 SERVICING•VIDEO.SATELLITE•DEVELOPMENTS MARCH $1998 £ 2.50$

Upgrading PCs

Servicing the Tostibu 2505/2805

VCR/CCTV rigger Timer

Test Report: Peak Component Andlyser

The Wessel Circuit

Welcome to the Uni range of universel preaproctatime? remote controls covering the leadting brands of televisione

(1) BRAMD-FOR BRAND RERLACEMENHS

Fach Uni remore covers all the TV's from one major manufacturer as well as many dones
(2) CODELIES SETUP

Ready to use in seconds - just follow the simple instructions and the Uni remotes are fully operational
(3) TELETEXT AND FASTEXT

All the Uni remotes support Fastext and a wide range of the other Teletext functions (as long as the original TV supports these functions)
(4) PRE-PROCRAMMED FOR THE LATEST MODELS
As well as operating current and earlier models the Uni remotes also contain preliminary information for operating new TV models
(5) EASILY DISTINGUISHABLE FROM OTHER REMOTES
Available in distinctive colours which makes it easy to pick out the uni from normal remotes
(B) REPLACE BROKEN OR LOST REMOTES
(7) CUSTOMER CARELINE AVAILABLE FOR ALL UK CUSTOMERS
(8) BRANDS CURRENTLY AVAILABLE

Panasonic - Sony - Phillips - Hitachi Mitsubishi-Nokic-Samsung remote range and other replacement and vaiversal remote controls.

CONTENTS

March 1998

Vol. 48, No. 5

Crunch Time

Monitors
Fault reports and servicing hints on computer monitors.

Teletopics

Latest on BSkyB's digital launch, US digital TV plans, various CRT and chip developments.

Test Report
Michael Dranfield reviews the Peak DCA50 component analyser, which provides a simple, fast method

of determining what an unknown semiconductor device is and its connections. A very helpful addition to your test gear.

Satellite Notebook

Solutions to problems with satellite equipment and installations.

PC Pitfalls

Personal computers provide scope for a worthwhile extension of servicing activities. Upgrades for

example can be undertaken. But there can be problems with this. Colin McCormick outlines the possibilities and snags.

Satellite Workshop

Jack Armstrong's column on satellite receiver servicing.

Test Case 423

CCTV/VCR Trigger/Timer
 326
 Ian Rees describes a simple unit that enables a stan-

 dard domestic VCR to be used with a CCTV surveillance system to make short recordings.
The Language of Digital TV

328
Mark Paul provides definitions of terms commonly used in digital TV texts, to serve as a ready reference.
What a Life!
From a Dansette record player to the latest JVC TV sets, Donald Bullock gets them all.

TV Fault Finding 334

Camcorner 338

Help Wanted 351 VCR Clinic 352
TX805 Technology354
J. LeJeune describes the operation of the Wessel combined chopper/line output stage and its drive circuitry used in this Thomson chassis. Also some fault-finding notes.

Servicing the Toshiba 2505/2805DBT 358

John Coombes provides a fault-finding guide for these complex sets, which helped start the 'home cinema' market.

Long-distance Television

362
Terrestrial DX and satellite TV reception and news.
RSL licence awards. Co-channel filtering techniques.
Roger Bunney reports.
Next month in Television 365
Letters 366

Editor
John A. Reddihough
Production Editor
Tessa Winford
Consultant Editor
Martin Eccles

Publisher

Mick Elliott

Advertisement

Manager
Kate Hale
0181-652 3076

Advertisement

Sales Executive
Pal Bunce
0181-652 8339
Fax 0181.652 8931

Editorial Office

$0181-6528120$
Fax 0181-652 8956
Note that we are unable to answer technical queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

March issue on sale February 18th. Next issue dated April on sale March 18th.

SPEECIAL OFFER

2.5GHz frequency meter for under £100? Normally, the FC2500 2.5 GHz frequency meter retails at $£ 116.33$ including VAT. But for a limited period Television, in conjunction with Vann Draper Electronics, is making this instrument available exclusively to readers at the special price of $£ 99$ - including VAT and postage - representing a discount of $£ 17$ on an already low price. See page 361 for ordering details.

Aाएoild

OF

 SPARES
CD-Rom Revolution

The updated CD-Rom catalogue now contains even more information

587,000 Descriptions 351,000 Part Numbers 300,000 Products 3,000 Pictures

Now with interactive COPLINK giving up to the minute information and availability.

TECHLINE is always available
Should you require any technical help or advice on 0891615915 ("all calls charged at premium rate)

DE-ZINE-LINE, Willow Vale's FREE planning service designing your professional sound and communication system. Phone or Fax
Gerry Bevan on 01635254218.
C.O.P.S. computer ordering parts system via our 'viewdata' based
. order/enquiry system.
Call willow Vale 01189876444

Far willow Vale 01189867188

- Goodmans
- Inkel
- Jamo
- Millbank u
- Next Two
- Philips
- Secure Care
- Shure
- TOA
- Trantec
- Univox

'The Better Choice'

READING HEAD OFFICE
Tel: 01189860158
Fax: 01189867188
MANCHESTER BRANCH
Tel: 01616821415
Fax: 01616829031
Sound and Security Division Distributors for:

- Eagle
- ERL
- Adastra
- Altai
- Aiphone
- Audio Technica
- Audix
- Baldwin-Boxall
- Bose
- Computar
- Domineye
- Pace
- Nokia
- Matsui
- Ferguson
- Saisho

Genuine manufacturers' parts available for many other premium brands.

$$
5+x_{0}
$$

Crunch Time Coming

It all seems so straightforward at first glance. TV is in for a glorious, digital future. Digital transmissions will mean lots and lots of channels, which is what people want, isn't it? Plenty of choice. Sport galore, popular films as and when you want them, plenty of scope for minority-interest programming and so on. Let's sit back and enjoy it, while the broadcasters rake in the shekels. But it might not turn out quite like this. In fact there are at present so many problems that many of those in the broadcasting and electronics industries may be cursing the day when digital TV was first proposed.

Not least of the worries is the fact that digital TV is quite a gamble. We are told that the analogue TV switch-off will be just a few years hence, by which time we will be enjoying a much wider choice of programmes with better quality vision and sound. But this all depends on whether the public goes for digital TV with sufficient enthusiasm. If it turns out to be a costly debacle, we could find ourselves left with the present services. The digital broadcasters will need all the marketing muscle they can gather: the fact that the digital TV set-top boxes are to be subsidised is an admission that persuading the public to go digital is not going to be that easy.

The overriding consideration is the public's likely response. People do a lot of viewing already, and must be reasonably content with what's being offered to them. The fact is that a saturation point has long since been passed. The total number of hours devoted to viewing has declined slightly in recent years. This is not surprising: there are many other demands on people's time. It is very unlikely that, however many channels are on offer, viewing will increase significantly. Especially as we've got to fit all that internet browsing
in! All this means that new services can succeed only at the expense of existing ones. BSkyB has been a remarkable success to date: is it feasible to suppose that the company can produce a repeat performance?

One factor is who gets going first, BSkyB via satellite or BDB via terrestrial transmissions? BSkyB had planned to start up first, and probably will. But the satellite is not up yet, nor are the set-top boxes in production. BSkyB has the advantage of being able to offer more prospective channels, but a new dish will be needed in addition to the set-top box - unless the $19 \cdot 2^{\circ} \mathrm{E}$ or $19 \cdot 2 / 13^{\circ} \mathrm{E}$ dish is swung to $28^{\circ} \mathrm{E}$ (where the digital signals will come from), losing existing services, or a motorised system is installed. More expense for prospective viewers. At least with BDB the existing aerial will suffice. Once viewers are confronted with this, will they bother with a dish change?

One thing seems reasonably certain: few people are likely to opt for both prospective services. Why should they, in addition to what they already have? Ah, but "content is king" as they say in the media world. People will sign up if the programmes are sufficiently enticing. Obviously so, but we shall see. Sport and films are the big attractions. If BSkyB or anyone else can corner the market, it's hard luck for the other broadcasters. Fortunately no one is likely to have a deep enough pocket to be able to dominate in this way.

The broadcasters have to generate the income required to finance their services, either by subscription/pay-per-view and/or advertising. People are sensitive to what they may be asked to pay, especially as broadcasting has traditionally been, in a sense, 'free'. If you can get people to pay extra to watch something special, it means they won't be
watching something else. Advertising revenue depends on the number of viewers who switch on. It will be spread more widely, and will bring in less per channel. It's a sort of no-win situation.

This may be an unduly pessimistic view, but investors don't seem to have been greatly encouraged by the prospects: at the time of writing, BSkyB's shares are trading at around 360 p compared with a high of 666 p or so during the past year. It's hardly a vote of confidence.

The preparations for digital TV have been a bit of a botch, with several postponements to the planned start of the services. BSkyB's satellite, Astra 2A to be more exact, has taken longer than expected to build. There have been many problems with software and getting the required clearance from the broadcasting regulatory authorities. The delays have affected set-top box manufacturers adversely, coupled with which Pace seems to have a problem with patent fees. No one, at .present, is happy.

The future must lie with digital delivery eventually, since the technology is superior and offers more for less in terms of spectrum space. But it's unlikely that there will be a huge, sudden rush to acquire digital set-top boxes or receivers. One danger is that the government might be 'bounced' into forcing the issue by switching off the analogue signals prematurely. We should be left with our usual services until digital TV really does look like taking over - as 625 lines and colour did thirty years ago.

Meanwhile a lot of nail-biting is in prospect for those involved in getting digital TV started - BSkyB and BDB in the UK. They could well have a difficult time, for several years at least.

COPYRIGHT

© Reed Business Information Ltd., 1998. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Reed Business inf
Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 47 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eight-year consolidated index on computer disc. For further details see page 365.
Binders that hold twelve issues of Television are available for $£ 6.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".
BACK NUMBERS
Some back issues are available at $£ 3.00$ each. For further details see box on page 356 .

SUBSCRIPTION ENQUIRIES

Telephone:	01444445566
Fax:	01444445447
Credit card orders:	01622778000

Credit card orders: 01622778000
Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3YY, UK.
Make cheques payable to: Television
Subscription rates:
UK
£32.00 per year
nail Eire
Airmail Europe
Airmail Rest of World
$\mathbf{£} 36.00$ per year
$\mathbf{£} 46.00$ per year
$£ 59.00$ per year
NEWSTRADE ENQUIRIES
Distributed by MarketForce
Telephone:
01712617704

WEB SITE

For a full list of RBI magazines:
http//www.reedbusiness.com
ISSN 0032-647X

REED
BUSINESS
INFORMATION

http: / /www.telepart.co.uk

Possibly a FIRST AGAIN, you can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message. All at the cost of a local call. If you don't have the gear to access the internet get straight in touch with your local computer supplier or ask us for a fact sheet.
 Our experienced staft WANT, WANT, WANT to help you
We can give you aninstant answer from our database which contains over 100,000 refererices and we can give that answer IN SECONDS

- If we can't find it immediately, we will IIA SSLE \& HIA SSLE our supplier,

HLASSLE the manufacturer. We will make phone call after phone call, and Fax after Fax on your behalf WEWYILLDOOLLLT THISTRORYOU. - We do it willingly and for ERES

1N4001	0.03	2SC2274	0.35	AA119	0.36	BC557	0.09	BT151500R	1.12	BZX6122	0.19	MAX232CPE	4.70	TA7281P	3.20	TDA3654Q	2.82
1N4002	0.04	2SC2335	1.12	AC127	0.71	BC5578	0.18	BTI51800R	1.15	BZX612v4	0.07	MC13002P	7.69	TA7698AP	5.97	TDA4500	4.66
1N4003	0.03	2SC2458	0.84	AD162	0.96	BC5588	0.18	BU208A	1.46	BZX6133	0.19	MC7812CT	0.77	TA7778P	5.11	TDA4501H	9.57
1-14004	0.11	2SC2482	0.35	AF127	2.48	BC558C	0.09	BU208D	1.61	B2X6136	0.19	MJ15003	2.23	TA8205AH	4.50	TDA4503	4.00
IN4005	0.06	2SC2570A	0.38	AN5265	1.76	BC559B	0.14	BU2508AF	1.58	BZX613V9	0.14	M. 2955	0.77	TA8210AH	0.00	TDA4505E	7.35
IN4006	0.06	2SC2655	0.31	AN5512	1.76	BC560C	0.11	BU2508DF	1.58	87X615V6	0.11	M 802	2.91	TA8210H	4.79	TDA4505M	11.97
1 N4007	0.04	2SC2705	0.35	AN5515	2.79	BC635	0.23	BU326A	1.36	BZX6168	0.11	MJE13005	0.86	TA8215H	4.96	TDA4510	2.74
1N4]48	0.06	2SC2785	0.36	AN5521	1.66	BC636	0.14	Bu406	0.69	82X616V2	0.11	MEE18004	2.05	TA8216H	8.01	TDA4580	10.05
1N5062	0.14	2SC3225	0.60	AN5601k	9.74	BC637	0.11	BU426A	0.86	BZX616V8	0.19	MJE3055T	0.45	482	0.00	TDA4	2.14
1 N 5401	0.14	2SC3330	0.52	AN7171K	5.56	BC639	0.21	BU500	1.41	BZX617V5	0.09	MJE340	0.45	TA8403K	2.31	TDA4600,	2.82
1 N 5402	0.14	2 SC3400	0.17	AN7190K	11.11	BC640	0.11	BU500S	2.05	B2X618V2	0.19	M.F18004	2.05	TA8427K	3.76	TDA460	1.46
1N5404	0.13	2SC3423	0.60	BA157	0.09	BC846B	0.52	BU508A	1.29	BZX619V1	0.09	M.JF18204	6.07	A8718N	7.69	TDA4601	1.46
1N5408	0.09	2SC369	0.06	BAI58	0.07	BC8488	0.35	BU508AF	1.32	BZX61C22V	0.11	MN650	1.71	A8739P	6.01	IDA4605	4.10
1N6263	0.20	2SC3807	0.91	BA159	0.11	BC848C	0.41	BU508APH	1.99	BZX7910	0.30	MPSA06	0.35	taA5508	0.31	1 Da46052	1.97
1 N 914	0.02	2 CC3953	0.72	BA39108	6.99	8C8568	0.21	8U508D	1.56	82×7912	0.11	MPSAL3	0.18	TBAI20S	0.89	TDA4950A	1.76 .85
1544	0.11	2SC4517A	3.14	BA5406	2.14	BC858C	0.19	BU508DF	1.88	BZX7936	0.10	MPSA63	0.18	fbalzou	0.47	TDA8138	2.57 3.59
2N2222A	0.23	$25 C 458$	0.18	BA5412	2.48	BC875	0.33	BU508V	2.40	BZX793v9	0.09	MPSA93	0.11	Ibabzom	0.35	TDA8140	3.59
2N3055	0.50	2SC4742	5.11	BA6209	1.18	BD131	0.26	8U536	1.65	BZX795V6	0.09	MR856	0.11	TDA1013A	1.56	TDA8145	4.62
2N3055H	1.29	2SC4769	4.02	BA6209N	1.27	80132	0.26	84806	1.03	BZX796V2	0.08	NE555	1.03	TDA1015	1.37	TDA8145	4.97
2N3773	1.52	2SC536	0.30	BA62198	1.76	BD137	0.46	BU908	1.68	BZX79C33	0.11	NE555N	0.43	ToA1044	4.27	TDA8172	4.75
2N3904	0.32	$2 \mathrm{SC945}$	0.11	BA6222	1.70	BD139	0.31	8UH5150	2.14	8ZX79C5V1	0.11	P600A	0.33	TDA1050	1.43	TOAB175	6.41
2N4401	0.11	2SD1207	0.57	BA6247	1.95	BD140	0.24	BUK4445008	2.40	8ZX853V9	0.11	P6KE130A	2.55	TDa1080	274	TDA8178FS	6.41 5.95
2N555	0.12	2SD1246	0.30	BAT43	0.52	B0233	0.23	BUL54AR	1.27	BZY8812	0.09	P6KE 180A	4.65	TDA1170	1.82	TDA8180	4.87
2 SA1013	0.35	2SD1275	1.41	BAT85	0.96	B0234	0.36	BUTII	0.65	BZY882V7	0.23	PIC16C8404	04.50	TDAl170N	2.57	TDA8190	3.59
2SA1015	0.11	2SD1276	1.39	BAV21	0.21	B0237	0.31	BUTIIA	0.95	8ZY883V0	0.11	R2KL	0.77	TDAl170S	2.05	TDA83500	5.56
2SA1020	0.44	2SD1292	0.64	BAX14	0.17	BD238	0.24	BUTllaf	1.18	BZY884V7	0.09	R2M	0.84	TDA1180P	2.48	TDA8380	2.53
2SA1029	0.26	2 SD1330	0.31	BC1078	0.20	BD243	0.45	BUT12A	1.17	BZY885V1	0.13	R4050	3.04	TDA15160	3.59	TDA9503	2.13
2SA1048	0.19	2SD1397	2.31	8C108	0.24	BD243A	0.60	BUTI2AF	1.87	BZY88C12V	0.09	REGEABY10	13.00 0.64	TDA1518Q	4.27	TEA1039	2.11
2SA1145	0.36	2SD1398	2.14	BC109A	0.00	BD243C	0.44	BUT188F	1.37	CD4001	0.24	RG2	0.64	TDA1519A	2.74	TEA2018A	2.29
2SA1286	0.60	2SD1426	3.51	BC141	0.36	BD244A	0.34	BUT56A	1.19	C04017	0.47	RGP10G	0.26	TDA1520B	4.50	TEA2029C	7.04
2SA1370	0.43	2SD1427	2.91	BC147A	0.24	8D244C	0.43	BUV48A	1.97	C04049	0.35	RGP15G	0.33	TDA1524A	7.52	teaz031A	4.26
2SA1706	0.50	2SD1432	5.04	BC148A	0.35	BD245C	0.94	BUWILA	1.32	CD4052	0.29	RGP15J	0.17	TDA15530	4.79	TEA2164	3.40
2SA733	0.18	2SD1439	5.86	BC1488	0.11	BD433	0.29	BUW418	1.39	CD4053	0.61	RGP15M	0.44	TDA15540	8.12	TEA2250	2.48
2SA872A	6.10	2SD1441	5.98	BC1588	0.12	8D434	0.31	BUW84	1.03	CNX62A	1.29	RGP30M	0.30	TDA15570	4.23	TEA2261	3.68
2SA933	0.36	2SD1453	3.85	BC168	0.04	BD436	0.52	BUX84	1.03	CNX82A	2.10	S2000A	2.57	tDal558Q	7.69	TEA5101A	6.48
2SA940	0.82	2SD1497	4.74	BC182	0.14	8 B 437	0.52	BUZ71A	1.03	CNX83A	2.55	\$2000A3	3.59	TDA1670A	2.98	TC106D	0.82
2SA950	0.18	2SD1541	4.96	BC182L	0.14	BD438	0.38	BUZ80	3.52	CNY758	0.52	S2000AF	1.46	TDA1675A	3.85	TIC2460	1.54
2SA966	0.41	2SD1548	5.95	BC184A	0.12	BD681	0.47	BUZ80A	4.15	DTAl14ES	0.31	S2055AF	3.74	tDA1904	1.63	TICP106D	0.60
2SA992	0.31	2SD1554	3.25	BC184L	0.06	80826	0.43	BUZ90A	3.40	DTC124ES	0.77	SAA129302	10.37	TDA1908A	5.61	TIP110	0.35
$2 \mathrm{SB1010}$	0.35	2SD1555	2.65	BC187	0.47	BD839	0.57	BUZ90AF	3.30	OTC144ES	0.19	SAB3035	1.71	TDA2002	1.12	TIP112H	0.77
2SB1066	0.82	2SD1556	5.11	BC212	0.09	80901	0.52	BY127	0.18	FR605	1.90	SG264A	12.88	TDA2005	1.83	TIP120	0.40
2 SB1143	0.77	2SD1651	2.38	BC2128	0.19	80902	0.60	BY133	0.08	FXT749	0.43	SGSIF344	10.70	TDA2006	1.06	TIP122	0.40
2 SE1243	0.60	2SD1858	0.43	BC212L	0.18	B0911	0.52	BY206	0.20	HA13001	3.85	SL1430	1.92	TDA2030H	0.91	TIP2955	0.89
258560	0.43	2SD1877	2.14	BC237	0.12	BDT64C	1.18	BY227	0.13	HA13119	2.05	SL1431	2.82	TDA2030V	1.46	TIP29E	0.77
258643	0.29	2SD1878	2.63	BC2378	0.19	BDT65C	1.68	BY228	0.26	HA13151	13.20	SN74141N	0.17	tDA2050	4.56	TIP3055	1.08
258647	0.57	2SD1879	3.16	BC238	0.11	EF 194	0.22	BY2291000	1.31	HA51338SP3	7.69	STK4132II	10.00	TDA2270	12.08	TIP31A	0.36
2S8649A	0.77	2SD1884	3.35	BC2388	0.16	Ef 195	0.07	BY255	0.14	HM6251	14.32	STK414111	10.23	TDA2540	1.29	TIP32C	0.40
258688	1.61	2 SD1887	3.56	BC307	0.06	8 F 197	0.18	BY299	0.18	1 CH 284	0.26	STK4142II	9.40	TDA2541	1.12	TIP35C	1.82
258698	0.35	2 SD288	0.85	BC3078	0.15	BF199	0.18	BY397	0.20	1 R 9594	15.79	STK415211	10.95	TDA2577A	3.45	TIP41C	0.65
$2 \mathrm{SB716}$	0.43	2SD350A	1.97	EC308	0.09	BF258	0.04	BY398	0.16	IRFBC40	5.98	STK4192:	14.64	TDA2578A	3.20	TIP42C	0.52
2 SB 772	0.50	2 S0381	1.66	BC308A	0.09	BF420	0.21	BY399	0.12	KIA6210AH	6.15	STK5332	2.82	TDA2579A	4.91	IIPL761A	1.85
258774	1.61	2 SD400	0.34	BC308C	0.26	BF421	0.24	BY448	0.30	LA4270	2.73	STK5342	4.07	TDA2581Q	2.57	IIPL791A	1.25
$2 \mathrm{SB891}$	0.60	2SD401A	0.77	BC3098	0.10	BF422	0.19	BYDI4J	0.35	LA4280	3.12	STK5372H	6.84	TDA2582	3.85	TL072CP	1.03
258892	0.35	2 SD468	0.28	BC327	0.10	BF423	0.14	BYD33D	0.12	L44282	5.11	STK5421	9.52	TDA2593	1.12	TMP47C432A	AP8189
$2 \mathrm{SC1008}$	0.24	2 SD667	0.38	BC328	0.14	BF459	0.43	BYD33J	0.16	LA4445	3.45	STK5481	8.12	TDA2600	7.69		15.19
2 SC 124	0.48	2SD669A	0.64	8C337	0.14	BF471	0.37	BYD33M	0.26	LA4460	2.50	STK7253	7.69	TDA2611A	0.64	TMP47C434N	N3537
2 SC 1318	0.19	2 SD718	1.90	8C338	0.06	BF487	0.57	BWIO-40	2.55	La4700	4.27	STK7308	6.41	TDA2611AQ	1.32		15.22
$2 \mathrm{SC1473}$	0.21	2 SD756	0.47	8С368	0.18	BF491	0.41	BY958	0.21	LA6324	2.05	STK7348	5.74	TDA2653A	4.70	TMP47C434N	N3555
$2 \mathrm{SC1573}$	0.52	2SD837B	1.12	8C369	0.18	BF 494	0.12	BYV95C	0.28	LA6510	2.94	STR11006	7.37	TDA3190	2.05		16.63
2 SC 1675	0.14	2 20856	0.79	8С372	0.53	$8 \mathrm{F759}$	0.38	BW960	0.27	LA7830	1.88	STR4211	9.40	TDA3330	14.21	TPU2732	10.05
$2 \mathrm{SC1685}$	0.21	2 SD882	0.43	BC546A	0.11	BF869	0.38	BW96E	0.53	LA7832	2.40	STR50020	9.38	TDA3505	2.40	U28298	3.40
2 SC 1740	0.16	2SD898B	6.41	BC5468	0.12	BF871	0.41	BYW56	0.31	LA7835	2.99	STR50103	4.48	TDA3560	6.13	UC3842	1.46
2SC1815Y	0.11	2 S0965	0.67	BC547	0.11	BF959	0.18	BYW95C	0.21	LA7837	4.19	STR50103A	5.56	TDA3561A	3.85	UC3844	1.20
2SC2001	0.23	2SD965R	1.05	BC547A	0.04	$8 \mathrm{F960}$	0.30	BYW96E	0.50	LC7132	4.70	STR54041	5.15	TDA3562A	4.62	UC3844N	1.91 3.85
2 SC 2023	3.18	2 SK1117	3.40	BC5478	0.11	BF970	0.43	BYX55600	0.23	LED3G	0.10	STR5412	4.02	TDA3565	2.74	UPC1318AV	3.85
2 SC 2073	1.03	2SK1118	3.40	BC548	0.11	BFR90A	0.68	82V10	1.34	LED3R	0.10	STR58041	3.42	TDA3566	6.41	UPC1365C	1.70
2SC2078	1.00	2SK30A	0.35	BC548A	0.11	BFY51	0.39	82V85C5V1	0.15	LED3Y	0.10	STR59041	8.11	TDA35768	10.31	UPC1378H	1.71
2SC2120	0.23	7407	0.69	BC5488	0.06	8R100	0.18	BZX6110	0.16	LM317T	1.29	STR6020	6.07	TDA3592A	4.60	UPC1394C	1.92
2SC2229	0.31	74HC04	0.88	BC548C	0.14	BR103	0.62	$8 \mathrm{ZX6111}$	0.10	LM324N	1.48	STRD1816	7.69	TDA3640	5.98	UPC1488H	2.99
2SC2230	0.55	7805	0.78	BC5498	0.11	BRX44	1.02	82×6112	0.13	LM339N	0.50	STRD4420	10.64	TDA3650	11.04	UPC1498H	2.31 0.86
2SC2235	0.36	7806	0.60	BC5508	0.16	8RX49	0.43	BZX61120	0.28	M49481	11.85	T9053V	1.35	TDA36538	1.54	UPC574J	0.86 5
2SC2236	0.36	7809	0.69	BC550C	0.09	BRY55	0.28	BZX6113	0.11	M5218L	0.69	T9064V	1.87	TDA3653C	2.82	X2402P	5.78
$2 \mathrm{SC2240}$	0.21	7812	0.52	BC556A	0.11	BSX20	0.35	BZX6116	0.19	M54544L	2.04	TA7120P	0.66	IDA3653CQ	2.57	27 K 33 B	0.28
2SC2271	0.67	78L05	0.35	BC556B	0.14	BT139600	1.29	BZX6120	0.19	M58655P	4.96	TA7280P	2.74	TDA3654	1.44	21×650	0.51

32 Temple Street, Wolverhampton, WV2 4AN, UK Tele ++ 44 (0)1902 773122 Fax ++ 44 (0)1902 29052

Thousands of semiconductors I.C's etc. of video parts, heads, belt kits etc. of remote controls. etc. etc. over 100,000 database records to help find the difficult video parts quickly. Stock availability \& price in seconds

We compete on QUAEAHY-We compete on SERVIGE
 We will not compromise and yet our prices are often less.

Reports from

Adrian Spriddell
I. Field and

Gerry Mumford

Mitac 1564PDM

The brightness was very low when this monitor was first switched on. It improved after an hour. The cause of the trouble was the line output transformer. A.S.

Royal DN1782G

This monitor was dead. Checks showed that the BU2527AX line output transistor was short-circuit. I fitted a BU2527AF as a replacement then turned attention to the line generator circuitry. One leg of the line oscillator transformer's centre-tapped winding was found to have burnt off. Fortunately there was enough of the remains of the lead-out wire for it to be reconnected.

In addition the 22Ω resistor in series with the emitter of the line output transistor had gone open-circuit. A.S.

Taxan MV789LR

There was very high brightness, the front panel control having no effect. R325 ($27 \mathrm{k} \Omega$) in the brightness control network was open-circuit. A.S.

ICPI VGA 72G9140

This monitor was dead. It didn't take us long to discover that the $33 \mathrm{k} \Omega$, 1 W resistors R603/604 in the power supply were open-circuit. A.S.

Mitac AM4050PD

This monitor was dead - its line oscillator had stopped. There was no supply to this stage because of a

Monitors

dry-joint at jumper wire JW806 in the feed to the line oscillator transformer.

We've had several of these monitors in recently with bad joints. They look OK, but when touched with a hot soldering iron the solder falls off, revealing a blackened component or jumper leg beneath. It's worth checking the six $47 \mathrm{k} \Omega$ resistors on the CRT base panel and the legs of the RGB output transistors.

Another tip: to correct a poor black level, check C763 ($47 \mu \mathrm{~F}$, 100 V) by substitution before adjusting the first anode supply potentiometer. A.S.

Ultra UM1595

The picture was compressed at the top. A new TDA8172AP field output chip restored linear scanning. A.S.

Eizo 9060 S

The power supply would run for only 1.5 seconds then switch off. The cause was eventually traced to C963 $(33 \mu \mathrm{~F})$ on the power supply PCB. A.S.

AST VGA LR14

Changes colour after half an hour was the complaint. I didn't have to wait: this monitor did a fair impersonation of disco lighting from cold, and got worse as it warmed up! It's almost identical to the Viglen CA1426LT, but uses a conventional CRT instead of a Trinitron CRT. The CRT base is easy to work on (the Viglen version has a clamp band that secures the CRT base to the CRT neck), and there's no danger to the print lands when the tinplate screen is unsoldered - it slides on, and is secured by solder bridges to wire links at either side and a pressed out 'tongue' which is soldered to the print side through an aperture.

The soldering was sparse. With a gentle tug, the blue transistor came away from the PCB. The other two video output transistors
had clearly visible fatigue marks around all three pins. I recommend that when resoldering one of these AST or Viglen monitors the PCB is thoroughly defluxed and all weaklooking solder joints are attended to. I.F.

ADI PV448

This monitor was completely dead because of a power supply blow up. Casualties included the 2SK2038 chopper transistor Q901, R990 (0.33 , 2W) and the BYV28 rectifier diode D962 on the secondary side of the power supply: Q901 and D962 were short-circuit. Replacements got the supply going again, but the line output stage would shut down very quickly. This was because the HT ($\mathrm{B}+$) voltage at the LOPT was high (about 140 V instead of 90 V). The cause of this was the 2SB649A power switching transistor Q921 which was also short-circuit. G.M.

ASTVision 4L CMC-1423B1

There was no picture, though the LED lit up and a faint clicking noise came from within the monitor. The cause was not the usual blown line output transistor but the associated resistor R516 (1 $\Omega, 1 \mathrm{~W}$) which was open-circuit. G.M.

Commodore JD144K

This monitor displayed a white raster. When the brightness control was at its minimum setting however a very faint picture became visible. With the brightness control at maximum, the tube's Gl voltage was at less than +1V. R437 ($220 \mathrm{k} \Omega, 0.25 \mathrm{~W}$) in the brightness control circuit had risen in value to $300 \mathrm{k} \Omega$. G.M.

AOC CM335

This monitor was dead because one of the series-connected start-up resistors R907/8 ($220 \mathrm{k} \Omega, 0.5 \mathrm{~W}$) was open-circuit. As is usual with start-up resistor pairs only one of them had failed, but for reliability it's best to replace them both. G.M.

Free cover disk and reader offer

Test Equipment has come a long way over the last few years. Traditional 'benchtop' instruments such as oscilloscopes are giving way both to smaller hand-held units and more recently to PC-based instruments. Pico Technology is at the forefront of these developments and, in conjunction with Television magazine, gives you the chance to save 15% off the purchase price of any Pico product.
The disk on the cover of this magazine contains two programs: the first is a demonstration version of PicoScope for Windows (see screen shots below) and the second an on-line catalogue and order form that allows you to buy any Pico product at a 15% discount. Alternatively you can order either the ADC200 or osziFOX oscilloscopes using the order form below. Please note that this offer is valid until 15 April 1998.

Transform your PC
into an oscilloscope, spectrum analyser and multimeter . . .

The ADC200 range of PC-based oscilloscopes offers performance previously available only with the most expensive 'benchtop' scopes. By integrating several instruments into one unit, the ADC200 is both flexible and cost effective. There are three models in the ADC200 range (see the on-lin catalogue on the floppy disk for full details and specifications). For video signals the ADC200/50 is an ideal solution. It combines " a dual-channel $50 \mathrm{MS} / \mathrm{s}$ digital storage oscil-: loscope with a 25 MHz spectrum analyser. The screen shots of PAL video signals shown opposite were captured using an ADC200/50. Connection to a PC gives the ADC200 the edge over traditional scopes: the ability to print and save waveforms is just one example. Advanced trigger modes, such as save to disk on trigger, make tracking down those elusive intermittent faults much easier. The ADC200 is supplied with Pico Scope for Windows (see disk for demo version) which is powerful, yet simple to use, especially with its comprehensive on-line help.

Tel: 01954 211716. Fax: 01954 211880. E-mail: post@picotech.co.uk

Please send me:
Delivery details
Name: \qquad
Address: \qquad

ADC200/20	Qty:___ @ $£ 255+\mathrm{p} \& \mathrm{p}+\mathrm{VAT}=£ 302$
ADC200/50	Qty:__@ @ ${ }^{\text {Q }} 40+\mathrm{p} \& \mathrm{p}+\mathrm{VAT}=£ 406$
ADC200/100	Qty:__@ @ $425+p \& p+$ VAT $=£ 506$
osziFOX	Qty:__@ @ $68+p \& p+$ VAT $=£ 84$
Credit card	$\square \quad$ Cheque \square Total: $£$
Card number	Expiry date
- - -	---- -----1-
Signature	

TEEETOPICS

 BSkyB's Digital Launch

 BSkyB's Digital Launch}

According to BSkyB, its digital satellite TV service will start before the end of June. The company is to order one million set-top boxes which will be manufactured by Pace, Panasonic, Amstrad and Grundig. They are to be made available to viewers at a subsidised price of around $£ 200$.

The original plan was that the subsidy would be provided jointly by BSkyB and British Interactive Broadcasting (BIB). But the fact that BSkyB owns 32.5 per cent of BIB has concerned the European Commission, from which clearance is required. BSkyB has now announced that to start with it will provide the subsidy itself.

Concern about regulatory clearance, delays in confirming the orders, and problems with the final specification for non-exclusive software for interactive operation have all contributed to a delay in the start of set-top box production. Some observers continue to feel that the start of the service may be delayed until the autumn.

Incidentally British Digital Broadcasting (BDB) will also be subsidising the cost of the set-top boxes required for reception of its digital terrestrial transmissions. The cost is put at some 5550 m over twelve years. BDB will be spending $£ 150 \mathrm{~m}$ on promoting and subsidising its services, which are due to start this autumn, over the next two and a half years.

A digital image filter chip, type GF2246, that provides the 75 MHz performance required for HDTV operation has been introduced by Garfield Microelectronics, Norfolk House, Herriard Business Park, Herriard, Basingstoke, Hants RG25 2PN (01256 384 300). It forms part of the company's range of building blocks for digital TV consumer and broadcast applications. The filter is ideal for pixel interpolation in image manipulation and filtering applications: when used with an image resampling sequencer, it can perform bilateral interpolation of an image at real-time video rates.

US TV Goes Digital

The first digital terrestrial TV (DTT) services in the USA are to start later this year - working receivers, many with HDTV capability, were on display at the Las Vegas Consumer Electronics Show in January. Broadcasters have assured the Federal Communications Commission (FCC) that transmissions will be available in the ten areas of greatest population density - New York, Las Vegas, Chicago, Philadelphia, San Francisco, Boston, Washington, Dallas, Detroit and Atlanta, which account in total for thirty per cent of the population - by May 1999. Services are to be extended to the next twenty main areas by November 1999. The digital signals will be able to provide either standard or HDTV resolution depending on the receiver being used. The FCC expects the analogue TV switch off to occur in the year 2006, when the freed spectrum space would be auctioned off for other uses.

Setmakers that are to launch digital TV receivers this year include Sony, Philips, Panasonic, Hitachi and Sharp. The industry expects sales to be around 100,000 in the first year, rising to one and a half million in 2002. A boom period is assured if things work out this way!

CRTs

The increasing amount of effort being put into flat-screen display technology doesn't mean that the CRT has reached the end of its development. Sony has come up with a new version of the Trinitron called the Wega - after the brightest star in the Lyra constellation. It has a much flatter screen and, to increase the length of the electronlens system, a longer gun. The result is a bright picture with twice the resolution of previous Trinitron tubes. Corner resolution is particu-
larly good. Sets fitted with the tube were on show at CES, Las Vegas.

Toshiba has announced, in Japan, a series of wide-screen models (32Z1P, 32Z1D, 28Z1P and 28Z1D) that are fitted with a newly-developed, virtually-flat CRT. They employ progressive as opposed to interlaced scanning, and will be compatible with the Japanese digital TV broadcasting system. Transmissions are due to begin in the year 2000. The sets will not be sold outside Japan.

