THE LEADING UK CONSUMER ELEGTRONIGS TECHNOLOGY MAGAZINE

SERVICING.VIDEO.SATELLITE•DEVELOPMENTS MAY $1999 £ 2.70$
a rabo businiss publeaton

Project:

Mains-operated RChandseł tester Installing digital TV
Test report:
Digisat meter

Fault reports TVs, VCRs, PC Monitors and Satellite

k ELECTRロNIC

The Ultimate Source

TV - Video - Satellite components

ADDING VALUE to your Repairs

as stated by one of our Nationwide Distributors.....
e know fitting König means fitting the best"

CONTENTIS

May 1999

Vol. 49, No. 7

New products and developments seen at the Electrical Retailing show. Digital TV update and a meter for DTT installations. Latest trade news.

Satellite Workshop

Jack Armstrong's column on satellite receiver servicing and related matters.

Test Case 437

459Monitors 460

Hints and tips on dealing with computer monitor faults.

Satellite Notebook

462
Solutions to problems with satellite TV equipment and installations.

PC Operation and Repair
464
Part 2 of K.F. Ibrahim's new series deals with the PC's mode of operation: the booting up process and how configuring and customising are carried out.

Letter*

DTT reception problems.

Hands-on Digital

472
Experience with digital TV installations, both terrestrial and satellite, is fast increasing. J. LeJeune describes some problems that have been encountered and provides a summary of good practice.

451 TV Fault Finding

476
Help Wanted 493

Servicing the Indiana 100/200 Chassis
 494

Alan Dent provides an in-depth fault-finding guide. Sets fitted with these chassis appeared in the Alba, Bush, NEI, Nikkai and Perdio ranges. Includes the power supply circuit diagram.

Book Review

497

Test Report

Eugene Trundle has been trying out the Digisat meter, which has been specifically designed for dish and LNB alignment with digital transmissions.

Corrections

499

A Mains-operated RC Handset

Tester

500
This handy unit, designed by Michael Dranfield, can be left permanently connected to the mains supply ready to check any suspect remote-control handset.

DX and Satellite Reception

504
Terrestrial DX and satellite TV reception. News from abroad and about satellite developments. The problem of RF interference. Roger Bunney reports.

VCR Clinic

Next Month in Television

[^0]Editor John A. Reddihough

Production Editor Tessa Winford

Consultant Editor

Martin Eccles

Publisher

Mick Elliot
Advertisement Sales Manager
Grant Allaway
0181-652 3032
Advertisement Sales
Executive
Pat Bunce
0181-652 8339
Fax 0181-652 893

Editorial Office

0181-6528120
Fax 0181-6528111

Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

May issue on sale April 21st.

Next issue, dated June, on sule May 19th.

The
 (1515) headend that says YES to

- Quality
- Ease of use
- Agility
- Each module an almost total entity
- Superb value

Never before has it been possible to offer
CHECK THESE FEATURES at competitive prices - a superior, easy-to use headend range with high quality channel processing that allows the user to retain perfect vision and sound. WISI's breakthrough in headend modular design has processors for satellite TV, terrestria TV and radio. Each individual module incorporates its own control system enabling quick and easy set up. These channel processors come together in an "all-in-one" base unit which contains all necessary accessories for ease of ordering - no additional items required!

- Frequency agile FEA URES

 in the VHF or UHF range - Adjacent channel capable - B/G. D/K. I, L. M TV slandards - Modular system for headend - Moduar system for headendstations in SMATV and CATV Stritors in
systems.

- Modular for satelilite TV terrestrial TV. FM and satelinte radio. SAT IF converters, TV moduators - indivicually programmable modules.
- High output level
- Wall mounting or $19^{\prime \prime}$ rack mount with lockable cabinet
U. к. STOCKIST

A Breakthrough in Headend Design

May we send you full details?
JW. HABor COMMUNICATIONS, 231 Station Road. Birstiighart B33 8BB Telephone 01217848478 Fax. 01217897931

M.C.E.S.

Specialists in the Service and Recalibration to original manufacturers specification of:All types of:-

TUNER UNITS TO 20 GHZ BOOSTERS \& RF MODULATORS COMBINED TUNER AND IF UNITS

Supply of Upper Drum Assy's for all video recorders including time lapse, marine and aviation requirements, either as new or remanufactured using your original drum and new grade A chip sets.
We are able to service, recalibrate and confirm manufacturers specifications for all low noise blocks.

New LNB's can also be supplied to order.
New price list now available.
15 Lostock Road, Davyhulme
Manchester M41 0ES
Telephone: 01617468037
Fax: 01617468136

MasterCard Mastercara

Digital Television for All

NTL's authoritative guide on leading edge techniques. How to squeeze many channels into an existing single channel! Describes bit rate reduction, channel coding Transforms, temporal and spatial redundancy, etc.

THIS BOOK IS USUALLY £ 19 SO YOU SAVE 84\%! (BUT MENTION THIS AD)
 http://www.swiftpub.u-net.com Credit card accepted only on orders more than $£ 10$
 17 Pittsfield, Gricklade, wilts, SNG GAN, England Tel 44 (0)1793 750520 Fax 44 (0) 1793752399

TVs • VCRs • Satellite • Hi-Fi

Can't Find a Particular Remote?

YOU CAN HAVE IT.

For Further Information - Just Call Our Helplines Tele: 0181-870 3388 • Fax: 0181-870 9988 Suddenly - You'll Love Selling Remote Controls

TV Machinations

The world of TV was once so simple. It was run, in Western Europe at any rate, by national broadcasters such as the BBC, ORF, ORTF, RTE, RTP, TVE and so on. Then along came the commercial channels, which were operated under fairly close supervision. That more or less filled the channels available. In some countries, particularly the Netherlands and West Germany, cable played a greater role from an early stage, providing increased scope for independent broadcasters and a wider variety of channels.

Pay-TV, as a terrestrial off-air service, started in Europe on November 4th 1984, when Canal Plus began broadcasting in France. It was officially the fourth channel, and soon caught on - its competitors had not been all that successful in their appeal to the viewing public. Subsequently satellite broadcasting became feasible, and in the UK Rupert Murdoch appeared on the scene as a broadcaster. Other entrepreneurs had by that time become active, in particular Leo Kirch in West Germany and Silvio Berlusconi in Italy. During the last decade European TV broadcasting has become a steadily more complex business. Now that digital broadcasting is here, the scope for multimedia firms and others, even Bill Gates it seems, to become involved in TV has greatly increased. It has become a totally different world from that of a few staid national broadcasters. But it is not a world of numerous small broadcasters doing their own thing in local conditions. The newcomers' have engaged in takeovers, alliances and joint ventures, with the aim of becoming transnational. In the world of TV broadcasting, it helps to be big.

So far, the European pay-TV moguls have been more successful in dominating their own markets than in becoming truly transnational. Rupert Murdoch dominates pay-TV in the UK, but has to date made no headway on the continent. The French market is dominated by Canal Plus - which got into digital TV well ahead of BSkyB, in April 1996. Kirch Group dominates the German market.

Kirch and Canal Plus both have significant interests in Italy, but Canal Plus has been more successful in extending its European broadcasting interests. It has operations in Spain and, following its acquisition of NetHold (owner of the FilmNet channel) in early 1997, is active in the Scandinavian and Benelux markets. Canal Plus now claims to have some twelve million subscribers.

The overall stakes are enormous. It has been estimated that there were 55 m pay-TV subscribers in Europe at the end of 1998, and that the figure will rise to some 97 m by the year 2006. Interactive TV operations will extend the revenue streams well beyond payment to view TV programming. One advantage that Murdoch has is his interests in other parts of the globe. He is already global, which tends to make Kirch and Canal Plus look relatively parochial for the present.

Within Europe, the deals and alliances can be truly Byzantine. Kirch Group and Mediasat, the TV arm of Silvio Berlusconi's Fininvest holding company, recently established a joint venture that will have interests in four countries. Fininvest and Prince Al Waleed of Saudi Arabia are to invest some $\$ 210$ each in Kirch Media, the free-to-air
arm of Kirch Group. The latter is separately forming a joint-venture company with Mediasat to hold assets that include Betafilm, Kirch's international film distribution company, and Publieurope, Mediasat's international advertising sales arm. A company called European Television Network is also involved: it will include 29 per cent each of the German channel Sat 1 and the Spanish TV company Telecinto. As part of the agreement, Mediasat is to pay Kirch Media about $\$ 210$ to compensate "for lack of balance in the venture's current assets". Is that quite clear ?!

At one stage Murdoch was involved in these negotiations, but withdrew in the belief that News Corporation would be able to exercise little control, also because asset valuation was difficult to establish. He withdrew from a subsequent attempt to merge BSkyB with Canal Plus, again on the grounds of who would exercise control. Meanwhile Kirch Group is to increase its stake in the German pay-TV channel Premiere by buying most of a stake held by CLT-Ufa, the TV arm of the German media company Betelsmann. This will give Kirch effective control of pay-TV in Germany.

One wonders what benefits viewers might expect from all this wheeling and dealing. But that's not what it is all about! One thing is certain: the viewer will be expected to pay. It's a far cry from the ideals of those like Lord Reith. What in fact happened to ideals in the world of broadcasting? Maybe we shouldn't worry too much about all this in the UK: public service broadcasting is fortunately still well established here, and the ITV companies are holding their own.

COPYRIGHT

© Reed Business Information Ltd., 1999. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 48 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eleven-year consolidated index on computer disc. For further details see page 510.
Binders that hold twelve issues of Television are available for $£ 6.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

BACK NUMBERS

Some back issues are available at $£ 3.00$ each. For further details see box on page 503.

SUBSCRIPTION ENQUIRIES	
Telephone:	01444445566
Fax:	01444445447
Credit card orders:	01622778000

Credit card orders: 01622778000
Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Make cheques payable to: Television
Subscription rates:
UK $£ 32.00$ per year
Airmail Eire $£ 36.00$ per year
Airmail Europe $£ 46.00$ per year
Airmail Rest of World $£ 59.00$ per year
NEWSTRADE ENQUIRIES
Distributed by MarketForce
Telephone: 01712617704
web Site
For a full list of RBI magazines: http//www.reedbusiness.com

ISSN 0032-647X

hifp://www.telepart.co.uk

You can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message.
 I can'tlocate a remote control for a Finlux
I can't locate a line output trans fomer for Our experienced staff I can'tlocate I can'tloo WANT WANT WANT to help you. CUR PROMIE
If we can't find the part required immediately, we will HASSLE and HASSLE our suppliers. HASSLE and HASSLE the manufacturer. We
will make phone call after phone call, Fax after Fax on your behalf. WE WILL DO
ALL THIS FOR YOU. We will do it willingly and we will do it for FREE
Fconomic supply iv \& Viteo parts werer, erey fast

Remofe-Comirols

SHMICONDUCTORS

Just a few of the types stocked - all QUALITY products at KEENEST prices REMEMBER we can help you with over 34,000 different types
 20CT4636/21CE4556/22CE2267/24CE2670 etc etc Fergy 36K3/51K7/51L3/51L7/51P7/A36F/A51F A51R8/59K7/59L7/59M2/59M3/59P7/RH885 etc etc Hitachi SRD1050D Pace PRD 8001000 Pa TVSD250 Manhattan 800/900 and many other satellite

7 RCPOP7 MitsubishiCT21A5STX/CT21A5ST/CT25A5ST etc Deca 8873/DUV9854/170,180 Series/RC70 Tatung 8725/8731/8734/9725/9731/9734/9821 Samsung/Sanyo CBP2145 etc
9 RCPOP9 Fergy 14C2/14D2/14J2/14L2/16A2/16C2/20A2/20D1 20E2/T725/T740/T745/T750/T770 2256/2282/37101/37141/37311/37371 Logik 4094
10 RCPOP10 Panasonic TX2/TX3/TX3370/TXC78/TX21T1 Granada C16D52/C16D54/D51FK5 etc etc Too Complicated? Just phone our sales desk with the model No. for the cheapest remote ,we have for your set. It's a pleasure to help!

Remote controls in stock for 1000's of models at exceptional prices. If we don't stock the remote for your model number - send the old one and we will even get one made for you. Average time taken 30 days.

[^1]
rou！ coonomic

 Thousands of semiconductors I．C＇s etc． of video parts，heads，belt kits etc．
100000 of remote controls．etc．etc．

 over 100,000 database records to help find the difficult video parts quickly．Stock availability \＆price in seconds We compete on QUALITY－We compete on SERVICE．．． ．．．．．We will not compromise and yet our prices are often less．...$a n d l o o l e$ at the
special oters．．．．．． BUTHLA＠CO each BUTLIAFG\＆8゚ each BU508A＠（U）each Fully wired scart lead CD a slight inconvenience．．．．
you must buy more than one． BU208A $\times 513.75$ BU508A $\times 5 £ 3.00$ BU508AF X 5 E3．00 BU508D $\times 584.45$ BUT11A $\times 5$ 处1．45 TDA3653B $\times 2 \quad £ 1,80$ Philips type 1.2 volt Back op battery $\times 5 \quad \sum 3.40$ Philips type 2.4 vott Back up battery $\times 5$ E6．00 Scart－Scart lead 1.5 m Fully wired $\times 2$ E1．98 Positor PT37，TH98009（White）

$\begin{aligned} & \text { TA2018A } \\ & \text { UC3842 } \end{aligned}$		$\begin{array}{r} \times 5 \\ \times 5 \end{array}$
GNX62A $\times 5$		
S2000A		X
TDA36	538	\times
TOA365	54	\times
Op battery	$\times 5$	$\Sigma 3$
up battery	$\times 5$	£6，00
dily wired	$\times 2$	11.98
hite）	$\times 5$	E3．75
OPTX	eac	E12．95

NEW EDITION No． 5

KIT1 26.96 Pace．PRD800，PRD900．PSR800，PSR900 Prerguen KTT1 W6．06 Pace－PRD800，PRD
 8ATBe00，Finluy 8R5700，Thanpeon SRS
KITS 26．6S Ametrad－8R510．620，540，SRDR4O，SRD650 ［IT＊26．86 Pece D100，120
KT19 el．4s Pace MS8200，300，Apallo
SIT1 1816.46 Echoetar $8 R 5600$（early PSU with adjuater）
ETT15 27．86 Mimatec（Sorenvon P8U type only） EIT 17 E8．98 BT $8 V 8800$

ITT E8．9s AmetradSRD 600
II7 16．05 Churahill D2MAC decoder
KIT10 211.11 Pace MSS 600,1000
KIT1s Ex9．71 Bchostar 8R6500，7700，8700
CT16 25．96 Ametred SRD700，SR950，SRX100，901，EIT14 283.95 Ametrad SRD600
CTT1 28.96 Amistrad SRD700，SR960，SRX100，301，501，1002，2001，SRD2000，8AT250 KIT 18210.52 Arnetred SRD2000 Minerva
CITes a7．96 Nokia SAT1700（mainly aurface mount）

What Life!

A microwave oven, TVs, people and various other problems. Donald Bullock's servicing commentary

When we arrived at the shop yesterday morning we found old Dr Podwatch at the door.
"Mornin' boys" he started off, "the kitchen tap needs a new washer, and my door creaks when I open it. I'll be at home all day."
"Er, right" said Steven. Podwatch wandered off and we went into the shop.
"Must be ninety" said Steven. "He's been off his head for ages."

The answering machine clicked, having just taken a call. Steven played it back.
"Mr Troutfirst here" it said, "I live in Porchester, just five or six miles away. Bought this new video from Snoddys, but I can't tune it in Mr Snoddy said you boys are good at it. Could you call today?

Then nice old Mr Harper drew up. Mrs Harper grinned at us from the passenger seat.
"Hello dears" she sang through the shop door. "Remember that secondhand telly you let us have on the weekly? Sorry we've not paid anything off, like we promised. Only the cat's been poorly and I've been under the doctor. And didn't fags go up? Anyways, we've decided not to go on having it, dear. Our Cyril bought us a new one from Crubbs Foodstore. Comes with a free holiday in Iceland. So would you fetch yours back tomorrow night? Not too early, mind. Give Crubbs time to install the new 'un!"

As they chugged off Mr

Cranbourne called.

"Righto then" he started, "now this microwave of mine. It's gone dead. How can I cook with a dead microwave?"

He beckoned Paul to follow him and walked to his car. Paul returned with a Matsui microwave.

Microwave Problem

When we tried the microwave it was indeed dead. The mains fuse had blown violently. Paul tackled it with his meter. Ten minutes later he was still confused. No shorts were evident. He tried a new fuse and the machine came to life. What was up?
"Try the grill" said Steven. It didn't work. A check on the element's continuity showed that it was open-circuit. Paul removed it and found that it had blown open at the corner.

We were quoted $£ 22.60$ plus VAT for a new one. So we phoned Mr Cranbourne to give him our estimate. He made a noise like a romantic pigeon.
"Coo, coo, coo, coo, coo" he said, "what a lot of money. Still, I just have to have it done.'

Guitar

Our next caller had long greasy hair and was dressed in tight-fitting, brass-studded black plastic. He had a huge guitar in one hand and a mess of cable and plugs in the other.
"I expect you've heard of me" he announced. "I'm Rock Romanis." He sounded vaguely Texan. I looked at him attentively.
"Here's the trouble" he said. He took some time to fit his plugs and sockets together, then started to twang at the guitar. "Hupp, hupp, hoo, hupp . . . hoola, hoola, hupp, hupp ...

I waved him out as Greeneyes came back from shopping.
"Ooh! Isn't he nice!" she breathed, "just like Elvis. I could go for him."

Steven and Paul came in while she was speaking. "Did you see
heart-throb?" I asked.
"That's Nigel Mogg" Paul said. "Lives behind the gasworks. Unemployed nut. Thinks he's a pop star."

I left it . . .

A tough strode in and stood with his chest out and his feet apart.
"I left my video here ten days ago" he started off, "nuthin' much wrong with 'im. You was supposed to ring me to say it was ready, but you forgot. We got visitors tonight and I wants 'im.'
"Your name?" asked Steven.
"Mr Botulos" he said, "only I don't like being mucked about, see?"

His VCR was ready. Steven looked at the ticket. "We've telephoned the number several times" he said. "When it was answered they said it was the grammar school. They hadn't heard of you."
"It 'ent me personal like, it's me daughter, Mrs Horn. She cleans there twice a week."

Steven consulted the job card. "Heads and tape transport needed cleaning. Lubricating to. Fifteen pounds" he said.
"What?" echoed Botulos, "do I look as if I'm made of money? You was supposed to ring me first." He threw some notes on the counter, gathered up the VCR and strode out.

A Ferguson TX90

Steven pulled up a Ferguson set and put it on the bench. The card said "dead".
"I wonder why they call it the 'new' TX90" he said. "Causes a lot of confusion."

He soon found that RL24
($2.2 \mathrm{k} \Omega$), which is in series with the
line scan coils, had gone open-circuit. "Wonder if it could become a stock fault like R47 in the old 1500 monochrome chassis" he commented. "I suppose that underrated resistor in the sync separator circuit made us more money during the long life of the chassis than all the other stock faults put together."

Monster Panasonic

The next set for his attention was a monster Panasonic, Model TX2472 (Alpha IW chassis). The complaint was no sound and just a blank, milky raster. He suspected the TDA4505M IF/timebase generator chip IC101 and, to get the job done quickly, phoned an oppo of ours, Herbert. He'd got one, but said that before going to the trouble of calling to collect it we could, if we had a TDA4505E, use this to prove whether the chip was the cause of the trouble.
"If it restores the picture and sound but refuses to tune in the programmes properly, your diagnosis is confirmed" he explained.

We had one, fitted it, and proved the point. So we fetched the
TDA4505M - which is now the N3 version, superseding the original N 1 .

A Bush Portable

Mr Bramstead is one of those indecisive fussers. He brought in a Bush colour portable, Model 1433. It looked new.
"Now this set" he started off "is shall we say quite new. But not withstanding that fact it has become shall we say defective, Mr Bullock."
"With you. What's actually wrong with it?" I smiled
"Well it's, er, shall we say in need of repair." Then he smiled and departed.

When he'd gone I put the set on the bench and switched it on. As it came out of standby it died. A quick check showed that there was no HT output from the power supply. So I switched it off.
"Ah" said Paul, "dies when you switch it from standby? I had one which did that just the other day. Try pulling out the scan-coil plug PL602 I think."

I did, then switched the set on. It came out of standby.
"It'll probably be the line output transformer then" Paul continued. "I got one from SEME - here's their part number, 4031001906."

He was right, as usual.

Transistor Mix-up

Ernie Cooter tottered in smoking a
roll-up. He had a canister of fly killer in one hand and a big gas cooker lighter in the other.
"Why the fly killer?" I asked, "there aren't any around yet, are there?"

As I spoke a wasp showed up. Ernie sprayed it. It went. Then he noticed that his roll-up had gone out and lit it with the lighter's sixinch flame.
"Help me out with our neighbour's Hitachi, Don" he said. "Silly ass went to Snoddys. They kept it a month, charged her eighty quid and its lasted half an hour. They won't come back. Oh, and by the way I've had to park up the road."

I put the answering machine on and followed him out to his car. The set was an old Hitachi Model CPT2278, big and heavy. We struggled back with it and I saw that we'd had a call.

I played it back. It was Mr Troutfirst again. "I left a call on your machine this morning, but forgot to ask whether you make a callout charge. If you do, cancel the call."

I cancelled the call.
"Har, har, har" broke out Ernie, "you certainly gets 'em, don't you? Phone me, Don." And out he went.

The Hitachi set was dead. Snoddys had fitted a new line output transformer and a BU706 line output transistor. When I checked the transistor I found that it was short-circuit collector-to-base. I fitted another one and the EHT came up. So I connected a signal and tried to adjust the first anode control. As I upped it a picture appeared, but it was wishy-washy, with flyback lines on it. When I turned the control down the screen suddenly blacked out.

Thinking that the faulty transformer might have sent a spike or two about, I replaced the TDA356IA colour decoder chip which, in conjunction with the HAll423 timebase generator chip IC701, is involved with the blanking. It made no difference. I then replaced IC701. Again no difference.

Then I thought about the transistor Snoddys had fitted. I'd used the same device. But the circuit shows the line output transistor as type 2 SD1453. I checked with our equivalents book to see if they were comparables. Apparently they were. Perhaps I'd fitted a faulty BU706. It tested all right, but I fitted another one. The fault was still present, and I was puzzled. I looked up the BU706 again, this time in another

"I expect you've heard of me"
reference system. It confirmed that the two were comparables.

I took out another BU706 and a 2SDI453 and used a meter to compare them. The 2SD1453 incorporates an efficiency diode, the BU706 doesn't. So the two aren't comparables. Since the BU706 has no diode, I figured that incorrect flyback pulses were reaching IC701 and upsetting the blanking system.

I removed the BU706 and fitted a 2SDI453, then tried setting up the first anode voltage again. This time everything worked perfectly. After adjusting the set I reassembled it and phoned Ernie.

When he called in he said he'd had to park a bit farther away this time. We went outside. I could just make his car out in the distance. After popping the answerphone on I got Ernie to help me back to the car with his Hitachi CTV.

I then noticed that the answering machine had taken another call. I played it back. It was Mr Troutfirst, who was clearly not amused.
"Don't think much of your service" he declared, "you were recommended to me and I've waited and waited and you haven't called. Don't bother. I'll call someone else". Attaboy I thought. Try Snoddys again.

TELETOPICS

The Electrical Retailing Show

Many new and interesting products and developments were presented at the Electrical Retailing Show 99, which was held at the National Exhibition Centre, Birmingham during March 28-30th. Digital TV equipment was to be seen on a number of stands. Nokia displayed the Mediamaster 9850T, which is designed for reception of ONdigital's DTT service. The Mediamaster 9800S can be used to receive a wide range of European digital satellite TV and radio services: it incorporates DiSEqC switching, has SatScan motorised dish compatibility and provides a digital audio output.

BSkyB demonstrated its SkyActive sports service, which should be available later this year. It enables viewers to select different camera angles and call up extra information on-screen. The Open interactive TV service operated by British Interactive Broadcasting was also being demonstrated. It's due to start this spring. An e-mail service is to be added around autumn time, using a wireless keyboard

The Sharp internet viewcam Model VNEZ1.
manufactured by Philips. BSkyB has signed a 10 -year contract with SES for nine additional transponders, six aboard Astra 2A and three aboard 2B which is due for launch later this year. Its four analogue transponder leases with Astra IA have been extended to the end of 2002 at least, with an option for a further period.

LG's Model DI28Z12, with a built-in Pace SkyDigital decoder, is the first integrated digital satellite TV receiver to appear. It can provide interactive services such as home shopping. Pace announced that it will be manufacturing Sharp-branded Sky digiboxes, and demonstrated a prototype digital set-top box that could be used by cable companies to provide internet telephony and video services.

A number of IDTVs were featured on the ONdigital stand - the brands included Toshiba, Sanyo, LG, Bush and Philips. DTT receivers from Sony and Hitachi were also displayed.

Toshiba showed ONdigital and SkyDigital set-top boxes and the 32 in . Model 32WT98B, which can receive free-to-air DTT broadcasts and ONdigital's programming. It has a Dolby Pro-Logic decoder and three scart sockets. Sharp showed a prototype SkyDigital/DTT free-to-air receiver which should be available later this year. Sony's KV28DS60 and KV32DS60 IDTVs feature Wega flat-screen tubes, 100 Hz scanning, a Dolby Pro-Logic decoder, digital picture effects, digital teletext and a common interface slot. The Philips Model 28DW6734 IDTV has a builtin ONdigital conditional access module: a 32 in . version, Model 32DW6834, is to be released later this year, also a SkyDigital IDTV.

Hitachi has developed a 24 in . IDTV for DTT and, with its 32 in . widescreen Model C32W35TN, introduced progressive scanning. This model has a Dolby Pro-Logic decoder and NTSC playback.

Two receivers on the Philips stand provide Dolby Digital and MPEG multi-channel sound from DVD discs. Toshiba also showed a couple of Dolby Digital receivers, one a 61 in . rear-projection set (Model 6IPJ98B) and the other a 32 in . widescreen model (32WD98B). Samsung has introduced a range of widescreen sets that include Model WS32W6HA, which has 100 Hz scanning and Virtual Dolby Surround sound.

Many DVD players were on show, including the Hitachi DVP250E which has a disc navigation system. When a DVD is inserted, a guide that shows the contents can be displayed on-screen. A number of discs offer this facility, but Hitachi points out that different players and discs use different ways of displaying the information. The DVP250E also has a zoom facility that offers either two- or four-times magnification.

The Toshiba SD9000 also has variable zoom, with from 1-5-3.5 magnification. It is compatible with the MPEG-2, Dolby Digital and DTS formats. Model SD 109 has a twin tray and provides Dolby Digital and MPEG-2 decoding. Samsung's range included a player at under $£ 300$. Sharp's DV600H is a mini-sized player that includes a Digital Super Picture circuit: this is claimed to sharpen the outlines of people and objects in the picture. Philips plans to launch Model DVD710, which can handle multi-channel PCM, MPEG-2, Dolby Digital and DTS audio and offers Dolby Pro-Logic and 3D sound. The Sony DVPS70 also provides three multi-channel audio outputs.

One of the most interesting VCR developments was seen on the Hitachi stand: Model VTFX880 incorporates Commercial Advance, which bypasses recorded advertisements. The system works in conjunction with Hitachi's Tape Navigation system. It detects black frames and other parameters that indicate the start and end of an advertisement. When an advertisement is detected the machine
displays a blue screen while moving fast-forwards to the end of the break. The system is similar to one launched by Arista Technology in the USA some years ago, Named Commercial Break - this was used by some Thomson VCRs. The technology is different however.

A Tape Manager system is to be used in several new Philips VCRs that are due for release later this year. It uses PDC to store title and recording information, which can be displayed on-screen, and a Content Scan system for recorded tapes. Philips plans to launch a D-VHS recorder, Model DVR 100) , later
this year. The Samsung Model SV627B has a door lock that's released only when a bona fide VHS tape is inserted: the idea is to prevent children shoving objects into the tape slot. Sharp's Model VCME8OHM includes VideoPlus Deluxe for satellite and cable control.

Not unexpectedly, Sony was showing off its new Digital-8 models, including the DCRTR7000, DCR-TRV 110 and DCRTRV510. They record digital video and audio on Hi-8 tape.

Sharp's Model VN-EZ1 is an internet viewcam that uses MPEG-4

data compression to store up to an hour of moving video on a 32 Mbyle SmartMedia card. Images can be fed to a PC and sent via e-mail or stored on a web site.

Digital TV Update

Research commissioned by the ITC and carried out by Castle Transmission International suggests that a considerable extension of DTT coverage should be possible. The current six multiplexes, transmitted from 81 sites, provide coverage that varies from 90 per cent for the BBC multiplex to 73 per cent for multiplex D, one of ONdigital's three. Relay transmitters could extend these coverages to 93 per cent and 85 per cent respectively.

NTL has launched the first (in the UK) interactive service available through a TV-internet set-lop box. Information providers include Tesco, ITN, Flextech, Thomson Directories and BBC Worldwide's on-line division beeb.com. The service will also be available via digital cable and DTT later this year.

SDN (which operates DTT multiplex A) and ONdigital have announced plans to launch a joint pay-per-view (PPV) service later this year. Viewers will be able to select movies, sports and other programmes. The service will use five channels in multiplex A. Customer management and conditional access technology are being supplied by ONdigital.

Trade News

Wizard Distributors' 1999 catalogue is now available, free of charge on request, to trade customers. An impressive range of components, tools and accessories is included, and Wizard is the main European distributor for Tatung non-account customers. Catalogues can be requested by post, phone, fax or e-mail. Wizard Distributors, Empress Mill, Empress Street, Manchester M16 9EN. Phone 0161872 5438, fax 01618737365 , e-mail
sales@wizard-distributors.co.uk
SEME has been appointed exclusive distributor of genuine Mitsubishi audio and video equipment spare parts, which are being supplied at current Missubishi trade prices. An interesting LOPT tester has been added to the range of servicing equipment stocked by SEME. This one, made by HR Diemen s.a., is specifically designed to test 32 kHz diode-split monitor LOPTs. SEME can be reached on 01664484 001 (general enquiries) or 01664484000 (sales hotline).

A substantial catalogue with over 600 pages has just been published by A.R.D. Electronics plc., Shorten Brook Way, Altham Business Park, Altham, Accrington, Lancs BB5 5YL (phone 01282683000 , fax 01282683010 , e-mail sales@ ard-plc.co.uk). A vast range of components is included.

DTT Meter

Swires Research has launched the IMdigitalT , a hand-held meter designed for carrying out digital terrestrial TV installations. It has a built-in channel plan for the UHF channels 21-68. The average signal level across an 8 MHz channel is first read in $\mathrm{dB} \mu \mathrm{V}$ then, by pushing the test buton, the noise floor is scanned so that the meter can provide a signal-to-noise ratio reading. After extensive testing, Swires Research established that the signal-to-noise ratio is the key factor in assessing the quality of a digital signal. The results of the level and SNR tests are presented as $\mathrm{dB} \mu \mathrm{V}$ and dB readings then as a simple pass, marginal or fail readout. It takes under twelve seconds to carry out the test. Inputs in the range $15-70 \mathrm{~dB} \mu \mathrm{~V}$ can be handled.

There are two models. The IMdigital-T Slave has channels 21-68 preloaded. To help with site testing, the Master unit is preprogrammed with the complete DTT frequency plan. Instead of selecting UHF channels, transmitter names are chosen: the Master can then be used to send the chosen transmitters to the Slave.

For further information apply to Swires Research, 40 Hornsby Square, Southfield Industrial Park, Laindon, Essex SS 15 6SD. Phone 01268417584 , fax 01268419083 or e-mail sales@swires.com

An innovative new product, the TV Messenger enables a telephone and a TV set to be linked to display caller details.
Connection is via a modified scar-to-scart lead between the TV
 set and an associated VCR. The name and number of an incoming caller will then be displayed at the upper lefi-hand corner of the TV set's screen. In addition. the Messenger keeps track of calls in your absence - callers' names, numbers, call dates and times are stored in a log for rerrieval when you return. The unit is call-waiting compatible, i.e. a second caller's details will be displayed on the screen while you are dealing with a call.

The TV Messenger is easy to install and costs about $£ 59.95$ including VAT. For further details contact Complementary Technologies Ldd., Comtech House. 28 Manchester Road, Westhoughton. Bolton BL5 3QJ phone 01942851800 , fax 01942851 808, e-mail comech@attmail.com

Satellite WORKSHOP

OFFdigital

Some people have been experiencing difficulties with digital terrestrial TV reception - difficulties other than insufficient signal strength, missing bouquets and the general teething problems that are only to be expected with new technology.

The main problem seems to be picture break up when an electrical appliance is switched on or off. As it appears to be worse in some blocks of flats, I am wondering whether the cause could be the fact that the coaxial TV cable has been run alongside the mains power cables. The two are often intalled simultaneously, by electricians, before completion of building work. It's quite common for them to be run together in conduit, trunking or embedded in concrete!
"This has nothing to do with satellite TV repairs" I hear you say. Very true. But try telling my customers that. They expect me to be able to solve all their problems, and are quite put out when I suggest that the answer would be to demolish the building and get the cables
installed by someone more competent!

It's strange that the digital terrestrial TV standard has been designed to be extremely robust in the face of reflected signal reception but falls over when someone switches a light on! Didn't we learn anything from the early days of 405-line transmissions?

Pace PRD800

Frank was frantic. His customers at the Lion and Swan were expecting to watch the big match that evening, but the receiver simply displayed "no decoder messages" There were two grey bars at the top left-hand corner of all scrambled pictures however.

Fortunately I recalled seeing this symptom about three years ago. My notes suggested that the cause was the 40 -pin chip U28. Sure enough, after fitting a replacement obtained from a scrap Amstrad SRD400 the PRD800 worked perfectly.

As a precaution I checked the ESR of the electrolytic capacitors in the power supply. Lucky I did that. The ESR of the mains bridge rectifier's reservoir capacitor C2 $(47 \mu \mathrm{~F}, 400 \mathrm{~V})$ was way too high - it wouldn't have lasted a week. I also replaced C5, C7 and C8. They sit next to the chopper transistor Q1 which runs quite warm.

If Frank had been a bit less impatient I would have fitted the full Relkit 1. Never mind: he'll be back within six months!

BT SVS260

A "blank screen but the audio OK" the customer had said. My trusty hairdryer soon traced the cause of the trouble to $\mathrm{C} 166(220 \mu \mathrm{~F}, 25 \mathrm{~V})$ on the main PCB. This capacitor is part of a video coupling network associated with the VideoCrypt decoder. It's included in Relkit 17, which is available from SatCure (phone 01270753 311). To avoid bounces because of other symptoms, it's best to replace all the capacitors that come in this kit.

SS Meter Tip

A signal-strength meter's F connector is not designed for continual
use. The solution is to make a connection lead from good-quality coaxial cable and screw it permanently to the meter. Fit a push-on F adaptor at the other end so that you can connect it easily to an LNB.
Keep spare push-on adaptors and replace them frequently as the spring wears out.

Amstrad/Fidelity SR950

The note attached to this receiver said "won't accept sky sports other sky's OK. card tests OK in another receiver". I gleaned from this literary masterpiece that the receiver was fussy about which channels it would unscramble.

My first check was to ensure that the video bandwidth was set to narrow in the setup menu. But there was no picture whatsoever: clearly something had died after the receiver had cooled down. I removed the cover and lifted out the decoder board. Using the sketch in Relkit 16 as a guide, I connected capacitors in parallel with $\mathrm{C} 66(22 \mu \mathrm{~F})$, C41, C68 and C69 (all $10 \mu \mathrm{~F}$) in the tuner/demodulator unit. This item is a swine to remove: it's much easier to leave it in place and simply tack new capacitors on the rear (top) face of the board. My repair was successful - the receiver then produced good pictures with all encrypted channels.

Pace PRD800

A van pulled up outside. The driver unloaded ten receivers, grinned and drove off, leaving me to collect them from the pavement. I do contract work for a pub chain which delivers a load of satellite receivers in this way each month. The pile is allowed to grow in order to keep costs down, and by the time I get them they are all "ultra urgent". This wouldn't be so bad if the company would pay me more promptly!

The first off the pile was a Pace PRD800. A note taped to it read "repaired last month. wurked one day then picter went off. sownd OK". Oops! If my translation was correct, this one could be a bouncer. What had I missed? I soon found out: regulator REG1 must have been knocked, because one
wire was loose in the board. After resoldering it I had the picture back. There was nothing else I could do, except screw it back together, as I had already fitted the appropriate reliability kit. I then wrote "Sorry, my fault - no charge" on the label. I'm always honest.

The second receiver was also a PRD800. The note said "picter off. sownd OK". Could this be the same problem? No chance! When I connected the receiver it displayed a blue screen. I disabled this and found that there was a picture that rolled vertically. A pity no one thought to fit vertical hold pots to satellite receivers!

As the picture's contrast appeared to be OK, I suspected a sync separator fault. Disconnecting and reconnecting the power supply several times produced a good, stable picture that remained perfect on all channels until the power was disconnected and reapplied. I'd seen this before!

On page 107 of The Professional "Screwdriver Expert's" Guide there's a description of the problem and a diagram that shows where to solder an $82 \mu \mathrm{H}$ inductor. Once I'd fitted this item the receiver worked perfectly all the time.

Too Much Signal

It's not generally appreciated that sparklies can also be caused by too much signal. To point a large dish that feeds a low-threshold receiver at Astra is to ask for trouble: the combined signal energy from all the transponders can overload the receiver's tuner. A high-gain LNB will add to the problem, since its output amplifier is likely to be overloaded: an LNB with a gain of about 45 dB should solve this problem. The receiver itself usually won't be overloaded because of the signal loss introduced by the coaxial feeder. With a short cable run however the input to the receiver could be excessive. It can be reduced by fitting an attenuator.

An IF filter whose response is too narrow can cause sparklies on saturated colours. This could happen when a receiver designed for Astra is used with a different satellite system. Sparklies on saturated colour are referred to as truncation noise. Another place where truncation can occur is in the video path. One or more of the video amplifiers may be overloaded, e.g. in a decoder. In some designs the amplifiers can't handle more than IV peak-to-peak of video, in many cases not even that much. If the

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via e-mail. You can reach him via the internet at:

jack@netcentral.co.uk

One model per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/o Television, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first-class stamps.
signals should go higher, you get noise on the picture. The AGC system should of course avoid this.

If you have a problem like this, first try an attenuator near the receiver's input. Use the correct type, not one intended for terrestrial reception. If this fails to solve the problem, try a lower-gain LNB. If the problem is limited to decoded channels, the cause may be in the decoder. If the picture is better at RF than via a scart lead, try a scart lead that incorporates video attenuator resistors. If the problem is with the weakest signal amongst strong ones there may be no workable solution.

Test Case 437

As regular readers will know, while the Test Case workshop usually achieves a diagnosis and a good repair in the end, it can make a lot of mistakes along the way. Sometimes it seems to be staffed by complete idiots. Several local dealers who use us for contract repairs and service must be absolute wallies, or maybe they don't know who we are!

This month's puzzle concerns a Sony SLVE220 VCR that came to us from another dealer. The accompanying message said "tape stuck in, phone customer for more". Well, a jammed tape seems to be a clear enough symptom, but we rang the user anyway - and were rather dismayed to get a potted history of the machine's faults.

The first problem had been intermittent failure to make a timed recording. This had developed into refusal to record at all. The machine would accept the command, but when it tried to carry this out it would shut down to standby. The final stage, now being displayed by the machine as it sat on the bench, was immediate reversion to standby when switched on. The -: - display on the front panel would flash up momentarily to become bright digits then revert to -:- --. This happened with switch on at the front panel or via remote control. Neither the deck mechanics nor the trapped cassette showed the slightest sign of stirring.

Some VCRs, particularly Hitachi models, do this sort of thing when a mechanical fault is present. So our first step was to remove the covers and check that the motors and mechanisms were free to move. The drum and capstan motors could be turned by hand, and the loading motor and its mechanism were
not jammed. They could be turned by hand, and we found that the cassette could be ejected by applying 5 V to the motor - as described in the service manual. With the cassette now out, the control-system fault remained: when the machine perked up and shut down again there were still no signs of drive pulses at any of the motors.

It was time to get into the control section. In the present situation it was not possible to invoke the 'self-diagnosis' feature incorporated in this design. The SLVE220 has a single microcontroller chip, IC300, that provides system control, timer operation and fluorescent display panel drive. So this is where we started.

The 5 V operating supply was present at pin 18 , there was a reset pulse at pin 12 when mains power was switched on, and the two clock oscillators (pins $13 / 14$ and 16/17) were both runnning. While these points were all OK , they could be properly checked only in the standby mode - because of the almost instant reversion to this at switch on. Reversion could now be triggered by the front-panel and remote-control keys and by pushing a cassette into the front-loading slot.

These puzzling symptoms suggested that the microcontroller chip, or maybe the EEPROM, was at fault - program-memory chips can cause some very strange effects. As the VCR was still wihtin its year's guarantee, the consensus was that we should order and fit a new microcontroller chip - until, that is, cleverclogs Sage took the machine in hand and found the cause of the trouble with his oscilloscope. It was not in the control section. What was it? For the solution, turn to page 510.

Reports from
 Ian Field and
 Cerry Mumford

Samsung CSA7571

The complaint was lack of contrast and brightness. In addition the greyscale was well out - the green display content was particularly poor. When the setting of the first anode control was turned up, the brightness increased at the expense of the already poor contrast. Clearly the CRT was tired.

When this 'multisyncable' monitor is used as a VGA display the analogue level switch will, if incorrectly set, reduce the 'strength' of the display. But correcting its position provided less improvement than required. The customer asked whether anything could be done to "wring the last dregs out of the monitor".
I decided to study the CRT's heater supply. This leaves the power supply at 6.8 V and is fed to the CRT via R585 (1.2Ω) which provides a voltage drop of 0.5 V . So it seemed that a boost transformer could safely be used in its place to increase the voltage by about 10 per cent. The customer readily agreed to this.

R585 serves at least two other purposes. The first is to limit the switch-on surge. So its removal would increase the risk of heater fracture at switch on. The customer felt that this was rather academic, as the tube was towards the end of its useful life. Its second purpose is to act as a fuse. I therefore fitted one, which obviously had to be a T type. 1AT was tried, but the voltage drop was a bit on the high side. Since the

Monitors
heaters draw nearly 1 A , I decided to use a 1.6AT type. I.F.

VT2498FS

The only clue to the identity of this 14in. SVGA monitor was an inspection label with the Comas legend. It could have meant anything - the same legend appeared on the custom sync decoder chip. The complaint was that the power supply didn't start, which was not surprising - the $120 \mathrm{k} \Omega, 3 \mathrm{~W}$ start-up resistor R502 read just over $8 \mathrm{M} \Omega$. A replacement cured the fault.

The condition of the soldering was difficult to inspect because of a heavy coating of flux. When this was cleaned off the soldering was reasonable but a bit thin in places. I gave it a quick visit with the iron and fresh solder to avoid the possibility of a bounce. I.F.

Dell D1526T-HS

This Sony-manufactured Trinitron monitor and some variants, which have been marketed under several brand names including Sony, suffer from a stock fault. The heatsink for IC502 is in contact with a hard rubber pad that's stuck to the bowl of the CRT. The idea is to prevent the heatsink hitting the tube when the pedestal flexes the bottom of the cabinet. What happens instead is that the PCB develops tiny hairline cracks around IC502.

With this particular monitor the cracks were so fine that I wouldn't have found them had I not known about the problem. Even after defluxing the PCB and using a powerful magnifier with strong light I could see only two fractured tracks. More could be seen when the green varnish was rubbed away with a fibre pencil. The damage is usually far worse than this - often unrepairably so! By the look of the solder joints, the malleability of the solder had taken much of the force.

It might be worthwhile removing the heatsink and machining a corner off it to provide clearance. But I suspect that this is not the sole
cause of the PCB damage.
Once this damage had been repaired, the symptoms remained as before - no display, with the green and yellow LEDs flashing together. When the 2SC5129 (Q507) line output transistor's collector pin was isolated, a short-circuit to chassis was discovered. The transistor was not short-circuit: it was another case where the insulated encapsulation had carbonised.

Customers should be warned about the fragile nature of this particular monitor. Nothing should be put on top, and these monitors must never be stacked. I.F.

IBM 6317-002/Digital VRC16HA

The IBM version is much the same as the Digital monitor, the most significant differences being: all user controls are forward mounted, the rotary preset/select switch is replaced by a membrane pad under a front flap, and the video input is via a standard VGA cable and plug instead of the five BNC arrangement on all the versions previously seen from different manufacturers.

A note on the Digital version appeared in the January monitors section. I.F.

Dell/Royal CN1470

It said Dell on the front, but the rest of the make/model information is taken from the label on the back. Pin 4 (ID) was not present on the VGA plug, suggesting that it was a basic VGA model. The test utilities I use are matched to the video card. They force the equipment list registers using software commands. So if I select an SVGA test pattern from the menu when a VGA monitor is connected, the ID pin status will be ignored and there will be a signal output anyway.

Although the monitor didn't seem to be entirely happy on some of the higher SVGA modes, its successfully locked them all. Some geometry adjustment was needed via the user controls. I had a look at
the mode-decode circuitry on the main PCB: it looked like normal VGA.

