

ADCOLA
 SOLDERING INSTRUMENTS AND EQUIPMENT

> DESIGNED FOR THE AMATEUR'S RADIO STATION

ILLUSTRATED

List No. $70 \frac{17}{6}$ BIT IN
PROTECTIVE SHIELD
List No. 68
for catalogue apply direct to:Sales and Service Dept.

ADCOLA PRODUCTS LTD.,
ADCOLA HOUSE,
GAUDEN ROAD, LONDON, S.W. 4

Telephones
MACaulay 4272 \& 3101

Telegrams
SOLJOINT LONDON SW4

\%

SUPER 6

LONG \& MEDIUM Wave tRANSISTOR RADIO

A quality radio available as a kit or ready built. The sparkling performance and superb finish of the completed receiver give you value equivalent to a $£ 12$. 12.0 commercial model. \star All new parts. $\star 6$ transistors and diode. $\star 350 \mathrm{~mW}$ output. \star Superhet circuit, Ferrite rod aerial. \star Weymouth Radio printed circuit board. \star Component positions and references printed on back of board. \star Nicely styled wooden cabinet, 11 $\times 7 \frac{1}{2} \times 3 \frac{1}{2}$ in. \star Vinyl sovered in various colours. $\star 6 \times 4 \mathrm{in}$. speaker giving good bass and treble response. \star Full instruction booklet 2%. Free with kit. \star I.F. Frequency $470 \mathrm{kc} / \mathrm{s}$. \star Lining up service if required. \star All parts supplied separatefy. Write for list. S.A.E. please. * 9v. battery required. VT9 or P.P. 9 (3'9 with kit).

COMPLETE KIT ONLY
 PLUS 5'- POST
 £4.17.6

OR FULLY BUILT \&6.17.6 Tax \& Carr. Paid

V.H.F. Pre-amplifier with high signal-noise ratio and gain of at least 3:1 under average fringe area conditions. Metal container $3 \pm \times 3 \downarrow \times 1 \frac{3}{3} \mathrm{in}$. high, with strap for eaves, loft or skirting fixing. 9 volt battery operated, using transistor AFII4. Covers all British and some Continental stations. 88 to $108 \mathrm{Mc} / \mathrm{s}$. Order with confidence of improved reception.
ELECTRONICS (Camberley) LTD.
I5 VICTORIA AVENUE, Camberley, Surrey Post orders only please

JACKSON (is)

the big name in PRECISION components
Precision built radio components are an important contribution to the radio and communications industry. Be sure of the best and buy Jackson Precision Built Components.

JACKSON BROS. (LONDON) LTD.
(DEPT. P.W.) KINGSWAY-WADDON, CROYDON, Surrey. Phone: Croydon 2754-5 Grams: Walfilco, Souphone, London

FOM PEAK PSPOPMAVG AT LOW COST

 Advanced design and craftsmanship plus an unequalled reputation proved by the many hundreis of testimonials received from CobAR users is your guarantee or complete satisfaction. Only the best is good enongh for CODAR-Mullard, Brimar, Jackson, Denco, Electroniques, Thorn, A.E.I., are Just some of the famous mames built into CODAR equipment. CODAK-KI'IS are supplied with clear pictorial diagrams and easy to follow instruetions-no technical knowledge or special tools are required ror compleite success. Ifuid your Short Wave Station with conark-kits only from much more expensive equipment
 For iliustrated leafets giving fullest details send 6d. in stamps.

CODAR R.F. PIEE-SELECTOR. Will conslderably Improve the performance of Mony superhet receiver, Resuits are amazing" "Well worth the money" to 20 dB gain plus substantial image rejection, improved signal/noise ratio and selectivity. Selector switch for elther divole or single wire antenna. Powe requirements $180-250$ volts $12 \mathrm{M} / \mathrm{a}$ H.T. 6.3 volts, 3 amp L.T. size 8f X 5 x 410 . Ready bullt complete with cables, plugs and instructions, £4.19.6. Carr. $3 / 6$. $25 \mathrm{M} / \mathrm{a}$ at $200 \mathrm{v}, \mathrm{H} . \mathrm{T}$, and 6.3 v . 1 amp L.T. for other accessories. e7.4.0. Carr. 3/6

CODAR "Q" MULTIILIER MODEL R.Q.IN, For use with any superhet Cecelver with an IF between 450 and $470 \mathrm{kc} / \mathrm{s}$. Provides considerable increase in electivity for etther peaking or rejecting a signal on AM, CW. or SSB. Both PEAK and NULL functions tunable over receiver I. F. passband. BFU. factlity included. Size 8i x-5 x 41 m . Power requirements $180-250 \mathrm{v}$. H.T. at $5 \mathrm{M} / a 6.3 \mathrm{v}$. 3 amp L.T. Ready bulit complete with cables. plugs and instructions. £6.15.0. Carr. $3 / 6$. M101EL $\mathbb{1 8 . Q . 1 0 X}$. Self powered version for $200-250 \mathrm{v}$. A.C. and also provides $25 \mathrm{M} / \mathrm{a}$ at 200 v . H.T. and 6.3 v . 1 amp. InT. for other accossories 888.0 s Carrlage $3 / 6$.

CODAR A,T.5, 12 WATT 2 BAND TRANSMTITTER. The newest most compact transmitter for fixed or moblle use on $160-80$ metres. "The tiny TX with the BIG volce". Size only $84 \times 5 \times 4 i n$. (Base area is less than two-thirds of this page!) High stability new type callbrated YFO, $1.8-2.0 \mathrm{Mc} / \mathrm{S}$ and $3.53 .8 \mathrm{Mc} / \mathrm{s}$ (up Mc/s export, Air-spaced CODAR COLP Pl-net output, P. A. Platecurrent meter plus neon indicator. PlatelScreen modulator. AM/CW switch and Panel key ack. PIUG changeover for or 12 volts heater supply, Ready by/Not/Transmit and eerial changeover switching, stabilised vFO supply. neon standby/transmit indicator 88.0 .0 . Carr. $8 / 6$. Tyoe $12 / \mathrm{MS} 12$ volt solld state eower supply unt cile Carr, Type 12/RC Femoto Control and Aaria Switching untt. £2. 7.6. Cars. 3/-. (H.P. Terms avallable).

COIDAR-KIT MINI-CLIPPER-OURFAMOUSSHORT-WAVE RECEIVER

 * Can be built in one evening ready to switch on and bring the World to your fingertips at very low cost. *Supplied complete with valve one coll 25-75 metres and each. Instruction Manual only 2/-(credited on order). Filectrical Bandspread available. Provision to add 2 transistor amplifier.CODAR-KIT CR 45 MAINS TTR.F. SHORT-WAVE RECLEIVER WORID wide reception-North and South America, Russia, Indla, Australia, Far East, Amateurs, Shipping, etc. *Separate electrical bandspread. $\$ 3$ slow motion callbrated in frequencles and degrees. \star Power output 3 watts for $2 / 3$ ohm speaker. 太Valve line-up: ECC81, EL 84, EZ80. CODAR-KIT CRA5 complete with vaives. 3 colls ($10-28,25-75,60-176$ metres) and 11 page instruction manual LESS Cabinet). £\% 5.0. Cart. $5 / 6$. CR45 CABINET, 12in. x 54 in , x 7 im . with sliding door for easy ooll changing. 35/-. Extra colls $4 / 9$ each. Instruction manual only $4 /$ - (credited on order). (Can now be supplied ready bullt-price on request). (H.P. terms available).

CODAR-KIT CR 66 COMMUNICATION RECEIVER. The finest superhet kit ever offered. *Covers $540 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ in 4 bands. tseparate electirical bandspread. \$Factory aligned Coll untt and I. F. Transformers. 丸Regenerative I.F. stage for maximum gain and BFO.
for C.W. reception. \star Power output 3 watts for $2 / 3$ ohm speaker. * Panel controls: Aerial Watts for $2 / 3$ ohn Spearer. Bandswitch, AF, Gain, IF Gain, BFO. etc. *Valve line up: ECH81, EBF89, ECC81, ELB4, EZ84. * S12e EM84 16 Ln . x 61 in . x 84 in . CODAR-KIT CR 66. Complete with 17 pase instruction manual, $£ 19.15 .0$ (Ready-built £23.0.0). CR 66 M" Meter Model Kit fal. 0.0 (Ready-buit ezs.0.0). Carr. 7/6 extra, on all models (H.P. terms available). Irstruction Manual only, 7/8 (credited on order).

CODAR COILS AUR-SPACED INDUCTORS. A complete range of low loss alr-spaced inductors developed in. to 3 in diameter suitable for all types of circult ATU, aerial loading, etc, Full data and prices on request.

(s) 1 ,

The practical way to Learn Electronics.. and save money!

Anyone can build a Heathkit model. The easy-to-follow instruction manuals issued with each kit-set show you how. You will be proud of the professional appearance and performance of your finished model.
A KIT FOR EVERY INTEREST . . . FOR HOME, WORKSHOP, SERVICE \& TEST DEPTS.

"AMATEUR" EQUIPMENT

AMATEUR BANDS RECEIVER Model RA-1. Covers all amateur bands from $160: 10 \mathrm{~m}$. Half lattice crystal filter. 8 valve. " $\$$ " meter. tuned R.F. amplifier stage.

£39.6.6 Kit
Ascembled K52.10.0

RA-I
AMATEUR TRANSMITTER. Model DX-100U. Covers all amateur bands $160-10 \mathrm{M}$. 150 w . d.c. input, self contained with power supply. Modulator, VFO

> | Alator, VFO |
| :--- |
| Assembled $\& 104.15 .0$ |
| 79.10 .0 Kit |

AMATEUR TRANSMITTER Model DX-40U. Covers 80.10 m . Power inputs 75 w . C.W.. 60 w . peak C.C, phone. Output 40 w . to aerial. Prov, for VFO.

$\notin 33.19 .0$ кit

Assembled C45.8.0
DX-40U

COMMUNICATIONS

TYPE ance low cost receiver for the discriminating listener. Freq. cov. 600 $\mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mc} / \mathrm{s}$ and $1.7 \mathrm{Mc} / \mathrm{s}$ to $32 \mathrm{Mc} / \mathrm{s}$. Send for details. 153.0.0 Assembled
$\mathbf{5 3 9 . 1 6 . 0 \mathrm { Kit }}$

Other kits in the amaceur range include: SSB Adaptor SB-10 U E39.5.9. Variable freq. Oscillator VFIU El0.17.6. Balun Coil Unit B-IU E4.15.6. Grid-Dip Meter GD-IU f10.19.6. Q Multiplier EPM-1 \&8.10.0. Reflected Power Meter HMIIU ca.5.0. Wide range of models under American Mail Order Scheme.

MONEY BACK GUARANTEE

Daystrom Led. unconditionally guarantee that each Meathkit product assembled in accordance with our easy-co-understand instruction manual must meet our published pecificationa for performance or the purchase price will - cheerfully refunded.

HI-FI SPEAKER SYSTEMS

COTSWOLD STANDARD MODEL
Acoustically designed enclosure "in the white" $26 \times 23 \times 15$ tin.; 12 in . bass speaker, elliptical middle speakor, 2 in . pressurs unic. Covers
 $30-20,000 \mathrm{c} / \mathrm{s}$.
Complete kit with all controls.

MFS SYSTEM

A minimum floor space model for the smaller room. 26 in. high $\times 16 \frac{1}{2} \mathrm{in}$. $\times 14 \mathrm{in}$. deep. Similar perfiormance to standard model.
Price either model
$\mathbf{2 5 . 1} \mathbf{2 . 0} \mathrm{Kit}$ Price either model
DAYSTROM LTD

TEST INSTRUMENTS

$10-124$

5in. OSCILLOSCOPE Model $\ddagger 0-12$ U. Laboratory quality at utility oscilloscope price. Wide band amplifiérs essential for T.V. servicing. F.M. alignment, ere. T/B covers $10 \mathrm{c} / \mathrm{s}-500 \mathrm{ke} / \mathrm{s}$ in 5 ranges.
E45.15.0 Assembled $\mathbf{1 3 5 . 1 7 . 6} \mathrm{Kit}$
PORTABLE 'SCOPE Model OS-I, A compact portable oscilloscope, ideal for servicing and general work. Printed circuir board. Case $7 \frac{1}{4} \times 4 \frac{2}{2} \times 12 \frac{1}{2} \mathrm{in}$, tong. Wt. only $10 \frac{1}{2} \mathrm{lbs} . \quad \leq 22.18 .0 \mathrm{Kir}$ E30.8.0 Assembled $\mathbf{2 2 . 1 0 . 0} \mathrm{Kir}$

REGULATED POWER SUPPLY Model IP-20U. Transistorised $0-5-50$ v. D.C. Up to 1.5 amps. Compact $9 \frac{1}{2} \times 6 \frac{1}{2} \times 11 \mathrm{in}$. 447.8.0 Assembled $\{35,8.0 \mathrm{Kit}$

VALVE VOLTMETER, Model V-7A. The world's best selling VTVM. Measures up to 1,500 volts (d.e. and r.m.s.) and 4.000 pk . to pk. Res. $0 \cdot 1 \Omega$ 1,000 M Ω. Centre zero dB scale, d.c. input resistance IIMS. $4 \frac{1}{2} \mathrm{in}$. meter. Complete with test prods, leads and standardising battery. c19.18.6 Assembled
$£ 13.18 .6$ kit
DE-LUXE Gin. VALVE VOLTMETER. Model IM-I3U. Similar spec. to model V-7A but with improved accuracy. Larger meter. Unique gimbol mouns.
 26.18.0 Assembled $\mathcal{E} \mid 8.18 .0 \mathrm{Kit}$

R.F. and H.V. probes available as extras.

DE - LUXE TRANSISTOR TESTER. Model IM-30U. Many special features. Provides complete d.c. analysis of PNP, NPN transiscors and diodes.
635.10.0 Assd. $\mathbf{2} 4.18 .0 \mathrm{Kit}$

TV ALIGNMENT GENERATOR. Model HFW-I. Covers 3.6 to $220 \mathrm{Mc} / \mathrm{s}$ fundamentals.
£37.18.0 Kit $^{\text {k }}$
RF SIGNAL GENERATOR. Model RF-IU. Up to $100 \mathrm{Mc} / \mathrm{s}$ fundamencal, $200 \mathrm{Mc} / \mathrm{s}$ harmonics. Up to 100 mV output on all bands. \quad E19.18.0 Assembled $\mathbb{1} \mathbf{3 . 8 . 0} \mathrm{Kit}$
MULTIMETER. Model MM-IU. Ranges: 0.1 .5 v to $1,500 \mathrm{v}$. a.c. and d.c.; $150 \mu \mathrm{~A}$ to 15 A d.c.; 0.2Ω to $20 \mathrm{M} \Omega$. $4 \frac{1}{2} \mathrm{in}$. $50 \mu \mathrm{~A}$ meter. E18.11.6 Assembled $\mathbb{E} \mid 2.18 .0 \mathrm{Kit}$
A wide range of other test instrumencs available including: R / C Bridge C-3U $£ 10.10 .0$. AF V/Voltmeter AV-3U £10.10.0. Wattmeters AW-IU, £17.5.0. Capacitance meter CM-iU \$15.15.0. Power supplies. Decade boxes etc. Many other instrumencs available under American Mail Order scheme. Why not send for full details?
||
LOW-PRICED SPEAKER SYSTEM SSU-I

A practical solution to the problem of a moderately priced speaker suitable for Stereo Mono amplifiers where che equipment has to be compact. Two speakers, balance control. ducred port reflex cabinet.
Horizoncal or vertical (with masching legs). macl. P.T. 12.12 .0 kit

MODELS FOR HOME, TEST, AND WORKSHOP. BRITISH HEATHKIT MODELS USE BRITISH COMPONENTS

HI-FI AMPLIFIERS

NEWI! DE-LUXE ALL TRANSISTOR STEREO AMPLIFIER, AA-22U At last, a British transistor amplifier with high power $(20+20 \mathrm{~W})$ at a reasonable cost, capable of delivering full power at all frequencies in the audio band. Handsome fully finished walnut veneered cabinet. New, compact, professional slim-line styling. Send for full specification Of this outstanding amplifier. Kit $£ 43.18 .0$. Assembled $\mathbf{\text { E68.16.0. }}$

6W DE-LUXE STEREO AMPLIFIER. Model S-33H. An inexpensive stereo amplifier with high sensitivity. Suitable for use with Decca Deram cartridge.
€21.7.6 Assembled
£ 15.17 .6 kit
TAPE RECORD/REPLAY AMPLIFIER KITS. Will operate with most tape decks. Send for details.
TA-IM (Mono), $£ 19.18 .0 \mathrm{Kit}$. TA-IS (Stereo), $£ 25.10 .0 \mathrm{Kit}$. STEREO CONTROL UNIT. Model USC-I. Ideal for use with MA-12 amplifiers. Kit $£ 19.10 .0$. Assembled $£ 26.10 .0$.

6W STEREO AMPLIFIER

S-33

Model S-33 3 w/ch Inpurs for radio, tape and gram. Stereo/Mono ganged controls. Sensitivity 200 mV . £18.18.0 Assembled 4 3.7.6Kit

TRANSISTOR MIXER, Model TM-I. A must for the Tape enthusiast.
£16.17.6. Assembled.
£ 1.16 .6 Kit
5W HI-FI MONO AMPLIFIER. Model MA-5. A low priced amplifier based on the $\$-33$. Printed circuit construction makes it easy to build.
£15.10.0 Assembled
\&10.19.6 Kit HI-FI MONO POWER AMPLIFIER. Model MA-12. Ideal for use with Models USC-1 and UMC-1, 0.1 THD at 10W. Wide frequency range. $\quad 15.18 .0$ Assembled $\leq \| .18 .6 \mathrm{Kit}$ IBW STEREO AMPLIFIER. Model S-99. Ganged controls. Stereo/Mono gram, radio and tape recorder inpurs. P/B selection. £38.9.6 Assembled $£ 28.9 .6 \mathrm{Kit}$

Send for full spec. of any model.

TRANSISTOR RECEIVERS

"OXFORD" LUXURY TRANSISTOR DUAL WAVEBAND RECEIVER.
The ideal domestic or personal portable receiver. 10 Semi-conductors. Solid leather case. Send for fult details. $\mathbf{I n c l}$. P.T. $\mathbf{4 . 1 8 . 0 ~ K i r}$

6 TRANSISTOR PORTABLE. Model UXR-I. Prealigned I.F. transformers. Printed circuit, 7in. $\times 4 \mathrm{in}$. high flux speaker. Real hide case. Very easy so build. Incl. P.T. $\leq 12.11 .0 \mathrm{Kit}$
"MOHICAN" GENERAL COVERAGE RECEIVER. Model GC-IU. Excellent portable or general purpose receiver for "amateur" or short wave listening. See full spec. leaflets.

Assembled 645.17 .6
187.17 .6 Kit

GC-IU

SPEAKERS FOR YOUR OWN ENCLOSURE
12" Heavy-dury Bass (Fane 122/12) E7.7.0.
2^{*} Tweeter (Fane 301) £3.1.6.
(both as used in the Cotswold systems).
12" Bass speaker (Audiom-51) £9.12.5.
$8^{\prime \prime}$ Goodmans General Purpose G8 $£ 1.8 .6$.
Two Speakers + Cross-over, System SCM-I.
(As used in model $\$ \$ \cup-1$) with details for enclosure 65.5.0.

ELECTRONIC WORKSHOP KIT. Model EW-I. An outstanding experimental kit, $£ 7.13 .6$ incl. P.T.

A WIDE RANGE OF BOOKS ON ELECTRONICS AND RADIO. PLEASE SEND FOR LISTS OR PRICES.

HI-FI TUNERS

Model FM-4U. Tuning range $88-108 \mathrm{Mc} / \mathrm{s}$. Tuning unit (FMT. 4U) with $10.7 \mathrm{Mc} / \mathrm{s}$ I.F. ($£ 2.15 .0$ incl. P.T.). I.F. Amp. (FMA-4U) complete with cabinet and valves (£13.13.0). Total $\leq 6.8 .0 \mathrm{Kit}$
Assembly can be arranged.

FM-4U

AM/FM TUNER. Covers FM 88-108 Mc/s. A.M. 16-50, 200-550, $900-2,000 \mathrm{~m}$. Tuning heart ($£ 4.13 .6$ incl. P.T.), and I.F. Amp ($222,11.6$).
Send for leaflets. Assembly can be arranged.

EQUIPMENT CABINETS

A large range, in kit form or assembled and finished, available to meet most needs. lllustrated details on request.

$$
\text { Prices from } \leq 7 . \mid 5 \text {. to } \leq 44.2 .0
$$

Many other models covering a wide range of equipment for HOME, OFFICE or WORKSHOP
SEND FOR FREE BRITISH CATALOGUE
American Catalogue sent for 11- post paid

PUBLIC ADDRESS AMPLIFIER, PA-I. 50 w . Amplifier, two heavy ducy speakers, variable Tremolo. Ideal for use with guitars, etc. $\mathbf{4 5 4 .} 15.0 \mathrm{Kit}$ E74.0.0 Assembled

Legs optional extra 17/6. Set of 4.
50 W POWER AMPLIFIER, MA-50 Ideal for PA work. electronic organs etc. £27.18.0 Assembled $£ 19.18 .0 \mathrm{Kit}$

To DAYSTROM LTD. Dept. P.W.-8, GLOUCESTER ENG. Please send me FREE BRITISH CATALOGUE (Yes/No)
Full details of model(s).
NAME -

ADDRESS ...

BENTLEY AGOUSTIC COR＇PORATION LTD

Suppliers to H．M．Government． 38 CHALCOT ROAD，LONDON，N．W．I Telephone：PRIMROSE 9090

Abstract

NEAREST UNDERGROUND：CHALK FARM． ALL GOODS ARE NEW，BEST QUALITY BRANDS ONLY ALL GOODS LISTED BELOW ACTUALLY IN STOCK NOTE THAT WE DO NOT SELLITEMS FROM USEDEQUIPMENT NORMANUFACTURERS＇SECONDS\＆REJECTS． WHICH ARE OFTEN DESCRIBED AS＂NEW AND TESTED＂BUT HAVE A SHORT AND UNRELIABLE LIFE

U4Z	4／6	${ }^{68 \mathrm{BW}}$ ：			$81 /$	25\％．5				AFti		E．L，K＋								
OBE	$8 \cdot$	6BX6	－	－ Cb	8／9	いこZ6G	（ 81.	（5）	17／6	EBSt		Els．；	－1／6	1.2832	$6 / 6$	R（1）	$\mathrm{A}^{\text {．}}$	1／2\％2	$8 / 9$ 123	
0\％46T	$4 / 8$	00_{4}	3	－c		2740	23／3	AC／PE		EB41	4／9	E1．ati	\％／3	MH1）4			54／－	1301	$11 /$	－15M 10\％
143	2／8	66^{6}	$4 /$.	iD：	15／－	$\stackrel{385}{ }{ }^{2}$	$8 / 9$	（7）		Ebsi	$2 / 3$	E．1．41	${ }^{1 / 8}$	м mLD	H12／6	RK34	7／6	［829	9 \％．	GFTT0 7 \％
14．4	12／6	${ }^{606}$	－	7D．	14／6	30 Cl	$8 / 6$	AC／SG	22／6	EBC：	20／6	EL：3	$5 / 6$	M1，${ }^{\text {a }}$	5／8	－130	$22 / 6$	¢ $23 / 3$	$9 / 6$	（1ETMA 10\％
145	578	6CR	$8 /$	7106	14／6	$30 \mathrm{CLL5}$	$9 / 3$	\triangle C／SG	＋1	E．BC33	8／－	FListio	$271-$	M	$20 / 5$	SP4B	19／6	$\mathrm{t} 40: 3$	$9 / 9$	C ¢TTu＊1\％／8
1A7CT	$7 / 1$	809	$10 / 9$	$7{ }_{7} 7$	5／9	30 C 17	11／9		12／．	E．BU41	71	E1．200	16／4	MAP 4	121	spl3C	$12 / 6$	1304	$6 /$	EET111\％／
101	$4{ }^{4 /-}$	${ }^{6 C 10}$	8／－	iRT	$12 / 6$	30 Cl 8	8／9	AC／TH	$115 /$	E．BCx 1	5／9	EL× 2 z	20／3	MU13／	14 4／8	SP4	$2 /-$	Crol	15／－	GET113 6／9
$\begin{aligned} & 102 \\ & 168 \end{aligned}$	8／8	${ }_{\text {bcle }}$	5／9	iv7	51.	30 FB	713	AC／TP	18\％－	EBCY	$3 / 8$	ELIEM	13／6	MX ${ }^{\text {a }}$	$8 / 9$	SP_{4}	$12 / 6$	15402n	${ }^{6 / 8}$	GETJ14 6， 6
$\begin{aligned} & 168 \\ & 106 \end{aligned}$	$6 / 6$ $5 / 8$	${ }_{\text {6Cbag }}^{6}$	18／－	7Y4	51.	30 Ft 1	$9: 3$	AC／VP	1 12／－	EBCH 4	5／6	EM4	17／9	N37	$10 / 6$	${ }^{+1} 61$	－	VhPac	11／8	GET1161\％
1 C 6	10／6	6cw 4	24／．	9 B ¢	$2 / 6$	301.	$5 / 6$	ATMP	$218 /$	EBFM	5／8	Exid	11／8	$\bigcirc 8$	28%	¢ $42 \overline{1}$	2712	VMa		GET873 9／3
105	$8 / 6$	H101	1／6	919：	3／－	301.15	－8／6			tersor	\％／3	F．13，	12／8	－109	26／2		9		$3 / 6$	TiETxit ${ }^{\text {d／6 }}$
$1 \mathrm{D}^{6}$	$9 / 6$	603	$9 / 6$	917	76	3015	12／－	4\％31	878	EBL2	$10 / 8$	Eva	${ }_{8 / 3}$	［11	$3 / 8$	T100	\％／8	H1	$14 / 6$	（iFEX1：388
1FD1	8／－	6 Db	3／－	$10{ }^{1} 1$	$9 / 9$	$3 \mathrm{mpl2}$	1／6	A\％，41	8／6	－5．	$4 / 3$	EM×1	$\%$	［\％］	318	TH43	\％\％	IT\％	14／6	tixas 3／－
$1 \mathrm{Fb9}$	8／3	685	$9 / 6$	10\％	121.	30 P 16	5／3	B36	4／9	Eens	12／0	EMल4	$6 / 9$	PABCO	6／9	THIPl ${ }^{\text {c }}$	$10 / 6$	VP\＆	12／－	
106	8／－	0 FH	$9 / 6$	1011	\％／	36 P 19	121－	（1339	4／6	25：54	$0 /-$	E．い×：		Pixts	\％${ }^{9}$				71.	
1 E 5 G	718	8F69	$3 / 9$	10122	$11 / 9$	8ヵP1，	2／3		5／8	Eis	$4 / 9$	EM：－	${ }_{7 / 1}$	PC\％	$91-$	TH41		1p23	$2 / 6$	GEXG4itiot
${ }_{1 L 4}$	218	$6 \mathrm{FbgT}^{\text {che }}$	$7 / 6$	$10{ }^{1} 1$	101.	30 PL 1	3 10／6	BEらB	10／6	LCsm	2\％	E×31	10\％－	${ }^{\text {PCO }} 9$	6／5	TH2：3：	6／9	V141	$51-$	MAT190 ${ }^{\text {a }}$
LLA 4	$17 / 6$	617	5／－	$10 \mathrm{F9}$	9／9	30P1．1	＋1i／3	cl	$12 / 4$	EC91	4／－	EX91	5／6	PCy 7	$6 / 9$	reze	3／．	VP133	$8 / 9$	
1lati	16／10	${ }^{6 F 8}$	\％	10 Fl 18	$9 / 9$	35151	12／6	OK 505	8／8	8．92	$6 / 6$	Ey＝1	$5 / 6$	Presa	${ }_{5 / 6} 1$	Tr ${ }^{\text {² }}$	5／－	VR示5	2110	\＃AT120 $7 / 8$
$1 \mathrm{LD5}$	$4{ }^{1}$	6F11	$17 / 8$	10203	$6 / 8$	35 ¢	20／9	CL4	19／8	Ecc：31	\％／3	EY¢1	\％／3	PC＇s	$6 / 9$	TP：2id	／6	VR105	5／6	
1LN5	4／6	6F12	$81-$	19LD1	9／6	35 LRG	$81-$	CL．33	$11 / 6$	Eecm	$4 /-$	Ers3	813	PCers	10／6	TV86\％	11／6	VR150	4／8	${ }^{31}$
1N5GT	$8 / 6$	6F13	$3 / 9$	10P13	8／8	35 Wt	4／8	Cv6	2／6	Eccs3	29／1	EY4．	$9 / 6$	Pcxay	${ }^{816}$	VABCs		VTAJA		$\begin{array}{ll}\text { OAl } & 6 / 6\end{array}$
$1 \mathrm{P1}$	81	${ }^{6} \mathrm{Fl} \cdot 4$	23／3	$10 \mathrm{Pl}{ }^{1}$	11／6	$35 \% / 6$	16／2	－V63	1016	FCusis	$21 / 7$	FYR	5／6	PCCis9	10／－	1 Ariz	6／0	［150）	3／－	UA7\％3／6
	4／9	${ }_{6 F 17}^{681}$	8／8	1103	$17 / 6$	$35 \% 467$	T $4 / 6$	－V45	14／6	Ercms	$5 / 2$	1＇145	819	Pras	$8 / 6$	C B＋1	1018	－ril	5／－	OA7S 3／－
1 R 5	$4 /-$	－6Fli	$13 / 5$	11E1	176	\％	（ ${ }_{8 / 6}$	－vi2e	$12 / 6$	ECOAI	$3 / 6$	Ex：	3／－	PCF¢	$8 / 6$		$6 / 3$ $6 / 3$	Y1120	16．7－	
134	$5 /-$	$8 \mathrm{FP2}$	9／3	116：	1\％－	41 M IL	81－	－ $\mathrm{Yl}^{\text {c }}$	18／4	F1 C8：	4／6	EZ＋11	5／3	P0	816	1 BFsa	8／8 818	vil		OAA 0.485 $3 /-$
185	$3 / 8$	6 F 24	10／6	1：2ab	2／3	418 T	101－	cyic	$8 / 6$	Ecen	$4 / 6$	EZ11	$6 / 3$	PC「×01		リビい呂	$6 / 6$	w－1	5\％－	
T4	$29 /$	6 F32	3%	12as	18／6	42	$5 /$.	c） 31	$3 / 9$	Eccos	$5 / 6$	EzK0	$3 / 9$	PCFAat	2101	1 EL2］	$10 / 8$	W4：	12／－	GAGH1 3／－
IT4	2／8	$6 \mathrm{F33}$	$3 / 6$	12AC＊	816	43	101－	D1	1／3	Ecceso	$5 / 9$	EZ又	4／3	PLPsis	8／9	1 Cy	8／3	Whm	24／6	OA：H 3／－
${ }^{1} \mathrm{IU}$	$5 / 8$	6 GB	216	12adt	9／6	45	$17 / 6$	D75	13／8	Eccis	$8 / 9$	EZ90	$3 / 9$	PCLs2	816	Uucest	8／－	Wis	10／6	оау，8／B
247	12／8	${ }_{6}^{6156}$	$1 / 6$ $3 /-$	12 CaEH	8／．	${ }^{45} \mathrm{Z} 6$	151／	D4\％	10／6	HCC188		FCO	$14 / 8$	PCLas3	$8 / 6$	LCcas	${ }^{6 / 6}$	Win	$3 / 6$	OAㄹ10 8／8
2028	2／9	655 ${ }^{\text {a }}$	4／3	12A	1	$50 \mathrm{B5}$	6／6	${ }^{\text {D7 }} 7$	${ }_{2 / 3} /$	ECO		${ }^{\mathrm{F} \mathrm{C}}$	$8 / 8$ $14 / 6$	${ }_{\text {PCLIAL }}$	$7 / 6$ $8 / 6$	CCHOL	8／8	W\％1	5	OAL $21113 / 8$
2 D 13 C	7 7－	6J6	8／－	leats	4／8	30C5	816	DAC32	$7 / 6$	ECF50	7／3	Frabe	17／－	PClas	819	CCH4	$8 /-$	W101	20／2	${ }_{7 / 6}^{9 / 6}$
2D21	5／－	$6 \mathrm{VJ7}^{\text {¢ }}$	4／6	$12 A^{\prime} 7$	$3 / 6$	50CDe	G40／8	bafal	3／3	ECFES	8／3	FW 4150	808／8	PCLSA	12／6	Uehal	816	W107	10／6	OClew $35 /$
2x2	3／－	6J7GT	71	12．4 U6	$5 / 9$	30L6GT	T 6／3	DAF＇96	6／－	ECF36	11／6	r＇W4／80	D08／6	PEN40	D）	W－LK？	7／3	$\mathbf{4}^{7} \mathbf{7} \mathbf{9}$	$17 / 6$	UC19
${ }^{344}$	$8 / 9$	6K66T	$5 / 6$	leav7	$4 / 6$	52 kU	$14 / 6$	dr＇c90	$8 / 8$	ECFP ${ }^{\text {a }}$	424／－	\＆T1E	9／9	－	341－	UCLä	813	X14	$7 / 9$	OĽ2 28\％
385 887	5／9	${ }_{6}^{6 K 70}$	1／3	$12 \mathrm{~A} \mathrm{~V}^{6}$	$5 / 8$	5：1KU	14／6	$15^{4} 4$	$12 / 6$	FCEB	23／3	${ }^{\text {dub }}$	$55 /-$	PECis	i－	VF41	${ }^{6 / 9}$	${ }^{1} 18$	$8 /-$	$0 \mathrm{Cl23}^{27 /-}$
8B7 306	8／9	6K7GT	4	12.887	16	－ 2	$8 / 6$ $5 / 8$	${ }^{1041}$	10／6 716	BCH21	92／8．	TZ30 GZ3？	718	PEN45		1F゙世	$4 / 9$	${ }^{8} 24$	1618	Oc25 121－
3 Q 4	8／8	6K8G＇	M8／6	12 BAB	5／3	78	4／9	1，	776	Et：	6／－	G27．	17／8			＋180	$6 / 3$	$x+1$	10／－	OCH 81－
3Qse	$8 / 9$	6 K 25	24／－	12BE6	4／9	${ }^{0}$	$5 / 3$	105：34	8／6	FC＇H42	81－	0／234	101－	PES8	310／3	1P9	$9 /-$	${ }^{\text {x }}$	5／9	
$3{ }^{3} 4$	$4 / 9$	6 L 1	10／－	$1 \because 847$	$61-$	435	81	1HF66	． $15 /$	ECHsi	5／9	¢Z：3	$14 / 8$	PES交：	3D1	1 F＇s9	3／6	入154	4／6	0145 $0 / 818$
$3{ }^{3} 4$	5／－1	6Lug	12／6	1214	$18 / 8$	$4.5 A^{2}$	16	いいて	＇301－	LCHA3	$8 / 6$	H30	$51 /$	－	10／6	CL＋1	\％ $1-$	X45	$5 / 6$	0c3！21／6
	$3 / 9$ $8 / 6$	6L6GT	$7 / 3$	$1: \mathrm{H} \mathbf{1} \mathrm{CT}$	1／6	90ac	$67 / 6$	DF91	$2 / 3$	ECH84	9／8	HABC	9／3	PENA＋	\％1－	L＋4	23／3	X6is	$7 / 3$	UCis 81
${ }^{5 R 4}$	$8 / 6$	© 7	5／8	$\begin{aligned} & 12.5 G 7 \\ & 1 \cdot 5 G 7 \end{aligned}$	2／8，	90 A,	${ }^{67 / 7}$	${ }^{\text {DF }}$ D96 ${ }^{\text {d }}$	$81 /$	ECLL80	5／9	${ }^{H 12}$	\％$/ 6$	PLixil		C144	$4 \cdot 16$	X 76	$8 / 8$	Uris 5\％
6 U 49	$4 / 8$	6 L	19／－		101．	90 CG	42%	${ }_{1}^{\text {DF9 }} 173$	15／8	EC1．${ }^{\text {E }}$	8／6	H1，136 H 123	12／6	3020	17／8	CM	5／8	\times \times	${ }_{2}^{2016}$	
${ }^{6} \mathrm{~V} 49$	$81-$	6LD3	$7 /$	12K70	1 $3 / 6$	9ect		DH03	4／－	ECLa6	$81 /$	${ }_{\text {H }}$		${ }^{\mathrm{P} F}$	975	Cum	$16 / 10$	¢79 $\times 81 \mathrm{a}$	$28 / 271$	$\begin{array}{lll}0.44 \\ \text { UC44PM } & 4 / 9 \\ 8 / 8\end{array}$
${ }^{51} 36$	9／9	6LDI3	71－	12 K 8 GT	7／8	150 B ？	18／8．	DH76	316	EF6	$20 / 6$	H L 41	$8 / 9$	P LSS	Ө\％－	（3）41	18／3	X 101	$23 / 8$	
JY	$9 / 8$	$6 \mathrm{LLD20}$	5／6	120749	$3 / 8$	15042	4／6	D $\mathrm{H} \mathrm{y}^{\text {a }}$	$3 / 9$	FF9	20／6	8 L411，	$11_{2,6}$	PL38	181－	CKル	$6 / 6$	${ }^{1} 104$	$28 /$－	$0 \mathrm{C} 45 \mathrm{Mm} 8 /$
${ }^{3} 823$	6／8	6NTGT	$7 \cdot$	legaj	${ }^{18}$	161	13／－	DHS	$23 / 8$	E192	6／6	H1．4：1＞	1012／8	PLCil	8／9	UU．）	$1-$	X 118	$9 / 9$	OCis 22／6
${ }^{6} / 24$	${ }^{7 / 8}$	${ }_{6 P 1}$	$9 / 8$	129 c 7	4／－	185．${ }^{\text {at }}$	34／11	1） H 101		EF3b	318	H1，133 ${ }^{\text {d }}$	$129 / 6$	PLく̌2	5／－	1106	11／－	${ }^{\text {k } 114}$	$8 / 6$	OClibs 251．
${ }_{646 \mathrm{G}}{ }^{6 / 30 \mathrm{~L}}$	${ }^{9 /-}$		6／8	12807	3／－	21546	$8 / 8$	DH1071	18／11	EFB7A	7／19	HN36\％	$251-$	PLens	6／－	${ }^{1}$	\％／6	X14：	8／－	Octo 8／6
－488	$5 / 8$	${ }^{61}$	11／8	${ }_{12 \mathrm{Na}}^{12}$	51．	22013	$10 / 6$	DK3t	15／6	$\mathrm{EF}+1$	$8 / 9$ $8 / 6$	HY	8	12Lst	${ }^{6 / 3}$	I Ux	$11 / 6$	116	5% 5－	O6： 1816
SaBF_{5}	$4 /-$	6近	4！－	12nk	3／－	301	20\％－	）K¢1	1／－	EF4	$3 / 8$	1w3	5／8	${ }^{\text {PVP4 }}$	15／5	Cuy	3／3	\％ 8 \％		UC7\％81－
batio	81－	¢йcit	$7 / 9$	12s07	8／－			いん92	$8 /-$	NF\％	$2 / 6$	$1 W^{\prime}+/ 350$		$\stackrel{\text { Plu }}{ }$	101	［丁心	$10 / 8$	\％，iti		Ofi 18／－
${ }^{\text {baga }}$	218	0 R 7 C	5／3	12NR ${ }^{-}$	$51-$	30，	151－	15.46	$6 / 6$	ERE4	$31-$	1 W＋／31	1181	PXi＋	y／－	$11 \geq$	$\begin{array}{r}1 / 9 \\ \hline 18\end{array}$	\％	$3 / 8$	$\begin{array}{ll}\text { U6：5 } & 8 /- \\ 8 /-\end{array}$
${ }^{\text {batiz }}$	5／9	fikitit	11－1	12134	7\％			113：3	$6 / 9$	H－F＇	5／．		20 ；	PX 25	$8 / 6$	1 Yı	3／－	¢15\％	41.	U年艮 8／8
${ }^{6} \mathbf{6} 4.55$	8／6			13111	51.	305	$13 / 1$.	11．is	$5 /-$	ERF	$4 / 9$	$\mathrm{KFP3}^{5}$	$12 / 6$	PY\％	8／4	Lres	4／9	－	8／6	UC木年 12／－
$6 \triangle K 5$ $8 \triangle K 6$	4／9	68C7 68 C	$4 / 9$	13 DK $14 \mathrm{B6}$	5／6 $20 / 9$	${ }_{866 \text { a }}$	12／8	Lis\％	5／3	Er	$9 / 9$ $4 / 6$	KL38	11／6	PY3．	$8 / 9$	${ }^{1} 10$	$8 /$	行	${ }^{9 / 3}$	Union sio
6AK8	$5 / 8$	${ }^{\text {68G／}}$	3／\％．	$14 \mathrm{B7}$	20／9	956	2／－	山Li2	15／－	EFPris	$4 / 6$ $8 / 6$	KT	21／7	PYA	8／9	111214	${ }_{15 / 8}^{7 /}$			$\begin{array}{ll}\text { OC81 } \\ \text { U0\＆1D } & 4 /-\end{array}$
6Als	$2 / 3$	6857	$4 / 8$	15D2	61.	12034	7／8	DLA\％	30／－	EPKY	$4 /-$	KTY	15／．	PYR1	5\％	${ }^{1} 17$	51－	und diod		UC81M 8／\％
6AM5	$2 / 8$	68 K 7	4／6	18	12／6	2101	$12 / 6$	DL92	$4 / 9$	ERG1	31.	KT3：	4／9	Pris	$4 / 9$	L18／20	6／8	A A120	4／6	OC8： 10%
6 AmO	$3 /$.	${ }_{68 \mathrm{SL}}^{7}$	5／3	19	1016	4038	151－	I） 1.94	5i－		216	к T330	$61 /$	PY83	$5 / 6$	U19	48／6	AA129	4／6	Oc83 8／－
6AC3 6 APW	5019	08N 688	4／－	${ }_{19 \mathrm{BG}}^{19}$	2／8	4687	71.	1.96	10／8	EF9	10／－	${ }_{\text {kT }} \mathrm{k}+1$	$29 / 1$	PYR8	$7 / 8$	W2，	$5 / 9$	AC107	14／6	Ucisa 8／－
6ati	8／9	${ }^{18} 8$	12／6	19H！	d／－	5 Thi fillt	$7 / 8$ 10			EFY「	7／3	${ }_{\text {KTH }}$		PYMOU	5／8 18	124	$8 / 6$ $7 / 6$	AC118	8 8\％	$\begin{array}{ll}\text { OC139 } & 12 /- \\ \mathrm{V}_{1} 140 & 19 \%-\end{array}$
tidu	5／9	6， NST_{1}	$2 /$	－0131	10／－		1／6	［M＞1	$9 / 8$	EFP144	6／6	KTis	$8 / 9$	123311	916	U31	8／6	A ${ }^{\text {c } 127}$	$8 / 6$	UC170 8／8
6 6．6	5／6	6L．46T	$8 / 6$	20 L	21／－	${ }_{7475}$	$2 / 9$	$10 \mathrm{~W}+35$	208／6	EH90	4／6	K row	3／8	4P31	5／－	43\％	13／6	AD140	25／－	OCiz1 8／－
$6 \mathrm{B5G}$	12／6	${ }^{\text {oljos }}$	5／－	30r2	11／6	4002	4／6	DW $4 / \%$	108／8	Ek	519	LTtiti	12／3	QPPed	12／6	2，	$18 / 8$	AFI02	$27 / 8$	U420） $10 / 6$
${ }_{68 \mathrm{Cb}}^{68}$		617 $6 V 64$	\％／－	201.1	$18 / 8$ $12 / 6$	9006	216	Disti		EL：	18／6 318	K＇T74	12／6	$\mathrm{YP}^{\mathrm{O}} 2 \mathrm{~V}$	51.	－37	2918	AFH14	11／－	Oc201 29／－
6 BEB	4／3	－W6G＇	$5 / 6$	20 Pa	12／－	${ }^{\text {A }} 1534$	$201-$	Es0F	241.	5LS3	$3 / 6$		28／9		3／16	【イ4	15／6	${ }_{\text {AF }}$	${ }_{101}^{10 / 8}$	OC203 $14 /-$
68H6	$5 / 3$	6X4	$3 / 8$	$20{ }^{2}$	$13 / 3$	AC2HL		F． 3 3F	24／－	ELa4	$9 / 9$	ETW6：2	5／6	Q 27520	$10 / 6$	050	$4 / 9$	AF17	5／6	$\begin{array}{lll}0 c 204 & 10 / 6 \\ 00_{206} & 10 / 8\end{array}$
${ }_{68 \mathrm{Cb}}^{6}$	5／6	6×5	$5 / 3$	20 PJ	$12 / 3$	${ }_{\text {ACzuea }}$		Estcc	10／－	EL3 3	101－	KTW63	5／6	Q 51501	$159 / 6$	［159	$4 / 6$	A P118	${ }^{\text {20／－}}$	OCP71 $17 / 6$
68 C	$4 / 6$	${ }_{6} \mathrm{Y}^{7} \mathrm{G}$	12／6	${ }^{25} 46 \mathrm{G}$	$7 / 6$			E180F	18／6	Elist	8／9	KTV4	5／6	R10	15／－	U75	$4 / 6$	AF124	11／－	OKP12 $12 / 6$
${ }_{6 B 87}^{684}$	$7 / 8$ $8 / 3$	${ }^{\text {6Z．4／84 }}$	5／－	${ }^{25 \mathrm{Lt}}$	4／9	${ }_{\text {D }} \mathrm{D}$	$12 / 6$	E1148	1／9 $1 / 6$	EList	12／3	${ }_{\text {L }}^{163}$	$3 /-$ $5 / 8$		516		＋3／9	AF125 AF126	10／6	$\begin{array}{lll}8 \times 641 & 10 /- \\ \text { T } 42 & 12 / 6\end{array}$
$6 \mathrm{BR8}$	8／－	－A7	12／6	25 Y 5	\％／8	Acsees	S	EAiti	$8 / 9$	P142	\％$/ 8$	$1 . \times 109$	$8 / 6$	R17	17／6	U1い	${ }_{17 / 6}^{1976}$	AF126	10／\％	$\begin{array}{ll}\text { T¢ } \\ \text { T } \times 3 & 12 / 6 \\ 15 /\end{array}$
CH8：	251－	$7 \mathrm{B6}$	12／6	$25 \times 3 G$	7／8	DD	28／3	eabeso	5／9	，1－31	$8 / 3$	L心319	9／3	Kı	9／6	$1 \cdot 191$	$9 / 6$	B）106	\％／	V1u／15A12／－
scw	7／6	787	$9 / 6$	25\％49	8／6	Coper	－ $4 / 8$	FAC91	313	E：Lsx	619	LP：2	${ }^{2} 16$	R19	6／9	1	$9 /-$	BY\％13	11／6	KAlus 15／－

WE REQUIRE FOR PROMPT CASH SETTLEMENT ALL TYPES OF VALVES，LOOSE OR BOXED，BUT MUST BE NEW

EXPRESS POSTAL SERVICE！ALL ORDERS DESPATCHED SAME DAY AS RECEIVED

SURBTON PARKRADDO

MARTIN AUDIOKITS \& RECORDAKITS

F.M. TUNER UNITS Nos. 15. 16 and $17 \ldots \ldots \ldots$..................ich e12.17.6 OT Dep. $51 / 6$ and 12 m . pumts. of $18 / 10$. . pre-amp and controls. 10 watt amplifier and Power Pack
Or $57 /$ and 12 m pumts 2010 For 3 Ohm Speaker. Cash $£ 14.5 .0$
 Or Dep. $62 /$-and 12 m . pymts. $22 / 6 \ldots$. . (H. P. Price $£ 16.12 .0$) All above include Front l'anels, Knobs and Instructions. AW above inclute TrACK RECORI)AKIT AMP. (Valve) FOR STUDIO DECK, 6 valves, controls. self powered Cash £11.11.0 Or Dep. $47 /$-and 8 m. pymts. $25 / 6$.............................P.Price $£ 12.11 .0$) COLLARO STEDIODISCK 3 speed iatest Two Track Cash £10.19.6 Or Dep. 44/-and 8 m . pymts. $24 / 6$.......................(H.P. Price $£ 12.0 .0$)
 Or Dep. 120 -and 12 m. pymts. $44 /-$
(H.P. Price $£ 32.8 .0$)
 Or Dep. 521 -and 8 m. pumts. $27 / 6$.
(H.P. Price $\mathrm{X}^{13} 12.12 .0$) FOUR TRACK COLLARO DECK Marriott " X " Series heads
Or Dep. 56/- and 12 m . pymts. 20/6(H.P. Price £15.2.0) COMPLI'TE KI'T with case. spkr., tape and mic.

Four Track Cash £33.19.6 Or Dep. $136 /$-and. 12 m . pymts. $49 / 10$.................(H.P. Price $\mathrm{E}^{36} .14 .0$) TADE PRE-AMP for Studio Deck. self powered

Two Track Cash £8/8/0 Or Dep. 34/- and 6 m. pymts. 25/8....................... (H. Price \&9/9/0) TAPE PRE-AMP as above

ARMITKON(T $2 \boldsymbol{z}$ 10-10 watts Stereo Amplifier. Or Dep. $110 /-$ and 12 m . pumnts. $40 / 4 . \ldots . .$.
 Or Dep $90 /$ and 12 m . pymts. $33 /-$ Nik Powered..
 Or Dep. 115/-and 12 m. pymts, $42 / 2 . . . \ddot{M} / \overrightarrow{\mathrm{F}}$.... ARNSTRONG 127 MONO 54 with
Or Dep. $106 /-$ and 12 m . pymts. $38 / 10$..

ARMSIRONG 12\% STERENO as above Stereo amp. .Cash £37.10.0 Or Dep $150 /$ and 12 m . pumts. $55 /$....................... Price $\$ 40.10 .0$) ARXSIR(ONi zut MONO 10 W amp. with AM/FM. . Cash £36.15.0

 ARMSTRONG 296 STEREO as above, but Mag. P.U. Filter
Or Dep 260 - and 12 m . pumts. of $88 /-\ldots$. . (H.P. Price 585.16 .0) Cash $£ 61.0 .0$
 Or Dep. 118/-and 12 m. pymts. of $43 / 3$......... (F P Price £29.17.0.0

LOUDSESAKERS: Selection

Abstract

FANE 122/10 heavy Duty 12 in .20 watt. WHARFED LE STPEIR 10/RS/DD Cash e10. Cash 18.2 Ot Dep. $70 / 6$ and 12 m. pymits. $25 / 8$. Pash 217.10 .6

WROIORS PTGKURS Selection

(GAIRRARI) GIRP10 Mono
Cash $\mathbf{£}^{5.10 .0}$
 GARRARD Nodel 2000 Nono Lairge Taible 88.10 .0 Or Dep. $34 /-$ and 6 m . pumts. $26 /-$.....................Price 19.10 .0) GARIRAIIS Molel 3000 stereo Lightweight arm
 Or Dep. 50 - and 8 m. pymts. of $27 / 6$................... (H.P. Price 213.10 .0) Or Dep. $50 /$ - and 8 m. pymts. of $27 / 6$ Heavi table.............. Cash $£ 13.0 .0$ Or Dep. $52 /$ and 12 m . pymts. 19/-................................... Price \&14.0.0)

 (in ARIRAMD L. If 80 Push button oper.. iess cart.....Cash 227.10 .0 Or Dep. 110/- and 12 m . pymts. of $40 / 4$................. (H.P. Price ${ }^{\text {P2 }} 29.14 .0$) fiARkAKD 401 Transcription Table. No arm..........Cash £32.10.0

 GOLisRING GLfs less cart. : Heavy table, slngle play Cash £17.1.0 Or Dep. 69/-and 12 m. pymts. 24/11..................... (H.P. Price £18.8.0) GOLIHIRING GLT0 trans.: Unit with arm, less cart.. Cash 229.18 .6 Or Dep. 120/6 and 12 m . pymts. $43 / 9 \ldots$. . (H.P. Price ©32.5.6) Leatets available on all items advertised mpon receipt of 6d. stamp.
48-50, Surbiton Road, Kingston-on-Thames, Surrey Phone KIN. 5549 :: Hours 9 a.m. to 6 p.m. daily (1 pan, Wade)

THE
PEMBRIDGE COLLEGE

OF ELECTRONICS

PROVIDES TRAINING

FULL-TIME COLLEGE COURSE IN RADIO AND TELEVISION

Our Course has now been extended to sixteen months* duration to include theoretical and practical instruction on transistor television receivers, U.H.F. television receivers and colour television.
Next course commences 7th Sept., 1965.
This Course is recognised by the Radio Trades Examination Board (R.T.E.B.) for the Radio and Television Servicing Certificate examinations. Provides excellent practical experience on valve and transistor radio receivers and all well-known makes of television receivers.

To:

The Pembridge College of Electronics (Dept Pt1)
34a Hereford Road, London, W.2.
Please send, without obligation, details of the Full-time Course in Radio and Television.

Name
Address

MULLARD 2-VALVE PRE-AMPLIFIER

Emplnving two EFRa valves and designed to operate with the Mullard ASPRLIFIERA Dut also periectis suitable for other maks with iftont 12 p to $250 \mathrm{~m} / \mathrm{N}$

* Input (a) Direct irom Eigh imp. Tape Head. (b) From a Taje Amplifer or Pre-Amplifter. $\$$ Semaitive Microphone Shannel. W Whe range BABS and TREBI,E Conitrols. Now with brushed aluminium front panel with
contrasting lettering and control knobs.
 Make an ideat omblnation with the E-valve Pre-smp. plus our " 5 -10" main amplifler.

