"PRACTICAL WIRELESS" DATA SHEET No. 1

Charging from D.C. Mains.
The simple method of joining an accumu lator to D. C. mains for charging purposes. The positive lead from the mains must be broken, and a suitable resistance inserted in this lead. A carhon or metalflament lamo forms a very rood resistance, and the table at the side show's the current passed by the different values of lamp. Of course, any form of resistance may be employed provided it regulates the current to a suitable value. An amthe current to a suitable value. An ammeter may be used to adjust this, and the charging rate should not exceed that
which is given on the label of the accumuwhich

Accumulator Charging

Notes on Carbon Filament Lamps.-Carbon flament lamps are used for charging purposes chiefly because they take almost four times as much current per candle-power as do metal lamps.
The table shows the current allowed by one lamp of the candle-power indicated on the various voltages shown.
If the lamps available are only stamped in watts they consume, to find how many such lamps are required multiply the vol tage of supply by the charging current required. This will give the total wafts required.

Current in Amperes per Lamp.	- Voltage of Supply.				At 4 watts per c.p.
	25	50	100-200	200-250	
t \vdots 1 1 2	- $\begin{array}{c}6 \text { c.p. } \\ 12 \mathrm{c.p} .\end{array}$	8 - 16 c.p. 32 c.p.	8 c.p. 16 c.p. 32 c.p. 60 c.p.	$16 \mathrm{c.p}$. $32 \mathrm{c.p}$. $60 \mathrm{c.p}$ $100 \mathrm{c.p}$.	

Example l.-Suppose the battery has to be charged at 10 amperes and the voltage of supply $=250$.
the voltage of supply $=250.10=2,500$.
Total watts required $=250 \times 10=2,500$.
Divide this value by the wattage of the lamps avilable to get the number required. Thus the number of 60 watt lamps' required $=\frac{2,500}{60}=42$ spprox: 100 -watt lamps -25 , etc.
FXAMPLE 2.-To find the current which certain number and value of lamps will allow to How.
Four lamps of 60 watts each are available and the town supply is 250 volts.

Number of lamps \times wattage of each.
Current flowing =
Voltage of supply.

$$
-\frac{4 \times 60}{250}=\frac{240}{250}=.96 \text { mperes }
$$

A Half-wave Chemical Rectifier.

With A.C. mains the current must first be rectified, This illustration shows a simple half-wave rectifier consisting of a jar containing two electrodes and an elecirolyte. The electrodes are composed of lead and aluminium the former being in the form of a flat sheet bent to form practically a cylinder. The aluminium should be in the form of a rod. The -jar is filled with ammonium phosplate, in the proportion of $2 \frac{1}{2} \mathrm{lb}$. of salts to one gallon of water. To limit the charging rate lamps may be used as described for D.C. mains. Weak ammonia should be added from time to time to the solution to neutralise the electrolyte.

CURRENT-CARRYING CAPACITY OF LAMPS.

CARBON-FILAMENT		LAMPS.
Candler	Voltage.	Current passed.
power.	110	.254
8	10	.509
16	110	1.018
32	220	.207
8	220	.509
16		.509

Neutralising Spilled Acid.-Il electrolyte is spilled, it should be immediately treated with a neutralising solution such as sorlium carbonate (soda) and water, or ammonia and water.

CURRENT-CARRYING CAPACITY OF LAMPS.

METALFILAMENT LAMPS		
Candle- power.	Voltage.	Current nassed.
8	110	.09
16	110	.08
32	110	.36
8	220	.049
16	220	.09
32	220	.18

TABLE OF ACID AND VIATER PROPORTIONS USNG ACD. OF 1.840 SPECIFIC GRAVITY.

Required Specific Gravity at $70^{\circ} \mathbf{F}$.	Water.	Acid, 1.840 Specific

ACID OF 1.400 SPECIFIC GRAVITY.

Required Specific Gravity at $70^{\circ} \mathrm{F}$.	Water.	Acid, 1.400 Specific Gravity.
	Parts by Volume.	Parts by Volume.
1.300 1.280 1.275 1.265 1.255 1.250	$\begin{aligned} & 4.5 \\ & 5.5 \\ & 6.25 \\ & 6.4 \\ & 6.65 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$

The Charging Rate.-The maximum safe charging rate of an accumulator is approximately one-tenth of its actual cappacity. For instance, of its actual capacity. For instance,
the charging rate of a 60 ampere-hour the charging rate of a 60 ampere-hour
cell would be 6 amps. Any excess would cause heating and disintegration of the plates.

Use glass, china, earthenware, or lead-lined vessels.
Pour the acid carefully into the water not the water into the acid, as this may cause spluttering and possible personal injury.

A more efficient method of using the chemical rectifier Ahown above. Four of the jars are joined as shown, shown above. Four of the jars are joined ass shown, and this resules in full-wave rectification. The jare are joined in pairs in series, and then connected back to

A Full-wave Chemical Reclifier.

"PRACTICAL WIRELESS" DATA SHEET No. 2 COILS AND COIL WINDING

FINDING THE INDUCTANCE OF A COIL.

Tuning coils are stated to have a certain Inductance. The Unit of Inductance is the "Henry," and I henry is the value of inductance which will cause a change of current of I amp. in I second upon the application of I volt. In wireless practice the tuning coils never have a value approaching a henry and therefore a smaller value is chcsen and this is one-millionth part of a henry, or, in other words, a "microhenry. Th formula for finding the inductance of a tuning coil (which has no metallic core) is:-

$$
\text { Inductance }=\frac{4 \pi \mathrm{~A} . \mathrm{N} .}{1} \times 10^{2} \text { benries }
$$

where $A=$ sectional area of the coil in sq. cms.
$\mathrm{N}=$ number of turns.
$\mathrm{l}=$ length of the coil in cm s .

ASTATIC COILS.

An Astatic Coil is a soil wound in two sections, with each section in opposition. This method of winding is known as " Astatic," and the purpose of it is to reduce the size of the external field. The fields of each section neutralise each other and so it is possible to arrange two of these coils in fairly close proximity with employing metal screens. A small screw or other stud is inserted in the coil former at the central point, and when one half of the coil has been wound the wire is taken round the stud and the remainder of the winding concluded in the opposite direction.

SHORT-WAVE COILS.

Coils for the short wavelengths need the minimum of dielectric and therefore it is usual to use air-spaced coils for this purpose. The coil illustrated is a good example of a short wave coil, in which the wire is of bare
copper having a large cross-section (16 or 18 S .W.G.). This wire should be wound round a former slightly smaller in diameter than is required in the finished coil and the turns should be wound side by side. When the required number of turns has been lide on the'wire is eut and released. It will spring out to the necessary size and the turns will automatically space themselves. Small strips of ebonite may be screwed or tied to keep the turns from shifting. The mounts for these coils should also be designed with a minimum of dielectic material.

TURNS PER INCH

S.W.C.	Enamel.	Turns per inch.				
		S.S.C.	D.S.C.	S.S.C.	D.S.C.	S.W.G
16	15	14 16	14 16	14	13 14	16 17
18	20	20	19	18	17	18
19	23	23	23	21	20	19
20	26	26	25	23	21	20
21	29	29	28	26	23	21
22	33	33	31	29	26	22
23	38	38	36	33	29	23
24	42	42	40	35	31	24
25	46	46	43	38	33	25
26	50	50	47	41	35	26
27	55	55	51	44	37	27
28	61	60	56	48	40	28
29	66	65	60	51	42	29
30	73	72	67	54	44	30
31	77	86	70	56 63	46 50	
32	83	81	75	63	50 52	32 33
33	88	87	80	66	52	33
34	98	93	89	80	64	34
35 36	106	101 110		80	64	
36	116	110	102	86	64	37
37	128	120	110	92	67	37
38	143	133	121	100	71	38
39	168	149	134	109	75	39
40	180	159	142	114	78	40

MEDIUM WAVE COILS.-Inductance 200 microhenries.

Gauge of Wire.	No. of turns.	Diameter of former	Length of winding
30 D.S.C.	102	$1.25^{\prime \prime}$	$1.52^{\prime \prime}$
30 D.S.C.	82	$1.5^{\prime \prime}$	$1.22^{\prime \prime}$
30 D.S.C.	68	$1.75^{\prime \prime}$	$1.01^{\prime \prime}$
30 D.S.C.	59	$2.0^{\prime \prime}$	$0.88^{\prime \prime}$
28.D.S.C.	57	$2.25^{\prime \prime}$	$1.01^{\prime \prime}$
28 D.S.C.	51	$2.5^{\prime \prime}$	$0.91^{\prime \prime}$
26 D.S.C.	45	$3.0^{\prime \prime}$	$0.95^{\prime \prime}$

LONG WAVE COILS.-Inductance 2,100 microhenries.

Cauge of Wire.	Diameter of former.	No. of slots.	Turns per slot
36 enam.	1.0°	5	80
36 enam.	1.5	3	81
36 D.S.C.	2.0°	3	65

DUAL-RANGE COILS.

A modern coil wound to eover two wave-bands, and known as a "Dual-Range coil." The coil for the normal, or medium wave-band is wound in solenoid form on the upper part of the former, whilst the wire for the long wave winding is arranged in slots in the lower portion. The wire in the slots is simply piled up anyhow, as many as 90 turns sometimes being included in each slot. In the commonest form of dual-range coil the longrwave winding is short-circuited by a simple switch when using the normal winding. Tappings may be included for the aerial circuit. but these necessitate complicated switching devices.

SOLENOID COILS

The simplest type of coil, known as the "Solenoid" is shown below. This consists of a cylindrical former with the wire wound on in the form of cotton on a cotton-reel. The most efficient winding has a diameter greater than the length. The principal defect of this type of coil is its large external field which necessitates a large basehoard in order that no metallic bodies or other coil windings may be brought within the field.

finding the wavelength covered bya COIL.
The wavelengths to which a given coil will tune are determined by its inductance-and the tuning condenser used with it . The minimum wavelength will be that of the coil alone (roughly) and the maximum wavelensth will be that of the complete closed circuit, that is, the coil with the maximum capacity of the condenser in parallel. The maximum capacity of the condenser in parailec: inding the wavelength of a cloned circuit is:$1.885 \sqrt{\text { İCapacity } X \text { Inductance) }}$
where the capacity is in micro-microfarads and the induct ${ }^{-}$ ance in microhenries. If the capacity is expressed in microfarads, then the first figure in the above formula becomes tarads, then the first figure in the above ormula becomes
simply 1,885 . It must be borne in mind that the addition simply 1,881 . te must be borne in mind that the

A Duat-Range Loil

"PRACTICAL WIRELESS" DATA SHEET No. 3

A Spaghetli Resistance

A revistance of the flexible type, known popularly as a "Spaghetti" resistance. This consists of a core of asbestos string .round which is wound the resistance wire. The ends of this winding are clamped, soldered or welded to the connectare clamped, soldered or welded to the connect-
ing lugs, and the winding covered with insulated ing lugs, and the winding covered with insulated
sleeving. When joining these in circuit care must sleeving. When joining these in circuit care must
be taken that the connecting lugs are not pulled a way from the resistance wire.

FInding resistance values.
Resistance in $\mathrm{Ohms}=\frac{\text { Voltage }}{\text { Current in Amps. }}$ Where the current Current in in Amps, milliamps, this should
be expressed as the decimal fraction of an amp. be expressed as the decimal fraction of an amp.
Example:-Resitance required to drop 50 volts at 5 mA .

$$
\frac{50}{.005}=10,000 \text { Olims. }
$$

GRID BIAS RPSISTANCES.

For automatically biasing the grid of L.F. valves the resistance must be capable of carrying the tolal mode current of the valve which is biased. The value of the resistance can be found from the formula given on this sheet. The current will be the anode current of the valve, and the will be the anode current of the valve, and the
voltage will be the value of the srid bias required. Example:-L.F. valve with 150 Volts H.T. requires Girid Bias of 10 volts, at which value the requires Cirid Bias of 10 volts, at which
normal Anode Current is 5 milliamps.

$$
\frac{10}{.005}=2.0000 \mathrm{hms}
$$

COUPLING RESISTANCES.

Resistances employed for Resistance Capacity Coupling must be capable of carrying the anode current of the valve and should be roughly three times the value of the impedance of the valve. The resistance employed as the grid leak of the R.C.C. stage should also be chosen in conjunction with the anode resistance and the coupling condenser. The table on this sheet gives the complete data for a number of different R.C.C. Units

A resistance of the cartridge type. This consists of resistance wire wound on a glass, porce!ain, thonite or asbestos former, and the ends soldered to metal caps. In some cases the wire is left unavered, and in others the whole yesistance is enclosed in a casing. Some forms of resistance ore now composed of a moulded material and are consequently non-inductive. This type of resistance, however, will not have the same current carrying capacity as the wire wound resistance.
When handling this type of resistance care should be taken not to dron it or otherwise subject it to severe blows, as in some types of resistance the manufacturing process leaves a brittle compronent which is fairly casily broken. Precautions should which is tairly easily broken. Precautions should
also be taken not to expose them to undue heat as also be taken not to expose them to undue heat as
the values may be altered with no visual indication of the alteration.

[^0]
RESISTANCES

DECOUPLING RESISTANCE AND CONDENSER VALUES.

\%	20		VOLTS DROP. 40 60				100		200	
m.A.	Res. Cond.		Res. Cond.		Res. Cond.		Res. Cond.		Res. Cond	
2	20,000	2	40.000	1	60.000	2	100.000	I	200,000	
$\frac{2}{3}$	10,000	4	20,000	2	30,000	2	50,000 30,000	2	100,000	1
3			15,000 10,000	3 4	20,000 15,000	$\frac{2}{3}$	30,000 25,000	$\frac{2}{2}$	70.000 50,000	I
5			10,000	4	15,000	3	25,000 20,000	2	40,000	1
6					10,000	4	15,000	3	35,000	I
8							12,000	3	25,000	2
10							10,000		20,000	2

Correct to nearest values obtainable. The resistances used must be capable of standing the current flowing. Condensers must be capable of saanding the voltage.

R.C.C. DATA

(Resistance Capacity Coupling).

Anodie Resistance.	Grid Leak.	Condenser
	Ohms.	Meg.
250,000	1	Mrd.
200,000	1	0.006
100,000	0.5	0.006
75,000	0.5	0.01
50,000	0.25	0.01
30,000	0.2	0.02
25,000	0.1	0.03
20.000	0.1	0.05
15,000	0.05	0.05
10,000	0.05	0.1

Values Correct to Nearest Values Listed by Makers.
Whenemploying Resistance Capacity Coupling it is essential to incorporate a High frequency filter in the anode circuit of the Detector valve in order to ensure that no frequencies of this order pass to the grid of the following valve. This demands that the condenser must be of the mica variety, and it is also advisable to incorporate a resistance in the grid circuit of the L.F. or following valve to prevent this H.F component from affecting the frequency response. The value of this vesistance should not be greater than 100,000 ohms. An H.F. choke may be used, if desired, in place of this resistance.

RESISTANCE WIRE.