Because of the soot marks on the ventilation grille, I completed the repair before powering the monitor and didn't see the original symptoms - the report said "faulty blue plenty of smoke!" Q613 (2SC2705) and Q612 (2SA1145) had both failed, burning up R665/6 (both 33Ω). A fair-sized crater was left in the CRT panel! R664 ($2.2 \mathrm{k} \Omega$), L607 ($10 \mu \mathrm{H}$), R653 ($2 \cdot 2 \mathrm{k} \Omega$), L610 $(0 \cdot 47 \mu \mathrm{H})$ and D 609 (1 N 4148) were all smoke-damaged. Although Q611 (2SC2682) checked OK, I suspected that it may have been the culprit and replaced it as well

The burnt PCB area was pretty big and covered several tracks. So I couldn't file it out. Instead, I scraped away the carbonised surface with a scalpel and smoothed it off with a fibre pen - I resisted the temptation to seal the damaged surface with anything that might increase flammability. The components run pretty warm. so ingress of damp is less of a problem! I.F.

Gateway 2000 CPD15F13
The symptom was tripping with the green and yellow LEDs flashing. This model is similar to the Sony CPD15SF1 and the DeII D825TM: LOPT failure is common with these models. This monitor had an easier fault however: Q502 (the notorious 2SC5129) had carbonised through its insulated encapsulation where it had been arcing to the heatsink. I.F.

Olivetti DSM50-148

There was an EW bowing problem with this monitor. The EW correction parabola was missing at the diode modulator in the line output stage. I checked back towards its source and found that the $10 \mu \mathrm{~F}$, 16 V coupling capacitor C 323 was open-circuit. G.M.

Commodore KTC08WY15E

This Wyse-based monitor was dead because of a power supply blow up The UC3842 chopper control chip Ul01 had died, killing the MTW8N60E chopper FET Q103 which turned out to be virtually
unobtainable and very expensive. Fortunately the STW8NA60 is an identical device, apart from the manufacturer, and is available from Farnell (order code 935-104) at modest cost. It did the trick. G.M.

Siemens Scenic PM150

This monitor's display had a rippled, wavy effect that appeared to move slowly up and down the screen. A tap on the main PCB removed the symptom, but it would soon return. The cause was eventually found to be a virtually invisible dry-joint at C210, which is a decoupler for one of the line drive PLL chips. G.M.

Icer 7133D

This monitor wouldn't produce a display when cold. If it was left, a display gradually appeared after an hour or two. While probing around on the video board I found that the blanking pulses from the LOPT were badly distorted when the display was missing. The cause of the trouble was C167 (22nF, 50V), which forms part of the damper circuit. G.M.

Reports from
 Pete Haylor

 Christopher Holland Chris Watton and Colin J. Guy
Digital Interference Problems

I've recently had lots of calls from customers because of interference problems with their analogue satellite systems, which had previously been OK. So far, this has been my 'cures' experience.
(1) Symptom: it looks as if there is a low-gain problem with satellite reception. First step: remove the aerial lead. If the picture is now all right, adjust the satellite receiver's UHF modulator and try again. If OK, leave!
(2) If the above doesn't provide a cure, try fitting a notch filter. Adjust it while watching the worst satellite picture. Beware: it's very easy to miss the crucial point. So adjust the filter slowly.
(3) A second common complaint is that a 'grumble' has appeared on the sound with some Astra channets. The customer has already contacted Sky and been told that the dish is misaligned, call an engineer to adjust it. When you arrive and try to adjust the dish you will find that in most cases nothing happens. If you have a good meter, you will find that the signal strength is about 10 dB lower than at similar installations. This is the clue. A new low-noise LNB will

- usually cure the problem.
(4) The cause of another complaint is usually a pig to find! You will already have tried all the above, but the fault is still present. The worst case to date went like this. After trying the above measures. then a replacement receiver, a replacement coaxial feeder and finally a new dish, success! The
original dish had a very slight warp. Since then I have had to replace three dishes to cure the fault. There was also one case where the arm was not at 90° to the face of the dish.

So, if you install dishes, please handle them with care. P.H.

Fault Round-up Pace MSS500/508/1000

Lines across the screen: Replace C216 and check C2, C5, C6, C11 and C12 in the power supply. No display: Cause was C 2 on the display PCB.
Loss of decoder graphics when warm, loss of vision, OK when first switched on from the mains: Cause was U29. Check/change C201, C204 and C208.
Skew setting on menu but not adjustable: Reprogram using Pace Link.
Screen full of dots: Replacing C2 16 cured this.
Screen with equal-spaced dots:
Cause was U7.

Pace PRD800/900

Swirling pictures: Cause was C23. Display missing: Cause was C15 No or low H voltage: Replace C23.

BT SVS250

No graphics, no decoding: Replace C34.

An odd one!

Our central heater began to play up just as the cold weather came along - the relays started to trip rapidly. The cause was the main smoothing capacitor on the control PCB. P.H.

No Digibox Teletext

The owner of a recently installed SkyDigital system complained that there was no longer a teletext dis-
play on any of the TV sets in the house. Terrestrial TV teletext was OK. On investigation I found that there was no teletext with either an RF or a scart connection to the digibox, which in all other respects - including the on-screen TV guide - worked normally.

The cure was simple, along the lines of past VideoCrypt decoder problems where there was no decoding. Simply disconnect the digibox from the electricity supply then reboot it. I use the computer term reboot for reconnecting the box to the mains supply and waiting for it to come to life because in many ways the box has more in common with a computer than a satellite TV receiver!

I've had similar problems where the electronic programme guide displays "searching for listings, please wait" but no listings appear. Operation of the digibox is otherwise normal, and the programme information box at the bottom of the screen displays correct information when changing channels. Once again, disconnecting the mains supply then rebooting the receiver restores normal operation.

If you remove the viewing card and briefly interrupt the signal from the dish the digibox can crash! C.H.

'Radio' Generafor

We recently took over the maintenance of a large hotel TV system. There are over 150 rooms connected to it, and amongst the dishes on the roof there are two Andrews 4.5 m monsters. One of these hadn't been used for several years. We got it back into service, but that's another story!

Several satellite and terrestrial radio services were connected to
the system and distributed in Band III. The TV original sets used had their timebases switched off at VHF, providing just the sound from their speakers. The one offair Band III TV signal available was upconverted to UHF. A colour-bar generator had been included in the installation to provide 'vision' to accompany the sound when an unmodified TV set was used.

The original sets were coming to the end of their useful life and were replaced with more modern ones. Unfortunately these didn't blank out the vision at VHF, producing a colour-bar picture when they were receiving the radio channels. The management thought that this would lead to unnecessary questions and complaints and wanted it to be replaced.

I had to hand a Pace MSS37 satellite receiver. It's a simple, non-decoder model that could be programmed to produce sync pulses and the word "radio" from its scart socket. The problem was that this receiver has no automatic switch-on facility (self-booting to
use computer terminology). A simple solution was found: if the front panel standby switch is permanently on, the receiver always comes on with channel 1 , which was programmed to produce the "radio" picture.

Reprogramming via the remote control unit is not possible with the switch bridged across however. So a simple single-pole, single-throw toggle switch was mounted on the front panel to allow receiver reprogramming with the standby switch in the off position.

Connecting the unit was a simple matter. In place of the BNC plug that had been used to connect the colour-bar generator's output to a small distribution amplifier to feed each radio station's modulator, a scart plug was used to connect to the Pace receiver's TV scart socket. C.H.

Amstrad SRD510

The customer said that the picture would break up after a while.
Actually the power supply was tripping, with the chopper transformer vibrating so much that you
could sense it by touching the receiver's case. The cause of the trouble was TR300 (2SC1740) on the power supply panel. C.W.

Pace SS9200
There was intermittent loss of the LNB supply. A small choke fitted in position LK20 was the cause - replacement cured the problem C.W.

Uniden UST8008

This old receiver gave good results but its output would be lost from time to time - the UHF loopthrough also went off. The cause was a poor joint at the mains transformer connector. C.W.

Fidelity SR950

This receiver produced poor pictures. The cure was to replace C68 and C69, both $10 \mu \mathrm{~F}$, in the difficult to get at tuner unit. C.J.G.

Pace SS9200

This receiver wasn't decoding, nor was there any line sync with its output. The cause was the 503 kHz ceramic resonator next to the TEA2029 sync chip. C.J.G.

Part 2 of K.F. Ibrahim's new series deals with the PC's mode of operation. The booting up process and basic system configuring and customising are described

Operation \& Repair

K.F. Ibrahim is a Senior Lecturer at the College of North West London. This series of articles is based on Mr Ibrahim's book PC Operation and Repair which was published in April last year by AWL under the Longman imprint.

Apersonal computer loads and runs software application packages, for example word processing, computer-aided engineering, Windows or games. Application packages are designed for use with a specific operating system (OS), such as MS-DOS, PS/2, Unix or Windows 95. The operating system provides a suitable computer environment in which different software packages can be installed and run. The link between the operating system and the hardware in the PC is provided by the BIOS, i.e. Basic Input Output System, see Fig. I last month.

BIOS Operation

The BIOS is a set of short programs or routines that are permanently stored in a RAM or EPROM chip. The number of routines and the size of the BIOS depend on the chip manufacturer and its version: later versions contain more complex and sophisticated programs. BIOS routines can be divided into two categories: the start-up routines, and the basic low-level Input/Output routines.
The BIOS start-up routines are initiated when the PC is switched on (cold start) or has been reset (warm start). They include such programs as the initial Power On Self Test (POST) and system initialisation.
The Input/Output routines include programs such as the print routines and disk read/write. They are called up when the operating system or an application package wants to carry out these basic tasks.
The BIOS simplifies application program writing and helps to ensure compatibility between PCs that have different hardware items and different configurations.
Access to the BIOS routines is provided by a system of software interrupts. These halt the operation of the
microprocessor and start a particular BIOS routine. Each interrupt has a four-byte value that's known as a vector: it indicates the routine required. The vectors have four memory locations, into which the the BIOS loads the four-byte value during the start-up routine. These interrupt vectors are collected together in a table known as the interrupt vector table. It's loaded into memory locations at the very start of system operation.

The Boot-up Process

When a computer is switched on, the microprocessor initiates a procedure known as boot-up or start-up. Amongst other things this runs the BIOS and loads the operating system so that the computer is ready for use.
At power up, by turning the mains switch on, the power supply carries out a self-test procedure. If successful, with the correct voltages at the outputs, a Power-Good (PG) signal is sent to the timer chip on the motherboard. This chip responds by taking the RESET control line high to start up the microprocessor (CPU). The following sequence of events then takes place:

Step 1: BOOTSTRAP. The CPU searches for the address where the BIOS start-up routine is located. The term bootstrap is based on the idea that the PC 'pulls itself up by its bootstraps'.

Step 2: POST. The first action of the BIOS is to test the system, a routine known as POST (Power On Self Test).

Step 3: INITIALISATION. Following a successful selftest, the BIOS carries out a system initialising routine.

Step 4: LOADING the operating system. The BIOS

Processing power: MIPS

The performance or processing power of a microprocessor chip is measured by the number of instructions it can carry out per second, given as MIPS (million instructions per second). Intel's first 16-bit PC processor, the 8086 launched in 1978 , had a power rating of 0.33 MIPS. Five generations later came the Pentium with a power rating of 300 MIPS .
Two main factors determine a processor's MIPS rating: the processor's clock frequency and the time in clock cycles required to carry out an instruction. Clock frequencies have increased from 8 MHz with the 8086 to 200 MHz and over with the Pentium. The time required to carry out an instruction has been reduced from an average of 12 cycles with the 8086 to one cycle with the Pentium.
A more practical measure of the relative processing powers of CPUs is the Intel Comparative

Microprocessor Performance (ICOMP), which combines the effect of frequency of operation, the number of cycles per instruction, the effect of in-built FPU (floating-point units) and on-chip cache memory.
A further method of measuring processor performance has been developed by Intel's competitors AMD and Cyrix. The new rating, known as the P-rating, combines all factors that influence the performance of a PC. It provides a measure of how well the most commonly used application programs are run by a PC with a particular type of processor. This is the most practical rating, taking into account all the factors that affect processor performance.
AMD and Cyrix argue that their processors have a better processing power than comparable Intel devices with the same frequency specification. A P-rating such as P100 indicates that the processing power is equivalent to an Intel device running at 100 MHz though it may be running at say 90 MHz .
looks for, loads and executes two hidden system files, IO.SYS and MSDOS.SYS. The computer is now under the control of the operating system, in the guise of IO.SYS.

Step 5: LOADING CONFIG.SYS and COMMAND.COM. The operating system takes action to establish the operating environment as specified by the user. Customising the environment involves, first, searching the root directory for a file called CONFIG.SYS. When this is found, DOS reads and carries out all its instructions before loading the DOS kernal, which is a file called COMMAND.COM. If CONFIG.SYS cannot be found, COMMAND.COM is loaded regardless. The system is now under the control of COMMAND.COM

Step 6: LOADING AUTOEXEC.BAT. The CPU looks for a batch file called AUTOEXEC.BAT. If it's found, DOS loads it into memory, carries out its instructions and displays the DOS prompt. If AUTOEXEC.BAT is not found, DOS requests the DATE and TIME before displaying the DOS prompt.

The system is now ready for DOS commands and application programs. When Windows 95 is being loaded, WIN command is executed: the 95 logo is displayed on the screen and the routines for installing Windows 95 are run.

POST

The Power On Self Test (POST) starts with a series of tests, known as core tests, of the motherboard hardware, including the microprocessor, the coprocessor, the timer and clock-generator chip and the DMA (Direct Memory Access) and interrupt controllers. If an error is detected, coded beeps are produced. The code varies with the BIOS manufacturer.
The video adaptor card is next tested. If this test is successful a cursor appears on the screen. If the test fails, a message along the lines of Video ROM Error appears, depending on the nature of the error.
A second series of tests then checks the RAM and ROM devices, the floppy and hard disc drives, the serial and parallel (printer) ports and the keyboard. They use a BIOS routine that sends data to memory locations, registers and port addresses and tests the result by read-
ing back the contents of these locations. For ROM devices a checksum test is performed: the contents of ROM locations are read and a CRC (Cyclic Redundancy Count) known as a checksum is produced and compared with a known good count. Errors are made known by audible coded beeps, displayed messages or both.
This second series of tests is skipped when the boot-up process is the result of a warm start, i.e. the result of pressing the reset button.
On successful completion of both these series of tests a single short beep is produced.

System Initialising

The second task of the BIOS is to carry out initialisation routines that recognise and configure various parts of the computer system. The BIOS searches through the system and identifies its various features, such as the number and types of ports installed and the type of display adaptor (monochrome or colour). Initialisation involves creating an interrupt vector table and loading specified memory locations and registers with appropriate data, such as the keyboard character style and the start addresses of installed input/output adaptors, to reflect the specific features of the system.
This information is stored in what is known as the BIOS data area.

CMOS Setup

While it is testing and initialising the system the BIOS needs to know the number and type of peripheral devices installed and the size of memory that has to be tested. The BIOS can be programmed to find this information by itself. This would take time however, while the BIOS carries out a lengthy search.
To avoid such a delay when booting up, PCs hold this vital information in a non-volatile RAM. This is a bat-tery-backed CMOS RAM device, such as a Motorola MC146818, which is known as the CMOS setup chip. A total of 64 bytes stores setup information such as the date and time, the number and types of disk drives installed, cache memory etc. The CMOS setup can be accessed by pressing one key, or a combination of keys, during the boot-up process.

Search for the Operating System

So far, the initialisation process has not been related to a particular operating system. Any operating system can

Table 1: Typical MS-DOS DIR/a Listing.

SHR	C:IIO.SYS
SHR	C:IMSDOS.SYS
R	C:ICOMMAND.COM
SHR	C:IDBLSPACE.BIN
A	C:IWINA20.386
A	C:ICONFIG.OLD
A	C:UAUTEXEC.OLD
A	C:ICONFIG.SYS

now be loaded: the BIOS will look for an operating system and load it.
The operating system is usually on the hard disk, drive C.. An operating system may also be available on a floppy disk, which is in this case known as a system disk, and must be inserted in drive A :
An operating system is identified by a signature on the boot sector of the disk. It indicates that system files are present on the outside track (track 0). The name and number of the files depends on the operating system. With MS-DOS and Windows 95 there are two system files, lO.SYS and MSDOS.SYS. The files for the two systems have the same name but differ in content. For Windows 95, MSDOS.SYS is a text file that provides a boot-up configuration which can be changed to suit the user.
When the BIOS looks for the operating system it first interrogates drive A :, then drive C : (the hard disk). This A, C sequence, which is known as the boot-up sequence, can be changed by the CMOS setup.
If a non-system disk, i.e. one without the correct boot signature, is detected in A: the following message is displayed:

Non-system disk or disk error Replace and strike any key when ready

If the system files are missing from the disk, the following message is displayed:

Missing operating system

The system files have three attributes, S (for system), H (for hidden) and R (for read-only). The R and S attributes protect the files against deletion by mistake. The H attribute ensures that they are not included in the DIR listing.
For hidden files to be listed, a switch /a (for attributes) or $/ \mathrm{h}$ (for hidden) has to be used. A typical MS-DOS DIR/a listing is shown in Table 1. Notice that the system files are the first two entries in the directory. This is an essential requirement for MS-DOS and Windows 95.

Loading the Operating System

Once the system files have been located they are loaded into system memory, read and carried out. IO.SYS is loaded and executed first, followed by MSDOS.SYS. These files contain all the information necessary to set up the system, its components and subsystems. This includes resetting the disk drives, initialising the printer and the parallel and serial ports, and setting up the system's default parameters.

Configuring the System - CONFIG.SYS

Once the system file instructions have been carried out, DOS/Windows 95 looks for the system configuration file CONFIG.SYS in the root directory of drive C: (or drive A : when booting up from A :), loads it, reads it sev-
eral times and carries out its instructions. Table 2 lists basic elements of a CONFIG.SYS file. DOS/Windows 95 then looks for a file called COM-MAND.COM in root directory C : (or drive A : when booting up from A :) and loads it in memory. COMMAND-COM contains the DOS resident (internal) commands: it usually has an R (read-only) attribute.
The purpose of the CONFIG.SYS file is to configure and install hardware devices and load their control programs, which are known as device drivers. The CONFIG.SYS file has to be modified whenever a new device such as a CD-ROM drive or a sound card is added to the system. This can be carried out manually or automatically, by running the install program provided by the manufacturer of the device or running the Windows setup routine. The Windows 95 Wizard routine can detect and install devices at boot up.
A faulty command in the CONFIG.SYS file is usually indicated in the display. But with Windows 95 these messages are hidden from the user by the logo screen. Press ESC during the booting-up process and the logo will disappear so that the screen messages can be seen. Some errors may halt the boot-up process.

System Customising with AUTOEXEC.BAT

Before the DOS prompt or the Windows icons appear on the screen, DOS (and Windows 95) looks in root directory C : (or A : when booting up from A :) for a batch file called AUTOEXEC.BAT and carries out its instructions.
The AUTOEXEC.BAT file can contain commands that determine the type of prompt, set a path or determine the keyboard character set. Table 3 lists the basic elements of an AUTOEXEC.BAT file.
A faulty command line in the AUTOEXEC.BAT file is usually indicated on the display. Some errors may halt the boot-up process.

Bypassing CONFIG.SYS and AUTOEXEC.BAT

DOS/Windows 95 has a facility for bypassing both these files when the booting-up process is halted because of errors in either file. The two files can be bypassed by pressing F8 at the point where the BIOS begins to load MS-DOS (or Windows 95). A message to the effect that the files have been bypassed will appear.
Another facility that enables the user to step through the files is provided by pressing F5 at the point where MS-DOS starts to be loaded.
With Windows 95, pressing F8 will display a menu that provides a number of options including Normal, step-bystep, safe-mode and the previous MS-DOS version.

Path to DOS Files

Internal or resident DOS commands that are built into the COMMAND.COM file are loaded into system RAM at the boot-up stage. External or transient com-

Table 2: Basic elements of a CONFIG.SYS file.

DEVICE=C:IMOUSEIMOUSE.SYS
DEVICE=C:IDOS
DEVICE=C:IDOS
DOS=HIGH, UMB
COUNTRY $=044$, ,C:IDOSICOUNTRY.SYS
FILES=40
BUFFERS $=20$
LASTDRIVE=Z

Table 3: Basic elements of an AUTOEXEC.BAT file.

```
@ECHO OFF
PROMPT \$P\$G
PATH=C:IWINDOWS;C:IDOS
SET TEMP=C:IDOS
KEYB UK,,C:IDOS:KEYBOARD.SYS
```

mands remain on the disk in the form of individual files that are usually placed in a special subdirectory called DOS. Because of this, a path has to be established to ensure that external commands can be called without having to change directories.

CONFIG.SYS Commands

The following are some of the main DOS/Windows 95 commands that are valid for CONFIG.SYS files:

BREAK ON. Instructs DOS to check for CTRL +C or CTRL + BREAK key combination, in which case the program will be halted.

BREAK OFF. DOS does not check for a key combination.

BUFFERS. Sets the amount of memory used as buffers for data transfer. When data is transferred between say the hard disk and another unit, it's stored in a number of buffers before being sent to its intended destination.
A small number of buffers can reduce the speed of data transfer between say the hard disk and memory. A large number will reduce the size of conventional memory however. Each buffer occupies 512 bytes of memory. A typical number of buffers is 20-40.

FILES. Determines the number of files that DOS can keep open at the same time.

COUNTRY. Sets the keyboard characters to a particular country's style. The characters' set for each country is available in a file called COUNTRY.SYS which is in a DOS subdirectory. The default is US-style characters, which are the same as used in the UK. As an example:

COUNTRY=044,,C:LDOS\COUNTRY.SYS. 044 is the code for English UK, based on the international telephone code. C:DOSICOUNTRY.SYS is the path to the relevant file.

DEVICE. Sets and loads the routine, called a device driver, that controls an installed hardware device. This command installs the device driver in conventional memory. If the installed device is say a mouse, a routine that controls the mouse, typically MOUSE.SYS or IMOUSE.SYS, has to be loaded by a device statement this states the path to the relevant file. Here are some examples:

DEVICE=C:IMOUSE【MOUSE.SYS. MOUSE.SYS is the mouse driver which is stored in subdirectory MOUSE.

DEVICE=C:LDOS CHIMEM .SYS. Enables the highmemory management routine HIMEM.SYS.

DEVICE=C:LDOSUEMM386.EXE NOEMS. Provides access to upper memory without creating expanded memory.

DEVICEHIGH. Has the same effect as a DEVICE command but loads the device driver in the upper memory area. For example

DEVICEHIGH=C:MOUSELMOUSE.SYS

DOS. When set high, DOS kernal (COMMAND.COM) is loaded in the Upper Memory Area (UMA). When set to UMB, upper memory blocks are created to allow TSR (Terminate and Stay Resident) programs to be loaded in upper memory.

LASTDRIVE. Specifies the highest drive letter. For example LASTDRIVE $=K$ provides a maximum of eleven disk drives, A: to K:.

NUMLOCK ON. Sets the NUMLOCK of the numeric keypad on.
NUMLOCK OFF. Sets the NUMLOCK of the numeric keypad off.

REM. Indicates that the text that follows is descriptive and should be bypassed. It is also used to disable a command line without deleting it. For example:

REM DEVICEHIGH=C:IMOUSEIMOUSE.SYS disables the mouse driver.

The order in which these commands appear in the CONFIG.SYS file is unimportant, except that DEVICE commands, including HIMEM.SYS and EMM386.EXE NOEMS, must come before DEVICEHIGH commands.

AUTOEXEC.BAT Files

AUTOEXEC.BAT is a batch file whose instructions DOS/Windows 95 carries out at the boot-up stage to customise the PC. The instructions are followed in the order written: they include DOS batch commands such as ECHO, PATH and PROMPT. See Table 3. The file may also contain instructions to load Terminate and Stay Resident (TSR) programs such as DOSKEY, which memorises and reproduces previous commands. Typical AUTOEXEC.BAT commands are:

ECHO ON. To display the command lines as they are carried out by DOS.

ECHO OFF. Not to display the command lines as they are carried out by DOS.
@ECHO OFF. Not to display any command lines including ECHO OFF itself.

PROMPT. To set the type of prompt. Examples:
PROMPT \$P\$G, in which $\$$ P displays the directory path, e.g. $\mathrm{C}: \backslash$ or $\mathrm{A}: \backslash$ or $\mathrm{C}: \backslash \mathrm{DOS} \backslash$, and $\$ \mathrm{G}$ displays the greater than ($>$) sign.

PROMPT \$D, to display the current date.

PATH. To specify the directories and subdirectories that should be searched by DOS when looking for a file name. DOS, when instructed to carry out a command, first searches the system memory for a resident command file. If it fails to find the file there it searches the current root directory, then any other directory specified in a PATH command. Examples:

PATH $=\mathrm{C}: \backslash \mathrm{C}: \operatorname{LDOS}$ means search root directory $\mathrm{C}: \backslash$ and subdirectory C:IDOS.
PATH $=\mathrm{C}:$ IDOS; $\mathrm{C}:$ IWINDOWS means search subdirectories DOS and WINDOWS. Root directory C:S is automatically searched.

KEYB. To configure the keyboard for a specific language. For example:

KEYB UK,„C:IDOS\KEYBOARD.SYS specifies English UK.

The default setting is for English USA.
SET. Defines what is known as an environment variable. For example some programs require a temporary directory, usually called TEMP or TMP, in which tempory files are stored. Such a directory can be defined by the command SET. For example:

SET TEMP $=\mathrm{C}: \backslash$ defines TEMP directory in root directory $\mathrm{C}: \$. To call this directory, the programmer writes '\%TEMP\%', which will be substituted with C $: \backslash$
CD. Changes the active directory. For example:

CD WINDOWS changes to subdirectory WINDOWS.

The prompt will then be C:IWINDOWS\} > .
AUTOEXEC.BAT can also be used to launch an application program at the boot-up stage. For example, to run WINDOWS 3.x immediately after boot-up, the following lines should be included:

CD WINDOWS
 WIN

The first line changes the active directory to Windows while the second line is the file name to run Windows. The first line can be omitted if the PATH command line includes a path to Windows.

Note that the CONFIG.SYS and AUTOEXEC.BAT files are constructed automatically when Windows 95 is installed.

The System or Boot Disk

A system disk, also known as a boot or start-up disk, is a floppy disk that can be inserted in drive A: to start up the computer. It contains what is known as the system, i.e. the system files IO.SYS and MSDOS.SYS and the DOS kernal COMMAND.COM.
To create a system disk, transfer the system from drive C: to a floppy disk in drive A: (or B:). Two commands can be used to transfer the system:

SYS A:
FORMAT A:/s (switch /s stands for system).
Both will copy the system files and COMMAND.COM together with their attributes. Formatting a disk as a system disk will wipe the disk clean however, thus loosing all the existing files on it.
Depending on the version of DOS, a system disk may include one or more additional system files such as DRVSPACE.BIN with SHR attributes. Furthermore, it is usual to have a number of non-resident files on the system floppy disc, such as EDIT EXE, QBASIC.EXE, FORMAT.COM, FDISK.EXE and MSD.EXE to provide access to some useful external commands.
A Windows 95 system disk can be created at the time of installation or by going into the control panel window and selecting Add/Remove programs. By clicking on Start-up disk, a Windows 95 start-up or system disk can be created.
Start-up disks for both DOS and Windows 95 do not contain drivers for access to a CD-ROM drive, which in some cases may be essential. Certain modifications may have to be carried out to both CONFIG.SYS and AUTOEXEC.BAT to rectify this situation.

Operating System Installation
The operating system is usually installed on the hard disk (drive C:). It comes on a number of disks (DOS) or a CD-ROM (Windows 95). All OS files and an install or setup routine are included.
With MS-DOS, install the operating system by inserting disk 1 in drive A: and running the SETUP program (by typing SETUP at the prompt). The setup program will take all the necessary steps to install the operating system, including CONFIG.SYS and AUTOEXEC.BAT file writing and creating subdirectories.
With Windows 95 the operating system is installed by inserting the Windows 95 CD into the CD-ROM drive and, from the $\mathrm{D}:>$ prompt, typing SETUP.

Next month: A look at PC memories.

We welcome letters from our readers and try to publish as many as we can. You con send them typed, hand-written, or on disc. Address them to the letters Edifior, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

DTT Reception

Digital terrestrial TV has now been in operation long enough for us to be able to assess reception problems and the back-up provided. The main marketing claims have been more choice and better picture quality. The former cannot be disputed. With regard to the latter, while a DTT box is theoretically capable of providing better results than the best analogue colour TV receivers, it will do so only when providing RGB outputs (not composite video) via a scart lead. It therefore depends on whether the TV set in use can accept RGB inputs.

The main advantage claimed for DTT reception is its immunity to multipath distortion, which produces ghosting and similar undesirable effects with analogue reception. For the most part this is true, but those who receive good-quality PAL analogue signals are unlikely to notice any improvement when a DTT decoder is in use. DTT sound quality is much better than analogue mono, though not Nicam, but the average set won't do justice to it. For best results the stereo audio output from a decoder should be fed to a hi-fi or 'home-cinema' audio system with quality loudspeakers.

Local EM conditions create the main reception problems. Those familiar with the 405 -line system will recall its susceptibility to impulse interference caused by electrical equipment, particularly vehicle ignition systems. The disadvantage of positive modulation was not appreciated by those who designed the system. It seems that history is repeating itself.

Best RF design practice has not

Letters

been adopted in the DTT world. To avoid mutual interference with existing services, DTT transmissions are typically 20 dB below the accompanying analogue ones. This has an unfortunate consequence: local interference within a DTT multiplex can be of sufficient amplitude to corrupt the modulation. The decoder's error-correction circuitry may be unable to cope with this. Now here's the rub. The effects of impulse interference go largely unnoticed with an analogue transmission, mainly because of the use of negative modulation (the noise is driven towards black level). Any residual interference tends to appear as shortduration line flashes, which are generally not noticed by viewers. But the same level of interference has a devastating effect with a DTT channel.

The results vary from MPEG-2 mosaic blocking that typically lasts for one-two seconds to momentary total corruption, with the dreaded 'red dot' being displayed and no sound or picture. Other effects include the sound and picture becoming unsynchronised by as much as two-three seconds, and lock-up with a frozen still picture (the sound may continue normally). The remote control unit then has no effect and the box must be switched to standby and back to recover. On the audio side you can get pops and cracks that are at much higher amplitude than the programme material, with the risk - if the volume is set much above average - of loudspeaker cone damage. Many viewers report that the problem is far worse in the early evening. In almost every case a spectrum analyser check at the aerial site has revealed the cause to be vehicle ignition interference, though this has been well within regulated limits. All the DTT boxes I have examined, from various manufacturers, suffer to a greater or lesser degree from this problem.

Analogue terrestrial CTV signals degrade 'gracefully', and are far more robust than the 'all-or-nothing' digital alternative in the modern, hostile EM world. In terms of the crucially important EMC performance, the current DTT offerings are, overall, hopelessly outclassed by the existing, if ancient, analogue services.

In my experience the reaction of the service provider to complaints about poor reception has been abysmal. The trade has been provided with post-code charts, CD-ROMs etc. showing good and fringe reception areas. But, when the inevitable poorreception complaint arises, either the aerial feeder or the box manufacturer is blamed. Here are some favourite reactions: "the box's screening is inadequate"; "you need double-screened coax"; "you live in a bungalow"; "you can't use a loft aerial"; "you can't use a communal aerial"; and "you need a mast-head preamp". Suggestions made when it's pointed out that the interference is arriving directly at the aerial site include: "tilt the aerial skywards by fifteen degrees"; "raise the height of the aerial by a further twenty feet"; "move the aerial to the back of the house"; and "you live too near a main road".

Seldom do any or all of these suggestions have any significant effect on the problem. If a stronger complaint is made, there is usually an offer of a full refund along with comments such as "the service is still being developed" or "if you were served by Crystal Palace there would be no problem".

If this experience is representative of the future of DTT broadcasting in the UK, heaven help us all.
Dennis Glover,
Stansted TTS, Essex.

Please note the following amendments to the Spares Guide published in our April issue.

SEME Ltd. has expanded and now occupies a new head office building opposite the original distribution centre. The new address is:
SEME Ltd.,
Hudson Road,
Melton Mowbray,
Leics LE13 1BS.
Tel. 01664484000 (sales hotline), 01664484001 (general enquiries), fax 01664563976.
There is no longer a separate number for Panasonic/Pioneer.

Manor Supplies is now at 9 Whitechurch Parade, Whitechurch Lane, Edgeware, Middx HA8 6LR.
Tel. 0181952 8808, fax 01819528809 .

Difficulties getting the technical information you need?

Are you spending too much time trying to solve repair problems?

Repair Tip Database: Contains thousands of repair tips for hundreds of manufacturers, including many extracts of circuit diagrams and complete PSU diagrams.

TecTra Database: To identify electrical equivalents for ICs and transformers.

Transistor Database: Contains thousands of transistors including technical data and diagrams with pin occupation.

System requirements: 100\% IBM-compatible PC, minimum of 486 processor, 8Mb RAM, Microsoft Windows 3.1x/Windows 95/98, double-speed CD-Rom drive, printer (optional).

Installation: Click on START - RUN - D:ISETUP - click on ENGLISH - then on EURAS Information System 2.6 <OK>

- For full access to our database, either send off the form below, call us on (0117) 9860900, fax us on (0117) 9860343 or send an e-mail to: euras@euras.com

30-DAY-FREE-TRIAL OR
 Reply before 21 May for a special 60-DAY-FREE-TRIAL of the complete EURAS System.

A $£ 50.00$ deposit is required for the data protection hardware key - full refund guaranteed.

Visit our Web site: www.euras.com or www.euras.com/euras for a 60-DAY-FREE-TRIAL of our monitor on-line repair database.

Contact name:
Company name:
Address:
Postcode:
Tel:

> Fax:
email:

I am enclosing a cheque or authorise you to debit my credit
card for $£ 50$
CHEQUE VISA

MASTERCARD
Card number:
Expirydate:
Card holder's name and address: (if different from the above)
Name:
Address:
Signature:

> Experience with digital TV installations, both terrestrial and satellite, is fast increasing. J. LeJeune provides a summary of some problems that have been encountered and generally-recommended best practice

Hands-on Digital

Digital TV installation has already become quite a big business. A few installations have not gone well, while others have required little work apart from connecting the set-top box and, in the case of BSkyB, making the connection to the telephone network. The following notes are based on feedback from several engineers engaged in this work.

Digital Terrestrial TV

The modulation system used for DTT is COFDM (Coded Orthogonal Frequency Division Multiplex). In the UK, it uses 1,705 carriers which are spaced at about 4.5 kHz intervals across the 8 MHz video channel bandwidth. Adjacent carriers have a phase difference of 90° between them (hence orthogonal). A synchronous form of demodulation is used, giving peak detection of a carrier while the adjacent carriers are at zero.
COFDM is a very rugged form of transmission. It actually takes advantage of reflected signals by using them to enhance the signal strength. Where cancellation occurs because of the phase relationships, the comprehensive error correction system built in puts matters right.
Experience to date has shown that COFDM is very tolerant of poor reception conditions, but if the signal level is below $100 \mu \mathrm{~V}$ there will be loss of the programme on occasions because of signal corruption caused by noise. A safety net of 6 dB should be built in. This means that signals of less than $200 \mu \mathrm{~V}$ require a degree of amplification.
Those used to analogue signals would probably go for a high-gain amplifier. But a high-gain amplifier could
loose the digital signal. There's a simple reason for this. The analogue signals present are at much higher levels, some $20-26 \mathrm{~dB}$ greater. A high-gain amplifier will raise the level of the analogue signals as well as the digital signal, to the extent that overloading could occur in the amplifier's output stages. This would cause massive interference to the digital signal and the error correction circuitry would probably be unable to cope. So the digital system would shut down, giving that familiar symptom a blue screen. Use only sufficient gain to get your $200 \mu \mathrm{~V}$, or $+46 \mathrm{~dB} \mu \mathrm{~V}$. The rule is: enough is enough!

Measurement

Measurement of a DTT signal is more complex than analogue signal measurement. Those of us who have used meters to check analogue signals over the years have become used to interpreting the meter indication in terms of signal level. But a digital signal does not have the same power spectrum as an analogue one - see Fig. 1 for a comparison.
A signal-level meter usually has a fairly narrow bandwidth. This is acceptable with an analogue signal, because the transmitted power is concentrated around the carriers - vision, sound, colour subcarrier etc. But with a DTT signal the power is spread equally across its whole bandwidth. So an analogue meter will measure only a small portion of the carrier power and give an inaccurate measurement. The serious installer needs a specialised signal-level measuring instrument - really a portable spectrum analyser, but one built to withstand the rough-and-tumble conditions it will encounter in service.

Fig. 2 shows a spectrum-analyser type signal-level meter display. The transmissions are presented on a frequency rather than a time base, their height representing the transmitted power. As you can see, the DTT signal has a low but almost flat level across the whole of its bandwidth, while the analogue signal has large peaks at the vision carrier and the sound and colour subcarriers, with very low power in the sidebands. If you intend to specialise in digital installations, go for a spectrum-analyser type of meter.

Practical Installation

The analogue engineer shouldn't be too worried about all this. In view of the fact that COFDM is a very rugged modulation system, a 'suck-it-and-see’ approach is not at all out of place. When you install a terrestrial digital set-top box, try it with the customer's existing aerial. Take a look at the analogue signals first. Is the signal strength good? Ghosting doesn't matter too much, but is the signal level sufficient to provide relatively noise-free pictures? Then connect up the digital box.
It may be that the signals are OK in winter, with leafless trees, but that the return of spring brings signal deterioration and a service call. Your experience will enable you to assess and deal with this sort of thing.
If the installation is a completely new one, remember that the analogue signals are there to guide you. The rules of good UHF installation practice still apply.
If the aerial is a wideband type, it will have been designed for greater gain at the upper end of the band. This useful feature provides compensation for the increased downlead loss. Use low-loss coaxial cable of good quality, with a 75Ω impedance and high screening factor.
Many installers don't fit the coaxial plugs correctly. The new crimp-on type is superior, stays put on the cable under misuse conditions, and is easier to install. Try to avoid sharp cable bends, and don't crush the cable when cleating it to the walls/boarding - this is bad practice anyway, whether the signal is an analogue or digital one.
A poorly installed aerial system will give inferior results with an analogue signal: with a digital signal it may not work at all. Digital transmissions don't fade gracefully as the signal level drops. You either have a good, clean picture or nothing.

Digital Satellite TV

The foregoing comments apply to satellite installations as well, only more so. Satellite transmissions use QPSK (Quadrature Phase Shift Keying) modulation. It's the same system that is used for Nicam sound with terrestrial TV. There are two carriers, at the same frequency but with a 90° phase separation. By inverting the phase of one or both of the carriers, four different two-bit states (symbols) can be transmitted.
QPSK has good immunity to noise, making it ideal for satellite use, but is susceptible to reflections and impulsive interference. While these are minimal with satellite reception, they become important when the signal has to be distributed to several receivers or there's a long cable run between the LNB and the set-top box.
Where amplification of the satellite IF signal (750$2,010 \mathrm{MHz}$) is required, it is again useful to have the services of a spectrum analyser for signal-level measurement. There are several types, of varying degrees of usefulness, on the market. Again, much depends on how the readings obtained are interpreted - over a peri-

Fig. 3: Energy distribution with digital and analogue satellite TV channels.
od of time you become used to your own measuring instrument. This does not sound very scientific, but it's a practical approach to the problem.

Dish/LNB Installation

Installation of the dish and LNB for digital satellite TV reception is the same as for analogue, but one very important point is that to avoid cross-polarisation interference the LNB's skew angle must be set accurately. The reason for this is the modulation system characteristics: as with COFDM, the entire channel is filled with energy - in contrast, with the FM used for analogue transmissions the maximum energy is at the centre frequency. Fig. 3 shows the difference. Slight misalignment of the LNB skew angle will result in considerable cross-polarisation interference, which will bring about the blue-screen situation.
The satellite signals use the same IF band as analogue ones. but are in the high section. This may require a 22 kHz tone to be present - the tone is permanently on with most digital satellite receivers.
The type of meter reviewed elsewhere in this issue can be used for digital satellite finding.
The quality of the cabling between the LNB and the receiver is important with QPSK. Try to do it in one length. Back-to-back F connectors have considerable insertion loss and, unless they are of superior quality, also introduce an impedance mismatch. Avoid sharp bends and cable squashing by the clips used. Crimp-on F connectors are best: they stay on the cable, and foil the best attempts of curious children to dislodge them. Use the correct tool to fit a crimp-on connector - if pliers or some other unsuitable tool is used there is likely to be cable damage and a mismatch.

Fig. 4: Prime and secondary focal points for reception from $19.2^{\circ} \mathrm{E}$ and $28.2^{\circ} \mathrm{E}$.

Two LNBs

Provided it is of the correct, Astra-recommended size, a dish used for analogue reception from $19 \cdot 2^{\circ}$ E should also provide, at a secondary focal point, an adequate digital signal from $28.2^{\circ} \mathrm{E}$. But note that a secondary focal point is not as efficient, in terms of signal energy pick-up, as the prime focal point. See Fig. 4. The secondary focal point for $28.2^{\circ} \mathrm{E}$ is a few centimetres to the right of the prime focal point.
Various brackets are available, making the installation of a second LNB relatively simple. Select one that enables the LNB to be adjusted for azimuth, elevation and focal distance independently, so that the signal pickup can be optimised. And use a separate cable between the second LNB and the receiver.

Telephone Link

A telephone line connection for return path communication between the microprocessor chip in the set-top box and Sky headquarters is required with a SkyDigital installation. The job should be a simple one but never is. The TV set may be in the TV room over the garage while the telephone is at the opposite end of the house by the hall window! An LF wiring job is simply a matter of hiding the cable as best one can and satisfying the customer. ONdigital will also require a phone connection before long. Do it now, in readiness.

Aesthetics and Council Requirements

Despite the best will in the world, there will be times when technical requirements conflict with aesthetic ones. A thorough understanding of the technical reasons for doing what you decide to do, explained with a degree of authority, will persuade most customers that you are working in their best interests.
Local councils are different: they will have a rigid set of rules, called 'guidelines' but always enforced dogmatically. It is best to say "yes" to everything demanded, then instal the equipment as you would for an important customer, again using your knowledge and authority.
At this stage not many people know much about digital reception. This gives you an advantage.

Distribution Systems

Digital signal performance in a distribution system is again a matter, initially, of trial-and-error. Small, well-
designed and maintained systems, from a domestic four-outlet UHF job to one for a small block of flats, may need no work done on them.
This depends largely on whether any amplifiers in the network are running well within their capabilities and the cabling and accessories provide a good match. An amplifier that runs at maximum output with ana-logue-only signals will probably overload when digital signals are added. Cables and accessories - splitters, taps, outlet plates etc. - need to be of good quality. Cable should have a high screening factor - this applies to all network hardware. The 75Ω characteristic impedance must be observed. Any mismatches can cause problems that could shut down a digital receiver.
The main problem is likely to be reflections, which the COFDM used for terrestrial transmissions can ignore - or even use to advantage. Alongside these however there are problems caused by uneven frequency response over individual channels (slope) and phase errors. The latter can cause serious data errors with a digital transmission.
Screening is important with both analogue and digital signals. But whereas analogue signals will be subject to degradation that the viewer will probably tolerate, with a digital signal the receiver will shut down under strong interference conditions, with temporary loss of reception. Viewers will react more strongly to loss of reception than to a passing disturbance - the result is a service call.
Adding digital signals to an existing communal aerial system calls for caution. Some systems have fre-quency-translated channels that occupy what, in the UHF band, were spare channel spaces. Suddenly the digital channels at the local transmitter are switched on, and appear close to or on top of the translated channels. The digital channels are generally placed adjacent to analogue ones, so this may not be a problem in most areas, but there can be problems where this channel arrangement is not used. It's rare to find adjacent analogue channels in a distribution system, but installers in coastal areas may encounter this problem where it has been necessary to choose alternative channel allocations to avoid interference with services on mainland Europe.

Viewer Advice

Digital TV is a new experience, and you may get questions from viewers about it. Many viewers find that the delay in the appearance of the picture after changing channels is annoying, and want to know why it occurs. Channel surfers are really frustrated by this. Selection of a new channel means that the receiver has to adopt a search routine to find the relevant data packets. Then a full picture has to be built up in memory, and sound synchronism established, before the display appears. This takes up to two seconds, depending on whether the new service is in the same or another multiplex and whether it's encrypted or free-to-air. Most viewers will not be aware that one channel may carry five or six TV services in a multiplex, maybe more in the future. Much depends on advances in the technology.
As with many developments before it, digital TV will soon become an everyday matter and those of us in the trade will wonder what the fuss was all about!