LOUDSPEAKERS

We anpply a completerange of Goodmans． Whariedale． Steutorian， THL Speaker Units and complete syst． ems．A cotn． prehensive leatlet is avail able on request this covers technical specifications and prices of
nearly 60 types includjag：－ Celestion CX1512（ilhus， Celestion Model CX2012 Stentorian HF 3125 watts Stentorian HF1012 10 wat ts Goodmans Axiette 86 watt 4 \＄5．10．11 Goosmans Axiom 201 wat $£ \mathbb{E} .5 .11$ Whariedale Super 8／RS／12／DD
is watts super 8／Ex／12／DD
Wharfedale Golden ROS／DD
Wharfedale Golden RS／
\＆watt
Wharfedale RS／12／DD
Wharfedale

I5 watts RS／12／DD $\quad . .$| 7.17 .0 |
| :---: | 10．0．$\quad \$ 11.10 .0$ Wharfedale W12EG 15 watts $£ 10.10 .0$ Whariedale W12EG wh watis e17．10．0 Woodmans Audiom 51 B 15 watis 99.8 Goodmans Audiom 51 B 15 watts $\begin{gathered}\text { e9．2．8 }\end{gathered}$ Goodmang Axiom 61 B 20 wat

Carr，and I us．extra．

AMERICAN

RECORDING TAPE

10

 fu．gooft．LP Acetate $8 / 6$$10 /$ sin．900ft．LP Acetate $\quad \cdots \quad 10 / 2$ 3tin．1，2000ft．JP Palveater－ $12 / 6$

 Sin．1，800ft．DP Polyeter $\quad . . \quad 22 / 6$ 7in．2，400it．D1 Polyester $\quad \cdots \quad 25 /-$ P．and P． $1 /$－per keel． 4 or wore Heeds POST FREE．
FULLY AOTOMATIC TAPE SPLICER 14／6．P．\＆1．1／6．
PLASTIC TAPE SPOOLS $2 f i n ., 1 /=$ 3in．，1／3；4it．．2／－；5／L．，2／－i 6itu．，2／3； $7 \mathrm{~m} . \mathrm{g}$／d．
PLASTIC SPOOL CONTAINERS．For
 Auy single itempho dd．I＇．\＆I＇．Orders over il post irem．
We oarry fully comprehensive stocks of Tape Recorders．Decks and Aceessories at all Branches or order with contidence by mail．

THE TRAVLER Mk．II CAR RADIO

＊MEDIUM AND LONG WAVES
＊ 12 VOLT POSITIVE EARTH

＊Push Button Wave Change
＊SIZE $7 \times 2 \times 7$ inch
＊TRANSISTORISED

ONLY
9 $\frac{1}{2}$ gns． P．\＆P．5．

Ready built complete with $7 \times 41 n$. speaker fitted to baffle fixing brackets，filter unit all nuts and bolts and fitting Instructions．
Optional Extras：Uhrominm platel weatherproof telescopic aeriala． Trpe 1，22m．／50in．19／6．Type 2，12in．／43in．29／6．Type 3，fully
 all plus $]^{\prime}$ ．\＆ 1^{\prime} ．2／is if purchased separately．

The＂HIGHWAYMAN＂Car Radio to build yourselt．gimilar In appearance to alove but with onjofl pusin button switch．Complete set of parts only £＇7．19．6．P．\＆Y． $8 / \%$ ．

RECORD PLAYER BARGAINS

B．S．R．UA． 25
d－speed Autochanger with mono cartridge ．．．． 85.19 .6
B．S．R．UA．I5
＂SUPER SLIM＂ 4 －speed auto－ changer with molu eartidge

SPECIAL GARRARD OFFERS！

300 n 4 －gneed Autochanger with sulutome 9 TA stereo Cartrige e9．1日． 6 ，

OTHER GARRARD MODELS

gRP． 10 single Plager 25.9 .11 ．A． 10 wh with cartritge 88.10 .0 ．

 40 S Transerption 1 wit 832.10 .0 ． Carriage aud Inatrance s／－extra all modela．

TUNER UNITS

ARMSTRONG
Mono／Tuner Amp．Model 127 ² $\$ 26.10 .0$ Stereo／Tuner Amp． 127 ．．． 237.10 .0 AM／FM Tnner $228 \quad$ ．． 28.15 .0

JASO

FMT1 FM Tuner，Kit of Parte 20．16．0 FMT2 FM Tuner，Kit of Parts 810.12 .6 FMT3 FM Taner for Fringe areas．
 FMT4 FM Tunar \quad STV2／FM／TV Soma，$\quad \cdots \quad 820.0 . \$$ JTV2／FM／TV Somid，
Kit oi Parts \quad ： 15.15. Kart．artil Ins，on above $5 / \mathrm{m}$ each． TRIPLETONE
FM Tuner unpowered ．． 38.19.
 Carr．and lns．B／4 each． acriptive leafits free on requent Please state model required．

CHASSIS BARGAIN

A 6 valve Siperhet Radiogram Chasst of outstandug quality covering MW of outstanumg quality covering hw
 lemal Ferrite Hod Aerial and the famous Gorler Tuning Heart for VHP Prick－up input suitable for most modern Record Players．Power output 4 watta， valve line up Eyso，EABC80，EF8A． ECH71，ELS4，ECC85．Volame On／Of and Tone Concrol，attractive black Tumag Dial size $15 \times 6 i a$ ．with gold ipttering aud contrasting cream and gold knobs．A．C． $200 / 250 \mathrm{~V}$ ． 1810 $15 \times 7{ }^{3} \times 610$ PRICE 18 Gas． I．\＆P． $5 / \%$ ．（Terms available．）

NEW LOW PRICE COMMUNICATION RECEIVERS

HE 40． $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$ in 4 bande， 819.19 .0. Carriage 30 ． $5.50 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{B}$ in 4 bands．e34．18．0． Carriage l＇und．

Starlight 00 Wats Transmitter．
Band coverage 80－40－20－ 15 and 10 Motrea £30．9．0．Carr．15／－（H．P．Terma available） Send S．A．E．for tully descriptive brochare． LEADING AGENTS FOR
All B \＆O and SABA Equipment also SONY Tape Recorders

VISIT YOUR NEAREST STERN－CLYNE ELECTRONICS CENTRE

LONDON ${ }^{3}$ 馬

18 Tottenbaw Court Ruad，W．1，MI＇Senm 5929／0095．Half Day Saturday， 23 Tottentam Court Ruad．W．1．MUSeum 34．51／2．Half Day Thursday． 309 Edgware Road，W．a．Pa indington igeti3．Half May Thursday． 109 Fleet Street，E．C．4．FL Er－t Atreet $5812 / 3$ ．Half Day Saturday． 16^{2} Holloway Hoad，X．7．Nokth 79．4］．Haif Day Thursday 9 Carnberwell Church Street．S．E．5．ROUney 2si5．Hali Day Thurgdey．

CROYDON：

12 suffolk House，George street，MUNiclpal 3250．Haf Day Wednebday． BRISTOR
26 Merchant Street，Briatol 1．Bristol 20261 Open 6 dayn a weok．

CIVERPOOLE

52 Lord Btreet，Royal 7450．Opes 6 daya a weok．
MANCHESIER
$20 / 22$ Withy Grove，Mancheater th BLAckeriars 5379／5246．Open 6 days a week

CHEFATHO定定

125 The Hoor，Sheitield，Shefleld 29993．Hali Day Tharsday．
HAILIORDERS ANDENQUTRHESMO：
Dept，P．W．3／6 Eden Grove，Holloway，Landoa N．7．NOIth 8161／k

Brand new individually						$\mathrm{KT} 33 \mathrm{C}$ KT4		$\begin{aligned} & \text { QS120? } \\ & \text { QV04/7 } \end{aligned}$		$\begin{aligned} & W 118 \\ & w 119 \end{aligned}$		51．	$8 / 8$	010	3／8	12AP7				1			
						RT03		H3		$\begin{aligned} & \text { W114 } \\ & \mathrm{X} 66 \end{aligned}$		$\begin{aligned} & 5 \times 16 \\ & 5 \lambda+4 \end{aligned}$	8／8		8／4．	12BAE	3／8	81		900］	18		
checked and guaranteed						$\mathrm{ST}^{\text {T }} 6$	12／9	Hu4 12	30	$\times 115$	$88 /$	3tM	$8 / 8$	${ }_{6}^{651}$	88.	$12 \mathrm{Cbs6}$	\％．		－		1.		
						KT07	15／6		${ }_{8}^{601-}$	$\times 143$ $\times 63$	81	3 SHa	51／－	dKduT	3／8	12bif	3／－	8.183	$8 / \mathrm{c}$	9000			
VAL						KTs8	$201-$	SL301	15\％	16,2 105	81－		9	6K゙っは	21.	12 H	2／－	210 V					
						kTW6		\＄L30		－ 48	$8 /$	5249	$8 / 6$		${ }_{3} 8$.	cidsur	8／6						
						KTW63	2\％	3 P	$8 / 8$	YF	1／．	－2\％49		－\％	$8 / 8$	12\％${ }^{\text {120 }}$		220					
${ }^{\triangle} \mathrm{C} / \mathrm{HL}$		LLS19	寿			KTZ41		$\times \mathrm{P} 41$	$1 / 6$	z21	81－	＇iAB＇	$4 i^{\circ}$	6 ESM	$8 / 6$								
$\triangle A^{\prime}$	8／＊	E80F	23／			6T\％63	5\％－	\＃ 46		2800	201－	$6{ }_{60}$	$2 /$ ．	101.50	8）．								
AC6PEN	N $5 /$.	E1148	$2 / 8$	Er90	$5 /$	LP ${ }^{2}$	101－	8P21	8／8	28014	10\％	13Alis	2／6	6 LLH	${ }_{6} / 8$		\％	\％101	$25 /-$	E4504／8／18			
A1．60	5\％－	E1260	50	EP183	81.	M 3100	8／2	STV250／40		1 A 3	8／－	${ }_{\text {balif }}$	6／－	61．6ic	${ }_{8}$	1－3at	$4 / \mathrm{i}$	$2: 100 \mathrm{~B}$	251－				
ARS	$5 /-$	E1415	30\％	EF184	81.	M8142	121．		12／6	1AsG	5\％	OAHO	10\％	6LAM	11／－	12ant	31．	35\％A			28／5		
ARP3	$8 /$	E1524	12／6	EHTI	001－	MH_{4}	$5 /$	HTV70，R08\％		18．22	30%	6 6．J7	3／－	${ }^{6150}$	$4{ }_{4}$	12 SH 7		${ }^{36 \times A}$	5i，	VCR1ar 30%			
ARP12	$2 / 6$	EA50	1／－	EL39	3／9	15 L	\％／	－ 10%		100GT	81.	liak＇s	51.	${ }_{51} 51.34$	4／6	12 E .17			S／，				
${ }_{\text {ARP34 }}$	3／6	E1	7%	ELS 3	101－	，	8／－			1080^{\prime}	81	biki	81	61．${ }^{\text {de }}$	$5 / 8$	12ヵん－GT8／－		4， 46.4	$88 /$	VCKI38A			
ARTP1	81－	EABC3	$3 / 8$	${ }_{\text {EL L36 }}$	${ }^{5 / 8 / 8}$	N10\％	8／	T4	6／6	1 E 7 G	$7 / 8$	bala	3／－	6 S 7	6／－			－03a	301－	VCR139A ${ }^{\text {a }}$			
ATP4	$2 / 8$	EAF42		EL41	\％／－	$\mathrm{OBS}^{\text {¢ }}$	\％	${ }_{\text {TP22 }}$	15／2	$1{ }_{1}{ }^{\text {＋20 }}$	$3 /-$ $8 /-$	bals	${ }^{7 / 6}$	6N7	$5 / 9$		$5 / 9$	70．4	10／－				
ATP7	－5／6	EB34	1／6	EL42	81.	OC3	5／－	TT11	$5 /-$	1 L 4	$2 / 6$	basio	4／6	60 6 k	6／－ $5 / 8$		8\％	713	60／－	VCR317E			
AU7	65／－	EB91	3／－	EL50	8／－	0．D3	$5 /$.	TT15	35／－	HLA6	81.	©AQs	\％	68A	7%	1217	2%	781		$\operatorname{VOR} 517 \mathrm{C}^{40 / \bullet}$			
B6\％	15\％	EBC23	6／－	EL81	81	OZ4A	5／2	TTR31	451．	11，06	\％	6AQ5	9\％－	68A	$8 / 8$	15D2	61.	201					
BLA3	10\％－	EBC41	7－	EL83	8／3	PCC84		TZ0520	4／．	1 LH 4	4／－	bAs6		68K7		195		${ }_{803}$	29／6	40／－			
B84	81	EBC81	$5 /$	EL84	5／	PCOs5	7.	TZEL0	16）．	1N218	$4 /$.	6Asb	\％	68 CC 7	7 \％	1963	10\％	807		AFP7 45／．			
B85	O－	EBFP0	$5 / 0$	EL85	$81-$	PCC89	10\％	L＇81	）	1．N43		$6 \mathrm{ASO}_{6}$	201－	$68 \mathrm{C7} \mathrm{c}^{\text {a }}$	5／－	19G6	91	80 S					
34	3718 $18 /-$	EB		EL91	$4 / 6$	PCF80	8／8	${ }^{1} 12$	8／－	1N70	4／＊	6AT6	3／8	68FGT	5／6	1967	5／－	${ }^{811}$	17／6				
BT19	25／－	ECb2	$41 /$	EL	20／．	Pros	$8 / 6$	Vis	$5 /$.	1Rt	5.	$6 \mathrm{~A} 0^{6}$	$7 /$	6887	3／－	$19 \mathrm{H1}$	81.	81.8	701－	5FPis 12\％			
35	5	c53	12／8	Emb0	8／－	PCL81	9／－	425	11／－	${ }_{184}^{185}$	／6	${ }_{4 B 7}$		${ }_{\text {6SJ7 }}^{6}$	5／6	19M1	$5 /-$	${ }^{2} 13$	$351-$				
51	150／－	70	4／－	EM81	$7 / 6$	LS：	8／－	U2\％	8／－	19．）	4／6	${ }_{6 B 8 G}$	$2 / 6$	6SJici	6／8	2185	$1 /$.			Photo Tubes			
83	351－	EC90	$21-$	EMB4	8／3	PCL83	8／3	U52	4／6	1T4	$2 /$	6BA8	4／－	${ }_{68}{ }^{\text {a }}$		${ }_{25}{ }^{2} \mathrm{LHGT}$	5／8	829 B 830 B	501－				
CC3L	2%	EC91	$3 /$	EM85	9／－	PCL84		UABC	4／6	－${ }^{\text {a }}$	5／＊	$6_{63}{ }^{\text {d }}$	5）．	68 L		${ }^{25 \times 5}$	81.	830 B					
OL38	9／－	ECC81	4／5	EN31	101－	PCL85	$8 / 6$	UBC＋4	8／－	${ }_{2}{ }^{\text {a }}$	6\％	6BEG	4／8	68N	3／8	25／49	8／8	832	45\％．	$\begin{aligned} & 931 \mathrm{~A} \\ & 80970 \\ & \mathbf{5 5 0 \%} \end{aligned}$			
OV71	3／－	Ecc82	51－	EsU74	801－	PCL80	$9 /$	B ${ }^{\text {b }}$	5／6	2 B 26	8／2．	6B．T7	$7 /$	68 ta	8／－	257.3	$7 / 6$	883	112				
OV102	$1 /$	ECO84	5／6	ESE208	6\％	PEN25	4／6	UBF89	$8 / 8$		$7 /$	6B4TA	9／－	6897	2 －	20\％6GT	8／8	837	9／．	$60970 \text { 860\% }$			
CY103	4／2	ECC85	$8 / 6$	EY86	$8 / 8$	－	$3 /$	UBL21	$11 /-$	${ }_{2}^{2} 2{ }^{2} 36$	${ }^{3 /-}$	6B				25	8／．	843	5\％．				
CV4014	7／	ECCA8	9／－	EY91	3／－	PL36	$7 / 8$	UCH4 4	$8 / 6$	2 C 43	12／6		／．	${ }^{6} \mathrm{VW6G}$	$5 / 6$	30	$6 /-$	866	4／－				
OV4015	\％／－	ECC91	4／－	40	5－	PL33	16\％	UUH81	61－	2 C 45	22／6	${ }^{6.5}$	2／6	6）60		${ }^{30 \mathrm{Cl}}$			10／6				
OV 4025	10／－	ECFP32	7 7－	Z41	$8 / 6$	PLb1	7%	UCL82	81－	2 C 46	301.	${ }_{6} 6 \mathrm{CJO}$	6／．	$6 \times$	8／6	${ }^{30 \mathrm{FL}} 1$	1018	955					
${ }_{\text {CY }}$ CY 31	40／－	ECH42	8／－	${ }_{\text {E } 280}$	$5 / 8$	PL88	5\％	UCL83	101－	2 Cal	12\％	6 Co	$4{ }^{4} \mathrm{~F}$	6×50		30 H 19	12 l	${ }_{956}^{950}$	\％／8				
Dl	1／6		7／8	8057				UF4	8%	2 D 21	5／－	6C60	3／．	8Z5GT	6／8	30 PLl	8／－	957	5／．	${ }^{5} 30154$			
D 41	$9 / 8$	ECLso	8／4	F／6061	$5 /$	PMP4	8／6	ULA1	81.		－	${ }^{6 C 8 G}$	$8 /$	6 y	8／－	3316GT	$7 /$	9584	4．－	LR 23.10 .0			
D61	$8 /$	ECL82	7／6	F／6063	4／－	PT15	101．	VL8s	676	A	40	66：H	$1 / 6$	6－30		367	$7 / 6$	1612	6%				
D77	$8 / 8$	ECL8s	10\％	FW4／500	008／8	PT23H	7／8	UU5	7 7－	3A／46J		${ }_{6 \mathrm{Cl}}^{61}$	$8801 /$	62	7／－	35\％4	5／－	151	3／－				
DA30	12／6	RCL86	101－	FW4／800	08／6	PT26M	$7 / 8$	［U9	8／6			6D	$8{ }^{8 /-}$	7 C 5	10\％	${ }_{358769} 85$			6／－				
DAF90	8／－	EF36	$3 / 4$	G1／236G	${ }^{8 /-}$	PX4	14／－	UY21	7／6		25／－	6E6	81	768	7	38259 T	8／－	1626		417／ 3 ／92／x $20 /{ }^{\text {a }}$			
DD41	41	EF37	7－	G1／371K	19／－	PX 25	9／：	UY8	51.	3B7	51.	6 Fs ¢	$5 / 3$	7 C 7	6／－	3209	$4{ }^{1 .}$	1629	$8 / 8$				
DETS	8／－	EF39	5\％	G50／2G	3／－	Pr33	$8 / 6$	V1120	4／－	3B24	3／＊	8F5GT	5／9	7H7	$7 / 8$		4／．	2051		137．10．0			
DETT20	21\％	EF50	8／－	GM4	45／：	PY80	5／6	V1507	5／－	3 B 2	15\％－	6F6	4／－	747	7%	41318	4／－	4048 C	13／6	Lx is			
DF73	5／＝	EF52	818	${ }_{\text {O234 }}$	${ }_{101}^{10}$	${ }_{\text {PY81 }}$	$5 / 6$ $8 /-$	V192	20／＊	3D	4\％\％	${ }_{688}{ }_{6}{ }^{\text {a }}$	816	7 V	${ }_{4} / 8$	444／160		4063	$8 /-$	7264 19\％			
$\mathrm{DF9}^{1}$	8／－	EFB3	4／6	H63	$7 /$	${ }^{4} 8$	6\％	${ }^{1} \mathrm{P} 23$	31\％					72	4／8		$301-$	43130	$30 /-$				
DF92	3／－	EF55	81.	HK54	22／8	PY800	$8 / 6$	VP133	9%	3 Q 5 GT	$\%$	${ }^{81}$	51.					5704	\％／．	－			
UF96	81－	EFj1	7／8	HL2K	218	PZ1－3．5	$91-$	VR99	81－	384	$4 / \mathrm{F}$	${ }_{6}{ }_{\text {OF }}$	5%	${ }_{9} 919$			$8 / 8$	${ }_{6}^{5726}$	－				
DK92	8／6	EF72	51－	HL23	9／－	P\％1－75	121－	VR103	305／－	3 F 4	5／9	¢1：3	4／－	1153	$87 / 6$	81	81.	Hoti	${ }_{7}$	－Traguis			
DL92	$5 /$.	EF80	5%	HL4	4／m	QPP25	$8 /$			\％	5／－	$\mathrm{BFSL}^{\text {a }}$	3／	12 A	2／8	54	61	12063	6／－	－OC4t 8／－			
DL93	6／－	EFP1	81.	HYR2	9%	QPP23	5	339	$8 /$	3A1730	－		$2 / 8$			99	8／－	60		－0c45 \％\％			
DL94	5／9	EFss	4／6	K3A	soj－			$\checkmark \times 3256$	4－					12ar	$1 /$	\％	$5 / 6$	71					
บLOB	5／8	EF88	8／8	KT8C	89／－		101．	VX8142	$5 /$	${ }_{\text {BRAGY }}$													
11810	8／－	EF89	3／9	KT82	8／－	Qs93／10		121a	5／－	BT4		$\mathrm{CFSO}^{\text {che }}$	＋10．	12AX 7							10\％		

MARCONI COMMUNICATION RECEIVERS CR．150．Frequency coverage $2.60 \mathrm{Mc} / \mathrm{s}$ in 5 bands．Two Ifs Ist $1,600 \mathrm{kc} / \mathrm{s}$ ．2nd $463 \mathrm{kc} / \mathrm{s}$ ．Image signa protecting over 40 dB wp to $30 \mathrm{Mc} / \mathrm{s}$ and $20-40 \mathrm{~dB}$ from $30-60 \mathrm{Mc} / \mathrm{s}$ ．Self－checking calibration（built－in calibrator）．Stabilisa－ cion of supply and temperature com pensation．Electrical and mechanical indicator Bandpass from $100 \mathrm{e} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$ bandspread．Matering and visual tuning in 5 stages．Acoustic filter associated with $100 \mathrm{c} / \mathrm{s}$ ．Bandpass position for CW recep－ tion．Facilities for diversity reception． Excellent checked condition．639．Mains P．S．U．by P．C．Radio 4．10．0．Carriage 30^{\prime} ． CR．150／2．Frequency－coverage $1.5-22 \mathrm{Mc} / \mathrm{s}$ in 4 bands，all other features as in CR． 150. Price $£ 31$ ．Carriage 30^{\prime}－．
P．C．RADIO＇S mains P．S．U．for above，
DHR HIGH RESISTANCE HEAD． DHR HIGH RESISTANCE HE
PHONES．New， 141. P．\＆P． 116 ． WIDE RANGE MULLARD VALVE VOLTMETER TYPE E 7555＇2． $100 \mathrm{mV}-500 \mathrm{v}$ ．D．C．or A．C．peak from 35c to 5 mc ，additional range 500 v ．to ISkc D．C．or peak A．C．Frequency response with probe is level from 35 c to 100 mc ． Power supply $110 / 245 v$ ．A．C．Price ≤ 19 ． Carriage $f 1$
VERY HIGH CLASS COMMUNI． CATION RECEIVER TYPE BRT 402E． $150 \mathrm{kc} / \mathrm{s}-385 \mathrm{kc} / \mathrm{s} ., 510 \mathrm{kc} / \mathrm{s}-30 \mathrm{mc} / \mathrm{s}$ ． Fully tested 660 ．Carriage 30 ．
EVERSHED MEGGER CIRCUIT TESTER． 2 ranges 0 to 1，000 ，100』 to 200，000』．With test leads，leather Carrying case．Tested 4．19．6．P．\＆P． $3 / 6$.
c．o．D． $3 / 8$ eritra．Overseas Postage pxtia at cost

PANEL METERS（round）

 0.50 microamps 0.100 microamps 0－100 microamps 0.200 microamps 0.500 microamps $0-500$ microamps $0.1 \mathrm{~mA}^{*}$0.1 mA
$25 \cdot 0.25 \mathrm{~mA}$
500 mA
0.100 mA
$150-0-1500 \mathrm{~mA}$ 0.500 mV 0.5 V 0.15 V 0.50 V $0-150 \mathrm{~V}$ $0-10 \mathrm{kV}$

$2{ }^{\circ}$	D．C．＊＊	401.
2	D．C．＊＊	351.
21＊＊	A．C．	30^{\prime}
2	D．C．	$32 / 6$
$2 \frac{1}{2}^{*}$	D．C．	30＇－
31＊＊	D．C．	3716
$2 \times$	D．C．	1916
$3^{\prime \prime}$	D．C．＊	35\％．
21＊	D．C．	45\％
31＊	A．C．	25＇＊
$3 \frac{1}{2}^{*}$	A．C．	$22 / 6$
3	D．C．	291．
$3 \pm{ }^{\prime \prime}$	D．C．	$32 / 6$
3t＊	A．C．	$22 / 6$
$2{ }^{\text {² }}$	A．C．	$17 / 6$
23＂	D．C．	28.
$23^{*}{ }^{*}$	A．C．	241.
21＊＊	D．C．	63／．

R．F．CHOKES．Ideal for vibrators and anti－interference filters．Very low resist－ ance（ 0.02Ω ） $.30 \mu \mathrm{~h}$ inductance． $4 / 3$ incl．post．

P．C．RADIO LTD

170 GOLDHAWK ROAD，W． 12
Shepherd＇s Bush 4946
Open 9.5 .30 p．m．Thursday 9.1 p．m．

STABILISED POWER SUPPLY UNIT TYPE R． 1095 （EDISWAN） with 2 independent outputs．

D．C． $120-250 \mathrm{v}$ ． 50 mA mesered and regulated．
2．A．C． $6.3 v$ ．C．T．3amps．
Stability 0.02° ．Prite $£ 18$ ．
STABILISED POWER SUPPLY UNIT TYPE R． 2001 （EDISWAN） with 2 independent outputs．
．0－100v． 50 mA metered atid regulated by coarse and fine adjustments． 2． 250 v ．Bias as 5 mA ． Stability 0.02% ．Price E 18.
WIDE RANGE MULLARD VALVE VOLT METER TYPE E 1555，2． $100 \mathrm{mV}-500 \mathrm{v}$. D．C．or A．C．peak from 35 c ． to 5 mc ．additional range 500 v ．so 15 kc ． D．C．or peak A．C．Frequency response with probe is level from 35 c ．to 100 mc ． Power supply $110 / 245$ v．A．C．Price $\& 25$. Carriage f ）．
WIRELESS SET No． 52 （CANADIAN） Complete station consisting of Trans． mitter，Receiver，supply unit for 12 ． All contained in special carrier． $1,75-16$ me / s in 3 bands． 813 as ourpur valve． 45.75 w ．phone and MCW，70－100 watt CW．M．O．or crystal．Receiver includes crystal calibrator．Tx can be exactly tuned to Rx Irequency．Noise limiter． Sidetone．Loudspeaker on raceiver with on／off switch．All brand new with acces－ sories．Export．Price on application，
OUTPUT TRANSFORMERS for pushopull small battery valves（IT4）with ousput winding for 15 and 600 ohm impedance．15／．carriage pald．

Microphone Inserts

American made. Dpnamic type. Real bargain et 9/6, plus 6d. postage.

FINE

 TUNERS 80 pf with long apindle as illus.$1 / 6$ or $12 /$ - dozen.

SELF

energised TELEPHONES $={ }_{\text {These }}$ require no bat-

 and twaintenarice Handsetio only $15 /-$ each, pust etc. $2 / 6$. Two, post free.

Building a 'Scope

Sin. oncllloscope tube. Anerican made type No. $3 P P^{\prime} 7,6.3 \mathrm{~s}, 0.6 \mathrm{amp}$. heater electrostatic circuit tiagram of "scope $15 / 0$ esch. Plus 2 iti poat and lisurance.

Sheet

 Ideal for tran sistor prolecte. Bpecial offer, 12 panele 5 I 810 m 6/a

RELAYS

Totally enciosed in bakeliste, this relay has - 24v. coii but can of courae be rewound for Hialiay operation. Ita coutacts are soitable fur breaking 20 arups. Price 2/6 each, 24/. doz.
handle ap to 10 watts. Brand new by famous maker. Price $27 / 6+3 / 6$ post and Insurance.

Brayhead Turret Tuner Complete with Band 1 and Batid 3 coils. Leas valves 101 - each or with
valves $17 / 8$ each.
Post

Where postage is not definitely atated add $2 /$ - all orders under $£ 3$.

well worth the price asked for the unlt are: 1. Trsastormer Reference 10K/143. This can act as anto-transformer to convert 230 to 110 or 930 to 480 . and alqu as a filament transformer 230 to 0.3 or $2 s 0$ t 12.6 volts. 2. Miniature Cireuit Breaker. For breakiug 10 ampa A.C. reget by puahing ku, 3. Steel Coase. With heavy gauge chassis, all ready cut out and fitted valve holders, etc. Price for complet wit is $12 / 6$. Carriage $7 / 6$.

THIS MONTH'S SNIP

TAPE PLAYBACK MACHINE

Made by a very famous British Company to a very exacting npeciltcation. This is a realy superior machine-the capstan betng driven by a synchronous mintor and wow and flutter completely eliminated by a very hesvy flywheel.
Playback is through it full tilape head which works into a "high f" uroplifier using five modern type valves, EL84 ete, titted with output transiormer needing oul a spenker ho comes plete. The machint operates from standaniality Brand nowa heavy duty trisnaformer ribr and guarauteed perfect-limited quantity only e5.10.8, plus $7 / 6$ post and ims.

AUTOCHANGER BARGAIN

Garrard Auto-Slim

 Record ChangerOne of the nicest record changens that thla fanous company make Autumatic selection of records Which may be mixed-may alag
be plagri manually. Finger tip adjustment of stylus pressure Fitted with monohead-but pick-up wired ior dereo-pick-up wired tor dereo-
suitable $200 / 250$ A. mains. Cabibet space required $14 \frac{1}{2} \mathrm{x}$ $12 \frac{1}{2}$ ia. with 4 sin. abore and 2in. below. LON'T MECLAL SNIP only 85.15 .0 (post and insurance, t / b).

750 mW TRANSISTOR AMPLIFIER

4 trangistors including two to push-pull input for crystal or magnetic mierophone or pick-up-feed back loopssensitivity $5 \mathrm{~m} / \mathrm{v}$.

Price 19/6
Post and insurance $2 / 6$. 35 obtu Speaker, $12 / 6$ extra.

SNIPERSCOPE

Famous wartime "cat's eye" used for rermg in the dark. This is an thira-red image converter ceil with a silve caesinm acreen which ightu up dike a cathale ray tube) when the electrons released by the inira-red atrike it. It follows that as light from an orlinary
 bork berg inrare oounting work burglar alarnus. con. hundred aul one other devices as will the simpler type of photo cell. Here then is a golden opportunity for some interesting experiments, price $5 /$ each. Post $2 /$. Data will be supplied with celly if requested.

BUILDING AN AMPLIFIER

Here in a buy for you. Modulator Unit type 20. Coutains parts ideal inr simplitier and all ready set out in metal case. To name a few: Four high output valves Type K'Г44. Lriver valve Type MH41. Irom cored choke for up to 200 milli-amps. Dozens of wire wound and carbon resistors. paper and mica condensers. Terminals and tag panels ete., ete Tiaree other items of 1

Making a Fan Heater
Miniature motor laminated poles. Oper ates oft $20-30$ จ. L. 心

greenhouse airlig cupboard. Has spindle for pointer knob quickly adjustable from $30 /$ $80^{\circ} \mathrm{F} .8 / 8$ plus 1/- post. Suitable box for wall mounting, $5 / \rightarrow$. P. \& F. 1%,
Type ' B ' 15 amp. This is a 17 in. long rod type made by the facaous sunfle Co. Snimile sdjusts thta from $50-$ $500^{\circ} \mathrm{F}$. Internal serew siters the aetting so this could be adjustable
over 30° to $1,000^{\circ} \mathrm{F}$. Sultable for controlling furaace, over tiln, immersion beater or to make famestent or fire alarm. $8 / 6$ pius $2 / 9$ post and insurance OOMPONENT BARGAINS $465 \mathrm{Ko} / \mathrm{IF}$ Transtormers. Standard type in alumotiom can with trimmers, dis 1 in square $1 / 6$ each, 18/- doz. 48 Becaiver/Tranimitter. Complete axoept for crystals packed with valwes and com 18/B, whius $6 / 6$ carriage and insurance. Output Transtormer. Btandard pentode Output 8 94/~ doz
Mullard 510 . Amplifler chasgis complete with inuer screenling section stove enamelled. 7/6, plus $2 / 9$ postage.
Preoision Wheststone Bridge. Opportunity to buld 100 K wire wound pot, 16 wat rating, 5/- ouly. Also 100K 100 with American made, $15 /-$, post $2 / 9$.
Toggle Panel Switah, $25 / 30 \mathrm{kmp}$, flugle pols 2/6, 84/- dozen.
Topgle $\$$ witoh, 10 mmp . double pole, s / s 18/-dozen.
Electrie Look, 24v. coll but rewindabie to alter vultages, 4/6; 48/a dozen.
Head Phones ideab for short wave Ihatenin ete. Low resistance, best maker, 6/4 post 2/6.
Sound Powered Inserts (D.L.R.5) es P.B. thtercomm, ses spesters or microphones, $B / 6$ $54 /=$ dozen.
6. Meg. Potentiometers. Bealed type by Morganite, smong the best ever made. Standard \ddagger spindle, lin. long, $8 /=$ dozen mong. ditto $5 / 6$ dozen. 50 K , B/- dozen MU Motal Screen for American 5 CPl etc $6 / 6$ pair for Vergy and other Gin. tubes 7/-complete. Ditto for 2 -3in. tabe, 5/complete.
Trimmer Bauk 5 I 50 pF compregsion trimmers mounted on metal strip 3sin. long ideal if making pre-set atation receiverceramic/mica insulation, 2/- each; 18/-dos

-MAINS POWER PACK-

Designed to operate transiatur beta and ampliners. Adjustable ontput $67-9$ to 12 vults for up to 500 mA (elass B working).
Cabinet Snip
This to cabinet as illust ratud bit less coutrol knobs monthat a special anip price of 12/6 plus $3 / 6$ insurance. Bize is 13tin, 4in. and it is nicely two ton I.C.1,

Five Core Cable
Ideal for owitching circuits, intercoms. P.Aruus etc. each core flex eopper with rubber insulation, ere covery or 30 gds leugth 15/- ulus $5 /$ poat.
Waterproof Heater Wire 16 yds, length 70 watts, self regulating temperature control. 10/\%, post free.

THERMOSTATS

[^0]

[^1]

 Takes the place of any of the following batteries: PP1-PP3-PP4-PY6-PP7-PP9 and others. Kit comprises: zalins transformerrectifler, smoothing and lomd resistor 5000 and 500 mid condensers, zener diode and instructions. Real snip at only 1e/6 plus 2/6 post.

ELECTRONICS (CROYDON) LTD

Depr. P.W. 266 LONDON ROAD, WEST CROYDON, SURREY
Post orders to: 43 Silverdale Road, Eastbourne, Sussex

1. 6 VALVE 15 WATT PUSH-PULL AMPLIFIER, 15 I 7 Itin. AC

2. CYLDON A.M. F.M. PERMEABLLITY TUNERS FOR ALL TRANSISTOR OPERATION, Biza 2d atiu. appros. By famomámanuiacturer, A, if

 end of an A.M./F.M. reneiver car radio etw, The sbove items, 22.10.0.
3. AMPLIFIER KIT, 3 to 4 watt Amplifier Kit.
4. TRANSISTOR INVERTOR. 50 ז. D.C. Input. Output 240 ®. A.C. 40 watts honporasing iranglormera, choke. condensers and a GET

5. FLDORESCENT LIGHT FITTING. Twin 40 watt $200 / 260$ F. lese tubee
6. OSCILLOSCOPE tor D.C. and A.C. APPLICATIONS. Pugh-pull X amplitiar: Fifrbact suppression: Internal Timebase san Waye fortu
 Brightnes Modulation. A.C. matua $200 / 250$ w., $\$ 18$ 18.0. P. \&f P. iojFULL 12 MONTHS' GUARANTEE LNCLUDING VALVES and TOBE.
7. A.C. MAINS MOTOR. Can be used for a varlety of purposes, silent running, matlsfactory in every way. $230 / 200 \mathrm{v} . \mathrm{AC},. 9 / 8 . \mathrm{F}, \mathrm{\&} \mathrm{P}, 3 /-$
8. POCKET MULTI-METER. Nize 3: $x 24 \times 1$ in. Meter size 2$\} \times 1$ in Bensitivits 1,000 O.P. V. on both A.C. and G.U. A.S. and [I.d. volth. 0.15. 0-1 50. 0-1.000. be, curreut 0.150 mA. Resistance $0-100 \mathrm{KD}$ Conplete with test proby, hattery andifull inst mictions, 39/6. F^{2}. \& F , S / C. FREE GIFT ior limited perlod only, 30 watt Fiectids Solderiug Lrou value 15/- to every purchmer of the Pocket Multi-Meter.
9. CEANNEL TUNER 1.7. $16.19 \mathrm{Mc/s}$. Continupusly turable from 174 $216 \mathrm{Mc} / \mathrm{s}$. Yalwes required-PCF80 aud PCC84 (in seties). Corer BBC and I'lA ranges. Also Poliee, Fire and Tariv, ate Brand wew
10. POWER SUPPLY KIT in inctal case, size $3 \frac{1}{2}$ I I in, incorporatiog

11. B.S.R. MONARCH UAL4 WITH FULL FI HEAD. 4-speed, Flayt 10

 above baneboard tadn. belaw usedourd 2 ailu. Fited with Fult ry turnover crystal head. st.19.6. Y. F. T/6.
12. 50 MCRO-AMP METER moverwedt by world famon manufacturor.

13. 8-WATT 5-VALVE PUSH-PDLL AMPLIFIER \& METAL RECTTPTER

 frampormet tappan hor 3 sud lo olm spepeh colls. Bult aud teived 28.19.6. P \&
14. 40\%. FLDORESOENT LIGHT KIT Ineorporating ORC Choke gize od if x itin. hiplin holderk, starter and btarter boider, $11 / 8$. Similar to above: 80W Fluoresoent Light Kit iucorporatiug tien choke

15. FIRST QUALITY PVO TAPE.

${ }_{5}^{8}{ }^{1} \mathrm{in}$.	$0 /-$	sin D.P. 850 ft .		10/8
7in, Std. 1900st.	11/6	iln. T.P. B00ft.		81.
	4/.	5in. T.P. 1800ft.		20/6
	11/ 6	6itio. T.F. 2400it.		$27 / 6$
7its. S. P. $\mathbf{8}^{800}$ it.	18/6	Fib. T.P. 3600 it.		${ }_{3} / 16$

16. FIXED FREQUENCY SIGNAL GENERATOR. CTYsial controls in metal case, size 10 y 6 ind Incorporating two FCis valves, malus transormer, metal rectifter, choke, indicator. lamp. erystal and minoerous used ior 1.T.V.irequences. Brand uew. 39/G, plus $7 /$ P. Prigimally mains $200-250$ volts.
SILICON RECTIFIERS. 250 v . P.I.V. 750 unA. Glx for $7 / 6$ potet pald.

RADIO \& T.V. COMPONENTS (ACTON) LTD.

21b High Street, Acton, London, W. 3 .
All enquiries S.A.E. Goode not despatched outside U.K.
Shop hour曾 9 a.m. - p.m. Early closing Wednesday

COMBBED PORTABIE \& CAR RADIO

The Rodio with the STAR features 4in. SPEAKER
$\star 7$-transistor superhet. Output 350 mW .

* Grey wooden cabinet, fitted handle with silver coloured fittings. Size $12 \frac{1}{4} \times 8 \frac{1}{2} \times 3 \frac{1}{2} \mathrm{in}$.
\star Horizontal cuning scale, size $11 \frac{1}{4} \times 2 \frac{5}{8} i n$. in silver with black lettering.
* All stations clearly marked.
* Ferrite-rod internal aerial.
K.F. neutralisation on each stage $460 \mathrm{kc} / \mathrm{s}$.

ONLY

* D.C. coupled output stage with separate A.C. negative feed back.
* All components, ferrite rod and tuning assembly mounted on printed board.
* Operated from PP9 battery.
* Full comprehensive instructions and

RADIO \& TV COMPONENTS (ACTON) LTD 2IC High St., Acton, London W3

Open 9 a.m.-6 p.m. including Sats. Early closing Wed.
Goods not despatched outside U.K. All enquiries S.A.E Terms C.W.O.

Have you sent for your copy? Engineering oprortunities is a highly informative 156 -page guide to the best paid engineering posts. It tells you how you can quickly prepare at home for a recognised engineering qualification and outlines a wonderful range of modern Home Study Courses in all branches of Engineering. This unique book also gives full details of the Practical Radio \& Electronics Courses, administered by our Specialist Electronics Training Divisionthe B.I.E.T. School of Electronics, explains the benefits of our Employment Dept. and shows you how to qualify for five years promotion in one year.

SATISFACTION OR REFUND OF FEE

Whatever pori sge or erperienoe, pon cannot silord to malse relling this famons book. If you are onrning

WHICH IS YOUR PET SUBJECT?

Mechanicat EnE.. Electricsl Eng. Clyil Englneering. Radio Engineeping. Automoblie Eng.o Asronautical Ens.* Production Ene.a Production Ens.a Building. Plastics, Television, tic.

GET SOME LETTERS AFTER YOUR NAME!

A.M.IMeoh.R

A.M.I.C.E.
A. M.I.Prod, A.M.I.M.L

> B.80.
A.M.L.E.R.E,
on Cort of Fdxantion En Corm sto sto Ete.0 Bte.

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

(Dept. SE/21), 29 Wright's Lane, London, W. 8

practical EQUIPMENT

Benie Practical and ThoorsHo Courses lor beginner in Eadio, TT. V.. Eloctronion Eto., A.I. I.E.R.E.. Chty ent Guild
Badto Amatours' Eram R.T.E.B. Certifeste P.M.G. Certiliate Practical Radio Redio de Teloviaion Sertions Prantical Electrontas ootronice Englinegrtat Antomgtion

INCLUDING TOOLS!

The specialist Electronics Divition of B.I.E.T.

NOW offers ypu a cellaboratory trainine at home with practical equipment. Ast for details.
B.I.E.T. SCHOOL OF ELECTRONICS

\qquad

R.S.C
MAIL ORDERS TO 54 WELLINGTON STREET, LEEDS
Terms: C.W.O. or C.O.D. No C.O.D under fl . Postage $2 / 9$ extra under $\mathcal{E 2}$. 4/6 extra under 65 . Trade Supplied. S.A.E. with all enquiries please. Personal shoppers welcomed at any of the branches below. Open all day Saturday.
BRADFORD
10 North
Parade
Halt-day,Wed.) DDETP 14Lower Castle Street (Half-day Wednesday) : 22904
BIRMINGHAM 30/31 Gt. Western Arcade, opp. Snow Hill Station. CENtral 1279. No half-day DERBY 26 Osmaston Rd., The Spot DARIINGTON 13 Post House Wednesday) Tel: 68043 , ith Street EDINBURGH $\begin{gathered}\text { 133 Leith } \\ \text { (Half-day } \\ \text { Wed. } \\ \text { Wed. }\end{gathered}$ GLASGONY 326 Argyle Street Tel: CITy 4158
HULL 51 Savile Street (Half-day LEICESTER 32 High Sereet (HalfLEEDS 5-7 Councy (Mecca) Arcade IVERPOOL 73 Dale St. (No halfLONDON 238 Edgware Road W2 (Half-day Thursday)
Tel: PADdington 1629
MANCHESTER
60A-60B Oldham St, Tel: CENtral 2778 (No half-day) New large store.
MIDDLESBROUGH $106 \mathrm{New-}$
(Half-day Wednesday) Tel: 47096 SHEFFIELD 13 Exchange Street Tel: 20716 (Half-day Thursday) JASON FMTI V.H.F./F.M. Radiotuner parts including valves,.tuning $\mathbf{~ d i a l}$ escutcheon etc. $\mathbf{9 . 6}$ SUPERIIET FEFIDER UNIT. Design of a high quality Radio Tuner (specially suitable for use with our Amplifiers). Delayed A.V./C. Controls are Tuning, L.T. of 6.3 v . 1 amp . required from amplifier Size approx. $9 \times 6 \times 7$ in. high. Simple alignment procedure. Point-to-Point wiring diamrams, instructions and priced parts list with illustrations, 2/6. Total builing
costs $£ 5.5,0$. S.A.E. for leaflet.
TRANSISTOR SALE Mullard OC71 2/11, OC45 3/11, OC44 3/11, OC72 2/11, OC81 2/11, OC171 8/9, Ediswan XA101 3/9, XA112 3/9,
XC101A 3/9. Postage 6d. for up to 3 transistors.

EX GOVT. SELENIUM RECTIFIERS 12y 15 AMP (BRIDGE) F.W. ONLY
 19/9

Ex. GOVT. SMOOTHING CHOKLS. $200 \mathrm{~mA} .3-5 \mathrm{H}, 50 \mathrm{hms}$, Parmeko $8 / 9 ;$
150 mA .10 H .50 ohms $9 / 9: 120 \mathrm{~mA}, 12 \mathrm{H}, 100$ 150 mA .10 H .50 ohms $9 / 9 ; 120 \mathrm{~mA}, 12 \mathrm{H}, 100$ ohms $8 / 9 ; 100 \mathrm{~mA} .10 \mathrm{H} .100$ ohms $8 / 9 ; 60 \mathrm{~mA}$. $5-10 \mathrm{H}, 250 \mathrm{ohms} 211$.
TANNOI RE-ENTRANT 1.OLD. SPEAKFRS. For outdoor or $25 / 9$
Factory use. 8 ohms. 8 watts. Only

$$
\text { EX. GOV. } 2 V \text { ACCUMLILATOLRS, }
$$ 16 A.H. Size $7 \times 4 \times 2 i n$. Brand new,

$4 / 9$ each. Three for $12 / 6$, carr. $5 /-$.
HI-FI 10 WATT AMPLIFIERS ERAND NEW Manufacturers' discontinued Model. Push-pull output. Latest high efficiency valves. Dual separately controlled Inputs for 'Mike' and gram. Separate Bass and Treble Controls. High Sensitivity. Out-
put for 3 or 15 ohms speaker. Guaranteed put for 3 or 15 ohms speaker. Guarante
tested and to perfect working order.
R.S.C. MAINS TRANSFORMERS (fully Guaranteed)

Interleaved and Impregnated. Prim- OUTPUT TRANSFORMERS aries 200-230-250 v. 50 c/s. Screened. $250-0-250 \mathrm{v}$. 70 mA . $6.3 \mathrm{v}, 2 \mathrm{a}, 0-5-6.3 \mathrm{v}, 2 \mathrm{a}, 1 \mathrm{r} 18$ ${ }^{250-0-250 v} .70 \mathrm{~mA} .6 .3 \mathrm{v} .2 \mathrm{a}, 0-5-6.3 \mathrm{v} \cdot 2 \mathrm{a} .17 / 9$ $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .2 \mathrm{a}, 6.3 \mathrm{v} .1 \mathrm{a} .{ }^{2} \quad 121 / 9$
 $250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}$. 3 a 28/9 $300-0-300 \mathrm{v}, 130 \mathrm{~mA}, 6.3 \mathrm{v}, 4 \mathrm{a}, 6.3 \mathrm{v}$. 1a, for Muliard 510 Amplifier $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{a}, 0-5-6.3 \mathrm{v}$. 3 a $38 / 9$ $350-0-350 \mathrm{v} .100 \mathrm{~mA} .6 .3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a} 28 / 9$
 $\begin{array}{cc}\text { FULISY } \\ 250-0-250 \mathrm{v} . & 60 \mathrm{~mA}, 6.3 \mathrm{~V}, 2 \mathrm{a}, 0-5-6.3 \mathrm{v} .2 \mathrm{a}\end{array}$ Midget type $2 \times 3 \times 3 \mathrm{in}$
$250-0-250 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v}$. $4 \mathrm{a}, 0-5-6.3 \mathrm{v}$, 3а $\quad 18 / 9$ $300-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a} .5 \mathrm{v} .3 \mathrm{a}, \ldots 2$ $300-0-300 \mathrm{v} .130 \mathrm{~mA}, 6.3 \mathrm{v}$. 4 a . С.T. 6.3 v . 1a. for Mullard Amplifier

Standard Pentode 5.000 on to 3 n
Push-Pull 8 watts, EL84, or 6V6 to $3 \ddot{0}$
or matched to 15Ω
Push-Pull 10-12 watts to match 6 V 6 or
EL84 to $3-5-8$ to 15Ω, $\ddot{3}$
Following types for 3 and 15Ω speaker
Push-Pull 10-12 watts, 6V6 or EL84
Push-Pull 15-18 watts. 6L6. KT66
Push-Pull Mullard 510 Ultra Linear. 6L, KT66. EL34. etc.
SNOOOTHING CHOKES
$150 \mathrm{~mA}, 7-10 \mathrm{H}, 2500 \mathrm{hms}$
$80 \mathrm{~mA}, 10 \mathrm{H} .350 \mathrm{ohms}$
$60 \mathrm{~mA}, 10 \mathrm{H}, 4000 \mathrm{hms}$
ohms . $\quad 5 / 8$
CHARGER TRANSFORMERS
All with $200-230-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ Primaries; $0-9-15 \mathrm{v}$. $1 \mathrm{Ia}, 12 / 9 ; 0-9-15 \mathrm{v}$. 2a, 14/9: $0-9-15 \mathrm{v}$. $3 \mathrm{a} .16 / 9 ; 0-9-15 \mathrm{v}$. $5 \mathrm{a}, 19 / 9 ; 0-9-15 \mathrm{v}$. 6ia. 2З/9: 0-9-15v. 8a, $28 / 8$.
AUTO (SteD up/Step down) TRANS. $0-110 / 120-230 / 250 v, 50-80$ watts, 13/8; 150 Watts. 2799: 250 watts, 49/9: 500 watts $89 / 8$. M11CROPHONE TRANSFRK.
$350-0-300 \mathrm{v} .100 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v}$. $3 \mathrm{a} 29 / 9$ $350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v} .4 \mathrm{a}, 0-5-6.3 \mathrm{v} .3 \mathrm{a} 39 / 9$ $425-0-425 \mathrm{~V} .200 \mathrm{~mA} .{ }^{6.3 \mathrm{v} .4 \mathrm{a}, \mathrm{C} . \mathrm{T} .5 \mathrm{v} .3 \mathrm{a}} 57 / 9$
$425-0-425 \mathrm{v} .200 \mathrm{~mA} .(6.3 \mathrm{v} .4 \mathrm{a}$ Twice). 5 v .3 a
$58 / 9$ $450-0-425 \mathrm{v} .200 \mathrm{~mA} .(65 \mathrm{~mA} .6 \mathrm{v} .4 \mathrm{v}$. $4 \mathrm{a}, \mathrm{C} . \mathrm{T}$. 5 v . 3 a . $69 / 8$ FHEAAIENT TRANSFORMERS $200-250 \mathrm{v}$. $50 \mathrm{c} / \mathrm{s}$ primaries 6.3 v . Cl .5 a . $5 / 8: 6.3 \mathrm{v}$ $2 \mathrm{a}, 7 / 6: 12 \mathrm{v} .1 \mathrm{a}, 7 / 11: 6.3 \mathrm{v}, 3 \mathrm{a}, 8 / 11: 6.3 \mathrm{v}, 6 \mathrm{a}$.
$17 / 6 \mathrm{t}$ 12v. $1.5 \mathrm{a}, \mathrm{twice}$ 17/6.

R.S.C. BATTERY CHARGER and KITS

 for A.C. Mains $200 / 250 \mathrm{v} ., 50 \mathrm{e} / \mathrm{s}$. ASSEMBLEDIILAYY "DLTY 4ampow 6/wy. CHAHGER KIT varia ble Mains transforcharge rate mer 0 (Bridge) $200-230$. Also selector enium Rectifler. plug for 6v. Ammeter, Varior 12 v . charging. Louvred steel casewith able Charge Rate ready for use with mainsandout- $59 / 9$ plug s. Fuses. ready for use with mainsandout- $59 / 9$ Plugs. Fuses
put leads, and battery clips. thly payments of $12 /$ (Total £3.12.0). Carrtage 4/6.

SELENICM RECTIFIERS
F.W. (BRIDGED) TYPES
$6 / 12 \mathrm{v} .1 \mathrm{a} .3 / 11^{6 / 12 \mathrm{v}}$. $6 \mathrm{a} .15 / 3$
$\begin{array}{lll}6 / 12 \mathrm{v} .1 \mathrm{a} .3 / 11 & 6 / 12 \mathrm{v} .6 \mathrm{a} .15 / 3 \\ 6 / 12 \mathrm{v} .2 \mathrm{a} .6 / 11 & 6 / 12 \mathrm{v} .10 \mathrm{a} .26 / 8\end{array}$ $\begin{array}{lll}6 / 12 \mathrm{v} .2 \mathrm{a} .6 / 11 & 6 / 12 \mathrm{v} .10 \mathrm{a} .26 / 9 \\ 6 / 12 \mathrm{v} .3 \mathrm{a} . & 9 / 9 & 6 / 12 \mathrm{v} .15 \mathrm{a} .35 / 9\end{array}$ $6 / 12 \mathrm{v}$. 4a. 12/3

COMPLETE POWER PACK

 KITConsisting of Mains Trans. Metal Rectifier, Double elecrolytic smoothing Fhassls and circuit.

19/II mains. Output 250 v
mains. Outputa
$60 \mathrm{~mA}, 6.3 \mathrm{v} . \mathrm{2a}$.

SCOOP PURCHASE OF HIGH QUALITY

 RECORD CHANGERSARMSTRONG, TRUVOX, LEAK aUND, WHOGERS, FANE, WHARFEDALE, GOODMANS
GARRARD, GOLDRING, GRAMPIAN, LUSTRAPHONE, SHURE, RESLO, TANDBERG, FERROGRAPH Products stocked. Our usual credit terms available.

Brand new Garrard 3000 LM . Retail price approx. $£ 12150$
Heavy Turatable and light- Carr. $5 /$ weight plck-up arm. High fidelity Stereol Mono cartridge. Fully guaranteed
 WATT A5 HIGH-GAIN AMPLIFIER
A highiy-sensitive 4 -valve quality amplifier for the home, smatt club. efc. only so minivots mput is reguired for High-tidelity Pick-up heads in addition to all other types High-itiflity Pick-up heads in addrion "o ald Separate Bass and Treble Controls are proviled. These give full long playing record equalisation. Hum level is negliglbie being playm down 15 dB of Negative feedback is used. H.T. of 300 v . 25 nm a and L.T. of 6.3 v . 1.5n. Is available for the supply of a Radio Feeder Unif or Tape-Deck pre-amplifier. For $4 . \mathrm{C}$. mains $200-230-250 \mathrm{v}, 50 \mathrm{c} / \mathrm{s}$. Out put for $2-3$ ohmas speaker. Chassis is not alive Kit is complete in every detail with fully punched Gold Hammer Guished chassis, point-to-point wiring diagrams and instructions. Exceptional value $£ 4.15 .0$, or assembled ready for use $25 /-$ extra, plus $3 / 6$ carr., deposit $22 / 6$ and 5 monthly payments or $22 / 6$ (Total $26.15,0$) for assembled unit.
R.S.C. GRAM AMPLIFIER KIT. 3 watts output. Negative feedback. Controls Vol. Tone and Switch. Mains operation 200-250v. A.C. Fully tsolated chassis.
supplied. Only 389. Carr. 3/9.
AMPLIFIER. For use with any single or auto-change unit. Output for $2 / 3 \mathrm{ohm}$ speaker. For 200-250v. A.C. mains. $59 / 6$ Vol. and Tone with Switch. Only 59/6 COMMUNICATION RECEIVERS RX GODELUNE
RX60 DE
4 BAN
$220 / 240 \mathrm{v} .50 / 60$
m.p.s. A.C.
tion. Fre-
quen ciescov-
ered $1600 \mathrm{Kc} / \mathrm{s}$
to $30 \mathrm{Mc} / \mathrm{s}$
continuous. Incorporates 5in. speaker. Slide rule tuning dial 'S' meter. Internal ferrite aerial for medium wave. Telescopic whip aerial $58 \mathrm{in}, 10$ section for short waves. Fitted sockets for optional outdoor aerial. Headphones. external speaker socket. Other featuresare electrical bandspread tuning. Nitise
 crackle finished metal cabinet. Brand new
with full instructions manual. Usual guarantee 19 Ens. Carr, \& kg , $10 /$.
R.S.C. 4 WATT GRAM. ANPLIFIER Kit. Complete set of parts to build a good quality compact unit suitable for use with chassis. Separate Bass and Treble 59/O controls. Output for 2-3 ohm speaker. For $200-250 \mathrm{v}$. A.C.
R.S.C. BABY ALARM or INTER-COMM KIT. Complete set of parts with diagrams. etc. Housed in two polished walnut finished cabinets of pleasing design. High sensitiv ity. For $200-250 v$. A.C. mains. Fully tsolated. Controllable ar both units. An intercomm. of this class would normally cost $520-930$. Only 89/6, carr. 5/., Ready for use. 8 gns.
R.S.C. BATTERY TO MAINS CONVERHON UNITS. Type Mi. An all-ary bat lize ell x $54 \times 2 \mathrm{n}$. approx. Com pletely replaces batterles supply 1.4 v and 9ov where A.C. $50 \mathrm{c} / \mathrm{s}$ is avatlable. Suitabie for all battery portable receivers requiring 1.4 v . and 90 v . Complete
kit with diagram $38 / 8$ or ready for use $48 / 8$

PREQUENGY REAPONBE $\pm 2 \mathrm{~dB}$. $30-20,000$ ap-b HUM LBVEL 6adB dowin. SENBITIVITY: 5 millivolte maximutn HARMONIO DISTORTION (aach channel) 0.2%.

