

TRANSISTOR STEREO $8+8$

A really first-class Hi Fi Stereo Amplifier Kit. Uses 14 transistors giving 8 watts push-pull output per channel (16 W mono). Integrated pre-amp with Bass, Treble and Volume controls. Suitable for use with Ceramic or Crystal cartridges. Dutput stage for any speakers from 3 to 15 ohms. Compact design, all parts supplied including drilled metal work, Cir-Kit board, attractive front panel, knobs, wire, solder, nuts, bolts - no extras to buy. Simple step by step instructions enable any constructor to build an amplifier to be proud of.
Brief Specification: Freq. response $\pm 3 \mathrm{~dB} 20-20,000 \mathrm{c} / \mathrm{s}$. Bass boost approx. $10+12 \mathrm{~dB}$. Treble cut approx. $10-16 \mathrm{~dB}$. Neqative feedback 18 dB over main amp. Power requirements 25 V at 6 amp.

QUALITY RECORD PLAYER AMPLIFIER A top quality record player amplifier employing heavy duty double wound mains transformer, ECC83, EL84,
EZ80 valves. Separate Bass Treble and Volume controls. EZ80 valves. Separate Bass Treble and Volume controls.
Complete with outpat transformer matched for 3 ohm Complete with outpat transformer matched for 3 ohm
gpeaker. size 7 in . w. x 3in. d. \mathbf{x} 6in. h . Ready built
 ALSO AVAILABLE mounted on board with output transtormer and speaker ready to fit into cabinet put transiormer and speaser rem.
below. PRICE $97 /$. P. \& P. $7 / 6$.

DE-LUXE QUALITY PORTABLE

 RECORD PLAYER CABINETUncut motor board size $144 \times 12 i n$. Clearance 2 in . below, 5f in. above. Will take above amplifer and any B.s. R. or
Garrard Autochanger or Bingle Player Unit (except AT60 Garrard Autochanger or Single Player Unit (except, AT60
and $8 P 25$). Size $18 \geq 15 \times$ Sin. Price $\operatorname{s3.9.6}$. Carr. $9 / 6$.

STEREO AMPLIFIER

Incorporating 2 ECL86a and 1 EZ80, heavy duty, double wound mains transformer. Output 4 watts per channel. Full tone and volume controls. Absolutely

- General aize Driver and Output Transformers. - Output transformer tapped for 3 ohm and 15 ohm speakers. Transistors GET 114 or BI Mullard OC81D and matched pair of 0C81 o/p. 9 volt operation. - Everything supplied, Wire battery clips, solder, etc. circuit diagram 1/6. (Free with Kit). All parts sold separately
SPECLAL PRICE 45/-. P. \& P. 3/-. \& P. $3 /$
Also ready built and tested, 52/6.
A pair of TAls are ideal for stereo.
BRAND NEW TRANSISTOR BARGAINS GET 15 (Matched Pair) 15/-; V15/10p, 10/-: OC71 5/-; OC76 8/-; AF117 7/6. Set of Mullard 6 transistors 0C44, 2-0C45 0C81D matched pair OC81 $25 /-$, ORP12 Cadmium sulphide
Cell 10/8. All post free.

3-VALVE AUDIO AMPLIFIER HA34

Designed for $\mathrm{Hi}-\mathrm{Fl}$ reproduction of records. A.C. Mains operation. Ready built on plated heavy gauge metal 4 in. h. Incorporates ECC83 EL34, EZ80 valves. Heavy duty, double wound mains transformer and output transormer matched for 3 ohm speaker, separate Bass, Treble and volume controls. Negative feedback line. Output $4 \frac{1}{4}$ watt. Front panel can be detached and leads extended for remote mounting of controls. Complete with knobs,
valves, etc., wired and tested for only e4.5.0. P. \& P. 6/-

HSL 'FOUR' AMPLIFIER KIT

A.C. Mains 200/250v., 4 watt, using ECC83, EL84, EZ80

- Heavy duty double wound mains transformer with electrostatic screen. separate trols giving fully pariable boost and cut with minimum insertion loss. Heavy nega tive feedback loop over 2 tages ensures high output at excellent quality with very w distortion factor. suitable for use with guitar, microphone or record player. Provision for remote mounting of controls or direct on chassis. Chassis alze components and valves are brand new. Very clear and concise instructions enable even the inexperienced ama. tenr to construct with 100% success. - Supplied complete with valves output transformer (3 ohm only), acreened lead, wire, nuts, bolts, solder, etc. (No extras to buy) PRICE 79/6. P. \& P. 6/
Comprehensive circuit diagram, practical layout and parta list $2 / 6$ (free with kit) entirely different and advanced circuiry.

M/AM TUNER HEAD Beautifully designed and precision engineered by ttd. Supplied ready fitted with twin -0005 tuning condenser for AM connec tion. Prealigned FM sec ion covers $86-102 \mathrm{Mc} / \mathrm{s}$ mplete with $\mathrm{BOCO5}$ (6 L 12) valve and full circuite dia ram of tumer head Another special bulk purchase gram of tuner head. Another special buls purchase

MATCHED PAIR AM/FM I.F.'s
Comprising lst I.F. and 2nd I.F. discriminator (465kc/a Will match above tuner head. 11/-pair. P. \& P. 2/-.

GORLER F.M. TUNER HEAD 8-100 Mc/s, $10-7 \mathrm{Mc} / \mathrm{s} .1 . \mathrm{F}^{*}$. 15/-plus 2/6 P. \& P. (ECO85 valves $8 / 6$ extra).
NEON A.C. MAINS INDICATOR. For panel mounting, cut ut size $1 \frac{x}{}$ x x in. deep inc. terminal. White case wit ns giving brighter light. For mains 200/250v. $2 / 6$ each P. \& P. Gd (6 or more post free)

TWIN TELESCOPIC AERIAL

Comprising two 3 -section heavily chromed rods. Closed 12 in . each extending to 32 in . Completely adjustable from rounting bracket, coax lead and plug. Suitable for F.M or TV. 12/6. P. \& P. 2/6.

VIBRATORS. Large selection of $2,4,6,12,24$ and 32
 A.E. with all enquiries.
S.T.C. SILICON AVALANCHE HALF-WAVE RECTIFIERS Type RAs. 508 AF. 6 amps. 960 P.I.V. 1in. long x in.
dia. approx. List $50 /-0 U R$ PRICE 8/6. Post Free.
SPECIAL OFFER! PLESSEY TYPE 29 TWIN TUNING GANG. $400 \mathrm{pF}+146 \mathrm{pF}$. Fitted with trimmers and $: 1$ integral slow motion. Suitable for nominal $470 \mathrm{kc} / \mathrm{s}$ FEW ONLY : SIEMENS MINIATURE RELAY8, D.P.C.O. Gold-plated contacta. 6v, at 30 mA . Size approx

PRICES

Amplifier Kit
£9 100 P. \& P. 4/6
Built \& Tested 12100 P. \& P. 4/6
Power Pack Kit £2 100 P. \& P. 4/Built $\&$ Tested £3 00 P. \& P. 4/Cabinet (as illus.) £2 100 P. \& P. 4/Special offer- $\mathbf{£ 1 4 . 1 0 . 0}$ post free if all above ordered at same time or built and tested for E18.0.0, post free.)
Circuit diagram, construction details and parts list (free with kit) $1 / 6$ (S.A.E.)
4-SPEED PLAYER UNIT BARGAINS Mains Models. All brand new in maker's original packing. LATEST B.S.R. MODELS
0/12 Single Pieyer with mono Cart. GA25 Clanger with mono Cart. .
4.18.
all types available $1000, \$ \mathrm{P} .25 \quad 8000$, at60, etc. Send S.A.E. for latest bargain priees!

BRAND NEW CARTRIDGE BARGAIN ONOTONE 9TAHC COMPATIBLE STEREOCARTRIDGE BONOTONE 9TABC COMPATIBLE STEREOCARTRIDGE P. \& 1'. 1/-each. Ideal for use with above units.

LATEST B.S.R. XBM MONO COMPATIBLE CARTRIDGE Iith turnover sapphire styli suitable for playing 78, EP ecord wip
ONLY 2\%/6 P. \& P.1/6
BRAND NEW 3 OHM LOUDSPEAKERS in. $14 /-$; $6 \frac{1}{2} \mathrm{in} .18 / 6 ; 8 \mathrm{in} .27 /-$; $7 \mathrm{in} . x 4 \mathrm{in} .18 / 6$ 10in. x 6 in. $27 / 6$
M.I. 134 i 8 in. With high flux magnet, 21/E.M.I. 13 I \quad in. with high flux ceramic magnet, $42 / \mathrm{m}$ $3 / 6$ per speaker.

35 OHM SPEAKERS

3 ifin . 12/6; $7 \times 4 \mathrm{in}$. 21/- P. \& P. 2/- per speaiker.
E.M.I. 81^{*} HEAVY DUTY TWEETERS, Powerful ceramic BRAND NEW HEAVY DUTY 12in. SPEAKERS
Response $45 \mathrm{c} / \mathrm{s}-13 \mathrm{Kc} / \mathrm{s}$. $1 \neq \mathrm{in}$. voice coil. Available in 3 or 15 ohmas. Guaranteed full 15 watta British rating. Heary cast aluminium frame. These are current production by world famous maker and as they are offered well below list price we are not permitted to disclose th amme. LIMIED N MBER ONLY. UNREPEATABL 85.5.0. P . at 25.5. And 25 watt Guitar Model e88. 0

12 in. 'RA' TWIN CONE LOUDSPEAKER 10 watts peak output. 3 or $150 \mathrm{hm} .35 /-\mathrm{P}$. \& P. 3/6
VYNAIR AND REXINE SPEAKER AND CABINET FABRIC8. Approx. 54in. Wide. Usually 35/- yard. Ou RICE $13 / 6$ per yard length. P. \& P $2 / 6$ (min. one $\overline{7 d}$.) S.A.E. for samples.

LATEST COLLARO MAGNAVOX 363 STEREO TAPE DECK. Thrce speeds, 4 track, takes up to 7in. spools, B.S.R. TDI. 4-TRACK STEREO TAPE DECK, 9 Gns. B.S.R. TD2. 4-T

QUALITY PORTABLE TAPE RECORDER CASE. Brand new. Beautifully made. Only 49/6. P. \& P. $8 / 6$ iser 35/-. P. \& P. 3/-i ase High sensitivity. $18 / 6$. H^{F}, \& $\mathrm{P} .1 / 6$. ACOS HIGH MMPEDANCE CRY8TAL STICK MIKES. Listed at 42/-. OUR PRICE 21/-. P. \& P. 1/6.

SPECIAL OFFER! MOVING COIL STICK MIKE Fitted on/off switch for remote control. High quality. High or low impedance. (State imp. required.) BARGAIN PRICE 30/-P. \& P. 2/6.

MAINS TRANSFORMER. For transistor power supplies Tapped pri. 200.250v. Ser. 40-0-40 st 1 amp. (wit Drop thro mounting. Stack size $1 \frac{1}{2}$ 3 $\times 3$ inin. $27 / 6$ P. © P. 4/6. MAINS TRANSFORMER. Fdr Transistor power supplien Pri. 200/240v. Bec. 12-0-12 itt lamp. 14/6. P. \& P. $2 / 6$. MATCHED PAIR OF \& W WATT TRANSISTOR DRIVER AND OUTPUT TRANSFORMERS. Stack size 11 I $1 \frac{1}{8} \times 1$ in. Output trans. tapped for
10/-pair, plus $2 /-\mathrm{P}$. \& P .
7-10 watt OUTPUT TRANEFORMERS to match pair of ECL86's in push-pull to 3 ohm output. ONLY 11/-. P. \& P. 2/6

Patch $7-10$ Watt OUTPOT TRANSFORMERS to 3.75 , pair of ECL82's in push-puil. secondary tapped high. ONLY 12/- P. P $3 /-$ approx. $1 \times 1 \pm$ 10-12 watt OUTPUT TRANSFORMERS. Size $21 \times 2 \ln$. Clamp fitting, For two ELs44s in push-pull. State 3 or
15 ohm impedance. $12 / 6$. P- \& P. 2/6.

Open all day Saturday

Early closing Wed. 1 p.m.
A fev minutes from South Wimbledon
Tube Station

HARVERSON SURPLUS CO. LTD.

170 HIGH ST., MERTON, S.W. 19
SEND STAMPED ADDRESSED ENVELOPE WITH ALL ENQUIRIES
(Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOFED APPLY TO U.K. ONLY. CHARGED EXTRA.

"e"CIUBMAN'

 J. THORNTON-LAWRENGE GW3JGA

 J. THORNTON-LAWRENGE GW3JGA}

continued from the April issue

THE Clubman Mk IV is a further development of the Mk III version, previously described and includes an output stage with built-in loudspeaker. The complete circuit is shown in Fig. 30.

The Output Stage

This stage consists of a single transistor, Tr 9 , operating in class A and providing approximately 30 milliwatts of audio power to a $2 \frac{1}{2} \mathrm{in}$. loudspeaker mounted at the left-hand side of the cabinet.

The input to $\operatorname{Tr} 9$ is taken from the headphone jack socket J1 and may be replaced with a closed circuit type, if preferred, so that the output stage is disconnected when the headphone jack is inserted, as shown in Fig. 30. With the jack plug removed, input signals are passed to $\operatorname{Tr} 9$ base and amplified a.f. signals appearing in the collector circuit are passed through T1 to the loudspeaker. D.C. biasing of $\operatorname{Tr} 9$ base is provided by the potential divider R 29 and R30, the emitter stabilising resistor is R31. C25 provides extra decoupling of the -9 volt supply.

Two forms of negative feedback are incorporated in the output stage to improve the quality of reproduction. Negative series current feedback is provided by omitting the usual by-pass capacitor across R31, in this way the output signal current develops a signal voltage across R31 and this voltage appears in phase and in series with the input signal. Negative shunt voltage feedback is provided by connecting R29 to the collector of Tr9 instead of to the -9 volt line. The a.f. voltage across the primary of T1

Fig. 30: Theoretical circuit of the output stage.
produces an a.f. current through R29 and this is out of phase and in shunt with the input signal.

The output stage is constructed on a small Veroboard panel which is fixed to the chassis by a bracket, identical to those used for fixing the i.f./a.f. panel in the Mk II receiver. The Veroboard panel is $2 \frac{1}{8} \mathbf{x}$ $1 \frac{1}{4} \mathrm{in}$. and the layout of components is shown in Fig. 31. To fix T1 to the panel, it is necessary to make a slot between two pairs of holes, so that the mounting tags on the transformer may be passed through the slots and bent over on the reverse side of the panel.

The output stage panel is fixed near to the b.f.o. box, as shown in Fig. 33. The three connecting leads may be connected as follows, chassis to J1 earth, J1 to J1 live and -9V to S2.2.

Loudspeaker Mounting

The loudspeaker is mounted at the left-hand side of the chassis near to the output stage as shown in Fig. 33. It is necessary to make a clearance hole in the chassis, to allow the loudspeaker to sink through, until the magnet is resting on the top of the chassis. With a little care, it is relatively easy to cut out the required shape using an Abrafile and finally finishing off the edge with a small flat file.

The vertical edge of the chassis is left intact and

Fig. 31: Veroboard panel layout and connections.
appears across the front of the loudspeaker as shown in Fig. 32. The speaker is fixed to this edge using two clips, fixed with two countersunk 6BA screws and nuts. A piece of speaker fret material is fastened over the front of the speaker to complete the external appearance. Two wires connect the loudspeaker to the output stage panel. It is necessary to cut a $2 \frac{3}{k} \mathrm{in}$. diameter hole in the end of the cabinet to "let the sound out" and this is done partly in the top cover.

To mark out the hole, the covers should both be fitted normally to the receiver, the centre of the hole is marked, as shown in Fig. 32. A circle of $2 \frac{3}{8} \mathrm{in}$. diameter is then marked on the covers, using a pair of compasses or dividers. The covers are then removed and the

Photograph of the Mk. IV Clubman. A loudspeaker and output stage have been added.

Fig. 32: Sketch showing method of mounting the loudspeaker.

* components list

Resistors:

R29 15k Ω
carbon, $\frac{1}{2}$ W, 10%
R30 $2 \cdot 2 \mathrm{k} \Omega$
R31 100』
Capacitor:
C25 $100 \mu \mathrm{~F}, 15 \mathrm{~V}$ electrolytic
Transformer:
T1 $\quad 9 \cdot 2: 1$ ratio T/T4 Radiospares

Semiconductor:

Tr9 OC82
Loudspeaker:
$2 \frac{1}{2}$ in., 3Ω
Jack:
J1 Jack (insulated) closed.

Veroboard:

$$
2 \frac{1}{8} \times 1 \frac{1}{4} \text { in. } \quad 0.2 \text { in. matrix }
$$

Fig. 33: Layout of the extra stage.
shapes cut away using an Abrafile. The edges should then be smoothed off using a fine half-round file.

Where the covers have previously been covered with plastic Contact or Fablon material, it will probably be necessary to re-cover them completely, as once the plastic material has been stuck to the metal for some time, it cannot easily be removed and re-fitted. Care should be taken to get a good finish when trimming the material around the speaker cut-outs.

This completes the Mk IV version of the Clubman.

TO BE CONTINUED

KNOWLEDGE of semiconductors can be traced back as far as Michael Faraday who noticed the negative temperature coefficient of silver sulphide. But it was not until the second world war that the semiconducting properties of silicon and germanium were properly realised. Silicon and germanium occur in group IVB of the periodic table along with tin and carbon, and are similar in that they both possess four electrons in the outer, valence band of their atoms.

An atom consists of a centrally placed nucleus, positively charged, surrounded by negatively charged particles known as electrons. These electrons orbit the nucleus and although they exist in the space outside the latter they are not able to occupy just any old place. They are only permitted to rotate around the nucleus at certain discrete distances which correspond to certain energy levels. Thus to an isolated atom there is assigned a fixed number of energy levels at which its electrons can exist. But atoms do not exist in isolation, and as a result of this the picture is complicated by the fact that the electrons and energy patterns of adjacent atoms influence each other. This means that instead of an electron occupying an energy level associated only with its own nucleus, its energy level is modified

by the presence of neighbouring atoms. The result of this is that an electron can occupy a band of energies (Fig. 1).

CRYSTAL STRUCTURE

Germanium is a crystalline material, which means that its atoms are arranged in a regular fashion
throughout in a lattice-like structure. Each germanium atom has 32 electrons, of which four are valence electrons. These are the ones that are of importance because it is they that contribute to the electrical properties of a substance. The valence electrons form bonds with the valence electrons of adjacent atoms and it is these bonds that hold the lattice together. The valence electrons occupy the partially filled energy band shown in Fig. 1. Above this band is an energy gap where electrons cannot remain and a conduction band that they can enter if given sufficient energy to surmount the energy gap Eg, Fig. 1. The conduction band is an unoccupied band of energies into which electrons may pass. Obviously an electron at the top of the valence band requires an amount of energy equal to $E g$ to just scrape into the bottom of the conduction band, while an electron at the bottom of the valence band requires ($E \mathrm{~g}+E \mathrm{v}$) energy in order to scrape into the bottom of the conduction band.

On its own germanium is not a good conductor since in the pure substance (at absolute zero temperature) there are no free electrons available to produce a flow of current. If, however, an impurity that possesses either three or five valence electrons -remember germanium has four-is introduced into germanium during its preparation its conductivity is greatly improved. We must next see how this happens.

DONOR IMPURITY

Consider the situation when a pentavalent atom (i.e. one with five valence electrons) such as antimony has been added. Since the antimony atom has five valence electrons and only four can form valence bonds with the adjacent germanium atoms one is left "unpaired". This is free and can move about the lattice and thus contribute to conduction. One small point here: an atom with all its electrons present is electrically neutral, the charge on the positive nucleus being exactly balanced by the collective negative charge of the electrons. Thus if an electron leaves its parent atom the result is a positively charged atom since the charge on the positive nucleus is greater than the collective negative charge of its electrons. In the above case with antimony when the fifth valence electron leaves the atom it leaves behind a positively charged atom.
An impurity that contributes electrons to a semiconductor in this way is called a donor impurity, since it donates electrons, and because the electrical conduction thus made possible is by means of electrons the doped germanium is referred to as n -type, the n denoting the presence of negative carriers.

STEP UP YOUR EARNINGS withthis completel library of electical know-how and practice
 You can have this handsomely-bound library of facts.

IT TELLS YOU ALL ABOUT

Installing domestic wiring, regulations, equipment, testing, cables and faults, meters and switchgear, lighting, water heating, space heating, cookers, refrigeration, public address equipment
in fact everything you need to add
to your income, to really advance in your work.

You can allso see on Free Trial

Radio \& TV Servicing

This great new edition will help to save your time, to bcost your earning-power. Packed with CIRCUITS, REPAIR DATA and vital information it covers 800 popular 1965-68 TVs, Radics, 'Grams, Record Players and Tape Recorders-including latest data on COLOUR TV. Now you can examine this big NEW edition free for a week. 3 handsome volumes - over 1,250 pages. Speeds up repair work for year after year. Tick coupon on right for Free Trial. If kept, 15/dep. then 16 mthy. pymts. of 15/-. Cash in 8 days $£ 12$.

Use it

 FREE FOR 7 DAYSfigures, vital theory and day-to-day practice sent to your home to examine free of charge. It will help you understand the many branches of the vast electrical industry from installation work of all kinds, Equipment, Instruments, Motors and Machines, Repairwork, Maintenance and Operation right through to the Generation and Distribution of electricity. And, to make the 2,350 pages of absorbing text crystal clear there are over 2,000 "action" photos and explanatory drawings. In addition you receive a slipcase of 36 large Blueprint charts and sheets of handy data. Plus fascinating colour booklet of transparent pages which peel away to reveal how a Nuclear Power Station is operated.

Leading experts explain in detail Written by 87 contributors and edited by Dr. G. F, Tagg, one of the most eminent men in Electrical Engineering, this PRAC TICAL library is planned to give you the knowledge which would normally take a lifetime to acquire.

PRAGTICAL Electrical Engineering

Everything you want to know about: Installation Methods, Accessories. Installations for Buildings: Commercial, Domestic, etc. Appliance Installation and Maintenance: Waterheaters, Cookers, Master-Clocks, Time Switches, Telephone Systems, Alarm Systems. Motors and Control Gear. Transformers and Rectifiers. Instruments and Electronic Control: Portable, Laboratory, Recording instruments, Measurements of Power, Supply Meters, Testing, etc. Electric Welding, Heating and Electro-Plating, Electric Traction, Lifting and Conveying. Maintenance, Testing and Repair. Power Station Work : Modern Generating Station. Maintenance of Turbo-alternators, Central Control Duties of Shift Control Engineer Nuclear-power Central Control. Duties of Shift Control Engineer, Nuclear-power Cables, Transformer and Switching Stations, High-voltage Switchgear. Cables, Transformer and Switching Stations, Hugh-voltage Switchgear.
Supply Engineering: Public Electricity Supply, Cable-laying and Jointing, Faults, Remote Control.
4 VOLUMES 24 DATA SHEETS 12 QUICK-REF BLUEPRINT CHARTS Nuclear Power Stations Booklet Free-Electrical Pocket Book (value 10/6)

BENTLEY ACOUSTIC CORPORATION LTD.

ALL GOODS LISTED BELOW, ACTUALLY IN STOCK, ALL GOODS ARE NEW, BEST QUALITY MANUFACTURE ONLY, AND SUBJECT TO MAKERS' FULL GUARANTEE, PLEASE NOTE THAT WE DO NOT SELL ITEMS FROM USED EQUIPMENT NOR MANUFACTURERS SECONDS \& REJECTS, WHICH ARE OFTEN DESCRIBED AS "NEW AND TESTED" BUT HAVE A SHORT AND UNRELIABLE LIFE.

