peatich
 Wili JANUARI 1966
 2

EXTRA inside!

16 - PAGE PULL-OUT BOOKLET SHORT WAVE DATA

ADCOLA

SOLDERING EQUIPMENT

FOR CATALOGUES APPLY DIRECT
ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD, Telephones:
LONDON, S.W. 4
MACaulay 3101 4272
Telegrams: "SOLJOINT"
LONDON SW4

Ersin Multicore 5-core solder is easy to use and economical. It contains 5 cores of non-corrosive flux, cleaning instantly, heavily oxidised surfaces. No extra flux is required.

Available from all Electrical and Hardware shops.
If unobtainable write to:

MULTICORE SOLDERS LTD.

Multicore Works, Hemel Hempstead, Herts.Hemel Hempstcad 3636

1. B VALVE 15 WATT PUSH-PULL AMPLIFLER, $15 \times$ त Mains $200-250$ volts. 4 faputs with controls for sane and bass ani] treble lift controls. Tapped for 3 and 15 ohm speakers. Extra H.T and L.T. for F.M. Tuner supplies etc., bult and tested. 7 gns. P. \& P $13 / 6$.
2. CYLDON AM FM PERMEABILITY TUNERS FOR ALL TRANSISTOR OPERATION. Size $2 \frac{1}{2} \times 2 \frac{t i n}{}$. approx. By igmous manuiacturer, A. v
 Kc/8. F.M. coverage $108 \mathrm{Mc} / \mathrm{s}-88 \mathrm{Mc} / \mathrm{s}$. Circuit diagrams 2/6. FREE With Tuner, 13t, znd and 3rd A.M. I.F゙.s, Ist, 2nd, 3rd and 4th F.M1. end of an A.M./か.M. receiver car radio etc. The atove items 22.10.0.
3. AMPLIFIER KIT. 3 to 4 watt Amplifer Kit. Comprising chassis $8 \frac{1}{2}$ e \ddagger lin Double wound mains transformer, output tranaformer conse and tone controls, resisto's, condensera etc. Vaives 6
4. 8-WATT 5-VALVE PUSH-PULL AMPLIFIER \& METAL RECTIFIER Bize: $9 \times 6 \times 1 \frac{1}{2}$ in. A.C. Mains, $200-250 \mathrm{v}$. 5 valves. For use with 34 d . L.P. records, musical instruments, an makes of pick-ups and mikes ift control. Two ioputs, with controls for graparate bass and trebie transiormer tapped for 3 and 15 ohm speech coils. Buit and tested \&3.19.6. P. \& P. B / F
5. 40W FLUORESCENT LIGHT EIT incorporating GEC Choke size $8 \ddagger$ IA $x 1$ in. © bl-pin holders, gtarter and starter holder, $11 / 6$. P. \& P. $4 / 6$ Similar to above: 80W Fluorescent Light Kit incorporating teC choke

6. OSCILLOSCOPE for D.C, and A.C. APPLICATIONS. Puah-pull X anplither; Fly-back suppression; Internal Tine-base Scan Wave form anplither; Fy-tack suppression; fiterna A.C. majne 204-250y $\pm 18.18 .0 \mathrm{P}$ P 10. FDLL 12 MONTHS' GUARANTEE INCLUDING VALVES And TUBE.
7. FIXED FREQUENCY SIGNAZ GENERATOR. Crystal controle In metal case, aize 10 I 6 I Hin. Incorporating two FCl3 valves, malns transformer, metal rectilier, choke indicator, lamp, crystal and numerous components. Modalated und inmodulated outpint sociret. Originally used for I.T.V. frequencies. Brand new, 39/6, plus 7/* P. \& P. A.C.
SLLICON RECTIFIERS. 260 v . P.1. $\boldsymbol{V}_{4}, 750 \mathrm{~mA}$. Biz for $7 / 6$ post paid,
8. POCKET MULTI-METER. Slze $3: \times 2 \nmid \geq 1 / i n$. Meter size 21×1 int. Sensitivity 1.000 O.P.V. on both A.C. and D.C. A.C. and D.C. volta. $0-15,0-150,0-1,0040$ D.C. current $0-150 \mathrm{~mA}$. Resigtance $0-300 \mathrm{k} \Omega$ Complete with text prods battery 3ad full instructions. 42/6. P. \& P B/6. FREE GIFT tor imiled period ondy. 30 watt Electric Soldering Iron
value $15 /-$ to every purchager of the Pocket Dtultj-Meter.
9. CHANNEL TUNER I.F. $16 \mathrm{~m} 19 \mathrm{Mc} / \mathrm{s}$. Continuously tunable from 174 . 21t Mc/a. Valves required-PCFB0 and PCCS4 (in series). Cover BBC and ITA ranges. Also Police. Fire and Taxis, etc. Brand new by famous maker, 10%, P. \& $\mathbf{P}, 3 /$.
10. POWER SUPPLY KIT in metal case, size 9 I $\times 2 \$ \times 2 \mathrm{in}$. incorporating mains transionmer, rectlfer and condensers $230 / 250$ 4.C molns

11. B.S.R. MONARCH UA14 WITH PULL FI MEAD, 4-speed, plays 10 records. $12 i n$, loth. or 7 in . at $16,33.45$ or 78 r.p.m. Interinizes rin., lonn. and lain. records of the same speed. Has manual pany position; colour brown. Dimenstong: lez x 10 in. Space roquired above bareboard tijn., below baneboard ezin. fitted with will Fil turnovel crystal head. \&5.19.6. P. \& P. $7 / 6$.
12. FIRST QUALITY PVC TAPE

13. MAYFAIR 5-TRANSISTOR TAPE RECORDER

Capstan-driven, battery operated, $7 \frac{1}{2}$ and 3 if $1 . p$ s.s. Precision made Push-button controls. High quality 2 fin. speaker. Push-pull circuit. Output: 400 mw . Frequency responge: $200-7,000 \mathrm{ko} / \mathrm{s}$. Fast rewind, Up to I bour twin track playing time. Antomatic erasing for rerecording. Dinensions: $8 \mathrm{in}, \mathrm{x} 1 \mathrm{lin} \mathrm{x} 3 \mathrm{fin}$. Weighs only 7ibs, $\mathrm{E11.11.0}$ plus 7/6 P. \& \mathbf{P}.
14. BER TAPE DECE

AC $200 / 250 \mathrm{p}$, tape speed $8 \frac{1}{4}$ twin track. 25.5.0 P. \& P. $7 / 6$
15. GEC FLAT HEATER ELEMENT 500 w.

Can be used for wish boilers, washing machines, etr. Five or aix elev neuta can be used in parallel to give $2500 / 3000$ Fatts. Size $51 \times 1 \mathrm{l}$. copper enclosed. $2 / 6$ each, P. \& P. 1/-. 4 ot more Post Paid.

RADIO \& TV COMPONENTS (ACTON) LTD.

2Ib High Street, Acton, London, W.3.
All enquiries Stamped Addressed Envelope. Goods not despatched outside U.K.
Shop hours 9 a.m.-6 p.m. Early closing Wednesday

 sers
COMBINED PORTABLE \& CAR RADIO

4in. SPEAKER
The Radio with the STAR feotures * 7 -transistor superhet. Output 350 mW .

* Grey wooden cabinet, fitted handle with silver coloured fittings. Size $12 \frac{1}{4} \times 8 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$.
\star Horizontal tuning scale, size $11 \frac{1}{4} \times 2 \frac{5}{8} i n$. in silver with black lettering.
\star All stations clearly marked.
* Ferrite-rod internal aerial.
* I.F. neutralisation on each stage $460 \mathrm{kc} / \mathrm{s}$.
* D.C. coupled output stage with separate A.C. negative feed tack.
\star All components, ferrite rod and tuning assembly mounted on printed board.
* Operated from PP9 battery.
\star Full comprehensive instructions and \star Fully tunable over medium and long waveband.

> SPECIAL OFFER-POWER
> SUPPYY KIT to purchasers of
> "Elegant Seven" parts, incorporating mains transiormer, etc. A.C. mains 200-250v. Output 9 v . SomA. 716 . point-to-point wiring diagrams. \quad C Car aerial socket. Full after-sale service.

* Printed circuit board, back printed with all component values.

ill enquiries Sramped Addressed Envelope

RADIO \& TV COMPONENTS (ACTON) LTD 2IC High St., Acton, London W3
Open 9 a.m.-6 p.m. including Sots. Early closing Wed.

SUBBTTON PARKRADIO

MARTIN AUDIOKITS \& RECORDAKITS

F.M. TUNER UNTTS Nos. 15, 16 and 17...................Cash £12.17.6
 TRANSISTOR and con trols, 10 watt amplifier and PCwer Pack
pre-amp and con trols, 10 wat ampluer 3 Ohm Speaker. Cash £14.5.0
 Or Dep, 62/-and 12 m . pymts, 22/6.. An above include Front Panels, Knobs and Instructions. TWO TRACK RECORDAKIT AMP. (Valve) FOR STEDIG DECK, 6 valve!s, controls, self powered................. Cash £11.11.0
 COLLAROSTUDIO DECK 3 speed latest Two Track Cash £10.19.6 COMPLETE KIT with case, spkr., tape and mic. Cash $£ 29.19 .8$

 Or Dep 56/- and 12 m pumts 20/6 (H P Price 13.19 .6 COMPLETE KIT with case, sphr., tape Four mic. Or Dep. 136/- and 12 m. pymts. 49/10...................(H.P. Price £36.14.0) TAPE PRE-AMP for Studio Deck, self powered.

Or TAPE PRE-AMP as above Four Track Cash £9.9.0
 We are leading stockists for ali Niartin Constructional kits.

AMPLIFER5.TUNERS Selection

ARMSTRONG $2 \% 110-10$ watts Stereo, Mag PU and Filter
Or Dep. 135/-and 8 m. pynts. $49 / 6$...................(H.P. Price 33.15 .0 ARMSTRONG 222 10-10 watts Stereo Amplifier … Cash $£ 27.10 .0$ Or Dep. $110 /-$ and 12 m . pumts. $40 / 4$................... $H . P$ Prce $£ 29.14 .0$
 Or Dep. 901- and 12 m . pymts. 33/- TV̈

ARMSTRONG 127 STEREO as above Stereo amp...Cash 237.10 .0 ARMSTRONG 28 HONolow amp. With AM/FM. . Cash £36. 15.0 ARMSTRONG 227 STEIEEO as above with'stereo Amp
 ARMSTRONG 226 STEREO as above, but Mag. P.U. Filt ${ }^{\text {S }}$. Or Dep, 260/- and 12 m. pumts. 88/-..................(H.P. Price £61.0.0 Teak Cases for all Armstrong tnits..................................... RUGERS CADETMK. 3 10-10 watt Stereo Amp. Mag. P.U. Or Dep. 118/-and 12 m. pumts. of 43/3.........(H.P. Price £31.17.0; CASE HoLL

LOUDSPEAKERS Selection

FANE: $1 \$ / 10$ Heavy Duty 12in. 20 watt................. Cash $£ 5.5 .0$ WHARFEDALE SUPER 8/LS/DD....................Cash fr. 0.0
 OrDOD.

MOTORSPICKEUPS Selection

 GARRARD Model \%000 Mono Large Table.........Cash \&8. 10.0 Or Dep. 34/- and 6 m. pumts. 26/-.........................Price € $4.10 .0^{\text {GA }}$ Of Dep. 47/-and 8 m. pumts. 25/6....................(H.P. Price 812.11 .0

 GAFRARD AT60 Less cart.: Heavy table.......... Cash £13.0.0 Or Dep. $52 /$ - ant 12 m. pumts. $19 /-\ldots$. Pice 814.0 .0 GARRARD LABNO Push button oper., less cart . . Cash f2\% 10.0 Or Dep. 1101 -and 12 m . pumis. of $40 / 4$..................... Price $29.14,0$)
GARRARI 401 Transcription Tabie. No arm.....Cash $£ 32.10 .0$ GARRARID 401 Transcription Table. No arm....̈. Cash e32.10.0

 GOLDRiNG (iLjsiess cart.: Heavy tabie, single play Cash £17.1.0 Or Dep. $691-$ and 12 m . pymts. $24 / 11$..................... Price fil $^{2} 8.8 .0$ GOLDRING Gi,70 trans. : Unit with arm. less cart. Cash e29.18.6 Or Dep. $120 / 6$ an $i 12$ m. pymts. $43 / 9$.

48-50, Surbiton Road, Kingston-on-Thames, Surrey Phone KIN. 5549:: Hours 9 a.m. to 6 p.m. daily (1 p.m. Weds.)

Offer the Finest Value and HOME CONSTRUCTORS

解 We wish aflour customers old and new the fompltments of the season and cordi－

THE＂SKYROVER＇RANGE

GENERAL SPECIFICATION

7 transistor plus 2 diode superhet， 6 waveband portable receiver．Operating from four 1.5 v．torch batteries． full Medium Waveband and Short Waveband $31-94 \mathrm{M}$ and also 4 separate switched band－spread ranges．13M． 16M．19M and 25M，with Band Spread Tuning ior accu－ rate Station Selection．The coll pack and tuning heart is completely factory assembled．wired and tested． The remaining assembly can be completed in under three hours from our easy to follow stage by stage instructions．

A slmple additional circult provides coverage of the 1500 M Lisht brogeluding All components and de－ tailed construction data． Only 10／－extra Prost This conversion is suitable for both models that have already been constructed．
Data For Ilecelver $2 / 6$ extra Refunded if you purchase the parcel．Four U2 batteries $3 / 4$ extra，All
separately．

NEW－The SKYROVER Mk III
Now supplied with redtesigned cabinet，edpewise controls，black and ehrome pilastle cathinct． Size 10×6 x 3^{4} in．with carrying landle． $\mathbf{Z} 8.19 .6$ Post Can now be built lor \quad met 11 months at $15 / 9$ ．rota

The SKYROVER DE LUXE

Tone Control Citcuit is incorporated with separate Control．In a wood cabtnet．slze $11 \frac{x}{}$ x $\times 31 n$ ．covered with a washable materlal with plastic trlm and carrytng andle．Car aerial socket fitted． Past 5／－

The Very Latest MAGNAVOX－ COLLARO 363 TAPE DECKS

3 speed model－11．3H．7f 1．p．S．．avealable with elther track or t track heads．Features include：pause control： digital counter：fast lorward and rewind：new 4 pole tully screened induction motor；interlocking keys．Size of top plate $134 \times 11 \times 5 t 1 m$ ．deep below unit plate．for $200 / 250 v$ A．C．mains， 50 c．p．s．operation．New，unused and fully guaranteed．
LASKY＇S PRICE with t track 210.10 .0 Carriake LASKY＇S PRICE with $\frac{1}{\text { hetrack }} \begin{aligned} & \text { heads }\end{aligned} \mathbf{3 . 1 9 . 5} \begin{gathered}\text { and paoking } \\ 7 / 6 \text { extra }\end{gathered}$

號 TRANSISTORS new \＆guaranteed GRT S1，GET 85，GET R6，2／6；87：3，8741， 8／6：OC45，OC71，OC811，4／6：OU44，OCTO， OO75，OC200 8／6；0C42，0C43，OC173．OC82D 7／8： OC201，OC204；15／－；OC205．OC206 10／6；

Give a Lasky＇s Gift Voucher

The toael gift for Christmas and all those other special occasituns．Any value tn multiples of 1016 min．）upwartis
 Voucher for el－10／6 Voucher lohe elc

TRANSFILTERS BY BぃUצn CHYSTAL CO．

 TF－013 4itioke

$$
\int 0
$$ O2 288818 ．

Poat tinl.

B．S．R．AUTOCHANGERS－BRAND NEW AT LOWEST EVER PRICES
Brand new and fully guaranteed－complete with cartridge and stylus．
UA14 4 speed mains mode

The＂REALISTIC＂Seven

＊7－＇Transistor Superhet．＊ 350 nilliwat

 output into 4n，high fux speaker＊All components mounted on a single printed circuit
board．F Full medi．\％and long wave ；
um and
cover cover，t Filastic ing handle size Grev or ail Grey大 socket lor car frequenty $470 \mathrm{Kc} \mathrm{K}^{\prime} \mathrm{s}$
Internal aerial．Operates from ppa or slmilar battery．Full data supplied All colls and I．F＇s etc，tully wound ready for immediate assembly．An outscandine Castlyer
Can lop built for
\＆5．19．6
Post 4／6． \qquad and n atructions
PPA 13att． $3 / 9$ Data and Instructions sep
arately $2 / 6$ ．Refunded if you purchase the arately 2／6．Refunded if you purchase the
parcel．All parts sold separately． parcel．All parts sold separately．

REALISTIC Seven DE LUXE

With the same speciflcations as standard model－PLus a superior woud cabinet circular dial．
only $£ 1$ Extra

GOODMANS OF ENGLAND CROSSOVER UNITS

 For use with bass and treble speakers． 15Ω 1 mp ，to crossover at 750 c．p．s．Rated at 2 vatts（British）．
LASKY＇S PRICE 29／－
N＇IEIREXPIIONIG FILIER．This is a frequency dividermixer for use with a Stereo amplifier．Its function is to combine the bass froquencles up to 300 c．p．s．Into a single bass speaker for both channels and to divide the trequenctes above 300 c．p．s．into
two separate mid／top range speakers．It can two separate miditop range speakers．It can mono system． 15 a imp．Rated at 25 watts （Brittsh）．In wood case $10 \times 4!x$ in New and unised．

SINCLAIR MINIATURES

We atock the complete range of sinclair Super－miniature Kits．
TIF：MIELU－6 pocket radlo ．．．．．．．．．． $59 / 8$ THE SLINEINE pocket radio ．．．．．．．．．． $49 / 6$

 Ready Built and Tested．．．．．．．fice 19.6
See our Practical Wireless November adier． tisement for cietails．

U．H．F．TUNERS
Only a few avallable．Complete with coo ana regret no circuit or data is avail
LASKY＇S PRICE 79／6

GORLER UT 340 FM／VHF TUNING HEART
Permeabilutv tunes－covering 87 to $108 \mathrm{Mc} / \mathrm{s}$ Fer use with one ECC85 valve．In metal case LASKY＇S PRICE 19／11

Service in Great Britain to both \& HI-FI ENTHUSIASTS

TAPE RECORDERS . RECORD PLAYERS . AMPLIFIERS ETC. COMPLETE MONO/STEREO SYSTEMS TO YOUR SPEC.

TASKis

NEW COMMUNICATION RECEIVERS
 MODEL KT 320 KIT

Supplied in sub-assemblies for easy building. Covers ranke frinn $540 \mathrm{Ke} / \mathrm{s}$ to $30 \mathrm{Mc} / \mathrm{s}$. Ham Band is proFided with a seale for direct reading and can also be M. ४.e. U Mititipler also serves as B.F.O. H.F. stage and two I.F. Stages encure high sensitivity and selectivity (all cuits and 1.F.s are supplied preallgiced\}, 2 Aerial sockets, stamd-by pozition for use with a tranmmatter S meter fitted, 200-250v, A.C. whins. steel catumet, grey crackie finish. Aze $15 \mathrm{a} \% \mathrm{x}$ loith. bjal $12 \times 4 \mathrm{in}$. All piarts nea and fully - Haranteed. Complete with full cunstruction data A

Also available ready buit and tested 29 gas.
H.P. Terms available.
 LASKY'S PRICE 33 GNS.
H.P. Terms avatlable

MODEL HE40

Covers medum wave band and 1.1i-4.4 Mc/s., 4.5-

 foup aud telerapic antemabe titted. Valve lme-na;

LASKY'S PRICE 19 GNS. Posity H.F. Terms £40.0. dep. and $1_{\text {_ months at }}^{\text {E1.12.0. }}$ Total H,P.P. £21.12.0. MODEL HE80 $\begin{gathered}14 \text {-valve quper senvitive } \\ \text { commumication }\end{gathered}$ Freg. rangr wit ke/s- $30 \mathrm{Mc} / \mathrm{s}$, and $144-146 \mathrm{Mc} / \mathrm{s}$. Dual comversion on 2 metres, with extra R.F, stage. Bingle R.F. stare, two I.F. stages on all other babute. B.F.O. and (q-maltiplier circuits. Improved A.N.L. and voltage regsiated powerpack. "B" meter batud spread on amateur hauds, large ibummated dial with logeng sale. Ali contrals fitted. Output
 atw OA: Steel case $17 \times 7 \frac{1}{5} \times 10 \mathrm{in}$. For $20 \omega 1250 \mathrm{y}$, and mains, Brand new with full instruction manual. LASKY'S PRICE 59 GNS. Prag LASKT PRIGE 59 GIN. free ot £4.18.0. Totat H.P.P. £66.17.0.

SPECIAL ANNOUNCEMENT= Our Head Office and Mail Order Deparaments have now been transterred to our new building: 3-15 CAVELL STREET, TOWER HAMLETS, LONDON, E.I Telephones: STEpney Green 4281/2
All Mail Orders, correspondence, H.P. enquiries/accounts etc, should now be sent to the above address.
These premises have been especially designed for us to facilitate the handling of Mail Orders and continue our aim of rapid despatch coupled with good service, with which our name has been synonymous over the past 35 vears.

transistor pocket radios

All supplied complete with guaranteed-ready to use. POST FREE. BOY'S 2 TRANSISTOR quintractive plastic case. Size only 4 in . x为 boy's a transistor model Lasky's Price 45/6 TRANSISTOR MODEL
 band

THE GTRANGMAME ${ }^{93}$ DE LUXE TWO WAVEBAND RADIO
sensitive reception over the full Med. and Long wavebands. Internal ferrite and detachable chrome telescopic aerials. "t⿳" p.m. speaker. Smart
 pen light batteries. Complete with
earpiece and batteries. Post $2 / \mathrm{th}$.

3 WONDERFUL SETS FROM THE U.S.S.R.

THE "SELGA" 7 TRANSISTOR RADIO
High sensitivity circuit gives excellent reception over full Med waveband and powerful volume. P.M, speaker. Uses PP3 trye battery. Black and ivory plastic cabinet size $7 \times 4 \times 2 \mathrm{in}$. Socket for external aerial.
strav. earpiece and battery.
LASKY'S PRICE £5.9.6

THE "SOMOL" 7 TRANSISTOR TWO BAND RADIO wape qualit receiver eovering the full Med. aud Long waveband with exclusive rechargable battery

 charger. dry battery and earpiece.

LASKY'

THE "CONVAIR"

10 TRANSISTOR PORTABLE RECEIVER
Extremely well desipned and made receiver covering the witched tand spread on $13 \mathrm{~m} .41 \mathrm{fra.} .19 \mathrm{~m} ., 25 \mathrm{~m} ., 31 \mathrm{~m} .41 \mathrm{~m}$. bands. Internal ferrite rod and telescopic aerials. socketix for external aerial and earth and gram. pick-up. Atrong ceam and black plastic cabinet with carrynig handle-size LASKY'S PRICE $£ 12.19 .6$

SPECIAL OFFER: GARRARD AT5 AUTOCHANGERS

Heathkit models offer outstanding performance plus highest quality－at lowest cost

Anyone can build a Heathkit model．The easy－to－follow instruction manuals issued with each kit－set show you how．You will be proud of the professional appearance and performance of your finished model．
A KIT FOR EVERY INTEREST ．．．FOR HOME，WORKSHOP，SERVICE \＆TEST DEPTS

NEW MODELS

PORTABLE＇SCOPE，Model OS－2．\star Improved periormance facilities and motern seyling．\star＇Y＇bandwidth $2 \mathrm{c} / \mathrm{s}$ to $3 \mathrm{mc} / \mathrm{s}$ ． \star Automatic wek in sync．\star^{\star} Mumetal C．R．T．shield．$\neq P$ P．C． $\times 12^{\prime \prime}$ deep．Werght $9 \frac{3}{2} \mathrm{lb}$ ．Send for full specification．
Kit E22．18．0．Assembled £30．8．0．

BERKELEY Slim－line LOUDSPEAKEC．SYSTEM．
\star Now irom Heathkit，a loudspeaker kit with a fully finished walnut cabinet．＊A 2 speaker system．丸 Modern，slim－line styling． $\star 30 \mathrm{c} / \mathrm{s}$ to $17 \mathrm{kc} / \mathrm{s}$ ．太 Only $7 \frac{3}{2}$ thick．太 Use it horizontally or vertically，＊Stand it on the floor or in your bookshelf．

Kit E18．10．0．

TEST INSTRUMENTS

5in．OSCIlloscope Model 10－12U． Laboratory quality at utility oscilloscope price．Wide band amplifiers essential for TV servicing．F．M，alignment，etc．T / B covers $10 \mathrm{c} / \mathrm{s}-500 \mathrm{kc} / \mathrm{s}$ in 5 ranges $£ 45.15 .0$ Assembled $£ 35.17 .6$ Kit

NEW！SINE／SQ GENERATOR，
Model 1G－82U．Freq．range： $20 \mathrm{c} / \mathrm{s}$－ $1 \mathrm{Mc} / \mathrm{s}$ in 5 bands．Simultaneous sine and square wave outputs．
E36．10．0 Assembled
$£ 24.10 .0 \mathrm{Kit}$
$10-12 \mathrm{U}$

AMATEUR EQUIPMENT

AMATEUR TRANSMITTER．Madel DX－I00U．Covers all amateur bands $160-10 \mathrm{M}$ ． 150 w ．d．c．input，sel＇contained with power supply．Modulator，VFO \quad Assembled El04．15．0 $\mathbf{4 7 9 . 1 0 . 0}$ Kı

AMATEUR TRANSMITTER Model DX－40 U．Covers $80-10 \mathrm{~m}$ ． Power inpurs 75 w ．C．W．： 60 w ． peak C．C．phone．Output 40 w ．to aerial．Prov．for VFO．
$£ 33.19 .0$ kit
Assembled 445.8 .0

DX－40U

COMMUNICATIONS TYPE RECEIVER RG－I．A high perform－ ance low cost receiver for the dis－ triminating listener．Freq．cov． 600 $\mathrm{Kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$ and $1.7 \mathrm{Mc} / \mathrm{s}$ to $32 \mathrm{Mc} / \mathrm{s}$ ．
 Send for details．
£53．0．0 Assembled
Other kits in the amateur range include：SSB Adaptor SB－10U £39．5．0．Variable freq．Oscillator VF－IU Elo．17．6．Balun Coil Unit B－IU \＆4．15．6．Grid－Dip Meter GD－IU El0．19．6． Q Multiplier QPM－1 E8．10．0．Reflected Power Meter HM． IIU E8．5．0．

HI－FI SPEAKER SYSTEMS

COTSWOLD STANDARD MODEL
Acoustically designed enclosure＂in the white＂ $26 \times 23 \times 15 \nmid i n$ ．， 12 in ．bass spenker，elliptical middle speaker， 2 in ．pressure unit．Covers $30-20,000 \mathrm{c} / \mathrm{s}$ ．
Complere kit with all controls．

MFS SYSTEM

A minimum floor space model for the smatier room． 26 in ．high $\times 16$ in．$\times 14 \mathrm{in}$ ．deep．Similar performance to standard model． $\mathbf{1 2 5 . 1 2 . 0} \mathrm{Kit}$

Price either model

SSU－I SYSTEM

A practical solution to the problem of a moderately prited speaker suitable for Stereo Mono amplifiers where the equipment has to be compact．Two ipeakers，baance control． ducted port reflex cabinet．
Horizontal or vertical（with matching legs）． Incl．P．T．$£ 12.12 .0 \mathrm{Kit}$
｜｜8｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜｜

Dept．PWI GLOUCESTER，ENGLAND

A wide range of other test instruments available including：R／C Bridge C－3U $£ 10.10 .0$ ．AF $V /$ Voltmeter $A V-3 U(16.10 .0$ ． Wattmeter AW－1U，©17．5．0．Capacitance meter CM－IU El5．15．0．Power supplies．Decade boxes etc
 MODELS FOR HOME. TEST AND WORKSHOP. BRITISH HEATHKIT MODELS USE BRITISH COMPONENTS

Theathint

HI-FI AMPLIFIERS

6W DE-LUXE STEREO AMPLIFIER. Modei S-33H. An inexpensive stereo amplifier with high sensitivity. Suitable for use with Decca Deram cartridge.
E21.17.6 Assembled
£ 15.17 .6 Kit TAPE RECORD'REPLAY AMPLIFIER KITS. Will operate with most tape decks. Send for detals.
TA-IM (Mono), $£ 19.18 .0 \mathrm{Kit}$. TA-1S (Stereo), $£ 25.10 .0 \mathrm{Kit}$.
STEREO CONTROL UNIT. Model USC-1. Idcal for use with MA-12 amplifiers. Kit $\leqslant 19.10 .0$. Assembled $£=5.10 .0$.

S-33
61V STEREO AMPLIFIER Model S-33. 3 w/ch. Inputs for radio, tape and gram. Stereo/Mono ganged controis. Sensitivity 200 mV . E18.18.0 Assembled \mathbb{Z} (3.7.6Kit

TRANSISTOR MIXER, Model TM-I. A must for the Tape enthusiast.

c16.17.6 Assembled

£ 11.16 .6 kit
5W HI-FI MONO AMPLIFIER. Model MA-5. A low priced amplifier based on the $\$-33$. Printed circuit construction makes it easy to build.
fi5.10.0 Assembled
$\notin \mid 0.19 .6$ Kit Hi-FI MONO POWER AMPLIFIER. Model MA-12. Ideal for use with Models USC-1 and UMC-1, 0.1 THD at 10W. Wide frequency range. \quad €I5.18.0 Assembled $£\|\|$. Model STEREO AMPLIFIER.
Model S-99. Ganged controls. Stereo/Mono gram. radio and tape record inputs. P/B selection. £38.9.6 Assembled $£ 28.19 .6 \mathrm{~K}$

A range of $R / p l a y e r s, T / D e c k s ~ a v a i l a b l e . ~$
Send for full spec. of any model

TRANSISTOR RECEIVERS

"OXFORD" LUXURY TRANSISTOR DUAL WAVEBAND RECEIVER.
The ideal domestic or personal portable receiver. 10 Semi-conductors. Solid leather case. Send for full details. $\mathbb{\text { Inel. P.T. }} \mathbb{E} \mathbf{| 4 . | 8 . 0}$ Kit

6 TRANSISTOR PORTABLE. ModeI UXR-I. Prealigned I.F. transiormers. Printed circuit, 7 in. x 4in. high flux speaker. Real hide case. Very easy to build Incl, PT E12.11.0 Kit
"MOHICAN" GENERAL COVERAGE RECEIVER. Model GC-IU. Excellent portable or general purpose receiver for spateur or short wave listening. See full spec . leaflets
Assembled $£ 45.17 .5 \quad$ E37.17.6 Kit

SPEAKERS FOR YOUR OWN ENCLOSURE

12" Heavy-duty Bass (, ane $122 / 12$) $\mathbf{~ 7 . 7 . 0}$.
2 - Tweeter (Fane 301) £3.1.6.
(both as used in the Cotswold systems).
12" Bass speaker (Audiom-51) £9.12.5.
8^{*} Goodman's General Purpose G8 $£ 1.8 .6$.
Two Speakers + Cross-over, System SCM-I
(As used in model SSU-1) with details for enclosure $£ 5.5 .0$.
ELECTRONIC WORKSHOP KIT. Model EW-I. An outstanding experimental kit for chaldren. $\mathbf{E 7 . 1 3 . 6} \mathrm{incl}$. P.T.
A WIDE RANGE OF BOOKS ON ELECTRONICS AND RADIO. PLEASE SEND FOR LISTS OR PRICES.
Many other models covering a wide range of equipment for HOME, OFFICE or Workshop.
SEND FOR FREE BRITISH CATALOGUE American Catalogue sent for $1 /$ - post paid

FREE

CATALOGUE of the BRITISH HEATHKIT RANGE Gladly sent on request . . .

HI-FI TUNERS

Model FM-4U. Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$. Tuning unit (FMT4 U) with $10.7 \mathrm{Mc} / \mathrm{s}$. l.F. ($£ 2.15 .0$ incl. P.T.). I.F. Amp. (FMA-4U) complete with cabinet and valves ($£ 13.13 .0$). Total $f \mid 6.8 .0 \mathrm{Kit}$
Assembly can be arranged.

FM-4U
AM/FM TUNER. Covers FM 88-108 Mc/s. A.M. 16-50, 200-550, $900-2,000 \mathrm{~m}$. Tuning heart ($(4.13 .6$ incl. P.T.), and I.F. Amp. (E22.1 1.6)
Send for leaflets. Assembly can be arranged. $\leq 27.5 .0 \mathrm{Kit}$

EQUIPMENT CABINETS

A large range, in kit form or assembled and finished, available to meet most needs. lilustrated details on request.

Prices from $£ 8.8 .0$
£46.4.0

PUBLIC ADDRESS IAMPLIFIER, PA-1. 50 w. Amplifier, two heavy duty speakers, variable Tremolo. Ideal for use with guitars, etc. $\mathbf{E T 4 , 0 . 0}$ Assembled $\mathbf{1 5 . 0} \mathrm{Kit}$ Legs optional extra 1716. Set of 4.

50 W POWER AMPLIFIER, MA-50 ideal for PA work, electronic organs etc. E27.18.0 Assembled $\in 19.18 .0 \mathrm{Kit}$

STARMAKER '33. Transistorised PA/Guitar Amplifier. All transistor circuit gives full 20 watts r.m.s. output. Two heavy duty $12^{\prime \prime}$ speakers, Tremolo. Compact size $18^{\prime \prime} \times 29^{\prime \prime}$ wide $\times 10^{\circ}$ deep. Kit $£ 44.19 .0$. Assembled $£ 59.10 .0$ available shortly.

To DAYSTROM LTD. Dept. P.W.-1, GLOUGESTER ENG.

Please send me FREE BRITISH CATALOGUE (Yes/No)
Full details of model(s)
NAME
ADDRESS

ADMIN Micro Soldering Instruments

- HIGH PERFORMANCE Normal temperatures $360 / 375^{\circ} \mathrm{C}$. Some models $450^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$.

- LOW WEIGHT From $\frac{1}{4}$ oz. to 1 oz . less flex.
- RAPID HEATING 30 seconds to

2 minutes.

- ABSOLUTE SAFETY
A \& B types low voltage C types fully earthed and flash tested

hs $6 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ to $7 \frac{13}{\prime \prime}$. -

W
 BACKED BY OUR SURER AFTER SIAES SERVICE

 NOT BUILD ONE OFOUR

 NOT BUILD ONE OFOUR PORTABLE TRANSISTOR PORTABLE TRANSISTOR RADIOS...
 All components used in our receivers may be purchased separately if desired. Parts price lists and easy build plans available separately at prices stated. Overseas post 10%.

FIRST FOR QUALITY, PERFORMANCE \& PRICE! NEW ROAMER SEVEN Mk IV

 Amazing performonce and specification \star Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS FULLY TUNABLE ON ALL WAVEBANDS \qquad - 9 stages- 7 transistors and 2 diodes er Band and three Short waves, to approx. 15 metres. Push-pull output tor room filling volume from rich toned heavy duty "Celeston" epeaker. Air spaced ganged tumng condenser. Ferrite rod aerian or M, 4 waves and telescopic aerial for s waves. Fheal leather look case with gilt trim and shoulder and hand straps, size $9 \times 7 \times 41 n$ approx. * EXTRA BANDFOREASIER TUNING Total cost of parts now only E5.|9.6 P. \& P. © OPIRATE STATIONS etc Ports Price List and easy build plans 3/- (FREE with kit)Ł5.19.6 ${ }_{5 / 6}^{\text {P. }}$

MELODY SIX

"performamased at voiume and performane'... has really come Tup to my cipociailons.

- 8 stages-6 transistors

 and 2 diodesOur latest completely portable transistor radio covering medium and iong waves. Incorporates pre-tagged circuit, board. 3in. heavy duty speaker. top grade transiscondencer. wave change slide condenser. Wave change side switch sensitive b:n. Ierrite Wondertul reception of B.B.C. Home and Lisht. dot and many Continental stations. Handsome leather-look pocket size case. only 6 . x 施 x inin. approx. with igilt speaker grille and supplied with hand and shoulder straps. Ports Price List and Total cost of all $\mathbf{5 3 . 9 . 6}$ P. \& P. easy build pions 21 - parcs now only (FREE with kit)

POCKET FIVE

© 7 stages- 5 transistors and 2 diode Covers Medium and Lony
Whes and Trawler Band, a feature usuaby tound in only the most expensive radios. Ontest Home. Light Luxembourg and many Contanensal stations were recewed loud and cleat. Drsigned round supersen.i-
 tuve Furrite Rod Acraal and fine tone 2 sin. Mosing noil speaker bult into attractive black case wartery avalableanywhere). Size $3+\frac{1}{2} \times 3+1 n$. Uses
Parts Price List and easy build plans $1 / 6$ (FREE with kit)
Total cost of all
42/6 P. \& P. 3/.

NEW ROAMER SIX

NOW WITH PHILCO MICH

X8 stages-6 transistors and 2 diodes
Listen to stations half a waveband porth this 6 able on Medium and Long waves, Trawter band and two Short Waves. Sensitive territe rod aerial and telescopic aerial tor short waves. Top grade transistors. 3 -inch speaker. handsome case with gilt hittings. Size $7 \% \times 5 \frac{5}{2} \times 1 \mathrm{hm}$. Carrying strap $1 / 6$ extra.

* EXTRA BAND FOR EASIER TUNING OF LUX, ETC. Ports Price List ond
eosy build plons $2 /$. $\quad \begin{aligned} & \text { Total cost of all } \\ & \text { parts now only }\end{aligned} \mathbf{E 3 . 1 9 . 6} \begin{aligned} & \text { P. \& P. } \\ & 316\end{aligned}$ easy build plans $2 /$. P. \&
316

New TRANSONA
 7 stages-5 transistors and 2 diodes
Fully tunable over Medium and Long Waves and Trawler Band. Incorpor ates Ferrite rod aerial. tuning condenser, volume control, new type fine tone super dynamic 2 in speaker etc. ith red speaker grille. (Uses 1289 battery avallable anywhere) 18 in Tocal cost of all $42 / 6 \mathrm{P} . \&$. P. Parts Price List and easy build parts now only $42 / 6316$ Dlans $2 f$ - (FREE with kit)

TRANSONA SIX
 8 stages-6 transistors and 2

This is a top performance receiver covering full Medium and Long Waves and tiawler Band. High-grade approk, 31n. speaker makes listening a pleasure. Push-pu.1 output. Ferrive rod aerial. Many stations insted in one evenine including Luxembourg loud and olear. Attractive case 10 grey with red
 tranl owtra. xtra.
$\begin{array}{lll}\text { Total cost of all } \\ \text { parcs now only } & 59 / 6 & \text { P. \& P. } \\ 3 / 6 \text {. }\end{array}$
Parts Price List and easy build plans 116 (FREE with kit)

SUPER SEVEN

9 stages -7 transistors and 2 diodes
Covers Medium and Long Waves and Trawler Band. The Ideal radlo for home. car or can be fitted with home. car or can be utted wing strap for outdoor use. Completely portable-has built-in Completely portable-has buit-in
Ferrite rod aerial for wonderful reception. Special circuit incorporating 2 R.F. Stages, push-pull output. in. speaker (will drive large speaker). Size $7 \frac{x}{} 54 \mathrm{x}$ 11in. (Uses 9 y , battery, avallable anywhere.
Total cost of all 43.19 .6 P. \& P. Parts Price List and easy parts now only \mathbf{T}. 17.0316 . will plons 2f- (FREE with kit)

RADIO EXCHANGE CO
 6I, HIGH STREET, BEDFORD
 Telephone: Bedford 52367

Callers side entrance Barsatts Shoe Shop open 9-5 p.m. Sats $10-12.30$ p.m. ALSO SEE FACING PAGE FOR OTHER ITEMS

STERN-CLYNE H | G H
 FIDELITY
 E Q UIPMENT

(1) Mullard "10 Pius 10 " Stereo Amplifier A Eigh Filelite design pruviding up to 10 watt (wer channel). KIT OF FARTS SRO.O.U.
Bailt and tested 824.0 .0 (C. \& 1.716) fier for oueration with ous Dus Cbannel Pre-amplifer.
KIT OF PARTS
Bailt and tested $234,0.0$ (C, \& L, 10/G)

(2) Mullard Dual Channel Pre-Amplifier A tour-valve design for both Stereo phonic and Monopbonic operation. KIT OF PARTS E12.10.0.
Bailt and teated 215.0.0 (C. \& I, 5/\%)

(3) The "Twin Three" Stereo Amplifier Baned on a recent desipu by Mulard Ltd. it is ideally suited ior use in Portable Record Piayers. To construct ${ }^{\text {B }}$ Stareo Porta To ronstruct a Stereo Portable
Record Piayer, wr ofter: A suenbled Auplifier $y=$ sin. Loudspeakers and Portable $\begin{array}{lll}\text { cate for } \\ \$ 16.10 .0 & (C) \\ \$ & 1 . & 10 / 0)\end{array}$

Fully descriptive leaflets available on any of the above items.
Instruction Books and Detailed Price Lists are supplied free with Kits of Parts but may be purchased separately required.
Items 1, ? and 14. 3/- each; 6 and $13.3 / 6$ each: 7. . 9 . $10,2 /-$ eanh; 11 i $2 / 6$ each;
$12,5 /-$. All Yout Free.

(5) Tudor AM/FM Tuner Belf-pontered VHF/FM song and
 270 Ked. Multiplex outpat.
Built and teated 24 Gns. (P. \& Y. $7 / 8$).

(6) Mullard 3-Valve PreAmplifier Tone Control Deqigned mainly fir the Stern Muliard range of Monophantc Power Ampifiers.
KIT OF PARTS E10.0.0.
Builh and tented 213.13 .6 (C. $\&$ I. $5 / \%$).

(8) Mullard "5-10" Main Amplifier
For uae with Mullard 2 - or 3-valve pre-amplitiers with which an unliplorted pobier output of up to 10 Whater 18 obtained.
GIT OF PARTS $\mathbf{1 1 0 . 0 . 0}$.
Built and tested \&13,10.0 (C, \& I. A/6). Above incorporating Partridge Output Transformer El.6.0. extr3.

(9) Mullars "5-IORC" Amplifier
 corporatibi Yagive Control Unit providink ind to ith whttg high quant
reproduct iou with an hiput of $600 \mathrm{~m} V$ KIT OF PARTS 812.00 .
KIT OF PARMS 12.0 . C Buit and tested s18.0.0 (C. © 1. 7/6). With Partridge Output Transtorme:
\&1.6,0 extra.

(10) Mullard '3-3RC' A high quality Amplifier developer "rom the very popular 3-watt Mullard "3-3" deranh
K1T OF PARTS \&9.8.0.
Built and tested 811.10 .0 (C. \& I. 6/0).

(11) The "Mono-Gram" A smali Amplitles of kenuize bigh qualite periormance pronductig up to 3 watts tudstort d output
Built and tested $\mathbf{8 6 . 0 . 0}$ (C. \& I. 3/6).

VERITONE 30 AMPLIFIER

A ceneral purpose ampitier of mutatanding quality ileally suitatle ior Pance Band, Cluba,
Hotala, Factories. Inion Hotalg, Factoried. Indonr arod oution fier which will urovide high ample rep which will provide high quasty
reproduction, diatortion free. The reproduction, twatortion free. The
Ampuncl han iwo standard facts Nocket imputs. hieh esin and low gain ath individual volume combrols and with the master rolume control the whtuts ingy he mivel and balaned as required. Housed in a realty pohust stemi tase finished in amooth grey hammer finigh with ehronie hantle ant sibver grey froat panel wath
 30 watt ${ }^{1}$ ndintorted Ontput. Switched Uutput for 3 or 15 ohns Loudspeakers. Finls asscmbied and testel carriage and insurance 10/:. Ventilated Cover with chrome
haudles us illustrated, 35/- extra.

Price 18 Gns.

(16) JL10 Power Amplifier Incorporates the iatest diotefpentode hiclafi falve in mush-pmil Partringe Partridge mains tranglormer arm *noothing ctuke. 10 watto power outpit, surphs.
Buill and tested $£ 12.12 .0$ (C. \& $1,7 / 6$).

(17) Double Feature Pre-Amplifier
Inpits for culcrophone, cryatal mactietic pici-bus, tuner unst. and in adsiturn oters full fochities io, tape recoriting and hagh tidelity replay. Thi. unipue ieature neans that stmar rou winh to inclure tape roar hi-i ivatra al a later uate all tbat is retuluredi is a suitable tape deck. Built and tested $£ 18.18 .0$ (C. \& $1,5 \%$) Prices if both anits purchased together:
Built and tested 830.9 .0 (C. a 10 . 10)

VERITONE 30

A mmatl veratile got watte Gran Amplifier auituble for Cryetal Preksup or Kadlo Tuner. deally suited or a amali domestir instalistiona. Output control, baws control and middle trol Valve linewn Hles EEER E, añ 2.
Chataia slze Rt $\times 4 \times 1 \mathrm{~nm}$. Nilver anolised twish. Attraetive iront panel siver gres finish with contrmatiog lettertig and krobs. thee $8 \neq 2 \frac{1}{2}$ m
Fully assembled and tested 6 Gis.

(7) MULLARD 2-VALVE PRE-AMPLIFIER Employing two EFS6 valves an designed to operate with the Mullard MAIN AMFLIFIERA but also perfectly a alitable for nther makes.
with new design iront panel KIT OF PARTE $£ 8.6 .0$
Built and teated 89.10 .0 (C. \& J. $5 / \mathrm{F}$)

(12) Stereo Tape PreAmplifier Model STP-I For use witb rurrent Truvas, Brenell or Collaro "Studio" $\frac{1}{6}$ ami track stereo Decks.

EIT OF PARTS E22.0.0.
Built and tosted $\mathbf{5 8 8 . 0 . 0}$ (C. \& 1. 8/6)
(13) Mullard Type "C" Tape Pre-Amplifier
Buitable for most f-trach Mnon Tape Jecks. Now with new degigu front panel
KIT OF PARTS \&14.0.0
Built and tested $£ 18,10.0$, C. \& $1.7 / 6)$

Amplifier Model HF/TR3 Based on Mullard'a type ' A ' devixu and mitathe for moat totrack Mono rape Dicka, sow with new demiger
KIT OP PARTS E13.13.u.
Built and tesred $\mathrm{fl9.0.0}$ (1, \& 1.76

Introducing the new veritane saturn

Veritone bring to you a new design in F.M. Tuners unique in both circuitry and styling
-designed for the modern-minded enthusiast

THE VERITONE SATURN TRANSISTORISED F.M. TUNER

STERN-LLYNE
 SEE FOLLOWING PAGE FOR ADDRESSES

STERN-LLYNE

ELECTRONIC CENTRES THROUGHOUT GREAT BRITAIN

TR2 PORTARLE TAPE RECORDER. A truly first-ciasa portable cazching by famous maculactures incorporating the renown B8\& flamie speed 2 track Tape Deck. 31 L.p.s. Tape Counter. Record Leve) Iodtcator. Volume and On/Ofe Tone Control. 3 wstts output. Laputs for recording from Microphone and Radjo. Tape Monltor bocket. Extension ioudapeakar socket. Attractive two-tone grey/cream rexine oovered Portable Cimbinet. Supplied complete with Mlcrophone Reel of Tape and Spare Spool. Carriage and Lnsurance 15/- extrs. Gredit Terms Orivinaty 28 Gns. 19.18 .0 deposit sad 12 monthly pave
ment of en.9.4, totaj credil price £90.10.0. OUR PRIOE 18 fills.

TR3 PORTABLE TAPE RECORDER. A bigh quality Portabie Tape Recorder for the dlacerning enthmalast incorporating the latest Bak TDlo 3-speed Tape Deck dit. 3i and it i.p.s. 2-Track. Record interlock to prevent acctlental erasure. Tape Counter. Record Level ladleator. 8 -4 watt output Volume and Oofonf Tone Cobtrol. Laputa for recording from Microphone and Radio. Tape Monitor Mocket. Extemnion Loudna, caker Socket. Attractive two-tone blue exine covered Portable Cabinet with sidver trimmiugs. Bupplied complete with Microphone, Lead for recordiag from Radio nt Reond Player. Full Reel of Tape and Bpare apool. Carriage and insurance La/- ortris. Oredit Terms: of el.12.8. Total credit price ite.10. Ou P

20 Gins.

PULLY AUTOMATIC TAPE SPLICER
14/6. $P=P$ 1/6.
PLASTIC TAPE 8POOLS

-
PLASTIC SPOOL CONTAINERB HO Brool sizes Jin., 1/B; 5^{3} in, $2 /-$:

We carty fulty compreaensive sthcks of Tspe Kecorders. Decus ant Accessories at ald Branebes or order with conflen e by mail

ETCH YOUR OWN PRINTED CIRCUITS A comaple sil of burts to make your owh printed cirenit bogrd to vour uwa speoiffics. uned havh "puabitr materials Msed to ensure peripet resulth Price courplare with all acces
wary offoniculs and copper clad lammoared bosrd $19 / 6$.

AMERICAN RECORDING TAPE
 sin. buthe Std. Acetate $9 / 6$ $101-$ sim. 1300 it. DP folvegter 11/8 in. 1,200it. gta Porrestet sim. 1,200't. DP Poivegter Tin. 1, N00it. LP Polreater Sin. L.snot. LPP Poivester P. \& P. 1/- ver reet. 4 os more reels POST FREE

* MEDIUM AND LONG WAVES. * 12 VOLT POSITIVE EARTH. 大 Push Butcon Wave Change. * SIZ $7 \times 2 \times 7 \mathrm{~m}$.

EONDOK

in Fotternad Comu lruan. W. 1, MUSeun 5829/0095. Hall Day Saturda 33 Tottentain Court Hoad, W. I. NUReuru 3451/2. Hats Das Thursday.
 109 Fleet Street. E.C. 4 F.E.Eet Bt reet $\mathbf{5 8 1 2 1 3 \text { . Hali Day Maturday }} 1$
 NOW ALSO OPEN AT.
220 Edgwase Rasd, W.2. PaDdington 5807 (New-Maz).

Ciox Dis Tx

2 Suffolk House, George Street, MCNicipab 32̄̄0. Haif Day Wednexdisy

ANOTHER NEW OENTRE Now oper ${ }^{\text {at }}$ HOUSE LINCOLN ST. NOTTNGHAM Tel. 45889

Terms：C．W．O．or C．O．D．No C．O．D． under $£ 1$ ．Postage $2 / 9$ extra under $£ 2$ ． 4／6 extra under 85 ．Trade Supplied． S．A．E．with all enquiries please．
PERSONALSHOPPERS WELCOME AT ANY OF THE BRANCHES BELOW．OPEN ALL DAY SATUR． DAY．
BRADFORD
10 North Parade
Tel． 25349
IHalf－day Wed）．
BRISTOL L Lower Castle Strees Half－day Wednesday） 22904.

BIRMINGHAM $30 / 31$ Gt．Western Hill Station．CENtral 1279．No half－day DERBY 26 Osmaston Rd．，The Spot
DARLINGTON 13 Post House

Wodnesday Tel． 6804

EDINBURGH 133 Leith Sereat． GLASGOW

326 Argyle Street，
Tel：CITy 4158 （No half－day）．
HULE 51 Savile Street（Hall－day
LEICESTER 32 High Street（Half－ LEEDS 5－7 County（Mecca）Arcad 5．7 County（Mecca）Arc
（No half－day）Tol．： 28252
LIVERPOOL 73 Dale St．（No half－
LONDON 238 Edgware Road W2
（Half－day Thursday）
MANCHESTER
60A－60B Oldham St．Tel：CENtral 2778 （No half－day）New large store．
MIDDLESBROUGH （Half－day Wednesday）
106 Newport Road．Te！： 47096 SHEFFIELD 13 Exchange Strest
Tel： 20716 （Hastif－day Thursday）
 VACANCIES FOR STAFF AT VARIOUS BRANCHES
SHOP EXPERIENCE UNNECESSARY

R．S．C．MAINS TRANSFORMERS（Fllal（ilaranteed）

 HL 84 to $3-5-6$ to 15Ω Following types tor 3 andl5n speakers $18 / 9$
 push－pull Mullard 510 Ulta Linear ． $29 / 8$
 NTEO．EL34 etc．
6fmA，li） $400 \Omega 4 / 11$ ． $100 \mathrm{~mA}, 101$ ． $300 \Omega 88$ $80 \mathrm{~mA}, 10 \mathrm{H} 530 \mathrm{D}, 5 / 9.150 \mathrm{~mA} .10 \mathrm{H} .450 \mathrm{~A} 11 / 9$

All with $200-93 \mathrm{U}-250$ v． 50 c／s Primarios：
 $=16 / 9: 9-1515 v .5 a .19 / 9: 0-1-15 v$ 6a．23／9：
（4－15v． 82 28／9． Al＇il thten an／wiop fown）TRANS． $1-110 / 120-230 / 250 \mathrm{v} \quad 50-80$ waits， $13 / 9 ; 150$ Watts，27／9：250 watts，49／9：500 watts，99／9． VIKI：THR VGFOHBH：IR $120: 1.8 / 8$. A！lyg HIDIJI＇I＇Itin． 15 WA＇F HI－FI LOCDSPEAKIERS Heavs cast construc－ inon．（mar c．p．s．Realiy out－م stl－1：（n）c．p．s Realiy olit－
standing periormance b．x－
ceptional value at

IK．N．G GIRAM A．MPIISILER KIT， 3 watts

 output．Negative teedhack．Controls：Vol．． Tone and Switch．Mains operation 200－260\％． A．C．Fully isolated chassls．Circult，otc．suphied．Only $39 / 9$ ．Carr． $3 / 9$ ．
SCOOP PURCHASE OF HIGH QUALITY RECORD CHANGERS
Brand new Garrard ：WXO LM
Very atest model．Normal
11 cas． Heavy Turntable and light Carr．5／6 welkht pink－up arm．High idelaty Stereol

R．S．C． $4 / 5$ WATT AS HIGH GAIN AMPLIFIER

 High－hiledty Pick－up heass in allifton to all wher types

 OUYPEID WATTS R Mis．into 34 ohms Maximum Ins put 28 Watts． BAIES＇O BHELARI IRAMEITOR ADI4．AD149，OCiS7 OCB12，OC44．AC147，OC4．
 －WWITH standard R．I．A．A．and C＇C．B．R．Char－
 ILITIES
SENSITIUTIES：Magnetic P．U． mV．Crystal or Ceramic P．L． 400 mV V hicrophone mV．Radio／Aux or Cerainic f？U． 10 m
 TiknBlf：CUNTROI：： 1.0 dB wo $-1+4 \mathrm{~b}$ at
 HARMOXIC DHETORTIGN at 10 Watts

Complete Kit of parts with tull condervetional $9 \frac{1}{2}$ Cns．Cart． detall and point to point wiring outarrams．$\frac{1}{2}$ arus soideced in and tested for $21 /$ extra．
Or unitf factory built and tested．Wth our $12{ }_{2}^{1} \mathrm{Gns}$ ．Carr． Or Deposit 22 and nine monthly payments $27 / 9$ ．Total £14．9．9． ALL COMPONFNTS ETC ARE OF AHIGH STANOLKI AMD SLPPLIED BY CEADNG BRITISH MNXUFAC TURERS．

 comptriva mofrb M11 trons

Morotstixt Noit Rated outpl iwure are given in R．A．s．and not spere
 Al pirkiq fimplosing jum Printed Clr－ Conlк䒑刀（土nts．
 onvol．lebty（ombo．homme Control

 Headihutorinne a－rires appropriate equalisalion．
Higid $18=$ W．Chass． A do，\％Hikn，and 9 Deed Alldwluye gath piatr and Matehing
 mand Batance Control．ayply also to

 ELUIPMPNI．Ali requited parts，point to point $Q_{\text {Carr．idut }}$ wiring diagrams and detailed instructions． OGNS．$_{\text {GN }}$
If required printed circuits can be supplied wth appropiste components assombied，soldered and lested or 2 ens．extra Or unit completely assembled ready or use． 73 GNS． Or 2906 Carr． 151 Total 296．12．0．

PREQUENCY RESPONSE $\pm 21 \mathrm{~B} .30-20,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$ HUM LEVEL कणनB dow
ENistrivitr: o uduralts masumo
HARMONIC DISTORTIUN (each chagnel) 0.2

R.S.C. STEREO 20/HIGH FIDELITY AMPLIFIER

 PROVIDING IO/I4 WATT ULTRA LINEAR PUSH-PULL OUTPUT ON EACH CHANNEL EUITABLE for "MIKE", GRAM.. HADIG OR TAPE. INTENDED FOR THE HOME OR STUDIO BUT X OTABLE PUR LALGE HALLS OR CLLBE* Four-position tone compensation and Output transinmers are high-quality sectlonally wound Input Seleetor switeb.
* Will amplify disect from Tape Heads
* Stereo/Mono switcb so that peak monaura output of 28 watts can be obtaned
* Separate Bass "Lift" and "Cut" and treble "Lul" and "Cut" controls.
* Neon panel indicator.
* Handsome Persper Frontplate.

