THE LEADING UK CONSUMER ELECTRONICS TECHNOLOGY MAGAZINE


SERVICING•VIDEO.SATELLITE•DEVELOPMENTS
FEBRUARY $1999 £ 2.70$

## The Green issue:

Low-power standby technology

## Pioneer's DVD and flat-screen

 TV developments
## Servicing the Philips

 Turbo VCR deckPate RiRD series modifications

## Test Report:

 Wallis universal RC handsets

## Wizard <br> The Magical Vni ersal Remote Control

## Why you need the Wizard

The latest universal remote contol from Philex is superbly styled and designed for the modern wo:-d. As you can see, it's a break from the norm, and will work monders for your sales.

Available in matallic gray with basklt keys, this little piece oj magic is waiting to cpen new soles channels as well as chennels on the TV, VCR etc.

Eliminate that need for stocking too many remotes, the Wizard is a practical alternarive to clutter and mess in any environment, be it the home or office.

The Wizard is simple ta use and is tacked up by our superb customer heppline.

## Full learning facility

This enablesthe Wiaard to reprosuce almost any key funstion found on infra red remote soptrols.

Pre-programmed for casy set-up
3 modes of set-up... Learning, coceless and manufacturer iE search

The Wizard is pre-programmed with one of the largest code Itharies available corering TVs, VCFis, Satellite receivers, Catle boxes, GE plasers and HiFr systems.

Replaces 8 infra-red remate controls Replaces lost or broken remotes o- ins: eliminates the need for emotes.

Sa. for the full ronty on the Wizora $c$ short spell talking to aur fully trained sales staff will help you on your way.

Let the Wizard put the magic back: ruto Christmas!


The Vizard, its promoriona and packaging naterta are al designed inchouse at Philex.

# CONTIENTS <br> February 1999 <br> Vol. 49, No. 4 

## Servicing: to license or not? <br> 231

## What a Life!

234
This month the customers are decidely stranger than the TV faults they bring in - until an incorrect colour problem comes along. Donald Bullock's service commentary.

## Teletopics

236
Interactive TV, latest TV chips, an on-screen signlanguage system and other news items.

Pace PRD Series Modification 238
Martin Pickering describes a simple way of providing automatic LNB switch off to give cooler running.

## Satellite Notebook

Solutions to problems with satellite TV equipment and installations.

## Service Casebook

242
John Edwards on various servicing problems.
Camcorner
243
Fault reports and repair tips from David C. Woodnott.

## A Printer Problem

244
Quintin Blane on an Amstrad printer fault and how to get more out of the cassette.

## A Visit to Pioneer



During a recent visit to Pioneer, Japan, George Cole was briefed on optical disc and flat-screen display developments.

## Satellite Workshop

Jack Armstrong's column on satellite receiver servicing.

## Low-power Standby Operation 252

Eric Carlton on various techniques that have been developed to reduce TV set power consumption when in the standby mode


## Books <br> 257

Monitors
258
Hints and tips on dealing with computer monitor faults.

## Help Wanted

273

## Servicing the Philips Turbo Deck 274

Alan J. Roberts describes the main features of the Turbo VCR deck mechanism and provides notes on general servicing and some problems that can cause confusion.

## VCR Clinic 278

## Test Report <br> 280

Eugene Trundle tries out the recently introduced Wallis universal remote control units and finds them easy to set up, good performers and good value.

## DX and Satellite Reception <br> 282

Terrestrial DX and satellite TV reception reports. News from abroad and the satellite belt. How to search for digital satellite TV signals. Whatever happened to channels E1 and A1? Roger Bunney reports.

## TV Fault Finding

## Letters

290
Interference from DTTV transmissions, that Hitachi tuning voltage circuit, CD player lenses, safety, training and other topics.

## Editor

John A. Reddihough
Production Editor
Tessa Winford
Consultant Editor
Martin Eccles
Publisher
Mick Elliott
Advertisement Sales Manager
Grant Allaway 0181-6523032

## Advertisement Sales

 ExecutivePat Bunce
$0181-6528339$
Fax 0181-6528931

## Editorial Office

0181-652 8120
Fax 0181-6528111
Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

February issue on sale January 20th.

> Next issue, dated March, on sale February 17th.

## ADVERTISEMENT

## Digital Terrestrial Television Testing

## The TV Transmitter Adjustment Programme

Broadcasts from 21 new Digital Terrestrial Television (DTT) transmitters have started and testing of some of the remaining 60 is already under way. To comply with the requirements of the licences issued for DTT, the TV Transmitter Adjustment Programme (TV TAP) has been set up to deal with any interference to existing analogue television reception that may be caused by digital terrestrial transmissions
In areas where it is predicted that existing TV pictures are likely to be affected, householders are being informed before the tests take place, by a mail shot which gives a Freephone number to ring. A technician from the TV TAP is then sent out to deal with the problem, at no cost to the householder.
In transmitter areas where there is predicted to be no interference to existing TV reception, the TV TAP will not be contacting householders by post. There is still a very small chance, however, that the test broadcasts in these 'low risk' areas will affect some television sets. If local television retailers and maintenance engineers receive reports of any interference to TV reception, then they should pass the details to the special 'trade only' Freephone number given below. Arrangements will then be made to send out a technician from the TV TAP.
The terms of the DTT licences do not require the TV Transmitter Adjustment Programme to deal with the specific problem of interference on Video Cassette Recorder or Satellite Decoder outputs. Consequently, any householders experiencing this particular type of difficulty will need to arrange for the necessary adjustments to be made by a suitable television retailer or maintenance engineer, if they are unable to cure the problem themselves. The Independent Television Commission (ITC) has an information sheet about how to deal with this type of interference, which is available from its Regional offices
In adjusting VCR/Satellite Decoder outputs, care should be taken to avoid using a channel which is allocated for future use by local DTT transmissions. Details of DTT channel allocations are available on the Independent Television Commission's Web Site:
www.itc.org.uk/divisions/eng_div/dtt_freq_plan/
It should be noted that the TV transmitter Programme can only deal with TV reception problems that are caused by the test broadcasts: also that the existence of digital interference does not necessarily mean that a householder will be able to receive satisfactory DTT transmissions.
Initial test transmissions typically run from 8am to 7 pm daily. The test period is later extended to 24 hours a day. TV trade organisations, such as retailers and repair shops, whose details appear in Yellow Pages or Thompson Local Directories, will receive a mail shot immediately before a DTT transmitter begins testing in their area. In addition, full details about the current DTT Transmitter Test Programme and TV TAP are available to the trade on the TV TAP Web Site:

## www.tvtap.mcmail.com

The TV TAP may be contacted for TV trade enquiries only on
Freephone 08000920080

[^0]
## Repair SMDs on PCBs in seconds with the NEW Hot Jet'S' <br> Desoldering and soldering of SMDs by hot air and without contact is the fast and efficient way for the modern repair workshop. And now, Welwyn Tool can offer the complete package - a range of hot air tools, SMD Rework Stations, nozzles to suit all SMD requirements, free demonstrations and free colour instructional brochure ... all available from Distributors nation-wide. <br> For further informotion, please ask for Reference No. TMS <br> WELWYN TOOL CO.LTD. <br> 4 SOUTH MUNDELLS, WELWYN GARDEN CITY HERTS AL7 IEH. <br> TEL: (01707) 331III. <br> FAX: (01707) 372175. <br> PUT HOT AIR TO WORK FOR YOU

for
TVs • VCRs • Satellite • Hi-Fi

## Can't Find a Particular Remote?



## YOU CAN HAVE IT.


(MONEY (SAVING) (SAVING) 1-1

World's Largest Range
(Over 60,000 References)

Match or 'Make Free' Service

Competitive Prices From £6.50

For Further Information - Just Call Our Helplines
Tele: 0181-870 3388 • Fax: 0181-870 9988
Suddenly - You'll Love Selling Remote Controls

# Servicing: to license or not? 

By law, all businesses that carry out gas work must be registered with the Council for Registered Gas Installers (CORGI). Since gas is dangerous stuff, it is right that only qualified fitters should be allowed to install and service equipment that uses it. The question is, should the same principle be applied to electrical goods, brown and white? Electricity is after all as lethal as gas.

There are powerful advocates for registration/licensing in the trade, and the logic is inescapable: anyone who sets out to provide consumer repair services for the public should be able to prove his/her competence to do so. The problem lies in the practicality of establishing a system to supervise the trade and clamp down on unauthorised practitioners. Such a scheme would inevitably be expensive, and would have to be set up at a time when consumer electronics servicing is barely viable because of the low cost of new equipment. The public could find that it is deprived of servicing facilities unless the goods are still under guarantee. Understandably, this wouldn't go down well. Quite apart from cost, there is the problem that few colleges are today running servicing courses, which means that the supply of qualified servicing personel is drying up. This in turn encourages the cowboy element.

We all deplore cowboy activity shoddy, often dangerous work, whether an excessive or a reasonable charge is made for it. You will never be able to eliminate the small-scale bodger however. There are those who think they know what to do when they patently don't, and there is the traditional friend of a friend. If you make it illegal for such people to
dabble with equipment, what about qualified electrical/telecommunications engineers (say) if they don't possess a relevant servicing qualification? Such people are often better qualified than a service technician. At the professional servicing level, possession of qualifications doesn't always guarantee the absence of a cowboy/bodger attitude to servicing, which can be encouraged in even quite large organisations when the pressure is on to maximise work throughput.

Anything that can be done to maintain high standards of workmanship is clearly worthwhile. But it would be impossible to do much by way of checking on work done unless a complaint is made. There are already means of handling this. Then there is the question of what exactly constitutes a bodge (other than something obvious)? There are 'bodges' which are safe and work but wouldn't be approved by those who maintain that equipment must always be restored to the manufacturer's original specification (something that can and does change). What are you to do when parts are not longer available, or the original manufacturer or importer is no longer in business? Scrap equipment that is otherwise perfectly sound or engage in a bit of creative engineering?

I am also tempted to ask how electrical safety know-how is to be disseminated? The subject is a vast one in itself, calling at its highest level for a thorough knowledge of BS415/EN60065 and the principles of design to meet BEAB requirements. There are also some important but quite obscure electronic safety problems, as the correspondence in these pages on double insulation and
floating circuitry highlighted early last year. OK, at the basic servicing level it's a question of what should and shouldn't be done in terms of component replacement and safe mounting. But even here there is scope for argument.

Then there's the small business problem. The big boys in the industry don't want to know about keeping old sets going. To fill the gap, many small firms have been set up. Most do a perfectly good job, but are unlikely to be able to cope with the complications of regulation. Many would have to give up. That would hardly be in the public interest.

The government probably wouldn't consider the introduction of legislation to introduce an electrical 'CORGI' system as a high-priority matter. But if there was sufficient pressure from within the trade it would have to take notice. The question is, what action would be taken? How heavy-handed would it be? Would it be illegal for an owner to tamper with his own equipment unless he/she had a relevant qualification?

The subject is not an easy or simple one. We will probably continue to muddle along for some years yet - unless a diktat comes from Brussels! The situation is not entirely analogous with that in the gas industry. People still expect to pay a respectable sum for a central-heat-ing/hot-water system. They don't expect to pay much for or to repair consumer electronic equipment!

The best course would be to disseminate practical know-how on electrical safety at all levels within the trade, and to warn the public - not just by means of stickers that fall off and handbooks that get lost.

## COPYRIGHT

© Reed Business Information Ltd., 1999. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

## CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

## INDEXES AND BINDERS

Indexes for Vols. 38 to 48 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eleven-year consolidated index on computer disc. For further details see page 293.
Binders that hold twelve issues of Television are available for $£ 6.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

## BACK NUMBERS

Some back issues are available at $£ 3.00$ each. For further details see box on page 277.

SUBSCRIPTION ENQUIRIES

| Telephone: | 01444445566 |
| :--- | :--- |
| Fax: | 01444445447 |
| Credit card orders: | 01622778000 |

Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Make cheques payable to: Television
Subscription rates:
UK $£ 32.00$ per year

Airmail Eire . £36.00 per year
Airmail Europe
Airmail Rest of World
£46.00 per year
£59.00 per year
NEWSTRADE ENOUIRIES
Distributed by MarketForce Telephone:

01712617704
WEB SITE
For a full list of RBI magazines: http//www.reedbusiness.com

ISSN 0032-647X

REED
REED
BUSINESS
INFORMATION
Thousands of semiconductors I.C's etc.
of video parts, heads, belt kits etc.
of remote controls. etc. etc.

| over 100,000 database records to help find the difficult |
| :--- |
| video parts quickly. Stock availability \& price in seconds |


| We compete on QuALITY - we compete on SERVICE.... |
| :--- |

We will not compromise and yet our prices are often less.
...$a n d$ look at the
special offers....... BUT11A@ $90^{\circ}$ each BUT11AF @4B each BU508A@(60) each Fully wired scart lead $9^{\circ}$

......and now aisk
for a full price list.......

##  NEW EDITION No. 5

You could scy that what Martin Plckerng doesnt know about sotelitite recevers isnt worth knowing. What he does know has become legendary.
Hoving been of it since the Hoving been of in since tie
start of consumer satelthe IV . start a consumer sateme iv. darabase a on satellite $N$ fecevers. Not only on therl faults. common and tess common but also on modfications and upgrodes. MartIn brings in-depth
expertise to the sublect. experlise to the sublect.
having prevlously been involved with equipment rellabllilty testing and component spectification. Onginally entitied "Satelitte Repoat Manual", this book has become estabilsted os bibie for satellite N repai
But the subfect doesn't stand still. New models. new toults there Is otwoys sorreething to ediltion. which has been completely updatea and now has 300 pages and a more attractive cover. In addition to recelver fault notes and
 general information youth find
osetting parental lock codes, esetting instatition choces to foctor defoults ond ather less well known operations, practical information on ine's with tratical curent droins. a list of manutocturers and suppliers addresses, other Lseffininformation and a beginners secithon.


No self respecting workshop... .should be without this guide.


KIT1 26.95 Pace - PRD800,PRD900,PSR800,PSR900 Fergueon
ST700, To8hiba TU-SD200,SAT99
KIT2 £6.96 Pace - SS900,9200,9210,MRD920, Ferguson SRV1, Grundig GIRD2000,3000, Philips STU801, Network 900,9200, Bush IRD150, Nokia SAT1500, Maspro SRE250S,350S,450S,Alba

SAT6600, Finlux SR5700, Thompson SRS4
KIT3 26.95 Amstrad - SR510,520,540,SRDR45,SRD560 KIT6 26.95 Pace D100,120
KIT9 £9.46 Pace MSS200, 300 , Apollo
KIT9 29.46 Pace MSS20, 12 E16.45 Echostar SR5600(early PSU with adjuster) KIT15 27.36 Mimtec (Sorenson PSU type only) KIT 17 £8.95 BT SVS300
KIT 20 e5.95 Maspro ST 5 G
KIT22 29.96 Philips STU909

KIT4 26.95 Amstrad SRD 500 KIT7 $\mathbf{~ 2 6 . 9 6}$ Churchill D2MAC decoder KIT10 \&18.11 Pace MSS500,1000 KIT11 $£ 5.96$ Ferguson SR04 KIT14 £23.95 Amstrad SRD600 EIT16 £5.95 Amstrad SRD700,SR950,SRX100,301,501,1002,2001,SRD2000,SAT250 KIT 18 £10.62 Amstrad SRD2000 KIT 19 £6.95 Bush IRD155 $\begin{array}{lll} & \text { KIT21 } & \text { £6.95 Amstrad SRD65 } \\ \text { KIT23 } & \text { £7.96 Nokia SAT1700 (mainly surface mount) } & \text { KIT25 } \\ \text { 216.95 Maspro ST-8 }\end{array}$

## hitp://www.telepart.co.uk

You can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message.
 1) A) A) वunaromea If we can't find the part required immediately, we will HASSLE and HASSLE our suppliers. HASSLE and HASSLE the manufacturer. We
will make phone call after phone call, Fax after Fax on your behalf. WE WILL DO ALL THIS FOR YOU. We will do it willingly and we will do it for FREE

## Etenomic supply IV \& Video parts cercer, eren FGI




# This month the customers are decidedly stranger than the TV faults they bring in - until an incorrect colour problem comes along. Donald Bullock's service commentary 

Walter Winghurst is a wizened little chap with protruding ears. He called in the other day with a 2 lin. Matsui colour set.
"Went wrong last night" he said, "and didn't half send the missus into a state. Went pop, started whistling then died."
"Sorry to hear about that" I replied, "but she always had her problems. What's up with the set?"
"Went pop, started whistling then died" he said.
"Same as the missus, eh?" I replied.

He gave me a funny look, then edged out.

Steven took the back off the set and made a couple of quick meter checks. There was HT, but it wasn't present at the line output stage. A 2A circuit protector had gone open-circuit. Some further checks revealed that the line output transformer was faulty with shorted turns.

Several different types of line output transformer have been used in these sets. This one had a Philips transformer, which seems to fail more often than the others. SEME do an excellent replacement, made by the Spanish company HR. We had one in stock, and after fitting it the set was as good as ever.

## More Matsuis

Nan Finch is a big woman who suffers from bad indigestion and tends to intrude into other people's conversations. She came in with a Matsui 209T just as Mrs Webcross was putting her Matsui 1481B on the counter. I like old

Mrs Webcross. A real country lady.
"Jolly cold today, Mr Bullock" she said.
"Nah. It's 'ot" said Nan.
Mrs Webcross turned round. surveyed her, then turned to me again. She drew her finger across the centre of the screen. "Just a line" she said.

I filled a card in for her set. When she'd departed, I asked Nan what the problem was.
"Flashed and died" she said.
Paul was looking at the 1481B. A quick check revealed that the supply to the UPC1488H field output chip was missing. It comes from a rectifier that takes its feed from the line output transformer. The surge limiting resistor here, R437 ( $1.8 \Omega, 0.5 \mathrm{~W}$ safety type), was open-circuit. A replacement restored the field scanning. Easy, that one.

The 2AT mains fuse in Nan's set had died a violent death - it was blackened. The obvious thing to check was the chopper transistor, which was short-circuit. We fitted a replacement then started the set up via our variac. It groaned briefly as the voltage was wound up, but refused to get going and drew no current.
Further investigation led us to the standby switching transistor in the HT supply. It was leaky all ways. Once this had been replaced the set worked correctly.

## Comedy Acts

Two fellows then appeared carrying a massive 28 in . Hitachi set, Model CPT2808.
"Straight on to the bench!" I
said, "what's wrong with it?"
"Dead, just ticking" they replied. "Can we come in tomorrow to see if it's done?" They spoke in unison.

Not long after, Terence Reever came in with a 2 lin. Akai Model CT2115. He tends to look down his nose at you. I gave him a stern look as I drew up a job card.
"What's the trouble?" I asked.
"Nothing" he replied.
"So why have you brought it in? I asked.
"'Cos there's nothing" he said.
I plugged the set in and connected an aerial. All I got was a plain raster, with no sound.
"See, nothin'" he said.
As I waved him out Mr McTurdy came in. He was wearing gumboots, which didn't do much for the floor.
"Hah, Mester Balloch. Now, what 'ud you do if you'ad a pie that kept buzzin? Nut'n but buzzin?"
"I'd refuse to eat it. In fact I'd give it to you."
"Roight" he replied, "and I'll be returnin' the compliment. It's in the car."

Out he went, squelching, then back again, this time carrying a Pye colour set - one fitted with the Philips 2A chassis.

I waved him out and turned to Steven. "That's three comedy acts in a row" I said. "Do you think we'd better shut shop and scoot off before the midgets and jugglers start to come in?"

## Repairs

But it was time to get down to business. Steven took the back off
the Hitachi set. The cause of the trouble was immediately obvious: the mains bridge rectifier's reservoir capacitor C909 ( $150 \mu \mathrm{~F}$, 400 V ) had discharged its electrolyte over the PCB and was open-circuit. A replacement brought the set back to life.

There were additional symptoms with the Akai set. The front control buttons didn't do anything, neither did the remote control unit's buttons. A problem like this is often related to the lowest supply line, say 5 V . As expected, it was missing. Before long we found that $\mathrm{C} 832(1,000 \mu \mathrm{~F}, 6.3 \mathrm{~V})$ was dead short. A replacement restored the LT supply and the set came to life.

I was having a go at the Pye set. It was buzzing all right, with no sound output. The TBA120S intercarrier sound chip was faulty. Once a replacement had been fitted there was perfect sound.

## Mitsubishi Problem

"My husband went hoppin' mad last nigh, Mr Snoddy" said a bulky woman who came in clutching a 21 in. Mitsubishi set, model CT2 IM3TX. "We wuz just settling down with a drop of larrup to see ol' whasisname - you know, the slimy one with the sickly grin whasisname? . . Go on, remind me!"
"Could be almost any of 'em, couldn't it?" I replied, "and more if it was Channel 5."
"Any 'ow he just faded out. Left us with nuthin'. Nuthin’! Just faded out. Never left us with nuthin'. 'T'aint right now, is it? I mean, he costed us alloa money. We got 'im because of Bruce Forsythe."
"He'll be the trouble" I said. This model is fitted with the Euro 14 chassis. Steven went straight to the 2AT mains fuse F991. It was a sand-filled ceramic one and was open-circuit.
"The times we've had to replace that!" Steven said. "Don't know why it goes, but it does. Mitsubishi recommends fitting an ordinary glass fuse when it fails for no apparent reason."

Mrs Bulky was delighted when she came back to collect her set. "I never said nuthin' to yuh. Thought it was the tube. It's thanks to me we gollim done so cheap: my 'usband allus takes it to Gumboils but I said no, let's give that Mr Snoddy a chance." She gave me a wink.
"O' course, me and my 'usband are two different people" she added.
"Ah yes, of course" I said.

## A Sanyo

Paul had a Sanyo CBP2152 (E4A21 chassis) on the bench. When he switched it on there was a bright white screen with flyback lines. This means check the HT supply (180V) to the tube base panel - for the RGB output stages. It was missing.

As usual, the supply is derived from the line output transformer. When Paul checked here he found that the $10 \Omega$ surge limiter resistor R478 (safety type) was open-circuit. A replacement restored the picture.

## Mr Oddun

By now we were pretty up-to-date with our repairs. Then Mr Oddun came in.
"I've an old Logic telly" he announced, "ha, ha."
"Why the joke?" I asked, "I don't find them all that funny, I can tell you."
"Ha ha" he continued, "it's got a green picture. Ha, ha, ha."
"I see" I replied, "ha ha ha."
When he'd laughed his way out, we took the back off the set and found that it was fitted with the Ferguson TX90 chassis. I never did find it very funny. When we switched the set on there was a green sunbather on a red lawn.
$I$ explained to Steven and Paul that this fault, once common but now so rare, would be caused by an ident problem. The set's chroma switching was, I said, out of step with that at the transmitter. I went on to describe the technicalities of the PAL colour system. "The cause of the trouble," I concluded, "has to be in the chroma circuitry. The set is switching in red instead of green, and vice versa."

I tried adjusting the oscillator potentiometer in the colour decoder. This made no difference. Neither did anything else I tried. Later I got into the chroma circuit with a scope, but couldn't find anything wrong. By now I didn't feel so clever.

Paul went to make a cup of tea. While he was away my brain started to tick over. I'd had this very fault years ago with one of these sets, and the cause had been nowhere near the chroma circuitry. Now what was it? I racked what

"He was wearing gumboots, which didn't do much for the floor."
was left of my brain. Then it came back to me.

I reached for the degaussing wand and swept it about in front of the tube's screen. As I did so, the picture came right. I switched the set off, waited a minute or two, then switched it back on again. The fault was back.

I then dived for the posistor (Z102) in the degaussing circuit, took it out and rattled it by my ear. It sounded like a box of pills. I opened it and found that the VDR tablets had crumbled to gritty dust.

I fitted a replacement, degaussed the tube again and switched on. Up came a perfect picture - just as Paul returned.

He looked at the picture. "Which part of the chroma circuit was at fault?" he asked.

I rubbed the side of my nose. "Er, when I said that the cause was an ident problem, I should have said the cause was nearly always an ident problem. In this case the cause was simply a magnetised tube."

I showed him the little pile of dust that had been the tablets in the degaussing posistor.
"Astonishing" he said.
"Mortifying" I added.

# TELETOPICS 

## Interactive TV

British Interactive Broadcasting has decided to use the name Open for its services, which are due to start this spring via SkyDigital. GUS, Woolworth, Iceland and the Midland Bank (HKSB) have signed contracts with BIB. The services are to include home shopping and banking, games, information and e-mail, with free access for SkyDigital subscribers. The plan is for a low-key initial launch, building up to a full service in the autumn. BSkyB has announced that
its Sky Interactive Programming (SIP) service will work with Open.

SES has signed an £11m contract with Nortel for ground network and satellite interactive terminals for its Astra-Net system. This will offer interactive services via the $29.5-30 / 18 \cdot 3-18 \cdot 8 \mathrm{GHz}$ bands, using the Astra 1 H and 1 K satellites, in early 2000.

British Telecommunications is to introduce the BT Interactive service, which will offer internet and multimedia operation, including
streamed video, using a PC.
Telewest Communications, the UK's largest cable television company, is reviewing its decision to use the Open TV system to provide interactive shopping and banking services. The alternative is an internet-based approach using the HTML standard, which is used to format internet documents. Use of this standard would provide increased flexibility and bring Telewest into line with the rest of the cable industry

## Chippery

Philips Semiconductors has introduced the SAA4977H picture improvement processor for field rate doubling $(50 / 100 \mathrm{~Hz}$ or $60 / 120 \mathrm{~Hz}$ ) and to act as a digital gateway for other memory-based pictureenhancement processors. It incorporates AD and DA converters and works with a 2.9 Mbit serial field memory. Setmakers can use it to insert additional video processors in the YUV signal path, for example to provide 2D noise reduction, line flicker reduction or add Philips' nat-ural-motion processor.

US firm Equator Technologies

has released details of what it claims to be the fastest digital signal processor to date, the MAP1000, which is intended for use in set-top boxes, HDTV sets, MPEG encoders/ decoders etc. As with Philips' Trimedia chip, the processing is controlled by stored software rather than dedicated silicon hardware. This gives greater flexibility - formats can easily be changed or updated for example. The MAP1000 incorporates a VLIW (Very Long Instruction Word) processor that runs at 200 MHz : it's able to carry out over three billion multiply-and-
accumulate operations per second.
The Power Integrations TinySwitch series of ICs for AC/DC adopters is now available from Sequoia Tekelec Ltd. These chopper type chips incorporate a 700 V power MOSFET and enable consumption in the standby mode to be reduced to less than 100 mW . They are suitable for use with portable TV sets, PCs and cellular handset chargers. The devices themselves consume $30-60 \mathrm{~mW}$ in the no-load condition. For further details check with Sequoia on 01189258000 or fax 01189258020 .

## On-screen Sign Language

The research and development arm of the ITC, the University of East Anglia and technology company Televirtual have developed an onscreen sign-language system that's presented by a virtual human known as Simon. The system converts subtitle data into sign language using special software called SignAnim. Part of the software consists of a linguistic module that captures the subtitle data stream and analyses it. The subtitle data is then edited to remove words that are not used in sign language, and reorganised into a more appropriate word sequence.

This editing process also helps the system keep pace with the TV programme

The edited text data is sent to a dictionary of sign words which are stored on a hard disc as motion-capture data. The relevant signings are extracted, and special techniques are used to create a smooth animated sequence. There are plans to use characters other than Simon, to appeal to different types of deaf viewers including children. The developers hope to be able to put the software into set-top boxes by the end of the year.

## Video News

The DVD system is establishing itself as an international consumer product. There was a sharp increase in sales of both hardware and software in North America last year - a million players are understood to have been sold in the USA. According to Philips, sales are running at ten times the rate of CD players at the same stage in the launch cycle. Some 2,000 titles were available in the USA by last Christmas, while in Europe there were some 500 titles. European player sales are expected to reach half a million this year.

JVC has launched two new digital video camcorders, Models GR-DVFl and GR-DVFIO, in what it calls the RealVision range. Amongst the features incorporated in these models are super digital zoom ( $160 \times$ ); eleven digital effects including black-and-white, sepia, classic film and strobe; eighteen scene transitions including mosaic fader, slide wipe and dissolve; and JVC's exclusive picture stabiliser to eliminate shaky pictures even with long-zoom shots. An option to purchase the VU V856 high-capacity battery kit, which provides seven hours of battery use, comes with both models. The GR-DVFIO (see photograph) has a built-in 2.5 in. LCD monitor that can be tilted to provide high-, low-angle and self portraits.

Dolby Laboratories and an Australian company, Lake DSP, are to develop technology that enables multi-channel surround sound to be heard using a pair of stereo headphones. The Dolby Headphone technology will be based on a digital signal processor chip that could be incorporated in DVD players, set-top boxes, digital TV sets, VCRs, PCs,

video games consoles and personal stereo systems.
Californian start-up company TiVo has developed an intelligent digital video recorder that learns which programmes to store by monitoring the user's viewing habits. It can record up to twenty hours of TV without need for user programming. While viewing you can pause, rewind or fastforward. When the unit is released in the USA the cost is expected to be about $\$ 300$.

The JVC digi-
tal camcorder
Model GRDVF10.



## Business News

As part of a restructuring of South Korean industry it is likely that Samsung will swap its automobile interests for Daewoo's consumer electronics business. This could lead to the closure of Daewoo's VCR factory in Northern Ireland, with the loss of some $1,(0)(0)$ jobs. Samsung's European manufacturing capacity is concentrated in eastern Europe.

Alcatel, DirectTV, Microsoft and NEC have each bought a 7.5 per cent stake in Thomson Multimedia. As a result, 30 per cent of the French consumer electronics company will pass to the private sector.

Alba's pre-tax profits advanced 17 per cent in the half year to September 30th. The company's TV and VCR divi-
sion, which accounted for 39 per cent of sales, has gained market share - its products are some $20-25$ per cent cheaper than mid-priced Japanese models.

According to government figures the average price of TV sets, VCRs and camcorders fell by 17 per cent last year. They are now half the price they were ten years ago.

## Test Equipment

Tektronix has introduced the TDS3000 series of digital phosphor oscilloscopes (DPOs) at prices that start from $£ 2,035$ plus VAT. There are six models in the range, with bandwidths from $100-500 \mathrm{MHz}$, either two or four channels and sampling rates from 1.25$5 \mathrm{Gsamples} / \mathrm{sec}$. The scopes have LCD displays and are mainly intended for design engineers and manufacturing test technicians. The DPO technology is interesting. After analogue-digital conversion the waveform is rasterised in a dynamic, three-dimensional database called digital phosphor, the information being sent to the display system periodically. At the same time and in parallel, a microprocessor performs automatic measurements and maths functions. Our photograph shows Model TDS 3052 . For further details check with Tektronix on 01628 403453 or fax 01628403458.

Premier Electronics (GB) Ltd. has introduced the Digisat digital satellite signalstrength meter. It's designed for accurate
alignment of dishes for digital TV reception, using a unique satellite information data system - this looks at two transponders, matches frequency, bit error rate, polarity, symbol rate and FEC. The results are presented on a 16-character, two-line LCD panel. Accurate alignment usually takes less than two minutes. While programmed for reception from Astra signals at $28 \cdot 2^{\circ} \mathrm{E}$. software is available to enable units to identify any other major satellite. For further details contact Premier on 01476514611 or fax 01476514662.

The Grundig Digimess range of fourteen instruments is available from Vann Draper Electronics Ltd. The range consists of three fully-programmable power supplies with dual or triple outputs; two universal timercounters; three automatic RLC meters; two millivolt meters (RF and LF); a 4.5-digit automatic bench multimeter; and three signal/function generators. All instruments (except the RF 1000 RF millivolt meter) have a high-resolution LCD with backlight and a
microprocessor self-test. Optional software packages provide a soft workshop or individual product operation via a PC. For further details contact Vann Draper on 0116277 1400 or fax 01162773945.


The Tektronix TDS3052 oscilloscope, one of a new range that use DPO technology.


# Pace PRD Series Modification 

## Martin Pickering describes a simple way of providing automatic LNB supply switch-off. The advantage is cooler running and thus improved reliability

Most satellite receivers run too warm for their own good. My own Pace PRD900 was no exception. I had already fitted the reliability upgrade kit Relkit I (see below), which includes a resistor to lower the supply voltages slightly, and had mounted the receiver on an open shelf. But it still felt very hot to the touch.
Pace receivers continue to supply current to the LNB when they are in the standby mode. The original reason for this was to protect the LNB from the effects of sudden temperature changes. As the LNB supply in Amstrad and a few other makes of satellite receiver is turned off in standby, I could see no reason why it shouldn't be in my PRD9(0). Most modern LNBs require $200-250 \mathrm{~mA}$ at 13 V , so the power saving would be significant.

## Modification Details

A simple modification (see Fig. 1) will switch the LNB voltage to zero when standby is selected, provided the receiver is in the vertical polarisation mode when this is done. The position of the three components to be added is shown at (a) in Fig. I, while (b) shows the relevant circuitry. Very little is required: a $1 \mathrm{k} \Omega$ resistor, a 1N4148 (or similar) diode and an FXT749 transistor. This pnp-type transistor is critical, because its rating is 1 A with a very low voltage drop, and it's in a tiny e-line package.
Fitting the components is a very simple matter - you don't even need to remove the board from the chassis
(which often leads to damage). Solder the added FXT749 transistor across diode D17, with its collector (the centre leg) to D17's cathode (indicated by the cross on the PCB) and its emitter to D17's anode. Cut out D17 and discard it. Solder the anode of the additional 1N4 148 diode to the base of the FXT749 transistor, and the diode's cathode (bar end) to the $1 \mathrm{k} \Omega$ resistor. To complete the modification, solder a lead from the $1 \mathrm{k} \Omega$ resistor to pin 2 of IC U3. This pin goes high when standby is selected. So the added transistor will be switched off, removing the $V$-polarisation supply to the LNB.
Secure the resistor, the diode and wire with glue to ensure that they can't touch anything and thus cause a short-circuit.
With my receiver there was a significant reduction in the heat produced by the power supply. If you insist on keeping yours in a nice warm cabinet on top of a VCR or if, as in most modern houses, your room temperature is quite high, you might in addition consider fitting a miniature cooling fan.
The modification is also applicable to the PRD800 version of the receiver. It would be possible to switch the LNB supply off regardless of the polarisation. To do this, leave D17 in place and connect the added FXT749 transistor in series with L3. But to do this you would have to remove the PCB. It's simpler to carry out the modification as described and remember to have the receiver switched to vertical polarisation when standby is selected.

## Another Modification

Another modification is to fit a 22 kHz tone generator board (see photo alongside). This can be soldered to the side of the tuner module and connected, with three wires, in accordance with the instructions that are supplied with the board. The tone can be set to be on or off by menu selection for each individual channel.
When the tone generator is on, it will send an 0.5 V peak-to-peak tone signal to the LNB via the tuner. If the LNB is a universal type, the tone will switch it to highband operation by changing the local oscillator frequency from 9.75 to 10.6 GHz . Astra at $19.2^{\circ} \mathrm{E}$ has nothing watchable in the high band. But, if you can swing your dish to other satellites, you might be surprised!
Alternatively you could buy an external tone-operated switch that can select one of two LNBs, thus increasing the number of satellites available to you.

## Availability

You can order an FXT749 transistor, the fan kit, Relkit 1 and/or the tone generator board from SatCure, PO Box 12, Sandbach, Cheshire CW11 1XA (telephone 01270 753 311). For a list of kits etc. send two 26 p stamps and your address to SatCure. You may also like to take a look at the massive web site at
http://www.netcentral.co.uk/satcure/


Fig. 1: The LNB power supply modification. (a) Location of components, (b) the relevant circuitry.


Decode and recode car radios \& CD players quickly with the Joule A400 radio decoder.

Now sold worldwide to service departments and

Police Forces.
C.E. Approved-meels all current regulations.

Prices start from
$£ 375.00$ + VAT for the
Starter Kit covering over
100 models of popular radios.

Call us now for a free information pack and demonstration disk on 01325307442 .