Size.		Eureka Resistance Wire,	
S.W.C.	Inch.	Resistance per $1.0000^{\text {yds. }}$ at $15.6^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$	Carrying Capacily for rise in Temp. of $100^{\circ} \mathrm{C} \cdot\left(212^{\circ} \mathrm{F}\right)$
		Ohms.	Amps,
18	0.064 0.048	309.4	6.0 4.3
19	0.040	535.6	3.7
20	0.036	661.3	3.0
21	0.032	837.2	2.8
23	0.028	$1,093.0$ $1,487.0$	2.2 1.8
24	0.022	1,770.0	1.5
25	0.020	2,142.0	1.25
26	0.018	2,645.0	1.0
27	0.0164	3,186.0	0.9
28	0.0148	$3,914.0$	0.76
29	0.0136	4.634.0	0.68
30	0.0124	5,575.0	0.59
31	0.0116	6370.0	0.52
32	0.0108	7.350 .0	0.47
33	0.010	8,571.0	0.42
34	0.0092	10,128.0	0.37
35	0.0084	12,149.0	0.33
36	0.0076	14,840.0	0.28
37	0.0068	18,536.0	0.26
38	0.006	23,808.0	0.19
39	0.0052	31,69.0	0.16
40	0.0048	37,184.0	0.15
41	0.0044	44,268.0	0.14
42	0.004	53.564 .0	0.13
43	0.0036	66,136.0	0.11
44	0.0032	83.664 .0	0.10
45	0.0028	108,648.0	0.08
46	0.0024	148.764 .0	0.07
47	0.002	214.284 .0	0.05

The most pooular form of variable resistance. Thin is almost invariably provided with three terminals so that it may also be used as a it mav also be used as a
polentiometer. The podern forms of this component. are now made in a tapered or "logarithmic" form so that for some purposes a straight line variation of voltage is ohtained.
A circular form of resistance where the wire is wound round a flat strip and the strip then bent to form practically a circle. The resistances wound in this form are made adjustable by having a rotating arm rubbing against the edge of the strip. By joining the two ends to two terminals, and the moving arm to a further terminal a potentiometer is obtained.

DECOUPLING RESISTANCES.

Resistances used for decoupling purposes should be chosen so that an excessive voltage is not wasted. In addition the decoupling condenser must be chosen in ronjunction with the value of the resistance. The undermentioned table gives the value of decoupling resistance and to the amount of voltage which may be spared.

RESISTANCE VAZUES.

Current in mA	Approximate value of resistance in Ohens.		
	Todron 25 volts.	Todrop 50 voits.	To drop 100 volts.
1	25.000	50.000	100.000
2	12,500	25,000	50,000
3	8,000	16,000	30.000
4	6,000	12,000	25,000
5	5,(00)	10,000	20.000
10	2,500	5.000	10,000
20	1,250	2,500	5.000
25	1,000	2,000	4,000
30	800	1,500	3,500
40	600	1.200	2.500
50	500	1.000	2,000

A strip resistance. This consists of the sume arrangement as shown above, with the exceparrangement as shown above, with the excep-
tion that the former upon which the wire is wound tion that the former upon which the wire is wound
is much thicker and is left in a llat condition. is much thicker and is left in a lat condition. which are usually drilled 80 facilitate mounting or soldering connections. To enable adjustments of value to be obtained a sinall clip may be fastened round the wire with a connection taken from the clomping nut.
This type of resistance will carry much heavier currents than the other types illustrated on this sheet, owing to the large surface exposed to the air. Consequently, it is most suitable for use in mains receivers or in other places where heavy currents have to be carried. Where very fine wire is employed care should be taken that the wire is is employed care should be taken that the wire is
not broken, due to a knock from a screw-driver or other instrument which is ersployed in constructing the receiver!

"PRACTICAL WIRELESS" DATA SHEET No. 4 Mains Transformers

The axembled care of a Mains Transformer.

FINDING THE NUMBER OF TURNS

 The formula for ascertaining the number of turns of wire for Mains Transformers is :-$$
\frac{V}{T}=\frac{A B n}{3.49 \times 10^{6}}
$$

V
where $-=$ Volts per turn in both the Primary
T and Secondary.
$A=$ Cross sectional area of the core in sq. ins.
$\mathrm{B}=$ Flux in the core in lines per $\mathrm{sq} . \mathrm{cm}$. $\mathrm{n}=$ Frequency of the supply in cycles per second.
The usual flux density varies between 6,000 and 8,000 lines.

The method of building up the laminations for the core of a mains transformer. The principal dimensions are referred to in the tables. The central bar is the most important part of the assembly, as it is principally upon the cross-sectional area of this that the number of turns of wire depends. The size of the winding area also enters into the calculations, but by purchasing standard sizes of stampings the calculations are greatly facilitated.

How to assemble the completed transformer, with a strip of ebonite to carry the various terminals. It is safest to take all the secondary windings to one strip situated on one side of the transformer, and the primary (or mains input) terminals to a strip on the opposite side. This prevents accidentally touching or shorting the mains. The feet and supports, as well as clamping bolts, should be of brass and not steel. If found more convenient aluminium may be used.

FINDING THE RATING.
The total rating of a mains transformer is obtained by adding together the wattage of each separate winding and then adding 20 per cent. to the resultant figure. The cost of operating a mains receiver can therefore be easily worked out.

Theeretical circuit of a small mains transformer, showing how the primary winding is tapped to suit mains inputs of different values, and the manner in which all heater windings are centre-tapped. The Rectifier valve heater winding forms the positive lead of the H.T. supply, and the centre tap of the Anode winding is the negative lead. Where it is preferred the remaining heater windings may be provided with an adjustable centre tap by means of an external potentiometer instead of the wired point.

Circuit of a Mains Transformer.

WIRE FOR TRANSFORMERS.

In the table below the number of turns per sq. in. makes no allowance for the end cheeks of the winding bobbins. This must therefore be taken into consideration. The Safe Current should also be regarded as the absolute maximurn value, and if possible the next largest size of wire should be employed, especially for heater windings where large currents are to be handled: When using enamelled wire care must be exercised that the covering does not crack during winding. This wire takes up less room but greater care must be taken in the winding.

WIRE DATA.

Standard Wire Cauge.	SafeCurrent(amps.)	Turns per sq. inch.		Yards per Pound.	
		Enamelled.	D.C.C.	Enamelled.	D.C.C.
18	4.7	392	297	46.9	45.4
20	4.0	685	472	83.3	79.4
24	1.5	1.770	977	221	203
28	0.7	3.760	1.630	488	422
30	0.5	5,370	1,990	694	587
32	0.4	6,890	2,550	915	755
34	0.25	9,610	3.020	1,202	1,024
36	0.18	13,500	4.100	1.840	1.477
38	0.1	20,400	5.100	2.810	2,287
40	0.07	32.500	-	4.576	-28
42	0.05	44.300	-	6.576	-

TESTING.

Before connecting a home-made mains transformer in circuit all windings should be tested for breaks, short-circuits and insulation. A high voltage dry battery may be used, in conjunction with a meter, and there should be no readings between different windings, nor from windings to core.

Section through the core showing the winding area in which all the windings have to be disposed. It is most efficient to arrange the windings on bobbins placed side by side as indicated, with heater windings disposed between the input and H.T. windings. This forms a screen and helps to prevent induced hum. This illustration should be studied in conjunction with the diagram in the upper left-hand corner of this sheet. The actual space available for winding has also

"PRACTICAL WIRELESS" DATASHEET No. 5

WIRE GAUGES AND CORRESPONDING DATA.

		Yards per Lb.	$\begin{array}{\|c} \text { Weight } \\ \text { in Lb. } \\ \text { per } 1,000 \\ \text { Yds. } \end{array}$	Lb. per Ohm.	Resistance in Ohms. per Yard.	Resistance in Ohms. peŕ Lb.	Turns per Inch.					Calculated Sectional Area.		Current Rating at 1,000 per sq. in.
							$\bar{\square}$							
								Silk Covered	Silk Covered	Cotton Covered		Sq. in.	Sq. m/m.	
10	. 128	6.67	148.8	83.3	. 001868	. 0120		7.64	7.55	7.35	7.04	012868	8.3019	12.868
11	. 116	8.16	122.2	50.0	. 002275	. 0200		8.41	8.30	8.06	7.69	. 010568	6.8183	10.568
12	. 104	10.23	98.22	35.7	. 002831	. 0280		9.35	9.22	8.93	8.48	. 008495	5.4805	8.495
13	. 092	13.00	76.86	18.1	. 003617	. 0550		10.5	10.4	10.0	9.43	. 006648	4.2888	6.648
14	. 080	17.16	58.12	12.2	. 004784	. 0820		12.1	11.8	11.4	10.6	. 005027	3.2429	5.027
15	. 072	21.23	47.08	7.14	. 005904	.1400		13.3	13.1	12.5	11.6	. 004072	2.6268	4.072
16	. 064	26.86	37.20	4.95	. 007478	. 2021	15.0	14.9	14.6	14.1	13.2	. 003217	2.0755	3.217
17	. 056	35.00	28.48	2.38	. 009762	. 3423	17.1	16.9	16.5	15.9	14.7	. 002463	1.5890	2.463
18	. 048	47.66	20.92	1.56	. 01328	. 6351	19.8	20.0	19.4	18.5	17.2	. 0018096	1. 1675	1.8096
19	. $0+0$	68.65	14.53	. 757	. 01913	1.315	23.7	23.8	23.0	21.7	20.0	. 0012566	. 8107	1.2566
20	. 035	85.00	11.77	. 497	. 02362	2.012	26.1	26.3	25.3	23.8	21.7	. 0010179	. 6567	1.0179
21	. 032	107.6	9.299	. 309	. 02990	3.221	29.4	29.4	28.2	26.3	23.8	. 0008042	. 5189	. 8042
22	028	140.6	7.120	. 181	. 03905	5.498	33.3	33.3	31.8	29.4	26.3	. 0006158	. 3973	. 6158
23	. 024	191.6	5.231	. 098	. 05313	10.14	38.8	38.5	36.4	33.3	29.4	. 0004524	2919	. 4524
24	. 022	228.3	4.395	069	. 06324	14.38	42.1	42.1	40.0	35.7	31.3	. 0003881	. 2453	. 3801
25	. 020	275.3	3.632	0471	. 07653	21.08	46.0	46.0	43:5	38.5	33.3	. 0003142	. 2027	. 3142
26	018	340.0	2.942	. 0309	. 09448	32.21	50.6	50.6	47.6	41.7	35.7	. 0002545	. 16417	. 2545
27	0164	410.0	2.442	. 0215	. 01138	46.55	55.9	55.1	51.6	44.6	37.9	. 0002112	. 13628	. 2112
28	. 0148	503.0	1.989	. 0141	. 1398	70.12	61.4	60.4	56.2	48.1	40.2	. 00017203	. 11099	. 1720
29	. 0136	596.6	1.630	. 0101	. 1655	98.65	66.2	65.2	60.2	51.0	42.4	. 00014527	. 09372	. 1453
30	. 0124	716.6	+ .396	. 0069	. 1991	142.75	73.3	72.0	67.1	54.4	44.7	. 00012076	. 07791	. 1208
31	. 0116	820.0	1.222	. 0054	. 2275	185.80	77.8	76.3	70.9	56.8	46.3	. 00010568	. 06818	. 1057
32	. 0108	943.3	1.059	. 0040	. 2625	248.20	83.0	81.3	75.2	63.3	50.5	.00009161	. 05910	. 0916
33	. 0100	1100	. 9081	. 0029	. 3061	337.50	88.9	87.0	80.0	66.7	52.6	. 00007854	. 05067	. 0785
34	. 0092	1300	. 7686	. 0023	. 3617	471.00	98.0	93.4	85.5	70.4	54.9	. 00006648	. 04289	. 0665
35	. 0034	1556	. 6408	. 0014	. 4338	676.50	106	101	91.8	80.6	61.0	. 00005542	. 03575	. 0554
36	. 0076	1903	. 5246	. 00098	. 5300	1009	116	110	102	86.2	54.1	. 00004536	02927	. 0454
37	. 0068	2380	. 4199	. 00064	. 6620	1574	128	120	110	92.6	67.6	. 00003632	02343	. 0363
38	. 0050	3056	. 3269	. 000385	. 8503	2598	143	133	121	100	71.4	. 00002827	. 018241	. 0283
39	. 0052	4066	. 2456	. 000217	1.132	4645	168	149	134	109	75.8	. 00002124	. 013701	. 0212
40	. 0048	4766	. 2092	. 000156	1.328	6360	180	159	142	114	78.1	. 000018096	. 011675	. 0181
41	. 0044	5700	. 1758	. 000112	1.581	9020	194	169	150			. 000012566	. 008107	. 0126
42	. $00+10$	6866	. 1453	. 000076	1.913	13150	211	191	167			. 000010179	. 006567	. 0101
43	. 0036	7500	. 1177	. 000050	2.362	20120	230	206	179			. 000008042	. 005189	. 0080
44	. 0032	10766	. 0930	. 000030	2.989	32210	253	225	192			. 000006158	. 003973	. 0062
45	. 0028	14066	. 0712	. 000015	3.904	54980	282	247	208			. 000004524	. 002919	. 0045
												. 000003142	002027	. 0031
												. 000002011	. 0012972	. 0020
												. 0000011310	. 0007297	. 0011
												. 0000007854	0005067	0008

RESISTANCE WIRE DATA.

S.W.G.	Eureka.			German Silver.		
	Resistance per yd.	Yards per lb.	Current Capacity (Amps.)	Resistance. per yd.	Yards per 1 lb	Current Capacity (Amps.)
18	. 37	48	4.3	. 117	51	3.6
20	. 66	85	3.0	. 315	90	3.5
22	1.10	140	2.2	. 520	147	2.0
24	1.77	227	1.5	. 844	238	1.2
26	2.65	340	1.0	1.26	349	. 65.
28	3.91	502	. 76	1.85	527	4
30	5.58	714	. 59	2.65	750	. 29
32	7.35	943	. 47	3.50	984	. 25
34	10.13	1300	. 37	4.82	1360	. 19
36	14.84	1905	. 28	7.06	2000	. 695
38	23.81	3060	. 19	11.33	3295	. 076
40	37.18	476P	. 15	17.70	4920	. 065

CURRENT-CARRYING CAPACITY OF WIRES.

S.W.G.	Current Capacity. (Amps.)	$\begin{gathered} \text { u } \\ \text { N } \end{gathered}$	Current Capacity (Amps.)	$$	Current Capacity (Amps.)	$\begin{aligned} & \text { ن } \\ & \text { w } \\ & \text { un } \end{aligned}$	Current Capacity (Amps.)
10	19.305	19	1.8855	28	258	37	. 0545
11	15.855	20	1.527	29	. 218	38	. 0425
12	12.7425	21	1.206	30	. 1812	39	. 0318
13	9.872	22	. 9237	31	. 1586	40	. 0272
14	7.5405	23	. 6786	32	. 1374	41	. 0228
15	6.108	24	. 5702	33	. 1178	42	. 0189
16	4.8255	25	. 4703	34	. 0998	43	. 0153
17	3.6945	26	. 3818	35	. 0831	44	. 012
18	2.715	27	. 3168	36	. 0681	45	. 0093

"PRACTICALWIRELESS" DATASHEET №. 6
 Fig. 1-A High Frequency Choke

 CHOKES : H.F. and L.F.
 The purpose of a choke is to prevent the passage of certain frequencies. For H.F. purposes a high inductance value is necessary, with a minimum of capacity. No core is employed in H.F. chokes. For L.F. purposes a very much greater inductance is required, and preferably a low D.C. resistance. An iron core is employed to increase the inductance value and avoid the use of too much wire with its consequent high D.C. resistance.

The standard form of construction of an H.F. choke. The former is made of ebonite and should preferably be of the ribbed or similar type so that the resultant winding is air-spaced. One terminal should be provided on the base, and the other tapped into the top of the former. By distributing the winding in sections the felfcapacity is reduced. A choke of this description has a lairly extensive' field, and should, therefore, not be mounted close to tuning coils or similar inductances.
INDUCTANCE.
The inductance of a choke will depend, of course, upon the amount of wire which is employed. The method of winding will affect this, and, therefore, no tables or other details can be given. The following, however, is the data for a simple H.F. choke, having an inductance of about 200,000 microhenries. Half an ounce of No. 38 gauge double-silk-covered wire, wound on a half-inch diameter former, and separated into four sections of 300 turns each.

OUTPUT FILTER CIRCUIT.