Based on a current Mullard desien and employ-

to required apectication Uut put matchings for 3 end 15 mom speakpre ai each chanuetors Complote et of parts with poututo ponat wiring diazrans and witruc13 gns. fons, or Facto y assembled. tested and sur or 19EPOXIT $5 \% /$ and 9 monthi payment., of $39 / 10$ total $£ 20.15 .6$). 18 Gns. A protective womien cabinet corered in a pleasin shade ni leatherelinth and hitted carrying hapdies ant feet can he supphed for $59 / 6$ extra. Varr. $5 / t$. Terous:
DEPOATT $6 / 9$ and aine moatbly payments $6 / 9$
(Trital 6 n/6).
AUDIOTRINE HI-FI TAPE RECORDER KIT $\mathbf{2} 5^{\frac{1}{2}}$ Garr. Gns . 776

Lncorporating the latest Collaro Studio Tape Transcriptor. The Audiotrine Figh Quality Tape Ammifier with negative feedback equalisation bor each of 3 speeds. High Flux P. M. Speaker, empty Tape Spol, a Ree shades of Rexine and

R.S.C. AlO 30 WATT ULTRA LINEAR HIGH FIDELITY AMPLIFIER

 apur propure 1 for tull onthat io mils 12 nillivola ANY KIND OF MICROPHONE OR YCH-UP S THEABLE DANCE HALLS or OUTDOOR FUNCTIONS. Ptc. For use with Elpetroni- ORGAN BASS, LEAD OR RHYTYM hth Elpetroli ORGAN, BASS, LEAD OR RHYTHM GUITAR. STRING BASS. etc. For standard or tonk-playing
rempde. OUTPUT SOCKET PROVIDES L,T, aul H.T ior

 Complete kit of warte with mils puth hed chavis asid pont-to-pont wring diaurame and

11 Gns .

INTEREST CHARGES REFUNDED

保

HIGH FIDELITY 12-14 WATT AMPLIFIER TYPE A11 PUSH-PULL ULTRA LINEAR OUTPUT "BUILT-IN" TONE Two mixing of "mike" and gram.. as in Alo. Iing EL84. EL8f, EZ81. High Qualıty sectionaliy wound output transtormer specrally designed for Ultra Linear oneration and reliable small condensers of FOR BASS AND TREBIE "N AN M, Frequency response $\pm 3 \mathrm{~dB} 30-20$, mit" and tive feedhack loonse ± 3 dB $30-2$, , Six neya23 millivolts input required for FULL OUTPUT.
 Suitable tor use with all makes and trpes of pick-ups and microphones. Comparable with the verv best designs for STANIAIRDOR LONGPLAIINGREOOND. For MUSICAL
 FEEDER U'NIT. SIze approx. $12 \times 0 \times 7 \mathrm{~m}$. For A.C. mains $200-200 \mathrm{v}$ soc c . and 15 ohms speaker. Kit is complete to last nut. Chaseis is tuliy punched. Full instructions and point-to-point wiring diagrams supplied. (Or factory built $51 / 6$ extra
aniy 8 Gns. Carr. If required louvred metal covers with 2 carrving handlec can be suppled for 18/9. TEIS MS \&12.10.0). Send S.A.E. for fllustrated leafet detalling Cabinets, Speakers Mikes etc.

R.S.C. STEREO/TEN HIGH QUALITY AMPLIFIER

a complete set of parts for the construction of a stereoeach channel (total 10 watts). Sensitivity is 50 millivolts. suitable tor all crystal stereo heads. Ganced Bass and 'Treble Control give equal variation for 'litt' monaurali 10 watt amplific vade 1 ur use as straght ECC83, EL84, FLL84. F:ZB1. Outputs for $2-3$ ohin speakers. Pont-to-point wiring diagrams and inFuluctions supplied, send S.A.E. Lor lealiet.

8 Gns. Or supplied factory assembled with 12 months guarantef ior ex 2.6

GLXA MINIATURE 2-3 W.ATV GRAM AMPLIFIER. For use with any single or auto-change unit. Output for $2 / 3$ ohm $114 \times 22 \times 2 t i n$. Volume and
Tone Controls with Switch. $59 / 6$

Always in Stock at keen prices SINGLE and AUTO RECORD PLAYING UNITS, PICK-UPS, CARTRIDGES, MICROPHONES, CABINETS VALVES and COMPONENTS TOO NUMEROUS TO LIST

PANE: 3 sonderteb
polis PIA
I2in. IO WATT HIGH QUALITY
LOUDSPEAKER
fabwaluat veneered
cabinet, Gauss 12.000 lines. Speech coil 3
Onls. ${ }^{\text {Ontr. }} \mathbf{£ 4 . 1 9 . 6}$
Terms: Deposit 11/3 Tovpayment
12 B .3 W WTI IITFII.OL DSPEAKERS M CABINETs, Size 18 x $\pm 7.19 .6$ Terms: Deposit $17 / 9$ and 9 monthly pay-
ments of 1\%/9 (otill \&8.17.6). Carr, $8 / 6$. W.B. "STENTORIAN" HIGH FIDELITY P.M. SPEAKERS HF1012.
paily gond yuatr speaker al a low price y refured ae haght ecommend this unit with an
 R.S.C. JUNIOR BASS REFLEX CABINET, Designed for abive spaker, thit sultable for any good woted. Polimbut lfalnut veumer finiuh *ize
 R.S.C. STANDARD BASS REFLEX CABINET. For iv. sh. Rerommemded in
 AUBIOTRINE CORNER CONSOLE CABINETS Sirorgh made. Boantimit inith. Plrasung desun JTNIOR MODEL
Aprirax. $29 \times 1149 / 9$ standard model. To

5 Gns.

SENIOR MODEL. To take ut to 1210 . praker abd Kecommented for use with Audiotrme speaker arstum). Carr. 8/6. 8 GnS.
Tumus avaliable.
IUISOTHIXE III-FI SIPEAKER sySTLNA Consisting of matched $12 i n$ 12,000 line, IJ ohm high qualsty speaker cross-over unit choke, condenser, etc. and

 quency range
ensure surnrismshy realistic reproduction.
44.19.9 carr

R.S.C. BASS-REGENT 50 WATT AMPLIFIER
 AN EXCEPTIONALLY POWERFUL HIGH QUALITY ALL-PURPOSE UNIT For lead, rhythm, bass guitar and all other musical instruments For vocalists, gram, radio, tape and general public address
 CKlsually puwerffut EOLDSPEAKER

Full Range of PANE and GOOD-
 R.S.C. 620 MULTI-PURPOSE AMP. especially suitable for Bass Guitar A highly effisent unit incorporating nasaive 15in. high fux loudsueaker speciallf const ructed
to withatand heaviest load condtions. Kating to withstand heaviest had conditions. controls give ample 'Boost' and 'Cut'. trolled. Cabizet is of substantial contruetion and attractively thished iu two contrastlig tones of Rexine and Vrair. Bize sppros, $24 \times 21 \times 13$ ius. $\begin{array}{ll}\text { send SA. E. } & 29 \frac{1}{2} \text { GnS. Carr. } \\ \text { for leaflet. } & 17 / 6\end{array}$ Or deposit 84.14 .6 and 12 monthly
orayments of $49 /-$ (Total $32 t$ gns.).

COMBNATION conssting of a FANE HIGH watt unit with extended ifequency response. 4 Jack socket inputis and two indeberdent vol-peck-ups or 'mikes'. * Separate cabnets fully fovered in contrastind tones of Rexinel Vynati with gold trim-
ming lor speakers and ampliflers. - Scparate Bass and Treble Cnntrols giving Roost' and 'Cut send S.A.E. for jeaflet. Or call at one of our mans branches and comparc the Bass-Regent 49 with units at moye that wret times thr cost.

TRANSISTORISED SOUND MIXER

Enables mixing of up lo 4 standard jack inputs, output. Compact and completely self- $49 / 9$
RSC GI5 15 WATT AMPLIFIER for Lead or Fhythm Guitar, Mike, Gram or Radio Hugh-fidelity nush-pull ourput. Separate bass and treble "Cut" and "Boost," controls. Twin
 separately controlled inputs so that ups can be used at the same time. Loudspeaker is a heavy duty fux $12 \mathrm{dn}$. watt model with cast chassis. Cabinet RexinelVynair. Size approx. 18×18
 and 12 monthly payments of 3P/6
(Total 822.13 .0 . . A.E. for leafet
R.S.C. G5 AMPLIFIER 4 watt high quality cutput. Incorporating high flux 12 in . 10 watt AMPL loudspeaker. Sensitivity 40 mv High impedance Jack input.
 Guitar in home or small clubetc.
R.S.C. BATTERY CHARGING EQUIPMENT

All for A.C. Mains 200-250 V., 50cs Assembled
tanus $6 / 12 v$. Flamed Ammeterand variable charge rate
selector. Also selector plug for 6 v . or $12 v$. charging. Louvred steni case with stoved rrey bammer finish and ready for use with mains $59 / 9$ Or Deoosit 12/- and 5 monthly pa vments $12 /$-Total $£ 3.12 .0$. Carr. $4 / 6$

CHALEGELE AMMDTELEN
R.s.C. A MATH GRAM. AlPlifilh kit. Comple te set of parts to bulld a good quality compact unft sultable mor sisf wita any record plaving unit. Mains chassis separate Buss and Treble oontrols.

59/9 R.S.C. BAISY AIAIRM or INTER-COMIM Kir. Complete set of parts with diagrams. ete. Housed in two pollshed walnut fnished cabinets of pleasing destign. Figh sensitivContrallable at both units. An intercomm of this class would normaily
only 89/6. carr. 5i/. Ready for use, G ens. R.S.C. BATTER Y TO MINC CONVER-

Bin. An all-dry battery ellminator, size 5 4xain, apirox. Completely replaces batterjes supply $1.4 v$ and mains $200-250 \mathrm{v}$. mains 200-250v. able. Suitable for all battery portable ctelvith
(BRIDGE) F.W. ONLY $\quad 9 / 0$

ASSEMBLED Fitted Ammeter and selector plug for 2 v Louvred metal cast finshed attractive hammer blue. Fused, ready for use with mains 39.9 Carr. /I2v. 1 nmp $27 / 9$

TANNOY

HiEAKLIRS. ROFVTRANT

HI-FI 12 WATT AMPLIFIERS

 BKAND NEW $£ 7.19 .9$ Slanutacturers' discontinued Model. Push-pull output. Latest hen efficiency alves. Dual separately controned inpuis troble Controls. Figh Sensitivity. Output for 3 or 15 ohms speaker. Fuaranteed
|ASON FMTI V.H.F./F.M. RadierTuner

 parts including valves. tuninu £6.19.6
GIPDERHET FDEDER ! VTT, Design of

 a high quality tadio Tuner (specialls sullable for use with our Amplifiers). Lelayed A.V./C. Controls are Tuning. W/Ch. and vol. Only 250 v . 15 mA H.T. and L . T. of 6.3 v .1 amp required from arnplifter. Size approx. $9 \times 6 \times 7$ 7n. high. Simple aligro ment procedure. Point-to-point wiring diagrams, instructions and priced parts 1tst with illustrations, $2 / 6$. Total buildine COSt5 85.5.0. S.A.E. for jeaflet. OC45 3/11, OC44 3/11, 0C722/21, OC81 2/11. 0 Cl 171 S/9. AF17 6/9. Ediswan XA101 3/0. XA112 3/9. XC101A 3/9. Postare 6d. for up XA112 3/9. XClolto 3 transistors.

INTEREST CHARGES REFUNDED ON H.P. ACCOUNTS SETFLED IN 6 MONTHS R.S.C.

COLUMN
dresses Page 749 freved in two-tone Rexine! Public Address. Normally supplied tor 15 ohm marching but or 351 - exvar Tuw (os, b-x0 walls. Fitted Overall size apptox. $42 \times 10 \times 51 \mathrm{n}$ $12 \frac{1}{2}$ Gins. Carr. Ur deposit morthiv. pa. Tybe dis, th watt: Fitted speakers Overul din. aporox $19 \frac{1}{2}$ Gins. Or jeposit ef 3 gn- and 9 mthly

30 WATT HI-FI AMPLIFIER FOR LEAD, RHYTHM BASS GUITAR and for VOCAL or INSTRUMENTAL GROUPS
 Four Input, trol Hi-Fi uni with separate Cut' and 'Treble controls. signed for vocal or instrumental Lead or Rhythm. outar Mullard or Brimar latest type valves. Housed 17 strons Rexine covered cabinet with cwin carrying handles. Attractive black and gold Perspex fascla plate. For $200-250$ V. A.C. mains. Output for sor 15 ohm speakers. 17 GNS. or payments of and mo monthly

HEAVY DUTY CHARGER KIT

Hes v ambs. variable antout Consisting of Main Transformer 0-zo0-230-250 V.: F.W. Bridye Selenium RectiSelector Panels, Plugs. Fuses,

59/9

SELENIUM RECTIFIERS

F.

9/8: 6/12v 6/12v. 2a. 6/11:6/12v. 4a. 12/3; 6/12v. 10a. 28/9;

COMPLETE POWER PACK KIT Consisting of Mans Trans.. Metal Rect1-
 250 v

COMMUNICATION RECEIVERS RY 69 DE LIV
1 Bavid
$220 / 240 \mathrm{v} .50 / 60$
mains opera-
tion. Fre-
quenoies cov-
to 30 Mcis rule tuning dial 'S meter. intermal lerrite aertal tor medium wave. Telescopic whip aerial 58 in .10 section fol short waves. Fitted sockets for optional outdoor aerlal. Headphones, extermal speatier socket. Other iea tures are electrical bandspreaci tuning. Noise limiter, A.V.C. B.F.O.: sand by switch size approx. 124 x x gin. Handsome With full instructiuns mannal 19 Gns.

IZin. 25 WATT HEAVY DUTY
LOUDSPEAKERS Famous
£7.19.9
make. Normal price approx. Enteed. Carr. $10 /$ -
LINEAR TREMOLO PRE-AMP UNIT
Suftable for use with any of our Ampllfers. Controls are Speed (frequency

4 Gns. of interruptionsl Depth Volume
and switch
I2" R.A. DUAL CONE
SPEAKERS 8 watt 3 ohm
each $39 / 9$

LEARN ELECTRONICS -AS YOU BUILD
 over

including . . .

- CATHODE RAY

Valve Experiments
Transistor Experiments
Electro-magnetic Experiments
Basic Amplifier
Basic Oscillator
Basic Rectifier
Signal Tracer
Simple Counter
Time Delay Circuits

OSCILLOSCOPE

-

Square Wave Generator
Morse Code Oscillator
Simple Transmitter
Electronic Switch
Photo-electric Circuit
Basic Computer Circuit
Basic Radio Receiver
A.C. Experiments
D.C. Experiments

The full equipment supplied comprises; valves, transistors, photo-tube, modern type chassis board; printed circuit board; full range resistors, capacitors and inductors; transformers; potentiometers; switches; transistors; valves; all hardware, wiring and every detail required for all practical work plus CATHODE RAY OSCILLOSCOPE for demonstrating results of all experiments carried out. All practical work fully described in comprehensive PRACTICAL MANUALS. Tutor service and advice if needed.

> This complete practical course will teach you all the basic principles of electronics by carrying out experiments and building operational apparatus. You will learn how to recognise and handle all types of modern components; their symbo,s and how to read a completed circuit or schematic diagram. The course then shows how all the basic electronic circuits are constructed and used, and HOW THEY ACTUALLY WORK BY USING THE OSCILLOSCOPE PROVIDED. An application is given in all the main fields of electronics, i.e. Radio; control circuits; computers and automation; photoelectrics; counters, etc., and rules and procedure for fault finding and servicing of all types of electronic equipment.

- no previous knowledge needed
- SENT In attractive box
- NO MATHS USED OR NEEDED
COMPLETE ADVIGE SERVICE
reasonable fee-no extras required
everything remains your own property

A completely NEW up-to-date home study experimental course by
 BRITISH NATIONAL RADIO SCHOOL Britain's Leading Electronic Training Organisation.

POST NOW FOR FREE BROCHURE

to british national radio school, reading, berkshire. Please send To BRITISH NATIONAL RADIO SCHOOL, READING, BERKSHIRE. Please send
Ifree Brochure, without obligation, to: I name
I

practical WIRELESS

BEGINNING AND END

AN interesting fellow was Janus. A principal divinity in Roman mythology, he was primarily the god of All Doorways and, being blessed with two faces, could observe both the interior and exterior of a house. This handy physiognomical duality also enabled him to obtain the jobs of god of Beginnings and god of Departure. He also played an important role in the creation of the world. The first month of the year-Januarius-bore his name. In fact, a very versatile and busy lad.
Even so, he also held the position of god of All Means of Communication and it is a sobering thought that if we were still in the days of the Roman Empire he would not only be Minister of Transfort and Postmaster General, but President of the RSGB and Governor-General of the BBC.
We shall never know what he would have thought about the RAE, the virtues of SSB or the prospects of $14 \mathrm{Mc} / \mathrm{s} D \mathrm{X}$, but we can be sure he would have quickly dealt with pirate radio stations, licence dodgers, Party Political Broadcasts and other ills of our time. He might even have got together with his buddy Jupiter (President of the Board of Trade) and banned the import of $27 \mathrm{Mc} / \mathrm{s}$ walkie-talkies!

Reluctantly, returning to earth let us, like the double faced Janus, simultaneously look backwards and forwards by thanking you all for your interest during the past year and wishing you

\mathcal{A} Thappe CBristmas and Successfuf Mew Vear from the exitor and Gafaff.

CONTENTS

page
News and Comment
Push-Pull ELL80 Amplifier
Understanding F.M.
On the Short Waves
Aerial Tuners
A Transistorised L.C.R. Bridge-Part 2
High Wattage Loads
Push Button Multimeter
Tape Terminology-Part 6
Electronic Pitch-Pipes
Practically Wireless
An Economy Two-Band Receiver
Club Spot-Basildon \& Dist. A.R.S.

	page
	, 784
by V. E. Holley	756
by W. Groome	760
by John Guttridge and Dovid Gibson, G3JDG	763
by R. F. Grahom	767
by Mike Fisher	774
by C. L. Jones, B.Sc.	778
by D. Fonshowe	780
by H. W. Hellyer	786
by R. Bebbington, Grad.I.E.R.E.	794
by Henry	798
by J. B. Willmott	801

Short Wave Data in the Pull-Out Supplement

[^0]
M.W.-D.X.

I feel I must compliment you on an excellent article called "M.W.-D.X." in the November issue of Practical Wireless. This is just the kind of text to encourage DXers against the streams of, "What's the point?" . ., Why bother? . . . So what? ..." people who just can't understand why we should stay up to 0400 for a few μ V's from New York.
A. Peake.

> Great Yarmouth, Norfolk.

Batteries Offer

About this time last year, you printed in Practical Wireless my offer of free h.t. batteries. You may be interested to know that the response was very good. 1 despatched 109 to 71 applicants and still get the odd letters from people who have been reading back numbers. I had to turn down a further 20 requests as I had exhausted my supplies. However, the main purpose of this letter is to make an offer of 6 V dry batteries. The size is approximately 5 in, $x 4 \frac{1}{2} \mathrm{in}$. $x ~ 2 \frac{1}{4} \mathrm{in}$. and the weight $3 \frac{1}{3} \mathrm{lhs}$. Each battery contains eight cells wired in series/parallel to give 6 v , and they can easily be rewired for 3 or 1.5 V operation. Connection is by PVC covered wires. I can most easily send these in batches of four at 6s. post. (5 s . 6d. plus 6d. packing). Please send Postal Orders and do not cross.
These batteries are ex-U.S. Forces, thrown away due to the elapse of the makers' life expectancy. However, they are really as good as new. One person who tried one of these told me that it ran his transistor set for 14 months.
H. Humphries.

Old Rectory,
Gazeley, Newmarket, Suffolk.

Mr. Methven Please

I wonder if Mr. Methven (June 1965 issue. page 148) would get in touch with me, please, as I would like to communicate with him.
H. Seaton.

The Presbytery, Foundry Hill, Hayle, Cornwall.

NEWS AND

SLEEP-LEARNING EQUIPMENT

A number of researchers in America have laid great claims to the sleep learning method. It is particularly useful when a large number of facts have to be committed to memory, such as formulae, foreign languages etc.

The four simple basic requircments are a tape recorder, time switch, under-pillow speaker and a genume destre to lcarn.

If you possess the lacter requrement, then the first three can easily be obtamed from R.C.S. Products, Led., $\|$ Oliver Road, London. E. 17. $£ 45 \mathrm{~s}$. Od. buys the time switch with 14 day Swiss movement. The modified tape recorder complete with mic. and pre-recorded conditioning tape costs £23, and the pillow speaker 27s. 6d. The complete outfit may be obtained from R.C.S. Products at a cost of $£ 2910 \mathrm{~s}$.

PRACTICAL WIRELESS AND PRACTICAL TELEVIEION FILM SHOW

The P.W. and P.TV. Fiimshow is to be held on February 4th. 1966. For more details see the notice on page 783.

MASTERTAPE CHRISTMAS GIFTS

Mastertape (Magnetic) Ltd., announce that with every reel of Mastertape purchased over the Christmas period an empty spool of equivalent size will be provided free of charge.

The full reel and the empty spool will be packed together in a sealed polythene bag attractively over-printed with a Christmas motif.

BRITISH ELECTRONICS FOR AMERIGAN AIRGRAFT

More British electronic equipment has been ordered by the Ministry of Aviation for the R.A.F.'s American Lockheed C-130 Hercules long-range transport aircraft.

Marconi Sixty Series transistorised airborne radio communications and navigation aids which are to be fitted, are already standard equipment in the majority of aircraft currently flying with the R.A.F.

Equipment specified includes the AD260 v.h.f. navigation system and the AD 360 automatic direction finding system. The AD260 provides full v.f.f. navigation facilities and provides the instrument landing outputs used in the automatic landing system in the BEA Trident and also in the BOAC VC-10 aircraft. The AD360 is the standard Marconi airline automatic direction finding system. It features fully automatic crystal controlled tuning which was pioneered by the Company, and is still only
available in Marconi ADF's. available in Marconi ADF's.

COMMENT

EQUIPMENT FOR UK3 SATELLITE

UK3, the first all-British satellite, is being designed and built by the Guided Weapons Division of the British Aircraft Corporation.
At the Glenrothes, Fife, plant of Hughes International (UK) Ltd., microglass diodes are welded on to printed circuit boards to be used in the telemetry ground equipment of the project. These diodes form part of the microminiaturisation of the decoding matrices used in the telemetry ground equipment.

EMBOSSED PLASTIG CALLSIGN PLAQUES

We have received from F. W. Harris \& Ca. Ltd., Town Hall Chambers, Lydney, Gloucestershire, a specimen callsign plaque. Inch-high letters are heat embossed into the white plastic background which measures $4 \mathrm{in} . \times 2 \mathrm{in}$.
The plaque, which is washoble and easily drilled for fixing, costs 3 s . inciusive. A free-standing version is priced at 4 s .

CIVIL SERVICE RADIO SOCIETY

The Civil Service Radio Society will be pleased to welcome members of H.M. Civil Service and associated organisations to their meetings at the Science Museum, South Kensington. The meeting on 7 th December featured films on amateur radio. and on the 2lst there will be an informal meeting and a Christmas party. For further details, please contact the Secretary, Mr. G. Lloyd-Daiton, 2 Honister Heights, Purley, Surrey, or H. E. Reeve, G3JXZ, 284a Barking Road, East Ham, London, E.6.

SOLID STATE AMPLIFIER

Messrs. Henry's Radio Lid., 303 Edgware Road, London, W.2., are fost making a name as being one of the transistor people as for as the constructor is concerned.

Their latest offering is a ready built audio amplifier with a frequency response $30 \mathrm{c} / \mathrm{s}$ to $16 \mathrm{kc} / \mathrm{s}$. The sensitivity is 6 mV into $1 \mathrm{k} \Omega$ for a push-pull output of 5 W r.m.s., IOW peak with less than 1% distortion.

Despite the output, and the s!x transistors plus diade, the unit measures only $2 \frac{7}{g} \mathrm{in}$. $\times 2 \mathrm{in} . \times 1 \frac{1}{2} \mathrm{in}$. and is avalable ready built and tested at £3 19s. 6d. plus 2s. post and package.

It uses a transformerless design, with outputs for 3,4 or 5Ω speakers. An optional mains unit is available at 54s., and for the hi-fi enthusiasts, o full-function preamplifier ot 79 s . 6 d .

more News and Comment

To Make, or To Buy?

When reading the 'Editorial' and 'News and Comment' in the December 1965 issue of Practical Wireless, I felt that one point had been missed; the factor of technical advances in radio.

When most Amateurs were building their own equipment. the circuits and techniques were very elementary compared with the complexity of knowledge and highly advanced techniques of today. In the old days very good results were possible with simple equipment, since this equipment was norm. Today, however, one has to build modern firstclass equipment to compete with the commercial product. This requires a great deal of knowledge and skill of the sort which is available to the professional. For the Amateur who does not earn his living in the radio or electronic indusiry these techniques are sometimes felt to be far too difficult to master, and who is to blame him for buying the commercial article?
B. Otter.

Durham City.

Thank-you Letter

In reply to the request for the "Regency" blueprint which youl kindly published for me, many readers sent copies. Some even enclosed the relevant issues of Practical Wireless, and one gentleman not only sent these but also enclosed the "Citizen" blueprint with the oscillator section completely wired and tested!

Will you through the medium of your columns thank all readers who helped me?
J. Owens.

Dolgellau, N. Wales.

Correspondent Wanted

I AM interested in most branches of electronics. I would like to correspond with anyone who has the same interests and who is about the same age as myself (17).
David Higgins.
3 Woolgreaves Drive.
Milnthorpe.
Wakefield.
on page 784

Push-Pull ELL80 Amplifier

3 VALVES * 8 WATTS

ALTHOUGH it uses only three valves and a minimum of other components this amplifier has an output of 8 W and will reproduce records and radio programmes, etc., at high quality.

The Circuit

Referring to Fig. 1 it will be seen that the output stage employs only one valve, ELL80, which contains two pentode assemblies with a common cathode. Although rather expensive at present it is not unduly so when it is remembered that it takes the place of two and eliminates the problem of finding a matched pair of valves for the conventional push-pull circuit. The valve has a slope of $6 \mathrm{~mA} / \mathrm{V}$ and with 250 V on anodes and screens and a bias resistor of 180Ω it provides a power output of 8.5 W in return for a signal of

24 V peak grid to grid. The signal currents through the two halves of the valve cancel out at the common cathode and the bias resistor does not have to be by-passed. Resistor R14 is included in the supply to the screens to ensure that, taking into account the voltage drop in the output transformer primary, the screen voltage will not exceed that at the anode.

The optimum load for the ELL80 is $11,000 \Omega$. The specified output transformer is advertised for use with 6 V 6 or EL84 output valves but the manufacturers state that it is designed for a load of $10,000 \Omega$ and it is therefore suitable for the ELL80.

Phase Inversion

The valve V2 is a double triode, ECC83, one half of which is used to provide the two signals of opposite phase required by the output stage. Allowing for the decoupling provided by resistor R11 and capacitor C10 the supply voltage to the stage is 245 V and with a total load of $200 \mathrm{k} \Omega$ $(R 12+R 13)$ the valve has an output capability of 27 V r.m.s. This meets the requirement of the output stage with something in hand.

It will be noted that the cathode of V 2 b is about 120 V above earth, which permits the grid to be directly coupled to the anode of V2a, so saving a coupling capacitor, grid and bias resistors. With this circuit the voltage across R13 is a little higher than that at the anode of $V 2 a$, thus providing working bias for the valve, a state of affairs which is automatically maintained irrespective of variations in supply voltage, etc. A further advantage is that direct coupling eliminates phase shift at extreme frequencies, which can be troublesome when feedback is applied over several stages as it is in this amplifier.

Heavy negative current feedback due to the large un-bypassed cathode load gives excellent linearity but the gain, as might be expected, is low, 0.9 each side or 1.8 times overall. For full loading the inverter therefore requires a signal of

Fig. 1: Circuit diagram of the amplifier.

Voltage Amplifier

This signal is provided by V2a arranged as a conventional resistance coupled amplifier with decoupling provided by resistor R8 and capacitor C9. The bias resistor R10 is not by-passed, which saves a component and provides a convenient point for the injection of negative voltage feedback derived through resistor R18 from the secondary of the output transformer. This feedback compensates for deficiences in the transformer, reduces harmonic distortion and improves loudspeaker damping.

The values of resistors R10 and R18 are so chosen that in parallel they provide the correct bias for the valve, while in series, they cause the* desired percentage of the output voltage to be fed back. It will be seen that V2a operates with both current and voltage feedback and consequently with excellent linearity.

Preamplifier and Tone Contro's

The gain of the amplifier from the grid of $V 2 a$ onwards is insufficient for most purposes, especially when the losses due to the introduction of tone controls are taken into account. A fairly high gain preamplifier stage is therefore needed.

The valve V 1 , in a conventional resistance coupled circuit with anode load of $100 \mathrm{k} \Omega$, gives a stage gain of 120 times. A gain of 180 can be had here by increasing R4 to $220 \mathrm{k} \Omega$. R. 1 to $1 \cdot 2 \mathrm{M} \Omega$ and R 5 to $2 \mathrm{k} \Omega$. but if this is done the s ,nal handling capacity of the valve will be reduced and it will be necessary to replace the grid resistor R 2 by a $1 \mathrm{M} \Omega$ potentiometer so that overloading with large inputs can be avoided.

With the circuit of Fig. 1 overloading will not occur with any normal gramophone or radio tuner input. The radio signal input is taken from a coaxial socket through the closed circuit jack It to the grid. Insertion of the jack plug disconnects the radio input and connects any other desired input.

The preamplified signal from V1 is fed into a Mullard-type tone control network consisting of the potentiometers VR1 and VR2 and their associated resistors and capacitors and thence to the volume control VR3. which incorporates the mains switching. Insertion of the controls at this point in the circuit ensures that thev are not liable to electrostatic hum pick-up and that any noise voltages originating in the first stage are reduced along with the signal when the volume is turned down. The values of the capacitors C5, C6, C7 and C8 gave a good range of control in the prototype but tone control is verv much a matter of individual preference and the capacitor values can be varied as desired.

Power Supply

The amplifier requires an h.t. supply of 75 m A at 265 V under full load conditions and 2 A at 6.3 V for the valve heaters and indicator lamp. This is provided by a double-wound mains transformer and two silicon rectifiers. SR1 and SR2. Fuses are included to protect the transformer winding in

COMPONENTS LIST

Resistors (all $\frac{1}{2} \mathrm{~W}$. unless otherwise stated)

RI	390 k S
R2	1 M Ω
R3	33ks,
R4	100 k s
R5	lks
R6	150 k ¢ 2
R7	150 k S
R8	27kS
R9	$560 \mathrm{k} \Omega$
R10	2.7k』
RII	27 kS
R12	100ks2 Matched
R13	100ks Sor 1\%
R14	2.2k』
R15	470k Ω Matched
R16	470 k) \} or 1\%
R17	18092 w .
R18	6.8 k S
R19	270s. iw.
VRI	$2 M \Omega$ log. (Treble)
VR2	2 MS log. (Bass)
VR3	1 MS log , with 5 witch
Valves	
V1	EF86, B9A base.
V2	ECC83, B9A base.
V3	ELL80, B9A base.
Capacitors (350v. working unt	
Cl	$0.1 \mu \mathrm{~F}$
C2	$50 \mu \mathrm{~F} 25 \mathrm{v}$. electrolytic
C3	$8_{\mu} \mathrm{F}$ electrolytic
C4	$0.05 \mu \mathrm{~F}$
C5	68 pF
C6	680 pF
C7	270 pF
C8	3,300 pF
C9	$8 \mu \mathrm{~F}$ electrolytic
C10	$8 \mu \mathrm{~F}$ electrolytic
CII	$0.1 \mu \mathrm{~F}$
Cl 2	$0.1 \mu \mathrm{~F}$
Cl 3	16 \% F electrolytic
C14	$16 \mu \mathrm{~F}$ electrolytic

Transformers

Mains $250-0-250 \mathrm{v} .80 \mathrm{~mA} .6 \cdot 3 \mathrm{v} .2 \mathrm{amp}$.
Output Push-pull, $10 / 12$ watts, 6 V 6 or EL84 to 3 and 15 ohms. R.S.C. (Manchester) Ltd.
Rectifiers
SR1, SR2—Silicon, BY 100 or similar
Fuses
FI, F2 150 mA .
Indicator Lamp
6.3 v .0 .3 amp . and holder.

Miscellaneous

co-axial socket, closed circuit jack socker, aluminium for chassis, mains cable and plug, 22 s.w.g. tinned copper wire, sleeving, hardware, etc.
event of a rectifier breakdown. The reservoir capacitor is virtually C14+C13: resistor R19 has little smoothing effect and is included only to reduce the h.t. line voltage to the required figure of 265 V . Each of the earlier stages is provided with separate decoupling and smoothing, while in the output stage hum is alnost completely cancelled out by push-pull operation. What little
is left is very effectively suppressed by negative feedback and cannot be detected 12 in . from the speaker.
There is, of course, no reason why a valve rectifier should not be used if preferred and the fuses F1 and F2 need not then be fitted. The onlv requirements are that the valve should be capable of passing the required current and that a heater supply for it is available on the mains transformer. The advantage of the silicon rectifiers is that they do not generate heat, which is a consideration if the amplifier is to be installed in a cabinet with limited ventilation.

Construction

The amplifier is constructed on a chassis of 16 s.w.g. aluminium sheet, 12 in . x 5in. $x \quad 1 \frac{1}{2} \mathrm{in}$.. details of which are shown in Fig. 2. This allows plenty of room for everything, simplifies the construction and wiring and enables the constructor to make use of some of the older and bulkier components from the spares box. The wiring. for which 22 s.w.g. tinned copper covered with sleeving is suitable, is shown in detail in Fig. 3.
Note that in this diagram the positions of the components are approximate and the wiring has been opened out to make the connections clear. In construction all wiring should be kept to a reasonable length, particularly in the early stages, and if this is done no screening will be necessary anywhere in the amplifier. The positioning of the components is not critical.

Components

If silicon rectifiers are used the h.t. voltage will come on before the valves are warmed up and
ready to receive it and all capacitors except C2 must therefore be 350 V working.
The accuracy of balance in the inverter stage depends entirely on the values of the resistors R12 and R13. Close-tolerance components are not necessary but the two must be balanced as closely as possible to ensure that their values are identical. Alternatively 1% resistors can be used. These remarks apply also to resistors R15 and R16 in the output stage. The wattage rating for resistors is given in the components list.

Testing

First check that the valves are in the correct positions. The connections to V2 and V3 are such that if the valves are accidentally transposed a dead short will appear on the h.t. line. Next check with a meter on a high-resistance range between C14 and chassis to see that there are no shorts. The lead carrying the positive voltage from the meter battery should be applied to C14, when a large deflection should be observed, dropping back slowly to a reading of $1 \mathrm{M} \Omega$ or more as the capacitors become charged from the meter battery. Now connect a speaker and apply power. If as the valves warm up there is instability, reverse the connections from the output transformer primary to the ELL80 anodes to make the feedback negative.

The following voltages should be found at the points indicated using a 20,000 o.p.v. meter. Any substantial departure from these figures should be investigated.
C3 to chassis
C9
C10..................... 230 V
C13
C13
"

Fig. 2: Chassis drilling dimensions.

Fig. 3: Wiring diagram of the amplifier-underside view.

V3	anodes	screens 255 V
$V 1$	cathode	1.8 V
V2a		$1 \cdot 4 \mathrm{~V}$
V2b	,	122 V
V3	"	12.2 V

Operation

A good amplifier is of little use without a good speaker and it is equally important that the
speaker should be suitably housed. The prototype gave excellent results with an 8 in. column speaker fitted in a 9 in . glazed ceramic drainpipe. Domestic objections to the pipe can be overcome by painting it with metallic paint. Another point to note is that while the tone controls have a good range they cannot be relied upon to compensate for large deficiencies in the input signal. The output from a pick-up, for instance, must be corrected for recording loss if the best results are to be achieved.

BUMPER ISSUE THIS MONTH!

> SIMPLE DIGITAL COMPUTER ELECTRONIC SERVO SYSTEM PIPE AND CABLE LOCATOR

These are iust some of the features in the JANUARY issue of PRACTICAL ELECTRONICS ON SALE 16 DECEMBER

SEE FOR YOURSELF!

PRACTICAL TELEVISION december

CIRCULAR TV AERIAL

 FOR BBC-2Full constructional details for compact indoor aerial for set top. Easily rotated for optimum performance.

SINGLE-GUN COLOUR TV TUBES

THE NEV-ICON CCTV CAMERA

THE SHORT-CIRCUIT
On Sale now Price 2s.

UNDERSTANDING F.M.

by W. Groome

RADIO is a progressive hobby. Sooner or later you will turn to frequency modulation for high quality. interference-free reception and will want to build your PW design with an understanding comparable with your knowledge of amplitude modulation. The main difficulty seems to be that of visualising the behaviour of the carrier and this impedes the study of the discriminator. Despite technical and mathematical proof most of us like to have a mental image of what goes on; we like to "get the picture" first and then proceed to advanced details. In this article much of the picture is aimed at your imagination. but there is no childish simplification and nothing that will conflict with any contemplated further study.

The basis of all signalling is change. Something must wave, wag. flash, flicker, hoot-there must be some noticeable or detectable change of a normally steady state. A radio carrier alternates at a high frequency but can be said to have a steady state when the frequency and radiated power are constant, producing-by rectification in the receiver-an unvarying voltage. It is easy to appreciate that changes in the transmitted power will produce corresponding changes in the rectified voltage and that such changes can follow the waveform of the audio signal.

This is amplitude modulation. with which we can take the carrier frequency for granted (as we do with most dependable things) and regard the easy relationship between carrier amplitude changes and rectified signal amplitude changes. With frequency modulation the carrier power is constant; the waveform and dynamic range of the mudio signal are represented by changes of carrier frequency. Here lies one of the problems. The audio signal begins in the studio as a current or voltage varying in amplitude and it must emerge at some stage of the receiver in the same form. How can these changes of energy be conveyed by a carrier of constant power? A quick answer, which we shalil develop later, is that they are not
conveyed, they are represented. Another question arises from a glance at transmitter characteristics. How can we relate carrier frequency swings as wide as $150 \mathrm{kc} / \mathrm{s}$ with the frequency and amplitude of audio signals in the region under $20 \mathrm{kc} / \mathrm{s}$?

Here I call upon your imagination. Fig. 1 represents the dial of a receiver. It is calibrated vertically in kc / s and has a pointer driven by the usual knob (not shown). A certain frequency is marked at the middle of the scale (fc) and others are shown by the amount by which they are higher or lower than fc . The receiver is selective and has a visual indicator (not shown) to tell you when a carrier is tuned in.

Imagine that a carrier has been located at fc but it seems wayward: it is drifting and you have to retune. Still it drifts and as you manipulate the knob to follow it the pointer is driven up to $+30 \mathrm{kc} / \mathrm{s}$, then you have to tune downwards to follow the carrier to $f c$ and then further down as far as $-30 \mathrm{kc} / \mathrm{s}$. Here it drifts up again until the pointer finally returns to $f c$.

Let us check what happened. The carrier drifted by a large amount - from fc up to $+30 \mathrm{kc} / \mathrm{s}$. then down to $\mathrm{f} c$ and beyond to - $30 \mathrm{kc} / \mathrm{s}$, finally returning to fc. One whole cycle of change. Yes, just one cycle of change. Despite all the kc / s your pointer moved up and down in only one cycle. and if you like to go over it again in imagination you will find that the pointer movement agrees well with the rise and fall of a sine wave. You will also realise that the pointer, following deviations of frequency, had a certain amplitude of movement. which suggests the possibility of such conversion although not normally by a mental-mechanical process!

If the response of the imaginary receiver is broadened to cover the entire bandwidth of $150 \mathrm{kc} / \mathrm{s}$ a frequency meter scaled as in Fig. 1 can indicate the deviations directly without knob-twiddling. Now we watch the pointer go through the same change of plus and minus $30 \mathrm{kc} / \mathrm{s}$ five times in one second. If the pointer had a pen over a moving band of paper the five cycles would be recorded as in Fig. 2.

Rolling the paper back for one further imaginary experiment we find that the deviations are much wider-the pointer swings $60 \mathrm{kc} / \mathrm{s}$ each way instead of $30 \mathrm{kc} / \mathrm{s}$-but still at the same rate of five cycles per second. These are drawn in broken line in Fig. 2.

From all this it is clear that the rate of change

Fig. 1: You can follow the explanation of frequency deviation with this diagram.

Fig. 2 (above): Carrier frequency deviations converted into modulation wave form.
Fig. 3 (below): Slope of LC circuit produces amplitude modulation from frequency modulated carrier.

of carrier frequency is the modulation frequency (five cycles per second in our slow-motion picture. audio frequencies in reality) while the amount of deviation represents the amplitude. Unlike the a.m. signal, frequency modulation does not transmit real amplitude changes ready-made. It represents them, it provides their patterns, it supplies signal designs from which the receiver must recreate the amplitude changes of audio tones. There must be built into the receiver some means of "knowing" what the frequencies "mean", some way of recognising that it must supply amplitude changes of voltage or current as instructed by the swinging carrier.

A tuned LC circuit does "know" this, for it is inherently frequency-sensitive, having a response that is maximum at the resonant frequency but falls away gradually to frequencies on either side. Fig. 3 shows one side of the kind of response we would like to have. A carrier arriving with constant amplitude will suffer varying losses as its frequency swings between the resonant peak and the point of lowest response, and will therefore
emerge with an amplitudo modulation. An ordinary $d \mathrm{~m}$. detector will then demodulate the amplitude changes and lose the residual (and now unwanted) f.m. content in its r.f. filter.

This arrangement, the "slope" detector is merely a mis-tuned a.m. circuit. The straight slope of Fig. 3 is not attainable in practice and the normal curve brings serious distortion. For this reason, and because the degree of off-tuning is critical, the arrangement is rarely used.

If we broaden the response of a tuned transformer sutficiently it will no longer be frequencysensitive within the flat bandwidth and will therefore fail to act as a slope detector. It will, however, be phase sensitive.

There is some difficulty in describing the action of phase discriminators without assuming the reader is familiar with the nature and effects of phase relationships. The subject is worthy of an article to itself but for the present we must settle for the statement that phase means the positions of a.c. cycles in time. For example, two trains of cycles may have the same frequency but the cycles of one may commence earlier or later than those of the other. Their result would depend on the amount (expressed in angular degrees) of "lead" or "lag".

The Foster-Seeley discriminator works by comparison of a signal after it has passed through two routes. of which one introduces phase shift and the other does not. In Fig. 4 the direct route via capacitor C1 produces no phase shift. The transformer secondary conducts it equally to the diodes for rectification and it appears in opposition across the total load R1 R2. In the absence of aid or opposition from elsewhere the two outputs would cancel.

In addition to this reference the signal also arrives via the tuned transformer with changes of phase dependent upon frequency. At the central. resonant frequency it is a quarter of a cycle ahead of the reference signal at one diode-it leads by

Fig. 4: Foster-Seeley discriminator.
90°-and at the other it lags by 90°. It can be shown by vector diagram that this combination in exact quadrature produces diode inputs greater than those of the reference signal alone, but they are still equal and therefore the diode outputs still cancel. This condition exists only for the resonant frequency:At all other frequencies the phase of the tuned transformer signal changes increasing the angle at one diode input and decreasing it equally at the other. The balance that produced equal aid to the reference signal is now disturbed and the total signal is now shared unequally between the two diodes. The rectifier outputs cannot cancel but must leave a difference. This difference voltage. varying as changing phase angles bring changing unbalance, is the a.f. signal.

The circuit is sensitive to amplitude modulation (which for practical purposes includes interference) and must therefore be preceded by a limiter. This is usually an over-driven i.f. stage which clips the tops and bottoms of the carrier waves to a uniforrn level, removing interference "spikes" in the same process.
This additional stage can be eliminated by rearranging the circuit to make the diodes serve the dual roles of rectifiers and dynamic limiters. Fig. 5 shows a simple version of the ratio detector, the most popular system today. Although the reference signal is derived from the tertiary transformer winding instead of via a capacitor the signal conditions are much the same as in the Foster-Seeley circuit as far as the rectifiers. The diodes, you will notice, are connected to make their outputs additive across the load instead of subtractive. As the unbalance produced by phase shifts brings an increased input to one diode and an exactly corresponding decrease to the other the sum of the two outputs is always the same. The difference voltage is therefore due to the changing ratios by which the diodes contribute their shares to the total sum, and can be taken as an a.f. signal across either of the capacitors C2 C3 or either of the resistors R1 R2.

We have established the total diode-to-diode voltage as being (ideally) constant, and it can be

Fig. 6: Pulse-counter discriminator.
stabilised by a large capacitor C4, which charges to a level set by the average carrier amplitude and also absorbs some of the spurious signals that may be riding above the carrier. The diodes are tied to this steady bias and variations of carrier strength (and these include interference that "lifts" the carrier level) change the working points, varying their resistance inversely with the changes of carrier level. The diode resistance damps the tuned circuit, therefore a rise of carrier amplitude is countered by heavier damping and is unable to attain more than about 15% of its true worth.

The ratio detector is now seen to be a phase discriminator in which unbalanced diode output resulting from the phase shifts of frequency deviations in a tuned transformer provide an a.f. signal by their voltage differences and, by their sum voltage, a bias that enables the diodes to serve also as dynamic limiters. Although limiting is less effective than that of a separate stage it is adequate for most ordinary needs, and is achieved with economy.

Both discriminators depend upon accurate alignment of tuned transformers and upon the maintenance of this alignment once it has been attained. The conversion of frequency deviations to phase-shifts, thence to diode unbalance and difference voltages is reasonably accurate and distortion is variously claimed as being between 1% and 3%, which is below the standard required for transmitter monitoring and certain other high quality needs. For such purposes there is a system which gives a more direct and linear conversion of frequency deviations to a.f. voltages. The system is aperiodic-it has no tuned network-therefore the alignment problem does not exist and there is no long-term deterioration of the performance.

The receiver gives each carrier cycle a fixed value and adds them to obtain an output that is continuously proportional to their number. At the higher deviations the number of carrier cycles per given small period of time is obviously larger than the number arriving with the lower deviations and in an additive circuit these varying numbers of cycles will produce varying voltages. These constitute the a.f. signal. To give each cycle the same value regardless of frequency the carrier (i.e., i.f.) sine waves are converted into pulses, and this can be achieved in a simple overdriven limiter stage. In Fig. 6 clipped waves from the preceding limiter are passed through the differentiator network C1 R1 through diode DI which passes pulses of one

Fig. 5: Ratio detector.

onthe
 Short Weves MONTHLY NEWS FOR DX LISTENERS

All times are in G.M.T.

All frequencies are in kc / s.

The Broadcast Bands-by John Guttridge

0N November 7 most international stations introduced their winter schedules. Details of some of these are amongst this month's information.

Japan: Nippon Hoso Kyokai (Radio Japan, Tokyo) is using new frequencies for some General Service transmissions in English and Japanese. Between 1200 and $17309,505 / 9,560 / 11,815$ are used. The 1800 and 1900 transmissions are on $9,505 / 9,560 / 9,605$. From 2000-2030 9,560/9,605/15,195 are used.

Philippines: Far East Broadcasting Co. (Box 2041, Manila) replaced 15,385 by 11,850 for the 2330- 0100 section of its English transmission on December 1. This transmission is also carried on 17,810 . Other portions of the English service with new frequencies are $0830-09009,715 / 11,920 / 15,440 / 15,300 / 17,810$ and 0900-1145 15,440/17,810. Full QSL.

Ryukyu Islands: Voice of America relay on Okinawa, can be heard in London until 1600 on 7,235 in Chinese. Station identification is given at 1600 in English.
Australia: Radio Australia (P.O. Box 428G, G.P.O., Melbourne) now transmits in English to British 1sles from 0815-0915 on 9,570/11,710.

Canada: Canadian Broadcasting Corporation (P.O. Box 6000, Montreal) now uses $15,320 / 11,720$ for the 1055-1315 segment of its European Service.
U.S.A.: Voice of America (U.S. Information Agency, 330 Independence Avenue, S.W., Washington 25, D.C.) now has following European English schedule: On 1,196 Munich 0400 0430, 0500-0730, 1600-1830, 2200-2345; 3,980 Munich 0300-0700, 1400-2345; 5,965 Tangier, 5,995 Greenville, 7,200 BBC and $7,2500300-0730 ; 5,995$ Tangier $1630-$ 2245; 6,040 0500-0730; 7,205 Thessaloniki 15002300; 9;540/9,740 0430—0730; 9,760 1430-2245; 9,565/9,710 1900-2245; 11,760 1800-2215; 15,205 Greenville 1400-2215; 15,290 Tangier 1400-1800; 15,295 0600-0730; 17.780 Greenville 1400-1800.

Radio New York Worldwide (4 West 58th Street, New York City 19, N.Y.) has following new English schedule: $1200-140015,290$ or $15,295 / 17,710$ (plus 15,385 Saturdays and Sundays); 1400-1500 17,845/ 15,440 (plus 15,385 Saturdays and Sundays); 1500$190017,845 / 15,440 / 17,730 ; 1900-200015,440 / 11,970 /$ $17,845 / 17,730 ; \quad 2000-2100 \quad 15,440 / 11,970 / 11.880 /$ 17,730: 2100-2145 11,970/9,740 or 9,570/11,880/ $17,730 / 15,440 ; 2145-22009,740$ or $9,570 / 11,725$ or 11,790. A new QSL card is now being issued. The Dx programme is now at 1330 and 2130 on Saturdays.

Cuba: Radio Habana (Apt. Postal 7026, Habana) transmits to Europe in English from 2010-2040 on 11,735.

Mexico: Radiodiffusora Comerciales (Quemada 40, Col. Narvarte), can be heard during the evening over

XEWW on 15,110 with interference from Radio Iran on 15, 112 .

Netherlands Antilles: Trans World Radio (Bonaire), has been heard with English test transmissions at 0140 on 11,$825 ; 1430$ on 11,820 and 1825 on 15,180 .

Brazil: Radio Farroupilha (Rua Vigario José Inacio 263, Porto Alegre, Rio Grande do Sul) has been heard as early as 1900 with excellent signal over ZYU60 on 15,335 .

Austria: Osterreichischen Rundfunk (Wien IV, Argentinierstrasse 30a) transmits to Europe from $0500-2200$ on 6,$155 ; 0900-19007,245$; and 06001700 on 9,770.

Bulgaria: Radio Sofia (Sofia) has an English transmission to Africa from 1905-1930 on 11,715/15,320.

Denmark: Radio Denmark (Shortwave Department, Radio House, Copenhagen V) has now returned to 15,165 for its transmission from 0900-1000.

France: O.R.T.F. (116 Avenue du Président Kennedy, Paris 16) has English for the U.K., Monday-Saturday on 6,175 at 2000-2015.

Germany: Deutsche Welle (Bruederstrasse 1, Postfach 344, $5 \mathrm{Köln}$) has now brought its Kigali, Rwanda, 250 kW relay into full service. English transmissions are 0630-0715 on 11,905; 1215-1300 17,765; 1745-1830 17,805; 0430-05006,045; 101510459,$735 ; 1545-16159,695$. The new schedule for English programmes transmitted from Julich, Germany, is $0300-03405,980 / 7,175$: 0845-0940 17,845/ $11,925 / 15,275$; $2110-2200$ ' $5,980 / 7,175$; $1550-1620$ 7.175/9,735; 0645-0715 9,605/11,785/15,275; 10151030 11,930/15,280/17,870; 1555-1630 9,610/11,890; $0130-02506,075 / 9,640 ; 0500-0540$ 6,145/9,735: 1510-1550 9,545/9,640/11,795. A new QSL card is being issued.

Greece: Radio Athens (Mourozi Street 16, Athens) may be heard on 9,605 during its 1030-1300 transmission except for 1045-1100 when there is a special transcription broadcast for North America on this channel from Deutsche Welle. Although all prom grammes from Athens are in Greek, the station (a rare catch) may be identified by its flute and bel interval signal.

Holland: Radio Nederland Wereldomroep, P.O.B. 222, Hilversum, how has six English transmissions (daily except Sundays). Details are 0730-0820 9,715/ 11,730/11,790 and 19m.b.; 1430-1520 17,810/15,425 6,$020 ; 1900-1950$ 9,590/6,020 and $25 \mathrm{~m} . \mathrm{b} . ; 2000-$ 2050 19,25 and $31 \mathrm{~m} . \mathrm{b}$. and 6,$020 ; 2100-2150$ 9,590/6,085; 0130-0220 9,600 (Bonaire relay). Happy Station programmes on Sunday are 0600-0720 $11,730,9,715 ; 0730-08509,525 / 11,970$ and 19 m. b.; $1030-1150$ 9,710/5,980/6,020; 1430-1550 17,810/ $15,425 / 6,020$; $1800-172019$ and $25 \mathrm{~m} . \mathrm{b} . ; 1900-$
 $25,31 \mathrm{~m} .6 . ; 2200-2320$ i $5,220 / 9,715$.

Portugal: Radio Lishon (Rua Sao Marcal IA, Lisbon) has the following new English transmissions 0300-0345 5,975; 0730-0815 and 0815-0900 7,130/9,645; 2015-2100 6,025/7,225.

Switzerland: S.B.C. (3000 Berne 16) has completely new schedule. English to the U.K. is now at I145-

1315 on $9,665 / 11,865$. Full details of the other English transmissions will be given next month.

Thanks this month go to John Sawyers (ilford), J. W. Smith (Anstruther), Roy Patrick (Derby). Brian Burling (Rotherham), R, J. S. Gilchrist (E3rstol). Radio New York Worldwide, S.B.C.. and the International Short Wave Club.

The Amateur Bands-by David Gibson G3JDG

ANOTHER excellent month for the DX fans. especially on the h.f. bands. Twenty-one " megs" has opened with a real vengeance at times and the majority of logs received this month were for this band.

Yours truly was operating in the "Jamboree on the Air" event using the call G3GJX/A from Leverstock Green, At 0700 hours $21 \mathrm{Mc} / \mathrm{s}$ proved a hive of industry and no trouble was experienced in raising JA stations in Tokyo and Osaka. It must be confessed that this was with 400 W p.e.p. of s.s.b. to a two-band cubical quad.

My best on 20 m from the home QTH was VK3ATN. Imagine my feelings when an s.w.l.'s report contained the same call-only the s.w.l. was using a t.r.f.! Brethren I am choked.

If you hear 3A2DA then you are listening to a pirate. Geoff Haynes, the real 3A2DA, would like any reports on this call. -Time, band, etc. Greoff's address is Sans Nom, Fir Tree Road, Leatherhead, Surrey.

The L.F. Bands

Eighty looks very promising for the winter months. James Brown (Llandaff), 19 set, a.t.1. dipole, reports hearing some 20 W stations and 23 VE's, including VEØMS//MM (Baffin Is.). Others heard include K2GO, UA2KAN, ZB2AO. ZD8HL, 4X4AS. 7X2AH. Peter Hickey (Pinner), t.r.f. hooked K2KPM, K8HIR, TI2IO (Costa Rica), VEIIE. W-2ZPO. 3WJO. 3WPG, 4BW, YV5BMR ZL2BCG, ZL4LM, ail around 0600° hours G.M.T. A4238. QTH unknown: RX107+ PR30, 132ft long wire running SE/NW, DL, EA, HA5. HB9, HV1 (Vatican City). LX1. LZ, OH, OK, ON, SM, VE, VO, W4/P, YU, YV, 4U1, all on sideband. D. M. Howarth (Bolton). PCR3. 20 ft vertical on $7 \mathrm{Mc} / \mathrm{s}$, DJ, LA5. OK. ON. PAØ. plus two nice ones. SV1CC, VK5V4.

$14 \mathrm{Mc} / \mathrm{s}$ and Higher

Dennis Goh using a transistor receiver with the P.W. add on b.f.o. raised DU, JA. KA. KG6. VK. VS6. VS9, XW8. 9M6. Not DX to him because Dennis is in Singapore. Chris Freeman (Nuthall). $\mathrm{HE} 80+\mathrm{PR} 30$, a.t.u. ground plane. CN8. FM7 (Martinique), FP8 (St. Pierre and Miavelon), KG4. LA2/MM. OD5, UI8, VK3, VK4, VP7. YS1. ZD8. 4X4, 5Z4. Dave Hidmore (Belper). HE40, dipole. CN8, CR4, CR6. EP2, FG7. HI8. HK, IØ. K7/VO2, KZ5. LU. OD. PY-1. 2. 5. 7. SVØ. TG9 (Guatemala), VP6, VP9, XE, YV3, ZB. All these logs are for 20 and the last $14 \mathrm{Mc} / \mathrm{s}$ report comes
from Bernard Hughes (Worcester), $840 \mathrm{C}+\mathrm{Codar}$ preselector, dipole, KL7. K X6 (Marshall [5.), MP4 SVQ, UA9, VP9, VK-2, 3. 4. YV. ZL. Stephen Beal (Muswell Hill). P.W.. May, i964. t.r.f. 66 ft long wire, $21 \mathrm{Mc} / \mathrm{s}$. AP3 (Pakistan), OD, SV, UB, VE, VP2 (St. Vincent), K1,W-1, 2, 3, ZB2, 4X4. S. Barnes (Newthorpe), PCR2, 30ft long wire, W-1. 2. 3. 4. 8. 9. K-2. 4. WA. WB, 4X4. A. Smith (Highbury Barn). HE30, Joystick, G3, Ki OD5. UA3.VE3, W-1, 3, 8, 9, Ø. 6W8 (Senegal).