R.S.C. STEREO 20/HIGH FIDELITY AMPLIFIER
 PROVIDING IO/I4 WATTS ULTRA LINEAR PUSH-PULL OUTPUT ON EACH CHANNEL

GUTABLE to "MIKE*", GRAM. RADIO On TAPE INTENDED FOR THE HOME OR STUDIO BUT BUITABLE FOR JABGE HALLS OH CLUBS
\star Pour-position tone compensetion and lapot selector switoh.

* Wial amplisy direct from Tape Heads.
* Stareo/Monoswitch so that peak monaural output of 28 watts can be obtained.
* Separste Bass "Lift" and "Cut" and treplo "Litt" and "Cut" controls.
* Neon parel indicator.

夫 Handsome Peraper Frontplate.
Send S.A.E. tor illustrated teafet.

Based on a current Maliard design and employing valven ECC88, ECC83, ECL8A. ECL89, BCI.86, ECL86, EZ81. Output tranalormers are high quallty sectionsily wound to required specification. Output matchings for 3 and 10 ohro speakers on each chaunel. Completo set of parrs whi polnt-to.

13 Gns . potpl witing diagrams and instructions or Fectory asembled, tested and supplled with our

AUDIOTRINE HI-FI TAPE RECORDER KIT 25 $5^{\frac{1}{2}} \underset{17 \pi}{\text { ins }}$
 REALISM AT INCREDIRLY LOW COST, CAN BE ASSEMBLED IN A HOUR

Incorporating the latest Collaro Studio Tape Transcriptor. The Audiotrine Figh Quallty whth nesative feedback equalisation for each of 3 speeds. High Flux P.M. Speaker empty Tape Amplifer Reel or Best Quallty Tape and a Handsome Portable Carrying Cablnet tastefully covered in two contrasting shades of Rexine and Vypair. Size $14 \mathrm{x} \times 15 \times 861 \mathrm{n}$. high and cirouit. Total cost if nurohased individually approximately e40. Performance equal to units in the 860 - 880 class. S.A.E. for leatets. TEH.MS. Denosil
R.S.C. A1O 30 WATT ULTRA LINEAR HIGH FIDELITY AMPLIFIER

 tnput required for full onthit is ons 12 ralilivolth so that AMY KNDD OF MICROPHONE OR PICK-UP IS SUITARLE The rult is deatgred for CLUBS, SCHOOES. THEATRES, DANOE HALLS Of OUTDOOR FSCHION. ERE For 1 Lse GUITAR STRDM BASS; BASS, LEAD. OR RHYTHM GUITAR, STRDG BASE, etc. For standard or lone playing RADIO FEEDER OXTT. An extre loput with amociated wols control is provided so that two separate inpute such as Grama and "Mike" can be mixed. $200.2507 .50 \mathrm{c} / \mathrm{A}$. 4.0 . Mains output for 3 and 15 ohm apeakers. Complete Kit of party with fully punched chasais and point-to poist wiring diagrams and 4. Cart. 10/. notructions. Bupplied factory bult with EL34 outpat valves and 12 monchas guarantee, 1 GUS. Hend B.A.E. for leaflet, alse speaker. TERMS: DEPOBIT $34 / 6$ and 9 methy. paymente of $33 / 6$ (Total 16 gar.)

INTEREST CHARGES REFUNDED

on H.P. and CREDIT SALE
LINEAR TAPE PRE-AMPLIFIER. Tyne LP/1. Switched Equallsation, Positions for Recording at 17 in ., 3 I In . 71 m . per sec., and Playback. EM84 Recording Level Indicator, Desifned primarily as the link between a Collaro Tape Deck
amplifier, suitable almost any Tape Deck. Only ot gas. S.A.E. for leafiet.
HIGH FIDELITY 12-14 WATT AMPLIFIER TYPE A11 PUSH•PULL ULTRA LINEAR OUTPUT "BUILT-IN" TONE CONTROL PRE-AMP STAGES
Two input sockets with assoclated controls allow mixirg on mike and gram., as in A10. High EL84, EL84, Ez81. Hite Quality sectionally wound output transformer specially desifyed for Ultra Linear operation and reliable smeli condensers of current manufacture. INDIVIDUAL CONTROLS current Manuagture INDIV"DUAL CON "ROL" Frequency response $\pm 3 \mathrm{~dB} 30-20,000 \mathrm{c} / \mathrm{s}$. Six neta-
tive feedback loops. Hum level 60 dB down. ONLY
 23 millivolts input required for FULL OUTPUT
Suitable for use with all makes and types of plak-ups and miorophones. Comparable with the verybest designg for STANDARD or LONG PLAYING RECORDS. For MU
LNSTRUMENTS such as STRING BASS, LEAD or RBYTMM GUITARS, etc.
LNSTRUMENTS such as STRING BASS, LEAD or RHYTMM GUITARS, etc FEEDER UNIT. S1ze approx. 12×9 x 127. For A.O. mains 200.250y. 50 c.p.B. Output for 3 and 15 ohms speaker. Kit 1s complete to last nut. Chassis is fully punched. Full instructions and point-to-polnt wiring diagrams supplied. Only 8 Gis. Carr. (Or factory built $51 /$ extra). If Tequired louvied metal cover with 2 carrying handles can be suppled or $18 / 9$. THRME ON ASSEMBLED UNITS. DEPOSIT 25/- and 9 monthly payments
R.S.C. STEREO/TEN HIGH QUALITY AMPLIFIER

Acomplete set parts ror the consuruction of a storeoeach channel (total 10 watts). Sensitulvity is 50 milli volts. Sultable for all orystal stereo heads. Gansed Bass and Freble Control give equal variation for "lift" and "out", Provision is made for use as straight ECC83. ELP4, EL84, EZ81. Outputs for 2 -3 ohm speakers Polnt-to-Point wiring diagrams and in- 8 Gis. struotions supplied. Send S.A.E. for leafiet, 8 Gils. Or supplied factory assombled with 12 months' suarantee for $£ 11.7 .6$.
Terms: Deposit 2 gns . and 9 monthly payments of 24/2 (Total $\mathrm{f12} 18.6$).

S4/4 STEREO AMPLIFIER

A complete set of parto to construct a good qualits Stereo amplifter with an uadistorted output total 8 Write. For A.C. unalos input of $200-250$. senait 1 ity
trols. Preset bulance conirol. Fuul in- 5 Chs. Lrols. Praxet balance control. Pull in- 5 Cns.
atractions and wimg diagrami supplled

Always in Stock at keen prices SINGLE and AUTO RECORD PLAYING UNITS PICK-UPS, CARTRIDGES, MICROPHONES VALVES, CABINETS and COMPONENTS too numerous to lise.

PAMES OF SOLDERED JOINIS PLUS

12in. 10 WATT HIGH QUALITY LOUDSPEAKER
 In walmut veneered cablnet. Gauss 12,000 nes, Speech coll ohms or 15.9 onms. Carr. 5/6 (4. 190 Terms: Deposit $11 / 3$ ments of $11 / 3$ (Total
£5.12.6). 18in, 20 W12T HITFILOUD.
 $18 \times 10 \pm$. Finish as abovo. Only ev.19.6. ments of $17 / 9$ (Total $28.17,6$). Carr. 8/6.
W.B. "STENTORIAN" HIGE FIDELITY P.M, SPEAKERS HF1012, 10 watts rating. Where s really good quallty epeaker at low price if reamazieg performance. \&4.12.0. Pleme state whether 3 obm or 15 ohyn required.
R.S.C. JUNIOR BASS REFLEX CABINET, Design. ed or above ppesker, but suatiable for any good ported. Pollshed walnut veneer flolsh. 8ize 18x12x 10in. Atrongly made. Eandeoma appearanco. Ene Rures supert reprodiction for ony sA.7.8. 12in. loudspeaker. beoustically lined and ported. Size 20 a 14 I 13 in . Beaulifut walnut Tencer AnLsh. Recommended for
use with Audlotrtae Bpeaker Bystem. e5.19.6. AUDIONR NE CORER CONSOLE CABINETS. Strongly made. Beautirul polished Falnut venecred finish. Pleasing design.
JUNIOR MODEL. For up to $8 \ln$. speaker. Approx, $50 \times 11 \leq 81 \mathrm{n}, 4819$
STANDARD MODEL take in to 101m, spegker Sixe 27 I 18 x 18 in . 5 Gin. Cerr. $7 / 6$.
SENIOR MODEL. To take up to 12in. speaker and with Tweeter cut-out. Sllse spprox. $30 \leq 30 \leq 1 B i n$ Recommended for tue with Audiotrine speaker yrbem). 8 gns. Carr. 8/6. Terms avallable.
AUDIOTRINE HI-FI GPEAKER SYSTEME. Consisting of matohed $121 \mathrm{n} .12,000$ line, 15° ohm high quallty speaker; crossover undt conoholse. condenser, etc.) and Tweeter. The smooth res-
ponse and ezquency range ensure surprisreproduction Standard 10 24.199 rating 52.19.8. Carr.
 20 Watt, 56.19 .6 . Carr. 7/6.

RISTC
 (MANCHESTER) LTO
 R.S.C. G100 100 Watt AMPLIFIER
 Addresses on pace 292
 TERRIFIC POWER OUTPUT FOR ALL PURPOSES
 For ELECTRONIC ORGAN, LEAD, RHYTHM and BASS GUITAR and any other musical instrument. FOR VOCALIST, Gram, RADIO and Tape etc.
 \star Incorporating SIX 12in. PLUS TWO 15ın. HEAVY DUTY LOUDSPEAKERS. Total Rating, 140 watts.
 * Housing in 4 substantial Wood Cabinets of pleasing design and covered in contrasting shades of Rexine and Vynair with gold trimmings.
 $\star 4$ Jack Inputs in TWO CHANNELS with 4 Independent Volume Controls.
 * Separate Bass and Treble Controls on each channel.
 \star For standard $200-250 \mathrm{v}$. A.C. mains operation.
 Fantastic
 Value
 at only
 $89 \frac{1}{2}$
 Carr. 50/-
 Or Denosit £11.7.6
 and 52 weekly,

FULL IRANOE of MICROPHONES In stork. Mlust makes. Prices Irom 12/9 to 450 . Cradit Trrms available over s6 or with other equipment.
R.S.C. BASS-REGENT 50 WATT AMPLIFIER
an exceptionally powerful high quality all-purpose unit
For lead, rhythm, bass guitar and all other musical instruments
For vocalists, gram, radio, tape and general public address

* UNUSUALLY FOWERFUL LOUDSFEAKER COMBINATION consisting of a FANE HIGI wati unnt with extended trequency rosponse. A-Jack socket Inputw and two independent Vol. Controls tor simultaneous use of up to 4 pick-ups or 'mikes'.
* Separate cabinets futly covered in con trasting tones of Rexine/Vynair with gold trimming, for speakers and amplitiers.
\star Separate Bass and Treble Controls giving Boost and 'cut'
Send S.A.E. for leaflet. Or call at one of our with units at more than three times the cost.

47Carr.

Or deposit $£ 5.11 .0$ and 12 mouthly payments of £4. rivs. (Total ol (ins).

interest charges refunoeo

ON H.P. ACCOUNTS
SETTLED IN 6 MONTHS

R.S.C. COLUMN SPEAKERS

Covered in two-tone Rexinel Public Address for vocalists and Public Address. Normally supcan be supplited for 100 v . line can be supplie
for $35 /$ extra.
Type C38, 10,20 watts. Fitted five sin, high fux speakers. Overall size approx. $42 \times 10 \times 5 i n$. 12 $\frac{1}{2}$ Gns. \quad Carr.
Or deposit of $29 /-$ and 9 monthly payments 29/-(Total $£ 14.10 .0$). four $12 i n$. 12,000 wats. line 10 watt speakers. Overall size $56 \times 14 \times$ 9in. approx.
Carr. 15/-
$19 \frac{1}{2}$ Gins. Or deposit of $5 / / 9$ and 9 monthly payments of $44 / \mathrm{F}($ Total $\# 1 \% \mathrm{Fn*})$.
R.S.C. BASS MAJOR 30 WAT MULTI-PURPOSE HIGH FIDELITY HIGH OUTPUT AMPLIFIER for VOCAL \& INSTRUMENTAL GROUPS Eminently suitable for lead, rhythm, bass guitar and all other musical instruments

* Incorporating two 12in. 25 watt Heavy Duty High Flux Fane Loudspeakers. one with dual cone for high frequencies.
\star Robust wood cabinet with excentionally attractive covering of * Four Jack Socket Inputs and tivo
\star Four Jack Socket Inputs and two independent Volume or "Mikes", simulaneous connection of up to four Pick-ups * Separate B
* SUPERIOR TO and Treble Controls.

31 for leathet or callfor demonstrationt, Send S.A.F. $39 \frac{1}{2}$ corleaftet or call for demonstration at any braneh. $\begin{array}{ll}\text { Carr. } & \text { Teruns: Deposit } £ 4.3 .0 \text { and } 12 \text { monthly } \\ 17 / 9 & \text { payments of } £ 3.8 .4 \text { (Total } 43 \text { Gins). }\end{array}$ Sends S.A.E. $\quad 29 \frac{1}{2}$ Gns
for leaflet.

HEAYY DUTY SPEAKERS IN CABINETS
TYPE BGi. Two Tone Suitable for Bass Guitar. Speaker Unit $15 i n$. High Flux, 15 ohms. 30 watts. Robust cabinet size approx. $24 \times 21 \times 13 \mathrm{in}$.

Only $19 \frac{1}{2}$ Gns.

monthly parments of 44/5 (Total 21t (ins.)

R.S.C. B20 MULTI-PURPOSE AMPLIFIER especially suitable for Bass Guitar A highly efficient unit incorporating massive lisin. high flux loudspeaker spectally constructed to withstand Rating 2j watts. Individual Rating 2s watts. Individual bass and treble controls
glve ample "Boost" and "Cut'. Twn lack socket inputs separately controltial Cabinet 15 of substanattractively finished in two contrasting tones of Size approx. $24 \times 21 \times 13$ ins.
 Size appros. $24 \times 21 \times 13 \mathrm{~ns}$. $17 / 6$. Or deposit monthly payments of $51 / 6$. (Total 324 \&ns.)
R.S.C. G15 15 WATT AMPLIFIER for Lead or Rhythm Guitar, 'Mike', Gram or Radio High-fidelity push-pull output. Separate bass and treble "ctut" and "Boost" controls. Twin separately controlled inputs so that two instruments or "mike" and pickups can be used at the same time. Loudspeaker is a heavy duty flux 12 in .20 watt model with cast chassis. Cabinet is covered in constrasting shades of $18 \times 18 \times 8 \mathrm{n} .19$ Gns. Carr

Or DEPOSIT 2 Gins. and
12 monthly payments of $33 / 3$ (Total 21 ons 12 monthly payments of $33 / 3$ (Total 21 gns.)
Send S.A.E. for leafiet.
TRANSISTORISED SOUND MIXER Enables mixing of up to 4 inputs. 1.e. mic. tape. gram., tuner, etc., into single output.

Compact and completely selfcontained, uses standard 9 volt battery. Four standard jack PRPICE. PRICE
Post $3 / 6.69 / 6$

LAFAYETTE HA 63 COMMUNICATION RECEIVER

 7 valves + Rectifer ${ }^{4}$ Bands BFO-ANL-Bandspread Tuning $200 / 250 \mathrm{~V}$. A.C. Brand New 24 Gns. carr. pald
STAR SR 40

 COMMUNICATION RECEIVER4 Bands $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. S Meter-BFO - ANL - Bandspread Tuning. Bullt in speaker, 200 250 v A.O. Brand New 2et Gin. Carriage 10\%.

OS/BB/U OSCILLOSCOPES

High quality Portable American'Oscilloscope. 3 in. c.r.t. T/B $3 \mathrm{c} / \mathrm{s}-50 \mathrm{ke} / \mathrm{s} X$ Andp: $0-300 \mathrm{kc} / \mathrm{s}$ Y Amp: $0-2 \mathrm{Mc} / \mathrm{s}$. Power requirements $105-125 \mathrm{~V}$.
A.C. Supplied in "as new". condiciop, fully tasted
©25. Carr. 10/- Suitable 220115 v . Trans
 former, 15/6.

CLEAK PLASTIC PANEL METERS

 Firat grade quallity. Moring coil panel metern, avallable ex-stock. SiA.E. forDiscounts for quantity. Asailable as follows. Type MR 38P I 21/33in. nquare fromes.

2 mA		22/6	$3 \mathrm{~V}, \mathrm{DC}$		22/6
5 sma		22/6	10v. DC		22/6
10 ma		22/6	20v. DC		$22 / 6$
20 mA		22/6	$50 \mathrm{~V} . \mathrm{DC}$		22/6
50 mA		$22 / 6$	100V. DC		22
100 ma		22/6	150V. DC		22/6
150 ma		22/6	800v. DC	-	$22 / 8$
200 mA		22/8	$300 \mathrm{~V}, \mathrm{DC}$	-	22/6
8300 mA	1.	$\begin{aligned} & 29 / 6 \\ & 22 / 6 \end{aligned}$	$150 V . D C$ $15 \mathrm{~V} . \mathrm{AC}$		22/6
600 mA 750 mA		$\begin{aligned} & 22 / 6 \\ & 22 / 6 \end{aligned}$	60 v . AC	.	$22 / 8$
$1-0.1 \mathrm{~mA}$		$22 / 6$	1507. AO		22/6
1A. DC		$28 / 6$	300 V . AC	\cdots	22/6
2A. DO		$22 / 6$			${ }_{29 / 6}^{2 / 6}$
3A. DC		$22 / 6$	"8" Meter		

tma … posit $22 / 6,5 \mathrm{~A}, \mathrm{DC}$,

$$
3
$$

MINE DETECTOR No. 4A Will detect all types of metals. instructions, $30 / 6$ each. Carr. 10/-. Battery $8 / 6$ extra.
BEST BUY
Send 10 PO. for foll catalogae and lists. Trade supplied. Every day, Monday to Saturday.

NEW MODEL
LAFAYETTE HA-230 AMA TEUR COMMUNICA TIONS RECEIVER Supercedes model HE-30, 8 valves + rectifier. Continuous coverage on 4 bands. $550 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$. Incorporates 1 RF and 2 IF gtages. Q Multiplier, BFO ANL. 'S" moter, electracal bandspread, Aerlal trimmer etc. Supplied brand new and detalls.
NEW MODEL!
LAFAYETTE HA-5S Aircraft
Receiver
$108-136 \mathrm{Mc} / \mathrm{s}$. High setectivity and
 sensitjvity. meorporates 2 RF stages inciuding 6CW: Nuvistor. 8 tuhes for 11 tube performance, solid state power supply adjustable squelch control, slide rule
dial, bultin 4 in. speaker and tront dial, bultt in 4 in. speaker and trant
panel phone jack. $220 / 240 \mathrm{v}$. A.C.
 teed. 19 Gins. Carr. 10/-,
 $2 \mathrm{FF}, 2,000 \mathrm{mFd}, 2$ ohms, 200 mesohms Also checks impedanco. Turns ratio nsulation 716.

LAFAYETTE TE-20A R.F

SIGNAL GENERATOR $120 \mathrm{KO} / \mathrm{s}-390 \mathrm{Mc} / \mathrm{s}$ on 6 rances. Varlable R.F and A.F. outputs Large 250 v . A.C. operation. Brand New. ع12.19.6. Carr. 7/6.

VOLTAGE ST゙ABILIZER
TRANSFORMERS
your mains for TVRE. Ideal ers and Recelvtrial equipment. Input
 $160-240 \mathrm{v}$. Con-
stant output 110 v . or 240 v . 250 watts. Brand new guaranteed. £10.10.0
VARIABLE VOLTAGE TRANSFORMERS

MODEL TE-12 20.000 O.P.V, $01.06 /$
$5 / 30 / 120 / 600 / 1.201$ $6130120 / 6001.200$
$3.00018,000$ V. $0 / 6 / 30 / 120 / 600 / 1.200$ $601600 \mathrm{~mA} \quad 0 / 6 \mathrm{~K}$
 MFD. \&5.18.6.' ${ }^{2}$ \& P. 3/6.

MODEX 500 30,000 o.p.v. 01.51

$1 / 2.5 / 10 / 2511001$ | $1 / 2.5 / 10 / 25 / 100 /$ |
| :--- |
| $250 / 500 / 11.000 \mathrm{v}$ | DC 0/2.5/10/25) $100 / 250 / 500 / 1.000$ $50 / 500 \mathrm{~mA} / 12 \mathrm{amp}$

 $\mathrm{Meg} 160 \mathrm{Meg} \mathrm{M}_{\mathrm{P}}$
8.17.6 Post full detalls.

Stockists of Sinclair, fand Equipment	mbres, Codar, 11 Elactronic Components.

The IINTON is another of the 'new look' loudspeakers developed by Nharfedale and styled by Robert Gutmann, F.SI.A. The cabinet-made in high density man made timber for reduced panel resonance is superbly veneered. Back radiation is completely eliminated by special internal treatment. A new 8^{n} cast chassis bass unit has beea developed by Wiarfellale for the Lintcnn. It has a 12,000 oersteds magnet and is fitted with a flexiprene roll surround giving a fundamental open bafle resonance of only $43 \mathrm{c} / \mathrm{s}$. The linear performance is such that the bass distortion is extremely low. A special version of the world famous Super 3 tweeter is combined With a treble control to compliment the $8^{\prime \prime}$ bass unit giving an extremely smovih treble response up to wery high frequencies The result

6 Treble control.

- Special Wharfedale $3^{\prime \prime}$ Tweater unit.
- Sound absorbent B.A.F. wadding completely - liminates back radiation.
- $8^{\prime \prime}$ bass unit with Flexiprene roll surround.
- Cabinet of high density man made timber for reduced panel resonance.

Free technical folder on the Linton from Dept. P.
is a well balanced twin speaker system of high performanco capable of being driven by relatively small arnplifiers to provide adequate velume and fat igue free listenitg.
Frequency ramge $40 c / s-15,000 c c_{i} s$.
Impedance 8 -10 whres.
Fower handling capacity 10 watt. (29 waits peak)
Size $19^{\prime \prime} \times 10^{\prime \prime}$ 二小 10° Weight 18 IF .
Finisf zebramo senecrs at watuut and oilted teak to special orter.
£18.7.4
Wharfedale wireless works lid.
IDLE, BRADFORD, YOFFKSHIRE.
Tel. Idie 1235/6 Grams. "Wharidel' Bradfore

REQUIEM FOR A SHOW

IF we had a flag, it would now be at half mast. For the radio and television industry has stood by and doomed to oblivion the 1965 Radio Show, a venture that was hardly allowed to get off the ground.

Since the 1920's the Radio Show has flourished until in recent years it began to flounder, and both public attendance and stand bookings began to decline. No single factor can be pinpointed for the reasons are several, complex and partly intangible.

However, the snowball effect of company mergers progressively reduced the number of potential exhibitors. The increasing cost of buying stand space and of fitting and manning exhibits, also took its toll, and then the broadcasting authorities made less spectacular provision for entertaining the public.

But the death knell for the old-type Radio Show clearly rang out when major exhibitors began staging their own independent trade-only splinter shows. Now this year with most of the big boys opting out, the 1965 Show had little chance.

Whatever the success of these private ventures, however, we do not think they are in the industry's long-term interest. The public may often prove tiresome and exhausting at exhibitions but these are the people who buy the products and keep the manufacturers in business.

Other major industries manufacturing highly competitive consumer goods continue to run successful exhibitions catering for trade and public. The radio industry is the odd man out-and surely it cannot afford to be so insular. Let it have the foresight to organise something worthwhile for 1966.

The Radio Show is dead! Long live the Radio Show!

CONTENTS

News and Comment
Solar-powered Pocket Receiver
Tape Terminology
3 Band Transmitter
On the Short Waves
Practical Substitutions
Two-band Dipoles
Photocell Circuits
Light Programme Receiver
Preparing for the R.A.E.
Practically Wireless
A Direction Finder for Small Craft—Part 2
Books Reviewed
A Basic Moullin Voltmeter Club News
by H.W. Hellyer 303
by G3OGR 307
by John Guttridge and David Gibson, G3JDG 315
by M. L. Michaelis, M.A. 317
by F. G. Rayer 322
by P. Facey 324
by V.E. Holley 327
by Brian Robinson 332
by Henry 341
by F. C. Judd 342
by H. Meeten 349
by G.H. Meeten 354

[^2]
Can Anyone Help

Please can anyone help me? I need a small internal switch for a wireless set issued by R.A.P. Ltd., London, 7634. Apart from this component the set appears to be in good condition. R.A.P. appear to have discontinued this model.
W. M. Stanley.

17 Denton Road,
Wokingham, Berkshire.

C.W. Standards

As an ex-W.T. operator of 20 years' standing I find after months of listening on the amateur bands that the standard of British operators (c.w.) is fast deteriorating compared with other countries. Many of them seem barely able to work at 10 w.p.m.

At a récent R.A.E. examination centre I met a few of the old ex-Service operators who are all eager to do a spot of operating. These men are excellent operators and quite good mechanics, capable of building their own transmitting and receiving equipment. But these men failed the R.A.E. simply because they were unable to memorise a few formulae. Several lads of about 16, however, passed the test, yet they had not a clue how to operate. Consequently they turn to phone working-too scared to work c.w.

If this state of affairs continues there will be very few British operators working on c.w. in a few years' time.
F. Taylor.

Plymouth, Devon.

Octal Valves Again!

I disagreb with R. A. Packer's comments on I.O. valves (May issue). Manufacturers are all for miniaturisation, as we all know, but need constructors follow blindly along the same path?
While I.O. valves are obtainable I consider that the saving in odd shillings far outweighs the sacrifice of that inch or so of not so valuable space.

J. Huet.

Canvey Island. Essex.

NEWS AND

404 LOUDSPEAKERS IN WEMBLEY P.A. SYSTEM

The largest public address system in Britain is that of the Wembley Stadium where no less than 404 loudspeakers are installed. Sixty of these are mounted on baffle boards and the remainder in 86 column enclosures.

The p.a. system was recently installed by Rediffusion technicians in time for the F.A. Cup Final in May, but only after they had solved the formidable problem of the Stadium's acoustics which, when it is empty are very different from when it is packed to capacity.

NEW COMPUTER FOR THE MIDLANDS

Businessmen in and around Birmingham requiring computer services can now make use of a new Honeywell 200 machine recently installed by Midlands Computing Centre Ltd.

The new British-made computer is expected to find ready acceptance by Midland-based firms too small to buy their own computer, yet large enough to warrant the analysis of production, sales and costs which modern equipment can provide.

LOW-COST PORTABLE MADE IN BRITAIN

This portable receiver is British made and inexpensive. In fact according to the makers, Philips Electrical Limited, it is the lowest-priced British-made portable radio ever.

Known as the "Popmaster", it has been introduced to combat the ever-growing imports of Hong Kong-manufactured portables into the UK and will sell at $\subset 719 \mathrm{~s}$. 6 d .

Each set carries a six months guarantee covering spares and labour and also a world-wide service guarantee valid for any service department of Philips companies throughout the world.

The "Popmaster" covers long and medium wavebands and measures just over $5 \frac{1}{2} \mathrm{in}$. $\times 3 \frac{1}{2} \mathrm{in}$. x $1 \frac{1}{2} \mathrm{in}$. The 6 -transistor circuit is powered by four U7 batteries housed in a sealed compartment in the base of the cabinet. Also contained in the base is a fitted earpiece attachment.

.. COMMENT

OXFORD MOBILE RALLY

On July llth the Oxford and District Radio Society will hold its tenth anniversary mobile rally. The organisation of this event has been in conjunction with the RSGB.
Talk-in stations on $160 \mathrm{~m} .80 \mathrm{~m}, 4 \mathrm{~m}$ and 2 m will be operating at the venue in the grounds of the College of Technology, Headington, Oxford. Attractions planned for the day include morris dancing, films, demonstrations, competitions, etc.

TRANSCEIVERS FOR NEW POLICE SQUAD

Radio communications is playing a big part in London's new 100 -strong police patrol group, which begon operations recently. The group has been formed to counteract sudden outbreaks of crime by saturating trouble spots with uniformed police.

Contact between the group's vehicles and Scotland Yard and the P.C.s on foot. is by v.h.f. radio' each constable in the group carrying a light-weight transceiver.

There are just two women P.C.s in the group; one of them is seen here using one of the fullyportable transceivers.

THE '65 SHOW CANCELLED

The '65 Show-this year's planned successor to the National Televison and Radio Show-is off due to lack of support.

The organisers of the Show-Industrial and Trade Fairs Ltd. announced the complete cancellation of the venture after many of the largest companies in the British radio industry had decided not to take part. The commercial TV companies also dropped out.

The exhibition was to have taken on a new appearance this year, with all parts of the radio, television and home entertainment industry represented. This year too, overseas participation was expected for the first time.

GPO TO HAVE SEVEN COMPUTERS

The first of seven English-Electric LEO 326 computers ordered by the GPO has been installed at Charles House, Kensington, London, where it succeeds a LEO 3 machine which has been operating for nearly a year. The work of producing six million telephone bills a year, calculating repayments of National Savings Certificates, preparing experimental route schedules for mail vans and analysing stores and equipment, which the old machine handled, will be carried on by the LEO 326 at much faster speeds and still provide extra computer time for further developments.

A second LEO 326 computer will be installed at Charles House later this year and another two will go to the POs Savings Department at Lytham St. Annes, Lancashire.

When all seven are installed and operating, the GPO will be the largest commercial computer use in Europe.

Botting Acid
Surely Mr. Ian Gregory (News and Comment, June, 1965) is a little antiquated in his choice of containers for hydrofluoric acid. In this day and age a polythene bottle would probably be cheaper and more easily obtainable than one of wax or gutta-percha and equally effective.

1. M. Hutchings.

> Rugby,
> Warwickshire.

Correspondents

I AM 27 years of age and studying radio and television servicing with a correspondence school.

I would like to correspond with radio and television servicemien anywhere in the world. Ernest Tchakanga.
P.O. Box 357.

Mufulira, Zambia,
Cent. Africa.
I would like to correspond with anyone in South Africa who is interested in radio and motoryachts. I am 14 years old.
Ian Thornton.
13 Adshead Close,
Poundswick.
Manchester 23.
Lance.
I AM a regular subscriber to Practical Wireless. In addition to being interested in electronics 1 am a philatelist and would like to correspond with people in England willing to exchange Indian stamps and first-daycovers for miniature electronic components not available here.
G. H. D'Cruz.

Sugar Factory,
Shimoga.
South India.

The Solo Organ

I have located a small error in the transistor solo organ article (April issue, page 1163). The wire from top right-hand tuning resistance tag should go to the lower arm of VR2 and not to the middle arm as shown.
G. W. Hardy.

Poole,
Dorset.
page 330

TTH1S is a receiver circuit using the minimum of components, driving a hearing aid type earpicce, and having as its power supply a solar cell. It requires no external aerial or earth. The final circuit was developed from the somewhat standard receiver circuit of Fig. 1, and it is advisable to build this one up first to test reception conditions in your area. If you have already experimented with one and two transistor circuits of the regenerative and reflex types and you know that you are in a good reception area then the final version may be constructed immediately. Otherwise build up the circuit of Fig. 1 e.g. in a "bread-board" arrangement. This circuit should easily, without external aerial or earth, drive the earpiece on most n .w. stationsthe local Home (and possibly Light) should be loud and continentals should be fair. If these conditions are fulfilled then the final Mark 3 version is assured of some success. However, some areas of the country, especially those in deep valleys or below high cliffs, provide very low signal levels (and even a standard six transistor
no single cell had been designed solely as a power supply for an application like this, however it appeared that most could provide sufficient current in average light conditions. all of them appearing to produce a voltage which remained constant at about 0.5 V . The type finally chosen was of large (comparatively speaking) surface area: 0.75 in . x 0.45 in . ($1.9 \mathrm{~cm} . \times 1.2 \mathrm{~cm}$.), designed for both high and low light levels-type MS2A and appears as in Fig. 2.

The current provided by the cell depends on the light intensity, from zero in darkness to about 20 mA in bright sunlight on open circuit. Thus the receiver had to be capable of operating from these power conditions. The voltage supply for the design of Fig. 1 was thus reduced to a single dry cell, i.e. $1 \cdot 5 \mathrm{~V}$, and R1 was likewise reduced to approx. $150 \mathrm{k} \Omega$ in order to keep the same currentof the order of 1 mA -flowing in the transistor. Suitable adjustment of TC1 and VR1 then resulted in a fairly similar performance, at slightly reduced volume, to that of the 9 V circuit. At this stage the solar cell was substituted for the dry cell, giving

by C. J. Walton
superhet has difficulty in these areas) in which case the circuit of Fig. 1 will receive little if anything and the light powered circuit even less. Thus the disappointment of building something doomed from the start to failure is avoided (and the expense of the solar cell is saved).

Trl can be any standard r.f. type for this circuit (in fact a number of accepted "low frequency" transistors will function here, e.g. odd specimens of OC71, XB103, and even an occasional "red spot"-however the recommended t.f. types are necessary for the final circuit) and examples tested were: OC44, XA112, OC171, AF114. Slight variation of R1 may be necessary but the results of this reffexed-regenerative should be good. The coil may nced a few turns adding or removing to cover the entire m.w. depending on the characteristics of the components used. It was considered initially that this type of circuit, providing maximum gain at hoth r.f. and a.f. with separate detection by diodes, would be the most efficient for a light powered receiver.

Then came the choice of a solar cell. Data was obtained from Ferranti Ltd. (Gem Mill, Chadderton, Oldham, Lancs.) and it became obvious that

Fig. 1: The circuit of a simple one-transistor reflex receiver which formed the basis of the final design. The coil is wound on a 2 in . length of $\frac{5}{16} \mathrm{in}$. diameter ferrite rod using 34s.w.g. d.c.c. wire.
the Mark 1 version of Fig. 3. At this stage it was found that the alloy junction type transistors were not as effective a the alloy diffused types at these low power levels. However the alloy diffosed types-OC171. AF114. and a micro alloy type: MAT 121, were all operating quite well. Volume was down from the 1.5 V circuit but in my area (Sowerby Bridge near Halifax. in the West Riding of Yorkshire) the Home and light came through quite well.

With the receiver not tumed 10 a station as the cell was turned fowards a window or other light source, a hissing could be heard in the carpiece signifying that current was flowing in the circuit fand in strong sunlight the hiss was louder than with the 1.5 V cell in circuit). Stations became audible just before the hiss commenced. became louder as more light was allowed to fall on the cell, and finally regeneration in the form of whistling was heard. Keeping the light intensity constant and varying R1 the graph of Fig. 4 was obtained. No quantitative measurements were possible, but it can be seen that for regeneration to occur under fairly bright conditions, the optimum value for R1 should be between 10 ks and $150 \mathrm{k}: 2$ approx. A value of $47 \mathrm{k} \Omega$ was therefore chosen.

Regeneration was. however. difficult to control. occurring either at one end of the band or the

Fig. 2: Physical details of the MS2A solar cell.

Fig. 3: The basic circuit of Fig. I with the solar cell introduced to replace the power supply.
other and was vęry critical. no matter what adjustment was made to TCI and VRI the circuit tended to "plop" in and out of oscillation. To try and alter this unsatisfactory situation and as a further experiment. it was decided to operate the circuit as a regenerative detector, i.e. C2, D1, D2 were removed. The results of this were interesting. Output volume was reduced slightly but regeneration was more easily controllable, far less feedback being required to achieve the same effect. In fact the 30 pF trimmer, used for TCI had a too high value even at minimum capacitance (approx. $3 \mathrm{pF})$. VR1 and TC1 were thus removed and a length of insulated (plastic coated) wire was connected to point X and another to point Y (see Fig. 3) and these were twisted together to act as a fine trimmer. This is a very sensitive type of control, the value changing at each twist by only a very small amount.

Finally the effect of removing the r.f. choke (i.e. allowing-the earpiece to act as its own choke) was tried. Again there 'was a reduction in volume but this time regeneration was much easier to control

Fig. 4: This graph illustrates the level of sound output with various values of RI, the light intensity kept constant.
and ${ }^{t}$ extended more evenly over the entire band with medium light intensity, tailing off at the low frequency end as the light was reduced. This was the final Mark 3 version shown in Fig. 5. Note that it only uses 8 components altogether. Omitting RI resulted in very weak reception of the Home Service and nothing else.

Details of Components Used in Final Receiver

Transistors tested included OC171, AF114 (this was the actual transistor used when built into a case) and. MAT12I. VC1, miniature solid dialectric 300 pF tuner.

A small, clear plastic case available from dealers for from T.S.L., Hudson House, 63 Goldhawk Road. W.12) at 1 s., size 2.2 in , $x 1 \cdot 4 \mathrm{in}$, x 0.9 in . The 2in. length of ferrite rod used as aerial would just fit into the case.

The earpiece used in all the versions is an Ardente ER550. Any good quality magnetic (not crystal) earpiece would be suitable provided its impedance is $>1 \mathrm{k} \Omega$. The chassis is a small piece of perforated eyelet board (cut from a $4 \frac{1}{2} \mathrm{in}$. $\times 2 \frac{1}{2} \mathrm{in}$. piece) which is available, including eyelets, from

as well as Athlone (Eire) and the northern Caroline. At night some form of artificial light must be used. Any operated from the mains are found to produce an annoying buzz of " mains hum " either at one end of the band or at various points along it as the cell is moved to and from the light source. An ordinary torch is much better, whilst a fluorescent light is useless, producing a continuous buzz. It was found that the set will operate. if held close enough, from a cigarette lighter or even a match. Note that as with all ferrite rod aerials the set is very directional and sometimes a
fig. 5: The final circuit of the receiver.

Right: The finished receiver mounted in its plastic case.

Home Radio (Mitcham), Ltd., 187 London Road, Mitcham, Surrey. The ferrite rod is wound with 32 s.w.g. enamelled or silk covered wire. Other details are given in Fig. 6.

The layout of the finished receiver is given in Fig. 6. The cell was stuck with Sellotape to the inside of the case (loss of light through absorption in the plastic is negligible) and its leads sleeved. If an opaque or coloured case is used the cell obviously will have to be stuck on the outside. Feedback was set for dull daylight and if the light intensity should become too bigh, i.e. a lot of whistling occurring, then the set must be turned away from the light to reduce current rather than changing the feedback.

Fig. 6: These two views of the completed receiver show clearly the construction and wiring.

Further Details of Operation

The circuit does cover the entire m.w. band but obviously local conditions will determine exactly what the performance will be. In Leeds the Home, Light and Third are all at reasonable volume and in the evening the heterodyning whistles of most of the Continentals are heard. Careful tuning in quiet surroundings has brought in Luxembourg, A.F.N. and Berlin

TAPE TAPE TAPE TERMINOLOGY TAPE

PART ONE

NOWADAYS every branch of art and science carries around with it an enveloping cloak of jargon. Although this may be understood by the coterie of enthusiasts many of the terms are' quite incomprehensible to the outsider.

Not least among the " specialist fields" is the art (or science, if you insist) of tape recording. Most readers of this magazine are quite aware of the general idea of tape recording and can interpret most of the terms in everyday use. But now and again the need arises for a more precise definition.

We want to know what a "drop-out" is and how it is caused, not merely be told it exists. More important, when weighing up a possible bargain we want to know just what those impressive specifications mean.
The following notes are compiled, more or less alphabetically, to clear up a few of these vague definitions. This is not a complete glossary of tape terms-which would insult the average readers' intelligence--but an illustrated description of some of the special aspects of tape recording.

Fig. I(a): Micro-switch octuated (open-Circuits motor supply) by feeler pin if tape breaks; (b): auto-stop tape guide with separate electrode (alternative may be split-insulated guide); (c): metal foil of tape leader short-circuits contacts to activate relay.

by H. W. Hellyer

AUTOMATIC RECORDING LEVEL

The principle of automatic gain control for radio and television is well known. In tape recording there are special difficulties and special circuits. A portion of the amplified signal is sampled, amplified and fed back as bias to a controlled stage whose gain varies with the applied voltage.

The difficulty lies in the long time constant needed with audio frequency signals. The sampling circuit must react quickly to a loud sound, apply the bias and then retain a comparative level of sounds for a reasonable period.

It is hoped to devote more space to a detailed description of how this is done in a future number of Practical Wireless.

AUTOMATIC STOP

A method of halting the tape transport system when (a) the tape breaks or (b) metal foil leader tape, usually at the end of the reel, completes a relay circuit.

The actual method of stopping the spools varies from the simple interrupter switch in the motor supply to relay-operated solenoid which disengages the head and capstan pressure system, applies the brakes and neutralises the mechanism. Fig. 1 shows typical systems.

AZIMUTH ADJUSTMENT

Setting of record, playback and erase heads to bring the gap into the right position at 90° to the tape length.
Correct positioning is important to allow tapes to be played on different machines and to ensure maximum gain and frequency response. Incorrect azimuth setting of the record/playback head causes loss of high frequencies (see Fig. 2).

Normal method of azimuth adjustment is to replay a prerecorded signal of constant level (see Test Tape) and adjust the playback head for maximum respone.

EALANCED INPUT AND OUTPUT

Method of connecting items of equipment by transformer coupling with centre-tapped windings which may be earthed.

Hum and noise are cancelled out to a greater extent by this method and longer leads can thus be used. Normally two-cored screened cable is employed and matching is at low impedance.

BANDWIDTH

In hi-fi work this normally refers to the frequency range covered by. the amplifying equipment which is between iwo extremes that occur where the output is 3 dB below that of a standard reference frequency. (Usual reference for this purpose is $1 \mathrm{kc} / \mathrm{s}$.)

fig. 2: Off-set guides (a) or head (b) couse h.f. loss.

Fig. 3(a): Signal imposed on bias waveform prevents distortion due to "kink" in magnetisation curve. Optimum bias setting (b) is ot value which produces a $3 d B$ drop in output beyond peak.

Where the two limit frequencies only are quoted the above standard is understood. (See also Frequency Response.)

BIAS

The non-linear characteristics of the recording medium are overcome by imposing the audio signal on a high-frequency bias before applying the combined waveform to the recording head (see Fig. 3a).

The frequency of the bias should be as high as possible, allowing for heating losses in the head windings. Normally the bias frequency is about four or five times that of the highest frequency to be recorded; 45 to $70 \mathrm{kc} / \mathrm{s}$ is the range used in domestic tape recorders.

A bias frequency that is too low will cause shrillness of reproduction of heavily modulated signals.

Bias voltage depends upon the head and tape characteristics and is usually adjustable by a preset control for optimum conditions. Normal adiustment is a little beyond that which produces the maximum output, i.e. over the peat of the curve (see Fig. 3b).

CAPSTAN

Normal method of driving the tape to attain constant speed is by pressing it against a revolving spindle called the capstan. The capstan may be mounted on a flywheel and driven by coupling belts or intermediate wheels from the motor.

The flywheel tends to "iron out" minor speed variations due to its inertia. On some single-motor machines the capstan and flywheel ate integral with the motor.

Method of keeping the tape in constant contact with the capstan is by applying a spring-loaded pressure roller or pinch wheel.

CASSETTE

An enclosed spool of tape, usually adapted for automatic loading. either in a complete magazine or as a replacement for a single spool with a free end of tape fed to the take-up spool.
An endless cassette contains a long loop of tape which is wound off the outside and back on the inside of the spool for continuous playing.
C.C.I.R.

See Standards.

(a)

CHANNEL
In stereo reproduction, one amplifier chain.

CHANNEL SEPARATION

The degree of interference between channels must be reduced below 30 dB for stereo systems. Parallel track systems require more stringent separation. greater than 50 dB .

CROSSTALK

The above interference is known as crosstalk and may be specified at certain frequencies. It is more noticeable at higher frequencies. Overall separation at all frequencies for tape recording sy'sterns should be better than 40 dB .

CROSSTRACK

A method of mixing the output from one track with the input to another by which a composite signal can be built up without the need for "super-imposition ". Modern tape recorders may incorporate this under the specified terms multiplay or sourd-on-sound.

CUEING

Marking of particular places on the tape, visually or aurally. Special controls for " inching " may be fitted to aid cueing.

Dictation machines may use a method of slow wind when required to assist the finding of particular places on the tape. (See also Tape Position Indicator.)

DEFLUXING OR DEGAUSSING

Heads and ferrous metal parts such as supports and guides tend to build up a residual magnetism during use. This causes noisy reproduction when it affects the modulated tape. Method of removing this residual magnetism is to apply a strong and varying field with a defluxer and gradually remove this source so that the normal "random" disposition of magnetic "domains" in the metallic parts is resumed.

The construction of a defluxer is generally based on a solenoid with a projecting pole, shaped to be inserted in the tape path mechanism. Regular defluxing should be carried out to reduce background noise. A pronounced hiss is the usual indication of head magnetisation.

Degaussing of the record/play head can be effected by gradually removing the bias voltage One method is to switch to "Record" and interrupt the mains supply, allowing oscillations to die away. Repeated several times this can keep a recording head degaussed but will not demagnetise other ferrous parts.

DISTORTION

The difference in waveform between input and output of the amplifier as a whole. This is mainly harmonic distortion and may be expressed as a percentage at a specified frequency at full modulation. (e.g. less than 5% at $1 \mathrm{kc} / \mathrm{s}$, third harmonic distortion at full modulation, may be stated as $\leqq 5 \%$)

The signal-to-noise figure may also be stated as that obtained for a certain distortion factor (see Signal-to-Noise).

DOUBLE GAP

Method of achieving more complete erasure by applying the erase field at two successive places along the tape path. Dimensions are such that the delay from first to second gap is a few milliseconds.

DROP-OUT

Short-term loss of signal which may be caused by discrepancies in tape coating or uneven tracking of tape.

DUOPLAY

Name given to the system of feeding two outputs from a tape recorder into a single channel amplifying system.

OYNAMIC RANGE

The separation. expressed in decibels, between the smallest and the greatest signals the system can handle with specified minimum distortion. The limits are imposed by the loudest sounds received at the input having to be recorded without overmodulating. While the quietest sounds are still above the noise level and the balance between is in proportion.

For a domestic machine the dynamic range may be between 40 and 60 dB . In practical terms this means that a $1 \mathrm{kc} / \mathrm{s}$ signal has a ratio of 10,000 or $1,000,000$ to. 1. Although the actual dynamic range of a full orchestra may be as much as 70 dB the above range is adequate owing to the nonlinear relationship between loudness and sound power.

DYNAMIC MICROPHONE

See Moving Coil Microphone.

DUBBING

A term used, mainly in editing, to denote the combining of two or more sound sources into a single recording. Also, in ciné work, the adding of a soundtrack to the film.

ECHO

A signal delay produced by feeding back a replayed signal into the recording channel. The time of delay is determined by the physical separation of the heads and tape speed and may be doubled on two-channel machines by using the second channel as an intermediate stage.

An echo chamber can be either a device similar to the above, to produce the echo effect, or an acoustic method of achieving the same end. Note that echo alone is not effective without reverberation for realistic simulation of original sounds.

EDITING

Altering of the signal by cutting and interposing programme material. This can be done physically (see Splicing) or by a form of dubbing, using two machines with the first playing back the original programme, the second recording such parts as are required to be used, and halted meanwhile, or with interposed material recorded during the same operation

ELECTROSTATIC MICROPHONE OR LOUDSPEAKER

A device which depends on capacitor action for its operation. Fig. 4 a shows examples.

Basically a diaphragm is held between perforated plates and charged by an external voltage. Sound signals cause vibration and a change in capacity in the former case and in the latter case set up vibrations of the diaphragm to produce the aural output.

The electrostatic loudspeaker is particularly suited to high-frequency reproduction and is often used as a "iweeter".

EQUALISATION

Compensation for the rising frequency response of the tape system and for high-frequency loss which occurs in the playback head. Circuits in the playback amplifier "shape" the response to a

(b)

Fig. 4(a): Capacitor loudspeaker and microphone principle; (b): section of capacitor microphone copsule.
recognised standard. For a fuller explanation see Standards and Pre-emphasis.

Equalisation is necessary to enable interchange of tapes and tape recorders. It is defined by the time constant of the attenuating section of the circuit. Examples, depending on the speed of the replayed tape are given in Table 1 , which also shows the "turnover frequency".

Fig. 5: Recording and playback curves, showing effect of h.f. loss in recording which must be compensated by a boost during playbock. At higher speed the loss is less. $6 d \mathrm{~B}$ octave curve is ideal response.

Equalisation standards were revised a year ago and it will be noted that there are three distinct sets of standards. the CCIR, DIN and NARTB. The previous standard. gerierally accepted, for 33 in / sec. tape speed was 200 microseconds. now revised to the DIN standard of 140 microseconds. with a turnover frequency at the point where the reactance of the capacitative arm of the attenuator equals the resistance of $1.3 \mathrm{kc} / \mathrm{s}$ and a lowfrequency roll-off of 3.180 microseconds (at $30 \mathrm{c} / \mathrm{s}$).

Fig. 5 shows typical equalisation curves. Lowfrequency roll-off is generally recognised nowadays as machines in the domestic class rarely reproduce frequencies below this point.

Replaying tapes recorded to. one standard on a machine equalised to another will require some "odification to the amplifier response to achieve a "level" output. Thus American tapes, recorded to NARTB standards, replayed on European machines, equalised to CCIR standards, will tend to sound over-brilliant and with some bass accentuation.

Conversely CCIR recorded tapes replayed on machines with NARTB standards, having bass and treble cut to compensate for the recording preemphasis, will tend to sound weak in both treble and base.

ERASE

One virtue of the tape recording medium is the possibility of "cleaning off" a tape for re-use. This is termed "erasure" and consists of destroying the pattern of magnetism on the tape and reverting to the normal random disposition of magnetic domains.

Erasure is effected by the application of at strong and varying field as the tape passes a point prior to the recording head.

The method of applying erasure may be by passing the tape across a permanent magnet. or magnets, or by applying the field from the gap of a d.c. or a.c. energised head. The last-mentioned is preferable, as d.c. or permanent magnet erasure tends to build up a unidirectional magnetism, resulting in a hiss.

The waveform should be symmetrical, and is of ten derived from the common oscillator used to provide the bias waveform.

Bulk erasure is a method of removing the modulation from a tape in one action by inserting the complete spool in a strong field. Special apparatus for this purpose has been developed and is widely used. The applied a.c. field is made to diminish regularly, to prevent residual magnetism leaving a high background level.

PART TWO NEXT MO'NTH

Fig. 1. The transmitter circuit complete except for the power supply.

Fig. I shows the transmitter circuit. A $6 \mathrm{C} \mathrm{H}_{6}$ is used as an oscillator (v'1) which gives high harmonic output when wanted. so that $3.5 \mathrm{Mc} / \mathrm{s}$ crystals may be used for the 80, 40 and 20 m bands. Some 160 m band crystals are also satisfactory, especially for 80 m .
L. 1 is the oscillator anode coil switched to cover the 80.40 and 20 m bands and tuned by the 100 pF variable capacitor VC1. which also allows grid drive to be adjusted to obtain suitable grid current. It was found that more than sufficient grid current was available on all bands, so this capacitor is normally tuned somewhat off the resonant point. This has no effect on osciltator frequency.

The 6146 (V2) buns with about 2 mA to 2.5 mA grid current, providing about $40-50 \mathrm{~V}$ bias developed across the $22 \mathrm{k} \Omega 2$ grid resistor R4. This valve has three cathode and beam plate pins each grounded for r.f. by a 2000 pF capacitor to chassis (C10-12). For c.w. operation the key plug is inserted in closed-circuit jach 11 . the cathodes of both stages being keyed. For 'phone transmission the plug is withdrawn or the key shorted.
L2 is the pi tank coil for three-band coverage and this can work directly into many aerials. 15 is an anti-parasitic choke. Anode current is checked with the anode neter M2. For a 600 V h.t. supply the anode current of the 6146 is listed as 112 mA , providing an input of 67 W . It is. however, probably as well to restrict the anode current to 100 mA . This would give an input of 60 W at 600 V or 50 W at 500 V and so on. Good results have been obtained with a 275 V h.t. supply or input of 27.5 W .
In order to avoid the necessity of providing a large modulator. screen grid modulation is used. A single 6BWG (V4 in the ,circuit diagram) will easily supply enough audio power for this type of modulation, excess being dissipated in the $4.7 \mathrm{k} \Omega$ resistor R15.
When using 'phone it is necessary to reduce the power amplifier (6146) input to about one-half that which can be run on c.w. This is a general rule with screen grid modulated systems. The transmitter thes has an input of up to about 30 W on "phone for average work and 60w on c.w.. which is adequate for much DX working.

The modulator section is very straightforward and has enough gain for a crystal microphone of reasonable output. Component values have been chosen to give some treble and bass cut.

Full control switching is furnished by a fourpole, five-way switch SI. the "positions of which are shown in Fig. 1. Each "standby" position switches off all circuits but leaves the heaters running. Fhese positions are used while receiving. The second standby position is merely to allow. the operator to switch from C.W. to Standby without passing through the 'phone and net positions.