HYDROPONICS DO YOU GROW YOUR OWN

We have a full colo ur hydroponics catalogue available

light fittings. WINDOWS 95 CD

As supplied with Hewlett Packard PC's these CD's have all the window files on them and were intended to be used to SATELLITE MODULATOR MODULES. Prices from just 9
Surface mount modulators full of components. Fitted with an F type connector and a uhf connector. Pack of 100 £9.95 REF SS2O
PROJECT BOXES
Another bargain for you are these smart ABS project boxes, smart two piece screw together case measuring approx
$6^{\circ} \times 5^{\circ} \times 2^{*}$ complete with panel mounted LED. Inside you will find loads of free bits, tape heads, motors, chips resistors, transistors etc. Pack of 20 E19.95 REF MD2
REMOTE HEATING CONTROLLERS
with 30A mains relay from just $99 p$
These units were designed to be plugged into a telephone socket. You then called the phone and some how it turne mains 30 A relay. Pack of 20 £20 REF SS 34
TALKING COINBOXES. Prices from just $95 p$
These units were made to convert standard telephones into pay phones, complete with coin slot assemblies and switches etc. OFFERED TO YOU AT A BARGAIN PRICE BECAUSE WE NEED T-E SPACEI Pack of 10 ¢ 19 REF SS 29 AC MOTOR BONANZAI. Prices from iust 59p
Again we have piles and piles of these brand new mixed
motors which we need to clear in bulk at ridiculous prices! Pack of 50 for $£ 30$ REF SS 13

PIR CAMERA

Built in CCTV camera (composite output) IR strobe light, PIR detector and battery backup. Designed to 'squirt' pictures down the 'phone line but works well as a standalone unit Bargain price £39.95 REF SS81J. These units are brand new modules designed to take 'pictures' of intruders and then
transmit the pictures down the telephone line. The PIR detects the intruder, fires the strobe light, this ensures a perfect picture even in total darkness. The picture is stored in memory ins ide the module and then sent by modem (not included) down the telephone line. The units also have a nicad battery pack included presumably to maintain operation in the event of mains power failure. Output rom 90×65 degree field of view, the picture quality is excellent. Each PIR also contains a video capture and compression unit. The infra red strobe has a range of 15 m . The PIR has a range of 12 m . Power requirements are 12 vdc 400 mA . Power supplies available at $\in 5$ REF SS80. The units are supplied with connection details etc but we do not have any information on using the compression and capture unit or
interfacing to moderss etc. The units do have operational PIR's, strobes and camera's (camera is 12 vdc and gives out standard composite $1 \mathrm{v} p-\mathrm{p}$ video) how you adapt these to work together is entirely up to you! Retail price for the units was in excess of $£ 200$ each sale price $£ 39.95$ REF SS81J. Power supples
TELEPHONES
Just in this week is a huge delivery of telephones, all brand Just in this week is a huge delivery of telephones, all brand features - illuminated keypad, tone or pulse (switchable) recall, redial and pause, high/low and off ringer switch and quality construction, finished in a smart off white colour and is supplied with a standard international lead (same as US or modems) if you wish to have a BT lead supplied to convert the phones these are also available at E .55 each 3HP MAINS MOTORS
Single phase 240 v , brand new, 2 pole, $340 \times 180 \mathrm{~mm}$ $2,850 \mathrm{rpm}$, built-in automatic reset overload protector keyed shaft ($40 \times 16 \mathrm{~mm}$). Made by Leeson. $£ 99$ each. REF LEE 1 BUILD YOUR OWN WINDFARM FROM SCRAP
New publication gives step by step guide to building wind generators and propellors. Armed with this publication and a good local scrap yard could make you self sufficient
electricity! f 12 ref LOT81
WAIETAIN TANK DOUBLE LASERS 9 WATT + 3 WATT CHIEFTAIN TANK DOUBLE LASERS 9 WATT + 3 WATT LASER OPTICS
Could be adapted for laser listener, long range
communications etc. Double beam units designed to fit in communications etc. Double beam units designed to fit in the gun barrel of a tank, each unit has two semi conductor lasers and motor drive units for alignment. 7 mile range, no
circuit diagrams due to MoD, new price $£ 50,000$? Us? £199. Each unit has two gallium Arsenide injection lasers, 1×9 watt, 1×3 watt, 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency. The units also contain an electronic receiver to detect reflected signals from targets. £199. REF LOT4
MAGNETIC CREDIT CARD READERS AND ENCODING MAGNETIC CR
MANUAL $£ 9.95$
MANUAL $£ 9.95$
Cased with flyleads, designed to read standard credit cards! Cased with flyleads, designed to read standard credit cards
Complete with control electronics PCB and manual covering everything you could want to know about what's hidden in that magnetic strip on your card! Just f9.95 REF BAR31
HIPOWER ZENON VARIABLE STROBES HIPOWER ZENON VARIABLE STROBES
Useful 12v PCB fitted with hi power strobe tube and control electronics and speed control potentiometer. Perfect fo REF FLS1, pack of 10 f 49 REF FLS?
CENTRAL POINT PC TOOLS
Award winning software, 1,300 virus checker, memory
optimiser, discoptimiser, file compression, fow level optimiser, discoptimiser, file compression, low level
formatting, backup scheduler, disk defragmenter, undelete, 4 formatting, backup scheduler, disk defragmenter, undeleta,
calculators, D base, disc editor, over 40 viewers, remote computing, password protection, encryption, disks f10. REF LOT97
VIDEO PROCESSOR UNITS ?/6V 10AH BATTs/24V 8 A TX Not too sure what the function of these units is but they certainly make good strippers! Measures $390 \times 320 \times 120 \mathrm{~mm}$ on the front are controls for scan speed, scan delay, scan mode, loads of connections on the rear. Inside $2 \times 6 \mathrm{~V} 10 \mathrm{AH}$ sealed lead acid batts, pcb's and a 8A? 24v torroidia broken knobs etc due to poor storage. £15.99. REF VP2
DIFFERENTIAL THERMOSTAT KIT
Perfect for heat recovery, solar systems, boiler efficiency etc. Two sensors will operate a relay when a temp differenc (adjustable) is detected All components and pcb. £29 RE LOT93

SOLAR WATER HEATER PLANS £6 REF SOLP
PC POWER SUPPLIES PACK OF 8 £9.9
that's right! 8 power suppies for
cooled (usually 12 v) our choice of specs etc, an
seen. But worth it for the fans alone! REF XX17

COLOUR CCTV VIDEO CAMERAS From $£ 99$ Pal iv P-P, composite, $750 \mathrm{hm}, 1 / 3$ CCD 4 mm F2.8, 500×582, 12 vdc , mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price £ 119
REF XEF150, 10 or more $£ 99$ each $100+£ 89$

We get over 5,000 hits a day check us out! http://www.bullnet.co.uk
SMOKE ALARMS
Mains powered, made by the famous Gent company, easy fit ext to light fittings, power point. Packet of 5 f 15 REF SS23,

NICADS. Pack of $\mathbf{4} 10$ REF 4 AHPK
ELECTRIC FENCE KIT
Everything you need to build a 12 vdc electric fence Complete wit
SENDER KIT
SENDER KIT
Contains all components to build a AV transmitter complete 33 KILO LIFT MAGNET
Neodynium, 32MM $£ 15$ REF MAG33
10 WATT SOLAR PANEL
Amorphous silicon panel fitted in an anodised aluminium frame. Panel measures 3^{\prime} by 1 ' with screw terminals for easy connection. 3' x 1' solar panel $£ 55$ REF MAG45
Unframed 4 pack ($3^{\prime} \times 1^{\prime}$ ' 558.99 REF SO
12V SOLAR POWERED WATER PUMP
Perfect for many $12 V$ DC uses, ranging from solar fountains erfect for many $12 V D C$ uses, ranging from solar fountain direct from our 10 watt solar panel in bright sun. Max hd: 17 d Max flow $=8 \mathrm{Lpm}, 1.5 \mathrm{~A}$. REF AC8 $£ 18.99$
SOLAR ENERGY BANK KIT $50^{\prime \prime} \times 6^{\prime \prime} \times 12^{\prime \prime} 6 \mathrm{~V}$ solar panels (amorphous) + 50 diodes $£ 99$ REF EF 112
PINHOLE CAMERA MODULE WITH AUDIO
Superb board camera with on board sound! extra small just
28 mm square (including microphone) ideal for covert 28 mm square (including microphone) ideal for cover matchbox! Complete with 15 metre cable, psu and tv/cr connectors. £49.95 REF CC6J
SOLAR MOTORS
Tiny motors which run quite happily on voltages from 3 12 vdc . Works on our 6 v amorphous $6^{\prime \prime}$ panels and you ca run them from the sun! 32 mm dia 20 mm thick. $£ 1.50$ eac LIQUID CRYSTAL DISPLAYS Bargain prices 20 character 2 line, $83 \times 19 \mathrm{~mm}$ § 3.99 REF SMC2024A 16 character 4 line, $62 \times 25 \mathrm{~mm} \mathrm{~m} 5.99$ REF SMC1640A 40 character 1 line, $154 \times 16 \mathrm{~mm}$ f6.00 REF SMC4011A LM255X HITACHI LAPTOP SCREENS $240 \times 100 \mathrm{~mm}$
640×200 dots. New with data $£ 15$ REF LM2

SEALED LEAD ACID BATTERIES 12V 7AH, S/HAND

PACK OF 4 £10 REF XX1
YOUR HOME COULD BE SELF SUFFICIENT IN ELECTRICITY
 200 WATT INVERTERS

Register for our
 ELECTRONIC NEWSLETTERS BULL-ELECTRICAL.COM

 BULLELECTRICAL

250 PORTLAND ROAD,

 HOVE, SUSSEX BN3 5QT (Established 50 Years) MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $\& 4$ P\&P PLUS VAT 24 HOUR SERVICE $£ 6.50$ PLUS VATOVERSEAS ORDERS AT COST PLUS £3.50 (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) Phone Orders:
01273203500
FAX: 01273323077 sales@bull-electrical.com

Plugs straight into your car cigarette lighter socket and is fitted with a $13 A$ socket so you can run your ma devices from your car battery. £49.95 REF SS66
HE TRUTH if someone is
Tells if someone is lying by micro tremors in their voice, phone and TV as well! E42.49 REF TD3
INFRA RED FILM
" square piece of flexible infra red film that will only allow IR light through. Perfect for converting ordinary torches lights, headlights etc to infra red output only using standar ight bulbs. Easily cut to shape. $6^{\prime \prime}$ square £15. REFIRF2 HYDROGEN FUEL CELL PLANS
oads of information on hydrogen storage and production. ractical plans to build a Hydrogen fuel cell (good workshop STIRLING ENGINE PLANS
interesting information pack covering all aspects of Stirling engines, pictures of home made engines made from an aerosol can running on a candle! £12 REF STIR2
ENERGY SAVER PLUGS
Saves up to 15% electricity when used with fridges, motors p to 2A, light bulbs, soldering irons etc. $£ 9$ each REF 12 V OPERATED SMOKE BOMBS
Type 3 is a 12 v trigger and 3 smoke canisters, each canister will fill a room in a very short space of time! E14.99 REF SB3 Type 2 is 20 smaller canisters (suitable for simulated equipment fires etc) and 1 trigger module for £29 REF SB2 Type 1 is a 12 v trigger and 20 large canisters $£ 49$ REF SB1 HI POWER ZENON VARIABLE STROBES
Useful 12 V PCB fitted with hi power strobe tube and control interesting projects etc $70 \times 55 \mathrm{~mm} 12 \mathrm{vdc}$ operation. $\mathbf{6} 6$ each REF FLS 1 , pack of 10 f49 REF FLS 2
NEW LASER POINTERS
$4.5 \mathrm{mw}, 75$ metre range, hand held unit runs on two $A A$ batteries (supplied) 670 mm . £29 REF DEC49J
HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES
Comprehensive 270 page book covers all aspects of spirit production from everyday materials. Includes construction NEW HIGH POWER MINI BUG
With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug! Less than 1" square and a 10 m voice pickup range. £28 REF LOT102
R LAMP KIT
Suitable for cctv cameras, enables the camera to be used in total darkness! £6 REF EF13
NFRA RED POWERBEAM
Handheld battery powered lamp, 4 inch reflector, gives out powerful pure infrared light! Perfect for CCTV use SUPER WIDEBAND RADAR DETECTOR
Detects both radar and laser, XK and KA bands, speed ameras, and all known speed detection systems. 360 degree coverage, front \& rear ear wave guides. OPTX

Made by Samsung for
$240 \times 175 \mathrm{MM}, \mathrm{E} 12$ REF SS5 1
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA We have collated 140 business manuals that give you information on setting up difterent businesses, you peruse these at your leisure using the text editor on your PC. Also ncluded is the certificate enabling you to reproduce fand HIGH POWER DC MOTORS, PERMANENT MAGNET
$12-24 \mathrm{v}$ operation, probably about $1 / 4$ horse power, body measures $100 \mathrm{~m} \times 75 \mathrm{~mm}$ with a $60 \mathrm{~mm} \times 5 \mathrm{~mm}$ output shaft with a machined flat on it. Fixing is simple using the two threaded bolts protruding from t
INFRA RED REMOTE CONTROLS
Made for TV's but may have other uses. Pack of 100 £39 REF

ONLINE
WEB CATALOGUE bull-electrical.com

ELECTRONIC SPEED CONTROLLER KIT
For the above motor is $£ 19$ REF MAG17. Save $£ 5$ if you buy hem both together, 1 motor plus speed controller rrp is $£ 41$ offer price $£ 36$ REF MOT5A
SONY STEREO TV CHASSIS
SONY STEREO TV CHASSIS
Assemblies comprising complete TVPCB excluding tube and scan coits. Nicam stereo, mains input. Appear to be unused scan coils. Nicam stereo, mains input. Appear to be unuse a nicam stereo TV sound receiver and amplifier. For KV29F1U and KV25F1U(BE3D) PCB no's 1-659-827-12 1-659 826-14 1.7 11-800-11 E20 REF STV1
RCB UNITS Inline IEC lead with fitted RC breaker. Installed in seconds. Pack of $3 £ 9.98$ REF LOT5A
RADIO CONTROLLED CARS etc
No remotes but good strippers for servos' motors and
eceivers. Sold as is, no returns, mixed types. $£ 3$ each REF RCC2
Hold one of these units over your phone mouth piece and you can adjust your voice using the controls on the unit Battery operated £ 15 REF CC3
LOW COST CORDLESS MIC
500^{\prime} range, $90-105 \mathrm{mhz}, 115 \mathrm{~g}, 193 \times 26 \times 39 \mathrm{~mm}, 9 \mathrm{v}$ PP3 battery 500^{\prime} range, $90-105 \mathrm{mhz}, 115 \mathrm{~g}$,

AUTO SUNCHARGER

$55 \times 300 \mathrm{~mm}$ solar panel with diode and 3 metre lead fitted with a cigar plug. 12 v 2 watt. f 12.99 REF AUG10P3
SOLAR POWER LAB SPECIAL
$2 \times 6^{*} \times 6^{*} 6 \mathrm{v} 130 \mathrm{~mA}$ cells. 4 LED's, wire, buzzer, switch +1 relay or motor. $£ 7.99$ REF SA27
SOLAR NICAD CHARGERS
SOLAR NICAD CHARGERS
\times AA size $£ 9.99$ REF 6P476. $2 \times$ C size $£ 9.99$ REF 6P477
Pack of 500 disks $£ 25$ REF FD

iv

 Fault Finding
Reports from

Philip Blundell, AMIIEelec
Michael Dranfield
Coplin J. Guy
Kevin J. Green, TMIIE
Terry Lamoon
Graham Colebourn
David A. Chaplin and
Pete Gurney, LCGI

Grundig ST61-460 (CUC4635 chassis)

If there is no Nicam sound, mono FM sound working normally, scope the waveforms at pins 3,4 and 33 of the CF70123 chip IC2550. If there are waveforms at pins 3 and 4 but the one at pin 33 is low, disconnect pin 15 of the AMU2484 chip. This chip can develop low-resistance to chassis at pin 15. If you are lucky, disconnecting pin 15 will restore the signal at pin 33 of IC2550 and replacement of the AMU2484 chip will clear the fault. If you are unlucky both ICs may have failed. In this case you will probably find that an exchange Nicam board is cheaper than IC replacement. P.B.

Philips 21PT166B (AA5 AB chassis)

The set was dead with the Wickman fuse 1571 open-circuit This fuse can blow if the overvoltage thyristor 7481 has been triggered. In case there was an overvoltage condition, I fitted a new fuse and ran the set up slowly using a variac, monitoring the 183 V HT supply as I did so. The HT was low, the EHT was low and the power supply was tripping. Yes! The LOPT had failed. The HT was correct when a new LOPT had been fitted. Maybe the HT had risen when the LOPT had failed? To be
on the safe side I gave the set a long soak test.

If fuse 1571 has blown because thyristor 7481 has been triggered, or if the fuse blows for no apparent reason, Philips recommends that the thyristor (part no. 4822130 20293) and the $6.8 \mathrm{k} \Omega$ surfacemounted resistor 3482 (part no. 4822051 20682) are replaced. P.B.

Toshiba 32MW7DB (C7SS chassis)

I recently had to repair a 32MW7 with the oversized on-screen display/slow channel change problem described in Toshiba Service Briefs August 1998 (page 694). Service kit TSN01467 is now supplied for both the 28 MW 7 DB and the 32MW7DB. It consists of a new microcontroller chip (QA01) and a Dolby module (board AC3). QA0I has new software while the Dolby board has been modified to reduce background hiss from the rear speakers.

To fit the new Dolby board, unsolder the four screening can earthing tags, unclip the screening can cover and unplug the jumper connector to the IF module. The Dolby module can then be unplugged and the replacement fitted. Reconnect the jumper and resolder the earthing tags. There is no point in switching the set on at this stage: there will be no sound until the new microcontroller chip has been installed. Guess how I found this out!

Desolder the microcontroller chip and fit the new one. The tuning and geometry settings will be the same. Remember to connect the degaussing coils before you power the set, otherwise you will have the fright of your life when a strong burning smell fills the workshop as R811 overheats. This resistor is connected in parallel with the degaussing coils and, with the coils
disconnected, there is insufficient current flow to warm up the posistor. As a result R811 gets rather hot! P.B.

Grundig ST63-660/8 (CUC5360 chassis)

If the tuner unit (29504-101.22) is intermittent, remove it and examine the area around the crystal with a magnifying glass. You could well find that the crystal is dry-jointed. P.B.

Sharp 37AM-23H (5BSA chassis)

The problem with this portable was tuning drift. It could be brought on by flexing the panel. Suspecting damaged print, I made ohmic checks on the tracks that connect the tuner to the tuning voltage generator and the AFC section of the IF department, but the tracks were OK. Cold checks then revealed that the resistance between the tuning voltage pin and chassis changed as the panel was flexed. The 100 nF surface-mounted capacitor C1013 was cracked and leaky. P.B.

Hitachi G8Q Chassis

There was a blank, unmodulated raster and no channel LED display. If any button was pressed, odd dashes would light up. It was not microcontroller failure this time: the chip's 5 V supply was missing. There was no input to the 5 V regulator because D934 in the chopper power supply was short-circuit. The 2Ω series safety resistor R933 was also faulty.

On test once the first fault had been repaired a second one was present. This time there was a bright white screen with flyback lines. The 200 V video output stage supply was missing because another 2Ω safety resistor, R720, had failed. M.Dr.

Marsui TVR161

If you get one of these TV-video combi units with the chopper FET Q500 (2SK2056) short-circuit, check resistors R504 ($330 \mathrm{k} \Omega$) and R506 ($820 \mathrm{k} \Omega$). One or both of them will be open-circuit. Don't use ordinary carbon types. The correct type is an 0.75 W metal film resistor rated at 350 V . These are readily available from Farnell Electronic Components in Leeds.

The $2 \cdot 2 \Omega, 7 \mathrm{~W}$ mains input surge limiter resistor may also be faulty. M.Dr.

Hitachi CPT1646R
 (NP84CQ chassis)

The customer asked us to adjust the vertical hold - the picture was rolling. But the cause of the trouble was excessive HT, indicated by the large, stand-off, wirewound resistor near the aerial socket being cold. This resistor is connected in parallel with the series regulator transistor TR902 to bypass about twothirds of the total current. TR902 was at full conduction because R908 in the error-sensing network had risen in value from $22 \mathrm{k} \Omega$ to $28 \mathrm{k} \Omega$. M.Dr.

Amstrad CTV2110 (new model)
 There was no sync. I was working

 with a very poor photocopy of the manual, so the cause took a long time to find. R395 was the culprit at least I think this is the correct circuit reference number. It is an $82 \mathrm{k} \Omega$ resistor which is connected to pin 30 of the AN5601K jungle chip. Its value had risen to the $\mathrm{M} \Omega$ region. M.Dr.
Sterivision Portable

These 8in. battery-only sets, made by NEC, were sold by CPC some years ago. If the set is dead, check whether Q114 (2SD401) is shortcircuit. If so you will have to replace the 12 V zener diode ZD101 in its base circuit as well. Should the set be dead with the internal 4A fuse blown, replace ZD101.

If the set switches back to standby, and cycles on/off when the on/off button is held down, replace Q113 (2SD882). M.Dr.

NEI 2591FTXN

There was no EW correction with this Nicam set. The cause of the problem was associated with pin 8 of the TDA8145 EW chip. Pulses from the line output stage should be present here. They come via two series-connected $150 \mathrm{k} \Omega$ resistors, one of which was open-circuit. As
a precaution I replaced them both. M.Dr.

Matsui 1455

The cause of intermittent field collapse was traced to R306 (2.7), which was going open-circuit intermittently. C.J.G.

Ferguson C49F (TX90E chassis)

There was a most confusing symptom. Initially it looked like AGC trouble, as snow was displayed with no aerial connection then a noisy picture appeared as the aerial socket was approached. When the signal strength increased, the picture broke up and the raster blanked out.

I removed the IF module and replaced all the electrolytics in it. This made no difference. So I removed the module again and replaced the IC. Still no difference. In desperation I replaced the complete module. Again no difference. What, external to the IF module, could cause such a symptom? Don't ask me how, but the cause turned out to be RH04 ($27 \mathrm{k} \Omega$) which is in the 33 V tuning supply feed. It had gone high in value, though the supply still read about 33 V . There was noise present on the supply however - it increased as the received signal strength increased. Phew! C.J.G.

Beko 16328NX

Poor field linearity was the complaint with this set. I found that R717 had risen in value from $1 \mathrm{M} \Omega$ to $28 \mathrm{M} \Omega$! C.J.G.

Mitsubishi CT2532TX (Euro 4 chassis)

This set produced a rolling picture whose width was excessive. The cause of these symptoms was excessive HT - at 180 V . The faulty component turned out to be C908 $(10 \mu \mathrm{~F}, 100 \mathrm{~V})$ which is the reservoir capacitor for the -4 IV supply to the chopper chip IC901. There had been no tripping or shutdown. C.J.G.

Hitachi C2544TN

I've recently had two cases of tripping on and off at one second intervals with these sets. In one case the cause was $\mathrm{C} 924(470 \mu \mathrm{~F}, 16 \mathrm{~V})$, the reservoir capacitor for the 5 V supply. In the other case R609 (1 Ω) in the 27 V supply to the field output chip was open-circuit. C.J.G.

Mitsubishi CT21M5BT (EE4 chassis)

The power supply would try to start
up, with the red LED lighting up. It would then back off. If the power supply was run with a dummy load in place of the feed to the line output stage it was OK. The cause of the trouble was the TEA5101B RGB output chip IC660 on the CRT's base panel - it had gone short-circuit. K.J.G.

Mitsubishi CT28AV1BD (EE3 chassis)

This set's grey scale would change of its own accord. When I checked the set in the service mode I found that the 'CRT bias request bit' would not set correctly to 00 with the G2 control. I replaced the MC44031 colour decoder/timebase generator chip IC201, which has been the cause of the trouble on previous occasions. The 'request bit' could then be set, but after one day of soak testing the grey scale was still no good. The fault was cured by replacing the TEA5101 RGB output chip IC660 and the 1N4148 diodes D655/6/7 on the CRT's base panel. K.J.G.

Matsui 1091X/Bush CTV100

This little 10 in . portable wouldn't come out of standby. I found that the 19 V supply to the line output transistor Q552 was low at 5 V . The cause was D552 (ERD29-06) which was open-circuit. It's in the feed to pin 8 of the line output transformer. T.L.

Hitachi C1411T

This set suffered from remote control problems and faulty tuning. On investigation it auto-tuned all right but, when it had finished, only one channel was displayed and the set was in the skip mode, showing channels $1,3,5,7$ etc. The remote control did function, but when you tried to select teletext it wouldn't change over and locked up in that mode. All voltages around the main microcontroller chip were OK and the oscillator was working.

I decided to check with Hitachi before ordering a replacement chip, just in case, and was told that the text IC might be the cause - it has been known to lock up the data lines. So this and a 27 MHz crystal were ordered. The IC made no difference, but the crystal did. Lucky I ordered it! T.L.

Matsui 1407

There was low, muffled sound. When I went to check the voltages in the audio circuit I noticed severe overheating around Q351 and

Q352. The sound was better when these transistors had been replaced, but was still distorted. A new loudspeaker put that right, and once it had been installed the transistors ran cool. T.L.

GoldStar CIT2181

This set would come out of standby and the power supply was functioning, but the HT was only 65 V and there was tripping. I checked the line output transistor and transformer, which appeared to be OK, then noticed C807S which looked very stressed. It turned out to be leaky, a replacement restoring normal operation. T.L.

Sony KVX21TU

There was no picture. If the set was put in the tuning mode you could get a station, but the tuning would not stop as it should. The fault is quite a common one. It's always worth checking for dry-joints at T101 and T102 on the tuner PCB: this set was no exception. I cleaned the connections thoroughly then resoldered them. After that the tuning locked to stations and good pictures were produced. T.L.

Matsui 2095T

There was intermittent red drop out. A squirt of freezer on the MPSA42 red output transistor T901 on the CRT's base panel would restore correct colour. Once a replacement had been fitted there was a good grey scale. T.L.

Nokia FX6332 (Euro Mono 2 chassis

This set was dead apart from a faint squeak that came from the power supply. Checks on the S2000A line output transistor 5T10 showed that it was very leaky. The cause of this was a cracked joint at 5C38, a small polyester capacitor in the network that feeds HT to the line output transformer. The values of the components in this network depend on the model - 5C38 ranges from 10 nF in this one up to $33 n F$. G.C.

Samsung CI210R

This 10 in . set produced a blank white raster with flyback lines and just visible green on-screen displays. The tube's cathode voltages were all very low, because the 115V HT supply to the RGB output transistors was low. This supply is obtained from the line output transformer: its reservoir capacitor C512 $(22 \mu \mathrm{~F}, 160 \mathrm{~V})$ had dried up. The 115 V supply is also used to feed
the tuning voltage stabiliser D101 G.C.

Sony KVM1420U (BE2A chassis)

The picture would cut out intermittently, leaving a blank screen. The owner said that waggling the aerial socket would restore the picture.
This chassis doesn't have the separate IF module used in previous models, but the cause of the fault was still cracked solder joints. The crucial one was at pin 16 of the TDA8304 chip IC502, but other pins also required resoldering. G.C.

Ferguson ICC5 Chassis

This set went into the standby mode every few minutes. It would sometimes come back on immediately, always returning on channel one. The cause of the trouble was a dry-joint at the collector of the chopper transistor TP24. D.A.C.

NEI 2031TX

This set would sometimes go to standby, after which it would be almost impossible to get it to switch on again. The stock faults with these sets, i.e. the thermistor in the power supply, faulty resistors and certain dry-joints, were all tried without success. As everything else had failed I decided to resolder every joint in the power supply. This cured the fault. D.A.C.

Ferguson TX85 chassis

Most of the time the picture was severely serrated, but sometimes there was a perfect display. So I looked for dry-joints. The culprit was found at one of the jumper connections between the small daughter board in the line output section and the main PCB, at the main PCB end. D.A.C.

Philips CPI10 Chassis

The display said Fl and there was field collapse. The cause of the trouble was a dry-joint at the 12 V regulator IC7675. D.A.C.

Philips KT3 Chassis

The customer said that the picture would sometimes jump in and out at the sides, and on a couple of occasions the set had died altogether. No amount of persuasion would instigate the fault in the workshop. I checked for dry-joints but couldn't find any. Then, while poking about with a plastic stick, I found that one end of R1561 had never been pushed through the board properly. It had finally parted from its precarious solder joint. R1561 is in series
with the base of the line output transistor Tr 1562. The mains on/off switch was a bit 'iffy', so I replaced that as well. D.A.C.

Ferguson 59P7A (ICC5 chassis)

This set was stuck in standby because the S2000A3 line output transistor TL31 was short-circuit. The associated tuning capacitor CL48 (10.5 nF) showed signs of overheating, so this was also replaced. It had probably been the cause of the transistor failure. In my experience power transistors very rarely fail unless an external cause is present, so I am always relieved when I find a second faulty item, connection etc. D.A.C.

Orion 14ARX

This set refused to power up, remaining stuck in standby. The STR50103 power supply chip and the start-up resistors appeared to be OK, so I carried out some checks around the microcontroller chip IC101 and found that its supply was low at only 3.2 V . The supply comes from the 5 V regulator IC105, whose input voltage was extremely unstable. It's derived from the mains supply via a resistive dropper/diode arrangement, with a further dropper resistor to the regulator. The associated reservoir capacitor C530 ($3 \cdot 3 \mu \mathrm{~F}, 250 \mathrm{~V}$), which is next to the mains switch, was found to be open-circuit. There should be approximately 130 V at this capacitor. P.G.

Sharp DV3751H

The complaints with this portable were intermittent failure to start, sometimes dead, sometimes lack of width. There was a common cause for this varied set of symptoms. The $5 \cdot 6 \Omega$, 5 W resistor R601 in the HT feed to the line output stage varied in value (from correct to several ohms) and occasionally went open-circuit. P.G.

Goodmans Compact 100

The owner of this 9in. colour portable said there was sometimes a hum-bar on the picture. I placed the set on the soak bench and left it to run. After about an hour quite a bad hum-bar appeared. The cause was obvious when the back had been removed: one of the 1N5402 bridge rectifier diodes was open-circuit its body had parted company with the leads some time ago. I replaced all four diodes and am still wondering how the set worked with a three-diode bridge! P.G.

TRANSISTORS/LINEAR ICs

Part	Price	Part Price	Part	Price	Part	Price	Part	Price	Part	Price								
BC107	8 p	BD434	30p	BU1	65p	Bu	325p	MJ4502	300 p	4N35 50p	linear ics		A	600 p	BA335	-	04	$200 \mathrm{p}$
BC108	8p	BD435	31p	BU128	125p	BU	250		300 p		AN203	210p				75 p	BA7021	200p
BC109	$8 \mathrm{8p}$	BD436	30 p	BU133	$125 p$	BUV50	${ }_{\text {425p }}$	MJ11015	${ }^{250} \mathbf{p}$	RECTIFIER	AN210.	165p	AN6342	$325 p$ $440 p$	BA340	75 p 60 p	BA7022	350p
BC109C	10p	BD437	28p		150 p	BuV61	1000p	MJ11016	300p	RECTES	AN211	150p		400p	ваз36	175p	BA7025L	100p
BC140	20p	BD438	$36 p$	BU180	100 p	BUV70	$200 p$	MJ11032	8800 p		AN2140	$170 p$	AN6346	350 p	BA401	60p	BA7107	475p
BC 142	20p	BD439	40p	BU184	100 p	BUV90	$175 p$ $375 p$	MJ11033	800 p 250	BY127 8p	AN217P	$95 p$	AN6350	610 p	BA402	50p	BA7212S	200p
BC143	${ }^{20 p}$	BD440	40p	BU204	$65 p$ 700	BUV93	375 p 200 p	MJ15003	250p	BY133 BY164	AN228	280p	AN6352	450 p	BA511	145p	BA7252S	150 p
BC147	8 p	$8 D 441$ 80533	40p 50	BU205	100p	BUWIIAF	225	MJ15015	250p	$\begin{array}{ll}\text { BY164 } \\ \text { BY179 } & \text { 35p }\end{array}$	AN252	150p	AN6356	300p	BA514	160p	BA7604N	100p
${ }^{\text {BC149 }}$	$8 \mathrm{8p}$	${ }^{80533}$	50p $\mathbf{3 8 p}$	BU207	150 p	BUW12	125 p	MJ15016	350p	BY184 32p	AN259	250p	AN63	500p	BA516	150 p	BA7751LS	150p
BC159	80 $30 p$	BD534 BD535	$38 p$	BU208	70 p	Buwi2a	150 p	MJ15022	400p	EY206 11p	AN262	140p	AN6360	320 p	BA518	150p	BA7752	250 p
BC171	10 p	BD536	38p	BU208A	75p	BUW12F	250 p	MJ15023	400p	BY207 20p	AN274	250 p	AN6	400 p	BA52	100p	BA77	150p
BC 172	10p	8D537	40p	bu208at	200 p	BUW13A	200 p	MJ15024	400p	BY227 19p	AN277B	400 p	AN6363 ${ }^{\text {ANK }}$	375 p $\mathbf{4 0 0 p}$	BA526	180	BA8504	350 p
BC177	14p	BD538	40p	BU2088	200p	BUW32A	500 p	MJ15025	700p	BY228 28p	AN278	60 p	AN6368	275 p	BA527	$95 p$	BA15218	60 p
BC178	14p	BD643	50 p	BU208D	130p	BUW48	550 p	MJE340	25p	BY298 15p	AN301	330 p	AN6371	350 p	BA532	100p	CA3140E	38 p
BC179	14p	8D645	50 p	BU209	90p	BUW49	${ }_{4} 550 \mathrm{p}$	M ME350	80p	BY299 18p	A 1302	650 p	AN6387	480p	BA534	220p	CNX62A	50p
BC182	7 P	$8 \mathrm{B647}$	50 p	BU225	120 p	BUW50	${ }^{400 p}$	M ME2955T	$30 p$ $65 p$	BY329-1200 150p	AN303	250 p	AN6550	100p	ba536	150p	CNX82A	60 p
BC182L	$7 \mathrm{7p}$	BD649 BD675	sop 400	BU226	${ }^{120 p}$	BUW84	75p	MJE3055T	65p	BYT11 25p	AN304	360p	AN6551	50p	BA546	160 p	CNX83A	80p
${ }^{\text {BC }}$ BC183L	7 p	BD675 80676	$40 p$	BU325	55p	BUW85	$85 p$	MJE13004	100p	BYT 13-1000 ${ }^{\text {30p }}$	AN315 AN316	$210 p$ 350 p	AN6552	$45 p$	BA612	120p	CX136	600 p
BC 184	7p	BD677	38p	BU326A	75p	BUX10	350p	MJE 13005	60p	BYV96E 25p	AN337	600 p	AN6554	$80 p$	BA6	${ }^{70}$	Cx14	750 p
BC184L	7p	BD678	40p	BU406	60 p	Bux11	200 p	MJE 13007	100p	BYW96E 36p	AN360	100 p	${ }^{\text {AN }}$ A 6605	$35 p$	BA631	$280 p$	CX145	725 p
BC212	$7 \mathrm{7p}$	BD679	40 p	BU406D	$85 p$	BUX20	150 p 350 p	MJE15028	200p	BYX 10 $\mathbf{1 5 p}$ $8 Y \times 5560$ $25 p$	AN362	140 p	AN6612	60 p	BA656	110 p	Cx1508	325p
BC212L	7 p	BD880	40 p	BU407D	75p	BUX21	450p	MJE15029	200 p	- ${ }^{\text {B4001 }}$	363	150 p	AN6650	45p	BA658	350p	CX175	325p
$8 \mathrm{BC213}$	7 p	B0687	$45 p$	BU408	60p	BUX22	450	MJE15030	250 p	N4001 3p	AN36	150 p	AN6651	45p	BA681A	350 p	CX187	825 p
BC214L	7 p	BD707	50p	BU409	85p	BUX37	220p	MJE18004	125p	\|N4004 3p	AN3215K	350p	AN6671K	425p	BA683	300p		5
BC237	7p	BD709	50p	BU412	175p	BUX39	450 p	MJF 18004	175	IN4005 3p	AN3231K	300 p	AN667\%	600 p	BA684	400p	- $\times 87$	525
	7p	80711	50p	BU413	175p	BUX40	210 p	MJF 18204	350 p	\|N4006 3p	AN3236K	450 p	AN6780S	850p	BA715	45 p	CX7925	550
BC239	7p	BD736	50 p	BU4148	${ }^{250 p}$	BUX41	200 p	OC28	350p	N4007	AN3310K	325p	AN6875	150 p	BA718	$45 p$	CX20015	600 p
BC300	20p	BD826	50 p	BU415A	170 p	Bư42	200p	OC29	${ }_{350}$	iN4148	AN3312	350p	AN6878	65p	BA728	55p	C $\times 20106$	p
	20 p	BD828	50 p	BU426a	70 p		150 p	${ }^{\circ} \mathrm{C} 36$	250p	IN5400 9p	AN3313	300p	AN6879	225p	BA806	220p	CX20109	140p
BC302	20 p	BD839	55 p	BU433 BU500	1200p	BUX55	800 p	S2000A3	175 p	(1N5401	AN3320K	450 p	AN6880	75p	BA843	$130 p$	CX20187	700 p
${ }_{\text {BC327 }}$	${ }^{25 p}$	80977	50 p	BU505	90p	BUX81	160p	S2055A	175p	IN5404 8p	AN3792	${ }_{3}^{300 p}$	AN6884	200p	BA 1320	$75 p$	1919	150p
BC328	$7 p$	B0X33	60p	BU505D	90p	BUX84	50p	S2055AF	175p	IN5405 11p	AN 3814 K	325	AN6888	150p	BA 1330	120p	CXA1019S	225p
B	7p	BDX37	100p	BU505DF	$90 p$	BUX85	50 p	S2530A	100p	IN5406 12p	AN3821K	$600 p$	AN6889	100p	BA1350	60p	CXA1044B	475p
BC338	7 p	BDX44	100 p	BU506	100 p	BUX86	50p	T1P29	15 p	IN5407 12P	AN3822K	600p	AN700	650 p	BA1355	125 p	CXA1081	275p
BC441	28p	BDX47	60	BU506D	70 p	BUx87	50p	Tip29a	${ }_{25 p}$	IN5408 12p	AN3830K	800p	AN7010K	250p	BA1356	100p	CXA1081	250p
	8 p	BDX54C	$75 p$	BU506DF	${ }_{600}$	BUZ71	75 p	T\|P29E	${ }_{40 \mathrm{p}}$	RGP10 $\mathbf{2 5 p}$ $\mathbf{2 5 p}$	AN3990K	300p	AN7025K	90p	BA1360	160p	CXA1081S	300p
${ }^{8 C 477}$	18p	BDX $62 C$ BDX 63 C	150 p 1750	BU508AF	60 p	BUZ ${ }^{\text {daf }}$	100 p	T1P30	$25 p$	RGP 30 RGp	AN3991K	400 p	AN7060	175p	BA1404	120p	CXA1082AS	1000p
537	${ }_{\mathbf{2 5 p}}^{22 \mathrm{p}}$	BDX64C	175 p	BU508APH	60p	BUZ72A	100p	TIP30C	25	SR2M 50p	AN5010	250 p	AN7062	$300 p$	BA1604	125p	CXA1191M	250p
BC54	8 p	BDX65	80p	BU508D	75p	BUZ72AF	100p	tip31a	22p		AN5017	225 p	AN7072	250 p	BA2266	250 p	CSA1209P	400p
BC547	8 p	8D×66C	175p	BU508DF	85p	BUZ73A	150p	TIP31C	27p		AN5025	250p	AN7105	170	BA3308	70 p	FT5764M	250 p
	8p	BDX67C	275 p	BU508DR	$130 p$	buz73af	$60 p$	TP32	24 p	I.C. SOCKETS	AN5033	400p	AN7106K	135 p	BA3312	60p	HA1124	125p
BC549	8p	BDX71	70p	BU508V	$110 p$	BUZ76a	110 p	ITP32A	21 p	8 PIN $4 p$	AN5034	400p	AN71	75p	BA3402	90p	HA1125	120p
BC550	8p	BD×77	175p	BU508VF	100 p	BUZ80	$135 p$	${ }_{\text {T1P33 }}$		$14 \mathrm{PIN} \quad 5 p$	AN5070	125p	AN7111	100p	BA3406AL	120p	HA1137	
${ }^{\text {BC556 }}$	$8 \mathrm{8p}$	BD $\times 87 \mathrm{C}$ $\mathrm{BD} \times 88 \mathrm{C}$	$175 p$ $150 p$	BU526 BU536	$75 p$ $100 p$	BUZ80A	2000	$\mathrm{TIP33}^{\text {T }}$	S0p	$16 \mathrm{PIN} \quad 6 \mathrm{p}$	AN5071	100p	AN7112	$45 p$	BA3416BL	80 p	HA1151	$175 p$
BC558	8 p	BDW24	55p	BU546	125p	BUZ90A	180p	TIP34	65p	$\begin{array}{rr}18 \mathrm{PIN} \\ 20 \mathrm{PIN} & 9 \mathrm{p} \\ \\ \text { 10p }\end{array}$	AN5111	450 p	AN7114	120 p	BA3422	350 p	HA1197	${ }^{130}$
	8p	8DW93	50p	BU603	125p	BUZ91A	260p	TIP34C	$60 p$	$22 \mathrm{PIN} \quad 12 \mathrm{p}$	AN5135N	4000	ANT115	$1{ }^{\circ}$	BA3506A	700	HA1201	225p
BC560	8 p	BDW94	$50 p$	BU606D	$225 p$	BY448	20 p	${ }_{T 1 P 356}$	$65 p$	$24 \mathrm{PIN} \quad 13 \mathrm{p}$	AN5138NK	350p	AN7117	$65 p$	BA3516	120p	HA1202	$125 p$
BC637	$20 p$	BDY29	$225 p$	BU608D	120 p	BY111	$\begin{array}{r}259 \\ \hline 225\end{array}$	TIP41A	65p	$28 \mathrm{PIN} \quad 13 \mathrm{p}$	AN51	400p	AN7120	100p	BA3520	130p	HA13	200p
	20p	BDY56	${ }_{500}^{225 p}$	BU626 Bu705		${ }^{\text {IRF }} 130$	475p	TIP4ic	220	40 PIN 15p	AN5151	200 p	AN7130	75p	BA3521	225p	HA1338	300p
BC640	20 p	BDY90	125p	BU706DF	1750 175	IRF 140	550p	TIP42A	$20 p$		AN5210	$675 p$	AN7131	90p	BA3704	200p	HA1339	350 p
${ }^{\text {BCF33 }}$	2000	BDY92	100 p	BU706F	150p	IRFF230	550p	TIP42C	22p	ZENER D	AN5215	100p	AN7133N	325p	BA3706	$75 p$	HA1367	300 p
BCY70	16p	BF137	35p	BU724A	100p	IRF240	$425 p$	TIP47	40p		AN5222	${ }_{160}$	AN7134	300p	BA3812L	$80 p$	RA137\%	120p
BCY71	16p	BF 167	30p	BU801	$70 p$	IRF 250	$375 p$	T1P48	40 p	400 mwatts ${ }^{\text {dp }}$	AN5256	150p	AN7141	70 p	BA3824LS	75 p	HA1388	320 p
BCY72	${ }^{16 p}$	BF 181	18p	BU806	70p	TRF330	600 p	T1P50	80 p	1.3 Wetts	AN5260	300p	AN7142	80 p	BA3920	300p	HA 1389	$210 p$
BD115	${ }^{30 p}$	BF 183	20p	$8 \cup 807$ $8 \cup 8077$	$60 p$ $75 p$	- ${ }_{\text {RFF350 }}$	325p $\mathbf{7 5 0}$	TIP52	$80 p$	2V7 to 39V 9p	AN5262	175p	AN7145	195p	BA4110	$75 p$	HA 1392	120 p
ED131	25p	BF 199	8 p	BU808DF	210 p	IRF 450	650 p	TIP54	85p		AN5265	80p	AN7146	210 p	8A4210	$85 p$	HA1394	170 p
BD132	$25 p$	BF200	16p	BU810	110 p	IRF510	110 p	TIP102	70p	VOLT	AN5352	600 p	ANT147	180 p	BA4220	60 p	HA1396	650p
BD133	50p	BF225	30p	BU824	60p	IRF520	110 p	TP105	${ }_{65 p}^{65 p}$	REGULATORS	AN5411	450 p	AN7149	160 p	BA4236L	$110 p$	HA1398	$175 p$
BD135	20p	BF240	16p	BU826	120p	iRF530	120 p	TIP106	$65 p$		AN5421	150p	AN7154	180p	BA4402	45p	HA1406	120p
${ }^{\text {BDI }} 136$	20 p	BF245	$25 p$ $75 p$	BU826A	160p 110 p	\|RF610	120p	TIP110	40 p	7806 18p	AN5429	420 P	AN7156	240p	BA4403	220p	HA11123	350 p
${ }^{\text {BDI }} 138$	20 p	BF255	12p	BU903	110p	IRF611	120p	TIP111	40 p	7808 25p	AN5431	275 p	AN7158	310p	BA4405	80 p	HA11211	170 p
BD139	$20 p$	BF256	18p	BU910	80p	IRF620	160p	TIP112	35 p	7812 18p	AN5436	129 $160 p$	AN716	$350 p$ 3750	${ }^{\text {BA44 }}$ BA5121	350p	HA11219	350 p 280 p
BD140	20p	BF257	18 p	$8 \mathrm{BU912}$	100p	IR F 630	110 p	TIP 112 H	50p	7815 25p	AN5512	100p	AN7163	1750	BA5102	140p	HA11221	180p
BD144	90 p	BF259	185 250	84920	110 p	lirf640	3009 2000	TIP116	30 p	7818 $\mathbf{2 5 p}$ 78824 $\mathbf{2 5 p}$	AN5515	160p	AN7166	350p	BA5115	75 p	HA11225	130p
${ }^{\text {BD } 157}$	38 p $\mathbf{3 0 p}$	BF262 BF270	25p	${ }^{\text {BU9 }}$	130 p	IRF650	200p	TIP117	30p	7905 25p	AN5520	550 P	AN7168	200 p	BA5115L	75p	HA11235	100p
8 B 175	30 p	EF273	15p	BU932	175p	\|RF710	150p	TIP 120	37 p	7906 30p	AN5521	100p	AN7169	$225 p$	BA5204	200 p	HA11244	375 3750
BD177	30p	BF311	21p	BU941	250p	IRF720	150p	TIP121	35 p	7908 30p	AN5601K	750 p	AN7171K	$260 p$ 4000	BA5402	180 p	HA11251	3120p
BD179	32 p	BF336	20 p	BU2508A	100p	lef 730	125 p	TIP 122	$30 p$ $30 p$	7912	AN5612	200p	AN7172K	325p	BA5406	180 p	HA11412	600 p
BD181	45 p	BF337	20 p	BU2508AF	110 p	iRF820	$125 p$ 1100	TIP126	40p	$\begin{array}{ll}7915 & \text { 30p } \\ 7918 & \text { 30p }\end{array}$	AN5613	200p	ANT173K	450 p	BA5408	180p	HA11414	300 p
${ }_{8}^{8 D 182}$	${ }_{60 p}^{60 p}$		20p	BU2508DF	120 p	IRF830	110 p	T\|P127	35p	7924 30p	AN5615	300 p	AN7177	375p	BA5413	$225 p$	HA11423	110 p
BD187	30p	BF367	13p	BU2520AF	170p	IRF840	110p	T\|P130	30p	${ }^{78 L 05}$ 24p	AN5620	$250 p$ $\mathbf{2 7 5 p}$	AN7178	$\begin{array}{r}180 \\ \mathbf{3 5 p} \\ \hline\end{array}$	BA6104	250 p $\mathbf{1 1 0 p}$	HA11485	250p
BD201	33 p	Bf 371	17p	BU2520DF	225p	TRF9140	${ }^{1000 p}$	T\|P132	$30 p$ 30 p	78L08 7812	AN5625	400p	AN7213	40 p	BA6110	225p	HA11702	330p
$8 \mathrm{B202}$	38p	Bf 421	18 p	BU2525A	325p $\mathbf{2 2 0 p}$	RRF9513	150p	T\|P136	40 p	78L15 ${ }^{\text {74p }}$	AN5630	375p	AN7216	175p	BA6125	$75 p$	HA11703	400 p
${ }^{\text {BD2 } 204}$	4	Bf 423	$25 p$	BU2527AF	400p	IRF9520	150p	T\|P137	${ }^{65 p}$	78L 18 24p	AN5633	350 p 330 p	AN7218	B0p 850	${ }^{\text {BA6137 }}$ BA6138	559 $\mathbf{1 3 0}$	HA11706 HA11710	280 p 500 p
BD222	$31 p$	BF455	12 p	BuF405A	$200 p$	IRF9530	200p	T\|P162	${ }^{110}$	78.24	AN5640	500p	AN7222	75 P	${ }_{\text {BA6146 }}$	150 p	HA11713	250 p
${ }^{\text {BD2 } 232}$	$31 p$ $31 p$	BF458 BF462	19 p $\mathbf{5 0 p}$	BUH315D	175 p	TRF9540	240p	TIP142	75 p	79L08 ${ }^{\text {795p }}$	AN5700	909	AN7223	105p	BA6149LS	700p	HA11715	250p
${ }_{\text {BD233 }}$	30 p	BF471	28 p	BUH515	200p	IRF9541	200p	TIP145	50	79112 35p	AN5701	150p	AN7224	$75 p$	BA6154	60p	HA11716 HA11718	480 p
8D234	32p	BF472	28p	BUH515D	2500	IRF9610	120p	TIP 146	${ }_{80} 7$	79L15 ${ }^{\text {25P }}$	AN5712	180p	AN7254	1750	BA6208	${ }^{175 p}$	HA11724	650p
BD235	${ }^{28 p}$	BF479	30 p	BUR517	2750 1750	IRF9622	110 p 200 p	${\operatorname{TIP} 1{ }^{4} 50}^{1}$	80p	LM317T $\begin{array}{ll}\text { 100p } \\ \text { L- }\end{array}$	AN5720	70p	AN7256	250p	BA6218	85 p	Hal1741N	950p
BD236 8 CD 23	$30 p$ 210	${ }_{\text {BF } 495}$	16p	BUH715	$425 p$	\|RF9630	180p	TIP151	60 p	LM323K 350p	AN5722	140p	AN7273	75 p	BA6220	$55 p$	HA17744	330 p $\mathbf{3 3 0 0}$
BD238	24p	BF595	16p	BUT11A	$35 p$	IRF9640	280 p	T1P2955	50p	78H08KC 800p	AN5730	1600	AN7311	${ }_{90}^{60 p}$	${ }^{\text {BA6 }}$ B 6227	130p	HA17749	330 p 350 p
BD239	30p	85596	16p	BUT11AF	$35 p$ $80 p$	liffD9220	100 p 150 p	TIP3055	500p	$\begin{array}{ll}79 H 12 K C & 700 p \\ 79 H G K C\end{array}$	AN5750	75 p	AN7312	70 p	BA6229	130p	HA11751	1500 p
BD240	40 p	BF615	$30 p$ $30 p$	BUT12	$80 p$ 3100	IRFBC40	150p	TIPL762A	200p	79HGKC 800p	AN5753	130 p	AN7315	40p	BA6235	50p	HA11752	325p
BD243A	40p	BF760	40 p	BUT18	80 p	IRFP 140	250p	TIPL763A	200p		AN5763	250p	AN7330	110p	BA6238A	130 1300	HA11839N HA11847	375 p 700 p
BD244	50 p	B7763	$40 p$	BUT18AF	65p	IRFP 150	300p	TIPL791A	${ }^{80 p}$	LEDs	AN5791	225p	AN7363	225	BA6247	150p	HA 12002	220 p
BD245	50 p	Bf870	${ }_{220}$	BUT30	$1700 p$ $65 p$	IRFP240	2800p	${ }^{2 N} 2646$	40	3 mm	AN5836	450 p	AN7410	150p	BA6248	140 p	HA:2003	150 p
${ }^{\text {BD2 }}$ 825 ${ }^{\text {a }}$	50p 45	${ }_{\text {BF960 }}$	38 p	BUTI6A	80 p	IRFP350	325p	2N2904	20p	RED $5 p$	AN5862K	$225 p$	AN7411	50p	BA6259	170 p	HA12005	180 p
BD267	$45 p$	BF96	35p	BuT90	1300 p	IRFP450	325 p	2N2905	20p	$\begin{array}{ll}\text { YELLOW } \\ \text { GREEN } & \mathbf{8 p} \\ \text { Sp }\end{array}$	AN5908	$130 p$ 1250	AN7414	275 $70 p$	BA6280AF	$300 p$ 2000	${ }^{\text {HA12016 }}$	120p
8 B 269	45 p	Bf964	38p	BUT92	${ }^{1200 p}$	IRFP460	775p	2N2906	18 l	5 mm	AN620	250p	AN7470	100p	BA6294	250 p	HA12017	100 p
BD278	50 p	${ }_{\text {BFO252 }}$	$75 p$ 600	BUV20	650 $650 p$	IRFP9240	350p	2N3019	28p	RED 5p	AN6130	130 p	AN8053	200p	BA6302A	$150 p$	HA12026	125 p
8D311	$100 p$ $100 p$	BFR90	85	8UV21	400 p	IRFPC50	600p	2N3053	18p	YELLOW 8p	AN6135	120 p	AN8275	250p	BA6304	120 p	HA12038N	
8D315	150p	BFR91	99p	8UV23	475p	IRFRC20	250p	2N3054	40 p	GREEN 8p	AN6209	3500	AN8370	$1000 p$ $400 p$	BA6305	250p	HA12045	
BD317	150p	BR100	${ }^{14} \mathrm{p}$	8UV24	350 p	IRfZ20	65 p	${ }^{2} \mathrm{~N} 3055$	${ }^{38 p}$		AN6247	2000	AN8388	350 p	BA6328	250 p	HA12047	450 p
8 B 331	40 p	8R103	${ }_{37} 3$	BUV25 $8 U V 26$	110 150	linfz42	$275 p$ $160 p$	2N3440	45p		AN6270	400 p	BA222	$65 p$	BA6334	75p	HA12058	320 p
8D332	${ }_{60 p}^{40 p}$	8R303	$85 p$ $80 p$	BUV26	$150 p$ $125 p$		160 p 100	2N3444	175	RECTANGULAR	AN6300	600 p	BA225	100 p	B46410	220 p	HA12088	375 p
BD361 BD362	$60 p$ $60 p$	8U108	1000	BUV28	110 p	M 23955	55 p	2N3442	85p		AN6306	380p	BA314	40 p	BA6411	250p	HA12116	$130 p$ 175
BD370	30p	BU109	80 p	BUV37	175p	MJ3000	100p	2N3771	85p	$5 \mathrm{~mm} \times 2.5 \mathrm{~mm}$	AN6310	200 p	BA301	550	BA64 8 N	425p	HA12412	
BD371	30p	BU110	90p	BUV46a	$75 p$	MJ3001	100p	2N3772	90p	RED ${ }^{\text {RED }}$	AN63	250p	EA311	60p	${ }_{\text {BA6993 }}$	150p	HA12413	70p
BD410	50p	BU111	100p	$8 \cup \vee 47$	1200	MJ4032	175	2N3773	100 p $\mathbf{2 9 p}$	YELLEN GREEN $8 p$	AN6332	320 p	ВА333	80 p	BA700	150p	HA12430	200
BD433	28p	But24	60p	BUV48A	$175 p$													