28Mc/s

Paul Baker (Pontypool). HE30, 45ft long wire plus 14 ft whip, CR6CZ. CR7FR. DJ, DL, GW5XN, Il, K2, LUIDAB, SM, SVIDB, W2AZD. ZSIBV, 9G1DM. 9J2DL. R. Ibali (Worksop). SX28 + PR30, 80ft long wire end fed with 35 ft coaxial. CR7FR. CR7IZ. ZSIBV, 7S2CB, ZS2ND. ZS6MM. Christopher Clarke (Farnham), 10 -valve $\mathrm{s} / \mathrm{het}$. 33 ft wire around picture rail. CR7, CT1, DJ, DI., EA. ET3, G's. II 1U. OD5, OE, OH. SV1. UQ2. VK2NN. W1, YV5, ZC4, 7S1, 5A1. 7X2. 9J2, all a.m. or s.s.b.

In General

Listen to the low end of 160 for W1BB/1. On 20 m phone KW6 (Wake Is.). KM6 (Midway Is.), KJ6 (Johnson Is.). KR6 (Okinawa). all very active. $\mathrm{K} / \mathrm{ZBR} / \mathrm{MM}$ is the U.S.S. Calcaterra cruising around the Antarctic, whilst a VK9 is reported operating from Papua Territory.

One piece of news perhaps not generally known is the RSGB news bulletin broadcast on Sunday mornings. The London area has a transmission on $3.6 \mathrm{Mc} / \mathrm{s}$ at 0930 hours.

The Severn area at 1000. Belfast 1015. North Midlands 1030. North West England 1100, South West Scotland 1130, North East Scotland 1200. All these on $3.6 \mathrm{Mc} / \mathrm{s}$.

For the two metre enthusiasts the news is also broadcast on Sunday mornings as follows:$145 \cdot 1 \mathrm{Mc} / \mathrm{s} 0930$ beaming North from London. $145.1 \mathrm{Mc} / \mathrm{s}$ beaming West from London. $145.8 \mathrm{Mc} / \mathrm{s}$ 1015 beaming South from Belfast. $145 \cdot 3 \mathrm{Mc} / \mathrm{s} 1030$ beaming North West from Sutton Coldfield. $145 \cdot 3 \mathrm{Mc} / \mathrm{s} 1100$ beaming South West from Sutton Coldfield. $145 \cdot 5 \mathrm{Mc} / \mathrm{s} 1130$ beaming North from Leeds. $145 \cdot 5 \mathrm{Mc} / \mathrm{s} 1200$ beaming East from Leeds.

That's it for this year. Thanks to all who sent in logs. Please keep them coming. Best 73, Mri Christmas es cuagn next year.

Sheet

 Paxolin Ideal for transintor projects special cufer
12 panels 5 x 8 in. 5%

It fully covers the medium waveband and that part of the long waveband to bring in B.B.C. Light. The circuit includes a highly Eficient slab aerial and 2 zin. P.M. speaker.
 supplied complete with carring case and
instructions.
MAINS POWER PACK
besigned to operate transistor sets and ampuitlers. Adpustable output 6 ovTakes the place of any of the following batteries: PP1-PP3-PP4-PP6-PP7-PP9 and others. Kit comprises: mains transformerrectitier, smoothing and load resistor, 5000 and 500 mid condensers, zener diode and instractions, zeal snip at only 14/6 plus $3 /-$ post.

 \section*{INFRA RED}

HEATER
Hake up one of these latest type heaters, uleal for bathroom, kitchen, bedroom, ete. They are simple to make from our easy to oliow instructons-use silica enclosed ele weats dessgned for the correct infa-red waverength (3 microns). Price for ling $2 / 6$ post and insuriance. Pull switch $3 /=$ extra.
This Month's new Bargains Note A complete list of our bargains is bemg prepared it will be urer 100 Pages. If you Fould like a copy pleare sedu 2/6, also if fou bargatizs please send B.A.E. to each us by tirst of the month.
Tubular Hepter New \& unu ded by G.E.C.if watt per fout loading-ideal in home, oftre or at ot-cuitains, papers etc. can drop for off peak rate and a warehomse may be kept daup iree par the min. cost and tronble -nupplied complete with ixinu bracketsall lengthe irom aift to 12 ft -only $3 / 9$ pet ioot (lesu than half price) carriage extra at cost. Beethoven Coil Pack. Covers medium wave and two shorts (regret exact coverage not known) uses 6 coils 6 trimmers and 4 pole Wave change switch and it is aligned ready for use $7 / 6$ plus $2 / 6$ post.
Wall Mounting Thermostat. By Satchwell intended for use to control thbular or any type of space heaters indoors or in a greenwith mourting screws 29/6 plus post $2 / 9$ (normal price is at least twice this).
Morganite Sesled Pots. Another batch of these haa arrived and we can now offer quite a range namely; $5 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 250 \mathrm{~K}$, $\frac{1}{2}$ meg, 1 meg, 2 meg, all at $6 /$-per dozea per value, flus 2.9 post on first dozen, then 1/per dozet. Lest than one dozen price is
$9, y$ each even this is only about $1 / 10$ of the catalogue price and this is undoubtedly one oi the best pots availabie.
Tuning Coudensers. ${ }^{2}$ gang . 0005 mid air apace, il standard size with good length spindle $30 /-$ doz. or $3 / 9$ esch post $2 / 9$ of to six, $3 / 6$ per dozen.
Tuning Condenser. Bakelite type. . 0005 mfd for tuning or reaction $\frac{1}{2}$ inch spindle $25 /$ per doz. or $3 /=$ each, post $2 / 9$ per doz.

Where postrge is not deflnitely stated as an extra then orders
Below s3 add $2 / 9$.

CIRCLE-LITE
Brings sunshine into your home. 1.50 watts of light but uses only 40 watty.
Beautiful fittings with Beautiful fittings with
glass, not plastic centre, glass, not plastic centre,
nuorescent tube and choke control. Made by Philjps Will gi
Regular price 24.15.0.
65/-
Special Bersain Prite 65/- plog 816 carriage and inurrance. Please state colour of glass centre white, pink, blue, red, black, yellow or cream. Also whether plug into lamp holder or ceiling, mounting model 80 watt model 98/6.

See in the Dark

INFRA-RED BINOCULARS

 ptical systems can be opsed as systems can be used as lens for TV camera-light cell etc. (details supplied). The bmoculars form part of the arms night driving (Tabby) equipment. They are unused aud befe fo be price Witbout a guara
Handbook $2 / 6$.

750 mW TRANSISTOR AMPLIFIER

transistors including two in purh-pull input for crystal or magnetic microphone or pick-up-ieed back loopssensitivity $5 \mathrm{~m} / \mathrm{v}$.

Price 19/6

Post and insurance 2/B. 35 ohm Speaker $12 / 6$ extra
THIS MONTH'S SNIP.
CAPSTAN DRIVEN Tape Recorder

Although some well made spooi driven machines give remarkathy good results there is no doubt that to achieve anything like periection and to have verathity a cajstan Driven we can ofier you a Capstan Driven, completely portable, battery operated instrument at remarkably low price. So lnw in fact that you can easily aford have a second machine for use in your car, othice, home ete. of to to reps of relations to rxchange tayes.

 Complete with batteries, wicrophone-tape spool and instrichem manual. Nothing tu go wrong if you uxe a good tape fatd beep

Garrard Auto Record Player Model A.T. 5

This is undoubtedy the finest Anto cbanger made in fact its large. heavy non- maknotic, die cast turntable. and biac corapensated canstant pressure
styins, together with it. stylus, logether motor with balanced motor, bake it almust apecial A.T. 5 feature are:- Will take 8 records which mar be mixed stze --stylus pressure adiustable-may be stopperi whilat playing a record without rejecting same r
OFFERED AT THF AMAZING PRICE OF E6.15.0 plus 6. carriage and insurance.

Speaker Bargain

haudle ton to 10 watts, Brand new by famou maker. Price $29 / 6+3 / 6$ post and iusurance.

SPOT OR FOG

LAMP

Made by Lucas, Flat o pencil beam, 3 flatt, Suitable ior car, boat, caravan, etc. Complete
with 6 or 12∇ bulb, flex, cables with 6 or 12∇ bub, Hex, cables
and fing bolt. Renuarbable and fixing bolt, Reluarkable
bargain. Price 12/6+p. \& p. 3;6

THERMOSTATS

Type 'A' 15 amp for controlling room heaters, greenhouse, airing cupboard. Has spindle for pointer knob quickly adjustable from $30^{\circ}-$
$80^{\circ} \mathrm{F}$. $9 / 8$ pus $1 /=$ post. Buitable tox for wall mountiug, 5/- \mathbf{P}, P
Type ' B^{\prime} ' 15 amp. This is a 17 in , long rod Type ' B ' 15 amp, This is a 17 in . long rod trpe made by the famous Bunvic
t'o. Spindle adjusts this from 50 $550^{\circ} \mathrm{F}$. Internal screw siters the
etting so this could be adjastable ver 30° to $1,000^{\circ} \mathrm{F}$. Buitable for controlling furnace, oven, kilu, ammersiou heater or to make flamestat or file alarin. 8/6 plus $2 / 9$ post and insurance Type "C"' is a small porcelain thermostat as fitud to electric blankets, etc. $1 \frac{1}{3}$ ailip. yetting adjus
P. P^{\prime}. fid.

Type "D" We call this the fee-stat as It cuts in and out at around treezing point, $2 / 3$ amps. Has many uses, one of fhich would be to kerp the lat pupes trom freezing in a length of ous blanket ware (14) gds, 10/-) is wound

Type "-" This is a standard refrigerator thermoziat. Sphdte admumenta cover normal

9-Way push-button switch Wach way having two single pole change over and oue shoutang uwitch, good length push
rod $30 /=$ per doz, $3 / 8$ each, post $2 / 9$ per doz,

Waterproof Heater Wirem
Iti Fid, fenkth 70 watts, self regulating temperature control. 10/-, post free.

Three Unusual ItemsOZONE OUTFIT-for remoring smelis and generatly inproving any oppressive atmorptiere. Kit consists of Philips Ozone Lathp and mans unit, only needs BLACK LIGHT UNIT. 40 watt intensity, BLACK LIGHT UNIT. 40 watt intensity,
comimises larny, larm holder and 40 chmpures latsp, tarnp holder and 40 * sus. TIMER KIT. spectal offer of all comnamin operately interval timer for photorgraphr etc. $12 / 6$ plus post $2 / 6$.

[^1]

UNLIMITED OPPORTUNITIES exist today for "getting on" . . but only for the fully trained man. Let ICS's tuition develop your talents and help you to success.
STUDY IS EASY with ICS guidance.
The courses are thorough. Printed manuals, fully illustrated, make study simple and progress sure.
YOUR ROAD TO SUCCESS can start from here-today. Complete this coupon and post it to us, for full particulars of the course which interests you. MODERATE FEES INCLUDE ALL BOOKS.

Take the right course now...

ADVERTISING \& ART
Copywritlig Cartooning Layout and Typography Commerclal Hustrating Oll \& Water Colour BOILDING \& CIVIL ENG'NG Archltecture, Bricklaying Building, Construction Builders' Draughtsman Bulders' Qusntlites Interior Decoratinu Quantity Surveying Carpentry Carpentry Joinery COMMERCE
Book-keeping
Accountancy A Costing Business Training Otuce Training Purchasing, Storekeeplas becretaryonip
Bhorthend \& Typing Computer Programming DPa Burnay DRAUGHTSMANSHIP Architectural, Mechunical
Drawing Office Practice Drawing Office Practice ELECTEONICS Computers Electronic Techaicians Ludustrial Electrouics FARMING
Arable Livestock Fig \& Poultry Keeping Farm Management \& Account GENERAL EDUCATION G.C.E. subjects al Ordinary t Advanced Leve.
Good English
foreigo Languages

HORTICDLTURE
Hotme darlething
Park sarilpamy
Malset tardimint
MANAGEMENT
Busiaess Management
Hotel Managebent
Industrial Manamement Oftre Mana dentent Pervonnel Management Transport Management Wransport Managemea Work Mhatamement Foremannhip MECHANICAL \& MOTOR ENG'NG
 Indnatral |notrumeritation $\$$ ortannp Practice Reanceratotio
Mlotior Mechanics, ete. POLICE
Fintrane Examination Priter ['mmotinin (Educ. Sub).) PHOTOGRAPHY Practicat rhotusraphy RADIO, TV \& ELECTRICAL arviang \& Engineening Rablut'onntruction (with, Kits) Triecommanications Tilect iciant Flect. iciath SELLING Contractors ${ }^{\circ}$ SELLING
4ates lanagement
Marketine
WRITING FOR PROFIT
G'olesthinn seraptwriths
Fres-lane Joargatism

INTENSIVECOACHING for all principal examinations -G.C.E., Secretaryship, Accountancy, Engineering, Work Study, Management, Radio, Architecture and Surveying. Special course for G.C.E. French Oral Test. Member of the Assocration of British Correspondence Colleges

international correspondence schools (Dept. 172)

Intertext House, Parkgate Rd., London, S.W.II
Send FREE book on.
Name.. I
| Address..
I ...
Occupation

RETURN-OF-POST

ON CASH OR C.O.D. ORDERS
GARRARD GRAMOPHONE EQUIPMENT
RECORD CHANGERS Cash Pre Credit 'Termy

 Model 3000 (HTAHC stereo Hono PU)
ATB0 (1 HS Mono PU) \quad. A70 (Deram PU)
LAB80 (Derarn PÜ)
SINGLE RECORD PLAYER
SINGLE RECORD PLAYERS
SP25 (tiCx Mono PU)
$\begin{array}{llllllll}\text { SP25 ([Perarm JU) } & \text { £12.15.0 } & \text { £2.12.0 } & 19 & \text { ol } & 19 / 2 & £ 14,0.0\end{array}$ IMPURTANTT-Wben ordering units with the Deces Deram fick. Up.

ARMSTRONG CHASSIS

127M AM/FM Y'uner Amph-
224 Fa
FM T11. ... $\begin{array}{llllll}\text { e28.10.0 } & £ 5.10 .0 & 12 & \text { of } & 39 / 4 & \text { £29. } 2.0\end{array}$

- MULLARD ÄMPLIFIER KITS

We bare finf stockn of all componento for the blullard 510. 3-3. Two and Three Valve l're-Amplifiers, Tape I're-Amplitier. Htereo Pre-Amplifier,
Seven Watt and Three Galve Miere Seven Watt and Three Valye ntereo Anphitiers all as described in the glumari dantal for Audio Circuits. We can supply this publication for

PARMEKO TRANSFORMERS
ircuats all 'ircuits, All the trinnuformers are fully shrotuded and fited with tag panele.
Fivatly on apecified by Mullard. Exactly ay specitied by Mullard.
MAINS
MAINS

$3-3$, P. 2641 (120 mA H.T.) :
Seven watt Stereo. Ping31
Seven Watt Stereo. Pn931
Three Valve Stereo. P2930.
\because
\cdots
\cdots

S10, P. 2409 (pentode 6,000 and 8,000 10 ad)

$$
\text { P. } 642 \text { (UL, } 43 \% \text { taps, } 8 k \text { losai) }
$$

Pンy43 (UL. 20% taps. 6k load)
3-8, P2 $2 \mathrm{~h}+11$
Seren Watt Stereo, P.j932
Three Valve Stereo, Pegys onot ahroudedi 88/3, Post 4/6 40/9, Poet $3 / 6$ 65/8. Post 4/-

- ILLUSTRATED LISTS

Illustrated prsee ista are apailable frep on Inudspenkers, Mratoophone Equptueut, Martim Audio Kits and Teat Fquipment. Pleace send 4d. stamp

MARTIN AUDIO KITS

Complete transistorised Hi-hi Pre-Amplifler and Main Amplifier comprisigg L'nit 1. (Five-way input selector). Unit 4 (Pre-Amp. with volume, bass and treble controls). U'nt 7 (10 watt Main Amplitler, 15 ohw output). linit 8 (Power Unit) and smart plastic Escutcheon. All unita are assembled ank tested and the conat ructor has only to link the various unita together. Full instructions supplied. Canh Price 215.8.0, Credit terms. Deporit 23.2 .0 and 12 monthy paynients of 21.3.0. Total Credit Price $£ 16.18 .0$. stereo and other Mono nitg available. Full list free on request.

MARTIN FM TUNER KIT

Transestorsed FM Tuner Kit for use with the above Martin Audio Kit and Thost of ber Amplifiers. Bupplied readis assembled io unlt form and tested. The constructor has only to link together and mount the unlts. fubl aud 1: monthls paymerite of 19/4, Total Credit Price \&14.3.6.
LOUDSPEAKERS

GOUDMANS Ariom 201 GOMH. 15 watts. GOODMANSAxiom $10{ }^{\circ}$ lula ll watts.
 $\begin{array}{lllllllll}\text { wBHFlolg } & \cdots & \cdots & £ 8 . & 1.9 & £ 2 . & 1.9 & 6 & \text { of } \\ \text { w3/4 } & \text { £9. } & 1.9\end{array}$ LATEST TEST METERS
Alf the latest Hiodels from current production. Mustrated list available.

 All Cash and COD orders are dealt mith on day of receipt. Credit crdets are subject to only the mindmus of delay.

WATTS RADIO (ameld 54 CHURCH STREET, WEYBRIDCE, SURREY

Telephone: Weybridge 47556
Please note: Postal buslnesa only from thin addrem

ATUNER is essential with some aerial systems and optional with others. It may offer some of the following benefits:
Increased receiver signal strength.
Proper loading of a transmitter.
Reduced harmonic output.
Transformation from an unbalanced (coaxial) circuit to balanced feeders.
Multi-band working with an aerial otherwise unsuitable.
Use of whips or very short wires.
Increased signal strength and proper loading are often a matter of securing an impedance match between aerial or feeder and receiver or between transmitter and aerial or feeder. This is easily arranged for the impedances likely to be encountered.

Reduction of harmonic output may be incidental with the use of the tuner for other purposes or may be sought to alleviate television interference. Transformation from unbalanced to balanced feeders is necessary when working a transmitter pi-output into balanced feeders-ihat is, open wire tuned or untuned lines and 300Ω, 75Ω and similar twin-lead feeders. The balanced system may also reduce TV1 or BCl . The change from twin balanced feeders to coaxial feeder may also be needed for best working of a receiver not having twin or dipole aerial sockets.

For multi-band working with the usual types of aerial a tuner is almost essential. It allows best results from a simple wire.

As the tuner of ten matches impedances (Z) it is sometimes called a Z-match. In general any tuner can be made to perform satisfactorily with any aerial, receiver and transmitter if the inductance and capacity values are suitable. The construction and components can be varied enormously with no significant change in results.

Fig. 1 shows the method adopted to investigate tuners used with various aerials and transmisters. The transmitters had pi-output (unbalanced

Fig. 1: Equipment to test tuner and coupling efficiency.
coaxial) circuits of usual type. A standing wave bridge indicates what is happening between transmitter and tuner but is otherwise often relatively unimportant. The r.f. meter indicates aerial current. A useful field strength indicator is a pick-up aerial very remote from the transmitting aerial with diode rectifier and giving readings through a long, buried feeder, a microammeter being visible from the operating position.

It was generally found that field strength was the same with any tuner provided it was correctly adjusted. Also that the standing wave ratio on a short coaxial line from the transmitter to the tuner might have no significance from the point of view of maximum radiated signal strength. (This is expected because the transmitter pi-tank can handle high standing waves.) It was also noted that maximum field strength coincided with maximum aerial current through the r.f. meter provided nothing was done to change the feed point impedance. So tuning for maximum aerial current corresponds to tuning for maximum radiated signal strength.

fig. 2: Operating directly from the transmitter.

Single Wire Feed

The end of the aerial or its downlead is the feed point with an end-fed aerial. In the simplest possible system the aerial is taken directly to the transmitter pi-tank (Fig. 2a). This allows correct loading of the p.a. only. if the aerial presents an impedince within the pi-tank range.

TABLE			
Band	Coil	Capacitor	Purpose
160	40 turns. 20 swg. $1 \frac{1}{2} \mathrm{in}$. dia. Link 11 tur	300pF	Fig. 7A, 7B.
80	26 turns. 16 swg. $2 \frac{1}{2} \mathrm{in}$. dia. $3 \frac{1}{2} \mathrm{in}$. long. 3 -turn link	$\begin{aligned} & 150 \mathrm{pF} \\ & 150+150 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \text { Fig. 4, 5A } \\ & \text { Fig. 5B, } 8 \end{aligned}$
40	7 turns each side centre tap of above	150 or 100 pF $150+150 \mathrm{pF}$ $150+150 \mathrm{pF}$	$\begin{aligned} & \text { Fig. } 4,5,6 \\ & \text { Fig. } 5 B, 8 \end{aligned}$
20/15	3 turns each side centre tap of above	100 or 50 pF or $100+100 \mathrm{pF}$	Fig. 4, 5, 6
10	7 turns. 14 swg . $1 \frac{1}{2} \mathrm{in}$. dia. 2 in . long. Link I or 2 turns	50pF or $100+100 \mathrm{pF}$	Fig. 4, 5, 6
80	28 turns. 14 swg. $4 \frac{1}{2} \mathrm{in}$. dia. 4in. long	-	Base loading loft. Whip Fig. 7C
$\begin{aligned} & 80 / 40 / \\ & 20 / 15 / \\ & 10 \end{aligned}$	26 turns. 18 swg. $2 \frac{1}{2} \mathrm{in}$. dia. $3 \frac{1}{2} \mathrm{in}$. long. Clip tap any turn.	150 pF optional.	Fig. 28
$\begin{aligned} & 80 / 40 / \\ & 20 / 15 \end{aligned}$	30 turns. $265 w g$ enam. side by side. $\frac{3}{4} \mathrm{in}$. dia. Tapped at 3, 5, 7, 12 and 20 turns.	150 pF	Receiver only Fig. 4, 5, 7B
$\begin{aligned} & 80 / 40 / \\ & 20 / 15 / \\ & 10 \end{aligned}$	30 turns. 14 swg. 2立in. dia. Clip tap any turn	Optional in parallel, 150 pF for $80,50 \mathrm{pF}$ for $40 / 10$	Whip or short wire. Fig. 5A, 7C
80/40	30 turns, 14 swg . 4 in . dia. $5 \frac{1}{2} \mathrm{in}$. long. Tapped 7 turns each side centre	$\begin{aligned} & 200+200 \mathrm{pF} \text { or } \\ & 100 \mathrm{pF} \end{aligned}$	Fig. 5, 6
20/15	14 turns. 14 swg . 2in. dia. 3in. long. Tapped 4 turns each side centre	. $100+100 \mathrm{pF}$ or 50pF	Fig. 5, 6

If the aerial is resonant at the working frequency the impedance is resistive because current and voltage are in phase. The impedance $\mathbf{Z}=\mathrm{V} / \mathrm{I}$ (voltage divided by current). Fig. 3 shows the distribution of current and voltage on a $\lambda / 2$ (half-wave) aerial. At each end current is small and voltage high. At the centre current is large and voltage small. Therefore the end impedance is high and the centre impedance is low. Typically the end impedance may be some thousands of ohms while the centre impedance is about 70n. If the aerial is a $\lambda / 2$-wave fed at X, the feed impedance into which the pi-tank must operate is high. If the aerial is $\lambda / 2$ and the feed point is Y , then the impedance is low. At interme-

Fig. 3: Distributian of current and voltoge on an aerial.
diate lengths such as \mathbf{Z} the impedance has some intermediate value.
When the aerial is not resonant at the working frequency its feed point has capacitive or inductive reactance. If the reactance and impedance values fall within the range of the pitank, then the transmitter can be loaded directly into the aerial, Fig. 2a.
The usual pi-output circuit can be adjusted to work into impedances from about 50 to 300 or 500』, actual limits depending on component values. Therefore a transmitter will quite often work into a random length of wire. If the impedance falls outside the range of the pi-tank. the transmitter cannot be loaded correctly, and if the feed impedance is high the voltage across VC2 is large, and it may spark over, especially on modulation peaks.

If difficulty arises with a given length, the addition of a loading coil Fig. 2b may cure this. Tappings allow the feed point impedance to be adjusted until the pi-tank can operate into it successfully. The variable capacitor VC3 (additional to aerial capacity) is optional. It allows fine adjustment with few tappings, coil and capacitor forming an L network.

The use of this type of tuner will allow any
ordinary pi-tank to work into any aerial length from a few feet up to long wires which are many multiples of a $\lambda / 2$. It is thus quite a convenient circuit to employ.

Parallel Tuned Circults

An end-fed aerial or single wire feeder can be worked from a parallel tuned circuit (Fig. 4). LI is a coupling link, usually two or three turns, connected by coaxial feeder to the pi-tank. L2 is tuned to the working frequency by VC1. Point X or point Y is earthed. The aerial tapping is near earth on L2 for low impedances and far from earth (near the coil top) for high impedances. Almost any impedance can be fed, the tapping being moved from the earthed point a turn or so at a time until correct loading is obtained.

Fig. 4: Parallel tuner for end-fed aerials.
Fig. 4 has the advantage that L1 is grounded to the transmitter chassis and the p.a. h.t. can never reach the aerial, even if the anode blocking capacitor failed. L2 tuned by VC1 gives some suppression of harmonics.

The use of a tapped coil, L1 in Fig. 5a, gives similar results. With medium and high power the voltage across VC1 will be very high. Fig. 5 b has the advantage that the voltage across sections of the two-gang capacitor VC2a and VC2b is halved. Point X may be earthed instead of the coil centre tap. If X in Fig. 4 or Fig. 5 b is earthed the link is wound on the centre of the main coil.

With receivers the same circuit can be used. Adjustment is then for maximum signal strength. Where the aerial impedance was a bad match for the receiver input impedance at some frequency the tuner may-increase signal strength some S points at this frequency.

Single wire feeders include the end of Marconi
$(\lambda / 4)$ and end-fed Hertz $(\lambda / 2)$ aerials and the downlead of systems such as the Windom. All random length end-fed aerials also terminate in a single feed point.

Coaxial to Balanced Feeder

Most transmitters have a coaxial output socket. This can be transformed to balanced feeder by using a tuner as in Fig. 6. L1 and L.2 can be the same as in Fig. 4 or 5 . If the single capacitor VCl in Fig. 4 is used it should be operated through an insulated extension. The two-gang capacitor (Fig. 6) helps to maintain balance.

The twin feeder may be 75Ω flat twin, 300Ω flat twin or an open wire line. The coil centre tap Y may be earthed or the capacitor at X. The feeder taps are near Y for low impedance and farther from Y for high impedance. With an open wire tuned line having high impedance the feeders may be connected to the ends of the coil.

A $\lambda / 2$ centre-fed dipole can be used in this way with a balanced twin feeder instead of having a coaxial feeder from the pi-tank. Harmonic output is reduced and the balanced system may help avoid TVI.

Series Tuning

Low-impedance feed points can be handled by tappings near the earthed point of a parallel tuned coil. For very low impedances the tapping becomes critical and may be awkward. So series tuning is then of ten employed.

This is quite popular with a $\lambda / 4$ Marconi and similar short aerials. The capacitor VCl in Fig. 7a is in series with the coil L2. L1 is a coupling link from the transmitter. Using a tap on L2 b gives similar results. The aerial is series tuned against ground and a good earth is required for best results.

It will be seen that the circuits in Figs: 4 and 5 can be used for series tuning by placing the capacitor in series with the main coil. Series tuning is often employed on 160 m where it is impracticable to erect a $\lambda / 2$. Whips and short aerials can be fed by this means. The capacitor may sometimes be omitted, Fig. 7c. The tapping positions are then more critical as there is no other means of adjustment.

When a Zepp or tuned doublet is used and has a low impedance feed point, series tuning is often used (Fig. 8a). The centre tap Y may be earthed. One capacitor is sometimes omitted. Occasionally the coil is divided by cutting the centre turn and a single capacitor is placed here, Fig. 8 (B). This maintains the balanced system with a single capacitor. A coaxial line can also be fed by series tuning (C, Fig. 8).

Other Circuits

Most tuners are derived from the circuits given. The coil may have tappings for multi-band operation. Tests made with an efficient 80 m coil, tapped for 15 and 20 m , showed no measurable

Fig. 5: Alternative systems of coupling and tuning.

Fig. 6: Coupling to twin feeders.
loss in signal strength compared with a coil wound for 15 and 20 m only.
In any of the circuits a capacitor is sometimes included in series with the link so that the reactance of this may be tuned out.

Various particular circuits are seen and aim to avoid band switching or secure some other advantage. One is shown in Fig. 9a. VC. and VC2 allow series tuning of L.2, VC3 being set at minimum. If parallel tuning is required VC3 is used. Another circuit is that at B. VC3 and VC4 are in series across L3, L4 being high impedance at this frequency. When the frequency is that covered by L4, VC4 is effectively in parallel with VC3, the few turns of L3 having little effect. The aim is to cover two or more bands without switching. In general the circuits shown earlier give at least equivalent results.

Fig. 7 above): Series tuning for Marconi aerials. Fig. 8 (below): Circuits using series tuning.

Adjustments

For receiving only, adjust ments are directed towards securing the best signal strength. A tuning or signal strength meter should be fitted to the receiver if not present. Adjustments can be

BRAND NEW AM FM（V．H．F．）RADIO GRAM CHASSIS AT 613.13 .0 （Carriage Paid）

 olmurs．brethmilantly rream．$\because 00-2501 \mathrm{v}$ ．A．A ：nly．

 TERMS：（chauris）$£ 3.10 .0$ dowh and 5 monthly payment on $£ 94.0$ ， Horon bipure tor V．H．b，12／6，Feeder 6d，per yard． ALTERNATIVE DESIGN，sinular to above chasgis thortweye $6-17$ Me／s．l＇rice 215.15 .0 （carr．paid）．TERMS． 83.10 .0 down and t monthiy payments of 22.4 .0 ．Total M．P．TERAMS： 83.10 .0 dowd diagram 2／G．Carriage to N．Ireland 20／－extra．

2－VALVE GRAMOPHONE AMPLIFIER

Price $37 / 6$（P．\＆P．2／6）
Oversll size 4^{*} wide $\times 5^{*}$ high $\times 2 \frac{1}{2}^{*}$ ．Volume and toge controlt．Malus lead． screened lead input．With output transformer for $\mathbf{9 - o h i n}$ ．For series comnection to Garrard and B，G．R．Autochangers and Players，having 90v．
tapping．Valves UY85 and UCLA2． Capping．also be supplied on fabric cove
$6^{*} \times 4^{*}$ speaker．Valves EZ80 and ECL 82 at $55 / \mathrm{m}$ ．（ P ．P transformer and 3－valve Gram．Amp．Board $14^{\circ} \times 77^{+}$（ $\times 28^{*}$ overall），UY85，UCOB6 and UL84 with Speaiker $7^{\prime \prime} \times 4^{*}$ ．Price $70 /=$（P．\＆P． $6 /=$ ）．

BATTERY ELIMINATOR
For 4 low consmmption valves（ 96 range） 907 ． 16 mA and $1.4 \mathrm{v} .125 \mathrm{~mA}, 48 / 6$ ， （4／－poot）， $200-250 \mathrm{~F}$ ．A．C．Also for $250 \mathrm{~mA}, 1.4 \mathrm{v}$ ．and 90 v ． 15 m ，at tum

> TAPE RECORDER AMPLIFIER

Fully built．Front padel 124 I 3 in．Chassis size $10 \frac{1}{2} 5$ I 4 in．Valven EF86，ECC83 and 2EL84，Controls（1）Mic．Vol．（2）Tuner／P．U．Vol． （3）Play back or monitor，（4）Tone， 2 jack sockets for Tuner／P．U．and Mo－switch for superimpose．Separate power pack containing trana，and rectiter．For Collaro stadio deck only．Price 88.14 .0 （6／－P．\＆P） SRLP－POWRRED V．H．F．TUNER CEASSIS
Coveling $88.95 \mathrm{Mc} / \mathrm{s}$ ．Dims， $8 \times 6 \times 6 \mathrm{in}$ ． high．Vanves ECC8b．EABC80 and 2－kPES＇a with metal rectifter．Mains tranformer，Fully wird and tested ONLY 88.17 .6 （carr．ps d）．Roon
dilpole 19f0，Feeder 6d，per yard

8 WATT PUSH－PULL O．P．AMPLIFIER

65．5．0（6／－Carr．） 200－240 A．C．mains．Bass，treble and vol．controla．HEZ80，ECC83 and 2－RLS4 Chaseli $12 \times 3 \frac{1}{3} \times$ sinn．With o．p．trans．for 2－3 ohm opesker．Front panel（normsilly and used thassis）masy be removed and tused as flying papel．With Cream／Black control panel whole

The SUPER 6

 LONG \＆MEDIUM WAVE transistor radio
 and upert dian oi the mopleted reverier atve sou value pquivalent to ＊All new parte．\quad li fern

 pease．大 4 F ．battery required．FTh ou P．P．9（SG with kir）．

V．F．F．Presmplifer with high signal－noise ratio and gan of at least 3 ： under average iringe area conditions，Hetal container $3 \dot{3} \times 1,14 \times 1 \ddagger 1 \mu$ ．high transintor AF114，Lorers all Britinh a tixing．Fowit battery operated，using Me／s．Order with contidence of impropedme ontiarmal btathume．Sh to 10 Packet of 3 coded HF trangistornsISTORS
het of 6 transistors and diode wits cirquivalent oi OC44／6）$\% / 6$ posi paid lined box；useiul for presentation $15 /$ ．pogt prid．．Teatly packed in fom

4 TRANSISTOR MINIATURE PUSH． PULL AUDIO AMPLIFIER HIGH IMPEDANCE
PRINTED CIRCDIT．4in．x qzin．$\times 1 \nmid i n$ ．over transformers．Output for 8 ohm speaker．Buitable for microphone，record player and intercom 9 volt battery required．Frequency range 100 срs，to 25 Kcpa．Push－pul output clase B．Instraction sheet provided．Fully wired ready for use． Thrse types， $200 \mathrm{~mW} 35 / \mathrm{c} ; 500 \mathrm{~mW} 41 / \mathrm{m} ; 1.2 \mathrm{~W}$ 57／6．（P．\＆P．2／6 each） AMERICAN BRAND RECORDING TAPE FULLY CDA\＆ANTEED AT RECORD LOW PRICR

MYLAR BASE

7it．Stand．play，1，200th．	／
7 in ，Long play， $1,800 \mathrm{ft}$ ．	19／8

sin．Stand．pley，600tt．．．．．8／－MEssige TAPEs
 fin．Long play，go0it．．．．．．10／\％3in．Long play， 2261 t ． 7th．Long pley，, 800 t． 9in．Double pling，300ft $8 / 6$

CLADSTONE RADIO

66 ELMS ROAD，ALDERSHOT，Hants．
（2 muina．from Station and Buses．） Aderahot 22240
CLOAED WEDNESDAT AFTERNOON CATALOGUE 6d．

TRANSISTOR

8UBSTITUTION HANDBOOK

Now 6th Edition by SAMS．British，Ameri－

 can，Jap，etc．12／6．P．\＆P．1／－．Amateur Radio Call Book，new 1966 ed．by R．8．G．B．B／－．P．\＆P．8d．
Serviclag Electronte Organs by Pittman． $301=$ P．\＆P． $1 / 3$.
Troubleshooting with Test Meters（VOM and VTVM）by Madleton．21／－．P．\＆P．1／－． Solid State Power Supplies and Conver ters by Lytel．20／－．P．\＆P．1／－
101 Ways to use your oscilloscope by
Middeton． $21 /-$ P．\＆P． $1 /-$ ． Middieton．21／－．P．\＆P．1／－．
Transistor Flectronic Organs for the Amateur by Douslas．18／－．P．\＆P．1／－． Where possible 24 hours service guaranteed
UNIVERSAL BOOK CO．
12 LITTLE NEWPORT STREET， LONDON，W．C． 2
（adjoining Lisle Street）

WHEATSTONE BRIDGE KIT Set of 18 W．W．$\ddagger \%$ Resistors and 18 switches．Measurea 1Ω to 1.1 M a With circuit，instructions，87／8．
PRECLSION WIREWOUND RESISTORS I Watt． 1Ω to $5 \mathrm{~K} 1 \% 3 /-;$ to $20 \mathrm{~K} 4 / 8 ; 1 \%$ add 8 A ．Your value wound to order．
HIGH STABILITY RESISTORS 1% IW， $2 /$－each． Full range 100 to 10 M 0 ，plua many apecial malti－ meter values．
NOUGHTS AND CROSSES MACEINE Uses switches and lampa only，cannot be beaten．Carcuit，wiring diagram，instructlons， $8 / 6$ ．
BINARE ADDER／SOBTRACTEB Another awltch and lamp design to make a demonstration model 3／8．
MULTIMETERS EPIOK， 10 K a／V， $67 / 6$ poet $2 /$－ EP $30 \mathrm{~K}, 30 \mathrm{~K} \star / \mathrm{V}, 105 /$ post $2 / 6$ ；RPSOK， $50 \mathrm{~K} \mathrm{Q} / \mathrm{V}$ ． 145／－post 2／6．A vo Multiminor 29.10 .0 post free
PLANET INSTRUMENT CO．
25（W）Dominion Avenue，Leeds 7

N．S．KITS

No Soldering－No Drilling High performance Medium Wave Radio you can really build yourself．Unique kits that really work with add－on kits to increase power and range．

Kit No，NS．IVM， 4716

Postage \＆Packing，3／3
Full details sent on receipt of stamped addressed envelope．
Circuit diagrams and details send $2 / 6$ ． （deductible on order）．

G．A．TAYLOR LTD．
 21 HYDE ROAD，DENTON MANCHESTER

on a strong signal in the band, the tuner then being left alone. If tappings are marked or selected with a switch this allows easy resetting for a band in conjunction with a variable capacitor with numbered dial.

The benefit secured from a tuner may be

(a)

(b)
he adlousted for maximum aerial current on the r.f. meter if fitted. If a field strength meter is available this naturally offers a means of tuning up.

It will probably be found that the transmitter pi-tank can be operated into a wide range of impedances which may be available by different adjustments of the tuner. All these may result in a similar radiated signal. though some produce high standing waves on a coaxial line from transmitter to tuner. If this line is short losses are negligible and the tramomitter pi-tank can return the reflected power as if operating directly into an aerial. On these grounds the presence of a low standing wave ratio in the position in Fig. 1 indicates power is flowing from the transmitter to the tuner and aerial; but a high standing wave ratio does not mean there is necessarily any measurable loss in radiated signal strength.
The readings of the r.f. meter will depend on frequency, aerial and power and will thus change from one band to another or if modifications are made to the aerial-earth system. However, the meter is useful to check that usual output is obtained and because more current here corresponds to more power radiated provided frequency and aerial-earth system are unchanged.

With average wire aerials the length in feet for a $\lambda / 2$ at any particular frequency is:

$$
\begin{gathered}
468 \\
\hline \mathrm{Mc} / \mathrm{s} .
\end{gathered}
$$

The length for a $\lambda / 4$ is:
234
$\overline{\mathrm{Mc}} / \mathrm{s}$.
It is thus easy to calculate the length needed for a $\lambda / 2$ or $\lambda / 4$ aerial for any band.

STILL TIME TO SEND PRACTICAL WIRELESS FOR CHRISTMAS

Abstract

It's stifl not too late to send fellow radio enthusiasts a Year's Subseription to PRACTICAL WIRELESS for Christmas .. 2 gife that will renew your good wishes month after month throughout 1966, and brino them repeated help and pleasure.

But hurry! You must send now to make sure that first copies arrive in time for Christmas. Simply send your friends' names and addresses, together with your own and remittance to cover each subseription to The Subscription Manager (G.2), PRACTICAL WIRELESS, Tower House, Southampton Streer, London, W.C.2. An attractive Christmas Greeting Card wili be sent in your name to announce each gift.

RATES (INCLUDING POSTAGE) FOR ONE YEAR (I2 ISSUES): UK AND OVERSEAS $£ 1$ 9s: USA $\$ 4.25$.

To make sure of your own copy why not place a regular order with your newsagent?

PRACTICAL WIRELESS BINDERS

The Practical Wireless Easi-binder is designed to hold normally 12 issues, but it will accommodate two additional copies quite comfortably.

A new version of the Easi-binder with a special pocket for storing blueprints and data sheets is now available. The price is $11 / 6 \mathrm{~d}$ inclusive of postage.

Order your binder from: Binding Department, George Newnes Ltd., Tower House, Southampton Street, London, W.C.2.

A Transistorised L.C.R. Bridge - Part Two By Mike Fisher

CONSTRUCTION of the basic bridge circuitry is quite straightforward but care should be taken to keep the connecting leads fairly short and a reasonably heavy gauge wire should be used. The inevitable resistance of the circuit wiring will necessitate the adjustment of the 1Ω standard resistor on test. The $0.1 \mu \mathrm{~F}$ standard capacitor will be difficult to obtain to a high standard of accuracy but this snag can be overcome by using a normal type of component and adjusting its value by wiring additional capacitors in parallel on test. The procedure for adjusting these two
components is as follows:
1Ω resistor. Build the complete bridge unit and calibrate the main balance control by its resistance against a suitable test instrument. If no test instrument is available the dial can be set up by placing 1% test resistors across the " X " terminals and adjusting the bridge to balance. The scale is then marked at the balance point with the appropriate value. This calibration is best carried out on the $0-1,000 \Omega$ to $0-100 \mathrm{k} \Omega$ ranges. When the dial calibration is complete connect a 1% or better resistor of value between 2 and 10Ω across

Fig. 10: Circuit diagram of the complete unit.

Fig. I: : Component layout of Veroboard circuit.
the "X" terminals, set the range switch to the $0-10 \Omega$ range and set the dial to the point at which balance should be obtained. The value of the 1Ω standard resistor is then adjusted until a true balance is obtained at this point.
$0 \cdot 1 \mu F$ standard capacitor. A close-tolerance test capacitor, preferably of either 0.05 or $0.005 \mu \mathrm{~F}$ value, is connected across the " X " terminals and the instrument switched to the required range. The dial is set to the point at which balance should be obtained, as above, and the standard capacitor is then adjusted until a balance is obtained at this point. Calibration, etc., is now complete.

The detector circuit. Component values and layout are not critical. OC7I transistors were used for the simple reason that they were at hand but it will probably be found that OC70, etc., types will work quite well in the circuit.

The oscillator circuit. Considerable variation of component values and working voltages is permissible with this circuit: it will continue to function at voltages of less than 1.5 V .

The ratio of the transformer seems to be of little real importance. 3:1 ratio was used on the test circuit but it was found that a far too powerful feedback signal resulted and the $470 \mathrm{k} \Omega$ resistor to the base of the transistor had to be introduced to stop squegging which resulted. The
value of this resistor should be adjusted as follows to suit the particular transformer used (it will probably be found that the circuit will still work even if d transformer with a ratio of $40: 1$ is used).

Wire up the circuit, leaving the $470 \mathrm{k} \Omega$ resistor shorted out, and connect the $0.05 \mu \mathrm{~F}$ capacitor across the transformer primary (connected as the collector load). A pair of headphones is now connected via a blocking capacitor to the transistor collector and the negative rail. A strong audio signal should be heard. This signal will probably seem to be fairly pure in tone but this may be a delusion caused by the high volume level. The tone frequency should be about $1 \mathrm{kc} / \mathrm{s}$; if not the frequency may be adjusted by changing the value of the capacitor in parallel with the primary winding. When this adjustment has been completed a fairly high value resistor should be connected in series with the phones, resulting in a very low volume level to them. It will probably be found that at this low level the frequency of the signal seems to be considerably different from that formerly heard: in fact it may even sound like a motor-boat running at low speed. This is symptomatic of "squegging", caused by too high a feedback factor. The short across the $470 \mathrm{k} \Omega$ resistor should now be removed. Should oscillation now cease completely reduce the value of the resistor until oscillation starts again. The resistor effec-
tively reduces the magnitude of feedback and it will be found that as the resistor value is increased so the squegging frequently rises until. finally, when the correct degree of feedback has been obtained, only the pure tone of the oscillator will remain. It may be necessary to readjust the frequency of oscillation during the setting up.

If it is found to be necessary to use a very high value of R4, such as the $470 \mathrm{k} \Omega$ shown in Fig. 7, it will be found that the base bias chain, R1 and R2, will have no effect on circuit operation. R1 and R2 can therefore be removed from the circuit. Inspection of the waveform on a scope will show, in the above case, that distortion is taking place; as long as squegging is not taking place, however, the oscillator may still be used to energise the bridge.

It is felt that ideally the transformer T 1 should have a ratio of about $20: 1$ if a pure sinewave is to be obtained from the circuit.

It should be noted that if the above adjustments are not made poor detector response and faulty balance reading may be obtained.

A suitable front panel layout for the instrument is shown in the heading and the final circuit of the complete instrument.

Components List

The $50 \mu \mathrm{~A}$ meter is available from Radio and TV Components (Acton) Ltd., price 25 s .

If difficulty is experienced in obtaining S1, the two-pole, seven-way switch, an alternative would be a two-pole, ten-way type modified as follows: Drill and tap a 6BA hole in the switch front plate in such a position as to fall between the seventh and eighth position locator recesses. A. short 6BA screw can then be inserted in the hole and will act as a stop, reducing the number of a vailable switch positions to seven.

S2 the seven-pole three-way switch, may be adapted in similar fashion from an eight-pole, four-way switch, available from Radio Component Specialists, of 337 Whitehorse Road, West Croydon, price 6 s . 6d. Alternatively a Wearite 12 -pole, three-way switch, price 7s. 6d. may be. used with the five unwanted poles left blank. This switch can be obtained from L. Wilkinson (Croydon) Lid., Longley House, Langley Road, Croydon, Surrey.

Fig. 12 (above): General layout of metalwork.

Fig. 13 (below): Wiring diagram of front panel etc.

Fig. 14: Wiring of S2 (mode).
Fig. 15: Wiring of SI (range).

Position of SI (Fig. 10)	Range			R
1	$0-100 \mu \mathrm{H}$	$0-100 \mu \mathrm{~F}$		
2	$0-1 \mathrm{HH}$	$0-10 \Omega$		
3	$0-10 \mathrm{mH}$	$0-10 \mu \mathrm{~F}$		
4	$0-100 \mathrm{mH}$	$0-1 \mu \mathrm{~F}$		
5	$0-0.1 \mu \mathrm{~F}$	$0-1 \mathrm{k} \Omega$		
5	$0-1 \mathrm{H}$	$0-0.01 \mu \mathrm{~F}$		
6	$0-10 \mathrm{H}$	$0-100 \mathrm{k} \Omega$		
7	$1-100 \mathrm{H}$	$0-1000 \mathrm{pF}$		

Front Panel and Chassis Assembly

The prototype instrument was designed, from the mechanical point of view, to fit into an instrument case that was available at the time and no effort was made to miniaturise. While it is unlikely that the same mechanical dimensions will be used in any instrument built by the reader the general constructional details used in the proto-

COMPONENTS LIST			
Resistors			
RI	10k Ω 10\%		1Ω
R2	$1.5 \mathrm{k} \Omega 10 \%$		10Ω
R3	$1.2 \mathrm{k} \Omega 10 \%$		100Ω
R4	$470 \mathrm{k} \Omega$ see text		1k Ω
R5	$15 \mathrm{k} \Omega 10 \%$	R15	$10 \mathrm{k} \Omega\}^{\text {see text }}$
R6	$15 \mathrm{k} \Omega 10 \%$		$100 \mathrm{k} \Omega$
R7	$1.2 \mathrm{k} \Omega 10 \%$		$1 M \Omega$
R8	$1.2 \mathrm{k} \Omega 10 \%$		100s2
R9	390 10%		$9 \mathrm{k} \Omega 10 \%$
$R 10$	4.7k 20%		
All re	esistors $\frac{1}{\text { d }} \mathrm{W}$ minim		
Potentiometers:			
VRI Ik \mathbf{w} / \mathbf{w} linear 1\% $\%$ large diam			
	10k Ω Carbon Li	ear	
Capacitors:			
CI $0.05 \mu \mathrm{~F}$ (see text)			
$\mathrm{C}^{\text {2 }}$ 2014 F			
C3	$0.1 \mu \mathrm{~F} 1 \%$ (see te		
Semiconductors:			
		DI	
Tr2		D2	Any
Tr3	Red Spot,		Germanium
Tr4	OC71, etc.	D4	Diode
Tr5			
Miscellaneous:			
T1 20:1 to 3:1 (see text)			
T2 1:1 Veroboard			
SI 2P 7W $3 \frac{1}{4} \times \mathrm{lin}$.			
S2-7P 3W			
S3 IP 2W self return			
S4 2P 2W			
MI $0-50 \mu \mathrm{~A}$			

type may be of interest.
The dimensions of the front panel are $11 \frac{1}{4} \mathbf{x}$ $6 \frac{7}{8} \mathrm{in}$. This panel may be cut from sheet aluminium, plywood or hardboard.

The two side members are cut from aluminium, and bolted to the front panel as shown in Fig. 12. The securing screws should be countersunk flush into the front panel. The right-hand side member has the meter bolted to it as shown. Clinch nuts are secured to the rear flanges of the side members and holes cut in the rear of the case to line up with them; the chassis can then be held secure in the case by screws at the rear, leaving the front panel free from unsightly screws.

Resistors R11 to R17 should be soldered directly to the contacts of switch S1.

HIGH WATTAGE LOADS

by C. L. Jones, B.Sc.

THE most common types of resistors used in electronics are designed to dissipate a comparatively small quantity of energy. Occasionally higher voltage components are required, for example as "loads" when testing equipment. The problem resolves itself into two categories-that of comparatively small currents at high voltages and that of high current at low voltages.

Low Current-High Voltage

The original need for such a load occurred when the voltage-current curve for a power pack of maximum power output, about $30 \mathrm{~W}(300 \mathrm{~V}$ at 100 mA), was required. A rheostat to cope with this would be expensive and so the circuit given in Fig. 1 was used.

Fig. 1: This circuit eliminates the use of a rheostat. The transformer is optional as heater supplies can be obtained from the tronsformer under test.

Almost any output valve can be used but the original rig employed a 6 L 6 which had been discarded because of a broken spigot. The current taken by the valve is varied by means of R1, the fixed resistor R2 limiting the current when R1 is at minimum.

The values of R1 and R2 will depend on the use to which the circuit is put. R1 limits the current when R2 is at minimum. When assessing the value of R 2 the following points should be borne in mind:
(a) If R2 is too low then the minimum current taken by the valve is high.
(b) If R2 is too high adjustment of the current is difficult, especially when the current is high.

The maximum current for the valve has been exceeded by as much as 50% but only for short periods. Since valves which are past their best are used the risk is felt to be justified. Readings can be taken very quickly so that prolonged overloading can be avoided.

Fig. 2: The graph obtained by using the circuit of Fig. I.

Fig. 2 shows a graph obtained using the circuit. It could be used to provide data to stabilise the power pack. The power pack in question is used with different pieces of test equipment which are used too infrequently to make it worth while providing each with its own power supply. The test instruments have widely different h.t. requirements and the graph is used to find a suitable resistor to put in series with the supply. Thus each piece of equipment has a built-in h.t. dropper and a decoupling capacitor which enables it to be phigged directly into the power pack and provides additional smoothing.
A second unit has been built employing a 6 V 6 to test the regulation of a power pack designed to operate an amplifier and a tuner, the latter being switched off when the amplifier is used for records. The effect of switching one load off or on can be determined by setting $R 2$ so that the valve takes
the same current as the equipment it is simulating. The circuit can be wired up when required or built into a small self-contained unit. The transformer shown in Fig. 1 is optional as heater supplies can be taken from the transformer under test.

Multi-range meters can be used to measure the current and voltage. They provide a "fixed" load; R2 can be adjusted until the milliameter registers the required current, then the meter can be replaced by a "short" across X and Y.

Details of R1 and R2 are given below but should only be used as a rough guide as the exact current depends on the h.t. voltage and individual requirements may enable more suitable values to be used. The last two columns were determined using the power pack from which Fig. 2 was drawn.

	R 1	R 2	Current	Current
6V6	100Ω	10 ks	6 mA	130 mA
6 V 6	500Ω	10 kS	6 mA	60 mA

The maximum power dissipated by $R 2$ in the case of 6 V 6 is just over 1 W . An old standard size (l) $\frac{1}{2}$ in. diameter) wire-wound potentiometer should be used rather than the more modern miniature type.

Fig. 3: Graph showing how resistance of metallic conductors increases with rise in temperature.

High Current-Low Voltage

Testing power amplifiers can be a noisy business if the outputs are fed into a loudspeaker, so that dummy loads are required if the family or neighbours are not to be disturbed. Further, if feedback loops are connected the wrong way round sensitive speakers can be damaged, so that some less delicate load is required. Resistors as described below have also been used in series with a power supply when charging small accumulators at a constant current.

There are several different types of "resistance" wire avalable, each with properties suited to

Fig. 4: Method of connecting resistonce wire.
particular applications. Convenient sources of resistance wire are electric fire elements, especially the type obtaned as tight coils, which are then stretched backwards and forwards over a rectangular ceramic former. A 1 kW element of this type is made from about 10 yd of $25 \mathrm{~s} . \mathrm{w} . g$. " nichrome " wire. This is a nickel-chromium alloy which can stand up to high temperatures. The resistance of tha particular gatuge of wire is almost exactly 5!) per yard at room temperature. Thus the length for any particular resistance is easily calculated.

The resistance of metallic conductors increases with increase in. temperature and a sample has been tested to determine the heating effect of current passing through it. The results are shown in Fig. 3. The length of wire can be adjusted to give correct resistance at any particular current. For these tests the wire was kept stretched out horizontally and it should be remembered that if it is coiled tightly heating will increase.

Fig. 5: Method of eliminating "kinks" in wire.

The temperature of the uncoiled wire rises above the melting point of solder with currents as low as 2 A . so that connections are best made as shown in Fig. 4. In any case it is difficult to solder this type of wire. The ends of the wire can be clamped between washers under 4BA brass terminals: these help to dissipate the heat generated in the wire. Large diameter coils should be made and if housed in a container this must have well-ventilated sides.

Resistors made in this way are not "noninductive ", but at low frequencies this should not be much of a problem. The wire may be freed from kinks by looping one turn around the shaft of a large serewdriver and pulling the wire as shown in Fig. 5.

PUSH—BUTTON MULITMETER

D. FANSHAWE

IWE meter was primarily designed for use in transistor experiments connected with the design of apparatus. It is often required to monitor base and collector currents, and also collector voltage. These three jobs can be done with only one meter provided three switched inputs are available. The total cost of the instrument is around $£ 3$.

INPUTS

This meter has three pairs of input sockets on the front panel (marked 1,2 and 3) and each input can be selected in turn simply by pressing the appropriate input push button.

The basic meter movement is an ex-government meter of $50 \mu \mathrm{~A}$ f.s.d., available from one of the advertisers in this magazine, price 25 s . The switch-
ing is by push-buttons, three banks of three-way units are used. When the meter is being used as a general purpose multimeter, the test leads can be used in any input; but if it is desired to monitor two currents and a voltage in turn, the current inputs should be plugged into inputs 1 and 2. The voltage input should be plugged into input 3. The reason for this is that inputs 1 and 2 are both short circuited when they are not selected so that the circuit under observation will not be broken. Fig. 2 shows the meter being used in this way.

RANGES

The meter ranges are: $50 \mu \mathrm{~A} ; 1 \mathrm{~mA}: 25 \mathrm{~mA}$; 500 mA ; (all d.c.). $1 \mathrm{~V} ; 10 \mathrm{~V} ; 50 \mathrm{~V} ; 500 \mathrm{~V}$ (all d.c.). $1 \mathrm{k} \Omega ; 100 \mathrm{k} \Omega ; 10 \mathrm{M} \Omega$.

Fig. I: Complete circuit of the multimeter.

49 m band: During daylight, stations up to about 1,000 miles distant should be well received. During darkness, reception will be excellent for DX stations-in fact during the winter it may be one of the best bands for after-dark reception.

41 m band: Similar to 49 m but noisier-although both bands will suffer interference due to the extensive use of these bands, particularly after dark.

31 m band: This will provide good short distance (up to 1,000 miles) reception during daylight. During darkness, good long distance reception will often be possible, notably during the summer months.
25 m bond: Excellent for daylight reception of stations up to around 2,000 miles. Late afternoons and early evening will produce long distance reception but it may fade out during hours of darkness, particularly in the winter.

