THE LEADING UK CONSUMER ELECTRONICS TECHNOLOGY MAGAZINE

SERVICING.VIDEO.SATELLITE.DEVELOPMENTS JULY 1998 £2.50

Digital interconcerfinis -

 the FireWire sysienit MirsubishiEuro 12 chassis
LNBs for digitiol receppition chassis guide
Panasonic K deek faulf guide
(3)

Serviding the

10-year Sony GIV

The perfect accessory

The new Philex catalogue on CD-ROM3 is now available with superb products, up to date information, fast search facilities, enhanced graphics $\boldsymbol{\&}$ a fully updated cross reference.

A complete guide to over 16,000 line items:

- audio visual accessories
- computer accessories
- components and remote controls
- semi conductors
- electrical wiring accessories
- electrical lighting accessories

Make your life easier and phone our
SALES HOTLINE now for prompt dispatch of your free copy!

CONIHNTIS

July 1998

Consumer Confusion

Letters

The end is nigh? Will digital TV make a noticeable difference picture quality?

Teletopics

Digital TV update and latest technology plus business and other news.

LNBs for Digital Systems

The LNB characteristics that are important for successful reception of digital transmissions.

Codes for Passive SMDs

Satellite Notebook

Solutions to problems with satellite TV equipment and installations.

What a Life!

Donald Bullock devises a Very Nasty Device to deter Greeneyes' dogs, and gets his comeuppance. Some servicing problems as well!

More Power

Things that go bang in the night - and during the daytime too. Pete Roberts on what causes problems with the mains supply and some ways of minimising their effects.

The Panasonic K Deck

Adrian Williams provides a guide to dealing with the faults you can get with this VCR deck.

Satellite Workshop

Jack Armstrong's column on satellite receiver servicing.

Test Case 427

FireWire or IEEE 1394

The system that's almost certainly going to become the standard for interconnecting digital electronic equipment in the home. Geoff Lewis, B.A., M.Sc., MIEEE describes the system and its operation.

Vol. 48, No. 9TV Fault Finding638
Monitor Faults 642
Hints and tips on dealing with PC monitor fauls.
Help Wanted 655
VCR Clinic 656
Sony Chassis Guide658
Giles Pilbrow lists the CTV chassis produced by Sonyin the UK over the last ten years and the models inwhich they were used.

Servicing the Mitsubishi Euro 12 Chassis

John Coombes on fault-finding procedures with this CTV chassis.

A Hi-8 Video Problem

663
David Woodnott on a confusing $\mathrm{Hi}-8 \mathrm{VCR} /$ camcorder fault.

Test Report

664
Eugene Trundle on the Powermax and Clipper remote control extenders from Celtel.

Book Review

DX and Satellite Reception
Terrestrial DX and satellite TV reception reports and news. A phase-shift interference-cancellation system. The World Satellite Yearly 1998-2000 reviewed. Roger Bunney reports.

Camcorner

Servicing notes on camcorders.

Next Month in Television

Panasonic Young Technician of the Year -

All you young technicians, make that extra bit of effort for those all-important final examinations this year. You could be Panasonic Young Technician of 1998. See page 669 for details.

Decode and recode car OCdios \& ©D players quidily with fle loule A-400 rodiodecodar Now sold wartavide to sentre deportumenis and Police Forcess

CRE APproved - meai ofll curcent regulaions.

Pitecs Gian firom S373500 \& VAIfor the Stanter (ifi covering over 000 modth of papular radios.

Call usnow for aftee informalion pork and demonsiralion disk on 01325307442.

The Joule A-400 Radio Decoder

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems
Hilton Road, Aycliffe Industrial Park
Newton Aycliffe, Co. Durham DL5 6EN
United Kingdom
Tel: +44 (0)1325 310278
Fax: +44 (0)1325 300189
Email: elecsys@elecsys.demon.co.uk

For Your Radio Decoding Requirements

Abstract

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.

MARAPET ELECTRONIC COMPONENTS
 Tel: (01452) 532253 Fax: (01452) 549514

QUALITY SPARES for the CONSUMER ELECTRONICS SERVICING TRADE THIS IS JUST A VEAY SMALL SAMPLE OF OUR STOCK. We can supply spares for a vast range of Makes \& Models. Please contact us with your requirements, we'll be pleased to offer a 'PRICE \& AVAILABILITY'. Many General Components, Tools and Home Computer Spares also available. Telephone or write for a Selected Spares Guide.

MONITOR FLYBACK TRANSFORMERS This is just a sample of the types we can supply ACORN/DIGITALIBM etc AT2090/08 (ESCOM) CALIBRA AT2090/48 COMMODORE 1084P/1084SP COMMODORE 1084ST
ELONEX AT2090/33 GOLOSTAR/DELL GOLIVETTITFB2CO 154-166A OLIVETTI 1172.0018 PHILIPS CM8833 MK 1 (popalar uSlot type) PHILIPS CM11342 (CM8833 Mk 2) CONTACT US FOR TYPES NOT SHOWN. NB: Please CONTACT US FOR TYPES NOT SHOWN. NB: Please supply ali markings from the onginal iyback, as,
some monitors utilise more than one type number
** Other Computer Spares available **
Other Computer Spares avallable
JULY SPECIAL OFFERS (Valid to 31/7/98 or W.S.L PHILIPS VR422/437/447/6485 GENUINE VIDEO HEAD (DM4) FERGUSON TX 10051 cm Yellow Spot LOPTX FERGUSON TX9 LOPTX
ICP FNN Circuit Protectors - PACK of 10 MIXED ZENER DIODES - PACK of $30 \times 400 \mathrm{~mW}$ (2 each of 2 V 7.30 V) Replacement Telescopic AERIAL for BT FREEWAY SOLDER PUMP Special - PUMP + FREE SPARE TIP

Computer Spares. PHONE FOR LIST - IT'S NOT TO BE MISSED
Our range of Video Spares is now much expanded - we can supply parts tor Oiher types P.O.
Our range of Video Spares is now much expanded - we can supply parts tor over 150 makes. Try Fuses, Connectors, Cables, Tools, Domestic Electrical Accessories and much much more .

EQUIPMENT MANUALS

Large order of Manufacturers Service \& User Information avallable
Original manuals suppiled If possible. We only show a few examples here.

[^0]
Remote Controls
 for

TVs \cdot VCRs \cdot Satellite $\cdot \mathrm{Hi}$-Fi

Can' t Find a

 Particular Remote? WE HAVE IT.

Over 60,000 References
Match or 'Make Free' Service

Competitive Prices From £6.50

For Further Information - Just Call Our Helplines Tele: 0181-870 3388 • Fax: 0181-870 9988
Suddenly - You'll Love Selling Remote Controls

Consumer
 Confusion

Retail price maintenance was abolished many years ago. The government has now decided that even quoting manufacturers' recommended prices is, from September 1st, to be illegal in our industry. Whatever for? There is no way of enforcing recommended retail prices, which have become something of a joke - a quite harmless one. No one takes much notice of them. But they have served a purpose. They provide an indication of the value a manufacturer sees in a particular product and its market position. That, surely, is of some help, if not a very great one, to the customer. At least he is given an idea as to whether he is being offered a quality product, an average workaday one or a rock-bottom cut-price item. We are no longer to be allowed this bit of guidance.

Was it useful? Well, the customer can hardly take a piece of equipment to pieces before he buys it. And, nowadays, most TV sets, VCRs, PCs and whatever look much of a muchness - tube size and features apart in the case of a TV set. In this situation, to be given an indication of perceived value is surely better than nothing at all.

It is one thing to encourage free, competitive trading, quite another to leave consumers in the dark with little idea of the value of what they are being offered. They can of course carry out detailed market research, but who has the time - or inclination? They can also wade through one of those interminable Which? reports that state the obvious at great length and come to totally anodyne conclusions.

The fact is that doctrinaire free-marke-
teers have had it all their own way for rather too long. It is of course possible to go too far in the opposite direction, towards control and restrictions. But we need laws to enforce decent behaviour, and have had trade regulations to ensure fair practice. The move to regulation started in the Victorian era, when it was common practice to sell adulterated goods. Surely we don't want to go back to that sort of thing?

Going too far in the direction of uncontrolled trading has very real dangers. An obvious example was the misselling of personal pension schemes a few years back. When it comes to what are nowadays known as "financial products" rather than insurance, banking, pensions and so on, total confusion can reign, making it easy for the less than scrupulous to operate. Insurance, mortgages and so on have been fertile ground for those interested in only a quick, profitable deal. It's all too easy to muddly the water, get the punter confused then come up with what looks like a brilliant offer.

It's strange that governments of both colours have advocated this totally unrestricted approach to business. Right now, as Mike Peters put it recently in $E R T$, the only thing that seems to be regarded as important is different prices! It is not helpful to remove all guidelines such as suggested/recommended prices etc., which do provide a rough if very imperfect yardstick.

Right now things are getting worse and worse. Telephone salespeople are offering all sorts of confusing deals and special offers. And the rot is spreading to
such simple things as the supply of gas and electricity. There have already been complaints about reduced-price offers that turn out to be something different in practice. The free-for-all is in danger of becoming a heaven-sent opportunity for the unscrupulous. You would have thought that we had learnt the lesson about unsupervised marketing.

A great deal of effort is being put into concocting various special services, deals and so on. The public is confused and, by and large, benefits little. Suggested prices represented a little bit of much-needed help. You can blame a lot of this on the Monopolies and Mergers Commission, whose remit has been extended far beyond that originally envisaged. The Commission seems to think it malevolent that anyone should set a value on anything and provide clear terms of trade.

One day the pendulum will swing back - not too far, one hopes. One also hopes that not too much damage will have been done while we were in the anything-goes era. But it will be of little help to those who have been sold a pup because of a lack of standards and guidelines. And it will have been of no help at all to honest traders who have seen their businesses ruined by slick operators.

We need some degree of regulation, in the same way that we need laws. And those recommended prices did provide a little bit of help in an otherwise very confusing marketplace. The president of the Board of Trade has not done the consumer a favour in deciding on this unnecessarily draconian prohibition.

COPYRIGHT

© Reed Business Information Ltd., 1998. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrev SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 47 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eight-year consolidated index on computer disc. For further details see page 671.
Binders that hold twelve issues of Television are available for $£ 6.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

BACK NUMBERS

Some back issues are available at $£ 3.00$ each. For further details see box on page 598 last month.

SUBSCRIPTION ENQUIRIES

Telephone:	01444445566
Fax:	01444445447
Credit card orders:	01622778000

Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Make cheques payable to: Television
Subscription rates:
UK $£ 30.00$ per year
Airmail Eire $\quad £ 34.00$ per year
Airmail Europe
Airmail Rest of World
$£ 43.00$ per year
£56.00 per year

NEWSTRADE ENQUIRIES

Distributed by MarketForce
Telephone:
01712617704

web SITE

For a full list of RBI magazines: http//www.reedbusiness.com

ISSN 0032-647X

REED
BUSINESS
INFORMATION

Me Nt TRADE GUIDE

to ECONOMY Remote Controls Contains over 5000 references to model numbers for which we can supply an economy remote control. The range has been well tested over a number of years and the ray Mill COHTLIS majority are available at \$6.95. Send now for your FREE guide and you will be well on the way to increasing your profits. All are normal stock items - phone today - with you tomorrow

Satellite division - Send for FREE price list - LNB's - decoders - receivers etc.

KIT1 28.95 Pace - PRD800,PRD900,PSR800,PSR900, Ferguson SRD5;SRD16,Grundig STR1, Maspro SRE250S/1,350S/1, Philips STU802/05M, Manhattan 850,950 Goodman ST700, Toshiba TUSD200,SAT99 KIT2 E8.95 Pace. SS900,9200,9210,MRD920, Ferguson SRVI, Grundig GIRD2000,3000, Philips STU801, Network 900,9200 , Bush IRD150, Nokia SAT1500, MasproSRE2505,350S, 450S, Aba SATE 600, Finhux SR 5700, Thompson SRS4

 KIT P EPAS Pace MSS200,300,Apollo KTT10 ens. 11 Pace MSS500, 1000 KIT11 E5.93 FergusonSRD4 EIT12 E18.45 Echoctar SR5500 (early PSU with adjuster)
 IIT1S E7.38 Mitmtec (Sorenson PSU type only)

32 Temple Street, Wolverhampton, WV2 4AN, UK Tele ++ 44 (0)1902 773122 Fax ++ 44 (0)1902 429052

Possibly a FIRST AGAIN, you can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message. All at the cost of a local call. If you don't have the gear to access the internet get straight in touch with your local computer supplier or ask us for a fact sheet.
 ve you sot
Economic supply iv \& video parts uerev veres fast

0.03
0.04 78L05 N4003
IN4004
IN4005 1N4005
1 14006 1N4006
1N4007 iN4148 1N5062
1N5401 1N5401
1N5402
iN5404
in5402
in5404 in5408 iN6263
iN914 1N914
1S44
2N2222A 2N3055 ${ }_{2}^{2 N 3055 H}$
2N3773
2N3904
2N3904
2N4401
2N555
2N555
2SA1013
2SA1013
2SA1015 2SA1015
2SA1020 2SA1029 2SA1048
2SA1145 2SA1286
2SA1370 2SA1370
2SA1706 2SA733
2SA872A ${ }_{2} \mathrm{SAAP3}_{3}$

\qquad | 2SA9992 |
| :--- |
| | 2SB1010

2SB1066 2SB1066 $2 S_{81} 143$
$2 S_{8} 1243$
$2 S 8560$ 258560
258643 2SB647
2SB649A
2586488
258698 258698
$25 B 776$ 2SB772 258774 $25 B 892$ ${ }_{2}$ 2SC1008 $2 S C 124$
$2 S C 1318$ 2SC1318
2SC1473 $25 C 1573$
$2 S C 1675$ 2 SCl 675
$2 S C 1685$ 2SC1685
2SC1740
?

1.12	BZX6122	0.19	MAX232CPE	4.70
1.15	B2X61 2V4	0.07	MC1 3002P	7.69
1.46	B2X6133	0.19	MC7812CT	0.77
1.61	BZX6136	0.19	MJ15003	2.23
1.58	BZX613V9	0.14	MJ2955	0.77
1.58	BZX615V6	0.11	MU802	2.91
1.36	BZX6168	0.11	M.E13005	0.86
0.69	BZX616V2	0.11	MEE18004	2.05
0.86	BZX616V8	0.19	MJE3055T	0.45
1.41	BZX617V5	0.09	MJE340	0.45
2.05	BZX618V2	0.19	M.F18004	2.05
1.29	BZX619V1	0.09	MJF18204	6.07
1.32	BZX61C22V	0.11	MN650	1.71
1.99	BZX7910	0.30	MPSA06	0.35
1.56	BZX7912	0.11	MPSAI 3	0.18
1.88	BZX7936	0.10	MPSA63	0.18
2.40	BZX793V9	0.09	MPSA93	0.11
1.65	BZX795V6	0.09	MR856	0.11
1.03	BZX796V2	0.08	NE555	1.03
1.68	B2X79C33	0.11	NE555N	0.43
2.14	BZX79C5V1	0.11	P600A	0.33
2.40	BZX853v9	0.11	P6KE130A	2.55
1.27	BZY8812	0.09	P6KE180A	4.65
0.65	BZY882V7	0.23	PIC16C8404S	04.50
0.95	BZY883V0	0.11	R2KL	0.77
1.18	BZY884V7	0.09	R2M	0.84
1.17	BZY885V1	0.13	R4050	3.04
1.87	BZY88Cli2V	0.09	REGBABY10	13.00
1.37	CD4001	0.24	RG2	0.64
1.19	CD4017	0.47	RGP10G	0.26
1.97	C04049	0.35	RGP15G	0.33
1.32	CD4052	0.29	RGP15J	0.17
1.39	CD4053	0.61	RGP15M	0.44
1.03	CNX62A	1.29	RGP30M	0.30
1.03	CNX82A	2.10	S2000A	2.57
1.03	CNX83A	2.55	S2000A3	3.59
3.52	CNY75B	0.52	S2000AF	1.46
4.15	DTAll4ES	0.31	S2055AF	3.74
3.40	DTCI24ES	0.77	SAAl 29302	10.37
3.30	DTC144ES	0.19	SAB3035	1.71
0.18	FR605	1.90	SG264A	12.88
0.08	FXT749	0.43	SGSIF344	10.70
0.20	HA13001	3.85	SL1430	1.92
0.13	HA13119	2.05	SL1431	2.82
0.26	HA13151	13.20	SN74141N	0.17
1.31	HA51338SP3	7.69	STK413211	10.00
0.14	HM6251	14.32	STK4141II	10.23
0.18	1CH281	0.26	STK414211	9.40
0.20	1R9594	15.79	STK4152月	10.95
0.16	IRFBC40	5.98	STK4192II	14.64
0.12	KIA6210AH	6.15	STK5332	2.82
0.30	LA4270	2.73	STK5342	4.07
0.35	LA4280	3.12	STK5372	6.84
0.12	LA4282	5.11	STK5421	9.52
0.16	La4445	3.45	STK5481	8.12
0.26	LA4460	2.50	STK7253	7.69
2.55	La4700	4.27	STK7308	6.41
0.21	LA6324	2.05	STK7348	5.74
0.28	LA6510	2.94	STR11006	7.37
0.27	LA7830	1.88	STR4211	9.40
0.53	LA7832	2.40	STR50020	9.38
0.31	LA7835	2.99	STR50103	4.48
0.21	LA7837	4.19	STR50103A	5.56
0.50	LC7132	4.70	STR54041	5.15
0.23	LED3G	0.10	STR5412	4.02
1.34	LED3R	0.10	STR58041	3.42
0.15	LED3Y	0.10	STR5904]	8.11
0.16	LM317T	1.29	STR6020	6.07
0.10	LM324N	1.48	STRD1816	7.69
0.13	LM339N	0.50	STRD4420	10.64
$0: 28$	M494B1	11.85	T9053V	1.35
0.11	M5218L	0.69	T9064V	1.87
0.19	M54544L	2.04	TA7120P	0.66
0.19	M58655P	4.96	TA7280P	2.74

TA7281P	3.20
TA7698AP	5.97
TA7778P	5.11
TA8205AH	4.50
TA8210AH	0.00
TA8210H	4.79
TA8215H	4.96
TA8216H	8.01
TA8221H	0.00
TA8403K	2.31
TA8427K	3.76
TA8718N	7.69
TA8739P	6.01
TAA550B	0.31
TBAI20S	0.89
TBA120U	0.47
TBA820M	0.35
TDAIO13A	1.56
TDA1015	1.37
TDA1035T	4.27
TDA1044	1.43
TDA1060	1.08
TDA1085C	2.74
TDA1170	1.82
TDAll 70 N	2.57
TDA1170S	2.05
TDA1180P	2.48
TDAI5160	3.59
TDA15180	4.27
TDA1519A	2.74
TDA1520B	4.50
TDA1524A	7.52
TDA1553Q	4.79
TDA1554Q	8.12
TDA15570	4.23
TDA15580	7.69
TDA1670A	2.98
TDA1675A	3.85
TDA1904	1.63
TDA1908A	5.61
TDA2002	1.12
TDA2005	1.83
TDA2006	1.06
TDA2030H	0.91
TDA2030V	1.46
TDA2050	4.56
TDA2270	12.08
TDA2540	1.29
TDA2541	1.12
TDA2577A	3.45
TDA2578A	3.20
TDA2579A	" 4.91
TDA25810	2.57
TDA2582	3.85
TDA2593	1.12
TDA2600	7.69
TDA2611A	0.64
TDA2611AQ	1.32
TDA2653A	4.70
TDA3190	2.05
TDA3330	14.21
TDA3505	2.40
TDA3560	6.13
TDA3561A	3.85
TDA3562A	4.62
TDA3565	2.74
TDA3566	.6.41
TDA3576B	10.31
TDA3592A	4.60
TDA3640	5.98
TDA3650	11.04
TDA3653B	1.54
TDA3653C	2.82
TDA3653CQ	2.57
TDA3654	1.44

3.20	TDA3654Q	2.82
5.97	TDA4500	4.66
5.11	TDA4501H	9.57
4.50	TDA4503	4.00
0.00	TDA4505E	7.35
4.79	TDA4505M	11.97
4.96	TDA4510	2.74
8.01	TDA4580	10.05
0.00	TDA4600	2.14
2.31	TDA4600/2/3	2.82
3.76	TDA4601	1.46
7.69	TDA4601D	1.46
6.01	TDA4605	4.10
0.31	TDA46052	1.97
0.89	TDA4950	1.76
0.47	TDA7240A	2.57
0.35	TDA8138	3.59
1.56	TDA8140	4.62
1.37	TDA8145	1.97
4.27	TDA8170	4.70
1.43	TDA8172	2.65
1.08	TDA8175	6.41
2.74	TDAB178FS	5.95
1.82	TDA8180	4.87
2.57	TDA8190	3.59
2.05	TDA83500	5.56
2.48	TDA8380	2.53
3.59	toag503	2.13
4.27	TEA1039	2.11
2.74	TEA2018A	2.29
4.50	TEA2029C	7.04
7.52	teaz031A	4.26
4.79	TEA2164	3.40
8.12	TEA2260	2.48
4.23	TEA2261	3.68
7.69	TEA5101A	6.48
2.98	TIC106D	0.82
3.85	TIC246D	1.54
1.63	TICP1060	0.60
5.61	TIP110	0.35
1.12	TIP112H	0.77
1.83	TIP120	0.40
1.06	TIP122	0.40
0.91	TIP2955	0.89
1.46	TIP29E	0.77
4.56	TIP3055	1.08
12.08	TIP31A	0.36
1.29	TIP32C	0.40
1.12	TIP35C	1.82
3.45	TIP41C	0.65
3.20	TIP42C	0.52
4.91	TIPL761A	1.85
2.57	TIPL791A	1.25
3.85	TL072CP	1.03
1.12	TMP47C432AP	P8189
7.69		15.19
0.64	TMP47C434N	3537
1.32		15.22
4.70	TMP47C434N	3555
2.05		16.63
14.21	TPU2732	10.05
2.40	U2829B	3.40
6.13	UC3842	1.46
3.85	UC3844	1.20
4.62	UC3844N	1.91
2.74	UPC1318AV	3.85
.6.41	UPC1365C	1.70
10.31	UPC1378H	1.71
4.60	UPC1394C	1.92
5.98	UPC 1488H	2.99
11.04	UPC1498H	2.31
1.54	UPC574J	0.86
2.82	X2402P	5.78
2.57	ZTK33B	0.28
1.44	2TX650	0.51

4.66
9.57
4.00

Al19
$\begin{array}{ll}0.36 & \text { BC557 } \\ 0.71 & \end{array}$ $\begin{array}{lll} & 0.31 & \text { BC557B }\end{array}$

AN5265 AN5512

\qquad
\qquad

$\begin{array}{ll}\text { \& BT151500R } & \mathbf{1 . 1 2} \\ \text { BT151800R } & \mathbf{1 . 1}\end{array}$

TA7281P
TA7698AP

32 Temple Street, Wolverhampton, WV2 4AN, UK Tele ++ 44 (0)1902 773122 Fax ++ 44 (0)1902 29052

Letters
anyone need a van driver, sweeperup or suchlike? I don't mind, anything considered!
Mike Haywood, MHTV,
Falmouth, Cornwall.

The Neutral Screw

David Smith (Letters, May) observes that the "negative". screw in a UK 13A plug tends to come loose. He means the neutral screw of course, but let's not get sidetracked. Here are two possible explanations.

First; some manufacturers dip the stranded wire ends of the mains cable in solder. This contains lead, which 'creeps' under pressure. The lead exhibits the phenomenon of 'cold flow' until the pressure is relieved. Hence a loose wire. The live wire is less likely to have solder on it because most people trim it back to fit inside the plug.

Secondly, the neutral retaining screw goes into the pin directly, while the live screw goes into the fuseholder. The neutral screw is therefore subjected to shock and vibration each time the plug is inserted or removed from a socket. The effect is exacerbated by the lack of a locking washer for the screw.
Martin T. Pickering, B.Eng., Sandbach, Cheshire.

With reference to David Smith's letter (May, page 482), I would like tooffer the following suggestion as to why a loose neutral mains plug screw can cause a destructive fault when a loose live side screw won't.

When the neutral side of the mains supply goes open-circuit, a current flows from the chassis circuitry to earth. For example, if the live side is at 350 V with respect to earth and the neutral side is opencircuit, in 100 nsec a current of 35 mA flows to earth via the stray capacitance (say 10 pF). This could turn on power devices unexpectedly. Inductive effects and arcing could alter this simple analysis of course.

If the foregoing is valid, failures may occur in wrongly-wired houses that have single-pole neutral switches at ring-main outlets. Is there any evidence to suggest that this is a cause of destructive failures?
Ray Porter, M.Sc., C.Eng., M.1.E.E., Stourbridge, W. Midlands.

Daewoo Spares

The phone number given in the Television TV/VCR Spares Guide 1998 for ordering spares from Daewoo is the old main switchboard number. The correct phone number, for account holders only, is
01189252606.

The address details are correct.
Non-account holders can order spares through our distributor

SEME:

Manoj Aggarwal, National Service Manager,
Daewoo Electronics Sales UK Ltd., Wokingham, Berks.

Try Zambia

In the May issue (page 483) you printed my letter on being able to supply semiconductor devices and VCR drive components that are difficult to obtain. Readers can now use our e-mail address, which is

kalibu@zamnet.zm

Our fax number is 002602
221055, telephone number 00260 2 226871. As much information as possible should be provided to help us identify the required item. M.P. Nalletambly, Box 23186,

Kitwe, Zambia.

Mel's Mod

I've been carrying out a similar modification to that described by Mel Davies (letters, April, page 427) for some time. The current demand seems to be rather close to the limit for a 7812 regulator however. I therefore use two in parallel, with an 0.47Ω resistor in series with each
output for current sharing (instead of a single resistor on the input side) this is necessary to allow for manufacturing tolerances that affect the exact output voltage of each individual regulator.

If you examine the manufacturers' data sheets for the 78XX family of three-terminal regulators you will find that decoupling capacitors are required at the input and output to ensure stability. The values should be between $0.47 \mu \mathrm{~F}$ and $2 \cdot 2 \mu \mathrm{~F}$. These capacitors should be mounted as close to the regulator as physically possible.
I. Field,

Letchworth, Herts.

Through-PCB Rivets

A few years ago manufacturers started to use through-PCB rivets for some connections in TV sets, particularly the line output transformer and transistor and high-wattage resistors. As a result, a fault that is potentially dangerous can occur in some sets: the solder between the rivet and the print land becomes dry-jointed, followed by arcing and eventually a burn up on the board.

Within the space of a week I had a number of JVC sets and three Philips Gl 10 chassis that had this fault. In each case the joint was at the line output transformer connection to the collector of the line output transistor. There was a large hole in the board in one of the Philips sets.

My advice is to resolder these joints whenever a set comes in for service.
David Belmont,
Wembley, Middx.

What's Cooking?

My thanks to those who, in the June issue, commented on my article on microwave oven servicing (April, page 404). Sorry for my mistake about ionising radiation. It was a genuine slip, after I'd been looking into the possibility of X-ray radiation from some types of magnetron. I abandoned this search as it led nowhere. It is my practice to check for leakage before and after servicing an oven, which is a wise precaution. There's a lot of RF power in that little box, fed by lots of volts with a deadly current-provision capability.

The design of a meter for voltage checks in the magnetron circuit was going to be done with safety in mind. Several checkers are available in the USA, but I suspect that they are made for profit rather than to perform any really useful func-
tion in magnetron circuit fault diagnosis. I favour the probe idea, and have been experimenting along these lines, so far without any danger to life and limb!

Finally, I would like to stress again the need for extreme caution when dealing with microwave ovens. There must be an intact earth wire from chassis to the mains plug's earth pin, and the oven must be earthed when installed in its operating position. Follow the manufacturer's instructions for measuring leakage and power output. Get your leakage tester checked regularly, and observe all the safety precautions. If you worked in a service department in the days of valves, or on high-power valved equipment as I did, you will know the folly of taking chances or becoming careless. A $2 \cdot 1 \mathrm{kV}$ AC supply at up to 500 mA is definitely a killer - it's the voltage used for the electric chair. J LeJeune,
Ravenshead, Notts.

Digital Picture Quality

I am intrigued by the idea that digital television will bring the viewer improved picture quality (as if the viewer could tell the difference anyway!). I wonder where this idea came from?

The system may be capable of providing a better image, but that's a very different thing from what it will be asked to do. It's a long time since even the existing PAL system was strained by anything outside the vertical interval, and I can't see that changing.

When I worked in ITV, many of us thought that the ITN news studio was the standard for picture quality, with BBC news close behind and nearly all other programme content being much inferior. This is how it should be of course: if a company cannot produce a decent quality fixed studio shot, what can it do?

But ITN's standards fell years ago. For a long time now its pictures have been all nasty edges with no real sharpness - rather like a somewhat upmarket VHS picture in fact.

It is only recently that the BBC has started to slip - but, oddly enough, not so much with its studio pictures as with the inserts, which have become very noticeably noisy.

Most of the rest aren't worth a mention, and images via satellites are a joke (except for QVC). I would like to see a good-quality
picture via a digital service - or even an analogue one come to that - but I think I will be waiting for a long time.
A. Jaques, Stretford, Manchester

Health

I'm a 38 -year old TV engineer who joined the trade after leaving school at sixteen. When I was 27 I was struck down by leukaemia. Thanks to good treatment, followed by a bone-marrow transplant from my sister, I recovered from the illness.

I know two TV engineers in my area, of roughly my age, who have had cancer. Several older engineers have, sadly, died of the disease. This leads me to think that our type of work could involve a health risk.

I would like to hear from any other trade readers who have had leukaemia or some other form of cancer, or who know/knew anyone in the trade who developed this illness.
Brian Milne,
3 Chapelhall Cottages, Undy, Ellon, Aberdeen.

TELETOPICS

Digital TV Update

BDB claims to be "on track" to launch its digital terrestrial TV services in the last quarter of the year. A basic package of "at least twelve channels" will be available to subscribers at under $£ 10$ a month. At its first city presentation the company claimed that it would break even with just under two million subscribers: with three million it would make an annual profit of over $£ 100 \mathrm{~m}$, rising to more that $£ 250 \mathrm{~m}$ with five million subscribers.

BDB is to use the Mediahighway interactive system developed by the French pay-TV giant Canal Plus: in February BDB announced that it would use the MediaGuard conditional access system developed by Seca, which is jointly owned by Canal Plus and Bertelsmann. BDB has appointed BT to set up its customer management centre, which will be staffed by BDB employees but run by BT. The contract is for the whole of BDB's twelve-year licence period. More than a hundred people will be employed at the centre initially, rising to over 1,000 by the end of the licence period.

A new digital TV group, S4C

A PIP display with a set that uses Acorn Group's new acTiVe advanced digital TV system. This software-based technology enables many features to be built into a set and, since the software can be updated remotely, the set is made 'future-proof'. Interactive services such as web surfing, e-mail, home shopping and on-line games are some of the possibilities.

Digital Network, is likely to be awarded the remaining DTT multiplex by the ITC. It will include S4C and Channel 5 programming. Members of the group include United News and Media, S4C and NTL.

British Interactive Broadcasting (BIB), which is owned by BT, BSkyB, Matsushita and HSBC, looks set to get the go ahead from the European Commission's competition authorities following BT's announcement that it will dispose of its cable TV operations in Westminster and Milton Keynes. BIB plans to offer interactive TV services, such as home shopping and banking, via BSkyB's digital satellite TV services.

Research carried out by NOP found that 27 per cent of adults are aware of digital TV: the figure rose to 41 per cent in homes with a PC and/or internet access. A smaller survey carried out by Radio Rentals found that 28 per cent of the population had not heard of digital TV and nearly 60 per cent didn't know what a set-top box was.
Eutelsat, BT Broadcast Services and internet service provider Easynet
are piloting a system called Convergence-1. It's a high-speed DVB internet and TV service and could be launched by the end of the year. More on this in our report next month on the Cable and Satellite '98 Show.

Danish company ITE has developed WebChoice TV, which provides a TV set-PC link. Connection is via an audio lead, a series of audio cues being used to trigger special software stored on the PC's hard disc. This software turns on the PC's modem, giving access to a web site with content related to the TV programme.

The European Commission has blocked a proposed German digital pay-TV venture between media groups Kirch and Bertelsmann. It would have involved merging DF-1, Kirch's loss-making digital pay-TV service, with Premiere, an analogue subscription TV service controlled by Kirch and CLT-Ufa, which is partowned by Bertelsmann. DF-1 is now to be closed. The EC's decision could delay the introduction of multi-channel, interactive digital subscription TV in Germany.

VHS-ET

JVC has developed a new VHS format called VHS-ET (the ET stands for Extended or Enhanced Technology). As with S-VHS, there is considerably improved resolution: VHS-ET is understood to be capable of close to 500 lines. The format uses standard VHS tape, relying on improved heads and signal amplifiers to provide the higher performance.

Unfortunately ET recordings cannot be played back via a standard VHS machine unless it has 'quasi S-VHS playback', which is rare. They can be played back with an S-VHS machine. The format is to be launched in Japan this summer and in the USA this autumn. There are no plans for a European launch to date.

Sega's Dreamcast

Sega has announced its next-generation games machine, called Dreamcast. It uses 128 -bit technology, is internet-ready, and will run a version of Microsoft's Windows CE operating system. Dreamcast will be Sega's flagship product and is expected to help restore the company's position in the highly-competitive global video games market.

Business News

Matsushita Electric Europe recorded a double-digit increase in sales last year and plans to increase the proportion of goods made in Europe. This will reduce transport costs and increase its ability to meet local consumer requirements. Europe accounts for about ten per cent of Matsushita's total turnover.

Lite-On Technology, the Taiwanese electronics company, is to reduce output of computer monitors sharply at its Mossend plant in Lanarkshire. Two of the three production lines will be closed down and two thirds of the 350 strong workforce made redundant. Intense competition from Asian companies following recent devaluations is blamed. The company expects an upturn in the global market within the next twelve months. The plant is close to that of Chung Hwa Picture Tubes, whose current output is for TV sets only.

The South Korean LG group has taken full control of Zenith, the last indigenous US TV setmaker. LG acquired a majority shareholding in 1995. There is to be a debt-for-equity swap and new capital under a bankruptcy reorganisation plan. In future LG will supply the TV sets and other products sold under the Zenith brand name.

The Betamax Website

The Betamax website is now a year old, providing plenty of evidence that these sophisticated VCRs are still in wide use on both sides of the Atlantic. But spare parts are becoming more difficult to obtain and most service personnel no longer have the expertise to be able to carry out repairs. To help with this, the website includes a list of suppliers and engineers in the UK and USA. There are in fact over 240 pages at the website, which is essential surfing for anyone interested in these machines. The address is
www.elektratec.co.uk
The site was started by enthusiasts Alan Barnett and Martin Evans in London. It's known as the PALsite because it concentrates on European models. For further details you can contact the PALsite on 07050612 290, Alan Barnett on 01812411140 or Martin Evans on 07050612063.

Polar Instruments has launched a unique flying probe PCB test system which has been designed for manufacturers and for service organisations that deal with particular equipment in quantity. The FT100 test system provides completely automated PCB probing and is particularly helpful with fine-pitch boards. It operates with any Polar PFL series PCB fault locator for component-level fault diagnosis. Five tests per second can be carried out, employing Polar's analogue signature analysis (ASA) technique: the board being tested does not need to be powered. For further information contact Polar Instruments Ltd., Garenne Park, St. Sampson, Guernsey, Channel Islands GY2 4AF. 0148153 081,
fax 0148152476.

Digital TV Technology

Computer company Acom has demonstrated a set-top box technology based on software rather than dedicated hardware. The advantage of using software in conjunction with a powerful processor, in this case an Intel StrongArm 1500, is a considerable increase in operating flexibility, overcoming many interoperability problems. Signals from different sources and using different interactive standards can be handled. As new requirements arise, extra software can be downloaded. The StrongArm 1500 runs at 300 MHz , enabling the system to decode two MPEG-2 data streams simultaneously: thus one channel can be watched while another is being recorded.

Matsushita believes that the next leap forward is likely to occur in 2003, when processors that operate at 10 bn operations $/ \mathrm{sec}$ become available at a reasonable price. They will be sufficiently powerful to enable multimedia tasks to be performed using software, bringing about a dramatic reduction in cost.

Matsushita is already working along these lines. It has developed a media core processor (MCP) that uses $0.35 \mu \mathrm{~m}$ silicon and operates at 3.3 bn operations $/ \mathrm{sec}$ with a clock speed of 54 MHz . The MCP is a powerful, programmable device capable of performing a number of multimedia tasks such as DVD and TV set-top box decoding. It combines a
signal processor with a very long instruction word core. The processor handles sequential tasks such as MPEG stream analysis or the calculation of graphics coefficients while the core unit carries out more intensive tasks such as MPEG video decompression. The microcode routines required for processing are downloaded.

Matsushita is now working on an $0.25 \mu \mathrm{~m}$ MCP rated at 5 bn operations/sec with a clock speed of 81 MHz .

Microsoft is working on voice-controlled set-top boxes for digital TV, using techniques developed by the Belgian linguistics software company Lernout and Hauspie and Creator. The chip set under development will enable the user to select channels, call up web pages and download information and video from the internet by talking into a microphone. Spoken commands are converted into a digital signal that's sent to the settop box in RF form. The Windows CE operating system will be used - it can already handle the speech technology. The system could be ready for production before the year 2000.

VLSI Technology has announced new chips for digital set-top boxes and full receivers. The latest introduction is the VES9600, which demodulates digital terrestrial TV transmissions using the DVB-T
standard. It provides a three-chip receiver in conjunction with the VES2700 for MPEG-2 transport control and the VES6100 for MPEG-2 decoding. VLSI has the VES1893 for satellite digital TV demodulation and the VES1820/VES 1900 for cable digital TV receivers. Another new chip, the VESI848, is a return-channel modem for interactive TV with cable systems.

VLSI subsidiary Comatlas has developed the CAS2043 plug-in board to enable a PC to receive digital satellite TV and data transmissions. The board is intended primarily for professional use, but similar products at consumer prices are expected to be available "before too long".

Texas Instruments and Philips Semiconductors have entered an interoperability agreement on physical layer IEEE 1394 (FireWire) chips running at $400 \mathrm{Mbits} / \mathrm{sec}$. An article on the FireWire digital interconnection system appears on a later page. As part of the agreement, TI and Philips will share specification information for their next generation of two-, three-, fourand six-port $400 \mathrm{Mbits} / \mathrm{sec}$ physical layer devices. The individual companies can provide product differentiation by incorporating additional features and capabilities while conforming to a common pin-out, packaging and signalling specification.

Factors that determine the performance of an LNB with digital satellite transmissions

LNBs for Digital Systems

When a satellite uses digital transmission it can deliver more information in the same bandwidth than with analogue transmission. In addition, there's an improvement in the quality of the signal. To take full advantage of this, the receiving LNB must suit the digital signal characteristics.
Technically, there are over fifty factors that should be considered, including RF leakage, in-band spurious performance, out-of-band spurious performance, long-term ageing effects, vibration effects, corrosion resistance, intermodulation performance, dynamic range, reliability, tolerance of electrostatic discharge and many others. There are however a few key specifications that we will consider here - noise figure, gain, LO frequency stability, phase-noise performance, susceptability to microphonics and input VSWR.

Noise Figure

This is a measure of how much noise the LNB adds to the received signal. The lower the noise figure the better the reception, of weak signals in particular. With Cband ($3 \cdot 4-4 \cdot 2 \mathrm{GHz}$) LNBs the noise figure is usually expressed in Kelvin, a unit that relates to absolute zero or the level of molecular activity. It is technically incorrect to refer to degrees Kelvin. Zero Kelvin represents no noise. A very good figure for a C-band LNB is 15 Kelvin : 30 Kelvin is more typical.
With a Ku -band $(10.7-12.7 \mathrm{GHz}$) LNB the figure is expressed in dB . A very good noise figure for a Ku -band LNB is $0.6 \mathrm{~dB}: 0.8 \mathrm{~dB}$ is more tyical. As a point of reference, $35 \mathrm{Kelvin}=0.5 \mathrm{~dB}$.

Gain

Gain is also expressed in dB . With a digital system it is important that the LNB's gain does not vary significantly with temperature over the received bandwidth - digital systems are much more sensitive in this respect than analogue ones. With a digital system a gain of $55-65 \mathrm{~dB}$ under all conditions is typically required. Gain flatness
across a $500-800 \mathrm{MHz}$ band should be better than $\pm 5 \mathrm{~dB}$, and less than $\pm 1 \mathrm{~dB}$ over 27 MHz . Greater variations can introduce gain distortion with reduced receiver performance as a result.

LO Stability

Three main types of local oscillator are used in LNBs.
(1) The dielectric resonant oscillator (DRO). Frequency conversion is determined by a free-running oscillator whose operation is stabilised by a piece of ferroceramic material.
(2) The phase-locked loop (PLL) type. An internal tem-perature-compensated crystal oscillator is incorporated within a digital phase-locking circuit.
(3) The PLL type with external reference. A reference oscillator outside the LNB, usually in the receiver, is used to control the frequency of the internal LO. In most cases the reference frequency is 10 MHz . Connection is via the coaxial downlead.

Different digital signal types and bandwidths call for different degrees of frequency stability for optimum receiver performance. With a wideband signal such as MPEG-2 TV, frequency stability is not so important as the receiver tuning can be wider. With an SCPC radio broadcast the bandwidth is very narrow, calling for a high-stability PLL system to enable the receiver to track the signal.
The frequency stability with a DRO oscillator is $\pm 250 \mathrm{kHz}-1 \mathrm{MHz}$. This type is suitable for TV and wideband data broadcasts. With an internal reference PLL the frequency stability is $\pm 5-100 \mathrm{kHz}$, making it suitable for SCPC audio, news gathering and VSAT. The frequency stability with an external reference PLL is 0 $\pm 1 \mathrm{kHz}$: applications include satellite paging and nar-row-band data.

Phase-noise Performance

The phase-noise specification indicates the level of noise introduced at various frequencies away from the converted carrier frequency. This noise is generated by the LO and is an indication of the oscillator's quality. In the specification, the frequency separations from the carrier are $100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}$ and $1 \mathrm{MHz}-$ Table 1 shows typical Ku-band LNB phase-noise specifications.
With a digital system the bit error rate (BER) at the receiver is affected by the phase noise in the signal fed to it: the higher the noise level, the greater the number of errors.

Microphony

An installed LNB is subject to the elements - wind, rain etc. Rain or hail hitting it will produce small disturbances in the LNB's electrical performance. Wind will move or vibrate the dish with similar effect. These disturbances are superimposed on the incoming modulation. It's possible for the distortion introduced by such disturbances to be so great that the incoming signal cannot be resolved. The LO is the circuit most likely to be affected. Great care with the mechanical and electrical design of an LNB is required to minimise microphony.
There are no standards or units of measurement for LNB microphony. Simulated rain drops or other means are used for evaluation.

Input VSWR

The voltage standing-wave ratio at the input is sometimes referred to as the return loss. It's the ratio of the incident voltage/primary voltage wave present in a transmission line or waveguide to any reflected voltage present as a result of mismatching. Under optimum conditions, where there is a perfect match between the feed and its load (the LNB), the VSWR is $1: 1$. In practice, because of electrical and physical variations this is not possible. The reflected energy is lost and, in addition, interferes with the incoming wave, producing further loss.
A good match between the feed and the LNB is most important for maximum signal transfer to the LNB. Table 2 shows the approximate effect of VSWR on the noise performance of a Ku-band LNB with a noise figure of 0.8 dB . It highlights the considerable effect that the input SVWR can have on an LNB's noise figure.

In Conclusion

With some applications selection of the correct LNB makes the difference between a system operating at full potential or one that gives far less than satisfactory performance. A high-stability or even an external reference PLL LO is required with a satellite digital paging system. Examples in the Norsat range are the 1000 and 3000 series. With an MPEG-2 digital TV signal a highstability DRO LNB is suitable, such as the Norsat 4000 series. SNG trucks use PLL LNBs such as the Norsat 1000 series for the most reliable performance in the worst conditions.
Most operators appreciate the importance of an LNB's noise figure, gain and LO stability, but other factors such as microphony, input VSWR and phase noise also require attention. It is important to check all these parameters in a manufacturer's specification.

Aknowledgement

The above paper by Don Filmer, V.P. Engineering of Norsat, was presented during a seminar at Cable and Satellite '98, which was held at Earls Court 2 in May.

Table 1: Typical Ku-band phase:noise specifications.

Offset	Analoge $D R O$	Digital $D R O$	Int. ref. $P L L$	Ext. ref. $P L L$
100 Hz	NS	NS	$-70 \mathrm{dBc} / \mathrm{Hz}$	$-65 \mathrm{dBc} / \mathrm{Hz}$
1 kHz	$-55 \mathrm{dBc} / \mathrm{Hz}$	$-65 \mathrm{dBc} / \mathrm{Hz}$	$-75 \mathrm{dBc} / \mathrm{Hz}$	$-75 \mathrm{dBc} / \mathrm{Hz}$
10 kHz	$-70 \mathrm{dBc} / \mathrm{Hz}$	$-80 \mathrm{dBc} / \mathrm{Hz}$	$-80 \mathrm{dBc} / \mathrm{Hz}$	$-85 \mathrm{dBc} / \mathrm{Hz}$
100 kHz	$-85 \mathrm{dBc} / \mathrm{Hz}$	$-100 \mathrm{dBc} / \mathrm{Hz}$	$-85 \mathrm{dBc} / \mathrm{Hz}$	$-95 \mathrm{dBc} / \mathrm{Hz}$
1 MHz	$-95 \mathrm{dBc} / \mathrm{Hz}$	$-100 \mathrm{dBc} / \mathrm{Hz}$	$-95 \mathrm{dBc} / \mathrm{Hz}$	$-105 \mathrm{dBc} / \mathrm{Hz}$

NS = Not specified.

Table 2: Effect of input VSWR on the noise performance of a Ku-band LNB.

LNB	Feed VSWR	VSWR loss	Effective LNB NF
$3.5: 1$	$1: 1$	1.6 dB	$0.8+1.6=2.4 \mathrm{~dB}$
$3: 1$	$1: 1$	1.2 dB	$0.8+1.2=2 \mathrm{~dB}$
$2.5: 1$	$1: 1$	0.8 dB	$0.8+0.8=1.6 \mathrm{~dB}$
$2: 1$	$1: 1$	0.5 dB	$0.8+0.5=1.3 \mathrm{~dB}$

Codes for Passive SMDs

The following code marking systems are widely used for surface-mounted resistors and capacitors. They give the resistor value in ohms and the capacitor value in picofarads.
With the three-symbol code the first two digits are the base figures and the third the multiplier (number of zeros to add). Thus $270=27 \Omega$ or $27 \mathrm{pF}, 331$ $=330 \Omega$ or $330 \mathrm{pF}, 472=4 \cdot 7 \mathrm{k} \Omega$ or $4 \cdot 7 \mathrm{nF}$ etc. $2 \mathrm{R} 2=2 \cdot 2 \Omega$ and $2 \mathrm{P} 2=2 \cdot 2 \mathrm{pF}$. This code is also used for some wire-ended components, e.g. small disc ceramic capacitors.
The two-symbol code uses a letter to indicate the base figure, again in Ω or pF , followed by a multiplier number. The code is as follows:

$\mathrm{A}=1$	$\mathrm{M}=3$	$\mathrm{Y}=8.2$	$0=\times 1$
$\mathrm{~B}=1.1$	$\mathrm{~N}=3.3$	$\mathrm{Z}=9.1$	$1=\times 10$
$\mathrm{C}=1.2$	$\mathrm{P}=3.6$	$\mathrm{a}=2.5$	$2=\times 100$
$\mathrm{D}=1.3$	$\mathrm{Q}=3.9$	$\mathrm{~b}=3.5$	$3=\times 10^{3}$
$\mathrm{E}=1.5$	$\mathrm{R}=4.3$	$\mathrm{~d}=4$	$4=\times 10^{4}$
$\mathrm{~F}=1.6$	$\mathrm{~S}=4.7$	$\mathrm{e}=4.5$	$5=\times 10^{5}$
$\mathrm{G}=1.8$	$\mathrm{~T}=5.1$	$\mathrm{f}=5$	$6=\times 10^{6}$
$\mathrm{H}=2$	$\mathrm{U}=5.6$	$\mathrm{~m}=6$	$7=\times 10^{7}$
$\mathrm{~J}=2.2$	$\mathrm{~V}=6.2$	$\mathrm{n}=7$	$8=\times 10^{8}$
$\mathrm{~K}=2.4$	$\mathrm{~W}=6.8$	$\mathrm{t}=8$	$9=\div 10$
$\mathrm{~L}=2.7$	$\mathrm{X}=7.5$	$\mathrm{Y}=9$	

Aluminium electrolytics may have a three-symbol code with numbers to indicate capacitance in $\mu \mathrm{F}$ and a letter to indicate the voltage rating. The letter code is as follows:

$$
\mathrm{C}=6.3 \mathrm{~V}, \mathrm{D}=10 \mathrm{~V}, \mathrm{E}=16 \mathrm{~V}, \mathrm{~F}=25 \mathrm{~V}, \mathrm{G}=40 \mathrm{~V}, \mathrm{H}=63 \mathrm{~V}
$$

The position of the letter indicates the decimal point position in the capacitance value. Thus $\mathrm{F} 47=0.47 \mu \mathrm{~F} 25 \mathrm{~V}, 3 \mathrm{E} 3=3.3 \mu \mathrm{~F}, 16 \mathrm{~V}$ and $22 \mathrm{C}=22 \mu \mathrm{~F}$ 6.3 V .

This information is intended to supplement the surface-mounted device (transistors/diodes) listing contained in the supplement to our May 1998 issue.

Reports from
Graham Richards Michael Dranfield Nick Beer and Hugh Cocks

BT SV5300

We've had several power supply faults with these receivers. If the power supply is dead, check R802 ($100 \mathrm{k} \Omega$). It's best to úse two $47 \mathrm{k} \Omega$, IW high-stability resistors as the replacement. Also check C805 ($220 \mu \mathrm{~F}, 25 \mathrm{~V}$).

If the power supply is trying to start up or takes five minutes to do so, replace C810 and/or C825 (both $1 \mu \mathrm{~F}, 63 \mathrm{~V}$). The resistance across R811/814 should read 1.5Ω. If it's higher the power supply may begin to trip.

Here's a point to note. If you remove the VideoCrypt decoder PCB, beware of the rear support pillars. They are not secured to the cabinet, and can crack the bottom PCB if too much pressure is exerted! G.R.

Pace MSS100

If the power supply is dead, check D9 (RGP10K) on the secondary side. You will usually find that it's short-circuit. M.Dr.

Pace MSS1000

This receiver wouldn't decode VideoCrypt transmissions and there were no on-screen displays. The contrast level had been set to maximum on the menu - the field engineer had tried this as a setting below three will cause the problem. It was noticeable that with clear channels the contrast, i.e. video level, was low.

Scope checks showed that there was the normal 2 V peak-to-peak output from the Nicky chip, and that the signal level remained OK through stages Q53 and Q57. It dropped to a maximum of 800 mV p-p at the output from Q58 (BC856B). This surface-mounted pnp transistor had gone high-resis-
tance. A replacement restored normal operation. N.B.

A Cable Problem

The problem with a six-year old installation (Pace SS9200 receiver) was sparklies on the higher-frequency channels such as UK Gold, Sky Sports 3 and CNN. Lower-frequency signals continued to produce good results.

The dish was checked and found to be correctly aligned. A new LNB produced a marginal improvement, no doubt because it had a lower noise figure and produced a few more dBs of IF output than the original one, but reception of the higher-frequency channels still wasn't as it should be. Time to investigate the cable run.

A temporary substitute cable from the LNB to the receiver in the living room produced good signals on all channels, even with the old LNB. The original cable disappeared into the loft, where a length of it was found attached to a hotwater pipe with some cable ties - a practice not to be recommended! When I removed the cable I found that the section which had run alongside the pipe was very rigid in comparison with the rest of it. The new cable was installed well away from the offending pipe! H.C.