News from CPC

As part of a $£ 10 \mathrm{~m}$ investment aimed at further increasing CPC's business capacity over the next six years the company has bought almost six acres of land adjacent to its Faraday Drive, Fulwood, Preston site. CPC is also running trials of an on-line catalogue service which the company expects to introduce later this year.

The investment project will be split into two phases, the first starting this year with the building of a $56,000 \mathrm{sq} \mathrm{ft}$ warehouse. Phase two, scheduled to start in 2000, will add a $60,000 \mathrm{sq} \mathrm{ft}$ building which will include a high-bay (20 m tall) warehouse. When both phases have been completed, CPC's total storage space will be around $270,000 \mathrm{sq} \mathrm{ft}$.

CPC has added a range of compatible repair and replacement parts for video games consoles to the computer spares and accessories the company already stocks. Because of their specialised nature, spares for games units are often difficult to obtain in the UK. CPC can now help with controller replacement pads, circuit diagrams for popular video games systems, game cartridge opening tools, replacement cables, connectors and a selection of memory cards. A ten-piece kit of compatible replacement parts for games controllers is available, containing all the commonly needed items for repairing two controllers.

CPC has also launched a new support service for customers needing assistance with its preprogrammed remote control handsets. The Remote Control Help-Line, number 0891633 261, is

Items from CPC's new range of video games parts.
specifically designed to assist end users of universal handsets. The line goes directly to a help desk centre manned by a team of qualified technical personnel. Calls are charged at 50 p per minute the line is open from 8.30 am to 5.30 pm Monday to Friday. Extra capacity is being built in to serve customers requiring technical assistance with other CPC products.

Philips' Chip Developments

Philips has been investing heavily in its TriMedia processor technology - several hundred engineers have been working on the project. The stage has now been reached where Philips is in talks about second sourcing and joint industry development of the processing architecture. The TriMedia processor can be used as the basis of a number of chip sets for various consumer information and entertainment applications, and can bring consumer-quality video and audio to PCs.

The stage of the technology is the use of a very long instruction word (VLIW) central processor core, enabling five instructions to be processed per clock cycle. Thus some four billion operations per second can be carried out at the relatively slow clock rate of 100 MHz . Further development aims to increase the frequency to 133 MHz and then 166 MHz . The TriMedia compiler can be used with C programming, and handles the VLIW scheduling as part of the compilation processing.

A single-chip TriMedia based digital TV design called TM2 is due to be released later this year. The technology is already in use in a Samsung set-top box, while Polycom's videoconferencing unit uses two TriMedia chips. Philips' aim is that the top TV manufacturers will adopt the technology for their digital TV products, opening up a huge market.

Another major development from Philips is the recently announced TDA8060 chip, which is the world's first zero-IF QPSK downconverter IC for use in digital TV tuners. Zero-IF simply means that there is no need for a mixer-oscillator and IF section: the output from the dish is processed directly, enabling receivers for DVB and DBS broadcast systems worldwide to be implemented using only three low-cost ICs instead of five. Manufacturing costs are reduced by minimising the component count and eliminating the need for IF circuit alignment. The overall saving can be as high as 30 per cent. In addition screening is simplified - intermediate frequencies are a common source of radiated interference.

There are also performance advantages. Since there is no possibility of an IF interfering with other signals in the receiver, the number of errors present in the MPEG digital video and audio information extracted from the broadcast signal is reduced, particularly under poor-signal conditions. The result is better picture and sound quality.

The TDA88060 covers all the frequency bands in use worldwide for digital video broadcasting (DVB) and direct broadcast satellite (DBS) systems. It is also compatible with the SMA-TV standard currently being developed in the USA.

Video Developments

JVC has developed the DualCam, which is a combined VHS-C camcorder and digital still camera. The digital camera section can store up to 44 pictures in flash memory in the standard mode, or up to 22 pictures in the fine mode. These stills can be displayed as thumbnail images on the camcorder's LCD screen or fed to a PC. They can also transferred to VHS-C tape. The DualCam Model GRX880 is due to be released in May.

Sony has developed a new videotape library system known as SmartFile. It stores information about the programmes recorded on a tape in a memory IC inside the cassette label. Stored details include programme name, channel number, date and length. VCRs for use with the system are equipped with two SmartFile
sensors to read the data and display it on the TV screen being used. One sensor is on the machine's front panel, the other inside. Sony is to launch the system in the UK later this year. More on these new technologies in next month's CES report.

The Sharp Viewcam Model VLDC3H is a highly compact ($167 \times 101 \times 73 \mathrm{~mm}$) digital video cassette system that weighs just 595 g . It has a 4 in . LCD screen, a 270° rotating lens and provides several special effects such as still and strobe. Maximum recording time is two hours in the standard mode, 50 per cent extra in the long-play mode. Price is around $£ 1,500$. An optional digital stills unit, Model VR3SUP, is available for an extra $£ 300$.

Test Report

The Peak DCA5O

 Component Analyser

The DCA50 provides a simple, fast method of determining what an unknown device is and its pin connections. Michael Dranfield finds it an invaluable aid for the service department

f, like me, you find data books a real bind when checking transistor pin connections, you need the new DCA50 Component Analyser from Peak Electronic Design Ltd. Though measuring only $13 \times 6.5 \times 3 \mathrm{cms}$, it's a very advanced semiconductor device checker.

What it Does

The DCA50 automatically identifies the nature of almost any bipolar or MOSFET transistor, diode or LED when the device is attached to its clip-terminated, colour-coded connecting leads. You simply connect the unknown device to the gold-plated crocodile clips, any way round, then press the small, blue recessed button to start the test routine. After a couple of seconds the large, clear twoline character liquid-crystal display ($6.5 \times 1.5 \mathrm{~cm}$) presents the results. The finding is displayed for about twenty seconds - even when the device under test has been disconnected.

On Test

As a first test I connected a 2 SCl 815 transistor to the clips. It's a general-purpose Japanese transistor. After pressing the button and waiting briefly I was greeted with the following information: NPN transistor, Hfe 380, RGB $=$ EBC. The latter indicates that I had connected the emitter to the red lead, the base to the green lead and the collector to the blue lead. Truly amazing!
The current gain (Hfe) finding for a bipolar transistor could be very useful for engineers who deal with audio/hi-fi equipment, where an amplifier might require a matched pair of transistors to provide optimum performance.
I must say that I was surprised to discover the extent to which the gain of a bipolar transistor can vary, even with devices that have come from the same batch. I checked ten 2SC1815 transistors taken straight off a bandoleer and found that the Hfe figure varied between 90 and 400 . Presumably the Thorn T numbered transistors, such as the T9053, were gain-selected BU devices.
The DCA50 can display gain figures from 5-995. In the case of high-gain Darlington types, such as the TIP110, a small arrow is added next to the figure 995 to indicate that the gain exceeds 995 .

In the unlikely event that the DCA50 cannot identify the device you have connected to it, the message "no valid part found" is displayed. This message also appears if the device is defective or its operational parameters are outside the limits listed in the User Guide.
With a diode or LED you simply use any two of the test leads. When an LED is tested its anode and cathode are identified and the device flashes on and off. No currentlimiting resistor is required - the DCA50 limits the test lead currents internally to very safe levels. With a zener diode you can check the polarity but not the reverse breakdown voltage.
A useful feature is the ability to check three-terminal, surface-mounted double-diode networks. These are used extensively in camcorders but look just like a surfacemounted transistor. The DCA50 detects the two junctions and alternates its display between them, telling you whether there is a common anode or a common cathode. Most MOSFET transistors can be checked, the DCA50 indicating the gate, drain and source connections, also whether the device has a p or an n channel. The rare depletion-mode MOSFET cannot be checked.

In General

The source of power is a PP3 (or equivalent) battery one comes with the unit. Should the battery voltage drop below 7.8 V the DCA50 displays the message "warning low battery"' before it starts to carry out a test. The battery should last for up to eighteen months. There is automatic power on and power off.
The unit has two good-quality fibreglass PCBs inside. One is fitted with a custom-programmed PIC16C64 microcontroller and six smaller chips - all surfacemounted. The other one holds the liquid-crystal display and its driver chips.
This is a good-quality piece of test equipment that should provide years of service. I have found it to be invaluable.
The DCA50 does not seem to be available through any of the large distributors. It can be bought direct from Peak Electronic Design Ltd., 70 Nunsfield Road, Buxton, Derbyshire SK17 7BW at an all-inclusive price of $£ 59$. Peak's telephone number is 0129870012 , the fax number being 0129870046.

Decode nill recode car udios \& CDP players quid ly witithe loule
 Now sold viortwidero sentce daporimenios and Polliag toracs CR Approvid meelb dillsurem 臺gutations. Prices sians fom C37500 s Sai for he Slaner cifle overing over 100 modetes of parutar sodios

Coll er nomillor of lice infomoino pords and demonsicution diflson (0) 32530 man

The Joule A-400 Radio Decoder

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems
Hilton Road, Aycliffe Industrial Park
Newton Aycliffe, Co. Durham DL5 6EN
United Kingdom
Tel: + 44 (0)1325 307442
Fax: +44 (0)1325 300189
Email: elecsys@elecsys.demon.co.uk

For Your Radio Decoding Requirements

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.

TV/VIDEO TROLLEYS

TVT 540 FOR 14"/16" TV TVT 590 FOR $20^{\prime \prime} / 22^{\prime \prime}$ TV TVT 640 FOR $24^{\prime \prime}$ TV TVT 710 FOR 28 " TV TVT MP1 510 mm HIGH IDEAL FOR BEDROOMS
$395 m m$ TVT710

5pcs $£ 13.35+$ VAT EACH
5pcs $£ 15.15$ +VAT EACH
5pcs $£ 16.10$ +VAT EACH
5pcs £23.70 +VAT EACH

5pcs $£ 18.95$ +VAT EACH

ALL UK MADE FLAT PACKED EASILY ASSEMBLED AVF \& B-TECH TV BRACKETS ALSO AVAILABLE 10% DISCOUNTS ON ORDERS OVER $£ 100+$ VAT PHONE FOR QUOTE ON ORDERS OVER £250 + VAT

THE DIAMOND STYLUS CO LTD
COUNCIL STREET WEST, LLANDUDNO LL30 1ED

TEL: 01492860880 FAX: 01492850653

The headend that says YES to

- Quality
- Ease of use
- Agility
- Each module an almost total entity
- Superb value

Never before has it been possible to offer - CHECK THESE FEAat competitive prices - a superior, easy-to- TURES use headend range with high quality channel processing that allows the user to retain perfect vision and sound. WISI's breakthrough in headend modular design has processors for satellite TV, terrestrial TV and radio. Each individual module incorporates its own control system enabling quick and easy set up. These channel processors come together in an "all-in-one" base unit which contains all necessary accessories for ease of ordering - no additional items required!

- Frequency agile freely selectable in the VHF or UHF range. - Adjacent channel capable - B/G, D/K, I, L, M TV standards. - Modular system for headend stations in SMATV and CATV systems.
Modular for satellite TV, terrestrial TV, FM and satellite radio. SA IF converters, TV modulators. - Individually programmable mod ules.
- High output leve
- Wall mounting or 19 " rack mount with lockable cabinet door.

A Breakthrough in Headend Design

May we send you full details?
J. W. HAROY COMMUNICATIONS. 231 Station Foad, Birmingham B33 $88 B$ Telephone 01217848478 Fax 01217897931

WIND GENERATORS 380 WATI 1.14 metre dia blades, carbon matnx blades, 3 year warranty, 12 vdc output, $24 v$ version available, control electronics included, brushless neodymium cubic curve atternator, only two movng parts, mantenance free, simple root top installation, start up speed 7 mph , max output (30 mph) 380 w . $£ 499$ ref AIR1

PLANS

PORTABLE X RAY MACHINE PLANS Easy to construct plans on a simple and cheap way to buld a home X-ray machine Effective device, X-ray sealed assemblies. can be used for experimenta purposes. Not a toy or for minors! $£ 6 /$ set Ref F/XP 1
TELEKINETIC ENHANCER PLANS Mystify and amaze you friends by creating motion with no known apparent means or cause. uses noelectrical or mechanical connections, no special gimmicks yel produces positive motion and effect. Excellent for science projects, magic shows, party demonstrations or serious research \& development of this strange and amazing phychic phenomenon
£4/set Ref F/TKE1.
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows severat ways to put subjects under your control. Included is a full volume reference text and several construction plans that when assembled can produce highly effective stimuli. This material must be used cautiously. It is for use as entertainment at parties etc only, by those experienced in its use. $£ 15 / \mathrm{set}$. Ref $\mathrm{F} / \mathrm{EH} 2$
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an anti-gravity effect You can actually build a small mock spaceship out of simple materials and without any vis WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750.000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar'. St Elmo's fire, Corona, excellent science project or conversation plece. E5/set Ref F/BTC1/LG5.
COPPER VAPOUR LASER PLANS Produces 100 mw of visible greentight. Highcoherency and spectral quality similar to Argon laser but easier and less costly to build yet far more efficient This particular design was developed at the Atomic Energy Commision of NEGEV in Israel. $£ 10 /$ set Ref F/CVL 1
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood without a secondmatching unit. Use on telephone to prevent third party listening and bugging. $£ 6 /$ set Ref FNS9
PULSED TV JOKER PLANS Little hand held device utilises pulse techniques that will completely disrupt TV picture and sound works on FM tool DISCRETION ADVISED. £8/set Ref FITJ5.
BODYHEAT TELESCOPE PLANS Highly directional long ange device uses recent technology to detect the presence of living bodes, warm and hot spots, heat leaks etc. Intended for security, law enforcement, research and development, etc. Excellent securty device rverying, CUTTING
BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and metting materials over a considerable distance. This laser is one ofthe most efficient, converting 10% input power into useful output. Not only is this device a workhorse in welding, cutting and heat processing materials but it is also a likely candidate as an effective directed energy beam weapon against missiles, aircraft, ground-to-ground, etc. Paticle beams may very well utilize a laser of this type to blast a channel in the atmosphere for a high nergy stream of neutrons or other particles. The device is easily applicable to burning and etching wood, cutting. plastics, textiles etc £12/set Ref F/LC7
YNAMO FLASHLIGHT Interesting concept, no batteries needed just queeze the trigger for instant light apparently even works under wate 1 an emergency although we haven't tried it yet! $\mathrm{E6} .99$ ref SC152 ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize liquides. Many cleaning uses for PC boards, jewlery, coins, small parts etc. £ $6 /$ set Ref F/ULB 1
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot olerate $£ 6 /$ set Ref $F / D O G 2$
LASER BOUNGE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access $£ 12 /$ set Ref F/ LLIST1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with external controls. E6/set Ref FIPSP4
INFINITY TRANSMITTER PLANS Telephone line grabber/ room monitor. The ultimate in home/office security and safety! simple to use! Call your home or office phone, push a secret tone on your telephone to access either: A) On premises sound and voices or B) Existing conversation with break-in capability for emergency messages. 7 Ref F/TELEGRAB
BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energyl Sniffs out and finds bugs and other sources of bothersome interference. Detects low, high and UHF frequencies. £5/set Ref F/ BD1.
ELECTROMAGNETIC GUN PLANS Projects a metal object considerable distance-requires adult supervision $£ 5$ ref $F / E M L 2$.

ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! £5/set Ref F/EMA
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and voices, open wndows, sound sources in 'hard to get or hostlie premises Uses satellite technology to gather distant sounds and focus them to our ultra sensitive electronics Plans also show an optional wreless link system $£ 8$ /set ref F/PM5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND VARIABLE 100,000 VDC OUTPUT GENERATOR PLANS Operates on 9-12vdc, many possible experiments $£ 10$ Re

COLOUR CCTV

VIDEO

CAMERAS

BRAND NEW AND, CASED, FROM E99 Works with most modern video's, TV's Composite monitors, video grabber cards etc

Pal, 1v P-P, composite, 75ohm, 1/3" CCD, 4 mm F2.8 500×582, 12vdc, mounting bracket, auto shutter $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$

SUPERWIDEBAND RADAR DETECTOR

360 deg COVERAGE
Detects both radar and laser, X, K, superwide KA bands. LED signal strength display Audio and visual alerts, Alert priority, Rear and from acing optical waveguides, Triplecheck verification, city mode tuturia mode, dark mode, aux jack, volume control. These may oe illegal to use in centain countries.
1"x2.7"x4 6
Superband f149 ref RD2

PLACE YOUR ORDER VIA OUR WEBSITE AT BULL-ELECTRICAL.COM

BULL ELECTRICAL

250 PORTLAND ROAD, HOVE, SUSSEX. BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $\mathbf{5 . 5 0}$ P\&P PLUS VAT. 24 HOUR SERVICE $£ 5.00$ PLUSVAT. OVERSEAS ORDERS AT COST PLUS $\mathbf{5 3 . 5 0}$ (ACCESS, VISA, SWITCH, AMERICAN EXPRESS) phone orders: 01273203500

FAX 01273323077
E-mail bull@pavilion.co.uk

HYDROPONICS

DO YOU GROW YOUR OWN?

We have a full colour hydroponics catalogue available containing nutrients, pumps, fittings, enviromental control, light fittings, plants, test equipment etc
Ring for your free copy.

*HEMP SEEDS

 Pack of 50 seeds plus 60 page growing guide $£ 9.95$*Home office licence requircd for growing in the uk.

1998 Bull Electrical colour catalogue now available, ring for your free copy!

Free gift!!

100 free ring magnets with any order over $£ 20$, just quote ref 'Christmas one' to qualify!

Our new 1998 catalogue has worms, get your free copy today!!

Tagged 4aH D nicads (saft) unused
Pack of $\mathbf{4} \mathbf{£ 1 0}$ ref DNIC2

TZS4 INFRARED NIGHT SIGHT

One of ourtop most selling night sights is this Russian TZS4 This sight enable you to see in very low light levels, or with the and of the bult in infra red illuminator-intotal darkness in $1 / 4$ moonlight you would spot a man at 150 m , in total darkness at 75 m . Magnification 2.3 x $240 \times 66 \mathrm{~V} 99 \mathrm{~mm}, 09 \mathrm{~kg}$, focusing range 15 m -infinity. M42 camera mount included, runs on $2 \times A A$ batteries, 100 mm focal length, 8 deg iluminator divergence, 50 hrs continuous (no illuminator) 10 hrs with carryingcase and strap
TZS4 Nightsight $\mathbf{E 1 9 9}$ ref BAR61

Reports from
Michael Dranfield
Pete Gurney, LCGI
Hugh Cocks
Adrian Spriddell and Ian Rees

Amstrad SRD510

If the problem is patterning that sweeps vertically and is especially easy to see on dark scenes, first try replacing $\mathrm{C} 46(470 \mu \mathrm{~F}, 10 \mathrm{~V})$. If this doesn't clear the fault, replace C86 $(100 \mu \mathrm{~F}, 16 \mathrm{~V})$ which is next to TR9.

If you repair Amstrad receivers on a regular basis it's worth getting a hundred $47 \mathrm{k} \Omega 0.75 \mathrm{~W}$ metal-film resistors, part no. 337-377, from Farnell Electronic Components (phone 01132636 311). These resistors are rated at. 350 V . Fit them and you will never get a comeback again. M.Dr.

Pace S59000

The owner of this set was new to the area. After moving in he found that his receiver refused to power up with the dish connected. I was told that the power supply had been rebuilt some months previously.

After checking for feeder shorts etc. I turned attention to the power supply. With the set on the bench it was obvious that even without an LNB connection the supply line voltages were much too low - the 5 V line was at nearer 3.8 V . Scope checks showed that the electrolytic capacitors on the secondary side of the supply were intact, but I replaced them all anyway because they were the original ones which do tend to dry out. I then replaced the usual items on the primary side - the 100Ω resistor R 5 , the $1 \mu \mathrm{~F}$ capacitor C 11 and the potential divider that supplies pin 7 of the TDA8380 chopper control chip U23 - though their values were all correct. Further checks showed that the voltage at pins 14/15 of U23 was a little high. When the 0.22Ω fusible resistor here (R13) was checked it was found to have risen to almost twice the correct value. As a result, the power supply was in the current-limit mode. A replacement of the specified type restored correct
supply line voltages and cured the fault. P.G.

Hwa Lin Modulators

Pace SS9000/9200 series receivers, also the D100 and D155 MAC decoders, use Hwa Lin UHF modulators. In recent weeks I've had three separate SS9200 receivers and one D150 decoder that have produced good pictures via the scart socket but poor video quality with the UHF output. The symptoms were tearing on captions and wobbly verticals. No amount of TV receiver fine tuning helped.

The culprit is soon found when you remove the modulator's cover. A $1 \mu \mathrm{~F}$ capacitor, normally green, is used for video input coupling. It's next to the preset resistor and the third modulator pin from the lefthand side of the can, looking in from the rear of the receiver (mains input socket on the left).

For good measure, also replace the other two electrolytics in the can - the adjacent green one is $0.1 \mu \mathrm{~F}$, the black one by the intercarrier sound coil $10 \mu \mathrm{~F}$.

The problem must be coming to light now that these capacitors have taken their maximum dose of heat as a result of living inside the receiver.

The modulator in Model SS9000 is slightly different, with two intercarrier sound coils. I've not as yet had the capacitor problem with this one - probably because fewer of these receivers are still in use. H.C.

Pace MSS 100

One of our customers rang to complain that a flashing, unset clock was always present with radio reception. TV channels didn't display the clock. The clock display on a blank radio screen can be switched on and off by pressing the i and store buttons in quick succession - whether
or not the menus are locked with a PIN.

I've never really understood the clock feature with Pace receivers. If the mains power is removed, even briefly, the time is lost. In this part of the world (Portugal), where power supply cuts are fairly common, it's barely worth setting the clock with a new installation. It would, ideally, be nice to have the clock retain memory - even limited - in the event of a power supply failure, or to have the facility in the set-up menu to add or delete the clock. Failing this, how about replacing the flashing clock, when it's not set, with just a nonflashing "clock not set" message? H.C.

The Green Box

A few weeks ago I installed a number of Pace MSS100 receivers at holiday villas. With one exception, each villa had its own fairly recently installed terrestrial TV aerial, with good quality coaxial cable. As the cable route into the villas was a bit difficult, I decided to use the existing cables where possible, with diplexers to combine and split the terrestrial and satellite TV signals.

There was an urgent request to install a system at one of the villas late on a Friday afternoon. The two adjacent villas were to be fed from the same dish on the following Monday. As they were occupied at the time, I didn't have access to them.

I diplexed the satellite IF signal into the existing terrestrial aerial cable and was rewarded with good results. At the time I didn't take much notice, but one of the villas to be visited on the Monday didn't have a terrestrial TV aerial on the roof.

When Monday came I had access to the other two villas. My first job
was to locate the existing cable routes. The first villa had good local TV reception, and I then recalled the absence of a terrestrial TV aerial.
Eventually I found a small plastic box outside, with the feeds from the roof. This included Friday's satellite IF feed. The box's inputs and outputs were linked by simply being twisted together - for good measure the connections had corroded and gone green! It was a surprise that everything had worked so well on Friday, with no evidence of HF roll-off or the odd weak channel. The satellite IF signal was present at the TV aerial socket, along with the DC voltage for the LNB.

In the end I fed the three adjacent villas via a magic switch, with the terrestrial signals fed to it from one aerial. This worked well, and made one of the existing two terrestrial TV aerials redundant.

Another villa gave me a headache as the coaxial cable, which was in an underground pipe, provided good terrestrial reception but didn't have DC continuity. It was well and truly stuck, and couldn't be moved. A lot of drilling through thick walls was required to bring a new cable into the villa.

In another case the satellite signals ceased within a few hours. The cause was a poor connection inside the diplexer, between the F socket's inner tab and the PCB. H.C.

Pace SS9000/9200

I normally carry a Pace remote control unit with me in the car. Some customers lose their remote control units and are content to use the frontpanel controls to change channels. At one such customer's house I had to do some retuning and had left the remote control unit in the workshop. Fortunately you can, with the SS9000/9200, use the front buttons to tune and store channels.

When you press standby and channel up at the same time the normal tuning menu appears. The up/down buttons then have the same functions as when you tune via the remote control unit. To go down through the tuning menu you press standby alone this is the same as pressing setup with the remote control unit. To store a channel you press channel up/down and standby at the same time, then select the number you want to use to store the reprogrammed channel via the up/down buttons. Store again by pressing all three buttons at once.

If standby and down are pressed at the same time the receiver will scan through the band - same as setup followed by 3 , or $3,6,9$ using the remote control unit. H.C.

Universal Remote Controls

Quite a few of our customers use these nowadays. They abuse them just the same. This particular one had a small green LED that should flash twice when the initial TV/sat receiver/VCR code is correctly entered, but all it did was to flash when the batteries were installed. After that it did nothing.

I cleaned up the PCB, though there wasn't much evidence of dirt on it. This made no difference. So I opened the unit again and noticed some muck between two of the pins of a large, surface-mounted IC. Once I'd carefully cleaned up around the chip and applied power, normal operation was resumed. H.C.

Cambridge RD480

All sorts of erratic operation problems with these receivers can be caused by dried out capacitors in the power supply. Known culprits are C47 ($22 \mu \mathrm{~F}$), C58 ($0.47 \mu \mathrm{~F}$), C39 ($10 \mu \mathrm{~F}$), C16 and C20 (both $1 \mu \mathrm{~F}$) and C173 $(100 \mu \mathrm{~F})$. We now replace all these capacitors as a matter of course. It generally makes further investigation unnecessary. A.S.

Panasonic TUSD200

There was no display though the power supply worked. Checks on the secondary side of the circuit showed that the voltage at the cathode of the 14V supply rectifier D14 was low. Its associated reservoir capacitor C21 ($2,200 \mathrm{uF}, 25 \mathrm{~V}$) looked a little brown on top and turned out to be the cause of the fault.

Another problem was that the centre pin at the aerial input had moved back into the socket. It can be pushed back from the rear then secured with some Araldite. I've had several of these Pace receivers (PRD800/900 series) with this fault. I.R.

Lightning Trouble

The owner of a Pace MSS200 receiver phoned to say that his house had very nearly had a direct lightning hit. This had caused various problems one of which, unsurprisingly, was the satellite system now permanently displaying the "LNB Short-circuit" message. The telephone line enters the house near the dish. As the phone/fax no longer worked, it was likely that the LNB was indeed faulty. In addition to the lightning, a small hurricane had brought down trees in the vicinity.

When I replaced the LNB I was greeted with the same message. A replacement receiver then produced normal results - once the dish had
been realigned (it had adjusted itself very nicely for reception of the Eutelsat bird at $16^{\circ} \mathrm{E}$!).

At this point I beat a hasty retreat to the workshop with the suspect LNB and the faulty receiver. The LNB turned out to be dead. The receiver worked normally when not supplying any LNB power: the correct H / V voltages were present at the receiver's F socket, but the slightest load (in this case a satellite signal meter) reduced the voltage with the result that the overload detection circuit came into operation and the pink screen message appeared.

The culprits turned out to be R452 and R208, which were opencircuit. They are both 1.8Ω resistors and are connected in parallel between the 14 V supply and the collector of Q25, at the front of the PCB - roughly in the middle.

Apart from the damage to these resistors the receiver was OK! It's interesting that R452 was added when early production receivers were found to be over sensitive to the LNB current, with the result that the warning circuit would operate. H.C.

EARN EXTRA MONEY

Repair PC Monitors, TVs \& Videos: ..Faster! wowith Confidence! with a TELETEST
5

PC/TV Test Pattern, Audio \& RF Signal Generators

Fax: 01202877271 ((Verseses Tel: +441202877270 Fax: 4441202877271) OZAN: 37 Haviland Rd, Ferndown Ind Est, Wimborne, BH21 7SA. UK

New web site: www.teletest.co.uk
Call now for your FREE INFO PACK UK Freecall: $0500009070 \overbrace{\substack{\text { fenn-10m } \\ \text { evenday }}}$

PC Pitfalls

> Personal computers can provide scope for a worthwhile extension of the service engineer's activities. Upgrades in particular are often requested, but there can be problems with these. Colin McCormick provides guidance on what can be done and the snags that can arise. The article is in two parts, to be concluded next month

It is all too easy to fall into the belief that building or upgrading a PC is simply a matter of fitting the parts and installing the relevant drivers. In a good day this can be the case, but there are many pitfalls that can result in wasted time and money and a poorly performing PC. In this article, which is not claimed to be exhaustive, some of the difficulties I've encountered will be described.
It's assumed that the reader is aware of the main items in a PC and what they do. We will be considering relatively modern machines. The intention is to provide advice on some of the main areas that cause
problems for those who build and upgrade PCs, rather than to tell the reader how to build a PC.

Processors

No one would today contemplate building a PC with a processor of 486 or earlier specification. This is not to say that a high-performance 486 is of no value: it would simply not make economic sense to use one. Many people assume that an Intel Pentium is the processor to use. This is fine if finances allow, but there are alternatives worth considering. In particular the AMD K5 and K6 and the Cyrix 6X86, which is also sold under the IBM name, all fit the Socket 7 standard Pentium class motherboard. But the fact that a processor fits doesn't mean it will work: the motherboard's instructions will have to list the processor you specifically want to use.
The AMD K5 for example is a conventional Pentium equivalent. While the K5 PR133 and earlier processors are now becoming obsolete, the K5 PR 166 is still widely available at a very reasonable price, offering excellent value. It runs at 166 MHz internally: the motherboard is set to run at 66 MHz (bus speed). The other motherboard settings you need to know are the multiplication factor and the supply voltage. With the K5 PR166 the nominal supply voltage is 3.52 V , but the device will work between 3.45 V and 3.6 V .

The bus speed, multiplication factor and supply voltage information for each processor type will often be found in the motherboard's instructions, but not always. Sometimes the instructions merely list the various settings available, so you must know what settings are required for the processor you wish to fit. This information is often available at the processor manufacturer's web site, for which you need internet access of course.
Sometimes the settings are not as obvious as they appear to be, for example processor speed. Non-Intel processors have a PR rating, which is a Pentium equivalent performance figure. The K5 PR 100 does run at 100 MHz , but the Cyrix 6 X 86 PR200+ runs at 150 MHz . Although the 6X86 PR200+ claims to have somewhat more processing power than the Pentium 200 - hence the name PR200+ - in practice this is an optimistic claim.
The AMD K5 PR 166 processor has an unusual multiplication factor, 1.75 , which is preset within the chip. The motherboard's multiplication factor will not have any effect on the processor's operation, but for neatness set it as though the processor is a Pentium 166 MHz . Table 1 lists the settings for various processors - it has been compiled from the best information I have available. Contradictory information is sometimes issued, and manufacturing processes keep changing - so don't blame me if this list is not flawless!
MMX is one of the newer processor technologies. AMD K6 series chips and the Cyrix/IBM 6X86MX (may be referred to as M2) as well as the Pentium MMX itself are all MMX compatible. It provides a modest performance gain, but again the motherboard will have to be able to work with such a processor. These processors require dual voltage supplies, for their I/O interface and for the core. If your motherboard says it's MMX compatible, it should meet this requirement - even if the instructions on how to achieve this are less than clear.
A word of warning about Cyrix/IBM 6X86 processors: some motherboards claim to be able to work with them but won't. The reason for this is as follows. Earlier 6X86 (C028 process) versions require a 3.52 V supply. Later ones (C016 process) require a 3.3 V supply. Later ones again (6 X 86 L) require dual 3.3 V and 2.8 V supplies. The instructions for some motherboards say that a 6 X86 processor can be used, but this may not be true of all versions. Be sure that your motherboard can provide the correct supplies before you consider using one of these processors. If you obtain a 3.52 V version, note that it requires a special high-power cooling fan rather than the normal Pentium type.
There have been reports that certain applications won't work with these chips. The cause may not be with the processor but with the fact that some badly written software relies on loops in the code for timing: the processor outwits these loops, so the applications fail. Ways of dealing with this are often to be found on the internet.
Because of bus driving capability, earlier versions of the 6X86 can cause problems for users of Windows NT4. For such users the 6 X 86 L is advisable.
Some non-Intel processors, such as the 6X86 PR200+, require a motherboard speed of 75 MHz . Since no Intel processors require this, Intel motherboards don't provide it. This is not as selfish as it may sound. If the motherboard is run at 75 MHz , the PCI (Peripheral Component Interconnect) bus must run at
half this speed, i.e. 37.5 MHz , which is higher than the 33 MHz that's guaranteed to work. Some PCI devices, such as video cards, might not work properly though modern cards should be OK. Some processors require a 3.5X clock multiplier, but not all motherboards have links for this. In this case the 1.5 X setting may be identical to 3.5 X - you can't tell until you try it!
The new Cyrix MediaGX processor is not Socket 7 compatible. It incorporates much of the multimedia processing on-chip. Intel Pentium II processors require a motherboard with the Intel Slot 1 rather than (or as well as) Socket 7. The Pentium Pro processor requires a special motherboard: it's intended mostly for commercial applications that use Windows NT.
Note that Pentium class processors take a fan and heatsink that clip on the motherboard's Socket 7, whereas 486 processor fans clip on the processor itself. Use of some heatsink compound is highly recommended. The fan usually takes power via a plug-and-socket arrangement which is in line with the power supply to the hard disc or suchlike.

Motherboards

From the above it may seem that selection of a motherboard is simply a matter of finding one that satisfies the requirements of all the processors you might ever want to use with it. A range of motherboards with varying performances is available however, fitted with chip sets from different manufacturers. Intel is one of the largest, and just as with selection of an Intel processor an Intel motherboard may be the way to achieve a hassle-free system, though not necessarily providing the best value for money. Intel's current offerings have either an economy chip set called VX, a higher-performance one called HX or the latest which is called TX. These chip sets may also be used with motherboards from other companies. There are alternative chip set manufacturers such as OPTi and SiS, also ranges called VXPro, HXPro and TXPro. These latter illustrate some of the good and bad points of using a board other than an Intel one.
One of the cheapest motherboards is the PCChips M537 VXPro which I have installed, with an AMD

The PCChips M537 motherboard.

Two motherboard power supply connectors (left) or a single connector (right) may be used.

K5 PR166 processor, in my own PC. It can be bought for around $£ 50$. This looks like excellent value, and within certain constraints it is. One problem is that none of the currently available tape streamers will work with its floppy interface. The reason for this is that all new tape streamers (over lGbytes capacity) require at least a lMbyte floppy interface instead of the older 500 K bytes standard. Another problem is that if a hard disc that has a previously installed version of Windows 95 is used with the motherboard the IDE (Integrated Drive Electronics) interface is not properly recognised. As a result, Windows 95 drops to a slower 'compatibility mode'. This can be overcome by installing driver software, which is very painful: the best solution is to wipe Windows 95 and reinstall it. One final problem can be failure of the board to identify the floppy drives correctly, and the A / B swap facility not working correctly. So installation can be hard work. Despite this, the board works well and fast and offers several features not normally present with Intel boards.
What all this illustrates is the effort that may be required with a non-Intel solution. But for the experienced PC enthusiast the result may be worthwhile. The PCChips M537 VXPro board can be bought from Choice Peripherals (0845 144 4444). For a description, refer to the PCChips web site (www.pcchips.com).
Other considerations when selecting a motherboard may be mechanical rather than electrical. Often there are only three ISA (Industry Standard Architecture) slots, and one of these is usually shared with the first of the PCI slots. So there can be a shortage of ISA slots. Since most PCs will use one of these for the sound card and perhaps another for a hand-scanner interface, only one is left for a tape streamer accelerator or a video capture card. One ISA slot can be freed by using a PCI sound card. But these cards are not particularly common, possibly because they cannot work with DOS applications other than Windows 95.

Another mechanical consideration can be the processor placing relative to the ISA and PCI slots. Some longer cards may clash with the processor or memory, so that fitting is difficult or impossible. With some motherboards the mounting fixtures will not be in the same place as in the case you intend to use, and occasionally you may find that a vital component such as the processor fan collides case drive bays. I even had one case where the motherboard's power supply connector was so placed that the power supply cables wouldn't reach it.

Connections

The case's front panel connectors (reset, lock and turbo switches and LEDs and the speaker) will usually fit any modern motherboard with only a modest amount of messing about. Motherboards tend to supply a signal to the front panel to indicate whether the board is in the turbo or low-speed mode, but the case's front panel sometimes doesn't have a cable for this the signal is taken directly from the turbo switch. Care needs to be taken when fitting the fiddly front panel connectors: it is possible to short across the 5 V line, which could result in track damage. I usually check everything out with a meter initially - even then it's possible to get the lock/unlock or turbo/slow conditions crossed.
Some cases have a two or three seven-segment LED display at the front. Typically this will show the processor's speed or PR rating in MHz when in the turbo position and some other parameter in the slow-speed position. Years ago this would have been something like $20(\mathrm{MHz})$ turbo and $8(\mathrm{MHz})$ slow. The slow position has become increasingly meaningless over the years however - modern processors still go like the wind even when asked to run with the brakes on! You can get the display to read "LO" in the slow position if you have a mind to, but fitting the links on the PCB behind this display can be very tricky to get right unless you have the appropriate instructions - or just as tricky if you have them!
Some power supplies have one motherboard connector, others have two. If there are two, they are inserted together so that the black wires to each connector are side by side. I often superglue the connectors together in this way to prevent subsequent confusion.