## The Joule A-400 Radio Decoder

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems Hilton Road, Aycliffe Industrial Park Newton Aycliffe, Co. Durham DL5 6EN United Kingdom<br>Tel: + 44 (0) 1325310278<br>Fax: + 44 (0)1325 300189<br>Email: elecsys@elecsys.demon.co.uk

## For Your Radio Decoding Requirements

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.


Reports
from
Colin J. Guy
and
Hugh Cocks

## Amstrad SRD510

I've encountered problems with two of these receivers recently. The first one had a poor response to commands from the remote-control unit. It would sometimes respond if the unit was held near the front. At other times it wouldn't respond at all. When the RC unit was tried with another receiver it proved to be OK. The problem was solved by cleaning off the hot-melt glue at the back of the IR receiver PCB, which is mounted on the SRD510's front panel.

The complaint with the other receiver was patterning on the picture. This time it wasn't caused by faulty electrolytics in the power supply - they had all been replaced during a power-supply rebuild. The cause was $\mathrm{C} 86(100 \mu \mathrm{~F})$, which decouples the 9 V supply to the tuner and is mounted near this item. C.J.G.

## Shaded Dish

The customer complained about very snowy pictures. When I called, the cause of the problem was obvious: the house was at the bottom of a steep hill, with the 1.2 m Astra dish just pointing over the top of the hill. Immediately in front of the dish some very rapid-growing shrubbery had increased in height.

The house was used only intermittently, for holiday lets. The shrubbery must have had a growth spurt at the end of summer, when no one was living there - no problem had been reported during the peak occupancy period! H.C.

## Nokia Digital Receivers

We've recently done a couple of installations for Dutch TV, using the Nokia 9500 MPEG digital receiver. Physically it's similar to 9200 and 9600 series receivers, but
there's an Irdeto conditional-access module within the case and, unlike the 9600/9602, the card slot is independent of the CAM.

A useful feature with all the Nokia receivers I've come across is a received digital signal 'goodnessfactor' display on the front panel. This helps with the Dutch signals, which we receive at quite widely differing strengths from the various Astra-1 series satellites that transmit the Dutch channel package.

The signal-strength display in the channel search menu doesn't help much as it is based on the receiver's tuner AGC reading. You can have a fair length of coaxial cable that reduces the AGC reading, producing a low signal-strength display, though the quality of the digital signal is perfectly acceptable. In fact I've found that for best results Nokia tuners often prefer not to be presented with too much IF signal from the dish.

To activate the goodness-factor facility, enter the 'red menu'. Press radio (music symbol), 99, radio and menu on the remote-control unit fairly quickly. Within a second or so a red display will be seen at the left-hand side of the screen. The wait for the menu can be confusing, but don't touch any other remotecontrol buttons during the delay. If the menu doesn't appear after a few seconds however, try the procedure again.

Once the menu has appeared, select option 8 'receiver set-up menu' by pressing 8 on the handset. A red bar will then be seen at the top of the screen, listing single options that can be scrolled through using the inner up and down buttons above and below the OK button. Go through the options until "select indicate RS errors" is displayed (RS $=$ Reed-Solomon). At this stage the
front panel will say "err".
Now press the OK button. A number will start to appear on the front panel only, updated every second. To return to normal operation, press the button to the left of OK. You are then returned to the previous left-hand side 1-9 red-menu options. Press TV, radio then TV in quick order and the receiver will return to normal operation, except that when each channel is selected its name is displayed only briefly and if a signal is present the number will appear on the display.

Good reception is possible when the display says 70 upwards. Very strong signals reach 150 . Just about lockable, jerking pictures marred by squares on the screen are present when the display reads about 45-50. Each channel within the same multiplex group will produce the same reading, but the readings will differ with different channel multiplexes. This is particularly useful when you are checking the level of SCPC (Single Channel Per Carrier) MPEG TV signals with low symbol rates none of these are transmitted via the Astra satellites however.

Once you've finished checking the signal quality, return to normal operation by switching the receiver to standby then back on again.

The red-menu facility can be confusing, and should be treated with extreme caution. While in red option 8, "select signal quality QPSK" will be seen when you scroll through the list. It might seem more logical to use this than than "indicate RS errors", but I can't make the receiver display anything when this option is selected! One would also expect the RS errors to decrease when signal strength increases. All the receivers I've tried display similar signal-quality (RS error) numbers.

We've also found this helpful with Swedish and Norwegian expatriates for whom there are digital subscription services in the low ( $10.95-11.7 \mathrm{GHz}$ ) band and who often have an old dish and LNB that can be used. Older LNBs can have phase-noise problems that cause signal degradation. The receiver's number readout shows the problem up immediately. Surprisingly perhaps, most of the older LNBs I've come across so far are stable enough for digital use. H.C.

## Mixing Old and New

We installed a brand-new French digital satellite system. The customer then told us that he wanted the audio output connected to his nigh-on 50-year old radiogram, so that he could listen to France Musique without having to switch the TV set on. Fortunately the radiogram had a standard DIN external audio input socket. Once the valves had warmed up, the sound quality was actually very good!

Later that day I made up an audio lead for a customer so that he
could transfer his 78 r.p.m. record collection to 3in. Mini disc format. It turned out that the 78 pickup needle (not stylus!) needed replacement. I wondered about the recording medium, say fifty years hence, to which the 3in. Mini disc recordings might be transferred. Н.C.

## Drake ESR250

This US-manufactured integrated receiver-positioner was a few years old. It had given trouble-free operation to date, but its owner complained that there were now "poor pictures on some channels". This proved to be a fair description. Some channels were more or less OK. Others, such as RAI- 3 at $13^{\circ} \mathrm{E}$, provided clearer pictures at each side of the main dish peak, maximum signal producing a noisier picture.

I checked the dish alignment, which was OK. The wideband dishalignment meter confirmed that maximum signal coincided with the noisy RAI signal. Fortunately the solution was simple - I'd come across the same problem with another Drake receiver several years ago.

When you remove the lid of the tuner you have access to two solidlooking though small trimmers. All that's required is a small adjustment to the one nearest to the RF input ( F socket) end. When this was carried out the sparklies on the RAI picture suddenly cleared and the picture brightened up considerably. I checked other signals at different frequencies across the band: all had improved dramatically.

We've had very occasional failure of this tuner, the symptoms being similar to those you get with a low-gain Pace SS9000 tuner - lots of streaks and generally awful-looking pictures.

The later version of the ESR250 has the full $2,050 \mathrm{MHz}$ tuning range (early ones tune up to $1,750 \mathrm{MHz}$ ), with independent AFC on each channel. With earlier units the AFC centres each channel slightly differently depending on its strength. This can be annoying under certain reception conditions, with either black or white sparklies on different channels. With care a compromise AFC setting can be achieved, but it's a very tedious procedure. H.C.



## John Edwards' Casebook

## JVC AV21H1EK (JX II chassis)

The phone rang at $8.30 \mathrm{a} . \mathrm{m}$., on the dot. When I picked it up a quiet, well-spoken, almost timid voice greeted me.
"No picture, just lots of snow and 'shushing' noises. My husband said to tell you it was the aerial box inside the set, so could you bring one with you so that you can fix it here?"
I drew a deep breath, thanked her for being so helpful in telling me what was wrong, but said I would have to check the set myself. I added that this might save them some money.
She said she would have to get in touch with her husband at work and would call me back if he agreed.
"That's OK" I replied, "I'll sit by the phone and wait." Dead on 6.30 p.m., as I was tidying up the workshop, the phone rang. This time it was the husband.
The conversation dragged on for ages, and seemed more like an interview than a routine repair enquiry. In the end, after sticking to my guns and politely refusing to give him a price, the part number of the "aerial box", where to get it, how to fit it or suggesting what else could be the cause, he succumbed and agreed to let me call next day. He expressed disappointment that I could not make it that evening.
I called next day as arranged. The set was awaiting my attention, already switched on and displaying the nosignal symptom. I checked the aerial lead, which seemed to be OK , then plugged my portable pattern generator into the scart socket. When I selected AV input, the colour bars appeared on the screen and the speakers produced an audio tone.
"Wonderful" she exclaimed, "that didn't take long!"
I removed the back while explaining that it was just part of the test procedure. At that moment the phone rang. It was the husband.
"Wants to know how you're getting on?" she called.
"Tell him I'm working on it" I replied.
She told him to hang on while I fixed it, then continued filling in time on some domestic matter.
I checked the voltages at the tuner's pins. They were all correct except for the 33 V tuning input, which was at 50 V . I switched off, cut one leg of the 33 V zener diode D001 and measured its resistance. It was open-circuit.
"Wants to know how you are getting on" she again called.
I was beginning to get annoyed and wanted to leave. So I reached for the phone, which she handed me. "Right, sir. It's not the aerial box, it's a voltage supply problem. Cost would be about $£ 80$. OK?"

I imagined him pulling out a handkerchief and reaching for a chair. But the grilling then started again. This time I was having none of it. Interrupting him in full flow, I said "do you want it done or not, sir. That's all I want to know."
He paused, then replied "I'll phone you tonight."
"Oh no sir" I heard myself say, "I can't spend any more unpaid time on this job."
He then agreed that I should take the set away to fix it. Back in the calm atmosphere of the workshop I replaced the zener IC. I then had the correct 33 V supply, but still only snow and no tuning or on-screen display. My heart sank. Perhaps the tuner had been damaged by the excessive voltage? I phoned a supplier who wanted £60 plus VAT for a new one. I then phoned MCES, but they don't fix this type. I sat down, contemplating. If ever a job was jinxed, it was this one. The thought of trying to explain the situation to the customer and revise the estimate was mind blowing.
Then, suddenly, the set burst into life, with a normal picture and sound. I couldn't believe it. All the channels worked as well. Instinctively, I flexed the main board. The channels disappeared and the snow was back. I didn't mind. I knew what it was. Confidently (will I never learn?) I withdrew the large mother board, turned it over and peered at the two regulator chips IC521 $(12 \mathrm{~V})$ and IC522 ( 5 V ) in the line output department. They were both badly dry-jointed. After resoldering them I switched on again.
All was now well. Time to celebrate. With a child-like smile on my face, I reached for the kettle.

## Sony KV27XRTU (SX chassis)

This set was dead with no 135 V HT supply at the connector (F4). I found that there was a dead short-circuit reading from the cathode of the HT rectifier D651 to chassis, the cause being the line output transformer which had broken down. When a replacement had been fitted there was still no HT at the connector. This time L651, which is in series with D651, was found to be open-circuit. All was well once this item had been replaced.

## Ferguson 59H3 (TX100 chassis)

When this set was first switched on there was no sound or picture, just a faint purring noise from the power supply. After about five minutes the noise slowly subsided and a normal picture appeared, with sound. The culprit was $\mathrm{C} 117(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ which couples the drive to the chopper transistor. It was leaky.


## Reports from

David C. Woodnott

## Sony CCDTR55E

This model was popular some years ago. One came in recently with an uncommon fault: it operated correctly in all modes but wouldn't produce an output when the RF unit was used - the AV signals were fine when fed to a monitor directly. Investigation showed that Q201, a 5 V regulator, was open-circuit because C204 ( $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ ) had gone short-circuit. Once these items had been replaced all was well.

## Samsung VPH65

The complaints with this newish model were as follows: "white dots" on the playback picture and a noise from within the mechanism. A faulty capstan motor was the cause of both symptoms - its rotor was fouling the FG sensor. There was no further trouble once a new motor had been fitted.

These camcorders, and some Canon models that use the same mechanism, very often come in for repair because of "failure to accept a tape" or symptoms that are obviously caused by lack of FG control. Invariably the FG sensor is damaged.

Note that two Samsung mechanisms, found in similar models, use different capstan motors which are not interchangeable.

## Sony CCDTR55E

There was no audio for a number of minutes when this camcorder was first used. The pictures were OK in all modes, but there was no sound at all. Inspection of the audio PCB

## Camcorner

revealed that the electrolytic capacitors there were all leaking. Everything was OK once they had been replaced - after thoroughly washing the board.
It's as well to check all the electrolytics on the video and syscon boards as they commonly fail in the same way. The good thing is that there aren't too many of them in this model.

## Sony CCDTR105E

No playback was the complaint with this compact, middle-aged unit. All was well mechanically, but there were no playback pictures. The E-E mode worked correctly.
Some time was spent chasing the paths of the Y and C signals on the video board without much progress being made. Then, when the unit was turned upside down, something fell out. It was a small inductor - a nice discovery, but where did it belong? On the video board, hopefully! In fact it did - it turned out to be L605. Once it had been refitted, playback was back to normal.
The customer later admitted that the unit had failed after he'd dropped it - well, of course!

## Canon UCIOE

One of these popular machines arrived with a tape stuck in the mechanism. No functions worked. I've on previous occasions reported trouble with this mechanism (the Canon UC), usually because force has been applied to the cassette housing tray while inserting a tape. As a result, the supply reel spindle is bent. You then get faults such as going into the 'caution' mode etc.
The supply reel spindle was OK in this machine. But it wouldn't release the tape, though 'straining noises' were heard from the loading motor area.
A complete mechanism strip down was required to reveal the cause. There's a shiny 'plate guide' (item 33) on the take-up side of the mechanism. It's positioned adjacent to one of the capstan motor
fixing screws. Because it had been damaged it had caught against the underside of the take-up coaster guide assembly, which was locked fast. The loading motor was not aware of this 'jam-up' and continued on its merry way - damaging even more parts before giving up and itself becoming jammed! The plate guide, the P5 skate assembly and the slide gear assembly all had to be replaced.
Some caution is required when reassembling this mechanism, as the timing is not as straightforward as with most decks. Reference to the UC Mechanical Chassis manual (part no. DY8-3391-504-201) is recommended.

Fortunately the unit worked once it had been reassembled. A general service and the replacement of a few capacitors completed the repair.

## Panasonic NVR50B

One of these camcorders was brought in because the EVF pictures were intermittent. This model has a colour LCD type of EVF, with most of the drive circuitry within the main body of the camcorder.
The coupling to the display is via a ribbon cable, which is flexed each time the EVF is moved in use. As a result the cable can become faulty. A replacement cured the problem.
We've since had ribbon-cable faults with another of these units and a similar one.

## Sony CCDTR45E

Everything worked except the viewfinder, which was totally blank. With this model it's not uncommon to have EVF problems because of leaky capacitors. But the fault symptom is then generally a blank white raster, possibly with horizontal foldover etc.

On this occasion the cause of the fault was a missing supply to the EVF PCB because L228 (on the video PCB ) was damaged. A replacement cured the problem, and a service completed the repair.


> Faulty operation of an Amstrad printer turned out to be simple to cure, as Quintin Blane explains. Also a tip on how to get more use from the cassette

A Printer Problem
had been thinking about buying a wordprocessor when D.B. Wheatly's article on the Amstrad PCW range appeared (Television, June 1997). He spoke well of these machines, and it occurred to me that one would fit the bill. So I started to look around, watching the advertisements in the local papers etc. By chance, while on holiday, we visited an auction room. Amongst the furniture, washing machines, TV sets etc. there was this ivory-coloured outfit, obviously not bang up-todate but clean and looking good. I went over to have a look, thinking I should be so lucky: there it was, an Amstrad PCW9512 complete with a daisy-wheel printer.
It was being sold "as seen", which in salerooms usually means faulty. But I decided to bid for it, as I knew I could deal with run-of-the-mill faults - at least in the monitor. I set my bid limit at $£ 50$ : its was knocked down to me for $£ 20$ plus charges, a total of $£ 24.68$. A start-up disc was included, but there was no users' manual - I was given one later as a present.

## On Test

Back at home I set up the machine, noting that the printer was connected to the socket in the monitor by a short cable which was terminated with a large 7-pin DIN-type plug. I know of old that such sockets are often secured to the PCB by the soldered joints only, and can give trouble if someone tries to push the plug in with the key misaligned. I kept this in mind.
When the start-up disc was inserted, the computer booted up satisfactorily and worked well in every respect. I had mixed feelings about this: it probably meant that the printer was defective, and my experience of such items was nil. I was pleased to note that
the disc drive seemed to be in good condition however. The printer (monochrome) was very basic, without the bells and whistles you get with more modern machines. Any size of paper could be used up to $15 \cdot 5 \mathrm{in}$. wide, but the font could be altered only by changing the daisy wheel. A bit restricted by today's standards, but quite adequate for my purposes. I prepared the machine for printing, fed in a sheet of paper and keyed in 'print'.
The print-head was parked at the extreme left. I expected it to move on to the paper, leaving a margin before printing. Instead it started tapping away on the bare platen (the black roller against which the sheet of paper rests, as with a typewriter), traversed to the centre of the paper then returned, printing the while. It moved all the way to the extreme left, trying to print well outside its normal limits. This, I suppose, is why it had arrived at the saleroom.

## Fault Finding

I opened up the monitor to check the joints at the output socket. Sure enough three of the seven had tell-tale rings around them. I resoldered the lot. Then, full of hope, I again tried the printer. I was disappointed to find that things were no better. Evidently contact at the faulty joints had not been lost. Perhaps there was a motor fault? But its action had been positive, with no sign of sluggishness when printing. So I decided to take a look at the electronics.
Once five screws had been removed the whole top cover could be lifted off exposing, amongst other things, the PCB. On close examination everything appeared to be in order, apart from some dubious-looking joints. I checked voltages as far as I could without service data, and found nothing untoward.

After resoldering a number of doubtful joints I tried again. This time the print-head almost reached the paper before starting to print, and on returning it didn't go to the extreme left. As I seemed to be on the right track I did a few more joints, after which the print-head moved on to the edge of the paper before printing commenced.
I resoldered the remaining joints - the PCB is quite small. When paper was fed in, the print-head traversed right to the centre of the sheet. When 'print' was keyed in, the head swooped back and commenced printing, leaving a one-inch margin. Feeling quite good, I put some work through and was satisfied with the results better than drudgery with a pen!
Next day I sat down confidently to print a couple of letters. But when I fed in the paper the print-head did not traverse to the centre of the sheet: it stayed firmly at the extreme left. My confidence evaporated and, yes, when I keyed in 'print' the head tapped away at the bare platen, printed to the middle of the sheet then back again to the extreme left. I was back at square one. The 'improvements' I had noted after resoldering the joints had been purely coincidental.
There are several high-value electrolytic capacitors on the PCB. Though they looked good, I replaced them all to be on the safe side. There was no improvement, and I began to wonder about the motor again - not because I was led to it by any logical train of thought but simply because I was running out of ideas.

## The Motor

It dawned on me that the motor's performance had improved when it had been in use for a few minutes. I wondered whether this was because it had warmed up a little. So I removed the two small fixing screws and lifted the motor as far as the slack in the connecting wires allowed.
The internal magnets made it quite difficult to turn the little armature, and I was unable to judge the amount of friction in the bearings. They were not sealed however, and it took only a few minutes to inject a drop of fine oil into each and then refix the motor in position.
I tried again. As usual, the print-head was lurking at the extreme left. But when paper was fed in it moved smartly to the middle of the sheet and, on receiving the command to print, did so without hesitation and with the required margin. This looked like success at last. It was: the printer has been working well for some months now.
In an attempt to find out why the motor had led me up the garden path by moving hesitantly at the initial positioning of the print-head and robustly when printing, I made some voltage checks at the motor windings. In the initial, positioning mode the reading was under 1.5 V , while in the printing mode it was higher at about 2 V . A simple answer to the problem!

## The Cassette

There are 103 metres of printing ribbon in the cassette, which gives the impression that it will last a very long time. It's fed through quite rapidly however, and before long the message "ribbon out" appears on the screen.
It is not difficult to prise the cassette open carefully with a knife and attempt to rewind the ribbon. I tried it with one cassette, but found that I couldn't wind the ribbon neatly enough to prevent it jamming and breaking in use.

When the next one ran out, I studied it closely and came to the conclusion that it should be possible to change over the two reels so that the full one is again on the right and the empty one on the left ('reel' is something of a misnomer - the ribbon is wound on two bosses, the confines of the cassette keeping it on the straight and narrow).
I made a sketch of the ribbon path, the positions of the two boss retaining springs, the small ribbon tension spring and the two little cogs that drive the ribbon. The two bosses were then carefully transposed and their springs refitted. The bosses are not identical however: one is toothed while the other isn't. As the toothed one was now to be on the take-up side, facing the ribbon drive cogs, I covered the teeth with a few turns of PVC insulating tape, cut to width, to ensure a smooth drive. The ribbon was attached to the end of this tape. The ribbon was then set on its exact path, using tweezers, the little ribbon tension spring and the drive cog wheels were put in place, and the cassette was rebuilt. A fiddly job, but then readers of Television are not unaccustomed to fiddly jobs!
After this the ribbon worked well, with no reduction in print quality.

## In Conclusion

It was a stroke of luck to obtain such a machine for just over $£ 24$. I wonder how many of them have been disposed of simply for want of a couple of drops of oil?


# During a recent visit to Pioneer, Japan George Cole was able to see recent developments in optical disc and flatscreen display technology <br>  <br> A Visit to Pioneer 

Our heading photograph shows Pioneer's prototype 5 -2in. Organic EL display.

Awas recently given the opportunity to visit Pioneer's headquarters in Tokyo to see some of the technological developments on which the company is now focusing. They include optical discs and flat-screen displays.

## DVD-Audio

The DVD format was designed to be more than just a means of providing prerecorded videos. There is in fact a family of discs intended for audio, video and computer applications. The DVD-Video standard was established in December 1995. Soon afterwards a new working group, WG4, was set up decide on a standard for DVD-Audio discs. These would provide much better quality sound than today's CD audio format, with some extras. The WG4 group included electronics companies such as Hitachi, JVC, Matsushita, Pioneer, Samsung and Sharp, also organisations from other sectors including Dolby Laboratories, IBM and Intel. Philips and Sony were also members of WG4, but these two companies have developed an alternative "super audio" format - more on this later.
What does DVD-A offer that the audio CD doesn't? The main advantage is that DVD can adapt to improvements in audio technology. When the CD standard was established by Philips and Sony in the late Seventies, it had to make use of the best technology then available, including the audio filters and the digital-to-audio converters (DACs) of the time. The result was a specification whose main points include linear pulse-code modulation (LPCM), a ADC sampling rate of $44 \cdot 1 \mathrm{kHz}$ and

16-bit resolution. CD sound quality is good, but it could be improved. The snag is that the CD standard leaves litthe room for any improvement to be introduced. Developments such as Sony's 20-bit Super Bit Mapping system and Technic's MASH noise-shaping technology can help, but for a major improvement a new audio format is required. Enter DVD-Audio.

## Specifications

DVD-Audio also uses LPCM, but it goes much farther than CD. Each DVD-Audio disc can store up to 4.7 Gbytes of data, which is seven times more than a CD. This extra capacity has been used to improve the quality of the sound rather than to extend the playing time. Thus a DVD-Audio disc, like a music CD, stores about 74 minutes of audio. But the bit rate is $9.6 \mathrm{Mbits} / \mathrm{sec}$ in comparison with about $1.5 \mathrm{Mbits} / \mathrm{sec}$ for the CD .
The DVD-Audio standard specifies several alternative sampling rates and digital quantisation values, which are arranged in two groups. The first group has sampling rates of 44.1 kHz (same as CD), 48 kHz (same as DAT), 88.2 kHz and 96 kHz , which can be combined with either 16 -, 20 - or 24 -bit resolution. Up to six channels can be provided. This group is referred to as Scalable Linear PCM Multichannel Audio. There are also two higher sampling rates, 176 kHz and 192 kHz , which can again be coupled with either 16 -, 20 - or 24 -bit resolution, but in this case the number of channels is limited to two. This group is referred to as Super High Quality Linear PCM Audio.
In addition to six-channel sound, DVD-Audio discs
can carry multimedia material such as text, pictures (one still picture per 'track'), web-site addresses and video. The latter is based on the DVD-Video format. Audio discs that contain multimedia material are known as DVD-Audio (V) - V for video. Incidentally, DVDAudio discs do not use the DVD-Video Regional Coding system that prevents discs from one part of the world being played by a machine designed for use in a different world region.

## Practical Assessment

What does DVD-Audio sound like? Keiichi Onodera, senior assistant manager of Pioneer's Home Theatre and AV section, demonstrated the DVD-Audio system using a prototype player. He played a series of pop, classical and jazz titles using various sampling rates and two- and six-channel arrangements. Many titles were compared with a $C D$ audio recording.
It's always hard to make direct comparisons in such a situation. DVD-Audio certainly sounded fuller and richer than reproduction of a CD. On some material the multichannel sound added a lot to the experience.

## Launch and Prospects

DVD-Audio is due to be launched in Japan this summer (1999). It will probably reach Europe during the first quarter of the following year. Pioneer is upbeat about the prospects, noting that most music companies, including EMI, BMG and Polygram, support the format.
But DVD-Audio faces a number of challenges. The first is that most people are probably happy enough with CD sound quality and will see little reason to trade up to DVD-Audio. Hi-fi buffs will probably be the ones to take to DVD-Audio, at least in the early stages. There is also the question of disc prices - it's hard to see DVDAudio discs costing the same as their CD counterparts and compatibility.
DVD-Audio machines will also play audio CD discs, but the new discs will not play on CD machines. Current DVD-Video machines can't play DVD-Audio music tracks, though they will be able to play any video content. According to Pioneer the situation will change when Universal players come on the market some time in 2000: they will be able to play DVD-Audio, DVDAudio (V) and DVD-Video discs. Pioneer forecasts that Universal player sales will reach a million in 2000 and $2 \cdot 1 \mathrm{~m}$ the following year.
But Sony and Philips have confused the issue with their development of a rival format, Super Audio CD (SACD). It will provide similar features and performance to DVD-Audio, but uses a different, incompatible data encoding system. SACD is set for launch late this year but, so far, only one music company (Sony Music) has agreed to support the format. If the two systems are launched together, the prospect of either format succeeding is poor. One has to hope that the two parties will settle their differences before the launch.

## DVD-Rewritable (DVD-RW)

Pioneer has high hopes of a new format it has developed, DVD-Rewritable (DVD-RW). As the name suggests, a DVD-RW disc can be used and reused like a video tape or floppy disc - up to a thousand times according to Pioneer, though some recording media companies feel the figure could be ten times greater than this.
Pioneer has already launched a DVD-Recordable (DVD-R) player and discs. Data recorded on these discs cannot be altered or erased: the format is intended for archiving computer data. Dr Masao Sugimoto, head of Pioneer's R\&D programme, says that in contrast DVDRW is aimed at the audio-video market. It's a bit con-

Table 1: Specification for prototype colour Organic EL display.<br>Size<br>Pixels<br>Pixel pitch<br>Drive method<br>Drive duty ratio<br>Colour range<br>Luminance<br>Contrast range<br>Power consumption<br>Operating life<br>5.2in.<br>$320 \times$ RGB $\times 240$<br>0.33 mm<br>Simple matrix<br>1:120<br>260,000 (64 tones for each colour) $150 \mathrm{~cd} / \mathrm{m}^{2}$<br>Better than 100:1<br>1.8 W average brightness $(30 \%$ emission); 6 W with $100 \%$ emis sion 2,000 hours

fusing that there is already a rewritable DVD format on the market, DVD-RAM, and that Sony, Philips and others have developed a rival format known as DVD+RW or PC+RW.
These rewritable discs all use phase-change technology, which means that for recording the surface is changed from an amorphous (non-reflective) to a crystalline (reflective) state or vice versa - the two states represent digital one or zero. The differences between the discs lie in the file format/coding systems used.
Mr Masami Morishita, manager of Pioneer's new product planning department, says that DVD-RW is aimed at the replacement VCR, home theatre and camcorder markets. Industry estimates suggest that in the year 200253 million VCRs, 13 m camcorders and 12 m DVD players will be sold worldwide.
One interesting and novel feature that a DVD-RW recorder could provide would alter the concept of timeshifting. Say you are recording a TV programme and leave the room for the first fifteen minutes. With a suit-ably-equipped DVD-RW recorder you could return to the room, sit down and watch the start of the programme while the machine continued to record the rest of it. This is made possible by feeding the recorded video to a memory store and reading it out from there.
Each DVD-RW disc can store up to 4.7 Gbytes of data, which is equivalent to two and a quarter hours of highresolution ( $400-\mathrm{line}$ ) images. This resolution is about the same as S-VHS, but not as good as prerecorded DVD-Video titles (about 500 lines). A long-play option can provide up to six hours of VHS-quality ( 250 lines) recording.
Pioneer says that DVD-RW has the support of the DVD Forum, which sets the DVD standards, because the format is compatible with DVD-Video and DVDROM (some of the latter drives can also play DVDVideo discs). But DVD-RW has yet to be approved by the Copyright Protection Work Group (CPWG), which

Pioneer's DVD-R player.


A prototype DVDRW player.

includes representatives from the film industry. If approval is gained in time, Pioneer says that the first DVD-RW players could be launched some time this summer and become available in Europe next year.

## Flat-screen Displays

Pioneer has, like many Japanese electronics companies, developed flat-screen displays. The company is focusing on two technologies, gas-plasma and organic electroluminescence (Organic EL).

## Gas-Plasma

CRT technology has served the TV and PC markets well, providing displays that are relatively cheap to produce and have a number of positive features, including excellent picture quality (assuming a good signal source and correct setting up) and a wide viewing angle. But CRT-based systems are power-hungry and bulky, especially with large-screen TV sets and monitors. For years we have been promised flat-screen displays instead: now they are here, though hardly at mass-market prices.
While CRTs use electron-beam scanning to produce plasma display panel structure.
the raster, with a plasma display the screen is divided into cells which are activated to produce the illumination. Each cell represents a pixel. The cells are filled with neon gas: to activate the cell, an electric discharge is released into the gas, producing ultra-violet rays that strike either R, G or B coloured phosphor to produce a coloured-light output. It sounds simple but, as Fig. 1 shows, the cell structure is pretty complex. It includes a magnesium-oxide protective layer.
Pioneer's 50in. plasma display panel (PDP), type PDP501MX, was released last year (see Teletopics, November, page 7). It provides XGA-graphics quality $\left(1,280 \times 768\right.$ pixels) with a viewing angle of $160^{\circ}$. The display is just 9.8 cm deep and, in the UK, sells for about $£ 14,000$. This price includes a DVD player and speakers.

## Organic Electroluminescence

Pioneer has been working on Organic EL flat-screen display technology since 1988. The basic technology is patented by Kodak and works by passing an electric charge through organic materials (Pioneer won't reveal the composition) that glow. Fig. 2 shows the basic cell structure and electrode arrangement.
The Organic El display offers a number of advantages compared with other technologies such as LCD, including high picture quality, a high brightness level, lower power consumption (no backlight is necessary) and a faster response to input data (more than 1,000 times faster than an LCD). It also has a wide viewing angle. Since the structure of an Organic EL display is simpler, production yields are higher and, as a result, manufacturing costs are lower. But there is at present one big disadvantage with an Organic EL display, its short operating life which is currently about 2,000 hours. Pioneer hopes to extend this to 10,000 hours: this is still much lower than LCD technology, which typically provides a working life of some $30-50,000$ hours.
Pioneer launched its first consumer product to use an Organic EL display in October 1997: the mono-colour display was part of an in-car audio-visual system. Pioneer has since developed a prototype colour Organic EL panel (see photo on page 246) with a $5 \cdot 2 \mathrm{in}$. screen area. Table 1 provides a basic specification.
I was able to look at the display and compare it with an LCD. The Organic EL was certainly brighter, and could be viewed from a much wider angle, but a number of fine lines run across the display, suggesting that Pioneer has yet to refine the technology. The company plans to launch consumer products that use colour Organic EL displays in about the year 2000.

## Acknowledgements

Many thanks to Dr Masao Sugimoto and his R\&D team, Pioneer Japan and Pioneer UK for their help in the preparation of this article.


## top video heads <br> WE STOCK 250 HEADS COVERING 2500 MODELS!

| AKAI VS22 VSF10 | VH76 | 8.95 |
| :--- | :--- | ---: |
| ALBA VCR2222 MATSUI VS866 VX850 | VH15 | 12.95 |
| AMSTRAD VCR6000 ALBA VCR8000 | VH80 | 8.75 |
| AMSTRAD VCR9500 FIDELITY VCR3000/ |  |  |
| GOODMANS TX3650 | VH110 | 15.95 |
| AMSTRAD VCR7000 MATSUI VX500/ |  |  |
| HINARI VXLA | VH14 | 8.95 |
| AMSTRAD VCR4600 HINARI VXL6 | VH73 | 9.95 |
| FERGUSON FV44 | VH102 | 12.95 |
| FERGUSON FV42 | VH107 | 19.95 |
| FERGUSON FV22 JVC HRD790 | VH115 | 12.65 |
| FERGUSON 3V65 JVC HRD170 | VH44 | 9.95 |
| FERGUSON FV12 JVC HRD500 | VH45 | 15.95 |
| FERGUSON 3V29/30 | VH63 | 5.95 |
| FERGUSON FV14 JVC HRD530 | VH68 | 18.95 |
| FERGUSON FV37 JVC HRD830 | VH82 | 19.95 |
| FERGUSON 3V44 JVC HRD140 | VH87 | 9.95 |
| FERGUSON FV31 TOSHIBA V211 | VH95 | 11.95 |
| FISHER FVHP10 SANYO VHR3300 | VH72 | 11.95 |
| HITACHI VTM620 | VH109 | 11.95 |
| HITACHI VTM730 | VH104 | 16.95 |
| HITACHI VT100/400 | VH60 | 8.95 |
| HITACHI VT130/420 | VH61 | 12.95 |
| MATSUI VP9301 | VH165 | 13.95 |
| MITSUBISHI HSB12 | VH101 | 15.10 |
| MITSUBISHI HSB32 | VH84 | 14.10 |
| PANASONIC NVSD22/25 | VH25 | 7.95 |
| *PANASONIC NVSD40 | VH74 | 9.95 |
| *PLEASE QUOTE HEAD NO (VEH....) AS EITHER |  |  |
| OF THESE TWO HEADS MAY BE FITTED* |  |  |


| PANASONIC NV300 | VH18 | 7.95 |
| :--- | :--- | ---: |
| PANASONIC NV370 PHILIPS VR6420 | VH22 | 7.95 |
| PANASONIC NVG21 | VH23 | 11.95 |
| PANASONIC NV730 | VH24 | 12.95 |
| PANASONIC NVG12 | VH51 | 11.95 |
| PANASONIC NVG7 SONY SLV210 | VH52 | 7.95 |
| PANASONIC AG6010 | VH65 | 18.95 |
| PANASONIC NVG40 GRUNDIG VS920 | VH75 | 11.95 |
| PANASONIC NVG18 | VH81 | 12.95 |
| SANYO VHR2300 | VH48 | 9.95 |
| SHARP VC381 VC9300 | VH29 | 9.95 |
| SHARP VCA63 | VH131 | 21.95 |
| SHARP VC5F3 PHILIPS VR6340 | VH33 | 7.95 |
| SHARP VCA501 VCA63 | VH71 | 16.45 |
| SONY SLV425 | VH74 | 10.95 |
| SONY SLV410 | VH167 | 21.25 |
| TOSHIBA V300 | VH105 | 14.75 |
| TOSHIBA V500 | VH114 | 18.50 |
| TOSHIBAV75 V83 | VH53 | 8.95 |
| TOSHIBA V109 V93 VV108 | VH70 | 11.95 |

## TIME LAPSE HEADS FOR MITSUBISHI

MODELS: HS5300-HS5400-HS5424-HS5600
VH252
24.95!

TOP SERVICE - ring us - quote model no. and part required - painless!
ordering: PLEASE ADD 0095 FOR ORDERS UNDER EL1:00 AND THEN ADD $175 \%$ VAT
CHEQUES CREDIT OR DEBIT CARDS ONLY

# Satellite WORKSHOP 



## BT SVS250/Matsui OP10

Don't you just love it when the phone rings while you are in the middle of a really brain-taxing repair? It was a local number, so I answered the call.
"I've done everything in the book but now it's dead, so can I bring it along for you to look at?" a male voice said.
"What, a dead book?"
"No, I mean it's a satellite."
"What sort of 'satellite'?"
"Oh pee ten" the voice said proudly.
"I beg your pardon!"
"I read it on the front panel: it's a Matsui oh pee ten."
"Good, you can read then" I murmured then, louder, "you'd better bring it in."
"Can I watch?"
"Watch what?"
"Can I watch while you do it?"
"While I do it? Oh, while I repair it! Yes, certainly. I charge an extra ten pounds an hour for an audience. It's the insurers, you know. They worry."
"Ah. Never mind. I'll drop it off."