OA2	5%	6 CW	12/-	12AT7 3/6	90 CV	33/6	4/350	EF97 8/-	MU12/144	TH4B 10\%	W76	3/8	Y39	9
OB2	61-	6D3	$7 / 6$	12AU6 4/8	90 Cl	16/-	8/6	EF98 9/-	MX40 12/6	TH233 8/9	W77	2/6	BCZ11 3/6	OA182 2/-
OZ4	4/3	6 D 6	$3 /-$	12AU7 9/6	150 B 2	14/6	DW4/50e	EF183 6/3	N37 23/3	TP22 $5 /-$	w81M	$8 /-$	BC107 4/-	oazeo 1/-
143	2/8	6 E 5	$9 / 6$	12AVf $5 / 9$	150C2	5/-	8/6	EF184 6/3	N78 38/4	TP25 5/\%	w101	$26 / 2$	BC108 3/9	OAL202 2/-
144	12/8	6 F 1	$9 / 6$	12 AX 7 4/8	161	15/-	DY86 5/9	EH90 7/8	N108 28/7	TP2620 $7 / 6$	W107	10/6	BC109 4/8	OA210 9/6
145	5/-	${ }^{6 F 66}$	4/-	12AY7 9/8	185BT	34/11	DY87 5/9	EL32 3/-	N339 25/-	TY86F	W729	10/-	BC113 5/-	OA211 13/6
1A7GT	716	$6 \mathrm{F6M}$	${ }^{7 / 8}$	$12 \mathrm{Ba6} 5$ 5-	301	201-	E80F 24/-	EL33 12/-	${ }^{\text {P61 }}{ }^{2 / 6}$	11/10	X24	16/6	BC115 3/-	OAz20012/-
1 Cl	$4 / 8$	$6 \mathrm{Fl2}$	$3 / 3$	12BE6 5/3	30.	18/8	E83F 24/-	EList 9/6	PARC80 $7 / 6$	UABC80 513	X41	10/-	BC1 1 f 5 5-	OAZ201 10/6
1 C 2	718	${ }^{6 F 13}$	3/6	12 BH 7 8/-	303	15/-	E88CC 12/-	EL35 10\%	${ }^{1} \mathrm{C} 869 / 8$	UAF42 9/8	$\times 61$	$8 /$.	RC118 4/6	OAz202 9/-
$1{ }^{165}$	$8 / 6$	${ }^{6 F 14}$	15/-	${ }_{12 \mathrm{El}}^{12 \mathrm{El}} 178$	305	$18 / 6$	E180F 17/6	EL36 8/9	PC88 9/-	UB41 10/6	${ }^{1} 64$	$5 / 6$	${ }^{\text {BD119 }}$ 9/-	OAZ203 9/B
${ }_{165}$	${ }^{4 / 9}$	${ }_{6}^{6 F 15}$	10/9	1255GT 2/6	306	13/6	EA50 1/6	E137 16/8	${ }^{\text {PC95 }} 8$		X65	5/8	BFY50 5/-	OAZ204 9/-
1 C 6	10/6	${ }_{6} 617$	12/6	12J7GT 8/6	807	11/0	E. 776 13/-	EL41 8\%-	PC97 5/8	UBC81 6/8	X66	$7 / 6$	BFY51 4/6	OAZz00 9/-
1D5	61-	${ }_{6} 6 \mathrm{~F} 18$	816	$12 \mathrm{~K} 58 /$	956	$2 /-$	EABC80 8/-	ELA2 7/日	${ }^{\mathrm{PCO} 900} 9 /-$	UBF80 $5 / 6$	X76M	$7 / 9$	BFY52 5/-	OAZ206 9/-
${ }_{\text {1FD }}^{106}$	${ }_{8 / 8}^{9 / 6}$	$6 \mathrm{FF}^{23}$ 6 F 24	${ }_{101}^{11 / 8}$	${ }_{12 \mathrm{~K} 8 \mathrm{GT}} 7 / 8$	1821	$10 / 8$	${ }_{\text {EAC91 }}{ }_{\text {EAF42 }} 3 / 38$	${ }_{\text {EL81 }}$ 8/-	${ }^{\text {PCC84 }}$-6/ 6	UBF89 ${ }^{\text {UBL }}$	$\times 81 \mathrm{M}$	29/1	BF115 $2 / 8$	OAZ20710/6
1FD1	81.	${ }^{6 F 24}$	101.	12K8GT 7/9	5763	101-	EAF42 76	EL83 $6 / 8$	PCCB5 6/9	UBL21 9/-	$\times 101$	$29 / 1$	${ }^{\text {BFI } 15459 /-~}$	OAZ210 7/-
1FD9	3/8	$6 \mathrm{~F}^{25}$	$101-$	12Q7GT 3/6	7193	10/6	E1334 7/6	EL84 4/6	PCC88 1016	UCAL $5 / 6$	$\times 109$	26/-	BF159 5/-	OAZ213 7/-
$1 \mathrm{G6}$	$6 /$	6 F 28	10/8	12SA7GT8/9	7475	$2 / 6$	EB41 4/9	EL85 7/8	PCC89 9/9	UCC84 $8 /-$	Y63	51.	$\mathrm{BF163}^{4 /-}$	OAZZ2413/-
1 H 5 GT	710	$6 \mathrm{6F32}$	3/-	${ }^{12867} 48$ 4-	11834	20/-	EB91 $8 / 3$	EL86 8/-	${ }^{\mathrm{PCCH}} \mathbf{8 9} 813$	UCC85 $6 / 8$	Y65	51-	${ }^{\text {BFI }} 167{ }^{2 / 6}$	OC19 25/-
1 L 4	$2 / 6$	6G69	$2 / 8$	12847 3/-	ACO44	14/-	ERC3 $20 / 6$	EL91 2/8	PCFbo 7/-	UCFso $8 / 3$	${ }^{\text {Z63 }}$	4/9	${ }^{\text {BF173 }}$ 2/6	OC22 5/-
1LD5	5/-	6H6GT	1/6	$12835751-$	AC2PE		EBC41 7/3	EL9 5/-	PCF82 ${ }^{8 /-}$	UCH21 9/-	777	$3 / 3$	BF180 12/-	$\mathrm{OC23}^{7 /}$
1LN5	$4 / 8$	${ }^{6} \mathbf{J 6 G}$	$3 / 8$	128 F 7 3/-		19/6	EBC81 8/8	ELIP 80 13/-	PCF84 ${ }^{8 /-}$	UCH42 $8 / 6$	Z329	11/6	BF185 8/-	OC24 14/8
INSGT	$7 / 9$	6J5GT	4/6	12SQ7GT8)-	AC2PE	N/	E13C90 3/9	EM71 14]-	PC188 8/-	UCH81 0/-	2729	8/3	BY100 3/8	$\mathrm{OC} 25^{5 /-}$
$1 \mathrm{P1}$	81	656	3/-	12887 5/-		19/6	EbC91 $5 /-$	EM80 5/9	${ }_{\text {PCFP801 }} 8 / 8$	UCL82 ${ }^{7 /-1}$	2759	23/-	BY101 $11 / 8$	0 C 26 5/-
${ }_{1 P 10} 1{ }^{1}$	$4 / 9$ $5 / 8$	6576 657 GT	4/9 $8 / 6$		$\triangle \mathrm{ACAPE}$	EN $4 / 8$	${ }_{\text {ERF80 }}{ }_{\text {ERF83 }} 5 / 9$	EM81 EM84 6/9 $6 /-$	PGrsi2 ${ }^{\text {P/8 }}$	${ }_{\text {UCL83 }}{ }^{\text {U } 41 / 8}$			BY105 1016 BY114 686	$\mathrm{OC}^{\mathrm{C} 28} 5$
${ }_{185}^{1811}$	5/8	${ }_{6 K 6 \mathrm{GT}}$	${ }_{81}^{81}$	ll13 Dl 13 D 3 $9 /-$ $1 /-$		N ${ }^{\text {(5) }}$ (EBF83 ERF89 $7 / 9$ $1 / 9$	$\begin{array}{ll}\text { EM84 } \\ \text { EM85 } & \text { 6/-- } \\ \text { 1/- }\end{array}$	PCF805 $9 / 6$	UF41 ${ }_{\text {UF42 }}$	Transi		$\begin{array}{lll}\text { B3X114 } & 8 / 6 \\ 13 \mathrm{Y} 126 & 8 / 6\end{array}$	$\mathrm{OCP}^{\text {OC29 }}$ 16/6
194	4/9	6K76	1/3	14H7 9/6	AC/	N (7)	ER1221 10/3	EM87 6/8	PCFF60812/6	UF'80 $6 / 9$	${ }_{20} \mathbf{4} 2225$	10/6	BY234 $4 / \mathrm{m}$	OC30 $\mathrm{OC35}$ 10% 17
185	3/3	6K76T	4/6	14871916		18/6	EC52 4/3	EY51 6/6	PCL81 9 -	UF85 7/3	2 N 404	8/-	BY236 4/-	
	34/11	${ }_{6} 6 \mathrm{~K} 8 \mathrm{C}$	$3 /-$	$18 \quad 12 / 6$	AC/TH	110\%	EC53 12/6	EY81 7/-	PCL82 ${ }^{\text {8/8 }}$	UF86 9/-	2 N 2297	$4 / 8$	BY238 4/-	
$1{ }^{174}$	$2 / 6$	${ }_{6}^{61889}$	718	19 1016	AC/TP	19/6	EC54 8/-	EY83 9/-	PCLB3 $10 / 3$	U189 5/6	AA120	$3 / 0$	BYZ12 5/-	OC38 0 1176 10%
$1{ }^{144}$	$5 / 6$	${ }_{6}^{6 L 1}$	101	19AQ5 5/-	AC/VP	1 12/-	EC70 4/9	EY84 916	PCLA 4813 PCL5 8	UL41 9/-	AA129	${ }^{31-}$	${ }^{\text {BYZ13 }}$ 5/-	
105	5/3		778		${ }_{\text {ATP4 }}^{\text {AC/VP }}$	$211 / 3$	ECA6 $11 / 6$	EY86 EY87 $6 /-$ $6 /-$	$\begin{array}{ll} \text { PCLSE } & 8 / 3 \\ \text { PCL86 } & 8 / 3 \end{array}$	UL84 81.	${ }_{\text {AAC13 }}$	3/6	$\mathrm{COR12E}^{\text {CG64 }}$ 4/-	OC43 12/6
${ }_{20}^{2 D 13 C}$	7/8	${ }_{6 L 19}^{6 L 18}$	${ }^{7 / 8}$	$\begin{array}{ll}2014 & 2015 \\ 20 \mathrm{F2} & 11 / 6\end{array}$	${ }_{\text {ATP1 }}{ }^{\text {A }}$	88	$\begin{array}{ll}\text { EC88 } \\ \text { EC91 } & 11 /- \\ 4 /-\end{array}$	$\begin{array}{ll}\text { EY87 } \\ \text { EY88 } & 7 / 6\end{array}$	PCL86 ${ }^{\text {P/8/38 }}$	$\begin{array}{ll}\text { UL84 } & 6 /- \\ \text { UM80 } & 5 \%\end{array}$	${ }_{\text {ACl13 }}$	3/-	$\begin{array}{ll}\text { CG64H } \\ \text { GD3 } & \text { 8/6 }\end{array}$	$0 \mathrm{Cl44}$ 0 C 44 PY $8 / 3$
2×2	$3 /$	$6 \mathrm{LD20}$	6/8	$20 \mathrm{L1}$ 13/-	AZ31	7/9	$\begin{array}{ll}\text { EC92 } & \text { 6/6 }\end{array}$	EY91 3/-	PEN45 $7 /$ -	UR1C ${ }^{8 / 6}$	AC114	8%	GD4 8/3	$0 \mathrm{OC44PM} 813$
3 A 4	$3 / 6$	6N7GT	7 7-	$20 \mathrm{Pl} 17 / 6$	AZ41	$8 / 8$	LCC31 15/6	EZ35 5/3	PEN45DD	UU5 71.	AC12 ${ }^{\text {A }}$	2 /.	GD5 5/B	$0 \mathrm{C45}$ 1/9
3A5	8/-	6 Pi	121-	$20 \mathrm{P} 318 /$	1336	$4 / 9$	ECC32 4/6	EZ40 8/-	19/6	UU8 18/6	AC127	$2 /$ -	GD6 5/6	$\mathrm{OCHSM}^{0} 81 /$
3B7	$5 /$.	${ }_{6 P 25}^{6 P 25}$	12/-	$20 \mathrm{P}^{4} 417 / 6$	B319	${ }^{61-}$	ECC33 29/1	EZ41 8 /6	PEN46 4\%	UY1N $10 / 3$	AC128	21-	GD8 4/-	${ }_{0} \mathrm{Cb55}^{\text {22/8 }}$
$3 \mathrm{D}_{6}$	$3 / 9$	${ }_{6828}^{6828}$	12\%	${ }^{2085}$	Blis	1016	ECC34 29/6	Ez80 3/9	H'EN38389/6	UY $2118 /-$	${ }_{\text {ACL54 }}$	${ }_{8 / 8}^{8 /}$	G199 4/-	$\begin{array}{ll}0 \mathrm{Cb5} & 22 / 6 \\ 0 \mathrm{C66} & 25 /-\end{array}$
${ }_{305 \mathrm{GT}}$	${ }_{6 / 8}^{5 / 3}$	6828 687	251-	2546 Cl $7 / 8$ 25 L 2 Cl $4 / 9$		$8 / 6$ 1816	ECC35 4/9	$\begin{array}{ll}\text { EZ81 } & 4 / 3 \\ \text { EZ90 } & 3 / 6\end{array}$	PEN384 ${ }_{11 / 6}$	$\begin{array}{ll}\text { UY41 } & 8 / 6 \\ \text { UY85 } & \\ 5 / 6\end{array}$	${ }^{\text {ACL5 }} 5$	8/8	GD10 4/\%	OC70 2/3
${ }_{384}$	4/9	687GT	8/9		${ }_{\text {CL3 }}$	19/6	$\begin{array}{ll}\text { ECC40 } & \text { P/6 } \\ \text { ECC81 } & 3 / 6\end{array}$		S3D	$\begin{array}{ll}\text { UY85 } & \text { U10 } \\ \text { U1- }\end{array}$	${ }_{\text {AClisi }}$	$5 /-$	$\begin{array}{ll}\text { GDD1 } & 4 / \% \\ \text { GD12 }\end{array}$	$\mathrm{OC7}^{0} 21$.
3 y 4	5/8	$6 \mathrm{R7O}$	5/8	${ }_{25 Y 56} 8 / 6$	CV_{6}	$10 / 6$	$\begin{array}{ll}\text { ECC882 } & \\ \text { ECC82 }\end{array}$	FW4/8008/6	19/6	U12/14 7/8	${ }_{\text {AC165 }}$	5 j-	GDI4 10\%	$\mathrm{OC72}^{2 /-}$
$4 \mathrm{D1}$	$3 / 9$	68A7GT	T 70	$25 z 40813$	${ }^{\text {cV63 }}$	1016	ECC83 4/6	GZ30 7/6	PENA4 19/6	U16 15/-	${ }_{\text {ACl }} 166$	5/-	GD15 8/-	$\begin{array}{ll}0 \mathrm{Cl7} \\ \mathrm{OC74} & 18 /- \\ 80 /-\end{array}$
${ }^{5} \mathrm{B4} 4 \mathrm{OY}$	8/9	$68 \mathrm{C7}$	6/6	$25 \mathrm{z5}$ 7/-	CV271	12/6	ECC84 8 -	GZ32 9/-	PEN/DI	$\mathrm{U17}^{\text {U18 }}$ 5/-	${ }^{\text {AC167 }}$	12/-	GD16 4/-	$\begin{array}{ll}\text { OC74 } \\ 0 \mathrm{OC75} & 8 /- \\ 2 /-\end{array}$
${ }^{50} 40$	4/9	${ }_{6}^{6897}$	$7 / 8$ 31	${ }^{25766} \quad 8 / 6$	$\mathrm{CV}^{\text {CV }} 28$	18/-	ECC85 5/-	${ }_{\text {O233 }}$$18 / 6$ 731	$403017 / 6$	$\mathrm{U} 18 / 20$ $8 / 6$	${ }^{\text {ACl68 }}$	${ }_{6 / 8}^{7 / 6}$	GET102 4/9	
${ }_{5 \times 3}^{5 \times 4 G}$	8/9	6817 6857	$3 /$.	$\begin{array}{ll}30 \mathrm{Cl} & 7 / \% \\ 30 \mathrm{Cl15} & 13 / 6\end{array}$	${ }_{\text {CY1 }}$	$18 / 4$ $8 / 8$	${ }^{\text {ECCB8 }} 77$ 7-	$\begin{array}{ll}\text { G734 } & 10 /- \\ \text { G737 } & 14 / 6\end{array}$		${ }_{\text {U19 }}{ }_{\text {U22 }} \quad$ 5/9/-	${ }^{\mathrm{ACl}} \mathrm{AC} 176$	-11/8	GET103 4/-	${ }^{0} \mathrm{OC77} 31 / 4$
5 Z 3	$7 / 8$	68K7	4/8	30 C 1717 l	CY31	$7 / 9$	ECCl ${ }^{\text {E9 }}$ 9/- 9 -			U25 12/6				$0 \mathrm{C78} 3 /$ -
5Z4G	$7 / 6$	68Q7at	$81-$	${ }_{30 \mathrm{Cl}}{ }^{3} 818$	D1	1/3	ECC804 12/8	Hal3C80 $9 / 3$	${ }_{\text {P1 }}$	U26 11/-	${ }_{\text {ACV17 }}$	${ }^{5 / 4}$	GETIH $15 / 6$	OC781 $3 /$ -
6/30L2	12/6	6887	$2 /$.	30 FS 11/6	${ }^{\text {D } 15}$	15/6	${ }_{\text {ECF80 }}$	HL2 $7 / 6$	PL81 7/6	U31 8/3	ACY18	5/3	GETII3 4\%-	$\begin{array}{ll}0 \mathrm{Cl73} \\ \mathrm{OC81} & 8 /- \\ 2 /-\end{array}$
6 A 8 G	$7 / 6$	${ }_{6817}$	$12 / 8$	30FL1 15/-	${ }^{1} 63$	$5 /$	ECF82 6/9	HL13C 4 /-	PL81A 7/6	U33 13/6	ACY19	6/3	GET1517\%-	$\begin{array}{ll}0 \mathrm{Cl81} \\ \mathrm{OC811} & 2 / \\ \end{array}$
6AC7	31.	6 CUGT	5/8	$30 \mathrm{FL12} 15 /-$	D77	$2 / 3$	ECF86 8/8	HL33DD 5/-	$\mathrm{PL}_{182} 5 / 9$	U35 18/8	ACY'0	4/9	GET116 7/6	0 Ccsim
$6 \mathrm{AG5}$	2/6		${ }_{7}^{5 /-}$	$30 \mathrm{FLL4} 12 / 6$	DAC32	$7 /$	ECF80424/-	HL41 ${ }^{3 / 9}$	${ }^{\text {PLL83 }}$ 6/-	$\mathrm{U37}^{84 / 11}$	ACY21	5/9	GET118 4/6	${ }_{0} 0 \times 818$ 5/6
$6 \mathrm{AG7}$	$5 / 9$	6076 $6 V 6 G$			DAF91	6/3-		HL41DD ${ }^{19 / 6}$	${ }^{\text {Pl184 }}{ }^{6 / 3}$	U450 15/6	ACY2	3/6	GETII9 4/6	
${ }_{64 \mathrm{AJ5}}$	$8 / 6$ $4 / 9$	6V6G 6 $6 . \mathrm{VGGT}$	${ }_{8 / 6}^{3 / 6}$	$\begin{array}{lll}301215 & 14 /- \\ 30 \mathrm{~L} 17 & 13 \%\end{array}$	Daf96	8/-	ECH3 $23 / 3$	1976 HLA2DD $8 /-$	$\begin{array}{lll}\text { 1'LL500 } & 13 / 6 \\ \mathrm{PL} 504 \\ 15 /-\end{array}$	$\begin{array}{ll}\text { U50 } & \text { 5/9 } \\ \mathbf{U 5 2} & 4 / 8\end{array}$	${ }_{\text {ADP }}$	4/3.	${ }^{4} \mathrm{ETST3} 8888$	${ }_{\text {OCP22 }}$ per mair $2 / 3$
6AK5	819	6 X 4	${ }^{6 / 6}$	$\begin{array}{lll}30 \mathrm{P} 4 & 13 / 8\end{array}$	${ }_{\text {D194 }}$	10/6	ECH21 9/8	HN309 ${ }^{\text {H }}$ /6/6	$\begin{array}{ll}\text { PL504 } & 15 /- \\ \text { PM84 } & \text { 9/3 }\end{array}$	$\begin{array}{ll}\text { U52 } & 4 / 9 \\ \text { U7B } & 4 / 6\end{array}$	${ }_{\text {ADI }}$ AD149	8/-	GETE727 10/-	OC82 $2 / 6$
6AK8	6/-	0x50T	5/3	30 P 4 MR	DP41	$12 / 6$	${ }_{\text {ECH33 }}{ }_{\text {ECH }}$ 22/8	HVR2 8/9	$\begin{array}{ll}\text { PXX484 } & 14 /-\end{array}$	U78 $3 / 8$ 718	AF102	18/-	GET873 4/-	$0{ }^{0} 838$
6AL5	2/3	${ }^{6 \times 7} 9$	$12 / 6$	13/-	DDT4	$7 / 6$	ECH35 ECH 42 $8 / 9$	HVR2A $8 / 9$	$\begin{array}{ll}\text { PY31 } & \text { 8/6 }\end{array}$	U107 17/8	AF114	4/-	[874	$0_{0684} 3 /-$
BAM4	18/6	$7{ }^{74} 7$	$12 / 6$	$30 \mathrm{P12} 11 /-$	DF33	719	ECH81	${ }_{1} W^{5} 3 / 8$	PY32 ${ }^{\text {P }}$ 10/-	U191 12/-	AF115	3\%-	23/6	
$6 \mathrm{AM5}$	$2 / 6$	${ }_{7} 7 \mathrm{BL} 7$	$\stackrel{10}{10}$	$30 \mathrm{P19}$ 11/-	DF66	15/-	ECH83 7\%	1W4/350 $5 / 6$	PY33 10/-	U251 12/6	AF116	3/4-	CET882 10/-	${ }^{\text {OCl3 }}$
6AM6	$3 / 3$	${ }_{7}^{7186}$	10/8	301111515	${ }_{\text {DF91 }}$	${ }^{301 /}$	ECH84 616	IW $415006 / 5$	${ }^{1} \mathrm{Y} 80$ 5/-	U281 8/9	AF117	$3 / 4$	OLTR87 $4 / 6$	$\begin{array}{lll}\text { OC140 } & 19 /- \\ \text { OC169 } & 3 / 9\end{array}$
${ }^{64 Q 5}$	$4 / 8$	${ }_{7}^{787}$		${ }_{30 \mathrm{PL}}^{3014} 15 \mathrm{l}$ 15\%-	${ }_{\text {DF91 }}^{\text {D }} 1$	${ }_{6 /-}^{2 / 6}$	ECL80 6/-		PY81 5/-	${ }^{\mathbf{U} 282} 1812 / 3$			GET889 4/6	OC169 OC170 $3 / 6$ 816
${ }_{6 A \text { 6RTG }}$	${ }_{3}^{20 / 9}$	${ }_{7}{ }_{76}$	${ }_{601}^{80}$		${ }_{\text {D }}{ }_{\text {1/96 }}$	+8/-	ECL82 $6 /-$	$\begin{array}{ll}\text { KF'35 } & 12 / 6 \\ \mathrm{KL} 35 \\ 11 / 6\end{array}$		$\begin{array}{ll}\text { U301 } & 12 / 8 \\ \mathbf{U} 329 & 12 / 6\end{array}$	${ }_{\text {AF119 }}$	7/8-	GET890 $4 / 6$	$\begin{array}{ll}\text { OC170 } & 2 / 6 \\ \text { OC171 } & 3 / 4\end{array}$
6AT6 6 6U6	3/9	$7 \mathrm{H7}$	5/-		1) H 30	15/6	ECL83 9\%-	KL132 $21 / 7$	$\begin{array}{ll}\text { P183 } & 5 / 6 \\ \text { PY88 } & 7 / 3\end{array}$		${ }_{\text {AFP }}{ }^{\text {AFL }}$	3/6	${ }_{\text {GET897 }}{ }_{\text {G/6 }}$	
6av6	$5 /$.	7 R 7	12/6	$350511 / 9$	${ }^{1} 163$	51	ECL84 12\%	KT2 5/-	PY800 6/-	U404 \% 76	${ }_{\text {AFL }}{ }^{\text {AF }}$	${ }_{7} / 1$.	$\mathrm{GEX}^{\text {GE13 }}$ 3/6	Oc200 5/-
6R88G	2/6	777	$5 /-$	$35 \mathrm{L6GT}$ 8/3	DH76	3/6	${ }_{\text {ECL86 }}{ }^{\text {ECL85 }}$ 11/-	KT8 15/-	1 Y 8016%	U801 18/-	AF127	3/8	GEX 35 4/6	$\mathrm{OCH}^{0201} 23 /-$
6846	$4 / 6$	784	8/6	35 W 4 4/6	DH77	$3 / 9$		KT32 4/9	PZ30 9/8	U4020 8/-	AF139	11/-	GEX 36 10/-	0 O 202516
$6 \mathrm{6BE} 6$	4/3	9 PW 6	$9 / 6$	$3523101-$	DH81	$10 / 9$	ECLL ${ }^{23 / 8}$	KT36 $29 / 1$	QPיpl 51-	VMP4G 17/-		10--	GEX 45:1\%-	
68G60	20/5	$9 \mathrm{9L2}$	3/-	${ }_{3574 \mathrm{GT}}^{3 / 86}$	${ }_{\text {DH107 }}$	25/-	EF22 ${ }^{\text {E/818 }}$	KT41 $\begin{gathered}\text { KT4 } \\ \text { KT4/6 } \\ 5 / 8\end{gathered}$	QQVO3/10.	$\begin{array}{lll}\text { VP4 } & 14 / 8 \\ \text { VP4A } & 14 / 8\end{array}$	AF179 AF180	${ }_{9}^{13 / 8}$	OEX55/1	
${ }_{6}^{613} \mathbf{H 6}$	${ }^{6 / 6}$	${ }^{910} 7$		${ }_{42}^{35250 T} 51 / 6$	DH107			$\begin{array}{ll}\text { KT44 } & \text { 5/9 } \\ \text { KTtil } & 12 /-\end{array}$		$\begin{array}{lll}\text { VP4A } \\ \text { VP4 } & 14 / 8 \\ \text { VPa }\end{array}$				$\begin{array}{ll}\text { OC205 } & 7 / 8 \\ 0 \mathrm{O} 206 & 10 / 6\end{array}$
6BJ6 68 C 5	7/6-	${ }^{10 \mathrm{Cl}} 1$	12/-	42 $5 /-$ 43 10% 	DK3z	${ }_{\text {1/8/8 }}$	EF37A $71-$	KTtil KT63 $12 /-$ $1 /-$	Q875/20 ${ }_{10 / 6}$		AFI81 AFI 186	$14 /-$ 10%		$\begin{array}{ll}\text { OC206 } & 10 / 6 \\ \text { OC812 }\end{array}$
6BQ7A	7 7-	10D1	$7 /-$	50A5 21/10	DK40	1016	EF39 5/-	KT66 18/6	QS150/15	${ }^{\mathrm{VP} 23} 82 / 6$	AFZ12	5/-	M1 2/10	OCP71 27/6
6BR7	81-	10D2	$11 / 8$	$50 \mathrm{B6}$ 6/3	DK91	4/9	$8 / 9$	KT74 12/6	${ }^{9 / 6}$	VP41 5/-	A ${ }^{\text {Y } 22}$	8/6	M3 $2 / 10$	$0 \mathrm{ORP12}$ 15\%
6 BR 8	81	10Fl	151-	${ }^{50} 5{ }^{5} 5 / 9$	DK92	7/6	EF41 9/-	KT76 7/6	R10 15/-	VR75 21/-	ASY28	$6 / 8$	OA5 1/9	$8 \times 1 / 6$
6 BET	18/8	10 Fg	9\%-	50CD6G41/-	DK96	$6 / 6$	EF42 3/6	KT88 27/6	R11 $19 / 6$	VR105 5/-	A8Y29	10/-	OA9 2/8	Ts\% 12/6
68W6	${ }_{5}^{7 / 8}$	$10 \mathrm{Fl8}$	9/-		${ }_{\text {DL33 }}$	$8 / 8$		KTW61 5/9	${ }^{\mathrm{R} 12}{ }^{6 / 6}$	VR150 50,	AY100	28/-	OA10 8/6	T33 15/-
${ }^{6 B W} 7$	$5 / 6$ $4 / 6$	10LD3	${ }^{\text {8/8/8 }}$	$\begin{array}{lll}52 \mathrm{KU} & 14 / 8 \\ 53 \mathrm{KU} & 14 / 6\end{array}$	${ }_{\text {DL72 }}$	${ }^{4 / 4} 1{ }^{\text {d }}$	$\begin{array}{ll}\text { EF574 } \\ \text { EF73 } & 8 / 6\end{array}$	KTW62 12/8	1:16 34/21	VT61A \%/-	BA115	$2 / 8$	OA47 21-	V10/15
${ }_{68 \times 6}$	4/6	${ }_{10 \mathrm{P} 13}$	15/8	${ }_{72}^{53 \mathrm{KU}}$ 14/6	${ }_{\text {DL75 }}$	${ }_{301}^{151}$	EF80 4/6	$\begin{array}{ll}\text { KTW63 } & 5 /- \\ \text { KTZ41 } & 8 \%\end{array}$	117 1816	VT501 3/-	BA116	9/-	OA7\% 3/-	X ${ }^{102} \begin{aligned} & 12 /-6 \\ & 19\end{aligned}$
${ }_{6 \mathrm{CbGT}}^{6}$	81.	${ }_{10 \mathrm{Pl} 14}$	15/6	$\begin{array}{ll}72 & 8 / 6 \\ 77 & 5 / \%\end{array}$	DL92	30/9	$\begin{array}{ll}\text { EFF83 } & \text { 4/6 } \\ \text { EF88 }\end{array}$	$\begin{array}{ll}\text { KTZ41 } & 8 /- \\ \mathrm{LP2}^{\text {a }} & 8 / 6\end{array}$	$\begin{array}{ll}\text { R18 } & 9 / 6 \\ 119 & 8 / 8\end{array}$	VU111 $\begin{gathered}\text { 8/- } \\ \text { VU120 } \\ \text { 12\%- }\end{gathered}$	BA129 BA 30	$2 / 6$	$\begin{array}{ll}\text { OA73 } \\ \text { OA79 } & 3 /-1 / 8\end{array}$	XA102 19/6 $\mathrm{XAlO3} 15 /-$
$6 \mathrm{C6}$	$3 / 8$	l2ab	5/-	78 4/9	DL94	5/6	EF85 4/6	$\mathrm{LZ}^{2319} 7 /$	RK34 7/6	vulzoaliz-	BCY10	$5 /$.	OA81 1/9	MaT1007/9
6 C 9	10/9	12AC6	8/-	$85 A 2816$	DL96	8/-	EFP66 6/3	LZ329 7/-	SP13C 12/6	VU133 7/-	BCY 12	$5 i-$	OA85 $1 / 6$	Matiol8/8
${ }_{6} 6 \mathrm{CD60}$	19/6	12AD6	91-	$90 \mathrm{AG} \quad 67 / 6$	LLs10	10/8	EF89 4/9	MH1D4 7/6	$\mathrm{BP} 42^{12 / 8}$	W42 11/-	beri3	5/-	OA86 4/-	MAT120 7/9
${ }^{6 C D} 7$	9/8	12AE6	7/8	90 AV 67/6	DM70	$8 /$	EF91 3/3	M HLD6	8P61 2/-	W61M 24/8	BCY34	$5 /-$	OA90 2/6	Mat121 8/6
${ }^{6} \mathrm{CH} 6$	6/-	$12 A T 6$	4/6	$90 \mathrm{CH} 34 /-$	DM71	$9 / 9$	EF92 2/6	$12 / 6$	TDD4 $7 / 6$	10/8	BCY38	5/-	OA91 1/9	ZE12V7 1/9

