ECONOMY S.W. RECEIVERS

Practical 9° Wireless

Yol 23. No. 496. || Editor: F.J.CAMM || NOYEMBER, 1947

PRINCIPAL CONTENTS

[^0]With the Amateurs
Automatic Station Selection
Switching a P.A. Amplifier
Reducing Phase Shift,

AMBIIOIS NOHNATD

Whatever your age or experience-whether you are one of the "old school " or a newcomer to Engineering anxious to hold your position under post-war conditions-you must read this highly informative guide to the best paid Engineerihg posts.
The Handbook contains among other intensely interesting matter, particulars of B.Sc., A.M.I.C.E., A.M.I.Mech.E, A.M.I.E.E., A.M.I.M.I., A.M.I.P.E., A.M.Brit.I.R.E. CITY \& GUILDS, CIVIL SERVICE, and other important Engineering Examinations, outlines courses in all branches of CIVIL, MECHANICAL, ELECTRICAL, AUTONOBILE, RADIO, TELEVISION, AERONAUTICAL and PRODUCTION ENGINEERING, DRAUGHTSMANSHIP, GOVERNMENT EMPLOYMENT, BUILDING and FLASTICS (the great peacetime careers), MATRICULATION, etc., and explains the unique advantages of our Employment Department.

WE DEFINTELY GUARANTEE 'NO PASS - NO FEE'

 OPDORTUNTIIES": it tells you everything you want to thow to male soum fulure secure and describes many chances you are now missing. In vour own interest we advise you to write for your copy of this enlightening guide to well-paid posts NOW - FREE and without

obligation.
 BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 409, SHAKESPEARE HOUSE, $17,18 \& 19$, STRATFORD PLACE, LONDON, W.I.

Abstract

EX-COVERNMENT BARGAINS

ROD Itillis.-set of four lbin, tapered rods to make grt. aerlal. Further lenfths can be added. Per set of 4 rods. ' R^{2}-.
 of transmission. Ideal for television. Per yard, 8 d. CoVDENSEIIG-Fixed. 1000 v . Wkg $15,5800 \mathrm{v} .4 \mathrm{mrd}$. $3 /-2 \mathrm{mfd} .46,4 \mathrm{mrd} .816: 8 \mathrm{mid}, 15 / .8750 \mathrm{~V} .8 \mathrm{mfd} .86$. .50 v. 4 mfd .116 ; $2,000 \% .4$ mid. 15 ceramla insulation: ghott wave variadie condensers with cerdmis $100 \mathrm{pF}, 3 \mathrm{~B}$. 18:pF and $20 \mathrm{pF}, 3.6: 20 \mathrm{pF}$ with long spinde, 3.3 ; Twin-gang JB. Special : 0001 mfd , and , nooz mid. $5 /-$ each $100 \mathrm{pF}, 106$. 18 pF . 76 : twin-gang, 0001 mfu. 10. 3 gang 100 pFibrator VIBR 1 TOR, NITS,-pye Communication Recelver Xbrator unit with super smoothing in heavy steet lamp, fuse. spare '10in. with heavy duty on-off switch, plot 1 amp , fase. spare vitrator. etc. Input $1000 \mathrm{~m} / \mathrm{a}$. 10% earrlage paid. Vibrator pack with all

 power unit 222 with mbtor generdtor. carbon pile voltage Tower unit 222 with motor generatgr. earbon Size of metal regulator, relay, sceemed fiter-unt, iuse, etc. $30 \mathrm{~m} / \mathrm{a} ., 8.5 \mathrm{v}$.
 cases. 1819, plus $5 /$ carriage.
MRYTitis.- pooket meterfin strong canvas case. Moving
 2ym. diam. scale ; $0-150$ y. 29.6 : $0-12 \mathrm{~A}$. 25/-. R.F. Thermocouple, 2 i 万. diam-scale 00.5 A or $0-3 \mathrm{~A} .15 \mathrm{~B}$-each.
MIKE NND ILEADPHFNE SFTS. Combined moving coll headphones and tilorophbne with switoh in handle. Cost at least- $£ 8$ to make. A pargain at 05

 iR theadthones. Gnod loudspeatert results obtalnable on LR theadphones. Dnod lotevided of efrcuit and how to bulld a suitable power unit for A.C. mains. An excellent bargain at 26 .
RDDYSTONEM MNUALI NUWIGGR 6. This new short wave manual contains construction detalls of $2 v$. Sw battery receiver. I v. VHF preselector, 3 r. VHF, A.C. mains straight recelver. \mathbf{j}-metre C.O. transmitior. heterodyne frequenty meter. PMac $2: 8$ post frce.
SOUTHERN RADIO \& ELECTRICAL SUPPLIES 85, FISHERTON ST., SALISBURY, WILTS. Trephone: Sallishury 2108.

CLYDESDALE

The Radioman's Shop for Bargains in ex-Services Electronic Equipment NHELRS. All Brand New
MILLIANETER. $10 \mathrm{~A} / 13012$. Moving Coil, 2 reading scale Battery-low, high and Lines-short circult open circuit. Movement 5 m .a. f.s.d. res. 10 ? 2 in . scafe, 2 ? in . square flange.

Our Price Only $\mathbf{5}$ is each, post free.
MILLIAMETER. 10A/12140. Moving Coil, 0-300 m a. scale reading with words. Mag. feed. Movement $10 \mathrm{~m} . \mathrm{a}$. shunted to $100 \mathrm{~m} . \mathrm{a}$. (shunt in meter $5 \Omega), 2 \mathrm{in}$. Scale, 21 in . square flange.

Our Price Unly ${ }^{\mathbf{W}} \mathbf{d}$ each, post free.
THERMO-AMMETER. 10A/8481. Moving Coil, $0-0.5$ amps. full scale : res. $.65 \Omega 2$ in. scale, 21 in . square flangc.

Our Price Only $\mathcal{F} \boldsymbol{\sigma}$ each, post fres.
VOLTMETER. 10A/12682. Moving Coil, 0-40 volts, full scale movement, 5 m.a. with $w . w$. res. (inside meter), 200Ω per volt. 2 in . scale, 21 in . square flange, also $5 \mathrm{U} / 1693$ as above, scale black, leftering white.

Our Priee Only-eto each, post frec.
These circuits are available:
R. $1116 \mathrm{Rx}, 2 / \mathrm{s}$. MCR1-Rx, 2/s. T. $1154 \mathrm{Tx}, \boldsymbol{2} / \mathrm{sB}$. R. 1155 'Rx, $17 \mathrm{R}^{\prime}$ Rl155AC Power Unit, fill. all post free.
Send now for new illustrated lists; please print name and address
CLYDESDALE SUPPLY CO., LTD. 2, Bridge Street, Glassow, C. 5 "phone South 2706,9 Visit our branches in Scotland, England and Northern Ireland

PREMIER RADIO CO.
 MORRIS \& CO. (RADIO) LTD.

 of a complete kit of paria to construct an H. T? Aliminator Whithan output of 120 at 20 as a and provinion for trickle charciug it 2 v. necurmatator. Two metai rectiaters are exploved. With ciratit. Prica $30-$ -
ALUMINIUM CHASSIS.

 in wahelite cases. I'rices are about une-4 farter of origiasal cost.

00 a	\%		or	1.W. II.F.	36
40 m	Sits.	二	prish	Mc De	${ }^{13}$
25a.	31 n ,	-	Finah	M.U. D.e.	$\% 6$
2.)	P3in.	二	Proi.	M.e. IIC.	86

 operite as D.C. Motar.

ROTARY TRANSFOR- BATTERY CHARGER KITS. All lacorporate metal rectifiers, MERS. inn wh $12 .$. ont- input $300-200$ v. A.C., 40100 cyeles.

 at all times. Mateh ant whe situgle or pushopull to not
 POWER UNITS. Corisist (19/6; 60) wate, 59/6.

RADIOGRAM CABINETS. Dignified appearance and coor Workhanohip. Aize 34 din. high, 14 ith , deep. 34 in , wide sem for innstration. Cabinet ouls, £26. With Electric Motor and Maknip, £32/13/4. Wibh Liectric Motorand Crsatal Piek-up. 23521 . With Eight Record Auturatic Mixed Chauger 245,7/3.
SPECIAL OFFER. Movingeoll Meters flush mounting (1-j09 ni/a., dial marked $11-15$ ant (0-fie0 v., Sita, diameter. 1 Inst the neter for a multi-ranke teat set. Price $\% 8$.
PREMIER MAINS TRANSFORMERS. Alt primarie are
 are Ecreened. All L.'i's are ceutre tapرet.
List No.

 sp.ejon. EJt-17.

 $300-1) \cdot 300$ r. 1

$5050-0 \div 350$ v. $100 \mathrm{~m} / \mathrm{a} .5$ 128/-

Send $2 \frac{1}{2} d$. stamp for our list. Ierms of busilness: cash willt order, or C.O.D. over $\mathcal{E} I$

ALL POST ORDERS TO 167, LOWER CLAPTUN RO, LONDON, E.5.
ALL CALLERS TO 169, FLEET STREET
ALL CALLERS TO 169, FLEET STREET, LONDON, E.C.4.
'Phone:
Central 2833

Transmitter-receiver for short waves $20-40$ metres. Provision for crystal control. Uses standard headphones and microphones. Battery operated, requiring standard 120 volts h.t. and 2 volts l.t. Includes 9 valves standard English types. Six valves in receiver and three in transmitter. Circuit Rx, 2RF., Det., 2 Audio and Power. Tx, Osc. PA and modulator.

E6
 carriage paid

THE STAMFORD RADIO CO.
199 Stamford St., Ashton-U-Lyne, Lancs. Telephone: ASHton 1964.

MATNS THANSERPMERS A. F. TRANSFORMERS smpothing chokes
THERMA DELAY SWITCHES power resistances

make AND keep GOOD CONTACTS
 of CLIX design.
BRITISH MEGHANICAL PRODUCTIONS LTD. 2l BRUTON ST., LONDON, W.l MAYfair 5543

About Radio Olympia

AN inspection of the models exlibited at Olympia did not reveal any radical changes. This was to be expected in view of the restrictions on materials and the labour shortage. The designs largely were those of 1939 vintage in a new dressing. Plastics, of course, are well to the fore, timber being in short supply. With minor exceptions, however, there were no novelties: The stylists had been at work improving the shapes and the aesthetic appeal. We are not suggesting that receivers of 1939 design. had ..very much wrong with them.

Ifundreds of thousands of them have been in regular use during the war and for longer periods than in peace because of the anxiety of the public to hear the war news. Most of them are still in use, and we found that whilst manufacturers had little difficulty in disposing of their output there was a natural caution on the part of the buying public. Some preferred to wait a littlo longer. .

Sir Stafford Cripps' announcement that more goods must be exported naturally affected the number of receivers available for the home market. As this announcement was made some weeks before the Show opened it caused manufacturers' to revise their marketing progranmes. We feel, however, that as radio to-day is a necessity in every home the home market should be supplied first, and our exports should be the overspilling into the export markets of production in excess of liome requirements.

In view of the unstable currency powition and our han on imports from other countries, which quite naturally are inclulging in "reprisals" by refusing to import from us, it is not surprising that manufacturers are finding it difficult to find export markets. The high cost of raw materials over here and the rise in cost of labour coupled with the shortages which add further to the unit cost becanse tooling and overheads are spread over a small instead of a large quantity, do not permit the inanufacturer in any case to compete on a fair price level with our foreign com. petitors.

In our discussions with manu-

facturers we learned that they expected. in view of the coal shortage and power cuts, that they would not reach thoir production targets, and that receivers would not be in plentiful supply.

A large number of the new models exhibited were prototypes only intended to give the public a foretaste of future produldion. Orders were not being booked for these. We are of the opinion that it is a mistalie to exhibit goods before they are in production. When a prototype is passed out to the shop modifications are boumd to be made, and the receiver extribited in the prototype stage may not hear a true resemblance to the production model. Nor does it impress foreign buyers who come over here to spend money when they are told either that the firm is not ready to book orders or that delivery cannot take place for at least a year. Such practice docs great harm to other manufacturers who are able to deliver ex-stock.

As was to be expected, the television receivers attracted a great amount of attention, and a goodly. number of orders were booked. The demonstrations indicated the enormous strides this country has made in this new science. This new industry, however. has suffered another blow in that the programme for erecting a chain of transmitters throughout the country must inevitably be delayed in view of the crisis. It is possible, therefore, that America inay be able to make up some of the leeway she has lost. At present she is a long way behind Great Britain in television technique, although we know that she is busily buying up patents and arranging for manufucturing licences.

Radio components for constructors were in evidence but not markedly so. The component industry, like every other industry, is finding it difficult to get into full production.

Attendances at the Show were excellent, and the general design of the exhibition reflected great credit upon the organisers. We feel, however, that future exhibitions need to be housed in a building a little more up to date than Olympia. The catering arrangements there are totally inadequate to deal with the large crowds attracted by the national publicity given to the exhibition.

ROUND THE MOR OF WIRELESS
 Fosłage Stamp Control Marks
 R.M.S. Queen Mary

THE Tosthenster-General amounees that the control marls hitherto printed on the maryin of sheets of unified stamps $\frac{1}{2} d$. to $1 s$. is being abandoned as opportmity oceurs. The last control mark to be used will be $\mathrm{T} / 47$. The cylinder mumber. which is printerl in small type below the control mark, will continue to appeatr.

Broadcast Receiving Licences

THE following statement shows the approximate number of licences issucal during the year enuled July 31st, 1947.

Region				Nombler.
Jondon Postal .		.		$\cdots .042,000$
Home Counties				1,431,000
Midland		.		1,553.000
North Lastern		-		1,671,000
North Western		.		1,437,000
south Western		.		933,000
Welsh and Border	.	.		(i-3,0)(00)

Total England and Wales 9,687.(100 sisotland Northern ireland $\quad . . \quad . \quad . \quad . \quad 157,100$

Granel Total

$10,883,0100$
The abore total included 21,200 television liecnces. The G.P.O. also annomed that prosecutions in July for operating wireless receiving apparatus without a licence numbered 589.

A link with the past. Peto Scott are showing the above 1922 receiver on their stand to remind the public that they are one of the oldest names in the radio trade. "Old hands"" will remenber the fum which we got out of the loose-coupled bright-emitter detector stage of the day.

WELL over seven milesol extruded plast ic (named Tenatmbe) has been used in the coverimg of many rails and fods in the Quecn Mory. In all cases the tubing used has been of Polvinyt Chboride (or I'V.C.), well-known to radio amateurs, and the extrusions were made at the Epper Basildon (Berks) works of Massis. Tenaplas, Lite., the entire job being all British.

Liner's Temporary Wireless Operator

THE wirtless operator of the Cnion Castle liner', Rostin Castle, was taken ill during the shipes recent homeward voyage and had to be disembarked at Frectown, Sierra Leone. Mr. Alfreal Henry Rooks, a Cable and Wircless, Itd., operator, was on his way home from Aspension Island on the Empire Duchoss, which had been delayed at Freetown for a week.

Hearing of Mr. Rooks' presence, the captain of the Romlir Custle askerl him if he would take on the wircless operator's job. Athough he had had no previous experience of working ships' radio, Mr. Rooks readily agreed and, after obtaining fermission from the management at home, signed on as a member of the crew at the nominal pay of 1 s a month.

Throughout the journey Mr. Rooks maintained the normal wat -hes, receiving weather reports from Rughy, ascortaining the ship's position, wemdiner messages from the eaptain to the owners aml handling public telegrams for passengers. After leaving Las palmas his work became more involved owing to the greater number of ships, mostly foreigners, in the area. switchind to short-wave, he disposed of meseages to Fortishead radio. Ocrasionally he rontacted the Aimpire Juchess' wireless operator, who helped him whenever necessary.

Ho has since recoived a letter from the [Thion Cast le Line offering him eompensation for helping the Riostin (ristle by working his penssage home.

Television Avenue

A^{1}BOUT two dozen firms are showing approximately 40 television receivers in "Tel-vision Avmur." which ocrupies the whole of the cast side of the Cirand Hall Gallery at Olympia. Passing town the 250) t . long arente, the public has plenty of room to see tho programmes "pipe-lined" from the 13.B.C. studio in Olympia or received hy aerial on the roof from Alexamdra Palace, and cin compare one set with another.

British Sound Recording Association

T'HE opening lecture of the season took place at the Royal Society of Arts, John Adam Street, Adelphi, Strand, London, W.C.!, on Friday, September 26 th, 1947 at 7 p.m., when the president, Dr. L. E. C. Hughes, lecturr,' ${ }^{\text {d }}$ "sound, and Its lelation to Recording.'

Light Programme Wavelengths

THE E.E.C. ask us to point out that it does not seem to bo fully recognised that the main trunsmasion of the Light Programme is on 1,500 nobtres, and that 261.1 metres is an auxiliary transmission only.

There are no auxiliary Jight Programme transmitters in eithor the Welsh or Midland B.13.('. Regions.

A Television Idea

ANOVEL idea was recently proposed in the U.S.A. to ensure payment for television programmes received. According to the idea, which was proposed by the president of the Zenith Radio Corporation, the signals would be scrambled and sent out in the usual way. 'The necessary unscrambling signals would be sent over the telephone wires to which the set would have to be ronnerted. To see the picturea, the viewer would have to ask the tolephone operator for "'Phone-vision," and could then be charged for his period of lookirg-in. Trests have shown that the scheme.is practicable.

A television studio of the future as depicted in the neve film "Something in the Wind," shortly to be relecsed.

ANEW Universal-International picture, "Something in the Wind," starring Deanna Durbin, Donald O'Connor and John Dall, has a finale which takes a peep into the future with a full-scale television studio. Technical advice was sought from the leading Ameriman television people before this set was built and the equipment designed.

AMATEUR RADIO EXHIBITION

The first amateur exhibition of its kind ever to be held in this country will take place at the from Nov. 19th to Nov. 22nd, both dates inclusive.
Deanna Durbin, who plays the
part of a radio record programme announcer in the film, was coached by Al Jarvis, who is fannous in Amerira as a "disc jockey." The film is being released this month.

"British Radio for the World"

 " ${ }^{1}$ RITISH Rarlio for the World" is the title of a bnoklet issued by the Radio Industry Commeil, representing all sections of the industry, to interest buyers overseas at Radiolynnia.The booklet narks the jubilee of the British radio industry, the silver jubilee of broadeasting and the tentli anniversary of television transmissions in Great Britain. During the war, it is stated, the British radio industry was trebled in size, and since the war its exports have been increased four-fold.

The booklet is being distributed abroad only through official channels and manufacturers' agents.

A netv car radio with push-button tuning. It gives choice of four stations and hav an whobrrusive panel fitting beneath the dashboard. This is a "Radia-mobile" and may be seen on Stand 144 at Olympia.

Some Suggested "Economy" Short-wave Receiver Circuits

Details of Construction of Efficient Three-valve Receivers.

By C SUMMERFORD

IT has been pointed out in recent articles that, Whereas in tho old days, sensitivity was considered this first consideration in the design a of efticient short wase receivers, with selectivity an "also ran." the prition now is that (due to the large increase in the number of short wavestations) the two have become of equal importance.

To arhieve tho requisite selectivity, a superhet circuit is generally used laving at least six tunced circuits. while in ordur to achieve reasonable sensitivity. receivms usit!g up to dive valves before the second detector aro lewoming a commonplace. These receivers are usatly rather expensive and are out of reach of many enthusiasts for economic reazons.
The rhoice then has to be made between a "clieap" superhet and a T'R.F. receiver. Not a very satisfactory state of affars because it really amounts to choosing between good selectivity with poor sensitivity on the one land or good sensitivity with poor selectivity on the other.

It is to cater for the neots of readers who have to make this turnviable choice that these circuits have been evolved.

Regeneration
Let us first lonk at the eircuit, Fig. 1. Threo valves only, exchuling the rectifier, are used in this (ircuit, but by earefuldesigu they are made to do the work of six. .

W'e begin the good work right at the aerial input, where a wavetrap circuit consisting of a 1 apped inductance in parallel with a rariable comdenser boosts the signal appreciably before it raches the first valve.

Tho frequency changer (vi) is used in a normal manner with the exception of the regeneration circuit. Regeneration is ohtained by inserting Ch.l in series with the primary winding of the I.F. transforine: to effect an impedance at R.F'. 'The circuit is completed by L. 3 and VC.4.

This form of regencration has been found to be quite effective when used with a GK8 valve which is therefore suggested as first choice in this circuit.

In the interests of economy the normal l.F. amplifier hass been dispensed with, aud to make up for the lows in gain a regenerative leaky-grid detector is used. 'This valve, a $6(\%)$, actually has to perform two extra functions besides doing it's normal duty of

Fig. I.-A.C. Mains Short-wave Three as described.
cletector-L.F. amplifier. They are that of I.F. amplifier and B.F.O., both of which necessitate the use of regeneration.

This regeneration is very easily accomplished by using a Bulgin C5l I.F. transformer, as this transformer is provided with a third winding which is

As inains transformers having secondaries of 350 volts $80 \mathrm{~mA}, 6.3$ volts 3 armps and 5 volts 2 amps are easily obtainable, one of these has been selected -it should, however, have a screened primary

Excess current (about 20 milliamps) is bled away by a 10 watt power resistor (Rl3), and this

LIST OF COMPONENTS FOR FIG. 1.

RESISTORS

R1. 300 ohms $\frac{1}{2}$ watt.
R2. 35,000 ohms 1 watt.
R3. 100,000 ohms $\frac{1}{2}$ watt.
R4. 5,000 ohms $\frac{1}{2}$ watt.
R5. 30,000 ohms 1 watt.
R6. 5,000 ohms ? watt.
R7. 1 meg. 1 watt.
R8. 20,000 ohms 1 watt.
R9. 10,000 ohms 1 watt.
R10. 90 ohms $\frac{1}{2}$ watt.
R11. 10,000 ohms $\frac{1}{2}$ watt.
R12. 100 ohms $\frac{1}{2}$ watt.
R13. 12,500 ohms 10 watts.
TUNING COILS
I.1, 2, 3. Eddystone 6-pin.

L5, 6. Eddystone 4-pin.
WAVE TRAP CIRCUIT
50 turns 22 s.w.g., d.s.c. spaced thickness of wire, wound on $\lambda_{4} \mathrm{in}$. former and tapped at 6 and 20 turns.
1-150 pF Variable condenser.
1 S.P, three-way switch.
valves
6.3 volt.

V1. 6 K 8 G
V2. 6C5G
V3. KT61
V4. 5Z4G

4 volt
$\times 41$
MHL4
KT41
MU12/14.

VOLUME CONTROL
$\frac{1}{2}$ megohm carbon type.
FIXED CONDENSERS
C1, 3, 4, 7, 11 . . $01 / \mathrm{F}$ mica.
C2, 8. $0001 \mu \mathrm{~F}$ mica.
C5, 6. . $001 \mu \mathrm{~F}$ mica.
C9. 8μ F elec.
C10. . 0005 „F mica.
C12. . 05 /finica.
C13. $50 \mu \mathrm{~F}$ elec.
C14. $16 \mu \mathrm{~F}$ elec.
C15. $8 \mu \mathrm{~F}$ elec.
C16, 17. . 01 „F mica.
VARIABLE CONDENSERS
$\mathrm{VCl}, \mathrm{VC3}$. two gang 150 pF .
VC2. 25 pF .
VC4. 500 pF .
Bulgin. C5i.
R.F. CHOKES

2 Eddystone, cat. No. 1010.
MAINS TRANSFORMER
200-250 volt screened primary.
H.T. Sec. 300-0-300 at 80 mA .
L.T.s. 6.3 volt 2 amps . and 5 volt 2 amps . or
4 volt 4 amps. and 4 volt 2.5 amps .
normally uzed in conjunction with a variable resist. ance as a means of obtaining variable selectivity. In this circuit, however, it is used as an ordinary reaction winding and is connected to the 6 C 5 anode at one end and to earth via a .0005 variable condonser at the other.

Sy increasing the capacity of VC 4 until the circuit is just below oscillation point, at least as much (and quite possibly more) I.F. amplification will be ohtained as in a circuit using an average I.F. ampli. fying valve.

Despite the fact that there are only two tumed circuits at intermediate frequency, the selectivity obtainable with fairly critical setting of VC4 will probably be higher than in the " cheap" superhet using four tuned circuits at 1.F. VC4 should be a well-made variable condenser with integral slowmotion drive, or alternatively, could be one of ordinary type, in which case a slow-motion head would have to be used. If this condenser has its capacity increased until the I.F'. circuit gently oscillates, a modulated note will be obtainable on C.W. signals at a frequency that is dependent on the setting of VC4.

The 6C5 is resistance-capacity coupled to a Marconi/Osram KTbl output tetrode which needs a grit swing of only 4.4 volts to load it fully to give its maximum output of 4.3 watts.

The whole receiver consumes roughly 60 milliamps, and the power pack can, therefore, be of moderate size.
is an asset in that it helps to keep H.'T'. voltage variations within very small limits. It is intencled that as a further economy an energised loudspoaker. be used so that the field winding can bo used for sinoothing purposes. The actual field resistance should be 1,250 ohms, but any resistancè between 1,000 and $1,500^{3}$ ohms would be quite in order. Sinoothing condensers are of large capacity and in conjunction with the high inductance field winding ensure a ripple freo H.1. supply. C16 and Cl7, which are connected from each anode to each heater pin of the rectifier, are inserted to counteract modulation hum. Although not shown in the diagrann, a further condenser of $.0005 \mu \mathrm{~F}$ may have to be connected from one side of the fiequency changer heater to earth for the same reason.

Those readers who prefer 4 volt valves may use the following line up without changing any of the component values shown in Fig. 1: Marconi Osram X4l, THHL4, K'T41, MU12/l4. It will, of course, be necessary in this case to employ a mains transformer having two 4 volt L.'T. windings.