With the switch at "net" h.t. is applied to the oscillator only, allowing tuning up for grid current and netting the receiver on the transmitter frequency. (With a v.f.o. this allows the v.f.o. to be tuned to the receiver frequency also.)

With the switch set for "'phone" the modulator is brought into use and h.t. applied to the p.a. anode. Choke modulation of the screen grid is by
the 6BW6. with the d.c. potential derived from the modulator high-tension supply.

When the switch is in the "c.w." position the $V 2$ screen grid is supplied from the high-voltage supply through a dropping resistor chosen to allow full input. This resistor can usually be $27 \mathrm{k} \Omega$ but is selected as described later.

Metering

As grid and anode currents are very important in setting up. two meters are included. A single meter with grid/anode switching is sometimes employed but the use of separate meters avoids the need for repeated switching from grid to anode circuits and avoids errors such as looking for anode current while the single meter is switched to read grid current.

Two "surplus" meters were used and suitable thermo-couple meters can be purchased at very low cost. When the thermo-couple is removed these instruments usually have a full-scale reading of about 2 mA to 5 mA . They are thus readily shunted to allow suitable scales to be drawn. The latter can be on thin card cemented to the old dial.

For grid current a 5 mA meter is suitable. The one used was 2 mA full scale. shunted for 4 mA full scale. For anode a $100 \mathrm{~mA}, 150 \mathrm{~mA}$ or 200 mA instrument is suitable or a smaller meter shunted to 150 mA or 200 mA full scale.

Fig. 2: Winding details of the oscillotor anode coil, Ll.

Oscillator Stage $V 1$

The oscillator anode coil L1 is shown in Fig. 2 and is wound with $26 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. enamelled wire on a paxolin or similar former lin. in diameter and $2 \frac{1}{2} \mathrm{in}$. long. A space of about $\frac{3}{15}$ in. is left between each section. All turns are in the same direction.
Ends A and D are anchored by passing them through holes. Taps B and C are made by baring and twisting the wire and soldering the loop. Switching is so arranged that ten turns are in circuit for 20 m . 24 turns for 40 m and the whole 59 turns for 80 m .

Offer the Finest Value to HOME CONSTRUCTORS

We consider our construction parcels to be the finest value on the home constructor market. If on receipt you feel not competent to build the set, you may return it as received within 7 days when the sum paid will be refunded less postage.

THE "SKYROVER" RANGE
geverill specification
7 transistor plus 2 diode superhet. 6 waveband portable recelver. Operating from four 1.5 y. turch batteries. The SKYROVER and shyra Short Wavehand 31-94 M fuil Medium Waveband and Short Waveband $31-94 \mathrm{M}$ and also 4 separate switched band-spread ranges. 13M. $16 \mathrm{M}, 19 \mathrm{M}$ and 25 M , with Band Spread Tuning for accu-
rate Station Selection. The coil pack and tuning heart rate station Selection. The coil pack and tuning heart The remaining assembly can be completed in under three hours from our easy to follow stage by btage instructions.

A simple additional crreult

 provides coverage ot the$1100 / 1950 \mathrm{M}$. band (including 1500 M. Light programmer. All components sind de tailed contruction data 0nly 10/-extra irost This conversion is sultable for both models that have already been constructed.

Wata for Kecoiver $2 / 6$ exira Relunded if you purchase the parcel. Four U2 batteries $3 / 4$ extra. All Components Atullable extra. All
Separately.

We are pleased to announce the opening of our premises at ; 42 TOTTENHAM COURT ROAD, LONDON, W.I.
 ELIZABETHAN Type LZ 507 STEREO TAPE RECORDER

LASKY'S PRICE 33 Gns.

TEST METER ADAPTOR

Type P.E. 220. Tranuistorised device which ertabser ans 50
 is uffered which inereasto on the lyou V. range to 1001 megohma. 7 rangex mmpediate cunmection to Ato 8 bint suitable for use with atts ether 00 mirnamp meter. size $6 \times 0 \times 3 \mathrm{in}$. New and bixed. List Price 7 Gns.
LASKY'S PRICE 39/8,

LASKY'S PRICE 25 GNS. Carriake and Packing RREE.
INTERNATIONAL TAPE Famons American Brand-Fully G naranteed
sin. Mesabe tape, v:25it
Meswase tape, zant
sfin. Triplé play homit.. Mylar hase
Triple play, Huoft., Mylar have
Whuble play, 1,20011, Myar haqe
Long play, goft., Aletate bave
Standard play, 600ft, PV'bage i. Triple play, $1,800 f \mathrm{ft}$., Mylar base

COMMUNICATION RECEIVER KIT-MODEL KT 320
anamblew or ease huilding.

U.H.F. TUNERS

(1) and abilatile. iomplet ugret no cireuit or data is avail mbe. Khots metmuled tut mot

LASKY'S PRICE 79/6. Poat 2 i

\square

NEW-The SKYROVER MK III
 size $10 \times 6 \frac{x}{} \times 34$ in. with carrying handle. Can now be bullt for $£ 8.19 .6$ Post 5 IIIP. Terrus: 20f- dep, and 11 montlis at 18/8. Total H.P. Pr'is't' £12.1.6.

The SKYROVER DE LUXE

Tone Control Circuit is incorporated with separate Control. In a wood cabinet, size $11 \frac{1}{2} \times 6 \frac{1}{2} \times 3 i n$. covered with a washable material with plastic trim and carrymg (rannow be built for $810.19,6$ H.1. Tarma:25/-dep.
 'Tutall.P.1'. £12.5.0.

The "REALISTIC" Seven

* 7 -tranasistor Superhet. * 350 milliwat

 \star A Componenus mointec on a singbo Tard Fm med ium and longwave. cabinet with carry. $7 \times 10 \times 3+$ in., Bluel Grey or all Grey aerial.
ryequently $470 \mathrm{Kc} / \mathrm{s}$.

\star Ferrite rod

internal aerial. Operstes from PP9 or similar battery, Full data supplied. All coils and I.F.'s etc. lully wound ready Reater bult tor \&5.19.6 Post 4/5.
PPQ Batt. 3/9. Data and Instructtons separately 2/6. Relunded il you purchase
REALISTIC Seven DE LUXE
With the same specification as standard model-PLUS a superior wood cabinet in contemporary styling with full vision

SINCLAIR MINIATURES

THI: NICRO-6

Seli-contained pocket radio. Size only Complete win. Amazing periormance. construction datarphone hait for unt $59 / 6 \begin{aligned} & \text { Mercury cell } \\ & \text { parts sold separately. }\end{aligned}$ extra. All

THE NLIMHANE:
2-transiscor pocket radio. Size only $2 \pm=$ 1 x inin. Miero alloy transistors on crinted circuit, $49 / 6$

IHE NEW X\&O AMPIIFIEK

20 watts P.W.M. amplifier and preampllher built on single printed circult size ens. $1 \mathrm{~m} V$ for 20 wats out. Output 1 mp . 7.5 and 15 ohms. 97.19 .6 Post Free
KlI Pisis AVAMAAHLE RHALIM BUILIT ANL NENTED £9.19.6.
3 pots. for yol.. bass and treble. 7/B the 3 extra, mains power pack, if required £4.19.6.
THF XIO AMPI.IFILR
amplitier fitted with integrated pre-amplifier, Requires only 1 mV . for an output of 10 watts. Oniy KIT PIRIE 55.19 .6 Post Free
\qquad ANDGU1MK.NTEISD.EB.19.6. PostFree. 3 potslor Volume. Bass and Treble, 78 the

RECORD

PLAYERS
Batt operated
Complete with
crystal cartridge. Size only 7 in. x bin. Fitted auto stop and start. New and perfect. Montern $49 / 6$

152/3 FLEET STREET, LONDON, E.C. 4 Telephone: Fleet Street 2833

207 ELGWARE ROAD, LONDON, W. 2
Near Praed 5t. PADDINGTON 3271/2
Near Praed St. PADDINGTON $3271 / 2$
BOTH OPEN ALL DAY SAT. Early closing Thurs., Moarest Stn., Goodge St. MUSEUM 2605
Morders to Dept. X.W., 207 Edgware Rd, W. 2.
33 TOTTENHAM COURT ROAD, W.I

7in. Stambard play, 1, hidft.: Acrtate basp
fin. Statedard plag, I, ebulft. Mylar Lame
Tiat. latig plar, J, Monf.. Mylar bas,
7in. Junble play, ©, innft. Mylar have
7in. Lanie plaf, 1, wont., Acetate have

TRADONTC

 NEFD RADIONIt
 IFYOU ARE A BEGINNER YOC WISH TO EXPERIMENT YOE TEACH RADIO OH NLIE THONICS

RADIO \& ELECTRONIC CONSTRUCTION SYSTEM

Unique and brililantly simple. Hundreds of eduen. tional establishments-Cniversities, Tec-inical col. leges, Schools, the Armed Forces-are already using Kadionic for electronic instruction. Enthusiastio owners range from 9 to 82 years of age.
Selected by the Council of Industrial Design for all British Design Centres. Featured in sound and Televlsion broadcasts.
The system is beautifully engineered from top quality: British components. No soldering. No mains. No prior knowledge needed. Simply arrange components on perforated transparent panel. position brass connecting strip underneath, fx with 6BA nuts and circult works with full efficlency, You can then dismantle and bulld another cir-
cuft. Your results are guaranteed by our Technical Departcuit. Your results are guaranteed by our Technical Departseparately for conversion or expansion of sets.
No. 1 Set e5.18.6. 14 Circuits (Earphone)
No. 2 Set s8.18.6. No Circuits (Earphome)
No. 3 set £10.19.6. $\quad 22$ Cireults ($7 \times 4 \mathrm{x}$. Loudspeaker
No. 4 set 214.18.6. 26 Circults (inchude 6 Trausistor and reflex superhets)
Prioes (Post Free)

Full detalls from:
 RADIONIC PRODUCTS LIMITED STEPHENSON WAY, THREE BRIDGES CRAWLEY, SUSSEX

Tal.: CBAWLAY 28700
Trade Enquiries Invited

A No. 4 SET and 6-TRANSISTOR SUPERHET

Theoretical Circuit Our new 'E' Settes of baslc etectronic circuits is also available separately

TRANSISTOR COILS

The P50 series remain the most popular and widely used components for Medium and Long-wave Transistors Superhets:-

P50/1AC Oscillator Coil for 176 pF tuning 514 ea.
P50/2CC Ist \& 2nd I.F. Transformers
P50/2CC Ist \& 2nd I.F. Transformers 517 ea.
P50/3CC 3rd I.F. Transformers $\quad . . \quad$... $\quad . .$.
All mounted in individual cans $\frac{1}{16} \mathrm{in}$. diam. $\times \frac{3}{4} \mathrm{in}$. high.
RA2W Ferrite Rod Aerial 208 pF Tuning $12 / 6$ ea.
LFDT4 Driver Transformers 916 ea.
OPTIA Output Transformers...\quad......
PCAI Printed Circuit Panel 916 ea.
Constructor's Booklet 2 -. ea.

VALVE RECEIVER COILS

Our individual " H " type iron-cored coils are without equal for the construction of a wide range oi receivers. For the simplest T.R.F. sets covering one or more wave-bands the Aerial and H.F. Transformer coils are ideal. The standard superhet circuit using the ever-popular triode-hexode frequency change layout would employ the Aerial and Oscillator coils and the coverage can be selected from 7 different bands ranging from 12.5 to 2,000 metres. For a really high-performance receiver an R.F. stage can be added by using the Aerial, H.F. Transformer and Oscillator Coils and a circuit is provided illustrating such a layout.

$$
\text { H Coils } 319 \text { each. }
$$

Fig. 3: Winding details of L2, the p.a. tank coil, and dimensions of a bracket to mount it in association with S 3 .

The maximum effective capacitance across the coil is 50 pF and tuning should be correct with the 100 pF capacitor nearly open for 20 m and 40 m and about one-half closed for 80 m . If $3.5 \mathrm{Mc} / \mathrm{s}$ and $7 \mathrm{Mc} / \mathrm{s}$ crystals are used it is not possible to tune this circuit to unwanted harmonics. 1.3 is a 2.5 mH 60 mA r.f. choke.

P.A. Tank Coil L2

This is wound on an insulated tube $3 \frac{1}{2} \mathrm{in}$. long and $1 \frac{1}{2} \mathrm{in}$. diameter as shown in Fig. 3. Beginning about $\frac{3}{8} \mathrm{in}$. from one end, the 18 s.w.g. wire is anchored in hole A and ten turns are wound at eight turns per inch. The wire is secured at B. A further ten turns are then wound and a small loop made at C. After 14 more turns the wire is fixed at D.

The aluminium bracket shown in Fig. 3 holds the coil to the switch. It is cut and bent as shown and fitted to the coil with 6BA bolts, S3 already being in the central hole. Stout connections are then soldered to S3. They are as short as possible. S3 has two three-way sets of contacts and they are used in parallel.
The completed tank coil assembly can be attached to the panel by the securing nut of S3 and short connections taken from A to VCl and D to VC 3 .

Fig. 4: Above chassis layout where most of the larger components are mounted.

Above Chassis

The chassis measures about $10 \times 7 \times 2 \frac{1}{2}$. and the layout is shown in Fig. 4. The crystal holder can be for $\frac{1}{2}$ in. or $\frac{3}{4} \mathrm{in}$. spacing crystals or both. Valveholders can be located from the dimensions given.

VC. 2 must have wide spacing to avoid sparking over; a spacing of 0.05 in . between plates is more than adequate for 600 V . For 40 and 20 m 100 pF will suffice but 150 pF is required for 80 m and 200 pF would be better.

VC3 is a receiver type capacitor and should have a total of at least $1,000 \mathrm{pF}$ (two-gang 500 pF with sections in parallel). For low impedance aerials on $80 \mathrm{~m} 1,500 \mathrm{pF}$ is better (three-gang capacitor) but $1,000 \mathrm{pF}$ is easily sufficient for the 20 and 40 m bands.

Both capacitors are bolted to the chassis and short earth returns provided for their rotor contacts. A small plate carrying a coaxial socket is bolted to the frame of VC3 and allows a coaxial feeder from an aerial to be plugged in. The socket outer sleeve is common to the chassis. This socket is not placed on the rear of the chassis as complete segregation of the p.a. anode and aerial circuit from other wiring would then be difficult.

The front panel measures $10 \frac{1}{2} \times 7 \frac{1}{2}$ in. It can be of hardboard or aluminium. Holes are required for the meters, capacitors and S3. S1, S2 and VC1
hold the panel to the chassis. I. 4 and C15 are wired together and to VC2 (Fig. 4). The assembled tank coil unit can then be fixed by S3 and a short lead taken from A on the coil to VC2 fixed plates. D on the coil is connected to the fixed plates of VC3. L4 is a 2.5 mH r.f. choke rated at 150 mA d.c.

The anti-parasitic choke L5 consists of five turns of $20 \mathrm{~s} . \mathrm{w} . \mathrm{g}$. wire with an outside diameter if $\frac{3}{8} \mathrm{in}$. and a total length of $\frac{1}{2} \mathrm{in}$. When the choke is made R5 is placed inside it and connected to choke and anode cap with the shortest possible leads.

Twin twisted leads from the anode current meter pass through a hole nearly under S3 to C9 and the switch. The grid meter is connected from chassis to C8 as in Fig. 4. The lead from L4 goes through the chassis to C9, which is immediately below.

S3 control knob should have band positions marked. It is convenient to use $0-100$ or similar dials for p.a. anode tuning and aerial loading (VC2 and VC3) but control knobs without dials are also perfectly satisfactory. Screening cans should be provided for the 12AT7 and 6CH6.

Underside of Chassis

Positions of components and leads are shown in Fig. 5 and the transmitter may conveniently be

Fig. 5: Complete underchassis wiring, except for the switch, $5 /$.
wired in stages. For r.f. circuits 18 or 20 s.w.g. wire is used. Heater and h.t. wiring should run against the chassis and be adequately insulated. It will be helpful to use sleeving or insulated wire of several colours, especially to identify meter, h.t. and switch circuits.

6CH6 Oscillator

Coil L1 is left until wiring is otherwise finished here. C4 and C6 are disc ceramic capacitors. L3 and R3 are anchored to an insulated tag near the crystal holder. Points MC are tags bolted to the chassis in the usual way.
Connections to C7 and C3 should be as short as possible. L1 is held with a bracket bolted about lin. from the lower edge of the chassis and $2 \frac{1}{2} \mathrm{in}$. from the panel.

The oscillator may be tested, if desired, by applying 6.3 V a.c. to the heaters and about 250 V d.c. to point X (see Fig. 1). With valve and crystal in, current should drop to about 20 mA as

Fig. 6: Connections to the four poles of the function switch, SI.
oscillation commences. The carrier may be detected with a receiver or a tuned wavemeter with bulb indicator will glow if near L1, with $\$ 2$ and VC1 adjusted for each band.

Power Amplifier

C10, C11, C12 and C13 are disc capacitors connected with very short leads. R4 is clear of the chassis and anchored at a tag providing the grid meter negative connecting point. C8 is a disc capacitor. The meter leads run against the chassis and anode meter leads are clear of the grid meter connections and pass through a separate hole near the function switch S1.

When no plug is inserted in the key jack, 13 and the p.a. cathode circuit are returned to chassis by closing of the jack contacts. Efficient grounding
for r.f. by C10, C11 and C.12, as shown, is necessary to avoid unwanted oscillation.

Double Triode

C17 and C19 should be mica or of equal quality as any slight leakage will upset bias on the second triode section (V3B) or on the 6BW6 (V4). C18 is displaced in Fig. 5 to show connections but lies over R16.

The nicrophone has the usual screened lead terminating in a coaxial plug. The inexpensive type of general purpose crystal mike should be satisfactory. It may be necessary to keep the microphone and its lead reasonably clear of the aerial.

6BW6 Output

The 6BW6 audio output stage or modulator V4 is very straightforward. For the anode choke L6 a speaker output transformer is most suitable. The type intended for a mains pentode, rated at 60 mA or more and probably with a ratio of about $40: 1$, is ideal. The secondary is not used.

The optimum load of the 6BW6 is about $5 k \Omega$. but the modulating impedance of the screen grid is much higher and not uniform throughout the audio cycle. As more power is available than required a $4 \cdot 7 \mathrm{k} \Omega$ resistor R 15 is thus added to supply a stable load. The 6BW6 anode connection runs near the back of chassis and tag strip, clear of r.f. circuits, as in Fig. 5.

The modulator may be tested, if required, by temporarily connecting a loudspeaker to the transformer secondary. R15 may be disconnected. Speech should be clear and distinct. The microphone must be well away from the loudspeaker to avoid feedback howling.

Function Switch SI

This is four-pole, five-way, but no circuits have to be completed at either extreme position. Two two-pole, four-way wafers were actually used, assembled on a cut-down spindle from an old switch, and with a stop removed so that a second " off " position was obtained.

Fig. 6 shows the wiring for a new switch, sonsisting of two wafers, each having two-poles with five-ways. Lengths of coloured flex or other insulated wire can be soldered on before mounting the switch in the chassis.

Switching can be checked without supplies and valves. High tension should reach the 6CH6 anode (pin 7) in all but "standby" positions. With the switch at " "phone" h.t. +1 should be connected to pin 8 of the 6 BW 6 holder and through R17 to pin 3 of the 6146 holder. H.T. +2 also goes to 6146 anode. When the switch is at "c.w." h.t. +2 remains connected to the 6146 anode but pin 3 is now fed through $R 7$ from h.t. +2 . In no circumstances must switching be such that screen grid voltage is present on the 6146 when the anode voltage is absent.

Power Supplies

The heaters require 3.2 A at 6.3 V , so a $3 \frac{1}{2} \mathrm{~A}$ or 4 A secondary will do well. For h.t. +1 a 250 V receiver type power pack is ideal. A supply of about 220 V to 270 V at 60 mA is sufficient.

The voltage applied at h.t, +2 depends on the
power supplies which may be available and the input wanted. It is a good plan to make an initial test or tuning up with reduced voltage, such as can be obtained from a 250 V supply, or by joining h.t. +2 to h.t. +1 .

About 100 mA at 450 V to 600 V falls easily within the rating of a transformer of moderate size and a suitable power supply is shown in Fig, 7. R7 controls the screen grid voltage when working on c.w. and it may be reduced to $10 \mathrm{k} \Omega$ or less for a 300 V supply. The screen voltage of V 2 should not exceed 250 V or 400 V with key open. A screen voltage of about 150 V is generally suitable for c.w. current, being about 10 m A . Screen dissipation (volts x current) should not exceed 3 W .
If there is any doubt the best solution is to begin with a highvalue screen grid resistor and reduce this after checking the screen grid voltage and current with a meter. For 'phone the screen voltage is much lower as this is necessary for correct modulation.

Tuning Up

First tests should he made with the switch at "Net". A $3.5 \mathrm{Mc} / \mathrm{s}$ band crystal can be inserted and adequate grid current should be found on each band by adjusting VC1. Grid current should not be allowed to exceed 3.5 mA and should generally be between 2 mA and 2.5 mA . S 2 is always switched to the band upon which output is wanted. so that the final amplifier is not used as a doubler.
A $7 \mathrm{Mc} / \mathrm{s}$ band crystal is useful to check $14 \mathrm{Mc} / \mathrm{s}$ tuning to make sure the third harmonic of $3.5 \mathrm{Mc} / \mathrm{s}$ ($10.5 \mathrm{Mc} / \mathrm{s}$) is not selected by $\mathrm{VC1}$ in error. Or a bulb indicator meter or receiver can be used. The $14 \mathrm{Mc} / \mathrm{s}$ band should peak up with VC1 nearly open.

An initial test can be made with power delivered into a 60 W household lamp connected to the aerial socket and chassis by a few feet of twin flex. With S2 and S3 at 80 close VC2 and VC3 and tune for grid current at " Net"., The function switch is then turned to "'Phone" and VC2 is immediately adjusted to find the dip in anode current as shown by the anode meter. The current is increased by opening VC3 and retuning with VC2. VC2 is always tuned for minimum anode current, corresponding to maximum r.f. output.
Grid current is readjusted if necessary by VC1. When the p.a. has been tuned to resonance the switch can be turned to "c.w." if wanted (key closed). As loading progresses in the way described the lamp will light with increasing brilliance. For c.w. the anode current may run up to 100 mA .

Fig. 7: Circuit of a suitable power supply for the transmitter.

Loading the transmitter into an aerial follows the same method. A coaxial-fed dipole can be fed directly from the transmitter. Various end-fed aerials can also be used in this way with a good earth to transmitter chassis. For resonant end-fed aerials some type of aerial tuner placed between aerial and transmitter will be almost essential.

Crystal Frequencies

Crystals with fundamental and harmonics falling within the band limits may be used on all three bands but some crystal frequencies will not supply harmonics within the bands. For $7 \mathrm{Mc} / \mathrm{s}$ and $14 \mathrm{Mc} / \mathrm{s}, 7 \mathrm{Mc} / \mathrm{s}$ crystals may be used, while $3.5 \mathrm{Mc} / \mathrm{s}$ crystals will do for $3.5,7$ and $14 \mathrm{Mc} / \mathrm{s}$. Any 1.75 to $1.9 \mathrm{Mc} / \mathrm{s}$ crystals will do for 3.5 $3.8 \mathrm{Mc} / \mathrm{s}$ also.

'Phone Loading

For best speech quality with screen grid modulation the p.a. must be heavily loaded. To accomplish this the screen voltage of V 2 is kept low by R17 and loading with the pi-tank is continued until the dip in anode current on rotating VC2 has become small. An input of about

[^3]

All times are in G.M.T.
All frequencies are in kc / s.

The Broadcast Bands-by John Guttridge

()NE station getting its schedule out well in advance is Radio Moscow. Until the end of August English for Europe is aired at 07000730 on $11,830 / 9,710 / 9.600 / 9.480 / 7,240: 1200$ -1300 on $15,490 / 11.930 / 11.830 / 11.700 / 9,780$: $1900-1930$ on $9,710 / 9,480 / 7.340 / 6,050 / 1,320 ;$ $2000-2030$ on $9,710 / 9,480 / 7,160 / 7,340 / 6.050 /$ 1,$380 ; \quad 2100-2200$ on $9.710 / 7,340 / 7.260 / 6,050 /$ 1.490: 2200-2230 on 9,710/7,340/6,050/1.490/ 1,380/1,320. In September/October the following changes are made: $0700-0730,11,830$ dropped: 1900-1930, 2000-2030, 7,280/6,170 replace 9,710/9,480: 2100-2230. 7,280 replaces 9,710.

Frequencies used for several English transmissions were changed by Radio Prague for its summer schedule. Changes arc: 0100-0155,0330 - 0425 on $5,930 / 7.120 / 7,345 / 9.795 / 11,990: 0300-$ 0355 on $15.285 / 15.448 / 17.825 ; 0800-0855$ on $6.055 / 9,503 / 15.235 / 15.285 / 21.450$. On its QSL, says D. Hill, date, time and metre band are given.
T. Robinson, Liverpool, reports that Radio Nederland (P.O.B. 222. Hilversum) has a DX programme at 1600 on Fridays and a request programme on Saturdays. In London 15,425 gives better reception than 11.730 for the $2100-2150$ English transmission but suffers from severe interference from A.F.R.T.S. New York on 15,430 .
A. Waddelow, Norwich, has heard the Bonaire relay with Dutch at 2100 on 15,290 giving SINPO 33433. He reports full verification details from Radio Denmark (Radio House, Copenhagen V). Radio Andorra (Roc des Anelletes. Andorra-la-Vielle. Andorra-return postage requiled), Radio Berlin International (Berlin-Oberschoneweide, Nalepastrasse 18-50, German Democratic Republic), and Radio Belgrade.
The 1315-1400 English transmission to SouthEast Asia from Emissova Nacional de Rediodiffusao (Rua Sao Marcal. IA, Lisbon) is now on $21,495 / 17.895$. The BBC now has an English transmission to East Africa from 1800-1830 on 15.420.
D. Hill mentions two English transmissions from Radio Bucharest (P.O.B. 111, Bucharest) from 1930-2030 on 9,570/9,510/7,225 and 2230-2300 on 7,195/6.190.

Middle Eastern stations reported this month are Radio Ankara, Kol hsrael (Broadeasting House. Jerusalem, Israel). Radio Bughdad iSalihiya, Baghdad). Radio Iran (Ministry of Information, Mcydan Ark, Tehcran), and Saudi Arabian Rroad-

Custing (Ministry of Information, Airport Road, Jeddah). Paul Harris. Elgin, says that English from Kol lsrael is now from 2045-2115 on 9,009/ $9.625 / 9,725$. Ankara now has French at 19301945 and German at $1800-1815$ on 15,160 . A. Waddelow reports English on this frequency at 2200-2230 (SINPO 44441).
E. Conduit, Wolverhampton, has had a QSL with date and frequency only from Saudi Arabia and with frequency only from Baghdad, although W. Smith had a yellow card giving date and frequency from Baghdad. Alex Bushby, Glasgow, reports a letter giving no details from Iran.

Two African stations, Radiodiffusion de la Republique Democratique du Congo (B.P. 3171, L.copoldville) and the Nigerian Broadcasting Corporation (Broadcasting House, Lagos) arc reported by R. Howard, Stockport. The former he has heard between 2030-2200 on 11.795. Nigeria was logged in English between 2130-2205 on $11,900 / 15.255$.

Cairo Radio (U.A.R. Broadcasting and TV, Maspero) has changed the language segments for its transmissions on 17,920 to East and Central Africa. They are now Nianga 1545, Shona 1615, Somali 1645 and English 1745-2030.

According to Paul Harris, Radiodiffusion Television, Ivorienne (B.P. 2261, Abidjan, Ivory Coast), has replaced its International Network frequency of 11,820 by 6,015 . He has heard this frequency at $2200-2400$ and presumes it carries the 18301900 English transmissions on weekdays.
A. Wildsmith. Manchester. advises those who have written to Radio Ghana (Broadcasting House, P.O. Box 1633, Accra) and have not received a reply not to despair. He has just received a verification after five months.

Conflicting reports on the QSL of All India Radio (P.O. Box 500, New Delhi) from E. Conduit and D. Hill. 'The former's card had the date only, whilst the latter's had all details.

Finally three reports on Radio Pyongyang (Pyongyang, North Korea). Paul Harris has heard English at 1800-1900 on 10,380 and 1900-2000 on $6,540 / 7,379$ with 7,580 being announced as well. According to announcements, he says, other transmissions are $1000-1100,7.580$: 11001200. $9.750 ; 2400-0100,17.520 ; 0300-0400$, 9.570 . M. Clark. Cheltenham, has heard the station on 6.500 at 1900 when it says it is using 7.389/7,595/8,333/10,381. A transmission from $1000-1200$ on $6.061 / 7,353$ was also announced.

The Ainateur Bands-by David Gibson G3JDG

0NCE more unto the h.f. bands, dear friends, and verily DX shall be thine. Unbelievers should listen on 20 m , where thousands of stations from almost everywhere are battling it out.

It is fair to reckon that all those not on 20 are on 15 and this band seems more consistent these days. It stays open for longer and although there is often some QSB it's on the up and up, certainly as regards reliability.

Poor old 10? Not any more-half Europe gets on at the weekends and the African continent shows itself, too. Those with directional antennas on this band should have very full logs.

TWENTY

Let's start with a bang. Here is the pick of the log from BRS26813, of Cheltenham. who uses an S640 and HRO5T with a 90 ft longwire. All c.w.:

AC4H (Tibet), CN8MH, CR4AF, 4BC: EL2AE, 2AM: ET3GO, 3USA; DU1OR (Philippines), FG7XS (Guadeloupe). FM7WH (Martinique), HI4ARM, HK3RQ, HP1BR. HZ3TYQ (Saudi Arabia), JAIBZR, IFHK, IDU, 1ZZ, 7AB, 7ARZ: JTIAG. KH6DSW, FLK, IJ. TD, WU; KM6DJ, KP4ARS, LA4EJ/P (Jan Meyen Island), LU2DAW, 8EE; OA4EM, OY7ML (Faroes), PY1BTX, zON: PJ2CZ, SUllM, UI.7PY, UNIBR, VE8CO, VK2EO, 2OO: VO2NA, VP5BH/MM.9EP: VU2GW. 2LI: W5IUW/VP9. 6JNX; XEIOE. YVIAD, 4MC, SAAQ. 5ACP. 5BHI: ZD8BC, ZE8TT. ZP5LS. ZS6AJQ, 4U1ITU, 4X4HK. MZ. QA: 5A3TT. 5Z4DW, 6Y5MJ, XG: 7X2ARA, 7X3CT, 9J2GJ.

Which goes to show that if it enits r.f. then it can, be found on $14 \mathrm{Mc} / \mathrm{s}$ and BRS26813 will hear it! Well done, Bob-when do you sleep?

Norman Ponsford (Devon) found these on his t.r.f. CR45 with 60 ft longwire, all on a.m.: HB9VW. K3NHL. K2YLM, OE3CL, PY7GV, SVØWBB, WA4llo, 4X4FA, 5Z4AQ, 5Z4ERR. W. Langham (Somerset) got these on a domestic receiver and 75 ft longwire: 11 BUG , LZ1KBD, PAØPAN, UA9KCF, UO5KBR, YU6BC, 4X4OS, all a.m.

Messrs. McWhirter and Weare are the ops at Derby School Signals Platoon and pulled in these on an R107 with 200 ft longwire: K2ZRK/P, SP4AUQ, UA2KBD, VE4SA, W2RKV, W8HCP (all. on a.m.). ET3USA, UA1KIB, UA9MX, UN1BR, UW3FV(?) on c.w.

FIFTEEN

Stephen Beale (London), using the P.W. t.r.f. (May, 1964) and a 66 ft . longwire, got these on a.m.:-CR6BY, EA8ER. LA4EI. SVIDL, ZC4MO. 4 X 4 QR , $5 \mathrm{~A} 1 \mathrm{TK}, 5 \mathrm{~A} 5 \mathrm{TE}$: $5 \mathrm{~N} 2 \mathrm{KOB}, 9 \mathrm{G} 1 \mathrm{MR}$, 9J2DT, 91,1WN, 9Q5DL, 9X5RZ.
D. F. Carrington (Derby) pulled in on his HE30 and 68 ft longwire with 14 ft vertical whip at far end:..CT3AQ (Madeira), EL5CG. EA6GL, PY1NBA, PY1AGP. SVGWO, W9ACU, ZC4KW, 4X4QR. 5A1TK, 9X5WTB and 9Q5's DL, US, AWB. RB. AQ and AD.

Mike Silverstein (London), CR100 and 132 ft longwire, hooked. CR6BY, CR7FR, HI8BGA,

JA1GTN, KZ5BE, OA4OS, PY1BYS, VP4LE, VS9ANR, ZE7JR, 9X5RZ.

TEN

Back in circulation! Why, we have even been getting logs!

George Owen (Bristol), using a five-valve t.r.f. and vertical joystick. leads the field with CE4FB, CR4AO, BC: CTICN, MZ, ILX. IOF. LIM; EA3PA. EL2L. F2SI. HB9FMA. I1SO, BIW, IYJ, MTO, PAI. WRR: KC4CKC. OKIABN, ZD8JC, ZEIJJ, 5 A4HR, 5Z4AA, 9Q5AA.

THE L.F. BANDS

Only the real stalwarts stick at it. On 7Mc/s Bob Garvy (Gloucester) had these on his HRO and 90 ft longwire, all on c.w.: DJ3ZXA. E19TF, OK4ADX. PY7AOD, SM7ACR, UAIKAL, VP2LZ. ZS6DF.

On $3.5 \mathrm{Mc} / \mathrm{s}$ A. Rolfe (Halstead) got DI8RS, DI_2UZ. DL6VU. F2WW, F3ZK, PADPAL, SM3YF/MM using an R109 and 12ft whip. And an unsigned log from Preston mentions DJ6QT, DL6ME, EI4R, GC2AZ, OZ3IH, SM7WW, VEIIE.

Top band almost abandoned and the only letter we had was from W. Smith (Staffs) with a large list of G stations heard.

IN GENERAL

The coat-hanger and cuff-link gang are still at it! BRS26325 (Dundee) used a fireguard on $21 \mathrm{Mc} / \mathrm{s}$ for 5 AlTK . CT1LJ, 9M4LP. EA8EH. M. Carter (North Wales) used a ground-floor window frame into an HRO for $14 \mathrm{Mc} / \mathrm{s}$.s.s.b.: EP2DS. KH6BK. KR6AAC. MP4BCC, OD5BZ, HVICN, HBØAFM. HL9PK, KP4CL, VE6TP, W6VPY. W7MKI, ZS6XB. 5 N2AAC, 9 M 2 SR . Anybody thought of the little strip of metal foil around cellophane wrapped cigarettes? (Watch it, they resonate at $947 \mathrm{Mc} / \mathrm{s}$!)

ZB1 (Malta) is now 9 H 1 for sure. The Western Carolines and Kure Islands are on and the calls to listen for KC6 and KH6 respectively. 4U1ITU is the headquarters station of the International A.R.C. located in Geneva. Others rumoured to be squirting r.f. about are South Georgia VP8, Christmas Island and Cocos Keeling both VK9, ZD8 on Ascension Island. Crete SVØWGG high end of 20 on s.s.b., Willis Island VK4 and Samoa KS6. For Top-band addicts there is a beacon on $1.801 \mathrm{Mc} / \mathrm{s}$ in South Africa signing ZE1AZD, reports very much appreciated.

What a lot of field days. British, American and now Korean. The Korean effort will be July 3 rd4 th on $80,40,20$ and 15 m . Callsigns to listen for are HM and HL. Other activities on in July are : 4 th, $144 \mathrm{Mc} / \mathrm{s}$ portable contests: 11 th. three mobile rallies, tenth anniversary rally, South Shields rally and Torbay mobile rally; 17th-18th, $1.296 \mathrm{Mc} / \mathrm{s}$ tests (you've just got time to wind a set of coils): 25 th. $70 \mathrm{Mc} / \mathrm{s}$ portable contest and Cornish mobile rally. August 1st. SLADE D/F qualifying event. Good hunting and don't forget to drop me a line on what's coming in at your QTH.

Practical Substitutes

by M. L. Michaelis, M.A.

THE lists of parts for constructional articles are those found satisfactory in the prototypes and available at the time of publication. Many queries which the editor receives show that many beginners regard a published list of parts as being strictly binding down to the last detail.

Whilst this may be true for special projects a considerable latitude normally exists and the informed constructor can use his discretion regarding substitution of components already in his pissession or more readily available.

It is the aim of this article to help readers in making on-thespot substitute decisions if a dealer does not happen to have the exact item desired in stock. The information given will also serve many other useful practical purposes, such as the selection of modern replacements for defective components in obsolete equipment, or just to make better use of items available in the junkbox instead of making new purchases.

RESISTOR AND CAPACITOR VALUES

A frequent type of enquiry concerns apparently strange component values. such as "a capacitor of $0.056 .1 \mathrm{~F}^{\circ}$. Whilst the familiar sequence of preferred values is quite commonplace for resistors, it is less familiar in Britain for capacitors. However, our example of a $0.056 \mu \mathrm{~F}$ capacitor simply hears the same relation to a more familiar $0.05 \mu \mathrm{~F}$ capacitor as does a $56 \mathrm{k} \Omega$ resistor to an older-type $50 \mathrm{k} \Omega$ resistor. Such values are mutually interchangeable unless very critical conditions are involved and which the author of an article would point out. Unless otherwise stated, the constructor may assume that a $\pm 200_{0}^{\circ}$ tolerance is implied for resistor and eapacitor component values. This obviously permits mutual interchange of a 0.05 p capacitor with a $0.047 \mu \mathrm{~F}$ or $0.056 \mu \mathrm{~F}$ preferredvalue capacitor. (The $0.05 \mu \mathrm{~F} \pm 20 \%$ could, of course, be anything between $0.04-0.06 \mu \mathrm{~F}$.)

If a preferred-value component is outside the tolerance of a near old-type component, onc should select a parallel combination of two standard value capacitors to get closer to the specified value. Thus, given $\pm 20 \%$ tolerance, the correct substitute for a 0.68 F capacitor is a parallel combination of a $0.5 \mu \mathrm{~F}$ and a $0 \cdot 2 \mu \mathrm{~F}$.

Similarly a $50 \mathrm{k} \Omega$ resistor can generally replace a 47 kg , or $56 \mathrm{k} \Omega$ resistor, but a 68 ks resistor requires either a $75 \mathrm{k} \Omega$ resistor as substitute, or
various combinations of two resistors. such as a $50 \mathrm{k}!\mathrm{l}$ and a 20k! component in series, or two $150 \mathrm{k} \Omega$ resistors in parallel. Note that the individual wattage ratings of series or parallel combinations of two resistors can be halved only If the individual values are equal or very nearly cqual.

In cases where resistor or capacitor substitutrons of the kind discussed above lead to a residual discrepancy close to the tolerance limit, e.g. when substituting a $10 \mathrm{k} \Omega$ resistor for a $12 \mathrm{k} \Omega$ resistor, it is advisable to measure the actual values. Iudicious selection call often lead to a closer approach to the specified value and will avoid additive tolerance errors greater than the tolerance limit. However, a large number of experimental circuits remain uneritical even under the latter circumstances.

The important thing to remember is that, generally speaking, any value within the tolerance of the specified value will be acceptable.

CRITICAL CAPACITOR AND RESISTOR VALUES

Resistor values are frequently more critical when they constitute parts of bleeder networks which detemine the operating point of a valve or transistor, or when they are parts of calibrated shunts, multipliers, attenuators or other measuring circuits.

$R=R 1+R 2+R 3$

$\frac{1}{10}=\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{R 3}$
$C=C 1+C 2+C 3$

Fig. 1: Series and parallel combinations of resistors and copacitors

Capacitor values are critical in tuned r.f. and i.f. circuits and in oscillator padding positions. Even then, substitutions of combinations of two or even more components in series or parallel to make up the exact specified value are generally permissible.
Note that capacitors in parallel and resistors in series are added whereas capacitors in series and resistors in parallel are equal to the reciprocal of the sum of the individual reciprocals, see Fig. 1.

ELECTROLYTICS

It is normally permissible to substitute nonelectrolytic capacitors of the same value for specified electrolytics, if space permits, but electrolytic capacitors cannot be substituted for paper or foil capacitors when insulation and capacitance stability are important factors.
Thus it is usually unsatisfactory to substitute an electrolytic for a paper or metallised foil component in an anode-grid coupling circuit since leakage of the electrolytic would lead to an intolerable displacement of the operating point of the subsequent stage. Very large metallised foil capacitors in long-period high-impedance timing circuits (minutes or hours) cannot be replaced by electrolytics. However, low-impedance transis1 orised timing equipment does often use lowvoltage electrolytics. The accuracy of such circuits, or at least their long-term stability, nevertheless tends to be inferior.

Electrolytic capacitors are relatively coarse. inaccurate components whose capacitance and insulation may vary greatly during the useful lifetime and according to the length of resting time without applied voltage. Thus even if an electrolytic capacitor is found to function satisfactorily in a critical circuit position at some particular time, that circuit cannot in general be relied upon to function satisfactorily with it at all subsequent times. In valve circuitry, electrolyties should normally be confined to smoothing and decoupling functions.

Electrolytics are more widely usable in transistorised circuitry because impedances are generally lower, so that insulation deficiencies are less important. Therefore any slight leakage of electrolytic coupling capacitors leads to much smaller relative displacements of the transistor operating points than in the case of valve circuits.

RF CAPACITORS

It may be unsatisfactory to substitute paper capacitors for ceramic or mica capacitors in r.f. circuits when the operating frequencies are high, although this may not matter so much in longand medium-wave circuits. On the other hand, ceranic or mica capacitors of adequate voltage rating may be substituted for specified paper ones.
In most r.f. applications it is immaterial whether ceramic or mica types are used. Modern ceramic materials have a greater capacitance in a smaller. space, but their voltage ratings are often more limited. Paper capacitors generally have a lower capacitance stability, so that even if they work in local oscillator circuits they should nevertheless be avoided in these stages, otherwise trouble is
likely to be encountered with drift. Mica or ceramic components of good basic stability are most desirable, especially for v.h.f. circuits.

Where an author specifies strange combinations of odd-value capacitors with exact details of manufacturer and type number, and with two or more such capacitors connected in parallel at each position, the intention is to achieve mutual cancellation of the individual temperature coefficients. In such cases it is not possible to make straightforward substitutions of other capacitors without impairing the frequency stability of the circuit.

Forbidden resistor substitutions can arise in circuits where the stray inductance of the resistors plays a significant role. This often means that wirewound resistors cannot be used in place of specified carbon resstors in such circuits as the signal amplifiers of oscilloscopes and wideband a.c. value voltmeters, or in the video stages of television equipment. However, in these same types of equipment wirewound resistors with a definite indnctance used as frequency-correcting peaking inductance may sometimes be found.

If such resistors fail and have to be replaced, simple substitution of a carbon resistor or in arbitrary-inductance wirewound resistor of the same wattage and resistance value may lead to unsatisfactory performance of the equipment (generally reduced bandwidth at the highfrequency end).

POWER SUPPLIES

Due to the lack of standardisation in mains transformers. difficulty in obtaining the exact one specified in an article is a common problem.

Other power supply problems concern rectifier substitutions, in particular the conditions under which valve, metal and silicon rectifiers may or may not be mutually substituted. Finally, readers often query possible interchanges of halfwave, fullwave and bridge rectifier circuits if a specified rectifier arrangement is not available.

There are standard rules of substitution which can be applied to most power supply problems.

MAINS TRANSFORMER SUBSTITUTION

Space permitting, it is always possible to use separate heater transformers, either to cater for all heater requirements independently, or to augment the heater supplies available on the transformer which also carries the h.t. winding. If more than one transformer is used, all primaries should be connected in parallel. but never connect secondaries of physically or electrically different transformers in parallel. Series connections of secondaries are always permissible for any combination of transformers, within the insulation ratings, e.g. to obtain higher heater voltages.
If it is possible to obtain a transformer with all the required windings as far as voltages are concerned, but the current ratings are too low, then it is always permissible to wire two such identical transformers in parallel.

All primary and secondary connections should be respectively connected in parallel. The current
rating of each composite winding is then twice that of a single transformer. It must be stressed that such connections are possible only for truly identical transformers.

If, for example, an h.t. current rating of 150 mA is specified. there is no objection to using a transformer with a somewhat higher rating. e.g. a 200 mA or even 250 mA . However, overloading of h.t. windings in the other direction should be avoided, since it leads to severe overheating. Thus if $150 \mathrm{~m} . \mathrm{A}$ h.t. rating is required but only a 100 mA transformer type is available, two such identical transformers will have to be connected in parallel.
Fig. 2 shows such a transformer substitution. In the example, a $250-0-250 \mathrm{~V} \quad 200 \mathrm{~mA}$ transformer with two separate 6.3 V 2.5 A heater windings has

Fig. 2a: Normal full-wave rectifier circuit.
been specified (Fig. 2a). This may be replaced by two smaller transformers. each having a simple 250 V 100 m A winding for halfware rectification and a single 6.3 V 2.5 A heater winding.

Provided that the two transformers are fully identical, there is no objection to feeding the two sections of a full-wave rectifier circuit from separate transformers in the manner shown. and the current rating of each transformer need only be one half of the required rectified h.t. current.

But there is one rather important reservation. The two separate transformers must be of a type specifically intended for halfwave rectification at their full rated current output. Halfwave rectification always passes a d.c. current component through the secondary winding of a transformer. which magnetises the core and lowers the primary inductance. The primary inductive current therewith increases and the transformer gets much hotter than it would otherwise do.

There is no net d.c. magnetisation of the core when the type of full-wave rectification shown in Fig. 2a is employed. with both rectifiers fed from the conventional centre-tapped h.t. winding on a single transformer.

If the two transformers of Fig. 2b are not designed for halfwave rectification, it is better to
change the rectifier arrangement too, using a single transformer with a simple h.t. winding (now rated for the full required h.t. current) feeding a bridge rectifier as shown in Fig. 3.
Provided that the transformer voltages are the same and the rectifier classes of Fig. 2a and Fig. 3 are the same (e.g. in both cases contact-cooled selenium rectifiers. or all silicon diodes), the respective circuits are generally completely interchangeable, whichever one an author should happen to specify.

Fig. 2b: Full-wave rectifier circuit with two half-wove transformers.

Fig. 3: Bridge h.t. rectifier circuit with simple tronsformer winding.

PROBLEMS WITH HEATER WINDINGS

Unless two or more transformers are absolutely identical, heater windings should not be connected in parallel. but any form of series connection for obtaining higher voltages is permissible. It is inadvisable to connect two heater windings on the same transformer in parallel. even if the current ratings are identical.

If two or more heater windings are required to meet the demands of all valves in a piece of equipment, it is generally best to "common "one side of each winding to chassis and to connect

Fig. 4: Surge voltages in electrolytics C1, C2, C3 (see text).
respective groups of valve heaters independently to the other ends. In most cases the specified heater requirements may be redistributed in any manner within reason.

If rectification of the output from a heater winding is required, keep to fullwave or bridge rectification unless the current drain on the d.c. side is only a small fraction of the a.c. current rating. Otherwise d.c. magnetisation of the transformer core can lead to severe overheating and possible burnout.

Whereas h.t. windings may be fairly generously overrated, e.g. there is little objection to loading a 200 mA winding with no more than 50 mA actual h.t. current drain, such severe underloading is undesirable on heater windings since it can lead to unduly high heater voltages which would endanger valves.

Check with a multimeter and if necessary insert a low-value series resistor (e.g. a coiled length of stout resistance wire determined by experiment or calculation). Adjust for correct voltage reading at heater pins of valves. Alternatively, connect the primary to a higher voltage tap than the prevailing mains voltage. Slight resulting loss of h.t. output voltage is generally tolerable.

RECTIFIER SUBSTITUTIONS

There is little to choose between conventional metal rectifiers, contact-cooled ("flat") selenium rectifiers and silicon rectifiers as far as normal performance in h.t. circuits is concerned, although the efficiency improves in the order given and the heat dissipations and physical sizes decrease accordingly.

The modern silicon h.t. rectifier is undoubtedly the best component in the semiconductor class of h.t. rectifiers and it can serve as a versatile substitute in most cases where specified metal rectifiers
exceed 250 V for non-bridge circuits or 450 V for bridge circuits, use a single silicon mains rectifier for each diode section of the substituted rectifier. Otherwise use two silicon rectifiers in series for each diode section if the a.c. input voltage lies between 250 V and 500 V for non-bridge circuits or between 450 V and 900 V for bridge circuits.

The silicon mains rectifier has the further advantage that it is generally equally suitable for rectifying low voltages, e.g. heater voltages, although cheaper types with lower inverse voltage ratings are available.

VALVE RECTIFIERS

Whilst it is generally possible to substitute a valve rectifier for a semiconductor h.t. rectifier, if one is willing to go to the trouble of introducing a rectifier heater supply, the converse is not necessarily true. Equipment for which a valve rectifier is specified may well be damaged if a metal rectifier is substituted without due consideration.

Consider the circuit Fig. 4, in which a full-wave valve rectifier circuit feeds a two-stage audio amplifier. If V1 is indirectly heated as shown (e.g. type EZ80), it will not pass any current into the reservoir capacitor C1 until, the audio output valve V2b has also warmed up and is able to draw fuil h.t. ouiput current from C2. The voltage developed across C 1 and C 2 thus does not rise much above the r.m.s. (a.c.) input voltage from the transformer if the loading is correct.

If a semiconductor rectifier is now substituted for V1. the h.t. voltage builds up immediately across Cl and C? at switch-on. but there is no output current drain until V2 has warmed up.

The voltage build-up across C1 and C? will thus initially rise to the peak a.c. input voltage, which is about 1.4 times the r.m.s. input voltage. Electrolytics of correspondingly higher voltage
ratings are then required for C 1 and C 2.
If the valve rectifier is directly heated (e.g.. type 5 Y 3 G), it will deliver h.t, voltage before many of the other valves in the equipment have fully warmed up and are able to draw full h.t. current. The initial h.t. voltage excess will then be less than in the case of semiconductor rectifier circuits, and certainly of shorter duration. but it will often still be sıgnificant. Thus beware even of substituting a directly heated rectifier valve for a specified indirectly heated one.

Note that some indirectly heated rectifier valves, e.g. the EZ80, will tolerate the full h.t. output voltage between cathode and heater, so that the rectifier heater may be connected in parallel with the heaters of the other valves. with one side connected to chassis. Other rectifier valves, and of course all directly heated types. will not tolerate this and require a separate rectifier heater winding foating at h.t. voltage on th: mains transformer.

If the transformer h.t. winding delivers 250 V a.c. or less to the rectifier. a common figure for small amplifiers and receivers. standard $350 / 380 \mathrm{~V}$ electrolytics will always be satisfactory for any type of rectifier, whether valve or semiconductor, since this voltage rating withstands the maximum peak voltage which could arise under such conditions. In such equipment there is generally no objection to straightforward substitution of a metal rectifier for a specified valve rectifier.

The same applies for equipment which derives h.t. voltage by direct rectification of the mains input without a transformer. since the a.c. input voltage is then also below 250 V .

Whenever transformer voltages higher than 550 V are employed (as in high-power amplifiers and oscilloscopes) care must be exercised if it is desired to replace a specified indirectly heated valve rectifier by a metal rectifier or silicon diode combination.
If any such changes are undertaken. the reservair (Ci) and smoothing (C 2) electrolytics, as well as all decoupling electrolytics for individual stages, must be replaced by components of higher voltage rating equal to 1.5 times the a.c. input voltage applied to the rectifier.

The operating voltage across C3 is much lower than that across C1 and C2, because of the large voltage drop across R2 due to anode current of V2a. But until V2 is warm, there is no anode current, so that even C3 charges to thi: full peak voltage. This will also require replacement.

Apart from such replacements of electrolytics where necessary. a careful check of the complete circuit diagram should be made to see if any other components could be damaged by the higher surge voltages which arise when a metal rectifier is substituted.

PART TWO NEXT MONTH

3 BAND TRANSMITTER

-continued from poge 314

50 mA should be suitable. If loading is too small speech quality will deteriorate. Excessive loading will reduce r.f. output.
When working with the full anode voltage the p.a. should always be tuned up initially on 'phone, even when c.w. is required, as this helps keep offtune anode current down. The p.a. stage must not be left operating off tune or without grid current.

V.F.O.

The voltage stabilised v.f.o. originally described for the $160 / 80 \mathrm{~m}$ 'phone transmitter is satisfactory*. This v.f.o. operates on $1.75 \mathrm{Mc} / \mathrm{s}$. The 160 m anode coil is replaced by a slug-tuned coil broadly resonant in the 80 m band. Tuning may
be done by observing grid current, then leaving the coil alone.

It is necessary to short L3 and C1 may be disconnected. Drive to the 6 CH 6 is on $3.5 \mathrm{Mc} / \mathrm{s}$. for all bands. Any other ordinary v.f.o. is likely to be satisfactory.

Simplifications

If 'phone working only is wanted, R3, C5, C10. C11 and C12 may be omitted, the cathode circuit going directly to chassis. R7 is not wanted, nor the "c.w." switch position. For c.w. only the whole modulator and associated circuits can be omitted. It is also possible to use an 807 as the p.a. with useful results and this type of valve is very inexpensive.

* Practical Wireless, March, 1965.

TWO-BAND DIPOLES

CONFIGURATED COAX-FED AERIALS

by F. G. Rayer

AHALF-WAVE dipole, centre fed with a coaxial or twin line, is one of the simplest aerials which can be used successfully without trouble. Most ready-made, kit and home-built transmitters have a pi-output circuit which allows the transmitter to be loaded directly into a 75Ω or similar coaxial line. This method of working is accordingly very convenient.

An ordinary dipole of this type has two disadvantages which sometimes prevent its use. First it needs to be of particular length and enough space may not be available. Secondly the aerial is generally suitable for one band only, which rather limits operating unless another aerial is also available. Both these difficulties can be overcome to a useful extent.

Dipole Length

Requirements for a single band dipole can best be noted first. An aerial of this kind is shown in Fig. 1. The total length is a half-wave at the operating frequency. This can be found from:

If particular interest lies at the c.w. end of a band, or any other frequency, length can be adjusted to suit.

A 75Ω coaxial feeder is generally used and can be of any length. It may run against roof, walls or elsewhere and is thus easily brought back to the transmitter.

Practical Construction

A suitable method of making the aerial is shown in Fig. 2. A ceramic dipole " T "piece is most convenient at the middle and the overall length is measured as indicated. Hard-drawn 14s.w.g. wire is most suitable but $7 / 26$ aerial wire is lighter and cheaper. The 14s.w.g. wire can be tightly twisted at insulators but the $7 / 26$ needs unotting, soldering or binding.

The coaxial cable outer braiding is separated with a pointed tool and twisted into a pigtail. This is soldered to one aerial wire. The inner lead is soldered to the other wire. Tape holds the feeder to the "T" piece. If moisture enters the coaxial cable this will upset working. Some spacing material can be melted with the soldering iron to seal the end. Or a sealing compound can be used. Ribbed insulators are generally used. For supporting, polythene line is excellent.