Testing

Each time I build a PC I am reminded that on the previous occasion I vowed "never again"! Possibly the most terrifying moment comes when you have fitted the processor, memory and video card to a brand new motherboard. You will have spent some time hoping that you have understood which links go where, and double-checking them, especially the supply voltage ones. You then switch on and hope that the BIOS (Basic Input/Output System) start-up screen will appear. Maybe it will. Or maybe you will get some ugly beeps from the speaker.
It is unlikely that the motherboard's instructions will be so helpful as to tell you what the particular bit of Morse code you have just heard actually signifies, but it may be telling you that there is an impermissible memory configuration or that the video card isn't working. The worst that an happen is that you get nothing when you switch the PC on - no beeps, no display, nothing whatsoever. Have you made a mistake that has destroyed the processor, motherboard, memory, video card or a combination of these? It can happen, but you would be very unlucky if it did.

If you have just built or upgraded a PC and you get no results or nasty sounding beeps, you must start by stripping all the non-essential items off the motherboard. Leave the board with just the processor, memory and video card. Once you have that working, add the floppy and hard discs followed by niceties such as the sound card and interfaces for scanners, tape drives etc. It might seem like hard work to have to do this stripping down, but it's the only way of getting to the bottom of a seriously unwell PC.
A good example is what happened when I added some memory to my own PC recently. After doing this there was no display and the PC wouldn't boot up. I removed the new memory and it still didn't run. The cause of the problem was the video card, which had been pushed by some cables and didn't make proper contact in its PCI slot.

The Case

Before you contemplate the upgrade of a PC's motherboard, be sure that the case is a standard one. Some manufacturers, such as Dell, Hewlett-Packard, Compaq and Packard Bell, have built PCs using their own layout. Such PCs often won't accept a standard replacement motherboard. They may also have some functions such as the video driver built on to the motherboard, so these will also have to be replaced.
Most slimline desk-top PCs have non-standard arrangements. To upgrade the motherboard in such a PC you will probably have to buy a new case and whatever other items may be non-standard, such as the memory, floppy drive, keyboard and mouse. It may be simpler to discard the lot and start afresh. For this reason I would advise against purchasing a PC of this type in the first case. Some upgrades to this type of PC might be possible however, such as the processor or hard disc. You are likely to need the motherboard instructions to be able to check for compatibility.

Memory

Most memory is these days supplied as either 72-pin SIMMs (Single In-line Memory Modules) or 168 -pin DIMs (Dual In-line Memory - the other m got lost somewhere along the line!). The latter is the new, faster standard, but is more costly. A Pentium-class motherboard with 72 -pin SIMM sockets can use conventional $72-\mathrm{pin}$ SIMMs DRAM "fast-page mode" memory left over from a 486, but a modest performance improvement will be obtained by using the now cheaper EDO (Extended Data Out) SIMMS.
Synchronous DRAM (SDRAM) is now available at a higher cost, and runs at the full motherboard speed. But on many boards the two types cannot be mixed.
DIMs are a bit more complicated. They come in 3.3 V and 5 V versions: a motherboard with DIM sockets will invariably be able to supply both voltages. There's another form of memory, BEDO (Burst EDO). This is faster than EDO when the motherboard speed is higher than 66 MHz . It's relatively uncommon however, so let's not allow it to confuse us.
Modern motherboards usually come with all the cache (buffer) memory they will take (often 512 K bytes of Pipelined Burst Synchronous cache). Some older ones have a slot or DIL sockets to enable more to be added. The addition of extra cache memory once a motherboard has been purchased can be fraught with incompatibility problems: quite frankly, I don't recommend it. Performance improvements are marginal anyway, particularly if you use EDO memory which has its own cache.

Table 1: Processor settings

Processor	Motherboard speed (MHz)	Multiplication factor	Notes
Pentium-75	50	1.5X clock ($50 / 75 \mathrm{MHz}$)	-
Pentium-90	60	1.5X clock (60/90MHz)	-
Pentium-100	66	1.5X clock ($66 / 100 \mathrm{MHz}$)	-
Pentium-120	60	2 X clock ($60 / 120 \mathrm{MHz}$)	-
Pentium-133	66	2 X clock ($66 / 133 \mathrm{MHz}$)	-
Pentium-166	66	2.5 X clock ($55 / 166 \mathrm{MHz}$)	
6X86 PR120+	50	2 X clock ($50 / 100 \mathrm{MHz}$)	
6X86 PR133+	55	2 X clock ($55 / 110 \mathrm{MHz}$)	(1)
6X86 PR150+	60	2 X clock ($60 / 120 \mathrm{MHz}$)	(2)
6X86 PR166+	66	2 X clock ($66 / 133 \mathrm{MHz}$)	(3)
6X86 PR200+	75	2 X clock ($75 / 150 \mathrm{MHz}$)	(4)
6X86MX PR166	66	2 X clock ($66 / 133 \mathrm{MHz}$)	(5)
6X86MX PR200	66/75	$2.5 \times 66 \mathrm{MHz}$ or $2 \times 75 \mathrm{MHz}$	(5)
6X86MX PR233	75	2.5 X clock ($75 / 187 \mathrm{MHz}$)	(5)
AMD K5 PR75	50	1.5 X clock ($50 / 75 \mathrm{MHz}$)	(6)
AMD K5 PR90	60	1.5X clock ($60 / 90 \mathrm{MHz}$)	(7)
AMD K5 PR100	66	1.5 X clock ($66 / 100 \mathrm{MHz}$)	(7)
AMD K5 PR120	90	1.5 X clock ($60 / 90 \mathrm{MHz}$)	(8)
AMD K5 PR133	66	1.5 X clock ($66 / 100 \mathrm{MHz}$)	(8)
AMD K5 PR166	66	1.75X clock ($66 / 116.6 \mathrm{MHz}$)	(9)
AMD K6 PR166	66	2.5 X clock ($66 / 166 \mathrm{MHz}$)	(10)
AMD K6 PR200	66	3 X clock ($66 / 200 \mathrm{MHz}$)	(10)
AMD K6 PR233	66	3.5 X clock ($66 / 233 \mathrm{MHz}$)	(11)

(1) Few boards work at 55 MHz .
(2) Same as Pentium-120.
(3) Same as Pentium-133.
(4) 75 MHz motherboard.
(5) 2.8-3V core. With 6X86MX PR233 see (4).
(6) Same as Pentium-75
(7) Same as Pentium 90.
(8) Set multiplier links to $2 X$.
(9) Set multiplier links to 2.5 X .
(10) $2.9 \mathrm{~V} \pm 145 \mathrm{mV} 7.5 \mathrm{~A}$ supply.
(11) $3.2 \mathrm{~V} \pm 100 \mathrm{mV} 9.5 \mathrm{~A}$ supply.

Older motherboards, including some 486 ones, use 30-pin SIMMs. These are now expensive. With most systems they need to be fitted in pairs, and mixing different types or speeds can cause troubles. The 72 -pin SIMMs used with Pentium class PCs need to be fitted in pairs. They can be fitted singly in a 468 PC. DIMs can always be fitted singly. Most motherboards have listed in their instructions the combinations that can or cannot be fitted to obtain various anounts of memory.
Further confusion can arise because not all 72-pin SIMMs are the same, particularly 8Mbyte ones which can be single- or double-banked (often called single-/double-sided, which is not entirely accurate). Some motherboard instructions may say that certain combinations that don't work are permissible, or that they won't work though they do! Experimentation may be the only sure way to find out: no damage should arise.
Most modern 468 and Pentium FCs do not require parity (ninth check bit) at their 30 -pin or 72 -pin SIMMs, but there are exceptions. Some 468 motherboards provide selection of parity or non-parity memory in the BIOS set up.

TO BE CONTINUED

Fig. 1 (above):
Positions of
the pads for C41 in the Amstrad
Model SR950+.

Amstrad SR950+

"I've written my diagnosis on the label" the customer said.
"That's helpful" I replied, "but I can't read it and I'd prefer to know the symptoms."
"Symptoms? Ah, symptoms. I didn't get where I am today without knowing how to describe a symptom. It's the tuner. Faulty."

As Dr Smith is getting on à bit I didn't like to press him for more information. So I filled in the ticket and handed him the receipt.

WO R

The SR950+ is actually a rebadged SRD700. Tuner faults are usually bad news with these receivers: most of the video and sound demodulation circuitry is incorporated in the tuner, which is therefore very expensive. I feared the worst when I connected the LNB cable and saw very sparkly pictures. I tried the tuning mode, but that didn't improve matters at all.

Rather than condemn the tuner outright, I decided to check whether the cause of the problem might be a faulty electrolytic capacitor. Inspection of a dead tuner from another of these receivers revealed that $\mathrm{C} 41(10 \mu \mathrm{~F})$ is mounted close to the IC, and is thus the most likely capacitor to suffer from excessive heat. As removal of the tuner takes about half an hour, I connected a new $10 \mu \mathrm{~F}$ capacitor across the relevant print pads (see Fig. 1) then switched on. My guess proved to have been correct: the picture was now perfect. So I phoned Dr Smith.
"Hello, doctor. The patient has been cured and the prognosis is good - provided you keep her cool. No, you won't need an ambulance. Just bring your car and, er, don't forget your cheque book."

Toshiba TS540

The TS540 is actually the Pace MSS500. This particular one had a very dim fluorescent display. When I'd replaced the $22 \mu \mathrm{~F}$ electrolytic

TV, Video and Satellite Servicing

Lots of people are taking advantage of my free help service via e-mail. But some forget that I handle only satellite receiver repairs. Anyone in the TV trade who would like to join an email self-help group that deals with TV sets and VCRs should contact Chris Davies by email at:
dad@deathsdoor.com
or try the following Web page:
http://www.geocities.com/CapeCanaveral/Lab/ 116

Jon Lye runs a bulletin board - phone 01275 879 005. Contact Chris Davies if you want further e-mail information.

Previous' issues of Satellite Workshop are now available via the SatCure website:
http://www.netcentral.co.uk/satcure/
They are unedited and unexpergated originals, warts and all! There are also frequently asked questions (and answers) about the most common UK satellite receivers, and some 'bar'gain buy' electronic components, both new and surplus.

C 2 on the display panel with a $1 \mu \mathrm{~F}$, 50 V multilayer ceramic capacitor, as recommended by Pace, the display was nice and bright.

In fact nowadays I cheat. It's a delicate task to remove the display panel without cracking it in half, so I solder the replacement capacitor across the pads on the back of the board instead. Since the original electrolytic capacitor goes open-circuit when it fails, I see no problem with this 'bodge'. It saves time and avoids calamities. The trick lies in knowing the exact position of C 2 .

When the LNB was connected to the receiver there were bad black and white sparklies on several channels. This is quite a common effect with some Pace tuners when the receiver has been in a cold place for a time. On this occasion however use of the hairdryer to warm the tuner produced no improvement. Even with the AFC set to manual some sparklies remained. I decided that the tuner was faulty.

The AFC worked nicely and the pictures were free from sparklies once a new tuner (part no. 2212178012) had been fitted. But the picture looked decidedly streaky and, after half an hour, very strong broken white lines appeared across it. I suspected that this might happen when I saw the colour of the electrolytic capacitors in the power supply.

I dismantled the receiver again and replaced all the electrolytics in the power supply area. Experience has taught me that it's quicker to do this than to trace the two or three actual culprits. Conveniently, the parts are available in the SatCure (phone 01270753 311) reliability kit Relkit 6: it contains the correct $105^{\circ} \mathrm{C}$, low-ESR and Ultra High Reliability capacitors that Pace recommends.

The final invoice was rather high compared with say a PRD800 receiver repair, and the customer declined my offer to fit a miniature cooling fan. I didn't mind. "See you again in twelve months" I said cheerfully to the customer, who is one of those who likes to keep his equipment nice and warm.

Grundig GRD150

For some reason I've had a lot more trouble with these receivers than with the average Pace or Amstrad model. Though the receiver is inherently more reliable, or was during the guarantee period, the faults that are now occurring seem to be difficult ones to trace. Perhaps this is because most of the signal processing is carried out by an "application specific integrated circuit", which is a 64-pin, surface-mounted device.

Anyway the receiver that came to me on Christmas Day (yes, people really do need to watch satellite TV that badly!) was "stuck in standby": It would light up but didn't respond to button presses. This was tricky.

After checking the power supply voltages I jumped in with both feet and replaced the microcontroller chip and its associated crystal. I was clutching at straws - and I was wrong. It had to be something that's connected to the I2C data bus. Maybe the EEPROM. But wait a minute - the tuner is also connected to the data bus. As I looked across to it I spotted a crack which had propagated from the tuner securing lugs across two
adjacent tracks. Repairing these cured the fault.

The pub owner's wife was impressed by my speedy service. Her husband was less impressed with my invoice - but he still drew me a pint.

Pace PRD800

Christmas time always brings some curious faults - and some curious people as well. In walked this fellow who was wearing a red coat with hood and sported a snow-white beard. He pulled a PRD800 out of his sack.
"Just on me way t't' school" he mumbled, "gotta give out t' presents t't' kids you know. Darn satellite won't tune above 11.573. All I get is snow. Missing me Eurosport. Faulty fuse, I'll bet. Bung us in another, ta." He then shuffled outside into the snow and disappeared.

Sure enough there were no programmes above a certain frequency. At first I thought that the power supply might be switching my universal LNB to high-band operation, but there was no sign of interference on the supply rails. Unconvinced, I fitted a new tuner. It made no difference at all. When

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via e-mail. You can reach him via the Internet at:

jack@netcentral.co.uk

One model per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/O Television, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first-class stamps.

I monitored the tuning voltage I found that above a certain frequency it switched from 1.6 V to 4.8 V and stayed there. This couldn't be caused by anything other than the Nicky IC. So I replaced it and was rewarded with normal operation.

The customer had thoughtfully put his name on the label, but there was no telephone number. Maybe I could get it from directory enquiries? He sounded local. Unfortunately the operator had no listing for "Mr S. Claws".

Test Case 423

Poor old Cathode Ray! He'd no sooner mastered phasing up a Sanyo VR150 deck than he got involved with a pumping Thomson TV set. This had to be put to one side while he pondered a mistracking problem with an urgently required Panasonic S-VHS VCR. He'd hardly found where the oscilloscope probes were to go when the wretched loudspeaker above the workshop door summoned him to the office to be sent off on some outside service calls. And all he wanted to do was to watch his Wallace and Gromit tape.

The above problems were all resolved in the fullness of time, with some help from his friends. But one of the field calls resulted in a new model to us being brought into the workshop, an Hitachi C2514TE. Though it couldn't be dealt with at the customer's home, the fault was a fairly minor one: the teletext image flickered. Ray assessed the set's performance carefully. The off-air pictures were OK, but the captions and graphics on text pages had a flickering, skimmering effect. Not vertical judder exactly, but more lively and disturbing to watch than the text displays produced by other sets in the workshop.

Ray kicked off by feeding a signal from another set to the Hitachi receiver's scart socket. As before, the picture was OK but the text flickered. A close examination of the text display revealed that there were no clearly visible scanning lines: with the other sets in the workshop, the text displays had a coarser but 'steady' line structure. So the problem had to be something to do with the field scanning. Off came the back, and out came the circuit diagram. Most of the circuitry in this 1996
design is contained within two 52 -pin chips, an SAA5296 microcontroller (IC001) and a TDA8361 signal processor (IC201). Apart from the power sections there's very little else. IC601 provides the drive to the field scan coils: it's purely an output device, the field ramp generator and sync sections being within the mighty signal processor chip.

An oscilloscope check at pin 43 (vertical output) of IC201 showed a ramp waveform which remained the same when the set was switched between picture and text displays. It wasn't very clear to Ray which of the two big chips contained the text decoder, but this didn't seem to matter as the decoding was OK: the data on the screen was correct - but flickery. There are only two links between IC601 and IC201, the ramp output from IC201 and a feedback network that takes in the height control. Both of them appeared to be in order, and the field scanning was full and linear. Where next?

Another technician had a look at the screen and told Ray that there was an interlace fault. What he was seeing was interline flicker. The text display was interlaced: it shouldn't be. He drew Ray's attention to pin 27 of IC001 and to Q009 nearby. The IC pin passes a 25 Hz squarewave to the transistor, whose collector is connected to the earthy side of the field scan coils. How could this have anything to do with interlacing, which as Ray understood it is concerned with the timing of the start of successive field scans? There was a 50 Hz ramp-and-pulse waveform at the collector of Q009.

How does this circuit work - and why wasn't it doing so in this particular set? See page 365 for the solution.

closed-circuit TV for surveillance is now readily available and cheap. The basic camera can be connected to a scart or RF input or viewed using its own monitor. But the facility of being able to record what's going on, using a time-lapse VCR, is still very expensive. This article describes a way of using a domestic VCR to record short bites of scenes viewed by a camera. The recording process can be triggered by sensors.

Initial System

My first attempt to use a VCR for CCTV recording was based on an old top-loading Ferguson machine which had a wired remote-control jack at the front. I used a relay to connect a $1 \mathrm{k} \Omega$ resistor across the jack input to start recording. In the stop state an $18 \mathrm{k} \Omega$ resistor was connected across the jack. The relay was controlled by a PIR set to two minutes in the 'walk test' mode. See Fig. 1. The camera's video output was fed to the VCR, while its RF output was connected to a standard monochrome TV set that acted as a monitor.
This simple system was satisfactory, but there were drawbacks. The time required to lace up the tape resulted in some loss of the recorded event. Partial compensation could be achieved by triggering from a greater distance. A potentially more difficult problem to cure was the tape coming to an end while the VCR was triggered to make a recording. As the relay held the $1 \mathrm{k} \Omega$ resistor across the VCR's jack input for the duration of the record cycle, the VCR could go into a record/rewind mode, i.e. it would try to record and rewind at the same time! To prevent this, there always had to be enough tape left to run.
But customers who came in began to spread the word about the system, and I picked up some orders from garages and shops. It soon became obvious that an improved, universal design was required.

Fig. 1: The simple wired remote-trigger system originally used.

This simple unit, designed by Ian Rees, enables a standard domestic VCR to be used with a CCTV surveillance system to make short recordings

The redesigned universal trigger unit can be used with a large number of modern VCRs, including LP and ready-lace models, and can be set off by either normallyopen or normally-closed sensors.

Circuit

Fig. 2 shows the circuit diagram of the trigger/timer unit. The timer section consists of a monostable switch - IC1 and its associated components.
If either an open- or a closed-circuit is applied to the relevant input, Tr 1 or Tr 2 will switch on as C 1 or C 2 charges. Relay RLY1 then pulses once, sending a record signal to the VCR via its contacts. A low at pins $8 / 9$ of IC1a, via R4, sets IC1 in its timing mode. When the timing period ends, a high from the output of IC1d (pin 11) is fed via C4 to the base of Tr3, which switches RLY2 on momentarily to send a stop signal to the VCR.
Power for the unit is obtained from an unregulated 1A power supply of the type that can be purchased with a mains plug as part of its moulded casing. The output from this is fed to a 12 V regulator (IC2) which is attached to a small heatsink. If required, the camera and/or PIR can be obtained from the same source.

Construction

There is nothing critical about construction of the unit. I have built it in several forms, including one which contained the timer, camera and PIR. If you have to use very long leads to trigger the inputs/outputs, screen them to prevent false triggering.
The regulator's heatsink has to be positioned to dissipate its heat, which can be used to prevent fogging of the camera lens when this is mounted in the same case. If you use a bare PCB pinhole camera, you will find that it develops quite a bit of heat. One thing I learnt about these is that it's a good thing to fire the camera up to find out which way the image will be presented. It seems that little care is taken with fitting the camera mosaic during manufacture. Four-to-one odds of it being correct are not very good!

Installation

Most of my installations have been in small shops, where

a pressure mat or reed switch on the door is all that's required. A PIR detector can be switched in at night to cover areas where conventional entrance may not be gained - PIR detectors used during normal shop hours tend to be triggered by staff, which is not satisfactory. Strategically-positioned pressure mats can be avoided by staff, reducing unwanted operation.
With domestic premises the unit can be triggered by conventional PIR/floodlight circuits at night, using a mains relay in the lamp auxiliary circuit to switch the timer. Some other method will be required during daylight hours: say a switch at the front gate.
Conventional PIRs can be used in daylight, but should be of the counting type to reduce false alarms as a result of changes in sunlight intensity etc. Other types of detector, e.g. break beam, are easy to incorporate.
The small PIRs used in burglar alarm systems have a normally-closed output when powered, giving an open state when triggered. They can be connected to the unit's NC input. Reed switches give a normally-closed output when a magnet is brought into close proximity, and can be mixed with PIRs by connection in series with the NC input.
Mats are normally-open until trodden on. They should thus be connected to the NO input. A reed switch can be made to operate as normally-open by arranging for a magnet to pass it, say as a door opens. All normally-open detectors are connected in parallel with the unit's NO input.
The trigger connections to the VCR can be arranged in several ways. My original top-loader VCR, switched by the two-resistor stop/start method, is still in use in my workshop. Two other alternatives are possible. The first requires a direct connection between the VCR's record and stop buttons and the contacts of RLY1 and RLY2. If preferred, a connection could be made to the equivalent VCR remote control unit buttons. The original lace-up time shortcoming remains. If a ready-laced VCR is used, this problem will be virtually eliminated.
The unit's momenary switching action reduces the endstop/rewind/recording problem. Care is still required to ensure that a tape has plenty of run time, but rapid cycling against the end-stop no longer occurs. Note however that some VCRs just stop when the end of a tape is reached and don't automatically rewind.
The value of C3 determines the length of the recordings. Increasing its value increases the recording time: about two minutes seems adequate. In the standard play mode a four-hour tape will provide 120 triggers. With an

LP machine this number will obviously be doubled.

Results

The system in the approach to my workshop is still triggered by a PIR in the 'walk' mode. I have a switch to disable it during the day, but covertly switch it on should this seem advisable. It's left on when the workshop is unattended - and has recorded some strange happenings!
The CCTV camera is a pinhole device with six infrared LEDs to illuminate the scene in darkness. The camera's 12 V supply is taken from the trigger/timer unit. Its output signal is fed directly to the VCR's video input, along with audio from an electret microphone which is mounted in the camera's case.
Clarity is excellent, and playback just as good. I feel it important that callers know there is an active camera in operation, and display notices to say so. At least one monitor is on view to callers, showing their actions at all times.
Long before I fitted active CCTV I had a dummy decoy camera stolen (then thrown away outside). I continue to employ dummy cameras and, as it is accessible, camouflage the genuine one to prevent theft.
With professional systems the tapes are time stamped. This can easily be arranged by leaving a large clock in the camera's field of view.
Shops report that petty pilfering is greatly reduced. I find that dodgy characters are less inclined to hang about when faced with a monitor that displays their images.

Components required

R1, R3-6, R8	$2.2 \mathrm{k} \Omega$
R2	$47 \mathrm{k} \Omega$
R7	$1.5 \mathrm{M} \Omega$
All $0.25 \mathrm{~W}, 5 \%$	
C1, C2, C4	$470 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C3	$100 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic
C5, C6	$0.1 \mu \mathrm{~F}, 30 \mathrm{~V}$ disc ceramic
D1, D2, D3	1N4148
IC1	CD4001 quad two-input NOR gate
IC2	LM7812 12V,1A regulator
Tr1, Tr2, Tr3	BC639

RLY1, RLY2 Sub-miniature relays. 12 V coil. One pole changeover

Part 2 of Mark Paul's guide to the terminology of digital TV makes a start on definitions of commonly used terms

The Language of Digital TV

In Part 1 last month detailed explanations of the most commonly encountered abbreviations used in connection with digital TV were provided. This time a start is made on defining the terms used. The series will be concluded next month.

Definitions

Access Unit With MPEG video, the coded representation of a picture. The term is also used for coded audio data. After decoding, the units are referred to as Presentation Units.

Algorithm Rule for solving a mathematical problem in a finite number of steps: a kind of flow chart or programme, providing a set of instructions/steps for solving a problem.

Aliasing A disturbance created by spectrum mixing when the bandwidth of a signal being sampled is greater than half the sampling frequency. The term comes from the word alias, which means an assumed name.
During A-to-D conversion, the analogue signal is sampled at a fixed rate, creating a digital signal that has less detail than the original signal. Fidelity to the original signal thus depends on the sampling frequency: the higher the sampling frequency, the better the fidelity.

Analogue Signal An electrical signal produced by a sensor such as a microphone, solid-state imager or camera tube. Consists of a varying waveform that corresponds with the original sound or image.

Asynchronous Lack of synchronism or correspondence with time. In IEEE 1394 serial data interface terminology, asynchronous means the transmission of data with varying time intervals between the characters, and transmission of data as available.

B Picture Coded picture obtained from I and P coded pictures by bidirectional interpolation. The picture is coded using motion-compensation prediction from past and/or future I and P pictures.

Baseband Term used for the frequency band occupied by an analogue or data signal prior to modulation or after demodulation.

Block In JPEG or MPEG compression, an 8×8 pixel section to which DCT is applied.

Buffer A data storage device used to provide at its output a constant data flow rate.

Burst Errors Name given to multiple errors that occur in a short time, with relatively longer in-between, errorfree periods.

Channel Coding Also referred to as Forward Error Correction. Addition of coding to a digital signal prior to transmission to enable errors to be corrected at the receiving end. The coding is matched to the characteristics of the form of transmission used.

Checksum Mathematical sum of all the bits in a sequence. Used for error checking.

Clock Synchronising signal used for all the encoding and decoding processes in a data transmission/reception path. Consider it as the digital heartbeat.

CODEC Combination of a coder and a complementary decoder.

Comb Filter Filter whose response is akin to the teeth of a comb. Used for separating signals that are part of a single transmission.

Compression Reduction of the number of bits used to represent an item.

Compression Layer With MPEG, the output from individual audio and video encoders. This is the Elementary Stream of compressed data.

Conditional Access System permitting subscriber access to programmes on a controlled basis, e.g. pay. TV or pay per view.

Constant Bit Rate Coded Video Compressed video bit stream with a constant average bit rate.

Constellation Display in I/Q phase co-ordinates of all the possible states of a QAM or QPSK signal.

Convolutional Coding The inner part of channel coding for satellite and terrestrial transmissions. It provides two bit streams from the original one: this data increase is used mainly to correct random errors caused by noise in the transmission path.

Decoding Time Stamp (DTS) Field that may be present in a packetised elementary data stream packet header to indicate the correct decoding time for an MPEG Access Unit.

Delta Modulation Form of differential pulse-code modulation in which only the sign for the difference between each signal sample and its predicted value is retained and encoded.

Differential Coding Source coding (i.e. compression) method that uses the difference between the value of a sample and a predicted value.
Differential Pulse-code Modulation (DPCM) Process in which the difference between each sample of a signal and its predicted value, derived from a succession of previous samples (or quantised values), is quantised. The resulting series of quantised values is converted, by coding, into a digital signal.

Discrete Cosine Transform MPEG/JPEG conversion of a block of pixels into a series of coefficients that represent the cosine harmonic functions of the pixels.

Echo Equaliser Device used for the cancellation or attenuation of echoes (ghosting) in a transmission path. Used particularly with cable transmission.

Elementary Stream Bit stream generated by an MPEG video or audio encoder.

Elementary Stream Clock Reference (ESCR) Time stamp present with a packetised elementary stream for the control of decoder timing.

Encryption Coding of transmitted information to make it available only to those authorised by a conditional access system.
Energy Dispersal Combination of a digital bit stream with a pseudo-random binary sequence (PRBS) to obtain even energy distribution after modulation.

Entropy Coding Coding principle used with variablelength data words, whereby the encoding of information elements depends on their probability of occurrence. Also
known as variable-length coding (VLC). The best known method is the Huffman Algorithm.

Eurocrypt Conditional access system used mainly with the D2-MAC standard.

Fast Fourier Transform A fast algorithm for performing a discrete Fourier transform.

Flash Memory (EEPROM) A large, non-volatile electrically erasable and programmable read only memory. Can be overwritten only in blocks, not individual addresses or cells. Rather like an electronic hard disc.

Flicker: Disturbing periodic variation in the brightness of a scanned raster when the refresh rate is below 50 Hz .

Fourier Analysis Establishing the harmonic components of a complex waveform. The result is a Fourier Series that represents the waveform.

Fourier Principle The principle which shows that all repetitive waveforms can be resolved into a series of sinewave components that consist of the fundamental frequency and a series of harmonics at multiples of this frequency. Named after the French mathematician J.B.J. Fourier (1772-1837).

Frame In reference to audio, an elementary period during which psycho-acoustical coding takes place. Corresponds to twelve times 32 pulse-code modulation (PCM) samples. The duration of the period varies between $8-12 \mathrm{msec}$ depending on the sampling frequency.

Generic Coding Method of digital coding for pictures, based on a specific algorithm, enabling it to be used for a number of applications. Enables the same ICs and components to be used for different applications such as TV broadcasting, computer graphics, videotelephony etc.

Granule In layer two MPEG audio this term means a definitive group of three consecutive sub-band samples, corresponding to 96 PCM samples.
Hexadecimal Numbering system with a base of 16 numbers instead of, as in decimal notation, ten. Uses a character set of 0-9 plus A-F. Employs 16 arrangements of four bits.

I Frame/Picture An intra-coded picture, i.e. one which has been coded using only information from itself (compare with B and P pictures).

Interframe Coding Predictive frame coding, where the values for prediction for a frame are taken from the previous and current frames.

Interlaced Scanning The conventional TV picture scanning arrangement in which successive fields scan out the odd and even lines of the picture.

Interpolation Technique of generating information by averaging the values of data from adjacent picture fields.

Interrupt A signal that breaks into a running digital processor program.

Intracoding Coding of a macroblock or picture using only information in that macroblock or picture.

Fig. 1: The
MPEG video layers, from pixel blocks to a sequence of pictures (video sequence).

Intraframe Coding Predictive frame coding where the values for prediction are taken from the same frame.

Isochronous Something performed in equal times, in regular periods. With IEEE 1394, means the transmission of time-critical data in the quasi-synchronous mode, i.e. real-time audio and video.

Joint Photographic Experts Group (JPEG) An ISO/IEC group that developed the image compression algorithm for continuous-tone still colour pictures.

Joint Stereo MPEG audio technique which exploits redundancy between the left and right channels. There are two sub-modes. MS Stereo means coding of $L+R$ and L -R channels; Intensity Stereo means coding the common sub-band coefficients for high-band L and R channels.

JPEG-1 Standard, with several levels of compression, for digital still colour pictures. The levels give various resolutions in $\mathrm{Y}, \mathrm{Cb}, \mathrm{Cr}$ and RGB formats.

Latch Mechanism for temporarily storing data. Used in conjunction with shift registers so that data streams can have their format altered, i.e. SIPO (serial data in, parallel data out) and PISO (parallel data in, serial data out).

Layer With MPEG audio, the algorithm used for compression from sequence to block (there are three different layers); with MPEG video, hierarchial decomposition from sequence to block (see Fig. 1).

Level With MPEG-2, the spatial resolution of the picture to be coded.

Line-locked Clock Clock synchronised to the line-scan frequency of a video signal, controlled by a phase-locked loop (PLL) circuit.

Lossless Compression Also known as Reversible Coding. The opposite of lossy compression.

Lossy Compression Compression process that discards some imperceptible information.

Macroblock Used for motion prediction. Consists of four 8×8 blocks of luminance data and two of chroma data (4-2-0 format), or four luminance and two each Cr and Cb blocks (4-2-2 format), or four luminance, four Cr and four Cb blocks (4-4-4 format).

Masking A sound concealed by a more powerful one at a near frequency. This is a property of human hearing. The phenomenon is made use of for MPEG audio. Masking can be in terms of frequency and/or time.

Motion Compensation Use of motion vectors to improve the efficiency of motion prediction. The vectors provide offsets into past and/or future reference frames or fields (I pictures) that contain the decoded sample values used to form a prediction error signal.

Motion Estimation Process of estimating motion vectors for encoding. The term relates to the derivation of a motion vector from a previous picture, to enable conditions in an area of a picture to be deduced.

Motion Vector Two-dimensional vector used for motion compensation. It provides an offset from the coordinate position in the current picture or field to the coordinates in a reference (I) frame or field.

Motion Picture Experts Group (MPEG) The ISO/IEC group that develops compression standards for moving pictures and associated information.

MPEG Video Data Hierarchy The MPEG video structure, see Fig. 1. One pixel (picture element) is defined as the size of a scanning spot at rest, i.e. one line high and one line wide. It is used to form blocks of 8×8 luminance pixels plus 4×4 red and blue chroma pixels (the later are referred to as Cr and Cb respectively). The next step up is the macroblock, see above.
Several macroblocks are then grouped in sequences known as slices, which are positioned in the same left-toright and top-to-bottom order as with conventional picture scanning. Slices are used as sets of data, being suitable for error detection purposes. If an error is detected in part of the data stream that makes up a slice, the decoder ingnores the data in that slice and moves to the start of the next one.
The data slices are combined to form the active picture area of a video frame - usually referred to as a picture which can be regarded as the system's basic coding unit. Twelve of these pictures, referred to as a GOP (Group of Pictures), are combined to form the basis of interframe coding. As a result of this process, most frames are represented as their differences from a reference frame (an I or intraframe). Each twelfth frame is an intraframe. Organising the pictures in groups simplifies random access to a group and provides recognisable boundaries for interframe coding.
Finally, the MPEG system allows several groups of pictures to be gathered together in what is called a Video Sequence. This is an uninterrupted series of GOPs that have the same basic parameters. This sequence consists of a sequence header code, one or more GOPs and an end of sequence code.

Multicrypt DVB conditional access option based on a detachable CA module which is connected via the DVBCI common interface.

Multiplexing A system that enables two or more signals to be transmitted simultaneously via a single channel.

MUSICAM - Masking pattern-adapted Universal Subband Integrated Coding and Multiplexing An audio bitrate reduction system based on sub-band coding and psy-cho-acoustic masking.

What a Life!

Problems as diverse as wow with a Dansette record player to an hourglass picture with a recent JVC TV set came Donald Bullock's way this month

Just as I had sat down to write my Television article, Greeneyes came in and turned the TV on. I don't much like the TV being on at all, especially when I'm trying to write an extremely intellectual article. So I told Greeneyes that she was a cretin, and we had a row about my manners and her mother. Then the TV's brightness went - it's a Sanyo CTP6256 - and I laughed nastily.

Greeneyes said I'd have to mend it right away. So I put my writing aside, took the back off the set and looked at the chassis. The brightness returned.
"How did you manage that?" asked Greeneyes.
"Cleverness and influence" I said, refitting the back.

When I'd finished and sat down again, the brightness had gone. Greeneyes shot me a withering look. Time to start all over again. I took the back off, leant it against the wall, then turned to the set which was now OK. Greeneyes' big ginger cat strolled over, looked at the screen and laughed at me. So I touched it with my foot. Greeneyes saw it shoot off, and we had a row about my wickedness and her lavishing all her affection on cats and dogs and turtles instead of me.

When we'd finished our row and agreed that she was right and I was wrong, and that the red pair of shoes in Clarks would go well with the green frock she's going to get from River Island, the brightness went again. This time it stayed off, and I started to tap around with the pen I'd intended to use for my article. As I couldn't make it come back I decided to take the set to the workshop, and put the rear cover back on. The brightness returned and I made a bit of a scene.
"Have we got to call Snoddies?"

Greeneyes asked, "or shall I ask son John to mend the set. We can't go on like this."

Then the phone rang for me, and while I was talking Greeneyes got John to take a look at the set. He went out for a soldering iron and a few minutes later had the set working - even with the back on. It didn't fail again.

I pretended not to notice that the set was now working satisfactorily, or that it had been fixed so quickly, until Greeneyes went out to fix a banquet for her cats and dogs and turtles. Then I casually asked John what the trouble had been.
"R622" he said. "It's a two-inch tall ceramic resistor stood up on end. The solder joint at the top was dry."
"Thought it would be" I said.

Harry's Dansette

There are two types of people I can't stand. Three if you count traffic wardens. One is the type of chap who concentrates so hard on making silly remarks that you can't hold a proper conversation with him. A customer of ours, Harry Quipper, is one of these. Otherwise he's a decent chap. He called in the other day with an old Dansette record player which, he said, he'd found.
"Gosh, Harry, I didn't think there was one of these left in the country" I said, "what's up with it?"
"Dead" he replied.
I noticed that the cheap mains plugtop didn't secure the outer cover of the mains lead, and that the conductors were straggly. So I tugged at them and they pulled out. I remade the lead and plugged it in, then tried out the Dansette with our 33 r.p.m. record of classical piano music - there's no finer type of record for detecting turntable variations.

This one sounded awful. I frowned. "Where's that wow coming from?" I said aloud.

Harry's silly face lit up. "From the Gwamophone, of course" he quipped.