For an Output Filter circuit following a Pentode valve, the choke should be provided with a number of tappings in order that the loud speaker in use may be matcli.ed to the impedance of the valve. Therefore, the choke bobbin should be divided into four sections, with tappings taken at one half, two-thirds and threequarters of the total winding. This will then provide ratios of $1: 1,2: 1,3: 1$ and $4: 1$. L.F. CHOKE CONSTRUCTION. The normal construction of an L.F. choke. It consists of a core of stampings in the same manner as a transformer. with the winding carried on a former. The winding may be wound as one continuous coil, or be split up into several sections as in an H.F. choke. If this form of construction is adopted, tappings may be brought out from each section to provide a tapped output choke for use in filter circuits.

Fig. 3-A Low Frequency Choke.

PRACTICAL VALUES FOR H.F. CHOKES.

Purpose.	Inductance.	Self-capactiv.	D.C. Resist.
Coupling lor S.G. valves	3000,000 to 5000,000	1 to $3 \mathrm{~m} . \mathrm{m} . \mathrm{F}$.	200 to 500
Standard H.F. coupling	100,000 to 200, 000	2 to $4 \mathrm{mm.m.F}$.	300 to 800
Ordinary reaction ..	50,000 to 200,000	1 to $3 \mathrm{~mm} . \mathrm{m}$.	200 to 700

PRACTICAL VALUES FOR L.F. CHOKES.

Purpose.	Inductance.	D.C. Resistance.	Current.
L.E. coupling Power gridcoupling General purpose Qutput filter Pentode output Mains smoothing	15 to 20 henries 100 to 300 ". 20 to 30 ". 20 to 60 $"$ 30 to 60 \because 30 to 00 ".	$\begin{aligned} & 500 \text { to } 800 \\ & 1,060 \text { to } 2.000 \\ & 300 \text { to } 500 \\ & 200 \text { to } 500 \\ & 500 \text { to } 1.000 \\ & 200 \text { to } 500 \end{aligned}$	15 to $30 \mathrm{~m} / \mathrm{A}$ 5 to $10 \mathrm{~m} / \mathrm{A}$ 30 to $60 \mathrm{~m} / \mathrm{A}$ 20 ro $60 \mathrm{~m} / \mathrm{A}$ $202060 \mathrm{~m} / \mathrm{A}$ 20 to $80 \mathrm{~m} / \mathrm{A}$

MAKING A FORMER FOR H.F. CHOKES.

A former-wound choke necessitates a slotted former, and this is, of course, easily turned up on a lathe. Where a lathe is not obtainable the following method may be adopted for making the type of former required. The centre consists of a piece of ebonite or wooden rod about three-eighths on an inch in diameter, and the slots may be improvised by using ebonite tubing, with an internal diameter of three-eighths of an inch. This should be of the type having a wall at least a quarter of an inch thick, and it should be cut into pieces just over a quarter of an inch wide. These rings should be slipped over the rod and fixed in position with either Chatterton's Compound or a small rivet. The result will be a slotted former just as effective as a turned rod. An alternative method would be to build up the rings with strips of paper, adhesive tape, or similar material, winding it over and over until the desired thickness has been obtained. With either method it is desirable that the inner rod should be of ebonite.

SHORT-WAVE CHOKE.

For short-wave reception quite a small choke is required, and a very efficient component may be made by winding from 60 to 150 turns of wire (gauge from 38 to 46 S.W.C.) on an ebonite or similar tube having an overall diameter of one inch.

A similar type of choke to Fig. 1, but mounted in a copper or aluminium box to reduce the troubles caused by the external field. This type of construction requires more care, as the proximity of the metal casing alters the value of the inductance. This type of choke is essential for stability in S.G. circuits. For this latter type of circuit it is useful to provide a screened lead from the top of the casing for attachment to the anode terminal on top of the valve. L.F. CHOKE DETAILS.

For L.F. chokes, the Stalloy Stampings mentioned on Data Sheet No. 4 may be employed. Again, no actual data relative to inductance can be tabulated, as the value will vary according to the thickness of the core, the winding area available, and the quantity of wire which is accommodated in the bobbin. This latter factor will depend, of course, upon the gauge of the wire employed. However, as a guide, six dozen No. 30A stampings, with a three-quarter inch spool, will comfortably take four ounces of No. 38. gauge enamelled wire, and this will have an inductance of roughly 30 henries at a current of 30 milliamps. With the same size stampings, and thicker wire, more current could be carried, but the inductance value would be correspondingly reduced. Thinner wire, on the other hand, would enable the inductance to be increased, but the maximum safe current would be decreased.

REDUCING FIELD OF
 H.F. CHOKE.

Another method of reducing the external field of an H.F. choke. In this pattern two formers are provided and the total winding is distributed between the two formers. In addition, the direction of winding on the formers is reversed, so that the freld of one coil neutralises the field of the other and so avoids the necessity of screening.

Fig. 4-A Binocular H.F. Choke.

"PRACTICAL

The above illustration shows the method of building up a fixed condenser. It will be noticed that the electrodes (or plates) are separated by insulating material, and that the ends of the plates are brought out alternately to provide means for connection. All the plates on each side are joined together.

INDUCTIVE AND NON-INDUC

 TIVE CONDENSERS.Condensers of the Mansbridge type (that is, those consisting of a length of prepared paper and tinfoil wrapped in a coil) possess inductance, and are not, therefore, advisable for H.F. by-pass or L.F. coupling purposes. It is, therefore essential that such condensers should be of the noninductive type. The Mansbridge condenser is rendered non-inductive by having connections made to the ends after wrapping, or by being wound back upon itself. The case containing such a condenser bears the letters N.I. or the words NonInductive in full. This type of condenser may be obtained in all values "rom .005 to 2 mfd . The other type of non-inductive condenser is the mica, but this naturally is more expensive than the paper condenser.

CHOOSING A CONDENSER.

Condensers are obtainable in a variety of shapes, and with moulded or metal cases. For the majority of purposes the moulded case is to be preferred, although in an all-metal chassis type of receiver the metal casing may be earthed. The small types of fixed condenser should never be mounted flat on a metal baseboard, as there may be a risk of losses due to the capacity of the condenser with the earthed screen. For Mains smoothing the Electrolytic type of condenser is to be preferred as this may be obtained in a larger capacity, and gives greater smoothing. This type of condenser consists of an aluminium case (which is the negative electrode) and a central metal rod which forms the positive electrode. Surrounding this rod is an aqueous solution, which, upon the application of direct current to the two electrodes causes an insulating film to form on the electrode and so provides a high-class condenser.
DIELECTRIC STRENGTHS IN VOLTS PER MILLIMETRE.

Substance.	Strength.	Substance.	Strength.
Presspahn	5,000	Paraffin wax	12,000
Class..	8,000	Ebonite	30,000
Purcelain ..	10,000	Micanite..	40,000
Empire cloth	10,000		

A condenser consists of two or more electrodes (generally known as "plates") separated by a dielectric - see below. The property of a condenser is to "store" electricity, and the holding power of the condenser is known as its capacity. The Unit of capacity is the Farad, but this is too large to be convenient for wireless practice, and the useful unit is therefore made smaller and is actually one millionth of a farad. This measure is known as a Microfarad ($\mu \mathrm{F}$). For a large number of condensers in wireless receiver very small capacities are required, and these are expressed as decimal proportions of a microfarad.
CAPACITY OF FLAT FIXED CONDENSERS. $\mathrm{C}=.225 \frac{\mathrm{nKA}}{\mathrm{t}} \mu \mu \mathrm{F}$
$A=$ Area of overlap of one plate (in inches). $\mathrm{n}=$ Number of dielectrics.
$t=$ Thickness of dielectric.
$K=$ Dielectric constant. (See table)
$C=\frac{.0885 \mathrm{~A} \mathrm{~K} \mathrm{~N}}{1,000,000 \mathrm{D}}$
Where A is in square centimetres
D is in centimetres.

AREA OF EFFECTIVE OVERLAP FOR FIXED CONDENSERS.

Capacity.	Thickness of Mica employed (ins.)			
	.001	.0015	.002	.003
.0001	.075	.11	.15	.25
.0002	.15	.23	.3	.45
.0003	.23	.34	.45	.68
.0004	.3	.45	.6	.9
.0005	.38	.56	.75	1.13
.001	.75	1.13	1.5	2.25
.002	1.5	2.25	3.0	4.5
.003	2.25	3.38	4.5	6.75
.004	3.0	4.5	6.0	9.0
.005	3.75	5.62	7.5	11.25

To use the above table, find the capacity required, then under the column bearing the measure corresponding to the thickness of the dielectric employed you may read ofl the total area of the of the dielectric employed you may read off the total area of the
dielectric required. This may be used in one piece or divided dielectric required. This may be used in one piece or divided
amongst a number of smaller pieces. The electrodes of the condenser will be one more in number than the number of dielectrics.
Example: Required, a condenser of . 001° capacity, using mica .002 ino thick. 15 ins. is the total area required, and this may be made up by two pieces with .75 in . overlap, in which case three plates wuuld be required.
PRINCIPAL VALUES OF CONDENSERS IN A WIRELESS RECEIVER.

Use.	Value in Microfarads.
Series aerial tuning	. 00005 to . 0003
Aerial tuning	. 0003 or . 0005
Secondary tuning	. 0005
H.F. coupling . .	.0001 to . 001
H.F. by-pass	. 1
Tuned anode	.0003 or . 0005
H.F. transformer tuning	. 0005
Leaky grid detector \therefore.	. 0002 or . 0003
Power grid detector . .	. 0001
Detector anode by-pass	.0001 to .0003
R.C. coupling001 to .1
Parallel-fed transformer	.05 to 2.0
De-coupling for H.F. purposes	. 1 to 1.0
De-coupling on L.F. side	1 or 2

Inductive and Non-Inductive Condensers.

The method of calculating the capacity of a condenser is typified in the above diagram. It will be seen that a certain proportion of each pair of plates overlaps, and this is known as the "effective" surface. The area of this surface should be ascertained -by multiplying A by B -and th:is should be employed in conjunction with the formula for capacity given in the centre column.

TESTING A CONDENSER.

A condenser may be tested by connecting it to a source of high voltage. After leaving it in contact for a short time, disconnect the leads, takirg care not to touch the terminals. After the lapse of half an hour, join a wire across the two terminals, and a spark should be obtained. The larger the capacity of the condenser the larger the spark, and the better the insulation of the condenser, the longer will it hold the charge. Where small condensers have to be tested, and the resultant spark will be small, a number of such condensers may be joined in parallel and the test then carried out.
PROPORTIONS OF FIXED CONDENSERS, USING COPPER FOII AND MICA 0.002 in. THICK.

C in Microfarad.	Dimension of Plate in Inches.	No. of Plates.
. 001	$\frac{3}{4} \times \frac{1}{2}$	5
. 002	$1 \times \frac{1}{1}$	7
. 003	1×1	7
. 00015	$\frac{1}{4} \times \frac{1}{2}$	3
. 0005	$\frac{1}{2} \times \frac{1}{2}$	4
. 0006	1×1	2
. 0008	$\frac{1}{2} \times \frac{1}{2}$	6

The illustration at the foot of the centre column shows how to make a small fixed condenser. A strip of eborite is provided for the base, and two terminal holes are drilled at the ends. The assembly. of plates and dielectric is built up as shown above, and the plates are provided with holes to fit over the terminals. On top of the complete assembly another small ebonite plate is clamped to press the condenser into contact and exclude air from between plates and dielectric.

DIELECTRIC CONSTANTS.

Air	fin, li
Castor oil 5	
Ebonite .. 2.75	Shellac
Class .. 5-10	Sulphur
Mica .. 6	Wood, waxed
Paper, waxed2	

"PRACTICAL WIRELESS" DATASHEET No. 8 BATTERY ELIMINATORS

THE FUNCTION OF AN ELIMINATOR.

The purpose of a battery eliminator is to provide the working voltages of a receiver from the electric lighting mains. As these voltages must be Direct Current, a process of rectification is essential when using alternating current mains. With both types of mains a smoothing circuit must be employed to smooth out the ripples. The exception to these statements is the supply for the heaters of Indirectly Heated A.C. valves where ordinary A.C. at 4 volts is employed.

METAL RECTIFICATION.

Metal rectifiers may be employed instead of valves for rectification purposes, and these may be joined up to provide half-wave rectification or full-wave rectification. For half-wave rectification the metal rectifier is joined in series with the positive lead from the transformer secondary to the choke. For full-wave rectification two half-wave rectifiers are joined in series, the ends being H.T. + and H.T. - One end of the secondary of the transformer is joined to the junction of the two rectifiers, and the other end of the secondary is joined to the centre of two 4 -mfd. condensers which are joined across H.T. + and H.T. - . This method is known as the "Voltage doubling " principle.

RESISTANCE VALUES FOR VOLTAGE DROPPING.

The value of resistances required to dispose of surplus voltages may easily be ascertained by an application (Continued opposite.)

REMOVING HUM.

Sometimes when using a battery eliminator loud hum is noticed when the receiver is tuned to a powerful station. This is known as " modulation hum" and may be remedied by the following means: Two condensers with a capacity of .1 mfd . are joined together, and the junction point is taken to earth. The remaining two terminals are then connected to the two A.C. mains input leads. Another method employed with full-wave rectifying valves, is to join the two condensers across the two anodes of the valve, and to earth the junction.

A.C. BATTERY ELIMINATOR.

The above diagram shows a typical A.C. mains battery eliminator, and illustrates the method of inserting voltage dropping resistances in conjunction with by-pass condensers. The tapping marked H.T. I is provided with an adjustable voltage by means of a potentiometer across the total output of the unit. In addition to the secondary windings shown on the mains transformer, separate secondaries may be provided to deliver 4 volts at 1 or more amps. for supplying the heaters of indirectly heated valves.

Voltage to be dropped.	Current flowing.	Resistance required.
10 volts	1	10,000 ohms.
${ }_{30} 20$	2	10.000
30 40	5 8	6,000 5,000
50 ".	5	10,000
100 ".	5	20,000 .
150.	10	15,000
200 .,	5	40,000 "

It will be seen from this table that the values are definitely relative, and that the current (in milliamps) divided into the volts gives the resistance in thousands of ohms.

AUTOMATIC EXCITATION OF FIELD WINDING.

Where a moving-coil loudspeaker with a mains field is employed this may be used in place of the smoothing choke of an eliminator. It should be of the type designed to work from D.C. supplies and taking a current of 20 to 40 milliamps. In view of the voltage drop which would be occasioned by this method, the output from the rectifier should be correspondingly larger than is required at the H.T. end of the eliminator.

(Continued from Ist column.)

 of Ohms Law. The resistance required (in Ohms) is obtained by dividing the number of volts to be disposed of, by the current fowing in amps. (One milliamp is .001 of an amp.). The table given on the left shows some common values of resistance, and other values may be obtained by adjustment of the table, or by employing the above formula.
AUTOMATIC GRID BIAS.

Automatic grid bias may be provided from the eliminator. by inserting in the H.T. negative lead a suitable voltage dropping resistance. The total anode current from the receiver passes through this resistance, and results in a voltage drop worked out by the method given on this sheet. This resistance may be tapped to provide various values of bias for a number of valves.

The illustration to the left shows the smoothing circuit which is required in every type of eliminator. The essentials are a high inductance L.F. choke and two large capacity fixed condensers. These must be of the type made to withstand high voltages, and the most useful value is 4 mfds.