If the aerial is not too long, and supports are rigid, the wire can be drawn taut from the ends. But if the aerial is long (say for 80 m) an additional pole or other support at or near the centre is useful to help take the weight of the coaxial cable. The latter should run away at right-angles from the aerial.

Fig. 1: The usual form for a half-wave dipole.

Length in feet $=\frac{468}{\mathrm{Mc} / \mathrm{s} .}$
It is usual to cut the aerial for about the middle of the band so that actual coverage includes most of the band. On this basis typical lengths are:
80 metre band ... 128 ft .

40	$"$	$"$	\ldots	66 ft.	4in.
20	$"$	$"$	\ldots	33 ft.	
15	$"$		\ldots	22 ft.	
10	$"$	$\#$	\ldots	16 ft.	3 in.

Fig. 2: A practical arrangement for a dipole complete with coaxial feeder.

Two-band Aerial

Distribution of current in the aerial is as shown in Fig. 1 and current is large and impedance low at the centre. This is why the 75Ω feeder is satisfactory.

On any even multiple a high-impedance point will be found near the centre, so the 75Ω feeder is then unsuitable. But on odd harmonics an uneven number of half-waves exist on the aerial, so that the centre is again low impedance. This is shown for three half-waves in Fig. 3.

As a result a $7 \mathrm{Mc} / \mathrm{s}$ dipole can be used on $21 \mathrm{Mc} / \mathrm{s}$. The actual calculated length for three half-waves is:

$$
\text { Length in feet }=\frac{492 \times 2.95}{\mathrm{Mc} / \mathrm{s} .}
$$

It will be found that three half-waves for the $21 \mathrm{Mc} / \mathrm{s}$ band result in an aerial of about 68 ft . Despite this quite good results can be obtained. No other two anateur bands can be covered with a sing!e wire in this way.
completely practical, though it is clear that the aerial is not one offering any gain in signal strength but merely allowing immediate operating on either of two bands.
It is apparent that if L1 or L2 is operated in the way described for Fig. 3 three-band working is possible. That is, coverage is given for $7 \mathrm{Mc} / \mathrm{m}$. $21 \mathrm{Mc} / \mathrm{s}$ and one other band.

Bent Dipoles

Since the aerial has to be a half-wave this may require a clear span greater than available. This can often be overcome by using some other configuration for the dipole.
Tests show that the conventional arrangement of elements in line can be varied considerably, without much loss of efficiency. A dipole with its two wires at about right angles has almost no directivity. Lengthy tests with such an aerial showed no obvious loss at all, compared with the

Fig. 4: This dipole orrangement will work for any two chosen bonds.

Fig. 3: A dipole working on the third harmonic.

Double Dipole

A dipole for any two chosen bands can be made as in Fig. 4. Length L 1 is for the lower frequency band and L_{2} is for the chosen higher band. One half of L1 is high impedance at even harmonics, so has little effect on the band covered by L2.
In an aerial of this kind made for $3.5 \mathrm{Mc} / \mathrm{s}(80 \mathrm{~m})$ and $14 \mathrm{Mc} / \mathrm{s}(20 \mathrm{~m})$ bands it was found convenient to suspend the smaller dipole by 6in. ceramic spreaders as used for open-wire lines. L1 was 120 ft and L2 23 ft . Three spreaders were used each side the centre " T " piece.

On the first day of testing this two-band dipole the best signal report received was strength 8 to 9 from K4QVK. using 120 W a.m. Subsequent results in general seemed about the same as those from a single band dipole cut for 20 m . On 80 m no change in signal strength compared with an 80 m dipole could be found.

From these results it appears that the system is
straight dipole. The apex and feeder were supported at the house.

Experiments were made by letting several feet at one end of the horizontal wires drop vertically. This further reduces the space needed, and seoms to have little effect on radiation.
It may also be possible to have one half of the aerial in a roof or attic space, with the other half suspended over a short
garden. Sloping dipoles were also tried, the angle being from about 30° from vertical to 45° so that 15 m and 20 m band aerials could run from a single pole down to an anchor point a few feet from the ground. These all gave good results.

Length Adjustment

When making tests with practical dipoles which were in part near earth or walls, etc., it became apparent that the theoretical length as calculated in the way described was not always best. As a result, it was found that some aerials would load the transmitter in a satisfactory manner near the low-frequency end of the band, but not near the HF end.
This is cured, if necessary, by pruning the outer ends of the aerial. With a 80 m aerial, there will probably be no harm in cutting off 2 ft . at each end to begin. But with the higher frequency bands, pruning should be correspondingly less, say about 2 per cent of the total, at a time.

FTOUR circuits are described, starting with a simple design using the photocell in series with a relay and supply and concluding with a more advanced device using two cells and a transistor logic circuit.

There are several different types of device which are called collectively "photocells". This article is concerned only with one type: the photoconductive cell, which is compact, fairly cheap and suitable for most switching applications. The photoconductive cell is essentially a resistance which changes its value according to the intensity of the light falling on it. Cells are available which give a very large change of resistance with light intensity; a typical change might be from 10 Ms to 300Ω, when the cell is exposed to bright, unfocused daylight after being in complete darkness. From this it can be seen that a simple switching circuit need be no more complicated than that shown in Fig. 1.

Fig. 1: A simple switching circuit. employing a photocell.

With the values given the current in the relay when the cell is illuminated will be a little more than 10 mA and this should be sufficient to operate many surplus relays.

The values are given simply as an example and are not critical. For instance, the supply voltage could easily be increased to $12 \mathrm{~V}^{\circ}$ if required. The range over which the supply voltage and relay resistance can be changed is limitcd.by three considerations :
(1) The current required in the relay for it 10 operate. This is determined by the mechanical construction of the relay and will fix an upper limit to the relay resistance for any given supply voltage.
(2) The maximum voltage which the cell can ustain across it. If the voltage actoss the cell
exceeds a certain value it will "break down " and become permanently damaged. This maximum permissible voltage is usually about 100 V or above.
(3) The power dissipated in the cell. This is measured in the normal way by the product of the voltage dropped across the cell and the current flowing through it. Photoconductive cells are not usually capable of dissipating much power and this places an upper limit to supply voltages and a lower limit to relay resistance. The maximum power which a cell can dissipate varies according to the type. For the Mullard ORP12 (which is the cell for which Fig. 1 was designed) the value is 200 m W . The circuit must be designed so that this value is not exceeded for any intensity of illumination. The cell is not necessarily dissipating the most power when it is fully illuminated and the current is at a maximum, nor when it is in the dark and the voltage across it is at a maximum. The most power is dissipated when the current flowing is half the value it would have if the cell were short-circuited and the relay placed-straight across the supply.

Suppose a circuit is required to operate a $1,000 \Omega$ relay which needs 20 mA to actuate it. Assuming a maximum cell resistance when illuminated of 200Ω then:

Supply voltage $=20 \times(1,000+200)=24 \mathrm{~V}$.
Dissipation in cell $=80 \mathrm{~mW}$ at 20 mA current and $=144 \mathrm{~mW}$ at 12 mA (with relay alone $I=24 \mathrm{~mA}$). Since these values are within the maximum ratings for the cell (ORP12) the circuit will be fatisfactory.

The photoconductive cell is not sensitive to the polarity of any voltage across it. Consequensly in the simple circuit of Fig. 1 it is not necessary to use a d.c. supply; a.c. is equally satisfactory. It should, however, be remembered that the values given for a.c. voltages are usually r.m.s.; it is important to consider whether the peak supply voltage (r.m.s. $\times \sqrt{ } 2$) is going to cause the cell to exceed its maximum voltage rating.

If it is desired to make the sensitivity of the circuit adjustable a variable resistance can be put in series with the other components. As the relay is held on when the cell is illuminated it is best to use a relay with changeover contacts. so that the circuit is suitable for such applications as automatic garage' door opening by the headlights as well as detecting intruders or counting people passing through doorways.

The circuit of Fig. 1, whilst it has the merit of being extremely simple and compact, nevertheless has some disadvantages. If the cell is used so that it is normally illuminated the relay will be held on all the time and battery drain will be high. Also the power limitations of the cell mean that relays. requiring currents above 30 mA or so cannot be used.

CIRCUIT ONE

Fig. 2 shows a circuit which overcomes these disadvantages and uses an OC83 transistor as a current switch operated by the cell. In this circuit the photocell forms part of a potential divider to which the base of the transistor is tapped. When the cell is illuminated the transistor will be cut off and the total battery drain will be substantially equal to the current flowing in the potential

Fig. 2: In this switching circuit the photocell operates the transistor as a current switch.
divider. This is less than 2 mA and so photocells with a low power rating can be used provided they give a suitable change in resistance.
The magnitude of the collector current is determined by the supply voltage, the relay resistance. the current gain of the transistor (α) and the base current. With the values given in the figure and assuming $\alpha=90$ we have:

$$
\begin{aligned}
& \mathrm{Ic}=\alpha \times \mathrm{Ib}, \mathrm{Ib}=1.5 \mathrm{~mA} \text { approximately. } \\
& \therefore \mathrm{Ic}=90 \times 1.5=135 \mathrm{~mA} .
\end{aligned}
$$

However. since the maximum voltage across the relay is 7.5 V and it has a resistance of 6092 the cuirent is limited to $7 \cdot 5 / 60=125 \mathrm{~mA}$. Àny relay
that will operate at this current or below will do and the coil resistance need not be exactly 60Ω. If a relay with a different coil resistance is used the $4.7 \mathrm{k} \Omega$ resistor should be changed accordingly to give a suitable base current. The OC83 can carry a maximum collector current of 500 mA but for power dissipation reasons it is necessary to limit the current to a maximum value of considerably lesz. Currents up to about 200 mA should be O.K. The OA81 diode is placed across the relay to short-circuit any induced e.m.f. set up across the relay windings when the transistor switches off. If the diode were not present any induced e.m.f. due to the relay inductance would give rise to a large voltage across the transistor at a time when it is still conducting quite heavily. In other words, the transistor would be called upon to dissipate too much power.

CIRCUIT TWO

Fig. 3 shows a circuit with variable sensitivity using a $100 \Omega 20 \mathrm{~mA}$ relay. The circuit can be adjusted to respond to any desired intensity of light above a certain minimum. It will work equally well with a bright focused beam and with the light from a 60 mA pea bulb underrun at 40 mA from a supply chopped at $10 \mathrm{c} / \mathrm{s}$. The

Fig. 3: This circuit, which incorporates a sensitivity control, was found to work well even with an underrun 60 mA bulb as the light source.
circuit has been run under these latter conditions for five hours in daylight with the cell unshielded and placed a few centimetres from the flashing bulb. The relay oscillated in sympathy with the light for the whole period in spite of the changing ambient light level. Since the transistor was continually being switched on and off during this time this trial serves as a good test of power stability. The transistor did not heat up at all.
There is much scope for experiment in the circuits of Figs. 2 and 3. Almost any relay to hand may be tried (with due attention to the power handling capacity of the OC83) and the potential divider adjusted to suit any special requirement. Additional sensitivity to dim light may be achieved by connecting point A to a third supply line, positive with respect to the OV line. $1+1.5 \mathrm{~V}$. OV and -7.5 V supplies can readily be obtained from a 9 V grid bias battery). Different types of screening, lattice windows and coloured filters can also be tried. Photoconductive cells will respond to most of the visible spectrum and

Fig. 4: An arrangement for a device to determine the direction of a body passing two cells.

Fig. 5: A practical circuit for the arrangement of Fig. 4.
also to infra-red rays which cannot be seen by the human eye. This is useful for burglar alarms.

CIRCUIT THREE

Fig. 4 is a schematic diagram of a device which uses two parallel beams of light across an entrance with two cells and is capable of determining the direction in which any body interrupting the beams is going. Suppose something is travelling

Fig. 6: A relay drive circuit.
through the beams in the direction of the arrow and that we call the output of the cells " 0 " when they are illuminated and " 1 " when the beam is interrupted. The pulse generator in this circuit is a device that only emits a short output pulse when its input goes $1 / 0$. The gate has output 0 only when both its inputs are 1. Fig. 5 is the practical circuit and 1 indicates a potential of OV and 0 a potential of -7.5 V when related to this circuit.

Beam A will be blocked first and the o / p of cell $A(\operatorname{Tr} 3)$ goes $0 / 1$. The $0 / p$ of gate A is unchanged. since its other i/p (from P.G.B.) is at 0 . The pulse generator A is unaffected since it does not respond to $0 / 1$ voltage steps but only to negative going steps $(1 / 0)$. Then beam B is broken and cell $B(T r 1)$ goes $0 / 1$. Gate B is not affected since its other i / p (from P.G.A., Tr4) is still 0. P.G.B. is unaffected. A little later the body moves out of beam A and cell $\mathrm{A}(\operatorname{Tr} 3)$ goes $1 / 0$. Gate \mathbf{A} does not respond since its other input (from P.G.B.) is at 0. P.G.A. (Tr4) now produces a short pulse $0 / 1 / 0$. Since beam B is still blocked one i / p to gate B (Tr 2) is already at 1 and the gate therefore gives a short output pulse $1 / 0 / 1$ as P.G.A. goes $0 / 1 / 0$. When the body moves out of beam B, P.G.B. gives a short pulse, but as cell $\mathbf{A}(\operatorname{Tr} 3)$ is at 0 gate \mathbf{A} is unaffected.

As the circuit (Fig. 4) is symmetrical gate A will produce a pulse when something passes through the beams in the opposite direction. If a body only passes through one beam, or is too thin to interrupt both beams simultaneously, the device gives no output. This may be used to discriminate between persons and arms where it is necessary to prevent people from interfering with a counter by moving their arms through the beams or between pedestrians and vehicles. If it is required to detect objects moving in one direction only, half of the circuit can be removed (i.e. to detect objects moving in the direction of the arrow P.G.B. and gate A can be discarded). Fig. 5 gives the circuit of such a unidirectional device; for bidirectional detection $\operatorname{Tr} 3$ and $\operatorname{Tr} 4$ should be duplicated with associated components.

The width of the output pulse is determined by the time constant $C R$ and will be less than 1 mS with the values given. Such a short pulse cannot be detected on a meter and, unless the device is feeding into further electronic equipment, it is necessary to connect the output to some prolonging circuit such as a monostable. In the case of a unidirectional circuit and if the operation initiated

LIGHT PROGRAMME EXTENSION \& @ \& \&

by V. E. Holley

THE design to be described is essentially a simple inexpensive fixed-tuned Light Programme receiver which is fitted into an extension speaker cabinet. By a system of simple switching either the programme on your main receiver, or on this receiver may be selected at the extension position. Construction is simple and there are no problems of alignment or stability: the less experienced constructor may therefore attempt it with confidence.

Circuit Description

Fig. 1 shows the circuit of the prototype. The ferrite rod aerial fitted with a long wave coil L1, is fixed-tuned by C1 to $200 \mathrm{kc} / \mathrm{s}$. V1, an EF91 high gain r.f. pentode, is a most versatile and inexpensive valve. The arrangement of V 1 is conventional,
and the stage gain is high and selectivity ample for reception at $200 \mathrm{kc} / \mathrm{s}$.
Further r.f. amplification is provided by a second EF91, V2. It must be explained at this stage. that the prototype unit is in service in a locality where the Light Programme is not very well received. In many areas V 2 and its associated components will not be required and the amplified signal from V1 may be passed through capacitor C4. direct to the diode detector D1. With only one r.f. stage, the decoupling components R2 and C2 can also be dispensed with. These modifications simplify the receiver considerably. As a guide, the single stage version worked very well in the North-west London area but V2 had to be added for satisfactory results in South-west England.
A GEX34. crystal diode is used as a detector, and the rectified signal passes via the filter network C7. R8 and C8, and thence to the volume control VRI.
A.F. amplification and output are provided by an ECL8? triode-pentode. Bias for the triode section is obtained through the $10 \mathrm{M} \Omega$ grid resistor R9, and the cathode can therefore be returned direct to chassis. R10 is the anode load resistor, and C10 couples the audio signal to the grid of the pentode section. R11 and C11 are audio decoupling components. The usual biasing components are included in the pentode cathode circuit, while in the anode circuit, a filter network, comprising R14 and C13 give tone correction. The optimum load for the ECL82 is 9.000Ω and the output transformer should therefore have ratio of about $55: 1$ for a 3Ω speaker or $25: 1$ if the speaker is of 15Ω impedance. There will be a voltage drop across the primary winding of the output transformer and resistor R13 ensures that the voltage at the screen grid shall not exceed that at the anode.

Power Supply

The total h.t. current requirement with two r.f. stages is 60 mA at 230 V , while the valve heaters need 2 A at $6 \cdot 3 \mathrm{~V}$. This is provided by a miniature

Fig. 1: The Light Programme receiving circuit.

Fig 2: The underchossis wiring of the unit.
mains transformer and a 6 X 4 valve rectifier. Any other arrangement which provides these currents and voltages will be quite suitable, however, if half-wave rectification is used, it will be necessary to double the value of the reservoir capacitor C15. Smoothing is provided by resistor R16 and capacitor C14. Depending on whether there are one or two r.f. stages and upon the transformer-rectifier combination employed, the value of R 16 may need alteration to bring the h.t. line voltage within the range $230-250 \mathrm{~V}$. A 6.3 V 0.3 A pilot light is fitted in any convenient position on the front of the speaker cabinet.

Connection to Main Receiver

Switches SI a, b, c and d, are the poles of a 4-pole, 3 -way switch. This is arranged so that, from a central OFF position, rotation in one direction connects the speaker to the main receiver and in the other, to the internal receiver, at the same time switching the power supply as necessary. Switch Slb introduces a dummy resistive load at the positions where the speaker is not connected to the main receiver, so that the loading of the main output stage will not be upset by operations at the extension. If the extension speaker is of 15Ω impedance, the value of R17 should be increased to

COMPONENTS LIST

Resistors:			
R1	1509:	R10	220ks)
*R2	1 kJ 2	RII	22kS
*R3	47kS2	R12	470 ks 2
*R4	$1 k \Omega$	R13	$2 \cdot 2 \mathrm{k} \Omega$
- 25	4.7k!	R14	4.7 ks)
*R6	15012	R15	$680 \Omega 2$
R7	47k!	R16	$1 \mathrm{k} \Omega$, 5 W
R8	47kS?	R17	4.7Ω
R9	10MS		
All 10\% ${ }^{\text {W }}$ W carbon, unless otherwise stated			
VRI	$470 \mathrm{k} \Omega$	neter	d

Valves:

$V 1$	EF91	$V 3$	ECL8
V2	EF91	$V 4$	6×4

Inductors:

LI Dual-wave ferrite rod aerial (Denco FRA2)
RFCI R.F. choke (Denco RFC7A)
TI Output transformer. 55:1 ratio for 3Ω speaker; 25:1 ratio for 15Ω speaker
T2

Mains transformer. Secondaries: 250-0$250 \mathrm{~V}, 60 \mathrm{~mA} ; 6.3 \mathrm{~V}, 2 \mathrm{~A}$

Capacitors:

Cl	330 pF silver mica 350 V
* C 2	$0.01 \mu \mathrm{~F}$ paper 350 V
C3	$0.01 \mu \mathrm{~F}$ paper 350V
C4	330 pF silver mica or ceramic 350
*C5	$0.01 \mu \mathrm{~F}$ paper 350 V
* C6	330 pF ceramic 350V
C7	330 pF ceramic 350 V
C8	330 pF ceramic 350 V
C9	$0.01 \mu \mathrm{~F}$ paper 350 V
Clo	$0.01 \mu \mathrm{~F}$ ceramic 350V
CII	$8 \mu \mathrm{~F}$ electrolytic 350 V
Cl 2	$25 \mu \mathrm{~F}$ electroiytic 25 V
Cl 3	$0.01 \mu \mathrm{~F}$ paper 350 V
C14	$32 \mu \mathrm{~F}$ electrolytic 350 V
Cl5	$8 \mu \mathrm{~F}$ electrolytic 350 V

Miscellaneous:

SI 4-pole, 3-way rotary switch
D1 GEX- 34 or similar diode
LPI 6.3V, 0.3A pilot lamp
Three B7G and one B9A valveholders. Lampholder. Tinned copper wire, sleeving. grommets, etc.
*These components are not required if there is to be only one r.f. stage.
about 22Ω. The connection to the extension line is made by way of a non-reversible, plug and socket as shown in Fig. 2, the "earthy" side of the line being taken to the larger of the plug pins.

Construction

This is not at all critical and the size and shape of the chassis can be varied to suit the cabinet into which it is to be fitted. For the prototype, an 8in. speaker in a cabinet $12 \times 12 \mathrm{in}$. offiered a narrow space at the bottom and a chassis $10 \times 3 \times 1 \frac{1}{2}$ in. of 185.w.g. sheet aluminium was used. Because of the proximity of the aerial. V1 and V2 must be screened and RFC1 must also be enclosed in a screening can. A satisfactory mounting for the aerial can be made from sheet aluminium, cut to shape shown in Fig. 3 and bolted to the rear chassis runner. Fit rubber grommets into the two $\frac{3}{8}$ in. holes and pass the aerial rod through them as shown in the illustration.

Fig. 2: A suggested addition to the chassis for mounting the ferrite rod aerial.
Fig. 3 shows all the wiring and the approximate positions of the components on the chassis. Tinned copper wire of $22 \mathrm{~s} . \mathrm{w} . \mathrm{g}$, covered with sleeving, is suitable for all the wiring. Work can proceed in any desired order, but it is convenient to deal with the power, output and a.f. stages first and to fit the aerial last, one lead from Ll being earthed at a convenient point above chassis. The ratings for resistors and capacitors are given in the components list. No special components are required but it is convenient to use a disc ceramic for C10.

Testing and Alignment

When all the wiring is complete. check with a meter between C15 and chassis to see that there are no shorts in the h.t. circuits. Now connect the power supply and after allowing a minute or so for warming up, advance the volume control and slide LI along the ferrite rod until the programme is heard. Accurate tuning is obtained by connecting a high resistance voltmeter, positive to chassis. across VRI and adjusting the position of LI carefully for maximum indication. Alternatively, the adjustment can be done by ear at very low volume. When the best position for LI has been found, fix it in position with a little beeswax.

Designed to be built into a tape recorder for straight-through radio via the recorder amplifier, or the recording of radio programmes.

BAND EDGE MARKER

Crystal controlled unit, using a single transistor, giving band edge markers for $80,40,20,15$ and 10 metre bands.

THE VERSATILE EF50

Still available for a shilling or two on the surplus market, this valve can be used for a wide number of applications.

TRANSISTOR TWO

Constructional details for a 2-transistor, four-stage reflex receiver for beginners.

SEPTEMBER NUMBER on sale August 5th

Wonderful Response

You will, I am sure, be pleased to know that my letter, printed in the May issue of Practical Wireless, has more than served its purpose

I have received a complete set of transformers from a student in Bridlington and a set of slugs from a Londoner. I also received a rather bald request for "the h.f. coil" with no mention of slugs at all! Even then I would have replied, of course, if he had had the goodness to include a s.a.e.

Perhaps the most pleasant result of your publication was a brief note asking me if I was a person the writer knew years ago in ... 1 am indeed, so you have found an old friend for me!

Again many thanks and my best wishes for the continued success of P.W.
G. H. Scholey, G3CDR.

Dartford, Kent.

Like Practical Television

I sm a keen reader of Practical Wireless and Practical: Television. I think that they are both excellent magazines but I would like to see a Test Case relating to radio in Practical Wireless. I would also like to see a monthly section on Servicing Radio Receivers set on similar lines to Servicing Television Receivers as in Practical Television. Wm. G. Hall.

> Billingham, Co. Durham.
I would be interested to hear what other readers may have to say on the above subiect.Editor.

Competent Constructors

Wrth reference to Mr. R. A. Packer's letter (News and Comment, May issue). In my view. a competent constructor is one who makes the best possible use of components he already has in stock. Or to put it another way, no sensible person would go and buy a new Mini if there was a perfectly good and reliable large car of somewhat older vintage already in the garage.
H. T. Kitchen.

Nuneaton,
Warwicks.

NEWS AND.

SEMICONDUCTOR SUPERMARKET

For the first time in the UK, semiconductor components will soon be available on a self-service basis in a number of centres throughout the country.

Pre-packaged components complete with technical data and information booklets will be displayed in selected retail shops where constructors will be able to help themselves to a range of solar cells, transistors, rectifier diodes, zener diodes, silicon controlled rectifiers, selenium photocells, etc.

The manufacturers of all the products are International Rectifier of Oxted, Surrey, and the first semi-conductor centre opened at SternClyne Ltd. in Holloway Road, London, during May.

All these components have guaranteed performance figures and in the case of such items as transistors, hundreds of American and European equivalents are listed in accompanying literature.

HONG KONG IMPORTS BRITISH RESISTORS

A British electronics firm-Morganite Resistors-is exporting a quarter of a million resistors to Hong Kong every week. According to a recent announcement this is because Japan-a major component supplier to the Hong Kong radio industrycannot make resistors of the same accuracy within the price range, with a tolerance of better than 10%.
The resistors are mainly used in low-cost transistor receivers.

MINIATURE $18 W$ SOLDERING IRON

This new 18 W miniature soldering iron-model " G "-was announced recently by Antex Limited of Grosvenor House, Croydon.

As in all Antex irons, the heat-source of this model is placed inside the actual bit, which is split to prevent "freezing" to the iron. Extra heot storage capacity is achieved with this particular iron in the heavy shank of all the bits designed to fit it. In fact there is a range of four bits (from $\frac{3}{32} \mathrm{in}$. to $\frac{1}{4} i n$.) available for the model " G ".

Complete with bit the iron weighs between two and three ounces (according to the bit used) and costs 32s. 6d .

RADIOTELEPHONES FOR TANKER FLEET

The installation of a v.h.f. a.m./f.m. radiotelephone in the S.S. British Holly this year brings the number of Redifon v.h.f. equipments, now in use aboard B.P.'s fleet of tankers up to one hundred. A similar installation was also made in the 100,000 ton British Admiral-the largest tanker ever built in Europe.

Redifon supply two types of v.h.f. radiotelephone-the GR. 286 Mk. 2 and the GR. 289 Mk. 2 -for use in vessels of all classes. The GR. 286 Mk. 2 provides complete coverage of all allocated f.m. channels in the International Maritime band of $156-162 \mathrm{Mc} / \mathrm{s}$.

The GR. 289 Mk. 2 radiotelephone provides II f.m. channels and covers international distress and safety, inter-ship, port control and radar advice services while also providing public correspondence and private band ship-to-shore channels.

COMMENT

IMPROVED WIRE STRIPPERS

A wire stripper and cutter, more sophisticated than previous models, has been introduced by Multicore Solders Limited (Maylands Avenue, Hemel Hempstead, Herts.).

The tool is in the form of a pair of pliers and is shown in the photograph above. A rotating gauge on the side selects the depth to which the stripper blades cut for any Standard Wire Gauge between 12 and 26, while the blades will also cut through any wire or flex if required. The price is 7 s .6 d .

ELECTRICAL ENGINEERS EXHIBITION 1966

Over 30,000 sq. ft. of extra floor space will be available to exhibitors at next year's Electrical Engineers Exhibition.

Already the dates for the Exhibition, to be held once again at Earls Court, London, have been fixed as 23 rd to 30 th March. Increased overseas participation is expected at the larger show.

RADIO/TV LICENCES TOP 13 $\frac{1}{4}$ MILLION

The total number of combined sound and television receiving licences in the UK now stands at over $13 \frac{1}{4}$ million. The actual figures for April just issued, show an increase during the month of 42,722 to 13,295,767.

The number of sound only licences continues to decrease, the April total being $2,788,405$, including 630.191 for sets in cars.

TELEGRAMS VIA EARLY BIRD

During June American telegraph companies and selected customers in Great Britain exchanged pictures and data, telex calls and public telegraph messages via the Early Bird satellite. (Before this Early Bird had been used to relay trans-Atlantic television exchanges).

The telegraph messages transmitted, were ones selected at random from normal "traffic", and were transmitted both by trans-Atlantic cable and by the satellite. Recipients of these received two copies of the telegrams, one clearly marked "Via Early Bird".

BECAUSE OF THE LARGE NUMBER
BECAUSEOFTHEING "SELL OR OF ONTSTANDING NOW HELD BY LOAN" REQUESTS NOW HELD BY NEXT FEW MONTHS WE WILL NOT BE ABLE TO ACCEPT ANY NETTERS FOR THIS COLUMN.

Sir, 1 would be grateful if any reader could sell or loan me . . .
cireult diagram and/or any informa. cıon regarding the Holland-made radio Type KY5841E "Nr 3731". I do not know the orand but there is a symbol showing an orchestra conductor on the cabinet.-Lee soon Eng, 147 Sungel Korok. Alor Star, Kedah, Malaya.
any details tor making a bass guitar. The main points I wish to know are; the space measurements between the fret wires and the distance from the function of head and stem co bridge.-G. Braddock, 36 liardy's Road, Cleethorpes, Lincs.
modificaion details (2 m) for 19 "'b' set.-l. H. Dresner, Paul's Hill, Leigh, Nr. Tonbridge, Kent
manual or any information about Geloso G 209 Recelver.-C, R. Dcherty. 5; Bedford Street North Liverpool 7
a circuis diagram andior information about the valves used in the "Packard" A00914 four valve superhet m.w receiver.E. Jones, 13 Curie Way, Meadowbridge, Cape, South Airica.
information on the connections to. or any other data on, the c.r.t. type CVI526,-A. F. Young, 56 Church Road Kearsley, Bolton, Lancashire.
the details for a s.s.b. adaptor and a circuit diagram and data of a 60 W v.i.o. type transmicter and modulator.
Also, could the reacer who very kindly tent me the manual lor $>\times 2 \varepsilon$ please lot me have his address.-S. L Anand, 207 I.I.T. Quarters, Kalianpour. Kanpur UP.
any iniormation on the G.P receiver R1II6A, re1. 100/1522, serial No. ?888,-P. Hogarth, 16 Elackett Ave., Norton. Stockton-on-Tees, Co. Durham.
.any information on the crystal controlled oscillator section of the Elsco v.h.i. receiver unit AP61357-62H. No. 1597, including the type and frequency of crystal required.-F. Neeson, 34 Bangor Road, Holywood, Co. Down, N. Ireland.
circuls diagram and information re Hallicraiters Communications Receiver model $\$ 40$; irequency range $55 \mathrm{Mc} / \mathrm{s}$ to $44 \mathrm{Mc} / \mathrm{s}$. -Nimal Ratnayake, Royal Coylon Air Force. China bay, Ceyion.
any information al all on unit R-3/ARR-2X andlor indicator unit type Z6.-D. Bartle, Runnymede. 35 Oaklano Avenue, West Hartlepool
the handbook or circuit diagram for the wireless set (Canadian) 58 Mk.I.M. Brereton, 38 Burma Road, Stoke New. ington, London, N. 16
a circuit of an oscilloscope using the "Etel 4EP7"' tube.-James P. F. Windle. 57 Victoria Rise, London. © W. 4.
. the handbook for the R220.-1 Freer, 83 West End, Kirbymoorside, York. the handbook for the Globe Scout model 65, by World Radio. Also information as to where a stockist for this company exists in Britain.-Denis McCann, 23 Ochilview, Cowie, Sturlinastire, Scotland, a service sheet or circuit diagram lor Smith's Radiomobile model 4100 .or 4200 car radio.-3. Carpenter, 7 Hawkdene, Chingford, London, E. 4.
the circuit and servicing manual of the Walter Metropolitan tape recorder.13 Grange Avenue, Leicester Forest East, Lcicester.
\therefore any information on the army ser No. 9,-B. Kitcher, II Scarborough Road. Blackburn. Lancashire.

PREPARING

 옆
 BRIAN ROBINSON.

10. CRYSTAL OSCILLATORS; FREQUENCY MULTIPLIERS; POWER AMPLIFIERS; TRANSMITTER KEYING; AMPLITUDE MODULÁTING A TRANS. MITTER

10.1 r.F. Oscillotor Stability

VARIOUS oscillator circuits were dealt with in a previous article (R.A.E., May, 1965. P.W.) and in each case the frequency of oscillation was determined by an inductance and capacitance combination forming a tuned circuit. (Types of oscillators mentioned included the Tuned Anodetuned Grid (T.A.T.G.), Colpitts and Hartley.)
In any of these circuits a change in the value of any component in the tuned circuit will result in a change in frequency of the oscillator. For example, if the oscillator valve generates sufficient heat to slightly alter the size of the inductance a gradual frequency drift will occur. Changes in voltages applied to the valve electrodes may also cause frequency changes as different voltages will cause different amounts of heat to he generated. Mechanical vibrations in an oscillator may also cause frequency changes-and can even modulate the oscillator frequency.

An extremely stable oscillator can, however, be constructed which does not use the familiar inductance/capacitance in the grid circuit but instead uses a quartz crystal.

10.2 Crystal Controlled Oscillators

The frequency of an oscillator can be maintained at a constant level by using a quartz crystal as the tuned circuit. The crystal is resonant at a particular fixed frequency and this is determined almost completely by the dimensions of the crystal. In fact the thickness of the crystal is the

Fig. 88: The Pierce crystal controlled oscillotor.
main controlling factor. In order to make a quartz crystal oscillate, however, feedback from the anode to the grid must be facilitated in much the same way as in other types of oscillator mentioned.

When a crystal oscillator is operating. a small current passes through the crystal, this being determined primarily by the amount of feedback applied. If this current becomes too large, heating of the crystal will occur and slight frequency changes will result. It is important to use as low a crystal current as possible-consistent with easily maintained oscillation.

It can be seen that the power output of a crystal controlled oscillator should preferably be kept low and in this respect it is inferior to the inductance/capacitance controlled oscillator.

10.3 Typical Crystal Controlled Osellator Circuits

In Fig. 88 is shown a very simple crystal controlled oscillator circuit-this is, in fact, a Pierce oscillator.
In Fig. 88 the amount of feedback is controlled hy the ratio of the values of Cl and C 2 . If the circuit is studied carefully it can be seen that Cl is in parallel with the anode/cathode interelectrode capacitance of the valve and that C_{2} is in parallel with the grid/cathode interelectrode capacitance of the valve. In order to obtain feedback the interelectrode capacitances of the valve are effectively increased. R is a grid leak and may have a value of $20-100.000$ s. R.F.C. is a radio frequency choke and this prevents r.f. power from the oscillator being dissipated in the power supply or from being passed to another circuil through the power supply circuits.

Shown in Fig. 89 is an oscillator circuit which is basically the same as the tuned anode-tuned grid oscillator dealt with previously. In this case the inductance/capacitance in the grid circuit has simply been replaced by a quartz crystal.

Fig. 89: A grid plate crystal controlled oscillator.

10.4 Frequency Multiplier Cireuits

Up to quite recently crystals were only reliable up to a frequency of about $20-30 \mathrm{Mc} / \mathrm{s}$, crystals for higher frequencies being very thin and afle to operate at very low powers only. Therefore it was found to be comparatively easy to multiply the frequency of opcration of a crystal. Frequency

The demand for good Electronic Engineers is increasing almost daily throughout the world. Electronics is now the most rapidly expanding of all industries with its applications reaching into almost every sphere of human activity. If you are looking for a new career with new opportunities, then now is the time to chooseElectronics. If you are already employed in this fieldthen now is the moment to seek high qualifications to secure the top jobs which are waiting to be filled. Most of all, the great potential of electronic develop. ment means unlimited scope for the future and will ensure a secure occupation for you-unlikely to be affected by possible future recessions in other industries;
The British National Radio School has had 25 years' experience of HOME STUDY coaching for students wishing to master the fascinating subjects of Elecwishing to mics-whether the object be career or as a hobby or new interest. The School is entirely independent and specialises ONLY in the teaching of electronic subjects. It employs only fully qualified staff to conduct and supervise each individual course taken by a student and it is this close and personal contact between Tutor and Student which we believe makes possible the successful completion of a course of study.

A special feature of our system is that alf courses start right from the beginning and no previous knowledge or experience is necessary or expected. Training is carried out in easy step-by-step stages using the most modern methods of tuition. The great advantage of the home study method is that it provides a complete self-contained course giving everything needed for the subject concerned and enabling work to be done in the comfort of one's own home and over any period of time desired.

EXAMINATION COURSES

- CITY \& GUILDS TELECOM. TECHNICIANS CERT. CITY \& GUILDS FULL TECHNOLOGICAL CERT. - A.M.Brit.I.R.E. EXAMINATION
- RADIO AMATEURS LICENCE EXAMINATION
- P.M.G. CERTIFICATES FOR RADIO OPERATORS
- R.T.E.B. SERVICING CERTIFICATES

OTHER COURSES

MATHEMATICS SERVO.MECHANISMS
TELEVISION COMPUTERS
TRANSISTORS RADAR \& NAVIGATIONAL

TRANSISTORS

LEARN - THE

PRACtIGAL WAY... 4

Fig. 90: A frequency multiplier circuit.
multipliers are also of use to enable a single crystal of, say, $3 \cdot 5 \mathrm{Mc} / \mathrm{s}$ to be used to obtain output frequencies of $3 \cdot 5,7$ and $14 \mathrm{Mc} / \mathrm{s}$, etc.
In a simple form a frequency multiplier could be as represented in Fig. 90 . The tuned circuit in the grid of the valve is resonant at the same frequency as the crystal oscillator and the tuned circuit in the anode may be resonant at two, three, four or five times this frequency. The power output from a frequency multiplier can never be as great as when the stage is used as a straight amplifier. Consequently the greater the number of times the frequency is multiplied the less the power output from the multiplicr. Bearing this in mind it is not general to use frequency multipliers which multiply the frequency more than five times.
A simpler frequency multiplier does not use a tuned circuit in the grid but is connetced directly to the oscillator anode. This circuit is shown in Fig. 91.

Ejg. 91 : A simpler. frequency multiplier in which the cuned circuit in the grid of Fig. 90 is eliminated.

10.5 R.F. Power Amplifler Circuits

In order to radiate considerable power from a transmitter the signal generated by the oscillator has to be amplified to a very grcat extent. The function of a power amplifier is, as mentioned, to generate high r.f. powers, but it must also be efficient in respect that harmonic radiation is low. In order to minimise harmonic radiation the Q of the tuned circuits used in a Power Amplifier (p.a.) is made very high.

A simple p.a. is shown in Fig. 92 and L2 may be connected to the aerial or to the next amplifier stage. The load resistance at which the valve operates must be matched to the transmission cable which carries the power to the aerial. For example, the transmission line or feeder may be of, say, 300Ω impedance and, as the p.a. load resistance is usually much higher, L1-L2 constitute a step-down matching transformer.

Fig. 92: The circuit of a simple r.f. power amplifier.
In Fig. 92 the r.f.c. is to prevent the power from the driver stage being dissipated in the low impedance bias supply. R.F. power amplifiers are generally operated under Class C or $A B$ conditions. Output circuits will be dealt with further when aerials are discussed.

10.6 Keying a Transmitter

In order to radiate carrier wave (c.w.) signals, using the Morse Code, the output of the transmitter must be reduced to zero after each "dot" and "dash". This is simply a way of saying that in fact the transmitter must be switched on and off in order to radiate the desired signal. This is usually accomplished by using a key. In the interests of safety it is desirable to key the transmitter at a point where high voltages are not present. The key is often placed in the cathode circuit of a crystal controlled oscillator or in the cathode circuit of a buffer amplifier (a buffer amplifier is an amplifier which is used to isolate an oscillator from any higher power amplifier which may follow and it usually operates at the same frequency as the oscillator): In a v.f.o. (variable frequency oscillator) it would be

DESPATCH－TODA

Q MAX CHASSIS CUTTER				
Complete die	punch	Allen		16
14／6	inin．	18%	2in．	32／3
		181	${ }_{2} \frac{3}{3}$	37
15／9	$1 \frac{18}{6} \mathrm{in}$ ．	20\％	$2 \frac{1}{2} \mathrm{in}$ ．	4419
18\％	1年年．	2016	lin．sq．	

Coils Wearte＂P^{\prime}＂，4／－：Omar＂Q＂from 4／－0

 transistor circuits． $10 /-$ each．
Ferrite Rod． $8 \times$ din．． 6×3 in．． $6 \mathrm{x}^{5} / 16^{\text {in }}$. ． $3 /$－ea． H．F．Chokes，2／6．Oinior（eci， $6 / 9$ Trsi Prods． $2 / 9$ ．set Trim Twols， $3 /$ ， Neon Mains Tester serewdriver，5／－

MINDATIRE PANEL METERS			
5 may 300 V	$27 / 6$ $27 / 6$		32／6

MOVING COIL MLLTLMETER TK 20 a $0-1000 \mathrm{v}$ ．A．C．／D．C．，ohms 0 to 100k，etc．， $49 / 6$. PALVE HOLDERS．Int．Oct，or Mazda oct．， 16 ． B7G，BRA，BRG，B9A，9d．：B7G B9A，with can 1／6
Ig6s Badog．A．CHASSIS

\section*{new electrolytics famous makes
 TUBULAR} TUBULAR TUBULAR CAN TYPES | $1 / 350 \mathrm{~V}$ | $2 /-100 / 25 \mathrm{~V}$ | $2 /-8 / 600 \mathrm{~V}$ | |
| :--- | :--- | :--- | :--- |
| $2 / 350 \mathrm{~V}$ | $2 / 3$ | $250 / 25 \mathrm{~V}$ | $2 / 6$ | $\begin{array}{lllll}2 / 350 \mathrm{~V} & 2 / 3250 / 25 \mathrm{~V} & 2 / 6 & 16 / 600 \mathrm{~V} & 12 /- \\ 4 / 350 \mathrm{~V} & 2 / 3 & 500 / 15 \mathrm{~V} & 2 / 616+18 / 500 \mathrm{~V} & / / 6\end{array}$ | $4 / 350 \mathrm{~V}$ | $2 / 3$ | $500 / 15 \mathrm{~V}$ | $2 / 6$ | $16+18 / 500 \mathrm{~V}$ | $1 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $8 / 450 \mathrm{~V}$ | $2 / 3$ | $1.000 / 15 \mathrm{~V}$ | $2 / 6$ | $32+32 / 350 \mathrm{~V}$ | $5 / 6$ |
| $16 / 430 \mathrm{~V}$ | $3 /-8+8 / 450 \mathrm{~V}$ | $3 / 6$ | $32+32 / 450 \mathrm{~V}$ | $6 /-$ | | | $16 / 450 \mathrm{~V}$ | $3 /-8+8 / 450 \mathrm{~V}$ | $3 / 6$ | $32+32 / 450 \mathrm{~V}$ |
| :--- | :--- | :--- | :--- |
| $32 / 450 \mathrm{~V}$ | $3 / 9$ | $8+16 / 450 \mathrm{~V}$ | $3 / 8$ |
| $25 / 25$ | $50 / 50 / 350 \mathrm{~V}$ | $/ j \overrightarrow{ }$ | | | $25 / 25 \mathrm{~V}$ | $1 / 9$ | $16+18 / 450 \nabla 9 / 3$ | $64+120 / 350 \mathrm{~V}$ | $11 / 8$ |
| :--- | :--- | :--- | :--- | :--- |
| $50 / 50 \mathrm{~V}$ | $2 /-32+32,350 \mathrm{~V}$ | $4 / 6$ | $100+200 / 275 \mathrm{~V}$ | $12 /-$ | PAPER TUBDLARS

 $500 \mathrm{v}, 0.001$ to $0.059 \mathrm{~g} . ; 0.11 /-11.251 / 6 ; 0.52 / 6$.
$1.000 \mathrm{v} .0 .101 .0 .062 .0 .005 .6 .01 .0 .02,1 / 6 ; 0.65$. 2．0008． $0.005,0.1 .01,2 /-0.022 / 8 ; 0.05,1153 /-4 / 6$. Sub－Min．． $001, .005, .01, .02, .04, .05, ~ n .1,100 \mathrm{v}$ ． $1 /-$ ea， $1,2,4,5,8,14 i, 25,30.50,100,500$ $1,000 \mathrm{mFd}, 15$ volt． $2 / 6$.
SILVER MICA（tolerance 1 pF$), 2.1$ to $47 \mathrm{pF}, 1 / \%$ ； ditto $1 \% 50$ to $.0 \mathrm{lmt} u, 1 /-; 1.000$ to $5,000 \mathrm{pF}, 1 / 8$ ． Ceramics $\overline{0} 00 \mathrm{~V}$, IpF＇to 0.01 mid．， 9 d ．each．
TWIN GANG．＂ $0=0$＂ $208 \mathrm{pF}+17 \mathrm{pF}, 10 / 6: 365$ TWIN GANG．＂ $0-0$＂ $208 \mathrm{pF}+\mathrm{pr}$ pF， $10 / 6$ ， 365 p^{F} minuature， $107+500 \mathrm{pF}$ standard pF slow motion． 9／6；maget with trimmers，
atandard． $9 /-;$ small $3-g a n g$ bol pr，19／9．Singte standard． $9 /-$ ；small $3-\mathrm{g}^{2} \mathrm{gang} 500 \mathrm{pF}$ ．19／g．single $25 \mathrm{pF}, 50 \mathrm{pF} .75 \mathrm{pF}, 100 \mathrm{pF}, 1$ in $0 \mathrm{pF}, 5 / 6$ each， Can be ganged together．Couplers 9d．each．
Can be ganked together．AND REACTION． 100 PF 300 pF ， TUNING AND $3 / 6$ each．Bolid djelectric．TRIMMERS compression ceramic， $30,50,70 \mathrm{pF}, 9 \mathrm{~d}, 100 \mathrm{pF}$, $150 \mathrm{pF}, 1 / 3 ; 205 \mathrm{PF}, 1 / 6: 600$
Trimner with knob $1000 \mathrm{pF}, 2 /$ ．
 Linear 10w．48／8；Standard Pentode 5／8；low． Push Pull 18／8．

TRANSISTOR MAINS
ELIMINATOR PPl－fv．＇P9－9v． 2916. DOUBLES，42／6．PP1＋PP1，PP9＋［PP9，PP11
$\frac{14+111 \text { samp size as batterics．}}{\text { WEYRAD P50 COILS }}$
WEYRAD P50 COILS
Ferrite aerial 12／6：Osc．P50／1AC 5／6；1st amd 2 nd I．F．P50／2CC $5 / 7$ each； 3 rd I．F P50／3CC 6／－i Driver Trans－J，FDT4 9／6； Printed Circuit 9／6：35 ohm Speakers， 5 in．
$1 \% / 6 ; 6 \times 41 \mathrm{n}$ ．21／－：Bonk $2 /-$ ．
NEW MULLARD TRANSISTORS Holders 1／3；OC71，B／－；OCr2．7／6；OA210，9／6； OC81，7／6；AF115，10／6；AP1I4， $11 /-$ OC44． $8 /-$
 Min Condensers $0.1 \mathrm{mFd}, 30 \mathrm{v} 1 / 3 ; 1,2,4,5,8$ ， $16,25,30,50,100,500,1,000 \mathrm{mFd}, 15$ volt， $2 / \mathrm{s}$ ． MAINS TRANSFORMERS Postage $2_{j} / *$ each． STANDARD $\because 50-0-250$.
apped $29 / 6$ 2a．or 4 v． 2 a．， $22 / 6$ ，intito $3 \overline{50}-(0-350$
 MMLL， HEATER TRANS．， 5.3 v．， $1 \frac{1}{2}$ a． $7 / 6$ ： 4
 $3,4.5,6,8,9,10,12,15,18.24 .30$ 1 amp．version，taps up to 60 v
AUTOTRANSFORMERS， 150 ．
U．115， $200,230,240$ を＇ 500 T．
MULLARD＂ 510^{*} Mains Tranatormer
TRANSISTOR， 9 F ． $80 \mathrm{~mA}, 1 \frac{1}{2} \times 1 \frac{1}{} \times \mathrm{lin}$ ．

BEST BRITISH P．V．C．

RECORDING TAPES
LP 5in． 900 ft ． $11 / 8: \quad 1 \mathrm{PP} 120 \mathrm{ft}$ ． $18 / 6$

 Volume Controls 80 cable cond | Linear or \log Tracks， | Eemi－air spaced tin． |
| :--- | :--- |
| Ling． | |

 I．s． $3 / \%$ D．1．4／6 Bteres L／B 10／6；bP．14／6
 TELESCOPIC GHROME AERLALS， 12 to $33 i \mathrm{in} .6 / 6$ ． LRIPLEXERS Bands I，II．III，19／6．COAX PL
LEAD SOCKETS，2／－：PANEL SOCKETS，1／－
BATA T BO TWIN FEEDER Fil．．8d．，$k 0$ or $; 100$ ohms BALANCED TWIN FEEDER 5il．80．， 40 ohn anly． THE＂INSTANT＂BULK TAPE ERASER AND RECORD HEAD

BAKER＇S SELHURST LOUDSPEAKERS
12 in． 15 w．Stalwart， 8 or 15 ohms， $45-13,000$ c．p．E．， 2in wat Guitar Model 12 in． 25 wati Guitar Modal 15 ohm， $20-10,000$ c．p．s． Bass Res． 80 c．p．s．bgns． 12in．Standard H．D． 20 w ． 40＝14．500 e．p．s． 12in．35w．Guitar ．． 8 －Ens 12 in ．De Lure 15 w ． 25 17,000 c．p．s．Foam 9 gns. 12in．Bass 25w．20－18，000
 e．p．s． 17,000 lines． 12 gns 15 n ．Auditornum， $35 \mathrm{w} ., 20$ c．p．3． $1012 \mathrm{kc} / \mathrm{s} .18 \mathrm{gng}$ 15ın， 50 W Gutar Model， $20-10 \mathrm{kc}$＇s．．． 18 gns. C．R．T．HOUSTER TK．NNFGRNEIKS for heater cathode short chrcult，or
tubes with taling emssions．Full tubes with lahing emassions．frout． Oytional 5% and 30% boust．
 required，PR1CF15／6．
LOUDSPEAKERS，P．M． 3 OHM FAMOUS MAKES 2in．，3in．4in．5in．， $7 \times 4 i n .15 / 6$ each： $8 i n ., 1 \pi / 6$
 $10 \times 6 i n ., 22 / 6 ; 8 \times 3 i n ., 21 /=; 9 \times 6 i n ., 21 /$ ．
 WAVE－CHANGE SWITCHES． 2 p． 2 －way or 2 p － f－way； 3 p． 4 －ray or 1 p． 12 －way； 4 p． 2 －way or 4 p 3 －way， $3 / 6$ ea．：\＆p．4－way，＇2 water， $6 / 6$ WAVE－CHANGE＂MAKITS＂avalable； 1 p．12－way， 2 p． 6 －way 3 p．4－way 4 p．3－way 6 p．2－wig．Kit Prices 1 wafer 8／6；2 wafer 12／B； 3 wafer 16／－．Entra wafers $3 / 6$ each，extra long shatts 2／－extra．
TOGGLE SWITGHES，s．p．2／－：d．p．．8／6；d．p．t．，4／－

JACES standard npen－circuit 2／6．＂losed circuit 4／6 Grundig type 3－pim $1 / 3$ ；Btandarit Lead Type $8 /=$ Phnito Plugs $1 / \mathrm{m}$ ．socket $1 /=$ Banana Plugs $1 / 6$ ACK PLUO，Screened PLOGS sind SOCEETS Pr4． BULGIN NON－REV PLUGS \＆nd RESISTORS．Preierred values． 10 ohms to 10 meg． RESISTORS．Preierred values． 10 ohms $4 \mathrm{~d} . ; 1$ ． 10 ． $1 /=$ H1GE STABILITY $\mathrm{T}^{2} . .10_{0}, 2 /-$ ．Preierred value， 10 ohms to 10 meg ．Ilit to 5% ． 10 ohms to 22 meg．， 8 d 5 watt $\quad 10$ watt $\} \quad 0.5$ to 8.2 ohm 3 W． 15 watt $\} \quad 10$ ohme -6.800 ohms
$10 \mathrm{~K}, 15 \mathrm{~K}, 25 \mathrm{~K}, 10 \mathrm{w}$ ． MAINS DROPPERS Midget．With sliders． $0.3 a_{1}$ ］K． $0.2 \mathrm{a} ., 1.2 \mathrm{~K} ., 0.15$ a． $1.5 \mathrm{~K} ., 0.1$ a．， $2 \mathrm{~K} ., 6 /$ each．Line Cord 100 ohms ft． 3 －way， $1 /$ f each．Line Cord Spesker Controls $10 \Omega 3 /-; 95 \Omega$ 6／8． WIRE－WOUND POTS 3 WATT．Pre－set Min．TV Types．All values 10 ohms to 25 K. ． $3 /$－each． 30 K ． 4／－．（Carbon 30 K to 2 meg．． $3 /-$ ）．
WIRE－WOUND POTS 4 WATTS．Long Spindle． Value 50 ohms to 50 K. ． $8 / 6 ; 100 \mathrm{~K}$. ． $7 / 8$ ．
SPEAKER FRET Tygan sarious colours．52in．wide． from－10／－ft．；26in．Fide from $5 /-\mathrm{ft}$ ．Semples S．A．E． EXPANDED METAL rold $12 \times 12,6 / F$ TRANS ARDENTE TRANSISTOR TRANSFOR
D3035 7．3CT．I Push－pull to 3 obms output $11 /$
 D3058 11．5：1 Ontput 3 ohmas， $11 /-$ ：D1001， $12 /-$ D239 4．5：1 Driver：D240，8．5：1 Driver $11 / 6$ TRANSISTOR POTS 5 K \＆witched VC1545 5／3 SUB－MIN JACH AND PLDG 2.5 or 3.5 mm ．， $3 / 6 \mathrm{pr}$ ．

Hank Aliminimin（hassis， 18 s．w．g． 4 sides，riveted corners，lattice fixing holes， 2 in．sides， 7×4 in．．5／6： $9 \times 7 \mathrm{~m}$ ．

TEGHIICAL training in radio television and electronics

Whether you are a newcomer to radio and electronics, or are engaged in the industry and wish to prepare for a recognized examination, ICS can further your technical knowledge and provide the specialized training so essential to success. ICS have helped thousands of ambitious men to move up into higher paid jobs-they can help you too! Why not fill in the coupon below and find out how?
Many diploma and examination courses available, including expert coaching for:

- Institution of Electronics \& Radio Engineers (Brit.I.R.E.)

- C. \& G. Telecommunication Techns' Certs.
C. \& G. Supplementary Studies
- R.T.E.B. Radio/T.V. Servicing Certificate
- Radio Amateurs' Examination
- P.M.G. Certs in Radiotelegraphy
- General Certificate of Education, etc.