I told him to come back in a couple of hours' time then gave the record player a service, right down to oiling the motor, but the wow remained. Then I noticed that the blip occurred once per revolution of the record. I finally lifted the turntable mat and found that a little inspection label, not much bigger than a stamp, had been carelessly stuck on. So there was a ruck in it. Removing the label cured the trouble.

The Other Sort

Then Mr Magic came in with a Toshiba portable, Model 1400TBT. His real name is Cyril Pipe, and he spends his spare time dressing up and doing conjuring tricks at children's parties. I can't stand conjurors.

I looked at the set. "Nice one, Cyril" I said, "what's wrong with it?"

Cyril hunched his back and drew his head down into his shoulders. "Picture like this" he said. Then he pulled from his pocket a shabby pack of cards which he fanned out. "Pick a card, pick a card" he said.

I looked pained. "Bugger the cards" I replied, "let's think about the set."

I plugged it in and sure enough there was bad field cramping at the top of the picture. The set uses an AN5515 field output chip, and I recalled a similar fault with a similar model. I traced the IC's supply from pin 7 back to the rectifier circuit C311/D309/R317 which is fed from a winding on the line output transformer. When I checked the
value of the 7.5Ω surge limiter resistor R317 I got a reading of 48Ω. A replacement resistor of the correct value cured the fault. As I boxed up the set I thought that Cyril ought to be relieved of eleven pounds, a tenner for the repair and a pound for his bit of conjuring.

As I turned to him he said "Wait a minute" and drew a $£ 1$ coin from my ear.
"Put that on the counter close to me Cyril" I said, "and add another one plus a tenner. It'll get you out of debt and your conscience good."

G11 Problems

Meanwhile Paul, who spends most of each day on VCRs because he's so good at them, pulled a Philips set fitted with the G11 chassis on to the bench. "We've made some money out of these" he commented, thinking of all the BU208As, the smoothing blocks, the field timebase chips and the odd tube or two we've replaced. This one was dead, and Paul soon found that the negative side of the mains lead was connected to the plugtop loosely.
"I've had this before with these sets" he said, "but why is it always the negative connection that becomes loose in the plugtop? The little retaining screw loosens, doesn't it."
"And how" I replied. "It's because of the thyristor power supply, which does violence to the nice smooth mains supply waveform. If you were the little screw at the top of the plug's negative lead you'd jigger about with the sudden current pulses, I'll bet."

When he'd seen to the plugtop he found that there were intermittent outputs from the line output transformer because of dry-joints at the pins. Resoldering them restored the set to life, though the width still varied and tried to collapse now and again."What makes the line output transformer's pins go dry at their joints to the board?" he asked.
"More hammer" I said. "That transformer is vibrating at a very good lick, and producing heat. The solder joints have to contend with the rapid pulse waveforms at the pins while the heat affects the chemical makeup of the fluxes in the joints. They eventually shake loose. It's much the same with the other wound components in the line output stage. In view of the picture width variations I reckon you'll find some more dry-joints in this area."

He did, and after some careful resoldering all round he had a good, steady picture.
"Remember" I said "any transformer that vibrates at a high frequency and has to handle spikey waveforms will tend to develop dryjoints at its connecting pins. And the next time you get intermittent brightness with a chassis that uses a tiny line driver transformer, like the old ITT Compact, check this item for dry-joints. Resolder the pins, even if you can't actually see any poor joints.

Interlude

Just then a chap with some steps poked his head through the door. "Window cleaner" he called.
"Who, me?" I reacted.
At this point a girl who looked like Keyhole Kate picked her way into the shop. "Yoo-hoo" she trilled, "anybody home?"

I moved towards the door.
"Oh. You're somebody else, aren't you?'" she said.
"No I'm not" I replied, "I'm the same chap I've always been."
"What I mean is, you're not Steven or Paul, are you?"

Steven came to the rescue.
"That Ferguson of ours you mended back last summer" she said, "the picture's got thin bands of lighter picture all over it. What will it be and what will it cost?"
"Ah, your TX90" said Steven. "The cause will be C 189 , a $22 \mu \mathrm{~F}$ 50 V electrolytic reservoir capacitor, and the cost will be ten pounds, if you bring the set in."

Keyhole Kate gulped. "Electro what . . ." she stammered.
"Ten pounds" Steven said.
Then the window cleaner came in. "Clean now?" he asked, jerking his thumb at the window.

I pushed some money into his hand.
"I suppose your sons are quite competent by now" he commented.
"They're coming on" I replied. "Of course it will take them some time to pick up all I've learnt over the last fifty years. I feed them the answers, quietly."

A JVC MXII

Then Mr and Mrs Murphy came in. Nice people, also the smallest couple we've ever seen. Steven gave them a smile.
"We've got our JVC telly in the car, Mr Blockhead" he said. "The picture's like an hourglass. Last time you did it while we waited. Can we wait for it again?"

Steven brought it in and put it in front of me. "Can you look at it quickly?" he said. "It's the modern Nicam stereo set - MXII chassis.

. . . So I touched it with my foot.

Tends to get this fault."
The Murphys smiled at me as I began to take the back off. Steven continued with his instructions.
"The chassis uses an electronic screwdriver chip, IC707, for picture geometry adjustment. The chip's cheap enough, and we've got one in stock - from Willow Vale, part number 87028 M - but you'll need the manual to enter the screwdriver menu and program the new chip. The repair takes only a few minutes, as you know.

I knew nothing of the sort, and stood there trying to digest what he'd said. None of the chips looked like a screwdriver to me, and I grew increasingly puzzled. Five minutes later I was no further forward. Steven looked over and began to lick his lips.
"Gosh, I'd like a cup of tea" he said. "The sort you make. How do you do it? Is it three bags or five?"
"I'll do it" I said, and he was on my stool before I'd left it.

When I brought in the tea the set had been boxed up and displayed a perfect picture.

Harry Quipper came back for his gram just as Mr and Mrs Murphy were paying Steven a few browns. He had one of his irritating smiles as he watched. As they left, he turned to us.
"Nice handful of cabbage that" he said, "talk about being grateful for small Murphies!"

Reports from
Philip Blundell, AMIEEIE
Michael J. Cousins
Keith F. Brown
Michael Dranfield
Graham Colebourn
David Smith
Glyn Dickinson
Chris Watton
Nick Beer and
Roger F. White

Thorn Cl5012R (Samsung P68SC Chassis)

This set produced a picture with weak red content. When I checked the voltages at the collectors of the RGB output transistors I found that the red output transistor's voltage was at a higher level than that in the green and blue output stages. Checks on the colour-drive signals from the mother board, at plug CN901, showed that the DC bias in the red channel was low. I traced back through the circuit and found that the red drive was being dragged down by diode RD09, which adds the on-screen display to the drive from the colour decoder. This 1N4148 diode was leaky. For green channel problems check RD10, for blue channel problems RDI 1.

Incidentally the spares address for Thorn brand TV sets is Thorn UK Ltd., Glaisdale Drive, Bilborough, Notts NG8 4LA (01159 290 434). Trade only. P.B.

Mitsubishi CT2555STX (Euro 4Z Chassis)

Teletext was OK but the vision signal produced a weak, smeary picture. I connected a staircase test pattern and traced the path of the signal from the IF module along to PCB VC/RGB-CTI, where the video signal became low around the

TV Fault Finding

Y amplifier Q253. The 12 V supply to this transistor was missing because of a break in the print at the very top edge of the PCB, where the plastic retaining bracket is connected. P.B.

GoldStar CIT9902F (PCO4A Chassis)

This set wouldn't come out of standby. When checks were carried out around the microcontroller chip IC701 I soon discovered that crystal X701 $(10 \mathrm{MHz})$ wasn't oscillating. A replacement crystal was required. P.B.

Ferguson ICC9 Chassis

This monster (Model D78N) had no green. As I didn't fancy hauling it back to the workshop it had to be fixed on site. A tube analyser cleared the CRT, and the TEA5101A RGB output chip IB01 was OK. Tracing the signal path back brought me to the STV2160 multifunction chip IV01. This seemed to be the most likely suspect, especially as there have been reported cases of failure because of CRT flashovers (there's a modification for this - remove jumper link JV56 and fit a surface-mounted $4.7 \mathrm{k} \Omega$ resistor in its place). Needless to say a replacement chip didn't cure the fault.

Only one area remained: the buffer amplifier transistors, the relevant one being TV76 (BC858B). This surface-mounted pnp transistor had been cold checked and found to be OK, but a replacement restored the tube's green drive. If only I had a nice, compact scope or a few more muscles! M.J.C.

Sharp DV5935 (BCTV-A Chassis)

When cold checks were carried out on this dead set I found that the 2SD1546 chopper transistor Q705 and the MC44602 control chip

IC700 were short-circuit. In addition the $100 \mu \mathrm{~F}$ chopper drive coupling capacitor C712 was low in value. On the secondary side of the circuit rectifier diode D708 and its feed resistor (not shown in the circuit diagram) were badly burnt. These items were replaced and the set was then powered. It produced outputs on the secondary side of the power supply except for D708, which supplies a 12 V regulator transistor and an 8 V regulator IC. In view of the previously distressed state of D708 I thought that the cause of the problem was heavy loading, but eventually found that the chopper transformer T700 was damaged. A new transformer restored the 12 V and 8 V supplies and the set sprang to life. M.J.C.

Mitsubishi CT2553STX (Euro $4 Z$ Chassis)

The reported fault was no signals scart operation was OK. An attempt to retune the set showed that while channels could be found they couldn't be stored. The EPROM chip IC702 was suspected, but checks showed that its -31 V supply at pin 2 was missing. This is derived from transformer T951, via rectifier D955. The cause of the problem was an open-circuit secondary winding on T951. A replacement transformer restored IC702's -31 V supply and hence the picture and sound. M.J.C.

Goodmans 1450T (Onwa Chassis)

This set was dead apart from the fact that the standby light was on, there was a click from the relay and the power supply was producing a 115 V HT output. No visible damage could be seen. The cause of the problem was loss of the supply to pin 42 if the multifunction chip IC301 because R323 ($6 \cdot 8 \mathrm{k} \Omega, 5 \mathrm{~W}$) was open-circuit. A replacement
restored the picture and sound. If this doesn't cure the fault check C909 and C911 (both $47 \mu \mathrm{~F}, 50 \mathrm{~V}$), the 12V, 1W zener diode ZD402 and IC301 (AN5601K). K.F.B.

Tatung 190 Chassis

There was sound but no picture no EHT in fact. The cause of the problem was that R413 (18 Ω, metal film) in the supply to the line driver transistor was open-circuit. No reason for its failure could be found. M.Dr.

Hitachi CPT2174 (G6P Chassis)

This set was brought in because it made a whistling noise. We suspected a noisy inductor. Not this time however: the whistling occurred only with scene changes and bright pictures. The culprit turned out to be the HT smoothing capacitor C909 ($220 \mu \mathrm{~F}, 160 \mathrm{~V}$) which had fallen to a very low value. M.Dr.

Sony AE2 Chassis

This set tripped back to standby after two seconds. The manual says a two-second trip means that there's a field fault. When the set was switched on and off in quick succession there was only half a field scan - the top half. The TDA8179S field output chip in this chassis requires + and -15 V supplies. The latter was missing because safety resistor R854 (0.47Ω) was open-circuit. But the replacement failed at switch on: a new field output chip was required. For good measure we also replaced the flyback boost capacitor C1505 ($220 \mu \mathrm{~F}, 50 \mathrm{~V}$). M.Dr.

Hitachi G8Q Chassis

If the power supply is tripping and you can't find any shorts on the secondary side of the circuit, try replacing C908 $(220 \mu \mathrm{~F})$ on the primary side. In one case we had in recently this capacitor had fallen in value to $150 \mu \mathrm{~F}$. A replacement rated at $105^{\circ} \mathrm{C}$ cured the problem. M.Dr.

Bush 1500

Another dealer had attempted to repair this set. In the process he'd removed two transistors which he had not replaced. With the help of a similar, scrap chassis we decided that a 2 SC1815 would be suitable in positions Q104 and Q611. After fitting a couple of these transistors the set came on but was off tune. In addition the automatic station search didn't stop when a station
was found. After spending a lot of time on the problem we found that replacing the vision detector coil T101 cured the fault. M.Dr.

Philips CF1 Chassis

For loss of field sync, replace C2377 (10 $\mu \mathrm{F}, 63 \mathrm{~V}$). This will cure the problem, but for good measure C2368 and C2369 should also be replaced. They are both $4.7 \mu \mathrm{~F}$, 63V. M.Dr.

Hitachi CPT2476 (G6P Chassis)

If the set comes on with a bright white screen, there is only 20 V at the tube's cathodes, and the set switches to standby after two seconds, replace the 12 V zener diode ZD301 which is on the main panel. It's in series with all three RGB output transistors. M.Dr.

Ferguson ICC5/IMC Chassis

There was a very odd problem with one of these sets: no sound, no picture, and a raster when one of the tube's cathodes was earthed via a $10 \mathrm{k} \Omega$ resistor. This proved that the cause of the problem was not field collapse. When we advanced the setting of the first anode control we got a blank, unmodulated raster with flyback lines.

We thought that the set might be stuck in the AV mode. When a VCR was connected to the scart socket we got good sound but still no picture. A lot of time was spent carrying out various checks before we noticed that the power supply's 8 V output was low at 5.4 V . The culprit was CP37 $\left(4,700 \mu \mathrm{~F}, 25 \mathrm{~V}, 105^{\circ} \mathrm{C}\right)$ which was open-circuit. M.Dr.

Sony KVM2170/2171

Although these sets are still quite new we have had a couple of them suddenly go completely dead. The chopper power supply was working, but one of its outputs was missing. There should be 135 V at the cathode of D606, 20V at the cathode of D607 and 8.5 V at the cathode of D608. In both cases the 8.5 V supply was missing because ICP PS603 was open-circuit. It's rated at 1A (N25 type). The current through the replacement was between $0.4-0.5 \mathrm{~A}$, so all was considered to be OK. Neither set has bounced - the repairs were carried out several months ago. G.C.

Matsui 1496R

This set was dead with no power supply operation. There should be a 119 V HT output at C119, which is
handy to remember! We found that R108 ($220 \mathrm{k} \Omega$) was open-circuit: as a result there was no 5 V bias at pin 3 of the TDA4605 chopper control chip IC104. R109 (330k Ω) was also going high in value, so this was replaced as well. As the set is still a youngster we uprated both resistors to 1W. G.C.

Sanyo CBP2576/2876 (EDO Chassis)

This set had given up, with a pungent smell of burnt plastic that lingered for days! A hole had been burnt in the PCB at the line scan end of connector K-FF. After the usual clean up and rewiring exercise the set came back to life, but there was no EW correction because ICP R756 (N20) was opencircuit.

Finally there was no sound. We got it back by carrying out the "start NVM" procedure described on page 13 of the service manual: this restores the basic digital set-up of the chassis. Very little further adjustment of the digital settings was required to obtain correct picture geometry. G.C.

Hitachi CPT1558/Luxor 18036549

These 15in. Swedish sets are ideal for kitchen use, having a sealed membrane keypad. When a Luxor example came in with a severely mangled keypad we discovered that it's no longer available as a spare part. A repair was possible however, using a keypad from a scrap Hitachi version of the set: it's marked differently but works in the same way.

Our troubles were not over yet, as keyboard operation was intermittent. We eventually traced the cause of this to a cracked joint in a very unexpected place, at one end of RD54, an 820Ω resistor which is between the base and emitter of TD12 near the keypad ribbon-cable connector. We then knew why the original keypad had been clawed to death!

If you have trouble with the microcontroller or ROM chip (ID01 and ID02) in these sets, get in touch with Chas Hyde (01759 303 068). There were several versions and sources of these chips, and they are not all compatible. G.C.

Toshiba 150R6B

This set had been given a new LOPT, a set-up, a soak test and a clean bill of health. The owner brought it back next day with the classic condemnation "it's gone
again -- it lasted only fifteen seconds".

This time there was no 5 V output at pin 9 of the power supply board output connector. RS05, a $15 \Omega, 0.5 \mathrm{~W}$ fusible resistor, was burnt and open-circuit. It feeds a 5 V regulator, QS02. We fitted a new resistor and connected a voltmeter across it to monitor the current. The reading was 0.5 V running, as stated in the service manual, and 0.33 V in standby. The set ran happily all day and the next. No connection between the two failures could be discerned. G.C.

Philips CP110 Chassis

This set was dead except for the display of "F1". A voice in my mind kept blaming the microcontroller chip, as it was the original one with no metal shield, but voltage checks showed that it was OK. The 1.6A Wickman fuse F1653 was open-circuit, no doubt because of excess voltage, the overvoltage protection board seeing it off. When the fuse and the CNX62A optocoupler had been replaced the set behaved impeccably during a lengthy test run. D.S.

ITT Monoprint B Chassis

This set was in the standby mode with the CRT's heaters lit. I found that $\mathrm{C} 722(470 \mu \mathrm{~F}, 16 \mathrm{~V})$, the reservoir capacitor for the 8 V supply, had gone low in value. D.S.

Philips G90AE Chassis

There was no focusing at all. When the top of the tube base was unclipped the reason was immediately obvious. The entire focus connector and its spark gap were covered with verdigris. A new tube base cured the fault. D.S.

Ferguson TX805 Chassis

This set (Model D14R) didn't do anything. When checks were carried out in the power supply we found that RP41 and RP42 had both gone high in value. The correct value is $68 \mathrm{k} \Omega$. D.S.

Philips CFI Chassis

This set was tripping. After checking for obvious shorts I decided to disconnect the crowbar thyristor and power the set via a variac. It worked perfectly, with the HT correct at 95 V . To save time (!) I replaced the three series-connected zener diodes and the thyristor, but the set still tripped. I then replaced the only other two components in the trip circuit, a resistor and a capacitor. It still tripped. Time for
some theory. The zener diodes were being switched on not by the DC voltage but by ripple, because the $47 \mu \mathrm{~F}$ HT reservoir capacitor C2322 was open-circuit. G.D.

Philips 2A Chassis

After repairing a straightforward field fault I noticed a message which said that the set was reluctant to come out of standby when the remote control unit was used. This was true, with the set tripping instead of coming on. The set could be heard 'plopping' in standby. I traced the cause of this fault to $\mathrm{C} 2681(6 \cdot 8 \mu \mathrm{~F}, 63 \mathrm{~V})$ in the optocoupler circuit. G.D.

Bush 1500

This set was stuck on one channel with no response from the front controls. The usual cause is a faulty pushbutton, but not this time. There was a clue: standby couldn't be selected because a leak across the auxiliary contacts of the mains switch locked up the microcontroller chip. The cause was some nasty black glue that was used to anchor the wires. Removing this cured the fault. G.D.

Ferguson ICC5 Chassis

EW bowing was the not unusual fault with one of these sets (Model 59P7). After resoldering the obvious dry-joints the fault was still present with the usual suspects blameless. The width and pincushion controls worked, but not enough, while the trapezium control was inoperative. This was the clue. It receives its supply from the 23 V line via a resistor and a 6.8 V zener diode, DG10. This was leaky. G.D.

Salora J Chassis

A fault we are now getting quite often with these sets is variation in raster size and focusing with picture content. The culprit is the EHT tripler. Unfortunately this is rarely mentioned when the set is brought in because of another fault. It can wreak havoc with your estimates, especially as "the set never did that before you fixed it"! G.D.

Matsui 209T

This set was dead because C613 $(4.7 \mathrm{nF}, 1 \mathrm{kV})$ had failed, which is not unusual. It's in the HT rectifier circuit. If you don't have a handset, you can't switch the set on from the front as it comes on in standby which is a good way of selling handsets! To get the set out of standby, short out 'switch' SW414 (not fitted) at the front of the PCB
momentarily. The set will then spring to life! G.D.

Sony KV2762

Tuning voltage instability was the problem with this set. Colour would sometimes be lost, but only in certain areas of the picture. At other times the sound would be lost, with the picture fluttering. My first check was at the 33 V tuning voltage stabiliser D005, where only 30 V was present, but a replacement didn't improve matters. The feed comes from the 40 V supply, which I found to be low at only about 33 V . So not enough current was flowing to operate the regulator. This 40 V supply is derived from the chopper transformer, via R651 (1.2Ω) and D652. R651 had risen in value to nearly 70Ω. C.W.

Finlux $\mathbf{1 0 0 0}$ Series

This was the later version with CTI (colour transient improvement). When these sets are first switched on the screen should remain blank until the TDA3505 video processing chip has checked the grey-scale levels. This set came on with a red raster, then green followed by blue. The cause was $\mathrm{Cb} 38(10 \mu \mathrm{~F}, 63 \mathrm{~V})$. C.W.

Philips CP90 Chassis

The power supply was OK but there was no line drive. A check on the 19 V supply produced a reading of only a couple of volts. The $330 \mu \mathrm{~F}, 35 \mathrm{~V}$ reservoir capacitor C2691 was the duffer here. C.W.

Hitachi CPT2178 (G6P Chassis)

Loss of sync was the trouble with this teletext set, the cause being on the text PCB. When the video signal arrives at this panel it goes to IC2101 and, via Q2104, to pin 3 of the CD4016 chip IC2108. This acts as a sync separator, but there was no output at pins 1 and 4 which are connected together. After making various checks I found that the 5 V supply was low at only 2.5 V , because the HA17085 regulator IC2110 was faulty. This supply is used by the logic system. Because it was low, the control applied to pins 12/13 of IC2108 was affected. C.W.

Bush 1418

If one of these sets is dead with no standby light and 320 V is present across the main reservoir capacitor, check R913. This $330 \mathrm{k} \Omega$ resistor can go open-circuit. C.W.

Salora J Chassis

No picture was the complaint with
this set. A scope check on the sandcastle pulse input at pin 7 of the TDA3562A colour decoder chip ICB200 showed that the field component was missing. The field timebase was working all right, the field flyback blanking pulse being lost at the junction of RB424/5 because TB209 (BC237) was short-circuit. N.B.

Toshiba C2225B

The owner insisted on having this set repaired despite its tired tube. There was an arc on sound and vision from cold, but you couldn't instigate it by physical means. It could be heard anywhere around the power supply and line output sections of the chassis. I eventually discovered that the earthing screw from the core of the LOPT to the PCB was corroded. Replacing the screw and retinning the land cured the fault. N.B.

Panasonic Alpha IW Chassis

This set was dead. Some quick voltage checks showed that the 12 V line oscillator supply at pin 7 of IC101 was missing. It comes from
the 12 V regulator IC851, which had no input because rectifier diode D855 was open-circuit. N.B.

Salora J Chassis

It's been a long time since we had a new fault with one of these sets. The field scan flickered and rolled intermittently. No amount of fiddling in the field timebase affected the scanning, but twisting the chassis did. The cause of the trouble turned out to be a dry-joint at the odd pin of the Ipsalo transformer the one in the centre of the diodesplit type (so the fault would not be possible with the tripler version of the chassis). N.B.

Sony KVM1421 (BE2A Chassis)

There were jagged verticals when the set had warmed up. The cause of the fault was $\mathrm{C} 814(4 \cdot 7 \mu \mathrm{~F})$ in the pincushion correction circuit. R.F.W.

Ferguson ICC7 Chassis

One of these sets had a strange sound fault. To start with the sound was normal, but after a while the volume and mute controls stopped
working - the on-screen graphics were still present. If the set was then put into standby and brought back on there was no sound. I suspected bad joints on the Nicam board and carried out a close examination, resoldering any joints that looked dodgy. To my great relief this cured the fault. R.F.W.

Sanyo CTP6144

A very intermittent hum bar was present only when an aerial was connected. If I touched the aerial socket and an earth at the same time the set would go to standby. The cause of the fault was the optocoupler D331. R.F.W.

Matsui 1492

This set had a peculiar fault after putting right the usual results of failure of C909 and C910 in the power supply (the line output transistor, the 12 V zener diode and the field output chip all had to be replaced). When the set was put into the standby mode the sound and picture went but a dark monochrome picture then appeared, with no sound. The cause was Q907 which was short-circuit. R.F.W.

THE NEW UNI-REMOTES FROM PHILEX

The NEW uni-range of Universal Pre-Programmed Remote Control covering the leading brands of television:
\star BRANDS CURRENTLY AVAILABLE FROM STOCK \star
PANASONIC - SONY - PHILIPS - HITACHI - MITSUBISHI - NOKIA - SAMSUNG

- BRAND FOR BRAND REPLACEMENTS. EACH UNI REMOTE COVERS THE MAJOR FUNCTIONS FOR TVs FROM ONE MAJOR MANUFACTURER AS WELL AS MANY OTHERS
- CODELESS SET-UP: READY TO USE IN SECONDS - JUST FOLLOW SIMPLE INSTRUCTIONS AND THE UNI-REMOTES ARE FULLY OPERATIONAL
- TELETEXT AND FASTEXT: UNI-REMOTES SUPPORT FASTEXT AND A WIDE RANGE OF THE OTHER TELETEXT FUNCTIONS AS LONG AS THE ORIGINAL TV SUPPORTS THESE FUNCTIONS
- PRE-PROGRAMMED FOR THE LATEST MODELS: AS WELL AS OPERATING CURRENT AND EARLIER MODELS THE UNI-REMOTES ALSO CONTAIN PRELIMINARY INFORMATION FOR OPERATING NEW TV MODELS
- REPLACES BROKEN OR LOST REMOTES
- CUSTOMER CARELINE AVAILABLE FOR ALL UK CUSTOMERS
- ATTRACTIVE CLAM PACKAGING IDEAL FOR RETAIL DISPLAY

FOR PRICE: PLEASE RING

- BARGAIN - THIS MONTH

PHILIPS
2.4 VOLTS
BATTERY B/U
10 PCS FOR
£10.00 ONLY
+ P/P + VAT
OR
5 PCS FOR
$£ 5.50$

뇨표웅

Please phone us for the types not listed. Please add 60p post \& packing and then add 17.5% to the total.
Trade Counter now open -Mon-Fri 9.00AM-5.00PM Sat 9.00AM-3.00PM
J.J. COMPONENTS
r/o 243-247 Edgware Road,
The Hyde, Colindale NW9
Tel: Sales Hotline 01812059055
Fax: Admin 01812052053
Free fax orderline only: 0800318498

Reports from Nick Beer
David C. Woodnott and Brian Storm

Ferguson F801

This unit had a dead camera head: the VCR section was OK. Checks showed that there was an open-circuit track between D903 and pin 8 of connector CN909/PG909. This is the camera on (low) line. The cause of the open-circuit was leakage from adjacent surface-mounted electrolytics, which all had to be replaced. N.B.

Panasonic VW-AMC2B (NVMS50B efc)

There was an odd fault with this commonly-used camcorder mains unit/battery charger. Charge LED1 was permanently on, and there was no battery charging in position 2. Transistor Q3 (2SB952P) in the switching section was short-circuit. N.B.

Panasonic NVRXI

This is one of the newer 'slimline' models. The fault was ability to focus but not to zoom, which rather restricted use of the camcorder. As a result of the lens design in modern units, with everything internal, the fault condition meant that there was only one point on the focus scale where a reasonably good picture could be obtained. The zoom motor drive was present and correct, but it didn't move. A new motor, part number VEM0451, cured the fault.

We've had similar problems, caused by the gear inside the lens, with various Panasonic models that use this design. The plastic gear

Camcorner

cracks and then slips on its shaft. N.B.

Sony CCDTR75E

There was a "no picture" note attached to this Handycam. Chroma only was present at the AV sockets - customers don't count this as much of a signal I suppose! The cause of the fault was C318 ($120 \mu \mathrm{~F}, 6.3 \mathrm{~V}$) on board VS67. A replacement capacitor and service restored the unit to good working order. D.C.W.

Canon UC16

Playback picture intermittent was the complaint with this fairly recent model. The cause was a detached connector between the mic/jack PCB and the main VTR PCB. It's becoming quite a common failure, usually because of too vigorous fitting/removal of the AV leads. The connector is available from Canon if required - it's CN001, part number VS1-5469-016-000. D.C.W.

Panasonic NVRX1

This newish camcorder would neither focus nor zoom - its E-E picture consisted of an unfocused 'blob'. Playback was OK. Error code F52 was displayed in the EVF: the manual tells us that this means "zoom motor lock". When I inspected the motor I found a surplus of hardened grease on the actuating shaft. All was well once this had been removed and new lubricant applied.
To avoid having to reset operating data etc. it's important to refit drive assemblies to current types of lens units very accurately. Although these set-ups are easier than ever now, using automatic programming via a PC interface, life can be very frustrating if you don't have such facilities. D.C.W.

Sony CCDV600E

The problem with this nice (I have one!) Hi-8 model was described as "no operation". The only sign of life was a flashing DEW symbol in the camera LC display. As there was no other activity, the dew sensor was clearly not to blame.

The cause of the trouble turned out to be IC201 on the mode control PCB (FD44). Don't confuse this with the more usual syscon mode control functions carried out by PCB SS134. A replacement IC and a general service restored good operation. D.C.W.

Canon UCIOE

There were no EVF pictures: operation was otherwise normal. The cause of the trouble was failure of $\mathrm{C} 2911(10 \mu \mathrm{~F}, 16 \mathrm{~V})$ on the EVF PCB. I have since had two more of these camcorders with the same fault. D.C.W.

Panasonic NVR50

This VHS-C camcorder would display, very intermittently, coloured lines down the EVF's colour picture. The symptom would often be present only once a day, which made fault finding rather difficult. I have previously had to replace the viewfinder flexi-connector to cure a number of different EVF faults produced by these camcorders. So one was ordered (part number VWJ0739) and fitted, clearing the fault. When the original one was examined, the start of a split across the middle of the connector, where it bends quite sharply beneath the viewfinder, was discovered. B.S.

Sanyo VMD6P

These 8 mm camcorders tend to have problems with their battery contacts, which are easy enough to replace. But after doing this there seemed to be some intermittent problems with the mechanism. When a cassette was inserted, the tape would sometimes not be loaded around the drum. The cause turned out to be the cassette-down switch, which was loose. There was still a problem when this item had been cleaned and retensioned: the mechanism would sometimes just whirr, then the camcorder would power down and sulk. The cause was a damaged gear in the rather eccentric loading mechanism. Part number is 11915 RQ . Once this item had been replaced the camcorder worked normally. B.S.

PLEASE PHONE US FOR TYPES NOT LISTED AS WE HAVE OVER 50,000 ITEMS IN STOCK. QUOTATIONS GIVEN FOR LARGE QUANTITIES

Please add $£ 1$ P\&P and VAT at $\mathbf{1 7 . 5 \%}$ to all orders All brand new components
We accept payment by Access, Switch, Visa, Cheque and Postal Order. (Government, College etc orders accepted) Prices quoted are subject to availability and may be changed without prior notice

LINEAR ICs/JAPANESE TRANSISTORS

ALLTV \& VIDEO PARTS SOLD ARE REPLACEMENT PARTS

VCR BELT KITS

REPLACEMENT IDLERS \& PULLEYS

PINCH ROLLERS

Pric	Model Pricer	Model Price	Model Price	Model
	FVHP615, 618, 620, 622, 710, 711, 745, 716,	\bar{p}	NS7000 140]	681, 682, 684, 685, 693,
P7			ORI	VC699, 700, 772, 750, 779, 780, 781, 7810.
V0, VP7	FVHPP10, 830, 844	BP5000, HRD110, 111, 120, 220, 225,		
VS2, V53, VS4, V55, VS6, VS8, vS9 ${ }^{140}$	FVHP905, 906, 907	455 1100p	VC150, 180, VH3, 33, 200, 201, 205, 212, 250	VC785, 786, 787, 793, 800, 7810, 7822, VCT72,
	918, 970, 975, 980, 990,	PIN		
VS247, 248, 250, 512, VS515, 516,				
			COMB 15000, 16000	VCB361
SP8		HRD 1520, 510, 520, 521, 522, 525, 527, 560,		vC220
				VCA
VS512 ${ }^{\text {a }}$,	F	HRS5800 ${ }^{\text {a }}$, 350p	VH530, 532, 535, 536, 600, $630,635,644$	
V $222,23,25,35,37,38,53,66,75,422,425$,				vCA
		BR7030, BRS600, HRD160,	VH800, 820, 850, 888, 89,	
$365,96$	FVHP20	210, 211, 217, 227.		VCA $60,605,615,62,63,67,68,1031,11613$,
VSF10, 11, 12, 15, 180, 190, 200, 210,22	FVHS 10,30 , ${ }^{\text {a }}$	$350,400,430,440,441$.		
221, 222, 230, 240, 30, 33	PIN		VH2151, 2308, 22042400, 2500, 2600, 270	VCT410, 610, VCT 1314, 5313, VC790 140p
			VH	,
$\begin{aligned} & 260,2 \end{aligned}$				
				VCA $340,43,47,50,60,605,615$, VCDB06,
		HRJ600, HRJ605, HRJ815,	VXL20, 25, 30 ${ }^{\text {a }}$, 140 p	
$\left.\right\|_{55,60,64,65,70,73,74,75,}$		HRS9200	PS	VCTS313
VSP110, VSX $560, \mathrm{VS} \times 580 \mathrm{l}$			VR	PINCH ROLLER ASSEM
26			VR2024	SAISHO
S5, VSA77		Vx1000, VX2000, vx2500, V	VR67	VHL3, VR1
	1291,	VX6000		3600, $3650,3800, \mathrm{VRS} 4400, \mathrm{VRS} 5000$ 140p
, 427, 462, 465, 467, 485, 498,	$\frac{2000}{\mathrm{HITACHI}}$	MITSUUISHI	DV856, 586, VR702, 703, 6485, 6585, 6589,	VR3400 140p
867, 965, 967, VSA650, VSF 10, 11, 12, 44, 15,				SAMSUNG
	39, 88, 330, 680, 4200.	HSE12 16.1721		SV716, 717.
VSR110, VS $\times 100,400,450,470$		0, 16, 170, 190, 210, 23, 25, 250, 27, 33, 34, 35,		611,
Chror			24	910, VX510, 520, 616,
99		4, 55, 555, 57, 58, 59, 68, HSMS2, 9, HSS11.		VX617,619,626,627,629 140p
ALBA				
VCR3000X, vCR4000				$750,770,971,8220$, VB8225, v1710, 730, 750,
VCR5000, VCR6000				70
			PRESSURE ROLLER ASSEMBLY PS403-40205	
很7000, VCR7				
	57		VR3210, 3219, 322, 3229, 323, 53580, 486,	vPx31
	vT		, 8 , 61	vx9880
				PX3
			VR6291, 6293, 6362, 6367, 6390, 6391, 6393	
VCR9244, 9340, D08900, 8904,		HS200, HS300, HS301, HS302, HS303, HS304,	51.	K32
TVR1, 2, 3,4 140p VCR7000 140 p	VTM $736,740,745,746,748,753,754,820$,		VR6975, 86B1, 63 SB7, 68SB4, 71SB4, 7	
600, 6100, 6200, 86				
			20RW7, 21DV1, 21DV2, 2SB01, 2SB02, 2SB11,	
VCR8700, 8800 19340	$\left.\right\|_{0} ^{925}$			
C		30,70		
TX3650, UF20, VCR3000, VCR3002, vCR4000,	VT3000 140p	Nato	VR231, 232, 332, 422, 4229, 512, 5229, 722	SONY
30	20, 522,	NV100, 180, 300, 330PX, 332, 333, 340, 366.		SLC5, 6, 7, SL3000,
PINCH ROLLER ASSEMBLY PART NO:	530 , VTF70, 780		V8501 PR38 1409	SLIGME, SLTMME
		AG6010, 6015, 6100, 6200, 6400, 6800,		
VCR3000, 3002, 9500			VHR11100, 1110, 1150, 1200, 1300, 1500, 21	
VS1004 VS 1104		NV230, 250, 260, 280, 370, 380, 430, 431, 433,	$\begin{aligned} & 230 \\ & \text { VH } \end{aligned}$	
FERGUSON			VTC5000, $5150,5300,5350,5400,5500,600$	SLT50
	VTM230, $231,235,284$, VTS 390			BMC 100, BMC200, BMC500
	Hinari			SLV201, 202, 301, 302, 401, 401,
	V20H, VXLL, VXL6, VXL7, 8, 9, 10, 11, 19, 90,	NV8610, 8620, NVG11, 14, 16, NVG7, 10, 12,	ННез $100.3300,3310,3400,3500,3700,38: 100$	
8933, 8940, 8947, 8942	Hi3V, VTV100, 200	15, 18,	VHP	, 21.
3V35, 3V36, 3V38, 3V39, 3V42, 3V43, 3V44	12, vx13			474, 656,715
	,	a		SLV757,777
	VTV100, VXL 10, VXL11, VLX9,	NVH7	15	SLV255
		NV		Ther,
	PINCH ROLLER ASSEMBLY	AG6880, 6720, $7150,7330,7350$,		416, 474, 625 , 656, SLV711
$\begin{aligned} & 8950,895 \\ & 2020,260 . \\ & 200 \end{aligned}$	V20H, VxL5, VXL6 MOOK KT	7355, 7650, NVH65, 75, NVJ30, NVL20, 23		815, 825, SLVX30, 50, 55 , 140
51R, 52L, VC14iL				SLV12
,	700	NW 88000 140p	500	
FV57 ${ }_{\text {FV35 }}$		NV	OVHR77310, 8000, 8070, 8100, 82000, 8250,	SIV2 15, 216EE, 275, 282, 315, 325, 353,
	HRD	NVHD 100, NVHD101, NCHD90, NVSD30.	46	
	150			
$52,3 V 43,3 V 44,3 V 45,3 V 48,3 V 53,3 V 54$, $1356,3 V 57,8945,8947,8948$ 135	HRD160, 220, 2	PINCHRO	VHR 120, 135, 150, 190, 4150, 4160, 4350,	27,757,
OLLER ASSEMBLY	$\begin{aligned} & 566, \\ & \text { RRS, } \end{aligned}$			9 9LVK 30 A
0 p				SLvx
PINCH ROLLER ASSEMBLY	析			SLVX65BR, SVO140, $160 \quad 1250$
$40 \mathrm{p}$	HRD670, 720, 730, 740, 770, 820, 830, 840,		VHR3100, 3200, 3300, 3310, 3400, 3700, 3	PINCH ROLL ER ASSEMBI
		NVL20, 23, 25, 28, NWW 1 300p	PiNCH ROLLER ASSEMBLY	
3V58, 3V59, 3V64, 3V65, FV10, 11, 12, 13, 14,		PINCHROLLER ASSEMBLY		SLV210, 212, 270, 273, 275, 285, 300, 310, 335,
22, 26, 30, 32,33				
FV39, VC141L			80	PINCH RO
	HR	740, 744, 746, 760, 764	VC6200, 6300, 7300, 7000, 7750, 7800, 8300,	SV600,
0p				3310, 3400, 3700, 3880, VHRO500, 700 1350p
A 7 , FV6E8BLY FV70, FV71, F			vci	PINCH ROLLER ASSEMBLY
			VC300, 387, 402, 471, 473, 477, 481, 482, 483,	
FV77 H ROLLER ASSEMBLY		go96		
NHROLL		9110, 9120, 9510, 9520,		
	HRS5000, 5500, 8000, 9000, 8R7030, 7040,			
20, 520, 530 140p				

odels \& Description Or	Order Cod	rice	Models \& Description Orde	code	Price	Models \& Description Or	Order Code	Pric	Models \& Description	Order Code	
UNIVERSAL VIDEO LAMP 9V 80 mV (310 mm WIRES)	VL01	25p	AIWA, AKAI, ALBA, AMSTRAD, VL05 100p						AUTHENTIC (N850), DECCA (VR8300). GRANADA (VHSTJ3,		
PANASONIC VIDEO LAMPS	VL02	30p									
SHARP VIDEO LAMPS	VL02	30p				VJ3), ITT (VR3913,					
HTTACHI 5381682 (VT63, VT64) VIDEO LAMPS	VL04	135p				3963) JVC (HT7200, 7300					
AKAI IVS 10),GRANADA (VHSXJ3), Π (VR3993,3994), JVC (HR2650, 7600, 7610, 7650, 7655), TELEFUNKEN (VR530, 535, 539, 550, 630,650), THOMSON (V309, 316, 357. VK309, 411,TX8000), FERGUSON (3V31, 8941, 8942)		40p				7700) TELEFUNKEN (VR450, $529,540,549,620,640,920$,					
						BLAUPUNKT, ORION (VH1, 2A), NATIONAL (NV200,2010, 3000, $7000,8150,8200,8400,8600,8610$ 8620), SHARP (VC2300, 6000, 620 $6300,7300,7700,8300$)	VL02	30p	529, 540, 549, 620, 640, 920, 1920), THOMSON (V4100, VK308, 309, 312,		
			GRANADA (VHSAY3),SHARP (VC200, 381, 384, 385, 386, 388, 390, 393, 9300, 9500, 9700)	VL08	45p				410), FERGUSON (3V23, 29, 8923, 8924, 8929, 8930, 893		

