THE LEADING UK CONSUMER ELECTRONICS TECHNOLOGY MAGAZINE

SERVICING•VIDEO.SATELLITE.DEVELOPMENT'S

 FEBRUARY $1998 £ 2.50$
Thomson TX805 chassis fechnology

The Onwa

power supply Language of digital IV
Toshiba service briefs

 \title{
LOPT Tester
}
 \title{
LOPT Tester
}

Welcome to the Uni range of universcl pre-programmed remote controls covering the leating brands of television.

(1) BRANPAOR-BRAND REPMCEMENIS

Fach Uni remote covers all the TV's from one major m.ruffacturer as well es many clones
(2) cODALESS SERUP

Ready to use in seconds a just follow the simple instructions and the Uni remotes are fully operational
(3) TELETEXT AND FASTEXT

All the Uni remotes support Fastext and a wide range of the other Teletext functions (as long as the original TV supports these functions)
(4) PRE-PROGRAMMED FOR THE LATEST MODELS
As well as operating current and earlier models the Uni remotes also contain preliminary information for operating new TV models
(5) EASILY DISTINGUISHABLE FROM OTHER REMOTES
Available in distinctive colours which makes it easy to pick out the uni from normal remotes
(6) REPLACE BROKEN OR LOSt REMOTES
(7) CUSTOMER CARELINE AVAJLABLE FOR ALL UK CUSTOMERS
(8) BRANDS CURRENTLY AVAILABLE Panasonic - Sony - Phillips - Hitachi Mirsubishi - Nokia - Samsung remote range and other replacement and universal remore controlso Faxs 01812020013 call us now.

Day that changed the world
 231

Teletopics

234
DVD prospects in Europe, DVB latest and other news items including the FireWire high-speed data bus.

The Onwa TV Power Supply 236
Philip Blundell, AMIEEIE, and Stephen Brushforth on a widely used power supply that has been causing a number of problems. Includes a full description of the operation of the circuit.

Satellite Workshop
 240

Jack Armstrong's column on satellite receiver servicing.

Test Case 422

Test Report:

Service Training Tapes
Eugene Trundle reports on the current range of training tapes available from Visions Video
Productions.

Pace PRD800/900 Modification 245
Martin Pickering, B.Eng., describes a modification that enables an otherwise unused microcontroller option to be employed for external control.

Toshiba Service Briefs 246

Know-how from Toshiba Technical on TV and projection sets, satellite receivers and VCRs.

LOPT Tester
 248

Charles Ritchie describes a simple LOPT tester that uses a TBA920 chip and a switching transistor.

Monitors

250
More fault reports and servicing hints on computer monitors.

The Language of Digital TV 252
 Now that digital TV is about to arrive we are going to

 have to get used to a load of new terms and abbreviations. Mark Paul has compiled this helpful list for handy reference, starting with abbreviations.
What a Life!

 256Some reminiscences on earlier times then back to today's dud TVs and other equipment. Donald Bullock's column.

TV Fault Finding
 258

Service Notebook 262

Hints and tips from John Edwards on tackling various TV and VCR problems.

Help Wanted 275

VCR Clinic 276
Satellite Notebook 278
Solutions to problems with satellite equipment and installations.

Thomson TX805 Technology
J. LeJeune starts on a two-part account of the
technology used in this novel small-screen chassis.
Letters
284
Long-distance Television
286
Roger Bunney reports on terrestrial DX and satellite news and reception, the Hot Bird 3 line up, 1998 meteor shower dates and a Band I notch filter design.

Editor
John A. Reddihough
Production Editor
Tessa Winford
Consultant Editor
Martin Eccles

Publisher

Mick Elliott.

Advertisement

Manager
Kate Hale
0181-6523076
Advertisement Sales

Executive

Pat Bunce
0181-652 8339
Fax 0181-652 8931
Editorial Office
0181-6528120
Fax 0181-652 8956
Note that we are unable to answer technicol queries over the telephone and cannot provide information on spares other than that given in our Spares Guide.

OF SPARES

Authorised Spares and Accessories

 Distributors for:| - Sharp | - Pace |
| :--- | :--- |
| - Philips | - Nokia |
| - JVC | - Matsui |
| - Grundig | - Ferguson |
| - Tatung | - Saisho |

Genuine manufacturers' parts available for many other premium brands.

Sound and Security Division Distributors for:

- Adastra
- Altai
- Aiphone
- Audio Technica
- Audix
- Baldwin-Boxall
- Bose
- Computar
- Domineye
- Eagle
- ERL
- Goodmans
- Inkel
- Jamo
- Millbank
- Next Two
- Philips
- Secure Care
- Shure
- TOA
- Trantec
- Univox

The day that changed the world ust over fifty years ago, on December 16th 1947, Drs Walter Brattain
 out the theory and getting the patent situation sorted out. Shockley had

Jand John Bardeen, working at the Bell Telephone Laboratories, made a discovery that was to change the world as we know it. They were investigating the properties of the semiconductor material germanium, in particular surface potentials under various conditions, using two very closely spaced (one or two thousandths of an inch) metal probes, when it was noticed that a change of current flowing via one contact influenced the current flowing via the other one. In particular they discovered that when one metal-to-semiconductor contact was forward biased and the other one was reverse biased there was a power gain. For the first time, amplification had been achieved with a solid-state device. How did they come to be carrying out these experiments? Although they had discovered the basis of the bipolar transistor, that had not been their aim. They had discovered the transistor effect by accident!

The use of semiconductor material for various electrical/electronic purposes preceded the thermionic valve era. Electrical non-linearity in metal sulphides such as galena (lead sulphide) and pyrites (iron/copper sulphides) was demonstrated by Ferdinand Braun in 1874. This led to the development of metal rectifiers and crystal detector diodes. The most common device for radio work was the catswhisker, which consisted of a springy metal wire that pressed against the surface of a piece of galena. It was not an ideal arrangement: you often had to adjust the contact for optimum performance by varying its pressure and position. But it worked, and was successful to the extent that crystal sets outnumbered valve sets until 1927.

So the semiconductor rectifier/detector had long been known. In the early Twenties a Russian experimenter, Lossev, described a device using zincite (zinc oxide) and two catswhiskers. How far he got with his experiments is uncertain. In 1925 Dr Julius Lilienfield, in New York, came up with the idea of using an electric field to alter the conductivity within a block of semiconductor material - what we now know as the field-effect transistor. Although he filed a patent, neither he nor anyone else at the time was able to produce such a device. What Bardeen and Brattain, with Dr William Shockley, were trying to do in 1947 was to create a field-effect device. They couldn't understand their failure, which John Bardeen suggested was because surface states prevented the field penetrating the block. Hence the experiments with surface conductivity, which led to the discovery not of the FET but the point-contact germanium transistor

Most books quote 1948 as the date of the discovery of the transistor effect, for which Brattain, Bardeen and Shockley received the Nobel Prize in Physics in 1956. This is because Bell didn't make a public announcement - and demonstration - until June 30th 1948. They had been working
established the theory by the end of January 1948, and on the basis of this proposed the junction transistor, with pn junctions within a block of semiconductor material. The first junction transistor, again a laboratory device, followed in February 1948. It proved that bulk rather than surface effects were the basis of the bipolar transistor effect.

The announcement of the transistor in mid 1948 produced little public response. It was, after all, still a laboratory device. But the technology rapidly evolved, and it wasn't long before transistors started to be used in hearing aids. Transistor radios first appeared in 1954/5. The Regency in the USA in 1954, produced by collaboration between the IDEA Corporation and Texas Instruments, and a Sony set in 1955. The transistor radio came to the UK in 1957, with models from Cossor and Perdio.

The devices then in use were all germanium ones. They suffered from various limitations - temperature stability, voltage restrictions etc. It was hoped that more robust devices would be possible if silicon could be used as the semiconductor material. But purifying silicon was more difficult. Texas Instruments solved this and announced the production of the first practical silicon transistor in 1954. A further major step came with the advent of the silicon planar transistor, which protected the collector-base junction from contamination during manufacture.

From the late Fifties on the transistor gradually took over from the thermionic valve as yields increased and prices fell - with early production methods you'd be lucky to get ten per cent of usable devices (yield) from a semiconductor wafer. The valve market peaked in 1955 (by volume) and in 1957 (by value). In the consumer electronics market the transistor, in its original and subsequently its IC form, has made it possible to produce smaller and smaller products and to pack more and more features into such items as TV sets and VCRs. But perhaps the most significant impact of the transistor was in the computer field. Computers started to do far more and to cost far less as more and more transistors were packed in. The ubiquitous PC, on which we all now rely, would have been an impossibility in the thermionic valve era.

It is doubtful whether Drs Bardeen, Brattain and Shockley could have foreseen what lay ahead when they made their discoveries. But what they came across was to do more than anything else to change the world in which we live, making modern electronics and all the things that rely on it possible. What about the field-effect transistor they were after? The first commercial FET, a junction device, appeared in 1958, at roughly the same time that Texas Instruments produced the first IC. The metal-oxide silicon transistor (MOSFET), which was to give a further major impetus to semiconductor technology, appeared in the early Sixties.

COPYRIGHT

© Reed Business Information Ltd., 1998. All rights reserved. No part of this publication may be reproduced, stored or transmitted in any form or by any means without the written permission of the publishers.
All reasonable precautions are taken by Television to ensure that the advice and data published are reliable. We cannot however guarantee it and we cannot accept legal responsibility for it.

CORRESPONDENCE

All correspondence regarding advertisements should be addressed to the Advertisement Manager, "Television", Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Editorial correspondence should be addressed to "Television", Editorial Department, Reed Business Information, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

INDEXES AND BINDERS

Indexes for Vols. 38 to 47 are available at $£ 3.50$ each from SoftCopy Ltd., who can also supply an eight-year consolidated index on computer disc. For further details see page 291.
Binders that hold twelve issues of Television are available for $£ 6.50$ each from Television Binders, 78 Whalley Road, Wilpshire, Blackburn BB1 9LF. Make cheques payable to "Television Binders".

BACK NUMBERS

Some back issues are available at $£ 3.00$ each. For further details see box on page 243.

SUBSCRIPTION ENQUIRIES
Telephone:
01444445566
Fax:
01444445447
Credit card orders:
01622778000
Address: Television, Subscriptions Dept, PO Box 302,
Haywards Heath, West Sussex RH16 3VY, UK.
Make cheques payable to: Television
Subscription rates:

UK	$£ 32.00$ per year
Airmail Eire	$£ 36.00$ per year
Airmail Europe	$£ 46.00$ per year
Airmail Rest of World	$£ 59.00$ per year

NEWSTRADE ENQUIRIES

Distributed by MarketForce
Telephone:
01712617704

WEB SITE

For a full list of RBI magazines:
http//www.reedbusiness.com
ISSN 0032-647X

REED
BUSINESS
INFORMATION

Possibly a FIRST AGAIN, you can search our www site for video spares, semiconductors, remote controls, satellite gear, line output transformers and CCTV components. Its simple and will only cost the price of a local call. You can order parts, enquire about parts, or simply send a message. All at the cost of a local call. If you don't have the gear to access the internet get straight in touch with your local computer supplier or ask us for a fact sheet.

heve your $1 / A S C-7$. * Economic supply TV \& Viteo parts cerer ueres Fast

1 N 4001	0.03	2 SC 2274	0.35	AA119	0.36	BC557	0.09	BT151500R	1.12	BZX6122	0.19	MAX232CPE	4.70	TA7281P	3.20	TDA3654Q	2.82
1N4002	0.04	2 SC 2335	1.12	AC127	0.71	BC5578	0.18	BTI51800R	1.15	B2X612V4	0.07	MC13002P	7.69	TA7698AP	3.20 5.97	TDA4500	2.82 4.66
1 N 4003	0.03	2 SC2458	0.84	AD162	0.96	BC558B	0.18	BU208A	1.46	B2X6133	0.19	MC7812CT	0.77	TA7778P	5.11	TDA4501H	9.57
1 N 4004	0.11	2 SC 2482	0.35	AF127	2.48	BC558C	0.09	BU208D	1.61	B2X6136	0.19	MJ15003	2.23	TAS205AH	4.50	TDA4503	4.00
1N4005	0.06	2SC2570A	0.38	AN5265	1.76	BC559B	0.14	BU2508AF	1.58	- BZX613v9	0.14	M 12955	0.77	TA8210AH	0.00	TDA4505E	7.35
1N4006	0.06	2SC2655	0.31	AN5512	1.76	BC560C	0.11	BU2508DF	1.58	BZX615V6	0.11	M1802	2.91	TA8210 ${ }^{\text {H }}$	4.79	TDA4505M	11.97
1 N4007	0.04	2 SC 2705	0.35	AN5515	2.79	BC635	0.23	BU326A	1.36	B2X6168	0.11	MJE13005	0.86	TA821 5 H	4.96	TDA4510	2.74
1N4148	0.06	2 SC 2785	0.36	AN5521	1.66	BC636	0.14	BU406	0.69	8ZX616V2	0.11	MJE18004	2.05	TA8216H	8.01	TDA4580	10.05
1 N5062	0.14	2 SC3225	0.60	AN5601K	9.74	BC637	0.11	BU426A	0.86	B2X616v8	0.19	MJE 3055T	0.45	TA8221H	0.00	tDa4600	2.14
1N5401	0.14	$2 \mathrm{SC3330}$	0.52	AN7171K	5.56	BC639	0.21	BU500	1.41	B2X617V5	0.09	M. 340	0.45	TA8403K	2.31	TDA4600/2/3	2.82
1 N5402	0.14	2 SC3400	0.17	AN7190k	11.11	BC640	0.11	BU500S	2.05	BZX618V2	0.19	M. F^{18004}	2.05	TA8427K	3.76	TDA4601	1.46
1 N5404	0.13	${ }^{2 S C 3423}$	0.60	BA157	0.09	BC846B	0.52	BU508A	1.29	B2X619v1	0.09	MJF18204	6.07	TA8718N	7.69	TDA4601D	1.46
1 N5408	0.09	2SC369	0.06	BA158	0.07	BC848B	0.35	BU508AF	1.32	B2x61C22V	0.11	MN650	1.71	TA8739P	6.01	TDA4605	4.10
1N6263	0.20	2 SC 3807	0.91	BA159	0.11	BC848C	0.41	BU508APH	1.99	BZX7910	0.30	MPSA06	0.35	TAA5508	0.31	TDA46052	1.97
1 N914	0.02	${ }^{2 S C 3953}$	0.72	BA39108	6.99	BC8568	0.21	BU508D	1.56	B2X7912	0.11	MPSA13	0.18	TBA120S	0.89	TDA4950	1.76
1544	0.11	2SC4517A	3.14	BA5406	2.14	BC858C	0.19	BU508DF	1.88	B2X7936	0.10	MPSA63	0.18	TBAI20U	0.47	toa 72404	2.57
2 N 2222 A	0.23	$2 \mathrm{SC458}$	0.18	BA5412	2.48	BC875	0.33	8 U 508 V	2.40	Bzx793v9	0.09	MPSA93	0.11	TBA820M	0.35	TDA8138	3.59
- 2 N3055	0.50	$2 \mathrm{SC4742}$	5.11	BA6209	1.18	BD131	0.26	80536	1.65	BZX795v6	0.09	MR856	0.11	TDA1013A	1.56	TDA8140	4.62
2 N 3055 H	1.29	2SC4769	4.02	BA6209N	1.27	BD132	0.26	BUB06	1.03	BZX796v2	0.08	NE555	1.03	TDA1015	1.37	TDA8145	1.97
2N3773	1.52	$2 \mathrm{SC536}$	0.30	BA6219B	1.76	BD137	0.46	81908	1.68	B2X79C33	0.11	NE555N	0.43	tDal035T	4.27	TDA8170	4.70
2N3904	0.32 *	$2 \mathrm{SC945}$	0.11	BA6222	1.70	BD139	0.31	BUH5150	2.14	B2X79C5V1	0.11	P600A	0.33	TDA1044	1.43	TDA8172	2.65
2 N 4401	0.11	2SDI 207	0.57	BA6247	1.95	BD140	0.24	BUK4445008	2.40	Bzx853v9	0.11	P6KE1 30A	2.55	TDA1060	1.08	TDA8175	6.41
2N555	0.12	2SD1 246	0.30	BAT43	0.52	80233	0.23	BUL54AR	1.27	BZY8812	0.09	P6KE180A	4.65	TDA1085C	2.74	TDA8178FS	5.95
2SA1013	0.35	2SD1275	1.41	BAT85	0.96	8D234	0.36	Butil	0.65	BZY882v7	0.23	P1C16C8404	04.50	TDA1170	1.82	TDA8180	4.87
2SA1015	0.11	2SD1276	1.39	BAV21	0.21	8 D237	0.31	Butila	0.95	BZY883v0	0.11	R2KL	0.77	TDA1170N	2.57	TDA8190	3.59
2 SA1020	0.44	2SD1292	0.64	BAX14	0.17	8D238	0.24	BUTIIAF	1.18	BZY884V7	0.09	R2M	0.84	toall 70 S	2.05	TDA83500	5.56
2SAL029	0.26	2SD1330	0.31	8С1078	0.20	BD243	0.45	BUT12A	1.17	BZY885V1	0.13	R4050	3.04	TDA1180P	2.48	TDA8380	2.53
2SA1048	0.19	2SD1397	2.31	BC108	0.24	B0243A	0.60	BUT12AF	1.87	BLY88C12V	0.09	REGBABY10	13.00	TDA15160	3.59	TDA9503	2.13
2SA1145	0.36	2SD1398	2.14	BC109A	0.00	BD243C	0.44	BUTI8AF	1.37	CO4001	0.24	RG2	0.64	TDA15180	4.27	TEA1039	2.11
2SA1 286	0.60	2SD1426	3.51	BC141	0.36	BD244A	0.34	BUT56A	1.19	CD4017	0.47	RGP10G	0.26	TDAI519A	2.74	TEA2018A	2.29
2SA1370	0.43	2SD1427	2.91	BC147A	0.24	BD244C	0.43	BUV48A	1.97	CD4049	0.35	RGP15G	0.33	TDA15208	4.50	TEA2029C	7.04
2SA1 706	0.50	2SD1432	5.04	BC148A	0.35	BD245C	0.94	BUWIIA	1.32	CD4052	0.29	RGP15J	0.17	TDA1524A	7.52	TEA2031A	4.26
2SA733	0.18	2SD1439	5.86	BC1488	0.11	BD433	0.29	BLW418	1.39	CD4053	0.61	RGP15M	0.44	TDA15530	4.79	TEA2164	3.40
2SA872A	6.10	2SD1441	5.98	8C1588	0.12	BD434	0.31	BUW84	1.03	CNX62A	1.29	RGP30M	0.30	TDA15540	8.12	TEA2260	2.48
2SA933	0.36	2SD1453	3.85	8C168	0.04	BD436	0.52	BUX84	1.03	CNX82A	2.10	S2000A	2.57	TDA15570	4.23	TEA2261	3.68
2SA940	0.82	2SD1497	4.74	$8 C 182$	0.14	BD437	0.52	BUZ71A	1.03	CNX83A	2.55	S2000A3	3.59	TDA15580	7.69	TEA5101A	6.48
2 SA950	0.18	2SD1541	4.96	8C182L	0.14	BD438	0.38	Buz80	3.52	CNY758	0.52	S2000AF	1.46	TDA1670A	2.98	TC106D	0.82
2SA966	0.41	2 SD1548	5.95	BC184A	0.12	80681	0.47	BUZ80A	4.15	DTAII4ES	0.31	S2055AF	3.74	TDA1675A	3.85	TC246D	1.54
2SA992	0.31	2SD1554	3.25	BC184L	0.06	BD826	0.43	BUZ90A	3.40	DTC124ES	0.77	SAA129302	10.37	TDA1904	1.63 51	TCP106D	0.60
2S81010	0.35	2 SD1 1555	2.65	BC187	0.47	BD839	0.57	BUZ90AF	3.30	DTC144ES	0.19	SAB3035	1.71	TDA1908A	5.61	TIP110	0.35
2S81066	0.82	2 2SD1556	5.11	BC212	0.09	BD901	0.52	BY127	0.18	FR605	1.90	SG264A	12.88	TDA2002	1.12	${ }_{\text {TPP1120 }}$	0.77
2SB1143	0.77	2SD1651	2.38	BC2128	0.19	BD902	0.60	BY133	0.08	FXT749	0.43	SGSIF344	10.70	TDA2005 TDA2006	1.83 1.06	TIP120	0.40 0.40
2 2SB1243	0.60	2 2S1858	0.43	BC212L	0.18	BD911	0.52	BY206	0.20	HA13001	3.85	SLI430	1.92	${ }^{\text {TDA2006 }}$	1.06	${ }_{\text {TTP122 }}$	0.40
2SB560	0.43	2 2S1877	2.14	BC237	0.12	BDT64C	1.18	BY227	0.13	HA13119	2.05	SL1431	2.82	TDA2030H	0.91	TIP2955	0.89
2SB643	0.29	2SD1878	2.63	BC2378	0.19	BDT65C	1.68	BY228	0.26	HA13151	13.20	SN7414iN	0.17	TDA2030V	1.46 4.56	TIP29E	0.77
2S8647	0.57	2SD1879	3.16	BC238	0.11	BF194	0.22	BY2291000	1.31	HA51338SP3	7.69	STK4132n	10.00	TDA2050	4.56 12.08	TIP3055	1.08
2SB649A	0.77	2SD1884	3.35	BC2388	0.16	BF195	0.07	BY255	0.14	HM6251	14.32	STK414111	10.23	TDA2270 TDA2540	12.08 1.29	TiP31A	0.36
2SB688	1.61	2SD1887	3.56	8C307	0.06	BF197	0.18	BY299	0.18	$1{ }^{1} \mathrm{H} 281$	0.26	STK414211	10.23 9.40	TDA2540	1.29 1.12	${ }_{\text {TiP35 }}$	0.40 1.82
258698	0.35	2SD288	0.85	BC3078	0.15	BF199	0.18	BY397	0.20	\|R9594	15.79	STK4152.II	9.40 10.95	TDA2541 TDA2577A	1.12 3.45	TIP35C TIP41C	1.82 0.65
2S8716	0.43	2SD350A	1.97	BC308	0.09	BF258	0.04	BY398	0.16	IRFBC40	5.98	STK419211	14.64	TDA2577A TDA2578A	3.45 3.20	${ }_{\text {TiP4 }}^{\text {TiP }}$	0.65
2SB772	0.50	2 SD381	1.66	BC308A	0.09	BF420	0.21	BY399	0.12	KiAG210AH	6.15	STK5332	14.64 2.82	TDA2578A TDA2579A	3.20 4.91	TiP42C TIP1761A	0.52 1.85
2SB774	1.61	2SD400	0.34	BC308C	0.26	BF421	0.24	BY448	0.30	LA4270	2.73	STK5342	4.07	TDA2579A	4.91 2.57	TIPL761A	1.85 1.25
2S8891	0.60	2SD401A	0.77	вС3098	0.10	BF422	0.19	BYD14J	0.35	L44280	3.12	STK5372H	6.84	TDA2582	2.57 3.85	TIPL791A TL072CP	1.25 1.03
2 S8892	0.35	2 SD468	0.28	BC327	0.10	BF423	0.14	BYO33D	0.12	L44282	5.11	STK5421	9.52	TDA2582	3.85 1.12	TL072CP	1.03
2SC1008	0.24	2SD667	0.38 .	BC328	0.14	BF459	0.43	вү033J	0.16	LA4445	3.45	STK5481	8.12	TDA2600	1.12	TMP47C432AP	P8189 15.19
2 SCl 24	0.48	2SD669A	0.64	BC337	0.14	BF471	0.37	вY033m	0.26	LA4460	3.50 2.50	STK7253	7.69	$\begin{aligned} & \text { TDA2600 } \\ & \text { TDAح611A } \end{aligned}$	7.69 0.64	TMP47C434N3	15.19 1537
2SC1318	0.19	2SD718	1.90	BC338	0.06	BF487	0.57	BWV10-40	2.55	L44700	4.27	STK7308	6.41	TDA2611AQ	0.64 1.32	IMP47C434N35	$\begin{aligned} & 13537 \\ & 1572 \end{aligned}$
2SC1473	0.21	2SD756	0.47	BC368	0.18	BF491	0.41	BYV95	0.21	LA6324	2.05	STK7348	5.74	TDA2653A	1.32 4.70		$\begin{aligned} & 15.22 \\ & 13555 \end{aligned}$
2SC1573	0.52	2S08378	1.12	BC369	0.18	BF494	0.12	8W95C	0.28	LA6510	2.94	STR11006	7.37	TDA3190	2.70	TMP47C434N35	$\checkmark 3555$ 16.63
$2 \mathrm{SC1675}$	0.14	2 SD856	0.79	BC372	0.53	BF759	0.38	BW960	0.27	LA7830	1.88	STR4211	9.40	TDA3330	2.05 14.21		16.63 10.05
$2 \mathrm{SC1685}$	0.21	2SD882	0.43	BC546A	0.11	BF869	0.38	BW96E	0.53	LA7832	2.40	STR50020	9.38	TDA3505	14.21 2.40	$\begin{aligned} & \text { IPU2732 } \\ & \text { U28298 } \end{aligned}$	10.05 3.40
2SC1740 2SC1815	0.16 0.11	2SD898B 2SD965	6.41 0.67	${ }^{\text {BC5 }}$ 468	0.12	8 F 871	0.41	BW56	0.31	LA7835	2.99	STR50103	4.48	TDA3560	6.13	UC3842	1.46
$2 \mathrm{SC2001}$	0.23	2SD965R	0.67 1.05	BC547 8 C 547 A	0.11 0.04	BF959 BF960	0.18	BWW95C	0.21	L47837	4.19	STR50103A	5.56	TDA3561A	3.85	UC3844	1.20
$2 \mathrm{SC2023}$	3.18	2SK1117	3.40	8C5478	0.11	BF960 BF970	0.30 0.43	BWY96	0.50 0.23	LC7132	4.70 0.10	STR54041 STR5412	5.15 4.02	TDA3562A	4.62	UC3844N	1.91
2SC2073	1.03	2SK1118	3.40	BC548	0.11	BFR90A	0.68	B2v10	1.34	LED3R	0.10	STR58041	4.02 3.42	TDA3565 TOA3565	2.74 6.41	UPC1318AV UPC1365C	3.85 1.70
2SC2078	1.00	2SK30A	0.35	BC548A	0.11	BFY51	0.39	B2V85C5V1	0.15	LED3Y	0.10	STR59041	8.11	TDA35768		UPC1378H	1.70 1.71
2SC2120	0.23	7407	0.69	8C548B	0.06	BR100	0.18	BZX6110	0.16	LM317T	1.29	STR6020	6.07	TDA3592A	10.31 4.60	UPC1394C	1.71 1.92
2SC2229	0.31	74HCO4	0.88	BC548C	0.14	BR103	0.62	B2X6111	0.10	LM324N	1.48	STRD1816	7.69	TDA3640	5.98	UPC1488H	2.99
2SC2230	0.55	7805	0.78	8C5498	0.11	BRX44	1.02	B2X6112	0.13	LM339N	0.50	STRD4420	10.64	TDA3650	11.04	UPC1498H	2.31
2 SC2235	0.36	7806	0.60	8C5508	0.16	BRX49	0.43	BZX61120	0.28	M49481	11.85	T9053V	1.35	TDA36538	1.54	UPC574J	0.86
2 SC 2236	0.36	7809	0.69	$8 \mathrm{BC550C}$	0.09	BRY55	0.28	BZX6113	0.11	M5218L	0.69	T9064V	1.87	TDA3653C	2.82	X2402P	5.78
2 SC 2240	0.21	7812	0.52	8C556A	0.11	BSX20	0.35	BZX6116	0.19	M54544L	2.04	TA7120P	0.66	TDA3653CQ	2.57	ZIK338	0.28
2SC2271	0.67	78L05	0.35	8C556B	0.14	BT139600	1.29	BZX6120	0.19	M58655P	4.96	TA7280P	2.74	TDA3654	1.44	27X650	0.51