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 0181-900 2329 Fax: 0181-903 6126 E-Mail: grandata.Itd@btinternet.com

P PLEASE PHONE US FOR TYPES NOT LISTED AS WE HAVE OVER 50,000 ITEMS IN STOCK. QUOTATIONS GIVEN FOR LARGE QUANTITIES
LINEARICS

Please add £1 P\&P and VAT at $\mathbf{1 7 . 5 \%}$ to all orders All brand new components
We accept payment by Access, Switch, Visa, Cheque and Postal Order. (Government, College etc orders accepted)
Prices quoted are subject to availability and may be changed without prior notice

LINEAR ICs/JAPANESE TRANSISTORS

Part	Price	Part	Price	Part	Price	art	Price	Part	Price	Part	Price	Part	Price	Par	Price	Pa	Price	Part	Price
$2 \mathrm{SC1675}$	90p	$2 \mathrm{SC2261}$	700p	2 SC 2	25p	$2 \mathrm{SC3263}$	280 p	2	220p	250	195p	2 SD	40p	2SD13	150p	2SD1763A	B0p	2SK312	750 p
$2 \mathrm{SC167}$		2SC22		$2 \mathrm{SC2}$	120		Op	2sc3	20p	250287	250p	2SD882	25p	2SD1328	oop	2SD1764	70p	2Sk315	70 p
$2 \mathrm{SC16}$	100p	2SC2270	60p	2SC2724	15p	$2 \mathrm{2SC3269}$	p	$2 \mathrm{SC3808}$	70 p	2SD291	250p	2S0889	35p	2SD133	50p		p	2Sk320	70 p 1200
2 SC 1684	30p	2SC2271	25p	2SC2738	200p	$2 \mathrm{SC3270}$	50 p	$2 \mathrm{SC3811}$	$80 p$	2SD313	25p	2SDB92A	$75 p$		70 p	${ }^{2 S 01769}$	110p	2SK320	p
2 CC 1685		2SC2274	15p	2SC2749	350p		5 p	2SC3831	250p	2SD315	$75 p$	2SD894	$35 p$	2SD1348	${ }_{65 p}$	2SD 1773	100p	2SK323	130p
$2 \mathrm{SC1729}$	900p	2SC2275	50p	2SC2750	300 p	$2 \mathrm{SC3277}$	280	2 Sc 3832	135p	2 SD 325	30 p	${ }^{2 S D 895}$	300p	2SD1350	50p	${ }^{2 S D} 1776$	70	K332	175p
${ }^{2 S C 1730}$	10 p	2SC2278		$2 \mathrm{SC2751}$	270p	$2 \mathrm{SC3279}$	30p		250p	2 SD	65 p		200p	${ }_{2 S D 1376}$	вор	2SD1783	70 p	2SK359	40 p
$2 \mathrm{SC1735}$	70	2SC2283		2SC2752	75p	$2 \mathrm{SC32}$	200p	2SC3851	100p	2 SD 34	300p	2SD8988	$225 p$	2SD1378	60 p	2S01785	180p	363	50p
${ }_{2 S C 1740}$	10 p	${ }^{25 C 2290}$	1800 p	25282767 2 Sc279	3000	${ }^{25 C 3281}$	200p	${ }^{2 S C 3} 385$	30 p	2 2SD350	320p	2 SD900	400p	2 251379	100p	2SD1789	210 p	2 SK 364	
${ }^{2 S C 1741}$	${ }^{35 p}$	$2 \mathrm{SC2291}$	${ }^{\text {40p }}$	${ }^{25} \mathbf{5} 2769$	4000	25 C 3284	${ }^{600} \mathrm{p}$	${ }^{25 C 3853}$	$220 p$	${ }^{2 S D 35}$	40 p	2SD90	450p	2SD138	100p	2SD1796	120p	367	40 p
2SC1755	90 p	2SC2298		$2 \mathrm{SC2773}$	700p	$2 \mathrm{SC3293}$	p	$2 \mathrm{SC3855}$	220p	2 SD358	40 p	2SD916	130p	2SD1382	Bор	2SD1802	75p	2Sк369	30p
${ }^{25 C 1756}$	35 p	$2 \mathrm{SC2307}$	300 p	2SC2774	500p	25 C 3298	p	2SC3857	500p	2 20359	50p		300p	2 SD1384	50p	2SD1806	5	2SK373	Op
${ }^{2 S C 1758}$	30 p	${ }^{25 C 2308}$	10p	${ }^{25 C 2785}$	p	$2 \mathrm{SC3299}$	p	2SC3858	550p	2 S	100p	2 S0921	320p	2SD 1390	350p	2SD1812	$45 p$	2SK374	4pp
${ }^{2 S C 1760}$	70 p	$2 \mathrm{SC2312}$	300p	2SC2786	20p	$2 \mathrm{SC3300}$	400p	2SC386	275p	2SD362	100p	2 SD923	360p	2 2D139	250p	2SD1815	50p	2SK374	4p
${ }_{2} \mathrm{SC} 17$	10 p	${ }^{25 C 2314}$	70 p	${ }^{25 C 2787}$	10 p	${ }^{25 C 3303}$	100 p	${ }^{25 C} 3868$	100p	2 250371	240p	2 25946	120p	2 2SD1392	85 p	2501825		2SK386 2SK389	${ }^{\text {600p }}$
$\begin{aligned} & 2 \mathrm{SC} 1781 \\ & 2 \mathrm{SC} 1789 \end{aligned}$	${ }_{1}^{200 p}$	2SC2316 2SC2320	$150 p$ $10 p$	2SC2791 2SC2792	500p 220 p	${ }_{2 S C 3306}^{2 S 5307}$	130 p 800 p	${ }^{25 C 3870}$	200p	$2 \mathrm{SD380}$	650p	2SD947	P	2 SD	$80 p$	2SD 1827	120p	2SK389 2SK400	115p
$2 \mathrm{SC1809}$,	2 SC 232	120p	2SC2793	700p	$2 \mathrm{SC330}$	150p	${ }_{2 S C 3883}$	210p	2SD38	75 p	2SD951	200p	2SD139	Op	2SD1843	p	SK4	450p
$2 \mathrm{SC1810}$	250p	2SC2328A	50 p	2SC2808	40p	$2 \mathrm{SC3310}$	125p	2SC3884A	200p	2SD386	70 p	2SD957A	520p	2SD139	120p	2SD184	275p	2SK414	\%
2SC1815	10p	2SC2310		2SC2810	360p	$2 \mathrm{SC33}$	p	2SC3885	250p	2SD38	150p	2SD958	80p	2SD13	300p	2SD184	Op		
$2 \mathrm{SC1819}$	70 p	${ }^{2 S C 2315}$		$2 \mathrm{SC2812}$	40p	$2 \mathrm{SC3317}$	350p	$2 \mathrm{SC3885}$ A	290p	250389	80p	2SD965	35p	2SD140	280p	2SD1850	325p		7p
$2 \mathrm{2C1} 18$	60 p	$2 \mathrm{SC2329}$	30p	2SC2814	40 p	$2 \mathrm{SC3326}$	50p	2 SC3886A	275p	2SD400	14p	2SD970	70 p	2SD14	120 p	2SD1853	40p	2SK	0 p
2 SC 1827	60 p	${ }^{25 C 2230}$	00p	${ }^{25 C 2824}$		2 SC 33		$2 \mathrm{SC3} 390$	150p	25040	P	2 25972	40 p	2SD1403	225p	${ }_{\text {2SD } 1856}$	40 p	2SK437	5op
2 SC 1829	500 p	${ }^{25 C 2331}$	50p	${ }^{\text {2SC2825 }}$	00p	$2 \mathrm{SC3328}$	50 p	2SC3892A	250p	2SD402	120p	25D973	60 p	2 SD1405	80 p	2 2S1857	75p	2SK430	200p
${ }_{2 \text { SC } 1833}$	27p	${ }_{25 \mathrm{Sc} 233}$	200 p	${ }^{2 S C 2826}$	200p	${ }^{25 C 3330}$	${ }^{20 p}$	25 C 3893	225p	${ }^{25 D 414}$	45p	2 2S	p	2 SD	60 p	2SD1858	p	2SK	p
$\begin{aligned} & \text { 2SC1834 } \\ & \text { 2SC1841 } \end{aligned}$	50p 12 p	${ }_{\text {2SC2335 }}$	80p	2SC2827 2SC2832	30p	${ }_{2 S C 3333}^{2 S C 331}$	25p	${ }_{2}^{25 C 3895}$	325p	2 S	5	25D	90 p	2SD	${ }_{60 p}$	2SD1863	5 p	2SK513	325p
$2 \mathrm{SC1844}$	50p	$2 \mathrm{SC2336}$	25p	2SC283	280p	$2 \mathrm{SC334}$	100p	2SC389	400 p	2 D	\%	25098	边	2s					
$2 \mathrm{SC1845}$	15p	$2 \mathrm{SC2344}$	150p	$2 \mathrm{SC2837}$	250p	$2 \mathrm{SC336}$	130p	2 SC 3907	250p	2SD427	350 p	2S0998	70 p	2SD14	$85 p$	2SD187	180 p	2Sk5	op
$2 \mathrm{SC1846}$	35p	$2 \mathrm{SC2347}$	35p	$2 \mathrm{SC2839}$	40 p	$2 \mathrm{SC33}$	0p	$2 \mathrm{SC3927}$	250p	2SD43	35p	2SD1010	40 p	2 2S1412	75p	2SD1879	275p	2Sk537	00p
$\begin{aligned} & \text { 2SC1847 } \\ & \text { 2SC1855 } \end{aligned}$	45p 850	25 C 2353 2 SC 2360	120 p 120 p	2SC285 2SC287	70p 80	$2 \mathrm{SC33}$	${ }_{\text {280p }}$	${ }_{2 \text { 2SC3940 }}$	40p	${ }^{25 \mathrm{SD} 467}$	$15 p$ $15 p$	${ }^{2 S D} 1012$	40 p	2 SD	p	2SD	${ }^{360 p}$	2SK	p
${ }_{2 S C 185}$	${ }_{25 p}$	${ }_{2 S C 2361}$	120 p	${ }^{25 C 2873}$	80p	${ }_{2 S C 3356}$	- ${ }_{\text {50p }}$	2SC3943	5p	2SD468	${ }_{200}^{15}$	2SD1020 2SD 1021	40p	2SD	75p	2SD1881	350 p	2SK	100p
2SC1865	00p	2SC2362		2SC2878	p	2SC33	p	25C395	120 p	2SD476	100p	2SD1022	250p	2SD	280p		-	2SK	30p
$2 \mathrm{SC1}$	700p	$2 \mathrm{SC2365}$	280p	$2 \mathrm{SC2879}$	$3200 p$	$2 \mathrm{SC3376}$	300p	$25 C 3953$	50p	2SD525	50 p	2SD1024	850 p	2SD14	135p	${ }_{2 S D 1887}$	225p	2SK552	250p
2 SC 1871	425p	${ }^{25 C 2369}$	${ }^{100 p}$	2 2SC2882	-	$2 \mathrm{SC3377}$	${ }^{50} \mathrm{p}$	2 SC3955	${ }^{00 p}$	2 S	70p	2 S	850 p	2SD142	160p	2SD1894	300p	2SK55	225p
${ }^{2 S C 1875}$	220p	$2 \mathrm{SC2371}$	25p	$2 \mathrm{SC2883}$	80p	$2 \mathrm{SC33}$	20p	2 SC 39	100 p	2SD54	18p	2SD 1030	$75 p$	2SD1428	180p	2SD1895	225p	2SK55	320 p
2SC1881	70p	$2 \mathrm{SC2373}$	${ }^{210 p}$	${ }^{25 \mathrm{SC2} 298}$	2000	${ }^{25 C 337}$	1200p	2 SC 397	250 p	${ }^{25 D 549}$	p	2SD1031	70 p	2SD1430	280p	2SD1910	175p	2SK55	00p
$2 \mathrm{SC1890}$	$15 p$	${ }^{25 C 2383}$		${ }^{25 C 2899}$		${ }^{25 C 3381}$	${ }^{130}$	$2 \mathrm{SC3973}$	210 p	${ }^{2 S D}$	Op	${ }^{2 S D 1036}$	600 p	2SD143	200p	2SD1911	300p	2SK	p
$\begin{aligned} & \text { 2SC1895 } \\ & \text { 2SC1904 } \end{aligned}$	25p	2SC2389 2Sc2407	5p	2SC2909 2 SC 2910	60p 25p	$25 C 3383$ $2 S C 3393$	${ }_{80 \mathrm{p}}^{80}$	2SC397 2Sc398 2cher	210 p 180 p	${ }^{\text {2SD554 }}$	225p	${ }^{2 S D 1046}$	200 p	${ }^{2 S D 143}$	4000	2SD1913	p	2SK	800p
2SC1906	15p	2SC2408	p	$2 \mathrm{SC29}$	\%	2sc33	$20 p$	${ }_{2 S C 3996}$	600p	2SD556	225p	2SD1051	$\begin{aligned} & 180 \mathrm{p} \\ & \text { 130p } \end{aligned}$	2SD143	$\begin{aligned} & 300 p \\ & 60 p \end{aligned}$	$\begin{aligned} & \text { 2SD1929 } \\ & \text { 2SD1930 } \end{aligned}$	$\begin{aligned} & 50 \mathrm{p} \\ & 50 \mathrm{p} \end{aligned}$	25	580 p
2 2SC1907	20p	${ }^{25 C 2412}$	50p	2 SC 291	20p	${ }^{25 C 339}$	50p	$2 \mathrm{SC3997}$	1250p	2SD5	200p	2SD1055	30p	2SD143	$185 p$	2SD19	45 p	2SK566	475p
		2SC2440	200p	$2 \mathrm{SC292}$	850p	2SC340	35p	$2 \mathrm{SC3998}$	800 p	2SD560	50 p	2SD1060	130p	2SD144	220p	2SD	60p	2 L	
2 SC 1913	90	2 SC 2458	${ }^{10 p}$	2SC2922	480	$2 \mathrm{SC340}$	50p	$2 \mathrm{SC4006}$	\%	2SD571	p	2SD1062	150p	2SD144	,	2SD	30p	2SK6	\%
${ }_{2 S C 1914}$		$2 \mathrm{SC2459}$	55	${ }^{25 \mathrm{C} 2923}$	75p	${ }^{\text {2SC3402 }}$	40p	${ }^{25 C 4020}$	${ }^{150} \mathrm{p}$	250575	530p	2SD106	200 p	2SD14	200p	2SD1944	50p	2SK684	950p
$\begin{aligned} & 2 \mathrm{SC} 1921 \\ & 2 \mathrm{SC} 1922 \end{aligned}$	15p 175	2SC2466	55p $\mathbf{2 7 5 p}$	${ }_{2 S C 292}^{2 S C 29}$	50p	${ }_{2 S C 340}^{2 S} 340$	130p	${ }^{25 \mathrm{SC} 402}$	325 p	2SD592	${ }_{25 p}^{25 p}$	2SD1064	250 p	${ }^{2 S D 144}$	300 p	2SD1	\%	2SK6	1150p
2SC1923	\%	${ }_{2 S 2492}$	50\%	${ }_{2} \mathrm{SC}_{2} 2934$	280 p 75 p	${ }^{2 \mathrm{LSC349}}$	30p	2SC4043	45p	${ }^{\text {2SD596 }}$	$25 p$ $30 p$	2SD1065	$180 p$ $150 p$	2SD145	80p	2SD19	p		$100 p$
$2 \mathrm{SC1929}$	$180 p$	2SC2470	65p	2 SC 2937	D	2 SC 341	90p	$2 \mathrm{SC40}$	40 p	25060	40 p	2SD1073	350p	2SD1452	275p	2SD198	80p		
2 SC	110 p	2SC2481	120p	2 SC 2939	400 p	2 SC 341	120p	2 SC 405	200p	2SD602	вор	2SD1088	150 p	${ }_{2 S D 1453}$	140 p	2SD1991	50 p	2SK724	
2 SC 1941	${ }^{27 p}$	$2 \mathrm{SC2482}$		25 C 294		${ }^{2 S C 3420}$	80 P	$2 \mathrm{2SC4059}$	400 p	${ }^{250612}$	50 p	2SD1094	$375 p$	2SD145	250p	2SD1994	200 p	2Sk725	
$\begin{aligned} & 2 S C 1942 \\ & 2 S C 1944 \end{aligned}$	Op	${ }^{\text {2SC2483 }}$	5p	2SC2958	- ${ }_{\text {500 }}$	${ }^{25 C 3421}$	75	${ }^{25 C 406}$	140 p	${ }^{2506}$		2SD1	225p	2SD	$165 p$	2 SD1	$45 p$	2 Sk	
2 SC		2SC24		2 S	160 p	2 S	80p	2SC410	175	25063	700	2SD11	209	2S5	50p	${ }^{2 S D}$	75	2	4009
$2 \mathrm{SC1946}$	1500p	${ }^{25 C 2491}$	200p	${ }^{25 C 2987}$	${ }^{250}$	${ }^{2 S C 3425}$	65p	$2 \mathrm{SC4123}$	230p	2SD63	10p	2SD1128	2009	2 SD	40 p	2SD201	80p	2SK75	300p
$2 \mathrm{SC1947}$	4509	2SC2498	50p	${ }^{25 C 2988}$	150p	2SC3446	150p	2SC4124	200p	2SD63	15p	2SD1133	65p	2SD148	225p	2SD2012	50 p	2 K	$500 p$
$\begin{aligned} & \mathbf{2 S C 1 9 5 3} \\ & \text { 2SC1957 } \end{aligned}$	$45 p$	2SC250	25p	${ }_{2 S}^{25 C 2995}$	${ }_{50 \mathrm{p}}^{80}$	${ }^{2 S C 344}$	130 p	${ }_{2 \mathrm{LS} 4125}$	275p	2 25D6	15 p	${ }^{\text {2SD } 1135}$	$75 p$	2SD149	${ }^{150}$	2SD2018	65 p		
$2 \mathrm{SC1959}$	10.	2SC2503	${ }_{\text {cop }}^{140 \mathrm{p}}$	2SC2999	1400p	2SC3456	200p	${ }_{2 S C 413}^{2 S C 43}$	400	${ }_{2 S}^{2 S D 63}$	20p	${ }_{\text {2SD } 1138}$	$40 p$	${ }^{2 S D 149}$	300 p 2300	${ }_{\text {2SD203 }}$	${ }^{\text {80p }}$	787	p
$2 \mathrm{SC1962}$	175p	2SC2512	20p	2 CC 319	320p	2 SC 34	180p	2SC41	400p	2SD65	18p	2SD1142	350p	2SD1497-02		2SD2066	250 p	2Sk791	5p
2 SC 196	1300p	${ }^{25 C 2517}$	120p	${ }^{25 C 3020}$	1450p	2 SC 3460	$130 p$	$2 \mathrm{SC4159}$	100p	2SD66	вор	2SD1145	25p	2SD1505	90%	${ }_{2 S D 2125}$	180	${ }^{25 K 792}$	3000
$2 \mathrm{SC1969}$	160 p	2SC2519		${ }^{2 S C 3022}$	0	${ }^{2 S C 346}$	275p	2SC4161	125p	25D66	25p	2SD1148	175p	$2 \mathrm{SD1506}$	50p	2SD2136		2 Sk 7	30
${ }^{25 C 1970}$		${ }^{25 \mathrm{SC} 2527}$	3000	2 2c3025	500 p	${ }^{25 C 3466}$	225p	$2 \mathrm{SC4} 469$	3p	2SD66	20p	2SD1153	30p	$2 \mathrm{SD150}$	B0p	2SD2144	35p	2SK794	315
${ }_{2} \mathrm{SC} 1979$	400p	2SC2534	150p	$2 \mathrm{SC302}$	450p	$2 \mathrm{SC346}$	70p	2SC419	400p	2SD66	35p	2SD1159	p	$2 \mathrm{SD1509}$	100p	2SD2151	175p	2SK	800p
${ }_{\text {2SC }}$	${ }^{600} 9$	${ }^{25 C 2535}$	${ }^{300}$ p	${ }^{25 C 3030}$	300 p	${ }^{25 C 3481}$	3700	${ }^{25 C 4204}$	p	${ }^{25 D 67}$	3500	2SD1160	150p	2SD151	75 p	2SD2255	175p	2SK	p
$\begin{aligned} & \text { 2SC1973 } \\ & \text { 2SC1975 } \end{aligned}$	$150 p$ 120	2SC2538	1900	${ }_{2 S C 3038}^{2 S 803}$	5p	2SC3482 2Sc3486	275p	2 SC 4231	50p	2SD67	250p	2SD1163A	220p	2SD15	250p	2SD233	250p	2SK812	p
2 SC 198		2SC		2 SC		2 Sc 35	50 p	${ }_{2 S C 423}$	350p	2 LD 71	885	2SD1164	750	${ }_{2}$ 2SD152	70p	2SD233	150p	2SK817	325p
2 SC 1983	75p	2SC2545	55p	2SC3040	260p	$2 \mathrm{CC3503}$	p	2 SC 4237	500 p	2SD722	240p	${ }_{\text {2SD1169 }}$	280 p	2SD1526	100p	${ }^{25 \mathrm{~S} .488}$	${ }_{425 p}^{225 p}$	2Sk	
-	150	${ }^{\text {2SC2546 }}$	259	$2 \mathrm{SC3042}$	300p	$2 \mathrm{SC3504}$	120p	2SC4242	$120 p$	2SD72	200 p	2SD1173	350 p	2SD15	350p	2S.56	700 p	${ }^{2} \mathrm{SK} \mathrm{K}$	
${ }_{2} \mathbf{2 S C 1 9 8}$	100p	2SC2547	65p	2SC3052	30p	2SC35	240p	2SC4278	175p	2SD726	275p	2SD1185	280p	2SD1545					
${ }_{\text {2SC2006 }}$	100 p	${ }^{\text {2SC2550}}$	500	${ }^{2 S C 3057}$	150p	${ }^{25 C 3500}$	250p	${ }^{25 C 4288}$	\%	2 2SD731	250	2SD1186	400p	$2 \mathrm{SD1546}$	350p	25717		2SK9	500 p
${ }_{2}^{2 S C 2001}$	$15 p$	2SC2551	70.	$2 \mathrm{SC3068}$	${ }^{60 p}$	${ }^{2 S C 3507}$	650p	2SC4300	200p	2SD73	250 p	2SD1189	55p	2 SD154	400p	25.177	350p		
${ }_{2 S}^{25}$	15	${ }_{2 S C 255}^{2 S C 255}$	$\xrightarrow{60}$	${ }_{2 S C 307}^{2 S C 307}$	35 p	${ }^{2 S C 350}$	750 p 170 p	${ }^{25 C 430}$	3000 2250	${ }_{2} 2 \mathrm{SD} 774$	15p	2SD1191	${ }^{120 p}$	2SD15	170p	25.79	${ }^{225 p}$	2SK	275p
$2 \mathrm{SC200}$	20p	2 CC 2555	120 p	2SC3073	100p	$2 \mathrm{SC3518}$	Op	${ }_{2 S C 4313}$	\%	${ }_{2 S D 74}$	130 p	2SD1196	150p	2SDt5	$150 p$ 2250	${ }_{25}^{251}$			275p
$2 \mathrm{SC2022}$	110 p	2SC2562		2SC3074	200p	2 SC 3519	250p	2SC4381	150p	2SD75	120p	2SD119	150p	2SD15	75p	2SJ113			
$2 \mathrm{SC202}$		$2 \mathrm{SC256}$	200 p	$2 \mathrm{SC307}$	150	$2 \mathrm{SC352}$	45p	2 SC 4382	200p	2SD760	70 p	2SD198	㖪	2SD157	170p	${ }_{2 S J 114}$	1150	${ }_{2 S}^{2 S}$	
${ }_{\text {2SC202 }}$	${ }^{300}$	${ }^{25 C 2568}$	120 p	${ }^{25 C 3077}$	120 p	2 SC3528	750 p	${ }^{2 S C 4386}$	275	2sD76	100 p	2SD1207	40 p	2SD157	100p	2SJ116	1200p		
$\underset{\text { 2SC202 }}{\text { 2SC2036 }}$	$200 p$ $50 p$	${ }^{\text {2SC2570 }}$	350 p	2SC3086 2SC3089	150 p 130 p	2SC3531 2SC3549	225p	2SC4387 2SC408	425 p	2SD76	140p	2SD1210	280 p	2SD157	200p	${ }_{2}^{25117}$	5500	2SK1023	
2SC20	50p	$2 \mathrm{SC2577}$	110p	2SC3101	750 p	$2 \mathrm{SC3552}$	2700	${ }_{25 C 4429}$	75 p	${ }_{2 S D 7}$	180p	${ }_{\text {2SD } 1213}$	120p	2SD1576	150 p $\mathbf{2 5 0 p}$	2SJ119 2S 162	7009 6800	2SK1	600p
${ }^{25 C 2053}$	120 p	${ }^{25 C 2578}$	110	$2 \mathrm{SC3112}$	35p	2SC3568	200p	$2 \mathrm{SC4431}$	90p	2SD773	20p	2SD218	75p	2SD157	80 p	2S. 175	200p	2	$00 p$
2 S	${ }^{150}$	2 2S2579	110 p	2 SC3114	40 p	${ }^{25 C 357}$	275p	2SC446	325p	2S0774	30p	2SD1223	75p	2SD1589	60p	2SJ182	150p	2SK108	700p
${ }_{2 S}^{2 S C}$	20 p		175p	$2 \mathrm{SC3116}$	75 p	${ }^{25 C 358}$	200 p	${ }^{2 \mathrm{SC} 446}$	1750	${ }^{250777}$	400p	2 2S1225	70.	2SD1590	100p	2 SJ	8259	2SK1	450p
${ }_{2 S C}^{2 S C 661}$	75p	${ }^{2 S C 2588}$	2250	${ }_{2 S C 3122}^{25 C 317}$	120p	2SC3591	200p	2SC4468	250p	2SD784	650p 1000	${ }_{\text {2SD } 1227}$	400	${ }^{2 S D 159}$	310 p 1250	${ }_{2} 2 \mathrm{SK}$	175 p 45 p	${ }^{2 S K 11}$	75p
${ }^{2 S C 206}$	80p	2 2S2590	40p	$2 \mathrm{SC3148}$	$145 p$	25C3597	$75 p$	2SC4517A	225p	2SD787	20p	2SD 2237	300	${ }_{2 S D 1595}$	${ }^{125 p}$	${ }_{2 S K} \mathbf{2 5 1 9}$	45p	2SK1117	250p
${ }_{2}^{25 C 2071}$	140p	2SC2591	50p	2SC314	180p	$2 \mathrm{SC3599}$	140p	2SC4531	450p	2SD788	30p	2SD1238	300 p	2SD160	210p	2SK40	50p	25 K 1118	55
2SC2073 2SC2075	40 p	$2 \mathrm{SC2592}$	200p	25 C 3150	100 p	${ }^{25 C 3600}$	175p	$2 \mathrm{SC4532}$	1000p	2SD789	20p	2SD1244	25p	2SD160	45p	2Sk55	100p	2SK1120	55
${ }^{2 S 52075}$	60p 950	2SC2603	${ }^{10 p}$	2SC3151	175 p 130 p	${ }_{\text {2SC360 }} \mathbf{2 S 3 6 0}$	100 150	2SC4542	${ }_{275 p}^{400 p}$	${ }_{2 S D}^{2 S D 7}$	400 p 33 p	${ }^{2 S D 1246}$	20p	${ }^{25 \mathrm{~S} 163}$	320p	${ }_{2}^{2 S K}$	${ }_{7}^{100 p}$	2Sk	
${ }^{2 S C 2085}$	100 p	$2 \mathrm{SC2611}$	30p	2 2C3153	175 p	2SC3608	$65 p$	2SC4744	350 p	${ }_{2 S D 795 A}$	33 p 140 p	${ }_{2 S D 1251}$	180p	2SD164	40p	${ }_{2 S K}^{2 S 67}$	200p	2SK121	700 p
${ }^{25 \mathrm{SC} 2086}$	${ }^{\text {80p }}$	${ }^{25} 52621$	${ }^{700}$	${ }^{25 C 3156}$	350 p	2SC3616	45 p	${ }^{25 C 4745}$	5509	2 SD798	175p	2SD1254	55p	2SD1649	280p	2SK 106	40p	2SK1221	200
2SC2092	100p	2SC2625	90p	${ }^{\text {2SC3157 }}$	260p	${ }_{2 S C 3646}$	${ }_{2250}^{280}$	2SC4747 $2 \mathrm{SC4757}$	375 p 200 p	2SD799 2S809	${ }_{\text {150p }}$	${ }^{25 D 1263}$	${ }_{50} 9$	${ }^{25 D 1650}$	${ }^{150}$	${ }^{25 \mathrm{SK} 107}$	40 p	2SK1275	275p
${ }_{2}$ SC2097	2300p	2SC2630	1800p	2SC3159	200 p	${ }_{2 S C 3657}$	${ }_{\text {cosp }}$	${ }_{\text {2SC4762 }}$	200p	${ }_{2 S D 811}$	45p	2SD1264	55p	2SD165 2SD1656	150 p 250 p	2SK 109 2Sk 117	$150 p$ $50 p$	${ }^{25 \mathrm{~K} 1296}$	350
$2 \mathrm{SC2099}$	2500 p	2 SC 2631	20p	${ }^{25 C 3164}$	${ }^{2700}$	${ }^{25 C 3659}$	${ }^{600}$ p	$2 \mathrm{SC4769}$	220p	2 25889	300p	2SD1266	180	${ }_{2}$ 2SD1663	350p	2SK118	50p	${ }_{\text {2SK } 1299}$	450p
($\begin{aligned} & \text { 2SC2118 } \\ & \text { 2SC2120 }\end{aligned}$	${ }_{10}^{1100 p}$	${ }^{25 C 2632}$	35	${ }^{2553169}$	150 p	${ }^{2 S C 3668}$	120 p	2 2S4770	250p	${ }^{258820}$	250p	2 2S1267	${ }^{55 p}$	2SD1666	50p	2SK125	$100 p$	2SK131 2Sk133	$900 p$ 2500
${ }_{2 S C 2122 A}$	300p	${ }_{2 S C 2636}$	40p	${ }_{\text {2SC3170 }}^{25 C 3}$	300 p 180 p	(${ }^{\text {2SC3675 }}$	100p 280 p	2SC4820	225p	2SD821 2SD822	${ }^{550 p}$	${ }_{\text {2SD1271 }}$	\% $\begin{array}{r}55 p \\ 225 p\end{array}$	${ }_{\text {2SD166 }}$	${ }_{90 \mathrm{p}}^{120 \mathrm{p}}$	${ }_{\text {2SK133 }}$	${ }_{6}^{650 p}$	2SK1334	500p
$2 \mathrm{SC2131}$	550 p	$2 \mathrm{SC2637}$	120p	$2 \mathrm{SC3175}$	150p	$2 \mathrm{SC3679}$	140p	2SC4891	800 p	${ }^{25 D 826}$	30 p	2SD1272	200	2SD1669	${ }_{85 p}$	2SK152	40 p	2SK1342	
${ }^{25 C 2141}$	${ }^{60 p}$	2 SC 2640	1800 p	${ }^{25 C 3178}$	125p	${ }^{25 C 3680}$	380p	2SC4923	400p	2 SD829	375p	2SD1273	50p	2SD1677	200p	2SK161	30p	2SK1350	200p
25 S 2153	40 p	${ }^{25 C 2653}$	100 p	$2 \mathrm{SC3179}$	70p	${ }_{2} \mathrm{SC} 3685$	450p	$2 \mathrm{SC4924}$	250p	${ }^{25 D 836}$	50p	2SD1274	80 p	25 D 1680	225p	2SK163	40 p	2SK1356	225p
${ }_{2}^{2 S C 2166}$	-80p	2SC2654	180 p 50 p	${ }_{\text {2SC3181 }}^{\text {2SC3180 }}$	$175 p$ $200 p$	2SC3687 2 SC 3688	300 p 550 p	2SC4927 2Sc5002	500p 300 p	25D836 250837 20	500	${ }^{\text {2SDD1275 }}$	50 p	${ }^{2 S D 1683}$	45 p	2SK188	40 p	2SK1357	350p
${ }^{25 C 2188}$	70 p	${ }_{2 S C 2656}$	550 p	2SC3182	120 p	${ }_{2 S C 3692}$	150p	2SC5003	300p	${ }_{250838}$	55p	${ }_{\text {2SD1277 }}$	$60 p$ 1900	${ }^{2 S D 1684}$	70p	2SK170	50p	${ }^{2 \mathrm{SK}} 13135$	400p
2 SC2200	${ }^{250}$	${ }^{25 C 2680}$	100 p	2SC3198	30 p	2 2C3715	480p	$2 \mathrm{SC5027}$	${ }^{100 p}$	2 2SD841	110 p	2SD1279	600 p	2501707	400 p	2SK192	45 p	2SK137	15
2SC2209		${ }_{2}^{2 S C 2665}$	200p	${ }_{2} 2 \mathrm{SC3}$	${ }_{20}^{20 p}$	25 C 3717	20p	${ }^{2 S C 5048}$	${ }^{300 p}$	${ }^{25 D 844}$	200 p	2sD1288	175p	2 251708	$375 p$	${ }^{25 \mathrm{~K} 193}$	40 p	2SK 2Sk 2	
${ }_{2 S C 2221}$	${ }_{850}$	${ }_{\text {2SC2671 }}$	100p	${ }_{\text {2SC3209 }}$	120p	${ }_{2 S C 3746}^{2 S C 3729}$	450p	2SC5044	250p	2SD850 2SD856	170 p 48 p	2SD1289	280p		2750		140 p	2SK1404	2900 2200
${ }^{2 S C 2228}$	80p	2SC2681	170p	2SC3210	550p	$2 \mathrm{SC3747}$	120p	2SC5129	300	250858	550	2SD1	80p	2SD1729	2309	2SK212	$140 p$ 350	2SK1462	220,
$2 \mathrm{SC22}$	15p	2SC2682	70p	$2 \mathrm{SC32}$	220p	2SC3748	100p	2SC5148	300p	2 SD863	23p	2SD1293	70p	2SD1730	2759	2SK214	170 p	2SK1487	25
${ }_{2 S C 2230}^{2512}$	\%op	2SC2688	${ }^{27 p}$	${ }^{25 C 3212}$	260 p	${ }^{25 C 3752}$	250p	${ }^{2 S C 5149}$	300p	${ }^{25 D 864}$	200 p	2SD1297	300p	2SD1732	250p	${ }^{\text {2SK216 }}$	200p	2SK1507	300p
2SC2233	100p	${ }_{\text {2SC2690 }}$	80p	2SC3225	50 p 30 p	2SC3781 2Sc3782	$150 p$ 750 15	2SC5250 2SD188	300 p 350 p	2SD866 2SD866	120p	${ }_{2 S D 1302}^{2 S D 1306}$	20p	2SD1739 2501740	180	2Sk223	50 p	2SK1529	700p
${ }^{25 c 236}$	20p	2SC2705	409	2SC3244	$45 p$	25 C 3783	300p	2SD198	140p	${ }_{2 S D 867}$	350p	2SD1308	8	${ }^{2 S D 17448}$	125p	2SK241	30p	${ }^{2 S K} 1537$	400p
${ }^{2 S C 2237}$	540 p	${ }^{25 C 2706}$	250p	$2 \mathrm{SC3246}$	50	${ }^{25 C 3787}$	100p	2SD199	195p	250868	280 p	2 SD1309	140p	2SD1756	275p	2SK246	30p	2SK1544	900p
(2SC2238	45 p	2SC2710 2SC2712	50p	${ }^{\text {SCC3259 }}$	360p	2SC3788 2Sc3789	${ }^{60 p}$	2SD200 2SD201	180 p 260 p	2SD869 2SD870	150 p 1400	2SD1310	\%	2501758	${ }^{60 p}$	${ }^{2 S K} 3000$	$25 p$	2SK1767 2SK2038	275p
	,	$2 \mathrm{SC27}$	20 p	${ }_{\text {2SC3261 }}$	230 p	${ }_{25} \mathbf{5 c} 3790$	120 p	${ }_{\text {2SD213 }}$	250p	${ }_{\text {2SD877 }}$	140p	2SD1311	(1000p	2SD1760	$80 p$ $80 p$	2SK301	40 p	2SK2039	$295 p$ $750 p$
SC2259	60p	25 C 2716	60p	$2 \mathrm{SC3282}$	280p	$2 \mathrm{SC3795}$	140p	2SD234	90p	2SD879	60p	2SD 1326	200p	SD1762	50p	,		SK2134	