REPLACEMENT VIDEO CASSETTE HOUSINGS

MODE SWITCH

NV2000, 2010, 7000, 7200, 7800 (VS50048) NV230, 260, 430, 810, 870, 2300, 4300 (VSS0110)
NV830 (VSS0091)
NV300, 333, 340, 366, 688, 777, 778
(VSS0060
NVG21, 25, NVH65, NVD80 (VSS0175A)

£2.25

£2.10
$£ 3.75$
£2.00

AUDIO CONTROL HEADS

AMSTRAD ORIGINAL NO: 150751
Used on: AMSTRAD TVR1, 2, 3, VCR4600, 4600MKH, 4700, FUNAI VS2, VCR4600, 4800, 5200, 5600, 6600, VIP3000, 5000 Also fits: FIDELITY, FUNAI, HINARI, PROLINE, SCHNEIDER, ORADA, UNIVERSUM ORDER CODE: AHO1 PRICE: 1350p amstrad original no: 153134 Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600, 8602 8603, VCR8604, 8700, 8704, 8714, 8800, 9005, 8244 Also fits: ANTECH, BONDSTEC, CASIO, CROWN, FIDELITY, GOLDhand, granadar, hinari, MArquant, OME GE, PROFEX, SCHNE DER, SEG, SENTRA, SHINTOM, TASHIKO, TATUNG, TOWADA, UNIVERSUM ORDER CODE: AH02 PRICE: 1450p

Replacement Audio Control Video Sound Head for National Panasonic

PART NUMBER	MODELS	PRICE
VBR 0091	NVG7 etc	875 p
VBR0050	NV300, NV340 etc	875 p
VBR0061	NV77 etc	875 p
VBR0103A	NV250, NV450 etc	625 p
VBR0125		625 p

VIDEO TOOLS

VIDEO CLEANING STICKS

Price 17p each 15 p each pack of 10 pcs 13 p each pack of 25 pcs Order Code: SP14

VIDEO MAINTENANCE TOOLS

Set of 8 Allen keys packed in a plastic wallet
Order code: TOOL 9, Price 125p Specifically designed for video maintenance
UNIVERSAL HEAD EXTRACTOR
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads. Order code: TOOL 8, Price 600p

VCR ALIGNMENT KIT

CONTAINS: SET OF 7 HEAD \& TAPE PATH ALIGNERS

SET OF 8 ALLEN KEYS

- RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL
- RCA ADJUSTMENT TOOL FOR TAPE GUIDE POSTS
- RCA TYPE BACK TENSION TOOL
- TENSION ADJUSTMENT TOOL. FOR VARIOUS USES - VCR ADJUSTMENT TOOL
CIRCLIP PLIERS
3 REVERSIBLE SCREWDRIVERS MICRO SCREWDRIVER
SPRING HOOK

VCR HEAD EXTRACTOR
Order code: TOOL 10, Price 2900p

TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

This transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

BACK UP BATTERIES

PHILIPS
Part Nos: 138-101138, 138-10313 1.2v 90mAH Order Code: BB01
Part Nos: 138 - $10229,2.4 v 100 \mathrm{mAH}$
Order Code: BB02

FERGUSON
Part No: 00E6-067-0011.2V 100mAH
Order Code: BB03
Part Nos: 00E6-606-8001 2.4V 100mAH
Order Code: BB04

Price: $90 p$
Price: 150p

MAKE \& MODEL	CODE	PRICE
PACE PRD800, PRD900	SATPSU1	600 p
PACE SS9000, 9200, 9010, 9210, 9220	SATPSU2	550 p
AMSTRAD SRD510, SRD520	SATPSU3	600 p
AMSTRAD SRD500	SATPSU4	600 p
AMSTRAD SRX340, SRX345, SRX350	SATPSU5	600 p
PACE D100/150	SATPSU6	650 p
CHURCHILL D2MAC	SATPSU7	650 p
PACE MSS100	SATPSU8	730 p

SATELLITE TUNERS

PACE PRD800/MSS200 2Ghz (221-2077062) ORDER CODE: TUNER01 PRICE: $1400 p$ + VAT
PACE PRD900/MSS1000 2Ghz (221-21770112) ORDER CODE: TUNER02 PRICE: 1400p + VAT

SWITCH MODE TRANSFORMERS
PACE 9000
ORDER CODE: PACE9000 PRICE: 800p
PRD800/PRD900
ORDER CODE: PRD800 PRICE: 550p

MAKE \& MODEL	CODE	PRICE
PACE MSS200/300 APPOLL	SATPSU9	900 p
PACE MSS500/1000	SATPSU10	1230 p
FERGUSON SRD4	SATPSU11	650 p
ECHOSTAR SR5500	SATPSU12	1600 p
ECHOSTAR 6500/7700/8700	SATPSU13	2750 p
AMSTRAD SRD600	SATPSU14	2600 p
MIMTEC (Surensen)	SATPSU15	700 p
AMSTRAD SRD700, SR950, SRX100, 301, 501, 502, 1002, 2001, SRD2000 SAT250	SATPSU16	650 p

SATMETER

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite RX powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *Input impedence: 70 Ohm
* Power amplifier: 18db *Detection Range: -60 to -10 DBM
* Max. input signal: - 10 DBM

ORDER CODE: TOOL22
PRICE: 8500 p

REPLACPMENT TV SWITCES		
GRUNDIG	SONY	SONY
PART No: 29703, 29102 USED ON: C7500, C8500. C8502, C8712 . . ETC Order Code: SW1 Price: 140p	USED ON: KV1612, KB1612, KV1614, KV2052, V2056 KV2062, KV2067, KV2212 . . ETC Order Code: SW5 Price: 150p	```USED ON: KV2020 (POWER SWITCH 21mm +Remote) Order Code: SW6 Price: 200p```
Order Code: SW1 Price: 140p	Order Code: SW5 Price: 150p	Order Code. SW6 Price. 200p
PHILIPS	USED ON:	
USED ON: K30, K35, K40, KT3, KT4	KV1400, KV1440, KV2040, KV2060 (POWER SWITCH 26mm)	SONY 2 PIN FUNCTION SWITCH
Order Code: SW13 Price: 95p	Order Code: SW12 Price: 125p	Order Code: SW9 Price: 35p

NB. All fuses are made in the UK and fully meet BS4265 \& BSI362 safety standards and should not be compared with cheap imported types

VOLTAGE TESTER

A terminal screwdriver incorporating continuity \& voltage with Euroslot ORDER CODE: TOOL11

PRICE: 220p

CURRENT RATING	ORDER CODE	PRICE
6.3 A	FUSE38	100p
8A	FUSE39	100p
10A	FUSE40	100p
315 A	FUSE41	$85 p$
4A	FUSE42	85 p
5A	FUSE43	85 p

38mm CERAMIC TIME LAG
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">CURRENT RATING</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">ORDER CODE</td>
<td style="text-align: center; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">PRICE</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">10 A</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">FUSEA8</td>
<td style="text-align: center; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">825 p</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| CURRENT RATING | ORDER CODE | PRICE |
| :---: | :---: | :---: |
| 10 A | FUSEA8 | 825 p |</table-markdown></div>

 ** ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES **
SPRING HOOK

Spring Hook, to unlock springs in audio tape recorders \& VCRs
PRICE: 265p

FAULT FINDING / COMPARISON BOOKS

Satellite Fault Finding Guide Issue 1. Listing about 1,000 faults for over a range of 24 different brands. Order Code: BOOK05.
Price £8.50 - No VAT.

Video Recorders Edition 51997

Over 300 pages packed with more than 5500 faults for different brands
Price $£ 15.00$ - No VAT. Order Code: BOOK01

SERVICEAIDS			
DESCRIPTION	VOLUME	CODE	PRICE
VIDEO HEAD CLEANER	75 ML	SP01	125p
SWITCH CLEANER	176 ML	SP02	140p
SILICONE GREASE	200ML	SP03	170p
FREEZE IT	170ML	SP04	280p
FREEZE IT	400 ML	SP16/	570p
FOAM CLEANER	400ML	SP05/	155p
ANTI-STATIC	150 ML	SP06	155p
AEROKLEANE	135ML	SP07	185p
AERO DUSTER	150ML	SPO8	290p
AERO DUSTER	400ML	SPi7	550p
PLASTIC SEAL	200 ML	SP09	230p
GLASS CLEANER	250ML	SP10	155p
COLDKLENE	250ML	SP13	225p
EXCEL POLISH 80	250ML	SP18	145p
ADHESIVE 120	400ML	SP19	190p
LABEL REMOVER 130	200ML	SP20	240p
REFURB 140	400 ML	SP21	240p
TUBE SILICON GREASE	50 GRAMMES	SP11	200p
TUBE SILICON SEALANT WHITE	75 ML	SP22	250p
TUBE SILICON SEALANT CLEAR	75 ML	SP23	250p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	140p
DRIVE CLEANER	200ML	SP24	130 p
SCREEN CLEANER	200ML	SP25	145p
COMPUTER CARE KIT	-	SP26	2100p
All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:			
300p for 2 - 5 cans 50	Op for more than 5 cans		

TELEVISION Edition 6

Lists more than 8,450 faults with $\mathbf{4 6 0}$ pages covering 58 different brands
Price: 1600 p only - no VAT. Order Code: BOOKO2

Satellite Repair Manual Edition 4
A comprehensive guide to receiver reviewing, featuring stock faults and installation tips. Price $£ 15.00$ Only No VAT Postage 100p Order Code: BOOK03

SOLDERING ACCESSORIES

DESCRIPTION

ANTEX SOLDERING IRONS CODE PRICE 25 WATT 240 VAC (\times S25W 240 V) \quad S101 900p 15 WATT $240 \mathrm{VAC}(X S 15 \mathrm{~W} 240 \mathrm{~V}) \quad$ S102 900 p 25 WATT SPARE ELEMENT 15 WATT SPARE ELEMENT SOLDERING STAND \& SPONGES SOLDERING STAND (MADE BY ANTEX) SPARE SPONGE SOLDER 18 SWG 500 GRAMMES 20 SWG 500 GRAMMES 22 SWG 500 GRAMMM
SOLDER MOP STANDARD GAUGE $1.2 \mathrm{MM} \times 1.5 \mathrm{M}$ SOLLDER MOP $1.2 \mathrm{MM} \times 10 \mathrm{M}$ DEESOLDERING PUMP SPARE NOZZL

SEMICONDUCTOR COMPARISONS 1997/8 Listing more than 31,600 Semiconductors with suitable alternative complete with descriptions and base information.
Price: $£ 15.50$ - No VAT. Order Code: B00K04
SEMICONDUCTOR COMPARISONS 1997
The new 1997 Jaeger Semiconductor with 952 pages packed with information on over 80,000 semiconductors in much greater detail plus mar keting data on SMD devices and a separate generic table of all type designations. Price: $£ 40.00$ only - No VAT (+ £5 Postage). Order Code: BOOKOG

I.C. PROTECTORS

ICPF10, ICPF15, ICPF20, ICPF25, ICPF38, ICPF50, ICPF75
ICPN5, ICPN10, ICPN15, ICPN20, ICPN25, ICPN 38, ICPN50, ICPN75

PRICE: 30p EACH ONLY

CASSETTE DC MOTORS

6V MOTOR	170 p
9 V MOTOR	170 p
12 V CW MOTOR	170 p
12 V CCW MOTOR	170 p
13.2 V MOTOR	290 p

CASSETTE TAPE HEADS

MONO HEAD
 $90 p$

STEREO HEAD $\quad 110 \mathrm{p}$
MINI HEAD 150 p
AUTO REVERSE HEAD 200p

				$C D$	D	UPS				
lodela \& Description				Order Code Price		Modols \& Description			Order Code	Price
$\begin{aligned} & \text { IWA } \\ & \text { Co07 } \\ & \hline \end{aligned}$						SAD30, SLCH9, SLP150, SLP170, SLP200, SLP202, SLP222, SLP230, SLP250, SLP333, SLP370G, SLP400C, SLP555, SLP777, SLP999, SLPA10, SLPC20, SLPC25, SLPJ25,				
				KSSS151A	1900p					
X.990A, DX. DIA				KSS152A	1600p	SLPJ26, SLP P27, SLP 37 , SLPJ45, SLPK25, SLPK26, SLPS50, SLPS70, SLP PS700, SLPS840, SLPS900			SOAAD70A	2350p
KL60, CXL66G, CXLBO, CXN3 100, CXN320, CXN3300, CXN360, CXN400, CXN430, CXN540, KN550G, CXN990, CXN999, CXNV20, CXSL70, DXZ9100M, FDN636, FDN6636, FDN939,						PHILIPS				
						Az8304, CD070, CDO80, 690, 910, 920. PART NO. 4822-691-20768			4822-691	3100p
TX60, LCX66G, LCX70M, LCX80, M7400, M75, NSX320, NSX360, NSX400, NS $\times 430$,						CD100, CD130, CD1380, CD1482, CD200, CD204, CD210, CD300, CD303, CD304, CD380, CD480. CD482, CD500, CD502, CD582, CD583, CD584, CD610, CD620, CD630, CD780,				
: $5550, \mathrm{XC750,XC900}, \mathrm{XC950}, \mathrm{XCN992}, \mathrm{XG320}, \mathrm{XG360}, \mathrm{XG400}, \mathrm{XG990}, \mathrm{ZD3000M}, \mathrm{ZD3100M}$				KSS152A	1600p					
AP1, CXL7, CXL8G, CXLC50P, CXZ58, DXM740, DXM75, DXM76, DXM 77, LCX50, LCX7. X8G, LCXAP1, XC002, XC004, XC005, XC777						$\text { CD781, CD782, CD840, CD883, CD960, CDF } 104, \text { CDM4/19, FCD185 }$			691.302	500p
				KSS2108	2000p	AS440, AS445, AS540, AS640, AZ8048, AZ8640, CD070, CD080, CD091, CD163, CD165,				
31, XP3 $3, \mathrm{XP55}, \mathrm{XP80} 6$				KS220A	2500 p	FW26 FW330 FW36 FW350 FW380 FW40 FW41, FW46, FW56, FW66, FW68				
$6 \times \mathrm{XP7}$				KSS331A	3400 p				CDM12.1	${ }^{1800 \mathrm{p}}$
(A) 73. 0 C93									KSS2108	${ }^{2000}$
				KSS151A	1900p	$\frac{\text { A28006 }}{\text { FW11 }}$			OPTIMA6S	3300p
25, CD26, CD27, CD32, CD36, CD37, CD52, CD55, CD57, CD650, CD670, CD69, CD750, CD79,				KSS210A	180	$\begin{aligned} & \text { PIONEER } \\ & \text { PDM400, PDM410, PDM } 500, ~ P D M 510, ~ P D M 600, ~ P D M 610, ~ P D M ~\end{aligned} 00$, PDM 710, PDM 730,				
M480, CDM600, CDM670, CDEM770, CDM959, MX550, MX570, MX650, MX670, MX750, MX950				Kss210A	1800p					
NON :150011, DCD1520, DCDE3520				KSS151A		PDT303, PDT403, PDT503, PDX940M, PDX950M. PDZ560T, PDZ72T, PO273T, PDZ81M, PDZ82M, PDZ83M, PDZ960M, XD753T, XD754T				
11400, DCD600, DCD800				KS152A					KSS151A	1900p
P1420, DCD520, DCD610, DCD620, DCD660, DCD810, DCD820, DCD860, DCD910, DCD920				KSS210A	18000	PD7700, PD8700, PD970, PDCP420, PDCP520M, PDCP520T, PDJ400T, PDI500T, PDJ800M, PDJ.900M, PDM430, PDM450, PDM550, PDM630, PDM650, PDM750, PDM901, PDP710T, PDP720T, PDP910M.				
1015, DCD1290, DCD2060, DCD2060G, DCD315, DCD480, DCD580. DCD615, DCD715,				KSS240A	3000p	PDP920M, PDS501, PDS601, PDS701, PDS701G, PDS901, PDT310, PDT510, PDZ, PD7570T, PD774T, PDZ84M, PDZ970M, PKA1349, S125CDT, S135CDT, S303CDM, S303CDT, S505DM, S505DT, S707DM.				
IDSTAR										
52A, CD952AJ, CD952LJ, CD952SJ, FFH101KL, FFH101WL, FFH222AL, FFH272L, (33L, FFH373K, FJ606, FR606L				KSS210A	1800p	PDM400, PDM410, PDM500, PDM510, PDM600, PDM610, PDM700, PDM710, PDM730,			PEA1030	4400 p
20AL, CDG30SL, FFH212ALL.FFH212E				KSS2108	2000p	PDT303, PDT403, PDT503, PDX940M, PDX950M, PDZ560T, PDZ72T, PDZ73T, PDZ81M,				
MDIG						PDZ82M, PDZ83M, PDZ960M, XDZ53T, XDZ54T, XDZ	55, XDZ	Z62M, XDZ630, XRZ82	PWY1009	4800p
100, CD101MCD904, MC10, NEW ORLEANS CD				HOPM3	2150p					
				KSS210A	1800p	SAMSUNG CD20			HOPM3	${ }^{2150} \mathrm{p}$
100, RR1900CD, RR3100CD, RR4000CD, RR610CD, RR700CD				KSS2108	2000p	CD1200, CD1310, SCM-6000, SCM6900			KSS210A	${ }^{1800}{ }^{\text {p }}$
0, CDP90				KSS220A	2500p	$\frac{\text { RCD } 1200, ~ R C D 1300, ~ R C D 1350, ~ R C D 1600, ~ R C D 2600, ~ R C D 990, ~ R C D 995, ~ S C M 6900 ~}{\text { S }}$			SOH9OTAN	3600p
5				KSS331A	3400p					
				OPTIMAS	3000p	DCFS3, DCT55, DCX502, DCX701, DCX702, DCX802, DCX891, DCX891N, MCDZ10.				
CHI									614218	2300p
160				HOPM 3	2150p	DCFS5, MCD450K, 660 K , MCDZ30L, 60 F . PART No. 6142205006			614220	5600p
				KSS210A	1800p	DCX1000MD, $\mathrm{DC} \times 1003, \mathrm{DCX} 900 \mathrm{MD}, \mathrm{DCX} 903, \mathrm{DC} \times 91$			KSS210A	1800p
				KSS2108	2000p	DCD10, DCD11U, DCD20, DCD30, DCD30AT, DCD6, DCD8U, DCMS1, DCX110, DCX120,				
						DCX210, DCX220, DCX993, DCX994, MCDMS40L, MC	CMS50L,	MS660L, MCDZ1L,		
992, LATE 1987-1988 - XLE300BK, XLE318K, XLE51BK, XLE900BK, XLME91BK, XLV101BK, BK, XLV222BK, XLV311日K, XLV333BK, X:Z1010TN, XLZ4118K, XLZ444BK, XLZ555EK, XLZ611BK						MCDZ2L, MCDZ3L. PART No. 6142391303			614239	3300p
				OPTIMA3	4000p	DCD12. PART No. 64500559666			845005	3700p
110 CASSETIE, MINI SYSTEMS -MDDELS $1990-1992$ 2				OPTIMA4S	5000p	MCDZ31L, MCDZ41L, MCDZ61L, MCDZ71L			KSS210B	2000p
						SHARP				
						CD-111, CD-301, $\mathrm{CD}-302, \mathrm{CD}-304, \mathrm{CD}-310, \mathrm{CD}-\mathrm{C3}, \mathrm{CD}$	L700, CO	CO-U1, CO-U10, CO-K10,		
				OPTIMA5	3000p	CD-X12, CD-X15, CO-X16, CD-X17, CD-X20, CD-X9, C	K1650, CN	CD, DX. 150, DX-160. DX-450,		
						DX-450, DX-461, DX-650, DX-660, DX-999, DX-A3, DX	- 445 D	, DX-R7, DX.R75, DX-R750,		
						DX-R77, DX-R770, DX-R820, DX-R840, DX-Z100, DX-20	Z1000, Dx	20, GFCD55, OT-30CD, Or-33CD.		
OOMM, XLMXG7, XLMXG9, XLV163TN, XLV164BK, XLV174, XLV263TN, XLV264BK,						OT-350CD, OT-37CD, OT-38CD, OT-CD20, OT-CD33, SG-W1CD, SG-W2CD, SYS302, ZCD7CD. PART No.	$\begin{aligned} & \text { S95, SC-7 } \\ & \text { CTRH812 } \end{aligned}$	SC-99CD, SC-RS95, SG-A1,	RH8122A	6750p
				OPTMA6S	3300p	OT-50CD, OT-60CD, 0180 CD . PART No. RCTRH8124A			RH8124AF	$2900{ }^{\text {p }}$
P660SG, DP8020, DP87, L1000D						DXR-8400. PAAT No. RCTIRH8130AFZZ			RH8130AF	2900p
				KSS152A	1600p	CDS3360., 360H, 370, 450HfE, CMS 150CDH. CMSR40	OCDH, CP	CPR400, CPS350, 370.		
DP1510, DP2010, DP2030, DP3010, DP3030, DP3050, DP4030, DP491, DP5010, DP5030, OP520, DP7030 DP7040 DP7050 DP730 DP920 DP930 DP950, PPM650 DPM6430,						PART No. RCTRH8136AFZZ			RH8136AF	4500p
						SONY				
DP520, DP7030, DP7040, DP7050, DP730, DP920, DP930, DP950, DPM650, DPM6630, D. DPM850, DPM991, DX6520, M225, M25, M450, M850, PD3030, PDM991, RDX25,						KSS240A			KSS240A	3000p
XXCC3L, UD202, UD302				KSS210A	1800p	KSS121A			KSS121A	3500p
PC72, DPC77, DPC80, DPC92				KSS220A	2500p	KSS151A			KSS151A	${ }^{1900}{ }^{\text {p }}$
PP2050, DP3060, DP501, DP5060, DP722, DP76, DP85, DP89, M77A, PD3060,						KSS210A			KSS210A	1800p
				KSS240A	3000p	KSS210B			KSS210B	2000p
PPC521, DPC531, DPC631K, DPC721, DPC731				KSS331A	3400p	KSS220A			KSS220A	2500p
PP2060. PART No: RCTRH8136AFZZ				RH8136A	4500p	KSS331A			KSS331A	3400p
						KSS360A			KSS360A	2600p
SLP202A, SLP212A, SLP222A, SLP277A, SLP377A, SLP477AK, SLP477A, (SLPG200A, SLPG400A, SLPG500AK, SLPG500AS, SLPJ24A, SLPJ26A,				691.30209	6500p	technics SLP200, SLP230, SLP250, SLP333, SLP555, SLP777, SLPJ45, SLPS700, SLPS900	LP999,SL	, SLPC20, SLPJ25,	SOAD70A	${ }^{2350}{ }^{\text {p }}$
			R	$1{ }^{1}$	7	ONTROLS				
(ion	Code	Price	Description	Code	Price	Description Code	Price	Description	Code	Price
			A512120/230	RC900	650p	PANASONIC		SONY		
	RC876	650p	A514790	RC901	650 p	EUR51200 RC200	650 p	RM604, RM605, RM606	RC140	650p
	RC891	650p	A5088470	RC902	650p	TC2200 RC204	650p	32 CHANNEL	RC140	650p
	RC896	650p	A518612	RC903	650 p	VSQ0357/NV730 RC202	650p	RM613	RC141	650p
			SCL002	RC904	$650 p$	TNQ1621 RC203	650p	RM632, RM636	RC160	600 p
	RC894	650p	${ }^{\text {C20 }}$ 2096	RC905	650 p	PHILIPS		TATUNG		
			A511940 655602 H		$650 p$ $650 p$	$\begin{array}{ll}\text { RC5002,5154 } & \text { RC134 } \\ \text { KT3 NON TEXT } & \text { RC135 }\end{array}$		FXA	RC877	650p
	RC879	650p	655602 H	RC1920	$650 p$	$\begin{array}{ll}\text { KT3 NON TEXT } & \text { RC135 } \\ 69117032\end{array}$	650 p 650 p	RC70	RC883	650p
DA						69117194 RC180	650 p	FX70 FASTIEXT	RC894	650p
SAL TEXT	RC309	650p	FS4 ${ }^{\text {F }}$	RC148	6550p	RC5991-UNIV RC300	550p	TELEFUNKEN		
โ, 70155G, 70115G, 70133G	RC880	650p	RG305	RC305	650p	RC38 \quad RC301	650p	FB632	RC632ST	T 650p
	RC882	650 p	RG306	RC306	650p	KT3 TEXT RC5301	650p	FB639	RC639	650p
G	RC884	650p	FS9/1-10/1	RC307		RC5352	650p	THORN/FERGUSON		
			VS5 RUK	RC308	650 p	RC5375 RC5375	650p	3V35-42	RC342	600p
P300	RC107	650p	VS4-1	RC308	650p	RC5 STANDARD RC5903	550p	3V31-32	RC344	650p
P300	RC380	650p	MULTICONTROL (17C20)	RC311	650 p	RC5903 RC5903	650p	3V57-58	RC628	650p
	RC401	600p	LOEWE			SALORA SERIES		TX10 TEXT	RC732	575p
$\begin{aligned} & 30 \\ & \text { P610 } \end{aligned}$	RC600	650p	DC11	RC146	650p	$\begin{array}{ll}\text { SERIES L } & \text { RC190 }\end{array}$	$650 p$ $650 p$	TX10 STEREO TEXT	RC738	5750
	RC610	650p		RC146	650	86173 SANYO		TC9-90-100	RC740	600 p
	RC612	650p	${ }_{\text {MATSUI }}^{010270601}$			SANYO		3V55, FV11	RC783	650p
P650	RC650	650p	VX770	RC889 RC892	$650 p$ $650 p$	RC218, JXGE	650 p 650 p	TX100 FASTTEXT	RC789	650 p
	RC660	650p				JXDE RC884	650p	TX100 ST, FASTTEXT	RC789	$650 p$
-	RC661	650p	NOKIA SATELLITE	RC550		VHR2300 RC890	650p	PROFESSIONAL	RC790	650 p
				RC550		RC628 RC865	650p	TOSHIBA		
$\begin{aligned} & 6 L E 830 \\ & 655602 \end{aligned}$	RC140	650p	ORION			SHARP		CT937	RC950	650p
	RC1920	650p	RC53	RC892	650p	G0121CESA, 123CESA, 204, 251 RC140	650p	CT9117	RC951	650 p

Preprogrammed Universal Remote Control

e remote control to operate Televisions, Videos and Satellite Receivers Ixiliary Options!
ces up to 8 remotes with one - Simple 4 digit setup routine
pls 1000 s of models - Teletext functions with Fastext
(large key) layout - Code Search Facility
h and easy to operate - Replace broken or lost remotes lal remote not required
bode: 8 WAY
PRICE: $1450 \mathrm{p}+$ VAT

2 way Preprogrammed Universal Remote

- Replaces up to 2 remotes (TV/Satellite)
- Simple key arrangement

Order Code: 2 WAY
PRICE: 925p

Universal Pre-Programmed Brand Replacement Remote Controls

- Brand for Brand Replacement

Each remote covers the major functions for TVs from one major manufacturer as well as many clones.

- Codeless set-up
- Teletext and Fastext

All these remotes support Fastext and a wide range of other Teletext functions

- Pre-Programmed for the latest models

As well as operating current and earlier Models these remotes also contain information for operating new TV models

- Replaces broken and lost remotes
- CE approved

BRAND	ORDER CODE	BRAND	ORDER CODE
PANASONIC	RCUN101	MITSUBISHI	RCUNI05
SONY	RCUN102	RONIA	RCUNI06
PHILIPS	RCUN103		
HITACHI	RCUNI04		

PRICE: $£ 8.50$ + V.A.T.

GRANDATA LIMITED

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND. HA9 0HB

Telephone: 01819002329 Fax: 01819036126 E-Mail: grandata.Itd@btinternet.com OPEN Monday to Friday 09:00-17:30 Saturday 09:00-14:00

HELP WANTED

Abstract

The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted: New or good used LOPT (type FEA214) for a 17 in . CTX monitor, CPS-1760 Proscan. Colin McCormick. Please call 01752405 201 evenings or e-mail colinmc@mail.eurobell.co.uk
Wanted: Service manual or circuit diagram (photocopy OK) for the Sharp PA-W1410 word processor. Bill Young, Foxgloves, Church Lane, Redmire, Leyburn, N. Yorkshire DL8 4EQ. 01969622 598.

Wanted: Mullard DG7-5 CRT for a Mullard valve tester, and a Cossor 807 valve (or Air Ministry A/M IIOE/8) for a Cossor 339 oscilloscope. H. Fenn, 111 North Walsham Road, Norwich, Norfolk NR6 7QG. 01603425557.
Wanted: Circuit diagram (photocopy OK) for the Ayr Viewdata/ teletext add-on unit Model T1, or any service information. R.E. Holt, 46 Osborne Parc, Helston,
Cornwall TR13 8NZ.
Wanted: MB88536 IC for the Sanyo TV Model CTP6135-00. Alfred Moores, 14 Edward Street, Norwich, Cheshire CW9 7DQ. 01606331006.

Wanted: Philips/Pye Model 24CE3270/05B Fastext set for spares. Will pay cash and collect. A. Watt, Bryn Gelli, Unch Y Maes, Dolgellau, Gwynedd. 01341 423096.

Wanted: Complete upper and lower drum assembly for the Mitsubishi HSM34, or alternatvely a complete scrap machine. James Burch, 9 Groveland Road,
Beckenham, Kent BR3 3PU. 0410 626002.

For disposal: Many copies of Television going back over the last 25 years. Please send for list. R.W. Moxon-Groves, 22 High Tree Close, Ongar Hill, Addlestone, Surrey KY15 1BT. 01932854122. Wanted: Service manuals or circuit diagrams for the JVC KS-

RT404 car radio-cassette unit and the Murphy CD200 stereo compact disc player. Photocopies OK. W. Craig, 15 Windsor Crescent, Rothwell, Leeds LS26 0LN. 0113 2824743.

Wanted: LOPT for the Goodmans Compact 100 PCTV. Michael Pope, 76 Barkby Thorpe Lane, Thurmaston, Leicester LE4 8GS. 01162602270.

Wanted: Instruction manual (photocopy OK) for a Grundig VPS550 VCR. Also a Maplin UHF tuner kit (code no. LP09K) built or not. David Roberts, No. 5 Pendower, Lloyd Street West, Llandudno, N. Wales LL30 2BE. 01492877952. Vintage Equipment: I repair vintage wireless sets and associated equipment and also collect old radio receivers. I would be happy to hear from anyone who wishes to dispose of any old sets or has a service/spares requirement. Steve Farley, 128 Hawthorn Road, Kingstanding, Birmingham B44 8QA.
0121382 1312, fax 0121382 1558.

Wanted: SDA2011 microcontroller chip or complete front panel for the Grundig CUC2410 chassis, and an MAB8441P front-panel microcontroller chip for the CD player in a Philips FCD565/35 hifi system. Owen O'Reilly, Belfield, Gay-brook, Mullingar, Co. Wesymeath, Ireland.
Wanted: Fairly up-to-date set-up chart for the B \& K 467 CRT tester (my one, 497-022-0-586, 1986, is out of date). Loan or sale, photocopies OK. Also 510ABCB22P tube for the Mitsubishi Model 2027; circuits or an IC list for the SAFT fast-charge Mk II; and a colour tube data/equivalents book. Michael J. Levy, 19 Totternhoe Close, Kenton, Harrow, Middx HA3 0HS. 01819073620.

Request: Because of a mail deliv-
ery problem while I was away, some replies to my request for valve radio/TV spares (January issue, page 186) may have gone astray. Could anyone who didn't receive a reply from me please write again? Steve Taylor, 11 Charnborough Road, Coalville LE67 4SF.
Wanted: Working power supply for the Panasonic NVL28 VCR. M. Shafiq, 4 Leighton Road, Old Trafford, Manchester M16 9NX. 01706621015 or 0956668524. For disposal: Copies of Radio and Television Servicing from 1953-62 for sale at $£ 5$ per volume plus postage or collect. Phone Nick Hunter on 01162872397. Wanted: Any information - circuit diagram, service manual, instructions, parts list - for the floor-mounted Pye studio video projector dating from about 1980. Thanks to all who contacted me about TDA chips - I now have plenty. Richard Gifford, 4 Gipsy Lane, Needham Market, Suffolk IP6 8DY. 01449723009. Wanted: VPT PCB, working or not, for the Salora SV9900 VCR. I have for disposal service manuals, counting tubes, semiconductors (including older US types), video and TV parts, some 200 ICs in oriinal packs and other electronic goodies, all at a reasonable price. Please fax Greg Strange, I.Eng., G8IWJ on 01513275971. Wanted: Line hold control, circuit reference L404, for the JVC Model 3040UKC 5in. portable mono TV/FM radio receeiver. David Parkinson, 84 Abbotsbury Road, Broadstone, Poole, Dorset BH18 9DD. 01202255103.
For disposal: CD-ROM edition (PC) of Electrotech's Service and Repair Encyclopaedia of Domestic Electronic Equipment. Send SAE for details to Mrs R.A. Thomas, 52 Forge Close, Caerleon, Gwent.