MATCHED TRANSSTOR SETS 1-0C44 and 2-0C45 8/6; 1-0C81D and 2-0C81 7/6; 1 0C82D and 2-0C82 8/6; Set of three-OC83 (GET118/119) 8/6; LP15 package (AC113, AC154; B.T.C. 1 watt Zener dioder, $2 \cdot 4 \mathrm{v}: 2 \cdot 7 \mathrm{v}: 3 \cdot 0 \mathrm{v}: 3 \cdot 6 \mathrm{v}: 4 \cdot 3 \mathrm{v}: 13 \mathrm{v}: 1 \mathrm{f} \mathrm{v} ; 18 \mathrm{v}: 30 \mathrm{v}$. All $3 / 6 \mathrm{~d}$. each.

[^9]
ACCEPTOR IMPURITY

An impurity material the atoms of which have three valence electrons will also increase the conductivity of semiconductor material if introduced into the crystal lattice structure. In this case, however, instead of there being a free electron as in the case of the n-material there appears a gap or hole in the crystal lattice structure since germanium atoms, having four valence electrons, form four valence bonds with adjoining atoms in a complete lattice. The hole thus introduced into the crystal lattice structure represents a positive charge-equal to the negative electrical charge which an electron carries-and in fact will attract to it any free electrons that happen to be present. For this reason a trivalent impurity material is termed an acceptor impurity-since it will accept an electron to complete its electron pairing with adjacent atoms in the crystal struoture and, since the holes introduced by it represent a positive charge, semiconductor material doped with an acceptor impurity is called p-type semiconductor material.

EFFECT OF IMPURITIES

We must now relate these impurity introductions to the energy diagrams previously described. In the case of the donor impurity the spare electrons contributed have energies just below the conduction band. This means that with a small "push" (in this case a quantity of energy) they will move into the

Fig. 2: Energy level diagrams for (a) donor and (b) acceptor impurities.
conduction band and be able to take part in electrical conduction (Fig. 2a). In the case of the alternative acceptor impurity the energy of the holes contributed lies just above the valency band (Fig. 2b). This means that electrons can be easily moved from

Fig. 3: Unbiased p-n junction characteristics.
the valency band into this level to take pant in conduction

THE P-N JUNCTION DIOLE

A diode allows current to flow easily in one direction but not in the other. A semiconductor diode consists of two regions of oppositely doped germanium formed together (Fig. 3). In the pregion we have mobile positive carriers and stationary negative charge centres and in the n-region mobile negative carriers and stationary positive charge centres.

On forming the two regions mobile negative carriers from the n-region travel across the junction and combine with the positive holes in the p-region, while mobile positive carriers move in the other direction to combine with the electrons of the n region.

This occurs in the region very close to the junction. As can be seen from Fig. 3a all the mobile charges in this region have been eliminated leaving only the fixed positive and negative charges associated with the donor and acceptor atoms. This region next to the junction containing only fixed positive and negative charges is called the depletion layer.

Thus the charge in the depletion layer on the p and n side is as shown in Fig. 3 b falling to zero through the rest of the crystal. Fig 3c shows the potential throughout the crystal and it is this that is of importance when considering diode action. In the n -region the potential gradually rises to some positive

Fig. 4: (a) Forward biased junction. (b) Potential barrier.
value because of the positive charges in the depletion layer, but increases no further than the end of the depletion layer. In the p-region the reverse occurs and a negative potential is set up across this half of the depletion layer.

The energy diagram (Fig. 3d) is interesting: associated with both halves of the depletion layer are conduction and valency bands but these vary across the width of the depletion layer as shown. Notice that the energy gap Eg between conduction band and valency band remains constant. We must next consider the flow of electrons that occurs across the whole crystal if a potential difference is placed between opposite faces of the semiconductor, bearing in mind that (a) the crystal is neither an insulator nor a conductor and (b) a potential difference already exists between its ends (see Fig. 3c).
If the negative terminal of a battery is connected to the n side and the positive terminal to the p side and the voltage is sufficient it will reduce the potential barrier across the junction as shown in Fig. 4. In this case electrons will flow from the negative terminal of the battery via the semiconductor diode to the positive terminal with very little hindrance from the semiconductor. In this condition the diode is said to be forward biased and acts as a

Fig. 5: (a) Reverse biased junction. (b) Potential barrier.

conductor. The application of the battery in this way drives the free electrons and holes nearer the junction, thus decreasing the size of the depletion layer and making easier the passage of current across the junction.

If, however, the negative terminal of the battery is connected to the p-region and the positive terminal to the n-region, the situation will be reversed and the potential barrier increased as shown in Fig. 5. This means that before electrons can travel from the \mathbf{p} to the n-region they have to acquire sufficient energy to surmount this considerable potential barrier and thus under normal conditions no flow of current occurs. The diode is said to be reverse biased, and acts as an insulator obstructing the flow of current.

Thus the diode is a conductor with the applied voltage in one direction and an insulator with the applied voltage in the other.

DIODE CHARACTERISTICS

A typical diode characteristic is shown in Fig. 6, and may be obtained by using the arrangement shown in Fig. 7. With switches A and B in the position shown the diode is forward biased, and in the other position the diode is reverse biased. The variable resistance is used to alter the voltage applied across the semiconductor diode, this being measured on the voltmeter. The corresponding current flowing through the diode is recorded on the ammeter.

Taking first the forward biased case shown in Fig. 6 we see that the relationship between voltage and current is initially curved so that only small increases in voltage are required to produce quite substantial changes in current. This curve is exponential in shape. In the reverse direction it can be seen that a very large voltage has to be applied before any appreciable current will flow, so that up to this point (C) the device can be said to act as an insulator. What happens beyond this point is known

 PICK-UP ARM Complete with ACOS LP-78 Turnover
GP67 and 8tylii 25/-; ACO8 GP67 15/-; B.8.R. TC8 25/-.
8PEAKER FRET Tygan various colours, 5Rin. wide, Irom EPEAKER FRET Tygan various colours, 52 in. Wide, from 10/- It.: 28in. wide from $5 /-$ It. 8AMPLES 8.A.
EXPANDED METAL Gold or 8ilver $12 \times 12 \mathrm{in}$. $6 /-$.
FULL WAVE BRIDGE CHARGER RECTIFIERS:
 lor 6 or 12 v., $1 \uparrow$ amps., $17 / 6: 2$ amps., $21 /-; 4 \mathrm{amps} ., 30 /-$ MOVING COIL MULTIMETER TK $25 . \quad 49 / 6$ 0-1,000v. A.C./D.C. ohms 0 to 100 k , ete.,
MOVING COIL MULTMETER EPROK. $99 / 6$ Ohms 0 to 8 meg. 50 Mieroamps (Full list Meters S.A.E.)

NEW MULLARD TRANSISTORS
$\begin{array}{lllllll}\text { OC71 } 8 /-; & 0 C 72 & 6 /-; & \text { OC81D } & 6 /-; & 0 C 81 & 6 /-; \\ \text { AF115 } & 8 /-;\end{array}$

$$
\begin{aligned}
& \text { REPANCO TRANSISTOR } \\
& \text { Push Pull Driver. } 9: 1 \mathrm{CT}
\end{aligned}
$$

TT45. Push Pull Driver. 9:1
TT46. Push Pull Oatpat. ©T 8:1
 TRANSISTOR MAINS ELIMINATORS. FAMOUS "POWER MITE", 9 VOLT. SAME SIZE AS PP9 BATTERY. 45/-
FULLY SMOOTEED. 150 mA . FULL WAVE CIRCUIT FULLY SMOOTHED. 150 mA . FULL WAVE CIRCUIT

. . $48 / 6$
$.10 / 6$ WEYRAD P50 - TRANSISTOR COILS
 Osc. P50/1AC I.F. P50/2CC 470 kc/s... 5/7
3rd I.F. P50/3CC 6/- Tuning Gang . 3rd I.F. P50/3CC Weyrad Booklat. 10/6 VOLUME CONTROLS 80 ohm Coax $8 d$. yd. Long spindles. Midget Size $\begin{array}{ll}5 \mathrm{~K} . \text { ohms to } 2 \text { Meg. LOG or } & \text { SEMI-AIR SPAGED CABLE } \\ \text { LIN. L/S } 3 /-. & \text { D.P. } 5 /-. \\ 40 \text { Yd. } 20 /-; & 60 \text { Yd. } 30 / \text {-. }\end{array}$
 COAXIAL PLUG $1 /$-. PANEL SOCKETS $1 /$-. LINE SOCKETS 2/-. OUTLET BOXES, SURFACE OR FLUSH $4 / 6$. BALANCED TWIN FEEDERS $1 /-$ Yd. 80 or 300 ohms.
CAR AERIAL PLUGS $1 / 6$; SOCKETS $1 / 3$; LINE SOCKET $2 /-$

SELMER

TRANSISTOR
AMPLIFIER
ONE WATT POWER

OUTPUT

Portable Cabinet size 12×4
\times 9in. fitted 7×4 in. Speaker,
Volume Control. Standard
Volume Control. 8 tandard
Jack Socket. Uses PP9 Bat-
tery. Will increase volume
ters. Will increase volume and performance of Trausistor Radios, Record Payers, \quad OUR $79 / 6$ POST 5/6
Ideal for Guitar practice.
Worth Double!

THE E.A.R. RECORD PLAYER CABINET Strongly built wooden abbinet covered in Blue and Grey $\left\lvert\, \begin{aligned} & \text { leathercloth. Size } 15 \times 17 \times 8 \mathrm{in} \text {. Motor Board } 141 \times 12 / \mathrm{in} \text {. } \\ & \text { ready cut out lor B.8.R. Monareh UA12/14/15/16/25 }\end{aligned}\right.$ ready cut out lor B.S.R. Monaroh UA12/14/15/16/25
decks. Gilt fittings, strong carrying bandle. Amplifter decks. Gilt fittings, strong carrying handle. Amplation
space size $14 \times 7 \times 3 \mathrm{in}$, is completely enclosed. The bsfle board is cut out for a 6 fin. dia. speaker. Post 5/6 59/6
NEW TOBULAR ELECTROLFTICS
NEW T.
$2 / 850 \mathrm{~V}$.
481450 v.
$8 / 450$ v.
$16 / 450 \mathrm{v}$.
$82 / 450 \mathrm{v}$.
$25 / 45 \mathrm{v}$.
50150 v

 | $50 / 50$ v. | \cdots | $2 / 8$ | $16+18 / 450$ | v. $4 / 3$ | $60+100 / 840$ |
| :--- | :--- | :--- | :--- | :--- | :--- | SUB-MNN. ELECTROLYTICS. 1, 2, 4, 5, 8, 16, 25, 30, 50, 100, 250 mid. $15 \mathrm{v} .2 /-; 500,1000 \mathrm{mld} .12 \mathrm{~V} .3 / 6 ; 2000 \mathrm{mfd} .85 \mathrm{v}, 9 / \mathrm{B}$ GERAMIC. 500 v. 1 PF, to 0.01 mId . 9 d . Dises $1 /-$

$$
\begin{aligned}
& \text { PAPER TUBOLARS } \\
& \text { 2/G; } 1 \mathrm{mfd}, 3 /-2 \mathrm{mld} .
\end{aligned}
$$

$850 \mathrm{v},-0.1 \mathrm{gd}$. $0.52 / 6 ; 1 \mathrm{mid} .3 /-; 2 \mathrm{mfd}, 150 \mathrm{v}, 3 /-$
$500 \mathrm{v} .-0.001$ to $0.059 \mathrm{~d} .0 .11 /-0.251 / 6 ; 0.58 /-$
$5007 .-0.001$ to $0.059 \mathrm{~d} . ; 0.11 /-; 0.251 / 6 ; 0.68 /-$
$1,000 \mathrm{v},-0.001,0.0022,0.0047,0.01,0.02,1 / 6 ; 0.047,0.1,2 / 6$. E.H.T. CONDENSERS. $0.001 \mathrm{mId} ., 7 \mathrm{kV} ., 6 / 6 ; 20 \mathrm{k}$, ., $10 / 6$. SILVER MICA. Close tolerance (plus or minus 1 DF.), 5 to $47 \mathrm{pF}, 1 /=$; ditto $1 \% 50$ to $800 \mathrm{pF}, 1 /=; 1,000$ to $5,000 \mathrm{pF} ., 2 /-$ TWIN GANG. "0-0" $208 \mathrm{pF} .+176 \mathrm{pF}$.. $10 / 6 ; 365 \mathrm{pF}$., miniature 10/-; 500 pF standard with trimmers, $8 / 8 ; 500 \mathrm{pF}$. midget legs trimmers, $7 / 6 ; 500 \mathrm{pF}$. slow motion, standard $9 /-$; small 3-gang 500 pF . $18 / 9$. Single "0"' 365 pF . $7 / 6$. Twin $10 /-$ SHORT WAVE. Single 10 PF., $25 \mathrm{PF} .50 \mathrm{pF}, 75 \mathrm{PF}$., $100 \mathrm{pF} .160 \mathrm{pF} . \mathrm{D}^{5 / 6}$ each. Can be ganged. Couplers 9 dd , each. TRIMMERS. Compression eeramic $30.50,70$ pF., 9 d . $100 \mathrm{PF}, 150 \mathrm{pF}, 1 / 3$; 250 pF ., $1 / 6 ; 800$ F.. 750 pF, , $1 / 8$. 850v. RECTIFIERS. 8elenium \# wave $100 \mathrm{~mA} 5 /-$ BY100 $10 /$ CONTACT COOLED \ddagger WAVE 80mA $7 / 6 ; 85 \mathrm{~mA} 9 / 6$.
Full wave $75 \mathrm{~mA} 10 /-$; $150 \mathrm{~mA} 19 / 6$; T.V. reeta. Irom $10 /-$.
'SONOCOLOR' CINE RECORDING TAPE $5^{\prime \prime}$ reel, 900° LP with strobe markings also cine light deflector-mirror for aynehronisation. Suitable all tape recorders and cine projectors. List 88/-. our price 14/-
new b.a.s.f. LIBRARY boXed tape 7 in. L.P. 1,800 ft. 45/-; 7 in. D.P. 2,400 ft. 70/60 min. Cassette C60 (For Philips, etc.) 17/6 Spare Spools 2/6. Tape Splicer 5/-. Leader Tape 4/6.
Reuter Tape Heads for Collaro models 2 track $21 /-$ pair.

MAINS TRANSFORMERS
 $\underset{\substack{\text { Post } \\ 5 /- \text { each }}}{ }$

$250-0-25080 \mathrm{~mA} .6 .3$ จ. 3.5 a. 6.3 v. 1 a, or 5 v. 2 a. $30 /$
 MTHIATURE 200 v . $20 \mathrm{~mA}, 6.3 \mathrm{v} .1 \mathrm{a}$.
MINIATURE 200 V. 20 mA., 8.3 \%.
HEATER TRANS. $6.3 \mathrm{v} .1 \frac{1}{2} \mathrm{~A}, 8 / 6 ; 6.3 \mathrm{v} .48$
Ditto tapped sec. 1.4 v., 2, 8, $45,6.3$ v. $1 \frac{1}{2} \mathrm{amp}$ GENERAL PORPOSES LOW VOLTAGE. Outputs 3, 4,5 $6,8,9,10,12.15,18,24$ and 30 ₹. at 2 a.
1 amp., $6,8,10,12,16,18,20,24,30,36,4$ AOTO TRANSFORMERS 20, 24, $30.36,40,48,60,35$ / B0w. $18 / 6 ; 150 \mathrm{w} .30 /-; 500 \mathrm{w} .92 / 6 ; 1000 \mathrm{w} .175 /-$.

CRYSTAL MIKE INSERTS
 ALL PURPOSE HEADPHONES H.R. HEADPHONES 2000 ohms
H.R. HEADPHONES 2000 ohms Super quality

LOW RESISTANCE HEADPHONES, $3-5$ ohm $35 /$

CANCELLED EXPORT SHIPMENT DUE TO dock Strike! 15" BAKER WOOFERS
$20-10,000$ opt. Bass Resonance $18-25$ eps
Masaive Carsmic Massive Cersmic
Ferrobar Maguet Flux density 15,000 lines. Rated 20 watts, only 6tin. Weight 151 b . OUR
PRICE BAKER GROUP SPEAKERS-POST FREE 'Group 25' "Group 35' 'Group 50' ${ }_{25 w}^{22 i n} 5$ gns. $12 \mathrm{in} .8 \frac{1}{2}$ gns. 150 w .18 gns. "BONDACOUST"' CABINET WADDING 18 in . wide, $2 / 6 \mathrm{ft}$.
E.M.I. Cone Tweeter $3 \frac{1}{*}^{*}$ square, $3-20 \mathrm{kc} / \mathrm{s}, 10 \mathrm{w} .17 / 6$. GOUDSPEAKERS PM \& OHSB 2 in LOUDSPEAKERS P.M. S OHMB. 2 inin., 3 in., 4 in., Sin., 12 in . Double cone 3 or 15 ohm $35 /-; 10 \times 6 \mathrm{in} .30 /-; 8 \times 5 \mathrm{in}$. $21 /-;$ E.M.I. Donble Cone $18 \frac{1}{2} \times 8$ in., 3 or 15 ohm models, $45 /=$ SPECIAL OFFER! 8 ohm, $24 \mathrm{in}, 5 \mathrm{in} . ; 80 \mathrm{ohm}, 2 \mathrm{lin.} 21 in.$, $15 / 6 \quad$ E5 ohm, $5 \mathrm{hn}_{\text {., }} 6 \times 4 \mathrm{in}$., $35 \mathrm{ohm} 8 \mathrm{in}, 7 \times 7 \times 4 \mathrm{in}$. JACK 80CKET 8td. open-cireuit 8/6, elosed oircait $4 / 6$; Chrome Lead 8ooket 7/6. DIN 3-pin 1/8,5-pin 1/6; Lead 3/8. Phono Plagi $1 / m$. Sooket $1 /-$ JACK PLUGS 8td. Chrome $3 / \mathrm{m}$ WAVE-GHANGE SWITCHEE WITH LONG SPINDLE 2 p. 2-w\&y, or 2 p. 6-way, or 3 p. 4 -way $4 / 6$ each. 1 p .12 -way, or 4 p . 2 -way, or 4 p . 3 -way, $4 / 6$ each. Waveehange "MAKIT8" 1 p 12 way, 2 p. 6 -wBy, 8 p. 4-way,
4 p .3 -way, 6 p. 2-way. Prices inelude click spindles, adjustable stops. spaces, etc, 1 wafer $10 / 6 \cdot 9$ elick spindies, adjer, $19 / 6$ TOGGLE SWITCHEs, sp. 2/6; sp. dt. 3/6; dp. 3/6; dp. dt. 4/6

ALL EAGLE PRODUCTS

EAGLE AM TUNER. Med Wave. Transistor
79/6 EAGLE DE LUXE TAPE SPLICES. Cuts, trims
joing for editing and repairs. With 3 blades. EAGLE 4 CHANNEL TRANSISTOR MIXER. Add musical highlights and sound effects to recordings. Will
mix Microphone, records, tape and tuner with $59 / 6$ mix Microphone, records, tape and tun
separate controls into single output. 59/6 EAGLE DYNAMIC MICROPHONE. Impe- $\mathbf{E 6 . 1 6 . 0}$
dance $600 \mathrm{ohm} / 50 \mathrm{~K} .70-12,000 \mathrm{cps}$. Univeraal dance $600 \mathrm{ohm} / 50 \mathrm{~K} .70-12,000 \mathrm{cps}$. Universal LO. 10.0
mounting. stiek, hand or stand. Professional giality EAGLE FM TUNER 88-108 Me/s Siz Transistor Ready built. Printed Circuit. Calibrated slide dial 88.10 .0
tuning. Size $6 \times 4 \times 2 \dagger$ in.
EAGLE 3 WATT AMPLIFLER. 4 Transistor 69/6 Pusb-Pull Ready built, with volume control.
40 PAGE EAGLE CATALOGUE 5/- POST FREE High Fidelity Rpadio Books \& (Postage 9d.) Transistor superhat Commercial Receivers. Mullard Audio Amplifier Manual....
Radio Valve Guide, Books 1, 2, 3 or 5 Practical Radio Inside Out Transistor Audio Amplifler Manual Book i, 3/8;Book 2, $8 / 6$ Shortwave Transistor Receivers
Transistor Communication Sets
Ingernational Radio Stations
International Radio Stations List
Modern Transistor Cireuits Ior Beginners.
Sub-Miniature Transistor Receivers.
Wireless World Radio Valve Data.
At a glanee valve equivalents
Valves. Transigtors. Diodes equivilent Manaal.......
RESISTORS. Prelerred valnes, 10 ohms to 10 meg .
 Ditto 5%. Preferred values 10 ohms to 22 meg., 9 d .
$\left.\begin{array}{l}5 \text { watt } \\ 10 \text { watt }\end{array}\right\}$ WIRE-WOUND RESISTORS
15 watt $10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}$ ons to 6,800 ohms
1/6

$10 \mathrm{~K}, 15 \mathrm{~K}, 20 \mathrm{~K}, 25 \mathrm{~K}, 68 \mathrm{~K}, 10 \mathrm{~W} .3 /-\quad\{2 /-$ | WIRE-WOUND 3-WATT | WIRE-WOUND 4-WATT |
| :--- | :--- |
| POTS. T.V. Type. Valnes | STANDARD SIZE POTS. | | POTS. T.V. Type. Valnes | STANDARD SIZE POTS. |
| :--- | :--- |
| 10 ohms to 30 K.. $3 / 3$, | LONG SPINDLE VALUES |

 VALVE HOLDERS. MOULDED 9d.; CERAMICS 1/- EACH. 8CREENING CANS 1/- VALVE BASE PLUGS $2 / 3$. SANGAMO 3 inch SCALE METERS 45/-ea. Various calibrations and movements, 100 Microamp;

BRAND NEW QUALITY EXTENSION LOUDSPEAKER Black plastic cabinet, 20ft. lead and recorder, eto. 3 to $15 \mathrm{ohm} . \quad$ POST $30 /=$
Size: 7 n $^{*} \times 54^{*} \times 3^{*}$.
$2 / 6$

TAPE RECORDERS

A Further Consignment of Tape Recorders NOW IN STOCK-all popular branded makes. Some brand new with manufacturers' operative guarantee and complete in every way, mic., spools, etc. Retail Value from 25 to 70 gns .

Our Price 18 gns. only
Personal collection advised-otherwise p/p 18/6.