Eclipsed . . .

Reg is retired and looks after some houses for friends who are often away for several weeks. He rang one Monday morning recently to say that the satellite picture at one of the houses in his care was full of snow. Could we call to have a look, as the owner was expected home the following thursday?
When I called later that day I
found that a large spider had made a home in the scalar feed tube at the 1.2 m dish. After removing the spider and fitting a small piece of polystyrene at the entrance to the tube to prevent a repeat performance, I carried out a slight dish alignment peaking to wrap up the job. Spring is always the worst time for insects making themselves at home in prime-focus dish feeds. Some of them get right down the end of the tube. Don't use your finger as a test probe you can never be quite sure what's there!
On Thursday Reg rang on our mobile phone in great panic. "It's the same as before, all snow, and they've arrived!" This seemed rather strange, unless the polystyrene had worked loose and the spider had returned. It doesn't usually come out however, and I always ensure that it's a tight fit. Visions of polystyrene eating spiders came to me!
Reg was waiting when I arrived He switched the TV set on and a perfect picture appeared. The polystyrene was firmly in place, and the dish was firmly locked in position.
Then it dawned on me. Reg had checked the signal at about 10.20 in the morning and it was early March, right at the time when the sun has an eclipsing effect on Astra. The sun is a much stronger source of radio energy than Astra: while it is within the dish's beam width there will be picture degradation or disappearance. Exactly the same symptoms produced by a large spider! Had Reg left the TV set switched on, he would have seen the pictures start to reappear fairly quickly. The moral could be: don't watch TV in the morning! H.C.

The Chinese Digital Channel

I was recently asked to install a digital receiver for the Chinese channel via Astra. This is now available as a vertical transmission (we're outside the horizontal digital Astra footprint here) at 11.778 GHz , as part of the Canal Plus package. The receiver was a Canal Plus digital type with built-in MediaGuard conditional access - fortunately the menus are in English. It's actually the Philips Model DRD-DSI175B/05G. The Canal Plus version is referred to as the Philips 96514D.

The photocopied instruction manual is also in English, and is well-written by someone with experience of digital installations and the causes of any problems that might arise. It gives the symptoms, for example the picture breaking up into squares when the signal is weak.

There's no UHF modulator, but the receiver comes with a good-quality scart lead and has video and TV scart sockets. Nor does this version have an internal modem - there is provision for an external one to be connected. There are two card slots, one for the subscription card and the other for a smart bank card to enable payments to be made for pay-per-view programmes. The instruction book said that the latter slot has no function with this version of the receiver. In operation the box runs quite cool, which was a pleasant surprise.

An on-screen menu assists with dish installation. The receiver already knew what signal to head for (11.778 GHz vertical), though a different one can be entered manually. A signal-strength bar display, reading $1-5$, helpfully turns green at 3 - anything above this level is acceptable. The receiver is then left to scan the band. It lists the names of all channels found, whether scrambled or not. Prior to the scan you can ask the receiver to place the Chinese Channel (TVB Superchannel) as first on the list of channels found, or it can be picked from the scanned list (in this case it's channel 247) and placed in the favourite list.

The free-to-air digital channels via Astra are available, including CNN, TNT, Fashion TV, RAI-1, TV5, Moroccan TV, Egyptian TV and a mass of German stations. Scrambled ones produce an identification, after which the screen remains solidly blank. The scanning process takes up to twenty minutes, during which an on-screen bar display indicates how many stations have been found and the percentage of the scan completed. The symbol rates and forward error correction values don't have to be entered, but signals with a symbol rate of less than 15,000 are not catered for

Amongst other oddities after the scan, Pace receiver information was listed just as a 'station name' - I suspect that this is for the Dutch receiver software upgrade. One prob-
lem is that although the receiver remembers the main scanned channel list, in the event of even a brief power cut the favourite channel list is immediately forgotten.

The favourite channels are picked from the main list: then, in the 'favourite mode', you can skip the unwanted ones. If you force the receiver to place TVB Superchannel on 1 during the initial scan, after a power cut all you have to do is to enter 1 via the remote control unit - otherwise 247 has to be entered, then the entire favourite procedure has to be repeated. I briefed the customer on the procedure and haven't had a call for help so far.

The receiver reinserts conventional teletext data on a normal PAL signal, so that the TV set's text decoder functions in the usual way. With the digital receivers I've come across previously, teletext is at best available via the set's own remote control or there are no teletext facilities at all.

I feel that, certainly as far as the digital receiver enthusiast market is concerned, a tuner should be linked to a PC for band scans and channel organising. The data can then be uploaded to a digital receiver - a sort of digital PaceLink system. I hope that the Sky digital receiver box will have userfriendly favourite menu structures.
For those with internet access, more information on the Chinese Channel can be found at http://www.chinese-channel.co.uk H.C.

May we send you full details?
J. W. HABOY CDMMUNICAIONS, 231 Station Foad, Birmingham B33 888 Telephone $01217848478 F a x: 01217897931$

M.C.E.S.

Specialists in the Service and Recalibration to original manufacturers specification of:All types of:-

TUNER UNITS TO 20 GHZ

BOOSTERS \& RF MODULATORS COMBINED TUNER AND IF UNITS
Supply of Upper Drum Assy's for all video recorders including time lapse, marine and aviation requirements, either as new or remanufactured using your original drum and new grade A chip sets.
We are able to service, recalibrate and confirm manufacturers specifications for all low noise blocks.
New LNB's can also be supplied to order.

15 Lostock Road, Davyhulme Manchester M41 0ES
 Telephone: 01617468037
 Fax: 01617468136

What a Life!

Donald Bullock makes a Very Cruel Device that produces shocks and gets his comeuppance. Then there are sets and customers. And a puzzle about where the voices come from

Poor Daddy B does his scribbling all by himself in his wooden shack in the garden, away from everybody's noises and distractions. Greeneyes' dogs recently discovered it, and have on occasion done their business there.

This annoyed Daddy B very much. He doesn't particularly like dogs, especially pampered ones that do unspeakable things in his shack. So he decided to adopt a Very Wicked Wheeze: he sorted out some odds and ends from his junkbox and built himself a Very Cruel Device - a pulsing shock machine. He connected this to a pair sprung wires which he strung across the shack's doorway, just above floor level.

Then he pretended to go out. But, instead, he sat behind a bush with a whiskey and watched. Presently Greeneyes' dogs trotted up to the door and touched their noses against the wires. Then they made lots of yelping noises and did double somersaults all over the garden. Daddy B laughed happily and rubbed his hands together. But Greeneys said he was wicked, cruel, drunk and she didn't love him any more.

Daddy B didn't care. He connected an extra capacitor across the output of his Very Cruel Device to make it even Crueller, and made sure it was switched on all the time Though he left his shack door wide open, the dogs never darkened its doorstep again.

The time came for Daddy B to write his column. He stepped over the Very Cruel Wires carefully and started to clear his desk. This dis-
turbed some nasty mosquitoes, which Daddy B sprayed with his Cruel Mosquito Spray. They coughed and fell down dead. Except one, which flew about laughing. This made Daddy B Very Vicious. He spun around, spraying it. When it flew out of the door, Daddy B went after it.

Unfortunately he forgot about his Very Cruel Wires, and tangled his legs in them. They gave him lots of Very Cruel Shocks that made him shout and jump about Very Much. He hoped that no one had seen him dancing or heard him shouting some Very Naughty Words.

Greeneyes had of course. She said it served him right for perpetrating Cruel Things on innocent little dogs, and that he was to tell everyone in his column how Cruel and Wicked he really was.

But Daddy B mocked and told her she was getting like her mother. He hobbled off to his shack to write about his Nastiness - and to mend and refit his Cruel Wires ...

Sins

Some days later I was back in the shop when this cove with bright eyes and a shiny red face came in. He was carrying a sign on a small pole. "Be sure your sins will find you out" it read.
"I don't suppose I can help you?' I asked.
"It's my Mitsubishi" he said. "It has faded and died - Matthew 16, verse 6 (or something)."

I eyed him up and down.
"It's in my old pram outside" he continued, "there's a picture but
there isn't a picture."
"Right, I'll get it" I said.
When he'd pushed off, with his sign, I put his set on the bench. It was a CT2553STX (Euro 4Z chassis). There was sound, and the screen displayed some dull chunks of colour. Nothing else. When I increased the brightness I saw a faint raster as well.
"Strange fault" said Paul.
"No luminance" I replied. "You're looking at a raster plus the transmission's colour content but not its monochrome content, which provides the detail. They do it that way to save bandwidth."

When I opened the set up I saw that there were three upright panels at the rear of the chassis, secured by a plastic bracket. The one on the right is the chroma/luminance panel. I waggled it and the luminance flashed on and off.

When I examined the panel I found that during manufacture a dab of securing adhesive had been put between its print side and the bracket. This had dried and corroded the print beneath it. So I cleaned it off and bridged the gap. When I switched on again a good, complete colour picture appeared.

Mrs Tubbs' VCR

Meanwhile Mrs Tubbs had brought in a Samsung VI710 VCR. It was virtually dead, with just bits of the display visible. "One for you" I said, "I'm off to make the tea."

When I returned Paul was replacing the STK5333 regulator chip IC101. "I checked the outputs from the power panel, at the 12-pin plug CN101" he said. "Instead of

15 V at pin 1 there was only 1.3 V . At pin 4 there was 0.2 V instead of 5 V . These two supplies are both decoupled by $47 \mu \mathrm{~F}$ electrolytics, which are OK. So I think a new chip will cure the problem."

He finished fitting it and checked the voltages. This time they were right. The VCR had a full display and worked well.

The End

Later the shiny-faced cove returned with his sign.
"Your Mitsubishi's ready" I said. "Twenty quid to you."

He pulled out his wallet and smiled. "Ah, safely delivered from its woes" he said, "Mark 22, verse 4 (or something)."

I carried the set out to his pram for him. As he pushed it away I noticed that the sign was doublesided. "The End of the World is Nigh" it announced on the other side.

Egbert Craddock

Our next customer was Egbert
Craddock, who always looks as though he's riding a bike against the wind. He struggled in with a B\&O 7180.
"I switches him on, right?" he bawled.
"If you say so" I replied.
"He clicks four times then goes off, right? That's no good to anyone, right?"
"You've cracked it man" I said, "give it here."

He left the set and made off. Steven took the back off and found the cause of the trouble immediately. This sort of thing narks me.
"It's just the blue focus unit" he said, "hand me a new one will you?"

I did and it did the job. "Too clever by half' I muttered.

Flighty's Visit

Mr Flighty came in, frowned at me, bought a flylead and winked at Greeneyes.
"What's worse than a giraffe with a sore throat dear?" he asked.
"Dunno" said Greeneyes, brightening up.
"A centipede with corns of course" he blurted out. "Har, har, har!!" Then off he minced, leaving Greeneyes laughing happily.

She caught my eye. "Coppades, arnohyeh, da?" she said as she laughed.
"Just a minute" I said, "you're not gibbering with Flighty now. Let's have it in English."

She looked at me coldly.
"Merely asked whether you'd like a cup of tea, or not yet. You really will have to do something about your increasing deafness."

Later she came in with the tea. "Careful, it's hot" she said.
"Cartful of what?" I asked, frowing and looking about as though puzzled.
"Don't be funny" she replied.
"Toast and honey?" I asked.

A Philips K40

Major Haggerty, the bristling military no-nonsense blimp, brought in a Philips Model 22CS5751 - the old K40 chassis.
"It needs a spell in the guardhouse" he barked. "Only works in the sunshine. Otherwise whines instead. Had a coolie like that once, in the Himalayas. Yanked his head of in the finish and kicked him to the tigers . . ."

He was right. About the set I mean. At switch on it whined loudly and refused to start up until we heated the power supply with our hairdryer. Then it was OK. So we cooled the power supply down and then directed the hairdryer's heat via a funnel at various components in this section. The culprit turned out to be C2128. A replacement put an end to the nonsense.

We've had this fault before. Be careful about identifying the capacitor: there's another C2128, in the EW modulator circuit.

Little Men

When I was a small boy I was fascinated by the voices and music that came from our wind-up HMV cabinet gramophone and our huge Ekco wireless set. I knew that Henry Hall's orchestra consisted of dozens of dinner-suited musicians and their instruments, because I'd seen a picture of them. How could they get into our wireless? Obviously they would have to be shrunk. Assuming this to be possible - the early Thirties was a time of mechanical and electrical miracles - how, I wondered, did they sneak in and out?

Whilst they were in there, what did they do about eating and sleeping and other things. The answers evaded me.

And our gramophone. When father played an Al Bowlley record Al sang immediately. When the tone arm was moved across the record he would cut in with different bits of the song. How did he know which bits to sing? Did he slip along the tone arm and look through the hole beside the needle?

Unfortunately Daddy B forgot about his Very Cruel Wires.

Then there were Bix

Beiderbecke's magic cornet sounds. He had died before I was born, yet he played for us from inside our gramophone. In the Thirties nobody scoffed much at the idea of ghosts. Had Bix slipped to some secret graveyard in the bowels of our gramophone?

My confusion increased when the wireless set when wrong and had to be opened. There were no little men or orchestras. Only a row. of rosy-coloured valves, bits of wire and Bakelite.

Then the spring in our gramophone broke. Inside there was just a dowdy box full of greasy metal cogs. Nobody could live in there, especially in their nice clean clothes!
"Where do the voices come
from, Dad?" I asked.
"Out of the air" he replied.
"Who put them in the air?"
"Never mind about that" he said brusquely. "Here's tuppence ha'penny. Slip over to Thomas's and get me a packet of Woodbines."

We have what is arguably the most reliable electricity generation and distribution network in the world, with both the voltage and the frequency accurately controlled. But with thousands of miles of wire and thousands of transformers, along with numerous circuit breakers and other control gear, most of which are exposed to whatever the elements care to throw at them, breakdowns are inevitable.
Most supply faults are trivial, causing only local inconvenience. But there is always the possibility of a real humdinger of a fault, such as a Grid transformer exploding, the result being total mayhem over a wide area. In addition to complete power failures, which don't usually constitute a risk to domestic electronic equipment, there can be spikes and surges, dropouts (loss of a few cycles) and brownouts (low voltage). These can all cause problems - especially with those nasty little chopper power supplies that crop up everywhere nowadays.

Thunderstorms

Spikes and surges probably cause most damage, and are the most common types of disturbance. Thunderstorms are a common cause. These can occur when unusually large cumulo-nimbus shower clouds form in unstable air, typically found in the cold sector of a depression, often along or just behind the cold front. You can get this type of storm at any time of the year. Summer thunderstorms are frequently produced by sudden convective updraughts of hot, moist air during a heatwave. Cumulo-nimbus clouds can build to a height of several miles, sometimes extending into the lower stratosphere, topped by the distinctive anvil formation that's a trade-
mark of a mature thundercell. Thunderstorms can sometimes hide amongst other innocuous clouds, waiting to pounce without warning.
The exact mechanism that produces the cloud's electrostatic charge is not known. It's thought to be the result of water drops and ice crystals breaking up in fierce upand down-draughts in the heart of the cloud. These fragments carry a static charge, and their motion inside the cloud is analogous to the way in which charges are carried on the belt in a Van de Graff generator.
The end result is a huge, delinquent electrostatic machine that rumbles around, looking for something to lob multi-gigavolts at. This something is all too often part of the electricity distribution system. An enormous amount of energy is stored in a mature thundercell. Fortunately most of it is dissipated by inter-cloud strokes. Earth to cloud strokes start with corona discharge from the ground, forming an ionised conductive channel to the cloud. The initial pilot stroke travels up this channel. The main stroke returns from cloud to earth, and may involve several discharges.
Because of the expense of running high-voltage cables underground, the National Grid is mostly carried overhead by pylons - frequently across some of the most exposed, inhospitable country that graces the OS maps. The pylons are often the highest things around, and have lovely pointed tops. What better target for a thunderstorm? Most strikes are to the pylons themselves, or to the neutral/earth conductor that joins their tops.
Sometimes the strike is to one or more conductors, and this is where the fun starts. Grid sections can be tens of miles long, and the transmission lines behave as, well, transmission lines. The pulse induced by a strike can
bounce back and forth between Grid substations until its energy has been dissipated. A lot of the energy flashes over the arcing horns fitted across the insulator stacks that support the cables, and the similar horns that adorn switchgear and transformers (see the accompanying photos). Electrical engineers also have at their disposal suppression devices that are more familiar to us - varistors, capacitors and chokes. They are just somewhat larger.
Despite all these measures, it's possible for a lightning strike to put a section out of action. The Grid network has a fair amount of built-in redundancy to ensure network integrity should individual sections suffer sufficient damage to prevent normal working. When a Grid line is struck, the section concerned is disconnected by high-speed, airblast-quenched breakers. Once the excess energy has been dissipated, the affected circuit is reconnected. The effect on local electricity supplies is those half-second or so blackouts that can crash a computer and make a fluorescent light restrike.
Lightning strikes become more dangerous the lower down the distribution hierarchy they occur. While the Grid and your local electrical supplier's primary highvoltage system can dissipate most of the energy in a strike, this may not be the case with a local $33 \mathrm{kV} / 11 \mathrm{kV}$ network. Rural distribution networks with their cables and pole transformers in the open are at particular risk. Urban systems with their underground cables aren't very much better off. A ground strike can produce a massive instantaneous current pulse with a potential drop of several kV per metre, easily able to induce similar potentials in nearby burried cables. A local distribution network may not have any built-in redundancy, so lightning damage can black out a large area until repairs are carried out.

Magnetic Storms

At least there's one form of electromagnetic mayhem from which we don't generally suffer in the UK: magnetic storms. Our planet is continually bombarded by the solar wind, a stream of charged particles that are emitted by the Sun. The terrestrial magnetic field (the magnetosphere) traps most of these particles in the Van Allen belts. Thus all but a tiny percentage is prevented from reaching the Earth's surface. What little does get through forms a large proportion of terrestrial cosmic radiation. Strictly speaking, particles from the Sun and other extra-terrestrial sources, known as primary cosmic radiation, don't reach the surface: collision between primary radiation and the atoms of gas in the upper ionosphere generates showers of lower-energy particles, the so-called secondary cosmic radiation, which is what we are exposed to on the ground.
Every so often, especially during sunspot maxima, the Sun's surface becomes even more disturbed than usual and the solar wind can turn into a gale. When the vastly increased number of high-energy particles strike the Earth's upper atmosphere they often produce an intense auroral display, visible even at our latitude, seriously disturbing the ionosphere and disrupting long-distance radiocommunications.
By distorting the magnetosphere, solar storms also cause disturbances in the terrestrial magnetic field, which is strongest near the magnetic poles. While the South magnetic pole is safely out of the way in the Southern Ocean, the North magnetic pole lurks in Northern Canada. In both Canada and the USA there are large power grids with sections hundreds or even thousands of miles long. Substantial changes in the terrestrial field can induce heavy fault currents. A magnetic
storm was responsible for the city-wide blackout of New York City.

Ice Storms

Ice storms are the only meteorological phenomenon that pose a major threat to both the Grid and local networks in the UK. Water doesn't necessarily freeze at $0^{\circ} \mathrm{C}$. Under certain conditions it can remain liquid at temperatures considerably below the normal freezing point. Water in this state is described as being supercooled. Ice storms occur when supercooled rain hits a stationary object then flash freezes.
Ice storms occur in unusually cold conditions and are relatively rare in the UK. Severe ice storms attacked the USA's eastern seaboard last winter, causing extensive damage to electricity distribution systems.
With an ice storm you get a build-up of solid ice on conductors, which are brought down by sheer weight. System redundancy is rapidly used up, large parts of the network becoming isolated. Loss of power because of ice damage can have serious consequences, as the weather that gives rise to the problem prevents repairs. My own recollections of notable ice storms in the UK are of those that occurred during the winters of '62-63 and '81-82.

Wind

High winds can bring trees down on to 11 kV and 240/415V local networks, causing extensive blackouts. Grid cables and electricity companies' primary highvoltage circuits are carried well above tree height, and those flimsy-looking pylons are designed to withstand winds that are considerably stronger than anything ever experienced in the UK.
Interesting factoid one. High winds in 1984 brought down one of the eight cooling towers at Fiddlers Ferry power station, Widnes. At the time my home overlooked the power station, and it took a few minutes to realise that something was different. It was a freak incident: a strong gust from a particular direction, deflected just so by the other towers, did the trick. Bear in mind that cooling towers are hollow: the concrete shell surrounds a structure of wooden lathes, down which the cooling water from the station's steam condensers trickles, its heat being removed by natural convection. The trend now is to use a large number of very small cooling 'towers', relying on forced draught rather than natural convection.

Heavy Industry

Lightning isn't the only cause of spikes and surges. In urban areas a regular supply of lower-grade but still potentially damaging spikes and glitches is produced by heavy industry. Prime suspects are high-power, vari-able-speed drives, as chopping up 415 V at perhaps 1 kA or more can cause serious EMC (ElectroMagnetic Compatibility, i.e. interference etc.) problems.
I remember seeing 2 kV spikes on the mains supply in Chester city centre some twenty five years ago. At the time I built light dimmers for a small company there. We first noticed the spikes when using a scope to watch the mains waveform to see what effect our dimmers had on it. As the spikes occurred on only a couple of days each week, it was a dead cert that the culprit was the local paper's printing press. If I remember correctly, it was driven by three 75 hp DC motors: the thyristor-drive system that controlled them was considered to be state-of-the-art at the time.
Nowadays large thyristor drives are fitted with line reactors, a sort of three-phase version of the suppression
chokes found in the input to a chopper power supply. A line reactor's main job is di/dt limiting, i.e. to slow down the initial current build-up when the thryistors are fired. It also helps to reduce the amount of hash that finds its way back into the supply. There's nowadays a tendency to feed each large drive directly from a dedicated 11 kV transformer to reduce pollution of the local $415 / 230 \mathrm{~V}$ supplies.

Inverfers

The availability of cheap, reliable, high-voltage MOSFETs has brought down the cost of variable-speed drives, which are becoming increasingly popular. Known as inverters, these devices first rectify the incoming mains supply, usually 415 V three-phase, producing 630 V DC. A six-transistor bridge arrangement then converts this DC back to a three-phase AC supply. The point of this is that the voltage and the frequency of the output are both variable.
Bear in mind that the almost universal squirrel-cage induction motor is semi-synchronous: thus the ability to run at a frequency higher (usually up to 75 Hz or so) than the standard mains frequency enables the motor to run faster than normal without overload. Unlike a DC motor, an AC induction motor can be fully sealed. This makes AC drives suitable for use in wet, dusty, dirty or otherwise inhospitable environments.
Rectification of the incoming supply is the main source of noise with an AC drive, because the current that flows consists of high-amplitude pulses at the tips of the mains waveform. We are talking about full-wave rectification of a three-phase supply, so the fundamental frequency of any resultant noise is 300 Hz . High-frequency PWM drive techniques are used to control the transistor bridge to produce the output waveform. Conventional armoured cable is, or should be, used to connect the inverter to the motor, with the armouring earthed to prevent radiation of the HF components of the switching waveform. Any HF components reflected back to the inverter's internal DC supply will be absorbed by the reservoir capacitors which, in a large inverter, may add up to $10,000 \mu \mathrm{~F}$ or more. If, because of a fault, the drive signal did become impressed on the incoming supply, it would sound like a slightly wavering, fairly high-pitched raucous whine.
You have to be careful when working on these beasts: the reservoir capacitors are charged to 630 V . The consequences of accidentally dropping a screwdriver across the capacitor bank's terminals would be, shall we say, interesting.
Single-phase induction motors are large, difficult to start and relatively inefficient. Up to now however they have been the only option for small business or domestic premises that have a single-phase 230 V supply. Small inverters that can produce a 220 V three-phase supply from a standard domestic 13A socket, with speed control as a bonus, are now available, enabling tools or light machinery with a three-phase motor to be used.

Electric Induction Furnaces

It's not just variable-speed drives that play havoc with the mains supply. Many metalworks use electric induction furnaces. Rated at hundreds of kilowatts or even several megawatts, these have what could be called a stator winding that consists of a few tens of turns of very thick copper tubing, through which cooling water flows, wrapped around a refractory pot that holds the melt. It generates heat by inducing eddy currents in the metal by transformer action. The system is particularly popular for alloying, as the eddy currents also churn the molten
metal, mixing the melt better than any mechanical method would.
The power of an induction furnace that operates at the supply frequency is usually controlled by employing a saturable reactor to regulate the current. The saturable reactor is connected in series with the supply from the transformer to the furnace. Some furnaces are driven at high frequency by a kind of inverter and can, unlike most supply-frequency units, melt metal from cold.
This manipulation of thousands of amps at several hundred volts can have serious effects on the local supply. An aluminium plant in my locality can draw up to 4 MWh . In return for power at a very cheap rate, it's contracted to shut down during a power emergency.
The power factor (this is the multiplication factor for true power with an inductive/capacitive load) of an induction furnace isn't constant: it varies with melt volume, melt temperature, melt composition and the applied power. Parallel-connected capacitors are used for power-factor correction, by switching more or less microfarads into circuit as required. The current that flows via the PF-correction capacitors is pretty hefty their circuit breakers have to be able to switch and carry hundreds of amps. There's plenty of potential here for some serious spikes. Interesting factoid two: as far as induction furnace power factor is concerned, charging and pouring are the most critical phases of a melt cycle.
Furnace operators used to control the power factor of their furnaces by manually switching, via their control panels, capacitors in and out of circuit in accordance with a cos-phi meter reading. Nowadays PF control is usually handled by a computer. Over correction is extremely dangerous, as an induction furnace with too much capacitance connected, i.e. a leading phase characteristic, becomes unstable. In one incident I was told about, a furnace with a particularly bad case of indigestion vomited a couple of tons of molten aluminium at $1,500^{\circ} \mathrm{C}$ (that's about yellow hot). The glob of molten metal was ejected with sufficient force to hit the foundry roof. Miraculously no one was hurt.
From our point of view, heavy inductive loads such as induction furnaces and their associated switching and control gear are potential sources of serious mainsborne interference.

Rectification

The electricity supply industry is getting rather concerned about the distortion of the mains waveform caused by millions of small power supplies in TV sets and VCRs. Once a reservoir capacitor has been charged, current is drawn from the supply as short, comparatively narrow pulses. The resulting mains waveform distortion lowers the power factor. The result is additional heating in the supply cables and transformers, effectively derating them. A poor power factor represents wasted energy that still has to be generated, but nobody pays for it.
The electricity supply industry is, understandably, not particularly pleased about this state of affairs. Industrial users are encouraged to keep their power factors as near unity as possible by having kVAR (kilovolt/amps reactive) meters fitted, with swingeing charges of several pounds per kW / h. I wonder how they would cope if everything still used half-wave rectification, as we did in the good old days?!
I wouldn't be surprised to see EMC requirements slowly tightened, with capacitor-only filtering eventually outlawed. You never know, we might see the return of choke-input filters. Interesting factoid three: did you know that if all the TV sets in the country were switched
off rather than being left in standby, one large power station's worth of electricity would be saved?

Tap Changing

A very common cause of surges and dropouts is tap changing. Rapid changes of load on the network cause voltage fluctuations that are compensated for by changing transformer taps. The tap-changing switches are located in the transformer tank and, to avoid shorting sections of winding, are break-before-make. Although tap changing is usually very rapid, it's still possible for several cycles to be lost.

Disconnectors

11 kV rural networks suffer from dropouts caused by the method used to clear faults on the overhead lines. Shortcircuits are often caused by bits of tree (or, if you are particularly unfortunate, a whole tree), wet grass or large birds landing on the cables. When such a short occurs, automatic circuit-breakers (known as disconnectors) disconnect the section of line for a fraction of a second before reconnection and checking for a fault. If the by now parboiled bird or whatever is still there, another disconnection occurs.
These systems must have been designed by someone of the Bill Clinton school of thought, as they operate on a "three strikes and you're out" policy. Three attempts are made to clear the fault: if the short is still present, the section of line is permanently disconnected and it's up to the electricity company's engineers to remove the burnt offering. This repeated switching off and on again is not generally appreciated by the average chopper power supply.

Brownouts

An odd fault is the so-called brownout, or severe voltage reduction. The supply line voltage can drop as low as 100 V , the result being dim lights and motor burnouts. The usual cause is loss of a phase somewhere in the 11 kV system. Three-phase transformers have a threelimbed core: each limb carries one primary and one secondary winding. The three circuits are magnetically coupled, so loss of one phase at the input to the transformer will result in reduced output from all three secondary windings.
Brownouts put fridge and freezer motors at risk, because of the means used to start them. Unlike their three-phase cousins, single-phase induction motors are finicky creatures. To start, they usually require some sort of arrangement that involves phase shifting to create a rotating magnetic field, for example shaded poles (as in old-fashioned gramophone motors) or capacitorfed auxiliary windings. In a fridge or freezer motor the relatively high-impedance run winding has many turns of wire and is rated for continuous operation. Compressors need a lot of torque to get them moving, so the starting arrangement includes a low-impedance starter winding with relatively few turns of thick wire. As the starter winding has a much lower inductance than the run winding, the current in it leads with respect to the current in the run winding, thus producing that allimportant rotating field.
The low-impedance starter winding produces much higher torque than that needed for running, and is meant to be energised for only a second or so. Low voltage can mean that the starting relay malfunctions, leaving the starter winding connected. Although the applied voltage may be less than half of what it should be, it's still capable of driving a heavy current through the winding, which rapidly overheats and burns out. The main stator

Arcing horns on a 33kV isolator.
winding can also pass excessive current, as the motor remains stalled.
I can't see any reason, apart from cost or a desire to maintain a profitable market for replacement motors, why fridge and freezer manufacturers can't fit no-volt trips, which are nothing more complicated than a selflatching contactor. Should the supply voltage drop below a defined level, the contactor releases and has to be manually reset when the normal supply has been restored. All right you might end up with a freezerful of ruined food. But without a no-volt trip you could end up with a freezerful of ruined food and a burnt-out compresssor.
By the way, fridges and freezers that use the ingenious heat-driven ammonia absoption system are powered by a small heater cartridge and are not at risk from brownouts, though underrunning for an extended period may result in the interior temperature rising above a safe level. Caravans, motorhomes and boats are often fitted with absorption fridges, as they can come not only with both 12 V DC and 230 V AC heaters but can also be powered by gas!

Excessive Voltage

Things can go the other way of course. I remember, back in the Sixties, reading in the paper that a nice new substation had put more than a little sparkle into the lives of some villagers. In the previous article I described how a substation transformer is connected to provide a three-phase supply of 415 V between phases and 230 V between any phase and neutral. The transformer's secondary windings are connected in a star configuration, with the centre of the star forming the neutral connection which is securely earthed at the substation. The villagers got a bit of a surprise when they

A classic study of insulators and their arcing horns.
switched on their appliances one bright morning: light bulbs exploded, cooker rings glowed white hot, radio receivers went up in smoke and fridges burnt out. Someone, when wiring the substation, had made the classical error, uprating the domestic supply to 415 V . Has anyone heard of this happening since?

Protection

There are ways in which customers can protect their equipment from the effects of power supply problems. Some could represent useful additional business. The best way to protect TV and video equipment from lightning damage is the simplest: pull the plug out and disconnect the aerial cable - even in an urban environment.
For dealing with mains-borne hash, a suppressor plug helps a lot. It has varistors connected between all three pins to divert to earth the energy of a spike that arrives via the live and/or neutral line. Varistors can be destroyed by really high energy surges, and more sophisticated (i.e. expensive) suppressor plugs have some kind of indicator to warn of varistor failure. Suppressor plugs also help in preventing interference generated elsewhere in the home from affecting sensitive equipment like hi-fi systems.

The UPS

Because of the possibility of hardware damage and data corruption, mains-borne spikes present a considerable hazard to computer systems. If someone has forked out
over a grand for the latest Pentium II job and lives out in the sticks, it shouldn't be too difficult to persuade him to invest a couple of hundred quid in an uninterruptable power supply (UPS) - especially if the customer depends on the computer for his living. As well as providing power filtering, these units incorporate a batterydriven 240 V inverter which, in the event of power failure or a particularly long dropout, will maintain a 230 V supply to the computer long enough for the user to save his work and then shut down correctly.
The type of UPS intended for domestic or small business use incorporates maintenance-free, sealed leadacid batteries that are continually trickle-charged when mains power is present. On page 436 of the current CPC cataloge for example you will find listed a 250 VA UPS that's capable of maintaining power for seven minutes. It incorporates EMI/RFI filtering and lightning/surge protection, all for $£ 140.28$ plus VAT. There are plenty of opportunities for extra sales here, particularly with the forecast increase in teleworking in rural communities.

Other Measures

There are other ways of cleaning up the mains supply, but they start to get expensive. One that I've not seen for years is the constant-voltage transformer. Made by Advance, it was a specially-designed transformer with a saturable core and two secondary windings, one of which was tuned by a parallel capacitor.
Other measures include filtering the mains where the supply enters the building. Prices in the current Farnell Electronic Components catalogue (EMC, Filter and Suppression, Installation Filters section) start at $£ 92.13$ for a $240 \mathrm{~V}, 16 \mathrm{~A}$ single-phase filter to $£ 579.41$ for a $220 \mathrm{~A}, 415 \mathrm{~V}$ three-phase unit, all prices plus VAT. These filters have open terminals, so they would need a suitable enclosure. Installation would probably be best carried out by an electrical contractor.

Danger

Finally I'd like to mention the very real dangers presented by the various parts of the electrical distribution system. My photographs of substation equipment were all taken from outside the railings: the only part of my body inside the fence was the hand holding the camera. High-voltage sites (high voltage being deemed to be in excess of 1 kV) are exceptionally dangerous. The supply impedance is extremely low, and exposure to high voltage either by direct contact or flashover means instant death. With Grid voltages of 275 kV or 400 kV , any remains would probably be cremated for good measure.
Never enter any electricity company or National Grid site unless authorised to do so and accompanied by another, qualified persion. Overhead cables can also pose a threat to the unwary. You wouldn't normally regard fishing as a particularly dangerous pastime, but an angler in my vicinity was fried only recently when his carbon rod touched an 11 kV cable - and I mean fried. So the same caveats that apply to the erection of aerials, or carrying long metal objects, apply to anglers using carbon rods: keep them well away from overhead power lines, including the 25 kV cables that run along electrified rail routes. Remember: kilovolts mean killervolts.

Acknowledgements

I'd like to thank Manweb plc for allowing me to use some of its educational material in the preparation of these articles, and the numerous maintainers of the internet sites used for my research.

more on the

Panasonic K Deck

Adrian Williams describes some common faults experienced with this widely used VCR mechanism

The K deck has been around for several years now. It's used in a large number of Panasonic VCRs, ranging from basic mono sound models to S-VHS editing machines with hi-fi stereo and Nicam sound. There are a number of common problems. The following list of symptoms and cures may be helpful to those not familiar with the deck.

Refusal to load a tape or lace up: The loading motor, part no. VEM0427, is faulty. The shaft has a plastic collar on it: this spits, the result being loss of drive to the mechanism. Also check worm wheel gear part no. VDG0868 - remove the gear and inspect it for loose or missing teeth.

Refusal to eject tape or load (tape gets stuck in housing): Replace shaft assembly part no. VXP1339. It tends to bend outwards, away from the side plate. As a result, the housing gets stuck. You will also notice that the top plate of the carriage assembly is bent on the right-hand side.

Tape is pulled very tight in the play mode. As a result there is damage to the tape and the guide bases: Replace the take-up brake lever, part no. VXZ0313. It snaps at the end, where it's in contact with the supply brake arm, part no. VXZ0312, which it holds off during play (in the fault condition the supply brake is on).

Line at top of screen during pause or forward/rewind search: Replace the supply guide assembly, part no. VXA5245 KIT. As mentioned above, the brake lever may be faulty. The take-up guide, part no. VXA5427 KIT, may also be damaged.

Lower edge of tape is damaged, or pinch roller assembly doesn't go down fully: The P5 arm unit is distorted, part no. VXL2306. Also check the pinch roller, part no. VXL2246.

Ticking noise from the mechanism during play: There are three possible cures for this one, as follows.
(1) Strip out the capstan rotor unit and regrease it (not too much).
(2) It may be necessary to replace the flywheel, part no. VXP1519. You will find that the new one has a more solid base where the rotor and capstan shaft meet.
(3) The tension roller unit, part no. VXA4799, may be worn, rubbing on its bracket.

VCR goes to standby when a tape is pushed in (no forward operation of the loading motor) or ejected (no reverse operation of the loading motor): Replace the loading motor drive chip. It's usually a BA6887, part no. BA6887-V3. Check the loading motor which may have a dead spot or a broken shaft (see above).

Capstan speed problems: The capstan drive chip is probably faulty.

Service Notes

All new Panasonic VCRs have a service mode. No. 7 drives the loading motor forward when the play key is held on, and reverses the loading motor when the stop key is held on (the capstan is also reversed to prevent a loop of tape being formed). This is very useful, enabling most of these mechanical problems to be diagnosed very quickly without dismantling the VCR - the top must of course be removed. As far as I know older machines such as the NVHD100/NVSD44 don't have this feature.
The timing doesn't usually need to be altered.
For further information refer to John Coombe's article in the November 1996 issue.

Amstrad/Fidelity
 SRD950/SRD700

In previous articles I've mentioned tuner problems with these models because of failure of one or more of the $10 \mu \mathrm{~F}$ capacitors inside. This fault is becoming commonplace. I'm also getting receivers with faulty EEPROMs. In this case the symptom will be either stuck in standby with the LNB voltage tripping, or autotuning works but no channels are stored.

It seems that these EEPROMs can be damaged by voltages applied to the TV scart socket by certain TV receivers. To prevent a recurrence, disconnect R95 and R96 (both 270ת).

Some customers have asked whether a decoder scart socket can be fitted to these models. It can, but might require an extra twenty or so components as well. A few of these receivers had these components fitted at the factory, but most didn't. A list is available.

Amstrad SRD600

I don't do many D2-MAC receiver repairs. Most get sent to the experts at Satfix in Swansea (01792 781

WORKSHOP
673). The SRD600 is an exception. It's faults are often quite simple to deal with, so I'm prepared to tackle them myself. But one particular receiver had been back to me three times, each time from a different dealer. Clearly the owner was unhappy with my diagnosis, but I had written the same report on the label each time. Without repeating the exact wording, it said that reliability couldn't be guaranteed because of something to do with the owner's cat! This time it was Wossname up Church Street who brought the receiver to me.
"Stinks" he commented. "Think the dog did something. You do it for me. I know nowt about these DeeMacTwo things."

Having pointed my dish at $1^{\circ} \mathrm{W}$, I put the receiver on test. The picture would occasionally appear to lock, but most of the time I could see only a mess of black and white lines.

I repeated the procedure I'd undertaken before, but this time I scrubbed the MAC board with a toothbrush while pouring generous amounts of isopropanol across it. I dried the board with my hairdryer, and had to open the windows because the alcohol made me feel quite dizzy. Fortunately I wasn't driving that day! To chase off any remaining moisture, I finally sprayed WD40 across the board.

The unit now produced perfect PAL pictures, but there was no MAC sound and strange messages appeared when the card was inserted. Audio problems are usually caused by the AMU2481 demodulator or the DMA2281 chip. Neither of these was likely to lead to card problems however, so I guessed that the trouble was being caused by a fault in the DMA2286 chip. These square chips are mounted in sockets. There are two ways to remove them without damaging the socket:
(1) Use epoxy resin to glue a paperclip to the chip, then hook a screwdriver through the paperclip and lever it upwards, using the side panel as a fulcrum.
(2) Use of the proper tool. I've seen this item in a catalogue at $£ 27$ plus VAT. Mine came from SatCure (01270 753 311) and cost $£ 6.95$. It
was worth every penny, because a new DMA2286 cured the fault.

Unfortunately this IC is rather expensive, so the repair wasn't cheap. And I still couldn't guarantee its reliability.

Pace PRD700

"What do you know about Mister Bishey?"
"Err, sorry??"
"What? I'm a bit mutton-jeff like. Age you know."
"I'm sorry, I don't understand" I shouted at the old fellow.
"No thanks. I had one afore I came out. Can you have a look at my Mister Bishey decoder?"

With that he placed a Mitsubishi ST-PB10 on the counter and hobbled out. It's actually the Pace PRD700, but was never sold under the Pace name. It was left to the likes of Mitsubishi and Granada to explain why there was no channel number display.

The fact that two screws were missing worried me. Someone had already been inside. The first thing I saw was a huge, white ceramic resistor where R1 should have been, and another in the R8 position. These are safety resistors: they are designed to go open-circuit in the event of a fault. Some prize chump had decided to prevent them doing so. Fortunately the damage had been minimised by a very black-looking 6A fuse! I fitted the correct resistors and IAF fuse, then noticed that the chopper transistor was an underrated plastic BUT11AF which had been stood on tip-toes instead of being pushed firmly down to make a good mechanical joint before soldering. Rather than attempt to fault-find, I decided to fit the replacement kit.
"Zap, zap, zap" the receiver said when I reconnected it to the mains supply. It was the sound of R8, R14 and the fuse going open-circuit in succession. But I didn't give up. I found that the cause of the trouble was a broken track to C8. After repairing it with Teflon-coated wire I tried again.

This time the power supply ticked in time with the flashing of the standby LED. I hastily pulled the plug. Something else had been missed. I won't bore you with
details of the tests carried out and the number of cups of tea it took to find the cause of the fault. Suffice it to say that C 4 , a $1 \cdot 2 \mathrm{nF}$ surfacemounted capacitor, was cracked in half. But the crack was invisible until I touched the capacitor with my iron. Since C4 is the timing capacitor for the chopper control chip, it's not surprising that the circuit was ticking!

Once I'd fitted a replacement all I had to do was to find two Pace screws - black-japanned 3 mm crosshead taptite sems - and reassemble the receiver before the old boy's return.

Pace PRD800

A reader has taken me to task. "My PRD800 receiver's LNB voltage is too high, so I can't get the vertical channels. In addition the picture is dreadful - and you haven't written about this fault!"

I have to confess that these symptoms have not been mentioned. The reason is that I always replace $\mathrm{C} 5, \mathrm{C} 7$ and C 8 before applying mains power to a PRD receiver, and I assumed that all other repairers did the same. The reason is quite simple: when the value of C5 falls, all the power supply output voltages go high. The LNB voltage rises, and the 5 V supply increases to about 6 V
and starts to destroy ICs fairly rapidly. C7 and C8 simply make the power supply go bang!

My advice to the reader was to disconnect the power supply immediately and fit all the capacitors supplied in Relkit-1 before reconnecting it. You can order this and other Relkits from SatCure (e-mail satcure@ netcentral.co.uk). I think I've mentioned this before!

Pace MSS200

This receiver produced on-screen channel names and clear (not bluescreen) menus that drifted from right to left. The obvious cause of the trouble was the PTV110 chip. A replacement cured the fault, but when I inserted the Sky card I got a "card invalid" message. I checked and found that there were no clock pulses at the card, so the card's supply voltage wouldn't stay high. Since the clock pulses are supposed to come from the PTV110 chip, I fitted another one.

This time the card worked and I got pictures, but there were large black sparklies on all card channels - not Sky News, the German channels or QVC. The sparklies danced around on the left three-quarters of the picture: the right quarter was free of the dots. Yes, it was the PTV110 chip again! Since this IC is

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via e-mail. You can reach him via the internet at:

jack@netcentral.co.uk

One model per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/o Television, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first-class stamps.
not available officially as a spare, I was taking used ones from 'unrepairable' receivers. I finally found one that resolved all the problems.

Grundig GRD300

This twin-input version of the GRD150 has a fluorescent display. The customer reported that it was "dead". But, as is often the case, it was the customer's brain that was dead. The receiver worked perfectly but its display didn't light up.

Thanks to a tip from Nigel Goodwin (www.lpilsley.demon. co.uk) I was able to fix the problem in just ten minutes by replacing the $10 \mu \mathrm{~F}$ electrolytics on the display board.

Test Case 427

"This must be the Daewoo TV" muttered Techocrat as he carried a 21 in . set to his bench. It was in fact a Daewoo Model T512, which is fitted with the CP330 chassis. The fault seemed to be simple enough - according to field technician Colin Doc's label there was no vertical scanning. A doddle, done by coffee-time, thought Technocrat. The power supply and line scan circuits were working, with EHT present and correct. But nothing was happening in the field scan department.

Technocrat's first check was on the 25 V supply to the TDA3653B field output chip I301. It's derived from the line output transformer and was OK - in fact there was almost 27 V at pin 9 of I301. He then carried out an oscilloscope check at output pin 5 . If there was a drive waveform here, the scan path was open-circuit. There was no output from the chip however. Did it have an input? No, there was no waveform at input pins 1 and 3.

The drive should come, via an $R C$ network, from the fieldscan generator within the TDA8362 jungle chip I701. It should be present at pin 43 of this chip, but wasn't. Neither was there a field ramp waveform at pin 42 . So attention was concentrated on this chip and its peripheral components.

Since the chip was producing a line drive output, its supply was obviously present. So far as Technocrat could determine, its other outputs were all OK. Only three of the chip's pins are devoted to field scanning: the feedback pin 41, the ramp generator pin 42, and the output pin 43 . Technocrat checked the components (R301 and C301) in the ramp-generating circuit, also its

33V supply and the associated resistors. Everything was in order. So he ordered a new TDA8362 chip and headed for the coffee department.

When the new chip had arrived and he had fitted it Technocrat was mortified to find that there was no change: the symptoms were exactly as before. He looked again at the circuit diagram. There's a capacitor (C303) between the field drive output from 1701 and chassis. But it seemed to be OK, and a replacement made no difference. Nor was there a fault with any of the components connected to the TDA3653B chip's input pins. Maybe this chip was loading the drive from I701 in some way? In view of the series resistors present (R304 and R305) this was hard to believe. But as Technocrat was getting short of theories he decided to replace I301 - this one was in stock. Once again the replacement made no difference: there was still no field scan.

What next? Both chips involved with the field scanning had been replaced, and all relevant passive components seemed to have been either checked or changed. The situation was deteriorating rapidly! It was difficult to establish a chicken-and-egg prognosis, and the supplies were all OK. But the set was finally repaired and sent on its way - with the two new chips it didn't need, and with one other new component whose price was a matter of pence. As a clue, do you remember the AN5521 field driver/output chip that was so popular with Panasonic some years ago? For the solution, turn to page 671.

> The FireWire interconnection system, or IEEE 1394, is a high-speed serial data bus that's likely to become the standard way of linking digital domestic electronic equipment. Geoff Lewis, B.A., M.Sc., MIEEE, describes the system and its operation

TThe name FireWire belongs to Apple Computers Inc. which devised the basis of this easy-to-use, very fast, low-cost network system as long ago as 1988. Since then it has become an established IEEE standard supported by a world-wide Trade Association with over ninety members.
IEEE 1394, as FireWire is generally known, is a cross between a network and a bus extension system. It was originally intended for the distribution of digital sound via Apple Computers. Over the years however it has expanded into many other areas. In the very near future it's likely to become the main method of interconnecting digital signals between domestic communications and entertainment equipment. A clear account of its development is contained in reference (1).
Fig. 1 gives an indication of the wide range of devices that can be connected via IEEE 1394 links. Any device that incorporates the appropriate interface can be coupled to others via a simple cable. Currently available services that can be linked in this way include home video editing, photo-CD handling and image enhancement: at a later date video- and tele-conferencing will be added. Such is the adaptability of FireWire that it is also likely to find industrial applications.
Samsung has recently announced what it claims to be the first TV chassis to incorporate an IEEE 1394 interface. It enables the Web browser-equipped TV sets to communicate with digital audio/video equipment and PCs.

Interconnections

IEEE 1394 devices are fitted with one- or three-port interfaces that can be coupled together via special cables. An extra device can be added to a network simply by plugging it into a spare port anywhere. Devices may be linked in daisy-chain fashion or in clusters. The only restrictions are that there should be no more than sixteen hops between any two devices and that no loops should be formed.
The network is usually described in terms of a root,
tree and branch or a parent-and-child configuration, with the root or parent being the nearest to the controlling device. The serial network is currently available with bit rates of 100,200 and $400 \mathrm{Mbits} / \mathrm{sec}$, but this is soon likely to be extended to $800 \mathrm{Mbit} / \mathrm{s}$ or even $1.6 \mathrm{Gbit} / \mathrm{sec}$. FireWire will then be faster than the currently available FibreNet optical-fibre network, which runs at $1 \mathrm{Gbit} / \mathrm{sec}$.
Furthermore since IEEE 1394 is compatible with MPEG-2 video data streams, see reference (2), it will also be compatible with the ATM (Asynchronous Transfer Mode) system used for telecommunications this has a maximum data rate of $622 \mathrm{Mbit} / \mathrm{s}$. Thus FireWire is seen as a possible way of delivering digital TV signals to homes via a cable network.

Cable and Transmission

Fig. 2 shows the construction of the special IEEE 1394 screened cable. It has three individually shielded cable pairs: two screened and twisted signal pairs (TPA and TPB) plus two power lines that are designated Vg (ground) and Vp (positive supply). There are keyed connectors. The power line pair can supply up to 1.5 A at 8 40 V DC. A cable without the power pair can be used for certain applications. Typical maximum cable length is 4.5 m , but in the near future this could be extended to about 25 m for special applications
An extra device can be plugged into a spare port without the need to switch off the power. The system then automatically reconfigures and reprogrammes itself to the new situation. This plug-and-play arrangement is possible because the signal lines are balanced to earth by the signal format employed. In addition, the driver transceiver in an interface provides further isolation between the signal and power lines.
The high data rates are made possible by using differential non return to zero (NRZ) signalling via each shielded twisted pair (STP). These are biased with respect to earth at 2 V DC maximum.
At these high data rates it is important that an accurate
clock signal is maintained. This is achieved as follows. Twisted pair TPA carries the data signal while pair TPB carries a strobe signal. As Fig. 3 shows, the strobe signal changes state whenever there is no change of state during a data signal bit period. In this way, either the data or the strobe signal changes state at every bit period.
At the transmitter, exclusive-or logic is used to combine the signal data stream and the clock signal to produce the strobe signal. The strobe and data signals are combined at the receiver, again using exclusive-or logic, to generate an accurate clock signal.
The bus data streams are organised as two time-division multiplex (TDM) formats: a one-way, low bit rate asynchronous stream is used for control purposes, while a high bit rate isochronous stream carries the data being distributed (payload data). The data in an asynchronous stream is transmitted in blocks, with start and stop signals: since the data rate is constant, the local clock can be regenerated from the data stream. With an isochronous system the same master clock synchronises everything. In this case the current controlling device acts as the cycle master (CM). Both formats use vari-able-length data packets.
An important advantage of isochronous data transfer is that less first-in-first-out (FIFO) memory is required before and after transmission across the IEEE 1394 bus. This reduces the die size of the interface IC significantly , and thus the IC cost.

Protocols

The communication protocols used by the FireWire system are based on the International Standards Organisation (ISO) 7-layer model that was developed for open systems interconnection (OSI). Fig. 4 shows the FireWire arrangement. The two lower layers of ISO7 are retained as the physical layer and the link layer. The system control functions are concentrated in layer 3 through to 7.
The physical layer has four main functions: to translate the symbols used by the link layer into appropriate cable signals and vice versa; to define the mechanical and electrical connections for the bus; and to provide arbitration to ensure that only one device transmits at a given time, also ensuring that all devices have fair access to the bus.
Link layer control (LLC) manages data packet assembly and disassembly for both the asynchronous control data and the isochronous payload data. The one-way asynchronous packets, which are sent to a transaction layer, contain delimiting signals whose reception must be acknowledged. The isochronous data stream is sent direct to the receiver. In addition LLC handles address and error control, data framing, and generates packet cycle timing and sync signals.
The resource manager layer acts as the transaction layer for the asynchronous data stream. Write operations send data from the source to the receiver while read operations function in the reverse direction. A lock operation is also possible: this sends data on a round trip through the processing at both ends of the chain, and can act as a test and control function.
The bus management layer is quite complex, operating in the hardware and software of an individual interface. It controls the operation of the physical, link and transaction layers. If the network includes a PC, this will most likely act as the bus manager, running its own applications program, but other arrangements are possible.
A fully-managed system includes a PC or similar smart device that controls all modes of data transfer for

Fig. 1: Example of devices that can be linked via on IEEE 1394 bus.