REPLACEMIENT VIDEO HEADS

Model Price	odel Price	Model	Model	del
AKAI	VHSAN3 ${ }^{\text {d }}$			
202, 205, 220, 240, 244, 245, 247, 248, 250, 301, $303,304, \mathrm{VSP8}$	SB			
VP7100, VS9300, VS9500	$\begin{array}{ll}\text { VHSD52 } \\ \text { VHSEH2 } \\ \text { VHSDH2 } & 1600 \\ \text { 1600 }\end{array}$	$3 \vee 58$,	9053, 9054, 9055, $9056,9063,9065,9066$,	
	EYT, V			
	FS1			
	G3			
	VHSWJI VHSX	no0.	8261 AH1 (FOR MODEL DX3000).	VTC3000 1400p
				SHARP
	VS4 $10,415,435,450,456,460,500,505$,			
VS $462,465,467,467$ EOG2, VSF $12,15 \mathrm{EK}$	BARCELONA, MVS5400, 440, 500, 600,			
	BARCELONA, MVS5400, 440, 500, 600, SE5100, 6100, 6110, 9100			
	TVR4500, 4510,5510, VS $400,440,441$ 500, 505, 510, 518, 600, 610,			
	500, 505, 510, 518, 600, 610, VS5180, VS6190, 700. 900, 901, 902.			
			VH3, VH555, VH600, VH700, VH844,	VC108, 208, 382, 402, 405, 408, 500, 550, 571, 573, 581, 582, 583, VC5W20E, 600, 651, 674, 681, 684, 6V3, 750, 780, 781 .
VSA $1100,1110,650$, VSF500, 510, 550,	E5 140, vS540,			
	VS5480 3000p MVS550, 620, VS550, $620,630,640,790$,		D1000, D1100 D1000x D1500x D4500, VPCD 100 1600p	
				683, 684, 402, VC500, 571, 573, 580, 584, 600, 682, 693,
			D1000X, D1500x, D4500, VPCD100, D1200, D2000X, D5000 1600p	700, 772, 7810, 782, 7822, VC783, 8481,
2			VR6460, VR6520, 64VR60, $\mathbf{7 2 5 p}$ VR6420 VR6711 4 HEAD $\mathbf{1 8 0 0 p}$	8581, VCA10, 100, 102, 103, 1031, 103, $104.105,106$
		Matsu		VCA111, 113, 116, 131, 140, 202, 203 211, 234, 244, 254, 255, 30, 35, VCA40 VCB311N, 320, VCD801, 802, VCM73. VCT212, 310, 410, VCT510, 72, VCT 1314,
	UND			
	GRUNDIG , 116, 720, 800, 810, 910, 920 VS922, 9291, GV210, 219, 220, 2292. MV2705, 2115, SE2 120		DV761, VR512, 522, 5229, 63SB7, VR6760, VR6761, VR6762, VR63SB7 7172	
00			$418 \mathrm{~V} 2,4 \mathrm{SB} 11 \mathrm{BVR4} 42,415,6485,6490{ }^{\circ}$	
vS 109, VS603, VS606, vS607	HINARI VXL2, 3, $4.20,25,35 ~$	MITSU		VC699 VCA501, VCA602
		HS303, HS304, HS320, HS700 HS306, HS318, HS710	(1) 4850p	
		HS307 $\mathbf{1 9 0 0}$ HS319 1900p HS330 $\mathbf{1 9 0 0 0}$ HS400 $\mathbf{2 8 0 0 0}$		
		HST39, HSE27, 31, 32, HSB2 31, 32, HSM $33,34,35,37 \mathrm{G}$	DV186, 190, 291, 292, 468, 471. VR201.	VCH80, VCH81, VFH815 2800p VCA33 VCA36 VCA 13 VCA44 VCAA6
			202, 203, 2115, 212, 213, 223, 231, 232.	VCA33, VCA36, VCA43, VCA44, VCA46, veas,
			6185, 6290, 6291, VR6293, 6362, 6367, 6467, 6468, 6470 4600p VR3260, 6349, 6442, 663, 6448, 6449	
030		HSE 10, HSE12, HSE20, HSE21, HSEAHS 300, HS 301, HS $302, ~ H S 310, ~ 1500 p ~$		
	125, 128, 220, 225, 400, 405. VT410, 413, 414, 415, 416, 418, 510, 515 517, 518, 520, 525, 526, VTM625, $626,725,210,219,215,726$,			 SLFIE2 PIN, SLC24PS, 33E, 34, 44PS,
VCR7000, 7800, 8000, 8800	VTM625, 626, 725, 210, 211, 215,726 ,		SAISHO VR $100,605,705,805,905,1000,1100$, 1200, 1600 VR3300X, VR3600X, VR3650X, VR3800	DSR. 43 R FOR SLC7 RANGE, SL5000, SL5100, SL3000 1 PIN, SLC6E, SL36ES, SL37E SL3000, SL8000, SL8080, SLC5E, SLT7ME
	,			
	VT5600 ${ }^{\text {¢ }}$	HSB52, HE50, 52G, HSM $36,50,54$,		
	8030, 8040, 8100, 8300, 8500 VT8700, 9000, 9300, 9500, 9700,			St 1600 p
	$\begin{aligned} & 9900 \\ & \mathrm{~V} 18,9,56,57,570,575,576,580,585, \end{aligned}$		VRS5000X, VX6000A, VXL12X 150	SLV275, SLV373VB, SLV410, SLV412, SLV427, SLV474 1900p
				R49R, SLHF100P,
	VT130, 135, 138, 145, 250, 255, 258, 420,			
	$425,426,428,430,431,435$ VT438, 535, 536, VTL30, 301, VTM630,	2010, 3000, 7000, 7200.7500, NV7800,	SV7400, SV8400 $\mathbf{1 6 0 0 p}$ SV100 $\mathbf{1 2 0 0 p}$ SV900, SV9900 $\mathbf{3 4 5 0}$ SV01, SV611, SV6910 $\mathbf{1 5 0 0 p}$ SV800, SV810. $\mathbf{2 8 0 0}$ SV6700, SV8710, SV8750 $\mathbf{1 5 0 0 p}$ SV80	
				CCDF340E, CCDF500E, CCDV90E, CCDV95E, CCDSP5E
	635, 636 VT52, VT60, VT61E, VT62E, VT63, VT64, VT640 850p			
9500 ,				SLV801, SLV802 $\quad \mathbf{2 5 0 0}$ p
FISHER	VT168, VT150, VT260, VT450, VT498 (4 HEAD) 1900p	NATIONA		SLV335SLV210, SLV212, SLV270, SLV 21
	VT522, VTM $212,620,622,720,722,822$,		623N, SV6800, SV6900, SV8850, ${ }^{\text {SV8870, }} 1750$SV89701750p	
		AG1 460		SLV125, 213, 225, 252, 255, 262, 280, ${ }^{\text {a }}$
			$\begin{array}{ll}\text { SV88110, SV8910 } & \begin{array}{l}\text { 2650p } \\ \text { 823N, } 5 V 8920\end{array} \\ \mathbf{3 5 0 0 p}\end{array}$	
	VT570, VT575, VT580, VT585, VT588, ${ }^{26000}$	${ }_{\text {AG6840 }}$ NV100, NV200, NV370, NV380, $\mathbf{2 0 0 0}$	923 N SV8600, SV8700 4500p 1550p	SLV363, ${ }^{\text {SLV416, SLVX50, }}$
	VT540, 545, 546, 548, VTD660, 665, VTM598, 640, 645, 646.			
			SV8420 $\mathbf{2 4 0 0 p}$ SV8620 $\mathbf{2 1 0 0 p}$	
	VTM730, 731, 735, 736, 740. 745, 746, $748,753,754,830,831,835,838,840$,		SV9300 $\mathbf{2 5 0 0}$ SV8830 SVB720 $\mathbf{2 2 0 0}$ SV8520 $\mathbf{2 2 5 0}$	SLHF 100 P, SLLF 100 UB $\mathbf{3 4 0 0}$ SLVET, SLVE8, SLVE9 $\mathbf{3 6 0 0}$
FVHP500, 711, 715, 721, 722, 730, 83 5100, FVHDD720		AG5150, AG5250, NVF65, NVH75, NVH-77 NVF51 2600 42000		
FVHP980	865	NVG19 NVJ30, NVHJ33, NVL10, 20, NVL21, 2300p		SLV675,SLVE800SLV25, SLVE600, SLVE700,3450
			SAMSUNG	
FVHD 407 , FVHD 140, FVHPt, FVHP10,		NVS35, NVG46	56	$V 63$ $V 9680$ $\mathbf{1 5 0 0 p}$ $\mathbf{3 4 0 0} \mathrm{p}$
		NVM11. NVM 3 , NVM 54420		
			$717,614,619,629,710,712,720,730$, 970, 971, 972, SV716, 717, SVX303, 305,	$\mathrm{V} 8600, \mathrm{~V} 8650, \mathrm{~V} 8700$ $\mathrm{~V} 21, \mathrm{~V} 31, \mathrm{~V} 32, ~ \vee 33, V 50, \mathrm{~V} 51, \mathrm{~V} 52, \mathrm{~V} 53$,
		NVSD25, NVSD3 ${ }^{\text {NVI }}$	VB510, 520, 610, 616, 617, 619, 620, 626, $627,629,710,971, \vee 7520,616,621,626$,	V9600V55, $V 57$
	J.V.C. \& FERGUSON			
		4 HEAD $\mathbf{1 1 5 0 p}$ NV 366 1700 p	900, 910, SVX319, VB770, V1710, 730, 731, 735, SVX319, VB770, V1710, 730, 73T, 735.	V71, , 73, V74, V75, V77, V80, V81, V82, V83, V841V85, V86, V87,
	HR2200, 3300, 3320, 3330, 3350, 3360, 3660, 3750, 3860, 4100 3292, 8900, 8901, 8902, 8903, 8906, 8922.		750, 751, 770, VB750, VK8220, V×750. VK7330, VK770, VK8225, VR 1730,1735, $\times 220$ 1900p	
HP 1250, FVHP430S		NV21 H0, NV 180, NVD48		
	111, 120, 121, $220,225$. HRS $100,8904,8923,8924,8925,8929$,	NV810, NV8301 $\mathbf{1 8 0 0} \mathrm{p}$ NV850 NV950 NV870 2000p $\mathbf{2 4 0 0 p}$	V11560, VN1560, VN1561, VX1530,	199, 200, 202, 205, 207, 209, 80, 93, 94
	HRS $100,8904,8923,8924,8925,8929$, 8935, 8941, 8943, 8944 .	NV870, NV890, NV970 AG6024, NVG33, 46, NVL23, 25, 28,	PL30LR, PX3031, 31R, 32R, 990, 992, 991, PXP30, PXR30, VX 1260 , SVX503.	V880MS
	3V16, 3V233V24, 3V31, 3V35, 3V36, 3V38, 5 ,		SX3230, 3231, 3260, 3261, VK30, 300,	
	BR1600, HRD $140,141,142,143,150,152$,			$\begin{array}{ll}\text { V5006, V509G } & \\ \text { V9680 }\end{array}$
		1200p400, 44, 45 NVG $10,11,12,14,16,120, ~ N V 250, ~ 280, ~$	1230, 1260, 1261,	
	HRS $10,8947,8948,3 \vee 42,3 \vee 44,3 \vee 45$, $3 \vee 46,3 \vee 47,3 \vee 52,3 \vee 54$. 3V55, 3V56, 3V57		S11230, 1240, SVX600, SX1230, 1231 1260, 1261, 7120, 7121, 7220, S×7221,	V9680 ${ }^{\text {2900p }}$
VCP 400 , VCP $4130,4300,4301,4305$				V3096 ${ }_{\text {V61, } 63}$
4306, 4310, 4311, 4315, 4316,		NVG20, 21, 22, 25, 28, 200,	$\begin{aligned} & \begin{array}{l} 1260,1261,7120,7121,7220, S \times 7211 \\ 7230,7301 \end{array} \quad 1900 \mathrm{p} \\ & \hline \end{aligned}$	V110, V120, V130, V140, V210, V211.
	$320,321,350,521,522,525,526 \text {. }$			
GSED121, RQ2011, RQ2031, RO2051				

ALLTV \& VIDEO PARTS SOLD ARE REPLACEMIENT PARTS

REPLACEMENT IDLERS \& PULLEYS

PINCH ROLLERS

\section*{Model} | Model |
| :--- |
| AKAI |
| VS10, VS9300, VS $9500, ~ V S 9700, ~ V S 9800, ~$ |
| VP7100, VP77 | VP7100, VP77 VS1, VS2, VS3, VS4, VS5, VS6, VS8, VS9, 140 p VS $105,112,115,116,120,125$, Vion, 155, 165, 205, 220, 240, 244, 245,

VS247, 248, 250, 512, VS515, 516, VS247, 24
VSX9
VS20 VSX9
VS201, 301, 303, 304, 603, 606, 607, VSP8
VSP12 VSPR2, VP58, VP82 VS 125, VS 155, VS 165, VS220, VS240, VS250,
VS512 VS22, 23, 25, 35, 37, 38, 53, 66, 75, 422, 425, 140,
$426,427,462,465,467$, VS485, $745,766,767,768,865,867,965,967$, VSAF7, VSA650, VSF 10, 11, 12, 15, 180, 190, 200, 210, 220,
$221,222,230,240,30,33$ $221,222,230,240,30,33$
VSF $330,4,500,550$, VSP8

450,470
VSF2,

290, $340,350,410,420,43 \mathrm{C}$ 290, $340,350,410,420,43 C$
VSF $441,440,450,455,480,4$ VSF 441, 440, 450, 455, 480, 490, 497, 510,
$560,580,590,599,600,40,33,34,35,51,54$, $560,580,590,599,600$,
VSG $20,21,35,24,25$,
VSG20, 21, 23, 24, 25, 30, 33, 34, 35, 51, 54,
$55,60,64,65,70,73,74,75$, 5S, 60, $64,65,20,73,74,75$,
VP $1110, V S X 500, ~ V S X 580$ VS17, 20, 22, 23, 24, 25, 26, 27, 35, 37, 38, 140p S5, VSA77 PINCH ROLLER ASSEMBLY PINCH ROLLER ASSEMBLY
VS $422,425,426,427,462,465,467,485,498$ VS $422,425,42,456,767,768,865,46,46,485,498$,
$7667,965,967$, VSA650, VSF $10,11,12,14,15$, 180, 190, 200, 210,220 ,
221, 222, 230, 240, 30, 300, 301, 310, 320, 33. $330,4,500,510,600$,
VSR10, V $\times 1000$ VSR110, VSX100, 400,450, 470 800p
PINCH ROLLER ASSEMBLY

VCR3000X, VCR4000

VCR5000, VCR6000
VCR161, VCR222
VCR7000, VCR7800, VCR8000, VCR8800
VTV10

AMSTRAD

VCR $1000,2000,4500,4600,4700,5200,6000$, VCR8602, 8603, 8604, 8700, 8704, 8714, 8800
$8804,9000,9005$, VCR9244, 9340, DD8900, 8904,
TVR1,
V TVR1, , , 3, 4
VCR7900
DD 8900, DD8904,
VCR6000, $6100,6200,8600$
$140 p$ OD8900, DD8904, VCR6000, 6100, 6200, 8600,
$8602,8603,8604$, VCR8700, 8800, $900>9,9140,9244$, ${ }_{9}^{9340}$
PINCH ROLLER ASSEMBLY PART NO: $\begin{array}{r}753148 \\ \text { 700p }\end{array}$ TX 3650 , UF20, VCR 3000 , VCR 3002, VCR4000, PINCH ROLLER ASSEMBLY PART NO: 2554966
DO9900, 9904, TX3650, UF20, 22, 24, VCR3000, 3002, 9500

FERGUSON

3V00, 3VO1 3V16, 3V22, 3V23, 3v24, 3292, 8900, 8901, 8902, 8903, 8904, 8905, 8909, 8912, 8922, 8923, 8924, 8925, 8929 140 $8912,8922,8923,8924,8925,8929$
$3 \vee 29,3 V 30,3 \vee 31,3 \vee 32,3 V 52,8930,8931$,
$8933,8940,89418942$ |8933, 8940, 8941, 8942
$3 \vee 35,3 \vee 36,3 \vee 38,3 \vee 39,3 \vee 42,3 \vee 43,3 V 44$, $3 \vee 45,3 \vee 48,3 \vee 49,3 \vee 53,3 \vee 54,3 \vee 55,3 \vee 56$, $\left\lvert\, \begin{aligned} & 3 V 57,3 V 58,3 V 59,3 V 65, \text { FV10, FVII, FV12 } \\ & \text { FV14, 8943, 8944, 8945, 8947, 8948 }\end{aligned}\right.$ $3 V 52$
8950,8 ${ }_{225}^{895}, 8951, \mathrm{FV} 10 \mathrm{~B}, 11 \mathrm{R}, 13 \mathrm{H}, 14 \mathrm{~T}, 20 \mathrm{~B}, 21 \mathrm{R}$ $22 \mathrm{~L}, 26 \mathrm{D}, 31 \mathrm{R}, 32 \mathrm{~L}, \mathrm{FV} 33 \mathrm{H}, 39 \mathrm{~S}, 41 \mathrm{R}, 42 \mathrm{~L}, 50 \mathrm{~B}$
$51 \mathrm{R}, 52 \mathrm{~L}, \mathrm{VC} 34 \mathrm{~L}$ FV37H, FV44L, FV46T, FV43H,
FV57H,
FV, 3V35, 3V36, 3V38, 3V39, 3V49, 8943, 8944
PINCH ROLLER ASSEMBLY $3 \mathrm{~V} 42,3 \mathrm{~V} 43,3 \mathrm{~V} 44,3 \mathrm{~V} 45,3 \mathrm{~V} 48,3 \mathrm{~V} 53,3 \mathrm{~V} 54$ 3V55, 3V56, 3V57,8945, 8947,8948 1350p PINCH RDLLER ASSEMBLY
FV 37, FV57, FV58 FV37, FV57, FV58
PINCH ROLLER AS FV31R
FV41L, FV
FVV1L 1 FVA2L
PINCH ROLLER ASSEMBLY
3 V58 3V59 $\quad 925$ p $3 V 58,3 V 59,3 \mathrm{~V} 64,3 \mathrm{~V} 65, \mathrm{FV} 10,11,12,13,14$
$20,21,22,26,30,32,33$ PINCH ROL ER ASSEMBUY FVA3H, FV4LL, FV45X FV46T
PINCH ROLLER ASSEMBLY PINCH ROLLER ASSEMBLY 700p FV61, FV62, FV67, FV68, FV70, FV71, FV72,

FV74, FV77. | FV74, FV77 |
| :--- |
| PINCH ROLLER ASSEMBLY | FISHER

FVHP420
FV VV4 $721,722,725,730$,
FVHP800, $830,840,140 \mathrm{p}$
FVH FVHP905, 906, 907, 908, 910, 911, 915, 916. $5050,5075,5100,990$, 5 PA 5000,5005, VBR330, VBS $3500,7000,7100,7500,7600$, 9000, 9900 FVHD $230,250,270,370,2000 \mathrm{D}, \mathrm{FVHP3}, 210$,
$250,300,310,1100$, $250,300,310,1100$,
FVHP1200, $1250,130,132,1340,1340,1400$, FVH P1200, 1250, 130,
$1410,1440,1500,200$ FVHP $320410,420,430, ~ 440, ~ 445, ~ 470, ~ 475, ~$
FVSP FVSP290S, 495,2905
FVHD140, FVHD40, FVHD55, FVHP1, FVHP10, FVHP20
FVHO140, 40, 55, FVHP1, 10, 25, 30, 40, 4000, FVHS 10,30
PINCH ROLL

GOLDSTAR ASSEMBLY

GHV51, 1221, 1232, 1233, 1240, 1241, 1242, 1243, 1244, 1245, 1246,140p
GHV $1247,1248,1250,1266,1290,1291,1295$, GHV1247, 1248, 1250, 1266, 1290, 1291, 1295,
1296, 1392, 1393, GHV1891, 1900, 2145, 3000, 3010, 4400,
$51,8000,8200$, GHV8210, 8215, 8430 $51,8000,8200$, GHV8210, 8215, 8430
GHVP1240, 1241, 1247,1248, 1290, 1291 GHVP 1295,1296, VCP $4000,4100,4130,4200$, 4300, 4301, 4305, VCP 4306, 4310, 4311, 4315, 4316, 4320, 4321, 4325, 4326, 4350, GSE1290, $129,1295,1296,1297,1891,1910,20005$,
2000 2000
VT7, 11, 14, 16, 17, 18, 19, 33, 34, 35, 350, 38 39, $88,330,680,4200$,
VT5000, $8300,85030,5500,6500,6800,7000,8000$. VM600 VT8, 52, 57, 61, 62, 63, 64, 65, 85, 86, 88, 100,
 $168,170,175,220,225,40,405,490,413,414$, VT250, 255, 258, 260, 400, 405, 410, 413, 414, $415,416,418,420,425$
VT $425,428,430,431$ VT426, 428, 430, 431, 435, 438, 450, 498, 510, $515,517,518,520,525$, VT526, 530, $535,536,540,545,546,548,570$,
575,57,
, $575,576,580,585,588$
VT60, 830, VFF60, $665,70,770,774,775$, 780, 785, 860, 861, 865, VTL30, 1000, 2000, VTLC50, VTM 598,620 , 622, $625,626,630,635$
VTM $636,640,645$
VTM $636,640,645,646,720,722,725,726$,
$727,728,730,731,735$,
VTM $736,740,745,746,748,753,754,820$.
VTM $835,838,840,841,845,920,921,922$, 925, 930, 931, 935 .
VTS80, 85, 890, 895VM $200,2300,2380,3200$, 3280,500
VT300
VT00
$V_{T} 410,420,428,430,450,498,518,520,522$ p 530, VTF770, 780 ,
$450,498,518,520,522$, VIM598, 622, 722, $740,748,753 \quad$ 650p PINCH ROLLER ASSEMBLY
VTF $150,155,180,185,250,255,260,265,280$, VTF $150,155,180,185,250,255,260,265,280$,
$285,350,351,355$,
VTF 360,365, VTM $140,141,145,145,210,211$, 212, 215, 220, 221,
VTM230, 231, 235, 284, VTS $390 \quad 140 \mathrm{p}$ HINARI
V2OH, VXL5, VXL6, VXL7, 8, 9, 10, 11, 19, 90,
H13V, VTV100, 200
VXL2, VXL3
VXL4, VXL20, VXL35
VTV100, VXL10, VXL11, VLX9
PINCH ROLLER ASSEMBIY $\mathrm{V} 20 \mathrm{H}, \mathrm{VXL5} . \mathrm{VXL} 6$ MOD KII
J.V.C.
HR2200, $3300,3330,3360,3660,4100$

7700
$H R 2650,7200,7300,7350,7600,7010,140 p$ HR2650, 7200, 7300, 7350, 7600, 7610, 7650,
7655
140p 7655
HRD10, 111, 120, 121, 140, 141, 142, 143, 14, 150, 152, 126,
HRD160, 220, 225, 250, 257, 445, 455, 565, $566,725,755$, HRP50, BP5000, BR7000, BRS611, 811 , 140 p
HRD520, $540,550,560,580,600,610,620$, HRD520, 540, 550, $560,580,600,610,620$,
$637,640,641,650$,
, HRD670, 720, 730, $740,770,820,830,840$, 860, 870, 880, 910, 960,
HRD980, HROK20, 22, 25, HRJ200, 205, 210, $215,300,315,316,318$
HRJ J $400,405,407,410,411,415,416,50 \%$ HRJJ400, 405, 407, 410, 411, 415, 416, 507,
$600,605,610,615,715,85$, 600, 605, $610,615,7115,815,600,6900$, SR $3200,330,368$
HRD170, 171, 180, 210, 211, 217, 230, 300, $320,321,330,337,350$,
HRD $370,400,430,440,441,470,500,530$, HRD330, $400,430,440,441,470,500,530$,
7700,950,
HRS5000, $5500,8000,9000$, BR7030, 7040,
MRS $5000,5500,8000,9000$, BR7030, 7040,
9060,

BRS500, 605, 747, 777, 920, 925
HRS 10
BP5000, HRD 110, 111, 120, 220, 225,
455 455
PiNC HRD 140 LLER ASSEMBLY $160,565,566,725,755$ HRPSO
PINCH
PINCH ROLLER ASSEMBLY 1350p HRD 1520, 510, 520, 521, 522, 525, 527, 560 , $600,610,620,637,641$,
HRDC50, $720,830,840,910$, HRJ 205, HRDS5800
HRS5800
PINCH ROLLER ASSEMBIY 350p BR7030, BRS600, HRD $160,170,111,180,190$, $210,211,217,227$,
HRD230, $271,300,310,320,327,330,337$, $350,400,430,440,441$
HRD $470,500,530,700,750,950$, HRS5000,
5500,9000 PINCH ROLLER ASSEMBLY
HRD540, HRD550, HRD580, HRD660, HRD860 HRD960
PINCH ROLLER ASSEMBLY
PINCH ROLLER ASSEMBLY
HR.J600, HRJ605, HRJ815,

HRS9200

MATSUI 875p
VS888 VX1000, v×2000, V $\times 2500, ~ v \times 3000$,

MITSUBISH

HS12, 5300, 5424, 5600, HSB11, 12, 16, 21, 27 $31,32,41,51,52,82$,
HSE 12, 16, 17, 21, 22, 27, 31, 32, 41, 51, 52. 82, HSM1000, 110, 120, 15
$0,16,770,190,210,23,25,250,27,33,34,35$, $36,37,370,380,45,450,5$
$4,55,555,57,58,59,68$, HSMS 2,9, HSS 11, $14,15,17,19,25,5600, \mathrm{HV}$
$\mathrm{F} 125,150,303,85$ F125, $150,303,85$, SV8900, 8930
PINCH ROLLE ASSEMBLY PART NO: 948D020010
HSE $11,12,16,17,21,22,27,31,32,41,51$, HSE $11,12,16,17,21,22,27,31,32,41,51$,
$52,5300,5424,5600, ~ H B 11,12, ~$
$31,21,27$, $31,32,41,51,52,82$, HSM $1000,110,120,150$,
HSM16, 170, 18, 190, 210, 23, 25, 250, 27, 30, HSM16, 170, 18, 190, 210, 23, 25, 250, 27, 30,
$33,34,35,36,37,370,38$, HSM $380,40,45$, $33,34,35,36,37,370,38$, HSM 380,40,
$450,50,54,55,555,57,58,59,60,68$, 450, $50,54,55,555,57,58,59,60,68$,
HSMS2, 9, HSMX1, 18, 19, 2, HSS 11. 15, 17, 19, 21, 25, 5600, HVF 125, HVF 950,303 . 85, SVB900, 8930 , 140 p HS200, HS 300, HS301, HS 302, HS 303, HS 304, HS 310, HS 320, HS 330 , HS 360 .
HS700
HS306, HS 307, HS $318, ~ H S 319, ~ H S 337, ~ H S ~$
140p HS306, HS 307, HS318, HS319, HS337, HS 338 ,
HS 347, HS 349 , HS $400, H S 410, ~ H S 411, ~ H S 412, ~$ HS421, HS 480, HS710, HSB 10, HSB20, 30, HSE 10, 20 ,
30,70
$30,70 \quad 140 \mu$
NATIONAL PANA SONIC
NV $100,180,300,330 \mathrm{PX}, 332,333,340,366$, $600,688,777,788,332$
7450
NV $230,250,250,280,370,380, ~$ NV230, 250, 260, 280, 370, 380, 430, 431, 433, 450, 460, 465, 470, 480
NV $630,650,730,770,780$ NV630, 650, 730, $770,780,810,830,850,870$, 890, 2000, 2010, 3000,
NV7000, $7200,7800,80$

| $8300,8400,8500,7800,8050,8150,8170,8200$, |
| :--- | NV8610, 8620, NVG11, 14, 16, NVG7, 10, 12. $15,18,30,130,400$

AG $1000,1050,1200,1500,2100,2200,6500$, $6810,7500,7510$, NVH70
NVG9
NVG120 NVG9, NGG120
AG6840, $6720,7150,7330$
140 p 7355, 7650, NVH65, 75, NVJ30, NVL20, 23, 25, 28, NVG300, NVF65, NVF70, NVFS1 NVFS 100 , NVG $19,20,25,33,40,50$. NVV8000
NVD48, NV NVD48, NVD80, NVG21 NVG45 $\quad \mathbf{1 4 0 p}$ NVJ700PX 140p
NVHD100,
140p NVHDTA0,
PINCH ROLLER ASSEMBLY $\quad 1125$ AG5150, 5250, 5700, 6024, NVD38, 48, 80. NVF55, $65,70,75,77$,
NVFS $1,100,200,88,9$
25. 28, $300,33,40,45$, , NVG 19, 20, 21, 22, NVG50, NVH65, 75, 77, NVJ $30,33,35,37,40$, $42,45,47$.
NVL $20,23$.
NVL20, 23, 25, 28, NVW 1
35, 300 p

N.E.C

N830, 831, 832, 833, 895
PVC $2300,2400,740,744,746,760,764140 p$ 766
DX1000, 1600, 1800, 2000, 3000, N9012, 9013, 9014, 9016, 9033
N9034, $9053,9054,9055,9056,9066,9096$, 9110, $9120,9510,9520$
N 9530,9610 PX 1200 N9530, 9610, PX 1200
DS 6000 G , DX4000, N907

NS7000 ORION

 ORION$\mathrm{VHI}, \mathrm{VH}$ VC150, 180, VH3, 33, 200, 201, 205, 212, 250, 254, 28,
VH404, 555, $700,704,712,770,780,844,900$, 1000,2948, 3030, 3312 VHF2A, VP2948
COMB 15000,16000, HVO3, LVH50, NEVH, 140 p NEVHM, NEVHML,
TVP230RC VCP VH
TVP230RC, VCP, VH04, 30, 103, 300, 358, 360, $362,400,416,512$,
VH530, 532, 535, 536, 600, 630, 635, 640, 666, VH800, 820, 850, 888, 89
974, 1012, 1040, 1050,
VH1050,
VH1060, 1070, VH1 100 , 1120, 1204
$1500,1660,1800.2004$,
VH2151, 2308, 22042400, 2500, 2600, 2700,
VH2960, 2970, 3050,
VH3060, 4000, 4008, 4010, 4012, 4015, 4015 4020, 4300, 5020,
VP 10, 200, 220, 225, 245, VR821, 925, 1032,
2949, 2959, 2957, 2966, 2979, 2980, VTV300,
$\mathrm{VXL20,25}, 30,140 \mathrm{p}$
PHILIPS
VR6460 VR6920
VR6460 VR6920
VR2020, VR2021, VR2022, VR2023,
VR2024
VR6711
VR6540

DV856, 586, VR702, 703, 6485, 6585,
$\left.\begin{array}{c}140 \mathrm{p} \\ 140 \mathrm{p}\end{array} \right\rvert\,$

VR445, VR6442, VR6542, VR6643 VR6843 140 p
VR6943. 44 S89 VR6943, 44 SB9 DV464, 652, VR2220, 2300, 2324, 2330, 2334,
2340,2350 $2340,2350,2414$, VR2480, 2485, 2486, 2489, 2490, 2498, 2840, 6462, 6463, 6464, 6560, VR6660, 5860, 6861, 6862, 6863 N-1700, VR2870
VP2025, VR6580, VR2025, VR6580, VR658 , 6648
PRESSURE ROLLER ASSEMBLY PS $403-40205$ DV186, 190, VR211, 2115, 212, 213, 223, 286, 291, $292,311,312,313$,
VR $3210,3219,322,3229$, VR3210, 3219, 322, 3229, 323, 535BO, 486, VR201, 202, VR203, 302, 303, 305, 6180, 6182 . $6185,6285,6290,630,6390,6391,6393$, VR6291, 6293, 6362, 6367, 6390, 6391, 6393, 6467, 6468, 6470, 6561
VR6570, 6581 VR6670, $6676,6710,6760,6761$, 6762, 6870,6970,
VR6975, 86B1, 63 SB7, $68 \mathrm{SB4} 41$ 71SB4, 71SB5, 72SB8, 72SB8, 92SB31, 200VV1, 200V2,
20RW7, 210V1, 210V2, 2S801, $2 \mathrm{SB12}, 30 \mathrm{VV}, 31 \mathrm{DV} 1,310 \mathrm{VZ}, 31 \mathrm{DV} 33 \mathrm{SB} 02$, ${ }^{3 S B} \mathbf{S O 3}$,
3SB053SB11 3SB123SB13 7229, 723

22, 332, 422, 4229, VR501

PR38 ${ }^{140 \mathrm{p}}$
VHR $1100,1110,1150,1200,1300,1500,2100$, 2300, 2370, 2500,
VHR2700, 3330, MVR220
VTC5000, 5150, 5300, 5350, 5400, 5500, 6000, 6010, 6500, 9100,
VTC9300, VTCM10, 20, 11, 21, 30, 31, 40, 50, VPR5800 VHR $3100.3300,3310,3400,3500,3700,3800$,
VHRD500, 700 ,
$\begin{aligned} & \text { 140 }\end{aligned}$ VHRDS500, 700
VTC3000
VHR $220,130,14,141,143,14,150,151,153$, 154, 15, 16, 17, 194, 22
OVHR23, 235, , 240, 244, 250, 251, 274, 27, 297, $310,330,335,350,390$, VHR $4100,4105,4150$ $4200,430,4300,4350,4400,474,4770,5080$, VHR5100, $5200,5300,5350,5600,5700,6850$, $7100,7200,7250$, VHR $7260,7300,7400,7440$, $7500,7520,7530,7540,7700,774,780$,
OVHR $7810,8000,8070,8100,8200,8250$ 8500,8800 VHRD4 $400,4410,4500,4600$ $\begin{array}{ll}\text { 4610, 4710, 4890, 6700, VHRS } 700 & 140 \mathrm{p} \\ \text { VCR }\end{array}$
VCR100
VHR120, 135 , 150, 190, 4150, 4160, 4350. 140p VHR 120, 135, 150, 190, 4150, 4160, 4350,
$5200,5240,5350,7200,7250,7260,7700$, VHRD4410, 4610, 4710, 4890, 5450, VHRS700
VHR $3100,3200,3300,3310,3400,3700,3800$ VHRO500, 7000
PINCH ROLLER

SHARP

VC200, 381, 383, 384, 385, 386, 388, 390, 393. 800, 2300, 3300,6000
838,9100, 9300,9400,
VC9500, 9600, 9700, 9800 140p
VC300, 387, 402, 471, 473, 477, 481, 482, 483, 486, 488, 496, 500, 571,
$573,581,582,583,584,585,8481$, VC5F3,
VC108, 208, 405, 408, 550, 600, 651, 671, 674.

VC699, 700, 772, 750, 779, 780, 781, 7810, 782, 782MK2, 7822, 783, VC785, 786, 787, 793, 800, 7810, 7822, VCT72 VC6F3, VC6V3, VCA 100, 102, 104, 131, 140,
$170,202,203,211,234,303,501,502$, VCA602, 5011, VCD801, 802, 851, 852, 881
882, VCM73, VCT73, VCT72, VCB351
VC220

140p
VCA10, 30G, 60, 103, 105, 106, 111, 113, 131,
$211,244,254,33,35,36$,
VCA
$52,53,59,40,42,454,46,47,48,50,505,51$,
$52,53,54,55,57,58,505$,
VCA60, 505, 615, 62, 63, 67, 68, 1031, 11613 , VCB311, 320 , VCBS97, VCC805, 806, 810,81
VCH80, 81865,910 VCS 100, VCT VCH80, 81, 865, 910, VCS 1000, VCT310,
VC780, 790 VCA10, 103, 1031, 105, 106, 211 $244,254,255,30,35$,
VCA $340,43,47,50,60,605,615$, VCD806.
815, VCH80, 81, 83, 85 ,
VCH865, 87, 910, VCS 1000, VCT212, 310, 410 , 510, 610, VCTI314, VCTS313

SAISHO
VHL3, VR1000, 2000, 2500, 3200, 3300, 3500,

$3600,3650,3800$, VRS 4400, VRS $5000 \quad 140 \mathrm{p}$ | $3600,3650,3800, ~ V R S ~$ | 4400, |
| :--- | :--- |
| VR 3400 | 5000 |
| 140 p | |

SAMSUNG

SV716, 717, VB510, 520, 610, 616, 617, 619, 620, 626, 627, 629, 900
$\mathrm{V} 910, \mathrm{~V} 1510,520,611,616,621,626,900$,
910, VX510, 520, 616.
VX617,619,626,627,629 140p SV $\times 301,303,305,307,319,322$, VB710, 713, $750,770,971,8220$, VB8225, , $17110,730,750$
$770,790,8220,8225,970$, V $\times 710,712$ $V \times 720,730,750,770,790,825,8225,970$, VX720, 730, 750, 770, 790, 825, 8225, 970,
$971,972,8220$, PX $980,981,982$, SE9000, $9001, \mathrm{SX} 7120,7121,7220,7221,7230$, SX7301, Vk8220,

MODE SWITCH

NV2000, 2010, 7000, 7200, 7800 (VS50048) NV230, 260, 430, 810, 870, 2300, 4300 (VSS0110)

NV830 (VSS0091)
NV300, 333, 340, 366, 688, 777, 778

(VSS0060

NVG21, 25, NVH65, NVD80 (VSS0175A)
$£ 3.50$
£2.25
£2. 10
$£ 3.75$
£2.00

AUDIO CONTROL HEADS

AMSTRAD OAIGINAL NO: 150751
Used on: AMSTRAD TVR1, 2, 3, VCR4600, 4600 MKII, 4700, FUNAI VS2, VCR $4600,4800,5200,5600,6600$, VIP3000, 5000 Also fits: FIDELITY, FUNAI, HINARI, PROLINE, SCHNEIDER, TOWADA, UNIVERSUM ORDER CODE: AH01 PRICE: 1350p
AMSTRAD ORIGINAL NO: 153134
Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600, 8602, 8603, VCR8604, $8700,8704,8714,8800,9005,8244$
Also fits: ANTECH, BONDSTEC, CASIO, CROWN, FID
Also fits: ANTECH, BONDSTEC, CASIO, CROWN, FIDELITY, GOLDHAND, GRANADA, HINARI, MARQUANT, OMEGE, PROFEX, SCHNEIDER, SEG, SENTRA, SHINTOM, TASHIKO, TATUNG, TOWADA,
UNIVERSUM $\begin{array}{ll}\text { UNIVERSUM } & \text { ORDER CODE: AHO2 PRICE: } 1450 \mathrm{p}\end{array}$

Replacement Audio Control Video Sound Head for National Panasonic

PART NUMBER	MODELS	PRICE
VBR 0091	NVG7 etc	875 p
VBR0050	NV300, NV340 atc	875 p
VBR0061	NV777 etc	875 p
VBR0103A	NV250, NV450 etc	625 p
VBR0125		625 p

VIDEO TOOLS

VIDEO CLEANING STICKS
Price 17p each 15 p each pack of 10pcs 13p each pack of 25pcs Order Code: SP14
VIDEO MAINTENANCE TOOLS
Set of 8 Allen keys packed in a plastic wallet
Order code: TOOL 9, Price 125p Specifically designed for video maintenance

Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads. Order code: TOOL 8, Price 600p

VCR ALIGNMENT KIT

CONTAINS: SET OF 7 HEAD \& TAPE PATH ALIGNERS

SET OF 8 ALLEN KEYS

- RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL
- RCA ADJUSTMENT TOOL FOR TAPE GUIDE POSTS
- RCA TYPE BACK TENSION TOOL
$0.77 \mathrm{~mm} \quad 0.90 \mathrm{~mm}$
$1.60 \mathrm{~mm} \quad .50 \mathrm{~mm}$
- TENSION ADJUSTMENT TOOL FOR VARIOUS USES - VCR ADJUSTMENT TOOL

TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

This transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

BACK UP BATTERIES

PHILIPS

Part Nos: 138-101138, 138-10313 1.2v 90mAH Order Code: BB01
Part Nos: $138-10229,2.4 \mathrm{~V} 100 \mathrm{mAH}$
Order Code: BB02

Price: 70p
Price: 135 p

FERGUSON

Part No: 00E6-067-0011.2V 100mAH
Order Code: BB03
Part Nos: 00E6-606-8001 2.4V 100 mAH
Order Code: BB04
Price: 90 p
Price: 150p

SATELLITE PSU REPAIR KITS

MAKE \& MODEL	CODE	PRICE
PACE PRD800, PRD900	SATPSU1	$600 p$
PACE SS9000, 9200, 9010, 9210, 9220	SATPSU2	$550 p$
AMSTRAD SRD510, SRD520	SATPSU3	600 p
AMSTRAD SRD500	SATPSU4	$600 p$
AMSTRAD SRX340, SRX345, SRX350	SATPSU5	$600 p$
PACE D100/150	SATPSU6	$650 p$
CHURCHILL D2MAC	SATPSU7	$650 p$
PACE MSS100	SATPSU8	$1100 p$

SATELLITE TUNERS
PACE PRD800/MSS200 2Ghz (221-2077062)
ORDER CODE: TUNER01 PRICE: 1400p + VAT
PACE PRD900/MSS1000 2Ghz (221-21770112)
ORDER CODE: TUNER02 PRICE: 1400p + VAT
SWITCH MODE TRANSFORMERS
PACE 9000
ORDER CODE: PACE9000 PRICE: 800p
PRD800/PRD900
ORDER CODE: PRD800 PRICE: 550p

MAKE \& MODEL	CODE	PRICE
PACE MSS200/300 APPOLL	SATPSU9	900 p
PACE MSS500/1000	SATPSU10	$1230 p$
FERGUSON SRD4	SATPSU11	$650 p$
ECHOSTAR SR5500	SATPSU12	$1600 p$
ECHOSTAR 6500/7700/8700	SATPSU13	$2750 p$
AMSTRAD SRD600	SATPSU14	$2600 p$
MIMTEC (Surensen)	SATPSU15	$700 p$
AMSTRAD SRD700, SR950, SRX100, 301, 501,502, 1002, 2001, SRD2000 SAT250	SATPSU16	$650 p$

Abstract

\section*{SATMETER}

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite RX powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *Input impedence: 70 Ohm
* Power amplifier: 18db *Detection Range: -60 to -10 DBM
* Max. input signal: - 10 DBM

ORDER CODE: TOOL22
PRICE: 8500p

REPLACMMENEM		
GRUNDIG	SONY	SONY
PART No: 29703, 29102 USED ON: C7500, C8500. C8502, C8712 . . ETC Order Code: SW1 Price: 100p	USED ON: KV1612, KB1612, KV1614, KV2052, V2056 KV2062, KV2067, KV2212 . . .ETC Order Code: SW5 Price: 130p	USED ON: KV2020 (POWER SWITCH 21 mm +Remote) Order Code: SW6 Price: 130p
PHILIPS	USED ON:	
$\begin{aligned} & \text { USED ON: } \\ & \text { K30, K35, K40, KT3, KT4 } \end{aligned}$	KV1400, KV1440, KV2040, KV2060 (POWER SWITCH 26mm)	SONY 2 PIN FUNCTION SWITCH
Order Code: SW13 Price: 95p	Order Code: SW12 Price: 110p	Order Code: SW9 Price: 35p

NB, All fuses are made in the UK and fully meet BS4265 \& BS1362 safety standards and should not be compared with cheap imported types

\section*{20mm CERAMIC TIME LAG
 CURRENT RATING \quad ORDER CODE | PRICE |
| :--- |
| $100 p$ |
| $100 p$ |
| $100 p$ |
| $85 p$ |
| $85 p$ |
| $85 p$ |}

38mm CERAMIC TIME LAG
CURRENT RATING \quad ORDER CODE
PRICE
**ALI, THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES **
\section*{SPRING HOOK}
Spring Hook, to unlock springs in audio tape recorders \& VCRs ORDER CODE: TOOL20
PRICE: 265p

FAULT FINDING / COMPARISON BOOKS

Satellite Fault Finding Guide Issue 1 Listing about 1,000 faults for over a range of 24 different brands. Order Code: BOOK05.
Price £8.50 - No VAT.