＂PRACTICALWIRELESS＂DATA SHEET No． 9 SCREWS AND SCREW THREADS

The principal Thread used in wireless engineering is the B．A．（British Association）．The standard engineering thread is the Whitworth．In addition to these two threads there are the B．S．F．（British Standard Fine Screw Thread）and the U．S．S．（United States Standard Thread）．

BRITISH ASSOCIATION STANDARD THREAD．

B．A．Number	Diameter		Pitch		Depth of Thread， Inches	Radius， Inches	Duuble Depth of Thread Inches
	Mîllimetres	Inches	Millimetres	Inches			
0 ．．	6.0	． 2362	1.0	． 0394	． 0236	． 0072	． 0472
1 ．．	5.3	． 2087	． 90	． 0354	． 0212	． 00064	． 0425
2	4.7	． 1850	． 81	． 0319	． 0191	． 0058	． 0383
3	4.1	． 1614	． 73	． 0287	． 0172	． 0052	． 0345
4	3.6	． 1417	：66	． 0260	． 0156	． 0047	． 0312
5	3.2	.1260	． 59	． 0232	． 0139	． 0042	． 0279
6	2.8	． 1102	． 53	． 0209	． 0125	． 0038	． 0250
7	2.5	． 0984	． 48	． 0189	． 0113	． 0034	． 0227
8 ．	2.2	． 0986	． 43	． 0169	． 0101	． 0031	． 0203
9	1.9	． 0748	． 39	． 0154	．0092	． 0028	． 0184
10	1.7	． 0669	35	． 0138	．0083	． 0025	． 0165
11	1.5	． 0591	31	． 0122	． 0073	． 0022	． 0146
12	1.3	． 0511	． 28	． 0110	． 0066	． 0020	． 0132
13 ．．	1.2	． 0472	． 25	． 0098	． 0059	． 0018	． 0118
14	$1.0{ }^{\circ}$	． 0394	． 23	． 0091	． 0055	． 0016	． 0109
15	． 20	． 0354	． 21	． 0083	． 0050	． 0015	． 0099
． 16	． 79	． 0311	． 19	． 0075	． 0045	． 0014	． 0090
17	． 70	． 0276	． 17	． 0067	． 0040	． 0012	． 0080
18 ．	． 62	． 0244	． 15	． 0059	． 0035	． 0011	． 0071
19	． 51	． 0213	． 14	． 0055	． 0033	． 0010	．0066
20.	． 48	.0189 .0165	． 12	． 0047	．0028	． 00009	． 0057
22 ：	． 37	． 0146	． 098	． 0039	． 0023	． 0007	． 0046
23 ．．	． 33	． 0130	． 089	． 0035	． 0021	． 0006	． 0042
24 ．．	． 29	． 0114	． 080	． 0031	．0019	．0006	． 0038
25 ．．	． 25	． 0098	． 072	． 0028	． 0017	． 00005	． 0034

NUMBER OF THREADS PER INCH CORRESPONDING TO A GIVEN DIAMETER．
BRITISH STANDARD FINE SCREW THREAD．

Diameter	Threads per inch	Diameter at Root of＇I hread
	$\begin{array}{r} 26 \\ 22 \\ 20 \\ 18 \\ 16 \\ 16 \\ 14 \\ 14 \\ 12 \\ 12 \\ 11 \\ 11 \\ 10 \end{array}$.2007 .2543 .3110 .3664 .4200 .4825 .5335 .5960 .7338 .7586 .8311 .8720

STANDARD WOOD SCREWS．
All measurements are in fractions of an inch．

No．of			Diameter｜		Slot	
Screw	Diameter	Screw		Head	Width	Depth
	． 05784	f	\cdots	d		$8^{\frac{8}{8} 8}$
1	． 07100	980	fif	${ }^{3}$	\％	$\frac{1}{3}$
2	． 08416	$\frac{8}{4}$	4	${ }^{3 / 3}$	${ }_{8}^{28}$	x^{2}
3	． 09732	$\frac{3}{3}$	y_{0}^{3}	${ }^{36}$	8^{2}	1）
4	． 11048	品	$\frac{7}{15}$	d	\％	3
5	12364 .13680	$\frac{1}{0}$	$\begin{aligned} & 11 \\ & i f \end{aligned}$	\％		亲
7	.13680 .14996	\％	if	\％		
8	.14996 .16312	\％	${ }^{11}$	\％	$\frac{38}{88}$	\％
9	． 17628	$1{ }^{17}$	is	$\frac{3}{3}$		\％
10	． 18944	\cdots	1	\％	${ }_{8}^{18}$	t
11	． 20260	清	13	矿	${ }_{3}^{3}$	\pm
12	． 21576	\％	\％	$\frac{1}{1}$	${ }_{\text {d }}^{4}$	It
13	． 22892	㤑	縺	d	m	\％
14	． 24208	t	3 \％	${ }^{2}$	In	1
15	． 25524	t	$\frac{8}{5}$	矿	Itr	践
16	． 26840	${ }_{1}^{1 / 4}$	1\％	\％${ }^{2}$	芹	${ }_{8}^{8}$
17	． 28156		${ }^{\text {a }}$	8	$\frac{1}{3}$	8
18	． 29472	$\frac{19}{6 \%}$	$1{ }^{1}$	1	${ }_{3}{ }^{3}$	${ }_{8}^{88}$
19	.30788 32104	$\stackrel{\text { \％}}{\text { \％}}$	\％	ii	彦	砍品
21	． 33420	${ }^{3}$	11	，	dit	${ }^{2}$
22	． 34736	震	4	in	${ }_{3}$	3
23	． 36052	8	$\frac{24}{17}$	新	3 ${ }^{\frac{3}{2}}$	$3{ }^{3}$
24	37368	$\frac{3}{8}$	\％	$\frac{13}{6}$	${ }^{3} 8$	${ }^{3}$

WHITWORTH STANDARD THREADS．
（Showing Relation between Nearest British Standard Fine）

$$
\text { Formula }\left\{\begin{array}{l}
p=\text { pitch }=\frac{1}{\text { No. threads per inch }} \\
d=\text { depth }=p \times .64033 \\
r=\text { radius }=p \times .1373 .
\end{array}\right.
$$

Diameter inches	Threads	per inch	Outside Diameter inches	Pitch Diameter inches	Root Diameter inches	Tap Drill Size
	Whitworth Std．	British Std．Fine				
\％	60	－	． 0625	． 0518	． 0412	56
3	48	－	． 0938	． 0804	． 0671	49
${ }^{2}$	40	－	． 1250	． 1090	． 0930	40
${ }_{8}^{88}$	32	－	． 1563	． 1362	． 1162	31
\％	24	－	． 1875	． 1608	． 1341	28
s	24	－	． 2188	． 1921	.1654	18
t	20	26	． 2500	． 2185	． 2860	1
t	－	26	． 2800	． 22566	． 2321	B
$\frac{1}{18}$	18		． 3125	． 2769	． 2414	D
閏		22	． 3125	． 2834	． 2543	G
寿	16		． 3750	3350	． 2950	N
8		20	． 3750	． 3430	3110	\bigcirc
${ }_{3}^{18}$	14	18	． 4375	． 3918	． 3460	5
\％		18	． 4375	． 4019	． 3665	X
＋	12	16	.5000 .5000	． 44600	． 3933	${ }_{\text {x }}$
16	i2		． 5625	． 5091	． 4558	新
\％ 6		16	． 5625	． 5225	． 4825	$\frac{1}{1}$
\％	11		． 6250	． 56688	． 5086	${ }^{1}$
8		14	． 6250	． 6793	． 53311	${ }^{3}$
18	11	i4	． 6875	． 6293	． 5911	${ }^{3}$
18	10		． 7500	． 6860	． 6219	\％
t		12	． 7500	． 6966	． 6434	${ }^{2 \frac{2}{1}}$
$1{ }^{1}$	10		． 8125	．7485	． 7844	10，
年	9	12	.8125 .8750	． 85039	． 7327	\％
$\frac{8}{8}$	9	11	． 8750	． 8168	． 7586	\％
持	9		． 9375	． 8664	． 7952	
1	8		1.0000	． 9200	． 8399	硨
1	．	10	1.0000	． 9360	． 8720	81

＂PRACTICAL WIRELESS＂DATA SHEET No． 10 BATTERY－OPERATED VALVES
 SCREEN GRID VALVES．2－volt．
 ORDINARY VALVES．4－VOLT．

Impe－ dance．		宝总	－	边		Price．	Type．	Maker．		Amp．	$\begin{gathered} \text { Fil, } \\ \text { Cir } \\ \boldsymbol{x} \text { Cut. } \end{gathered}$	$\begin{aligned} & \text { Anode } \\ & \text { Voits. } \end{aligned}$	Σ	Price．	Type．	Maker．
727,000 345,000 37,000 34,000 $.30,000$ 300,000 300,000 300,000 20,000 200,000 20.000 10,000 180,000	800 500 500 700 500 330 330 180 350 320 220 200 200	.15 .15 .18 .18 .15 .15 15 15 2 1 1 15 .15	150 150 150 150 150 150 150 150 150 150 150 150 150	60 60 75 60 .0 .80 80 80 75 80 70 75 75	$\begin{aligned} & 2.0 \\ & 1.5 \\ & 2.0 \\ & 1.0 \\ & 3.0 \\ & 2.5 \\ & 2.5 \\ & 2.0 \\ & 3.0 \\ & 3.1 \\ & 2.5 \\ & 3.0 \end{aligned}$	$16 / 6$ 1616 $16 / 6$ $16 / 6$ $16 / 6$ $16 / 6$ $12 / 6$ $16 / 6$ $16 / 6$ $16 / 6$ $16 / 6$ $16 / 6$ $16 / 6$	S215A $215 S G$ SS218SG S215B PM12A $215 S G$ BY6 S25 S22 220 SG S21 SS215SG PM12	Mazda Mazda Six－Sixty Mazda Mullard Cossor Eta Mar．\＆Os． Mar．\＆Os． Cossor Mar．\＆Os． Six－Sixty Mullard	58,000 55,000 550,000 20,800 20,000 13,000 12.500 10,000 8.500 7,500 7,250 5,000	$\begin{aligned} & 37 \\ & 38 \\ & 40 \\ & 45 \\ & 22 \\ & \hline 14 \\ & 13.5 \\ & 17 \\ & 15 \\ & 15 \\ & 14.5 \\ & 17.5 \end{aligned}$		$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$.64 .66 1.8 1.1 1.05 1.1 1.7 1.77 2.0 2.0 1.5	$8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $10 / 6$	4075RC PM3A 410RC HL410 PM ${ }^{3}$ 4075 HF 410 LF PMADX P410	Six－Sixly Mullard Cossor Mar．\＆Os． Cossur Mallerd Six－Sixty Cossor Mar．\＆Os． Mullard Six－Sixty Mar．\＆Os．
$\begin{aligned} & 230,000 \\ & 2220,000 \\ & 200,000 \\ & 200,000 \end{aligned}$	$\begin{aligned} & 200 \\ & 190 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & .075 \\ & .075 \\ & .1 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 75 \\ & 75 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 201 \\ & 200 \\ & 20 \end{aligned}$	$\begin{aligned} & 407 \\ & \mathrm{~S} 41 \\ & 410 \end{aligned}$	Mullard Six－Sixty ． Mar．\＆Os． Cossar	$\begin{aligned} & 4,1500 \\ & 2,150 \\ & 2,080 \end{aligned}$	$\begin{aligned} & 8 \\ & 6.5 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 . \\ & 2.15 \\ & .15 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 10 / 6 \\ & 1016 \\ & 13 / 6 \\ & 13 / 6 \end{aligned}$	410P 420SP P415	$\begin{aligned} & \text { ix Sixty } \\ & \text { Lar. \& Os. } \end{aligned}$
$\begin{aligned} & 210,000 \\ & 200,000 \\ & 200,000 \\ & 200,000 \end{aligned}$	$\begin{aligned} & 190 \\ & 210 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & .075 \\ & 1 \\ & .075 \\ & .075 \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 75 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 4.1 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1 / \\ & y_{1} \end{aligned}$	6075SG S610 610SG PM16	Mar，\＆Os． Cossor Mullard	$\begin{array}{r} 1,500 \\ 1,200 \end{array}$		． 15	$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\|$3.0 4.0 －vol －	（		Mazda Cossor Cossar
250,000 350000 $=$	$\begin{aligned} & \text { VARIA } \\ & \begin{array}{l} 700 \\ = \\ = \end{array} \end{aligned}$	$\begin{array}{r} \text { IABI } \\ .15 \\ .2 \\ .15 \\ .15 \\ \hline \end{array}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \\ & 90 \\ & 90 \\ & \hline \end{aligned}$	5．0 3.5 5.5 3.5	$16 / 6$ $16 / 6$	$\begin{aligned} & 2-\mathrm{VOL} \\ & 2 \mathrm{~V} \\ & \text { S215VM } \\ & 220 \mathrm{~V} G \\ & \text { VS2 } \\ & \text { PMIIVV } \\ & 215 \mathrm{VSG} \end{aligned}$	Mards Cossor Mar． O_{s} ． Mutlard Six－Sixty Six	$\begin{aligned} & 66,000 \\ & 58,000 \\ & 50,000 \\ & 49,000 \\ & 30,000 \\ & 20,000 \\ & 20,000 \end{aligned}$	$\begin{aligned} & 40 \\ & 42 \\ & 40 \\ & 40 \\ & 30 \\ & 27 \end{aligned}$	$\begin{aligned} & 1 \\ & .075 \\ & .075 \\ & .1 \\ & .8 \\ & 055 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 150 \\ & 400 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & .6 \\ & .7 \\ & .8 \\ & .85 \\ & 1.85 \\ & 13 \end{aligned}$	$8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $8 / 6$ $25 /-$ $8 / 6$	H610 6075 RC 610 RC PM5B HL610 680 HF	Marda Six－Sixty Cossor Muliard Alar．\＆Os Cossor Mullard
ORDINARY VALVES． 2 －VOLT．										$\begin{aligned} & 22 \\ & 17 \end{aligned}$		150 150 150			6075 ${ }^{\text {FF }}$	$\begin{aligned} & \text { Sossor } \\ & \text { Six-Sixty } \end{aligned}$
Impe－ dance．	Amp．			Anode		Price．	Type．	Maker．	$\begin{array}{r} 14.700 \\ 9.250 \\ \hline \end{array}$	$\begin{aligned} & 17.5 \\ & 18.5 \\ & 18.5 \\ & 15 \end{aligned}$	．075	$\begin{aligned} & 150 \\ & \hline 50 \\ & 150 \\ & \hline 50 \\ & \hline 50 \end{aligned}$	$\begin{aligned} & 1.2 \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8166 \\ & 8 / 66 \\ & 8 / 6 \\ & 8 / 6 \end{aligned}$	$\begin{aligned} & \text { PMSX } \\ & \text { SiOD } \\ & \text { PM } \\ & \hline 610 \mathrm{D} \end{aligned}$	Mullard Six－Sixty Mullard Mar，\＆O
				$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & .8 \\ & .8 \end{aligned}$				7.500 7.500				． 92	8／6	6 600	Mar．\＆ Cossor Cossor
Oo	5	！			． 7			Cossor Mar \& Os	6，000			$\begin{aligned} & 1500 \\ & 450 \\ & 410 \end{aligned}$	2.28	25－	${ }^{610 \mathrm{P}}$	Cossor Cossor
45，400				15	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$			Sixty								Mart \＆Os．
	50 50	，		150 150 150									25	10，6	PM6 6108	
35，000	35	，		$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	17			Mar，\＆ 0				0			680，	x－S
25.000 23.000	19 20			$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	． 85		210HF	Six－Sixty Mar．\＆				20				${ }_{\text {Conssor }}$
					$\begin{aligned} & .87 \\ & 1.1 \end{aligned}$											
	32	．		$\begin{array}{r} 150 \\ 150 \\ 150 \end{array}$	1.18											Mullard
	32			$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.4 \end{aligned}$											
				$\begin{array}{r} 150 \\ 150 \\ 150 \end{array}$	1.3			Six－Sixt				50				Six－Sixty
18，500	20			$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	1.4			Mazda				00		301－		
	$\begin{array}{r} 24 \\ \hline \end{array}$			$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	1.5	7	${ }^{\text {H2 }} 210 \mathrm{HF}$	${ }_{\text {Cossor }}^{\text {Cossor }}$								Cossor
12500					0.15		210DET									
12,500 12000	18	6 ：		$\begin{aligned} & 150 \\ & 150 \\ & \hline 10 \end{aligned}$		71－	210	Six			PENTODES． 2			2－VOLT．		
12.000	1			$\begin{array}{r}150 \\ \hline 150 \\ \hline\end{array}$	1.5 .92	71	1210	Mar \＆				150 150	2.5		220	Cossor
				150 150	1.97	717	PM1	Mullar			$\frac{2}{3}$	150	1．8		230 H	Coskor
10，000	18			$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$71-$		${ }_{\text {Six－S }}$				150	． 5	1776	2309	Cossor
10.000							BY＇					150 150	． 5	176		arsso
				$\begin{aligned} & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.5 \\ & 1.7 \end{aligned}$			${ }_{\text {Six－}}$			2	150	2.5	716	Pen2	Maxds
4，000				150 150 150	1.7	879	22 Pa	Coss				150		716	Pen22	Mulla
4，000	13			$\begin{array}{r} 150 \\ 50 \\ 150 \\ 150 \end{array}$	3.2 2.25						$\stackrel{2}{2}$			\％		Mulla
4					$\begin{aligned} & 2.25 \\ & 2.0 \\ & 1.5 \end{aligned}$. .3 .2				${ }_{2}^{230 \mathrm{PP}}$	－S
				$\begin{aligned} & 150 \\ & 150 \end{aligned}$	3.853.5	81－9										
				150												
3.700	12			$\begin{aligned} & 150 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3 . \end{aligned}$			Marda				50				
	12				$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	12／9	$\mathrm{PM}_{\text {P2 }}{ }^{\text {2 }}$	Mullard Mar．$\&$			． 25	200	2	776	PT4	ler
				150 150	3.3333						． 25	150				
2，060				$\begin{aligned} & 150 \\ & 150 \\ & \hline 50 \end{aligned}$		121－		Su－Six				300				
	7	． 4			$\begin{aligned} & 3.4 \\ & 3.5 \end{aligned}$	121－	PM	Mullard					2.2	$17 / 6$	415 PF	Six－Six
1，900				150 150	3.7	121－							6－vo			
1，900		${ }^{3}$		15	3.5 3.4		BX602	${ }_{\text {Sixa }}$ Sixixty								
1，850					3.0	$\left\lvert\, \begin{aligned} & 121- \\ & 121-\end{aligned}\right.$	$\begin{aligned} & \text { P202 } \\ & 230 \mathrm{XP} \end{aligned}$	Mazrla Cossor				00		1716		
1．500	5	5		150											6178	Six－Sixty