Meanwhile I was struggling with a late version of this model, the one that has a regulator heatsink on the rear panel. The earlier version has a large, black heatsink inside, with a horizontal projection that cooks the decoder board. Putting the heatsink outside the box seemed like a good idea to me.

There was a hum bar across the screen, and I could hear a 100 Hz hum on the sound. So it wasn't an individual rectifier fault - that would have resulted in a 50 Hz hum. The cause had to be an electrolytic capacitor, a regulator chip or simply excessive load, i.e. a short-circuit somewhere.

Since the receiver appeared to be almost new I decided that the capacitors should be all right. The fault was intermittent and, as the new heatsink is so small, I suspected the regulators. My oscilloscope showed that there was ripple on the output from the centre, 6 V regulator. So I replaced it, applying lots of heatsink compound to all three. But the fault was still present. Drat!

There was a fairly large ripple on the input to the regulator, which had perhaps 0.5 V of 'headroom'. Most regulators like to have at least a volt of headroom, so it seemed that the cause of the fault could be a capacitor after all. To save a lot of time, I soldered a new $2,200 \mu \mathrm{~F}$ capacitor directly between the regulator's red input wire and a point at chassis potential on the decoder board (see photograph). As this cured the fault, I secured the capacitor with glue and left it in place. It would't do any harm to leave the intermittently faulty electrolytic in place.

At that moment my telephone customer arrived with his Matsui "oh pee ten" satellite. He left it on the counter and beat a hasty retreat.

I saw that the cover screws were a bit mangled, and there were what looked like teeth marks around the plastic cover! The receiver didn't light up, and no secondary voltages reached the regulators on the heatsink. It took me ten minutes, probing with a multimeter, to trace
the cause of the fault to a board crack. One track was cracked right through. It was beneath link W94, to the left of the rear, right hexagonal brass support pillar for the decoder. Clearly the owner had leaned on his screwdriver with considerable force.

Once I had repaired the track the receiver lit up but, as you quite often find with this model, there were no decoder messages. It's a waste of time trying to trace the cause to one particular component since the problem is usually caused by failure of a dozen capacitors. So I opened a Relkit 17 (from SatCure, 01270753311 ) and changed all the capacitors supplied, including several on the main board.

The 503 kHz ceramic resonator was covered with glue. I desoldered it and scraped away all traces of the black stuff. Finally, to improve reliability, I removed the horizontal heatsink plate that fries the decoder board and refitted the 6 V regulator to the main heatsink, using thermal grease and the nut and bolt supplied in the kit.

## Pace MSS 1000IP

Herr Mueller phoned me and explained the problem with his Pace MSS 1000 IP receiver.
"Ven I turn it on, I get ze rrollink pictures, ja. Unt ze screen is ferry dunkel - dark as you say mit no decoder nachrichten. Unt sometimes I see ze 'motor error' message."

Now my father spent five years in a German prisoner of war camp. No, he doesn't hate them: he learnt the language and, as I grew up, he would speak to me in German. In addition, we Yorkshiremen naturally speak with flat vowel sounds and rather weak 'r's. Consekvently, I mean consequently, what Herr Mueller said made perfect sense to me. I told him to bring his receiver to my workshop.

I rather expected to see a short, rotund man in lederhosen, so I was somewhat surprised to meet a tall, gaunt man in a business suit. He left the receiver and headed for the nearest bank - I'd told him the repair would be expensive.

I was right. Everything inside looked black - it had been well cooked! My TV screen remained blank, though I could hear sound and a weak, flickering picture was available via the decoder scart socket. Fitting all the capacitors in Relkit 10 made very little impression, though the nasty interference that my scope had revealed on every supply voltage on the secondary side of the chopper circuit had been greatly diminished.

Q58 is often the cause of low video level, so I replaced it. I then had a weak, rolling picture from the TV scart socket but nothing from the VCR scart socket. When the buffer transistor Q35 had been replaced there was a weak, rolling picture from the VCR scart socket, but all was still not well. I inspected the board carefully. There was a very dark spot above the position of what I identified from the service manual as being Q41. Once this transistor had been replaced there were good, bright pictures and decoder messages.

As the front panel fluorescent display looked dim I replaced C2, using the Pace-recommended $1 \mu \mathrm{~F}, 50 \mathrm{~V}$ multilayer ceramic capacitor. When the Dolby Pro-Logic board had been refitted everything worked normally. The "motor error" problem had gone, probably thanks to $\mathrm{C} 216(1,000 \mu \mathrm{~F}$, 63 V ) in the Relkit. This capacitor is a common cause of problems. In later production receivers an ultra-
low ESR type is used in this position: it seems to last a lot longer.

When Herr Mueller returned I smiled at his nice fat wallet.
"Es war etwa gekocht" I said, "das heisst ganz durch!" (it was rather cooked - in fact it was well done).

He smiled and said the magic word "wieviel?" (how much!).

## A Pace Prima

I can't imagine why a Mexican family should settle in England, let alone the frostbitten wastes of North Yorkshire. But Pablo Rodriguez did just that. He whittled a living out of wooden artifacts and pottery, and seemed generally contented. Much of his life appears to be spent sleeping in front of his cottage, while his eight children play joyfully by the river. But Pablo is a Simpsons addict, and was distraught when his Pace Prima failed.
"Heloa Senor Arm Sterong."
"Ah, Pedro, que tal todo?"
"No es bueno" he replied sadly,
"Dos cervesas, por favor."
He sank into my chair sadly as I poured him the requested beer and put a spare can beside him.

This seemed to cheer him up. He handed me a Pace Prima: "no va!" he explained.

I promised to have a look at it and he taught me some interesting new Mexican words as he drank his beer and cursed technology in general.

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via e-mail. He can be reached via the internet at:

## jack@netcentral.co.uk

One receiver per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/o Television, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first-class stamps.

When Pablo had left I tested his Prima. "LNB short!" it announced on the TV screen as soon as I connected my dish cable. To inhibit low LNB voltage detection, I lifted the cathode of zener diode D15 and linked it to the cathode of D5. This enabled me to make some measurements. The LNB supply voltage passed through pnp transistor Q1 (FXT749) and arrived at the collector of the npn transistor Q 2 , a TIP31A which is mounted on a heatsink. There was no output voltage from this device. The track to Q2's centre leg was fractured just where it joined the solder pad. After a quick repair with thin, Teflon-covered wire all was well. It must have been damaged by a knock or vibration.
"Bueno!"

## Test Case 434

The VCR was a Sanyo VHR3300, ten years old if it was a day. It had come fresh from the shop's "used bargains" department, with a price tag which said $£ 34.95$. The problem was that it had developed a fault! Do they really manage to sell life-expired hulks like this at such a price when you can buy a new VCR for less than $£ 100$ ? Plainly they do. When the workshop technician involved quizzed our shop manager he said that they sell a lot of machines like this for prices like that. Wow!

The technician involved was TechnoCrat, and the job card said "tuner locked out, CLEAR button does not reset". What TechnoCrat actually found was that an orange channel-indicator digit was flashing on and off, initially I but subsequently any other number that might be selected. It was not possible to select a two-digit number. All you could get, no matter what you did at the remote or front-panel keyboards, was a single flashing number on the fluorescent display panel. The display was rather dim, and the machine didn't get any TV channels. Oh dear!

By playing a known good tape, TechnoCrat ascertained that the heads, deck mechanics and control system were in good order. He decided that the most cost-effective way of dealing with the problem was to replace the front control PCB - rather than attempt to locate the cause of what looked like a very nasty fault in the tuning-control system. There were half a dozen Sanyo 3300s in the scrap pile, mostly with worn-out capstan
motors or 'sticky' lower drums. TechnoCrat fired up a suitable donor machine and saw that its channel-selector system and front-display panel were in good order. So he removed its front PCB (TM4, display and timer) and fitted it in the shop-stock machine. To his surprise, the results were exactly the same as before, even down to the dim display . . .

So the cause of the fault wasn't on board TM4. TC saw that it communicates with the main processor. The same scrap machine had a good SY1 system control board, and it was the work of a few minutes to fit this in the troublesome stock machine. What a surprise it was to find that the same symptom was still present - despite two known-good replacement panels having been fitted. TC could have continued to try out bits of the scrap machine in the stock one. Instead, he decided to check the fault condition more thoroughly.

He discovered that once he had started the station-tuning process he could tune each programme slot progressively, the machine behaving normally: it would automatically step to the next key setting each time a station was memorised. The problem arose at the end of the complete tuning process: the machine then reverted to its original trick of flashing an orange digit in a dim display with no off-air reception.

The solution to the problem finally dawned on TechnoCrat. What was it? Not a difficult one really, when all the symptoms are taken together. For the solution, see page 293.

> TV sets typically consume about 9 W when in the standby mode waiting to be switched on. This represents a considerable waste of energy. Quite a lot can be done to reduce this consumption, as Eric Carlton explains


# Low-power Standby Operation 

Standby operation has long been a requirement for nearly all TV receivers, regardless of screen size, while the growing need to reduce greenhouse gas emission from electricity power stations is fast becoming a crucially important issue worldwide. As a result, there have been some important low-power standby operation developments.
In the UK alone some 25 million TV receivers may work in the standby mode for about sixteen hours a day, every day of the year, with a typical power consumption of 9 W . This represents a total power requirement of 53 kW hours per set, costing the consumer about $£ 3.45$ a year, while the electricity industry has to generate some 1.33 GW . The need to reduce this figure is obvious. In the following article we will look at techniques used to provide low-power standby operation and describe some developments that have helped setmakers to achieve this goal.

## History

Standby operation was originally a feature of largerscreen TV sets only. Basically it involved switching off all power to the set except that required for the remotecontrol receiver and its associated circuitry. This was frequently achieved by using a separate power supply, see Fig. 1. It consisted of a low-VA mains transformer (T1) and rectifier circuit to provide a separate, isolated low-voltage supply which was used by the standby switching system. Standby switching was carried out by a double-pole mains relay switch that was connected in series with the feed to the TV set's main power supply.
This system worked all right but was relatively expensive to implement and was not particularly economical in terms of power consumption, which was typically 12 W . The reason for this was the need to guarantee successful operation over the European mains supply range of $180-265 \mathrm{~V}$ and the fact that the mains transformer was only fifty per cent efficient.
The high cost of this arrangement encouraged several manufacturers to seek a more cost-effective approach. One technique, illustrated in Fig. 2, was to replace the
relay and mains transformer with a special 'solenoidlatching' double-pole mains switch. The customer uses this switch as a mains-disconnection device, in the normal manner: it also provides remote-control turn off when current is passed through the solenoid winding, which was part of the switch assembly. The standby mode is in effect replaced by remote-off operation, activated by a command from the remote control system. With the arrangement shown in Fig. 2 the RC decoder has an open-collector output, with low being the on condition.
The disadvantage of this system was that the user had to get up to switch the set on again. The advantage was zero power consumption in the off mode. It proved to have limited appeal in the market place.

## Switch-mode Techniques

With rapid developments taking place in the design of switch-mode (chopper) power supplies for TV receiver chassis, it was only a matter of time before the main power supply in a TV set was adapted to provide a standby mode of operation. Setmakers went about this in several different ways, but the various schemes have common features, including only a limited reduction of power consumption in the standby mode, $8-15 \mathrm{~W}$ being typical.
The reason for this is chiefly as follows. Though chopper power supplies are generally very efficient when operating normally, i.e. when providing $40-110 \mathrm{~W}$ of output power, they tend to be much less efficient when running with a light load, i.e. in standby. The losses associated with a power MOSFET switch, the snubber network, clipper/damping networks and the control circuit are often much in excess of the power required to keep the remote-control system in operation. The latter consists of the remote-control receiver, an on-indicator LED and a dedicated remote-control chip or, more recently, a microcontroller chip.
In most chassis that use the main chopper power supply to provide standby power, all non-essential circuits are turned off in the standby mode. Since much of the
circuitry in such chassis is powered by supplies derived from the line output transformer, by either scan waveform or flyback pulse rectification, it is almost universal with this approach to inhibit the line drive when in standby. Fig. 3 illustrates this. Thus all power consumption resulting from EHT generation, line and field scanning, and the provision of supplies for the CRT's heaters and the RGB output stages is eliminated. This leaves only the small-signal circuits, including the tuner, IF section, colour and teletext decoders and part of the audio circuitry, with power.
Additional power reduction can be achieved by placing switches in series with secondary LT circuits, such as a 12 V or similar supply. An example of this is the adjustable regulator arrangement shown in Fig. 4. The output from the LM317 adjustable regulator IC1 is normally controlled by the ratio of the values of the two resistors R1 and R2. In the standby mode Tr 1 is switched on, shorting out R2. The output from ICl then falls from 12 V to 1.5 V . Trl is switched by the remotecontrol receiver or microcontroller chip. Note that this system can also be used to disconnect the degaussing circuit.

14-21 in. $90^{\circ}$ sets that use this approach consume about 9 W in the standby mode.

## Green SMPS Controllers

Further reduction in standby power consumption has become possible with the advent of so-called 'green' chopper power-supply controller chips. They have appeared in chassis from several manufacturers over the last year or two. A number of these controller chips have become available, the best-known devices being the Motorola MC44604 and the more recent Philips TEA1504. Though such controllers differ in their detailed operation, they generally share a common design principle. To illustrate this, a more detailed description of the MC44604 is given below.
To understand better how the controller works, it is worth considering the power needs of a modern I2C-bus controlled TV receiver in the standby condition. A dedicated 5 V line is used to supply the remote-control receiver, standby LED and microcontroller chip. These devices consume 10,10 and 30 mA respectively, a total of 50 mA (note that the microcontroller chip consumes about 90 mA in normal operation). Since the dedicated 5 V supply is obtained from a lincar voltage regulator, and there is a forward-voltage drop of 0.7 V because of the chopper power supply's flyback-rectification process, the total standby power requirement is 0.5 W .
As suggested earlier, a chopper power supply designed to run at between $40-110 \mathrm{~W}$ cannot operate stably at such a low output power level. Transition delays within the control circuit, in conjunction with the turn-off time of the power MOSFET and driver stage, mean that more energy than needed is supplied during a single switching cycle. The result is incomplete energy transfer and an uncontrolled burst-mode type of operation. In this condition the losses associated with the control circuit and chopper switching device become predominant, accounting for some $4-5 \mathrm{~W}$.
What's required is a 'controlled-burst' mode of operation, with the chopper supply providing power during a limited number of switching cycles in a regular, periodic manner. This enables stable and silent operation to be maintained, with overall switching losses reduced by at least three times compared to those incurred during normal, light-load operation. Such a scheme has been implemented by Motorola in its MC44604 green controller chip.


Fig. 1: Standby operation using a relay-controlled switch.


Fig. 2: Remote-off feature using a latching mains switch.


Fig. 3: Standby implemented by inhibiting the line drive.


Fig. 4: Use of an adjustable regulator IC1 to switch off auxiliary supplies, such as those used by the small-signal circuits, obtained from the chopper power supply. This also illustrates switched control of the degaussing circuit. When TrI is on, Vo is reduced to 1.5 V .


Fig. 5: Simplified block diagram of the Motorola MC44604 'green' chopper-controller chip, also showing basic external circuitry.

## The Motorola MC44604 Chip

The MC44604 (see Fig. 5) is a development from earlier current-mode chopper supply controller chips, such as the industry-standard UC3842/3/4 series. Its features include:
(1) Over-voltage protection in the event of an open-circuit feedback loop.
(2) Soft start, with a gradual increase in the duty cycle of the chopper transistor's pulse-width modulated drive waveform during the critical period when the power supply is charging the reservoir capacitors on the secondary side of the circuit.
(3) Maximum duty-cycle limitation.
(4) Transformer demagnetisation protection.
(5) Low start-up current.
(6) A patented burst-mode for low-power standby operation.

We won't consider the operation of the current-mode control loops, as this will be familiar to most readers. Instead, we will provide a full description of how the lowpower standby mode of operation is implemented.

## Standby Operation

The MC44604 is able to alter its mode of operation from normal current-mode control of a flyback-converter chopper stage to a standby condition that operates in a controlled-burst mode. Fig. 6 shows an outline circuit to clarify the low-power standby mode of operation.
The chopper transformer TI provides class II mains isolation. Trl, the chopper device, is a power MOSFET that's driven by the MC44604 chip. There are several windings on the secondary side of the chopper transformer, the number depending on the design of the TV chassis concerned. The main ones are used to provide the HT supply (typically 150 V ) that powers the line output stage, and a low-voltage winding that powers the remotecontrol receiver, standby LED and the microcontroller chip. This latter supply is typically 8 V prior to the dedicated 5 V linear regulator.
In the standby mode the main HT winding is short-circuited via the thyristor network to the 8 V supply's reservoir capacitor C3. In this situation the MC44604 chip is unable to operate in a continuous mode. Since the main HT winding is being used to provide only a low-voltage supply for the microcontroller chip etc., the other output voltages from the chopper circuit will become a fraction of their normal running values - they are multiplied by the ratio of the 8 V supply to the normal HT voltage. Because the supply for the MC44604 chip obtained from
the chopper transformer (via Dl) is reduced in this way, the chip cannot operate in the normal continuous mode: it switches to the burst mode, as during the normal soft-start sequence. In this state the power consumption is very low, the conditions being similar to start-up operation.
The MC44604 chip's start-up voltage, which is derived from the rectified mains supply via the $220 \mathrm{k} \Omega$ resistor RI, increases until it reaches 14.5 V (a typical data sheet startup voltage). At this point the chopper control circuit comes into operation. Power consumption increases, as energy is stored in the chopper transformer. But the supply for the chip provided by $\mathrm{DI} / \mathrm{Cl}$ is insufficient for normal operation. The chip's supply voltage starts to decrease, with a slope that depends on the energy stored by Cl and the standby-circuit load.
The burst of operation ends when the chip's supply voltage falls below Vdisable, which is typically 12.5 V . Power consumption becomes almost zero, at which point the supply to the chip (provided by R1/Cl) starts to rise again.
As a result of this, the voltage fed to the 5 V regulator that supplies the microcontroller chip etc. is not constant in the standby mode: it contains a ripple component whose value is chosen so that the voltage generated across C3 (Fig. 6) between bursts doesn't fall below the 5 V regulator's minimum input for regulation - about 7.5 V .

## Regulation

The ripple voltage across C3 varies between a peak value at the end of a circuit operation burst and a trough value, determined by the standby load, during the chopper's non-active phase. Regulation during standby operation consists of switching off when the voltage across C 3 reaches the chosen peak value. For this purpose feedback is applied to pin 15 of the MC 44604 chip, see Fig. 7. The current at this pin must be sufficient (1) for use as a feedback signal to the error amplifier in the normal mode, (2) to enable the chip to detect a transition from the normal to the standby mode and vice versa, and (3) to ensure the correct mode of operation at each mains power-up and enable the circuit to work in the standby mode and perform regulation in this state.
The MC44604 chip is designed so that in the standby mode the peak chopper MOSFET drain current is limited by the voltage at pin 9 . This is used as a power limit for the burst period - the normal soft-start circuit is turned off in standby, as it would limit the amount of energy that could be stored during the active burst period.
In normal operation, regulation is carried out by feedback to pin 15 via an optocoupler (Fig. 7). A TL431 adjustable shunt regulator senses the HT voltage at its reference pin, controlling the current that flows via the optocoupler's internal LED. In the standby mode this regulation is inhibited. Instead, Tr1 links the LED's cathode to chassis via zener diode $\mathrm{Z1}$. This device senses the nominally 8 V supply to the 5 V regulator and thence the microcontroller etc. When the microcontroller supply reaches maximum, the current at pin 15 exceeds an internal threshold Ireg and the output is turned off until the next start-up pulse from the mains supply arrives via R1. Fig. 8 shows standby regulation conditions.

## Normal and Standby Detection

For a mains power up, if the current at pin 15 is higher than Ireg the output is shut down again. The circuit is arranged so that it must detect a current at pin 15 lower than Ireg before being able to latch the control circuit on - the requirement for normal operation. This detection process occurs during the first $5 \mu \mathrm{sec}$ of the circuit coming into operation, to ensure that all internal circuits are stable before the decision is made. The circuit configuration is decided in this way for every mains power-up sequence.


Fig. 6: Method of using the MC44604 to implement low-power standby operation.


Fig. 7: Method of controlling the voltage/current at pin 15 of the MC44604 chip for normal/standby operation.

The current at pin 15 is compared with an internal reference current Idet. A higher current than Idet at pin 15 establishes the standby mode, while a lower current at pin 15 establishes the normal mode.
For the MC44604 to decide on normal or standby operation, reliance is placed on the transition conditions between these modes. For transition from normal to standby, the chip compares the current at pin 15 to an internal threshold Iinit. When the current at pin 15 is higher, the chip turns off and initiates a start-up in standby operation. This is brought about by the microcontroller switching on Trl (Fig. 7), at which point the current that flows as C charges produces a current at pin 15 greater than Iinit.


Fig. 8: Standby regulation condifions.


Fig. 9: Way of implementing very lowpower consumption (less than 1W) in the standby mode.

For transition from the standby mode to normal operation, the chip detects a current at pin 15 less than Idet then turns off so that at the next start-up the circuit comes on in the normal-operation mode. When the microcontroller is told to end standby operation, the appropriate pin turns off Tr 1 and the optocoupler temporarily ceases to supply current to pin 15.

## Standby Power Consumption

An overall power consumption of 4.5 W is achievable using this system. Just over 2 W of this is attributable to the degaussing posistor. Thus the figure can be further reduced to 2.5 W by switching off the mains supply to the degaussing circuit as shown in Fig. 4, using either a relay or a triac for the purpose. Use of a relay is preferred by most manufacturers, as it provides isolation between the degaussing circuit on the primary side of the supply and the microcontroller chip on the secondary side. It also avoids the spurious triggering sometimes associated with triacs.

## Future Trends

There are already schemes to reduce the standby power consumption to less than 1W. They will no doubt find their way into TV receivers in the not too distant future.
A proposal that's finding favour is to transfer the remotecontrol receiver and some of the microcontroller functions to the live side of the mains isolation barrier. When this is done these circuits can be powered directly from the mains supply via the start-up circuit already incorporated to power the chopper-supply controller chip. The chopper supply can thus be totally shut down in the standby mode, the only power consumed by the receiver being that taken by the start-up circuit (assuming that the degaussing circuit is switched off using a relay or triac, as mentioned above). The general idea is shown in Fig. 9.
A key function of the primary-side microcontroller is to decode the on/off command and start up the chopper power supply only after a valid on command. All other commands
from the remote-control receiver would, once the power supply is working normally and the power-on reset has taken place, be linked to the other side of the isolation barrier via an optocoupler.
Should power to the set be removed then replaced while it's in the standby mode, the primary side microcontroller would look at its internal non-volatile memory contents to decide whether the set should remain in standby or be switched on by, in this case (Fig. 9), releasing pin 1 of the chopper-controller chip.
Power up using the TV set's front controls, i.e. no remote-control handset, could be achieved by using one of five tactile switches arranged as part of a resistive ladder network connected to the primary-side microcontroller chip's A-D input pin. The other four switches could provide programme and volume up/down. The need for an expensive mains switch is eliminated.
Should it be necessary to wake the set up via a scart input connector, which is sometimes a requirement when a VCR is used in the playback mode, this is also possible but would require an extra optocoupler to pass information from the scart socket to the primary-side microcontroller. The set would then come on as a 'slave' to the VCR, but only when playback was selected.
It seems likely that this arrangement will at some stage in the future be fully integrated, with the chopper-control circuit and microcontroller functions on a single piece of silicon. This would minimise the number of external components and thus the cost of manufacture.

## In Conclusion

This article has highlighted the importance now being placed by manufacturers on providing a cost-effective solution to low-power standby operation, meeting the latest recommendations to reduce the power consumption to less than IW and, in doing so, cut the contribution made by TV sets - when they are not in normal use - to global greenhouse gas emissions.

## Book Reviews

The RSGB Guide to EMC, by Robin PageJones, C.Eng., M.I.E.E., G3JWI. Published by the Radio Society of Great Britain, Lambda House, Cranborne Road, Potters Bar, Herts EN6 3JE (tel. 01707659 015) at $£ 18.75$ plus post and packing. Paperback, 204 pages $244 \times 172 \mathrm{~mm}$.

This excellent book was originally published as The Radio Amateur's Guide to EMC. Considerable revision and additions have been made for this second edition, including coverage of the new EU EMC regulations that came into effect in 1996 and the impact of computers on radio reception.
Electromagnetic compatibility (EMC) is a bit of a mouthful: what it means is radiation/interference, which can cause problems for anyone involved with electronic equipment. The aim of the book is to help avoid EMC problems through good radio housekeeping, and to assist in the diagnosis and cure of any problems that do occur Although it is aimed at the amateur radio operator, most of the information in the book is of general relevance and will be helpful to anyone who has to deal with interference problems.
The underlying causes of interference radia-
tion and the remedies possible are clearly described, and a considerable amount of reference data is included, particularly on suitable filters and braid-breakers - the characteristics of various filters and ferrites are listed and illustrated. Clear diagrams and photographs throughout enable the principles of effective interference suppression to be put into practice.
I can recommend this book as a source of sound practical solutions to interference problems and an invaluable reference manual. J.A.R.

Technical Information Modules TIM1, 2, 3 and 6. Written by Steve Beeching, I.Eng. Available from Grove Farm Publications, Grove Farm, Long Lane, Barnby-In-TheWillows, Newark, Notts NG24 2SG (tel. 01636626 895, fax 01636626 767). Prices below include post and packing.

Quite why these publications are called modules is not clear: they are well produced booklets, $6 \times 8.25$ in., with numerous clear diagrams and durable card covers. At present there are four titles in the series:

TIM1 VCR Colour Recording and Playback,

45 pages, $£ 10.99$. Describes the techniques used to record and play back the chroma signal, covering the VHS, Betamax and 8 mm systems. Of particular relevance to service engineers who need to understand the chroma sections of VCRs.

TIM2 Digital Video and Camcorder Recording Technology, 51 pages, $£ 12.99$. Brings you bang up to date with the latest video technology - there's even a section on the FireWire digital equipment interconnection system. I have to admit that I found this one hard going in places.

TIM3 Magnetic Recording Theory for Video Recording, 31 pages, fi0.99. Describes the fundamentals of video signal recording on magnetic tape. Very helpful as NVQ and C\&G learning material and for anyone who wants to brush up on the basics.

TIM6 Soldering and Desoldering, 47 pages, £9.99. Covers the latest products and techniques, including those relevant to surfacemounted devices. An ideal guide to current practice and the equipment now on the market. If you need to renew/update your soldering equipment, read this first. J.A.R.

## Semiconductors the CYBER шau

Yes, a GALAXY of SILICON awaits you on the Web, courtesy of the Internet's brightest new star
We can offer you a huge range of over $\mathbf{6 0 0 0}$ SEMICONDUCTOR
LINES that is expanding oll the time
NEXT DAY DELIVERY to your door for orders received before 12pm

> NO PROBLEM WITH PAYMENT WE ACCEPT ALL MAJOR CREDIT/DEBIT CARDS NO PROBLEM WITH PRIVACY -
> our secure server ensures that your details remain YOUR details

NO PROBLEM IF YOU DON'T HAVE ACCESS TO THE INTERNET - fax your order or enquiry to us on 08700558 458*

Use the browser of your choice to see how QUICK AND EASY
it is to place your order with us (IE4 or Netscape 4 recommended)

## And who are we?

## We are SILICON GALAXY

Check us out today at hitp://mw silicongalaxy.com
The 08700 code is charged at 'notional rate' by BT. Customers of other
telecommunications companies should check with their servie provider for their rates

## MARAPET ELECTRONIC COMPONENTS Tel: (01452) 532253 Fax: (01452) 549514

QUALITY SPARES for the CONSUMER ELECTRONICS SERVICING TRADE THIS IS JUST A VERY SMALL SAMPLE OF OUR STOCK. We can supply spares for a vas range of Makes \& Models. Please contact us with your requirements, we'll be pleased to offer a 'PRICE \& AVAILABILITY'. Many General Components, Tools and Home Computer Spares also available. Telephone or write for a Selected Spares Guide.

## MONITOR FLYBACK TRANSFORMERS

 This is just a sample of the types we can supply ACORNDIGITALIBM AIC AT2090;08 (ESCOM) COMMODORE 1084P/1084SP COMMODORE 1084SELONEX AT2O90/33 GOLDSTARIDELL 154-166a OLIVETIITFB200A OLIVETII 1172.0018 | PHILIPS CM8833 Mk 1 (popular 4 | $\sum_{£ 26.15}^{\text {E26.95 }}$ |
| :--- | :--- | PHILIPS CM11342 (CMB833 Mk 2)

CONTACT US FORTYPES NOT SHOWN. NB: Please
supply all markings fom the original lyback as
some monitors utilise more than one type number.

* Other Computer Spares avilable **
** Other Computer Spares available ** Keyboards, Leads, etc.

REMOTE CONTROLS GEC V4001H/V4005 - Genuine ITT IFB-13-14-15-Replacement Many other Genuine and alternative types avalable $\mathrm{P} . \mathrm{O} . \mathrm{A}$ TV FLYBACK TRANSFORMERS FERGUSON TX90 90 (RED SPOT HITACHI CMD6011 (243514) by HR
PHILIPS AT2140 (108-31000) by We can supply many other LOPTX's. for ALBA \& BEK through to TOSHIBA \& ZANUSSI. Please supply model no. and full intormation from original part SELECTED VIDEO HEADS AMSTRAD TVR 1/VCR4500/5200 FISHER FV HP 420/615/720/721/722 HITACHI VT $11 / 33$ \& some others
NEC NOO13 \& some others "WSL". SHARP VC381 to VC388 These are quality hoads -


SPECIALS (Valid to end of February 1999 or W.S.L.) PC AT type Replacement PSU (200W)
COMBINATION CRIMP TOOL - crimps, cuts \& strip FERGUSON TX9 LOPTX
FERGUSON TX 10051 cm (Yellow Spot) LOPTX PHILIPS VR422/437/447/6845 VIDEO HEAD (DM4 Deck) SATELLITE RE PAIR MANUAL Latest Issue 5 ANTIFERENCE Omni-directional FM Aerial
 stock ines - Please Phone or Send S.A.E. for a listing

| L.) | IC's for PHILIPS |  |
| :---: | :---: | :---: |
| £12.99 | MAB8461P W069 | £13.151. |
| £2.39 | MAB8441P T020 | £6.42 |
| ¢7.49 | MAB8461P W013 | 3 £8.10 |
| £1295 | NSM5480 | "Check' |
| £69.99 | TDA 1006 | £2.59 |
| £16.95 | TDA3730 | £7.99 |
| $£ 10.75$ | XC89507P | £17.9 |
|  | "Limited stock only* |  |

Limited stock only
Other types P.O.A.
Our range of Video Spares is now much expanded - we can supply parts for over 150 makes. Try us also for a wide range of: Remote Controls, TV On-OH Switches. Posistors, Resistors, Capae
Fuses, Connectors, Cables, Tools. Domestic Electrical Accessories and much much more. EQUIPMENT MANUALS
Large range of Manufacturers Service \& User Information avallable. Original manuals supplied if possible. We only show a few examples here.

| AIWA NSX-800 | $£ 9.56$ | AMSTRAD PC4386X | £16.29 | AMSTRAD PC5286 | £18.31 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BINATONE 01/9771 | £8. 25 | HITACHI CPT2658 | £9.42 | PIONEER XCP-410MT | £14.53 |
| PANASONIC KXP-1123 | £12.41 | PHILIPS CST427 | £5.99 | PHILIPS CM11342 | £10.83 |
| PHILIPS CM8524 | £7.42 | SHARP WQ-T360E | ¢7.99 | TOSHIBA ST-U2 | £7.49 |
| When ordering, please add $£ 1.99 \mathrm{P}$ \& P and then add $17.5 \%$ VAT. (N.8. VAT to due on P \& P - Equipment Manuals are zero-rated). Small payments by card accepted, however a nomfnal surcharge may apply - please enquive. Overseas orders welcome - minimum P \& P is £3.00, but please chark to avold delays. 'Valdity Dates' required for card orders, also the issue No. tor SWITCH. All stock items despatched as quickly as possible, subject to clearance of payment. All items subject to availablity - Prices can change without notice. |  |  |  |  |  |



Reports from
John Edwards Ian Field
and
Roger Burchett

## IBM 6312-002

The customer said that he sometimes had to switch this monitor off and on several times before it would start up. There were numerous dry-joints in the power supply area, and $\mathrm{C} 028(1 \mu \mathrm{~F}, 100 \mathrm{~V})$ was discoloured. In fact it was leaky. Once this capacitor had been replaced, and a thorough resoldering operation in the power supply and the line output stages had been carried out, the monitor powered up each time it was switched on. J.E.

## Amstrad PCD14DSM

This monitor was very dead. The STK73410 ch opper chip had been destroyed along with R012 ( $100 \Omega$, 2 W ), R011 ( $1 \Omega, 2 \mathrm{~W}$ ) and C014 $(4.7 \mu \mathrm{~F}, 50 \mathrm{~V})$ which had split open and exploded. Unfortunately for me, when I'd replaced these items the monitor worked for only about two minutes then failed. I had to replace them all again before I discovered that the cause of the trouble was C012 ( $470 \mathrm{pF}, 2 \mathrm{kV}$ ). J.E.

## Tatung TM4401

This monitor had an EW fault and the user width control had no effect. After about five minutes the line output transistor would overheat, shutting down the power supply. As there is a pair of 2SD2125 transistors in this chassis, one each for line scan and EHT generation, I could discount the possibility of LOPT failure. The chassis is a later version of the Y $2 / \mathrm{Y} 2 \mathrm{~V}$, which often turns up disguised as an

Monitors

Amstrad, but none of the literature I had was of much help with this fault.

Width control is based on a closed-loop circuit around the LM348 op-amp IC408. The loop includes TR416 (2SB1015), whose collector is connected to pin 13 (an inverting input) of IC408 via R493 $(56 \mathrm{k} \Omega)$. The voltage at this input was low, just under IV, which compared with about 5.8 V at the associated non-inverting input pin 12. As a result the line scan circuit was being driven flat out. The cause of the problem was R493, which had gone open-circuit.

Once R493 had been replaced the user width control and several presets (two width and one EW) worked but it was apparent that every preset on the board had been twiddled! The line and width transistors continued to overheat, and the power supply shut down. New transistors made a considerable improvement, proving that the originals had been damaged, but the width was still insufficient and the replacement transistors were getting too hot.

Just in time I realised that the set-HT preset at the rear of the chassis had also been tampered with. Once this had been adjusted the geometry could be set up without further difficulty. I.F.

## Dell 1528LS

This monitor was tripping because the 2SC5129 line output transistor Q424 was short-circuit. Fractured soldered connections to the line output transformer could have been the cause - the collector pin looked as if arcing had occurred. But any 2SC5XX9-series transistor should be regarded with the deepest suspicion: it's unusual to find any other cause of failure. I.F.

## HIT KT81-144C/8M

The problem was random shutdown/restart. Very few are this easy! There's a link, J474, next to the line output transistor. It connects the transistor's base pin to R435/6/C415. The solder pad, which is very close to the transis-
tor's emitter pin, had a smudged solder blob that appeared to be in contact with the latter. As the monitor ran most of the time it was obviously not a good contact - only at certain temperatures! I.F.

## CTX 1451CLR

Monitors of this type fitted with the Samsung M34KUN35X15 CRT are being returned with very low-emission tubes after about two years' use. The first one I came across responded very well after turning the first anode voltage right up for about thirty seconds. Other tubes have returned to acceptable emission after increasing the heater voltage for a while. It appears that the cathodes become contaminated rather quickly. R.B.