Battery Version

The battery version of this circuit is shown in Fig. 2, and so closely follows that of lig. 1 that it calls for little further comment. There is, however, one variation-an intervalve transformer is parallel coupled between V? and V3 in order to make up for the slight loss in amplification encountered when using battery valves. Suitable values for this

 the nearest batlery equivalents of those used in Fig. 1.
'There are probably wome eonstructors who dislike obtaining R.F. regeneration in the manner shown
resiriction of the tuming range at the high-frequeney curt: but this can be obriated by shortening the gride roil winding slightly.
(tathode controlled regeneration. however. has, in the writer's opinion, many alvantages over the capracity controlled system, To enmmerate some of

Fig. 2.-Battery version of a circuit on the lines of Fig. 1.

in Figs. 1 and ${ }^{2}$, and who have a strong preference for the use of a separate valve for this purpose. The circuits of Fig. 3, show how this may be dono.

Electron-couplod, cathode controlled regeneration circuits are shown at Fig. 3, A and (', while B and D show circuits of the well-tried caparity controlled system, Witlo capacity control there is some tuming shift which can, however, he easily corrected by retuming VC… This tuming shift, will be less when using a separate valve than in the original circuit.

One other disadvantago with this system is the
them: (1) There will he hardly any tuning shift, (2) no curtailment of range at the H.F. cind, (3) extreme smoothness of control, (4) no neccesity to employ more than a two winding coil.

Tho two cathode controlled circuit.s of Fig. 3 are identical exeppt for the R.F. chokes and the method of obtaining bias. In Fig. 3, A, Ch. 1 can bè any good short-wave cloke, while in Fig. 3. C, Ch. and Ch.2 mast he special filament short-wave chokes having a low D.e. resistance.

It is recommended that the valves be given the same bias as would be reguired were thoy to be
used as L.F. amplifiers-in the case of A and B by the normal cathode method, and by a 3 volt grid bias battery for (' and D. Jegeneration will be murh smoother whichever system is used with the valves correctly biased.

A modium-impedance triode such as the Marconi/ Osram Lefi3, or its 4 rolt equivalent MHL.t. is suitable for the circuits of Fig. A and B, while a Mullard PM2DN is ideal for the battery versions of Fig .3 , (' and D.

The extra expense incurred by using a separate regencrator is quite low-around 15 s , to lis. in cither case.

Cost

For the benefit of those reatlers who like to know the approximate cost of receivers built from designs such as these, the following figures are given and are inclusive of all components (including the loudspeaker). except the plug-in tuning coils, which are a matter of choice.

$$
\begin{array}{llll}
\text { Fig. 1. } & \mathfrak{t} 10 & 10 \mathrm{~s} . \\
\text { Fig. 2. } & \mathfrak{i} 6 & 10 \mathrm{~s} .
\end{array}
$$

It will thus be seen that receivers built around these circuits rompare very farourably in an economic sense with the average 'T.R.I'. receiver, apart from their many other advantages.

Fig. 3.-Electron-coupled cathode controlled reaction circuits.

R1. 1,000 ohnis $!$ watt.
R2. 10,000 ohms 1 watt.
R3. 1 megohm ! watt.
CI, 4. . 01 wF mica.
C3. . 00005 , 1 F mica.
TC1. 30 pF trimmer.
Ch.I. Std. S.W. choke.
Valve. L63 or MHL4.

R1. 1,000 ohms 1 watt.
R2. 10,000 ohms 1 watt.
R3. 1 meg. $\frac{1}{2}$ watt.
C1, 4. . $00005 \mu \mathrm{~F}$ mica.
$\mathrm{C} 2,3$. . $01 \mu \mathrm{~F}$ mica.
Ch.1. Std. S.W. choke.
Valve. L63. or MHL4.

R1. 10,000 ohms ${ }_{2}^{1}$ watt.
R2. 1 meg . $\frac{1}{2}$ watt.
VR1. 10,000 carbon Pot.
Ch. 1, 2. S.W. fil. chokes.
C1. . 01 / F mica.
C2. . $00005 \mu \mathrm{~F}$ mica.
TC1. 30 pF trimmer.
B1. 3 volt G.B. battery.
Valve. PM2D.

Atlantic City Conference

Final Frequency-allocation Decisions

W E: give here, in summarised form, the final freftrenieyaltomation derisimus rearbed at the Cumference in so far 'as they may aftect U.K. anatenrs:

Main Effects

The priuinal effects of these decisions are summarised as follows
(1) "F'oy hand" hele.
(8) Gallued $50 \mathrm{ke} / \mathrm{s}$ at $3.5 \mathrm{Mc} / \mathrm{s}$.

(t) Jont .al $\mathrm{k} \cdot / \mathrm{s}$ at $\mathrm{I}+\mathrm{Mr} \cdot \mathrm{s}$.

(i) lost 31 (i) kr / s at $28 \mathrm{Mc} / \mathrm{s}$
(z) lost the 60 Ji is lambl.
(Whilst on phiper the b-matre hand has heem last. there is every reason to ledieve that frequencies arown Go Ne/s will be ahloted later, on a mationat hasis. There is also a stronge possibitity that permission will he given to use the I.s.h. (lindustrial, sitientitic and Medical) hami arommel 11 metaes.) (א) tiained a new band at $14+\mathrm{Mc} / \mathrm{s}$ (2 metres).
(9) Gained 4 new V.H.F. bands.

The fignes siven represent the final decisions of rombut tee 5 and aredue to be confirmed after we gon to bress.

Isamd.	II'dth.		Remutho.
1,715-2, $2100 \mathrm{kc} / \mathrm{s}$	200 kc 's		2(W) kr / s shared (max. power (0) watte).
3,500-3.800 ,	3011		Shared.
7.009-7.10) ${ }_{\text {7. }}$			Exatusive.
$14,(6) 0-14,3.90$,	350		lixthusive, exrent that
			It.s.s.R. propses to operate internal fixed services loetween $14,200-14,350$ ki:/s.
			Wixetusive. lixclusive.
	$\begin{array}{r} 1,7(\mathrm{~K}) \\ \because \mathrm{M} \mathrm{c} / \mathrm{s} \end{array}$		lixclasive. bixdusive.
4: $20-2(3)$	10 "		shared (harmful interference clanse inserted comerming interference with dir Navaids).
1,215-1.310 ,			Extusive.
	1.71 $3+10$		fixdlusive.
	$2+10$		bixelusive (1.S.M. equipment will operate at 5.8 . $0 \mathrm{Me} / \mathrm{s}$ -tolerance phiss or minus 0.6 per cent.),
10,000-10,500	500		Exclusive.

Constructing Television Equipment

An Explanation of Modern Television Receivers and the Problems. of the Home Constructor.

By W. J. DELANEY (G2FMY)

IN spite of the fact that we have repeatedly ammoned that on Query Nervice is tempor arily suspended, we cont inue to rereise general types of query, amongst whid fuite a large proportion are roghests for delevision receiver designs, circuits. constructional data, ete. Many readers have obtained ex-Government r.R. tubes and associated equipment aml wish to know how this may be adapted to receive the present television transmissions. Let 14s, therefore, cammine the modern television receiver and see what problems it presents to the home construtur. So far we have refrained from publishing construetional data for two reasons: One is that the full details for construction wonld occupy several complete editions of this paper in view of the large amount of equipment which is required, and seondly, even when constructed, the actual setting up of the equipment calls for rather elaborate test gear.

Surplus Equipment

First of all let us leal with the felerision receiver as it stants to-lay. In Fig. I, is a block sochematio of the arrangement whiels is used, from which it will be seen that it is sivided into a number of separate parts. The tube unit (which in the case of the now popular magnetically-focused type can include incidental equipment such as the for us and deflection coils), is fed by the line and frame time bases as well as the actual vision receiver. It is customary to build a short-wave roceiver which in its early stages pirks up both sound and vision, and then the two signals are separated, sound going through adelitional stages as required and so to the loudspeaker, and the vision aignals feerling the tube. Synchronising impulses are. separated by a unit which can be ont its own or included with the line timebase.

In addition to theso sections there is the power supply which may, or may not, include the E.H.T. for the tube anode. Starting from the tube it may be statec that practically atl of the tubes now being sold as surplus are unsuitable for modern television picture reception. Some of these tubes have a long persistence or after-glow and would give a blurred picture. Others frave too whort a time lag. In addition to these points the majority are, of course, two small for satisfactory home entertaimment purposes.

So far as the remainder of
the equipment is concerned there are quito a number of items from valves downwards which may be used with perfectly satisfactory rusults.

Valves

The time bases may be constructed with standard ralves instead of the thyratron, and there are plenty of these from which to choose. On the receiver side the special H.F. pentoles were used in an extromely large amount of Servire gear and may now be obtained very reasonably. The VRal (corresponding to the Mullard EFFn), is a most useful item, as is also the VRGE (a small cliode equivalent to the EA50). There are, of course, many others. In addition to the valves, practically all of the required high-voltage, midget ecramic and silver-mina condensers, resistors, cortain types of mains trans former and valve-holders are readily available. At this stage it must be emphasised, however. that a large quantity of such equipment has been removed from complete gear whish may have been in use for some time. Consecuently, the reliability, life or efficiency of the item may be open to doubt right from the start. Some of the equipment is hoxal and new, but care is necessary in making a selection. and, in view of the many circuits which have finally to be lined up, it must he borne in mind that murh doubt and many hours of wasted time may he saved by obtaining new rather than surplus equipment.

Special Components

In addition to standard apparatus such as has alrearly been mentioned, and which is used in most modern broadcast equipment, there are, however, quite a number of specialised.items, and many of

these are not on the market. For instance, dealing with the electro-magnetic type of tube, there is the focusing coil and the deflection coils. These are made up as separate units (by the Ilessey company, for instance) but they are not available at the moment for the home-constructor. They can be const ructed at home, provided that adequate workshop facilities are available, but when made they have to be tested, and this is not a simple matter unless elaborato test oquipment is available. With this same type of tube the simplest and most effective form of line time-base utilises a transformer to feed the line deflector coil in order to obtain adecuate current feed. It has been found possibte to use one particular make of output transformer with tapped output. but this speecial transformer is not now mamufactured and the ordinary romponent will not stand up to the extremely high voltage which is generated by the line fly-back, and which may reach 2,000 volts or more.

The E.H.T. reguired varies from $4,0 \mathrm{mO}$ to 7,000 volts, and, although the current required is only 1 ma or less, very high cirentit insulation is required, and suitable transformers are not readily available. The commereial manufacturer mobably includes the E.H.T. winding on a single transformer supplying the remaining roltages, but a general instrument of this type is not available to the homeconstructor.

Special tuning coils are available from one or two sources, but this does not present great difficulty as polystrene or ceramic coil formers with adjustable iron-core plungers are now readily available at about 2 s . each and it is not a difficult matter to wind the coils at home, as only half a dozen or so turns of wire are called for.

Adjustments

So much for the actual equipment which is required, and assuming that all the difticulties are overcome and a receiver has been assembled thero then arises the problem of putting the equipment to work. The focusing coils and deffeetion coils in the case of the magnetic type of tube will need adjusting to provide a rectangular raster properly centred on the tube end, and this is not, perhaps, a difficult problem. Both of the time-bases must work correctly, and there will have to be three or four variable atijust ments on them to enable proper conclitions to be established. The vision recciver must be adjusted to provide maximum band width for good and accurate detail, and the sound fiequencies must be properly filtered out. It will thus be seen that when first switching on there is a multitude of possibilities of failure to obtain proper signals, and it would appear that a cathoderay oscillograph properly designed for television servieing purposes is an essential. However, experiments are being carried out with a view to finding simpler schemes. and details will be given in these pages as and when they are found. In general it may be stated that the actual constructional work is not difficult for any constructor who has built modern superhets, and who has a good knowhedge of television technique. It is beyond the scope of these pages to give detailed construetional data of all the equipment needed as it would take over a year at our prescent reduced paper ration to describe such construdion fully, and with the art at its present stage it is recommended that only those with a really sound working knowledge of radio and U.H.F. work. and with adequate workslop facilities, should attempt to build a receiver for home entertainment.

Switching a P.A. Amplifier

Some Details of a Useful Switching Scheme for Public Address Equipment.

DURING a long and failly wide experience of many types of amplifiers. both commercially made and otherwise, it has always been a matter of surprise to the writer that so scldom is any convenient method of switching inputs incorporated. Generally, at least two independent input points are provided, commonly fur microphone and gramophone pick-up, each haritg its wwn gain control, mixing being carried out either by a simple resistance system or by some so-called "electronic mixing" eircuit. In the absence of any switching, a change over from one input to another involves the operation of two gain controls and the necessity for memorising their settings. This ean be very inconvenient in P.A. work, when a quick change over is often necessary.

A method which the writer has found extremely useful in practice for many years is slown in lig. i, the basic principle being that the inputs are mixed in any desired normal manner, the unwanted ones being shorted to earth as reguired by the operation of the selector switch. This method retains the practicability of superimposing or facling two or
more inputs when desired, but also gives the option of immediate selection of any one input alone when a rlirect change over is required without disturbing the setting of any gain controls. It also provides a - silent position, with all imputs dead. As shown, it is applied to threo input channels with simple resistance mixing, but can obviously be extended to any reasonable number of channels by the use of a Yaxley type switch having more poles and more ways. In the case of "electronic mixing," the points to be earthed would usually be the grids of the various input valves.

Remote Control

This leads to the question of performing similar functions by remote control. In the case of certain types of P.A. work, where the microphone must be remote from the amplifier and gramophone playing table, it is often useful to beable tocontroloperations from the microphone point. With a permanent installation there is no difficulty in providing a multi-core cable to a control panel near the microphone, when complex switching may easily be
arranged by suitable combinations of relays, but for temporary installations a simpler scheme involving the minimum of extra wiring is recfuired. In the ease of battery-operated equipment, control of the supply to the H.'I. power supply unit is also

Relay Rl earths tho pick-up input and clears the microphone input irrospective of the position of Sl. Relay Rz closes but jerforms no function since it is already by-passed by S3. The pilut lamp lights as an indication to the operator.
2. Silonce. SZ rloses the relay circuit as in paragraph 1 , but also shorts tho inicrophone.
3. Music. Se shorts the microphone but opens the relay circuit and Kl clears the pick-up input. The signal light goes out as a warning to the operator that a gramophone record is recuived.

Unter conditions (b), the operation is:

1. Specth. S_{2} is arranged to clear the microjhine and rlose the relay circuits. RI earths the piek-up and R2 closes the 1F.T'. power supply aireuit.
:2. Nitence, siz open, therefore $k=$ opens the power supply rirruit.
2. Music: Recorl playing is now controlled entirely by the amplifier "perator who must close Si3 to apply power when he wishes to put through a recorl. Bunt, as in all the other cases, the macrophone still has priority of service. and operation of $\mathrm{S}=$ will cut out the pick-up and allow specelh.

The Relay

The relay coils and signal lamp may obriously be comnected in series, parallel, or sequentially, aroorling to tho type of relay arailable and supply woltage in use. Rimust be of a type the contaretoisf which will carry sationactorily the current duawn by the H.T. power unit. In the cass of a 20 - or 30 -watt amplifier working from low rolt supply, this may bo as high as 15 ainps or more.

Fig. 1.—The basic idca outlined in this article.
often advantagerus from the point of battery economy.

The circuit of Fig. 2 is applied to battery equipment, having two inputs, i.e., microplone and gramophone pick-up, and only involves one additional pair of wires to the microplone point. It permits normal mannal rontrol when desired. When remote control is in use, the "mike-mixgram" switch Sl should be left in the rentral or "mix" prisition. The method of operation varics slightly according to requirements, namely :
(a) Frequent gramophone records and complete erentrol by announcer-power supply switching is not frasible here.
(b) Oecasional records and partial conted by announser - pewer supply remotely controlled.
Under conditions (a) the power supply will normetly be pormanently connected by the manual by-pass switen 83 , and the proredure is as follows:

1. Speech. Switeh $S \geq$ eloses the relay circuit.

5. Input I

Principles of Frequency Changing-1

Notes on the Superheterodyne Frequency-changing Stage with the Problem of Aerial and Osciliator Alignment

Mathematical Theory

A
LINEAR amplifier is one in which the A.C. component of current i is proportional to the A.C. component of input voltage v_{i}, that is$i=A . \mathrm{V}_{\mathrm{i}}$
A non-linear amplifier is one in which the relation between i and v_{1} is as follows-

$$
i=A \cdot v_{j}+B \cdot v_{i}^{2}+C \cdot v_{i}^{3}+
$$

where A, 13. C, etc., are constants whose values are determined by the characteristies of the amplifier used.

Fig. 1.-A typical modern frequency-changing stage.
Suppose the input voltage to consist of two signals of frequency f_{1} and f_{2} where $\dot{v}_{1}=\hat{A}$.sinc $\omega_{1} t$ and $Y_{2}=\hat{\mathrm{B}} \cdot \sin \omega_{2} \mathrm{t}$. Then the instantaneous voltage input v_{i} is given by-

$$
v_{i} \hat{A} \cdot \sin \omega_{1} t+\hat{B} \cdot \sin \omega_{2} t
$$

If this is now applied as the input to a linear amplifier, then the output current i will be

$$
\begin{aligned}
& =\mathrm{A}\left(\hat{\mathrm{~A}} \cdot \sin \omega_{1} \mathbf{t}+\hat{\mathrm{B}} \cdot \sin \omega_{2} \mathrm{t}\right) \\
& =\mathrm{A} \cdot \hat{\mathrm{~A}} \cdot \sin \omega_{1} \mathrm{t}+\mathbf{A} \cdot \hat{\mathrm{B}} \cdot \sin \omega_{2} \mathrm{t}
\end{aligned}
$$

Thus only the two original frequencies are present in the output. If, however, the same input is applied to a non-linear amplifier, and supposing $i=\mathrm{A} \cdot \mathrm{v}_{1}+\mathrm{B} \cdot \mathrm{v}_{1}{ }^{2}+\ldots \ldots . .$. . . . the other terms being small and therefore neglected, we have, since-

$$
v_{i}=\hat{A} \cdot \sin \omega_{1} t+\hat{D} \cdot \sin \omega_{2} t
$$

$i=A\left(\hat{A} \cdot \sin \theta_{1} t+\hat{B} \cdot \sin \omega_{2} t\right)+B\left(\hat{A} \cdot \sin \theta_{1} t+\hat{B} \cdot \sin \omega_{2} t\right)^{2}$ $=A\left(\hat{A} \cdot \sin \omega_{1} t+\hat{B} \cdot \sin \omega_{2} t\right)+B\left(\hat{A}^{2} \cdot \sin ^{2} \omega_{1} t+\varrho \hat{A} \hat{B} \cdot \sin \omega_{1} t\right.$. $\left.\sin \omega_{2} \mathrm{t}+\mathrm{B}^{2} \cdot \sin ^{2} \omega_{2} \mathrm{t}\right)$
which can be analysed as follows-

Thus, in addition to the or iginal frequencies f_{1} and f_{2}. the output current contains components which are diffrrent from the input frequencies.

In the superheterodyne frequency-changer stage, the input frequencies are as follows: the carrier freduency of the received transmission f_{c}, the upper sideband $\left(f_{c}+f_{m i}\right)$, the lower sideband $\left(f_{c}-f_{m}\right)$, the local oseillation $f_{\text {.. }}$. The required output frequencies are ($f_{o}-f_{c}$) the new cartier, or intermediate-frequency. $f_{0}-\left(f+f_{m}\right)$ the upper sideband, and $f_{o}-\left(f+f_{u s}\right)$ the upper sideband, and $f_{o}-\left(f_{u}-f_{m}\right)$ the lower sideband.
The product, $\sin \omega_{\mathrm{c}} \mathrm{t}$. $\sin \omega_{0}$ t. as obtained at the output of the mixing amplifier, where $\omega_{c}=9.7 f_{\text {c }}$ and $\omega_{0}=2 \pi f_{0}$, introduces the sun and differenco frequencies $\left(f_{o}+f_{c}\right)$ and $\left(f_{o}-f_{c}\right)$, the so-called intermerliate-fiecuenc \cdot anplifier being tumed to the frequency $\left(f_{0}-f_{c}\right)$ so that any other frequacrey components of current produce negligible voltages across the output load.

The Mixing Valve

In the frequeney-changing, or mixer stage of the superheterodyne receiver, incoming aerial signals are mixed with the output of a local oscillutor, the frequency of tho latter being arranged to be a constant number of cycles abore the incoming carricr frequency. The aerial signal is thus changed to a new carrier frequency which is constant irrespective of the acrial tuning, and remains modulated to the samo depth as the original. This new carrier frequency is equal to $\left(f_{0}-f_{c}\right)$, where f_{c} is the aerial carrier and f_{o} the local oscillator frequency, and appears in the anode circuit of the frequency - shanging valve. Here it is tuned by a sharply selective circuit and passed on for further amplification.

In Fig. 1 is shown a typical modern frequency. changing stage employing a valve of the heptode, or pentagrid, variety (such as the (0.48) as mixer. It will be seen that the incoming aerial signal is tumed by the conventional parallel

charge Cothooe 1 resonant circuit consisting Fig. 2. - Electrode of L_{1} and C_{1}, being then functions of a pentagrid. applied to the so-called
"signal grid" of the mixer valve. The actuat electrode which constitutes the signal grid of a froquency-changing valve varies from type to type, but its purpose in all cases is to provide a means of modulating the received signal upon the electron stream passing from cathode to a node within the valve. At the same time the electron stream
is also modulated by a local oscillation, this being achieved in the case of the pentagrid by employing the first and second gride electrodes from the cathode, and the "anode" and the "control grid" " respectively of a separate "triole " oscillator valse. Fig. -2 shows in more detail the vatious electrode functions of the pentagitid frequencychanger.
The local oseillator, as Fig. 1 shows, consists of a

(a)

(b)

Fig. 3.-Showing (a) an octode, auld (b) a triode - hexode type of frequency-changer.
simple tuned-grial triode circuit, the freguency of operation being determined by the product $\mathrm{L} \mathrm{I}_{2} \mathrm{O}_{2}$ in the grid circuit. Fedback from the anode through C_{3} and the couphing coil L_{3} chables continnous oss-illations to be maintamed in the circuit, and the oscillator anode therefore acts as a modulating electrode for tho valve electron streain. Thus, the latter is already modulated by the comparatively strung local oscillations before it can be influenced still further by the acrial carrier present upon the signal grid. Tho third and fifth grids of the valve aro generally strapped together internally, and surround the signal grid in stult a manner that the oscillator soction is completely screcned (eapacitatively) from the former, the only coupling permissible being by way of the modulated electron stream. As for an ordinary pentode amplifier, the screen is returned to some point on the H.T. supply chain, being docoupled by the usual small condenser to ourth.

Tho exact manner in which the mising of the signal and the oscillator currents is achieved is rather complex, but briefly the mixer section of the valve depends for its electron supply upon an - olectron cloud, ou space charge, formed immediately before the signal grid, and a virtual cathode, fluctuating at the oscillator frequence, is therefore provided from which the tetrode section (gride 3, 4 and 5 and the anode) can draw its, electron
stream. Tho space charge is formet by electrons which have passed through the meslies of the oscillator anode and screen grid and have become accumulated before the negative signal grid. This space charge is constantly varring att a freyuency determined by the local oseillator, and so the tetrote section of the valse is carreing, in addition to the flactuation brought aboni by the applicd signal voltage, the fluctuations due to tho local oscillations. The output currents appearing at the mixer anode, therefore, consist of a number of complex freyucncies as we have seen, the most predoninant of which are $\left(f_{0}+f_{v}\right)$ and ($f_{0}-f_{c}$) where f_{s} and f_{c} have the meanings before mentioned. The other frequencies present will be the result of the combination of the fundamentals and harmonies of the oscillator and signal frequeneics, and will be progressively weaker as the order of harmonics involved becomes higher and higher.
Out of these frequencies one only is required, that being the new cearrier ($f_{c}-f_{c}$), f_{c} itself nodulated by tho speech or musical frecquencies $f_{\text {nu }}$. By making the anose circuit of the mixer sharply resonant to the frequency ($f_{0}-f_{c}$), all the unwanted frequencies are easily filtered away, and the renaining amplification can take place at tho fixed intermediate-frequency $\left(f_{0}-f_{c}\right)$. This is the great advantage that the superheterodyne enjoys over the straght receiser, for the bulk of the amplification can be carried out at a fixed frequency over a number of highly selective stages. It is, of course, assumed that the intermediatefrequency chosen by the designer is sufficiently liigh that $\left(f_{0}+f_{c}\right)$ is far cnough distant from it that the latter can be by-passed by the preliminary tuned rirviit, even if this is of onfy mediun selectivity.

In the valve type just cliscussed-the pentagrial -couphing between the acrial signal and the lowal oscillation oecurs in the actual elcetron stream of the valve, and so the valve is said to be one of the electron-coupling types. Other valves of this variety include the octode (Fig. 3(a)), which is very similar to the pentagrid with the exception of an additional grisl (suppressor) inserted between screen and anode; the triote-hexode (ivig. 3(b)), which employs an entirely separate triode oscillator sectien, with an injection grid internally connected to the oscillator grid.
(To be contimued.)

Fig. 4.-On the left (a) is a direct grid-tuned oscillator circuit, and on the right (b) the anode circuit is tuned.

By THERMION

No American Music!

UNDER the latest import ban, it is not possible now for English publishers to import American masic. This should give Wnglish musicians and composers a clance to achieve by merit what American composers have done by song-plugging. For, of course, it is well known that the American "parpular sarng" doess not achieve its popularity by merit but by'a subtle process of paying a sufficient number of crooners and so-called dance band leaders to play the miserable tune often enough.

This import from America is the one which will cause us the least concern. We can well do without it, and 1 hope the ban stays on for ever. Those who like that sort of tripe can listen in to the American progranmes. I fail to see why English listeners shoukd have this debased and spurious so-called art inflicted on them.