32 Temple Street, Wolverhampton, WV2 4AN, UK Tele ++ 44 (0)1902 773122 Fax ++ 44 (0)1902 29052
 emiconductors I.C's etc. of video parts, heads, belt kits etc. of remote controls. etc. etc. over 100,000 database records to help find the difficult video parts quickly. Stock availability \& price in seconds We compete on QuAhITY - We compete on SERVICE We will not compromise and yet our prices are often less.

Satellite division Satellite division Satellite $\overline{0}$
PSU repair - refurb kifs

 LIT2 fles Pace - SS900,9200,9210MPD920, Perguson SEVI, Grundig GIRO2000,3000, Philips STU801, Network

 Iris 1as: Ametred Swx 520.940 etc (emort models) Iry Eats Churein Deniac decoder ITP Aen free MSS 200,300 Apoilo IIIII EARS Forguen SRD4 IIR EASA Peot D100 in In8 and Pce 0100,120 IT1 18 18.11 Pace MSS500,1000
 IIIS EIS M Mutec (Sorenson PSU type oniy)

(kindif winile stacts last)

Feonomic Deyces

[^0]
TELETOPICS

DVD Marketing Developments

The DVD Steering Committee has voted to make Dolby Digital audio (AC3) one of the manadatory audio specifications for PAL DVD discs. As a result, disc producers can encode PAL DVD discs with either Dolby Digital or MPEG-2 audio. The previous version of the DVD specification stated that discs for PAL territories would use MPEG-2 audio, other formats such as Dolby Digital being optional.

According to Dolby over 600 DVD titles have been launched, most encoded with Dolby Digital audio, while almost all the 600,000 DVD players that have now been sold worldwide have Dolby Digital. Over 250,000 5.1-channel

Swires Research has introduced the TVA97 TV analyser. It's a portable spectrum analyser with builf-in terrestrial and satellite TV demodulators. Designed specifically for cable and satellite TV installation and testing, the redesigned Swires' spectrum analyser provides increased versatility and can offer customer confidence by displaying the picture as it will be seen.
The TVA97 weighs less than $\mathbf{4 k g}$. It provides three hours' continuous operation and a complete set of digital and anlogue functions.
For further information call Jason Kaplan on 01268417584 or fax 01268419083.

Dolby Digital decoders have been sold worldwide, 45,000 in Europe

Many manufacturers plan to launch PAL DVD players with dual Dolby Digital/MPEG-2 audio decoders. Despite this agreement it now looks as if an autumn instead of a spring launch for DVD is Europe is more likely, because of lack of software (discs to play). The Hollywood studios have in turn put the blame on failure to provide MPEG-2 audio encoders and the problem of having to produce different versions of discs for different countries.

Nimbus Manufacturing (UK) plans to invest almost $£ 3 \mathrm{~m}$ on manufacturing DVD discs in Europe. The company has installed DVD production equipment plant at Cwbran in Wales. This is expected to become operational in March.
Microsoft and Toshiba are working together to make DVD and the Windows 98 PC operating system compatible. Toshiba is helping

Microsoft develop support for DVD navigation.

The US company Hide and Seek Technology has developed an alternative play-and-dispose DVD system. Discs are coated with a photosensitive polymer that darkens over time, making the disc unplayable. The previously announced Divx system uses a clock-controlled encryption system.

DVD's take-off in Japan has been slower than anticipated. To try to stimulate the market, Matsushita, Toshiba and Japan's largest video and CD rental group, Culture Convenience Club, have formed an alliance. CCC will rent software and players while Matsushita and Toshiba will each take a 19.9 per cent stake in a CCC subsidiary which owns software publishing rights.

There is still disagreement over the DVD-Audio specification. Launch of the format will be late this year at best.

More Monitors

Acer, Taiwan's largest PC manufacturer, is investing $£ 25 \mathrm{~m}$ in a plant at Wentlooge near Cardiff to produce computer monitors and peripheral equipment. Production is expected to begin in August, and the plant will have a 2 m a year monitor production capacity when
complete. Computer assembly is also under consideration.

ADI Manufacturing UK, another Taiwanese-owned company, is to establish a computer monitor plant at Cramlington near Newcastle upon Tyne. The investment will amount to some $\mathfrak{£} 10 \cdot 5 \mathrm{~m}$.

Cable TV

The latest figures from the ITC show that broadband cable services are now available to well over ten million homes in the UK - there was an increase of almost three quarters of a million home passes during the third quarter of 1997, the largest increase in the history of the UK cable industry. Over three and a quarter million homes are now connected, the national connection rate being 32.4 per cent,
the highest ever. The total number of telephone lines installed by cable operators has also risen above the three million mark. A consortium of cable companies Telwest, Diamond Cable, NTL and General Cable - has formed Front Row. This movies-on-demand service is due to be launched in the present quarter. Agreements have been reached with Warner Brothers and Columbia Tristar.

FireWire

You will probably come across the term FireWire increasingly often in the coming months. It's a highspeed serial data link that uses the IEEE1394-1995 standard. This was originally designed - in 1994 - for linking multimedia peripherals.

The first products to use the system are due to start appearing shortly. Intel is understood to be delivering prototype motherboards with the FireWire-1995 interface, using software by Microsoft. Sony has announced a digital colour camera, Model DFW-V300, with a FireWire port so that, for example, video data can be fed into a PC for processing. Sony hopes to launch another six image-sensing products with the FireWire facility later this year.

Texas Instruments has just introduced new chips (see photograph) that conform to IEEE1394-1995 and its enhancement 1394.a. These are an Open Host Controller Interface
(OHCI) and a new family of $400 \mathrm{Mbits} / \mathrm{sec}$ physical layer interface chips. They will form part of digital signal processing applications in DVD players, digital VCRs and TV sets, and similar equipment.

The OHCl (an industry standard specification) interface controller, to be called OHCILynx, co-ordinates reception, transmission and routing of data over the 1394 bus and manages bus interfacing with memory. The physical layer interface chips perform the transceiver functions of initialising the 1394 communications link, arbitrating access to the channel and placing data packets.

Texas Instruments can be reached on 01604663399.

We will be publishing an article on FireWire shortly. A more advanced specification, IEEE1394-1998 or -2000 , is being discussed by industry and the standardisation bodies.

The IEEMIE

Earlier last year members of The Institution of Electronics and Electrical Incorporated Engineers (IEEIE) and The Institution of Mechanical Incorporated Engineers voted in favour of combining to form The Institution of Incorporated Engineers in electronic, electrical and mechanical engi-
neering. Since then The Institute of Engineers and Technicians has decided to join the combined Institution, creating a total membership of some 38,000 .

The official launch of The Institution of Incorporated Engineers in electronic, electrical and mechanical engineering will be held on April 2nd, in London.

The Labgear Handylink remote-control extender system enables households with several TV sets connected to a distribution amplifier to control equipment from another room in the house. Satellite, video and hi-fi equipment can be controlled without having to point the handset at it. The system works by receiving the remote-control command then sending it via the distribufion amplifier to a base unit, and from there to sender buttons aftached to the VCR, satellite receiver efc. under control. These butfons refransmit the control signal, operating the equipment as if the handset had been pointed at it directly.
Handylink is compatible with most TV and standard IR remote-confrol systems. Only an existing coaxial link between the equipment to be controlled and the extro control site is required. Since the system uses existing coaxial cable, it's quick and easy to install and there is no risk of interference to other equipment. Some three million UK homes hove coaxial distribution systems in place.

DVB Latest

The ITC has granted British Digital Broadcasting (BDB) Multiplex Service Licences B, C and D to provide digital terrestrial TV (DTT) services. There are several conditions to the licences, including agreement with programme supply companies to be limited to five years, a requirement to support non-exclusive technical standards for receiving equipment, and that Granada's equity stake in BSkyB doesn't affect competition between BDB and BSkyB. The granting of the licences follows discussions with the European Commission's competition authorities. This seems to mean that the EC has given its approval, though it won't say so formally.

The first DTT services are expected to be launched this autumn. BDB plans to offer fifteen channels initially, including three Pay-TV channels sourced from BSkyB. It is expected that BDB will shortly
announce the names of the companies which have been given licences to manufacture DTT set-top decoder boxes. The front runners are believed to be Philips, Panasonic, Pace, Toshiba and Amstrad.

BDB has also announced its commitment to the inclusion of interative features with its services. The company has been negotiating terms with internet television providers such as Web TV (Microsoft) and Navio (Oracle) for the inclusion of internet-based services.

The DVB Steering Board has reached agreement on a set of functional requirements for running applications on advanced set-top boxes, TV sets and multimedia PCs. This is the first step in developing open technical specifications for what is referred to as a Multimedia Home Platform (MHP). The specifications are expected to be complete by June this year: DVB says the goal is to provide an
"open solution" so that multiple service providers will be able to operate with compatible, cost-effective domestic receivers while recognising the investments already made by broadcasters and consumers in existing equipment. The DVB specification will include a receiver application program interface (API) and download mechanisms for applications, software and related functions.

The French Pay-TV company Canal Plus has demonstrated to members of the European Parliament and the CEC a new generation of digital decoders. The decoders, based on a new set of international standards, will give viewers access to digital services from various providers without having to worry about compatibility between different CA systems. The new boxes will also help in the development of interactive services and internet access.

The Onwa TV Power Supply

Philip Blundell, AMIEEIE, and Stephen Brushforth on the operation of a power supply that has been causing a lot of problems

Chassis produced by the Chinese Onwa company have been imported in large quantities and sold under a wide range of brand names including Akai, Alba, Amstrad, Bush, Goodmans, Hinari, JVC, Matsui and Perdio. There are several slightly different chassis, with either 14,20 or 21 in . tubes. What they all have in common is the same basic power supply, which has been giving service engineers a fair amount of trouble in recent times.
Fig. 1 shows a typical example. Although the circuit remains basically the same in all the chassis, the component reference numbers tend to differ. For example, C911 is C910 in some sets. It has also been C909 and C410, and there are sets that use 500 series numbers in the power supply.

Circuit Operation

It is worth considering the circuit's operation, since this may not be too clear at first sight - we've done our best to draw out the circuit logically however. We will use the component reference numbers shown in Fig. 1. A conventional bridge rectifier, BR901 with its reservoir capacitor C 906 , produces some 320 V at pin 7 of the chopper transformer T901. Q904 is the chopper transistor. When the set is first powered, Q904 receives forward bias at its base via R913 and thus switches on. Since its collector load is inductive, the current build up is gradual. Q904's current flows via its emitter resistor R914 and, a key component in the circuit's operation, R902. A sawtooth voltage waveform is therefore generated across R902.
Q902/903 form a pulse-width modulator/switch whose function is to switch Q904 off. A positive bias from the junction of R907 and R908 is applied to the base of Q902. As it's a pnp device this is reverse bias,
which holds Q902 in the cut-off state. The negativegoing sawtooth developed across R902 when Q904 conducts is also applied to the base of Q902 however, via C908 and R909. At some point this sawtooth voltage will drive the base of Q902 negatively and it will switch on. Q903 is then forward biased via R910 and the two transistors momentarily lock on, placing an AC short-circuit across Q904's base-emitter junction, via C911. The negative plate of this capacitor receives a negative charge and Q904 switches off. There is now no voltage across R902, so Q902/903 switch off.
When Q904 switches off, the rectifier diodes on the secondary side of the circuit, D905 and D904, conduct. In this way energy is transferred from the transformer to the secondary side of the circuit. As a result of the current reversal in the transformer, a positive pulse appears at pin 10. This is applied to the base of Q904 via D901 and C911. Q904 switches on again, and the cycle is repeated.
D902, C910 and R912 provide pulse shaping. C912 and R915 form a simple snubber network.

Regulation

The bias for Q902 is controlled by Q901. This is the basis of the output voltage regulation. D903 produces across C909 a supply for Q901. This voltage is obviously proportional to the other output voltages produced by the chopper power supply. It is monitored at the base of Q901, whose emitter is held at a constant voltage by zener diode ZD901. As the conduction of Q901 varies with changes in the output voltages, so does the voltage across R906 and the bias at the base of Q902. Thus the point at which Q902 switches on during the sawtooth via $\mathrm{C} 908 / \mathrm{R} 909$ is varied. The net result is pulse-width modulation at the base of Q904,

Fig. 1: The self-oscillating chopper power supply circuit used in a number of Onwa TV chassis. These have been used in many sets sold in the UK under various brand names. Note that there is considerable variation in the component reference numbers used. The on/off switch generally has a third pole.
whose switch-off time alters to stabilise the outputs.
VR1 is used to set the HT voltage, which is usually about 112 V with 14 in . sets, 115 V with 20 in . sets.

