Practical Wireless, February 24th, 1934

FIRST AIDS WHEN YOUR SET FAILS:

To A. C. COSSOR LTD., Melody Dept., Highbury Grove, London. N. 5 Please send me free of charge, a copy of the Cossor 72 -page Wireless Book.

Name
Address

ROUND the WORLD of WIRELESS

We Lead Again !
WE have received hundreds of letters from home constructors in the past few inonths complaining of the competition of the cheap commercial receiver. They direct our attention to the battery and mains-operated receivers which can be purchased at a price which equals the charge made for the parts of a home-assembled receiver. We have yet to learn of a satisfactory cheap commercial receiver. In order to get the price down the manufacturer skimps the components, the quality of the cabinet, and in this way is able to produce some sort of a wireless set. Such receivers give the maximum amount of trouble, as the enormous amount of correspondence we receive regarding troubles with cheap receivers proves. Practical Wireless is pleased to announce that in order to meet this competition it is embarking upon the design of a new series of receivers which combine low price with maximum efficiency. Readers should not be misled into believing that it is possible to buy for a few pounds a complete receiver which equals in efficiency, selectivity, quality, and station getting qualities a home-built receiver of similar value.
Free Blue Print of the "Leader Three" THE first of the Practical Wireless re1 ceivers to be designed under this new policy is the "Leader Three," A FREE BLUE PRINT FOR WHICH WILL BE GIVEN WITH EVERY COPY OF NEXT WEEK'S ISSUE. It does not incorporate a stunt circuit, but nevertheless, modern features have been introduced, and great attention has been paid to the problem of selectivity. Order Next Week's Copy Now ! A preliminary announcement appears on page IV of this week's Television Supplement.

Our V-notch for Wire-stripping

THE V-notch for wire-stripping, originally incorporated in our free-gift handy gauge (presented with January 28th, 1933, issue of Practical Wireless) was first introduced by the editor of this journal. It is flattering to note that this V-notch is now coming into general use, of course, without acknowledgment of its source!

Our Query Service-Please Note !
WE make no charge whatever for mak answering readers queries, and we make a pleasure of assisting readers out of their difficulties. It is a service which is generously interpreted in these offices, but now and again we receive some tall orders. The other day, for example, we received a letter unaccompanied by the Query Coupon or a stamped and addressed envelope, and containing no less than twenty-five separate technical queries I Not only this, the reader requested a reply by return. We cannot answer any reader's queries unless a coupon is enclosed, and

DOES THIS CONCERN YOU?

Our Remarkable Gift Offer is closing-but there is just time to accept it.

Those of you who have not yet reserved your copy of the EVERYMAN'S WIRELESS BOOK are reminded that there is still time for you to do so, but you must act quickly.

This unique work of reference has been specially written by the Editor of I this paper, who has dealt with practical I aspects of set adjustment, overhaul, and repair. The widest field is covered, II the aim of the author being to produce a book packed with useful, dependable, up-to-date information that will prove of permanent use. There is a crossreferenced index for speedy reference, and the book is handsomely bound in durable turquoise blue cloth.

A presentation copy of this really valuable Wireless "Doctor" is offered to.every reader (new or old) of PRACTICAL WIRELESS who complies with a few simple conditions. These, together with the necessary Reservation Forms, appeared in the Feb. 3 rd issue of PRACTICAL WIRELESS.

So why not look this up at once? Or ask your Newsagent for a copy, fill in, and post the forms wifhout delay and thus avail yourself of this most generous presentation offer?
we cannot answer them through the post unless a stamped and addressed envelope is also included. We do not wish to impose any limitations within reason upon readers' questions, but they, in return, should be reasonable in their requests; nor can wo answer queries over the telephone.
Two More Romanian Stations
S^{O} far at Brasov (Romania), a 20 -kilowatt Stransmitter has \}been operating on 1,875 metres ; this is the channel on which Huizen (Holland) has worked for some years. An order has, however, now been placed with the Marconi Company by Romania for erection-possibly at Brasov-of a 150-kilowatt stransmitter to take the main Bucharest programmes. In addition, a further 20 -kilowatt station is also to be built by Marconi engineers for the same country.

Continental News Broadcasts

$\triangle \mathrm{S}$ a rule, the European stations broadcast a greater number of news bulletins than do our home stations. Moreover, in most cases, they do not give general items, but subdivide the subjects and suit them to the time of day when they are given out. As an example, Vienna at 8 a.m. gives a review of the Austrian morning papers, and also a repeat of the previous night's bulletin; at midday extracts from the foreign press are given, stock exchange quotations, and so on. The 3 p.m. news contains theatrical items or kindred subjects. At 6 p.m. the first evening radio news is broadcast, and a final review of home and foreign items, weather report, and ministerial announcements at about 9 p.m.
China Adopts Beam Wireless
\triangle NEW wireless station of the Marconi beam type has been opened at Chenju (China) for direct wireless communication with Great Britain ; it is a preliminary step to the establishment of a radio telephony service between Shanghai and London.

A Wireless Mast that Made History

THE destruction by fire of the merial

 mast used at the Admiralty station at Waltham constituted a piece of news which may have aroused little interest in the mind of the general public. Yet the mast possessed a history; it was from the Waltham wireless station that Great Britain communicated to the Fleet in 1914 that war had been declared."Music Hall " Broadcast
ESLIE FULLER, the film artist of Not So Quiet on the Western Front, gives his first broadcast on February 24th in Music Hall. He will bring a condensed version of this, his first, film to the microphone, and will have with him a cast of four or five artists. Leslie is at present engaged on another film at Elstree with Mary Glynne. It will be called The Outcast.

Band Concert from the Midland Regional

ONE of the premier bands of the Mid. lands, that of Creswell Colliery Institute, conducted by David Aspinall, gives an attractive programme in the Birming. ham studio on February 25th. Among many notable awards, this band has won the Belle Vue Championship, which it carried off in 1925. The vocalists in the band concert are the McGowran Quartet, from Coventry.

Violin Solos by Eda Kersey BIRTHDAY present of a violin when she was only six was the unusual gift received by Eda Kersey, soloist with the B.B.C. Orchestra in the London Regional programme on February 20 th. Miss Kersey has only been in London for four years, her home being at Southsea. She first broadcast from Bournemouth seven years ago, and was afterwards heard from other B.B.C. stations. When she performed at the Birmingham station, Joseph Lewis was so impressed with her playing that she has since broadcast under his baton on more than twenty occasions, one performance including the famous broadcast of the Dohnanyi Concerto the first time that it was transmitted in this country. Miss Kersey will again play under Mr. Lewis's baton on February 26th.

Scottish Studio Orchestra

IN February 27th ban linteresting concert will be given lby the Scottish Studio Orchestra, and Christian and Mabel Brown, (duettists). The orchestra will be heard in works by Chaminade, O'Neill, Dvorak and others, while the duettists will give songs by John Ireland, Frank Bridge, and songs arranged by Alfred Moffat and Hewson.
" Press Paragraph ',
THIS is the title of a play, in eight studies in reaction, by Hester Paton Brown, which will be broadcast on February 28th. It will be produced by Howard Rose. The problem of the machine: is it a blessing to mankind or is it a curse ? To some it is the first of these, to some the other. What is to be the ultimate solution of this puzzle? Press Paragraph deals with some of these difficulties, as they react on the lives of various groups of people ; on journalist, on employer, on workman, and on wife.

Gounod's "Faust"?
THE Second Act of Gounod's Faust, to be given by the Carl Rosa Company in the Grand Theatre, Wolverhampton, is being relayed to the Midland Region on

An instructor at a television class in a London Polylechnic holding Baird's new mirror-drum with a grid cell, motor, and synchronizing coils. The scanning-disc apparalus, seen in the illustration, is.Baird's first commercial model.

February 26th. Ivor John's rofle is that of Faust ; Helen Ogilvie, Marguérite; and Ronald Stear, Mephistopheles.
"The Play Evolves"

THE fifth of the series of dramatic surveys, under the general title The Play. Evolves, will be given in the West Region on February 27th. The play chosen

INTERESTING and TOPICAL PARAGRAPHS

THE LATEST TELEVISIÓN APPARATUS
by Mr. Ifan Kyrle Fletcher, to represent the theatre of the nineteenth century, is

SOLVETHHIS!

PROBLEM No. 75.

Dobson purchased two screened colls and an ppropriate wave-change switch and busit a three-valve battery receiver. When completed and tested results on the medium wave-band were very good, but no results were obtainalule on the long waves. The circuit and wiring was examined and found in order, but he was surprised to find that the long waves were received when one coil screen was removed. What was wrong? Three books will be awarded for the first three correct solutions opened. Address your envelopes to The Editor, Practical Wmeless, Geo. Newnes, Ltd., 8-11, Southampton 'street, Strand, London, W.C.2. Envelopes should be marked Problem No. 75, and must be posted to reach here not later than the first post February 26th.

Solution to Problem No. 74.

Tonkins had covered the upper surface of the ehassis with metal foil, and when mounting the brackets below the surface he had used screprs of such a length that the points had just protruded through the wood suificiently far to come into contact with the metal foil. This, produced a short-circuit through the reaction condenser.
The following three readers succeeded in correctly solving Problern No. 73, and books have, therefore, been forwarded to them :-
H. J. Martin, 58 , Manor Road, Sth. Norwood, S.E.25. ${ }_{\mathrm{L}}$. A. Young, 39, Reverdy Roard, London, S.E.1.
R. H. Gentry, 12 , Shepherd Street, St. Lconard's-

Money, by Edward Bulwer Lytton. This play was first produced at the Theatre Royal in the Haymarket in 1840, and was revived in 1872, and again at Drury Lane in 1911, at a Royal Command performance in honour of Kaiser Wilhelm.
"Choir and Cloister " Cathedral Broadcasts THE second of the "Choir and Cloister") series of Midland Regional relays from Midland Cathedrals is from Lichfield, on February 27th. This will be the first broadcast ever given from Lichfield Cathedral. The narrator is Walter Pitchford, of Lamport, Northants, and he will find plenty of material for picturesque description and human story in the church which St. Chad founded to be the centre of Christianity in the Saxon King. dom of Mercia. The West front is famous for its statues of saints and kings and its rich decoration. It was carefully restored by Gilbert Scott. The Lichfield Cathedral Choir, conducted by Ambrose Porter, will give a programme of choral representing the development of choral music from Tallis to Parry. Mr. Porter plays two voluntaries.

Bach Programme from Northern

 Ireland\triangle PROGRAMME devoted to Bach's music will be heard by Northern Ireland listeners on February 27th. Those who dislike heavy musio need not be anxious about this programme, because it is entirely light and tuneful. Two of the songs in it come from the "Coffee", Cantata, and one from the "Peasant" Cantata. These will be sung by Alex W. Rogers (baritone).

West Country Club

THERE are many radio clubs throughout the country, but a new radio club named "" West Country Club" will be "on the air" on February 24th. As its exact whereabouts are very difficult to find, West Regional listeners are advised to depend upon their wireless sets in order to hear the doings on the opening night.

State Boosted Wireless Recelver

THE wireless set which the German Government officially launched on its markets for popular use has met with unprecedented success. In the course of five and a half months, owing to the great microphone and newspaper publicity given to the VE301-the name commemorating the date of the foundation of the Nazi régime-over six hundred thousand receivers have been sold.

Another Post Offlee Mystery Van

R ADIO pirates, beware! The British month a fresh campaign to discover and expose the bootleggers of the radio world. One direction finding van will pay a month's visit to the Cardiff, Newport, and Swansea areas ; it is timed to start on March 5th. So trot out your ten shillings and secure your licences in advance from the nearest post office. It saves trouble.
(Coutinued on page 1044)

D.C. MAINS WORKING

An Explanation of the Methods of Arranging the Heater and Cathode Circuits of a D.C.-Operated Receiver

THE amount of deserved publicity which has recently been given to Class B working is, no doubt, responsible for the fact that many listeners with mains installed are considering the incorporation of this scheme in their new set. The truth of this statement is borne out by the number of inquiries received by eliminator manufacturers and the technical Press regarding the conversion of mains units to meet the special needs of Class B. The listener with mains at his disposal should quite clearly understand, however, that he has nothing to gain, and much to lose, by the use of this system, the benefits of which are obtained by the battery user, and him only. If powerful and natural reproduction, sensitivity, selectivity, and trouble-free operation are the qualities required in a receiver it is much easier and cheaper to satisfy these requirements by a team of mains valves than by the equivalent number of battery valves including a Class B output stage.
These remarks apply equally to readers with A.C. or D.C. mains, but as the former appear well aware of the potentiality of their supply, judging by the small proportion of inquiries re class \mathbf{B} from A.C. mains users, it is intended to take up the case of the reader with D.C. mains. As little
that Electricity Supply Companies usually meet the listener in any expense occasioned by a change to A.C. This assistance is, of course, subject to him having notified the Company beforehand, in writing, of his intention to install the apparatus.

Points to Watch

The design of a D.C. mains receiver should present no difficulty to the reader with a working knowledge of Ohm's law, and is rather simpler than the

The set should therefore be housed in a cabinet, grub screws well-sunk, and a double-pole mains switeh be incorporated. D.C. mains valves now on the market fall into three classes according to the heater filament consumption and are listed for convenience. It should be noted some readers, and a word of explanation will not be out of place. The voltage of
space has been devoted in the technical Press to points peculiar to D.C. mains working, and small mention has been made of the high efficiency which D.C. mains valves have now reached, it is not surprising
 potly-heated mains valy. which have recently made their appearance, the efficiency of the D.C. model now compares favourably with a similar A.C. compares receiver. It should be pointed D.C.MAins out that as isolation from the D.C.MAINS 20 . mains is not possible with D.C. greater care in mechanical construction is necessary, and if the positive main is earthed there is the risk of a shock on touching the chassis or any metal part. most D.C. mains swings on either side of the rated figure according to load conditions, and this has hitherto been responsible for the variable performance of D.C. mains receivers, as obviously with a voltagedropping resistance of fixed valuo the current passing is dependent on the voltage applied. Consequently the valve heaters have been under-fed, correctly fed, and over-fed. The barretter lamp, which makes usc of the characteristic of a hot iron wire in an atmosphere of hydrogen, varies in resistance, according to the voltage across it, in such a way as to pass a sufficiently uniform current over a wide voltage range. Of course, the barretter chosen must match the heater current of the valves used, and a table is given.

Fitting a Barretter

It is also necessary when fitting the lamp, which is supplied with a four-pin base-the two filament pins only being usedto see that it is mounted clear of other components, the lifo or performance of which would be detrimentally affected by the heat given out by the barretter when in usc. The 4 mfd . condenser C , which must have a working voltage of 250 , will generally be found to smooth the supply sufficiently in conjunction with the resistance of the barretter. In the very rare instances when this proves insufficient the choke shown
that fully fifty per cent. of those listeners with D.C. mains should use the eliminator-cum-L.T. accumulator type of receiver, and naturally desiring more punch than that obtainable with battery valves, turn to Class B as a means of reaching their goal. Also, many with a D.C. supply, having heard of the Grid Scheme and its purpose of supplying a universal A.C. supply, intend to tolerate their present equipment until such time as the change is effected. The Grid Scheme nay, however, be theoretically complete, but it will be some years before the vast majority of D.C. users taste the delights of A.C.
Also, it is not generally known
 eater circuit diagram showing the inclusion
smoolhing and interference-suppressor chokes.
(Continued overleaf
(Continued from previous page) about 5-10 henrys, and capable of continuously carrying the heater current of the valves chosen, should be tried. The resistance of this latter component should loe so chosen as to allow the barretter lamp to receive the required voltage for the correct current. A choke to fulfil these conditions is rather expensive, and it is advisable to wire up without one, but using a small resistance, of correct wattage, and leaving sufficient space on the baseboard in such a position that if the choke is required induction will not be set up with the adjacent components.

Another type of trouble which sometimes occurs is when oscillating currents at radio frequencies leak through. These find little resistance in the L.F. choke and can only be stopped by H.F. chokes which the amateur can easily make himself. Each choke consists of about 200 turns of wellinsulated copper wire of sufficient gauge to stand the continuous heater current wound on a $1 \frac{1}{2} \mathrm{in}$. diameter former. The gauge should preferably err on the large side in order that the resistance in the common negative return lead shall be as low as possible. When finished the chokes should be carefully insulated by means of insulating tape or similar material or alternatively they could be mounted in a screened box, care being taken to prevent shorts at any point. Fig. 2 gives the filament circuit incorporating these refinements, which it should be understood are not always essential. The resistance and inductance of the L.F. choke can be varied if necessary, but should not be so high or so low as to cause the barretter to receive more or less than the limiting voltage figures for satisfactory working.

Automatic Grid Bias

As D.C. mains valves now available are of the indirectly-heated type grid bias can be obtained automatically. Most readers will be aware of the advantages of this

Fig. 4.-Typical barreller curve.
method, but some may welcome a little explanation. Fig. 3 shows the heater and grid circuit for a three-valve receiver. It will be seen that the anode current of the variable-mu H.F. and pentode output

valves flows through the resistances R and \mathbf{R}_{1} causing (by Ohm's law) a drop in voltage. Consequently the cathode is at a higher potential or voltage than the common negative to which the grid circuit is connected, which is equivalent to saying that the grid is negative with regard to the cathode. The condensers C and C_{1} are ($\begin{aligned} & \text { necessary to prevent } \\ & \text { instability which might } \\ & \text { be caused by the resis- }\end{aligned}$ tances, and serve to bypass the H.F. and L.F.
varying conditions. The bias resistance for the variable-mu H.F. valve should consist of two portions also, the values of which, together with the potentiometer arrangement for supplying the screen, are important, owing to the need for correcting the tendency of the screen voltage to rise when the maximum value of bias is approached. In this case, also, the information should bo obtained from the data supplied by the manufacturers. The advantage of this biasing arrangement is that the anode current is automatically controlled within limits, as obviously a rise in anode current produces a greater voltage across the bias resistance, and so increased negative bias is applied.

Smoothing D.C.

It is not necessary to devote such space to the H.T. arrangements, and those readers with eliminators feeding battery sets can naturally utilize the components of the same. It is the best practice in

Fig. 3.- Heater and grid circuit
arrangement. arrangement. $-$

currents respectively. The con: denser C must be of the non-inductive type and should havo a capacity of about 1 mfd . C_{1} can have a value of 2 mfd . or upwards and may be of the paper type with a low working voltage or, better still, of the electrolytio type. The on the requirements of the valves used, and is given on the data sheet, or in the maker's catalogue, but it is important to use one of sufficient wattage. The formula for calculating this value $=$

Bias Voltage Required $\times 1,000$
Valves anode (and screen) current (in m.a.)
The bias resistanco of the output valve should preferably be in two sections, one fixed and the other variable, which enables accurate adjustment of bias to be made for
Heater Current \qquad

.1 amp.	
.18 amp.	Mazda. .25 amp.

D.C. mains receivers to use two separate chokes for smoothing the supply to the output valve, and to the detector and H.F. valves. The choke feeding the H.F. valve and detector should have an inductance of about 50 henrys, and should be capable of carrying the small total anode current taken by these valves, which is about 10 m.a. The choke from an existing eliminator would serve admirably. In the case of the choke in the anode circuit of the output valve the choice is not so wide, and this component should not have a resistance of more than 1,000 ohms, with a maximum current rating of $50 \mathrm{~m} . a$. , and an inductance of about 20 henrys. Obviously a good output transformer could be used in place of the choke.

ROUND THE WORLD OF WIRELESS

 (Continued from page 1042)

 (Continued from page 1042)}A Popular Short-waver

CONSTRUCTORS of short-wave receivers should bear in mind fthat one of the easiest transmissions to tune in is that of EAQ, Madrid, on 30 metres. It is on the air nightly from G.M.T. 10.30, and from midnight until 1 a.m. regularly broadcasts a programme of light orchestral or dance music with English announcements. On Saturdays it is also on the air between G.M.T. 6 and 8 p.m. The call is: Radio España.

The Opening of Droitwich

$T H E R E$ appears to be every possibility that we shall soon be hearing tests by the new Droitwich high-power station, as its construction is now rapidly nearing completion. If all goes well, this 150 -kilowatter should be formally 'opened on July 25 th next, which, if our menory does not fail us, coincides with the date of Daventry's launch on the ether some years ago.
Television Temporarily Suspended
$A S$ a change of studio is to be made - necessitating the dismantling and re-installation of apparatus, the B.B.C.
announce that there will be no television transmissions on February 19th, 20th, 21st and 23 rd , but that the first programme from the new premises will be broadcast on Monday, February 26th, at 11 p.m.

Newcomers to the Mierophone

TEA MIXTURE, a fresh B.B.C. feature advertised for Saturday afternoon broadcasts, starting on March 3rd, will present, as in the recent First Time Here, a series of new artists as well as some old favourites. The programme will also include a dance band.

IMPROVISED SWITCHES And Their Application

A Practical Article Explaining how Several Useful Types of Switches can be Made from Odds and Ends.

By W. A. HARRISON

$I^{\text {r }}$$T$ is evident to the enthusiast that multiple switching is very jmportant in complicated circuits, and it is often better to couple one or more switches to enable
three-position switch may be assembled by introducing an intermediate position in which both switches are in the
point switching if so desired, and again, it is possible to fit two switches "back to back" to provide changeover features.
These few typical examples of the applications give some idea of the complicated switches that may easily be made from simple or obsolete components.

Before leaving the subject, I should like to point out some of the more interesting uses of these switching bases. Switching between two sets of six-pin short-wave coils can be done from a panel switch by fixing the coils to the baseboard and employing two bases coupled to a movable spindle. Loading coils may be cut out of

the controls to be simplified. The wireless experimenter often needs a multiple switch, and may find that he has a few "simple" push-pull switches, old valve holders, adaptors, etc., at his command. Many applications of these parts may be made to give the required switching combinations.
through the centre fixing, and put a slightly longer spindle in the anode socket of the adaptor to serve as a guide. The arrangement is depicted in Fig. 2. If more convenient, an old

Let us deal with the simple push-pull switches ; the usual type of switch consists of a sliding spindle upon which is an insulating sleeve held in position by a metal cap screwed into the spindle, the metal cap shorting the metal springs as the spindle is pulled forward; should a combination be required, say, of a three-point make and a three-point break, then two three-point switches may be coupled by connecting their spindles together. This is done by replacing their respective metal caps by a length of rod screwed at each end and mounting one switch upon a false panel. This arrangement is shown in Fig. 1 . A six-point switch may be constructed in a similar manner, and, if desired, a

Fig. 3.-Using a valve base or similar adaptor for switching purposes.
valve base will serve the same purpose as the adaptor.
This latter scheme, however, has one disadvantage; two possible contact points are utilized for operating and guiding the
lve holder may be converted as shown here to provide a very efficient switch.
a circuit, and a short-wave adaptor may be connected up to a circuit by the simple operation of a panel switch.
If required, certain terminals of the "switching base" may be strapped to short circuit any partioular coil wound upon the "fixed coil" upon the baseboard.