Reports from

Philip Blundell, AMIEEIE
Richard Flowerday
Eugene Trundle
David Smith
Maurice Kerry
Roger Burchett and
Pete Gurney, LCGI

Goodmans VN6000

If one of these machines comes in dead with no blown fuses, check the E 5.8 V line at plug P801 in the power supply - the PCB has the voltages marked on it. If the voltage is low, check C822 $(330 \mu \mathrm{~F})$ by replacement. P.B.

Philips VR268

This machine was faulty from new. When a recording was made then played back, the picture would fade to snow - as if the heads were becoming dirty. The picture would return when the tape was rewound.

All became clear when an LP recording was tried. The machine didn't sense that it was an LP recording, playback being in the SP mode. A problem with the control track? Yes, the machine was intermittently failing to record the control track. Link 9604, which is by the threading belt pulley, was broken. A new wire link restored normal operation. P.B.

JVC HRJ6IOEK

For a dead power supply with no blown fuses, check C12 $(2 \cdot 2 \mu \mathrm{~F})$ by replacement. P.B.

Grundig GV540

This machine worked all right mechanically, but with playback and E-E operation there was no sound or video (just a blank screen) from the modulator. Scope checks showed that the TDA8540 video switching chip IC7770 was

VCR Clinic

not switching the signal to the modulator.

A look through the on-screen menus and the special features revealed no reason for this, so a new TDA8540 was fitted. It made no difference. Fortunately by this time we had a new GV540 in stock, so comparisons could be made. By using both traces of a double-beam scope, I found that the I2C bus signals to IC7770 differed between the two machines. But why? I was about to swap the main boards over when I spotted an IC with a socket. Replacing it restored the signals. The chip was IC7250, the operating system EPROM. P.B.

JVC HRD580EK

The only thing this machine would do was to display a flashing clock and a hyphen where the channel indicator should be. Checks showed that the standby voltages were all present, correct and clean. Scope checks on the clock oscillators proved that they were all working normally. With this in mind I decided to replace the memory chip IC602, which cured the problem.

Note that the machine will play without IC602 being present - a useful test if you suspect it. R.F.

Daewoo V21 (V215, V415)

'Extreme tiredness' would best sum up the trouble with this machine. The cassette was stuck inside because there was not enough 'urge' to eject it. Tape threading was very slow. Unthreading was equally slow, after which the deck would go back to sleep. This was all because the voltage on the ever-14V line had fallen to 7 V . The 14 V supply reservoir capacitor C818 in the

power supply section was

 cuit. E.T.
Panasonic NVL28

We've had two cases rece the fluorescent display pal ming or extinguishing inte ly . The cause was traced t joints, in one case at pin 7 chopper transformer T110 the other at the componen jointing of the links conne pins 12 and 13 of P1001 c
of
im-tent-
וhe
e main PCB. E.T.

JVC HRJ200

At random times in the Erecord modes the picture a would be lost, with a coar: on sound and patterning o vision. Playback was OK : times. Prolonged scope ch because of the intermitten of the fault - proved that t module TNR2 was going A new module cured the F

Philips VR813

d ound aistle

E.T.

The intermittent fault wit these machines took the f cassette ejection, deck sh clock readout pulsing ans other symptoms. The ints between the symptoms a would sometimes be sev
Someone had apparently
\geq of
of
wn, ny
ring days. ady replaced the microcontroller chip. We traced the cause to dry-joints between P1 and the power supply PCB. The mode switch on the Panasonic G deck used in this machine was also changed. E.T.

Hitachi VTF860E

There had been a mains power failure: when the power was restored this machine remained dead. Replacing C6 ($1 \mu \mathrm{~F}, 250 \mathrm{~V}, 105^{\circ} \mathrm{C}$) restored normal operation. To ensure reliability we also replaced
the $180 \mathrm{k} \Omega$ start-up resistors R3 and R4. D.S.

Mitsubishi HSB27

When this machine was powered it worked perfectly except for the fact that in the play mode loops of tape were left. There was no takeup. Once I'd got the tape out I noticed that the felt pad had fallen off the half-loading arm. Don't be tempted to refix it without removing the arm, as the rubber washer beneath it may be decomposed, leaving a sticky mess - I've had this with the last two of these machines that came in.

Once the gunge had been removed, a little grease applied, a new washer fitted and everything reassembled the machine produced immaculate pictures. D.S.

Aiwa FX2500/FX3500

These two machines both had clock update problems. The time could be set correctly in the evening. The next day it would be one hour fast or slow.

While observing one machine in the workshop I noticed that at 12:00 noon there was no change but at 12:01 the PDC flashed off and on and the time changed to 13:01. By 12:02 it was at 13:03.

The microcontroller chip uses teletext data to set the clock at certain times during the day and night. The PDC and time signals are decoded by the SDA 5649 chip IC106. Replacing this item in both machines cured the timer problems. M.K.

Soundwave VCR961

This machine is identical to the Alba VCR7310 and the Orion D1096. Very low playback audio was the symptom. As a buzz could be induced in the speaker by touching the back of the ACE head, a new head was fitted. This failed to cure the fault. Neither did replacing the LA7286 chip IC5001. After much checking the culprit turned out to be C5028 ($1 \mu \mathrm{~F}, 50 \mathrm{~V}$), which was very low in value and leaky. It's connected to pin 8 of IC5001. A replacement restored the sound level. M.K.

Aiwa HVF3500

There was a tape stuck in this machine, but it would still lace up. To sort out the cause of the problem I had to dismantle the machine to get at the underside of the main PCB - you have to do this with machines from more and more manufacturers nowadays. A careful
examination of the power supply area then revealed a bad dry-joint at the emitter of Q601. Once this and other suspect joints had been resoldered and the machine had been reassembled it worked perfectly.

We've had intermittent mechanical and electrical faults, such as no drum rotation, because of poor contact with the flexible PCB links that connect the drum and capstan motors to the base PCB. Modified parts are available from Aiwa: DM lead CB part no. 58065130120 and CM lead CB part no. 58065 130111.

I also clean the base PCB spring contact pads with a pencil eraser and the spring contact on the main board, finishing off with alcohol. This mechanism (TN6500) is used by other manufacturers. M.K.

Toshiba V209

The symptoms were as follows: the carriage would shuffle in and out; the cassette symbol was permanently lit; and no functions would operate though the correct symbols would light up in the display. The cause of all this was the front loading switch S122, which was permanently closed. It should open when eject is completed. The lever that operates it moved correctly, but the clear plastic cover-cumoperating block was missing. A new switch restored correct operation. R.B.

Ferguson 3V48

A quickie on this machine: the cause of intermittent drum rotation was found to be a dry-joint at the 2SB1052 transistor Q1. R.B.

Sony SLV625

Rewind and fast forward were particularly noisy, and there was a slight but noticeable rhythmic knock during playback. When I watched the toothed drive belt in the play mode it was obvious that the tension was varying. The machine was considerably quieter in all modes when the belt has been removed and cleaned, also the drive gear on the capstan shaft.

There's a temptation to strip out the reel drive gears and look for problems here when the fault is more fundamental and easier to cure. R.B.

Goodmans VP2300

This machine uses the Philips Turbo deck. It was unable to load a cassette - and for good measure a coin was rattling around inside it.

There was only 1.2 V at the loading/mode motor, also at its drive chip IC7402. R3483, a $2 \cdot 2 \Omega$ safety resistor which is connected to the 15 V rail and is next to the chip, was open-circuit. A replacement cured the fault. P.G.

Amstrad TVR3

There was no take-up. The usual belts, also the soft brake on the take-up reel, had fallen off. In addition, this time the take-up brake rubber had decomposed and coated the reel turntable with a ring of sticky gum which had eventually seized up the whole assembly. A new take-up reel table and brake assembly restored normal operation.

Another of these machines came to us from a local dealer. It would shut down after six seconds of play. The machine had been stripped and cleaned, after which the present fault had appeared. My first thought was the take-up rotation sensor, as the counter was erratic to say the least - when it worked at all. But I was told that it had already been replaced. After a lot of head scratching I discovered that the spacer washer had been left off the take-up spool. As a result the sensor was almost saturated. A replacement washer cured the fault - it had obviously fallen off when the machine had been stripped. P.G.

Goodmans GVR4500

l've had a number of these machines, which use a Daewoo deck, with no tape take-up because of a bent idler unit. This time the idler unit was straight, the cause of the problem being the cassette tray which was bent down slightly. As a result the idler couldn't move. Straightening the tray cured the fault. P.G.

Goodmans PD1700

Patterning on the playback picture, more noticeable with a dark background, is a problem I've had with several of these machines. It seems to affect only some of them however. If the screws are left out of the rear of the upper case, or the upper case is removed, there's no earth connection to the bottom cover plate. This picks up radiation from the power supply and transfers it to the lower drum and head amplifier. To prove the point, remove the plate. My cure is to add a soldered lead between the power supply can and the plate instead of relying on multiple screws to make good contact. P.G.

Thomson TX805 Technology

In this concluding instalment J. LeJeune describes the combined chopper/line output stage, which is known as the Wessel circuit, also the drive and protection arrangements

Last month we covered most of the circuitry used in the Thomson TX805 small-screen TV chassis. We left for separate consideration this month the combined chopper/line output stage, which uses an arrangement called the Wessel circuit.
It's not the first time that this circuit has appeared in TV sets in the UK. The TX80E chassis, predecessor to the TX805, used it. Older readers will recall the Ferguson 9000 series chassis, which was introduced in 1975. It used the same basic circuit, which Ferguson refered to at the time as the Syclops (synchronous chopper and line output stage) circuit. Shortly after that, in 1978, Rank Radio International imported a small-screen Saba chassis that featured the circuit. This chassis was used in the Bush BC6004 and one or two other RRI models.
The basic idea is to use a single switching transistor, in the TX805 an .S2000AF, as both the chopper and line output transistor, with separate chopper and line output transformers in its collector circuit. An isolating diode separates the driven end of the two transformers' primary windings. There are advantages to operating the chopper circuit at the line frequency, including the fact that a single drive system is required.
The chopper transformer is used solely to generate the HT supply for the line output side of the circuit. With the exception of the supplies required for standby operation, all the other supplies are derived from the line output transformer.

Basic Circuit

Fig. 1 shows the basic elements of the Wessel circuit with component reference numbers that relate to the TX805 chassis. TP10 is the single chopper/line output
fig. 1: Basic elements of the Wessel circuit as used in the TX805 chassis.

transistor and LP03 the chopper transformer. This transformer's primary winding is fed with some 320 V which is produced by the mains bridge rectifier circuit.
TP10 is switched on about half way through the line scan. Current then flows through the chopper transformer's primary winding and also, via the isolating diode DP10, the line output transformer's primary winding (LP04). When TP10 is switched off, rectifier diode DP11 switches on, charging CP17 to produce an HT supply of some 103 V to power the line output circuit.
When TP10 is switched off DP10 also switches off. The line output side of the circuit then operates in the conventional manner to produce the flyback followed by the first half of the line scan. To recap on this, tuning capacitors CP18/CP19 produce, with LP04, a positive half-cycle of oscillation during which the scanning beam is returned to the left-hand side of the screen. When the oscillation tries to swing negatively, the efficiency diode DP13 conducts and the first half or so of the forward scan is produced. TP10 is then switched on to complete the forward scan and drive the chopper transformer.
The squarewave drive at the base of TP10 is timed to meet the requirements of the chopper action and the line output stage operation.

Drive Circuitry

Fig. 2 shows the mains rectifier, standby switching and Wessel drive circuitry. Bridge rectifier DP26-29 produces some 320 V across its reservoir capacitor CP31. This is the feed to the primary winding (pin 12) of the chopper transformer. In addition, RP44/42/41/DP02 bias the base of the 12 V regulator transistor TP15, which supplies the standby switching transistors TP1 1/12 and also, via LED DK01, the microcontroller circuitry (see Fig. 8 last month). When TP12 is switched on by the microcontroller circuit - its emitter is controlled by pin pin 20 of IR01 while its base is connected to the 'start' line - TP11 in turn switches on and the Wessell drive circuit comes into operation.
For regulation, we need a variable mark-space ratio pulse waveform to drive the base of the chopper/line output transistor TP 10. The origin of this is the charging circuit RP12/CP03 - both are close-tolerance components. CP 03 is charged via RP12 from the voltage at the junction of RP12/RP03. This voltage is controlled by the conduction of the error sensing transistor TP03,

Fig. 2: The mains bridge rectifier, sfandby switching and Wessel drive circuitry. TP 15 is type BUT11AX or ON4843, part no. 16004610 . RPO7 is $6.8 \mathrm{k} \Omega$ in 14in. sets, $6.19 \mathrm{k} \Omega$ in 20in. sefs.
whose emitter voltage is stabilised by the 2% tolerance zener diode DP06 while its base is fed via a potential divider network that's connected across the line output stage's 103 V supply (see Fig. 1). Should the latter vary, the voltage at the junction of RP03/RP12 will vary, altering CP03's charging time. PP01 enables the HT and the voltages derived from the line output transformer to be set up.
CP03 is discharged at line frequency intervals by TP02/TP01. When the amplitude of the voltage developed across CP03 as it charges, and thus the voltage at the emitter of TP02, exceeds the voltage at the base of this transistor it will switch on. TP01 in turn switches on, and CP03 is discharged. These transistors then switch off, since TP02 is once more reverse biased. The free-running frequency is slightly lower than the line frequency. So positive-going line sync pulses from pin 20 of IL01 (see last month) are fed to the base of TP01 to s witch the discharge transistors on.
The net result of all this is a sawtooth waveform, whose rise time is controlled by TP03, at the base of TP04. The output from this buffer transistor is AC coupled (to provide a DC block) to the base of TP05, with DC restoration by DP37. RP14/15 attenuate the sawtooth waveform. TP05 acts as a pulse-width modulator - Fig. 3 illustrates its action. It switches on when the sawtooth voltage waveform at its base rises to 0.7 V . TP06, which had previously been forward biased via

Fig. 3: How the pulse-width modulator transistor TP05 generates a variable mark-space ratio pulse waveform at its collector. The ratio depends on the amplitude of the sawtooth waveform applied to its base.

RP16, then switches off. TP09 in the line driver circuit is now forward biased via RP76, while TP13 is reverse biased. TP10 is then switched on.
When TP05 switches off, TP06 switches on, TP09 switches off, TP13 switches on and TP10 switches off. TP10's base drive network is interesting. When TP09 is on and TP13 off (TP10 is then forward biased and thus on), CP08 is charged to a maximum of 2.7 V (set by zener diode DP21). When TP09 is switched off and TP13 switches on, CP08's positive plate is effectively earthed. The base of TP10 is thus driven negatively as CP08 discharges. This ensures a rapid turn off for TP10.

Fig. 4: The chopper/line output stage circuitry. RP32 is a jumper lead in 14 in . sets, $1 \mathrm{k} \Omega$ in 20in. sets. RP92 is 0.68Ω in 14 in . sets, 0.56Ω in 20in. sets.

Fig. 5: The
excess voltage
protection circuit. RX03 is
9.09 ks in

20in. sets.

Wessel Circuit

Fig. 4 shows TP10 and the circuitry it drives. We have already described the circuit action (in connection with Fig. 1). Note however that while the efficiency diode DP13 is conductive during the initial part of the forward scan DP10 is held non-conductive. Thus TP10 can be turned on early in the cycle for the sole purpose of energising the chopper transformer LP03. Once DP13 switches off, TP10 can also drive the line output transformer LP04, via DP10.

Circuit Protection

There are several protection arrangements in the TX805 chassis. Some of the actions were described last month, in connection with Fig. 8.
The earthy end of LP03's secondary winding is connected to chassis via the low-value resistor RP92. DP90 produces a negative voltage across CP90. This is applied to the base of the pulse-width modulator TP05, via DP92/DP94/RP90, as bias. The aim of this feedback
is to provide current limiting so that LP03 doesn't saturate, with loss of regulation. There is also a link to the PROT' line, via RP91 and DP96.
The line output transformer's heater winding is also connected to DX03, see Fig. 5, which develops a positive voltage across CX02. This is monitored by the 2%, 10 V zener diode DX02. Should the outputs from the line output transformer rise because of failure of circuit regulation, DX02 will conduct applying a positive voltage to the base of TR06 (Fig. 8 again, last month). The start line then goes low, switching TP12 (Fig. 2) off, and the receiver reverts to standby.

Fault Finding

The chassis suffers from a common fault that results in a virtually dead set. One or more of the resistors (RP44/42/41) that bias the base of transistor TP15 goes open-circuit. The usual culprit is RP41. There is never any other reason for the failure of these resistors. You won't find any signs of overheating or any other indication of trouble. It could be that the resistors are damaged by leadout wire preforming prior to insertion in the PCB. A replacement resistor should be all that's required to restore normal operation.
Reliability is otherwise good. There are one or two other points worth noting however, as follows.
The front LED, DK01, can develop a high-resistance state. There is then a reduced voltage feed to the 5 V regulator TR08. If this can't switch on, there is no supply to the microcontroller circuitry so the set will again produce the no results symptom. As a quick check, short across DK01. This can be a tricky fault to diagnose if you are not familiar with the chassis.
For intermittent colour dropout, replace the 4.43 MHz crystal QC01.
Finally there are several BA157 rectifier diodes in the power supply circuits. This device tends to be unreliable and is a prime suspect in the event of a fault condition.
My thanks to Mark Paul for these fault notes.

BACK ISSUES

We have available a limited stock of the following back issues of Television:

1994

January, February, May, June, July, August, September, October, November and December

1995

1996
January, April, May, June, July, August, September and December

January to September inclusive, November and December

January to December inclusive

Copies are available at $\mathbf{£ 3 . 0 0}$ each including

postage. Send orders to:
Television Back Issues,
Room L302, Quadrant House,
The Quadrant,
Sutton, Surrey SM2 5AS.
Make cheques/postal orders payablexto x (

Is looking for
ICs TRANSISTORs SEMIs an up hill struggle?
A phone call to us could get a result. We stock a very wide range . . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few): 2N 2SA 2SB 2SC 2SD 2P-2sf-2SK 3N 3SK 4N 6N 1740 AD ADC AN AM AX GD HEY YDV BDW BDX BF

 BUW BUX BUZ CA CD CX, DG DM DS
 KIA L LA LB LC LD LF LMM ME \quad B MAX MB MC MDA J MI MRF NJM NE © , *PAL PIC PN RC-S AA SAB SAD SAJ SAS SDA SG STRS SVI T TA TAA - IBA TC TCA PDA TDB TEA TIC TIP TIPL TEA TL TLC MMP TMSTPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others.
We can also offer equivalents (at customers'risk). We also stock a full range of other electonic components.
Mail, Phone, Fax, Credit Card orders \& callers welcome

Cricklewood Electronics Ltd 40-42 CRICKLEWOOD BROADWAY LONDON NW2 3ET TEL 01814520161 \& 4500995

FAX 01812081441

P.V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS. BB5 1EE
Tel: 01254 390936/236521 Fax: 01254395361
TRADE COUNTER OPEN MON-FR1 9-5. SAT 9.30-12 NOON, CLOSED ALL DAY WED. Please add VAT 17.5% to all prices. We accept payment by cheque, Cash, Access, Vissi. Add $£ 2$ pp for orders up day we receive your order If we are out of stock we will inform you ASAP. Pleasc allow up to 28 days delivery

PV Tubes has been established for $20(0)$ years and has supplied the TV and electronics trade with components and service aids since it began. In a continuing effor to maintain the industries
requirements it is our intention to make available an increasing range of specialised service aids and skills.
The PV1 multi-purpose dcgaussing coil is an example of our commitment to supply quality product at competitive prices. The PV1 degaussing coil is intended for
use with a 240 v mains supply.
although a 120 v version is vailable upon request. This compaet and cost effective unit wilt have major interest to TV Service Departments. TV manufacturers, TV Sales and Rental Companies, TV Broadcasting Authorities, Universitics and Colleges. The Armed Forces Aviation and Computer Companies.
Specialised degaussing systems can be designed and manufactured to suit specific applications within many engineering environments. As part of the strategy in supplying specialised skills within the eectronics industry, we are able to offer design, consultancy, and
manufacture of electronic products. specific to those larger customer requirements.

SILLY CLEARANCE SALE

THE FOLLOWING PARCELS ARE OFFERED IN COMPLETE LOTS AND ARE ALL SUBJECT TO AVAILABILITY

100 TO3 Mounting Kits for 125 FM Plugs for
100 F Connectors screw on for
10 Philips G11 Lopt for
Asstd Box of Sony componenis incl. S Manuals $£ 25.00$ 10 TV. Stands for
20 Asstd. Varicap tuners for
50 Slider pots mixed bag for
250 Mixed bag resistors $.25 \mathrm{~W} / 5 \mathrm{~W} / \mathrm{W} / 2 \mathrm{~W}$ 150 Thom 2A Thermal cut out 4003.5 mm Jack $/ 2 \times 3.5 \mathrm{~mm}$ Jack Leads 150 Electrolytic caps axial 400 MF 40 V 26 Assid. Sinclair power supplies 150 Boxed, labled, asstd. STYL Mixed bag of 50 assid. wire wound resistors Mixed bag of 50 1.25" ASS/QB fuses Box of asstd we lamps etc 505 Pin/6 Pin Din Sockets 240 Cassette leads 2×3.5 Jack $/ 2 \times 3.5$ Jack 10 Bell boxes with back plate
15 New boxed dynascan tube bases 23 V 29 or 3V22 Cassette housing assy 75 Spectrum 48 K membranc 110 Spectrum + membranc 142 Spectrum 48 K mats
300 Asstd. Potentiometers (some dual gang) 5 3SSH Video heads
I Periswitch scart switching unit

$£ 20.00$
 $£ 10.00$ 15.00 £25.00 $£ 20.00$ $£ 10.00$ c5.00 $£ 5.00$ $£ 15.00$ $£ 60.00$ $£ 50.00$ $£ 100.00$ £ 5.00 $£ 2.50$ £20.00 $f 15.00$ $£ 50.00$ 545.00 c60.00 $£ 10.00$ £75.00 $£ 220.00$ £125.00 $£ 100.00$ $£ 10.00$ £25.00

Repair SMDs on PCBs in seconds with the NEW Hot Jet 'S'

Desoldering and soldering of SMDs by hot air and without contact is the fast and efficient way for the modern repair workshop. And now, Welwyn Tool can offer the complete package - a range of hot air tools, SMD Rework Stations, nozzles to suit all SMD requirements, free demonstrations and free colour instructional brochure ... all available from Distributors nation-wide.
For further information. please ask for Reference No. TMS
WELWYN
TOOL CO.LTD.

4 SOUTH MUNDELLS, WELWYN GARDEN CITY HERTSAL7 IEH. TEL: (01707) 331111. FAX: (01707) 372175.

DID YOU KNOW?

WIZARD HAVE SIGNIFICANTLY REDUCED THE PRICES OF:-

LOPTX	BELT KITS
VIDEO HEADS	HANDSETS
I.C.s \& SEMIS etc, etc.	
RING \& COMPARE OUR NEW LOW PRICES	
WIZARD DISTRIBUTORS	

EMPRESS MILL, EMPRESS STREET MANCHESTER M16 9EN TEL: 0161872 5438, 01618430060 FAX: 01618737365 TECH. HELPLINE \& ANSWERPHONE 01618738370

Servicing

The Toshiba 2505/2805DBT

John Coombes provides a fault-finding guide for these complex receivers, which helped start the 'home cinema' market

The Toshiba Model 2805DBT came on the market some eight years ago. It was one of the first 'home cinema' receivers. There are numerous features including a large, 28 in . CRT with a special lavender coating, Fastext and Nicam. The thick plastic cabinet has a slim double baffle to give powerful (20W per channel), good quality stereo sound. Frequency-synthesis tuning provides selection of a hundred stations. With the aid of two external speakers you can have Dolby Surround Sound. A 25in. version, Model 2505DBT, was also marketed.

Power Supply Faults

The chopper power supply is quite complex, with two control chips, master and slave. The master chip is on the secondary side of the circuit, the slave on the primary side. Fig. 1 shows the basic arrangement in greatly simplified form. On the secondary side of the full circuit there are two 5 V regulators and a 12 V regulator. The L78MR05 regulator Q806 provides the supply for the microcontroller circuit.
Fortunately these sets have proved to be very reliable. There is one misleading condition that can occur in the power supply, giving the no results symptom, when several faulty components have been replaced. Under certain fault conditions C 828 , which is connected to pin 3 of Q803, will charge to some 3.8 V : the receiver will not come to life until this voltage has been discharged assuming that the fault has been cleared.
If the set is dead, check the voltage across the mains bridge rectifier's reservoir capacitor C818. No voltage here could mean that the surge limiter resistor R805 or the mains fuse F801 is open-circuit. In this case the chopper transistor Q804 (2SC4288A) could be shortcircuit. If so, the two chopper control chips Q803 (TEA2164) and Q807 (TEA5170) should also be replaced. These chips can be ruined when Q804 is dryjointed. Set failure because of a fault in this area can also occur when D817 (RU4A) in the snubber network is short-circuit.
If the voltage across C 818 is OK at some 320 V , check the start-up resistor R 810 ($82 \mathrm{k} \Omega, 3 \mathrm{~W}$). It may be opencircuit or could have gone high in value, though the latter is a rare occurrence. If there has been an excessive overload you might find that resistors R822 and R824
(both $0.39 \Omega, 1 \mathrm{~W}$) are open-circuit.
Sometimes the receiver will go into the trip mode when switched on. In this case check R816 ($12 \mathrm{k} \Omega$) whose value may have changed. If the power supply is tripping in the standby mode, check the switching transistor Q817 (2SC2120Y). If this is OK, check the voltage across the 13.7 V supply reservoir capacitor C824. The items to check if this voltage is low or missing are D810 (BYD33J) which could be short-circuit, R814 (0.33Ω) which could be open-circuit and C424 itself which could be short-circuit or leaky. If all these items are OK , the slave chip Q803 is suspect.
The master control chip Q807 (TEA5170) can be powered by a 9 V battery to check its operation. If it is OK when so powered its output weaveform at pin 3 will be in the maximum on-time state. Check whether the supply is in the burst mode. If so, check the standby control circuit (Q809, Q810, Q811, Q814 and associated components).
If there is no drive output at pin 14 of the slave control chip Q803 (TEA2164) but the LT supply is present at pin 16 (13.7 V across C824), check whether C828 is charged which may indicate that there's an excess current fault.
On the secondary side of the circuit, the first item to check is the HT rectifier D818 (RU4AM) which may be short- or open-circuit. If necessary check for shorts across the LT lines provided by diodes D819, D826, D828 and D829 (all type RU4Z). The chopper transformer T803 could have shorted turns, in which case the audio output chips Q608 and Q609 (type TDA2030A) could have blown up - D828 will probably have suffered.
An item to check on the primary side of the circuit is D809 (BYD33J) which sometimes goes open-circuit. If the HT voltage developed across C833 is low at about 65 V , check for a fault in the line output stage.
If necessary, check the operation of the L78MR05 5 V regulator Q806. There should be 20 V at pin 1. If this voltage is missing, check D826 (RU4Z) and R861 $(0.22 \Omega, 1 \mathrm{~W})$. If the 20 V supply is very low, check whether the 12.5 V regulator transistor Q813 (2SD717Y) is short-circuit - also whether zener diode D827 (04AZ13X) is short-circuit.
If everything seems to be OK so far, suspect the chop-

Fig. 1: The basic chopper power supply arrangement, simplified, used in the Toshiba Models 2505/2805DBT, showing the master-slave control chip system. The 10 V supply feeds a 5 V regulator; the 20 V supply feeds 5 V and $\mathbf{1 2 . 5 V}$ regulators - the former provides the microcontroller chip's supply.
per transformer T803 (part number TPW3186).
Sometimes there's a memory problem rather than a power supply fault. If the set goes back to standby after switch on though pin 37 of the CX80424-107S microcontroller chip QA01 drops to a low state then quickly rises back to 5 V , the $\mu \mathrm{PD} 6254 \mathrm{CX}$ memory chip QA07 is faulty. Its replacement will restore normal operation.

Line Timebase Faults

If there is no sound or picture and the voltage across C833 (HT reservoir capacitor) is low, check the line output stage. The ON4408 output transistor Q404 or either/both of the EW modulator diodes D440 (BY228) and D441 (BYW95C) could be short-circuit. If not, suspect shorted turns in the line output transformer T461. If Q404 goes short-circuit as soon as the set is switched on, D440 is probably faulty - check it by replacement.
If the HT is OK but is not present at the collector of Q404, check the feed resistor R444 ($0 \cdot 82 \Omega, 2 \mathrm{~W}$). This resistor may have to be replaced if the line output transistor and/or transformer have gone short-circuit. If R444 is OK, check the voltage at the collector of the 2SC1569/FA5 line driver transistor Q402. No voltage here means check the driver transformer T401 for dryjoints, Q402 for being dry-jointed or open-circuit, and the $3.6 \mathrm{k} \Omega, 7 \mathrm{~W}$ feed resistor R 416 which could be opencircuit or, sometimes, dry-jointed.
If the line driver stage is OK , check that there is 9.2 V at pin 40 of the TA8783N colour decoder/deflection chip IC501. If the voltage here is correct or low, IC501 is suspect: if it is missing, check whether the 04AZ9.1Z zener diode D401 is short-circuit or R867 (100) in the power supply is open-circuit.
If there is excessive width, L423 could have shorted
turns - check it by replacement.
For sound but no picture, see if the CRT's heaters are alight. If not, check whether $\mathrm{R} 920(5 \cdot 1 \Omega, 1 \mathrm{~W})$ is opencircuit or pin 9 of the line output transformer is dryjointed. It's just possible, though this is rare, that the CRT heaters are open-circuit.

Loss of Sync

If there is no line or field sync, replace IC501 (TA8783N).

Field Faults

For field collapse, first check that the 27 V supply is present at pin 2 of the TDA8170 field output chip Q303. If it's OK, check Q303 by replacement; if the voltage is missing, check R327 (4.7 , 1W) and D302 (BYD33J) either of which could be open-circuit, also C314 $(2,200 \mu \mathrm{~F})$ and $\mathrm{C} 322(220 \mu \mathrm{~F})$ which could be short-circuit or leaky. If necessary check the flyback boost diode D305 (BYD33J) which could be open-circuit.
It's possible that the scan coils are open-circuit, though dry-joints or open connections at pins 5 and 6 of plug/socket P570 are more likely.
A DC bias is applied to the scan coils. If this is missing, check whether R334 ($560 \Omega, 2 \mathrm{~W}$) is open-circuit.
The field ramp is generated by IC Q371 (TA8739P), which also produces the EW correction drive. If there is field collapse with a few scanning lines visible above the centre line, check for a ramp waveform at pin 15 of this chip. Its absence could mean that the chip or C372 $(2 \cdot 2 \mu \mathrm{~F})$ has failed.

Tuner Faults

The tuner unit can be responsible for a flickering picture and/or more often the picture just going to blue mute. In
either case the remedy is to replace the tuner.
Tuning drift can be caused by the tuner unit but is more often caused by the μ PC574JL 33 V stabiliser D108. If there is no tuning voltage, $\mathrm{R} 829(10 \mathrm{k} \Omega, 2 \mathrm{~W})$ in the power supply is probably open-circuit.

Video Faults

If there is a blank raster with no sound, check whether the back terminal cover plate is pressing on QV22 remove and resolder all connections if necessary.
For RGB problems, check the voltages at the RGB output pins of IC501 (TA8783N), 41/2/3 respectively. There should be about 3.75 V here. If these voltages are incorrect and the voltage at pin 53 is more than 0.5 V , replace IC501.
On a few occasions we have found that there is a blank raster, the remote control unit works but there's no on-screen display. The cause of this has been the TDA8170 field output chip Q303: check at pin 3, where the voltage should be 0.7 V .
No picture could mean trouble with the voltage regulation transistors Q514 (BC327) and/or Q516 (BC547A) on the tube base panel: check the DC conditions here carefully.
We've traced the cause of dark lines across the screen to dry-joints at C319 ($0.22 \mu \mathrm{~F}$) in the field output circuit.

Sound Faults

The sound section does not give much trouble - most of the problems occurred in the early years, before modifications were introduced. A motorboating noise from all speakers with the set in the standby mode was caused by a poor earth connection to the heatsink for

ICs Q609 and Q610. This was a very intermittent fault. For further details, refer to Toshiba Technical Bulletin CDH41 (March 1992), which also deals with the problem of a ticking noise from the right-hand Surround speaker, present only when using Dolby Surround and noticeable when the Surround speakers go quiet with no signal. To overcome this problem, remove R610 and jumper link J109 which is under the heatsink for ICs Q608/Q611. Fit R610 in the J109 position and fit a link in the R610 position.
A third problem covered by bulletin CDH41 is a lowlevel hum from the left-hand Surround speaker in all modes, more noticeable at minimum volume. The cause is earth loops induced in the Surround sound chip Q610. Check the bulletin for the correct position of the green wire and cutting the earth print.
If there is motorboating in standby that's not caused by the problem mentioned above, check for a short between pins 4 and 5 of IC Q608 (TDA2030A).
For no sound from either or both main channels, check that the 30 V supply is present at pin 5 of the relevant chip(s), IC Q608 and Q609. If the supply is present, suspect the chip(s). If the supply is missing, check D828 (RU4Z) in the power supply.
If the main channels are OK but the Surround channels are not, check the 24 V supply at pin 5 of ICs Q610 and Q611. If the supply is correct, check the chip(s) by replacement. If the supply is missing or incorrect, check D829 (RU4Z) and pin 15 of the chopper transformer where there may be a dry-joint.
If there's a Nicam problem, such as Nicam dropout or crackle on sound, it's usually best to replace the Nicam PCB complete. Repair can be very expensive, in terms of both time and component costs.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ELC EAST LONDON COMPONENTS AUDIO TELEVISION VIDEO COMPONENTS AT VERY KEEN PRICES TEL: 0181-472 4871 FAX: 0181-503 5926} \& \multicolumn{3}{|l|}{LINE OUTPUT TRANSFORMERS OVER 100 MODELS AT LOW PRICES} \& \multicolumn{4}{|l|}{VIDEO HEADS FROM \(£ 6.99\) OVER 200 MODELS} \& \multicolumn{2}{|l|}{NIKKAI BABY 10 REGULATORS \(£ 11.00\)} \& \[
\begin{gathered}
\text { DEGUSSING ROD } \\
\text { £29.99 }
\end{gathered}
\] \\
\hline \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\hline \text { AKAI } \& \\
{ }_{C T} \text { CT2569E } \& 10.98
\end{array}
\]
\[
\text { CT2892E } 16.99
\]} \& \begin{tabular}{l}
NEI
1451R \\
14KK
\end{tabular} \& 10.99 \& AN5512 \& \[
\begin{aligned}
\& 1.90 \\
\& 1.090
\end{aligned}
\] \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { TAA270 } \\
\& \hline \text { TA7271 }
\end{aligned}
\]
TA7279} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& 2.50 \\
\& 2.50 \\
\& 2.50
\end{aligned}
\]} \& \multirow[b]{2}{*}{VHS ALIGNMENT TAPE} \\
\hline WAY UNIVERSAL \& \& nikikal BABY 10 \& 16.99 \& \& \& \& \& \& \& \\
\hline REMOTE \& Cx10 16.8 \& NT14 \& 16.99 \& \({ }_{\text {A }}{ }^{\text {a3918 }}\) \& 12.00 \& TDA2006 \& 1.70 \& TAP2 \& 3.00 \& \\
\hline \& \({ }_{\text {EEKO }}^{\text {eiche }}\) \& \& \({ }^{16.98}\) \& BA3920 \& 4.09 \& toazo \& 1.30 \& tapa \& 4.29 \& NSPORT, FM PICT \\
\hline que illumin \& 16328NX

16228NX \& $\underset{\substack{\text { PANASONI } \\ \text { TLF14567 }}}{ }$ \& 20.00 \& ${ }_{\text {BAS410 }}^{\text {BASA08 }}$ \& ${ }_{3.80}^{4.08}$ \& Tide ${ }_{\text {TDA2040 }}$ \& 1.70
3.60 \& ${ }_{\text {TAB2 }}^{\text {TAT2 }}$ \& ${ }_{3.50}^{3.08}$ \& CURVE, AUDIO SYNC HEAD

\hline (TV VCR \& ${ }^{\text {BUSH }}$ \& ${ }_{\text {TLFP14568 }}$ \& 20.00 \& BA5412 \& 3.80 \& TDA2578A \& 2.90 \& ${ }^{\text {TABAR2 }}$ \& 3.80 \& TRACKING

\hline \& \& TLF14586 \& ${ }_{20.00}^{20.00}$ \& ${ }^{\text {BA6 }}$ BA6 62 \& 1.80
3.90 \& TDA25653A \& 2.200 \& $\stackrel{\text { TAB2 }}{\text { TAB2 }}$ \& (2.25 \& PLAYBACK SWITCHING

\hline CD/HI-FI) indicator \& DECCA \& TLF14592 \& 22.00 \& ${ }^{\text {BAF620 }}$ \& 2.50 \& M54545L \& 3.40 \& ${ }_{\text {TAB2 }}^{\text {TAB2 }}$ \& 7.80 \& POINT

\hline \& \& TLF15506 \& 22.00 \& - ${ }_{\text {BA6222 }}$ \& | 1.99 |
| :--- |
| 1.89 | \& ${ }_{\text {M }} \mathbf{M 5 4 5 4 9 4 8 L}$ \& ${ }^{4.80}$ \& ${ }_{\text {a }}$ \& ${ }_{8.99}$ \& £39.99

\hline Macro function key \& $\begin{array}{ll}\text { DV9499 } \\ \text { TNA422 } & 18.09 .09 \\ \text { 18.99 }\end{array}$ \& ${ }_{\text {Prill }}^{\text {TLFS }}$ \& 28.00 \& ¢ \& | 2.99 |
| :--- |
| 1.90 | \& MC1330673 \& \& \& 3.99

3.99 \&

\hline \& FERGUSON \& ${ }^{2} \times 13 \mathrm{~A}$ A \& 18.90 \& BA623 \& 2.80 \& ${ }_{\text {MCLLOOSA }}$ \& \& ${ }_{\text {TAB6 }}$ \& -12.98 \&

\hline 24 bit processor $\quad \begin{array}{lllll}1 & 2 & 3 & 4\end{array}$ \& \& CTXE \& 16.99
16.99 \& \& 3.50
1.90 \& \& 14.09 \& \& 12.99
3.25 \& GENERATOR

\hline ($\begin{aligned} & 5 \\ & 6\end{aligned}$ \& ${ }_{\text {T } \times 100}$ \& ${ }_{\text {GR2, }}$ \& 22.09 \& ${ }_{\text {C }} \times 1 \times 88$ \& 1.99 \& STK \& 10.00
11.00 \& TDA3 \& 3.80 \& olour bar, Cross hatc

\hline Ergonomically \& 51P7

59k7 \& ${ }^{\text {cppo }}$ CP10 \& 16.99
22.00 \& $CNX83
cCNY7$ \& 1.98 \& STK3082
STK412 \& ${ }_{\substack{\text { O. } \\ 8.80}}$ \& T0 \& 3.89 \& Staircase.