W.B. SPEAKERS

We have had a large consignment of this famous speaker--both 3 and 15 ohms., 10 in . dia. cone (approx.)-air suspension, 10 watt rating, magnet 10,000 lines gauss, die cast chassis (Gold finish). Offered at a price that cannot be repeated3 gns. each only, p/p 5/6 2 for $£ 5.15 .0, p / p 8 / 6$
Personal collection advised otherwise immediate dispatch.

ELECTRONIC SALES (Victoria) LTD

17 GILLINGHAM ROW

WILTON ROAD, LONDON, S.W. 1
Telephone: VICTORIA 5091

VALVES

SAME DAY SERVICE NEW! TESTED! GUARANTEED!

READERS RADIO

85 TORQUAY GARDENS, REDBRIDGE, ILFORD, ESSEX.

Tel. 01-550 7441
Pobtage on i valve 9 d . extra. On 2 valvea or more, prostage 6d. per
valve extra. Any Parcel Insured against Danage in Transit 6 d . extra.

THE SEMICONDUCTOR DIODE

-continued from page 54
as the avalanche effect, but for the moment it can be seen that provided the diode voltage is kept below point C it will perform as required.

The fact that a small current flows in the reverse biased condition before point C is reached may seem to conflict with the theory outlined earlier concerning potential barriers. However there is quite a simple explanation. In order for an electron to take part in conduction it has to enter the conduction band and to do this it has to obtain an amount of energy ($E g$, Fig. 1) to lift it out of the valency band. Sufficient energy is provided for a few electrons to do this by heat that is transferred to them from outside the crystal. Ordinary room temperature is enough to impart sufficient energy to allow a few electrons to cross into the conduction band, and this gives rise to the small amount of current that flows even when a semiconductor diode

Fig. 7: Circuit for plotting diode characteristics.
The reason for the sharp change that occurs at point C in the reverse characteristic is that at this point--usually known as the zener voltage or reverse breakdown voltage - the potential is such that the electrons forming the "reverse current" are travelling at very high velocity. The result is that a considerable number of electron collisions occur. resulting in a rapidly increasing number of electrons being separated from their parent atoms-in short, an avalanche effect takes place.

As light is a form of energy its effect on a pn junction is similar to that of heat, i.e. exposure of a biased pn junction to light gives rise to a flow of current proportional to the strength of the illumination. This effect, known as photoconduction, is made use of in photocells and phototransistors.

Another feature of the pn junction that is of practical use is the junction capacitance. Since the depletion layer in the reverse biased condition has very few charge carriers while the p and n regions on either side are conductors, the device is akin to a capacitor; and since the width of the depletion layer is proportional to the bias applied across it this junction capacitance is inversely proportional to the bias. Consequently we have a device that can be used for frequency stabilisation in oscillator circuits.

TपHERE is little DX news this month since the generally poor conditions of this season have continued. But readers should note that the seasonal change in propagation which occurs around March-April might well help matters and, in particular conditions should be more favourable for signals coming from South and Central America. This could well provide an opportunity to \log a few of the more difficult ones from these parts and the chances can be assessed by the reception of the more likely ones to come through. Some to look for are CMCN ($550 \mathrm{kc} / \mathrm{s}$); HJHJ Radio Libertad (610); La Voz de la Victor, Costa Rica (625), HJBJ La Voz de Santa Marta (640); YVLH Radio Giradot (650); CMCH Havana (770); CMCA Havana (830); HJKC Emisora Nuevo Mundo (850); YVLW Radio America (890); YVRQ Radio Aeropuerto (910); YVNZ Radio Calendario (1020); 4VEF Haiti (1035); YVQJ Radio Barcelona (1080); WUNO Rio Pedras P.R. (1320); WIVV (I370).

Reception from Asia sometimes improves around this time of year, notably from the India/Pakistan region, so keep an ear open for stations such as Lahore (630), Quetta (750), Indore (650), Vijayawada (840), Ahmedabad (850), Sambalpur (860), Lucknow (910), Raipur (980), Rajkot (1070), Sangli (1250) and others. The North Regional stations sign-on at 0130 , 0200 and 0330, West Regional stations at 0130 and 0230, East Regional stations 0130 and 0200, South Regional stations 0130, most of them starting off with news in English.

The fact that GMT has now disappeared completely is rather unfortunate for MW work, since it now means that everything starts an hour later all the year round instead of only during the summer months. This has been taken care of in the above times for the Indian stations. (Note: I have sometimes heard Indian stations on the air before the scheduled sign-on times, so it is still worth while listening around on their frequencies earlier than the times listed-Editor.)

Among the oddments of news this month is a report that Malta on 1241 has stopped transmitting. CJRS is a new Canadian on 1510 with 10 kW . CKOC on 1150 has pushed up its power to 10 kW .

Some of the items noted this month have been Tanzania on 638, Dakar on 764, Radio Carve Montevideo (850), LR3 Radio Belgrano Buenos Aires (950), CKBW Bridgewater (1000), LRI Radio el Mundo (1070), YVQT Radio Carupana (1110). Glyn Morgan has a tentative logging of Saudi Arabia on 647 and Johannesburg on 1286 at 0220.

ALISTAIR WOODLAND

BUILD THESE PROJECTS

J. McCARTHY

T| HIS article describes a circuit which can be used to send automatic Morse transmissions of a repetitive nature. For example, to transmit manually: CQ CQ CQ de G3ABC several times and receiving no reply is not only frustrating but tiring. Using the circuitry to be described, the "CQ" calls may be automatically broadcast, leaving the operator completely free during the period of transmissions. The equipment used would probably be readily available in the "ham's" shack, and the small amount of additional circuitry required can be built in an evening. The equipment required is: a tape recorder; transmitter, preferably with automatic break-in facilities (when the key is up, the receiver is automatically un-muted); a simple two-transistor switch; a controllable tone source.

PICK-UP

In the author's case, hum was picked up using a conveniently available metal bed. The Morse key's back-contacts shorted the tape recorder's input to earth when the key was released. When, however, the key was depressed, the hum from the bed was fed into the recorder's input. If a less barbarian method is preferred, a tone source may be constructed, but this is left to the amateur's choice. The equipment is used as follows:

SOURCE

The call, for example as above, is recorded on the tape recorder using the tone source and the Morse key. The call is thus recorded on tape. The call is then played back when required into the switch, which keys the transmitter. At the end of the call, the receiver is automatically activated, and

Fig. 1: Two transistors wired in a super-alpha configuration receive impulses from the tape recorder via the bridge rectifier made up from the four diodes.
the tape can be either wound back, or turned over in order to use the other track which would be recorded in the same way. Another possibility with a $1 \frac{1}{8} \mathrm{in}$ recorder would be to use an endless tape spilling into a conveniently positioned rubbish bin. This, too, is left to the individual constructor.

If the transmitter lacks break-in facilities, a modi-

A METHOD OF

REPETITIVE MORSE BROADCASTS
fication can be made to the transistor switch. The circuit of the switch is given in Fig. 1. As will be seen, the tape recorder's loudspeaker is muted, and a suitable resistor (3 or 5Ω) wired across the input of the switch. The smoothing capacitor, Cx. is dependent on the speed of Morse required; it must be great enough to prevent relay chatter, but not so great as to blur the Morse characters. The value should be found by experiment, $0 \cdot 1 \mu \mathrm{~F}$ being a reasonable starting value. The two transistors, which

Fig. 2: Using an extra relay to facilitate break-in working. The electrolytic used to slug the relay might need to be varied in value dependent upon morse speed.
were two red-spot surplus types, are connected in a "super-alpha" configuration, and operate the switch's own relay, which should be a high-speed type. The contacts on the relay are used to key the transmitter. The four diodes are ordinary germanium "crystal" diodes.

The chassis used for the construction of the switch was a piece of paxolin- $1 \frac{1}{2} \times \frac{3}{4} \mathrm{in}$., to which the wiring was actually stitched, using a large needle, thin wire, and a sewing machine (no kidding). More conventional methods, such as Veroboard are, of course, suitable. The whole was constructed within a metal box roughly $3 \times 3 \times 2 \mathrm{in}$.

BREAK-IN

If a transmitter is used which does not have break-in facilities, then an extra relay is used which is switched on by the A relay, but is rendered slow-to-release by the large electrolytic in parallel with it. This second relay, the B relay, should be connected to the transmitter in such a way as to switch on the transmitter at the first Morse character, and to hold on the transmitter till shortly after the last character. If the Morse is excessively slow, trouble will probably arise due to this relay energising, and releasing, between each letter, and the value of the electrolytic should be increased.
The supply for the switch is 12 volts which was obtained in the author's case from a transistor radio power supply unit. Alternatively, the tape recorder or transmitter may be persuaded to supply the required voltage.

ILIFFE BOOKS

Radio and Electronic Data Handbook

by G. R. WILDING

This book fulfils two aims: First it provides a complete short course in basic electronics, with worked examples throughout, to give real insight into the functioning of Radio, Television and Electronic circuits. Secondly, a new style of presentation permits rapid reference to concise but complete explanations of every subject from Ohm's Law to Transistor Output Stages. With a wide background of both teaching and practical experience, the author finds that a knowledge of basic theory, so vital for examinations and for practical design and rapid fault diagnosis, often presents students and technicians with the greatest difficulty. A new format has been adopted, therefore, both for maximum learning impact and to crystallise textbook coverage into separate, easily assimilable sections that more than amply cover all practical requirements. Mathematics are reduced to the minimum, assume no special knowledge, and are always fully explained step by step. 149 pp. illustrated.
17 s .6 d . net. 18 s .4 d . by post.
obtainable from leading bookse/lers
ILIFFE BOOKS LTD.
42 RUSSELL SQUARE, LONDON, W.C. 1

CONCORD RECORDING

3 in . Std.		3/11
3 in . L, P.	.	4/11
$3 \frac{1}{4}$ in. T.P.	\ldots	12/6
5 in . Std.	.	10/-

These tapes are top quality and not cheap sub-standard. Post 1/6 per tape. Post free on 4 tapes or more.

TRANSISTORS at bargain prices!

OC22	9/6	OC77	4/6	AC127	3/6	BCY34	5/9
0 C 23	10/-	OC78	4/-	AC128	3/6	BCY38	5/9
OC25	9/-	OC78D	4/-	AD140	10/6	BFY50	5/9
OC26	9/6	$0 \mathrm{C81}$	3/6	AF114	5/3	BFY51	4/6
OC28	10/-	OC81D	3/6	AF115	5/-	BFY52	5/9
OC30	10/-	OC82	3/6	AF116	5/-	BYZ12	5/3
OC35	12/6	0C82D	3/6	AF117	4/6	BYZ13	5/9
OC36	12/6	OC84	5/6	AF118	4/-	BYZ16	10/-
OC38	12/6	OC123	5/-	AF119	4/-	GET103	4/6
OC44	3/6	OC169	4/6	AF125	4/6	GET113	4/6
OC45	3/6	OC170	4/6	AF127	4/6	GET116	7/6
OC46	4/-	OC171	4/6	AFZ12	6/6	GET887	5/-
OC70	3/6	OC172	4/6	BCY10	5/3	GET889	5/-
OC71	3/6	OC200	7/6	BC107	8/3	GET890	5/-
OC72	3/6	OAB1	2/6	BCY12	5/3	GET897	5/-
OC75	3/6	AC107	6/6	BCY33	5/-	GET898	5/-
OC76	4/-	AC126	3/6				
C.W.O., P. and P. 9d. per order							

teghnical TRAINING in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?

Many diploma and examination courses available, including expert coaching for:

- Institution of Electronics \& Radio Engineers
- C. \& G. Telecommunication Techns' Certs.
- C. \& G. Electronic Servicing
- R.t.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students coached until successful

NEW Self-build radio courses

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, and high-grade test instruments, incl. professional-type valve volt meter-all under expert tuition. Transistor Portable available as separate course.

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

LARGE QUANTITY OF SARAH V.H.F. TRANS
AVAILABLE FOR IMMEDIATE EXPORT
General Information. This get is normally carried in the life jacket of Airmen. It is a complete miniature lightweight radio Trans/Receiver, which is used to glve a Beacon plus two way speech communication in the event of finding themselves in the sea. It comprises a Trans-mitter-Receiver, \& apeech 1 mit, a coding unit sand a power
aupply elther Battery or Tranaistor. These three items are permanently interconnected and all unita are completely sealed and water tight using a combined speaker/mike. Press to talk or listen buttons. roid up acrial, a total of three vaives are used. power required $6 \cdot 3$ volta LT 90 volts and 435 volts D.C. HT. Frequency $243 \mathrm{Mc} / \mathrm{s}$. Transmittel output pulse power. Beacon 15 watts, Tals condition singly at 45%-. post $5 /$ with circuit. New condition singly at $45 /-$. post
batteries if available $7 / 6$ each.

B44MKII TRANSRECEIVERS
We have a few of thege V.H.F. 12 valve tranarecelvers operating on 3 switched channela between $60 \mathrm{Me} / \mathrm{s}-$ $95 \mathrm{Mc} / \mathrm{s}$ complete with all 6 cryatals, headphones, mike, mobile aerial and dipole aerlal, all connectors plus alloy tripod for mounting the set on. Power input 12 V D.C., TX output 3 watts, internal speaker (all valves BG7). f10.0.0. each, carr. $30 /$. Also availsble in matched pairg 210.0.0. parr, cart. 30% tested.

TRANS/RECEIVER TWO TWO
This is one of the latest releases by the govt. of an ex tremely recent R / T set covering $2-8 \mathrm{Mc} / \mathrm{s}$ in two switched bands, containlng 13 yalves (3 EL32日 in TX output) which can be naed for morse CW or \mathbf{R} / \mathbf{T}. Also has netting trimmer, BFO, RF and AF controls, switched meter for checking all parta of get, size 17×8 x $12 i n$. Power re quire 1 LT 12V D.C., HT 325V D.G. Sapplied brand new and boxed with headphones and mike also two spar New plag in power supply made by us for either 12V D.C. input $£ 8.10 .0$ or $200 / 250$ V A.C. 23.17 .6 .

FAMOUS ARMY SHORT-WAVE TRANSRECEIVER MK.III
This set made up of 3 separave units: (1) a two valve amplifier using a 6 V6 autput valve; (2) (some only, not built in the very latest models) a V.H.F. transrecelver
covering $229-241$ me/s using 4 valves; (3) the nainghort covering $229-241 \mathrm{Mc} / \mathrm{s}$ using 4 vaives; (3) the nainshort wave trangmitter/receiver covering in two switched bands, Just below $2 \mathrm{Mc} / \mathrm{f}-41 \mathrm{Mc} / \mathrm{s}$, and $41 \mathrm{Mc} / \mathrm{s}-8 \mathrm{Mc} / \mathrm{s}$ (approx M.C.W. The receiver is superhetrodyne baving 1 R.F.
stage, frequency changer, two I.F. ($465 \mathrm{Kc} / \mathrm{s}$) slgas detector, A.V.C. and output stage. A B.F.O. inclinded for O.W. or aingle side-hand reception. T.X. output waive 807, other ralves octal bsves, Many extras, e.g. netting quirements LT i2 voita, HT recefver 275 polfs re quirements LT it voits, HT receiver 275 volis D.O. llins. Every aet suppilied in new or as new condition in carton with book including circuits, only $\$ 4.10 .0$. or Grade 2 slightly used $50 /$. Grade 3 , used but complete. 35/- Carr. ALL 15/- WE MAKE A MAINS 2001250 VOLT POWER UNIT iu louvred metal case to plag direct into set fower sumet to run (1) receiver, $70 /-$, post 5/- (2) TX and RX, 26.10 .0 , post 7/6. (3) 12 volt D.C. P.U. (original). FAIR CONDITION, 40/-, Carr. $5 /$. Δ ets is made only if remueated. Headphones and Mike is new and boxed.

V.H.F. TRANSRECEIVER MK. I/I

This is a modern self contaiued tunable V.H.F. low powered frequency modulated trangreceiver for R.T. communication up to 8-10 inilem. Made for the Ministry of Bupply at an extremely high cost by well known British makers, using 15 midget B.G. 7 valves, receive incorporating R.F. amplifier. Double superhet and A.F.C. nels each $200 \mathrm{Kc} / \mathrm{s}$ apart. The frequency covered is $39 \mathrm{Mc} / \mathrm{s}-48 \mathrm{Mc} / \mathrm{s}$. Also has built-in Orystal calibrator which gives pips to coincide with marks on the tuning dial. Power required LT $4!$ volta, 1 IT 150 volts, tapped at 90 volts for receiver. Every sti supplied complete with alves and erystat, New in carton, complete wit adjustable whip aerial, and circuit. I'rice $£ 4.10 .0$., carriage
$10 /$.

4we MIDLAND AGENTS FOR EDDYSTONE

Receivers \& Components

EDDYSTONE EC10
Sensational ALL-TRANSISTOR Communications Receiver, for use in the home, caravan, car or boat, etc.
List Price $£ 53$ н.P. Facilities-Part Exchanges
Write for brochure $\&$ full details.
170-172 CORPORATION STREET BIRMINGHAM 4
Telephone: 021-236-1635

\star CA 3020 (LINEAR I.C.) WIDE-BAND AMPLIFIER

COMPLETE WITH DATA Sheet 33/- EACH
ALUMINIUM DIECAST BoxES-Approx, dimenstons: Type A $44 \leq 3 ? \mathrm{y}$ lim deepat $7 / 6$ each. Type B 48×3 : $\times 2 \mathrm{in}$. deep at $10 /$ eech
SUBMINIATURE TAGBOARD8-(likid. wide). b-way at $1 / 3$. 18 -way at $3 /$-each COAX. SOCKET Surface mounting, Nylon infulatel, $1 / 3$ each COAX. PLUG-Belling Lee Type L734. 1/4 each.
RESISTORS-CARBON FILM-1 watt, $5 \% 10 \% \mathrm{hm}$ to 10 Megohm, 3td each or 3/3 loz.
CARBON PRESET POTEANTIOMETERS-Vertical or Horizontal mounting 200 ohm to 2 Megohn. (Btandard values) at $1 / 4$ each
MINIATURE CARBON POTENTIOMETERS, lin. dia. $x \frac{1}{8}$ in. deep: in dia spindte. 5 Kohm to 2 Megohm LOG. and 5 Kohn to 1 Megohm. LIN. at $3 /$-each or 2/9 each for 4 or more of the same value. (Stindard values only).
CAPACITORS-CERAMIC TUBULAR-(Stanilard Values) $4.7 \mathrm{pF}-0.01 \mu \mathrm{~F}$ 8d each.
CAPACITORS-SLLVER MICA - $5 \mathrm{pF}-800 \mathrm{pF} 1 /$ - each (standard Values)
CAPACITORS-TANTALDM BEAD-A range $3 i$ values fron $100 \mu \mathrm{~F} / 3 \mathrm{v}$ w to $0 \cdot 1 \mu \mathrm{~F} / 35 \mathrm{yw}$ all values at $4 / 3$ each.
BEEHIVE TRIMMERS - $(3-30 \mathrm{pF})$ at $2 / 6$ each
DIODES-OA70, OA71, OA79, OA81, OA85, OA91, OA200, OA202 at 2/-cach. TRANSISTORS-OC44, $5 / 6 ; 0 \mathrm{OC} 45,5 / 4 ;$ OC71, $3 / 8 ; 0 \mathrm{O} 72,5 / 4 ;$ OC83, $4 /-$ C170, $7 / 8 ; \mathrm{BCl07}, 8 / 11 ; \mathrm{BCl08}, 3 / 3$; BCl09, 3/11; BC150, 1 ACL27Z, $9 / 6 ; 188 Y 9.5 A, 5 / 6 ;$ NKT212, $4 / 4 ;$ NKT218, $3 / 11 ;$ NKT228, $3 / 11$; 2/10; 2N706, $8 / 9 ; 2 N 697,6 /-; 2 N 3053,6 / 8 ; 2 N 3638,5 / 6 ; 2 N 3702,3 / \theta ; 2 N 3703$, 4/-; 2N 3704, $5 /-; 2 N 3705,4 / 6 ; 2 N 3706,3 / 0 ; 2 N 3707,4 / 6 ; 2 N 3708,3 / 4 ; 2 N 3709$, $3 / 3 ; 2 N 3710,8 / 8 ; 2 N 3711,4 / 3 ; 2 N 3819(F E T), 14 / 8 ; 2 N 3820(F E T), 20 / 4$ 2N2646(UJT), 10/6; BRY39(SCS), 10/6: A WIDE KANGE OF OTHER TYPES ARE IN BTOCK, INCLUDING $2 N 292 \mathrm{SERIES}$-All groups at $3 / 8$ each (or, $2 / 6$ each in mult jples of 5).

Posiage and packing is charged at. 1/- in the $£$ (Minimum of 2/- per order),
M. R. CLIFFORO \& COMPANY (COMPONENTS OEPT.),

209A, MONUMENT ROAO, EOGBASTON, BIRMINGHAM, 16. Terms: C.W.O. (or C.O.D, - over $\& 3$ only)

Tel.: 021-454-6515

Oh, so slow!

Your March Editorial dealing with the warning of amateurs who transmit their call-signs faster than the prescribed maximum of 12 w.p.m. is a timely one. So far as I know no other periodical has spoken out on the subject, and I think I am right in saying that no official reason was ever given for lowering the acceptable maximum speed from 20 to 12 w.p.m. One club to which I belong has for some time been concerned at the seeming persecution of progressive c.w. operators and its newsletter has commented greatly on this.

From its membership it has been established that the following countries do not find it necessary to restrict the sending of call-signs to 12 w.p.m.: Australia, Belgium, Brazil, Bulgaria, Canada, Denmark, Finland, East and West Germany, Italy, Netherlands, Nicaragua, Norway, Poland, South Africa, Sweden Switzerland and USA.

Why, then, do the UK authorities see fit to impose such a backward step on British amateurs?

As for the reason some amateurs find themselves in trouble, perhaps the GPO has left us to our own devices for so long (my station has not been inspected for 15 years) we think they will never enforce any regulation. What a pity the station inspectors only show any interest when TVI or BCl are reported. An occasional, but unexpected visit would do much to keep the standard of equipment, operating and log-keeping up to scratch.

However, regulations are regulations, and it would be as well for all amateurs to re-read their licences, especially the sections limiting the operating of stations to qualified persons only, the sending of the station call-sign, at not more than 12 w.p.m., at the beginning and end of each "over", on changing frequency and every 15 minutes, when transmissions exceed that length of time and the ban on "Third Party" messages.
Until such time as the GPO readopt the more realistic $20 \mathrm{w} . \mathrm{p} . \mathrm{m}$., we c.w. operators can only hope that equal notice will be taken of "Joe", "Fred" and "Tom", all s.s.b. users, who seem to have forgotten they were ever issued with call-signs.-F. Allan Herridge, G3IDG (Hampshire).

A dig at Ed.

Your Topic of the Month for March refers to the fact that the Radio Services Department has been sending letters of complaint to amatcurs who have been sending their call-signs faster than 12 w.p.m.
You refer to this as "petty niggling by the GPO", and say you cannot understand "why it should suddenly become necessary to throw the book at operators."
Before you put your big feet any deeper in the mire let me invite you to read my AMATEUR (SOUND) LICENCE A which has been drawn up in accordance with the WIRELESS TELEGRAPHY ACT, 1949. Section $9(2)$ reads: "The call-sign, which may be sent either by morse telegraphy at a speed not greater than 12 words , per minute or by telephony . . .
In short, you are knocking the GPO for insisting that amateurs operate within the terms of their licence.
Just watch it, Ed, or you'll end up in the Tower-and I don't mean the Post Office Tower! - John Mayall, G3VPH (Droitwich, Worcs.).
[Why should I read your amateur licence G3VPH-I have quite a few of my own, more than one of which says I can send call-signs at no more than 20 w.p.m. That, of course, was in the days before the GPO started to niggle and reduced it to the $12 \mathrm{r} . \mathrm{p} . \mathrm{m}$. crawl asked for today. As you say, I may well end up in some sort of tower but so long as it isn't the Tower of Babel occupied by some of the a.m. and s.s.b. boys I shall not complain. I'll just set up my rig and send out slow morse practice sessions for the bencfit of the GPO!-Editor]

PCR mods

The "Trawler-band" coils mentioned in the article "Mods to the PCR" as used by the writer are Repanco Types RA3, RHF3 and RO3. The writer has made inquiries and confirms their availability at 3s. 9d. each through retail shops.

The PCR 3 which does not have a Long Wave band, covers the ranges $13-43,43-120$ and $200-550 \mathrm{~m}$. The trawler band coils could be substituted for the middle range if the 160 m band is desired or alternatively the existing coils could be padded up with trimmers.-G. L. K. Crawford, B.Sc. C.Eng. (Tonbridge, Kent).

The art of unsoldering

I was recently faced with the unenviable task of unsoldering numerous components from printed circuit board, the job being further complicated as I had no "desoldering" tool.

To overcome my difficulties I made use of an old foot pump. After removing the original connector, I fastened a piece of rubber tubing to the outlet of the pump. To the other end of the tube was inserted an old ball-pen case. This provided me with an excellent tool with which to blow away molten solder from the joints.

I find a pair of arterial forceps (obtained from a local surgical shop) just the job for a heat sink, as they can be locked on a wire and left, thus leaving both hands free.A. Parkinson (Grimsby, Lincs.).

Me too!

I wonder how many of your readers are being duped daily by the actions of firms advertising in your pages? Like Mr. Haworth (Letters, March issue) I too required a crystal for a project. 1 wrote to a firm whose name appears regularly in your magazine requesting a copy of their list of transistors, and their 24-page illustrated brochure on Valves and Quartz Crystals for which I enclosed a postal order for one shilling.

An envelope duly arrived in which were six mail-order forms, the list of transistors, a leaflet giving information and prices of components for a superhet receiver, and a coloured pamphlet extolling the contents of their new 1968 catalogue which could be obtained for eight shillings and six penceno Quartz Crystal list, and no postal order!

The mind boggles at the fortune these people must be amassing from the odd shillings pouring in from people like Mr. Haworth and myself!-Harry B. T. McLaren (Cheshire).

Members wanted

Would anyone be interested in joining a new Radio Club (Fulford \& District Amateur Radio Club) Nr. York, with premises behind the Social Hall in School Lane, Fulford, please contact me.-G. B. Widnall, G8ATJ Hon. Secretary, 5 Heslington Croft, Fulford, York).