THE WIRELESS CONSTRUCTOR'S ENCYCLOPAEDIA

(2nd Edition)
 \section*{By F. J. CAMM}

(Editor of "Practical Wireless")
THIS invaluable encyclopædia is written in plain language by one of the most accomplished designers and writers on wireless covered, and the volume is remarkable for the number of practical illustrations it contains.
No matter in what branch of radio you are interested, you will find everything adequately dealt with

Obtainable al all Booksellers, or by post $5 / 4$ from Geo. Newnes, Lid., 8-11. South-

Fig. 2.-Coupling two or more push-pull switches to operate simultaneously.
switching. Instead of using the adaptor as the moving portion of one switch, we connect our valve holder to the spindle. By reference to Fig. 3, it will be seen that the valve holder fixing centres are used for our fixing sturned and guides. The TOBASEBOARD special brackets to hold the guido rods are shown in detail in Fig. 4, and the control spindle need not necessarily pass through the centre fixing of the holder and adaptor. Thus the switch may be Fig, 5.-Shorl-wave coils which are assembled to plug-in arid utilized for five.

2 5/W COLL BASES FIXED ON
GUDE RODS TO HAVE LATERAL
MOVEMENT CONTROLLED BY
PUSH-PULL KNOB ON PANEL
 thus avoid switches.

Fig. 6.-How to cut out the H.F. stage of a set in the event of an S.G. valve failure.

WHEN the set brcake down, the first thing to do is, of course, to find out the cause of the failure. Notice if the set is "alive"-if there is that slight rushing sound from the speaker which is always present when a set is switched ,"n, or whether it is absolutely "dead," as though switched off. If in doubt, touch one of the speaker terminals with your moistened finger-a distinct "click" will be heard if the set is "alive." If alive, it may be that the trouble is due to the aerial or earth, while if it is not, there is something wrong with the set itself or else the current supply. If the set appears to be "alive," try re-tuning it. It may be that the station to which it was tuned will be found to have altered its wavelength so that it comes in at a slightly different setting of the dial. In this case signals may also be very considerably reduced in strength, even when the station is properly tuned in at the new position. Such symptoms clearly indicate acrial or earth faults. The aerial may have blown down or broken; the lead-in wire may be scraping against an earthed metal guttering or, through constant swaying in the wind, may have fractured just where it joins the lead-in tube.
In the case of the earth, apart from the more obvious causes of failure, such as a broken contact between the earth plate (earth tub or water-pipe, etc.) and the earth wire, there is the possibility that the earth wire may be scraping against some intermediate metal work, such as a radiator, gas-pipe, or stove. It might appear at first that such contact would not matter very much, and certainly when the earth wire is short it doesn't; but when it is long, any intermediate connection with an earthed or partlyearthed object before the wire reaches its final earthing point will alter the characteristics of the aerial system, for it nust be remembered that the earth wire is equally a part of the aerial tuning system with the acrial and lead-in wire. The result is that the wavelength is altered.
Aerial and earth faults can usually be rectified right away or, at any rate, remedied sufficiently to get the set working. Even a collapsed aerial can often be re-fixed at "half-mast" when it is
"alive," in spite of any defects in stages of the circuit. The first thing to do is to test the speaker

Fig. 2.-Testing filament voltage at the valve holder.
by connecting a pocket-lamp battery momentarily across its terminals when a distinct "click" should be heard if it is in order. Then go over all the

Fig. 3.-Shorl-circuiting a faulty filament switch.
leads and see they are not broken anywhere. Any sus-picious-looking kinks in the speaker or battery leads should be straightened out and the connections to spade terminals, etc., car'efully examined. Moving the wire about at these points will often locate a break which does not show owing to the insulated covering. It will be evidenced by "clicks" from the speaker and intermittent reception. There's just one point which should be remembered

Fig. 1.-Fixing a fallen acrial at "half-mast" as a temporary measure.

-WHEN THE SET FAILS

-Makeshift Repairs in the Advent of a Sudden Breakdown

car battery. The most convenient way to do this is to construct the simple piece of apparatus shown in Fig. 4.
This, again, should form part of your first-aid outfit. It consists of a plug, a lamp-holder, a yard or two of flex, and two spade terminals. The plug is plugged into one of the lamps of the car, and the bulb (which is removed from the lamp) is placed in the holder. The accumulator to be charged is, of course, connected to the spade terminals.
The polarity of the current can be determined by dipping the two spade terminals in an eggcupful of water to which a pinch of salt has been added. Bubbles will rise from one spade terminal. This is the negative pole, and is connected to the negative terminal of the accumulator. The charging rate is determined by the rating of the bulb used. For instance, a 12 -volt 36 -watt head lamp will pass about $2 \frac{1}{2}$ amps. A 12 -volt side lamp bulb, which is usually rated at 6 watts; would pass just under a $\frac{1}{2} \mathrm{amp}$. Some cars are wired on the singlewire system, in which case there is only one "contact" to the bulbs, the return being made through the metal bulb cap and the braided metal covering of the wire to the chassis of the car. The negative pole of the car battery is connected to the chassis. In this case the charging apparatus would be modified, as shown in Fig. 5.

Testing the High-tension Supply

Assuming that on making the valveholder test the L.T. circuit is found to be in order, then the H.T. supply should similarly be tested. An H.T. battery may be tested with a cheap voltmeter in the usual way, but in the case of a mains set a lower reading than the actual voltage will be obtained unless a high-resistance voltmeter is employed. However, a test with an ordinary meter will serve to show if there is a breakdown of the H.T. supply or not. With some receivers, especially the more complicated commercial mains sets, it may not be very clear which are the correct points from which to test the H.T. supply. In this case a still

Fig. 4.-First aid apparatus for recharging your wireless battery from the car.
better test can be made by connect ing a high-voltage meter between the anode socket and the cathode socket of each valve holder in turn. This test will not, of course, give an accurate voltage reading, but will show a lower figure-in some eases a considerably lower figure (where there is comparatively high resistance in the anode circuit). But the test suffices to show if there is any H.T. voltage available-which is the chief object. Naturally, when making this test at each of the receiving valve sockets, the rectifier valve (if one is used) must he left in position, since the rectifier supplies the current for the other valves in the set. It should also

Fig. 7.-How to make a simple and effective valve screen for an unmetallized valve. The lug is connected to the negative filament pin or the cathode pin.
be noted that whereas in the ordinary way the centre pin of a mains valve is joined to the cathode, in the case of a directlySINGLE POLE ADAPTOR heated pentode
 the centre pin
goes to the auxiliary grid; therefore, when testing at the holder of such a valve, the voltmeter should be connected across the anode socket and one of the filament socketsnot across the anode socket and the Fig. 5. Modification of Fig. 4 centre when the "one-wire" system is socket. employed.

Some Valve Dodges.

Supposing, after these L.T. and H.T. tests, the power supply is found to be quite in order, the next move is to test the valves. There is no need to describe the usual filament test with a dry cell and a voltmeter or headphones, but should it be found that one of the valves is a "dud "

Fig. 8.-Connecting a broken transformer to work as a choke.
it is often still possible to get the set going again, even when no spares arc available. For instance, if it happens to be an H.F. valve (either screen-grid, H.F. pentode, or other type), then this stage should be cut out by transferring the aerial to the grid circuit of the next valve, as shown in Fig. 6. If there are two H.F. stages and the second of the two valves is giving the trouble then the first valve should be placed in the second holder and the aerial connected to the grid winding of the intervalve coil in the same way. Should the detector valve fail, then it should be removed and the first H.F. valve substituted, the same transference of the aerial being made as before. You will now have a screen-grid valve acting as a detector. There will be no connection to go to the terminal at the top of the valve, but this will not matter-the valve will still function. In this connection it is worth remembering that an S.G. or an H.F. pentode valve can always bc used, in an emergency, as a detector by simply plugging it in the holder without altering any connections. The results are not as good as when the proper valve is used, but nevertheless it works. What happens is that the screening grid acts as the anode, while the true anode is left idle.

Faulty Transformers and Chokes

Another first aid measure in connection with valves is illustrated in Fig. 7. It shows how an effective valve screen may be made from a piece of sheet zinc or aluminium. It may be that a metallized valve in the set has to be replaced, in an emergency, with an unsereened valve. The replacement can then be rendered perfectly stable by this simple device.

Apart from valve failure, there is, of course, the possibility of defects in other components. The most likely faults arc those caused by a break in the circuit or a short-circuit, and the ordinary continuity tests will usually disclose the seat of the trouble.

Such an occurrence as a broken primary of a transformer should not give cause for alarm, since the remaining winding can easily be connected as a choke and used for choke-coupling, as in Fig. 8. Admittedly a fixed condenser and a grid leak are needed to complete the alteration.

In the case of a faulty H.F. choke in the anode circuit of the detector valve, first aid can be rendered by substituting a resistance of about 20,000 ohms.
W. B. Richardson.

FUNDAMENTALLY, every condenser consists of one or more layers of dielectric material separating conducting plates, sheets or foils placed against opposite faces of the dielectric layers. The conductors are connected together alternately in pairs to form the opposite poles of the condenser. The choice of dielectrics is a very large one, but there are a number of factors which have to be taken into consideration and these limit the choice. The two dielectrics which are in general use in condenser manufacture are mica and paper.
The design of an efficient fixed condenser for use in a wireless receiver calls for careful consideration of a number of points. The most important are-

1. Accuracy and constancy of capacity.
2. High insulation.
3. Low H.F. losses.
4. Sound mechanical design.

Accuracy of capacity is ensured by careful checking and re-checking during manufacture. High insulation is obtained by the use of the highest class of mouldings. The problem of keeping the high-frequency losses low is an important one. It is not always realized that an inefficient condenser 'offers considerable resistance to currents flowing at high frequencies and this resistance increases with the frequency. It is clear then, that at radio frequencies, which are often of the order of millions of cycles per second, a serious source of loss will arise.

Mica Condensers

Condensers employing a mica dielectric have a wide range of application. They are to be found in almost every broadeast receiver and they are eminently suitable for use in wireless transmitting stations and whenever a condenser with high insulation resistance is required. The manufacture of the small mica "moulded in" condensers, such as are used in broad-

I A Practical Article Dealing I with Their Construction and Application.

cast receivers, is an interesting operation The mica which is imported from India comes in bulk form and the mica sheets are split into very thin sections by girls with slender steel knives (See Fig. 3). The sections are then cut to size and shape and each piece is measured by a machine which shows on a dial the exact thickness (Fig. 2). After being graded the mica sections which vary between $1 / 1000$ and $3 / 1000$ of an inch thick are each electrically tested by being placed on a metal plate connected to a high-frequenoy high-voltage circuit. A metal brush which is connected in the same circuit is moved over the face of the mica and a discharge of blue sparks runs over the mica and down on to the plate. If the sparks, however, appear to pass through the mica, the piece is electrically weak and is discarded (Fig, 1).

After being tested, the mica sheets are passed along to the department in which the condenser units are made up. Girls quickly assemble the condensers by interleaving mica and foil according to the size of condenser required. These units are

then bound and pressed and each set of plates is spot welded. After one more electrical test, the units are ready for fixing in the mouldings. The condensers are next placed in moulding trays which each hold about one dozen units. A bakelite "pellet" is placed on each side of the condenser unit and the trays are then placed in the moulding press and subjected to pressure and intense heat. After being taken out of the press the surplus bakelite is removed and the completed condenser undergoes a voltage test. A capacity test follows and the value is then stamped on the case. The oapacity tolerance is usually of the order of plus or minus 15 per cent.
Mica condensers are usually supplied in capacities from .00005 mfd . to .5 mfd , and, when a greater capacity is needed it becomes necessary, in order to keep down the size of the component to reasonable limits, to use paper as the dielectric.

Paper-Dielectric Condensers

Condensers utilizing à papér-dielectric have a variety of uses. They' are widely used in wireless receiving apparatus, for power-factor improvement, and for wireless interference suppression.

Until recently the bulk of the paper used in the manufacture of paper-dielectric condensers was imported from Germany, but, owing to the enterprise of certain English paper manufacturers, supplies of condenser paper are now available in this country. After a great deal of research work they have produced an extremely thin sheet which is remarkably free from impurities.

The "plates" or conductors used in paper-dielectric condensers consist of either tinfoil, aluminium, or metallized paper. The latter is employed in the Mansbridge condenser, which has had a fairly extensive use. In the construction of this type of condenser, instead of using metal foil as the conductor, metal is deposited on one side (Continued on page 1050)

Fig. 1 (above).-Testing mica for insulation.
Fig. 2 (lefl). - A machine for accurately measuring the thick. ness of mica dielectrics.

Fig. 3 (righi)-Solitting mica into thin sheets.
Pkolos by cormesy of Dubilier Condenser O0, (1925) Lud

DU'BILIER CONDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, LONDON, W. 3
(Continued from page 1048)
of the paper to form a conducting plate. The principal advantage claimed is that in the event of breakdown occurring the metal at the point of failure is so thin that it will be vaporized and the fault cleared.

Tinfoil and aluminium are used in the bulk of paper-dielectric condensers as they aro obtainable in extremly thin sheets. Tinfoil is preferred as it is easily soldered.

One of the first processes in the manu. facture of paper-dielectric condensers is the winding of the plates or conductors. The winding is done by girls on special machines and during this operation the foil is interleaved with the paper. Condensers which have to withstand large voltages have two or more thicknesses of paper between adjacent foils. The winding may be either inductive or non-inductive. For certain radio applications, such as for use in H.F. circuits where it is necessary to keep the internal inductance of the condensers at as low a value as possible, the noninductive condenser is "preforable.

After being wound the condenser sections are packed in frames and pressed flat. The loaded frames are placed in a drying oven, heated and evacuated. All traces of moisture are removed from the paper by means of pumps. Moisture has a detrimental effect on the life of a condenser and therefore precautions are talsen to ensure that no moistureladen air reaches the sections. The units are then placed in an impregnating tank filled with hot wax and are left there for at least twenty-four hours. The condensers are then cooled when the heat is cut off from the tanks. When they aro removed from the tank, each section under. goes a series of tests.

Testing

The usual tests which a condenser has to pass are for capacity, insulation and voltage breakdown. Capacity and overvoltage tests are carried out before the units are assembled into a complete condenser. The test voltages are usually two to three times the voltages the condensers will have to withstand in operation. After asscmbly the capacity is re-checked, also the insulation resistance, and the condenser undergoes a further voltage test. The insulation resistance is usually placed at a minimum of 1,000 megohms per microfarad, and condensers of a lesser resistance than this are rejected. It is desirable in order to allow a factor of safety that the working voltage of a condenser in use should not be approached except in cases where it is known that the manufacturer's figures are canservative. Some manufacturers test their condensers on a voltage twice as great as the maximum value they are likely to encounter under practical conditions. These conditions depend on the circuit in which the condenser is used. If the supply across which the condenser is connected is D.C., the test voltage of the condenser should be twice the D.C. voltage.

If the supply is A.C., however, this is insufficient, for the rated voltage of supply is a mean value, whereas tho alternating

Fig. 4.-Assembling fixed condensers in the factory.
voltage rises to a maximum, at the peak of the wave, considerably above this value. The peak voltage is about one and a half times the rated voltage, the actual ratio depending on whether the supply has a good waveform or not.

Hence, with A.C., the condenser test voltage should be three times the rated value if it is to be twice the maximum working voltage. A similar state of affairs arises with rectified A.C. as used in hightension units, for if the load on the unit is removed the voltage on the reservoir condenser will build up to the maximum peak value of the A.C. volts on the secondary of the transformer. For instance, a transformer with a 250 volt secondary, feeding a rectifier and smoothing circuit of the ordinary type, would deliver about 250 volts D.C. on load. If the load were
condensers built up with a plurality of "papers" must be electrically stronger, and therefore capable of providing longer service, since at a given working voltage they will be less strained than those with less dielectric strength. In practically every paper-dielectric condenser disintegration of the dielectric takes place directly it is put into use. No matter how well the condenser may be constructed there is a certain leakage of current through the dielectric. This is almost infinitesimal in the best condensers, but it is nevertheless present. This leakage is greatest at the weakest spots in the dielectric and it accelerates as the weak spots deteriorate. This disintegration is probably due to the slight heat generated by the leakage and also to chemical changes.
Electrolytic Condensers
The electrolytic condenser is rapidly gaining favour with radio sct manufacturers, as it is possible with this type of condenser to obtain a comparatively large capacity in a small space, at a cost of less than half thatof a similar paper condenser.

Another great advantage possessed by the electrolytic condenser is its ability to withstand voltage surges. Whereas a surge is apt permanently to break down a paper-foil type condenser, it does no serious harm to an electrolytic condenser, as the dielectric film re-forms. Since this type of condenser is polarized it can only be used in circuits where the polarity is constant. This restricts the use of the ordinary electrolytic condenser to pure D.C. and pulsating D.C. circuits.

One of the leading condenser manufacturers has recently marketed a reversiremoved, however, the voltage would rise to about 375 , or even more if the transformer were of poor design giving a peaky waveform.

The test voltage chosen for condensers in such a case depends on the likelihood of the unit being used with no load. If the occurrence is liwely to be rare a condenser of 500 volts (D.C) test could be used, but for complete safety a condenser of 750 volts test would be employed.
It may be objected that this factor of safety is unnecessary and that if the condenser is tested at 500 volts it will be safe to run it at any less voltage indefinitely. This is not so, for the test is of limited duration and a continually-applied strain at 400 volts may easily break down the insulation in time.

Overload

There is probably no piece of electrical apparatus more susceptible to the evil effects of overload than the paper condenser. A 10 per cent. overload cuts down the life by 50 per cent. If the voltage is doubled-that is to say, if the condenser has to withstand double its normal working voltage, its life would be reduced to oncthirtieth of the normal length of time. These facts indicate the necessity of conservative working voltages for paper condensers. In the absence of a rigid standard there is much variation in the meaning of "working voltage." It is obvious that
ble type of electrolytic condenser. The principal advantage of this type is that it can be used on D.C. mains receivers without risk of damage, providing its normal working voltage is not exceeded. With the polarized type of electrolytic condenser the mains plug should never be reversed in its sockets, excepting where precautions have been taken to avoid damage to the condenser.

Electrolytic condensers are available in two types, i.e. wet and dry. The wet type uses a liquid electrolyte, whereas the dry type employs an electrolyte in the form of a paste or jelly.

The operation of an electrolytic condenser depends on the formation around an aluminium electrode of a microscopically thin layer of gas, oxido or hydroxide which has a very high resistance to the flow of current in one direction, although its resistance to the flow of current in the opposite direction may be quite low. This thin film acts as a dielectric between the aluminium electrode and the electrolyte. The voltage rating of electrolytic con. densers is determined by the materials used in construction and the voltage at which the film is formed. If the rated voltage is exceeded the leakage current through the condenser increases. The capacity of an electrolytic condenser is governed by the voltage at which it is formed and operated. If the condenser is formed at a high voltage and operated at a lower voltage tho capacity will increase and vice versa.

Non-Inductive Short-wave Choke

T
HE field of a short-wave choke can be greatly reduced, without impairing its efficiency, in the following manner: Small holes are drilled at intervals along the ebonite or paxolin former and a matchstick inserted in each. These matchsticks

are cut off short, leaving about 1-16in. projecting. When winding the choke the wire is passed round each matchstick on reaching it, and the direction of winding reversed.

A dab of good celluloid cement will retain the matches in position if they are not a perfect fit in the holes.-J.S.S: (East Sheen, S.W.14).

Lengthening Control Spindles

F the front of a cabinet is rather thick it may be found that the spindles do not project far enough for the knobs to be fitted. One way out of this is to grip the spindle firmly in a vice and drill a hole into the end about 5-16in. deep.
The hole should be of a size suitable for tapping either 6,5 , or 4 B.A.- the larger the better. Owing to the shallowness of the hole it may be necessary to use a taper and then a blunt tap. The top of the knob is then suitably drilled and a screw inserted, a spacing collar being fitted before fitting to the spindle. Alternatively the spindle can be drilled, a short pin fitted, and the end of the spindle tinned. A short piece of brass rod of a similar diameter to the spindle is also drilled and the end tinned. This is fitted to the spindle, the application of a hot soldering iron complet-

A neat method of filting extension spindles.

THAT DODGE OF YOURS!

Every Reader of "PRACIICAL WIRELESS must have originated some ittle dodge. Which would interest other readers. Why not pass it on'to us? We pay $£ 1-10-0$ for the best wrinkle submitted, and for every other item published on this page we will pay half-a-guinea. Turn that idea of yours to account by sending it in to us addressed to the Editor, "PRACTICAL WIRELESS," George Newnes, Itd., 8-11, Southampton Street, Strand, W.C.2. Put your name and address on every item. Please note that every notion sent in must be original. Mark envelopes "Radio Wrinkles." Do NOT enclose Queries with your Wrinkle.
ing the union. A large iron is best because the solder will then run in a short time without heating the spindle unduly. (See illustrations.)-A. F. Biddlecombe (St. Margaret-on-Thames).

An Easy-counting Coil Winder

THE accompanying sketch shows an
excellent device for coil and transformer winding which can be made up very cheaply from odd parts. The drawing will be self-explanatory, and the method of counting the turns is as follows: One

An easy-counting coil winder.
complete turn of the handle is equal to eight turns on the bobbin. Thus, a given number of turns on the bobbin are quickly calculated by taking note of the handle revolutions.

The following are the materials required: one emery grinder (from Sixpenny Stores)
minals; bad contacts result, and the full benefit is not obtained from the cells.

Vaseline smeared on the terminals serves its purpose well, but, in bad cascs,

An improved accumulator connection.
steaming (by allowing the steam from the spout of a kettle to play on the corroded part) is generally successful. Care must be taken, however, to see that the steam does not impinge on the glass case, as the latter may easily crack.

Again, an alkali, such as ammonia or washing soda, if applied to the terminals is very successful in stopping corrosion. Care must also be taken here to see that none of the reagent, whether in liquid or powder form, gets into the accumulator, as the electrolyte would naturally suffer. However, probably the best thing to do, if corrosion persists, in spite of the above precautions, is to add a further connection by means of a small lead bar, as shown in the accompanying sketch. First smear the original terminal liberally with vaseline, as a further precaution, and then clamp the lead bar under it.G. C. Addison (Douglas, I.O.M.).

Simple Coil-winding Device
THE coil-winding apparatus shown in the accompanying sketch is made from two cheap hand-drilling machines and a few "Trix" parts. The wire-spreader consists of a "Trix" strip coupled to another strip which is connected to a bolt placed in the screw hole used for the driving handle of one drill. This strip is fixed on a pin in a "Trix" plate, and can be moved
(Comtinued overleaf)

XTENSION SPNOLE CREWS ON

 HERE
\rightarrow

 two ebonite, wooden or metal uprights: one piece brass tube sere and fitted with nuts ; one 6in. wire nail, screwed one end and fitted with nut; extension spindle for grinder, as shown ; baseboard, 10 in . by 3 in . by ${ }_{3} \mathrm{in}$-J. Custice (Blackpool).
Accumulator Terminals and-Corrosion
M have continual trouble with their accu. mulators, usually due to the corrosion of the ter-

READERS' WRINKLES

(Continued from page 1051)
to give different swings. The wire is fed from a bobbin on which is placed a tension, adjustable by a spring and screw for various gauges of wire. The coil produced is of the highly-efficient honeycomb type, which is eminently suitable for long-wave reception or for use as a "loading " coil. J. Williamson (St. Albans).