## AOC MM413S

The problem with this mono VGA monitor was lack of width and curved raster sides. Checks revealed that the main 30 V supply was low because D734 (1N4148) was short-circuit and the 15 V zener diode ZD735 was leaky. These two diodes link the 12 V regulator IC700 to chassis. R.B.

## CTX 1565D

A number of monitors have come my way recently after being subjected to rough treatment. There were several obvious PCB cracks in this one - the control panel under the CRT had snapped in half.

When I got it going it seemed that the EHT would occasionally rise (raster shrinking) followed by line oscillator failure: the X-ray protection circuit was coming into operation. There was another crack by the screw that holds the bracket which supports the input cable. Electrically, the crack was between R716/R717 - the track was broken near a jumper. The result was lack of EHT regulation.

Another CTX1565 some time back exhibited this symptom very occasionally, and only when cold. In retrospect I think the cause was probably the same. In future I'll check very carefully for faults in this area. R.B.

## TRANSISTORS/LINEAR ICs



[^1]LINEAR ICs


Please add £1 P\&P and VAT at $\mathbf{1 7 . 5 \%}$ to all orders
All brand new components
We accept payment by Access, Switch, Visa, Cheque and Postal Order. (Government, College etc orders accepted) Prices quoted are subject to availability and may be changed without prior notice

## LINEAR ICs/JAPANESE TRANSISTORS



## JAPANESE TRANSISTORS



## REPLACEMENT VIDEO HEADS

| Model Price | Model | Mod | Mo | Model Prie |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{\text {VHSGAN3 }}^{\text {VHSA3 }}$ |  | NTE5100 |  |
|  | VHSBH1, VHSCH 1 <br> 2100p |  |  |  |
|  |  |  |  |  |
| (insiole |  |  |  |  |
| - ${ }_{\text {vs3 }}^{\text {vis }}$ | cticti |  |  | 5,50 |
|  | , |  |  |  |
|  | VHSVH4, VHSWH1, VHSXH1, VHSYH2 1600 p |  |  |  |
|  |  | cismen |  |  |
| (ex |  |  | (eamen |  |
|  |  |  | VCP1 PVC2300, 2400, 740, 744, 760, |  |
| 2 | 5 |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  | Hisele | (e) |  |
|  |  |  | VR6440, VR6520. 64VR60 |  |
|  | cisind |  | (Vatarit HEAD |  |
|  |  |  |  |  |
|  |  | $\begin{array}{ll}V \times 735 A, V \times 765, V \times 850 & 1750 p \\ V \times 600 & 1100 p\end{array}$ |  |  |
|  | MV2 | mirsub |  | (catis virsver |
|  | $\begin{array}{ll}V X L 2,3,4,20,25,35 & \text { 1000p } \\ V \times L 5, V 20 H & \text { 1050p }\end{array}$ | Hemen |  |  |
|  |  |  |  |  |
|  | ${ }^{2 \times 0}$ |  |  |  |
|  |  |  |  |  |
|  |  | Hes |  | 5iv |
|  |  |  | 为 |  |
| Alibs |  |  |  |  |
| ¢ra |  |  |  |  |
|  |  |  | Sals |  |
|  |  |  | , , VB3800x, ve8360 | Sille |
|  |  | HEE51 |  |  |
|  |  |  | Ux6000 A VXL22X 15009 |  |
|  |  | + | SALORA 6500,6600 <br> 1600p |  |
| 910, |  |  |  |  |
|  |  |  | Sta | col |
|  | vt | NvT7 NV30 |  | (2u) |
|  |  | Natio |  |  |
| VUHP72i, 722, 730, $830,906,906,907$ | TVE6 | (eata | (en |  |
|  | vify | Actao |  |  |
| (ex |  |  |  | (e) |
|  |  |  | (ivisio |  |
|  |  |  |  |  |
|  | V |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $\begin{array}{ll}\text { FVHP 132, } 1400,1440,320, & \text { 2700p } \\ 440,445 & \text { 3550p }\end{array}$ |  |  |  |  |
| $\begin{array}{ll}\text { FVHP470S, FVHP475HV } & \text { 4800p } \\ \text { FVHP1250, FVHP430S } & \text { 1950p }\end{array}$ |  |  |  |  |
| GOLDSTAR 8000 3HSSDB, GHV $121, R O$ |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  | , |  |
|  |  |  |  | (12, v v30, |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| GSEG10 GHV4400, 4400, GSE-Q404P, OUI | V00, 8902, 8903, 8909, 89 |  |  |  |
| (ex |  | NN |  |  |
|  |  |  |  |  |
|  |  |  |  | TEL: 0181-900 2329 |
|  |  | 100 |  | FAX: 0181-903 6126 |
|  |  |  |  |  |

ALL TV \& VIDEO PARTS SOLD ARE REPLACEMENT PARTS

## VCR BELT KITS



## REPLACEMENT IDLERS \& PULLEYS



## PINCH ROLLERS

and

## VIDEO LAMPS

Modeis \& Description UNIVERSAL VIDEO LAA
80 mV ( 310 mm WIRES) PANASONIC VIDEO LAMPS PHARP VIDEO LAMPS HITACHI 5381682 (VT63, VT64) VIDEO LAMPS
AKAI IVS10),GRANADA
(VHSXJ3), T(VR3993,3994), JVC (VHSXJ3), TT (VR3993, 3994), JVC
(HR2650, 7600, 7610, 7650, 7655), (HR2650, $7600,7610,7650,7655)$,
TELEFUNKEN (VR530, 535, 539, 550, 630 650). THOMSON IV309, 316, 357 630,650 ), THOMSON (V309, 316,
VK 309 411 TX8000). FERGUSON (3V31, 8941, 8942)

Models \& Description AIWA, AKAI, ALBA, AMSTRAD,
BLAUPUNKT, FERGUSON, FIDELITY, FISHER, FUJITSU, FUNAI, G.E.C., GOLDSTAR, GRANADA, GRUNDIC HINARI, HITACHI, IT, JVC IHRD SERIES), MATSUI, MITSUBISH NEC, ORION, NATIONAL, PHILIPS, SAISHO, SALORA,
SAMSUNG SANYO SHARP SAMSUNG, SANYO, SHARP, THOMSON, TOSHIBA GRANADA (VHSAY3),SHARP 390, 393, $9300,9500,9700$ )

# Order Code Price Models \& Description 

## VIDEO SERVICE KITS



## REPLACEMENT VIDEO CASSETTE HOUSINGS



## MODE SWITCH

NV2000, 2010, 7000, 7200, 7800 (VS50048) NV230, 260, 430, 810, 870, 2300, 4300 (VSS0110)
NV830 (VSS0091)
NV300, 333, 340, 366, 688, 777, 778 IVSS0060

NVG21, 25, NVH65, NVD80 (VSS0175A)

## AUDIO CONTROL HEADS

Replacement Audio Control Video Sound Head for National Panasonic

| PART NUMBER | MODELS | PRICE |
| :--- | :--- | ---: |
| VBR 0091 | NVG7 etc | 875p |
| VBR0050 | NV300, NV340 etc | 875 p |
| VBR0061 | NV777 etc | 875 p |
| VBR0103A | NV250, NV450 etc | 625 p |
| VBR0125 |  | 625 p |

## VIDEO TOOLS

## VIDEO CLEANING STICKS

Price 17p each 15 p each pack of 10 pcs 13 p each pack of 25 pcs Order Code: SP14
VIDEO MAINTENANCE TOOLS
Set of 8 Allen keys packed in a plastic wallet
Order code: TOOL 9, Price 125p Specifically designed for video maintenance UNIVERSAL HEAD EXTRACTOR
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads. Order code: TOOL 8, Price 600p

## VCR ALIGNMENT KIT

CONTAINS: SET OF 7 HEAD \& TAPE PATH ALIGNERS

## SET OF 8 ALLEN KEYS

- RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL
0.77 mm ALLNKEYS
- RCA ADJUSTMENT TOOL FOR TAPE GUIDE POSTS - RCA TYPE BACK TENSION TOOL - TENSION ADJUSTMENT TOOL FOR VARIOUS USES - VCR ADJUSTMENT TOOL
3 REVERSIBLE SCREWDRIVERS CIRCLIP PLIERS
SPRING HOOK MICRO SCREWDRIVER
VCR HEAD EXTRACTOR
Order code: TOOL 10, Price 2900p


## TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

This transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

## BACK UP BATTERIES

PHILIPS
Part Nos: 138-101138, 138-10313 1.2v 90mAH Order Code: BB01
Part Nos: 138-10229, 2.4v 100 mAH
Order Code: BB02

Price: $70 p$
Price: 135 p

FERGUSON
Part No: 00E6-067-0011.2V 100mAH
Order Code: BB03
Price: 90 p
Part Nos: 00E6-606-8001 2.4V 100 mAH
Order Code: BB04

## SATELLITE PSU REPAIR KITS

| MAKE \& MODEL | CODE | PRICE |
| :--- | :---: | :---: |
| PACE PRD800, PRD900 | SATPSU1 | 600 p |
| PACE SS9000, 9200, 9010, 9210, 9220 | SATPSU2 | 550 p |
| AMSTRAD SRD510, SRD520 | SATPSU3 | 600 p |
| AMSTRAD SRD500 | SATPSU4 | 600 p |
| AMSTRAD SRX340, SRX345, SRX350 | SATPSU5 | 600 p |
| PACE D100/150 | SATPSU6 | 650 p |
| CHURCHILL D2MAC | SATPSU7 | 650 p |
| PACE MSS100 | SATPSU8 | 1100 p |

## SATELLITE TUNERS

PACE PRD800/MSS200 2Ghz (221-2077062)
ORDER CODE: TUNER01 PRICE: 1400p + VAT
PACE PRD900/MSS 1000 2Ghz (221-21770112) ORDER CODE: TUNER02 PRICE: 1400 p + VAT

## SWITCH MODE TRANSFORMERS <br> PACE 9000

ORDER CODE: PACE9000 PRICE: $800 p$
PRD800/PRD900
ORDER CODE: PRD800 PRICE: 550p

| MAKE \& MODEL | CODE | PRICE |
| :--- | :---: | :---: |
| PACE MSS200/300 APPOLL | SATPSU9 | 900 p |
| PACE MSS500/1000 | SATPSU10 | $1230 p$ |
| FERGUSON SRD4 | SATPSU11 | $650 p$ |
| ECHOSTAR SR5500 | SATPSU12 | $1600 p$ |
| ECHOSTAR 6500/7700/8700 | SATPSU13 | $2750 p$ |
| AMSTRAD SRD600 | SATPSU14 | $2600 p$ |
| MIMTEC (Surensen) | SATPSU15 | $700 p$ |
| AMSTRAD <br> SRD700, SR950, SRX100, 301, 501,502, <br> 1002, 2001, SRD2000 SAT250 | SATPSU16 | $650 p$ |

## SATMETER

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite RX powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *Input impedence: 70 Ohm
* Power amplifier: 18db *Detection Range: -60 to -10 DBM
* Max. input signal: -10 DBM

ORDER CODE: TOOL22
PRICE: 8500p

## REPLACEMIENT TV SWITCHES




## CASSETTE DC MOTORS

6V MOTOR<br>9 V MOTOR<br>12 V CW MOTOR<br>12 V CCW MOTOR

170p 170p 170p
13.2 V MOTOR

## CASSETTE TAPE HEADS

MONO HEAD ..... 90 p
MINI HEAD ..... 150 p
MINI HEAD
AUTO REVERSE HEAD ..... 200p

|  | CDIPI |  |
| :---: | :---: | :---: |
| Models \& Description | Order Code | Price |
| AIWA |  |  |
| $\times$ C007 | KSSS151A | 19009 |
| DX.-990A, DX-DIA | KSS152A | 1600 p |
| CXL60, CXL66G, CXL80, CXN3100, CXN320, CXN3300, CXN360, CXN400, CXN430, CXN5540, CXN550G, CXN990, CXN999, CXNV20, CXSL70, DXZ9100M, FDN636, FDN5636, FON939, LCX60. LCX66G. LCX70M. LCX80, M7400, M75, NSX320, NSX360, NSX400, NSX430, |  |  |
| NXS990, NSX992, NSX999, NSXD636, NSXD939, NSXV20, SXFN550.SXFN520, XC300, $\times C 550 \times C 750 \times C 900 \times C 950 \times \mathrm{XCN992} \times \mathrm{XG} 320, \times G 360, \times G 400 \times \mathrm{XG990}, 2 \mathrm{ZD} 3000 \mathrm{M}, \mathrm{ZD} 3100 \mathrm{M}$ | KSS152A | 1800p |
| CXAP1, CXL7, CXL8G, CXLCSOP, CXZ58, DXM740, DXM75, DXM76, DXM77, LCX50, LCX7. 1 X88 $1 \mathrm{CXAP1} \times \mathbf{C 0 0 2} \times \mathbf{C 0 0 4} \times \mathbf{C 0 0 5} \times \mathrm{C777}$ | KSS210B | 2000p |
| XP31, XP33, XP55, XP80G | KS220A | 2500p |
| XPP.XP7 | KSS331A | 3 3000 |
| AKAI |  |  |
| CD73, $\mathrm{DC93}$ | KSS151A | 1900. |
| CD25, CD26, CD27, CD32, C036, CD37, CD52, C055, CD57, CD650, CD670, CD69, CD750, CD79, <br>  | KSS210A | 1300p |
| DENON |  |  |
| OCD150011, DCD 1520, DCDE3520 | KSS151A | 1900p |
| OCD1400, OCD600, DCD800 | KS152A | 1800 p |
|  | KSS210A | 1300 p |
| DCD 1015, DCD 1290, DCD2060, DCD2050G, DCD315, OCD480, OCD580, DCD615, DCD715, OCO825 DCD890 OCD895 DN2000F | KSS240A | 2000p |
| goldstar |  |  |
| CD952A CD952AJ, CD952LI, CD952SJ, FFH 101KL, FFH101WL, FFH222ALL, FFH272L. | KSS210A | 1300p |
| CD320AL CO630S/L, FFH212ALLFFH212E | KSS2108 | 2000p |
| GRUNDIG |  |  |
| CO360, $\mathrm{CO}_{4} 35$ | HOPM3 | 2150 p |
| CCD $300, \mathrm{CD101MCD} 904, \mathrm{MC10}$, | KSS210A | ${ }^{13000}$ |
| KRCD 100, RR1900CD, RR3100CD, RR4000CD, RR610CD, RR700CO | KSS2108 | 2000 p |
| CDP60, CDP90 | KSS220A | 2500p |
| COP65 | KSS331A | ${ }^{34000}$ |
| CO905 | OPTIMAS | 18000 |
| НІТАСलI 04W/560 | HOPM3 | 2150p |
| FX-10 | KSS210A | ${ }^{13000}{ }^{\text {P }}$ |
| AXC10 | KSS210B | 2000p |
| J.v.C. |  |  |
| 1990-1992, LATE 1987-1988-XLE300BK, XLE31BK, XLE51BK, XLE900BK, XLME91BK, XLV10IBK, | OPTIMA3 | 4000p |
| CORADIO CASSETTE, MINI SYSTEMS - MODELS 1990-199? | OPTIMAAS | 5000p |
| CA. C33, CA-MX30BK, CA-MX33BK UX-A5, UX-A6, XL-M309, XL-M403BK, XL-M408, XL-M409, |  |  |
| XL-M504BK, XL-M505TN, XL-M508, XL-M509, XL-M705TN, XL-V1318K, XL-V151TN, XL-V221BK, |  |  |
| XL-V241TN, XL-2428K, XL-V251TM, XL-V2528K, XL-21050TN, XL-2551TN, XL-25528K | OPTIMA5 | 1800 p |
| 1994 ONWARDS - CAE48BK, CAMCG7, CAMXG9, CAS20BK, CAS30BK, VAS50, CAS60 MX $\$ 20$, MX 330 , MXS 60 , PCX 105 , PCX 130 , PCX 95, RC $\times 230$, RC $\times 320$, RC $\times 520$, RCX 620 , RCX720, UXA4, UXA5, UXA55, UXC7, UXT1, UXT3, XLF115, XLF 116, XLF215, XLF216, XLMC100M, XLMXG7, XLMXG9, XLV163TN, XLV164BK, XLV174, XLV263TN, XLV264BK | OPTMM6S | 1600 p |
| KENWOOD |  |  |
| DP47, DP660SG, DP8020, DP87, L1000D | KSS152A | 1800p |
| DP1030, DP1510, DP2010, DP2030, DP3010, DP3030, DP3050, DP4030, DP491, DP5010, OP5030, DP5040, DP520, DP7030, OP7040, DP7050, DP730, DP920, DP930, DP950, DPM650,DPM6630, DPM 7730 , DPM 850, DPM991, DX 6620, M225, M25, M450, M850, PO3030, PDM991, RDX25, |  |  |
| RXOC3, RXDC3L, UD202, U0 302 | KSS210A | ${ }^{13000}$ |
| OPC42, DPC72, DPC77, DPC80, DPC92 | KSS220A | 2500p |
| OP1050, DP2050, DP3060, DP501, DP5060, DP722, OP76, DP85, DP99, M77A, PD3050, |  |  |
| $\frac{\text { UD502, U070, UD701, U090, XE5 }}{\text { OPC } 221 \text { DPC521 }}$ | KSS240A | 2000p |
| DPC321, DPC521, DPC531, DPC6311, OPC721, OPC731 | KSS3314 | 3400 p |
| OP1060, DP2060. PART No: RCTRH8136AFZZ | RH8136A | 4500 p |
| PANASONIC <br> SLP177A, SLP202A, SLP212A, SLP222A, SLP277A, SLP377A, SLP477AK, SLP477A, SLPG100A, SLPG200A, SLPG400A, SLPG500AK, SLPG500AS, SLPJ24A, SLPJ26A | 691-30209 | 5500p |

Modals \& Doncription
SADDO, SLCHG, SLP150, SLP170, SLP200, SLP202, SLP222, SLP230, SLP250, SLP333,
Order Code Price
SLP370G, SLP400C, SLP555, SLP777, SLP999, SLPA10, SLPC20, SLPC25, SLPJ25,
SLPJ26, SLP 177 , SLPJ37, SLPJ45, SLPK25, SLPK26, SLPS50, SLPS70, SLPS700, SLPSB40, SLPS900 SOAAD70A $\quad$ 2350p
PHILIPS
$4822.691 \quad 3100 \mathrm{p}$

CD450, CD 482 , CD500, CD502, CD582, CD583, CD584, CD610, CD620, CD630, CD780,

CD690, CD710, CD720, CD732, C0740, CD750, CD910, CD920, CO9355, FW17, FW21,



## PIONEER

PDM400, PDM4 10, POM500, PDM510, PDM600, PDM610, PDM700, POM710, PDM730,
PDT303, PDT 103 PDT503, POX90M, POX950M POZ560T POZ72T, PO773T, POZ81M
 PD7700, PD8700, PD970, PDCP420, PDCP520M, PDCP520T, PDJ400T, PDJ5001, PDD8800M, PDJ900M, PDM4 30, PDM4550, PDM550, PDM630, PDM650, PDM750, PDM901, PDP710T, PDP720T, PDP910M.

STO7OTM, S9990M, S9900DT, XCF410M, XCP410T, XDZ54T, XDZ55T, XDZ264M, XDZ84T, XPP310, XRP 320 PEA1030 4400 P

 SAMSUNG

SANYO
SANYO
DCFS3,
DCT55,
DCX502,
DCX701, DCX702,
DCX802, DCX891, DCX891N, MCOZ 10.




MCDZ2L MCDZ3L. PART No. 61423931303 $\qquad$ 614239 | 339 | 3300 |
| :--- | :--- |
| 05 | 3700 | $\frac{\text { MCOZZ11 }}{\text { SMARP }}$



DX-466, DX- $461, \mathrm{DX}-650, \mathrm{DX}-650, \mathrm{DX}-999, \mathrm{DX}-\mathrm{A3}, \mathrm{DX}-\mathrm{N} 45, \mathrm{DX}$-R554, DX-R7, DX-R75, DX-R750,
DX-R77, DX-R770 DX-R820, DX-R840, DX-Z100, DX-Z1000, DX-Z1500, GFCD55, OT-30CD. QT-33CD,
DX-R77, DX-R770, DX-R820, DX-R840, DX-Z100, DX-Z1000, DX-Z1500, GFCD55, OT-30CD, QT-33CD,
OT-350CD, OT-37CD, OT-38CD, OT-CD20, OT-CD 33 , RS $95, S C-77 C D, S C-99 C D, S C-R S 95, S G-A 1$,
 PART No. RCTRHB136AFZZ

## SONY KSS240



TECHNICS
SLP200, SLP230, SLP250, SLP333, SLP555, SLP777, SLP999, SLPA10, SLPC20, SLPJ25,
SPJ55, SLPS700, SLPS900
SLPJ45, SLPS700, SLPS900
SOAD70A
2350p

## REMOTE CONTROLS

| Description | Code | Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AKAI |  |  | A512120/230 | RC900 | 650 p | PANASONIC EUR51200 |  |  |  |  |  |
| RC-V10A | RC876 | 6500 | A514790 | RC901 | 6500 | $\begin{aligned} & \text { EURS1200 } \\ & \text { TC2200 } \end{aligned}$ | $\begin{aligned} & \mathrm{RC} 200 \\ & \text { RC200 } \end{aligned}$ | $650 p$ 650 p | RM604, RM605, RM606 | RC140 <br> RC140 | 650 p 6500 |
| RCV 37 B | RC891 | 650 p | A5088470 | RC902 | 650 p 650 p | VS2200 ${ }^{\text {TC235/NV730 }}$ | $\begin{aligned} & \text { RC204 } \\ & \text { RC202 } \end{aligned}$ | 650 p 650 p | 32 CHANNEL RM613 | $\begin{aligned} & \text { RC140 } \\ & \text { RC141 } \end{aligned}$ | 650p 650 p |
| V25A | RC896 | 650 p | ${ }_{\text {A }}{ }^{\text {S }} 181860212$ | RC903 RC904 | 650 p 650 p | VSN0357/NV730 TN01621 | RC202 RC203 | 650 650 | RM613 ${ }_{\text {RM632 }}$ RM636 | RC141 RC160 | 650 p 600 p |
| decca |  |  | ${ }_{\text {SCL }}$ C002 | RC905 | 650 p | PHIUPS |  |  | RM632, RM636 |  | 600p |
| RC70 | RC894 | 650 p | $\begin{aligned} & \text { C2096 } \\ & \text { A511940 } \end{aligned}$ | RC906 | 650p | RC5002,5154 | RC134 | 650 p | FXA | RC877 | 650 p |
| FISHER RCSO5B | RC879 | 650p | 655602 H | RC1920 | 650p | KT3 NON TEXT 69117032 | RC135 RC178 | 650 p 650 p | RC70 ${ }^{\text {FX70 FASTTEXT }}$ | RC883 RC894 | 650 p 650 p |
| GRANADA |  |  | $\operatorname{lif}_{\text {IFB } 13,14,15}$ | RC143 | 650 p | 69117194 | RC180 | 650 p | FX70 FASTTEXT |  | 650 p |
| UNIVERSAL TEXT | RC309 | 650p | FSA ${ }^{\text {a }}$ | RC148 | 650p | RC5991-UNIV | ${ }_{\text {RC300 }}$ | 550p | TELEFUNKEN | RC632S | 650p |
| MK4 TEXT, 70155G, 70115G, 70133G | RC880 | 650p | RG305 | RC305 | 650 p |  | RC5301 | 650 p 6500 | FB639 | RC639 | 650 p |
| $95288 E$ | RC882 | 650 p | RG306 | RC306 | 650 p | KT3 TEXT RC5352 | RC5352 | 650p | THORN/FERGUSON |  |  |
| 944900 | RC884 | 650p | FS9/1-10/1 | RC307 | 650 p | ${ }_{\text {RC5332 }}$ | RC5375 | 650p | $3 \mathrm{~V} 35-42$ | RC342 | 600 p |
| GRUNDIG |  |  | VS5 RUK | RC308 | 650 p | RC5 STANDARD | RC300 | 550p | 3V31-32 | RC344 | 650 p |
| TP160E | RC107 | 650p | VS4-1 | RC308 | 650 p | RC5903 | RC5903 | 650p | 3V57-58 | RC628 | 650p |
| TP200, TP300 | RC380 | 650 p | MULTICONTROL (17C20) | RC311 | 650 p | SALORA |  |  | TX10 TEXT | RC732 | 575p |
| TP400 | RC401 | 600 p | LOEWE |  |  | SERIES 1 | RC190 | 650p | TX 10 STERED TEXT | RC738 | 575p |
| TP590-600 | RC600 | 650 p | DC11 | RC146 | 650 p | 86173 | RC882 | 650p | TC9-90-100 | RC740 | 600p |
| TP390, TP610 | RC610 | 650 p |  |  |  | SANYO |  |  | 3V55, FV11 | RC783 | 650p |
| TP621 | RC612 | 650 p | 010270601 | RC889 | 650 p | RC218, RC222, RC228, RC238 | RC140 | 650 p | TX 100 FASTTEXT | RC789 | 650 p |
| TP630, TP650 | RC650 | 650 p | V $\times 770$ | RC892 | 650 p | JXGE | RC878 | 650p | TX 100 ST, FASTTEXT | RC789 | 650 p |
| TP666 | RC660 | 650 p | - |  |  | JXDE | RC884 | 650 p |  | RC790 | 650 p |
| TP661 | RC66 1 | 650 p | NOKIA |  |  | VHR2300 | RC890 | 650 p | Professional | Re7s | 650p |
| HITACHI |  |  | SATELLITE | RC550 | 650 p | RC628 | RC865 | 650p | TOSHIBA |  |  |
| CLE800-CLE830 | RC140 | 650p | ORION |  |  | SHARP |  |  | CT937 | RC950 | 650 p |
| A617402/655602 | RC1920 | 650p | RC53 | RC892 | 650p | G0121CESA, 123CESA, 204, 251 | RC140 | 650 p | CT9117 | RC951 | 650p |

## WE STOCK REMOTE CONTROLS FOR OVER 5,000 DIFFERENT MODELS RING FOR MODELS NOT LISTED ABOVE ON 01819002329

2 way Preprogrammed Universal Remote

[^2][^3]
## REPLACEMENT LINE OUTPUT TRANSFORMERS

| Part No. AKAI | Code | Price | HITACHI |  |  | 45150119 | LOT169 | 1500p | TLF 14520 F | LOT40 | 1500p | 094.010200.7 | LOT59 | 1400p | 39-303-31 | LOT94 | 1300p |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AKAI |  |  | 2424593 | LOT44 | 50p | 45750124 | LOT137 | 1600p | TLF 14521 F | L0т39 | 1850p | 094.01021/0.6 | LOT59 | 1400p | 1-439-303-32 |  |  |
| 45450344 | LOT56 | 1650p | 2432101 | LOT79 | 1800p | 45150146 | LOT136 | 1600p | TLF 14567 F | Lot39 | 1850p | 094-01027/0.0 | LOT186 | 1825p | 1-439-311-00 | LOT95 |  |
| 101-214017.03 | LOT278 | 1300p | 2432461 | LOT169 | 1500p | 45150301 | LOT169 | 1500p | TLF 14568 F | LOT40 | 1500p | 094-01038/0.7 | LOT245 | 1900p | 1-439-311-17 | LOT95 | 1550p |
| 101-220005-03A | LOT72 | 1600p | 2432611 | LOT80 | 1800p | 45150302 | LOT180 | 1550p | TLF 14584 F | LOT41 | 1700p | 094-01052/0.8 | LOT186 | 1825p | 1-439-311-13 | LOT95 | 1550p |
| D 050/37 | LOT27 | 1450p | $243265 \uparrow$ | Lot80 | 1800p | 45150304 | LOT169 | 1500p | TLF 14586 F | LOT42 | 1700p | 094-01057/1.1 | LOT285 | 1450p | 1-439-311-31 | LOT95 | 1550p |
| D 053/37 | LOT207 | 1550p | 2432761 | LOT169 | 1500p | 45150305 | LOT180 | 1550p | TLF 15606 F | LOT256 | 2000p | 610.018 .6620 | Lot189 | 1650p | 1-439-311-32 | LOT95 | 1550p |
| D 056/37 | LOT56 | 1850p | 2432981 | LOT37 | 1200p | 45150306 | LOT168 | 1500p | TLF 70012 | LOT78 | 1500p | 610.018.6637 | LOT215 | 1800p | 1.439-331-22 | LOT96 | 1550p |
| D 059,37 | LOT200 | 1400p | 2432981 | L0T37 | 1200p | 45150308 | LOT22 | 1250p | TLF 70012 F | 10778 | 1500p | SHARP |  |  | 1-439-331-41 | Lот98 | 1550p |
| D 069/37 | LOT56 | 1650p | 2432982 | LOT37 | 1200 p | 45150309 | LOT178 | 1500p | TLF 70012A | L0778 | 1500p | RTRNF 1220 CEZZ | L0T39 | 1850p | 1-439-332-00 | LOT99 | 1600p |
| FCM 2015 AL | LOT78 | 1500p | 2433011 | LOT171 | 1600 p | 45150310 | LOT168 | 1500p | TLF 70018 | LOT274 | 1550p | RTRNF 1783 BMZZ | LOT202 | 1800p | 1-439-332-11 | L0T99 | 1600p |
| FERGUSON |  |  | 24333012 | LOT171 | 1600 p | 45150313 | LOT30 | 1250p | TLF 70018 F | LOT274 | 1550p | RTRNF 1783 CEZZ | LOT202 | 1800p | 1-439-332-21 | LOT99 | 1600p |
| 00 D-3-508-001 | LOT38 | 1250p | 2433014 | LOT171 | 1800p | 45150314 | LOT174 | 1400p | TLF 70161 | LOT278 | 1300p | RTRNF 1786 BMZZ | LOT219 | 1850p | 1-439-332-41 | LOT100 |  |
| 00 D-3-508-002 | L0T38 | 1250p | 2433212 | LOT168 | 1500p | 45150315 | LOT22 | 1250p | TLF 70162 | L0T72 | 1800p | RTRNF 1786 CEZZ | LOT211 | 1850p | - $1.4399-332-42-42$ | Lotiol | 1450p |
| 00 D-3-508-003 | LOT276 | 1400p | 2433291 | LOT172 | 1350p | 45150318 | LOT192 | 1550p | TLF 70162A | LOT72 | 1800p | RTRNF 2000 BMZZ | LOT214 | 1600p | 1-439-332-52 | LOT100 | 14500p |
| 00 D-3-515-001 PL1 | LOT276 | 1400p | 2433301 | LOT246 | 1600p | 45150319 | LOT30 | 1250p | TLF 70162B | LOTT2 | 1800p | RTRNF 2002 BMZZ | LOT307 | 1450p | $1.439-32-52$ $1.439-333-00$ | LOT270 | 1500p |
| $00 \mathrm{D}-4-208-001$ | LOT79 | 1800p | 2433441 | LOT188 | 1900p | 45150320 | LOT 190 | 1850p | TLF 70162G | LOT72 | 1800p | RTRNF 2002 CEEZ | LOT307 | 1450p | 1-439-333-11 | LOT270 | 1550p |
| $00 \mathrm{D}-4-208-002$ | L0779 | 1600p | 2433442 2433451 | LOT191 | 1800p 1350 p | 45150322 | LOT196 | 1550p | TLF 77001 B | LOT274 | 1550p | RTRNF 2003 BMZZ | LOT308 | 1350p | 1-439-333-12 | LOT270 | 1550p |
| $00 \mathrm{D}-4-235-002$ | LOT240 | 1250p | 2433451 | L0T81 | 1350p | 45150324 | LOT194 | 1550p | PHILIPS |  |  | RTRNF 2004 BMZZ | LOT307 | 1450p | 1-439-363-11 | LOT268 | 1400p |
| $00 \mathrm{D}-4-235-002 \mathrm{HTI}$ | LOT81 | 1350p | 2433452 | LOT82 | 1250p | 45150325 | LOT22 | 1250p | 482214010142 | LOT142 | 1800p | RTRNF 2005 BMZZ | LOT308 | 1350p | 1.439-363-21 | L0T268 | 1400p |
| $00 \mathrm{D}-4-235-0201 \mathrm{C}$ | LOT81 | 1350p | $\begin{aligned} & 2433453 \\ & 2433455 \end{aligned}$ | LOT82 LOT234 | 1250p 1600 p | 45150326 45150328 | LOT198 LOT27 | 1550p | 4822140101145 482214010146 | LOT134 LOT112 | 1450p | RTRNF 2006 BMZZ | LOT308 | 1350p | 1-439-387-11 | LOT311 | 14500p |
| $00 \mathrm{D}-4.260 \cdot 004 \mathrm{HTI}$ | LOT38 | 1250p | 2433455 2433521 | LOT234 | 1800p 1600p | 45150328 45150329 | LOT27 LOT193 | 1450p | 482214010146 482214010151 | LOT112 | 1700p | RTRNF 2007 BMZZ | LOT307 | 1450p | 1.439-387-21 | LOT311 | 1450p |
| $00 \mathrm{H}-0.701-2400$ | LOT 182 | 1450p | 2433521 | LOT85 | 1800p | 45150329 | LOT193 | 1550p | 482214010151 | LOT102 | 1700p | RTRNF 2023 BMZZ | LOT310 | 1500p | 1-439-416-11 | LOT255 | 14500p |
| 06 D-3-083-001 | LOT82 | 1250p | 2433581 | LOT22 | 1250p | 45150330 | LOT 179 | 1350p | 482214010161 | LOT103 | 1250p | SONY |  |  | $1 \cdot 439-4 \uparrow 6-12$ | $\begin{aligned} & \text { LOT255 } \\ & \text { LOT255 } \end{aligned}$ | 16000p |
| 06 D-3-083-002 | L0T82 | 1250p | 2433721 | L0183 | 1400p | 45150331 | LOT207 | 1550p | 482214010171 | LOT104 | 1500p | 3753100 | LOT275 | 1500p | $\begin{aligned} & 1-39-46-12 \\ & 1-439-416-21 \end{aligned}$ | LOT255 | 1600p |
| 06 D-3-084-001 | LOT23 | 1400p | 433751 | LOTO1 | 1300p | 45150334 45150335 | LOT56 | 1650p | 482214010176 | LOT114 | 1150p | 1-439-243.00 | LOT91 | 1000p | 1-439-416-23 | LOT255 | 1600p |
| 06 D-3-087-001 | LOT23 | 1400 p | 2433752 | LOT250 | 1300p 1350p | 45150335 45150338 | LOT193 | 1550p | 482214010194 482214010198 | LOT105 | 1500p 1800 p | 1-439-243-11 $1-439.243 .12$ | LOT91 | 1600p | 1-439-416-41 | LOT255 | 1800p |
| $06 \mathrm{D}-3.088-001$ | LOT84 | 1450p | 2433891 | LOT23 | 1400p | 45150388 451503 | LOT200 | 1400p | 482214010198 482214010201 | LOT16 | 1800p | 1-439-243-12 | LOT91 | 1600p 1700 p | 1-439-416-51 | LOT25 | 1600p |
|  | LOT204 | 1600p | 2433892 | L0184 | 1450p | 45150341 | LOT56 | 1850p | 482214010236 | LOT118 | 1550p | 1-439.243-32 | LOT229 | 1700p | 1-439-430-21 | LOT27 | 1550p |
| 06 D-3-095-002 | L0187 | 1000p | 2433893 | LOT23 | 1400p | 45150343 | LOT196 | 1550p | 482214010246 | LOT111 | 1500p | 1-439-243-41 | LOT229 | 1700p | 154125A | LOT275 | 1550p |
| 06 D-333-512-001 | LOT204 | 1600p | 2433952 | LOT33 | 1000p | 45150344 | LOT56 | 1650p | 482214010247 | LOT105 | 1500p | 1.439-244-00 | LOT48 | 1600p | toshiba |  |  |
| FETX 10090 DEG | LOT04 | 1500p | 2434002 | LOT200 | 1400p | 45150346 | LOT201 | 1550p | 482214010254 | LOT107 | 1450p | 1-439-244-11 | LOT48 | 1600p | 37010 | LOT131 | 1450p |
| FETX 90 WHITE | LOT06 | 1650p | 2434141 | LOT33 | 1000p | 45150350 | LOT27 | 1450p | 482214010263 | LOT117 | 1550p | 1.439-244-21 | LOT48 | 1600p | 37011 | LOT131 | 1450p |
| FETX 100100 DEG | LOT34 | 1500p | 34141 | LOT33 | 1000p | 45150351 | LOT27 | 1450p | 482214010269 | LOT210 | 1350p | 1-439-244-31 | LOT48 | 1600p | 37012 | LOT131 | 1450p |
| GRUNDIG |  |  | 274 | LOT44 | 1050p | 45150375 | LOT56 | 1850p | 482214010271 | LOT208 | 1650p | 1-439-256-00 | LOT45 | 1650p | 37013 | LOT131 | 1450p |
| 29201.008.01 | LOT 153 | 1750p | 2434274 | LOT44 | 1050p | 45161601 | 22 | 250p | 482214010274 | LOT123 | 1450p | 1-439-256-11 | LOT45 | 1650p | 37014 | LOT131 | 1450p |
| 29201.014.01 | LOT140 | 1500p | 2434455 | LOT234 | 1600p | ${ }_{731003}$ |  |  | 482214010282 | T122 | 1300p | 1.439--256-21 | LOT45 | 1850p | 37016 | - 1131 | 1450p |
| 29201.015.01 | LOT149 | 1400p | 2434593 | LOT44 | 1050p | 276-16399 | LOT49 | 15500p | 482214010283 482214010294 | LOT104 | 1500p | 1-439-256-22 | -0T45 | 1650p | 37017 | LOT131 | 1450p |
| 29201.017.01 | LOT60 | 1250p | 2435062 | LOT296 | 950p | 334 B 07803 | LOT50 |  | 482214010306 | LOT110 | 1200p | 1-439-276-21 | LOT230 |  | 37018 | LOT131 | 1450p |
| 29201.018 .01 | LOT163 | 1300p | 2435121 | L0T87 | 1000p | 334 B 078030 | LOT50 | 1450p | 482214010325 | LOT132 | 1200p | ${ }^{1-439-280.13}$ | LOT92 | 1600p | 37019 | LOT131 | 1450p |
| 29201.018.02 29201.019.01 | 10161 | 1700p | 2435131 | LOT251 | 1450p | 334 B 08104 | LOT74 | 1600p | 482214010326 | LOT122 | 1300p | 1-439-286-00 | LOT46 | 1300p | 1810951 | LOT55 | 1400p |
| 29201.019 .01 29201.019 .02 | LOT62 | 1250p | 2435141 | LOT282 | 1300p | 334 B 08108 | LOT295 | 1800p | 482214010328 | LOT124 | 1450p | 1-439-286-11 | LOT46 | 1300p | 2433751 | LOT01 | 1300p |
| 29201.019 .02 29201.022.01 | LOT62 | 1250p 1700p | 2435301 | LOT88 | 1450p | 334 P 18506 | LOT51 | 1550p | 482214010349 | LOT106 | 1250p | 1-439-286-12 | LOT46 | 1300p | 2433752 | LOT250 | 1350p |
| 29201.022.02 | LOT166 | 1600p | 2435671 | 89 | p | 334 P 18507 | LOT75 | 1500p | 482214010353 | LOT284 | 1400p | 1-439-286-13 | LOT46 | 1300p | 23236023 | LOT281 | 1300p |
| 29201.022.03 | LOT165 | 1350p | 2436201 2436202 | LOT109 |  | 5908.05008A-AA | LOTY | 1500p | 4822140 | LOT284 | 1400p | 1-439-286-21 | LOT46 | 1300p | 36052 | LOT131 | 1450p |
| 29201.022.04 | LOT165 | 1350p | 2432101-2 | LOT79 | 1600p | D 108/37 | LOT49 | 1500p | 482214010367 | L01286 | 1400p | 1-439-288-00 | LOT228 | 1750p | 23236098 | LOT288 | 1400p |
| 29201.022 .04 A | LOT165 | 1350p | 2433451 H | LOT81 | 1350p | DCF2077A | LOT272 | 1300p | 482214010369 482214010381 | L01129 | $1200{ }^{\text {1 }}$ | 1-439-288-12 | LOT228 | 1750p | 23236198 | Lo | 1400p |
| 29201.024.01 | LOT65 | 1500p | 2433453H | LOT82 | 1250p | KFS 60226B | LOT279 | 1550p | 482214010384 | LOT127 | 1550p | 1-439-289-21 | L0T47 | 1400p | 23236424 | L0T129 | 1500p |
| 29201.024.04 | LOT164 | 1400p | 2433891H | LOT23 | 1400p | MSH-1FBW08 | LOT78 | 1500p | 482214010395 | LOT116 | 1600p | 1-439-289-22 | LOT47 | 1400 p | 23236425 | LOT288 | 1400p |
| HiNARI |  |  | 2433892 G | LOT84 | 1450p | NiKKAl |  |  | 482214010406 | L0t73 | 1150p | 1-439-289-31 | LOT47 | 1400p | 23236428 | LOT289 | 1500p |
| 154138 K | LOT24 | 1500p | I.T.T. |  |  | BABY10 | LOT67 | 1450p | 482214010421 | LOT109 | 1200p | 1-439-294-00 | LOT93 | 1450p | 3122113837011 | LOT131 | 1450p |
| 51139141 | LOT24 | 1500p | 45150108 | LOT113 | 1400p | ORION |  |  | 482214017078 | LOT103 | 1250p | 1-439-294-11 | LOT93 | 1450p | 150F6D | LOT131 | 1450p |
| 51141841 | LOT24 | 1500p | 45150115 | LOT136 | 1600 p | 3714002 | LOT02 | 1500p | SANYO |  |  | 1-439-294-21 | LOT269 | 1550p | TFB 4039 AD | LOT293 | 1580p |
| CF 44 A | LOT24 | 1500p | 45150116 | LOT139 | 1675p | PANASONIC |  |  | 094-00020/0.9 | LOT113 | 1400p | 1-439-303-00 | LOT94 | 1300p | TFB 4048 AD | LOT281 | 1300p |
| HM51-1411834-1 | LOT24 | 1500p | 45150117 | LOT139 | 1675p | TLF 14512 F | LOT39 | 1850p | 094-00035/0.2 | LOT 162 | 1350p | 1-439-303-11 | LOT94 | 1300p | TFB 4048 BD | LOT281 | 1300p |