19 m band: During hours of daylight this band will produce excellent DX reception from all over the world. Conditions should normally hold up to early evenings, but will then fade out.

16 m bond: Capable of producing strong DX signals, this band is best between autumn and spring during daylight hours but the summer may be relatively bleak.

13 m band: Of little use at present, though the winter may bring a few stations in.
IIm band: Until the sunspot cycle swings back there will be very little activity on this band.

Station Information

Various lists of short wave broadcasting stations are available, but the most comprehensive is the World Radio TV Handbook, published in Denmark but obtainable in the U.K. through booksellers at 23 s . Od. Apart from a complete listing of stations, it contains notes on programmes, identification and other essential information.

WHEN AND WHERE TO LISTEN

It is impossible to more than generalise in the space available. Conditions may change from day to day, month to month. Generally speaking, the high frequency bands are best during daylight and the low frequency bands during darkness. In any given year, conditions will vary from season to season,

LISTENING TO SHORT WAVE STATIONS

The newcomer to the short wave bands may understandably become rather confused; strange jargon, unpredictable reception, and other frustrations. It is not the intention of this pocket guide to present a treatise on the mysteries of the short wave bands but rather to collect in a handy form much of the basic essential data and reference material useful in day-to-day short wave listening.

The A mateur Bands

Here is a brief summary of what to expect from.the amate ur bands most likely to be tuned by the newcomer:
$1.8 \mathrm{Mc} / \mathrm{s}$ (160 metres). "Top Band" is used mainly for local communications between stations up to about 100 miles apart during daylight hours but for British Isles coverage after dark. During winter months, European contacts are possible and under very favourable conditions British stations have worked Transatlantic stations and even the Antipodes.
$3.5 \mathrm{Mc} / \mathrm{s}$ (80 metres). This band is favourable for hearing all the British Isles and Europe. During the hours of darkness, particularly in the winter, stations further afield are not uncommon.
$7 \mathrm{Mc} / \mathrm{s}$ (40 metres). Much patience is needed in listening on this band due to interference from broadcasting stations and other intruders. Though basically a "local" band, much longer distant reception is possible, notably on morse, and particularly during the winter after darkness.
$14 \mathrm{Mc} / \mathrm{s}$ (20 metres). The most popular " DX " band of all. It is open for world-wide reception most of the year, though it sometimes "closes" early in the evening during the winter. Sometimes, according to conditions, European stations are heard at outstanding strength.
$21 \mathrm{Mc} / \mathrm{s}$ (15 metres). Potentially a good band for long distance signals, much patience is required. It is best during summer months and when sunspot activity is high. Openings may be of comparatively short duration, but they are often very productive.
$28 \mathrm{Mc} / \mathrm{s}$ (10 metres). Much the same as $21 \mathrm{Mc} / \mathrm{s}$. When the band is really "open", stations from all over the world are often heard at remarkable strength; at other times the band may appear to be completely "dead".

General: Space does not permit a comprehensive survey of the various bands but a very good idea of current reception conditions can be obtained from reading the monthly notes On the Short Waves published in each issue of Practical Wireless.
but an influencing factor is the sunspot cycle. Years of high sunspot activity favour the high frequency bands, years of low sunspot activity (we are in a "trough" at the moment) favour the low frequency bands. Thus, whereas the $28 \mathrm{Mc} / \mathrm{s}$ amateur band is relatively poor this year, in several years' time it may be excellent. With these reservations in mind, the following notes should be accepted as a guide to reception. Times in GMT.

North America/Caribbean

Best times are 1500-2300, peaking in winter around 1800 and in summer around 2030. Western N. America is more difficult but try around $1500-1800$ and breakfast time. Broadcasting stations: 19 m afternoon, 25 m after dark (winter), in summer 19 m band is best. Amateurs: 20 m most reliable throughout the year-East Coast possible all through the day. After dark, 40 and 75 m bands and in winter $1.8 \mathrm{Mc} / \mathrm{s}$.

Central America

On broadcast bands, try 49 m around dawn, or late night in winter (when the $60,75 \mathrm{~m}$ bands may also be productive). Amateur bands: 20 m is best bet after dark and around dawn.

South America

Best times are 0900-1100 and 1700-0100. On broadcast bands (except summer) 19 m is best for morning period, 25 and 31 m evenings. Also try the $60-75 \mathrm{~m}$ section. In summer, this area is more difficult to hear- 25 and 31 m is usually best, evenings. Amateur bands: again 20 m and 40 m after dark. Also 15 m early evenings.

Central/South Africa

Best general times are between 1300-2200. On broadcast bands, 19 m during daylight hours and 25 / 31 m after dark especially during winter. On amateur bands try 20 m around $1700-2000$. Usually good when $28 \mathrm{Mc} / \mathrm{s}$ is "open".

Asia

For S and SE Asia, best times are $1100-1700$, starting off with 16 and 19 m bands, then 25 m . During winter, the best period may hold till around 2100 on 31 and 41 m bands. For amateurs, 20 m is again about the best bet. Best times for Northern Asia 0600-0900 and again around 2000 . The 19 m and 25 m broadcast bands are best.

The Antipodes

Peak times are $0600-1000$, with $1400-1700$ and around 2200 during winter. New Zealand is best

Modes of Operation

The main system used by amateurs is amplitude modulation. The beginner will listen mainly to stations using a.m. telephony ("phone") which is receivable in the normal way on any receiver. However, thousands of stations operate on telegraphy (Morse code, "cw"), because (a) the language barrier is reduced owing to the use of internationally understood codes and abbreviations, and (b) under comparable reception conditions a faint c.w. signal can be copied easily whereas a phone signal would be unintelligible. To receive c.w. signals it is necessary to have a receiver with a beat frequency oscillator (b.f.o.) which heterodynes with the incoming signal, thus making it audible. Much of the more exotic DX is heard on c.w., particularly on the lower frequency bands and the newcomer is urged not to overlook the facilities to receive c.w. stations.
To overcome the severe crowding on the amateur bands, various forms of a.m. single sideband telephony are gaining popularity. To receive such transmissions properly, the receiver should have a product detector. Frequency modulation is also permitted, but is not used extensively.

the ham language

Callsigns

For identification purposes, every amateur station has a callsign, issued by the licensing authority. This consists of a prefix (establishing the country of origin) followed by a suffix (establishing personal identity). Sometimes a numeral indicates regional significance; for example-VE2AAA is in Quebec, because VE is the Canadian prefix and 2 is the identification for the Province of Quebec.

The competitive element is strong in both listening and transmitting. Most societies issue certificates for DX achievements-mainly on the basis on the number of countries, counties, "zones", etc. The prefix list on pages $10-13$ is that currently recognised by our national society, the RSGB, for country "scoring" purposes.

Abbreviations

In order to avoid ambiguity and to save time, the pioneer operators gradually devised a system of codes and abbreviations still used today. These comprise (a) signal reporting systems, (b) the Q Code, (c) general abbreviations. The greatest benefit is felt by c.w. operators who are able to convey intelligent messages to any other station regardless of nationality. In the pages that follow, the basic ingredients of this international "ham language" are outlined.
around $0900-1100$. Summer is poor compared with other seasons. Best broadcast bands are 25 and 31 m in morning, 31 and 41 m in afternoon, and 19 m for evening. For amateurs 20 m is best, though 40 m can be good during winter mornings.

Pacific Area

A difficult area to hear. Best time is between $0600-1100$ on the 19 and 25 m broadcast bands and 20 m amateur band.

Europe/North Africa/Near East

Little need to elaborate as it is possible to hear all these areas almost around the clock.

THE "Q" CODE

One of the ingredients of the "ham language" is the Q Code, adapted from the professional communications code. Each set of symbols can be used as a question or as an answer, or in general context. For example, QTH? means "what is your location?" and QTH London means "my location is in London". An operator may also say, e.g., in conversation: "My QTH is poor for reception". Here are some of the more commonly used Q signals.

QRA	Full address
QRB	Distance (miles)
QRG	Frequency $(\mathrm{kc} / \mathrm{s})$
QRJ	Weak signals
QRH	Your frequency varies
QRK	Signal strength
QRL	Busy
QRM	Man-made interference
QRN	Atmospheric
	interference; static
QRO	High power
QRP	Low power

QRQ	Send faster
QRS	Send slower
QRT	Closed down
QRU	Nothing further to say
QRV	Ready to operate
QRX	Wait
QSA	Readability of signal
QSB	Fading
QSL	Acknowiedgement of receipt; confirmation of contact

QSO	Contact
QSP	Pass on a message
QSV	Send series of V's
QSX	Listen for
QSY	Change frequency
QSZ	Double sendiag
QTC	Telegram, mesmage
QTH	Location
QTR	Time check (exact
	time)

QSL Cards

Two stations which have maintained a two-way contact may exchange "QSL" cards. These prominently display the call sign and contain data on the equipment used and confirmation details of the contact. The QSL card is the proof, normally required in claiming certificates.

Short wave listeners may also attempt to obtain QSL cards from transmitting stations by sending reception reports. But whereas in the early days most amateurs welcomed such unsolicited reception reports the fact must be faced that with such high activity on the bands today most amateurs already know how they are getting out and many SWL reports are virtually useless. In fact many stations will not even send cards to stations they have "worked" unless they are specifically requested.

We would therefore advise prospective QSL collectors to concentrate on sending reports mainly to genuinely unusual stations, such as long distant signals on the harder bands ($1 \cdot 8,3 \cdot 5$ and $7 \mathrm{Mc} / \mathrm{s}$). Also, in any case, it is only courtesy to enclose return postage in the form of reply coupons obtainable from any Post Office.

THE BROADCASTING BANDS

Many broadcasting stations have regular programmes andjor announcements in English; indeed more and more countries are establishing "international" services, with propaganda programmes beamed to all parts of the world. There are, however, a large number of stations which never, or rarely, give English announcements. Some use call signs for identification, though these are being dropped by many broadcasters. Luckily, most of the "local" stations, particularly Latin Americans, still retain the callsign in the prominent station announcements, together with the various station slogans.

Regular readers of Practical Wireless can obtain monthly news of broadcast band happenings in the feature On the Short Waves. The newcomer may, however, find the following summary of the various bands of great use in learning what to expect.

60 and 75 metres: These bands are used almost exclusively for local regional broadcasting. The 60 m band (in fact it ranges from approx. 50.63 m) is a happy hunting ground for Latin Americans. Between $50-140 \mathrm{~m}$ are several "tropical" bands, used for local broadcasting, and there is something of interest all through this range. Reception should be good on these frequencies for several years (being-as we are in a period of low sunspot activity) and the Latin Americans should be plentiful during hours of darkness, notably during the winter months. Static interference may be troublesome during the summer.

SIGNAL REPORTING SYSTEMS

Of the various signal codes evolved through the years, the RST system is the only one to have gained universal acceptance.

Readability:

RI Unreadable
R2 Only just readable, and only occasional words heard
R3 Readable, but with considerable difficuity
R4 Readable with almost no difficulty
R5 Perfectly readable
Signal Strength:
SI Signals only just perceptible

S2 Very weak signals
S3 Weak signals
S4 Fair signals
S5 Fairly good signals
S6 Good signals
S7 Moderately strong signals
S8 Strong signals
S9 Extremely strong signals

Tone:

TI Extremely rough note
T2 Very rough note

T3 Rough, low pitched note T4 Rather rough note
T5 Musically modulated note T6 Modulated note, slight whistle
T7 Fairly good note, smooth ripple
T8 Good note, slight ripple T9 Pure DC note
(If the note seems to be crystal controlled, an " x " is added, if the note is chirpy, a " c " is added.)

Thus an extremely strong, perfectly readable c.w. signal with a pure d.c. note would be reported as RST 599. On telephony the a ccepted form is R5 S9, but the same signal could be reported as QSA5 R9 (or Q5 R9) owing to the persistence of an earlier system with a QSAI-5 readability scale and an RI-9 strength scale. Quality of modulation scales have been evolved but are never used.

The readability/strength code can be used for reporting to broad casting stations, but a better system for this purpose is the SINPO code. This has five scales, each of 1 to 5 , as indicated by the letters S (Signal Strength), 1 (Interference), N (Noise, i.e. static), P (Propagation Disturbance, i.e. fading) and O (Overall quality of reception).

The scale for signal strength is: 1-barely audible; 2-poor; 3-fair; 4-good; 5-excellent. The scales for Interference, Noise and Propagation Disturbance are: 1-extreme; 2-severe; 3-moderate; 4 slight; 5-nil. The scale for overall quality is: 1-unusable; 2-poor: 3-fair; 4-good; 5-excellent. Thus, in the SINPO code, a perfectly received signal would be given 55555 .

AMATEUR ABBREVIATIONS

In order to save time; the pioneer operators gradually evolved a series of abbreviations which have now become an accepted part of amateur radio operating. Most of these were devised to reduce the number of morse code characters but some are still used verbally and in written characters. Their derivation is fairly obvious; contraction by omitting vowels (i.e., HRD=HEARD, RPT=REPORT), by phonetics (i.e., $S E D=S A I D, G U D=G O O D$), by using initials (i.e., SWL=SHORT WAVE LISTENER), by general contraction using first and last letters or by using an X as termination (i.e., $V Y=V E R Y$, TX $=$ TRANSMITTER). Here are some of the more common abbreviations in use.

FREQUENCY AND TIME CHECKS

A number of stations operate in order to provide accurate time and frequency checks, mainly on $2500,5000,10,000,15,000,20,000$ and $25,000 \mathrm{kc} / \mathrm{s}$. Many of these stations operate continuously with audio tones and interruptions in morse and voice. WWV also gives radio propagation forecasts.

ATA, New Delhi, India, $10,000 \mathrm{kc} / \mathrm{s}$.
BPV, Peking, China, $5000,10,000$ and $15,000 \mathrm{kc} / \mathrm{s}$.
CHU, Ontario, Canada, 3330, 7335 and $14,670 \mathrm{kc} / \mathrm{s}$.
DCF77, Mainflingen, Germany, $77 \cdot 5 \mathrm{kc} / \mathrm{s}$.
FFH, Paris, France, $2500 \mathrm{kc} / \mathrm{s}$.
HBN, Neuchatel, Switzerland, $5000 \mathrm{kc} / \mathrm{s}$.
IAM, Rome, Italy, $5000 \mathrm{kc} / \mathrm{s}$.
IBF, Turin, Italy, $5000 \mathrm{kc} / \mathrm{s}$.
JJY, Tokyo, Japan, 2500, 5000, 10,000 and
$15,000 \mathrm{kc} / \mathrm{s}$.
LOL, Buenos Aires, Argentina, 5000, 10,000 and $15,000 \mathrm{kc} / \mathrm{s}$.

MSF, Rugby, England, 2500, 5000 and $10,000 \mathrm{kc} / \mathrm{s}$. OMA, Prague, Czechoslovakia, 50 and $2500 \mathrm{kc} / \mathrm{s}$. OLB5, Prague, $3170 \mathrm{kc} / \mathrm{s}$.
OLD2, Prague, $18,985 \mathrm{kc} / \mathrm{s}$.
RWM, Moscow, U.S.S.R., 5000, 10,000 and $15,000 \mathrm{kc} / \mathrm{s}$.
WWV, Washington, U.S.A., 2500, 5000, 10,000, $15,000,20,000$ and $25,000 \mathrm{kc} / \mathrm{s}$.
WWVH. Hawaii, $5000,10,000$ and $15,000 \mathrm{kc} / \mathrm{s}$.
ZLFS, Lower Hutt, New Zealand, $2500 \mathrm{kc} / \mathrm{s}$.
ZUO, Johannesburg, South Africa, 5000 and $10,000 \mathrm{kc} / \mathrm{s}$.

Apart from the above-mentioned stations, the following transmitters can be used as accurate frequency check; since the frequencies are maintained within a tolerance of better than ± 1 part in 10 GBR, Rugby, $16 \mathrm{kc} / \mathrm{s}$; Droitwich, 200kc/s; GRO, Skelton, 6180kc/s; GSB, Daventry, $9510 \mathrm{kc} / \mathrm{s} ; ~ G S V$, Daventry, $17,810 \mathrm{kc} / \mathrm{s}$. (GSV, GSB and Droitwich are broadcasting stations).

HOW TO BECOME A RADIO AMATEUR

Having acquired experience in listening on the amateur bands, many SWL's aspire to owning and operating their own amateur station. In the interests of all users of the air space, and to provent absolute chaos, it is necessary to control the conditions under which amateur transmitting stations must operate.

In the U.K., applicants for an amateur licence must (a) be over 14 years of age, (b) be a British subject, (c) pass the Radio Amateur Examination, (d) pass the Post Office Morse Test. The R.A.E.

WKD Worked	XTAL Crystal	YL	Young lady	
WL	WiH	XYL	Wife $($ ex-YL $)$	73
WUD	Would	YF	Wife	88
		Love and kisses		

AMATEUR CALL SIGN PREFIXES

The following list of call sign prefixes is arranged to indicate where a common prefix is shared by areas which can be counted as separate "countries" for scoring purposes. This list has been prepared by the Radio Society of Great Britain, our national radio society.

AC3	Sikkim	CT1	Portugal	FH8	Comorols.
AC4	Tibet	CT2	Azores	FK8	New Caledonia
AC5	Bhutan	CT3	Madeirals.	FL8	French Somaliland
AP	W. Pakistan	CX	Uruguay	FM7	Martinique
AP	E. Pakistan	DJ, DL, DM	Germany	FO8	Clipperton ls.
BV	Formosa	DU	Phillipine Is.	FO8	French Oceania
BY	China	EA	Spain	FP8	St. Pierre and
C9	Manchuria	EA6	Balearic Is.		Miquelon
CE	Chile	EA8	Canary Is.	FR7	Reunion ls.
CE9, VP8	Antarctica	EA9	Ifni	FR7	Gloriseuses is.
CE®	Easter Is.	EA9	Rio do Oro	FR7	Juan de Nova
CEO	Juan Fernandez	EAO	Spanish Guinea	FS7	French St. Martin
CM, CO	Cuba	El	Eire	FU8	New Hebrides
CN8	Morocco	EL	Liberia	FW8	Wallis and
CP	Bolivia	EP	Iran		Futuna ls.
CR4	Cape Verde is.	ET2	Eritrea	FY7	French Guiana
CR5	Portuguese	ET3	Ethiopia		and Inini
	Guinea	F	France	G	England
CR5	Principe, Sao Thome	FB8	Amsterdam and St. Paul Is.	$\begin{aligned} & \text { GC } \\ & \text { GC } \end{aligned}$	Jersey Guernsay and
CR6	Angola	FB8	Kerguelen Is.		Dependencies
CR7	Mozambique	FB8	Tromelin is.	GD	Isle of Man
CR8	Portuguese Timor	FC	Corsica	GI	N. Ireland
CR9	Macao	FG7	Guadeloupe	GM	Scotland

requires a knowledge of fundamental receiving and transmitting theory and a knowledge of amateur licence regulations. The Morse Test is at 12 words per minute.

Sources of Information

How to Become a Radio Amoteur: This is an invaluable pamphlet giving details of the R.A.E., licence conditions, etc..It can be obtained on request from: Radio Services Department (Radio Branch), General Post Office, Headquarters Buildings, St. Martins-le-Grand, London, E.C.I.

Pamphlet No. 55 (Radio Amoteurs' Examination): This contains the syllabus upon which the examination is set and can be obtained, price $1 /$-, from The City and Guilds of London Institute (Publications), 76 Portland Place, London, W.I. Also obtainable from the same address, price $2 /-$, are copies of the question papers set during the last three years.

The Radio Amateurs' Examination Manual: This is designed for those studying for the R.A.E. and covers the whole syllabus. Price is 5/6 from Radio Society of Great Britain, 28 Little Russell Street, London, W.C.I. Other useful publications by the RSGB include A Guide to Amateur Radio (price 4/-) and Morse Code for Radio Amateurs (price 1/9).

PHONETIC ALPHABET

In order to convey a call sign or other information through interference, amateurs may resort to phonetic words. This may lead to confusion with newcomers since a popular phonetic alphabet uses geographical locations (such as $A=$ America, $H=$ Honolulu)! Although there is no compulsion, U.K. operators are encouraged to use the alphabet contained in the Radio Regulation, Geneva 1959, and adopted by NATO Services and other bodies, viz.:

A	Alfa	H	Hotel	O	Oscar
B	Bravo	I	India	P	Papa
C	Charlie	I	Juliet	Q	Quebec
D	Delta	K	Kilo	R	Romeo
E	Echo		L	Lima	Sierra
F	Foxtrot		M	Mike	Sier
G	Golf	\cdots	N	November	U

\checkmark Victor
W Whisky
X X-ray
Y Yankee
Z Zulu

GW	Wales	KC6	E. Caroline Is.	M1	San Marino
HA	Hungary	KC6	W. Caroline Is.	MP4B	Bahrain ts.
HB	Switzerland	KG1	see OX	MP4Q	Qatar
HC	Ecuador	KG4	Guantanamo Bay	MP4T	Trucial Oman
HC8	Galapagos Is.	KG6	Mariana ls.	MP4M	Muscat and Oman
HE	Liechtenstein	KG6	Guam	OA	Peru
HH	Haiti	KG6	Marcus Is.	OD5	Lebanon
HI	Dominican Rep.	KG61	see KA®	OE	Austria
HK	Colombia	KH6	Hawaii	OH	Finland
HKD	San Andres and	KH6	Kure Is.	OHD	Aaland Is.
	Providencia	KJ6	Johnston Is.	OK	Czechoslovakia
HKD	Malpelo Is.	KL7	Alaska	ON4, 5, 8	Belgium
HKD	Bajo Neuvo	KM6	Midway Is.	OX, KG1	Greenland
HM	Korea	KP4	Puerto Rico	OY	Faeroe Is.
HP	Panama	KP6	Palmyra Group;	OZ	Denmark
HR	Honduras		Jarvis is.	PA®, Pl1	Netherlands
HS	Thailand	KR6	Ryukyu Is.	PJ	Netherlands
HV	Vatican City	KS4	Swan Is.		W. Indies
HZ	Saudi Arabia	KS4B	Serrana Bank and	PJ2M	Netherlands
11, IT1	traly		Roncador Cay		St. Martin Is.
IS1	Sardinia	KS6	U.S. Samoa	PK	Indonesia
JA. KA	Japan	KV4	Virgin Is. (U.S.)	PX	Andorra
JT1	Mongolia	KW6	Wake Is.	PY	Brazil
JY	Jordan	K×6	Marshall Is.	PYס	Trinidade and
K	see W	KZ5	Canal Zone		Vaz. Is.
KA	see JA	LA	Jan Mayen	PYס	Fernando de
KAØ, KG61	Bonin and	LA, LB	Norway		Noronia
	Volcanols.	LA	Svalbard	PZ	Netherlands
KB6	Baker, Howland	LH	Bouvet Is.		Guiana
	and American	LU	Argentina	SL, SM	Sweden
	Phoenix ls.	LU-Z	see CE9		Poland
$\mathrm{KC4}$	see CE9	LX	Luxembourg	ST2	Sudan
KC4	Navassa ls.	LZ	Bulgaria	SU	Egypt

AMATEUR BANDS (U.K.)		
Frequency Band (Mc/s)	Classes of Emission	Maximum d.c. Input Power
1.8-2.0		10 watts
$\begin{aligned} & 3 \cdot 5-3 \cdot 8 \\ & 7 \cdot 0-7 \cdot 10 \\ & 14 \cdot 0-14 \cdot 35 \\ & 21 \cdot 0-21 \cdot 45 \\ & 28 \cdot 0-29.7 \end{aligned}$	$A 1, A 2, A 3,$ A3A,	150 watts
70.2-70.4		50 watts
$\begin{gathered} 144-145 \\ 142-146 \\ 420-450 \\ 1,215-1,325 \\ 2,300-2,450 \\ 3,400-3,475 \\ 5,650-5,850 \\ 10,000-10,500 \\ 21,000-22,000 \end{gathered}$		150 watts
$\begin{gathered} 2,350-2,400 \\ 5,700-5,800 \\ 10,050-10,450 \\ 21,150-21,850 \end{gathered}$	$\begin{aligned} & \text { PID, P2D, } \\ & \text { P2E, P3D, } \\ & \text { P3E } \end{aligned}$	25W (mean), 2.5kW (peak)
Note: A-classes of emission are forms of amplitude modulation, F-frequency modulation and P-pulse modulation.		

SV	Greece	UM8	Kirghiz	VPS	Turks and
SV	Crete	UO5	Moldavia		Caicos is.
SV	Dodecanese	UP2	Lithuania	VP6	Barbados
TA	Turkey	UQ2	Latvia	VP7	Bahamas
TF	Iceland	UR2	Estonia	VP8	see CE9
TG	Guatamala	VE, VO	Canada	VP8	Falkland is.
TI	Costa Rica	VK	Australia	VP8	S. Georgia
T19	Cocos ls.	VK	Lord Howe Is.	VP8	S. Orkney is.
TJ	Cameroun	VK	Willis Is.	VP8	S. Sandwich is.
TL8	C. African Rep.	VK9	Christmas is.	VP8	S. Shetland Is.
TN8	Congo Republic	VK9	Cocos is.	VP9	Bermuda is.
TR8	Gabon Republic	VK9	Nauruls.	VQ1	Zanzibar
TT8	Tchad Republic	VK9	Norfolk is.	VQ7	Aldabra is.
TU2	Ivory Coast Rep.	VK9	Papua Territory	VQ8	Cargados Carajos
TY	Dahomey Rep.	VK9	New Guinea	VQ8	Chagos Is.
TZ	Mali Republic	VKO	see CE9	VQ8	Mauritius
UA1, 3, 4, 6,		VK®	Heard Is.	VQ8	Rodriguez is.
UNI	European S.F.S.R.	VKO	Macquarie Is.	VQ9	Seycheiles
UA1	Franz Josef Land	VP1	British Honduras	VR1	British Phoenix Is.
UA2	Kaliningradsk	VP2	Anguilla	VR1	Gilbert and Ellice
UA9, 0 ,		VP2A	Antigua, Barbuda		and Ocean Is.
UW9	Asiatic S.F.S.R.	VP2V	British Virgin Is.	VR2	Fiịi ls.
UBS, UTS,		VP2D	Dominica	VR3	Fanning and
UY5	Ukraine	VP2G	Grenada and		Christmas Is.
UC2	White Russian		Dependencies	VR4	Solomon Is.
	S.S.R.	VP2M	Montserrat	VR5	Tonga is.
UD6	Azerbaljan	VP2K	St. Kitts, Nevis	VR6	Pitcairn is.
UF6	Georgia	VP2L	St. Lucia	VS5	Brunei
UG6	Armenia	VP2S	St. Vincent and	VS6	Hong Kong
UH8	Turkoman		Dependencies	VS9	Aden and Socotra
U18	Uzbek	VP3	British Guiana	VS9	Maldive Is.
UJ8	Tadzhik	VP4	Trinidad and	VS9	Sultanate of Oman
UL7	Kazakh		Tobago	VS9K	Kamaran Is.

These ranges are selected by pressing a function button (mA, V or Ω) and also a range button. Each of the three range buttons will select a current range, a voltage range or a resistance range. Thus the left-hand range button will give ranges of $0-1 \mathrm{~mA} ; 0-1 \mathrm{~V}$ or $0-1 \mathrm{k} \Omega$, depending on which function button is depressed. Thus three range buttons allow us to select 3 current ranges, 3 voltage ranges and 3 resistance ranges. The fourth current range $(0-50 \mu \mathrm{~A})$ is obtained by pressing the mA function button and releasing all the range buttons. (This can be done by slowly pressing a button half-way in until it unlocks the other buttons, and then releasing it.)

V FUNCTION BUTTON

The fourth voltage range $(0-500 \mathrm{~V})$ is obtained by pressing the V function button and releasing all the range buttons. It is suggested that the buttons be colour coded, using red for current, green for voltage and yellow for resistance. Thus buttons "input 1 ", " input 2 " and " mA " will be coloured

Fig. 2: Checking transistor performance.
red; buttons "input 3 " and "V" will be coloured green; and button " Ω " will be coloured yellow. The three range buttons are each divided into three equal areas which are coloured red, green and

Fig. 3: Wiring and layout diagram.
yellow respectively. Thus for each button the appropriate current, voltage and resistance range can be written on the red, green and ycliow panels. When all the function buttons are released the meter movement is short circuited, and the meter should be left like this when not in use.

Each button operates a $4-$ pole 2 -way switch. The circuit diagram is given in Fig. 1 and the layout in Fig. 3. The case is made from plywood bonded with epoxy resin (Araldite etc). The resistances are nearly all non-standard valves. If you are on good terms with your dealer he may let you go through his stock of 10% resistances with his meter until you find ones near enough. This way means that your meter will be slightly innacurate on some ranges, but it should not be enough to worry about.

Fig. 4: Cabinet drilling and constructional details.

SPECIAL RESISTORS

The very low value resistances are best made from lengths of electric-fire element. Pull out a few feet of element to remove the kinks, measure this length accurately (in inches) and borrow an ohmmeter to measure its resistance. Divide the length by the resistance and you will get a number which represents the length which has a resistance of 1Ω. Multiply this by the resistance you want. This will give you the length of wire you will need (in inches). Remember to cut off a piece slightly

COMPONENTS LIST

Resistors:

All selected from 10\%, $\frac{1}{4}$ watt

		Nearest Resistance
Value	standard value	
R1	$524 \mathrm{k} \Omega$	$560 \mathrm{k} \Omega$
R2	$4.944 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$
R3	49.45Ω	47Ω
R5	384Ω	390Ω
R6	$15.8 \mathrm{k} \Omega$	$15 \mathrm{k} \Omega$
R7	$9 \mathrm{M} \Omega$	$8.2 \mathrm{M} \Omega$ or $10 \mathrm{M} \Omega$
R8	$800 \mathrm{k} \Omega$	$820 \mathrm{k} \Omega$
R9	$180 \mathrm{k} \Omega$	$180 \mathrm{k} \Omega$
R10	$19 \mathrm{k} \Omega$	$18 \mathrm{k} \Omega$
R11	53Ω	56Ω

The following resistors are made from resistance wire:

Length of $230 / 250 \mathrm{v}$
500 watt fire element
(Wellco Ltd)
202 mm
130 mm
6.5 mm
longer than this to allow for the soldered ends. The 0.1Ω resistance may be best made out of copper wire. If you use fire element for this one, it will be about $\frac{1}{4}$ in. long and may be a bit too small to handle easily. If you use Weilco spiral element. $230 / 250 \mathrm{~V} 500 \mathrm{~W}$. a 6.5 mm length has a resistance of 1Ω, and you will find the suggested lengths for each resistance in the components list. The wire should be insulated with a varnish.

CONSTRUCTION

Construction should be started around the banks of switches, leaving leads about 6 in . long for connecting to the meter, the batteries, the potentiometer and the input sockets. The four screws at the back of the meter are removed and the cover can then be lifted off. The existing scale should be

Other Components

VRI 1000Ω linear w.w. pre-set potentiometer
BI Two 15 V batteries in series (Ever Ready BI54)
B2 One 1.5 V baby cell battery (Ever Ready LPU 11)
Three 3 -way pushbutton units, each operating a 4-pole, 2-way switch (Broadway Electronics Ltd., Tooting).
$50 \mu \mathrm{~A}$ meter, ex-government (Radio \& TV Components (Acton) Ltd.).
Six sub-miniature sockets and plugs.
One piece of $\frac{1}{8}$ in. plywood, $12 \frac{1}{8}$ in. $x \mid l i n$.
Two pieces of leathercloth for covering $18 \mathrm{in} . x$ 5in.; $15 \mathrm{in}, \times 4 \mathrm{in}$.

Fig. 5: Scale calibration for the new dial (see text).
removed, and the scale shown in Fig. 5, copied on to thin card, mounted in its place. The pointer can be lengthened, if desired, by gluing a short length of very fine wire to the end of it. If this is done, it must be counterbalanced very carefully so that the position of the pointer does not change when the meter is horizontal and vertical.

The wooden case can be covered with leathercloth.

UNDERSTANDING F.M.

-continued from page 762
polarity only. The pulses " pile up" additively in C2, but not indefinitely because there is a drain into the following a.f. circuit through C4. Allowing for the smoothing effect of C2 C3 and the time constants of the network it will be realised that the pulses lose their separate identities but set up voltages that change with their rate of arrival. The smoothing network includes the adjustment required for de-emphasis. D2 eliminates pulses of opposite polarity.

To produce distinct pulses the carrier must be converted to a very low intermediate frequency between 100 and $500 \mathrm{kc} / \mathrm{s}$ and the gain of the receiver is consequently low. Nevertheless, it provides a simple system of the highest quality and a successful valve version appeared in the April 1965 issue of this journal. It is well suited to transistor circuitry and a design is in development at the moment.
As the object of this article has been to explain the nature and behaviour of the f.m. carrier in order that the discriminators likely to be encountered can be understood, such matters as the relationship between frequency modulation and phase modulation, pre-emphasis and de-emphasis, limiter circuitry, and interference, have not been included because these can be pursued after the information in these pages has been understood.

ECONOMY FM TUNER (October 1965 P.W.)

Fig. 1 shows the screen grid (pin 8) of V 2 connected to the junction of R2/C2. This should have been shown connected to the junction of RI/CI only.

MINIATURE OSCILLOSCOPE (November 1965 P.W.)

Henry's Radio Limited, 303 Edgware Road, London, W.2. have informed us that they are able to supply new, from stock, the ACRIO (VCR139A) c.r.t. We understand that this will replace the VCR139 without any changes to the circuitry. The price is 25 s . 0 d . plus 2 s . 6 d . post and packing.

BUILT-IN TUNER FOR TAPE RECORDERS (September 1965 P.W.)

The H402 coil kits are now being supplied with two different codings. The colour coding of the cores given in the article is correct where the transformers have part numbers viz: E360-S301-S203 etc., and where the ferrite rod aerial has only three leads.
Where the ferrite rod aerial has four leads, the GREEN and BLACK leads should be joined together and taken to chassis (+ ve). Also where the transformers do not have part numbers, the colour coding of the cores are as follows: OscillatorBlack. Ist i.f.t.-Yellow. 2nd i.f.t.-Red. 3rd i.f.t.Grey.
A circuit diagram supplied by the coil kit mannfacturers, is included with each set of coils, and reference to this before construction will clarify the connections.

PRACTICAL WIRELESS AND PRACTICAL TELEVISION FILM SHOW

The Film Show, which is held annually, is to be held as before, at Caxton Hall, Caxton Street, Westminster, London, S.W.I. The ciate of the Show, which is arranged in collaboration with Mullard Limited, is Friday, 4th February, 1966, at 7.30 p.m. sharp. The films to be shown are "Electromagnetic Waves, Part II" and "Thin Film Microcircuits" and the illustrated talk will be on "Transistor Topics". Refreshments will be provided. The talk will be given by Mr. I. Nicholson of Mullard Limited, and in the chair will be Mr. W. N. Stevens, Editor of "Practical Wireless" and "Practical Television". Applications for free tickets should be made to FILM SHOW, "Practical Wireless", Tower House, Southampton Street, W.C. 2 and not to Caxton Hall. A stamped addressed envelope must be enclosed.

Dealings with the G.P.O.

I ENCLOSE part of recent correspondence between myself and the G.P.O. Radio Services Branch.

From the University of Sheffield Amateur Radio Society:

Q1 . . . Can Sound 'B' licensees operate on any amateur frequency provided that they use a Sound 'A' callsign, the holder of which is present?

A1... The holder of an amateur (Sound) licence ' B ' is permitted to operate an 'A' station under the direct supervision of the licensee on all amateur frequencies. Operation, however, is restricted to telephony only.

Q2 . . . Can Sound 'B' licensees operate a club (Sound ' A ') station as authorised operators, unsupervised, on frequencies bigher than $420 \mathrm{Mc} / \mathrm{s}$?

I appreciate that the use of Morse is not allowed when a Sound ' B ' licensee is transmitting.

A2...The holder of an Amateur (Sound) licence 'B' cannot be authorised to act as an additional operator of an ' A ' olub station.

I feel that these answers could be of sufficient significance for comment in Practical Wireless. J. P. Billingham.

Ardsley, Barnsley.

Tape Terminology

The remark in Mr. Read's letter (November 1965 issue) has been somewhat anticipated. On the 20th of October, George Newnes published a short work, "Questions and Answers on Radio and Television ", putting technical matters into language that, I hope, will be both instructive to the layman and helpful to the accomplished. Also published on that date was my more ambitious work on the subject that appeals to Mr. Read, "Tape Recording Service Manual". Although this is a volume costing three guineas and containing technical data on a great many tape recorder mechanisms and circuits, it also contains a seotion dealing with the principles of tape recording and general servicing procedures in which Mr. Read may be interested.
H. W. Hellyer.

Bargoed, Glamorgan.

NEWS AND..

THE WORLD'S MOST PRECISE "RADIO EYE"

A new 140 ft . diameter radio telescope is now operational in Green Bank, (West Virginia) USA. It is being used by astronomers to detect sources of noise in outer space. Unique feature of the telescope is a Westinghouse metal bearing which pivots 2,600 tons on a film of oil only the thickness of a hair.

Built at a cost of $\$ 13$ million the station, known as National Radio Observatory, is designed to be the world's most precise instrument for pinpointing waves from outer space.

THE COLDEST PLACE ON EARTH

In a recent issue of the Mullard Outlook, details were given of the Mullard Cryomagnetic Laboratory located at Oxford, England. This forms part of the internationally known Clarendon Laboratory which has become famous for its contributions to research in the field of magnetic fields at very low temperatures.

Mullard scientists in their new laboratory with its source of very high power magnetic fields have recently been testing many new types of semi-conductor material. This may, in time, lead to revolutionary methods of generating, transforming and distributing electric power. In the course of studying aspects of solid state physics, the scientists have been able to achieve temperatures as low as a millionth of a degree above absolute zero-almost as cold as the conditions found in outer space.

The Mullard Cryomagnetic Laboratory is believed to be the only one in the world to have reached so far down the temperature scale and thus earned for itself the title of "The Coldest Place on Earth".

LASER TELEPHONE LINE IN MOSCOW

The first laser telephone communication system linking two districts in Moscow is being put into operation. Special transmitting equipment converts telephone signals into impulses which are superimposed on a laser ray. The receiving equipment directs the ray to a large parabolic mirror which reflects it into a system of filter and photo transformers where it becomes a telephone signal again.

..COMMENT

INTERNATIONAL RADIO COMMUNICATIONS EXHIBITION

Now fairly established as a regular event in the radio calendar, this year's exhibition at the Seymour Hall fully lived up to the reputation of its predecessors.

The home-constructed units bore witness to the very high standard attained these days by Amateurs, and with some exhibits it was difficult to define the borderline between these units and some of the commercial items. Of particular note was the solid state mobile equipment built by G3LOK and the superb s.s.b. transceiver constructed by G3SBA.

The British Amateur TV Club displayed an impressive array of gear with a triple-turret TV camera with built-in monitor screen televising the exhibition from the balcony.

In the professional field, K.W. Electronics displayed their KW2000A s.s.b. transceiver while across the hall Brian J. Ayres \& Co. were showing a range of National equipment. Highlight here was the much talked of solid state receiver, the HRO-500 costing about 4705 . Needless to say, this is not a t.r.f.!

The manufacturers award this year was presented to Tom Withers of T.W. Electronics for their solid state v.f.o. for $144 \mathrm{Mc} / \mathrm{s}$. Messrs Imhofs offered an impressive display of cabinets of all shapes and sizes, and Electroniques offered their very excellent coils and receiver front-ends for the serious amateur. I. Beam aerials showed a number of their time proven v.h.f. and u.h.f. arrays, plus the able assistance of Vic. Hartopp to answer the numerous queries.

The accent this year was clearly two things-the increase in solid state circuitry, and s.s.b. Next year might even see greater marriages between these two.

MARCONI SOLID SWITCHES

The photograph shows the final stage in the production of one of the new range of Marconi highspeed solid-state switches.

Hard black Araldite, an extremely tough epoxyresin, is being poured into the body of the switch to provide complete encapsulation. This technique provides the maximum possible protection for solid-state electronic circuits. After curing at $60^{\circ} \mathrm{C}$, the switch becomes an entirely solid unit which is capable of operating under extreme environmental conditions.

These new switches are fully transistorised and can be used as direct replacements for electromechanical relays. They are virtually indestructible and will operate almost indefinitely.

Thumbnail History of Radio
I would like to thank the many old-timers who have helped me in my researches for the above-mentioned article. Most of this information has been passed on to me by the old operators on 80 m whose tanks are sadly diminishing all the time. I feel that it is especially important to collect all this information before it is lost.
R. F. Farley, G3SSJ.

> Mytchett,
> Nr. Aldershot, Hampshire.

The Meaning of Amateur

Do your correspondents think that amateur foothallers should knit their own jerseys and socks, or that amateur cyclists should construct their own cycles?

So why should amateur radio enthusiasts be any different? Why should they not have the benefit of commercially-made equipment as much as amateurs in any other field?
R. G. Hasler.

Birmingham, 28.
I Do not think we should take too seriously the letter on this subject from Mr. Heathfield in the December issue-he generalises too much on only a few observations. Will he now do us the favour of visiting those of his friends whose hobby is photography and then tell us how much of their apparatus (cameras, lenses, light meters, rangefinders, print-driers, etc.) they have made for themselves, and if he considers it a bad thing that they should buy commercial gear.

Has it escaped his notice that a commercial-looking piece of equipment may in fact have been built from a kit of parts such as those offered by K. W. Electronics, or Heathkit?

Our hobby is perhaps unique in that so much of the apparatus used in it can be built at home to save heavy outlays if one is so inclined; that so much is published to enable this to be done, and that so many people (despite what Mr. Heathfield would Jike us to belicve) still do "roll their own" and enjoy doing it.
W. E. Thompson, G3MQT.

St. Leonards-on-Sea, Sussex.

TAPE TAPE TAPE TERMINOLOGY TAPE

PART SIX

THREE-HEAD SYSTEM

Using separate Erase, Record and Play Heads.

TONE CONTROL

Used during playback to "tailor" the response of the tape recorder to suit listening conditions. Can consist of a simple top-cut network or a more complicated bass and treble constant-control, using feedback networks and balanced controls.

TRACK

The magnetised path of the recording after it has passed the recording head. Trackwidth depends on the gap length. Fig. 19 shows actual and proposed track dimensions on standard quarterinch (average) tape. Figures given are in inches, and some tolerance is allowed for most measurements, depending on head manufacture. The diagram is not to scale.
(a) Half-track operation, BS. 1568.
(b) International half-track standard.
(c) Original Continental quarter-track standard, now discontinued.
(d) Proposed "compatible" standard.
(e) American MRIA quarter-track standard.

Note that various standards have been proposed. and the latest attempt is to ensure compatability, i.e. the replaying of two-track recordings through a four track machine for stereo reproduction, without losses and also to be able to replay quarter-track recordings on a half-track machine, which is at present not satisfactory. Spaces between tracks and at edges are called "safety lanes".

by H. W. Hellyer

TWIN TRACK

Correctly referring to a stacked head with two gaps, one above the other, for simultaneous recording and playback of two tracks. (As opposed to two-track, where a single gapped head is used for recording and replay of two tracks by tape inversion at the end of the reel.) Similarly, quartertrack recording is made on a four-track machine having two gaps, and employing the tape inversion principle. Track numbering is normally 1 and 4 for the outer tracks and 2 and 3 for the inner tracks, giving a numbering 1 to 4 from top to bottom. But some manufacturers favour different numbering systems.

transoucer

A device which is actuated by waves from one transmission system and supplies related waves to other media. Practically, a microphone or loudspeaker which converts sound waves to electrical impulses, or vice versa.

TWEETER

Small loudspeaker specially designed to handle the higher audio frequencies. Normally connected via a filter which cuts off tones below about $2,000 \mathrm{c} / \mathrm{s}$.

ULTRASONIC FREQUENCY

A frequency lying above the audio frequency range; usually employed to indicate the frequency range of the bias oscillator. This is not strictly accurate, bias frequency is usually in the radio frequency part of the spectrum.

Fig. 19: Track dimensions on standard $\frac{1^{\prime \prime}}{4}$ tape.

VARIABLE BIAS

Method of altering bias gradually to obtain good tone balance, usually during superimposition when the action of cutting out erase power can affect bias conditions, and when reduced bias is needed for the later signal to prevent overriding the original.

variable speed wind

In some machines (professional types mainly) the speed of winding can be potentiometer controlled for special applications.

EXCLUSIVE TO PRACTICAL WIRELLSS READERS

TRANSISTOR POCKET RADIOS

ONLY $\quad 28 / 6$
NO MORE TO PAY

BULK PURCHA8E ENABLES OS TO MAKE THIS FAN MAND WITH GUARANTEE : :
The "BAN REMO" Brings tuned that it brings the voices of and vocalists drainer and rocalists dra in your home, oftice in your home, offtce,
etc. Only 4%
$2 i n$ $\underset{\text { etc. in } 1 \text {. Fite easily }}{ }$ into your pocket or haudbag. Works for months off $1 / 2$ battery shnuld last a lifetime, anyone can assemble itionan
hour or two with our easy plan. Minature speaker. carrying case-everything only $28 / 6$ 2/f P. \& P. (Parts can be bought separately.) Inmited period-so rush your order before it $^{\circ}$ too late. DEMONGTRATIONB DAILY.

DON'T WALK-

 OUTFIT \& baby alarm

LIMITLD QUANLITY SAVE £3.13.1 ONEY Robustly made, brand new 49/ I separate, fully transistorised - each can speak or ifsten to the other - complete with 60 ft . connecting wire. Fixed in a flash. Ends babycrying worries. Ideal for Workshop to House, Sickroom. hundreds of uses Hangs on wall or stands up. our absurd 3/7. Money refunded if not 6 gns. value

MAKE 5 DIFFERENT

 TRANSISTOR RADIOS FOR 35/NO EXPER LENCE NEC
ESSAY. No soldering.
Only 8 connections con first radio to work A.B.C. Plans, Gabinet Loudspeaker (alone 1\%/6). Earphone 4 Semi-conductors. Coils. Condensers, Resistors, Tuner, Switch. Screws, etc Fnglish plied and Foreign reception. As supForces, etc TESTIMONIALS GALORE Mr Ik t'I of Lomionjerry, writas:". I received your components and 1 must sau that I am very satisfied with them' I have RA ADIO COETKSE: Originally E6 SEND OXIV $35 /=$ plus $3 / 6$ posit, ete,

Well-known brand Transistor Rsdio Kits-YOU SAVE e3,10.6. Covering all medium/long ware with parts including Mullard Bem Conductors. 48 page instruction manual. Entertaining sind educational No soldering, just phu
Radios in a few mins.

CAR CIGARETTE

 LIGHTER DISPENSERHigh Class Stores sell at 3 gns. - save £2.4.6
Top quait chromium. Car cigarette Ligbter -Dispenser. Fired in a jiffy ONLY 1816 Cigarette into your bandl Takes 10 cigarettes-King size or any size As fitted to jusary ears. Bafe, fool proof 41 z 4 in. Lifetime

FABULOUS

ST. TROPEZ MK. 6

The Sensational Pocket Radio

This fantastic offer will ama

- the beautifully compact -the beautifully compact ST TROPEZ, measuring $4 t$ I 3 I 1 tin
recelves perfectly in bedroom recelves perfectly in bedroom
oftice or gardens-over all medium waves including Luremboarg. Un waveg including Lurembonig. Un
der Id. per hour running eost
ANYONE can agsemble it in AN YONL can assemble it in on
 extra). Case extra. Parts can be bonght separately,

[^2]MORE TERRIFIC OFFERS FROM CONCORD!

IIQUTDATION PURCHASE 500 ONLY Made to sell at 54 gns . - Save es.0.6. Latest camers style radio. Big-Set tone from tone-chamber moving coll speaker. new device plucks in Station after Station including Luxembourg, Caroline, etc. Fantastic coverage - $187-577$ metres! Expensive looking finish. simulated leather. black and chromium. Size $4\}^{\prime \prime} \times 24^{\circ} \times 11^{\prime \prime} .7$ semi-conductors. $55 /-+2 / 6$ batt. $+3 / 6$ P. \& P. Refund if not delighted.

EVEN TIIF OLDER CHILDDREN BUILD THEM! . . . no soldering-only 16 connections! then hear it reach out bringing in station after station. loud and clear. Palm-of-hand size $41 \times 21 \times 1 \mathrm{im}$. Many Testimonials: M.H. of Hradford. writes: ". . . I have just completed one of your sets stuccessfully. it is the first time I have ever tackled anything tike a radio, and I must state here and now. I am amazed how easy it is to a layman like me. Your instructions and plan have obviously been very carejully thought out so that even the most dim can follow them - . " Direct from Manufacturers to You. Send 19/6 plus 2/6 post, etc

PARTS AVAILA BLE SEPARATELY

Yes, a perfectly ordinary packet of Ciearettes: - but watch your filends atation after station, loud and clear still holds 10 Cigarettes-yet cleverly conceals highly sensitive, fully transistorised circuit (ineluding tiny battery) Even a young boy can assemble it in under 2 hours. No soldering. No experience necessary. Tniy 16 connections to make. Ideal for taking to work with you. From our bulging testimonial flle, Mr. D. B. of If uldiersfield, writes: ". I have fitted the parts, in and it is working wonderConductors, A.B.C. Plans, etc. ONLY
18/6ARTS AVAILA BLE SEPARATELY

TRANSISTOR ELECTROLYTICS

COMPARE THESE PRICES!

CONDENSERS
Silver Mica, $3 \cdot 3$ pF to 6,800 pF. Ineluding High Voleage Dise Ceramies (normally 31 - each) $\quad \ldots, \ldots, \ldots$. 101 , per 100 Paper Condonsers: $0001 \mu \mathrm{~F}, .001 \mu \mathrm{~F}, \cdot 002 \mu \mathrm{~F}, \cdot 005 \mu \mathrm{~F}, \cdot 02 \mu \mathrm{~F}$ and - $04 \mu \mathrm{~F}$, all at $7 / 6$ per 100 . $\$ 3$ per 1,$000 ; \cdot 1 \mu \mathrm{~F},-25 ; \mathrm{e}, \cdot 5 \mu \mathrm{~F}$, 101- per 100.
RESISTORS
1/10th, 1/6th, $/ / 4$ th, watt
10\%. per 100
Mixed wattages $\frac{1}{2}$ watt to $\dddot{3}$ watt. Close Tolerance. Assorted Values. Polythene wrapped on cards of 10 . Give-away price, 50V- per 1,000, plus $51-$ post and packing.
TRANSISTORS (At a price you can afford)
OC7I equivalent, $1 /$. each, 25 for $\& 1,100$ for $\$ 3$.
NKT124 or NKT125. Switching transistors, 2f- each, 6 for 10% Large Car Radio type Output Transistors, OC25, OC35,
NKT405, 101- each.
Packet containing: three 2G417, two 2G371, one 2G381, one 2G339, one diode (for making superhet with complementary ymmetry transformerless output stage) $\dddot{\text { E }}$ El complete Diodes, I/- each. Zener Diodes, ZE12, ZB4.3, 5/- each. BY 100 Mains Rectifiers for TV Sets. $7 / 6$ each.
SIGNAL INJECTOR. R.F./I.F./A.F. Transistors, components and circuit to make. Only 10% complete.
LOUDSPEAKERS, Brand New, 4 inch. Excellent reproduction. 10/- each.

Midget Earpieces, complete with plug and lead Magnetic Lapel Microphone with plug and lead Transistor Holders
Miniature Soldering Iröns, complete with Bie
..
.. 5/- each

Set of 5 assorted Bits to suit any job\quad 201-set
Crystal Set kits
POCKET-SIZE MULTIMETERZS. AC/DC/Ohms
... 15/. each
Transistor Intercomm. Units...
FLUORESCENT FITTINGS: 5ft with choke and $\because . .55 \%$ pair
4ft, with choke and starter, 32/6. Carriage 101-per fitting.
ACOS PICK-UP HEADS. COMPLETE WITH NEEDLES This is the price you would expect to pay for the needles only!

 Will fit most record changers. Can be very profitable! RELAYS
700 ohm or 2,500 ohm coil. Transparent dust cover. 2 pairs of changeover contacts. PLUG-IN TYPE. Base included in price. 25/- bach.
Fof orders less than $10 /=$ please add 6d. towards postage.

G. F. MILWARD

17 PEEL CLOSE, DRAYTON BASSETT Near TAMWORTH, STAFFORDSHIRE
Tamworth 2321
Post only

GUITAR AMPLIFIERS with TREMOLO
 12 months' guarantot (valven 3 months)

Five fuck arevM imputs with
 iour separate ruiving volume controle. Hizh ratur or 10 milil Fols makes it suitable por al types of guitars phones. Bepa rate Bass and rate Bass and
 coutrol. Trent olo speed anit denth contruls Remote trem olo switch suck. et. 7.5 and 15 ohms outpats. 30 and 万10 ECCR3. ECC83, CL34. EL34, GZS4, 15 watt valven ECCA3, EC'C83, ELS4, ELS4. E/831. Two extra valven ECCOS used in the tremolochrcuit. Tremolo operates on one inpat only. Black and gold front panel (titited tremolo type only at present) Chasis Anished silven grey hamsner. Cover with ohroine hapdes $35 /-$ extra
PRICES
50 watt with tremolo
221.17 .6

50 watt less trimolo \qquad 00 wat with tremolo
30 watt less tremolo
15 watt with tremolo
$21 p .10 .0$

15 watt lesu tremolo ... 813.17.8
Add carrjage $10 / \mathrm{m}$ any smplifier. Descrintive leatet troe, tamp app recisted guitable spesters, Batery 12 Guitar L.B. stre, stamp syp Group 50 L.s. 18 gns, Carriage tree.
Cash with onder only regret no C.O.D.
No trade or Export"

STROUD AUDIO

CABERS GRERA EDAD, BTROUD, GLOM ETROUD 78\%

Fig. 20 depicts (a) original circuit of wind-on and re-wind motors of typical three-motor machine. with loading resistor used to balance torque during Record or Playback. (b) Modified circuit using variable resistor to form bridge. (c) Motor torque varies as resistance (and hence applied voltage) is varied. Suitable for single-phase induction motors with no electrical connection between stator and rotor. Speed of motor is less than synchronous speed, the difference being the "slip" which increases as rotor speed decreases. The circuit allows relative torque variation. At point of intersection of curves. which depend on motor characteristics, motors are balanced and at standstill.

VARIABLE RELUCTANCE MICROPHONE

Older types of moving iron microphone come into this category, and are rarely used for present purposes. (See Microphones.)

VELOCITY MICROPHONE

A microphone in which the electric output substantially corresponds to the instantaneous particle velocity in the impressed sound wave. An example is the ribbon microphone, in which pressure gradient principle is employed, the difference in pressure between the two faces of the ribbon causing movement and electrical output. (See Microphones.)

VIDEO TAPE RECORDING

Method of recording television pictures on magnetic tape for subsequent replay. Problems involved are caused by the need for large band-width-at least $2 \mathrm{Mc} / \mathrm{s}$-which calls for high speed of tape past heads. This can be achieved either by fast tape speed or by rotating a sequence of switched heads as the tape is moved. Fig. 21 shows basic rotating head system used for video tape recording. Two-inch Mylar tape is used at 15 in/ sec. Headwheel spins at 15,000 r.p.m., giving relative head-to-tape speed of $1570 \mathrm{in} / \mathrm{sec}$. Vision track is modulated on to an f.m. carrier from 42.2 to $6.8 \mathrm{Mc} / \mathrm{s}$ before recording and demodulated after replay. There are four heads, and four channels, with each head having a 120 degree arc of tape contact- 30 degrees of overlap. Each head is switched electrically during contact, and "killed" during out of contact period to reduce stray responses. Synchronising is supplied from servo control of motor and sync pulses are recorded on tape. Switching gate is controlled by photocell from motor into switching module.
The multiple head system scans the tape vertically with the tape at relatively slow speed. A tape speed of $7 \frac{1}{2}$ in/sec. will produce a track speed of $200 \mathrm{in} / \mathrm{sec}$. or greater with rotating heads. As the tracks are nearly vertical, and in rotation, the tape must be wider than standard, and mechanical problems of speed regulation, head wear and synchronisation are encountered. Two such machines recently marketed have tape speeds of 12.6 and $19 \mathrm{~cm} / \mathrm{sec}$, and tape width of 50.8 mm and 25.4 mm respectively.
The alternative technique, of a stationary head

Fig. 20: Circuits of wind-on and rewind motors and motor torque graph.
and fast-moving tape, uses speeds of up to $150 \mathrm{in} /$ sec., and a standard $\frac{1}{4}$ in. tape, on which one track of video and another of f.m. sound are recorded. Typical head gap sizes are less than micron. (One example is the American Fairchild V-5000, using a tape speed of $120 \mathrm{in} / \mathrm{sec}$., a standard tin. tape. and movable heads to scan four tracks. A single track is used with multiplexed video and audio signals. The record head has a relatively wide gap but the playback head gap is only 0.000039 in. wide. Instrumentation tape is used, of $9,000 \mathrm{ft}$. length on a $10 \frac{1}{2} \mathrm{in}$. standard NAB spool.)