An Interaction Detector

IN many sets it is difficult to detect faults due to interaction between components, such as coils, chokes, etc.

A simple device for detecting interaction.
To make the item described, a thin piece of copper oz aluminium sheet has an insulated wire soldered or eléctrically connected to it, while the other end of the wire is fixed to a crocodile clip. The plate is then sealed up in an envelope of the foreign correspondence variety, or of other thin, good-quality paper. To use the temporary screen it is simply placed in various positions, while the set is working, without fear of short circuit, and may be bent round components, while the clip is fixed on any convenient earthed point. Plates of different shapes or sizes made up as above are an extra convenience.-A. Robinson (Hull).

Keeping an Aerial Taut

Γ^{HE} accompanying sketches show an
effective arrangement which I have adopted for keeping my aerial taut. The brass rod is taken out of the lead-in tube, and one end of it is screwed into the side of the window frame. A reel insulator is fitted on the end of the rod, as shown, the end of the rod being supported by a metal bracket. The lower part of the down lead is passed through an egg insulator which is held down by a spiral spring attached to the reel insulator immediately below it. Each end of the lead-in tube through which the aerial wire passes is sealed with putty. A weight is used at the mast end of the aerial, and an insulator is used for a pulley. I have found this much better as it does not rust, and there is no possibility of the aerial

Method of springing an aerial for keeping it laut.
becoming wedged. With the arrangement described the aerial gives to the wind and relieves the mast of a good deal of strain.T. Burrows (Penrhinceiker, S. Wales).

A Neat Programme Indicator

HE accompanying drawing shows a small cabinet which contains the Radio Times "Stations At A Glance"

A Rotary Switch for H.T. Eliminators

READERS who have A.C. H.T. eliminators know that the filament current should always be switched on a few seconds before the H.T. from the eliminator reaches the plates of the valves, and that the reverse should always take place on switching off the set. The accompanying sketch shows the underside of a switch which I have made for this purpose. The one knob control is arranged to switch the L.T. and H.T. on or off in the correct order, and with the correct time lag. The parts used to make it are one old pattern condenser knob with pointer, a short piece of 2B.A. studding with nuts and spring washer and bush, ebonite for top and rotary member, 4 small

A rotary switch for H.T. eliminator. terminals, some copper strip for contacts, two stops for pointer, and some rubbercovered flex for connections. The switch should be carefully made, and the flex firmly fixed to the terminals as the full voltage of the mains is across two of the contacts, and for the same reason it is recommended that the fixing bolt of the contact fixed to the underside of the ebonite top should be cut off short so that it does not come through the top.J. Moyler (London, N.).
page, which, placed on or near the set, enables one to see the programme features of all the B.B.C. stations without having to consult the Radio Times for every item. The sheet is cut out each week and placed round the roller, the diameter being 31 in . and the length $8 \frac{1}{2} \mathrm{in}$. The roller then needs a small turn each day to give the programmes for the week. The roller may consist of a cardboard tube or a portion of an old wireless pole. The back of cabinet may be hinged or kept in position by clips. The names of the stations which run across the top of the page should be cut out the first week and pasted along the bevel; this will scrve for future weeks,-L. W. Hayes (Ifford).

Stabilizing H.T. Voltage

THE output voltage of the majority of H.T. mains units depends as it is filaments of the valves not being uised for amplifying, when using a radio receiver as a gramophone amplifier, it follows that the total plate current taken from the climinator drops, and the H.T. voltage on the plates of the other valves rises. Since this would necessitate an alteration to the grid bias, the scheme of switching shown in the accompanying illustration was adopted, the resistance \mathbf{R} being tapped across the H.T. supply as the "radio" valves were switched off, ite value being such that it draws the same current from the eliminator as they did, and so the voltage remains constant. Care must be taken to see that R is capable of handling the power safely.-M. L. Haselgrove (Dorchester).

Ebonite Box Spanner for Trimmers
IN somo reccivers the frim1 mers on the tuning conden. sers have serews with Eexatgonal heads, and thesc are often situated in very inaccessible places.
A very efficient tool can be made with a length of ebonite tube. Place the nut of required size on a hot soldering bit, and allow it to get hot. Then press one end of tube centrally on nut until it is embedded in the ebonite tube, allow it to cool, shake the nut out, and the spanner is ready for use.- -S . H. Moss (Totnes).

THE WESTINGHOUSE BRAKE \& SAXBY SIGNAL CO., LTD., 82. YORK ROAD, KING'S CROSS, LONDON, N.i

"NAPS" No. 2-RESULT

 £350 CASH PRIZES AWARDED. FIRST PRIZE, $£ 100$Miss Blanche Dobson, 107, Loughborough Rd., Kirkcaldy.
Simple Rule "Cross Here";-Else "Crown Yonder '.! ! SECOND PRIZE, £50
Mr. F. Richards, Sticklepath, Okehampton.
Why Pa Failed. "Hitched Waggon ". to "Seven Stars.". THIRD PRIZE, $£ 25$
Mr. H. Moon, 64, Sir John's Rd., Selly Pk., Birmingham. Gossip of Neighbours. Stabs in the Back-Yard. FOURTH PRIZE, $£ 20$
Mr. J. Carley, 3, First Avenue, The Drive, Didsbury, M/c. The Cup. "China" More Likely Than "Chelsea." FIFTH PRIZE, $\$ 15$
Mr. H. Coates, 1/D.W.R., Aldershot.
Justice.
COrdered "Stonebreaking '. To "Mend Path.". TWO PRIZES OF $£ 10$ EACH.
Mr. R. Coskins, 23, Burleigh Ave., Wigston Fields, Leicester. Local Gossip. Confers More "Titles" Than "Honours." Mr. E. C. Langford, 28I, North St., Ashton Gate, Bristol 3. The Newsagent. Gets "Penny " for World's "Thoughts." FOUR PRIZES OF \&5 EACH.
Mr. F. Culpan, 17, Morecambe Terr., Golcar.
The Football Cup. Takes Eleven Men to "Lift."
Mr. Wm. Earnshaw, 37, Hawthorn Rd;, Preston.
What the Cockney Said. "Plain"-But What
"Ornamentation " !
Mr. T. Haslam, Turnberry Hotel, Ayrshire.
Local Gossip.
" Little Bird " and Usually " Mocking " !
Mr. J. Medlicott, I39, Abbey Foregate, Shrewsbury. A Live Newsagent. Every " Poster," "Board " of "Trade."
Twenty Prizes of $£ 2,20$ Prizes of $£ 1$, 8o Prizes of 55 ., and 160 Prizes of 25 . 6d. have also been awarded. Space will not permit the printing of these names in Practical Wireless, but a full list may be seen at 39, King Street, W.こ.2.

Why pay 50 s. every year for H.T. Batteries? Get your H.T. from the mains with an "ATLAS" Unit and give your existing battery set more power, better tone, and sharper tuning for a lifetime at one fiftieth of the cost of batteries. There's an "ATLAS" Unit for every set, even "Class B " and "Q.P.P." from 39s. 6d. cash or ros. down. 25 cycle models without extra charge. Ask your dealer for a demonstration to-day and insist on "ATLAS"-the only units to win the Olympia Ballots for two years running. Guaranteed for 12 months by H. CLARKE \& CO (M/CR), LTD., Patricroft, Manchester. London: Bush House, W.C.2. Glasgow : G.E.S. Co., Ltd., 38, Oswald Street.

AT
 MAINS

A
UNITS

\star POST COUPON NOW \star ($_{22}$

An Invaluable Handbook

ACCUMULATORS

An up-to-date practical handbook dealing with every type of accumutator, methods of charglug them at
home, care and maintenance. Also explaing how to erect a charging station.

This is one of NEWNES'
 HOME MECHANIC

Ask your Newsagent to show you
other Titles in This Helprul Series.

London, W.U. 2
$\stackrel{\text { USE }}{=}$ SIFAM

MOVING IRON METERS

For all radio tests use 5 fifam Moving Iron Meters. Used andiotechnicians. Improved design gives greater despea of accuracy Easy to readscaling dixisions cleariy dial-knife-edse pointer-all parts individually testedall meters guaranteed. Send
for completelist to:for com SIFAM ELECTRICAL INSTRUMENT Co. Ltd., YORE WORES, BROWNING STREET, S.E.17.
Telephone: Rodney 3573

OPENINGS ENGINEERS!

Never before has engineering offered such magni ficent chances. With the rise of the depression the industry is literally teeming with first class opportunities. Our 250-page Hand-book where the opportunities lie, and the easiest way where the opportunities lie, and the easiest way details of A.M. Mech.E. A.M.I.E.E. A. M.I.E. detaiks of A.M.B.Mech.E., A.M.1.E.E., A.M.I.C.E. all branches of Civil, Mech, Elec., Motor, Bailding, etc., and cxptains our unique Kimployment Dept, Send for thi
Faluable Hand-book to-day-FREE!

BRITISH IESTITUTE E ENGINEERING TECHNOLOGY 390, Shakeapaare House,
29, OXFORD ST
FAGES

RADIO SUPPLIES

Send your list of Radio necds for our quotation,
Kits, Parts, Sets, etc. Everything in Radio stocked, Kits. Parts, Sets, ete. Everything in Radio stocked,
prompt delivery. 7 days approval. Catalogue free, Taylex \& Standard Wet II.T. replacements stocked

for EVERY SET on the market there is a super-life GROSVENOR battery

For instance. PPYE
 Super- En for every $\boldsymbol{P} y$ yo Model. Ask

Whatever the make, you would get the most out of your set. with a Grosvenor Battery. A Grosvenor would and last far longer than any battery you have ever had. The Grosvenor MERCURY process is the secret guarding against corrosion and enabling the cells to be bydraulically crammed with extra chemicals.
Next time insist on a Grosvenor. There is one made for your own particular set! or, if yoors is PYE G.B.1. Ask for Grosvenor DBA. 475 (159+9v.) $17 / 8$ PYE P.B. Ask for Grosvenor SR. 590 ($130 \frac{1}{2}+41 \mathrm{v}$.) $17 / 0$ ACMICHAEL Duplex 4. Ask for Grosvenor DBA. 305 (120v.)

MCMICMAEL

GROSVENOR ELECTRIC BATTERIES LTD. 2-3, White Street, E.C.2.
Works: Wattord, Herts.
Telephone: METropolitan 6866 (3 lines)

Showrooms: Ideal Radio Stores, Clarendon Road, Harrow, Middx Harrow 1950

Acoustically designed Casework

Cet a "Lockwood" Radiom gram Cabinet and you will be able to appreciate the ultimate in reproduction. Every Lockwood case is hand made from selected timber and specially and vibrations. Send now for details. of the latest Cabinels Cabi
LOCKWOOD CASEWORK MANUFACTURING COMPANY (Dopt. B), 63, Longley Road,
HARROW, MIDDLESEX.

Few amateur constractors realise the importance of housing their receiver In a correctly designed cabinet. designed and hand mado by craftsmen. Resonance, rattle and needle scratch the elixnimated-thanks to Lockwood Cabinet.

Supplied in Oak, Maboprany,
70\%
H.P. Terms available.

SPECIAL OFFER.

3v. CLASS "B" Kits

3 valve kits of quality component's (comprising Det. Driver and Cl.B). We have made up nearly one hundred kits from-a special purchase of brand new liquidation and tankrupt stock. Kits include $17 / 6 d$. Driver and Choke
Plymax Baseboard, T.C.C. and Dubilier Condensers, etc. Guaranteed output of 2 watts and at least 20 stations.

* KIT A. Al componens. reauird, Plymax chasis, wire 27/-
- KIT B. As above but with 3 mached V Valves (B.VA) 44/-

\ddagger KIT D. As KITC. but with Cabinet and all Butereres. $\quad 72 / 9$ Only 93 Kits for disposal. Cash or C.O.D. We guarantee to return your money if not satisfied with any Kit.

The WOBURN RADIO Company, 7, WOBURN BUILDINGS, w.C.1. 'Phone: Euston 1571.

 FEBRUARY 24th, 1934. Vol. I. No. 8.

 COMPLETING THE MIRRORVISOR

 COMPLETING THE MIRRORVISOR
 Conducted by H. J. Barton Chapple, Wh.Sch., B.Sc., Etc. elevision

Some Final Constructional Details, along with Operating Notes, are Given This Week

THE cogged wheel is fitted to the shaft and set exactly so that the teeth of the wheel just clear the pole faces (about .006in. clearance is best) as the motor shaft turns without any single tooth fouling a pole tip. The accuracy of individual

Panel Controls

The "trickiest" parts of the assembly are now complete, and no trouble will be experienced with the remainder. Two other panel controls are required-namely, the motor resistance and switch. The former is mounted at the top of a bracket, bent slightly to the same slope as the cabinet front. It corresponds to resistance R_{2} in the theoretical diagram of Feb. 10th, being a 250 -ohm, 50 -watt variable resistance. A hole in the centre of the bracket allows the
more latitude for correctly lining up the light beam later. In addition, as the viewing tunnel has to slide over this lens-holder, it is necessary to remove the wing nuts, replace with thin hexagonal nuts and washers and cut off the superfluous threaded portions. Place the cut lens so that the cut section is parallel with the baseboard, and with a hacksaw blade cut away the top of the lens-holder so that the top is flush with the lens. This is shown quite clearly in the illustrations. Small cleats and screws will hold the lens in place, but failing this it may be glued into the holder.
Next fix on the inclined mirror, being careful to see that, both in this case and that of the lens mount, their centres coincide with the optical axis 3in. inside the baseboard edge. As the lining-up procedure will be dealt with later, these two components can be left, and the viewingtunnel runners fixed to the baseboard with fine tacks or glue.

Now we come to the screen and tunnel itself. In use this is pulled out from the cabinet to the correct focus, but is accommodated on the baseboard when the Mirrorvisor is not working. This assembly can be purchased complete from Messrs. Peto-Scott Co., Ltd., or, alternatively, the dimensioned drawing (Fig. 2) gives full particulars for those readers who want to undertake the construction themselves. It is made from three-ply wood with two wooden strengthening struts at the top, and a $\frac{3}{8} \mathrm{in}$. wide frame at the front. Over this front must be stretched the screen, consisting of ordinary tracing paper, or thin butter paper, it being glued to the framework to keep it taut. The addition of two small knobs completes this side of the work, and if the dimensions have been followed accurately it will be found to slide easily in the baseboard runners.

Wiring

Little more remains to be done now. Screw down the mains transformer; there is just room to accommodate it at the back, although in my own case I found it gave a little more scope for adjustment by cutting off one of the feet (the one nearest to the motor base) and raising one of the output terminals on the insulating flange. Screw down the tubular tapping resistance R_{1}, and 0.1 mfd . fixed condenser, so completing the assembly

There is only a small amount of wiring to be undertaken, and this may be done with single and twin flex for convenience. Pay particular attention to the switch so that the numbered terminals are linked up in the manner shown in last week's wiring diagram, so as to give the double "on "position and one central "off" position. Small insulated staples anchor the wiring runs in place and prevent them fouling any gearing Terminate the mains lead in a universal main. its own small bracket, as indicated in the baseboard drawings, and in this way the three panel controls appear one below the other on the front of the cabinet.

The lens-holders' position must now be measured'up, but before fixing it to the base. board, remove the holder and file the two vertical slots in which it slides, so that they extend another inch down each brass bar. This will give

Baseboard Punners

Fig. 5.-Adding stops to act as registers for the correct focusing positions.

Fig. 3.-Drilling details for the cabinel front.
 When this is completed it only remains to optically line-up the image screen and conduct actual vision tests, and this section of the work must be followed carefully to ensure the best possible television images.

Lining Up

For lining up, the Mirrorvisor must be withdrawn from its cabinet and the screen pulled forward on its runners so that it is quite vertical and about 20 in . from the front edge of the drum. From dry batteries or an H.T. climinator source apply a potential of approximately 400 volts through a resistance of 5,000 to 10,000 ohms to the pair of leads from the Baird grid cell, as shown in Fig. 4. This proccdure is necessary, as the cell is supplied having the Nicol prisms so orientated that a minimum of light is passed through when zero voltage is applied across the terminal pins. The application of the polarizing potential in the simple manner shown in Fig. 4 has the effect of "opening" the prisms, thus allowing a bright spot to pass to the screen.
To switch on the mains transformer feeding the 100 -watt projection lamp, it will be necessary temporarily to disconnect one of the leads to the motor, as the two working positions of the switch are " motor alone" and " motor and lamp," and initial focusing is best undertaken with the motor stationary. Renrove the back of the grid cell box and turn the rotary switch knob to the right, after having joined the universal plug to a convenient house mains point. The lamp will glow brilliantly, and care must be taken first of all to see that it is held vertically in the shaped holder, with the filament supports not shielding the direct rays to the condensing lens.

Careful Adjustment

The beam of light omerging from the complete cell passes between the two vertical supports holding the lens (see that the tens ${ }^{-h o l d e r}$ is not set down too low, otherwise the beam will be partially shielded) and strikes the inclined mirror. It is then. reflected through the lens on to
the mirrors of the drum, the direction again being changed to pass finally to the front screen. This is shown quite clearly in Fig. 1 in "Practical Television," dated 10th February. The inclination of the reflecting mirror, together with the height and angle of the adjustable lens holder, must now be attended to, so as to focus the light area on to the drum. The positions shown in the illustrations and photographs give these correctly, and both the lens holder and inclined mirror holder should be screwed just finger-tight and moved ever so slightly for each trial position while carrying out this operation.

Do not imagine that the light area focused on to the mirrors of the drum is a small spot. Actually, with the optical system I have used and specified, the light area on the drum should cover two mirrors. This is an important point and must be watched while lining up. Provided that the screen is centrally disposed on the optical axis, a square bright spot of light will be seen on the translucent screen. Try moving the screen backwards and forwards a little to focus the spot at its correct distance.

Screen Positioning

When this is satisfactory turn the drum round slowly until two light spots are seen on the screen from the first and last mirrors of the scan. The first will appear at the bottom right-hand corner of the screen (facing the front), and the last on the top left-hand corner. The screen size has been chosen so that the width will just make this possible, and if they cannot be seen together, loosen the grub screw holding the driving motor in its vertical mount and twist the motor ever so slightly to right or to left to make this possible. Then tighten the grub screw so that the motor is gripped firmly and rigidly.
The mirrors on the drum should not be touched, for this component is supplied ready adjusted, the individual mirrors being seated on milled back facets and held there by clips. By spinning the drum round with the fingers the movement of the light spot on the screen can be watched, and if the light area-traced out
is satisfactory, as it should be if the instruc. tions have been followed carefully, tighten up every nut and screw which has been loosened during the lining up process. Next switch off the mains, re-attach the lead to the motor, screw on the back of the cell box, and switch on the mains once more. The drum should now rotate in an anti-clockwise direction (facing motor end), and a complete light area made up from thirty strips will be viewed on the screen.

Make sure that no light " leaks " through the cell box at the top or side junctions. If there is a "leakage" it is likely to produce light patches on the screen or, alternatively, to mar the resultant image by producing secondary scanning spots, so the "cracks " must be closed or plugged. If desired, small "stops" may be fitted on both viewing tunnel and runners, as indicated in Fig. 5, so that when the apparatus is housed in its cabinet and the screen is drawn forward the stops will "register" at the corrcet focusing point. Alternatively, this can be left until an actual image is seen on the screen to make doubly sure the focusing has been done correctly.

Image Reception

Naturally, the true value of the Mirrorvisor cannot be judged by the constructor unless it is worked in conjunction with a wireless receiver suitable for bringing in the television signals free from distortion, and of adequate output. For full modulation an output of between 4 to 5 watts must be passed to the cell, but this does not mean that good images cannot be seen if the power is less, and the constructor has ample scope for experiment in this connection.

As a guide, it may be stated that a variable-mu high-frequency pentode stage feeding into an anode-bend detector valve without reaction, and followed by three stages of resistance-capacity coupling, will give first-class signal strength in normal situations within the service area of the London National station, which, of course, broadcasts the television signals.

Output Arrangements

One very important point which has to be considered is the method employed for feeding the signals from the output valve of the radio receiver to the grid cell. The cell is a voltage-operated device and takes no current, and in consequence resistancecapacity feeding is best suited for the work, while arrangements must be made for applying the polarizing potential. Bearing in mind my earlier remark concerning undistorted output, and remembering that the signal voltage for full modulation is of the order of 125 volts, a large super power is called for such as the Osram P.X.25,Mullard D.0.24 or Mazda P.P. 5/400. With this form of directly-heated A.C. output valve a very satisfactory coupling arrangement is indicated in Fig. 6.

Analysing the circuit it is seen that the output valve \mathbf{V} is resistance-capacity conpled to the preceding stage, C_{1} being not less than .1 mfd . capacity and \mathbf{R}_{2} .25 megohm. Assuming the full H.T. voltage available is 600 volts, R_{2} can be 4,000 ohms and $C_{2} 2 \mathrm{mfd}$. The grid cell G.C. is taken from C_{2} to a single-pole change-over switch S, so that one electrode of the cell can be taken to high potential or earth potential. This is for the purpose of ensuring a positive picture and in operation, it makes no difference which cell pin is made positive.

A biasing potential to the cell is provided by the potentiometer R_{4} and the two fixed resistances R_{3} and R_{j}. Suitable values are 100,000 ohms for R_{f} and 60,000 ohms for both R_{3} and R_{5}. When receiving images it is necessary to adjust the position of the movable contact of R_{4} so that the best potential is applied to the cell to give satisfactory contrast on the screen. The resistance R_{6} gives bias to the valve V and a suitable value is about 600 to 700 ohms , while C_{2} can be about 1 mfd . With an output circuit of this character in the radio receiver, and assuming the set is of good quality, first-class, very bright and properly contrasted black and white images will be seen on the screen of the Mirrorvisor.

Separate Synchronizing

Now we come to synchronizing. Whereas the grid cell is a voltage-operated device, the cogged wheel synchronizing mechanism which has been incorporated in the machine is a current-operated device. The proper and most satisfactory solution is a separate valve to feed the synchronizing cells, and this can very conveniently be one of the large super-power output valves mentioned for the grid cell. In order to secure the greatest amplification, and hence adequate power for holding the image steady, this valve can very well be an additional stage coupled to the grid-cell valve, and a scheme of this character is shown in Fig. 7.
The valve V_{1} is coupled up identically to that shown in Fig. 6, and in consequence the component values are the same. The additional apparatus is lettered and consists of a second valve V_{2} (identical to V_{1}), resistance-capacity coupled to V_{1}. The condenser C_{1} must not be less than .1 mfd. while the potentiometer R_{1} is 0.25 megohm. In the anode circuit is placed the synchronizing mechanism, \mathbf{R}_{2} of 2,000 ohms ensuring the correct anode potential feed to the valve. The condenser C_{3} should have a capacity of 1 mfd ., while C_{3} and R_{3} are similar to the previous biasing components, namely, 600 to 700 ohms for R_{3}, and about 1 mfd . for C_{3}. By varying R_{1} the output to the synchronizing coils can be adjusted to suit individual needs, the ideal position of the control being such that any tendency for the image to "float" or "hunt" is reduced to a negligible quantity.