 * NIKKAI BABY 10 REGULATOR 炎 ORDER CODE : BABY 10 PRICE: $\mathfrak{£ 1 0 . 0 0 ~ * ~}$


## Universal Pre-Programmed <br> Brand Replacement Remote Controls

- Brand for Brand Replacement
- Codeless setup
- Teletext and Fastext
- Pre-programmed for the latest models
- Replaces broken and lost remotes
- CE Approved

| BRAND |  | CODE |  | BRAND |
| :--- | :--- | :--- | :--- | :--- |
| Panasonic | RCUN101 |  | Nokia |  |
| RCODE |  |  |  |  |
| Sony | RCUNI02 | Samsung |  | RCUNI06 |
| Philips | RCUNI03 | Toshiba | RCUNI08 |  |
| Hitachi | RCUNI04 | Ferguson | RCUNI09 |  |
| Mitsubishi | RCUNI05 | Grundig | RCUNI10 |  |

Normal Price: $£ \mathfrak{E} .5 f$ + VAT Special Offer: $\mathbf{\varepsilon 7 . 5 0 + V A T}$ NEW ARRIVAL!!!!
UNIVERSAL REPLACEMENT SATELLITE REMOTE CONTROL
This unique remote control covers 11 brands including
Pace MSS series, Nokia, Echostar.

| SPECIAL OFFERS!! |  |  |
| :--- | :---: | :---: |
| CD PICK UPS |  |  |
| KSS 152A | $£ 16.00$ | $£ 13.00$ |
| KSS 210A | $£ 18.00$ | $£ 13.00$ |
| KSS 210B | $£ 20.00$ | $£ 15.00$ |
| KSS 240A | $£ 25.00$ | $£ 20.00$ |
| KSS 213B | $£ 19.00$ | $£ 15.00$ |
| KSS 213C | $£ 19.00$ | $£ 15.00$ |
| OPTIMA 6S | $£ 20.00$ | $£ 16.00$ |
| OPTIMA 5 | $£ 30.00$ | $£ 16.00$ |
| RCTRH 8151 | $£ 44.00$ | $£ 20.00$ |
| RCTRH 8112 | $£ 57.00$ | $£ 20.00$ |

[^4]Grandata Ltd
distributor of electronic components
K.P. HOUSE, UNT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 01819002329 Fax: 01819036126 E Mail: GRANDATA.LTD@BTINTERNET.COM Web Site: http://www.grandata.co.uk

| FAST 3L0M |  |  |
| :---: | :---: | :---: |
| RATING | ORDER CODE | PRICE |
| 0.04A | FUSE53 | 60p |
| 0.05A | FUSE54 | 35p |
| 0.063 A | FUSE55 | 35p |
| 0.08A | FUSE56 | 35p |
| 0.1 A | FUSE57 | 30p |
| 0.125 A | FUSE58 | 30p |
| 0.16 A | FUSE59 | 30 p |
| 0.2A | FUSE60 | 30p |
| 0.25A | FUSE61 | 30p |
| 0.315A | FUSE62 | 30p |
| 0.4 A | FUSE63 | 30p |
| 0.5A | FUSE64 | 30p |
| 0.63 A | FUSE65 | 30p |
| 0.8A | FUSE66 | 30p |
| 1A | FUSE67 | 30p |
| 1.25A | FUSE68 | 30p |
| 1.6A | FUSE69 | 30p |
| 2A | FUSE70 | 30p |
| 2.5A | FUSE71 | 30p |
| 3.15A | FUSE72 | 30p |
| 4A | FUSE73 | 30p |



| ASSORTED |
| :---: |
| WICKMAN FUSES |
| This Kit consists of |
| Assorted Wickman |
| Fuses |
| both Slow \& Fast Blow: |
| 17 Diferent Types |
| 10 of Each Type |
| 170 Fuses in Total |
| Packed in a Plastic |
| Storage Box |
| Order Coode: Wickmankit |
| PRICE |
| $\mathbf{E 4 0 . 0 0}$ |


| S40M 3.101 |  |  |
| :---: | :---: | :---: |
| RATING | ORDER CODE | PRICE |
| 0.05A | FUSE74 | 65p |
| 0.063 A | FUSE75 | $65 p$ |
| 0.08 A | FUSE76 | $65 p$ |
| 0.1 A | FUSE77 | $35 p$ |
| $0.125 A$ | FUSE78 | $35 p$ |
| 0.16 A | FUSE79 | $35 p$ |
| 0.2A | FUSE80 | $30 p$ |
| 0.25A | FUSE81 | 30p |
| 0.315 A | FUSE82 | 30 p |
| 0.4 A | FUSE83 | 30p |
| 0.5A | FUSE84 | 30p |
| 0.63A | FUSE85 | $30 p$ |
| 0.8A | FUSE86 | $30 p$ |
| 1A | FUSE87 | $30 p$ |
| 1.25A | FUSE88 | $30 p$ |
| 1.6 A | FUSE89 | $30 p$ |
| 2 A | FUSE90 | $30 p$ |
| 2.5A | FUSE91 | $30 p$ |
| 3.15 A | FUSE92 | $30 p$ |
| 4 A | FUSE93 | $30 p$ |
| 5 A | FUSE94 | 30p |

$\star \star \star$ PLEASE NOTE THAT ALL WICKMAN FUSE PRICES ARE FOR A QUANTITY OF 1 (ONE) - (EXCEPT FOR KIT) $\star \star \star$

|  |  | VOLTAGE | ORDER CODE | PRICE | VALUE | VOLTAGE | ORDER CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VALUE | VORICE |  |  |  |  |  |  |
| 220 pF | 2000 v | CAPO1 | 90 p | 1200 pF | 3000 v | CAPO8 | 225 p |
| 330 pF | 2000 v | CAPO2 | 90 p | 1500 pF | 2000 v | CAP09 | 130 p |
| 470 pF | 2000 v | CAP03 | 90 p | 1500 pF | 3000 v | CAP10 | 225 p |
| 680 pF | 2000 v | CAP04 | 95 p | 2200 pF | 2000 v | CAP11 | 130 p |
| 820 pF | 3000 v | CAP05 | 150 p | 3300 pF | 2000 v | CAP12 | 145 p |
| 1000 pF | 2000 v | CAP06 | 110 p | 4700 pF | 2000 v | CAP13 | 180 p |
| 1000 pF | 3000 v | CAP07 | 225 p |  |  |  |  |

## SMD ELECTROLYTIC $105^{\circ}$ CAPACITORS

| VALUE | VOLTAGE | ORDER CODE | PRICE | VALUE | VOLTAGE | ORDER CODE | PRICE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $22 \mu \mathrm{~F}$ | $6.3 v$ | CAP14 | 110 p | $100 \mu \mathrm{~F}$ | 25 v | CAP22 | 300 p |
| $47 \mu \mathrm{~F}$ | 6.3 v | CAP15 | 110 p | $1 \mu \mathrm{~F}$ | 50 v | CAP23 | 110 p |
| $100 \mu \mathrm{~F}$ | 6.3 v | CAP16 | 130 p | $2.2 \mu \mathrm{~F}$ | 50 v | CAP24 | 110 p |
| $10 \mu \mathrm{~F}$ | 16 v | CAP17 | 110 p | $4.7 \mu \mathrm{~F}$ | 50 v | CAP25 | 110 p |
| $22 \mu \mathrm{~F}$ | 16 v | CAP18 | 110 p | $10 \mu \mathrm{~F}$ | 50 v | CAP26 | 130 p |
| $47 \mu \mathrm{~F}$ | 16 v | CAP19 | 130 p | $22 \mu \mathrm{~F}$ | 50 v | CAP27 | 180 p |
| $470 \mu \mathrm{~F}$ | 16 v | CAP20 | 320 p | $47 \mu \mathrm{~F}$ | 50 v | CAP28 | 300 p |
| $33 \mu \mathrm{~F}$ | $25 v$ | CAP21 | 130 p |  |  |  |  |

$\star \star \star$ PLEASE NOTE THAT ALL THE ABOVE CAPACITOR PRICES ARE FOR A PACKET OF 5 (FIVE) $\star \star \star$

## SUITABLE FOR

 MITSUBISHI 21" \& 25" TV'STo replace the TDA8178S fitted to the following MITSUBISHI 21" \& 25" TV's:
CT21A2STX, CT213STX, CT25A2STX, CT25A3STX CT25A4STX, CT25A6TX, CT25B2STX, CT25B3STX It comes with clear and concise instruction on how to carry out the work. ORDER CODE: MITSKIT1 PRICE: 300p


SUITABLE FOR MITSUBISHI 29" \& 33" TV'S

To replace the TDA8178S fitted to the following MITSUBISHI 29" \& 33" TV s: CT29AS1, CT29B4, CT29A4, CT29A6, CT29B2, CT29B3, CT33B3
It comes with clear and concise instruction on how to carry out the work. ORDER CODE: MITSKIT2 PRICE: 1500p

## POWER SUPPLY \& UPGRADE KIT FOR SAMSUNG

Suitable for Samsung Winner 1 Chassis
(VIK310, VIK350, V1375, V1395)
This kit contains the components required to upgrade the power supply for all the above mentioned models. It comes with clear and concise instructions on how to carry out the work order code: samsungkit PRICE: 1600p


See Page 272 for more new arrivals

Grandata Ltd
distributor of electronic components
K.P. HOUSE, UNTT 15, POP $\operatorname{N}$ COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND

Telephone: 01819002329 Fax: 01819036126
E Mail: GRANDATA.LTD@BTINTERNET.COM Web Site: http:/www.grandata.co.uk

## AUOIO \& VIDEO CLEANING ACCESSSORIES UNIIUERSAL REDACEMENT RENOTE CONTHOL

| DESCRIPTION | CODE |  | PRICE |
| :--- | :--- | :--- | :--- |
| FULLY AUTOMATED CD CLEANER (battery operated) | SP32 |  | $1250 p$ |
| CD CLEANING PADS | SP33 |  | $120 p$ |
| CD CLEANING SYSTEM with tray and fluid | SP34 | $300 p$ |  |
| CD CLEANING SYSTEM with fluid, boxed tray and brush | SP35 | $400 p$ |  |
| CD LASER LENS CLEANER with music and voice | SP36 | $350 p$ |  |
| CD LASER LENS CLEANER - WET with music and voice | SP37 | $350 p$ |  |
| COMPACT DISC MAINTENANCE with cleaner fluid, | SP38 | $800 p$ |  |
| pads, spray and brush |  |  |  |
| CD ROM LASER LENS CLEANER with animation display | SP39 | $400 p$ |  |
| VCR CASSETTE HEAD CLEANER - WET SYSTEM | SP40 | $150 p$ |  |
| AUDIO CASSETTE HEAD CLEANER - WET SYSTEM | SP41 | $100 p$ |  |



## CM3900A DIGITAL MULTIMETER

## FEATURES:

LARGE LCD DISPLAY HEIGHT 18 mm
MAXIMUM READING $1999+$ UNIT
SINGLE MANUAL ROTARY SWITCH FOR
FUNCTION AND RANGE OPERATION AUTO POWER OFF (APPROX 15 min ) DIODE TEST FUNCTION
all ranges overload protected SUPPLIED WITH TEST PROBES DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ ACCURACY - 0.5\%
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ - DC CURRENT A: $200 \mathrm{H} / 20 \mathrm{~mA} / 200 \mathrm{~m} / 2 \mathrm{Z} 20 \mathrm{~A}$ - AC CURRENT A: $200 \mu$ A/20mA/200mA/2A/20A - RESISTANCE $\Omega: 200 \Omega / 2 k \Omega / 200 \mathrm{kS} / 2 \mathrm{M} \Omega / 20 \mathrm{M} \Omega$ ORDER CODE: CM3900A PRICE: 2900p


CM3920 DIGITALMETER WITH. TEMPERATURE MEASUREMENT

FEATURES:
TEMPERATURE MEASUREMENT

- DIODE \& TRANSISTOR HFE TEST - LARGE LCD DISPLAY HEIGHT 18 mm MAXIMUM READING $1999+$ UNIT SINGLE MANUAL ROTARY SWITCH FOR FUNCTION AND RANGE OPERATION - AUTO POWER OFF (APPROX 15 min ) DIODE TEST FUNCTION
- all ranges overload protected SUPPLIED WITH TEST PROBES DC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 1000 \mathrm{~V}$ ACCURACY* 0.5\%
AC VOLTAGE: $200 \mathrm{mV} / 2 \mathrm{~V} / 20 \mathrm{~V} / 200 \mathrm{~V} / 700 \mathrm{~V}$ DC CURRRENT A; $2 \mathrm{~mA} / 20 \mathrm{~mA} / 200 \mathrm{~mA} 20 \mathrm{~A}$ AC CURRENT A: $200 \mathrm{~mA} / 20 \mathrm{~A}$
RESISTANCE S:2:200s $2 / 2 \mathrm{k} \Omega / 200 \mathrm{k} \Omega / 2 \mathrm{M} / 2 / 20 \mathrm{M} \Omega$ 200MS2
CAPACITANCE: 2nF/2OnF/200nF/2*F/20.F

ORDER CODE: CM3920 PRICE: 4100p

[^5]HELP WANTED

# The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature. 

Wanted: Capstan motor and an X0491GE241 chip for a Sharp VCA 105 HM VCR, also a complete head drum for a Panasonic NVD80. R. Flitcroft, 69 Cartmel Court,
Blackley, Manchester M9 7HT. 0161 6830817.

Wanted: LOPT (part no. 94628) for the Murphy Model V759A. Copies of the Murphy News and Murphy Service News publications. IC type MAB8441P TO93 for the Tatung 170 series chassis. Phil Marrison, 43 Park Road, Alrewas, Nr Burton-onTrent, Staffs DE13 7AG. 01283790 747 (phone/fax).
Wanted: Manual and circuit diagram, or a good photocopy. for the Telequipment S 52 scope. C.E. Scott, 258 Edmund Road, Sheffield S2 4EN. 01142723984.
Wanted: Stereo Betamax VCR, domestic or industrial, faulty considered; Sony Super Beta PAL/NTSC;
Sony RM101, RM2001 and RMT223 remotes; Sony PCM601. Phone Graham on 01604843536.
Wanted: Working power supply for the Goodmans VN6000 VCR, or information on a source of this item. J. Andrews, 69 Hope Street, Liverpool L1 7BJ.
Wanted: Loan of manual or purchase of photocopy for the Sword monitor (Cotron 01H337DGC1) dating from the mid 80 s. Particularly require information on the input socket wiring and the internal option links. Bob Mitchell, 5 Second Row, Linton, Morpeth, Northumberland NE61 5SQ.
Wanted: Programming information (manual, etc.) for the Uniden UST771 dish controller. C.A. Rigby, 1 Route D'Anton, Petit Caudos, Mios. 33380, France. E-mail Anthonyrigby@compuserve.com Wanted: Assembled TV board for the Waltham portable TV/radio/cassette player Model W154. A.J. Williams, 39 Aldermoor Avenue, Coxford, Southampton SO16 5GJ. For disposal: Mullard A51-570X colour tube, brand new not regunned. Offers please. H. Turney, 135 North

Road, Bellshill, Strathclyde ML4 1QY. 01698844382.
Wanted: Circuit diagram for the
Ferguson Courier 12in. monochrome portable Model G2-23 38000. D.J. Rockliffe, 3 Hewell Lane, Barnet Green, Nr Birmingham B45 8NZ. 01214455360.

For sale: Newnes Radio and Television Servicing books, seven volumes 1955-1961. Offers please. D.D. Sutton, 15 Tom Mann Close, Barking, Essex IG11 7YF. 0181924 1967.

Wanted: Service manual for the Sharp VLC780H camcorder. G. Thomas, 16 Stuart Street, Merthyr Tudful, Glamorgan CF47 8SA. 01685373368.

For sale: Various spares for the Sanyo ED1 colour TV chassis. Also full service manual, CRT, LOPT etc. Please write to C.A. Lounds, 12 Mansfield Road, Sutton in Ashfield, Nottinghamshire NG17 4GR.
Wanted: Text panel for the
Panasonic Model TX2472. The number on the PCB is TNP107058. Paul Bentley, 43 Breach Road, Marlpool, Heanor, Derbyshire DE75 7NL. 01773765258.

For disposal: Geodimiter Geodat
124 at bargain price. F. Nedza, 40
Brynhyfryd, Glynneath, Neath SA11 5BA. 01639720429.
Wanted: Mains transformer for the Trio stereo integrated amplifier type A-3X. Russ Pinder, 218 Cantley Lane, Doncaster, S. Yorkshire DN4 6PA. 01302539111.
Wanted: Circuit diagrams etc. for the Skyscan satellite receiver/positioner Model K1 (made in Canada). D. Benyon, Marshland View, St.

Annes Hill, Bude, Cornwall EX23 OLT. 01288353373.
Wanted: Circuit diagram for the Uher CG300 cassette deck. G. Vine. 01473645416 (day), 01255821655 (home) or e-mail
graham_vine@geocities.com
For disposal: Approximately 100 assorted TV and 80 video and satellite manuals and circuit diagrams. They range from the mid Eighties to

1994 and cover Ferguson, JVC, Sony, Toshiba, Hitachi, Philips etc. models. Also Television magazine from 1989-97 virtually complete plus some others from 1985-89. In addition assorted spares and remote-control units. Offers to Dave on 01702 472475.

Wanted: 510ABCB22P CRT for the Mitsubishi Model CT2027, with working scan coils. Would also like to contact anyone who successfully built the ESR capacitance meter featured in the April 1993 issue. M.J.
Levy, 19 Totternhoe Close, Kenton,
Harrow, Middx HA3 0HS. 0181907 3620.

For disposal: Copies of Television from January 1983 to October 1998. Could deliver locally but would otherwise have to be collected. W.J. Knight, 532 Rochester Way, Eltham, London SE9 1SQ. Can usually be reached on 01818504147.
For disposal: Television magazine 1972 to 1996 - odd copies missing. Input magazine (computers) first issue, complete set. Elector magazine from issue 11 to 1997, odd copies missing. Spectrum 48 K (working) with Opus $3 \cdot 5 \mathrm{in}$. disc drive interface with parallel printer port, Romantic Robot interface and many games and utilities. Olympic electric typewriter (wide carriage), old type - uses an electric motor. Any offers? Please phone Colin Carter on 01494533558.
For sale: Maxicamera A gamma camera signal processor type 464060440G10 for use with gamma camera, made by General Electric Nuclear Medical $£ 50$. BBC, Acorn and Archimedes stuff: parts, books, hardware and software, list available - send 38 p stamp. dBase 5 for DOS, complete and unregistered, swap for OS/2 version or sell for $£ 150$. Smith Corona XE1630 portable electronic typewriter, three pitch sizes, full line memory correction, word eraser, bold, super- and subscript, auto-centring, as new with manual $£ 40$. Julian Bohan, 01522514241 or mobile 0958771319.

## Servicing the

# Philips Turbo Deck 

## Alan J. Roberts describes the main features of the Philips Turbo VCR deck mechanism and provides notes on general servicing and some points that can cause confusion

The Philips Turbo VCR mechanism has been around for a number of years and has proved to be efficient and reliable. The wind/rewind speed is very fast, hence its name. A unique feature is the absence of a mode switch. Replacement parts are usually supplied as kits, so that all associated gears or levers are replaced at the same time, ensuring a reliable repair.
Considerable experience has been gained over the years in servicing these decks and in dealing with various problems that have cropped up with them. Most repairs are fairly straightforward and don't call for explanation. Some points can cause confusion however. The following notes should be of help when a VCR fitted with one of these decks comes in for service. The reference numbers used in the text refer to the exploded view in the service manual, which should be to hand.

## Initial Work

Virtually all mechanical repairs have to be carried out with the deck removed from the machine. The deck is normally held in place by three screws, two under the cassette lift and one at the centre rear. To gain access to the front two screws the cassette housing has to be in the down position. This is fine if there's no cassette stuck in the machine. If there is, it must be removed first.
Depending on the nature of the problem, this can be a bit awkward. For the moment we'll assume that there is no tape in the machine, the deck is fully unthreaded and the lift is in the eject position. Unscrew the centre rear screw first. The cassette housing next has to be moved forwards to gain access to the two front screws. The two protection locks, one at the left and one at the right, can be releasing using your fingers. It should then be possible to move the lift forwards sufficiently to gain access to the front two screws. Alternatively the loading motor can be turned to move the lift forwards. Once the screws have been withdrawn, the VCR's front panel should be removed and any connecting leads released from the deck. It should then be possible to remove the deck completely.
What do you do if the machine has taken in a tape and refuses to give it back? First try turning the loading motor by hand. If you are lucky, the mechanism should unthread (if it has reached this state), the index lever should swing back to its rest position and the housing should start to rise. To prevent tape looping, turn the capstan motor as you do this. You should then be able to
bring the lift to the eject position and extract the tape. If only life was that simple! Let's suppose that because of some mechanical problem the housing refuses to rise. This means that you will be unable to remove the deck from the cabinet. If you can get the deck into the unthreaded position but no farther, try turning the smaller of the two gears on the side of the housing. All being well, this will enable the lift to be brought to the eject position. If the lift is stuck hard you will have to turn the whole machine over and unscrew the lift retaining screws. These are No. 8 Torx size. There is also a red retaining hook at the right-hand side - it has to be unclipped. You should then be able to remove the lift, gently, complete with the tape.
Tape damage is almost inevitable with a really jammed deck, particularly if the deck remains in the threaded position. It may even be necessary to cut the tape to free it.
Once the housing is free, bring it to the eject position by turning the side gears and remove the tape.
The deck retaining screws can then be removed as described above.

## Stuck Cassette

One of the most common faults, and one of the easiest to deal with, is when a machine comes in for repair with a cassette stuck inside it. On test the machine may make a raucous, whining noise when eject is pressed, or you may just hear the loading motor turn but nothing moves. The cause is usually a fractured gear at the end of the main worm shaft. This gear drives the two small gears that engage with the housing, at the side of the mechanism.
Repair is simple. Remove the lift as already described, then withdraw the faulty worm shaft from its fixings. Philips recommends that the drive shaft from the loading motor is also replaced - at the end of this there's a bevelled gear that can also fracture, bringing the whole mechanism to a stop. The two items are supplied as a pair under part number 4822310 10657. They can be used with any Turbo deck.
The worm gear has a butterfly vane at one end. This interrupts the infra-red light from the optosensor that protrudes through the deck. As the worm gear spins, the pulses from the optosensor are counted by the deck's microcontroller chip so that it knows the deck position. This does away with the need for a mechanical, and less
reliable, mode switch. It's important to ensure that the butterfly vanes are undamaged.
One point needs explanation. The drive shaft (item 47 in the manual) is clipped in position at the gear end while the other end is clamped under an inverted $U$ shaped bracket that's part of the loading motor mounting. You simply cut the inverted U -shaped bracket halfway down and ease the drive shaft out. The new one can then be easily fitted. Fig. 1 shows the idea. This is not a bodge, and is accepted by Philips.
Once the new drive shaft and worm gear have been fitted, you are ready to reassemble the lift. This has to be done with the lift in the down position. So release the latches and turn the gears on the side of the housing to take the lift down. The two arrows on the side gears should point towards each other. Next turn the loading motor on the deck by hand until the timing hole in the main cam is at three o'clock. Position the lift, making sure that the smaller gear on the side engages with the drive gear on the deck. Clip back the red retaining hook. Invert the deck carefully so that the four Torx screws that hold the lift can be replaced.
Check the operation of the deck by turning the loading motor by hand. It should be possible to go through a complete cycle. From the lift-down position, turning the motor clockwise should take you through the entire eject sequence. Watch carefully as the timing hole in the main cam moves towards the six o'clock (eject) position. Gear 103 should start to turn and the lift should start to rise. It should do so smoothly, with no sense of catching. If all is well, it should be possible to bring the lift to the full eject position.
Turning the motor anticlockwise should take the lift down (remember to release the safety locks) then go through the entire threading cycle. Smooth operation of the lift depends on gear 103 disengaging from the main drive at the correct moment.

## The Main Cam

The main cam comes as a kit with the worm shaft, pinch-roller helter-skelter and pinch-roller holder. For reliable operation these parts should be replaced together. It's important to order the correct cam for the model being repaired. They are not all the same: some machines have fully-threaded wind/rewind operation


Fig. 1: Position of the inverted U-shaped bracket that holds one end of drive shaft 47. The bracket is part of the loading-motor mounting. Cut the bracket as shown above when replacing the drive shaft.
while others have unthreaded wind/rewind. This means that the cams are different, and fitting the wrong type will result in a jammed mechanism.
To gain access to the cam, the lift must be removed as previously described. In addition, the worm shaft should be unclipped. Before the cam can be removed, it's necessary to remove the index lever and the pinch-roller assembly. First turn the main cam to its full-eject position (hole at the six o'clock position). Remove plastic retainer 30 F , then reverse lever 29 F , followed by index lever 31F. Finally, carefully unclip the intermediate lever 32F. See Fig. 2.


Fig. 2: Top view of the main cam and its associated levers and gears.


Fig. 3: The pinch-roller assembly. 1 Tension spring; 2 pinch-roller bracket; 3 pinch-roller holder; 4 helter-skelter gear.

To remove the pinch roller, first release the strong tension spring (see Fig. 3) then swing the pinch-roller bracket outwards slightly and remove. The pinch-roller holder should lift off upwards after pushing the retaining tab towards the loading motor. Finally, turn the cam so that the hole is at the three o'clock position and remove the helter-skelter gear 46A. This all sounds rather involved, but in fact takes only a few moments and reassembly is very easy.
A three-pronged spline holds the cam in place. There's no official tool for releasing the spline, but a call to Philips Technical produced a simple solution at no cost. All you need is the plastic cap from a felt-tip pen or similar. You might have to try a couple before you find one that's the right size and fits neatly over the spline to push the claws in. Then lift the cam straight off its fixing.

## Fitting the new Cam

Installing the new cam is basically the reverse of the above procedure. To get the timing perfect at first attempt however, I suggest the following approach.
I usually find that it's best to replace the cam when it is in the stop position (timing hole at three o'clock). An elastic band looped around the loading arms and
the left-hand turntable helps by keeping them in the fully unthreaded position. This keeps gear 44AB in the correct place, enabling the cam gear to be fitted easily.
The underside of the cam operates two levers, one for the brakes and the other for the eject gears. You will see two pins, one metal and one nylon, that protrude through the deck. Push the nylon one towards the right, and the metal one roughly central in its slot. If it's to the extreme left and appears to be under spring tension, push it towards the extreme right of its slot and the brakes will come on with a click. The pin can then be centralised in its slot.
Take the new cam and place it lightly over the centre spline. Do not press it down at this stage. Set the timing hole in the three o'clock position, then gently press the cam down. You may need to rotate the cam gently back and forth as you press it down. If the two levers are correctly positioned, the cam will snap down firmly.

## Timing

To check that the timing is correct, rotate the cam clockwise so that the timing hole is at six o'clock. It should not go any farther. Now rotate the cam anticlockwise back to the three o'clock position and carry on turning. There will be several points of slight resistance, as the levers are moved against spring tension. Carry on turning the cam. It should be possible to go through a complete threading cycle with the timing hole stopping at roughly the four o'clock position. The loading arms should be fully engaged.
Now turn the cam clockwise again, making sure that the loading arms return fully. Set the timing hole at three o'clock.
If the cam jams during any of the above moves, remove it and follow the setting instructions again.
We can now refit the pinch-roller assembly.

## The Pinch-roller Assembly

The helter-skelter gear has a timing hole. Place the gear on its spindle, but don't press it down fully yet. Set the timing hole so that it's between the third and fourth tooth of the cam, see Fig. 2. When satisfied about this, press the gear down fully.
Now turn the cam so that its timing hole is at six o'clock. Place the pinch-roller holder loosely on the helter-skelter, so that the long, lower arm rests against the capstan spindle. Then rotate it anti-clockwise until the small square tab at the rear snaps into the guide behind the loading motor. Fit the pinch-roller bracket into the hole at the top, and refit the tension spring.
Before going any farther, check that the timing is correct by turning the cam through a complete cycle as before. Make sure that the pinch roller engages fully with the capstan spindle.
The index and reverse levers can now be refitted.

## Index and Reverse Levers

First examine the intermediate lever 32 F for signs of damage. If there are any, an order for the appropriate kit will bring all four items to be replaced together. Make sure that the main cam is in the three o'clock position. Place the lever on its fixing bush, as shown in Fig. 2, and push down firmly.
Next fit the index lever on its shaft. There are two timing dots on the teeth of the index lever and three dots on the teeth of the reverse lever. The centre dot of the three should be between the two dots on the index lever. Finally fit the retainer.
When the main cam is turned, both levers should now
swing to their respective positions. When you are satisfied that the timing is correct, clip the worm shaft back into place. Before you refit the cassette housing, as previously described, you can check the operation by connecting a 9 V supply across the connections to the loading motor. The deck should operate smoothly through its entire cycle.

## The Brakes

Having dealt with the top of the deck, we'll take a look beneath. Once again, all major brake parts are supplied as a kit which should cure most problems. With the majority of the earlier Turbo decks this is kit E .
A common problem is that when the machine unlaces from play a small loop of tape is left hanging from the cassette. Then, as the cassette is ejected, the loop gets caught in the cassette flap and is damaged.
One of these machines was in my workshop recently with this very problem. I fitted kits $E$ and I and replaced clutch 115. This improved the operation of the deck, but the fault was still present. After much time had been spent observing the deck's operation, I noticed that the brakes were not being fully applied when stop was pressed. I couldn't figure out why.
A call to Philips brought the solution. Pulse roller 107 E and pulse lever 110 E are located in plastic bushes on the main chassis. They can fracture, the result being poor brake operation. A reliable repair is possible using the kit of parts that Philips supplies to replace the bushes.
The pulse lever bearing had fractured in my faulty deck. I had to dismantle the deck sufficiently to gain access to the part, then carefully cut it away from the chassis - right down to the base metal. The new piece was then carefully fitted into the two vacant holes. A small dab of Superglue held it firmly, then I was able melt the two plastic tabs over neatly to form a solid bond. When the deck was reassembled the brakes worked perfectly. The machine would otherwise have been a write-off.
The above is likely to happen only with older machines. Most repairs will simply involve ordering and fitting the appropriate repair $\mathrm{kit}(\mathrm{s})$.