Video Recorders Edition 51997
Over 300 pages packed with more than 5500 faults for different brands
Price $£ 15.00$ - No VAT. Order Code: BOOK01

SERVICEAIDS			
DESCRIPTION	VOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75ML	SP01	145p
SWITCH CLEANER	176ML	SP02	155p
SILICONE GREASE	200ML	SP03	180p
FREEZE IT	170ML	SP04	295p
FREE2E IT	400 ML	SP16	580p
FOAM CLEANER	400ML	SP05	180p
ANTI-STATIC	200ML	SP06	180 p
AEROKLEANE	200ML	SP07	200p
AERO DUSTER	200 ML	SP08	340 p
AERO OUSTER	400 ML	SP17	580p
PLASTIC SEAL	200ML	SP09	250p
GLASS CLEANER	200 ML	SP10	$160{ }^{\text {p }}$
COLDKLENE	200ML	SP13	220p
EXCEL POLISH 80	200 ML	SP18	160p
ADHESIVE 120	500 ML	SP19	250p
LABEL REMOVER 130	200ML	SP20	260 p
REFURB 140	400 ML	SP21	260 p
TUBE SILICON GREASE	50 GRAMMES	SP11	225p
TUBE SILICON SEALANT WHITE	75 ML	SP22	250p
TUBE SILICON SEALANT CLEAR	75 ML	SP23	250p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	150p
DRIVE CLEANER	200ML	SP24	150p
SCREEN CLEANER	200ML	SP25	145p
COMPUTER CARE KIT	-	SP26	2100p
All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:			
300p for $2-5$ cans $\quad 500 \mathrm{p}$ for more than 5 c			

TELEVISION Edition 7

This new A5 size guide lists more than 9600 faults and to approx. 474 pages in size. Price: 1650 p only - no VAT ($+£ 2$ Postage) Order Code: BOOK02

Satellite Repair Manual Edition 5

346 pages of receiver faults plus notes and general information such as many useful button sequences for resetting parental lock codes, resetting installation choice to factory defaults.
Price $£ 16.00$ - No VAT plus Postage $£ 1$ Order Code: BOOK03

SOLDERING ACCESSORIES

DESCRIPTION

ANTEX SOLDERING IRONS
25 WAIT 240 VAC (XS 25 WW 240 V) S101 900 p
$\begin{array}{lll}25 \text { WATT } 240 \mathrm{VAC} \text { (XS25W 240V) } & \text { S101 } & 900 \mathrm{p} \\ 15 \text { WATT } 240 \mathrm{VAC} \text { (XS15W 240V) } & \text { S102 } & 900 \mathrm{p}\end{array}$ 15 WATT 240 VAC (XS15W 240V)
25 WATT SPARE ELEMENT 15 WATT SPARE ELEMENT
SOLDERING STAND \& SPONGES
SOLDERING STAND (MADE BY ANTEX)
SPARE SPONGE
SOLDER
18 SWG 500 GRAMMES S $110 \quad 500 \mathrm{p}$

20 SWG 500 GRAMMES	S111	500 p
22 SWG 500 GRAMMES	S 112	700 p

DESOLDERING AIDS

SOLDER MOP STANDARD GAUGE $1.2 \mathrm{MM} \times 1.5 \mathrm{M} \quad \mathrm{S} 107 \quad 100 \mathrm{p}$ SOLDER MOP $1.2 \mathrm{MM} \times 10 \mathrm{M}$ K | OESOLDERING PUMP | S105 | 320 p |
| :--- | :--- | :--- |
| SPARE NOZZIE | S106 | 60 p |

SEMICONDUCTOR COMPARISONS 1999 With over 650 pages listing more than 34,200 Semiconductors with suitable alternatives complete with descriptions and base information. Price: 1900 p only - No VAT (+ f2 Postage). Order Code: BOOK04
SEMICONDUCTOR COMPARISONS 1999
The new 1998 Jaeger Semiconductor comparison with 1100 pages packed with information on over 95,000 semiconductors in much greater detail plus marketing data on SMD devices and a separate generic table of all the type designations.
Price: $£ 47.00$ only - No VAT ($+£ 5$ Postage). Order Code: BOOK06

I.C. PROTECTORS

ICPF10, ICPF15, ICPF20, ICPF25, ICPF38, ICPF50, ICPF75
ICPN5, ICPN10, ICPN15, ICPN20, ICPN25, ICPN 38, ICPN50, ICPN75

PRICE: 30p EACH ONLY

CASSETTE DC MOTORS

6 V MOTOR	170 p
9 V MOTOR	170 p
12 V CW MOTOR	170 p
12 V CCW MOTOR	170 p
13.2 V MOTOR	290 p

迤

CASSETTE TAPE HEADS

MONO HEAD 90 p
STEREO HEAD $\quad 110 \mathrm{p}$
MINI HEAD 150 p
AUTO REVERSE HEAD 200 p

CD PICK UPS

Medela \& Deacription	Order Coda	Price
aiwa		
\times ¢007	KSSS151A	1900p
DX-990A, DX-DIA	KSS152A	1800 p
CXL60, CXL66G, CXL80, CXN3100, CXN320, CXN3300, CXN360, CXN400, CXN430, CXN540,		
LCX60, LCX66G, LC $\times 70 \mathrm{M}, \mathrm{LC} \times 80, \mathrm{M} 7400, \mathrm{M} 75, \mathrm{NS} \times 320, \mathrm{NS} \times 360$, NS $\times 400$, NS $\times 130$,		
NXS990, NSX992, NSX999, NSXD636, NSXD939, NS XV20, SXFN550.SXFN520, XC300, XC550 XC750 XC900 \times C950 XCN $992 \times 6320 \times 6360 \times 6400 \times 6990203000 \mathrm{M}, 703100 \mathrm{M}$	KSS152A	1600p
LCX8G, LCXAP1, XC002, XC004, XC005, XC777	KSS2108	2000p
XP31, XP33, XP55, XP80G	KS220A	2500p
XP6.XP7	KSS331A	3400 p
AKAI		
CD73, DC93	KSS151A	1900p
CD25, CD26, CD27, CD32, CD36, CD37, CD52, CD55, CD57, CD550, C0670, CD69, CD750, CD79,		
CDM480, CDM600, CDM670, CDEM770, CDM959, MX550, MX570, MX650, MX670, MX750, MX950	KSS210A	1300p
OENON		
DCD150011, DCD1520, DCDE3520	KSS151A	1900p
DCD1400, DCD600, DCD800	KS152A	1800 p
	KSS210A	${ }^{1300}{ }^{\text {P }}$
DCD1015, DCD 1290, DCO2060, DCD2060G, DCD315, DCD480, DCD580, DCD615, DCD715.		
DCD825, DCD890, DCD895, DN2000F	KSS240A	2000p
goldstar		
CDS952A, CD952AJ, CD952L, CD952SJ, FFH101KL, FFH101WL. FFH222AL, FFH272L,		
FFH333L, FFFH373K, FJ606, FR606L	KSS210A	1300p
CO320AL CD630S/2, FFH212 2 LLFFH212E	KSS2108	2000p
Gaundig		
CO360, CO435	HOPM3	2150p
CCO300, CD101MCD904, MC10, NEW ORLEANS CO	KSS210A	${ }^{1300}{ }^{\text {p }}$
KRCD 100, RR1900CD, RR3100CD, RR4000CD, RR610CD, RR700CO	KSS2108	2000p
CDP60, CDP90	KSS220A	2500p
CDP65	KSS331A	3400 p
CD905	OPTIMA5	1800 p
HITACHI		
DAW560	HOPM3	2150p
FX-10	KSS210A	${ }^{1300}{ }^{\text {p }}$
AXC10	KSS210日	2000p
J.v.c.		
1990-1992, LATE 1987. 1988 - XLE 300BK, XLE31BK, XLE51BK, XLE9008K, XLME91BK, XLV101BK,		
CDRADIO CASSETIE, MIN SYSTEMS-MODELS 1990-1992	OPTMAAS	5000p
XL-M504BK, XL-M505TN, XL-M508, XL-M509, XL-M705TN, XL-V1318K, XL-V151TN, XL-V2218K,		
1994 ONWAROS - CAE 488 BK , CAMCG7, CAMXG9, CAS20BK, CAS30BK, VAS50, CAS60RBK, MXS20, MXS30, MXS60, PCX105, PCX130, PCX95, RCX230, RCX320, RCX520, RCX620,		
RCX720, UXA4, UXA5, UXA55, UXC7, UXT1, UXT3, XLF145, XLF 116 , XLF215, XLF216,		
XLV274BK, XLZ463TN, XLZ464BK, XLI574, XLZ674, XTM X 67 , XTMX $99, \times T S 60$	OPTIMA6S	1600p
KENWOOD		
DP47, DP660SG, DP8020, OP87, L10000	KSS152A	1600p
DP1030, DP1510, DP2010, DP2030, DP3010, DP3030, DP3050, DP4030, DP491, DP5010, DP5030, OP5040, DP520, DP7030, DP7040, DP7050, DP730, DP920, DP930, DP950, DPM650,DPM6630.		
DPM 7730, DPM850, DPM991, DX6620, M225, M25, M450, M850, PD3030, PDM991, RDX25,		
	KSS210A	1300p
DPC42, DPC72, DPC77, DPC80, DPC92	KSS220A	2500p
OP1050, DP2050, OP3060, DP501, DP5060, DP722, DP76, OP85, OPE9, M77A, PD3060.		
UD502, UD70, UD701, UD90, XE5	KSS240A	2000p
DPC321, DPC521, DPC531, DPC631k, DPC721, DPC731	KSS331A	3400p
DP1060, DP2060. PART No: RCTRH8136AFZZ	RH8136A	4500p
PaNasonic		
SLP177A, SLP202A, SLP212A, SLP222A, SLP277A, SLP377A, SLP477AK, SLP477A, SLPG100A, SLPG200A, SLPG400A, SLPG500AK, SLPG500AS, SLPJ24A, SLPJ26A, SLPJ27A, SLPJ28A, SLPJ325A, SLPJ325A, SLPJ37A, SLPJ38A, SLPJ46A	691-30209	5500p

Modols \& Dascription	Order Code	Price
SAD30, SLCH9, SLP150, SLP170, SLP200, SLP202, SLP222, SLP230, SLP250, SLP333, SLP370G, SLP400C, SLP555, SLP777, SLP999, SLPA10, SLPC20, SLPC25, SLPJ25, SLPJ26, SLPJ27, SLPJ37, SLP J45, SLPK25, SLPK26, SLPS50, SLPS70, SLPS700, SLPS840, SLP5900	SOAAD70A	2350p
PHIL		
AZ8304, CD070, CDO80, 690, 910, 920. PART NO. 4822-691-20768	4822-691	3100 p
CD100, CD130, CD1380, CD1482, CD200, CD204, CD210, CD300, CD303, CD304, CD380, CO480, CD482, CD500, CD502, CD582, CD583, CO584, CD610, C0620, CD630, CD780,		
CD781, CD782, CD840, CD883, CO960, CDF 104, CDM419, FCD185	691-30209	5500 e
AS440, AS445, AS540, AS640, AZ8048, AZ8640, CD070, CD080, CD091, CD183, CD165. CD690, CD710, CD720, CD732, CD740, CD750, CD910, CD920, CD935, FW17, FW21.		
FW26, FW330, FW36, FW360, FW 38011, FW40, FW41, FW46, FW56, FW66, FW68	CDM12. 1	1800p
CD1210/40	CDM12.	2200 p
AZ8006	KSS210B	2000 p
FW11	OPTIMAES	18000
PIONEER		
PDM400, PDM410, PDM500, PDM510, PDM600, PDM610, PDM700, PDM710, PDM730, PDT303, POT 403, PDT503, PDX940M, PDX950M. PDZ560T, PD772T, PD773T, PDZ81M, PDZ82M, PDZ83M, PDZ960M, XDZ53T XDZ54T	KSS151A	1900 p
N32, N90M, PD101, PD201, PD32, PD41, PD4500, PD4700, PD52PD5700, PD65, I PD6500, PD6700, PD7700, PD8700, PD970, PDCP420, PDCP520M, PDCP520T, PDJ4007, PDJ500T, PDJ800M, PDJ900M, PDM430, PDM450, PDM550, PDM630, PDM650, PDM750, PDM901, PDP710T, PDP720T, PDP910M. PDP920M, PDS501, PDS601, PDS701, PDS701G, PDS901, PDT310, PDT510, PDZ, PD7570T, PDZ74T, PDZ84M, PDZ970M, PXA1349, S125CDT, S136CDT, S303CDM, S303CDT, S5050M, S505DT, S707DM, S707DTM, S999DM, S9900T, XCP410M, XCP410T, XD254T, XDZ55T, XOZ24M, XDZ84T XRP310, XRP320	PEA1030	4400 p
PDM 400, POM410, POM500, POM510, PDM600, POM610, POM700, PDM710, PDM730, PDT303, PDT 403, PDT503, PDX940M. PDX950M, PD7560T, PDZ72T, PDZ73T, PDZ81M, PDZ82M, POZ83M, POZ960M, XDZ53T, XOZ54T, XDZ55T, X0Z62, XOZ62M, XOZ630, XRZ82	PWY1009	48000
SAMSUNG		
CO20	HOPM3	2150p
CO1200, CD1310, SCM-6000, SCM6990	KSS2 10A	1300 p
RCD1200, RCD130, RCD 1350, RCO 1600 , RCD2600, RCD990, RCD995, SCM6900	SOH90T4N	36008
SANYO		
DCFS3, DCT55, DCX502, DCX701, DCX702, DCX802, DCX891, DCX891N, MCOZ10.	614218	23000
DCFS5, MCD450K, 660K, MCDZ30 L 60F. PART No. 8142205006	614220	5800 p
DCX $1000 \mathrm{MD}, \mathrm{DC} \times 1003, \mathrm{DC} \times 900 \mathrm{MD}, \mathrm{DCX} 903, \mathrm{DCX} 915$	KSS210A	1300 p
DCX210, DCX220, OCX993, DCX994, MCDMS40L, MCDMS50L, MCDMS660L, MCDZ1L,		
MCDZ2L, MCDZ3L. PART No. 6142391303	614239	3300 p
DCD12. PART No. 6450055966	645005	3700 p
MCD231L, MCOZ41L, MC0261L, MCO27IL	KSS2108	2000p
sharp		
CD-111, CD-301, CD-302, CD-304, CD-310, CD.C3, CD-L700, CD-L800, CD-U1, CD.U10, CD. $\times 10$, $\mathrm{CD}-\times 12, \mathrm{CD}-\times 15, \mathrm{CD}-\times 16, \mathrm{CO}-\times 17, \mathrm{CD}-220, \mathrm{CD}-\times 9, \mathrm{CKL} 650, \mathrm{CMS95CD}, \mathrm{DX}-150, \mathrm{DX}-160, \mathrm{DX}-450$, DX-460, DX-461, DX-650, DX-660, DX-999, DX-A3, DX-N45, DX-R554, DX-R7, DX-R75, DX-R750, DX-R77, DX-R770, DX-R820, DX-R840, DX-Z100, DX-Z1000, DX-Z1500, GFCD55, OT-30CD, OT-33CD, OT-350CD, OT-37CD, OT-38CD, OT-CD20, OT-CO33, RS95, SC-77CD, SC-99CD, SC-RS95, SG-A1,		
SG-W1CD, SG-W2CD, SYS 302, ZCD7CD. PART No. RCTRH8122AF2Z	RH8122A	5750p
QT-50CO, OT-60CD, QT80CO. PART No. RCTR H 1 24 AFZZ	RH8124AF	2900p
DXA-840B. PART No. RCTTRH8130AFZZ	RH8130AF	2900p
CDS $360 \mathrm{E}, 360 \mathrm{H}, 370,450 \mathrm{H} / \mathrm{E}, \mathrm{CMS} 150 \mathrm{CDH}, \mathrm{CMSR} 400 \mathrm{CDH}, \mathrm{CP} 150, \mathrm{CPR} 400, \mathrm{CPS} 360,370$. PART No. RCTRH8136AFZZ	AH8136AF	4500p
SONY		
KSS240A	KSS240A	2000p
KSS121A	KSS121A	3500p
KSS151A	KSS151A	1900 p
KSS210A	KSS210A	1300 p
KSS2408	KSS2108	2000p
KSS220A	KSS220A	2500p
KSS331A	KSS331A	3400 p
KSS360A	KSS360A	2600p
TECHNICS		
SLP200, SLP230, SLP250, SLP333, SLP555, SLP717, SLP999,SLPA10, SLPC20, SLPJ25, SLPJ45, SLPS700, SLPS900	SOAD70A	2350p

Description	Code	Price									
AKAI			A512120/230	RC900	650p	PANASONIC			SONY		
RC-V10A	RC876	650p	A514790	RC901	650 p	EUR51200	RC200	650 p	RM604, RM605, RM606	RC140	650p
RCV 37 B	RC891	650 p	A5088470	RC902	650p	TC2200	RC204	650 p	32 CHANNEL	RC140	650p
V25A	RC896	650 p	A518612	RC903	650p	VSQ0357/NV730	RC202	650 p	RM613	RC141	650p
DECCA			SCL002	RC904	650 p	TNQ1621	RC203	650 p	RM632, RM636	RC160	600p
RC70	RC894	650p	C2096 A511940	RC905	650 p 650 p	PHILIPS PC50025154			TATUNG		
FISHER			A511940 655602 H	RC906 RC1920	650 p 650 p	RC5002,5154 KT3 NON TEXT	RC134 RC135	650 p 650 p	FXA RC70	RC877 RCB83	650 p 650 p
RC905B	RC879	650p	ITT			69117032	RC178	650 p	RC70 FASTTEXT	RC883 RC894	650p
GRANADA			IFB13, 14, 15	RC143	650p	69117194 RC5991-UNIV	RC180 RC300	650 p	FX70 FASTTEXT TELEFUNKEN	RC894	650p
UNIVERSAL TEXT	RC309	${ }^{650 p}$	FS4 ${ }^{\text {a }}$	RC148	650 p	RC59991-UNIV RC38	RC300	550p 650 p	TELEFUNKEN FB632		
MK4 TEXT, 70155G, 70115G, 70133 G	RC880	650 p	RG305	RC305	650p	RC38 KT3 TEXT	RC301	650 p 650 p	FB632	${ }_{\text {RC632S }}$	650p
95288 E	RC882	650 p	RG306	RC306	650 p	KT3 TEXT RC5352	RC5301	${ }^{6500}$	FB639 ${ }^{\text {THORN/FERGUSON }}$	RC639	650p
94490 D	RC884	650 p	FS9/1-10/1	RC307	650 p	RC5352 RC5375	RC5352 RC5375	650 p 650 p	THORN/FERGUSON		
GRUNDIG			VS5 RUK	RC308	650 p	RC5375 RC5 STANDARD	RC5375 RC300	650p 550 p	$3 V 35-42$ $3 \mathrm{~V} 1-32$	RC342 RC344	600 p 650 p
TP160E	RC107 R 380	650 p	VS4-1	RC308	${ }_{650} 6$	RC5903	RC5903	650p	$3 \mathrm{~V} 31-32$ $3 \mathrm{~V} 7-58$	RC344 RC628	650p 650 p
TP200, TP300	RC380	650 p	MULTICONTROL (17C20)	RC31 \dagger	650p				$3 \vee 57-58$ TX10 TEXT	RC628	650p 575p
$\begin{aligned} & \text { TP400 } \\ & \text { TP590-600 } \end{aligned}$	RC401 RC600	600 p 650 p	LOEWE			SALORA	RC190	650 p	TX10 TEXT TX10 STEREO TEXT	RC732 RC738	575p 575p
TP390, TP610	RC610	650p		RC146	650p	${ }^{86173}$	RC882	650p	TC9-90.100	RC740	600p
TP621	RC612	650 p	MATSUI			SANYO ${ }_{\text {RC218, }}$ RC222, RC228, RC238			3V55, FV11	RC783	650p
TP630, TP650	RC650	650p	010270601	RC889	650 p	RC218, RC222, RC228, RC238	RC140 RC878	650 p	TX 100 FASTTEXT	RC789	650p
TP666	RC660	650 p	Vx70	RC892	650 p	JXDE	RC884	650 p	TX 100 ST, FASTTEXT	RC789	650p
TP661	RC66 1	650p	NOKIA			VHR2300	RC890	650 p	PROFESSIONAL	RC790	650p
HITACHI			SATELLITE	RC550	650p	RC628	RC865	650 p	TOSHIBA		
CLE800-CLE830	RC140	650p	ORION			SHARP			CT937	RC950	650p
A617402/655602	RC1920	650p	RC53	RC892	650p	G0121CESA, 123CESA, 204, 251	RC140	650 p	CT9117	RC951	650p

WE STOCK REMOTE CONTROLS FOR OVER 5,000 DIFFERENT MODELS RING FOR MODELS NOT LISTED ABOVE ON 01819002329

[^2]2 way Preprogrammed Universal Remote

- Replaces up to 2 remotes (TV/Satellite)
- Simple key arrangement

Order Code: 2 WAY
PRICE: 925p

REPLACEMENT LINE OUTPUT TRANSFORMERS

Part No.	Code	Price	HITACHI			45150119	LOT169	1500p	TLF 14520 F	LOT40	1500p	094-01020/0.7	LOT59	1400p	1-439-303-31	LOT94	1300p
AKAI			2424593	LOT44	1050p	45150124	LOT137	1600p	TLF 14521 F	LOT39	1850p	094-010210.6	LOT59	1400p	1-439-303-32	LOT	1300p
45150344	LOT56	1850p	2432101	LOT79	1800p	45150146	LOT136	1600p	TLF 14567 F	LОT39	1850p	094-01027\%.0	LOT186	1825p	1-439-311-00	LOT95	1550p
101-2 14017-03	LOT278	1300p	2432461	LOT169	1500p	45150301	LOT169	1500p	TLF 14568 F	LOT40	1500p	094-01038/0.7	LOT245	1900p	1-439-311-11	LOT95	1550p
101-220005-03A	LOT72	1600p	2432611	LOT80	1800p	45150302	LOT180	1550p	TLF 14584 F	LOT41	1700p	094.01052/0.8	LOT186	1825p	1-439-311-13	LOT95	1550p
D 050/37	LOT27	1450p	2432651	LOT80	1800p	45150304	LOT169	1500p	TLF 14586 F	LOT42	1700p	094-01057/h. 1	LOT285	1450p	1-439-311-31	LOT95	1550p
D 053/37	LOT207	1550p	2432761	LOT169	1500p	45150305	LOT180	1550p	TLF 15606 F	LOT256	2000p	610.018.6620	LOT189	1650p	1-439-311-32	LOT95	1550p
D 056/37	LOT56	1650p	2432981	LOT37	1200p	45150306	LOT168	1500p	TLF 70012	LOT78	1500p	610.018.6637	LOT215	1800p	1-439-331-22	LOT96	1550p
D 059/37	LOT200	1400p	2432981	L0T37	1200p	45150308	LOT22	1250p	TLF 70012 F	LOT78	1500p	SHARP			1-439-331-41	LOT98	1550p
D 069/37	LOT56	1650p	2432982	LOT37	1200p	45150309	LOT178	1500p	TLF 70012A	10778	1500p	RTRNF 1220 CEZZ	LOT39	1850p	1-439-332-00	LOT99	1600p
FCM 2015 AL	LOT78	1500p	2433011	LOTY71	1800p	451503 t0	LOT168	1500p	TLF 70018	LOT274	1550p	RTRNF 1783 BMZ2	LOT202	1600p	1-439-332-11	LOT99	1600p
ferguson			2433012	LOT171	1800p	45150313	LOT30	1250p	TLF 70018 F	LOT274	1550p	RTRNF 1783 CEZZZ	LOT202	1600p	1-439-332-21	LOT99	1800p
00 D-3-508-001	Lотз8	1250p	2433014	LOTV71	1600p	45150314	LOT174	1400p	TLF 70161	LOT278	1300p	RTRNF 1786 BMZZ	LOT211	1850p	1-439-332-41	LOT100	1500p
00 D-3-508-002	LOT38	1250p	2433212	LOT168	1500p	45150315	LOT22	1250p	TLF 70162	LOT72	1600p	RTRNF 1786 CEZZ2	LOT211	1850p	1-439-332-42	LOT101	1450p
$00 \mathrm{D}-3-508-003$	LOT276	1400p	2433291	LOT172	1350p	45150318	LOT192	1550p	TLF 70162A	10772	1000p	RTRNF 2000 B	LOT214	1600p	1-439-332-52	LOT100	1500p
00 D-3.515-001 PL1	LOT276	1400p	2433301	LOT246	1800p	45150319	LOT30	1250p	TLF 70162B	10772	1600p	RTRNF 2002 BMZZ	LOT307	1450p	1-439-333-00	LOT270	1550p
00 D-4-208-001	L0T79	1600p	2433441	LOT188	1900p	45150320	LOT 190	1650p	TLF 70162 G	LOT72	1800p	RTRNF 2002 CEZZZ	LOT307	1450p	1-439-333-11	LOT270	1550p
00 D-4.208-002	LOT79	1600p	2433442	LOT191	1800p	45150322	LOT196	1550p	TLF 77001 B	LOT274	1550p	RTRNF 2003 BMZZ	LOT308	1350p	1-439-333-12	LOT270	1550p
00 D-4-235-002	LOT240	1250p	2433451	L0781	1350p	45150324	LOT194	1550p	PHILIPS			RTRNF 2004 BMZZ	LOT307	1450p	1-439-363-11	LOT268	1400p
$00 \mathrm{D}-4-235-002 \mathrm{HTT}$	LOT81	1350p	${ }_{2433452}$	LOT82	1250p 1250p	45150325 45150326	LOT22	1250p	482214010142 4822140101145	LOT142	1450p	RTRNF 2005 BMZZ	L0T308	1350p	1.439-363-21	LOT268	1400p
$00 \mathrm{D}-4.235-00201 \mathrm{G}$	LOT81	1350p	24334545 243	LOT234	1250p 1600p	45150326 45750328	LOT27	1450p	482214010146	LOT112	1700p	RTRNF 2007 BMZZ	L0T307	1450p	1-439-387-11	LOT311	1450p
$00 \mathrm{D}-4-260-004 \mathrm{HTI}$	L0T38	1250p	2433521	LOT85	1600p 1600p	45150328 45150329	LOT193	14550p	482214010151	LOT102	1700p	RTRNF 20023 BMZZ	LOT310	14500p	1-439-387-21	LOT311	1450p
$00 \mathrm{H}-0.701-2400$	LOT182	1450p	2433521	LOT85	1600p 1250p	45150329 45150330	LOT179	1550p	4882214010161	LOT103	17200p	RTRNF 2023 BMZZ SONY	L0т310	1500p	1-439-416-11	LOT255	1000p
06 D-3-083-001	LOT82	1250p	2433581	Lot83	1250p 1400 p	45150330 45150331	LOT179	1350p	4882214010161	LOT103	12500p	${ }_{3753100}$			1-439-476-12	LOT255	1000p
06 D-3-083-002	LOT82	1250p	2433751	LOT09	1300p	45150334	LOT56	1650p	482214010176	LOT114	1150p	1-439-243-00	LOT91	1600p	1.439-416-21	LOT255	1600p
06 D-3-084-001	LOT23	1400p	2433752	LOT01	1300p	45150335	LOT193	1550p	482214010194	LOT105	1500p	1-439-243-11	LOT91	1600p	1-439-416-23	LOT255	1600p
06 D-3-087-001	LOT23	1400p	2433752	LOT250	1350p	45150338	LOT27	1450p	482214010198	LOT116	1600p	1.439-243-12	LOT91	1600 p	1-439-416-41	LOT255	1600p
06 D-3-088-001	LOT84	1450p	2433891	LOT23	1400p	45150340	LOT200	1400p	482214010201	LOT104	1500p	1-439-243-31	LOT229	1700p	1-439-4 16-51	LOT255	1800p
06 D-3-093-001	LOT204	1600p	2433892	LOT84	1450p	45150341	LOT56	1650p	482214010236	LOT118	1550p	1-439-243-32	LOT229	1700p	1.439-430-21	LOT271	1550p
06 D-3-095-001	LOT87	1000p	2433893	LOT23	1400p	45150343	LOT196	1550p	482214010246	LOT111	1500p	1-439-243-41	LOT229	1700p	154125A	LOT275	1550p
06 D-3-095-002	L0187	1000p	2433952	LOT33	1000p	45150344	LOT56	1650p	482214010247	LOT105	1500p	1-439-244-00	LOT48	1600p	${ }_{37010}$		
$06 \mathrm{D}-333-512.001$	LOT204	1800p	2434002	LOT200	1400p	45150346	LOT201	1550p	482214010254	LOT107	1450p	1-439-244-11	LOT48	1600p	37010	LOT131	1450p
FEIX 10090 DEG	L0104	1500p	2434141	LOT33	1000p	45150350	LOT27	1450p	482214010263	LOT117	1550p	1-439-244-21	LOT48	1600p	3701	LOT131	
$\begin{aligned} & \text { FETX } 90 \text { WHITE } \\ & \text { FETX } 100100 \text { DEG } \end{aligned}$	LOTO6	1650p	2434141	LOT33	1000p	45150351	LOT27	1450p	482214010269	LOT210	1350p	1-439-244-31	LOT48	1600p	${ }^{37012}$	LOT131	
GRUNDIG	Lo	1500p	2434274	LOT44	1050p	45150375	LOT56	1650p	482214010271	LOT208	1650p	1-439-256-00	LOT45	1650p	37014	LOT131	1450p
29201.008 .01	LOT153	1750p	2434274	LOTA4	${ }^{1050}$	45161601	LOT22	1250p	482214010274	LOT123	1450p	1-439-256-11	LOT45	1650p	37015	LOT131	1450p
29201.014.01	LOT140	1500p	2434453	LOTB6	1800p 1600 p	${ }_{731003}$	LOT51	1550p	482214010282 482214010283	LOT104	1300p	1-439-256-22	LOT45	1650p	37016	LOT131	1450p
29201.015.01	LOT149	1400p	2434593	LOT44	1050p	276-16399	LOTA9	1500p	482214010294	LOT125	2150p	1.439-276-21	LOT230	1700p	37017	LOT131	1450p
29201.017 .01	LOT60	1250p	2435062	LOT296	950p	334 В 07803	LOT50	1450p	482214010306	LOT110	1200p	1-439-280-00	LOT92	1600p	37018	LOT131	1450p
29201.018 .01	LOT163	1300p	2435121	LOT87	1000p	3348078030	LOT50	1450p	482214010325	LOT132	1500p	1-439-280-13	LOT92	1600p	37019	LOT131	1450p
29201.018.02	L0T61	1700p	2435131	LOT251	1450p	334 B 08104	$L 0174$	1800p	482214010326	LOT122	1300p	1-439-286-00	LOT46	1300p	1810951	LOT55	1400p
29201.019.01	LOT62	1250p	2435141	LOT282	1300p	334 B OB108	LOT295	1800p	482214010328	LOT124	1450p	1-439-286-11	LOT46	1300p	2433751	LOT01	1300p
29201.019.02	LOT62	1250p	2435301	L0T88	1450p	334 P 18506	LOT51	1550p	482214010349	LOT106	1250p	1-439-286-12	LOT46	1300p	2433752	LOT250	1350p
29201.022 .01	LOT63	1700p	2435671	LOT89	1800p	334 P 18507	LOT75	1500p	482214010353	LOT284	1400p	1-439-286-13	LOT46	1300p	23236023	LOT281	1300p
29201.022.02	LOT166	1600p	2436201	LOT109	1200p	5908-05008A-AA	LOT70	1500p	482214010356	LOT284	1400p	1-439-286-21	LOT46	1300p	23236052	LOT131	1450p
29201.022.03	LOT165	1350p	2436202	LOT109	1200p	D 108/37	LOT49	1500p	482214010367	LOT286	1400p	1-439-288-00	LOT228	1750p	23236098	LOT288	1400p
29201.022.04	LOT165	1350p	2432101-2	LOT79	1800p	DCF 1577	LOT273	1700p	482274010369	LOT109	1200p	1-439-288-12	LOT228	1750p	23236198	LOT288	1400p
29201.022.04A	LOT165	1350p	2433451 H	L0181	1350p	DCF2077A	LOT272	1300p	482214010381	LOT128	1300p	1-439-289-00	LOT47	1400p	23236255	LOT289	1500p
29201.024 .01	LOT65	1500p	2433453H	LOT82	1250p	KFS 60226B	LOT279	1550p	482214010384	LOT 127	1550p	1-439-289-21	LOT47	1400p	23236424	LOT129	1400p
29201.024 .04	LOT164	1400p	2433891 H	LOT23	1400p	MSH-TFBWOB	LOT78	1500p	482214010395	LOT176	1600p	1-439-289-22	LOT47	1400p	23236425	LOT288	1400p
HINARI			2433892G	LOT84	1450p	NIKKAI			482214010406	LOT73	1150p	1-439-289-31	10747	1400p	23236428	LOT289	1500p
154138 K	LOT24	1500p	I.r.t.			BABY10	LOT67	1450p	482214010421	LOT109	1200p	1.439-294-00	LOT93	1450p	3122113837011	LOT131	1450p
51139141	LOT24	1500p	45150108	LOT113	1400p	ORION			482214017078	LOT103	1250p	1-439-294.11	LOT93	1450p	15056 D	LOT131	1450p
51141841	LOT24	1500p	45150115	LOT136	1600p	3714002	LOT02	1500p	SANYO			1-439-294-21	LOT269	1550p	TFB 4039 AD	LOT293	1550p
CF 44 A	LOT24	1500p	45150116	LOT 139	1675p	PANASONIC			094-000200.9	LOT113	1400p	1-439-303-00	LOT94	1300p	TFB 4048 AD	LOT281	$1300 p$
HM51-1411834-1	LOT24	1500p	45150117	LOT139	1675p	TLF 14512 F	LOT39	1850p	094-00035/0.2	LOT162	1350p	1-439-303-11	LOT94	1300p	TFB 4048 BD	LOT28	1300p

* NIKKAI BABY 10 REGULATOR
* ORDER CODE: BABY 10 PRICE: $£ 10.00$

Universal Pre-Programmed Brand Replacement Remote Controls			
- Brand fo - Codeless - Teletext - Pre-prog - Replaces - CE Appr	and Repl tup Fastext med for ken and d	est mode remotes	
BRAND	CODE	BRAND	CODE
Panasonic	RCUNI01	Nokia	RCUNI06
Sony	RCUNI02	Samsung	RCUNI07
Philips	RCUNI03	Toshiba	RCUNI08
Hitachi	RCUNI04	Ferguson	RCUNI09
Mitsubishi	RCUNI05	Grundig	RCUNI10
Normal Price: £ ¢ . 5f + VAT Special Offer: £7.50 + VAT			
UNIVERSAL REPLACEMENT SATELLITE REMOTE CONTROL This unique remote control covers 11 brands including Pace MSS series, Nokia, Echostar...			

SPECIAL OFFERS!!		
CD PICK UPS		
KSS 152A	WAS	NOW
KSS 210A	$£ 18.00$	$£ 13.00$
KSS 210B	$£ 20.00$	$£ 13.00$
KSS 240A	$£ 25.00$	$£ 20.00$
KSS 213B	$£ 10.00$	$£ 15.00$
KSS 213C	$£ 19.00$	$£ 15.00$
OPTIMA 6S	$£ 20.00$	$£ 16.00$
OPTIMA 5	$£ 30.00$	$£ 16.00$
RCTRH 8151	$£ 44.00$	$£ 20.00$
RCTRH 8112	$£ 57.00$	$£ 20.00$

GRANDATA LIMITED K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND. HA9 0HB
 Telephone: 01819002329 Fax: 01819036126 E-Mail: grandata.Itd@btinternet.com OPEN Monday to Friday 09:00-17:30 Saturday 09:00-14:00

distributor of electronic components
K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 01819002329 Fax: 01819036126 E Mail: GRANDATA.LTD@BTINTERNET.COM Web Site: http://www.grandata.co.uk

RATING	ORDER CODE	PRICE
0.05A	FUSE74	$65 p$
0.063 A	FUSE75	65p
0.08A	FUSE76	$65 p$
0.1 A	FUSE77	$35 p$
0.125 A	FUSE78	35p
0.16 A	FUSE79	$35 p$
0.2A	FUSE80	$30 p$
0.25 A	FUSE81	$30 p$
0.315 A	FUSE82	30 p
0.4 A	FUSE83	$30 p$
0.5A	FUSE84	$30 p$
0.63 A	FUSE85	$30 p$
0.8A	FUSE86	$30 p$
1 A	FUSE87	$30 p$
1.25 A	FUSE88	$30 p$
1.6A	FUSE89	$30 p$
2 A	FUSE90	$30 p$
2.5 A	FUSE91	$30 p$
3.15A	FUSE92	$30 p$
4 A	FUSE93	$30 p$
5 A	FUSE94	$30 p$

$\star \star \star$ PLEASE NOTE THAT ALL WICKMAN FUSE PRICES ARE FOR A QUANTITY OF 1 (ONE) - (EXCEPT FOR KIT) $\star \star \star$

MCA VOLTACEQERAMTQ OAPAOTORS							
VALUE	VOLTAGE	ORDER CODE	PRICE	VALUE	VOLTAGE	ORDER CODE	PRICE
220 pF	2000 v	CAP01	90p	1200 pF	3000 v	CAP08	225p
330 pF	2000 v	CAP02	90p	1500 pF	2000 v	CAP09	130p
470 pF	2000 v	CAP03	90p	1500 pF	3000 v	CAP10	225p
680 pF	2000 v	CAP04	95p	2200 pF	2000v	CAP11	130p
820 pF	3000 v	CAP05	150p	3300 pF	2000v	CAP12	145p
1000 pF	2000 v	CAP06	110p	4700 pF	2000 v	CAP 13	180p
1000 pF	3000 v	CAP07	225p				

VALUE	VOLTAGE	ORDER CODE	PRICE	VALUE	VOLTAGE	ORDER CODE	PRICE
$22 \mu \mathrm{~F}$	6.3 V	CAP14	110p	$100 \mu \mathrm{~F}$	25 v	CAP22	300p
$47 \mu \mathrm{~F}$	6.3 v	CAP15	110p	$1 \mu \mathrm{~F}$	50 V	CAP23	110p
$100 \mu \mathrm{~F}$	6.3 v	CAP16	130p	$2.2 \mu \mathrm{~F}$	50 V	CAP24	110p
$10 \mu \mathrm{~F}$	16 V	CAP17	110p	$4.7 \mu \mathrm{~F}$	50 V	CAP25	110p
$22 \mu \mathrm{~F}$	16 v	CAP18	110p	$10 \mu \mathrm{~F}$	50 V	CAP26	130p
$47 \mu \mathrm{~F}$	16 V	CAP19	130 p	$22 \mu \mathrm{~F}$	50 V	CAP27	180p
$470 \mu \mathrm{~F}$	16 V	CAP20	320 p	$47 \mu \mathrm{~F}$	50 v	CAP28	300 p
$33 \mu \mathrm{~F}$	25 v	CAP21	130p				

$\star \star \star$ PLEASE NOTE THAT ALL THE ABOVE CAPACITOR PRICES ARE FOR A PACKET OF 5 (FIVE) $\star \star \star$

SUITABLE FOR MITSUBISHI 21" \& 25" TV's
 To replace the TDA8178S fitted to the following MITSUBISH 21" \& 25" TV's:
 CT21A2STX, CT213STX, CT25A2STX, CT25A3STX CT25A4STX, CT25A6TX, CT25B2STX, CT25B3STX It comes with clear and concise instruction on how to carry out the work.
 ORDER CODE: MITSKIT1
 PRICE: 300p

 SUITABLE FOR MITSUBISHI 29" \& 33" TV's
 To replace the TDA8178S fitted to the following MITSUBISHI 29" \& 33" TV's: CT29AS1, CT29B4, CT29A4, CT29A6, CT29B2, CT29B3, CT33B3
 It comes with clear and concise instruction on how to carry out the work. ORDER CODE: MITSKIT2 PRICE: 1500p

POWER SUPPLY \& UPGRADE KIT FOR SAMSUNG Suitable for Samsung Winner 1 Chassis

(VIK310, VIK350, V1375, V1395)
This kit contains the components required to upgrade the power supply for all the above mentioned models. It comes with clear and concise instructions on how to carry out the work
ORDER COde: SAMSUNGKIT PRICE: 1600p

See Page 492 for more new arrivals

Grandata Ltd distributor of electronic components
K.P. HOUSE, UNTT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 01819002329 Fax: 01819036126 E Mail: GRANDATA.LTD@BTINTERNET.COM Web Site: http:/www.grandata.co.uk

COMING SOON!!!

NEW POINT \& GO UNIVERSAL REMOTES!

Uses new revolutionary Point \& Go
Technology ${ }^{\text {TM }}$ Chip

- Set up in seconds!
- Truly simple Set up!
- Multi Brand compatible
- Replaces lost and broken remotes
- Easy hot button set up
TV with Teletext
Order Code: CM100
Price: $£ 10+$ VAT

TV with Teletext and VCR Order Code: CM200 Price: $£ 12.75$ + VAT

CM3900A DIGITAL MULTIMETER

FEATURES:

LARGE LCD DISPLAY HEIGHT 18 mm MAXIMUM READING 1999 + UNIT SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION AUTO POWER OFF (APPROX 15 min) DIODE TEST FUNCTION
all ranges overload protected SUPPLIED WITH TEST PROBES
DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ ACCURACY - 0.5\%
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ DC CURRENT A: $200 \mu \mathrm{~A} 20 \mathrm{~mA} 200 \mathrm{~mA} 2 \mathrm{~A} 20 \mathrm{~A}$ AC CURRENT A: $200 \mu \mathrm{~A} 20 \mathrm{~m}$ A 200 m A/2A20A RESISTANCE Ω : $200 \mathrm{~s} / 2 \mathrm{ks} / 200 \mathrm{k} \Omega / 2 \mathrm{M} \Omega / 20 \mathrm{M} \Omega$ ORDER CODE: CM3900A PRICE: 2900p

CM3920 DIGITALMETER WITH TEMPERATURE MEASUREMENT

FEATURES

* TEMPERATURE MEASUREMENT
* DIODE \& TRANSISTOR HFE TEST
- LaRge lcd displar helght 18 mm

MAXIMUM READING $1999+$ UNIT SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION AUTO POWER OFF (APPROX 15 min) DIODE TEST FUNCTION

- ALL RANGES OVERLOAD PROTECTED * SUPPLIED WITH TEST PROBES

DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 1000 \mathrm{~V}$ ACCURACY * 0.5%
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ - DC CURRRENT A; $2 \mathrm{~mA} 20 \mathrm{~mA} / 200 \mathrm{~mA} 20 \mathrm{~A}$ AC CURRENT A: $200 \mathrm{~mA} / 20 \mathrm{~A}$
AC CURRENT A: $200 \mathrm{~mA} / 20 \mathrm{~A}$
RESISTANCE $\Omega: 200 \mathrm{~s} / 2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{Ms} / 20 \mathrm{M} \Omega$ RESISTANCE $\Omega: 200 \mathrm{~S} / 2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{MS} 2 / 20 \mathrm{M}$
$200 \mathrm{M} \Omega$ 200MS
CAPACITANCE: $2 \mathrm{nF} / 20 \mathrm{nF} / 200 \mathrm{nF} / 2^{*} \mathrm{~F} / 20^{*} \mathrm{~F}$
$\star \star$ PLEASE NOTE THAT POSTAGE ON ALL THE ABOVE METERS IS CHARGED AT $£ 3 \star \star$

HELP WANTED

The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted: Service manuals for the Ferguson 3V32 VCR, Ferguson 3722 TV receiver, Grundig TV Series S820, CUCl20 etc. and the Toshiba V55B VCR. Ron White, 29 Nunnery Street, Castle Hedingham, Essex C09 3ND. 01787463091.

Wanted: Remote control handset for the Dual DMQ-14B1. Bob Felix, Cumnor Road, Boards Hill, Oxford OX1 5JW. 01865739008.
Wanted: Power unit for the Rigonda Bolshoi stereo multiplex (the transformer is short-circuit). Would consider complete radiogram in working order. This unit was manufactured for use in Russia. John Forsyth, Craigour, North Beach Road, Balmedie, Aberdeen AB23 8WU. 01358742340. For disposal: Philips N1500, N1700 and V2020 VCRs. Leslie Cooke, 68A Haven Road, Canford Cliffs, Poole, Dorset BHI 3 7LY. 01202700441.
Wanted: Complete tuner or tuner on main board no. BT318703769 (chassis no. TU101) for the Solavox colour TV Model CMLI4RC; also a complete door flap unit for the Saisho VR3300X VCR; and a black tuning door flap for the Pye colour TV Model 37KT2040/25R. C.M. Graves, Orchard Cottage, High Street, Spaxton, Bridgwater, Somerset TA5 1BW. 01278671225.