Faults

There's a common fault pattern with these sets. Two of the electrolytic capacitors in the power supply are crucial to correct regulation, C911 and C909 (remember that the component reference numbers vary with different versions of the chassis). C911, the chopper transistor's base drive coupling capacitor, gives most trouble. Failure of this capacitor results in a substantial increase in the HT voltage. The result will be damage in the line output stage and in stages whose supplies are derived from the line output transformer.
Some versions of the chassis incorporate an overvoltage protection circuit, which is supposed to switch the set to standby when the HT voltage rises above a certain level. Because of certain design limitations however it doesn't always work.
The components that seem to suffer first when the HT voltage rises are the 12 V , 1 W zener diode ZD401 (may be ZD402 in some sets) and its 5.6Ω, 3 W feed resistor R419 (may be R425, R436 etc.). The regulated 12 V supply provided by ZD401 is used by the field output chip and other circuits. In some chassis a 7812 regulator chip is used instead. You may find that the set works with low width and brightness variations prior to the failure of ZD401/2. Other items that may fail include the line output transistor and the field output chip.

Kits

Two kits are available from component suppliers,
including Chas Hyde and Son Ltd. (phone 01759303 068, fax 01759303620). An upgrade kit for a working set and a service kit which in addition includes the parts most likely to have failed.
Items that should be replaced as a matter of course are VR901, C909 and C911 (use types rated at $105^{\circ} \mathrm{C}$), and C904/5/7 (upgrade to 1 kV). If D905 is type RG2, change it to type BYT52.
To improve the operation of the overvoltage circuit where fitted, change R663 (may be R677) to 47Ω or short it out.
Other items to replace (service kit) when the set has failed are as follows: Q904; the 2SD1555 line output transistor (Q402, Q403 or whatever); C914 (upgrade to 40 V) - in some chassis this is C 920 or $\mathrm{C} 406,220 \mu \mathrm{~F}$, again upgrade to 40 V ; R 902 (upgrade to 3 W); R914; and the $0.68 \Omega, 1 \mathrm{~W}$ fusible resistor (R421, R434 or whatever) in the line output stage 12 V rectifier circuit. If the above is a bit confusing, our apologies: it is a bit difficult where so many chassis variations are involved. As one final variation, the Matsui 1455 uses 600 series component reference numbers in the power supply!

> A service manual on Onwa TV sets, service code TV2, is available from Grove Farm Publications, Grove Farm, Long Lane, Barnby-In-The Willows, Newark, Notts NG24 2SG (phone 01636.626 895) at $£ 18$ including post and packing.

MANORSURDES								
LINE OUTPUT TRANSFORMERS p.p. £2.50								
CRT TESTER \& REACTIVATOR KIT - Checks emission \& leakage, boosts tubes, analogue meter indication of tube condition, can be used with any type of tube. Price $£ 68.00$ p.p. $£ 5.00$								
LINE OUTPUT TRANSFORMER TESTER - Price $£ 25.00$ p.p. $£ 2.50$								
VIDEO (PAL) TO RGB CONVERTER - Video in, Phono - RGB+Sync out, scart. 12 voltt supply. Price $£ 99.00$ p.p. 55.00								
		HOW TO ORDER: ADD p\&p TO ORDER + VAT 17.5\% TO THE TOTAL PRICES are subject to change without notice						
VISA		Telephone 0171-794 8751/794 7346 Fax 0171-431 5778 172 WEST END LANE, LONDON NW6 1SD CALLERS WELCOME AT SHOP						

The Joule A-400 Radio Decoder

If you already service car audio equipment, the A-400 could prove to be a very valuable additional source of income for your company.

Electronic Sound Systems

Hilton Road, Aycliffe Industrial Park
Newton Aycliffe, Co. Durham DL5 6EN
United Kingdom
Tel: +44 (0)1325 307442
Fax: +44 (0)1325 300189
Email: elecsys@elecsys.demon.co.uk

For Your Radio Decoding Requirements

Please feel free to visit our Internet web site at elecsys.com where you can download full details, pricing information and demonstration software. Or, visit us for an on-site demonstration.

Jack Armstrong

BT SVS300

This receiver had been pizzafied. If you've ever left a pizza in the oven for slightly too long you'll know exactly what I mean!

I spent some time scraping away from the PCB what looked like burnt, melted cheese, then fitted the power supply repair kit. The receiver remained stubbornly dead - until I discovered two cracked tracks near the fuse. To remove the power supply PCB, which is wedged tightly in place, you have to wiggle and twist it. But I don't think I had been particularly heavy handed and assume that someone else had had a go before me.

With the receiver now working and producing pictures, I found that there were no decoder messages: Another half an hour passed while I replaced the decoder capacitors and other bits supplied in the kit. These kits usually save me a lot of time, but on this occasion the board didn't seem to work until it was heated with my hairdryer. My impression was that the board was damp. So I scrubbed it with isopropanol and then dried it thoroughly with hot air. Finally, since the area around the PTV111 chip seemed to be the most sensitive to moisture, I dripped hot beeswax around it, the bench and my trousers, leaving nice white

WORKSHOP
stains. My wife gave gave me a funny look later. I can't imagine why - after all they were very old trousers . . .

Next morning was cold and damp. But the receiver worked perfectly.

Ferguson SRD6

You may recall that I repaired an SRD6 for Tom in the next town. The symptom had been low video level and no decoder messages. The cause was transistor TV04, which is connected to what I had thought was the video level adjuster PV01. In fact PV01 controls the de-emphasis, as I discovered once I had replaced TV04.

Two weeks later the same receiver bounced back with a fault report that said, unhelpfully, "same fault again'. It wasn't. This time the pictures were washed out while the decoder messages, though present, were heavily distorted. The decoder was working perfectly.

Scope checks showed that the video level was correct until the signal emerged at pin 8 of the graphics generator chip IV02, where there should have been a 2 V peak-to-peak composite video waveform superimposed on 1.5 V DC . In fact the DC bias was 3 V , and the video waveform was being clipped by TV22 on its way to the TV scart socket and the UHF modulator. Now the graphics generator is a TCE10117180 and, curiously, I didn't have one in stock. My solution to this problem was an empirically-contrived 'bodge': I soldered a $330 \mathrm{k} \Omega$ resistor between pin 8 of IV02 and chassis. That fixed it!

According to Tom the customer indicated his gratitude, as customers do, by whining about being charged twice and muttering about "trading standards". I really must try this myself. Next time I get an engine fault I'll take my car to the garage which replaced my exhaust pipe. "It's the same fault" I'll say, "it makes a noise again." I wonder if they'll fix it free of charge?

BT SVS250

I bought ten 'scrap' SVS250 receivers recently for spares. I won't end up with many spares however, having mended the first two dead ones (fuse melted) and jumped up and down on the third one in frustra-
tion - well, they are frustrating machines!

The other day I had a letter from Peter Thorneycroft, a dealer in Telford, describing the problems he had had with a customer's SVS250. "The original problem was caused by a faulty EEPROM, the symptoms being out-of-range bars on the display and an LNB offset reading of 25.38 which, after correction, could not be stored. When I'd replaced the 24C04 chip with a used one and fitted the SatCure upgrade kit Relkit 17 (phone 01270753311 for details) the receiver was OK and the customer left happy. An hour later he phoned to say that the receiver was the same as before. It transpired that he had used the receiver for about two years with a UHF connection, and had now decided to try a scart connection instead. As soon as he fitted the scart connector the receiver went feet up. I had already checked it with our TV scart socket and found that it was OK. When I checked his TV set I discovered that there was 12 V at pin 10 of the scart socket! The LNB offset read 25.38 , indicating that the EEPROM had once again died. I had to cut the relevant wire before reinstallation. Incidentally the TV is a Beko one."

So the moral is: beware of scart connectors! I've come across similar problems with decoder scart connections in Amstrad receivers, but never with a TV scart. It seems that in the SVS250 a data line from the 24C04 chip is connected to pin 10 of the TV scart socket.

Pace MSS1000

Left to themselves these Pace receivers will give trouble-free use for years. But the designers failed to take into account the ingenuity of the average customer, who believes that equipment should be kept hot! And, in my experience, the more money the less common sense they have.

This particular receiver belonged to a gentleman I'll call, to save him from any embarrassment, Lord Potts. He designs clothing - or rather he employs others who design it for him. He thus has, so he tells me, "a feel for quality".

The MSS 1000 had been squeezed into a custom-built brick fireplace arrangement, together with a 28 in . TV set, two VCRs and a hi-fi audio
system. To ensure that there was absolutely no possibility of nasty drafts, or 'ventilation' as we call it in the trade, the chimney stack had been blocked and the whole affair was hidden behind velvet drapes.

The fault symptoms were obvious: the audio from both the left and the right channels was very faint and extremely distorted, and the vacuum fluorescent display flickered in time with the audio. Very pretty.

Back in the workshop I discovered that the fault vanished when the Dolby board was disconnected. Before I plunged in head first however I tried another Dolby board. The distortion returned. Hmm.

I decided to replace all the power supply electrolytics, as they looked decidedly black - there seems to me to be little point in trying to trace the cause of an obscure fault when such an obvious clue is present. Relkit 10 from SatCure (01270753 311) contains all the high-reliability capacitors required, except for the $100 \mu \mathrm{~F}, 400 \mathrm{~V}$ one that seldom fails. I replaced the capacitors in turn, reassembling and testing after fitting each one. Since the symptom was new to me, I wanted to establish which part or parts contributed to the fault. In fact the culprit was $\mathrm{C} 10(100 \mu \mathrm{~F}, 35 \mathrm{~V})$, the reservoir capacitor for the -21 V sup-
ply, but I fitted the complete kit as a precaution. In addition I installed a miniature fan kit, as Lord Potts insisted that the receiver should be returned to its original oven.

The net result was an excellent picture and sound for Lord Potts and a nice big check for me!

Pace SS9200

This receiver lit up when it was plugged in, but the fault report from a local dealer simply said "dead". As I could get nothing but snow on most channels, my first impression was that the tuner might have died. Tuning was tricky, because the menus didn't appear on the screen. Clearly there was more than one fault.

I fitted a second-hand tuner. This made no difference, and I scratched my head in confusion. A few pictures appeared when I flicked through the channels, but only on the horizontally-polarised stations. Aha! Power supply noise was switching my universal LNB to high-band operation. I have seen this before, the cure being to replace all the electrolytic capacitors in the power supply. I did so, but the fault remained.

Looking at the circuit diagram, I traced the LNB supply path to the tuner and noticed that at this point a

Jack Armstrong is willing to try to sort out readers' satellite TV receiver problems via email. You can reach him via the internet at:

jack@netcentral.co.uk

One model per message - state make/model and fault symptoms. If you have no e-mail facilities you can write to him c/o Television, Room L302, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS. Please enclose two first class stamps.
$100 \mu \mathrm{~F}$ electrolytic (C 128) is used to decouple the supply. Replacement of this capacitor solved one problem the vertically-polarised channels could now be received. But there were still no decoder messages, channel identifications or menus. I guessed that there were no sync pulses. I should have used my scope, but a guess is sometimes quicker - when you are right! I was right this time: a new TEA2029C sync separator chip restored normal operation.

Finally, for good measure, I upgraded C 125 to $1,000 \mu \mathrm{~F}$ to remove some horizontal streaking on decoded pictures. Sometimes a lot more capacitors need to be replaced to cure the problem, but this time I was lucky.

Test Case 422

It was just before Christmas. Sage had taken a day off sick, which is very unusual for him. The rest of the staff put it down to a surfeit of the wine he's so fond of, and this was not too wide of the mark.

As is usually the case in the run-up to the big day, there was a lot of equipment in the workshop awaiting repair, especially VCRs. The other members of the workshop team, mostly TV specialists, were having to get to grips with motors and mode switches, rollers and reels as Sage, alone in his bedroom, rolled his eyes and reeled across the landing to the loo, his system control in deep trouble.

The scratch video repair team managed all right until a Toshiba V411 came along. This machine had been throbbing away for six or so years without giving any trouble. It had then developed a 'nasty'. At first the problem didn't seem to be too bad: during playback the VCR would intermittently flick between the SP and the LP modes. It's a common enough fault, the cause usually being to do with poor signal pick-up at the control-track head. So for starters the CTL head was cleaned. There had been no visible deposit on the head however, and the treatment didn't make any difference. Next, the path of the tape across the face of the ACE head-stack was carefully checked while the fault was present. The tape was seen to be a fraction too high, so the worn pinch roller (no surprise about this after six years' service) was discarded and a new one was fitted.

This seemed to cure the problem. But as the fault had been intermittent the machine was left to run for a while, using the customer's tape - which had not been crinkled by the worn roller. No doubt Sage would have gone through the same
motions had he been there. But at that moment he was concerned about different motions altogether.

After a while the sound track of the Teletubbies recording went funny and the Tosh's front panel indicator once more flickered between SP and LP. Uh-oh! Examination of the tape path showed that the tape was running straight and true across the face of the still clean ACE head. Maybe poor head alignment was affecting the control-pulse transfer? The tilt screw behind the head was tweaked to make the head lean back a little. Its height was readjusted to compensate. But the fault had not been cured.

What next? The technicians were so engrossed with thoughts of head and pulse-readout faults that they didn't make any oscilloscope checks before coming to the conclusion that the head had to be faulty. A new one was ordered and the VCR was put to one side awaiting the parcel. The customer was provided with a loan machine.

Sage had recovered and returned by the time the new head arrived. He fitted and aligned it himself. At first the results were fine, but within half an hour of the start of a soak test the playback sound and picture became wobbly. The fault was back again! Well, the ACE head was not responsible anyway. Would Sage have condemned it without carrying out further checks? We can't answer that one. Certainly he had to do some further checking now. With his scope triggered by head flip-flop pulses and its probe in amongst the servo chips, Sage soon found and rectified the cause of the problem. Was it to do with the ACE head? Were any further components required to put matters right? For the solution to the problem, turn to page 291.

Test Report

Eugene Trundle reports on the current range of training tapes available from Visions Video Productions

Service Training Tapes

n the November 1994 issue of Television I reviewed an instructional video tape that had just been released by the then-new company Visions Video Productions. It covered the Akai VCRs of the period and I found it very good.
Since then Visions Video has produced a wide range of training and instructional cassettes for the benefit of bench technicians in the brown-goods servicing trade. There are now ten of them, and more are to come. They cover TV sets, VCRs, satellite receivers and camcorders from several manufacturers, who have all given their approval and co-operated in the production of the tapes.

Current List

The cassettes currently available are as follows:
VIS001. This was the original one previously reviewed, covering Akai VCRs of the period.

VIS002. Covers the Ferguson/Thomson ICC5 TV chassis.

VIS003. Deals with the Panasonic G deck, which is also used in Grundig, Philips and Sony VCRs.

VIS004. On Pace PRD-series satellite receivers,
VIS005. Covers Akai AX-GX series domestic VHS decks, which were produced from early 1994.

VIS006. Covers the Nokia M digital TV chassis, which was also used in Granada, Hitachi, ITT, Luxor and Salora models

VIS007. On the GoldStar/LG D27 VCR deck.

VIS008. On the GoldStar/LG PC53A TV chassis.
VIS009. On the LG D17 VCR deck.
VIS101. This, the longest-running tape, deals with Akai 8 mm camcorder models in the PV-M series.

Quite a selection! Ten hours and thirty-six minutes of viewing for me, but many hundreds of hours of painstaking work for those who designed and produced these training guides.

Content

A common thread runs through the design and production of these visual servicing courses: they are all practically based and tailored to meet the needs of a technician with a faulty piece of equipment on the bench in front of him - and perhaps a puzzled look on his face!
The tapes that deal with deck mechanisms take you through the entire dismantling and reassembly processes, with close-up shots of the work actually being done. The friendly running commentary mentions pitfalls as well as describing what is being done and the techniques involved. Phasing of the mechanics and for example the mode switch is described in detail. The beauty of this method of presentation is that you can freeze any frame on the tape while your repairwork is in progress, so that you can match what you are doing with what is shown on the screen. The tape path and head alignment procedures are very well done, with a view of the screwdriver adjustment in the main picture and an insert (PIP) section that shows its effect on an oscilloscope display or the running tape ribbon as appropriate.
The TV, particularly satellite, courses contain some
circuit description where this is relevant to diagnosis and repair. They are primarily concerned with what goes wrong in practice, with getting to the root of the trouble, then the repair and setting up. Once again a picture-inpicture technique is used, with scope traces and meter/counter readouts as insets to views of the main PCB and its preset controls. There are also off TVscreen shots to show menus, fault conditions and the effects of adjustments as relevant.
For the individual pieces of equipment we are shown such things as getting into the service mode, software addresses and the operation of VCR decks outside their cabinets. Many of the tapes have a 'hints and tips' section in which common faults, quirks, modifications and service/repair kit availability are covered.
All the tapes are indexed with time-counter readings per topic, so that for example we see that in the ICC5 programme EW problems are dealt with at 46 minutes in while the Akai camcorder tape explains the AF tracking adjustment at the 2 hour 26 minutes mark. All this is well thought out and quite accurate.

Verdict

It is increasingly difficult to find the time to attend conventional technical training courses, while with every year the number of friendly TLOs available for workshop visits diminishes. Even when you can take advantage of these facilities, the knowledge gained tends to fade with time. These on-tape guides have the advantage that they can sit on the shelf for use as and when necessary, then wound to and fro, frozen and released as required - unlike the human memory or printed notes!

A selection of the Visions Video Productions tapes.

And what conventional courses come complete to you on the workshop bench at a cost of typically $£ 20$?
My opinion of these training tapes is very high, but I will leave you to decide for yourselves about the background music with some of them!

Price and Availability

Most of the cassettes are priced at $£ 19.95$ plus VAT. But prices range from $£ 15.95$ plus VAT for VIS008 to $£ 45$ plus VAT for the two-and-a-half hour camcorder tape VIS101. The cassettes are available from leading component/spares suppliers and from Visions Video Productions themselves, who can also provide information on distributors in the Irish Republic and Australasia. The address of Visions Video Productions is 41 Sherwood Road, Addiscombe, Croydon, Surrey CR0 7DL, phone no. 0181654 5773, fax 01816567183.

A Pace PRD800/900 Modification

> An unused microcontroller option in these satellite receivers can be used to control an external device such as an ADX channel expander. Martin Pickering, B.Eng., describes the modifications required

TThe simple modification described in this article should do the trick if you have one of these receivers and want to control say an external 22 kHz tone inserter box on a 'per channel' basis.
There is, hidden in the microcontroller chip (U2) used in these receivers, an option to control a dual-bandwidth tuner. Since the PRD series receivers don't have a dualbandwidth tuner, the option can be used for our own purpose.
The modification is simple: you don't even need to remove the PCB!

Components required

The following components and items are required to carry out the modification:

Three 0.25 W resistors with values $1 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega$ and 100Ω.
A 150 mm length of insulated wire.
Thin solder and a fine-tipped soldering iron.

Procedure

Refer to Fig. 1 which shows where the extra resistors are to be added. Proceed as follows:
(1) Tin the relevant IC legs with solder - pin 1 of U2, pin 2 of U4, pin 14 of U3 and pin 5 of U18.
(2) Tin the resistor leadout wires with solder.
(3) Solder the $4.7 \mathrm{k} \Omega$ resistor between pin 1 of U 2 and pin 2 of U4.
(4) Solder the $1 \mathrm{k} \Omega$ resistor between pin 5 of U18 and pin 14 of U3.
(5) Solder the 100Ω resistor to the junction of the added $1 \mathrm{k} \Omega$ resistor and pin 14 of U3.
(6) Solder the 150 mm length of insulated wire to the free end of the 100Ω resistor, then solder the other end of the length of wire to pin 14 of the decoder scart socket (on the top row, count four from the top sharpest corner of the socket).
Pin 14 of the socket has no connection to the circuitry beneath the board. It is therefore free for use - but, if you use a decoder, it is essential to cut the wire to pin 14.
(7) You will now see a new feature, "IF BANDWIDTH: NORMAL", in the tuning menu for each individual channel.
If you change this to "IF BANDWIDTH: NARROW" the modification will apply 12 V to pin 14 of the decoder scart socket.
This 12 V supply can be used to control an external device such as an ADX channel expander unit, a 22 kHz tone inserter or an LNB switching box.

SatCure

For details of various satellite receiver modification and repair/upgrade kits, send two first class stamps to SatCure, PO Box 12, Sandbach, Cheshire CW11 1XA (01270753 311). Be sure to state the make and model number of the receiver concerned.

Fig. 1: Positions of the added resistors and the ICs involved in the modification.

More know-how from Toshiba, based on Technical Bulletins CDH68 and CDH69

Televisions

Model 2163DB (C6S Chassis)
Poor character width in the teletext mix mode: Cause is poor performance of the TV/text switch in the TB1229N video/colour/timebase generator chip Q501. Replace the chip with the improved type TB1229AN, part no. B0102070.