＂PRACTICAL WIRELESS＂DATA SHEET No． 11

MAINS OPERATED VALVES

A．C．（4－VOLT）VALVES

SCREEN GRID

$\begin{aligned} & \text { Impe- } \\ & \text { dance. } \end{aligned}$		$\left\|\begin{array}{l} 5 \\ \text { y } \\ 0 \\ 0 \end{array}\right\|$		$\begin{aligned} & \text { un } \\ & \text { in } \end{aligned}$		E	Type No．	Makers．
	1,000 1,000 1,000 3,000 1,700 1,000 550 1,000 1,120 750 750 600 1,000 1,000		200 200 200 200 200 200 2000 2000 200 200 200 200 200 200 200	$\begin{array}{r} 110 \\ 75 \\ 100 \\ 80 \\ 60 \\ 100 \\ 60 \\ 80 \\ 80 \\ 110 \\ 100 \\ 80 \\ 110 \\ 110 \\ 110 \\ 150 \\ \hline \end{array}$	1.0 1.5 1.0 5.0 4.4 2.1 2.5 3.8 3.4 5.2 5 3 3.0 5.0 9.0	$191-$ $19 /-$ $15 / 6$ $191-$ $191-$ $191-$ $191-$ $191-$ $191-$ $191-$ $191-$ 1516 $191-$ $191-$ $201-$		Mulard Eta Mazin Mazda Cossor Mer．\＆Os Cussor Mar．\＆Os． Muliard Cossor Eta Mullard Six－Sixy Six－Sixty Cossar

VARIABLE Mu VALVES

Impe－ dance．			$\begin{aligned} & \frac{y}{4}=\dot{\circ} \\ & \frac{2}{2}=1 \end{aligned}$	苞荡		g	Type No．	Makers．
$\begin{aligned} & 545,000 \\ & 2050,000 \\ & : 200,000 \\ & := \\ & := \\ & := \end{aligned}$	$\begin{aligned} & 600 \\ & 1.400 \\ & \hline \mathbf{4 0 0} \\ & = \\ & = \\ & = \end{aligned}$	1	$\begin{aligned} & 200 \\ & 250 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 75 \\ 60 \\ 100 \\ 100 \\ 100 \\ 10 \\ 700 \\ 110 \\ \hline \end{array}$	$\begin{aligned} & 5.8 \\ & 6 \\ & 7.8 \\ & 7.8 \\ & = \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 19 /-1 \\ & 15 / 6 \\ & 191- \\ & 191- \\ & 191 \\ & 191- \\ & 191- \end{aligned}$	$\begin{aligned} & \text { AC/SIVM } \\ & \text { ACSGVM } \\ & \text { DWS } \\ & \text { MVSG } \\ & \text { YMM. } \\ & \text { MMMAC } \\ & \text { VMS4 } \end{aligned}$	Marde Mazda Eta Cossor Mullard Six－Sixty Mar．\＆ O_{5} Mullard

GENERAL TYPES

Impe－ dance．					Price．	Type No．	Makers．
	$\begin{aligned} & \hline 75 \\ & 72 \\ & 36 \\ & 35 \\ & 75 \\ & 52 \\ & 40 \\ & 20 \\ & 16 \\ & 12 \\ & 12 \\ & 10 \\ & 10 \\ & 18.7 \\ & 6.7 \\ & 61.2 \\ & 9 \\ & 5.4 \\ & 9 \\ & 5 \\ & 4 \\ & 6.5 \\ & 5 \end{aligned}$		200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 400 200 400 200 200 250 250	$\begin{aligned} & 2.2 \\ & 4 \\ & 3 \\ & 3 \\ & 3.5 \\ & 4.5 \\ & 3.6 \\ & 2.5 \\ & 3.3 \\ & 4 \\ & 4.2 \\ & 3.5 \\ & 3.5 \\ & 7.5 \\ & 3.5 \\ & 7.5 \\ & 3.7 \\ & 6.5 \\ & 4 \\ & 3.5 \\ & 6.5 \\ & 6 \end{aligned}$		904 V 41 MH AC／HL． $\mathrm{AC} 2 / \mathrm{HL}$ 41 MHL MH4 MHLA 104 V ML4 ACl 104 AC / P $41 \mathrm{M}: \mathrm{P}$ ACO64 4IMXP PPS／400 $\mathrm{AC} / \mathrm{PI}$ DO／24 $054 V$ ACO44 PP3／250	Mullard Cossor Mullard Mazda Cossor Mar．\＆Os Mar．\＆Os． Mullard Mullard Mar．\＆Os． Mullard Marda Cossor Mullard Cossor Mazda Mullard Mullard Mullard Mazda Mar．\＆Os．

PENTODES

Impc－ dance					Price．	Type No．	Makers．
－	－	1	250		20	PT41	Cossor
二	二	，	400	2.25	$22 / 6$	PT41B	Cossor
－	二	i	250		$201-$	MPT4	${ }^{\text {cossor }}$ Mar．${ }^{\text {a }}$ Os．
二	二	1	200	2.2	201－	PT4	Mar．\＆ $\mathrm{O}_{8} \mathrm{O}$ ．
二	＝	2	400	4	451－	PT25	Mar．\＆ O_{3} ．
＝	＝	1	250 250	${ }_{3}^{2.5}$	${ }_{201}^{201}$	ACM24M	Mazda
＝	－	1	400	2.1	$22 / 6$	PM 248	Mulliard
L	－	1	400	3	22／6	PM24C	Mullard
－	－		250 500	3 4 4	201－	Pen4V PM24D	Mullard Mullard

RECTIFYING VALVES

Heater．		Anodes．	Output Current．	Price．	Type No．	Makers．
Volt－ age．	Cur－ rent．					
4	1	250－250	60 mA	12／5	506 BU	
4	，	250－250	60 mA	$12 / 6$		Mar. \& Os.
4	1	250－250．	60 mA	$12 / 6$ 1216	UU2 ${ }^{\text {UU60／250 }}$	Mazda Marda
4	2	$250-250$ $250-250$	60 mA 60 mA	1216 1216	UW6／2	Marda Mullard
4	2.5	350－350	120 mA	$151-$	442 BU	Cossor
4	2.5 ．	350－350	120 mA	151－	U12	Mar．\＆ O_{5} ．
4	2.5	350－350	120 mA	151－	UU120／350	Marda
4	2.	350－350	120 mA	151－	DW3	Muliard
4	25	500－500	120 mA	$201-$	460 BU	Cossor
4	$\frac{2.5}{2.5}$	500－500	120 mA	$201-$		Mar． 8 Os．
4	2.5	500－500 500－500	120 mA 120 mA	201－	UW120／500	Mazda Mullard
4	3 3	$500-500$ 1,000	120 mA 250 mA	201－	DW／${ }^{\text {CU1 }}$	Mulard ${ }^{\text {Mar．}}$ \＆ O_{5} ．
		（hal！wave）				

D．C．VALVES
 SCREEN GRID

$\begin{aligned} & \text { dig } \\ & \frac{y y y}{0} \end{aligned}$	范	Impe－ dance．			$\left\lvert\, \begin{aligned} & u_{0}^{2} \\ & \dot{x} \\ & \dot{0} \end{aligned}\right.$	Price．	Tspe No．	Makers．
.20 .16 .6 .16 .16 .16 .20	$\begin{aligned} & .1 \\ & .25 \\ & .25 \\ & .25 \\ & .1 \end{aligned}$	$\begin{gathered} 600,000 \\ 500,000 \\ 360,000 \\ 350,000 \\ \text { Variable } \\ \text { Variable } \end{gathered}$	$\begin{array}{\|c} 1.300 \\ 550 \\ 1.000 \\ 1,020 \\ e \mathrm{Mu} \\ e \mathrm{Mu} \end{array}$	200 200 200 200 200 200	$\begin{aligned} & \hline 60 \\ & 70 \\ & 60 \\ & 80 \\ & 80 \\ & 80 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 19- \\ & 191- \\ & 190 \\ & 190 \\ & 190 \\ & \hline 90 \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{DC}_{2} / \mathrm{SG} \\ \mathrm{DS} \\ \mathrm{DC} / \mathrm{SG} \\ \mathrm{DSB} \\ \mathrm{VDS} \\ \mathrm{VCL} / \mathrm{SGVM} \\ \hline \end{array}$	$\begin{aligned} & \text { Marda } \\ & \text { Mar. }_{2} \mathrm{Os} . \\ & \text { Marda }^{2} \\ & \text { Mar. \& Os. } \\ & \text { Mar. \& Os. } \\ & \text { Mazda } \\ & \hline \end{aligned}$
ORDINARY								
$\begin{aligned} & \hline \text { \& } \\ & \frac{0}{5} \\ & >0 \end{aligned}$	E.	Impe－			$\left\lvert\, \begin{aligned} & \frac{9}{8} \frac{5}{5} \\ & \frac{e x}{4} \end{aligned}\right.$:	Type No．	Makern．
	$\begin{aligned} & .5 \\ & .25 \\ & .25 \\ & .1 \\ & 5 \end{aligned}$	$\begin{aligned} & 13,000 \\ & 11,780 \\ & 10,800 \\ & 2,660 \\ & 2,650 \\ & 2,620 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 40 \\ & 12 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.7 \\ & 3.7 \\ & 4.5 \\ & 3.5 \\ & 4.5 \end{aligned}$	200 200 200 200 2000 200	$13 / 6$ $13 / 6$ $13 / 6$ $151-$ $151-$ $151-$	$\begin{aligned} & \mathrm{DC/HL} \\ & \mathrm{DC} 3 / \mathrm{HL} \\ & \mathrm{DL} \\ & \mathrm{DC2/P} \\ & \mathrm{DC/P} \end{aligned}$	Mazda Mazda Mar．\＆Os． Mar．\＆Os． Mazda Mazda

PENTODES

$\begin{array}{\|l\|} \frac{4}{3} \\ \frac{3}{0} \end{array}$	$\begin{aligned} & \dot{\vec{y}} \\ & \\ & \text { 氝 } \end{aligned}$	$\begin{aligned} & \text { Impe- } \\ & \text { dnace. } \end{aligned}$				运	Type No．	Makers．
$\begin{aligned} & * 16 \\ & 35 \\ & * 8 \end{aligned}$	$\begin{aligned} & .25 \\ & .1 \\ & 5 \end{aligned}$	30，000	$\underline{90}$	3 2.5 3.5	$\begin{aligned} & 200 \\ & 250 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 201 \\ & 201- \\ & 201- \end{aligned}$	$\begin{aligned} & \text { DPT } \\ & \text { DC2/PEN } \\ & \text { DC/PEN } \end{aligned}$	$\begin{aligned} & \text { Mar. \& Os. } \\ & \text { Marda } \\ & \text { Marda } \\ & \hline \end{aligned}$

SPECIAL BATTERY VALVES

Impe－ dance	Amp．	$\begin{array}{\|c\|c\|} \hline \text { Fil. } \\ \text { Cur. } \\ \text { rent. } \end{array}$	Anode Vols．	Slope：	Purpose．	Price．	Type	Ma
$\begin{array}{r} 27,000 \\ 3,75 \\ 3,750 \end{array}$	$\begin{aligned} & 5.1 \\ & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \frac{2}{2} \\ & 1 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 80 \\ & 80 \end{aligned}$		Double－Grid Double－Grid Double－Grid Double－Grid	$\begin{aligned} & 201- \\ & 201 \\ & 201 \\ & 201 \\ & 201-1 \end{aligned}$		Marconi $\mathrm{O}_{3 \mathrm{ram}}$ Six－Sixt

"PRACTICAL WIRELESS" DATA SHEET No. 12 HANDY FORMULE

AMPLIFICATION.

Of a tuned circuit $\ldots=\frac{\omega L}{r}$
Where $\mathbf{r}=$ equivalent series resistance.

CAPACITY.

Capacity of a condenser :
(a) With parallel plates $\mathrm{C}=\frac{\mathrm{Ak}}{11.31 \times 10^{5} \times \mathrm{d}} \mathrm{mfd}$.
(b) Spherical plates $C=r / 9=10^{5} \mathrm{mfds}$.

Capacity of a horizontal aerial : $\mathrm{C}=1 \div\left(4.144 \times 10^{5} \log _{10} \frac{4 \mathrm{~h}}{\mathrm{~d}}\right) \mathrm{mfd}$. where $1=$ length in cms.
$\mathrm{d}=$ diameter in crns.
$h=$ height above earth in cms.
$A=$ total area in cms. of one plate.
$r=$ radius in cms.
Capacities in series $\mathrm{C}=\frac{\mathrm{C}_{1} \times \mathrm{C}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$.
Capacities in parallel $\mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}$.
FREQUENCY.

$$
f=\frac{\sqrt{10^{6} \times 10^{6}}}{\sqrt{2 \pi \sqrt{L C}}}
$$

INDUCTANCE.

Inductance of a straight wire $L=21\left(\log _{e}\left(\frac{21}{r}\right)-1\right) \mathrm{cms}$.
Inductance of a solenoid $L=4 r^{2} a^{2} \mathrm{Nb}^{2}$.
Inductance in series (with no mutual inductance)

$$
\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2} .
$$

Inductances in parallel (with no mutual inductance)

$$
\mathrm{L}=\frac{\mathrm{L}_{1} \times \mathrm{L}_{3}}{\mathrm{~L}_{1}+\mathrm{L}_{2}}
$$

$\mathrm{L}=$ Inductance in cms.
$\mathrm{N}=$ Turns per cm.
$\mathbf{b}=$ Overall breadth of coil in cms.
$\mathbf{r}=$ radius of wire in cms
$\stackrel{\mathrm{L}}{\mathrm{N}}=$ Inductance in cms.
$\mathrm{b}=$ Overall breadth of coil in cms.
$\mathbf{r}=$ radius of wire in $\mathbf{c m s}$

IMPEDANCE.