## General Servicing Notes

Most other repairs are routine and don't require explanation. The pole bases simply clip on to the loading arms, replacement taking only a few moments. The brakes on top of the deck again just clip on and are supplied as a kit.
You sometimes find that the plastic hook which holds the record-protect lever retaining spring has broken. The repair kit mentioned previously contains a replacement hook that provides a reliable repair.
Head fixing was changed during production. The original version was held by a single screw. Later versions are held by a quick-release clamp for which a special tool is required. Details will be found in the relevant service manual.
On all but the latest versions of the deck the sensor panel is supplied complete and fits under the mechanism. It contains the start and end sensors, the reel sensors, the deck sensor and the record-protect switch. With later decks the sensors are fitted to the main PCB. Later versions of the deck also have a modified braking system that eliminates the problems experienced with fractured plastic mountings, as described above.
The loading motor can be responsible for sluggish operation or failure to load or unload completely. If the motor is suspect, check it by removing the loading belt
and turning the pulley by hand. This will usually prove the point. If it feels rough, change the motor along with the driver chip which can also be damaged. To avoid "chicken-and-egg" situations, it's best to replace them as a pair.
Some versions of the deck use a different capstan motor. Make sure that you order the correct type for the machine being repaired.

## In Conclusion

As previously mentioned it is very important to order the correct repair kit for the version of the deck you are servicing. There are major differences in the main cams and brake assemblies on later decks. So it's essential to have the correct service information available. The details in the notes above are intended to provide guidance only: they have been prepared on the basis of experience with existing models. Differences that are not covered in these notes may be found with some Turbo decks.
To maintain the high standard of performance, genuine Philips parts should be used when carrying out repairs. Any improved parts will be supplied with the relevant repair kit. This is particularly true of pinchroller assemblies.

## BACK ISSUES

We have available a limited stock of the following back issues of Television:

| 1994 | January, February, May, June, July, September, October, November and December |
| :---: | :---: |
| 1995 | January, April, May, June, July, August, September, November and December |
| 1996 | January to December inclusive |
| 1997 | January to December inclusive |
| 1998 | January, February, March, April, May, June, September, October, November and December |
| 1999 | January |
| Copies are available at $£ 3.00$ each including postage. Send orders to: |  |
|  | Reed Business Information Ltd., Television Back Issues, |
|  | Room L302, Quadrant House, |
|  |  |
|  | SM2 5AS. |

Make cheques/postal orders payable to Reed Business Information Litd.


Reports from Philip Blundell, AMIIE
Graham Richards
Keith Evans
Terry Lamoon
and
Pete Gurney, LCGI

## Toshiba V110B

"Funny sound" was the customer's complaint. When I played back a known good tape the sound was fine for about ten minutes. Then the capstan began to speed up every five seconds or so.

A torque-cassette check proved that the back tension and take-up torque were OK, but scope tests at test point BT23 (playback CTL pulse) and pin 15 of IT18 (capstan FG signal) showed that large interference pulses were present at both. After a fruitless half hour spent checking the supplies and at the other pins of IT18 - the CTL amplifier chip - I decided to try a replacement capstan motor. This cured the fault. P.B.

## Philips VR665

This Paolina range VCR didn't produce playback pictures - there was just noise. A scope check on the head amplifier's FM output seemed to show that one head was providing noise while the other was producing a signal. So a new drum was fitted, to no effect. Oh dear!

Attention was turned to the head amplifier IC. The head switching pulse SWIN differs from that in previous Philips models. It's not the usual 5 V peak-to-peak squarewave, and has more than two voltage levels - a table on the head amplifier circuit diagram explains this. The signal level selects one or other of the LP or SP heads as required by the function selected,

## VCR Clinic

e.g. for trick functions.

By this time another VR665 had arrived in the workshop, so comparisons could be carried out. These showed that the SWIN signal was correct. The complete chassis were eventually swapped over, which proved that the cause of the trouble was on the mother board. While these tests were being carried out I noticed that the faulty machine was also partly erasing the tape. This was being done by the rotary heads, not the full erase or ACE head.

Time for a phone call to the nice man at Philips Technical. He had heard of the fault, and suggested that we replace transistor $\operatorname{Tr} 7411$ (BC848B). Once this had been done the machine was all right. P.B

## Akai VS22EK/VS23EK

There was hum on playback: the report said picture jumping. I replaced the following electrolytic capacitors in the power supply: C6 ( $220 \mu \mathrm{~F}, 25 \mathrm{~V}$ ), C60 ( $1,000 \mu \mathrm{~F}, 25 \mathrm{~V}$ ) and $\mathrm{C} 4(47 \mu \mathrm{~F}, 25 \mathrm{~V})$. The machine then worked correctly. G.R.

## Sony SLVE710

This machine would accept a tape after which the mechanism would move part way in then eject. When you get this problem the remedy is to remove the cassette lift assembly and look at the connect and eject gears, which will be mistimed.
They have timing marks on them.
Retiming cured this particular machine. But will the customer learn not to force tapes in back-tofront! G.R.

## Hitachi VTF860E

This hi-fi, Nicam machine's fault, loss of mono audio playback, was apparent only with tapes recorded on a basic (non hi-fi) machine. Scope checks showed that the signal failed to emerge from the linear audio processing chip IC401.

A new chip restored normal operation. K.E.

## Akura VX150

The problem was a jammed mechanism with the cassette still in situ and laced up. When the bottom cover had been removed I saw a group of interconnecting sprockets and pulleys that are responsible for tape loading and cassette lift operation. An attempt to free the jam manually was fruitless - something unseen was preventing any progress. To locate the defect it would be necessary to strip down the gear train, but without a service manual reassembly would be difficult.

The nice people at Akura told me that the service manual didn't contain the mechanism timing information and said they would send a separate data sheet free of charge. Once I had this timing information I set about dismantling the gears and pulleys. This revealed that the post-capstan tape-guide operating pin, which extends from the upper deck to locate with the main operating cam, had somehow become bent and was detached from its track in the cam gear.
Normal operation was restored once the pin had been straightened and relocated. I could find no reason why the fault had arisen in the first place. K.E.

## Hitachi VTF360E

More centre-loaders are beginning to appear on the bench as their older, better-made and arguably more reliable predecessors are being consigned to the scrap heap. It was with this thought in mind that I began to tackle the problem of intermittent loss of the E-E and playback sound. The flimsy ribbon connectors and PCB headers now common are likely to be a source of trouble the more often a unit is dismantled.

In this case the cause of the fault
was a fractured common/earth return connection at the head amplifier/ audio panel PCB connector to the main board. K.E.

## Sanyo VHR1300E

There was a cassette stuck inside this machine. When power was applied the mechanism protested with a loud screeching noise. After removing the cassette manually I set about investigating the cause of the problem. My trusty blank cassette was inserted and loaded without any problem. But after playing with all the functions for several minutes a piercing scream came from below the deck. When I inspected the lower deck mechanism I saw that the main operating cam-coupling gear - the one that's belt-coupled to the capstan motor - was not meshing reliably. Hence the noise.

On closer examination I saw that the mounting plate on which the gear sits had parted company with the plastic deck moulding. I drilled a small hole through the plastic moulding and installed a very small screw. The result was a permanent repair. K.E.

## Toshiba V611B

This well-used machine produced some strange visual symptoms. In the playback mode there was a monochrome picture with occasional flashes of colour: the E-E signal produced rapid, pulsating colour drop-out. Wow!

I decided that the power supply would be a good place to start and found that the voltages around the STK7253 regulator chip were incorrect. A new chip put matters right. K.E.

## Philips VR6290

It was a nice change to come across one of these Charlie deck machines with something other than a mechanism fault. There was no E-E or playback vision though the playback audio was OK.

It seemed sensible to check the LT supplies to the relevant circuitry. This proved to be a wise move: the 5 V supply to the front-end subpanel was missing because the small series choke L6 was open-circuit. A replacement was obtained from a scrap machine. K.E.

## JVC HRJ210

The complaint with this machine was that it wouldn't play. When I opened it up I saw that there was no reel drive. Further investigation revealed that the clutch had dropped down because the circlip wasn't in position.

As I couldn't find the offending item anywhere I had to fit a replacement. Once it was in and secured the machine behaved correctly. T.L.

## Matsui VX1105

This machine would load a tape then immediately eject it. With this type of fault it's always worth checking the tape sensors first. There was no surprise when one sensor failed to react to light. A replacement restored normal operation. T.L.

## Sanyo VHR287

If one of these machines
intermittently switches off when record is selected and the display goes off, check PR512. If it looks blackened or reads high, change it. A quick cure! T.L.

## Akai VSG815

This machine is a little different as its display is in the cassette flap: it also has a small arm, just inside, that runs across the cassette as it goes in and out. Unfortunately if anyone pushes in a cassette with a damaged or missing window this arm gets stuck and jams the cassette. This is not serious, as a little coaxing from inside will release it without damage.

Problems start when the customer tries to pull the cassette out. This can damage the mechanism, and had happened with a machine I had for repair recently. I removed the cassette, then had to realign the mechanism's timing. This got the machine working but, because of no brake release, there was no fast rewind. Lever $M$ had lost its location pin - a new one cured the problem.

I now usually warn customers about faulty cassettes and the possible costs of removing them from this machine forcibly. T.L.

## Matsui VXAl105

If the problem with one of these machines is an over-bright picture or some other luminance problem, replace IC4001 and IC4002. This will probably cure the fault. T.L.

## Daewoo V21

The complaint with this machine was no E-E sound. I've had few electronic problems with these VCRs, and it took a little time to sort out what goes where - the circuit diagram is spread over several sheets. Playback sound was OK, and a scope check on the output from the IF can showed that the signal was present.

The voltages given in the manual for the BA7790LS audio chip IC201 were all well within limits. There are
several pins to check before
condemning the chip. Pin 17 is the mute line, and pin 11 is for E-E switching: nothing wrong here. There was audio at pin 16 , which doubles for the off-air and AV inputs. A new chip restored perfect sound. P.G.

## Akai VSA650

The customer complained that this machine was dead. But a tape could be loaded and played. The real problem was no display or tuner operation. I suspected a power supply fault and found that the 40 V and -35 V outputs at pins 11 and 10 respectively of connector Pl were almost non-existent.

These supplies have a common source: they are derived from the 20 V supply via a voltage-doubler arrangement. The cure was to replace C24 $(22 \mu \mathrm{~F}), \mathrm{C} 25(1 \mu \mathrm{~F})$ and $\mathrm{C} 26(47 \mu \mathrm{~F})$, using $105^{\circ} \mathrm{C}$ types as the board runs quite hot. P.G.

## Hitachi VTM230

The customer said that this machine jammed when a tape was loaded. On inspection there was nothing obviously amiss, and all the deck timing marks appeared to line up. So I loaded a dummy cassette and watched the deck sequence. The mechanism jammed at the point just after the half-loading arm attempted to take the tape under the pinch roller assembly - just prior to the pinch roller descending.

The cause of the problem was the plastic collar that secures the pinch roller: it had split and, as a result, the pinch roller had slipped down the shaft by about 3 mm . This was enough to foul the half-loading arm. I cured the fault with a plastic collar salvaged from a Panasonic G deck pinch-roller assembly. P.G.

## Perdio D2700

No play was the complaint with this machine, which uses the same mechanism as the Amstrad VCR6000 series. All the other functions worked correctly when a tape was inserted, but when play was selected the machine laced up then, shortly after the pinch roller made contact with the capstan shaft, it shut down.

The cause of the trouble was traced to extremely dry capstan shaft bearings. When the capstan belt was removed and the pulley was rotated the resistance was obvious: the addition of pressure from the pinch roller was enough to seize the assembly temporarily. The cure was to apply a small quantity of sintered bearing oil. P.G.


For many years remote control handsets made by companies other than the manufacturers of the original equipment have been available for use with TV sets, VCRs and similar items. They have always been cheaper than the original units, and availability has been better. The range of these handsets has steadily widened, while prices have dropped.

## Universal Handsets

Over the years the 'universal' type of handset, with its ability to control a wide range of equipment, has evolved: there have been 'learning' devices, which take on board the command codes from an existing handset and reproduce them thereafter; and ROM-based types, which are preprogrammed with a huge number of complete code sets that can be selected for use with any particular piece of equipment.
The learning type is no good at all if the original handset is faulty, has been damaged or lost - which after all is why most people buy a replacement! The ROM-based type could, in some versions, involve a long and laborious button-thrashing session to bring to light the required codes each time there is a piece of equipment that needs to be controlled. Which brings us to these new universal handsets. They are made in Italy by Wallis, cut down the set-up time, and have been designed for easiest possible use. This is why they have been given the name and logo 'Point and Go'.

## Set-up and Test

I tried two handsets, the CM100 for simple control of one TV set (including text), and the CM200 for 'elaborate' control of one TV set and simple control of one VCR. The former retails for about $£ 15$ while the latter sells for some $£ 20$.
We'll start with the TV functions. Both units work the same way for setting up. You look up a brand code on
the instruction card, for example Mitsubishi is code 24, and stroke this in on the keyboard while keeping a red set-up button depressed. In the vast majority of cases the TV set will immediately respond to the new zapper. If not, you hold down another (blue) set-up button while keying in 1 to 9 . Stop as soon as the TV set responds. In rare cases you need go to a third (yellow) set-up button and progress through the numbers as before.
So long as the brand name was listed, I could't find a single TV set that failed to respond to the new handset. The older and more obscure the TV model, the longer its code took to be brought out - my ancient 28 in . Sanyo responded on yellow 9 , the very last code available!
The coverage is very good - my checks involved seven or eight different TV brands, with the age of the sets ranging from quite new to ten years old. It could well be that some codes are missing, but if so I didn't find them.
The difficulty is when you have a TV set whose make isn't listed. Such brands include Ferguson, Tatung, Saisho, Nikkai and others. Here in the UK I would cheerfully have traded them for Elbe, Grandin, First Line, Mivar, Rex, Sei, Sinudyne and Magnadyne that are amongst the list of 28 brand names in each zapper's ROM. I'm told however that the distributors (Wallis) have available, by phone of fax, some codes for unlisted makes and models.
The CM100 has a facility to select and control teletext to a limited degree, and a sufficient data back-up time to allow two minutes for battery changing.

## VCR Control

The larger CM200 has the same ROM code store, selection system and back-up time as the CM100: for the extra fiver you get more comprehensive operation (lots more buttons!) and a VCR control facility.
Finding the required VCR code is a little different
from the TV-matching process. Switch the VCR on and insert a cassette. Then hold the play and record keys down simultaneously while pointing the zapper at the VCR. A whole series of different play commands will be transmitted sequentially at three-second intervals. Let go when the machine enters the play mode. All the other keys will then operate correctly.
Codes for the most popular VCR makes and models are again quickly found. Others can take up to five minutes to find. Interesting that the late-coming codes include those for two Tatung VCRs, a brand not listed amongst the TV ones available.
I couldn't find a VCR that failed to respond to this zapper - provided I was patient in holding down the search keys. As with TV sets, the machines checked ranged from a few months to ten years old. But I can't promise that this device will operate every single VCR you may encounter.

## General Checks

I found that the infra-red output from both these zappers was stronger than that provided by the original handsets. As a result they operate reliably even when they are pointed away from the TV set or VCR.
The $\mathrm{P}+/$ - key of my test CM200 tended to stick down. This was no doubt a one-off teething problem.
When I looked inside the zappers I found that the material and construction were similar to those of a modern TV set's remote control unit.
The instruction sheets, whose clarity is so important for non-technical users, are well written and, with their colour pictures, easy to follow.

## Verdict

So long as the TV brand is featured in the availability list, I consider that these zappers are good performers. They are easy to operate and are good value for money - especially with the discount available to bona fide trade customers.
The large buttons and clear presentation, especially with the CMIOO TV-only model, make the units easy to operate, particularly by those who are elderly or disabled - they are in many cases easier to use than the originals. At their price these zappers are more 'dispensable' than the originals. This is a useful point for rental concerns.
It is a pity that no one has, so far, brought out inexpensive replacement VCR handsets with LCD programming display panels. I've had to scrap many a good ex-rental machine for want of one.


The Point and Go range is available from Wallis UK at Unit A109, Riverside Business Centre, Bendon Valley Road, London SWI 8 4UQ. Phone 0181870 3388, fax 01818709988.

## Neyy firom SoftCopy

A complete index to Television issues dating from November 1987 to October 1997 plus all the fault reports, fault finding articles, test cases and other serv icing information is now available as a complete package on CD-ROM. The disc can be obtained from SoliCopy at $£ 195$, representing a saving of $£ 45$ in comparison with the same information suppliedSP on $3.5^{\prime \prime}$ floppy discs. Those who have all the previous fault report discs can upgrade to CD-ROM for $£ 45$ (please quote the serial number of your Index disc).

For those who prefer their data on floppy discs, there are now two discs (Vol. 1 and 2) with fault finding articles on particular TV chassis, VCRs, etc.; service briefs; test cases; and What a Life! features. They are available at $£ 15$ each ( 3.5 " HD). As with the eleven fault report discs (TV fault linding, VCR Clinic, Monitors etc.) access is via the Television Index disc. For further details see page 293.

SoftCopy Ltd., 1 Vineries Close,
Cheltenham, GL53 0NU, UK.
Telephone 01242241 455.e-mail: sales@softcopy.co.uk
Web site: http://www.softcopy.co.uk

## Make sure you get your copy of Television

It can be difficult finding a copy of Television at local newsagents. The number of magazines being published keeps on increasing, which means that newsagents have less shelf space for the display of particular titles. Specialist magazines in particular get crowded out.
There's a solution to the problem. Most newsagents provide "shop-save" and/or home-delivery services. There's no charge for a shop save. You simply ask your newsagent to order a copy for you: it will be kept on one side each month ready for you to collect. Homedelivered copies are ordered in the same way, but often incur a delivery charge.

A newsagent can order any magazine for you, whether or not the shop normally stocks it.

If you buy your copies of Television from a newsagent and want to make sure you get every issue, just ask at the counter.


DX and

# Satellite Reception 

> Terrestrial DX and satellite TV reception. News from abroad and from the satellite belt. How to search for digital satellite TV signals. Whatever happened to chs El and A1? Roger Bunney reports

The long-awaited Leonids meteor storm on November 17th, feared by certain satellite companies, came and went almost unnoticed! A few reports mention slightly increased Band I activity at the time, and several people went outside to take a look. George Gaskin, at the eastern side of Gibraltar, counted about eight prominent meteor burns per hour average during the time he spent viewing the heavens. There was cloud coverage over most of the UK that night, giving little scope for sightings. In Australia Robert Copeman noted MS activity above the norm, but it occurred eight hours earlier than the predicted times. A whole 24 hours before the predicted peak Ryn Muntjewerff (The Netherlands) logged Band I signals from Scandinavia and Iceland via low-profile Leonid

Solar outrage situation, with the dish focusing on the sun as it passes behind the Clarke belf. The shadow of the LNB assembly is of the dead centre of John Locker's dish.

meteors. Perhaps the year of the storm will prove to be 1999?

Because of increased solar activity, there's been a rise in the Maximum Usable Frequency (MUF) this winter. On 'good' days 50 MHz has been reached - low VHF signals from Africa have been heard in the southern UK, and one report suggests that the Australian ch. A0 $(46 \cdot 25 \mathrm{MHz})$ has been heard. Remember that noon between the transmitter and the receiver is required for optimum MUF, and don't forget the possibility of transequatorial skip (TE) reception from the south in the early evening on chs. E2 and 3. High solar activity can mean flares/storms on the sun, so check out to the north for auroral occurrences.

November DX reception was poor. Peter Schubert (Rainham) received unidentified Sporadic E signals on the 8th, in channels E3 and R2, and again on the 24th in channel E4. There's nothing else worth reporting.

In the 50 MHz amateur radio group newsletter Six News there is mention of UK amateur G3HBR being in two-way communication with N5JHV in New Mexico at $50.097 \mathrm{MHz}, 1737$ GMT on August 16th. The link was via multi-hop SpE propagation. During the day David Batcho (N5JHV) had been logging ch. E2 video carriers at $48 \cdot 250,48 \cdot 242$ and $48 \cdot 260 \mathrm{MHz}$. Then the band opened up. In total David was in contact with about eight UK amateurs, one German (DL7QY) and two Dutch stations. Prior to his European contacts

David had been in communication with mid-US amateurs via singlehop SpE . A remarkable day.

## Satellife Reception

Roy Carman recently moved from Lake, Isle of Wight to mid-Surrey This has given him improved access to the Clarke belt. He continues to use his Echostar SR8700 and LT8700 receivers, now with two 90 cm Gregorian dishes driven by Polish H-to-H motors. This gives him coverage from $68^{\circ} \mathrm{E}$ to $60^{\circ} \mathrm{W}$ - an enviable location. It seems that the results obtained with the Gregorian dishes equal those provided by his previous 1.2 m Channel Master dish. He's using 0.5 dB noise figure Echostar LNBs. The next step will be to go digital, perhaps using a Nokia series 9800 receiver.

Roy uses a veteran SR50 manual receiver for signal hunting and rapid band checking. The Polish H H motors have metal gears that require a little grease annually. Other units on the market have plastic gearing and are not suitable for constant 'DX' use. In early November Roy monitored the severe flooding in Germany via the 11.551 and 12.591 GHz vertical transponders aboard Kopernikus-2 at $28.5^{\circ} \mathrm{E}$. We wish Roy and Angela well in their new home.

John Locker (Wirral) has sent us photos that illustrate the October solar outrage. The one we reproduce shows the LNB shadow at the dead centre of his 1.8 m dish. When a solar outrage occurs, usually in mid-April or mid-October, the sun
passes behind the satellite belt so that a dish will see both satellite and sun. The result is a hot spot focused on the LNB, with possible damage. Once again this year I forgot about it until it happened while I was actually watching the screen. As the signal from PAS-5 at $58^{\circ} \mathrm{W}$ dissolved into the solar noise, the centre of my LNB feed cap melted.

Signal strength improved once Hot Bird 5 and W2 had arrived on station at $13^{\circ} \mathrm{E}$ and $16^{\circ} \mathrm{E}$ respectively, though John noticed BBC World at $13^{\circ} \mathrm{E}$ in difficulties: the transponder's output had apparently gone low, and the channel was moved to another frequency.

A close watcher of news feeds, John comments that Sky News is a little elusive with its feeds. He feels that there are still a couple of 'hidden' ones to be discovered. Check 12.535 GHz horizontal via W2 at $16^{\circ} \mathrm{E}$ for Sky digital feeds. There are more in use - somewhere! The BBC often uses Orion at $37.5^{\circ} \mathrm{W}$ for UK location-studio circuits. The Corporation is also elusive.

Intelsat K at $21.5^{\circ} \mathrm{W}$ continues to provide interesting analogue programmes. Prima-TV, using the 10.978 GHz vertical transponder, gave us Arsenal v. Tottenham at 2200 on October 14th, but with Italian-language sound. Other football intended for Italy was monitored in successive weeks. Italian football has been seen as "Football Italia RAI" at 11.530 GHz horizontal, with playouts from Todd-AO (UK) Ltd.

There was a major corporate event on November 15th, with rehearsals plus programme on the merger of Daimler and Chrysler: "Day One" was at 11.676 GHz vertical, with English sound at $6 \cdot 6 \mathrm{MHz}$ and German at 7.2 MHz . The event included live pictures from Wall Street.

## Digital Operation

Now that my RSD ODM300 receiver, made in Scotland, is at last operational I can comment on initial experiences with digital reception. The receiver had to be returned to the manufacturer because of "picture lock lost" problems: it came back 'adjusted', and is now working correctly with my five-year old Chaparral LNB.

Those thinking of going digital may be interested in the way I operate - I understand that others search for digital signals in a similar manner. My first digital reception from Intelsat K was achieved with advice from John Locker, who
told me to tune to 11.566 GHz vertical or horizontal, tap in an FEC of $3 / 4$ and a bit rate of 5632 . When I did this Reuters Washington came up noise free. When the dish was moved slightly the picture cut out you don't get increasing sparklies with digital, it's a good picture or nothing. All I need to do in fact is to tap in the frequency and 'auto' for the FEC and bit rates - this shows on the in-laid screen and the receiver - and press OK. The receiver then checks the frequency and, if anything is there, the digital 'secrets' will suddenly scroll up with a message such as "found four new video channels, found six new audio channels". These are entered in the memory for future selection and viewing.

With analogue reception I turn a rotary knob to check out the bands quickly and easily: reducing the IF bandwidth or switching in threshold extension lifts a weak signal. Operation has to be more precise with digital signals, and DX hunting (if you can call it that!) has changed. There are lists that show the preferred frequencies used by broadcasters and facility companies. But you still need a search technique to find new digital frequencies.

The output from the Ku -band LNB is connected to an eight-output Global DA, with LNB voltage/polarity control from an external, modified CB power supply. All the receivers have been modified or have DC blocks to prevent a receiver-derived LNB voltage getting into the system. For searching I use the Manhattan LT6300 Plus Mk 2 analogue receiver I reviewed in the December issue. Its fast-scan feature enables it to move rapidly across the LNB's IF band, from one end to the other, stopping at signals that cannot be received as analogue ones - there is just a screen of shash. This is where you find the digital signals: they lurk in the shash. The point is that the Manhattan receiver detects the signal and stops, displaying its frequency. This is then entered into the digital receiver which carries out a search at that frequency. If you are lucky, the signal scale suddenly appears and you have FEC, lock etc. - the digital secrets are revealed!

It may sound odd using an analogue receiver to find digital signals, but it works. I must admit that I am not yet used to digital reception. It will take time. With increasing use of digital transmission how-

ever this is the way we must go.
I received an interesting letter last week from Jim Scofield of Lake, Isle of Wight. He's using a Nokia 9600 -series receiver with a 1 m Lenson-Heath dish and a Grundig LNB and says that he now does very little searching for analogue signals. The digital searching

Reversed PM5544 test pattern-a very basic encryption fechniquo. Received from ArabSat at $30.5^{\circ} \mathrm{E}$ as part of an Asian Broadcasting Union nows feed. The news footage itself is often reversed and upside down!

## Aerial Techniques



11 Kent Road, Parkstone, Poole, Dorset BH12 2BH Tel: 01202738232 Fax: 01202716951 E-mail: atech@dirconcouk (All prices are inclusive of VAT, delivery by courier $£ 10.00$ )

the north, the pictures are quite watchable!!
Arabian Gulf: A digital terrestrial MMDS TV service is due to start in Qatar next month (March), using the $11.4-12.5 \mathrm{GHz}$ band. When the system is up and running there will be at least sixty channels, including pay-movie offerings. Test transmissions have already started, in tandem with the current thirty-channel analogue TV service.
Hungary: The two main high-powered ch. R1 transmitters have now been closed down.

## Satellite News

The BBC's Prime/World services at $13^{\circ} \mathrm{E}$ have been transferred from Eutelsat II Fl to Hot Bird 5,
extending coverage far into Russia and the Middle East. Prime is digital, World analogue. Eutelsat W2 is now in operation at $16^{\circ} \mathrm{E}$, replacing II F3. Eutelsat has taken over the old German TV-SAT 2 craft for temporary use at $12.5^{\circ} \mathrm{W}$ to provide data transmission to Russia, controlled by the German Usingen station. Another Eutelsat pensioner, I F5, is to move to this slot, operating alongside TV-SAT 2. Eutelsat II F1 is to be moved slightly to $12.5^{\circ} \mathrm{E}$, where it will operate at lower power for SNG and general telecom work - check this out for news feeds!

GlobeCast Northern Europe is to use Hot Bird 5 for distribution across Europe. The contract lasts until 2003.

NileSat $101\left(7^{\circ} \mathrm{W}\right)$ is providing excellent digital signals in the UK and Western Europe. The success has led to confirmation that NileSat 102 will be in operation by the end of the year at the same location. Palestine TV and the Lebanese Future TV are new arrivals here. We hope to see Jordan TV and perhaps Kol Yisrael before long.

Keep a watch on the Russian hot spot at $36^{\circ} \mathrm{E}$, where the recently launched (November 19th) Bonum1 satellite will be able to provide some fifty digital TV channels for Russia/Siberia and East/Central Europe. If the Russian financial crisis worsens however there could be delays to the start of services.

The EU's anti-piracy directive continues to move through the legal process (see Teletopics, December). This will knock the use of MACD2 decoders, since pirate smart cards will be illegal. Viewing of porn channels such as Bizarre, Eros etc., which have been banned in the UK, could come to an end.

## Channels E1 and A1

A few months ago the Benelux DX Club brought up the subject of what happened to the European TV channel El: we are all familiar with the 48.25 MHz vision carrier channel E2, but there's no ch. E1. There's no American channel Al either. There was, in the early days. From 1938-40 it was $44-50 \mathrm{MHz}$. Then, between 1940-46, it was moved to $50-56 \mathrm{MHz}$ to accommodate FM radio proposals. It went back to $44-50 \mathrm{MHz}$ during 1946-48, when US broadcasting was in a state of transition. In 1948 there was a further reallocation of frequencies, and as a result TV ch. A1 was finally dropped.

The early European CCIR TV Band I assignment had four channels, with channel El at 4047 MHz . It was used by at least two transmitters, one at a Philips factory in Eindhoven (from the late 40s to early 50 s ), the other a West German transmitter in the Bremen region. It's uncertain why ch. El was dropped: the UK and France used similar frequencies, for channels B1 and F2 respectively, until the mid-Eighties.

## More Interference?

The AMP company of Great Britain Ltd. has introduced a wireless LAN (Local Area Network) system for office and industrial use. A local area network usually consists of a computer/data/phone system within a large building, connected by conventional wiring coaxial or balanced pairs. By using RF distribution ( $2 \cdot 4-2 \cdot 4835 \mathrm{GHz}$ ) instead, flexibility is greatly increased. Typical output powers for the transmitter units are quoted as 100 mW , with ranges of 130 m indoors and 300 m outdoors.

There are proposals for the transmission of digital data via power lines, with minimal domestic EMC protection: the result would be a radiating home wiring system. A variation on his theme is to use domestic phone wiring to transmit HF data around the house: the unscreened wire pairs again form a radiating aerial, for both the fundamental frequency and harmonics. With a digital signal, harmonic generation is likely to be high. These systems would use low HF, typically between 210 MHz . The harmonics are likely to cause problems within the house however - for example with the largely unscreened IF strip in many modern TV sets.

# Amstrad 

Service Centre

## Audio Television Video Telecommunication

Amstrad Answercall FIDELITY !!! Bptacom Sinclair INTË̆GRA

The 'Amstrad Service Centre' is the exclusive customers returns centre for all standard customer returns within the Amstrad plc group, brands being, Amstrad, Answercall, FIDELTY, !II BRtagim, SINCLAIR' and INTEGRA. We are offering for sale genuine 'virgin Standard Customer Returns direct at market competitive prices, no third party means lower cost prices.

Currently we have approximately 90 models throughout the consumer electronics range consisting of CD Clock Radios, Portable Stereos, Portable CD Stereos. Personal CD Players, Micro Systems, CD Micro Systems, Mini Hi-Fi, Midi Hi-Fi, 14" TV, 20" TV, $28^{\prime \prime}$ TV, 33 " TV, TV - VCR Combinations, Non Videoplus VCR, Videoplus VCR, Nicam 4 head VCR and of course new innovative products continually being released for the UK market.