Models 2512DB and 2812DB (C91SB Chassis)

Lack of width with corrugated effect to side of picture: The value of C424 $(4 \cdot 7 \mu \mathrm{~F})$ on the DPC PCB has decreased. Replace C424, part no. 24676479.

Models 2527DB, 2539DB, 2927DB, 2939DB, 3327DB and 3339DB (C2D Chassis)

Field bounce on channel change: Replace R329 ($22 \mathrm{k} \Omega, 1 / 6 \mathrm{~W}$).

Reduced height from cold or field cramping at the top: Either C321 or C322 has probably fallen in value. C321 $(18 \mathrm{nF}, 50 \mathrm{~V}$ plastic film) is connected to pin 14 of IC302. C322 $(2 \cdot 2 \mu \mathrm{~F}, 50 \mathrm{~V}$ electrolytic) is connected to pin 15 of IC302. If capacitor replacement doesn't cure the fault, replace the TA8859P EW chip IC302, part no. B0384680.

Models 32W6DB and 32W6DG

When using the service park position the chassis must
be secured to the cabinet top using a back fixing screw - tighten over the slot in the plastic frame. The addition of a washer is recommended to provide more secure fixing: it will give greater surface contact at this point.
Note that the line output transformer part no. quoted in the service manual is incorrect: the correct part no. is 23236517.

Spares

The IR receiver (K901) used in Model 1752 TB is incorrectly specified in the schematic diagram. It should be shown as type TFMS5380, part no. 23904750A.
To avoid PCB damage in transit, the power/deflection PCBs used in Models 2557DB, 2577DB, 2857DB, $2877 \mathrm{DB}, 3357 \mathrm{DB}$ and 3377DB are now supplied without the chopper transformer T803 (for the same reason they also come without the LOPT). The original or a replacement chopper transformer will therefore have to be fitted as appropriate.

Projection TV

Safety note: Do not attempt to operate a projection TV with the X-ray protection plate at the front removed the plate is under the front plastic cover beneath the speaker grill. A safety interlock lead, which has to be disconnected to gain access to the CRTs, is attached to the protection plate. When this lead is open the power supply is disabled. Overriding this connector and removing the plate will expose you to harmful X-rays from the CRTs.

Models 48PJ6DB/DG and 55PJ6DB/DG (C5SS Chassis)

Convergence errors appear gradually with use. May
be corrected with digicon adjustment but reappear: Replace resistors R7716, R7721 and R7711 which are connected to the STK392 vertical convergence output IC Q751, or R7726, R7731 and R7736 which are connected to the STK 392 horizontal convergence output IC Q752. These resistors tend to increase in value. The correct value is $2 \cdot 2 \Omega$, rating 2 W . Part no. is 24323229 .
If either of these output ICs has overheated and failed, the relevant three resistors specified above must be replaced in addition to the IC.

If the power $2 /$ digicon chassis (left-hand side looking from the rear) has been removed during service it is easy to fit the two 4 -pin plugs P621 and P712 in the wrong sockets at the rear edge of the PCB, especially as the shorter lead goes to the farther socket. The symptoms will be the power LED flashing green at six-second intervals and no sound or picture. No damage will be done.

Rubber grommets (inserts) for the speaker grill plastic location pins are not listed in the service manual: they are available under part no. 23451853.

Sarellite TV

Model TS540

Dead, fuse FS1 (1A fast-blow) open-circuit: The usual causes are as follows.
(1) One of the 1 N4007 (part no. 1200400701) bridge rectifier diodes D1-4 short-circuit.
(2) D55 (type BAS16, part no. 9120001651) leaky.
(3) The STP4N90F1 MOS chopper transistor Q1 (part no. 1104910000) short-circuit and the 10Ω, 2 W antisurge resistor R1 (part no. 1431007821) open-circuit.

No sound, distorted sound or only one sound channel working: Replace the MSP3400 sound processor chip U18 (part no. 1090340000).

No signal. The tuning voltage at pin 15 of the tuner does not vary with channel-change operation: Two likely causes are as follows.
(1) The 4 MHz clock signal at pin 12 of the Nicky chip U26 is missing because the 74LS74 oscillator chip U31 (part no. 1010007400) is faulty.
(2) The Nicky chip U26 (part no. 1090960103) is faulty with no tuning voltage output at pin 16.

Grid of dots flashes on the screen, over the picture: The M550555 display chip U7 (part no. 1090505551) is faulty.

Test signal and text box are permanently displayed in the centre of the screen: This occurs when test point TST1 in the VideoCrypt decoder, between ICs U8 and U9, is dry-jointed or the track is broken. Resolder/repair as necessary.

VGRs

V3 Cat 1 and Cat 2 Chassis

These chassis are used in Models V205B, V215B,

V226B, V255B, V425B, V426B, V705B, V726B, V727B, V856B and V857B.

Dim clock display: CP041 ($220 \mu \mathrm{~F}, 25 \mathrm{~V}$) has fallen in value. Replace capacitor.

Dead, or pulsing outputs from the power supply: Two likely causes are as follows.
(1) CP007 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$) or CP008 ($100 \mu \mathrm{~F}, 25 \mathrm{~V}$) has fallen in value. Replace both capacitors.
(2) The U4614B chopper control chip IP001 (part no. 70011972) has failed.

While the above notes will help speed diagnosis and repair, the power unit is available from Toshiba spares at typically less than $£ 30$ trade. It may therefore be more cost effective to replace than repair the unit.

Crushed whites with playback via the RF modulator only: The 2SC2236-Y 12 V regulator transistor TW003 is faulty with low output (11V). Replace the transistor, part no. A6325549.

Intermittent video and audio mute with both E-E and playback: The 17.7 MHz crystal QT102 (QT001 in Cat $2 \mathrm{Hi}-\mathrm{Fi}$ models) is faulty. Replace the crystal, part no. 70012188.

Models V205B, V215B and V255B (V3 Cat 1 Chassis)

No E-E or playback picture or OSD, with no supply to the RF modulator: Check capacitor CW001 ($100 \mu \mathrm{~F}$) in TW001's base circuit by substitution.

Models V226B and V426B

The main microcontroller chip IT001 in these models has been changed from the original type TMP90CS74DF part no. 70012656 to part no. 70012801. The only difference is that the new chip has additional software for a full-band modulator. This may automatically upgrade some early versions of these VCRs.

Ribbon Cables

Following requests Toshiba can now supply the following ribbon cables for V3 type VCRs.

Models V204B, V205B, V215B, V226B, V254B, V255B, V404B, V425B, V426B, V454B, V705B, V726B, V804B, V825B, V854B, V855B and V856B: 6-pin FFC from the main PCB to the loading motor and cam switch, part no. 70011821.

Models V204B, V205B, V215B, V226B, V254B, V255B, V404B, V425B, V426B, V454B, V705B, V726B and V856B: 14-pin FFC from the main PCB to the KDB PCB (key display), part no. 70011980.
Models V804V, V825B, V854B and V855B: 12-pin FFC from the main PCB to the KDB PCB (key display), part no. 70011818.

You decide that the cause of the trouble just has to be the line output transformer. But when you order and fit a replacement it transpires that the original one had been OK. This has happened to me umpteen times, and no doubt has to most other readers as well. The last time it happened to me I swore "never again, there has to be a cheaper way of doing things". Then I remembered Ian Rees's LOPT tester design published in the September 1993 issue of Television.
In his circuit Ian used a CD4001 IC as the oscillator. As I didn't have one in stock, and neither did my supplier, I decided to use a TBA920 IC instead. Many older engineers will recall the use of this chip as the line generator in sets produced during the Seventies.
I also decided that it would be handier if I could use a multimeter rather than tying up an oscilloscope. And because of circuit differences, the ringing method devised by Ian was out. In addition there is no need to be able to alter the tuning capacitance since my circuit uses feedback.

Fig. 1: The LOPT tester circuit. There are no connections to pins 3-8 and 10-12 of ICI.

Fig. 2 (left):
Fixed potentialdivider alternative to VRI.

Fig. 3 (right):
Typical wave-
form produced by a good transformer. See
 text.

It's very helpful to have a means of testing line output transformers. This tester design by Charles Ritchie is based on a TBA920 line generator chip

LOPT Tester

Circuit Description

The circuit I devised is shown in Fig. 1. IC1, with VR1, R1, R2, R3, R4 and C2, acts as a free-running oscillator. It produces a 10 V peak-to-peak output at pin 2 . Q1 is the switching transistor, which drives the primary winding of the transformer being tested. C4 tunes this winding and C3 applies feedback to pin 13 of IC1.
D1 and C5 rectify the pulses generated at the collector of Q1, providing a feed to the multimeter. R6 and R7 give a $10: 1$ reduction: this is the oscilloscope output.
The unit's power consumption is about 100 mA .
A fixed potential divider (see Fig. 2) could be used instead of VR1, but the control should be retained if you intend to use an oscilloscope - it helps with triggering.

Testing and Use

To test a transformer out of circuit, connect its primary winding across C4 as shown in Fig. 1. Connect your multimeter, switched to its 200 V DC range, to the junction of D1/C5. Switch on the 12 V supply. The circuit should then oscillate. A faulty transformer usually produces a reading of less than 50 V .
For an in-circuit test, first make sure that the receiver's HT reservoir capacitor is discharged. Then either disconnect the line output transistor's collector or the HT feed to the transformer. Proceed as above. If you get a low reading, try reversing the connections. If you still get a low reading it may be necessary to unsolder all the transformer pins.
When testing a transformer, keep your hands clear you can get a nasty shock (guess how I found out!).
Fig. 3 shows a typical waveform produced by a good transformer. Scope settings are $20 \mu \mathrm{sec} / \mathrm{cm}$ and $2 \mathrm{~V} / \mathrm{cm}$.

Components required			
C1	$1,000 \mu \mathrm{~F}, 16 \mathrm{~V}$	R 1	$27 \mathrm{k} \Omega$
C 2	$10 \mathrm{nF}, 400 \mathrm{~V}$	R 2	$27 \mathrm{k} \Omega$
C 3	$560 \mathrm{pF}, 1 \mathrm{kV}$	R 3	$15 \mathrm{k} \Omega$
C 4	$10 \mathrm{nF}, 400 \mathrm{~V}$	R 4	$2 \cdot 7 \mathrm{k} \Omega$
C 5	$0.1 \mu \mathrm{~F}, 400 \mathrm{~V}$	R 5	$2 \cdot 2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$
D 1	BYD33	R 6	$2 \cdot 2 \mathrm{M} \Omega$
IC1	TBA920	R 7	$6.8 \mathrm{M} \Omega$
Q1	BUT11AF	VR1	$10 \mathrm{k} \Omega$ linear

Also two miniature crocodile clips. Except for R5 the resistors are rated at 0.25 W .

WIND GENERATORS 380 WATT
f. 14 metre dia blades, carbon matrix blades, 3 year warranty, 12 vac output, 24 v version available, control electronıcs included, brushless neodymium cubic curve alternator, only two moving parts, maintenance ree, simple roof top installation, start up speed 7 mph , max output (30mph) 380 w . £499 ref AlR1

PLANS

PORTABLE X RAY MACHINE PLANS Easy to construct olans on a simple and cheap way to buld a home X-ray machine Effective device, X-ray sealedassemblies, can be used for experimental purposes. Not a toy or for munors! $£ 6 / \mathrm{set}$. Ref F/XP
TELEKINETIC ENHANCER PLANS Mystify and amaze your friends by creathng motion with no known apparemt means or cause Uses no electrical or mechanical connections, no special gimmicks ye produces positive motion and effect. Excellent for science projects magic shows, party demonstrations or serious research \& development of this strange and amazing phychic phenomenon
£4/set Ref F/TKE
ELECTRONIC HYPNOSIS PLANS \& DATA This data shows several ways to put subjects under your control. Included is aful volume reference text and several construction plans that when assembled can produce highly effective stmulh. This materal must be used cautiously. It is for use as entertainment at parties etc only, by those experienced in its use. $£ 15 /$ set. Ref F / EH i2
GRAVITY GENERATOR PLANS This unique plan demonstrates a simple electrical phenomena that produces an anti-gravity effect You can actually build a small mock spaceship out of simple materials and without any visible means- cause tt to levitate $£ 10 /$ set Ref F/GRA1 WORLDS SMALLEST TESLA COILILIGHTENING DISPLAY GLOBE PLANS Produces up to 750,000 volts of discharge, experiment with extraordinary HV effects, 'Plasma in a jar St Elmo'sfire, Corona, excellent science project or conversation piece $£ 5 /$ set Ref $F / B T C 1 / L G 5$
COPPER VAPOUR LASER PLANS Produces 100 mw of visible green light. High coherency and spectral quality similar to Argon laser but easier and less costly to bunld yet far more efficient This particular design was developed at the Atomic Energy Commision of NEGEV in Israel. $£ 10 /$ set Ref F/CVL
VOICE SCRAMBLER PLANS Minature solid state system turns speech sound into indecipherable noise that cannot be understood without a second matching unit. Use on telephone to prevent third party listening and bugging. $£ 6 /$ set Ref FNS9
PULSED TV JOKER PLANS Little hand held device utbises puise techniques that will completely disrupt TV picture and sound works on FM too! DISCRETION ADVISED. $£ 8 /$ set Ref F/TJ5
BODYHEAT TELESCOPE PLANS Highly directional long range device uses recent technology to detect the presence of living bodies, warm and hot spots, heat leaks etc Intended for secunty. law enforcement researchanddevelopment, etc Excellent securty devic or very interesting science project $£ 8 /$ set Ref F/BHT
BURNING, CUTTING CO2 LASER PLANS Projects an invisible beam of heat capable of burning and metting materials over a considerable distance. This laser is one of the most efficient, converting 10% input power into useful output. Not only is this device a workhors in welding, cutting and heat processing materials but it is also a likely candidate as an efective drected energy beam weapon again missies, arcaft, gound ground, ecc. Par the bospherefor ahigh utilize a laserom in typeto blasta ther particles. The device is easily energy stream ofni and etching wood, cutting plastics, textiles eto applicabete Ref F/LC7. DYNAMO FLASHLIGHT Interesting concept, no battenes needed just squeeze the trigger for instant light apparently even works under water in an emergency although we haven't tried it yet! $£ 6.99$ ref SC152 ULTRASONIC BLASTER PLANS Laboratory source of sonic shock waves. Blow holes in metal, produce 'cold' steam, atomize liquides. Many cleaning uses for PC boards, jewllery, coins, small parts etc. $£ 6 /$ set Ref F/ULB 1
ANTI DOG FORCE FIELD PLANS Highly effective circuit produces time variable pulses of accoustical energy that dogs cannot tolerate $£ 6 /$ set Ref $\mathrm{F} / \mathrm{DOG} 2$
LASER BOUNCE LISTENER SYSTEM PLANS Allows you to hear sounds from a premises without gaining access $£ 12 /$ set Ref F / LLIST1
PHASOR BLAST WAVE PISTOL SERIES PLANS Handheld, has large transducer and battery capacity with external controls. E6/set Ref F/PSP4
INFINITY TRANSMITTER PLANS Telephone line grabber/ room monitor. The ultimate in home/office security and safety' simple to use! Call your home or office phone, push a secret tone on your telephone to access ether A) On premises sound and volces or B) Existing conversation with break-incapability for emergency messages. £7 Ref F/TELEGRAB
BUG DETECTOR PLANS is that someone getting the goods on you? Easy to construct device locates any hidden source of radio energy! Sniffs out and finds bugs and other sources of bothersome interference. Detects low, high and UHF frequencles. E5/set Ref F; BD1.
ELECTRCMAGNETIC GUN PLANS Projects a metal object a considerable distance-requires adult supervision $\mathfrak{£ 5 \text { ref F/EML2 }}$

ELECTRIC MAN PLANS, SHOCK PEOPLE WITH THE TOUCH OF YOUR HAND! £5/set Ref F/EMA
PARABOLIC DISH MICROPHONE PLANS Listen to distant sounds and vorces open windows, sound sources in 'hard to get' or oostile premises. Uses satellite tec hnology to gather distant sounds ostile pre them to our ultra senstive electronics Plans also show an optional wireless link system $£ 8 /$ /set ref F FPM 5
2 FOR 1 MULTIFUNCTIONAL HIGH FREQUENCY AND HIGH DC VOLTAGE, SOLID STATE TESLA COIL AND HIGH DC VOLTAGE, SOLID STAUE GESERATOR PLANS Operates on $9-12 \mathrm{vdc}$, many possible experiments $£ 10 \mathrm{Re}$

COLOUR CGTV VIDEO CAMERAS,
BRAND NEW AND, CASED, FROM £99. Works with most modern video's, TV's, Composite monitors, video grabber cards etc
Pal, 1 V P-P, composite, 750hm, $1 / 3$ " CCD, 4 mm F2.8, 500×582, 12 vdc , mounting bracket, auto shutter, $100 \times 50 \times 180 \mathrm{~mm}, 3$ months warranty, 1 off price $£ 119$ ref XEF150, 10 or more $£ 99$ ea $100+£ 89$

SUPERWIDEBAND RADAR DETEGTOR 360 deg COVERAGE

Detects both radar and laser, X, K, superwide $K A$ bands LED signal strength display Audio and visual aletts, Alert prionty, Rear and front facing optıcal waveguides. Triplecheck verification, city mode, tutorial mode, dark mode, aux jack, volume control. These may be illegal to use in certain countries
$11^{\prime \prime} \times 2.7^{\prime \prime} \times 4.6^{\prime \prime}$
Superband £149 ref RD2

BULL ELECTRICAL
250 PORTLAND ROAD, HOVE, SUSSEX BN3 5QT. (ESTABLISHED 50 YEARS). MAIL ORDER TERMS: CASH, PO OR CHEQUE WITH ORDER PLUS $£ 3.50$ P\&P PLUS VAT. 24 HOUR SERVICE $\mathbf{~ 5 5 . 0 0 ~ P L U S ~ V A T . ~}$ OVERSEAS ORDERS AT COST PLUS $£ 3$: 50 ACCESS, VISA, SWITCH, AMERICAN EXPRESS phone orders : 01273203500

FAX 01273323077
E-mail bull@pavilion.co.uk

ntended for the medrum to long range observation of air and ground targets and the determina tion of their angular co-ordinates These art binoculars are a tribute Russian optical ingenurty, with perarmance that simply has to be seento be believed. A large ext pup diameter of 7.33 mm provides exceptional light passing power, which when combined with its high
magnification of $\times 15$ allows the user to view over vast distances with delightfully bright, crisp, high resolution images. Robust and able in construction incorporating an uncomplicated yet thoughtfully designe mechanical layout ensuring ease of operation and quick precise targeting These binoculars have a wide variety of applications and are suitable for use by coastguards, law enforcement organizatıons, cus toms, farmers etc
Specifications
15 magnification, 110 mm objective, 6 deg angle of vew, Field at $100 \mathrm{~m}=105 \mathrm{~m}$, focusing 10 m -inf, fully coated precision ground optics, orange and neutral filters, rubber lens caps, rapidtergetting hand grips padded headrest, screw in silica gel cartridges, wooden tripod aperating temperatures -40 c to +50 c , weight 25 kg . (15 kg without tripod), supplied in wooden carrying case
Border guard binoculars £.1799 ref PNB2

TZS4 INFRARED NIGHT SIGHT

One of our top most selling night sights is this Russian TZS4. This sight enable you to see in very low light levels, or with the and of the bum in infra red illuminator- in total darkness in $1 / 4$ moonlight you would spo a man at 150 m , in tofal darkness at 75 m . Magnification 23 x $240 \times 60 \times 190 \mathrm{~mm}, 0.9 \mathrm{~kg}$, focusing range $15 \mathrm{~m}-\mathrm{mm}$ it, 12 ca ea mount included, 9 , 2 xA batins (no illminater) 10 hrs with carryingcase and strap
TZS4 Nightsight $£ 199$ ref BAR6

Reports from
I. Field

Philip Blundell, AMIEEIE
Chris Watton
John Edwards
Roger Burchett and
Adrian Spridell

Wyse 60

These elderly ASCII terminals remain popular and are sturdy. We get two faults from time to time however. One is gate array failure, the other is failure of the $3.3 \mu \mathrm{~F}$, 50 V non-polarised electrolytic line scan coupling capacitor C205. When C205 fails, R214 (10) in the dynamic focus circuit usually catches fire, burning a hole in the side of C206 ($0 \cdot 22 \mu \mathrm{~F}, 100 \mathrm{~V}$).