Operation

Assuming that the feeds to both the grid cell and synchronizing coils have been arranged for in the manner I have just detailed (the temporary biasing of Fig. 4

method of operation is as follows. Plug.the Mirrorvisor into the A.C. mains and turn the rotary switch knob to the left, and bring the motor up to its approximate speed of 750 revolutions per minute at least ten minutes before the transmission is due to start. Then tune in the television note on a loud-speaker so that it gives maximum volume. Switch over the loudspeaker output so that valves V_{1} and V_{2} of Fig. 7 are now in circuit, turn the rotary switch knob to the right, and pull out the front screen to its correct foeusing position. Provided the Mirrorvisor is supported on a table the drop-front section of the cabinet will serve to keep the viewing tunnel horizontal. If not, then add two short supporting legs for this purpose.

It will now be possible to sec whether the motor is running at its correct synchronous speed by watching any drifting of the images on the screen. If these tend to drift upwards or, alternatively, if the lines slope from the bottom left-hand corner to the top right-hand corner, the speed is too high, and if they drift downwards, or the lines slope from the top left-hand corner to the bottom right-hand corner, the speed is too slow and adjustments must be made on the variable resistance panel control to compensate for this. As soon as the motor speed is correct the synchronizing mechanism will take charge and hold the picture steady. Two phenomena are likely to be noticed. If the image is split about a vertical line (as recently explained in these pages) the apparatus is out of phase and the variable resistance control of the motor speed must be altered slightly until the images drift slowly upwards (or downwards) and to the left (or right). As soon as the image is centrally disposed between the two vertical screen sides, stop the drift by readjusting the resistance control to its previous position. It is now very possible for the image to be out of framc, that is split about a horizontal line. This is rectified at once by turning slightly the middle knob of the three panel controls. This operates the worm drive to the synchronizing mechanism and partially rotates the pair of field coils relative to the cogwheel: The effect will be a bodily raising or lowering of the image, according to which way the knob is rotated, and the image may be positioned correctly on the screen.

Do not forget to adjust the polarizing voltage to the cell (R_{4} of Fig. 6) and the synchronizing signal strength to reduce

read as if it was a lengthy and tricky process, the knack is soon acquired and
hunting (R_{1} of Fig. 7), while if the radio receiver has its. own volume control this can conveniently be adjusted to give the signal strength desired. Too strong a signal is liable to introduce image distortion, throwing up shadows or giving an overoxaggerated black and white effect, and this can be attended to according to individual needs.

Final Hints

In any case the constructor will be delighted with the way the instrument functions, and although the operation may
when the controls are left set after using them once or twice, they hardly need touching for subsequent occasions. I strongly advise the reader to carry out his first two or three reception tests with the Mirrorvisor out of its cabinet, so that any slight readjustments of focusing, etc., can easily be undertaken.

Be sure that all the mirrors and lens are free from dust, and remember that a reasonable amount of heat is generated by the projection lamp, and in consequence free air ventilation must be ensured. The cell box is bright altuminium inside to give the maximum light, but black outside to
give maximum heat radiation, while the "forced" ventilation produced by the revolving drum driving air into the slots in the box top (this escapes from the back ventilation holes) is an admirable scheme for this cooling operation.

If the constructor regards the paper screen as rather flimsy in character and liable to get damaged when withdrawn, he can replace it with thin ground glass, or better still, cover-the front of the paper screen ${ }^{*}$ with thin plate glass held in place by clips, or even a passe partout frame will hold this rigidly. The screen is actually 11 in. by 4 in . and if the optical lining-up has been done correctly, the actual image field size will be approximately 9 in. high by $4 i n$. wide. The excess 2 in . in screen height can be masked off with black edging, but I purposely made the screen on the large size so as to give a little latitude for image field positioning according to taste.

As the images are very bright the reception can actually be carried on in a lighted room provided no direct outside light is thrown on to the screen, but the best effect is given by having the room in semi or complete darkness. Finally, do not forget that the sound accompanying the dual television transmission is transmitted from the Midland Regional Station on a wavelength of 391 metres. This must therefore be received on a separate set, and to give the illusion of the sound actually emanating from the television image, the loud-speaker of this set should be placed as near as possible to the Mirrorvisor screen.

We Lead Again With "The Leader"

Free Blueprint will be given with Next Week's issue
Advance Details of Our New Receiver which sets a New Standard in Home-constructed Receivers, and Introduces a new Policy

THERE are a large number of listeners who are of the opinion that it is much cheaper to purchase a commercial make of wireless receiver than it is to build one. For some time now we have been aware of this notion, and from inquiries which we have made, both directly and indirectly, we have found that the idea has arisen through an erroneous comparison. For instance, readers of the technical Press have taken the receivers which have been described and, upon looking at the advertisements of the firms which supply complete kits, have seen that, for instance, a threc-valve receiver costs, say, $£ 10$ or more, whilst it is possible to purohase for about' that figure' a four- or even a five-valyel receiver from a large number of commercial set manufacturers. It is overlooked, however, that this comparison is not a fair one, and for the following reasons. Take, for instance, the Fury Four Super which was recently described in these pages. The total cost of the kit for this receiver was in the neighbourhood of $£ 10$, but is there a complete receiver on the market, even at the price, which embodies the features which formed the basis of this receiver? Very few cheap commercial sets work really well, and few, if any, are trouble free. Again, the home-constructor, when he purchases, for instance, a low-frequency transformer supplied by a component manufacturer, obtains a camponent which, apart from its actual olectrical characteristics, is finished to have an attractive appearance. It is provided with terminals; has a substantial bakelite or other type of casing;
and is generally of fairly substantial dimensions. The commercial set manufacturer, however, generally employs a "stripped " transformer, consisting simply of a core and the necessary windings, some. times not even provided with connecting tags, but having only leading-out wires. Admittedly, the performance of this component may be identical with the previously described component, but the price will obviously be much lower.

Again, the set maker who is catering for a large public has to design the receiver so that manufacturing costs are low, and consequently he cannot always provide for the most efficient arrangement of the parts which are included in the receiver, owing to the necessity for mass-producing the article. The designers of receivers for the wireless journal, however, can work out the most effective circuit without any question of manufacturing costs, etc., and provided the receiver is not too complicated to construct, the actual arrangement is not of very much importance. Thus, to offset the price of the complete receiver, it is necessary to bear in mind the actual contents of the receiver, and if this point is taken into account when comparing respective receivers the actual price will be found to be quite favourable.
However, we fully realize that every home-constructor is not in a position to pay $£ 20$, or even $£ 15$, for a set of parts to build a receiver, no matter how efficient it may be. We set about, therefore, to design a receiver which, whilst it utilized standard components-by which we mean not the "stripped" variety used by set
manufacturers-would cost a minimuin amount without in any way sacrificing efficiency.
The objects were, therefore :-

1. Low cost.
2. Efficiency in operation.
3. Ease of construction.
4. Neatness of appearance.

Various circuits were experimented with, and all sorts of combinations were entered into in trying out cheap and mediumpriced designs. Ultimately, a circuit was found which enabled the standard components to be employed in an arrangement which, whilst not new, at least would enable us to claim that once again we had shown a lead in producing a receiver which could compare with or even excel in performance any commercial receiver of similar circuit properties, and which, if not cheaper, at least would not cost more. During these experiments we did not attempt to cheapen the cost by sacrificing efficiency, neither did we attempt to get the impossible with standard parts. Rather did we take a standard circuit arrangement and find the most suitable parts, from the point of view of cost and efficiency, to enable the idea to be put into effect. Needless to say, we have succeeded in our endeavours, and the results are embodied in the three-valver which we have named "The Leader." The circuit is the standard H.F., detector, and output, and modern coils have been incorporated. Although not of the ironcored type, these have been designed since -the Lucerne Plan was put into effect, and they enable the maximum benefits to be obtained under this new scheme.

(Continued from previous page) coil carries the output. When the two coils are placed near together highfrequency currents can pass between them by "magnetic induction." In other words, a magnetic field is created round each coil by the currents passing through it, and if the two fields are allowed to "overlap" there is a certain "mixing" action between the currents causing them.

It is essential, however, that the reaction and tuning "coils be oonnected in the correct " sense"; that is, in such a manner that the two magnetic fields "assist" each other. If the reaction winding is connected in circuit wrong way round, it will reduce, rather than increase, signal strength. When it is found that signals hecome weaker as the reaction control is advanced the connections to the ends of the winding should simply be reversed.

From this it will be apparent that the amount of feed-back can be varied by altering the relative positions of the coils. This is the oldest form of reaction control, and it was made use of in the early days of broadcasting. In many ways it is excellent, but it is not applicable to present-day methods of receiver design, because the coils occupy too much space and cannot easily be screened.
" Damping-plate" Control
A modification of the idea which has been used with some success is to place the two coils close together in fixed positions, and to vary the amount of feed-back by means of a metal plate moving over them as shown in Fig. 2. The plate "absorbs" some of the highfrequency energy from the reaction coil, the extent of the " absorption " depending upon the closeness of the plate to the coil. Thus, the degree of feed-back can easily be controlled by moving the plate. An arrangement such as this is generally fairly bulky, but this difficulty was overcome in at least one receiver which was very popular in the early days by fixing the plate on a threaded bush which could be screwed down a rod passing through the coils-see Fig. 3. Even this system is far from efficient because the metal plate not only " absorbs" some of the H.F. energy from the reaction coil, but also from that used for tuning. Although the methods of reaction con-

Fig. 8.-A skeleton circuil showing how double reaclion can be obtained by feeding back from the detector anode to the grid of both this and the preceding valve.
trol yso far described are obsolete, they' are somewhat historic, and those amateurs who have not tried them will find it interesting and instructive to do so.

An entirely different system (in practice only, however) of reaction control was devised by an experimenter named Reinartz, and his method is now universally employed in some form or other. The arrangement of a capacity-controlled circuit (generally referred to as a Reinartz reaction circuit) is given at Fig. 4. It will be seen that a highfrequency choke is inserted in the detector anode circuit and that the reaction coil is connected in series with a variable condenser between the anode and earth. The reaction coil generally consists of a fixed winding placed near to the tuned grid winding and H.F. currents are passed back just the same as in the arrangements previously described. The object of the H.F. choke is to prevent the

Topical Technicalities. electromacnetism.

When an electric current is passed through a coil of wire which is wound round a piece of iron, the actual atoms in the iron move about and the iron becomes what is known as " magnetized." When, however, the current is discontinued, the iron does not lose the magnetic property instantly, the atoms taking some little time to get back into their original pasition. The property of the iron to maintain the magnetism is known as "hysteresis," and the electrical energy which is used up in magnetizing the iron is known as "hyster. esis loss." Obviously, therefore, in a circuit where the current continually changes at a rapid rate, for instance, in a low-frequency transformer, it is necessary to ensure that the iron which is used for the core shall be of such a nature that it will not require too much energy to change its magnetism, and, therefore, we do not want great hysteresis losses. Certain materials have very low losses of this nature, notably soft iron, annealed iron and other types of soft iron, or steel, and these, therefore, form the best materials for L.F. transformers and similar components. On the other hand, steel and the harder forms of such material form the best media for permanent magnets; that is, they retain the magnetism uhich has been imparted to them.
passage of high-frequency currents into the L.F. circuits, so that they can be fed back into the reaction winding Now, a condenser, although a perfect insulator so far as ordinary direct current is concerned, will pass H.F. currents quite easily, its resistance to them being inversely proportional to its capacity ; the greater the capacity, the easier will the condenser pass the currents. It can thus be seen that perfect control of feed-back can be accomplished by varying the eapacity of the so-called reaction condenser. In practice, the size and position of the reaction winding are usually arranged so that complete control over reaction can be accomplished by means of a .0002 mfd . or a .0003 -mfd. condenser. Just the same as in the simplest form of reaction described earlier, it is essential that the reaction winding should be connected in the proper direction.

The Position of the Reaction Condenser

It has been said that in Reinartz reaction the variable condenser is con nected in serics with the winding, and in Fig. 4 this condenser is shown as being between the winding and the anode of the valve. Actually, however, it may be either in this position or between the other end of the winding and earth. In practice the latter arrangement is generally to be preferred, because the condenser is then at "earth potential," the circuit is less susceptible to "hand capacity," and smooth control is more (Continued on page 1062.)

CONVERT YOUR PRESENT SET

PETO-SCOTT STRAIGHT BATTERY 3

TO A MAGNIFICENT RADIOGRAM
1934 WALNUT

ADAPTAGRAM

Bo you realise how simple it is to convert your set to a handsome Radiogram with this a mazingly popular Petoscott Cabinet. Including your set, speaker and nower equipment. Built by leadin craftsmen of London's Piano Trade.

by
MODEL "A"-Cash or C.O.D. 63/. Carriage and Packing Carriage Paid). Batle $3 / 6$ extra.
MODEL "B"-With Doubte MODEL "C"- Standard ODEL "8-Nith Doube 1 P34 Adaptagram Cablnet pring Motor, 12in. Puin Motor with Tone-arm, Nol Covered Turnable, Tone. ume and Control in one Unit, inntic Stop. B.R.G. Tone- 32 in . Plush Covered Turn Ana with Pice Up and table. Automatle stop, Avto ume Control, Autoriatio matic seedle Cash or C.o.D scedle Cup. Cash or C.O.D. Carriage Paid, 7 Gns. Or 12 Carriage Paid, 6 Gus., or 12 monthly payments of 13,9 monthly payments of $12 /$. D.C. Model Prices on applib-
-SEND FOR 1934 CABINET CATALOGUE
QRITISH RADIOPHONE MATCHED Send PERFECTION 7. Complete kit, less valves. $15 / 3$ Balance in 11 monthly payments of $15 / 3$ EW LISCEN SKYSCR NEW AVE CHASSIS MODEL, complete kit comprises all components, including set of Lissen . Send Valves. Cash or C.O.D. Carriage Paid, $£ 5 / 12 / 6$.
Palance in 11 monthly payments of $10 / 3$.
NEW LISSEN P.M. MOVING-COIL SPEAKER Send with input transformer. Cash or C.O.D. Carriage $5 / 6$ Paid, $21 / 5 / 0$.

(1])WREN-EASTON 3 KIT with ready- Send drilled panel, metaplex baseboard,
less valves and cabinet. Cash or C.O.D. $8 / 3$ Carriage Paid, $84 / 10 / 0$.
Balance in 11 monthly payments of $8 / 3$.
"MODERN RADIO ENGINEER" KITS TELSEN 323 3-VALVE KIT, with set of Send three valves. Cash or C.O.D. Carrlage $6 /=$ Paid, $£ 2 / 15 / 6$.
Balance in 9 monthly, payments of $6 /-$
TELSEN CLASS "B" 3 KIT. Complete Sen kit of parts, less Valves. Cash or C.O.D. 5/e
Carriage Paid, $£ 3 / 15 / 0$. Balance in 11 monthly payments of $7 / \mathrm{s}$) Balance in 11 monthly payments of $7 / \mathrm{a}$. only If valces repuired, aild $2 / 9$ to deposit and each monthly payment or $\mathrm{K} / / 9 / 9$ to cash price TELSEN BAND-PASS 3 KIT. Complete kit of parts for building. Cash or C.O.D. $7 / 9$ Carriage Paid, $£ 4 / 5 / 3$.
I
 trated lenate of Baitery, Models.

THE IDEAL FAMILY RECEIVER

Tonal quality, volume and range, all this with the Peto-Scott Straight Battery 3 an amazing pertormance surpassing sets of double the price. Special simplified an amazing periormance surpassing sets of double the price. Special simplfied range of programmes-even those with little or no experience Buitt on metaplex New type non-microphonic detector, followed by R.G.G. for quality and final trans former-coupled power stage. New type 2-circuit tuner and singio dial slow motion illuminating tuning. Selectivity aerial taps. Pick-up sockets B.A. speaker with floating cone Complete with Britlsh Valves and long-life Batteries, full aerial cquipment and ready to play, Housed in walnut cabinct as illustrated . beautiful appearance will delight you.
Cash or C.O.D. Oarriage Paid.

PET0-SCOTT, 30 Ratiof
EXTENSION SPEAKER
Suitable for 1001 Receivers, Including CLASS B, Q.P.P., Saper-Power
and Pentode outpots. Instantly adjustable ratios.

Cash or C. 0.0 | Cash or C.0.D. | | |
| :--- | :--- | :--- |
| Cariage Paid. | | |
| 29/6. Yours | | |
| for $2 / 6$ i balance | | |
| in 6 monthly | | |
| paymecta | ol | |
| $4 / 9$. | | DOWN |

PETO-SCOTT PERMANENT MAGNET MOVING-COIL SPEAKER

UNIVERSE PICK-UP

PILOT CLASS"B FOUR KIT

 times the volume of an at a popular price. Seven outstanding perforniance equal to "mains" receiver Kits supplied with detailed " simple to build " instruc tions and assembly blueprint. Matched and tested components. Guaranteed for 12 months by Peto-Scott. EIT "A," lere Valves and Cabinet, Cash or C.O.D. Carriage Puid,

1 KIT "B."-AsKit "A" but ' TKIT "Q."一As KIt "A." I KIT "B,"-As Kit "A." but ! but incmang 4PETO SCOTT Inazehed aud tested valves. iratebed and teated valveg (Aash or C.O.D. Carriage| iand Peto-Scott Consolette
 Becommended PETO-8COTTT SPEAKEE, it required, add $\frac{12}{22 / 5} / \frac{1}{5}$ Cash Prices or $8 /-$ to each monthly payment.

IMPORTANT Miscellaneous Components, Parts, Kits, Finished Receivers or Accessories for Cash, We will quote bou retu C.O.D. or H.P. on our own system of Easy Paynents. Send us a hist of your wants. OLY) OVERSEAS CUSTO.D. orders value over $10 /$ - sem carriage and post charges pand (GREAT BRIT AIN port staff and save all delay. IVe pay half carriage-packed free. Send full value plus sufficient for half carriage. Any surplus refunded immediately. Hire Purchase Terms are NOT available to frish or Overseas customers.

PETO-SCOTT CO., LTD., 7T, CITY RD., LONDON, E.C.\%. West End Showrooms : 62, High Holborn, London, W.C.2.

Dear Sirs, Please zend me Cash/C.O.D./H.P.
for which I enclose \&...........s............ .d. CASR-H.P.|Deposith
NAME
ADDRESS.

Tel :Clerkenwel! $0106 / 7$.
Tel. : Holborn 3388. \vdots

BEGINNERS' SUPPLEMENT

 (Continued from page 1060)easily to be obtained. The moving vanes of the reaction condenser, which are in contact with the spindle to which the control knob is attached, should be connected to earth: In the same way, when the condenser is in the position shown in Fig. 4, the moving vanes should be connected to the "earth" side of the circuit-i.e., to the "top" end of the coil.

Resistance-controlled Reaction

It is not always realized that an excel. lent control of reaction can be obtained by replacing the variable condenser by a variable resistance. This is fairly obvious really, because, as was previously explained, the variable condenser actually serves as a variable resistance to highfrequency currents. The method of using a variable resistance in this way is shown in Fig. 5. It will be seen here, though, that a fixed condenser is also connected in the reaction circuit; the object of this is to prevent a short-circuit of the high-tension supply to the anode of the detector valve. In this arrangement the fixed condenser should have a capacity of about .0003 mfd . and the resistance should have a maximum value of approximately 25,000 ohms. The resistance gives a very smooth reaction control, particularly if a ". graded" potentiometer is employed and wired as shown in Fig. 5. A difficulty occurs in connection with this system, however,' since there are very few variable resistances or potentiometers available which are per-
fectly silent in operation. It is essential that the component should be silent, and it is best to choose one of the non-wirewound variety and of good make.

In addition to giving excellent control of feed-back, the resistance method of reaction adjustment has the further advantage of preventing "iparasitic" oscillation, which is often introduced by various unavoidable means. Parasitic oscillation is generally indicated when the setting of the reaction control differs widely at different settings of the tuning condenser. It is also indicated when reaction " goes dead " at certain parts of the wavelength range. When this nuisance occurs, and a condenser is employed for reaction control, it can nearly always be overcome by inserting a fixed resistance of about 200 ohms in series with the reaction coil. The resistance must be completely noninductive, and one of the many metallized or composition types is perfectly suitable.

When Reaction Affects Tuning

It frequently happens in a set which has not been very carefully designed that tuning is affected by reaction control. This is a nasty fault which becomes very troublesome when an attempt is made to tune in a rather weak signal. The trouble is due to the fact that the capacity between the anode and filament (or cathode) of the detector valve is changed as the reaction condenser is varied in capacity. This can be cured by using a differential condenser for reaction control, the object of which is to keep the anode-tocathode capacity constant. A differential
condenser can be wired in various ways, but the two most convenient are shown in Figs. 6 and 7. In both cases the condenser is so connected that, as the capacity to earth via the reaction circuit is reduced, there is a corresponding increase directly between the anode and earth.
When it is not desired to employ a differential condenser, or where this course is precluded by the design of the particular coils in use, an almost equally satisfactory result can be obtained by connecting a fixed condenser of between .0001 mfd . and .0003 mfd . between the detector anode and earth. The fixed condenser. also tends to prevent L.F. instability.

"Double" Reaction

Although it is usual to apply reaction from the anode to the grid circuit of the detector valve only, it is often worth while to employ what might be termed "double" reaction; that is, reaction which is effective on both the detector grid circuit and also on the grid circuit of the preceding H.F. valve. This arrangement used to be very popular in the early days when "swinging-coil" reaction was in favour, but it is seldom made use of to-day. For those who care to try it, the circuit is shown at Fig. 8, where it will be seen that a differential reaction condenser is used in conjunction with a variable resistance. The resistance controls the total amount of feed-back, and the differential condenser controls the relative amounts of feed-back applied to the grid circuits of the two valves.

MESSRS. PETO-SCOTT need no introduction to our readers as suppliers of kits for all kinds of receivers, and the latest design issued by this firm is well up to the standard associated with Peto-Scott products. The latest Class B Four is a remarkably efficient set at a moderate price. It can be obtained, like all Peto-Scott kits, in three typesKit "A," which comprises all the parts for the set, with blueprint and full constructional details, but less valves, cabinet, etc. ; Kit "B," which includes a set of matched and tested Peto-Scott valves, and Kit "C," which is complete with valves and the consolette cabinet illustrated on this page. The prices of the three kits are $£ 310 \mathrm{~s}$., £5 2 s . 6d., and £5 15s. respectively for cash or C.O.D., but any one of these can be obtained on very generous hire-purchase terms. So much for the prices, which speak for themselves, and now to deal with the set.