In a circuit with Resistance, Inductance and Capacity in series.

$$
Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}=\sqrt{R^{2}+X^{2}}
$$

OHM'S LAW.

$$
I=\frac{E}{R} \quad E=I \times R \quad R=\frac{E}{I}
$$

For A.C. circuits

$$
I=\frac{E}{2 \pi f L}
$$

REACTANCE.

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Of a coil } \quad . & . \\
\text { Of a condenser } & \ldots \\
X & X=\frac{1}{2 \pi f C} \\
\text { Net reactance } & . . \\
X & X=X_{L}-X_{C} \\
\text { At resonance } & . . \\
\end{array} \begin{array}{l}
\mathrm{f}=\frac{1}{2 \pi \sqrt{L C}}
\end{array}
\end{array}
$$

RESISTANCE.

$$
\mathrm{R}=\frac{\mathrm{E}}{\mathrm{I}}
$$

Of a tuned circuit . .

$$
R=\frac{L}{C \times r}
$$

Where $\mathbf{r}=$ equivalent series resistance.
Resistances in series $R 1+R 2$
Resistances in parallel $\frac{\mathrm{R} 1 \times \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}$

WATTAGE DISSIPATION.

$$
I^{2} R=E I
$$

WAVELENGTH.

$$
\begin{aligned}
& \text { W'avelength (in metres) } \quad=\frac{\text { Velocity }}{\text { Frequency }} \\
& \text { Of a tuned circuit }-\lambda=1885 \sqrt{\mathrm{LC}} \\
& \text { Where } \mathrm{L}=\text { microhenrys. } \\
& \mathrm{C}=\text { microfarads. } \\
& \lambda \times f=300,000,000
\end{aligned}
$$

To convert Wavelengths (in metres) to Frequency (in kilocycles), divide 300,000 by the Wavelength.
To convert Frequency (in kilocycles) to Wavelength (in metres), divide 300,000 by the Fxequency.

VALVE FORMULAE

AMPLIFICATION FACTOR.

$$
\mu=\frac{\text { Change in anode volts }}{\text { Change in grid volts }}
$$

IMPEDANCE. (This is actually A.C. resistance)

$$
\text { Ro }=\frac{\text { Change in anode volts }}{\text { Change in anode current }}
$$

MUIUAL CONDUCTANCE. $=\frac{\text { Change in anode current }}{\text { Change in grid volts }}$
TABLE OF SYMBOLS USED IN WIRELESS AND ELECTRICAL FORMULEE

Amplification factor	\because	..		$\begin{aligned} & \mathrm{A} \\ & \mu(\mathrm{Mu}) \end{aligned}$
Ampere (unit of current).		
Current (R.M.S. value)	.	-		I
\cdots. (instantaneous)	.	\cdots		1
Capacity		C
Energy	.	.		
E.M.F. (voltage-R.M.S. value)	.			E
E.M.F. (instantaneous)	.			e
Frarad (unit of capacity)	\cdots		F

"PRACTICAL WIRELESS" DATA SHEET No. 13

 TERMINALS, FUSES, ETC.
TERMINAL SIZES

Terminal shanks are practically all 4 B.A. The older form of slotted shank supplied by Belling-Lee is 2 B.A. These sizes are clearance dimensions.

TERMINAL TYPES

Terminals are obtainable in many sizes and patterns, but the markings set out below are those which are standardised by the majority of terminal manufacturers. The Belling-Lee terminals are manufactured in four sizes, Types B, M, R and Q. Types B. R and Q have ebonite heads, whilst Type R is of metal. Types B and M also have non-rotatable heads so that the name is always easily read.
Eelex terminals are manufactured with non-rotatable indicating heads, and with socket centres so that plugs may be inserted. In addition, the Treble Duty terminal has removable indicating p!ates which are held in place on the head. The shank is slotted to accommodate connecting wires.

TERMINAL BLOCKS

Terminals are usually attached to a strip of ebonite fixed to the rear of a baseboard, but to simplify this method of construction, special terminal mounting blocks are manufactured by Belling-Lee, Ward \& Goldstone, Telsen, etc. The Belling - Lee accommodates two terminals of any type, whilst the Ward \& Coldstone accommodates only one terminal. The Telsen is complete with two terminals, one red and one black.

STANDARD TERMINAL INDICATIONS

Aerial	Aerial 1	Aerial 2
Aerial 3	Earth	Pick-up
L.S. +	L.S. -	Phones +
Phones	L.T. +	L.T. -
H.T.+	H.T. +1	H.T. +2
H.T. +3	H. +4	H.T. -
Grid	Grid -	Crid -1
Crid -2	Crid -3	Screen
Input+	Input -	Output+
Output -	+	
Mains +	Mains -	A.C. Mains
L.T.A.C.		
And in addition, plain red or black.		

Various Types of Wander Plugs.

TERMINAL MOUNTING STRIPS

In place of the customary terminal block or strip, special paxolin strips are obtainable from Clix, in which resilient sockets are fixed. These are appropriately engraved and accommodate the solid type of plug. This is an improvement on the terminal with screw top, as it enables rapid connection to be made. Messrs. Bulgin also manufacture a small ebonite terminal block with two terminals fitted.

FUSES

H.T. - is invariably joined to L.T. - , and it is advisable always to make this connection by means of a fuse. The leads to the valveholders are then taken from the L.T. - side of the fuse-holder. Fuse-holders are manufactured by Telsen and Bulgin and accommodate small lamp fuses of the flashlamp bulb type. They are obtainable in various ratings and the choice should be made in the following manner. Add together the total filament current consumption of each individual valve, and choose a fuse which will blow at a value slightly lower than this total. Microfuses are also obtainable, and these consist of a thin gold film and not a lamp type. They are also obtainable in various ratings. (Note: . 2 amp . is 200 milliamps.)

BATTERY CORDS

To obviate the necessity of joining battery leads to terminals, special multiway battery cords are obtainable. Those manufactured by Messrs. Belling-Lee are fitted with two sparles for connecting to the accumulator, whilst the remaining cords are provided with wander plugs. These may be obtained in lengths of 30 in . or 54 in . and are made up in' 5 -way, 6 -way, 7 -way, 8 -way, 9 -way and 10 -way cables. The leads are intended for C.B. and H.T. tappings, but obviously the plugs may be altered to suit individual requirements. Messrs. Bulgin, Ward \& Goldstone and Harbro also manufacture multi-way battery cords similar in type to those above mentioned. Messrs. Bulgin do not supply spades or plugs with their cords so that these may be made up to suit particular demands.

"PRAGTIGAL WIRELESS" DATA SHEET No. 14 LOUD SPEAKERS

Loud speakers are divided into two elasses: Moving-iron and Moving-coil. But no matter what type of loud speaker is employed it is essential that it should match the valve if the maximum undistorted power output is required. With normal three-electrode valves, the loud-speaker load, or as it is more correctly called, the "optimum valve load," should be roughly twice the normal impedance of the valve. A moving-coil loud speaker (and some types of electrostatic loud speaker, remains constant in impedance chroughour the nowal requency range, but movink- Abo spred out it is necessary to use a transformer and the ratio of this usual to take the impedance ofored formula. Where two or mure valves are connected in parallel in the outnut stage, the load is proportionstely leas For inglise may be obtained from the adjoined formula. Where two or rove valves are conneced in paralle in the output stage, the load is proportionately leas. For instance, two valves in parallel would require
is just double that of either valve.

MOVING-IRON LOUD SPEAKERS.

Moving-iron loud speakers may consist of a simple reed movement, a balanced armature, or an inductor-dynamic arrangement. The former is the simplest, but owing to its inertia fails to deal with the lower frequencies in the musical range. The balanced armature possesses slightly more freedom and, therefore, gives better response at the lower frequencies, whilst the inductor-dynamic is especially designed to respond well down in the musical scale. It is not, however. very good at the higher musical frequencies. Owing to the fact that the impedance of moving-iron loud speakers varies with the frequency, it is inadvisable to employ this type of speaker with a pentode valve. Great care should be taken with these speakers to see that the reed does not get bent out of alignment, and the cone washer employed for attaching the diaphragm should be kept well tightened. The material of which the diaphragm is made will affect the response, and, generally speaking, this should be of thin material with felt rings between the cone washers and the diaphragm at both back and front.

DIAPHRAGMS.

With all types of loud speaker, the material from which the diaphragm is made will affect its response. The effects are especially noticeable with the movingcoil type of loud speaker. A very good all. round material is No. 2 sheet Bristol Board. This should be formed into a cone with right-angled sides, and the edge turned back at an angle for a distance of not more than a quarter of an inch. This turned-back edge should be cemented to turned-back edge should be cemented to stretched when attaching it to the clamping ring or other device to which it may require to be affixed. The speech coil should be of the minimum weight, and it should, therefore be wound on a very thin paper therefore be wound on a very thin paper
cylinder, and doped with collodion. A very good material to use for this purpose is Durofix. The resistance of the speech coil should be from 5 to 50 ohms, and the matching carried out by means of a transformer as pointed put in the first section above. The angle of the cone will affect above. The angle of the cone will affect home. n right-angled cone will be found best. It should not be made less than a right-angle owing to the risk of focussing. Generally speaking. a light, thin diaphragm will give brilliancy, whilst heavy dead material will result in a deep tone.

Transformer Ratio $=\sqrt{\frac{\text { Optimum Valve Load }}{\text { Loud Speaker Impedance. }}}$
 HIGH RESISTANCE

TRANSFORMER RATIOS AND FIELD BIASING.
The two graphs above have been designed on the assumption that the opt imum load required for the valve is double tho A.C. impedance of the valve. As pointed out above, required for the valve is double tho A.C. impedance of the valve. As pointed out above,
however, this does not hold good for Pentodes, Velves in Parallel and Valves in Push-Pull. To ascertain the ratio of transformer, find the point of intersection of the lines, corresponding to the valve resistance and speaker impedance. The nearestline running from the lower left-hand corner will then give the transformer ratio required. Where the field of the speaker is of the onergised type having a D.C. resistance of 2,000 to 5,000 ohrns, it may be employed for biasing the output valve. The illustration on the left shows the method of connection. The total anode current of the output valve passes through the field, and therefore the bias obtained may be worked out by multiplying the resistance of the field (in ohms) by the anode current (expressed as a decimal fraction of an amp.). If this results in an excessive voltage, a reduction may be obtained by joining a highresistance potentiometer (of the order of 50,000 ohms) across the field, and connecting resistance potentiometer (of the order of 50 , anowns) across the field, and connerting the arm, as well as one end, to H.1. as shown on the right. The slider should be
adjusted until the anode current, as shown by a milliammeter, is of the correct value. adjusted until the anode curtent, as shown by a milliammeter, is of the corre
The manufacturer instructions should, of course, be carried out in all cases.

MOVING-COIL LOUD SPEAKERS Moving-coilloud speakers are divided into two classes, those having a permanent magnet end those possessing an energised field. In the former the magnet may take on any In the former the magnet may take on any
shape, but it requires no method of enershape, but it requires no method of enera
gising, and owing to modern methods of manufacture it is sufficiently sermanent in its magnetism to outhast the design of the speaker. The other type has a large winding round the pole-piece, and this requires the application of a direct currens in order to produce the magnetic field. The required voltage may vary from 10 volts in some designs to 200 volts in others. The type of speaker which requires a high voltage usually has a field winding with a resistance of from 2,000 ohms to 10,000 ohms, and, therefore, in the lower values it may be employed as a smoothing choke in a maina eliminator. For this purpose the eliminator should be deaigned to give an output of 350 volts at 100 mA or so, and the drop through the field will give a dissipation of from 3 to 10 watts, according to the resistance of the field. The voltage drop will permit of the full 200 or 250 volts being applied to the receiver. Care must be taken in handling this type of speaker so as not to introduce hum by induction, and with all types of moving-coil speaker the diaphragm should be handled carefully so as not to upset the centralising device.

BAFFLES.

Practically all types of loud speaker necessitate a baffle, which prevents the ound waves from one side from passing round to the other side and so neutralising the effect of very low notes. The baffle should be as thick as conveniently possible not less than three-eighths of an inch. The hole in it should be of the same size as the mouth of the diaphragm-not smaller. The speaker should be securely fixed to the baffle to prevent rattle, and it is also a good plan to glue large odd-shaped pieces of wood to the inside of the baffle at various positions to break up unwanted resonances. In cases where the baffle is built in the form of a cabinet. resonance may be removed by packing the corners with non-resonant material such as wool. with non-resonant material such as wool.
kapok, etc. The size of the baill. kapok, etc. The size of the baille
will govern the reproduction of the bess will govern the reproduction of the bass
notes, and the following details will assist notes, and the following details will assist individual requirements. For the reproduction of a 200 -cycle note, the baffle should be 18 inches wide. For 100 cycles, 2 ft .9 ins.; for 60 cycles 4 ft .6 ins., and for 30 cycles at least 9 ft . must be provided. Where undue emphasis is given to the bass notes. reduction in strength may be obtained by removing the loud speaker to a distance of about one inch behind the baffle. In other words, a slight air apace between the front of the diaphragm and the rear surface of the baffle will assist in reducing the low note response.

"PRACTICAL WIRELESS" DATA SHEET No. 15

EUROPEAN BROADCASTING STATIONS
(BRITISH) STATIONS ARE IN HEAVY TYPE, thus: DAVENTRY NATIONAL.