Later developments include thermoplastic video recording, first developed for radar equipment. A tape is prepared with a positively charged thermoplastic layer, which has a low-melting point. The
basic negatively charged tape has a higher melting point. Thermoplastics soften when heated and return to normal condition on cooling.
The principle involves heating the whole tape to the melting point of the charged thermoplastic layer by passing it through a vacuum and applying a dielectric heater. Ripples are formed on the tape in proportion to the moving electron beam of the cathode ray tube through which it passes, the beam being modulated by the video information. The dielectric process causes the thermoplastic layer to "freeze" temporarily in its ripple formation as it passes through and this modulated tape is replayed by passing light through a condenser lens, the transparent tape and an apertured plate, using the Schlieren optical system. A very wide bandwidth (up to $50 \mathrm{Mc} / \mathrm{s}$) is possible. The drawback is the elaborate vacuum pumping equipment, but development of a special tube with a mosaic of fine wires in place of the normal phosphor screen is still taking place. The wires are embedded in the glass and pass right through, forming a virtual extension of the electron beam, and eliminating the complication of vacuum sealing of the tape at the point of modulation.

Recently announced was a video-disc method of recording with parallel principles, but using a method of repeated "stills" instead of a moving picture, stored on dise. The great advantage of such a system, if it can be developed beyond the slow-scan 25 frames per second limitation, is the simplicity of the playback conversion equipment.

VOLUME

Correctly, an acoustic, rather than electrical term. Measurement refers to the pressure of the sound wave in terms of dynes/square centimetre. The louder the sound, the greater the pressure, but
loudness, as a term, depends also on the frequency and waveform. Convenient form of volume expression is in decibels, this scale being nearer to the aural range than any linear form.

VOLUME COMPRESSION

System of sound recording where the level of the signal passing through an amplifier is arranged to control the gain in such a way that high sound levels are amplified less than low sound levels.

VOLUME UNIT (VU) METER

Type of modulation level indicator which measures electrical signal voltages and records relative levels of sound. This type of meter responds to average values but does not indicate peaks. Professional recording authorities favour peak programme meters for correct setting of modulation levels. American machines favour VU meters, the British and many Continental machines have various forms of peak reading meters or indicators (such as the magic eye) or modified forms of these, with rise times flattened slightly by charge circuits to give a compromise system.

A typical VU meter would be a rectifier-fed, moving-coil meter with a low total series resistance so that the non-linear forward characteristic of the rectifier makes it almost a square-law instrument, measuring energy or power rather than voltage or current. The scale is marked in volume units, each being approximate to one decibel with the instrument measuring a pure steady tone. But peaky waveforms will produce only the "averaged" response, sometimes referred to as the r.m.s. reading (not quite accurately, except with pure sine waveforms).

Fig. 21; Basic rotating head system for video recording.

巴GIAR - QUALITY

Nomith conas minurit

THE NEW 1966 CR.70A COMMUNICATION RECEIVER

This completely new recelver sets a new high standard for performance and finish unequalled at the price, and is a wo addition to theourstanding range of CoDA $\&$ quality communi cation equipment. Frequency range: $560 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ ($540-10$ metres) in four ranges $560 \mathrm{Kc} / \mathrm{sc}-1.5 \mathrm{Mc} / \mathrm{s} ; 1.5 \mathrm{Mc} / \mathrm{s}-4.2 \mathrm{Mc} / \mathrm{s}$ $4.2 \mathrm{Mc} / \mathrm{s}-11.5 \mathrm{Mc} / \mathrm{s}: 11.5 \mathrm{Mc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Slide rule scales for each band callbrated in irequencles plus an additional logeing slow tune action. Unique vernier tuning controlusive to the CR.70A ernploying Hixh 'Q'Air-spaced COIDAR-4OLL brductor givisg extremely high gain with low nolse level. Panel aerlal trimmer or peaking weals signals. Double tuned I.F. Iron cored transformers. $470 \mathrm{kc} / \mathrm{s}$ with EF183 irame grid valve for maximum gain and selectivity, 5 valves (facluding two twin trioaes) gryng ? yalve lineup separate B.F.O. stase for OW and SSB reception. Calibrated singal strength ' S ' meter, Llluminated AuJomatic Volume control. Panel phone tack for "private" listening. 2-3 ohm output for external speaker fnish. Sizs 13°. 5 hit at the fantastic low For A.C. 2001250∇. Ready bullt. Not a bit at the ran astic low proce of $£ 19.10 .0$. Carr. 7/6
CODAIE R.F, FRE-SELECTOR MODEL P.R.3G, Considerably improves the performance of any superbet recelver over godB giln Uses EFls3 srame Grid Valve. and provides up to nods gain plus substantial image rejection, improved signa./ singe the and selectivity. Selector switch for either dipole or Single wire antenna. Power requirements $180-250$ volts 12 mA Hith cables pamp L. T. Size $8 \pm$ x $5 \times 41 \mathrm{n}$. Ready built, complete with cables, plugs and instructions, f5.10.0. Carr. 3/6. MODEL, 25 mA at 200 v . H. T. and 6.3 v . 1 amp L.T. for other accessorios £ 7.4 .0 . Carr. $3 / 6$
CODAR "Q" MULTIPLIER MODEL R.Q. 10 . For ase With ally superiet recelver with an I,F between 450 and $470 \mathrm{Kc} / \mathrm{s}$ or rejecting a signal increase in selectivity for oither peaking Power requ a signal on AM, CW, or SSB, BFO. Size $8 \ddagger \times 5$ x 410 Power requirements $180-250 \mathrm{v}$. H.T. at 5 mA 6.3 v . 3 amp L.T 6150 Car 600-250. Carr. 3/6. MODEL R.4.iuX. Solf powered verston for amp. L. T. for other accessories e8 8.0^{2} Carriage $3 / \mathrm{T}^{\circ}$ and 6.38 . amp. L.1. bof ocher accessories 28.8.0. Carmage 3/6
CODAR ATE. 12 WATT 2 BAND TRANSMITTER. The newest mest compact transmitter for flxed or moblle use on $81 \times 5 \times 41 r$. High stabi ity newe area less than two-thrds of this page. Mo/s (up to $4 \mathrm{Mc} / \mathrm{s}$ export) Aird VFO. $1.8-2.0 \mathrm{Mc} / \mathrm{s}$ and $3.5-3.8$ Me/s (up to $4 \mathrm{Mc} / \mathrm{s}$ export). Air-spaced CODAR COHL Pi-net Screen modulator. AM/CW switch and Panel key tor Platechangeove for 6 or 12 volts heater supply. Ready buit fle Plu 8 Carr. $4 /$ A. T. 5 powzer heater supply. Ready buit $£ 16.10 .0$ and 12v. Salid state for Moblle use, complete with all Transmit Recelve changeover switching available.
CODAKKIT CR. 5 SK MAIIS T.H.F SHORT-WAVE RECEIVEH. World wide reception-North and Soumh America Russia. Lodia, Austraila, Far East, Amateurs, Shipping, etc. drives. L Low losa polystyrene plug in colls motion vernier \star Dials callbrated in frequencies and decrees, factory aligned 3 watts fo: $2 / 3$ ohm speaker, t Valve then. Power output EZ80. Size $12 \times 51 \times 7 \mathrm{n}$ CODAK-KMT CR 45 K complet with valves, 3 colis ($10-28,25-75,60-176$ metres) and 11 page instruction manua, za.10.0. Cart 5/6. Extra colls 49 each Instruction manual only $4 /$ (credited on order). (Can also be supplied ready built-price on request
CODAR-1IT MIN-CLIPPER-OUR FAMOUS SITORT SAVE RKCEIVER , Can be built in one evening ready to switch on and bring the World to your fingertops at very low \& page instruction manual. PRICE 38/6. Cerr, 3/-. Extra Colls $4 / 9$ each. Instruction Manual only $2 /$ (credited on order) Electrical Bandspread available. Provision to add 2 transistor amplifler.

SEND 6d. IN STAMPS FOR ILLUS, LEAFLETS OF THE CODAR RANGE
H.P. IERMS AYAILABLE \qquad WORLD.WIDE MAIL ORDER SERVICE

An
 integrated hi-lif turntable unif from only 11 gns?

YES!

Only Goldring's 60 years of experience of making gramophone turntables and pick-ups could lead to a unit like this . . . the ideal integrated turntable, arm and pick-up for do-it-yourself hi-fi aspirants... at such a modest price. Just look at the features of this remarkable G. 66 unit :
Silent, specially made Swiss mains motor. Pressed steelturntable on precision bearings evens out mains current fluctuations. Die-cast light alloy arm with full stylus pressure adjustment. Plug-in head shell, wired for mono and stereo, takes alternative pick-up cartridges. Eddy-current speed control (as fitted on some professional units) varies the four standard speeds by $\pm 10 \%$. Pick-up raising/lowering device coupled to on/off switch and idler-wheel disengagement mechanism. Deck size $12 \frac{1}{2}{ }^{\prime \prime} \times 10^{*}$.
See the Goldring G. 66 at your dealers - or write for descriptive leaflet.

THE GOLDRING G. 66

[^3]

YOUR CAREER in RADIO \& ELECTRONICS?

Big opportunities and big money await the qualified man in every field of Electronics today-both in the Uh and throughout the world. We offer the finest home study training for all subjects in radio, television, etc., especially for the CITY \& CUILDS EXAMS, (Technicians' Certificates); the Grad. Brit. L.R.E. Exam, the RADIO AMATEUR'S LICENCE; P.M.G. Certiticates; the R.T.E.B. Servicing Certificates; etc. Also courses in Television; Transistors; Radar; Computers; Servomechanisms; Mathernatics and Practical Transistor Radio course with equipment. We have OVER 20 YEARS' experience in teaching radio subjects and an unbroken record of exam. successes. We are the only privately run British home study College specialising in electronic subjects only. Fullest details will be gladly sent without any obligation.

To: British National Radio School, Reading, Berks. Please send FREE BROCHURE to:
NAME.
Block
ADDRESS .Caps.
Please
ease
1.66

WATT

The unit of electrical power. Defined as the energy expended per second by an unvarying electric current of one ampere across a potential difference of one volt. For audio purposes, both the peak power and the average power must be considered. Electro-acoustic efficiency is less than purely electrical measurement may indicate. Electro-acoustic efficiency ratio may be as much as $30: 1$ with commercial equipment. A speaker efficiency is only some 3 to 5% under normal domestic conditions, so that an amplifier with an average audio output of 10 watts is adequate for domestic purposes, even if transient peak powers are as much as 40 watts. Most domestic tape recorders with inbuilt speakers are only intended to give about $2-5$ watts audio output. which is quite sufficient for normal purposes.

WAVELENGTH

In tape recording, directly related to the speed and frequency of the medium: i.e. the frequency of signal and the speed at which the tape passes the head gap, which determines the physical wavelength of the recorded "magnet" on the tape. Wavelengths become shorter as the frequency of the applied signal increases, but longer as the speed of tape transport increases. This is important during playback, where the higher speed permits use of a wider gap for a given frequency due to the extended wavelength, or, conversely, allows a higher frequency response for the same gap when the tape is recorded and replayed at a higher speed.

wow

Distortion caused by periodic variation of tape speed. Although there is no standard, variations of up to twenty times a second in pitch of the sound are generally considered as "wow" while variations in the band $20-200 \mathrm{c} / \mathrm{s}$ are called "flutter". Wow is more evident with sustained notes and music with "dying tones" such as piano and organ music. It is usually caused by eccentricity in moving parts. Regularity of the wow may be a clue to its origin. Flutter has the effect of making the tone harsh. and is often more difficult to determine. Its resuits sometimes sound like an overloaded amplifier due to frequency modulation of the recorded signal. Wow and flutter figures are stated as an R.M.S. measurement. typical specification being "less than 0.2% total r.m.s.". More than 0.5 is poor.

In Tahle I reel sizes in inches, tape length in feet, playing times in minutes and seconds for principal types of tape in general use. There are variations of tape length, and playing time between manufacturers. Figures given are common to the largest number of companies. Playing time is for a single track at $3 \frac{3}{3} \mathrm{in} . / \mathrm{sec}$ For alternative speeds divide and multiply by factors of 2 . For complete tape playing time on more than one track multiply by number of recorded tracks (except for stereo).

DOUBLE-SIDED BLUEPRINT

to build a PROGRESSIVE SHORT WAVE RECEIVER

Includes full constructional details, with instructions for the following additional facilities:- Tuned r.f. Amplifier Stage, I.F. Regeneration, Bandspread Tuning, Send/ Receive Switching and Tuning Indicator.

Other Constructional Features inelude:QUIZ MACHINE FOR EXPERIMENTORS, CLUBS AND SCHOOLS MINI MODULATOR ADD-ON TRANSISTOR STAGE

BLUEPRINT

Double Sided RLUERMW to bullo a PROGRESSIVE SHORT WAVE RECEIVER * basic sv superhet

*i.fregeneramon
\# banospread
\# funimg indicator

ORDER YOIR GOPY NOW!

ELECTRONIC PITCH-PIPES

by

R. Bebbington

Grad. I.E.R.E.

ANYONE who has had anything to do with training or conducting choirs will appreciate the value of a set of pitch-pipes. Pianos are not always situated conveniently adjacent to the choir and to pitch the notes of the initial chord for unaccompanied singing can be something of a problem. The author knows from bitter experience that the notes you play on the piano and the notes you sing to the choir on your return-after knocking over a few music stands and negotiating several rows of seats-are not always the same. Usually the tenors will be quick to point this out to you, that is if the effort of reaching a top A that should only have been a top F has not permanently strained their vocal chords. The eloctronic pitch-pipes to be described have been used nuccessfully for male voice singing and have been particularly aseful for open-air activities.

Cireuk Theory

The transistorised version of the well-known Hartley oscillator is employed as a high degree of stability can be obtained. Even with battery ageing there is no discernible variation in pitch,

Fig. I: Tones selected by switched capacitors.
a pitch or frequency standard for other purposes.
The output of the oscillator is fed straight into a bigh-impedance miniature loudspeaker which serves as the collector load. Sufficient volume is obtained to allow the unit to be operated inconspicuously in a coat pocket and still be heard. Should extra volume be required an output stage can easily be added and a resistor substituted for the oscillator collector load. In its simplest form the unit can be really compact, the prototype measuring 4 in . $x 3 \mathrm{in}$. $x 1 \frac{1}{2} \mathrm{in}$. The frequency determining components are the tapped coil, the capacitors across it and, in the simplified version, the series variable resistor.

For accurate pitch control a capacitor for each note is preferable and this requires a single-pole, 12-way switch to cover every semitone in a complete octave or musical scale. It is extremely

Fig. 2: Tones selected by potentiometer (see fig. 4).
unlikely that exact values of capacitors will be found to tune each note in the scale and padding by smaller values will have to be done. If you are incapable of doing this, even with the aid of a piano, borrow the ear of a musical friend. If extreme accuracy is not so important the variable resistor is an easier and cheaper method of frequency control and can be quickly calibrated.

With the components listed in Fig. 2 the $2 \mathrm{k} \Omega$ variable control has a frequency range of one octave from E flat to E flat.
Choice of coil will obviously influence the precise location of the frequency range, but this is immaterial as long as a complete octave is covered, since this is bound to embrace all the notes in any musical scale. However, as the coil is the only item that is not standard some details are perhaps called for at this stage. Many tapped coils have been tried and the circuit oscillated freely with most of them. These included inter-valve transformers, television blocking oscillator transformers, the tapped primary of a standard output transformer,

DESPATCH－TODAY？－PHONE－R．C．S．！

Q MAX CHASSIS CUTTER

Complete die punch Allen serew and key $\frac{1}{2} \mathrm{in} .14 / 6$ itin．181．lain． $22 / 6$

${ }_{\text {G }}^{6} \mathrm{in}$ ，	$14 / 9$	lion．	181．	2 in ．	34／3
${ }_{3}{ }^{3} \mathrm{in}$ ．	$15 / 6$	Jin．	1816	2 ${ }^{\frac{1}{1} \text { in }}$	$37 / 9$
	$\begin{aligned} & 1519 \\ & 181 . \end{aligned}$	litin	2016	2	44／3

1 fin．CRYSTAL MIKE INSERTS
ACOS MiC．insert ifin．dian x tin． $7 / 6$ ； TANNOY CARBON MIKE Complete， $5 / 6$
Coils Wearite＂P＂，4／－；Osmor＂Q＂from 4／ Ferp．DHREL．\＆M．With reaction， $4 / 8$ ． Ferrite Aerials Valve．M．8／9；M．L．， $12 / 6$ Ferrite Aerials L．M．transistor／circuits． OSMOR， $10 /$ WEYRAD， $18 / 6$ ．

 Test Prods，2／9．Set Trim Tools，3／－ Multicore Solder，6d．yd．Dispuenser， $2 / 6$ ．

PW TAPE RECORDER TUNER
All components spectited Eaglo H402 tranmetor colls，§ 445 ko I．F．s and ocillator coll，tuning condenser with trimmerg，ferrite merial，Tuning dial，Mullard Lransistors and power pack compo－ nents，
EA． 35.15 .0 ．Eagle
6

MOVING COHL MULTIMETER TK 20a
 B7G，B8A，B8G，B9A，9d，B7G，B9A Cans， $1 /$ ． Ceramic I．O．EF50，BG7，B9A， $1 /=$ Valve plugs $2 / 8$

1．F．TRANSFORMERS 7／6 pair
$465 \mathrm{~K} / \mathrm{a}$ Slag Tuning Sintatare Cen， 8 i 1 in dia High Q and good bandwidth．Dets Sheets

1 Rढ	6／－6Q79	8／－EBC41	8／－PCL 82	10／0
145	6／－ 0 ［157	5／－EBC81	5／－PL 81	10／＝
1 T 4	3／－6V6G	6／－EBF80	5／－PL83	1
354	\％／－6x4	5／－ECH4	9／－P 80	7／－
$3 V_{4}$	7／－6X5	6／－FCH81	9／－P Y81	8\％
sU4	6／－112A T7	6／－ECL80	0／－PY82	76
5 Y 3	6／－12aU7	6／－ECL82	10／－ 3 P61	8\％
574	8／－124x7	7／－ECLS6	10／－U 22	71.
6AM6	$7 / 612 \mathrm{~K} 7$	5／－EF188	7／－UBC41	81
6AT6	6／－112K9	14／－EF86	10\％UBC81	6／－
6BA6	$7 / \mathrm{F} 12 \mathrm{Q7}$	$6 / \mathrm{m}$ E89	8／\％UBF89	5／．
¢BE6	5／－35 26	9／－EL84	$7 /$ UCHel	9\％
${ }^{5} \mathrm{H} 6$	$3 /-35 \mathrm{Z4}$	5／－EY51	9／－UCL82	10／＝
855	5／－954	2／－EY86	9%－UF89	7／6
\＄3． 6	5／－DAF96	8／－EZ40	5／－\ULat	8%
6JTG	6／－DF96	81 E280	7－ULS4	$8 \mathrm{8} \mathrm{\%}$
6Kg	$5-\text { DK90 }$	$8 /-E Z 81$	\％／－UY41	51－
いK76	$5 /-D L 96$	8／－MC14	7 7 － 185	7／．
6K84	5／－EABC80	7／61PC97	7／－lUU9	\％\％
6 V 7 M	5j－EB91	4／－PbC84	8i－W81	6\％．
$\begin{aligned} & \text { B.T } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { TAPE } \\ & \text { 2/6 pair } \end{aligned}$	MOT01kS for 200－250	$\begin{aligned} & 115 \text { v. } A \\ & \text { v. (in } \operatorname{ser} \end{aligned}$	

RETURN OF POST DESPATCH

\section*{NEW ELECTROLYTICS FAMOUS MAKES} TUBULAR TUBULAR CAN TYPES | $1 / 350 \mathrm{v}$ | $2 /-$ | $100 / 25$ | $2 /-$ | $8 / 600 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- | :--- |

$6 / 3507$	$2 / 8$	$600 / 157$	$2 / 6$	$16+16 / 500 \%$
$8 / 4507$	$2 / 8$	$1000 / 16 \%$	$9 / 6$	$29+6$

 \begin{tabular}{llll|ll}
$82 / 450 v$ \& $8 / 9$ \& $8+8 / 460 \mathrm{v}$ \& $3 / 8$ \& $32+82 / 450 \mathrm{v}$ \& $8 /-$

$82 / 4 / 450 \mathrm{v}$ \& $8 / 9$ \& $60+50 / 350 \mathrm{v}$ \& $7 /-$

$25 / 20 \mathrm{v}$ \& $2 /-$ \& $82+32 / 350 \mathrm{v}$ \& $4 / 6$ \& $100+200 / 275 \mathrm{v}$

\hline \& $12 /-$
\end{tabular} PAPER TURULARS

$350 \mathrm{v} .0 .19 \mathrm{~d}, ; 0.51 / 901 \mathrm{mFd}, 3 / 4 ; 2 \mathrm{mFd}, 150 \mathrm{v} . \mathrm{S} /=$ S00v． 0.001 to $0.019 \mathrm{H}_{\mathrm{o}} ; 0.11 /-; 0.251 / 8 ; 0.52 / \mathrm{B}$ $1,000 \mathrm{v} .0 .001,0.002,0.005,0.01,0.021 / 8 ; 0.05$ ， $2,000 \mathrm{v} .0 .005,0.01 /$
$2,000 \mathrm{v} .0 .005,0.01,0.02,2 / 6 ; 0.05,8 / 6$.
Sab－min． $0.001,0.005,0.01$
Sub－Min． $0.001,0.005,0.01,0.02,0.04,0.05,0.1,1 /-$

SILVER MICA（tolerance 1pF）， 2.2 to 47 pF ， $1 /$ ditto $1 \% 50$ to $800 \mathrm{pF}, 1 /-1,000$ to $2,000 \mathrm{pF}, 1 / 9$ CERAMIOS $500 \mathrm{v}, 1 \mathrm{pF}$ to 0.01 mFd ． 9 d ．ench． TWIN GANGS．＂O－O＂ $208 \mathrm{pF}+178 \mathrm{pF}, 10 / 6$ ； 365 pF min．， $10 / \mathrm{c} ; 500 \mathrm{pF}$ standard with trimmer 9／6；midget with trimmers， $9 /-: 500 \mathrm{pF}$ slow motion atandard， $9 /-$ ；small $3-\mathrm{gang} 500 \mathrm{pF}, 19 / 9$ ．Single ＂O＂ $365 \mathrm{PF}, 7 / 6 \mathrm{SHORT}$ WAVE，Stogle 10 pF $25 \mathrm{pF}, 50 \mathrm{pF}, 75 \mathrm{pF}, 100 \mathrm{pF}, 150 \mathrm{pF}, 5 / 6$ each． Can be ganged together．Couplers 9i，each．
TUNING AND REACTIOR $100 \mathrm{pF}, 300 \mathrm{pF}, 500 \mathrm{pF}$ ． 3／8 each，solid dielectric．TRIMMERS Compresaion $205 \mathrm{pF}, 1 / 8$ ； $800 \mathrm{pF} 750 \mathrm{p} .9100 \mathrm{pF}, 150 \mathrm{pF}, 1 / 3$ ； HEADPHONES 2，000 ohms， $12 / 8$ ．
ELS4 Traneformer 0 ohma， $12 / 6 ; 4,000$ ohms， $16 / \%$ EL84 Oltra EL84 Ultra Linear Push－Pall， $10 \mathrm{w} ., 49 / 6$ ．
Standard Pontode S／6
TRANSISTOR MAINS
ELIMINATOR PPl＝6v．PP9－9v．2／96 DOUBLRS CE／B，PPI （4 4＋4）．Bive as batterien Aso min．9v．19／8．
Fermt Werrad P50 COILS
and 2nd I．F． $\mathrm{F} 50 / 2 \mathrm{CC}, 5 / 7$ Osc．P50／1AC，5／6；1st P50／3CC，6／；Driver Trans－LFDT4， $8 / 6$ Printed Circuit $9 / 6 ; 35$ ohm Speakers， $5 i n$
$17 / 6 ; 6 \times 41 \mathrm{n} .21 /$ Book $2 /$ ． 3 ohm OPT $10 / 8$ 17／6：6x4in．21／－Book 2／－． 3 ohm OPT 10／6 NEW MULLARD TRANSISTORS Koldart $1 / 8 ; 0671,6 / 5 ; 0078,7 / 6 ;$ OA810，9／6 OC81，7／6；AF115，10／6；AF114，11／\％；0044，8／
 ginicon Riccilpizers．OAS10 500mA，900v．8／6； BY100 560mA， $400 \mathrm{v} .10 \%$ ．
MAINS TRANEFORMERS Postag＊2／－ach STANDARD $250-0-250 \quad 80 \mathrm{~mA}, 6.3 \mathrm{~V}_{\mathrm{E}} \quad 8.5$
 MA．，or 4v，2A，22／6；ditto 350－0－360
MNLATURE $200{ }^{7}$ ．， $20 \mathrm{~mA} ., 6.3 \mathrm{v}$ ．，1／
8MDGEL $2207 ., 45 \mathrm{~mA}, 6.8 \mathrm{~T} ., 2 \mathrm{~m}$
$29 / 6$
$10 / 6$
$\begin{array}{ll}\text { E，MLL } 300-0-30070 \mathrm{~mA}, 6.3 \mathrm{v}, \text { ，} 4 \text { 复 } & 16 / 6 \\ 19 / 6\end{array}$

 GENERAL PURPOSE LOW VOLTAGE 2 amp． $3,4,5,6.8,9,10,12,15,18,24,30 \mathrm{~F}$ ． ATmp．vergion，taps and 4 taps up to 60 p ． 0\％．29／6 0－116，200，230，240\％150w，22／6；500w， $82 / 6$ TRANSIBTOR，9v．， 80 mA ．， $1+ \pm 1+ \pm 1$

BEST BRITISH P．V．C． RECORDING TAPES

 Volume Controls 180 ohm 0 CABLE Lnear or Log Tracks Lang spindles，Midget $\begin{array}{ll}\text { LS．} 8 /= & \text { D，} 2, ~ M e g ~\end{array}$ Semb－air spaced tin
 Ideal 625 iines U．H．F Stereo L／S 10／6；DP． $14 / 6$
$\mathrm{~lm} \log +\operatorname{lmA} / \log .7 / 6$ Low loss $\mathrm{KdB} 1 / 6 y \mathrm{~d}$. TELDPCOPIC CHROME TELESCOPIC CHROME AERLALS， 12 to 33ıu．，6／B， TRIPLEXERS Bande I．I1，III，12／B，COAX PLUGB 1／－ OUTLET BOXES（Aurisce or tugh）4／－
BRLANCED TWIN FEEDERS，6d．yd．， 80 or 300 ohm TWIN SCREENED， $1 /$－per 7ard， 80 ohmo only．

THE＂INSTANT＂BULK TAPE ERASER AND RECORD HEAD DEMAGNETIZER $200 / 250 \mathrm{~V}$ A．C． 35%

TIGH FIDELIT

 GROUP MODPLS FOR VOCALS

 BASS，LFAD and RHYTHM GUITARS Baig res， 80 c．p．s．，responge $20-10.000$ o．p．s． ＂GROUP 95 ＂ 10 in（or 8 ohmy to order）， GROUP 28＂12in．dis．， $25 w ., 12.000$ lines 5 gne． GROUP 85＂＇12in，dia．，35w．， 14,000 lines $8 \frac{1}{2}$ gns． LOUDSPEAKER CABIMETR．Rexine covered $17 \times 15 \times \sin .69 / 8 ; 16 \times 19$＝ 4 in $39 / \theta$ LOUDSPEAKERS P．M \＄OHM PAMOUS MAKES，
 finin， $16 / 6 ; 10 \mathrm{in} ., 30 /-; 12 \mathrm{in}, 30 / \mathrm{m}$ ；（ $15 \mathrm{ohms}, 85 / \mathrm{m}$ ）；
 EMI 13 ₹ $81 \mathrm{l}^{2}$ ，ceramic，donble cone， 3 or $150,45 / \mathrm{m}$ WAVE－CHANGE SWITCBES， 2 p． $2 \cdot$ ซay or 4 P． 3．way， $8 / \mathrm{g}$ esch 8 or 1 p ． 12 －way； 4 p ． $2 \cdot$ ．was or 4 p ． WATE－CHAYGE＂MA
WAVE－CHANGE＂MAKITS＂available， 1 p ．12－why， 2 p．6－way， 3 p．4－way， 4 p．3－way， 6 p．2－way．K Price， 1 wafer 8／6；2－wafer 12／6； 3 waier 16／－，Extm wafers 3／4 each，extra long shafts 2／－extra，
> tRADIO BOOKSt（P．P．9d．）
> Valves，Diodes，Transistor equivs． $10 / 6$ Transistor Audio Amplifler Manual 6／－ Heginnerg＇Modern Transistor Set Suboruiniature Transistor Receivers $5 / 6$ Boys Book of Crystal Sets
> ＂W．W．＂Radio Valve bata
> High Fidelity Speaker Enclosure TV Fault Finding
> Mullard Amplifer Manual
> Vaive Guide，Books 1，2，3， 4 or 5 Practical LRado Inside Out onsistor Communicaton Transistor Communication Sets Irangistor Controlied Modeis

JACKS Standand open－ciredt 2／6，closed Grundis type 3－pho 1／3．gitan Grundig type $3-\mathrm{pho} 1 / 3$ ；Standard Lead Type $6 / a$ Phone Plogg 1／－．Bocket $1 /=$ ．Hanana Plugs $1 /-$ BULGIN HON－REV PLOGS and SOCKITG 2－pin 4／8；P73 3－pin 4／8；P194 6－pin B／6；Pit 12／B
 H W．
10 ohms to 10 meg．
5 watt 0.5 to 8.2 ohm 3 W
10 watt 15 wLRE－WOUND RESISTORS
15 watt 10 ohms－ 6,800 obus
MAINS DROPPERS Midget
$1 \mathrm{~K} ., 0.2 \mathrm{~s} ., 1.2 \mathrm{~K}$ ．， 0.15 s, ， Wirewonnd Ext．Spearer Controls $10633 /-; 25 \Omega 6 / 6$ WIRE WOUND POTS 3 WATT．Pre－set Mia．，TV Types，All valuea 10 ohms to 25 K ．， $8 / \mathrm{m}$ each， 30 K． W／－（Carbon 30K to 2 meg．， $3 / \mathrm{F}$
Wharew SPEAKER IREPT Tygan various culours，52in．Fide EXom $10 /=\mathrm{ft}$ ．；26in．wide from $5 /-\mathrm{ft}$ ．samples A．A．R． ARDENTE TRANSISTOR TRANSFORME日g $8 f$－ Da085 7.3 CT． 1 Push－Puy to 3 ohms output $11 /=$ D3058 11．5：1 Output 3 ohms， $11 / \mathrm{D}$ D001， $18 / \%$ D238 4．5；1 Driver，11／6：D240 8．5：1 Driver， $11 / 6$ TRANSISTOR POTS 5 K Switched VC1545 $\quad 5 / 3$ UB MIN EARPIECE Xtal or Masnetio

JIN JACE AND PLUG 2.6 or 3.5 min ．， $3 / 6 \mathrm{pr}$
TV REMOTE CONTROL for Philips 19TG111A， 121A，125A．142A，23TG111A，113A，121A，131A， Pug－in，with 11tt，7way eable，a DP switohes，dual pot，volume and brightaess．OA81 diode ete．．etc．
List 3 gns，New，boxed．OUR FRICE $19 / 6$ post tree． Blank Aluminium Chassis， 18 s．w．g．， 4 bldes，riveted $9 \times 7 \mathrm{~m}, \mathrm{~b} / 6 ; 11 \mathrm{xin} ., 7 / 6 ; 13 \times 9 \ln ., 9 / 8 ; 14$ I 11 inn

IIMPROVED

Improved interial ussemblies

Re-styled scale plate for easy rapid reading. 2 basic scales, each 2.5 inches in length.

New standards of accuracy using an individual calibrated, cale plate: d.c. ranges 2.25% f.s.d. m.c. ranges 2.75% f.s.d.

Available accessories in clude a 2500 V d.c. multiplier and 5, 10 and 25A shunts for d.c. current measure ment.

As from Ist November 1965, Avo are operating a new nett Price List. Full details on request.

MM17

Have you sent for your copy? ENGINEERING OPPORTUNITIES is a highly informative 156-page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modera Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronic Courses, moministered by our Specialist Electronics Training Divisionthe B.I.E.T. Schoal af Electronsics, exphaing the benefits of our Employment Dept. and hows you how to quatify for five years promotion in one year.

SATISFACTION OR REFUND OF FEE.

Whatever your age or experionce, yon casnet atiord to miks repdiag thin famous book. If yon are earning

WHICH IS YOUR PET SUBJECT?
Mechanical Bna., Electrieal Eng., Civil Engineoring, Eadio Engineerio Antamobile Eng., Abronantion Kag Prildiag, Plastica Draughtim anthis. Telovision, oto.

GET SOME LETTERS AFTER YOUR MAME!

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

(Dept. SE/2I), 29 Wright's Lane, London, W. 8

PRACTICAL EQUPPMENT

Basio Practical and Theore fic Coarses tor beginners in Radio. F. V., Plectronios Ke., A.M.LE.B.E., City \&
\qquad B.T.E.B. Cortificate B.T.M.L. Certificate Praetieal Bedio Radio \& Trelevision Sorviah Prectical Flectronies Enctronis Engineocins Actamation
INCLUDING TOOLS! \rightarrow The specialiat Electronics Division of B.I.E. T. NoW offer you a real laboratory train. ing at horne with ractical equipmen
B.I.E.T. SCHOOL OF ELECTRONICS

East covedr now?

Fhate sead woe your FREE ISt-page "Emomeerang opporturities"

Mans
ampess

[^4]etc. The latter was used successfully without laminations and a tapping was soldered on after exposing the primary layers by bending back one of the end cheeks. The exact position of the tap was not found to be critical.

Practical Layout

No hard and fast rules are given as regards size of unit as this will be dictated b_{j} the components available to the constructor. If a $2 \frac{1}{4} \mathrm{in}$. loudspeaker is used an extremely portable unit may be built around it, particularly if resistance tuning is employed. Readers who are used to working from a theoretical diagram will no doubt have their own ideas about the practical layout and this should not present any problems. However, for the less experienced constructor and those who prefer to work from a wiring diagram a suitable layout is given.

A small tin box was used to house the experimental model, the loudspeaker and tuning control being attached to the lid. Construction was simplified as the tagstrip and the "earthy" side of components could be soldered directly to the case. One slight drawback was that initial tuning and calibrating had to be carried out with the lid closed as the proximity of the metal lowered the pitch about a semitone by increasing the inductance of the coil. With a plastic case the problem of hand capacity might arise.

A 9 V battery such as the Vidor VT3 was chosen because these are physically small but there is no reason why external batteries should not be used. Where space is no criterion a larger speaker may be utilised and this may have the more usual lowimpedance speech coil if it is connected through a transistor output matching transformer.
Advantage was taken of the case being metallic to solder one of the push-switch contacts to it, the other contact being soldered to one of the adjacent points on the tagstrip. A halt-men length of thick copper wite soldered to the "earthy" contact and fitted with a small length of sleeving serves admirably as a push button. A hole should be suitably drilled, as indicated in the diagram. for this to protrude slightly through the side of the case.
 Approximate values of the switched capacitors for the scale of A Major
(3 sharps). The values for the chromatic semi-tones lie approximately
half-way between adjacent notes. half-way between adjacent notes.

Fig. 4: Dial for the $2 k \Omega$ potentiometer in Fig. 2.

Calibration

Once the capacitors have been selected in the switched version a permanent scale can be accurately scribed as the 12 semitones will be equidistant on the positions of the switch. If the simpler resistor method of tuning is used, then there will be cramping towards the lower notes which could result in some slight pitch inaccuracies due to difficulties in reading the scale. Generally these would be too small to be serious.

Should the frequencies covered be too high in the musical range these may be lowered by increasing the fixed capacitor across the coil or, alternativelv, inserting an iron core in the coil.

A COMMENTARY BY HENRY
 practically
 WIRELESS

No. 17 Illogical Conclusions

THAT hilarious pantomime "The March of Progress" has earned a few deft sideswipes from Henry's bladder. Any jester worth his cap and bells could hardly miss a target so wide.

In the field of telecommunications it would seem that Progress -with a capital-is marching onward with the relentless determination of a hungry rhinoceros. Every trade magazine we pick up heralds new approaches, developments, devices and even ideas. Editors delight in crystal gazing or, unforgivably, reminding us how accurate their predictions of a half-century ago have turned out to be.

Bofins-not to be outdonebrush up their syntax and publish the intimate details of their experiments. Scribes like me absorb the gist and breathe out hot air about "The Sets of Tomorsow" or less precisely, "New Concepts". The innocent bystander may be forgiven for thinking us all a dynamic class of citizens, leading the backward plodders of Industry and Commerce into some brave new world beyond the horizon.

One has only to read the dismal history of Colour TV to see what is meant. In the November issue of Practical Television the Editor recounted his remarkable dream-which ended with a delegate to one of those interminable Colour Television Standards Conferences crying: "But do we really need colour TV?"

Mr. Sidney Bernstein and Lord

. . the relentless determination of a hungry rhinoceros.

Thomson, chairmen of Granada and Scottish Television respectively, have come out against premature launching. This does not mean that either of inese extremely astute gentlemen is a reactionary diehard. Their kick is not against progress, so much as against the effect mistiming of decisions may have upon their profits.

And to be sure, decisions are not likely to be timed at all if the last breakdown of talks, following hard on a hasty "final" SECAM demonstration, is indicative.

The ironic fact that Henry is trying to wrinkle out and lay before you, dear Reader, is that technical magazines were running series of articles on Colour TV Principles, or Servicing Colour Receivers as much as ten years ago.

These were based on American experience, to be sure. Yet it is worth remembering that it is only as lately as 1964 that the larger companies in the States were able to make Colour TV pay. Last year, for the first time, colour TV sales overtook black-and-white receivers. What price Progress?

Getting away from radio's foundling, let's ask each other: "What sort of wireless signal are you getting?" Short of stringing the surrounding rooftops with piano-wire pigeon traps and digging below plastic water-main level for the earth return, can you pick up interference-free programmes?

I thought not. Then, am I being naive in suggesting that a logical conclusion is some form of communal aerial system? To indulge in another Progress Prediction, the future should bring all communication services. radio, TV, what-have-you to the house via a single pipeline. Water, Gas, Electricity. Telecoms, each with its inaccessible stop-cock and horrible quarterly bill.

Rather like the Editor's dream, you may say. And after

Digging for the earth return.
reading of the furore at Cwmbran New Town last autumn, I'd be inclined to agree. There, the Corporation decided to be in the van of progress by wiring their beautifully planned houses for all services and putting a one-andsixpenny charge on the rates. But the concession was given to a relay company and the local traders came out strongly in protest to the local press. One can hardly blame them when the pipeline people are also their greatest rivals in the set retail business. There's not much living left in selling radiograms and tape recorders. Even if (see last month) Dame Progress hands us videotape on a plate.

The joke is that BBC? had just then opened in the area and both radio dealers and pipeline technicians were chasing madly up and down the Welsh Mountains in search of the u.h.f. signals. Considering the ban on rooftop aerials that is imposed in the New Town, developments should be of some interest to followers of the pantomime called Progress.
When colour TV does come along, we wonder what the residents who voted against the levy on the rates will say. Possibly : "I don't care about the bloke down the road, Jack, My 'Coronation Street' comes through OK".

That should please Mr. Bernstein, at least.

BEMTLEY ACOUSTIC CORPORATION LTD

Suppliers to H．M．Government． 38 CHALCOT ROAD，LONDON，N．W．I Telephone：PRIMROSE 9090
NEAREST UNDERGROUND：CHALK FARM．
ALL GOODS LISTED BELOW，ACTUALLY IN STOCK，ALL GOODS ARE NEW，BEST QUALITY BRANDS ONLY，AND SUBJECT TO MAKERS＇FULL GUARANTEE，PLEASE NOTETHAT WEDO NOT SELLITEMS FROM USED EQUIPMENT NOR MANUFACTURERS＇SECONDS \＆REJECTS，

$\mathrm{OAL}^{\text {ORe }}$	5／8		$4 / 8$	${ }_{7} \mathrm{BB}_{7} \quad 16$	$\begin{array}{l\|l\|l} & 2523 \end{array}$	$3{ }^{\text {A }}$（ $/ \mathrm{F}$		ER．34									
OBL	8／－	－ $3 \mathrm{C4}$	$2 / 8$	$7 \mathrm{C5}$ 8／－	$1-25 Z 60 \mathrm{~T} 8 /$		$17 /$	EB41	1／9		$7 / 3$	M1104 $7 / 6$	RGl	84	+301 C329		$\text { (11114 } 101-$
OR4GT	－1818	6C5	4／－	$7 \mathrm{Cb} \quad 8 / 8$	8 28177 $6 / 9$	9 － $\mathrm{C}^{\text {P }}$		EB91	$4 / 9$ $2 / 3$	EL91	2／6		6 EK34	$65 /$	U329		QET103 \％／－ （iET 10410\％
1A3	2／6	1806	$3 /-$	$7 \mathrm{C7}$ 5／－	－30Cl $6 / 6$	16 （7）		－EBC3	$20 / 6$	ELS 45	$5 /$	M10 $5 / 5$	$9{ }^{\text {¢ }} 330$		L14．3	9／6	（iET 10410／－ （：ET＇据17／6
TA4 1A5	12／6	（608	$3 / 6$ $10 / 8$	$\begin{array}{ll}7 \mathrm{DH} & 15 / 8 \\ 715 & 14 / 6\end{array}$	－ $300 \mathrm{Cl5} 1010$	$1-\mathrm{AC/BG}$	G $22 / 6$	EBC3\％	3i） $6 /-$	Finsi60	2\％／－	MS4B 20	$9 \mathrm{sP4B}$		1404	9	（：ET10円17／6 （1ETH1112／＝
147 GT	7／6	6010	10／8	$\begin{array}{rrr}703 & 14 / 6 \\ 7 \times 7 & 7 /-\end{array}$		19 AC／s		EBC41	$18 / 6$	ELL20	16／4	MnPl 12／－	SP130		USU1	15／2	（＊ET113 6／9
101	$4 /$	6C12	8／8	7H\％ $5 / 9$	$\begin{array}{ll}30 \mathrm{Cl} \\ 30 \mathrm{~F} 5 & 9 / 3 \\ 3 / 3\end{array}$	3 AC／TH	Hl $10 /$	EBC80	1 $6 / 3$ 18	EL822	2 22／6	MU12／14 $4 / 8$	6 NP＇41		V4020	6／6	GFT114 6／8
$1 \mathrm{C}_{2}$	$81-$	5CD6\％	18\％	7R7 12／6	30 F 5 $7 / 2$ 30 FL $9 / 8$	3 AC／TH	¢1 $10 /$	EBC90	$\begin{array}{ll}1 & 3 / 8 \\ 1 & 5 / 6\end{array}$	ELILS	（13／6	$\begin{array}{lr}\text { MX40 } & 8 / 8 \\ \mathrm{~F} 37 & 10 / 8\end{array}$	${ }_{8 P 42}$	12	VMP4	$11 /$	GETILIM\％
103	6／8	6CD 7	9／8	7 V 7 5／－	30FL	AC／	1	EBFso	（ $5 / 6$	EM34		$\begin{array}{cc}\text { N37 } \\ \text { N73 } & 10 / 6 \\ & 281\end{array}$			VMs	12	（E＇ГN73 9／3
105	5／－	6CH5	$6 / 6$	7Y4	10	AC	P2 121	EBFS3	（1）	E．a33		$420 /$－		27	$V \mathrm{PL}$		GET\＆74 9／6
100	10／6	6CW4	24／－	8 D 2	301.151018	ATP		LBF69	3			K168 26／2	T		VPeB	9	GEXI3 $3 / 6$
1 D 5	8／6	6D1	$1 / 6$	9BW6 ${ }^{\text {d }}$	$301.1711 / 6$	6 AZ1				71	15	N339 25／－	T1）${ }^{\text {a }}$	12	VP4	14	CEN：3）3／－
1DS	$9 / 8$	6D8	9／6	$9 \mathrm{O}_{2} 3$	$30 \mathrm{P} 412 / 2$	－AZ31					3	$3 / 6$	6 TlbL4		VP4A	14	CEX ${ }^{\text {a }}$ 10／－
1FD1	6／	6156	3／－	9107	$30 \mathrm{Pl2} \quad 7 / 6$	6 A 41					7	P51 2／8	TH4B	10	$\mathrm{V}^{2} 48$	12	GEX45 8／6
1 FD 9	$8 / 8$	OE5	$9 / 6$	10 C 1	$30 \mathrm{Pl6}$ 5／8	${ }_{\text {B } 36}^{\text {A }}$			6	EM884	81	PABC80 6／	THELC	C 10	VP130	へ	GEXis 11／6
196	6／－	6F＇1	9／8	10 C 2 12／	$30 \mathrm{P19} 12 /$	－B 349			4	EM85	818	PCs6 $9 / 8$	TH300	－14／0	ypes	$2 / 6$	GEX $6615 /=$
1H5GT	$7 / 6$	6F6G	$8 / 9$	$101) 17$	$30 \mathrm{PL1}$ 9／6	$8{ }^{6}$ B719	10／8	EC90	$4 / 9$ $2 / 3$	EM37	7／8	$\begin{array}{ll}\text { Pe88 } & 9 /- \\ \text { Pe95 } & 6 / 8\end{array}$	TH41	15／	VP41	6／－	MAT100 $7 / 8$
1L4	213	6F0GT	$7 / 6$	$10 \mathrm{D} 211 / 8$	30PL13 10／6	$6{ }^{\text {BLt } 3}$	$10 / 8$	EC91	2／3	EN31	10／－	PC95 $6 / 8$ PC97 $6 / 8$ 697	TH233	3 6／	VPl33	918	MAT101 8／6
1LA4	17／6	6F76	5）．	$10 \mathrm{~F} 1 \quad 10 \%$		$3{ }^{\text {a }}$	1	HC91	4／6	EN91	5／8 $5 / 6$	PC97 PCO4 P／8	TPロ：	5	VR75	21／－	MA ${ }^{1} 1208 / 9$
1HA6 1	16／10	6 Fb	51－	$10 \mathrm{Fo} \quad 9 / 8$	30¢ L15 9／8	6 CK506	12／6	ECO21	$6 / 6$ $7 / 3$		$5 / 6$ $7 / 3$	${ }_{\text {PCO }}$	TP25	－5／	VR105	$5 / 6$	MATİ1 8／6
11D5	4／－	6F12	3／－	10 F 18 ll 9／9	$\begin{array}{ll}35 / 51 & 12 / 6\end{array}$	$6{ }^{6}$	19／8	ECCS 2	$7 / 3$	FYol	$7 / 3$ $9 / 3$	$\begin{array}{lr}\text { PCC83 } & 6 / 8 \\ \text { PCC88 } & 10 / 8\end{array}$	TP＂520	2） $7 / 8$	VR150	$4 / 8$	OA5 6／
11， 5	$4 / 6$	$6 \mathrm{~F}^{1} 13$	$8 / 9$	10Lل3 6／3	$35 A 52019$	0 CL33		Lec3 3				PCC88 10／8	TYsibr	11／8	VT61．	71	OA10 6／6
1N5GT	$8 / 6$	6 Fl 4	28／5	10LD11 9／6	85L6GT 6／F	－ Cl_{6}		ECCs 4				${ }^{\mathrm{PCCR}} \mathrm{PCO} 11 / 6$	Uabç	50 5／6	VT501	8）	OA70 3／0
1 Pl	8\％	6F15	$6 / 9$	10 Pl 3 12\％．	35W4 4／8	－CV63	0／8	EO			，	PCCLs9 10／－	UA1＇42	$26 / 9$	VL111	$5 /-$	OA73 3／－
1 1P10	4／9	6F16	6／8	$10 \mathrm{P} 1411 / 6$	$35 \mathrm{Z3}$ 16／2	2 Cver1	12／6				$8 / 9$	PCFAO 6／6	UB41	1016	V「120	10／－	0474 3／．
1 P 11	5／－	6 F 17	12／6	1103178	35Z4GT 4／6	CV429	19／－	Eccal	816	L285	3／8	$\begin{array}{ll}\text { PCFxy } & 8 /- \\ \text { Prbs }\end{array}$	UBC＇41	1 6／3	VU12	10／－	04813%
1 RS	4／m	6Fl\％	18／5	$115517 / 6$	35Z5GT 5／9	CY	16／4	ECOs 2	4／6	E2740	$5 / 3$	PuF84 8／6	LBE＇d	1 6／3	VU133	7 I	OA85 3／－
184	5／－	$6 \mathrm{~N}^{\circ} 2 \mathrm{~B}$	$9 / 8$	$11 \mathrm{ES} 1 \%$	40SUA 6／6	CY10	＋6／6	k0083	4／6	E2，41	$5 / 6$ $6 / 3$	$\begin{array}{ll}\text { PUF88 } & 813 \\ \text { PC＇F801 } & 819\end{array}$	UBF80	0 616	W21	$5 /-$	OA86－／－
185	318	6F24	10／8	1246 8／3	41MTL 8／－	－CY31	5／9	ECC84	5	E241	$6 / 3$ $3 / 9$	PCFrol ${ }^{\text {P（PF802 }} 10 / 9$	UBF89	4 813	W42	12／－	OAy0 3／m
1 T 2	$291-$	6 F 32	3／－	12A8GT16／3	419TH 10\％－	－D1	1／3	ECC85	$5 / 6$ $5 / 9$	E2Z80	$3 / 9$ $4 / 8$	PCF802 PCF805 10／3	UBL2I	$110 / 9$	W61M	24／6	OA91 8／6
154	2／3	6 F 33	$8 / 8$	12AC5 8／6	42 5／－	－ 15	$15 / 6$	ECu48	8／9	EZ81	$4 / 8$ $3 / 9$	PCF805 $8 / 3$	UC0：	$8 / 3$	W63	10／6	OA95 8／6
144	6／8	$6 \mathrm{G6}$	2／6	12AD6 9／6	$4310 /-$	D42	$10 / 6$	ECC189	8／9	EZ．90	$3 / 9$ $14 / 6$	PCF806 19／9	UCus4	$8 /{ }^{\circ}$	W76	$8 / 6$	OA200 5／－
$1 \mathrm{U5}$	618	6E6	1／6	12AR6 $8 /=$	45 17／6	1×3	10／6	ECOC804	11／8	FC2	14／6	$\begin{array}{ll}\text { PCLEA } & 6 / 6 \\ \text { PCLS8 } & 9 / 6\end{array}$	UCO85	6／6	W77	$8 / 6$	OA211 18／6
247	12／6	6.55	3／－	12AH7 6	45260T $15 /$	1577	2／3／8	ECC80	8／9	$\mathrm{FCl}_{\mathrm{FCl}}^{\mathrm{FC}}$	8／9	$\begin{array}{ll}\text { PCL88 } & 9 / 6 \\ \text { PCL44 } & 7 / 8\end{array}$	UCF80	8／8	W81M	5／9	OAZ20012／6
2028	$2 / 9$	OJSGT	$4 / 3$	12AH8 $10 / 0$	50A5 $21 / 10$	DAC32	2／3	ECF80	15／3－	${ }_{\text {FCl }}$	14／8	$\begin{array}{ll}\text { PCLA4 } & 7 / 8 \\ \text { PCL85 } & 8 / 6\end{array}$	CCH21	$181 /$	W101	$26 / 2$	OAZ：203 9／8
2D130	71.	6J 6	3／－	12AT6 4／6	50B5 6／6	DAF91	3／8 $3 / 8$	ECF＇82	7／3	FC130	1．1－	PCL85 816	UCH48	8／－	W107	10／6	OAT204 9／6
2 D 21	5／－	6J7G	4／8	12AT7 $3 / 6$	50005 616	DAF96	－					L86 $\begin{array}{r}8 / 9\end{array}$	UCH81	8／6	W1729	17／6	OAZ210 7／8
2 XQ	3／－	6J7GT	71	12AU6 $5 / 9$	50CD6G40／9	DCe90	－	ECFS04	4 24／－	GT1C	9／9	PLLAR 12／8	UCLA	$7 / 8$	X14	$7 / 8$	OC16 W 35／
8 A 4	$8 / 9$	6K80T	5／6	12AU7 4／6	60L6QT 6／－	D1）4	$12 / 6$	ECH3	424／3	GU50	579	40D 84%	UF41	9／3	X18	$8 /$	OC19 26／－
8A5	$6 / 9$	6K76	1／8	12AV6 $5 / 9$	$52 \mathrm{KU} 14 / 6$	DD41	$10 / 6$	ECH21	10\％－	G730	55／6	PEN45 84\％＊	CF41 UF4？	8／9	X 24	$18 / 8$	OT 22 23／\％
3 B 7	5／－	6K7GT	1／8	12AX7－ $4 / 6$	53EU 14／8	DDT4	$7 / 6$	ECH33	22／8－	${ }^{4} 1832$	8／6	PEN45 ${ }^{\text {PEN }}$	UF43	4／9	－ 41	101－	0c23 87／－
$3 \mathrm{H6}$	$8 / 8$	6K86	8／3	$12 A Y 7 \quad 9 / 9$	72 8／8	UET＇25	716	ECH3	6\％	G1293	14／6	12\％．	TF80	$8 / 3$	X 61	$8 /-$	O（2）12\％
304	$6 / 3$	－K88TM	M8／6	12BA6 $5 / 3$	77 5\％	DF33	$8 / 6$	ECH42	6／5	G233	14／6	PEN46 12／－	C1F85	$8 / 8$	X 64	5／9	OC26 8\％
300GT	6／9	6 K 25	84\％	J2BE6 $4 / 9$	78 4／9	DF66	15／．	LCH81	5／9	${ }^{\text {a }}$（1837	$14 / 6$	PEN46 $4 / 7$	CE86	$9 / 6$	$\times 64$	$5 / 6$	642k 28／－
384	418	6 LI	101－	$12 \mathrm{BH} 78 /-$	80 5／3	DF72	30%	ECH83	6／6	H／237 H 30	14／8	PEN38310／8	UF89	$5 / 6$	$\times 65$	$5 / 6$	0С29 18／6
3）4	5／－	6 L 50	12／6	$12 \mathrm{El} 18 / 9$	83 V 81.	1）F91	2／3	ECH84	6／6 18	HABC80	9／8 9	PEN 4031） $10 / 6$	UL4L	$7 / 6$	د66	7／3	01433 9／6
4D1	819	6I6G＇T	7／3	12H6GT $1 / 6$	85 A2 6／6	DF＇96	6／－	EOLR0	5／8	HabCso HL2	－9／3 716	PENA $4^{10 / 6}$	U1．4	8／6	X 76 m	8／8	OC3is 21／6
SR4GX	8／8	6L7GTM	M 616	12J56T $2 / 6$	904G 67／6	DF97	101－	ECL82	8／8	${ }_{\text {HL2 }}$	7／6	PENA4 ${ }^{\text {PEN／D }}{ }^{\text {7／－}}$	ULX4	5／6	$\times 78$ $\times 79$	28／2	UC41 8\％
5T4	$7 /$	6L18	101－	1237GT 7／8	$\begin{array}{ll}\text { 90av } & 67 / 6\end{array}$	DH30	15／6	ECLS3	$8 / 6$ $8 / 9$	${ }^{\text {HLis3 }}$	12／6	PEN／DD 4020	CM4	$17 / 6$	${ }^{\mathbf{X} 79}$	27／0	OC4： $5 / \mathrm{L}$
3V4a	$4 / 6$	6119	19／．	$12 \mathrm{~K} 510 /$	CG 49%	DH53	＋4／3	ECL86	8／9	HL23D	12／6	4020 PFL200 90／5	UM34	$17 / 6$	X81M	2911	OC43 18／6
6V4G	8／－	61．03	0／6	12K7GT 8／8	90 CV 42／－	DH76	3／6	EFs	$20 / 6$	HL231	15／8	PFL200 20／5	UM80	$8 / 8$	$\times 101$	28／6	OC4 4／9
5Y8GT	419	6LD23	$6 / 8$	12K8GT 8／6	$\begin{array}{ll}90 \mathrm{Cl} & 16 \%\end{array}$	UH77	$3 / 6$	EF9	$20 / 6$	HLA1以	13／8	PL33 9／－	UR1C	6／6	X109	206／	OC44PM $8 / 8$
5Z3	6／6	6LD30	6／8	12476T 3／6	15082 18／6	DH81	28／8	EF22	20／6	H1420	D12／6		UUS	71／	X 118	$9 / 9$	OC45 8／6
$5 \mathrm{5C4}$	776	6N7CT	7／－	129A7UT6／9	$\begin{array}{rr}16082 & 18 / 8 \\ 10042 & 5 / 9\end{array}$	DH101	25／－	EF36	$6 / 6$ $3 / 6$	HL133 ${ }^{\text {H }}$	D12／6	$\begin{array}{ll}\text { PLi38 } & 16 /-\end{array}$	UU8	11／．	X119	$8 / 8$	OC45 M 8\％
$8 / 3019$	870	$6_{61}{ }^{\text {P1 }}$	9／5	12907 4／－	$\begin{array}{lr}161 & 15 / 8 \\ 161\end{array}$	DH1071	16／11	EFS374	3／6	HN309	25／6	PL81 $\mathrm{PLS2}$ $6 / 9$ 18	UU78	11／－	X 142	8／－1	OC6s 22／6
RA6G	\＄／9	${ }_{6} 8 \mathrm{P} 25$	$6 / 6$	128 Cl \％$/ \mathrm{F}$	161 185\％34／11	DH719	5／9	EF39	8\％\％	HN309	25／－	$\begin{array}{ll}\text { PLC82 } & 5 / 3 \\ \text { PLB3 } & 8 /-\end{array}$	UU8	14／2	$\mathbf{Y} 63$ $\mathbf{Y} 65$	$5 /-$	0 O64 25／－
6489	$5 / 9$	6P26	9／－	128178	185 BT 215 HG 3411 $6 / 6$	DK32	5／9	EF40	$8 / 8$	HVR2	$8 / 9$ $8 / 9$	$\begin{array}{ll}\text { PLB3 } & 8 /- \\ \text { PLS4 } & 8 / 3\end{array}$	UU9	$5 / 6$	Y65 763	5／8	0070 8／8
$6 \mathrm{AB7}$	4／：	6P28	$11 / 8$	12857 8／－	$\begin{array}{lr}215 N G & 6 / 6 \\ 220 B & 10 / 6\end{array}$	DK40	15／6	EF41	$8 / 8$	HVR2A	$8 / 9$ $5 / 6$	$\begin{array}{lr}\text { PLS4 } & 6 / 3 \\ \text { PL500 } & 15 / 9\end{array}$	UYYiN	4／3／3	Z63	$4 / 6$	OCT1 3／8
$6 \mathrm{AC7}$	$8 /-$	6Q7G	4／8	$129 \mathrm{K7} 3 /=$	$\begin{array}{ll}220 B & 10 / 6 \\ 301 & 20 /-\end{array}$	DK91	4／－	EF4：	$6 / 8$ $3 / 8$	1W4／350	－5／6	$\begin{array}{cr}\text { PLL600 } & 15 / 9 \\ \text { PY84 } & 9 / 3\end{array}$	UY1N	10／3	766	$7 / 3$	Oc72 8／－
6 6as	216	6870T	7／8	12897 8／－	$\begin{array}{ll}3(1) & 20 /- \\ 302 & 15 /-\end{array}$	DK92	$8 /-$	${ }_{\text {EFs0 }}$	2／9	1w4／350	（ 5／6	$\begin{array}{rr}\text { PY84 } & 9 / 3 \\ \text { PT15 } & 10 \%\end{array}$	UY21	9／－	777	$3 / 6$	0 O73 18\％
6AG7	$5 / 9$	6 KTG	$5 / 8$	124887	$\begin{array}{ll}302 & 15 /- \\ 304 & 15 \%\end{array}$	DK96	6／6	EF54	3／6－	KBCes	20／5	$\begin{array}{cr}\text { PT15 } & 10 / \% \\ \mathrm{PX4} & 8 / \%\end{array}$	UY41	$5 / 8$	$27 \div 9$ 7749	6／8	Oc74 8\％
¢AJō	8／6	6R7GT	11／－	12056%	$\begin{array}{ll} \\ 05 & 15 / 7 \\ 16 / 8\end{array}$	1）	$6 / 6$ $8 / 9$	EF3\％	3／－	KEC35	$20 / 5$ $12 / 6$	$\begin{array}{ll}\text { PX4 } & 9 / 5 \\ \text { PX25 } & 8 / 6\end{array}$	UY85	4／9	7749	$9 / 8$	$0 \mathrm{C75}$ 8\％
6AK5	$4 / 9$	68A7	3%	12 Y 4 2／－	$18 / 6$ $13 /-$ 18	1）L35	5／－	${ }_{\text {EF80 }}$	5／8		$12 / 6$ $11 / 6$	$\begin{array}{ll}\text { PX25 } & 8 / 6 \\ \text { PY31 } & 6 / 9\end{array}$	U10 ${ }^{\text {U12／14 }}$	$9 / 8$	7759	36／－	OC7E 8／8
6A K6	6／－	68C7	4／9	13115	（13／－	Llas	5／8	EF83	$4 / 3$ $8 / 9$	KL25	11／6	$\begin{array}{ll}\text { PY31 } & 8 / 9 \\ \text { PY32 } & 8 / 9\end{array}$	U12／14	${ }^{7 / 8}$	Transis	fors	0¢7\％12／
GAK8	6／9 6	689\％	719	13D3 9／－	307 11／9	DL72	15／－	EF85	$8 / 9$ $4 / 6$	K LLL3	21／\％	$\begin{array}{ll}\text { PY32 } & 8 / 9 \\ \text { PY } 31 & 8 / 9\end{array}$	U16	15／－	and diod	des	0¢78 8／－
6ALS	2／3	68G7GT	4／9	$14 \mathrm{H7}$ 9／8	956 2／－	DL75	301－	EF85 EF86	$4 / 6$ $6 / 6$	K ${ }_{\text {K }}$	5／\％	$\begin{array}{ll}\text { PY3i } & 8 / 9 \\ \text { PY80 } & 4 / 9\end{array}$	U17 U18／20	5／8	AAl20	4／8	OCb1 4／－
6AM5	2／6 0	68E7	3／－	15026	${ }_{1603}^{12031-}$	DL92	3／9	EF86 EF89	6／8 $4 / 3$	${ }_{\text {KT3 }}{ }^{\text {K }}$	15／\％	$\begin{array}{ll}\text { PY80 } & 4 / 8 \\ \text { PY81 } & 5 /=\end{array}$	U18／20	8／8	AA129	4／6	Gcisid 4／－
6AMB	9／－ 6	$68 J 7$	4／6	18 12／6	$\begin{array}{ll}1622 & 18 / 8\end{array}$	DL94	5／8－	EF91	$3 / 3$	KT32	4／9．	$\begin{array}{ll}\text { PY81 } & 5 / 2 \\ \text { PY82 } & \text { 1／9 }\end{array}$	${ }_{\text {U19 }}$	48／6	$\mathrm{A}^{(10} 10{ }^{\text {a }}$	14／6	Ocxis 8／－
6AQ5	519	38K7	$4 / 6$	18 10／6	2101 12／6	DL96	6／－	EF93	3／8 2／6	KT33C	29／1	$\begin{array}{ll}\text { PY82 } & 4 / 9 \\ \text { PY83 } & 5 / 6 \\ \text { PY8 }\end{array}$	U22	$5 / 9$	Ac－113	$81-$	0682 10\％
BARU 2	$201-6$	68L7GT	$4 / 9$	19 AQS 713	$408315 /-$	DLs 10	10／6	${ }_{\text {EF97 }}$	2／8	KT36	29／1	$\begin{array}{ll}\text { PY88 } & 5 / 6 \\ \text { PY88 } & 7 / 3\end{array}$	U45	$8 / 6$	ACl14	$81 /$	Oc8s 6\％
6AT8	$8 / 6$	6aN7GT	4／6	19BC6G80／5	4687 71／－	DMM70	10／6	EF98	10／－	KT41	$6 / 8$ $5 / 6$	PY8R PY800 $5 / 3$ 18	U2H	$7 / 6$	Acti ${ }^{7}$	9／6	OC84 8／\％
6A U6	$5 / 9$	6SQ7	$6 /$	$19 \mathrm{H1} 8 / \mathrm{c}$	5763 7／6	UM71	9／9	EF183	9／9	ET44 KT （61	5／9	PY800 PY801 76 186	U31	6／6	A1140	25／6	H1539 12\％
6A Y\％	516	48 T 71	12／8	$20 \mathrm{D} 1 \mathrm{l}^{2} \mathrm{f}$	6067 10／－	DW4／350	$\begin{array}{r}\text { 9／9 } \\ \hline 8\end{array}$	EF184	$7 / 8$ $6 / 6$	KT61	6／9 $3 / 9$	$\begin{array}{ll}\text { PY801 } & 7 / 6 \\ \text { PY30 } & 8 / 6\end{array}$	U33	$13 / 6$	A F＇tos	$27 / 6$	$0 \cdot 140$ 19／－
$6 \mathrm{B5G} 12$	216	6887	2／－	201228	71931	DW4／500	08／6	EF184 EH90	$6 / 6$ $9 / 6$	KT03	$3 / 9$ $12 / 3$	$\begin{array}{ll}\text { PY830 } & \text { 9／8 } \\ \text { Q1＇21 } & 5 /-\end{array}$	U35 U37	18／6	AF14	$11 / 6$	Or，170 8 8／8
83889	216	6U4GT	$8 / 6$	$20 \mathrm{~F}^{4} 2 \quad 11 / 6$	7475 2／9	DY86	6／8	Ehis	519	KT74	$12 / 6$	$\begin{array}{ll}\text { Q121 } & 5 /- \\ \text { QP22B } & 12 / 6\end{array}$	U47	29／－	AFllio	10／6	OC171 0／\％
6 BA 6	$4 / 8$	6U5G	$5 / \mathrm{m}$	20 L 119	$9004 \quad 4 / 6$	DY87	$7 / 6$	LL22	10／8	KT88	12／6	QP22B $12 / 6$	U48	$15 / 6$ $8 / 6$	AFlif	10／6	$0620010 / 8$
6 BEG	$4 / 3$	6U76	$71-$	20 P 11216	9006 216	E80w	24f－	EL33	8／6	KTW61	28／8	QQVO3／10 $35 /$－	U57	8／6	${ }_{\text {AF11 }}$	8／6	OC201 29／－
6BL6	$5 / 36$	6V6G	$8 / 6$	20P3 19／－	41834 20／－	F83F	24／－	EL34	$8 / 6$ $9 / 9$	kTw61	$4 / 8$ $5 / 6$	Q ${ }^{\text {Q }}$（5180 $10 / 6$	U50	$4 / 9$ $4 / 6$	AF118	20／－	Oc203 14／\％
${ }_{6}^{68.6}$	$5 / 66$	6V6GT	$5 / 6$	20 P 4131.	ACO44 9／－	E684\％	18／6	EL35	10\％	KTW63	$5 / 6$ $5 / 6$	Q87520 10／6	U52	$4 / 6$ $4 / 6$	A Fives	11／－	Occe ${ }^{2} 10 / 6$
$6 \mathrm{B45}$	$4 / 6$	$6{ }^{6} 4$	$3 / 8$	$20 \mathrm{P5} \quad 11 / 8$	AC2HL $10 / 6$	E180F 1	19／6	ELis6	8／9	KTV41	$5 / 6$ $5 / 6$	QS150／159／6 Rio 15／－	－7\％	$4 / 6$ $3 / 9$	AFI25	10／6	OC206 10／6
${ }^{68 \mathrm{BP7A}}$	7／6 616	6×5	5／3	25ABG 7／8	AC2PEN 11／6	E1148	$11 / 9$	EL37	12／3	LCB4	5／6	$\begin{array}{ll}\text { Rio } & 15 /- \\ \text { Ri2 } & 5 / 6\end{array}$	［18	$3 / 9$ $19 / 6$	AFl26 AFl27	16／6	OCP71 27／6
$6 \mathrm{BR7}$	$8 / 86$	$6{ }^{67} 1$	12／6． 2	$25 L 6$	AC2PEN1	EA50	1／6	ELal	$12 / 8$	LN152	5／9	$\begin{array}{rrr}R 12 & 5 / 6 \\ \mathrm{R} 15 & 29 /-\end{array}$	L101 V 107	$19 / 6$ $17 / 6$	AFlo	98／6	ORP12 $12 / 6$
6BR8	81－ 6	624／84	$5 / .2$	25U4G＇T1a／7	DD 12／6	EA76	6／9	EL．42	718	LN152	5／9 $9 / 6$	$\begin{array}{ll}\mathrm{R} 16 & 29 / 6 \\ \mathrm{R} 17 & 17 / 6\end{array}$	प107 1191	$17 / 8$ $9 / 6$	AF7，${ }^{\text {d }}$	28／8	ORPl2 $12 / 6$
6887	3／－ 6	6Z5G	15\％－	$25 \mathrm{y}{ }^{2} 719$	AC5PEN $/$	EABCSU	6／9	EL81	$8 / 3$	LN319	$9 / 6$ $9 / 6$	$\begin{array}{rr}\mathrm{R} 17 & 17 / 8 \\ \mathrm{R} 18 & 9 / 6\end{array}$	1.191 $C 551$	$9 / 6$ $9 /-$	13 Y 10 y BY 105	8／．	TH2 12／6
68W6	$7 / 67$	7471	12／6 2	25Y5G $7 / 9$	DD 23／8	EAAC91	3／3	$\begin{aligned} & \text { EL8I } \\ & \text { ELS. } \end{aligned}$	$8 / 3$ $6 / 9$		$9 / 6$ $9 / 6$	$\begin{array}{ll}1218 & \text { 9／8 } \\ \text { 1219 } & 8 / 9\end{array}$	C451	9／－	BY105	13／6	TAS 15／－
6BW\％	51.17	786 1	12／6	2574G 6／6	ACAPEN 4／9	EAF42	$3 / 8$ $7 / 8$	$\begin{aligned} & \text { ELS3 } \\ & \text { ELo4 } \end{aligned}$	$8 / 9$ $4 / 6$	Ľ319	$9 / 6$ $8 / 6$	$\begin{array}{ll}1219 & 8 / 9 \\ \mathrm{R} 52 & 7 / 8\end{array}$	U281	$8 / 9$	GD3	5／6	V10／15A12／．
			120	2024 $6 / 6$	ACbPEN 4／9	EAF42	$7 / 0$		4／6	LZ319	8／6	R52 7／6	U282	12／3	G116	$5 / 8$	XA108 15／\％