> Books reviewed on this page are normally obtainable throughanyretail bookshop. In this instance, the information printed in heavy type should be quoted.

三 TRANSISTOR TECHNOLOGY
By Robert G．Middleton．Published by Foulsham Sams． 288 ＝pages， $8 \frac{1}{2} \times 5 \frac{1}{\mathrm{i}} \mathrm{i}$ ．Price 30 s ．

THIS book appears to be originally intended for the American market and was reviewed with some trepidation．However，all fears regarding confusion proved groundless，and，like mathematics， the basic principles of semiconductors are the same in any language．There are four pages at the beginning which discuss any slight misunderstand－ ings which might arise．

The book would be ideal for students taking telecommunications and who need a basic primer in the field of transistors and diodes．Others，whose knowledge of semiconductors is a little vague or needs brushing up，will also find this a very useful volume．

Starting with a brief coverage of solid state physics and the atomic concept，Transistor Tech－ nology goes into details of diode operation，des－ cribing the electrical and mechanical properties of solid state diodes，From here it explains the prin－ ciple of transistor action，outlining the detailed physical construction techniques，electrical character－ istics（gain and leakage，for example），and the use of various types of amplifiers．In addition，such useful information as feedback，equivalent circuits， bias stabilisation，and distortion is thoroughly pre－ sented．

A useful feature of the book is the questions at the end of each chapter forming a useful yardstick with which to measure how much information has registered．Model answers to these questions are included at the end of the book．Verdict－a useful addition to the bookshelf for the layman，and a handy volume for the student．－$D L G$ ．

DO you find loudspeaker jargon infinitely baffling？Are you likely to construct an expo－ nential acoustical horn expansion，with $12 \frac{1}{4}$－ foot diameter mouth and 16 feet long？Or are you generally content with the humble radiogram，des－ pised by the hi－fi－fanatic？

Whatever your audio interest，you are sure to find some of the answers to your questions in this stimulating book．What is more important，you will probably find，also，a number of new questions to which you may not have previously given much thought．It is that sort of volume．

The authors preach the need for a good enclosure， designed to suit the driver unit，if any serious listen－ ing is intended．The days of＂bung it in a box＂are far behind us．From the several detailed construc－ tional designs，it should be possible to find an enclosure to suit most purposes，even though most of the driver units are transatlantic in origin．There are many similar units－and I submit，a few better designs－available in this country．

The book covers Infinite Baffles，Bass－reflex enclosures，Horn enclosures，Labyrinths，and Cross－ over networks，as well as discussing enclosure design and the theory of driver units．A few details of electronic and acoustical measurement are given， but this is primarily a practical book，amply illus－ trated，occasionally controversial and never dull． Recommended for all except those with cloth ears．－ HWH．

三 THE PRACTICAL AERIAL HANDBOOK三 By Gordon J．King．Published by Odhams． 224 pages，三 $8 \frac{3}{3} \times 5 \frac{3}{4} \mathrm{in}$ ．Price 35s．

ALTHOUGH Mr．King is an established writer， I regret that I am unable to review this book with much enthusiasm．
＂Practical Aerial Guide＂would be a more suitable title since handbook is usually the title for those works which delve deeply and often technically into a subject，far more so than the author．The inside flyleaf claims that＂Expert guidance is given on choosing the best aerial system to suit any particular purpose＂．This is rather a sweeping statement and the book does not substantiate this．

The volume contains a great deal of useful infor－ mation，of this there is no denying；however，many of the illustrations appear to have already made their debut in Practical Television．There are informative and useful chapters on propagation， feeders，signal combining and splitting，shared aerial systems and TV interference．A section on signal boosters is notable in including circuit diagrams with all component values given．But the chapter ＂Practical Aerial Systems＂，while containing plenty of theoretical material，stops short of providing actual practical constructional details．

One startling constructional detail is the use of a four－foot ferrite $\operatorname{rod} \frac{3}{8} \mathrm{in}$ ．in diameter on which the reader is advised to wind a coil to＂load＂an aerial．

The book is，in general，well written and certainly well illustrated，but for my money it＇s a subscrip－ tion to Practical Television every time．－$D L G$ ．

三 AMATEUR RADIO CALL BOOK（1968 Edition）
三 Published by the Radio Society of Great Britain， 28 Little Russell Street，London，W．C．1． 104 pages．Size $9{ }^{\frac{1}{8}} \mathbf{x} 71 \mathrm{in}$ ． －Price 6s．
I THIS new edition，like its predecessors，lists in call sign order the addresses of licensed amateurs in England，Wales，Scotland，Chan－ nel Islands，Isle of Man，Northern Ireland and Eire． More than 1,800 changes of address，reissued calls and cancellations have been recorded，in addition to 900 new call signs since the 1967 edition．For the first time，a list of British amateurs holding reci－ procal licences with other countries is given．

Miscellaneous information includes amateur pre－ fixes（by both prefix and country order），Inter－ national Q Code，Great Circle bearings from London，a list of R．S．G．B．affiliated societies and clubs，Zonal and Regional boundaries，etc．

If you are active on the air or as a SWL you will need a copy of the Call Book．－DC．

SPECIAL OFFER A FEW ONLY

Braun C.S.V. 13 stereo amplifier Usual price $£ 95$. Our price $£ 72.10 .0$
Record player cases (two-tone) B.S.R. or Garrard changers $30 /-$ each inc. P. \& P.

RECONDITIONED TELEVISIONS
Fully Guaranteed
 $21^{\prime \prime}$ from $\mathbf{£ 1 2 . 0 . 0}$ A few $19^{\prime \prime}$ and $23^{\prime \prime}$ from $\mathbf{£ 1 7 . 1 0 . 0}$
Regret personal callers on televisions
We can supply most makes of Hi -Fi equipment,
Tape Recorders, Radios, Television, etc., at a 15% discount to cash customers

> WYNDSOR TELEVISION SERVICE 8 exchange buildings, st. albans road, BARNET, HERTS. Phone: 01-449-1769

for your better STEREO AND FM RADIO HOLDINGS STEREO BOOSTER

WHAT THE "STEREO BOOSTER" IS
The "Stereo Booster" is a high-gain low. The stereo Booster" is a high-gain low. nected by plugging the aerial lead into the input socket, and connecting the Booster's output lead to the aerial
socket on the tuner. Power is provided by either the internal battery, or the mains operated P.S.U.

WHAT THE "'STEREO BOOSTER" WILL DO The "Stereo Booster" will increase the atrength of all British FM stations, but programme. Due to its high gain it will appreciably improve resulta on mono or stereo where previously the limiting factor has been lack of gain in the FM tuner. WHAT THE "STEREO
BOOSTER'* WILL NOT DO The "Stereo Booster" will not greatly improve results if an exeeptionally a Figher) nor can it work miracles if the tuner is bedly sligned, or "third rate". Stereo Booster with Battery 83.18 .0 Mains-op. Power Supply Uuit $£ 1.19 .8$ Comparator Postage and package SPECIAL OFFER.P.S.U. \& BOOSTER ions Always
E5.15., POST PAID. 25.15.6, POST PAID.

It really works! Many reports of imp- Alosed roved reception received. S.A.E. for Thurs. Ope more details. allday sat

Type FM44. 84.7.0, carriage paid. 2 FM4s Aerials with matching unit. 2 FM48 Aerials ${ }^{2}$.
\&10.4.0, carr paid.

HI-FI EOUIPMENT

IF IT'S WORTH BUYING WE PROBABLY HAVE IT ON DENIONSTRATION

Now available Mullard 1968 Data Book

136 pages of data, including for the first time, colour-coded sections for quick reference--covering comparables and equivalents and all current Mullard semiconductors, valves, tubes and components for Radio, TV, Audio and HiFi applications.

PRICE 3/6 from your local TV retailer OR direct from Mullard-cash with order, plus 9d for p. and p.

Mullard Mullard Limited, Distributor Sales Division, Mullard House, Torrington Place, London, W.C.1.

CED 53

```
SHORT WAVE ONE VALVE RECEIVER KIT 39/6 + 2/6 P.P.
PEAC ANALOGUE COMPUTER KIT IN STOCK
CLUBMAN Mk. I KIT COMPLETE E6.17.6 + 5/- P.P.
Without metal work £4.12.6 + 2/6 P.P.
CLUBMAN Mk. II KIT COMPLETE E10.17.6 + 5/- P.P.
Without metal work £8.12.6 + 4/6 P.P.
EXPLORER KIT COMPLETE E4. 2.6 + 2/6 P.Pe
```

STABILIZED POWER SUPPLY KIT 0-20V.
500 mA COMPLETE $\quad \mathbf{~ 4 . 1 7 . 6}+5 /$ - P.P.
RHODIAN TAPE RECORDER KIT
PORTABLE TEST UNIT KIT
AUDIO OSCILLATOR FREQUENCY METER KIT IN STOCK,
S.A.E. FOR DETAILS
S. A.E. FOR TRANSISTORS, SEMI-CONDUCTORS, FULL LIST, 700 TYPES 3 SILICON RECTIFIERS, BY 100 TYPE 10/-
10 MIXED MARKED TESTED TRANSISTORS 10/-
40 UNMARKED UNTESTED TRANSISTORS NEW 10/-
1 LIGHT SENSITIVE CELL ORP12 8/6
25 MIXED UNMARKED TESTED TRANSISTORS 10/-
2 TRANSISTOR COMP. PAIR AD161/162 16/-
P.P. 1/-

OUR COMPONENTS CATALOGUE 5/- Post Paid with 10/worth of discount vouchers.

OLRUS ELECTRONICS LTD. 748 HIGH ROAD, LEYTONSTONE (NEXt tO GREEN MAM)

LONDON, E.11.
Tel. 01-989 2751
CALLERS WELCOME-CLOSED ALL DAY FRIDAY

Broaduay
 ELECTRONICS

 GARRARD 4 SPEED DECK

 GARRARD 4 SPEED DECK
 SPEAKER SYSTEMS

Autochangera: Model 3000, with cartridge, $£ 8.9 .0$ Model 2000, with cartridge, 28.8.0. Model 1000, with s11.19.6. AT60 Mk.II, lens cartridge e12.19. P. $\mathrm{P}^{\text {. all changers } 7 / 6}$
The 'EDE' TEAK FINISH WOODEN PLINTH Size $14 \times 121 \times 34 \mathrm{La}$. Cutout for Garrard 1000,2000 , \$9.15.0. P. \& P. $6 / 6$
CARTRIDGES
GP83 15/-, Renter STD/2 17/6. GP91/1 20/-. Mono gonotone, 2T8B 15/-, Acos, © P67 15/-. TCB les bracket 18/6. P. \& P. $1 /$ each.
MICROPHONES:
Xtal Hand Mokes.
BM3 and 2000 35/-. P. \& P. 2/6. gtand for aame
 40 18/6. DYn. Mike DM-391 22/6. CM21 Xtal 12/6. CM20 Xtal $9 / 6$. Magnetic Hm 63 C with remote control switch 15/-. Telephone Pick-up 10/6, P. \& P. 1/. Xtal Lapel Mike $7 / 8$. Guitar Mike 12/6. P. \& P. 1/ BARGAINS IN TRANSISTORS
AC127, AF114, 115, 116, 117, 118, 119, OC169, 170 , 171, 172, 200, 202, 203, 204, AC120, ACY40, ACY17, AF212, BCY10, $12,33,34,38,39$, BFY50, 51,52 , $90,5 / 6$ each. P. P. 6d. OA202 1/3. P. dt P. fid.
$0 A Z 206,208,5 / 6$. P. \& P. 6d. OC72, 75, 82, 83 , OAZ206, $208,5 / 6 . \mathrm{P}$, \& P. 6d. OC72, 75, 82, 83, Packe 1 OC44, 2 OC45'8/8. A.F. Packs 1 OC81 D, 2 OC81 (Mullard), 8/6. TET113, Red Bpot 2/-. OC28. 28, 29 9/6. ORP12 Light (iell 8/6. Dioder OA81 2/3. 0A91, OA95 1/9. P. \& L. $1 /$
TRANSISTOR ELECTROLYTICS
$1,2,4,5,8,10,16,25,32,50,100$ mid 15 volu working 1/3. P. \& P. 1/-
$\begin{array}{ll}250 \mathrm{mfd} \mathrm{DCB} \\ \mathrm{DC} 3 / \mathrm{F} . & 500 \mathrm{mfd} 12 \mathrm{~V} \text { DC } 3 /-.500 \mathrm{mfa} 25 \mathrm{~V}\end{array}$ DC 3/6. P. \& P. 1/-
RESISTORS. IWAt 10% from 4.7 ohm to 10 meg $5 d$. each. 4/-doz. P. \& P, 1 . (minimum order 2/h). PAPER CONDENSERS for Cross-Over Units 2 mid 2/6. P. \& P. 1/
FERROX RODS. $6^{\prime \prime} \times 1^{\prime \prime}, 21-: 6^{\prime \prime} \times 5 / 18^{\prime \prime}, 2 / 6 ; 4 i^{\prime \prime} \times 3^{\prime \prime}$,
 FERROX RODS WITH COILS. $4 \frac{1}{2} \times$ in $^{\prime \prime}$, $3 / B$; $8^{\prime \prime} \times^{8} / \mathrm{tr}^{\prime \prime}$. $5 / 6$. P, \& P, $1 /$ each
PIANO KEY POSH BUTTON SWITCRES. 7 button inc. mains on off. 6 banks of 6 I'C.O. 8/6. P. \& P. 1/-

THE MILTON. A Hi-Fi Bookcase Cabinet. Size $9 \times 5 \times 6$ in. with 5in. speaker. Finidied in Teak cloth with bold sille front. 30/-. P. \& P. 3/6.

THE STEREO. A sup.

 erior extension cabinet fitted with two 7×4 in. speakers. size $16 \times 9 \times$ 8yin. Finished in fawn Vriair with natural teak ends. £3. P. \& P. 5/-.

THE IMP. Extension Speaker Cabinet We.jge shaped, size $7 \frac{1}{2} \times 6 \frac{1}{i n}$. fitted with 7×4 in. epeaker, Covered with sttractive waluat with fawn Vynair Pront. Keybole slot in back. Only 25/6. Post $2 / 6$. Hin. chipboarl. All speakers ex TV ih. chipboari, Ail speakers ex The magnet. All carefully tested before despatch.

EAYDON SPEAKER SYSTEM. Size $164 \times 15 \times 7$ in., fitted $12 i n$ Speaker and volune control. Fabric covered. $\mathbf{\& 4 . 1 7 . 6}$. P. \& P. 10/-

SPEAKER ENCLOSURES
Tony Corner Cabinet $20 \times 10 \times 7 \mathrm{ia}$. takes $10 \times 6 \mathrm{in}$ apeaker covered in Rexine and Vynair, 45/-. P, \& P. $7 / 6$.
Haydon, $18 \frac{1}{1} \times 15 \times 7 \frac{1}{2}$. fabric covered suitable fo 12in. speaker, 45/-. P. \& P. 9/-.
Table top or wall mounting enclosure for $131 \times 8 \mathrm{in}$. Corner Cabinet in astural
Corner Cabinet in patural teak flaish for 131×8 in Hi-Fi Booksoll speaker enolosure foam tined tabinet size $10 \frac{1}{2} \times \frac{1}{2} \times 7 \frac{1}{4} \mathrm{in}$. Teak finish, $\mathbf{£} \mathbf{3} .0 .0$ P. \&P. $6 /-$. Woofer for above £8.0.0. P. \& P. 2/6. Tw. Terminal $2 / 6$ pair. P. \& P. $1 /$
8PEAKERS:
Elac Heavy duty Ceramic Magnets 11,000 line, 10 in . round $10 \times 6 \mathrm{in}$. 3 ohm or $15 \mathrm{ohm}, 48 / 6$. P, \& $P, 3 / 6$. 8 in. Found 15 or 3 ohm, $42 / 6$. P. \& P. $3 / 6$. E M.1.
131×8 in. 15 or 3 ohtr, $42 / 6$. P. \& P. $3 / 6$. E.M.I
 ohin, $£ 5.5 .0$. \mathbf{P}. \& P. $3 / 6,8 \times 5 \mathrm{in}$. Eiliptleal 30 ohm $30 /-\mathrm{P}$ \& P . $3 / 8$. इinn. round 30 ohm 17/日. P. \& P $2 / 6.5 \times 3$ in. 15 ohm $17 / 6$. P. $\otimes P$ P $2 / 6,7 \times 4 \mathrm{in}$ 35 ohm, 22/6. P. \& P. 2/6. All otherspeakergsupplien -Gomimans, lakers, W.B., Wharfedale, Eagle Tripletone.

PYE T.V. REMOTE CONTROL UNITS. Grey and Re, 1 plastic case. 2 white/silver knobs. 2 volume controls, 500 K and 100 K, small chassis. O-w EARPIECES WITH CO EAReretic, 3/- 250 ohm AND 3.5 mm . plug. 8 ohi Ytal4/-, P \& P , TRANSISTOR SPEAKERS 8 ohm $2 \mathrm{II} .8 / 6 ; 3 \mathrm{ln} .20 / 6$; 3.fin. $12 / 6$.

VYNAIR. W alihs from 40 to $54 \mathrm{~m} .13 / 6 \mathrm{vd}$ off roll P. \& P. 1/9; yd. 7/6. P. \& P. 1/9. Gend 6d. stamps for samples.
SPEAKER MATCHING TRANS
Ohms, 8 Hattoliv. P. \& P. 1/6.
PANEL LIGHTS. 6 v Red, Bhe
PANEL LIGHTS. 6v Red, Bhe, Green Yetlow White (tises Lilliput binhs) $3 /-$ each. P. \& P. $1 /$ NEON PANEL LIGHTS $200-250 \mathrm{~V} 3 /$-each. P. \& P. 1 ROTARY SWITCHES: 2 pole Mains 8 ritch $3 /-1$ pole pole 3 way, $3 / 6$ each. \mathbf{P}. \sim P.

Stockists of Eagle Products Goodmans W.B. Wharfedale - Bakers Tripletone Linear. All makes of amplifera and speakers terms to bona fide dealers.

92 MITCHAM ROAD, TOOTING BROADWAY, LONDON, S.W. 17
 Telephone 01-672 3984 (Closed all day Wednesday)
 (four minutes from Tooting Broadway Underground Station)

MAWSITUIS F slt wes of transigiok equrment

The Ideal, economical and safe way of running Translstor Radlos, Record Players, Tape Recorders, Amplifiers etc. from A.C. Malns. All units are completely solated from mains by double wound transtormer ensuring 100% safety.

PLUS-3

MAINS UNIT

Provldes three separate switched output voltages $6 \mathrm{v}, 7 \frac{1}{3} \mathrm{v}$. and 9 v . DC. At tractive case with indica tor light, malns lead, Output socket, plug and lead. Size $4 \frac{1}{2} \times 3 \frac{1}{2} \times 2 \frac{1}{3} \mathrm{in}$

57/6

45/- P.\& P. $2 / 6$

POWER PLUS

 MAINS UNIT for Cassette Tape Recor ders using $7 \frac{1}{2} v$. Complete with DIN plug for recorder power socket. Can also be supplled for a 6 -volt out put complete with suitable plug. (Please state make, model and voltage
MAINS UNIT for FI-CORD 202A

TAPE RECDRDER
£4.15.0

MAJOR POWER PLUS

 MAINS UNITS For single outputs, $9 \mathrm{v}, 6 \mathrm{v}, 39 / 6$. P. \& P. $2 / 6$ For two separate outputs, 9 $6 v+6 v .42 / 6$. P. \& P. $2 / 6$.R.C.S. PRODUCTS (RADIO) LTD.
(Dept. P.W.). 31 Oliver Road, London, E. 17

wORLD-WIDE RECEPTION

Famona for over 30 years for Bhort-Wave Equipment of quality. "H.A.C." were the original suppliers of Short-Wave Recelver Kits for the Ematenr const tuetor. Over 10,000 satisfled enstotners-inchading Technical Colleges, Hos
pitals, Public Bchools, E.A. ${ }^{\text {., }}$ Army, Hams, etc.

IMPROVED 1968 RANGE
One-valve model "DX", complete kit-price 56/6 (Postage and packing $3 / 6$)
Customer writes:- - Deflintely the best one-valve 8. W. Kit available at any price. America and Australia received clearly at gool volume." This kit contains all genuine ahort-weve components,
drilled chassis, valve, accessories and full instructious. Ready to assemble, and of course, as all our pronlucts- lulty guarantees. Fill range of other g.w. kits still available, including the iamous model "K" (recommended us radio citalot). Al orders despatched lig return. (Mail order only.) Send now for a descriptive calalogue, order iorm.
"H.A.C." SHORT-WAVE PRODUCTS 29 Old Bond Street, London W. 1

TRADER SERVICE SHEETS

4/- each plus postage.

We can supply Trader Service Sheets and Manufacturers' Manuals for most makes and types of Radios, Tape Recorders and Televisions.

Please complete order form below for your Service Sheet to be sent by return. To:

OAKFIELD ENTERPRISES

LIMITED
30 CRAVEN STREET, STRAND LONDON WC2

Make

From
Address
enclose remittance of
(and a stamped addressed envelope)
s.a.e. with enquiries please

MAIL ORDER ONLY (May PW)

EXPERIMENTERS CORNER

A SIMPLE MUSICAL TOY

1LTHOUGH it is easy to build an oscillator to function in the range $100-1,000 \mathrm{c} / \mathrm{s}$ (middle C being about $260 \mathrm{c} / \mathrm{s}$), this signal, where heard directly from the loudspeaker is not very musical. In small electronic musical instruments the use of a small loudspeaker is another factor which contributes to a very poor tone being achieved. However, if the loudspeaker is used only as a source of vibrations which causes a larger structure to resonate, it is then acting like the reed in a clarinet which on its own has no great musical value. A clarinet relies on a change in the properties of a resonator in order to change the note, an electronic instrument can change the frequency at which the "reed" is vibrating.

The Circuit

The circuit used is shown in Fig. 1, it consists of a multivibrator, which is tuned to operate in the frequency range required, and a simple class A amplifier capacitively coupled to it. The frequency

Fig. 1: Circuit for the simple musical toy.
at which the oscillator works is altered by the addition of resistances in series with R2. The methods of tuning and keyboard construction are discussed later.

Construction

The instrument was built on a base board 12 x 18 in . of $\frac{1}{4} \mathrm{in}$. plywood. Square ($\frac{1}{2} \mathrm{in}$.) wood strip was used to mark the outline of the resonator box, and was glued into position on the base board (as shown in Fig. 2). The top of the box was made of $\frac{1}{8} \mathrm{in}$. plywood $12 \times 4 \frac{1}{2} \mathrm{in}$. A hole $2 \frac{1}{2} \mathrm{in}$. in diameter was cut in the centre of the plywood with a fret-saw, so that a $2 \frac{1}{2} \mathrm{in}$. miniature speaker could be fitted facing
J. M. WATT
into the box. The top was glued on to the box, and the speaker was glued into its position over the hole in the top. On one side of the speaker two 4in. lengths of $\frac{1}{2} \times \frac{1}{2}$ in. wood strip were glued 3 in . apart to hold the 4 in . square sheet of Veroboard on which the electronic circuit was mounted. On the other side of the speaker, two similar strips were mounted to steady the battery. Since a PP9 battery was used, these strips had to be $2 \frac{1}{2} \mathrm{in}$. apart. The battery was secured by a strong rubber band stretched over it between panel pins half protruding from these blocks.

Fig. 2: Constructional details including relevant dimensions of the box on the base board.

Fig. 3: Layout of the box and the keys showing position of speaker cutout and supports for veroboard.

Fig. 4: Constructional details of suitable but simple keys showingpositioning of keying contacts.

The keyboard consists of eighteen strips of $4 \times \frac{2}{3}$ $x 1 / 16$ in. Perspex. Each key has a thick gauge wire
contact on its underside, with a length of thinner wire soldered to it. The keys are pressed on to a common contact which is a thick copper wire supported on four flexible $1 / 16 \mathrm{in}$. Perspex supports so that the key will give after contact is made, this gives the keyboard a more pleasant feel, and reduces noise from the keys. The copper contacts are glued to their Perspex supports.

When the keyboard has been completed, the electronic circuit may be screwed on to its supports. One of the terminals leading to the keyboard is connected to the common base contact of the keyboard. The second terminal is connected through a tuning resistance to the key, each key having a different tuning resistance for a different note.

Preferred Values

It is possible to tune an instrument using standard resistance, but this suffers from three main disadvantages:

1. Resistances are only available in standard values which may not coincide with any note required, although by combination of components it should be possible to obtain all the necessary notes.
2. Resistors are not made to high accuracy so may not give the required note.
3. Since other components are of doubtful accuracy experimentation with resistors is necessary, and this increases the expense of the instrument. If, however, it is decided to tune the instrument using standard resistors, values of $0-10 \mathrm{k} \Omega$ will give a range of about three octaves, the higher resistances producing lower notes.

Simple Tuning

A cheaper and more accurate method of tuning the instrument is to make resistors of the correct value. This can be done quite simply by using a thin film of graphite. If a wire lead is taken from the keyboard terminals and laid along the base of the Perspex keys, it can be inlaid into the Perspex by putting a hot soldering iron on to it until the Perspex softens and the wires start to sink into it. The wire should be held down with a pair of pliers until the Perspex resets around the wire; only short sections of wire can be done at a time, so the process should be repeated along the length of the keyboard. The wire from the contact

Fig. 5: How the wires are inset and tuned with the aid of a soft pencil. on each key should be inlaid into the key in the same way so that the two wires tie parallel about 2 mm . apart. The wires are then bared, and the Perspex between them roughened by sandpapering the area. With the key prepared in this way, it is now ready for tuning.

With the key depressed no note will be produced until contact is made by scribbling across and between the two wires with a soft pencil until enough graphite has been deposited between the two wires to create the resistance required to give the note wanted.

The keyboard consists of eighteen keys, but some may wish to extend the keyboard with a second one above it for "black" notes.