There are plenty of English composers capable of composing far better melodies and dance tunes than the playboys of Tin-Pan Alley, with their wavy hair and night club manners.

Bilious Attack from a Malady-maker

READERS will remember that in the September issue I dealt with the subject of crooning, and also with a definition of it which appears in the new "Dictionary of Music." A weekly paper which purports to deal with crooning, dance bands, and malady-making generally, saw fit, in a leading article, written in a "willing to wound, but yet afraid to strike" strain. to refer to these notes under the title of a "Bilious Attack." and it endeavours to justify by specious arguments and captious criticism dance music generally. and tap drummers in particular. 1 should have thought this journal would have been better occupied in answering the criticisms which have been regularly and consistently made against it during the past year by the Musical Express.

Apart from the inspissated nonsense which this journal uses to support that lowest form of musi-al life-the tap drummer, with his trappings-it is rather unfortunate for this malady-maker that a later issue contained an article by an acromplished musician supporting my views! Evidently the malady-maker is eating its own words. Of course. as it circulates largely amongst the crooners and the other parasitic appendages to the musical profession, I suppose one must expect it to support the latter, since it is in the same position as a paid advocate who defends a criminal but does not neeessarily believe in his imnocence.

Of course, our contemporary. as an expert on bilious attacks promoted by dance bands and crooners, probably looks at every criticism with the same jaundiced eye which is the symptom of the bilious person. It sees everything through the bilious:tinted lenses of the duodenal sufferer.

We advise our contemporary to confine its activities to reporting dance band performances and programmes and to pouring unctuous praise upon unworthy performers. For, of course, to the malady-maker all dance music is superior to Brahms and Schubert, and every dance band leader is ahead of Mozart in technique. I should like, however, to see it devote a little space to answering the well-directed attacks upon it by the Musical Express-if it has an answer. Perhaps its silence conveys its answer.

Traffic SOS

T
RAFFIC jams and bad accidents are now being specially handled by the Metropolitan 1olice. Eight traffic accident groups. each consisting of a car with an escort of two Triumph twin motor-cycles, have alroady been given areas to patrol, and any police officer on duty who has trouble with the traffic or with any smash of more than a minor nature, telephones Scotland Yard, who, in turn, send on the nearest patrol to help him. The patrol car has a two-way radio transmitter to keep in constant touch with headquarters. The intention is to raise the number of patrols.

Eventually, each motor-cyelist in the Metropolitan Police is also to have a two-way radio transmitter with military valses, a handlebar flick-switch, and an upright aerial at the back of his machine. The rider will not wear headphones and, to leave his hands free for control, he will have a moutlipiece fitted round the neck. It is hoped that each machine will carry a loudspeaker to allow the rider to address the general public.
The work of the 76 motor-cycles now on patrol in London has been so satisfactory that the number is being doubled. Apart from these new traftic accident groups, their main job is to patrol a beat in order to keep an eye on erring traffic and to assist in traffic control.
" MAGIC. CARPET "
Jike magic carpet through the air My radio bears me on,
And, hovering where the programmes please,
1 bid dutl care begone.
From land to land I travel on,
No passports are required :
No rigid frontiers prison me
If programmes make me tired.
Some 1 delete in any rase.
ror crooning gets my goat ;
A form of entertianment(?) this
On which I do not dote!
My tuning knob soon fides it out, Till it cannot annoy,
Transporting ine yitlo speed of thought
To things I can enjoy.
Pray, in what other phase of life Could ithes chop nud change? Or, suiting my own will alone, About the world wo range? And thas of all the things I own ls valued nost, you bet!
The " magie carpet', tucked away
Inside my radio set !
" Torch."

A Versatile Frequency Meter

How 10 Modify an Old Type Instrument for Modern Use.
By G. MERRIMAN (GóNC)

W1[EN starting up again after the war it was inovitable that about tho first auxiliary piece of equipanent that was built up was theg good old-fashioned absorption type frequency meter. It had beon a faithful servant in the bad old days and at least it was a devil we knew.

In the form we usel it there was a loose-coupled piek-up circuit to reduce the losses in the tmang circuit proper, and tho frocquency bands werc selected by the old-time expedient of plug-in coils. The tuming condenser was a simple but st urdy receiving type

Fig. 1.-Original or simple form of loosecoupled circuit used for monitoring or frequency measurement.
of about $140 \mu \mu \mathrm{~s}^{3}$, and on most coils the frequency ratio on each evil was better than $4: 1$. That, of eourse, means that only one coil was needed to tune from 3.5 to $1+\mathrm{Mc} / \mathrm{s}$, and such a tuning ratio, of course, meant that not too many coils were needed to cover the anateur bands.

The Circuit

'Jho circuit is shown in lig. 1, and the jack was userd to receivo a pair of phones when it was desibed to listen to one's own 'phone transmistions, and to plug in a $\overline{5}$ mA milliammeter when it was wrinired to function as a neutralisation indicator, rough frequency checker, or over-modulation indicator.
(If course, when it was used as an absorption typo frequeney meter on an autodyne receiver, the eoil was placed elose to the grid coil of the reesiver and the resonance point found by listening for the clich as the receiver went out of oscillation. Lufortmately, howover, as tino went on and we expanded our equipment we found that this type of feerguency meter was not very satisfactory with a super-heterolyne recoiver. Ono couh not get the frequency meter coil near to the uscillator coil of the receiver, and even if one eould, there was still the uncertainty of what the intermodiate frequeney was, and if it was higher or lower than the signal frequencs. One obsiously needed a meter that would pruduce a heterodyne beat, and so rather than clo this by serapping the first one we commected a valvo to it as shown in Fig. \because. The H.J'. is a pair of 9 F . yrid hias batteries joined in series and is more than adecuato for the purpose.

The difanzert battery will depend upon tho trpe
of valve which you use, but the writer used a very old type '30. The now battery valves of the I.tv. type woukd be particularly suitable and could then be lit from'a single fash-lamp sell.
'The two switehes sw. 1 und sw.2 are self explanatory; one controls the filament supply and the ot her puts the instrument in, or out, of oscillation.

Use Existing Coils

Since anyono desiring to use this idea will most probably wish to use his own coils these are not spresified in detail.
'Jhe old typo frequency meter is often used as a simple absorption meter by just forgetting or omitting to switeh on thosilament. U'incer these conditions, if one neglects the inter-electrode capacities, which are both small and ronstant, the remaining circuit is practically the old one undisturbed.

Of course, it necded re-calibrating after the valvo was added, but, as you can guess, it was relatively an casy task now that we had a superhet receiver with a wide coverage. The homely B.C. receiver also lent a hand in this operation since it was fairly) accurately calibrated on tho mediun- and longwave bants.

Whon the switch sw.l is open there is insulicient feedback capacity and the instrument can then bo

Fig. 2.-An effccive conversion of the simple arrangement of Fig. 1.
used in a non-oscillating condition as a phono nonitor. In this way distortion and hunn can casily be noticed and tracked down.
'lf, when the reaction coil is connected to the anode, the latier is actually taken to tho crystal holder, then simply removing the. plug-in typo crystal will be all that is necessary to prevent the erystal from unnecessarily damping the anode circuit of the heterorlyne oscillator.

It will be noticed that when the filament lattery runs down, the instrument will still do all its duties exgept oscillato.

some Interesting Dffers by

MICROPHONE INSETS. Surplus G.P.O. insets, latest pattern, metal clad 2 in . dia. (as illus.). $2 / 6$ each.
Transformer, 416. Hand mikes in moulded bakelite case, 4/6. Tannoy hand mike, multi carbon type with switch in handle and cord, . 1216. Special Transformer, $8 / 6$.
RELAYS. We have a large stock of exG.P.O. Relays, 30 ohms, 2 make 2 break contacts, 51- each. $1,000 \times 2,000$ ahms models with various contacts from $5 /-$ each. Send us your enquiries. Siemens high speed keying relays, two 500 ohms coils, 51- each.
SWITCHES. Dewar key panel type 8 -pole C.O. flush fitting. $5 /=$ Yaxley 3 . pole 3 -way. $3 / 6$; 8-pole 1 -way, 3/6; D.P.C.O. toggle switch 250 v. 1 amp. flush panel. 313 ; 8-way Lucas switch box, 316 ; 6-way, 3/-. S.P.C.O. Toggle switches, 213.

TRANSFORMERS. B.T.H. 20012301250 voits, 50 cycles input, 2 volts 20 amps.. and 75 voles 6 amps. with 15 taps from 7 to 75 voles, all in first class condition, 8 jin-x 9in. x Gin, weithe $601 \mathrm{~b} ., 7 \mathrm{H}=2 \mathrm{~K} . \mathrm{W}$. 400 volts input, 220 vols 50 cycles qutput. tapped every 25 volts. falleno. Auto Transformers 2301110 volts 50 cycies, I K.W., 8711010 ; 300 watts, 651- ; 150 watts, $35 /-$; 85 watts, $25 /$.
D.C. MOTORS. 1112 h.p. 220 vole shunt wound, 25/-. Fan Motors, large bulkhead type, 110 or 220 volts, 35/- each.
D.C. GENERATORS. 12 volts 10 amps., £4. 30 volts 5 amps., $£ 5 / 1010$. 103 volts 30 :mps., 1,100 r.p.m., \&i5. 24 volts 40 amps., $£ 10$.
FANS. D. C. table fans, 110 volts oscillating type, 12 in . blade and guard, 55i-. Few smalier 220 volt 10 in . table fans, 451 -.
CABINETS. All metal ex-W.D., with $r e s t$ for panel, $9 \mathrm{in} . \times 9 \mathrm{in} . \times 8 \mathrm{in}$. deep with hinged lid, two fasteners and metal loops for carrying strap, $12 / 6$.

EX-G.P.O. 4-pin telephone plugs with solid bakelite base, as illustrated, I!- each, postage 3d., 101- doz.
AERIALS. $7 / 22$ copper aerial wire, $50 \mathrm{ft} ., 31-$; $100 \mathrm{ft} ., 516$; $30 f t$. indoor aerial wire, on reel, II-; 30ft. single spiral copper indoor aerial, 119; twin with bakelite endpiece and loop, 2/6; Egg and Shell Insulators, 3d. each. Lead-in wire, rubber covered, 31dozen yards. Earth Clips for water pipe fixing, 9d. each.
TERMINALS. Belling Lee plated terminals, 51-doz., heavy bakelite type, 101 doz.
HEADPHONE CORDS. Double 5 ft . cords, 216 each. Heavy W.D. 5ft. 4-way cord, 2/6. Telephone flex, single twisted type, 6d. yard.
FIELD WIRE. Short lengths, looft, and upwards, 21 - per 100ft. ; small cable drums for same, 21- each.

ELECTRADIX RADIO

214, Queenstown Road, London, S.W.

TESTIMONIALS FROM USERS OF THE NEW EDDYSTONE '640’ RECEIVER
 A SET SPECIALLY DESIGNED FOR AMATEURS

Abstract

R Ref. 20615. "We have given this Receiver a very careful test and find it a very fine Receiver which more than comes up to expectotions. - Ref. 196/W. " it proves to be a most remarkable Receiver, and you are to be congratulated on producing such an outstanding 'Ham' set.' - Ref. 196/8. "The 640 fully comes up to the standards required for a Communications Receiver of this nature Especially on the 'Ham' bands we were oble to separate stotions working almost on top of each other. The signalato-noise ratio is extremely good. You are to be warmily congratulated on the production.'

Ref. 216/N.
. ".
. on outstanding feature being the very high signalinoise ratio. Selectivity is excellent, and the crystal filter well worth while. Plenty of DX has been worked, and the receiver has given complete satisfaction.

Ref. [361]. "We compared general sensitivity, selectivity and ease of control with two highly-rated U.S.A. Rx. '640' compared more than favourably with either mode!. Noise level for a given signal in fact was much lower in either case, and the measured carriers of very weak signals were in several instances slightly superior on the '640.' If this set was exported, even to the U.S.A., it would readily find enthusiasts."

Ref. 2761J. "Your claims are fully justified, the performance being excellent in every way. The outstanding feature is, of course, the wonderful signal-to-noise ratio, and excellent sensitivity."

Order from your Eddystone retailer or write for descriptive literature to:-
STRATTON \& CO. LTD. EDDYSTONE WORKS ALVECHURCH ROAD WEST HEATH, BIRMINGHAM

GONDON CENTRAB RANDIO sulose

"westectors." Type W.x.c. Brand new. 1/6 earl
EX-RADAR VIEWING UNITS. Conwisting of bin. diameter electrostatio ('.R. 'Juhe. 7 galves, including 4 EFSO, potentiometers. resistances and other romponelts. In metal cabinet, 18 x $\begin{aligned} \\ x\end{aligned}$ 7lin. Lurgain price. $83 / 7 / 6$, carr. extra $7 / 6$.

TWIN ELEMENT HEAVY DUTY sliding

resistances, ill the following sizes:
5.4 olntu at 211 alutes. 47/6

1-2 ohm at 10 amps. 39/6

single Element $1 \pm$ olint at 5 amp. 13/6.
Wrestill have storks of lEx-R.A.F. Valves as advertised in previotus issues.

MOYING COIL HEADPHONE OR MIKE INSERTS. Voice coil res. 30 ohm. 5/- eactl.
TYPE 1147B, 7 valve U.H.F, receiver range approx. 巴0, mests. ('omplete with valve and all asmerated comphents, incluhing micro rondenser and drive. A sulier Bargail ufter at 47/6, carriage extra $5 /-$. EX-G.P.O. ELECTRO MAGNET COUNTERS. Som Ghan J. ('. coil, eomit un to 9,909, operate from $2--50$ \&. D. numerous applicalions. 5,6 cach.
EX-ARMY RECEIVER TYPE No. 18 HK. 3 37/6. Range 3.0-i.2 mexs. Nuperlet circuit, 4 valves. Lencls it self to conversion. Brand new. $47 / 6$ eath. connlete witli valves. A real opportmity for the keen experimenter. Carriage extra 5/-.
Telephone lime or uniselector switches. 3 or 4 Bank, 26 coutacts. Have various applications fucheling antomatic thomiz rirent selection, etc. Operates on $2 j-50$ volts.

$$
\begin{array}{ll}
3 \text { bank. } & 25 /- \\
4 \text { bank. } & 28 / 6 \\
6 \text { luank. } & 30 /-
\end{array}
$$

We have a large stork of lix-Govt. Radar I'H.F. and Radio Receisers. It will pay yoll to pire us a call. Nearest Iube: Leicester sumare.

SELF ENERGISING HANDSETS, 15;-. TELSONIC 4 valve portable, lew, fixed rimuse, mitable fir conversion to midget, set, $37 / 6$, plus $2 / 6$ postace and packing. Slightly converted to frational H.l', A. C . inotors ahout $1 / 40$, $200 \cdot 2: 30$ v. abotit 5,000 revs.
DOUBLE-ENDED SPINDLE overhaul, loin. x 4 in.
SMALL EX-GOVT. CAMERA MOTOR, $1 \underset{\sim}{2}$ volt, also 24 volt, suitable for all kituts of

RELAYS. Shole (intacta $140 \mathrm{ohm}, 3$:HiGH SPEEDS RELAYS, 5,6. 500 ohm. EX U.S. ARMY LIGHT WEIGHT HEADSETS. Leaf ath troe earpicces, T/Sin diameter with solt rubber, earpieces 104 ohth. hrand new packed itu cartons. VALVES. l:FTO, R1.14i, R1.7. $7 / 6$ each. lit3, $7 / 6$ cach. Pllis, 10/6 cach. 807,

 WCH:3y, 'IVO:3, 4,6 Half boz Lots.

23, LISLE ST., LONDON W.C. 2

GERrord 2969

WIRELESS INSTRUMENTS (LEEDS) LTD., 54-56, THE HEADROW, LEEDS, 1. Tel. 22262.

MULTICOME SOLDEAS LTO. MELLEA MOUSE. ALBEMARLE STMEET. LONDON, W.B

FOUR-VALVE

TIONS REC
A complete 4 -valve Superhet covering 3-16 me's in 3 bands, Employs two 7 R 7 and set. Operating voltage $90-100$ at $8-10 \mathrm{~m} / \mathrm{a}$, 6.3 v . L.T., $4 \frac{1}{2} \mathrm{v}$ grid-bias, Supplied complete with phones and full circuit details in steel
transit case. Jfrand Now and Unused, transit case. 1srand New and dnused, wnly ${ }^{9} 9^{\prime} 6$ (carriage, etc., 5:-).
TEN-VALYE I.F.F.TX/RX UNITS A few only, As used by R.A.F. in conJunction with Radar. Complete with 19 valves and rotary transformer. Only 39.6 (carriage. etc., 5/-).

TRANSMITTER

An amazing purchase from the Ministry of Supply enables us to offer these units which make up the Famous R.A.F. T 115 Transmitter ${ }^{\text {Now }}$ They are the
 Panter comprising the Master Ox'blator Tuning (nit, and the Powre Amplititr of the valve section to make up the romphe Transmbtira. We supply circuit details of the T 1154 with each pair of units. details of the ithe to be done. Order yours Now, and have a brand Nuw 11154 for only a few pounds. (lnss 49/- The Fitir
 in Make's' Cartolls.

EX-R.A.F. POWER UNITS

Complete with 20 watts rotary transformer, 12v. input. 450 v . output. Contains conling hlower. iesistances, etc. Jrand New, onll 19 ' 6 (carriace, etc. 3,6).
C.W.O. please. S.A.E. brings current lists.

U.I.E. CORP:,
 THE RADIO CORNER,

138. Gray's Lan Road, london, W.C.1

(2 mins. from High Hoiborn; $\overline{5}$ mins. from King's ('To:s)
Open until 1 p.m. Saturdays

Introducing

We have pleasure in announcing that our company are now specialising in supplying complete kits and individual component parts for all circuits described in this journal.
ALBERT E. HENBEST, our managing director, will be happy to meet or hear from any of his numerous constructor friends he made during the past 19 years, whilse with THE PETO SCOTT CO., LTD., the Kit Pioneers, at 77, City Road. E.C.I SHORT WAVE BATTERY THREE described in September and October issues, write for detailed price list of parts.

SEND NOW FOR OUR COMPLETE LIST OF BATTERY AND MAINS KITS, PETO SCOTT RECEIVERS, SPEAKERS, PICKUPS, ETC.

HENBEST BROS., LTD.,

26, Green Lanes, London, N. 13.

Telephone: BOWES PARK 3247.

SPARKS' DATA 2/6 SHEETS 2/6

Provide full constructional details. and full-size black and white prints of Tested and Guaranteed Designs
NIIE PORTABIN: Fotth. An all-dry T.R.F. Circuit. Good range and Power. Medium-waves only. 5in. Speaker
THE EMPPRE: TWO. An all-dry 2 -Valver covering Short, Medinm and long-waves. THE TNY TGO POIRT: IBILD Med, waves, $5: \times 5!\times 54 i n$. Self-contained Aerial. Speaker and All-dry Batts.
HLL-DIRX 3-VNLE PORTMBIE, ML waves, Self-contained Aerial, Speaker
 dry Batts, M L waves, 9 volts H.T. Good dry Batts. ML waves; 9 vols $3!$ in. phis INIVEIRSA1. FOURR, A 3 -valve plus Rect. T.R.F. A.C.ID.C. Sct. M L waves, fine volume and quality. ALL waves, Good range and strength. 3- THREN i A perlar sed A.C. Tires ainer (pus reet) M / L Waves. ${ }^{\text {denge, }}$, A. ${ }^{\text {. }}$ Whit AMPLIFIER. Ideal for Pd S-WVTI MBPLIFIEL: Neg. Feed. back. P.P. Output 5 Valves. ${ }^{\text {Q-i }}$ Quality Reproduction.

COMPONENTS SUPDLHED.
Mans other Data Nheots avalable. stamy with order or for línt.
L. ORMOND SPARKS (P) 9, Phoebeth Road, Brockley

$$
\text { S.E. } 4
$$

(Lee Green 0220.)

Practical Hints

A Test Prod

T
HE following idea of a test prod was evolved for use with a multi-range test meter and has proved very successful. It can be clipped on to soldering tags and wires, and is small enough to go into otherwise inaccessible places without "short-circuiting" things.

A tiin. length of $3 / 32$ in. dia. meter brass rod had a flat face lin. long, filed at one end. A hat-clip was cleaned with emery as a terminal or tag fixture for comections. Short lengt lis may, of course, be cut from one of these containers for small short-wave H.F. chokes or small self-supporting coils. It is advisable, before using for the purpose described, to remove the old rubber plunger in the base and thoroughly clean the container of all traces of ink.-R. L. Graper (Chelmsford).

Detail Of Handle
A neat test-prod idea.
cloth and soldered on to the flat, as shown in the sketch. After soldering, the clip was cut in half to increase the springiness and a piece of sleeving $23 i n . l o n g$ pushed over it. A $2 \frac{1}{2} i n$. length of $\frac{3}{8} i n$. cliameter bakelite rocl, drilled so that the brass rod fitted tightly, made a suitable handle. The flexible lead was soldered to the projecting end of the rod and a small rubber sleeve slipped on to make an insulated joint.-H. Mcmpord (Epping). An Improvised Coil Former

THEIRE is a plastic drawing-ink container which is ideal for use as a small coil former. The type of container is shown in Fig. 1.

It has sis ribs, and although two of them are short ones, about lin. of space is available for winding. The diameter over ribs is approximately $\frac{13}{16} \mathrm{in}$. and the main container is $3 \frac{1}{2} \mathrm{in}$. long.

If part of the nozzle and the cap is sawn off, the improvised coil may be fixed to an aluminium chassis or panel, by using the screwed end of the cap as a nut (see Fig. 2). The top splayed end may serve

THAT DODGE OF YOURS:

Every Reader of "Practical WIRE. LESS" must have originated some litile diodge which would interest other readers. Why not pass it on to ns?. We pay hall-asuinea for every hint pabtished on this page. Turn that idoa of yours to aceonnt by sending it in to as addressed, to the Editor, "PRACTICAL WIRELESS,", George Newne, Ltd. Tower Honse, Sonthampton 8 treet, Sirand. W.C.2. Put yoar namae that every notion gent in must be origina Mat enveres Pration Hiate origial.

SPECIAL NOTICE

All hints mast be accompanied by the conpon cut from page ili of cover.
finishing colour with a cellulose paint. This paint has a naturally nice finish, and reacts on the first coat of ordinary paint in such a manner as to cause the surface to wrinkle fincly, very similar to the popular "crackle" finish. I suggest, though, that the beginner should try the

Making coil formers from an ink container.
idea out on odd pieces of metal first to decide for himself how dry to allow the first coat to be before spraying on the cellulose. I have "crackled" everything in the house I could lay my hands onhousehold tins for flour. peas, etc.-all with good results. Note: The "crackle" doesn't have to bo sprayed, only it is usually neater than when put on with a brush !-C. E. Austin (Winchester).

NEWNES SUPERHET MANUAL 6/-, or $6 / 6$ by post.from
GEORGE NEWNES, LTD. :: Tower House, Southampton Street, London, W.C. 2

Some A.C. Power Problems-4

"DYNATRON" Concludes his Discussions on the Lead Problems

SO far I have given a little more than a "gist" of the relevant points. If any technical rearder thinks that 1 havo been "putting-over" any cuest ionable facts, I shall only be ton pleased to take part in further discussions in the Correspondence Colmmes. 'The whole subject is just one more conceming which the technical press has been silent, whilst I make no clams to omniseience, In particular, the theory that harmonies are "converted" into fundamental-power is worth disenssing-I hope to deal with it in full later. It would certainly be of interest to hear what readers who have experience of transmitters think of the itlea!

Our consideration of' " $\mathrm{R}_{\text {ae }}$ " will help to show. what is signified by an "A.d. load." There are two main types. The one we have been diseussing is of the naturo of a non-aperiorlic load which extracts power only at the fundamental hamonic, rejecting D.C. and higher harmonics. The true type of non-aperiodic load, however, is a resonant tumedrircuit which has a large dymamie resistance \mathbb{R}_{11} to the fundamental-frequency whilst offering a low impedance to and by-passing the harmonics.

The actual load in Fig. 5 (a), of course, was a D.C. resistance taking complex power, including D.C. On the mains side of the rectifier, it "looks like" a sort of eruivalent A.C. resistance to tho fundamental frequency of the supply.

There is a third kind of "load," an A.C. load which has little or no resistance to D.C., but absorbs power at all A.C. frequéncies-fundamental and higher harmonic.

Thus, we may suppose that the D.C. resistance of a transformer primary is negligible, or, in any case, does not form part of the "lond." The latter may be supposed to be the equivalent of a resistance R_{s} connected across the secondary, which reappears as a difforent value of resistance R_{p} across the primary. R_{p} is the tramsferred load in parallel with the primary, its value varying as the square of the transformer ratio.

If we applied the lialf-wave current to the primary. a very distorted voltage wave would bo induced in the sceondary. It would contain many harmonics, and the value of R_{a} itself, e.g., whether purely resistivo or a complex impedance, would depend to some extent on the harmonit content.

The voltage waveform across R_{s} and R_{p} would be nothing like the pulsating eurrent. Furthermore, the inductance of the primary, ete., will hare an effect on the final shape of the current -pukes in the coil. As you know, inductance tends to delay the rate at which a current rises or falls away.
so this is really a somewhat complicated case of an A.C. load. Nevertheless, the-transformer is a pure A.C. device, whose response at varions frequencies varies considerably due to self-caparitance,

* leakage reactances, etc. The load on the primary side will be an A. $C^{\prime-}$. lond, but an aperiodic one which can take power at fundamental and harmonio frequencies.

Ineidentally, this explains why it would be ont of the guestion to tiy to get "undistorted output"
from a single vatre working in Class I, using transformer output, where the current is of the halfwavo pulsating form clescribed.