File away the carbonised PCB carefully and fit a replacement resistor flat across the aperture, using its leads to repair the damaged print by bending them to the required shape. Replace C206 and clean the soot off the focus potentiometer. With regard to C205, an alternative to an electrolytic should prevent a recurrence of the trouble. I suggest a $4.7 \mu \mathrm{~F}$ polycarbonate type, or possibly a polyester capacitor. These should be available from Farnell Electronic Components (phone no. 01132636 311). Fit the capacitor on end, with a wire link from the top end to the other PCB hole. Secure with hot melt or silicone rubber. I.F.

Gateway 2000 Model CS1572FS

The problem here was a dull, milky raster. As normal checks revealed nothing amiss, I looked at the CRT's pins. They were well covered with oxide scale. You get this with all CRTs, and it occasionally causes problems. I find that using a glass-fibre pencil to brush around the accessible part of the pins, then

Monitors

pushing the CRT base on and pulling it off a few times, will remove the oxide where the contacts rest on the pins. The fibre particles must be completely removed, using compressed air. The result is better than new! I.F.

Peacock/Nytec Model MN14P37

There was line collapse - a vertical line down the centre of the screen. I found that one of the solder connections to L401 had arced away. This magnetically-polarised inductor is in series with the line scan coils, at the earthy side. When refitting it after scraping the leads, note that the line mark on the body of the inductor lines up with the dot on the PCB screen-print symbol. I.F.

Philips 4CM2799/00T

If one of these colour monitors is dead with a clicking relay, check whether transistor $\operatorname{Tr} 7605$ or $\operatorname{Tr} 7615$ is short-circuit. If either transistor, or diode D6608, has failed replace all three components, also coil L5604. In addition, check that the value of C2609 is 5.6 nF (part no. 4822121 43677). P.B.

IPC VDVGA14\#55N1

This monitor was dead. There was 320 V at the output from the mains bridge rectifier circuit and at the collector of the chopper transistor. As usual, I didn't have a circuit diagram. What I do in such a case is to check for heavy loads across the outputs from the power supply. If none are present I check for a start-up supply of some sort on the primary side of the circuit. In this case the search brought me to R531 ($560 \mathrm{k} \Omega$) which had failed. It's connected between the 320 V supply and the junction of a zener diode and the base of a series regulator transistor. The latter provides power for the primary control stage. C.W.

Mitec L1450PD

This budget VGA-type monitor was
dead with no power supply operation. The PC engineer who had brought it in pleaded for a quick job and I was happy to oblige. One of the two $47 \mathrm{k} \Omega$ start-up resistors R904/905 was open-circuit. J.E.

Capetronic CDS438K

The frame scanning would intermittently become distorted at the top and bottom, eventually collapsing to a height of less than half an inch. A tap anywhere would clear the fault - which wouldn't appear once the monitor had been dismantled! Only by flexing the board could any disturbance be seen. Resoldering the pins of the $\mu \mathrm{PC} 1498 \mathrm{H}$ frame output chip IC201 didn't seem to have any effect. When the solder was removed from the IC's heatsink tag however the metal was seen to be eroded. Resoldering, with an added wire link, cleared the fault. R.B.

Chuntex 1565D

These monitors often have badly soldered joints at the pins of the line output transformer. In one case there was no HT supply at the collector of the line output transistor because of a solder 'blob' that failed to make contact with the print. R.B.

AST SVGA LR14

The symptom was line cramping at the sides of the screen. I found that C350 was leaky. A.S.

Taxan MV789LR

This monitor was dead. The BU2527A line output transistor and the FET Q808 were both short-circuit. The cause of the trouble was that the HT output from the power supply had risen from 84 V to over 200 V . Feedback resistor R820 ($150 \mathrm{k} \Omega$) was the cause: it had gone open-circuit.

If you get this type of fault, check D406 before you switch on again. It's under the LOP heatsink. If D406 is leaky, Q808 will blow immediately when power is reapplied. A.S.

Whativer you do with your nose

With CPC you're guaranteed top quality brands and savings of up to $\mathbf{2 5 \%}$

Simply by working more efficiently than our competitors, CPC offers you remote control handsets, video spares, computer products, tools and instruments, at prices which are up to 25% lower than other leading distributors. In fact, there's a choice of more than 62,000 products from over 300 of the world's leading brands.
That's why $\mathbf{1 0 , 1 2 4}$ companies have opened an account with us in the last 12 months.

The Language of Digital TV

With TV going digital, there are many new terms and abbreviations we'll have to get used to. Mark Paul has compiled the following list as a handy reference

Digital technology will involve a new way of thinking about TV. We have already seen some use of digital techniques in the world of TV, with remote control, teletext, Nicam and, in a few chassis, signal processing, but we are now on the brink of something altogether different. There is to be a major design shift from the analogue to the digital approach, and this will require a new understanding - we are not just concerned with a bit of add-on technology.
The change has been compared with that from monochrome to colour, but is in fact more radical It will bring with it new servicing techniques, a new set of fault conditions, new test equipment, new features, new product awareness, new customer education and a new language: Digispeak! The following is your guide to digital TV Digispeak. We'll start with abbreviations, then provide definitions for the new terms you'll be encountering.

Abbreviations

AC3 A multi-channel audio system developed by Dolby Laboratories.

ADC Analogue-to-Digital Converter. Device for converting an analogue voltage waveform into a series of digital numbers.

AF Adaption Field. A data field used for adapting the PES (see later) to data transport packet length.

ADPCM Adaptive Differential Pulse Code Modulation.
ASK Amplitude Shift Keying. A digital amplitude modulation system with two states.

AU Access Unit. MPEG coded picture, sound or data frame.

B Bidirectional. Use of preceding and succeeding MPEG frames to derive a further frame (by interpolation).

B When used to refer to an MPEG video frame, the type that is derived from \mathbf{I} and \mathbf{P} frames.

BAT Bouquet Association Table. A table that relates DVB-SI services.

BER Bit Error Rate. Ratio of the number of erroneous bits to the total number of bits transmitted.

BIT BInary Digit, i.e. a logic one or zero. Binary means two-state, either one or zero.

BUS A group of conductors forming a circuit or route along which data or power can be sent between several ICs, circuits or pieces of equipment.

BYTE Digital 'word' consisting of eight bits - the standard size of a binary number.

CA Conditional Access. The means of restricting access to Pay-TV programmes.

CAM Conditional Access Message. Specific messages for conditional access, i.e. ECM and EMM.

CAT Conditional Access Table. A DVB MPEG-2 transmission table that identifies conditional access packets.

CAZAC/M Constant Amplitude Zero Auto Correlation. A reference symbol for terrestrial DVB.

CCIR Comité Consultatif International de Radiodiffusion. Organisation that controls international standards, frequencyes etc. Now known at ITU-R.

CCIR-601 Recommended standard form of video signal digitalisation, with a sampling frequency of 13.5 MHz and YUV signals in 4:2:2 format. Now known as ITU-R 601.

CCIR-656 Recommended way of interfacing CCIR-

601 signals. The most common arrangement is 8 bits parallel multiplexed YUV.

CCITT Comité Consultatif International de Télégraphe et du Téléphone. Now known as ITU-T.

CIF Common Intermediate Format. A compromise between the European and American SIF (see later) formats. The spatial resolution is taken from the 625 -line SIF (360×288 pixels) and the temporal resolution from the $525-$ line SIF $(30 \mathrm{~Hz})$. This compromise is the basis of video conferencing.

C/N or CNR Carrier to Noise Ratio. Received carrier power to noise power in the channel bandwidth expressed in dB .

COFDM Coded Orthogonal Frequency Division Multiplex. See OFDM. Modulation technique to be used for digital terrestrial TV transmissions.

CRC Cyclic Redundancy Check. Used to check the correctness of data.

CSA Common Scrambling Algorithm. The scrambling algorithm specified for DVB.

CVBS Composite Video Baseband Signal. This relates to analogue TV - it's the composite luminance, colour and sync PAL, NTSC or Secam signal.

DAB Digital Audio Broadcasting. The new European digital audio broadcasting standard.

DAC Digital-to-Analogue Converter. Device for converting a series of digital numbers into an analogue signal waveform.

DAVIC Digital Audio VIsual Council. The council, based in Geneva, has members from all the industries involved in the application of digital technologies to audio and video. It aims to define and specify interfaces to provide maximum interoperation between countries, applications and services.

DBS Direct Broadcasting by Satellite, i.e. from a satellite to individual dishes. The original DBS band reserved for TV broadcasting was $11.7-12.5 \mathrm{GHz}$. Other sections of the Ku band have come into use for DBS, i.e. $10 \cdot 95-11.7 \mathrm{GHz}$ and $12 \cdot 5-12 \cdot 75 \mathrm{GHz}$.

DC Direct Current, also refers to the null-frequency coefficient in DCT (see below).

DCT Discrete Cosine Transform. JPEG/MPEG technique in which a pixel data block is converted from temporal to frequency form.
DiSEqC Digital Satellite Equipment Control. Method of modulating a 22 kHz tone to provide control of LNB etc. switching.

DPCM Differential Pulse Code Modulation. Method of coding a value in terms of its difference from the previous value.

DRAM Dynamic Random Access Memory. A read/write memory whose stored data requires periodic 'refreshment'. The most common type of memory, because of its low cost.

DSM Digital Storage Medium. Term given to such mass storage devices as a hard disc, tape or CD/DVD.

DSP Digital Signal Processor. Chip used for processing digitalised analogue signals.

DTS Digital Time Stamp. Indicator of the decoding time of an MPEG access unit.

DVB Digital Video Broadcasting. In Europe there are three variants, DVB-C (cable), DVB-S (satellite) and DVB-T (terrestrial off-air).

DVB-CI Digital Video Broacasting Common Interface. Used for conditional access modules in the PCMCIA format.

DVB-SI Digital Video Broacasting System Information. A group of tables with specifications additional to MPEG-2 programme specific information (see PSI).

Eb/No Ratio between the average bit energy Eb and the noise density No. It's related to C/N.

EBU European Broadcast Union. An organisation that brings together the main European broadcasters and, amongst other things, works on new standards which then require ETSI approval.

ECM Entitlement Control Message. The first type of conditional access message with the DVB standard.

EEPROM Electrically Erasable Programmable ReadOnly Memory. ROM that can be both read from and written into. It's not suitable for use as a RAM as the write process takes considerable time. Also known as an EAROM - Electrically Alterable ROM.

EIT Event Information Table. A DVB-SI table that indicates a new event.

EMM Entitlement Management Message. The second type of conditional access message with the DVB standard.

EPG Electronic Programme Guide. A graphical user interface giving easy access to DVB programmes.

EPROM Erasable Programmable Read-Only Memory. A ROM that can be programmed/reprogrammed. Erasure is by UV light, programming by a device that supplies pulses to determine the state of individual memory cells. This device is software controlled.

ES Elementary Stream. The data output from an MPEG audio or video encoder.

ETSI European Telecommunications Standards Institute. The organisation that confirms European standards in the telecommunications field. Such a standard is called an ETS.

FEC Forward Error Correction, also known as Channel Coding. This is the addition of coding to the MPEG signal to enable errors to be detected and corrected at the receiving end of the transmission path.

FFT Fast Fourier Transform. Method of processing a digital signal.

FIFO First In First Out. Refers to the flow of information into and out of a type of memory used as a buffer.

FSK Frequency Shift Keying. Modulation technique that uses a frequency shift to indicate the change of state of a digital signal from zero to one or vice versa.

GOP Group of Pictures. An MPEG video 'layer', i.e. a group of twelve MPEG video frames (pictures) starting with an I (intraframe-coded) picture.

I In-phase or Intra. The first relates to QAM (quadrature amplitude modulation), indicating the carrier on the 0° axis. The second relates to a complete MPEG frame (the first in a series of twelve) which is used on its own and then as a reference for further frames in the group.
$\mathbf{I}^{2} \mathbf{C}$ Inter Integrated Circuits. IC interconnection system via a serial bus. Originally developed by Philips.
\mathbf{I}^{2} S Inter Integrated Sound. System for interconnecting digital sound ICs via a serial bus, developed by Philips.

IEC International Electrotechnical Commission. International organisation for standardisation in the field of electrotechnics, electricity and electronics.

IEEE 1284 Bidirectional high-speed parallel data interface (an enhanced Centronics Interface).

IEEE 1394 High-speed (up to $400 \mathrm{Mbits} / \mathrm{sec}$) serial data interface. Is likely to become the standard for digital AV links with consumer electronic equipment.

IRD Integrated Receiver Decoder.
ISI Inter Symbol Interference. Interference between successive symbols in a digital data transmission.

ISO International Standards Organisation. The international standards organisation within UNO.

ITU International Telecommunications Union - the world regulatory organisation for telecommunications. Previously CCIR/CCITT.

JPEG Joint Photographic Experts Group. The group that set the standard for video compression with still pictures.

MP@ML Main Profile at Main Level. The main DVB standard video format.

MPEG Motion Picture Experts Group. The group that has establish video compression standards for moving pictures. There have been four standards to date. MPEG-1 is designed for CD-ROM and CD-I applications. MPEG-2, providing higher quality, is designed for broadcast and DVD use. MPEG-3 was to be used for digital HD-TV but has been abandoned - the requirement is now catered for by upper levels added to the MPEG-2 standard. MPEG-4 is still being developed and is not expected until the year 2000. It will be used for low bit rate audio/video compression ($10 \mathrm{kbits} / \mathrm{sec}-$ $1 \mathrm{Mbits} / \mathrm{sec}$ for moving pictures, $2-64 \mathrm{kbits} / \mathrm{sec}$ for the associated sound).

MUSICAM Masking Universal Sub-band Integrated Coding And Multiplexing. Coding process for MPEG-1 audio, layer 2, used for DAB and DVB.

NICAM Near Instantaneous Companded Audio Multiplexing. Digital sound system used with analogue TV. Employs QPSK modulation with two carriers at 6 MHz and 6.552 MHz (UK standard I).

NIT Network Information Tabel. DVB-SI table included in a transmission to provide information such as channel numbers and frequencies.

OFDM Orthogonal Frequency Division Multiplex. Modulation system in which the signal modulates a large number of carriers within the channel bandwidth. The carriers are all spaced apart by 90°, i.e. they are orthogonally related. There is therefore no interference between them.

P Predictive: refers to every fourth frame in an MPEG GOP. These frames are derived from the I frames and are in turn used to derive the B frames.

PAT Programme Allocation Table. A DVB table which indicates the PID of the data packets that comprise a programme.

PCM Pulse Code Modulation. Pulse modulation to convey information.

PCMCIA Personal Computer Memory Card International Association. Since renamed PC-CARD. The format used for PC extension modules and proposed by DVB for detachable CA modules using the DVB-CI (common interace).

PCR Programme Clock Reference. Information sent at regular intervals with an MPEG-2 transmission to synchronise the receiver's decoder clock with the clock of the programme being received.

PES Packeted Elementary Stream. MPEG data streams (elementary streams) when arranged in packets for transmission as part of a multiplex.

PID Packet IDentifier. Number used to identify packets in a DVB transmission (MPEG-2 multiplex).

PMT Programme Map Table. A DVB table which enables all the programmes in an MPEG transmission multiplex to be identified.

PRBS Pseudo Random Binary Sequence. A signal scrambling technique.

PSI Programme Specific Information. Information, such as CAT, NIT, PAT and PMT, included in a DVB MPEG transmission to keep track of the data in the multiplex.

PTS Presentation Time Stamp. Data that marks the timing of a presentation unit.

PU Presentation Unit. A decoded MPEG audio or video frame.

Q Quadrature. The relationship between two signals/ carriers with a phase difference of 90°. In relation to QAM, the carrier on the 90° axis.

QAM Quadrature Amplitude Modulation. Amplitude and phase modulation of two carriers at the same frequency but with a 90° phase difference.

QEF Quasi Error Free. A channel in which the BET is less than 10^{-10}.

OPSK Quadrature Phase Shift Keying. Modulation of one or both of two orthogonal (90° phase difference) carriers to obtain four possible signal conditions (phasors) at $45^{\circ}, 135^{\circ}, 225^{\circ}$ and 315°.

RISC Reduced Instruction Set - Computer. System used to achieve more efficient use of computer ROM.

RLC Run Length Coding. Data compression system that exploits data repetition.

RSC Reed-Solomon Code. An abbreviated version of this error-correction technique is used for DVB transmission.

RS232 An asynchronous serial data interfacing standard. Data transfer is relatively slow.

RST Running Status Table. An optional DVB-SI table that provides information on the current transmission status.

SCR System Clock Reference. Sync signal sent at regular intervals with MPEG-1 compressed information to synchronise an MPEG decoder's clock with the system clock.

SDRAM Synchronous Dynamic Random Access Memory. Memory used in MPEG decoders as a high-
speed RAM. The memory is 16 - instead of 8 -bit organised.

SRAM Static Random Access Memory. RAM that does not require data refreshment.

SDT Service Description Table. A DVB-SI table that provides information on the services in a transmission.

SIF Source Intermediate Format. The basis of MPEG-1 compresssion.

ST Stuffing Table. An optional DVB-SI table.
TDT Time and Date Table. A DVB-SI table used to updata a receiver's real-time clock.

TPS Transmission Parameter Signalling. Use of pilot carriers with DVB-T to indicate modulation and channel coding in the OFD multiplex.

VLC Variable Length Coding. Compression technique in which fewer bits are used to code frequently than less frequently occurring data patterns.

VLIW Very Long Instruction Word. A new method of microprocessor operation.

Next Month

So much for abbreviations and their meanings. We will continue next month with definitions of commonly used terms.

Repair Monitors?

How many times have you been unable to fix a monitor because you can't get a part?
The Logitron catalogue is full of components specially selected for monitor repair. From Caps to Cables, Flybacks to Fuses, Schematics to Switches, Semiconductors to Solder; you name it, we have it in stock. We have over 7000 products for the repair of every popular brand from Acer to Zenith, and countless 'anonymous' Far Eastern types too.

Find out why every major monitor repair centre in Europe buys from Logitron. Call for a catalogue now!

LOGITRON LTD

The Hogarth Centre
Hogarth Lane
London W4 2QN

What a Life!

Reminiscences of earlier times, then back to today's dud TVs and other matters. Donald Bullock's commentary

As I sat nursing an after-dinner whiskey over Christmas I found myself reflecting on the changes that have occurred in our trade over the years.

There was a time when the family TV set took pride of place in the nation's sitting rooms. When it went on the blink there was consternation all round. The relief was obvious if we could get it going in the house. Dark expressions turned to smiles, and we were often given something, from the garden say, in addition to our payment.

When the set had to be taken off, as was often the case, it was a different story. We would get suspicious looks, there would be dark mutterings about honesty and expense, and urgent entreaties about how long it would take.

TV engineers had to learn how to cope with such situations. Many who had entered the trade because of technical interest found that dealing with personal problems was part of the job - also backbreaking weight lifting. All this for very limited reward.

Silent Sydney

Many customers would resort to threats, bribes and various tricks to get their sets back quickly. When I was at a local GEC branch with a workshop at the back there was a character we called Silent Sydney. He would drive up to the front gates with a pocketful of silver halfcrowns. The gateman would be tipped to let him through, after which he would tip everyone else he came across until he reached the workshop. My half-crown came when I had lifted the set from the car. The resident engineer, who usually cleared his bench at once, got the jackpot.

Sydney was a tense and expectant man, but once his set came to life a gentle smile of relief would appear
on his face. He communicated mainly with his eyes: I never heard him speak.

Workshop Conditions

The workshop conditions usually reflected the poverty of the job. One of my earliest jobs was as a bench engineer at a city branch of J \& M Stone, a well-known multiple of that era. Most of the floorspace was taken up by a cheerful; brightly-litshowroom. At the back there was a tiny and basic lavatory - and my workshop, which was scarcely larger. It had a short, wide shelf, and a stool whose top had long since disappeared. The floor consisted of a couple of uneven flagstones. It was here that I learnt the cruelty of a mains-to-earth shock. But I was told that they keep you free from rheumatism for life, and my experience seems to bear this out.

Reuben and the Philips

An even earlier job was as an assistant to Reuben, an enthusiastic but small-minded electronic wizard. This was just after the war, when decent wireless sets were rare. One day a pre-war Philips radio was brought in for a complete overhaul. Now Reuben knew and respected Philips sets, as I came to do, and he tackled it as if it was some sort of vocation.