Fig. 2: Section through the IEEE 1394 interface cable.

Fig. 3: FireWire signal format.

Fig. 4: FireWire bus control arrangement.
up to 64 channels and is capable of power management and bus optimisation. The PC can also create data-rate maps and network topology diagrams.
A non-managed bus has a cycle master and is capable of only asynchronous data transfers for control functions. Examples are direct transfer of data between a scanner and a hard disk or between a hard disc and a printer, without the direct involvement of a computer processor.
A limited bus management system falls between these two extremes: it has a limited power management ability, but can handle both asynchronous and isochronous data transfers for between eight and 64 channels.
A network can include up to 63 devices, each with a 6bit ID number. Multiple networks can be interconnected via bridges, with up to 1,023 separate buses each with a 10 -bit ID. This combination allows for a total system with up to $63 \times 1,023=64,449$ devices. Device addresses have 64 bits: 16 specify the devices and networks, while the remaining 48 bits are for memory addressing.

In this way the network can identify uniquely 280 Tbytes of memory.

Initialisation

At the end of the FireWire initialisation process the root/parent device will have been established and will remain in control as long as it's connected to the bus. Initialisation occurs at power up and whenever a device is added or removed. At the start of the process, all the information on network topology held in the device registers is cleared. The physical layer at each device first checks the connection status of its ports, each of which signals 1 if it is connected or 0 if disconnected. If more than one port signals 1 , the device may be a branch.
As this process continues, a tree structure begins to form so that the root device can be selected and all the other physical connections referred to it. Generally the last device selected during this process is designated as the root. If one particular PC is to be designated as the root, the process time can be extended to ensure that this is the result. Once the tree has been formed, each device is allocated an ID for asynchronous traffic.
Various management roles will have been allocated during the initialisation process. Most important is that of the cycle master, which is usually the root device and has the highest priority for bus access. The cycle master provides and maintains the clock signal for isochronous data transfers. Some management roles can be allocated to devices other than the root one. The isochronous resource manager allocates time to those devices with isochronous data to transmit.
Whenever hot plugging generates a reset signal, the asynchronous resource and bus manager functions remain with the original device - assuming that it hasn't been removed.
The next stage of initialisation involves allocating channels 0 to 63, and time slots for those devices that need to communicate. Only channels that are free can be allocated: this information is held in the channel-available registers.
After a reset, the allocation of time slots may leave one device short of its previously allotted capacity. The device will then make requests periodically for an increased allocation. This continues until another device relinquishes time slots.
When configuration has been completed, the various devices connected negotiate for access to the bus. In addition, asynchronous and isochronous data compete for access to the bus. This is all controlled by the cycle master which transmits a timing signal known as cycle start, typically once every $125 \mu \mathrm{~s}$.
This very complex protocol, which appears to be so simple to the user, is usually controlled by a collection of single bits that are stored in various registers.

System Timing and Arbitration

System timing is based on the phase-locked-loop crystal oscillator in each device's interface. These oscillators run at 24.576 MHz (98.304 MHz clocks may also be found). The clock in the interface device chosen as the cycle master is the one that is actually used. The 24.576 MHz signal is divided down to create 1 Hz (one second) and 8 kHz timing control signals. These control the time division multiplexing (TDM).
The cycle status and control bits are contained within bits $20-24$ of the third, fourth and fifth quadlets. The basic cycle duration is $125 \mu \mathrm{sec}$, and is repeated at 8 kHz . Of the total cycle period, at least 20 per cent is allocated to asynchronous control data with the remaining 80 per cent used for isochronous payload data.

Devices negotiate for bus access at every cycle. Only one is allowed to transmit at a time. Devices with reserved isochronous channels negotiate first: when a device receives a cycle start signal it sends a request for access to the root device. This accepts the first request it receives, which is always from the device nearest to it. There follows a small isochronous gap, after which arbitration starts again and the next nearest device is granted access. The process continues until all the devices that have isochronous data to transmit have gained access.
A longer gap, called the sub-action gap, follows so that asynchronous arbitration can start. Both gaps are proportional to twice the number of connections in the network. The sub-action gaps provide time for the acknowledgement signals.
To provide fair access, each device is allowed to transmit only once during the asynchronous part of each cycle. The cycle time ends with a longer idle period gap, called the arbitration reset gap, after which the process restarts.

Data Packets

The serial data is organised as quadlets: each is four bytes long (32 bits). A data packet has at least two header bytes and two bytes of data. Quadlets are time aligned for accuracy so that they can be loaded into the FIFO registers, which are 32 bits wide and 64 quadlets deep. So that the quadlets consist of integer multiples of bytes, meaningless bits may be added as padding. Cyclic redundancy checks (CRCs) are included at the end of both the header and the payload data blocks.
These basic elements are common to both asynchronous and isochronous packets, but the headers for the two differ in length and content. Asynchronous headers include at least four quadlets to specify the destination ID, source ID and various control functions such as packet priority. Isochronous packet headers include just the channel number plus control information, and can be as short as two quadlets because the destination and source addresses are included in the channel number. Table 1 summarises the isochronous packet structure.

Operation of a Typical Interface

A typical interface consists of little more than two VLSI (very large-scale integration) ASIC (application specific IC) chips that act as the physical and link layer controllers. Suitable chips are the Texas Instruments TSB11CO1 (physical layer) and TSB12CO1 (link layer), which use low-power CMOS technology but with the inputs designed to allow for hot plugging.
The TSB11CO1 is a three-port device that includes logic to perform the arbitration and bus initialisation functions. The TSB12CO1 transmits and receives cor-rectly-formatted isochronous data in real time. It includes reconfigurable FIFO memories for the data as well as the configuration registers required to operate the device.

Physical Layer Control

Fig. 5 shows the basic arrangement of a physical layer control chip with three identical ports. Its crystal-controlled PLL clock provides three outputs via digital dividers, $98.304 \mathrm{MHz}, 49.152 \mathrm{MHz}$ and 24.576 MHz . The 49.152 MHz output is maintained at an accuracy of $\pm 100 \mathrm{ppm}(\pm 4.9152 \mathrm{kHz})$ to control the outbound encoded strobe and data signals. This frequency is also needed by the link layer controller to resynchronise received data.

Fig. 5: Physical layer control chip arrangement (Texas Instruments). R1 is 56, R2 5k 2, R3 6.36k $\Omega \pm 0.5 \%$, C1 250pF and C2 1 μ F.

Data bits to be transmitted are received from the link layer controller chip via the relevant data lines, in synchronism with the 49.152 MHz clock. After encoding, they are transmitted via the TPA pair. The encoded strobe, at 98.304 MHz , is transmitted via the TPB pair.
During packet reception the transmitter sections of the TPA and TPB transceivers are disabled while the receiver ports are enabled. This is achieved by the use of a simple flip-flop control bit.
The data and strobe signals are both differentially encoded - the signal swings equally about the 1.86 V nominal bias level. These signals are typically restricted to a voltage swing of $172-265 \mathrm{mV}$ (about 220 mV $\pm 40 \mathrm{mV}$). The level was chosen to allow interoperability with chip sets that use either 3 V or 5 V CMOS technology. The resistors marked as R1 provide optimum loading (112Ω) for the line drivers. R2, C 1 act as a filter for the TPB lines. R3 sets the driver stage output current and controls the bias level: Ports 2 and 3 act in an identical way.
The chip's link layer interface directs the data between the receive and transmit modes, determined by a range of control signals. The most important of these are as follows:

Cable power status (CPS): This pin is connected to the cable power line via a $400 \mathrm{k} \Omega$ resistor. It detects the presence of the cable power supply and also feeds this information to the link level control chip.

Link power status (LPS): When this link is not powered the system clock is disabled and the chip performs only the basic repeater functions required for network initialisation and operation.

System clock (SYSCLK): This terminal provides the 49.152 MHz clock signal to which the data, control and link requests are synchronised.

Link request (LREQ): This signal from the link layer
control chip requests a particular service.
Control inputs/outputs (CTLI/CTLO): These bidirectional terminals control the exchange of information between the physical and link layer chips.

Data inputs/outputs (DI/DO): These bidirectional terminals provide the communication paths between the physical and link layer chips.

Reset input (/RESET): When this line goes low, there are bus reset operations at the active cable ports and the internal logic is reset to the start state.

Link Layer Control

The TI TSB12CO1 high-speed link layer control chip provides easy integration with an input/output subsystem. It transmits and receives correctly-formatted IEEE 1394 data packets and generates the 32 -bit CRC (cyclic redundancy check) - this is used to check the header and payload data blocks. It can operate as a cycle master and can receive two isochronous channels. Fig. 6 shows the basic arrangement of this chip.
The TSB12CO1 integrates directly with physical layer chips such as the TSB11CO1 described above or the TSB21LVO3, which is used for processing an MPEG-2 data stream. It operates at 100,200 and $400 \mathrm{Mbit} / \mathrm{s}$ rates. Its 32 -bit bus is compatible with most other 32-bit proprietary buses available.
The FIFO memories ATF (asynchronous transfer), ITF (isochronous transfer) and GRF (general receive) provide variable-length data transfer and are software adjustable for optimum performance. The physical layer interface I/O signals have already been described:
The transmitter retrieves data from either the ATF or the ITF FIFO and generates correctly-formatted serial data packets for transmission via the physical layer interface. When data is present at the ATF FIFO the transmitter negotiates for bus access then sends the data packet. When data is present at the ITF FIFO the arbitration results in data being transmitted on the next

Fig. 6: Link layer control chip arrangement (Texas Instruments).
isochronous cycle. When the chip acts as cycle master its transmitter automatically sends the cycle start packet.
The receiver accepts data from the physical layer interface and checks the address. If the data is addressed to this piece of equipment and the CRC is correct, the header is confirmed in the GRF. For block and isochronous packets the rest of each one is checked on a quadlet-by-quadlet basis to the end of the packet and then confirmed in the GRF.
The error code for a packet is contained in a status quadlet which is sent as an acknowledgement. With isochronous packets, which need no acknowledgement, the error code tells the transaction layer whether the data CRC is correct or not. If the header is in error, the memory is emptied and the remainder of the packet is ignored. When a cycle start message is received, it is detected and sent to the cycle timer but not placed in the

Table 1: Isochronous packet structure.

Field	Bit size	Notes
Data length	16	Indicates number of bytes in current packet
TAG 2 Data format (see footnote) Channel no. Indicates channel number		
Transaction code	4	with which data is associated Code for current isochronous packet
Synchronism code	4	Transaction layer specific sync code
Header CRC Data block	32	All isochronous packets All data block payload packets
Data block CRC	32	All data block packets

Footnote: The TAG field is used to define the data format: 00 represents data formatted for normal IEEE 1394 operation while 01 indicates that HyperLynx for MPEG-2 data is in use. The other two codes are at present not allocated.

GRF. If, at the end of an isochronous cycle, the cycle mark enable bit in the control register is set, the receiver inserts a cycle mark packet in the GRF to indicate the end of the cycle.
The transmit and receive FIFOs, both asynchronous and isochronous, are software adjustable to cater for individual applications. The maximum memory capacity is 509 quadlets, which can be shared between the ATF, ITF and GRF sections.
A cycle timer is incorporated in all devices that use isochronous data transfer: it consists of a 32-bit register. The lower twelve bits form a modulo-3072 counter that increments once every 24.576 MHz clock periods $(40.69 \mathrm{nsec})$. The next 13 , higher-order bits are used to count up to $8 \mathrm{kHz}(125 \mu \mathrm{sec})$. The higher seven bits form a seconds count.
A cycle source bit in the configuration register can be set to indicate which device is acting as the cycle master. The cycle-in input starts cycle count incrementing: the cycle-out signal indicates that it's time to send the cycle start packet. The cycle monitor is used only by devices that provide isochronous data transfer. It monitors the chip activity and schedules the operations.
The host interface consists of a 32 -bit parallel data bus and an 8 -bit address bus. The BCLK signal is the bus clock, which is asynchronous to the system clock (SCLK). The CA and CS inputs denote cycle acknowledge and cycle start respectively. The WR input indicates read/write and operates in conjunction with the CS input. When these are both driven high, a read from the chip is signalled - low inputs produce a write operation.
To speed operation, this chip is interrupt driven. When the INT line goes low, this indicates that a particular service function needs to be performed.

References and Acknowledgement

(1) Ingrid J. Wickelgren, The Facts about FireWire, IEEE Journal Spectrum, pages 19-25 April 1997.
(2) Texas Instruments, IEEE 1394-1995 Link layer Controller for MPEG-2 Transport, 1997.
(3) Texas Instruments, IEEE 1394 Circuits, product information, 1997.
I would like to acknowledge the help provided by Colin Davies of Texas Instruments.

WIND GENERATORS 380 WATT 4.14 metre dia blades, carbon matrix blades, 3 year warranty, 12 vode output, 24 v version available, control electronics included, brushless neodymium cubic curve attemator, only two moving parts, maintenance free, simple roof top installai
$(30 \mathrm{mph}) 380 \mathrm{w}$. 499 ref

HYDROPONICS

DO YOU GROW YOUR OWN?

We have a full colour hydroponics catalogue available containing nutrients, pumps, fittings, enviromental control, light fittings, plants, test equipment etc
Ring for your free copy
PORTABLE X RAY MACHINE PLANS Easy to construet plans on a simple and cheap way to build a home X-ray machinel Effective device, X-ray sealed assemblies. can be usedfor experimental purposes. Not a toy or for minors $£ 6 /$ /set. Ret FXXP1.
TELEKINETIC ENHANCER PLANS Mystify and amaze your miends by creating motion with no known apparent means or cause. Uses no electrical or mechanical connections, no special gimmicks yet produces positive motion and effect. Excellent for science projects, magic shows, party demonstrations or serious research $\&$ development of this strange and amazing phychic phenomenon. £4/set Ref FTKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Included is a ful volume reference text and several construction plans that when assembled can produce highty effective stimuli. This material must be used cautiously. It is for use as entertainment at
those experienced in its use. .155 set. Ref $\mathrm{F} / \mathrm{H} \mathbf{H} 2$.
GRAVITY GENERATOR PLANS This uniqueplan demonstrates a simple electrical phenomena that produces an anti-gravity effect You can actually build a small mock spaceship out of simple materials and without any visible means- cause it to levitate. E10 10 set Ret FIGRA1. WORLDS SMALLEST TESLA COILLIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar'. Stemo's ifie, Corona, excellen science project or conversation piece. c5/set Ref FIBTC1/ GS
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light High coherency and spectral quaity 5 similar to Argon raser but easier and less costy to buila yet far more efficient. This particular design was developed at the Atomic Energy Commision of NEGEV in Israel. c $10 /$ set Ref FICVL. 1
VOICE SCRAMBLER PLANS Minature solid state system tums speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging. £6/set Ref FNS9.
PULSED TV JOKER PLANS Litte hand held device utilises pulse tochniques that will completely disrupt iv picture and sound works on FM tool DISCRETION ADVISED. £8/set Ref FTJJ5
BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of liwing bodies, warm and hot spots. heat leaks etc. Intended for security, law enforcement research and development, etc. Excellent security device or very, interesting science project $\varepsilon 8 /$ set Ref $F / B H T 1$
BURNING, CUTTING CO2 LASER PLANS Projects an imvisible beam of heat capable of burning and metting materials over a considerable distance. This laser is one of the mostefficient, converting 10% input power into usefulu output. Not only is this device a workhorse in welding, cutting and heat processing materials but it is also a likely candidate as an effective directod energy boam weapon against missiles, aircratt, ground-to-ground, etc. Paricle beams may very well utilize a laser of this type to blast a channel in the atmosphere for e high energy stream of neutrons or other particles. The device is easily applicable to buming and etching wood, cutting. plastics, textiles etc E1 $2 / \mathrm{set}$ Ref $\mathrm{FRC7}$
DYNAMO FLASHLIGHT Imteresting concept, no batteries needed just squegze the trigger for instant light apparently even works under water in an emergency although we havent tried it yetl $£ 6,89$ ref SC152 ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Biow holes in metal, produce 'cold' steam, atomize
liguides. Many cleaning uses for PC boards, jewltary, coins, small parts liquides. Many cleaning uses for PC boards, jewllery, coins, small parts etc. $£ \in /$ /set Ref FALB B
ANTI DOG FORCE FIELD PLANS Highly efective circuit produces time variable pulses of accoustical energy that dogs cannot tolerate E6/set Ref FIDOG2
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access. $£ 12 / \mathrm{set}$ Ref $\mathrm{F} /$ LLIST1
Phasor blast waive pistol series plans Handheld, has large transducer and battery capacity with extemal controls. EE/set Ref FfPSP4
INFINITY TRANSMITTER PLANS Telephone line grabberl room monitor. The ultimate in homeloffice security and safefyl simple to usel Call your home or affice phone, push a secret tone on your Existing conversation with break-in prapabiilys fourd and voices or as £7 Ref FTELEGRAB
BUG DETECTOR PLANS is that someone geting the goods on you? Easy to construct device locates any hidden source of radio energyl Snifts out and finds bugs and other sources of bothersome inter
ELECTROMAGNETIC GUN PLANS Projects a metal obie a considerable distancereaquires adut supenvision 55 ref F/EML2 ELECTRIC MAN PLANS, SHOCK PEOPIE WTH THE TOUCH OF YOUR HANDI E5/set Ref FIEMA1
SOLAR POWERED WIND UP RADIOS BACK INI These FM/AM radio's have a solar panel and a hand operated chargeri E 17.95 ref SOLRAD
PARABOLIC DISH MICROPHONE PLANS Listen to distamt sounds and voicess, open windows, sound sourres in hard to ger or
hostile premises. Uses satellite technology to gather distant sound and focus them to our ultra sensitive electronics. Plans also show an and focus them to our ultra sensitive electronics 2 FOR 1 MULTIFUNCTIONAL HIG HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on 9-12vdc, many possible experiments. £10Ref FHMM7/ TCL4

BRAND NEW AND, CASED, FROM $£ 99$. Works with most modern video's, TV's Composite monitors, video grabber cards. Pal, 1v P.P, composite, $750 \mathrm{hm}, 1 / 3^{\prime \prime}$ CCD, 4 mm F2.8 $600 \times 682,12 \mathrm{vdc}$, mounting bracket, auto shutter $100 \times 60 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF160, 10 or more 899 ea 100+ $£ 89$
CIRCUIT PACKXS Packs of 35 circuit diagrams covering lasers, SW radios, geigers, bugs,char etc. Pack1, Pack2, Pack3 £4.99 each. SMOKE ALARMS Mains powered, made by the farnous Gen company, easy ft next to light fitings .power point. ©4.99 ref SMKX CONVERT YOUR TV INTO A VGA MONITOR FOR £26 Converts a colour TV into a basic VGA screen. Complete with built in Csu, lead and sware.. Ideal for laptops or a cheap upgrade. Sup in kit form for home assembly. SALE PRICE £25 REF SA34
*15 WATT FM TRANSMITTER Already assembled but some RF knowledge will be useful for setting up. Preamp req'd, 4 stage 80 $108 \mathrm{mhzz}, 12-18 \mathrm{vdc}$, can use ground plane, yagi or dipole $£ 69$ ref 1021 4 WATT FM TRANSMITTER KIT Small but powertul FM ransmitter kit. 3 RF stages, mic \& audio preamp included $£ 24$ re 028
YUASHA SEALED LEAD ACID BATTERIÉS $12 \mathrm{~V} 15 A H$ a Y18 ref LOT8 and below spec ov 10AH at $£ 5$ a pair LECTRIC CAR WINDOW DE-ACERS Complete with cable lug etc SALE PRICE JUST E4.99 REF SA28
AUTO SUNCHARGER $155 \times 300 \mathrm{~mm}$ solar panet with diode an motre lead fitted' with a cigar plug. 12 v 2 watt. $£ 12.99$ REF AUG 10 P SOLAR POWER LAB SPECIAL You gat $26^{6} \times 55^{\circ} \circ 1130 \mathrm{ma}$ cells, 4 LED's, wire, buzzer, switch +1 relay or motor. $£ 7.99$ RE SA27
SOLAR NICAD CHARGERS $4 \times$ AA size £9.99 ref 6P476, $2 \times$ Cize c9. 99 ref 6P477
GIANT HOT AIR BALLOON KIT Build a 4.5 m circumfrence, Guliy functioning balloon, can be launched with home made burner etc. Reusable (until you loose itl) E. 12.50 ref Hal
AIR RIFLES . 22 As used by the Chinese army for training puposes, 50 there is a lot aboutl $£ 39.95$ Ref EF78. 500 pellets $£ 4.5$ ref EF80.

REGISTER FOR OUR ELECTRONICNEWSLETTERS BULL-ELECTRICAL.COM

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 SQT. (ESTABLISHED 50 YEARS). AALL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS 53.50 P\&P PLUS VAT. 24 HOUR SERVICE 55.00 PLUS VAT. overseas ordirs at cost plus 23.50 ACCESS, VISA, SWITCH, AMERICANEXPRESS) phone orders : 01273203500

FAX 01273323077
Sales@bull-electrical.com

INFRA RED FILM 6 " square piece of lexible infra red film that wil only allow IR light through. Perfect for converting ordinary torches lights, headlights etc to infra red output only using standard light bulbs Easily cut to shape. 6 " square £15 ref IRF2
HYDROGEN FUEL CELL PLANS Loads of information on hydrogen storage and production. Practical plans to build a Hydrogen fuel cell (g ood workshop tacilities required) $\mathbf{E 8}$ set ref FCP1
STIRLING ENGINE PLANS Interesting information pack covering all aspects of Stirling engines, pictures of home made engines made from an aerosol can running on a candlel $£ 12$ ref STIR2 12V OPERATED SMOKE BOMBS Type 3 is a 12vinger and 3 smoke cannisters, each cannister wilf filla room in a very shortspace of time! $£ 14.99$ ref SB3. Type $\mathbf{2}$ is $\mathbf{2 0}$ smailer cannisters (suitable for simulated equipment ires eic) and ingger module for $£ 29$ ref SB Type 1 is a 12 v trigger and 20 large cannisters $£ 49$ ref SB1 HI POWER ZENON VARIABLE STROBES Useful 12 VPCE fitted with hi power strobe tube and control electronics and speed control potentiometer. Perfect for interesting projects etc $70 \times 55 \mathrm{~mm}$ 12vdc operation. £6 ea ref FLS1. pack of 10 £ 49 ref FLS2
RUSSIAN BORDER GUARD BINOCULARS E1789 Probably the best binoculars in the worldi ring for colour brochure. NEW LASER POINTERS $4.5 \mathrm{mw}, 75$ metre range, hand held unit runs on two AA batteries (supplied) 670 nm . $£ 29$ ref DECA9 HOW TO PRODUCE 35 BOTTLES OF WHISKY FROM A SACK OF POTATOES Comprehensive 270 page book covers all aspects of spirit production from evaryday materials includes construction details of simple stills etc. £12 ref MS3 NEW HIGH POWER MINI BUG With a range of up to 800 metres and a 3 days use from a PP3 this is our top selling bug! les than 1 " square and a tom voice pickup range. ¢28 Ref LOT102. BUILD YOU OWN WINDFARM FROM SCRAP Naw publication gives step by step guide to building wind generators and propellors. Armed with this publication and a good local scrap yard could make you seff sufficient in electricityl $£ 12$ ref LOT8 NEW LOW COST VEHICLE TRACKINE TRANSMITTER KIT E29 range 1.5-5 miles, 5.000 hours on AA batteries, transmits info on car direction, left and right toms, stan and stop information. Works with any good FM radio. £.29 ref LOT101a
CCTV CAMERA MODULES $46 \times 70 \times 29 \mathrm{~mm}, 30$ grams, 12 100 mA auto electrontc shutter, 3.6 mm F2 lens, CCIR, 512×492 pixels, video output is iv p-p (75 ohm). Works directly into a scart or video input on a N or video. IR sensitive. £.79.95 ref EFF13 IR LAMP KIT Suitable for the above camera, enables the camere to be used in total darknessi $£ 6$ ref EF 138
UK SCANNING DIRECTORY As supplied to Police, MOD,M15 and GCHO! coverers eventhing from secret government frequencies eye in the sky, prisons, military aviation etc $£ 18.50$ ref SCAN INFRA RED POWERBEAM Handheld battery powered lamp, 4 inch reflector, gives out powerful pure infrared lightl perfect for CCTV use, nightsights etc. $£ 29$ ref PB1
SUPER WIDEBAND RADAR DETECTOR Detects both radar and laser, X K and KA bands, speed cameras, and all know speed detection systems. 360 degree coverage, fron searwaveguides, $1.1^{1 "} \times 2.7^{\prime \prime} \times 4.5^{5}$ fits on sun visor or dash $£ 149$ ref CHIEFTAN TANK DOUBLE LASERS 9 WATT+3 WATT+LASER OPTICS
Could be adapted for laser listener, long range communications etc Double beam units designed to ft in the gun barrel of a tank, each unit has two semi conductor fasers and motor drive units for alignement. 7 mile range, no cirevit diagrams dus to MOD, new price $£ 50,000$? us? £199. Each unit has two gallium Arsenide injection lasers, 1×9 wath 1×3 watt, 900 nm wavelength, $28 \mathrm{vdc}, 600 \mathrm{hz}$ pulse frequency. The from targets. f 199 for one. Ref LOT4.
NEW LOW PRICED COMPUTER/WORKSHOP/HIFI RCB UNITS Complete protection from fauly equipment fo everybodyl Inline unit fits in standard IEC lead (axtends it by 750 mm). fitted in less than 10 seconds, resethest button, 10A rating. $£ 6.89$ each ref LOT5. Or a pack of 10 at $£ 49.90$ ref LOT6. If you want a box of 100 you can have one for C 2501
DIGITAL PROPORTIONAL B GRADE RADIO CONTROLLED CARS From World famous manufacturer these are returns so they will need attention (usually physical damage) cheap way of buying IX and RX pius servos etc for new projects eto. e20 each sold as seen ref LOT2DP
MAGNETIC CREDIT CARD READERS AND ENCODING MANUAL 89.95 Cased with flyleads, designed to read standard credit cardsI complete with control elctronics PCB and manual magnetic strip on your cardl just $£ 9.95$ ref BAR3
WANT TO MAKE SOME MONEY? STUCK FOR AN IDEA? We have collated 140 business manuats that give you information on setting up different businesses, you peruse these a your leisure using the text editor on your PC. Also included is the certificate enabling you to reproduce (and sel), the manuals as much as you likel ¢14 ref EP74

HIGH POWER DC MOTORS, PERMANENT MAGNET
$12 \cdot 24 \times$ operation, probably about $1 / 4$ Fixin 1 using

£22ea REF mot4

Ferguson TX92 Chassis

If there is loss of one colour, check the tube's first anode (screen/G2) voltage as laid down in the manual. The cathode voltage for the missing colour should of course be high, and there will probably be no change as the Al voltage is varied. The first checks should be on the tube's base panel. Lift one end of all three $82 \mathrm{k} \Omega$ RGB feedback resistors RB24/44/64. Check their values and replace any that are out of tolerance.

If this doesn't restore the missing colour, switch off and lift one end of RV17 (82), RV18 and RV16 (both 120Ω) on the main panel. Tune in a monochrome signal and scope IV01's RGB output pins 27, 28 and 29 . With a monochrome signal all three waveforms should be of similar amplitude. If one is low, replace the three 100 nF chip capacitors CV 10/11/12. This has solved the problems I've had so far. P.B.

Samsung SCTIIB/D Chassis

The following applies to sets, including Models CI3373 and CI5079, that are fitted with this chassis - you will find the chassis number printed on the PCB, just below the line output transformer on the solder side.
If the set is dead with DZ801 or IC801 short-circuit, inspect the

TV Fault Finding

board in the area of DZ801. If it's blackened, indicating that DZ801 has been getting hot, the power supply has probably been producing excess voltage in standby. In standby the 125 V line should rise to 140 V . In some sets it can rise to 180 V , with the result that DZ801 fails. Replace the following parts with the latest types - this normally solves the problem:

DZ801, replace with part no. 0403000691.

IC801, replace with part no. AA1320004P version C.

HC801, replace with part no. AA13-20004M version C.

If the supply still produces 180 V in standby, replace C852 using part no. 2301-000111. P.B.

Grundig M70-690/9 (CUC6851 chassis)

If there is no front display, check whether fuse Si 6010 on the mains switch panel is open-circuit. P.B.

Samsung CI5079T (SCTIID Chassis)

This set produced a blank blue screen with no sound. The menus could be called up, but they were partly off the top of the screen. This was a clue - the EEPROM had lost its settings.

With the SAA5290ZP-026 the option byte should be set to 5D.

With the SAA5290ZP-042 the option byte should be set to CA.

Once a new EEPROM had been fitted and the option byte set up, the menus were in the correct place on the screen and snow had replaced the blank display. But no signals could be tuned in. Pin 1 of the microcontroller chip, where the PWM tuning voltage signal should be present, was short-circuit to
chassis. A new microcontroller chip and a picture size and grey-scale set up completed the repair.

If you need to order a service manual for a CI5079T, quote the chassis type - you will find it on the solder side of the PCB, by the LOPT pins. P.B.

Hitachi C1414T

Although this set's power supply appears to be quite conventional it won't start if you connect a light bulb as a dummy load across its output. If you switch on then connect the bulb, it will light.

The basic fault was that the overvoltage zener diode ZD952 (P6KE130R) and the line output transistor Q702 (BU2508DF) had gone short-circuit. Replacing these items and the optocoupler IC901 (CNX82R) cured the fault. But before doing so I wanted to test the power supply running on its own. Hence the comments above. M.M.

Sony KV2553MT

This multi-standard set had been imported from the USA. There was no picture: the owner complained about a thin white line across the screen with a black band at the bottom. The cause of the trouble was C681 ($560 \mu \mathrm{~F}, 25 \mathrm{~V}$) which on test read under $90 \mu \mathrm{~F}$. A new $680 \mu \mathrm{~F}$, 50 V capacitor rated at $105^{\circ} \mathrm{C}$ cured the fault. M.M.

Philips 2A Chassis

When this set came in it was tripping. Fortunately the engineer who brought it along mentioned that there was a width fault. I found that R3601 (5.6ת) in the EW modulator driver stage was open-circuit. A replacement stopped the tripping, but there was now excessive width with the control having no effect.

A voltage check at the emitter of the EW modulator driver transistor TR7599 produced a reading of
approximately 2.2 V instead of the usual 15.5 V . A check at the width control itself revealed that the -26 V supply was missing. R3602 (15) was open-circuit because the supply's reservoir capacitor C2602 ($10 \mu \mathrm{~F}, 63 \mathrm{~V}$) was short-circuit. When I removed it I found that its case had burst. Replacements followed by setting up restored correct operation. M.M.

Matsui 209R

The fault symptoms were field bounce and partial field collapse. The cause turned out to be dryjoints at the scan plug connector. Resoldering put matters right. M.M.

Philips CP110

This one came in from another dealer who thought that the cause of the blown mains fuse was the degaussing posistor, which rattled. Checks revealed that two of the mains bridge rectifier diodes were short-circuit. When these were replaced the fuse held but the set didn't come on.

The voltage at pin 9 of the TEA1039 chopper control chip was low. So I replaced the usual items the BUT11AF chopper transistor TR7665, the TEA 1039 chip, the 120Ω and 100Ω resistors in TR7665's base circuit etc., but still no joy. The BYD33J HT rectifier D6664 was short-circuit. When this had been replaced the set came on and the channel numbers lit up. Time to reconnect the scan-coil plug, restoring the HT supply to the line output stage. The set then tripped. I had a working set once the line output transformer had been replaced - pity the tube was as flat as a pancake! M.M.

Samsung Cl6230

There were two faults with this set: no remote control and flyback lines at the top of the screen when the set had been on for a while. The customer mentioned that the field output chip had been replaced several times. I replaced the associated flyback boost capacitor, but the field fault persisted. The cause was the chip itself, proved by a squirt of freezer.

When I removed the chip I found that the previous engineer hadn't bothered to clean off the old heatsink compound. So the chip wasn't making proper contact with its heatsink. All-was well when I'd cleaned off the old grease and fitted a new chip.

The cause of the remote control system failure was simple: the pre-
vious engineer had forgotten to refit the plug from the remote control sensor/amplifier! M.M.

Ferguson TX90 Chassis

Field collapse superimposed on a normal picture was the unusual symptom with this 14 in . set. At first I thought that the screen had been burnt by a previous field collapse fault. But this was not the case: after about five minutes the line almost vanished.

The field output stage bias resistors were all OK. They are fed from the same 150 V line that supplies the RGB output transistors. The cause of the problem was this supply's reservoir capacitor C190 ($22 \mu \mathrm{~F}, 160 \mathrm{~V}$). A replacement also improved the picture. K.F.B.

Hitachi C2114T (G7PS Chassis)

The field output chip IC601 had failed. It failed again after a few months and was replaced, along with C605, only to fail yet again. On Hitachi's advice we fitted a $10 \mathrm{nF}, 50 \mathrm{~V}$ capacitor across the field scan coils, on the print side of the panel, and made sure that R613 was fitted. But the set continued to destroy its field output chip.

The latest modification is to add two BZX79-33V zener diodes in series, with their cathode to pin 2 of IC601 and the anode to chassis. If this fails, it seems that a new CRT is required. K.F.B.

Ferguson ICC9 Chassis

If the symptom is loss of one of the primary colours, check the relevant surface-mounted buffer transistor first. Use a scope - these transistors can test OK with a multimeter. TV71 is for red, TV76 for green and TV81 for blue. M.Dr.

Tatung $\mathbf{1 8 0}$ Chassis

The power supply pumped at switch on. When the feed to the line output stage was disconnected the power supply fired up first time. But connecting a 60 W bulb as a dummy load made it trip again. The usual cause of this fault is C806 and C807 (both $100 \mu \mathrm{~F}, 25 \mathrm{~V}$). Not this time however. The capacitance of the mains bridge rectifier's reservoir capacitor $\mathrm{C} 805(100 \mu \mathrm{~F}$, 385 V) had dropped to a very low value. M.Dr.

Sanyo EC1-B Chassis

One of these sets would shut down after three seconds. The chassis incorporates a protection circuit that's monitored by the

PCA84C840/062 microcontroller chip IC701. The idea is that the protection line is held high by the $10 \mathrm{k} \Omega$ pull-up resistor R706. Various diodes connect this line to the supply rails. When a supply is lost, the relevant diode conducts and the protection line goes low. The exception to this circuitry is the HT line (B1), which is checked for overvoltage by a potential divider/zener diode/transistor arrangement which likewise pulls the protection line low in the event of a fault.

In this particular case however IC701 had developed an internal leak of about $2 \mathrm{k} \Omega$, which made the protection line go low. I assume that the three-second delay is programmed into the chip's software to allow the supply rails to be established before checks are made.

I've now had this fault three times, with two other variants of the same chassis. P.G.

Hitachi CPT2508 (G7P Mk II Chassis)

This set was dead with the mains fuse blackened and the 3.9Ω, 7 W surge limiter resistor R901 opencircuit. As a 300Ω reading was obtained across the mains bridge rectifier's reservoir capacitor C909 I at first suspected that the chopper transistor Q901 was leaky. The culprit was the snubber capacitor C919 $(4.7 \mathrm{nF}, 1 \mathrm{kV})$ however. It's one of those disc capacitors and on closer inspection I could see that it had split along its length. A replacement rated at 2 kV restored normal operation. P.G.

Toshiba 1510tBT

This set had died during an electrical storm. Unusually the power supply worked, but the set was stuck in standby. The 5 V supply for the microcontroller chip ICA01 is derived from the AC mains supply via a $3.9 \mathrm{k} \Omega$, 10 W resistor (RA60) which acts as an integrator in conjunction with a $470 \mu \mathrm{~F}, 16 \mathrm{~V}$ capacitor (CA45). The 9 V supply produced by these components is clamped by a couple of series-connected 4.7 V zener diodes and fed to a BC547B 5V regulator transistor (QA03).

Checks showed that the 5 V supply was low at 4 V while the voltages at the pins of ICA01 were haywire. In particular the voltage at its reset pin hovered at 1.2 V instead of being 5 V . Thus ICA01 refused to initialise. The reset line is fed by QA04, which is in QA03's base circuit. QA03 was the cause of the
trouble: it had slight base-emitter leakage. P.G.

GoldStar CIT2180F

This set was dead. There was plenty of voltage across the mains bridge rectifier's reservoir capacitor C808 but nothing at the collector of the chopper transistor Q801. The cause was hairline cracks around all the pins of the chopper transformer, though a magnifier was required to see them. Resoldering restored normal operation. P.G.

Huanya 37C3

Some quick ones on these sets. If the set fails to start, check R710 ($10 \mathrm{k} \Omega, 3 \mathrm{~W}$) which provides the line oscillator with a start-up feed.

No colour usually means that the D7193AP colour decoder chip IC501 is faulty. Replace with a TA7193.

If there's no field flyback blanking, check the two $1 \mu \mathrm{~F}, 50 \mathrm{~V}$ seriesconnected electrolytics C612/3.
Note that in some versions of the chassis only one of these capacitors is fitted, the other one being linked out. Non-linear field scanning usually means that C611 $(2 \cdot 2 \mu \mathrm{~F}, 50 \mathrm{~V})$ is open-circuit. P.G.

Mitsubishi CT25MITX

The complaint was intermittent loss of the picture. When the loss occurred it lasted for only a few seconds. The fault could not be instigated by heating/freezing or by tapping, and during a soak test put in an appearance just once in three days. When it occurred the picture blanked completely, but both text and the on-screen graphics still worked.

Eventually the fault lasted for longer than its usual brief period and I had a chance to make some checks. The signals were OK at the TDA356l colour decoder/switching chip, including the sandcastle pulses. Data input switching is carried out at pin 9 , which goes high for text/on-screen graphics. In the fault condition the voltage here was 0.9 V instead of 0 V . Two transistors, Q7705 (text) and Q702 (onscreen graphics), control this voltage. Q702 had 3.2V at its emitter instead of 0 V , and much the same at its base. At first I suspected the microcontroller chip IC701, but breaking its connection to Q702's base still left the incorrect voltage here. A replacement transistor, type JC501QR, cured the fault - the original one had been intermittently leaky.

The JC501QR is a general-pur-
pose, low-voltage transistor. I've found that a BC182L works quite well as a substitute. P.G.

Saisho CTI4IX/Matsui 1420A

The owner of this 14 in . portable complained about an extremely intermittent bright picture. When the fault finally put in an appearance I found that $\mathrm{C} 431(4 \cdot 7 \mu \mathrm{~F}, 250 \mathrm{~V})$ had gone open-circuit. It's the reservoir capacitor for the 180 V supply to the RGB output stages. P.G.

Hitachi G7P Chassis

One of these sets would intermittently fail to start. We'd had it in for the same fault about six months previously, and thought we had cured it by replacing C914 ($2 \cdot 2 \mu \mathrm{~F}$, 50 V) which had fallen in value. It's part of the start-up supply for the TDA4601 chopper control chip IC901. This time C914 was OK. The culprit was $\mathrm{C} 916(33 \mu \mathrm{~F}, 25 \mathrm{~V})$, which takes over as the reservoir capacitor for IC901's supply once the circuit gets going. As with C914, it had fallen in value. P.H.

Mitsubishi CT2964ST (Euro 4 Chassis)

This monster set's reported fault was no teletext. After attending to a multitude of dry-joints in the power supply and timebase sections of the main board I turned attention to the complaint. In fact the set seemed to be switching over to the teletext mode but produced only a blank screen. The 5 V teletext supply was low because C922 ($100 \mu \mathrm{~F}, 25 \mathrm{~V}$) was open-circuit. Once this capacitor had been replaced the set performed as it should, which is more than can be said for me after I'd lifted it! P.H.

Bush 2114T

The customer said that this set had gone bang. When I opened it up I could see why. The HT reservoir capacitor C810 (220 $\mathrm{FF}, 160 \mathrm{~V}$) had exploded. There was debris everywhere - it took an absolute age to clean it all up. To avoid a bounce I also replaced $\mathrm{R} 808(270 \mathrm{k} \Omega)$ and C818 ($1 \mu \mathrm{~F}, 50 \mathrm{~V}$). When faulty these items can be responsible for a blown chopper transistor and high HT respectively. P.H.

Ferguson C5IND (ICC7 Chassis)

Intermittent sound was the complaint with this Nicam set. The audio was sometimes low and couldn't be changed even though the on-screen level moved when
told to do so by the remote control unit. In addition the sound menu had only the volume level control present: the displays for balance, bass, treble and mono/stereo were not there. After attending to some suspect joints on the main and Nicam boards the problem was still present. Thinking it might be a microcontroller fault I replaced this item. Again to no avail.

Ferguson Technical was very helpful and suggested that I resolder pins 24,25 and 26 of the TDA6200 chip IS04 on the Nicam board. These pins handle the clock and data traffic. As I'd already done this, the next suggestion was to resolder all the links on this dou-ble-sided board. Doing this cured the fault. Note that ISO4 can be the cause of the fault.

I also found that the on-screen graphics were a bit too far to the right. This was corrected by adjusting LB03 in the on-screen display oscillator circuit. P.H.

Philips CP90 Chassis

I thought this was going to be an easy one - the set had lost its memory. A new nicad battery fixed that. I then found that the tuning would not stop at a signal. As the transmission tuned through, I briefly saw a picture that was shifted to the left.

So it appeared that there was a problem with the line oscillator, which is in the IF unit. This module is not covered in the manual, and Philips seems to regard it as unrepairable. A replacement module is expensive, so an attempt at repair seemed preferable to a declined estimate. In fact replacing the TDA2579 chip cured the problem. P.H.

Salora J Chassis

This set took a long time to come on and the mains switch wouldn't latch. When the electrolytics on the primary side of the Ipsalo circuit were checked with a bridge CB712 and CB726 (both $4.7 \mu \mathrm{~F}, 35 \mathrm{~V}$) were found to be low in value. They were replaced, along with the switch, but this wasn't the end of the matter.

There was pronounced ripple on the screen when the set was still cold. CB5 $14(1,000 \mu \mathrm{~F}, 25 \mathrm{~V})$, the 15 V supply reservoir capacitor on the secondary side of the Ipsalo circuit, was low in value. In addition field lock was not too good. This was cured by replacing the field scan coupling capacitor CB410 $(2,200 \mu \mathrm{~F}, 25 \mathrm{~V})$ which had also fallen in value. P.H.

Philips KT4 Chassis

The complaint with this set was intermittent loss of the picture, sound OK. Fortunately the fault became permanent after a few days. When the picture went off, the line frequency whistle changed pitch. But there was still EHT.

The chassis has an unusual power supply/line timebase arrangement. Drive for the line output transistor is obtained from a secondary winding on the chopper transformer. A TDA3576B chip, IC7200, is used for line sync purposes. It controls an oscillator in the power supply. The TDA3576B chip was faulty. So was the screen printing on the PCB - at first we fitted the replacement chip the wrong way round. Fortunately it suffered no damage. M.Dr.

Hitachi C2114T (G7PS

 Chassis)This set had died because of the usual failure of R901. When it had been revived there was a hum bar, yet no ripple could be detected on any of the supply lines. It was eventually removed by a slight tweak to the AGC preset. All chan-
nels, both strong and weak, had been affected. C.J.G.

GoldStar CIT2168

This set bounced following a power supply repair, the complaint being no teletext. There were dry-joints at connector P102 on the text board. Why are we always expected to do two repairs for the price of one? My local garage doesn't! C.J.G.

JVC C1480

Tuning drift was the complaint with one of these sets. For tuning control they have an unnecessarily complicated and ridiculously expensive thick-film module. Oh dear. We were able to trace the cause of the trouble to a surfacemounted electrolytic capacitor on the module however - C016, $0.47 \mu \mathrm{~F}$. It's the same type that gives trouble with certain JVC capstan motors. C.J.G.

Sony KVX2952 (AE1C Chassis)

The chopper transistor was shortcircuit and a replacement got very hot and threatened to go the same way. $\mathrm{C} 611(47 \mu \mathrm{~F})$ in its base circuit
was the cause, and the 100Ω sur-face-mounted resistor R651 was open-circuit.

It's always worth checking the waveform carefully where an electrolytic capacitor is used to couple the drive to a chopper or line output transistor. C.J.G.

Datsura CDR9009 (Sanyo
 Al-14 Chassis)

For a rolling, non-linear field scan, check the value of R548. It varies with the model. This one was fitted with a $180 \mathrm{k} \Omega$ resistor that had risen in value to several $\mathrm{M} \Omega$. C.J.G.

Fidelity CTV1405R

These portables are getting a bit long in the tooth now but can still produce excellent pictures. This one suffered from erratic tuning, sound buzz etc. A replacement AFT coil cured all these faults. C.J.G.

GoldStar CIT2168 (PC04A Chassis)

The cause of intermittent failure to start was traced to D401 (1N4003). It provides a start-up supply for the line driver stage. C.J.G.

THE NEW UNI-REMOTES FROM PHILEX

The NEW uni-range of Universal Pre-Programmed Remote Control covering the leading brands of television:
\star BRANDS CURRENTLY AVAILABLE FROM STOCK \star
PANASONIC - SONY - PHILIPS - HITACHI - MITSUBISHI - NOKIA - SAMSUNG

- BRAND FOR BRAND REPLACEMENTS. EACH UNI REMOTE COVERS THE MAJOR FUNCTIONS FOR TVs FROM ONE MAJOR MANUFACTURER AS WELL AS MANY OTHERS
- CODELESS SET-UP: READY TO USE IN SECONDS - JUST FOLLOW SIMPLE INSTRUCTIONS AND THE UNI-REMOTES ARE FULLY OPERATIONAL
- TELETEXT AND FASTEXT: UNI-REMOTES SUPPORT FASTEXT AND A WIDE RANGE OF THE OTHER TELETEXT FUNCTIONS AS LONG AS THE ORIGINAL TV SUPPORTS THESE FUNCTIONS
- PRE-PROGRAMMED FOR THE LATEST MODELS: AS WELL AS OPERATING CURRENT AND EARLIER MODELS THE UNI-REMOTES ALSO CONTAIN PRELIMINARY INFORMATION FOR OPERATING NEW TV MODELS
- REPLACES BROKEN OR LOST REMOTES
- CUSTOMER CARELINE AVAILABLE FOR ALL UK CUSTOMERS
- ATTRACTIVE CLAM PACKAGING IDEAL FOR RETAIL DISPLAY

- BARGAIN - THIS MONTH

PHILIPS
2.4 VOLTS
BATTERY B/U
10 PCS FOR
$£ 10.00$ ONLY
+ P/P + VAT
OR
5 PCS FOR
$£ 5.50$

SONY CD PICK UP
KSS 210A KSS 150A (NON-ORIGINAL) ORDER CODE: CDL 1200 ONLY £15.00 each $+P \& P+V A T$

Please phone us for the types not listed. Please add 60p post \& packing and then add 17.5% to the total.
Trade Counter now open Mon-Fri 9.00AM-5.00PM Sat 9.00AM-3.00PM
r/o 243-247 Edgware Road, The Hyde, Colindale NW9 Tel: Sales Hotline 01812059055 Fax: Admin 01812052053
Free fax orderline only: 0800318498

Reports from

Alan Bonhomme
Adrian Spriddell and Ian Field

Elkay EM14 SVGA

There was a red screen. Replacing C22 on the tube base PCB restored the missing green. All was well for several hours, after which there was a green screen with flyback lines. This time coil L10 had gone open-circuit. It's value is $22 \mu \mathrm{H}$, and it looks like a resistor. A.B.

AOC CMLB346

The symptom was very fine line tearing on verticals. Checks revealed that $\mathrm{C} 232(1 \mu \mathrm{~F})$ was open-circuit. Its position is near the centre at the front edge of the main PCB. A.S.

Viglen CA1428LE

The customer was an electronics engineer and had already tried to deal with the fault - no green. I expected a difficult job and got one! Most of the checks that should have been carried out had been, so I decided to deflux the CRT panel and start again. I repeated some of the checks and thought of a few more.

By now the fresh flux on the PCB was beginning to look a mess again. I decided, while it was still obvious which soldering had been reworked in the course of removing components for test, to unsolder and remake all the others including the many wire links. Once I'd completed this process and again defluxed the PCB it worked correctly.

During the solder reworking I noticed that many of the wire links

Monitors

only just made it through the PCB. The customer had obviously been aware of this, as most of the wire links had been 'levered' to check their strength. This is a valid test method. I think that if slightly more force had been applied the faulty link would have been found before I got a job out of it! I.F.

Digital PCX-BC

When this monitor was powered it produced only a 'warm, damp smell' which reminded me of the Fidelity ZX2000/3000 chassis. Looking at the cabinet design I expected to find an AST inside, but the innards more closely resembled a Philips 7CM5279.

Occasionally a shower of sparks was seen within the LOPT cage at switch on! The spring clip that holds the IRF730 boost regulator MOSFET protrudes through slots in the heatsink/LOPT cage and had cut into the windings of coil 5613. When this coil had been replaced fortunately the MOSFET had not been damaged - the monitor worked, though the scan was too wide. The MUR460 diode that was the cause of this hides under the heatsink clips on the line output transistor and efficiency diode. The PCB print was blurred - the diode could have been 6624 or 8824. I.F.

Taxan EV420-4R

The original complaint was intermittent operation. During fault assessment it became so intermittent the monitor didn't come on at all! Some poor soldering around the TDA8172 field output chip I301 was dealt with while carrying out a visual examination, but the fault was still present at power-up. The power supply was working, and was driving the CRT's heaters, but there were no scan-derived supplies.

Line drive was present, but the HT supply was missing at the line output transformer. When tracing
back to the source I came to Q802 (IRFS630), an all-plastic version of the IRF630. It acts as a chop-per-type EW/width modulator, driven by 1804. This is a second UC3842 chip, the first one being in the power supply. I804 was providing pulses at the gate of Q802, but this device's drain voltage was missing. So back to the power supply, specifically D813, which is mounted on a folded-metal standup heatsink. The solder fillet had torn away from the rest of the track. Once the solder and detached piece of pad had been removed and a brace link had been soldered in to provide connection and mechanical strength all was well. I.F.

RML RM1439

There was a blank screen, though power supply activity was evident at switch on. A scan-derived 12V supply is provided by the rectifier circuit D532, R545 (2.2Ω) and C533 ($100 \mu \mathrm{~F}, 25 \mathrm{~V}$), followed by IC501 (7812) for regulation. It was missing because R545 was opencircuit. This item had recently been replaced by someone else, and had been soldered on the print side of the PCB. The markings on D532 had been partly rubbed off and were unidentifiable. I decided that IC501 was unlikely to be the culprit, so I replaced C533 and R545 and fitted a UF5404 diode in position D532 - I had a strong suspicion that the original diode had been breaking down at running temperature. As I was unable to check the diode's specification, I had to select a replacement with an undisputable safety margin. Anyway the monitor then produced a normal raster.

These monitors were made by Mitsubishi and also turn up wearing Dell badges. A similar chassis was custom-built for RML for its educational machines. But don't assume that parts will be interchangeable. I.F.