Examination Students Coached until Successful

NEW SELF-BUILD RADIO COURSES

Learn as you build. You can learn both the theory and practice of valve and transistor circuits, and servicing work while building your own 5 -valve receiver, transistor portable, signal generator and multi-test meter-all under expert tuition. Transistor portable available as separate course

POST THIS COUPON TODAY

for full details of ICS courses in Radio, T.V. and Electronics.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. I7I, Intertext House, Parkgate Roed, London,
S.W.Il
$\begin{aligned} & \text { Please send me the ICS prospectusefree and without } \\ & \text { obligation. } \\ & \text { (state Sublect-or Exam. } \\ & \text { NAME } \\ & \text { ADDRESS }\end{aligned}$.
INTERNATIONAL CORRESPONDENCE SCHOOLS

BRAND NEW AM/FM (V.H.F.) RADIO GRAM CHASsIS AT \&13.13.0 (Carriage Paid)

Chassis aize $1 \overline{5} \times 6{ }^{2} \times 5 \mathrm{in}$. high. New manufacture. Dlal 14 y 工 4 in . in two colours, predominantly cream. :00-250\%. A.C. only.
Pics-up, Gxt. Speaker, Ae., E., and Dipole Aockets. Five puahbut tontOFF, L. W., M.W., F.M., and Gram. Aligned and teated O.P. Trans-
 required.
10 f fin. ELLIPTICAL BPEAKER 25/- to purchasers of this chaneis. Chesp Room Dipoie for V.B.F., 12/8 5 monthly payments of e2.4.0. ALTERNATIVE DESIGN. L. W. 10/6. Feeder Bd, per rard.
$190.475 \mathrm{M}$. , Y.H.F. $87-100 \mathrm{Mc} / \mathrm{s}$. Gram abote chasis. Price 215.15 .0 (cart. paid), TERMS. Atbermiae slmilar th monthly parments of 22.4 .0 . Total F.P. price 818.140 . and diagram 2/6.

AMERICAN BRAND TAPE
MTLAR BULLY GUARANTEED AT RECORD LOW PRIUES
7th. stand. piay
7in. Iong play, 1, 800 ft
din. Double play. 1.200 it
blin. Double piay. 1, mooft.
7 ln . Double plač 2,400ft.
31n. Triple play. 450ft. (Plain white boxes)"
4in. Triple plag, 900 ft . (Plain white boxes)
$5 i n$. Triple play, $1,800 \mathrm{ft}$. (Plain white boxes)
7n. Triple play, 3.600/t. (Unboxed)
ACETATE BASE

 7in. Long plesp, 1,800it. . . 15/- 3in. Triple play, 450it. Postage $1 /$ - per reel (4 or more post free)

SELF-POWERED V,H,F. TUNRRR ORASBIS

 ability tumer. Dime. $8 \times 6 \times 6$ in. high. Valves ECC85 and 2. EF89's plus Hlodes with EZ80 rectifier. Maing traus former. Fully wired and teated 28.17.6 (cart. paid), Room Lipole 12/8 Feeder 8d. per yatd.

HIGH GAIN PUSH-PULL OUTPUT AMPLIFIER 85.4 .6 (6/- post) Valves EZ80. ECCB3 and 2-EBCL 82 giving 8 watts. Chassis $12 \times$ 31 I 3yin. With O.P. Transe for 3 and 16 -ohm speaker. Isolated chamas. Bass and treble outa Mike. Gular, radlo and crystal
plck-up input. Facilities for plck-up input. Fecilities for mixing mike and radio etc. Front panel ilxed.
Also available a etraight 10 -
Watt amplifer with bass, treble

and volume controls at 5.5 .0 . ($6 / \mathrm{F}$ post). Front panel may be removed on this amp.
 4 TRANSISTOR MINIATURE PUSH-PULL AUDIO AMPLIFIER HIGH IMPEDANCE
PRINTED CIRCOIT, 4 in . x y y in. I Ifin. over transformers. Output for $3-0 \mathrm{hm}$ speaker. Suitable for microphone, record player and intercom. 9 Folt battery required. Frequency range 100 cps , to 25 K cps. Push-pull output elass B. Instruction sheet provided. Fally wired resdy for use. Three types, $200 \mathrm{~mW}, 35 /=; 500 \mathrm{~mW} 41 / \mathrm{F}$; $1.2 \mathrm{~W} 57 / 6$. (P. \& P. $2 / 6$ each).

CM21 CRY8TAL MICROPHONE

With 2.5 man. Jakk plug, 1216 (Post 1/6).
4 TRANSISTOR BABY ALABM. Attractive walnut veneer spenker
 Ifed. (P,P. 6 battery required)-will last for hundreds of hours. Volume Contral and On/OH. Price 88.19 .6 . (P. \& P. $5 /-$),

GLADSTONE RADIO

66 ELMS ROAD, ALDERSHOT, Hants.
(部 zing trom gtation and Buses.)
Aldermhot 25240
CLOAED WEDNESDAT APMERNOON

preferable to key the buffer amplifier rather than the oscillator in order to ensure that the signal does not become "chirpy". A chirpy note results when the keying of the transmitter either directly or indirectly alters the frequency of the oscillator.

When the transmitter key is closed a spark may result; this will generate an r.f. signal`but this will only be heard in the immediate vicinity of the transmitter.

When key clicks can be detected on a receiver many miles away they are formed in a different way. When the transmitter is keyed and the carrier wave is interrupted almost instantaneously a key click will result. In order to eliminate the key click the components in the keying circuit must be arranged so that the carrier wave is not interrupted instantaneously but fairly gradually. (The time taken for the signal to reach its peak value is, of course, only measurable in micro-seconds- $\mu \mathrm{S}$.)

Fig. 93: A typical keying circuit. The r.f. choke and capacitor eliminates key clicks.

A simple keying circuit which could be used in the cathode circuit of a buffer amplifier is shown in Fig. 93. The radio frequency choke and the capacitor act as a filter to eliminate r.f. clicks.

10.6 Amplitude Modulating Transmitter

Modulation is the superimposing of one type of signal on to another, in fact in the cases to be discussed it is the superimposing of an a.f. signal on an r.f. signal.

In Fig. 94a an r.f. signal is represented and in Fig. 94 b an a.f. signal is represented. (Scales are not, of course, correct.) If $94 a$ is modulated by 94b the modulated wave will be of the type shown in Fig. 95. The line AB on Fig. 95 represents the mean value of the modulating signal and the ratio of x to y enables the percentage modulation to be calculated, i.e. percentage modulation.

$$
=\frac{x}{y} \times 100 \%
$$

Obviously if x equals y the modulation must be 100%. A carrier modulated to 100% is shown in Fig. 96.

If modulation exceeds 100%, distortion will occur as the signal envelope is no longer the same shape as the modulating signal.

When a carrier is modulated the signal which is transmitted does in fact consist of three components, a carrier, an upper sideband and a lower sideband. If a carrier of $100 \mathrm{kc} / \mathrm{s}$ is modulated by an a.f. signal of $10 \mathrm{kc} / \mathrm{s}$ the transmitted signal would consist of three components$100 \mathrm{kc} / \mathrm{s}$ (the carrier), $100 \mathrm{kc} / \mathrm{s}+10 \mathrm{kc} / \mathrm{s}$ (the upper
sideband) and $100 \mathrm{kc} / \mathrm{s}-10 \mathrm{kc} /$ (the lower sideband). The modulating signal is carried by the sidebands.

10.7 Anode Modulating a Transmitter

A very common method of amplitude modulating a transmitter is anode modulation. The output from an audio amplifier (class \mathbf{A} or \mathbf{B} and generally push-pull) is passed, via a modulation transformer, to the anode voltage supply of the r.f. power amplifier valve. The modulation of the r.f. amplifier will be 100% when the output of the andio amplifier is such that the voltage appearing at the r:f. amplifier anode varies between 0 and 200% of its d.c. operating voltage.

In order to obtain 100% modulation the sime wave audio power output from the modulator

Fig. $94(a)$: The r.f. signal; (b): the a.f. signal.

Fig. 95 : Here the r.f. signal has been modulated by the a.f.

Fig. 96: 100% modulation.

Fig. 97: Modulation in excess of 100%.

must be at least half of the d.c. power input to the r.f. amplifier.

Readers-are advised to study also control grid modulation, screen grid modulation and cathode modulation.

Fig. 98: A typical superhet circuit which would fulfil the requirements of last month's question. It should be remembered however that there could be many variations to this circuit and therefore many correct solutions.

Question.-Draw diagrams of the type shown in Figs. 95,96 and 97 to show a carrier wave modulated to-

Last Month's Question.-A typical answer to this question is as shown in Fig. 98.

PART II NEXT MONTH

SOLAR-POWERED POCKET RECEIVER

-continued from page 302

compromise between the signal direction and the light direction has to be made.

The, total cost of the final receiver was about $£ 3$, but this may be reduced considerably by using an International Rectifier $\mathbf{B 2 M}$ solar cell, price 15 s .

The effect of adding a second transistor was negligible but further experiments may prove
fruitful. The final circuit appears so simple that to many it would appear inconceivable that it works, yet it does. Surely in this circuit the transistor is operating to its capabilities (as they should in all circuits). The field of light operated transistor circuits appears to be almost untouched by experimenters, both amateur and professional (what about Sinclair Radionics Ltd. and others?). The writer would be very interested in receiving details of similar experiments carried out by readers.

PHOTOCELL CIRCUITS

-continued from page 326

by the device has a definite ending (e.g. garage door opening, gate opening, etc.) the output from the gate can be made to set a bistable which controls the opening motor. A limit switch can then be used to reset the bistable when the doors have opened.

No particular transistor is specified for the bulk of the circuit as almost any type will do except surface barrier types.

Fig. 6 shows a suitable relay drive circuit which may be tacked on to. any bistable or monostable designed for these supply voltages and with a collector resistance of around $1.5 \mathrm{k} \Omega$.

For simple on/off applications the photocell should be mounted in a lightproof box painted matt black inside. A simple lens system using two converging lenses with the cell and lamp filament at the foci will do. The cell lens should be whielded by; 2 tube painted matt black inside so
that light can only enter from sources along the axis of the tube.

The constructor who has some old glass encapsulated transistors which are lightproofed with black paint might like to try making his own photocell by scraping off the paint. The paint can easily be scraped off with a penknife and should be removed from the rounded top end and for about 2 mm down the side. The capsule will be filled with blue, white, greyish or transparent grease. Obviously the transparent grease types are best and the blue and white types are no good at all; it is best to repaint them for future use. The scraped transistor will function as a photoconductive cell (emitter $+v e$) with the base open circuit, but for best results try a resistance between base and emitter. The value will be between 5 and $100 \mathrm{k} \Omega$ and can be found experimentally. Photocells made in this way will not be as sensitive as proper ones but can be made to work perfectly well by the use of a suitable transistor amplifier stage.

Wh

 NOT BUILD ONE OFOUR

 NOT BUILD ONE OFOUR PORTABLE TRANSISTOR PORTABLE TRANSISTOR RADIOS...

 RADIOS...}

BACKED BY OUR SUPER AFTER SALES SERVICE

ROAMER SEVEN Mk III

5 WAVEBAND PORTABLE OH CAR RADIO Amazing performance and specification *Now with PHILCO MICRO-ALLOY R.F. TRANSISTORS Covers Medium and Long Waves, Trawler Band and two Short Waves to approx. 15 metres. Push-pull output for room filling volume from Hoh toned heavy "Celestion" speaker. Air spaces ganged tuning condenser. Ferrite rod aerial ior M \& L waves and telescopic acrial 9 fin. approx. The perfert poriable and the Ideal car radio. (I'ses Ppy battery available any where,

Total cost of parts now only $£ 5.19 .6$ P. \& P. Parts Price List and easy build plans 31.

TRANSONA

 or POCKET 5- 7 stages-S transistors and 2

"Pocket Fite" Size 3t x idx 3 inn.
 3/6
type required. \& P. 3/6
State rype
"Ttansona Five

TRANSONA SIX

-8 stages-6 transiscors and 2 diodes
Thls is a top performance receiver covering full Medium and Long Waves and Trawler Band. High-grade approx. 3in. speaker makes listening a pleasure. Ferrite rod aerial. Many stations listed in one evenlng including Luxemboung loud and clear. Attractivecase in gres with red grille. Size 6s x 4t $x 111 n$. It'ses PP4 batiery avallable answhere. Carrying sitrap l/-extra. Toral cost of all $59 / 6 \quad$ P. \& P parts Price List and easy build plans $1 / 6$

SUPER SEVEN

9 stages-7 transistors and 2 diodes
Covers Medium and Long waves and Trawler Band. The ideal radio for home, car, or can be ft.ted with pletely portable-has built-in Ferrite pled aerial for wonderful reception. Special circuit incorporating 2 R.F. Stages. push-puh output. speaker (will drive large speaker). Size $7 \frac{1}{4} \times 5 \mathrm{x}$ lin. (Uses 9y battery, avallable anywhere.)
Total cost of all $\{3,19.6$
parts now only
£3.19.6
P. 8 P.

Parts Price List and easy

All components used in our receivers may be purchased separately if desired. Ports price lists and easy build plans available separately at fixed prices stated. Overseas post $10 /$.

- 9 tages- 7 transistors and 2 diodes

annazed al volume and performance. . . has really come up to my expectations.
- 8 stages-6 transistors and 2 diodes
Our latest completely port able transistor radio covering medium and long waves Incorporates pre-tagged clrcuit board. 31a, heavy duty speaker, top grade transistors, volume control, tunlns condenser, wave change slide switch, sensitive oin. cerrite, rod eerial. Pushoptall output. Wonderful reception of B.B.C. Home and Light, 208 and many Continental stations. Handsome leather-look pocket stze case, only $6 \frac{3}{x}$ 3t x liin. approx. with gilt speaker grille Parts Price List and Total cost of all $\$ 3.9 .6$ P. g P easy build plans 2'- parts now only 316

ROAMER SIX NEW!!

NOW WITH PHILCO MICRO-ALLOY R.F. TRANSISTORS - 6 WAVEBAND!!

- 8 stages-6 transietors and 2 diodes
Listen to stations half a world away with this b waveband portable. Tunable on Medium and Lony waves. Trawler band and two short Waves. Sensitive ferrite rod aerisi and tele. scople aerial for shor Waves, Top grade transistors, 3 -1nch speaker, handsome case with sjlt fittines. Size 7t x y x inin. Carryins strap 1/6 extra.
\star EXTRA BAND FOR EASIER TUNING OF LUX, ETC. Parts Price List and Total cost of all
easy build plans 21.
parts now only

SPECIAL COMPONENT BARGAINS!
TH ANSINTOLRS, PHILCO MADT (Micro Alloy Diffused), Type 2N503. Maximum frequency of osclliation over 500 Mc/s
HEA DPHONFS. High Fidelity minlature magnetic earpieces (2) on slim band with lead and plug. Easily converted to stereo. Amerlcan manufacture. 100 ohms im pedance. Transformers supplied free for higher impedances...13/6. P. \& P, 1/6. TUNING CONDENWERS, Air spaced fine quality German manufacture with slow motion drlve. 0.0006 with oscillator section $5 /$. . Post 1/*. (TLDON PERMEAHHLTY TUNERS. Full M.W. coverage. Fitted couplligg coll. osclllator coll ferrite AWGA and slow motion tuning with cursor, etc. GIVE.

FIVE ACES!

This is a hand that can't be beaten. Five models from our tremendous range of soldering instruments. Superb performance. Amazingly compact. Developed to simplify Y OUR soldering. Copper bits for greatest speed. Permatip bits for long life. May we deal you in?

Brochure P.W. 10 post free on request
LIGHT SOLDERING DEVELOPMENTS LTD., 28, Sydenham Road, Croydon, Surrey
Telephone: CROydon 8589

NOW ADD F.M. RADIO to your MARTIN

with only 3 easy-to-assemble prefabricated units

The unique and outstandingly successfut system developed by Martin Electronics whereby prefabricated transistorised units can be assembled to make your own choice of hi-fi now brings 3 further Units, No. 15, 16 and 17 to enable you to build a modern F.M. Tuner of exceptionally good design and performance. Intended primarily for those who have chosen an Audiokit hi-fi set-up, the Tuner may also be used with other good amplifiers if desired. With a few simple connections, you will have a tuner of excellent appearance to please the most critical ear, yet it is surprisingly inexpensive.
A whole range of Audiokit Units is ovailable which you can assemble to your own choice with ease and complete success. Ask for the Audiokit leoflet.

154 High Street, Brentford, Middlesex F.M. Tuner Leaflet Audiokit Leaflet Tick as required

Nome

\qquad 1

r'HE Kadio and Electronic Component Show was held at Olympia from May 18 th to $215 t$.

The old joke about disposable sets-you know. throw it away when the battery runs out-is coming uncomfortably close to reality.

Of the 300 firms exhibiting. more than twenty were making a thing of micro-miniaturisation. Despite the off-hand attitude of one demonstrator. "Needri' hother us, old bow. Thing of the furure, what?" i was impressed by the strides recently made by some of the firms we have always regarded as stick-in-the-mud reactionaries. Tiny switches, banks of printed-foil circuits. combination components, and everywhere that with-it word Integration. If a circuit is not integrated nowadays. nobody u.ent, to know.

The ultimate seems to be achieved when our old friends Mullard come up with a threestiug amplifier about the size of a soldered joint. As one critic satu: "Hhats the point if the piecte of equipment is smaller than the hnob which is being usied to comrol ir?

Whatever the PRO boys may tell you, quoting relidbility. efficency. weight-cost factor. serviceability. etc.. it boils down to one essential: is the tiny fellow going to be cheaper to

Who makes these things?
produce in quantity than the hand-assembled juggernaut it transplaces? And the answer appears to be Yes. Modern methods have found ways of whittling down capacitors and reducing resistors to strips of etching.

So far. the problem of reducing inductors physically has proved difficult, but the bright lads at Mancheater University have been playing about with that one. They have already used computer control on a thin film micro-circuit to prove what can be packed into its 1 square millimetre area and come up with the amazing answer of 100 passive elements. That is equivalent, to save you reaching for the slide rule. to 70.000 per square inch. So. in the space taken up by that coil you can make up practically any $\mathrm{R}-\mathrm{C}$ combination you wish to supersede it.

Certainly. the modules shown by Erie had quite a few identifiable bits packed into them. and the sub-miniature switches by Flcom and Arrow made one want to hide one's clamsy lingers.

Who makes these things? we wanted to know. How the dickens are they assembled"? And the answer. as we might have expected. is that magic word "automation". Cassandra Henry has already commented on the machine that is more reliable than the circuit designer. Here, at Olympia, we saw machines ten times more reliable at fault tracing than any engineer.

Elliott-Automation had an automatic circuit tester that monitors up to 1.000 contact points for continuity and insulation at a rate of ten tests a second. Faster than our apprentice as clocking-off time a pproaches.

More threatening still. from Solartron we hear of a machine which is programmed to allow

The machine prevents him
the operator to carry out a sequence of tests, or make connections. But if he makes a wrong connection in the sequence, the machine prevenss him from making the next move. I was afraid to ask how!

Flexible printed circuits-no, not those from certain portable radios which the makers really intended to be rigid - but genuinely flappable boards, copper-clad laminate that could be bent and shaped without cracks in the foil appearing. That's another thing on the way -as Formica and Electroprints l.id. showed us. This seems to promise much fun in the workshop.

Yet another aspect of the modern trend is the increasing use of "precious metals". There are firms specialising in the plating of switch contacts with not only silver and platinum, but gold. rhodium and palladium.

With memories of the old days. when circuits were laboriously screwed together by hand. when scraping off a resistor was the accepted method of modification, when the nearest approach to integration were those horrible "blocks" of components covered with shiny black pitch, Henry is not at all sure whether he will be able to bring himself to throw away his radio each time the sun goes in and his solar cell runs down.

FULL constructional details of this receiver were given in Part 1, together with calibration procedure and notes on the Radio Information Charts which are essential when using the long wave marine radiobeacons. This part deals with a suitable mounting for the receiver and gives further notes on calibration and testing, etc.

Receiver Mounting

The receiver is much easier to handle if it can be rotated through 360° by mounting it on a heavy base as shown in Fig. 8. The base could be made of wood, preferably loaded with brass or lead or, better still, made entirely of brass. A cast-iron

Fig. 8: A suitable mounting arrangement for rotating the receiver on a heary base.
base could also be used, in fact the one shown in the photograph in Part 1 is cast-iron. In this case, however, careful checks must be carried out to ensure that it does not interfere with the compass. A 360° protractor, obtainable from most large stationers, should be screwed to the top of the base, for this is most useful when working against the heading of a vessel or when there is no alteration in position, i.e. when the vessel is at anchor. A small pointer is attached to the bottom of the receiver case for use with the bearing scale.

The receiver could, of course, be permanently mounted in a vessel providing it (the receiver) can be rotated through 360°. In this case a compass need not be fixed to the receiver but the bearing scale would have to be used in conjunction with the compass on the vessel.

Calibration of the Tuning Dials

The tuning dials, which are small Data Panel Signs (100° type), require pointers which can be attached to the flanges of the Jackson epicyclic ball drives. These pointers can be cut from thin perspex or stout celluloid and shaped and drilled as in Fig. 9. The tuning control knobs can be left to the discretion of the constructor.

The actual calibration of the tuning dials has already been dealt with but as a further guide the diagram in Fig. 10 may prove useful. It is, however, very important that the exact tuning point of each radiobeacon group frequency is known. As it is difficult to mark the actual spot frequencies on the r.f./oscillator dial it is suggested that a separate calibration chart is compiled, this being mounted on stitt card and protected by a celluloid cover.

Fig. 9: Two of these perspex tuning dial pointers are required.

Testing the Receiver

Preliminary tests and approximate tuning, etc., can be carried out with a long aerial loosely coupled to the ferrite aerial coil via a small series capacitor. This will allow the radiobeacons to come in quite strongly, but as soon as initial alignment has been completed, close calibration, etc., should be carried out with the band switch in position 3 (d.f.) and any other aerial disconnected. Remember, you may not hear a particular radiobeacon if the ferrite aerial happens to be end on (in the null position) to that particular station. When listening for different stations in different

THE LINEAR 'SUPER 30' HIGH FIDELITY PUBLIC ADDRESS AMPLIFIER
 A HIGHLY

TECHNICAL DETAILS

SENSITIVITY FOR 30 WATTS
Gram. $-50 \mathrm{millivolt}:$
Dic. $1-5$ millivoits
Mic. $1-5$ millivoits
FREQUENCY RESPONSE
$\pm 2 \mathrm{~dB}, 30 \mathrm{c}, \mathrm{p.s},-20,000 \mathrm{c} . \mathrm{D}$.
BASS CONTROL
+15 dB to -1.5 dB at 30 r.b.
TREBLE CONTROL
+12 dB to -12 dB at 10 Kc :
HUM AND NOISE
-60 dB .
HARMONIC DISTORTION
0.5% for 30 watts
VALVES
Mullardecers. ECCB 3 . ECC\% . EL ${ }^{34} 4$, EL34, GZ34.

NEGATIVE FEEDBACK
20 dB.
DAMPING FACTOR

Send S.A.E. for leaflet.
for operation on standard 200-250v., 50 c.p.s., A.C. mains. $110 / 120 \mathrm{v}$. models available for export.

Trade and export enquiries invited.
LINEAR PRODUCTS LTD. ELECTRON WORKS, ARMLEY, LEEDS

EFFICIENT
30 WATT GENERAL PURPOSE PUBLIC ADDRESS UNIT

With input mixing facilities and outputs for 3-7.5-15 and 330 ohms (100v line)

A special feature of the 'SUPER 30' is its high degree of stability, ensuring that the longest output leads can be used without fear of the usual troubles associated with instability.

Three high sensitivity standard jack inputs with provision for high and low impedance microphones.

JUST ARRIVED!!

NEW EDITION of the famous

 Home Radio Catalogue

Yes . . . just off the press-Reprint No. II of our popular Components Catalogue. It's the biggest edition yet . . . an extra 17 pages, listing literally hundreds of new items, plus a supplement! It's better than ever too-as you will certainly agree when you examine it. The prices are listed in the separate supplement. Your catalogue will automatically be kept up to date and will thereby have a much longer life than previous editions.

Due to the greatly increased size of this new edition, plus increased costs of printing and paper, we have regretfully had to raise the price a little. It now costs 716 , plus 11 - for postage and packing... but we are retaining the popular feature of including 5 Coupons in the catologue, each worth $1 /$ - when used as directed. Send off the attached coupon today, enclosing your cheque or P.O. for 816,

WIRECOMP'S BARGAIN STORE
48 Tottenham Court Road, London, W.I
Thousands of bargains: Transistor Radios-Record Players
Sope Recorders-Radiograms-Hock Bottom l'ices

FAMOUS MAKE TRANSISTOR RADIO

 THE "STELLA"7 transistor portable radio. Long Med. and Short wavebands. Fitted tone switch and sockets for personal earphone and extermal aerial chrome telescopic aerdal. Plastic cabinet in beige and red. size 4 a 7 \& $1 \frac{1}{2}$ in. Excellent tone 3in. p.m. speaker. Comp. with shoulder stopn and external acs Fuil guarantee. List price 17 Gns. atee List price 17 Gas. $89.19 .6 \quad$ P. \& P. 5/
NEW SUPER MINIATURE POCKET RADIOS
THE SNNCI IIR MICIRO-6. Self-contained pocket radjo. Size only $1^{4} / 5 \times 1^{3} / 3$ in. Complote with earphone and detailed construction data. Can be built for ondy
Mercury cell $1 / 11$ extra (2 required).
THE SINCLAIK SLIMILVE, The new 2-transistor pocket radio slze only 24 x 18×1 in. Micro alloy transistordsed and printed circuit. All components available separately. Easy to $\mathbf{4 9 / 6}$
INTERNATIONAL BRAND TAPE-Fully Guaranteed MYLAIR HASE

4in. Triple play, 600 ft .
15/6 $1 \% 6$
$15 /-$ 15/-
…........ $3 / 8$ 3 in.-300t. $\cdots \cdots, \ldots . .$. Sin. Long play, croft."... 10 /Siln. Long play, $1,200 \mathrm{ft}$. $12 / 6$ 7 in . Stand, play, 1,200ft. 10/7 in . Long play, 1.800 ft . $15 /=$ P.V.C. BASE

Sin. Stand. play. 600ft. 8/6 5inn. Stand, play, 840 t. $11 / 6$ reel. 4 reels and over post Free.

323 EDGWARE RD., LONDON, W.2. ${ }_{7115}^{\text {AMBassador }}$
All Branches open all day Saturday
Early closing Thursday

THE "SKYROVER"

 RANGE7 transistor plus 2 diode superhet 6 waveband portable receiver, Operating from four 1.5 v . torch batterles. Cover the full Medium Waveband and Short Waveband $31-94 \mathrm{M}$ and also 4 separate switched,
band-spread rangers, $13 M$, band-spread rangers. 13 M ,
$16 \mathrm{M}, 19 \mathrm{M}$ and 25 M , with Band Spread Tuning for accurate Station selection.
NEW-THE "SKYROVER" MK III

Now subplied with redesigned cabinet, edgwise controls, black and chrome blastic cabinet. Size $10 \times 6\} \times 34$ in. Cun now be $88,19.6$ Post $5 /-$.
Initt for 28.19 .0 If.P. Terms: 20/-del. and 11 months
itl $16 / 6$. Total H.P. Hrice el2.1.6.
THE "SKYROVER" DE LUXE
Tone Control Circuit is incorporated with separate Control. In a wood cabinet, Size $11 \frac{1}{} x 6 \frac{1}{2} \times 3 i n$. covered in a washable material, fitted carrying handle. Cart now be fion 19.6 Post 5/-. II. P. Terms: 25/- lep. and 11
built for A simple additional circuit provides coverage of the ONLX $1100 / 1950 \mathrm{M}$. band. This conversion is sultable for $10 /=$ Post both models that have already been constructed. EXTRA Free
Data for Receiver 2/6 extria. Refunded if you purchase the par -

cel. Four U2 batteries $3 / 4$ extra. All components available separately

PAMPHONIC HI-FI EQUIPMENT
 TYPE 3001 Integrated Btereo Amp. List price 238.10 .0 . WIRECOMP'S

 PRICE 23 Gns. C. \& P. 10/6.TYPE 1002A Control Unit. WIRECOMP'S PRICE £4.19.6. C. \& P. $2 / 6$. TYPE 1002B Control Unit/Pre-Amp. List Price 225.4.0. WRECOMP'g PRICE 96.19 .6 . C. P. $2 / 6$.
TYPE Z001A Pre.Aloplitier. WIRECOMP'S PRICE 45.19.6. C. \& P. 3/6. TYPE 732A Switched Radio Tuner. WIRECOMP'S PRICE £5.19.6. C. d P. $7 / 6$ All folly deseribed in our advertisement is "P, W," APril 1965.

378 HARROW RD., LONDON, W.9. CUNningham
Mail Orders to the above address for prompt service 953

NOMBREX instrumentation
 TRANSISTORISED AUDIO GENERATOR Model 63 \&17.0.9

* Laboratory Specification $10 \mathrm{C} / \mathrm{s}$ to $100 \mathrm{Kc} / \mathrm{s}$. \star Direct Calibration. \star Sine and square output.

Also available:

* INDUCTANCE BRIDGE 66
t18. 5.9
* POWER SUPPLY UNIT 61
66.13 .6
\star C.R. BRIDGE 62
... 68.10 .9
* R.F. SIGNAL GENERATOR 2
69.15 .9

All Prices include Battery, Post and Packing.
Prompt delivery

S.A.E. for Technical
 Leaflets

Trade and Export enquiries invited

NOMBREX LTD.
Phone:
3515
Estuary House, Camperdown Ter., Exmouth, Devon

Whatever your interest in transistor circuitry, you will find the Mullard "Reference Manual of Transistor Circuits" and "Transistor Radios, Circuitry and Servicing Book", valuable sources of reference.

The former describes more than sixty circuits for both domestic and industrial applications.

The latter is an infroduction to the subject and describes the basic properties of semiconductors, their function, elementary circuitry and servicing.

REFERENCE
manual Of TRANSISTOR circuits U.K. PRICE 12/6
Post extra 1/-

TRANSISTOR RADIOS Circuitry and Servicing
U.K. PRICE

5/
Post extra, 8 d .

Get your copies from your radio dealer, or send remittance with order to:
MULLARD LTD MULLARD HOUSE TORRINGTON PLACE-LONDON WCI

Fig. 10: The oeriaf and r.f. oscillator tuning dials after calibration.
groups, etc.. it is essential to work with the Radio Information Charts, a compass and a protractor. so that whilst calibration is being carried out maximum signals can be maintained with the ferrite aerial broadside to the station.

Use of the telescopic aerial will alter the tuning of the ferrite aerial slightly, but remember, this aerial is only an aid to finding weaker. signals and must not be used when direction finding.

The final calibration of the dials or the making of a calibration chart requires infinite patience. since it may be necessary to wait for each particular group to operate. It-is. of course. only necessary to identify one station in a group working on a particular frequency and it does not follow that all the stations in a group will be heard. These stations use quite low power (10 to 20 W) and a good deal depends on propagation conditions as to whether they will be received inland.

D.F. and Compass Checks

On no account should d.f. checks be carried out at night as errors may occur through so-called "night conditions" which cause the signals to arrive by different paths. When, and only when. you are satisfied with the calibration, d.f. and compass checks should the receiver be used under

Useful References to Radio Navigation etc.
Admiralty list of Radio Signals and R.D.F. Stations and Beacons Vol. 2 27s. 6d.
Motor Boet and Yachting Manual 17th Edition 21 s. Tample Press Books
working conditions. On no account should one blindly rely on a radiobeacon d.f. receiver whether made cominercially or home constructed. Radio direction finding is a navigation aid, not a method of navigation. Like other navigation aids a d.f. recelver is used mainly to confirm position' as otherwise plotted by compass and charts.

It is interesting to note that whilst we were carrying out d.f. checks with this receiver in the North Sea and in thick fog at that (see last month's cover). two other small cruisers hailed us to enquire as to where they were. They also requested direction to a particular position on the mainland. This information, confirmed also by our own d.f. fixes, depth finder readings and compass and chart navigation. we were able to give. To our great surprise, however, both cruiser skippers then admitted that neither had even a compass!! We pointed into the fog and they went thataway! !

The Radio Information Charts

Details of these charts were given earlier, and it must be emphasised that they are not suitable for navigation of any kind. The charts merely show the positions of the radiobeacons on a large scale. The exact position in latitude and longitude of all the radiobeacons is. however. given in the tables printed on the charts. These should be used in conjunction with standard navigation charts. The Radio Information charts also give precise details of frequencies, groups and sequences as well as radiotelephone, British Coastal radio stations and Aircraft beacons. The latter can be received with the dif. receiver but should be used with caution as most of them are inland which may result in serious bearing errors.

Finally, when using a dif. receiver. it is necessary to be aware of the various reasons for bearing errors. These can be due to (a) night effects when signals arrive at the receiving aerial by two difterent propagation paths. (b) reflection from high land. such as cliff faces, (c) reflection from other aerials or stay wires or even from metal structures on the vessel.

Errors in plotting can also occur. especially when converting magnetic to true bearing or vice versa and in taking into account the heading of the vessel which is usually from magnetic compass. Kemember the d.f. aerial will indicate a true bearing and the difterence between this and a magnetic compass reading is approximately seven degrees. Up to date navigation charts will show the exact deviation.

Radio on Yachts and Cruisers

The ordinary broadcast receiving licence authorises the reception of programmes sent only from authorised broadcasting stations for general reception. It does not permit the reception of messages from coast stations, ship stations, special service stations and radio navigation stations. If reception of messages etc., from these stations is desired (this includes marine radiobeacons) a special "ship" receiving licence is required. This does. however, cover broadcast station reception as well and can be obtained from the Radio Services Department, W.T.S. G.P.O., London. E.C.1. The licence costs $f 1$ per year.

Books Revi WED

= AMATEUR RADIO CIRCUITS BOOK, compiled by G. R. Jessop, A.M.I.E.R.E., G6JP.

Published by the Radio Society of Great Britain.
96 pages. Size. 9 inin. $\times 7 \ddagger$ in. Price 8 s. 6d. post paid.
TF you were asked to find the circuits of a $3.5 \mathrm{Mc} / \mathrm{s}$ transistor transmitter, a Q-multiplier, a cathode modulator and an electronic T / R switch, it is highly probable that you would have to search through a number of books and sort issues of magazines in order to find them.

Amateur Radio Circuits Book is a collection of some 150 circuits liable to prove useful to the average ham. Transmitters, front ends, oscillators, power supplies, noise limiters, and a host of other items. There are circuit diagrams only, for the person who needs just this and values.

At first sight this appears a most excellent book, but a second more detailed reading brings disappointments. For although the drawings score full marks many details are omitted.

The first page depicts an A.T.U. We are shown how the coils are mounted, informed that the diameter should be $2 \frac{1}{2}$ and 3 inches and that 14 s .w.g. is suitable. But not told how many turns, or even the inductance.

It is this lack of odd bits of information which spoils the ship. A 15 W transistor transmitter has all the information except the transistor types. A d.c. amplifier has no transistor type or voltages specified for the two batteries. And so on.

The idea of having all those useful circuits together in one volume is excellent, but it is to be hoped that when second edition time comes around the editor will have filled in the few remaining details.--F.H.S.
THE OSCILLOSCOPE, by George Zwick. Published by Gernsback Library Inc., New York, N.Y. 224 pp. $8 \frac{1}{2} \mathrm{in}$. $\times 5 \frac{1}{2} \mathrm{in}$., paper back. Price 28 s . ANY books have been written about the uses and applications of the oscilloscope. It is a great pity that these are studied only by the committed reader, the experimenter, would-be constructor, student, etc. The man with his cobwebbed 'scope, past its first intriguing fascination, hidden in a corner of his den. seldom finds the book to suit him. And the technician who brings his workshop instrument into occasional use often has no idea of its potentialities.

This book does much to remedy the defect. It first appeared in February, 1963, and has already in March, 1964, come out with a healthy reprint. Its virtue is the method of presentation, rather like an amplified operating manual. As such it should appeal both to the inquiring experimenter and the man at the service bench.

The first four chapters are descriptive. Chapter 1 discusses waveforms, laying the ground for later works. Chapters 2 and 3 cover the theory of the cathode ray tube and the principle of sweep
systems. In Chapter 4 a more practical approach is introduced. Detailed descriptions of both general purpose and laboratory type oscilloscopes are given with 21 diagrams of the vital portions of circuitry.

From this point we enter the field of application. Chapter 5 is a long one, dealing with alignment. Although it is obvious that precise instructions cannot be given because of variations of circuit design a valiant attempt has been made to cover the many possibilities. Chapter 6, on Oscilloscope Techniques, underlines this practice and could profitably have been juxtaposed. There is much useful information in these 24 pages.

More applications are to be found in the next chapter, dealing with tests and measurements. Audio experimenters and students of electronics would find several points of interest; the " hooking-up" details, so often ignored in more technical works, are meticulously outlined. Values of network components, too, are not ignored.

In the final chapter this is carried a step farther by the explicit instruction in 16 useful experiments. We should like to have seen the "hook-up" diagram continued in this chapter but by the time this stage is reached the student should be able to cope.

Both as general reading and as a bench-side reference this book is to be recommended.H.W.H.

 put together with ease.

YOUR KEY TO THE FASCINATING WORLD OF ELECTRONICS

All circuits are designed around top quality components, not near equivalents. Full size printed circuits with every component position marked. Makes construction extraordinarily simple. No fiddling with microscopic connections-no inspired guesswork called for. A lavish instruction manual not only tells you how to construct your BasiKit but also advises you on its use and explains exactly how your Basikit works.

* VOLUME CONTROL
* PRECISE TUNING
* PULLS IN A HOST OF STATIONS
* MORE THAN TWENTY FULL SIZE HIGH QUALITY COMPONENTS
59/- complete for your biggest and best ever opportunity to learn as you build! ALSO AVAILABLE: The BasiKit mains battery Power Unit which powers all Basikits. Yours for $42 / 6$. The Basikit Amplifier that brings real full voiced power to your Basikit No. 1 Radio. 57/6 complete.

Watch out for more BasiKits.

ORDER YOUR BRSIKIT ON THIS COUPON:

SHELING BRAND NEW
C.W.O. OR C.O.D. FREF LELIVERY within 14 days. N. Seotland, Ireland J.UM.., Lo

$$
5=
$$

7 Iin. high $\times 34 \mathrm{in}$. wite lin. deep with in shelves as Ilustrated.

Each shelf will hold over 3 cwt. Shelves adjushble every of in. stove endmelltad dark green. White ebamel umits 50% extra.

			No. of		Price each	Extra
Height	Width	Depth	shelves	Price	3or more	shelves

Contractars to E.M. Govt, mad United Kingdom Atomic Euergy Authority. Rxporters of Stee! Bhelving.

Buy direet from the manufacturers

VALVES
SAME DAY SERVICE
NEW! TESTED! GUARANTEED!
SETS 1R5, 185, 1T4, 384, 3V4, DAF91, DF91, UK91, LL99, DL94.

READERS RADIO

24 COLBERG PLACE, and at 85 TORQUAY GARDENS STAMFORD HILL REDBRIDGE, ILFORD LONDON, N.16. STA 4587 ESSEX. CRE 7441 Poatage on 1 valve $9 d$, extra. On' 2 valyea or more postage 6 d . per valve extra. Any Parcel [nsured againat Damage in Transit 6d. extra.

MINIATURE

 METALLIZED POLYESTER CAPACITORSIdeally suitable for printed wiring panels and transistorised circuits.
Incorporating a new dielectric material and of unique construction, they are of small physical size and meet the requirements of H. 5 D.E.F. 5011 Specification. The windings are virtually non-inductive and the wire terminations are soldered direct to the metal electrodes eliminating contact resistance and ensuring the minimum possible inductance.

Typical 250 volt range

Cap. μF	Dimensions		$\begin{aligned} & \text { T.C.C. } \\ & \text { Type } \\ & \text { No. } \end{aligned}$
	H.	T.	
0.01	H"9mm	$\frac{7}{71}{ }^{\prime} 5.5 \mathrm{~mm}$	PM $\times 1$
0.022	嫃 9 mm	$\frac{7}{12} 5.5 \mathrm{~mm}$	PM $\times 2$
0.047	$4^{\prime \prime} 9 \mathrm{mmm}$	$\frac{7}{12} 5.5 \mathrm{~mm}$	PMX3
0.1	군 11 mm	$\frac{9}{32}{ }^{\prime \prime} 7.2 \mathrm{~mm}$	PMX4

Cap Tolerance
$\pm 20 \%$
Voltage Ratings:
Ranges available 63, 250, and 400 volts D.C.

Power Factor:
<0.01 at Kc / s at $+20^{\circ} \mathrm{C}$.

Temperature Rating:

Suitable for working at $+85^{\circ} \mathrm{C}$. without derating.
Details of the full ronge are given in T.C.C. Bulletin 93, avoiloble on request.

Insulation Resistance 10,000 megohms or 2,000 ohm farad whichever is less.
Terminations:
22 s.w.g. solder-coated parallel wires for vertical mounting.
Finish:
Insulated-special noncracking heat resisting thermosetting compound providing good insulation and good protection against the ingress of moisture.

A BASIC

MOULLIN

VOLTMETER

by G. H.
 Meeten

for r.f. resonance indication

TTHE instrument to be described was intended for use as an indicator of resonance while making r.f. measurements. Its range is $0 \cdot 1$ to 1 V peak, approximately, with a high input impedance. lt was felt advantageous to use a circuit giving a known scale law so that no calibration of the movement would be necessary, also making the instrument generally more useful. To fulfil these conditions the Moullin or anode-bend circuit was chosen. In this simple, wellknown circuit a triode is biassed almost to cut-off, and if the $\mathrm{V}_{\mathrm{g}}-\mathrm{I}_{a}$ characteristic of the valve is nonlinear in this region, partial rectification takes place as shown in Fig. 1.

In particular, if the characteristic can be represented by the relation $I_{a}=a V_{g}{ }^{2}+b V_{g}+c$, where a, b, c are constant for a particular value of the anode potential, then analysis shows that when the input e.m.f. to the grid is of the form $v=V_{p k} \operatorname{Sin} \omega t$, the mean value of the increase in anode current is $\frac{a}{2} \mathrm{~V}_{\mathrm{pk}}{ }^{2}$, where V_{pk} is the peak e.m.f. Hence a square-law scale can be produced. This means that true r.m.s. values can be read, independent of the input waveform.

CHOOSING A VALVE

The following valves were measured (all pentodes and tetrodes being connected as triodes) to determine the form of the $\mathrm{Vg}_{\mathrm{g}}-\mathrm{I}_{\mathrm{a}}$ curve when using 9 volts anode potential. IT4, EF91, 12AT7, 3S4, CK 503AX. The 3 S 4 and CK503AX gave the most promising results when plotting $\frac{d I_{g}}{d V_{g}}$ against V_{g}, which should be a straight line if the $V_{g}-I_{a}$ curve is of the required form. The CK503AX is a miniature wire-ended output tetrode. It was decided to use the 3S4 (a battery powered output tetrode) since it is more readily obtainable. The 3S4 filament is tapped and, except where stated, half the filament is unused, the valve taking 50 mA at 1.4 V .

WORKING POINTS

The basic circuit, shown in Fig. 2, is self-explanatory. The potentiometer across the filament ensures that V_{b} is the true bias on the grid.

It was stated above that the change of anode current, which will be called ΔI_{a}, was equal to $\frac{\mathrm{a}}{2} \mathrm{~V}_{\mathrm{pk}}{ }^{2}$, assuming parabolic $\mathrm{V}_{\mathrm{g}}-\mathrm{I}_{\mathrm{a}}$ characteristics. 2 In practice there is a best value of V_{b} for a maximum $\Delta \mathrm{I}_{\mathrm{a}}$ as the graph of Fig. 3 shows. It was drawn using

Fig. 1: Partial rectification occuring in the non-linear section of a triode characteristic.

Fig. 2: The basic circuit. A conducting source of e.m.f. is assumed.

Fig. 3: lllustrating variation of sensitivity and linearity with bias (Vb).
Fig. 4 (right)! The complete circuit. Bocking-off current is taken from the heater supply cell.
the circuit of Fig. 2 with V_{b} variable and a source frequency of $50 \mathrm{c} / \mathrm{s}$.
It can be seen from Fig. 3 that although the squarelaw is true approximately for a range of V_{b}, it is best when $V_{b}=1.5 \mathrm{~V}$ or greater, but the sensitivity falls as V_{b} increases. A bias of -1.5 V is a good compromise between sensitivity and linearity and is also the e.m.f. of a single dry cell. A mercury cell could be used with a little loss of linearity and negligible current is drawn.
It was found that if all the filament of the 3 S 4 was used i.e. $0 \cdot 1 \mathrm{~A}$ at $1 \cdot 4 \mathrm{~V}$, then $\Delta \mathrm{I}_{\mathrm{a}}$ for any given V_{b} was approximately doubled, but a greater nonsquare linearity was also incurred. Since the use of dry cells was contemplated the 50 mA consumption will be used henceforth.

The complete circuit is shown in Fig. 4. The meter movement is backed off with an equal and opposite current to the standing anode current with no signal which was approximately $80 \mu \mathrm{~A}$.

The values of the resistors and capacitors are not at all critical. The following are the components used in the original:
Fig. 5: Large signal characteristics showing the effect of driving the grid positive.

Price 12s. 6d. from leading booksellers, or 14s. including postage direct from:

R.S.G.B. PUBLICATIONS

Dept. PW, 28 Little Russell Street, London, W.C.1. HOLborn 7373. 2444.

an integrated hi-lif tumatable unif from only 11 gns?

Only Goldring's 60 years of experience of making gramophone turntables and pick-ups could lead to a unit like this .. . the ideal integrated turntable, arm and pick-up for do-it-yourself hi-fi aspirants... at such a modest price. Just look at the features of this remarkable G. 66 unit:
Silent, specially made Swiss mains motor. Pressed steelturntable on precision bearings evens out mains current fluctuations. Die-cast light alloy arm with full stylus pressure adjustment. Plug-in head shell, wired for mono and stereo, takes alternative pick-up cartridges. Eddy-current speed control (as fitted on some professional units) varies the four standard speeds by $\pm 10 \%$. Pick-up raising/lowering device coupled to on/off switch and idler-wheel disengagement mechanism. Deck size $12 \frac{1^{\prime \prime}}{} \times 10^{\prime \prime}$.
See the Goldring G. 66 at your dealers-or write for descriptive leaflet.

THE GOLDRING G. 66

G.66/MX. $2 \mathrm{f} 9.18 .8+\mathrm{f} 1.12 .4$ P.T. $\mathbf{£ 1 1 . 1 1 . 0}$ G.66/CS. $80 £ 10.10 .0+£ 1.14 .2$ P.T. £12. 4.2 G.66/CS. $90 \mathrm{£} 12.12 .10+\mathrm{f} 2$. 1.2 P.T. £14.14.0

[^4]7 VALVE AM/FM RADIOGRAM CHASSIS NEW 1965 MODEL NOW AVADLABLE
Falve line-ap ECC85, ECH81, EP89, EABC80, EL84, EM81, EZ80.
Three Waveband and Switohed Gram Positions. Med. 200.550 m. Iong
$1,000-1,000 \mathrm{~m}$. VHF/FM 88.95 Mc/ $1,000-2,000 \mathrm{~m}$. VHF/FM $88-95 \mathrm{Mc} / \mathrm{s}$ on FM and combined $A M / F M$ in on FIO and combined AM/FM IF ing AVC and Neg. Feedback. Three watt out put. Sensitivity and reproduction of a very high atandard. Chasesis
size $131 \times 641 \mathrm{la}$. Height 7 th. Edge fllaminatod glaka dial $11 \pm \times 3$ in. Vertical pointer. Horizontal station names. Gold on brown background. AcC. Vertical v. Operation. Magic-ege toning. Clreult dlagram now avallable.

Aligned and losted ready for use 13 -19.6 Carr. \& Ins,
Complete with Tape ofp Socket, ext. spk'r. \& p/u Sockets, indoor F.M. aerial and 4 knobs-walnut or ivory to choice. 3 ohm M M. Bpeaker only required, Kecommended Qualty Speakers 10in. R.A., 27/6: 121 58 in. E.M.L.. 'Pydelity' 37/6; 121n. R.A. with conc. Tweeter, 42/6. Carriagt os.

6 VALVE AM/FM TUNER UNIT

Med. and VHF $100 \mathrm{M}-550 \mathrm{M}, 85 \mathrm{Mc} / \mathrm{s}-103 \mathrm{Mc} / \mathrm{g}, 6$ ralves and metal rectifer. Self contamed power unit. ACC 200-250 \mathbb{T}. operation. Magle eye indleator, 3 puah-bution controls on/off. Med., VEF diode and high output sockets with gain control.
 Finelity Uuit for use with Mullard $3 / 3 \delta$-10 amplifiers. Avalable only at preseat as huilt up units, aligned and tested ready for use. Bargain price e12.10.0, carr. $5 / \%$. We hape to produce thil popular unlt in kil torm very shortly.

NEW BRITISH RECORDING TAPE
Famoun Finnfacturar Bulk pnrchase. genuine recommended Tape Hargain. Unconditlonal guarantee. Fitted Leader and stop Folls (except 3in).

EMFTT TAPE REELS (Plastio): 31 n . $1 / 3$. 7 addtional Renl. $6 d$.

JABON FM TUNER DIITS

Dealgaer-approved rita avalable.
FMT1, 5 ens. 6 tralves, 20/.
FMTE, 87.10 .05 valyes, $85 / \mathrm{m}$

JTV Mercury 10 gan. 3 vsives. 22/8. JTV2 213.19.6. 4 valvee, 28/6.
NEW JASON F.M. HANDROOK $2 / 6$ Prompt Alignment Services 7/6 phus 2/6.

DE-LUXE RECORD PLAYER

Incorporating 4 Sp . Garrard Auto.
Slim unit and Mullard latest watt printed circult ampllfer éscick WZ 80), 01 bas and $8 \times 5 \ln$. 10,000 line speaker.
Contemporary styied 2 -tone
groy and ofi-whtte with matohing A styliah unit capable of quality reproduction. Cireuit and construction details $2 / 6$ (free with kit)
COMPLETE KIT
Carr. and ing. I0/ヶ. 813.19 .6
Illumpated perspex control panel escutcheon. 7/6 extra. Ready wired $30 /$ extra. Four contemporary mounting legs (6 or 13in_) 12/6 yer हet.

CONDENSERS Silver Mica. All values ,WF to $1,000 \mathrm{pF}$. 8 d , cach. Ditto ceramios 9d. Tib. 450 v . T.C.C. etc. . 001 mfd. . 91 and $1 / 350 \%$. 8 d . $0 \%-1 / 300 \mathrm{v}$. RESISTORS-Modern ratings inll range 10 ohms to 10 megohms. 26% fall range ca. ditto to 10 megohms. 26%, ea., 2 w .9 d . 世4., 10%. 8 d ,
 100 ohms and over I meg. 9d. ca.).
 VOLUMF CONTROLS- $5 \mathrm{~K}-: \mathrm{M}$ Meg. ohms, 3ih. MPINDLES MORGANITE MIOCET TYPE. Ifin. dia. Guar. j rear. LOI; or LiN. ratios, less Aw. 3/-. [.Н. Mw. 4/b. Twin slereo less 8 w. 8/B. Bome values with 1)P Nw. 9/6.

ENAMELIED COPPER WIRE- 1 lb . reela $14 \mathrm{~g} \cdot 20 \mathrm{~g} .3 /-; 22 \mathrm{~g}-2 \mathrm{gg} .3 / 6 ; 30 \mathrm{~g} \cdot 3 \mathrm{~kg}, 4 / 3$. $36 \mathrm{~g}-38 \mathrm{~g} .4 / 9 ; 39 \mathrm{~g}-40 \mathrm{~g}, 5 /-$ etc.

Hend for detalled bargain listy. 3d, stamp. Transf. Chokes, Quality o/p Racio Maibs Enquiries Invited for Spectals Prototypes for Armali production runs. Quntation by returm RADIO COMPONENT SPECIALISTS 70 Brigstock Road, Thornton Heath, Burrey. THO 2188. Bours: 9 a,m.-b p.m. I p.m. Wed. up to : tb. 9d., $1 \mathrm{lb} .1 / 3,3 \mathrm{lb}, 2 / 3,5 \mathrm{ll}, 2 / 9$, up ${ }^{\text {to }}$
$8 / b .3 / 6$.

IEwe ELECTRONCS ss wo BUILD 25
 CIRCUITS EXPERIMENTS TEST GEAR

 including:| MINIATURE CATHODE RAY OCSILLOSCOPE | |
| :---: | :---: |
| VALVE EXPERIMENTS | - transistor experiments |
| BASIC AMPLIFIER | - BASIC OSCILLATOR |
| basic rectifier | ELECTRONIC SWITCH |
| PHOTO ELECTRIC CIRCUIT | - SIGNAL TRACER |
| time delay circuit | BASIC COMPUTER CIRCUIT 8ASIC RADIO RECEIVER |
| SQUARE WAVE GENERATOR | MORSE CODE OSCILLATOR |
| SIMPLE TRANSMITTER | ETC. ETC. |

This complete practical course will teach you all the basic facts of electronics by making experiments and building apparatus. You learn how to recognise and handle all types of components -their symbols and how to read a circuit diagram. You see how CHLOSCOPE PROVIDED. Applications of all The OSCLILOSCOPE PROVIDED. Applications of all the main electronic circuits are demonstrated-radio reception and transmission; photo-electrics; computer basics; timars; control circuits, etc; including servicing techniques. NO wATHS CSED OR NEEDED. NO THEORY NEFDEI), NO PREVIOUS KNOWIEBGE OR EXPERIENCE NEEDED. Tutor for FREF DETAILS without obltgation. to address below

TO: LERNAKIT, Dept. K 10, RADIO HOUSE, 40 RUSSELL STREET, READING
POST NOW

Please send free details-

 NAMIEADDRESS

IRETURN-(I) - IDST
 ON CASH OR C.O.D. ORDERS
 - AMPLIFIER KITS

We have fill stocks of all components for the Mullard 510, Mnllard 3.3 . Mullard and 3 Valve Preamp. Mullani stereo, Mujlard Mixer. Fully 31 all ardAudio Circuita in "Clreuits ion Audio Amplítiers" 9/5 Post Free.