First he dismantled and thoroughly dusted it. Then he took out the dial glass and washed it. In went new valves, a new magic-eye indicator, a new tuning gang, a new dialdrive cord, pilot lights and many smaller items: Next came realignment, RF and IF, using a signal generator. Finally the cabinet was cleaned and polished. When he'd finished, the set shone and produced unbelievable sound quality. Reuben radiated contentment.

When the customer came to collect it, Reuben proudly demonstrated its quality on several programmes.

He then presented the bill. The customer complained that it was far too high. Reuben told him about the hours of dedicated work involved. There was an awful row, which ended when the customer ordered Reuben to unrepair the set. "I'll take it to Weatherby's" he shouted, "they'll do it cheaper."

Reuben unrepaired the set then some. He misaligned it, drilled tiny holes through the capacitors, pulled the speaker cone off-centre and, amongst other things, opened the huge IF transformers and painted their windings with battery acid. Next day the customer returned, full of apologies. "I've come to pay for your excellent work" he announced, "it was unforgivable of me. You'd worked wonders on the set."

Reuben sagged, then tottered out to the King's Head. The customer looked at me. "What's up with him?" he asked.

A Goodmans 2875

I could fill a book with such reminiscences - if it wasn't for the likes of Fanny Trotter. She came in and collared Steven.
"My set ain't half funny Mr Snodd, er, Bullhead" she said. "Can you be a dear and get him from the car?"

Steven looked outside. It was raining, hard.
"Where's the car?" he asked.
"Just across the road" she replied.
He followed her out. There was a parked car twenty yards up the road. Gritting his teeth, he followed her towards it. But she walked past, to another car thirty yards farther on.

When he came back he was soaked and puffing. It was the biggest set I'd ever seen. A 28 in . Goodmans 2875.
"It's a funny sort of fault" she chortled, but we waved her out.

I got the set on the bench. There was no green content to the on-
screen graphics but there was green in the picture, which was wishywashy and flared. "One for you, Steven" I said, "er, I'll make the tea."

A Vacuum Cleaner

As I put the kettle on Steven called me to see Mrs Noggs. She was clutching a modern, upright Electrolux vacuum cleaner.
"I just done me rubber plant when he went 'fuzz' and cut out" she said, "he ain't all that old."

I don't like vacuum cleaners, especially Electroluxes with their clamped up motor-cum-fan units. This one was no exception, though I did manage to get to the motor brushes. To my surprise one was almost worn away while the other one seemed as good as new. But I was wasting my time. Enquiries proved that there are no motor spares for this model, just the complete motor/fan unit.

Mr Dewey

Just then an ancient but brisk man walked in. "Name's Dewey" he said, "of Dewey, Squeezam and Howe, solicitors." He flicked at his watery eye. "My set's old, same as me. But don't you tell me to change it. It's got push-buttons and knobs, and I can work it. And it looks like a television set, not a storage bin."

It was a Ferguson Model 3792, which uses the TX9 chassis, and was dead. I found that the plugtop fuse was open-circuit in addition to the 1.6AT mains fuse in the set, FS1. Then I saw that the BU508A chopper transistor TR62 had blown its front off. Steven was busy with the Goodmans set, so I went to look for the circuit diagram. Steven noticed.
"There are about forty TX9 circuits, all different" hé said, "aren't you lucky?"

The set was actually fitted with the 1044 non-remote control version of the chassis, the later version that has a chopper poweer supply. I eventually found the right circuit.

As R164 (27 $)$ and D104 (1N4001GP) in TR62's base circuit had both died violently I decided to check the windings of the chopper transformer T1. They were short-circuit. We've had trouble obtaining these transformers in the past, so I fitted one from a scrap chassis. In addition to the blown devices it seemed logical to replace the TDA4600 chopper control chip IC57. Then I started the set up, gingerly, using the variac.

There wiere no shorts, but there was no HT_{i} output from the chopper
circuit either. "Check R165 (300k Ω) in the current-simulation network" rapped Steven authoritatively. It was virtually open-circuit. A replacement completed the repair, and the results were excellent.

Meanwhile Steven had been working on the CRT base panel in the Goodmans 2875 - where the TEA5101A RGB output chip lives. He found that R28 ($68 \mathrm{k} \Omega$) in the green channel was open-circuit. In addition its counterparts in the red and blue channels, R26 and R29, had risen in value to about $75 \mathrm{k} \Omega$.
Replacing all three restored correct displays.

Return of Mr Dewey

When Mr Dewey returned to collect his set he brought two more with him, a Sony KVM2121 (BE1 chassis) and an Hitachi fitted with the G7P Mk 2 chassis. "These belong to my two partners" he announced.

The Sony set was dead with the standby light pulsing. A check on the BU506DF line output transistor Q802 showed that it was leaky. After fitting a new one we discovered that circuit protector PS802 in the supply to the line driver and output stages was open-circuit. It's rated at 0.6A. A new one completed the repair.

Then Steven pulled up the Hitachi set. It was dead with the BUT11AF chopper transistor Q901 open-circuit. This is another TDA4600-type power supply (TDA4601 actually). The resistors in the current-simulation circuit are R932 ($120 \mathrm{k} \Omega$) and $\mathrm{R} 931(150 \mathrm{k} \Omega)$. They were both high in value at some $180 \mathrm{k} \Omega$. After replacing these items he started the set up via the variac. All was well.

Later, over a cup of tea, Steven pointed out that Mr Dewey, an intelligent man, refused to consider buying a new set because they are full of gimmicks and are unpleasant, if not impossible, for normal folk to operate. In addition they look so black and awful.
"I'm finding that more and more people; especially the mature ones, feel the same about modern sets. They don't like them and won't have them. When their existing sets need to be replaced they ask whether we can supply an older, reconditioned one. Since the population is rapidly ageing, there must be a fortune waiting for the first manufacturer sensible enough to produce a basic set that anyone can operate" he concluded.

Rippling Picture

Just then a thin, sharp-faced character hustled in carrying a Matsui 1436

"It was here that I learnt the cruelty of a mains-toearth shock."
portable. He put it on the counter, had a fight with his duffle coat, pulled out a red-spotted handkerchief and gave his nose a good blowing.
"Shall I ask him for an encore?" I asked Steven.
"This set, now" rang out the Modern Man. "It's never been really right since you last tried to do it, but I thought I'd give it time to settle down. I think it must be the valve or the transformer. Perhaps you fitted new ones last time. You'll have it in your records, I daresay. We were watching 'Are you being served' when it failed. My dog likes to watch that."
"When did we last do it?" Steven asked, reaching for our tray of cards.
"It was just before that last Cassius Clay fight" he said. "I wanted to watch it, the wife didn't and didn't we have a row. Well, wives are all the same, aren't they? Er, are you married Mr Duffer?"
"No" said Steven, "I've just got toothache:"

Once he'd departed we pulled his set on to the bench. The entire righthand side of the picture was rippling. This suggested an open-circuit or low-capacitance electrolytic in the power supply. But we found that the print at the positive side of the HT reservoir capacitor C 666 ($150 \mu \mathrm{~F}$, 160V) was cracked. Resoldering it cured the set's trouble, but there was still the customer . . .

Reports from

John C. Priest
Pete Gurney, LCGI
Blair McEwan
Chris Avis
Chris Watton
Michael Dranfield
Graham Colebourn and
Stephen Leatherbarrow

Beon CTV1403T

These sets tend to have problems with their power supply start-up circuit. First examine the PCB, above and below, for brown glue on and around components in the power supply and line output area. The glue will have become brittle and hard and needs to be removed. Once the board has been cleaned up you may find that the set works all right. If not, replace the start-up resistors R508/9 ($150 \mathrm{k} \Omega, 0.5 \mathrm{~W}$) and R107/8 ($270 \mathrm{k} \Omega, 0.5 \mathrm{~W}$). This should restore normal operation, but I have had one case where the CNX82A optocoupler D111 had to be replaced.

Check the long wire link between the microcontroller chip and the transistor that drives the optocoupler if the set sometimes fails to come out of the standby mode. J.C.P.

Memorex 1400

These sets were sold through Tandy outlets. The chassis is very similar to that in the Matsui Models 1455/1465 and the same service manual can be used. If a replacement remote control unit is required, the Konig HS00004 will operate all functions with the Matsui 1465 and these Memorex sets. There may be some buttons for functions not provided with the Memorex sets. J.C.P.

Panasonic Alpha 3 Chassis
There was severe EW bowing and none of the relevant controls had any effect. It's not an uncommon

TV

 Fault Findingfault with this chassis, the usual cause being the TDA8145 chip IC701, with R708 and/or L701 also failing. In this case R708 and L701 were OK. A new TDA8145 chip restored some operation of the width and parabola controls, but a full, linear scan could not be obtained and the trapezium control still had no effect. Further checks revealed that there was no voltage at pin 1 of IC701 because the associated $0.01 \mu \mathrm{~F}, 50 \mathrm{~V}$ disc decoupling capacitor had an internal resistance of 55Ω. A new capacitor finally cured the problem. J.C.P.

Philips NC3 Chassis

If there is intermittent loss of the picture - it fades off and on as the CRT heaters go out then come on again - check for faint haloes (dryjoints) at the base of the line output transformer. You may need a magnifier to see them. Don't just resolder the transformer's legs. Remove the transformer, as you will probably find that the legs are quite black above the PCB level. Scrape and retin them before refitting the transformer to the PCB. Also check the connections to the CRT's base pànel. J.C.P.

Nikkai Tara 10

I've had a number of these sets with intermittent loss of luminance - a dark red/purple display. You usually find that the PCB is sensitive to tapping. The brightness, contrast and colour controls are part of a single assembly. Remove it, treat the tracks with a little contact cleaner, then clean off the print before refitting the assembly.

If this doesn't clear the problem, look at the print in the general area of the TDA3566 colour decoder chip. I've had several sets where the solder pad drilling has been well off centre - sometimes barely on the pad at all. It pays to remove the IC then clean up the whole area with desoldering braid and PCB cleaner
before refitting it. Take great care to ensure good connections to the solder pads.

The soldering in these sets leaves a lot to be desired: there is far too much solder on most of the connections and dry-joints abound. J.C.P.

Mitsubishi CT25A2 (Euro 12 Chassis)

The complaint was of intermittent Nicam crackling, more when the set had warmed up. On test it was obvious that the set was drifting off tune. Eventually the text was corrupted as well. This is becoming quite a common problem, the cause being bad joints in the IF unit, particularly around the two ICs, the SAW filters and the coils. When it's faulty the unit is not always sensitive to tapping. Resoldering cured the problem. P.G.

Huanya 37C-2

This set came from another dealer, the complaint being no luminance. The D7193 colour decoder chip IC501 had been replaced, also several transistors in this area. A scope check at the base of the luminance delay line driver transistor Q302 displayed a suitable waveform, but voltage checks showed that the transistor was saturated - there was 9 V at its collector instead of 4.5 V . This in turn cut off the luminance emit-ter-follower transistor Q303.

The cause of the trouble was in the pedestal clamp stage. Transistor Q304 should have 10 V at its emitter. This supply comes from the subbrightness control, via D306 (type 1S2076). Only 8 V was present here. The cause of the fault was D306. It checked OK out of circuit, but a replacement restored the luminance and correct voltages. P.G.

Toshiba 219T9

This set took a progessively longer time to start up. Eventually it died altogether - the power supply sat there with most of its voltages pre-
sent though it wasn't working. I've had a few dried-up capacitor problems with this model. Replacing C818 ${ }^{-1}(2 \mu \mathrm{~F}, 100 \mathrm{~V})$, C814 ($100 \mu \mathrm{~F}$, 50 V) and $\mathrm{C} 823(10 \mu \mathrm{~F}, 16 \mathrm{~V})$ on the primary side of the chopper power supply usually gets things going, and did in this case. It's also wise to check the capacitors on the secondary side of the circuit, using a scope, and to replace them as necessary. P.G.

Mitsubishi CT25A4STX

 (Euro 12 Chassis)There was intermittent loss of sound and sometimes no picture. In most cases of this sort a good tap on the VIF module will produce results. When the module was removed I found that there were bad joints at both ICs and most of the capacitors. Resoldering all the joints and earths cured the fault. P.G.

Sharp DV5103H

This set came in dead with a blackened mains fuse and the surge-limiter resistor R700 ($8 \cdot 2 \Omega$) open-circuit. The short-circuit was still present when the chopper transistor had been removed. I subsequently found that the transformer was the culprit, with all the pins on the primary side shorted together. P.G.

Daewoo T200

This set wouldn't come out of standby. You switch it to on by pressing the programme buttons at the front. In this case the relay clicked but not much else happened. While preparing to take some voltage measurements I noticed that C 410 (1 nF , 2 kV) in the line output stage was puffing away merrily. The transistor proved to be OK, and a new capacitor restored the set to life. B.MCE.

Grundig GT 1401

There was no sound or picture. The supplies were OK except for the 5 V rail. D114's cathode connection wasn't through the print. Soldering it properly cured the problem. B.McE.

Beon CTV1412R

If the sound blares intermittently, check for dry-joints at R140. This is, anyway, what it's marked on the PCB - it is actually a wire link. B.McE.

Minoka MK1491A

There was a greenish raster with no video. A check on the RGB outputs from the TA8718 timebase generator/colour decoder chip IC201 showed that the red was OK but
there was no green or blue. A new chip cured the fault. B.McE.

JVC CI41EK

The problem was an intermittently bright raster with lack of height and width. The $1 \mathrm{k} \Omega$ HT preset VR901 had bad tracking. A replacement cured the problem - the HT should be set for $112 \cdot 5 \mathrm{~V}$. B.McE.

Sharp DV5161H

This set wouldn't come out of standby. Checks revealed that the 12 V supply was missing. D602 (1N4936) was open-circuit. B.McE.

Finlux 5025C26

There was either no sound via the scart socket or low, distorted sound would break through. The 0.68Ω fusible resistor RL74 on the back panel was open-circuit. It's in series with the 12 V supply. B.McE.

Hitachi CPT2808 (G7P Mk il Chassis)
 There was a green raster with fly-

 back lines. I found that the green output transistor's $22 \mathrm{k} \Omega, 0.25 \mathrm{~W}$ load resistor R808 was open-circuit - so there was no voltage at the collector of Q802. B.McE.
Sony KM2171U (BE4A Chassis)

The picture had become a wide pincushion and there was no response to the relevant service mode commands. Pincushion/width control originates at pin 8 of IC301, where there should be 0.6 V . The voltage had risen to 1.4 V and there was no sign of a parabolic waveform. It seemed logical to replace the chip (type MC44007P), which turned out to be the correct action. I then spent far too long playing with the digital picture adjustments in the service menu, something that's still a novelty here. C.A.

Akura CX12

The on-screen display and the sound were OK but the screen was otherwise blacked out. This can simply mean that the contrast is at minimum and not memorised. Adjust the contrast to a suitable level then memorise the setting by holding down switch S002, by the tuner, and putting the set into standby. C.A.

Boots CTV1414R

Why do people buy TV sets from a chemist? Perhaps I should open a pharmacy in the corner of my shop! Anyway, a channel number could be selected and tuned in, but the set would then memorise it on all
channel positions. The 32 V tuning voltage via IC102 had risen to 38 V .
A replacement $\mu \mathrm{PC} 574 \mathrm{~J}$ chip
cleared this bizarre fault.
The set is the same as the Matsui 1450/Saisho CT147R. C.A.

Mitsubishi CT2155STX (Euro 4Z Chassis)

There was intermittent loss of sound. The cause was eventually traced to the muting switch transistor Q706, a weird JA101QR - fortunately I was able to find one on a scrap board!

Other sets fitted with this chassis include the CT2153 and CT2553.

C.A.

Samsung Cl5013T (P58S Chassis)

Channels could be tuned in but not stored. This fault is usually caused by a defective EEPROM chip, but not this time. I found that the data signal between the microcontroller chip and the EEPROM was very poor. The cause was an increase in the value of the pull-up resistor RR53 - the correct value is $3.3 \mathrm{k} \Omega$. Does anyone know why LOPT failure is so rare with Samsung TV sets? C.A.

B \& O LS5500 (also LX/MX/L etc)

Snowy pictures, no sound and erratic colour suggested a possible tuner fault. But a high-tech investigation with a can of freezer showed that the severity of the symptoms was reduced when the TDA8120 chip IC6, which includes the IF section, was cooled. This chip also contains two voltage regulators and tends to run hot, demonstrated by the darkened board beneath it. A replacement chip restored the top-quality $\mathrm{B} \& \mathrm{O}$ performance. C.A.

Nokia 9291 Cinescreen

These large sets, which are fitted with the Euro-digital chassis, have an Ipsalo type power supply/line output circuit similar to that used in the Salora J, K, L and M chassis. This set was dead.

I usually find that the best way to check the power supply is to disconnect the collector of the line output transistor then force the set into the standby mode. Do this by switching the set on then connecting the mains supply. This will give you a clue. Check the $\pm 15 \mathrm{~V}$ supplies, which are marked on the PCB. The readings are usually around $\pm 12 \mathrm{~V}$. If so, the power supply is probably OK and the line output stage components should be checked, i.e. transistor

T525, diode D523 and the associated components.

In this particular case the $\pm 15 \mathrm{~V}$ supplies were OK but the Ipsalo transformer was faulty. This may sound odd, but with these sets standby is achieved by effectively shorting out the line output transistor. The cost of the transformer is related to screen size, so the repair is an expensive one.

Incidentally a Jabco type tester can be used to check the transformer. Check between pins 14 and 15 for the line output primary winding and pins 1 and 2 for the power supply primary winding. C.W.

Sony KV27XRTU (SX Chassis)

This set was dead. Checks in the power supply showed that the 135 V HT supply was missing while all the other outputs were low. The cause was simply that L651 was open-circuit, but in this set it turned out to be an N38 type ICP. C.W.

Nokia Euro Stereo 2BFIIONN

If there's a screaming chopper transformer and ragged verticals from cold, replace C787 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$). As this capacitor sits right next to a very hot running 220Ω wire-wound resistor the replacement should be rated at $105^{\circ} \mathrm{C}$.

C787 should also be replaced when you find that the line output transistor is faulty, as it will almost certainly have been the root cause of the problem - assuming that you have already attended to the dryjoints. M.Dr.

Toshiba 2927DB

Excessive EHT was the problem with this Dolby Pro-Logic set - the anode cavity was sparking. The HT was also high, at 180 V instead of 125 V . The cause of the trouble turned out to be the TLP721 optocoupler IC826 in the power supply.

Why hadn't the overvoltage trip shut the power supply down? Because transistor Q841 (2SA1015) in the trip circuit was leaky. Fortunately no other damage had been done. M.Dr.

Philips CF 1 Chassis

This set had a very unusual fault. There was a three-inch band of very faint patterning about two inches from the left-hand side of the screen. When the aerial was disconnected the problem showed up as a dark patch through the snow. As the problem was worse at switch on, a tin of freezer was brought into
action. The cause of the fault was eventually traced to $\mathrm{C} 2484(4 \cdot 7 \mu \mathrm{~F})$, which is connected to the emitter of the E-W modulator driver transistor. Tests showed that it had fallen to a very low value. A replacement rated at $105^{\circ} \mathrm{C}$ was fitted. M.Dr.

Sharp DV3760

This set would trip back to standby after two seconds. Various items were disconnected from the power supply to establish the source of the trouble. This revealed that there was a heavy load in the line output stage. In fact the line output transformer was faulty. A genuine replacement from Willow Vale was priced at less that $£ 12$ plus VAT, a bargain. The cheapest genuine line output transformer we've ever bought was obtained from Philips recently - it cost $£ 9.11$ plus VAT. Could it be that the major manufacturers are trying to stamp out dubious-quality pattern parts? M.Dr.

GoldStar CIT9325

If there is sound and EHT but no picture, and the cause of the fault is not field collapse, connect the collector of one of the RGB output transistors to chassis via a $10 \mathrm{k} \Omega$ resistor. If the picture returns and remains on until the set is switched off, replace the TDA3562A colour decoder chip. It's on a stand-up subpanel. M.Dr.

Salora K Chassis

If the set is dead with a faint whistle coming from the Ipsalo transformer, check whether D603 (type PE2D) is short-circuit. M.Dr.

Matsui 2091

If the power supply is working but the line output stage remains inactive, replace diode D401 (1N4007) in the line driver stage. It provides the start-up supply for the collector of the line driver transistor - when the set is up and running this stage obtains its supply from the line output transformer. A word of warning: D401 can become intermittent, so it's worth fitting a replacement whenever one of these sets comes into the workshop.

Incidentally the set is fitted with a GoldStar chassis. M.Dr.