\hline designed keypad \& ${ }_{\substack{\text { 66M } \\ \text { A51F }}}$ \& Sals \& \& CNY \& ${ }_{2.28}^{4.98}$ \& STK41 \& 8.80
8.00 \& \& 3.9 \& COMPACT PORTA

\hline \& \& \& ${ }^{18}$ \& AA13 \& ${ }^{2.29}$ \& STK4131 \& ${ }^{7.00}$ \& TDAB \& 1.98 \& 84.99 only

\hline aces up to 4 \& \& \& \& A131 \& ${ }_{2}^{3.50}$ \& STK414 \& 8.00 \& TDOA5500 \& ${ }^{1.99}$ \&

\hline remote controls \& CBT \& ${ }_{\text {CBE1 }}$ \& 18.99 \& HA \& 2.98 \& STK414 \& ${ }_{\text {2.00 }}^{2.80}$ \& TDA \& 8.25 \& Capacitance Meters

\hline \& 900D \& \& \& ${ }_{\text {HA }}$ \& ${ }^{2.98}$ \& STK41 \& 8.00 \& ${ }_{\text {TOAALSOSM }}$ \& ${ }_{\text {12.99 }}$ \& Capacitance Meter PG015

\hline Child security fe \& CTV14 \& C8P21 \& 22.00
22.00 \& \& 18.99 \& STK4 \& ${ }_{\text {8. }}^{\text {8.00 }}$ \& TDAA600 \& 1.99
1.99 \&

\hline \& 18. \& \& \& HA \& 14.9 \& STK4 \& 9.00 \& \& 2.98 \&

\hline Fastext/teletext \& \& C1411S
OV54011 \& ${ }_{16.98}^{31.00}$ \& \& ${ }_{3.9}^{2.9}$ \& STK4 \& \& \& ${ }_{3.90}^{1.99}$ \&

\hline Fastextrelext \& CUC3400 21.50 \& Sv288 \& \& \& 8.9 \& STK5 \& ${ }^{7.00}$ \& TDAE \& 3.98 \&

\hline \& ${ }_{\text {c }}^{\text {CTITAR }}$ \& SoNr
NV205 \& \& \& 2.28
2.00 \& STK \& ${ }^{8.00}$ \& TTAA \& 3.99
2.99 \&

\hline \& $\mathrm{CT}^{\text {Tron }} 16.0$ \& K V 2096 \& \& \& 2.08 \& STK7 \& ${ }^{8.00}$ \& toa \& 7.98 \&

\hline \& \& Kk21 \& \& \& 1.60 \& ${ }_{\text {STK73 }}$ \& 4.80 \& TTAA \& 2.98 \&

\hline REPLACEMENT REMOTE \& \& ${ }^{\mathrm{K} V} 225$ \& \& L444 \& 2.98 \& STK73 \& ${ }^{4.50}$ \& TDAA17 \& 3.80 \&

\hline CONTROLS FROM $£ 5.9$ \& C21117
C12P26 \& kV27x \& \& La44 \& ${ }_{2}^{2.09}$ \& STK73 \& ${ }_{8.90}$ \& TTAA \& 7.28 \&

\hline \& \& \& \& \& 2. \& STR4 \& 4.80 \& \& 10.00 \& very wide range.

\hline \& \& $\xrightarrow{\text { KVA212 }}$ \& \& \& ${ }^{2.9}$ \& STR60 \& . 80 \& TD \& 2.809 \&

\hline ELC EAST LONDON COMP \& \& , \& \& \& 3.08 \& STR12 \& ${ }^{8.00}$ \& \& ${ }_{1.90}$ \&

\hline 63 PLASHET GROVE, EAST HAM \& \& KV\%212, \& \& Las \& 2.80
2.08 \& STA40 \& ${ }_{\text {c }}^{6.00}$ \& TEA \& 1.99 \& E29.09

\hline LONDON E6 1AD. TEL: 0181-472 4871 \& COMP 80R 16. \& \& 15 \& \& 3.89 \& STR5 \& 4.90 \& TEA \& ${ }^{3.99}$ \&

\hline two minutes walk from Upton Park Tube Statio \& $\stackrel{\text { clic }}{\text { Dig }}$ \& \& \& \& | 10.00 |
| :---: |
| 1.80 |
| 1.0 | \& STh5 \& . 50 \& \& ${ }^{1.80}$ \& dent Service/Cassette

\hline vist our shop \& ST3376

TX3537 \& ${ }_{\substack{140094 \\ 1400}}$ \& ${ }_{16}^{25}$ \& La \& 1.98 \& STR59 \& ${ }_{\text {c }}^{8.50}$ \& TEA \& ${ }_{\substack{3.09 \\ 2.09}}$ \&

\hline OPEN MON-SAT PAM-6 \& \& \& \& \& ${ }^{1.9}$ \& STRD \& 7.90 \& \& ${ }_{209}^{2.09}$ \&

\hline ols \& ${ }^{\text {c2 }}$ \& \& ${ }^{25}$ \& \& 3.99 \& ST \& ${ }_{8}^{\text {c.99 }}$ \& TE \& 4.25 \&

\hline INSTRUMENTS, REPAIR K \& \& ${ }^{155598}$ \& \& \& 2.98 \& STRD \& ${ }_{8.00}^{6.90}$ \& \& ${ }^{09}$ \&

\hline Ks \& CLASSIC M 1 \& \& \& \& ${ }^{28}$ \& \& -90 \& UC3884 \& ${ }^{1.99}$ \& itachi/Salora Mains Swi

\hline 17. \& \& ${ }_{221548}$ \& \& M5454 \& 2.98 \& STRD5008x \& . 00 \& 288 \& 3.09 \&

\hline L GOODS DESPATCHED SAME D \& 1440A
209PT \& \& ${ }_{30}^{30}$ \& \& ${ }^{8.80}$ \& \& 7.99
7.98 \& \& ${ }^{7.99}$ \&

\hline es subject to change wit \& SH1 \& ${ }^{\text {AT2079 }}$ \& 18 \& TAB \& 6.09 \& \& 3.80 \& \& 2.239 \&

\hline TICE VISA ACCESS ACCEPTED. \& CTV144EPM 18.09
CT2146LM 10.99 \& ${ }_{\text {AT } 20799 / 4}$ \& \& ${ }_{\text {TDA }}$ TDA15520 \& 2.50

8.90 \& TAB210 \& $$
\begin{aligned}
& 2.60 \\
& 3.60
\end{aligned}
$$ \& UPC1394 UPC1488 \& \[

$$
\begin{gathered}
1.200 \\
2.80
\end{gathered}
$$
\] \&

\hline ORDER ES.00 \& \multicolumn{2}{|l|}{TDA8178S REPLACEMENT $£ 7.09$} \& \multicolumn{8}{|l|}{REMOTE TESTER £14.99 LOPT TESTER £29.89 FREQUENCY COUNTER £90 SOLDERING STATION £E0.00
SATELLITE FINDER KIT £29.89 MICROWAVE LEAK DETECTOR £14.99 DIGITAL MUTTIMETER FROM £8.89}

\hline
\end{tabular}

$2 \cdot 5 \mathrm{GHz}$ frequency meter for under £100? Hand-held and battery-powered, the FC2500 costs just £99 exclusively to Television readers.

Normally, the FC2500 2.5 GHz frequency meter retails at $£ 116.33$ including VAT. But for a limited period Television, in conjunction with Vann Draper Electronics, is making this instrument available exclusively to readers at the special price of £99 - including VAT and postage representing a discount of $£ 17$ on an already low price. Simply fill in the coupon and post it to Vann Draper at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE 18 2PL. Tel. 0116 2771400, fax 01162773945.

Specifications

Range 1	2.5 GHz
Span	$50 \mathrm{MHz}-2 \cdot 5 \mathrm{GHz}$
Sensitivity	$\leq 100 \mathrm{mV}, 50-75 \mathrm{MHz}$
	$\leq 50 \mathrm{mV}, 76 \mathrm{MHz}-2.5 \mathrm{GHz}$
Gating	2.75 s sample, 100 Hz resolution
	1.5 s sample, 200 Hz resolution
	0.75 s sample, 500 Hz resolution
	0.5 s sample, 1000 Hz resolution
Range 2	500 MHz
Span	$10 \mathrm{MHz}-500 \mathrm{MHz}$
Sensitivity	$\leq 120 \mathrm{mV}, 10.35 \mathrm{MHz}$
	$\leq 50 \mathrm{mV}, 35-350 \mathrm{MHz}$
	$\leq 120 \mathrm{mV}, 351.450 \mathrm{MHz}$
Gating	0.75 s sample, 100 Hz resolution
	1.5 s sample, 50 Hz resolution
	5 s sample, 20 Hz resolution
	os sample, 10 Hz resolution
Range 3	10 MHz
Span	$10 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$
Sensitivity	$\leq 50 \mathrm{mV}$
Gating	0.5 s sample, 10 Hz resolution
	1.25s sample, 1 Hzz resolution
	os sample, 0.2 Hz resolution
	11 s sample, 0.1 Hz resolution
Range 4	Period
Span	$10 \mathrm{~Hz}-10 \mathrm{MHz}$
Sensitivity	$\leq 50 \mathrm{mV}$
Basic accuracy $\pm 4 \mathrm{ppm},+1 \mathrm{~d}$	
1/p limit	5 V pk-pk $2 \cdot 5 \mathrm{GHz}$ and 500 MHz ranges
	250 V pk-pk 10 MHz and period ranges

Features of the FC2500
 - High sensitivity at VHF and UHF
 - Battery operated
 - Hand-held and fits in the pocket
 -0.1 Hz resolution on 10 MHz
 range
 - Measures frequency and period
 - Data hold
 - Relative measurement feature
 - Records min., max. and aver-
 age
 readings
 - Auto power down
 - High-contrast $13 \mathrm{~mm}, 8$-digit
 LCD
 - Precision timebase
 - Optional antenna for checking

Use this coupon to order your $\mathbf{F C 2 5 0 0}$

Please send me \qquad FC2500 $2 \cdot 5 \mathrm{GHz}$ frequency meter at the fully inclusive special offer price of $\boldsymbol{£ 9 9}$ each - fully inclusive. Also AT20 Tx measurement antenna at $£ 6.95$ inclusive.

Name
Company (if any)
Address

Phone number/fax

Total amount

\qquad
Make cheques payable to Vann Draper Electronics Ltd.
Or, please debit my Master, Visa or Access card.
Card type (Access/Visa)
Card No
Expiry date
Please mail this coupon to Vann Draper Electronics, together with payment. Alternatively fax credit card details with order on 01162773945 or telephone on 01162771400 . Address orders and all correspondence relating to this order to Vann Draper Electronics at Unit 5, Premier Works, Canal Street, South Wigston, Leicester LE18 2PL.
*Overseas readers can also obtain this discount but details vary according to country. Please ring, write or fax to Vann Draper Electronics.

Long-distance Television

Terrestrial DX and satellite TV reception and news, UK restricted TV broadcasting licences to be awarded, co-channel interference filtering techniques for Bands I/II. Roger Bunney reports

Signals from
Iran are now
available via
Hot Bird 3 at
$13^{\circ} \mathrm{E}$.

As this column is being written during the first week in January, it is time to reflect on the past year's TV-DXing. There was an improvement in Sporadic E activity compared with 1996, also in autumn tropospheric openings. The midNovember Leonids meteor shower period was an active one. With the rapidly increasing sunspot count we can look forward to some early evening TE (transequatorial skip) reception, while next winter could bring the first signs of F2 layer propagation for some years. It has also been suggested that the Leonids meteor shower next November could bring record activity.

Unfortunately there has been a decline in the number of active DXTV enthusiasts. There are several probable reasons for this. First, conditions have not been very good in recent years. Secondly the number of low-band VHF TV transmitters in Europe has declined as services have moved to UHF, while interference levels across Band I have increased. Then there is the lure of satellite

reception. There's always something to be seen from the Clarke belt, and dishes can sit at ground level. The number of those interested in multisatellite reception has grown, more than offsetting the decrease of interest in terrestrial DX-TV reception.

The future lies with digital TV the technology has already taken a firm hold in the satellite field. Fortunately there are still many analogue signals available from the satellite belt but, looking to the future, we need to grasp the digits!

Sadly there was little terrestrial DX-TV activity during the last month of 1997. Low-level SpE signals were received on the 7th, 14th and 27th of December, all in chs E3 and E4. The signals were all unidentified and were present during the mid to late moming period.

Now back to TE reception. Robert Copeman in Victoria, Australia reports mid-evening reception from China (ch. C1, 49.75 MHz vision carrier) on several occasions. During late November he received Malaysian signals in chs. E2 and 3 (at 2105-2200 local time), and on two occasions during the month he received ch. A2 $(55.25 \mathrm{MHz}$ vision carrier) signals from American Samoa. This is encouraging news.

Satellite Sightings

Dean Rogers (Abbeywood, London SE2) mentions in his report that he's a satellite sports enthusiast. Checking through his \log, I am struck by the fact that certain satellites seem to carry predominantly sporting feeds. Eutelsat II F4 $\left(7^{\circ} \mathrm{E}\right)$ is a favourite, with clear PAL. Eutelsats II F2 $\left(10^{\circ} \mathrm{E}\right)$ and II F3 $\left(16^{\circ} \mathrm{E}\right)$ are frequently used. With signals that originate in
the UK/Ireland, Telecom $2 \mathrm{C}\left(3^{\circ} \mathrm{E}\right)$ is most popular. East-bound sports programmes from the USA are commonly found via PAS-3R $\left(43^{\circ} \mathrm{W}\right)$, Orion $\left(37.5^{\circ} \mathrm{W}\right)$ and the Intelsat birds at 27.5 and $21.5^{\circ} \mathrm{W}$.

I have previously commented on the lack of signals from Eutelsat I F5, an elderly bird at $25.5^{\circ} \mathrm{E}$ in a heavily inclined orbit. This had been the favourite for UK horse racing (cheaply leased) and GMTV breakfast TV feeds. The horses seem to have gone digital, as there have been no reports for months. Breakfast TV has reappeared via Intelsat $\mathrm{K}\left(21.5^{\circ} \mathrm{W}\right)$.

The snow falls on December 17th resulted in a flurry of SNG activity. GMTV used UKI-264 (SISlink 27) atop an M3 motorway bridge and its own OB Unit no. 1 (UKI-149), the feed being at 11.497 GHz (horizontal). UKI-264 was also used for a horse racing programme insert at 0730 on the 16th, signing as "G00065G-OB FEED-XMAS". It's well worth checking Intelsat K in the early morning period - there's a lot of analogue TV here.

Later that morning (17th) something seemed to be afoot in Russia. From 0900 there appeared, via an Intelsat K Brightstar lease $(11.532 \mathrm{GHz})$, shots of a space control room with orbital tracks on the monitor screens. One screen displayed the familiar 0167 test pattern. Subsequently there were shots of TV cameras etc. being set up, white balance adjustments, mic tests etc. Then the feed cut to Brightstar colour bars. We shall never know what was up.

A reader asks what the "Pegasus Test" via Intelsat K $(11.4985 \mathrm{GHz}$ horizontal) was on December 11th at 1830GMT. Anyone know?

More sport. While checking Orion $1\left(37.5^{\circ} \mathrm{W}\right)$ at 1700 GMT one day I came across "UKI-77 TEST" alternating with "BT TES $9+00044$ 802852221 " via the 12.668 GHz vertical transponder. At 1705 the caption "ITV Sport Turin" appeared followed by several two-way interviews. The caption then returned until 1930, when a Manchester United v. Juventus match started. Low-level audio subcarriers were present at the usual $7,7.2$ and 7.4 MHz .

I'd not seen the NTSC "US TV Pool Sarajevo" test pattern since the end of hostilities in the former Yugoslavia. But there it was, on December 22nd at 0835 , via the 12.584 GHz vertical transponder aboard Orion. Later "US TV Pool TUSLA" came up. The reason for this activity then became clear: President Clinton was meeting the US troops and extending Christmas greetings to them. A camera shot of the camp notice board proclaimed "Eagle Base Tuzla, Tuzla, Bosnia".

Roy Carman (Sandown, Isle of Wight) also watched this but feels it's high time he went digital "as analogue feeds are drying up". He's considering the Nokia 9600 . Nevertheless his log for December 19th lists six active analogue feeds via Kopernikus $2\left(28.5^{\circ} \mathrm{E}\right)$ at 1730.

Cyril Willis (King's Lynn) saw the BBC South West SNG truck (UKI-231) providing Christmas programme inserts from Chadford, Devon at 1830 onwards on December 23rd. The truck usually transmits via Orion 1 but on this occasion the feed was via the Intelsat bird at $27.5^{\circ} \mathrm{W}$.

Finally, I've found the new Iran TV service via Hot Bird 3 at $13^{\circ} \mathrm{E}$ ($12 \cdot 434 \mathrm{GHz}$ horizontal) of interest. Material seems to consist of video offerings from the state broadcaster IRIB and, for much of the evening, the University of Sahar. It's certainly different, and I've seen some beautiful video sequences.

Terrestrial TV News

Spain: Deregulation of the TV broadcasting system is to take place on January 1st 1999. Two further national TV networks will be added to the present ones (two from RTVE, Antena 3, Canal Plus and Tele 5). Retevision will distribute and transmit the two new networks. Future plans envisage numerous channels in large towns, the limiting factor being channel availability.
Ireland: CanWest Global Communications has signed an agreement with the government to set up and run the TV3 network. Services are due to
start this autumn. The government has insisted on a complex ownership arrangement.
USA: A new network, Pax-Net, is to open this summer with 73 TV stations across the country. There will initially be three hours of "family orientated" programmes a day.
France: The start of the Canal Plus news channel has been postponed indefinitely. Canal Plus is urging the EU to impose a common European digital decoder standard. The company believes that this would ensure the stable development of satellite and terrestrial digital services.
New Zealand: Satellite dishes are being used in Auckland for terrestrial reception of internet data from the Sky Tower. The transmissions are at 12.366 GHz , power being 4 W .

It's common to see normal 45 cm offset dishes mounted upside down, i.e. with the LNB uppermost, for reception from the tower. The LNB's output is connected to either a conventional receiver or a custom-made, PC-slotting receiver card, thence in either case to a PC. Once the required information is located, it's sent via the PAS-2 satellite to the Sky Tower then to the customer.

The wide bandwidth means that information which would take nearly two hours to be received via a telephone line can be downloaded in five-ten minutes. Other satellites now have internet hook-up capability, e.g. Zak-Net via AsiaSat-2 at 3.940 GHz vertical.

Transmitter News

A 600 kW ERP, ch. E59 transmitter at Jihlava near Javorice is now being used by Prima TV in the Czech Republic.

To make provision for DAB expansion, the 100 W transmitter at Flensberg, Germany, is now using ch. E10 instead of E12 for the NDR1 service. The local Rugen-TV service at Garz is on ch. E26 at 5 kW ERP: programmes are transmitted from 1730-0530 local time, text pages being transmitted at other times.

The Hungarian MTV-2 service has moved to satellite transmission. The TV-2 network has taken over the transmitters previously used for MTV-2.

Lublin-3 TV is now in operation on ch. R39, with 100 kW ERP. The mast is 200 m high.

Noord TV in the Netherlands is transmitted on ch. E36 with 100 kW .

RTP (Portugal) has been given financial assistance by the EU to experiment with $16: 9$ transmissions.

RSL-TV

The ITC has received applications for Restricted Service TV Licences (RSL-TV) in the following areas: Birmingham, Greater London, West London, Oxford, Isle of Wight, Derry, Stirling, Bristol, Coventry, Edinburgh, Dundee, Perth, Leeds (one applicant each), Manchester

Comedy material is often sent to European networks via Intelsat K at $21.5^{\circ} \mathrm{W}$.

(three applicants) and Leicester (two applicants).

Final licence approvals are expected in the spring, with the services likely to start this summer. The licences will last for two years.

Because no suitable channel is available, the ITC has decided not to offer licences in Glasgow,
Nottingham, Tyneside, Liverpool, Cardiff, Cambridge, Motherwell and Newcastle.

Co-channel Inferference Filfering

In the January column (page 212) I mentioned a co-channel interference filter marketed by the New Zealand company Tennatron. Since then I have received from Steve Fogerty of Tennatron detailed information on the subject. Interesting that he is a long-time reader of Television - and remembers when Charles Rafarel wrote the DX-TV column back in the Sixties!

Steve points out that when TV transmitters in adjacent areas use the same channel there is usually a line offset to minimise visual interference effects. These offsets are at typically one third, one sixth or one half the line frequency.

The one-third line offset is used where there are three stations (two possible sources of interference). A typical offset frequency would be 10.425 kHz , giving offsets of $-10.425 \mathrm{kHz}, 0 \mathrm{kHz}$ and 10.425 kHz . The interference pattern is three lines wide.

The half-line offset is used with two stations. Offsets should be 23.4 kHz (one and a half lines), i.e. $0 /-23 \cdot 4 \mathrm{kHz}$ or $0 / 23 \cdot 4 \mathrm{kHz}$. The interference pattern is two lines wide.

The one-sixth line offset (13 kHz) is used between stations with onethird line offsets. The interference pattern is six lines wide and is quite noticeable with large-screen TV sets.

Any multiple of one twelfth of a line can be used as an offset frequency, a half-line offset $(\pm 7.8 \mathrm{kHz})$ for example.

At the transmitter, the frequency tolerance with non-precision offsets is $\pm 500 \mathrm{~Hz}$. For improved results, precision offset tolerance should be used, typically $\pm 1 \mathrm{~Hz}$. The latter, with a one third or one sixth offset, locks the line structure within the picture.

Precision locking implies a very stable transmitter, i.e. one whose oscillator is locked to a high-stability source such as a GPS frequency standard or a rubidium oscillator.

Broadcasters suffer co-channel interference because of frequency sharing and congestion. With small
transmitters that use the RBR (off-air rebroadcast) technique, using high receiving aerials, the potential for interference is considerable - even when stacked and screened aerials are used. The problems can increase during high-pressure weather conditions, when tropospheric propagation enhances weak, distant signals.

The electronic co-channel filter provides superior and more versatile cancellation. The broadcaster uses the filter at IF rather than the RF input frequency, so that the filter can be used with any channel - assuming that the transmitters involved are precision stable. Domestic receivers are far from stable, and are thus not suitable for IF precision offset operation.

Tennatron have an RF input version however (for connection in series with the aerial feeder) for Bands I/II, for both domestic and professional use. The price of the former in New Zealand is the equivalent of about $£ 120$ UK. A baseband video input model is to be introduced later this year at roughly the same price. It's essential to quote the wanted and unwanted frequencies, RF or IF, or with the video baseband unit the unwanted offset frequency ($10.425 \mathrm{kHz}, 23.4 \mathrm{kHz}$ etc). The ITC or BBC can provide information on nominal and offset frequencies for UK transmitters.

My thanks to Steve for all this information. Trade/cable enquiries about these co-channel filters should be sent to Tennatron Industries (NZ) Ltd., 283 High Street, PO Box 218, Motueka, New Zealand - phone/fax 035288707 (international +64 3 528 8707).

Satellite News

Bad news for SE Asia: the AsiaSat-3 launch on December 25 th was a failure. The second firing came to an end after one second, with the result that the satellite is now in an elliptical orbit with no possibility of being recovered. This could delay the launch of the Astra 2A satellite - and the start of BSkyB's digital services - since the same type of Russian rocket is to be used. Incidentally SES-Astra has bypassed Eutelsat's claim to the $28^{\circ} \mathrm{E}$ slot by doing a deal with Deutsch Telecom for about 250 MHz of the little-used
Kopernikus ($28.5^{\circ} \mathrm{E}$) spectrum - in effect Astra 2A will replace DFS-2 at $28.5^{\circ} \mathrm{E}$.

Kirch and Bertelsmann have agreed to an EU demand to cease marketing the Kirch D-box decoder for Premiere subscribers - about 100,000 have been sold. Premiere
will now await an EU decision on an all-Europe digital standard.

The Australian digital TV group Optus-Vision expects to have its pay-per-view/video-on-demand services in operation across Australia by the end of the year and might then enter the UK market.

Two pan-African TV services are being downlinked by Intelsat at $27.5^{\circ} \mathrm{W}$. Minaj Africa Network has been on test recently and hopes to have services in operation this summer. African Independent Television International has been transmitted to Nigeria and neighbouring countries since last autumn. These are all Cband services.

MTV is to start its M2 European music channel this summer. Existing services will become "regionalised", with separate feeds to Scandinavia/ Eastern Europe and the Netherlands.

Ango-Dutch Shell has put out for tender an order for 11,000 VSATs (Very Small Aperture Terminals) these are transmit/receive terminals intended for commercial use. They would link the company's retail and administrative operations across Europe, forming by far the largest such network.

Intelsat $704\left(66^{\circ} \mathrm{E}\right)$ is now being used full time for video/TV traffic across Asia - a new satellite at $64^{\circ} \mathrm{E}$ has taken over telecoms/data distribution. Intelsat's APR-1 craft is to be launched in July, providing highlevel (up to 39 dBW) C-band links at $83^{\circ} \mathrm{E}$ for single-hop Europe/Asia hook-ups. K-TV will be launched in spring 1999, providing Ku-band signals at up to 55 dBW across India/SE Asia. 605's telemetry problems have been sorted out and the satellite has been moved to $27.5^{\circ} \mathrm{E} .806$ is to be launched in March, to orbit at $40 \cdot 5^{\circ} \mathrm{W} .804$ was launched on December 21st at $64^{\circ} \mathrm{E}$ for Indian Ocean service. Intelsat has confirmed with Ariane launches for future IX series satellites - 902/3/4. Columbia is to take over the ancient 515 craft at $37.5^{\circ} \mathrm{W}$ and lease several transponders back to Intelsat: use of the C-band TDRS-4 craft at $41^{\circ} \mathrm{W}$ will cease.

Echostar has introduced a new digital receiver, Model DSB9800, which offers free-air/conditional access operation and is claimed to be an "enthusiasts receiver". The specification has many useful features, but the $\mathrm{m} / \mathrm{symbol}$ rate coverage is only 18.5-30 - there are many signals that run at lower ms rates.

Future frequency bands being discussed are K $18-27 \mathrm{GHz}$, Ka 27 40 GHz , Q $36-46 \mathrm{GHz}$ and V 46 56 GHz .

Answer to Test Case 423
 - see page 325 -

To start with we need to clarify the set's field scanning. With an ordinary picture the lines of alternate fields are interlaced, i.e. the lines of any given field occupy screen positions midway between the lines of the immediately preceding and succeeding fields. This is normal practice. The result is good picture resolution with a relatively fast large-area flicker rate of 50 Hz . With a text display the line and field scan rates are the same as with an ordinary picture, but to prevent interline flicker $(25 \mathrm{~Hz})$ while maintaining the same display-repetition rate $(50 \mathrm{~Hz})$ the lines of successive fields are overlaid. The result is a coarser display - which is no disadvantage with the large elements in a text display - that sits steady on the screen.

In this particular chassis design text de-interlacing is carried out not by changing the start time of successive fields but by passing a switched vertical shift current through the scan coils on alternate fields. This current is just sufficient to move the raster by one line width. Hence the 25 Hz feed to inverter transistor Q009 and the resistive link between its collector and the scan coils. The vital clue was right at the end this time: the waveform at the collector of Q 009 should have been at 25 Hz .
Transistor Q009 wasn't working because the PC land at its emitter was not connected to chassis. A wire link had been omitted during production.

NEXT MONTH IN TELEVISION

TV/VCR Spares Guide

This essential reference material is included free with our next issue. The updated, 8 -page pull-out 1998 Television TV/video Spares Guide provides addresses and ordering phone/fax numbers for brands, manufacturers and spares distributors in the consumer electronics field.

Servicing the Panasonic NVJ35/J35/F65/F70

These VCRs are now some years old but are still capable of providing superb picture quality and performance, and are thus worth servicing and maintaining. Brian Storm provides an authoritative fault-finding guide.

Las Vegas CES Report

The Las Vegas winter Consumer Electronics Show is an important international event for introducing the latest in CE equipment. This year is particularly significant, with digital TV to the fore. George Cole reports on the latest products and developments.

What's Cooking?

The microwave oven is a common enough domestic item which is partly electronic, partly an appliance. Repairs are often required, and this is something you should be able to handle. J. LeJeune describes the basic operation and features of microwave ovens and the relevant servicing procedures.

Service Notebook

John Edwards on tackling various types of TV and video repairs.

On sale March 18th

TELEVISION INDEX/DIRECTORY AND fAULTS DISCS PLUS HARD COPY INDEXES \& REPRINTS SERVICE

INDEX DISC

Version 6 of the computerised. adex to TELEVISION magazine covers Volumes 38 to 47 (1988-1997). It has thousands of references to TVNCR fault reports and articles, with synopses. A TVNCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is easy to use and very quick. It runs on any IBM or compatible PC with 640K RAM and a hard disc. Price $£ 35$ ($3.5^{\prime \prime}$ HD, alternatively $3.5^{\prime \prime}$ DD) Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc.

FAULT REPORT DISCS

Each disc contains the full text for Television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc then access it via the Index disc. Fault Report discs are now available for -

Volume 38 (November 1987 - October 1988);
Volume 39 (November 1988 - October 1989);
Volume 40 (November 1989 - October 1990);
Volume 41 (November 1990 - October 1991);
Volume 42 (November 1991 - October 1992);
Volume 43 (November 1992 - October 1993);
Volume 44 (November 1993 - October 1994);
Volume 45 (November 1994 - October 1995);
Volume 46 (November 1995 - October 1996);
Volume 47 (November 1996 - October 1997).
Price £15 each (3.5" HD, alternatively 3.5" DD if required).

NEW - FAULT FINDING GUIDE DISC

This disc is packed with the text of the TELEVISION Test Cases, What a Life!, Service Briefs and other vital fault finding information. It is accessed via the Index disc. Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime}$ DD if required).

REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 47 at $£ 3.50$ each.
All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EU orders, or $£ 5$ for non-EU overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK).

SoftCopy Limited, 1 Vineries Close, Cheltenham, GL53 ONU, UK. Telephone 01242241455

> We welfome letters fromour readers and duy ropubblish as many as we cans You can send them typed, handwwiffen, or on disco Address fhem ro the letters Etifors Room L302, Quadrant House, The Quratrantb Sumons Surrey SM2 SAS.

Electrical Safety

Colin McCormick's letter (January, page 175) continues the discussion started by C.N. Cory in the November issue. In such a serious matter as electrical safety we need to stick to facts: these are in the British Standard (European and, with a few differences, international) BS EN60065:1994.

First, 'double insulated'. The standard calls for two or more layers of insulation, 'basic' and 'supplementary', that meet specific requirements, or 'reinforced insulation' which is a single layer that meets more stringent requirements. Either basic or supplementary insulation may be provided by means of an air gap of specified minimum dimensions.

The CD player mentioned by Colin McCormick seems to have only one layer, the air gap. So the question is whether an air gap can provide 'reinforced insulation'? Clause 9.3.4 b) in the standard specifies the width of an air gap in this situation. For reinforced insulation, with mains voltage, the minimum width is 6 mm , which must not be reduced to less than 4 mm when an external force of 50 N (Newtons -50 N is about 5 kg force) is applied simultaneously with an internal force of 2 N applied to wiring or any live part. The product is expected to meet

these requirements. If it doesn't, maybe there should have been a cover over the live parts or an insulator fixed to the inside surface of the cover - either of which might not have survived previous work carried out by an unskilled or careless person.

Next, 'floating' circuitry. The values used in a resistor and capacitor combination that bridges a mains isolation barrier are determined by the requirements laid down in clause 9.1.1 of the standard. In effect, the impedance of the parallel $R C$ combination must be not less than $415 \mathrm{k} \Omega$, which allows a maximum current of 0.7 mA peak $(0.5 \mathrm{~mA}$ RMS with a sinewave current). The voltage, with respect to earth, at which the circuitry sits depends on the capacitance of the whole product to earth. There is nothing to say that it will be 110 V or any other value less than 230 V . It doesn't matter, because to most people 0.7 mA is only just perceptible as a 'touch current' and is not dangerous even if it can be felt.

The requirements are stricter for aerial terminals. The impedance must exceed $463 \mathrm{k} \Omega$, and the stored charge must be less than $4.5 \mu \mathrm{C}$ (microcoulombs). At 325 V peak, i.e. a 230 V AC mains supply, this represents a capacitance limit $(\mathrm{Q}=$ CV) of 13.9 nF .

I am surprised to hear that there was a problem with the brand of receiver mentioned: once upon a time I supplied the company with radio receivers, and its technical surveillance was exacting. But $13 \cdot 9 \mathrm{nF}$ (if the actual capacitance was anywhere near the maximum value, I would be surprised) charged to 325 V does produce a fat spark.

The current and the stored energy values that are permitted were determined by experience and have not been changed for a very long time. They are certainly in

BS415:1967, and I don't think they were new even then.

What is new is that many more items of Class II equipment are nowadays being connected together. Each of them has a capacitance, intentional or more often just stray, between the live mains and the isolated circuitry. When several pieces of equipment are connected together, the total capacitance can create a 'touch current' that's far from comfortable, though such currents are a long way from being dangerous in themselves.

Aerial riggers should be aware of the problem however, and should take extra safety precautions - the use of insulating boots and, if possible, gloves. The problem has been recognised, and an international team of experts is attempting to draw up measures to control the effect. Unfortunately there is no easy solution. John Woodgate, B.Sc.(Eng.), C.Eng., M.I.E.E., F.A.E.S., F.Inst.S.C.E., Rayleigh, Essex.

Back Injury

Readers may recall my back injury case, which started in 1981. In 1990 I won $£ 20,000$ in court from Radio Rentals/Thorn EMI (liability). But I was advised to "settle in order to get our (Radio Rentals') personal injury insurance from Sun Alliance". It didn't work out like that, and I've had to continue the battle ever since.

Now, after all these years, a new judge has reviewed the case and the truth of the matter is likely to emerge - he has called for a full enquiry this year at higher legal level. Wish us luck, and our thanks to all of you who have written to us about your injuries and lifting experiences.

Incidentally I find that Radio Rentals (now Homeserve) still relies on one-man TV set lifting. If
readers in other areas can confirm this and let us know, it will add to our evidence.
Harry Todd and Family,
clo 12 Oakhurst Close,
Snaresbrook, London El 7 3PZ.

A Tale of Two Tellys

How about this? Set A required a remote control unit, a front flap and a Nicam crystal. By strange coincidence, set B required the same

Not being an account holder with manufacturer A , a major multinational which won't even speak to us, a call was made to the company's distributor to place the order. "Special Parts Order, it'll take seven to ten days" the distributor said.

We don't have an account with manufacturer B either. This is a much less well known brand, but the company was most helpful when we phoned to ask about spares. A cheque was sent with the order, in the post on Tuesday night. Bright and early on Thursday morning the parts arrived. Brilliant. They were fitted and, within 48 hours of our first parts enquiry, a delighted customer paid his $£ 60.91$ bill and collected his set.