WEREQUIREFORPROMPT CASHSETTLEMENT ALLTYPES OF VALVES，LOOSE OR BOXED，BUT MUST BE NEW

EXPRESS POSTA

R．S．T．VALVE MAIL ORDER CO．

21Ia STREATHAM ROAD，MITCHAM，SURREY
Mon－Sat． 9 a．m． － 5.45 р． m
Wednesday I p．m
Open Daly to Callers
Tel．MiTcham 6202

0 A 2	5／3	tBR7	10／6	6 Ll	0／8	10 LD 11	101－	$30 \cdot 1$	8／6	ATP4	1／9	341		EFY		－itur				1.83	819
UC＊3	5／3	¢BR6	716	6L6G	$7 / 1$	101P13	12／6	30177	12\％－	A＇TPs	$7 /$	EBC\％3	61－	EFI\％	$8 / 8$	－10y					
1 A 7	$7 / 9$	6BS ${ }^{\text {a }}$	15／－	61．14	716	1：2A14s	10／6	3015	9／－	ATP＇	4／6	EBCHL	4／6	EF1．44	$8 / 6$	cifi	／－				
105	6／－	61366	8／6	6074	5／6	izato	$4 / 6$	30 FH Le 1	$10 / 6$	Alje	d0／－	EB	S 6		$17 / 6$	$0 \% 4$	4／－	1219	7／－	1.44	$5 / 6$
145	$7 / 6$	新W7	8／6	647\％T	91	1：A＇T7	3／3	301.15	12／8	A 21		Eßう，	$\stackrel{5}{7 / 3}$	E1．34	17／8	PC5	10\％	R（i5\％\％00		（1）0	$7 /$
1 L	51.	6 CH	1／9	64.7	$8 /$	12A16	$5 / 9$	301.17	12／8	AZ1	$8 / 9$ $7 / 18$	1；Brys	519	E1．41	$7 / 3$	PC	$8 / 3$		59／－		3／6
IN5GT	8／－	6456	$41-$	6 H	8／6	IDA117	5／－	30 Pr	141\％		$12 / 8$	EBLI	$17 / 6$	E1．4：	$7 / 8$	P！97	$7 /-$	5130	10\％	V7	10／6
18．5	6／－	6 t	$3 / 8$	$6{ }^{6} 177$	$4 / 5$	12AX7	$4 / 6$	$301 \mathrm{Pl}{ }^{\text {a }}$	11／－	CK 502	$12 / 8$	F，HL：	$10 / 6$	ET．54	$4 / 6$	PCCs4	5／6	8 P 4	9／－	T＂9	$81=$
154	5／－	ccsa	81.	$68 \mathrm{H7}$	$2 / 6$	12HA6	$6 / 1$	$30 \mathrm{I}^{2} \mathrm{~L} 1$	112／6	CK．302	12／6	E．ecta	\％ 70	EIIS 9	6%	P（4）${ }^{\text {c }}$ ）	$8 / 6$	HP^{4}	$1 / 6$	－${ }^{-1}$	\％／8
125	318	bCDeat	$22 / 6$	68． 77	5／－	${ }^{2} \mathrm{RBE6}$	4／8	30 PL 13	$12 / 6$	C1，33	$12 / 6$	ECCMI	$3 / 3$	E1．93	81	Proses	101－	8 Pr 1	$1 /-$	Y 41	$4 / 6$
174	2／8	60hts	81－	¢8K．：T	$4 / 9$	12 BH	$5 / 9$	301L14	12／6	U431	${ }_{7 / 6}^{101-}$	ECcest	$5 / 5$	EMi34	91.	$\mathrm{p}^{\text {Proma }}$	8／6	${ }^{3465}$	19／6	UY8，	4／9
3 A 4	3／6	90．W4	14／－	felatit	$4 / 9$	124.89	$7 / 6$	35 A5	171－	Dac32	$7 / 6$ $3 / 3$	Eccsa	4／6	EM801	6／－	PTFs？	$6 / 5$	862150	$12 / 6$	CR97	27／6
3 L 4	6／8	6L6	$2 / 8$	68N76\％	4／－	12 N 1	19／8	${ }^{35} 5$	$5 / 9$ 419	TAF9L	313－	ECes 4	$4 / 6$ 516	EMB1	$7 /-$	PLWM	8%	T＋L	81.		B
3Q5	$6 / 6$	1） $\mathbf{E} 5$	519	$6{ }^{6} 97$	81.	195559	$2 / 3$	35 W 4	$\begin{array}{r}4 / 9 \\ \hline 101\end{array}$	DAF96	6／－	Ecres	519	EM8，	61－	PC1＊＊	$8 / 6$		$7 /$		30／－
384	$4 / 8$	－${ }^{\text {F＇1 }}$	9／－	6U4GT	10／－	10376it	7／3	3．）／4	101－	Ince90	7／．	Lersy	$8 / 9$	E8L1．	2718	Pr＇rayl	$9 / 8$	TH41	$201-$		
361	$81-$	5456	5＇	6U5（	$7 / 6$	12ん70＇下	3／－	35\％40T	$3 / 9$	［ F^{3} 3，	8／－	ECuma	8／8	EY51	$8 / 6$		$9 / 9$	－111	\％ 7		30／－
5 R 44	8\％	6FGd	4／－	6）M	8／－	12K8けT	$8 / 3$	$352 \overline{5}$	$5 / 6$	DF\％	51／	ECFE＊	$6 / \mathrm{C}$	EY44；	$8 / 3$		1016	U14	7\％－	MP	171－
－U44	$4 /-$	－F\％	4／6	6Vb4	3／6	1．07，	$3 /-$	37	5／2	1）PGI	$2 / 6$	Ecrex	6\％－	EZai	$4 / 9$	PUESU0	12／－	C19	30／－	R105！	$3051-$
5 V 44	8／－	6F11．	12／6	6VmbT	71.	12AA7	6／6	42	4／8	DF92	$2 / 6$	ECHES	$19 / 5$	EZ40	$5 / 6$	PCFs	12／6	（025	101－	V Rijol3	305.
5Y3GT	4／6	6F13	$5 /=$	$6 x^{4} 4$	$3 / 6$	$12 \mathrm{SG7} 7$	$3 / 6$	50 B 5	${ }_{8 / 3}^{6 / 8}$		6／1－	ECHH35	81－	ERCX	6／6	PCLAz	616	U20	10／．	T＂45	12／6
$5 \mathrm{Z}+\mathrm{GT}$	81	6 FL 4	12／6	6．259	4／9	1 LSH 7	$2 / 9$	50×5	6／3	DH7\％	$8 / 6$	ECHI81	8／6	ELCB0	$5 / 6$	PCL88	8／－	U7	3／6	VT31	59／－
6／30L8	10／－	EFU3	$9 / 6$	$6 \mathrm{C} 5+5$	$7 / 8$	1：38．17	$8 / 9$	5015	124／9	DKさ2	$7 / 9$	ECHs	$8 / 6$	EXZS1	3／8	PCLS4	77	U191	11／－	［111	6）－
6 A7	15／－	$6{ }^{1} 16$	$2 / 6$	786	11／－	12.8 K 7	2／9	dir	6／－				$6 /$.	4，230	$8 / 6$	PCL8：	$7 / 3$	U231	11／6	Vi20	101－
6 ABG	6／6	6F5	1／3	787	7\％	128R7	3－	75	$51-$				$8 / 8$	1：733	$91-$	PuLats	819	U301	12／－	C5518	251－
6 AC7	$8 /$	6J5M	6／6	7 C 5	101．	$14 \mathrm{H7}$	20／－		4／6		71		$8 /$	－	$9 / 8$	PENA 4	201－	U403	6／6	W814	5
6 AK5	4／6	6.55 F	$2 / 6$	$7 \mathrm{C6}$	8／－	19 AQ	$7 / 6$		0		$4 / 9$	ECLM	$8 / 6$	KT3	22／6	PENB4	20）	Uल61	18／6	$\times 78$	28／6
$6 \mathrm{AL5}$	31－	6J5GT	4／3	7155	$8 /-$	2011	10／－	$8{ }^{\text {a }}$ A2	801 $8 / 8$	$1) L 03$	4／8	EF9	2015	－	$17 / 6$	EN4	6／－	tabca	5／6	$\mathbf{X} 79$	25／－
6AM5	$2 / 6$	${ }_{6}{ }^{3} 6$	$\stackrel{*}{10}$	$7 \mathrm{H7}$	5／－	$20 \mathrm{~F}^{2}$	$19 / 6$	80．20	818	$1 \mathrm{DL93}$	6／6	EF36	31－	K T66	121．	EN	2／9	1FAF42	$7 /$	X $111-5$	5／－
6AM6	$2 / 9$	6．37M	\＄／6	7 F 7	18／－	20 LI	12／6	150B2	$11 / 6$	${ }_{\text {D1，}} \mathrm{DL} 9$	$8 / 6$	EFF37A	$9 / 6$	K181	10\％	PL36	$9 / 6$	U PC＇1	$6 / 6$	XP1－5	51－
$6 \mathrm{AQ5}$	6／－	$6 J 76$	$4 / 3$	$7 \mathrm{S7}$	18／6	20P4	14／－	150C4	12／8	101,96	81.	EF39	$5 /-$	KT＇48	20\％－	ILB1	7.	UBC－ 1	71	XSG1－5	10／－
6487	22／8	6J7GT	71.	7 Y 4	5／－	20 P 5	12／6	801	$7 / 8$	10M70	$51-$	EF41	$8 / 6$	KTwi	4／3	$\mathrm{PLLS}^{\text {P }}$	$5 /-$	UBE80	5／9	Y 63	$7 / 6$
6AT6	$3 / 6$	6K6GT	$5 /$	98W6	8／\％	25 Ab	$6 / 6$ $4 / 6$	807	10／－	DY86	7／－	EF50	21.	KTとき1	8／－	PL83	$6 /-$	U EF59	6／3	3 ECl	$401-$
6AUB	81.	${ }_{6}^{6 K 7 M}$	5／8	10 Cl	9／－	${ }^{2515 Y}$	6／－	806 9.54	101－	DY87	718	EPM0	$4 / 6$	mLa	17／6	PL®：	$6 / 3$	UCC84	816	3FP7	12／6
6B8G	$2 /$.	6K7	1／3	10 cz	12／6	${ }^{25 Y 5}$	6／\％	16.25	5／－	2884C	14／－	EF85	$4 / 8$	MLO	$12 / 6$	PL500	14／6	UC085	616	5 CP 1	30%
6BA6	4／9	6K7GT	4／6	10 Fl	12／6	2524 3525	$6 / 3$ $7 /-1$	1625 4028	5／－	EA50	2／－	EFti	8／6	MSP4	$12 / 8$	PX4	18／6	UCF80	$8 / 6$	CV1526	401－
6BE6	$4 / 18$	6K8M	8／6	10F3	12／6	3525 2586	8／6	4026AB	10／6	EABC80	8／6	EF89	4／－	MU14	4／－	PY3\％	$8 / 6$	UCH42	71	ACR13	
${ }^{\text {6BH6 }}$	716	6 K 8 G 6 K 8 T	8／8	10 Fr 18	9／－	2807	5／－	7198	1／6	EAFter	$7 / 6$	EF91	$2 / 9$	MX 40	12／6	PY81	5／8	UCH81			8.0 .0
$6 \mathrm{BQ74}$	7／6 $7 / 8$	6K26	$801 /$	10 Ll	10／－	$30 \mathrm{cl15}$	9／6	7475	$2 / 6$	EB41	4／6	EF92	$2 / 6$	N37	10／－	PY82	$5 / 6$	UCld			

SPECIAL 24 HOUR SERVICE
OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED
Pestege 64．per Valvo．
C．W．O．No C．O．D．

Special 24 Hour DAF91，DF91，DK91，DL92，DL94
Set of 4．19／－ Express Mail Order Servica

4／－

HOME RADIO LTD

187 LONDON RD．，MITCHAM
SURREY．＇Phone MIT 3282

Santa appreciates a good catalogue when he sees one，so perhaps he can be forgiven for getting so absorbed in a HOME RADIO Catalogue that Rudolph has to remind him how time is slipping by！ Perhaps one of the copies in that pile on the floor is earmarked for you，but to be on the safe side send off the coupon below with your cheque or P．O．＊
Time is slipping by ．．．act now！
＊The Home Radio Components Catalogue has 210 pages，listing 5,800 items， 900 of them illus－ trated．This bumper Catalogue，plus a 21－page supplement and a Semi－Conductor Centre brochure， is yours for 9／－（7／6 plus $1 / 6$ p．\＆p．）．Every catalogue contains five coupons，each worth one shilling when used as directed．

Please write your name and address in block capitais

NAME \qquad

ADDRESS

by J. B. WILLMOTT

IN a recent article in this magazine, describing the numerous uses to which the EF50 type valve, now so widely obtainabie from advertisers in this magazine at give away prices (freyuently as little as 1 s .6 d . each), the author made reference to a receiver designed and constructed over 10 years ago. This has given completely trouble free service, and accordingly a further prototype has now been constructed, using components currently obtainable. The receiver described here follows closely along the lines of the original design: it is capable of giving really good quality reproduction of local Medium and Long Waveband BBC programmes in good reception areas.

Obviously no "straight" (or superhet) receiver can give the same freedom from background noise or interference by Continental stations after dark.
as an f.m1. receiver; but in areas of good BBC reception, extremely good results are assured, at a fraction of the cost of purchasing or assembling an f.m. receiver. In areas where the Light Programme is strongly received on Medium Waves, such for example as London, the Long Wave tuning coils and the attendant complication of wavechange switching, can be omitted entirely.

A double-wound mains transformer is specified and thus the chassis of the completed receiver is completely isolated from the mains supply and therefore safe to handle. A direct earth connection is recommended and it is surprising how much improvement in performance and lowering of background noise results from this often neglected connection.

Layout is not unduly critical apart from the

Fig. 1: Complete theoretical circuit diagrom.
essential need to separate the r.f. and detector tuning circuits (achieved by mounting the respective tuning coils above and below chassis respectively) but it is suggested that the layout shown in Figs. 2 and 3 would be difficult to improve upon as it results in a neat and symmetrical disposition of components as well as ensuring shortness of wiring. A full list of all components required is given and there should be no difficulty in obtaining any of them from component stockists.

Briefly the circuit comprises an r.f. amplifier stage (V1), followed by an infinite inlpedance detector (V2), noted for its low distortion. Then follows an a.f. amplifier stage (V3), feeding into the power output stage (V4) power being supplied from the mains through a double-wound mains transformer with full-wave rectification provided by V5.

Fig. 2: Suggested underchassis layout.

Preparation of Chassis and Component Mounting

A ready-made four-sided aluminium chassis, dimensions 10 in . $x 7 \mathrm{in}$. $\mathrm{x} 2 \frac{1}{2}$ in., which is a "standard" size, is specified and the details of drilling to be carried out are clearly shown in Fig. 3. The sizes of the various holes can be found by reference to the chart at the top of the diagram. The large valveholder cutouts are not all of the same size, a point which must be borne in mind, those for V1, V2 and V3 being $1 \frac{1}{2}$ in. diameter, V4 and V5 are $1 \frac{1}{8} \mathrm{in}$. diameter and the hole to accommodate C13 should be $1 \frac{1}{4} \mathrm{in}$. diameter. Established constructors will no doubt have the necessary range of screw-up-type hole cutters for the purpose but with patience these holes can be made by drilling a series of small holes around the circumference of each large hole, pushing out the centre blank and cleaning up with a file. This is admittedly somewhat tedious and investment in a set of hole cutters is strongly advised if any quantity of constructional work is envisaged in the future.
It will be noted that three of the holes marked "D" on the upper chassis surface and a further hole on the rear chassis should be fitted with rubber insulating grommets. It is through these holes that leads carrying mains supply or mains transformer connections will pass. The exact position of fixing holes for valveholders and the mainc transformer are best marked out on the chassis surface, using the actual components as a template. Make certain that the valveholders are positioned so that the locating spigots take up the direction indicated by the spigots in Fig. 2. The fixing holes for the two-gang tuning capacitor and the "I.B. Full Vision Dial Assemblv" are clearly shown. Obviously if any other make of tuning capacitor or dial assembly is used the position of these fixing holes will need to be amended. The
two holes " D " near the centre of the area occupied by the gang capacitor provide for connecting wires to the lower tags on the fixed plates of this component passing through the chassis to the wavechange switch.

Mounting of components can begin as soon as all drilling is completed and it is recommended that all valveholders be fitted first, using 6BA nuts and bolts. A solder tag should be secured under the chassis to the fixing bolt nearest pins 1 and 9 on V1 to V3 inclusive and nearest to pins 1 and 8 on V4. A further solder tag should be secured above chassis on the fixing bolt of V1 valveholder nearest the holes " E " midway between L 1 and L 2 positions and also to the fixing bolt of valveholder V5 nearest to the mains transformer.

Attention should now be turned to fixing the full vision tuning dial asserribly. This dial provides three-waveband indication but the short wave band is, of course, ignored in this design. The two-gang tuning capacitor is mounted on long 4BA bolts, using additional nuts (or brass spacers) to support it at the correct height above chassis for the spindle to accurately register with the driving boss on the drive assembly. Check to ensure that the drive operates smoothly and without strain before finally tightening the mounting bolts of the gang. It is advisable to solder a 6 in. length of connecting wire to each of the two-gang lower tags before mounting the component. these wires being fed through the appropriate holes "D". Ultimately they will be cut to length and covered by insulating sleeving when wiring-up is carried out.
Next mount the mains transformer. seeing that the primary winding tags are nearest the side of the chassis. This will ensure that mains supply leads coming up through the single hole " D " are conveniently placed for connection to the primary winding, whilst secondary winding connections

CHOOSE THE RIGHT COURSE FROM:

RADIO AND TELEVISION ENGINEERING, INDUSTRIAL TELEVISION, RADIO AND TELEVISION SERVICING, ELECTRONICS, COMPUTERS AND PROGRAMMING ELECTRONIC TECHNICIANS, SERVOMECHANISMS, TELEMETRY, COLOUR TV, ANSTRUMENTATION, AND PRINCIPLES OF INSTRUMENTA
AUTOMATHON.

ALSO EXAMINATION COURSES FOR:

Inst. of Electronic and Radio Engineers
C. \& G. Telecommunication Techns'. Cert.
C. \& G. Supplementary Studies
R.T.E.B. Radio/TV Servicing Cert,

P,M.G. Certiticates, Radio Amateurs' Exam.

LEARN AS YOU BUILD

Practical Radio Courses: Gain a sound knowledge of Radio as you build YOUR OWN 5-valve superhet Receiver and Transistor, Portable Signal Generator and High Quality Multitester. At the end of the course you have invaluable practical equipment and a fund of personal knowledge and skill. ICS Practical Radio Courses open a new world to the keen amateur.

MEMBER OF THE ASSOCIATION OF BRITISH CORRESPONDENCE COLLEGES

there is an PS course for you

Whether you need a basic grounding, tuition to complete your technical qualifications, or further specialised knowledge, ICS can help you with a course individually adapted to your requirements.
There is a place for you among the fully-trained men. They are the highly paid men-the men of the future. If you want to get to the top, or to succeed in your own business, put your technical training in our experienced hands.
ICS Courses are written in clear, simple and direct language, fully illustrated and specially edited to facilitate individual home study. You will learn in the comfort of your own home-at your own speed. The unique ICS teaching method embodies the teacher in the text; it combines expert practical experience with clearly explained theoretical training. Let ICS help you to develop your ambitions and ensure a successful future. Invest in your own capabilities.

FILL IN AND POST THIS COUPON TODAY

You will receive the FREE ICS Prospectus listing the examinations and ICS technical courses in radio, television and electronics. PLUS details of over 150 specialised subjects.

TEST METERS

20,000 O.P. $\overline{0}$. MODEL TP E8. Reads voltage up to 1,000 D.C. at 20,000 obme per vott and A.C. at 10,000 O.P. V.: D.C. Current to 500 mA A; Reqiofinace
 8,000 O.P.V. MODEL TP 10. Eeads A.C. and D.C. Resistance to 1000 D.C. Current 1 Resistance to
Decibels from
20 Audio Mesosurements. Bize $31 \times 5 \times 1$ inin. \$3.19.6.
30,000 OHis PER VOLT MODEL 500. Reads voltages up to 1,000 D.C. at 30,000 ohma per volt and A.C. at 15,000 O.P.V.; D.C. current to 122 ampa. Resistance to 60 Mege, Decibels from - 20 to +56 ; incorporates intornal buzzer for audible worning of direct shorts and blocking condenser tor A.F. output
$\times 2$ 2in., 88.10 .6 .
20,000 OHMS PER VOLT TESTMETER MODEL 700. Reads A.C. and D.C. voltages up to 5,000 . Alternating and Direct Current up to 10 amps. Realstance up to 50 Megohms, Declthels from -10 to $d 2 \mathrm{~dB}$. Intornal buzaer for audible warning of short circuits or continuity and Aitted with Metar size $4 \frac{1}{2} \mathrm{in} . \times 2 \mathrm{jin}$., overall dlmension 7 hin. \times $5 \mathrm{I}_{\mathrm{j}} \mathrm{n} . \times 3$ itin. Has rigid handle which can be swivelled for use as a tilt support. ONLY 817.10.0. TRAASISTORIEED TEST EQUIPMENT FUIIY guarantead, brand new. By NOMBREX; 150 E.c/8.- 350 Hic/a. 8ignal Genarator, 88.10 .0 . Realstance-Capaiditance Bridge, \&8.5.0. 1.10 Voita 10100,000 e/sm 10.18.0. Inductanco Bridge, $101800,0$.
VAL FE VOLTMETER. D.C. Input Impedance 11 Megohnas. 7 Voltage ranges, D.C. to 1,500 A.C. to 1,500 R.M.S. 4,200 Peak to Peak. Resistance .2 ohm to 1,000 Megohms. Ventre zero seiting for racelver allgnment. Complete with A.C./D.C. probe and leada Full illustrated details on requeat. ONLY 813.18.6 (Post 3/6).
FREQUENCY METERS TYPR LM. Frequency range $125-20,000 \mathrm{kc} / \mathrm{s}$, in 2 bands. This is the UC221 Frequency Meter, but ham many additional features which incresse its usefuluess. Voltage stabulisation circuits and Crystal control ensure extreme accuracy and in addition it is fitted with an Internal Modulation switch to allow use as a 3 igral Generator. Size oniy $8 \frac{1}{2} \mathrm{in} . \times 8 \mathrm{in} . \times 81 \mathrm{in}$. ONLY £15.
variable voltage traisformers. Fuly shrunded. Input 230 v. A.C. 50/60 cycles, Output
 STANDARD TRANSFORMERS
Vacuum impreguated, interleaved E.s. screen Universal mounting. gize $4 \operatorname{in} \times 34 \operatorname{in} \times 24 \mathrm{in}$. ALL BRAND NEW $18 / 8$ each. Poft $2 / 6$ Type 1. $250-0-250$ v. 80 mA ., 6.3 v .3 a . tapped a $+\mathrm{\nabla} .4 \mathrm{a} .6 .3 \mathrm{v} .1 \mathrm{a}$. tapped at 4 v . and 5 v .2 a Type 8. Ah aibove but $350-0-350 \mathrm{\nabla} .80 \mathrm{~mA}$. Type a. 30 v. 2 a, tapped at 12, 15. 20, and 24v.

harRIS ELECTRONICS

(London) LTD.

I38 GRAY'S INN ROAD LONDON, W.C.I

Thlephone: TERminur 7937
Plase inciude carriage cost on ALL items. Trading hours 9 a,m,-B p.m., Monday-Friday. Closed Saturday. We are \& mins, from High Holborn (Chancery La
trom King's Crom.

FAMOUS FOR THIRTY YEARS for SHORT-WAVE EQUIPMENT OI QUALITY - A SHORT-WAVE KiTS

H. A.C. were the original suppliers of shartWave Recejver Kits for the ammateur consiructor. Over 10,000 satished customersIncluding Technical Colleges, Hospitals, Public dchoo.s, R.A.F,, Army Hams, etc.

IMPROVED 1968 RANGE
1-Valve model "CX", complete kit. Price 34/6 Customers say: 'Defluitely the best onevalve S.W. it avalable at any price. Tis ponents, a drilled chassis, accessories and full instructions. Ready to assemble and of course, as all our products, fully guaranteed. FULL RANGE of other kita still avallable including the famcus model 'K', price $77 / \mathrm{F}$. Before ordering call and inspect a demonstration recelver or send for a descriptive catalogue and order form to:-
un,A.c." short-Wave products (Dept. T.H.), 44 Old Bond St, London W. 1

solve your communcation
urohlems with thls new reom syetem (1 Master and 4-stathon Tianglstor Intercona syeten (1 Master and A Aubs), in de-lume plawtic cabinets tor desE or wall subs to Master. Operstes on one 9v. hattery On/orf switeh. Volume control. Ideally suitable for Onfice, Fisctory Workshop, Warchouse, Hospltal Hhop etc. to keep instant inter-departmenta contacts. Complote with long connecting wires and

Usually - 6 ans $57^{\prime 6}$ 57'6

Moleraiz, your Offee. Rhop, Warehouse, Workshop, Surgery, Nursers and Hone with this tatest two-way Transistor intercona, consisting ol two units, Master and Bub, in strong plastic cabinets with chromiuro stands. Elegantly designed to use as two-way instant communication system-call/talk/listen-between two persons anywhere Indoors or outdoors. Operates on one $9 v$. battery. Complete with 60 ft . wire Battery 2/6. Ready to operate. P. \& P. 2/6.
BATTERY ELIMINATOR \& CHARGER, 27/6 Use Four Transistor Radio or Intercom from domeswic A.C, mains and charge dry battery 1 e3 9v. Save your pounds on batteries. P. \& P. 1/6. Comp lete with Plog. Lead and Bnap cord.
Full price relunded if not matigfied in seven dayn WEST LONDON DIRECT SUPPLIES (PW/A1)

- Chignell Pizos, Woat Esting, London, W. 18

Magnificent 'Continental' Stereophonic Radiogram Chassis with piano key switches, built-in ferrite rod aerial. Complate with two $10^{\prime \prime}$ elliptical loudspeakers, plus a monel stereo 4 -speed autochanger. Complete E29.19.6. Chassis only $19 \frac{1}{2}$ gnt. Special terms avaitable of $£ 4.10 .0$ deposit followed by 18 monthly payments of $£ 1.13 .0$ (total H.P. of $£ 34.4 .0$) + 15/- P. \& P. Send E5.5.0 now.

The imperial stereophonic 4 waveband chassis has the most advanced specifications yet offered in this councry. There is a builtin ferrite rod aerial, seven piano key buttons. Long-Medium-Short and VHF bands. Complete with two $10^{\prime \prime}$ leudspeakers plus a mono-stereo 4 speed automatic record changer. Complete $39: \frac{1}{2}$ Gns.
Chassis only $29 \frac{1}{2}$ gns.
Special terms available of $£ 6.4 .6$ deposit followed by 24 monithly payments of
 Send $\notin \mathrm{F} .2 .0$. now.

This fabulous 'Empress' Hi-Fi radiogram chassis is offered complete with $10^{\prime \prime}$ loud speaker plus 4 speed autochanger. A only 23 gns. this is the bargain of the year Chassis only $15 \frac{1}{2}$ gns.
Special terms available of $£ 3.12 .6$ deposit followed by 18 monthly payments of \& 1.6 .7 (total H.P. $£ 27.11 .0$) $+15 /=\mathrm{P}$. H Send ©4.7.6. now
All Lewis Radio equipment including valves are fully guaranteed for one year. £end your cheque or P.O. oday while atock lant to Doul. P. 125.

Fig. 3: Chassis drilling details.
utilise the two "D" holes to the right of this component. Now mount the electrolytic smoothing capacitor C 13 , using the clip specified in the components list, with its tags projecting through the hole " C ". Before wiring is commenced check that all components are in their correct position and firmly bolted down.

Testing and Alignment

Before inserting valves and connecting to the mains supply the following check tests with an ohmmeter are highly desirable: First connect the meter across the receiver mains supply leads and check that when the on/off switch is turned to "on" the resistance of the primary winding of T2, some 20 to 50Ω, is indicated. Now conneot the negative meter lead to chassis and the positive to pin 8 of V5, a momentary "kick" of the needle (indicating charging up the reservoir and smoothing capacitors), followed by a fall to almost opencircuit reading, should result. A reading of $50 \mathrm{k} \Omega$ or less indicates an unwanted path between h.t.
positive and chassis and must be investigated. before proceeding further.

Retaining the meter negative lead on the chassis, place the positive test prod on the cathode pins of V1 to V4 in turn and in each case a resistance indication corresponding to the value of the relative cathode resistor (see Fig. 1). Now remove the negative clip from the chassis, place the positive meter prod on the cathode (pin 8) of V5 and connect the meter negative in turn to the anode and screened grid pins of V4, the "anode" of V3 and V2 (comprising pins 2, 3 and 4 linked together in each case) and the anode pin of V1. In each instance continuity should be established and a resistance reading reflecting the value of the various dropping and decoupling resistors in circuit at the points tested.
If all the foregoing tests are carried out with satisfactory results the receiver can be connected to the mains with confidence. Remove test meter connections, ensure that on/off switch is in the "off" position. Insert all valves, conncut loud

COMPONENTS LIST

Resistors:
RI 22 k
R2 150Ω
ik Ω
$10 \mathrm{k} \Omega$
$47 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$
R7 $10 k \Omega$
All resistors $\frac{1}{2} W$ stated.

Capacitors:

Cl $\quad 0 \cdot 1 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
C2 $0.1 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
C3 $0.1 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
C4 $\quad 0.5 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
C5 1000 pF mica
C6 200 pF mica
C7 $0.1 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
C8 $8 \mu \mathrm{~F} 350 \mathrm{~V}$ electrolytic
C9 $25 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
Cl0 $0.1 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
CII $8 \mu \mathrm{~F} 350 \mathrm{~V}$ electrolytic
$\mathrm{C} 12 \quad 0.05 \mu \mathrm{~F} 350 \mathrm{~V}$ paper
$\mathrm{Cl} 3 \mathrm{a} / \mathrm{b} \quad 16+16 \mu \mathrm{~F} 450 \mathrm{~V}$ electrolytic
TCI 50 pF trimmer
TC2 50pF trimmer

TC3 50pF trimmer
TC4 50pF trimmer
$\left.\begin{array}{l}\mathrm{VCl} \\ \mathrm{VC} 2\end{array}\right\} 500 \mathrm{pF}$ J.B. 2 gang
Potentiometers:
VRI $500 \mathrm{k} \Omega$ carbon
VR2 $25 \mathrm{k} \Omega$ carbon with switch
Valves:

$V 1$	EF50	$V 4$	$6 V 6$
$V 2$	EF50	$V 5$	6×5

V3 EF50
Miscellaneous:
LI Wearite PA2
L2 Wearite PAI
L3 Wearite PHF2
L4 Wearite PHFI
TI Mains Transformer "Douglas", 250-0-250V $80 \mathrm{~mA}, 6.3 \mathrm{~V} 3.5 \mathrm{~A}, 6.3 \mathrm{~V}$ IA.
T2 Output transformer $5000 \Omega: 3 \Omega$
Speaker $3 \Omega 8$ - 10 in . dia.
Chassis $10 \times 7 \times 2 \frac{1}{2} \mathrm{in}$.
J.B. "Full Vision" dial and drive assembly. SI 4 pole 2 way. 3 B9G valve holders. 2 . 10 . valve holders. Red "Pilot" indicator butb holder. 6.3 V 0.3 A bulb.
speaker and aerial (also earth if used) to appropriate sockets. Insert mains plug and switch on. After a few seconds the heater glow in V5 and V4 will be visible, then advance the volume control to maximum, when a slight breathing sound should be audible from the loudspeaker. Gently touch a screwdriver blade on the centre tag of VR1 and a loud mains hum should emanate from the loudspeaker, indicating that the a.f. stages are functioning. Removing and replacing the aerial lead should produce a loud "click" from the speaker indicating that the r.f. section is also functioning. Rotating the tuning capacitor should locate the local BBC transmitter. Clockwise position of the wavechange switch gives medium wave band coverage, anticlockwise gives long wave band.

As soon as a signal of some sort is heard adjust the trimmers on the appropriate aerial and h.f. coils (long or medium wave band, according to setting of SW1). With SW1 definitely in the m.w. position endeavour to tune in a station at the low wavelength end of the dial such as the BBC Light Programme on 247 m or Radio Luxembourg on 208 m , then adjust the trimmers (on L2 and L4) for maximum volume consistent with reasonably accurate station indication by the dial pointer. Slight adjustment of the pointer itself is permissible to obtain exact indication of station tuned to. Now swing the tuning capacitor towards the high wavelength end of the dial and the local regional and Third programmes should be received at the correct point on the dial as the J.B. "Full Vision" is designed to match accurately to Wearite " P " type coils. Switch to long wave and, as the only station likely to be required will be the BBC Light

Fig. 4: PA2 coil connections
on $1,500 \mathrm{~m}$ set the pointer to this mark and adjust the trimmers on L1 and L3 for best results.

The receiver should be found to have more than adequate volume. even when used with a short " picture rail" aerial, within $30-50$ miles of BBC regional transmitters and a most pleasing standard of reproduction. Thanks to the employment of infinite impedance detection it will be particularly noticeable that transient sounds such as cymbals and other percussion instruments come through with especially realistic clarity, superior to all but the most expensive superhet or f.m. receivers. One final word: When inserting or removing EF50 valves a firm, straight pull (or push) is desirable. Any effort such as rocking from side to side in assist insertion or removal is liable to crack the glass seals around the valve base pins.

LAFAYETTE HA 63 COMMUNICATION RECEIVER

7 valves + Rectifier. 4 Bands $550 \mathrm{Kc} / \mathrm{s}-31 \mathrm{Mc} / \mathrm{s}$.
BFO
' 3 ' Meter BFO-ANL-Edindspread Tuning 24 Giv. A.E. Brand New,

STAR SR 40
COMMUNICATION RECEIVER
4 Bands $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$.
Meter - BFO. ANL-Bandspread Tuning-Built in speaker. 200 18t (ins. Carriage 10\%-

OS/8B/U OSCILLOSCOPES

Hich quality Portable American Oscilioscope. Sin. c.r.t. T/B 3c/s-50 kc/s X Amp: 0 - $500 \mathrm{kc} / \mathrm{s}$
Y Amp: $0-2$ Mc/s. Power requirements $105-125 \mathrm{v}$ A.c. A : 0 -2 Mc/s. Power requirements $105-125 \mathrm{v}$.
A. C tested.
e25.
c2.5. Carr. 10/-. Sultable 230/115v. Trans.

NEW MODEL LAFAYETTE HA-230 AMATEUR COMMUNICATIONS RECEIVER

Supersedes model HE-30. 8 valves + rectiner. Continuous coverage on 4 bands. $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. InMuitmpler BFO and 2 IF stages. electrical bandspread. Aeraal metrimmer, etc. Supplied brand new and guaranAlso available in Semi-Kit torm 25 tins. SAE tor tull details.

NEW MODEL LAFAYETTE HA-55 AIRCRAFT RECEIVER 108- 136 Mcis. High selectivity and sensitivity, Incorporates 2 RF stages including bc' 44 Nuvistor. 8 tubes lor 11 tube perlormance,
solid state power supply, adiustsoild state power supply, adiustdial. bullinn in speaker and front panel phone rack. $220 / 240 \mathrm{v}$. A.C. supplied brand new and guaranave
TE- 22 SINE SQUARE WAVE
AUDIO GENERATORS
Sine: 20 c.p.s. to $2(\mathrm{~K}$ Kc/s on 4 bands. $4 \mid 4$

$\begin{array}{ll}701 L \mathrm{~A} & \because \\ 1001 \mathrm{~A} & 32 / 6 \\ 29 / 6\end{array}$ First erade quality. Movirig Coit panel meters avalable ex-shock. S.A.E. tor hllustrated tomoms. Type Mriz8P $121 / d 2 n$ square fronts.

$\begin{array}{lll}51 & \cdots & 2 / 6 \\ 25 /-\end{array}$
 50-0-50 $\mu \mathrm{A}: . \quad 29 / 6$

 1 mA pOST KN/ 5 2A. DC. orinat Lapaer sizes available-send lor lists.
SV. lamp. 29/6. P.P. 1/. DI
AVOMETER MODEL 7

ERSKINE TYPE 13 DOUBLE BEAM OSCILLOSCOPES

Timebase $2 \mathrm{c} / \mathrm{s}$. Yo ke/s. Separate
Y and Y2 ampljtiers. Up to 5.5 Mc/s. calib at 100 kc/s. and 1 Mc/s. Guaranteed Der. tect. $£ 27.10 .0$.
Carr. $20 /-$.

MINE DETECTOR No. 4A Will decect al types of metits Fully portable. Complete with nstructions, $39 / 6$ each. Carr. 10/-. Batiery 8/6 extra.

MAGNAVOX 363
TAPE DECKS
New 3 speed tape deck. supersedes old Coliaro studio deck. 2 track,
4 track 10.10 .0.
£13.10.0.

SILICON RECTIFIERS			
200	P.I.V.	2001 ma	$2 / 6$
	P P.I.V.	650 m A	7/6
	P.I.V.	- jurma	5/6
	P.I.V,	3 amp	$7 / 6$
	P.1.V.	5001ma	$3 / 6$
150	P.I.V.	165 m 1 A	1/-
70 P	-I. V.	1 amp	$3 / 6$
95 P	.I.V.	3 amp	$5 / 6$

AMERICAN TAPE

Hrst grade zuality American Disco mrinn new and ru 31 n . 225 tt L. L .
inn. G00ft. T.P. mylar in. 90 GHt std. plastic in. 1200ft. D.P. acetate 5 m .1800 t . T.P: mvlar 5 in. 1200 ft . L. P. acetato sin. 18001 t. D.P. mylar gin. 12000 t. T.P. mylar 7in. 1800 tt . L. P. acetato in. 1801t. L.P mylar 7n. 240!it. D.P. mvlar

$4 /-$
$10 /-$ 816 10/10%
15% 15%
$35 / 6$ 12/6 $12 / 6$
$25 / 6$ $45 /-$
$12 / 6$ $12 / 6$ 1216
$20 /-$ $201-$
$55 / 6$

Over $\underset{3}{ }$ post pald

OUR RANGE OF PRO. DUCTS IS SO GREAT THAT WE NOW HAVE TO REQUEST THE AMOUNT OF 2s. Od. FOR OUR GENERAL CATALOGUE AND TO SAVE YOU POSTAL ORDER POUNDAGE CHARGE WE REQUEST SEND 2s. Od. IN STAMPS.

IN RESPONSE TO CONTINUOUS DEMAND WE HAVE COMMENCED PRODUCTION of self Contained Multiplex Decoder Unit, aligned ready for immediate use, that will convert your two receivers-tuner and two amplifierstuner and stereo amplifier or stereo receiver without Multiplex provision to a complete B.B.C. Stereo Broadcast Reception Unit. Price $£ 8.0 .0$ post paid. Technical Publication MD.I. 4s. Cd. post paid.
IFT.II/465 kc/s centre tapped transformer for use in crystal filter circuits, $1-7 / 8^{\prime \prime} \times 13 / 16^{\prime \prime}$ square. 10s. 6 d . plus 8 d . post.
IFT. $18 / 465 \mathrm{kc} / \mathrm{s}$ and $1.6 \mathrm{Mc} / \mathrm{s}$ Double Tuned transistor IF transformer, $1 \frac{1}{2}^{\circ} \times \frac{1}{2}^{\circ}$ square. 10s. 6d. plus 8 d . post.
General Catalogue 2s. 0d. post paid. S.A.E. all enquiries please.

DENCO (CLACTON) LTD.

(Dept. P.W.)
357/9 OLD ROAD, CLACTON-ON-SEA, ESSEX

USEFUL GIFTS for the RADIO AMATEUR and SHORT WAVE LISTENER...

RSGB PUBLICATIONS

Radio Data Reference Book
$\begin{array}{llll}\text { Rechnical Topics for the Radio Amateur } & 1216 \text { (by post 14)- } & 1016 \text { (by post }\end{array}$ Amateur Radio Circuits Book ... (by pose 10/8) Amareur Radio Call Book (1966 Edition) Radio Amateurs' Examination Manual... A Guide co Amateur Radio Service Valve Equivalents Service Valve Equivalents S.S.B. Equipment... Communications Receivers
Log Book (RSGB) ... 716 (by post 816) 6'- (by post 616) 51 - (by post 519) 5/- (by post 517) 3^{1-} (by posc $3^{1 / 6}$) 31- (past (ree) 31- (post free) 616 (by posc 7!-)

ARRL PUBLICATIONS

Antenna Book (1Oth Edition) A Course in Radio Fundamentals Hincs and Kinks, Volume 6 .. Mobile Manual for Radio Amateurs Radio Amateur's Handbook ... Single Sideband for the Amateur
Underscanding Amateur Radio...

171- (by posc 18/6) 916 (by post $10^{\prime}-$) 916 (by post $101-$) 2216 (by post 2316) - 401- (by post 4216) 171- (by post 1816)

CQ PUBLICATIONS

Antenna Roundup 22'- (by post 2316) CQ Mobile Handbook 2116 (by post 231-) CQ New Sideband Handbook 221- (by post 241-) Shop and Shacks Shortcuts 28'- (by post 2916)

73 MAGAZINE PUBLICATIONS

Simplified Maths for the Hamshack ... 4/- (by post 4/6)
V.H.F Antenna Handbook 1416 (by post 15'-)

EDITORS' \& ENGINEERS' PUBLICATIONS
Radio Handbook (16ch Edicion) $\quad . . . \quad$ 75/- (by post 78/-) Transistor Radio Handbook 40- (by post 42/-

AMERICAN MAGAZINE SUBSCRIPTIONS

| CQ (Cowan) Monthly-(per ann.) | ... | $44 /$ - |
| :--- | :--- | :--- | :--- |
| QST (ARRL) Monehly-(per ann.) | ... | 4316 | 73 Magazine Monchly-(per ann.) ... 30'-

- The above publications are obtainable from leading booksellers or direct fromRADIO SOCIETY Of GREAT BRITAIN

Dept. PW, 28 Little Russell Street, London, W.C.I.

1THE Basildon and District Amateur Radio Society was formed in 1962 by a number of licensed amateurs and short wave listeners living in the new town of Basildon and t'ie surrounding country area. The Club now has over fifty members of uhom twenty are licensed with a number of them. SWI 's sludying for the Radio Amateurs Examination or for the Post Ofice Morse tests. Club mombers cover a wide range of ages and professions, teenagers still at school and members in their sixties; firenien and chartered accountants.

Most of the licensed amateurs operate on the frequencies 160,80 and 40 metres. but there is strong interest in 70 and $144 \mathrm{Mc} / \mathrm{s}$ and 70 centimetres. G3EDM and G3ORT are keen mobile operators. G3PZZ and G3OIT are active on the DX bands. G3PGN and G3OQT can often be heard at weekends operating on $70 \mathrm{Mc} / \mathrm{s}$, while G3ASH and G3IJB are active on 144Mc/s.