PLEASE PHONE US FOR TYPES NOT LISTED AS WE HAVE OVER 50，000 ITEMS IN STOCK． QUOTATIONS GIVEN FOR LARGE QUANTITIES

LINEAR ICs

Part	Price																		
HA13	65	LA	35	LA	20	LF	48p	MC	50 p	SA		ST		ST	p	STR		281	Op
HA13002	200	LA3120	200p	LA7113	276	LFF355	60p	MC3401	5	SAB3035	27	STK3106	2500p	STK5	－	STR 17006	p	TA7282	60p
HA1300	400	LA3150	200 p	LA7176	125 p	LF357	70 p	MC3423P	100p	SAB3036	72	STK3122 IIf	$725 p$	STK	，	STR20005	Op	TA7210	200p
HA13007	300p	LA3160	120p	L47123	1300p	L＇F398	300p	MC3488AP	250p	SAB3037	700p	STK3152 If	900p	STK5482	285p	STR20012	450p	TA7283	
HA13108	${ }^{260 p}$	L43161	40 p	LA7210	60p	$\mathrm{LH}^{\mathrm{H} 24265}$	600 p	MC34063AP	300p	SAB3042	825p	STK3156	600p	STK5483	440 p	STR20015	450 p	TA7284P	400p
HA1317	175	L43210	${ }^{65 p}$	La7212	150 p	LM301	${ }^{26 p}$	MN1220T	600	SAB3064	130 p	STK4017	400 p	STK5486	450	STR30110	330p	TA7288	20p
HA 13118	$140 p$	L43226	${ }^{60 p}$	La7214	150 p	LM311	35p	MN1226	${ }^{4500}$	SAB3209	225p	STK4019	480 p	STK5487	525 p	STR30115	$276 p$	TA7291P	200p
HA13119	140 p	LA3246	$75 p$	LA7220	125 p	LM319	185 p	MN1228	${ }^{800 p}$	SAB3210	250 p	STK4021	380 p	STK5488	480 p	STR30120	400p	TA7292P	200p
HA13127	350p	La3300	140p	L47222	110 p	LM324	30p	MN1276	1300p	SAB6456	125 p	STK4024 1	550 p	STK5490	450	STR30123	${ }^{450}$	TA7292P	325p 450p
HA13128	400 p	LA3301	110 p	LA7224	150 p	LM3352	${ }^{120}$	MN 1280	70 p	SAB8048	225p	STK4025	630p	STK5632	450 p	STR30125	550 p	TA7294P	${ }^{4500}$
HA13130 HA13135	450p	L43361	100p	L47225	250p	LM339	35p	M 13004	600p	SAB8051AP	700p	STK4026	480p	STK5720	400 p	STR30130	250p	TA7299	${ }^{200 p}$
HA13135		La3365	70	La7292	275	LM348	50p	MN3005	2000p	SDA2003	450p	STK4028	550p	STK5725	450p	STR40090		TA7302P	$75 p$
${ }_{\text {HA }}$	600	L43370	700	L47294	200p	LM358	45p	MN3011	4000p	SDA2004	325p	STK4032 ${ }^{\text {H }}$	1050p	STK5730	450	STR40115	${ }^{600}$	TA7303	70p
HA13150A	1150	La3373	70 p	LA7295	180 p	LM380	80p	MN3101	110	SDA2005	700p	STK4034 X	925p	STK6316	300	STR41090	3300	TA7307	100p
HA13151	875	LA3375	300p	LA7297	120p	LM381	150p	M 3102	110p	SDA2007	300p	STK4036	470p	STK63248	500p	STR43111	950 p	TA7310	100p
HA13403	400 p	LA3376	${ }^{80}$	LA7305A	3508	LM382	130 p	MN3207	375	SDA2008	400 p	STK4038	680p	STK6327	1200p	STR44115	475 p	TA7312	120p
HA13406	400p	L43380	300 p	LA7308	70p	LM386	60p	MN3208	950	SDA2112	4500	STK4040 11	650p	STK6328A	800 p	STR45111	550p	ta7313	70 p
HA13408 HA13412	${ }_{6000}^{350 p}$	La3390	$260 p$ $260 p$	LA7311 LA7320	200p	LM387 LM389，	${ }^{1000}$	MN60308	350p	SDA2120	200p	STK4042 11	800p	STK6431	$850 p$	STR50020		TA7314	175p
HA 13412 HA 13426	600p 500 p	L43400 L43401	$\begin{gathered} 250 p \\ 90 p \end{gathered}$	LA7320 LA7323	$120 p$ 3259	LM3893	$105 p$ $45 p$	MN6163A	700p	SDA2131	$225 p$ 450	STK4044 STK4046	950p 980 p	STK6607 STK6722	$\begin{aligned} & 400 \mathrm{p} \\ & 725 p \end{aligned}$	STR50092 STR50103A	$\begin{aligned} & 550 \mathrm{p} \\ & \mathbf{2 6 0 p} \end{aligned}$	TA7315	200p
HA 13432	400p	L43410	$160 p$	LA7330		LM431	50p	NE555	20p	SDA4212	775	STK4048	1280p	STK6732	1000p	STR50		TA7317P	120p
HA13449	450	La3430	135p	La7331	250	LM710	45p	NE556	40 p	SDA5241	$726 p$	STK4050	1800p	STK6822	900p	STR50115	500 p	TA7320P	200p
HA17524	250	La3600	60p	LA7332	225p	LM723	40p	NE558	80p	SDA5243－2	450p	STK4060	510 p	STK6922	500p	STR51041	500p	TA7322	130p
KA2102		LA360	100p	LA7340		LM741DIL	18p	NE565	110 p	SDA5343	1460p	STK4065	650p	STK6932	525 p	STR50213		TA7323	80 p
KA2130	150	L43607	$125 p$	LA7376	150p	LM741MET	45p	NE567	115p	SDA5640	200p	STK4101	500p	STK6962	275p	STR53041	400p	TA7234	75p
KA2131	110 p	L44030	180 p	LA7391	550p	LM747	5	NE571	290p	SDA5642	450	STK4111	600p	STK6972	490p	STR54041	320p	TA7325	90p
KA2206	150 p	La4031	140p	La7520	200p	LM1017	200p	NE592	$85 p$	SGSF444	500	STK4112	500p	STK6981B	600p	STR55041	450p	26	200p
KA2209	125 p	L44032	140 p	LA7530	2009	LM1035N	350p	NE5532P	1400	SGFS465	500	STK4121	480 p	STK6982	${ }^{600}$	STR56041	550	TA	110 p
KA2210	230 p	L44051	${ }^{160 p}$	La7535	175 p	LM1040	650p	SAA 1000	350	SLA4031	750p	STK4122	560 p	STK6982H	${ }^{600}$	STR5804	250p	ta7330P	80p
KA2212	－${ }^{650}$	L44100	85	LA7545	160	LM1203	${ }_{225 p}^{225 p}$	SAA1004	650 3250	SLA7020M	450p	STK4131	${ }^{480}$	STK7216	420	STR5904 STR60001	300 5250	ta7331P	80p
KA2214	100 p	LA4102	100p	La7555	150p	LM 1875T	330p	SAA1006	300\％	STA34iM	200p 180	STK4133 II	600p 750 p	STK7225	500\％	STRG00015	525p	TA7333	
KA2224		Las110	120p	La7620	500p	LM1881N	375	SAA100	450p	Sta 401 A	220	STK4141 II	420p	STK7228	600p	STR81145		TA7335	85p
KA2244	75p	La4120	270p	LA7680	675p	LM 1886	250p	SAA1010	400p	STA 403 A	270	STK4142	530p	STK7251	500 p	STR90120	425p	TA7336	80p
KA2261		LA4138	105p	La7681	650p	LM1889	300p	SAA1024	250p	STA405A	280 p	STK4147 II	1450p	STK7253	450p	STRD1206	500p	TA7337P	175 p
KA2263	100 p	La4140	${ }^{60 p}$	L47710	250 p	LM1894N	200p	SAA1025	250p	STA431A	250p	STK4151	680p	STK7308	350p	STRD1406	60	TA7	175p
KA2264	100p	La4142	65	La7800	p	LM1895N	275p	SAA1026	400	STA432A	220	STK4152	${ }^{650}$	STK7309	400 p	STRD1706		TA7341	250p
KA2284	75 p	L44145	${ }^{65 p}$	La7801	$100 p$	LM2901N	35 p	SAA1027	400 p	STA 434A	270p	STK4161	${ }^{650} \mathrm{p}$	STK7310	470 p	STRD1806	360p	TA7342P	70p
KA2309	175p	La416	100p	La7802	30	LM2902N	40p	SAA1029	150p	STA 435A	270 p	STK4162	650p	STK734	400	STRD1816		TA7343	120p
KA2401	160	LA4162	110 p	La7806	280 p	LM2903N	Op	SAA 1042	325 p	STA441C	220 p	STK4164 11	1175p	STK7356	425p	STRD1906	650p	TA7347P	120p
KA2412	225 p	LA4178	1500	La7808	250 p	LM3900	40 p	SAA1043P	675p	STA451	2800	STK4171	900p	STK7358	4400	STRD3035		TA7348P	125p
KA2912	125 p	LA4180	${ }^{150 p}$	LA 7820	100p	LM3909	100p	SAA1044	400p		240p	STK417211	${ }^{680}$	STK7402	${ }_{600} \mathbf{6 0 0}$		${ }_{550}$	TA7349P	175p
$\begin{aligned} & K A 2913 A \\ & K A 2914 A \end{aligned}$	175 200 10	LA4182 LA4190	180 p 300 p	LA7823 LA7824	200p	LM391．1N	200p	SAA1056 SAA1057	$300 p$ 375	STA471 STA901M	$210 p$ $\mathbf{2 8 0 p}$	STK4181	680p 750 p	STK7 404 STK7406	600 p 650 p	$\begin{aligned} & \text { STRD4420 } \\ & \text { STRD4512 } \end{aligned}$	550p 400 p	TA7354P	65p
KA22427	10	LA4192	14	La7830		LM3975	16	SAA10	225	StK002	420	STK4191	700	STK740		STRD5441		TA7357	340p
KIA6213S	60p	LA4200	130p	LA7831	85p	LM3916	270 p	SAA1060	375	STK0029	1000	STK4192	700p	STK7410	1500	STRD5541	45	TA7358	$85 p$
K1A6210A	400p	La4201	120p	La7832	130p	LM8363	320p	SAA1061	250	STK0039	600	STK421111	1000	STK7458	1250p	STRD6008	575p	TA7359P	90 p
K1A6281H	250p	LA4260	230p	LA7835	150p	LM8560	175j	SAA1062	250p	STK004	520	STK4211V	80	STK755	600	STRD6009	450p	TA7361	125p
K1A6283K	150	L44261	300	La7837	150	LM13600	150 p	SAA1063	250p	STK0049	510	STK422111		STK7561		STRD6018		TA7362	150p
K1A6299\％	210	L44265	125	LA7838	200	LM13700	125	SAA1064	275	STK005	440	STK42311	1050	STK7562	100	STRD6602	47	TA7364P	176p
A7227CP	200	LA4270	300	La7850	225	LM18293		SAA1070	550	STK005	620	STK4241	1050p	STK756	80	STRD6601		TA736	65p
$\mathrm{KliAl313}_{\text {Li49V }}$	45	L44282	350 p	La7851	200	M491881	800	SAA 1073	325 p	STK006	820	STK4241	1260p	STK7573		STRM6545		TA7368P	35p
Litict	300	LA4420	140	La7910	150	M 49481	700 p	SAA1075	350p	STK0070	1100	STK4272	550	STK7576	1500 p	STRM6546		TA7373F	150p
L165V	2500	LA4422	130	La7913	35	M5265P	200	SAA1086	175	STK0080	1000 p	STK4273	${ }^{650 p}$	STK7703	${ }^{1000 p}$	STRM6549		TA7374	175p
	20	LM44	13	LA79	35	M50115P		SAA1089		STK011	33	－	65	SKK825	${ }^{1600 p}$	STRS5941		TA7376P	100p
1272 M	110	LA4440	200	LA7953	300	M50119P	525	SAA 1124	200	STK016	780	STK4332	36	STK8260	1200	STRS6307		TA737	60 p
1290	225	La4445	200p	La9200	300p	M50422P	750	SAA 1130	550	STK025	65	STK4352	600	STK8280	1850	STRS6308		TA7401	250 p
L2918	300 p	La4446	170	L81205	170 p	M50461	350	SAA1250	280 p	STK050	1600	STK4362	450p	STK73405 II	55	STRS6309		TA7402P	200p
L292	750 p	L44460	120 p	L81216	150 p	M50784	300p	SAA1251	380p	STK077	520	STK4372	600 p	STK73410	350p	STRS6707	100	03	325p
	$225 p$	LA4461	120p	L81258	100p	M50786	500	SAA1271	400p	STK078	1800	STK4392	500p	STK7340 ！	500p	STRS6708	575p	TA7404	150p
L293C	325p	L44466	${ }^{225 p}$	L81268	$7{ }^{70}$	M50790	600p	SAA1274	280p	STK080	55	STK4412	450 p	STK73605		TA7054		TA7405	200p
L293D	225 p	L44470	300 p	L81274	85 p	M51014L	120p	SAA1290	750	STK082	2000	STK4432	${ }^{600 p}$	STK73907	700p	TA7061	11	TA7411AP	150p
L293E	250 p	La4475	226p	L81290	120p	M51143AL	110	SAA1293	550	STK084	60	STK4773	820 p	STK78617	2400p	TA7062	20	TA7415P	350p
	475p	L44476	225p	Le1292	110 p	M 51161	300	SAA1294	800	STK085	90	STK4793	800 p	STR370	300 p	TA7066	120p	TA7417ap	225p
L2	450 6250	L44480 L44485	226 300	L81407	70 p 130 p	${ }_{\text {M }}$	250p	SAA 1310	200	STK086	1000 900	STK4813	8000p	STR380		TA7089		21P	350p
	40	La44		L8140	200	M51164A		SAA13	275	STK0100	1200	STK	85	STR38		TA7102P		TA7607	200p
L465	526	LA4496	2500	LB1412	300p	M51166P	300	SAA1351	750	STK420	400	STK4843	720p	STR383	420	TA7119	150	TA	
4482	400	La4498	276	L81415	100 p	M51182L	110	SAA1900S	476	STK430	500	STK 4853	1700	STR384	350	TA7120	55p	TA7609	170p
L4978	525	LA4500	200	L81416	85p	M511914		， 3004	400	STK433	400	STK4863	700	STR440	800	TA7124	250p	TA7611	210 p
L7028	400 p	LA4505	220 p	L81426	125 p	M51231P	200	300	2265	STK435	375p	STK4873	1100	STR441		TA7130P		TA7612	300p
7702N	325	L44508	200	L81450	110p	M51308SP	580	SAA3007P	130	STK436	43	STK4893	1000	STR442	1600	TA7137	${ }^{60 p}$	TA7613A	90 p
L2720	150 p	LA4510	100p	L81615	270p	M51310AP	900	SAA3008P	200p	STK437	60	STK4913	900p	STRA50A	700	TA7140	100p	TA7614	170p
12722 4960	175	L44520	170 p	L81620	${ }_{220 p}$	M51316P	300	3010P	${ }^{300}$	STK439	500	STK5314	475p	STR451	800	TA7141	825 p	TA7616	300p
${ }^{\text {L4960 }} \mathrm{L6203}$	325p	LA4550	200p	$L 81622$ LB1630 1863	$220 p$ $80 p$	M51320 $M 513568$	200 400	SAA3027P	375 p $\mathbf{5 5 0 p}$	STK441	${ }_{70} 68$	STK5315 STK5322	$500 p$ 500	STR452 STR453	60	TA7150P	250p	TA7621	300 p
L6210	250	L44557	150	LB1639	300p	M 51358 P	150	SAA4700	425	STK457	47	STK5323	600	STR454	1300 p	TA7172P	15	22	420 p
L6221AS	300 p	LA4558	125 p	L81640	150 p	M51365P	350	SAA5000	200	STK459	56	STK5324	450 p	STR455	550p	TA7193	320p	TA7628	${ }_{\text {120 }}^{110}$
$\underline{6508}$	300p	L44570	130p	L81641	75 p	M51366P	360	SAA5010	220	STK460	860	STK5325	370	STR456	470	TA7200	200	7629	
LA1130 LA1135	240 p	L44571	175	L81642	150 p	M51381P	200p	SAA5012	400p	STK461	60	STK5326				TA7205	1200p		
$\begin{aligned} & \text { LA1135 } \\ & \text { LA1145 } \end{aligned}$	120 p 200p	L44581	${ }_{1750}^{1750}$	$L 81645$ $\mathbf{L 1 6 4 8}$	100p	M51384AP	750p 600p	SAA5020	350p 440	STK463 STK465	95	STK5330 STK5331	850 p 300	STR470 STR1096	40	TA7207 TA 7208	1250	TA7632	$\begin{array}{r}\text { 400p } \\ \mathbf{9 0 p} \\ \hline\end{array}$
	150 p	La4620	400 p	L81649	190p	M51392P	300p	SAA5040A	280p	STK501	55	STK5332	180	STR119	350	TA7210	200p	TA7641	140 p
LA1170	${ }^{90 p}$	L44630	325 p	L83500	125 p	M51393AP	360p	SAA5040B	400	STK561	450	STK5333	850p	STR1229	325 p	TA7214	220p	TA76448P	480p
177	130 p	La4700	350p	LC4966	65	M51395AP	450p	SAA5041	560p	STK563	415	STK5335	350 p	STR2005	400 p	TA7217	${ }^{145 p}$	TA76545P	65p
	75	L44705	40	LC7011	500 p	M51397AP	425	SAA5042	425	STK583	50	STK53	350	STR20		TA7220	220	TA7658	100p
LA1186	35p	LA5112	2000	LC7120	${ }_{350 p}$	M51496P	275p	SAA5051	400p	STK770	400 p	STK5338	2950	STR2015	550	TA7223		TA	400 p
L41201	75p	L45511	50p	LC7130	300p	M51533	300p	SAA5052	500p	STK772	650	STK5339	400	STR2024	575	TA7225	3		
LA122	$75 p$	LA5512	p	LC7131	280	M51544	150	㖪	500	STK7728	480	仿	350p	STR2105	600	TA7226	290p	TA7668	
LA1207	120p	L45522	45 p	LC7132	400p	M51848	150 p	SAA5230	850	STK780	$675 p$	STK5342	245 p	STR2124	675p	TA7227	700p	TA7672	
LA1210	140	LA5523	${ }^{150 p}$	LC7137	450	M54523P	200	SAA5231	170p	STK795	450	STK5343	380 p	STR3105	525 p	TA7230	100p	ta767676aP	${ }_{450 \mathrm{p}}^{400}$
LA1230	130 p	LA5527	150 p	LC7185	350 p	M 58484	500p	SAA5243PE	360p	STK1040	640p	STK5361	375	STR3115	4000	TA7233	1209	TA7679	475p
LA1235	130 p	LA5530	${ }^{65 p}$	LC7191	300p	M51516	280	SAA5244AP	950p	STK1049	700	STK5362	400p	STR3123	400	TA7237	300	TA7680AP	200p
LA1240	80p	LA5531	65p	LC7207	275p	M51518	200	SAA5246AP	380p	STK105	650	STK5372	260	STR31	480	TA7238	40	ta7681AP	425p
L41245	$110 p$	L45537	45p	LC7215	160p	M51995P	250p	SAA5246P	750	STK1060	700	STK5373	$375 p$	STR3130	500 p	TA7240	160	ta7687AP	100p
La1260	75p	LA5655	$175 p$ $\mathbf{2 2 5 p}$	［C7217	350 p 250 p	M51977P M52307P	$300 p$ $900 p$	SAA5250P	760 3750	STK1070 STK1080	850p	STK5393 STK5392	375	STR313	275	TA7241		TA7688	150p
LA12	125p	ta5665	250p	［C7230	700p	M54646AP	400 p	SAA7000	550p	STK2025	620p	STK5421	450 p	STR3214	275	TA7243	320p	TA7698	400 p
LA1266	130p	LA5667	200p	LC7267	550p	MB3708	275p	SAA7020	600p	STK2028	500p	STK5422	375p	STR3215	276p	TA 7245	225p	TA7705	${ }_{300 \mathrm{p}}^{600}$
LA1267	150p	L45700	300p	LC7351	200p	M 33712	600p	SAA7210P	1300p	STK2029	480p	STK543	550p	STR3315	275p	TA72458PO	200p		
LA1354	225p	L46339	35	LC7364	200	M83713	130	SAA7220PA	550	STK2030	1000	STK5434	570	4090	650 p	TA7248P	575p	TA7709P TA7719P	150 p $\mathbf{2 0 0 p}$
LA1363	200p	－46355	－${ }^{\mathbf{5 0 p}} \mathbf{1 5 0}$	LC7522	425p	MB3714 M 3715	265p	SAA ${ }^{\text {S }}$ S2728P	－600p	STK2038 STK2048	700p	STK5436 STK5441	500 p 400 p	STR4211	$460 p$ $315 p$	TA72518P	$325 p$ $325 p$	TA7727P	125p
LA1365	120	L46515	150 p	LC7535	$300 p$	M83722	200	SAA9050	450	STK20581V	1600p	STK5443	575p	STR4512	400 p	TA7256P	225p	TA7750	200p
LA1368	220 p	L46520	175	LC7537AN	400 p	M83730	900 p	SAA9057	476	STK2101	1050p	STK5446	350	STR5015	500	TA7259P	225	TA7757	200 p
LA1385	200p	LA6531	250 p	LC7537N	450 p	M83731	220p	SABO600	600	STK2110 STK2125	550	STK54	390p	STR STR5200	550	TA7262P	40	TA7769	38
LA1503	120p	La7011	220	LC7565	300 p	M83735	400	SA80602	6265	STK2129	750	STK5462	5000	STR5315		TA7		TA7772P	${ }^{150 p}$
LA1805	175p	LA7016	45p	LC7582E	300p	M83756	100 p	SAB1009BP	226 p	STK2139	$675 p$	STK5464	300p	STR5412	280 p	TA7267	220p	TA7792P	250p
	130	La7018	100p	LC7800	175p	MB3759	200p	SAB1016	e00p	STK2155	900 p	STK5466	500p	STR6020	270	TA7267B	120 p	TA7796P	75p
LA1851	300 p	L47019	${ }^{130} \mathrm{p}$	${ }^{\text {LC77815H}}$	$176 p$	M83771	110 p	SAB1046P	${ }^{350}$	STK2230	470 p	STK5467	400 p	STR7001		TA7269	260p	TAB101N	230p
LA2000	150p	LA7033 LA7042	${ }_{2800}$	${ }^{\text {LC7818 }}$	${ }_{3250}^{280 p}$	M83773	110p	SAB2015P	525p	STK2240 STK2250	$740 p$ 8500	STK5468 STK5471	300 p	STR9005 STR9012	4000p	TA7270	170p	TAB105N	140 p
2101	270p	－47042	380\％	${ }^{\text {LCC7821N }}$	250p	MB8719 $\mathrm{MC1391}$	360p 120 p	SAB2022P	525p	STK3041	370p	STK5472	375	STR10006	450p	TA7272	220p	ta8110ap	110 p
LA2110	150p	L47051	130p	${ }^{\text {LC7822N }}$	160 p	MC1455	${ }^{45 p}$	SAB3012	675p	STK3042	375 p	STK5473	480	STR11006	325p	TA7273	300p	TA8119P	$70 p$
La22	190	L47053	130 p	LC78818	135 p	MC1488	$35 p$	SAB3013	200 p	STK3044	950p	STK5474	500p	STR12006	450p	TA7274	210 p	tabi22an	250p
L42205 LA2211	150p 350p	L47054 LA7060	350p 150p	$\underset{\substack{\text { LF347 }}}{\text { LC781M }}$	325p $110 p$	MC1489 MC1496	35p 65p	－	$\begin{aligned} & 320 \mathrm{p} \\ & 450 \mathrm{p} \end{aligned}$	STK3062 STK3082	600p 850p	STK5476 STK5477	$\begin{array}{r} 360 p \\ 450 \mathrm{p} \\ \hline \end{array}$	$\begin{aligned} & \text { STR13006 } \\ & \text { STR15006 } \end{aligned}$	500p 500 p	$\begin{aligned} & \text { TA7279P } \\ & \text { TA7280 } \end{aligned}$	325p 190p	TA8127N TA8132AN	100p 200p

Please add £1 P\＆P and VAT at 17．5\％to all orders
All brand new components
We accept payment by Access，Switch，Visa，Cheque and Postal Order．（Government，College etc orders accepted）
Prices quoted are subject to availability and may be changed without prior notice

JAPANESE TRANSISTORS

	rice	Part	Price	Par	Price	Part	Pri	Part	Price										
2 SC1675	90p	$2 \mathrm{SC2}$	700p	2 SC 2		2 Sc 3	280\％	2 CC 3	220p	2SD25	195p	$2 \mathrm{SD8}$	40p	2SD132	150	2SD17	80 p	2SK312	750p
$2 \mathrm{SC1678}$		2s														2	p	2SK315	70p
2 2SC1683	10	2SC2270		2sc2724	${ }^{150}$	${ }^{25 C 3269}$	50 p	${ }^{2 S}$	${ }^{70 p}$	${ }^{2525291}$	250 p	2 SD	35	${ }^{2 S D 133}$	60p	2SD1765	70 p	2SK320	
2 SC1684		2SC2271	25p	2SC2738		$2 \mathrm{SC3270}$				${ }^{2 \mathrm{SD} 313}$	25p		75 p		70p	${ }^{2 S D 1769}$	110 p		130p
2SC16		2SC22	15 p	$2 \mathrm{SC2749}$		，			250		75		5p	2SD		2SD17	100p		76p
$2 \mathrm{SC1729}$	s00p	$2 \mathrm{SC2275}$	50 p	2 SC 2750		${ }^{25 C 3277}$	280p	2SC3832	135 p	2SD325	Op	2SD89	100p	2SD135	150p	${ }^{2 S D 1776}$	70p		
2 SC 1730	10p	$2 \mathrm{SC2278}$		2 SC 2751	270p	$2 \mathrm{SC3279}$		2 CC 3833	Op	2 SD 330	65p		Op	2SD1376	0 p	2SD1783	，	2SK	
2 SCl 1735	70	$2 \mathrm{SC2283}$		2 SC 2752				2 S		2S			225p	2SD1378	80p	2SD1785		2SK363	50 p
2SC17	10p	2SC2290	1800p	2SC27		$2 \mathrm{SC32}$				2SD3	320	2S590		2SD13		2SD17	210	2SK364	
$2 \mathrm{SC1741}$	35p	2SC2291	40p	${ }^{2 S C 2769}$	4	$2 \mathrm{SC3284}$	600p	2SC385	220p	2SD35	40 p	2SD905	450	2SD138	100p	2SD179	120p	2SK367	40p
2 2SC1755	90 p	2 2Sc2298		${ }^{2 S C 2773}$		$2 \mathrm{SC3293}$		2S	220 p	2 2S358	P	${ }^{25 D 916}$	130	2SD138	$\mathrm{BOP}^{\text {p }}$	2SD1802	75 p	2SK369	30p
2 SC 175	35 p	2SC230		2sc27		2SC3298				2SD3	50p	2S091		2 SD 13		2SD18	$75 p$	析	00p
${ }^{25 \mathrm{SCl} 1758}$	30p	${ }^{25 C 2308}$		${ }^{2 S C 2785}$		${ }_{2}^{2 S C 32}$	12	${ }_{2}^{25 C 33}$	560p	${ }^{2 S D} 361$	100 p	${ }^{2 S 592}$		${ }^{2 \mathrm{SD} 139}$	350 p	2SD1812	45 p	2SK374	5p
$2 \mathrm{2SC1760}$	70	${ }^{25 \mathrm{SC} 2312}$		${ }^{2 S C 2786}$					5p		100p			2S	250 p	2SD1815	P	2Sk386	800
${ }^{25 C 1775}$		$2 \mathrm{SC2314}$		$2 \mathrm{SC27}$				${ }^{2} \mathrm{2SC}$	200	${ }_{2 S}^{2 S}$		${ }^{25}$		2SD	${ }^{850}$	2SD18		2SK	15 p
2SC17	20p	2SC2316	150p	2 SC 2791		$2 \mathrm{SC330}$	13	2SC38	200 p	2SD	50	2SD94		2SD139	30p	2SD18	120p	${ }_{2 S K} 2100$	\％p
$2 \mathrm{SC1789}$	100 p	$2 \mathrm{SC2320}$	10 p	${ }^{25 C 2792}$	220p	${ }^{25} 5330$	600p	2SC388A	5p	2SD381	Op	${ }^{2 S D 950}$		${ }^{2 S D 139}$	120 p	2SD184	70p		
2 2SC1809	40p	2SC2324		2 SC		$2{ }^{2} \mathrm{C}$		2 S	${ }_{2}^{210 p}$	${ }^{25 D 382}$	p	2 2S		${ }^{25 \mathrm{D}} 1393$	1200	2SD184	360p	2SK405	460p
${ }^{2 S C 1810}$	${ }^{250}$	${ }^{25 C 2328}$		2SC2808		2SC3390 2Sc3316	1280	${ }_{\text {2SC3884 }}$	2500		70 150	${ }_{2}^{2 S D 957}$	${ }_{60}^{620}$	${ }^{2 S D 139}$	300p	2SD1847 2SD184	${ }^{2750}$		
2SC1815 2 SC1819	10p	${ }_{\text {2Sc2310 }}$	25p 1750	2SC2810	$360 p$ $40 p$	2SC3316 2 Sc 3317	${ }_{360 p}^{280 p}$	$\begin{aligned} & 2 S C 3885 \\ & 2 S C 3885 A \end{aligned}$	250p 290p	${ }_{\text {2SD388 }}$	150p	$\begin{aligned} & \text { 2SD958 } \\ & \text { 2SD965 } \end{aligned}$	60p $\mathbf{3 5 p}$	$\begin{aligned} & \text { 2SD1399 } \\ & \text { 2SD1400 } \end{aligned}$	$\begin{aligned} & 300 \mathrm{p} \\ & 280 \mathrm{p} \end{aligned}$	$\begin{aligned} & \text { 2SD1849 } \\ & \text { 2SD1850 } \end{aligned}$	280p $\mathbf{3 2 5 p}$	2SK415	600p
2 SC	6	$2 \mathrm{SC23}$		2 SC 2		2sc3		${ }_{2 S C 3}$	27	2SD		2SD9	17	2 SD		2SD1853			
${ }^{25 C 1827}$	cop	$2 \mathrm{SC2230}$		${ }^{2 S C 2824}$	75 p	2 SC 332		2SC3890	150	2SD40	Pp	2SD972		2SD14	225	2SD1856	40p	2SK	200 p
2 SC 1829	500p	2SC2331		2 SC 2825		$2 \mathrm{SC33}$		2 SC	250p	2 SD402	p	$2 \mathrm{SD973}$	p	2SD140	80p	2 SD1857	75 p		
$2 \mathrm{SC1833}$	27	$2 \mathrm{SC23}$		2SC28		$2 \mathrm{SC3}$		2 SC	225p	2SD	P	2SD973A		2SD		2SD1858			
$2 \mathrm{SC1834}$	50	$2 \mathrm{SC2334}$	80p	2SC282	130	2 Sc 33	25p	$2 \mathrm{SC3895}$	325	2SD4	55	2SD983	90 p	2SD14	60p	2 SD 18	35p		
$2 \mathrm{SC1841}$	12p	2SC2335		${ }^{2 S C 2832}$		2 SC		2 SC		2SD42		硅		2 2S14	125 p	2 LD	P	2 S	${ }^{180}$
$2 \mathrm{SC18}$	60	2SC2336A		${ }^{2 S C 2834}$		$2 \mathrm{SC3}$		2SC38		2SD4		2SD98	120	2SD	170p	2SD18		2SK531	
$2 \mathrm{SC18}$	15p	2SC2344	150	$2 \mathrm{SC28}$		$2 \mathrm{SC3}$		2SC39	25	2SD42	360p	2SD998	p	2SD14	85	2SD18		2SK	700p
${ }^{25 C 1846}$	${ }^{355}$	${ }^{25 C 2347}$		${ }^{25 C 28}$		${ }_{2} 2$ SC3		2 SC 392	250	${ }^{25 \mathrm{SD} 43}$	5p	${ }^{2 S D 1010}$	P	2SD141	75	2 2S187	${ }^{2750}$	2SK537	
2SC184	45p	2SC2353		$2 \mathrm{SC285}$		2 SC		${ }^{2} \mathrm{SC} 3$		2 SD		2SD1012	40	2 SD1413	${ }^{60}$	${ }^{2 S D 18}$		2 S	350p
2 SC								${ }^{25} \mathrm{~S} 39$			15	2SD10	${ }^{40}$	2SD1	190	2SD1			
$2 \mathrm{SC185}$	25p	2 sc 2361	150 p	${ }^{25 C 2877}$	12 p	${ }^{25 C 335}$	120p	${ }^{2 \mathrm{SC} 3944}$	op	2SD473	Op	2 2S1021	120	$2 \mathrm{SD141}$	${ }^{750}$	${ }^{2 S D 1884}$		2S	
${ }^{25 C 1865}$	700p	$2 \mathrm{SC2362}$		${ }^{25 C 2878}$		$2 \mathrm{SC335}$		${ }^{2 S C 3950}$	p	${ }^{2 S D 476}$	${ }^{\mathbf{0 0 0 p}}$	2SD1022		2SD1425 2SD142		2SD1886 2SD 188		2 Sk	80p
${ }_{2 S}^{2 S C}$		${ }_{\text {2SC23 }}$		2SC28		2SC3	300 60	$\xrightarrow{2 \text { 2SC3 }}$		${ }_{2}{ }^{2 S D 552}$	70p	${ }^{\text {2SD102 }}$	85	2SD1		2 SD 1		，	225p
$2 \mathrm{Cli8}$	220	${ }_{2 S C 2371}$	P	2SCz8		2Sc33	（120p	2Sc39		2SD545	Pp	2SDio3	76 p	2SD14	180	2SD189	225 p	2SK	320p
$2 \mathrm{SC188}$		$2 \mathrm{SC2373}$	210p	2 SC		2 SC 3		2SC39	25	2SD		2 2SD		2SD143		2 2D19	175p	2SK	500p
$2 \mathrm{SCl18}$		2sc23		2SC28		2 SC	130	2SC39	21	2SD		2SD1		2 SD		2SD1	300p	2SK	400p
${ }^{2 S C 1895}$	500p	2SC23		2SC29		$2 \mathrm{SC33}$		$2 \mathrm{SC397}$	210	2 SD 55		2SD104		2SD143		2 2S1913	Op	2SK559	
$2 \mathrm{SC19}$	125p	2 SC2407	110 p	$2 \mathrm{SC29}$	25p	$2 \mathrm{SC33}$		$2 \mathrm{SC39}$	160	${ }^{2 S D 555}$	50	${ }^{2 S D 1047}$		${ }^{2 S D 143}$		2 SD 1929	60 p	2S	
		$2 \mathrm{SC2}$		${ }^{2 S C 29}$				${ }^{25 C 3}$		${ }^{2 S 55}$	220	${ }^{2} 5$		2 SD		${ }^{25 D 1}$	50 p	2SK566	476p
$2 \mathrm{2SC190}$	，	${ }^{25 C 24122}$		${ }^{2 \mathrm{SC} 2912}$	120	${ }^{25 \mathrm{SC} 3}$	${ }^{50}$	${ }^{25} 5399$	1250	${ }^{2 S D 558}$	${ }_{500}$	2SD105		${ }^{2 S D 143}$	${ }_{2005}^{1850}$	${ }^{25 D 1933}$			
2 SC 19		2SC240 2SC245		2SC292		${ }_{2 \mathrm{LSC34}}^{2}$		${ }_{2 S}^{2 S C 3998}$		${ }_{2}$ 2SD569	p	${ }_{2}^{2 S D 106}$		${ }^{2 S D 144}$	22	$\begin{aligned} & \text { 2SD1939 } \\ & \text { 2SD1941 } \end{aligned}$		2Sk	
${ }_{2 S C 19}$		2 S						${ }_{2 S}$		2SD5	6309	2SD1		${ }_{2}$ 2S		${ }^{2 S D 19}$		2SK6	950p
2 SC 19	15p	2SC24	56p	$2 \mathrm{SC29}$		2 SC	p	2SC40	32	2SD5	25p	2SD106	250	2SD14		2SD195	80p	2SK	16
2 SC 19		2SC248	275p	2SC29				2SC40		$2 \mathrm{SD5}$	25p	2SD106	180	2SD1		2SD19	210p	2SK	
2 SC 19		2 SC		2SC2934		2 SC		2sc40		2 2Sb	30p	2SD1	15	2SD		2SD19	50p	2SK719	300p
$2 \mathrm{SC1929}$	180 p	${ }^{2 S C 247}$		${ }^{25 C 29}$		${ }^{25 C 34}$		$2 \mathrm{SC4} 4$		${ }^{2 S D 6}$	40 p	2 SD 10		$2 \mathrm{SD145}$		2 2SD1	0p	2SK7	500p
2 SC 19	110 p	${ }^{2 S C 2481}$	120 p	2SC293		2 SC 34	${ }^{120}$	2SC40		2 SD 60	50	${ }^{25103}$	375	$2 \mathrm{2SD145}$		2 2SD1		2SK725	650p
2 SC 19	27p	2 Sc 2		2SC294		$2 \mathrm{SC34}$		$2 \mathrm{SC4}$	40	2SD61	${ }^{50}$	2 2S109		${ }^{2 S D 14}$		${ }^{251} 1$			
${ }_{2} \mathbf{2 S C 1 9}$		$2 \mathrm{SC24}$	120 p	${ }_{2 S}^{2 S C 29}$		${ }_{2 S C 3}$		${ }_{2 S C 406}^{2 S C 4}$	14	2SD6		2SD111	${ }_{2}^{2250}$	$2 \mathrm{2SD145}$		2 SD2006			
$\left[\begin{array}{l} 2 \mathrm{SC} 19 \\ 2 \mathrm{SC} 19 \end{array}\right.$	350	2SC24	${ }_{\text {100p }}^{185 p}$	${ }^{2 \mathrm{LSC} 299}$		${ }_{2 S c 34}^{2 S C 34}$		${ }_{\text {2SC410 }}^{2 \text { 2S } 4107}$	${ }^{180 p}$	${ }_{\text {2SD617 }}$	${ }_{7} 70$	l $\begin{aligned} & \text { 2SD1111 } \\ & \text { 2SD1113 }\end{aligned}$	22	${ }_{2}^{2 S D 14}$	60	2SD2006 2 SD 2010		2SK	
2 SC		$2 \mathrm{SC24}$		${ }^{2 S C 29}$		${ }_{2 \mathrm{SC}}$		2SC4		2 SD63	10p	2SD112		2SD1	40p	2 2D201	60p	2SK	300p
$2 \mathrm{2SC19}$	45	${ }^{25 C 2498}$	${ }^{50}$	${ }^{2 S C 298}$	150	$2 \mathrm{SC3}$	150 p	2 2SC4122	20	2SD6	15p	2SD11	${ }^{66 p}$	2 SD 14	225 p	2SD201	50p	2SK7	
$2 \mathrm{SC195}$		${ }^{25 C 2500}$		${ }^{251295}$		${ }^{2 \mathrm{SC}} 3$	130 p	${ }^{2 \mathrm{SC} 4125}$		${ }^{25063}$	${ }^{15 p}$	${ }^{2511135}$		2SD14		2 2SD2018	P	2SK7	
2 SC 195		$2 \mathrm{SC2502}$		2 SC 2999		2 SC	200	$2 \mathrm{SC41}$	40 p	${ }^{25 D 63}$	${ }^{20 p}$	${ }^{2 S D 1138}$	$4{ }^{40}$	2 SS 1	30	2SD20	p	2SK787	800p
${ }^{2 \mathrm{SCC} 195}$	175	${ }_{2}^{25 C 2503}$	20p	${ }_{2}^{2 S 53091}$	14	$2 \mathrm{SC3}$	125 p	${ }_{2}^{2 \mathrm{SC4} 4138}$	200	2SD6	360	2SD14	500	${ }^{2 S D 14}$	${ }^{2350}$	2SD2061	1090	2SK791	
$\begin{aligned} & 2 \mathrm{SC} 19 \\ & 2 \mathrm{SCl} 19 \end{aligned}$	11	${ }_{2 S C 25}^{2 S C 25}$	${ }_{120}^{20}$	${ }_{2 S C 30}^{2 S C 30}$	14	${ }_{2 S C 34}$	180p	${ }_{\text {2SC4 }}$	${ }_{10}^{40}$	2SD6	18 p 00 p	2SD114	350p	2SD1497－920	p	${ }_{\text {2SD2066 }}$	250p $\mathbf{1 8 0 p}$	2SK792	\％p
2 S		2						$2 \mathrm{SC4}$			25p	2SD1	17	2SD15	50	2 SD 21			
2 SC 197	100	${ }^{2 S C 2527}$	300p	2 SC 3025	500	$2 \mathrm{SC3}$	225p	${ }^{2 S} 4169$	60p	2SD6	20p	2SD115	30p	2SD15	60p	2SD21	35p	2SK794	${ }^{315 p}$
2 SC 19		$2 \mathrm{SC253}$		2 SC 302		$2 \mathrm{SC3}$	，	${ }^{2 S C 4199}$		2SD66	P	$2 \mathrm{SD1159}$	，	2SD150	100p	2SD2151	1750	2SK	
2 SC 19		2 SC 25	300	$2 \mathrm{SC30}$		2 SC	30	${ }^{2 S C 4204}$		2SD67	35	2SD119	162	2SD15	$76 p$	2SD2255	175 p		50p
$2 \mathrm{2CC1} 97$	150	${ }^{2 S C 2538}$	100p	${ }^{25 C 30}$	12	${ }^{2} \mathrm{~S} 3$	27	${ }^{25 C 42}$	550	2SD6		${ }^{2 S D 1163}$	220	2SD	250 p	2 SD 2		2SK8	
2 SC 19		${ }^{2 S C 2540}$	㖪	${ }^{2 S C} 303$		23c5		${ }^{2 S C 4235}$		2 2SD7		${ }^{\text {2SD1164 }}$	75	2SD152	p	${ }^{25 D 23}$	1500	SK8	
$2 \mathrm{SC19}$		2SC2542	，	2 SC 303		$2 \mathrm{SC35}$		${ }^{2 S C 4236}$	45	${ }^{2 S D 7}$	${ }^{850}$	${ }^{25 D 1168}$	27	$2 \mathrm{2SD15}$	${ }^{450}$	2SD23	${ }^{2255}$	2Sk	
$2 \mathrm{SC19}$		${ }^{2 S C 254}$		2 SC 30	280 p	$2 \mathrm{SC35}$		$2 \mathrm{SC42}$	500	2SD7	24	${ }^{2 S D 1169}$	28	${ }^{25 D 1}$		${ }^{2 S J 48}$			
2 SCl 198	1500	${ }^{2 S C 2546}$		${ }^{2 S C 304}$		${ }^{25 C 35}$	120 p	${ }^{25 \mathrm{SC4242}}$	120	${ }^{2 S D 723}$	20	2SD1173	360	2 2SD15		25174		2SK	475p
2 SC 198		2SC2547		${ }_{2 S C 30}^{2 S C 3}$		${ }_{2 S C 35}^{2 S C 35}$	240	2SC4278 2SC4288		${ }_{2 S D 731}$		2SD1185	280	${ }^{2} 2$ 2SD15	${ }_{36}^{27}$	${ }_{\text {2SJJ7 }}$			
2 SC 2		2SC25		－				${ }^{2 S C 4}$		2SD7	26	2SD11	${ }_{65 p}$	2 2S		2S		2SK	p
$2 \mathrm{SC20}$		$2 \mathrm{SC255}$	，	2 SC 30		2SC35	76	${ }^{2 \mathrm{SC4} 4301}$		2SD734	15 p	2 2SD191	120p	2SD155		2S．J79	225p	2SK9	
2SC20	20p	2 SC 255	P	$2 \mathrm{SC30}$	25p	$2 \mathrm{SC35}$	17	$2 \mathrm{SC4304}$	22	2SD74	12	2SD1192	90p	2SD155	16	2 SJ 103	$75 p$	2SK952	
2SC20		2SC25		$2 \mathrm{SC30}$	10	2 SC	20	$2 \mathrm{SC43}$		2 2SD7		2SD119	150 p	2SD1	2255	$2{ }^{251109}$		2SK955	Premer
$2 \mathrm{2SC2022}$	110	${ }^{2 S C 25}$		C307		2SC35	${ }^{260}$	${ }^{25 \mathrm{Sc} 438}$		2 2SD7		2 2SD19		2SD15		${ }_{2 S}^{2 S 1113}$			
$2 \mathrm{SC202}$	180 p	${ }^{2 S C 2563}$	200 p	${ }^{2 S C} 30$	150	${ }^{25 C 35}$	750	${ }_{2}^{2 S C 4388}$	20	${ }^{2 S D} \mathbf{2} 76$		2SD119	60p	$2 \mathrm{LSD15}$	170 p	2SJ11	1150	2SK9	700p
$2 \mathrm{SC202}$		${ }^{25 C 2558}$	120	2SC30	120	2SC35	750	${ }^{25 C 4}$	27	2SD76		${ }^{2 S D 120}$	${ }_{280}^{40}$	${ }^{2 S D 1}$		$2 \mathrm{SJ11}$			
$2 \mathrm{2SC20}$	200	${ }^{25 \mathrm{SC} 2}$		${ }^{2} 2 \mathrm{SC} 3$	150	$2 \mathrm{2SC}$	200	${ }_{2 S}^{2 S C 43}$	425	2SD7		2SD121		$\begin{aligned} & 2 \mathrm{SDI} \\ & 2 \mathrm{SDD} \end{aligned}$		${ }_{2 S J 1}^{2 S J}$		2SK	60 p
$2 \mathrm{SC20}$		${ }^{2 S C 25}$	360 p 110 p	${ }_{\text {2SC31 }}$	76	${ }_{2 S C 35}^{2 S}$	270p	${ }_{\text {2SC4429 }}$	276p	${ }_{2 S D 772}$	200p	${ }_{\text {2SD1213 }}$	220p	${ }^{2 S D 15}$	250p	${ }_{2 S J 16}$		2SK1	
$2 \mathrm{SC2}$	12	$2 \mathrm{SC25}$	170	$2 \mathrm{SC31}$		2SC35	200	2SC44	90	2SD7	20p	2SD1218	75p	2SD1	S0p	2SJ17	20	2SK10	
${ }^{25 C 2055}$	15	${ }^{2 S C 257}$	170	${ }^{25 C 31}$		$2 \mathrm{2SC35}$	275 p	${ }^{2 S C 446}$	${ }^{325 p}$	2SD77		2 SD122	75	2SD1	80 p	2SJ1	160p	2SK	
$2 \mathrm{2S}$		${ }^{25 C 2580}$	${ }^{176 p}$	${ }^{2 S C 31}$	${ }^{750}$	${ }^{2 S C 35}$	200 p	${ }^{25 C 4467}$	176	${ }^{2 S D 777}$	400	${ }^{\text {2SD1225 }}$	70p	${ }^{2 S D 15}$	${ }^{100 p}$	${ }^{25} 5200$	${ }^{625 p}$	2SK10	
$2 \mathrm{2SC2}$	40	2SC2581	225	$2 \mathrm{SC31}$	120	$2 \mathrm{CC35}$	200p	${ }^{2 S C 4468}$	250	2SD784	650	${ }^{2 \text { 25D } 1227}$	40 p	2 2S15	310p	${ }^{2 S J 307}$	175p	2SK11	${ }^{375 p}$
$2 \mathrm{SC2}$	78p	2SC25	${ }_{400}^{600}$	${ }^{25} 531$			${ }_{75} 22$	${ }_{2 S C 4517}^{2 S 4517}$	200	2SD78	20	2SD122	260p	${ }^{\text {2SD15 }}$	${ }^{1250}$	2SK19	400	2SK	
2SC20	140p	${ }_{\text {2SC25 }}$	${ }_{60 p}^{40}$	${ }_{2 S}$	186	${ }^{2 S C 35}$	140p	${ }^{2 S C 4531}$	${ }^{2250}$	${ }_{2 S D 788}^{2 S D 87}$	20p	${ }_{\text {2SDI238 }}$	300p	${ }_{2 S D 160}$	210p	${ }_{2 S K 40}^{2533}$	S0p	${ }^{25 K}$	${ }^{2255}$
25 C 20	40	$2 \mathrm{SC25}$	200p	${ }^{25 C 31}$	100	2 SC 3	$175 p$	${ }^{2 \mathrm{SC} 4532}$	1000	$2 \mathrm{SD789}$	20p	2SD1244	25 p	$2 \mathrm{2S1}$	46 p	${ }^{25555}$	100p	2	
25 C 2075	95	${ }^{25 C 2603}$	00p	${ }^{25 C 315}$	130 p	${ }_{2 S C 36}^{2 S 56}$	150	${ }^{2 S C 4542}$		${ }^{2 S D 792}$	${ }_{4}^{400}$	${ }^{25 D 1246}$				2SK68	7 p		
2SC2078 2SC2085	95p	${ }^{2 S C 2610}$	${ }^{60 p}$	${ }_{2 S C 315}^{2 S C 315}$	${ }^{170 p}$	${ }_{2 S C 36}^{2 S C 360}$	$160 p$	2SC4744	${ }_{360}^{276}$	（e） $\begin{aligned} & \text { 2SD794 } \\ & \text { 2SD795A }\end{aligned}$	33 p 140 p	2SD1247	－${ }_{\text {180p }}^{40}$	${ }^{2 S D 163}$	60p $40 p$	2SK13	75p	2SK12	
$2 \mathrm{SC20}$		$2 \mathrm{SC26}$	P	$2 \mathrm{SC31}$	36	2 SC 36	5	$2 \mathrm{SC4745}$	55	2SD798	175	2SD1254	65p	2 2S16	280 p	2SK106	40 p	2SK122	200
2 SC	100p	$2 \mathrm{SC262}$	190p	${ }^{25 C 31}$	200	${ }^{25 C 363}$	280	${ }^{2 S C 4747}$	375	${ }^{250799}$	P	${ }^{25 D 1263}$	90 p	${ }^{2 S D 165}$	${ }^{180 p}$	${ }^{2} \mathrm{SK} 107$	40 p	2Sk	$276 p$
$2 \mathrm{2S}$	1200	$2 \mathrm{SC26}$	${ }^{6000}$	${ }^{25 C 31}$	28	${ }^{25 C 364}$	${ }^{225 p}$	${ }^{25 C 4757}$	20	$2 \mathrm{2SD809}$	5 p	2 2S1264	${ }^{65 p}$	250165	${ }^{1550}$	2SK109	150	2561296	
$2 \mathrm{SC209}$	2300	2 SC2630		$2 \mathrm{SC31}$	20	${ }^{2 S C 36}$	40	${ }^{2 \mathrm{SC} 4762}$	300	2SD81		${ }^{251265}$	75 p	2SD	25	2SK117		2Sk	
$2 \mathrm{2SC209}$	25	${ }^{2 S C 263}$	${ }^{20}$	$2 \mathrm{2S}$	27		800 p	$2 \mathrm{2SC}$	220 p	$2 \mathrm{2SD}$	${ }^{360 p}$	${ }^{25 D 12}$	65p	2SD	cisiop	2SK118	100p	2SK13	
（2SC2118		${ }^{2 S 5 C 2632}$	35 p 10p	${ }_{2 S 317}^{2 S C 316}$	300	${ }_{2 S C 36}^{25 C 36}$	100	2SC4820	${ }_{\text {225p }}^{260 p}$	${ }_{2 S D 821}^{2 S D 20}$	250p	${ }^{2581267}$	${ }_{56 \mathrm{p}}^{65 p}$	${ }_{2}^{2 S D 166}$	120p	2SK133	100p	2SK1338	250
25 C 2122		${ }_{2}$ SC2636		$2 \mathrm{SC31}$	180	$2 \mathrm{SC36}$	280	${ }^{2 S C 482}$		$2 \mathrm{SD82}$	290	${ }^{2 S D 1271}$	225 p	${ }^{2} 516$	90p	2 2K147	180p	${ }^{25 K 1341}$	${ }^{\text {soop }}$
25 C 2131		2 SC2637	120p	2sc3	260	$2 \mathrm{SC36}$	140	$2 \mathrm{SC4}$		2s082	P	${ }^{25 D 1272}$	200p	${ }^{25 D 1}$	p	${ }^{25 K 152}$	40p	25K	
$2 \mathrm{SC2141}$		${ }^{25 C 2540}$	1800	${ }^{25 C 31}$	125p	${ }^{2 S C 36}$	38	${ }^{25 \mathrm{SC4923}}$	40	${ }^{2 S D 829}$	375p	${ }^{25 D 1273}$	50	${ }^{25 D 167}$	200	${ }^{25 K 161}$	30 p	${ }^{256135}$	200p
${ }^{25 \mathrm{C} 2153}$	40 p	${ }^{25 C 2653}$	100	${ }^{25 C 317}$	70p	${ }^{2 S C 36}$	45	${ }^{25 C 4923}$	250	${ }^{2 S D 836}$	${ }^{60 p}$	${ }^{25 D 1274}$	80	${ }^{25 D 168}$	2258	${ }^{2 S K 163}$	40 p	2SK135	225p
${ }^{25 C 21}$	${ }^{80}$	${ }^{25 C 2}$		2sc3		$2 \mathrm{SC36}$	S00	${ }^{25 \mathrm{C} 492}$	500p	${ }^{25 D 83}$	60p	${ }^{2512}$	60	2 SD 1	P	2SK	40 p	25K1357	
$25 \mathrm{SC2168}$	${ }^{120}$	${ }^{2 S C 2655}$	650	${ }_{2}^{253181}$	${ }_{1200}$	25 C 3688	${ }_{560} 5$	${ }^{25 C 5002}$	300 p	${ }_{2}^{2 S D 837}$	${ }_{500}^{55 p}$	2581276	60p	${ }^{25 D 1684}$	70p	2SK170	50 p	2SK135	
$2 \mathrm{SC2188}$	70 p	2 2S2656	650p	2SC3182	120 p	${ }_{2 S C 3692}^{25 C 375}$	160	${ }_{2}^{2 S C 50027}$	${ }^{350}$	${ }_{\text {2SDB34 }}$	500p 110 p	2SD1277	1900	2SD170 2SD170	325p 400 p	2SK184	35p 460	2SK1377	180 p
$2 \mathrm{SC22}$	25	$2 \mathrm{SC26}$	研	$2 \mathrm{LC3}$		$25 C 37$	480	${ }_{2} 2 \mathrm{SC502}$	100	2SD841	110 p	${ }^{25 D 1279}$	${ }_{175}$	2 SD 17	${ }^{4700 p}$	${ }_{2 S}$ 2Sk193	45		
2SC2209	50p 60p	${ }^{2 S C 2665}$	200 p 10 p	2SC3199	${ }_{20}{ }^{\text {20，}}$	${ }_{2 S C 3729}^{25 C 3717}$	120 p 460 p	2SC5044	300p 250p	2SD844 2SD850	200p	${ }^{25 D 1288}$	175p 250p	2581708 2581710	375p 200p	${ }^{\text {2SK193 }}$	150p	2 SK 140	290
$2 \mathrm{SC2221}$		$2 \mathrm{SC2}$	100p	${ }^{2} \mathrm{SC32}$	120	$25 C 3746$	100	$2 \mathrm{SC5086}$	250 p	$2 \mathrm{SD856}$	48 p	2SD1291	280p	${ }^{25 D 171}$	$278 p$	2SK197	140p	2SK 146	220p
2SC2228A		$2 \mathrm{SC26}$	170	咗		$2 \mathrm{SC3747}$	120p	$2 \mathrm{SC5129}$	30	2SD85	250 p	2SD1292	${ }^{60} \mathrm{p}$	2SD172	230p	2SK212	${ }^{35}$	2SK1462	425p
25 C 2229	${ }^{15 p}$	${ }^{25 C 2682}$	$7{ }^{70}$	${ }^{25 C 3211}$	220 p	$25 \mathrm{C3748}$	1000	2 2C5148	300	${ }^{25 D 863}$	23p	2SD1293	70 p	2SD1730	275	2SK214	170p	${ }^{25 K 148}$	250 p
25 C 2230		$2 \mathrm{SC2688}$	27p	$2 \mathrm{SC3212}$	280	${ }^{25 C 3752}$	250 p	${ }^{2 S C 5149}$	300	${ }^{258884}$	200 p	${ }^{25 D 1297}$	300p	2SD1732	250p	${ }^{\text {2SK216 }}$	200p	2SK15	300p
2S		25 C 26		$2 \mathrm{SC3}$		$2 \mathrm{SC37}$	150p	${ }^{2 S C 5250}$	30	${ }^{25 D 866}$	12	${ }^{251202}$	20 p	${ }^{25 D 1739}$	${ }^{1805}$	${ }^{25 \mathrm{SK} 223}$	60p	2SK 1529	700p
$2 \mathrm{SCC2235}$		25C2694	3500 p	${ }_{2 S C 3242}^{2542}$	${ }^{300}$	${ }_{2 \text { 2SC3782 }}$	75p			${ }^{25 \text { 25866A }}$		2SD1306						25 K 1	
［2SC2236	${ }_{540 \mathrm{p}}^{20}$	2SC2705 2SC2706	${ }^{450}$	${ }_{\text {2SC3246 }}$	45p	2SC3783 $2 \mathrm{SC3787}$	300p	2SD198 2SD199	140p	2SD867	360 p $\mathbf{2 6 0}$	${ }_{\text {2SD }}$	80p	2SD1748	－975p	2SK246		2SK1544	90
2 SC	45		26	2SC325	350p	2 CC 37		$2 \mathrm{SD200}$	180	${ }_{\text {2SDB69 }}$	150 p	2SD1310	140 p	2 2SD175		2SK300	25p	2SK1767	275
$2 \mathrm{SC2240}$	15 p	25	20 p	2 sc 3	p	25	75p	2SD20	20p	2SD8	40p	2SD1311	${ }^{65 p}$	2sis	Sop	2s	P	2SK203	295p
2SC2258 2SC2259	30p	（ $\begin{aligned} & \text { 2SC2714 } \\ & \text { 2SC2716 }\end{aligned}$	${ }_{\text {S0p }}$	$2 \mathrm{SC3261}$ 2SC3262	230 p 280 p	2SC3790 2S 39795	120p	2SD213 2SD234	900	2S8871 2SD879	600p	2SD1313 2SD1326	200p	2SD1761 2SD1762	60p	SKK304	2 pp	2SK2	22