Reliable Circuit

The circuit is on straightforward lines, and includes a variable-mu H.F. stage, followed by a grid-leak detector, a driver L.F. valve and a Class B output stage. This is, of course, one of the most popular valve combinations at the present time, and is one which makes for reasonable simplicity in design and construction, besides giving a signal output which is ample for every domestic purpose combined with an adequate degree of selectivity to make it a simple matter to receive and separate most of the high-power stations working under the new Lucerne Plan. The lay-out, as shown by the blueprint (free with any of the kits), is very "clean" and straightforward, so that

THE PILOT CLASS B FOUR KIT SET

it should present no difficulty even to the merest novice in wireless construction.

A pair of efficient Colvern coils, provided with integral switches and selectivity tappings, are used for tuning, in conjunction with a well-made British Radiogram two. gang air-dielectric condenser. To ensure accuracy of tuning the second section of the

The Pilot Class B Four. Compact, cheap, and of excellent quality.
condenser is provided with a trimmer which can quickly be adjusted by means of a screwdriver, thus ensuring correct matching of the two tuning circuits whatever type of aerial-earth system is employed. A reaction condenser is made integral with the ganged tuning condenser and is controlled by means of a small knob which is made concentric with the main tuning knob. This arrangement makes for ease of control and a welcome reduction in. the number of knobs on the front of the set. Tuned-grid coupling is used between the variable-mu and detector valves, an excellent B.R.G. high-inductance sectionalized H.F. choke being employed in the anode circuit of the first valve.

The detector feeds into the driver valve through a B.R.G. low-frequency transformer, and a separate H.T. positive lead is used to supply the anode current to this valve. A special driver transformer is uscd to feed the Class B output valve, this having a two-ratio Class B output transformer in its anode circuit to enable the set to be accurately matched to different types of loud-speaker in the simplest possible manner.

It should be added that all the components are mounted on a Peto-Scott metallized baseboard, which simplifies the making of numerous earth-return connections and adds to the overall efficiency of the receiver.

Pleasing Cabinet Design

The consolette cabinet is of attractive and pleasing design and there are three main controls coming through the front; these are the tuning (with combined reaction), variable-mu volume control and (Continued on page 1063)
wave-change switch knobs. Incidentally, the on-off switch is mounted on the terminal strip attached to the rear of the set, so simplifying the appearance of the front of the cabinct. The terminal strip also carries two aerial terminals, one for the earth lead and two for a pick-up. The alternative aevial terminals are for obtaining different degrees of selectivity, and that marked "A.2" is wired in series with a .0001 mfd . fixed condenser and is particularly useful when the set is being used near to a powerful station, or when extreme selectivity is called for.

Easily Followed Instructions

In addition to the blueprint, Messrs. Peto-Scott also supply two simply-worded instruction sheets; one of these refers to the assembly and wiring, and the other to the method of operation of the set. No one will find any difficulty in following these instructions, for they are very clear and devoid of unnecessary technicalities.

On test the "Pilot Class B Four" did not fall short of the anticipations which were formed by examination of the circuit and lay-out. In fact, it proved to be better than the average receiver of its type, in regard to the volume of output, quality of reproduction and the degree of selectivity. The volume was certainly quite comparable with that obtained from a powerful mains-operated receiver, and the quality was very pleasing. When the set was tested on an aerial of average proportions and situated some eleven miles from Brookmans Park, both the London stations could be eliminated within a few degrees of the tuning scale, even when the aerial was connected to the lesser-selective terminal. When terminal "A.2" was employed the stations could be cut off very cleanly with a very small movement of the tuning knob. Naturally the volume to be obtained fron the "locals" was too great for normal listening unless the volume control was set well back from its maximum position.

Selectivity Control

Besides serving for its normal purpose, the volume-control potentiometer also proved very useful as a means of increasing selectivity when rcceiving otherwise "difficult" stations. By reducing the setting of the control and advancing reaction, selectivity could be increased to almost any desired extent. It should also be mentioned here that the potentiometer was found to work very smoothly indeed and without those annoying crackles which are noticeable in the case of too many sets; this control could, in fact, be truly described as entirely noiseless.

Current Consumption

After convincing ourselves that the sct could thoroughly be recommended on the score of performance, measurements were taken of the H.T. and L.T. current consumption. The filament current taken from a 2 -volt accumulator was found to be . 5 amp ., which can be considered as very modest in view of the enormous output The anode current, when using a 120 -volt battery, was just under 10 milliamps when the set was not tuned to a station, and fluctuated between this and some 30 milliamps when a powerful signal was tuned in. The average consumption over long periods of listening would probably work out at something rather less than 15 milliamps, so that any Class B high-tension battery should have a useful life of several months.
 USE ONIY T.C.C.

Photos: B.B.C., Topical Photos: B.B.C., Topical mann, Gerber: 45020
THE TELEGRA.PH CONDENSER CO. LTD., WALES FARM RD., N. ACTON, W.3.

The I.C.S. Radio Courses cover every phase of radio work, from the requirements of the youth who wishes to make wireless engineering his career to the man who wants to construct and maintain a broadcasting set for his home.

The Radio industry is progressing with amazing rapidity. Only by knowing thoroughly the basic principles can pace be kept with it. Our instruction includes American broadcasting as well as British wireless practice. It is a modern education, covering every department of the industry.

OUR COURSES
Included in the I.C.S. range are Courses nealing with the Installing of radio sets and, in particular, with their Servicing, which to day intimately concerns every wireless dealer and his employees. The Operating Course is vital to mastery of operating and transmitting.
There is also a Course for the Wireless Salesman. This, in addition to inculcating the art of salesmanship, provides that knowledge which enables the salesman to hold his own with the most technical of his customers.

We will be pleased to send you details of any or all of these subjects. Just fill in, and post the coupon, or write in any other way, stating which branch of Wireless interests you -the information you require will be forwarded at once.

International Correspondence Schools, Lid., Dept. 94, International Buildings, Kingsway, London, W.C. 2

Without cost, or obligation, please send me full information about the Courses I have marked X

```
\square COMPLETE RADIO
I RADIO SERVICING
I RADIO EqUIPMENT
I RADIO SERVICING AND SALESMANSHIP
\square WIRELESS ENGINEERING
\square WIRELESS OPERATORS
```

 Ag:.........
\qquad
\qquad

New Amplifiers for the House of Lords

DEEP down' in the cellars which extend in all directions for many hundreds of feet beneathathe House of Lords is a room about 50ft. square. This lies directly beneath the Chamber in which the House sits during its sessions, and houses at the moment a new amplifying equipment which has just been installed. The Chamber of the House is very imperfect acoustically, and, particularly in the Strangers and Press Gallery, some of the speech is inaudible.

The equipment now in use replaces an amplifier which has been used in the House of Lords for the last eight years, and is a model of all that a public address amplifier should be. In the Chamber itself are four microphones: two are on a table in the centre-one facing east and the other facing west-two more are hidden beneath the table facing the Woolsack. The two micro: phones beneath the table are of the magneto moving-coil type as used by the B.B.C. for outside broadcasts, and are capable of picking up speech at 35 ft . The amplifier itself has five amplifying stages and is battery driven throughout. The output is divided into five circuits, each with an independent volume control.

The Chamber is equipped with sixty-five hand earphones, each accommodated in a special recess at the back of the seat. Each member, when using the earphone, takes it from the recess in front of him and applies it to his ear: when he has finished with it he replaces it, a special spring roller coiling up the wire as the earphone is returned to its socket. The room referred to above in which the amplifier is installed has many historical associations. Indeed, on the very spot where the amplifier now stands, Guy Fawkes, hundreds of years ago, placed his gunpowder and other explosives on the occasion of his abortive attempt to blow up the Houses of Parliament.

Second Radio Change-over

EUROPE'S L 4 second radio upheaval is now in progress. Changeover No. 1 (transmitters only), affected only 232 stations. The second change-over will affect well over a million stations, this time receivers. Most transmitters have now settled down, more or léss, to their new allocations, and listeners are very busy calibrating their sets for the new settings. As we

The new Ekco replaceable dial which is described on this page. Power Company, Limited. The broadcast
mentioned a short while ago, manufacturers have been very busy issuing new scales to suit their various types of receiver, but Messrs. E. K. Cole have tackled the job in a very novel and efficient manner. They realize that the new wavelengths may not be permanent, or that a fresh re-shuffle may be occasioned in the future, and they also realize that their receivers will be wanted by listeners for some time without becoming obsolete. They have, therefore, invented the arrangement which is illustrated on this page, from which it will be seen that they are providing their receivers with a scale which is calibrated in wavelengths only. It will also be noticed that the scale is evenly spaced and has no crowding at one end or the other. In addition to this scale, however, a separate transparent strip is supplied, and this is engraved with station names, arranged in such a manner that when the strip is fixed to the permanent scale, by means of the studs provided, the names become part of the actual scale, and thus station selection is simplified. The advantage which this scheme possesses is, of course, that new strips may be made at a very low cost, and are easily fitted by the user with absolutely no technical knowledge or skill of any kind being required. In fact, the screen may be inserted while the set is actually working. Needless to say the manufacturers have patented this ingenious scheme, and it will do much to still further popularize the products of this go-ahead concern.
" Power-from Coal to Grid "
THIS is the title of an interesting broadcast in the London Regional programme on February 23, from the new Battersea generating station, which will be carried out by courtesy of the London
will consist of a tour round the robot building at Battersea, with its silent stokers and sootless smoke belching forth from 240 ft . stacks. The story will start with the coal fuel in progress from the top of the transporter belts; the banks of blowers; mighty turbines which every hour use eight million gallons of condensing water from the River Thames; generators; and safety valves. The listener will also be taken through the Control Room with its flashing coloured lights, the nerve centre of the whole building, and the switch-room with rows of giant twelve-ton switches.
Multiple Valves
WITH all the multiple valves now on the market one is inclined to ask just how far this business of making one valve to do several pieces of work is likely to go. Double-diode triodes and double-diode pentodes appear to have become fairly well established, whilst the heptode, pentagrid and other similar valves are being very widely used. The Class B valve is now taken entirely for granted, of course, and another double output has recently been developed by one of the leading valve manufacturers.
These double- and triple-duty valves are very convenient in some respects, but one wonders if they are really "worth the candle"-to use a popular expression. They do help the constructor to make his set more compact, but they invariably entail the use of more crowded wiring because of the comparatively large number of pins on the bases. In addition to this, the failure of one section of the valve renders the whole component useless and calls for an expensive replacement. Another thing which is not in their favour, especially from the point of view of the new constructor, is the difficulty in recognizing the many contact pcints on the appropriate holders. Sevenpin holders for Class B valves were bad enough for the beginner, but how is he going to get along with nine contacts-all placed close together at that?

A Novel Way of Testing Valves

READERS are often inclined to think that the lot of those experts who serve our Queries Department is an easy one, but the following example will prove that this is not by any means always the case.
In the course of an enquiry a reader recently asked what could be wrong with his mains set, which functioned correctly when first switched on, but after working for a short time the signals gradually became very weak and practically faded out. After explaining this, the querist stated: "I have taken both valves out of the set and put them in the coldest part of the house, i.e., on the pantry floor, and left them for an hour. I then put them in the set, which had been left in the warm room; after they had warmed up the set worked quite normally. I then took the valves out of the set once more, and left them in the room while the set had a turn in the cold. On being fitted up and switched on once more the old trouble started again. This, I think, should clear the valves of any suggestion of fault, and I think you will come to the same conclusion."

The expert who dealt with this inquiry felt very much inclined to reply: "We suggest that you buy the set some warm underwear, and obtain a refrigerator in which to store the valves when the set is not in use." Instead, however, he asked for some further information which would be more likely to be of assistance in solving the problem !

(2)

SUPERIORITY

FEW people realise the importance of using experts who is contino design sets know; that is why "Bulgin" is continuously specified.
Some reasons are given in the following technical details.

SCREENED SUPER H.F. CHOKE Inductance $500,000 \mu \mathrm{H}$, self-capacity $1.5 \mu \mu \mathrm{~F}$. approx. Chokes smoothly 99.9% al $180-2,000 \mathrm{~m} .500 \Omega \mathrm{D} . \mathrm{C}$. approx. List No. H.F. 10 EACH 5/6
SCREENED STANDARD H.F. CHOKE Inductance $250,000 \mu \mathrm{H}$, self-capacity $2.5 \mu \mu$ F. approx. Chokes smoothly 97% approx. at 200-1,800m. 400Ω D.C. approx List No. H.F.9. EACH 3/6
SCREENED MIDGET H.F. CHOKE Inductance $198,000 \mu \mathrm{H}$. Self-capacity $3.5 \mu \mu \mathrm{~F}$, approx. Chokes smoothly 96% at $200-1,750 \mathrm{~m} .380 \Omega$ D.C. approx. List No. H.F. 8

EACH 2/3

A. F. BULGIN \& CO., LId., BARKING, ESSEX.

H.F. 8

Please send the New 80 -page Catalogue 153 " N " and Buigin Literature to:NAME .. ADDRESS

Enclose 2d. Postage. (Block Letters, Please.)

By H.J. BARTON CHAPPLE
 The wevl-kinowncontributerono" Practical Wirdes"

TELEVISION

 FOR THE AMATEUR CONSTRUCTORReaders of "Practical Wireless" will want this book. It is a detailed illustrated guide to the construction of Television sets, by the leading authority on this subject. Well illustrated. 254 pages.
send
Order from a Bookseller or send
13/- (fo include postage) direct to:
PITMAN, Parker St., Kingsway, W.C. 2

add 50/-WEEKLY to your earnings

by charging accumalators in your soare time. Rectiters to charge 105 celis weekly, trade price, 4 grincas. or $8 /-$ monthly.
A.O. mains only. Send for descriplte bookled. M.D.D. te ROMFORD,
 $\xrightarrow[\text { Lit erature }]{ }$ and erature on sequest Standard Tele phones and Cables, ${ }^{\text {Yit. Chaids }}$ Place, 384,
Gray's Inn Road, London, W.C.1. Terminus 6255

TELEVIIIOM in NEW heayberd HANDBOOK.

SUPD SPECIAL TELEVISION SUPPLEMENT. Get your copy to-day-fifteen blueprints showing how to build your own malns unit or battery charger, etc. Two pages of
helpful hints and tipg for ail amateurs. Describes also Kits of Parts for various TELEVISION uses.
Cut out this advertisemont and send now with $3 d$. in stamps for 30pp. Handbook.

F. C. HEAYBERD \& CO.
 10, FINSBURY STREET, LONDON, E.C.2.

ABUNDANT H.T.
6 YEAR IN-YEAR OUT:

Let the wonderful Standard Leclanche Battery give you pure steady power-year in, year out-at half the cost of dry batteries. Always up to strength-cells are regenerative. Annual replenishment at asmall cost all that is necessary. A.R., of Aberdeen, writes: "Have given every satisfac* tion; no :rouble, no worry ; just a look over when 1 remember." 120 wv., 12,500 m.a. E2 complete, carr. paid. THE WET H.T. BATTERY CO. (Pr.), Gerrard 6121. 26, Lisle Street, London. W.C.2.

"Courage! All is solved! If DC is vital 10 your happiness, and AC to mire, we can still find greater strength and harmony than ever-in one of these Universal valves of Tungsram's !"

Far better than ordinary DC valveseven better than ordinary AC! The astonishing Tungsram Universal-the valve that works on AC or DC at will! No worry about possible changes
 in mains supply -any mains supply will serve for the Tungsram Universal valve ! No need to scrap an existing set -with these new valves you can convert it in a moment! All types available from V/MU H.F. Pentode Heptode (Pentagrid) Mixers and Double Diode Pentodes to simple Multi-grid Valves. Write our Technical Department about your radio problems.

BY THE PRACTICAL WIRELESS TECHNICAL STAFF
THE ROTHERMEL PIEZO-ELECTRIC SPEAKER THE photograph below illustrates one of the new referred to recently in these pages. Unlike the usual type of dual loud-speaker, this embodies an ordinary permanent magnet moving coil unit, together with a speaker of the piezo electric type. The latter may be seen on the right of the complete unit, and is, in appearance, somewhat similar to the ordinary balancedarmature type of loud-speaker. The circular-box arrangement contains the plezo crystal, and connection from this to the centre of the cone is made by means of
a pivoted stylus not unlike an ordinary gramophone

ratios are obtained by the aid of ten sockets and four plugs, two of which are joined to the transformer Anmary, and two to the output leads from the recelver. shows three tables under which various values are given, and shows instantly which sockets and which coloured plugs to employ. Thus matching may be carried out very quickly, and there is no hit-or-miss principle involved. The tables show that the approximate load may vary between the limits of .75 ohms and 24,000 ohms, and thus it should be possible to match this speaker to practically any existing combination. In the unlikely event of the exact load required not being given in the instruction leaflet, it should be quite matter to select a probable valuc and try adjustments on either side in order to arrive at the best results. The speaker has been thoroughy tested with various commercial rehas been found has been found simple matter to do this, and the results obtainable from the speaker are fully up to
The Rothermel dual loud-speaker.
to the cone centre is firmly made by means of a soldered joint. The cone is held in such a manner that it appears strument, and the overall diameter is 8 in. The other unit on the complete assembly is a de luxe P.M. model, and this has a cone of 7in, with the standard permanent magnet and input-matching transformer. The piezo unit is connected to the transformer on the M.C. unit, one lead belng fixed and one provided with a plug so that matching may be accurately carried out. The baffe upon which the two speakers are mounted is of tin. plywood. The combination was tested and found to give very good results indeed, the higher notes in the scale being remarkable for their clarity and brilliancy, whilst other notes had an added richness, presumably due to the better reproduction of the harmonics. Naturally, the best effects are experienced when the receiver is of the type which will reproduce the higher frequencies, and this was noticeable when a flaty-tuned receiver was employed in place of a very sharply-tuned superhet. life reproduction was very suitable instruments became much more realistic when this combination was employed in pace of wen this moving-coil unit. The cymbals, piccolo, violin, piano, and various jazz-drum effects were particularly noticeable in the improvement of balance which was obtained, and the speaker should certainly appeal to those who are in search of better reproduction. The price of this particular combination is $£ 5$ 2s. Ouf., whilst the viezo unit alone costs 558 . Other combinations are obtainable at prices down to $£ 410 \mathrm{~s}$, and these, of course, incor. porate different models of the moving-coll unit.
R. \& A. "MULTEX" REPRODUCER
T HIS loud-speaker is claimed, by the makers, to market. By the term "all-purpose" is on the application of the speaker to any existing receiver, irrespective of whether or not a speaker is already incorporated in the receiver, and also independent of the type of such a speaker, The illustration shows the cabinet model (costing 45s.), whilst the unit itself is also obtaingble without the cabinet at 30 s . The speaker is of the permanent-magnet type, having an $8 i n$. chassis, and a special material is used for the diaphragm. It is in the input transformer, however, that the novelty is displayed, for this provides no fewer than iwenty-seven different ratios-twelve high ratios for triode and pentode Falves; six ratios for Class B and other push-pull circuits, and nine low ratios for use with a low impedance additional reproducer. These various
the usual high R. and A. standard.

NEW MULLARD 3 IN 1 BATTERY VALVE
MESSRS. MULLARD announce that in the near future they will be issuing their first battery double-diode-triode. This will be known as the known as the T.D.D.4). The usual two diodes and triode will be incorporated, and the triode charaoter. istics are:-

Impedance, 12,000 ohms,
Mutual Conductance $1.4 \mathrm{~mA} /$ Volt.
The valve will be issued with metallized bulb only, and the base will be of the standard five-pin type, the grld connection being made to the top cap.

loud-speaker manufaciured
bu Reproducers and Amplifiers, Lid.
of the National Institute
of R
pationa No Engineering is a port to a Well-pald
post in the
industes

SEND TO FOYLES FOR BOOKS!

New and second-hand books on Wirelcss and on other subjects. Over two million volumes in stock. Catalogres 119-125, CHARING CROSS RD., LONDON, W.G. 2 Telephone: Gerrard 5660 (7 lines)

(Continued from previous page)

 W/B g-PIN VALVEHOLDERTHE Lliustration below shows the new W/B moulded new bakelite valveholder, designed especially for the shortly pin valves which will appear on the market in practically a circle, and to pensure accurate registration when plugging the valye into the holder, an arrow is engraved on the holder. This

A value-holder for the new 9-pin valves. This is a W/B component.
arrangement is being adopted on all the new holders, and assists in getting the valve in the correct position without the risk of forcing it in the wrong way round. This particular model costs 2 s . 3 d . Chassis-type holders will be a vailable at a later date.
T.M.C. HYDRA CONDENSERS

THE well-known continental condensers which bear the Hydra trade mark are now made in this country by the Telephone Masufacturing Company, this is being increased from present available, and to meet every demand for a high-class condenser of to meet every demand for a high-class condenser of received a number of samples, one of which is illustrated below. This is the 4 mud. 750 volt D.C. working type, and costs 13s. Gd. There are a number of novel features incorporated in these condensers, one of which is the method of incorporating the complete condenser

The new T.M.C. Hudra condenser.
unit in a sealed paper container, thus ensuring that there is absolutely no possibility of atmospherle conditions having any effect upon the condenser. This process is carried out after the condenser is assembled, customary way or composition filling It will be noticed too that terminals are not fitted to these condensers, but nent soldering lugs project from the bakelite top of the condenser and these are slotted and well tinned, thus enabling a good connection to be made. These condensers are available in all capacithes from 1 mfd . upwards, with voltage ratings from 250 to 750 volts. In addition, blocks are obtainable with varions combinations, and these will be described in a future issue.

MARCONI Q.P. 21 VALVE
WE recently mentioned in these pages that the pentode valve for use in tha ouiescent push-pull arrangement, and this valve was known as the Q.P.21. The makers have now decided on the price of this valve, and it is 22 s . 6 d . The ordinary pentode costs 16s. 6d., and therefore the price of this new double valve is quite reasonable, as there are two complete pentodes incorporated in the glass buib, and the only additional components required are the input and output transformer or cholie).

the
of Condensers Mansbridge - type
ency at a popular price. Tested to 500 Volts. Insulation resistance 5,000 megohms per mfd. Walnut finished Bakelite case with large terminals $.5 \mathrm{mfd} .1 / 9 \quad 1 \mathrm{mfd} .2 / \mathrm{m} \quad 2 \mathrm{mfd} .3 /=$ Write for full Cotalogue to:
GRAHAM FARISH LTD., BROMLEY, KENT.

SCIENTIFIC SUPPLY STORES (Wireless) LTD. 126 Newington Causeway, Southwark, London, S.E.1. Dept. P.

DRACTICAL LETTERS FROM READERS

The Editor does not necessarily agree with opinions expressed by his correspondents. All letters must be accompanied by the name and address of the sender (not necessarily for publication).