Hitachi C2118, C2119

If one of these sets appears to be completely dead apart from the standby light showing, or fails in this way intermittently, check the connections to the 9 V regulator IC703. They may well be cracked, especially if the regulator has been
fixed with a blob of hot glue to steady it. This method of component fixing often results in premature failure of the soldered joints. So look out for this as a matter of routine. G.C.

Goodmans 2875

This 28 in . set produced no sound or picture because the line output stage had failed. The soldered joint at one end of the E-W capacitor C134 had burnt out. Although the capacitor itself was unharmed, the S2055AF line output transistor had been destroyed. A replacement transistor and repair to the PCB restored normal operation. G.C.

Panasonic TX2IV1 (Alpha 2 Chassis)

The picture would disappear intermittently, leaving a blank, dark grey raster. I found that the soldered joints at all three pins of connector B4 had cracked. This connector is right at the front of the chassis, under the CRT's rim. It's on the IF panel, which is beside the tuner. G.C.

Hitachi C2509 (G7PS
 Chassis)

The field scanning was very non-linear: the bottom of the picture was cramped while the top was stretched. The cure was to replace two electrolytic capacitors: C712 $(2,200 \mu \mathrm{~F}, 50 \mathrm{~V})$ which is the reservoir capacitor for the 28 V supply used by the field output stage; and C606 $(680 \mu \mathrm{~F}, 16 \mathrm{~V})$ which is the field scan coupling capacitor. G.C.

Ferguson 51J7 (TX99 Chassis)

The owner of this set said that although it had not changed the programme number to which it was set, the station displayed changed randomly. When I checked there were no signals at all. The tuning control voltage was almost zero and resisted all attempts to increase it, so attention was turned to the TACS control panel on the left-hand side.

There was no voltage at the tuning supply stabiliser IC243 because one of the $2 \mathrm{k} \Omega$ resistors in the feed chain (R234 and R254-8) was opencircuit. I replaced all six of them, using 1W types, to prevent further failures. Care is required to prevent the larger resistors clashing with the plastic frame when the board is refitted. G.C.

Philips GR2.3AA Chassis

This 16:9 aspect ratio set was dead. It didn't take me long to discover
that the mains fuse had failed and the BUT11AF chopper transistor was short-circuit. As a check on the surrounding circuitry didn't reveal anything amiss, a new fuse and chopper transistor were fitted. At switch on they went the way of the originals. The power supply control circuitry is on a subpanel, and incorporates a CNR50 optocoupler. As these devices have proved to be troublesome in other Philips chassis I replaced it, along with the fuse and BUT11AF transistor. This time the set worked.

The degaussing thermistor was also replaced as it was crumbling. It's not a standard device: one half is used as a surge limiter, as in some versions of the 2A chassis. S.L.

Ferguson IKC2 Chassis

This set was dead though the chopper power supply's HT output was normal - there was 111V at the cathode of DP50. The 7 V output was at zero however, while the other outputs were approximately fifty per cent low. This situation means that there are no line pulses because the line output stage isn't working. In fact there was no line drive.

Further checks showed that the
safety circuit was in operation, with transistor TV01 (BC558C) conductive for no apparent reason. When I removed it for testing I found that there was collector-emitter leakage. Not much, but enough to reduce the 15 V supply and shut down both the power supply and the line drive. This is comprehensive protection, but it does make fault finding difficult.

When TV01 had been replaced the set worked but there was no colour and an ominous ticking sound came from the line output transformer. The transformer had pinholes and occasionally arced. In view of these defects it seemed likely that the TA8659CN timebase generator/colour decoder chip IV01 was faulty. When this item had been replaced and a new line output transformer had been fitted the set worked well. S.L.

Granada C59FZ6

These sets, which are fitted with the Salora M chassis, always seem to come in with the same complaint: the S2000AF line output transistor is either leaky or short-circuit. A replacement will usually fail in the same way, especially from cold.

Replace the $220 \mu \mathrm{~F}$ electrolytics C624 and C523, which are close by, and all should be well.

These sets also suffer very badly from dry-joints. It's usually necessary to blanket resolder the power supply and the line output stage. S.L.

Osaki P146R

The customer complained about "lines on the screen". They started at the top left-hand corner and curved down towards the right-hand edge of the screen. It looked as if the flyback was slow. The cause of the trouble was C310 $(4.7 \mu \mathrm{~F}, 160 \mathrm{~V})$ which was virtually open-circuit. S.L.

Ferguson TX100 Chassis

This set was supposed to be dead though the HT and EHT supplies were present. But there was no 12 V output from the MC7812CT regulator IC8. Its input is obtained from the line output transformer via a rectifier circuit that consists of D21 (RGP10G), surge limiter R145 (0.22Ω) and reservoir capacitor $\mathrm{C} 135(4.7 \mu \mathrm{~F}, 40 \mathrm{~V})$. D21 was opencircuit and R145 read 20 2 . I replaced these two items and, as a precaution, C135 and IC8. S.L.

1998 BONANZA ON KON/G VIDEO REPAIR-KITS AT REDUCED PRICES. Most Videos are due for M.O.T., so needs a service, HURRY, HURRY									
AKA				$\begin{aligned} & =\text { RK7928 } \\ & =R K 7929 \end{aligned}$	$\begin{aligned} & =11125 \\ & =1125 \end{aligned}$	Nv230	= RK7907	$=795$ $=1325$	KITS ARE PREPACKED BY KONIG
VSINS	= RK7941 $=$ RK7942	615	vT	= RK17905				= 1185	ON THEIR ORIGINAL PACKING
			17				= KK 97950 $=$ RK7988	$=675$ $=1250$	AND CONTAIN FOLLOWING:
					$=500$	PHILI			
VCR 4000	RK79	$=1100$	vR3908						BELT KIT, PINCH-ROLLERS-
AMSTRAO			GOLOSTAR				= RK		APPRO. IDLER + CLUTCH,
	$=$ RK7933		GHV12	=RK7946	$=975$ $=1500$	VR654		$=950$ $=1095$	TENSION BAND, WASHERS.
							= RK7973	=1095	NO NEED TO SEARCH FOR
FERG/JVC						vRo4	=RK7974	$=500$	INDIVI
	$=$ RK7911 $=$ RK9912		vxi35/34	K7935	000	SA			
3v29/3	= $=$ Kk7913	1250	JC					$=1075$ $=1175$ $=120$	
${ }_{\substack{3 v 3 \\ 3 v 23}}^{\substack{\text { a }}}$	= RK77914 $=$ RK7915	1540	HRDS50, 550 MS	= RK7999	$=1650$	TiS1100	= RK7	-1755	LITY - REPUTATIO
-	= R $=$ KK7916	1000							
HR2650	$=$ AK7917	$=1800$	MITSUBIS				= RK¢999 $=$ RK7961		
3v35/31	= $\mathrm{FK} \times 1918$ $=$ RK77919	-1200	${ }_{\text {Hs347798101030 }}^{\text {H5337/38 }}$	$=\mathrm{RK} 17903$ $=$ RK17904	1655	SAMSUNG			\%
3 V 44445	$=$ - KK ¢920		Reil rum Assy	= $=$ RK114	= 885	vв900910	= RK7993		lease phone us tor the types not liste.
3v5883V6	= RK7921	= 850	NEC			sv916/17	= AK 7954	$=500$	Please add 60p post \& packing and then add
FISHER			N9012134/333/34	951	1095	SENTRA			17.5\% to the total.
FVHP420	7937		Dx200/3000			GX80	= пк7948	100	Trade Counter now ope
	(7938		N9055						Mon-Fri 9.00AM-5.00PM
			PANASON			SHARP			9, 900AM-3
FHVD250270	= RK7959	$=20.95$	NV77000	=RK790		vC3	= $\mathrm{AK} \times 7923$	$=100$	
HITACHI			Nv200	= пКK790	$=1550$	Vc8000/8300	${ }_{\text {- }}^{\text {= RK79968 }}$		
VT11/33	= RK7922	= 1395	Nv7800	= RK 7892	$=1125$	vc402571	- Rк7970	$=975$	Edgware Road,
	- R R7924	$=1500$ $=1550$	Nv333	= RK7903	= 1095 $=1050$	TOSHIBA			he Hyde, Colindale N
	= RK 9295 $=$ RK7926	$=1550$ $=2585$			=885				not
VTE500/8000	= RK7927	= 1175	Nv370	$=$ RK7906	= 795	Dv908/96	= RK7985	$=700$	Free fax orderine only 00800318498

John Edwards' Service Notebook

Samsung Cl5937AN

This set was dead except for a highpitched squeal that came from the chopper power supply. There was no line timebase operation because the outputs on the secondary side of the chopper transformer were all very low. With the set switched off (and unplugged) I disconnected each line in turn and checked for a short-circuit. The reading obtained across the 32 V line, which feeds the TDA2161 audio output chip, was about 10Ω to chassis. When pin 7 of this chip was unsoldered the short cleared. A new TDA2161 IC restored the set to life.
The customer subsequently mentioned that just before the fault occurred he had connected two external speakers to the set. I decided to check them out and was glad I did. One very tiny, under-rated speaker was connected by threadbare wires joined in several places - the leads were just wrapped around the speaker terminals. The other speaker was not only of different size and impedance - it also had a ripped cone!

Finlux $5025 S$

This set has a built-in satellite receiver. It suffered from intermittent loss of picture because the tube's heaters would go out at random. As no obvious dry-joints could be seen, I resoldered the heater supply resistors, R929 on the tube base panel and Rz2 and Rz5 on the main board, hard wired between them, then resoldered the ribbon cable connections from the main board to the CRT base panel. There was no further trouble after that.
I was not impressed by the fact that the back cover provides, via two screws, the support for the satellite PCB. When the cover is taken off the PCB is free to move. A vertical plastic leg protrudes from the bottom of the satellite PCB and clips loosely on to a metal frame attached to the main board. But this doesn't provide sufficient support. You have been warned.

Akai CT2870UK

This set led me a merry dance. It would tune in the lower channels,
e.g. 23 and 26 , but not channels 30 , 33 and higher - the ones available in my area. I suspected the ZTK33B tuning voltage stabiliser, which according to the manual is D7102 and is connected to pin 7 of the tuner/IF module. I soon found that D7102 didn't exist, and that the print layout was slightly different from that shown in the manual. Yes the model number, and a few others, were clearly printed on the front cover of the manual, the chassis type being shown as the Nokia Compact D-E.
While scratching my head and preparing myself for a grand tour of the PCBs in a search for the diode I spotted the words "Compact D-2" etched in small type on the vertical-ly-mounted audio output board. Naturally I didn't have the Compact D-2 manual in stock, so the grand tour began anyway.
There are so many plugs and sockets fixed to ribbon cables going here, there and everywhere that tracing the path from pin 7 of the tuner $/ \mathrm{IF}$ module became too frustrating. I resorted to a visual check of the boards and eventually found the diode on the audio output board, where I began! The circuit reference is D901. Within minutes of fitting a replacement I had a normally working receiver.
I realised later that the reason I had so much difficulty finding the diode is that in this chassis the 33 V tuning supply is not connected to the tuner/IF module directly. It's taken to an interface chip which in turn feeds the module.

Sanyo CBP3012 (A3-A14 Chassis)

I had three of these portables in for repair in quick succession, each with a different fault. I tackled the first one without a circuit diagram. Having learnt my lesson, I obtained one before delving into the other two.
Set number one's symptom was a very bright raster with flyback lines. The first anode control on the line output transformer had little effect. I eventually traced the cause of the fault to loss of the 130 V HT supply to the RGB output transistors be-
cause the smoothing resistor R557 (10Ω) was open-circuit. It shouldn't have taken so long, but R557 is in the chopper power supply, which in this chassis supplies all the power circuits - audio, field and line. The line output transformer is restricted to generating the EHT, first anode and focus voltages, some pulses and the CRT's heater supply. Because I didn't have a circuit diagram I had been searching in the line output stage for the source of the supply for the RGB output transistors. We live and learn.
The second set was dead, but life was easier now that I had a circuit diagram. The surge limiter resistor R502 (3.9 , 6W) was open-circuit, so it was no surprise to find that the 2SD1710 chopper transistor Q513 was short-circuit. While checking in the power supply I found that Q553 (2SC536) was also short-circuit. It's the error voltage sensing transistor and in addition drives the PC1138 optocoupler D515. To be on the safe side I replaced both these items.
I then powered up the set slowly, using the variac and monitoring the 130 V HT supply at the cathode of D551. At an input of about 150 V AC the power supply sprang to life, delivering an HT of 175 V . I shut down, to save all my hard work, and checked around again. Q512 (2SC3807), which controls the chopper transistor drive, was shortcircuit base-to-emitter. Although cheap, it's a little special because of its high base-to-emitter voltage rating, so there's no real equivalent. I resisted the temptation to experiment with different transistor types and ordered the correct replacement. Next day, with the new 2 SC 3807 fitted, the set worked normally.
The third set was stuck in standby. This time the chopper power supply was working correctly, delivering 130 V to the line output stage. But there was no line drive because the line driver transistor Q431 had no 24 V collector supply. This comes from the 2SB764 pnp-type transistor Q551, which was short-circuit base-to-emitter. It acts as a switch. I found that the BC640 is a suitable replacement.