Frequency-doubling

Full-wavo rectification represents an example of complete frequenry-doubling. We get two. prises for every A.C. cycle, and if two amplifying values were arranged to deliver a current of this trpe it would be found impossible to supply power into a resonant circuit at the fundamental-frecuency of the grid signal.

After one pulse, the next would be in the wrong direction to maintain a current in an L.C.rircuit. But if you tuned your circuit to trice the funda-mental-frequency, a large output would be obtained. You would have an excellent doubler, which could also supply a moderate output at the four th harmonic of your signal frequency.

Mathematically, analysis of a full-wave pulsating rurrent reveals, as might be expected, no fundumental harmonic present. The Fourier Serics shows a D.C. term, $0.637 \mathrm{I}_{\mathrm{a}}$, together with evén harmonics, starting at the second.

Summary of a Few " Values"

We will conclude with a brief summary of some A.C. values established so far, especially since these ero frequently used in connection with rectifying circuits, etc.

Sine-wave
Mean roltage or current $=0$.
Mean power $\quad=\frac{1}{2}$ (peak power).
R.M.S. valuo $=\sqrt{\frac{1}{2}}=0.707$ peak value.

Half-wave Rectification

Mean voltage or current $=1 / \pi=0.318$ peak value, $=1 . \mathrm{C}$.
Mean power (complex) $=\frac{1}{4}$ (peak power).
R.M.S. value (complex) $=\sqrt{\frac{1}{4}}=0.5$ peak value.

Perk value of funda-
montal harmonis $\quad=\frac{1}{2} \Gamma_{i j}$ or $\frac{1}{2} V_{p}$.
R.M.s. value of fimela-
mental harmonic $\quad=0.707$ peak value.

$$
=0.707 \times 1 \mathrm{~T}_{p}=0.353 \times \mathrm{T}_{\mathrm{D}}
$$

Mean power at fumela-
mental-frequency $=\frac{1}{2} \times$ peak fundamental power
where $I_{p}=$ peak value of half-wavo milse current. $\mathrm{l}_{\mathrm{vac}_{\mathrm{a}}}=$ A.C. resistance to fundamental-freifuency eomponent.

Full-wave Rectification
Mean voltage or current $=\because / \pi=0.633$ peak value $=1$. C .
Ordinary sine-wase relations apply to complex power and R.M.S. value. There is no fundamental harmonic, so that this type of waveform could not be employed to deliver " fundamental power.".

RADIOLYMPIA

Some of the Highlights Discussed, and a Further Review of Some of the Exhibits

AS forecast in recent issues, there was an obvious indication that the majority of manufacturers had concentrated on better quality reproduction. Both complete receivers and separate loudspeaker units were on view in which novelties had been introduced, and to many who have not followed the trend of receiver and loudspeaker design the reproduction given by some of the apparatus was a revelation. Undoubtedly
the entire lid was split centrally so that only the desired half need be raised, but in the Dynatron for instance, an internal separate lid is provided for the gramophone section.

Loudspeakers

Quite a few firms are now manufacturing the acoustic ceabinet type of speaker, and in addition to the special Vitavox dual speaker type of instrumeat there are the Wharfedale instruments, twe of which are illustrated in this article. The "Varitone" is a more or less standard accastic chamber, except that the phase inversion opening is provicked with a flap or cloor which may be closed to increase the damping on the cone and so increase the brikiancy on speech. This cabinet is, fitted with an 8in. speaker. The corner cabinet

The IFharfedale "Varitone" acoustic chamber speaker. At the moment sutplies of the model are limited to schools.

This corner speaker by Wharfedale incorporates two loudspeakers with a special frequency filter network. The frequency range is from 40 to 18,000 c.p.s.

A complete ani-interference aerial kit in a carton, as supplicd by B. 1. Callenders, Ltd. This is of the all-wave type and has an 8oft. coaxial screened leatl-in.
is ori somewhat different lines and houses two speakers, a loin. model for top and a 1 2in. motal for bass, with a eross-over filter network for frefuency separation. This model is claimed to bave a response from 40 to 18.000 c.p.s.

In the Gooclmans' range are some bass reflex rabinets, the smallest of which is fittecl with an sin. speaker with 3 watts handling capracity.

At the other end of the scale is the novel Trumox speaker in which the magnet has been considerably reduced in size. The special design results in an extremely small exterimal field, which will be fomend of interent to television repeiver dexigners.

Tuning Packs

A welcome item for the home constructor is the tuning park. In prewar days one had to build a receiver round a set of coils which might or might

The smallest and lightest portable in the zworld is the claim of the makers of this "Playbon:" It is entirely self-contained and covers medium and long wares, each with a separate tuning scale.
not be provided with an appropriate waverthange switcl. One or two romplete coil units were obtainable. but with the popularity of the superhet the diffirulty of lining up a home built reteiver using one make of roil unit another make of condenser, another make of I.F., ete., made many ronstructors leseitate to build a supertict. One or two paeks were arailable before the war, but there are now quito as number of complete units from whieln to (loose, or the type known in Ameriea previousty as "'ruming Hearts." In some tatises these are meroly theing condensers. wils and assoriatell switches, whilt in some the valwholders aro also indubd and wird. There are also some ready wired and testorl units comsisting of tho marly part of a motern reepiser. intemed for adtition
to an amplificr which the user ahready possesses. The R.M. for instance, known as an radio [ceder, fovers thare watrbands, has three valves and the glass thming scalo is alge illuminated and ralibratod in motres and station mames in thre colours.
('omplote chassis, ready for intusion in a rabinet and attachment to a loudspoalier, are Well typified in the Armstrongramgo. Model HXP.83, which is ilhostrated on right, is an 8 -valve chassis inoorporating wave-band expansion, special treble lift control and a push-pull output siage rated at 10 watts. It rovers one shont-wave range (16 to to 50 met resis) in adedition to the medimm and long bands.

Incidental Items

In addition to the complete equipment there are many items which may be termed incidental, and which are used not only $i y$ manufacturers and sorvicemen but also ly

For inclusion in an existing cabinet special complete all-wave chassis of this type may be obtained from the Armstrong Munufacturing Company. . This is the model EXP. 83 described on this page.
batteries may bo replaced without having to move wiring or components. The lid incorporate; aswith so that wher opened the set is automatically brought into action.

An ontirely new idea in louplopeaker mondels is the" Raimo" which is in the form of a wall platur laving a flower container, so that it adds a decorttive elfect in addition to performing ifs nommal function. Most of the products of this timm are finished in "! "exicolos"" a new tspe of colour textile finish. They have also producod a remotecontrol wit for battory or mains apparatus which requires no additional wiring between set atol oxtension speaker. It incorporates a 4.5 volt battery

For high-voltage circuits, television and transmitting equipment, Dubilier can supply some reliable condensers. Those shown above are of the oil-户lled variety and are acailable in a wide range.
keen construrtors. Tho rxtensivo rango of meter's, sigmal generators, oscillographs, "tre., which have heen presented to the publie this season powers praterally crey nowd. It is noticeable that rpecial television testing erfuipument is now being produred.

Components, firs sed building or preplaement. are how arailabla in various makes. and range fiom simplo dial-light hofern's or suituhes in tho Bulgin range of malti-phos amb coaxial conncetors in the Belling fico rathger. Onfe item new to the Fhatioh market is the electric soldering gim shown by the buncoybe 'ompany. This firm has also prowheal at miniat ure batiery portable which is rlamed to bo the lightest, as well an the smallest and neatest, in the world.

It is motionts selferombaned amed weighe unly :3'14s.. and ono of tho most importint features is 1lat the

Television

One of the drawbacks which many find to the present television equipment is the limited view which is arailable to a large gathering-due to the curvature of the tube end. This is not very large, but does affect brilliancy when viewed from a wide angle. The G.E.C. have developed a new tube for use in their television receivers and this is of the 9 in . type, but has a flat rather than a curved end. It is claimed that this gives greatly inpproves picture appearance as well as increasing the useful viewing angle. Some novelties are included in their television equipment, and these particular receivers, as well as those by Pye, include special interference eliminating eircuits which do much to remove troubles from local electrieal interference. There is in the case of the Pye, for instance, a special capacitor in the pre-V.F. diode whieh is eonductive on signal peaks above mean white, and thus reduces "splashes" on the picture from peaky interference such as car-ignition radiations. Pye have also included special arrangements on the sound side to cut out the noises from similar interference.

Car Radio

The only stand at olympia devoted entirely to car radio was No. 144 (Radiomobile). a product which is the combined effort of Smiths Motor Accessories and the Gramophone Company. With push-button tuning and a very small exposed panel. this set is built as a single unit and it is hoped crentually to be fitted as standard in all new cars. The new Standard "Vanguard." for instance, includes it in the panel layout. The set has built-in interference climinators, and on most modern cars it is unnceessary to fit ignition suppressors. The gerial is also unusual, being a telescopic steel rod 18 in . in length fitted inmediately alove the windscreen.

This telezision receiver by R.G.D. has a Thyratron time-base and emploss magnetic scanning. It gives a roin. by $\dot{\text { inn. }}$ picture.

Gramophone Accessories

The Charard Company had a new idea in gramophone motors, ideal for those building a radiogram. This was the Model S Drum Drive motor, having a below-baseboard depth of only just under 23 in . It is supplied complete with magnetic pick-up. Their highfudelity pick-up is fitted with a sapphire reproducer point and is of the magnetic type giving an output of 0.35 volts at 1,000 c.p.s. Their novel auto record changer playing mixed 10 in . and 12 in . records up to eight in number is now found more or less standard in the majority of commercial radiograms. It is very simple to fit and is available in different mains ratings and is complete with pick-up.

Newnes Television Manual

Please note that copies of this book are now out of Erint.

With the Amateurs

An interesting Account of a British Amateur's Station

FROX time to time we see pirtures of amatern stations in Amerina and are struck by tho (laborate expipment whish they use. A
 hamel, have homeronnatrudedrige with infinitesimal power and althongh some of the lay-onts look very haphayard it is surprisimer what results are ardicred. . Wr are so wed to soemg thest piotores ol small broadrast ing stations that wo are interested when we come across something ont of the way at an lagelish station. and no donbt the liollowing actails will prove of intreest to those of our realers who are "on the air."

Ther station is sithated woll out in the rountry and ahout forlt, above seateved. 'The owner is fortunate in having unlimited space for antemme at his disposal. and is remotely placed from roats or any interference. L'afortunataly, this is more than offect by there being only a private electricity supply, atthengh this will shortly be remedied.

American Equipment

The owner (who has beon a fan "since loge) is "American minded" so far as ratio is converned, and since 1930 has favoured equipment from

L's.at.. and the apparathe comprising the present station is 90 ber eront. of Ancrican origin.

The power is supplied from a priade genording plant fiom whidh soven other premisan compriming the hamlet are surved. This provides lou wolts 1). ('.. and the radio equipnent is supplicd be cenversion equipment romprising a motor-alternator and a standby rotary eonverter, both giving 11.5
 reverectively: "These are remote rontrulled fiom the shacts and situated in a seperate building some distance away. Comsiderable dilliculty hat been experiended in getting a stealy and interference. free supply. Tlie power input is taken to three separate Variacs, whose variable secondarios take rate of any flact uating voltage, and cach supplics a differnt section of the equipment.

Receivers and Recorders

The receiving equipment consists. smongst
 Howard tand ; the first two are used for sill: and the last for B. (!, work.

The recording apparatus comprizes a Me Filroy tape reconler with its unotorised puller. a l'resto professional double speed ltiin. dise recorder, with play-back, and an Amour wire recorder and play-bark; cach of these has its owar matched micrephone.

The Rack Equipment

'This comprises four panels as follows, from left to right:

Pancl 1. Tnput panel, with two Variac inputs and meters at lop, pateh panel under, fovering 20 input and two monitoring circuits. and two through chamels. Signal light insticators are fitted for patching. Ender these are the two Variac controls with output meters, and at the bottom the main power input switches to the various sections, with more signal indicators:

Penel ジ, Monitoring anel H.T. planel with monitoring speaker at top; two 1 .'T. shpm mits and associated meters under, supplying specely amplifier and morhatar at 750 v.. 300 mid. amd
 with electronie delay switching.

Panel 3. Receiver and amplifier panel, fitted with carrier percentage modulation meter at top, and three power-level indicators under. Below is the Howard communication receiver. Under this is the six-valve speech amplifier with three separate inputs, and using two L63s, two 6V6s, two 6 l 6 s , and at the bottom is the modulator section using two TZ 10 valves.

Panel 4. The R.F. panel. This has its own two separate H.T. supplies through a Variac input and clelay switching, and gives $200 \mathrm{v}, 80 \mathrm{md}$. for the doubler circuit; and $3,000 \mathrm{v} ., 700 \mathrm{~mA}$. for the final stage from $866 \mathrm{~m} / \mathrm{v}$ rectifiers. These are at tho Bottom, over which is the C.O. with five-crystal switching and 6L6 first doubler, followed by 807 second doubler coupled to a pair of 100 TH s in the final. Coil switching is by turret-mounted coils throughout, and meter's give full indication of conditions throughout the transmitter. Coloured signals show sections in operation throughout the rack. The coil set-up allows for $5,10,20,40,80$ and 160 metre operation.

The Control Desk

Really the heart of the installation, this has a most elaborate switching system, and is fitted with six pre-amplifiers and individual and master eontrols for eight inputs simultaneously. Fitted
at the desk are two turntables and a ('RT modulation indicator. The console is permanently wired through the patch panel to the transmitter, and to the various receivers, recorders, turntables and microphones; also to the G.P.O. line through a special inductive coupling. This allows the inputs and outputs of the various instruments to be connected in any combination. There are two complete channels, a "red" and a "green," each with db indicators, so that whilst one channel is operating, the other may be set up and monitored for an instantaneous change-over in studio fashion. Again coloured signals give full visual indication of the set-up.

The Antenna System

'This is in course of erection, and comprises two 70ft. steel lattice masts (one ex 2NM at Caterham) and a $20 f t$. pole on the flat roof of the 50 ft .high house; these are placed in triangular formation. From these an almost endless variety of aerials can be slung. A $28 \mathrm{Mc} / \mathrm{s}$ rotary beam with Selsyn control and shack indicator is fitted to the top of one mast. On the flat roof is a 40ft. vertical rod aerial and a 5 -metre dipole.

The owner will be only too happy to co-operate with any "Ham" by play-back over the G.P.O. line.

News from the Clubs

BIRMINGHAM AND DISTRICT SHORT WAYE SOCIETY

Hon. Sec.: N. Shirley, It, Manor Road, Stechford, B'ham, 9. A T the Angust meeting, held on August 11 th, four of the members mave details of their logs for Juls, which induded some very gool D. . One of these members has just completed an LiJ0 receiver with which he received 108 stations in three hours. This Rx will be demonstrated at the next meetiner. Another member gave a short talk about his home-const ructeil :-v-2 recoiver. Since he rompleted this alout eight months ago, he has received $9 \pm$ countries and $3 t$ zones.

WEST BROMWICH AND DISTRICT RADIO SOCIETY

Hon. Sec. : lR, G. Cousens (G3BC's), 38, Collins Road, Wednesbury, statfs.
\mp HIs society continues to meet alternate Monlays, $7.30 \mathrm{p} . \mathrm{m}$., at the Gough Arms Hotel, Jowetts Lane, West, hromwich Eyery other Monilay, practical work is done at the Edall Enginerring Co., Ltil., (ireat Bridge, where the club transmitter, GisBWW, is now installed.
 $3 A C i W$, 3BYP and $3 \mathrm{BC} s$.

New merbers are welcome and further particulars can be obtained from the sectetary.

OSWESTRY AND DISTRICT RADIO SOGIETY

Hon. Sec. : A. D. Narraway, (G-2APW), "Lamorna," Pant, Oswes" try, salop.
A' a recent ammal general meeting the following ofticers were clected: (hairmen, Mr. H. Woodhead (f:2NX) vice-chairman, Mr. F. D. Power (GBAS(') ; how. ser., as ahove; assistant hon. sec., Mr. G. H. Banner ((sth H) ; hon. treasurer, Mr. P.J. lay (GBAKG) ; committee, Mr. Smith, Mr. S. Brown (GiLLD), M. O. H. Owen (GZAUZ) und Mr. R. Mac@ (qeen (d:3Al'r). A finl jrogranme mas anmouneed by the hon. sec. Mectings are to be held at 7.30 p.in. in the Teehnical Institute, King Street Oswestry, every fortnight. All shurt-wave listeners and constructors are invited and new nuembers are welcome. It is hoped to organise a technieal library, film shows ant snbsequent fielil days. Occasional sales of "ham" gear will take place. Iast year, the initial year, was a great suecoss, ending in visits to Service radar demonstrations.

LIVERPOOL AMD DISTRICT SHORT WAVE CLUB

Hen. Sec. : B. G. Meaden (G3BHT), 10, Alfriston Road, West - Derby, Liverpoot, 12.

THHIS chb meets every Tuesday night at St. Parıabas Hull, Peuny Lane, Liverpooi, at 7.30 pr. Ht . Included in the future frogramme of the cfub are: Oet 7th., Auction of spare gear
and morse practice chass; Oct. 141 h, Talk; Oct. 21st., Talk and Oct. Esth, Ammal Generai Meeting.

Morse prictice is held every Honday night, $7-7.30$ p. III. on
 shortly be heard on $3.5 \mathrm{me} / \mathrm{s}$.

Further details can lee ohtained from the hon. sec., or by attending a meeting. Alt are very welcome.

SLADE RADIO

Hon. Sec.: (6. N. Smart, 110 , Wuolmore Road, lirdington, Birmingham, 23.
CIIF fourth and last of the societ $\mathrm{y}^{*} \mathrm{~A}$ D. F. tests this year was recently held. The regitar fort nightiv meetiness of the societ y will be held during Getober on the fith and 3 lst in the
 conmencing at 8 f.mi, and visitols to aly of the meetings or other events are gladiv welcomed.

FLIXTON AND DISTRICT SHORT WAVE SOCIETY

T' is proposed to form a society in the Fliston distriet of Lancs, and all interested shond eontact Mr. D. Stott, at 23, Hannton Roat. 'Irmston, Manchester, Lants, either by post, or preferably in perabl.

ESSEX BRANCH, INTERNATIONAL SHORT WAVE LEAGUE

 Hon. Sec.: K. (ioodley, 34 , Blenheim Avenue, llford.THE mangiral meeting took pace at "The king William IV," Chelmsford, on Angus $16 i t h$. An extensive proqramme has been arranged, includine morse and lasic radio justruction for heqimers. talks sud demonst rations by menibers, compeitions and rontests, and visits to pheres of radio interest Meeting will he held in all lasex towns where there is sufficient support, and all radio anateurs, const met ors and listeners shond contact the Hon. Sec. for detaile of the next meeting in their area. The Chelinsford Ratio ('lul, (l.S.W.I..) has amalganated witl! this official 1.s.W.I. chapter.

> REFRESHER COURSE IN MATHEMATICS 8/6 by post 9/-
> From: GEORGE NEWNES LTD. Tower House, Southampton Street, Strand, W.C. 2

Automatic

Circuits for Use with Multi-switches and Push-bulton
Mechanisms are Described Here by F. G. RAYER

TO bo able to select three or four of the more popuka stations immediately by some form of autonatic tuning is an alvantage. Operation is greatly simplitiod and corrert tuning antonatically obtained, roducing interference and distortion, Apart from this, the great vase with
P.2 and I'3 are also adjusted for two of ther stations in the same way. 'The stations obtalined with l'l, 1': and l.'3 will be on tho medimn-wave band. 'I'he? presets P't are then adjusted for the long-wave brand. In each case the switch is thrned to the apropriate position, and the stations will bo automatically selected afterwards by rotating the switch.

Adding Manual Tuning

If it is folt manual tuming is also needed for the reception of foreign stations, ote.. it may be commected as in Fig. 2. Here, one pair of pre-sets is abandoned, at 2 -gallg, .0005 $\mu \mathrm{F}^{\prime}$ condenser being brought into rimuit at that position of the switeh. The receiver can thus be tuned in the ordinary way, with the antomatic sirlection of three stations when required.

In this circuit separate wave-change switching is shown, so that mamual tuning is possible oft both wavebunds without mueh switching. A double-pole switch only is needed here. If a 4 -pole, 5 -throw switch were used, it could he commected as follows: Position 1: Manual thuing on C.W. Josition $-:$ Manual tuming, on M.W. Positions 3, 4 and 5 : Automatic selection of longor medium-wave stations. (Wave-change switching would be oftained as in Fig. 1.)
which the different programmes can be chosen alone makes some form of push-button or switehed tuning worth while. As the simpler push-bution switehes are now easily obtainable tho methods of comnecting them are deseribed here. Systems which turn the tuning condenser, cither manually or by motors, are not dealt with because of the scarcity of the necessary components.

Rotary Switch Selection

In this. an ordinary multicontact rotary switch is used, a particular stalion beingreceived at earhswitch position. Fig. 1 shows a suitable circuit where four stations are provided for, three on mediuni waves and one on long.

A 4-pole, 1-ways switeh i is usod. Two switch soctions select pre-set condensers in pairs. The other two sections short the long-ware sections of the coils in three positions for medium-wavo reception. The fourth position gives longwase reception.

In use, the two pre-sets I'l should be adjusted to ono of the desired stations. Pro-sets

Fig. 2.-The same type of saitioh is uscl in this circuit, but manual tuning is provided and a reaction circuit is included.

Reaction

! Reaction is added to Fig. 2, and may be with a normal variable condenser. Reaction could be used in the circuit shown in Fig. 1 if additional sensitivity were required, but a panel control should be avoided if possible, a pre-set being used. If automatic selection of weak stations is intended and a panel reaction condenser not wanted, a switch

Pre-set Capàcitances

These must be chosen with a maximum capacitance near that required. If too large condensers are used, it may be found that the minimum is too high for a station near the bottom of the band. (Plates may be removed to avoid this.) Normally, $.0005 \mu \mathrm{~F}$ pre-sets will be suitable for most stations, but with inost coils one of these would have a minimum capacitance too

Fig. 3.-Push-button switching in its simplest form is indicated in this circuit diagram.
with an additional section may he used and an individual pre-set reaction condenser provided for each position of the selection switch.

Push-button Switching

The majority of push-button switches hąve a single-pole; double-throw action with each button. To enable such a switch to be used, one tuned circuit only can be adoptel. If constructed as in lijg. 3, with a loosely coupled aerial circuit, this will be sufficiently selective for receiving the major B.I3.('. programmes. By careful arrangement it is also possible to avoid additional wave-change sund on-off switching.

In lig. 3, all the switches spring to the left, except that which is depressed. If the lower switch is depressed, the receiver is off. This switch will spring into the "on "position when any of the other buttons are depressed.

If the top button is pressed, the recciver will switch on and operate on long waves. The .0003 $\mu^{\prime \prime}$ condenser is then adjusted to the Light Programme.

Upon either of the central three buttons being depressed the top switch will spring out, changing to medium-wave reception. The pre-sets of these switches may be adjusted for M.W. s'tations. for 'example, Third Programme, Miclland and West programmes.

When switching off depress the lower button. It will then remain in until any of the other buttons are depiessed, according to the programme desired.

Some degree of reaction can be added by the $.0002 \mu \mathrm{~F}$ pre-set connected to the roaction coil, high to receive, say, the West programme on 216.8 metres.. A . 0001 or .0002 $\mu \mathrm{F}$ maximum component may therefore be necessary here.

Amplifiers and Volume Control

A simple and efficient hattery-operated amplifier is shown in Fig. 4. This is suitable for any of the circuits shown, giving reasonable volume and quality.

In all cases, a volume control is desirable. This could be ordinary V.M. bias in Figs. 1 and -2 . For Fig. 3 a low-frequency control could be adder to the circuit. To do this the .25 megohm leak in Fig. 4 is replaced by a potentiometer of similar value, the grid of the L.F. valve being taken to the slider of the component. If five stations were to be selected with a \bar{b}-way switch, then the rolume control could have an internal on-off switch, the lower pushbutton being used to switch in an additional pre-set condenser.

Push-button Selection with R.F. Stage
This is best arranged by obtaining a switch in which double-pole, double-throw switches are

Fig. 4.-A simple L.F. amplifier in which the grid resistance of the first stage may be replaced by a variable component to provide volume control.
operated by math button, The simple switch may be wirefl as in Fig. \bar{x}, howerer, to give on-off, manmal and two-station relection.

In Fig. $\overline{5}$ the on-off switching is obtained ans in Fig. 3. Jhe two predetermined stations are obtained by the next two butons. a domble-pole, double-throw effect being obtained as one switeh springs out when the other is depressed. These pre-sots are aliso obtained through the lower buttons being out.

Whein both the lower buttons are deprexised, the prescots aro discommerted and a zu.grug condenser bronght into circait for mannal tming. Both theso buthons will sitay in until the " off" button or cither of the other buttons is operated.

As Addition to Normal Receiver

Fig. (i) shows how pushbutton solection may be added to a rocoiver without interfering with the manual tuning or circuits (which may bo of superhet or all-wavo design).

The filament circuit of the R.F. and detector sitages of the recerver (or F.C', I.F. and second detector stages in a superhet) shouk be broken. It is then connected so that depressing one button on the push-switehmakes the circuit complete. A serond button is also commerted so that the acrial is comerted to the receiser when the switch is depressed. Pressing these two buttons will then enable the recoiver to be thmed and operated as before.

Fig. 5.-Utilising one of the puish-buttons for on-off switching purposes.

Tho other threo push-buttons select stationsers in the circut in Fig. 3. Epon any of them being depressied, the first two switrhen spring opern. romoceting the aerial to the push-button detector roil cirerit. anel switching on the filament of the punh.button dotortor. The anorle of this new detector is comected to the L.F. couphing of the
receiver, so that tho signal is amplified by tho receiver in the required way.

Tho meressary addition is shown to the left of tho line AA in Figy ti, tho roil romertion. ete., not beings shown for clarity. Theso are as in lig. 3.