For disposal: Two Avo 8 multimeters, two oscilloscopes, colour-bar generator, signal generator, EHT meter and various other items of test equipment. No reasonable offer refused for the lot. B. Hopkins, 5 Clare Crescent, Towcester, Northants NN12 6QQ. 01327358987.

Wanted: Circuit diagram and PCB layout diagram for the remote control receiver used in the Philips colour TV Model 672 (Gll chassis). Good photostat OK. C.R. Tomlinson, 24 Kelmscott Gardens, Leeds LS15 8HLK.
For disposal: Large quantity of VCRs (about 40) vintage 1982-1996, mostly complete. Free to good home. Also some TV sets. Store room must be
cleared! Collection will be necessary please take the lot. A Transit sized van would be required. Bear in mind ferry fares. Julian Davidson, Rosemount, Whiting Bay, Isle of Arran KA27 8PR. Wanted: Timer/counter control IC type HD38750A79, or working timer PCB, for the Hitachi VCR Model VTliE. G. Plaxton, 6 Pasture Court, Sherburn-in-Elmet, Leeds, Yorkshire LS25 6LL. 01977681745.
Wanted: Circuit diagrams for the Philips mono TV/radio type 9T6 2000/05A NR-K945-784 and the Grundig TRE340 entertainment centre. D. Griggs, 5 Collingwood Avenue, Muswell Hill, London N10 3EH. 0181 3749070.

Wanted: Teletext panel for the Sony Model KV-M2131U or servicing information for this panel. Phone Clive Thomas on 01302844788 or 07899 777184 (mobile). Alternatively e-mail clivethomas@cwcom.net
Wanted: Student in Zimbabwe requires manuals, magazines or anything to help with electronic studies for $C \& G$ radio and television course at local college. Because of economic problems it is difficult for students here to get foreign currency. Kuda Jonasi, House no// 5760, Mharapara Drive, Mucheke C, Masyingo, Zimbabwe, Central Africa.
Wanted: Tube base panel and focus control for the Philips Model 27CE2390 (2A chassis). Tom Grady, 18 Marlowe Drive, Mablethorpe, Lincs LN12 1BW.
Wanted/for disposal: Require scrap Akai VSF200EK VCR and Toshiba V312B VCR for spares. Also circuit diagram and servicing information for these machines and for the Philips VR6462/6463 VCRs. Have for disposal an IBM 5154 ECD monitor, a Philips BM7513 monitor and an Apricot Xen-s base unit (DOS 6.22/Windows 3.11 installed) complete with keyboard and new serial mouse. Also various PC 3.5in. floppy disc drives, most with head misalignment
faults, for spares/repair. Offers? John McClean, 66 Castle Park, Limavady, Co. Londonderry, N. Ireland BT49 OSB. 01504763045.
Wanted: Circuit diagrams for the Hikona Models 1437 and RM2000. Photocopies OK. Ivan J. Bradley, 139 Somerfield Road, Bloxwich, Walsall, W. Midlands WS3 2EN.

Wanted: Service manual for the Supermatch 17T Macintosh monitor to buy, borrow or alternatively details of a possible supplier. I believe that this monitor is a badged version of the Radius STD9735. Also, does anyone have a text board and harness for the Tatung 145 series chassis. Alistair Dunsmore, 21 East Croft, Ratho, Midlothian EH28 8PD. 01313332610.
Wanted/for disposal: Require service manuals (not photocopies) for the Ferguson 3V29, Sharp VC780HM and Sanyo VTC5000 VCRs; also an original stand for the Ferguson Model 59H5 CTV and a remote control unit for the Fidelity ZX3000 CTV (four buttons). Have for disposal lots of panels, parts and service manuals for 1970/80s CTV and 1960/70s mono TV sets; several unused regunned CRTs and used colour/mono CRTs; Ultra 22in. CTV (Thorn 8800 chassis), Grundig 6010TDGB 26in. CTV, Bush 22in. Model CTV 1122 (Rank A823AV chassis), Ferguson 22in. 3763 CTV (9600 chassis), several monochrome portables and some Goodmans/HMV audio units from the early 1970s. Small donation appreciated! David Hazell, 3 Wrde Hill, Highworth, Swindon, Wilts SN6 7BX. 01793765390.
Wanted/for disposal: Require circuits/service information for the Taxan MV789LR and Zenith ZCM1495X monitors - loan or copies. Also Sony SLV315 VCR instructions. Have for disposal radio, TV, $\mathrm{Hi}-\mathrm{Fi}$ and tape recorder magazines from the Fifties onwards plus books, equipment and test gear. Ken Domminney, 7 Chestnut Close, Eastbourne BN22 0SZ. 01323 500174.

Alan Dent provides an in-depth fault-finding guide for these sets, which were widely sold under a number of brand names

the Indiana 100/200 Chassis

The Indiana 100 and 200 chassis were used in a number of models released during 1990-92. They are the same in most respects: the main difference lies in the TCR (tuning control) panel. The sets appeared in a number of brand ranges. Models fitted with the 100 chassis include the following:

Alba CTV704T, CTV711, CTV712, CTV741, CTV742 and CTV744.

Bush 2151, 2151TX, 2520TX, 2521TX, 2541 and 2541TX.

NEI 1451, 1451TX, 1461, 1461TX, 1551TX, 2031, 2031TX, 2131 and 2131TX.

Nikkai TLG2155 and TLG2156.
Perdio P1480, P2004, P2005, P2101 and P2102.
Those fitted with the 200 chassis include these:
NEI 1481, 1481TX, 2041, 2041TX, 2047, 2047TX, 2051, 2051TX, 2147, 2147TX, 2151 and 2151 TX.

Nikkai TLG1447TX, TLG2000, TLG2149, TLG2151TX and TLG51TX.

The design of the chassis is straightforward. The following notes are based on considerable experience with these chassis. We'll start with the power supply.

Power Supply Fault Finding

The switch-mode power supply circuit is shown in Fig. 1. It's operational whether the set is in the standby mode or not. T801, the chopper transformer, is a foil-wound type.
The best approach is check at pin 9 of IC800 first. If the voltage is low at about 8.5 V , apply the scope's probe to pin 7 to monitor the drive pulses applied to the chopper transistor Q800. Various fault possibilities are listed below.
The HT current is 490 mA at maximum beam current, 250 mA at average beam current. The 26 V supply pro-
vides 650 mA at full volume, 210 mA at minimum volume. The 12 V supply provides about 360 mA .

Set will not start up (no pulses at pin 7 of IC800): Check whether F800, R801, R802, R803, R808, R815, R816 or C814 is open-circuit or C819 or D804 is shortcircuit. IC800 or Q800 could be faulty. Note that R802 is a thermistor which should read $4.7 \mathrm{k} \Omega$ when cold.

Set will not start up (one pulse every 300 msec at pin 7 of IC800): Check whether R812, R814, C810, L801, D804, Q800 or winding $1-5$ of T801 is open-circuit.

Uncontrollable HT: R810, R811 or D807 could be open-circuit.

Slow start-up: C810 is leaky.
No outputs though there are $\mathbf{2 0} \mathbf{m s e c}$ bursts of pulses at pin 7 of IC800: C809 is probably open-circuit.

Q800 is short-circuit: In this case check whether R801 or the bridge rectifier diodes D800-803 are open-circuit or R809 has gone high-resistance. R809 must be replaced with a VR37 high-voltage type supplied by Maplin Electronics (NEI Spares Division).

Tripping at $\mathbf{1 H z}$ (chirping sound): The line output transistor Q600 or D809 could be short-circuit. Check for shorts on the secondary side of T801.

No or low output (T801 squealing and Q800 hot): T801's insulation could have failed. Check the line output transformer T601 for short-circuit windings (blister on body).

F800 blasted: Q800 shorted to heatsink or L802 touching R806.

No 12V supply: R844 could be open-circuit. Alternatively if pin 1 of IC803 is at 0 V , Q809 could be short-circuit or there could be a fault on the microcontroller panel. As a check, disconnect plug K804 to see if the supply is restored.

Fig. 1: The chopper power supply circuit used in the Indiana 100 and 200 chassis. There are 5 V regulators on the microcontroller panel and, where fitted, the teletext panel. They are both fed from the 16 V rail.

Set appears to go to standby: This could be because of a microcontroller section fault, see later, or an intermittent power supply failure. Both have the same effect. Monitor the power supply by using a bulb as a dummy load, in place of the line output stage, to see what happens.
T801 can have an intermittent winding-to-pin connection. Oxidation can reduce the current and cause connection failure. The power supply will then stop momentarily. When it restarts, the set will remain in standby until an instruction is received, either from the handset or switch contacts.
L801 can fail, removing the drive to Q800. Failure can be intermittent, the result being similar the T801 problem mentioned above.

Other standby faults: See microcontroller section later.

Travelling hum bar at right-hand side of the screen, visible from the bottom of the screen to about half way up: The mains filter coil L800 may be of incorrect value or have a faulty core.

The Line Timebase

The line driver and output stages are conventional. T601, the line output transformer, generates the EHT, focus, first anode, CRT heater and RGB output stage HT supplies. The line generator is in the IF/timebase generator chip IC100 (see IF section). Here are some fault possibilities:

No line drive: Check that IC100 is producing an 0.7 V peak-to-peak output at pin 26 . The driver stage receives its supply via $\mathrm{R} 607(5.6 \mathrm{k} \Omega)$ which could be open-circuit. This resistor is rated at 3 W , though in early models a 2 W carbon-film resistor was used. It must be replaced with the type supplied by NEI spares (Maplin).

No EHT: Check that the HT supply to the line output stage is at 115 V . There should be a 90 V peak-to-peak drive waveform at the collector of the line driver transistor Q601. The line output transformer T601 could have shorted turns - examine the outer casing for blisters.

Low/high EHT: Check that the HT supply is at 115 V . Check the value of the flyback tuning capacitor C605, especially if the CRT has been replaced (the value depends on tube type, see later).

Low EHT: Check the continuity of the scan coils and connectors.

Raster wide/narrow: Check that the HT is at 115 V . Check T601 for shorted turns (examine the case for blisters).

If the CRT has been replaced, check whether it needs a loss coil and if so that this is correctly adjusted. Check the CRT data to see whether the value of C605 needs to be changed. The scan-coupling capacitor C604, whose value also depends on the CRT, affects the linearity of
the scanning, not the picture width.
If the line part of the super sandcastle pulse is incorrect, check C606, R603, R613 (values vary with different versions of the chassis) and D604 (ZPD 10V).
Basic output stage scan coupling and flyback tuning capacitor values are as follows:

Tube size	C604	C605
14in.	470 nF	7.5 nF
15in.	330 nF	5.6 nF
20in.	470 nF	7.5 nF
21in.	330 nF	6.8 nF

C 605 is rated at $1 \cdot 5 \mathrm{kV}$

The Field Timebase

A TDA3653 chip, IC400, is used in the field output stage. The field drive waveform is generated in IC100. There is AC and DC feedback between the two chips. IC400's 26 V supply comes from the chopper circuit.

Reduced height (no picture unless the first anode control is turned up, no tuning function): The 33V stabiliser D001 (ZTX33) has failed because of a CRT flashover. This is more common in 20in. sets fitted with an Orion 22 mm neck CRT. In addition to the tuning voltage supply, D001 provides a reference for the field generator in IC100. To protect D 001 , change C 001 from InF to 100 nF . In the 200 chassis, add a 100 nF capacitor across pins 36 and 41 of the microcontroller chip IC300.

Field collapse: See the section on ICl 100 for field generator faults. Disc ceramics C 400 and C 401 (4.7 nF) can develop leakage, R 402 ($3.9 \mathrm{k} \Omega$) and R 403 ($10 \mathrm{k} \Omega$) can go high in value or open-circuit, $\mathrm{C} 402(470 \mathrm{pF})$ can go short-circuit, R401 (4.7 $2,1 \mathrm{~W}$) and R412 (1.8 $2,0.5 \mathrm{~W})$ can go open-circuit. IC400 can fail, though this is unusual. Check at connector K400 for broken tracks or pads, also the tracks and pads around IC400. Breaks can be caused by physical stress. Check whether R41I ($22 \mathrm{k} \Omega$) is open-circuit or $\mathrm{C} 406(100 \mathrm{nF})$ is short-circuit.

Poor linearity (lack of height): $\mathrm{C} 408(2 \cdot 2 \mu \mathrm{~F}, 35 \mathrm{~V})$, $\mathrm{C} 407(1,500 \mu \mathrm{~F}, 35 \mathrm{~V}), \mathrm{C} 403(100 \mu \mathrm{~F}, 40 \mathrm{~V})$ or D 400 (BAX12A) could be leaky; R407 (5.6kS) or R408 ($10 \mathrm{k} \Omega$) could be high-resistance or R 409 ($4.7 \mathrm{k} \Omega$, linearity preset) faulty.

Picture shifted (cannot recentre): R405 ($10 \mathrm{k} \Omega$, shift preset) or R413 ($1 \mathrm{k} \Omega$) could be high-resistance or C 407 $(1,500 \mu \mathrm{~F}, 35 \mathrm{~V})$ leaky.

Hum bar on field scan: Cause will be in the power supply. Check whether D806 (BY298) is leaky or C815 ($1,000 \mu \mathrm{~F}, 35 \mathrm{~V}$) open-circuit.

Line pairing and vertical jitter: The CRT's Aquadag earth connection is probably open-circuit.

The Jungle Circuit

The 'jungle' chip IC 100 incorporates the IF circuitry and the timebase generators. Either a TDA4505 or a TDA8305 may be fitted in this position. They are in effect the same, but are not interchangeable because the connections to pins 11 and 19 are interchanged. The chip also carries out sync separation, AGC processing and AFC and generates the super sandcastle pulses.

Noisy picture and/or video smearing: The SAW filter

Z100 could be faulty, C105 open-circuit, C106 shortcircuit or C144 (if fitted) short-circuit. The video detector coil L102 could be misaligned. Care is required with this - several false tuning points may be obtained.

Blank raster: Check the following. L102 open-circuit; Q101 (JC501) short-circuit; C120 or C107 short-circuit; muting voltage at pin 3 of K 100 at 12 V ; no output at pin 17 of IC100; or video lost in path towards Q103 and the colour decoder.

Picture overloaded: The AGC cross-over point is set by R105/R 107 with C101 for decoupling. If a different type of tuner is fitted these components should be changed to suit. See manual.

Tuning drift: The AFC is set at 6 V (TP4) by R012/R013 with an input at 39.5 MHz and L 102 correctly set. If drift occurs the cause is usually elsewhere.

No audio output: Pins 11-15 are connected to the audio IF section. For no output check Cl09, C111, C123 and Z101, also the control voltage (should vary between 0 2.5 V) from IC300 and the associated filter.

Low audio output: Check the alignment of L101, whether Z 101 is the correct type (SFE6.0MB), and the control voltage from IC300 (see above).

Vision buzz: Check R111, Z101 and the alignment of L102.

No sync: Possibilities are C118 (470nF) or R129 ($1.8 \mathrm{k} \Omega$) open-circuit or $\mathrm{C} 113(150 \mathrm{pF})$ short-circuit.

Poor sync, picture has excessive gain: C113(150pF) leaky.

No line drive output at pin 26: Check components connected to pins $23,24,27$ and 28.

Line frequency incorrect: C114 (22nF) or C116 (2.7 nF) could be leaky, R 122 ($82 \mathrm{k} \Omega$) or R 125 ($30 \mathrm{k} \Omega$) could be high-resistance. If necessary check R119 ($1.5 \mathrm{k} \Omega$) and C 115 ($10 \mu \mathrm{~F}, 16 \mathrm{~V}$).

Line phasing/picture shift incorrect: C112 (100nF) or C126 (560pF) could be leaky, R114 ($47 \mathrm{k} \Omega$) high-resistance or R117 ($2 \cdot 7 \mathrm{M} \Omega$) open-circuit.

No field drive output at pin 3: Check whether C 100 (220nF), C102 (1nF) or D001 (ZTK33) is short-circuit or R104 (1MS), R001 ($15 \mathrm{k} \Omega, 2 \mathrm{~W}$) or $\mathrm{R}(002(150 \mathrm{k} \Omega)$ is open-circuit.

Field frequency incorrect: Check whether C100 $(220 \mathrm{nF})$ is leaky or $\mathrm{R} 104(1 \mathrm{M} \Omega)$ high-resistance.

Super sandcastle pulses: If there is a problem with these the IC is unlikely to be the cause. Check the pulse sources in the line and field output stages.

Audio Output

IC200, type TDA2611A, provides the loudspeaker drive. It's powered at 26 V from the chopper circuit. The current consumption is 440 mA at full volume.

No output: Check $R 200(4 \cdot 7 \Omega, I W)$ and IC200, whether there's an input from the IF section at pin 7, whether the loudspeaker is open-circuit and the print

Television Receivers, second edition, by K.F. Ibrahim. Published by Addison Wesley Longman at £16.99. 394 pages $6.75 \times 9.25 i n$. ISBN 0-582-35631-8

This must certainly be the most up-todate book on the subject. It has been extensively revised for the new edition to

Book Review

take into account the advent of digital TV and the extensive use of digital control and processing technology in modern TV receivers. Over a third of the book is devoted to these developments.
The book has been written with the needs of students in mind, and is an ideal textbook for those taking the BTEC levels 2, 3 and 4 and City \& Guilds courses. It is also suitable for those who want to refresh their knowledge, as a handy reference source should you want to check up on a particular topic, and for keeping up-to-date with the technology.
TV technology is now a vast subject, having grown in complexity as more and more has been added. The additions started with colour, then teletext and Nicam sound transmissions. Microcontroller technology started to be used to supervise the operation of TV sets, while in some chassis digital signal processing was adopted. More recently satellite TV has come along, first with analogue transmissions then digital. It is, amazingly, all here in Mr Ibrahim's book. The theory is clearly explained, with virtually no reference to mathematics, and is backed
throughout by practical circuit examples. The numerous circuit, waveform and block diagrams assist in making matters clear. It couldn't have been done better.
The book is particularly valuable for its treatment of digital TV. The mysteries of MPEG, the discrete cosine transform, error correction, COFDM transmission and so on are all explained, with nothing glossed over. Digital satellite TV receivers are fully covered, but DTT channel decoding will have to wait till next time. This is not a vital omission: the basic MPEG processing is common to all types of digital reception. The concluding chapter covers the basics of digital TV receiver/decoder testing
There are sections on the scart socket and its interfacing, and on Dolby sound systems. Nothing of importance has been omitted. I have no hesitation in recommending this book, which is excellent value. It can be obtained from bookshops or, plus $£ 2.50$ postage and packing, from Addison Wesley Longman, Fourth Avenue, Harlow, Essex CM19 5AA (01279623928, fax 01279414130). J.A.R.

1 Years limited warranty. NO SURCHARGE FOR CREDIT CARDS.

The Capacitor Wizard has earned the UL Listing Mark for both the United States and Canada!!! It conforms to UL $3111-1$ "Electrical Measuring and Test Equipment". Representative samples of the Capacitor Wizard have been evaluated by UL and meet the applicable U.S and Canadian Standards and Requirements. The Capacitor Wizard also conforms to the European Standard EN-55022 and EN-58882-1 earning the Capacitor Wizard the "CE"mark.

WE ALSO STOCK \& SOURCE, MONITOR SCHEMATICS \& SERVICE INFORMATION. MONITCR LOPTS \& uPROCESSORS. WELTREND ICs........PLUS LOTS MORE! GIVE US A CALL FOR A FREE CATALOGUE!!

Test Report

The digital age means that new test and measurement equipment will be required. This meter has been designed specifically for digital satellite signal location and optimisation. Eugene Trundle has been trying it out.
Note that the meter is also called the Satfinder

The Digisat Meter

The advent of digital satellite TV broadcasting has brought with it the need for an accurate, inexpensive dish-alignment aid. The types of signalstrength meter that have served us for dish alignment with analogue transmissions are, for various reasons, illsuited for use with digital transmissions from $28.2^{\circ} \mathrm{E}$ though some may work after a fashion, with perhaps the aid of a 22 kHz generator to switch the LNB to the correct band. However that might be, the Digisat meter reviewed here has been designed to meet the specific requirements of alignment with a digital signal.

Description

The Digisat meter is a bone-shaped yellow/orange box (see photograph) with an F connector at the top and an LCD dot-matrix display plus two push-buttons at the front. At one side there's a telephone-type socket for future updates via a phone line: at the other side there's a 5 mm power socket to enable the internal $12 \mathrm{~V} \mathrm{Ni}-\mathrm{Cad}$ battery pack to be recharged from the mains power pack that comes with the meter. For further details refer to the accompanying specification box.

Use

Operation of the meter is very simple: the design takes into account the fact that the meter may be used by relatively unskilled operators. You switch the meter on by pressing both keys together - this minimises the risk of accidental battery discharge. The display then appears with a status indicator, in this case ASTRA 28 Finder, version 03.00 .02 , followed by a readout of the percent-
age battery charge state. After this the meter autoswitches to the search mode for Astra 28.2.
Satellite identification is carried out by what is referred to as USID - Unique Satellite Information Data - which currently checks two on-board transponders for frequency, BER (Bit Error Ratio), polarisation, symbol rate and FEC (Forward Error Correction). When these parameters have been confirmed, you get a 'found' indication followed by a readout of signal strength in two forms simultaneously, a bar-graph and a numerical count. These can be used to optimise the dish alignment. At a touch on the lower control key the display reads "hor picture quality". You optimise this by adjusting the LNB skew to get the polarisation setting spot-on there's again a bar-graph and a numerical indication, the higher the reading the better. A second press on the lower key brings up "ver picture quality" in the display, enabling the vertical polarisation to be optimised in the same way.
Finally, a two-second press on the upper key switches the instrument off. To conserve battery power it shuts off automatically after three minutes' idleness.

On Test

We used the Digisat meter on all our digital satellite jobs, involving both universal LNBs and those supplied with digital receivers and dishes, for just over two weeks. Obviously the dish has to be within a couple of degrees of the correct position, both vertically and horizontally, for the meter to latch on to the broadcast data and start to respond. The reading fluctuates until the
"Astra 28.2 Found" caption appears. Pointing can then be finely adjusted for the highest signal-strength reading.
This provides reasonably accurate alignment, but I was disappointed to find that the indicator's resolution in this mode is not very high: the readout figure, which is arbitrary, i.e. not a quantitive voltage or decibel level, jumps eight units at a time, corresponding to one block in the bar-graph display. So, as the signal strength increases progressively, you get " 64 " and eight blocks, then " 72 " and nine blocks, followed by " 80 " and ten blocks, with no intermediate readings. The result is some uncertainty about the alignment, perhaps over half a degree or so. There is sometimes dither between the two blocks and their corresponding numerical values, which makes it difficult to read the display. There's a solution to these problems however, as we will shortly see.
I found that the resolution of the horizontal and vertical picture quality readouts is much better than that of the signal-strength indication. Though arbitrary, on a scale of up to 99 , these readings are based on the bit error ratio (BER) and provide single-digit resolution. So the LNB's skew alignment can be set with great accuracy - then the dish alignment itself again, since the BER is highly dependent on signal strength. In this way you get a much more precise indication of the signal strength.
With practice I found that I could very quickly align a dish spot-on with this meter, which is just as well as I couldn't achieve the one-hour running time claimed even after a full overnight charge! Despite this we could get through a full day's installation schedule, as only a few minutes' use is required at each site. I found the shorter the periods of use, the longer the total operating time.
The LCD panel is easy to read, both indoors and out. For easy viewing and operating convenience when the meter is hung around the neck, I would have preferred the 80 cm -long rubber lanyard to have been anchored at the bottom of the case rather than the top. While griping, I would also have liked an audible tone that rises in pitch with signal strength/quality - I have been spoiled by this with my old analogue meter. I'm sure it could have been done, and would happily have paid extra for it.
Otherwise I commend the excellent design, with its simple two-key operating system, high-visibility and high-impact strength case, protected F socket and bat-tery-charge management system. Initially there's a boost charge, then a steady one, then finally a trickle charge - with elapsed-time and battery-charge status readouts. It takes eight hours to charge the internal battery pack fully from complete exhaustion.

Verdict

For what it is and what it can do the Digisat meter's trade price of about $£ 190$ plus VAT represents very good value for money - never mind my carpings and criticisms above!
Digital TV is with us to stay, and it's not really practical to try to get by without a purpose-designed instrument for installation and testing. Certainly this one looks as if it will last well - so long as it's not dropped from the roof to the ground!

Variants and Availability

I gather that two further versions of the Digisat meter are in the pipeline, one for ONdigital (terrestrial) use at UHF and another that's designed to search for three satellites rather than just the Astra bird at $28 \cdot 2^{\circ} \mathrm{E}$. It's

\author{

Abridged specification
 | Size | $205 \times 100 \times 37 \mathrm{~mm}$ |
| :---: | :---: |
| Weight | 650 g |
| Charge time | 8 hours |
| Discharge time | 60 minutes |
| Indications | Bar-graph and 0-99 count |
| Readings | Battery charge; signal strength; horizontal BER; vertical BER |
| Display | 16-character, two-line LCD |
| Satellite | Astra 2 (BSkyB) at $28.2^{\circ} \mathrm{E}$ |
| Operating temperature | -5 to $+30^{\circ} \mathrm{C}$ |
| Accessory | Comes with 230 V mains battery charger |

possible to change and update the instrument's internal software.
The Digisat meter is available from Premier Electronics (GB) Ltd., Springfield House, Springfield Business Park, Grantham, Lincs NG31 7BG, phone 01476514 661, fax 01476514 662, e-mail
KCE@PremierGB.co.uk
SEME Ltd., Hudson Road, Melton Mowbray, Leics LE13 IBS (phone 01664484 000, fax 01664563 976) is an official distributor for the Digisat meter (order code EQU483). The trade price from SEME is $£ 189.95$. A discount is available for quantity orders.
SEME can also supply an in-car charger (order code PSU6073) at $£ 19.99$, a leather carry case (order code AID3093) at $£ 18.42$, a plugtop PSU (order code PSU6074) at $£ 9.95$ and a spare $12 \mathrm{~V}, 700 \mathrm{mAh}$ battery pack (order code BATT6121) at $£ 12.95$ (trade prices).

Corrections

Hitachi 46TN series CTVs: An error occurred in Fig. 1 on page 421 last month, where ZD950 was shown as a 10 V zener diode. It's in fact a 6.5 V voltage-reference diode, type BZV10.
6.5 V is the nominal zener voltage rating of the device. Manufacturers quote the rating as $6 \cdot 2-6 \cdot 8 \mathrm{~V}$. The Hitachi service manual quotes the emitter voltage of the associated error-sensing transistor Q954 as 6.3 V .
A voltage-reference diode differs from a standard zener diode (voltage-regulator diode) in that it consists of two zener diodes connected back-to-back. The two have opposite temperature coefficients, the combination providing very low voltage variation with change in temperature.
The device has a power rating of 400 mW .
The important point is to use a BZV10 in position ZD950.

ESR meter: SWI was incorrectly specified on page 438 last month. It's a DPDT switch, Maplin order code FH99. The buzzer pin spacing shown in Fig. 8 is incorrect, but there is plenty of space on the board for the specified device. The 0 V , -ve supply and VR2 connections should have been shown to the left of the cut-out. To cater for a subsequent upgrade, R14 should be positioned between C7 and D3. See internal view of meter page 427.

This handy unit, designed by Michael Dranfield, can left permanently connected to the mains supply ready to check any suspect IR remote-control unir

A Mains-operated Remote Control Tester

The problem with battery-operated test equipment is that you can get caught out by a flat battery. It's most frustrating to decide to use something and find that it doesn't work. We needed a new remote control tester for the workshop, so I gave thought to the idea of a mains-operated one
It would be handy if the tester were to plug straight into the mains supply without any trailing leads. I looked through the instrument-case section of our Farnell catalogue and found a case with a built-in 13A plug, the sort commonly used to house multi-output DC adaptors. I started off by ordering one.

The Wattless Dropper

It was obvious, when the case arrived, that it would not be large enough to house a transformer as well as the electronics required. So the tester would have to be run straight from the mains supply. The easiest solution would be to use a capacitor to reduce the mains voltage to 12 V . This idea is sometimes referred to as a 'wattless dropper'. It was used by Thorn back in the Sixties to supply the heater chain in early versions of the 960 series 16 in . portable chassis. Unlike a resistor, the capacitor dropper dissipates no power. Hence the name.
The idea is to use a capacitor's reactance at a given frequency to provide a voltage drop.
Capacitive reactance is given by the formula

$$
X c=1 / 2 \pi f C
$$

where f is the frequency and C is the capacitor's value in Farads. In the UK the mains frequency is 50 Hz . If we use a capacitor of say $0.47 \mu \mathrm{~F}$, the reactance works out at

$$
\begin{gathered}
1 / 2 \times 3.142 \times 50 \times 0.47 \times 10^{-6} \\
=1 / 0.000147674 \\
=6,771 \Omega \text { or say } 6.77 \mathrm{k} \Omega .
\end{gathered}
$$

So at 50 Hz the capacitor will have an impedance of $6.77 \mathrm{k} \Omega$. By applying Ohm's Law, we have

$$
230 \mathrm{~V}-12 \mathrm{~V}=218 \mathrm{~V} / 6771=0.032 \text {, i.e. } 32 \mathrm{~mA} \text {. }
$$

Thus by using an $0.47 \mu \mathrm{~F}$ capacitor and a 12 V zener diode we can draw 32 mA at 12 V straight from the mains supply. This supply isn't mains isolated of course, so the device must under no circumstances be housed in a metal case.

The Power Supply Circuit

The power supply circuit is shown in Fig. 1. The live side of the mains supply is taken to a 100 mA Wickman fuse (Fl). C1 is the capacitive dropper. R 1 is included to discharge Cl at switch off - without it , the charge across CI would be present across the pins of the mains plug at switch off.
C1 has to be a special, Class X2 capacitor, designed for direct connection to the mains supply. Under no circumstances should any type other than that specified in the parts list be used. R1 is also critical to the safety of the unit: only an 0.75 W metal-film resistor rated at 350 V should be used. This should ensure that the resistor does no go high in value or open-circuit, as ordinary carbon resistors tend to do.
R2 is included to limit the surge current via the bridge rectifier at switch on. Again, the use of a metal-film resistor will add to the overall safety. The bridge rectifier itself could be any 50 V PIV IA type. I have chosen one rated at 800 V simply because it is readily available to one-off order - lower-voltage bridge rectifiers come in fives from Farnell. C2 is the reservoir capacitor, while DI provides stabilisation at 12 V . The value of C2 is larger than theoretically needed, but this will provide a longer service life.

Receiver Circuit

Fig. 2 shows the circuit diagram of the receiver section of the unit. Photodiode D1 detects infra-red light. Note that it's reverse biased. When it conducts, an input appears at pin 14 of the TBA2800 chip IC1. This is a dedicated IR amplifier chip that contains three separate amplifier stages and an output inverter. In this applica-
tion however the positive-going output at pin 8 is used. C 1 decouples the first amplifier stage while C2 and C3 provide coupling between the successive stages.
The output at pin 8 of ICl is fed to the base of TrI , which drives the piezo transducer connected to its collector. Note that the transducer is polarised. Tr2, the LED driver, is held off by R4. When the voltage at the collector of Tr 1 falls falls however Tr 2 conducts and the LED flashes. R5 limits the LED current. As the LED is driven in short bursts, R5 can have quite a low value without any threat of LED damage.
To maximise the audible output from the piezo transducer, the output circuit is fed directly from the 12 V supply. The TDA2800 chip requires a good-quality supply of not more than 5.5 V however. So the 12 V supply is connected to R 2 which feeds the 5 IIV zener diode D2. The following low-pass filter (Rl and C 4) removes any 100 Hz ripple.

Construction

The accompanying photograph shows the internal construction of the unit. The 12 V supply is built into the bottom half of the case, with direct connection to the mains input. The receiver is built into the top half. The whole lot is built on Veroboard. As there's nothing critical, no layout or constructional diagrams are included. The only point to watch is that the anode of the photodiode is as close as possible to pin 14 of ICl , to minimise stray pickup. A flat-topped LED was used so that it sits flush in the top of the case.
A small hole was cut in the case, at the bottom, to enable the sound to emerge. To prevent anything being poked into the unit, a small piece of plastic was glued over the hole.
Various photodiodes were tried. The SFH203PFA was found to give the best results. It blocks out IR radiation from the overhead fluorescent lights without need for any external filtering. The small square of IR filter stuck on the front of the case was added for the sake of appearance - it plays no part in the operation of the unit.
Use of a plastic case with no shielding means that the unit is prone to picking up timebase radiation. It should therefore not be used in close proximity to a TV set. A distance of one metre will avoid any problems.

Testing

The two sections of the finished unit are best tested separately. Check the receiver section with a 12 V battery or a bench power supply. The power supply section should be checked with a multimeter.
If all is well, connect the two sections together and plug the unit in. At switch on the unit should produce a bleep, with a momentary flash from the LED. You can then leave the tester permanently plugged into the mains supply.

Fig. 1: Circuit diagram of the 'wattless dropper' power supply.

Fig. 2: Circuit diagram of the receiver unit.

Parts list

Power supply

C1	$0.47 \mu \mathrm{~F}$	Farnell $772-847$
C2	$470 \mu \mathrm{~F}, 16 \mathrm{~V}, 105^{\circ} \mathrm{C}$	
R1	$470 \mathrm{k} \Omega$	Farnell $337-493$
R2	220Ω	Farnell 337-079
D1	$12 \mathrm{~V}, 400 \mathrm{~mW}$	
BR1	$1 \mathrm{~A}, 800 \mathrm{~V}$	Farnell 371-180
F1	100 mA Wickman fuse	

Note that C1 and R1 are safety components. See text.

Receiver

and pads around K201.
Distorted sound: Check C202 (100 nF) for leakage, the alignment of L101 and the loudspeaker for damage.

Colour Section Faults

The RGB output stages are on the tube base panel. The type of colour decoder chip used (IC500) depends on whether or not the set has teletext. Text sets use a TDA3561A chip. The fault guide for this is as follows:

No picture: Check for 12 V at pin 1 . Check the super sandcastle pulses at pin 8 . They should be $50 / 50$ height. If not the picture will mute. The blanking signal at pin 9 should be 0 V . If not, check the blanking signal from the text IC via D903.

No colour: The chroma input at pin 3 of IC500 should be at 0.6 V peak-to-peak. To override the colour-killer, connect pin 6 to 12 V . The colour level control voltage at pin 6 should vary between $0-2.5 \mathrm{~V}$. If it's stuck at 0 V , check back to the control panel.

One colour missing: If one output is missing at K501, check the 100 nF decoupling capacitors C521, C522 and C523.

The TDA3565 colour decoder chip used in non-teletext models is similar but has no RGB inputs for teletext and different pin connections. The fault guide is as for the TDA3561A.

There are two types of CRT base panel, one for 29 mm narrow-neck and one for 22 mm mini-neck tubes. In most cases R 717 is 1Ω for 29 mm tubes and 2.2Ω for 22 mm tubes. If you have to change bases because of a CRT change, check the value of R717. Here are some faults that can be experienced in this area:

One colour (blue) full on: This usually occurs with 22 mm bases only and is caused by flashover from the focus pin to the collector of Q703. Replace Q703 (BF869) and bend it away from the CRT socket.

One colour flashing or full on: Check the relevant 150 pF emitter decoupling capacitor (C701, C705, C708).

Full brightness with flyback lines: Check whether R731 (100Ω) is open-circuit. If so, the cause could have been a CRT flashover.

Cannot set one gun's cut-off: Check the relevant output transistor (Q700, Q701 and Q703) and diode (D700, D701, D702, type 1N4148).

Cannot set any cut-offs: Check Q702 (JA 101) and R710 ($1.2 \mathrm{k} \Omega$).

AV Module

There are manual and electronic switching versions. Most sets have the manual version with a slide switch at the rear of the cabinet.
The audio section basically consists an RF oscillator which is frequency modulated with audio. The RF (unmodulated) measured at K 202 should be 6 MHz . The video section consists of an amplifier with a gain of two and a 75Ω input impedance. The video is connected to the main chassis via K100.
The electronic version is controlled from the TCR
panel and is found only in 200 chassis models. See later.

Tuners

Early sets used the Telefunken 2000 tuner, later ones (including 200 models) the Telefunken 3010 tuner. These tuners give little trouble though the 3010 can cause striations.
The cause of tuning drift is seldom the tuner. To check, disconnect the tuning voltage source and connect a known stable voltage source. Monitor the result. For low gain check the AGC voltage, which should be about 10 V . See the following section.
Where striations are a problem, change C 009 to $100 \mu \mathrm{~F}, 25 \mathrm{~V}$. It may be necessary to change the tuner to a U910 type.

The Microcontroller Circuitry

The tuning controller panel also controls the contrast, brightness, colour, volume and teletext. There are three ICs, an SAAI293A microcontroller chip (IC300), an MDA2062 EEPROM chip (IC301) and a 7805 regulator (IC302).

No display or functions: Check the 5 V regulator IC302, which receives its input from the 16 V supply. If its output is low, disconnect everything connected to it in turn until the cause is found.

No functions, display stuck: Check the 4.43 MHz clock oscillator crystal X300. If you load it with a scope probe you may stop oscillation, so check at pin 13 (tuner control voltage) of IC300 where you should find a 5 V peak-to-peak squarewave. Also check the display and keyboard strobe pins, again for 5 V peal-to-peak outputs.

Two or three buttons don't operate: Almost certainly there will be a common factor: check the connections of the ribbon cable to the control PCB.

Functions buttons don't perform job allocated: The set-up conditions for IC300 have almost certainly been corrupted. They are stored in IC301. It is not necessary to replace this device: reprogram it as described in the Mk 2 manual.

Will not store - though the correct display appears: IC301 could be faulty, D302 (20 V zener diode) could be faulty of D303 (1N4148) short-circuit.

At power on a blank raster appears (text models only): See teletext section.

Failure of IC300 or corruption of IC301. May also show as going to standby: Can be caused by CRT flashover or a large static build up. Protection can be provided by adding a 470 nF capacitor across pins 20 and 27 of IC300.

Tuning drift: Use an oscilloscope to check the tuning voltage. This will show any DC voltage variation. Check Q309, C312 which could be leaky, R329 which could be noisy, R330/1/2/3, C314/315 which could be leaky, and the 33 V stabiliser D001.

Analogue control failure: If the volume, contrast, brightness or colour control operation doesn't function, check the relevant output pin of IC300 for a varying squarewave and the filter components.

Faulty band switching (applies to Irish sets only):

This circuit uses a two-line to three-line converter. All components in this area are suspect.

TV set won't come out of standby: An extra pair of contacts on the mains switch are used, via K305, to bring the set out of standby. Some users don't operate the switch correctly: it should be held long enough to allow the supply to rise and enable the microcontroller chip to recognise that the contacts are closed.

TV set goes to standby, usually after a finite time (five minutes): Caused by incorrect setting of the microcontroller chip initialisation - it's looking for an ident signal from IC100. This signal is not connected, so IC300 will time out. To stop this, look in the memory contents and reset the appropriate bit. (See Mk. 2 manual).

TV set goes to standby: May be caused by excessive static build up affecting IC300. To eliminate the problem, add a 470 nF capacitor between pins 20 and 27 of IC300 on the track side of the PCB. Alternatively the cause may lie in the power supply - see earlier section.

Teletext Faults

The teletext chip set is controlled by IC300 via an ITT bus.

Set will not go into the text mode: Check that the L200 regulator chip IC904 is providing a 5 V output (its input comes from the 16 V line). If the output is low, disconnect everything connected to it in turn until the cause is found. The clock oscillator Q900 (JC501)/crystal X900 can stop oscillating at low temperatures if the value of R 902 is not 150Ω.

Corrupt text: Check the alignment of the video detector coil L102 - try a quarter turn either way to see if this improves matters. IC900 (VAD2150), IC901 (4164) or IC902 (TPU2732) could be faulty.

Goes to text but with floating header: There is probably no video input via K900 or a fault with Q905 (JC501).

Goes to text mode but no data on screen: Can occur at switch on because the microcontroller chip has reset too fast. Solution is to add a $10 \mu \mathrm{~F}$ capacitor between the base and emitter of Q305 on the microcontroller board. If there has been a failure of the EEPROM (IC301) on the microcontroller board the text contrast level, which is stored there, may be incorrect. See Mk 2 manual for resetting procedure.
Check IC902's RGB outputs (pins 6, 7, 8), the emitterfollowers Q901/2/3 (JC501) and the five-way ribbon cable between the microcontroller and text PCBs (K308-K901).

Goes to text but appears negative: Q904 (JC501) short-circuit.

Goes to text but with frame jitter: Sync lead not connected to R933 or disconnected from R412 on main PCB (no connection no.).

Remote Control

Three types of handset were used with these models. The earliest type was fitted with an SAA1250 chip and can be easily identified by its tapered nose. The later versions are shorter and thinner and contain either an

OSH2OO6 or an OSH1010 chip. All can be used to programme the EEPROM. If there's no output, check the battery leads and for dry-joints at the IR diodes and the ceramic resonator.
The IR control module in the set is simple and has virtually a zero failure rate. For no operation check IC303, D308 and K302. The wire connections to the PCB can cause problems if the panel has been removed several times.
The control buttons are a four-pin matrix with carbon shorting dots. They give very few problems. Some sets (NEI 1461) used a local supply switch. These are not very reliable and not interchangeable.

Spares

Spares for these sets should be available from Maplin Electronics (NEI Spares Division), Unit 11, Valley Court, Station Road, Wombwell, Barnsley, S. Yorkshire S73 0BS. Phone 0113277 4310, fax 01132774312.

Next Month

The information given above is in general applicable to the 200 version of the chassis: servicing notes specific to this version will be included in Part 2 next month.

BACK ISSUES

We have available a limited stock of the following back issues of Television:

1994 January, February, May, June, July, September, October, November and December

1995 January, April, May, June, July, August, September, November and December

1996 January to December inclusive
1997 January to December inclusive
1998 January, February, March, April, May, June, September, November and December

1999 January, February, March and April

Copies are available at $£ 3.00$ each including postage. Send orders to:

Reed Business Information Ltd., Television Back Issues, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Make cheques/postal orders payable to
Reed Business Information Ltd.

Terrestrial DX and satellite TV reception. News from abroad and about satellite developments. The problem of RF interference. Roger Bunney reports

Hugh Cocks took this picture of reception from Onda Jerez across the Gulf of Cadiz from his Algarve location. The station transmits on ch. E58.

Terrestrial DX reception in the UK has been negligible during the past few weeks. There has been an improvement in F2 layer conditions, with higher MUFs, as the maximum in the present sunspot cycle approaches. But the reports I've had suggest that most F2 reception has been confined to areas south of the UK, the exception being transequatorial reception of several 50 MHz amateur band signals during the late afternoon in the Channel Islands.

A good aurora on January 13th brought Band I TV signals from the Scandinavian countries to the UK from early evening through to almost midnight.

As F2 conditions improve, low VHF signals such as US paging stations, communications networks including police, radio links to aircraft (e.g. traffic spotters) etc. are heard. If you have a scanner and the

patience, it's worth checking across the band 28 MHz to 40 MHz from say 0830 to the east of the UK, progressing to due south around midday, then checking for American traffic in the afternoon. You need a reasonable outdoor aerial, not the small, helical set-top type.

Now that we are into March, we can hope for evidence of improving Spordic E conditions.

E Channels

In the February issue I mentioned the original CCIR channels, i.e. E1, 2, 3 etc. Gosta Van der Linden (Rotterdam) points out that there was also a channel E1A, with its vision carrier at 42.25 MHz . Austria had a ch. E2A transmitter, vision carrier 49.75 MHz (same as the OIRT ch. R1) at Jauerling, while channel E4A with 82.25 MHz vision is, of course, the Italian ch. IC

Satellite Sightings

An increasing number of signals, both analogue and digital, have been arriving from $36^{\circ} \mathrm{E}$ now that Eutelsat II F3 has been moved to this position from $16^{\circ} \mathrm{E}$. When checking for digital news links on February 24th I found, in the clear at $11 \cdot 140 \mathrm{GHz}$ horizontal (SR 27,500, FEC 3/4 - MOU id), the Transcendental Meditation experience from the Maharishi Open University. The following night it was encrypted, though the programme is often present as a clear analogue signal from Eutelsat at $10^{\circ} \mathrm{E}$. Hugh Cocks in the Algarve has received from $36^{\circ} \mathrm{E}$ at
11.050 GHz horizontal (SR 6,111, FEC 3/4) captions seeking reception
reports. I was unable to drag this signal out of the noise here in Hampshire! Nor could I locate the three APTN downlinks between 12.505-12.530GHz horizontal - you probably have to be there at the right time

Bonum-1, the Russian satellite that's also slotted at $36^{\circ} \mathrm{E}$, carries encrypted analogue programming (Syster) between $12 \cdot 2-12 \cdot 4 \mathrm{GHz}$. On February 24th I found an analogue feed, SISLINK UKI 264 TEST FRANCE, on test at 11.634 GHz horizontal.

Hugh Cocks has received signals from Afristar (which will carry Worldspace programming) at $21^{\circ} \mathrm{E}$ between $1 \cdot 477-1.479 \mathrm{GHz}$ and $1.4795-1.4815 \mathrm{GHz}$. He made a small H-type aerial, with each dipole leg just under 5 cm , and fitted it on to an old 60 cm Amstrad dish aimed at $21^{\circ} \mathrm{E}$. Digital noise was present at very high levels - there aren't yet any digital radios for programme reception. Hugh has also received strong Algerian PAL signals at 11.720 GHz vertical from Arabsat at $30.5^{\circ} \mathrm{E}$.