REPLACEMENT VIDEO HEADS

Model Price	Price	Model Pric	odel	Model Pric
AKA	VHSAN3 8			
250, 301, 303,			N.E.C. N9011, 9012, 9013E, 9014E, 9014G, 9015 , 9016, 901A, 902A, 9033, N9034, 9040,	
9300, VS9500	VH		9016, 901A, 902A, 9033, N9034, 9040, 9053, 9054, 9055, 9056, 9063, 9065, 9066, 906, 9077.	
				VHRDA610, 6700,4800 3100p
		,	2400 p	THR2000, 700,4800
	VHSTJ1, VHSTJ2, VHSTJ3, VHSWJ3,			VHR $5300, ~ V H R 6500, ~ V H R 7400 ~$VHR3500
VSF $30,33,4,400,410,420,430,440,441$.			N834, N835, N83682611AH1 (FOR MODEL DX3000), 700p	VHR3500 VHR16, 235, 335E, 4150, 4160, 4350, 2250, 7260,3250 VTC 3000 1950 p
	G			SHARP
15EK,				
				VC200, 220, 300, 381, 383, 384, 385, 386 ,
				387, 388, 471, 477, 481, 482, $V 483,486$, $3300,8381,9100,9300,9400,9500,9600$,
				8, 208, 382, 402, 405, 408, 500, 550,
VSA1100, 1110, 650, VSF500, 510, 550,	MADRID, SE5140, VS540,			
				㖪
				$700,772,7810,782,7822$, VC783, 8481 8581, VCA10, 100, 102, 103, 1031, 103, 104, 105, 106,
		OEK, HRJ415, HRJ416		
				211, 234, 244, 254, 255, 30, 35, VCA 40 . VCB311N, 320, VCD801, 802, VCM73, VCT212, 310, 410, VCT510, 72, VCT1314.
	MVS660, SE6160, VERONA, VS660 ${ }_{3}{ }^{\text {V }}$		VR6441, VR6540, VR6541, VR6640. VR6642 1300p	
	GRUNDIG			
100EDG, $100 \mathrm{EM}, 110$, VS 4400	崖, 2175, SE220	MITSUBishl	VR692041DV2, 4 SB 1 18VR412, 415, 6485, 6490 , 2750 p	VC793, VC785, VC786
VS 109, VS603, VS606, vS607	ARI			VC699, VCA501, VCA602 2800 p VC58, VC685 $\mathbf{2 0 0 0 \mathrm { p }}$ VC90ET $\mathbf{3 9 0 0 \mathrm { p }}$ VFH815 $\mathbf{2 8 0 0 p}$ VC850
			21DV3, 2SB01, 02, 11, 12, 30DV2, 310VI. 31DV2, 31DV3, 3SB02, 03, 05, 11, 12, 13.	
				VC800, VCH851, VCH852,
			31DV2, 31DV3, 3SB02, 03, 05, 11, 12, 13. 68SB4, 71 SB4, 86SBI, 91 SB2, 92SB2,	
			DV186, 190, 291, 292, 468, 471, VR201. 202, 203, 2115, 212, 213, 223, 231, 232,	VCHBO, VCHB1, VFHB15 ${ }^{\text {V/ }}$
				VCA55, VCA63 2200p VC570
	VT35, VT350, VT38, VT39 \quad 2300p			
20, VSF1010, VSF 1030		HSE10, HSE11, HSE20, HSE21, HSE41.HSB10HS300, HS20	6185, 6290, 6291, VRG293,6362,6367 6467, 6468, 6470 VR3260, 6349, 6442, 663, 6448, 6449. 4800p	
				DSR-21 R FOR SLC 8-C9 2600p DSR-35R FORC20, C30, C40, SLF4UB,
	VT410, 413, 414, 415, 416, 418, 510, 515, 517, 518, 520, 525, 526,	HS $300, \mathrm{HS351} \mathrm{HS} 302,, \mathrm{HS310}$,		SLFIE2 PIN, SLC 24 PS, $33 \mathrm{E}, 34,44 \mathrm{PS}$, SLF11, 30PF, 35, 60PS, SLK85.
		HS337, HS347HSB12, HSE12, HSE22, HSM16G, 18.180	VRGO1 49SB6, VR6548, VR6648, VR6843 2760p	
7000, 7800	VTM625, 626, 725, 210, 211, 215, 726, 727, 728, 820, 821, 825, 920 921 1400p		SAISHO VR100, 605, 705, 805, 905, 1000, 1100, 1200, 1600 1200p VR3300X, VR3600X, VR3650X, VR3800	SLT20ME, 30 ME, SL100 DSR-43R FOR SLC7 RANGE, SL5000, SL5100. SL3000 1 PIN SLC6E SL36ES
	VT4000, VT 4200, VT5000, VT5500,			
				SL3000, SLBOOO, SL8080, SLCEE, SLTTME
	$V T 77,080,6500,6700,6800,7000,8000$. $8030,8040,8100,8300,8500$			
8600, 8602, 8700, 9005, DD8900, DD	VT8700, 9000, 9300, 9500, 9700. 9900 , 1000p		VR2000, VR3300, VR3600 1400 p VR2500 2850 p	SLV201, SLV202 $\mathbf{2 0 0 0 p}$ SLK5, SLT50ME $\mathbf{2 9 0 0}$
		HS412.HS421G2 ${ }_{\text {HS }}$		
			VRS5000X, VX6000A, VXL12X	SLV412, SLV427, SLV474 2200pDSR49R, SLHF $100 \mathrm{P}, \mathrm{m}$
	VT65VT130, 135, 138, 145, 250, 255, 258, 420,	HSM40		
				SLHF100UB 3850 p
	425, 426, 428, 430, 431, 435 VT438, 535, 536, VTL30, 301, VTM630,	HSM59, HSM68E NV300, 322, 332, 333, 340, 390, 2000, 2010, 3000, 7000, 7200.7500, NV7800,	SV9200	
	635, 636VT52,VT60, VT61E, VT62E, VT63, VT64pVT640V1100p	2850, 8170, 8200, 8400, 8600 8610,8620		CCDF340E, CCDF500E, CCDV90E, CCDV95E, CCDSP5E 4800p
				SLV310, SLV315, SLV325, SLV335 1800p
		NATIONAL PANASONIC AG1000, 1050, NV250, 260, 280, 450.		
	VT522, ,VTM212, 620, 622, 720, 722,822,		(623N, SV6800, SV6900, SV8850, ${ }^{\text {SV8870, }} 1750 \mathrm{p}$	
	2600pVT660EVT570, VT575, VT580, VT585, VT588,	AG6010, AG6015 $\mathbf{2 5 0 0 p}$ AG6840, $\mathbf{2 4 0 0 p}$	SVB8810, SV8910 S23N, SV8920	SLV125, 213, 225, 252, 255, 262, 280, SLVX1, 20, 3
			$\mathbf{9 2 3 N}$ SV8600, SV8700 $\mathbf{4 5 0 0 p}$ 1550 p	
	VT570, VT575, VT580, VT585, VT588, VTF70 3100p	NV100, NV200, NV370, NV380, NV630		
	VTM598, 640, 645, 646, VTM730, 731, 735, 736, 740, 745, 746, $748,753,754,830,831,835,838,840$.	NVDBO, NVH65 AG5150, AG5250, NVF65, NVH75,NVH77 3200p 3200	SV8420 2400p SV8620 2100 p	SLVX55,
			SV8380 2200p SV830 SV8720 2250 p	StVE, SLVE
		AG5150, AG5250, NVF65, NVH75, NVH77 NVF51 3200 p NVGI $\mathbf{4 2 0 0 p}$		
	VTM730, 731, 735, 736, 740, 745, 746, $748,753,754,830,831,835,838,840$ 2800p		SV820 SAM20 SASUNG 19009	SLV615,SLV625, SLVE600, SLVE700, ${ }^{\text {3450p }}$,SLVE800
	$\mathrm{VTF770}, 774,775,860,861$, $\mathbf{4 1 0 0 p}$ B65 VT85, VTB6, $\mathbf{2 6 0 0}$	NVG19 NVJ30, NVHJ33, NVL 10. 20, NVL21, 2300p		
		NVG30, 31, 40, 130, NVJ37, 40, 42,	SAMSUNG	TOSHIBA
		NVJ35, NVG46 1700 p NVM1, NVM3, NVM5 $\mathbf{4 2 0 0 p}$ AG2100, AG2200 $\mathbf{7 0 0 0}$		
			970, 971, 972, SV716, 717, SVX303, 305,	
		NV430, NV431, NV433, NVSD2, NVSD22. NVSD25, NVSD3	VB510, 520, 610, 616, 617,619, 620,626,	
	J.V.C. 8 FERGUSON HR2200, 3300, 3320, 3330, 3350, 3360,		$627,629,710,971, V 1520,616,621,626$, 900,910,	V55,V57, , V74, V75, V77, V80, V81, V82,
			SVX319, V8770, V1710, $730,731,730$	
	3292, 8900, 8901, 8902, 8903, 8906, 8922.	NV21 HQ, NV 180, NVD48 2000p NV7881 $\mathbf{2 5 0 0 p}$	750, 751, 770, VB750, VK8220, VX750, VX7330, VK770, VKB225, VR1730, 1735,	V88, DV90, 96, 97, NM3, V108, 109, 1200p
FVHP1250, FVHP430S 1950p	8928, 3V01, 3V06, 3V22 HR3660, $7600,7610,7650,7700$, HRD 110 .		V11560, VN1560, VN1561, VX 1530,	
GOLOSTAR	HRS' $100,8904,8923,8924,8925,8929$, 8935, 8941, 8943, 8944.	NV810, NV8301 2400p NV850, NV950 2750p NV870, NV890, NV970 3200p		470, V5480 1300 p
			PL30LR, PX3031, 31R, 32R, 990, 992, 991, PXP30, PXR30, VX 1260 , SVX503,	
	$3 \mathrm{~V} 16,3 \mathrm{~V} 233 \mathrm{~V} 24,3 \mathrm{~V} 31,3 \mathrm{~V} 35,3 \mathrm{~V} 36,3 \mathrm{~V} 38$, $3 V 39,3 V 49$ 625p			S
		NVJ47. 49, 700 PX, NVSD20EE,	PXP30, PXR30, VX 1260, SVX503, S $\times 3230,3231,3260,3261, \mathrm{Vk} 30,300$,	3700p
	BR1600, HRD140, 141, 142, 143, 150, 152, 156,157 158, 1605101		1230, 1260, 1261, VK30́R, 31R, 32R, VXK300, 301, 306, 320,	$\begin{array}{ll}\text { V500G, V509G } \\ \text { V9680 } & \\ \text { V }\end{array}$
	HRS $10,8947,8948,3 V 42,3 V 44,3 V 45$, $3 \mathrm{~V} 46,3 \mathrm{~V} 47,3 \mathrm{~V} 52,3 \mathrm{~V} 54$,	NVG 450,465 $16,14,16,120, ~ N V 250$, NVG 18 1800 p 1800p	$321,326,336$$\mathrm{~S} 11230,1240, \mathrm{SV} \times 60, \mathrm{~S} \times 1230,1231$,	
			7230, 7301	
GSEQ121, RQ2011, RQ2031, RQ2051				

VCR BELT KITS

del Price	Model Price	Model Price	Model Pricer	odel
AKAI VP7100, VS9300, VS9500, VS9700, VS9800	TX3650, VCR3000, VCR3002, VCR9500	406, 407, 4092, 410, GV411, 412, 414, 415, 416, 417, 4192, 4200, 420, 430, 434, 435. GV437, 440, 450, 4592, 460, 464, 470, 500, 501, 5050, 5095, GV5105, 511, 530, 5395, 540, 560, 5695, MV4005, 4 105, SE $4100,4104,4120,5102$, 5104, 5106, TVR37001	100	
	FISHER		100	970.971.972 $\mathrm{VX9880}$ 100 p 110 p
3, VS5, VS12, VS $15, \mathrm{VP88}$	-		PVC2300, PVC2400 ${ }^{\text {180 }} 18$	SX71
	V8S9000 120		DX 1000, 1600, 1800, 2000, 3000, N9012, 9013, 9014, 9016, N9033, 9034, 9053, 9054, 9055, 9056, 9066, 9096, 9110, 9120 . N9510, 9520, 9530, 9610 80 p	SANYO VTC5000, 5150, 6000, 6500, VTCM10, 11, 20, 21, 30, 31, 50 VTC5300, VTC5350, VTC5400. 65p
VSX9, VS $105,112,115,116,120,125,126$,	FVHP520, FVHP530, FVHP420 60			
155, 165, 205, 220, VS24, 240, 244, 245, 247	10, 711, 715,7			
		VXL7, VXL8, VXL9, VXL $10, \mathrm{VXL11}$, VXL19,	NATIONAL PANASONIC NV300. NV330PX, NV332, NV333 NV340,	VPR5800 ${ }^{\text {a }}$, 80p
55, vS6				VTC9100, VTC9300 140p
VS4, VS6,		200	NV777, NV788	
VSA77 ${ }_{\text {V }}$	VBS9900	VXL4, VXL35, VTV300	NV2000, NV2010, NV300	VTC1100, 1300, 1500, VHR1100, 1110, 1150 .
VSS99 105p		VxL5, VXL6 100	NV7000, NV7200, NV7800	VHR1500
	FVHD140, FVHD40, FVHD55, FVHP1, FVHP10	VXL3, VXL20 90p	NV8600, NV8610, NV862 ${ }^{145}$	VHR2700 ${ }^{\text {a }}$
			NV230, 250, 280, 430, 431, 433, 450, 460, 465, $470,650,730$, NV70, $810,870,890,970$, AG	
00,		VT11, 14, 16, 17, 19, 33, 330, 34, 35, 350, 38,	470, 650.730, NV770, 810, 870, 890, 970, AG 1000, 1050	VHR3100, 3110, 3150, 3300, 3310, 3400, 3500, 3700,
CR161, vCR222				3500 VHAD500, 700 , 351000 ,
R3000X, VCR40		VT5000, VT5500, VT18		
000, VCR7800, VCR8000.VC		VT7000, VT8000, VT8030, VT8040, VT8300,	NV600. NV688, AG6010, AG6015 85p	154, 15, 16, 171, VHR194, 220, 23, 235, 240, 244, 250, 251, 274, 297, 310, 330,VHR335, 390,
TV10 105p	310, 320, 2000, 410, 420, 430, 440, 445, 470,	VT680, VT6500, VT6800, VT9300, VT9500.		$4100,4105,4150,4200,430,4300,4350,474$.
			400, NVH70. ${ }^{\text {a }}$, 12, 14, 15, 6, 18.30, 130,5	VHR4770, 5080, 5100, 5200, 5300, 5350, 5700 . 6850, 7100 , VHR7200 7250, 7260, 7300, 7400
TVR123, VCR4600, VCR 4700 ,	(000, 5005, 5050, 5075, 5100, 975, 980,		NVFV1, NVM10, 3000, 3300, 40, 7, 9000, 9900, $\begin{array}{l}\text { 70p } \\ \text { NVMSI, } 4\end{array}$$\qquad$	
VCR5200				6850, 7100 , VHR7200 7250, 7260, 7300, 7400 , $7500,7520,7530,7530$, VHR7540, 7700,774,
CR7000		VT100, 110, 111, 113, 115, 118, 120, 125, 128,		7800, 7810, 8000. 8100, 8200, 8250, 8500, VHR8800, 8801, VHRD4400, 4410, 4500
CR 1000, 2000, 6000, 6100, 6200, 8600, 8602			VR6460, VR6920 170p	
603, 8604				VMD66, VMD68P
CR8700, 87	80	VT145, 150, 168, i70, 175, 220, 225, 250, 255,	VR6442, VR6542 70p	VTR1000 70p VTC6010 75p
9244, 9340,	OLDST			
D89	GHV1221, 1232, 1233, 1240, 1241, 1242, 1243,	M500 VM600	DV186, 190, 286, 291, 292, 468, 471, 562, 571,	SHARP
TX3650, UF20, 22 24,		J.v.c. HR3300, HR3330, HR3360, HR3660, HR4 100 HR7200, HR7300 ${ }^{130 \mathrm{p}}$ 60p	761, VR201, 202, 203, 211, 2115, 212, 213, 223, 311, 312, 313, 3210, 3219, 322, 32, 29, 323,	
9500	GHV1246, 1247, 1248, 1250, 1266, 51, 8000,			VC200, 381, 384, 385, 386, 388. 390, 393, 838, 9100,930 ,
VS1004 105p			311, 312, 313, 3210, 3219, 322, 32, 29, 323, 535, VR20DV1, 20DV2, 20RW7, 21DV1, 210V2,	VC7300, VC7700, VC7750, VC7800,
Aupu	VCP4100, VCP4130		210, V3, 25801, 25802, 11, 12, 302, 303, 305,	VC8300
RTV100	GHV1290, 1291, 1295, 1296, VCP4000, 4200,	HR7350, HR7600, HR7610, HR7650,	$310 \mathrm{VI}, 31 \mathrm{DVV}, 31 \mathrm{D}, \mathrm{V} 3,3 \mathrm{SE11,3} \mathrm{SB12}$, 3SB13.	
RTV200, RTV222, RTV224 90p	4300, 4301,			
RTV202, RTX200	VCP4305, 4306, 4310, 4311, 4315, 4320, 4321,			496, 8481
RTV322, RTV248 100	4325,4326 120p	HRD110. 111, 120, 121, 220, 225,		
RTV306, 307, 309, 310, 311, 312, 328, 414.	Granada			
434, 444, 707	VHSH1. VHSAH		VR6390, 6391, 6393, 6467. 6468, 6470, 6561, 6570, 6581, 6670, VR6676, 6710, 6760, 6761,	108, 405, 408,550,600,651, 674, 681, 682
RTV211. RTV214 140p	VHSVH4, VHSWH1, VHSXHI ${ }^{\text {VHS }}$	190, 250, 257, 310, HRD455, 565, 566, 725. 755, HRP50	6762, 6870, 6970, 6975, VR68SB4, $865 B 1$, 92SB3	VC700, 750, 783, VC6F3, VC6V3 70 p
RTV324, RTV32565p	H2	HRD $170,171,180,210,211,217,230,300$.$320,321,330,337, H R D 350,370,400,430$,		
RTV315, RTV316, RTV	VHSEH1.		VR44589, VR4458920, VR445B922, VR6443,	787, 793, 800, VC7810, 7822, VCA 100,102 ,
RTV317	VHSBP1 135p	440, 44 i, $500,530,700,750.950$, HRS $5000,5500,8000,9000$, BR9060, BRS600		103. 104, 131, 140, 170, 202, 03, VCA234, 501, 502, 502, 5011, VCB311, 361, VCDS01, 802,
RTV301,	VH		VR3260, 6349, 6448 , $6449,6548,6848$,$4958620,644899, ~$	
RTV424 859	25	HRS5000, 5500, 8000, 9000, BR9060, BRS600, 605, 920. 925		502, 502, 5011, VCB311, $361, \mathrm{VCD801}, \mathrm{802}$,
FERGUSON 3292, 3V00, 3V01, 3V16, 3v22, 8900, 8901, 8902, 8903, 8904,		HRD227, 520, 52 1, 522, 527, 600, 610, 620. 637, 641, 650, 830.		VCA10, 103, 105, 106, 113, 11613, 211, 234,
	VHSBY3 100			244, 254, 30, 33, 35, VCA $36,37,40,43,454$,
	VHSEY\%, VHSEY2	HRD840, HRD $\times 20,22$, HRJ200. 205, 300, 305, SR330, HRS 10	VKR6800, VKR6810, VKR6820 70p SE4104, VR231, 2310, 2319, 231, 232, 2329	
8906, 8909, 8912, 8922		SR330, HRS 10 HRD840, 550, 560, 580, 590, 640, 660,	237, 23, 241, 2410, 2419, 242, 243, 245, 2469,	
3V23, 8923, 8924, 8929		730, 740, 770, HRD820, 860	247, ${ }^{\text {24, }}$	81, 85, 865, 910, VC5 1000 . VCT212, 310, 410, 610, VCT1314, VCTS312.
3V29, 3V30, 8930, 8931, 893	VHSTJ1, VHSTJ2	910, 960, 980, HRD 220,25, HRJ2 10, HRJ215, 315, 316, 318, 400, 405, 407, 410 ,		
${ }_{3} 8931,3 \vee 32,8941,8942$			3329, 333, $3479,35,339,3419, ~ 342, ~ 343, ~ 3469, ~ 347, ~$	313, VC790ET 80 p
$3 \mathrm{~V} 35,3 \mathrm{~V} 36,3 \mathrm{3} 38,3 \mathrm{~V} 39,3 \mathrm{~V}$		411, 415, 416, 507, HRJ6 10, 675, 715, 97, HRS 4700,5800, SR3200, SRS368E	442, 4229, 432, 437, 442, 44, 5, 4469, 447,	
迷			4479, 451, 452, 457, 458, 459, 512, 522, 5229,	SONY
			8389	SLC5, SLC7, SLJ7, SLJ9, SLT7ME $\mathbf{1 4 0 p}$ SLC9, SL8000, SLB080, SLT50 $\mathbf{1 6 5 p}$
3V5s,				
8945, 8947, 8948	VHSFG1, VHSFG			
3V58, 3V43, 3V44, 3V59, 3V64, 3V65, 8950 ,	VHSFG4, VHSF63 180p	matsul VX600. 730, 735, 750, 755, 765, 850, 6000.		$\underset{20,3}{\text { SLV255, 125, 213, 225, 262, SLVX1, } \quad 95 p}$
,	DI			
FV21, FV22, FV26, FV32, FV39, VC14tL 45p	MVS 400, 440, VS 400, 410, 415, 435, 440, 441, 55 p ,	V 5888$\mathrm{v} \times 1000, \mathrm{v} 2000, \mathrm{v} 2500, ~ v \times 3000$,$v \times 6000$		TOSHIBA V55, V57
FV31R 110			SAMSUNG	
FV61L, FV	VS 180, 200, 220, 226, 262, 265, 267, 2×40800, 0850, 0880,	$V \times 6000$ 80 p $V \times 800$ 70 p	SV716, 717, V1616, V-621, V1626, VX616. v×617, VX619, X626, vX627, vx629,	V33, V31, V32, v51, V52, V53, v9600,v9680
		MITSUBISHI HS200	VX714VB520, $510,610,616,617,619,620,626,627 p$	
5	VS 150	HS300, 301, 302, 307, 310, 337, 338, 347, 349, 411, 412, 421, 480, HSB10, 20, 30, HSE10, 20, 30, 70 80p	$629, \mathrm{~V} 1510,520, \mathrm{~V} 1611,616,621,626, \mathrm{~V} \times 510$$511,520, \mathrm{VT} 320,5600$	86 80p.
V41R, FV42L 100p				V108, 109, 110, 120, 130, 140, 199, 209, 210,
			V8900. VB910, V1900, V1910 110p	211, 220.221, 411,V421, 609, 610, 611, 659,
VCR1000, 2000, 600,600		30,70 $H S 303, ~ H S 304, ~ H S 306, ~ H S 307, ~ H S 330, ~ H S 400, ~$		
		HS700 HS318, HS319, HS410 110 p 110 p	319,322, VB750, $770,8220,8225, \mathrm{~V} 1770,790$, 8220, 8225, VK8220, VPX31, Vx750, VX770,	V212, 213, 22-2, 312, 322, 403, 412, 413, 610,
CR100	VS 160, bARCELONA, FLORENZ, GV4000, 4000, 4001, GV4002, 400, 401, 4010, 402, 403, 404, 405.			
(1000, VTR1001		HSM1000, 16, HSM $23,25,33,34,35,37,54$,	790, 8220, 8225, SE9000, 9001, 90p$\mathrm{SV} \times 301,303,305, \mathrm{~S} \times 7301, V B 710,971$,	703,813 VCPB1E 50 p 110 p

REPLACEMENT IDLERS \& PULLEYS

Make	Models	Description	Make	Models	Description
Hitachi Order Coda:	VT11, 14, 17, 19, 33, 34, 35, 38, 39, 52, 57, 61, 62, 63, 64, 65, 85 , $86,330,350,640,16 S, 5030$: IDL01	FF Rew Idler 6886792 Price 100p	Ferguson	$3 V 39,3 V 30,3 V 31,3 V 32,3 V 353 V 36,3 V 38,3 V 39,3 V 49,8930$, $8931,8933,8940,8941,8942,8943,8944$	Take Up Clutch PU 51380
Hitachi Order Code:	VT680, 6500, 6800, 9300, 9500VT9700, 9900 IDLO2	Play Idler 68614826861481 Price: 180p	Order C		Take Up Clutch PU 53462A PU 51380
Blaupunkt	RTV301, 306, 307, 309, 311, 312, 315, 316, 317, 319, 320, 404, $414,424,434,444,478,707$				Price: 200p
Goldstar			Sharp	VC600, 651, 681, 682, 684, 685, 693, 699, 700, 783, 6FR, 6V3,	Idler Assembly
Grundig National	GHV1248, 8000, 8200, 8210, 8215, GVHP51, VCP4100, 4130 MVS400, 440, VS400, 410, 440VS 450,460 NV230, $250,260,280,370,380$ NV $430431,433,450,460,465$		Ordar Code: IDL88		Price: 615p
	470, 480, 630, 650, 730, 780, NV810, 830, 850, 870, 890, NVG7 $9,10,11,12,14,15,16,18,30,130,400$. AG 1000, AG1050, 1200 1500, 1810, AG2100, 2200, NVH65, 70	Ider Arm VXP 0521	Philips Sharp	VR6843, 6943, 44SB9, VR44SB920, 44SB922, 6943 VC772, 780, 781, 782, 785, 786, VC787, 800, 793, 799, 7810, 7822, VCA100, 102, 104, VCA131, 140, 170, 202, 203, 234, 501,	Reel Drive Unit Ider NPLTV0111GEZZ
Philips Order Code:	VR6460, VR6520, VR6920 IDL08	Idler Arm 40340162 Price 100p		VCA602, 5011, VCD801, 802, VCH851, 852, VCH882, VCM73, VCT72, VC782MK11	
Amstrad Sharp	VCR7000	Idler 150280	Order Cod	IDL90	Price: 700 p
Sharp Order Code: Phil	VC200, 381, 383, 384, 385, 386, VC388, 390, 393, 3300, 8381, 9100, 9300, 9500,9700 IDL10	Idler NIDL0005GEZZ Price: 100p	N.E.C. N911, $915,916,917,9012,9013$ N9014, $9016,9033,9034,9053$, N9054, $9055,9056,9066,9096, ~ N 9110,9120,9510,9520,9530$, N9610, DX1000, 1600, 2000, DX3000, PX1200		
Philips Shatp	VR6540 VC300, 387, 402, 471, 473, 477, VC481, 482, 483, 486, 488, 496,	Idier			Idler Arm Assembly Price: 270p
Order Code:	$\begin{aligned} & 500,571,571 \\ & 581,582,583,584,585,8481,5 F 3,5 \mathrm{~W} 20 \mathrm{E} \\ & : \text { IDL11 } \end{aligned}$	Idler NIDL0006GEZZ Price: 100p	Philips	DV186, 190, VR211, 2115, 212, 213, 223, 286, 291, 292, 311, $312,313,3210,3219,322,3229,323,535 B 0$, VR486, 471, 562, 582, 571, 761, 201, 202, VR203, 302, 303, 305, 6180, 6182, 6185, $6285,6290,6291,6293$, VR $6362,6367,6390,6391,6393,6467$, $6468,6470,6561,6570,6581$ VR $6570,6676,6710,6760,6761$. 6762, 6870, 6970, 6975, 86B1, 63SB7, 68SB4, 71SB4, 71SB5, 72SB8, 72SB8, 92SB31, 20DV1, 20DV2, 20RW7, 21DV1, 21DV2, 2SB01, 2SB02, 2SB11, 2SB12, 30DV2, 31DV1, 31DV2, 31DV, 33SB02, 3SB03, 3SB05, 3SB11, 3SB12, 3SB13	Pressure Roller Assembly PS403-40205
Akai Ferguson	VS10 $3 \mathrm{~V} 23,3 \mathrm{~V} 29,3 \mathrm{~V} 30,3 \mathrm{~V} 31,3 \mathrm{~V} 323 \mathrm{~V} 35,8923,8924,8929,8930$,	Reel Idler			
J.V.C. Order Code:	8931, 8940, 8941,8942 HR7200, 7300, 7350, 7600, 7610, 7650, 7655, 7700 IDL20	Reel Idler PU48967 Reel Idler PU48967 Price: 175p			
Ferguson	$3 \mathrm{~V} 39,3 \mathrm{~V} 30,3 \mathrm{~V} 31,3 \mathrm{~V} 32,3 \mathrm{~V} 353 \mathrm{~V} 36,3 \mathrm{~V} 38,3 \mathrm{~V} 39,3 \mathrm{~V} 49,8930$, 8931, 8933, 8940, 8941, 8942, 8943, 8944	Take Up Idler PU 514			
J.v.C.	HR7200, $7600,7650,7655,7300,7350,7610$, HRD110, 111, 120, 121, 225	Take Up Idler PU 51402A	Toshiba	V91, V95	Pressure Roller Assembly PS403-40205
Order Code: IDL22		Price 100p	Order Code: PR232		

Akai	M32773
	MZ366960J2
Goldstar	VXP0521
Hitachi	6861471
	6861482
	6886971
JVC	PU48697B

REPLACEMENT IDLER TYRES

PINCH ROLLERS

AKAI
VS $10, ~ V S 9300, ~ V S 9500, ~ V S 9700, ~ V S 9800, ~$ VP7100, VP77 VS4 VS5, VS6, VS8, VS9 140 p VS12, VS 15
140 p VS 105, 112, 115, 116, 120. 125. 126, 155, 165, 205, 220, 240, 244, 245,
VS247, 248, 250, 512, VS515, 516, VS247
VSX9
VS201, 301, 303, 304, 603, 606, 607, VSP8,
VSP92, VS201, 301, 303, 304, 603, 606, 607, VSP8, 140 140
VSP82, VP58, VP82, VS 125, VS155, VS 165, VS220, VS240, VS250,
VS512
VS20, VS $22,23,25,35,37,38$,
426, 427, 462, 465, 467, 426, 427, $462,465,467$,
VS $485,75,765,767,768,865,867,965,967$.
VSA7, VSA VSA77, VSA650,
VSF10
11 VSF10, 11, 12, 15, 180, 190, 200, 210, 220 $221,222,230,240,30,33$
VSF330, 4, 500, 550, VSP88,

450,470 VSF 230

 SF260, 261, 262, 265, 270,
290, $340,350,410,420,43 \mathrm{C}$
VSF44, 40, 450, VSF $441,440,450,455,480,490,497,510$.
$560,580,590,599,600$, $560,580,590,599,600$ $55,60,64,65,70,73,74,75$,
VSP $110, \mathrm{VS} \times 560, \mathrm{VS} \times 580$,
 55, VSA77
PINCH ROLL
PINCH ROLLER ASSEMELY
VS422, 425, 426, 427, 462, 465, 467, 485, 498,
$765,766,767,768,865$,
765, $766,767,768,865$,
$867,965,967$, VSA 650,
180, $190,200,210,220$,
231,
221, 222, 230, 240, 30, $300,301,310,320,33$, 330, 4, 500, 510,600 , VSR10, VSX $100,400,450,470 \quad 800 p$

PINCH ROL | PINCH R |
| :--- |
| VSS99 |
| ALBA |

VCR3000X VCR 4000

VCR5000, VCRE000
VCR161, VCR222
VCR161, VCR222
VCR7000, VCR7800, VCR8000,
VCR8800
VTV10
VTV10

VCRT000, 2000, 4500, 4600, 4700, 5200, 6000,
$6100,6200,860$, VCR8602, 8603, 86 $8804,9000,9005$,
VCR9244, $9340,08900,8904$,
VCR12, 2,3,4
VCR7000
VCRTOOO
DCO900
 VCR8700, 8800, $900>9,9140,9244$, 9340
PINCH ROLLER ASSEMBLY PART NO: $\begin{array}{r}753148 \\ \hline 100\end{array}$ TX3650, UF20, VCR3000, VCR3002, VCR4000, VCR9500
PINCH ROLLER ASSEMBLY PART NO: 2554966
VCR3000, 3002, 9500
VF20, 22, 24, VS1004 VS 110
FERGUSON
$3 \mathrm{~V} 00,3 \mathrm{~V} 01,3 \mathrm{~V} 16,3 \mathrm{~V} 22,3 \mathrm{~V} 23,3 \mathrm{~V} 24,3292$, $8900,8901,8902,8903,8904,8906,8909$,
 $3 \mathrm{~V} 29,3 \mathrm{~V} 30,3 \mathrm{3V} 31,3 \mathrm{~V} 32,3 \mathrm{~V} 52,8930,8931$,
$8933,8940 \mathrm{p}$ 8933,694,
$3 \vee 55,3 \vee 38,3 \vee 39,3 \vee 42,3 \vee 43,3 V 44$,
$3 \vee 45,3 \vee 48,3 V 49,3 V 53,3 V 54,3 V 55,3 V 56$,
 3V57, $3 V 58,3 V 59,3 V 65$, FV10, FVII, FV12,

FV14, 8943, 8944, 8945, 8947, 8948 140 | FV14, |
| :--- |
| 3 V 52 |

${ }_{8950}^{3 V 52} 8951$, FVI0B. 11R, 13H, 14T, 20B, 140p $22 \mathrm{~L}, 26 \mathrm{D}, 31 \mathrm{R}, 32 \mathrm{~L}, \mathrm{FV} 33 \mathrm{H}, 39 \mathrm{~S}, 41 \mathrm{R}, 42 \mathrm{~L}, 50 \mathrm{~B}$, $51 \mathrm{R}, 52 \mathrm{~L}, \mathrm{VC141L}$, ,VISH, 39S, 41R, $42 \mathrm{~L}, 50$ FVV37H,
FV57
FV57H
$3 V 35,3 V 36,3 V 38,3 V 39,3 V 49,8943$,
PINCH ROLLER ASSEMBLY
$3 V 42,3 \mathrm{~V} 43,3 \mathrm{~V} 44,3 \mathrm{~V} 45,3 \mathrm{~V} 48,3 \mathrm{~V} 53,3 \mathrm{~V} 54$
$\begin{array}{ll}3 V 55, & 3 V 56,3 V 57,8945,8947,8948 \quad 1350 p\end{array}$ PINCH ROLLER ASSEMBLY
FV37 FV57 FV58
FV33, FV57, FV58
PINCH ROLLER ASSEMBLY FV31R
FV31R
FV41L, FV42L
PINCH ROLLER ASSEMBLY
3V58, 3V59, 3V64, 3V65, FVio, 11, 12, 925p 20, 21, 22, 26, 30, 32, 33
PINCH ROLLER ASSEMBIY $\quad 875 p$ FV43H, FV44L, FV45X, FV46T 700p PINCH ROLLER ASSEMBLY FV61, FV62, FV67, FV68. FV70, FV71, FV72,
FV74, FV77 FV14, FV77
PINCH ROLLER ASSEMBLY PINCH RO FISHER
FVHP420, 520, 530

FVHP615, 618, 620, 622,710, 711, 715, 71

720, 721, 722, 725,730 .
FVUPP10
FVHPS10, 830, 840,
FVHP905, 906, 907, 908, 910, 911, 915, 916, FVHPP05, 906, 907, 900, 910, 911, 915, 916,
918, $970,975,980,990$, FVHP 5000,5005, 5050, 5075,5100
VBR330, VBS $3500,7000,7100,7500,7600, ~$ 9000, 9900
FVHO230, FVHD230, 250, 270, 370, 2000D, FVHP3, 210 , $250,300,310,1100$
FVHP1200, 1250, 130, 132, 1340, 1340, 1400, $1410,1440,1500,200$.
FVHP320410, FVHP320410, 420, 430, 440, 445, 470, 475,
FVSP2905, 495, 2905
 FVHP20
FVHD140, 40, 55, FVHP1, 10, 25, 30, 40, 4000, FVHS10, 30
PINCH ROLL GOLDSTAR GHV51, 1221, 1232, 1233, 1240, 1241, 1242, 1243, 1244, 1245, 1246,140p
GHV1247, 1248, 1250, 1266, GHV1247, 1248, 1250, 1266, 1290, 1291, 1295 . 1296, 1392, 1393, GHV1891, 1900, 2145, 3000, 3010, 4400, 4410,
$51,8000,8200, G H V 210, ~$ 51, 8000, 8200, GHV8210, 8215, 8430
GHVP1240, 1241, 1247,1248, 1290, GHVP1295, 1296, VCP $4000,4100,4130,4200$ 4300, 4301, 4305, VCP4306, 4310, 4311, 4315, 4316, 4320, 4321, 4325, 4326, 4350, GSE1290,
1291. 1295, 1296, 1297, 1891, 1910, 20005 $1291.1295,1296,1297,1891,1910,20005$.
2000 2000
VT7, 11, 14, 16, 17, 18, 19, 33, 34, 35, 350, 38, 39, 88, 330, 680, 4200,
V15000, 5030, 5500, 6500, 6800, 7000, 8000, $8300,8500,8700,930$, VT9500, 9700, 9900,
VM600 VT8, 52, 57, 61, 62, 63, 64, 65, 85, 86, 88, 100p, 110, 111, 113115,118 Vr $120,122,125,128,130,135,138,145,150$ VT250, 255, 258, 260, 400, 405, 410, 413, 414. 415, 416, 448, 420, 425
VT426, 428, 430, 431, 435, 438, 450, 498, 510. 515, 517,518, 520, 525,
VT526, 530, 535, 536, 540, 545, 546, 548, 570 $575,576,580,585,588$
VT640, 830, VTF650, 665. 780, 785, 860, 861, 865, 70, 770,774, 775, VTL.30, 1000,2000 . VTLC50, VTM 598,620, 622, 625, 626, 630, 635
VTM636, $640,645,646,720,722,725,726$, VTM $636,640,643,646,720,722,725,726$,
$727,728,730,731,775$, VTM 736, 740, 745, 746, 748, 753, 754, 820,
$821,822,825,830,831$, 81,
VTM8325, 838, 840, 841, $845,920,921,922, ~$ 925, 930, 931, 935,
VTS80, $85,890,895 \mathrm{VM} 200,2300,2380,3200$,
$3280,500, ~ V M S$ 3280, 500, VMS 7200

VT3000 VT 410,420

VT410, 420, 428, 430, 450, 498, 518, 520, 140 530, VT7770, 780 ,
VTM598, 622, 722,740, 748, 753 650p PINCH ROLLER ASSEMBLY VTF150, 155, 180, 185, 250, 255, 260, 265, 280, 285, 350, 351, 355,
VTF 360,365, VTM VTF360, 365, VTM140, 141, 145, 145, 210, 211, 212,215, 220, 221,
VIM230, 231, 235, 284, VTS390 140p
V2OH, VXL5, VXL6, VXL7, 8, 9, 10, 11, 19,.90,
H13V, VTV 100,200 ,
140,
190, VXL2, VXL3
VXL4, VXL20, VXL35
VTV100, VXL10, VXL11, VLX9, VXLSO
PINCH
PINCH ROLLER ASSEMBLY
V2OH VXL5 VXIG MOD KIT V20H, V
$\begin{aligned} & \text { J.V.C. } \\ & \text { HR2200. }\end{aligned}$
HR2200, 3300, 3330, 3360, 3660, 4100,
7700 7700
HR2650, 7200, 7300, 7350, 7600, 7610, 7650, 7655
HRD $10,111,120,121,140,141,142, ~ 143,140, ~$ HRDIT0, IT, 120, 121,
150, 152, 156, 157, 158, HRD160, 220, 225, 250, 257, 445, 455, 565,
566, 725, 755, HRP50, BP5000, BR7000, 566,7611, 811,
HRD520, $540,550,560,580,600,610,620$,
637,640 637,640,641,650,660, HRD670, 720, 730, 740, 770, 820, 830, 840, $860,870,880,910,960$,
HRD980, HRDX20, 22, 25, HRJ200, 205, 210, 215, 300, 315, 316, 318
HRj $400,405,407,410,411,415,416,507$.
$600,605,610,615,715,815$ $600,605,610,615,715,815$
HR.j97, HRS $4700,5800,5900,6800,6900$ HR, J97, HRS $4700,5800,5900,6800,6500,140$
SR3200, 330,368 HRD170, 171, 180, 210, 211, 217, 230, 300, 320, 321, 330, 337. 350,
HRD $370,400,430,440,441,470,500,530$,
$700,750,950$, H00, 750, 950 ,
HRS500,
HRS5000, 5500, 8000, 9000, BR7030, 7040,
9060

HRS10
BP5000.
P55000, HRD110, 111, 120, 220, 225,
PINCH ROLLER ASSEMBLY HRD140, 141, 142, 143, 150, 152, 157, 158 ,
$160,565,566,725,755$, $160,565,566,725,755$,
HRP50 HRP50
PINCH R
PNCH ROLLER ASSEMBIY 1350p HRD1520, 510, 520, 521, 522, 525, 527, 560 , 600, 610, 620, 637,641.
HRD650, 720, 830, 840. 910, HRJ205, HRS5800
FINCH ROLLER ASSEMBLY BR7030, BRS600, HRD160, 170, 171, 180, 190, 210, 211, 217, 227, RD230, 271, 300, 310, 320, 321, 330, 337. $350,400,430,443,441,750,950$, HRS 5000 ,
HRD $470,500,530,700,750,9$ 5500, 9000
PINCH ROLLER ASSEMBLY
HRD540, HRD550, HRD580, HRD650, HRD860, FRD960
PINCH ROLLER ASSEMBLY
HRJ600, HRJ605, HRJ815,
HRNG9200
HATSUI
V66000, 730, 735, 750, 755, 765, 800, 850, V $\times 1000$, VX2000, Wx2500, Vx3000 VX6000A
HS 12, 5300, 5424, 5600, HSB11, 12, 16, 21, 27, $31,32,41,51,52,82$.
HSE 12, 16, 17, 21, 22, 27, 31, 32, 41, 51, 52,
$0,16,170,190,210,23,25,250,27,33,34,35$, $36,37,370,380,45,450,5$
4,55, 555, 57, 58, 59,68, HSMS2, 9, HSS 11 . 14. 15, 17, 19, 25, 5600, HV 1125, $150,303,85$, SVB900, 8930
PINCH ROLLER ASSEMBLY PART $948 D 020010$
HSE11, 12, 16, 17, 21, 22, 27, 31, 32, 41, 51,
$31,32,41,51,52,82$, HSM1000, 110, 120, 150, HSM16, 170, 18, 190, 210, 23, 25, 250, 27, 30,
$33,34,35,36,37,370,38, ~ H S M 380,40,45$, $33,34,35,36,37,370,38$, HSM 380,40,
$450,50,54,55,555,57,58,59,60,68$, 450, 50, 54, 55, 555, 57, 18,59, HSS $68,12,14$,
HSMS2, 9 HSMX, 18, 19,2, HSS11, 15, 17, 19, 21, 25, 5600, HVF 125 , HVF 150,303 . 85, SV8900, 8930
HS200, HS300, HS301, HS302, HS303, HS304, HS310, HS320, HS330, HS360,
HS306. HS307, HS318, HS319, HS337, HS338 HS347, HS349, HS400, HS410, HS441, HS412, HS421, HS480, HS710, HSB 10, HSB20, 30 , HSE 10,20,
30,
30,70
NATIONAL PANASONIC $\quad 140 \mathrm{p}$ NV100, 180, 300, 330PX, $332,333,340,366$, $600,688,777,788,3321$
7450 , $6200,6400,6800$
NV230, 250, 260, 280, 370, 380, 430, 431, 433, 450, 460, 465, 470, 480
NV630, 650, 730, 770, 780, 810, 830, 850, 870, 890, 2000, 2010, 3000
NV7000, 7200, 7800, 8050, 8150, 8170, 8200, $8300,8400,8500,8600$
NV8610, 8620 ,
, NVG7, 10, 12, AG 1000, 1050, 1200, 1500, 2100, 2200, 6500, 6810, 7500, 7510,

NVH70

AG6840, $6720,7150,7330,7350$ 7355, 7650, NVH65, 75, NVJ30, NVL20, 23, 25, 28, NVG300, NVF65, NVF70. NVFS1 NVFS 100, NVG 19, 20, 25. 33, 40, 50, NVVB000
NVD48, NVD80,
NVG21 NVG45 NV J700PX
NVHD 100, NVHD101, NCHD90, NVSD30 140 p NVSD40 1125 p PINCH ROLLER ASSEMBLY
AG5150, 5250, 5700, 6024, NVD38, 48, 80,
NVF55, $65,70,75,77,90, ~$ NVF55, 65, 70, 75, 77
25, 28, $200,33,408,90$, NVG 19, 20, 21, 22 , 25, 28, 300, 33, 40, 45, 46,
NVG50, NVH65, 75, 77, NVJ30, 33, 35, 37, 40, 42, 45, 47
NVL20,23,25, 28, NWW: 300 P PINCH' ROLLER ASSEMBLY
N.E.C.
N830,
831, 832,833,
895 N830, 831, 832, 833, 895
PVC2300, 2400, 740, 744, 746, 760, 764, 140p 766
DX1000, $1600,1800,2000,3000, \mathrm{~N} 9012,9013$, 140p, 9014,9016, 9033
N9034, 9053, 9054, 9055, 9056, 9066, 9096, $9110,9120,9510,9520$.
$N 9530,9610$ P 1200.
N 9530,9610 PX 1200
OS600GG, DX4000, N9077
$\mathrm{VH} 1, \mathrm{VH} 2$
VC150, 180, VH3, 33, 200, 201, 205, 212, 250 , 254, 288, $300,303,312$,
VH404, $555,700,704,712,770,780,844,900$ 1000, 2948, 3030, 3312 VHF2A. VP2948 COMB 15000,16000 , HVO3, LVH50, NEV 140 p NEVHM, NEVHML
TVP230RC, VCP, VH04, 30, 103, 300, 359, 360, $362,400,416,512$,
$362,400,416,512$,
VH530, $532,535,536,600,630,635,640,666$,
$730,735,74,74,790$
VH800, 820, 850, 888, 893, $900,930,940,942$.
97800, $820,850,888,8$
970
974, 1012, 1040, 1050,
VH1060, $900,930,940,942$.
VH1060, 1070, VH1100,
$1500,1660,1800,2004$
VH2151, 2308,22004,
VH2960, 2970, $3050,2400,2500,2600,2700$,
VH $3000,4000,4008,4010,4012,4015,4015$, $4020,4300,5020$.
VP $10,200,220$,
VP 10, 200, 220, 225, 245, VR821, 925, 1032, 2949, 2959, 2957, 2966, 2979, 2980, VTV 300 , PYILIPS
PHILLPS
VR6460 VR6920
VR2020, VR2021, VR2022, VR2023,
VR2024
VR6711
VR6540
DV856, 586, VR702, 703, 6485, 6585, 6589, ${ }^{140 \mathrm{p}}$ 6785, 6880,6948
VR445, VR6442, VR6542, VR6643. VR6843,
VR6943,
DV464, 662, VR2220, 2300, $2324,2330,2334$ 2340, 2350, 2414, VR2480, 2485, 2486, 2489, $2490,2498,2840,6462,6463,6464,6560$, VR6660, 6860, 6861, 6862, 6863
$\mathrm{~N} \cdot \mathrm{7700}$ VR2870 N-1700, VR2870
VR2005, VRO50
49SB6, VR3250, $6349,6448,6449,654140 \mathrm{p}$ 6648 PRESSURE ROLLER ASSEMBLY PS403-40205 DV186, 190, VR211, 2115, 212, 213, 223, 286, 291, 292, 311, 312, 313,
VR3210, 3219, 322, 3229, 323, 535BO, 486.
VR201, 202, VR203, 302, 303, 305, 6180, 6182, 6185, 6285, 6290 , VR6291, 6293, 6362, $6367,6390,6391,6393$, 6457, 6468, 6470,6561
VR6570, 6581VR6670, 6676, 6710, 6760,6761 6762,6870, 6970 ,
VR6975, 86BI, $63 \mathrm{SB} 7,68 \mathrm{SB4}, 7$ ISB4, $71 \mathrm{SB5}$, 72SB8, 72SB8, 92SB31, 200V1, 200V2,
20RW7, 210V1, 210V2, 2SB01, 2SB12, 300V2, $310 \mathrm{VV}, 310 \mathrm{~V} 2,31 \mathrm{DV} 33 \mathrm{SB} 02$, $3 S B 03$,
$3 S B 05$
 VR231, 232, 332, 422, 4229, 512, 5229, 722,
72292, 723