If you would like to receive a product catalogue and up to date stock and price lists, fax your full company details through to the facsimile number listed below and these will be sent immediately.
Export enquiries welcome.
Please mark all references from this advertisement for the attention of Mr T James, Operations Manager.
Universal Consumer Products Ltd c/o The Amstrad Service Centre,
Universal House, Tern Valley Business Park,
Market Drayton, Shropshire, England, TF9 3SQ.
Switchboard 01630655797
Facsimile 01630655683

| ELC EAST LONDON COMPONENTS <br> AUDIO TELEVISION VIDEO <br> COMPONENTS AT VERY KEEN PRICES <br> TEL: 0181-472 4871 FAX: 0181-503 5926 | LINE OUTPUT TRANSFORMERS OVER 100 MODELS AT LOW PRICES |  |  | VIDEO HEADS FROM $£ 6.99$ OVER 200 MODELS |  |  | NIKKAI BABY 10 REGULATORS $£ 11.00$ |  |  | $\begin{gathered} \text { DEGUSSING ROD } \\ £ 29.99 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | NE1 1451 K | 16.99 | AN5512 | $\begin{aligned} & 1.99 \\ & 1.99 \\ & 1.99 \end{aligned}$ | $\begin{aligned} & \text { TDA } 5530 \\ & \text { TDA15140 } \end{aligned}$ | ${ }_{6}^{6.99}$ | $\begin{aligned} & \text { TA7270 } \\ & \text { TAR271 } \\ & \text { TAF279 } \\ & \text { TAF2891 } \end{aligned}$ | $\begin{aligned} & 2.50 \\ & \text { 2.50 } \\ & \hline .90 \end{aligned}$ | VHS ALIGNMENT TAPE BAND TRACKING, TAPE |
| 4 WAY UNIVERSAL. REMOTE |  |  | 10.999 | AN5521 | $\begin{array}{r} 1.99 \\ 12.99 \end{array}$ | TDA15570 TDA 1558 C | 3.98 | $\underset{\substack{\text { TA } \\ \text { TA72881 }}}{ }$ | $\begin{array}{r} 3.98 \\ 2.75 \end{array}$ |  |
|  | CT2992E <br> AKURA <br> C $\times 10$ 16.98 <br>  16.99 | ${ }^{\text {NTT4 }}$ |  | BA3910 BA3938 BA320 |  | TDA2005 | 3.99 |  | 3.00 <br> 4.28 <br> .20 | TRANSPORT, FM PICTU CURVE, AUDIO SYNC HEAD |
|  | CX10 BEKO BEKO | ${ }_{\text {NT2O }}{ }_{\text {PANASONIC }}{ }^{16.6}$ |  | ${ }_{\text {BAF502 }}^{\text {BA392 }}$ | 4.99 4.98 | TDA20040 | 1.70 1.70 1.70 | ${ }_{\text {- }}$ | ${ }_{3} 9.98$ |  |
| Unique illuminatedkey (TV, VCR, SAT, |  | ${ }_{\text {TLF14 }}$ TF14567 | 20.00 | ${ }_{\text {BA54410 }}$ | ${ }_{3.50}$ | ${ }_{\text {TDAR2052 }}$ | 3.60 2.99 |  | 3.50 3.80 | AZIMUTH TRACKING |
|  | ${ }_{\text {ckill }}^{\text {BUSH }}$ | TFF14585 | 20.00 | ${ }_{\text {BA6 } 109}$ | ${ }^{1.80}$ | TDA2579A | 2.80 | ${ }^{\text {TAPB21 }}$ | - 4.25 | PLAYBACK SWITCHING |
| key (TV, VCR, SAT, | ${ }_{\text {DECCA }}^{\text {3114T }}$ | TFF145568 | 20.00 22.00 |  | 3.98 3.80 | TDEAE535A | 年3.28 | ${ }_{\text {TAB218 }}$ | ${ }_{7} \mathbf{7 , 5 0}$ | POINT |
| CD/HI-FI) indicators | Decca | TLF145992 | 22.00 | ${ }^{\text {BAE }}$ | 1,99 | M ${ }_{\text {M }}$ | 3.50 | - | 3.89 5.99 | 39.99 |
|  | 0T9476 16.99 | TFF15506 |  | ${ }_{\text {BAGA229 }}^{\text {BAF }}$ | - |  | 3.99 <br> 3.99 <br> 3.98 | ${ }_{\text {TAB227P }}$ | ${ }^{3.99}$ |  |
| Macrofunction key |  | (th1534 |  |  | ${ }^{2.99}$ | MC13306T3 3. |  |  |  |  |
|  |  |  | 16.99 <br> 16.98 <br> 1809 |  | 2.50 <br> 3.50 <br> 1 | PALOO3A <br> PAL3029B <br> 20.00 <br> 14.99 |  | TAR659, |  |  |
| 24 bit processor $\quad \begin{array}{lllll}1 & 2 & 3 & 4\end{array}$ | $\begin{array}{ll}\text { TXX55/86 } \\ \text { TX90 } \\ & 18.9 \\ 16.9\end{array}$ | CTXE/S |  | CNX62 | ${ }_{1.99}$ | STK463 | $\begin{aligned} & 14.99 \\ & 10.00 \end{aligned}$ | ${ }_{\text {TJA }}{ }_{\text {TJA356iA }}$ | ${ }^{3.25}$ | GENERATOR |
|  |  |  | 22.00 16.99 |  | 1.99 1.99 | STK465 STK3082 | 1.100 <br> 8.50 | TTA ${ }^{\text {S3562 }}$ | 3.50 <br> 3.99 <br>  | Colour bar, Cross hatch, |
|  | $\begin{array}{ll}\text { 51P7 } \\ 59 \mathrm{~K} 7 & 16.9 \\ 16.9\end{array}$ | ${ }_{\text {CPI10 }}$ | (18.90 | CNY75 CNYG5 | 1.99 4.99 | STK4121"11 |  | T0A3565 | ${ }^{2.99}$ | Staircase. |
|  | 66M A51F A5F | ${ }_{\text {CTIT4P }}^{\text {Salsho }}$ | 16.9 | CNYG6 HA 1423 | ${ }_{2.28}^{4.99}$ | STK413111 STK4132 | ${ }^{8.50}$ | $\xrightarrow{\text { TDAA3640 }}$ | 3.1.70 1.99 | COMPACT PORTABLE £84.99 only |
| designed keypad | ${ }_{\text {finctux }}$ |  |  | HA130 |  | STK4141 | 8.50 | ${ }_{\text {TOA }}$ TDA | 1.99 1.99 |  |
|  | ${ }_{\text {GOLOSTAR }}$ |  |  | ${ }_{\text {HA }}$ |  | STK414 | ${ }^{8.00}$ | TDA4500 | 3.98 | Capacitance Meters Capacitance Meter PG015 |
| Replaces up to 4 remote controls | $\begin{array}{ll}\text { CBTT162R } \\ \text { CTT9508 } & \mathbf{1 6 . 9 9} \\ \text { 16.99 }\end{array}$ |  |  |  | ${ }_{4}^{2.99}$ | STK |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| Child security feature |  | C8PP2146 CTP6265 | 22.0022.00 | HA13130 HA13150 | $\begin{aligned} & 16.99 \\ & \text { 14.99 } \end{aligned}$ | STK417111 | 8.50 <br> 9.00 <br> 8.0 | TDA4600 | 1.99 |  |
|  |  | SHARP C1411S |  |  |  |  |  | TTOA4950 | ${ }^{2.99}$ | 00 |
| Fastext/teletext |  |  | $\begin{gathered} 31.00 \\ 16.99 \end{gathered}$ |  |  |  | STK4192\||10.00 |  |  |  |
|  | CUCC2401CUCPAOO21.5HINARI | DV5401sSV28875SoNY |  | LA4280 LA4282 | 5.98 | STK5434 STK5481 | 7.00 6.00 |  | ${ }^{\text {DTA A }} 13138$ | 3.99 |  |
|  |  |  |  | LAA440 LA445 | 2.25 $\mathbf{2 . 6 0}$ 2, | STK5481 | 5.50 <br> 50 | TOA8139 |  |  |
| £12.99 | 14  <br> 190 R 19.9 <br> 16.9  | KV2052UB | 16.99 | LA4445 | 2.98 <br> $\mathbf{2 . 9 8}$ <br> 1.80 | STK7226 | ${ }_{\substack{8.00 \\ 8.50}}^{\text {cis }}$ | TDAB871 | 7.99 <br> 3.50 |  |
|  | ${ }_{\text {TVATACH }} \mathbf{1 6 . 9 8}$ | KV21 $2 \times$ KV211x | 18.9 | LA4460 LA4461 | 1.60 1.60 | STK7308 | 4.80 | T0ab1 | 2.98 |  |
|  | C2114T 24.98 | 12252 |  | La44 | 2.99 | STK7348 | ${ }_{12.99}^{4.50}$ | ${ }_{T}^{\text {TDAA17 }}$ | 3.50 |  |
|  | C2118T C21P226 24.9 24.9 |  | 16.99 | ${ }_{\text {LA4466 }}^{\text {LA475 }}$ | 2.99 $\mathbf{2 . 9 9}$ | STKT34 | ${ }^{\text {8.99 }}$ | toabi | 7. 29 | viding mea |
| ROLS FROM 55.99 |  | KV27] | 16.9 | ${ }_{\text {LA4476 }}$ | 2.98 | STR42 | ${ }^{5.989}$ | ${ }_{\text {TDA }}^{\text {TDAB3 }}$ | 10.00 <br> 3.09 | very wide ra |
|  | [2036 16.9 | KVA21210 | 16.99 | La4485 | 2.90 3.98 | ST76020 | 4.50 | ${ }_{\text {TDAB33 }}$ | ${ }_{2.60}$ |  |
| ELC EAST LONDON COMPONENTS |  | KVVX211 KVM21 KV2 | 16.99 16.99 1809 | LA4495 |  | STR10006 | ${ }_{6}^{6.00}$ | TEA10, | 1.1.99 1.99 |  |
| 63 PLASHET GROVE, EAST HAM, |  | KVx2121U $\mathrm{kVX2542U}$ | 18.99 16.99 | LA4508 | 2.60 2.98 | STR5002 | ${ }_{6}^{6.50}$ | TEA2O | 1.99 |  |
| LONDON E6 1AD. TEL: 0181-472 4871 | COMP BOR 16 | kV×29324 | 16.99 | LA470 | 3.99 | STR50 STR54 | 4.95 | TEA20 | 1.909 | nt |
| two minutes walk from Upton Park Tube Station | $\begin{array}{lll}\text { C13425 } & \mathbf{1 6 . 9 9} \\ \text { O1G13110 } \\ \text { 16.09 }\end{array}$ | kVx294 | 16.98 | LaA7800 | 10.00 <br> 1.80 | STR58 | 5.50 | TEA2 | 2.98 |  |
| visit our Shop |  | ${ }^{140 R 4 W}$ | 25.00 | LA7780 | 1.95 | STRS504 STRM65 | ${ }^{6.50}$ | TEA | ${ }^{3.99}$ |  |
| N | TX3537 16.99 | 1400018 C 1433 EWW | ${ }^{16.98}$ | LAP | 1.99 | STRO1 | 7.99 | teazz | 2.99 |  |
| OO'S OF TOOLS, COMPONENTS | ${ }_{\text {che }}^{\text {C21E1E }}$ | 145 | ${ }_{16.90}^{25.00}$ | La7 | 1.98 | STRD18 | ${ }_{5}^{8.98}$ | ${ }_{\text {TLP621 }}$ | 2.89 |  |
| Instruments, REPAIR Kits. | ${ }_{\text {ARI }}{ }^{\text {ASSIC }} 16.9$ | ${ }^{1755998}$ | 16.98 | $\mathrm{L}_{\text {LA7 }}$ | 2.99 | ST | ${ }^{6.00}$ | UC3842 | 1.999 | I/ |
| OOKS \& CABLES TO CHOOSE FROM | CLASSIC M 16.08 <br> PROFIS 2816.98 |  | ${ }^{20.00} 16$ | LA7838 | 6.99 | STRO | 7.99 | UPC1288 | 3.8 |  |
| ADD E1.50 P/P + 17.5\% VAT | Matsul | ${ }^{221748}$ | ${ }^{36.00}$ | ${ }_{\text {M }}$ | ${ }^{2.95}$ | STRD |  | UPC1298V | ${ }_{7} \mathbf{3 . 9 9}$ |  |
| L goods despatched Same day | ${ }_{\text {209RT }}^{1440 \wedge}$ | ${ }^{2812088}{ }^{2812087}$ | 30.00 30.00 | ${ }^{\text {T A AB701A }}$ | ${ }_{2} \mathbf{2 . 9 9}$ |  | 7.90 | C3 | 5.98 |  |
| Alces subuect to change without | MTTSUB1/SH16 | AT2079/15 AT2079 | $\begin{aligned} & 16.99 \\ & 16.99 \end{aligned}$ | (tab718 | 5.99 2.80 | ${ }_{\text {T }}^{\text {TAB2 }}$ | 3.80 $\mathbf{2 . 6 0}$ | ${ }_{\text {UPCCI }}^{\text {U }}$ | 2.25 1.20 |  |
| , | CT2145EPM16.99 CT2146LM 16.99 | AT2079/40 | 16.99 16.99 | TDA15520 | 6.99 | ${ }_{\text {ta }}$ (A8210 | 3.50 | UPC1488 | 2.80 |  |
| MN | TDA81 REPLACEMEN | $7.98$ | $\begin{aligned} & \text { REM } \\ & \text { SATE } \end{aligned}$ | TESTER FINDEF | $\begin{array}{ll} \mathrm{R} \times 17 \end{array}$ | $\begin{aligned} & \text { TT TESTI } \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{R}_{2} \mathrm{~A} \end{aligned}$ | $\begin{aligned} & \text { REQUE } \\ & \text { CDETE } \end{aligned}$ | $\begin{aligned} & \mathrm{YC} \\ & \mathrm{R} \end{aligned}$ | SIGR DIGITAL MULTIMETIMETER FROM $\mathbf{~} £ 9.99$ |



## iv

 Fault FindingReports from
Philip Blundell, AMIIEelec
Brian Storm
Kevin J. Green, TMIIE
Eugene Trundle
Paul Hardy
Russ Phillips
Graham Colebourn
Alan J. Roberts
Keith Evans
Colin J. Guy and
Pete Gurney, ICCI

## Philips 32PW9631/05

## (5GFL2.30EAA chassis)

This widescreen set's line output transformer had failed. When a replacement was fitted the set still wouldn't start up. The front LED went to green for approximately eight seconds, after which there was a flashing red LED display. The error code picked up by the Dealer Service tool suggested a geometry stage fault.

One of the checks that the DDP module carries out is to monitor the amplitude of the line flyback pulses. If they are low during the startup phase, the module signals a fault condition, pulsing the protection line to shut the set down. I found that the line flyback pulses and the EHT did measure low during the few seconds before the set shut down.

The 'line switch' FET in the 141 V supply normally allows the HT to rise gradually. In this case however the supply reached only 45 V before the set returned to standby. Resistance checks in the line-switch stage showed that zener diode D6480 (BZX79C10V) was leaky.

After an excess-current problem in the line output stage, it's a good move to check the line-switch FET
and surrounding components in case they have been damaged. P.B.

## Sharp 59CSO3H

If there is no line drive, check $\mathrm{C} 714(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ by replacement. P.B.

## Philips 285L5770/05B (FLI. 0 chassis)

If there is no off-air sound, external sound being OK, check whether there are sound and Nicam IF outputs from the tuner/IF module. If both are missing, replace the TDA 3856 IC in the module. P.B.

## Panasonic TX21AD2 (Euro 2 chassis)

As reception was very poor I suspected the tuner. It was blameless of course! So attention was turned to the IF processor chip IC102, where the voltage at pin 13 was found to be unnaturally low. The culprit turned out to be Clll $(0.068 \mu \mathrm{~F})$ which was leaky. There was a good, clean picture once a replacement had been fitted. B.S.

## Panasonic TX25MD1/B (Euro 2 chassis)

The top half of the picture was completely blacked out. In a halfhearted attempt to be logical I replaced the digital video processor chip, but the fault was still present. In this chassis the digital processing ICs are 'loaded' at switch on by the EEPROM chip IC1202 and the EAROM chip IC1203.

Replace-ment of IC1203 cured the original fault, but there was a new problem: the line sync was very unstable. This fault was eventually cured by replacing IC1202. It seems that the software has been improved during production, as later EAROMs are not entirely compatible in this respect with earlier EEPROMs.

It is very important, especially with these earlier Euro 2 sets, to note the model number suffix, e.g. TX25MD1/M or TX25MD1/B. The suffix indicates a CRT variation and therefore a software difference. This is embedded in the memory chips mentioned above (or IC1871 and IC1941 in some sets). The various software versions for the different CRTs are not interchangeable, despite the similarity of some of the part numbers. Service manuals are available for all the variants. B.S.

## Philips CP90 Chassis

This set had very bad line linearity at the centre of the screen. The cause was the two diodes in the EW modulator circuit - D6609 and D6610. We had to check them by substitution as the originals didn't read faulty when checked with a meter. K.J.G.

## Panasonic TX25AD2 (Euro 2 chassis)

This set had a very intermittent fault - to make matters worse the job was a chargeable one. The symptom was field jump/jitter at the bottom of the screen, with some black lines, because of disturbance to the field scan. Its cause was eventually traced to D507/D508 and R507. The diodes seemed to be OK when checked with a digital meter. K.J.G.

## Hitachi C28WD2TN

This widescreen model produced, very intermittently, dotted vertical contours of picture features, widely removed from the features themselves - in fact they were delayed by more than half a line period. At it's worst, the set radiated interference that was picked up by other sets in the workshop: these would then display the same eerie dotted lines!

The cause of the trouble was a dry-joint at C875 ( $22 \mu \mathrm{~F}, 250 \mathrm{~V}$ ) on the tube base panel: it decouples the velocity-modulation drive circuit. E.T:

## Salora M Chassis

The customer's complaint was that this set, an Hitachi-badged 28in. model, would produce whistles and picture disturbances when it had been on for some time. After attending to lots of dry-joints, I left it on soak test. Five or so hours later the fault complained about occurred: the power supply squealed violently, and there was severe picture cogging.

The hybrid chip in the power supply can cause this, but I didn't have an LF0070 in stock and the customer wanted a quick repair. When I examined the chip with a magnifying glass I discovered a number of poor joints. Resoldering them cured the problem. I wonder how many of these chips might have worked normally after similar treatment instead of being consigned to the bin? P.H.

## Matsui 2190

This set was dead: the mains fuse was open-circuit because the degaussing posistor TH80 had failed. The type used in the Ferguson ICC5 chassis is supposed to be the same, but after fitting one of these there were still slight purity errors that were most noticeable with teletext. They could be cleared by using a degaussing wand, but reappeared when the set was switched on. In the end I cured the problem by fitting a type 96009 posistor.

When the back was replaced the sound disappeared - the customer hadn't reported that. The cause was traced to bad joints on the small IF panel and where this panel is soldered to the main board. P.H.

## Beko 15225NX

This set had stopped working and produced a burning smell. I'd no circuit diagram, but the cause of the trouble was obvious: L507 had become dry-jointed and had damaged the board. After filing away the carbonised area I supported the coil on strong wire. The set then worked normally. P.H.

## Casio TV1400

This hand-held TV set had an intermittent power connection. I had great difficulty trying to get the case open. Once this had been
accomplished, broken print could be seen at the connector. A print repair with wire was possible. P.H.

## Ferguson C51F (ICC6 <br> chassis)

This set would intermittently scroll through the channels. It's supposed to do this if the channel up or down button is pressed and no signal is received on a programme number. The programme numbers are automatically sequenced until a station is found, at which point the process should stop. With this set channel changing continued even though signals were being received. The problem was cured by replacing the keyboard foil. P.H.

## Orion C14LTXG

There was a raster but no snow. It didn't take long to find that there was no tuner supply because R425 ( $21 \Omega, 0.5 \mathrm{~W}$ safety) was open-circuit. P.H.

## Sony BE1 Chassis

Field collapse is a common problem with these sets. With luck, all that will be required is to resolder the connections to the $\mu \mathrm{PC} 1488 \mathrm{H}$ field output chip IC501. If the chip has to be replaced, the following may have failed: the 0.6 A protector PS501, which is in series with output pin 3, and safety resistor R801 ( $0.47 \Omega$, 0.25 W ) in the 24 V supply. P.H.

## Hitachi C2558TN (G8Q chassis)

The channel number was displayed but there was no EHT and the 12 V supply was low at about 5 V . The 12 V supply's reservoir capacitor C933 ( $2,200 \mu \mathrm{~F}, 25 \mathrm{~V}$ ) was leaky. R.P.

## Ferguson C14C

After short time the field scan reduced to a few inches then collapsed completely. In the fault condition the 9 V supply to IL01 (TDA8214B), which combines the line and field generator circuits and the field output stage, was low at 5 V . The cause of the fault was DL08 (1N4148) which was opencircuit. R.P.

## B\&O MX3500

This set produced crackling sound, very similar to Nicam dropout, that stopped after about 20-30 minutes. A long, hard look with a magnifying glass and a strong bench light revealed dry-joints at the audio output chips IC3 and IC4. They are on PCB10, the bottom board. R.P.

## Ferguson C14C

The complaint was low volume. I found that the maximum volume had been turned down in the lockout menu. To gain access to this menu, switch the set on at the mains while holding down the remote-control unit's standby button for at least four seconds. Then press the violet personal adjustments button to select volume. The maximum output can then be adjusted by using the $+/-$ buttons. R.P.

## Sony AE1 Chassis

As this set warmed up it developed line sync jitter and the picture would sometimes roll. Obvious, I thought, dry-joints at the vision detector coils. Not so, but I resoldered them anyway. There were dry-joints at the 12 V regulator IC608 (Q608 on the PCB), but resoldering them didn't cure the fault either.

A 1.8 V peak-to-peak video signal should be present at pin 27 of IC501 to drive the sync separator. The amplitude of this signal was found to be low at only 0.3 V p-p. Q598, the video amplifier, was the cause of the trouble. It's on the main board (D) under the tuner. G.C.

## B\&O 7430 (7702)

The complaint with this set was "intermittent loss of the picture". After a week on test with no picture loss we sent it home. The travelling was obviously food for the set, as it didn't return for five weeks. It came back with a more detailed description of the fault: "The picture blanks out for about a minute, then recovers for three-four minutes, then blanks again. When the picture returns it's red at first. Thumping makes no difference."

This time the set obliged us with repeated failure - even with the back removed! The detailed fault description saved us hours of work. As thumping made no difference, we didn't concentrate on a search for dry-joints, while the initially red picture meant that the automatic black-level balance had to be reestablished after the fault.

When the fault was present the CRT's cathode voltages rose to the HT level and the heaters remained alight. So we decided to check the blanking circuitry. The field blanking drive at the collector of TR15 on the chroma panel (diagram B if you have the manual) fell from its normal 2.7 V to only 0.5 V in the fault condition. In fact the local 11.5 V
supply was missing because the BC338 sub-regulator transistor TR2 at the left-hand side of the panel was faulty - it was going open-circuit base-to-emitter intermittently. A replacement restored normal operation and the owner's sanity. G.C.

## Ferguson TX99 Chassis

If there's no teletext after removal of the main PCB for a repair, you have probably lost the 9 V supply to the text panel. It's derived from the line output stage. Check whether the connector has been pulled off the single-pin plug PL22, which is just to the left of the LOPT. G.C.

## Philips G110 Chassis

If one of these sets is dead and there are no blown fuses or major shortcircuits, check the resistance across the BU508AF line output transistor Tr7545. Should the reading be low, say less than $1 \mathrm{k} \Omega$, isolate and check the transistor, the line output transformer (which can fail), the 390 nF scan-correction capacitor C2550, and the line output stage tuning capacitor C2545 (1.2nF, 2 kV ceramic disc). The latter can split open and go low-resistance. G.C.

## Sony KV1612UB Mk I (SCC251 chassis)

Although these 16 in . sets are quite old some of them can still produce an excellent picture, especially when the colour decoder is set up well. A seemingly dead set was found to have 330 V across the mains bridge rectifier's reservoir capacitor but no 110 V HT supply. The 2SC1942 series chopper transistor Q605 was short-circuit between all its pins - a BU208A is a suitable replacement. R637 $(0.33 \Omega, 1 \mathrm{~W})$, which is in series with Q605, was open-circuit and R640 ( $10 \mathrm{k} \Omega$ ) had burnt out.

Once these items had been replaced the power supply came back to life. I also checked the two HT reservoir capacitors C616 and C621, and R604 (8-2MS). G.C.

## Tatung A Chassis

Although the standby light went out, this set didn't come on as there was no 12 V supply at pin 10 of the TDA2579A timebase generator chip IC401. The LM317T 12V regulator was dry-jointed. Once this had been attended to the set worked but wouldn't switch off. The mains switch contacts had welded themselves closed. G.C.

## Philips GRI-AX Chassis

This set was dead except for a low,
growling noise that came from the speaker at switch-on. The 95V HT supply was OK, but there was no 9 V start-up supply to the line driver stage. The $6.8 \mu \mathrm{~F}$ capacitor C 2523 that smooths the supply to this stage is a common cause of the fault, so I fitted a replacement - the value has been upgraded to $68 \mu \mathrm{~F}$.

The set then worked - until I refitted the PCB, when the original fault was back. The 9 V supply was again missing, but about 4.5 V was present at the 125 mAT fuse. Choke L5524 $(1.5 \mu \mathrm{H})$, which is in series with the supply, was open-circuit. As I didn't have a $1.5 \mu \mathrm{H}$ choke I fitted a $2 \cdot 2 \mu \mathrm{H}$ one instead. Normal service was then resumed, and a long soak test proved that the set was now OK. A.J.R.

## Matsui 2011

This set had failed when under guarantee, and had failed again when about eighteen months old. The dealer didn't want to know about it, and some months later I was asked to have a look. The previous repairer had obviously changed the line output transistor using a blowtorch or something similar! The print had lifted from the board, and the efficiency diode was badly fitted and dry-jointed its leadouts were black, with large blobs of solder around them. It was not surprising that the line output transistor was short-circuit again. A classic case of cowboy activity.

I removed the diode, which was OK, cleaned and tinned its leadouts, and refitted it. A new BUT 12AF transistor was installed and the print tidied up to complete the repair. A.J.R.

## Sharp DV5101 (Euro DS1 chassis)

All this set produced was a faint whistling noise from its power supply. I found that the line output transformer had shorted turns. Once a replacement had been fitted I was rewarded with a blue screen, though there was a very good picture when video was fed in at the scart connector. Obviously the front end wasn't working.

When voltage checks were carried out around the tuner and the IF chip IC250 I found that the supply to the latter was missing. It's applied to pin 7, where the decoupling capacitor $\mathrm{C} 257(330 \mu \mathrm{~F}, 16 \mathrm{~V})$ was short-circuit. The supply comes via a $2 \cdot 1 \mathrm{~V}$ zener diode (D250) which was open-circuit. Replacements restored normal operation. A.J.R.

## Philips GR2.4 Chassis

This set came from a dealer who had been unable to restore full field scanning. When the set was switched on there was a thin line across the screen with about two inches of noisy scan beneath it. The dealer had replaced all the transistors and diodes in the field output stage, but scope checks showed that only the 'bottom' transistor of the output pair was working.

Voltage checks showed that there was about 20 V at the emitter of Tr 7502 and 10 V at the emitter of Tr7503. This meant a 10 V drop across R3503 (4.7 $)$, which was open-circuit. A replacement restored normal scanning. A.J.R.

## ITT 3896 (Digi-3 chassis)

I'd never seen one of these sets before. This one was brought in by a couple of people. They said that the picture took about ten minutes to settle down, after which it was OK.

From a glance at the picture it was obvious that there was some sort of IF instability - possibly AGC overload. So I decided to take a look inside the tuner/IF module. There were half a dozen or so electrolytics inside, some of which looked the worse for wear. A couple of $1 \mu \mathrm{~F}$ electrolytics produced low readings, but I decided the best thing was to replace the lot. After that the set worked perfectly. A.J.R.

## Sony AE1 Chassis

"Takes a long time to come on and the picture sometimes goes negative" the customer said. A check on the power supply showed that its outputs were all low - the HT was at 120 V instead of 135 V , while the 12 V and 7 V lines were at about 3 V . Toggling the set in and out of standby made little difference. After ten minutes in the on condition there was a sudden burst of activity and the sound and picture appeared. I then noticed that the colour saturation was not even from the top to the bottom of the screen - the top third of the picture was displayed with a washed out appearance on certain scenes and colours. Could this be connected in any way with the temperamental power supply?

Further investigation in the power supply brought to light the fact that when the set was returned to standby the 14 V output started to fall very slowly, and after a time the set wouldn't respond to an on command. The reservoir capacitor for this supply is $\mathrm{C} 615(1,000 \mu \mathrm{~F}$,

25 V ). A replacement restored normal power supply operation.

The cause of the negative picture was a fairly common one with these sets, dry-joints at T1 and T2 in the IF section. K.E.

## Sanyo CBP2180

The problem with this ageing set was intermittent picture break up coupled with occasional field distortion. Careful tapping around the PCB and on various components revealed dry-joints at the 12 V regulators IC551 and IC552. K.E.

## B\&O $\mathbf{L 2 5 0 0}$

When this set was called out of standby the front panel LED would extinguish and the power supply would shut down. After checking the line output transistor and transformer and finding them to be OK I turned to the line driver stage, where transistor 4TR 15 (BC32825) was found to be open-circuit base-to-collector. K.E.

## Bush $2020 T$ (Indiana 100 chassis)

There was no teletext but when mix was selected page 100 would appear, line by line, over a period of several minutes. This text display wasn't synchronised with the picture - it was floating. The cause of this strange symptom was the VAD1250 chip on the text panel. C.J.G.

## Goodmans 149TT (Onwa chassis)

The problem was field collapse. Its cause turned out to be R375 ( $180 \mathrm{k} \Omega$ ) which was open-circuit. It's connected to pin 33 of the AN5601 chip IC301. C.J.G.

## Hitachi G7PS Chassis

The HT was low at 40 V and the series chopper transistor Q903 was getting hot. This was because it wasn't oscillating: it was biased on by the start-up resistors and was acting as a series voltage dropper. The cause of the trouble was D905, which provides the supply for the error amplifier and chopper driver transistors. In was short-circuit. C.J.G.

## Matsui 1436

There was no colour, with a streaking effect on the left-hand side of the screen. The symptoms were reminiscent of a certain ident fault you used to get with the Thorn 3000 chassis. The cause turned out to be C318 $(2 \cdot 2 \mu \mathrm{~F})$, which is connected to pin 12 of the TA7698
colour decoder/timebase generator chip IC301. C.J.G.

## Ferguson B14R (Thomson TX80 chassis)

There was a buzzing noise and a weak, narrow raster, with a hum bar and the word "lock" just visible. The cause was DP15, which is one of three 1 N 4001 diodes connected in series with the base of the chopper/line output transistor TP10. It was open-circuit.

A replacement diode brought back the full raster, after which the child lock was released by switching to standby then back again, using the remote control unit.

## C.J.G.

## Hitachi C2558

This set suffered from repeated failure of the TDA3654 field output chip - at about monthly intervals. Eventually I discovered an almost indiscernible dry-joint at one of the tags on the scan coils. Dealing with this seems to have cured the trouble - the set hasn't been back for some months.

Incidentally, when this type of chip is replaced in any set it's a good idea to replace the flyback boost capacitor which is connected to pin 6 . The value is usually 47 or $100 \mu \mathrm{~F}$. C.J.G.

## Ferguson ICC9 Chassis

This set's line output transistor was short-circuit. A replacement became very hot very quickly and threatened to go the same way. Normal operation was restored once TL61 (2SC2655) in the line driver circuit had been replaced, though the original measured OK when checked with a tester. C.J.G.

## Tatung B Chassis

The Phantom had been at this set, which was dead with no power supply activity. After removing all the crud from the PCB and resoldering everything in the power supply I could see where I was going. The start-up voltage at pin 7 of the chopper control chip IC801 was low at 7 V , though the feed resistors were OK. A replacement chip made no difference. The cause of the trouble was found to be D807, which takes over the supply to the chip when the circuit is fully operational. It's a 1 N 4148 , but had turned itself into a quite effective 7 V zener diode! C.J.G.

## Bush 2857

This set came in because it was dead. Although there were virtually
no outputs from the power supply, there seemed to be plenty of activity on its primary side. A scope check confirmed that it was tripping silently.

I disconnected CN904 to isolate the power supply from the rest of the set, and connected a dummy load across its HT output. When the set was turned on again the power supply still refused to run. There were not a lot of components left to check. When C914 ( 4.7 nF , 500 V ), which is connected in parallel with the HT rectifier, was checked it was found to have a resistance of $300 \Omega$. I fitted a replacement with a more substantial 2 kV rating. P.G.

## Philips CP90 Chassis

The complaint with a 14 in . portable fitted with this chassis was no colour. Checks around the TDA3561A colour decoder chip showed that the chroma signal entered at pin 3, the crystal was active and all the pulses were present. The one obvious discrepancy was at the colour control pin 6 , where the voltage refused to budge from 0 V . The decoupling capacitor here, C2278 (22nF), had developed a $500 \Omega$ leak. P.G.

## Samsung CI5361A (P68SA chassis) <br> This set was dead though the power

 supply was running with the correct output voltages. There was no drive at the base of the line output transistor however. Voltage checks in the line driver stage showed that the transistor's collector voltage was missing. The cause turned out to be the 1 N 4003 diode D404 that provides the start-up supply. It was open-circuit. P.G.
## Bush CTV 1400

Intermittent loss of the picture and sound was the complaint with this set. When the fault eventually appeared I found that the set was going off tune, with nearly 30 V present at the tuner's BT pin. The tuning arrangement is fairly straightforward, the PWM from the microcontroller chip being integrated by Q103 and its associated components. When checks were carried out around Q103 in the fault condition a voltage was measured at its emitter, which should be at chassis potential. The emitter connection to chassis is made via a very fine track that runs next to the tuner unit. This track had cracked, as a result of the tuner being flexed while connecting an aerial. P.G.


## Interference from DTTV

The arrival of Channel 5 caused great congestion in the UHF TV bands. It suddenly became difficult to find a clear channel for VCR and satellite receiver outputs. I didn't think things could get any worse - then digital terrestrial TV transmissions started!

Here in South Yorkshire the only clear channels between 21 and 54 will soon be 36 and 38 , which are adjacent to Channel 5 on 37 . I'm sure that the situation is much the same over large parts of the country.

Each of the six digital multiplexes occupies a conventional 8 MHz channel. On the screen of a spectrum analyser they look just like a block of noise with a grassy top, filling the channel exactly from its lower to its upper limits. From the point of view of analogue reception this is precisely what they are - straightforward noise.

We all understand the concept of signal-to-noise ratio in its familiar form, where the noise floor is more-or-less fixed and a problem arises only when the signal is not far enough above it, in other words is "not strong enough". We must now become familiar with the concept of a varying, or unpredictable noise floor, since every transmitter in the land will soon in effect be pumping out six channels of noise.

Many engineers have already been called out to mystery VCR or

Letters
satellite faults because of this. I was completely taken by surprise when my first call came along. The customer rang up and said "the satellite picture is snowy, but if I unplug the aerial it's all right". This sounded unlikely, but turned out to be true. The satellite receiver's output was on ch. 30 , and a digital signal on this channel from Belmont was the cause of the trouble. This was not in the Belmont service area.

The effect on the screen is indistinguishable from the snowy picture you get with a weak signal. My first thought was that the modulator must be faulty. But when the aerial was disconnected, hey presto the picture became perfect.

Since the digital transmissions are at about 20 dB below the analogue ones, it's initially suprising that they can have such an effect. The reason lies in an analogue signal's extreme susceptibility to noise: visible impairment occurs with noise 40 dB below the signal. Even when the aerial is not pointing directly at the source of the digital transmission, this level of interference is quite likely to be present. I wonder why the digital broadcasters are allowed to get away with it, when Channel 5 was made to spend millions on retuning VCRs?

What can be done? Where possible, abandon the RF output and fit a scart lead. If this isn't possible, for example where a VCR's or a satellite receiver's output feeds a distribution system, it might be worth attempting to find a clean channel by retuning the RF output from the VCR or satellite receiver. A better idea is to connect a notch filter to the aerial cable: a tunable notch filter can be adjusted to remove the offending signal, in this case noise, while passing all other channels. The virtues of this approach are that it's quick and foolproof - and the customer gets
a shiny little thing for his money! We all know that people value even very small physical items more than our time and effort.

I have always been in favour of a five-channel-pass filter/leveller at the aerial input of any distribution system that carries VCR and satellite receiver outputs. It seems to me that this will be more or less obligatory from now on. A chan-nel-pass filter stops everything except the wanted channels. This is magic, because the whole band is cleared of unwanted signals, enabling VCR and satellite receiver outputs to use virtually any channel. These filters are a bit pricey, at $£ 68+$ VAT (from Taylor Bros of Oldham), but I think we have to see this as a sales opportunity rather than something sent to try us.

Interference from digital transmissions will not be confined to VCR and satellite receiver outputs. Off-air analogue reception is sure to suffer as well. Four of the digital multiplexes from Sutton Coldfield are on the same channels as Emley Moor analogue transmissions - and vice versa! It seems incredible that two adjacent main transmitters should share channels in this way. The result will be worse analogue-signal reception for people in fringe areas.
Bill Wright,
Rotherham.

## Clanger?

In a letter in the January issue Michael Dranfield discusses the tuning-voltage arrangement used in the Hitachi Model C2118 and surmises that there is a fault in its design. Since the output from the microcontroller chip consists of a modulated pulse waveform, an oscilloscope check at the collector of the integrating transistor Q003 will reveal a series of pulses that vary in amplitude between 33 V when the transistor is off (input
low) and almost zero when Q003 is switched on (input high). These pulses are filtered by the following $R C$ network to produce a DC voltage which is fed to the tuner's VT input. A meter instead of a scope check would indicate the mean level of the pulses, which could well be 1.4 V .

This method of tuning control has been widely used in recent years. I would guess that the original tuning drift was indeed caused by a faulty 33 V voltage stabiliser. though leakage at the tuner's VT input is another possible cause The drift mentioned when the HT rises is probably caused by a proportional increase in the tuner's 12 V supply.

There is no need to implement the suggested modification, which is unnecessary.
Dave Sergeant,
Dave Sergeant TV,
Bracknell, Berks.
Since the input to integrating transistor Q003 in the Hitachi C2118 is a continuous pulse train, the transistor will be alternately cut off and saturated. So it won't be possible to read 33 V across the voltage stabiliser ZD002. Michael Dranfield (Letters. January) wasn't happy until he changed the circuit to get a 33 V reading. It's only by using a scope that any sense can be made of what is going on in this area. Contrary to what Michael assumes, the stabiliser was doing its job - by regulating the amplitude of the pulses fed to the integrating network. He had possibly cleared the fault by replacing ZD002 and its feed resistors but carried on, being unhappy with the low but normal voltage across the stabiliser.

Incidentally I still come across engineers who think that a 33 V zener diode can be used instead of the dedicated 33 V stabiliser IC normally employed in this position. But the IC regulator provides temperature stability by using a series chain of transistors with associated zener/avalanche diodes that operate in the 6 V (approximately) zero temperature coefficient region.
Alan Willcox.
Cardiff.
Editorial comment: It was not suggested that the input to the integrating transistor was other than PWM. When the transistor is connected directly across the voltage stabilising device, the latter is


A satellite 'installation' spotted by Ken Taylor of Ken Taylor TV \& Video, Rochdale, Lancs while on holiday at Lake Como, Italy.
being used as a pulse clipper rather than a stabiliser. In these condi tions it is not likely to be able to provide effective stabilisation. This doesn't appear to be very good practice. The Hitachi circuit obviously works, but this is not the way in which a 33 V stabiliser was originally intended to be used. A quick trawl through the circuit diagrams for a large number of other TV chassis has failed to find one, other than another Hitachi, in which the integrating transistor is not provided with a load resistor (usually $10 \mathrm{k} \Omega, 22 \mathrm{k} \Omega$ or $33 \mathrm{k} \Omega$ ) between its collector and a stabilised 33 V source. Michael Dranfield's suggested modification seems to be perfectly valid, but any improvement it would contribute would appear to be a case of suck-it-and-see. Any other comments? J.A.R.