Fred Pilkington (Malaga) received several analogue Ku-band transmissions from Arabsat 3A at 26° E on February 20th. They included Libya at 12.698 GHz , JRTV Amman at 12.575 GHz , Abu Dhabi at $12.620 \mathrm{GHz}, \mathrm{MBC}$ at 12.735 GHz and the Saudi ch. 2 at 12.715 GHz , all horizontal. When I checked this out I found nothing. Perhaps these were tests prior to digital transmissions.

Dean Rogers (London) says fans of Italian football should check the following: 11.148 and 11.190 GHz
(SR 5,632, FEC 3/4), and
11.137 GHz (SR 6,111 , FEC 3/4), all horizontal, via Eutelsat W2 at $16^{\circ} \mathrm{E}$; and 11.556 GHz horizontal (SR 6,111 , FEC $3 / 4$) and 11.632 GHz vertical (SR 5,632, FEC 3/4) via Telecom 2D at $5^{\circ} \mathrm{W}$. He reports that W2 carries ENEX news feeds at $12 \cdot 505 \mathrm{GHz}$ (SR 5,632 , FEC 3/4).

I missed the Dakar rally, which has previously always been in analogue form. This year it was transmitted in digital form at $12 \cdot 380 \mathrm{GHz}$ vertical from $13^{\circ} \mathrm{E}$ as part of a package that included links and feeds for Eurosport, RTBF, TF1, the Speedvision facility and an international feed with English commentary.

Bindu Padaki (Bangalore, India) hopes to acquire a digital receiver they are at present expensive at about 33,000 Rupees (approximately $\$ 700$). But the free-to-air channels are in non-English. He subscribes to a local cable service that carries digital downlinks: forty channels at about £3-4 a month is somewhat cheaper than BSkyB UK! For C and Ku band operation Bindu uses a California Amplifier combined feedhorn, type 31976, that allows for both linear (vertical and horizontal) and circular (left- and right-hand) polarisation.

While checking at $13^{\circ} \mathrm{E}$ recently I found a Thai TV channel, TV5 Bangkok, with programming and commercials. This was at 12.627 GHz vertical. At 12.591 GHz vertical there was Euronews with additional channels - services $1-10$ - though only colour bars were present. These signals were both at SR 27,500 with FEC 3/4.

There has been some dramatic car racing via Intelsat $\mathrm{K}\left(21.5^{\circ} \mathrm{W}\right)$ on Saturday nights from various North American circuits including Daytonna 500 and the North Carolina Speedway.

Reports on NATO talks in Paris on the Kosovo problem from February 22nd were carried by an analogue APTN feed (Starbird Rambouilet) via Eutlesat W2 at 11.021 GHz horizontal. Ten days earlier, when President Clinton was cleared from impeachment, the North Atlantic circuits were full of analogue and digital feeds for the European networks - at one stage I noted five simultaneous analogue pictures at $21.5^{\circ} \mathrm{W}$.

The funeral of King Hussein of Jordan, a licensed radio amateur (JY1), was carried extensively. Syria helped with uplinking via an Arabsat ($30.5^{\circ} \mathrm{E}$) news lease transponder - Syria Main Channel,
at 4.080 GHz with right-hand circular polarisation.

Terrestrial News

UK: News Datacom Systems has launched a $2 \cdot 1-2 \cdot 4 \mathrm{GHz}$ band Digital Terrestrial Link (DTL) system. Use of MPEG-2/OFDM technology is expected to enhance live ENG programme insertions from built-up areas where, because of the screening effect of buildings, multipath echoes etc., site-to-studio analogue hook-ups have been difficult to establish. After MPEG-2 encoding, the camera and audio outputs are OFDM modulated and fed via a microwave transmitter/aerial system to the studio, where the receiving system responds to the main signal content rather than the echo signals Spain: According to a report in the February issue of the 50 MHz band amateur radio magazine Six News, the TVE Madrid ch. E2 transmitter is to close at the end of the year. TV-DXers will miss this station, which is frequently received via SpE. My very first SpE DX-TV reception, in 1963, was from this site.
Isle of Wight: The Newport-based RSL-TV station TV 12 has been given permission to operate relay stations at Brading and Ventnor and increase the Rowridge ch. 54 transmitter ERP from 1 kW to 2 kW (subject to clearance from Continental authorities). This will extend coverage in the east and south. The Luccombe (Shanklin) relay station has also been approved by the ITC, and initial approval for a transmitter in the Chichester area has been given to extend coverage on the mainland.
Australia: Digital terrestrial TV test transmissions from station Channel 7 in Melbourne started on February 10th. Ch. $6(174-181 \mathrm{MHz})$ is being used for these test transmissions. Viewers are asked to comment on any TV/radio interference problems by phoning or writing to the chief engineer.

Leonids Activity

Mixed reports on the November 1998 Leonids meteor shower continue to be received. A Swiss amateur writes that the shower was "absolutely outstanding", with many contacts at 50 and 144 MHz . The shower began shortly before midnight on November 16th, peaked at approximately 0100 GMT on the 17 th, then lasted until about 0600 GMT, with signal levels reaching S9+. The reflected signals were not the usual short bursts (pings), instead lasting

for several minutes. He says he had never come across such reflections in thirty years of MS activity.

If the peak 1966 pattern is repeated this year the main storm, in conjunction with the Tempel-Tuttle comet stream, is expected to occur at 0147 GMT on November 18th.

The Granada-Dakar cross-desert rally '99 was carried by Hot Bird (13° E) in digital form. This picture is from Dean Rogers, London, who uses a bal-cony-mounted 80 cm tracking dish.

Aerial Techniques

UNIVERSAL DIGITAL VIDEO FORMAT CONVERTER

11 Kent Road, Parkstone, Poole, Dorset RHiL 2anh

(All prices are inclusive of VAT, delivery by courier $\bar{E} 10.00$)

Local station Meridian TV seen recently via Intelsat K.

A new Russian digital TV service, NTV Plus, is now in operation with a package of at least eighteen channels including BBC Discovery, MTV and Nickelodeon: Geographic, Fox Kids and Bloomberg will be added in late March. There are already 200,000 subscribers.

BT Broadcast Services has bought the Dutch Intrax SNG uplinking service. Intrax will however continue as at present, with a fleet of fifteen SNG trucks.

The global cellular service provided by the Iridium LEO (Low Earth Orbiting) fleet of satellites started at the beginning of November last year. 120 countries have signed up to participate. But there remains some uncertainty about the security of links: Nippon Iridium (Japan) won't be charging its customers until April to give time for international connectivity to be proved or otherwise. There's a monthly $\$ 70$ service charge, and some 250,000 subscribers have signed up - though only 100,000 satellite telephones had been made by the end of 1998 . These are special phones that cost about $\$ 3,000$ each. Internal calls cost up to $\$ 2$ per minute air time, international calls up to $\$ 7$ per minute.

The latest SatFACTS bulletin from New Zealand suggests that all is not well with the new PanAmSat PAS-8 craft. Intended to be in orbit at 166° E, NASA says the actual position is $166 \cdot 5^{\circ} \mathrm{E}$. This is bad news for users of PAS-2 at $169^{\circ} \mathrm{E}$. This closeness means that the main forward lobe with a dish of less than 3 m diameter will be too wide to be able to provide adequate co- and adjacent-channel rejection between the two satellites. A larger dish will sharpen the main forward lobe but could well produce secondary side lobes that could peak on the adjacent satellite. PAS-8 has a spot beam aimed at the West US coast, for direct links to Australasia. At the time of writing, this beam is incorrectly aligned - rather more at Pacific waters, the result being severe loss of anticipated traffic.

The Australian Broadcasting Authority now permits satellite reception of various channels that were previously restricted to areas without terrestrial transmission. The satellite services, via Optus, include Imparja TV, Telecasters Australia, ABC, SBS, TVSN, Horizon and QQQ, in digital rather than B-MAC form.

RF Interference

Some years ago the RSGB published The Radio Amateur's Guide to EMC,
an invaluable book for anyone involved in radio transmission and interference suppression - EMC is the buzz word for interference nowadays. The book has been rewritten, updated and considerably expanded by Robin Page-Jones (G3JWI) and is now entitled The RSGB Guide to EMC.

Amateur radio transmitters can cause interference to domestic receiving equipment, for example wideband masthead amplifiers can be overloaded, but such problems are more often caused by shortcomings in the receiver or bad installation. When interference occurs and complaints arise, the amateur has to suppress the interference if possible or ascertain the cause of the problem.

There has been a dramatic increase in the amount of electronic equipment installed in homes. Many households now have computers, baby alarms, cordless or non-BT phones, radio-controlled car locks etc. in addition to TV sets, hi-fi units and so on. Much of this equipment has poor RF immunity and can suffer from interference from a nearby radio transmitter, whether operated by an amateur, taxi service, pager base station or cell phone base. Hence this new RSGB publication.

Though intended primarily for radio amateurs, the book is in fact a comprehensive guide to the use of the RF spectrum, how interference arises from a variety of sources, and the steps that can be taken to suppress/minimise problems.

Particular attention is paid to computer systems, on how to silence interconnecting leads and prevent the TV aerial downlead injecting interference into the domestic TV or distribution system. With satellite systems, VCRs and home cinema, the mass of leads offers many opportunities for breakthrough to occur. But a whole army of preventive devices can be called up for help, such as braid-breakers, bandpass and bandstop filters, ferrite rings and blocks. Once the problem has been understood, it can usually be dealt with. This book explains how.

Having had many years' experience of interference problems, I can wholeheartedly recommend the book. It's well written, i.e. easy to understand, and has plenty of illustrations throughout its 204 pages. There's no maths to confuse things! The RSGB Guide to EMC is published by the RSGB, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE at $£ 18.75$ plus $£ 1.25$ postage.

[^3]
 \section*{\title{
The Joule A-400 Radio Decoder
}}
 \section*{\title{
The Joule A-400 Radio Decoder
}}

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems
Hilton Road, Aycliffe Industrial Park
Newton Aycliffe, Co. Durham DL5 6EN
United Kingdom
Tel: + 44 (0) 1325310278
Fax: + 44 (0)1325 300189
Email: elecsys@elecsys.demon.co.uk

For Your Radio Decoding Requirements

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.

Grundig VS920

A dead machine because C1626 $(47 \mu \mathrm{~F}, 25 \mathrm{~V})$ has failed is a fault that's been reported previously in these pages. Sometimes however Cl 626 can be the cause of a pulsing power supply. One of the first things the system controller chip does at power up is to energise the threading solenoid once. If the power supply pulses repeatedly, the solenoid can overheat, blowing its internal fuse. The result is that you repair the power supply, the machine powers up, but the deck stops when a cassette is inserted. The VCR won't play or eject the tape, because the solenoid doesn't work.

You can, with care, repair the solenoid by carefully cutting away the clear plastic covering, then the fabric tape underneath, to reveal the thermal fuse (part number 72008-456,00). Ensure that the new fuse is pressed close to the windings and is insulated by adding new tape.

When you work on the power supply it's a good idea to note which direction the green stripe on the black ribbon cables goes, in

[0526

VCR Clinic

case one becomes disconnected. Also take a look at the $220 \mu \mathrm{~F}$ capacitors (all nine!) on the secondary side of the power supply to see if any are leaking electrolyte. P.B.

Mitsubishi HSM50V

An unusual fault can occur with early versions of the J deck. The customer says that the playback picture is snowy, but if the VCR is moved the fault disappears. The cause is a poor connection at the lower drum earthing spring (not the video head earthing spring). There is a paint mark, put there at the factory, where the spring makes contact on the chassis. Clean off the paint and solder the spring to the chassis. Fig. 1 should make this clearer.

Later versions use a different method of earthing the drum to the head amplifier. P.B.

Philips 14PV163/05

If the problem with this TVR combi unit is intermittent loss of the picture, just sound during video playback, check crystal 1800 on the large PCB beneath the video mechanism for dry-joints. P.B.

Panasonic NVHD625

We've recently had several of these machines in which the backtension arm has jammed against the left-hand tape-loading arm. The fault symptom is that a cassette is taken in then rapidly ejected. The cure is to fit a new back-tension arm and ensure that it is properly engaged with the main mechanism sliding plate. B.S.

Panasonic NVF65

Sound but no E-E video was the complaint with this hi-fi machine. It would play back prerecorded tapes perfectly. After some checks
in the video switching circuitry, then some head scratching, I discovered that the machine has stan-dard-play video only, plus a longplay facility for hi-fi sound recording. Switching the machine back to standard play restored the missing E-E video. B.S.

Akai VS204G

In the March issue (page 346) I described a tape speed fault that was cured by fitting a new capstan motor. Akai has since told me that this is not necessary. The cause of the problem is static discharge from the motor to conductors on the PCB below: there's a modification that involves a wiring change.

Wow! Why can't they circulate details of such known fault conditions to dealers and spares-account holders as well as Akai Service Centres, or at least intercept orders for expensive motors? It's not the easiest fault to diagnose . . . E.T.

Jammed Cassette

A Ferguson 3V44 came in with a cassette jammed inside. The machine worked in all modes, and when the eject button was pressed the eject mechanism operated. But the cassette remained in the housing. It was loose, but something prevented it from being pulled out.

I removed the cassette housing, expecting to find damage. When I turned it over I discovered the cause of the trouble. One of the cassette's screws was loose and stuck out by a quarter of an inch. I was able to remove the offending screw with tweezers, and after reassembly the machine worked correctly.

This could happen with any VCR of course. F.B.

Ferguson FV72LV
There was no mechanical operation
and a tape was stuck inside. The cause was no supply to the loading motor because D409 was open-circuit. There are two diodes in series, D408 and D409, both type 1N4001. I decided to replace them both. After that the machine worked normally. D.S.

Panasonic NVJ35

The capstan motor was very noisy and sometimes ran erratically, the symptoms then being wow and an unstable picture. The cause of the trouble was $\mathrm{C} 22(330 \mu \mathrm{~F}, 10 \mathrm{~V})$ in the power supply. I fitted a replacement rated at $105^{\circ} \mathrm{C}$. D.S.

GoldStar Q4031

If the fluorescent display characters are over bright and the blanked segment is partially lit, replace the 33V zener diode ZD104. J.LeJ.

Samsung SV301K

No remote-control operation is commonly caused by a damaged PCB track along the front edge of the motherboard, between CN603 and ZD101. This removes the earth connection and all three pins of the IR sensor rise to 5 V . J.LeJ.

Daewoo V21

If there's no RF and no capstan or drum rotation, check Q861. It's quite common to find that it has gone open-circuit. L.LeJ.

Samsung V1395

If there's no power up, check R101, ZD101, Cl 13 and Cl 10. ZD101 tends to go short-circuit. J.LeJ.

Daewoo DVK985P

If there's no tape movement, i.e. the loading arms move the tape to the drum but the capstan motor doesn't rotate, check D504 which tends to do short-circuit, look for dry-joints around the capstan motor connector and if necessary check IC502. J.LeJ.

Hitachi VTM502E

Various plastic deck parts were broken in this machine. So the relevant service kits were obtained and fitted. The deck was then intact, and was retimed. But in the eject position the threading motor permanently drove the cassette housing in reverse, and wouldn't stop.

I wondered whether the end sensors or the 'butterfly' sensor was faulty, but they proved to be OK. Further checks showed that the threading motor drive chip was turned on at all times. The chip
itself was OK: the TMO line from pin 35 of the microcontroller chip was wrong. The cause of the fault was the microcontroller chip. Once it had been replaced the deck functions worked normally. M.L.

JVC HRJ425

Incorrect speed was the complaint with this machine. In playback the capstan ran slightly fast and made a loud, grinding noise. I suspected the motor, but when I removed it the bearings seemed to be OK and it was not noisy when spun by hand. The outputs from the power supply were all OK, though I replaced a few suspect electrolytics just in case, all to no avail. I was beginning to run short of time, so I took a guess and ordered a new BU2884S servo chip (IC401). The new chip completely cured the problem. M.L.

Hitachi VTM502E

The E-E picture was OK but there was very poor, low playback video. I used a scope to check the video signal through the playback stages and found that all was well until I reached the emitter of the BC 848 B surface-mounted transistor $\operatorname{Tr} 7007$, where the signal was badly clipped and of low amplitude. A new BC848B cured the problem. M.L.

Mitsubishi HSB82

This monster machine came in with very poor video playback and low-gain E-E pictures. The symptoms were the same at the scart socket. I had no manual, so I took a quick look to see if I could spot anything obvious.

I followed the leads from the modulator to the bottom of three boards at the right-hand side of the machine. Access was surprisingly easy. The modulator leads are plugged into the board at the righthand corner, close to the S-video inputs and phono sockets. Close by there are two surface-mounted, sil-ver-looking capacitors. When they were heated and cooled the symptoms were emphasised. Much to my relief, replacements cured the fault. The offending capacitors were $\mathrm{C} 210,47 \mu \mathrm{~F}, 16 \mathrm{~V}$ and C 232 , $10 \mu \mathrm{~F}, 16 \mathrm{~V}$. M.L.

Philips VR665 (Paolina)

There was a very intermittent problem with this machine: the picture would develop bad tracking errors with the mono sound badly marred by wow/flutter. The cause was capstan speed variation. The culprit turned out to be the BC848B sur-
face-mounted transistor $\operatorname{Tr} 7469$ in the control-track amplifier circuit. K.J.G.

Samsung SR801K

The complaint with this machine was unstable operation in the LP mode, both record and playback, SP operation being normal. It seemed that the capstan motor could be faulty, but a replacement made no difference. The cause of the trouble was found to be the KA8334 chip IC201. K.J.G.

Sharp VCM311HM

Old sound was being left on the tape. Checks showed that the bias oscillator wasn't working: the 2SC3203 oscillator transistor Q651 was leaky, and as a result R658 (4.7Ω) was open-circuit. When these items had been replaced there was still no oscillation. Replacing the DTC323 transistor Q652 brought the oscillator back to life. K.J.G.

Akai VSG245

This machine would intermittently fail to play a tape, with error 3 shown in the front display. After some test runs I found that the fault occurred when the machine was left to go into standby with a tape threaded round the drum and play was then pressed. The cause of the problem was drum surface wear. The drum would turn, but not promptly enough, and sometimes the tape would be thrown out a little at the take-up side of the drum. A replacement drum assembly cured this intermittent fault. G.S.

Sharp VCM26

The complaint was that the front clock gained one minute each day. I replaced the oscillator crystal and ran the machine on test, but the fault was still present. On closer inspection I found that one of the pair of surface-mounted capacitors in the crystal oscillator circuit was missing - in fact it had never been fitted. Adding this capacitor cured the fault. G.S.

Akai VSG271

This machine would intermittently cut off and stop in the play and record modes. On test I found that the tape would spill out on the take-up side of the pinch roller then the machine would stop. A check on the take-up torque showed that it was low at around $50 \mathrm{~g} / \mathrm{cm}$ instead of $80-100 \mathrm{~g} / \mathrm{cm}$. The cause of the trouble was the reel-drive clutch. G.S.

Answer to Test Case 437 - see page 459 -

We are often fooled into thinking that the microcontroller chip in a TV set or a VCR is faulty. All too often, especially in a VCR, the chip turns out to be perfectly OK. In this situation a feedback signal, typically from a deck sensor, is usually wrong.
In this case however the cause of the fault lay in the power supply circuit. IC301's 5 V supply comes via circuit protector PR512, which looks like a resistor. It's rated at 1.25 A and, in this design, passes about 130 mA in the standby mode and 530 mA when the machine is switched on. It feeds three regulators, one for the always 5 V supply and a couple more for the two switched 5 V supplies.
When the machine was in the standby mode the full 5 V was available at the microcontroller chip, which would happily switch on the other two 5 V lines when asked. But the increased current through PR512 would result in the always- 5 V supply falling below 4.5 V . At this point the microcontroller chip would reset itself and release the two 5 V supply switches, reverting to standby. A nega-tive-going pulse at the output end of PR5512 was clearly visible on the screen of Sage's scope when the machine was switched on.
The initial recording problems noticed by the user were caused by the onset of PR512's failure. When it was removed and checked, its resistance was found to be just over 1Ω.
The moral is to check the power supply outputs carefully and beware of fuses and protective resistors whose resistance value may have increased.

NEXT MONTH IN TELEVISION

Servicing the Panasonic Euro-2 Chassis

The Euro-2 was Panasonic's second chassis to feature digital signal processing. There were several versions. Brian Storm describes the operation of these sets and summarises servicing experience to date.

PC Memories

A PC system uses several different types of memory device for various purposes. In Part 3 of his current series K.F. Ibrahim describes the different types of memory and the purposes for which they are used.

Servicing Daewoo V50/V60 VCRs

J. LeJeune describes routine servicing and summarises fault experience with these VCRs, which differ only in the VideoPlus option. They use the Daewoo FM deck.

A Run-on Timer Circuit

Keith Cummins presents an interesting circuit that can be used to switch equipment off after a time delay of up to half an hour. The design avoids the need for a mains transformer.

CD Player Servicing

John Coombes on basic faults and their causes.

TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS HARD COPY INDEXES \& REPRINTS SERVICE INDEX DISC

Version 7 of the computerised Index to TELEVISION magazine covers Volumes 38 to 48 (1988-1998). It has thousands of references to TV, VCR, CD, satellite and monitor fault reports and articles, with synopses. A TV NCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is quick and easy to use, and runs on any PC with Microsoft Windows or MS-DOS. Price is $£ 35$ (supplied on a $3.5^{\prime \prime} \mathrm{HD}$ disc). Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc. See the CD-ROM offer below.

FAULT REPORT DISCS

Each disc contains the full text for television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc, then access it via the Index disc. Fault Report discs are now available for:

> Vol 38 (Nov 1987 - Oct 1988); Vol 39 (Nov 1988 - Oct 1989);
> Vol 40 (Nov 1989 - Oct 1990); Vol 41 (Nov 1990 - Oct 1991);
> Vol 42 (Nov 1991 - Oct 1992); Vol 43 (Nov 1992 - Oct 1993);
> Vol 44 (Nov 1993 - Oct 1994); Vol 45 (Nov 1994 - Oct 1995);
> Vol 46 (Nov 1995 - Oct 1996); Vol 47 (Nov 1996 - Oct 1997);
> Vol 48 (Nov 1997 - Oct 1998).
> Price f15 each (supplied on $3.5^{\prime \prime}$ HD discs).

FAULT FINDING GUIDE DISCS

These discs are packed with the text of vital fault finding information from TELEVISION - fault finding articles on particular TV chassis, VCRs and camcorders,Test Cases, What a Life! and Service Briefs. There are now two volumes, 1 and 2. They are accessed via the Index disc. Price £15 each (supplied on $3.5^{\prime \prime}$ HD discs).

NEW - COMPLETE PACKAGE ON CD-ROM

The Index and all the Fault Report and Fault Finding Guide discs are available on one CD-ROM at a price of $£ 195$ (this represents a saving of £35). An Index to Electronics World (worth $£ 20$) is also included. Customers who have all the previous Fault Report discs can upgrade to CD-ROM for $£ 45$. Please quote the serial number of your Index disc.

REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the Index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 48 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for non-UK EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK).

SoftCopy Limited,
1 Vineries Close, Cheltenham,
GL53 ONU, UK.
Telephone 01242241455.
Fax 01242241468.
e-mail: sales@softcopy.co.uk
Web site: http://www.softcopy.co.uk
A.R.D.
'Our aim is your next order'

The Nations favourite distributor introduces a new range of High Quality, User Friendly Universal Remote Controls with Leading Edge Design and Superb Blister Packaging

Remote Master 700
Remote Master 600 6-in-1 Universal

Remote
Master 200
4-in-1 Miri Card sized

Is looking for
ICs TRANSISTORs SEMIs an up hill struggle?
A phone call to us could get a result. We stock a very wide range . . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few): 2N 2SA 2SB 2SC 2SD 2 P 2SJ 2SK 3 N 3SK 4N 6N 1740
 BFR BFS BFT BFW JIX BFY BLY*BLX 4 BR BRX BRY BS BSS BSV BSW BS̉X \&T*BTA BTB Buly BU BUK BUT BUV BUW BUX BUY BUZ CA CD CX CXA DAC DG DM DS DTA DTC d GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDA J MJE MIF MM MN MPS MPSS MPSH MPSU MRF NJM NE OM OP PAPAL PIC PN RC SSAA SAB SAD SAJ SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SVI T TA TAA ${ }^{\text {N }}$ \& TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLCYMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others.
We can also offer equivalents (at customers'risk). We also stock a full range of other electonic components.
Mail, Phone, Fax, Credit Card orders \& callers welcome
vish Erar Connect Memical
Cricklewood Electronics Ltd
40-42 CRICKLEWOOD BROADWAY LONDON NW2 3ET
TEL 01814520161 \& 4500995
FAX 01812081441

STHL BUYING EX-RENTALS SWITCH 10 B GRADE NOW!

$\begin{aligned} & \text { 14" REMOTE } \\ & \text { £60 } 55 \end{aligned}$	$\begin{aligned} & \text { 14" TEXT } \\ & \text { E70 } 65 \end{aligned}$	$\begin{gathered} 20^{\prime \prime} \text { REMOTE } \\ \text { EZO } 65 \end{gathered}$
$\begin{aligned} & \text { 20" TEXT } \\ & \text { £86 } 75 \end{aligned}$	21" REMOTE f80 75	21" TEXT £90 85
$\begin{gathered} \text { 20" NICAM } \\ \text { £100 } 85 \end{gathered}$	25" NICAM £145 140	$\begin{gathered} 28^{\prime \prime} \text { NICAM } \\ £ 160 \end{gathered}$
$\begin{gathered} 33^{\prime \prime} \text { NICAM } \\ \text { £350 } \end{gathered}$	TWINSPEED VCR £55	CD MICRO MINIS + MIDIS £30

ALSO MASSIVE SELECTION OF FAULTY RETURNED TV, VCR, HI-FI, CASS, FAXES, PHONES
COECLE:OX TEL:- LEEDS
175 Town Street, Armley $\quad 01132310359$
5 mins from M1M62 \quad ASK FOR ROBERT
PRICES BASED ON QTY OF 10. ALL PRICES + VAT.

Largest selection of

MAJOR MANUFACTURERS NEW "B" GRADE PRODUCTS

T.V. VIDEO AUDIO MICROWAVE OVENS

Contact Fred Bean

BSMART (CRAWLEY) LTD. 10/11 LLOYDS COURT, MANOR ROYAL, CRAWLEY, SUSSEX RH10 2QX

Tel (01293) 618000
Fax (01293) 400133

Wholesale Distributors \& Export Agents of Domestic Electronics \& Appliances

Unit X2, Rudford Industrial Estate, Ford, Arundel BN18 OBD Telephone: 01903723726 Fax: 01903725322 Mobile: 0976241505

CAphN WrNUSsAns ITD. QUALITY USED TV \& VIDEO complete range of tvs VIDEOS AND SATELLITES

Most makes and models available TVs from $£ 3.00$ • Satellites from $£ 8.00$ Videos from £15.00 Prices Ex-VAT

Free Delivery Service to most areas of the UK
U.K.s Largest Export Wholesaler Specialists in conversions to most countries systems

> UNIT 75, BARRACKS ROAD, SANDY LANE INDUSTRIAL ESTATE, STOURPORT-ON-SEVERN, WORCESTERSHIRE DY13 9QB Just 10 Mins from M5 Junct. 6 Worcs North

01299-879642 (3 lines) FAX: 01299827984

VIDEO PARTS

TESTED \& GUARANTEED SECOND HAND PARTS
Overseas customers welcome

Bulk Orders

All parts will be labelled with stock no and details of the equipment they have been removed from,
(e.g. Ferguson FV14T lower drum stock no 9999) and a master list with the same details will be supplied with the consignment.

Unit 19
Clayton Court Castle Industrial Estate Invergordon IV18 0SB
Tel: 01349854422 Fax: 01349854400 (24 hr) E-mail: radcom@radcom.clara.net Web page www.radcom.clara.net

TV/Monitor

NEW
Graded

Ex-Equipment

Re-gun

De-Scratching Service

 Prices on applicationVISA
\section*{Ring Irene}

EXPRESS TV
 The Mill, Mill Lane
 RUGELEY, STAFFS WS15 2JW TEL: 01889577600 FAX: 01889575600

Peacock Electronics

We are now supplying First Class Top Quality Major Branded Audio \& TVs/Video to North Wales, North West, Ireland

DIGITAL CAMERAS	CAMCORDERS
TELEVISIONS	VIDEOS
MUSIC SYSTEMS	RADIOS
PHONES	FAXES
MICROWAVES	VACUUMS

We can HELP you to make MONEY
PHONE FOR TRADE LIST
ALL ITEMS CAN BE WORKED OR UNWORKED ALL ITEMS DIRECT FROM MANUFACTURER

UNIT 39 GAERWEN INDUSTRIAL ESTATE
ANGLESEY LL60 6HR
Tel/Fax: 01248422123

Special Offer on B Grade Videos
L/p Video- $\mathbf{5 5}$ Videoplus - $£ 65$ Nicam - $£ 99$
B Grade Camcorders Working, boxed with instructions
$f 129$
Ex-Renfal Bargains (Working)
21"FST from $£ 35-25$ " FST from $£ 45$ or buy as they come - $\mathbf{E 2 5}$ each
W. the trade wariouse UNH 1, SUNSUNE MILS, WORTLEY ROAD, HEDS 1512 3HI IELEPHONE: 01132638804

IS YOUR RENTAL BUSINESS EXPANDING?

Broughfame Ltd.

can help to expand your television/video rental business and increase your profitability. Our rental Finance Plan offers you financial facilities from £1,500 upwards.
Block Discounting finance also available.

For further details ring or write to:
Broughfame Ltd.
115A St John's Hill,
Sevenoaks, Kent TN13 3PE
Tel: (01732) 743400
Fax: (01732) 743335
E-mail: R@Broughfame.TelMe.com


```
No other consumer
magazine in the
country can reach
so effectively those
readers who are
wholly engaged in
the television and
affiliated electronics
industries. They
have a need to
know of your
products and
services.
```


PHONE 0181-652 8339

FAX 0181.6523981
The prepaid rate for semi display setting is $£ 15.00$ per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.00$ per word (minimum 20 words), box number $£ 22.00$ extra.All prices plus $171 / \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Information. Advertisements, together with remittance, should be sent to Television Classified, I2th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

Repair Information

IF YOU WISH TO JOIN TMOUSANDS OF ENGINEERS WORLDWIDE SAVING TIME AND MONEY DAILY - PLEASE READ ON.

Just released: Ed 21 Fault Indexes in book format OUT NOW Edition 21 of the Television Magazine Index Covers over 14,000 Television, Video, Satellite, Camcorder \& Monitor faults, Large easy to read A4 format The newest addition to a highly acclaimed $\&$ recommended series.
ISBN 1898394253
Edition 21: Complete set $£ \pm 4.75$ Offer Price $£ 9.75$
Brand New: Fault indexes on disk - Version 1.7
Latest faults together with ALL data from ALL previous versions. Covering a MASSIVE 20,500!! Television, Video, Camcorder, Satellite, CD \& Monitor faults listed in 19 years of Television.

Indexes on Disk Version $1.7 \quad 17.50$
Low cost updates are available for all Disk fault indexes - Current price 55.50
New: Kwik Tips on Disk Version 1.1
Already proving itself a valuable service resource in workshops large \& small, Kwik Tips VI.1 is our LARGEST FAULTS \& REMEDIES database EVER, Compiled from over 20,000 !! Entries \& covering 1,435 Chassis \& Models, This concisely Edited TV \& Video repair database will easily pay for itself with just I repair.

Kwik Tips on disk Version $1.1 £ 27.95$
Latest release - Equivalents guides - 2nd Edition. Equivalents \& Models to chassis, TVs, Videos Camcorders \& Satellites, 5 sections, Over 6.300 Entries, Need we say more !!

Edition 2: Equivalent guides book $£ 5.95$
All programs require a P PC or compatible \& are supplied with a user manual.

E.C.S.

Technical Publishing (Est 1985)
Please add $£ 1.75 \mathrm{P} \& \mathrm{P}$ to total (Europe $£ 2.75$. r.o.w. please enquire)
316, Upton Road, Noctorum, Wirral, Merseyside. L43 9RW. Tel/Fax 01515220053

> SERVICE INFORMATION
> CIRCUITS and SERVICE MANUALS from 1930s-1990s:
> Radios, amps, radiograms, tuners, CDs, TVs, videos, cassette radios, ICE etc. LARGE QUANTITY USED TV and VIDEO SPARES BACK COPIES PW and TV MAG DAVE WILLIAMS
> 16 Church Street; Owston Ferry, Doncaster, S. Yorks'DNS 1RG
> Tel and Fax: 01427728046
> Mail order only. No callers

To Advertise
in Television Classified Telephone Pat Bunce
on 0181-652 8339 or Fax on
0181-652 8931

Thousands of models available

For most U.K. European, Far East \& USA makes Service manual prices
B/WTV -

- $£ 6.00$
CTV/VCP - £10.00
VCR - £14.00 Camcord - £16.00

Service sheets/circuits also available for some models.

+ data for satellite, audio and microwave.
All the above items include circuit diagrams.
Please telephone to check availability.
Payment by Cheque/PO only please.
Add $£ 2.00 \mathrm{P} / \mathrm{P}$ etc. to order total. Do not add any VAT.
D-TEC
PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Service Manuals

 Available for most equipment. rom Valve Wireless to Video Recorders and everything else in between.
Televisions, Computer Monitor, Test Equipment, Satellite, all Audio, Amateur Radio etc etc. If you need a Service Manual give us a call. Originals or Photostats as available. Our entire index of Manuals is now being put on our web site for instant access.

Alternatively complete the coupon below for our Floppy Disc catalogue of Manuals and Technical Books available.

MAURITRON TECHNICAL SERVICES
8 Cherry Tree Road, Chinnor, Oxon OX9 4QY Tel: 01844-351694. Fax: 01844-352554. Email:- enquiries@mauritron.co.uk
Web site at:- http://www.mauritron.co.uk/mauritron/

Please forward your Catalogue of Technical Books and Service Manuals Index on PC Disc for which I enclose 4×1 st class stamps.
Name
Address

Postcode
Telephone

AV CIRCUITS? SERVCE MANUALS? AV TEL/FAX A.T.V. on 01142854254	
SAT/CTV Circuits	85.00
VCR Circuits	87.00
CTV Manuals	£10.50
VCR Manuals	£14.50
(P/P add $£ 2.50$ to each order)	
$\begin{aligned} & 419 \text { LANG: } \\ & \text { SAEFFIE } \end{aligned}$	

To Advertise
in Television Classified Telephone Pat Bunce
on 0181-652 8339 or Fax on
0181-652 3981

SERVICE MANUAL LIBRARY pay only $£ 5$ loan fee for any Service Manual or keep it for $£ 10$. Lifetime membership $£ 99$ - FREE Data Reference Manual showing the 1000 's of manuals available with models cross referenced to correct manufacturer's chassis ($£ 9.95$ on its $\mathbf{o w n}$). We take other manuals so members can get new manuals for only the cost of postage.

Phone 01357440280 (fax 440384) for full details or write to: Technical Information Services, Midlinbank Farm, Ryelands, Strathaven, Lanarks ML10 6RD. World's largest stock of Service Manuals (TV VCR Combis, Test Eqpt, Audio, CD, Satellite, Dom Eq) Complete Repair Data (Not the few faults offered everywhere else) \& Technical Literature. Any items asked - free quote.

Special offer until end of June 1999

Any 20 full service manuals from stock (1 at a time or in any quantity you wish) only $£ 240$ including 1 st class post. Includes those priced at $£ 50 / £ 60$!!! Includes FREE Data Reference Manual and Practical TV \& VCR Repair Manuals worth $£ 33.90$ alone).

100 's of offers and prices FREE on request. Buy any 2 Buy, Sell \& Repair (TV's or VCR or CD) @ $£ 12.95$ each - get 3rd FREE.
European Scrambling Systems (Hackers Black Bible) $£ 35$. Practical Radio Repairs for $£ 2$ (post free with any other order).
Any of the famous McCourt or Tunbridge CTV Repair Manuals for only $£ 5$ each - all 9 for $£ 25$ till end June 1999 or when cleared.

Thorn - 6 training manuals for $£ 9$, PAL system $£ 10$.
The 9 manuals for common CTV's - 1001, 1401, 1403, 1405, 2001, 2003, 2005 plus Text sets covering Beon, Bush, Crown, Murphy, Philips, Taiwan Ind \& multiples only $£ 49$ (Circs £39)

ACCESS, DELTA, EUROCARD, MASTERCARD, VISA $£ 2.50$ postage any non-free order. e-mail s_manuals@hotmail.com

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE: 0181-948 3702
 FAX: 0181-332 0583

ALBA • AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDELITY • GEC • GRUNDIG • GRANADA HITACHI • HINARI • INDESIT • ITT • KIMARA • NIKKAI MATSUI - MURPHY OSAKI NORDMENDE - LOEWE-OPTA PANASONIC • PYE P PHILIPS • SANYO • SAISHO - SHARP SONY • SOLOVOX SUSUMU •TANDBERG • TELEFUNKEN THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLIERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD - 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ Approx. 1 mile from Kew Bridge. $1.30-4.30 \mathrm{pm}$

accént

TECHNIC
CAMCORDER REPAIRS

Collection and delivery anywhere in the UK.
All makes, fast service.
Phone free for details.
Fax: 01905796385 (0800) 281009

SPARES \& COMPONENTS

MISC

AS NEW ' A ' GRADED PRODUCT IN
ORIGINAL PKG \& BOX WITH INST BOOK LEADING BRANDS ONLY. FULLY GUARANTEED ALL SOLD AT APPROX HALF USUAL RETAIL
michowave ovens $£ 39$ 14" PORTABLE CTV............. $\varepsilon 69$ 14" COMBI CT VCR.............. E135 135 28" LARGE SCREEN from £295 CDR PLAYERS £173
KG PURCHASING LTD - BRADFORD Tel $01274660196 / 665670$ Fax 665246

WANTED

BILLINGTON ETPORT LNTTED Sussex RH14 GEZ

VALVES WANTED FOR CASH (KT88, PX4, PX25, DA100, EL34, EL37, CV4004, ECC83) Valves must be Mullard/GEC/West European to achieve top prices
Ask for our free Wanted List. WE SUPPLY VALVES, C.R.T., VIDICONS ETC Visitors, please phone for an appointment, we're a very busy export warehouse.

Tel: (01403) 784961
Fax: (01403) 783519
Emadl: billingtonexportldd@btinternet.com

AVO MULTIMETER Madel 8, £45.00. 500 volt megers $£ 30.00$. Prices plus VAT and p. \& p. Send SAE for lists of surplus instruments and scopes etc. A. C Electronics, 17 Apleton Grove, Leeds LS9 9EN. Tel: 01132496048
PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel 01494814317
free Catalogue Moreton Alarm Supplies, CCTV2000 unbeatable prices board cameras from $£ 29.00$ phone for free catalogue 01516300000.

RECRUITMENT

EXPERIENCED AUDIO VISUAL ENGINEER

Required to
Work on complete SONY and PANASONIC range of products.

Staff discounts, latest equipment, modern workshops
 References essential Apply in Writing to:-

Company Secretary, Unit 2B, Aberconway Road, Morden,
Surrey SM4 5LN

ARE YOU LOOKING FOR

 A BENCH ENGINEER?
Experienced in the repair of

 most major brands of TV/VCR/AUDIO/SATELLITE? Birmingham AreaIf you are the contact Box No B5990 Television Magazine, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

ATTENTION ENGINEERS

 Do you wonder it there is a better way to check ataulty VCA deck or to check its timing marks. Well laulty VCR deck or to check its timing mak
now there is, with these proven inovations 1. fingertip 2 button control.
2. ability to control mode motor in slow motion. 3. lorward and reverse.
4. run ary mechanism

2 $2 \mathrm{y}+\mathrm{m}$ -
5. check for damaged gears or poor mechanism with crawter setting.
6. final run through of mechanism of speed atter
7. three
models.

Once use
without it
FROM $£ 29.99+3.50 \mathrm{P} / \mathrm{P}$
Tel: 01834684631 to order

RECRUITMENT

EXPERIENCED A/V ENGINEER

We are a leading independent retailer based at Pinner in Middlesex and are looking for an experienced engineer to join our busy Service Department. We service a quality range of TV, video and audio products from the major brands which include Bank \& Olufsen, Panasonic, Sony, Philips and others. Full-time position but would consider part-time. Excellent package and manufacturer based training available. For further information contact:

Malcolm Mant or Kevin Enskat
 HOMEVISION

30 Bridge Street, Pinner, Middlesex
Tel: 0181868 3220/3233

Are you urgently looking for: TECHNICIANS BENCH ENGINEERS FIELD SERVICE ENGINEERS, etc.

Then why not let Television Magazine help you find the right person that you are looking for.
Call Pat Bunce on 01816528339
01816528931 (Fax)

Written by Nick Beer for service engineers, enthusiasts and students

This is the definitive practical guide to faultfinding, troubleshooting and servicing satellite television equipment, both indoors and outdoors. It will take you through all areas of satellite television system servicing from the simplest fixed dish to fully motorised systems. From PAL to Mac to MPEG all contemporary systems are covered.

Satellite TV systems have been installed in a wide variety of locations, using a bewildering range of equipment. That equipment is beginning to need maintenance and repair. To cope with the volume and variety of work, Nick Beer has written the first guide to satellite TV that concentrates on what to look for and what to do when it goes wrong. This book is up to date and crammed with real-life experience - not theoretical data or manufacturer's ideal specs.

Nick Beer has already written the best-selling Servicing Audio and Hi-fi Equipment and is a technical correspondent for many UK and international journals such as Television. He also works as an engineer and teaches satellite servicing to technicians.

[^4]
Serviing Sutellite TV Equipment

Contents

Introduction \bullet Tools and test equipment \bullet Dishes and feeds - De-polarisers and low noise blocks \bullet Distribution systems

- Actuators and positioners \bullet Tuners and tuning systems \bullet Video processing circuits \bullet Audio processing circuits \bullet Power supply circuits • System control circuits \bullet RF amplifiers and modulators \bullet Decoders and descramblers \bullet MPEG Digital Television System - Repair techniques \bullet Appendix \bullet Reference data \bullet Appendix 2; Safety BEAB and BS415: $1990 \bullet$ Appendix3; useful addresses.

This 224 page hard backed book contains 50 photographs and 50 line illustrations - price £35.00

** Price includes delivery and package **

Return to Jackie Lowe, Room L333, Quadrant House, The Quadrant, Sutton, Surrey, SM2 5AS

Please supply the following title:
Servicing Satellite TV Equipment
\qquad
Name
Address
\qquad
Postcode Telephone

Method of payment (please circle)
Access/Mastercard/Visa/Cheque/PO
Cheques should be made payable to Reed Business Information
Credit card no
Card expiry date
Signed
Please allow up to $\mathbf{2 8}$ days for delivery

Special Offer Sale - 20 Remote Controls $£ 20.00$ (mixed all well known brands)

WILLOW VALE DELIVERS

A World of Spares

www．willow－vale．co．uk．

SERVICE PROFESSIONALS CHOOSE TO BUY FROM

ELECTRONICS LIMITED ＇The Better Choice＇

15 Arhwight Road，Reading ：Eeblshite Ric：ULU．

[^5]Willow Vale can supply cenume spares tor the iollowing manulactures：
－Sluap
－Ľlitips
－Dゼと
－IVE
－Mutisui
－Grundiex
－Fervusull
－Ťiunu
－Nellita
－Stistu
－Gulistial（Le Electunies）
－Panesulic
－Soly
－Toshilue
－Thomsin
－Multsubishi
－hiki
－Liwa
－Hibleer
－Sビルルルいい
－Liititelli
－Allustuti
－Lille
－Euslı

－Whirlpuol

 via dur vieutaial Lesel utcerelluqui！！s！sicill．

[^0]: *Because of space problems with this issue, several letters we had intended to publish have had to be held over until next month.

[^1]: IFOODDONTS:

[^2]: GENIE - 3 way Universal Remote Control

 - Replaces 3 infra red remote controls
 - Covers 1000's of models
 - Controls TV, VCR and Satellite
 - Auto Code Search
 - Unique styling
 - Customer helpline

 Order Code: GENIE
 PRICE: $£ 9.00$ + VAT

[^3]: Decode and recode car

 ## radios \& CD doyers.

 quickly wifn the Joule A.
 400 radio dscoder

 Now seld worldwide to
 servise departmenis and
 Police Forces.
 C.E. Approved
 all curment regulotions.

 Prices start from
 $5375.00+4$ AT for the
 Storer Kit covering over
 100 models o popular
 radios.

 Coll us now for a free
 information pack and
 demoristratior disk on
 0132530742

[^4]: - A practical guide to a new and important area for service engineers
 - Covers indoor and outdoor equipment
 - Written by an experienced author, teacher and engineer

[^5]: HOMINATED FIRST CHOICE SUPPLIER（Source）－Marvyn Hamlyn survey＇Independent Retail \＆Service Engineers＇June 1997