VR50 | 7229,723 |
| :--- |
| VR50 |

PR38 140p
VHR1100, 1110, 1150, 1200, 1300, 1500, 2100 , 2300, 2370, 2500,
VHR2700, 3330 , MVR220 VTC5000, $5150,5300,5350,5400,5500,6000$ 6010, 6500, 9100 ,
VTC9300, VTCM10, 20, 11, 21, 30, 31, 40, 50 ,
VPR5800
VHR3100.3300, $3310,3400,3500,3700,3800$ VHRDE500, 700
VTC3000
VHR120, 130, 14, 141, 143, 14, 150, 151, 153, 154, 15, 16, 171, 194, 22
OVHR23, 235, 240, $244,250,251,274,27,297$, OVH
$310,330,335,350,390$, VHR $4400,4105,4150$, $4200,430,4300,4350,4400,474,4770,5080$, VHR $5100,5200,5300,5350,5600,5700,6850$,
$7100,7200,7250$, VHR $7260,7300,7400,7440$, $7100,7200,7250, V H R 7260,7300,7400,7440$,
$7500,7520,7530,7540,7700,774480$, $7500,7520,7530,7540,7700,774,780$.
OVHR $7810,8000,8070,8100,8200,8250$. 8500, 8800, VHRO $4400,4410,4500,4600$. 8501,8870, , 4890,6700, VHRS 700
$4610,4710,480$ VCR100
VHR120, 135, 150, 190, 4150, 4i60, 1430 $5200,5240,5350,7200,7250,4260,4350$. VHRD $4410,4610,4710,4890,5450$, VHRS700 975 p VHR3100, 3200, 3300, 3310, 3400, 3700, 3800 . VHRD500, 7000
PINCH ROLIER ASSEMBLY
SHARP
VC200, 381, 383, 384, 385, 386, 388, 390, 393, VC6200, $6300,7300,7700,7750,7800,8300$, $838,9100,9300,9400$.
VC9500, $9600,9700,9800140140 \mathrm{p}$
VC300, 387, 402, 47, 473, 477, 481, 482, 483. 486, 488, 496, 500, 571. 573, 581, 582, 583, 584, 585, 8481, VC5F3. VC $108,208,405,408,550,600,651,671,674$

VC699, 700, 772, 750,779, 780, 781, 7810,
782, 782M $2,7822,783$.
VC785, 786, 787, 793, 800, 7810, 7822, VCT72
VC6F3, VC6V3, VCA 100, 102, 104, 131, 140
170. 202, 203, 211, 234, 303, 501, 502,

882, VCM73, VCT73, VCT72.
VCB361
VC220

211, 244, 254, 33, 35, 36, 106, 111, 113, 131, VCA37. 39, 40,
, 53, 54, 45, 42, 454, 46, 47, 48, 50, 505, 51,
VCA60, 605, 615, 62, 63, 67, $68,1031,11613$, VCB311, 320, VCBSS7, VCD805, 806, 810,8
VCH80, 81, 865, 910 VCS 1000, VCT310, VCT410, 610, VCT 1314, 5313, VC790 140p VC780, 790, VCA10, 103, 1031, 105, 106. 211. 244, 254, 255, 30, 35,
VCA340, 43, 47, 50, 60, 605, 615, VCD806,
B15, VCHO, 81, 83, 85,
815. VCH80, 81, 83, 85,

VCH865, 87, 910, VCS 1000, VCT212, 310, 410 510,610, VCT1314
VCTS 313 VCTS313
PINCH ROLLER ASSEMBLY
SAISHO

VIDEO SERVICE KITS


```
    MODE SWITCH
NV2000, 2010, 7000, 7200, 7800 (VS50048)
NV230, 260, 430, 810, 870, 2300, 4300
(VSS0110)
NV830 (VSS0091)
NV300, 333, 340, 366, 688, 777, 778
(VSS0060
NVG21, 25, NVH65, NVD80 (VSS0175A)
```

MODE SWITCH
NV2000, 2010, 7000, 7200, 7800 (VS50048) V230, 260, 430, 810, 870, 2300, 4300 NV830 (VSS0091) NV300, 333, 340, 366, 688, 777, 778 NVG21, 25, NVH65, NVD80 (VSS0175A)

VIDEO CLEANING STICKS

Price 17p each 15 p each pack of 10pcs 13 e each pack of 25 pcs Order Code: SP 14

VIDEO MAINTENANCE TOOLS
Set of 8 Allen keys packed in a plastic wallet
Order code: TOOL 9, Price 125p Specifically designed for video maintenance
UNIVERSAL HEAD EXTRACTOR
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads. Order code: TOOL 8, Price 600p

AUDIO CONTROL HEADS

AMSTRAD ORIGINAL NO: 15075
Used on: AMSTRAD TVR1, 2, 3, VCR4600, 4600MKII, 4700 FUNAI VS2, VCR4600, 4800, 5200, 5600, 6600, VIP3000, 5000 Also fits: FIDELITY, FUNAI, HINARI, PROLINE, SCHNEIDER, TOWADA, UNIVERSUM ORDER CODE: AH01 PRICE: 1350p
amstrad original no: 15313
Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600, 8602 8603, VCR8604, 8700, 8704, 8744, 8800, 9005, 8244

UNIVERSUM ORDER CODE: AHO2 PRICE: 1450p

Replacement Audio Control Video Sound Head for National Panasonic

PART NUMBER	MODELS	PRICE
VBR 0091	NVG7 etc	875 p
VBR0050	NV300, NV340 etc	875 p
VBB0061	NV777 etc	875 p
VBR0103A	NV250, NV450 etc	625 p
VBRO125		625 p

VIDEO TOOLS

VCR ALIGNMENT KIT

CONTAINS: SET OF 7 HEAD \& TAPE PATH ALIGNERS

- RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL - RCA ADJUSTMENT TOOL FOR TAPE GUIDE POSTS
- RCA TYPE BACK TENSION TOOL
- TENSION ADJUSTMENT TOOL FOR VARIOUS USES
- VCR ADJUSTMENT TOOL

3 REVERSIBLE SCREWDRIVERS SPRING HOOK

VCR HEAD EXTRACTOR
Order code: TOOL 10, Price 2900p

TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

This transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

BACK UP BATTERIES

PHILIPS

Part Nos: 138-101138, 138-10313 1.2v 90mAH Order Code: BB01
Part Nos: 138 - $10229,2.4 \mathrm{v} 100 \mathrm{mAH}$
Order Code: BB02

FERGUSON

Part No: 00E6-067-0011.2V 100mAH
Order Code: BB03
Part Nos: 00E6-606-8001 2.4V 100 mAH
Order Code: BB04

SET OF 8 ALLEN KEYS
$0.77 \mathrm{~mm} \quad 0.90 \mathrm{~mm}$ $1.27 \mathrm{~mm} \quad 1.50 \mathrm{~mm}$ $1.60 \mathrm{~mm} \quad 2.00 \mathrm{~mm}$ $2.40 \mathrm{~mm} \quad 3.00 \mathrm{~mm}$

CIRCLIP PLIERS

 CRO SCREWDRIVERREWDRIVER

SPRING HOOK

ITES

MAKE \& MODEL	CODE	PRICE
PACE PRD800, PRD900	SATPSU1	600 p
PACE SS9000, 9200, 9010, 9210, 9220	SATPSU2	550 p
AMSTRAD SRD510, SRD520	SATPSU3	600 p
AMSTRAD SRD500	SATPSU4	600 p
AMSTRAD SRX340, SRX345, SRX350	SATPSU5	600 p
PACE D100/150	SATPSU6	650 p
CHURCHILL D2MAC	SATPSU7	650 p
PACE MSS100	SATPSU8	730 p

SATELLITE TUNERS

PACE PRD800/MSS200 2Ghz (221-2077062) ORDER CODE: TUNER01 PRICE: 1400p + VAT
PACE PRD900/MSS1000 2Ghz (221-21770112) ORDER CODE: TUNER02 PRICE: 1400p + VAT

SWITCH MODE TRANSFORMERS PACE 9000
 ORDER CODE: PACE9000 PRICE: 800p
 PRD800/PRD900
 ORDER CODE: PRD800 PRICE: 550p

MAKE \& MODEL	CODE	PRICE
PACE MSS200/300 APPOLL	SATPSU9	900 p
PACE MSS500/1000	SATPSU10	1230 p
FERGUSON SRD4	SATPSU11	650 p
ECHOSTAR SR5500	SATPSU12	1600 p
ECHOSTAR 6500/7700/8700	SATPSU13	2750 p
AMSTRAD SRD600	SATPSU14	2600 p
MIMTEC (Surensen)	SATPSU15	700 p
AMSTRAD SRD700, SR950, SRX100, 301, 501,502, 1002, 2001, SRD2000 SAT250	SATPSU16	650 p

SATMETER

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite RX powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *input impedence: $\mathbf{7 0}$ Ohm
* Power amplifier: 18db *Detection Range: -60 to -10 DBM
* Max. input signal: -10 DBM

ORDER CODE: TOOL22
PRICE: 8500p

REPLACEMENT TV SWITCHES		
GRUNDIG	SONY	SONY
PART No: 29703, 29102	USED ON:	USED ON: KV2020
$\begin{aligned} & \text { USED ON: } \\ & \text { C7500, C8500. C8502, C8712 . . ETC } \end{aligned}$	KV1612, KB1612, KV1614, KV2052, V2056 KV2062, KV2067, KV2212 . . .ETC	KV2020 (POWER SWITCH $21 \mathrm{~mm}+$ Remote)
Order Code: SW1 Price: 140p	Order Code: SW5 ${ }^{\text {S }}$	Order Code: SW6 Price: 200p
PHILIPS	USED ON:	
USED ON:	KV1400, KV1440, KV2040, KV2060 (POWER SWITCH 26 mm)	SONY 2 PIN FUNCTION SWITCH
	Order Code: SW12 Price: 125p	Order Code: SW9 Price: 35p

	TIME LAG	
CURRENT RATING	ORDER CODE	
100 mA	FUSE36	
160 mA	FUSE01	
250 mA	FUSE02	
315 mA	FUSE03	
400 mA	FUSE04	
500 mA	FUSE05	
630 mA	FUSE06	
800 mA	FUSE07	
1A	FUSE08	
1,25A	FUSE09	
1.6A	FUSEIO	
2A	FUSEI]	
2.5A	FUSE12	
3.15A	FUSE13	
4A	FUSE14	
5A	FUSE1S	
6.3A	FUSE16	
CDRAMED		
CURRENT RATING	ORDER CODE	PRICE
3A	FUSE33	100p
5A	FUSE34	100p
13A	FUSE35	100p
32 mm CERAMIC SLOW BLOW		
CURRENT RATING	ORDER CODE	PRICE
8A	FUSE44	185p
10A	FUSE4S	185p
15A	FUSE46	185p
20A	FUSE47	210p

NB. All fuses are made in the UK and fully meet BS4265 \& BS1362 safety standards and should not be compared with cheap imported types

VOLTAGE TESTER

A terminal screwdriver incorporating continuity \& voltage with Euroslot ORDER CODE: TOOL11

PRICE: 220p

\section*{20mm CERAMIC TIME LAG
 | CURRENT RATING | ORDER CODE | PRICE |
| :--- | :--- | :--- |}

6.3 A	PRICE	
8 A	FUSE38	100 p
10 A	FUSE39	100 p
3.15 A	FUSE40	100 p
4 A	FUSEA1	85 p
5 A	FUSE42	85 p

FAULT FINDING / COMPARISON BOOKS

Satellite Fault Finding Guide Issue 1. Listing about 1,000 faults for over a range of 24 different brands. Order Code: BOOK05.
Price $£ 8.50$ - No VAT.
Video Recorders Edition 51997
Over 300 pages packed with more than 5500 faults for different brands
Price $\mathbf{£ 1 5 . 0 0}$ - No VAT. Order Code: BOOK01

SERVICEADS			
DESCRIPTION	VOLUME	COOE	PRICE
VIDEO HEAD CLEANER	75ML	SPO1	145p
SWITCH CLEANER	176ML	SP02	155p
SILICONE GREASE	200 ML	SP03	180 p
FREEZE IT	170ML	SP04	295p
FREEZE IT	400ML	SP16	580p
FOAM CLEANER	400 ML	SP05	180p
ANTI-STATIC	200ML	SP06	180p
AEROXLEANE	200ML	SP07	200p
AERO DUSTER	200ML	SP08	340p
AERO DUSTER	400 ML	SP17	580p
PLASTIC SEAL	200ML	SP09	250p
GLASS CLEANER	250ML	SP10	170p
COLDKLENE	250ML	SPi3	235p
EXCEL POLISH 80	250 ML	SP18	180p
ADHESIVE 120	400 ML	SP19	225p
LABEL REMOVER 130	200ML	SP20	260p
REFURB 140	400 ML	SP21	260p
TUBE SILLCON GREASE	50 GRAMMES	SPII	225p
TUBE SILICON SEALANT WHITE	75ML	SP22	250p
TUBE SILICON SEALANT CLEAR	75ML	SP23	250p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	150p
DRIVE CLEANER	200ML	SP24	150p
SCREEN CLEANER	200ML	SP25	145p
COMPUTER CARE KIT	-	SP26	$2100 p^{2}$

All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:
300p for $\mathbf{2 - 5}$ cans $\quad \mathbf{5 0 0 p}$ for more than 5 cans

TELEVISION

 Edition 6Lists more than 8,450 faults with $\mathbf{4 6 0}$ pages covering 58 different brands Price: 1600p only - no VAT. Order Code: BOOK02

Satellite Repair Manual Edition 4

A comprehensive guide to receiver reviewing, featuring stock faults and installation tips.
Price f15.00 Only No VAT Postage 100p Order Code: BOOK03

SOLDERING ACCESSORIES

 CODE PRICE

ANTEX SOLERINGIRONS
25 WATT 240 VAC (\times SS25 240V)
15 WMTT ${ }_{25}$ WATT SPARE ELEMENT $\quad \$ 103.400 \mathrm{M}$ 15 WATT SPARE ELEMENT S104 450p
SOLDERING STAND \& SPONGES
SOLDERING STAND (MADE BY ANTEX) SPARE SPONGE
SOLDER
18 SWG 500 GRAMMES $\quad \$ 110 \quad 500 \mathrm{p}$
20 SWG 500 GRAMMES \quad S111 650 p
22 SWG 500 GRAMMMES
DESOLDERING AIDS
SOLDER MOP STANDARO GAUGE 1.2MM $\times 1.5 \mathrm{M}$ SOLOER MOP 1.2MM X 10M DESSLDERING PUMP SPARE NOZZLE

SEMICONDUCTOR COMPARISONS 1997/8 Listing more than 31,600 Semiconductors with suitable alternative complete with descriptions and base information.
Price: $\mathbf{1 1 5 . 5 0}$ - No VAT. Order Code: B00K04
SEMICONDUCTOR COMPARISONS 1997 The new 1997 Jaeger Semiconductor with 952 pages packed with information on over 80,000 semiconductors in much greater detail plus mar keting data on SMD devices and a separate generic table of all type designations.
Price: $£ 40.00$ only - No VAT (+ $£ 5$ Postage). Order Code: B00K06

I.C. PROTECTORS

ICPF10, ICPF15, ICPF20, ICPF25, ICPF38, ICPF50, ICPF75
ICPN5, ICPN10, ICPN15, ICPN20, ICPN25, ICPN 38,
ICPN50, ICPN75
PRICE: 30p EACH ONLY

CASSETTE DC MOTORS

6 V MOTOR
170p
9V MOTOR
170p
12 V CW MOTOR
170p
12 V CCW MOTOR
170p
13.2 V MOTOR

CD PICK UPS

Modela \& Description	Order Code	Price
ANHA		
XC007	KSSS151A	1900p
DX-990A, DX-DIA	KSS152A	16000
CXN550G, CXN990, CXN999, CXNV20, CXSL70, DXZ9100M, FDN636, FDN6636, FDN939,		
NXS990, NSX992, NSX 999 , NSXD636, NSXC939, NSXV20, SXFN550.SXFN520, XC300,		
XC550, XC750, XC900, $\mathrm{XC950}$, XCN992, XG320, XG360, XG400, XG990, $2 \mathrm{C} 3000 \mathrm{M}, \mathrm{ZD3100M}$	KSS152A	1800p
CXAP1, CXL7, CXL8G, CXLC50P, CXZ58, DXM740, DXM75, DXM76, DXM77, LCX50, LCX7,		
LCXBG, LCXAP1, XC002, XC004, XCO05, XC777	KSS210B	2000p
XP31, XP33, XP55, XP80G	KS220A	2500p
XP6. ${ }^{\text {P }}$ P7 7	KSS331A	3400p
AkAI		
CD73, DC93	KSS151A	1900p
CD25, CD26, CD27, CD32, CD36, CD37, CD52, CD55, CD57, CD650, CD670, CD69, CD750, CD		
CDM480, CDM 600, CDM 670, CDEM 770,	KSS210A	1800p
DENON		
DCD150011, DCD1520, DCDE3520	KSS151A	1900p
DCD1400, DCD600, DCD800	KS152A	1600p
DCD1420, DCD520, DCD610, DCD620, DCD660, DCD810, DCD820, DCD860, DCD910, DCD9920	KSS210A	1800p
DCD1015, DCD1290, DCD2060, DCD2060G, DCD315, DCD480, DCD580, DCD615, DCD715,		
DCD825, DCD890, DCO895, DN2000F	KSS240A	2500p
CD952A. CD952AJ, CDP52LL, CD952SJ, FFH 101KL, FFH101WL, FFH222AA, FFH272L, FFH 333 L , FFH 373 K, FJ606, FR 606 L	KSS210A	
CD320AL, CD630S/L, FFH212A/L.FFH212E	KSS2108	2000p
GRUNDIG		
CD360, CD435	HOPM3	2150p
CCD 300, CD 101MCD904, MC10, NEW ORLEANS CD	KSS210A	${ }^{1800}{ }^{19}$
KRCD 100, RR1900CD, RR3100CD, RR4000CD, RR610CD, RR700CD	KSS2108	2000p
CDP60, CDP90	KSS220A	2500p
CDP65	KS5331A	3400 p
CDS05	OPTIMA5	3000p
HITACH		
DAW560	HOPM3	2150p
FX-10	KSS210A	${ }^{1800} \mathrm{p}$
AXC10	KSS2108	2000p
J.V.C.		
1990-1992, LATE 1987.1988 - XLE3008K, XLE31BK, XLE51BK, XLE900BK, XLME91BK, XLV101BK, 	OPTIMA3	4000p
CDRADIO CASSETIE, MINI SYSTEMS - MODELS 1990-1992	OPTMA4S	5000p
CAC $33, \mathrm{CA}$-MX 30 BK , CA-MX33BK, UX-A5, UX-A6, XL-M309, XL-M4038K, XL-M408, XL-M409,		
XL-V241TN, XL-242BK, XL-V251TN, XL-V252BK, XL-Z1050TN, XL-Z551TN, XL-Z5528K	OPTIMA5	3000p
1994 ONWARDS -CAE4BBK, CAMCG7, CAMXG9, CAS20BK, CAS30BK, VAS50, CAS60RB		
MXS20, MXS30, MXS60, PCX 105, PCX130, PCX95, RCX230, RCX320, RCX520, RCX620, RCX720 UXA4 UXA5, UXA55, UXC7 UXT1 UXT3 XLF115, XLF 116 , XLF 215 XLF218		
XLMC100,M, XLMXG7, XLMXG9, XLV163TN, XLV164BK, XLV174, XLV263TN, XLV264BK,		
XLV2748K, XL2463TN, XLZ464BK, XL2574, XLZ874, XTMXG7, XTMXG9, XTS60	OPTIMA6S	3300p
KENWOOD		
DP47, DP660SG, DP8020, DP87, L1000D	KSS152A	1600 p
DP1030, DP1510, DP2010, DP2030, DP3010, DP3030, DP3050, DP4030, DP491, DP5010, DP5030, DP5040, DP520, DP7030, DP7040, DP7050, DP730, DP920, DP930, DP950, DPM650, DPM6630,		
DP5040, DP520, DP7030, DP7040, DP7050, DP730, DP920, DP930, DP950, DPM650, DPM6630, DPM7730, DPM850, DPM991, DX6620, M225, M25, M450, M850, PD3030, PDM991, RDX25,		
RXDC3, RXDC3L, UD202, UD302	KSS210A	1800p
DPC42, DPC72, DPC77, DPC80, DPC92	KSS220A	2500p
DP1050, DP2050, DP3060, DP501, DP5060, DP722, DP76, DP85, DPB9, M774, PD3060,		
UD502, UD70, UD701, UD90, XE5	KS5240A	2500p
DPC321, DPC521, DPC531, DPC631K, DPC721, DPC731	KSS3314	3400p
DP1060, DP2060. PART No: RCTRH8136AFZZ	RH8136A	45009
panasonic		
SLP177A, SLP202A, SLP212A, SLP222A, SLP277A, SLP377A, SLP477AK, SLP477A, SLPG100A, SLPG200A, SLPG400A, SLPG500AK, SLPG500AS, SLPJ24A, SLPJ26A,		
SLPJ27A, SLP J28A, SLPJ325A, SLPJ325A, SLPJ37A, SLPJ38A, SLPJ46A	691-30209	6500p

Description	Code	Price									
AKAI			A512120/230	RCSOO	650p	PANASONIC			SONY		
RC-V10A	RC876	$650 p$	A514790	RC901	$650 p$	EUR51200	RC200	650p	RM604, RM605, RM606	RC140	650p
RCV 378	RC891	650p	A5088470	RC902	$650 p$	TC2200	RC204	650p	32 CHANNEL	RC140	650p
V25A	RC896	650p	A518612	RCS03	650p	VS00357/NV730	RC202	650p	RM613	RC141	650 p
DECCA			SCL002	RC904	650 p	TNQ162t	RC203	650p	RM632, RM636	RC160	600p
RC70	RC894	650p	${ }^{\text {C } 2096 ~}$	RC905	650 p	PHILIPS			tatung		
FISHER			A511940 655602 H	RC906 RC1920	650p	RC5002,5154	${ }_{\text {RC1 }}$	650 p	FXA	RC877	650 p
RC905B	RC879	650p	655602 H	RC1920	650p	KT3 NON TEXT 69117032	RC135 RC178	650p 650p	RC70	RC883	650 p
GRANADA			IFB13, 14, 15	RC143	650p	69117194	RC180	650p	FX70 FASTTEXT	RC894	650 p
UNIVERSAL TEXT	RC309	650p	FS4 ${ }^{\text {a }}$	RC148	650p	RC5991-UNIV	RC300	550p	TELEFUNKEN		
MK4 TEXT, 70155G, 70115G, 70133G	RC880	650p	RG305	RC305	650 p	RC38	RC301	650p	F8632	RC632S	650p
95288 E (${ }^{\text {a }}$	RC882	650p	RG306	RC306	650 p	KT3 TEXT	RC5301	650p	FB639	RC639	650 p
94490D	RC884	650p	FS9/1-10/1	RC307	650p	RC5352	RC5352	650p	THORN/FERGUSON		
GRUNDIG			VS5 RUK	RC308	650p	RC5375	RC5375	650p	3V35-42	RC342	600p
TP IGOE	RC107	650 p	VS4-1	RC308	650p	RC5 STANDARD	RC300	550p	3V31-32	RC344	650p
TP200, TP300	RC107	650 p	MULTICONTROL (17C20)	RC311	650 p	RC5903	RC5903	650p	3V57-58	RC628	650 p
TP200, TP300	RC380	650 p 600 p	MULTICONTROL (17C20)	RC3II	650p	SALORA			TXIO TEXT	RC732	575p
TP590-600	RC600	6500	LOEWE	RC146	650 p	SERIES L	RC190	650 p	TX10 STEREO TEXT	RC738	575p
TP390, TP610	RC610	650p	0 Cl	RC146	650p	86173	RC882	650p	TC9-90-100	RC740	600p
TP621	RC612	650p	MATSUI			SANYO			3V55, FV11	RC783	650p
TP630, TP650	RC650	650p	010270801	RC889	650 p	RC218, RC222, RC228, RC238	RC140	650 p	TX100 FASTTEXT	RC789	650 p
TP666	RC660	650p	VX770	RC892	650p	${ }^{\text {JXGE }}$	RC878	650 p 650	TX 100 ST, FASTTEXT	RC789	650p
TP661	RC661	650p	NOKIA			VHR2300	RC890	650 p	PROFESSIONAL	RC790	650p
HITACHI			SATELLITE	RC550	650p	RC628	RC865	650 p	TOSHIBA		
CLE800-CLEB30	RC140	650p	ORION			SHARP			CT937	RC950	650p
A617402/655602	RC1920	650p	RC53	RC892	650p	G0121CESA, 123CESA, 204, 251	RC140	650p	CT9117	RC951	650p

WE STOCK REMOTE CONTROLS FOR OVER 5,000 DIFFERENT MODELS RING FOR MODELS NOT LISTED ABOVE ON 01819002329

8 way Preprogrammed Universal Remote Control

A single remote control to operate Televisions, Videos and Satellite Receivers Plus Auxiliary Options!

- Replaces up to 8 remotes with one - Simple 4 digit setup routine
- Controls 1000 s of models - Teletext functions with Fastext
- Clear (large key) layout Code Seareh broken
- Original remote not required

Order Code: 8 WAY

2 way Preprogrammed Universal Remote

- Replaces up to 2 remotes (TV/Satellite)
- Simple key arrangement

Order Code: 2 WAY

Part No.	Code	Price	HITACHI			45150119	LOT169	1500p	Tif 14520 F	LOT40	1500p	094-01020/0.7	LOT59	1400p	1-439-303-31	LOT94	1300p
AKAI			2424593	LOT44	1050p	45150124	LOT137	1600p	TLF 14521 F	Lотз9	1850p	094-01021/0.6	LOT59	1400p	1-439-303-32	LOT94	1300p
45150344	LOT56	1650p	2432101	L0779	1600p	45150146	LOT136	1800p	TLF 14567 F	LOT39	1850p	094-01027/0.0	LOT186	1825p	1-439-311-00	10795	1550p
101-214017-03	LOT278	1300p	2432461	LOT169	1500p	45150301	LOT169	1500p	TLF 14568 F	LOTAO	1500p	094-01038/0.7	LOT245	1900p	1-439-311-11	LOT95	1550p
101-220005-03A	L0772	1600p	2432611	LOTBO	1800p	45150302	LOT180	1550p	TLF 14584 F	LOT4 4	2000p	094-01052/0.8	LOT186	1825p	1-439-317-13	LOT95	1850p
D 050/37	LOT27	1450p	2432651	LOT80	1800p	45150304	LOT169	1500p	TLF 14586 F	LOT42	1800p	094-01057/1.1	LOT285	1450p	1-439-311-31	LOT95	1550p
D 053/37	LOT207	1550p	2432761	LOT169	1500p	45150305	LOT180	1550p	TLF 15606 F	LOT256	2000p	610.018.6620	LOT189	1850p	1-439-311-32	LOT95	1550p
D 056/37	LOT56	1850p	2432981	LOT37	1200p	45150306	LOT188	1550p	TLF 70012	LOT78	1800p	610.018.6637	LOT215	1800p	1-439-331-22	LOT96	1550p
D 059/37	LOT200	1400p	2432981	LOT37	1200p	45150308	LOT22	1250p	TLF 70012 F	L0778	1500p	SHARP			1-439-331-41	LOT98	1550p
D 069/37	LOT56	1850p	2432982	LOT37	1200p	45150309	LOT178	1500p	TLF 70012A	LOT78	1500p	RTRNF 1220 CEZZ	L0T39	1850p	1-439-332-00	LOT99	1600p
FCM 2015 AL	10178	1500p	2433011	LOT171	1050p	45150310	LOT168	1650p	TLF 70018	LOT274	1650p	RTRNF 1783 BMZZ	LOT202	1800p	1-439-332-11	LOT9	1600p
FERGUSON			2433012	LOT171	1650p	45150313	LOT30	1250p	TLF 70018F	LOT274	1580p	RTRNF 1783 CEZZ	LOT202	1800p	1-439-332-21	L0T99	1800p
$00 \mathrm{D}-3-508-001$	LOT38	1250p	2433014	LOT171	1850p	45150314	LOT174	1400p	TLF 70161	LOT278	1300p	RTRNF 1786 BMZZ	L0	1850p	1-439-332-4	LOTIOO	1500p
00D-3-508-002	LOT38	1250p	2433212	LOT168	1500p	45150315	LOT22	1250p	TLF 70162	LOT72	1800 p	RTRNF 1786 CEZZ	LOT211	1850p	1-439-332-42	LOT101	1450p
$00 \mathrm{D}-3-508-003$	LOT276	1400p	2433291	LOT172	1350p	45150318	LOT192	1550p	TLF 70162A	LOT72	1600p	RTRNF 2000 BMZZ	LOT214	1000p	1-439-332-52	LOTIOO	1500p
000 -3-515-001 PL1	LOT276	1400p	2433301	LOT246	1000p	45150319	LOT30	1250p	TLF 70162B	LOT72	1600p	RTRNF 2002 BMZZ	LOT307	1460p	1-439-333-00	LOT270	1550p
00 D-4-208-001	10779	1600p	2433441	LOT188	1900p	45150320	LOT190	1850p	TLF 70162G	LOT72	1800p	RTRNF 2002 CEZZ	LOT307	1450p	1-439-333-11	LOT270	1550p
$00 \mathrm{C}-4-208-002$	10779	1600p	2433442	LOT191	1000p	45150322	LOT196	1550p	TLF 77001 B	LOT274	1650p	RTRNF 2003 BMZZ RTRNF 2004 BMZ	LOT30	1350p	1-439-333-12	LOT270	1550p
$00 \mathrm{O}-4-235-002$	LOT240	1250p	2433451 2433452	LOT81 LOT82	1350p	45150324 45150325	LOT194	1550p	PHILIPS 482214010142	LOT142	1800p	ATRNF 2004 BMZZ RTRNF 2005 BMZZ	LOT308	1450p	1.439-363-11	LOT268	1400p
$00 \mathrm{D}-4-235-002 \mathrm{HTI}$	LOT81	1350p	2433452 243453	10782	1250p	45150326	LOT198	1550p	4822140101145	LOT134	1460p	RTRNF 2006 BMZZ	LОт308	1350p	1-439-363-21	LOT268	1400p
$00 \mathrm{D}-4-235-00201 \mathrm{G}$	LOT81	1350p	2433455	LOT234	1600p	45150328	LOT27	1450p	482214010146	LOT112	1700p	RTRNF 2007 BMZZ	Lотз07	1450p	1-439-387-11	LOT311	1450p
$00 \mathrm{D}-4-260-004 \mathrm{HT}$	LOT38	1250p	2433521	LOT85	1600p	45150329	LOT193	1550p	482214010151	LOT102	1700p	RTANF 2023 BMZZ	LOT310	1500p	1-439-387-21	LOT311	1480\%
$00 \mathrm{H}-0.701-2400$	LOT182	1450p	2433581	LOT22	1250p	45150330	LOT179	1550p	482214010161	LOT103	1250p	SONY			1.439-466-11	LOT255	
$06 \mathrm{D}-3.083-001$	LOT82	1250p	2433721	Lот83	1400p	45150331	LOT207	1550p	482214010171	LOT104	1600p	3753100	LOT275	1500p	1.439-46-21	LOT255	
$06 \mathrm{D}-3-083-002$	LOT82	12500p	2433751	LOTO1	1300p	45150334	LOT56	1850p	482214010176	LOT114	1150p	1-439-243-00	LOT91	1600p	1-439-416-23	LOT255	1800p
06 D-3-084-001	LOT23	1400p	2433752	LOTO1	1300p	45150335	LOT193	1550p	482214010194	LOT105	1500p	1-439-243-11	LOT91	1600p	1-439-416-41	LOT255	1800p
06 D-3-088-001	LOT84	1450p	2433752	LOT250	1350p	45150338	LOT27	1450p	482214010198	LOT116	1600p	1-439-243-12	LOT91	1600	1.439-416-51	LOT255	1600p
06 D-3-093-001	LOT204	1600p	2433891 243392	LOT23	1400p	45150340 45150341	LOT200	1400p	482214010201 482214010236	LOT104	1500p	1-439-243-31	LOT229	1700p	1-439-430-21	LOT271	1550p
06 D-3-095-001	L0787	1000p	2433893	LOT23	1400p	45150343	LOT196	1550p	482214010246	LOT111	1500p	1-439-243-41	LOT229	1700p	154125A	LOT275	P
06 D-3-095-002	L0787	1000p	2433952	Lотз3	1000p	45150344	LOT56	1650p	482214010247	LOT105	1500p	1-439-244-00	LOT48	1600p	TOSHIBA		
$06 \mathrm{D}-333-512-001$	LOT204	1600p	2434002	LOT200	1400p	45150346	LOT201	1550p	482214010254	LOT107	1460p	1-439-244-11	LOT48	1600p	37010	LOT131	1450p
FETX 10090 DEG	LOTO4	1500p	2434141	LOT33	1000p	45150350	LOT27	1450p	482214010263	LOT117	1550p	1-439-244-21	LOT48	1600p	37011	LOT131	1450p
FETX 90 WHTTE	LOT06	1650p	2434141	LOT33	1000p	45150351	LOT27	1460p	482214010269	LOT210	1350p	1-439-244-31	LOT48	1600p	37012	LOT131	1450p
FETX 100100 DEG	LOT34	1500p	2434274	LOT44	1050p	45150375	LOT56	1650p	482214010271	LOT208	1650p	1-439-256-00	LOT45	1650p	37013	LOT131	
GRUNDIG			2434274	LOT44	1050p	45161601	LOT22	1250p	482214010274	LOT 123	1450p	1-439-256-11	LOT45	1630p	37014		
29201.008 .01	LOT153	1750p	2434453	LOT86	1600p	MITSUBISHI			482214010282	LOT122	1300p	1-439-256-21	LOT45	1650p			
29207.014.01	LOT140	1500p	2434455	LOT234	1800p	731003	10 T 51	1550p	482214010283	LOT104	1500p	1-439-256-22	LOT45	1650p	37016 37017	LOT131 LOT131	$\begin{aligned} & 1450 \mathrm{p} \\ & 1450 \mathrm{p} \end{aligned}$
29201.015 .01	LOT149	1400p	2434593	LOT44	1050p	276-16399	LOT49	1500p	482214010294	LOT125	$2150 p$	1-439-276-21	LOT230	1700p	37017 37018	LOT131 LOT131	$\begin{aligned} & \text { 1450p } \\ & \text { 1450p } \end{aligned}$
29201.017 .01 29201.018 .01	LOT60 LOT163	1250p	2435062	LOT296	1400p	334 B 07803	LOT50	1450p	482214010306	LOT110	1200p	1-439-280-00	LOT92	1600p	37018 37019	LOT131	$\begin{aligned} & 1450 \mathrm{p} \\ & 1450 p \end{aligned}$
29201.018 .01 29201.018 .02	LOT163	1300p $1700 p$	2435121	LOT87	1000p	334 B 078030	LOT50	1450p 1600 p	482214010325 482214010326	LOT132	1500p $1300 p$	$1-439-280-13$ $1-439-286-00$	LOT92	1600p 13000	1810951	LOT55	1400p
29200.019.01	LOT62	1250p	2435131 2435141	LOT251	1450p	334 B 08104 334 B 08108	LO174	1600p 1600 p	482214010326 482214010328	LOT122	1300p 1450p	1-439-286-00	LOT46	1300p 1300p	2433751	Lот01	1300p
29201.019 .02	LOT62	1250p	2435301	LOT88	1450p	334 P 18506	LOT51	1550p	482214010349	LOT106	1250p	1-439-286-12	LOT46	1300p	2433752	LOT250	1350p
29201.022.01	LOT63	1700p	2435671	LOT89	1800p	334 P 18507	10775	1500p	482214010353	LOT284	1450p	1-439-286-13	LOT46	1300p	23236023	LOT281	1300p
29201.022.02	LOT166	1600p	2436201	LOT109	1200p	5908-05008A-AA	10170	1500p	482214010356	LOT284	1400p	1-439-286-21	LOT46	1300p	23236052	LOT131	1450p
29201.022.03	LOT165	1350p	2436202	LOT109	1200p	D 108/37	LOT49	1500p	482214010367	LOT286	1400p	1-439-288-00	LOT228	1750p	23236098	LOT288	1400p
29201.022.04	LOT165	1350p	$2432101-2$	$\underline{0179}$	1600p	DCF 1577	LOT273	1700p	482214010369	LOT109	1200p	1-439-288-12	LOT228	1750p	23236198	LOT288	1400p
29201.022.04A	LOT165	1350p	2433451H	L0781	1350p	DCF2077A	LOT272	1300p	482214010381	LOT128	1300p	1-439-289-00	LOT47	1400p	23236255	LOT289	1500p
29201.024 .01	LOT65	1500p	2433453H	10782	1250p	KFS 602268	LOT279	1550p	482214010384	LOT127	1550p	1-439-289-21	LOT47	1400p	23236424	LOT129	1400p
29201.024.04	LOT164	1400p	2433891H	LOT23	1400p	MSH-1FBW08	10178	1500p	482214010395	LOT116	1600p	1-439-289-22	LOT47	1400p	23236425	LOT288	1400p
HINARI			2433892G	LOT84	1450p	NIKKAI			482214010406	10173	1150p	1-439-289-31	LOT47	1400p	23236428	LOT289	1500p
154138 K	LOT24	1500p	I.T.T.			BABY10	LOT67	1450p	482214010421	LOT109	1200p	1-439-294-00	LOT93	1450p	3122113837019	LOT131	1450p
5113914 1	LOT24	1500p	45150108	LOT113	1400p	ORION			482214017078	LOT103	1250p	1-439-294-11	LOT93	1450p	150F6D	LOT131	1450p
51149841	LOT24	1500p	45150115	LOT136	1600p	3714002	LOT02	1500p	SANYO			1-439-294-21	LOT269	1550p	TFB 4039 AD	LOT293	50p
CF 44 A	LOT24	1500p	45150116	LOT139	1675p	PANASONIC			094-00020\%.9	LOT113	1400p	1-439-303-00	LOT94	1300p	TFB 4048 AD	LOT281	1300 p
HM51-1411834-1	LOT24	1500p	4515017	LOT139	1675p	TLF 14512 F	LOT39	1850p	094-00035/0.2	LOT162	1350p	1-439-303-	LOT94	1300p	TFB 4048 BD	LOT281	30 op

* NIKKAI BABY 10
*
* REGULATOR ORDER CODE : BABY 10 PRICE: £10.00

Universal Pre-Programmed
 Brand Replacement Remote Controls

- Brand for Brand Replacement
- Codeless setup
- Teletext and Fastext
- Pre-programmed for the latest models
- Replaces broken and lost remotes
- CE Approved

BRAND	CODE	BRAND	CODE
Panasonic	RCUNI01	Nokia	RCUNI06
Sony	RCUNI02	Samsung	RCUNI07
Philips	RCUNI03	Toshiba	RCUNI08
Hitachi	RCUNI04	Ferguson	RCUNI09
Mitsubishi	RCUNI05	Grundig	RCUNI10
Normal Price: $£ 3$. Ell + VAT Special Offer: £7.50 + VAT			

HELP WANTED

Abstract

The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted/for disposal: Require circuit diagram/spec information for the Tripole Data TC1017 17in. monitor. Have for disposal a Microvitec 16in. open-frame RGB/PAL monitor with separate Philips UHF/VHF/teletext tuner at £30. Adrian Casper, 25 Cheltenham Place, Kenton, Harrow, Middx HA3 9NB. 0956398452.
Wanted: Service information for the National TV Model TC212MRN and the Sony Model HCD-H7 mini hi-fi system. D. Leong, PO Box 350, Seria KB1133, Brunei-Darussalam. Wanted: Power supply and/or service manual for the Brother BCN3286/52 80286-16 computer. Mike Newsome, 28 Horne Street, Denby Dale Road, Wakefield, W. Yorks WF2 8EA. 01924379867. For disposal: 240 V input autotransformer with 120 V output at 17.4A, 2,000VA. Upright shrouded. US style outlet. $4.5 \times 6.6 \times 6 \mathrm{in}$. $£ 50$. Very heavy - buyer to collect. David Martin, 10 Alpha Place, Bishop's Stortford, Herts CM23 2HN. 01279656426.
Wanted: Complete plug-in power supply for the Philips VR6585/05 VCR or whole working machine. W. Murgatroyd, 7 Currie Hill Close, London SW19 7DX. 0181 9460415.

Wanted: Main PCB with RF converter for the Amstrad VCR6100, also 8-push button unit for the Ferguson TX100 chassis (mechanical tuning). M.J. Putt, 32 Raynham House, Massingham Street, Stepney, London E1 4EB. 0171 7027501 or 0956195760.
Wanted: Circuit diagram and any other servicing information for the Heathkit OS2 oscilloscope. O.C.
Wells, 45 Levendale Road, Forest Hill, London SE23 2TP. 0181291 4402.

Wanted: Lower drum unit for the Panasonic VCR Model NVF65 - or complete upper/lower drum assembly if the lower drum is known to
be working. Duncan Hutson, 72 Winterhill Road, Richmond Park, Kimberworth, Rotherham, S. Yorks S61 2EN. 01709558750.
Wanted: A TDA1770 and a TDA1950 IC for the Grundig CUC95 chassis - alternatively a panel would do (no. 29504-00792). Also require circuit diagram for this chassis, photocopy or loan OK. S. Hooper, 74 Gloucester Road, Littlehampton, W. Sussex BN17 7BS. 01903722936. Wanted: Service manual (photocopy OK) for the Sanyo CP17 CD player. F.D. Kemplay, 85 Marina View, Hebburn, Tyne and Wear NE31 1RY. 01914835634. Wanted: Module F1 or F2 (VTF0560409T) for the Pioneer PD70CD. T. Hand, 36 The Close, Portchester, Hants PO16 8AZ. 01705371148.

Wanted: Syscon/timer IC, circuit reference no. IC6001, for the Amstrad Model VCR9000 (new version). Or does anyone know of an alternative or a supplier? CPC no longer do it, nor do the companies that purchased the Amstrad spares. H. Clifford, 12 Heol y Foel, Llantwit Fardre, Pontypridd CF38 2EQ. 01443202553.
Wanted/for disposal: Require Tatung TT17 teletext PCBs; service manual for the Grundig SC303; Television Jan. 1988, Nov. 1989, Feb. and March 1990 issues. I have for disposal Television Nov. 1992 to Jan. 1993 and May 1993 to Jan. 1994. A Plenderleith, Border Electronics, Unit 10, Edenside Workshops, Kelso TD5 7JR. 01573 224864.

For disposal: Two Betamax VCRs, a Toshiba V9600B working OK and a Toshiba V8600B working but no colour. Also a Philips TV Model G20C560/05 (G8 chassis) in working order. Rafe Greenacre, 33 High Street, Airmyn, Nr. Goole, Yorks DN14 8LF. 01405764160. For disposal: Gould OS3000A dual-trace scope, $£ 100$. Tektronix

475 series 200 MHz scope, $£ 350$. Gould SG200 RF signal generator, $16 \mathrm{kHz}-230 \mathrm{MHz}, £ 30$. Leader $2-$ channel AC millivoltmeter, 1 mV $300 \mathrm{~V}, £ 45$. Insulation tester 250 V 1 kV , tests to $1,000 \mathrm{M} \Omega, £ 65$. All in good condition. Moving house so must reduce size of collection! J.P. Bell, 23 Barn Common, Woodseaves, Stafford ST20 0LR. 01785284388 (tel/fax).
Wanted: For local school, an early JVC or Hitachi video camera, 1985 era, with the round multipin plug for a 3V32 or Hitachi VT6000E (not camcorder). Working if possible. Also wanted a main board with working power supply for the Ferguson ICC5 chassis, or complete set if cheap. Items would be collected or carriage paid. Ken Darville, Avia Electronics, Station Road, Yeoford, Devon EX17 5HU. 0136384017 or 01815695696 and leave message.
Wanted: Working U20 control module for the Philips VR2020 or VR2021 VCR. Sound coil (T101) for the Bush 1006. Sound coil for the Nikkai TLG100T (T101) or TLG2121 (T203). These sound coils are no longer available but any one used with a TDA4505E chip would probably do. Also a circuit diagram for the Granada C22BY4. Paul Hardy, 43 Sheridan Avenue, Caversham, Reading RG4 7BQ. 01189475869.
Free to collector: Electronics World issues from May 1991-July 1997 and Television issues from July 1989-April 1997. Geoff Lewis, 63 Mount Road, Canterbury, Kent CT1 1YF. 01227769567.
Wanted: Remote-control handsets for the following VCRs: Mitsubishi HSM55, Sanyo VHRD4410E. E.J. Edwards, 43 Hoose Court, Market Street, Hoylake, Wirral L47 5AB. 01516320614.

Wanted: Tuner for the Philips Model 10CX1120/05R. Robert Crooks, 42 Edenderry Village, Shaws Bridge, Belfast BT8 8LG.

Reports from
Michael Maurice John Coombes
M. J. Cousins, MIEEIE Pete Gurney, LCGI Russ Phillips and Owen Green

Panasonic NVJ30B

This machine would intermittently load or unload, sometimes stopping at various modes. I replaced the rather worn and blackened mode switch, but this failed to cure the problem. A replacement solenoid was the solution, proved by a prolonged soak test. M.M.

Toshiba V411B

This machine wouldn't accept a tape. The belt that connects the cassette housing to the eject gear next to the capstan motor had fallen off. Replacing it wasn't the end of the story however. The machine still wouldn't load, because the motor 14V supply was low. TR201 (BD202) was found to be open-circuit. It had failed because the loading motor was faulty: when I tested it with a 12 V supply it became hot and drew 3A! A replacement loading motor finally completed the repair. M.M.

Sony SLVE40

When play or record was selected there was a clicking noise from the mechanism and, in play, an unsteady picture would appear with wow on the sound. I found that in these modes the clutch wasn't slipping. In this mechanism there's a gear that engages with the clutch in the rewind, fast-forward and unlace modes: it engages with both sections of the clutch to give full torque in these modes. In play and record it should disengage, but didn't.

VCR Clinic

The cause of the problem was on the top side of the mechanism, where the arm assembly trigger gear (item no. 932) that engages with the top plate was missing. Fortunately I was able to obtain one from a scrap Alba machine. This provided a complete cure. The part number is 3 -
946-920-01. M.M.

Osaki VCR34

The cause of intermittent playback with these machines can usually be traced to dry-joints at the plugsocket connections on the top side of the deck. J.C.

GoldStar GSE1290IQ

If one of these machines won't accept a tape, check whether diode D521 is open-circuit. J.C.

Akai VSF410

The cause of intermittent no results was traced to dry-joints at transistor TR3. Resoldering restored normal operation. J.C.

Samsung SV421K

There was no rewind or fast-forward operation. After the usual checks to ensure that the brakes were not jammed on and the spools were free to move I found that the lever pinch cam (T228) was incorrectly seated. Once its position had been corrected I had rewind and fast forward. J.C.

Matsui VX1100

The problem was intermittent cutting out in the playback, rewind and fast-forward modes. After a lot of checking, the mode switch was found to be the cause. J.C.

Sony SLV353

This fault occurs only after very fast rewind: when play is pressed at the end of the rewind, the cassette is ejected. The cause is the end-of-tape leader overlapping the sensor, thus preventing correct operation. In this
case however I found that the PH001 supply-reel sensor Q001 was open-circuit. J.C.

Tatung TVR6111

A fault you sometimes get is intermittent operation/display. The mechanical operation can also be intermittent. Check crystal X801 which may be faulty or dry-jointed.

The cause of no rewind/fast forward is usually the rubber damper, part no. U153091. J.C.

Matsui VP9402

It said no rewind on the ticket, but fast forward didn't function correctly either - it consisted of a series of very violent, erratic jerks. The deck mechanism, which is the same as in the VXA1100, lifts off the mother PCB. To start with I checked the mode switch, timing and idler, which were all OK.

I then turned to items 31 and 34, the clutch-gear supply and take-up assemblies respectively. They can be inspected by removing the polyslider washers. The assemblies flew apart to reveal that the shafts, which should have been hexagonal, were completely rounded on the supply assembly and partly worn on the take-up assembly. This explained the loss of rewind and erratic fast forward, as the shafts would just slip to varying extents. Replacement assemblies restored correct operation.

The only other problem I've had with these decks has been intermittent stopping and shut down, caused by the two reel sensors. M.J.C.

Ferguson FV80B (R4000 Series)

There was cassette loading failure: when a cassette was inserted it flopped in rather than being drawn in, and the mode motor laced up without the cassette even being seated.

Tape loading should take place as
follows. When a cassette is inserted it activates a microswitch to power the loading/mode motor which drives the master cam. This is linked to the 'lever cam gear casting', which is in turn connected to the cassette rack.

Because of metal fatigue the lever cam gear casting had failed. It's positioned under the master cam. The replacement was easy to fit and restored normal operation. M.J.C.

GoldStar GHV1240I

Tape damage was the main complaint. An initial check revealed a worn reel idler: once this had been replaced the sluggish rewind/fast forward speeded up. So far so good. But there was an extra fault comment, that the tape wouldn't rewind fully. This was a more troublesome problem.

When I watched the tape in the rewind mode it would just stop, with no sign of slowing down, struggling etc. A new reel sensor optocoupler made no difference.

A scope check showed that reel pulses were present at pin 23 of the syscon chip IC501, but they were of low amplitude. The only components between the reel sensor and the chip form a digital transistor circuit on the deck junction board. The culprit was the $8.2 \mathrm{k} \Omega$ resistor R601. It feeds Q6D0, which amplifies and sharpens the reel pulses. M.J.C.

JVC HRJ220

The customer complained about tape damage. Tests showed that when rewinding and stopping there was much spillage from the take-up pool. I cleaned the brake pads hey are of the black-material type hat seems to disintegrate on touch but this made no difference. So eplacement brakes were ordered, also a mode switch as a preventative neasure. The brake part nos. are PQ46308A-2 (main brake) and PQ46309A-4 (sub-brake).