Soldering Tags or Terminals
Sir,-I have just finished reading the second batch of letters on the question of "Soldering tags or Terminals," and would like to give my own views. Dealing with terminals, they are an advantage for anyone in lodgings who cannot always heat a soldering iron when required. Also, when changing one or two components it is quicker to loosen terminals than to सेait for the iron to get hot. Against that is the fact that when constructing a big set, undoing terminals, making loops in the wire, and then screwing on the terminal again takes a long time.
Turning to soldering, if one possesses an electric iron that is a definite advantage. Also, it is not necessary to be so particular when cutting the wire for connections and, when building a four or five-valve set, it is quicker to solder ; also it is quicker to unsolder a number of connections than to undo terminals.-S. Daniels (East Ham).

In Favour of Terminals

Sir,-I think you err in assuming that a soldered connection is the more popular one. Personally, I much prefer the terminal. Soldering takes longer to prepare, requires a clean heat, and is messy. The great trouble is the mentality of manufacturers of components. Time after time I have, in putting up a set, substituted a nonrecommended part-because of the ridiculous terminals which are on the component. Sets of to day are mueh more intricate than five years ago, and their parts placed by designers more closely together. Large, gripping terminals are essential to take the greater number of wires meeting at a terminal, and a good one will give efficient contact. Besides, how much easier to make a change. We do not want to handle a red-hot iron when disposed to make little alteration just to see its praciical effect. -JAypee (Kensal Rise).

Eliminator for Class B Set

Sir,-Referring to a query on page 887 of the January 20th issue on the above subject, I have just had a similar experience. I purchased a new eliminator for a class $B 4$-valye set, on the assumption that my old eliminator, which did good work with the set before Class B output was added, would not suit it after the alteration. All I had read about Class B amplification seemed to justify this assumption. The set worked well with the new eliminator, supposed to be built specially for Class B sets. After working well for a few hours it suddenly stopped. I then took it off and connected the old eliminator with satisfactory results. The new one was sent back for examination and returned in a few days without any comment. The explanation, however, is, I think, obvious-a burnt out mains transformer. -Thos. W. Youngman (Derby).
"Jace" Still in Hot Water
Sir,-Having just become a registered reader of Practical Wireless, I am rather perturbed on opening this week's issue to see what I consider a very unfair
reply by "Jace" to a fellow reader"s letter. I refer to Mr. H. W. Tumer's letter relating to dance music. I won't enlarge on Mr. Turner's excellent remarks in support of that much maligned subject, but "Jace's" reply is surely proof that Mr. Turner is right as he cannot answer any of Mr. Turner's statements beyond referring to the journalist's God-send, song-plugging ! May I state with reference to the "pushing of songs down the listener's throat," that since the B.B.C. decided to pay O.B.'s, people who should know say there has been no plugging over the air. I'm afraid Jace knows little of his subject, as in another reply on the same theme, namely, dance music, he says "rhythm " is "timed movement-little to do with music, or even slovenly ragtime.
agree, with regard to ragtime! There is no ragtime nowadays, but music definitely does rely on "timed movement." Even such firm favourites in different classes as the Blue Danube and Schubert's' Un. finished Symphony would lose 80 per cent. of their charm if it were not for their distinctive " timed movements." It's about time that people realized that the modern dance band player and conductor are experienced musicians who know their subject from A to Z.-C. S. Mores (Westminster).
[All jazz music is rubbishy stuff.-JACE:]

Personal Opinions Not Wanted

SIr, -I read in the issue of January 20th the item in "Radio Ramblings" by "Jace," respecting dance music. It is apparent that Jace has an intense dislike for dance music, but in my opinion his remarks about this music, also his reply to K . Butcher in the issue of February 10 , show bad taste. I would suggest that all music is "timed movement" from one note to another.
When Practical Wireless was first published, I read that it was to be a publication differing from other wireless books, and deal entirely with the practical side of wireless, but I feel that the article in question does not deal with "Practical Wireless." I do not want to know Jace's likes and dislikes on the subject of dance music, any moro than he does mine, but if he must let readers know, he could do it in a less forceful manner.
I have read many interesting articles under "Radio Ramblings," and wish Jace would, in his Ramblings, keep more to radio.-Robert J. Wright (Ashford).
[Sorry, but opinions simply ooze from me ! -Jace.]

Too Much Dance Music

Sir,-When reading your issuc of February 10th, 1934. I noticed two letters on the subject of dance music. I am writing to support the views of "Jace." I did not read "Jace's" article, but from the context of the letters referred to, I can see that he is against modern hot jazz. Personally, I like dance music, but not the sort of dance tunes we are getting every night now, the tunes around which are written stupid little stories are, I consider, fit for only children or imbeciles. I
agree with H. W.-Turner, of Newcastle, when he says that the B.B.C. are doing all they can to meet the needs of all tastes. Your correspondent's idea that people dance to the dance music provided is, I am afraid, untrue. I have never yet come upon anyone who does so. Dancing at home, as I know it, is usually done to music provided by records.-B. O. MyersNorris (Birmingham).

A Popular Circuit

Sir,-I write to support your correspondent I. Jones (Barry), in his contention that expense is the primary consideration in the building of a new set by the amateur constructor. Of course, everyone desires efficiency, but that can be secured without heavy expenditure, as witness the circuit published in your issue for February 3rd, page 941 (figure 3). Were a variable-mu S.G. valve with a pentode output incorporated in that circuit, the requirements of the majority would be met, and it is more than probable that many constructors would build the set. I feel sure that many of your readers would welcome the publications of plans for such a set as described above.-A. Gilman (Aldershot).
New Portuguese Station: S.-W. Trans-

missions

Sir,-In a recent issue of Practical Wireless, I see you ask, in the " Round the World of Wireless" article, if any reader has heard a new 5 -kilowatt Portuguese station on about 350 metres. During the last few weeks of 1933 I heard a new Portuguese station testing after midnight. The wavelength, however, was not 350 metres but 431 metres, the wavelength of the old Parede station. The call was also given in four languages, including English, and it was stated that the station was (Continued on page 1070.)

CUT THIS OUT EACH WEEK.

-THAT an output valve is obtainable which will deliver an undistorted output of 30 watts. -THAT the anode vollage for the above valve is rated at 1,000 volts.
-THAT a directly-heated output valve may be operated from the same heater supply as indirectly-heated valves in a multi-valve recelver.
-THAT care must be exercised in choosing the value of a grid stopper resistance when using high efficiency output valves.
-THAT it is necessary to decouple the biasing circuit of indirectly-heated resistance-ccupled L.F. stages.
-THAT a British-made superhet is now obtainable which covers all wavelengths from 13 to 2,300 metres.
THAT the short-wave band in the above receiver is divided into four groups covering from 13 to 160 metres.
-THAT a three-pentode set is now possible, using an H.F. pentede, a pentode as detector, and a pentode output valve.

NOTICE

The Editor will be pleased to consider articles of a practical nature suitable for publication in Practical WIRELESS. Such articles should be uritten on one side of the paper only, and should contain the name and address of the sender. Whilst the Editor does not hotd himself responsible for manuscripts, every effort will be made to return them if a stamped and addressed envelope is enclased. All correspondence intended for the Editor should be addressed: The Edilor, Practioal Wreleess Geo, Newnes, Lid., 8-11, Southampton Street, Strand W.C. 2.

Owing to the rapid progress in the design of wireless apparatus and to our efforts to keep our readers in touch with the latest developments, we give no warranty that apparatus described in our columns is not the subject of letters patent.

RADIO CLUBS AND SOCIETIES

 Club Reports should not exceed 200 words in length and should be reccivcd First post eachmorning for publication in the following week's issue. ANGLO-AMERICAN RADIO AND TELEVISION SOCIETY
The television demonstration, held by the Uxbridge District Branch of the Anglo-American Radio and Television Society, on February 7th, created enthuliastic interest among members and the general publlc. A few moments before $11 \mathrm{p} . \mathrm{m}$. everyone was marshalled as near the television screen as possible, and "turns" vere taken in seeing the programme that followed. Miss Alicia-Markova, Miss Thea Phillips, and Mr. Govin Gordon provided fine entertainment untll 11.30 p.m., when the programme was discontinued. The eceiver, of the disc type, gave clear and distinct mages, but although detail was present at times it was not consistent. Even so, the demonstration proved that television can be quite an entertalning pastime. Indeed, the results were better than was generally expected. A further television demonstration will be held by this branch-probably upon February 28th. There will be no charges, and everyone is welcome. Full particulars of the Uxibridge District Branch, and of the Society, may be obtained from Mr.
Leslie W. Orton, 11, Hawthorn Drive, Willowbank, Uxbridge, by enclosing stamped addressed envelope.

INTERNATIONAL SHORT-WAVE CLUB (LONDON)
Under the auspices of this Club, a special world-wide
Under the auspices of this Club, a special world-wide broadcast has been arranged for all short-wa ve listeners rom Sunday February 25 h from, $3,00 \mathrm{kc} / \mathrm{s}, 79.57 \mathrm{~m}$., on Sunday, February 25th, from 03.00-05.00 G.M.T. item and also a bugle call, to identify the station. We tem and aiso a bugle call, to identify the station. We hope all readers of Practical. WIrELESS will listen to this broadcast. Reports will be appreciated either at Amsterdam or Radlo Station PAOASD, Nassaukade 93 Amsterdam, Holland.-A. E. Bear,

BOLTON RADIO CLUB

At a meeting of the above Society, held on February oth, in interesting lecture was given by Mr. Henderson of the G.E.C. He dealt with new valves, new circuits, and how modern improvements beneft broadcast Class B, double pentodes, and heptodes. Two of the company's latest sets were on view, and the meeting closed after a number of questions were asked by an appreciative audience-Sec., M. Prescott, 125, Deansgate, Bolton.

XETER AND DISTRICT WIRELESS SOGIET

The Heaviside Layer, was the title of a most interesting lantern lecture, given to the Exeter Wireless Bociety, on Monday, February 5th, by Mr. V. Searle, M.Sc. The lecturer, who had the gift of making a lifficult subject appear simple, showed that the early wireless stations gave results quite different from those predicteal by the Austin-Cohen formula, which at the tine was thought to cover all the facts. He went on to how that these results could only be explained by the enistence of a second wave arriving out of phase with the first and causing wave-motion interference. He then explained at length the theory put forward by Heaviside in England, and Kennelly in America, and Have four different methods by which the height of the layer had been measured, cach method giving a prac-
tically identical result.-Hon. Sec., W. J. Ching, 9, tically identical result
Mar
2nd Demonstration of Cathode-Ray Television, by Mr. T. D. Humphreys, of the Edison-Swan Electric Co., at the Washington Singer Laboratories, U.C.S.W. Lecture at 8.30, demonstration at $11.0 \mathrm{p.m}$. Sponsored by the U.C.S. W Scientific Society in co-operation with the E. \& D.W.S. As the accommodation will be (free) limited, admittance will be by ticket (free) only, All members and riends are Progranime Secretary at once.
5th Open Night. Members are again requested to bring magazines.

ILFORD AND DISTRIGT RADIO SOCIETY

On Thursday, the sth inst., the members of thi society heard the first lecture, to be given by Mr. David S. Richards, on the subject of "Radio on the Mount Everest Expedition, 1033," and over one hundred lantern slides were shown to illustrate it. Mr. Richards who is a past Secretary of the Society, organized the whole of the radio conmunications used on the Expedi tion. With the help of certain firms who supplied at short notice the large amount of transmitting and recciving apparatus, and the dry batteries and accumulators, not to mention motor generators, the whole consigninent was shipped to India. On arrival it was transportel to Darjeeling, which was used as a base and here the Post Oflice was turned into a radio station, for transmitting messages to the climbers who were ascending Mount Everest, 115 miles away. This station, together with an amateur station VU2CS were coupled to the main telegraph lincs, and by this
means they were able to telegraph direct-to London
flrst-hand news from the various camps on the slopes of Gverest,-Hon. Sec., C. E. Largen, 4t, Trelawney Road, Barkingside, Ilford.

SLADE RADIO

A talk on the 1201 A.O. Supersonic radlo-gram was given by Mr. R. G. Hodges, of the Radio Gramophone Development Co., Ltd., at the meeting held last week In this he described the model in question stage by stage, showing dagrams of the circult and also explaining the unusual features. An explanation was also given of the methods used for testing, and the apparatus, which includes a cathode-ray oscillograph, was described. The talk, and also the demonstration which followed, was thoroughly enjoyed by the members.-Hon. Sec., 110, Hillaries Road, Gravelly Hill, Birmingham.

LEICESTER EXPERIMENTAL SHORT-WAVE

> SUCIETT

This Society has recently changed its name to the Leicester Amateur Radio Society, to enable the Society to cover a greater scope of radio interest. The Soclety holds its meetings at the Turkey Cafe, Granby Street, Leicester, fortnightly. It has a membership of nearly one hundred, and the subscription is hatf a crown yearly. The following lectures will be given during the ensuing quarter.

Feb, 27th-H. S. Hughes, Subject: Amplifiers.
March 13th-Westinghouse and Saxby Sigual Co. Subject: Westinghouse Metal Rectifiers.
Mareh 27th-General Meeting.
April 10th-Members' Dinner.
April 24th-Ediswan Co. on Cathode-Ray Oscillograph and its application to Television.
During the summer months we hope to arrange visits to the B.B.C. short-wave stations and Daventry, to the Post Office at Rugby, and to other places of radio interes. glease into touch with the Secretary, A Stimpson, 88. Welford Road, Leicester.

THORNTON HEATH RADIO SOCIET

A meeting of this society was held at St. Paul's Hall, Norfolk Road, on Tuesday the 6th inst. Mr. S. J, Mears presided. Mr. R. D. G. Mussett gave a demonstration of the all-wave UnIrad receiver. This set has three ranges, 16 to 25 metres, 220 to 550 metres, and 050 to 2,000 metres. Mr. Mussett, who designed the receiver, said that it was primarily intended for use in the tropics, and explained the methods which had been adopted to render it damp proof. So far as the circuit is concerned, Mr. Mussett explained that the H.F. valve is tuned on all wavelengths, band-pass-coupled on medium and long waves, and tuned-grid coupled on short waves to detector oseillator valve. This is band-pass-coupled to the intermediate frequency valve, which is similarly coupled to the double-diode pentode operating as diode second detector automatic-volume control and first L.F. valve. This is resistance-erpacity coupled to the power pentode output valve driving an energized moving-coil speaker. Particuiars of future Hon. Sec., Mr. Jas. T. Webber, 368 , Brigstock Road, Thornton Heath.

INTERNATIONAL SHORT-WAVE CLUB (MANCHESTER CHAPTER
The fourth meeting of the above Chapter was held at 75 , Long Street, Middleton, on February 6 th, at 8 p.m. Two transmitting amateurs, G2BK and G5XJ, both of Rovton, attended the meeting. A talk on the work of the Royal Naval Wireless Auxiliary Reserves was given by Mr. McFarlane, of Withington. From reports received from members who had been doing special listening on and around the 49 -metre band during January, it was noticed that W8XK (48.86 m .) was the most consistent and strongest DX station heard. The waveband for special listening during February was

Members of the Landon Chapter. International Shortwave Club, at a recent meeting.
fixiel as the 20 to 25 -metre band. The next meeting will be held at 75, Long Strect, Mildlleton, near Man chester, on Tuesday, March 6th, at 8 p.m. The meetings are open to all radio enthusiasts,-R. Law-
ton, Secretary, 10, Dalton Avenue, Thatch Leach ton, Secretary, 10, Daiton Avenue, Thatch Leach
Larie, Whitefleld, uear Manchester.

BATTERY!

The Booster Unit enables super-power valves to be employed with an actual saving of H.T. current.
If your Receiver is extravagant of H.T. current follow the lead of eminent designers, fit a your normal H.T. Battery. A type for all Receivers, $7 / 6$ Write for Ieaflet B.P. 2 to Sole Manufacturers.
ABAM FARISH, LTD. MASONS EILL,
BROMLEY, KENT.

 Chaw

Take advantage of
this
ADVERTISITHGU
ADVERTISING
OFFER, and save
not only on batteries, but also on
accumulator
orarging, "GOLD MODEL;"EIIMINATOR,
 and 150 r.) for 2 , 3 aud 4 Valve Sets, at $19 / 6$ represents UNEQUA ILED
VALUE Proved BEST by TEST, Direct from manufacturers. To all who purchase
thls $19 / 6$ EIMINATOR $12 / 6$ Ace
Ehargit
 1916 !
from!
P. G. WATKINS \& CO.

71, High Holborn, London, W.C.1.

EASY TERMS
 PROMPT

Any Amplion, Blue Spot, Baker, Celestion, Epoch, R. \& A., Rola, Sonochorde, Grampian, Igranic, Lamplagh, Magnavox, Ormond, W.B., or Ferranti Moving Coil Speaker Supplied.

Send 5/F only
and pay the balance by montbly instalments. No references. Entirely private and conflential. KITS, PARTS, SETS, ELECTRIC CLOCKS ON EASY TERMS. Send for list of 83 Speakers, and state requirements.
TURNADGE AND PARTNERS, LTD. Ludgate House, Fleet St., London, E.C.4.

Telephone: Central 1903.

ELECTRADIX RECEIVER BARGAINS
ENERNATIONAL Portable FTve, less valves, atted cabinet, now conditition, 45b--> Narconi Model 35, s.G., L. F., Pentode, less valves, siloping front matogany cabinet. Fair condition, $20 /$-. Three-valve battery set, oak cabinet, 17/6. Eifesca 1 -valve set. Valves and controis mounted on top panel, $5 /$.
Effesca 2 -valve set.
Vallees and controls mounted on Efescar 2-valve sel.
 3-valve battery set. H.F., D.,P., mahogany cabinet, $12 \mathrm{in}, \times 9 \mathrm{in} \times 8 \mathrm{in} ., 20 /-. \quad$ Sterling 2 -valv battery D. L. F. mahogany cabinet, 14 in . x 9 in . x 8 in . 22/6. R.A.F. 10 5-valve battery set, 2 H.F, D., L.F P., with valves, mahogany cabinet, $18 i n, ~ x ~ 7 i n, ~ x ~$
$20 /-$ Win.,
Western
Electric 3 -valve battery sets. H.F., D., L.F., mahogany cabinet, 12in. x 9in. x 6in., $22 / 6$., D., L.F., mahogany cabinet, 12 in . x 9in. x $6 i n ., 22 / 6$. Radio L.L. 6 -valve superhet transportable, green leatherette covered cabinet,
colls for $200 / 2,000 \mathrm{~m}$., $£ 3 / 10$.
UMOPHON LI polished walnut cabinet, P.M. Bpeaker incorporated, less valves, $£ 2 / 15$. Brownic less valves, $35 /=$. Brownie A.C. Baby Grand, 230 volt, less valves, $22 / 10$. Lissenola 2 - Talve battery set ess vaives, $2 / 10$. Lissenola $\begin{array}{lll}\text { ncorporating speaker, less valves, } & 25 /- & 5 \text {-valve }\end{array}$ Q.T.H. Reflex II in bakelite cabinet, less valve, $15 /$ B.T.H.E.C. Vietor III crystalline fnish metal cabinet, less valves, new condition, $30 /$. Fellows L.G.III Recelver, 3 valve, R.C. coupled, $25 /-$ Follows phone 3 -valve with built-in speaker, less valves and batteries, $35 /$ -
DHILPS all-electric model, $230 / 250$ volt A.C., new condition, £8. A.C. mains sensitive A.C. chassis, 200/250 F. S.G., L.F., Pen., valve rectifler, less valves $£ 3$, - Edison Bell 2 -valve A.C. in complete metal cabinet, less valves, 30/-. A.C. Mains Sensitive Bandpass IV, in walnut cabinct, Magnavox speaker and Falres, £6/10s. Mention Practicar Wureless when ordering. (Send stamped addressed envelope for Latest Bargain Llst "N" only.)

ELECTRADIX RADIOS,
218, Upper Thames Street, London, E.C.4 Telephone: Central 4611.
W ANTED good Modern Wireless Parts, Sets, Eliminators, Meters, Valves, Speakers, etc Spot Cash walting. Send or brlng. We pay more 142, Drummond St.0 Hampstead Rd., N.W.1.

NSTALL YOUR OWN electric wall point for Radio PARCEL (with full instructlons) consisting 10 yards Cabtyro Cable, fixing clips, safety switchplug, etc. Post froe, 7/B.-Reid's, Electrical Englneers, 578, High Road, S.W. 16.
A.C. Eliminators, Alco; 105-250 vo outputs, 60 v . 5 c .130 V. $20 \mathrm{ma},. 24 \mathrm{~s}$. ; with charger.
complete and guaranteed. -P . and D. Radio, 1, Goodinge Road, N.7.
BANKRUPT STOCK.-Brand New Components, Including Ferrocarts G.1.2.3., 29/6; Rola Class hone Pick-ups, $25 / 6$; P.T.25's, 32/6. Also Lissen phone Pick-ups, $25 / 6$; P.T.25's, $32 / 6$. Also Lissen, Norman Road, St. Leonards.

AMPLION

PLASTAPE
INDOOR AERIAL
10 AIR SPACED $\left\|\begin{array}{r}\text { 15 FEET } \\ \text { INSULATED }\end{array}\right\| 2 / 6$

(Consinued from page 1068)

situate about sixteen miles from Lisbon and operated by the Radio Club of Portugal. The strength of the station was R6.7 on the loud-speaker with slow fading. The programme consisted of gramophone records. Reports on reception were asked for, but I did not note the address.

May I draw your attention to a reply you gave Searcher (Glasgow), in "Replies to Broadcast Queries," in the January 20th issue of your paper. You give the answer to his first query as PRBA, Rio de Janeiro, Brazil, on 36.65 metres. Early last year I received a Brazilian station on 36.65 metres, and the call was given in English, and reports asked for. The call was given as PRA3, A Voz do Brasil (The Voice of Brazil), and the station was operated by the Radio Club of Brazil. I sent them a report and received a postcard verifying my reception of the station. The informa tion given on the card is that PRA3 transmitted simultaneously on $860 \mathrm{kc} / \mathrm{s}$ and $8,185 \mathrm{kc} / \mathrm{s}$. The address of the station isBroadcasting Station PRA3, The Radio Club of Brazil, Rio de Janeiro, Brazil.

Long may your paper continue on the same lines as it does at present.-Duncan T. Donaldson (Leven, N.B.).