Practical Layout

So that the method of comerting pish-button switches is quite clear a wiring diagram is shown in Fig. 7. This unit forms an adapter which may be added to any battery-operated receiver, as outlined in the circuit shown in F'ig. 6.
A double-pole, doublethrow switch is used for transferring the acrial and filament comections. Lead X is taken to the aerial terminal of the receiver, and Foad I to the filmments of the R.F. and detector valves. (Soo kig. 6.) The remainder of the circuit is as in Fig. 3, and the coil connections are numbered to agree with that circuit so that any coil may
bo used. A screened one is most suitable.

The diagram shows how switching is accomplished, one of the buttons always boing in the "̈in" position

Fig. 7.-Practical layout for a push-button operated single valver.
once the switch has been fitted to the panel. The double-pole switeh should be marked "Normal Operation " in one position and "Push-button Operation" in the other. The latter position will then provide automatic selection of four transmissions by means of the buttons, one being on long waves.

For Light Programme, Third Programme, Midland and West programmes pre-sets A, B, C and D should be set to approximately $.000 \geq 5 \mathrm{mfcl} .$. . 00045 mfd ., .0002 mfd . and . 00005 infd . (or .0003 mfd . for the higher wavelength station). Pre-sets which have a capacity range accommodating these values should therefore be used. Other stations may, of course, be chosen.

WIRELESS COILS, CHOKES AND TRANSFORMERS

By F.J. CAMM
6/-, or $6 / 6$ by post from
GEORGE NEWNES, LTD.,
Tower House, Southampton Street, Strand, W.C.2.

Colour Television

RFC'ENT reports of experiments and successful transmissions of television in colour in the U.S.A. have rather overshadowed the work which is being carried on in this country on similar hines. There are several methods by which pictures may be transmitted in colour, but they all depend upon the image being split up into primary colours and re-assembled at the receiving end, which
introduces problems of synchronism as well as the normal problems of television transmission and reception. In one U.S.A. scheme three separate transmissions are made on three separate wavelengths, and thus in effect three receivers have to be used to pick up the radiations and they are then viewed through a rotating series of coloured screens.

The experimental colour television equipment being adjusted in the London laboratories of the Baird company:

Another idea uses a single C.R. tube with a rotating drum carrying the necessary colour screens, and it is interesting to note that in this country Baird carried out successful laboratory transmissions in colour as far back as 1928 . His work is being carried on by his former assistant, Mr. E. G. O. Anderson, chief engineer of the Baird Company, and in the accompanying pieture may be seen an experimental hook-up in which a colour dise with six seginents of red-green and blue rotates in front of a standard C.R. tiube. 'The picture is transmitted through a similar set-up and the black-and-white image on the tube end is viewed through the synchronised rotating dise and appears in its original colours. It will be noted that the still picture they are using for test purposes is of the wellknown screen character Popeye.

Foreign Valve Data
 Valuable Details of Some German Valves.
 By G. W. DAVEY (D2AH)

IN the May, Imme issue of Prat Thal Whembese, a reader was asking for details of a valve designated RV1?P:2000. As tho writer has recontly returned from Germany where, as an amateur transmitter, he had tho opportunity of using many foreign valses, it is thought some particulars of them may bo of uso and interest to reaters.
 one of the most popular valves available in (aermathy at the moment, probably becanse it is the most plentilil and very versatilo. It is a miniature pentode valve, smade for the German forces, and pesent stodk are now being used commercialls. It requires 12.9 volts on the heater (the value is intirectly heated) and takes 0.08 amp. heater curcent.. Daximum JI.'T': voltage is around 200 , with uf) to half that on the serecning grich. It can be used in atl positions, as H.F. or I.F. amplifier, detector, 1., F' amplifier or vutput valve. As an 1. l', amplifier it requires about 3 volts grid-bias and takes only a few milliamps. A similar valve with variable-mu characteristices is tho RVIOLOOOI. Lsing two of these vakes and at small metal rectifier a compaet and enficient A.C./D.C. two-valver is casily built.

A miniature full-wase rectifier is the RGleD60, Which also requires 12 volts on the heater, but at 0.2 amp. It takes 300 volts on eath anodo and delivers 60 milliamps. Miniature valves in at similar size (which is approximately 2ins, overall length by lin. across) are also mado in a directlyheated series for a 1 wo-volt accumulator. Thoso likely to be concomotered aro tho RUV?.4P700. an H.F. pentode, RV:.4'3, a special low H.'T, tetrode, adud tho RL2.2.'T'l, a triote. They all three require 2.4 volts on the filament, and the first two take 0.06 amp., but the RLE. $\mathrm{T}^{\mathrm{T}} \mathrm{I}$ - consumes 0.16 amp. Maximmon H. T . voltages for the RV:.4P700 and RLE.tTI are approximately 120 , whilst the
 on the sereen.

Another valie realers may lave mot is the RV1こPfoom, which has similar characteristics to tho JRVlol'onon, but is not a miniature valve. It is about the size of a normal valve, but tubular in form, and completely sereened with a thin perforated ahminium covor, similar to the metal "Catkin" valves which older readers may remember. This RNEPremo was also built for tho German forees, and was especially used in short-waro receivers.

- 'The miniature valves are used in a spocial valveholder into which they lit upside down. When in the valveholder the valve is completely proterted and can only bo removed he means of at special "leey" which screws into the threadorl nut in the base of the valve. The RVIOP + fifll also, has a special form of valuehother, but in this-rase the koy is permanembly moulded in the valvo base.

Readors who lave Gemman" Poople's Receivers may like to know what valves aro in thom. Thoso with which the writer came into contact had an
[RFNOMt and an RERB4, both made by Telefunknn. The first in an indirestly heated triode (5-pia) similar to tha Mazda A($/ 1 / 1 \mathrm{~L}$. and the REIBt is a "smatl power" triode (4-pin) romparable to the Dazalat l.f4lod. Valves of similar characteristies would mako adequate replacements, although care nuty have to loo taken to adjust, if nocessary, tho biasing resistance of the output valve.

Transmitting Valves

'Two popular small transmitting valvos are the
 15 -watt triode whieh requires 1 ? volts on tho filament and up to 500 on tho anode. The 20-watt Germenn army 10 -metre tiransinitter employed this tapo of valve throughout-one as mochulator; another as ascillator, with a finther value as flubler into two in pusisipull in the PA stage.

Details of elalve pin arrangements and connections for cortain Continental valves.

The RLL2P35 is a transmit ting pentode dismipating 3.) watt $\hat{\beta}$, with 12 volts on the heater and soo on the anode. In tho 50 -watt class there are two pentocles freruently oncountored; the RLIEPFO and the Lxigo. Buth theso take $1 \underline{0}$ volts on the heaters and sof on tho anoder, although the Laso would stand 1,000 volts quito happily. This latter valio is notable for its small sizo and high chiciency-it is mon the same-sizo as an ordinary lwo-rolt pentote. lin all there values it may he noted how the doriguations givo at resume of tho valve
 iadiriting triede ar pentede (the Geriman words are the samet, ant the last ligures. 15, 3n, ete.; indicating tho waltase disipation. This is at grool general guido with host Cierman service-type valves.

This is by no means an exhaustive nor even comprehensive list of valves likely to be encountered in German receivors; there are very many more, notably the "' E " series (Ihilips), "AZ" series, and "V" series. Those readers who have dealings with many foreign valves cannot do better than consult the Brans' Valve Vade Mecum. The prosent writer makos the usual disclaimer regarding
any connection with the writer or publication of this book, but would say that he has found it extremely useful in assisting with the many strange valve types he has encountered.

Finally, he would be pleased to render any help possible to readers of this journal in identifying any unknown valve they may have if they would write to him care of the Editor.

Reducing Phase Shift in Output Transformers

A Useful Aid for Quality Enthusiasts.

By L. S. GEDDES

IT will sometimes be found that when feerl-bark is applied to a high-ficlelity amplifier parasitis, oscillation occurs, due to a phase shift of 180 deg. taking place at a frequency where the loop gain of the amplifier and feed-back network is greater than unity.

Fig. 1.-How sectionalised windings may be arranged on a multiratio output transformer.

Provided that intervalve couplings are calculated for minimum phase shift at the lowest frequency to berhandled, and the layout is above suspicion, then the trouble can generally bo pinned down to a high leakage reactance in the output transformer.

A well-designed component should be of generous proportions, having two identical windings side by side, each consisting of alternate primary and secondary sections and using a high grade of silicon alloy core material.

Many reaclers may have an output trans. former of the push-pull multi-ratio type which falls short of this specification and which accordingly will not perform satisfactorily when feed-back is applied across it.

If the transformer available has separate secondary windings alternating with the primary sections intended to be connected in series or parallel to obtain correct matehing. then one of the windings not in use may be employed to obtain the feed-back voltage. The winding chosen should, for preference, be one sandwiched between two sections of the primary, or that half nearest the core (sec Fig. 1).

The purpose of this arrangement is to provide feed-back from a winding with tight coupling and light loading so reducing undesirable phase shift.

If. in order to obtain correct matching. all windings are in use in a series combination. it may be possible, space permitting, to wind an additional secondary section on the outside to maintain correct turns ratio, leaving an inside winding available for feed-back.

If previously feed-back was taken from a series combination of the secondary sections, less voltage will be available from the one section ; therefore, R2 (Fig, 2) will have to be decreased to give the desired ratio of feed-back and RI increased to maintain correct bias on V1.
l3y making $R 2$ variable and connecting a low reading A.C. voltmeter across the speech roil, it is possible to decide on a value of $R \cong$ which will give the optimum amount of feed-back obtainable and also the greatest loudspeaker damping factor before the threshold of instability is reached, oscillation appearing as a reading on the voltmeter.

It is important that the amplifier output has a very low hum content, otherwise this will also give a reading.

Fig. 2.-This method of providing feed-back should reduce phase shift.

GALPINS

ELECTRICAL STORES
408. HIGH STREET, LEWISHAM, LONDON, S.E.I3.
Telephonc: Lee Green 0309. Near Lewisham Hospital.
TERMS : CASH WITH ORDER. NO C.O.D.
MAINS TRANSFORMERS. (New.)
Tapped Input 2001250 volts 50 cys. I ph. Output $35010 / 350$ v. $180 \mathrm{~m} / \mathrm{a} 6.3$ v. 4 a. 5 v .3 a. 4 v .4 a.. 3716 each. 116 post. Another 500101500 v .150 mla 6.3 v .4 a . 5 v. 3 a. 4 v. 4 a., 4716, post 116. Another 6 , 12 and 24 volts 10112 amps., 451 - each, post 21 -. Another $14!$ and $17!$ volts at 30 amps. (apto wound), $£ 41 / 51$-, post $2 / 6$. Another $700101700 \mathrm{v} .80 \mathrm{~m} / \mathrm{a} 12 \mathrm{v} .1$ a. 4 v. 2 a., 30/. Another 350101350 v. $200 \mathrm{~m} / \mathrm{a}$ 6.3 v. 20 a. 5 v. 3 a.. $45 /=$, post 216 . Anothter 4. 6.3 v . and 12.6 volis at 12 amps.. $45 /-$, post 216 . Another $17!!$ and 20 volts at 30 amp. . 95 l -, post 316.
VOLTAGE CHARGER TRANSFGRMERS (Auto Wound), capped 0, 110 , 200,220 , and 240 volts 350 wates. 55!post 116 . 500 watts, 701 -. post 21 -. 1.000 watts, $£ 515-$, post 216 . 1,505 watts, $£ 7115$!-, pest 316 . 2,000 watts, f8/I51, post 5!-. Double Wound, 2 to 1 ratio (1201240 or vice versa), 4.009 watts, £121101-, CIF
AUYO WOUND TRANSFORMERS (Mains Boosters) tapped 0, 6, 10, 19. 175. 200, 220. 225, 240 and 250 volts at 1,500 watts (New, ex Govt.). \$5/10/-, post 51 . LARGE MAINS TRANSFORMERS,
Ex Govt. (Ncw) input 2001250 volts 50 cys. I ph., in steps of 5 volts. Output $30 / 35$ volts at 100 amps. Price \&12, C/F.
AUTO WOUMD TRANSFORMERS (Veltage Changer) tapped $0.10,20,25$, $90,130,150,190,210$ and 230 volts at 1,000 watts. (it will be seen that almost any voluage can be obtained from this Transformer.) Price $£ 5 / 10 /-$ post 51 MOTOR GENERATORS EX GOVT. 11112 volts D.C. Input 230 volts $30 \mathrm{~m} / \mathrm{a}$. Output (complete with all smoothing chokes. condensers, etc.), 301 each. 21 - post. Ditto 450 volts $50 \mathrm{~m} / \mathrm{a}$, output, 351 , $5 \mathrm{~m} / \mathrm{a}$ output, 3216 each. carriage 216. 5 m/a output, 3216 each. carriage 216. Input 230 volts 50 cys. I ph. Output 12! volts C.T. at 25 amps., 451 e each, carriage 51 -
METERS ALL BY WELL-KNOWN MAKERS. Ex Govt. new boxed Ist grade Moving Coil. 0 to $10 \mathrm{~m} / \mathrm{a}, 211-$; 0 to 40 volts, $151-; 0$ to 10 amps, $151-$; 0 to $5 \mathrm{~m} / \mathrm{a}, 1716$; 0 to $20 \mathrm{~m} / \mathrm{a}, 1716$; 0 to $50 \mathrm{~m} / \mathrm{a}, 201$-, all 2 in . fsd. 0 to $3 \mathrm{~m} / \mathrm{a}$. 2216 ; 0 to $50 \mathrm{~m} / \mathrm{a}, 2216$; 0 to $200 \mathrm{~m} / \mathrm{a}$, 2216 ; 0 to 4 amp . Thermo Coupled. 3010 to 20 volt A.C., calibrated 50 cys., 251 0 to 3.500 volts Electra-static, 35%. Ail 2!in. fsd.
D.C. TO A.C. ROTARY CONVERTERS. Ex Govt. (New) 110 volts D.C. to 230 volts 50 cys. I phase at .85 amps., eil2/101-, CIF.
ELECTRIC LIGHT CHECK METERS for Garages, Subletting, etc., all for 2001250 volt A.C. mains. 5 amp. load, 151 each, 116 carriage. 10 a., 1716 . +116 : 20 a., 251 -, $-1 / 16: 30$ a.. $301-116$: 116 a., $351-$ $+116 ; 50 \mathrm{a} ., 40 /-1$ - 116 . Also a few only, Frepayment Mecers, 2! amp. load only, $27 / 6$ each. carriage 216 .
EX-R.A.F. MICROPHONE TESTERS. These consist of a Ferranti 2 ! in. micoil 0 to I m/a meter with Westinghouse Rectifier incorporated. calibrated at present 0 to 10 volts. microphone transformer. jacks, etc.. all contained in polished teak casc, size $6 \frac{i n}{}$ x 5 in. Condition as new. Price $32 / 6$ cach
LARGE RECTIFIERS FOR CHARG. ING. 6 or 12 voles at $6 / 3 \mathrm{amps}$. Complete with mains transformer for 2001250 volts 50 cy . I ph., $55 / 2 / 6$, carriage paid.

GUTLBTANG BTDTO
1'ODP C. COLLBOIS : (X3A-M
THE RETURN OF POST MAIL ORDER SERVICE

58, Derby Street, Ormskirḱ, Lancs.

PHone ORHEKIRK 498.
New Goods Only-C.O.D. or cash with order. Al orders over 5 - post ree. send $2 \frac{1}{2} d$. stamp for latest 24 -page cataloruc including Valve List. Valves.-All B.V.A. and Tungsram, including American.
Buldytone short wave gear. S.W. Manual. 2'6, Bernards Radio Books. - Mains Transformpra, Interlcaved and Impregnated. For 200250 v. mains: $300 \mathrm{v} .60 \mathrm{~mA} . \mathrm{m}^{4} \mathrm{v}$. or 6 v . L.T.S. 236 350 v. $100 \mathrm{~mA} . .4$ Y. or 6 v. J.T.. $28 / 6$; 450 v. 200 mA ., with three L.'T.s. 4 v. or f $\mathrm{f} ., 4 \mathrm{~A}^{\prime}-$
Sinowhing (hukes. 40 mA . $5 /-$ ${ }_{13} / 6^{1}: 200^{6} \mathrm{~m}$ A.. $22^{\prime} 6$.
Suraker Trantinmer. - Midget Powerpen. 40 mA. 56. std. size Heavy Duty. P. ${ }^{2}$., 22 6. Extra H.D. $100 \mathrm{~mA} .3 \mathrm{~K}^{\prime} 6$.
Mainu ibrobpor Ravinlors, with fect and two sliders. 6 amp. $4: 3: .3$ amp., 46. Fesistors (W) 641: 1 w. 9 , 1 .
 296; 5in.. 206 ; $81 n .286$, 10 in. 426.
 pretely wired. Sheri. Medium and long wave superber trpe for $465 \mathrm{k}: \mathrm{s}$. I.F., 386. Midect I.F.T2.s. 189.

IAB. cual. 6070 ohms vel foot. 3 antp.

Tumine combencers-Mindeet 2 -mang 0005 with 2-speed drive, 166 . T, Fre 116 Whminimm charain. 3in, deep, win, x

IN STOCK

AVOMINOR AC/DC UNIVERSAL
TEST METER. 2.2 litumet in pne first-class meter. £8.10.0.
AVOMINOR DG TEST METER.
A moit. useful instrument for all
£4.4.0. Reg. Postage $1 /$ extra. supplied on Jiasy 'I'rms if desired.
MODEL 7 AVOMETER $£ 19.10 .0$.
Also avalable on fasy tems.
STUART ELECTRIC PUMPS for all pumping purposes. Jortable and reliable.
Illustrated list of cing of the above it cins, 1 d .
THE LONDON RADIO SUPPLY CO. balcombe, Sussex.
SOUTHERN RADIO'S Luless Wireless Burgoins
 controlled. two valves. hand gencrator. 200 feet aerial on winco, morse key complete tions. $\mathbf{Q}^{2} 154.4$ parking und carliage. 5, e.
 volts 72 m.a.. 25 - each, plus 4 - carasere volts 72 m.a.

 NPUTi. 1112 valts. OUTPUT, $\dot{A C O}$ volts. 40 m.a. 176 each, yostage $2-$
Southern Radio Supply, 46, Lisle Street, London, W.C.2. GERrard 6653.

RADIO VALVES
 SJ7, 6SN7. 6T7. 6V6. 7B5. 7B7. 7B8, 7C6 7Y4, 6D2, 9D2. 10D1, 11D3, 11D5, 125R7, 25 Z 4.15 D 2.1 D 3.
HSWOIR- 2 P , 4TPB. 4TSP, 13SPA, 41 MP 41MPT, 420T-DD, $42 P T B$. $203 \mathrm{THA},{ }^{210 \mathrm{DG},} 210 \mathrm{LFF}, 220 \mathrm{OT}, 220 \mathrm{P}$. 220 PA .807 . DDL4, MP/PEN. MS/PEN, MS PEN-B, MVS PEN, OMA, 11 MHE , OMG, PT1. STH, $202 \mathrm{VP} .202 \mathrm{VpB}, 210 \mathrm{DDT}, 215 \mathrm{SG}$.
 IIVMR-XD, XH, XL, XP, XSG, XY. D41. D42, D63, DA30, DL63, DL/74M, DN41, GTIC, GU50. H30. H63. HA2 HD24. HL2. KT2, KT41. KT44, KT61,
 KT241. MLZ63, KTZ73M, MS4B. MSP1, N14. ${ }^{12} 2$, PX25, QP21, S23, U10, U15. U17. U1820 W21. X61M1. Y65, X71M.Y63. DG22. NA, $\mathrm{HL2K}$ L2B. LS5B, MKT4. Z62, L'23. Z 222,301 . 302. 303. 304, U14, MX40.

 DV620. IEL21DD, HL, 23 HI 23 DD . HL41, HIALDD, HLA2DD. HLI33DD. HLADD1320
 -P2220 Til41. TH232 TH232!. TP22 TP27. T1P26. T103. UQU6. TL7, PG14. DD 41 . Disin1. H210. UY5 300 .
III $1,1111-2 D 4$ A $2 D 15 C, ~ F U 4.51: 3$ GC, 5Dis. 6.17, 6L6. 6(77, 6R7, 164V, AZ1, AZ31. CCHB. CI $33, ~ C Y 1 . ~ C Y 1 C . ~ C Y Q 1, ~$ DF31. DL3. DO30, DW2, EA50, EAB, ECC3 , ECH21, ECH35, EF5, F: EG, EFi
 FC13C, 1W4 500 . HE 13 BC 1 H 4500 , KBCH2 KF35. KK32, KL 35 . Pen4VA. Pent28.
PenA4. PN2, PM2HL. PM4DX PN12M QP2zB. SP4. SP4B, SP13. SP13C. 「61) U5, VI?B, VP4, VPAA. VPl3A, DF33, DV435, HVR2A, PM5B, PM2?A, PMO2D SP13e, UBI21, UCH21. UX21. UY31 6CA, CBLBI; DL92, DAF91. DFE1, EBL31, EF36. EMA, TH30C, VP13C.
PHIN, HP, C1, C1C. 328, 320, 340. 367, $452,1012.1038,1120,1561,1729,1738,1821$, 1904. 1905. 1914. 1920, $1926,2050$.
 25Y5. 25Z5, 807, APP4G, DD13. D18818,
ECH2. EF'12, EH2, EL, EII, EM4, EZ4. HL13. HP13, HP1018, IPP118, HP2018, HP2118. HP 1106 , HR210, MH1118, LD210, I,L2S, P2018, PR6E, SP2BS.
SP4B. SPP4S. SS210, VP4S. VR105/30, SP4B, SP4S, SS210, VP4S, VR105/30 AVEIRIAN.-OZ4. $1 \mathrm{~A} 4,1 \mathrm{~A} 5,1 \mathrm{LP} 220.1 \mathrm{D} 7$

 6AC71182, 6AT 6AG7. 6B4, 6B7. 6B8, 6C4, 6C5. 6C6, 6C8. 6D5. 6D. 6E6, 6H, 6F6. 6F7. 6F8. 656. 616, 6I 7 6N7. 6Q7.6P5, 6R7 6SA7.6SC7
 OX5, 6Y5, हZZM12Z5, 7A6. 7A7, 7R5, 735, 787. 7B8, 7C5, 7C6, 7C7,7H7, 7S7, 7Q7. 7Y7, $10-12 \mathrm{~A}, 12 \mathrm{~A}, 12 \mathrm{~A}, 12 \mathrm{~B} 7,12 \mathrm{Cr}, 12 \mathrm{~J} 5$. 14 P 4.
$12 \mathrm{SK7}$.

 41, 48, 49, 50, $53,55,57,59,714,77,79,80$. 1200 A . $1626.9001,9002$, $9003,0004,9005$ (f)0 $13,1-V, 3 A 8,6 \mathrm{E} 5,11 \mathrm{~B} 7$, 1407,3545 , 6.56. and 101 more 19pers.

Order C.O.D. above listed numbers or frivivalents isubject to stock'. Please if not listed. We may have it. Oid and new twpes ate arriving daty
 Test Bridge, £11. Avo Univresal Minor.
 Megger t13,16. Avo All Wave Oncilat or battry type \&1R Valve Tester, Model 4\%.s. Riew, \&25. A\%h for Easy Terms.
J. BULL \& SONS. (P.W.), 245, llighteren, HONM. (P.W.), 10

you down... 'HAVE-A-GO!'
with

ISSUED BY
?HE CHLORIDE ELECTRICAL STORAGE CO. LTD

HENRY'S
 OF
 HARROW RD.
 > Send stamp for Latest Component list, Cash with order or c.o.D.

 Send stamp fior

 Send stamp fior Jatest Component list, Jatest Component list, Cash with order or C.o.D. Cash with order or C.o.D. (over 81).

 (over 81).}TIST PIRODS. Insulated, first quality, complete with $18 i n$ leads. $2^{\prime} 6$ pr only.
PISII ILTTON INIIS. 5 -way, with buttons,
new. $2 / 6$ only.
WEIIIIC" ${ }^{\prime \prime}$ Coils, 3' each.
WHEATITLI I.F. Trans. Standard, Iron-cored, $465 \mathrm{kc} / \mathrm{s}, 20-\mathrm{per}$ pair.

IEXTRA SPPCCIAT
ELEXTROSTATEG VOLTMETEIR. $0-5,000$ volts. Qanel mounting, 3 inn. sea e, 65/- only. Limited Quantity.

> All your component requirements.

HENRY'S, 5, Harrow Road, W.2. PAIDdington 1008/9.

COVENTRY RADIO
 COMPONENT SPECIALISTS SINCE 1925.

2-Gang . 0005 mfd . Condensers, 1st. grade $11 / 9$ Slow Motion Drive, Dial. Escutcheon and Glass

3 colour ; 3 wave band, $7^{\prime \prime} \times 4^{\prime \prime}$
Toggle Switches. Q.M.B., S.P., 2/- ; Per dozen 19/6 Metal I..T. Rectifiers, 12 volt $1 \mathrm{amp} \quad 10 /-$
Signal Lamps, Red or Green, Type D49, Bulgin. Special Price, 2/9 each ; Per dozen 24/Latest List 3d. post paid.
DINSTABLL R0ID, LIITON, Beds.

The man who enrols for an I.C.S. Radio Course learns radio thoroughly, completely, practically. When he earns his diploma, he will KNOW radio. We are not content merely to teach the principles of radio, we want to show our students how to apply that training in practical, every-day, radio service work. We train them to be successfal?
INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 94, International Buildinge,
Kingsway, London, w.c.2
Please explain fully about yot:r instruction in the subject
marked X .
Complete Radio Fingineering Radio Service Enzineers Kadio service and sates lifementary Radio
If you. wish to pass a Radio examination. indicate it below.
PBHGinh institute of Radio ingineers
Wireless Gperator, $1 R$.A.F.
Wireless Merhator, R.A.F.
Write to the I.C.S. Advisory Dept., stating your requirements. - It places you under no obligation.