## Servicing Matters

Alan Willcox (Letters, December) missed the meaning of my remarks concerning the ESR of a faulty capacitor in the Sharp Model DV5103. Yes, I would expect a good $50 \mu \mathrm{~F}$ capacitor to have a low ESR. The point is that the capacitor in question should have been $2,200 \mu \mathrm{~F}$, was so marked, and certainly beeped when checked with my Capacitor Wizard (how did I survive 25 years in the trade without it?). Because of this, I passed it over several times before 1 discovered that it was the cause of the fault. When its value was checked with a capacitance meter, it was found to have fallen to $50 \mu \mathrm{~F}$. I was surprised simply because I have
never before come across a capacitor that was so far off its correct value while still showing a low ESR. But we live and learn.

On the subject of bodged repairs, I reckon that many of these are done by hard-pressed field engineers simply to get out of the house and on to the next job as quickly as possible. A good friend who works for a national rental company tells me that they are rated on how many jobs are completed on first call: if a set is taken back to the workshop, 'brownie' points are lost. So a bodge is a very tempting way out when the exact components required are not to hand.

In my view modern sets are not repairable in the field, and I tell my customers this. Naturally some people become suspicious, but I don't want untrusting people as customers anyway. In fact in 25 years I can recall only two people who insisted on an in-house repair and went elsewhere. One returned to me with his set a month later, after it had failed several times following 'repair' by the local Snoddies.
Colin J. Gus:
Boston, Lincs.

## Low- $\Omega$ Unit

I have just built the low-ohms addon unit described in the August 1998 issue, but had to make a couple of changes because of component availability problems.

I couldn't readily obtain a standard TL082 IC and had to settle for a TL082CN, which has a higher gain, but as a bonus I found that

I could obtain the full ohms range with only $\pm 6 \mathrm{~V}$ supplies. As I find that batteries tend to die on me at the most inconvenient times, I used William Harrison's linear ohmmeter mains power supply (December 1981 issue) with $470 \Omega$ series resistors and 6.2 V zener diodes.

I also found that the ZN423 zener device was not easy to find. Farnell suggested the ZR423 as an alternative, which is satisfactory. I did however find that there was some imbalance with the operation of the alternative VR1 arrangement. This prevented an accurate zero-setting, and was overcome by changing the value of the series resistor on the negative side of VRI to $100 \mathrm{k} \Omega$.

Thank you, Alan Willcox: the unit works beautifully and will be very useful.
Eric Kempshall,
Hove, East Sussex.
Editorial note: The ZN423/ ZR423 is listed by Maplin (order code GS86T). Other alternatives available from Maplin are the Zetex REF12Z (DB57M) and Harris ICL8069CCZR (YH39N).

## Discharging Reservoir Capacitors

Having been 'bitten' on several occasions by fully-charged reservoir capacitors I decided to work out a safe routine for discharging them before handling a chassis.
The most commonly adopted way of going about this is to use a high-wattage resistor, but in my experience the resistor tends to be 'borrowed' or get cleared away with leftover items. As an alternative I decided to use a 60 W dummy-load lamp, which again often turned out to be unavailable for one reason or another.

My final solution was to use a salvaged NTC thermistor. The dull-green type marked SCK075 is suitable. It does produce a small amount of arc burn when applied to a capacitors's pins, but this and indeed the degree of heating give a useful indication of the capacitor's condition!
Ian Field,
Letchworth, Herts.

## CD Player Lenses

Philip Blundell (CD Player
Casebook, December) is not alone in finding CD pickups covered in dust, with the result that they skip or won't play. The problem has plagued midi systems for years.

Because these combined units require plenty of ventilation slots to keep the power sections cool, airborne dust inevitably finds its way on to the pickup lens. Unfortunately simply cleaning the lens may not be the end of the problem, as the dust also finds its way on to the internal optics, upsetting the operation of the various mirrors involved.

Aiwa suggests that you remove the cover from the pickup and very carefully clean both sides of the lens using a cotton swab with its tip bent. It is recommended that the mirrors are cleaned as well, using a cotton swab. Aiwa's threedisc carousel mechanism, which is fitted to many of the company's models, suffers severely from this problem. The very latest versions are fitted with a clever springloaded cover that flips over the lens when the CD player is not in use. The best solution is to replace the pickup, as it's difficult to guarantee precise cleaning. The price of pickups has fallen recently. making replacement a more viable proposition.
Edgar M. Beddow,
Milton Keynes.

## Safety

I have paid $£ 10$ to the three winners of my PELV challenge (letters, December). They were Ian Muxworthy of Satfix, Swansea: Dave Langton from Bromley, Kent; and Dave Coombs from Ramsey, Cambridgeshire.

PELV stands for Protected Extra Low Voltage. The correct answer is 60 V DC or 42.4 V peak AC (some authorities state 25 V AC ). Anything higher than this is considered to be unsafe in apparatus connected to a telephone line, a requirement of BS6301 (now BSEN41003) and CENELEC HD384.

Dave Langton found the Building Research Establishment's website at
www.bre.co.uk/bre/CEN/DOC6.TXT where you will find a transcript of the EC directive. Section 3.2.1
describes PELV.
Martin Pickering, B.Eng.,
repairman@netcentral.co.uk

## Training

I am concerned about the education and training prospects for our trade, particularly now that digital TV is here. With the demise of the City and Guilds 2240 Radio and Television servicing course at all levels, and the NVQ and progres-
sion awards as the replacement, the situation doesn't look good.

Servicing requires an intuitive approach that's knowledge based. The method by which NVQs are gained does not instil the knowledge or the intuitive ability required for servicing at levels two and three.

How many engineers have an indepth knowledge of digital design and application? How will new engineers gain the skills required to be able to act as a qualified service engineer? Is the trade really aware of what's happening in the field of education and training?
Gordon Williams,
Hayes, Middlesex.

## Confessions of a Lecturer etc

Phasor's article in the November 1998 issue reminded me of the legendary TLO who had been persistently heckled by the proverbial 'bloke at the back' while describing his company's latest offering. Coming to tube replacement, he warned against getting the clamps (remember them?!) too tight. Then up jumps Heckleberry Hound: "how do you know when it's too tight?" Fixing him with an icy glare, the lecturer said quietly "tighten it up until the tube implodes, then slacken off a quarter of a turn!"

Eugene Trundle's servicing equipment supplement was timely, but do we need to spend our "hardearned' on all this gear? Apparently not. Some while ago I called on a customer to see a Ferguson teletext portable. The husband had removed it from the cabinet ready for me. "Broke a corner off the circuit board thing. Still, most of it's there."

I said I would have to take it back to the workshop. As I was about to leave along came Jack. "Jack'll fix it. He's an expert" the husband said. "An expert on what?" I queried. "On everything. He can Artex ceilings!"

Jack told me what to do. "You just waggle all those little things about until you find the one where the sparks fly. That's the bit that is causing the trouble."

Against such genius I am powerless. So I left him to it. Forget about service manuals and sling your scope. Just waggle the bits about till the sparks fly and there you are. I think I'll stick to things with 12AU7s in them. This hightech stuff is all too much for me. Pat Dennis,
Halstead, Essex.

## Answer to Test Case 434 - see page 251 -

The ancient Sanyo VHR3300 is now back in the shop window, still with its $£ 34.95$ price sticker. Even though it now works properly, it has yet to find a buyer!
TechnoCrat had belatedly realised what the repeated flashing of the orange digit meant: that there was no tuning data held in the machine's memory, even immediately after tuning and 'memorising' the local broadcast channels.
A relatively high negative voltage is required to write into the memory in these older machines - it's the very same voltage that operates the fluorescent display, which you will recall was dim. In fact the -30 V supply was totally inadequate for these jobs: if memory serves correctly, the voltage had fallen to about -10 V .
This low negative voltage was caused by a fault in the power supply. Rectifier diode D5006, which is fed from the mains transformer, develops -60 V across reservoir capacitor C5003. This is stepped down by transistor Q5003 and reference diode D5012 to produce a regulated -30 V supply. In the faulty machine there was no current through D5012 because one of its $4.3 \mathrm{k} \Omega$ feed resistors R5006/7 was open-circuit. A new resistor was all that was required to cure the faulty machine.

## NEXT MONTH IN TELEVISION

## Design of an ESR meter

The importance of an electrolytic capacitor's ESR (effective series resistance) has been highlighted in several recent articles. To be able to check a capacitor's ESR in-circuit can save a great deal of time when fault finding. A couple of meters are available and have been reviewed in these pages. Alan Willcox now presents an ESR meter for the constructor. In doing so, he provides valuable insight into the design of such a meter and the operation of the circuitry used. To make battery operation feasible. low power consumption was a major consideration - the unit draws only 12 mA .

## Servicing the Panasonic NVSD25/30/40/HD100

This range of VCRs introduced the Panasonic K mechanism. Brian Storm describes the changes that took place and provides a servicing guide, including a list of fault codes and the various service modes provided.

## Repairing CB Radios

As CB radios are inexpensive to buy, rapid fault diagnosis is essential if a repair is to be worthwhile. Chris Watton has serviced a quantity of these units recently: the experience gained provides a valuable guide on how to tackle these devices.

## Test Report

While reviewing the Metcal surface-mount soldering rework system Steve Beeching provides interesting insights into the technology involved.

## TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS HARD COPY INDEXES \& REPRINTS SERVICE

## INDEX DISC

Version 7 of the computerised Index to TELEVISION magazine covers Volumes 38 to 48 (1988-1998). It has thousands of references to TV, VCR, CD, satellite and monitor fault reports and articles, with synopses. A TVNCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is quick and easy to use, and runs on any PC with Microsoft Windows or MS-DOS. Price is $£ 35$ (supplied on a $3.5^{\prime \prime} \mathrm{HD}$ disc). Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc. See the CD-ROM offer below.

## FAULT REPORT DISCS

Each disc contains the full text for television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc, then access it via the Index disc. Fault Report discs are now available for:

> Vol 38 (Nov 1987 - Oct 1988); Vol 39 (Nov 1988 - Oct 1989); Vol 40 (Nov 1989 - Oct 1990); Vol 41 (Nov 1990 - Oct 1991); Vol 42 (Nov 1991 - Oct 1992); Vol 43 (Nov 1992 - Oct 1993); Vol 44 (Nov 1993 - Oct 1994); Vol 45 (Nov 1994 - Oct 1995); Vol 46 (Nov 1995-Oct 1996); Vol 47 (Nov 1996 - Oct 1997); Vol 48 (Nov 1997 - Oct 1998).
> Price $£ 15$ each (supplied on $3.5^{\prime \prime}$ HD discs).

## FAULT FINDING GUIDE DISCS

These discs are packed with the text of vital fault finding information from TELEVISION - fault finding articles on particular TV chassis, VCRs and camcorders, Test Cases, What a Life! and Service Briefs. There are now two volumes, 1 and 2. They are accessed via the Index disc. Price $£ 15$ each (supplied on 3.5" HD discs).

## NEW - COMPLETE PACKAGE ON CD-ROM

The Index and all the Fault Report and Fault Finding Guide discs are available on one CD-ROM at a price of $£ 195$ (this represents a saving of $£ 35$ ). An Index to Electronics World (worth $£ 20$ ) is also included. Customers who have all the previous Fault Report discs can upgrade to CD-ROM for $£ 45$. Please quote the serial number of your Index disc.

## REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the Index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 48 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for non-UK EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK).

> SoftCopy Limited, 1 Vineries Close, Cheltenham, GL53 ONU, UK. Telephone 01242241455.
> e-mail: sales@softcopy.co.uk
> Web site: http://www.softcopy.co.uk

Published on the third Wednesday of each month by Reed Business Information Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Filmsetting by JJ Typographics Limited, Unit 4, Baron Court, Chandlers Way, Temple Farm Industrial Estate, Southend-on-Sea. Essex SS2 5SE. Printed in England by Polestar (Carlisle) Lid., Newtown Trading Estate, Carlisle, Cumbria CA2 7NR. Distributed by MarketForce (UK) Ltd., 247 Tonenham Court Road, London W1P 0AU (01712617704). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Lid.; South Africa, Central News Agency Ltd. Television is sold subject to the following conditions, namely that it shall not, without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold. hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

Current Stock
$10^{11}$ ac/de
$14^{\prime \prime}$ re
14" text
20 " $1 / \mathrm{e}$
20" text
21" lext
$21 "$ nicam
25 " text
25" nicam
$25 "$ dpl
28" nicam $28^{\prime \prime}$ dpl 28" wide
33" nicam
$333^{17}$ dpI
33 " wide
37" nicam 46" 1 1p 52" 1p 55 " 1 p full ver range

## Possibly the Largest and Oldest established graded establishment in the UK <br> No shortage of stock

Guaranteed to beat anybody's price for a similar product

| SEPECLALS |  |
| :---: | :---: |
| $16^{\prime \prime} \mathrm{R} / \mathrm{C}$ boxed ' $A$ ' | £65 |
| 20" R/C boxed ' $\mathrm{A}^{\prime}$ ' | £85 |
| $25^{\prime \prime}$ DPL boxed ' A ' | £250 |
| 28" DPL boxed 'A'. | £300 |
| VCR 2SP. vid plus UHF/VHF | £69 |
| Remote Micro Systems | £35 |
| HERAND NEW |  |
| Toshiba 33" DPL | £750 |
| 55" DPL Projector. | £2,000 |

Toshiba 33" DPL.................................................................
55" DPL Projector..........
All prices based on availability + VAT

Current Stock Radion Cassettes Car Audio CD Port Mi-Fi Phones Faxes Kettles

## Irons

Mixers/ Blenders Mierowaves Vaces
Printers
Speakers BT Phones Fridge/ Freezers Conkers Hobs Direct Loads NATION-WIDE NEXT DAY DELIVERY SERVICE - VISITORS BY APPOINTMENT

## Phone 0121-359 7020

DARTEL ELECTRONICS

8 Heather Park Drive, Alperton Wembley, Middlesex HAO 1SL
Tel: 0181-795-1735 Fax: 0181-795-1736
High quality graded stock from
manufacturers
Camcorders, VCR's, Televisions, Hi-Fi's, Car Stereos, Microwaves etc All popular brands boxed with warranty

Tel/Fax for details
Visit by appointment



## TESTED \& GUARANTEED

SECOND HAND PARTS

## Overseas customers welcome

## Bulk Orders

All parts will be labelled with stock no and details of the equipment they have been removed from, (e.g. Ferguson FV14T lower drum stock no 9999) and a master list with the same details will be supplied with the consignment. Unit 19
Clayton Court Castle Industrial Estate Invergordon IV18 0SB
Tel: 01349854422 Fax: 01349854400 (24 hr) E-mail: radcom@radcom.clara.net Web page www.radcom.clara.net


| VISION - TECHELECTRONICTV - VIDEO - HI FI-CAM - MIC-ETCWHOLESALES |  |  |
| :---: | :---: | :---: |
|  |  | STOCK <br> TVS <br> VIDEO <br> HI FI <br> CAM <br> MIC <br> R/CASS <br> PHONES <br> FAXES <br> KETTLES <br> IRON <br> VAC <br> CD/PORT <br> JUGS <br> KETTLES <br> ETC <br> HAPPY <br> NEWYEAR <br> TOAL <br> CUSTOMERS |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| $28^{\prime \prime}$ NICA | TOP BRANDS |  |
| 29" PRO | H |  |
| 32" WIDE |  |  |
| PRO | AIWA - SONY-TECNICS - <br> PIONEER - JVC - PAN |  |
| 33" PR |  |  |
| $33^{\prime \prime}$ DPL | TV |  |
| 41" WIDE DPL | ONY - TOSH - PAN |  |
| 55" TP | JVC - PHILIPS - MITS FERG - SANYO - ETC |  |
| Phone 01212364335 Fax: 01212361744 184 Great Hampton Row, Hockley, Birmingham B19 3JP |  |  |




## IS YOUR RENTAL BUSINESS EXPANDING?

## Broughfame Ltd.

can help to expand your television/video rental business and increase your profitability. Our rental Finance Plan offers you financial facilities from £1,500 upwards. Block Discounting finance also available.

For further details ring or write to: Broughfame Ltd. 1154 St John's Hill, Sevenoaks, Kent TN13 3PE Tel: (01732) 743400 Fax: (01732) 743335 E-mail: R@Broughfame.TelMe.com

P 108 ABBEY STREET, ACCRINGTON, LANCS BB5 1EE Tel: 01254872500 / 390936 Fax: 01254872166
TRADE COUNTER OPEN MON-FRI 9-5, SAT 9.30-12.30 Please add VAT to all prices. We accept payment by cheque, cash, Access, Visa. Add $£ 2$ pp for all orders up to 1 k . Heavier parcels add $£ 4$. Next day delivery on Parceline Consignments POA. Goods will be despatched on the day we receive your order. It we are out of stock we will inform you ASAP. Please allow up to 28 days for delivery

> The PV1 multi purpose degaussing wand is a compact and cost effective unit intended for use with a 240 volt mains supply. This unit will be of particular interest to TV Service Departments, TV Manufacturers, Rental Companies, TV Broadcasting Authorities, Universities and Colleges, The Armed Forces, Aviation and Computer Companies.
> ORDER BY MAIL ORDER
> TODAY FOR ONLY $£ 32.50$.

| VALVES |  |  |  |
| :--- | :--- | :--- | ---: |
| ECC83 | $£ 3.80$ | EL34 | $£ 7.00$ |
| PL508 | $£ 2.50$ | PCF200 | $£ 2.00$ |
| ECL84 | $£ 0.99$ | ECC81 | $£ 2.95$ |
| DISCOUNTED PRINTER CARTRIDGES |  |  |  |
| Hewlett Packard 51629A | $£ 18.64$ |  |  |
| Epson S020097 | $£ 13.61$ |  |  |
| Canon BC121 Black | $£ 5.36$ |  |  |

We have literally hundreds of products, here are just a few: Aerials, brackets, batteries, cable, connectors, CMOS capacitors, discs, diodes, fuses, IC's, loptx, leads, manuals, push button lights, phones, phone access, potentiometers, relays, remote controls, satellite systems, scanners,
semiconductors,
strip board, switches,
tuners, tools and test equipment, valves and all you need for video repairs - heads, idlers, tyres, pinch rollers, cleaners, test cassettes, TV's, video tape.

IF WHAT YOU NEED IS NOT LISTED - ASK! RING ANDY, MARK OR LINDA


Available from most wholesale distributors across the UK or direct from

## COASTAL AERIAL SUPPLIES

Unit X2, Rudford Industrial Estate, Ford, Arundel BN18 OBD Telephone: 01903723726 Fax: 01903725322 Mobile: 0976241505

## Is looking for . <br> ICs TRANSISTORs SEMIs an up hill struggle?

A phone call to us could get a result. We stock a very wide range . . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few): 2N 2SA 2SB 2SC 2SD 2 P 2 SJ 2 SK 3N 3SK 4N 6N 1740 AD ADC AN AM AY BA BC BD BDT BDV BDW BDX BF BFR BFS BFT BFW BFX BFY BEYBLXBS BR BRX BRY B
BSS BSV BSWBSX BT BTA BTB BRW BU BUK BUT BUV BUW BUX BUY BUZ CA CD CX́ CXA DAC DG DM DS DTA DTC GL GM HA HCF HD HEF ICL ICM IRF J KA KIA L LA LB LC LD LF LM M M5M MA MAB MAX MB MC MDA J MJE MJF MM MN-MPS MPSA MPSH MPSU MRF NJM NE OM OP PA PAL PIC PN RC S SAA SAB SAD SAJ SAS SDA SG SI SL SN SO STA STK STR STRD STRM STRS SVI T TA TAA TAG TBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMP TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others.
We can also offer equivalents (at customers' risk). We also stock a full range of other electonic components.
Mail, Phone, Fax, Credit Card orders \& callers welcome

## No other consumer

 magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.PHONE 0181-652 8339
FAX 0181-652 8931
The prepaid rate for semi display setting is $£ 15.00$ per single column centimetre (minimum 4 cm ). Classified advertisements $£ 2.00$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $I 7 / \% \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Information. Advertisements, together with remittance, should be sent to Television Classified, II th Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

## Repair Information

## IF YOU WISH TO JOIN THOUSANDS OF ENGINEERS WORLDWIDE SAVING TIME AND MONEY DAILY - PLEASE READ ON.

Just released: Ed 21 Fault Indexes in book format
OUT NOW Edition 21 of the Television Magazine Index Covers over 14,000 Television, Video, Satellite, Camcorder \& Monitor faults, Large easy to read $\mathbf{A} 4$ format The newest addition to a highly acclaimed $\&$ recommended series.
IS13N 1898394253
Edition 21: Complete set $£ 14.75$ Offer Price $£ 9.75$
Brand New: Fault indexes on disk - Version 1.7
latest faults together with ALL data from ALL previous versions, Covering a MASSIVE 20,500!! Television, Video, Camcorder, Satellite, CD \& Monitor faults listed in 19 years of Television.

Indexes on Disk Version $1.7 £ 17.50$
Low cost updates are available for all Disk fault indexes - Current price $\mathrm{E}^{5.50}$
New: Kwik Tips on Disk Version 1.1
Already proving itself a valuable service resource in workshops large \& smiall, Kwik Tips V1.1 is our LARGEST FAULTS \& REMEDIES database EVER, Conpiled from over 20,000 !! Entries \& covering 1,435 Chassis \& Models, This concisely Edited TV \& Video repair database will casily pay for itself with just 1 repair. Kwik Tips on disk Version $1.1 £ 27.95$

Latest release - Equivalents guides - 2nd Edition. Equivalents \& Models to chassis, TVs. Videos Camicorders \& Satellites. 5 sections, Over 6,300 Entries, Need we say more !!

Edition 2: Equivalent guides book $£ 5.95$ All programs require a PC or compatible \& are supplied with a user manual.

316, Upton Road, Noctorum, Wirral, Merseyside. L43 9RW. Tel/Fax 01515220053
Please add $£ 1.75 \mathrm{P}$ \& P to total (Europe $£ 2.75$, r.o.w. please enquire)

Available for most equipment, from the earliest Valve Wireless to the latest Video Recorder, Television, Computer Monitor, Test Equipment. Satellite, all Audio, Amateur Radio etc etc. If you need a Service Manual give us a call or check out the full stock list now on our web site. Originals or Photostats supplied as available.
For your FREE Disc catalogue of Technical Books and Repair Guides PLUS full Index of manuals available send $4 x$ first class stamps.

MAURITRON TECHNICAL SERVICES
8 Cherry Tree Road, Chinnor, Oxon OX9 4QY Tel: 01844-351694. FAX: 01844-352554 Email:- enquiries@mauritron.co.uk
Web site at:- http://www.mauritron.co.uk/mauritron/

| Technical Information Services <br> Midlinbank Farm, Ryelands, Nr. Strathaven, ML10 6RD <br> N.B. There is a $£ 2.50$ Post/Handling Charge on all orders Send an SAE For Your Free Quote \& Catalogue |  |
| :---: | :---: |
| NEW ADDRESS \& TELEPHONE <br> We have the world's Largest Selection of SERVICE MANUALS |  |
| CTV-VCR-SATELLITE-AUDIO-CD -ETC VCR CIRCUITS 88.00 CTV CIRCUITS $£ 6.00$ |  |
| We We Sell छ <br> CIRCUITS/MANUALS•FAULTTFINDING <br> TECHNICAL \& SERVICING GUIDES |  |
| HACKE | GUIDES |
| 匹 01357440280 *NEW | TEL* 01357440280 匹 |
| TOP SELLING BOOKS $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ |  |

## SERVICE MANUALS AND CIRCUIT DIAGRAMS

Thousands of different models available
For most U.K. European, Far East \& USA makes

|  | Service Manual | Circuits |
| :---: | :---: | :---: |
| B/W TV | $£ 6.00$ | $£ 3.00$ |
| CTV/VCP | $£ 10.00$ | $£ 5.00$ |
| VCR | $£ 14.00$ | $£ 7.00$ |

Audio/Satellite/Microwave also available - P.O.A Cheque/PO with order only please.
Add $£ 2.00 \mathrm{P} / \mathrm{P}$ etc. to order total. Do not add any VAT

## D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG
Tel: 01202870656

Fryerns
Service


Circuit Information FES Diagrams TVs, VCRs SATELLITE AUDIO \& HI-FI
Most nodels/makes old \& new covered
Also fault guidance service available
Prices are from $£ 3.75+£ 2.50 \mathrm{P} / \mathrm{P}$ i.e. 1 item - total $£ 6.25$ inc 2 items - total $£ 10.00$ inc 3 tems - total $£ 13.75$ inc 4 items - total $£ 17.50$ inc Payment by credit card or postal order for next day delivery. Cheques: to clear.
Tel/Fax $0 \mid 206211570$
Answerphone outside office hours P.O. Box 5830 Basildon, Essex SSI3 3RX

## SERVICE MANUALS

Have you ever turned away work for want of a Service Manual? Have you ever bought a Service Manual and never used it more than once? Then why not join
THE MANUALS LIBRARY For details and membership application form write, phone or fax:
HARVEY ELECTRONICS 43 Loop Road, Beachiey, Chepstow, Gwent NP6 7 HE Tel: 01291623086 Fax: 01291628786 Visa, Access accepted

## REPAIRS

## accént

TECHNIC
CAMCORDER REPAIRS
Collection and delivery anywhere in the UK.
All makes, fast service. Phone free for details.

Fax: 01905796385 (0800) 281009

## TEST EQUIPMENT

## ש MUUTER BMR 95



BMR 95 unique Regenerating-Computer and Analyser for CTRs, regenerates even better, also if all other machines do not succeed, With G2. FLASH-EX against remaining gas! 165 adapters available! Book with 12.500 CTR-types! Pays itself within 4 weeks! Please, ask for more information.

SEME Tal: 01664565392 (UK) | Dobnberg Tei: 07548275 (IRL) |  |
| :--- | :--- |
| Müter | Fax: 0049 |



THE 'HOOKINGS' INDEX
More than 14,000 entries including remedies
where appropriate, from
'TELEVISION' magazine
Bang up to date: Jan ' 88 to Feb' 99
Only $£ 10.00$ inclusive for the set of three books covering TV, VCR. SAT, CD etc
Too good to be true?
Ring 01766522444 for free sample

SERVICE INFORMATION
CIRCUITS and SERVICE MANUALS from 1930s-1990s:
Radios, amps, radiograms, tuners, CDs, TVs, videos,
cassette radios, ICE etc.
LARGE QUANTITY USED TV
and VIDEO SPARES
BACK COPIES PW and TV MAG.
DAVE WILLIAMS
16 Church Street, Owston Ferry, Tel and Fax: 01427728046 Tel and Fax: 01427728046
Mail order only. No callers.


## LINEAGE

AVO MULTIMETER Model $8, £ 45.00 .500$ volt megers $£ 30.00$. Prices plus VAT and $\mathrm{p} \& \mathrm{p}$. Send SAE for lists of surplus instruments and scopes etc. A. C. Electronics, 17 Apleton Grove, Leeds LS9 9EN. Tel: 01132496048.
PRIVATE RETAILER has excelient part exchange colour televisions and videos to clear. Tel 01494814317.

## TRANSFORMERS

## TV LINE OUTPUT TRANSFORMERS <br> PHONE: 0181-948 3702 FAX: 0181-332 0583

ALBA • AMSTRAD • BUSH • DECCA • DORIC BLAUPUNKT FERGUSON • FIDELITY • GEC • GRUNDIG - GRANADA HITACHI HINARI INDESIT - ITT - KIMARA - NIKKAI MATSUI MURPHY OSAKI - NORDMENDE LOEWE-OPTA PANASONIC• PYE• PHILIPS • SANYO - SAISHO SHARP SONY-SOLOVOX SUSUMU • TANDBERG • TELEFUNKEN . THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE .

## FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD • 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Mon-Fri 9 am to 12.30 pm \& Approx. 1 mile from Kew Bridge.
$1.30-4.30 \mathrm{pm}$

## SPARES \& COMPONENTS

| CHEAPEST HEADS IN THE UK |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Price | Hitachi |  | 约52.00 |  |  |  |
|  |  |  |  |  |  |  |  | ${ }_{8}^{8.00}$ |
|  | cos 3132 | \&18.00 | ${ }_{\text {Hita }}^{\text {Hia }}$ |  | ${ }_{\text {cle }}^{\text {cis }}$ |  |  |  |
|  | FV | ¢99.50 | ${ }_{\text {Hitac }}$ |  | E14.00 E14.00 |  |  | 0 |
|  |  | E16.0) | Hla |  | 82 |  |  |  |
|  | FV1 | ¢ ¢23.00 | ${ }^{\text {JVC }}$ |  | ${ }_{65}{ }^{\text {c5 }}$ | asonic |  |  |
|  | Fva | ${ }^{\text {cli }}$ | ${ }^{\text {JVC }}$ | HRO14 | ¢9.50 |  | NGG20 | 00 |
|  |  | ${ }_{\text {ckilio }}$ | ${ }^{\text {JVC }}$ |  |  |  |  |  |
|  |  | ${ }_{\text {cis }}^{\text {cis. }}$ | JvC |  |  |  |  |  |
|  | VT17E |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  | ${ }^{\text {c. }}$ 8.5 |  |  |  |  |  |  |
|  |  | ${ }_{\text {cill }}^{\text {E14.00 }}$ | ${ }^{\text {JUC }}$ | HRD | ${ }_{\text {cki }}$ | Panasonc |  |  |
|  |  | ${ }_{\text {cis }}$ | UVC |  | (23, | onic |  |  |
|  | VT570 | ${ }_{\text {cil }}^{\text {E25,00 }}$ | JVC | HRD |  | Panasonic | NVS |  |
| TOO MANY TO LIST. PLEASE RING FOR A FREE CATALOGUE. ALL HEADS ARE GUARANTEED FOR 12 MONTHS <br> ALL ORDERS RECEIVED BEFORE 5PM ARE DESPATCHED THE SAME DAY BY FIRST CLASS POST <br> OPEN MON-FRI 9AM-5PM SAT 9AM-1PM FREEP\&P |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| N.A.V. SPABES Tel: 01274772249 Fax: 01274772247 WEST END BUSIIESS CENTRE, 237 THORNTON ROAD, BRADFORD BDI 225 |  |  |  |  |  |  |  |  |

## TECHNICIAN REQUIRED <br> for West End editing company

An excellent opportunity to join a London TV facilities company as an additional engineer to maintain and install our VTR and associated editing and graphics equipment. The ideal candidate would be between 18 and 28 years old and have a good knowledge of electronics and microprocessor techniques. Previous knowledge of broadcast equipment is not essential, but you should be able to troubleshoot down to component level. A pleasant manner is important as the work may require liaising with producers in stressful situations!
£15k+ (according to experience). 01714371300 (Terry/Mark)

## FOR SALE

Trade Only
Televisions
from $£ 5.00$
Teletext
Videos from $£ 20.00$

Twin Speed Stereo from $£ 20.00$

Minimum quantity - 10 units
Bournemouth
Wholesalers 01202470443

## To Advertise in Television Classified Telephone Pat Bunce on 0181-652 8339 or Fax on 0181-652 8931

## FIELD TEAM LEADERS BROWN GOODS APPLIANCE SERVICING

Do you relish a challenge? Can you lead a team of field technicians ensuring top quality repairs are carried out to our customers satisfaction? Yes! Then we would like to hear from you

We're part of ScottishPower, one of the UK's largest and most profitable electrical retailers and we are continuing our expansion throughout England with our Electricity Plus Superstores. Customer service is top of our list of priorities and as a Team Leader you will ensure the availability of the field technicians to provide an efficient quality repair service.

You will be qualified to a minimum City and Guilds or equivalent with previous experience of practical technical electronic repair and diagnostic techniques. Hands on coaching of technicians and effective problem solving experience in a similar environment is crucial to this position. Good man management and communication skills are also essential. Based in the North West and Midlands the successful candidates will be required to work from home.

Aside from an excellent salary, we offer all the benefits you would expect from a major plc, including pension, excellent staff discount and a share save scheme.
To apply, please send a full CV with current salary details, to: Mark Perrier, Recruitment \& Training Manager, Electricity Plus, California Drive, Whitwood Industrial Estate, Castleford, West Yorkshire WF10 5QX.
Email mark.perrier@scottishpower.plc.uk

ScottishPower ELECTRICITY PLUS

IFT $\overline{\text { F }}$
(Southern) Ltd. Require
A FIELD ENGINEER
In the Portsmouth area.
Must be self motivated and have a friendly flexible approach to their work INTERESTED?
Then phone Graham Atkins Tel: 01705653654

## BENCH AND FIELD TECHNIGLAN Required by SERVICESPEED SLOUGH

Salary up to £17k depending on experience Telephone
01753524848 for details

## Racetech

## Do you have 10 years TV/Video repair experience? <br> Are you computer literate? <br> Would you like to see television from the other end?

If so, become an Outside Broadcast Engineer.
The position is based from Raynes Park in London and involves travelling to any of the 59 racecourses in the U.K. to transmit live television pictures of horse racing. You would be part of a team responsible for producing this coverage and as such would need to spend some time away from home each month.

If you are interested then please telephone Marie Randall or Joyce Lines on 01819473333 for an application form.

Previous applicants need not re-apply.

RaceTech 88 Bushey Road<br>Raynes Park<br>London SW20 0JH

01819473333

## ADVERTISERS' INDEX

Acrial Techniques................. 283
Broughframe.................. 297
Central TV Wholesale ......... 296
Campion Wholesale TV........ 294
Coastal Aerial Supplies......... 297
Colour Trade........................ 294
Cricklewood Electronics....... 297

Dartel.................................. 294

East London Components..... 285
Economic Devices.........232-233
Electronic Sound Systems .... 239
Express TV........................... 295
Grandata Ltd................. 259-272

HST Distributors London...... 295
Irwin Electronics.................. 249
Marapet
257
Mentor. ..... 230
Müter, Ulrich ..... 299
OZAN ..... 245
Philex ..... IFC
PV Tubes. ..... 297
Radcom ..... 295
Sendz Components ..... IBC
Silicon Galaxy ..... 257
Stewart of Reading .....  241
Tree. W. ..... 296
Welwyn Tool Co Ltd.. ..... 230
Universal Consumer. ..... 285
Vision Tech. ..... 296
Wallis Universal. .....  230
Willow Vile Ltd. ..... BC


1 Is
Willow Vale can now supply genuine spares and accessories for all these leading brands:

- Sharp
- Philips
- Pace
- Nokia
- JVC
- Matsui
- Grundig
- Ferguson
- Tatung
- Goldstar (LG Electronics)
- Panasonic
- Sony
- Toshiba
- Thomson
- Mitsubishi
- Akai
- Aiwa
- Pioneer
- Samsung
- Hitachi
- Amstrad
- Alba
- Bush
- Goodmans

TECHLINE is always available. Should you require any technical help or advice on 0891615915.
(*all calls charged at premium rate).
C.O.P.S. computer ordering parts system via our acclaimed 'viewdata' based order/enquiry system.

## FOR SPRIRES <br> NOMINATED FIRST CHOICE SUPPLIER

Source - Maryyn Hamlyn survey 'Independent Retail \& Service zngines. dune 1997

## QUALITY REPAIRS NEED GENUINE SAFF HFTCTURERS


?

## 8


[^0]:    The TV Transmitter Adjustment Programme PO Box 26105, London SW8 4ZN

[^1]:    K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 0181-900 2329 Fax: 0181-903 6126 E-Mail: grandata.Itd@btinternet.com

[^2]:    - Replaces up to 2 remotes (TV/Satellite)
    - Simple key arrangement

    Order Code: 2 WAY
    PRICE: 925p

[^3]:    GENIE - 3 way Universal Remote Control

    - Replaces 3 infra red remote controls
    - Controls TV, VCR and Satellite
    - Auto Code Search
    - Customer help

    Order Code: GENIE
    PRICE: $£ 9.00$ + VAT

[^4]:    GRANDATA LIMITED
    K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND. HA9 0HB
    Telephone: 01819002329 Fax: 01819036126 E-Mail: grandata.ltd@btinternet.com OPEN Monday to Friday 09:00-17:30 Saturday 09:00-14:00

[^5]:    $\star \star$ * PLEASE NOTE THAT POSTAGE ON ALL THE ABOVE METERS IS CHARGED AT $£ 3 * *$