ISSUES WANTED

November 1964 issue of Pract/cal Wireless.-A. Holmwood, 8 Dock Street, Pembroke Dock, Pembs.
a copy of the July 1967 issue of Practical Television.-M. Hews, 28 Oak Tree close, St. Ives, HuntIngdonshire.
copies of Pracilcal Wireless for the years 1964, 1965 and 1956.-R. James, 14 Hotblack Road, Norwich, Nortolk.
...issues of Practical Wireless containing detalls of VALVE version of a switched w.h.f. tuner (the transistor one was in August 1967). Issues required are believed to be April 1965 and possibly May and June 1965.-S. Flsher, 146 Hilton Street, Springfields, Wolverhampton, Staffordshire.
... Practical Wireless Issues between May 1964 and October 1966 Inclusive.-S.V. Austen, Hamilton House, Stone Cross, Bllsington, Ashford, Kent.
. the August 1960 Issue of Practical, Wireless.-J. Brown, 38 Muirfield, Perth, Scotland.

The September 1965 issue of Practical Wireless.-Tan Ke Huat, 19 Wolskel Road, Singapore 13.
. a copy of the January 1966 issue of Practical Wireless.-J. Evans, Tyddyn Y Garreg, Glanrafon, Corwen, Merionethshlre.
the November and December 1964 issues of Practical Wireless, covering "Preparing for the R.A.E." parts 1 and 2.-A. Givens, 41 Veronica Crescent, Kirkcaldy, Scotland.
.. copies of the periodical "CQ" dated from August 1966 to Aprll 1967 inclusive -even loan for a week would be greatiy appreciated.-D. Hule, Marieville, Campbeltown, Argyll.
the lssue of Practical Wireless containing details of the "Multipurpose Audio Switch"' by F. L. Thurston.--1. Grewar, 55 Dens Road. Dundee, Angus, Scotiand.
. . the January 1967 Issue of Practical Wireless containing detalls of the "Expiorer y.h.f. Receiver".,-T. Cridland,"Whltworth", Zuyder Road, 60 Acres, Canvey Island, Essex.
. the copy of Practical Wirefess dated November 1953 contalning detalls of an electrically-operated coil winder.-A. Moat, 29 Dwyer Street. Toowoomba. Queensland, Australia.
\therefore Issues of Practical Wireless, January 1967-June 1967 Inclusive.—A. Staneveld, "Hollingside", 127 Welldon Crescent, Harrow, Middlesex.
... Practical WIreless wanted, July, August and September 1963.-J. Struthers, "Ravello"', Wilton Hill, Hawick, Roxburghshire, Scotland
the issue or Just the circuit of the Transistor Solo Organ. Also the circuit of the P.W. Electronlc Organ originally published in 1951/52.-J. A. Philpott, P.O. Box 200, P \& T Dept., Francistown. Botswana.
. the last five issues of Practical Wireless that covered the series "PreparIng for the R.A.E." also the issues covering the "Versatile Double Trace Oscllloscope" or detalls of any other 'scope using the VCR517B tube.-G. Evans, 7 Cadbury Road, Portishead, Nr. Bristol.

Issues of Practical Television : August, September and October 1960 and AprlI, May, June and July issues.-J. Hart, 24 Firtree Way, Shollng, Southampton.
. September 1966 Issue of Practical Television.-S. WIckremesinghe, 132 Weston Park, London, N. 8 .

Practical Television dated May 1965. I have two copies of Practical Television dated October 1965 and October 1966 if any one wants them.-8. Rooney, Glencar P.O., SIlgo, Eire.

IMPORTANT

DON'T BUY PRACTICAL WIRELESS and then allow it to become torn and dirty. Don't search frantically through your back issues for that particular article either.

Treat yourself, and your magazines, to a Practical Wireless Binder and Index. A complete year's issues all in one place with an index for quick reference. The Binder is available for just 14s. 6d., and the Index costs only 1 s . 6 d ., postage and packing included. State which volume number you want on the binder, if you don't, we'll send you a blank one.

Available from the Binding Section, George Newnes Ltd., Tower House, Southampton Street, London, W.C. 2

WIRELESS INDEX

The index to Volume 43 of Practical Wireless will shortly be available from the Post Sales Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

The price is 1 s . 6 d . inclusive of postage.

E.S.V. THE DISCOUNT STORE Stereo amplifier

BARGAIN-A fully transistorised Hi-Fi Stereo Amplifer as illustrated. Fully built in superb black leather padded cabinet with brushed silver fascia. Uses 14 transistors giving 5 watts per ohannel (r.m.s.), 10 watts mono. Integrated pre-amp with bass, treble and volume controls. Suitable for use with crystai or ceramic cartridges. Output stage for any speakers from 8 to 15 ohms. Brief speciflcation: Free response $+3 \mathrm{~dB} 20-20,000 \mathrm{c} / \mathrm{s}$. Bass Boost approx. $10+12 \mathrm{~dB}$. Treble out approx. $2-16 \mathrm{~dB}$ negative feedback -18 dB over main amp. Power requirements 25 V at 6 amp . LIST PRICE 26 GNS . DUE TO HEAVY DEMAND (over 200 sold last
 month) PHENOMENAL PRICE REDUCTION. Ampllifer 15 gns. only. P.P. 8/6. Padded leather case 2 mns. only. P.P. 4/6. If purchased together P:P. free. Maker's FULL guarantee.

- sCOOP-First again, with the NEW GARRARD range-Check our prices.

Model 1025 (supersedes 1000)
Model 2025 (supersedes 2000) Model 3500 (latest 3000). Model 60 Mk . II
Model SL55.
Model SL65
Model SL75.
ModeI SL95.
Model SP25 (Mk. II) Single Player Model AP75 (auto single player) Model 401 transcription unit Model SRP22 Single Player

WB1 wood base
NB2 wood base
WB4 wood base
SPC1 plastic cover SPC2 plastic cover SPC4 plastic cover

OUR PRICE £2 196 OUR PRICE \&4 00 OUR PRICE £3 179

OUR PRICE \&2 106
OUR PRICE £4 00 OUR PRICE \&3 178 artridge
ble prices are quoted less car
P. on bases and covers $6 / 6$.
B.S.R.-U.A. 25 with cartridge 25.16.0 P.P. 8/6

- SCOOP-The SCHAUR TUNER Single Waveband. Fully built. Supplied complete with leads for instant connection to Amplifier. OUR PRICE while stocks last ONLY £1.12.6. P.P. 4/6.
- SCOOP-TIRANSHSTORISED FM TUNER CHASSIS. Beautifully built and compact with S.M. Horizontal Dial. Low noise-battery or mains operation. Six transistor-smooth two-gang Tuning-3 I.F Stages-coupled double tuned Discriminator terminating in an I.F stage. Ample output for all good quality Amplifiers. Interference free OUR PRICE while stocks last ONLY £6.19.6. P.P. 4/6
- SCOOI"-TIE ELPICO STEIREO AMPLIFLEIR. Brand new; fully built and guaranteed. 4 watts per channel-beautifully styled-fully Integrated-Black and Silver Fascia with matching Knobs. Full tone and Volume controls-will instantly fit any cabinet or can be used 'free standing'. Original price 16 gns. OUR PRICE \&6.10.0 P.P. 5/6.
- SCOOP-E.S.V. 3 WATT IRECORD PLAYEIR AMPLIFIER 62/OUR PRICE 50/-. P.P. 3/5. A.C. 220-240V (non live chassis). Fully bullt Tested. Complete with valves (EL84 output). 2 controls. Flying panel
- SCOOP-E.S.V. 3 WATT IRECOLED PLAYER AMPLIFIER UNIT 75/-. OUR PRICE 57/6. P.P. $\$ / 6$. Complete with valves (UCL82 output). Fully built. Tested. Mounted on board-complete with speaker (5in. round). Knobs supplied-all leads attached-ready for instaint connection to your turntable. Fully guaranteed.
- SCOOP-E.S.V. IRECORD PLAYER CABINET 75/-. OUR PRICE 55/-. P.P. 5/6. Strongly built wooden cabinet. Two-tone. Complete with etther B.S.R. or Garrard cut-out board. Gilt fittings. Strong carrying handle. Will suit any Grampohone Amplifier. Ample space for Speaker.
- SCOOP-A TAPE AMPLIFIEIK sultable for Magnavox or Collaro Decks. This beautiful Amplifier was originally priced at 20 gns . Controls P/B-Trick-S/Impose. Roller-Treble-Bass. Ext. L/S (Jack) O/P(Jack) M1c-Gram. Valve line-up (supplied) EL84, EL84, ECC87. EF86, EM87 Black polished fascia fully engraved. Separate power pack supplied with Heavy Duty Mains Transformer. OUR PRICE \&9.19.6 ONLY. P.P. 5/6.
- SCOOP-SUPERI CARINETS for the above. Size approx. 181n. x 5iln. x 9 in. Two-tone with sloping fascla for control panel. Gold finish Fittings with Keyed Locks. Original price £\%.10.0. OUR PRICE e3.15.0. P.P. $5 / 6$.
- SCOOP-A connoisseur's PICK-UP ARM by world famous manufacturer. Absolutely brand new with mag. cartridge (less styli)detachable shell-needle mounted oll damped-welghted balanced arm. Has been used by BBC. Original list price E16.16.0. OUR PRICE e4.10.0 ONLY. P.P. 5/6.
- SCOOP-SPRAKERS-3 or 15 ohms- $8 \times 5 \mathrm{n}$. elliptical-12,000 lines gauss-5 watts quaranteed rating-Alcomax magnet. Absolutely brand new and guaranteed-sold elsewhere at $45 / \mathrm{m}$. OUR PRICE $25 /$ ONLY. P.P. $3 / 6$
- SCOOP-SPEAKEIRS—13 x $812-15$ ohms 10 watts guaranteed rating. Alcomax magnet-A product of E.M.I. Absolutely brand new and guaranteed-sold elsewhere at 75/ . OUR PRICE $45 /-$ ONL Y. P.P. 4/6.
- SCOOP-SPEAKERS-W.B. Bin. in attractive vynair cabinet. Speaker has die-cast chassis (gold finish), very heavy magnet and is rated at 8 watts. Ideal for hi-f stereo equipment. Worth double. OUR PRICE whlle stocks last-3 or 15 ohms- 4 gns. ONLY. P.P. $8 / 6$.
* SCOOI"-The "IBAKER SELIIURST" custom built "GOLDEN" with inbuilt Tweeter system. Brief specification: 12in. dia "Syma" cone-20 watts (r.m.s.)-Flux 16.000 gauss-impedance 15 ohmsresponse $28-17,000$ c.p.s. -net welght 10 lbs . Recommended retall price 12 gns. DISCOUNT PRICE £6.19.6. P.P. 6/6. ONE OF THE GREATEST SPEAKERS IN THE WORLD?
- SCOOP-CARTRIDGES-NOT the Iowest prices but all are brand new and guaranteed.
Sonotone 9TA/HC sapphire-stereo 44/6
Sonotone 9TA/HC diamond-stereo 56/3
T.C.8.H-mono 27/6
T.C.8.M-mono $27 / 6$
$\begin{array}{llllllllll}\text { T.C.8.S-stereo } & . . & . . & . & . . & . . & . & . & . . & . . \\ \text { C.I.-stereo. } & . . & . & . & . . & . . & . & . . & . . & . \\ 49 / 6\end{array}$
All cartridges are supplied with fixing brackets and screws at no extra charge. P.P. on all above 2/6.
- SCOOP-INTERCOM SYSTEM by "Phillps". This equipment is Ideal for baby alarm-office-or home usage. Absolutely brand new in presentation case. Supplied complete with all leads, etc. and carries makers' Euarantee. Recommended retall price £6.6.0. DISCOUNT PRICE £3.3.0 ONLY. P.P. 3/6
- SCOOP-RECORD IPLYEIRS by famous manufacturer 19 uns. OUR PRICE 12 gns. P.P. 15/-. Brand new in original carton with guarantee. Garrard Deck-GP91 cartridge-3 watts output. 3 controI ampHfier. Beautiful Two-tone cabinet. H1-Fi tonal quality. One of the nicest Record Players avallable today. Limited stocks.
- SCOOP-CAR RADIO 1\% gns. OUR PRICE 8 gng. P.P. 8/6. Well known brand name. Fully tested before despatch in makers' own carton with makers' guarantee. L.W., M.W.-Fully transistorised-speaker and fitting kit supplied at no extra cost, also instructions for fitting 12 volt. Please state negative or positive earth. Limited stocks only available.
- SCOOP-HARGAIN-SLIMLINE TV RECEIVERS. 19in. in mint condition. Complete. tested. working but less I.F. strips. Make ldeal monitors. Various famous makes. OUR PRICE \&10 ONLY. I.F. strips if required $45 /-$ only. P.P. 25/- (TV and Strip). Personal collection advised otherwise despatched at customer's risk.
- SCOOP-TRANSISTOR IRADIO-S.W.H, OUR PRICE 4 gns. P.P. 3/6. A finly built and tested S.W.B. Radio. Complete in every way. Operates equally well in home or car. The performance of this Radio has to be heard to be belleved. Limited stocks.
- SCOOP-SPOTLIGIIT. Manufactured by Butlers for the Air Ministry. Universal bracket. Dozens of uses-bench-car-photography Mirrorised reflector supplied. Iess bulb, in carton at fraction of price. OUR PRICE 15/. EACH. P.P. 6/6.
- SCOOP-Diodes-over $1,000,000$ in stock-1deal substitute OA81 vision detector. NOTE OUR PRICE \&1 per 500. P.P. 4/-. (In 500 lots only).

OUTSTANDINGIY GOOD DESIGNS FROM SINCLIAR

The

world's

smallest

radio

SINCLAIR MICROMATIC

The ultimate in personal listening, the Micromatic is as easy to have with you as your wristwatch. It has enormous power and range, and the magnetic earpiece now supplied assures marvellous quality. Hear how Radio 1 and other stations simply pour in. Build it yourself or buy your Micromatic ready built. This is the set you will never be without once you hear it for yourself.

```
-1%"× 1//10"×古"
- Tunes over medium
    waveband
Slow motion tuning control
- Aluminium front panel and dial
Magnetic earpiece
```



```
- Tunes over medium waveband Slow motion tuning
```

Complele kit including
magnetic earpiece magnetic earpiece
and insiructions

49/6

Ready buill with magnetic earpiece
59/6
Mallory Mercury Cell
RM. 675 (2 needed) ea. $2 / 9$

SINCLAIR RADIONICS LTD, 22 Newmarket Road,
 Cambridge
 Phone OCA-3 52996

No constructor's transistor amplifier has ever achieved such successes as the Sinclair Z.12. It favours the user in so many ways-with fantastic power-to-size ratio, with far greater adaptability, with freedom to operate it from batteries or mains power supply unit (the new PZ.4 is ideal for this) with the opportunity to obtain superb stereo reproduction for very little outlay. Countless thousands of Z .12 s are in use throughout the worldin hi-fi installations, electronic guitars and organs, P.A. installations, intercom systems etc. This true 12 watt amplifier is supplied ready built, tested and guaranteed together with the $\mathbf{Z . 1 2}$ manual which details control circuits enabling you to match the $Z .12$ to your precise requirements For complete listening satisfaction, use your $Z .12$ system with Q. 14 loudspeakers. it assures superb quality with substantial saving in outlay.

- $3^{r} \times 1 \frac{3}{4}{ }^{\prime \prime} \times 1 \frac{1}{4^{\prime \prime}}$
- Class B Ultralinear output
- $15-50,000 \mathrm{~Hz} \pm 1 \mathrm{~dB}$
- Suitable for 3, 5, 8 or 15Ω speakers. Two 3 -ohm speakers may be used in parallel.
- Input- 2 mV into $\mathbf{2 k} \Omega$
- Output-12 watt. R.M.S. continuous sine wave (24 w peak)

YOUR SINCLAIR GUARANTEE

Should you not be completely satisfied with your purchase when you receive it from us, your money will be refunded in full at once and without question. FULL SERVICE FACILITIES AVAILABLE TO ALL PURCHASERS.
"I made this (Z.12) stereo record player for my work as hospital chaplain and it has been a great success."
K.S.B., Basingstoke.
"The 2.12 and $Q .14$ live up to your high standard. / could spend pages praising these products.'
I.A.W., Hereford.

Ready built. tested and guaranteed.

SINCLAIR STEREO 25

 Frequency response 25 Hz to 30 KHz - 18 connected TESTED to two 2.12 s. Sensitivity Mic. 2 mV inio $50 \mathrm{k} \Omega$: P.U. AND -3 mV into 50 ha : Radlo- 20 mV into $4.7 \mathrm{k} \Omega$. Equalisa- GUARAN to 2000 Hz to within ± 1 dB on RIAA curve rrmm TEED front panel with solid alumintum knobs to match. f9.19. Size $6 \frac{1}{2} \mathrm{in} . \times 2 \frac{2}{2} \mathrm{n}$. $\times 2 \frac{1}{2} \frac{1}{2}$. plus knalis.f9.19.6

SINCLAIR PZ. 4

STABIL\|SED POWER SUPPLY UNIT

A heavy dury A.C. mains power supply unit delivering 18 V D.C at 1.5A. Designed specially for Z.1.2 assemblies.
Ready built and tested.

WE PAY POStAGE ON EVERYTHING YOU ORDER

[^10]
Your guide to good motoring on holiday and at home

PREPARING FOR HOLIDAYS ON WHEELS Planning and budgeting for home and Continental holidays-caravanning, camping, motor caravan-ning-maps and routes to the sea and sun-comfort for drivers and passengers-safety devices-what to take in spares-tools, first-aid kits, etc.

holiday en route

How to use maps-recipes for alfresco meals-tips on driving at home and abroad-motoring in hot weather-motor sport.

CAR ANALYSIS AND MAINTENANCE
Engine-Ignition-Carburation-Cooling-Transmission-Tyres-Brakes-Suspension.

BIG DEMAND!

MAKE SURE OF YOUR COPY 3/6 124 pages

NEW RANGE BBC 2 AERALS

All U.H.F. aerials now fitted with tilting bracket and 4 element grid refectors. 11 element. $45 /-$. 14 element. $52 / 6$. 18 olement. $60 /-$ Wall Mounting with Cranked Arm, 7 element, 60/-. 11 element. 67/- 14 element, $75 /$-. 18 element, $82 / 6$ Mast Mounting with $2 i n$ clamp. 7 element. 48/6, 11 element, $55 /$-, 14 element, 62/-, 18 element, $70 /$-. Chimney Mounting Arrays, Complete. 7 element, 72/6. 11 element, $80 /-$ 14 element. $8 \% / 6.18$ element. $95 /$-. Complete Loss Cable, $1 / 6$ yd. U.II.F. Preamps from 75/-. State clearly channel number required on all orders.

BBC • ITV AERIALS
BBC (Band 1). Tele-
 scopic loft. 25/-: External S/D. 301 (Band "H" ${ }^{2}$). ${ }_{3}^{2} .15$ element loft array, 30/-. 5 element. 40%-. 7 element. $50 /$ - Wal mounting. 3 element. 47/6. 5 element, $52 / 6$. Combined BBC ITV. Loft $1+3.40 /-; \quad 1+5$. $50 /$-; $1+7,60 /-;$ Wall
mounting $1+3,57 / 6 ; 1+5$, mounting $1+3.57 / 6 ; 1+5 ;$
$67 / 6 ;$ Chlmney $1+3,67 / 6 ;$ $\mathbf{V H F}^{75 /-}$

COMBINED IBBC1 - ITV - BBC2 AERIALS $1+3+9,701-\quad 1+5+9$, $801-$ $1+5+14.90 /-1+7+14,100 /$ - Loft mounting only. Special leaflet avallable. "H'", 32/6. 3. element. 55i-. Externai units available. celement. $55 /-$ External units available.
Co-ax. cable 8 d . yd. Co-ax. plugs, $1 / 4$. Co-8x. cable 8 d . Diplexer Crossover Boxes, 13/6. C.W.O. or C.O.D. P. \& P. 5/-. Send 6d. stamps for illustrated lists.
Callers welcomed - open all day Saturday
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade, New Addington Surrey (CRO-OJB)
LODGE HILL 2266

4STATION INTIERCOM

Solve your communica--Station Trangigtor Intercom problem (1 mater and 3 Subs), in de-luxe plastle cabinets for deak or wall mounting. Call/talk/listen from mantor to 8 abs and Subs to Master. Ideally nuitable for Buainets, Surgery, Schools, Hospital, Othice and Home. Operates on one 9V battery. Onjoff switch. Volume control. Complete with 3 connecting
other accessories. P. \& P. $7 / 6$.
WIRELESS INTERCOM
No batteries-no wires, Just plug in the mains for instant two way, loud and clear communalcation. On/off awitch and volume control. Price L2 gns, . \& P. 7/6 extra

Bame as 4-Station Intercom for two-way instant communication. Ideal as Baby Alarm and door Phone. Complete with 66ft. connecting wire Battery 2/6.

iency with this incredible De-luwe Toushess effi1er. Take down long telephone messages or converse without holding the handset. A useful office aid. On/ off 8 witch. Volume Control. Battery $2 / 6$ extra. P. os P. 2/6. Full price refunded if not satisfled in 7 days. 169 KENSINGTON HIGH 8TREET, LONDON, W.8.

ORGAN BUILDERS: N.P.N. Sil. Pianar Transiatork. All Tested, $1 / 6$ each or $\pm 5.0 .0$
pir 100
Transigtor bargain sale:
OC44, OCAT, oc:811) now only Or 71. OU72 equivalrat $1 / 8$ stock AT
1/8 +a, b!
1/-e日ch E6.0.0 per 100.
AsY22 Switehing Transintors $2 / 8$ each \&10.0 per 100. -Ni53 N.P.N. Bilicon Planar, 300 mW . $250 \mathrm{Mc} / \mathrm{Q}$, High speetf switchime
 AF\%12 P.N.P. Germanium Alloy Diff. low hoige V. H.F. amplitier Compiete sets of transistors for radio:-

GET $120,-2$ watts. Heat vink included
Transistor Driver Trandurmers
Tranvistut Output Transformers (suitable for our kita amive)
Og28
By 13.6 amp. rectifiers
Light senxitive cransistoras similar to ocp 71
UNMARKED, UNTESTEJ TRANSISTORS TO CLEAR
for cying el $2 / 6$ each'
$2 / 6$ "'uh litier 1/- tach. 20 for 10/BY 100 typer rectitiers. SPECIAL. REDUCEI PRIGE! ONLY 2/6 earh. 24/- doz., \&7.10.0 per $100, £ 50.0 .0$ per 1000 .
ELECTROLYTIC CONDENSERS! FANTASTIC SELECTION:

All at $1 /$ - each, $9 /$ - per dozen. Mixed Packets of 20 (our selection) 10/-, PAPER CONDENSERS

$0-001 \mu \mathrm{~F}$	\cdots	500 volt	$0.02 \mu \mathrm{~F}$		600 A.C.	$0.25 \mu \mathrm{~F}$	\cdots	350 volt
$0.001 \mu \mathrm{~F}$	\cdots	1000 volt	$0.02 \mu \mathrm{~F}$	\cdots	350 volt	$0.5 \mu \mathrm{~F}$	\cdots	150 volt
$0-002 \mu \mathrm{~F}$	\cdots	500 volt	$0.1 \mu \mathrm{~F}$	\cdots	350 volt	$0.5 \mu \mathrm{~F}$	\cdots	350 volt
$0.005 \mu \mathrm{~F}$	\cdots	750 volt	$0.1 \mu \mathrm{~F}$	\cdots	750 volt	$0.5 \mu \mathrm{~F}$	\cdots	500 volt

 MULLARD POL YESTER CAPACITORS. ALL HALF PRICE

RECORD PLAYER CARTRIDGES
20/-; Acos GP93/1 stereo, $25 /$-. All with neelle 4 .
Signal Injector Kit-10/-. Bignal Tracer Kit-10/
VEROBOARD. All sizes in stock.
$2 \ddagger$ ins. $x 1$ in. 0.15 matrix
$21 \mathrm{in} . \times 39$ in. 0.15 matrix
$\begin{array}{ll}2 \frac{1}{2 n} . & \times 5 \text { in. } \\ 3 \text { in. } & 0.15 \text { matrix } \\ 3 & 3 \text { in. } \\ 0.15 \text { matrix }\end{array}$
$\begin{array}{ll}3 i \mathrm{in}, \times 3 i \mathrm{in} . & 0.15 \text { matrix } \\ 34 \mathrm{in} . \times 5 \mathrm{in} . & 0.15 \text { matrix }\end{array}$
$34 \mathrm{in}. \times 5 \mathrm{in} .0 .15$ matrix
$17 \mathrm{in} . \times 24 \mathrm{in} .0 \cdot 15$ matrix
SPECLAL OFFER!
Cutterand 5 Buards $24 \mathrm{in} . \times 1 \mathrm{in}$., 9/9. Cutter only, 7/6. Pin Insert Tool, 8/6. Terminul Pins. Packet of $36,3 / 6$.
BARGAIN ORFER
Few only Multimeters, $1,000 \Omega$ per volt, $45 /-, 20,000 \Omega$ per volt, $80 /$ - $-~$
Orders by post to:- 17 PEEL CLOSE, DRAYTON BASSET, Stafts.
G. F. MILWARD, 17 PEEL CLOSE, DRAYTON BASSET, Stafts.
Please include suitable amount to cover postage. Stamped addressed envelope must Please include suitable anount to cover postage. Stamped addressed envelope must
be included with any enquiries
For customers in the Birmingham area goods may be obtained from Rock Exchanges,
231 Alum Rock Roed, Birmingham 8. (All POST orders to Drayton.)

ERSIN

Contains 5 cores of non-corrosive flux, instantly cleaning heavily oxidised surfaces. No extra flux required. Ersin Multicore Savbit Alloy also reduces wear of copper soldering iron bits.

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the U.K. and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& GUILDS EXAMS (Technicians* Certificates) ; the Grad. Brit. I.E.R. Exam.; the RADIO AMATEUR'S LICENCE; P.M.G. Certificates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servo-mechanisms: Mathematics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks. Please send FREE BROCHURE to:

Extend your Constructional Range

W

THE TELEAMP

How to make a simple 2-stage audio amplifier suitable for use in the home, in clubs, etc., based entirely on components salvaged from old TV receiver chassis.

Radio enthusiasts! Take the next step and progress into the television field. Month by month practical television brings you the expert know-how you need for a whole new range of fascinating experiments and constructional projects.

Outstanding Features in This Issue :

FAULT FINDING FOCUS

First of a new series devoted to speedy fault diagnosis and the various practical problems that arise during the course of TV servicing.