\Rightarrow CATALOGUES S. RECEIVED

To save readers trouble, we undertalie to send on catalogues of any of our advertisers. Nerely state. on
a posteard, the names of the firms from whom you require catalogues, and address it to "Catalogue" Southampton
advertisers make
strand. London.
hould ie enclosed eith applications for postape, thit

wearite components

CBE name "Wearite" on nny radio componen stands for quality and dependability as constructors all over the world already know, For o ver fourteen years the firm of Wearite has been recte as makers of wireless components of the highest class In a well-illustrated booklet, just issued, a full range of "Wearite" components in accordance with the latest practice is described, including "Nucleon" iron-core coils for "straight" circults, H.F. chokes, "Class B" and Q.P.P. components, and a new smoothcontact potentiometer for volume control, and other purposes. There are also mains transformers, and a useful range of handy and efficient switches for recelving sets and radiograms. Some of the components are fitted with a new type or terminal nut which can be tightened or loosened with flngers, pliers, screw driver, or spanner. Other components listed are a Nucleon iron-core liw inals and frame aerials formers and panels, valve-holders, and frame aerials. from Wright and Weaire, Lta., 740, High Road, Tottenham, London, N. 17.

ferrantit reetevers

HE excellence of Ferranti receivers and radiocans well known to our readers, and a fine range of the latest models is described in an a tive booklet recently issued by Ferranti, Limited. In the Lancastria series there are the Parva and Magna Consolettes, both high-class superhets, giving reproduction, power, sensitivity, and range of a high order. The Lancastria Radiogram is a fine instru ment, and is fitted with an olectric gramophone motor combined tone control and scratch filter, and a Gloria moving-coll speaker. There are also the Arcadia and Gloria series of receivers and radograms all of which are supernet models, All the instruments inciuded in of the booklet can be had on application to Ferranti, Limited, Hollinwood, Lancashire

NEW MULLARD LITERATURE

ISTENERS who are thinking of using screened (B.F.) pentodes in their next receiver should which has just been issued. The special properties of the screened pentode are fully described, and are followed by full operating data and characteristics, with curves of the two Mullard types-V.P. 4 and 8.P.4-and practical operating hints for using these valves in modern circults.

DARIO VALVES

IN a folder just received from Impex Electrical Ltd., a price list and tables of characteristios of the
complete range of Dario valves are given. Included
in the range are 2 -volt battery valves; directly-and indirectly-heated A.C. mains valves, and half and full wave rectifiers. Copies of the folder can he Victoria Street, Westminster, London, S.W.1.

"YOUR MICROPHONE"

THE history, principles and development of the boomicrophone are dealt with in an interesting which bearing the title of Your Microphone 218 has recently been issued by Electradix Radios, 218, pper Thames Street, London, E.C.4. In Relsz microphone (using Rochelle salt microphone, crystals), and siesme microphones chapter on home-made mikes and experiments, and prices and particulars of various types of Electradix meters are also included. Readers interested in the subject can obtain copies of the bookiet from Electradix Radios, 218, Upper Thames Street, London, E.C.4.

EELEX SHORT-WAVE CONVERTERS
THE problem of getting an efficient S.W. superhet has been sol produced a ved by .J. East converters of who have two-vel a range of compact converters of single and extra stage pes, the two-vaive models having an sultable for of ampincation. cone converters are are designed for recention above 1,000 metres. The wavelength range of the converter with the standard coil suppled is $15-60$ metres, although this range can be increased to 120 metres by means of an additiona coil. Copies of a booklet containing full particulars can be obtained from the above-mentioned firm at 118, Bunhill Row, London, E.C.1.

REPLIES TO BROADCAST QUERIES.

Editor's Nots: Querists must limit their queries to three per Jetter.
G. WILKIE (Leith): WIOD, Miami Beach (Fla.) on 230.6 im. This station belongs to the N.B.C (Conn.) in the same network WTIC, Hartior (Wexford): Regret, but cannot trace transmitte without call sign. ML. S. CoMBE (Carligle): We rerre to say that so far as we know there is no completelist published. T.O.I. PIoK (Northabierton): We cantrace the following call signs-G6KV, A. R. Dellbridge, "Normanhurst," High Road, Laindon Hills (Lissex) G600, T. Woodcock, 8, George Strcet, Bridlington (Yorks); G2DQ, H, Collin, Highfields Cottage Rectory Grove, Southend Road, Wickford (Fissex) G2II, R. C. Horsnell, "St. Neots," Wick Drive Wickford (Essex); G6FR, A. Freeman, 2, Carpenters Road, Lozells, Birmingham ; Call sign G605 is muti lated; if G601, Major J.' Timbrell, King Ed. VI School, Stourbridge (Worcs.) ; G2XU, C. W. Shillam 36, Bayswater Avenue, Redland, Bristol; G6MF M. Munroe, 1, Paisley Avenue, Edinburgh; G5SY W. B. Sydenham, B.Sc., "Sherington," Cleveland Road, Torquay (Deron) ; G2NN, F. Crocker, "Deep side," 17 , Cross Deep, Twickenham (Mdx.) ; G2CB W. H. Matthews, 132, Hainault Road, Romford (Essex), Not G28L, but if G2AL, W, Histead, Briar 6 Brian Road, Smethwick (Starfs) WiSC, First Corps Corps Area Radio Club, AARS, Army Base, 666 Summer Street, Boston (Mass.), W1BTA, W. W Oliver, 2, Florence Street, S. Portland (Maine) W2AOG, F. L. Seufert, 30, Palmer Strect, Bloomfield (N.J.) ; W'́PT, S. P. Marion, 347, East 65th Street Now York City : W3US ${ }_{2}$ C. G. Roberts, 200, Highland Street, Moorestown (N.J.) W3TA(T ?), A. H. and T. G. Ross, 421, West Johnson Street, Germantown Audubon (N.J.); W3EX, A. Morley, 1,916, S. 57th Street, Philadelphia (Pa.) W4W 28, Hudson Street, W. Asheville (N.C.); W9GLS J. C. Thomas, 361, 4 th Street, David City (Neb.) WوAJJ, F. E. Young, USNR, Minnesota Boat Club Raspberry Island, St. Paul (Minn.) ; W9BHD, F. H Vandenberg, 4,036, South 22 2 Avenue, Minneapolis (Minn.); Regret, but cannot understand the other calls you give, as all U.S.A. amateur call signs include one figure; if W2BYM, M. J. Cranmer, Union A venue Lakehurst (N.J.); if W8CYT, E. C. Wood, Brewerton (N.Y.) ; if W2ASQ, B. J. Toegel, 172, Brook Fall Avenue, Townley (N.J.) ; ON4BI, M. Muhr, 40, Rue Vinave d'Ile, Liége, Belgium; PAOBK, A. Moerman, Schoonbergerweg 16, Rotterdam, Holland; FACs S.S. Castor; Surely PAOCK, and not CAOAK PAOCK is given as J. G. Spiering, Balistrasse 45 , CJR, Wakman sound CJL, Selwyn Inlet (B.C.) C.J5, but if CJY, Jackson Bay (B.C.). SHORT) not Bristol): (1) Moscow (U \& y,). SHort. WaVE vith Alma atnoscow (U.S.S.E.) on 50 m . Working (2 and 6) Rearet but cannot trace without of kior 3) G6RX, Rugby working with Montreal, (4) Eithe W8XK, East Pittsburgh (Pa_{a}) on 48.86 m . or W2X甘 Warne (N.J.) on 40.02 m ., (5) G2DQ, H. G. Coliin Highflelds Cottage, Rectory Grove, Southend Road, Wickford.

If a postal reply is
desired. a stamped ad. desired. a stamped ad.
dressed envelope must be enclosed. Every a uery and drawing
which is sent must bear the name and address of the sender your gueries to the Editor. PRACTICAL WIRELESS, Geo. Newnes. Led., 8-11,

SPECLAL NOTE.

We wish to draw the reader's attention to the fact that the Queries Service is intended only for the solution of problems or difficulties described in our pacs from articles receiver. described in our pages, from articles appearing in our pages, or on general wireless matters.
(1) Supply eircuit diagrams of complete (1) Supply eircuit dia
(2) Suggest aiterations or modifications to receivers described in our contem-
(3) Suggest
(3) Suggest alterations or modifications to (4) Answer querivers
(4) Anser queries over the telephone. which are sent to us should bear the nangs and uddress of the sender.
D.C. RECEIVER WARTED.
recently studied your D.C. Ace, but this did not fuini all my requirements. should be gia did know anxiously waiting for some other details from you for D.c. mains users. Can you cater for us, please? "T. Y. (Hackney).

We are at present perfecting a D.C. receiver, and as soon as all details are settled it will appear in our pages. We quite realize the need for D.C. apparatus, but we However, we have not forgotten them, and, as stated, However, we have not forgotten them, and, a

A.V.C. UNITS.

" Will you kindly inform me whether there is any other automatic volume control unit than the Varley? I want one which works on the same principle and has similar connections."-E. L. (Sheringham).
Messrs. Wright and Weaire make a similar unit, choke is included as part of the complete circuit arrangement. In the Wearite component no choke is included, and therefore this component has to be purchased separately if it is desired to incorporate reaction in the detector stage. We trust this is the information you require.

VALVE WANTED.

"'I have added a second L.F. stage to my mains receiver, and the circuit is enclosed. You will see that the output current totals 50 milliamps as the set now stands, and the maximum current from the
rectifier is 60 mA . I want a valve to place in the new stage which will just load the rectifier, and will give stage which will just load the rectifier, and will give
maximum amplification. could you please let me know which valve to get and give me the value of the biasing resistance?"

You have 10 mA to spare to fully loud the set, and therefore you should obtain a Cossor 41 MLF valve, which has a normal anode current of 9 mA . The impeeance of this valve is just under 8,000 ohms, and you show on your sketch. The grid bias at maximum you show on your sketch.
anode volts is 5.5 volts, a nd you will therefore require a 600 -ohm resistance in the cathode lead for biasing.

MAINS SUPPLY VOLTAGE,

I have an old relative living in Barnstaple, and she wants me to make her a set to work without any trouble to the house but she does not know what type of supply it is. I have not been there for some time, and do not know myself what it is. Is it possible for you to tell me the supply and recommend one of your sets that would suit her?"-G. R. E. (Hampstead).
So far as we can trace Barnstaple has a D.C. supply rated at 230 volts. You would therefore need a D.D. receiver, or aiternatively one of the laniversal type. valves, and this would be most suitable for a nontechnical user. Full details were given in Practical Wireless for October 7th.

TELEVISION MOTOR UNSUITABLE.

"II have now finished my television receiver puilt from your recent Portovisor instructions. I could not afford the special motor which you specified, and I also made my own disc. When 1 first switched on I could get nothing. After several nights experiment and alteration of my wireless set ! have succeeded in getting something but 1 feel that it is not right yet. When I switch on after 110° clock I get a lot of lines running across the opening, and sometimes these lines come section of a sheef of postage stamps. I can't get the pictures any bigger to fill the opening. They seem pictures any bigger to fill the opening. They seem them larger, Can you help me? "-W.E. R. (Chorley).

Undoubtedly, your motor is unsuitable. The small pictures indicate that the motor is not running fast enough, and you should be able to verify this by observing the direction in which the dark lines pass just before the pictures form up. is is in the motor dark lines will appear to pass downwards across the

DATA SHEET No. 75

Cut this out each week and pastc it in

> a notcbook.

HIGH VOLTAGE OUTPUT VALVES

Maker	Type	Anole	Griad	$\begin{aligned} & \text { Ondis. } \\ & \text { torted } \\ & \text { Outpot } \\ & \text { Oimill: } \\ & \text { waths } \end{aligned}$	Price
Cossor	$\begin{aligned} & 680 . \mathrm{P} \\ & 680 . \mathrm{XP} \\ & 680 . \mathrm{T} \\ & 660 . \mathrm{T} \end{aligned}$	400	${ }^{40.0}$	1.000	251251301
		400 400	${ }_{75.0}^{125.0}$		
		500400400	${ }_{6}^{120.5}$	11.000	$\xrightarrow{105 \%}$
Mareoni \&Osram-.	660.TPX 2.25LS. 8 A			5,500	
		400 500	63.0 120.0	5,000 10.090	
	DA. 100		100.0100.0	10,090 30,000	210\%
Mazda .-	PP. $3 / 425$	+4,005		3,000	
Mullard -.	D0.24	400	34.092.0	6,000$\begin{aligned} & \text { 5,500 } \\ & 7,500\end{aligned}$	251-$25 \%$$25 \%$
	D0. 26	400	118.0	7,000	201
	D0.00	500	.55.0-95.0	18,000	$\xrightarrow{110 /-}$
Six SixtyTriotron .		1,000			
	$\mathrm{K} .480 / 25$	550	${ }_{36.0}$	5,500 $\mathbf{4 , 5 0 0}$	${ }_{\substack{\text { a2/ } \\ 2 / 8 \\ 2 / 8}}$
		430	50.0	5,000	
		400 400	50.0 50.0	12,000 3,500	$\stackrel{22 / 6}{451}$
Tongsram	P. 4100	400	50	3,50	14.6

opening. When they become horizontal the speed is cerrect, and if the motor is permitted to go still faster, the lines will appear to travel upwards. This should therefore assist you in determining the speed of your motor. You have probably used a snaal motor which is incapable of turning the disc at the appropriate 750 revolutions per minute. Although the disc is quite light, a certain amount of power is you should not overlook this fact.

FAILING REACTION

"I have had my commercial set now fer just over four years, and it has given remarkable service all through. Just lately, however, I have noticed a gradual failing in signal strength, and the reaction condenser had to be turned up farther each time until now 1 am at the end of the travel and cannot get any more reaction. I should be glad if you could give me any idea what is the cause of this, and how to cure it." ${ }^{\text {. }}$-H. T. (Chislehurst).
There are two possible explanations for your trouble. Firstly, the detector valve may be losing its emission and require replacing by a new and up-to-date valve. Secondly, the anoie resistance which is included for decoupling, or voltage dropping in the anode circuit of that valve may be deteriorated and so increased in voltage to the detector stage We presume, of course, that you are using a new H.T. battery and are no trying to run the receiver on the original supply.

OIAL LIGHT RATING

"I have built the Quadpack, and when fitting this in the cabinet 1 purchased a 4 -volt bulb to light the dial. when it blows, that this only lasts about three nights, when it blows. get them to last a week. Can you suggest any reason get them to last a week. Can you
for this?

The bulbs for lighting the dials should be of the 6-volt type, when you will not experience any trouble from blowing. The usual " s-volt'" bulb is actually of the 3.5 volt type, and this is overloaded when connected o a 4 -volt A.C. supply which is probably rated at, 6 amps, and is supplying only four 1 amp. valves.

NCREASING TUNING RANGE.

I would like to thank you for the suggestion in January 21 st for extending the tuning range of manuwhy 1 had not thought of this idea myself. My difficulty seemed to be to arrange the connections so as to set the wo coils in series, as this usually means disconnecting one end of the present coil. I now see that you connec the second coil in paralle! with the long-wave coil. You will therefore see that the explanation you give in the ext is not correct as the long-wave coil is in circuit when reception is taking place on 425-925 metres. Perhaps a rote of explanation in a future issue would help other readers who find this discrepancy. Reader from No. 1 (London, N.W.)
There is no discrepancy in the text. It is stated that the coil is wired in series, which is correct, and means simply that the end of the present dual-range coil is nection is permanent. The swltch which is then fitted is arranged (as shown in the small theoretical sketch in the wrinkle in question) so that the additional coil is connected in parallel with the long-wave section for reception on the new band, You have apparently been misled by the term "series," and have taken this to mean that the coil is used as a series-wound section of the complete coil.
WRONG REACTION CONNECTIONS. set with Re. an ordinary straight home-made 3 -valve set with R.c.c. and large power valve. The coil is home-made, which with the new valves Just bought seems unsatisfactory, especially on the long waves. which I am sure is nos due to insufficient decoupling I have tried various. H.F. chokes, but there is no improvement. Gan you please glve me detaits for winding a more efficient coil which will give smooth reaction on both wave-bands? I enclose a, circuit diagram showing the decoupling circuits in red." - H. $\$$. (London, E.c.3).
You have fallen into a very old trap, H. S., whel wiring your reaction circuit. The purpose of the H.F. choke is to prevent the passage of the high-irequency currents into the low-frequency section of the receiver, and the currents which are so choked back are em ployed for reaction purposes. Therefore it is obvious that the reaction connections must be made from the a node side of this choke, and not from the output or L.F. side. You have fitted a by-pass condenser to the anode side of the choke, and this will effectively by-pass the H.F. current, leaving none at the other end of your choke for reaction purposes. In addition, you have wrongly connected the decoupling resistance in the detector stage. As you have drawn your sketch you are using the 50,000 ohm decoupler as a coupling reslstance, and the 500,000 ohm resistance which you intend for a coupling resistance is simply acting as
a grid stopper on the L.F. side. The L.F. side of the H.F. choke should feed the L.F. valve via the . 01 condenser and the junction of choke and condenser should go to H.T. positive through the 500,000 and the 50,000 ohm resistances in series. The 2 mfd . decoupling condenser should bo joined between earth and the junction of the two resistances.

FREE ADVICE BUREAU COUPON

This coupon is avallable until March 3 Trl,
1034, and must be attached to all letters containing queries.
PRACTICAL WIRELESS, 24/2/34.

Miscellaneous Advertisements

Advertisements are accepted for these
columns at the rate of $3 d$, per word prepaid - minimum charge $3 / \mathrm{p}$ per paragraph-and must reach this office not later than Tuesday for the following week's issue. All communications should
be addressed to the Advertisement
Manager, "Practical Wireless," 8 South. ampton Street, Strand, London.

PREMIER SUPPLY STORES

offer the following Set Manufacturers' Surplus New Goods at a fraction of the original cost; all goods guaranteed perfect: carriage paid over $5 /-$, under /- postage 6d, extra (Ircland, carriage forward) REMIER SUPPLY STORES announce the
purchase of the entire stock of a world-famous purchuse of the entire stock of a world-famous Continental valve manufacturer, All the following ypes of standard mains L. Power. Directly heater 6-watt Pentode. Directly heated 9 -watt Pentode. Hion Screen-grid. Fariable-Mu grid, low nagnincation screen-grid- variable-miu Screen-grid. 250 vort 60 miliamp. ful-wave rectifers. THE following types 5/6 each. Indirectly-heated Rectifler. 500 v. 120 ditto, 6/0. Dario Battery Valves 4 V . flament. Set of 3 , consisting of Screen-Grid, Detector and Power or Super-Power, $0 / 6$ the lot. ower or Super-Power, 2/6.

- LIMINATOR Kits, including transformer, choke, resistances and diagram, $120 \mathrm{v}, 20$ m.a., $20 /-$; tricklo charger $8 /-$ extra; 150 v . 30 milliamps., with 4 v . charger 8/. C.T. L.'T., 25/-, trickle charger $6 / 6$ extra; $2-4$ amps. C.T. L.T., $25 /$, irickie charger $6 / 0$ extra;
$250 \mathrm{v}, 60$ milliamps., with $4 \mathrm{v} .3-5$ amps. C.T. L.T., $350 \mathrm{v}, \mathrm{H}^{60} 300 \mathrm{v}$. $60 \mathrm{~m} . \mathrm{a} .$, with 4 volts $3-5 \mathrm{amps}$. C.T. L.T., $37 / 6 ; 150$ volts 50 milliamps, $27 / 6$.
A MERICAN Triple Gang 0.0005 Condensers, with 20 Henries, $2 / 0$; 40 milliamps. 25 hys., $4 / \cdot$; 65 milliamps. 30 hys., $5 / 6 ; 150$ milliamps. 30 hys., $10 / 0$; 60 milliamps. 80 hys., $2,500 \mathrm{ohms}, 5 / 6$.
-ARLEY Pick-up, complete with arm and volume QRITISH
$B_{\text {meters, with mains switch }}$ wincound Potentio-

DREMIER British-made Meters, moving iron, flush mounting, accurate, $0-10,0-15,0-50,0-100$, 0-250 ma, $0-1,0-5 \mathrm{amps}$; all at $0 /-$. 5 factured by Philips, input $100-120 \mathrm{v}$. or $200-250 \mathrm{v}$., output $180-0-180$ volts $40 \mathrm{~m} . \mathrm{a} ., 4 \mathrm{v}, 1$ amp., $4 \mathrm{v} .3 \mathrm{amp} .$, $4 / 6 ; 200-0-200 \mathrm{v} ., 4 \mathrm{v}$. $1 \mathrm{a} ., 4 \mathrm{v}$. 3a., $4 / 6$.
A LL Premier Guaranteed Mains Transformers have A Engraved Terminal Strips, with terminal connections, input $200-250 \mathrm{v}$. $40-100$ cycles, all windings paper interleaved.
DREMIER H.T. 8 Transformers, 250v, 60 ma., primary, $15 / \mathrm{F}$; with Westinghouse rectifier, $\mathbf{2 5} /-$ 4 V. 3a. C.T.; 6 v .2 a . C.T., 9v, 1a., 12v. 1a., $7 / 6$ each; 4 4v. $8-5 a ., 22$ v. 1a., $8 / 6$ each; 10 v. 3a., 14 v. $4 a$., 10/-each.
DREMI

REMIER H.T. 9 Transformer 300 v . $60 \mathrm{~m} . \mathrm{a}$, with 4v. 3-5a. and 4\%. 1a. C.T., L.'T., and screened pimary, 15/-; with Westinghouse rectifier, $26 /-$
PREMIER H.T. 10 Transformer, 200 v . 100 m.a., screened primary, $15 /-$; with Westinghouse rectifier, 2B/-iEMIER Mains Transformers, output 135 v . 80 m.a. for voltage doubling, $8 / 6 ; 4 \mathrm{v} .3-4 \mathrm{La} . \mathrm{C} . T$.,
L.T., $2 /-$ extra; Westinghouse rectifler for above, Miving 200 v .30 ma . $8 / 6$.
DREMIER Mains Transformers, output $250-0-250 \mathrm{v}$ DREMIER Mains $60 \mathrm{ma.a} 4 \mathrm{v}$. 3 -5а., 4 v . 2-3a., 4 v . 1-2a. (all C.T.) screened primary, 15%
DREMIER Mains Transformers, output 350-0-350\%. with screened primary, $15 /$ m.
DREMIER Mains Transformers, output 400-0-400v. crimary, 15 \%
Price versato Transformers, $100-110 / 200-250 \mathrm{v}$., or
$\mathrm{M}^{\text {ULTI Retho }}$ Sereed Wire 3d. per rard 1 sereened wire 3d. per yard.
$C^{\text {ENTRALAB Potentiometers, }} 50,000,250,000$
$\mathrm{R}^{\text {ELIable }}$ Canned Colls with CIrcuit, accurately R matched, dual range, $3 /-$ per coil Please state whether Aerial or H.F. required. Ditto iron core, $3 / 6$. $P^{\text {REMIER L.T. Supply Units, consisting of Premier }}$ Transformer and Westinghouse rectifer, input $200-250 \mathrm{v}$. A.C., output, 2v. tamp., $11 /-; 8 \mathrm{v}$, damp., $14 / 6 ; 8 \mathrm{v} .1 \mathrm{amp} ., 17 / 6 ; 15 \mathrm{v} .1 \mathrm{amp} ., 10 /-; 6 \mathrm{v} .2 \mathrm{amp}$. 27/8; 30 v . 1 amp., $37 / 6$.
$\mathrm{M}^{\text {AGNAVOX D.C. } 152,2,500 \text { ohms, } 17 / 6 ; \text { D.C. } 154, ~}$ $37 / 6$, ali complete with ,.C. 152 Magna, 2,500 ohms, state whether power or humbucking coils; please rersion kit for 7in. cone, $18 / 6$.
CRAMPIAN M.C. Loud Speakers, 2,500 ohm field, 9in. cone, handles 5 watts; $21 /$.
CRAMPIAN P.M. Loud-speakers, gin. cone, handles
4 watts; $18 / 6$.
(Continued at top of column threc)

nembind
Strict Privacy Guaranteed -we deal with you direct
 SENTONTDAYSTRIAL

N.T.S.