Mode switch replacement is quite complex, as it's buried beneath the sontrol cam. Once the mechanism las been removed, along with the iassette housing, the machine can be jut into the "mechanism assembling node". This is done by turning the node motor belt towards the front intil a hole in the cam aligns with a tole in the deck: at this point the arious holes in components line up with holes in the deck. Thus alignnent is easy.
The replacement brakes comletely cured the tape damage probem. M.J.C.

Sanyo VHRD4890E

The complaint with this S-VHS machine was poor sound/picture in the standard VHS mode, S-VHS operation being OK . When I plugged it in however the power supply was tripping and failed to start. A quick check on the capacitors on the primary side of the power supply revealed that C5013 $(22 \mu \mathrm{~F}, 10 \mathrm{~V})$ was leaking electrolyte. When this and C5010 ($1 \mu \mathrm{~F}, 25 \mathrm{~V}$) had been replaced - they are both rated at $105^{\circ} \mathrm{C}$ - the VCR powered up.

Before the power supply was recased, I checked the capacitors on the secondary side for ripple with a scope. C1 (47 $\mu \mathrm{F}, 50 \mathrm{~V}$) and C10 ($330 \mu \mathrm{~F}, 6.3 \mathrm{~V}$) were low in value and, on removal, were found to be leaking electrolyte. At this point all the other electrolytics on the secondary side were replaced as a precaution.

Finally to the original fault, which turned out to be severe patterning and hiss on sound. They were not present in the S-VHS mode or at the scart socket. The UHF modulator was the cause. P.G.

Sharp VCA63

This centre-deck machine frequently died then returned to life again. In view of the customer's report I suspected dry-joints, and a good look around revealed that plug PA in the power supply was virtually unsoldered. But after resoldering it the fault was still present. A further check around the power supply, with a magnifier, brought to light the fact that one leg of C9 had a hairline crack around the joint. This turned out to be the actual cause of the fault. P.G.

Mitsubishi HSB32

This VCR came in with a partially laced-up tape stuck inside. At switch on the machine returned to standby after five seconds or so. Checks in the power supply produced correct voltage readings during the brief period before shutdown, so attention was turned to the loading motor where a voltage check confirmed the lack of any drive.

I disconnected the motor at the plug and socket on the servo deck and, to unlace the tape, applied to its contacts 9 V from a variable-voltage power supply. I find that this is usually the best way, before proceeding further, of checking the deck for correct operation - customers have a nasty habit of attempting tape removal by force, which results in additional problems once the origi-
nal fault has been put right. While the tape was unlacing I noticed that the motor had a bad spot on its commutator. As a result the motor frequently stopped and drew excessive current.

After replacing the motor I checked the TA72915 drive chip IC4A2 and found that this had also died - in fact it had split in two! Once this item had been replaced the machine worked correctly. P.G.

Ferguson FV72

The mechanism was jammed and there was a tape in the fully loaded position. At power up the capstan motor could be heard to run just before the machine shut down. Removal of the base plate gives only limited access, but enough in this case to be able to see that the plastic pulley on the capstan motor had fallen off. It hadn't split, and could be reattached soundly with a small amount of Araldite. After that the machine worked correctly. P.G.

Panasonic NVSD260

This reasonably new K-deck machine intermittently failed to load a tape. The cause was dry-joints at the end sensors. To be on the safe side, and because the mechanism had to be removed to get at the offending items, I also resoldered the sensor LED. R.P.

Panasonic NVD80

This machine worked all right but the display didn't light up. There was no 33 V feed from the power supply because R1016 (2.2, $0.5 \mathrm{~W})$ was open-circuit. R.P.

Hitachi VC102

The power-on indicator switched off after about ten seconds because the microcontroller chip sent an 'off' signal to the power supply. There was a tape inside the machine. After chasing a few red herrings I found that the STK5471 regulator chip was the cause of the fault. O.G.

Ferguson FV105HV

Tape loading problems were caused not only by broken gears on the cassette housing but also by a tiny microswitch on the main circuit board, underneath the mechanism assembly. O.G.

Samsung SI7220

There were no mechanical functions and the loaded tape wouldn't eject. Checks showed that the 12 V supply was low at only 2 V . The cause of the problem was the STK5333S power regulator chip. O.G.

Sony Chassis Guide

The following list of the models fitted with each Sony CTV chassis released over the past ten years can be particularly helpful when the service manual for a particular model is not available.

AE1 Chassis

A modular, large-screen chassis produced during 198790. Model numbers that end in T or 1 incorporate a teletext decoder. An M in the model number indicates mono sound. Nicam adaptor kits were available for some sets. Remote control units RM670, RM671. Models are as follows:

KV21XMTU	KV21XMU	KVDX21TU
KVDX2112U	KVDX27TU	KVDX271TU
KVM21TU	KVM21U	KVM2511U
KVX2121U	KVX2129U	KVX2521U
KVX2529U	KVX21TU	KVX25TU

AEIA/AEIB Chassis

These chassis are similar to the AE1 but have different power and system control circuits. Nicam sound is standard. Produced in 1990. Remote control unit RM689. Models are:
$\begin{array}{ll}\text { KVD2512U } & \text { KVD2912U } \\ \text { KVE2512U } & \text { KVE2912U } \\ \text { KVX2132U } & \text { KVX2532U }\end{array}$
KVX2932U

AEIC Chassis

As AE1A/B but with different microcontroller circuits. Some sets have a sophisticated colour decoder with a digital comb filter. Produced during 1991-2. Remote control units RM816, RM817, RM813. Models:

KVA2112U	KVA2122U	KVA2512U
KVA2522U	KVA2912U	KVA2922U
KVC2122U	KVC2522U	KVE2922U
KVE2925U	KVM2521U	KVM2531U
KVX212U	KVX2152U	KVX2542U
KVX2545U	KVX2552U	KVX2942U

KVX2952U

BE1 Chassis

Basic mono sound chassis for small-screen sets produced during 1989-91. Model numbers that end with T or 1 incorporate teletext. Remote control units RM670, RM657, RM658. Models:

KVM14TU	KVM14U	KVM16TU
KVM16U	KVM19TU	KVM2120U
KVM2121U	KVM2130U	KVM2131U

BE2/BE2A Chassis
Basic mono sound chassis for small-screen sets pro-
duced during 1991-94. Model numbers that end with 1 incorporate teletext. Remote control units RM694, RM841, RM820, RM826. Models:

KVM1400U	KVM1401U	KVM1410U
KVM1411U	KVM1420U	KVM1421U
KVM1620U	KVM1621U	KVM2101U
KVM2140U	KVM2141U	KVM2150U

KVM2151U

AE2 Chassis

Replaced the AE1C chassis for large-screen sets. Many functions controlled by an I2C bus. The first Sony sets to have service mode for all adjustments. All sets have Nicam and teletext. Produced during 1992-93. Remote control units RM830, RM832. Models:

These two chassis are very similar. They differ from the original AE2 in that they don't have a separate teletext board - the teletext circuitry is incorporated on the M board. Models with G in the number have a built-in Astra satellite receiver with a VideoCrypt decoder. The KVA2542/2942U have Dolby Pro-Logic sound. Sets produced during 1993-94. Remote control unit RM831. Models:

KVA2132U
KVA2932U
KVE2942U
KVS2922U
KVX2172U

AE2F Chassis

This is a top-of-the-range chassis with 100 Hz scanning. The KVW2812U was Sony's first widescreen model. The KVW3212U is fitted with a PAL Plus decoder. Produced during 1994-95. Remote control unit RM842. Models:

KVS2942U KVW2812U KVW3212U

BE3B Chassis

A stereo sound chassis to replace the AE2B, though the AE2B Dolby Pro-Logic sound models were continiued. Produced during 1994-96. Remote control units RM833, RM837. Models:

KVX2102U	KVX2502U	KVX2902U
KVX2182U	KVX2582U	KVX2982U
KVX24WS1	KVX28WS1	KV25T1U

:3 Chassis

p-of-the-range digital chassis with 100 Hz scanning, ilby Pro-Logic sound and digital picture effects such picture-in-picture (PIP) and picture-and-picture AP). Production started in 1995. Model KVS2952U is urrent model. Remote control units RM831, RM838. bdels:

'28WS3U

KV32WS3U
KVS2952U

:4 Chassis

nilar features and specification to the AE3 chassis. jduced in 1996. Remote control unit RM862. Models:

'32WS4U
 KV32WX4U

BE3D Chassis

New stereo sound chassis to replace the BE3B. Much of the circuitry on the main board remains the same as in the earlier chassis, but the A board is quite different. Production started in 1996, still current. Remote control units RM839, RM862. Models:

KV25F1U	KV29F1U	KV25F2U
KV29F2U	KV25F3U	KV29F3U
KV25X1U	KV29X1U	KV24WS2U
KV24WX1U	KV28WX1U	KV28W2U
KN28WS2U	KV28WF1U	KV32WF1U
KV29FX11U		

BE4/BE4A Chassis

Mono sound chassis to replace the BE2 series. The BE4 chassis is used for portables, the BE4A in 21in. models - much of the circuitry is identical however. The first

Sony chassis to incorporate all the teletext circuitry within the main microcontroller chip. Production started in 1995, still current. Remote control unit RM836. Models:

KVM2171U KV21T1U KV14M1U
 KVM1441U KV16WT1U KV21M3U KV14T1U
 KVM2170U
 KV21M1U
 KV21T3U

BE5 Chassis

A stereo sound chassis for use in small-screen sets. Production started in 1996, still current. Remote control unit RM836. Models:

KV21X1U KV21X4U KV16WS1U KV20WS1U

GE1 Chassis

A very sophisticated digital chassis with 100 Hz scanning. The first sets to feature Sony's completely flat FD Trinitron tubes. Also the first Sony domestic TV sets to have VGA inputs to provide direct connection to a PC. Production started in 1997, still current. Remote control unit RM862. Models:

KV28FD1E
 KV32FD1E

LE1 Chassis

Sony's first LCD back-projection models for domestic use. Sets are considerably more compact than conventional CRT projection ones. Production started 1996, still current. Remote control unit RM838. Models:

KL37W1U KL50W1U KL50W2U

ELC EAST LONDON COMPONENTS AUDIO TELEVISION VIDEO	LINE OUTPUT TRANSFORMERS OVER 100 MODELS AT LOW PRICES			VIDEO HEADS FROM $£ 6.99$ OVER 200 MODELS			NIKKAI BABY 10 REGULATORS $£ 11.00$			DEGUSSING ROD $£ 29.99$	
TEL: 0181-472 4871 FAX:0181-503 5926		NEI 1451R NIKKA	16.9	AN5512	$\begin{aligned} & 1.99 \\ & \substack{1.99 \\ \hline} \end{aligned}$	TDA1553O $\mathbf{6 . 9 9}$ TDA15140 6.99 TDA15570 $\mathbf{3 . 9 9}$		$\begin{aligned} & \begin{array}{l} \text { A A727270 } \\ \text { TA7271 } \\ \text { TA7279 } \end{array} \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.50 \\ & \hline .50 \end{aligned}$	VHS ALIGNMENT TAPE BAND TRACKING, TAPE	
4 WAY UNIVERSAL			${ }^{16.98}$			TDA1557O			$\begin{array}{r} 3.99 \\ 275 \end{array}$		
REMOTE	$\operatorname{cick}_{\substack{\text { CX } 10}}^{\text {BEKO }}$	NT14	16.09 18.08	${ }_{\text {BAA3920 }}$	1298 4.89	TDA 2005 TDAZO30 1	. 79	TA72	$\begin{aligned} & 278 \\ & 3.00 \end{aligned}$	BAND TRACKING, TAPE TRANSPORT, FM PICTU	
	${ }_{\substack{\text { BEK328NX } \\ \text { 138 }}}^{\text {19.99 }}$	PANASONIC		${ }^{\text {BAFS4088 }}$	4.889	TDAP2040	1.30 1.70		4.29 3.89	TRANSPORT, FM PICTU CURVE AUDIO SYNC HEAD	
Unique illuminated		${ }_{\substack{\text { TLFF14567 } \\ \text { TFF14568 }}}$	20.00 20.00	BAS410	${ }_{3}^{3.50}$	${ }_{\text {TRA }}$ TDA2052	3.50	$\begin{array}{ll}\text { TAA214 } \\ \text { TA8215 } \\ & \mathbf{3 . 6} \\ \mathbf{3 . 6}\end{array}$		CURVE, AUDIO SYNC HEAD	
key (TV, VCR, SAT,	${ }_{\text {cill }}^{\text {BUSH }}$	TLF14585	20.00		- ${ }^{3.60}$	TDA25789A	2.60		3.98 $\substack{4.89 \\ 2.98 \\ \hline}$	LAYBACK SWITCHING	
CD/HI-FI) indica		${ }_{\text {TLF }}^{\text {TLF145982 }}$	22000		3.898	${ }_{\text {M542565L }}$	3.25		2.89	PAYBACK SWITCNING	
ind	DECCA ${ }^{\text {DNB652 }}$		22.00	${ }_{\text {BAE }}^{\text {BAE } 19}$	$\stackrel{\text { 1.99 }}{\substack{\text { 1.909 }}}$	${ }^{\text {M M }}$ M54549L	${ }^{3.50}$	${ }_{\text {Tasta }}^{\text {TAB22 }}$	\% 8.98	£39.99	
	$\begin{array}{ll}\text { DT9476 } \\ \text { DV9499 } & \text { 16.99 } \\ \text { 16.99 }\end{array}$		22.00 28.00	${ }_{\text {BAG622 }}$	-1.99	M54648L ${ }_{\text {MCi } 3 \text { 306T3 }}$	-	-	${ }^{3.89}$		
Macro function key		${ }^{\text {PHALILPS }}$		${ }^{\text {BAGA }}$	-			${ }_{\text {TAB6S69AN }}$	$\begin{array}{r} 3.99 \\ \mathbf{1 2 . 8 9} \end{array}$		
			16.09 16.09 1	${ }_{\text {BAG6247 }}$	${ }^{260}$	${ }_{\text {PALLOO3A }} \mathbf{2 0}$	14.98	TAB6690AN		GENERATOR	
24 bit processor	(1) ${ }_{\text {T } \times 90}$	GHA1AX GA2.2A	16.99 22.00 20			${ }_{\text {STK463 }}$	10.00	TDAAS	3.25	Colour bar, Cross hatch,	
		${ }_{\text {CPFo }}$	${ }^{22.09}$		1.99 1.99	${ }_{\text {STK465 }}^{\text {STK082 }} 1{ }^{11}$			3.50		
Ergonomically		CPIIO SAISHO	22.00	CNY75 CNY65	${ }_{4}^{1.99}$	${ }_{\text {STK4121 }}$	${ }_{8.50}^{\text {8. } 50}$	TDA3S6	2.98	Staircase.	
designed keypad	66M3 ASTIF	SAISHO CTI4R	16.99	$\underset{\substack{\text { CNAT65 } \\ \text { HAL23 }}}{ }$	${ }_{2}^{4.28}$	STK4131\|		6.60 7.00	TDA3654	. 398	COMPACT PORTABLE ع84.99 only
		${ }_{\text {CTIT1492 }}$	16.998	HA13001 HA 13108	$\underset{\substack{1.98 \\ 3.50}}{\substack{\text { a }}}$	STK4141111	${ }^{7.00}$	TDA3654	1.98		
Replac	${ }^{2482}$ GOLDSTAR	SAMSUNG		HA13117	${ }_{2} \mathbf{2 . 9 9}$	STK414	${ }^{8.50}$	TDAA650	${ }^{1.98}$	Capacitance Meters Capacitance Meter PG015	
remote controls		CB514F	${ }_{\text {16.89 }}^{18.98}$	HA13118	$\underset{2.90}{2.98}$	${ }_{\text {STK4151 }}$	$\xrightarrow{8.000}$	TDA4505E 4.98			
remore conirols	CTOODMANS	SANYO		${ }_{\text {HA13128 }}$	${ }_{4.98}$	STK4152 ${ }_{\text {It }}$		TDA4505M 12.99			
Child security featu	$\begin{array}{ll}\text { CTVV14R } & 16.99 \\ \text { CTV2180 } & 16.99\end{array}$	C8p2146	22.00 22.00	${ }_{\text {HA13130 }}^{\text {HA13150 }}$	${ }^{16.99}$	STK4171410	8.0.0 8.00 8.50 0.00	ToA601	${ }^{1.99}$		
	TVZ2RC 16.98	Sharp		HA13151A	14.99	STK41721110,	$\xrightarrow{9.00}$	ToA4950	2,99 1.98	1010	
xtteletext	GRUNDIG ${ }_{\text {Cuchal }} \mathbf{2 1 . 5 5}$	$\xrightarrow{\text { cilits }}$	31.00 18.98	$\underbrace{\text { Lata }}_{\text {La4280 }}$	$\xrightarrow{2.99}$	STK4192\|		10.00 10.00 7			
		${ }^{\text {SV28887 }}$	20.00	La4282	${ }_{\text {cke }}$	STK5434 STK548	7.00 8.00	ToA8137	${ }_{3}^{3.99}$		
	${ }_{\text {CTI4 }}{ }_{\text {HINARI }}$	SONY			2.25 2.80	STK54	${ }_{\text {a.00 }}^{5.50}$	TDAB			
		KV2096US KV21xRTu	16.898	La	2.98 1.60	STK7253		${ }_{\text {TVAA }}^{\text {TDA }}$	${ }_{7}^{7.08}$		
	${ }^{\text {TVAI }}$ HTACH1 ${ }^{\text {16.99 }}$			La4t61	2.09$\mathbf{2 . 9 9}$2,	STK		${ }_{\text {TDA8175 }}$	${ }_{\text {2.09 }}$		
REPLACEMENT REMOTE CONTROLS FROM $£ 5.99$	C 21145C 2118 T C21P226 C2558T ${ }^{\text {CPT203 }}$			LA4465		(STK734805	$\begin{aligned} & 4.50 \\ & 2.89 \end{aligned}$	TDAB177FS 4.28		An accurate, capacitance meter providing measurements over a	
					${ }_{2}^{2.99}$			TDAB 1795 TDAB305			
				La4476	$\underset{\substack{2.99 \\ 3.99}}{\substack{2.98 \\ \hline}}$	STR5412	${ }^{4.80}$				
ELC EAST LONDON COMPONENTS 63 PLASHET GROVE, EAST HAM, LONDON E6 1AD. TEL: 0181-472 4871 two minutes walk from Upton Park Tube Station	CPT2158CPT2178						${ }^{4.00}$		${ }_{\text {2. }}^{\substack{\text { 2. } \\ 1.9 \\ 1.0}}$	\qquad	
			16.9916.9816.981699	Leatas	3.90 2.80 2.80	STT140066 STA 109020	$\begin{aligned} & \text { 6.00 } \\ & \text { 6.00 } \\ & \hline 0.80 \end{aligned}$	TEA2019 TEA2029C			
				LatastooLA4705		ST750105					
					2.98					Transparent Service/Cassette £6.50	
			25.00	LaficioLA7801	1.00 1.95 1.90	STA58041	${ }_{\text {c }}^{5.50}$				
位								TEAC260	$\begin{aligned} & 2.09 \\ & 2.09 \end{aligned}$.50 Axy	
PEN MON-SAT 9AM-GP		${ }^{1400078 T} 1$	$\begin{array}{r} 16.09 \\ \mathbf{y} 28.00 \\ 28.00 \end{array}$	La7830	1.98 $\substack{1.89 \\ \hline}$						
TOOLS,	C21E1E 1			LA7833 LA7835		STRD1806	${ }_{\text {ckise }}^{6.99}$	$\begin{array}{ll}\text { TEAS101A } & \mathbf{4 . 2 5} \\ \text { TLP621 } \\ \text { 2.09 }\end{array}$			
instruments, repair kits,	ART 1		$\begin{gathered} 25.00 \\ 16.99 \end{gathered}$	LA7836	2.98	STRO4420	${ }^{8.00}$	UC3842	${ }^{\text {4. }}$ 89	fitachi/salora Mains Switch	
BOOKS \& CABLES TO CHOOSE FROM	CLASSIC M M 16.09		${ }^{20.00}$		${ }_{6.98}^{2.88}$	STRDS44	${ }^{0.00}$	UC3844888	1.98 3.99		
ADD E1.50 P/P + 17.5\% VAT	matsuil		36.00	M5454	2.89	STRDSOOBX	6.00	UPCCI290V	3.8		
ALL GOODS DESPATCHED SAME DAY	${ }_{2098}^{1440 \mathrm{~A}} \mathbf{}$	${ }_{\text {AT2078 }}^{281208}$	${ }_{30.00}^{30.00}$	${ }_{\text {TA887 }}^{\text {TA86 }}$		STRD6108 STRE6202	7.98	4 UPC	${ }_{8.98}^{7.99}$		
PRICES SUBJECT TO CHANGE WITHOUT	MiTsubisil	${ }^{\text {ATP207 }}$	16.99	${ }_{\text {TAB718 }}$	cosise	${ }_{\text {TAB205 }}{ }_{\text {TAB20 }}$	3.80 2.60 20	UPC	${ }_{1}^{2.2}$		
NOTIGE VISA ACCESS ACCEPTED.	CT2 14SEPM16.99 CT2 146 LM 16.89	ATT2079/230		TDA15520	2.50	${ }_{\text {TA882 }}$	2.50 3.50	UPC1488	${ }_{2.60}$		
MIN ORDER ¢5.00	TDA81 REPLACEMEN	7.99	REMC SATEL	TESTER \& FINDER	$\begin{aligned} & £ 14.09 \\ & 7 \mathrm{KIT} £ \end{aligned}$	$\begin{aligned} & \hline \text { TTESTER } \\ & \text { MICROV } \end{aligned}$	$\begin{aligned} & \mathrm{REP} \\ & \mathrm{OWA} \end{aligned}$	FREQU AK DETE	$\begin{array}{rcc} \mathrm{YCO} \\ \hline \mathrm{E} \end{array}$	ER £89 SOLDERING STATION £. - DIGITAL MULTIMETER FROM	

The Mitsubishi Euro 12 Chassis

John Coombes on what to check when tracing the causes of faults in these 21, 25 and 29in sets

The Mitsubishi Euro 12 chassis was used in a number of models that were on sale during the period 1991-93, including the CT21A2STX, CT21A3STX, CT25A2STX, CT25A3STX, CT25A4STX, CT25A6STX, CT29A4STX and CT29A6STX. As usual, we'll start with the power supply.

Power Supply Faults

The power supply circuit is shown in Fig. 1. It's a chopper arrangement that uses a master-slave IC control system, with transformer coupling (T902) between the master chip (TEA5170) on the secondary side of the circuit and the slave chip (TEA2261) on the primary side.
The most common fault is no results. The mains on/off switch S 991 may have failed - it tends to go open-circuit, possibly at only one pole, live or neutral. Check the 2AT mains input fuse F991, which may have blown violently. Also check whether the 4.7Ω, 10W surge limiting resistor R901 is open-circuit. If either of these items is open-circuit, the things to check are the four BYW56 mains bridge rectifier diodes D901-4, the degaussing posistor RP901 and the 2SD1887 chopper transistor Q901. If the latter is short-circuit, the RD3.0FB1 zener diode D908 that's in series with it will probably also have shorted: don't check D908 in-circuit - the lowvalue current-sensing resistors R911/12 in parallel with it may result in a false short-circuit reading.
Q901 may have failed because of a dry-joint at its collector. Check this carefully. Also check for dry-joints at its heatsink. A dry-joint here can result in a flashing picture for several weeks before Q901 fails. It may be necessary to replace the two chips, IC901 (TEA2261) and IC950 (TEA5170) if Q901 has failed. Always replace them as a pair. Another item to check is zener diode D909 (RD4-3EB2) which may be short-circuit.
Another possible cause of fuse blowing is the chopper transformer T901. It may have shorted turns.
If the receiver is just dead, check the start-up resistors R902 ($10 \mathrm{k} \Omega, 2 \mathrm{~W}$) and R903 ($8.2 \mathrm{k} \Omega$, 2W) which may have gone high in value or open-circuit. If they are OK, check whether R920 $(5 \cdot 6 \Omega, 3 \mathrm{~W})$ is open-circuit. Other things to check if necessary are D911 (EQA02-14B), which may be short-circuit, and D905 (BYD33G) and R904 ($15 \Omega, 2 \mathrm{~W}$), either of which may be open-circuit. It may be necessary to replace IC901/IC950, again as a pair. On a few occasions we have found that dry-joints at the chopper transformer T901 are the cause of this problem. Resoldering should cure this
Another thing to check on the primary side of the circuit is whether L902 is dry-jointed.
The set may be dead because of a fault in the HT cir-
cuit. The HT at TP91 should be about 120 V . If there is no voltage here or a very low reading, check whether the RU4AM HT rectifier diode D951 is open-circuit or its reservoir capacitor $\mathrm{C} 972(100 \mu \mathrm{~F}, 200 \mathrm{~V})$ is short-circuit. A low HT voltage reading could be because C972 or C971 (also $100 \mu \mathrm{~F}, 200 \mathrm{~V}$) is open-circuit. The alternative is a short-circuit in the line output stage. This can be checked by disconnecting one end of R557 (8.2 $2,10 \mathrm{~W}$) and adding a 60 W bulb across C 971 as a dummy load. If the lamp lights and a multimeter connected at test point TP91 produces a reading of 120 V , the fault is in the line output stage. See later. If the reading is low or missing check the power supply.
You might however find that the HT voltage is high. In this event check whether Q901's base drive coupling capacitor $\mathrm{C} 906(47 \mu \mathrm{~F}, 50 \mathrm{~V})$ is open-circuit. In this event the HT line usually rises to about 200 V and the line output transistor Q552 goes short-circuit. If C906 is OK, check D907 (RD3.0FB1) and R907 (18 Ω, 0.5W). It may be necessary to replace all three components.
No results may mean that the 5 V supply is missing. Check whether circuit protector Z953 (PRF3150) is open-circuit. If so, D954 (RU4Z) and/or C958 (1,000 FF , 16 V) is probably short-circuit. Alternatively the SI3050C 5 V regulator chip IC952 might be dead or dryjointed - possibly at all of its connections.
The 12 V supply is protected by Z952 (PRF3150). When it goes open-circuit there is no feed to the tuner and IF unit. If the SI3120C 12V regulator IC951 is faulty there may be patterning on the screen. If necessary check whether C952 ($2,200 \mu \mathrm{~F}, 25 \mathrm{~V}$) and/or C973 $(3,300 \mu \mathrm{~F}, 16 \mathrm{~V})$ is open-circuit or intermittent.
Loss of the 5 V or 12 V supply could of course be due to a short-circuit across the line. Loss of the 24 V supply means no audio - also no degaussing, see below. Check whether protector Z956 (PRF5000) is open-circuit. If so D955 (BYW95B) and/or C960 ($1,000 \mu \mathrm{~F}, 35 \mathrm{~V}$) could be short-circuit. If they are OK the short is in the audio section - see later.
The 28 V line supplies the field output stage. If this supply is missing, check whether R 976 (0.82Ω) is opencircuit and/or D952 (RU4Z) or C956 ($1,000 \mu \mathrm{~F}, 35 \mathrm{~V}$) is short-circuit. Otherwise check for a short in the field output stage - see later.
The degaussing circuit is a little unusual, see Fig. 2. In addition to the conventional posistor there's a relay to control the degaussing. The relay driver transistor Q903 receives at its base a command from pin 5 of the microcontroller chip IC701. When it's switched on, the relay contact closes and degaussing takes place. The relay circuit is supplied by the 24 V line.

The Line Timebase

The majority of line timebase faults will also produce the no results symptom. The most common fault is a short-circuit line output transistor (Q552), which is type 2SD1877 in 21in. sets and type 2SD1878 in largerscreen sets. A short-circuit line output transistor could mean that the HT is high because of failure of C906 in the power supply, see the previous section. If the HT is correct, check for dry-joints at Q552's heatsink. The first symptom that these produce may be interference lines on the picture. If this is allowed to carry on, Q552 will eventually be destroyed. The interference on the picture plus an arcing sound can also be caused by dryjointing at the collector of Q552. Shorted-turns in the line output transformer T552 will also destroy Q552. Another thing to do if necessary is to check for dryjoints at the small choke (L556) that's in series with the emitter of Q552. For repeated failure of Q552, check whether there are dry-joints at the line driver transformer T551.
If there are no short-circuits in the line output stage, check whether the 120 V supply is reaching the collector of Q552. The feed resistor R557 ($8 \cdot 2 \Omega, 10 \mathrm{~W}$ wire-
wound) could be open-circuit if this supply is missing. If R557 is OK with no voltage at its input side, check back to the power supply. If there is voltage at both sides of R557, check carefully for open-circuits or dryjoints at pins 1,6 and 2 of T552.
There could of course be no line drive. If there is no supply at the collector of the 2 SC 2482 line driver transistor Q551, check the driver transformer T551 for an open-circuit or dry-jointed primary winding and, if necessary, whether the feed resistor R554 $(6.8 \mathrm{k} \Omega, 5 \mathrm{~W})$ is open-circuit.
If there is no line drive at the base of Q551 or the waveform is incorrect, the MC44000VCJ colour decoder/timebase generator chip IC201 is suspect. It may be necessary to check this chip by replacement.
If there is still no line output stage operation, the scan coils might have shorted turns.

Field Timebase Faults

Field collapse is the most common fault here. First check whether the 28 V supply is present at pin 2 of the TDA8178S field output chip IC451. If not, check R976 ($0.82 \Omega, 0.5 \mathrm{~W}$), D952 (RU4Z) and C956 ($1,000 \mu \mathrm{~F}, 35 \mathrm{~V}$)

Fig. 1: The chopper power supply circuir used in the Mitsubishi Euro 12 chassis. Some sets have more than one mains filter choke.

Fig. 2: The degaussing circuit is unusual in hoving a relay for control.

AC from mains filter/switch

in the power supply. R976 will go open-circuit if D952 or C956 is short-circuit or there's a short in IC451. If there is still field collapse after replacing IC451, check whether the flyback boost capacitor C452 (220 $\mu \mathrm{F}, 35 \mathrm{~V}$) is open-circuit. IC451 will be ruined if this capacitor is faulty. Also check whether the associated 1N4003ID diode D451 is open-circuit.
If necessary check for field drive at pin 7 of the MC44000VCJ colour decoder/timebase generator chip IC201, and that there's a field ramp at pin 6. IC201 is suspect if these waveforms are missing - check it by replacement.
If still in trouble, check whether the field scan coils are open-circuit and for dry-joints at the connection plug and socket. Ensure that they are making correct contact. If there is intermittent field collapse, check all the pins of IC451 for dry-joints. Check pins 6 and 7 of IC201 if necessary.

Colour/display Faults

If there's just a bright raster, check for a dry-joint at pin 6 of the line output transformer T551. Then check whether R553 ($2.2 \Omega, 0.5 \mathrm{~W}$ safety) and/or D556 (BYD33G) is open-circuit. If so, check whether C565 ($47 \mu \mathrm{~F}, 250 \mathrm{~V}$) is short-circuit. Check the connector (LB) to the tube base panel: ensure that there are no dry-joints at pin 1 at either end.
If there is a bright raster and the 200 V supply at the tube base panel is OK, check the RGB outputs at pins 17,18 and 19 of the MC44000VCJ chip IC201.
If the raster is very bright with flyback lines, the tube's first anode supply control may be defective. This fault may intermittent, flickering up and down.
The reverse condition, a blacked out screen or just very low luminance, can also be caused by a faulty screen (A1) control. Alternatively, the luminance output at pin 29 of IC201 may be missing. If so replace IC201. It may be necessary to check the luminance signal path via pins 3 and 6 of the NJM2209S sharpness control chip IC202 to pin 17 of the TDA4565 CTI chip IC602. Check the waveforms and DC conditions at these pins carefully.
For loss of one colour, check the relevant 2SC2688/2SC2482 output transistors on the tube base panel. These are Q651/658 red, Q652/659 blue and Q653/660 green. The loss may be intermittent. In this case check for dry-joints at these transistors. Check the DC conditions at their pins carefully.
Loss of one colour can be caused by a faulty tube. The emission of one gun could be very low. Check also for a possibly open-circuit heater - this fault can usually be seen, with only two of the heaters in the row lit. Check for dry-joints at the CRT pins and ensure that they are making correct contact with the base.
If the symptom is incorrect grey scale, check the 1N4148 diodes D655/6/7 which can become leaky. Otherwise the output transistors and IC201 are suspect.

If necessary check Q710 (JC501Q, R) by replacement it's associated with the microcontroller chip.
For complete loss of colour IC201 (MC44000VCJ) is suspect, but check for dry-joints at its pins before trying a replacement. The 17.7 MHz crystal X601 is also suspect. It may be dry-jointed or faulty. On rare occasions you might find that the CXP80424 microcontroller chip IC701 has set the colour at a low level. It may be incorrectly programmed or need replacement.

Tuner/IF Faults

A broken aerial socket can be the cause of snowy/grainy pictures: if the fault is intermittent, the socket could be dry-jointed. Check the aerial as well. If there is white, chalky dust in the socket, water is probably coming down the inside of the aerial lead. The water usually enters at the aerial connection on the roof and is then sucked down by syphonic action. Another cause of snowy pictures is a low-gain tuner (TU101) - the RF amplifier packs up. Because of the compact construction, it's advisable to replace rather than try to repair the tuner. If there's no tuning, check for 33 V at pin 14 of the tuner unit. Absence of this voltage usually means that $\mathrm{R} 971(18 \mathrm{k} \Omega, 2 \mathrm{~W})$ is open-circuit or IC955 ($\mu \mathrm{PC} 574 \mathrm{JK}$) is short-circuit.
Dry-joints in the tuner and/or IF module can cause many intermittent symptoms such as a blacked out picture, black lines flickering across the screen, loss of signals when the set has been on for a long time or a blank screen with loss of the on-screen graphics. Dry-joints in the IF unit can cause a double-image effect, akin to picture ghosting. It's best to replace the tuner and IF module as a pair. The tuner is part no. 295P397030, the IF module (IP101) part no. 305P700030.

Sound Faulis

The sound output chip is IC361 (TA8200AH). If there's no sound, check the DC conditions at the pins of this chip, which may have failed. If still in trouble, check the DC voltages at the Nicam board's connection pins. Crackling on sound or Nicam dropout is usually caused by dry-joints on the Nicam PCB.
With some earlier sets you can get an audible whistle at about 1 kHz when a Nicam transmission is being received. Use of the volume control varies this whistle. To cure the fault, connect a wire link between the negative terminals of C3342 and C3346 on the print side of the Nicam PCB. This link should be insulated and run as close to IC3305 as possible.

Incorrect EEPROM Operation

Corrupted data in the X24C04P EEPROM IC702 can cause many different faults such as no text, no Nicam sound, and incorrect height, width, brightness etc. settings. A kit is available from Mitsubishi, part no. 263P434020. It includes two pull-up resistors and an $0 \cdot 1 \mu \mathrm{~F}$ capacitor. After fitting it, refer to the service manual for reprogramming information.

Remote Control Faults

If the handset does not emit command signals, check the batteries and/or the battery terminals. Check for corroded contacts or dry-joints. If necessary check the LED for dry-joints and the crystal (X1) for dry-joints or broken connections.
A cracked PCB or liquid contamination can result in non-operation, intermittent operation or incorrect operation of the pushbuttons.
The M50461-113FP chip may be faulty. Contamination can cause corrosion or clogging between its pins.

A Hi-8 Video Problem

0ne of our customers asked us to look at his Sony EVS1000E Hi-8 VCR, which he used for editing camcorder tapes and for transfer to VHS. It had suffered from an unusual fault from new. When he used it to play back a standard-play (SP) Hi-8 recording made by his camcorder, the picture was covered with white spots - similar to the effect produced by a poorly earthed head drum. Playback of the VCR's own recordings was reasonably good. LP camcorder recordings were also played back with little problem. The EVS1000E is a well-specified machine, with good slow-playback modes via a jog/shuttle feature, Nicam offair sound, PCM and hi-fi stereo etc.
Our first checks were on the anti-static brush and the earthing of the head drum and head amplifier sections. Everything was OK. We next checked and set up the tape path alignment, tape tension etc. The FM signal was checked, also the supplies and the signals to the head amplifier assembly. No problems. After finding that the DOC adjustment was correct, we decided to check the head Q (playback frequency) adjustments, using the relevant test tape.
There are two SP-mode adjustments, one for each head. Both could be set up all right, but the ch. 1 adjustment also altered the picture's spottiness. Unfortunately we didn't appreciate the significance of this at the time! Our next step was to replace the upper drum assembly. This was not a good move - it's expensive, and made only a small difference to the symptom.
What was going on? The important points were that only SP
camcorder recordings produced the fault symptom, and that the EVS 1000 E has an unusual head drum configuration. It has separate SP and LP heads, unlike the customer's CCDV800E and most 8 mm camcorders which use LP heads for both tape speeds. LP heads have a narrower gap than SP ones of course.
As the camcorder has only LP heads, its SP-mode recordings have guard bands between the tracks (the VCR has full trackwidth SP heads that don't produce guard bands). The cause of the trouble was that one of the VCR's LP heads was permanently switched on. During playback of the machine's own SP recordings some off-tape information was picked up. This did not degrade the picture significantly - after all, the two LP heads are active in the trick-playback modes, providing good still pictures etc. But when an SP camcorder tape was being played back the active LP head was looking at either the guard band or was completely off-tape, thus producing the 'static' type interference. It took us a while to figure out what was happening!
Why was one LP head permanently active? Because of a manufacturing error: C102 ($1.5 \mu \mathrm{~F}$ electrolytic) had been fitted the wrong way round. It's part of the head switching circuit, which normally shorts out the ch. 1 LP head in the SP mode.
You are unlikely to come across exactly the same component problem, but the effect on the picture produced by different head types and thus different track layouts may be worth bearing in mind.
D.C.W.

A whole station for the price of a London - Edinburgh return.

 a bench stand and a temperature feedback controlled soldering iron. Unlike 'energy controllers' this station will electronically control the tip temperature of your choice between $65^{\circ} \mathrm{C}$ and $450^{\circ} \mathrm{C}$ with excellent
repeatability. At a slightly higher price platform is our 690SD ESD safe station which has digital readout, electronically lockable settings and many other features. For details, or a copy of our brochure call: 01822613565 Fax 01822617598 E-mail: sales@antex.co.uk

Test report Δ

 Powermax and Clipper

 Powermax and Clipper Remote Control Extenders

 Remote Control Extenders}
Eugene Trundle tests some UHF remote control extender systems imported by Celtel Ltd. The user in one part of a house can operate equipment in another part

Most households now have more than one TV set. Typically there's a large-screen set in the living room and one or more smaller ones in other rooms. Very often they are all fed from the main, external aerial via an RF distribution amplifier: indoor types are readily available from DIY stores. The satellite receiver and VCR are seldom duplicated elsewhere in the house - because of the expense and the need for a dualLNB where two satellite boxes are to be fed from one dish.
But satellite TV and video playback can be viewed on any of the smaller sets so long as the aerial feed to the RF distribution system is looped through the satellite box and VCR, whose UHF outputs can be added to the off-air broadcast signals. They can then be tuned in by any of the receivers. The problem that arises is how to control the satellite receiver and VCR from the bedroom or wherever: IR commands cannot pass through walls and floors!

Mode of Operation

Hence the Celtel units reviewed here, which extend the operating range of an IR handset housewide. Working to Approval Standard MPT340, they use an RF link at about 418 MHz , with a maximum power of $250 \mu \mathrm{~W}$. Basically the \mathbb{R} light beam is detected and converted into a low-UHF signal for transmission to a small telescopic aerial on a repeater unit. The latter is placed within sight of the equipment in the living room and recreates the original IR control code. Hey presto, the gear does what it is told, maybe freeze-framing a winning goal kick or zapping through late-night satellite programmes, wherever you happen to be using the handset.

Clipper

With this version the transmitter consists of a batterypowered extension at the front of the handset. About half the size of a matchbox, it's fixed by a Velcro pad - two pad sets are provided. A LED flasher shows when it is working: there's no need for an on-off switch or aerial. Its RF output is picked up by the mains-powered repeater unit, which is a stylish, dark-toned 'squashed dome' with a 17 cm telescopic aerial. This design has the advantage of complete freedom of handset movement, because you carry the tiny transmitter with you
I tried it at various sites and at most of them had no communication problem - modern houses tend to have plasterboard internal walls that RF signals pass through with ease. There were a few dead spots in a large, Thirties house that had solid brick internal walls, particularly when linking from a back first- or second-floor room to the living room at the front on the ground floor. I'm told that there is a possible mod to overcome this should it be required - with too much sensitivity you run the risk of interaction between devices operating in adjacent houses. In practice this is, I gather, not too big a problem. Apart from this the device worked very well.

Powermax

This extender uses the same sort of repeater unit as the Clipper, but the remote control IR receiver/RF converter consists of a second mains-powered dome (no aerial) which is placed in the room from which control is to be exercised. The test one went on the bedroom dressing table. While command transmission is now confined to one room, there's the advantage of an unencumbered handset - and as many of these can be used as you like,
the codes from each being faithfully replicated in the living room. So this system lends itself to such things as remote control of a $\mathrm{Hi}-\mathrm{Fi}$ system with extension speakers in addition to the role previously described. You can zap radio stations, control the volume and navigate around CDs.
This system also worked well for me, with no transmission problems, the link being point-to-point rather than mobile.

Conclusions

In the workshop, which is a lively environment from the equipment and interference point of view, I didn't come across any bad effects with either system - no radio reception nasties, and no interaction between remote commands. I was unable to get inside any of these modules to explore their secrets!
One of our customers discovered a perhaps unique application. A keen videographer, he has a camcorder and auto-editor in his den and uses a Powermax to relay the latter's IR commands to an S-VHS VCR in the living room. He can thus produce an edited master tape from afar, saving the need to buy a second deck or carry the first one to and fro!
These useful and ingenious systems are worth their price to the sorts of households that have a use for them, and are a good sideline for dealers and workshops involved with TV, video and satellite sales, installation and repairs.
The list price of each of these extender systems is $£ 49.95$, but they are typically offered for sale at about the $£ 40$ mark - both figures include VAT. Trade discounts are available from distributors such as Willow Vale, also from the importer Celtel Ltd., PO Box 135, Basingstoke, Hants RG25 2HZ - phone 01256364 324, fax 01256818064.

Book Review

Old Television by Andrew Emmerson, published by Shire Publications Ltd., Cromwell.House, Church Street, Princes Risborough, Bucks HP27 9AA (telephone 01844344 301, fax 01844347 080) at £2.95. 32 pages.

This entertaining and well-illustrated little book tells the story of early TV from the period of Baird's initial experiments in the mid-Twenties to the start of colour television in the UK in 1969. So its main concern is with the 405 -line era and the early dualstandard days. Throughout there's much on the sets of the time, without going into circuit technicalities. Rather, the book is intended, as it says in the introduction, as a handy guide to television in general, and to viewing television in particular.
In the chapter headed "the culture of the first television generation" we get a fascinating account of TV's impact on home life in the Fifties and Sixties. This is followed by information on channels, stations and idents. To conclude, the book tells you about the vintage-TV hobby, where you can get to see early TV sets and other equipment, and provides a list of societies and sources of information.
While I appreciate that Andy had limited space in which to cover what is quite a large subject, I do feel that he - and others in the UK - have been a little unfair to the achievements of pioneers in the USA in the early days, by RCA in particular. Vladimir Zworykin had filed a patent application for an electronic camera tube - the key to practical television - in 1923, while working for Westinghouse. His research continued for
several years. In the early Thirties EMI, working along similar lines in the UK, patented the first practical electronic camera tube. This was the Emitron, in 1932. Zworykin had joined RCA in 1929 however, and had by 1931 taken the development of his iconoscope tube an important stage further. A practical iconoscope tube was announced by RCA in June 1933. That same year RCA demonstrated a complete, all-electronic TV system, with transmissions from the company's W2XBS transmitter atop the Empire State Building. The standard was 240 lines with 24 sequential frames per second. By June 1936 RCA was using 343 lines with 30 interlaced fields per second. In the same year the US Radio Manufacturers' Association proposed a 441-line system, which was successfully developed by Philco with a demonstration on February 11th 1937.
Yes, EMI and the BBC got there first, in 1936, with a regular 405 -line TV broadcasting service. But had it not been for the Depression and bickering over standards, TV broadcasting in the USA would have started earlier than it did (in 1939). Really, it was neck and neck.
Others - Telefunken in Germany for example - were pretty far advanced by the mid-Thirties. And it's important to appreciate that Prof. Boris Rosing (Zworykin was a pupil of his) gave the first demonstration of a crude TV system, with a mirror-drum scanner and a CRT for the display, in St. Petersburg in 1907.
But enough of this! If you are interested in TV's impact during its early years you will find Andy's book a good read.
J.A.R.

DX and Satellite Reception

DX and satellite TV news and reception. A phase-shift system for interference cancellation. The 1998-2000 edition of the World Satellite Yearly reviewed. Roger Bunney reports

Some Sporadic E reception during late April suggests that the 1998 season will be an improvement on last year. At 0745 on the 23rd I saw a weak, slow-fading PM5544 test pattern on ch. 4, with the aerial pointing to the SE. Its identification was too fuzzy to discern, and the signal faded out after fifteen minutes. A slow-fading tropo-type signal in Band I is characteristic of very long single-hop

Fig. 1: Todd Emslie's nulling system for inferference cancellation.

Fig. 2: The phase-shift circuit. T is a $1: 4$ (75/300 $)$ transformer. VR1 and VR2 are both 5 ks linear pofentiomefers. C1 and C2 are $0.01 \mu F$. The components should be housed in a small metal box.

SpE reception. Peter Schubert (Rainham) noted weak SpE activity on chs. E3/R2 on April 26/27th. Then a strong SpE opening occurred on May lst, with TVE (Spain) ch. E4 received in the early evening - a bullfight of course! Only days now to the proper start of the season!

Todd Emslie (NSW, Australia) has written about recent reception highlights there. F2 layer reception from the States across the Pacific has improved, reaching as high as 36 MHz . F2 back-scatter has been noted, giving New Zeland ch. 1 $(44.25 \mathrm{MHz})$ from the NE in midApril. Highlights of the past season include Thailand ch. E3 and China ch. R1 on March 25th, also Japanese beacons/radio amateurs at 50 MHz . Last December Hawaii Khon-TV ch. A2 was received in both Christchurch NZ and Victoria Australia.

Like many other DXers, Todd suffers from interference problems. He has designed an effective but extremely simple nulling circuit that covers from $40-220 \mathrm{MHz}$! Details will be found later in this column.

Satellite Sightings

Eutelsat II F4 at $7^{\circ} \mathrm{E}$ has ever fewer analogue news circuits. But perhaps the most unusual sighting for me this month was from II F4 on April 23rd. When checking this satellite I received, at 2315 BST onwards, $11 \cdot 145 \mathrm{GHz}$ horizontal, colour bars plus the idents "Newsforce DSNG4" and "Alftah Broadcast Chad". Thinking it might be a latebreaking news story I stayed tuned. But all that appeared during the
next hour were more colour bars plus inserts of, I presume, the local TV programme - revolutionary dancing plus waving of a red flag. Newsforce pioneered digital satellite newsgathering, and the signal would have been a European analogue redistribution. Unusually, this was clear analogue: even sound in syncs hadn't been used.

The mid-summer World Cup and Tour de France transmissions will be distributed across Europe using EBU digital capacity, with MPEG-2 coding. The full EBU/Eurovision network, with 55 transmit/receive stations in 48 countries, is to go digital by September. The number of EBU TV channels will be increased from thirteen to over twenty. So there will be more to see - if you have a digital receiver.

A serious Spanish coach crash was heavily featured via Intelsat K on April 26th, with the local test patterns of TV Valencia and Canal Sur.

Several SNG evening magazine programme inserts for BBC regional services are still uplinked in analogue form. The BBC's Northern Ireland truck (UKIl 20 DGSP) was in early April feeding news material and live reports for several news programmes via the 12.608 GHz horizontal transporter aboard Telecom 2C at $3^{\circ} \mathrm{E}$. This was during the talks on and the eventual peace deal in the Province.

John Womersley (Bradford) has bought a Nokia 9602 digital receiver and writes in some detail on its operation. There are many grey imports with which Nokia will not guarantee reception. Certain 9200
and 9500 receivers now on the market contain v. 2.0 software, similar to Model 9602. It enables you to avoid going into red menus for access to certain tuning options. More on red menus via the internet at
www.eurosat.com/digital/dbox.hmtl
or
www.xs.4all.nl/~satje/dbox/secret.html
Many digital feeds are available via Sirius- 2 at $5^{\circ} \mathrm{E}$. The following provides sports offerings:
12.346 GHz with S/R 3332, VPID

33, APID 32, FED $3 / 4$ and PCR 33.
John uses a Im dish, a universal LNB, a Global A/B switcher, a Pace MSS300 analogue receiver and his Nokia 9602.

Roy Carmen (Isle of Wight) noticed a Canal Fiat corporate programme via Telecom 2C in early April, at $12 \cdot 650 \mathrm{GHz}$ vertical, with Lancia and Alfa Romero cars. Interesting that the feed was clear D2-MAC.

Many Vauxhall dealers now have an 1.8 m offset dish to provide ex-factory sales information and training for engineers. A visit to your local Safeway store will also reveal dishes, and it's understood that Sainsburys is to have a corporate TV network soon. Can anyone tell us when such material is aired and in what format? I've heard that Eutelsat II F2 at $10^{\circ} \mathrm{E}$ is a favourite for corporate signals. Any information will be welcome.

Broadcast News

Sweden: The following digital terrestrial transmitters are in operation: Horby ch. E22, Vastaras ch. E37, Stockholm ch. E59,
Norrkoping ch. E36, Uppsala ch. E40, Malmo ch. E22, Goteborg ch. E40 and Linkoping ch. E42. The plan is for each transmitter site to have six digital multiplexes providing a total of 24 channels. Each site will transmit SVT and TV4 in both analogue and digital form.
Channels above E60 will be progressively used for DTT transmissions.
Finland: The Nelonen channel now has a full teletext service.
Lithuania: The Moscow TV6 relay has been converted from SECAM to PAL. The country has adopted Central European Time: thus summer time will be GMT plus two hours, winter time GMT plus one hour.
Singapore: DTT has started on a
test basis, run by Advent TV with TCS progamming. The plan is for a full service by the end of the year.
Northern Ireland: Ulster TV,
Belfast plans to open a local digital service early next year with programme material from both sides of the border, including RTE and the new commercial channel TV3. This will be in addition to the ITV DTT package.
Burma: A TV transmitter has been opened in the East Shan State to relay government progamming to the nearby mountainous regions.
UK Radio: The Isle of Man government has made the 279 kHz long-wave frequency available for a high-power radio service with wide coverage. The transmitter power will be reduced at night to avoid co-channel interference. United Christian Broadcasters, The Isle of Man International Broadcasting Company and an old favourite, Radio Caroline, have expressed interest.

Nulling System

Todd Emslie's nulling system, mentioned earlier, is shown in Fig. 1. Fig. 2 shows the phase-shift circuit. The idea is to cancel interference by adding the signal from the DX aerial to that, after phase shifting, from the interference aerial. The phase-shift circuit uses a 70/300 2 transformer, two capacitors and two $5 \mathrm{k} \Omega$ linear potentiometers. It should be followed by a preamplifier then an in-line 0 20 dB variable attenuator - the latter can be obtained from Cirkit, stock no. $10-01520$, at $£ 3.94$. An amplifier is also used in the feed from the DX aerial. A wideband ferrite combiner such as the Antiference CS1000 or Tratec ES02 is used to add the two signal feeds: do not use a resistive combiner/splitter or the cheapie ferrite splitters from the Far East.

After connecting the units, adjust the attenuator so that the levels of the interfering signal inputs to the combiner are roughly equal. Then adjust the phasing and balance potentiometers - a 360° phase shift can be obtained. The interference will be reduced or will disappear.

Todd reckons that the system reduces an $\mathrm{S} 9+20 \mathrm{~dB}$ ABN-2 ($64 \cdot 24 \mathrm{MHz}$) interfering signal from a transmitter five miles away to an S1-2ish signal level. This enables him to receive MS pings and other weak signals in the same channel. The system is wideband, working from Band I through to 220 MHz .

The Merlin Communications logo, received via Sirius2 at $5^{\circ} \mathrm{E}$.