Set B is still awaiting parts. In due course we expect that it will be returned to the customer with an anticipated bill for $£ 142.36$.

OK, let's not be mealy-mouthed about it. Manufacturer A is Sony, manufacturer B Beko and the difference for the same job is over $£ 80$. There seems to be something wrong somewhere.
Adrian Spriddell,
Diss, Norfolk.

Pace Apollo Upgrade

My father has a Pace Apollo satellite receiver which, though a very good performer, has only $120-$ channel capability. As it is part of a motorised system this limited its usefulness. The Pace Apollo and MSS200/300 series receivers all have a 24 C 32 EEPROM and all use the same PCB, but the MSS 300 has 250 -channel capability. So I decided to make a copy of the contents of the 24C32 EEPROM in a Pace MSS300 receiver.

I have built myself a serial EEPROM programmer, but instead of using one of these you can tackle the problem in the following way. Remove the EEPROM from the Apollo receiver and put it aside. Then install a socket and a new EEPROM in an MSS300 receiver: at power up, the microcontroller chip will download its ROM programme to the new memory chip. Fit this chip in the Apollo model and it will now have 250 channels, as if it was an MSS300, making it a very useful receiver. Finally put your old chip back so that the customer settings are retained. A point to note however: if for any reason you do a factory reset, the Apollo receiver will revert to 120 channels. So it's best to fit the chip in a socket.

If you wish to have the same information in both receivers, fit the original EEPROM from the MSS300 in the Apollo receiver then use the download facility to clone the MSS300 with the new chip.
K.E. Prior, Weymouth, Dorset.

Regulator Decoupling

While reading the interesting article on null-method dish alignment by John Pitt-Francis (January 1998 issue) I noticed that the 7812 regulator shown in Fig. 2 has no decoupling capacitors.

78 and 79 series regulators are industry-standard devices that are available from various manufacturers. They all look much the same. Their internal arrangements are not identical however, and some become horribly unstable when operated without decoupling.

I guess that John used a tolerant one. But to guarantee successful results every time it's best to connect an $0.1 \mu \mathrm{~F}$ capacitor to ground at the input and a $1 \mu \mathrm{~F}$ capacitor to ground at the output. They should be mounted as close to the regulator as possible.
Keith Cummins,
Chale Green, Isle of Wight.
Panasonic TX25AD1DP
In my fault report on one of these sets (Euro 2 chassis) in the

7 VIDEO PARTS UNAVAILABLE

? TOO EXPENSIVE ?

 SECOND HAND PARTS TESTED \& GUARANTEED (Complete boards, head motors, loading motors, capstan motors, mechanisms, panels, etc.)CALL/FAX
01349884804 EASI-SPARES (at RADCOM UK)
10 Averon Road, Alness IV17 OPT Overseas customers welcome
When calling, please quote any numbers on the part itself, as this will help us locate the right part or any equivalents
Payment by cheque with order (no credit cards) to RADCOM; prices on application plus $p \& p$ for all orders.
Email on user@wardrop.dial.netmedia.co.uk

December issue I suggested that R668 on panel E should also be replaced when there has been trouble with relay RL6101. In fact R668 should be removed, not replaced. This is important. The CRT could again be damaged if there was further relay sticking. Brian Storm,
Harpenden, Herts.

Beat This!

A customer came in and asked whether we could provide a nonworking modern TV set free. He wanted to make a false insurance claim "because my set is too old". This was openly said in the shop. Words fail me.
Rex Webb, KTV Electronics, Camborne, Cornwall.

Published on the third Wednesday of each month by Reed Business Information Ltd., Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Publmsetting by Marlin Imaging Ltd., 2-4 Powerscroft Road, Sidcup, Kent DA 14 SDT. Printed in England by BPC Magazines (Carlisle) Ltd., Newtown Trading Estate, Carlisle, Cumbria CA2 7NR. Distributed by MarketForce (UK) Lid., 247 Tottenham Court Road, London WIP 0AU (0171 261 7704). Sole Agents for Australia and New Zealand, Gordon and Gotch (Asia) Ltd.; South Africa, Central News Agency Ltd. Television is sold subject to the following conditions, namely that it shall not. without the written consent of the Publishers first having been given, be lent, resold, hired out or otherwise disposed by way of Trade at more than the recommended selling price shown on the cover, excluding Eire where the selling price is subject to currency exchange fluctuations and VAT, and that it shall not be lent, resold, hired or otherwise disposed of in a mutilated condition or in any unauthorised cover by way of Trade or affixed to or as part of any publication or advertising, literary or pictorial matter whatsoever.

M.C.E.S

 Specialists in the Service and Recalibration to original manufacturers specification of:All types of:-
TUNER UNITS TO 20 GHZ

BOOSTERS \& RF MODULATORS COMBINED TUNER AND IF UNITS
Supply of Upper Drum Assy's for all video recorders including time lapse, marine and aviation requirements, either as new or remanufactured using your original drum and new grade A chip sets.
We are able to service, recalibrate and confirm manufacturers specifications for all low noise blocks.

New LNB's can also be supplied to order.

15 Lostock Road, Davyhulme Manchester M41 0ES
 Telephone: 01617468037 Fax: 01617468136

VISA

IS YOUR RENTAL BUSINESS EKPANDING?

Broughfame Ltd.

can help to expand your television/video rental business and increase your profitability.
Our rental Finance Plan offers you financial facilities from £1,500 upwards.
Block Discounting finance also available.
For further details ring or write to:

Broughfame Ltd.

115A St John's Hill, Sevenoaks, Kent TN13 3PE

Tel: (01732) 743400
Fax: (01732) 743335
E-Mail: R@Broughfame.Tel Me.com

.frgre than $477,458(+58,037)$ repair tips for 596 manufacturers
Fifinder with more than $66,000(+6,850)$ ICS
$.25,564(+2,575)$ IC diagrams
. 34979 (+1 ,844) compatible transistors on ECA
Kore than $45,800(+2,560)$ extracts of Circuit diagrams
Diggram Archive Management
NEW: Complete power supply circuit diagrams for 654 models
NEW:Monitor Database out now

EURAS

Call us now on 01179860900 for a 30-day Trial or visit us on the Internet@ http://www.euras.com

WILTSGROVE LTD

28-29 RIVER STREET, DIGBETH, BIRMINGHAM B5 5SA

Cassette Thousings

FERGUSON	PRICE	3V65	18.50	FV82LV	14.95	JVC	PRICE	HRD140EK	19.95	HRD550MS	13.95
3V36	19.95	FV10B	18.45	FV45X	13.95	HRD250EK	19.95	HRD180	18.50	HRD560	16.86
3V38	19.95	FV12L	18.45	FV46T	13.95	HRD320	18.50	HRD210	18.50	HRD565	19.95
3V39	19.95	FV13H	18.50	FV51R	24.95	HRD321	18.50	HRD220EK	19.95	HRD566	19.95
3V42	19.95	FV14T	18.50	FV52L	24.95	HRD330	18.50	HRD225	19.95	HRD640	13.95
3 V 43	19.95	FV20B	18.50	FV57H	13.95	HRD337	18.50	HRD455	19.95	HRD660	16.86
3V44	19.95	FV21R	18.45	FV58T	13.95	HRD350	18.50	HRD500	18.45	HRJ1600	11.95
3 V 45	19.95	FV22L	18.45	FV61LV	14.75	HRD110	19.95	HRD520	18.35	HRJ200	11.95
3 V 48	19.95	FV26D	18.45	FV62LV	14.75	HRD370	18.50	HRD530	18.50	HRJ1200	11.95
3 V 49	19.95	FV30B	18.50	FV67HV	14.75	HRD400	18.50	HRD540	16.86	HRJ 1400	11.95
3V53	19.95	FV32L	18.50	FV68TX	14.75	HRD120	19.95	HRD700	18.45	HRJ1404	11.95
3V54	19.95	FV33H	18.50	FV70B	14.75	HRD120EK	19.95	HRD720	13.95	HRJ415	16.85
3 V 55	19.95	FV37H	16.86	FV71LV	14.75	HRD170	18.50	HRD725	19.95	HRJ416	16.85
3V56	19.95	FV39S	18.50	FV72LV	14.75	HRD150	19.95	HRD230	18.50	HRJ417	16.85
3 V 57	19.95	FV43H	16.86	FV74LVX	14.75	HRD140	19.95	HRD580	16.86	HRJ420	19.95
3V58	18.50	FV92LV	14.95	FV77HV	14.75	HRD250	19.95	HRD600	16.86	HRJ425	19.95
3V59	18.50	FV80B	14.95	FV88HVX	-14.95	HRD670	16.86	HRD610	18.35	HRJ435	19.95
3V64	18.50	FV81B	14.95	FV90LV	14.95	HRD620	16.86	HRD750	18.50	HRJ825	19.95
FV44L	16.86	FV91LV	14.95	FV81LV	14.95	HRD637	13.95	HRD755	19.95	HRP40	16.85

CENTRAL TV WHOLESALE DISTRIBUTION LTD

AIWA PRODUCTS

NSX-VHS ...PRO-LOGIC MINI HIFI REMOTE NSXV70.MINI HIFI 3 CD SURROUND SOUND Z2300PRO-LOGIC MIDI HIFI REIMOTE L/CX100CD MICRO SYSTEM NSXV750MINI HIFI CD PLAYER NSX640..MINI HIFI 3CD SURROUND SOUND

	WATENARNS	
HSTA153	HSTA223	HSTA253
HSTA353	HSTA423	HSTX356
HSTX646		HSTX446
HSGS242	HSGS252	HSGS352
HSPX257	HSPX347	HSPX357
HSPX447	HSPX547	HSPX147

PHONE FOR BEST PRICE ON THESE 'A' GRADED STOCK PLUS MANY MORE MODELS AVALLABLE

EX-RENTAL TVS \& VIDEOS ALWAYS AVAILABLE

PHONE NOW FOR BEST PRICES

PHILIPS, PANASONIC, SHARP, SANYO, FINLANDIA ETC...

AMSTRAD SRX 100 AT ONLY £2.00 A PIECE AMSTRAD SRX 200 AT ONLY £ 10.00 A PIECE BT 250 AT ONLY £7.00 A PIECE (QUANTITIES OF 10 + ONLY) PLUS VIDEO CRYPT DECODERS NOW AVAILABLE

UNIT EO33, HARBET ROAD, (off Anoe Road) STONEHUL BUSINESS PARK LEAVALIEY TRADNG ESTATE LONDON. N18 310 DELIVERY SERVICE AVAILABLE
W.M.T.V.

THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL TVs AND VIDEOS TO THE TRADE AT COMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRODUCTS - TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED
Satellite Receivers and Export Enquiries Welcome 1/2 Mile off Junction 10 M6. Easy Parking Facilities UNIT 3, BENTLEY LANE BUSINESS PARK BENTLEY LANE, WALSALL WS2 8TL Tel: 01922-724542. Fax: 01922-722208 Mobile: 0831-246622 (24 hours) Visit our website: WWW.WMTV.MIDWEB.CO.UK

Vista electronics

Manufacturers of television tube and video heads

TV/VCR COMPUTER SPARES AND ACCESSORIES

FREE

FOR PERSONAL SERVICE RING THE 'SAS'
SUSAN
ANN
SANDRA
WE DARE TO PLEASE
betTER VALUE TUE ES
THOUSANDS OF NEW, B GRADE, AND REGUNS IN STOCK

SPECIAL OFFERS

WHILE STOCKS LAST
A59-JJZ £60.00
A51-EFS £50.00
A59-EAK £69.50
A66-EAK £72.00
A51-EAL £55.00
A51-JAR
A51-AEZ
A68-EGD
A66-EGW
A34-EFU
A33-LPE
A34-EAC
ALL NEW TUBES
Carriage Extra
12 MONTHS GUARANTEE
Enquire for types not listed

$$
\begin{array}{crc}
\text { telephone COMPONENTS } 01429838057 & \text { FAX } \\
\text { TUBES } & 01429837100 & 01429837101
\end{array}
$$

(1)P	\mathbb{N}	OXED	R	(D) STOCK
4" R/C PORTA 21" NICAM f	$\begin{aligned} & \mathrm{E} £ 75 \\ & 15 \quad 25^{\prime \prime} \end{aligned}$	" R/C 990 20" FA	Stext NICAM	5 21" FASTEXT £125 75 2" $^{\prime \prime}$ NICAM f235
SONY ST		TOSHIBA S	OCK	OTHER GRADED
21" FASTEXT	£150	21" FASTEXT	£135	available
21" NICAM	f175	21" NICAM	£160	PANASONIC
$25^{\prime \prime}$ NICAM	£225	25" NICAM	£175	PHILIPS
28" NICAM	£295	28" NICAM	£285 £285	SANARP
25" $\times 1$	£235	28" PROLOGIC	£330	all at Similar prices
GRADED HOME COMPUTER SYSTEMS				
PENTIUM $75 £ 225$ 586-100MHz £215 PENTIUM $100 £ 275$				

SATELLITE RECEIVERS

MSS $1000 £ 120$ MSS $500 £ 85$ MSS $100 £ 60$ PRIMA $£ 40$ APOLLO $£ 35800 / 900 £ 30$

GENUINE UNTESTED FAX MACHINES FROM $\mathbb{E} 40$

CAR AUDIO PRODUCTS

SONY XRC 220 (CD CHANGER)
SONY XRC 300 (CD CHANGER)
SONY RDS 6700
PIONEER DEH 525 (CD)
PIONEER KEH 1300
KENWOOD KRC 358
KENWOOD KRC 257

HI FI SYSTEMS

AIWA MICRO SYSTEMS	From $£ 55$
BRANDED SINGLE DISC SYSTEMS	From $£ 75$
SONY TAEX5	$£ 135$

OTHER BRANDS AVAILABLE
AKAI JVC PIONEER PANASONIC
SHARP SANYO

TOP BRANDED GRADED VCRs

LONG PLAY £60 VIDEO PLUS £75 NICAM $£ 120$ BRANDS INCLUDED ARE: FERGUSON, PHILIPS, SHARP, SANYO, ETC.

EX RENT TVs AND VCRs

TVs From $£ 15$ TELETEX TVs From $£ 25$ VCRs From $£ 25$ NICAM VCRs From $£ 40$

ALL PRICES ARE SUBJECT TO VAT

LONDON
(NW10)
TEL: 01819615005

PRESTON TELEPHONE: 01772312101

Universal The Amstrad Service Centre

Audio
 Television
 Video
 Telecommunication

The＇Amstrad Service Centre＇is the exclusive returns centre for all standard customer returns on behalf of Amstrad and Betacom．For the first time we are offering to supply genuine Standard Customer Returns direct at market competitive prices．All of the products we offer for sale are supplied in original manufacturer cartons， both picture print and full colour gift type．All product is＇virgin＇and has not been serviced by the Amstrad Service Centre or any other outside service agent．If you would like to receive a colour product catalogue and an up to date stock and price list please fax your full company details through to the facsimile number listed below．
Currently we have over 90 lines throughout the consumer electronics range starting with walkmans，clock radios， portable stereos，portable CD stereos，personal CD players，micro systems，CD micro systems，mini hi－fi，midi hi－fi， $14^{\prime \prime}$ television， 20 ＂television， 28 ＂television，non videoplus VCR，videoplus VCR and fans and， approximately 40 different telecom products．
There are no restrictions on the sale of these products but if any are exported it is your legal responsibility to check the goods meet all electrical requirements and relevant regulations for the country of export．Export enquiries welcome．

Please mark all references from this advertisement for the attention of Mr T James，Operations Manager．
Switchboard 01630655797 Facsimile 0163065683
Amstrad Service Centre，Universal Consumer Products．Universal House．Tern Valler Business Park．
Markel Dravonn．Shropshire TFy 3SO．

（U．K．）Ltd UNBEATABLE PRICES NEW COLOUR TVs FROM £99 FASTEXT TVs FROM $£ 119$ VIDEO PLUS L／P FROM $£ 119$ NICAM VIDEO £159

DIRECT PRICES TO THE TRADE

 TV，Video，Hi－Fi，Camcorder Brand new＇B＇grade availableExcellent Mail Order Service available．Next day delivery on most items
We also require a fully qualified TV， video and hi－fi engineer to work in the Oxford area．
Send your cv to：

TECHNOVISION 216 Cowley Road， Oxford OX4 1UQ

Tel： 01865202627 Fax： 01865202655
Opening Times： Monday to Saturday， 9.00 am to 6.00 pm Sundays， by appointment only

Unit X2，Rudford Industrial Estate，Ford，Arundel BN18 OBD Telephone： 01903723726 Fax： 01903725322 Mobile： 0976241505

BESCO LTD
 YOUR PREMIER SUPPLIER FOR OVER 30 YEARS NEW STOCKS ARRIVINE DAILY

HI FI HI FI HI FI HI FI

100s OF UNITS IN STOCK!! Large stocks available A and B grade: makes include:
Kenwood, Aiwa, JVC, Sanyo, A. ai, Pioneer, Panasonic, Goodmans, Alba etc. Alba/Bush Ghetto Blasters, CD, Radio, Tape boxed $£ 25$ Alba/Bush CD Micro Systems boxed $£ 35$ - Alba/Bush CD Midi Systems boxed £40 most goods under half price VIDEOS/TV's: A and B Grade
Bush/Alba long play boxed $£ 60$ - Roadstar long play boxed $£ 50$ Akai, Sanyo, JVC, Toshiba, Aiwa less than half price 21" Remote Control Crown/Bush, Alba boxed $£ 60$
EX-RENTAL TV/VIDEO ALL TESTED, SEEN WORKING
Philips complete with remote $£ 45$
Salora all models with remote $£ 65$,
Grundig from $£ 65$ many other makes/models in stock Cheaper Video/front loading from $£ 25$ ALL MAKES, MODELS \& SIZES OF TV IN STOCK
Brown cabinet working TVs from $£ 12$ - Videos off the pile from $£ 10$ We stock Camcorders, Car Stereo, portable radio/CD, kettles, irons, toasters etc, etc.
ALL PRICES INCL. VAT. TERMS - CASH ONLY

* DISCOUNT ON BULK PURCHASES *

Send S/A Envelope for price list or call 01274308186 Walker House, 16 Bottomley Street, Manchester Road, Bradford BD5 7LJ Tel: (01274) 308186 Fax: (01274) 722229

\section*{B GRADE AT LOWEST PRIGES EVER (ALL BOXED WORKING AND GOMPLETE)
 | $\begin{aligned} & 14 " \\ & 14^{\prime \prime} \end{aligned}$ | REMOTE TEXT | $\begin{aligned} & \mathrm{£} 65 \\ & \mathrm{£} 80 \end{aligned}$ | 10" | REMOTE MAINS/BAT | $£ 90$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LP/SP VCR VIDEO+ | | £75 | 28" | PRO LOGIC NICAM | $\begin{aligned} & £ 300 \\ & £ 400 \end{aligned}$ |
| | | £85 | 33" | | |
| $\begin{array}{\|l\|} \hline 20^{\prime \prime} \\ 20^{\prime \prime} \\ \hline 0^{\prime \prime} \end{array}$ | REMOTE TEXT NICAM | £80 | 21" | REMOTE TEXT NICAM | $\begin{array}{r} £ 90 \\ £ 100 \\ £ 110 \end{array}$ |
| | | £90 | 21" | | |
| | | £100 | 21" | | |
| 25" | NICAM | £150 | 28" | NICAM | $£ 180$ |
| MAINS/BATTMELEVIDEOS14" $£ 145 \quad 10$ " $£ 155$ | | | CD | RAD CASS | £25 |
| | | | CD | MICRO | £30 |
| | | | CD | MIDI | £35 |

> ALSO AVAILABLE LARGE QUANTITIES OF GENUINE FAULTY RETURNED TV, VIDEO, HIFI, COMPUTERS, TELEPHONES eg $30 \times$ LATE MODEL VCRS INC NICAM vIDEO PLUS + TOP MAKES SUCH AS SONY, FERG, JVC, SHARP ETC $\mathbf{2 5 0}$ EACH

ALL PRICES PLUS VAT \& BASED ON QUANTITIES OF $10+$

STARVISION

SUPPLIERS OF HIGH QUALITY EX RENTAL - EX DISPLAY TV \& VIDEO

ALL SETS ARE FULLY SERVICED WITH REMOTE CONTROLS AND ARE READY FOR RETAIL SALE

MOST POPULAR MAKES ALWAYS IN STOCK AT PRICES THAT WON'T SHOCK

ALL PRICES INCLUDE V.A.T. NO MINIMUM QUANTITY

RING TODAY FOR LATEST PRICES TELEPHONE
0121502 3016-0121505 1033

STARVISION
 UNIT A, BRUNSWICK PARK ROAD WEDNESBURY, WEST MIDLANDS WS10 9QR

NOW OPEN

IN NORTH EAST - W.TREE TRADE WAREHOUSE UNIT 9A/9B CARRMERE RD, LEACHMERE IND ESTATE, SUNDERLAND SR2 NTE TEL 01915211500 GRADED STOCK ALI BOXED TESTED + WORKING

B GRADE TV/S BOXED WORKING NOW WAS NOW

14" R/C
14" Text
14" Tele Video Combinations
20" Tele Video Combinations
20" R/C TN
20" Nicam Fastext
28" Widescreen Nicam 32" Widescreen Nicam

JOB LOTS OF CAMCORDERS

Sony, Panasonic, Cannon etc...(In lots of 20) $\mathbf{£ 5 0} \mathbf{0}_{\text {each }}^{.00}$
EX DEMO CURRENT MODELS
29" Sony Nicam
29" Hitachi Prologic
£270
£350

SPECIAL OFFER - 'B' GRADE

Boxed \& Fully Tested L/P
with instructions Nicam
£129

W.TREE TRADE WAREHOUSE

Unit 1, Sunshine Mills, Wortley Rd, Leeds
Tel: (0113) 2638804 Fax: 2310275

Stock clearance of tubes for current models

14" narrow neck

48ECR...... 48EEV......
 51AEZ...... 51EAL...... 51EBV...... 51EFS. 510UFB

$£ 69$66ECY...... 66EAS

LOTS, LOTS MORE RING Irene or Jane

Carriage and VAT extra
 EXPRESS TV The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 01889-577600 Fax: 01889-575600

SUPERSCREEN

Cannon Park Ind Estate MIDDLESBROUGH

Best prices on good clean reliable stock Working or off the Pile

Now available ... 'B' Grade

T.Vos Audio Videos

Ring Mike on 01642250850
 for best prices

To clear ... Approx 600 TVs
Tx 100's, Icc5, Sanyo's etc with small faults such as switches, fly back, caps etc

Test them BEFORE
you buy !

8 Heather Park Drive, Alperton, Wembley, Middlesex HAO 1SL
Tel: 01817951735 Fax: 01817951736

SUPPLIERS OF HIGH QUALITY AUDIO VIDEO/TV EQUIPMENT - GRADE A STOCK WITH WARRANTY

Popular brand names at competitive prices, eg:
Video Recorder, LP/SP, from...................£85.00
Video Recorder, LP/SP, VideoPlus from $£ 95.00$
Twin Deck Video Recorders................£145.00
20in TV/Video Combi£235.00
14in TV/Video Combi£180.00
Microwaves, Digitouch, from£47.00
Camcorders, from................................. 165.00
Triple Disc HiFi Systems from£120.00
Televisions, all sizes including Prologics,
Nicam, VCRs etc
PHONE OR FAX FOR FULL LIST
We Are Not Ex-Rental Dealers
ALL PRODUCTS SUPPLIED ARE CURRENT LINES
ALL PRICES SUBJECT TO VAT PLUS CARRIAGE AND AVAILABILITY

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.

CLASSIFIED

FAX 0181.6528931

PHONE 0181.652 8339

The prepaid rate for semi display setting is £ 14.50 per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.15$ per word (minimum 20 words), box number $£ 26.00$ extra.All prices plus $17 / 2 \%$ VAT.All cheques, postal orders etc., to be made payable to Reed Business Information. Advertisements, together with remittance, should be sent to Television Classified, IIth Floor, Quadrant House,The Quadrant, Sutton, Surrey SM2 5AS

Technical Information Services

76 Church St, Larkhall, Lanark ML9 1HE
N.B.: There is a $£ 2.50$ Post/Handling Charge on all orders Send an SAE For Your Free Quote \& Catalogue

We have the world's Largest Selection of

VCR CIRCUITS $£ 8.00$ CTV CIRCUITS $£ 6.00$

CTV CIRCUIT COLLECTIONS

Ferguson from 1980's till present @ $£ 45.00$ • Bush $£ 22$ Hitachi $£ 45$ - Mitsubishi $£ 38$ • Panasonic $£ 30$...etc... Call for full list \& prices of all 27 collections
Tel: 01698 883334/884585 ロ Fax: 01698884825

TOP SELLING BOOKS

PRACT' VCR or TV REPAIRS
$£ 16.95$ each (or $£ 30$ for Both)
MICROWAVES: ENERGY \& OVENS £12.95
Data Reference Guide (Chassis/X-Ref) £9.95
KUXO'SCRAMB'SYS' (New 5th Edn.) £35.00
Buy, Sell \& Service Used CTV/VCR/CD £9.95 each
IC DATA BOOKS - Various Titles $\mathfrak{f} 12.95$ each
With 100's of Titles, send SAE for Full List

SERVICE MANUAL LIBRARY

BUY ANY MANUAL FOR $£ 10.00$ or Swap at $£ 5.00$ Each (plus p\&p) Initial Joining Fee $£ 65.00$
(§20/annum, thereafter)
...........00...........
NEW RELEASES:
3.5" Disk Drives
(Installation \& Circs):
$£ 9.50$
Data Ref' on $3.5^{\prime \prime}$ Disk: $£ 5.00$

RIIPAIR DATABASES \& INIDEXES

NEW FAULT GUIDES NOW AVAILABLE FOR 98

 NEW II Kwik tips on disk V1.0First time release: KWIK TIPS on DISK now available. Based on the forthcoming 2nd Edition Kwik Tips publications the program also includes current 1st edition repair information. Altogether a vast fault \& remedy database of TV \& VIDEO repair information for an extensive range of makes \& models.

Kwik Tips V1.0 Excellent value at only $\mathbf{\$ 2 7 . 9 5}$ New Edifions Fault Indexes in book formot Just released - Edition 19 of the Television Magazine Index, Covers over 14,000 Television, Video, Satellite, Camcorder \& Compact Disc faults, Large easy to read A4 format, The newest addition to a highly acclaimed series. In daily use in workshops across the UK (And beyond).
ISBN 1898394229 Edition 19: Complete set $£ 14.75$
New version Foult indexes on disk - V1.5
Our largest ever fault index database on disk, Covering a massive 18,300 !! Television, Video, Camcorder, Satellite, CD \& Monitor faults listed in 17 years of Television.
Version 1.5: Indexes on Disk (price held) $£ 17.50$ Low cost updates are availablc for all fault indexes.
LATEST RELEASE - Equivalents quides - 2nd Edition.
The long awaited 2nd Edition of our equivalents guides now available, Over 6,300 entries - Equivalents covering Video, TV, Camcorder \& satellites plus TV model-chassis guide. This single comprehensive book contains all FIVE guides.

Edition 2: Equivalents guides $\mathbf{5 5 . 9 5}$
All disks require PC or compatible (Supplied on $31 / 2^{\prime \prime} \mathrm{HDs}$)

Technical Publishing

Fryerns	
Service	Circuit
Information	SATELLITE
TV's, VCR's	Diagrams
AUDIO \& HI-Fl	
Most models/makes old \& new covered	
Also fault guidance service available	
Prices are from £3.75 + £2.50P/P	
i.e. 1 item - total $£ 6.25$ inc	
2 items - total $£ 10.00$ inc	
3 items - total $£ 13.75$ inc	
4 items - total $£ 17.50$ inc	
Payment by credit card or Postal Order	
for next day delivery. Cheques to clear.	
Tel/Fax: 01268470899	
Answerphone outside office hours	
P.O. Box 5830	
Basildon, Essex	
SS13 3RX	
please note new prices	

316, Upton Road, Noctorum, Wirral, Merseyside. L43 9RW. Tel / Fax 01515220053
pe 52.75 , r.o.w please enquire).

SERVICE MANUALS
Have you ever turned away work for want of a Service manual? Have you ever bought a service manual and never used it more than once?
THE MANUALS LIBRARY
For details and membership application form write, phone or fax: HARVEY ELECTRONICS 43 Loop Road, Beachley, Chepstow, Gwent NP6 7HE TEL: 01291523086 Fex: 01291628786 VISA, Access accepted

万 Service Manuals MTS
 We now have 3 CD-ROM's

 covering a vast range of Colour Televisions. The full set contains between them over 3600 models from 133 makes and over 80 full workshop service manuals. Each CD is normally $£ 24.95+$ VAT (total £29.31) making the set of 3 £90.89 inclusive of VAT \& p/p. As a special introductory offer the full set of 3 can be purchased for just $£ 75.00$ fully inclusive. Order your set TODAY. Order code MP-380.> Monitor alignment disc with all orders for MP-380

TEST EQUIPMENT

WANTED

BLLINGTON

Billingshurst, West Sussex RH14 9EZ 8TPORT LNMTED

VALVES WANTED FOR CASH (KT88, PX4, PX25, DA100, EL34, EL37, CV4004, ECC83)

Valves must be Mullard/GECNest European to achieve top prices

Ask for our free Wanted Lis WE SUPPLY VALVES, C.R.T., VIDICONS ETC Visitors, please phone for an appointment. we're a very busy export warehouse. Tel: (01403) 784961 Fax: (01403) 783519

SURPLUS / REDUNDANT ELECTRONIC COMPONENTS WANTED
ICs - Tuners - Transistors Valves - Diodes Etc Any quantity considered

NJM
General Trading
Tel: 01902429022
Fax: 01902429052

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE: 0181-948 3702 FAX: 0181-332 0583

ALBA • AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT FERGUSON • FIDELITY • GEC • GRUNDIG • GRANADA HITACHI • HINARI • INDESIT • ITT • KIMARA • NIKKAI MATSUI • MURPHY OSAKI - NORDMENDE • LOEWE-OPTA PANASONIC • PYE • PHILIPS • SANYO • SAISHO • SHARP SONY • SOLOVOX • SUSUMU • TANDBERG • TELEFUNKEN THORN • TRIUMPH - THOMSON • GOLDSTAR • BINATONE

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDLERS, PINCH ROLLERS, TENSION BANDS. LARGE RANGE OF REMOTE CONTROLS IN STOCK

TIDMAN MAIL ORDER LTD • 236 SANDYCOMBE ROAD RICHMOND • SURREY • TW9 2EQ

Approx. 1 mile from Kew Bridge.
Mon-Fri 9 am to 12.30 pm $1.30-4.30 \mathrm{pm}$

TVs, VCRs HIFIs COMPUTERS
 MAJOR RETAILER RETURNS
 DISCOUNT FOR QUANTITY TEL: 01384411414
 PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel: 01494814317.
 AVO MULTIMETER Model 8 : $£ 45.00 .500$ volt megers: $£ 30.00$. Prices plus VAT and p\&p. Send SAE for lists of Surplus Instruments and Scopes, etc. A. C

Trade Only	
Televisions	from $£ 5.00$
Teletext	from $£ 20.00$
Videos	from $£ 20.00$
Twin Speed Stereo	from $£ 25.00$
Minimum quantity	

Bournemouth Wholesalers 01202470443

Electronics, 17 Appleton Grove, Leeds LS9 GEN. Tel: 01132496048
OCHRE MILL Technical Services, Grundig TV spares for most models to 1985. Fast, friendly, helpful, sensible prices. Gt Lype Farm, Charlton, near Malmesbury, Wilts SN16 9DR. Tel: 01666823228

RECRUITMENT

A Rockwell Avionics \& Communications Collins

Rockwell Collins Inc., a CAA JAR 145 approved in-flight audio and video repair base located near London Heathrow Airport, requires Bench Repair Technicians to support a further expansion.

Candidates should have minimum 10 yrs experience in the repair of LCD and CRT video monitors, with proven repair of VCRs. Suitable for experienced domestic TV/VCR bench engineers.
In order to support our customers' requirements, this position is subject to a shift rota which may include weekend work.
To apply, please send your CV to the address below.

Geoff Drewe
Rockwell Collins Inc. Newlands Drive, Colnbrook Slough, Berkshire SL3 0DX

East Anglia's Leading Independent Electrical Retailer
require for our Norwich, Bury St Edmunds \& Kings Lynn areas

SERVICE ENGINEERS

Hughes TV \& Audio have been established for over 75 years, with 35 stores, and 5 service centres. Due to continued expansion we are currently seeking additional service engineers.
The successful applicants must be:

- Experienced in bench \& field servicing of TV's \& Videos. - Willing to service products in customers homes. \bullet Of friendly personality.
-Able to work as part of a flexible team. - Physically fit for lifting.

We offer:

- Re-location package (if required)
- Attractive salary plus overtime.
- Generous Company Pension.
- Secure and challenging employment.

We are an Equal Opportunities Employer

	require Full Time/Part Time Experienced Bench Engineers for TV-Vid-HifiCamcorder Repairs. Immediate Start - Good Rates
t.V. Video hl-fi camcorder	
- READING -	: 01189667267 (Day)

DONT SIGN ON THE DOTEE LUNE UNTIL YOU TALK TO TEMPO

- QUADRANT VIDEO SYSTEMS PLC
 REQUIRE A FURTHER
 VIDEO ENGINEER

To be based in North West London, for bench and field work.
Candidates must possess a minimum of 5 years experience maintaining VTRs, cameras, video projectors and associated equipment. Good customer liaison skills are also a requirement for this challenging and interesting post.

Salary package commensurate with experience.
Please apply in writing to:

> Mr D. A. Stone
> Quadrant Video Systems PLC
> I40 Cricklewood Lane
> Cricklewood
> London. NW2 2DT

EXPERIENCED BENCH ENGINEERS

Keens Service has been in operation since 1991 and our continued growth means we require additional Experienced Bench Engineers to join our existing workshop team.

The company installs and services, in the field as well as in our workshop, top quality branded televisions, satellite, video and audio products on behalf of some signiticant trade customers, as well as to the public.
While are market is primarily domestic, we are confident about our expansion into the commercial sector in the next 12 months.

We offer very good basic salary, with overtime and bonus opportunities.
For your information Pack and Application Form, please contact Kevin Evans on 01494727731

Keens Service Limited
Technical Electronic Services, 56 - 58 Sycamore Road, Amersham, Bucks. HP6 5EE

QUALIFIED PART - TIME

 BENCH ENGINEERRequired In
ROMFORD, ESSEX
Must have City \& Guilds 224 BTEC HND/HNC or equivalent and practical experience of repairing Audio/Visual products Reply in writing to:ERS
73, Marshalls Drive, Romford, Essex RM1 4JS

H.S.WHOLESALE

Unit B3. Ciradel Trading Park,
Garrison Road, Hull HU9 1 1Q
Tel: 01482 222295/Fox: 222213
 21 PIN LEADS

AERIALS

FROM 1-99

CABLE FROM

RG6 SAT CABLE FROM 11-95
89p
2M FLY LEADS
35p CABLE CLIPS 'F' COAX PLUGS POLES BRACKETS LASHING KITS BOLTS SADELTA TV/SATELLITE METERS now in stock
SAT SYSTEMS
ALL PACE
RECEIVERS POA
LNB'S FROM
E16.95
STOCKISTS FOR:
ANTIFERENCE
COASTAL
LABGEAR
LENSON HEATH
MERCURY
TELEVES
TRIAX
TOWER
BLAKES
PACE
WOLSEY
UNIFIX
PHILEX
\& MANY MORE

REPAIRS

accént

T E C H N I C
CAMCORDER REPAIRS
Collection and delivery anywhere in the UK.
All makes, fast service.
Phone free for details.
Fax: 01905796385
B (0800) $281009 ~ \stackrel{\text { vax }}{ }$

SERVICE MANUALS
 Various makes: AIWA, AKAI, AMSTRAD, HITACHI, JVC, SANYO, SHARP, SONY, etc.
 Write, Fax or Phone for full list:
 HARRISON
 ELECTRONICS
 Tel/Fax: 01354651289
 BUS. FOR SALE

T.V. \& VIDEO

sales and service centre
Established business with 3 bed house.
North Wales Market town. Good profits.
Freehold at only $£ 135,000$ complete.

TELEVISION March 1998
SENDZ COMPONENTS $01702332992 \& 338894 \quad$ Special Offer Sale - 20 Remote Controls $£ 20.00$ (mixed all well known brands)

＇10

Meter

Repair Service In or out of warranty Free Collection 8 Free Deliver Available 0800－801978

シリリリ゙」り」

Test Equipment Catalogue Available Please call for your FREE COPY TODAY

＂1 お水う

 ふり」りうこう」

TEL－ 01604787888

Fax－ 01604787999
E－mail－sales＠satsol．co．uk E－mail－support＠satsol．co．uk Internet Site－www．satsol．co．uk

Siverxiny vya リ1
 VE ARE THE SOLHOM－SATELITE SOLUTHOMS．

SATELLITE SOLUTIONS