CLASS 'B'
SENT ON 7 DAYS' TRIAL

Roume or pentrod

DOWN

Described in the Telsen

N.T.S. ELIMINATOR

FOR A.C. MAINS. SENT ON 7 DAYS' TRIAL

Any items advertised in this journal C.ASH, C.O.D. H.P. Send for quotation by return.

New Cimes Salesco

 56, LUDGATE RILL, LONDON, E.O.4.- Dear Sirb
(a) Please send me
(b) I enclose Oash Deposit

NAME
AdDress
\qquad

(Continued from column one)

B.T.H. Truespeed Induction Type (A.C. only) Elec B tric Gramophone Motors, $100-250 \mathrm{v}$; ; 30/COMESTERN TLLECTRIC Condensers, 250v. working, $\mathrm{W}^{2} \mathrm{mifd} ., 1 /-2 \mathrm{mfd} .400 \mathrm{v}$. $1 / 6$.
SPECLAL Offer of Wire Wound Resistances, 4 watts, S any value up to 10,000 ohms. $1 / ; 8$ watts, any value up to 15,000 ohms, $1 / 6 ; 15$ watts, any value 11 p
to 50,000 ohms, $2 /-25$ watts, any value up to 50,000 to $5 m$, $2 / 6$.
POLAR 2-gang, with complete dise dri
condenser and trimmer, $0.0005,6 / 6$. F DISON BELL Double Spring Gramophone Motors sound job, 15/: MPLON Loud-speaker Units, 1/9, conA plete with 12in. cone and chassis, $3 / 11$ each Worth treble.
$\mathrm{O}_{2 / 6 ;}^{\text {R/brass ranes, with trimmers, } 3 / 6 \text {. }}$
W IRE Wound Potentiometers, 15,000 ohms, $1 / 6$ 50,000 ohms, $27 ; 500,000$ ohms, 3
LIOME Radio Microphone, com
A LARGE Selection of Pedestal, table and radiofraction of original cost for callers.
W ESTERN ELECTRIC Mains Transformers W 500-0-500v. 150 m.a., $4 \mathrm{v} .3-5 \mathrm{a} ., 4 \mathrm{v} .2-3 \mathrm{a}, 04 \mathrm{v}$ $2 \cdot 3 \mathrm{a} ., 4 \mathrm{v} .1 \mathrm{a} . \mathrm{C.T.}$,4 v .1 a . C.T., $19 / 6$.
1,000 Ohm 150 m.a. Wire Wound Variable Resistance, $2 /-$; Burndept 2 -watt resistances, all values from 0.5 to 50 ohins. 3d. each : holders, 2 d
each. C.C. Condensers, 250 v . worktng ; 2 mif., $1 / 9$.
T.C.C. Electrolytic Condensers, 440 volts working, $8 \mathrm{mf}, 3 /-; 15 \mathrm{mf}$., 50 v . working, and 50 mf .12 v Orking, $1 /-; 25 \mathrm{mf}$. 25 v . Working, $1 / 3$
T.C. Block Condensers, 250 v . Working, $2 \times 2 \times 2 \times$ $0.1,2 /-; 2 \times 2 \times 2 \times 1,2 / 3$; the above condensers t same price by Dubilier 300v. working.
H.M.V. Block Condensers, 400 v . Working; $4 \times 4 \times 1$ $1 \times 0.5,4 / 6$. $D^{\text {UBILIER }} 4 /-8$ mfd. dry electrolytic, 450 v . working, $3 /$ THE Following Lines 6 d . each, or $5 /-$ per dozen.-- Chassis valve holders, 5,6 or 7 in, screener screen-grid leads, any value 1 -watt wire end resistances wire end condensers, 0.0001 to 0.1 , R.I. . 005 varicap DLEASE mention PRACTIOAL WiRELEES when
PREMIER SUPPLY STORES
20-22, High Street, Clapham, S.W.4, MACaulay 2188 Closed 1 o'clock Wednesdaya; open to 9 o'clock Saturdays. Nearest Station, Clapham North, Underground.
THE following valves are guaranteed unused and peteristics will be exchanged and from the makers A.C/Pens, P.T.4s, A.C.S.G./V.M.s, Pen.4.V. M. Y.S.G.s, D.P./Pens. A.C.S. $2 /$ Pens. M.M.4Vs. P.T.625s, V.M.S.4s, D.C.2/Pens, D.P.T.s PM.24M.s, M.PT 4s, V.M. 4 V.s, A.C.S.1/V,M,s, P.M.24B.s, D.C.2.S.G.V.M., S.P.4s, $11 /-$; M.S. 48, M.S.4B.s, A.C.S.G.s, S. 4 V.A.s, S.4.V.B.S, M.S.G.L.A.E, D.S.B.s, A.C.S/2s, D.C.2S.G.s,
 354 V.s, A.C.2/M.L.s, $41 \mathrm{M} . \mathrm{H} . \mathrm{L}, \mathrm{s}, \mathrm{U} .10 \mathrm{~s}$, U.U. $60 / 250 \mathrm{~s}$, M.H.48, M.H.L.48.7/6; V.S.2s, 215 S . G.S, $220 \mathrm{~S} . \mathrm{G} . \mathrm{s}$,

 H.210s, La10s, L. $2 \mathrm{~s}, 4 / 4$. All types of Brand New American Valves in Stoek, first-class makes: 247s, $235 \mathrm{~s}, 224 \mathrm{~s}, 236 \mathrm{~s}, 237 \mathrm{~s}, 233 \mathrm{~s}, 18^{\circ} \mathrm{s}, 15{ }^{\prime} \mathrm{s}, 59^{\circ} \mathrm{s}, 58^{\prime} \mathrm{s}, 89{ }^{\circ} \mathrm{s}$, | $2385,239 \mathrm{~s}, 244 \mathrm{~s}, 12$. | |
| :--- | :--- |
| $242 \mathrm{~s}, 232 \mathrm{~s}, ~$ | $211 / \cdot$ | or Erie resistors 1 watt type, 7d. Westinghouse rectifiers unused H.T.S, $10 /-$; H.T.9, H.T.10, $11 / 3$. Dubilier or T.C.C. electrolytic condensers 8 M.F.D., 3/9. Magnavox, D.C. 152 (2,500 ohms) or 6.500 ohms, 9 in. cone, $25 /-$ Supers uned DC 12/G AC. (Westinuhouse) 25 ators, unused, ${ }^{\text {C. }} 12$. A.C. (Westinghouse) 25/Carriage Paid. Cash with Order or c.o.d.-Ward, 45, Farri

RAD-AUTO-GRAM buy Modern Second-Hand
port.
$\mathrm{E}^{\text {RICSSON }} \mathbf{1 7 s}$. $3 / 1$ L.F. Transformers. List Price, 2s. 3d. post free U.K.-Pioneer Radio, Coptic St., REPAIRS-REWINDING-OVERHAULS. Loud 8peakers, $4 /-$; Blue Spots, $5 /-$ New cones fitted
Moving Coil speakers, $6 /-$. transformers, etc., quoted for. Special componente transiormers, etc., quoted for. Special components
and sets made to order. Quick service. Laboratory and sets made to order. Quick service. Laboratory
tested. Repair Dept. C., Weedon Power Link Radio Co., 80 , Lonsdale Avenue, East Ham, London, E.6 ${ }^{\text {Co., }} \mathbf{8 0}$ r Lonsdale Avenue

Phone Grangewood

C ${ }^{\text {RAMOPHONES. }}$ to make m , Radiograms, 64 page. How Speakers, Hake 'm, 3d. Motors, Arms, Pick-Ups, Speakers, Horns, Springs, Repairs, Accordions.
Regentprac, 120 , old Street, London, E.C.1.
"TELEVISION Illustrated Constructors' Handbook, Bennett Television, Redstone Copse, Redhill.

COUTHERN RADIO'S Bargaind.-Set manuiacMARIABLE Condeensers.-Lotus 3-gang 0.0005, 12: 6 ; $\sqrt{ }$ Lotus 2-gang. $0.0005,3 / 6$; ILtus Dyblock single, $0.0005,4 / 9$ (list $9 / 6$) ; all these condensers are complete with dials, escutcheons, knobs, tully screened with trimmers, and boxed; Igranic variable, 0.0003 and 0.0005 , $2 / 3$. Hydra block condenser, 10 nifd. ($2+2+8+2+$ $1+1), 1,000$ v. D.C., $7 /$ each; $20 \mathrm{mfd}.(2+2+2+2+2$ $+2+2!2+1+1+1+1), 1,500$ v. D.C., with terminals, 4.5 mfl. $(2.25+2.25), 3 /-$; $1+1$ ved 4 mffl., $2 / 3 ; 2$ mid., $1 / 6 ; 1$ mid., 1 \int Cniversal transformer permanent magnet, with power or class B, 23/-(list 39/6) ; D.C. mains energised, all voltages, $16 / 6$; Celestion Soundex P.P.M. permanent magnet, $17 / 6$ (list 27/6); Blue Spot 100 U inductor, complete with chassis, $13 / 6$ (hist $39 / 6$) ; Celestion permanent magnet
RLUE Spot, 66 K , complete in cabinet, $16 /-$ (list B. $42 / 6)$; G.E.C. Stork, in magnificent cabinet, D/CK-UPS.-B.T.H. Senior 1934 molel, with wolume control, $28 / 6$ (list $37 / 6$) ; Blue Spot, model " 88 ,", vith volume control, 26/- (list 63/-) ; Marconi No. 19 1934), 26/- (list 32/6)

CONSTRUCTORS' Kits.-Ready Radio Meteor moving coil speaker, less valres, $33 / 7 / 6$; with valves. £4/10 (list $£ 8 / 7 / 8)$; Ready Radio S.T.400 kits, all ($4 / 17 / 6$). F and Aerials.- 10 - each (list $37 / 8$) GRANIPAK complete tuning unit, comprising (1) Completely screenel coils with built-in wavechange switch; (2) Igranic 3-gang Condenser with cover, lamp attachment ; (4) Mains Switch ; (5) Three 5-pin Valve holders; (6) Grid Leak and Condenser; (7) Engraved Terminal Board. Co
 ' B" universal output chokes, $6 / 6$ (1 ist $11(\cdot)$; Ready Radio Instamat Universal transformers, for matching any value to speaker, 11.6 (list 37/6); Rotorohm and Raaliophone volume controls, all values, $3 /-$ each ; with switch, $3 / 3$ (list 10/6) ; S.T. 500 coils, $5 / 6$ per pair : Mellesen's 8 mfd. electrolytic condensers, $2 / 9$ each ; Westinghouse metal rectifiers, H.T. 6; 7, 8, 9/3 each; Amplion loud-speaker unit,s, $2 / 3$; Ferranti choke, 20 henry $60 \mathrm{~m} . \mathrm{a}, \mathrm{b} / 9$ each ; Kolster Brandes gramophone motors, dual, for A.C. or clockwork, complete with turntable and all accessories, $110-250$ volts, $20 / 5$
each (list $63 /-$; ; Ready Radio L.F. Transiormers, $5-1,3-1$, each (list $63 /$) ; Ready Radio L.F.transiormers, $5-1,3-1$,
$3 / 3$ (list $8 / 6$); B.T.H. transiorners, $3 / 6$; Lewcos superhet 8 -way bases, complete with, valve holders, grid leak, fixed condenser, type ". 48, " $2 /$ - cach.
M ALNS Transiormers and Chokes.-Please send for 3 days of order
A LL Transiormer and Chokes Guarantecd for 12 LL Goois.
BRaNCHES at 271-275, High Rd. Willesden Green, $B^{\text {N.W.10, and at } 46 \text {, Lisle St, W. W. } 2 \text {; please send }}$ COUTHERN RADIO, 323, Euston Rd., London, S N.W. 1 (near Warren St. Tube). 'Phone? Museuni

A
CUMULATOR CHARGERS, 1 amp. 2-6v. In entilated Case with Mains Flex (Westinghouse
 Wollaston, Wellinghorough.
Microphones.-Buy from the actual makers at Rock bottom Prices. Button capsules complete for detectaphone and oo 11 Home Mike, hakelite body, 2 in. diain,, unbreakable, $5 / 6$. Table PW.11, a handsome announcer's rectangular mand Transformer, with switch, 10/6. Tall pedestal Broadcasting Model 12 B , with Microphone hung in ring, 12in. high, 18/6. Complete Deaf Ald sets to assist thuse hard of hearing, $18 / 6$. Special P.A. makes for Dance Bands and Publie adress. All parts in stock for Home Constructors, granules, blocks, diaphragms, for Lists "N" i and 2.-Electradix Radios, 218, Upper. Thames Street, London, E.C.4. Tele.: Central 4611.
$\mathrm{B}^{\text {IRMINGHAM RADIOMARTS February llst now }}$ Dacks, mains equipment, valves, short-wave gear, etc., all by renowned makers and guaranteed niew and perfect. Hundreds items 1934 goods, not junk. Send 1fd. stamp. THE SQUARF DEALERS, 19, JOHN BRIGHT STREET, BIRMINGHAM.
OUD-SPEAKERS, TRANSFORMERS, and Headtwelve months; $3 / 8$.
Mains Transformers and Elininators quoted for. 18 Hours Scrvice. Breeze, Clapper Housc, Marden, Kent.
-IGHEsT allowances made ou used wireless goods on easy termage fots nerv, Balance on sets parts bought for cash.on easy terms. Sets and parts bought for ca

THE 'GOLD.MINE' STORES
For Everything Surplus in Modern Radio. E.C. SPEAKER BARGAINS.-Special job offer. Motor P.M.M.C. Speakers. List, $45 /-$; Brand new in boxes, $12 / 6$ each; Amplion Cone Units (worth 7/6), $1 / 8$ each.
E.C. CLASS B BARGAINS.-Driver Transformers, $3 / 11$; Tapl
THE 'RADIO GOLD-MINE,' the indispensable guide to all surplus and liquidation stocks. E.C. COIL BARGAINS.-All dual range with reaction. Brownle, $1 /$; ; Screene
I.E.C. VARTABLE COXDENSER BARGAINS L. $00033_{\%} .0005$ mfd., $2 / 3$; Slow Motion Type, $2 / 11$; Duotune - Extensers (list 12/6), 2/11; S.M. Type (list 18/6), 4/10.
HE 'RADIO GOLD-MINE' will reach you by return for Sh. poist free. Send to-day. -1 mid., $0 \mathrm{l} . ; 2$ mfd., 1,$4 ; 4$ mfd., $2 / 8 ; 14$ mfd $\overline{-1}$ mid. © E.C FIXED CONDENSER BARGAINS. Dubilier and Edison Bell, Mica, O001, 2, 3, 4, 5 pe - . $0001,2,3,4,5,6,7,8,9$ mfl. i Tubula .0003 nufd., all 3 d . each ; 2,9 doz.
THE 'RADIO GOLD-MINE' for quality gools at the lowest liquidation pricés ever!
E.C. RESISTANCE BARGAINS.--Special M.M. F watt, all values to 60,000 ohms 100,000 ghns, 4 did. ; Erie, Wart, 100 values to 60,000 ohms, $1 \frac{1}{2} d$. Dubilier 1 watt, $100,000^{\circ}$ ohms, $3 \mathrm{~d}^{2}$. P Philco, 2, $10,15,16,20$ and $3 \mathrm{~m}, 44 \mathrm{~d}$. ; to 150,000 , 5 d .; to $350,000,5 \mathrm{dl}$; to 500,000-id. ;-tpaghettis, every. size to 100,000 ohms, int ; : Higher values, 7 d . ; Grid Leaks, $\frac{1}{2}$ to 3 megs., 3d, each.
HE 'RADIO GOLD-MNE.'-Don't delay, secure
 Inputs, $200-\frac{20}{0} 0 v_{1}$; Spécial lotus 80 ma.a.
 Transformer, 300 w $80^{\circ} \mathrm{m} . \mathrm{a}$, to cified with 4 F .4 a
 /11.

HE 'RADIO GOLD-MINE.'-Radio's greatest E.C. SUNDRY COMPONENT BARGANS. Lio, Special Dario L. F. Transiormers, 3.: 1, and $5: 1$,
 Gwitches, push-pull, 2 point, $4 \frac{1}{4} d$. ; 3 .
E.C. GOLD-MINE" KIT BARGAINS, represent absolutely puprecedented value. They cover a comprehensive range of up-to-date circuits which will meetevery.home constructor's requirements. Supplied
complete with diagrams, instructions and all sundries complete with dias
'THE 'RADIO GOLD-MLNE' GOLD SHEET for
1 the greatest bargain offers in Radio History
ERC- GOLD-IISE IRDN CORED CLASS
-13-III KIT at $27 / 6$ represents the greatest value Radio-has yet offered you. Actually included in each Kit ate 1 pair Class 1 Transformers (list 17/-), 1 Extenser for Automatic mave-change tuning (130-2,000
metres) (list 18 ($)$, 1 Iron Cored Coil (list $8 / 6$). Commetres) (list 18 B), 1 Iron Cored Coil (list $8 / 6$). Completely assembled metallised chassis makes construction assimple as A.B.C. No soldering. . Willigive 20 to
30 stations at yall Moving-Coil Volume. Price $27 / 0$, 30 stations at 'THE RADIO GOLD-MINE' GOLD SHEET complete details of these Kits. EC: GOLD-MINE! IRON-CORED CLASS B S.G. IV. at $35 /$, as above, but includes -two tuned.circuits, with dual nate condensers, just out Alterbative.model, CHE RADIO GOLD-MINE MAUVE SHEET for Sunyersion Kits-series ' K. D.' S. W. Adaptor, $8 / 6 ;$
$14 / 6$. E.C. ELIMINATOR BARGAINS, of ma, output, 4 voltages to 140 ₹. A.C. uodel,' $24 / 6$; D.C.,
 3/6 : 3-valvan 2 . Straight 2 valve E.C. VALVE BABGAINS.- $18 / 1$ etc. British and guarantecd: 2 v, battery, H.F, Det.-LL.FA $2 / 11$; Power, $3 / 3$; S.G., $4 / 10$; Class $\mathrm{B}_{2} 9 / 2$
THE RADIO GOLD-MINE, WHITE SHEET for Short-Wave Kits-serics ' K.W.' 2 -valve, $12 / 6$ alve, $18 / 6$; Class B III, $27 / 6$ (Adaptor, $8 / 6$).
.E.C. CABINET BARGAINS.-A wonderful range L, of high grade cabincts value $15 /-$ to $40 /-$, all at and we will send type exactly to suit.
THE 'RADIO GOLD-MINE', BLUE SHEEET for Class B Kits-Serles ' K.B'
IV, 30 (Conversiou Kit, $10 / 8$)
THE ' RADIO GOLD-MINE, at 3d, post iree is the inost greatest investment your will ever make. The

Jet produced ; with a general price level absolutely the lowest ever. The February issue-illustrated-is our best yet. It's going in thonsands! Do not delay. Send (enclosing sd. stamps) to-day.
T ONDON FAST CENTRAL TRADING COMPANY E.C. 1 (teptephone: MATM, Bartholomew Close, London, value, postage free. Under $5 / /$ value,-cash only. Over 5% cash or C.O.D.

THE 'GOLD-MINE' STORES

 0251.

ADIO Agencies, offer Set Manufacturers Brand following voltaces; state if Porg Cor Pentode. Al incorporate Humbuckers. $2,000,2,500$, or $6, \frac{50}{2}$ ohms F6 (list, $35 /-$ - at 18%; ${ }^{2} 7$ (list, $47 / 6$) at $25 /-$? Permanent Magnets, F.6 p.M. (list, $49 / 6$) at $28 /-$ F. 7 P.M. (list, £3) at $33 /$; if class "B B" Transforner, of extra. Blue spot lines: 66 K Unit (list, $15 / \%$) at 8%; 66 K unit and chassis complete at $13 / 6$, Blue Spot Pick-ups, Type 88 (list, 3 guineas), with Volume Control, at $26 /$; B.T.H. Senior, with control, de Luxe (list, 37/6), at 28/-. All goods Carr. Padd. Cash with order or C.O.D.-Radio Agencies, 4/21, Upper Marylebone street, London, w.i.
More Miscellaneous Adverts, will be found on pnge 1070

ADVERTISEMENT INDEX

Amplion (1932), Ltd

Amphion (1932), Ltd. \because Engineering Technology
Page 1070
anh nstute of Engineering Iechnology
Bulgin, A. F. \& Co., Lid.
Clarke, H.
\& Co.
(M)/c), Ltd.
Cossor, A. C., Ltd. - Inside fröt 1053
Dubilier Condenser $\dot{C o}^{\circ}$. (1925), Ltd." Inside front cover
Electradix Radios
Electradix Radios
Foyles
Graham Farish, Ltd..,
1067106
Grosvenor Electric Batteries, Lid.
Heraud, E. ${ }^{\text {He }}$
Heraud, E. J., Lid.
International Correspondence Schools
ockwood Casement Mrg., Co
London Radio Supply
Mains Power Radio
National Institute of Radio Engineering
New Times Sales Front Cön 1072
Pickettst, Ltd. Front Cover Strip, 100
Picketts
$\stackrel{\text { Pcientific Supply Stores }}{ }$
Sifam Electrical Instruments, Led.
Standard Telephones \& Cables, Ltd.
Taylor, N. Condenser $\dot{\mathrm{C}} \quad \ddot{\mathrm{d}}$
Telegraph Condenser Co., Ltd.
Tungsram Electric Lamp Wörks, Lid.
Turnadge \& Partners
Wathins, P. G., \& Co.
Westinghousc Brake $\&$ Saxiby Signai Co., Ľtd. O
Wet H.T. BatteryCo.
Woburn Radio Co..
Wobura Nadio Cn.o

NEW NUMBER ON SALE FRIDAY

NEWNES

> COMPLETE ELECTRIC CLOCK SYSTEM HIS issue surpasses in sub ject matter all previous numbers. The field of interest is greatly enlarged and the number of illustrations increased.
Articles which make an immedi- ate appeal are: Making a Battery Operated Clock System for the Home, Deep Sea Diving, A Scale Working Model Road Tractor, Garden Rail ways; Modern Petrol Engines, Model Aircraft; The British PowerGrid System Explained, Mechanical Drawings, Making Dry Cells at Home, Radio Aids for the Deaf, etc.
This fascinating journal surveys and brings to your fireside the whole range of modern scientific achievement.

THE MARCH

> PRACTICAL Mechanics

Oblanable at all Newsagents and Bookstalls, or by post 71 d . from Giorge Newnes, Lid.' 8 811,