	Wavelength Metres.	Station.	Country.	Power in Kw.
155.0	1935.0	Kaunas (Kovno) ..	Lithuania .. Holland	7.00 8.50
160.0	1875.0	Huizen (Exchanges wavelengths with Hilversum every 3 months)	Holland ..	8.50
167.0	1796.0	Lahti	Finland	40.00
174.0	1725.0	Radio Paris, C.F.R.	France ..	75.00
183.5	1635.0	Zeesen (Könisswusterhausen) ..	Germany ..	60.00
187.5	1600.0	Irkoutsk. RV14	Russis ..	10.00
193.0	1554.4	Daventry National	England	30.00
195.0	1538.0	Ankara (Angora) ${ }^{\text {a }}$ - \quad-.	Turkey ..	7.00
202.5	1481.0	Moscow, RVI (Old Komintern)	Russia	100.00
207.5	1446.0	Eiffel Tower, FL, Paris	France	13.00
2125	1412.0	Warsaw ! ...	Poland	120.00
217.5	1380.0	Novosibirsk, RV6 ..	Russia	100.00
222.2	1350.0	Tunis-Kasbah ..	Tunisia	0.50
222.5	1348.0	Motala (Relays Stockholm) ..	Sweden	30.00
230.0	1304.0	Moscow, WZSPS (Trade Union)	Russia	100.00
238.0	1260.0	Baku, RV8 .	Russia	10.00
244.0	1229.5	Boden (Relays Stockholm)	Sweden	0.60
250.0	1200.0	Stamboul	Turkey	5.00
250.0	1200.0	Reykjavik	Iceland	21.00
256.0	1170.0	Tashkent, RVII	Russia	25.00
260.0	1154.0	Kalundbort (Relays Copenhagen)	Denmark	7.50
268.5	1117.0	Moscow, Popoff RV5s . ${ }^{\circ}$	Russia	40.00
271.5	1105.0	Minsk Koloditschi, RV10	Russia	35.00
277.0	1083.0	Oslo	Norway	6000
280.0	1071.0	Tiflis. RV7	Russia	10.00
290.0	1035.0	Kiev, RV9	Russia	36.00
300.0	1000.0	Len'ngrad. Kolpino RV53	Russia	100.00
320.0	938.0	Kharkov, RV4	Russia	20.00
340.0	882.0	Saratov, RV3	Russia	20.00
353.4	849.0	Rostov-on-Don, RV12	Russia	4.00
357.0	840.0	Budapest .. ${ }^{\text {a }}$..	Hungary	18.50
363.6	825.0	Sverdlovsk, RV5 . .	Russia	50.00
385.0	779.0	Petrozavodsk. RV29	Russia	10.00
389.0	770.0	Ostersund (Relays Stockholm)	Sweden	0.60
395.0	760.0	Geneva (Relays Sottens) .	Switzerland	1.30
416.6	720.0	Moscow, RV2 (Experimental) ..	Russia	20.00
434.6	690.0	Oulu (Uleaborg) ...	Finland	1.50
441.2	680.0	Lausanne (Relays Sottens)	Switzerland	0.50
521.5	575.0	Semara, RV16	Russia	1.20
522.0	574.7	Ljubljana. ..	Yugoslavia	2.50
527.0	569.3	Freiburg-im-Breisgau (Relay	Germany	0.25
528.0	569.1	Grenobl	France	2.00
530.0	566.0	Hanover (Relays Hamburg) ..	Germany	0.25
533.0	563.0	Wilno (Relay Station) .-	Poland	16.00
536.0	560.0	Aussburg (Relavs Munich)	Germany	0.25
536.0	560.0	Hamar (Relays Oslo)	Norway	0.70
536.0	560.0	Kaiserslauten (Relays Munich)	Germany	1.50
537.0	558.6	Tampere (Relays / Helsinki)	Finland	1.00
545.0	550.0	Budapest No. I Lakihegy	Hungary	18.50
554.0	542.0		Italy	3.00
554.0	542.0	Sundsvall (Relays Stockholm)	Sweden	10.00
563.0	533.0	Munich	Germany	1.50
571.0 580.0	525.0		Latvia	${ }_{15.00}^{150}$
580.0 589.0	517.0 509.0	Vienna (Rosenhügel) ${ }^{\text {Brussels No. I, Velthem }}$ "French	Austria Belgium	15.00 15.00
		Programme)		
598.0 599.0	501.7 500.8	Nijni Novgorod, RV42 Florence, 1F1 (Relays Turin) ...	Russia	10.00 20.00
509.0 608.0	500.8	Florence, 1F1 (Relays Turin) .. Trondheim	Italy	1.20
614.0	488.6	Prague, No. 1	Czechoslovakia	120.00
617.0	486.2	Oufa. RV22	Russia ..	10.00
625.0	480.0	North Regional (Manchester)	England	50.00
625.0	480.0	Ivanovo-Voznesenk, RV33 ..	Russia	10.00
635.0	472.4	Langenberg	Cermany	60.00
644.0	465.8	Lyons la Doua, PTT .	France ${ }^{\text {a }}$	1.50
653.0	459.4	Berornünster (Schweizerischer Landessender)	Switzerland	60.00
662.0	453.2	San Sebastian, EAJ8	Spain	0.60
662.0	453.2	Salamanca, EAJ22	Spain	1.00
662.0	453.2	Pori	Finland	1.00
662.0	453.2	Danzig (Relays Heilsberg)	Austria	0.50
662.0	453.2	Klagenfurt (Relays Vienna) .-	$\stackrel{\text { Austria }}{\text { Norway }}$	0.50 0.70
662.0	453.2	Porssrund (Relays Oslo)	Norway Norway	0.70 0.10
662.0	453.2 453	Tromsö Bodö $\quad \cdots \quad .0$	Norway Norway	0.10
662.0 662.0	453.2 453.2	Bodöl (Relays Stockholm) :.	Norway	0.15
666.7	450.4	Odessa, RV13 .	Russia	10.00
671.0	447.1	Ecole Supérieure, PTT, Paris ..	France	7.00
671.0	447.1	Aalesund	Norway ..	0.35
671.0	447.1	Rjukan	Norway	0.15
671.0	447.1	Notodden (Relays Oslo)	Norway ..	0.08
630.0	441.2	Rome, IRO	Italy	50.00
689.0	435.4	Stockholm, SASA	Sweden	55.00
698.0	430.0	Belgrade ${ }^{\text {a }} 17$ - ${ }^{\text {a }}$	Yugoslavia	2.50
707.0	424.3	Martrid, EAl7 (Union Radio)	Spain	2.00
707.0	424.3	(After 7.0 p.m.) ${ }^{\text {Madrid, EAJ2 (Radio Espana) }}$	Spain	1.30
707.0	424.3	(Up to 7.0 p.m.)		

"PRACTICAL WIRELESS" DATA SHEET No. 16

BROADCASTING STATIONS (Continued from DATA SHEET No. 15).

		Station	Country.	Power in Kw .
1220.0	245.9	Varberg	Sweden	0.30
1220.0	245.9	Swansea $\quad \because \quad \because \quad \because \quad \cdots$	Wales ..	0.12
1220.0	245.9	Berne (Relays Beromulnster) :	Switzerland	0.50
1220.0	245.9	Eskilstuna (Relays Stockholm)	Sweden ..	0.20
1220.0	245.9	Sartle (Relays Stockholm) ..	Sweden	0.40
1220.0	245.9	Cassel (Relays Frankfür) -.	Germany ..	0.25
1220.0	245.9	Linz Relays Vienna ${ }_{\text {d }}$	Austria	0.50
1220.0	245.9	Pietarsaari (Relays Melsinki) ...	Finland	0.50
1220.0	245.9	Turku (Abo) (Relays Helsinki)	Finland	0.50
1220.0	245.9	Schaerbeck ${ }^{\text {a }}$	Belgium	010 0.50
1229.0	24.1	Basle (Relays Beromünster) ..	Switzerland	0.50
1238.0	242.3	Beltast	N. Ireland ..	1.00
1247.0	240.6	Stavanger $\quad \cdots \quad \cdots$	Norway	0.50
1256.0	238.9	Numberg (Relays Munich) ..	Germany	2.00
1260.0	238.0	Nimes $\because \stackrel{\square}{\text { a }}$	France	100
1265.0	237.2	Bordeaux. Sud-Qlear	France ..	3.00
1274.0	235.5	Kristiansand ${ }^{\text {a }}$ -	Norway ..	0.50
1283.0	235.0 232.2	Lodz (Relay Station) ..	Poland ..	1.65 0.25
12920 1301.0	232.2 230.6	Kiel (Relays Hamburg) Swedish Relay suations Malmö,	Cermany	0.25

$\begin{array}{\|c\|} \hline \text { Fre- } \\ \text { ouency } \\ \text { in } \\ \mathrm{Kc} / \mathrm{s} . \end{array}$	Wavelength in Meters.	Station.		Country.		Power in Kw.
$\begin{aligned} & 1310.0 \\ & 1319.0 \end{aligned}$	$\begin{aligned} & 229.0 \\ & 227.4 \end{aligned}$	Umea ${ }^{\text {Flensburg }}$ "(Relays Hamburs)		Sweden Germany	..	0.50 0.50
1337.0	224.4	Cork	Irish Free		1.00
1345.0	223.0	Fecamp. Radio-Normande	\cdots	France	\cdots	
1346.0 1365.0	222.9 219.9	Hudiksval! Beziers	\ldots	Sweden	\cdots	015 1.50
1373.0	218.5	$\stackrel{\text { Seziers }}{\text { Salsburg }}$ (Relays Vienna)	\cdots	Austria A		0.50
1382.0	217.0	Königsburg (East Prussia)	\cdots	Cermany	".	0.50
1382.0	217.0	Karlstad	-	Sweden	-	0.25
1391.0	215.6	Halmstad .. $\quad .$.		Sweden	.	0.20
1391.0	215.6	Brussels, Radio-Chatelinene	.	Belgium	\ldots	0.10
1400.0	214.3	Aberdeen .. ${ }^{\text {.. }}$.	Scotland	.	1.00
1400.0	214.3	Wersaw. No. 2	.	Poland	.	10.00
1420.0	211.3	Newcastle $\quad \therefore$.	Erglend		1.00
1430.0	209.0	Magyarover and Miskolcz	\bullet	Hungary	.	0.80
1450.0	207.0	Boras . ${ }^{\text {a }}$.	\cdots		..	0.15
1460.0	206.0	Omsköldsvik !.	\cdots	Sweden	\cdots	0.20
1470.0	204.1	Cävle ..	.	Sweden	..	0.27
1480.0	202.7	Kristineham -.	.	Sweden	..	0.25
1490.0	201.3	Halsingborg	\cdots	Sweden	-.	0.25
1530.0	195.0	Kariskrona	\because	Sweden	..	0.20

PRINCIPAL SHORT WAVE STATIONS

Frequency in		Station.	Country.	Times of Transmission.	Frequency in Ke/s.	Wavelength in Metres	Station.	Country.	Times of Transmission.
3,750 4.273	$\begin{aligned} & 80.0 \\ & 70.2 \end{aligned}$				7.797	38.7	Rudio Nations. Prangin	Switzerland	Sun. 22.00-22.45
4.273 4,745	$\begin{aligned} & 70.2 \\ & 62.56 \end{aligned}$	Khabarovsk London, Ont.	Russia Canada ..	Daily 09.00-12.00 Sun. 06.00	8.125	36.92	Prangins Bandoeng .		Daily 10,00-14.00
48.80	$\begin{aligned} & 62.56 \\ & 62.5 \end{aligned}$	Long Island, N. $\mathrm{Y}^{\text {. }}$	U.SA. \quad -	Fri. 24.00	88.650	34.68 34.68	Long island. $\mathrm{N} . \ddot{\mathrm{Y}}$.	U.S.A	$\begin{aligned} & \text { Fri. } 23.00 \\ & \text { Mon. } 21.00 \end{aligned}$
5.146	58.3 58.0	Bandoeng . . ${ }_{\text {Prague }}$	Jave Czechoslovakia	Daily 12.20 and 07.00 Tues. and Fri. 1930	$\begin{aligned} & 8,650 \\ & 8,928 \end{aligned}$	34.68 33.50	London, Ont.	Conada	
5.502	54.52	Prague Brooklyn, "N.Y.	U.S.A		9.300	32.26	Rabat	Morocco .	Sun. 21.00
5.640	52.7	Tanamarive, P.T.T.	Madagascar		9.500	31.58 3155	Rio de Janeiro ...	Brazil Australis	Daily 21.30
5.714	52.5 51.22	Quito ${ }^{\text {Chapultepec }}$. $\quad \cdots$	Ecuadar	Daily 12.30	9,510 9.510	3155 31.54	Melbourne Empire Zones 2.4.5	Australis	Wied. and Sat. 10,00
5.857 5.930	51.22 50.6	Chapultepec Niedellin	Mexico Colombia :.		9.520	31.51	Skamlebaek	Denmark .	
5,970	50.26	Vatican Stato, Rome	lialy \because	Daily 19.00	9.530	31.48	Schenectady. N.Y.	U.S.A.	
6,000	50.0	Christchurch ..	New Zealand	Wed. 03.00. Sat. 0730	9.560	31.38	Zeesen	Cermany	Daily 13.00
6,000	50.0	Bucharest	Ruumania ..		9.570	31.35	Posen	Poland	Tues, and Thurs. 1730 .
6,000 6,000	50.0 50.0	Moscow . ${ }_{\text {Barcelons }}$.	Russia	Sats. 20.00	9,570	31.35	East Springfield,	US.A.	
6,005	49.96	Drummondville	Canada	Relays CFCF.01.00-	9.582	313	Philadelphio. Pa.	U.S.A.	Daily ex. Thurs. and
6.005	49.96	Tegucizalpa	Honduras mo	Daily ex Sun. 00.00	9,580	31.3	Radio Nations.	Switzerland	Sun.22.00-22.45
				5.			${ }^{\text {Prangins }} 3$		
$\begin{aligned} & 6.020 \\ & 6.023 \end{aligned}$	$\begin{array}{r} 49.83 \\ 49.83 \end{array}$	Chicago, Ill. Mexico City	Mexico :-	Daily 0100	$\begin{aligned} & 9,585 \\ & 9,590 \end{aligned}$	$\begin{aligned} & 31.29 \\ & 31.28 \end{aligned}$	Empire, Zan 3 Sydney .. .	Australia	Sun. 10.00
6,042	49.67	Coytesville, Noj.	U.S.A. .-	Daly 0	9,598	31.25	Lisbon ... \quad.	Purtugal	Tues and Fri. 22.00
6.050	49.59	Halitax ${ }^{\circ}$	Nova Scolia						
6,050 6.060	49.58	Empire Zones 4-5 Nalrobi	Kenya Colony	Daily 16.30	9,640 9,869	31.10 30.43	$\begin{array}{lll}\text { Bangkok } & \text {.. } & \quad \vdots \\ \text { Aranjuez }\end{array}$	Sram Spain	Daily 23.30, Sat. 18.00
6,0660	49.5	Mason, Ohio \quad :	U.S.A.	Daily 16.30	10.000	30.0	Belgrade .. -.	Yugoslavia	Mon, 19.00
6,060	49.5	Philadelphia, $\mathrm{Pa}{ }^{\text {a }}$	U.S.A.	-	10,238	29.3	Heredia ...	Costa Rica	Daily 22.00 and 02.00
6,069	49.43	Vancouver, B.C	Canada		10,350	28.98	Bucnos Aires	Argentina	Daily 20.30 and
6,072	49.4	Vienna ..	Austria	Tues, 13.00. Thurs.	11.180	26.83	Funchal	Mladeira	Tues and $10.30-1230$ Thurs.
6.080	49.34	Kearny, $\mathrm{N} . \mathrm{J}$.	U.S.A.	. ${ }^{\text {Sat. }}$	11.700	25.63	Pontoise	France	Colonial Station E-W.
6,080	49.34	Chicaga III. O.	U.S.A. \quad -					Canada	daily 20.00
$\begin{aligned} & 6,045 \\ & 6,098 \end{aligned}$	$\begin{aligned} & 49.22 \\ & 49.2 \end{aligned}$	Bowrnanville, Ont. Johannesburg	Canada ... South Africa	$\begin{aligned} & \text { Daily } 20.00 \\ & \text { Weekdays } 09.00 .14 .00 \end{aligned}$	11,720	25.6	Winnip	Canada	aily ex. Sun. 17.45
				[Sat. 14.30] and 17.00. Sun. 13.00	$\begin{aligned} & 11,750 \\ & 11,760 \end{aligned}$	$\begin{aligned} & 25.53 \\ & 25.5 \end{aligned}$	Empire,Zones I \& 4 Chapultepec	Mexico	Daily 20.00
				and 17.30 ,	11.810	25.4	Bowmanville	Camada	Daily 18.00
6,100	49.13	Bound Brook, N.Y.	U.S.A.		11.810	25.4	Prato Smeraldo,	lisaly	16.00 and 19
6.110	49.1	Calcutta ${ }^{\text {a }}$, ${ }^{\text {a }}$	India	Daily 13.00			Rome	U.S.A.	-
6.120	49.02	Long Island, N.Y,	U.S.A.		11.840 11.865	25.34 25.28	Chicaso. III. Empire, Zone 2	U.S.A	-
6.140 6.147	48.86	Fast Pittsburg, Pa.	Canada	Daily ex. Sun. 00.30	11,870	25.27	${ }_{\text {Esst }}$ Pittsbure. $\mathrm{Pa}_{\text {a }}$.	USA.	
6.167 6.167	48.65	Mexico City	Mexico		11.905	25.2	Pontoise (Colonial	France	
6,205	48.35	Bogeta ..	Colombia	Daily 15.00			Station N-S)		
6.220	48.2	Rome	lisly		12.830	23.38	Rabat .	Morocco	un.
6.243	48.05	Barranquilla -t	Colombia .-	Weetdays 23.45	14.630	20.5	Chapultepec	Mexico	,
6,250	48.0	Casablanca -	Morocco		15.075	19.9	dia	Coska Rica	Sat.i6.00 and 21.00
6.382 6.425	47.00 46.69	Quito B Brook, N.j.	U.uador \quad.	01.00	15.140	19.81	Empire. Zone 5		
6.426	46.67	London, Ont. .	Canada	Sat.01.00. Sun. 02.00	15,120	19.84	Vatican State, Rome	italy	Daily 10.
6,611	45.38	Moscow ..	Russia		15.200	19.73	Zeesen	Cermany	Daily 13.00-17.00
6.667	45.0	Constantine	Algeria	Mon. and Fri. 23.00	15.210	19.72	East Pittsturg, Pa.	U.S.A.	
6,667	45.0	Cuatemala City	CentralAmer.	Daily 03.00	15,244	19.68	Pontoige (Colonial	France	
6.860	43.75	Radio Vitus, Paris	France -					U.S.A.	Daily 18.00
6.970	43.0	Madrid ...	Spain Malay States	Tues. and Sat. 22.30 Sun. and Wed. 15.30	15.340	19.56	South Schenectady, N.Y.	U.S.A.	Daily 18.00
7.195 7,211	41.0 41.7	Singapore.	Malay States Canary Islands	Sun, and Wed. 15.30	17.750	16.9	Bengkok ...	Siam	Suno and Tues. 21.00
7.230	41.6	Zurich(Radio Club)	Switzerland	Ist and 3rd Sun.	17.770	16.88	Empire, Zone 2		
7320	41.0	Bangkok -	Siam ..	Mon, 14.00	17.780	16.87	Bound Brook. N.J.		
7.443	40.3	Radio Natinus,	Switzerland. .	Sun. 22.00-22.45	18,105 20730	16.57	Chicago. Ill. ${ }_{\text {Buenus A }}$	U.S.A, Argentiona	
					21.470	13.97	Buenus Aires Empire, Zone $3 .$.		Daylight working
7.612	39.4	Nuevo Laredo ..	Mexico :	Thurs. 16.00	21.540	13.92	East Pittsburg ..	U.S.A.	