Name

Address
. Age....
\qquad

Underneath the Dipole

Television Pick-ups and Reflections. By ". THE SCANNER",

CMRISIS! Crinit! (drisis!!! In these times of National stress and strain, many might haink that our "liscussions and ruminations underneath the dipole might lse a little inappropriate. "Why talk of telorision." they say: "when therc's starcely buough purrent to rook the , Sunday dimm-what there is of it!" Our hothead politidims storm and thumber with result, which are completely negation. Thermion's apt deseription of the "shinwell," the new "no-volt" unit of electrixity, has ramsed considerathle ammement in many a radio worksiop. and cren the ranks of the left can scarce forbear to grin.

British Enterprise

It is an appropriate moment for us to reminel ourselves that we are a nation which has the most advanced specialised radio industry in the world. Not only have we a thoroughly ratablished and smoothly ruming telerisim service, but our clectronic devices in many liedts are far ahead of those of other countries, even the U.S. These radio predhets are already contributing to the expanding flow of exports, in spite of tho ditionolties the manufacturers are experiencing in obtaining inaterials and suitable lathour. It is ironic to consider that it may be beneath the guttoring gleants of candle-light that our radio factories aro turning out electronic detecting devices for locating oil deposits. and other highly advanced echorecording equipment. The approath of another " Shinwell winter," with its implications of cuts, hold-ups and sheddings, have caused businceses and industries feverishly to seareh for alternative forms of power. Surything from wimbills to water-motors, diesel cugines to gravity motors, will he utilised. Incidentally, it is worth while remenbering that, for all their sizo, windmills develop only a very small horsc-powor indeed, less than I h.p... and that to obtain equivalont horsepower from water, at very considerable head of water is required. I recall the enterprise of a stationmaster on the old Furness Railway. many years agn, who illuminated his little wayside station clectrically from a wint-driven dynamo-set and accumblators. This. howerer, was hefore that interesting little Lakolamel railway was absorbed by the L.M.S., in daya when private ensterprise and initiative were considered to be virtues:

Eritain Can Make It

One of the finest and most defleient deviers for the radio-lonation of oil deposits at great depths uncler the gromul has just bren perfected by a British company which hitherto has specialised in the manufacture of then recording equipment. The head of the lim rolated to me an ammsing sidelight in the tangle of restriation agreements which restrain British progress in sonnd recording apparatus. The contrant for the production of a Government-sponsorel tiln called "Britain Can

Nake it " actually containel a clanse'which rectuired the lim prochuer to make use of a poceitied American reeorling system! Evidently, the rentral Office of Lufomation. modern etlition of the wartime Ministry of fnformation, haven't any, faith in the titlo of their film. Britain cun make it, given a fair opportmity, and in spite of cuts, controls, restrixtions, directions, no hoinos and ?ithle lope! 1 erlm Themion's moan: "What a iuvely neace:"

A.C. or D.C.

This winter, many fartories and possibly a fow dwellings will be deriving their electrical suppliss from alhormal sources, as, mentioned ahove, and in some cases the type of supply will change. For instance, the ustual 230 volt 50 cycles A. $(\therefore$ might be temprarily replaced hy D.f. at 240 volts. or eren lower. The ham trents of $2 \frac{1}{2} k \mathbb{2}$. searchlighto generators on trailers are likely to be employeri, to keep the wheels of industry turning, and the o diesel-driven generators give an output of 100 or 110 volts 1).C. Sxtemsive changes have had to bo made with lighting bulbs and electric motors; though I have heard of a firm which has achicred success by ruming two of theso generators in serics, giving 200 volts \mathbf{s}^{-}D.C. The trials and tribulations of the radio firm trying to carry out its. work with a D.C. supply can be appreciatel. Using small converters to produce small amounts of A.C.. the frequency of the supply raries a great deal. The effect on television pictures is remarkable, interference patterns and distortions of an extraordinary type being reprocluced.
In gramophone recording. the steadiness of the electrical supply is a primary requirement. In this case, it may he possible for some studios to revert bark to the old weightedriven motors, the stealy drive of which has never heen improved upon. So we progress forwarls-looking backwards!

Television in ti.e Cinemas

The its per cent. ad walorem duty on American films will leave a large vacum in the programmes of hundreds of cincmas. Already, experiments have been made with variety and ballet performances as an altermative to films, sinco the British studios cannot hope to proluce sufficient pictures to fill the gap. This is telerision's Big Opportunity, and a point where the $13 . B . C$ and the important Rank group filn interest, may be expected to get together. The B.B.C. have tho sole right to transmit, and possess the transmitting apparatus; the film people have variety and Theatrical talent muder wont ract, and the equipment, to reproduce television on a big sereen. l'emiaps You and I, with our \leq mall home scts, will be able, literally, to watch the procuedings.

[^1]
Programme Pointers

More Notes on the Proms and Some Autumn Visitors.

By MAURICE REEVE

THE fifty-third season of Promenade Concerts was bigger and more suceessful than ever. Nine weeks long, with two orchestras alternating half weeks at a time under three conductors plus an associate, one wonders just how far the progess of developinent and expansion can go on. Whilst the question of its repercussions on the future goorl, or ill, of music-nay, of the very soul of music itself-is a theme for a book rather than an article. And the then organisers of the Proms, in dear old Queen's Mall, fought sly of broadcasting and B.B.C'. patronage lest the effect might be to turn the dwindling number of promenaders into prstwhile fireside stallholders! One of the best of music: critics, Neville Cardus, was also one of the shrew lest writers on cricket. 'Manchester Guardion readers. before the war, used to be clelighted at the way the one subject intruded on the other when it was long out of season and almost out of mind. The similarities found between a Woolley off-drive and a brilliant scale passage played by an equally famous pianist, were as diverting as they were original. I mention Neville Cardus's happy choice of " mixed metaphors." as I am tempted to make a comparison myself between the capitalisation of music and cricket.

Cricket or Music

Much of the glamour and renown of county, 'varsitv, and other forms of first-class cricket have been dimmed in the quite mistaken policy of the aggrandisement of international Test matches. These, in consequence, have become contests of such mimnotly proportions that not only have they diverted most of the cricket-going publices attention without in any way improving or int. 'creasing their own standards and values, but they have drawn their patronage. too. With the vicious result that, earning most of the revenue derived from the spectators at rrickel matches, teams now have largely to subsist on 'l'est mateh profits dispensed to them by the central authority of the game, whilst their own performances attract less support than hitherto.

Should the present tendencies in the roncert world continue to develop and enlarge. the conseguences for musio would be much more dire than they have been for ericket. Not only would standards drop even more rapidly, but musir has no central authority to see that its mainsprings do not dyy up and perish by the wayside. Neither can the commercially inspired concert, be it promermalo or otherwise, compare with an AngloAnstralian 'lest match as an inspirer of lovalties and emotions, base as well as sporting, But. I suppose, the changing of standards and values, the setting up of new ideals for old, and the constant re-adapting of our minds and hearts to everchanging conditions, is the hardest of all our jobs in all walks of life.

Gone are the days when Jarnefeld"s "Preludeum," Mendelssohn's "Spring , Song" and "Bee's

Wedding," and ' Glazounov's orchestration of Chopin's A Major Polonaise, used to be enthusiastically applauded and their repetition demanded and complied with. (ione also are the days when the soloist of the evening had the platform to himself for his "group" in the second half, when he would play Chopin and Jiszt ad. lib. to those who had come solely to hear him, for as long as they cared to bring him back. Sir Henry's final wind up, (armen or something similar, was invariably played to a nine-tenthis empty house.

Nowadays, six to seven thousand, listen in rapt attention to Mahler's seventh symphony, and like material.

Autumn Visitors

Some great artists are making their first appearances here this autumn since befure the war. Perhaps the most notable are Heifetz, violinist, and Arthur Rubinstein, pianist. The latter is a magnificent artist, at his very best in Spanish musie, in which no one can approach him. Strange, this musical affinity between two such entirely contrasting nations, poles apart in every quality and ingredient that gives to the making of a national culture and traclition. But, Russian composers have almost all used the Spanish national dance rhythms and folk tunes with the greatest realism and brilliance; the Spaniards themselves consider Baliakirew's orchestral arrangement of the tunes comprising the incomparable "Jota Aragonesa" to be the finest of their kind, though Liskt's clazzling "Rhapsodio Espagnole," with Busoni's orchestral accompaniment, must run it pretty close. And, Russian pianists are invariably excellent in the colourful and fascinating works of Albeniz, Granados and De Falla.

Heifetz's dehut, as a young man of 17 or 18 . was the sensation of the post $191+18$ years. Such technical wizardry had seldom, if ever, been heard from a violinist ixfore. A certain coldness and the lack of "that certain something" which always made Kreisler so supreme has now disappeared, and he is the perfectly-ecuipped violin maestro.

Effect of the Films

Talking of fihn-fans, it was very striking, at the recent London Music Festival at the Harringay Stadium, how those artists. notably Iturbi, who have made for themselves a hig film reputation, Arew easily the largest audience. This new development has also been in evidence at the Abbert Hall and elsewhere. It is not a surprising development with those artists, such as Lily Pons or the muchlamented Grace Moore. who were also film-stars in their own right. But, apparently, one need only play snatches of the Tschaikowiky and Rachmaninow concertos and some (hopin, off, and thousands of admiring fans follow you to Harringay. or Harrogate, though your very appearance and personality romain totally unknown. Heaven knows what will happen when Stokowsky brings his Philadelphians over here:

Two Vilun battery kits complete. With values, beadset and solder iron, limited number with instr. at 3 sian., post frer Furr Malur, short-wave battery supphete. Ex-Gott. サ m. band. Few only at fer 196. with valves.
Wrbateroment classis.-Factory built and
tested. $160 .-6$ valve all-wase superbet,
 Speaker fi.
Mink $4 \underset{\text { Sil }}{ }-1$ valve all-dry superhet. 1.ono and medium wree, with valves and speaker. $8015-$ plus $\mathrm{P} . \mathrm{T}: 42 / 3$.
Morlel $45,-1.5$ watt A.C.ID.C. amplifier. E515
Hodilis\%-All-wave superhet tuning heart. with gang dial. coils and I.F. leady for feeding to amplifier. 8415 Madal 88.-Hioh quallty W.W. amplifler, 15 watt with heavy feedback, in Immot case. ع25.
(C)NSTRUTTION, I SHIFFWS.-2/2 ench. "How to make " all-dry portable. Quality A.C.D.C. set. A.C./D.C. superhet. ${ }^{\text {P. A }}$ amplifieq. BLUEPRINTS.-Moded 606 V. all-wave A.C. superhet. 5\%. Television construction. 38.
II IRI'IV.-Export model all-world superhet with R.F. stage and 7 short-wave bands. £30'11'1, plus 5-carriage. Makes an ideal communications leceiver
Also pudiograms, record playcrs, eabinets. AI.I,-it IV: DI. NA and drives. Tin. x 4in., 12/6.
Full lists available (2!d. stamp) from ThE
 YDU can lbeconne at first-class IRADIID WNGINENEB

We are specialists in HomeStudy Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

T. \& C. RADIO COLLEGE north road, parkstone, dorset.

[^2]

- TYPE No. BC603D. Frequency Modulation Recciver complete with 10 valves and 24 v . power unit. Frequency coverage 20-28 mes. Overall size Ilin by 7 in . by 11 in. Valve line-up: 3 of 6 AC 7 , i of 655,2 of 125G7, 1 of $6 \mathrm{HG}, \quad 1$ of $6 \mathrm{~V} 6 \mathrm{GT}, 2$ of 65 L 7 GT . Provision for speaker fitting \&6 19s. 6d. (Carr. and pkg. 716.) - TYPE No. Rlis5. Standard model 75 kcs.- 18 mes. Complete with valves. \&15 15 s . (Carr. and pkg. 10!-.) A few RII55N with latest service modifications available at £17 19s. (200 kcs.-18 mcs. continuous.)
- Just available! A set of spares for the RII55 leceiver comprising 25 components, including IF. transformers, iron dust cored tuning coils, H.F. choke, output transformer, A.F. filter choke, B.F.O. coil, oscillator choke coil, anoje filter rejector, ctc., etc. Only 25/. (Carriage and pkg. I16.) Value over \&5! Brand new components.
- TYPE No. R109. Communications Receiver. Complete with 8 valves and power supply for use on Ev L.T. Built-in 3 in speaker, spare vibrator and complete set of spare valves. Erand new. Frequency coverage $1.8-8.5 \mathrm{mcs}$. 6615 s . (Carr. and pkg. 101-.
- TYPE No. MCRI. Communications Receivers. Complete with 5 valves, power pack (A.C.ID.C.). phones, etc, 100 kes.-15 mes. Brand new if 10 s. 6d. (Carr. and pkg. 21-.) - TYPE No. AC71. Bush Allwave A.C. Superhet. Complete with 5 vaives, speaker and power supply, in fine wooden cabinet with " Teleflic" logging device. 150 lics. 18 mes. Brand new. \&17 17s. (Carr, and pikg. $101 .$.
- IFF TRANSMITTER-RECEIVER UNITS with 10 valves and rotary transformer giving 480 v . at 40 mia. V.H.F. Amazing value at 3916. (Carr. and pkg. 51-.)
- CANADIAN TRANSMITTER RECEIVER No. 58, Mk. I. Complere and ready for use. Less valves. Brand new. 6 mis.-9 mics. Only 501-. (Carr. and pkg. 216.)
Spares available:
Set headphones (H.R.) and microphone, 2216.

Battery Box, 10i6. I6 Section Aerial, 1216. Wire Aerial, 216. Technical Data, 316.

- GENERAL PURPOSE MINIATURE POWER PACK. Input $110-2.50 \mathrm{v}$. A.C.ID.C. Output $90-100 \mathrm{v}$. and 7.5 v . D.C. fully smoothed. 60 l -. (Special price in lots of 3 only $\$ 619 \mathrm{~s}, 6 \mathrm{~d}$.
- TYPE 76 AMPLIFIER UNITS (Modulators for trans-receiver) less valves, containing a host of useful components. Brand new in transit cases. 301-. (Carr. and pkg. $5 / \mathrm{I}$. .)
- SOLE DISTRIBUTORS OF THE BURGOYNE AERIAL COAXIAL CONNECTOR, for efficient waterproof co-axial cable connections. 24/6
W.P. RADIO SERIICES ITD. offer
 (oil HEAIPPHONJ'S and Mowing
 Guaranteed perfect. 9.6.

 Complete whth 8 valves. 2 eets of headphones and mictophones. is types of aerial, batiery, ete. Eull operating detajls. Ready to switch on. 10 wns.
 Beautiful black and cream Plastic Cabinet. 4-valve circuit, 2 wavebande. Complete in every detail. Jlustrated brochure free on requist. 211.9\%

IRMASTER 5 -valve \leq-warthand
 valves and moving coil speaker, PU and extra LS sockets. De-luse inish in cream cellulose. Ma,mificent performance. Ideal for incorporaring in Radiogram. Latest 1944 product. e1\%120, Art photys asalable to genuine enquicers.
 alves, KTb6 output. Mixing input incuits for mike or gram. Amazirg value. 8 gns. 1lustrated leanet on , OOOw SHEPDODV fIR.NSSFOHEIISIR', 230/110v, stcel case. MIK, 15:O. TRANFORNERS-60/1. 5/6; 100 1.; 6 imlil. 500 v., $3,6.8+3$ mfle. 4 '9.
 With ontput trans., $26 \mathrm{r}^{-}$. 8in. PM less trans. 24
0005 Siamalawd Twin (iang. $10 / 6$
 $1 / 6$.
we gllarantee satisfaction and safe delivery.
 55, CIVEIKPGOL. 4.

WITH Unhreakable crystal

The ACOS G.P. 10 combines purity of reproduction with extreme reliability: A unique flexible assembly renders the crystal virtually unbreakable, while a needlepressure adjustment is incorporated in the base. Resonance-free response from 50$8,000 \mathrm{cps}$. Output $1 \cdot 5 \mathrm{v}$. at $1,000 \mathrm{cps}$. Naedle pressure $1 \frac{1}{4}$
ozs. (adjustable). Vibra-tion-free arm movement. Screcned lead. Price in Great Pite 441 (Brit Par 579524 Pats. Britain 44 /-(in- pend. abroad). Licensed by cluding P.T). Brush Crystal Co. Ltd.

Obtainable only from Radio Deolers

COSMOCORD
 LTD

ENFIELD: MIDDLESEX

Communications Receiver

An efficient general purpose short-wave receiver, designed to meet the exacting requirements of amateur-band communications.

Coverage 31 to 1.7 Mcls . 9.7 to 176.5 metres).
Electrical band - spread throughout range.
Nine valves, including rectifier.
One R.F. and two I.F. stages.
Efficient noise-limiter.
$10,20,40,80$ and 160 metre amateur bands calibrated.
Crystal filter.
Beat Frequency oscillator.
Fiy-wheel control on band spread. PRICE, 551 Os. 7d. including purchase tax.
ITEMS OF INTEREST TO THE HOME EXPERIMENTER
Condensers. Cyidon precision-grade variable, ceramic insulation. Spacing .08 in . capacity 165 pf . Size $3{ }_{4}^{\mathrm{in}} \mathrm{in} . \times 4 \mathrm{in} . x$ $4_{4}^{3} \mathrm{in}$. maximum height. Construction suitable for instrument work and spacing for 25 watt transmitter, 65. Od,
3 -gang .0005, ceramic insulation, standard dimensions and $\frac{1}{2} \mathrm{in}$. spindle, 10s. 9d. $3-\mathrm{gang} .00016$ ceramic insulation, with incomplete slow motion dial (readily detachable if not used), IOs. 9d.
Minature single gang 75 pf 1 in. $\times 1$ in. x lin. deqp, plus in. spindles back and front, for either single or ganged operation. Ceramic insulation, ball bearings. Ideal for short-wave or VHF tuning. Equal in appearance and efficiency to any available condenser irrespective of price, Is. 6d.

WEBB'S RADIO,
 14, SOHO ST., OXFORD ST., LONDON, W.I.

Note our 5HOP HOURS : 9 a.m. to 5.30 p.m. Sots., 9 a.m. to 1 p.m.

$$
\text { Telephone : GERrard } 2089
$$

THESE ARE IN STOCK

WIRELESS COILS, CHOKES AND TRANSFORMERS, by F. J, Camm, 6s., postace trl
EXPERIMENTAL RADIO ENGINEERING, by Rapson, 8s. 6d., boatage 4 d. THE PRACTICAL RADIO REFERENCE BOOK, Ellit. R. C. Norris, 8s. 6d., postage bud.
RADIO RECEIVER CIRCUITS HANDBOOK, by Fi. M. Squire, 6s., postage 4 d .
TELEVISION RECEIVING EQUIPMENT, by W. '1. ('ocking, 12s. 6d., postage 4 4 .
TWO WAY RADIO, by Samue! freedman. 30s., postage kil.
RADIO REGEIVER SERVICING \& MAINTENANCE, by Lewis, 8s. Gd., bostuge $4 d$
THE SUPERHETERODYNE - RECEIVER, by Alfred T. Witts, 6s., postage 46 .
THERMIONIC VALVE CIRCUITS, By K: Willians, 12s. 6d., postage fid. COMMUNICATION ENGINEERING, by Piveritt. 27s. 6d., postage sil. RADIO ENGINEERING, ly 'Terman, 30s., postage 8d.
THE WIRELESS WORLD VALVE DATA, 28.1 mostage $2 l$. CATHODE-RAY OSCIILOGRAPHS, by keviner, 8s. 6d., jostage fil. MODERN RADIO SERVICING, by A. A. Chirardi, 35s., postage 9 d.

We lave the fimest stock of Rritish and Amerifan Ratio Books. Complete list on application.

THE MODERN "EOOK COMPANY, (Dept. P.15). 19-21, PRAED STREET, LONDON, W.2.

FIRST-CLASS RADIO COURSES

GET A CERTIFICATE!
QUALIFY AT HOME-IN SPARE TIME
Alter brief, intensely interesting study -undertaken at home in your spare time-YOU can secure your professional qualification. Prepare for YOUR share in the post-war boom in Radio. Let us show you how!

- The New Free Guide contains 132 | pazes of information of the greatest - importance to those seeking such | success compelling qualifications as A.M.Brit.I.R.E., A.M.I.E.E., City | and Guilds Final Radio, P.M.G. Radio Amateurs, Exams., I Matric., London B.Sc. (Eng.), A.M.I.P.E. A.M.I.Mech.E., Draughtsmanship(all branches), etc., tozecher with particulars of our remarkabie Guarantee of
SUCCESS OR NO FEE Write now for your copy of this invaluable publication. It may well I prove to be the turning point in your career.
FOUNDED 1885-OVER
NATIONAL INSTITUTE OF ENGINEERING
(Dept. 461), 148, HOLBORN LONDON, E.C.I.

You'k SURE triget it at STERMS
and you can be SURE thet you can depend on it.

AVO METEISS. Model 7, e19/10. Mode] 40 \&17/10. Valve Tester, with Valve Data, £16/10. Signal Generator. £13. Avo
Universal Minor," \&8/10.
'TAMLAME METTEISt. Model 120A. 1,000 ohms A.C. ${ }^{\prime}$ D.C. $\mathrm{E}^{2}, 10$. Model 70A. 50 Ranges A.C.D.C.. £10. 10.

MOVIN: (OII, SPEAKEIRE—others also in Stock. Goodmans 10in. P.M.. 3 ohm. $35^{\prime}-$ Rola 10in.. Energised with Transf.. 1.500 ohm, 36/6. Rola 8in. P.M. 3 ohms, $24 /$ (with Transf, 30/-). Rola 8in., Energised with Transf,, $2,000 \mathrm{ohm}$. 33,6. Page $5 i n$. P.M., 3 ohm, 15, Rola 5 in. P.M.. 3 ohm. 21/6. (with Transf, 2\%/6). Rola 5in., Energised with Transf., 1.000 ohm, 29/6. Celestion, P.M., 3 ohm, 2lin., 27,- 3!in., 29/-
1.F.TIRANSPOIRMEIRS. Wearite, 465 kc . Midget Iron Core, 21/-pr. : Wearite, 465 kc , Standard, 20' pr. Denco. $1.6 \mathrm{~m}, \mathrm{c}$, Midget Iron Core, $21 /-\mathrm{pr}$. Service, 46.5 kc . Standard, 12 '6 pr. ; 110 kc , Standard, $12 / 6 \mathrm{pr}$.
MANS TIEANSF"ORMEIRN. Other types also in Stock. Woden $250-0-\mathrm{z}_{50} \mathrm{~V}_{\mathrm{i}} 80 \mathrm{~m} / \mathrm{a}$. 6.3 v. 3 a., 5 v. 2 a., 326 ; $350-0-350$ V.. 120 $340-0-300$ v., 70 m a, 6.3 v. 4 a.. 5 v, 3 a.. 30 !-: $425-0-42^{\text {in }}$ v., $150 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v}$. (C.T.) 4 a.. 5 v. 3 a.. 4 v, (C.T.) 4 a., 55 -
I... H. IHKKtw. A few examples. Varley 3 Hny. Tapped Choke, $13 / 6$: 5 Hny.. 5) ohm, $250 \mathrm{~m} / \mathrm{a}, 186$; $20^{\circ} \mathrm{Hny.} 2 ;$,0 ohm, 127 m/a. 18/6. Brentford $15 \mathrm{Hny},$.250 ohm, 0 ma, 66.
HAFITROI, YTIC CONI. A few of many Capacities. T.M.C., 8 mfd. 450 V.. Canned, 4'6, Dubilier. $8-8$ mfd. 500 v.. Canned. 6.6: $\mathrm{mfd}, 450$ v., Canned, 6 . Dubilier 16 mfd 500 V Canned B6. T C .32 mtd 450 v. Canned, $5 / 9.6$. T. M.c. 32 mid, 450 v.. Canned, $5 / 9$.
 İNIN. Dubilier. $8 \mathrm{mfd}, 500$ V. ". Drilitic," 1 mfd .450 v.. $2 /-: 2 \mathrm{mfd} .450$ v. ${ }^{4}$ 2/3. Midget .01 mfu .350 v., "Metalmite." 9 .
 HE.IIRIFF; I'. (dHAN. All types
Aecial. H.F., and Osc. B/= pach.
Intive "Maxlik" Coils, in stock, 4/-each. MATCIIEDPAIR T.R.F. COils, L. \& M. Wave. 6'9. Super Het. Coil. Short. L.. and M. Wave. 86 with circuits.
S. W, revNNG CONIBNNEIRS. Ceramic Insulation, suitable for ganglng. 50 Pf , 2.9 : 15 Pi.. $4 / 9$: 100 Pf., 46 ; 156 Pf., 5, 200 Pf., 5'6.
CONHMENLIES 2 Gang, 0005 mfd, $24 x$ 3: $\times 34 \times 2$, less Trim io/6 4 gane 000 mfd., less rrim. 5,9 .

A IFNW INX-GADVE. LINES
R. 1155 R IGCilvirRs. 5 wibands covering 16 to 4,600 Metres, 10 Valves includes Magio Eye. R.F. Pre-Splector Stage, 15 yns. (Fower Pack and Output Stage, f5 15\%. extra.)
KOTAIR I'TIRANSFIRMERS. Input, 12 V . Output, 23 /250 $\mathrm{V} .125 \mathrm{~m} . \mathrm{g}$; Input 12 v .

MINNBIEIDGE' (ONDIENSIEIRS. . 1 mfd $5,000 \mathrm{v}_{0}$, Insulated Term., $5 / 9: 8 \mathrm{mfd}, 750$ 5.000 V., insulated Term.. $5 / 9$
$\mathrm{v} . .69$; $.5 \mathrm{mfd}, 1,000 \mathrm{v} ., \mathrm{i} .6$. Y.F. ('IFKE 15 Hny., 100 ohm. 300 mia,
$12^{\prime} 6 ; 9$ Hny., 250 ohm, 120 m 'a, $7,9$.
 D'Spaced .0002 mfd . 4,9 : also Split, Stator Ceramic Mtgs.. 150 Pt., each Sector, 4 .