The Club is affiliated to the Radio Society of Great Britain and each year enters for National Field Day. In 1963 and 1964 the Club won the Bristol Trophy, awarded for the highest score achieved by a single station entry.

The Club holds meetings twice a month: the first at the Bullseye Hotel, Town Centre, Basildon,
when wives and girl friends are cordially welcomed, and the second meeting, usually held in the thrd week of the nionth, is devoted to talks, junksales. lectures and film shows. This latter meeting is held in the Mayflower Restaurant, adjacent to the Van Gogh, Paycocke Road, Basildon. Members are advised of forthcoming activitues in a monthly newsletter.

Last year the Club visited the G.P.O. receiving station at Brentwood and later the transmitting station at Ongar, where great interest was shown in the equipment used by the Post Office. Envious eyes were cast on the masts supporting the transmitting and receiving aerials, but all cars were searched before leaving these stations by the chairman. Geoff Mills (G3EDM)!

In recent months visits have been arranged to the Marine Control Centre of Lathol Ltd., which controls the movement of all oil tankers entering or leaving the Thames: to the G.P.O. Telephone Exchange at Grays/Thurrock, and to the Communications Division of the Municipal Airport of Southend-on-Sea. For the winter months the Committee has planned a demonstration of portable and mobile equipment, a lecture on aerials. a film show. junk sales as well as an illustrated lecture on lasers.

The Society endeavours to look after the interests of those concerned with amateur radio, whether members or not, and is at present co-operating with the Company concerned regarding possible interference, from or to, the wired television system being installed in Basildon New Town.

The Club aims to bring the activities of the amateur world to the attention of residents in the district through the local press as well as the National magazines. It welcomes new members, whether licensed or not, and a letter to the Secretaries, B.D.A.R.S., Milestone Cottage, London Road, Wickford, Essex (Telephone: Wick ford 2462) will bring full details of membership. The subscription for those over 18 years of age is only 12 s . 6 d . per year-so come and join a really go-ahead Club.

Members of the Club taking port in the R.S.G.B. N.F.D. this yeor.

26 $\frac{1}{2} g n$ TAPE RECORDER for ONLY $£ 19.10$.

Bargain of the Year Offer -cancelled Export Contract
Famoun manufacturers brand nem anased and factory teated? speed if and $7 \dagger$ 1.p.a. twin track tape of and it 1.p.s. twin track Tape pooaition Rev.-counter, fast forpoaition kend rewind. take 7° reela at ae and gram input. Straight through amplifter facilities. Output sockets fo ext, apeaker. montor or external amplifier. oge recording level and mains neon fndcator. Volume and tone controls $7^{\circ} x^{\circ} 4^{*}$

apeaker. Attractively styled cahinet
with detnchable lid mike and reel atorage iacilitics. A.C. $200 / 250$ polts operation. Complete with orystal malke, tape spare reel and screen lead etc.

L.P. RECORDING TAPE BARGAIN

PROFESSINNAL GRADE DOUBLE-SIDED
 reord both stdes, and a good L.P. Tape for the enthusiast who wishee to record angle adde only.

Jaoz Pioge Etandard 24 Lgranic Type, $2 / 6$. Sicreened Ditto. $8 / 3$ Miniature scr. 14', $2 / 8$. Sub-inin. $1 / 3$ soldering Irons, M8ins 2001220 V or $\begin{array}{llll}289,250 \mathrm{~V} \text {. Solon } & 25 \mathrm{~W} & \text { Inst., } & 24 / 8, \\ \text { Bpare Elements, } & 6 / 6 & \text { Bits, } & 1 / 8\end{array}$ Bpare Elements, $6 / 6 . \quad$ Bits, $1 / 8$.
$65 w, 29 / 6$. etc.

6 VALVE AM-FM TUNER UNIT

Med, and VHF $190 \mathrm{~m} \cdot 550 \mathrm{~m}$. 46 Mcia- $103 \mathrm{Mc} / \mathrm{s}$, it vaives and metal rectiffel. Self-contained power untt. A.C. $200 / 250 \mathrm{~V}$ ofreration. Magic-eye indicator, 3 puth-buttion eontrols onjott. Med., VHF. Diodes and hiph output sockets with gain control Illuminated 2-coloar persper dia
 A reeommended Fidelity Unit for ase with Mullard ' $3-3$ "' or " 3 - 10 " Amplb Borg. Now armilable as complete kit as illustrated. inc. powit unit.

Łl0.19.6
Ditto, but las power unit, $99.19,6$, carrlage $7 / 6$.
Cartage - 7n.

Volame Controls-5K-i Meg. Ohms. Sin. Spindles. Morganite Midget type 1 ifing dism. Guar. 1 year. L.OH or LIN. ration less 8w. 3/-. UP, AW, 4/6, Twin sterea lese Sw $7 / 8$ 100k to 2 in ohms with DP fw. O/B.
WA.
WAYECEANGE 8 WITCEES, $1 p$. 12-way 2p. 2-way, "p. 6.way, 3 p . 4-way, 4 p. $8-\mathrm{way}$
long epindis, $8 / 6 \mathrm{em}$

EXPANDED ANODISED METAL. Attractive gilt finigh tin. x in
dimond mesh $4 / 6$ sq. ft. Moltiples of
Bin cut. Max. 6in. cut. Max. Blze 4ft. I 3ft. 47/6, plun carr. Do., finer pattern mesh $4 / 6 \mathrm{sq} . \mathrm{ft}$., multiples of 12 jan . max. bixe 3 ft . $\Sigma \geq \mathrm{ft} . .2 / 6$ bheet.
BNAEELLED COPPER WIREilb. reels $14 \mathrm{~g}-20 \mathrm{~g}, 3 /-22 \mathrm{~g}-28 \mathrm{~g}, 3 / 6$;

JASON FM TUNER ONITS. Desixuer-approved rit of parts.
 PMTL, E7.10.0. 5 Fatves. 85/-, JTV
MERCURY 10 gni, 3 valves, $82 / 6$. MERCURY 10 gnt 3 valves, $22 / 6$.
JTVP $£ 13.19 .6$. 4 valves, $28 / 6$. JTVS £13.19.6. FANAVESE $2 / 6$.

TRIMNERS. Ceramic "ompression
 $150 \mathrm{pF}, 1 / 3$; :200pF, 1/6; 100pF, $1 / 8$. PHILLIPS. Bee Eive Type (conc. air
 KNOBS-Modern Continental type Brown of [vory with Goid Centre; y^{2} dja., 9d. each; 1 青. 1/- each: Conc. knobs irory with Gold Centre 17" dia. 2/9 ner pair. Matebing ditto $2 / 6$ ea.
LARGE AEL,HOTION AVAILABLRE. METAL RECTIFIERS, STC TYpesRH1, 4/8: KM号, 5/6; RM3, 7/6;

TUB-ELECTROLYIICS-CAN $25 / 95 v .50 / 12 \mathrm{v} .1 / 8 ; 8+8 / 450 \mathrm{v} .4 / 6$ $50 / 50 \mathrm{v} .100 / 125 v .2 /-; 32+32 / 2 / 5 v .4 / 8$ $8 / 450 \mathrm{~F} .4 / 350$ v. 2/3; $50 / 50 / 3507.8 / 6$ $16+16 / 450$ v. $5 / 6 ; 60 / 200 / 2 / 5 v .12 / 6$
$82+82 / 450 \mathrm{v} .6 / 6: 100+200^{\prime} 275 \mathrm{v} .12 / 6$

MULLARD " $3-3$ " \& " 5 -10" HI-FI AMPLIFIERS

$3 \mathrm{ohm} \& 15 \mathrm{ohm}$ output

3.3. Amp. 3 vave, 3 watt hi-s inality at reaconable wost. Bass Boost abui treble cuntr us quality dectiona!
gutput ransi rroer, 40 e/g- $25 \mathrm{kc} / 9$ sutput 'ransi rracr, 40 e/e-25 kc/9,
+111 ss , inomy' ior $3 W$, less than 1% dixtortio. Lirul e escutcheon panel Complete Xit only 8 19.8. Carr 5% Wircd and tested 88.10 .0 .
MULLARD " 5 -10" AMPLIFIER. 5 valven 10 W and 15 ohms output. Mullard's famoles circuit with heavp inuty Basic amplifier kit prlee E9.19.6 Carr. and las. $7 / 16$.
CONTROL PANEL KIT. Bass. Treble and Volume controle with 4-poaltion selentor switch for radio tape and llin. I 4in, escutcheon yano. selentor switeh for radio tape sod 1in. I 814.19.6.
 cirut with ruli equalisation, with volurne, basa, trehbe and $\overline{5}$-pusition selector

Incorporating
4. 8p. Garrard
Auto-Slim unit and Mullard lateat 3 watit Auto-Slim unit and Mullerd fatest s wate
urinted circuit amplifer (ECL 86 and Erinted circuit ampliner (retile controls. EZ 80), vol., bass and tretile control.
with $\$^{\prime} \times 5^{\prime} 10,000$ line peaker. Contemportary styled 2 -tone cabinot charcoal-grey and off-white with matching blue-relie?. Bize $17 \frac{1}{\prime}^{\prime} \times 16^{\circ} \times$ 8°. a stylish nnit capable of qually reprorluction. Circuit and const. details 2/t (tree with kit). 413.19 .6 COMPLETE KIT

6 Ready wirid $30 /$-eztra Curr, and ink, $12 / 6$ Ready wir-d 0 mextra
Illuminated peispex control pane: escutchega, $7 / 6$ extra. Fuur contemporary mounting lega tin. 10/0; 9 in. 11/6; orary mouning

TRANSISTOR COMPONENTS

Midget T.F.'s- $465 \mathrm{Kc} / \mathrm{s} 9 / 18 \mathrm{in}$. diam. first, recond or third. .5/6 Osc. Colf M. \& L. W. 9/16 in. dia. 6/Midget Output Trans. Puah. Pull-3 ohms. 6/Elect. Condensers-Midget type Elect. Condensers-Midget
mFd .50 mFd . es. $1 / 9,100 \mathrm{mFd}$ mFd.
$2 / \mathrm{m}, 12 \mathrm{~V}$. WKG.
Condensers 150 F, working: $.01 \mathrm{mFrd} . .102 \mathrm{mPrd} ., 03 \mathrm{mFd}$. $.04 \mathrm{mFd} .0 \mathrm{~d}: 05 \mathrm{mF}, 1 \mathrm{mFd}, 1 / \mathrm{i}$ Midget Tuning Condensert. J.B. "OO" 208 pF and $176 \mathrm{pP}, 8 / 6$, ditto with trimmers, $9 / 6 . \quad \mathrm{J} . \mathrm{B}$. 220 pF and 105 pF conc riow Bub. miln. in. Dlemin 100 pF , Bub. miln. tin. Dlemin
$300 \mathrm{pF}, 500 \mathrm{pF}, 7 /$ each.
FERRITE AERIALS, M, \& L.W ar merial coil 9/8
Midget Vol. Control with edge contral knob, is $\mathbf{K} /$ ohins, with contral $4 / \theta$; Ditito less switch $3 / 9$. Speakers: P.M.; 2in. Pletaey 75 ohms 15/6. 2fin. Continental 8 ohms, 13/6. $7 \times 4 \mathrm{in}$. Plonegey 35 ohms, $28 / 8$.
Rar Plog Phones-Min. Con tinantal type 3 ft . lead, Jack plug and socket Hish Imp., 8/-. Low 1wp., 7/6.

Phono Pluga, 9d Piono Sockets (open gd. Ditto (closed), 1/-. Twin Phono Sockets (open), $1 / 3$

7 VALVE AM/FM RADIOGRAM CHASSIS
 Valve ninsup ECC85, ECH81, EF89
 Now 1963 Moral now available

EABC80. ELS4, EM81, EZAL,
Thres Waveband and Switched Gram positions. Med. $200 \cdot 530 \mathrm{nd}$ Long $1,000-2,000 \mathrm{~m}$. VHF/FM $88-95 \mathrm{Mc} / \mathrm{s}$, Pbillps continental Tuning lusert with perneatility tuning on FM and com biurd A M/FM IF transformers. 400 Ke / a. and 10.7 Mc s Bust sore tuning AVC and Neg. Feedback. Three watt output. sencitivity and reprod setion of a very hith atuindsrd. Chasols sife 13tx 6 fu, Huight 7 in. Edge Humin-

Vertical poiater. Horizontal ktation named Gold on brown background Vertical pointer. Horizontal rtation majues. Gold on brawn background. Alikned and tested ready for use $£ 18.19 .6$. Carr. \& Ins. 7/6.
Coinl, with sime. DIS socket, ext, sp'k'r and P/O socket and indoor F.M. aerial and 4 krol as-walnut or fory to chonce. 3 a P.M. \$peaker ouly reqtured.
 32 K .A with cund. Tweeter, $42 / 6$. Carr. $9 / 6$.

BONDACOUST Spenker Cabinel Aconstho Waddip (1 in. thick approx-) is in

We cusnafacture all types Radio Mains Transf. Chokes, Quallty O/P Trans, eto. Enquifiea invited for specirls. Prototypes for mall production runs Quotatione by return. Bend for detalled bargain list 3d. stamp.

RADIO COMPONENT SPECIALISTS

70 Brigstock Rd., Thoraton Heath, Surrey.

YOU ARE ALWAYS AHEAD WITH A SINCLAIR DESIGN

The world's smallest radio

No transistor set has ever yet compared in its class with the Micro-6 for size, power, performance and design. Everything except the lightweight ear piece is contained within the smart minute white, gold and black case which weighs under one ounce complete. Quality of reproduction is so outstandingly good that you will derive enormous pleasure from this fantastic set. Order your Micro-6 now. See why it cannot be too highly recommended to build and to use. You can easily have it working in an evening!

- $14 / 5^{\prime \prime} \times 13 / 10^{\circ} \times \frac{1^{*}}{}{ }^{*}$
- PLAYS ANYWHERE
- COMPLETELY SELF-CONTAINED
- EASY TO BUILD

AMAZING CIRCUITRY

The six-stage circuit uses three special transistors to provide two stages of R.F. amplification with double diode detector and high gain 3 -stage A.F. amplifier. A.G.C counteracts fading from distant stations; bandspread brings in Luxembourg like a local station. Plugging in earpiece switches set ON. Tunes over medium waveband by vernier-type dial. Two self-contained batteries give about 70 hours working life.

Complete kit of parts inc.
special earpiece and in-
structions
MERCURY CELL TYPE ZM.312
MALLORY MERCURY CELL TYPE ZM.312 (2 required) Pack of six $10 / 6 \mathrm{~d}$.

The world's most advanced audio amplifier

 Size $8^{\frac{11^{\prime \prime}}{}} \times 3^{\frac{11^{\prime \prime}}{4}} \times \mathrm{I}^{\prime \prime} \quad$ Output 20 wattsThe only audio amplifier in the world to use Pulse Width Modulation which, with eircuitry developed specially by Sinclair gives power and quality years ahead of anything in its class. You can feed any signal source into the $\times-20$ modern high quality pick-up, radio tuner, electric guitar, car radio, microphone. tape, etc. The $\times-20$ manual shows a number of circuits by which inputs can be matched to the integrated pre-amplifier of the $X-20$ both in mono and stereo. When you have built this 12 -transistor amplifier you use it in the same way as any other top quality hi-fi unit except that it is smaller, costs less and behaves perfectly.

- 20 WATTS R.M.B. OUTPUT INTO 7.5 ohms - $20-20,0000 / 8 \pm 1 \mathrm{~dB}$
- Constant aquare wave amplitude
- 05% conversion empiency at outpat

COMPLETE KIT
OF PARTS COSTS
H7 F
Built and
tested
£9.19.6

- bpat sensitivity- $1 \mathrm{~m} \nabla$ into 5 K ohm!

Mains power 8.19 .6
Unit

MICRO FM and Z.I2
See pages following

FULL SERVICE FACILITIES AVAILABLE TO ALL SINCLAIR CUSTOMERS

SINCLAIR RADIONICS LTD., COMBERTON, CAMBRIDGE

Telephone: COMBERTON 682

The SINCLAIR MICRO FM is a high quality FM tuner designed for use with hiffi amplifier or tape recorder and independently as a self-contained pocket FM receiver for personal listening. Barely half the size of a packet of 20 cigarettes, the Micro FM is a fullyfiedged 7 transistor- 2 diode superhet circuit with unique and original design features to ensure fantastically good standards of performance. Pulse counting detection ensures better linearity than conventional detection methods, and therefore better audio quality. Powerful A.F.C. which locks on to the station tuned in, topether with unusually good sensitivity make tuning easy and the set's own telescopic aerial suffices almost everywhere. In styling, this is the mos elegant, most professional looking design in miniaturised equipment ever made available to constructors, and is one you will be very proud to possess. YET WITH ALL THESE WONDERFUL FEATURES, THE SINCLAIR MICRO FM COSTS POUNDS LESS AND MEANS THAT ANYONE CAN AFFORD AND ENJOY THE ADVANTAGES OF FM RADIO NOW.

GITCLATRMTCTOED

7 TRANSISTOR SUPERHET FM TUNER/RECEIVER

BRIEF TECHNICAL DESCRIPTION

THE SINGLAIR MICRO FM is a seven transistor, two diode PY mperhe. The low I.F. dispentes with the need for aligument. A three atage 1.1 . amphifer timits the signa! to produce a square -ave cor that formation into uniform erminator. crecage output from which is directiv proportional to the sigual trequencr, so that the origiual modulation is reproduced exacitr aitcl equalisation, the signal is fed to the audio ontput exactet for is a thner and alon to the receiver's own andio ancunticying stape for rise an un independent self-contained recerver. A. 1. Ioks on each mitation antomationlts. THE SIXCLAIR MIARU FM is icompletels selfemtained within a neat hiack folatice eave taced by in elegantly reaggned tront panel of bruaked arhl polinhed alirainiura with spui atuminium tuniug dial to match. Derformin as witl an any other good waner.

* Operates from ir selfcontained standard battery
* Consumption 5 mA
* Audio respome- $10-20,000$ $d B|\mid d B$
* a guaranteed SINCLAIR DEStGN

THE COMPLETE KIT OF PARTS for building the SINCLAIR MICRO FM including extonding aerial, 7 eransistors, case, tuning dial, alunienium frone panel, lightweight earplece, plugs and sockecs and instructions cosis only
\star SIZE $2 \frac{1}{6}^{\circ} \times 1 \frac{1}{6}^{\circ} \times \frac{z^{*}}{} \quad \star$ PULSE COUNTING

* TUNES FROM $88-108 \mathrm{Mc} / \mathrm{s}$.
* A.F.C. FOR EASY TUNING
* NO ALIGNMENT NEEDED

DETECTION

* EXCEPTIONALLY ELEGANT APPEARANCE
cosis only

\&5.19.6

Full service facilities availabit to all Sinclair enstomers
 SINGLAIR RADIONICS LTD.
COMBERTON,' CAMBRIDGE Cortikition se

Fantastic power and quality

The Sinclair $\mathbf{Z . 1 2}$ is a universaly flexible amplifier, exceptionally powerful, fantastically smail. It comes to you ready built, and is very easy to instal and use. The $\mathbf{Z .} 12$ can be incorporated into any high quality hi-fi system. Its small size and high efficiency make it equally useful for a guitar, for car radio, P.A. system or any other application where high quality is the first requirement. The $\mathbf{Z . I 2}$ incorporates its own preamplifier to which you add the tone and volume control system of your choice as shown in the $\mathbf{Z .} 12$ manual supplied with the amplifier. The size, the performance, and the price of the Sinclair Z.I2 all favour the constructor who wants the best in modern transistor equipment; in fact, the $\mathbf{Z} .12$ is unbeatable in every way and is today's finest buy in top grade high fidelity.

USE IT FOR
 Hi-fi

Radio
Car Radio
Guitar, etc.

GUARANTEE

thonld you uot be ermpletely 4xistiedi with your burchase when wid be retunded in full and at ouce withont question. Please , quote IW. Itif shoald von prefer to write yinur order instead af cuttivg oul thie poupon.

TEGHNICAL DETAILS

 wahlada oa perartmare (ienerons apsaive Whitk ensares untrat unod fuality

- FREQUENCY RESPONSE- 10 to $50.1000 \mathrm{c} / \mathrm{a}+\mathrm{AB}$
- OUTPUT-12 watus RMa ecatmanus sime ware (l-4 wata peak) lo watus RMA monsic power (a) wafts) peak
- OUTPUT IMPEDANCE-suitable for 3.7.5 asmd th ohmus speakers. Two :3 han oprealswe thisy be used in parallel if required
- INPUT-2nV into 2K ohan
- SIGNal to noise ratio-better than niodes
- QUIESCEMT CURRENT CONSUMPTION-J6ma
- POWER SOPPLY-6 to 3UV.d. trom powir nm avajable or batteries
($3^{\prime \prime} \times 1 \frac{3^{\prime \prime}}{4} \times \frac{3^{\prime \prime}}{4}$
(Weighs 3 ozs.
I2 watts R.M.S.

```
l
    SINCLAIR DX-10 Power Supply Unit E2.14.0
                                    GUARANTEE ORDER FORM
        To: SINCLAIR RADIONICS LTD.
        COMBERTON, CAMBRIDGE
    Pleasc send me
    for which I enclose Cash/Cheque/Money Order
value f................s.....................d
NAME ................................................
ADDRESS .................................................I
```


SERVICE SHEETS

SERVICE SHEETS for all makes of Radio and TV, :925-:956. Prices from 1/- w:in free tault-finding guide. 1/A w: inquires. Catalogue of 6,000 S.A.E inquiries. Catalogue of b,000 models 1/6. Valves, modern and
obsalete. Radio/TV Books. S.A.E. obsolete Radio TV Books. S.A.E. Road, St. Leonards. Sussex.
SERVICE SHEETS, Radio and Television. $4 /=$ post paid. VEST AND EMERY, 17 Hallgarth St., Durham.

SERVICE SHEETS, Radio, TV, 5.000 models. List $1 /-$ S.A.E. inquirles. models. List $11 /=$ Madiand Bank. Preston.

SERYICE SHEETS (75,000) 4/. each. Callers meicome, Always open.

SERVICE SHEETS

4/- ea., plus postage
We have the largest display of Service Sheets for all makes and typeof Radios, Televisions, Tape Records ers, etc., in the country. Speedy service.
To obtain the Service Sheet you require please complete the attached coupon.
From!
\qquad
Address:

To: S.P. DISTRIBUTORS
44 Old Bond St., London, W. 1 Please supply Service Sheets for the following?
Make:
Model No.................................. Radio/V
Make:
Model No................ Radio/TV
Make:
Model No............... Radio/TV
I also require list of Service Sheets at $1 / 6$.
(please delete items not applicable)
1 enclose remittance of.
MAlL ORDERS ONLY Jan. PW

RECEIVERS \& COMPONENTS

NOISE LIMITERS, wew miniaiture Nolld-state, for paive and transistor cdincuits, $21 /$ - each, postage $1 /-$ Most effective μ miter known, send etamp for lestlet. G BHIHIOTT, 3 Bandeate Aor meanet. Tineturst, Readiag, Berks.

TREASURE HUNTI Heip me to And Certatn Types of Relays and Contacts to eatn spart orash. Sead B.AE. for to eata spar Gash Bead, Gienfleld. detajis.

* HEATHKITS" cam now be seen in London and purchased on easy terms Free broghure DIRFCT TV RRPIAMOAAPNTSS LTD., Dept. PW7/9, ite Hamition Ropd. Weat iocwood.

RATES: $7 / 3$ per line or part
thereof average fivp words to line, thereof average five nords to line, mimimum zines. Box No. 1/-"xtra, addressed to Advertisement Manager, "Practical Wireless," Tower inouse, Southampton st., London W.C.2.

RECEIVERS \& COMPONENTS

 (continued)TRANSISTORS, UNMARKED, UNTESTED, 40 for $10 /-, p$ and $p .1 /-1$ 4 packets post free. Relays, thousands of types, special catalogue free. Gemeral catalogue of Mechanical and Electrical Gear, Too.s. etc. (D, Whit.
jtems free. K. WHISTON (Dept. fiems iree. K. R. New Mhls, Stockport.

MARCONI CANADIAN RECEIVER No. 52

8h1pplng Amatenr, cast. Mroad- Magcast. Mag-
nificent 10 nificent 10 ralve ren
celver in chree awitched wavebande covering $1.75-$ eriag $1.75=$
$16 \mathrm{Mc/s}$.
$119 \quad 170$ metres).
p 108 valve crystal callbrator employing dual cryatal to provide marker check at $10-100-1000$ ke/s. One RF and two IF
stages. Other refnementa: valve, HT, sad Bignal stages. Other refnements: Falve, HT, sind signal
check meter. Internal 3in. speaker sind two H/ check meter. Internal 3in. spearer sind two HF Gain, Noise Limiter, Filter, BFO, Heterodyue pitch control, Wide and Narrow Bendwidth, Man or \triangle YC on CW \& RT. Fast and Slow tuning with lock. Additions ONC Thning (plus o minus), Power requirements HT 160 v . 60mA: LT L2v 1% simps. aize 16 x 14 x 12in. Fully tested and working ONLY 80.19.8. Carr.
supply unit sultabie for $15 / 6 / 230 \mathrm{v}$. AO mains supply unit sultabic
A12.19.6, Carr. 20/\%-
No. 59 GROUND-STATION compriaing Receiver. Tranimitter and l2v. D.C. Power Duit 287.10.0. Carr. $£ 2.10 .0$. (Msintand only.)
TELLESCOPIO AERIAL MASTR. Tubular steel copperised, spray finish, zing cam locking on each copperised, spray for full or any height requlred. Buitable all flings and base locations, Bottom section 1 inin. diameter. 20ft. (4 section) Closed 5tt. section Weight 161 b . $55 /$ - Chrr. $5 / \%, 34 \mathrm{ft}$ (6 section)
91 ln .
 Further height by adding 3-4it. Whip sectlons 18/8. Carr. 4/- Speclal prico for quantitien.
ROTART TRARSFORMER, 12v, D.C. Inpat, 260 v. D.C. output at 125 mA . gire 31" $\mathbf{x} 6 \mathbf{1 月}^{\circ}$. Brand nev D.C. output at 126
17/8. P. \& P. $\mathrm{B} / \%$
R.Y. ANTENNA TUXFR (A.T.U.) Calibrated scale. Ideal 160/80/40 metres. Intrited nurnber only. Brand nev with instructions. 17/6. P. \& F, 7/6. Complete liet of other bargain $\mathcal{1 /}$ B,A.R, al epquaties
A. J. THOMPSON (Dept P.W.) "सILHIG LODGR"

Fhome 00010024

RECEIVERS \& COMPONENTS

continued)
SPEAKER REPAIRS, cones fitted. Satisfaction euaranteed L. S REPAIRS, Pluck!ey. Ashford, Kent.

R \& R RADIO \& T V SERVICE

Dept. P.W
MARKET STREET. BACUP, LANOS,
Telephone 465

SALPAGE VALVES				Tested before despatch			
6 FL 3	4/6	U329	5/-	PLSí	$61-$	20 P 4	6/8
6 LL 8	4/6	10 Pl 4	5\%	PL82	3/6	30 Pl 15	/-
EF80	1/6	20 P 5	6/8	L901	7/6	PCC84	-
Ecc: 2	31	30 P	71	10Fl	1/8	PY81	$8 / 6$
ECLso	3/6	6 Fl 15	5/-	$20 \mathrm{~F}^{2}$	5/3	U301	6/-
F5	$5 /$	EB91	1/-	30 PL 1	5/-	10 P 13	5/6
L3:	8/-	EFS5	5/\%	PY32	61-	20D1	2/-
CF80	$4 /$.	6/30L2	4/7	6 U 4 GT	$51-$	30 Pl 12	5/-
L81	$5 /-$	20 P 3	61	6 Fl	$2 / 6$	PY83	5/-
PZ30	6/-	30PL1	41.	EY86	4/-		

Speakers. Ex-TV. 5in. round $6 \times 4 i n, 8 / 6 ; 8 i n$ round, 6/-; post 2/\%
Line Output Transformers Evilsbie, State set model No.
Turret Tuners. 8/=, post 2/-.
Soan Coils, etc. Quote set model No. with all enquiries and B.A.E. for prompt reply. All goods subject to satisfaction or money refunded.
V.H.F. RECEIVER. PYE P.T.C. $\|\|$ 65-100 Mc/s 12 Volt D.C. Supply
This is an II valve double superhet receiver. operating on one fixed frequency between $65-100 \mathrm{Mc} / \mathrm{s} .$, crystal controlled, speaker output using midget valves throughour. Supplied in first class condition with tuning data, circuir diagram and complete crystal formula. Ideal for the four-metre band (70.2 Mc/s.) offered at only $70 /$., post $51-$.

AERIAL MATCHING TUNING UNITS
These well-made tuning units, made for the American $19 \mathrm{Tx}-\mathrm{Rx}_{\mathrm{x}}$, are housed in a metal case, colour green or brown using a large precision calibrated scale, are an essential piece of equipment for the essential piece of equipment This unit will match an untuned wire or Whip Aerial to almost any Short Wave Receiver or Transmitter, exceptionally good for Mobile Top Band use. This American version being well noted as far superior to any other. GUARANTEED BRAND NEW, only 20/, post $7 / 6$.

Instructions supplied.

I8 Mk. III RECEIVER

This is a 4 valve superhet covering $6-9 \mathrm{Mc} / \mathrm{s}$. Phone or C.W. Set is very compact, size only $9 \frac{1}{2} \times 6 \times \sin$. Supplied in fair condition with circuit. ONLY $30 /$, post 5%. Sender chassis with 500 microamp meter same size only 201-, post $5 /$
john's Radio
OLD CO-OP, WHITEHALL ROAD DRIGHLINGTON, BRADFORD

CANADIAN MARCONI JZ IRECEIVERS as per previous adverts. \&10.10.0. Carriage Paid. Handbooks 5/\% Leaflet S.A.E. LGUDSPEAKERS io1n, 3 ohm in wood case. Cases solled. 600 ohm Line Transform er. 25/-carriage paid. 19 or 22 Set Head and Mike Sets, $10 /$ - Post Paid.
CERAMIC Insulated 3 gang qarlables,
$56 \times 56 \times 35 \mathrm{pF}, 3 / 6$. Post $1 / 6$. $56 \times 56 \times 35 \mathrm{pF} \cdot 3 / 6$, POSt $1 / 6$.
V.H.F. FIELD STRENGTH METERS. 100-150 me/s. Telescoptc Aerial, 2^{2} Round, 100-150 me/s. Telescoplc Aer
1mA Meter. 35/- P.5s. . 06 amp. 5/- doz. Post Paid. Meters $100 \mathrm{~mA} 2 \mathbf{m}^{\circ}$ Round 10/- Post Paid.
(Carriage charges apply to England and Wales only)
only) Telephone: Worthing go97
40/42 PDRTLAND
ROAD. WORIFIVG

RECEIVERS \& COMPONENTS (confinued)

DIRECT TV REPLACEMENTS LTD. largest stockists of TV Components in the U.K. Line Output Transformers, Frame Output Transformers, Deflector Colle for most makes. Official sole suppliers for many set makets. Same Day Dispatch Service. Terms C.OD. or CW O. Send SAE for quotes. Day and Nieht Telephome Gipsy Hili 6:66. 26 Hamilton Road, West Norwood, S.E.27.
A.l. POST FREE BARGAINS

Stock clearance of reclaimed values
B35 3/-1PCLse2 4/-[1F42 1/81001

 | KT30 | $3 / 3 / \mathrm{T} 41$ | $4 / 6 / 61 / 69$ | $12 / 6$ |
| :--- | :--- | :--- | :--- | :--- |
| L 63 | 30 PL 1 | $8 / 9$ | |

 EF80 5/- doz. ECL8日 12/-doz. PCF80 18/-doz.

A.I. RADIO COMPONENTS

14 The Borough, Canterbury, Kent

FOR SALE

HAMMERITL

PANETS BKUSK PAINT FOR
\star THE PAMTERN IS IN THE TIN ALL YOU DO AS BRLAH IT TIN *
 piot 15/- ("sent by road)
Carriage: Orders up to $5 /-9$ a.: up to $10 / 1 / 9$;
over 101-279.
Colours: Blue, Silver or Metallic Black.
Retura oi post service. Mon. to Prı.
mon your eomponent show or direct from the
FiNura:
Mickles SAN SPECLALITY PAINTS (PW)
Mickley Square, Stocisfleld, Northumberland, Fhone: : At ockstield $\because 2 \mathrm{su}$

A RMATURE REWINDS Hoover Juntar Exchange Service. Mode!s 375 1:9/:224 32/6 inc post. Fields 15\%. Send for lists. JERVIS \& TONGE LTD., Ringwood Road, Brimington, Chesterfing wood Road, Derbys. Tei: Chest 75267

ELECTRIC SOLDERING-IRON

FANTASTIC BARGAIN OFFER

Lightweight Pistol Grid handle copper bit. Detachable soll 1 forms cover tor iron when not in use. With 4fft. Saiety notin flex. Indispensable tor every home hands man. A boon to mode makers and a neces it cor every wireless thusiast. offered yod at t)
C. H. SERVICE,
(Dept. P.W.)

FOR SALE
(continued)

MORSE
 MADE EASY

The fimous RHYTHM RECORDED COURSE cuts the practice time down an absocute min:mum
DAYS student, aged 20 . took only 13 DAYS, and another. aged 71, took only 6 WEEKS to obtata a G.P O. pasis certificate If you wish to rean Morse easily and naturally please enclose 8d. in stamps or two inter national reply coupons for ful: explanatory booklet.
45 GREEN LANE, PURLEY, SURREY

 anyivily from I2 mi Car Battery me AmERICAN DYNAMOTOR UNITlnpel $12 \mathrm{ravipel} 200 / 250$ r, at 150 to 224 mitis

SPECIAL OFFER

GEvaERT tape. New, Boxed, 5s, fivoft. with Siop and Leader Tapes. 9/- or 6 for 50%.
GRUNDIG MAl 2 Tranasistor Pre-smpes for Tape Montoring or Microphone Boosters, $57 / 6$.

LIST PRICE 4 GNs. LEE ELECTRONICS
400 Edgware Road, Paddington 5581
Send for Free Listn detaik of above

TRANSISTORS

II- each. Red or White Spots.
2'- each. XA101, XA102, XB103, OA90, XAllI, XAll2, OC430, VIO/IS.
31- each. OC44, OC45, OC70, OC71, OC81, OC8ID, XA151, XBIO4, XC101, XC101A. OC169, OC200.

4/- each. AFII4, AFII5, AFII6, AFli7, OCl70, OC171, XA103, XAlI6, XBl02, XBl05, XCl21, XU611.
51. each. OCl39. OC140, OC204, ORP60, XA701, XA703, GET7, GET8, GET9, XCI4I, BY100, OA211.
101. each. OC19, OC22, OC25, OC26. OC28, OC35, 2 SO13.

ZENNER DIODES

4.7 v . to $30 \mathrm{v} ., \frac{1}{4} \mathrm{w} .316,1.5 \mathrm{w} .5 \%$, 7w. 61. each.
Plus many more. Send 6d, in stamps for full list and eq. chart

B. W.CURSONS

78 BROAD STREET CANTERBURY, KENT

TAPE RECORDERS, TAPES ETC.

TAPE TO OISC - New High-level Cuttors, 45 r.p.m., $21 / \cdot$ S.A.E. leaflet. DEROY, 52 Hest Bank Lane, Laacaster.

WANTED

We buy New valves, Second-hand Cameras, Binoculars, projectors, Amplifiers, Records, Car \& Transistor Radlos, Components, etc Send sa e to EDDY'S (Nottm.) Ltd., 116 Alfreton Road, Nottingham.

WE BUY New Valves for cash, :arge or smal! quantities, old types or the latest. Send details. Quotations y return. WALTONS WIRELESS STORES. 15 Church Street. Woiverhampton

WANTED VALVES ONLY

Must be new and boxed
Payment by return

WILLIAM CARVIS LTD.

103 North Street, Leeds 7

URGENTLY WANTED: New modern Valves, Tramsistors, Radios, Cameras, Tape Recorders and Tapes, Watches, Toois, any quantity. S. N. WILLEMTS, 16 New Street, West Bromwiah, Stafts. Tel. 2392.

DAMAGED AVO METERS wanted. Models 7 and 8 Any condition. Any quantiy, HUGGETTS LTD, Any pawsons Road, West Croydon.

MISCELLANEOUS

CONVERT ANY TV SET into an Oncillosicope. Diamrams and Instructions. 12/6. REDMOND. \& Deru Close, Portslade. Sussez.

ELECTRONIC MUSIC?

Then how about making yourself an electric orean? Constructional data available-lull circuits, drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops uses 41 valves. Nith its variable attack you can play Classics and Swing.
Write NoW for free leaflet and further details to C. \& S., 20 Maude Sireet,
Darlington, IWurham. Send 3d, stamp.

BUILD YOURSELF A LOW PRICE, HIGH OUALITY RECORD PLAYEB AND SÁVE £££'s. Refined c...ni yet simple to build. BACKED BY A SERVICE SCHEME, so even the ©ol. plete berinner can tackle thits ion diarrams 5s. 6d. HARRIS 16 M, rave Avenue, Porislade. Sugsex.

TV Nomicic 30^{\prime} -
 SETS
 CALLERS
 EACH

OR 20 FOR $\in 20$
20 PALMERSTONE ROAD
EARLEY, READING, BERKS.

METAL WORK

METAL WORK. All types cabinets, chassis racks etc., to your specificachass. racks fic, METAL WORKS LTD., Chapman St., Loughborough.

SITUATIONS VACANT

TV AND RAOIO-A.M.I.E.R.E., Oity and Guilds, R.T.E.B. Cert., etc., on "Satisfaction or refund of lee" terms. Thousands of passes. For details of Exams, and Home-training Courses (including practical apparatus) in all branches of Radio. TV and Electronics write for 156-page and ENectrones, B.I.E.T. (Dept. 242G), 29 Wright'e Lane, London, W. 8 .

INSTRUMENT MAKER Tequired in Dept. of Tejecomununications and Filectionics, Norwood Techmical College, Kndght's Hill. London, S.E.27. Duties include repatr of standard electronic and electricai test equipment, fabrication of chassis for instructional use and bullding of for metructiomal electrioal equipment. 42-hour week. $£ 15$ 5s., rising to 42-hour Weet £ s17 5s. Superannuable post. Forms,
returnable vithadn 14 days, from returnable
Secretary.
A.M.I.Mech.E.A A.M.E.E.R.E. City and Gulids, G.C.E. etc . Become a Techfictan or Tecinnologist for high pay and security. Thousands of passes. For detaills of Exams, and Courses in Fill branches of Fagimeering, Budlding, all branches of bagineering, Buandich etc. write for 156 -page Fileotronics etc, Frite Ior ${ }^{156-p a g e}$ (Dept. handboolk-FREEE,

ELECTRONIC ENGINEERS requdred for malntenamce and tarilt foding on photo-typesetting equipment. Instorucphom courses can be arranged for sumpale appildaants. H.M. Forces expranience of Rader or Pulle Circultry expervence oil rad for onrther tradning. Woruli qualiry ar cond conditions of empolloyment plus expanding opporremployment phus expanding oppoup. tunitie im progressave priating group. Please write to Works Engineer. Lawingtom Etreet, Iondom. S.E.1.
RADIO AND TV Exam. and Courses by Britain's flnest Homestudy School. Coaching for Brit.I.R.E., City and Guilds Amateur's Licence, R.T.E.B.. P.M.G. Cert., etc. FREE brochure from BRITISH NATIONAL RADIO SCHOOL, Russeld Street, Reading.

SMITH'S RADIOMOBILE

Britain's Car Radio Specialists RADIO SERVICE ENGINEERS

These appointments are progressive and there are prospects of advancement for men with the right experience and abllity.

Please apply to:
The Personnel Manager
S. SMITH \& SONS (RADIOMOBILE) LTD.

Goodwood Works North Circular Road London, N.W. 2 GLAdstone 0171

SITUATIONS VACANT

 (continued)A FULL-TIME TECHNICAL EXPERIENCED SALESMAN. required for Retails Sales. Write. giving full details of age, previous experience and salary required, to the Manayer HENTY'S RADIO LID., 38 Edgware Road, London, W.2.

TWO LABORATORY TECHNICIANS required as soon as possible in Dept. of Telecommunications and Electronics. Norwood Technical College, Knight's Hill, London, S.E.27. Duties include minor maintenance of test equipment and accessories, preparation of students' experiments and tion af students experiments and upkep or rising to 8875 at 29 c620 at 21 , rising to $£ 875$ at 29 . Holders of certain recognised qualifications $£ 660$ at 21 , rising to $£ 915$ at 29. Forms, returnable within 14 days, from secretary.

BOOKS \& PUBLICATIONS

AUDIO, America's foremost journal. Year's subsicription 43/., specimen copy $1 /-$ Ahl Amerdean radio journals supplied - list free. WILLEN (Dept. 40), 61a Broadway, London, E.15.

SURPLUS HANDBOOKS

19 set Inatruction Handbook, 3/6, p/p 6d. 1155 Instruction Handbook, $8 / 6$, p/p 6d. G.R.O. Instruction Handbook, 3/6, p/p 6d. $\$ 8$ set Instruetion Handbook, 3/8, p / p 6d. 48 net walkie talkie Circuit \& Notes $3 / 6, \mathrm{p} / \mathrm{p}$ d . 88 set walkie talkie Instruction Handhook, $4 / 6$, p / p Bd. Prequency Mater BC221 Instruction Handbook $3 / 6 \mathrm{p} / \mathrm{p}$ Gd. Wavemeter Class D Eandbook Mk. I, I and III, 3/6, p/p 6 d . 18 set

 Instruction Handbook, 4/6, p/p Gd. R116/A Circuit Diagram \& Details, 1/9. p/p 6ri. R1284/A Cirouit Diagram \& Details, $1 / 6$, p/p 6 d . Rr Unit 24 Circuit Diagram \& Detai.s, 1/6, p/p 6 d . 24 Circuit Diagram \& Detai.s, $1 / 6$, p/p ${ }^{61}$. 6d. RF Unit 26 Circuit Diagram \& Details, $1 / 6$, p/p Rd. Amplifier A1184 Cirectit Diagram \&
 Indicatora. Indicateq the ralue of a resistor st a glance. Price $1 / 6, \mathrm{p} / \mathrm{p}$ 6d. All mail orders to:
Instructional Handbook Supplies (PW) Talbot Elouse, 28 Talbot Gardens Roundhay, Leeds. 8

EDUCATIONAL

EDUCATIONAL

(continued)
CITY AND GUILDS (Electrical, ete) on "sathsfaction or refund of fee" terms. Thousands of pilsses. For details of modern coultses in all branches of Electrical Engineer:ng. Electronics, Radio. TV. Automation. etc., send for $156-p a g e$ handbook FREE. B.I.E.T (D\&pt. 242A), 29 Wright's Lane, Iondon, W. 8

RADIO OFFICERS' training courses. Wrate Princupal, Newport and Monmouthshime Coliege of Technology.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc. Many unique diploma courses inc. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor. Write for FREE prospectus and find out how ICS can help you in your career. ICS DEPT. 541 PARKGATE ROAD, LONDON, S.W. II.

RADIO OFFICERS see the world. Seagoing and shore appointments. ous many recent successes provide our many recent successes provide additional trainee vacancies
1966 . Grants available. Day and boarding students. Stamp for prospectus. WIRELESS COLLEGE, Colwyn Bay.
THE INCORPORATED PRAGTI. TIONERS IN RADIO AND ELEC. TRONICS (I.P.R.E.) LTD. Membership conditions booklet $1 /=$ Sample ship conditions booklet Joirnal 2 . copy of I.P.R.E. Oficial Joptrai 3 B 32
post free. Secretary. Dept. Kidmore Road, Caversham, Reading. Berks.

City and County of Bristol Education Committee

BRISTOL TECHNICAL COLLEGE CAREERS IN RADIO AND RADAR

Marine Radio Officers

 2-year, full-time course for young men aged 16 upwards; leading to Ist and 2nd Class P.M.G. Certificates and B.O.T. Radar Maintenance Certificate.Conversion Course (2nd Class to Ist Class).
R.T. Courses (for Full or Restricted Licence).

Licensed Aircraft Radio

Engineers
2-year, full-time course for A.R.M.E. Licences, categories A \& B, and 6 months' courses for Radar Rating in association with above.

Training given on the latest types of Marine and Aircraft Equipment in the newly equipped Laboratories at

THE SCHOOL OF MARINE RADIO AND RADAR

For details write to:

THE REGISTRAR
BRISTOL TECHNICAL COLLEGE ASHLEY DOWN, BRISTOL 7

SOUND RECORDINGS

A UNIQUE TAPE, Buy top brand 7in. 2,400ft. $25 / \% 5 \frac{3}{4}$ in $15 \% P$. and p. at $2 /-2$ at $2 / 9$. 3-6 at 3.6. Bargatne in all sizes S.A.E. for list. Tottenham Court Road, London. W. ${ }^{\text {? }}$ EUSton 6500.

Ua your OWN TRANSISTUK PORTABLE
No Plugs-No Connections! Just place Dewtron Ware Trap near radlot Boosts 'Pirate' and distant statinns, reduces 'tadink'.

* Extends Hattery Life

* Ese in car or caravar. Without Aeriall

Britiwh-made. Supplied with PPS batt, (life several onths) and instructions. Money refund guaramtee.
D.E.W. LTD., Dept. P.W.. Riatwood Romd. FERNDOWN, Dorset

2 metres 4

The thrills of VHF Amateur Radio! Complete K1t. $70-150 \mathrm{Mc} / \mathrm{M}$, costs only $42 / 6$ (by post. UK, $3 / 3$ extra) also now available. Short-wave kit model TR2 $10-180$ metres, ideal tor beginners to Ham radio via simpliffed "Easy-Build" Step-by-step instruction, from $79 / 6$. Write today enciosing a stamped full details. Overseas enthuslasts and we despatch to all parts of the worldlocal stamp OK for titerature. "GLOBEKING" (Regd.) precision standard products tried and trusted by Armateurs everywhere.

JOHNSONS (Radio)
St. Martins Gate, Worcester

PADGETTS RADIO STORE OLD TOWN HALL LIVERSEDGE, YORKS.

Telephone: Cleckheaton 2866

Special Diler. Frand New Boxec TV Tubes. MW43/69, 65/O. MW36/24, 37/8. 90 Degree Tubes with slight klass faite 37/- each. Carriage on any tube in G.B. 10t- Filly Guaranteed for 12 months.
Reclaimed lubes. Sis months guarantee. AW43/B0. $30 /-$ MW43/80, $301-$. MW43/69, 301-. CRM1172, 30/4, CRM1 42 . 17/. 12 unch tubes. 10/-. 17 inch tubes periect but without Euarantee, $17 /$ each. Carriage on any tube In G.B., 10%.
Scope tube removed from units, DG7-s. 4.5in. perfect condition. 30/-. Post $4 / 6$. New JAP earpieces complete with lead and piug. 3 or 5 mm ., $1 / 11$ post pald or $20 /-\mathrm{per}$
IB Ann Double Switch Sockets. Brown sutface type. 3!-. Post 1/6. 6 for 18 - post
paid. viodes, top grade, no duds. $3 / \cdot$ doz., post pald.
ew $12 i n$. Speakers with built-in tweeter. For is ohms, 28/6. Post paid.
Perfect speakers ex. equipment. sin. round, E/-. Post $3 /-$. x xin.al $51-$. Exn round 31 post 2t 20120 post paid. Gin. round. 31-. Post $2 /-$. 20/-. Phillips 5in. round, 5 - Post $2 /$ -
otore inglo hase 240 v . quarter H.P. 28/:-140 Revs. Fully guaranteed, ex. Smali Switeh Motor 24 v will fin from 12 or Evolts, $10 /$, post pada.
Bush 12in. TV 24 C 13 channel TV. Complete and cested with good tube, only wants cleaning. 75/-, carriage 10/-, G.B.

VAlUE 1 IST

Ex equipment. 3 mont tis guarantee				
EL80	$2 /-$	20 Pa	$8 / 6$	PCL82 5/-
EL84	5!-	U801	$8 / 6$	PCL85 5/-
ECC81	$3 /-$	U281	$5 /-$	Pl36 5/-
ECC82	$3 /-$	U282	$5 /$ -	$12 \mathrm{AT7}$ 3/-
EY51	$2 / 6$	U329	$5 /-$	$6 \mathrm{CH6} \quad 1 / 6$
EY86	$5 /=$	KT36	$5 /$	R18 $3 / 6$
EBF80	4/6	6V6GT	4/-	ARP12 1/6
EB91	9 d.	6B3	1/6	50 for 81
ECC83	4:-	6 K 25	5/-	3075
El.38	$5 /-$	$6 \mathrm{6P25}$	$3 / 6$	EF50 1/-
EF91	gd.	6 T 4	$5 /-$	Doz. $6 /$
6 Fl	1/2	PY33	$6 /-$	EF80 1/6
6F14	5/.	PY80	3 -	Doz. 10%
6 F 15	5/-	PY81	3/-	$6 \mathrm{~K} 7 \quad 113$
10 O 2	$51-$	${ }^{\text {PL3H }}$	$8 / 6$	
10F1	$1 /$	PL81	$4 / \mathrm{F}$	6V6 1/9
10 P 13	5\%	PL82	31-	Doz. 18\%
$19 \mathrm{Pl}{ }^{4}$	$5 /$	PL83	$3 / \cdot$	6 K 8 1/9
20 DI	21.	Pr92	3/-	Do2. 18/-
${ }_{201}^{201}$	$5 /$	${ }_{\text {PZ }} \mathrm{PCF80}$	4/-	U25 5/.

EXPRESS ELECTRONICS

32 SOUTH END, CROYDON, SURREY Tel: Croydon 9186 FOR THE FOLLOWING BRAND NEW UNITS

AMPLIFIERE AND IENEKS
TRIPLETONE RI-FL MAJOR
TRIPLETONE CONERTIBLE TRIPLETONE GEMINI STEREO LINEAR DIATOARIC. LINEAR DIATONIC. LEAK TLI2
LEAK VARISLÖPE PRE-AMP LEAK TL50 LEAK TROUGH LINE 3 F̈M TU̇NER QUAD STEREOMMONO PRE-AMP

gOODMANS AXIFTTE 8in. . LOUDSPEAKERS

GOODMANS AXIOM 101n. $\quad \because \quad 10$ watt
GOODMANS AXIOM 201
BÄKER̈S
STALWART 121 n
BASE GUTAAR 1 inn. 'Groub 25 '
BASS GUITAR Group 35
BASS GUITAR 'Group 50'
BASS Heavy Dury 12in.
BASS Heavy Dury
AUDITORIUM 15.

12 watt

3 watt
12 watt
14 watt
50 watt
15 watt

10 watt

AUDIORUM

RECO MONO

GARRARD MODEL 1000 4-8peed MONO
GARRARD MODEL 200 MONO
GARRARD MODEL 401
GARRARD MODEL LAB80
GARRARD AT6 TRANSCRIPTIÖN MÖNO
GARRARD MODEL ATEO
GARRARD MODEL A70
GARRARD SRP 10

watt

SEIMHRRST' 3 or 15 ohm
15 watt
25 watt
${ }^{25}$ watt
50 watt
20 watt
215.18 .8 \&8.19.8 £15.15.0 £15.14.6 ${ }^{56} 6.0$ £12.12.0
£16.18.0 £16.16. 0

f18.18. £18.18.0 \pm| £ 5.15 .12 .0 |
| :--- | 931.14 .6

 £25. 0.0
£5. 5.0
$\because \quad$ £6. 6.0
£5. 5.0
$\begin{array}{llr}\because & \because & £ 5.5 .0 \\ \because & \because & £ 5.5 .0 \\ \because & \because & £ 18.18 .6\end{array}$

ANYONE CAN AFFORD THESE NEW JOB TRAINING COURSES

NEW. No. 500 RADIO AND TELEVISION COURSE 75/-

Here at last la your ophortunity to own a most romplete course at a very modext cost! This expainded course which now includes television as well as radio repalf traning coud get 500 stated on whole new carent
The Radio aection of the course wag URIGINALLY BY THE RADIO TECHNICAL InstiTUTE, while the Television Bervieing Coures has formed the basis of instruction provided by one of the world's largest televisiou and electrouic tirms
Compsres lesson by lesson with some courses costing ten thaés as muchl You save because gou receive all the lessons at one hme and are not required to
purchase equipment you may not need.
The lessong are cryaral clear. practical, eary to mastar and use. carly lesbons mage fuadamentais clear even to the beginuer, whie orber lessons wal give you the practies know-how of an expert:
The new 500 Radio \& Televiaion Course consiats of of iarge quarto size pages of ingtruction, hundred will be delighted or your money relunded

NEW. No. 600 RADIO-TELEVISION

 ELECTRONICS COURSE $85 /$ -This $1 s$ really big value in hone training. Bimuther th details to the above course excepthig that you get an yurto siae pes of instruction casing a total of des all the usual subjects pius kudio Transwitter Circuits Electronic Test Huinment Thyratran Tubes, Inter-Communicators Sound Level Metets. Servicing Printed Circuita and many more simile itema. This course conid be your irst step into the fascinating world of electronics
No. 400. ELECTRONICS COURSE 45/A complete home-study course of 3 J lessons. Consint complete with instructor's nctes and test questions This is a modern course that teaches withont resort tog to comic strip methods . . . Thoosande of reader of this magazipe have taken thls course and enjoyed every mainute of it.. Why not gou? CLip thi coupon for your free trial oner now

No. 19. REFRIGERATION SERVICE

MANUAL $27 / 6$

Leart refrmeration! This manual is packed aolld with nformation to enable yon to start la refrigersciom ght away. wound in cloth. An excellent paykes, 157 liastraton tirst time!
unconditionally guaranteed to GIVE COMPLETE SATISFACTION
any courme not satiafactory may be retarned vithin 10 taye post-paid for tull refund or credit of the purhate ariee.
F YOU AEND CABE WITH ORDEK WE WILL INCLUDE A FREE BOOK worth $4 / 6$ to $6 / \%$ I bought separately. By seading cash you redince book-keeping and other costs which we paid back to ou. But you must include cash at the time of order o get thls special offer

* * * * FREE TRIAL OFFER * * * *

PAY ONLY 5/-per week if you wish. To: SIM-TECH TECHNICAL BOOKS DEPT. G.2. Gater's Mill, Weat End, Sọthampton, Hentia

Please send the course I have circled.
No. 500 No. $600 \quad$ No. $400 \quad$ No. 19 if not delighted 1 may returi any took post-paid withont further obligation on my part. Otherwise 1 will pay cash price or $5 /$ weekly ($10 /$ fortnightly) omanencing not ater than 10 cays after delivery. anacer 21 years of age. (If under 21 parents should place order).

1 evclose cash to the sum of 4 understand you will refund this troney if I am not 100% gatiofied and ir
in 10 days.
Please aend me the irre book(g) 1 have ticked.
Oscilloscope Book Electronic Gadgete Book
Trausistor Book Radio Iastrument Book

Name
Addresa

- Peak outpat in excess of $1 \frac{1}{3}$ watta All standard British components. Bailt on printed circuit panel size 6×3. . Generous size Driver and Ontput Transformers. Outpat tranaformer tapped for or $\$ 1$ Mullard OC81D and matched pair of OC81 o/ps - 9 volt operation. Everything anpplied wire battery clips, solder etc. Comprehensive easy to follow instructions and circuit diagram 1/6. (Free with Kit). All parts sold separately.
SPECIAL PRICE 45\%-P. \& P. 31.
Also ready built and tested $52 / 6$. P. \& P. $3 /-$ 4 pair of TAl's are ideal for stereo.
HARVERSON'S F.M. TUNER MK.I

- Bajanced diode output. Two I.F. staiges and discrimustor. Attractive maroon and gold dial (7 $\times 3 \mathrm{in}$. glass). self-powered using a good quality mains tranaformer and valve rectiner. - Vaves used: ECC85, two FF80s and Ez80 (rectifler). Fully drilled chassis. pleted tumer $8 \times 6 \times 5$ in. All parts sold separately. Set of parts if purchased at one time, 25.19.6. plas $8 / 6$ P. \& P. and ins. Circuit diayram and inbut complete with magie eye front panel and but complete with magie
Mark III Version as Mark I but with output stage. (ECLS\%) and tone control $87.7,0$. P. \& P. 8/6. Handsome Motal Cabineta. Choice of Black or Green. To fit Mark $I, 25 / \mathrm{m}$, P. \& P. 3/-. To it Mary II, 17/6, P. \& P. 3/-.

SPECIAL PURCHASE TURRET TUNERS By famous maker. Brand new and unuged. Complete With PCCB4 and PUF80 valves $34-38$ Me/s I.F. Blsonits for channels 1 to 5 and 8 and 9. Circuit
diagran supplied. ONLY $25 /$ each. P. \& P. $3 / 9$. GORLER F.M. TUNER HEAD
$88-100 \mathrm{Mc} / \mathrm{s} 10.7 \mathrm{Mc} / \mathrm{s} \mathrm{L}_{1}, \mathrm{~B} .15 / \mathrm{m}$, plos $2 / \mathrm{P}$. \& P. (BCOS5 valve, $8 / 8$ ertra).