Sarellite News

Because of the problems with
PanAmSat's PAS-6 satellite at
$43^{\circ} \mathrm{W}$ a replacement, PAS-6B, will
be launched later this year to main-
tain and expand services to
South/Central America. It's being
manufactured by Hughes and will

eatures

- Two sets of S -VHS inputs and outputs
- Input auto detection
- Digital conversion from input TV signals of NTSC, PAL to output signals of NTSC or PAL
- Digital line ($525 \leftrightarrow 625$ lines) and field
($60 \leftrightarrow 50$ fields) conversion
E BM bit field memory
- Buit-in time base correction (T.B.C.) function for signal synchronization

E649.00

SPECIFICATIONS

10 inch colour Television/Monitor with buith-in "ON-LINE" Videorecorder, 30 preset memories, Hyperband and full function remote control. Autorepeat function. Double Audio-Video sockets (SCART+RCA), 12V DC and mains operation.

E549.00

Worldwide covers 10 Standards' AKAI VS X4BO EGN MULTI-SYSTEM VCR Covers PAL I; PAL B/G; PAL D; SECAM B/G; SECAM D/K; SECAM L (for FRANCE); NTSC 3.58MHz and NTSC 4.43MHz. VHF/UHF Tuner. DX4 head with Long play. NTSC playback on a PAL TV. 8 Event, 1 year timer. Auto vothage selector for use year timer. Auto votrage selector fer use
worldwide. Complete with infra-red remote worldwide. Complete winh invar
control. $\mathbf{4 9 9 9 . 0 0}$ inclusive of VAT

FULL CATALOGUE Features Satellie, MutiSysiem IV' - VCirs, Converters, Decouers,
Ampitiers and Aerials for domestic and TV. Dxing AVAILABLE BY RETURN OF POST FOR ONLY E1.
or ring with your credit card.

11 Kent Road. Parkstone, Poole, Dorset BII22ED \square Tel: 01 212-7382.32 Fas: 01202-716951 Demall feeh watron
|All pricas are inclusive of VAT, delivery by courier $£ 10.00$)

A Spanish test card received via Intelsat K at $21.5^{\circ} \mathrm{W}$.
have 32 high-power Ku-band transponders. Although PAS-6 was launched less than a year ago, problems with its solar panels have led to reduced power output. Because of this a decreased load programme has been initiated. PAS-6 and PAS3 , both at $43^{\circ} \mathrm{W}$, will maintain services until PAS-6B arrives.

The Greek government has proposed a single digital system with free access for both state and commercial broadcasters provided a common digital encryption standard is adopted.

The Sky Scottish channel from Glasgow closed on May 31st. Viewer figures were minimal. The channel had broadcast from 18002000 via Astra and local cable systems.

AsiaSat-3S is to be launched next spring, after which it should be in service within a month. The earlier AsiaSat-3 failed to go into orbit.

It might be an idea to hold off buying that new digital satellite receiver. Philips is to introduce a second-generation MPEG IRD chipset early next year. It's claimed to be faster and to have a lower power consumption - the three ICs will operate at down to 1.8 V . At a cost of $\$ 15$ for the chips, complete receivers could be on sale for about $\$ 200$.

Intelsat waved goodbye to an old friend, 502 , which was shifted out of orbit on April 14th, ending a record seventeen years' service. It
was launched in December 1980 and was the oldest in the Intelsat fleet. The new 709 is to take up position at $50^{\circ} \mathrm{W}$, offering DTH services to Brazil with +50 dBW ku-band transponders. There has been an Intelsat shuffle as follows: 804 to $64^{\circ} \mathrm{E}$; 801 to $31.5^{\circ} \mathrm{W}$; 506 to $29.5^{\circ} \mathrm{W}$; 511 to $29.5^{\circ} \mathrm{W}$ for cable distribution. 805 will go into service at $55.5^{\circ} \mathrm{W}$, where 512 is to be de-orbited.

Intelsat has formed a spin-off company, called New Skies Satellites NV, which will be free to operate without the cumbersome Intelsat control (see Teletopics last month). The new company will operate 513 at $177^{\circ} \mathrm{W}, \mathrm{KTV}$ at $95^{\circ} \mathrm{E}, 703$ at $57^{\circ} \mathrm{E}, 803$ at $21.5^{\circ} \mathrm{W}$, Intelsat K at $21.5^{\circ} \mathrm{W}$ and 806 at $40.5^{\circ} \mathrm{W}$.

Eutelsat has confirmed that Europesat-1 will enter service at $29^{\circ} \mathrm{E}$ in mid-2000. The 36transponder satellite will provide DTH TV, multimedia and corporate services. Its design will enable it to operate alongside the Astra craft at $28.2^{\circ} \mathrm{E}$. A frequency-sharing plan is being arranged between the two satellite organisations.

1998-2000 World Satellite Yearly, 5th edition, by Dr. Frank Baylin. Published by Baylin Publications at $£ 59$.

This substantial book has over 550 pages ($10.7 \times 8.4 \mathrm{in}$.) packed with information on satellite theory and practice, diagrams, footprints, addresses - in fact it's a complete reference guide to the technology and situation as at mid-1998.

The format is basically the same as in the earlier, successful editions. It starts with coverage of satellite basics - dishes, equipment, how and why satellites work in orbit etc. Scrambling and the MAC variants are well documented, but greater emphasis is now naturally placed on digital compression. Also pirate hacking: the subsection on page T-162 raises the question "Digital Television - The Next Target?" There is also an interesting section on marine satellite systems.

The main purpose of the book however is to gather together a mass of reference information, in particular downlink footprints etc., for every satellite now active (now being spring 1998) or expected to come into operation during the anticipated life of the book. So there's a massive section that provides details of who is using which transponder on which bird. There follows an equatorial trip west-
wards around the Clarke Belt from $180^{\circ} \mathrm{E}$, pausing at each satellite to describe the craft's background, i.e. operator, launch date etc., then the details of the craft itself - construction, on-board loading, electronics, downlink frequencies and transponder powers, beacons and so on. There's a very detailed listing of transponder uplinks and downlinks, with frequencies, bandwidths, performance data, powers and other information.

Equally important are the satellite footprint maps, showing the main target regions and EIRP contours. For the enthusiast this provides an indication of reception possibility at a given location. AMOS-1 at $4^{\circ} \mathrm{W}$ for example would, via its European beam, have an EIRP of about 29dBW in South Hampshire, an indication of why it's a difficult signal to receive! The final satellite listed is Intelsat at $177^{\circ} \mathrm{W}$, completing the course to $180^{\circ} \mathrm{E}$. The book ends with an extensive listing of manufacturers' and companies' addresses and contact details.

No reference book of this magnitude could be 100 per cent accurate of course, even at the time of publication. Whilst
preparing this review Intelsat has announced an orbital reshuffle, and there have been announcements from Eutelsat and PanAmSat. NileSat-101, at $7^{\circ} \mathrm{W}$ from early May to provide services for North Africa and the Middle East, is not listed. But these are quibbles.

In conclusion, this massive reference work is an essential item for the bookshelf of anyone, professional or enthusiast, concerned with satellite use and reception. But, because of its size and comprehensiveness, it is not cheap - if you are in the trade however it's an allowable expense to offset against tax. The book can be obtained by post from Swift Television Publications, 17 Pittsfield, Cricklade, Wilts SN6 6AN (phone 01793750620 , fax 01793752 399) at £65 inclusive of postage and packing. The price when supplied to European addresses is $£ 70$, and by airmail anywhere else in the world $£ 80$. Those in London may find the book at the Modern Book Company, Praed Street, Paddington, or Foyles in Charing Cross Road. Baylin Publications can be contacted by phone/fax at 01189414468.

it could be You!

With ever more new, innovative technology being introduced in consumer electronics equipment, new blood coming into the industry is vital to its continuing success. Panasonic, an industry leader, has decided that now is the time to reward the best of the new technicians.

In conjunction with City \& Guilds and Retra, Panasonic has launched an award scheme for the Top Ten results from this year's final examinations for City @ Guilds 2240 (part 3) in TV and VTR servicing. The only rule is that you must be 25 years or under at the time of sitting the examinations.
Panasonic is arranging a competition to find the first, second and third top technicians out of the ten finalists. All ten will, with a guest or partner, be invited to spend a day as guests of Panasonic at Bracknell, with a luncheon, presentation of certificates and over £2,500 worth of Panasonic products for the finalists (first prize worth $£ 1,000$).
In recognition of the support provided by employers for their trainees, Panasonic is to present to each of the ten finalists' employers an inscribed plate proclaiming the achievement of the organisation in the field of training.
The top three finalists will then be taken to a luxury hotel in Cardiff for an evening as special guests of Panasonic. On the following day there will be a fascinating tour of the Panasonic European TV factory in Cardiff and a lunch.
All in all this will be a super event fully endorsed and supported by Retra.

So, all you young technicians, make that extra bit of effort for those all-important final examinations this year. You could be Panasonic Young Technician of 1998 !

Reports from

Nick Beer and
David Woodnott

Hitachi VCMIE

I'd not had one of these twist-andshoot models for repair before. They clearly suffer from the sur-face-mounted electrolytic capacitor problem. This particular one recorded perfectly when twisted into the camera mode. In the untwisted VCR mode however it would intermittently either refuse to carry out any deck functions, or the buttons would select the wrong functions, or the machine would permanently be in the rewind or another mode.
The control switches appear to be connected to a resistive ladder network. An examination revealed that some of the through-the-board links in front of the connector (PG802) to the switches had become corroded. The answer lay on the other side of the PCB: C234 ($100 \mu \mathrm{~F}, 6.3 \mathrm{~V}$) and $\mathrm{C} 244(47 \mu \mathrm{~F}, 6 \mathrm{~V})$ were leaking.
There were leaky electrolytics in other areas as well. N.B.

Panasonic NVM10B

This full-sized camcorder was dead. It was no surprise to find that the 0.025Ω fusible resistor R1051 (part no. VSF0059) was open-circuit, but the short that could be measured between its business end and chassis had a rather unusual cause. Much lifting of chokes to isolate circuit areas confirmed that the cause of the problem was somewhere in the middle of the power supply. The chopper transistor was OK, but the transformer had a short-circuit between its primary winding and chassis. It's T1001, part no. ELL10R010. A

Camcorner

replacement transformer and fusible resistor restored normal operation. N.B.

Panasonic NVMC30B

This one arrived with a tape stuck in the mechanism and a note to say that it would remain powered up for only a few seconds. It's not an uncommon fault with this model, the cause usually being faulty regulator transistors in the power supply. In this case however the power supply was OK. Inspection of the unit at power up, with the tape still loaded, revealed that the drum didn't rotate. In fact it was completely jammed! We removed, cleaned and refitted the drum, after which all was well. Dirt of some sort must have made the drum stick. D.C.W.

Sanyo VMD6P

A faulty AV socket is quite a common problem with these popular, middle-aged camcorders. The sock et is available at modest cost from CHS. Sometimes however you find that the printed circuit has been damaged by excessive AV connector wriggling. So a new PCB has to be obtained. This is also available from CHS, though not at quite such a modest price.

We've on occasions found that some audio circuit setting up is required after fitting a replacement board. The usual symptom is low or distorted sound. Information on this is included in the relevant service manual. D.C.W.

Sony CCDTR305E

The customer said that this newish camcorder had operated intermittently for some time but had now ceased to do anything at all. There was a tape, which couldn't be ejected, in the mechanism. An initial inspection showed that the unit would power up in the VTR mode but not in the camera mode. No functions worked however.
When the RM95 remote unit was connected the VTR functions could be operated by the buttons, but there was no camera mode as the CAM/VTR switch is in the main body of the camcorder. A replace-
ment Switch Block Control, as Sony call the complete control-button assembly, was required. This cured all the symptoms - albeit at a price. D.C.W.

Sharp VLE3OH

This early Viewcam model has been generally reliable. Until recently we've not seen many of them. This one came in for a general service. There is nothing much to report, except for something that those with little experience of these machines (like us!) should note.
After its service the unit was put on test and performed well. As we didn't have the customer's AV connector, we were able to check the results only by looking at the LCD screen and by using another camcorder to play back a tape, which was OK.
The unit soon came back however, with a report to say that while it now worked well there were no outputs via the AV connector. We had failed to notice a peculiarity with the connectors used in this model. The ribbon cable connectors used by most manufacturers have a grip system that, when released, enables the cable to be removed. Refitting is the reverse procedure. With the Sharp version, as used in this model, it's possible for the whole section to come away at the cable end when the grip is released. This is of no consequence if the grip is not removed from the cable. If it should fall off, as it must have done in this case, it can be refitted incorrectly. This might not be noticed the connector can appear to be correctly recoupled to the PCB socket. When it's incorrectly fitted however a section of the plastic grip partinsulates the ribbon cable end from the connecting pins on the PCB.

This was where we had made our mistake with the AV connector. It was simple to rectify once we realised that this reversed connection is possible. It can obviously occur with any of the other similar connectors, causing various symptoms - thankfully none fatal, as the worst that can happen is an opencircuit. We live and learn! D.C.W.

Answer to Test Case 427 - see page 631 -

There were false trails and chicken-and-egg theories with the Daewoo set - but no field scanning! Those who remember the AN5521 field drive/output chip used in older Panasonic sets, and probably some other makes and designs, may recall that it wouldn't produce a ramp to drive the field scan coils unless it had some feedback from the output side of the circuit. This made fault diagnosis very difficult, as a fault anywhere in the field feedback loop removed the output. The hapless technician could be sent round in circles.
It seems that the field generator section of the TDA8362 chip has the same irksome characteristic. Unless the conditions at its feedback pin 41 are correct, it won't produce a field drive output at pin 43. Pin 41 expects to receive a sawtooth waveform from the height control potentiometer VR301, which is at the earthy side of the field deflection current path. A $2 \cdot 2 \mathrm{nF}$ capacitor, C302, is connected between pin 41 and chassis. This was the cause of the trouble - it was leaky.
As IC designers sit at their drawing boards - computer terminals nowadays no doubt - thinking up wondrous feedback, driver and output arrangements, all long-tail pairs and so on, it would be nice if they could manage to spare a thought for bemused technicians like Techocrat, who have to deal with the problems when things go wrong.

NEXT MONTH IN TELEVISION

Digital Satellite Receiver Design

Chris Carter describes the SGS-Thomson design for a lowcost digital satellite TV receiver.

Low-ohms Meter Extender

There are many situations where it's helpful to be able to measure low resistances reliably. Alan Willcox has devised a simple meter range add-on unit that extends a digital meter's resolution down to 0.01Ω (0.001Ω is possible).

Servicing the Mitsubishi EE3 Chassis

John Coombes on how to tackle faults experienced with this CTV chassis.

CabSat '98 Report

This year's Cable and Satellite Show was particularly significant, with digital TV equipment being displayed and demonstrated. George Cole reports.

How the Internet Helps

Is the operation of the internet still a bit obscure to you? If so, Peter Marlow's description of the system and how it can help you could be valuable reading.

Toshiba Service Briefs

Latest know-how from Toshiba Technical on the company's CTVs and VCRs.

TELEVISION INDEX/DIRECTORY AND FAULTS DISCS PLUS HARD COPY INDEXES \& REPRINTS SERVICE

INDEX DISC

Version 6 of the computerised index to TELEVISION magazine covers Volumes 38 to 47 (1988 - 1997). It has thousands of references to TV/NCR fault reports and articles, with synopses. A TV/NCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is easy to use and very quick. It runs on any IBM or compatible PC with 640 K RAM and a hard disc. Price is $£ 35$ ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5 \mathrm{DD}^{\prime \prime}$). Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc.

FAULT REPORT DISCS

Each disc contains the full text for television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc, then access it via the Index disc. Fault Report discs are now available for:

> Volume 38 (November 1987 - October 1988);
> Volume 39 (November 1988 - October 1989);
> Volume 40 (November 1989 - October 1990);
> Volume 41 (November 1990 - October 1991);
> Volume 42 (November 1991 - October 1992);
> Volume 43 (November 1992 - October 1993);
> Volume 44 (November 1993 - October 1994);
> Volume 45 (November 1994 - October 1995);
> Volume 46 (November 1995 October 19966);
> Volume 47 (November 1996 - October 1997).

Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime} \mathrm{DD}$ if required).

NEW - FAULT FINDING GUIDE DISC

This disc is packed with the text of the TELEVISION Test Cases, What a Life!, Service Briefs and other vital fault finding information. It is accessed via the Index disc. Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime} \mathrm{DD}$ if required).

REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 47 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK).

Softcopy Limited, 1 Vineries Close, Cheltenham, GL53 ONU, UK. Telephone 01242241455. e-mail: sales@softcopy.co.uk Web site: http://www.softcopy.co.uk

covering all important
service information - for all manufacturers
...more than $488,545(+11,087)$ repair tips for 595 manufacturers
...TecTra with more than
$73,180(+6,549)$ ICS
...29,558 (+3,904) IC diagrams
...35,175 (+196) compatible transistors on ECA
...More than 59,900 (+14,170) extracts of Circuit diagrams
...Diagram Archive Management NEW FEATURES ON VERSION 05/98

- Data Updates via Internet
- New in TECTRA:

Number of transformers:
79.000 entries for 30.700
models

- Complete power supply circuit diagrams for 654 models
- Monitor Database out now @ EURAS.COM

Save YOUR money and call us now on 01179860900 for a 30-day Trial or visit us on the Internet@ htip://www.euras.com

IS YOUR RENTAL BUSINESS EXPANDING?

Broughfame Ltd.

can help to expand your television/video rental business and increase your profitability. Our rental Finance Plan offers you financial facilities from £1,500 upwards.
Block Discounting finance also available.
For further details ring or write to:
Broughfame Ltd. 1154 St John's Hill, Sevenoaks, Kent TN13 3PE Tel: (01732) 743400
Fax: (01732) 743335
E.mail: R@Broughfame.TelMe.com http://www.elated.com/broughfame/

P. V. TUBES

108 ABBET STREET, ACCRINGTON, LANCS BB5 1EE Tel: 01254872500 / 390936 Fax: 01254872166 TRADE COUNTER OPEN MON-FRI 9-5, SAT 9.30-12
Please add VAT to all prices. We accept payment by cheque, cash, Access, Visa. Add $£ 2 \mathrm{pp}$ for all orders up to 1 k . Heavier parcels add $£ 4$. Next day delivery on LG. Consignments POA. Goods will be despatched on the day we receive your order. If we are out of stock we will inform you ASAP. Please allow up to 28 days for delivery

The PV1 multi-purpose degaussing wand is a compact and cost effective unit intended for use with a 240 volt mains supply. This unit will be of particular interest to TV Service Departments, TV
Manufacturers, Rental Companies, TV Broadcasting Authorities, Universities and Colleges, The Armed Forces, Aviation and Computer Companies.
Order by mail order today for only $£ 32.50$

Keep cool this Summer with our Electric Desk Fans 9" Fan - £13.57
12" Fan - £17.86
16" Fan-£21.27
We have an extensive range of Valves in stock

EL34	$£ 7.00$	EL84	$£ 3.00$
PCL86	$£ 2.50$	PL509	$£ 5.95$

We have literally hundreds of products, here are just a few:
Aerials, brackets, batteries, cable, connectors, CMOS capacitors, discs, diodes, fuses, IC's, loptx, leads, manuals, push-button lights, phones, phone access, potentiometers, relays, remote controls, satellite systems scanners, semiconductors, strip board, switches, tuners, tools and test equipment, valves and all you need for video repairs - heads, idlers, tyres, pinch rollers cleaners, test cassettes, TV's, video tape

If what you need is not listed - Ask! Ring Andy, Mark or Linda

B GRADE AT LOWEST PRIGES EVER
(ALL BOXED WORKING AND GOMPLETE)

$14^{\prime \prime}$	REMOTE	$£ 65$
$14^{\prime \prime}$	TEXT	$£ 75$

```
10" REMOTE £90
    MAINS/BATT
```

$28 "$	PRO LOGIC	$£ 300$
$33^{\prime \prime}$	NICAM	$£ 400$

$21^{\prime \prime}$	REMOTE	$£ 90$
$21^{\prime \prime}$	TEXT	$£ 100$
$21^{\prime \prime}$	NICAM	$£ 110$

28" NICAM $£ 180$

CD	RAD CASS	$£ 25$
CD	MICRO	$£ 30$
CD	MIDI	$£ 35$

ALSO AVAILABLE LARGE QUANTITIES OF GENUINE FAULTY RETURNED TV, VIDEO, HIFI, COMPUTERS, TELEPHONES eg $30 \times$ LATE MODEL VCRS INC NICAM VIDEO PLUS

+ TOP MAKES SUCH AS SONY, FERG, JVC, SHARP ETC 250 EACH

G0GGLEBOX

discount electrical warehouse

TEL: LEEDS
(0113) 2310359 Ask for Robert

C.T.V.

UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROITWICH ROAD, DROITWICH WR9 ONR TELEPHONE: 01299-251522 0589-888021/0850 486147 (244R)

SUPPLIERS OF HIGH QUALITY GRANADA AND THORN EX-RENTAL TELEVISIONS AND VIDEOS LARGE STOCKS ALWAYS AVAILABLE ALL AT COMPETITIVE PRICES

Satellite Receivers Complete Range of Hand Sets
EXPORT ENQUIRIES WELCOME OPEN: MON-FRI - 9.30-5.30

TEL: 01299-251522

Fax: 01299-251543

J. KAYS

MAJOR PARCEL OF MANUFACTURERS RETURNED GOODS ALL STOCK IN 'A GRADE' MANUFACTURERS ORIGINAL BOXES LIKE NEW

JAPANESE BRANDED

ALL CURRENT MODELS
21", 25", $28^{\prime \prime}$ TELEVISIONS, TO INCLUDE NICAMS, FST TEXTS, VCRS, LONG PLAY, VIDEOPLUS, NICAMS.
HI-FI, 3 CD MIDI SYSTEMS, 3 CD MICRO SYSTEMS, ALL REMOTE AND HIGH POWER PORTABLE AUDIO, CD GHETTO BLASTERS, REMOTES CDS ETC CAMCORDERS, PALMCORDERS.

MICROWAVES
STOCK IDEAL FOR EXPORT

151-153 SOHO RD, HANDSWORTH, BIRMINGHAM B21 9SU TEL. 0121-551 1404, 0121554 2637. FAX. 01215541408

MAJOR MANUFACTURERS NEW 'B' GRADE PRODUCTS READY FOR SALE

T.V. - VIDEO - AUDIO MICROWAVE OVENS

APPROVED DEALERSHIP (TRADE ONLY)

CONTACT PAUL OR MICHAEL (01375) 640800
(ONLY 10 MINS FROM LAKESIDE/M25)

CLEARVISION

30a CORRINGHAM ROAD STANFORD LE HOPE ESSEX SS17 0AH

vista electronics Lто

TV AND VCR SPARES

KIT FOR TDA 8178S MITSUBISHI TV ONLY £3.95 + VAT

FREE
POST FOR ALL ORDERS ABOVE $£ 10$

OVER 200 VIDEO HEAD

TIME LAPSE HEADS AVAILABLE NOW

NEW 'B' GRADE COMPONENTS

TEL 01429838057 FAX 01429838543

TUBES
TEL 01429837100
FAX 01429837101

VISTA ELECTRONICS LTD, UNIT 1B, WINGATE GRANGE IND EST WINGATE, CO DURHAM TS28 5AH

TOP BRAND GRADED STOCK

14" R/C $£ 75$ 20" R/C $£ 90$ 20" FASTEXT $£ 115$ 21" FASTEXT $£ 125$ 21" NICAM $£ 145$ 25" FASTEXT $£ 155$ 25" NICAM $£ 175$ 28" NICAM $£ 235$

PLUS OTHER PREMIUM BRANDS AVAILABLE PANASONIC PHILIPS SANYO SHARP ALL AT SIMILAR PRICES
GRADED HOME COMPUTER MULTIMEDIA SYSTEMS $486100 \mathrm{MHz} £ 150$ PENTIUM P75 $£ 195$
ALL WORKING WITH KEYBOARD MONITOR \& MOUSE
ATTENTION.....BULK BUYERS
AS WE ARE THE LARGEST INDEPENDENT WHOLESALER IN THE UK WE CAN OFFER THE LOWEST PRICES, SO THAT YOU CAN MAXIMISE YOUR PROFIT AND INCREASE YOUR CASH FLOW.

DON'T MISS THIS BUSINESS OPPORTUNITY

IF ANY BULK BUYER WANTS SPECIAL PRICES THEN CONTACT:

MR HUSSAIN ON 0370580597

BIRMINGHAM: OPEN SATURDAY AND SUNDAY BY APPOINTMENT ONLY STOCK CLEARANCE OF 1,000 GRADED CAMCORDERS
PRICES START FROM f95 FOR BRANDED MODELS
BRANDS INCLUDE: CANON, FERGUSON, JVC, PANASONIC, SHARP AND SONY

SATELLITE RECEIVERS

MSS1000 $£ 120$ MSS500 $£ 85$ MSS100 $£ 60$ PRIMA $£ 45$ APOLLO $£ 35$ 800/900 $£ 30$
CAR AUDIO PRODUCTS AVAILABLE
ALSO WORKING HI-FI £25 AND TOP BRANDED HI-FI FROM £45
ALL PRICES ARE SUBJECT TO VAT

HEAD OFFICE:	CLEVEDON	LONDON	PRESTON
BIRMINGHAM	UNIT 20, 5C BUSINESS	UNIT 2, THE ROYAL LONDON	UNIT 439, OAKSHOTT PLACE,
208 BROMFORD LANE,	CENTRE, CONCORDE DRIVE,	ESTATE, 29/35 NORTH	WALTON SUMMIT
ERDINGTON,	CLEVEDON, NORTH	ACTON RD, LONDON	INDUSTRIAL ESTATE,
BIRMINGHAM B24 8DL	SOMERSET, BS216AU	NW10 6PE	PRESTON PR5 8AU
$01213273273 / 01213222011$	TEL: 01275341789	TEL: 01819615005	TEL: 01772312101

TO CELEBRATE THE OPENING OF OUR NEW AND LARGER PREMISES and 25th Anniversary 1973-1998
NEW 'B' GRADE \star TOP BRANDS \star TOP SERVICE TRY A SAMPLE ORDER OF 1-3 ITEMS MONEY BACK GUARANTEE IF NOT SATISFIED
14" R/C from
.$\varepsilon 65$ Radio Cass from

Micro + CD
25" Text from 165 Rad. Cass. CD from 25
28" Nicam from£200 Irons from£4.50
VCR V.Plus from $£ 85$ Kettles from $\mathbf{£} \mathbf{8}$
Camcorders from£165 Jamo Speaker from£25
Faxes from
.£75 Personal Stereo from \qquad All stock boxed and working
FERGUSON - SANYO - TATUNG - DECCA - AMSTRAD - BEKO - VARIOUS JAPANESE
FULL RANGE - CURRENT MODELS - CONTINUOUS SUPPLY - (Prices subject to VAT + Availability)
NATION-WIDE NEXT DAY DELIVERY SERVICE - VISITORS BY APPOINTMENT Phone 0121-359 7020

FAX 0121-359 6344
MARIDN
DrRRES5 VISA

PHOENIX HOUSE, 190 BRIDGE ST. WEST, BIRMINGHAM B19 2YT

YOUR PREMIER SUPPLIER FOR OVER 30 YEARS NEW STOCKS ARRIVING DAILY

HI FI
 HI FI

100s OF UNITS IN STOCK!!

Large stocks available A and B grade:
makes include: Kenwood, Aiwa, JVC, Sanyo, Akai, Pioneer, Panasonic, Goodmans, Alba etc.
Alba/Bush Ghetto Blasters, CD, Radio, Tape boxed $£ 25$ Alba/Bush CD Micro Systems boxed $£ 35$ - Alba/Bush CD Midi Systems boxed $£ 40$ most goods under half price VIDEOS/TV's: A and B Grade
Bush/Alba long play boxed $£ 60$ - Roadstar long play boxed $£ 50$
Akai, Sanyo, JVC, Toshiba, Aiwa less than half price
21" Remote Control Crown/Bush, Alba boxed $£ 60$
EX-RENTAL TV/VIDEO ALL TESTED, SEEN WORKING Philips complete with remote $£ 45$
Salora all models with remote $£ 65$, Grundig from $£ 65$ many other makes/models in stock
Cheaper Video/front loading from $£ 25$
ALL MAKES, MODELS \& SIZES OF TV IN STOCK Brown cabinet working TVs from $£ 12$ - Videos off the pile from $£ 10$ We stock Camcorders, Car Stereo, portable radio/CD, kettles, irons, toasters etc, etc.
Basement Clearance 300 Ex Rent Colour TVs $£ 2,400$ The Lot ALL PRICES INCL. VAT. TERMS - CASH ONLY * DISCOUNT ON BULK PURCHASES *

Walker House, 16 Bottomley Street, Manchester Road, Bradford BD5 7LJ
Tel: (01274) 308186 Fax: (01274) 722229

DARTEL

ELECTRONICS

8 Heather Park Drive, Alperton
Wembley, Middlesex HAO 1SL
Tel: 0181-795-1735 Fax: 0181-795-1736

High quality graded stock from manufacturers

Camcorders,VCR's, Televisions, Hi-Fi's, Car Stereos, Microwaves etc All popular brands boxed with warranty
Tel/Fax for details Visit by appointment

STARVISION

SUPPLIERS OF HIGH QUALITY

EX RENTAL - EX DISPLAY TV \& VIDEO

ALL SETS ARE FULLY SERVICED WITH REMOTE CONTROLS AND ARE READY FOR RETAIL SALE

MOST POPULAR MAKES ALWAYS IN STOCK AT PRICES THAT WON'T SHOCK

ALL PRICES INCLUDE V.A.T. NO MINIMUM QUANTITY

RING TODAY FOR LATEST PRICES TELEPHONE
0121502 3016-01215051033
STARVISION
UNIT A, BRUNSWICK PARK ROAD WEDNESBURY, WEST MIDLANDS WS10 9QR

Largest selection of

MAJOR MANUFACTURERS NEW "B"
GRADE PRODUCTS
T.V. VIDEO AUDIO MICROWAVE OVENS

Contact Fred Bean
BSMART (CRAWLEY) LTD. 10/11 LLOYDS COURT, MANOR ROYAL, CRAWLEY, SUSSEX RH10 2QX Tel (01293) 618000 Fax (01293) 400133

TUBES

Mid-Summer Madness

Stock clearance of tubes for current models

Ring Irene or Jane for price and availability

Carriage and VAT extra

$$
\begin{gathered}
\text { 로옹N } \\
\text { The Mill, Mill Lane, } \\
\text { RUGELEY, Staffs WS15 2JW }
\end{gathered}
$$ Tel: 01889-577600

Fax: 01889-575600

Is looking for
ICs TRANSISTORs SEMIs an up hill struggle?
A phone call to us could get a result. We stock a very wide range . . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few): 2 N 2 SA 2 SB 2 SC 2 SD 2 P 2 sJ 2 SK 3 N 3 SK 4 N 6 N 1740 AD ADC AN AM ALBA BE BD BRTEDV BDW BDX BF
 BSS BSV BSV B $5 x-T^{3}$ BTA BTB BR Sy BU BUK BUT BUV buw bux bly'buz Ca cd cx exa daq dg dm ds DTA DTC G GM HA HCF HD H́fF ICL ICM IRF J KA KIA L LA LBELCe LD LF LM M M MC MDA J M. ${ }^{\text {PT MARMM MN MPSTMPSA }}$ MPSH MPSU MRF NJM NE ©M OP PAPAL PIC PN RC S SAJ SAS SDA SGISI SL SN BO STA STK STR STRD STRM STRS SVI T TA TAA YAGTBA TC TCA TOA TDB TEA TIC TIP TIPL TEA TL TLCTMP TMSTPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others.
We can also offer equivalents (at customers'risk). We also stock a full range of other electonic components.
Mail, Phone, Fax, Credit Card orders \& callers welcome

Cricklewood Electronics Ltd 40-42 CRICKLEWOOD BROADWAY LONDON NW2 3ET TEL 01814520161 \& 4500995

FAX 01812081441

? VIDEO PARTS UNAVAILABLE

? TOO EXPENSIVE?

SECOND HAND PARTS

 TESTED \& GUARANTEED (Complete boards, head motors, loading motors, capstan motors, mechanisms, panels, etc.)> CALL/FAX

01349884804
EASI-SPARES (at RADCOM UK)

10 Averon Road, Alness IV17 OPT

 Overseas customers welcome When calling, please quote any numbers on the part itself, as this will help us locate the right part or any equivalentsPayment by cheque with order (no credit cards) to RADCOM; prices on application plus $p \& p$ for all orders. Email on user@wardrop.dial.netmedia.co.uk

COUN
QUALITY USED
COMPLETE RANGE OF TVs
VIDEOS AND SATELLITES
Most makes and models available
TVs from £3.00 • Satellites from £8.00
Videos from £15.00
Prices Ex-VAT
Free Delivery Service to most areas of the UK
U.K.s Largest Export Wholesaler Specialists in conversions to most countries systems
UNIT 75, BARRACKS ROAD,
SANDY LANE INDUSTRIAL ESTATE,
STOURPORT-ON-SEVERN,
WORCESTERSHIRE DY13 9QB
Just 10 Mins from M5 Junct. 6 Worcs North

Sole UK Agents for

- Peak detection

TC-402D
Due to its weight and size, the TC-402D is the ideal instrument for the installation of FM and Terrestrial TV antenna, as well as CATV systems.

- Multi-turn potentiometer to enable tuning Weight including batteries: 1.9 Kg
- -
- Frequency Indication with 4 digit LCD Display

TC-90

Portable equipment, with many applications, designed to carry out any type of Terrestrial TV, FMM Radio, CATV and Satellite TV. installations. - Frequency Sweep on Satellite - Peak Detection

- Measurement of terrestrial TV from $20 \mathrm{u} V$ to Measurement of terrestrial TV from 20 V 的 Rechargeable $12 \mathrm{~V} / 2.6 \mathrm{Ah}$ Battery
3 V without the need of external attenuators. Weight including batteries: 3.5 kg

- Full Band Frequency Sweep - Switchable 14 V or 18 V LNC Power Supply

TC-80
The TC-80 has been designed for the reception of TV Satellite systems, the installation and testing of domestic and SMATV systems.

- Rechargeable 12V/2.6 Ah Battery Weight including batteries: 3.3 kg .

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.

CLASSIFIED
 PHONE 0181-6528339
 FAX 0181-652 8931

The prepaid rate for semi display setting is $£ 14.50$ per single column centimetre
(monimum 4 cm) Classified advertisements $£ 2.15$ per word (minimum 20 words),
box number $£ 24.00$ extra. All prices plus $17 / 2 \%$ VAT.All cheques, postal orders
etc., to be made payable to Reed Business Information. Advertisements, together
with remittance, should be sent to Television Classified, I Ith Floor, Quadrant
House, The Quadrant, Sutton, Surrey SM2 5 SAS

SERVICE MANUALS AND CIRCUIT DIAGRAMS

Thousands of different models available For most U.K. European, Far East \& USA makes

	Service Manual	Circuits
B/W TV	$£ 6.00$	$£ 3.00$
CTV/VCP	$£ 10.00$	$£ 5.00$
VCR	$£ 14.00$	$£ 7.00$

Audio/Satellite/Microwave also available - P.O.A. Cheque/PO with order only please.
Add $£ 2.00$ P/P etc. to order total. Do not add any VAT

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Service Manuals

Available for most equipment. From Valve Wireless to Video Recorders and everything else in between.
Televisions, Computer Monitor, Test Equipment, Satellite, all Audio, Amateur Radio etc etc. If you need a Service Manual give us a call. Originals or Photostats as available. Our entire index of Manuals is now being put on our web site for instant access.

Alternatively complete the coupon below for our Floppy Disc catalogue of Manuals and Technical Books available.

MAURITRON TECHNICAL SERVICES
8 Cherry Tree Road, Chinnor, Oxon OX9 4QY
Tel: 01844-351694. Fax: 01844-352554.
Email:- enquiries@mauritron.co.uk
Web site at:- http://www.mauritron.co.uk/mauritron/

Please forward your Catalogue of Technical Books and Service Manuals Index on PC Disc for which I enclose 4 x 1 st class stamps.
Name
Address

Postcode
Telephone

SERVICE MANUALS Have you ever turned away work for want of a Have you ever bought a Service Manual and

 never used it more than once? THE MANUALS IIBRARY For details and membership application etails and membership applicationform write, phone or fax: HARVEY ELECTRONICS 43 Loop Road, Beachley, Chepstow, Gwent NP6 7HE Tel: 01291623086 Fax: 01291628786 Visa, Access accopted

Technical Information Services

Midlinbank Farm, Ryelands, Strathaven ML10 6RD N.B.: There is a $£ 2.50$ Post/Handling Charge on all orders Send an SAE For Your Free Quote \& Catalogue

We have the world's Largest Selection of

VCR CIRCUITS $£ 8.00$ CTV CIRCUITS $£ 6.00$

CTV CIRCUIT COLLECTIONS

Ferguson from 1980's till present @ $£ 45.00$ • Bush $£ 22$ Hitachif45•Mitsubishi $£ 38$ • Panasonic $£ 30 . .$. etc... Call for full list \& prices of all 27 collections

Tel: 01698883334/884585 口 Fax: 01698884825

TOP SELLING BOOKS

PRACT'VCR or TV REPAIRS $£ 16.95$ each (or $£ 30$ for Both) MICROWAVES: ENERGY \& OVENS $£ 12.95$
Data Reference Guide (Chassis/X-Ref) $£ 9.95$
KUXO'SCRAMB'SYS' (New 5th Edn.) $£ 35.00$
Buy, Sell \& Service Used CTV/VCR/CD $£ 9.95$ each
IC DATA BOOKS - Various Titles f12.95 each
With 100's of Titles, send SAE for Full List

SERVICE MANUAL LIBRARY
BUY ANY MANUAL FOR $£ 10.00$ or Swap at $£ 5.00$ Each (plus p\&p) Initial Joining Fee $£ 65.00$
($£, 20 /$ annum, thereafter)
\qquad
NEW RELEASES:
3.5" Disk Drives
(Installation \& Circs): $£ 9.50$
Data Ref' on 3.5" Disk:

Repair Databases \& Indexes

SERVICE INFORMATION SPECIALISTS
New: Kwik Tips on Disk Version 1.1
After many requests for a FAULTS \& REMEDIES database E.C.S has now released Kwik Tips On disk V1.1, Compiled from over 20,000 entries \& covering 1,435 Chassis \& Models,
This concisely Edited TV \& Video repair database will prove itself a valuable resource for workshops large or small (and pay for itself with just 1 repair). Kwik Tips V1.1 only $£ 27.95$

New: Edition 20 Fault Indexes in book format. Just released - Edition 20 of the Television Magazine Index Covers over 14,000 Television, Video, Satellite, Camcorder \& Monitor faults, Large easy to read $\mathbf{A} 4$ format, The newest addition to a highly acclaimed series. In daily use in workshops across the UK (And beyond).
ISBN 1898394245 Edition 20: Complete set f14.75
New: Fault indexes on disk - Version 1.6
Our largest ever fault index database on disk, Covering a massive 19,350 !! Television, Video, Camcorder, Satellite, CD \& Monitor faults listed in 18 years of Television Magazine Version 1.6: Indexes on Disk (price held) $f 17.50$ Low coss updates are available for all fault indexes.
Latest release - Equivalents guides - 2nd Edition. Now available, Over 6,300 Equivalent entries covers TVs, Video Camcorder \& Satellites plus TV model-chassis guide. This single comprehensive book contains all FIVE guides.

Edition 2: Equivalents guides Only $£ 5.95$
All programs require a PC or compatible \& are supplied with a user manual.

Please add \&1. 75 P \& P to total (E Tel / Fax 01515220053

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS

PHONE: 0181-948 3702 FAX: 0181-332 0583
ALBA • AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDELITY • GEC• GRUNDIG • GRANADA• HITACHI • HINARI • INDESIT • ITT • KIMARA • NIKKAI • MATSUI • MURPHY - OSAKI • NORDMENDE • LOEWE-OPTA PANASONIC • PYE • PHILIPS • SANYO • SAISHO • SHARP . SONY • SOLOVOX • SUSUMU • TANDBERG • TELEFUNKEN THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELT KIS, IDLERS, PINCE ROLLERS, TENSION BFNDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD • 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Mon-Fri 9 am to 12.30 pm \&
Approx. 1 mile from Kew Bridge.
$1.30-4.30 \mathrm{pm}$

Trade Only

Televisions Teletext
Videos
Twin Speed Stereo
from $£ 5.00$ from $£ 20.00$ from $£ 20.00$ from $£ 25.00$

Minimum quantity - 10 units
Bournemouth Wholesalers 01202470443

TV's, VCR's, HI FI's COMPUTERS Major Retailer Returns

Discount for Quantity
Tel: 01384411414

LINEAGE

PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel: 01494814317
AVO MULTIMETER Model 8: £45.00. 500 volt megers: $£ 30.00$. Prices plus VAT and p\&p. Send SAE for lists of Surplus Instruments and Scopes, etc. A. C. Electronics, 17 Apleton Grove, Leeds LS9 9EN. Tel: 0532496048.
OCHRE MILL Technical Services, Grundig TV spares for most models to 1985. Fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton, near Malmesbury, Wilts SN16 9DR. Tel: 01666'823228.

WANTED

BILLINGTON

Export Limetzo
Billingshurst, West Sussex RH14 9EZ

VALVES WANTED FOR CASH (KT88, PX4, PX25, DA100, EL34, EL37, CV4004, ECC83)

Valves must be Mullard/GEC/West European to achieve top prices
Ask for our free Wanted List
WE SUPPLY VALVES, C.R.T., VIDICONS ETC
Visitors, please phone for an appointment, we're a very busy export warehouse. Tel: (01403) 784961 Fax: (01403) 283519

PROPERTY

FANCY A CHANGE OF SCENERY?

TVNCR Servicing Business
For Sale in remote Scottish Island (Benbecula)

Phone Jim on
01870602035

BUSINESS FOR SALE

Situated Risca South Wales
Well established TVNideo/Satellite. Repair/Sales business lock up shop + workshop easy high street parking plus 2 bedroom accommodation if required.
PRICE E7,500
RENT E5,500 Pa
Tel: 01633614000
Tel: 01633612667

BUSINESS FOR SALE

TV \& Video Retail Sales plus Video Library
Plenty of scope for expansion into Service/Repairs. Prime site location inclusive of all stock and fittings. Sale due to ill health
$\mathbf{£ 4 0 , 0 0 0}$ ono
Tel: (01460) 241973

EQUIPMENT

BMR 95 unique Regenerating-Computor and Analyser for CTRs, regenerates even better Analyser for CTRs, regenerates even beler, CRPUPI BMR 95 removes shorts F-C, C-G1,G1 G2. FLASH-EX against remaining gas! 165 adapters availablel Book with 12.500 CTR-types Pays itself within 4 weaks! Please, ask for more information.

SEME Tal: 01684481818 (UK) Dobnberg Tal: 07548275 (IRL)
Müter
Fax:
0049236857017

REPAIRS

accént

TECHNIC
CAMCORDER REPAIRS
Collection and delivery anywhere in the UK.

All makes, fast service.
Phone free for details
Fax: 01905796385
E (0800) 281009

COMPONENTS

RCS VARIABLE VOLTAGE D.C. BENCH POWER SUPPLY						
178						
E45 INC VAT - POST \& INS $£ 4$ Up to 20 volts OC at 1 amps contimuous, 1.5 amps paak Fully warlable from 1 to 20 votts. Twin volhage und ceirrent meters for easyr read out. 240 volt AC inpul. Fully smootited.						
RADIG COMPONENT SPECIALISTS						
337 WHITEHORSE ROAD, CROYOON, SURREY, UK						
Tel: 01816841665 of transformers, high volt caps, valves, spenkers, in						

RECRUITMENT

EXPERIENCED SERVICE ENGINEER
Required for long established family run business to work on major brand TVNCR/Audio, etc.
We offer a competitive salary with friendly working conditions. Apply enclosing your CV to. Mr D. Young 2/4 Highview, Hatfield, Herts AL10 8HZ

REHABILITATION THERAPY SERVICES

 TECHNICAL INSTRUCTOR I
Radio Shop

$\mathbf{£ 1 7 , 7 4 6 - £ 2 0 , 4 1 2}$ per annum (Inc. of Allowances)
The Rehabilitation Therapy Service at Broadmoor Hospital offers a wide range of therapeutic activities to our patients which include vocational, arts and crafts and leisure. We currently have a vacancy for a Technical Instructor I within our Radio Shop which provides on the job training for patients.
Applicants should have good communication and supervisory skills, along with commitment and enthusiasm for the continued development of the service.
The successful applicant should have experience in the servicing of T.V., audio and video equipment. City and Guilds 224 part 3 is essential.
For further information please contact Brian Graham, STI Radio Shop on 013447731 II ext. 4373 or Carol Wright, Team Leader, Vocational Services on 01344773 III ext. 4452.
For an application form and job description please contact the Personnel Department, Broadmoor Hospital, Crowthorne, Berkshire RG45 7EG or telephone 01344754592.
Closing Date: 10th July 1998
Interview Date: 21 st July 1998
We are working towards being Investors in People accredited. The Authority is committed to equality of opportunity in employment and service provision and welcomes applications from all sections of the community.

A non smoking policy operates throughout the hospital.
B R O A D M Ø R HOSPITAL AUTHORITY

EXPERIENCED BENCH/ FIELD TECHNICIANS

Required
For the repair of CTVNCR/CAMCORDER products
Please apply in writing including your CV to
AAV ELECTRONICS
89 Roundmoor Drive, Cheshunt, Herts EN8 9HW.
Telephone: 01992632050

Visual FX TV VIDEO HI FI

Service Centre

require

Bench Service Engineers

Television/Video
Romford based
Excellent Salary and benefits
For further information contact:
Garry Hall on
01708381896

WORKSHOP ENGINEERS BROWN GOODS Based Castleford, West Yorkshire

Are you up to speed with the latest in TV, video, audio and satellite equipment?
If you have the necessary knowledge and skills, together with a positive attitude and flexible approach, this is an outstanding opportunity to join the technical team of one of the UK's largest electrical retailers.
Ideally you should possess City and Guilds 224 or equivalent and a commitment to the very highest levels of customer service is essential.

In return we are offering an excellent salary and a benefits package commensurate with a major blue chip organisation.
Please write with a full CV stating present salary and quoting reference number WE/2 to: Steve Jenkinson, Service Development Manager, c/o Personnel Department, Electricity Plus, California Drive, Whitwood Industrial Estate, Castleford, West Yorkshire WF10 5QX

ScottishPower

 ELECTRICITY PLUSCOLLEGE OF

The college is one of the largest Further Education establishments in the London area. It has centres at Kilburn, Willesden, Dollis Hill and Wembley Park where a wide range of education and training programmes are delivered to more than 12,000 students.

Part Time (Hourly Paid) Lecturers
 (Post ref 8030)

Rate of pay would be $£ 17.96$ or $£ 23.67$ per hour inclusive depending on the courses taught.
We are looking for Lecturers educated to NVQ level 3 with industrial experience or teaching experience to teach in the following areas:-

- Television Reception
- Radio \& Audio Systems
- Video Recorders
- P.C. Maintenance
- Digital Electronics
- Microprocessor Systems

Please telephone for an application form and information pack quoting the post ref. to:
The Personnel Division, The College of North West London, Dudden Hill Lane, London NW10 2XD.

Tel: 01812085000 extn 5140.

working towards
Closing date: 29 June 1998.

Servicing Books

Television Servicing Books
1989/90Now £39
Satellite Servicing Books 1991/92 \& 1993/94 Now £19 each
Satellite Book Four Now $£ 59$ Video Servicing Books 1991/92 £ 195 . .Now £65 1993/94 £226. .Now £120 Now Available Video Servicing Book Five£99

All Books Available		
Satelilite Servicing 1991-92	£19.00	Book 2 -Covers 25 t Models. ISBN: 0951389785
Satelite Servicing 1993-94	£19.00	Book 3 - Covers 316 Models. ISBN: 0898598053
Satellite Servicing Book 4	$\underline{59.00}$	Book 4 -Covers 320 Models. ISBN: 1898598126
Television Servicing 1989-90	£39.00	Book 1-Covers 307 Models. ISBN: 095138971 ¢ $\overline{8}$
Television Servicing 1991-92	$\underline{595.00}$	Book 2 - Covers 307 Models. ISBN: 0951389777
Television Servicing 1993-94	$\underline{95.00}$	Book 3 - Covers 629 Models. ISBN: 1898598037
Television Servicing 1995-96	$\underline{99.00}$	Book 4 - Covers 400 Models. ISBN: 1898598118
Video Servicing 1991-92	£65.00	Book 3 - Three Volume Set. ISBN: 0951389793
Video Servicing 1993-94	£120.00	Book 4 - Three Volume Set. ISBN: 089859807 X
Video Servicing Book 5	£99.00	Book 5-Single Votume. ISBN: 1898598134

Professionally Produced with the Manufacturers Full Co-operation To qualify for these offers please quote TV July when ordering.
Offer is limited to one book per customer. Otfers end $31 / 07 / 98$

U-View Technical Publishers,
4 South Parade, Bawtry, Doncaster.Yorkshire, DN10 6JH. Tel: 01302719997 Fax: 01302719995

SPARES \& COMPONENTS

AERIALS FROM 1-99	SCART/SCART 21 PIN LEADS 89p	$\begin{gathered} \text { SAT SYSTEMS } \\ \text { ALL PACE } \\ \text { RECEIVERS POA } \end{gathered}$
	89p 2M FLY LEADS	LNB'S FROM £16.95
	CABLE CLIPS	STOCKISTS FOR: ANTIFERENCE
	'F' ${ }^{\text {CONNECTORS }}$	COASTAL LABGEAR
	COAX PLUGS	LENSON HEATH
	POLES	MERCURY TELEVES
CABLE FROM	BRACKETS	TRIAX
8-95	LASHING KITS	TOWER
	BOLTS	BLAKES
RG6 SAT	SADELTA	WOLSEY
CABLE FROM	TV/SATELLITE	UNIFIX
11-95	METERS NOW IN STOCK	PHILEX 2 MANY MORE

lst

Willow Vale can now supply genuine spares and accessories for all these leading brands:

- Sharp
- Philips
- Pace
- Nokia
- JVC
- Matsui
- Grundig
- Ferguson
- Tatung
- Goldstar (LG Electronics)
- Panasonic
- Sony
- Toshiba
- Thomson
- Mitsubishi
- Akai
- Aiwa
- Pioneer
- Samsung
- Hitachi
- Amstrad
- Alba
- Bush
- Goodmans

TECHLINE is always available.
Should you require any technical help or advice on 0891615915.
('all calls charged at premium rate).
C.O.P.S. computer ordering parts system via our acclaimed 'viewdata' based order/enquiry system.

[^0]: AIWA NSX-800 £9.56 AMSTRAD PC4386X £16.29 AMSTRAD PC5286 $\begin{array}{lrlrr}\text { AINATONE 01/977, } & £ 8.25 & \text { HITACHI CPT2658 } & £ 9.42 & \text { PIONEER XCP-410M/ }\end{array}$ PANASONICKP-1123 £12.41 PANASONIC TX2 $£ 9.52$ PHILIPS CM11342 £18.31 $\begin{array}{lllllll} & \text { PHILIPS CM8524 } & £ 7.42 & \text { PHILIPS CM8833 (Mk 1) } & £ 9.49 & \text { TOSHIBA ST-U2 } & £ 7.49\end{array}$ When ordering, please edd $\varepsilon 1.50 \mathrm{P}$ \& P end then edd 17.5x VAT. (N.B. VAT is due on P \& P - Equilpment Manuata pre zerormeed. Smanl

 Very sorry. we are unable to accepl callers - Please order by PHONE or POST
 We accept: VISA, ACCESS, MASTERCARD. DELTA. SWITCH, EUROCARD
 We accept: VISA, ACCESS, MASTERCARD. DELTA, SWITCH, EUP
 M.E.C. 1 HORNBEAM MEWS, GLOUCESTER GL. 2 OUE