- LATEST TEST METERS

AVO Model 8 Mark III
Avo Model 8 Mark III
Avo Model 7 Mark II AVO Model 7 Mark II T M K TP10. T M K TP5S
TMK 500
TAYLOR Model $127 \ddot{A}$
TAYLOR Model 88B

- GRAMOPHONE

EQUIPMENT
ALT, LATEAT MODEIA. ALL POST FREE GARRARD CHANGERS .. Cash Price Deposit AUTOSLIM MaĽ £6.10. 0 £1.15. 0 A UTOSLIM ATB Moñ \cdots ell. 8. 0 \&2. B. 0 AUTOSLIM AT6 StercolMoñ 212. 5. 4 £2. 9. 4 3000 LM
Stereo/Mono
A70 (with Deram
stereo or Mono Cart,
4HF PLAYER UNIT Mono.
B.S.R. CKANGERS
. \&18.12. 6 \&3. 8. E^{6}
UA15 AtereoiMono £6.19. 6 21.14. 6
UA15 Htereo/Mono .
UA25 Mono

Tee our Gramophone List in detallo of Fiecord Players and Transcription

ILLUSTRATED LISTS

Huatrated lists are arailuile on LOUDAPEAKERS, TAPE DECKS,

WATTV' RAIDID ($\begin{gathered}\text { Mail } \\ \text { order }\end{gathered}$ LTID
54 CHURCH STREET, WEYBRIDGE, SURREY
Telephoue: Weybridge 47556
l'lease note: Postal Lusiness only from this addrese
Callera welcome by appointment CLOSED FOR ANNUAL HOLIDAYS: AUGUST 7th to 30th

Fig. 6 (left):-lllustrating the variation of input resistance with input e.m.f.

Fig. 7 : The input capocitance (dotted) in parallel with the potential divider arm.

R1	500Ω	wire-wound wire-wound with flament on/off R2
R3	switch.	
R3	$100 \mathrm{k} \Omega$	carbon
C1	$0 \cdot 1 \mu \mathrm{~F}$	paper
C2	$0.001 \mu \mathrm{~F}$	ceramic
Meter	$0-75 \mu \mathrm{a}, 715 \Omega$ movement.	

If a multi-range instrument is used for the detector it should be of roughly constant input resistance from one range to the next or the sensitivity, i.e. the slope of the $V_{\mathrm{px}^{2}}-\Delta \mathrm{I}_{\mathrm{a}}$ graph will vary.

SQUARE-LAW LINEARITY

The degree of square-law linearity and the effect of bias upon it is shown in Fig. 3. The effect of driving the grid positive is shown in Fig. 5. The grid is made positive when the peak input signal exceeds the standing bias. When the grid is positive, grid current flows, which is equivalent to saying that not all the electrons from the cathode reach the anode. Hence a lowering of anode current change and sensitivity as Fig. 5 shows. The over-all increase in anode current can be explained by the positive grid now attracting more electrons from the cathode than were formerly emitted. It can be seen that the square-law is not quite true for large input e.m.f. even when the grid is negative.

INPUT IMPEDANCE

If the input of the voltmeter can be assumed to consist of an input resistance R in parallel with an input capacitance C then simple measurements can be made, to arrive at an estimate of R if C is known (or vice-versa). If $\Delta \mathrm{l}_{\mathrm{a}}$ is the current change when the voltmeter is fed from a low impedance source, and $\Delta l_{a_{2}}$ is the reading. when the voltmeter grid is con-
nected to the same source by a high resistance \mathbf{R}_{1} ohms, then it can be shown that:

$$
\mathrm{R}=\frac{\mathrm{R}_{1}}{\sqrt{ }\left[(\mathrm{n}-1)^{2}+\omega^{2} \mathrm{R}_{1}{ }^{2} \mathrm{C}^{2}\right]}
$$

where R and C are defined above, ω is the angular source frequency and $n^{2}=\frac{\Delta I_{\mathrm{a}_{1}}}{\Delta \mathrm{I}_{\mathrm{as}}}$

C includes the capacitance of the wiring in the grid circuit and between the grid and other electrodes. An average value is about 15 pF . A graph of input resistance R with input e.m.f. is shown in Fig. 6, in which $C=15 \mathrm{pF}$ is assumed. The decrease of input resistance is due to the increasing number of electrons reaching the grid as it becomes more positive. The input resistance is however still greater than $30 \mathrm{M} \Omega$ when the grid is being driven positive during part of the input cycle.

CALIBRATION

It should be stressed that permanent calibration of the instrument is not readily obtainable without voltage stabilisation of the supply power. The square law however is valid over a fairly wide range of battery ageing and for many purposes only the ratio of two e.m.f.'s need be known.

FREQUENCY RANGE

The original instrument was used at all frequencies between $25 \mathrm{c} / \mathrm{s}$ and $25 \mathrm{Mc} / \mathrm{s}$; beyond these limits it was not tested. The Moullin instrument of the 'twenties was stated to be useful up to about $30 \mathrm{Mc} / \mathrm{s}$.
-continued on page 354

SOUTH SHIELDS AND DISTRICT AMATEUR RADIO CLUB
Hon. Sec.: D. Forster, G3KZZ, 41 Marlborough Street, South Shields.

The Club is making preparations for its 6th Mobile Rally which is to be held on Sunday, Ilth July at the Bents Park Recreation Ground, Coast Road, South Shields.

Meetings are held weekly on Friday evenings at 7.30 p.m., in Trinity House Social Centre, Laygate Lane, South Shields.
SPEN VALLEY AMATEUR RADIO SOCIETY
Hon. Sec: N. Pride, 100 Raikes Lane, Birstall, Nr. Leeds.
On 24th June there was an Open and Final Meeting of the season. The A.G.M. of the New Session will be held on Bth July.

Meetings are held at 7,30 p.m. at Heckmondwike Grammar School.
WEST KENT AMATEUR RADIO SOCIETY
Hon. Sec.: H. F. Richards, 17 Reynoids Lane, Tunbridse Wells, Kent.
On 9th July, John Gould will give a talk entitled "Seventy C.M.S.", which is aimed at getting all the Club members on $430 \mathrm{Mc} / \mathrm{s}$.

WIRRAL AMATEUR RADIO SOCIETY

Hon. Sec.: A. Seed, G3FOO, 31 Withert Avenue, Bebington, Wirral, Cheshire.

A Tape Lecture was given on 7 th July. Meetings are held at Scout 1 .Q., Harding House, Park Road West, Claughton, Birken. head, at $7.45 \mathrm{p} . \mathrm{m}$. on the first and third Wednesdays in each month.

A BASIC MOULLIN VOLTMETER

-continued from previous page

CONSTRUCTION

No special construction is needed and the constructor may adopt any layout. The only wire that is at all critical is the grid lead. It should be short and well spaced from any other wires to minimise the input capacitance, and very well insulated. The input terminals should be well apart on a panel of insulating material and a ceramic valve-holder should be used. A high input resistance will not be obtained if the above is disregarded although of course the instrument will still work.

RANGE EXTENSION

Although a range of 0.1 to 1 V peak is ample for radio-frequency measurements, i.e. measuring Q or self-capacitance of coils, an extension of range would make the instrument more versatile. It is however very difficult to do at high frequencies due to input capacitance. At low frequencies, when the reactance of the input capacitance is considerably less than the resistance of the potential divider in parallel with it, (see Fig. 7) it can be done.

The e.m.f. at the grid is then $\frac{r}{R+r}$ of the applied e.m.f. If a non-contributory source of e.m.f. is being used then the grid must be given a d.c. path to earth. This can be done with a high resistance, $5 \mathrm{M} \Omega$ being a suitable value. The input resistance then drops to slightly below $5 \mathrm{M} \Omega$, but which is bigh enough for most purposes.

 EQUIPMENT CABINETS OF DISTINCTION

- Illustrated in this advertisement aro two fine cablinets from the Lewls Hadio Range.
- These Cabinets are just two of a really extensive range.
- Each one carefully made by British Craftsmen and soundly constructed from the best materials avallable.
- Fill in coupon below to obtain FREFE catalogue showing this wonderful range of cabluets.

LEWIS radio

| 100 Chase Side. Southgate, London |
N.14. Tel: Palmers Green $3733 / 9666$ |
 problems with this latest 4-Station Transistor Intercom system 11 Master and 3 Subs). in de-luxe plastic cabincts for desk or whll troninting, Uall/talk/isten from Master to Subs and Subs to Master. Uperates in onc sinall 9 vattery. On/off swtch. Warebouse, moyernize Since. Factory instant futer-ilepartmental contacts Complete with long connectug wires and contacts. Cotaptete with atcessories. Nothing the to buy. P. \& J . $5 /-$

Modermze sour Ottice, shop. Warehomae. Workthon, surgers. Nincery and Home with then latest twri-w ay Transistor [atercom, cutisating of t wn that s . Master and Sub. in at rowg plazt te abinets with ehromitut stands. Blegantic. lestaned to uas as t whe ray inst ant communicathon zestety cail/talk/liston, between two persous anywhere indmors or outdonts. Roth units operate on one iV hathery. Fully transistarisent, Complete witb accessories, Ready to operate P. \& P.: $: / 6$.

BATTERY ELIMINATOR \& CHARGER, $27 / 6$ Use your Transistor Radio or Intercom from domestic A.c'. trant and dry hatters PP3 Gs this boots haters P it P. on batrenes.
Full price refunded if not satisfled in seven days. WEST LONDON DIRECT SUPPLIES (PW/11) 8 Chignell Place. West Ealing, London. W.13.

The PUNCH you need!

HOLE PUNCHES

No extra charge for postage and packing in the U.K.

Now supplied by:

TOMPKINS \& LONGMAN LTD.
237 GIPSY ROAD
WEST NORWOOD, S.E. 21
Tel. Gipsy Hill 5000

NOW ANYONE CAN AFFORD TO TRAIN TO BE an EXPERT IN RADIO and ELECTRONICS

It's the most exciting new's of the yearl Just imagine. You can get 35 large, fact-packed lessons for little more than $1 /$ - per lessonl The lessons are crystal clear, practical, easy to master and use. Early lessons make fundamentals clear even to the beginner, while other lessons, will give you the practical "know-how" of an expert.
Compare invourabiy whth snme enurses conting ten Chmes å murh. You save because you receive all the lessons at one titre and are not regured to purchan raupment you do not need.
This is a reai home-study course that has been monnd intrione giant $8 \times 111 \mathrm{n}$. ?l6 yage manual. Each para is divited into troo edmbins. A winc column teaturen
 instructor's comments. beipful suggestions and anditional plctures to simplify the filficult paris. No Everyone csan benett from this practical eourse. old fashinned for pseudn momern) method andanation just kt raight for ward, easy to to hejp you make more money in electronica

$$
\text { The price: Only } 38 / 6 \text { plus postags } 1 / 4 .
$$ Terms! Why of courset See Coupor. OTEER COURSES AVAILABLE RADIO COURSE (22 lessoze. price 38/-) TELEVISION COURSE (price 36/-)

UNCONDITIONALLY GUARANTEED TO GIVE COMPLETE SATISFACTION

You must be convinced that this in the best value ${ }^{50}$ You must be convinced seen in Electrnics, Radio or T.V. Training, baveever seen in Elecwise jou can return the course (or have your money refinded if sent with order) after you have examined it in your own home for be full seven days. IF YOU SEND CASH WITH ORDER WE WILL INCLUDE A FREE BOOK VALUED $5 /$., Tick on the coupon one book for each course ordered with full carh. These free books are authoritative, and loaded with ininrmation. Would cont at least 5). each if hought separately-by sending cash you renuce book-keeping and other costs which sarings we para back to you.

- - FREE TRIAL OFFER - -

Pry only 5/. per week if yon whah. Clip coupon Figh now for this special offer.
To: Sim-Tech Techoical Bookr. Dept. ETTY8, Gater' Mill, West End, Southampton. Hants.
Flease send the following courses for a full seven day" trial.

No, 1. RADIO COURSE,
3\%/6, incl. postage.
RADIO \& ELECTRONICS COURSI
41/=, incl. postage.
\square No. 3. TELEVISION COURSE,
37/6, incl. postage.
(Free trial customers tick one only plesse).
If not delighted, I may return the course post-pald witbout furiber obligation on my part. Otherwise will pay cash price or $5 /-$ weekly until paid.
\square Tick here if enclosing full purchase price.
Please send me
FREE TRANSISTOR CIRCUTMS BOOK
FREE OSCILLOSCOPE BOOK.
Amount enclosed $\&$.
I mnderstand thet you will refond this money in ful it I am not 109% satisfied. Overseas customars pleas end full atnotrt (including ireland)

Name
Address ..

Clty.............................. Cornsty.

The Sinclalr X-20 enablet rou to enloy, for the frot time over the adventages of using a high power.
 today's apace age electronica. No longer doeo'power msan problems of heat and size, for the $X-20$ requires melther heataink nor special ventilation It measures only $8 \frac{1}{6}^{\circ} \times 3 \frac{1}{\circ}^{\circ} \times 1^{\circ}$, weitghs $4 \frac{1}{2}$ oxs, and will deliver up to 20 watts R.M.S. into a $7 t-1$ ohme loudspeaker- -10 wates output by U.S.A. standards! A 3-stage ore-amplifier of exceptional efficiency is included withln the above dimension to ensure an overall frequency from 20 to $20,000 \mathrm{c} / 0$ well within \pm IdB from input to output. With sreatly improved translent response, thare is correspondins improvement in the results obtained from other equipment used with the $\mathrm{X}=20$ which itself has an energy conversion factor of better than 95% at the output stage. At no point in the circuitry of the $X-20$ are components over-pun, to that the instrument in both stable and assured of indefinite workink life-and it is easier to build and install than any amplifier you have ever owned. Bent of all it costs far less.

SINGIAIR

sult and tested with X-20 Manual in "sealed carton
£9-19-6
X-20 Power Pack sufficient te drive
two $X-20^{\prime}$'s

24-19-6

SINCLAIR RADIONICS LTD. COMBERTON, CAMBridge

「几l

Illustration shows in block diagram form，the princi－ pal stages used in the Sinclair X－20 Pulse Width Modulated Amplifier．Use of the latest eypes of transistors and high quality components combined with unique circuitry achieve outstanding perfor－ mance whilst retaining all the operational features of conventional quality amplifier design．

ONLY IN THE X－20 WILL YOU FIND ALL THESE IMPORTANT FEATURES

＊Easily built in an evening．
＊No．of transistors－12
＊Oueput eransistors－Silicon epi taxial planars
\star Pulse repetition frequency－ 65 to $75 \mathrm{kc} / \mathrm{s}$
＊Energy conversion factor at output－better than 95%
＊Frequency response－ 20 to $\mathbf{2 0 , 0 0 0}$ c／s \pm IdB
＊Total harmonic distortion at 10 watts R．M．S．－ 0.1%
太 Input sensitivity－I mV into 5－K ohms
t Signal－to－noise ratio－better than 70 dB
＊ 20 watts R．M．S．music power or 15 watts R．M．S．continuous power into 7.5 ohms
＋ 15 watts R．M．S．music power or 12 watts R．M．S．continuous power into 15 ohms
＊For use with any type of pick－up． microphone，radio tuner，tape preamp．ete
－Built－in low pass filter cutting off above $20 \mathrm{Kc} / \mathrm{s}$ makes the $\times-20$ widely tolerant of the load connected to it
＊Ideal for stereo and P．A．
＊Ideal as a guitar amplifier，etc
\star Power required－36V d．c．at 700 mA
＊Superb quality and reliability
\star The opportunity to connect your own choice of tone control system

SINCLAIR X－IO P．W．M．SYSTEM

This superb Sinclair integrated P．W．M amplifier and pre－amp gives you all the advantages of quality and efficiency which makes these Sinclair designs so outstanding in every way，but it has less power than the $X-20$ ，and is suited to less spacious listening conditions．Prices are particularly attractive．For 12－15V operation．Tone control system is added to choice．

CHURACIIEE ORDER FORM

RECEIVERS \& COMPONENTS

TRANSISTORS, UNMARKED, UN. TESTED, 40 for $10 / \cdot$, p. and $p .1 /-$, 4 packets post free. Relays, thousands of types, speciai catalogue free General catalogue of Mechanical and mheotrioal Gear. Tools, etc., 5,000 items free K. R. Whriston' (Dept. PRW), New Mills, stockport.
" HEATHKITS" can now be seen in London and purchased on easy terms. Free brachure. DIRECT TV
 S.E.27. GIPBy Hill 6106 .

EPECIAL OFFER- $465 \mathrm{kc} / \mathrm{s}$ I.F. Strips,
7 Transistors, 5 Dlodes. Famous
make. Ctrcuit, tested and aligned. 62/6, post paid. JAMMES, 'shalimar'. Post ontion Road. Fretitenbam, Norfolk.
 lomay returnad if mot matictied, XA101, 102.103 11. 112, XB108, $1 / 9$ esch, XA116, XB102, XC121, 181, 703, Gech. XA. 191,192 , XB118, $5 / 6$ ench. X $A 701$ 702, 703, GET 8, 4/9 each. XB104, XC101, 101 A OC169, 8/- each XCl41, 6/-each. OC42, 43, 44, 45 71. 8/8 esch. $0081.81 \mathrm{D}, 9 / 8$ esch. OC26, $8 /$ esen. terara purpose diode, 6d each. Germanium rectiAll pravious liech. Sllicon rectifler BYZ13 Bf-each. All previous list Fithdravis. Add 8d. P. \& P. on arder under Cl .
 anemel D.P.KK. 1/ T. Dlock $1 /=$ Sdge volvme as men. Didde sulten D.P.D.T. I/ Ganged (att of 4) \$ P.P. ontpet frandormer 7/W. Driver trandormer 7/ Comadt $1 / 6$.
All the tobo mede apectally and ready for masembly
$37 /{ }^{2}$ pow tree Any tom ruppliod reparately , wad $1 / 6 \mathrm{P}$. P . When order lesm than $10 /-$

Bity ELECRICAD BNGDTEARING 00
Batit Chgmbert, Poutton to Fitde, Lanea.

Abstract

gquencer Repalins, oones ntted. Batisfaction charanteed. I. 3. FinPAMFS, Pluciviey, Ashfond, Eent. nushsTonas I Yod cont resist these! 1,000 assorted watitage and value. Cannot be repeated at $82 / 10 /=$ per 2.000. G. F. MII,WARD, 17 Peel Close, Drayton Biasset, Stafis.

TRALARTSTORS AT GIVE - AWAY PRIGE! NKT 124/5 Switching transistors. Also capable of being used in all stages of a superhet, 6 for $10 /$. OCM equivalent $1 /=$ each. 25 for $£ 1$ or sis per 100. Miniature earphones with plug and head $5 /=$ Transistor electrolytics $1 / 6$ esch. Brand new in speakers $10 /=$. Groods ander $10 /-$ add 6d. postage please. G. F. MII.WARD, 17 Pow Close. Drayton Bassett. Staifs.

R \& R RADIO \& TV SERVICE

 Doot P.w.EABETY STRERT, BAOUP, LANOS Telephone 485

reund, //-i poat 2/-.
 model No.

Each Coils, to Qpate set model No, vith all en-
-ritio and GA.Is for prompt reply. All good
R.ATES: $7 / 3$ per line or part thereof, average fye words to iine, Advertisements. box No. 1/e extra. addressed to Achereaid and Manaser, "Practical Wireless". Tower House, southambton st. London W.C.E.

RECEIVERS \& COMPONENTS (continued)

A1 POST FREE BARGAINS: Guaranteed set tested Valves, EF80, EB91, 9d. each; EOL80, PY31. 2/- each; ECC82. PZ30, PY82, $2 / 9$ each; PY80, $2 / 6$; PL83, PL82, PCF80, $3 /$ - each: 20P1: EBP80. PL33, 4/. each: N37, 4/3; 10P13, 5/= S.A.E. for list or enquirles. Al RADIO OOMPONENTS, 14 The Borough, Canterbury, Kent.

MARCONI CANADIAN RECEIVER

abipptog
Amatenr Amaterr,
\& Broad: cont. Magnifferst 10 valve rechree mort. ched Fare: hands cuv* $16 \mathrm{Mc} / \mathrm{s}$. metres). palve ery
brator employing dual crystal to provide capt check at $10 \cdot 100-1000 \mathrm{kc} / \mathrm{h}$. One RF and two 1 F atages. Other refinementa: Falve, HT, and gignsl check moter. Internel 3 in . spesker and two H Phove outputs with switched control. RFAAF Gain, Naise Limiter, Filter, BFO, Beterodyae pitch control, Wide and Narrow Bandwidth. Man or AlC on Cw d RY. Fast and Blow tuning with lock. Additional O8C runing (phus wisus). Powcr requirements E^{2} T 160v. 60mA: LT 12v. 11 smps. size $15 \times 14 \times 12 i n$ Fully teated and working. ONLY 89.19.6. Carr. 15/6 or complete with Power $\operatorname{lupp}_{107}$ unit suitable for $115 / 2307$. AC mainh and 127. DC, 218.19.8. Carr. 20/.

No. 52 GROUND-STATION oomprising Recatver, Tranamitter and 12v. D.C. Power Unlt, 2e7.10.0.
\&VALVE 4 WATT AMPLIFIER
A.C Core transformers
A.C. Mains $110 / 430$ volts 600 ohtos of high Impedance input. Output 3 or Controls: On/Ote choice) Controls: On/O switch.
 light. Valve inspection panel. $19 \times 7 \times 7 \mathrm{ln}$. Brand New in maker's carton. 70/6, Carr. 10/-
TELESCOPIC ARRIAL MASTB, I'ubular steel copperised, spray finish, ring cam locking on each告ection provides for full or any height required. section 1 gin. diameter, 20ft, (4 locations. Bottom 9 in . Wejght 101 b . $65 / \mathrm{m}$, Carr. $5 / \mathrm{mection}$) Closed 54 ft . Closed 6ft. 6in. Weight 201 lm . 34 ft . (6 section), Further height by adding $3-4 \mathrm{ft}$. Whip 75 , Cart. $6 /-$ Carr. 4/-. Special price for quaptitles.

WAVEMETRE CLASA D

Freq. band 1,900 $\begin{array}{ll}\mathrm{Kc} / \mathrm{/a} . \text { to } & 8,000 \mathrm{Kc} / \mathrm{s} . \\ (158-97.5 & \text { metres) }\end{array}$ in two ranges 1,900 $\begin{array}{lll}\mathrm{Kc} / \mathrm{s}, & 4,000 & \mathrm{Kop} \\ \text { also } \\ \text { 4,000 }\end{array}$ $\begin{array}{llr}\text { al8o } & \text { 4,000 } & \text { Kc/a. } \\ 8,000 & \text { Xc/s. } & \text { Supply } \\ 6 & \text { D.c. } & \text { input }\end{array}$ Complete with twin crystal. As new.
PRICe P. \& P. $5 /-$.

CREED THLPPRINTERA. 7R Used oondition. Price from el5. Carr. 30/.
MOVEN COIL EEADPEONAR, (BRAND NEW). Chamois padded, complete with jack plag, $15 / 6$. Microphone, availsble with matching movins coil All 19 , $19 / 6$, post $2 /$.
Mary aldar bar alab
A. J. THOMPSON (Dept P.W.)

0 ODICOTE HITCIIN, ERBTA
Phone: ©ODTOOTH, git

RECEIVERS : COMPONENTB
 (comtinued)

DIRECT TV REPLACEMENTS LTD. largest stockists of TV Components in the UK. Line Output Transformers, Frame Output Transformers, Deflector Coils for most makes. Official sole suppliers for many set makers. Same Day Dispatch Service Terms C.O.D. or C.W.O. Sead S.A.E. for quotes. Day and Night Telephome GIPSy Hill 6166, 126 Hamilton Road, West Norwood, S.E.27.

50 TRANSISTORS, all tested, marked and guaranteed. AF, PF, Silicon and P.N.P. Unobtainable elsewhere at this low puce of $35 / \mathrm{p}$, plus $p \& p$ Westolif \& W. LTD, 224 West Road,

GUARANTEED BRAND NEW, IN
ORIGINAL WOOD PACKING CASE, GANADIAN
MARCONI 52 REGEIVERS

FEW ONLY £10.10s.od.

Mains Power Unit e2. Supplied with outer case and Handbook. circuit set has crystal calibrator, sueakar.

Renge 1.75 -16Mols.
J.T. SUPPLY CO.

* meadow Lane, Lesde 11.

Yorlishire.
TRANSISTORISED SIGNAL INJEC. TOR. Complete kit of components and circuit of injector for testing amplifer or radio, $10 / \%$ only. Post free. G. P. MdLWARD, 17 Peel Olose, Drayton Basset, StaIIs.

HOLLY ELECTRONICS. F.M. Tuner Units. 18 only of these units, chassis, AL1, $3 \times x 21 x i 11 n$. Permeability tuned, jln. spindie. Complete with valve, UCC85, I.F. 10.7 M . but no circuit or detalls avallable, unchecked in/6 each. P.P. Micro Sw. size it x \& x in. S.P. C/O, first class make, 4/8. 200 mA , size 115 Trans., PRI 230 V , SEC 10 V .
 Grolytics, 1000 mF , 15 V , 2/. ea., new. Elece-
 if $x 2$ in. clip type. $3 / 2$ Volume Controls. 1 M . SP. iong spindle, dis it ine Controls, items new and P.P. Electrolytics Ali June issue can stif supply. Holly from tronics. Holly House Ford End 1 Elec rord, Essex.

Sil

CANADIAN MARCONI 5\% RECEIVERS Superhet Recelver covering 1.75 to $16 \mathrm{Mc} / \mathrm{s}$ meter etc R varves, crystal calibrator and 12.6 oits C . 60 volts D.C. 60 mA steel outer case. In A. C. Complete with steel outer case. in new condition, packed Carriage 25/-, Reprinted crates. 210.10 .0 . cuits etc.. $5 / \%$ Send S.A.E. for leaflet Transistorised Magnetic Bromdcast Re. ceivers, vest pocket size. Battery operated. Fixed frequency. Epoxy resin block construotion. $\frac{1}{2}$ itin. Ferrite Rod Aerial. No other information. Used, good condition. 5/-. Post 2/9. (Carriage charges apply to Enoland and Wales only)

FOR SALE

HAMMER FINISH PAINT. The modern finish for electronics. Can be brushed of sprayed. Biue or sititet 210z. tins $3 / 6$, posi $8 \mathrm{~d}: \frac{1}{3}$ pint 7 e post 1/9: : pint 15/., post $2 / 9$ Order= over 30% post free. Retalers supplied. Write for details. Amazing resubs! Return of posi sevvice. FINNIGAN SPECIALITY PAINTS PW, Mickley Square. Siocksfield. Northumberland.

MORSE MADE !

The famous RHYTHM RECORDED COURSE cuts the practice time down to an absolute minimum
One student. aged 20. took only 13 DAYS. and another. aged 71 , took only 6 WEEKS to obtain a G.P.O. pass certificate. If you wash to read Morse easily and naturaliy please enclose 8d. in stamps of two :nternational reply coupons for full explanatory booklet.

To G3CHS
45 GREEN LANE, PURLEY, SURREY

FIVE-TON FACTORY CLEARANCE: Radio. TV Electrical Componeats in mixed parcels. Example: 281b. mixed parcel ع1, p.p. 7/6. Speakers, grilles. valves. bases. i.f.s. covers. condensers. etc. Hundred other items. S.A.E. IIst and postal orders to P. NEWTON. 16 Shalcross Crescent, Hatfleld. Herts.

CONDENSER BARGAIN! Miniature Paper Condensers tin. x tin. Ideal for transis:or sets .0001. $001, .002$. .005, 02, 4 nF . aiso small 500 un and 2 2auF Condensers. All $7 / 6$ per 100. £3 per 1,000. G F MILWARD. 17 Ppel Close, Drayton Bassert, stafts

NOW
 READY!

A modern way of instrument case assembly using our "Die Sorip". The strip has been specialty made for us as Birmingham on gey production. for low price to the public. It is made of high strength alloy and will enable anyone so assemble an inscrument case or cabines in minures. Full derails of these producrs will be sent free. Please send large envelope self addressed.

88 set transmitter/receiver. Chassis less valves, 20/. each. Post paid.

Copper Laminate Board, single or double sided, 5/. per square foot panels either eype 3 ft . by 4 ft ., $33 /$.

High Stab Resistors, 5%, 6d.; 2%, 9d.; 1% I'. Every six packed in 7 -compartment linen finish component box.

Speakers 3 ohm P.M. 5in., 51., 6in., 6\%,

Please send S.A.E. for full Lists of other goods on offer.
U.K. ONLY

E. R. NICHOLLS
 Mail Order and Retail Shop 46 LOWFIELD ROAD
 off SHAW HEATH, STOCKPORT CHESHIRE

FOR SALE (contururd)

TRANSISTORS

1/. each. Red or White Spots.
21 each. XAIO1, XA102, XB103, OA.90, XAllI, XAII2, OC430, V10/IS.
31. each. OC44, OC45, OC70, OC71. OC81, OC8ID, XA151, XBIO4, XCISI. XCIOIA, OC169, OC200.
41. each. AFIl4, AFil5, AFll6, AFII7, OCI70, OCI7I, XA103, XAll6, XB102, XB105, XCI21. XU611.
5!. each. OCI39. OCI40, OC204, ORP60, XA701, XA703, GET7. GET8, GET9. XCI4I, BY100, OA21I.
101. each. OC19, OC22, OC25, OC26, OC28, OC35, 25013.

ZENNER DIODES

4.7 v . to 30 v ., $\frac{1}{4}$ w. 3/6, 1.5 w . 5/-, 7 w .61. each.

Plus many more. Send 6d. in stamps for full list and eq. chart

B.W.CURSONS

78 BROAD STREET CANTERBURY, KENT

240 m ELECTRIC POWER awywrize ENYINEIE from 12 nt CAR BATTEEY m MAMERICAN DYMAMOTOR UNIT

 W' sciemitic Probucts. Cievileys. Lancs

NEW Nombrex Signall Generator model 27, C6: Miniature Cathode Ray Oscilloscope with case, $1 \frac{1}{2} \mathrm{n}$. screen E12. HULME. 139 Green Lane Vicars Cross, Chester.

ELECTRIC SOLDERING-IRON

FANTASTIC

 BARGAIN OFFERIdghtweight Pistol Gryp handle 40 watt. $240 / 250 \mathrm{v}$. A.C. Solld copper bit. Detachable handle forms cover for iron when not in flex. Indispensable tor every home handyman. A boon to model makers and a necessity lor evers wireless enthusiast. Offered to sou at this new amaz jag price.

C. H. SERVICE,
(Dept. P.W.)

[^5]FOR SALE

(continued)

RAOIO Amateut Packing Up. Books. Rud on. Teipvisions, etc. Dead cheap or flien away. 185 Hewlelt Road. Cheitenham, Gilos. Tel. 21069.

WANTED

We BUY New Valves for cash. large or smadl quantities, old types or the latest. Send detais Quotat.ions by return WALTONS WIRELESS STORES, 15 Church Street. Wolverhampton.

WE BUY New Valves and Transistors. Amplifiers, Short-wave Receivers and Components. elc. A.DA. MANUFACTURING CO., 116 Alfreton Road, Nottingham.

WANTED VALVES ONLY

Must be new and boxed Payment by return
WILLIAM CARVIS LTD.
103 North Street, Leeds 7

URGENTLY WANTED, new modern Valves. Transistors, Radios. Cameras. Tape Recorders and Tapes. Watches, Touls, any quantity. S. N. WILLETTS. 16 New Street, West Brommich, Stafis. Tel. 2392.

A PROMPT CASH OFFER for Your surplus brand new valves and Transistors. R.H.S., Beverley Howee, Mennville Terrace, Bradiord 7 .

MISCELLANEOUS

CONVERT ANY TV SET LDto an Oscllloscope. Instructions and diagrams 12/6. REDMMOND, 42 Dead Close. Portaslade, Sussex.

ELECTRONIC MUSIC?

Then how about making yourself an electric orgen? Constructional data available-full circults. drawings and notes! It has 5 octaves, 2 manuals and pedals with 24 stops-uses 41 valves. Classics and Swing. Classics and Swing.
Write NoW for free leaflet and further details to C. di S., 20 Maude Street, Darlington, Durham. Send 2td. stamp.

METAL WORK

METAL WORK. AM types cablnets, chassis racks, etc. to your specifications. PHIIPOTTS METAL WORKS L'TD., Chapman St., Loughborough.

CABINETS • CASES CHASSIS

EDUCATIONAL

RADIO OFFICERS see the world Seagoing and shore appointments. Our many recent successes provide additional trainee vacancies during 1965/66. Grants available. Day and boarding students. Stamp for prospectus. WIRELLESS COLLEGE, Colwya Bay.

THE INCORPORATED PRACTITIONERS IN RADIO AND ELECTRONICS (I.P.R.E.) LTD. Membership Conditions oooklet $1 / \cdot$. Sample copy of IP.R.E. Official Journal 2/: post free. Secretary, Depu. B, 32 Kidmore Road, Oavershann, Reading, Berks.

TRAIN FOR SUCCESS WITH ICS

Study at home for a progressive post in Radio, TV and Electronics. Expert tuition for I.E.R.E., City \& Guilds (Telecoms and Radio Amateurs') R.T.E.B., etc Many unique diploma courses inc. Colour TV, Electronics, Telemetry \& Computers. Also self-build kit courses-valve and transistor. Wrin for FREE prospectus and find out men ICS oan help you in your career
$\angle B$ DEPT. 541, PARKGATE ROAD, LOWDOM, S.W. II.

EDUCATIONAL (continued)

CITY \& GUILDS (electrical. etc.) on -Satisfaction or sefund of fee" terms. Thousands of passes. For details of modern courses in all branches of electrical engineering, electron:cs, radio, T.V., automation, etc. send for 156 -page Handbook FREE. B.I.E.T. (Depi. 242A), 29 Wright's Lane. London, W. 8 .

RADIO OFFICERS training courses. Write: Princtpal, Newport and Monmouthshire College of Technology,

SITUATIONS VACANT

RADIO AND TV Exam. and Courses by Britain's flnest Home-study School. Coaching for Brit.I.R.E. City and Guild's Amateur's Licence, R.T.E.B., P.M.G. Cert., etc. FREE brochure from BRITISH NATIONAL RADIO SCHOOL, Russeil Street, Reading.

TV \& RADIO - A.M.I.E.R.E., City \& Guilds. R.T.E.B. Cert. étc., on "Satisfaction or refund of fee" terms. Thousands of passes. For details of Exams and Home-tralning Courses (including practical apparatus) in ah branches of radio. TV and electronles. Write for $156-p a g e$ handibook - FrREE. B.I.E.T. (Dept. 242G), 29 Wright's Lanne, London, W. 8.
A.M.I.MeohE., A.M.I.E.R.E., Clty \& Guilds, G.C.E., etc. Become a Teohniclan or Teahnologis: for high pay and security. Thousands of passes. For detalils of Exams and Courses in all branches of Englneering, Bullding, Filectronics, etc.. write for 156 ing, Falectronics, etc.. write for
page handion-
B.I. (Deppt. 242B), London, W.s.

TV ENGINEERS for Broadmead branches at Tunbrudge Wells, Maidstone and Chatham. Very aittractive offers made in aakary. Phone: Maidstone 52300 .

City and County of Bristol Education Committee BRISTOL TECHNICAL COLLEGE CAREERS IN RADIO AND RADAR

Marine Radio Officers

2-year, full-time course for young men aged 16 upwards; leading to Ist and 2nd Class P.M.G. Certificates and B.O.T. Radar Maintenance Certificate.
Conversion Course (2nd Class to Ist Class).
R.T. Courses (for Full or Restricted Licenca).

Licensed Aircraft Radio Engineers

2-year, full-time course for A.R.M.E. Licences, categories A \& B, and 6 months' courses for Radar Rating in association with above.

Training given on the latest types of Marine and Aircraft Equipment
in the newly equipped Laboratories at
THE SCHOOL OF MARINE RADIO AND RADAR
For detalls write tol

THE REGISTRAR

BRISTOL TECHNICAL COLLEGE ASHLEY DOWN, BRISTOL 7

A UNIQUE BUY. Recording tape, top brand, 7in., 2.400ft., D.P., $25 / \cdot ; 5 \frac{3}{1} i n .$, 1200 ft ., 19/6. P. and p. i, 6 per spool. Bargains in all sizes. S.A.E. for list. We repair, buy and sell Recorders. E. C. KINGSLEY \& CO. LTD., 132 Tottenham Court Road, London.

SERVICE SHEETS

SERVICE SHEETS, Radio and Teievision, $3 / 6$ post paid. VEST AND EMERY, 17 Hollgarth St., Durham.

SERVICE SHEETS, Radio, TV, 5.000 models. List $1 /-$ S.A.E. Inquiries. TELRAY, 11 Maudland Bank, Preston.

SERVICE SHEETS for all makes of Radio and T'V. 1925-1965. Prices from 1/. with free fault-finding gulde. S.A.E. inquiries. Catalogue of 6,000 models 1/6, valves, modern and obsolere. Radio/TV Books, S.A.E. lists. HAMILTON RADIO, Western Road. St Leonards, Sussex.

SERVICE SHEETS $(75,000)$ 4/- each. Callers welcome. Always open. 5 South street, Oakenshaw, Bradíard.

SERVICE SHEETS

4/- ea., plus postage
We have the largest display of Service Sheets for all makes and types of Radios, Televisions, Tape Recorders, etc., in the country. Speedy service.
To obtain the Service Sheet you require please complete the attached coupon.

From:
Name:

Address: \qquad

To: S.P. DISTRIBUTORS
44 Old Bond St., London, W.I Please supply Service Sheets for the following:
Make:
Model No................. Radio/TV
Make:
Model No................ Radio/TV
Make:
Model No.: Radio/TV
I also require list of Service Sheets at $1 / 6$.
(please delete items not applicable)
I enclose remittance of.
MAIL ORDERS ONLY Au. PW

Deflivered free U.K. S.A.E. enquiries.

TRANSISTOR tRANSMITTERS FOR THE AMATEUR

Complate decalls, including circult descriptions, construction techniques, parrs lists, and oparating instructions for 12 usaful transistor devices.
by D. L. Stoner
$21 /$
Postage $1 /=$
INTRODUCTION TO ELECTRONICs, Buranu U.S. Naval Personnel. $/=$ Postage $1 /$.
WORLDRADIOTVHANDSOOK 1965. 2\%/ Postage $1 /$.

DESIC NANO CONSTRUCTION OR TRAN IISTOR SUPERHETS by P. H. Warring. IT/6. Postage $1 /=$ MAGNETI: NECORDING FOR THE HOBBYIST by A. Zuckerman. 20/.: Postage 1/-
PRINCIPLES OF TRANSISTOR CIRCUITS by S. W. Amos. 25/.. Postige $1 /-$
THERADIO AMATEUR'S HANDBOOK 1965. A.R.R.L. 40/=. Postage $2 / 6$.
RADIO TELEVISION SERVIC. ING. Spacial Answers to Inter. Papers, 1961/64 by F. O. M. Bennewitz. 8/6d. Postage 6d.
COMPLETE CATALOGUE $/ /=$

THE MODERN BOOK CO.

19.21 PRAED STREET LONDON, W. 2
I Phone: PaDdington 4185 Open 6 dary 9-6 p.m.

Fully Guaranteed for one year!
This magnificent radiogram chassis, complete with lOin. elliptical loudspeaker plus 4 speed auto-changer. At only 23 gns. this is the bargain of the year. Write away for the "Empress" Radiogram today.

- Easily fitted. No soldering or technical knowledge necessary. Fits almost any cabinet with minimum trouble. Modernises your old radiogram. Built-in Ferrite rod aerial. Piano key switching. Luxembourg and Caroline received at full strength. Listen to U.S.A., Russia, Africa, Canada and even Australia. Unique Lewis Radio 365 day guarantee, even on all the valves. All British make.
 (total H.P. £27.11.0) plus postage and packing 15/. extra.

```
INDIVIDUAL CABINETS SUPPLIED ON REQUEST
```


LEWIS radio

LWWSRADIO. 1OO,CHASE EIDE, SOUTHEAIE LONDON N. 14. Wephon Pat 373375666

10/14 WATT HI-FI AMPLIFIER KIT Ansished

Separate inputs for mike and gram. allow records and announcements to follow each other. Fully shrouded section wound output transtormer to
match $3-15 \$ 3$ speaker and independent volunue controls and segarate bass and treble cuntrols are provided giving goon hift and cut. Yave lineap fostruction booklet $1 / 6$. (Hiree with parts).
A! parts sold separately, on LY E6. 19.6^{P}. \& P.
Alsonalth

SPECIAL HARVERSON OFFER ! ! BRAND NEW HEAVY DUTY 12in. SPEAKERS. Reaponse $45 \mathrm{c} / \mathrm{s}=13 \mathrm{Kic} / \mathrm{s}$. $\frac{1}{2} \mathrm{in}$. Foice coil. Available in 3 or 15 obms. Guaranteed iuil 15 watts British rating, Heavy cast aluminium irame. These are eurrent production by world famous maker and as they are oflered well below list price we are not permitted to diaclose the name. LLMITED NUM-
BER ONLY. UNREPEATABLE AT 89/B. BEK ONLY, UNREPEATABLE AT 89/6, H. \$ P. 5/-. Alwo 25 watt ciulur Model avallable
at 25.5 .0 .

HIGH GAIN 4-TRANSISTOR PRINTED CIRCUIT AMPLIFIER KIT

- Peak output In excems of $\left[\frac{d}{2}\right.$ watte. All atandard Britisb components. Buit on printed circuit panel size $6 \times$ Bin. © Generous size Driver and Out μ ut Transformers. Output transformer tapped for 3 ohm and 15 whm speakers. Transistors (GET 114) or \$1 Mullard OC811 and matched pair of GLSI ofp - 9 volt operation. Everything supplied ware bettery clips solder etc. Compreheusive easy to follow instruction and circuit diagram $1 / 6$. SPECIAL PRICE 4S/a P. \& P. 3/. shou ready bullt and tested 52/6. P, \& P. 3/w A pair of TA1's are ideat for stereo.
HARVERSON'S F.M. TUNER MK I.

88-1 Ba Manced diode output. - Two I.F. stages and discriminator. Attractive maroon and goid dial (7 Iin, glass). Self-powered using a good quality mains transformer and ralve rectifer. (rectifler used ECCBS two EF pleted traner $8 \geq 6 \times 5$ in All parts sold ge or com pleted trner $8 \times 6 \pm 5 i n$. All parts sold separately Bet of parts if purchased at one time $8 / 6 \mathrm{P}$. F_{P}. and ins. Circuit diacram structions i/6 post free. Marly II Version as above but complete with magic eye front panel and brackets $26.12,6$. P. \& P. 8/t.
Mark III Version ag Mark 1 but with output atage. (RCLS2) and tone control 47.7 .0 . P. \& P. $8 / 6$ Findeome Metal Cabinets. Choice of Black on Grsen. To fit Mark I, 25/= P. \& P. 3/- To fit Merk Ш, 17/B, P. \& P. 3/-

SPECIAL PURCHASE TURRET TUNERS By tamous rasker. Brand new and unuged, Complete Whth PCO84 and PCF80 valves $34-38 \mathrm{Mc} / \mathrm{s}$ I.F. Btocaite for Channels 1 to 5 aud 8 and 9. Circuit d'gram rapplied. ONLY 25/- each P. © P. 3/9. GORLER FM TUNER HRAD
 00c96 valve, $8 / 6$ extra).

4-SPEED PLAYER UNIT BARGAINS All Brand New in Maker's Original Packing

Garrard srplo Rs
Garrard SRP10£5.9.11, C'arr. 5/b B.S.R. GU 7 with uuit mounted pick rup arm. 841.8.8., Carr. 5/6 LATEST B.S.R. UARS S B.S.R UA16 26.18 B LATEXT GARRARD AT5................48.8.0 Stardar G GARRARD Autoslim............86.10.0 GARRARD ATB,... $£ 10.10 .0$. Carr. $6 / 6$ on emih. All the alove unity are coraplete with tlo mono bead sud sapphire stylii or can be supplied with compatible stereo head for $12 / t$ catra.

SPECIAL OFFER !

E.M.I. 4-SPEED SINGLE

RECORD PLAYER DECKS

with unit mounted pick-ups. Incorporating the following special features: Heavy 83 in . metal turntable. Low thutter perírmance guV tap. Latest uitra lightweight pick-up (5 grammes tracking weight). High output munlo ceranic cartridge. Autostop. Overall nutorplate size, $12 \times 10 \times 2$

UNREPEATABLE OFFER AT (arr. 5/6 $89 / 6$

THE NEW HARVERSON KIT FOR THE HOME

- Heary duty double.wound mains tranafortuer with efectrostatic sereen. Neparate Bass, Treble and Volume controls, giving fully variable boost and cut with minimum insertion loss. uegut at ercellent puality with very low thitor. outplut at ercent gut phone ur record player, Propision for renote moneting of contrula or direct on chasaiss All this builds onto a chassis size only $7 \pm$ in. wide 4 in deep. Orerall height 4 tin. All components and palves are brand new. - Very clear and concise inytructions enable even the inexperienced awateur to construct with 100% success. - Supplied complete with valves, outurt transformer (3 ohms only) screened lead, wire, buts, wolts, sulder etc. $\begin{array}{lll}\text { (No extras to buy). } \\ \text { PRICE }\end{array} \quad 79 / 6$ P. \& P.
Comprehenslve circuit dagram, practical layout and parts list $2 /$ /f. (free with Kits).

QUALITY RECORD PLAYER AMPLIFIER

 A top-quality record player amplitieri Bize ased in a 29 ga record piayer) employs heavy duty double wound mains transiormer, ECC83, EL84, EZso raives. separate bass, treble and volume contruls. Complete with output transfurmer
matched for 3 ohm speaker. Ready tuilt and tested

PRICE 6916 P. \& P. $4 / 9$
also Available. Mounted on boart with output cransjorm it into eabinet beluw. PRICE 89/6 P. \& P. $5 / 9$
QUALITY PORTABLE R/PLAYER CABINET Uncut motor board. Will take above amplifier and B.S.R. or GARRARD Autochanger or bingle Kecord Player
PRICE $£ 3.9 .6$. Carr. 716 .

LATEST MODEL B.S.R. TU/12

 4-SPEED PLAYER AND PICK-UP ONLY $69 / 6^{\text {Carr. }}$ in. metal turntable Low flutter periormance. 200/250 shaded pole motor with 90 v . tap for valve heaters. High gain erystal piekup with turnorerTWO VALVE GRAM AMPLIFIER ON PRINTED CIRCUIT BOARD (UY85, LLB4h can be used with 80) \%. tap oft motor. O.P. Trans widex:in. deep
3дin. bigh
uverall
39/6.

dropper
res. for
if required. $2 / 6$ extra
NEW CARTRIDGE BARGAJNS ACOS 71-5 single sided crystal cartridge for stereo and L.P. records. Complete with diamond etylus and universal mounting bracket, List price $\$ 2.6 .4$ Our price 18/6. P. \$1 P. CARTRIDGE. Stereo/LP/ 78. Complete with two sapphires. Original liat price 67/9. OUR PRICE 24/-. P. \& P. 1/.. GARRARD GC2 Mono complete. List price 24/11. OUR PRICE 12/6. P. \& P. 1/-.

STEREO AMPLIFIERS

Incorporating 2 ECL82's and 1 EZB0 heavy daty Incorporating 2 ECL82s and 1 EZ80 heavy duty double-wound mains transionner. Outpat wath lutely complete.

SUPER DE LUXR version of above incorporating ECLK6 valves meparate bass and treble controls and full negative feed back. 8 gns . P. \& P. 6/6.

6 TRANSISTOR AND DIODE SUPERHET
A flrsteclass 2 waveband transistor supernet Printed circuit panel (size 81 I 21 in.). 3 prealigned 1.1. transformers. Eigh-gain Ferrite Rod Aerial. All F'irst-grade tramsistors. Car serla wiading. Push-pull output. All parts supplied with simple instructions. All parts sold separately Set of parts if purebased at one time ONLY \&4.5.0 P. \& P. 2/0, Circuit diagram 2/. (İree with aet of parts).

35 OHM SPEAKERS

Suitakle for use with above. Sin. Goodmana. Idea replacement for most pocket portables 8/6, 3 in 12/6; $5 \mathrm{in} .17 / 6 ; 7 \times 4 \mathrm{in}$.. 21/-. P. \& P. 2/-per qpeater.

Portable CABINET

Size approx. $9 \frac{1}{2} \times 6 \pm \times 3$ in. Suitable for above using 31/n. speaker 25/m. P, \& P, $2 / 6$.
COIL AND TRANSFORMER SET FOR TRANSISTOR SUPERHET 3 I.F. transformers one ascillatos coil one driver transformer and wound Ferrite aerial (med. long and car aerial coupling) $32 / 8$ complete poat $2 / 8$ θ transdstor printed circuit board to match $8 / 6$. Post $1 / \cdot$. Circuit diagram $1 / 6$ extra.

SPECIAL BRAND NEW

TRANSISTOR BARGAINS

TEET 15 (Matched Pair) 15/\% Fi15/10p. 10/\% 0071 5/\%; OC76 6/-; AF117 7/6; ORP12 10/6 Set oi mulard 6 transistors 0 OLP.
OC81D matched pair OU81 $25 /$. ORP12 Cadmium sulphide Cell, $10 / 6$.

EDISWAN MAZDA

PXA101 6/6; XAl03 6/6.
R.F.l. Pack: 1-PXA102 Mirer; 2-PXA10 I.F. Amp. (Equiv. OC44 and OC45)........ 10/6 R.F. 2 Pack: 2-PXA101 I.F. 1-PXA102 Osc. L.F. 6 Pack: Consisting of PXBIIS Driver Matched pair PXIT1 mounted complete with heat ank (Equiv. OC\&1D and OCR1).
ALL TRANSIGTORS POST FRË.

HARVERSON SURPLUS CO. LTD.
 SEE

170 HIGH ST., MERTON, S.W. 19

Open all day Saturday
A few minutes from South Wimbledon Tube Station (Please write clearly) PLEASE NOTE: P. \& P. CHARGES QUOTRD APPLY TO U.K, ONLI P. \& P. ON OVERGEAS ORDERS CHARGED EXTRA SEND STAMPED ADDRESBRD RNVRLOPK WITH ALL ENQUTRIES

3－VALVE AUDIO AMPLIFIER MODEL HA34

Degigued for Hi－F reproduction records at（＇．Majus uperation．Heady Luilt on plated heavy gauge metal
 w．I fin．d，I 4，inc． Incorforates Eccs EL84，EZ80 dilves
beavy duty double wound mains transformer and out put trangformer matched for 3 ohm speaker，veparate Bass，Treble and volume coutrols．Negative feedback In ne， Output is watts bront panel can be detached and leads extended lop remote monnting of con－ trols．The HA34 bas been specially deslgned for us and our quantity order eagbles us to offer them complete with knobs，valves．84．5．0 P．\＆P． otc．wired and tested for only

BRAND NEW LOUDSPEAKERS
 12in． $27 / 6$ ；（12in， 15 ohm， $30 /=$ ） 10 in．x 6 in．， $28 /-$

4 in HIGH FLUX TWEETER． 3 ohm or 15 ohm inip．Femour British make，12／－P．\＆P ． 4 and 5 in ． $2 / \mathrm{F}$ 6 6 and 8 in ．2／6； 10 and 28 in ． $3 / 6$ per opeaker．

TAPE DECKS

COLLARO ETUDIO DECK． 3 motors， 3 speeds， push button control．Up to tin．日pools， 810100° P．\＆P．7／6．
B．S．R．HONARDECK．Single speed， 3 in per etc．，simple control uses $5 \frac{1}{2}$ ．spools， $\mathbf{\varepsilon} 8$
$7 / 6$ carr，and ing．Tapes extra ou both．

BARGAIN OFFER CORNER

MAINS TRANSFORMERS

Folly ahrouded，ean be mounted apright or drop through Tapped pri．110，200，220，2407，Sec

ALSO nemal－hhrouded drop thro type．Pri．200， $220,240 \mathrm{v}$ ．Sec， 260 F ．\＆Wave at 70 mA and 8.3 v ．at 2 amp ．c／t．Btack adze $3 \times 2+ \pm 1$ in．

PRICE $11 /=$ P．\＆P．3／
PRECIRION 6 IITUTE DELAY ACTION SWITCE Clockwork actuated．Made by smiths，Separate Esch aritch action designed for ourrent looding up to 18 ampa at 250 voltu．Suitable for photo－ yraphle timer，meqnence awitching operations，etc the Brand new and unuped aults pflered it a fraction of their wrue value OUB PRICN ONLY 10／－sach．P．\＆P．1／6（3 or more pot free），Special quotetions for quantity．
HDAVY DUTY NON NDUCNIVE D／P MICRO 8WITOH．Conservatively rated 10 any at at 250 y ． standard one－bole tring．Body gize If x i i lin． deep，fac，terminals，8／＝each．F．\＆P． $1 /=16$ of wore poat iree）．
ROLA CELESTION．Approx． 9 x 6 in．s ohy Middle register speaker， $10 / 8 \quad$ P．\＆P．3／． VYNALR AND REXINE SPEAKER AND CABI－ NEI FABAICS．Approx．gtin．Wide．Vrually $85 /=$ yard．OUR PRICE 13／8 per yard leagth． ACOS CPYgTAL MOKEs．High img．F＇or deak Acos ceysial mases．High img．For denk
or hand ne．High sengitivity， $18 / 6$
P．\＆P． $1 / 6$ ． TGL CRY8TAL STICK MIRE Listed at $45 / \mathrm{m}$ Our price $18 / 6$ P．\＆P．1／6．
T．C．C．SUPPRFASOB CONDENSERS．250v．A．C． $.005+.005 x .1$ ．In tubular can 18 in ．long x tin．dia． 2 for 3／－Post free．
TRANBIBTOR DRIVER and O／P TRANBFORM－ ERS．（Tapped 3 ohrns and $1 \overline{3}$ ohrus output）． Plus 4 sultable Transastors givang approx． 1 wat out put， $25 /-\quad$ P．\＆P．-2
 P P $1 /$ w．with hultin trimmer，g／0 MATCHED PAIR OF 2 W WATT TRANSISTOR DRIVER AND OUTPUT TRANSFORMERS． Stack size If $\times 1 \pm x$ sin．Output trans．tapped for 3 and 25 ohm output， $10 /$－pair．P．\＆P． $2 / \mathrm{F}$ ． BRAND NEW PLESSEY Lथv． 4 pin．Lon－8ync． vibrators．Type 1：1．48D．UNLY 8／6 P．\＆P． 1, ti each．
IWIN TELESCOPIC AERIAL Compriaing two 3－mection heavily chromed roda．Closed 10in．each extending to zein．eaca．Completely adjustable irom vertical to horizontal．Supplied complete With unlversal mounting bracket．coax lead and plug．Suitable for F．M．or T T．V．12／6 P．\＆P．2／－。 A－WAY NON－TANGLE TELEPRONE CABLE． I．atest apring back coil type，extends loin，to 5 itt．
Complete with rubber bushes， $4 / 6$ each．P．\＆P． $1 / 6$

Harverson Surplus Co．Ltd．

NEW VALVES！

24－HOUR SERVICE
1R5，1S5，IT4．3S4，3V4．DAF91，DF゙41，DK91． DIS2，DL94．SET UF 4，14／＊ DAF96，DF96，DK96．DLi6，SET OF 4， $23 / 6$.