4-SPEED PLAYER UNIT BARGAINS
All Brand New in Mraker's Original Packing
GARRARD SP25 De Luxe. £12.10.6. Carr. $5 / 6$ B.S.R. GU7 with umt mounted puck-up arm. £4.18.8, Carr. LATEST B.S.R. TV/I2.23.9.6 Cart. $5 / 6$ E.M.I. with unt mounted pickuparin.

$$
\text { £4.9.6, Сагт. } 5 / 6
$$ AUTO CHANGERA

LATEST B.S.R. UAZS NIETE SHM LATEST B.S.R. UA25 Yuper Slin mono. $£ 6.2 .6$
B.S.R. UA15, $£ 6.19 .6 ;$ B.S.R. UA16, $£ 6.19 .6$ LATEST GARRARD AT5 £8.8.0
 GARRARD AT3.... 810.10 .0 , Carr. $5 / 6$ on each. All the above units are complete with t/o wono head and sapphire stylii oi cari be supplied with compatible stereo head for $12 / 6$ extra.

THE NEW HARVERSON KIT FOR THE HOME

Iude: Heafy duty double-wound mana transiormer with lectristatic screen, Separate Bass, Treble and Volume controls, giving fully variable boost and wit with manimum insertion loss. Hecky negative ieedback loop orer 2 stages ensures high ont pit at excellent quality with very tow distortion factor. - sutable for use with gutar, microplone or record player. Provision for remote uounting of controls or direct on chassis. Ald this builis onto a cbassis Size only illim. wide 1 tin. deep. Overall height 4 in. Very clear and concise inatrictions enable even the inexperienced amateur to construct with 100% success. Bupplied cornplete with valves, output transformer (3 ohms only) screened lead, wire, nuts, bolts, solder eto (No extras to buy). $79 / 6{ }^{\text {P. \& }}$ (P .
Comprehensive circuit diagram, practioal layout and parts list $2 / 6$. (Free with kits).

QUALITY RECORD PLAYER AMPLIFIER

 A top-quality record player amplifler. Hize 7 in . W. 士 21 in. d. $5 \frac{1}{i n . ~ h . ~ T h i s ~ a m p l i t e r ~ w a s ~}$ double-wonnd mains transformer, HCO83, ELB4, CZ80 valves. Separate bass, treble and volume contrals. Complete with output transtormer matched for 3 ohm speaker Ready built and tested PRICE 6916 P. \& P. 419.ALSO AVAILABLE. Mounted on board with output transiormer and 6 in . speaker ready to ft into cabinet below. PRICE 89/6, P. \& P. $5 / 9$. QUALITY PORTABLE R/PLAYER CABINET Uncut motor board. Will take above amplitier and
B.S.R. or GARRARD Autochanger or single Hecord Player Unit. Bize $18 \times 14 \times 8+1 / 6$
PRICE $£ 3.9 .6$. Carr. 716

6 TRANSISTOR AND DIODE SUPERHET

A first-class 2 waveband transistor superhet - Printed circuit panel (size $8 \frac{1}{3} 2 \frac{3}{3} m$.). 3 prealigned 1F transformers. High-gain Ferrite Rod Aerial All Firat-grade transistors. Car aerial winding. Push-pull output. All parts supplied with simple instructions. All parts sold separatelg. Set of parts if purchased at one time
$0 N L Y$ £4.5.0. P. \& P. 2/6. Gircuit diagram $2 /$. UNLY £4.5.0. P. \& P.
(free with set of parts). 35 OPEAKERS
Suituble for use with abolle. 2irl. Gooimans. Ideal replacement for most pocket partables 8/6, 38 in. $12 / 6 ; 7 \times \frac{4 \mathrm{in}}{\mathrm{P}}, 21 / \mathrm{m} . \mathrm{P}$ \& P .21 - per sykr.

Portable CABINET
Size approx. 9 x x I 3 tin. Buitable for above using 3 tin. speaker $25 /-$. P. \& P, $2 / 6$.
COIL AND TRANSFORMER SET FOR TRANSISTOR SUPERHET
3 Ik transiormers one oscillator coil one driver transiormer and wound Ferrite eerial (med. fong and car aerial coupling) $32 / 6$ complete post $2 /$ Stransistor printed circult board to match $8 / 6$. Post 1/-. Cifcait diagram $1 / 6$ extra.

BARGAIN OF THE YEAR!

a wondertur opportunty for vou wo vand a quabty

AM/FM TRANSISTOR RADIO

TUNER UNIT

for 9p. operation. Wis ofter the essential very high giade specially inatched components complatis I'M Funer Head pre aligned (s. 1118 Mita) woulplete with transistors. Two combined A.M1FM 1.F Transtormers. one discriminator transtormer, one ASI list I.F. transionuer with dowe detector. Mos
 gang, hardware itenis for tunituy in chanisms. A ll ierrste rod acrial (IW WhW) with bouphifg winding tructuer bank, tumang Imum, pulleys, cte., and shasested cirint diugram giving coil cunnections ete OFFERED AT THE
AMAZING PRICE OF CIIS. \quad F. \&. $4 / 6$
Owing to the very hiuh value offered and the limited number we regret thal no
into regarding this ilem.

SPECIAL PURCHASE!
 FROM LEADING
 HI-FI MANUFACTURERS

7-10 w.lt OUTPUT TRANSFORMERS to match pas of ECLS6's in push-pull to 3 ohm
 FORMERS to match pair ni ECLRe's in wurhplit to 3 ohm output. SPECIAL MAINS TRANSFORmERS Do the oi the aped prmars. Secondary either oi the above. Tapped primary. Secondary
250 v .80 ma half wave and 3.3 v . 2 amps. $\begin{array}{ll}250 \mathrm{v} .80 \mathrm{~mA} \\ \text { ONLY } & \text { half wave } \\ \text { 2 }\end{array}$

NEW CARTRIDGE BARGAINS

 RONETTE STEREO 105 CARTRIDGE. StereolLP) 78. Complete with two sapphires. Original list price 6\%/9. OUR PRICE 24/-, P. \& P. 1/.ACOS 71-5 single sided crystal cartridge for Stereo and L.P. rccords. Complete with diamond stplus and onjverssl mounting bracket. List price e2.6.4. Acos apb7-1 mono com
Acos Oar price 13/6. P. \& P. $1 /$.

STEREO AMPLIFIERS

Inoorporating 2 ECL82's and 1 EZ80 heavy duty double-wound mains transformer. Oatput ofatts per chamel. Fal utely complete.

SUPER DE LUXE version of above incorporatiug ECL 86 valves separate bass and treble controls
and fall negative feedback, 8 gns., P. \& \mathbf{P}. 6 .

SPECIAL BRAND NEW
 TRANSISTOR BARGAINS

GET 15 (Matched Pair) 15/न; V15/10p. 10/-; OC71 5/न; OC76 6/-: AF117 7/6; ORP12 10/6. Set of Mullard 6 transistors OC44. 2-OC45 OC81D matched pair OC81 25/-, ORP12 Cadmiun Sulphide Cell 10/6.

EDISWAN MAZDA

PXA 101 6/6; XA103 6/6.
R.F.I. Pack: 1-PXA102 Mixer; 8-PXA 101 I. F. Amp. (Equiv. OC44 and OC45) . $10 / 6$ R.F. : Pack: Y-PXA101 I.F. 1-PXA102 Osc.: L.F. 6 Pack: Consisting of P $\ddot{X} \dot{B} 113$ Driver Matched pair PX171 mounted complete with heat sink
ALL TRANBIBTORS POST FRER

HARVERSON SURPLUS CO. LTD.
 170 HIGH ST., MERTON, S.W. 19 CHErrywood 3985

Open all day Saturday
Early closing Wed. 1 p.m.
A few minutes from South Wimbledon Tube Station
(Please write clearly)
please note: p. \& p. ceargers quoted apply to U.i. only. p. \& P. overseas OLDERS CHARGED EXTRA

SEND STAMPED ADDEESSED ENVELOPK WITH ALL BNQUIRIES

SEE

RIGHT
HAND
PAGE
FOR
ITEMS
3.VALVE AUDIO MODEL HA3:

AMPLIFIER

Deatgned for Hi-F reproduction ol records A.L. Mains uperstion. Ready built on plated heavy gauge aretal chasgid size 7 itin. W. x 4in. d. x 4in. h. ELorporates ECC83 Henvy duty double wouthl mains transformer and outpur trargiormer matched for 3 ohm sueuter, separate Base Treble and volurne controls. Nugative tedback line Ontput 4t watts. Front panel can lue detached and leads extended for remote mounting of con. rons. The HA34 has been epecially designed ior me and our quantity order enables ne to offer them complete with knobs, valves, 84.5.0 P, \& P.

BRAND NEW 3 OHM SPEAKERS

 15/- Han 91/~; 10 in 25/= 120. 27/6; (12in. 15 ohin, $30 / \mathrm{m}$), 10in. $x 610$. 28/E.M.I. $13 \frac{1}{2}$ I sin. With high fux ceramic magaet 42/-: $15 \mathrm{ohm}, 45 /=$. P. \& P. 5in. 2/m; bi and 8in. $2 / 6 ; 10$ and $I 2 i \mathrm{n} .3 / 6$ per speake।
QUALITY PORTABLE

TAPE RECORDER CASE

Rrand uew and anused. Beautifully made and expenavely finiohed to dark grey heavy grade resine. Aatin chrome nutal grille iront and
 Uvér.all size $15 \frac{1}{4} w$. x 15 d . ¥ 7 hh . ins. Will take ang itandard tape deck or single record player. Limited number why Worth at reast f5. OUR PRICE 49/6. F^{\prime} \& P . O / F
A.S.R. MONARDECK. Bingle speed, satin. per sec., simple control uses 5 şin. spools. $28,15.0$ plus 7/6 carr. and ins. Tape- extra.

BARGAIN OFFER CORNER

MAINS TRANSFORMERS

semi-shrouded drop thro type. Pri. 200 , $520,240 \mathrm{v}$. Bec. 250 v . f wave at 70 mA and 6.3 v . at 2 arop. ctt.
 ORECISION 6-MINUTE DELAY ACTION SWITCH Chockwork actuated. Made ty hiaibs. Beparate Each spriten action desigervis up to 6 mins. Each spitch action designed tol current loadirig up to 15 stnpe at 250 volts, suitable for photographe thmer, sequedce switching operitions, etc. "te: Bratud new and unuxed units ofsered at
 10/-each. P. $1 / 6$ (3 or more post tree). Specia HEAVY PUTY
GEAVY DUTY NON-INDUCTIVE DIP M!CRO 8WITCH. Conservatively rated 10 ampe at 250 v standard ouehote tiriog. Budy size 10 x x lin we 'p dic, termuala 3/- each, P. \& P, 1/. 6 ol
NEON A.L. MAINS INDICA FOR FO: HaLe

 10 os wore frost tree).
VYNALK AND REXINE SPEAKER AND CABIN'ET FABRICS. Appror, 94 in , side. Usually 35/- yard. OUk PRICE $13 / 6$ per yard rength. P. \& P. 2/6 (muL. one Yd. S.A.E, for samples or band use, Huh seasitivity 18/6. P. \& P 1/6 TSL CRYSTAL STICK MIKE, Listed at $45 /=$ ULR PRJCE 18/t, P. P. 1/6.
T.C.C. SUPPRESSOR CONDENSERS, 250v. A.C.
 THANSISTOR DRIVER
ERANSLSTOR DRIVER and O/P TRANSFORMERS. (Tapped 3 ohm and 15 ohm output). Plus 4 suatabie Transistors biring approx. 1 wstt U)

2 GANG 0006 TUNING CONDENSERS. $2 \nmid \mathrm{in} . \mathrm{h}$. 1 Pin. d. 5 IIm. w, with buili-in trinmer. $4 / 8$
MATCHED PAIR OF 2
DRIVEK AND OUTT TRANSISTOR
OUT DRIVEK AND OUTPUT TRANSFORMERS, tack size $1: x$ ax Ain. Output hans, tapped sor BRACD NEW Out put, $10 /=$ pai. P* \& P. $2 / 4$.
 vibrators,
$1 / i j$ each.
TWIN TELESCOPIC AERIAL Comprising two -4ection heavily chromed rods. Closed 12in. each extetudug to 32in. Completely adiustable aith pertical to horizontai. Bupphied complete hing Buitabie cor F M , or TV 12 coax lead and 4-WAY NON-TANGLE TELEPHONE CAGLE. type, extendew 12is. to 5 omprete win rubber tushes, 4/0 Pach Pr\& P. 1/.

Harverson Surplus Co. Ltd.

NEW VALVES!

24 HOUR SERVICE
1R5, 1S5. 1T4. 3S4, 3V4, DAF91, DF91 DK91 DL92. DL94. SETOF \&
DAF96. DF96, DKM, DLE6. SET OF 4. $23 / 6$

1R5	4/-	EB91	$1 / 9$	PL36	816
$1 \mathrm{~S}^{1} 5$	$3 / 3$	ERC41	6/3	PL81	6/6
174	$1 / 9$	EBF80	519	PL82	5/-
354	$4 / 3$	EBFB4	$5 / 9$	PL83	$5 / 11$
dV4	5/2	ECC81	$3 / 3$	PL84	6/-
6K7G	1/3	ECC82	$4 / 6$	PY32	$9 / 6$
6 K 8 G	$3 / 3$	ECC83	4.6	PY33	$8 / 6$
6Q7G	$5 / 6$	ECC85	$5 / 3$	TY80	$4 / 9$
íV6G	3/2	ECF82	$5 / 9$	PY81	$5 /$
10 C 2	11/-	ECH35	$5 / 9$	PY82	$4 / 9$
201.1	11\%	FCH42	719	PY88	$5 / 3$
20 P 3	$10 / 6$	ECH81	$5 / 6$	${ }^{1} \mathrm{Y} 800$	$5 / 11$
20 P 4	13/2	ECL 80	$5 / 11$	U25	8%
20P5	11/6	ECLa 2	6/6	U26	$8 / 6$
30 FLL	$9 / 3$	ECL86	$81 /$	U191	$9 / 6$
30 L 15	$9 / 9$	EF34	316	U301	$10 / 6$
30 PL13	10/	EF41	$5 / 9$	U801	149
$35 L 0 G T$	5/6	EF80	413	UABCB0	14.
CL33	$8 / 6$	EF'85	$4 / 6$	UAF42	$6 / 11$
DAC32	$6 / 9$	EF86	$6 / 6$	UBC41	6
DAF'91	$3 / 3$	E.F89	$4 / 3$	TBrso	$5 / 6$
DAF\%	$5 / 11$	EF91	$2 / 6$	UBF30	$5 / 9$
DF33	$7 / 6$	EL41	7	$0 \mathrm{CCP4}$	2111
DF91	1/9	EL84	4/6	UCC85	6\%-
DF96	$5 i 11$	EYO1	5111	UCF'30	$8 / 0$
DK32	\%	EYS6	516	UCH42	\%
DK91	4/-	EZ40	$5 / 6$	UCHE1	6 \%-
DK92	\%/9	E,280	$3 / 9$	[CLi2	$71-$
DK96	6/3	r. 281	$4 / 8$	UClb3	\%-
DL33	6/6	PCC84	$5 / 6$	UF41	$6 / 6$
DLS3	4/9	PCCe	9/6	CFS9	$5 / \mathrm{C}$
DLA2	4/3	PCi 80	$6 / 3$	UL41	\% $1 /$
DL. 94	5%	PCFB2	5.9	UL.8.	4/¢
DL96	5/11	PCF805	$81-$	UY11	$3 / 11$
DYB6	8/3	PCL82	8/3	CY85	4/r
DY87	$\underline{7}$	PCL83	91.	W7\%	19

EABC80 5/6 PCI84 \%/4 277

BBC2 (625 LINE) TV AERIALS

 sement facth cuan. 1 element 5.5/-: 1 Crankid Arni qelemen GContink Hifl high sann I! element 6" 5/=. Ctummey Arrays Commpete, "element z2i-: wde spaced high gain, 11 element. col-: 14 clement $87 / 6$. Loft Arrass 7 element 32/6: wide spased high gain, is
 thecial Nutti-rod IRellcetor. Low ioss

BBC • ITV F. F.M. AERIALS

H.13. (Band 1). I'cle copic loft 21/-. External 1.' 30% ment (thand 3). 3 Ele element $35 /-$. Wall mount ing. 3 element 35/-. 5 element 45/-
Ombined IB. R.C./I.T.V. Lolt $1+3$. 41/3: $1+5$ 48/9: $1+5,65 / 9:$ Chimney $1+3$. $1+5,6 \$ / 9:$ Chimney $1+3$.
$63 / 9 ; 1+571 / 3$.
Hiff transistor pre-ampe from trans
*NI. (Hand 2), Loft SiD 12/6. "H", 30/3 element, 52/6. External units available. Co-ax cable 8d. yd. Co-ax plugs. $1 / 3$. Boxes, 12/G. C.W.O. or C.O.D P \& P 316 Send fid. stamns for illustreted lists
K.V.A. ELECTRONICS (Dept. P.W.)

27 Central Parade, New Addington. Surrey
1002266

- Illustrated in this advertisement are two fine cablnets from the Lowle two hae cabia
- These Cabinets are juat two of a really extenslve range.
- Each one carefully made by British Craftamen and soundly constructed from the best materials available.
Flll in coupon below to obtain FREE catalogue showing thla wonderful rance of cabluetin
 \section*{EQUIPMENT CABINETS
 \section*{EQUIPMENT CABINETS OF DISTINCTION OF DISTINCTION

 }

 }

[^5]
thansistor receiver coils

Special versions of the P50 Series are now available for the AF. 117 or OC. 170 Transistors. Details of the simple modifications to our standard receiver are given in the latest edition of the Constructors Booklet which is priced at 21 .

The new components and their original equivalents are listed below:

Oscillator Coil	For OC45			For AFII7		Price
			P50/IAC		P50/IAC		$\begin{aligned} & 5 / 4 \\ & 517 \end{aligned}$
	...		P50/2C				
2nd I.F. Transformer	...		P50/2C				517
3rd I.F. Transformer	...		P50/3C				61.
Rod Aerial		RA2	1216
Driver Transformer		LFDT4/I	916
Output Transformer		OPTI	1016
Printed Circuit	\cdots	PCAI	916

WEYRAD (ELECTRONICS) LIMITED

School Street, WEYMOUTH, Dorset

SUB-MINIATURE

Set of 3 I.F.'s and oscillator coil, $455 \div 470$ Set of 3 I.F. kc / s. Size approximately $\ddagger \mathrm{I} \ddagger \mathrm{I}$ inin. Limited Kc/s. Size approximately $8 /$ per setm
p. \& P. 1/6.

Also: Eagle I.F. and osc. coll kit with tuning Also. miniature and boxed. Supplied with s/ht, ceth Rt only 24/9 complete. P. \& P, 2/6.
SILICON RECTIFIER
Type BY 100, 日 $/ \mathrm{L}(250 \mathrm{v}, 500 \mathrm{~mA}) \mathrm{P}$ \& P. $1 / 6$. TRANSFORMERS
AUTO suw only 24/=P. \& P. 2/6 MILAMENT $250-6.3$ W only $\quad 45 / 6$ P. \& P. 3/6 FILAMENT 250-6.3v. CANGISTOR Coraplete range of driver and TRANSIBTOR Coraplete range
ontput transformers avalable.
EARPHONES New and boxed
2,000 ohras - $14 / 3$ P. \& P. $2 / 6$
4,000 ohins $-17 / 3$ P. \& P. 2/6
Also full range of earpieces from $4 / 11$ to $12 / 8$.
VOLUME CONTROLS
Gtandard, linear and log tracks. All values. Less switch, only $2 / 10$ P. \& P. $1 / 6$ With d.p. sw. only $\quad 3 / 9 \mathrm{P}$. \& P. $1 / 6$ Full range of TEST METERS always in stockdrop in and see for yourself. A fine erample is aur popular $20 \mathrm{Kohms} / \mathrm{v}$. multimeter at only 84.19.6.

We are also stockists of the following items and we will be pleased to furnish you with detailed information and literature on request:
LAN IDER range of D.I.Y. Burglar Alarm Eits Philips Flectronic Kits
Ginclair Products
Anclair Pr
Veroboard
REMEMRER

Bothwel electric
SUPPLIES (Glasgow) LTD. SUPPLIES (Glasgow) 54 EGLINTON STREET GLASGOW, C. 5
Member of the Lauder Group have all yon netd for your industrial and domtelephone suUth 2904 for further information THADE ENQUIRIES WELCOME

MUSICAL INSTRUMENTS

AND AUDIO

The performance and frequency range of more than 60 instruments is ex amined, with a large number of photoraphs and diagrams. In fact the book graph is intended to appeal to both the concert-goer and the audiophile.
by G. A. Briggs.
$32 / 6$
Postage $1^{1 /}$
TRANSISTOR
ELECTRONIC ORGANSFOR THE AMATEUR. by A. Douglas and S. Astley. $18 /$. Postage ll.
SERVICING ELECTRONIC ORGANS by C. R. Pittman and E. J. Oliver. $30 /=$. Postage 11 .
ELECTRONIC ORGAN HAND. BOOK by H. E. Anderson. 351.. Postage ${ }^{1 /}$.
AN
INTRODUCTION
TO COUNTING TECHNIQUES ${ }^{8}$ TRANSISTOR CIRCUIT LOGIC by K. J. Dean. 25\%. Postage 1/.
REFERENCE DATA FOR RADIO ENGINEERS by S.T.C. 42%. Postage 216.
PICK-UPS THE KEY TO HI-FI by J. Walton. 101-. Postage 8d.
BRIMAR VALVEAND CATHODE RAY TUBE MANUAL No. 0. 7/6. Postage l'.
COMPLETE CATALOGUE If..
THE MODERN BOOK CO.
19-21 PRAED STREET
LONDON, W. 2
Phone: PADdington 4185
Open 6 days $9-6$ pam.

SETS	Set of 4 for 15／－．［DAF96，1РF46，DK96，DLL6． 4 for 24／6．						
1470 T	${ }^{7} / 0,7 \mathrm{H7}$	4／8 ${ }^{\text {B } 36}$	4／6 ECFM\％	7689414		TYNHF＊	10／－
1 Hocit	781784	b／－CLS3	9／01ECH5\％	81－N14		1：33	$8 / 6$
1 N312	7／y｜9BW6	6／6｜e＇Y1	12／6 ECl＇sh	10／91PC95		U26	819
155	$4 / 8100$	11，6 bacs	$7 / 3$ ECH35	6／－P97		L47	$8 / 6$
184	$4 / 910 \mathrm{Fl}$	9／9 DAF9！	$3 / 91 \mathrm{CH}$	8／3 P里发		U5：	$4 / 6$
185	$3 / 810 \mathrm{LD12}$	－1／6 Dapso	6／－LCH：${ }^{\text {d }}$	d－1Pcces		リご	$8 / 9$
114	$1 / 912 A^{\prime} 7$		6／G． HCL	6／3 J ${ }^{6 / 1} 1$		U78	$8 / 6$
$3 \mathrm{A5}$	6／912Alto	4／915r33	－／ 5 EcLas	6／9 10F\％		1191	$9 / 8$
3Q4	$5 / 612 A \cup 7$		1／9｜ $\mathrm{FCCl}, \mathrm{NB}$	$8 / 6$ lers		1－2si	$8 / 6$
3 V 4	4／812AX7	4／912F96	6j－1EF3a	$3 / 9$ Pedw		L3u1	$10 / 8$
3V4	5／612K7GT	T 3／6｜11176	3／6，EFF 1			CN01	$15 /-$
5Y3GT	4／11 12K ${ }^{\text {a }}$	8／6 1 LH7	4／－EFR0	$4 / 9$ PCPWus	$9 / 9$	Cabore	（0）5／9
58， 6 G／30L	T8／912Q7UT	3／6｜ 1181	12／6 FR85	6／－12C1\％${ }^{\text {c }}$	8／－	CAF42	$7 / 9$
6／30 L2	$8 / 0.19 \mathrm{BLbj}{ }^{\text {d }}$	8；9 DK：32	219 EF 86	$6 / 9$ F＇Clsx－	$6 / 3$	Clsc＇4i	6／6
fiA LS	2\％－2015	11／9 1）K！！	4／91 Er－x9	4／8 Pelas	$y /=$	CBa＇bl	6／3
6A M15	2／6 20 P	10／91）K9	B／－ETY	2／6 P＇1／34	$8 / 3$	CBFE6	6／－
5AqG	5／6 20P4	13／6 山Кソ	$6 / 6 \mathrm{EJP9}$	$1 / 9$ P＇Lm		1BP59	$5 / 9$
fity	4／－201＇5		$6 / \mathrm{CLFO}$	\％／6 J＇Clsi	$8 / 6$	U（て）	\＄／1－
6BA	4／6 25 LHGT	4／3 1123	5／－EFiNS	6／9．JENA4	6／6	Uecas	6／6
48 Ef	4／92504071	11．0｜1L42	4／91 ELis3	B／6 Presis3	9／6	LCF＇so	8／3
${ }_{6} \mathrm{FRHF}^{\text {a }}$	5／－30414	$81-0 \mathrm{~L} 44$	5／6 EL3	11／9，1＇ビN故C1	15／－	HCH42	${ }_{7} 16$
6R．th	5／6，305：	$8 / 610199$	6／－NiL． 11	\％／3 PFL200 1	17／8	UCIIH1	6／6
${ }^{68 W}$	$7 / 930 \mathrm{FLE}$	9／8｜1）Y゙ャ\％	6／日fick	4／6／1＇L．36		Trles：	$7 / 8$
5 FL 3	3／6130116	10／3｜以Y47	$81-121.45$			－1ubes	9／3
$6 \mathrm{Fl} \mathrm{S}^{\text {a }}$	9／－301．17	12／－1EABCNO	6－EABM	$8 / 8^{\prime} 1{ }^{\prime} \mathrm{LC} 2$		い小さ1	$6 / 9$
6F7\％	1／6301＇	13／6，LAFF4	7／儿 $\mathrm{T} \times 146$	$5 / 9$＇L＊3		Uト42	$4 / 6$
	4／3／30P12	7／6，世 W． 1	4／－Ensel	1／3 PLext	6／3	1785	$6 / 3$
6KN（it	$7 / 6130 \mathrm{P} 19$	18／6｜ド1391	2／－EMS4	$5 / 9$ PLsme	14／－	CP\％	519
$4{ }^{4} 29$	9／6 3011／	9／6 EBE：39		$6 / 61 \mathrm{Lcol}$	$2 / \mathrm{C}$	1 H	${ }_{7} 18$
647，		10／9 EBC＋1	6／6Fi51	6／3！ $\mathrm{r}^{\mathbf{2}} 35$	\％／9	11．4．t	15／－
	$4 / 930+1.14$	11／－E131～0	61－F｜V¢！	6／－リア3\％	819	CL4ts	8／6
f160		U／3 EBFOS	$7 / 6 \mid 12 / 40$	$6 / 9$ 1 ${ }^{\text {\％}}$	$8 / \mathrm{E}$	1LSt	$5 / 6$
gyfirt	5／6 5 \％W		5／9 F\％Z	6／6 $1 \mathrm{I}^{-41}$		¢ Y41	$4 / 8$
${ }^{3} \mathrm{X}+$	3／6135\％tc9	46 Ficlio	6／9：1．280	4／m PY^{+1}	$5 / 3$	CY4：	4／8
¢ ¢ ${ }^{\text {a }}$	6／853KL	$8 / 6 \mathrm{FCOM} 1$	3／811：Zx｜	9／61РYロ		VP4 ${ }^{\text {P }}$	11%
7 Bb 1	10／6｜	4／6 ticesz	$4 / 9 \mathrm{FW}$＋／500	$06 / 3$ PYN：3			$3 / 6$
787	1985A2	$5 / \mathrm{E}$ HCCS3	710 （\％83 1	12／6 P Y sin	$6 / 6$		2%
7 （1）	$7 / 860683$	12／6｜ECCs4	6／3 1：Z3s	З／9 TH210			24／6
76	5／91AZ31	9／31 ECCss		6／6 TH 233	8／6	\％37	$2 / 6$

READERS RADIO

24 COLBERG PLACE，and at 85 TORQUAY GARDENS STAMFORD HILL 4587 REDBRIDGE，ILFORD LONDON N．16．STA 4587 ESSEX．CRE 7441

Any l＇ared hisured ayainat Damage in＇Iransit bul．extra．

BARGAINS FROM

BROADWAY ELECTRONICS

GARRARIB Latest Model A．T．fo．Mono or Stereo £12．0．0
 fitted with lonette islereo 25 ：A．Fib Ahcils or wos，GCL rart－ radges wath brackets 15／－es

The＂BliAKiU＂12in．Heavy Duty Cannet．Size $244 \times 13 \times 9$ ，The batme is an thick．Covered in Rexine and Vyair 85／－．De model veneered with wood gram Formica and standing ou smart 6 m ．legs i5．Fjeace add 10 －for postage．
＂ilAYIDON＂Cabinet． $16 \frac{1}{5} \times 15 \times 7$ ins Fabric covered suitable 12 in ． speaker 45／－Postage 7／6，
Vynair speaker cloth 50 in ，wide 14／－vard．
Rexine leather cloth 50in．wide 10／6 yard S．A．E．for samples．
The fill．CIRTNTI，WIKE：30／－：table stand tor wame $9 / 6$.
GUITAIR PICK－LIP complete with clip and screened lead． $12 / 6$.
NEON PANEI．LIGiltw． 240 y A，C．Arcolectrlc． 216 each．
BARGAINS IN TRANEINTORS
AC127（NPN）5／－each．AF114，AF116．AF116，AF117，AF118，AF119， OC169，OC170，OC171，OC172 4／8 each．OCB1M，OC71 $2 / 6$ each，OC72， two Oc81．OC8ID 6／－each，RF Racks two OC45，OC14 8／6：AF Packs Driver 5／6：UC26，0C29 7／6；ORP12 Lght Cell \％／6：Diodes OA81 2／3： OA91 1／9．

TREASISTOR ELAECTROLYTICS：1，2．4．5，8，10，16．32，50， 100 mid，all at 15 volts， $1 / 3$ each． 100 mld ．Rv，9d．each special otter． 25 $\mathrm{mfd} .50 \mathrm{v}, 50 \mathrm{mfd} .50 \mathrm{v}, 50 \mathrm{mtd} .100 \mathrm{v}, 250 \mathrm{mfd} .25 \mathrm{v} .500 \mathrm{mfd} .25 \mathrm{v}, 100 \mathrm{mfd}$. $50 \mathrm{v}, 1,000 \mathrm{mif}, 12 \mathrm{v}$ all at $3 /$ each．
EATfPINCES with cord and 3.5 mm plugs， 8 ohm magnetic $3 /$－ 250 ohm 4／－： 180 ohm magnetic with clip 6／6：Crystal 4／－．

BROADWAY ELECTRONICS 92 mitcham rohd，tooting，s．w． 17

Phone：BALham 3984

（four minutes from Tooting Broadway Underground Station）

HIGH QUALITY

 LOWER COST

Combine an Armstrong Tuner and Amplifier and you have all the advantages of separate units，plus com－ pactness，easier installation，and equivalent perform－ ance at a lower price．
Stereo model 127，above，derived from the more expensive 227，has an identical AM－FM tuner section， with an amplifier section designed for those whose power requirements are more modest．
It has a more modest price too，as does the mono version model 127M．
Each Armstrong Tuner－Amplifier is ideal as the basis of a high fidelity system for radio and record reproduction，tape recording，and playback，and each unit may be built into your own cabinet or used in our optional case，of teak and vinyl hide，as shown． For full details and technical specifications of all models plus list of over 300 stockists，post coupon or write mentioning I PW 66.
model 127 STEREO TUNER AMPLIFIER
637.10 .0 model 127 M MONO TUNER AMPLIFIER

ع26．10．0
optional case $£ 3.10 .0$

ARMSTRONG AUDIO LTD－WARLTERS ROAD－N． 7 Telephone：NORth 3213°

Name

Address \qquad

WITBE ETOMCP BTE EGGTRONIGS

TRANSISTOR POCKET RADIOS

Ideal Gifts-all supplied complete with personal earplece, battery and carrying case. Fully guaranteed. Post tree.

EOY'S 2 TRANSISTORMODEL (Illustrated) In attractive plastic case. Size only $4 \times 2 \downarrow \times$ lin. $\begin{array}{ll}\text { 22in. speaker. Uses PP3 battery. Tunable over } \\ \text { 1ull medium waveband. } & 39 / 6\end{array}$

BOY'S 4 TRANSISTOR MODEL

6 TRANSISTOR MODELS
In plastic case. $4 \times 2 \frac{5}{x} 11 n$. with $2 \frac{2}{3}$ in. speaker. Uses PP3 type battery Tunable over full medium waveband.

5916

FAMOUS MAKE TRANSISTOR RADIO THiE "STELLA"
7 transistor portable radio. Long, Med. and short wavebands. Fitted tone swicen and sockets for per sonal earphone abd external aerial: chrome telescopic aerial IVes four 1.5 v . torch batcerles Plastic cabinet in be re and red. size $4 \times 7 \times 1+1 \mathrm{n}$. Excellent tone.
31n. p.m. speaker. Comp. with shoulder strap and external aerial. Full g uarantee. List price 17% Gns. $\quad £ 9.19 .6$
P. \& P. 5/-

WONDERFUL BARGAIN FROM RUSSIA

THE "SOKOL"
7 transistor radio covering full Medium and Long wavebands with exclusive rechargeable battery which can be recharged from any $110 / 250$ v. A.C. mains supply. Can also operate on PP3 type dry battery. High quallty P.M, speaker. Ivory and black Plostic case with metal trim-size $6 \times 3 k \times 1 \frac{1}{2}$ Sockets for external aerlal and earpiece. Complete with real leather case, dry battery, rechargeable battery and charger, personal ear piece

WIRECOMP'S PRICE £6.9.6

323 EDGWARE RD., LONDON, W.2. AMBassador
All Branches open all day Saturday. Early closing Thursday

WIRECOMP'S BARGAIN STORE

48 Tottenham Court Road, London, W.I
Thousands of barquins: Transistor Radios-Record Players -Tape Recorders-Radiograms-Hock Hottom Prices?

THE "REALISTIC" 7
Transistorised Portable Receiver made to the hiehest professional standard. Comprises ${ }^{7}$ Mulzard Frans plus Crystal Diode. 350 InMmwatt out pit Ko -iully tunable over medium and and long wavebands. Two-tone plastic abted whet for aerial. Coroplete itted socket for car aerial. Complete
 MAY BE BUILT $\mathbf{E 5 . 1 9 . 6 \quad \text { All marth sold separately }}$ P. \& P, $4 / 6$ extra. (Circuit diagram 2/8, free if all parts bought.) and full wlew tuning diol ONLY £1 EXTKA. All parts sold separately. Battery $3 / 9$ extra. P. \& P. 4/6, A. Al parts sold
SINCLAIR SUPER MINIATURE POCKET RADIOS TIIE MICRO-b. Pocket radio only $1^{* 1} \times 1^{3 / 1} h_{10} \times 3$ in. Complete with earphone and detalled construction data. Can be buit ror oniv.
$59 / 6$

IIIE SLIMLINE. The new 2-transistur pocket radio size only $2 f \times 1 \% x$ lin. Can be built for 49/6

INTERNATIONAL BRAND TAPE_-Ful'y Guaranteed MYLAIS BASE ATM ACETITE HASE
$15 /-$ 5 in . Double play, $1,200 \mathrm{ft}$. $51 n$. Triple play, $1,800 \mathrm{ft}$. 5 in. Double play, 1,800 ft. 5in. Triple play, 2,400 it 7in. Stand play, 1,200 it in. Long play. $1,804 \mathrm{ft} \quad 12 / 6$ in. Double play, 2,400ft. $\quad 25 /{ }^{2}$ in.

ACET ATE BASE
$3 \mathrm{in} .-150 \mathrm{ft}$.
$31 n .-225 i t$
3 in.
300 ft.
5in. Long play. 900 ft . . 51n. Long play. $900 \mathrm{ft} . \mathrm{ft}$ 10/8
54 in . Long play, $1,200 \mathrm{tt}$ 12/6
 7 in. Long play. $1,800 \mathrm{ft}$. P.V.C.B.ASE

5 in. Stand play, 600 ft . $8 / 6$

27 TOTTENHAM COURT ROAD, LONDON W.I. Telephone: MUSeum 9188 Bulk enquiries invited. The oldest component specialists in the trode.

Est. 35 yrs.

LOUDSPEAKER BARGAINS STILL AVAILABLE

Enormous purchases of Erand vew and Guaranteed Plessey loudspeakers © enable us to offer these units at TIIE LOWEST PRICES EVEIR: Don't mins this golden opportunity to obtain a first-grade permanent-magner hotcorgh ker Oofi the production line at LESS THAN THE MANCHACTURERS CONT: Read
 §RAMPARE

ALLOW $2 / 6$ each Speaker for postage and packing and handilng charge and please specify the exact requirements-the nearest avallable will be sent.

SELECTED BARGAINS
Beautifully geared AM/FM 2-gang Condensers, 4/6; AM/FM IFT'S $465 \mathrm{kc} / \mathrm{s}$ and $10.7 \mathrm{Mc} / \mathrm{s}$ B/6 pair: Magnavox Crystal Tape Recorder Mikes, 12/6; 3 watt Stereo Amplifiers complete, ready to switch on, 79/6; Sentercell rectifers R3/2D-D3-2-1-Y, $2 / 6$ each. DIODES, OA79, OA90, CG46H.GD10. 21 - each.
TRANSISTORS: OC45 4/6, PXAlo1, $3 / 8$, AF1i5, $4 / 6$ Sub mirn. Germanium diode $1 / 3$, M1 diode 6d. each. Silicon diodes, 400 p.i,, , $330 \mathrm{~mA}, 2 / 6$ each, please send STAMPED and ADDRESSED envelope with any enquiry. We regret no catalogue-our stocks O move too quick ! Kindly make provision ior gda.cional postage and package. to avold delay. Terms: Cash With Order or C.O.D. on Orders over 10\%.

CHEAPER RHEDOZEN

RED SPOT TRANSISTORS
Audio Similar to OC7I Doz. Audio Similar to OC7I
or $1 /$ each $+4 d$. postage Post 6d. extra WHITE SPOT TRANSISTORS
similar to OC45, 1才/G $\begin{array}{r}\text { Doz. }\end{array}$ or $1 / 3$ each +4 d . postage

SILICON RECTIFIERS

GI7M 24V $\frac{1}{2}$ Amp $\quad 24 / \mathrm{a}$ Postl. or 216 each $+6 d$. postage

MINIATURE GERMANIUM DIODES
6I-Doz. Postage 6d.
TANK AERIALS
6 Section. Total length loft. 10in. Perfect for Vertical Aerial or Fishing Rod 1016 each. 1/6 P. \& P.

VEROBOARD Now in Stock

$$
\begin{aligned}
& \text { Postage 6d. each extra. }
\end{aligned}
$$

Dept. P

22 HIGH STREET, BIDEFORD N. DEYON
Tel.: Bideford 3217

KITS WITH A FUTURE

The Martin Audiokit assembly you own today can become part of an even better hi-fi system tomorrow. No other system allows you to enlarge your installation stage by stage in the way Audiokits do. They comprise a wide range of very well made prefabricated units in which the connections are standardised throughout. Each is rigorously tested to stated specification before despatch. NEW KITS FOR ADDING ON ARE IN COURSE OF PREPARATION NOW-so by starting with Martin today, you insure yourself for still better listening tomorrow.

Choose Martin for quality
Euild for 3 or 15 ohm system
- Start with Mono and add Stereo or start completely with Stereo
- Power packs available
- Professionally styled escutcheon plates
- Assembly is easy by following the well presented instructions

MARTIN ELECTRONICS LTD., I54/155 HEGH ST., BRENTFORD, M'SEX Phone: ISLeworth 1 161/2

The New'Picture-Book' way of learning 8 6 ELECTRICITY (5vols.) ELECTRONICS (6 vols)
 You'il hand it easy to reatn with this out- The boolis die based on the latest research

 tandingly successiui new pictorial method- into smplitied learnmg techniques. This the essential lacts are explaned in the has proved that the Pictorial Approach simplest languare, one at a time; and eacb to learning is the quickest and soundest is ilustrated bv an accurate cartoon-type way of gaining mastery over these vitheets.The stries will of of exceptional value in training mechanics and technicians in electricity, Radio and Electronics.

WHAT THIS MONTH'S enthusiastic readers say

EVERY DAY WE RECRIVE LETTERS PRAISING THESE BOOKS, HERE ARE A FEW FROM THIS MONTI'S POSTBAG.
"Without doubt they are the easiest to follow books I have read, they toill be used continuously from now on.
J. W. Fife.
"I may add that these books make the subject of Electronics, very simple to understand." S. W. Leyton.

To Selray Book Co.
60 Hayes Hill, Hayes, Bromley, Kent Please send me Without Obligation to Purchase, Basic Electricity Basic Electronucs on 7 Days Free Trial. I will either return set carriage pad, in good condition withm x days or send down payment of 15/- (Basic Electricity) iollowed by (lortnightly payments of 10/-. Down payment of 15/- (Basic Electroriics) followed by 6 tortnightly payments of $\mathbf{1 2} / 6$. Alternatively, 1 will send 68 (Basic Electricity-5 parts), 81/- (Basic Electronics-6 parts) post free. This offer applics to United Kingdonn only. Tick against set required (only one set allozeed on free trial). BASIC ELECTRICITY \square

BASIC ELECTRONICS \square

Signature
(If under 21, signature of parent or buardan)
NAME
nluck letters below
réll postal
ADDRESS

44A WE8TBOURNE GROVE
Tel.: PARE $6641 / 2 / 8$
Tel: PARK $5641 / 2 / 8$
Pleme write for full catalogres

Plesse send all correspondenoc and Mail-Orders to the Head Offioe
Wren sending cash with order, please include $2 / 6$ in $\&$ for postage and handing

Ketail shop LONDON TONE
Tel.: LANghsm 8403
Open all day gaturday

transistors					
0 C 23	17/6	0078		$2 \mathrm{S002}$	201-
0 O 24	22/6	0078 D		2 N 004	15
$0 \mathrm{CH5}$	12/.	OC81m	$7 /$	29006	
OC26	81-	OC81DM		AC128	-
OC28	17/6	OC83		AF114	-
Oc29	17/8	OC139		AF115	
0 Cl 3	15\%	ac140		AFP116	-
Oc36	151-	Oc141		AFL17	-
0042	$7 / 8$	OClio		AF118	
0 C 44	$81-$	0 Cl 11		CXT1	
OC45	5 j -	OC200	$9 / 6$	GET114	
0 C 70	$51-$	OC202	15/-	GE115	
0 C 71	$51-$	OC204	17/6	GET116	12/-
0 C 72	$6 /-$	OC205	201-	GET875	
0 C 73	11/-	OC206	22/8	GET880	
00075	$8 /$	2N410	3/6	MA'T10	$18 / 8$
0078	81.	2N412		MaT12	
0077		2N697	17/6	T1166	
Bote of 2-2N410 and one 2N4129\%-					
STLICON FULL WAVE POWEP					
RECTIFIERS, 100 P.LV.					
1820K. 10,2 amps, $25 /-{ }^{2}$ 1B40K10					
6		181001		10 ampa	

GERMANIUM DIODES					
$)^{1} \mathrm{~A}^{5}$	4/6	0 Aml	2/-	Cri+6	$21-$
OAt	$4 / \mathrm{F}$	OA×5	3/-	Cil10E	1/6
0 Olo	81-	OAN6	$3 / 6$	C(112W	2/-
0 A 70	$2 /=$	UA!0	2/-	GEX23	1/6
OA73	1/6	OA91	$2 / 3$	GEX44	1/8
OA79	$2 / 3$	UA96	3/-	GEX54	2/-
ZENER DIODES					

OAZLO (4.7 v) 10/-; OAZZ201 (5.1 v) $9 / 6$ OAZ202 (5.6 v) 8/-; OAZ203 (6.2 v) 7/-
 $880 \mathrm{~mW} 15 \%$

0AZ20ı (4.3 v) 6/-; OAZ210 (6.2 v) 6/OAZ211 (7.5 v) 5/6; OAZ212 (9.1 v) 7/6 1.5W 5\%

ZNB10 (10 v) 7/6; ZNB20 (20 v) 9/6 2.05W. $\pm .35 \mathrm{~W}$

VR425 (4.25 v) 6/6; VR475 (4.75 v) 6/6 VR575 (5.75 v) 6/8
2.85W, $\pm .6$ VE7B (7.0 v) 6/6;
5.86W, $\pm .6 \mathrm{~V}$

VR10A (10,0 F) 8/- YB11A (11.0 v) 8/-
VR18 (18 v) $8 /-1$

CATHODE RAY TUBES
3G:P1, as recommended for P.E. Oscilloscope. EHT $1000-1500 \mathrm{~V}, 6.3 \mathrm{~V}$ Htrs., 3in. dia. screen $50 /$ 4GPA, EHT 1000 V, P.D.A. $4000 \mathrm{~V} ; 6.3 \mathrm{~V} 14 \mathrm{tr} 3$.
 dia. screen P. $\$$ P. $/ 6$ per

HEADPHONES No. 10 ASSEMBLY
Moving Coil Headphones with moving coil Hand Microphone fitted with press-to-talk switch. Rubber earpads. Cord terminated with army type 6 -point moulded connector. Low impedsnce. Braud new Gnall quantity available of second hand assemSnialt quantity available of second hand assem-
blies, checked, in perfect order ..
$8 / 8$ each blies, checked, in perfect order.

P. \& F. $3 / 6$ per set. PHOTC CELLS GS18

Caessium Antimony, side-on window. ET 160 F . mensitivity 160μ A/Lumen ${ }^{\text {a }}$ S/- P.P. $1 / 6$ Osmor PW/FRI for Transistor Radios $\begin{array}{llll}\text { Osmor PW/FRl for Transistor Radios ... } & 8 / 6 \\ \text { Weyrad RA2W for Transistor Radioi } & 12 / 6\end{array}$ compriaing car serial coil

IPRACTICAL WIRELESS

blueprints

Send (preferably) a postal order to cover the cost of the Blueprint (stamps over 6d. unacceptable) to PRACTICAL WIRELESS, Blueprint Dept., George Newnes, Ltd., Tower House, Southampton Street, London W.C.2.

DOUBLE-FEATURE BLUEPRINTS

$\left.\begin{array}{l}\text { The Strand Amplifier ... } . . . \quad \text {... } \\ \text { The PW Signal Generator }\end{array}\right\}$	51.	The Tutor	31.
The Savoy VHF Tuner... The Mayfair Pre-amplifier	5\%	The Citizen	\cdots	\ldots	5\%
The Berkeley Loudspeaker Enclosure The Luxembourg Tuner	51.	The PW Po		rhet	...	\ldots	...	51.
$\left.\begin{array}{l}\text { The PW Troubadour } \\ \text { The PW Everest Tuner } . . . \\ \text { Th }\end{array}\right\}$	716	The PW 35		ar A	lifier	\ldots	\cdots	51-
The PW Britannic Two The PW Mercury Six ...	6\%	The Mini-am		...	\cdots	\ldots	...	51
$\left.\begin{array}{l}\text { Beginner's Short Wave Two } \\ \text { S.W. Listener's Guide }\end{array}\right\}$	51-	The PT Mult	eter	\ldots	\ldots	5\%
$\left.\begin{array}{ll}\text { Beginner's } 10 \text {-watt Transmitter } & \ldots \\ \text { Transmitting and Aerial Data... }\end{array}\right\}$	5\%	The Autocrat	ar R		\ldots	\ldots	\ldots	51-
$\left.\begin{array}{ll}\text { PW "Sixteen" Multirange Meter } & \text {.. } \\ \text { Test Meter Applications Chart } & \text {... }\end{array}\right\}$	5'.	The Beginn	Sho	Wa	Supe			5'-
The Celeste 7-transistor Portable Radio $\}$ The Spinette Record Player\}	51.	The Empire	Thre	band	eceive		\ldots	5\%
$\left.\begin{array}{l}\text { Transistor Radio Mains Unit } \\ 7 \mathrm{Mc} / \mathrm{s} \text { Transceiver }\end{array}\right\}$	5\%.	Electronic H	aian	Guitar	\ldots	5\%.

PLEASE NOTE that we can supply no blueprints other than those shown in the above list. Nor are we able to supply service sheets for commercial radio, TV or audio equipment.

QUERY SERVICE

The PW Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERYCOUPON

This coupon is available until 6th January, 1966 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, JANUARY, 1966

NEW 1966 CATALOGUE 140 PAGES

Fully detailed and illustrated components, equipment and Hi-Fi. All types and makes. 5000 Stock lines. The Finest Range available.

Price 6\% post paid.
FREE with Catalogue, 6\% Discount vouchers gives 2 - in pound discount on purchases.

CATALOGUE COSTS NOTHING AFTER USING VOUCHERS

(雨) ELECTRANIC Camponthis	
mre youchar	- 5 .

(I) GLOBEMASTER MW LW SW PORTABLE Full 3-waveband tuning. Pushbutton wavechange. Superhet printed circuit. Black-chromed cabinet $11 \times 7 \frac{1}{2} \times 3 \frac{1}{4} \mathrm{in}$. (SW 17-50 merres). Ear/Record sockets. $\begin{array}{lll}\text { TOTAL COST } \\ \text { TO BUILD }\end{array} \mathbf{8 . 1 9 . 6} \quad 3 / 6$.

10 AND 20 WATT TRANSISTOR MONO AND STEREO HI-FI UNITS

(2) POWER AMPLIFIERS. 10 watts RMS output. 100 mV input. $30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{ke} / \mathrm{s} \pm \mathrm{IdB}$. 6 transistor. Push-pull. Panel size $4 \times 2 \frac{1}{2} \times \mathrm{lin}$. $\mathrm{H} / \mathrm{S} 4 \times 4 \mathrm{in}$. TPA10/3 3-5 ohm spkr. $\mathbf{E 5 . 1 0 . 0 \text { , p.p. } 2 / 6}$ TPA10/15 12-16 ohm spkr.,

E5.19.6, p.p. 2^{16} (Mains unit for 1 or 2 amplifiers, 59/6, p.p. 2/6)

The Finest High Fidelity at Unbeatable Prices

(6)
$87 / 105 \mathrm{Mc} / \mathrm{s}$ Transistor Superhet. Geared tuning. Terrific quality and sensitivity. For valve or transistor amplifiers. $4 \times 3 \frac{1}{2} \times 2 \frac{1}{4} \mathrm{in}$. TOTAL COST
TO BUILD
©6. 9.62^{\prime} (Cabinet Assembly 20, extra)
(3) PREAMPLIFIERS. 8 input selector. Treble, bass, volume, filter controls. $\quad 1 \frac{1}{2} \mathrm{mV}$ to 300 mV inpurs Battery operated or from Mains Unit Output up to 150 mV RMS.

MP2 Mono $9 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \mathrm{in}$ E5.10.0, p.p. 216 (brown or go'd tront parel 8'6).

SP4 Mono/Steras, $9 \times 3 \pm \times$ I 5 in.. £10.19.6, p.p. 316 (front farel plate 12'6)

- all units built and tested
(4) TRANSMITTER/ RECEIVERS
\star Up to $\frac{1}{2}$-mile range 67.19.6, p.p. 2^{16} per pair
\star Up to 5 mile range \$22.10.0, p.p. ${ }^{1 / 6}$ per pr.
HIIFI
WE CAN NOW
SUPPLY FROM
STOCK ALL MAKES
OF HIGH FIDELITY
EQUIPMENT
(Hi-Fi Room opening
shortly)

E CAN NOW STOPPLY FROM OF HIGH FIDELITY EQUIPMENT
shortly)
(9) MICROPHONES * Pro'ess:onal 50K ohms L. L 301 79'6 t 50k Suck Dini 07. * 100 c Krarimic 6916

- 00 e Xral S. ek
- BM3 Stick Ma

(5) BUILD A TAPE RECORDER

 Three speeds- 3 watts.Complere kits with new " 363 " decks. Supplied as preassembled sections. Complete with portable cabinets and Speaker-excellent quality.
\star TWO TRACK \star FOUR TRACK
$426 \underset{816}{\text { P.P. }} \quad \leq 30 \begin{gathered}\text { P.P. } \\ 816\end{gathered}$

(7) 5 WATT AMPLIFIER

6-Transistor Push-pull. 3 ohms. 6 mV into $1 \mathrm{~K}, 12 / 18 \mathrm{~V}$ supply. $2_{\overline{\mathrm{A}}} \times 2 \times 1 \frac{1}{2} \mathrm{in}$.
BUILT AND TESTED $79 / 6$ P.P.
(optional mains units 54\%- $7 / 6^{2}{ }^{\prime}$ p.p. 2^{f}-).

New matching Preamplifier, 6 inputs, treble/bass/selector/volume controls. 610 mV o/put. $9-18 \mathrm{~V}$ supply. 7916, p.p. $2^{\text {I }}$ -

(8) REGENT-6			
6-transistor superhet. Geared tuning. Push-pulloutput. Moulded			
cabinetsocker.			
TOTAL COST $85 /-\quad{ }_{2}{ }^{\prime}$..$~$			

MULTI-METERS

PT34 IkV 3916 TP55 20kV $£ 5.19 .6$ MI 2kV 4916 EP3Ok $30 k V$ £6.10.0 TPIO 2 kV 75/. EP50k 50 kV £8.15.0 EPIOk lOkV $7916500 \quad 30 \mathrm{kV}$ £8.17.6 ITI-2 20kV 8916 EPIOOk $100 \mathrm{kV} £ 10.10 .0$ EP20k 10kV 9916

FREE Lists on request.

* 12 page. Transistor, SCR. diode, lightcell, quartz crystal, valve, heat sink, Benier catalogue and 4 page short catalogue of units. SINCLAIR KITS
Miero FM (VHF) Kit
Micro 6 (MW) Kit
Slimline (MW) Kit
$\times 10$ Built $\{$ Mains unit
$\left.\left.\begin{array}{l}\times 10 \text { Kit } \\ \times 20 \text { Built }\end{array}\right\} \begin{array}{c}\text { Mains unit } \\ 541- \\ \text { Mains unit }\end{array}\right\}$
$\left.\begin{array}{c}\times 20 \text { Built } \\ \times 20 \text { Kit }\end{array} \begin{array}{c}\text { Mains unit } \\ 9916\end{array}\right\}$
£5.19.6
£2.19.6
€ 2.9 .6
C6.19.6
65.15 .6
69.19 .6

KITS IN STOCK

Sinclair. Macgregor and Martin transistorised tuners, radio concrol, amplifiers, radios, tape recorders, all at advertised prices.

- LET US QUOTE FOR PARTS FOR YOUR CIRCUIT. SEND LIST OF PARTS FOR QUICK REPLY. MOST PARTS IN STOCK FOR ALL PU8LISHED DESIGNS.

HENRY'S RADIO LTD. 303 EDGWARE ROAD, LONDON W2 PADdington 1008/9

Open Mon. to Sat. 9-6. Thurs, I p,m. Open all day Saturday.
*PROVED AND TESTED DESIGNS—
FULLY GUARANTEED

[^0]: All correspondence intended for the Editor should be addressed to: The Editor, "Practical Wireless", George Newnes Ltd., Tower House, Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams: Newnes Rand London. Subscription rates, including postage: 295. per year to any part of the world. (C) George Newnes Ltd., 1965. Copyright in all drawings, photographs and articles pubroduction "Practical Wireless" is specifically reserved throughout the countries signatory to the Berne Convention and te UNAANUARY ©th or imitations of any of these are therefore expressly forbidden. The FEBRUARY ISSUE WILL BE PUBLISHED ON JANUARY

[^1]: Post orders to: Dept. P.W. 4 Springfield Road, Eastbourne, Sussex

[^2]: Read what juat a few of our astisfled oustomern say R.C. of Harringay writes Received with thanks Skyroma . . . Very pleased. Working well.
 B.M. of Harrogate writes . . . I would like to thank you . . . It was a real bargain. L.S. of London W. 8 writes . . . given it a good try out and I am very pleased with the results.
 S.B. of Somerset writes ... delighted with this radio . . . glad if you could send one more.
 T.F. of Stevenage writes . . . I would just like to say how pleased my son is with this radio.

[^3]: G.66/M X. 2 £9.18. $8+£ 1.12 .4$ P.T. £11.11.0 G.66/CS. $80 £ 10.10 .0+£ 1.14 .2$ P.T. £12. 4.2 G.66/CS. 90 £12.12.10 + £2. 1.2 P.T. £14.14.0

[^4]: -

[^5]: 100 Chase Side, Southgate, London I P.16. Tel: Palmers Green 3733/9666 |