ENQUIRIES WELCOMED and speedily
dealt with. Send 2 Id, for Stock List.
STEIEN IRADIO ITTD., 115, VISETESMHEPET, N.C.I. Tele: CENTRAL 5814 \& 2280

Impressions on the Wax

Review of the Latest Gramophone Records

THERF is nothing quite like the best of J. S. barlis preludes and fugues for showing off the possibilities of an instrument or, for that matter, of the organist himself. Bach's reputation in his own day was great as an executant, though his contemporaries probably fated to grasp his real eminence as a romposer. As the finest organist of his day. Bach travelled Northern Germany. trying out the instruments in the various churehe in many towns, and his extemporisations on these occasions must have formed the maclei of the preludes and fugues we now possess. Incidently the menu"cript of "Prelude and Fuque in B Minor.". which has heenn recorded by Femando Ciemmani on H.M.V. (3tiot-i, is, to julge from a photographic reprochaction, one of the most beautiful to look at of all the composer's surviving MSS. Femando Ciemomi possesses technimal qualifications of an ont-tanding order. Critios hoth in Britain'and abroal have paid tribute to his maturo musicianship and one of the many points sperially admired in his techingue is his dazaling apeed in perlal work

There are few more satisfying composers of light gnusie than Offenbach. He was a tine eraftsman in his choren line. knowing how to orchestrate his fluent. Cas melodies so that they should present the most persuasive appeal to the ear. His "La Belle Helene" Overture, has been recorded by the Boston Promenado Orehestra, conducted by Arthur Fiedler on $H .1 I . V$. C3597. and I have no hesitation in rocommending this record to you.

Piano Duettists

Some might think that the tenuousness of Debussy piano writing is unsuitablo for roproduc: tion upon two kerboards, until the skill of the artangement made by Rawicz and Landauer shows that the thing ean bo done most attractively. Falla's ", Ritual Fire-dance," too, has boen adapted to the medium with unerring taste and performed with the usual adroitness. The record is Columbia DBO32.4.

Selections of well-known film fanes are appearing more and more frequently in the record lists-certain indication of their growing popularity. One of the names most frequently ansociated with these selec. tions is that of I'eter Yorke, whose masterly arrangements and first class orchestra givo them an added freshness. Peter Yorke has during tho past var givon us the hits from the films Bhae Nkies, Muke Mine Music, Till the Clouds loll B!y, Centenmial Sammer and Night and Day, and now alngments that hist with C'rumival in ('osta Rica on Columbia 1 Besseg. This is music of a sutiny, lively nature, mostly in rumba rhythm.

A sot of records that I thonght was rather outstanding was Vaughan Williams': "The Lark Asrending " (Romance for violin and orehestra), recorded hy the Liverpool]hilharmonic Orchestra, conducted iy Sir Nalcolm Sargent on Collembia 1)N1386-7. It is intereating to note that "The Lark Ascending" has pleasant associations with Sir Malcolm Sargent and the Liverpool Platharmonic Orchestra. Onr roloset in this recording, David Wise, was for a number of years leador of that
orchestra. and Sir Malcolm Sargent paid Lín the compliment of declaring that his interpretation of the solo part in this work was.s by far the best of all the artists he harl heard play it. The familiarity with this work which the orchestra posseses has ensured a completely authoritative pofformance. These records may be recommended without te:crve.

Variety

This month I am giving more space to variety recordings as there seems to be a very interesting selection. In his seareh for tine melodies to satisfy his admirers, Fremk Sinatra has often delved into dance-mosic's past and mearthed half-forgotten songs such as "Souvenirs" and "I Don't Know Why," and many more, His latest two releases come well within the category of old favourites. "All of Me," having been popular around 1930. While "I'm Sorry I Mate You Cry,' dates from an earlier cra-Columbia DB:330.

Other popular vocatists who appear in recent refoases are Dinah Shore singing "They Didn't Believe Me," and " l'May Be Wrong. But I Think Toutre Wonderful" on Columbia DB2331, Tumer Layton singing "Roses in the Rain" and "Gotta (Get Me Someholy to Love " on Columbia FB3334, and Leslie A. "Hatchinson ("Hutch") singing "Heartaches" and "Danger Ahead" en H.M.I'. BD1173.

Being a band leader of considerable versatilitr. Geraldo has established a firm following among ligit musie lovers with his many broadeasts and personal appearances with' his concert orehestra. 'This consists of his usual dance hand, plus the addition of a large string section, woodwind, harp and timpani, For some years now a countrywide audience has tuned in approvingly to the programmes that have now become a regular fcature of home entertainment, these, of course, being "Dancing 'Through " and "Tip Top Tunes," among others. Now with the rederelopment of television, the London section of this audience can both hear and see the band, which, as a point of interest, was the first to bo "screened" after the war. The latest recording by Geraldo and his Orehestra is "Doin" What Comes Naturally ", and "Managua Nicaragua" on Parlophone F2.239.

Popular Musical Shows

Continuing his series of selections from popular musical shows, Bidney Torch and his Orehestra goes back to the first world war for the music of his latest recording, "Maid of the Momintains." Prerlophome R30:3 coutains all the popular tunes from this famous musical.

Oklahoma Voesl Gems, recorded by the original artists appearing in the show at Drury Lane Theatre on H.M.V. C350.5-t, are among the most tuneful and happily-arranged "roual gems" that have been issued for a long time. Ollathomet is so full of untsually goorl tumes-four of them lave hecomo nationally popular ahredr--that it requires gool singers to intorpret them. "Peoplo Will Say Wore in Love," with its extruordinary high note at the ond, is no ordinary musical consedy number.
DoNT MHSS TIIESI:
4 Power Packs. A.C. or D.C. mains folts H 127, 205. 235 volts. Output folts H.T. and 7.5 volts L.T.. metal fification and efficient smoothing corporated, complete in grey stove £3. Limite, size 8in. x 3 in, x, in, Price. f3. Limited quantity averiable. Io for for use for battery portavies using 1.4 v . button or octal base ralves.
Ryize Communication Recelver power macks. Sturdily built on an aluminium chassis using finest quality components. A 6V6G output valve is incorporated on the chassis and phone and speaker jacks are jitted, All connections are brought out to a Jones plug. No modifications are necessary to your recelver, Price, $£ 8 / 100$; few only available. Spare Jones plugs, b/...

GODIDEIRING IHONS
Pyrolsf, $200 / 220$ v., 45 watts, instrument 6GB, 2002 Win \quad W5 watt type, 22/-. Model $6 \mathrm{~GB}, 200,2007,55$ watts, 220
Poncil Bit $20 / 200$ v. or $230 / 250$ v., 65 watts. Pencil Bit, 18/9, Straight Bit. $17 / 3$.
I:If'0. $200 \% 200$ v., 60 watts, 18,4 .
i.. L. iP. $230 / 250$ v., 60 watts, $18 / 9$.

PYROBFIT SPARIG
Fifments. Instrument 230 v.. 45 watt, $3 i 6$. Wireless. 230 v .45 watt, $4 / 6$. Tniverial. Fits elther 200 , 220 v . or $230 / 250 \mathrm{v}$. 50 watt, $4 / 6$.
Large instrument. $\mathbf{4 / T S}$.
Small pencil. 64.
OTHELIR LINIE include Trickle chargers, 2 V . 1 amp or $6 \mathrm{~V}, \ddagger$ amp. Input $200 / 250 \mathrm{v} .$, A.C. 50 cycles, $23 / 7$.

Wearite Pcoils-all ranzes, 3/
Denco "Q-Max " coils-wound on polystyrene formers, chassis or plug-In type to fit into octal valveholder, from $3 / \%$.
Cat's whisker and crystal in holder, 2/6.
And all other lines you need or are ever likely to need in radio.
Prompt C.O.D. or C.W.O. Service
Please include extra for packing and postage 144, BRIGGVTHE, LiNCIS's.

(k3iDD, (3.1 BL .

BULGIN A Name farnous in Radio

A. F. BULGIN \& CO., \&TD. Bye Pass Road, Barking, Essex Tel: RIPpleway 3474 (5 lines).

MIDGET IRON CORED COILS
 GIVING MAXIMUM GAIN \& SELECTIVITY

AERIAL AND OSCILLATOR, short, medium, or long wave, size jin. x tin. $7 / 6$ pair.
AERIAL AND OSCILLATOR, metition or long
wase size jint. x tin. 6.9 pair.
DUAL WAVE COILS, mediun and long wave aeridi and h.f. 9;6 prir.
I.F. TRANSFORMERS. Standard lirempence,
 MINIATURE ROTARY SWITCH, if pole, is why. $3 / 9$ each.
All coils fitted with adjustable iron cores, TERMS : Cesh with order or C.O.D. on oriers over £1. Postage free.

MONOCHORD
 RADIO (Established 1929)

17, Streatham Hill, London. S.W.g Phone Tulse Hill 1051/2

The "Fluxite Quins" at. Work
These boxing bouts give me a pain:
Listen ! He's socked him again.
Go on! Swing your right!
That's all for ro-night.
Our set will need FLUXITE, that's plain."

See that FLUXITE is always by you-in the house-garage - workshop - wherever speedy soldering is needed. Used for over 40 years in government works and by the leading engineers and manufacturers. Of all ironmongers-intins, 10d., 116 and 31-.

To CYCLISTS : Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings and SOLDERED. This makes a much stronger wheel. It's simple-with FLUXITE-but IMPORTANT.

The FLUXITE GUN pufts FLUXITE where you want it by a simple pressure. Price $1 / 6$ or filled, $2 / 6$

ALL MECHANICS WILLHAVE
FLUXITE
IT SIMPLIFIES ALL SOLDERING

Write for Boo.' on the ART OF " SOFT" SOLDERING and for Leoflets on CASEHARDENING STEEL and TEMPERING TOOLS with FLUXITE, also on " WIPED JOINTS." Price id. EACH.
FLUXITE LTD. (DEPT. W.P.), BERMONDSEY ST., S.E.I

1070 Harrow Road, London, N.W. 10 . (Nr. Scrubs Lane) 'Phone : LADbroke 1734. 10 WATT AUDIO AVIPLIFIER.-Complete. 2 input channels for twin-playing desk or pick-up and radio. For A.C. mains. Tone control. Output matches $3,8,15 \mathrm{ohm}$ speakers. Wonderful value, $£ 88 \mathrm{~s}$. 15 watt. similar, £13 13s. 25 watt, £18 18 s .
(ONDLNSERS,-Dubilier $16 \times 8.500 \mathrm{v} .$, $8 / 6$: 15 mid inv. $5 /-: 8 \times 8 \mathrm{mfd} .450 \mathrm{v}$. 66 : 25 mfd . $22 \mathrm{v} ., 2 / 3: 50 \mathrm{mff}, 50 \mathrm{~V} ., 3 / 6$. All electrolytic, paper, 00005 to 1 mfd.:
9 d. each; $25 \mathrm{mfd} ., 1 / 3 ; .5 \mathrm{mfd}, 18$: 9d. each :
1 mfd . $2 .-$
-0मAS.-3-wave band coil packs, complete With diarram, 25/6. 465 k ' I .F.s. 12 ' 6 pair. Weymouth Midget, 188 . Wearite Standard. El pair. Dual range coils, 4/6. L. and M.W. With reaction, $7 / 9$ pair. 3 -wave superhet coils A and Osc.. $8^{\prime} 6$ pair. Sunerhet tuning heart complete with var-con, 2, I.s. trans.; drive, allgned, $23 / 14$. Wearite colls (P), 3:- each.
TR A NSFOR YERS-Mains 350-0-350v. 4v., 4u. or $\mathrm{V}_{\mathrm{L}} \mathrm{h} . \mathrm{iv}$. T. I 26;6. Speaker midget universal, 56. Standard pentode, 59. 5 W Multi-ratio, 6 ; 30 w ., 22/6. Intervalve midget, $3-1,59$; 5-1., 61 '-.
CIRIABIAECONDLESERS.-2-gang .000̄
 Preset . 0005 and $.00025,23 ; .0001,13$; .00005 .9 d .
L.IVECOLD. -3 amp. 2 -way, \%il. ft.: 3-way. 81 l . ft. (60 ohms ft.). Vol. droppers, .3 .53 : .2, $5 /$-, with feet, etc.
 366 ; 3!1n., 29-: 8in., 20/6.
V.IIVTK,-25A6, $25 \mathrm{Y} 5,25 \mathrm{Y} 5 \mathrm{G}$. 6A8, 6F7, 12KK7. 1A7, 1H5. 1N5, 1C5G,' PX4, etc., etc. S.A.E. enquiries, 2 d. stamp for Autumn 664 . 18 B pass over $\& 1$ post free. Buses 662 , $664,18 \mathrm{~B}$ pass door

NEW UNUSED GOODS ONLY.

\triangle FREEE BDOKK
 on Morse Code Training

There are Candler Morse
Code Courses for Beginners and Operators.
Send for this free "BOOK OF FACTS"
lt gives full details concerning all Courses.

THE GANDLER SYSTEM CO. (5.L.O.) 121, Kingsway, London, W.C.2.
Candler Syafem Co., Denver, Colorado, U.S.A.

SURPLUS BARGAINS

Complete Supply units with smoothing. etc.. 12v. in $200 \mathrm{v} .60 \mathrm{~m} . \mathrm{a}$. out. $30 /-$. Rotary convertors, 12 v . in 250 v . $60 \mathrm{~m} . \mathrm{a}$. out. $12 / 6$. Aluminium cases with panel and chassis ${ }_{1 / 3} \times 4 \mathrm{x} 10.46$. Heavy mains toggle switch. I. T. chm.a. H.T. choke, 3-- Double wound 5 watt resistors, $24 \mathrm{ohms} 30 \mathrm{ohms}, 60$. 3 ms , 100 ohms, 9ı1. $0-1$ milliammeters, 3fin. dia.. 28, $6: 0-30$ milliammeters, 2 in , dia.. 126 ; 0-. 5 and. Thermo-couple meters. 21 n . dia., $10-: 0-300 \mathrm{v}$. Moving-iron meters, 3 lin . dia., $1 / 7 / 6: 0-5 \mathrm{~m} . \mathrm{a}$. metors, $2 t \mathrm{in}$. dia.. scale marked .: Battery Lines, ${ }^{\prime}$ \%. Two reading 2jin. dia. meters. $0-10 \mathrm{~m}$. and $0-120 \mathrm{~m} .9 . \mathrm{I}^{\circ}$. Heavy duty Interference suppressors. cast ali. case. 91 bs ., carry 30 amps. 10- Heavy mains trans., suit television, 230 v . in, outputs 1.500 v . at 10 m.a., 2 v . ${ }^{\text {at } 2 \mathrm{amps} ., ~} 400 \times 400 \mathrm{v}$. at 100 m .a., 6.3 v . at 7 amps. . 4 v . at $1 \mathrm{amp} . .4 \mathrm{v}$. at 1.5 amp. 5 v at $1.5 \mathrm{amp} . \quad 50 / \mathrm{F}$. Other items in stock. Call or send cash with order, plus postage or carriage, to :-
J. W' IICTCHINS, 29, Hurion Road,

Whlestin circtin, condon, N.W.2. Telephone : Willesden 1533.

Open to Discussion

The Editor does not necessarily "agree with the opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necossarily for publication).

Electronic Musical Instruments

S^{1}1R, - 1 was interested in some of the recent articlos on electronic musical instruments. Most of the difficulties mentioned in connection with the reed pick-rp system lescribed, in your August issue can be orercome by praper screening and remote artion.

The Exerett Orgatron is no longer made but. the Wimlitzer company purchased the patents and have completely re-congineered the instrument. Their method is to mont the reeds vertically and use an electromagnetic pallet valve on the much sinaller orifice at the enils of the reed cells. It was found that the full size pallets opening and closing induced microphony in other reeds by virtue of the shock to the air in the main wind chest. For this sume reason the suggestion that the reeds should ribrate contimunsly will not work becanse of moxlulation of the air stream and consequent reaction on adjacent reeds.

With eareful layout, however, the methorl can be used for a few reeds if they are not in chromatic order and this arrangement is now being introduced in the Wurlitzer scries $\because 0$ for the lower 16 ft . notes. RC circuits having delay characterist ics are necessary to reduce polarising transients.

The complete screening called for is achieved in the U.S.A. in sereral instruments by hot metal spraying of the interior wootwork and the use of wire gauze on all air channels in the Wurlitzer iustruments.

Extensive experiments with frequency modulation have shown that it is very sisceptible to mainsborne interference. but work is proceeding with the methorls outlined in lisitish latents 495271 , 512943 and U.S. patent 3001208.

Regarding the oscillator shown on page 278 of the July issue, this is used to provide the vibrato frecquenev in the Baldwin organ, W. F. Kock showed in 1934 that the neon dividing circuit shown on the same page tended to be unstable; however. by using argon-filled thyratrons, a very stable divider chain results.
I would like to point out that these and very many hitherto undisedosed details aro described in my fortheoming book on the theory and design of efostronie musical instrments, now in the comse of production. and would also like to express my appreciation of your foresight in publishing articles of this mature which must help in stimulating design in this mum neglected branch of electronics. -alan Dotglas (Sheffield Unicersity).

Pirated Call-sign

$\mathbf{S}^{1 R,-1}$ have held a trensmitting licence in England since 193.) minder the call-sign of GERA, but have not act tally worked a transmitter in England since early 1936. returning to Ceylon.

After this period I was advised by several amateurs, who knew I was here and working under VS7RA, that a pirate was working my call-sign. I was
home in 19fli, but did not start working again, ablhongh I renewed my licence which is still in force.

The other day I received some QSL carls from England via, if think, R.s.c.B.. amongst them some " G " carls who 1 was supposed to have workel, so this means that the same pirate is train using my call-sign.

1 have writen the R.S.C.B. on the subjert, and askect them to put a motire in the bulletia 1!at. Whenever I do come to England and work I will publish the fart.

As matrers now stand the pirate station using my call-sign will no doubt not send a QSL card. and consecpuently I shall have a bad name anongst. amatens who do not know the facts. - R. P. Walker-Almanier (Ceylon), (Gord and Visira (Off the air at present).

Two-valve Portable

$\mathrm{S}^{\text {fle.-I }}$ monstructed the two-valve portable described in your ().tober. $19+6$ number, and am pleased to give the following report.
I dispensed with the firme aerial abd made a Whag-in coil of 6.5 turns of No, 2. 4 and 40 reaction, With this I can receive the Home and Light programmes and Welsh Regional from Burnles: Lameashire (working lomulspeaker on Home Servico). and numerous European stations (AFIV Holland. Prance. ete.) after dark. I wish to point out that in the circuit diagram given mon ande loading resistance was in-luded for the detector. I used 10,00 ? with best results.-Norman Redhead (Grantownomsp(y).

Remote Conirol System

SSTR.-Will, reference to my " Remote Control Sistem" article published in the September issuc of Practical Wirmieses, I regret to inform you that a deader in Stoke-on-Trent has pointerl out a mistake of mine. It concerns the mains portion of the switch hank. and unfort umately is referred to both in the text and in a diagram.

When making the system. I adjivisel the wafer hy ripping out the contarts I did not want and leshing up the remainder. In writing up the circuit, I tried to make it as simple as possible, and overlooked the fact that when the switch, as published, is turned

How to arrange the additional contact (shozen by the broken lines above). clocliwise through five positions, the switch turns off again. However, this is soon put right by inserting another contact point in the position
A in the accompanying illustration. • I
15 most readers would ste this way out of difficulty:-H. W. J. Gumbrell (Fent).

Ex-R.A.F. Equipment

SIR,-I have had so many replies to my offer in the September issue that I wonder if you could find a few lines for the following:

I would like to inform all who applied for circuits and information that I am dealing with these in strict rotation, but there have been so many reguests up to writing, and I expect there will be more, that it will take me some time to deal with them.-A. James (Bolton).
$S^{\text {IR, With }}$, reference to your correspondent A. W. J. Marsh, of Newport, Iste of Wight. I would suggest that he gets in touch with The Supervisor, Air Publications and Forms Store, Royal Air Force. Kidbrooke, London, s.E.3.
I might add that they supplied me with the complete instruction book for the R1147 Receiver (Acorn valves), and that 1 have always found them most helpful in supplying circuits, ete.-L. Rotse (N.W.6).

Peculiar Faylts

S$\mathrm{S}^{\text {IR,--I have experienced a similar phenomenon }}$ with an output valve other than the 6 V b, the ralve being the Mullard Pen. $4 V^{V}$ A. The traces of a bluish-green colour appeared near the top of the valve and changed shape as the volume was increased, and were of maximum intensity at maximum volume. When I first noticed the phenomenon I took a reading of the anole voltage and it was above the maximum 2.0 volts. On decreasing this the glow practically disappeared, and now with the anode voltage at about 210 the glow is only visible in the dark. It was my belief that it was due to stray electrons directect into a strean by two plates at the bottom of the valve. But on examination it was found that these were connected to the anode and consequently at positive potential, and therefore only capable of repelling positive particles, so my theory was rather unfounded. I am still not clear as to the real cause.

Glass always contains sufficient impurity, c.g., lead, to cause it to fluoresce where electrons aro directed on to it.-M. Clift (Skegness).

S^{1}IR,-Recently a T.R.F. receiver was brought to me which had developed a queer fault. This took the form of a peculiar reaction overlap.

When searcling for distant stations, the reaction control would be advanced and, short of oscillation, the station tuned in. Then, a minute or two later, the set would burst into oscillation. necessitating the turning of the reaction condenser back a littlo way. Upon doing so the station would disappear and the setting would have to be advanced to its original position.

At first, ordinary reaction overlap was suspected, This is caused by using a valve of too low an impedance in the detector circuit, too high H.T. voltage to the detector, or a valve with occluded gas in its envelope. Tests soon showed that this was not the case, there being no perceptible overlap at any setting of the luning control. Iot the set continued
to burst into oscillation a minute or so after a station had been tuned in.
Routine tests showed nothing wrong with the components associated with the detector circuit. Finally, in desperation, the detector by-pass condenser of $.0003 \mu \mathrm{~F}$ was disconnected and another one of the same value substituted in its place. This cured the trouble immediately. The by-pass condenser, connected between anode and earth, häd evidently an intermittent disconnection internally, and when it was "dis" there was naturally inore H.F. energy to be fed through the reaction coilhence the set bursting into oscillation. Though why it waited until a minute or so after a station had been tuned in to "dis" itself is quite beyond me. -Wm. Nimmons (Belfast).

Correspondent Wanted

SIR,-I would like to correspond with any amateur of my age, which is 16 , preferably someone from abroad.-D. Baligeny (Station Road, Wincanton, Somerset).

Results on R1116

SIR,-Re correspondence on the performance of ex-Services communication receivers. I have one of the 1116 kxs , and can quite honestly say it has surpassed my expectations, and am certain no other model has been offered at such a bargain price. When working perfectly, signal-to-noise ratio is very good. I have listed some of the DX " logged and reported."
VE8NW, EL5B., VUきCJ, VU2CD, VU2BQ, VReAT, ZL2BE, GX, ZL4SO, VR6AA, VE7AJIN, VS2BV, KH6CT, OX7B. VSIAN, J2AAZ, XZ2AB, OQ5BW, ZC'6DD, IN1HT, ZD4AC, YS3PL, (Naval Air Station, Marianas). VK1 to 6. America 1 to 7 (W6 working portable), besides numerous others, which is a creditable performance. Aerial in use, 40 ft . single wire. I have found that patience is the vital factor when logging DX signals, but it. is worth it.

This report is solely connected with ex-Service. reccivers and not in any way to bias anybody's views on the home-built 0.v-2, of which I have one.-S. A. Rickimts (Yeovil).

Ex-Service Equipment

THE co-operation of readers is sought in helping others out of difficulties regarding items of surplus gear as follows :
P. Silver, of 269 , Lady Margaret Road, Southall, Middlesex, requires the base connections of á 2 3in. ex-Army C.R.T., reference ACR10.
S. J. Dallman, of 2. Oak Avenue, Hornsey, London, N.S. wishes to know where be ean obtain an ECLH1.
J. S. Marshall. of 28, Fairmead Avenue, Westcliffon Sea, Essex, requires details of the power supply, base connections, etc., of an A.M. Indicator Unit, type 184A, Ref. 10B/6181, with two C.R.T.s. VCRI39A and 517B. The two tubes are Cossor. but the makers are unable to supply the details.
L. S. Irwin. of 31, Arthur Street. Ryecroft, Rotherham, Yorks, wishes to build a 'scope using the VT97 tube. Can anyone supply data of this, and a suitable ex-Service unit to go with it?

MORSE \＆S．W．EQUIPMENT IRADHO SOCTETY OF ficaid BIRT． offers the following pumbeations on intercst wave transmitino
1R．N．d；ik．IBIBI．ETIN．the Society＇s
 pares）．for the newcomer to Amateur Radio，
 pages），gives Commercial Equivalents of
pumerous Service valves，including $C V$ types． 1
All prices include postage and parking． Watel for further publications in the R．S．G．B．＂Amateur Radio＂seríe：

RECEIVERS \＆COMPONENTS

FIT＇s of Radio Receivers from sys 0 ．

 4 and 5 vale All netw materials．Tahle Models，Semi－Midget．Our latest Kit－ Wylwyn Star 1947－hes connections fol Gramophone Pick－up and extensions to foudspeaker．A．Fuil details and dfagram vith each kit．C．W．O．or C．O．D．－Isher woods， Reme House， 81 ．Pluncington Road，Preston． fanes．Tel．： 3348 ．Estd． 1936.HASM：NUPHIRIET AN\＆EDISIA AS follows $\quad 16$ Grauge Aluminium Chassis pomplete vith famous 3－Waveband Dust Cored Coil Pack and Circuit $£ 350$ ．Dust Cored I．F．Trans．dor above．per pail， $1 \% 6$. All other components and valves in stock to complete your own Superhet Receiver Write for list．Ex－Govt．EF50 Valves．new and perfect，each． 126.
M．＇．MR．H．Hirbies．We have installed snecial test oquipment for caljbrating and aligning these famous little receivers．C．R．Oscillo－ scope Service．We specialise in the overhaul and repair of Oscilloscopes，under the direction of L．P．Dismore．former Labora－ tory Instrument Engineer at A．C．Cossor． Jid，We Buy，Sell and Repair all types of Electronic，Instruments and Testorear． Write or＇phone：Morton and Dismore 52c，Old Chureh Road．Chingford，E．4．Key 4807.