1RJ	4／－	EBC41	8／3	PCL，${ }^{4}$	719
1 S 5	$3 / 3$	EHF80	$5 / 9$	PLib	816
1T4	$1 / 9$	EBF＇89	$5 / 11$	FL81	$6 / 9$
3.44	$4 / 3$	ECC81	$3 / 6$	Pl 82	$51-$
$3 \vee 4$	51.	ECC83	$4 / 6$	${ }^{2} \mathrm{~L} 83$	5111
6AM6	$2 / 6$	ECC83	$5 / 3$	PL84	$6 / 3$
6K7G	1／3	ECC8：	$6 / 3$	Pro2	816
6K8G	$3 / 3$	ECC85	$5 / 3$	P1，33	$8 / 6$
6Q7G	$4 / 3$	ECF80	7／6	Pr80	$4 / 9$
6V6G	316	ECF82	6／－	$\mathrm{PY}^{7} 81$	5／3
12K8GT	816	ECH35	$5 / 9$	PY82	4／11
20P4	13／3	ECH42	$7 / 9$	PY83	$5 / 6$
$20 \mathrm{P5}$	11／6	ECH81	6／3	PY800	$5 / 11$
30 FL 1	$9 / 6$	ECL80	5／11	U25	8／－
30L15	10／3	ECL82	$7 / 6$	U26	$8 / 6$
30PL13	$10 / 6$	ECL86	$8 /-$	U191	$9 / 6$
35L6GT	6／－	EF39	3／6	U301	11／：
85 AL	$5 / 9$	EF41	519	U801	15\％
CL33	$8 / 6$	EF80	$4 / 3$	UABC80	5／－
DAC32	$0 / 9$	EF85	9／6	UAF42	6／11
DAF91	$3 / 3$	EF86	$7 / 3$	UBC41	8／－
D AF96	5111	EF89	$4 / 3$	UBF80	516
DF33	718	EF91	$2 / 6$	UHF99	$5 / 9$
LF91	1／9	EL41	\％	UCC84	7111
DF96	$5 / 11$	E1－84	4／9	UCCB5	6／－
DK32	$1 / 6$	EY51	$5 / 6$	UCF80	$8 / 3$
DK91	4／\％	EY86	$5 / 6$	UCH42	$6 / 9$
DK92	8／＝	E740	618	2＇CH81	6／8
DK96	$8 / 3$	E280	3／9	UCLB2	$7 / 3$
DL33	818	EZ81	4／3	UCL83	$8 / 9$
DL35	$4 / 9$	PCC84	$5 / 6$	UF＋1	$6 / 3$
DL92	4／3	PCC89	$8 / 6$	UF89	$5 / 9$
DL94	5%	PCF80	$6 / 9$	UL41	71.
DL96	$5 / 11$	PCF82	61／－	ULS4	$5 / 3$
DY86	6／6	PCFH05	91－	UY＇11	$3 / 11$
DY87	716	PCL82	6／11	UY8．	$4 / 11$

more．postage 6d．per valve extra．Any parcel insured asainst demage in transit Offlce addresstra．

GERALD BERNARD

83 OSBALDESTON ROAD STOKE NEWINGTON LONDON，N． 16.

PAMOUS FOR THIRTY YEARS tor
SHOBT－WAVE EQUIPMENT of QUALITY

A．SHORT－WAVE

R．A．C．Were the origmal suppliers of Bhort Wave Receiver Kits ior the amateur con－ structor．Over 10,000 satistied elstomers－
including Technical Golleges，Hospltgls． Putblic Bchools．R．A．F．，Army，Hams，etc

IMPROVED 1965 RANGE

1．Falve model＂CX＂，complete kit，Price 34／6 A－nstomers say：＇Definitely the beat one－ value d．W．Lit avallable at any price．Thls kit contains all genniue short－Wave＂omb－ ponents，a drifled chiwsia，accessories und uif
instructions．Keady to assemtsle and，of natructions．Reany to assemble arme and courne，as and our products，filly guarantable
FULL RANGE of other kits still Evailable FULL RANGE of other kits＇Gtil erice $7 \% /-$ including the famous model K ，price inf－
Before ordering call abd inspect a demon－ Before ordering call and inspect a demon
stration recelver or send for a descriptise catslogne and order form to：－
＂E．A．C．＂SHORT－WAVE PRODUCTS （Dept．T．H．1， 44 Old Bond St．Londou W．

TEST METERS

80，000 O．P．V．MODEL TP 55．Hoartw voltage op to 1,000 1．1．at 20,004 ubans per volt and A．C．at

 2，000 O．P．WODEL＇S＇P 10．Reads A．t＇add 13．C．

 $3 \times 3 \times 1$ in 88．18．6．
30,000 OHMS PEK VOLT MODCL 500．Keads voltagen np to 1.0 hil U．f．at 30000 ohfme per valt aurl A．C．at 15,100 O．P．\cdot ：D． vartent in $1-$ atops．Kevistance to bo Megs：Veriluds trom－ 20 warning ui threct thortws and blur＇kug condenser

TRANSISTORISED TEST EQUIPMENT．

保 Ke／s．－ 300 Mc／s．Signal Generatur， 89.10 .0 ． Resistance－C＇apmeitance Bridge，\＆8．5．0．1－15 vulta U．C．Power Hupply，28．10．0．Audio Generatar $10 / 100,000 \mathrm{c} / \mathrm{s} .1$ \＆ib．15．0．Iaductance Bridge， £18．0．0．SPECLAL AFFER OF AMERICAN VALVE VOLT－ MPECER tanges to 1.600 .5 A．c ，voltage ranges to 1,400 ． ；Resistance ranke to 1 ，vol Megohmas．tin． 200 microarup．weler．for himso volts A．C． operation．With test firods and operating inatruc－ Designs．ONLY $\& 7.10,8$（ Post eLe．3／B）．Electrunje LINEAR AMPLIFIERS．LCB3， 4 watt ，size $8 \ddagger$ $4 \frac{1}{2} \times 2$ iin．hugh，85．5．0．1．45A 3 walla，size
告12．12．0，cover with caryitig han 4 ， $25 /=$

 Liltre Linear sue $9 \times 7 \times 5 i n$ ．Ligh， 213.13 .0 ． Cover with carrying handles．10／8．＂Conchurd＂
 high．£16．16．0．（rves will calrying hanuled，85／－． rin．huh，z2S．2．0．Cover with carrying thatilea，
 ex stoch．lietails ou reguent．
＂Tripletose＂Convertible Ampliter，size $10 \times$ $3 \times \frac{1}{2} \mathrm{in}$ ．bigh． 4 watts output ruatched for $2-3$ ohms，uk ：amplitiers can be coupled wgether for NTEREO，\＆6．19．6 each．
＂Tripletone＂F．M．Tuner，size $11 \times 6 \times 3 \mathrm{~L}$ ．bigh， Coverage ot 104 Mic／s． 413.18 .6 ，（unpowered），or £15．14．6（4eli－powerad）．Lptuils on request．
MICROPHONES．Crysta）TYpes．（intar，12／a． besk，wilh built stand， $15 /-$ Acos $30 / 1$ itick， and Table siaud 32／6．Super Stick，With beary
Oenk stand 49／6．Moving Coil rypes．Stick with heavy Dest staud，59／6．＇Slmine＂Stick，30K mpedance，with swite＇h， $75 / \mathrm{m}$ ．Undi－directruls brome plated dicocest rame， 50 h with switeh，
HARRIS ELECTRONICS （London）LTD． 138 GRAY＇S INN ROAD， LONDON，W．C． 1

Please include curriuge robt on $A L J$ ．ifens Trading hours 9 a．m．－ 8 p．m．．Monday－Friday． Cloged Saturday．We are 2 mins．Irom High Rol－ born（Chancery Land Biation）and 6 mank by ba Hrom King＇s Cross．

R.S.T. VALVE MAIL ORDER CO.

2lla STREATHAM ROAD, MITCHAM, SURREY

Mon.-S2t. 9 am

- $5.45 \mathrm{p} . \mathrm{m}$.

Wednesday I p.m Open Daily to Callar:
Tel. M1Tcham 6202 and 6771

OAP	6/-	; BA	4/9	6 K 7 M	5/m	10	9J-	$25 Y 56$	9/-	954	4/-1	DY86	$71-1$	EF	6/6	KTW81	4/8	PY33	8/6	UCH81	$8 / 8$
$\mathrm{OC3}$	51-	6BE)	$4 / 9$	6K7	1/3	10 C 2	12/-	2524	6/3	1625	5/-	1818	$7 / 9$	EF89	4/2	KTZ4I	$8 /$	PY81	516	UCL82	719
1 A7	718	${ }_{\text {tiBH6 }}$	71.	6E70T	4/6	10F1	12/6	2575	$7 /$	5763	10/6	E88C	14/-	EF91	$8 / 6$	ML4	19/-	PY82	\$/8	UCL8*	819
105	6/-	68.16	6/6	648M	8/6	10LD11	10/-	$25 \% 6$	8/6	7193	1/6	E180F	151/	EF95	4/6	M1.6	5/\%	PY83	6/-	UF41	$7 /$
$1 \mathrm{H5}$	$7 / 6$	¢ BLO_{7} A	7/6	6k89	$3 /-$	10P13	$12 / 6$	28 D 7	$5 / \mathrm{F}$	9004	$2 / 3$	EABU80	$5 / 6$	EF98	101-	MR300	17/6	PY800	$5 / 9$	UF89	6/-
1 Llb	$5 /-$	+ $\mathrm{BBR}^{\text {P }}$	$10 / 6$	6 KRGGT	8/3	12AH8	10/6	30 Cl 16	$9 / 6$	90AV	151-	EAF42	$7 / 6$	EF183	6/6	MU14	4/-	R2	$4 /$	UL41	$6 / 9$
1N54T	8/=	GIBP8	7/6	$6 \mathrm{~K} \because 5$	201-	1 \because AT6	4/8	30 Fs	9/-	9000	20/=1	EB91	8/-	EFIS4	$6 / 6$	N78	15/=	R19	7-	UL84	5/6
1 R 5	51-		15/-	6L1	$8 / 6$	12AT ${ }^{\text {a }}$	$3 / 3$	30 FLL	10/6	90 CV	$17 / 6$	EBet33	$61 /$	ELS32	8/-	N108	15/-	BQ5/500		UM80	7/-
124	$5 /-$	68W6	8/6	6 LbO	\%	12AU6	$5 / 9$	30 L 15	12/-	9001		EBC41	$6 / 6$	E.l.33	17/8	NGT1	10/-		49/-	UY:21	$7 / 6$
185	3/3	fllw	$8 / 6$	6 Ll 18	716	12AU7	5/-	301.17	12/6	ATP4	1/9	EBP80	5/-	ELid	$9 / 6$	NGT7	251-	8130	10/-	UY41	4/6
1T4	2/8	104	$1 / 9$	6076	$5 / 6$	12 AX 7	$4 / 6$	30 P 12	101-	ATP5	710	EBF'83	$7 / 3$	EL4l	$7 / 3$	PC86	10/-	SP41	1/8	UY85	4/9
2.45	$51 /$	6050	4/-	6Q7GT	$91-$	12BA6	6/-	30 P 19	14/-	ATP7	4/6	EBF89	$5 / 8$	E1-42	$7 / 6$	PC88	$9 / 8$	SP61	1/-	VR105/	05/-
$2 \mathrm{X} \cdot 2$	2/6	6C6	$8 / 9$	6SA7	7/-	12 BE 6	$4 / 9$	30 PLl	11/=	AU2	301-	EBL1	17/8	EL50	6/-	PC97	71.	T41	$9 /$	VR150/3	305) $=$
3A4	3/6	6059	6/\%	68C7	6/8	12BE7	519	30PL13	12/6	AUS	6/8	EBL21	$10 / 6$	ELd4	4/6	PCC84	$5 / 6$	TDD4	7%	VT5	12/8
3173	3/6	BCD ${ }^{\text {did }}$	$22 / 6$	6897	4/-	12F1	18/6	30 PL 14	$12 / 6$	AZ1	$7 / 8$	ECC81	3/8	EL90	6/=	PCC89	816	TH41	201-	VT31	60/-
3 Q4	6/6	6СН's	$8 /$	68177	$2 / 6$	12550 T	$2 / 3$	3545	17/-	A231	12/6	ECCS 2	5/-	EL91	$2 / 6$	PCC189	101-	U14	7 -	VT 120	101-
3Q5	$6 / 6$	6CW4	14/\%	64.17	5/-	$12 J 7 G T$	$7 / 3$	351.6	$5 / 9$	CBL1	12/6	ECCs3	$4 / 6$	EM34	9/-	PCF80	8/8	U19	$27 / 8$	VU111	6/-
344	4/8	112 2	3/-	6SK7GT	4/9	l2K7GT	3/=	35W4	$4 / 9$	CK502	5/-	ECCW_{4}	5/8	EM80	6/-	PCF'82	6/-	U25	10\% $=$	VU120	10/-
3 V 4	61.	6 D 4	$2 / 9$	68L7CT	4/9	12K8GT	9/-	3573	101-	CL33	$12 / 6$	Eccss	$5 / 9$	EM81	71-	PCFF4	$81 /$	U26	10\%	VU508	201-
5 R 4 G	81-	6 125	$5 / 9$	6MN7GT	4/-	12Q7gT	8/-	3574GT	$3 / 9$	CY31	10/-	ECCs8	$8 / 8$	EM84	6/-	PCFRG	8/6	U50	4/-	W81M	5/=
$51{ }^{1} 46$	4/-	6 Fl	9/-	6897	6/-	128A7	$8 / 6$	3525	5/6	DAC32	718	ECF80	6/8	ESU150	$25 /-$	PCF801	919	U76	$3 / 9$	$\times 78$	26/6
5 V 40	8/-	6F5G	51-	6UtGT	10/-	12dg7	816	37	3/2	DAF91	$8 / 3$	ECF82	B/-	EY51	8/6	PUPs02	$8 / 9$	U191	11/-	$\mathbf{X} 79$	25/-
5 Y 30 T	8/6	6F6G	4/-	615 G	716	124117	$2 / 9$	42	4/6	DAF96	6/-	ECH21	10%	EY86	$6 / 3$	PCF805	10/6	U251	11/6	X H_{1-5}	5/=
5\%49T	81.	5FP\%	$5 / 6$	6VBM	$81 /$	12NJ 7	$8 / 9$	50 B 5	$6 / 8$	DCC90	7/-	ECH35	131*	E235	$4 / 9$	PCF'80	12/-	C301	12%	XP15	5/m
$6 / 30 \mathrm{~L} 2$	10/-	$6 \mathrm{Fl2}$	$3 / 6$	6V6G	3/6	128SK7	$2 / 9$	$50 \mathrm{C5}$	6/3	LF33	81/	ECH42	81-	E240	5/6	PCF80	$12 / 6$	U403	8/5	X SGl-5	10/-
$6 \mathrm{~S}^{6}$	151.	$6{ }^{6} 13$	5/-	6VbGT	\%	123NP7	5/-	500 DFG	$24 / 9$	IVF91	$2 / 6$	ECHB1	$5 / 6$	EZ44	$6 / \mathrm{F}$	PCLS 2	6/8	U801	$18 / 6$	YSGl-5	10/-
6 A8G	8/8	$6 \mathrm{cb}^{1} 14$	12/6	6 N 4	3/6	13 D 3	6/5	50 L 6GT	6/-	${ }^{10982}$	$2 / 6$	ECH. 88	6/6	EZ80	$5 / 6$	${ }_{P} \mathrm{Cl} .83$	8/-	UABC80	$05 / 6$	VCR97	27/6
$6 \mathrm{AK5}$	416	6) ${ }^{+123}$	$9 / 6$	6N5G	$4 / 9$	1487	$27 / 6$	75	51-	DF96	6/-	ECL80	6%	EZ ${ }^{\text {H1 }}$	316	PCLa 4	71.	UAF42	7/	VCR	
GA1.5	3/-	646	$2 / 6$	$6 \times 59 \mathrm{~T}$	$7 / 6$	19AQ5	$7 / 6$	78	$4 / 6$	1)K32	$7 / 8$	ECL8\%	$6 / 8$	G230	816	PCL45	$7 / 3$	UBict1	$8 / 6$		30/
6 A 15	2/6	fillis	$1 / 3$	7137	7/10	2011	10/-	80	5/-	す)K91	6\%	ECLR3	$9 /=$	G23*	$9 /-$	PCL86	$8 / 9$	URC'81	$71-$	VCRS17	7 C
6A316	$3 / 6$	6.J. 5 M	$6 / 6$	705	10\%-	2015	$19 / 6$	85	15/-	DK92	$7 / 9$	ECLB6	$8 / 6$	(C 34	$9 / 9$	PEN45	6/-	UBF80	$5 / 9$		30/-
$6 \mathrm{AQ5}$	6/-	6.55 C	$2 / 8$	$7{ }^{7}$	6/-	20 FO	11/6	85A2	8/6	1)K96	$8 / 8$	EF3\%	$3 / 6$	H_{63}	$5 /-$	PEN46	$2 / 9$	LBF89	6/3	3EG1	40\%-
6AN4 6	$22 / 6$ $3 / 6$		4/3	715 $7 \mathrm{H7}$	8/-	20111 20 P 4	12/6	15082 150 C	$11 / 6$ $12 / 6$	LL92 DL,93	$4 / 9$ $8 / 6$	${ }_{\text {EF339 }}$	$9 / 6$ $5 / 8$	HABC8	82/6	$\underset{\text { PL3 }}{ }$	$9 / 6$	UBL21	10/6	3FP7	$39 /=$
$6 A 16$ $6 A 116$	$3 / 6$ $6 /-$		$8 / 6$	7 H 7 7 H	12/-	20 P 4	14/-	150C4	12/6	D1.93	$8 / 6$	EF39	5/8	KT36	22/6	PL/ 1	71-	UCCB4	8/6		27/6
$6 A 16$ $6 A V 6$	$6 /-$ $6 /-$		$8 / 6$ $4 / 3$	7 R 7 $7 \mathrm{S7}$	127/6	20 P .5 25 A 5	12/6	301 807	5/9	DL94 DL95	8/6	EF41	6/6	KTb6 KT76	12/6		$5 /-$	UCCR5	$8 / 6$ $8 / 6$	CU1526	401-
6157	$5 /-$		$7 /$	7 Y 4	5/-	25 LGGT	4/6	837	$8 / 6$	DL96	6/-	EF'80	$4 / 6$	KT81	10\%-	PLS4	$8 / 8$	UCH21	719	ACE 13	
6 BxG	$2 /-$	6 KbbaT	5/-	9BW6	81-	25 Y5	6/-	866	10/	DM70	5/-	EF85	4/6	KT88	201-	Pl. 500	14/6	UCH 42	7%		18.0.0

SPECIAL 24 HOUR SERVICE
OBSOLETE TYPES A SPECIALITY QUOTATIONS FOR ANY VALVE NOT LISTED Postage 6d. per Valve. C.W.O. No C.O.D.

Special 24 Hour daf91, DF91 DFesers of valves
Express Mail
Order Service
DAF91, DF91. DK91, DL.92. DL94 DAF96. DF96, DK96. DL96

BARGAINS FROM BROADWAY ELECTRONICS

GARRARD A.T. EI-F4 Autochanger G.C. 8 mono cartridgeع9.19.6. post free.
GARRARD AUTOSLIM 4 speed changer- $\mathbf{E 6 . 1 0 . 0}$, post free: IUin. ALTHAM SPEAKER with built in tweeter 3 ohm or 15 ohm ,000 Gauss Magnet. Only 29/6, postage $3 / 6$.
HAYDON CABINET ($17 \times 15 \times 8 \mathrm{in}$.) designed to take a 121 n . Heavy Duty Speaker. $50 /$, postage $7 / 6$.
The Famous B.H1.3 XTAL MiCROPHONE with neck lanyard 30/-. table stand for above 9/8 extra. Xtal insert 7/3.
GULTAR PICK-UP complete with clip and screened lead-12/8. 3-WAY PUSH BUTTON UNITS. Each button operates a 4 -pole 2-way switch-4/6.
BARGAINS IN TRANGISTORS. Mullard RF Packs OC44 two OC45. 12/6: AF Packs OC81D two OC81, 8/6; OC44, 3/6; OC45, 3/-; OC71, 2/6; OC72, 3/-;0A81 diode 2/3; OC170, 6/6; AF' 117 . 6/6; ORP12; light cell, 7/6: OC29. 12/6; OC35. $12 / 8$.
TRANSISTOR FLFNTRULYTICS $1,2,4,5,8,10,16,32,50,100$ Mid. all at 15 volts- $1 / 3$ each.
HCMICHAEL TELESCOPIC TV AERIAL $23 i n$. extends to 451 n , Fitted with coax plug. will suit any set. Only $7 / 8$.
CARTRLDGFis. Acos 67-1G Low Output, 67-2G Medium Output GP59-5 H1gh Output. Garrard GC2 or GC8 ali with mounting bracket 15/-.
Ronette Stereo with mounting bracket. 25/-。
EARPIECES with cord and 3.5 mm plug. 8 ohm magnetic $3 /$ $250 \mathrm{ohm}, 4 /-; 180$ ohm magnetic with clip 6/6; xtal. $4 /-; 3.5 \mathrm{~mm}$ plugs with nice long shank complete with jack, 3/-.
3.5 mm plugs with alce long shank complete with jack SCREENED, 4/-.
TOGGLE SWITCHES. Single pole with on/off plate, 2/6.
NEON PANEL IIGHTS. 240v. A.C. Arcolectric. $2 / 6$.
TERMS: C.W.O. OR C.O.I.

BROADWAY ELECTRONICS 92 MITCHAM ROAD, TOOTING, S.W. 17

(four minutes from Tooting Broadway Undergound Station)

Technical Aids to help you earn more!

皆
 i)
 1
 NEWNES COMPLETE
 Lathework

Make your choice-
 You can examine one of these sets, by post, FREE for a week.

This lavishly-illustrated set provides all the essential information for operating CENTRE, CAPSTAN, TLRRET and ALTOMATIC LATHES. It is designed to help you become highly skilied and fully conversant with various types in present-day use.
Contents include: Differential Threading. Floating-blade reamers. Trepan boring. Back facing. Deep-hole boring. Boring bar cutters. Tool design, multi-cut. Turning universal-joint flange. Camshalts, machining. Gearcutting on lathe. Right-angle lathes. Profile turning. Grinding carbide tools. Chip breakers. Turning compound
 lapers. Acme threads. Norton quick-change gearbox. Endtrain. Eccentric turning. Highspeed screw-cutting. Designing cams. etc. etc. SPECIAI, FEATURES: In addition to the weatth of information on setting up and operation, considerable space is devoted to-Lathe Tools, Typical Tooling Arrangements, Multicut Lathes. Thread Chasing and Thread Rolling.

> 2 VOLUMES 560 PAGES
> 660 PHOTOS, DRAWINGS AND DIAGRAMS,
> OPERATING DATA, ETC.
> PLUS CASE O:
> I6 DATA CHARTS

2

NEWNES COMPLETE

 WelderWritten by leading experts it gives you the specialtsed knowledge that would normally take years to acquire-this means money to you. It eaplains the theory, methods and techniques used both in repair work and construction
Electric Welding and Cutting: Equipment, Transformers, Generators, Electrodes, Metalarc Welding Procedures, Hard Facing, Carbon Arc Welding, Atomic Hydrogen Arc Welding, Inert-gas Arc Welding, Automatic Arc Welding, Stud Welding, Testing Welds, Gas Welding and Cutting Processes, Oxy-Acetylene Welding Equipment and Practice, Welding Iren, Cast Iron, Cast Steel and Alloy Sceels, Tube Weiding, Hard Facing Processes, Aluminium and Magnesium Welding, Welding Copper and Alloys, Bronze Welding, Flame Brazing, Lead Welding, Oxygen Cutting, Oxy-Acetylene Hand Cutting, Oxygen Cutting by Machine. Tables and Data, Qualification Tests, etc

2 VOLUMES • 544 PAGES 614 PHOTOS AND DRAWINGS
139 DIAGRAMS AND TABLES
PLUS CASE OF
14 DATA CHARTS

Easy no-interest terms if kept after Free trial

Astonishing Radio Bargains from CONCORD

Make 5 dIfferent transistor

 RADIOS FOR 351NO EXPEIR HENCE NEC ESSARY. No Soldering $\begin{array}{ll}\text { Only } 8 & \text { con- } \\ \text { nections } & \text { for }\end{array}$ first radio to work. Just look, you get A.B.C. Plans, Cabinet, Loudspeaker (alone 17/6). Earphone, 4 Semi-conductors, Colls, Condensers, YH's - EVEHYTHING: Screws, etc. English and Foreign reception. As supElied to Educstional Aeception. As sup plied to Educational Authorities. H.M Mr. R. O'D. of Londondars GALORE ". I received your components and t must say that an very satisted with them. I haveit already set up!. "COMPLERE HOMIE ifadio COURSE: Origimally sB SEAD ONLI $35 /$ - plus $3 / 8$ post, ete.

EVEN THE OLDER CHTHLDREN BUILD THEM: . . Do solderdng-only 16 connections! then hear it reach out bringing in station after station, loud and clear. Paim-of-hand size $4 i$ x 27 x $1 \frac{1}{2} 1 \pi$. Many Testimonals: M. II, of Bradford, Writes: ". . I have just completed one of your sets successfully, it is the first time I have ever tackled anything like a radio, and 7 must state here and now. 1 am amazed how easy it is to a layman like me. Your instrucfully thought out so that even the most dim fully thought out so that even the most $\mathrm{d} m$ Manufaeturers to You Send $19 / 6$ plus $2 / 6$ post, ete.

PARTS AVAILABLE SEPARATELY

Amazing cigareite RADIO! ONLY 18/6

Yes, a perfectily ordinary packet of cigarettes! - but watch your friends astonishment on hearing it fetch in station after station, loud and clear Still holds 10 Cigarettes-yet cleverly conceals highly sensitive, fully transistor ised circuit (including tiny battery) yen a young boy can assemblu in unde 2 hours. No solchak. No experjence necessary, Only 16 connections to make. Ideal for taking to work with you. From our bulging testimonial file. Mr. D.B. of Huddersideld, writes: ". . I have fitted the parts "in and it is working wonder ully ${ }^{\circ}$ ALL PARTS inciuding Semi Conductors, A.B.C. Pla
$18 / 6$ plus $2 / 6$ post etc.

PARTS AYAILABLE SEPARATELY

READ WHAT SATISFIED CUSTOMERS SAY

```
RC. of harRingay writes
Received with thanks Skyroma
*.Very pleased. Working
N
an a MARROGATE wricen - . Irould like to thank ywn ...tit is real bargoin.
```

L.S. of LONDON W. 8 writes . given it a good iry out and . am very pleased with the results.
S.B. of SOMERSET writen . . delighted with this rodio gl
D.R. of GLASGOW writes it is a lovely little thing and as clear as a bell.
T.F. of STEYENAGE writes would just like to say how pleased 4 ny 000 is with this rodia.
J.W, of BRIGHTOH writes .. I have recommended your radio to many of my friends.
W.H. of MIDDLESEX writes Thank you for any dear lityle radia $t \boldsymbol{i}$ i a nal treaser 10 anc.
\&RADID CLEARANCE LTD.
27 TOTTENHAM COURT ROAD, LONDON W.I. Telephone: MUSeum 9188 Trade enquiries invited. The oldest component specialists in the trode. Est. 35 yrs
LOUDSPEAKER BARGAINS STILL AVAILABLE
Enormous purchases of Braind New and Guaranteed Plessey loudspeakers enable us to offer these units at THE LOWEST PRICES EVER: Don't miss this off the production line at LESS THAN THE MANUFACTURER'S COST? Read carefully the prepared list below and choose just the right speaker for the jobCOMPARE THE PRICES ANIWHERE!SELLING FAST--STOCKS CHANGING RAPIULY.

$8 \mathrm{dxy}$ nechem	Gown in. lines	$\operatorname{smp}_{i n}$		Size 6 (nches	Gause in. lines	Imped in. ahns		$\begin{aligned} & \text { Hase } \\ & \text { in } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { Gaunt } \\ V n \end{gathered}$	fmped. in. ©hrs	
2	7000	80	81.	$3{ }^{3}$	9500		$10 / 6$	4	9500	25	11/6
21	7000	35	8/6	3	9540	8	10/6	5	61000	3	81 -
24	7000	60	816	3	7600	33	$8 / 6$	5	7000	3	$8 / 6$
$2 t$	7000	80	81-	33	9500	50	1016	5	7500	3	91.
3	8500	3	10/-		7600	25	11/6	5	8500	3	$9 /$
3	6000	5	$8 / 8$	4	f000	35	10/8	5	9500	3	10/8
3	T000	5	9/-	4	7000	35	11/-	5	9510	1.5	$12 /$
3	7000	3.5	9/-	4	7500	5	9/8	5	8540	25	10/8
s	6500	80	$9 / 6$	4	9000	50	11/6	5	9500	33	11/8
3	6000	15	10\%-	4	9600	3.5	11/6	68	6000	3	11/.
81	7000	3	9/8	4	9500	15	121	8	6000	15	18/6
$\times 3$	6000	3		7×37	7000	3		8×24	500		
+3	9000	35	12/-	7×38	9500	3	10/8				
5×3	7000	3		$7 \times 3 \frac{3}{8}$	9500	8	11/6	8	8500	3	
5×3	9000	3	$8 / 6$	7×4	4500	3	11/.		1100	3	
5×3 $\times 3$	9500	3		$\times 4$	9500	30	12/6				
${ }^{6} \times 4$	8500	3	916	$\times 4$	10000	3	12/6	10×6	11000	3	
8×4	9500	3	10\%	$8 \times 2 \pm$	6000	3					
\times	9500	35	18/-	8×24	7000				11000		
ALOW $2 / 6$ each Speaker for postage and packing and handing charge and please apecify the exact requirements-the nearest avallable will be sent.											
Beartifully geared AM/FM 2 gang Condensers. $4 / 6:$ AM/FM IFT'S $465 \mathrm{kc} / \mathrm{s}$ and $10.7 \mathrm{Mc} / \mathrm{s} 6$											
4/6 pair: Magnavox Crystal Tape Recorder Mikes, 12/6: 3 watt Stereo Amplifiers,											
complete. ready to switch on, 79/6; Sentercell rectifers R3/2D-D3-2-1-Y. $2 / 6$ each.											
DIODES-OA79, OA90, CG46H, GD10, 2/- each. TRANSISTORS: OC45 4/8, PXA101, 3/9, AF115, $4 / 6$ Sub min. Germanium diode 1/3											
M1 diode 6d. each. Sllicon diodes, 200 p.i.v. $200 \mathrm{~mA}, 1 / \mathrm{each}, 400$ p.1.V., $330 \mathrm{~mA} .2 / 6$ each,											
please send STAMPED and ADDRESSED envelope with any enquiry.											
and package charge to avold delay. Terms: Cash With Order or C.O.D. on Orders											
over 10\%.											

10 WFTT MONO AMPLIFIER, Complete With bullt in pre-amplifier in metal case. plastic veneer covered 6 inputs, 3 each level. With equaliast ion each input. 1 input switch selected each level with separate vol control for milalng. Wide range tone controls. Sepsrate Bass and Treble. For use on 220-2507. A.C. malna, Case isolated from mains. ECL86 valves in output for low distortion. Suitable all high impedance Microphoves and plek-ups. Size overall including plastic READY BULLT AND TESTED
READY BULT AND TESTE
POET and PACKING 5/*
£14.10.0
3W + 8W STEREO AMPLDFER. As above amplifler but 2 separate amplifiers giving full 3 watts each channel. Controls; 1 Mono-stereo, 2 Barance, 3 Left Vol.. 4 Right Vol., 5 Bass, 6 Treble, Input and output oockets st rear. A.C. mains, $220-250 \mathrm{v}$. Case isolated. READY BUILT AND TESTED

POST and PACKING 5/-
£14.15.0
RADIOGRAM CEASSIS. Latest style 3 waveband chassis. Tandem controls through vertical glass dia! $6 x 13$ in. Printed Gold on Black. Controls: 1 Wave4 Tone on/oft. Ferrite Rod Aeris) AVC negstive feedback. Full 3 watts output for 30 speaker, Pilot Lamp, $220-250 \mathrm{v}$. A.C. maing. Chaseis isolated Overall size: Height 13yin., Depth gin. Width 84 . Complete with Enobs. Dial
Aligned and Tested.
POST and PACEING $5 /-$
£9.15.0
TERMS: C.W.O. or C.O.D. $3 / 8$ extra. 7-Day Oney Back Guarsntee. Mail Order addrems only.
ROITONE (Dept. P.W.)

Your complete basic guide devoid of mathematics and circuitry

BEGINNER'S GUIDE TO COLOUR TELEVISION

by Terence L. Squires, A.M.Brit.I.R.E.

Explains fully how the signals are created in the television studios, how they are transmitted and the techniques used to receive and display them. Covers: Historical Outline - The Colour Signal - The Chrominance Signal - Colour Transmission - Receiving the Colour Signal - Domestic Aerial Systems - The Receiver Block Diagram - The SECAM Receiver etc.

128 pages, 58 diagrams

only 15s. net

 from all booksellers... or, in cose of difficulty, 16 s 3 d by post from George Newnes Led., Tower House. Southampton Street, London W.C. 2.

NEWNES

PADGETTS RADIO STORES
Dept. P.W., OLD TOWN HALL LIVERSEDGE, YORKSHIRE

Telephone: Cleckheaton 2866

USA Bomb Computers in original tranat case. full of geary, wotora, widor counter, syro, etc.. 37/carriage 10 0 -.
PCR. 12 volt Vibrator pack, in original packing asse, 25/-. carriage 81-.
RAB Sifhting Heads. Complete with lamp, lens, etc. No details. Packed in original metal case, $15 /$ carriage 10 /-.
Single Phere 240 voit. 1,400 r.p.m... h.p. notor with pulley, $28 /$-, less puley. $24 /$-, fully gharateed. ex washing tumchine. Carriage 8/6.
One Sixth H.P. Motor, 240 volts 15/\%, poast g/9.
New Indiaator Onit CRT 100, complete witb two tubes, type VCRX 393 and TCRXMis. Hus 2l minal valves, retaya removed. $68 /$-, or fess valves, 321 -. sarriage $10 /$. Sorry ao details ots the unit.
New 18in. Speskers with built-in tweeter 3 or 15. obimen, 28/6, post psid.
P.M. Spoakers, all is ohms, ex TV sets. 6ia. round $6 \times 4 \mathrm{in}$, and 5 in , $3 / \mathrm{m}$, post $2 / \mathrm{m}$, 6 for $20 / \mathrm{m}$, poat paid. Binn, round. $8 /=$, post $2 / 2 / .7 \times 4 \mathrm{ia}, 5 /-$, post $2 /=$

Valve list					
Ex equipment. \% months guarantee					
EL91	1/6	20 P 4	8/6	Preso	4/-
ECLbo	2/-	¢801	8/6	PCCO_{4}	
Ecca?	$3 / \cdot$	U281	$51-$	PCL-22	61-
EYif	2/6	U2m ${ }^{\text {a }}$	51	PCLin	51,
eymb	5/.	U329	5\%	PL30	5/0
EbF*0	4/6	KT36	5\%.	[20	5\%
Eb91	9d.	5 U 4	4/-	12AT7	$3 / 10$
EL3s	51.	6V60T	4/-	$6 \mathrm{CH6}$	1/6
EF91	9 d.	6×0	4/-	ARP12	$1 / 6$
6 F 1	1\%.	6 K 25	$51-$	807	5/-
6 F 14	5\%	6P83	3/B	EF50	1/-
6F\%	5%	8U4	51		
luce	5%	PY33	8/-	EF80	$1 / 6$
10 Fl	1\%	PY80	8/-	Doa	101.
10 P 13	5/.	PY81	3/-	6 K 7	1/3
10P14	5/.	PLEL	4/-	Doz	
Ond	2%	PLS2	31-	OVf	1/8
20 LL	51.	P1.83	3/-	Do	18/9
20 P 3	$4 /$ -	PLi33	8/-	6K8	1/8
2081	4/-	PY	3/-	Doz	18/-

Eresking ap Mark III Type 18 Sets, Polnter Knobs 7/doz., post paid. Jack sooket, 1/-. post 6d.. doz. 10/post paid. Jack $1 / 6$, post 6 d. Toggle switch. metal, 6d. poat 6d., doz, 7/6, post paid. Relay type 3000. 1/9, post 1/9, doz. 20/-, post paid. Any other spare sead 2/- plus post to cover.
Reolaimed Tubes. 6 caontha guarantee. 14in. Mulbard and Mardia, 17/-, carr. 10/.. 17iL., 30/-, carr. 10/-

"GLOBE-KING"

Amateur Short-Wave Radio
For over twenty years the famous incomparable "Globe-King" single-valve kits have been used by enthusiasts in almost every country in the world where low cost but high precision standard equipment was essential and demanded. We now take pleasure announcing the new transistor version. a tremendous performance. Send s.a.e. today for interesting free literature on this and other equipment. Overseas enthuslasts note: we despatch to all parts of the world via International Postal Services.

JOHNSONS (RADIO)
ST. MARTIN'S GATE
WORCESTER

Please mention

"Practical Wireless"
when replying to Advertisements

AMPLIFIERS AND SPEAKERS
NORTHCOURT "FIVE" AMPLIFIER

Suitable for guit-
ars. grams and radios. The 5 watt outputamplifier incorporates separate volume, treble and bass controls.

Two jack socket inputs are fitted. Twin speakers give exceptionally realistic reproduction and are built into an attractive cabinet. Size: Length llatin. Height llatin. Depth 5tin. Finished in motele grey with the front covered in Vynair. Hains Voltage 200/250, $50 \mathrm{~K} / \mathrm{c}$. Ideal for home use with any guitar. Retail 69.17.6
P.A. EXTENSION SPEAKER

Suitable for radio and Record Players. Size: Length $10 i n$. Height 7 in . Depth Sin. Fitted in durable industrial linished wood cabiné, attractively fin. ished in mottled
 grey. Speaker front covered in Vynair. Price 29/9 Retail. As above fited with volume control. 35/3 Retail.
P.A. TWIN EXTENSION SPEAKER

Suitable for all radio and record players (incorporating two speakers $6 \times 4 i n$. .). Size: Length 12 in . Height $7 \frac{1}{3} \mathrm{in}$. Depth $5 \frac{1}{2}$. Fitted in durable industrial finished wood cabinet, attractively finished in moteled grey. Speaker front covered in Vynair Price 3916 Retail. As zbove firted with volume control, 43/6 Retail.

FULLY SHROUDED UPRIGHT TRANSFORMERS
$350-0.350100 \mathrm{~mA} 6.3 \mathrm{v}$. 4 A C.T. $0-5 \mathrm{v}$. at 3 amp. 2916 Retail.
$300.0-300100 \mathrm{~mA} 6.3 \mathrm{v}$. 4A C.T. 0-5v. at 3 amp. 2916 Ratail.
$250-0-250100 \mathrm{~mA} 6.3 \mathrm{v}$. 4A C.T. 0-5v. at 3 amp. 29/6 Retail.
All products guaranteed 12 months. Trade supplied. For name of nearest stockist and

full accessory brochure, write to:
 NORTHCOURT (Electrical Bfd.) LIMITED

Transformer and Coil Manufacturers Dept. P.W. SOUTH PARK MILLS. PUDSEY, Yorks.

WAVE TRAP
Pal. app. for
BOOST to ANY tranciator portable radio.
civea BOOST to ANY tranilator Dortabie
$*$ In CAR replaces car uerlat; reduces lading.
IN HOME boosta distant and PIRATE atations.
P. \& P.

* ON HOLIDAY Improver recep- g/-extra. tion in remote areas. A MUST for caravantiera Attaches to any mindow.
Supplied complete with PP3 battery and inatruc-
DEM 14d DEPT PW MDGWOOD-8OAD, FIBMDOWM, DOTNH

Please send atl correspondence and Mail Orders to the Head Ofice
LONDON W2
TeL: PARK $5841 / 2 / 8$

Relait Shop:
STOTTENHAM COUBT ROAD LONDON W1
Tel.: LANgham 840s
Flease write for Catalogae of
valres and semiconductors

高 LISTEN
 AND ENJOY THE i WORLD'S RADIO AMATEUR \Rightarrow AND BROADCAST STATIONS WITH

 WE HAVE SOLVED your aerial problem for WORLD-WIDE RECEPTION-NO MATTER WHERE YOU LIVE ! ! !World Expert Radio Amateur WIBB (U.S.A.) claims the "JOYSTICK" aerial-easier to read stations than with his massive 520^{\prime} VEE aerial 70' high 1 I 1 ZL4GA, who is probably NEW ZEALAND'S best known Radio Amateur, has scrapped his outstanding $300^{\prime} 45^{\prime}$; high aerial and has WORKED ALL CONTINENTS on the "JOYSTICK" in under 12 hours I I I
"CQ" the Radio Amateur"s journal claims "JOYSTICK" better for reception than the world popular DIPOLE (four different receivers used to confirm this decisionl)
YOU CAN BE THE PROUD OWNER OF THE WORLD'S MOST VERSATILE \& COMPACT "JOYSTICK" COMPLETE RECEIVING SYSTEM FOR AS LITTLE AS
E6.6.6 (Standard system) p. a p. included or the De Luxe system for $\mathbf{8 7 . 7 . 6} \mathrm{p}$. 1 p. included.

Money Back if not Delighted Not convinced? Then send for brochure and showers of testimonials to :-
PARTRIGEE ELECTRONCS LTD
(Dept. PW)

- HSHER HOUSE" PROSPECT DOAD BMOADSTARS, KENT

of your! of move!

No doubt you will put your X between the two O's, The machine will then play 0 in the bottom right hand corner. Play what T'his is just one of the games played on our Noughts and Crosses machine. As Brian Trueman of Granada TV said, after demonstrating the machine on television on April 12th.
One machine that was playing for money. at 3d. a go, refunded for a drawn game, ralsed $£ 3$ in three hours for charlty. Full circuit, wiring diagram and instruothons, $3 / 64$. post free.

A.R.R.L. RADIO AMATEURS HANDBOOK 1965

New Edition 40/-, Postage 3/3
101 Ways to Use your Oscilloscope by Middleton. $21 /=$ P. \& P. $1 /=$ bectronics Data Handbook by Clifiord $16 /-\quad P$. \& P, $1 /-$. Preetical Tape Recording by Guy. New ed. 7/6. P. \& P, 9d. Practleal Oscilioseope Handibook by RuiG.G.B. Rudio Amateur Call Book 1965. 5/- P. \& P. 8d.
Semiconductor Circuit Design by Leedham. 7/6. P. \& P. 8 d .
Hritish Iranisistor Lirectory by Bradey. 8/6. P. \& P. 8d.
Kadio Control for Models by Judd. 15/= P. \& P. $1 /=$

UNIVERSAL BOOK CO.
12 Lithe Mewport Stroet, London, W.C. 2 (adjoining Lalele Street)

BBC2 (625 LINE) TV AERIALS

Mast Mounting Arrays, 9 element 45/-: wide spaced high gain, ll element $55 /-\frac{14}{}$ element 62/6. Wail slounting with Cranked Arin, 9 element $80 /$; wide spaced. high gain. 11 element 67/6; 14 element 75/-. Chimmey Arrays Complete, 9 element 72/-: wide spaced high gain, 11 element 80/; ; 14 element 87/6. Loft Arrays, 7 element 32/6; wide spaced high gain, 11 element. With Tilting Arim, 6ف/6; 14 ele ment 70/-. All high gain units have co-axial cable $1 / 6$ per yard. VHP tras. sistor pre-amps from 75/.
BBC • ITV • F.M. AERIALS
B.B.C. (Band 1). Telescopic loft 21-. Erternal SID ${ }^{30 /}$ 1.T.V. (Biand 3). ${ }^{3}$ Element loft aray $25 /=5$ element35/-Wall nounting. 3 element $35 / \square 5$ element 45/-. Combined R.B.C. $\boldsymbol{F} . \mathrm{T} . \mathrm{V}$. Loft $1+3,41 / 3 ; 1+5,48 / 9$; Wall mountine 1+3, $58 / 3$;
$1+5.63 / 9$: Chimany $1+3$,
 amps from $75 /$ /if
F.M. (Band 9) Loft S/D $12 / 6$. " HF ", $30 / \%$ 3 element. 52/6. External units availabie. Co-ax cable 8d, yd.. Co-ax Dlugs. 1/3.
Outlet $\begin{aligned} & \text { boxes } 4 / 8 \text {. Diplexer Crossover }\end{aligned}$ Outlet boxes 4/6. Diplexer crossover. Send Bu. stamps for ilustrated lists.
K.V.A. ELECTRONICS (Dept P.W.) 3b Godstone Road, Kenley, Surrey CRO 2527

PRRACTICAL WIRELESS

MOST of these blueprints are drawn full-size and although the issues containing descriptions of these sets are now out of print, constructional detalls are available free with each blueprint except for those marked thus (*).
Send (preferably) a postal order to cover the cost of the Blueprint (stamps over 6d. unacceptable) to PRACTICAL WIRELESS, Blueprint Dept., George Newnes, Ltd., Tower House, Southampton Street, London W.C.2.

DOUBLE-SIDED BLUEPRINTS

The Strand Amplifier ... The PW Signal Generator	5\%	The Tutor * The Citizen *	...	-..	...	31.
The Savoy VHF Tuner \} The Mayfair Pre-amplifier \qquad $\}$	51.	Dual-Wave Crystal Diode	PW95	216
The Berkeley Loudspeaker Enclosure The Luxembourg Tuner	5\%	Modern One-valver	-..	...	PW96 PW97	216 316
The PW Troubadour \} The PW Everest Tuner\}	716	A.C. Band-pass Three	PW98	316 41.
The PW Britannic Two The PW Mercury Six $\}$	61.	A.C. Coronet-4	...		PWI00 PWIOI	4/2
The PW Regency The PW International Short Wave Two $\}$	51.	The PW Pocket Superhet	51.
Beginner's Short Wave Two S.W. Listener's Guide	51.					
Beginner's 10-watt Transmitter Transmitting and Aerial Data... $\}$	51.	MISCEL	NE			
$\left.\begin{array}{ll}\text { P.W. "Sixteen" Multirange Meter } & \text {... } \\ \text { Test Meter Applications Chart } & \text {... }\end{array}\right\}$	5I.	The PW 3-speed Autogram		...	\cdots	81.
The Celeste 7-transistor Portable Radio The Spinette Record Player\}	51.	The PW Monophonic Elect The PT Band III TV conver		...	\ldots	81. 116
The P.W. 35-watt Guitar Amplifier ... *	51.	The Mini-amp *	-..	...	51.
$\left.\begin{array}{l}\text { Transistor Radio Mains Unit ... } \\ 7 \mathrm{Mc} / \mathrm{s} \text { Transceiver } \\ \text {... } \\ \text {... }\end{array}\right\}$	5\%	The PT Olympic * The PT Multimeter *	...	\cdots	...	716 51.

PLEASE NOTE that we can supply no blueprints other than those shown in the above list. Nor are we able to supply service sheets for commercial radio, TV or audio equipment.

QUERY SERVICE

The P.W. Query Service is designed primarily to answer queries on articles published in the magazine and to deal with problems which cannot easily be solved by reference to standard text books. In order to prevent unnecessary disappointment, prospective users of the service should note that:
(a) We cannot undertake to design equipment or to supply wiring diagrams or circuits, to individual requirements.
(b) We cannot undertake to supply detailed information for converting war surplus equipment, or to supply circuitry.
(c) It is usually impossible to supply information on imported domestic equipment owing to the lack of details available.
(d) We regret we are unable to answer technical queries over the telephone.
(e) It helps us if queries are clear and concise.
(f) We cannot guarantee to answer any query not accompanied by the current query coupon and a stamped addressed envelope.

QUERYCOUPON

This coupon is available until 5th August, 1965 and must accompany all queries in accordance with the rules of our Query Service.

PRACTICAL WIRELESS, AUGUST, 1965

HENRY'S RADIO LTD.
303 EDGWARERD., LONDONW2
PADCington 1008/9
Open Mon. to Sat. 9-6. Thurs. I p.m. Open all doy Soturday

PROVED und TESTED DESICNS
FULL AFTER SALES SERVICE AND GUARANTEE UNBEATABLE FOR PERFORMANCE AND VALUE

DETAILED

 LEAFLETSFREE ON
REQUEST

VHF FM TUNER TO BUILD

* 5-transistors, 4-diodes. \star Printed circuit superhet. * Tuning range 87 to $105 \mathrm{Mc} / \mathrm{s}$ \star PF stage and double tuned IFT'S -9 volt 9 mA operated.
\star All parts sold separately.
\star Output up to 1 volt. * Size $4 \times 3 \frac{1}{2} \times 24$ in.
P.P. 216 (complete with front panel) \star Cabinet Assembly
TOTAL COST
TO BUILD
\&6.19.6 MW/LW POCKET SUPERHET RADIO TO BUILD

* 6-transistor plus diode. * Push-pull speakar output. \star Easy printed circuit. * Slow geared tuning. * Full MED and long waves. \star Moulded cabinet $5 \times 3 \times 1 \frac{1}{6}$ in. P.P. 2f- (Battery 2/6, Phone 5\%) TOTAL COST 85/ - Amazing sensitivity and selectivity.
(\% TWO WAVEBAND ALL TRANSISTOR CAR RADIO TO ASSEMBLE

TOTAL COST
TO BUILD $\mathbf{3 . 1 9 . 6}$
P.P. $3 / 6$.

* Supplied as factory built assemblies-just interconnect. * 6-transistor push-pull design-double tuned IFT'S.
\star Push-button wavechange-full tuning range.
克 Size $7 \times 4 \times 2$ in.-fits any car-chromed front dial. \& Units available separately.
* Guaranteed high performance and quality.
(PUSH-BUTTON TRANSISTOR PORTABLE TO BUILD

* 6-transistor supernet design.
\star Easy to build printed
$\star 8$ in. f D/T IिTs.
* Push-button wavechange.
* Full Med./LW geared tuning.
* Attractive sturdy cabinet. Size $16 \times 7 \times 3 \frac{1}{2}$ in.
* All parts sold separately.

TOTAL COST 17.19 .6
P.P. 316

- SENSITIVE

TO BUILD 0.19 .0
Batteries 6/-) SUPERHET
 - VHF FM TUNER TO ASSEMBLE

* Supplied as prebuilt and aligned units plus metal work just interconnect.
$* 88$ to $108 \mathrm{Mc} / \mathrm{s}$. FM tuning.
* 100 mV to 100 Kohm outpuc.
* 6 -transistor printed circuit. Superhet design.
* Size $9 \frac{1}{2} \times 3 \frac{1}{2} \times 4$ in.

TOTAL COST \& 12.17 .6
(All units available separately). P.P. 216

Let us quote Ler Parts for your circuit. Send a list for quick reply.

Fully detailed and illustrated catalogue. Now 96 pages. All types of components and equipment at competitive

10 WATT AND 20 WATT AMFLIFIERS

ANDL TRANSISTOR PRE-BUILT AND TESTED UNITS AMOWER
AMPLIFIERS 10 watts
music
output.
watts watts 6-transistor designs. Response $40 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. tivity.
Unit I. For
| 2 | 5 ohm
 Unit 2. For 3 to 5 ohms. 24 volt. PRICE $\mathbf{B U I L T} \mathbf{5 . 1 0 . 0}$ P.P.
(Mains units Mono $59 / 6$ Stereo 69/6)

* PREAMPLIFIERS-MONO AND STEREO VERSIONS.

8 inputs, $1 \frac{1}{2} \mathrm{mV}$ to 300 mV at lK to 500 Kohm. Response $30 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$. Comilete range of controls.
Unit 3. Mono full function preamplifer. Size $9 \frac{1}{2} \times 2 \frac{1}{2} \times 2 \mathrm{in}$ (Brown/Gold front panel, 816)

Unit 4. Simplified version
of L'nit 3. Price built 65/- P.P. 1'6
Unit 5. Sterea preamplifier for use with two power amplifiers. Size $9 \times 3 \frac{1}{4} \times 1 \frac{5}{8}$ in.
PRICEGIO.19.6 P.P. 3'6.
(Erown/Gold panei 12'6).
\&OW NOISELOW DISTORTION QUALITY DESIGNS

Enables complere Mono or Enables complete Mono or Stereo equipment to be assembled
at a fraction of the cost of a commercial comparabie design. Simple to interconnect, outstanding quality.

* TW? AND FOUR TRAEK PORTABLE

 TAPE RECORDERS TO ASSEMBLEPrebuits equipment-6 valvesCollaro studio decks-portable cabinets- 8×5 in. speakers. Complete recording and playback.

* Two track derk 10 gns. P.P. 5/-

Amplifier II gns. P.P. ${ }^{3 / 6}$
Cabinet witt: speaker, $\mathbf{5}$ gns. P.P. 316. or SPECIAL PRICE
P.P. 816 TWO TRACK

Cabinet and speaker 5 gns. P.P. 3^{16}.

126
\star Hour Track deck $\mathbf{\$ 1 3 . 1 9 . 6 . ~ P . P . ~ 5 1 - . ~ A m p l i f i e r ~} 12$ gns. P.P. 316
or SPECIAL PRICE $\$ 30$ P.P. 816 FOUR TRACK

* 4 WATT AND $1 \frac{1}{2}$ WATT PACKAGE AMPLIFIERS
* 6-transistor push-pull printed. circuit designs.
* Peak ourput 8 watt and 3 watt
\star Size unly $2 \frac{1}{2} \times 2 \times 1 \frac{1}{4} \mathrm{if}$.
* 4 watt, $12 / 18$ volt; $1 \frac{1}{2}$ watt, $9 / 12$ vole.
* Output for 3 to 5 ohm speakers.

商 7 mivi inco 1 Kumm. to e/s to $15 \mathrm{ke} / \mathrm{s}$.
PRICES
BUILT \quad WATT $65 /=\begin{aligned} & \text { P.P. }\end{aligned} \quad 4$ WATT $79 / 6$ P.P.

[^0]:

[^1]:

[^2]: All correspondence intended for the Editor should be addressed to: The Editor, "Practical Wireless". George Newnes Led. Tower House Southampton Street, London, W.C.2. Phone: TEMple Bar 4363. Telegrams: Newnes Rand London. Subscription rates, including postage: 29s. per year to any part of the world. (c) George Newnes Ltd., 1965. Copyright in all drawings, photographs and articles published in "Practical Wireless" is specifically reserved throughout the countries signatory to the Berne Convention and the U.S.A. Reproductions or imitations of any of these are therefore expressly forbidden. THE SEPTEMBER ISSUE WILL BE PUBLISHED OR or imitations of any of these are therefore expressiy orbidden. TH.

[^3]: -continued on page 321

[^4]: Goldring Manufacturing Co. (GB) Ltd.
 486-488 High Road, Leytonstone, London E. 11
 Telephone: Leytonstons 8343

[^5]: Lusted Hall Lane, Tatsfield, Kent.