"PRACTICAL WIRELESS" DATA SHEET No. 17

 HANDY TABLES.INSTRUMENT WIRE SIZES

No.	Dia.	No.	Dia.
$4 / 0$.400	24	.022
$3 / 0$.372	25	.020
$2 / 0$.348	26	.018
0	.324	27	.0164
1	.300	28	.0148
2	.276	29	.0136
3	.252	30	.0124
4	.232	31	.0116
5	.212	32	.0108
6	.192	33	.0100
7	.176	34	.0092
8	.160	35	.0084
9	.144	36	.0076
10	.128	37	.0068
11	.16	38	.0060
12	.04	39	.0052
13	.092	40	.0048
14	.080	41	.0044
15	.072	42	.0040
16	.064	43	.0036
17	.056	44	.0032
18	.048	45	.0028
19	.040	46	.0024
20	.036	47	.0020
21	.032	48	.0016
22	.028	49	.0012
23	.024	50	.0010

TWIST DRILI GAUGE SIZES

No. Drill.	Decimal Sizes,	No. Drill.	Decimal Sizes.
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \end{array}$	$\begin{aligned} & .2280 \\ & .2210 \\ & .2130 \\ & .2090 \\ & .2055 \\ & .2040 \\ & .2010 \\ & .1590 \\ & .1960 \\ & .1935 \\ & .1890 \\ & .1850 \\ & .1820 \\ & .1800 \\ & .1770 \\ & .1730 \\ & .1695 \\ & .1610 \\ & .1590 \\ & .1570 \\ & .1540 \\ & .1520 \\ & .1495 \\ & .1470 \\ & .1440 \\ & .1405 \\ & .1360 \\ & .1285 \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \\ & 41 \\ & 42 \\ & 43 \\ & 44 \\ & 45 \\ & 46 \\ & 47 \\ & 48 \\ & 49 \\ & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$.1200 .1160 .130 .110 .1100 .1065 .1040 .1015 .0995 .0980 .0960 .0935 .0890 .0820 .0810 .0785 .0760 .0730 .0700 .0670 .0595 .0550 .0520 .0465 .0430 .0420 .0410 .0400

MUSICAL FREQUENCIES

B.A. THREADS

Diameter Tapping size Clearing size	\ldots	\ldots	No. 10 Letter B	$\begin{aligned} & 1 \\ & \text { No. } 17 \\ & \text { No. } 3 \end{aligned}$	$\begin{aligned} & 2 . \\ & \text { No. } 24 \\ & \text { sinin. } \end{aligned}$	$\begin{gathered} 3 \\ \text { No. } 29 \\ \text { No. } 19 \end{gathered}$	$\begin{aligned} & \text { No. } 32 \\ & \text { No. } 27 \end{aligned}$	$\begin{gathered} 5 \\ \text { No. } 37 \\ \text { No. } 30 \end{gathered}$	$\begin{gathered} 6 \\ \text { No. } 43 \\ \text { No. } 33 \end{gathered}$	$\begin{gathered} 7 \\ \text { No. } 46 \\ \text { No. } 39 \end{gathered}$	$\begin{aligned} & 8 \\ & \text { No. } 50 \\ & \text { No. } 43 \end{aligned}$

WOOD SCREWS

Size No. . \begin{tabular}{l|l|}
\because \& 00

\because \& No. 52

\hline

\hline 0. \& 1 \& 2 \& ${ }^{3}$ \& 4

No. 51 \& No. 50 \& No. 44 \& No. 40 \& it ${ }^{4}$

 5 in.

6 \& ${ }^{7} \mathrm{in}$ \& Br $^{8} \mathrm{in}$

\hline
\end{tabular}$H^{8} \mathrm{in}$

METRIC CONVERSION FACTORS

To convertMillimetres to inches ..	$\times .03937$ or $\div 25.4$
Centimetres to inches	$\times .3937$ or $\div 2.54$
Metres to inches ..	+ 39.37
Metres to feet	+3.281
Metres to yards ..	$\times 1.094$
Metres per second to	
Kilot per minutes	$\times 197$ $\times .6214$ or $\div 1.6093$
Kilometres to feet	+ $3,280.8693$
Square millimetres to square inches	$\times .00155$ or $\div 645.1$
Square centimetres to square inches	$\times .155$ or $\div 6.451$
Square metres to square feet	$\times 10.764$
Square metres so square yards..	$\times 1.2$
Square kilometres to	
acres	$\times 2471$
Hectares to acres ..	$\times 2.471$
Cubic centimetres to cubic inches..	$\times .06$ or $\div 16.383$

Cubic metres to cubic feet ..	$\times 35.315$
Cubic metres to cubic	$\times 1.308$
Cubic metres to gallons (231 cubic inches) ..	$\times 264.2$
Litres to cubic inches ..	$\times 61.022$
Litres to gallons	$\times .2642$ or $\div 3.78$
Litres to cubic feet	$\div 28$
Hectolitres to cubic feet .	$\times 3.531$
Hectolitres to bushels (2, 150.42 cub. ins.). .	$\times 2.84$
Hectolitres to cubic yards ..	$\times .131$
Hectolitres to gallons...	$\div 26.42$
Grammes to ounces (avoirdupois)	$\times .035$ or $\div 28.35$
Grammes per cubic cm. to lb . per cubic inch	$\div 27.7$
Joules to foot-lb. .	$\times .7373$
Kilogrammes to oz. ..	+ 35.3

Kilogrammes to lb. Kilogrammes to tons ..	$\begin{aligned} & \times 2.2046 \\ & \times .001 \end{aligned}$
Kilogrammes per sq. cm to lb . per sq.	
Kilogrammes-metres to foot-lb.	
Kilogramme per metre to lb. per foot	
Kilogramme per cubic metre to lb . per cubic foot	
Kilogramme per cheval	
to lb, per h.p	
Kilowat ts to h.	
Watts to h.p.	
Watts to foot-lb. per second	
Cheval vapeur to hop. ..	
ns of water to 16.	
es to lb. per	

"PRACTICAL WIRELESS" DATA SHEET No. 18

GRAMOPHONE PICK-UPS

PICK-UP CONNECTIONS.
The pick-up must be joined between the grid of a valve and the filament or cathode. To avoid the reception of radio whilst the gramophone is in operation a switch should be inserted in the lead at a convenient point. A single-pole change-over switch may be used, with the arm joined to the grid terminal of the valve-holder and one contact joined to the radio grid component whilst the other contact is joined to one of the pick-up leads. An alternative method is to connect one terminal of the pick-up permanently to the grid of the valve, and to insert a simple on/off switch in the remaining pick-up lead. In the latter case it is usually necessary to detune the aerial circuit to avoid wireless signals being received by the valve. The valve with which the pick-up is employed will depend upon the sensitivity of the pick-up-that is to say, a very sensitive instrument will only require perhaps one stage of amplification, whilst an insensitive instrument will require two or more stages. Therefore the pick-up will be used with a detector valve or one of the L.F. stages of the receiver.

ELIMINATING SCRATCH, OR SCRATCH FLLTERS.

The simplest scratch filter consists of a condenser and resistance in series connected across the pick-up terminals. Suitable values are .002 for the fixed condenser and a variable resistance of 50,000 ohms. Adjustment of the resistance will enable the degree of top note cut-off to be adjusted to suit different makes of record. As the higher musical notes are also removed by this method, it must be judiciously applied. With some makes of pick-up a variable resistance of 100,000 ohms only (that is, without the condenser) may be joined across the pick-up terminals and will give the desired degree of scratch elimination.

NEEDLE ANGLE AND TRACKING ANGLE.

The pick-up should be designed so that the needle forms the correct angle with the surface of the record. This should always be about 60 deg. from the horizontal. A steeper angle results in unnecessary wear, whilst a needle arranged more horizontally will not follow correctly the sound grooves in the record, When viewed from the surface of the record the needle should be perfectly at right angles. These two angles are naturally given from two points of view, the latter when looking at the front of the pick-up. that is, with the record rotating towards you, and the other when viewing the record from the side, that is, with the direction of rotation from right to left. The tracking angle must be chosen so that the pick-up at any point of its travel is in a position where the armature travels at right angles to the sound grooves on the record. Most makers supply a template, but where this is not obtained, or you desire to check the tracking angle, the following method is adopted. Place the needle on the first groove of the record and lay a straight-edge from needle-point to the centre-pivot of the turntable. The front of the pick-up should be perfectly in line with the straight-edge. Now put the needle on the last groove (that nearest the. label) and again put the straight-edge from needle-point to centre-pivot. The pick-up should still be parallel. The same procedure should be carried out at two points between the first and last grooves and at each position the pick-up should answer (as nearly as possible) to this test.

TYPES OF PICK-UP.

The majority of gramophone pick-ups are of the high-resistance type, having resistances from 1,000 to 4,000 ohms. They may,
therefore, be joined to the valve circuit direct. Special types of pick-up are obtainable, however, having a low resistance of the order of 50 ohms or so. With this type of instrument it is essential to use a special transformer, the secondary being joined in. Ahe grid circuit and the pick-up connected to the primary winding. The design of the transformer must be chosen to correctly match the resistance of the pick-up to the valve grid-circuit. The weight of the pick-up should be from 1.5 to 5 ozs. An instrument lighter than 1.5 ozs. will tend to jump from the record on a very loud passage, or very low note, and the heavier type of instrument will put unnecessary friction on the record resulting in greater wear. If the instrument is thought to be too heavy it may be lightened by employing a counterbalance on the pick-up arm. This may be made adjustable and consist of a weight on a threaded arm, or a spring with adjustable tension.

GRID BIAS AND THE PICK-UP.

With any form of connection, grid bias must be applied to the valve with which it is used. When connected in the grid circuit of an L.F. stage the normal blassing arrangement will hold good and no alteration will be necessary in the circuit. When joined in the grid circuit of the detector valve, however, this valve must be biassed to operate as an L.F. amplifer.' With battery-operated valves, the pick-up lead should therefore be connected to the filament via a bias battery, the positive terminal of the battery being joined to the negative filament lead, and the negative terminal of the battery being joined to the pick-up. The correct bias for the valve working as an L.F. amplifier must, of course, be applied. With mains valves of the indirectly-heated type the bias may be obtained by means of a resistance in the cathode lead. In this case, to avoid the application of bias when the valve is working as a grid leak detector, the grid leak must be joined direct to the cathode terminal on the valve-holder. A switch will, of course, have to be inserted in the pick-up lead to break the circuit for use on radio.

TONE AND VOLUME CONTROLS.
The simplest volume control, which is necessary if the valve will not handle a very large input, consists of a potentiometer. The two ends of the potentiometer are joined across the pick-up and the arm of the potentiometer is joined to the switch or grid of the valve. If a transformer is used, a special high-value centre-tapped potentiometer (known as a "fader") may be used. One half is joined across the transformer and the other half across the pick-up. As the arm is rotated across the section shunting the transformer the radio signals will be reduced to inaudibility, and when the centrepoint is passed the gramophone signals will be gradually introduced. The arrangement described under "Scratch Filter" may be used as a tone control for the higher notes, but for the low notes special arrangements are necessary. As the low notes are not recorded on the record at the same strength as the remaining notes special reinforcement is necessary, and whilsi the majority of pick-ups are designed to have a rising characteristic towards the lower end of the musical scale, better results arc obtained if one of the special tone compensators such as the Novotone or Tiltatone are employed. This employs special low-frequency chokes designed to give a corresponding emphasis to the notes as they go down the scale, and the compensation is designed in conjunction with the recording apparatus. This results in practically a straight line amplification from the record.

"PRACTICAL WIRELESS" DATA SHEET No. 19 "PRACTICAL WIRELESS" WORLD TIME TABLE

The times indicated are based on the 24 hour clock or Continental system, e.g. 1.0 p.m. (13.00) ; 8.0 p.m. (20.00) ; midnight (24.00).
 (Grand Duchy), Morocco, Portugal and Spain.
B.S.T. (British Summer Time) is also adopted by
France and Belgium ; when in force, it coincides France and Belgium ; when in force, it coincides
with C.E. C . (Central European Time).

True local time of a City or Town, etc., is obtained, in respect of G.M.T. by addink or subtracting one hour for every 15° the place is situated E. or W. of Greenwich. E.g. -When it is Noon at Greenwich it will be 13.56 at Istanbul, 19.36 at Hong Kong, etc. As these differences would cause confusion, a system of Standard Time has been adopted in most countries, in reference to the meridian at Greenwich, and one hour ahead (East) or behind (West) for each $15^{\circ} \mathrm{E}$. or W. of Greenwich becomes the local time for a Zone extending 77_{2}° on eacloside of the central meridian. Exceptions are made where boundaries of States fall within that belt.

WEST (Behind G.M.T.)

E.S.T. (Eastern Standard Time) covers U.S.A. (Eastern States), Brazil (West), Canada, Colombia, Cuba, Dominican Republic, Peru.
C.S.T. (Central Standard Time) covers Canada (Central), U.S.A. (Central), Costa Rica, Honduras, Mexico (East).
MLST. (Mountain Standard Time) covers Western Canada, U.S.A. (Mountain States), Mexico (Centre and West).
P.S.T. (Pacific Standard Time) covers British Columbia, Califomia, Nevada, Oregon, Washington (State).

EAST (Ahead of G.M.T.)
C.E.T. (Central European Time) covers such countries as Albania, Austria, Belgian Congo, Countries as Absakia, Denmark. Germany. Hungary, Italy, Lithuania, Norway, Poland. Sweden, Switzere land. Yugoslavia.
E.E.T. (Eastern European Time) is adopted by Greece, Latvia, Roumania. Turkey; the same difference in time also applies to Egypt, Union of South Africa, etc,

- Moscow (3 hours ahead of G.M.T.) see under 45°.
Holland (Amsterdam Time) 20 minutes ahead of G.M.T.

[^0]: A cavtridge resisfance.