ANJintr，A．C．D．C． $5 v-3-w a v e$ supernet Radio Heart．includes（fully assembled） ehassis，coil pack，calibrated dial， 2 －gang 1．F．s，V．C．，choke，8－16，dropper，circuit diagrams ：small resistances and condensers only required；cabinets available．Trade enquiries invited．－Morgan．Osborne \＆Co． Lud．Southview Road，Warlingham．Surrey． FIETEI RIMIMARAFI，LiPll，the Leicester Specialists，ofer comprehensive stocks：Malns（pans
formors， $250-0-250 \mathrm{v}$ ． 00 ma ． $4 \mathrm{v}, 2 \mathrm{a},: 6.3 \mathrm{v}$ lormors，250－0－250v．00ma．igldget tuning condensers with super SM drive．8／6．3－gang standard type ．0cd5，76．Split stator types， $20+20$ ， $26 ; 75+75, \quad 36: \quad 150+150$ ， 5 3 waveband sy dials with glas and 7 in $x 4 i n$ escutcheon．12／6．Epicyelic drives， 5 ： 16． 0 －500 microamp mic mpters． 1 in．diaf． 1／6．Sleering． $1,1,1!.2 \mathrm{~mm} . .36$ yards $2!6$. 144 yds． $10^{\prime-}$ Moving coil headphones，wired complete with mo mike， 176 per set． Surer quality morse kevs．2／6．USA speed keys，with cord and plug，Ni6．Ceramic kuys，walve holders， 16 ．TCC or BI 1 mfd． 5,060 vw．condensers．size sin．x ban．x $6,1 n .$. weight $811 b$ ．each．At the price offered they are cheap enough to parallel for any capacity required in vour transmitter power pack． $3 / 6$ each plus 13 post Guaranteed valve batmains ： $9001.954,955,956,958,12 / 6$ cach หी7． $162 \mathrm{j}, 15$－each ：SP61，6H6，6AC7， $2 x-$ EF50，5i－cach．IF transformers， $1,700 \mathrm{ke}$ air timmers．5／－Miniaturie ．O5nifd．and .25 mf ．tubular condensers， 6 －doz．． $05+05+05500 \% ., 6 /$ doz．Owintr to the impossibility of－isting many separate נtems we offer a special Bargain Parcel of ex－Gov，components having a retail value of over $£ 5$ lor only $£ 1$ ．Over 50 useful items， our selection．but satisfaction glaranteed or money refunded．Latest lists of many other items free on request．Trate supplra．

WalUE／MATThasif

SPBAIAI．OFPVIt：Headphones with lead and jack plug． 56 per pant（boxed 2 paits）： SPPAKEARS：P．M，（less trans．）4in．， 1 \％ 6 ； 5in．． $15 / 6$ ；Bin．．
MSIMFNSLIRs
： $1, .01 .9$－doz．
16 mid．Elec－ 16 mfd． $8+8$ canned． 66 ： 16 mid．Ele IVIs（1）1） 3 mmp （ 60 ohms per ft ，INE－way， 1,6 ver Yd．． 3 －wav， 2,6 per $y d$ ． OIL ME TONTKOIN：（Centralab），vari－ OL．values，L／／S，3＇6．W．S．4／9．
CIRINTII，IICKEP：Rothermel，De－ Luxe． \mathbf{c}^{2} 16w．3u．（Inc．P／Tax）
2－tinci（oNi）PNiviries：，0005（not midget． $5 / 6$ ．
 1．6 per yard．
LARGE ASSORTMENT OF B．V．A．and U．S．Valves alwass in stocr．

CHITE
 ADIOSEMVICE
 Kingstón 8353.

29，（astle street，King－lon－infiltames， Surles

CALLING AMATEURS with BUCCLEUCH

Precision Built Equipment

 Sr＇EEI，CHASSIS SMOOTH BLACK $17 \mathrm{k}^{\prime \prime} \times 101^{-} \times 21^{\prime \prime} 9.9$. PANELS－CRACKLE
 ANGLE BRACEETS 121＂ 10 ng，pr． 7.8 ． Bright Aluminum COMPLETE RACK
 （Rigid 4－Pillar） ASSEMBL 43．£3／5．
CHASSIS． etc．，To Order，Eid sq．inch． PLNCHING CHARGES to ！＂2d VALVE HOLES 1^{-}． $1_{n}^{\prime \prime \prime}$ or $1 t^{\prime \prime} 64$ METEA HOLES ctc．， 16. SQUARE HOLES $2-$
RADIO MANUFAGTURER
BUCCLEUCH RADIO MANUFACTURERS 1 \＆ 2 Melville Terrace，Edinburgw，
SIMPLE ！Buildasuperset S＇EASY SLikB Filkl：rircuits deatrned by Dr． dieorge Hill，the originat or of fle famons ALL－DRY BATTERY PORTABLE

－Ver

BATTERY FOUR．1．45．Ihree whve
A．G．FIVE，＇Three w：ave．
A．C．D．G．FIVE．＇llitee weave

DORSET＂ $\mathbf{B} / \mathbf{6}$ CIRCUITS

 Tumsive ING＇l＇R L＇C＇IO．大S，point to point WIIRIN氏，batts list，ete．

Just the juh fur uiuter evcuinifi．
ELDONA RADIO ACCESSORIES，BTD． WELDONA RADIO ACCESSORIES，
Hemporary adidess： 49 ，North Street， PORTSLADE，BRIGHTON．

 Model AN ADAl brand now and crated Gonlans 3 in．C．R．tube， 11 new valves ingl
 rarriage．Pltce，lless cratc，to callers，
 plete with dual rystal 1001.000 kes．Valve and Vibrat or．Frequency range 1－9 to 8 n3c s． with check points at 1 me z intervals， Lo $25 \mathrm{mc} / \mathrm{s}$ ．brand new in padded teak case with spare valve and vibrator，f3 19 s ．6a．．or less spares，f3．Perfurmanmé Muters for AC mains 230 v．operation complete with G new valves：2，EF50，1．EC52，1，EA50， 1， $5 \angle A G, 1$, f63 tuing indicator．Brand new and built into useful steel case， 45 － plus 76 for carriage and dacking．
 dry can 3 ，wip with fixing clip，3＇each．8－16 mfd．dry can 450 v ，wkg．． 66 each． 8 mfd ．metal cased block， 450 v．whg．． 3 －each． $2 \overline{5} \mathrm{mf}, 25$
 CONFHNNENRS． 01 mfd．Iunts， $2,500 \mathrm{v}$ wkg． 26 each． $015,000 \mathrm{v}$ ．Wke． 3 －each wlig．．9d．each． 25 mf． 3 in v．wkg．9d． Gd．Wax dipped condensers，． 1500 v．，Gil． 1350 v．5il 01600 v．，5ut． T．F．＇TRNNSFORRMFIRS， $46 \overline{\mathrm{k}} \mathrm{k}$＇s．in can air－coled with trims．or iron cored． 126 pair Doliglas Coil Packs $J W$ and MW
superhet with circuit on 6 each Coils with reation and diac each．TRF Individual jron cored coils，midget．SW
 Chokes，standard 60 m．a．， 369 ohins， $6^{\prime}-$ Aidget．5－each．speaker penode，speaker 8 in less mans fl $5 i n . ~ d o ., ~ 15-$ each．Mains Droppers 800 ohns is amp．with variable kliders and ftxinge 56 each． 1.000 ohms ．2． 46 each sPlixill，1PAic（lil，of Metal Cased Con－ denser＇s． 350 and 500 v ．whg．． 111 Cl ． $1{ }^{\prime} \mathrm{s}$ ．． 01 ＇s etc．， 72 in all for $2 \pi 6$ ．Parcel of Resistors 100 ohms to 1 meg． 1 and 1 watt， 72 for $12^{\prime} 6$ Send for List＂P．W．etc．

 Conplete six－stage UHF amplifier．with 6 valves． 3 Westectors， 3 I．F．stages， 6 pre－set RF settings，makes ani ideal base for Tele－ －ision or F M experiments ；components alone worth s10．Our price $\ldots \ldots 10$ ．each． （Tase J）No， 1 Witremblers．A few left only，complete with all spares and crystal

IR．A．F．IDineln，N•的，We have at small quantity of these portable tranemitters， ideal for amateur field day work when modified．fand－driven generatov gives 6
 neon indicator．Our price，．．． 5 5s．each． Thrae－stage Amplifer with comenensers， resistors and volume control can be bade into midget portable burans thing device（20／－worth of componentsi）．To
 Send stamp for romplete bargain and 188 Huslatil Hidme IRuad．Lismion 4．1．1．
 Coil packs，IQiAO 3 band shet， 33 －．IQ HO 3 band plus RF． $50^{\prime}-$ IQ＇Si 3 band SW 00016 tuning $10-100$ m．， $33 .-$ All get tester Ilee bueprints． 000 me ．IQS SV $0001610-200 \mathrm{~m}$ ． All 2．TRF $S W$ coils 00016 tuning $10-3 \mathrm{~A}$ ． $20-4.5,40-100 \mathrm{~m}$ ，double wound p！ts react． 23 Permeability tuned IF＇TS at 15 －pr． open one end，louvred．in－jati lists． 3ci．stannp． Allied Aroustics，Electric ouitar，E6 Ez Stare mode de iuse job．E14 14＊＇Supsrb 10 watt push pull amp，complete with ＊ajقes， 88 8：Ask ful full details of these Sitstanding with all enguincs．C．O．D．C．W．O． Stamp with all Onder Omly．－Midlami IR：ain foil
 fvilliernomenuls
H．I＇，A All－Wave super－1het．cont nitit complete unit consisting of coils．switch sransed ondenser drive and dial．Completely whed and tcsted．Ciryin digram．s． Eashyneers．83．Fwoford Ave．．Portsmontia
fiwane explerimentors.
 hree 6 AK5. EBC 33 . 12 A . Complete emote control units less connecting Eq 15s. ea. S.A.E. for dotanls. With
from A.C. mains. 6 or 12 v , vibrator packs to suit. 398 ea 6 or 12 v. vibrato formers, $15 /=$ Brand new R.R. uruts with valve amp, and base, 6in. short persistance tube, £5 10* ea. Carr. paid. 21 n. fiush most types in stock. F/6. 2lin. fush. 0-100 up to $500,10 \%$ others. Output moters etc. List S.A.E. Power units A.C. brand new, with 2 rectifier valves, smoothed output case withzrectifer valves, smoothed output $\frac{15}{5}$ ohm handle. 10 w., Brand New. £l. Yaxley 10 way selector Brand New, £l.

 at 46 ea., Std. size. Larce split stator weinsmt 10 lbs condensers silver on brass weight 10 Ibs., brand new, $i 6$ ea. Nidset
components, Sprasue metal cased con-
densers size 11 , by lin. $3 x .05,1 / 9.5 \mathrm{mfd}$. 29.

 thaen tor riseot turcras. vC with knob
 other barsains in in oomponents nand receetvers.

TTe Pr Minks se vew oxtord st.. w.c. Tel. Mus. gss ofros the followins equil. mont to culler onty, comprising the following : " Lorenz" trans-recelvors. q1. 55 to 15.75 m 'cs. A.C. mains driven
oseillators, type 37,22 to 70 mmics complet oseillators, type 37,22 to 70 mics., complete and milliammeter in output output stage ing units, type 69: C.R. units. iype P1246. C.R. power units, type 526 : Derformance C.R. power units, type 526 : performance meters, type 53874 : A.C. mains wave
meters, typo w1252: battery uavemeters meters, typo W1252: battery uavemeters: type wlo
mas pow pecelrers, type 1147 : A.C. 3132 ; fndicator modulators, auto transformers : C.R units. type 1 ris auto transtype 76 A : battery-driven amplifiers lars. assortment of rolt. bativen amplifiers, large meters. neutralising units with R.F. meters metal rectifers, relays, vibrator meters, thter-com. sets, Bendex H.F. dumms antennas and loading units. complete with R.F. meters, 356 to 6.666 k'cs: signsl Henerators. D.C. to A.C. converters Brown's "A "type headphones: E.M.I. fathodo ray tubes iefyane ireciverts incorporating idisyston" unt. A.c. quantity of "Lorenz" iransmitting gear Ideal for converston.
A. $\left.{ }^{2}\right)$ KIT SET assembled, wired and tested. 26, blus postage, Price quantities and Send kit drawines ervice, returned C,O.D. send kit drawings, ctc., to- F^{7}. Sharp \% Sons, 53, Heedington Road. Kentish

 to Mr. Willamson spec. A first class £25. Assembled and tested. Pre-amplifier. $12 i n$ speakers and Gram. notors extra if required. 8 in . speakers from 17,6.-R. T. S. (Fialins), Ltd., lin, Little Ealing Lane. W.S.
Ealing 6962 .
The Last Worsi In liadio Nit and ciomponent Barkalnw. Really detalled Instructional Manuscript how to bulld best type 3-valve plus rectifier A.C. or Universal receiver 26 . Absolutcily complete Ktt, incl, valves and super cabinet es. carr. pd. Also S-valve 3-wave Superhe Assembly, himh class job. Universal £3. A.C. $2617 / 6$,
cerr. pd. Postage for specifications. Mazda U $103 \mathrm{~s}, 11 /=2$ inn. $0-1 \mathrm{~m} / \mathrm{a}$ lst grade $\mathrm{m}^{\prime} \mathrm{c}$ meters 276 . ditto $0-10 \mathrm{v}$. A.C. 1,900 O.p.V. in case,
$30-5 \mathrm{~m} / \mathrm{a}$ meter rectificr's. $\mathrm{F} / \mathbf{6}$. Ex Cov. Valves, all 100 per cent. EF39, EF36, EL 32 .
EF50, si-: EBC $33,61.563 .5 /$. Qualityp.m. speakers, 5 in, 16,: 8in. with trans, 25 . 3 wave superhet coll packs, Iron-cored.
276 . standard 465 kcrs iron-cored 276 . standard 465 kcrs iron-cored 1.F.s. postage now for Bar.ain list. - N R g 66. Parkhill Ra.e London, N.W.B. GULJiver

REPAIIt to loud-speakers, Cones. coils ftted. Fields altered, rewound. Output accepted. Prices quoted. Satisfaction guaranteed.- Repair Service 49 Trinity Rd., Upper Tooting. S.W.17. Closed Saturdays. ${ }^{\circ}$ Phone
rooting. S. W. 17.
Idell SiPAKIER Repalrs. New cones and mics. rewound, Prices quoted. Mason. 5, Ba!ham Grove. S.w. 12 . Baiham 6063.
 and the trade. seven days' dellvery on cone assemblies, all makes of moving-coil Radio. 80. Rexchmond Road, Kingston-on Radlo. ${ }^{80}$, Rlchmond Road,
Thames. 'Phone : KIN 8008.
IREXINH SERVICIE.-Armatures. Gram motors. Vacuum Cleaner, Drill and all smal motor Transformers-Fields, Pick-ups, Speakers-New Cones and Speech Colls work guaranteed, and promptly execut Al Special Tgrms to the Trade. Send S.A.E for Price List and Radio Spares.-A. D, S Co.. 261-3-5, Licheeld Road, Aston, 6.
Brina
NERINL WIRE゙-Clearance line. P.V.C 7 -strand plastic wire, 50 ft , length coils 6d. per coll. Reduced price for large orders. Dloptrical Vislon Aerial Company. 17.
COPVER
cotton W IIIES, enamelled, tinned, cotton and silk covered, all Faukes. B.A. tubes, coil formers, tags. solder, crystals, permanent decectors Comprehensive, pist on request. Trade supplied.-Post Radio Supplies, 33 , Bourne Gardens, London. E. 4
INNTITMEVCR. Most makes in stock. some on easy terms. Write for detalis and ${ }_{2}$ proposal forms to The Instrument Co., 244. Haprov Road. London. W. 2

IMMITEIES, R.F, thermo-coumle, 0.5 9mp. ${ }^{\prime} 6$ each. Voitmeters, moving coil. or C.O.D. 10 -each. Nett cash with order surplus - brand new - guaranteed - Lan cashire Merchandise Co., 275 Middleton Rd. Higher Crumpsall, Manchester, 8 .
C.IBINIT: - Attracitve semi-midget sprayed cabinets. Contrasting co:ours of green and cream. Internal sizes $13 \times 7 \times 6$. Each, 35: IRICK-UPA-Rothermel, types
 mfd.. 11 -: ditto. 0001 mfd . $8 / \mathrm{l}$: ditto split stator, . 00017 mfd., 6 -: 3 -gang .0001 mfd. 12 '6.
 $20 \times 20 \mathrm{mfd} .150 \mathrm{v}, 7 / 6 \times 25 \mathrm{mid} .25 \mathrm{v} . \mathrm{m}^{2} 6$ maper. $4 \mathrm{mrd}, 1.000 \mathrm{~V} .{ }^{2}$.
voils.-Weymouth Iron cored midget I.F.S. 465 kcs , per matched pair. 18 '9 Weymouth all-wave coll pack, 366 ,
standard I.F.s, $465 \mathrm{kc} / \mathrm{s}$, pair 15)-: standard standard I.F.s, $465 \mathrm{kc} / \mathrm{s}$, pair $15 .-$. standard i.F.S. 2 inc ${ }^{\text {S. }}$, each. $3 /-:$ M. wave midget hoxed with circuit, pair 7,6 , with reaction. t.t.f. tron cored M/L wave colls. the latest able tron cores, patr 10/6:SML wave sLiper het colls, pair 10.6 ; all colls supplied with circuit.
OURDKELE TILAVEFORMERS. Lapped output u!tra-midget. 5/: midget, $5^{\prime} 6$ load dard. 8-- P.P. output (6L 6 valves, A/A 21-; Ferrants P.P. output heav ohms. 21 (massive Job). 126 : Varley heavy duty PiP driver, 2.5-1. $15 /$-. minus trans., 51a. at $17 / 6$.
3 . AND DIAIS.-Epicycle drives, wo square plane, ML drive assembly, 116 : ditto full drive, Mass, 6 inter. etc. all wave ivorine dials, $4 \times 34 \mathrm{in}$. $2,: 5 \times 511 \mathrm{n}$.

CJORES.-Ultra-midget smoothing chokes

 360 ohms, $40 / 50$ ma.. 5 -: midget ditto, 86 : heavy duty ditto. $150,200 \mathrm{ma} ., 12^{\prime} 6$. h i is mrnolisprts. 3 amp . 800 ohms. $5 / 6 ; .2$ amp. 1.000 ohms, $46: .3$ =mp. BHIRNSIKIG PLHLICATION stockist. Television Constructor's Manual, 3, 6.. etc1). (iftiENLITK, LTD., 34. Bancroft Road, Cambrlige licath Road, Iometon lan.
-Phone: STEjncy Green 1334.

FIEADH IS ADH C ABIN. 465 I.F. colls. $9 / 9$ a palr. loong- and medrum-wave colls condensers. $4 / 6$ each. GLAC 5 In . P.M. Speakers with transformer, $32^{\prime} 6$ each. 400 . ohms wire-wound pots, $2 / 6$ each. T.C.C. $16 x 16$ electrolvtic, 350 volts working, $8 /-$ 4,9 each rest gear. 2 and 000 mains droppers. Solon electric soldering frons, stratght bic. 136 each.-Fred's radien (abin, 77 , Newlugton Bulis, Fle phant and Ca-lle: Yondon, \$.t. 11 (one minute from Tube) Telephone: RODney 2180.

- VILVIA and components, C.O.D or C.W.O. (postage extra) Wrighton Rd. London NBEYS PERMANEX'r drawings made on good qualicy paper from your original sketches. Circuits, layouts, plans, etc., at small cost Blueprints at extra charge. Confidential. quick service. Free estimate from A Elliott, Ewden Road. Wombwell. Yorks.
WANTIDI, in good condition, cellulold dial for drive as used in F. J. Camm's " £q Salwick, Nr. Preston, Lancs
WAN rad, the following issuets of "Prac1996 wireless bec. 1945, Feb. 1946. May good condition. Write to G. A, Quinn, 66, Grifnth Avenue. Dublin, Eire.
RADIO BSTRG IINS. Stamp for our Rumper List, now ready.-Universal R.E.22.

It ikeininl Ex-W.D. 19, 21 and 22 sets in full working order. Price, including power unit. M.C. 'phones and mic., only f13. inclusive of carriage and packing. Buy hy post only to A. Eastwood, "Denwuood." 62. Shay Lane, Ovenden. Halifay, Yorks.
T. R. 9 Transmitter Recelvers. 4.3 .6 .6 Mc . complete with 9 valves. in strong wood case, £4/10/-carr. paid. Milliammeters. 0.30, 12/6. 0-1, 17/6. R.F. Ammeters, 00.5. 12'6. Newcastle, Stafis.
SDLE. Eddyst. All-Worid 2. 25. Eddyst. Everyman 4. £6. Miscellaneous coils, S.A boro Road. Crewe.
SiliF Test Equipment, New. Avometers, Avominors Signal Generators, Bridges, etc. List free.-Young. Radio Service. Southwlek, Suseex
Comblishlinsifi range of components for disposal. Send S.A.E. for lists.-Box
FHIRLIN AMPI.IFIERS. Announcing Amplifier-the HFA 3 their famous HFAI amplifier to enable the use of Moving Coil Pick-ups direct. This amplifer in conjunc tion uith the Lexington Moving-Coll Pick up and the B.A.E.C. Twin Cone Speaker provides the highese obtainable fidelity of reproduction. The complete ranse now comprises Amplifier HFA 17 -watt cathode follower output for crystal pick-ups : HFA single ended for crystal pick-up: the HFA: for moving coll pick-ups, Tuner unit TU2 combination. Superhet T.R.F. feeder each. Full kits or separate components avaliable or supplited ready assembled Stamp for comprehenslve catalogue
CINIKIES AMIIIFIEIRS Welcome lover of recorded music to their new premises can be heard tozether with Ampifters Connoisseur and Rothermel piek B. \& A.E.C. Vitavox. and Bick-ups and accoustic chambers, infite corner A.E.C defectors. ete. We like you to bring vour own family records for you to bring your is a service devoted entirely to the High minute from the Albert music. One Kensington High St. Station. Buse and 49. stop at the door. Charles. Ambllimers IE, Palace Gate, Kensington, London, W.8.

TUITION

FOUHCIGIRETTEs per day or Assoclate Membership of the I.E.E. ! Which would you rather have Erpert and successful will coach you fish National Radio School a whole series of C. \&. G, examinations for 8a. ber day! Write to-day for our free booklet and unequalied guarantee Studies Director B A. A.I.E.E. M Brit.I. F GG, Addiscombe Rd., Croydon. Surres

Practical Wireless BLUEPRINT SERVICE

PRACTICAL WIRELESS

CRYSTAL SETS

\qquad
Fit
Hy

11

Hains Operated

Two-ts re : Blucpints, 15. each.

Four-valre : Blueprinte, is. 6d. MISCELLANEOUS

MOV. 1947

The Universal Avominor
 Electrical measuring Instrument

A small but highly accurate instrument for measuring A. and D.C. voltage, D.C. current, and also resistance. If provides 22 ranges of readings on a 3 -inch scale, the required range being selected by plugging the leads supplied into appropriately marked sockets. An accurate moving-cors movement is employed, and the total resistance of the meter is 200,000 ohms.
The instrument is self-contained for resistance measuremente up to 20,000 ohms, and, by using an external source of voltage, the resistance ranges can be extended up to 10 megohms. The ohins compensator for incorrect voltage works on all ranges. The instrument is suitable for use as an output meter when the A.C. voltage ranges are being used. Supplied complete with leads, testing prods, crocodile clips. and instruction booklet.

$$
\text { Size: } 44^{*} \times 39^{*} \times 1 \mathbf{1}_{8}^{*} \quad \text { Nect Weight: } 18 \text { ors. }
$$

Sole Proprietors and Monufocturers :-
AUTOMATIC COIL WINDER \& ELECTRICAL EQUIPMENT CO., LTD:
Winder House, Douglas Street, London, S.W.I
Phone : VICtoria 14049

BUY YOUR TAYLOR INSTRUMENTS ON HIRE-PURCHASE TERMS

Here's good news abour those Taylor Te Instruments you've wanted to buy to make yo job easier. You can now purchase any Taylor job trical Instrument on Hire Purchase Terms. small. initial payment brings you bur Universal Meter, Signal Generator or even a omplete of test equipment. Ask your deale or writy
direct for terms. direct for terms.

[^0]: -Constructing Television Equipment Foreign Valve Data
 Versatile Frequency Meter
 4 Principles of Frequency Changing

[^1]: Metric \& Decimal Tables f.J. ${ }^{\mathrm{By}}{ }_{\mathrm{cAmm}}$
 3/6, or 4/- hy rost from george newnes, lid., Tower Houss. Southamplon Strect, Strand, Londen. W.C.2.

[^2]: $\mathrm{x}=$ Post in unscaicd entelope 1d. sostaremPlease send mo free details of your Home-Stuly Miathematics and Kadio 1 Courses.
 1 NAME
 ADDRESS. .
 P. 84..