DRIVING

SHADOWMASK TUBES

Analyses the shadowmask colour TV tube, and gives a clear account of the production of colour TV displays and the problems of compatible colour/ black-and-white picture reproduction.

Plus a wide variety of articles on TV theory

\star GO FOR THE APRIIL ISSUE OUT NOW 2'6

Practical Wireless Classified Advertisements

SERVICE SHEETS

SERVICE SHEETS. RADIO, TV. 5,000 Models. List 1/6. S.A.E. Enquiries. TELRAY, 11 Maudland Bank, Preston, Lancs.

SERVICE SHEETS $(75,000)$ 4/- each: please add loose 4d. stamp: callers welcome; always open. THOMAS BOWER, 5 South Street, Oakenshaw, Bradford.

SERVICE SHEETS. RADIO, TELEVISION, TAPE RECORDERS, 1925-1968 by return post, from $1 /-$ with free fault-finding guide. Catalogue 6,000 models 2/6. Please send stamped addressed envelope with all orders/ enquiries. HAMILTON RADIO, 54w London Road, Bexhill, Sussex.

RADIO, TELEVISION over 3,000 models. JOHN GILBERT TELEVISION, Ib Shepherds Bush Rd., London W.6. SHE 8441.

MISCELLANEOUS

ELECTRONIC sound and musical devices required for exploitation. Adequate finance required for exploitation. Adequate finance
available. Projects developed to pre-production stage required. Royalty payments guaranteed. Details only Box No. 74.

ELECTRONIC MUSIC?

Then how about making yourself an electric organ? Constructional data availablefull circuits, drawings and notes! It has 5 full circuits. drawings and notes! with 24 stops-uses 41 valves. With its variable attack you can play Classics and Swing.
Write Now for free leaflet and further details to C. \& S., 2 Maude Strect. Daringion, Iburtiam. Send 3d. stamp.

TAPE RECORDERS, TAPES, Etc.

TAPES TO DISC-using finest professional equipment 45 rpm - $18 /$ - S.A.E. leaflet. DEROY, High Bank. Hawk Street, Carnforth, Lancs.

EDUCATIONAL

RADIO OFFICERS see the world! Sea-going and shore appointments. Trainee vacancies during 1968. Grants available. Day and Boarding students. Stamp for prospectus. Wireless College. Colwyn Bay

RADIO OFFICER training courses. Write Principal, Newport and Monmouthshire College of Technology, Newport, Mon.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City $\&$ Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses incl. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor.
Write for FREE prospectus and find out how ICS can help you in your career.
ics, dept. 541, intertext house. LONDON. SW11

RATES: 1/6 per word (minimum 12 words). Box No. $1 / 6$ extra.
Advertisements must be prepaid and addressed to Advertisement Man-
ager. "Practical Wireless". George Newnes Ltd., 15/17 Long Acre, London, WC. 2

EDUCATIONAL.

(continued)
CITY \& GUILDS (electrical, etc.) on "Satisfaction or Refund of Fee" terms. Thousands of faction or Refund of Fee terms. Thousands of
passes. For details of modern courses in all passes. For details of modern courses in all branches of electrical engineering, electronics, radio. TV., automation, etc. send for 132-page Handbook-FREE. B.I.E.T. (Dept. 168K), Aldermaston Court, Aldermaston, Berks.

BECOME "Technically qualified" in your spare time, guaranteed diploma and exam. home-study courses in radio, TV servicing and maintenance. T.T.E.B. City and Guilds, etc.: highly informative 120 -page Guide-frec. CHAMBERS COLLEGE (Dept. 857 K), 148 Holborn, London, E.C.I.

SITUATIONS VACANT

SERVICE ENGINEERS. Vacancies exist for a number of Radio and Tape Recorder Engineers in the Service Department. A varied range of equipment is handled which will offer plenty of
scope for experienced men to use their knowscope for experienced men to use their know-
ledge and initiative. Good starting rates are offered to suitable applicants who will progress to Staff status.
Apply: Service Manager. ELIZABETHAN ELECTRONICS LIMITED, Crow Lane, Romford Essex.

FREE TO AMBITIOUS ENGINEERS! 132 page Guide to B.Sc. (Eng.), A.M.I.E.R.E., page Guide to B.Sc. Eng. A.S.E., A.M.I.M.I., CITY \& GUILDS, A.M.S.E., A.M.I.M.I., G.C.E., etc. on 'SatisA.I.O.B., A.R.I.C.S., G.C.E., etc. on 'Satis-
faction or Refund' terms. Thousands of passes faction or Refund' terms. Thousands of passes
-over 600 Home Study Courses in all branches of Engincering, Building. Radio, Electronics, etc. Write: B.I.E.T. (Dent. 169 K), Aldermaston Court, Aldermaston, Berks.

IF YOU ARE a Radio enthusiast and would like a position with a future, apply to BERRY'S Radio, 25 , High Holborn, London, W.C.I.

SITUATIONS VACANT
 (continued)

TV and Radio, A.M.1.E.R.E., City \& Guilds, R.T.E.B., Certs., etc. on 'Satisfaction or Refund of Fee' terms. Thousands of passes. For full details of exams and home training Courses details of exams and home training courses (including practical equipment) in all branches
of Radio, TV. Electronics, etc. write for 132of Radio, TV, Electronics, etc. write for 132 page Handbook-FREE. Please state subject BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 137K), Aldermaston Court. Aldermaston, Berks.

RADIO TECHNCLIANS

A number of suitably qualified candidates are required for unestablished posts, leading to permanent and pensionable employment (in Cheltenham and other parts of the UK, including London). There are also opportunities for service abroad.

Applicants must be 19 or over and be familiar with the use of Test Gear, and have had practical Radio/Electronic workshop experience. Preference will be given to such candidates who can also offer "C" Level GCE Passes in English Language, Maths and/ or Physics, or hold the City and Guilds Telecommunications Technician Intermediate Certificate or equivalent technical qualifications. A knowledge of electromechanical equipment will be an advantage.

Pay according to age, e.g. at $19-\mathrm{E} 828$. at $25-\mathrm{E} 1.076$.

Prospects of promotion to grades in salary range $£ 1,159-£ 1,941$. There are a few posts carrying higher salaries.

Annual Leave allowance of 3 weeks 3 days rising to 4 weeks 2 days. Normal Civil Service sick leave regulations apply.

Application forms available from:

Recruitment Officer (RT/37).
Government Communications Headquarters.
Oakley. Priors Road,
CHELTENHAM. Glos.

RADIO TECHNICIAN with sound knowledge of at least three of the following types of equipment required immediately for Meteorological Office Ocean Weather Ships: Single Side-Band Transmitter, Radar (Navigational), Radar Height Finding, Echo Sounders, Radio Receivers, Automatic DF, VHF, and MF Low Voltage Servo Recorders, Digital Telemetering Equipment.

Salary scale $£ 745-£ 1,242$ per annum according to age, plus $£ 120$ overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone Greenock 24291.

SITUATIONS VACANT

A Vacancy exists for a young man aged 18 years or over, who possesses some knowledge of Transistor Circuitry and FaultFinding. Further "on the job" training will be given in the field of Telecommunications.

Please apply to Personnel Manager, Cambridge Works Ltd., Haig Road, Cambridge. Tel. Cambridge 51351 Extn 327

RADIO OPERATOR preferably with PMG 2 Certificate

 required immediately for duty on Meteorological Office Ocean Weather Ships.Salary scale $£ 792-£ 1,230$ per annum according to age, plus $£ 143$ overtime allowance. Free food and accommodation provided on board ship. Applicants must be natural born British subjects. Full details from Shore Captain, Ocean Weather Ship Base, Great Harbour, Greenock. Telephone Greenock 24291.

SHORTWAVE LISTENERS

INTERESTED IN SHORT-WAVE RADIO? Then you'll be interested in the Radio New York Worldwide Listeners' Club! Each month thousands of Club members throughout the wousands of ceive a Club magazine filled with world receive a Club magazine filed with special features and news about international communications
Radio New York Worldwide (WNYW) is the only commercial, non-government short-wave station broadcasting from the United States. We're a special radio station with a very unique Listeners' Club, in fact it's the largest Club of its type in the world today! We invite you to write in and request a free sample issue of the Club Magazine now . . . you'll enjoy it! RADIO NEW YORK WORLDWIDE LISTENERS' CLUB 485 Madison Avenue, New York 10022, USA.

FOR SALE

FOR SALE

(continued)
SEE MY CAT. for this and that. Tools, materials, mechanical and electrical gear-lots of unusual stuft. This Cat, is free for the asking. K. R. WHISTON (Dept. PWC), New Mills. Stock port.

Well-known units by leading makers ! OSCILLOSCOPES for sale, at bargain prices various types from $£ 20$ to $£ 195$. Second hand but in good condition. A.C. mains operated, $3 \frac{1}{2}$ in. screens, twin beams, long persistance to be missed. Dome models. Few only. not to be missed. (Dept. PRM), Lind-Air (Elec 01-580-4532 (Callers Welcome).

FOR SALE

MINIFLUX 4-Track stereophonic/monophonic record/playback heads. List Price 6 gns.-Special Offer 55/- each. MINIFLUX 4-Track stereophonic/ monophonic Ferrite Erase Heads. List monophonic Ferrite Erase Heads. List Price $£ 3.10 .0 .-$ Special Offer $32 / 6$ each, or supplied together (one of each) at
f3.17.6. SKN4 t-track stereophonic £3.17.6. SKN4 $\frac{1}{2}$-track stereophonic
record/play heads for Transistor Circuits at $55 /$ - each. Also available $\frac{1}{2}$-track and full-track monophonic Ferrite Erase Heads. All heads complete with technical specifications. Send S.A.E. for details. LEE ELECTRONICS, 400 Edgware Rd., Paddington 5521.

CURSONS TRANSISTORS

all guaranteed

1/- each. BAY31, BAY50, DK10, OA70, OA81, OA10, OA200, OA90, OA91, OA259.

2/- each. XA101, XA102, OC71, OC72, OC81, OC81D, OC44, OC45, GET16, FST3/1, ACY22.

3/- each. OC139, OC140, 2N706, 2N708, 2N2894, BY100, RAS310AF, 2N914, 2N916, BSY25, BSY26, BSY27, BSY95A, AFZ12, BFY18, BFY19, BFY26, BFY36.

7/6 each. RAS508AF, CRS3/40, BLY10, BLY11, BUY10, BUY11, ADY22, ADY23, ADY24, 2N2234, 2N2235, OC22, OC26, OC28, Oc35.

ZENER DIODES

3.9 v to $26 \mathrm{v}, \frac{1}{4} \mathrm{w} 3 /-$ each, 1.5 w 4/-, 7w 5/- each.

SAE, full new list:-

B. W. CURSONS 78 BROAD STREET CANTERBURY, KENT

MORSE $\begin{gathered}\text { MADE } \\ \text { EASY }\end{gathered}$!

 FACT NOT FICTION. If yOu start RIGHT you will bereading amateur and commercial Morse within a month. reading amateur and commercial (Normal progreas to be expected.)

Using scientifically prepared utomatically learn to recognise the code RHYTHM without translating. You can't help it, it's easy as learnlng a tune. 18 W.P.M. in 4 weeks guaranteed.
For details and course C.O.D. ring, s.t.d. 01-660 2896
G3CHS/P. 45 GREEN LANE, PURLEY, SURREY

WANTED

WANTED Masteradio 6V 5-pin Vibrator. Also valve C.L.33. Reasonable price paid. Box No. 77.

WE BUY New Valves and Transistors. State price. A.D.A. MANUFACTURING CO.. 116 Alfreton Road, Nottingham.

WANTED
(continued)
WANTED: Popular Brand New Valves. R.H.S., Stamford House, 538 Great Horton Road, Bradford 7 .

WANTED NEW VALVES ONLY
Must be new and boxed Payment by return
WILLIAM CARVIS LTD 103 North Street, Leeds 7

VALVES WANTED brand new nopular types boxed. DURHAM SUPPLIES (C), 175 Durham Road, Bradford 8, Yorkshire.

WANTED: New valves, transistors etc.; state price. E.A.V. Factors 202 Mansfield Road, Notingham.

WE BUY New Valves. Transistors and clean new components, large or small quantities, all details, quotation by return. WALTON'S WIRELESS STORES, 55 Worcester Street, Wolverhampton.

DAMAGED Avo Meters. Models 7 and 8. Damaged Meggers, any quantity. Send tor packing instructions. HUGGETT'S LTD., 2/4 Pawson's Road. West Croydon.

ELECTRICAL

ELECTRICAL
(continued)

With Most Brilliant Performance Ever from 12 Volt Car Battery. BRILLIANT HEAVY DUTY 240 volt AMERICAN DYNAMOTOR with BIG 220 WATT OUTPUT. Marvellous for TELEVISION, ELECTRIC DRILLS, MAINS LIGHTING and ALL UNIVERSAL AC/DC MAINS EQUIPMENT. Marvellous for fluorescent lighting. Thousands of uses. Tremendous purchase makes fantastically low price possible. ONLY £7.0.0 each plus 10/- delivery. C.O.D. with pleasure MONEY BACK if not DELIGHTED. STANFORD ELECTRONICS Dept. P.WGenerator Specialist
No. 4 Rear Derby Road,
North Promenade, Blackpool
Please send S.A.E. for illustrated details.

METAL WORK

METAL WORK: All types cabinets, chassis racks, etc. to your specifications. PHILPOTTS METAL WORKS LTD., Chapman Street. Loughborough.

BOOKS \& PUBLICATIONS

AUDIO. America's foremost journal. Year's subscription $50 /$-. Specimen copy 4/6. All American radio journals supplied-list free Willen (Dept. 40). 61a Broadway, London E.I5.

RECEIVERS \& COMPONENTS

150 NEW ASSORTED Capacitors, Resistors Silvered Mica, Ceramic, etc. Carbon, Hystab. Vitreous, $\frac{1}{4}-20$ watt, 12/6 Post Free. WHITSAM ELECTRICAL, 18 Woodrow Close, Pam Erivale, Middleser.

RECEIVERS \& COMPONENTS (continued)

MULLARD ADI61/2 comp. pwr. pr. 15/6. List 3d. Amatronix Ltd., 396 Selsdon Rd., Croydon, Sy.

QUALITY NEW VALVES
Guaranteed six months. Portage 4 d ,

STUDENT ELECTRONIC SERVICES

194 Regent Road, Salford 5
Your reliable, prompt and inexpensive Service of components.

Resistors 5% tol. $\frac{1}{4}$ and $\frac{1}{2}$ watt 4.7ohm-10M. ohm. 2d. each.

Capacitors (5d.-10d. each), FET's (10/-),
Silicon Rectifiers (3/6)
Sole distributors of I.M.E.L. assembly stand. Stockisis of LEKTROKII
Enclose 6d. for price list.

WILSON ELECTRONICS

EAGLE PRODUCTS—Compare these prices
Crossover Network CN23 3 hm Crossover Network CN215 150 hm Signal Injector ITT1
Multimeter Kew 71 k . O.P.V.
Multimeter Kew $1 \mathrm{k} .0 . \mathrm{P} . \mathrm{V}$.
Multimeter Kew 6620 k . $\mathrm{O} . \mathrm{P}$.
Phone Monitor T.M. 69
Phone Pick-up Coil T. P. 100
Transistor Tester TT145
GUAIt ANTELD TRANSISTORS
2/- each AC126, 127. 128. S 18 T (OC83).
$2 / 6$ each OC44, 45, 81D. 81, 82D, 82.
31 - each OC71, 72. 170, 84 , AF118, 119 .
$3 / 6$ each AF115. 116. 117. 122, 127
4/- each AF114. OC171.0C172. 200.
$7 /-$ each OC22, 23. 25. $26.28,30,200$
$11 / 6$ each AD $140,149,0 \mathrm{O} 35,36.38$.
23 Wadham Road, Woodthorpe, Nottingham

COMPONENTS

postal service
\star RECHARGEABLE
BATTERIES
(Bpalcil DEAC Ni-Carl)
 $\therefore 2$ Equis: $1.25 v .35 / 9$ (p d p 2/-ea Ull Equiv.: $1.25 v .28 / 6$ (p \& p $1 / 6$ ea
\star NEW BARGAIN PACK
100 Hi -stal, Resistors. 30 Silicon diodes (un graded). S Rectitiers (top hat)

* ASSORTED RESISTORS - Hi-Gtab. 300 off 15
(5% (P.

$$
\begin{aligned}
& \text { S. A. for the of Inlusitinal Componerts } \\
& \text { for the Home Cohefructor. }
\end{aligned}
$$

ELMBRIDGE INSTRUMENTS LTD. Island Farm Avenue. West Molesey, Surres

RECEIVERS \& COMPONENTS (continued)

WAVEFORM GENERATORS type SI, mains. 30/- carriage il. Marconi Signal Generator TFSI7, mains. $£ 4.10 \mathrm{~s}$. carriage $£ 1$. NOYCE. High Laws. Abbevtown. Cumberland.

All Mullard devices, new marked and guaranteed. P.O.A. $0.0001 \mu \mathrm{~F}$ at $160 \mathrm{~V}, 250 \mathrm{~V}, 400 \mathrm{~V}$, 500 V to $1 \mu \mathrm{~F} 500 \mathrm{~V}$, all values 6 d . each, $5 /-\mathrm{per}$ doz. or 50 for $15 /$ - our choice, $20 /$ - yourchoice. Resistors: 10 ohm to 26 megohm 10%, $\frac{1}{2} \mathrm{~W}$. 4 d . each, $10 /$ - for 50 mixed, $20 /$ for 50 your choice. 1 /- P. \& P. Over 20/- post free. C.W.O.

Dept. A2, 102 Arundel Street.
Ashton-under-Lyne, Lancs.

BRAND NEW TELEVISION TUBES 2 YEAR GUARANTEE. HUGE RANGE $19^{12^{\prime \prime}}$ £3: $14^{\prime \prime}$ £4.15.0: $17^{\prime \prime}$ £5.15.6 Also British and Telefunken valve lists! PHILIP H. BEARMAN. 6 Potters Roat, New Barnet, Herifordshire. Tel. 449/19.34

FANTASTIC OFFER!!!
Computor printed circuit boards. Comprising transistors, diodes, resistors etc, Ideat for consiructing amplifiers, receivers etc., etc. Price: 5 boards for only $10 /-\quad$ p. \& p. $2 /$
TELE-RADIO (1943) LTD 189 EDGWARE ROAD, LONDON W. 2

STELLA NINE RANGE CASES

Mannfactures ith black, Grey, Iagoon or Blue Stelcetite and finishest in Plustic-coated Steet Muroce Finish. The ivame is of Dura with Allu minium end plates. Rupher feet are attacherl and there is a removable
Aluminum irant panel. LIST OF PRICES AND SIZES
which are made to fit Standard Alloy

Width	Depth	$\begin{aligned} & \mathbf{4}_{\text {Height }} \end{aligned}$	6^{6} Heikht	Height
Hi*		${ }^{2}{ }^{8} 100$	- $12{ }^{4} 8$	
61,	$4{ }^{1 / 2}$	116	146	168
81:	$3{ }^{\circ}$	126	160	179
8!"	fix $^{\text {a }}$	178	118	150
10:\%	\%"	130	180	1119
1213	${ }^{3 / 4}$	179	119	$1{ }^{4} 9$
12:	54."	123	170	1106
1290	80.	189	1148	1189
1410	$32 \times$	108	150	173
141*	$9{ }^{\text {9 }}$	1150	249	270
${ }^{161^{\text {2 }} \text { " }}$	${ }^{615}$	1110	${ }_{2}^{17} 170$	${ }_{2}^{2} 173$
15! ${ }^{\text {a }}$	$10^{\prime \prime}$	1193	210	217

Chassis in Aluminium. Standard Sizes. with Gusset Hiae Plates
Sizes to nt Cases

E. R. NICHOLLS

Manufacturer of Electronic Instrument Cases
46 LOWFIELD ROAD STOCKPORT, CHESHIRE

Tel: STOckport 2179

RECEIVERS \& COMPONENTS (continued)

SELLING . . Codar CR70A Receiver. Excellent, \&13. Yewani, Elm Grove, Barnham Bognor. Sussex

ELECTROVALUE
6 MANSFIELD PLACE ASCOT BERKSHIRE

DUXFORD ELECTRONICS (PW) Duxford, Cambs.

 P. 1/-. Minimum order value $5 /-$ C.W.O. P. \& P. $1 /-$ Minimum invited)(Trade inquiries inviter CAPACITORS (Tubular, Axial Leads) Electrolytic (Mullard): -10% to $+50 \%$.
$4 \mathrm{~V}: 8 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 64 \mu \mathrm{~F}, 125 \mu \mathrm{~F}, 250 \mu \mathrm{~F}, 400 \mu \mathrm{~F}$ 4V: $8 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 64 \mu \mathrm{~F}, 125 \mu \mathrm{~F}, 250 \mu \mathrm{~F}, 400 \mu \mathrm{~F}$
$6.4 \mathrm{~V}: 6.4 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 200 \mu \mathrm{~F}, 320 \mu \mathrm{~F}$ 6.4V: $6.4 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 100 \mu \mathrm{~F}, 200 \mu \mathrm{~F}, 320 \mu \mathrm{~F}$
$10 \mathrm{~V}: 4 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 64 \mu \mathrm{~F}, 125 \mu \mathrm{~F}, 200 \mu \mathrm{~F}$. $10 V: 4 \mu F, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 64 \mu \mathrm{~F}, 125 \mu \mathrm{~F}, 200 \mu \mathrm{~F}$,
$16 \mathrm{~V}: 2.5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}, 40 \mu \mathrm{~F}, 80 \mu \mathrm{~F}, 125 \mu \mathrm{~F}$ $16 \mathrm{~V}: 2.5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}, 40 \mu \mathrm{~F}, 80 \mu \mathrm{~F}, 125 \mu \mathrm{~F}$
$25 \mathrm{~V}: 1.6 \mu \mathrm{~F}, 6-4 \mu \mathrm{~F}, 12.5 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 50 \mu \mathrm{~F}, 80 \mu \mathrm{~F}$ $40 \mathrm{~V}: 1 \mu \mathrm{~F}, 4 \mu \mathrm{~F}, 8 \mu \mathrm{~F}, 16 \mu \mathrm{~F}, 32 \mu \mathrm{~F}, 50 \mu \mathrm{~F}$. $64 \mathrm{~V}: 0.64 \mu \mathrm{~F}, 25 \mu \mathrm{~F}, 5 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 20 \mu \mathrm{~F}, 32 \mu \mathrm{~F}$ All values $1 / 3$ each.
Polyester (Multard) : $\pm 10 \%$.
$160 \mathrm{~V}=0.01 \mu \mathrm{~F}, 0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .033 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$ 7d. $0.068 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}, 9 \mathrm{~d} . \quad 0.15 \mu \mathrm{~F}, 10 \mathrm{~d} .0 .22 \mu \mathrm{~F}, 11 \mathrm{~d}$. $0.33 \mu \mathrm{~F}, 1 / 2.0 .47 \mu \mathrm{~F}, 1 / 5.0 .68 \mu \mathrm{~F}, 2 / \mathrm{t} .1 \mu \mathrm{~F}, 2 / 6$ $400 \mathrm{~V}: 0.001 \mu \mathrm{~F}, 0.0015 \mu \mathrm{~F}, 0.0022 \mu \mathrm{~F}, 0.0033 \mu \mathrm{~F}, 0.0047 \mu \mathrm{~F}$ $0.0068 \mu \mathrm{~F}, 0.01 \mu \mathrm{~F}, 6 \mathrm{~d} .0 .015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 7 \mathrm{~d} .0 .033 \mu \mathrm{~F}$ $8 \mathrm{~d} .0 .047 \mu \mathrm{~F}, 0.068 \mu \mathrm{~F}, 9 \mathrm{~d} .0 .1 \mu \mathrm{~F}, 10 \mathrm{~d} .0 .15 \mu \mathrm{~F}, 1 / 1$ $0.22 \mu \mathrm{~F}, 1 / 5,0.33 \mu \mathrm{~F}, 2 / 4.0 .47 \mu \mathrm{~F}, 2 / 6$
Polystyrene: $\pm 5 \%$. $160 \mathrm{~V}: 5 \mathrm{pF}, 10 \mathrm{pF}, 15 \mathrm{pF}, 22 \mathrm{pF}$, $33 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, 68 \mathrm{pF}, 100 \mathrm{pF}, 150 \mathrm{pF}, 220 \mathrm{pF}, 330 \mathrm{pF}$, $470 \mathrm{pF}, 680 \mathrm{pF}, 820 \mathrm{pF}, 5 \mathrm{~d} .1 .000 \mathrm{pF}, 1,500 \mathrm{pF}, 2,200 \mathrm{pF}, 6 \mathrm{~d}$, $3,300 \mathrm{pF}, 4.700 \mathrm{pF}, 5,600 \mathrm{pF}, 7 \mathrm{~d} .10,000 \mathrm{pF}, 8 \mathrm{cl} .15,000 \mathrm{pF}$. 22,000pF,9d.
POTENTIOMETERS (Carbon): Long life, low noise $\frac{1}{4} \mathrm{~W}$ at 70 C . $\pm 20 \% \leq \frac{1}{1} \mathrm{M}_{2} \pm 30 \%>\frac{1}{4} \mathrm{M}$. Body dia. $\frac{3}{4}$ in. Spindle, $\operatorname{lin} \times \frac{1}{1}$ in. 2/- each. Linear: 100. 250, 500 ohms, etc., per decade to 10 M . Logarithmic: $5 k$, $10 \mathrm{k}, 25 \mathrm{k}$, etc., per decade to 5 M .
SKELETON PRESET POTENTIOMETERS (Carbon): Linear: 100, 250, 500 ohms, etc., per decade to 5 M .
Miniature: 0.3 W at $70^{\circ} \mathrm{C}$. $20 \% \leqq \frac{1}{4} \mathrm{M} \pm 30 \%>\frac{1}{4} \mathrm{M}$. Horizontal ($0.7 \mathrm{in}>0.4 \mathrm{in}$ P.C.M.) or Vertical $(0.4 \mathrm{in}$ 0.2 in P.C.M.) mounting, $1 /-$ each.

Submin. 0.1 W at $70 \mathrm{C} . \pm 20 \% \leqq 1 \mathrm{M}, \pm 30 \%>1 \mathrm{M}$ Horizontal ($0.4 \mathrm{in} \times 0.2 \mathrm{in}$ P.C.M.) or Vertical $(0.2 \mathrm{in}$ 0.1 in P.C.M.) mounting, 10d. each

RESISTORS (Carbon filmi): High stability, very low noise. $\frac{1}{4} \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. Body $\frac{1}{3}$ in x 立in. Values in each decade: $10,11,12,13,15,16,18,20,22,24,27,30,33$,
$36,39,43,47,51,56,62,68,75,82,91$ from 4.7Ω to 1 M $36,39,43,47,51,56,62,68,75,82,91$ from 4.7Ω to 1 M .
$-5 \%, 2 \mathrm{~d}$. each. $\uparrow-2 \mathrm{M}, 1.5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2-7 \mathrm{M}, 3 \cdot 3 \mathrm{M}$. $5 \%, 2 \mathrm{~d}$. each. $-2 \mathrm{M}, 1.5 \mathrm{M}, 1.8 \mathrm{M}, 2.2 \mathrm{M}, 2-7 \mathrm{M}, 3.3 \mathrm{M}$,
$3.9 \mathrm{M}, 4.7 \mathrm{M}, 5 \cdot 6 \mathrm{M}, 6.8 \mathrm{M}, 8-2 \mathrm{M}, 70 \mathrm{M}$. $10 \% .2 \mathrm{~d}$. each. SEMI-CONDUCTORS (All new): OA5, OA81 1/6. OC44, OC45, 1/9. OC71, OC72, OC73. OC81, OC81D. OC82D, OC170, OC171, 2/3. OC140, AF115, AF116, AF117,3/-
SILICON RECTIFIERS: 0.5 A at $70{ }^{\circ} \mathrm{C} .400 \mathrm{P} . \operatorname{I.V}$. 3/-. 800 P.I.V., 3/3. 1.250 P.I.V., 3/9. 1,500 P.I.V. $4 /-$. SEND S.A.E. FOR JANUARY 1968

RECEIVERS \& COMPONENTS (continued)

RESISTORS

z wate carbon film 5%
All preferred values in stock from 10 ohms
to 10 megohms. 2d. each.
Send S.A.E. for iree sample

CAPACITORS

Mullard miniature metallised polyester P.C. mounting, all 250 V d.c. working. 0.01 mF , $0.022 \mathrm{mF}, \quad 0.047 \mathrm{mF}, \quad 0.1 \mathrm{mF}, \quad 0.22 \mathrm{mF}$, alf at 6d. each.
Hunts tubular $0.1 \mathrm{mF}, 200 \mathrm{~V}$ working at 3d. each.
Send 6d. stamp for extensive list
of low-priced Elecironic Components. Please inchude 1/- postage and packing on all orders under $£ 1$. Dept. P.W.11.

BRENSAL ELECTRONICS LTD. Charles street, bristol

FAMOUS NO. 19 SET TRANS/RECEIVER
Covers 2-8Nc/s in 2 hands 11 valve superhet transceiver maluding 807 P.A.
lower reqs. LT 12 V H. lower reqs. LT $12 \mathrm{~V}, \mathrm{H} . \mathrm{T}$,
rec. $275 \mathrm{v}, \mathrm{H} . \mathrm{T}$. transmit
500. 500 g 1).C.
Sighty' used $55 /-$ Sighty used 55/-:
Selected condition $85 /-$
Af 19 set ancillary parts arailable
COLLINS (U.S.A.) RECEIVER 7 vaive auperhet. (Int, Octal valves). Rxeptiomally stable for 38B
Frequency coverage $1.512 \mathrm{Mc} / \mathrm{s}$. Power required $250 \mathrm{v} . \mathrm{D} . \mathrm{C} .80 \mathrm{~mA}$. 12 V .A.C. 1.35 A . Excellent condition e12.0.0
No. 31 TRANSCEIVER. ITlif $40-48 \mathrm{Mc} / \mathrm{s}$. Tunable. $90 / 30 / 41 \mathrm{v}$. hattery operation. $70 / \mathrm{F}$.
No. 88 TWO WAY RADIO. $40-42 \mathrm{Mc} / \mathrm{s}$. Crystal con trolled. 4 channel. $50 /$ each.
B44 VHF RADIO TELEPHONE. $60-95 \mathrm{Mc} / \mathrm{s}$. Crysta
eontrollecl. 12v. DC operation. $£ 7.10 .0$.
No. 62 TRANSMITTER RECEIVER. $1 \cdot \mathrm{H}-10 \mathrm{Mc} / \mathrm{s}$. Tunable or eryatal controllest. I2s. D.C. operation 218.10 .0 .
R.C.A. C29 TRANSMITTER RECEIVER. $2-8 \mathrm{Mc} / \mathrm{s}$ Complete station. Braml New. 12 or $24 \mathrm{v} . \mathrm{D.C}$ operation. £19.10.0.
No. 52 RECEIVERS. Fev reft. Used (serviceable)
£7.10.0. £7.10.0.
TUBOLAR STEEL TELESCOPIC AERIAL MASTS.

34ft. i section $90 /-$
MAKE YOUR OWN AERIAL MAST!
on. Bin., 2in. Ma. Interhering steel sections. 20/-per section.
NYLON GUY ROPES with semi-automatic tensloner. 83 ft . $6 / 6 ; 50 \mathrm{ft} 7 / 8$; fi0ft. $9 /-$ ROTARY TRANSFORMERS BY HOOVER 12v. D.C. input. Output 250 v . D.C. at 125 mA
$25 /-12 \mathrm{v} . \mathrm{D.C}$. input. Output 490 s . D.C. at. $25 /-12 \mathrm{v} . \mathrm{D}$
$65 \mathrm{~m} .25 / \mathrm{m}$
REJECTOR UNIT. For rejecting inmanted signals. Bwitched 4 ranges. $1 \cdot 2$-10 Mc/s. 30/-. R.F. ANTENNA TUNER (A.T.U.). $160 / 80 / 40$ metres. 25/-,
MOVING COIL HEADPHONES. Soft rubber earjadis. 19/6.
D.L.R. BALANCED ARMATURE HEAD-

PHONES. 12/6.
HEADSET WITH BOOM MICROPHONE. As used
with 88 get. $22 / 6$. MOVING COIL HEADPHONES AND MICROPHONE. 21/6.
TRANSMITTER. $1.76-16 \mathrm{Mc} / \mathrm{s} .3$ wavehand tunable 813PA. Complete all valves, circuit. $£ 7.10 .0$ POWER SUPPLY. 12v. D.C. imput. 285 and 1300 v POWER SUPPL. I2v. D.C. inpit. 285 and 1300 v .
I,C. 300 mA output. Incorp, rat ing 230 V . D.C. 80 ma vihrator pack. Circuit. £7.10.0.
All items Carriage Paid Mainland only. List giving
juller tetalls of these and many ollier surpus bargaing 2/-.S.A. E. an lle aquirjes(Pleaseprint clearig)

A.J.THOMPSON (Dept.P.W.)

"EILING LODGE", CODICOTE. HITCHIN, HERTS. Hours of business Monday to Friday 8-5 Sat 8-12

RECEIVERS \& COMPONENTS (continued)

PHILIPS 625 UHF conversion kits two complete IF and time-base panels. Escutcheon Kit and knobs. $22 / 6$ each post paid. BARTLETTS, 38 Clifton Road, Grenford, Middx.

MICROMINIATURE MICROPHONES

-
SHOWN
FULL
SIZE

Sensltive dynamic type. WIII pickup rustle of newspaper from 30 feet.
Sizes $9 \mathrm{~mm} . \times 9 \mathrm{~mm} . \times 3.5 \mathrm{~mm}$. Size $9 \mathrm{~mm} . \times 9 \mathrm{~mm} . \times 3.5 \mathrm{~mm}$. Impedance 1 KR .

ONLY 28/6
Post free-C.W.O.
SHOWN MICRO DATA SYSTEMS 30 baker St., LONDON, w. 1

COMPUTER PANELS

Eight assorted printed circuit panels with transistors, diodes, resistors, capacitors etc. Guaranteed minimum 30 transistors. Ideal for Experimenters. 8 boards $10 /$. POST FREE. Trade and Bulk enquiries welcome. $1500+2000$ MFD Electrolytics 25 volt DC wkg, 3/- each. 9d. P. \& P
KEYTRONICS, 52 Earls Court Road, London W.8. Mail order only.

WORLD RADIO \& TV HANDBOOK 1968, 42/-

by JOHANSEN, postage $1 / 3$

Transistor Substitution Handbook, new 7 th ed. 15/-. P. \& P. 1/-
Hi-Fi Year Book 1968 15/-. P. \& P. 1/3
Aerial Handbook, new ed. by Briggs 15/P. \& P. 1/-.

Computers for the Amateur Constructor by P. \& P. $1 /$

Transistor Electronie Organs for the Anhteur 18j-. P. \& P.
Short Wave Listening by Vastenhoud $12 / 6$. Colonr T. Y PAL System, new ed. by Patchett 40/-. P. \& P.1/-.

Where possible 24 -hour service guaranteed

UNIVERSAL BOOK CO.
12 LITTLE NEWPORT STREET
LONDON, W.C. 2
(Leicester Square Tube Station)

TV TUBES

REBUILT \& RESCREENED

by Britain's largest independent Tube

Rebuilder

MIDLAND TUBES LTD.
467/483 Oldham Road, Manchester, 10 Tel.: Collyhurst 4412

SUFFOLK TUBES LTD.
1/3 Upper Richmond Road, Putney. London, S.W. 15

Tel.: Vandyke 4304/5267

NEW VALVES!

Guaranteed Set Tested

 24-HOUR SERVICE| IRs | 4/8 | D1,92 | 4/3 | HLS84 | 4/6 | PL504 | 18/- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 135 | 3/9 | DL94 | 5/6 | EM81 | 8/8 | PY32 | 9/6 |
| 1 T 4 | 2/8 | 1)196 | 5/11 | EY51 | 6/9 | PY33 | $9 / 6$ |
| 384 | $4 / 3$ | DY88 | 5/8 | EY86 | 6/- | PY81 | $5 /-$ |
| 3 V 4 | 5/6 | I)Y87 | 5/8 | Ez80 | 3/9 | PY82 | 4/9 |
| 824G | 6/6 | EABC80 | $08 / 3$ | E281 | 4/6 | PY83 | 5/3 |
| 6 A 95 | 4/8 | EbC41 | 7/9 | KT61 | 8/3 | PY800 | 8/9 |
| 6 F 13 | 3/- | EBF'80 | 5/8 | N78 | 14/8 | PY801 | 8/8 |
| 6 L 18 | 6/- | EBF89 | 5/9 | PC97 | $8 / 6$ | R19 | 6/6 |
| 10 P 13 | 10/3 | Ecc81 | $3 / 9$ | PC900 | $9 /-$ | U25 | $10 / 8$ |
| 12K 8 GT | 7/- | 16C82 | 4/3 | PCC84 | 5/9 | U26 | 10/9 |
| 20 F 2 | 9/- | ECC83 | $4 / 8$ | PCC89 | 10/3 | U191 | 10/6 |
| 30 C 18 | $8 / 9$ | ECC85 | 4/9 | PCC189 | 9/6 | UABC8 | $0 \mathrm{O} / \mathrm{F}$ |
| 30 FL] | 12/3 | EC1138 | 5/9 | PCF80 | 6/9 | UAF42 | 6/11 |
| 30P4 | 11/- | ECH42 | $9 / 6$ | PCF82 | 5/9 | UBC41 | 7/6 |
| 30 P 19 | 11/- | ECH8] | 5/3 | PCF801 | $7 / 9$ | UBF89 | 6/6 |
| 301 LL | 12/3 | ECL 80 | 6/3 | PCF805 | $8 / 9$ | UCC84 | $7 / 9$ |
| CCH35 | 8/9 | ECL84 | $8 / 8$ | PCL82 | 6/9 | UCC85 | 6/- |
| DAC32 | 6/8 | ECL86 | $7 / 8$ | PCL83 | 8/9 | UCF80 | $8 /-$ |
| DaF91 | 3/8 | EF39 | $3 / 6$ | PCL84 | $7 / 3$ | UCH42 | 9/6 |
| DAF96 | 5/11 | EF80 | 4/9 | PCL85 | 8/3 | UGH81 | 6/3 |
| DF33 | 7/6 | EF85 | $51-$ | PCL86 | 8/- | UCL82 | 7 - |
| DFG1 | $2 / 8$ | EI86 | $6 /-$ | PFL200 | 12/6 | UCL83 | $8 / 9$ |
| DF96 | 5/11 | EP89 | 4/9 | PL36 | 9/3 | UF41 | 10\% |
| DK32 | $7 / 3$ | EF183 | 6/6 | PL81 | $7 /$ | UF89 | 5/11 |
| 1) K91 | 4/9 | EF184 | $6 / 6$ | PL82 | 5/9 | UL41 | 8/B |
| DK96 | $8 / 9$ | EH90 | 6/8 | PL83 | 8/6 | UL84 | 81- |
| DL33 | 8/6 | ELS33 | $8 / 3$ | l'L84 | 8/- | UY41 | 6/6 |
| DL35 | 4/8 | EL41 | 9/3 | PL500 | 12/6 | UY8S | 5/6 |

GERALD BERNARD

83 OSBALDESTON ROAD
STOKE NEWINGTON
LONDON, N. 16

The Dewtron Wive Trap for portables

* Boosts Radio 1, Luxembourg, Pops etc. Eliminates "ading'
\star Extend battery life
* Replacescar aerial for portahle sets
* 7 -day refund trial. $£ 2$ post free

100

The revolutlonary N.D. Effects Amplifier adds fabulous "Big Hall Btereo" effect toany transistor radic, tape or player. Adjustable echo, vibrato and one. Requires oniy speaker and PP9 battery
gns. $+4 /-\mathbf{P}$. P. Tubular speaker $25 /-$ extra.

BI-PAK SEMICONDUCTORS
 8 RADNOR HOUSE, 93 -97 REGENT STREET. LONDON, W. 1

mabtin IS HIGH FIDELITY

 plusADD-ON-ABILITY THRILLING POWER
DEPENDABILITY

GENUINE ECONOMY
Details from:- Irade enquiries invited.
martin electronics lid., 155 High St., Brentford. Middlesex. ISLeworth 1161

have not had your leafiets before. Please send them on AMPLIFIERS \square FM TUNER \square RECORDAKITS \square (Tick as required)

name

adoress
PW. 5
How would you like to start with a simple amplifier, say, and add to it until it became a fully stereo twenty watt amplifier with FM tuner and facilities to take the most sensitive low output pickups ever made? With Martin Audiokits it's easy, for with these superbly engineered all-transistor prefabri cated units, success is built in from the start and you build to your own preferred plan. IT'S A MONEY Saving scheme, too.

PRINTED CIRCUIT KIT

BUILD 40 INTERESTING PROJECTS on a PRINTED CIRCUIT CHASSIS with PARTS and TRANSISTORS from your SPARES BOX
CONTENTS: (1) 2 Copper Laminate Boards $4 \frac{1}{\prime \prime}^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime}$. (2) 1 Board for Matchbox Radio. (3) 1 Board for Wristwatch Radlo, etc. (4) Resist. (5) Resist Solvent. (6) Etchant. (7) Cleanser/Degreaser. (8) 16-page Booklet Printed C/rcuits for Amateurs. (9) 2 Miniature Radio Dials SW/MW/LW. Also free with each kit. (10) Essential (9) 2 Miniature Radio Dials SW/MW/LW. Also
Design Data, Circuits, Chassis Plans, etc. for

40 TRANSISTORISED PROJECTS

A very comprehenslve selection of circuits to suit everyone's requirements and constructional ability. Many recently developed very efficient deslgns published for the first time, Including 10 new circuits.

EXPERIMENTER'S
 PRINTED CIRCUIT KIT 8/6

Postage \& Pack. $1 / 6$ (UK) Commonwealth: SURFACE MAIL $2 /-$ AIR MAIL $8 /-$
Australia, New Zealand,
South Africa, Canada
(1) Crystal Set with blased Detector. (2) Crystal Set with voltage-quadrupler detector. (3) Crystal Set with Dynamic Loudspeaker. (4) Crystal Tuner with Audlo Ampllfier. (5) Carrier Power Conversion Recelver. (6) Split-Load Neutralised Double Reflex. (7) Matchbox or Photocell Radio. (8) "TRIFLEXON" Trlple Reflex with self-adjusting regeneratlon (Patent Pending). (9) Solar Battery Loudspeaker Radio. The smailest 3 designs yet offered to the Home Constructor anywhere In the World. 3 Subminiature Radio Receivers based on the "Triflexon" circult. Let us know if you know of a smaller design published anywhere (10) Postage Stamp Radio. Size only $1 \cdot 62^{\prime \prime} \times \cdot 95^{\prime \prime} \times \cdot 25^{\prime \prime}$. (11) Wristwatch Radio $1 \cdot 15^{\prime \prime} \times \cdot 80^{\prime \prime} \times \cdot 55^{\prime \prime}$. (12) Ring Radio $70^{\prime \prime} \times \cdot 70^{\prime \prime} \times \cdot 55^{\prime \prime}$. (13) Bacteria-powered Radio. Runs on sugar or bread. (14) Radio Control Tone Receiver. (15) Transistor P/P Ampllfier. (15) Intercom. (17) 1-valve Amplifier. (18) Reliable Burglar Alarm. (19) Light-Seeking Antmal, Gulded MIsslle. (20) Perpetual Motlon Machine. (21) Metal Detector. (22) Transistor Tester. (23) Human Body Radiation Detector. (24) Man/Woman DIscrlminator. (25) Signal Injector. (26) Pocket Transceiver (Licence required). (27) Constant Volume Intercom. (28) Remote Control of Models by induction. (29) Inductive-Loop Transmitter. (30) Pocket Trlple Reflex Radio. (31) Wristwatch Transmitter/Wire-tess Microphone. (32) Wire-less Door Bell. (33) Ultrasonic Swltch/Alarm. (34) Stereo Preamplifler. (35) Quality Stereo Push-Pull Amplifler. (36) Light-Beam Telephone "Photophone". (37) Light-Beam Transmitter. (38) Silent TV Sound Adaptor. (39) Ultrasonic Transmitter. (40) Thyristor Drill Speed
PHOTOELECTRIC KIT
CONTENTS: 2 P,C. Chassis Boards, Chemicals, Etching Manual, Cadmium Sulphide Photocell, Latching Relay, 2 Transistors, Condenser, Resistors, Gain Control, Terminal Block, Elegant Case, Screws, etc, In fact everything you need to build a Steady-Light Photo-Switch/Counter/Burglar Alarm, etc. (Project No. 1) which can be modified for modulated-light operation

PHOTOELECTRIC KIT
$39 / 6$ 39/6
Postage \& Pack. 2/6 (UK) Commonwealth: SURFACE MAIL $3 / 6$ AIR MAIL £1.0.0

Australia, New Zealand, S. Atrica, Canada \& U.S.A Also Essential Data Circuits and Plans for Building 12 PHOTOELECTRIC PROJECTS. (1) Steady-Light Photo-Switch/Alarm. (2) Modulated-LIght Alarm, (3) Long-Range Stray-light Alarm. (4) Relay-Less Alarm. (5) Warbling-Tone Alarm. (6) Closed-Loop Alarm. (7) Projector Lamp Stabiliser (8) Electronic Projector Modulator. (9) Mains Power Supply. (10) Car Parking Lamp Switch. (11) Automatic Headlamp Dipper. (12) Super-Sensitive Alarm INVISIBLE BEAM OPTICAL KIT
Everything needed (except plywood) for bullding: 1 InvlsIble-Beam Projector and 1 Photocell Receiver (as iliustrated). Suitable for all Photoelectric Burglar Alarms, Counters, Door Openers, etc.
CONTENTS: 2 lenses, 2 mlrrors, 245 -degree wooden blocks, Infra-red filter projector lamp holder, bullding plans, performance data, etc. Price 19/6. Postage and Pack 1/6 (UK). Commonwealth: Surface Mail 2/-; Alr Mall 8/-

JUNIOR PHOTOELECTRIC KIT
Versatile Invisible-beam, Relay-less, Steady-light Photoswitch, Burglar Alarm, Door Opener, Counter, etc., for the Experimenter.
CONTENTS: Infra-Red Sensitive Phototransistor, 3 Transistors, Chassls Plastic Case, Reslstors, Screws eic., Full Size Plans instructions, Data Sheet "10 Advanced Photoelectric Designs"
Price 19/6. Postage \& packing 1/6. (U.K.)

SUBMINIATURE SOLAR BATTERY

10/6. Post \& pack. 1/-. Output in Bright Sunlight: $2 \mathrm{~V} . / 250$ microamps.
Build that Sun Powered Wristwatch Radio for your Hollday and amaze your friends. Plans supplied free with each battery
YORK ELECTRICS, 333 York Road, London, S.W. 11 Send a S.A.E. for full details, a brief description and Photographs of all KIts and all 52 Radlo, Electronic and Photoelectric Projects assembled.

Z \& I AERO SERVICES LTD.

Please send all correspondence and Mail-Orders to the Head Office
When sending cash with ordel, please include $2 / 6$ in \mathbf{E} for postage and hanuling INIMUMCHARGE 2/- No C.O.D. orders aceepted We wish to buy 723A/B, $2 \mathrm{~K} 25,845,4-15 \mathrm{~A}$. 4C35, 5 C 22 , at $30 /$ - also other specials.

RetailShop 85 TOTTENHAM COURT ROAD LONDON W1
Tel. LANgham 8403
Open all day Saturday

TRANSISTORS

SPECIAL OFFER OF TRANSISTORS

AM/FM and SW KIT comprising two Al'125 (mixer/ AC128 (push/puli ontput). 21/- ACle faid.

25 WATT SOLDERING IRONS

FOR P.W. CLUBMAN RECEIVER

One each Or'in, octs, OCA, Tww OAMT and TCl. TCe

DRY REED INSERTS

 Amp-turns relay coils. P'R1CER18/-per doz. post free. TEXAS SILICON FULL-WAVE BRIDGE RECTIFIERS
 B100My $100 \mathrm{piv}, 10 \mathrm{amps}$, dimetrsions $2 \frac{1}{6} \times 2!\times 1$ n. $85 /-$

MOVING COIL METERS

moving coil meturs with 1.5% accuracy. Meters are

 availahte in 3 in. rombl tlange, and Bin. and $t_{\text {inn }}^{\text {inn }}$ square tlanges. Please urite fir ihhstrated leanlets.
SILICON POWER RECTIFIERS

GERMANIUM POINT CONTACT DIODES

OA5, 100 piv/115 ma

$0-79,30 \mathrm{plv} / 35 \mathrm{~mA} A, 40 \mathrm{me} / \mathrm{s}$
OA81. 115 piv/60mA, High Back lessistance OA90, 0 рию $2 /$ -

Our new (1967/68) price list of Valves, Tubes and Semiconductors is now ready. In addition to listing prices of some 2,300 types it is a useful reference work giving : Valve and Tube Equivalents. Specifica-
tion of Microwave Tubes. Cathode Ray Tubes and Semiconductors. Send S.A.E. (Quarto) now to get your copy free of charge.

The following blueprints are available from stock. Descriptive text is not available but the date of issue is shown for each blueprint. Send, preferably, a postal order to cover cost of the dlueprint (stamps over 6d. unacceptable) to Blueprint Department, Practical Wireless, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

PLEASE NOTE THAT WE CAN SUPPLY NO BLUEPRINTS OTHER THAN THOSE SHOWN IN THE ABOVE LIST. NOR ARE WE ABLE TO SUPPLY SERVICE SHEETS FOR COMMERCIAL $*$ RADIO, TV OR AUDIO EOUIPMENT.

語PRACTICAL㪯WIRELESS

query service

Before using the query service it is important to read the following notes:

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We canrot undertake to supply detailed information for converting ivar surplus equipment, or to supply circuitry.
(c) It is us sally inpossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERY COUPON

This coupon is available until 10th May, 1968 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, MAY 1968

[^0]: SPECIAL PACKAGE PRICE if bought with the Crown
 TRF－6 AM／FM RADIO．See above．

[^1]: Distributed by B. Adler \& Sons (Radio) Ltd., Coptic Street, London, W.C. 1

[^2]: Details for becoming a member of the Radio Society of Great
 Britain will also be gladly supplied by writing to:

[^3]: Also at 323 EDGWARE ROAD, LONDON, W.2. Personal shoppers only

[^4]: * see p97 June 1967, p276 August 1967, p437 October 1967 for comments and details of the Bill.

[^5]: All correspondence intended for the Editor should be addressed to: The EdItor, 'Practical Wireless', George Newnes Lid., Tower House, Southampton Street, London. W.C.2. Phone: TEMple Bar 4363. Telegrams. Newnes Rand London. Subscription rates, including postage 36 s . per year to any part of the world. (i) George Newnes Lid, 1968. Copyright in all drawings, photographs and artlcies published in "Practical Wireless" is specifically reserved throughout the countries signatory to the Berne 1968. Copyright in all drawings, photographs and artlctes published in "Practical Wireless is specifalions of any of these are therefore expressly forbidden.

[^6]: (Dept. P. W.) 102/3 TAMWORTH RD., CROYDON, SURREY /Opp. W. Croydon Stn.) a/so at 266 LONDON ROAD, CROYDON, SURREY
 S.A.E. with enquiries please

[^7]: We regret that due to a printers error, the power of the signals referred to in the 28 th line, second column, was given incorrectly.

 This should read ". . . 10^{-18} watts" and not 10 watts as stated.

[^8]: Full constructional details of an integrated circuit preamplifier (I.C. Preamplifier) with an input impedance of 10M Ω, will be published next month.

[^9]: Termus of business-Cash with order only. Piost/Packing bid. Der item. Orders over ± 5 post free. No C.O.D. All ordera cleared day of receipt, Any parcel insured against damage in transi

[^10]: To: SINCLAIR RADIONICS LTD., 22 NEWMARKET FOAD, CAMBFIDGE Please send post free items detailed below

 For which I enclose cash/cheque/monev order
 PW. 5