TRANSISTORS/LINEAR ICs

Part	Price	Part Price	Part	Price	Part	Price	Part	Price	Part	Price								
BC107	8 p	BD	$30 p$	BU126	65 p	BUV48AF	325	M \rfloor	30	4N35 50p	LINEARICs		AN6340	${ }_{200 p}$	BA33	55 p	BA7004	200 p
BC108	8 p	BD435	31 p	BU128	125p	BUV488	250 p	M J10012	300 p		AN203	210p	AN634	200p	EA338	80	BA7007	200 p
BC109	8 p	BD436	30 p	BU133	$125 p$	BUV50	425p	MJ11015	250 p 300 p	RECTIFIER	AN210	165 p	AN6342	$325 p$ $440 p$	BA343 ${ }^{\text {B }}$	60p	BA7022	350p
BC109C	10p	ED437	28p	BU137	150p	Buv61	${ }^{1000 p}$	MJ11016	300p	RECTIFER	AN211	150p	AN6344	400 p	BA336	175p	BA7025L	100 p
$\mathrm{BC}^{\text {BC140 }}$	20 p	ED438	36p	BU180	100 p	BUV70	200p	MJ11032	8009		AN2140	170 p	AN6346	350 p	BAA01	60 p	BA7107	475 p
BC142	20p	BD439	$40 p$	BU184	$100 p$ $65 p$	BUV93	$175 p$ $375 p$	MJ11033	$800 p$ 250	BY127 $8 p$ BY133 80 80	AN217P	95p		610 p	BA402	50 p	BA7212S	200 p
BC147	20p	BD441	40 p	BU205	70 p	BUwila	200p	MJ15004	300 p	BY164 40p	${ }_{\text {A }}$ AN282	280p	AN6	450p	BA511	145 p	BA7252	150 p
BC149	8p	BD533	50p	BU206	100p	BUW11AF	225 p	M J 15015	250 p	BY179 35p	AN259	250p	AN6356	300p	BA516	150	BA7751LS	150p
BC159	8 p	BD334	$38 p$ 38	BU207	${ }^{150 p}$	BUW12	$125 p$ $150 p$	MJ15016	350 p $\mathbf{2 5 0 p}$	BY184	AN262	140p	AN6360	320 p	bA518	150 p	BA7752	250 p
${ }^{8 C 160}$	$30 p$	BD535	38 p $\mathbf{3 8 p}$	${ }^{\text {BU }} \mathrm{BU208} \times 2$	75p	BUW12A	150p	M M 15022 L	2500p	BY206	AN271	230 p	AN6362	400 p	ba521	100p	BA7755	150 p
${ }_{8 C 171}$	10 p	80536 8 S 537	38p	BU208A	$75 p$ $200 p$	BUW12F	${ }_{200 p}^{250 p}$	MJ15023 M $J 15024$	400p	$\begin{array}{ll}\text { BY207 } & \mathbf{2 0 p} \\ \mathrm{BY} 227 & \mathbf{1 9 p}\end{array}$	${ }^{\text {A }}$ AN274 ${ }^{\text {A }}$	250 p	AN6363	375p	BA524	240p	BA7767A	155p
BC172 BC 177	$10 p$ 140	B0537	40 p	BU208B	200 p	BUW32A	500 p	M J 15025	700p	$\begin{array}{ll}\text { BY227 } & \text { 19p } \\ \mathrm{BY} 28 & \text { 28p }\end{array}$	AN277B		AN6367NK	400p	BA526	180p	BA8504	350 p
BC178	14 p	BD643	50p	BU208D	130p	BUW48	550p	MJE340	25p	BY298 15p	AN301	330	AN6368	275p	BA527	5	BA15218	
BC179	14p	BD645	50p	BU209	90p	BUW49	550 p	MJE350	80p	BY299 18p	AN302	650 p	AN6371	350p	BA532	${ }_{2200}^{100}$	CA3140E	380
BC182	7 p	BD647	50 p	BU225	120 p	BUW50	400 p	MJE520	30p	${ }_{\text {BY329-1200 }} \mathbf{1 5 0}$	AN303	250 p	AN6550	$100 p$	BA536	150 p	CNX82A	60 p
${ }^{\mathrm{BC} 182 \mathrm{~L}}$	$7 \mathrm{7p}$	BD649 80675	50p	BU226	$120 p$ 900	BUW81A	150p	MJE2955T	65p	$\begin{array}{ll}\text { BY448 } & \text { 20p } \\ \text { BYT11 } & \mathbf{2 5 p}\end{array}$	AN304	360 p	AN6551	${ }^{100}$	BA546	160 p	CNX83A	
- ${ }_{\text {BC183 }} \mathrm{BC183L}$	$7 \mathrm{7p}$	BD675 BD676	40p	BU325	95p	BUW85	85p	MJE13004	$100 p$	BYT11 BYT13-1000 150 $\mathbf{3 0 p}$	AN315		AN6552	$45 p$	ba612	120p	CX136	600p
BC184	7 p	BD677	$38 p$	BU326A	75p	BUX10	150p	MJE 13005	60p	BYV96E 25p	AN337	600 p	AN6554		BA614		Cx139a	
BC184L	7p	BD678	40p	BU406	60p	BUx11	200 p	MJE13007	100p	BYW96E 36p	AN360	100 p	AN6555	35	BA668	2800	C×145	725p
BC212	7p	BD679	$40 p$	BU406D	85 p	BUx 12	150 p	M.JE13009	100p	$\begin{array}{ll}\text { BYX } 10 & \text { 15p } \\ \text { BY }\end{array}$	AN362	140 p	AN6612	60 p	BA656	110 p	C×1508	325 p
${ }^{\mathrm{BC} 212 \mathrm{~L}}$	7 p	BD680	40p	${ }^{\text {BU4 }}$ BU07 ${ }^{\text {B }}$	55 p	BUX20	350 p 450 p	MJE15028	${ }_{200 p}^{200 p}$	$\begin{array}{ll}\text { BYX } 55 / 600 & \text { 25p } \\ \text { IN4001 } & 30\end{array}$	AN363	150 p	AN6650	$45 p$	BA658	350 p	${ }^{\text {cx1 }}$	325 p
${ }^{\text {BC2 }}$ BC213L	7p	BD681 BD682	45 p	BU408	60p	BUX22	450 p	MJE15030	250p	$\begin{array}{ll}\text { N4001 } \\ \text { in4002 } & \text { 3p } \\ \end{array}$	AN366	150 p	AN6651	45 p	BA68	350 p	Cx187	885 p
BC214	7 p	BD705	50p	BU408D	75p	BUX23	900 p	MJE15031	400p	in4003 3p	AN3211K	375p	AN665	45 p	BA683A	300p	Cx867	$775 p$ $\mathbf{5 7 5 p}$
BC214L	7p	BD707	50p	BU409	$85 p$	Bux37	$220 p$	MJE18004	125p	\|N4004 3p	AN3215K	350p	AN6676		BA684	400 p	CX868	525p
BC237	7 p	BD709	50 p	BU412	175	Bux39	4500	MJF18004	175p	IN4005 3p	AN3231K	300p	${ }_{\text {A }}$ A 6780 S	80 p	BA685	400 p	CX877	300 p
BC238	7 p	BD711	50 p	BU413	175p	BUX47	2109	0 C 28	350p	INa006	AN3236K	450 P	AN6870	450p	BA715	45p	Cx7925B	550p
BC239	7p	8D736	50p	BU415A	250p	BUX 42	$200 p$	OC29	250	\|N4007	AN3310K	325 p	AN6875	150p	BA718	$45 p$	Cx20015A	600 p
BC300 BC 301	20p	8D828	50 p	BU426A	70 p	BUX47A	220p	OC35	350p	N5400	AN3312	350 p	AN6878	65p	BA728	5	C20106A	p
BC302	$20 p$	BD839	55p	BU433	120p	BUX48A	150p	OC36	250p	IN5401 8p	AN3320		AN6879	225p	BA806	220 p	CX20109	1400p
BC303	$20 p$	BD897	50p	BU500	100p	BUX55	$\mathbf{8 0 0}$ p	S2000A3	$175 p$	IN5402 8p	An3331K	450p	AN6882	300	BA1310	160 p	CXA1001AP	1600p
BC304	$25 p$	BD899	50 p	BU5000	225p	BUX80	$180 p$	S200AA	130	IN5403 8p	AN3792	300p	AN6884	200p	BA1320	75p	CXA1019P	150 p
BC327	7 p	BD977	50 p	BU505	90 p	BUx87	160	S2055A	175	N5504 8p	AN3794	325p	AN6888	150p	BA1	120p	CXA10	
BC328	7 p	BDx33	${ }^{600}$	BU505DF	909	BUX85	50	S2530A	100 p	N5405 11p	AN3814K	450p	AN6889	100p	BA1332	60p	CXA1044P	550p
BC337	7 p	BDX37	100 p	BU506	100p	BUX86	30 p	TIP29	15 p	-	AN3821K	600	AN6913	60p	BA13	130p	CXA ${ }^{\text {d }}$	475p
BC441	28p	BDX47	60 p	BU506D	70p	BUX87	50p	TIP29A	22p	IN5408 $\quad 12 \mathrm{p}$	AN38230	800p	AN700	650 p	BA1355	125	CXA108	275p
BC445	8 p	BDX54C	75p	BU506DF	100p	BUX98A	350 p	TIP29C	$25 p$	RGP10 25p	AN3990K	300 p	AN7025K	90	BA1360	$160{ }^{\text {1 }}$	CXA1081S	300p
BC477	18 p	${ }^{\text {BD }}$ 862 62 C	$150 p$	BU508A	${ }^{70 p}$	BUZ ${ }^{\text {BUZ }}$ IAF	$75 p$ $\mathbf{1 0 0 p}$	${ }_{\text {TJP30 }}$	25p	RGP15 RGP30	AN3991K	400 p	AN7060	175p	BA1404	120p	CXA1082AS	000p
BC516	22 p	BDX63C	175p	BU508APH	80 p	BUZ72a	$100 p$	TIP30C	$25 p$	SR2M 6	AN5010	250p	AN7062	300p	BA1604	125p	CXA1191M	250p
	25p	BDX64C	175p	BU508D	75	BUZ 2 AF	100p	T1P31A	22 p	SR2M 60p	AN5011	225 p	AN7072	250p	BA2265A	$250 p$	CSA1209P	400 p
BC547	8 p	BDX66C	175p	BU508DF	85p	BUZ73a	150p	TIP31C	27p		AN2020		AN7081K	200 p	BA3306	60 p	FT5754M	6009
BC548	8 p	BDX67C	$275 p$	BU508DR	130p	BUZ33AF	${ }^{\mathbf{6 0 p}}$	${ }_{T 1 P}$ TP32	24 p		AN5033	400 p	AN7105	170 p 135	${ }^{\text {BA }}$ B3308	70p	FA1124	125p
BC549	$8 \mathrm{8p}$	BDX71	70p	BU508V	110p	BUZ76A	110p	TIP32C	$28 \mathrm{2Pp}$	8 PIN $4 p$	AN5034	400 p	AN7110	75p	BA3402	90p	HA1125	120p
BC550	8p	BDX BD87\%	175p	BU526	75p	BUZ80AF	200p	TIP33	50 p	14 PIN 5	AN5070	125 p	AN7111	100p	ba3406AL	120p	HA1137W	150 p
BC557	8 p	BDX88C	150p	BU536	100 p	BUZ83	200 p	TIP33C	${ }_{60} \mathbf{p}$	18 PIN 9p	AN5071	100p	AN7112	45p	BA34	80 p $\mathbf{3 5 0}$	HA 1151 HA1197	135 p 130 p
BC558	8p	BDW24	55	BU546	125p	BUZ90A	180p	TiP34	65	20 PIN 10p	AN5132	250p	AN7115	110 p	BA3505F	1400	HA1199	
BC559	8 p	BDW93	50 p	BU603	125	BUZ91A	260 p	${ }_{T 1 P 34}$	60	$22 \mathrm{PIN} \quad 12 \mathrm{p}$	AN5135NK	400p	AN7116	90 p	BA350	70	HA1201	$225 p$
BC560	8 p	BDW94	50p	BU606D	225 p	BY448	20 p	${ }_{\text {TIP }}$	65	24 PIN 13 p	AN5138NK	350p	AN7117	65 p	BA3516	$120 p$	HA1202	125p
BC637 BC639	20 p	BDY29	2250	BU6080	120	IRF120	225	TIP41A		28 PIN 13p	AN5150	400p	AN7120	100p	BA3520	130p	HA1319	2009
BC639	20 p	${ }^{\text {BDY }}$ 88	500p	${ }^{\text {BU }}$ B705	130 p	IRF130	475p	TPP41C	22 p	$40 \mathrm{PIN} \quad 15 p$	AN5151	200p	AN7130	75p	BA3521	225p	HA1338	300p
BCY33	$200 p$	BDY90	125 p	BU706DF	175p	\|RF140	550p	TiP42A	20p		AN5210	675 p	AN7131	90p	BA3704	200 p	Ha1339a	350p
BCY34	$200 p$	BDY92	100 p	BU706F	150 p	IRF230	550	TIP42C	22 p	Zener diodes	AN5215	100p	AN7133N	$325 p$ $300 p$	BA3706	$75 p$ $80 p$	HA1367 HA1377	$300 p$ 1200
${ }^{\text {BCY7\% }}$	${ }^{16 p}$	${ }^{\text {BF } 137}$	35 p	BU724a	${ }_{70} \mathbf{7 0 0}$	lRF240	$425 p$ 3750	TiPas	40 p	400 mWatts	AN5250	160 p	AN7140	170	BA3822LS	80 p	HA1384	600 p
${ }_{\text {BCY7 }}{ }_{\text {BCY72 }}$	16p	BF 167 BF181	30p $\mathbf{1 8 p}$	BU801	70p	lirf250 $\begin{aligned} & \text { IRF30 }\end{aligned}$	375 p $\mathbf{6 0 0}$	TIPP88	${ }_{60 p}$	2 V to 39V ${ }^{\text {dp }}$	AN5256	150 p	AN7141	70p	BA3824LS	75p	HA1388	320 p
BD115	30p	BF183	20p	BU807	60p	IRF340	325 p	T/P51	80	1.3 Watts	AN5260	$300 p$ $175 p$	AN7142	p	BA3920	300 p	HA1389	210 p 120
BD124P	50 p	${ }^{\text {BFI }} 195$	7 p	BU807F	75p	IRF350	750p	TIP52	$80 p$ 850	2V7 to 39V 9p	AN5265	80p	AN7114	210p	BA4210	85	HA1394	170 p
BD131	$25 p$	BF199	8 p	${ }^{\text {BU }} 81080$	110p	IRF510	110	TPP102	70 p		AN5315	600p	AN7147	180p	ba4220	60p	HA1396	650p
${ }_{\text {BD }} 133$	25p	${ }^{\text {BF2 }}$	30p	BU824	60p	IRF520	110 p	T\|P105	65p	VOLTAGE	AN5352	600 p	AN7148	140p	BA4234L	70p	HA1397	200 p
BD135	20p	BF240	16p	BU826	120p	IRF530	120p	TIP106	$65 p$		AN5411	450 p	AN7149	160p	BA423	110 p	HA1398	
BD136	20p	BF245	$25 p$	BU826A	160p	IRF540	120p	TIP107	65	7805 18p	AN5429	4200	AN7154	180	BA4403		HA11123	3500
BD137	20p	BF254	15p	BU902	110 p	IRF610	120	TP1P110	40 p	7806 18p	AN5431	275p	AN7158	310 p	BA4405	80p	HA11211	170p
8D138	20p	BF255	12 p	BU903	110 p	IRF611	$120 p$ 1600	TIP112	35p	7808 ${ }^{7812}$ 25p	AN5435	125p	AN7160	350 p	BA4412		HA112	
BD139	20p	BF256 BF257	18 p	BU910	800p	IRF630	160p	TIP12 ${ }^{\text {d }}$	50p	7815	AN5436N	160p	AN7161N	375p	BA5101	350p	HA11219	280 p
BD144	90 p	BF259	18p	BU920	100p	IRF640	300p	TIP115	30p	7818 25p	AN5512	$100 p$	AN7163	175p	BA5102	140 p	HA11221	180p
BD157	38p	BF262	$25 p$	BU922	110 p	IRF642	200 p	TP196	30p	7824	AN5520	550	AN7166	350 p 200	BA515L	75 p	HA1235	100 p
BD166	30 p	BF270	18 p	BU930	130p	IRF650	200 p	TP17\%	$30 p$ 370	7905	AN5521	100p	AN7169	225 p	BA5204	200 p	HA11244	375p
$8 \mathrm{BD175}$	30 p	BF273	$15 p$	BU932	175 p 250		150p	TIP121	35 p	7906	AN5560	350p	AN717	260p	BA5208A	110 p	HA11247	375p
BD177	30 p	${ }^{\text {BF3 }}$ BF36	${ }_{21}$	BU2508A	250p	IRF730	125	TIP122	30 p	7912 30p	AN5601K	750 p	AN7171K	400p	BA5402	180p	HA11251	120p
BD17	32 p	${ }^{\text {BF }}$ B33	20 p	BU2508AF	110 p	IRF740	125 p	TIP125	30p	7915	AN5612	200p	AN7172K	325p	BA5406	180p	HA11412	600p
BD182	60 p	BF338	20p	BU2508D	130p	IRF820	110p	TIP126	40p	7918 30p	AN5613	2009	AN7173K	450 p	BA5408	180p	HA11414	300 p
BD184	60 p	BF362	30p	BU2508DF	120p	IRF830	110p	TIP127	35p	7924 30p	AN5615	300	AN7177	375	BAb413	2250	HA1423	150p
BD187	30p	BF367	13 p	BU2520AF	170p	IRF840	110p	T1P130	${ }^{30 p}$	78L05 24p	AN5622	275p	AN7205	$\mathbf{3 5 0}$	BA6109	110 p	HA11485BN	400p
BD201	33 p 38 p	BF371 BF421	17p	BU2520DF	225p 325	lRF9140 \|RF9510	$1000 p$ 150	TIP132	30 p 30 p	78L12	AN5625	400p	AN7213	40 p	BA6110	225p	HA11702	330p
${ }^{\text {BD202 }}$	38 p	${ }^{\text {BF }} 422$	21p	BU2525AF	220 p	IRF9511	150 p	TIP136	40 p	78L15	AN5630	375p	AN7216	175 p	BA6125	75p	HA11703	400p
BD204	42 p	BF423	25p	BU2527AF	400 p	IRF9520	150p	TIP137	65p	78L18	AN5633	350 p $\mathbf{3 3 0}$	AN7218	${ }_{85}^{60}$	${ }^{\text {BA6 }}$ BA6138	135p	${ }^{\text {HA11706 }}$	580 p
8D222	31 p	BF455	12 p		200 p	-RF9530	200 p	TIP141	65p	78L24	AN5640	500p	AN7222	75	BA6146	150 p	HA11713	250 p
BD225	${ }_{31}{ }^{31 p}$	BF458 BF462	19p 50p	BUH315	$200 p$ $175 p$	IRF9540	200p	TIP142	65p	$\begin{array}{ll}79 L 05 & \text { 35p } \\ 79608 & \text { 35p }\end{array}$	AN5700	90 p	AN7223	105 p	BA6149LS	700 p	HA11715	250 p
8D233	30 p	BF471	28 p	BUH515	$200 p$	IRF9541	200 p	TIP145	50p	79L12 35p	AN5701	150	AN7224	75p	BA6154	60p	HA1716 HA11718	480 p 7000
8D234	32 p	BF472	28p	BUH515D	$250 p$ 2750	YRF9610	120 p 110 p	T1P146	70p 80p	79L15 LM309K $\mathbf{3 5 p}$ $100 p$	AN5712	180	AN7254	150 p	BA6209	$85 p$	HA11724	650 p
BD235	${ }^{280}$	BF479 BF494	30 p $\mathbf{1 6 p}$	BUH517	$275 p$ $175 p$	- ${ }^{\text {RFFS620 }}$	200p	TIP150	80p	$\begin{array}{ll}\text { LM309K } & \text { 100p } \\ \text { LM } 317 \mathrm{~T} & \mathbf{1 0 0 p}\end{array}$	AN5720	70p	AN7256	250 p	BA6218	85p	HA17741NT	950p
${ }_{8} 8 \mathrm{BD237}$	21p	BF495	16 p	BUH715	425p	IRF9630	180p	TIP151	60p	LM 323 K 350p	AN5722	140p	AN7273	75p	BA6220	55p	HA11744	330 p
BD238	24p	BF595	16p	BUT11A	40p	IRF9640	280p	TIP2955	50 p	78H08KC ${ }^{\text {800p }}$	AN5730	169p	AN7310	60 p	${ }^{\text {BA6222 }}$	${ }^{130 p}$	HA1749	330 p $\mathbf{3 5 0 p}$
BD239	30 p	BF596	16 p	buT11af	40 p	\|RFD9220	100p	TIP3055	60p	${ }^{79 H 12 K C}$ 700p	AN5750	120p	AN7312	90p	${ }^{\text {BA6 } 229}$	130 p	HA11751	1500p
BD240	40 p	8F615	30p	BUT12	80 p $\mathbf{3 1 0 p}$	IRFBC30	150p	TIPL760	200p	79HGKC 800p	AN5753	130p	AN7315	40 p	BA6235	50p	HA11752	325p
BD241A	40 p	BF617	30 p 40	BUT18	310p	IRFP140	250 p	TIPL763A	2000		AN5763	250p	AN7330	110p	BA6238A	130p	HA11839NT	375p
${ }^{\text {BD } 2444}$	50 p	BF763	40 p	BUT18AF	65 p	IRFP150	300p	TIPL791A	80 p		AN5790	240 p	AN7362	200 p	BA6239A	130 p	HA11847	700 p
BD245	50 p	BF870	22 p	BUT30V	1700p	IRFP240	300 p	2N2369	15p		AN5791	$225 p$	AN7363	2250	${ }^{\text {BA6 }}$ B4247	150 p 140 p	HA12003	
BD246A	50 p	EF871	22p	BUT56A	${ }_{80}{ }^{\text {p }}$	IRFP250	280p	2N2646	20 p	RED 5p	AN5862K	225	AN7411	50 p	BA6259	170	HA12005	180 p
${ }^{\text {BD265 }}$	45 p	BF960	38p	BUT76a	$80 p$ $1300 p$	IRFP350	325p	2N2904	20 p	YELLOW 8p	AN5900	130p	AN7414	275p	BA6280AF	300p	HA12010	300p
BD267	45 p	BF961	$35 p$ 380	BUT90	$1300 p$ $1200 p$	1 RFP 460	775p	${ }^{2} \mathbf{N} 2906$	18 p	GREEN 8p	AN608P	125p	AN7415	70p	BA6290A	200p	HA12016	120p
BD278	50p	BFO232	75p	BUV18	650p	\|RFP9140	1450p	2N2907	18p	5mm	AN620	250p	AN7470	100p	BA6294	2509	HA12017	100p
BD311	100p	BFO252A	60p	BUV20	650 p	IRFP9240	350p	2N3019	28p	RED ${ }^{\text {Pew }}$	AN6130	130p	AN8053	200 p	BA6302a	150 p	HA12026	
BD314	100 p	BFR90	$85 p$	BUV21	400 p	IRFPC50	600 p	2N3053	18p	$\begin{array}{ll}\text { YELLOW } \\ \text { GREEN } & 8 p \\ \end{array}$	AN6135	120 p $\mathbf{3 5 0 p}$	AN8275	$250 p$ 10000	BA6304	$120 p$ 140	HA12044	350p
BD315	150p	BFR91	${ }^{\mathbf{9 9}}{ }^{\text {p }}$	BUV23	475p	IRFRC20	${ }^{250 p}$	- $\begin{aligned} & \text { 2N3054 } \\ & \text { 2N3055 }\end{aligned}$	38p		AN6250	50p	ANB377	400p	BA6321	250 p	HA12045	280 p
${ }^{\text {BD317 }}$	150 40 40	BR100	37p	BUV25	110 p	IRFZ42	275p	2 N 3055 H	50 p		AN6247	200p	AN8387	350p	BA6328	250 P	HA12047	450 p
BD332	40 p	BR303	85 p	BUV26	150 p	IRFZ44	160p	2N3440	$45 p$	RECTANGULAR	AN6270	400 p	BA222	65p	BA6334	75p	HA12058 HA12088	320 p $\mathbf{3 7 5}$
8 B 361	60 p	BU105	${ }^{80 p}$	BUV27	125 p	M J 2501	${ }^{100 p}$	- $\begin{aligned} & \text { 2N3441 } \\ & \text { 2 } \\ & \text { N }\end{aligned}$	$175 p$ 85	LEDs	AN6306	680 p 380	${ }_{\text {BA314 }}$	10 p	BA6411	250 p	HA12116	130 p
${ }_{\text {BD }}{ }^{\text {BD362 }}$	$60 p$ 30 p	BU108	100 p $\mathbf{8 0}$	Buv28	175	MJ3000	100p	${ }^{2} \mathrm{~N} 34771$	$85 p$ 88	$5 \mathrm{~mm} \times 2.5 \mathrm{~mm}$	AN6310	200 p	BA301	55p	BA6418N	$100 p$	HA12411	175 p
BD371	30 p	BU110	90p	BUV46A	75p	M J 3001	100p	2N3772	90p	RED 5p	AN6320	180 p	BA311	80	BA6435S	425 p	HA12412	175 p
(8D410	50p 28p	BU111 BU124	$100 p$ $60 p$	BUV47 BuV48A	120p	M ${ }^{\text {M }}$ M4032 M 4035	175p	2N3773 2N3819	100p 29p	YELLO GREEN $\mathbf{8 p}$	AN63232	250p $\mathbf{3 2 0}$		80p	BA69001 BA	150p	HA12430	200p

K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX HA9 OHB, ENGLAND Telephone: 0181-900 2329 Fax: 0181-903 6126 E-Mail: grandata.Itd@btinternet.com

PTEASE PHONE US FOR TYPES NOT LISTED AS WE | HAVE OVER 50,000 ITEMS IN STOCK. |
| :---: |
| QUOTATIONS GIVEN FOR LARGE QUANTITIES |

Please add $£ 1$ P\&P and VAT at 17.5% to all orders All brand new components
We accept payment by Access, Switch, Visa, Cheque and Postal Order. (Government, College etc orders accepted) Prices quoted are subject to availability and may be changed without prior notice

LINEAR ICs/JAPANESE TRANSISTORS

Part	Price																		
TA8164P	10	TDA1180		TDA2760		TDA4661	225p			UPC1004C	130p	$2 \mathrm{~S}$	$10 p$	$\begin{aligned} & \text { 2SA1177 } \\ & 2 \text { SA1179 } \end{aligned}$	$\begin{aligned} & 25 p \\ & 20 p \end{aligned}$		P		
TAE																			
TA818	130	TD						TDA8415					100 p		120 p				
TA ${ }^{\text {TA8200AH }}$	${ }_{30}$	TD		TD	1	TDA47008	750p	TDAB415	625 p	UPC1023	${ }_{60}$	2 S	150		200	${ }^{2} 58595$	50 p		
${ }_{\text {TA8205 }}$	22	TDA		TDA	${ }^{85 p}$			tDA8417					$25 p$		${ }_{400}$	${ }_{2}^{2585}$	500p	- ${ }_{\text {2SC790 }}$	
TA822	175							tDab421					50p						
TA822					10		75	tDA8432											
${ }^{\text {TAB21 }}$	20	TDA1270				4800	50	TDA8433	P		50								
TA82214K		A1327						TDA8433	30	232	609	816							
TA8215	30	DA1405										A817							
TA8216H	30	tDA1	220 p	19															
TA8217P	120	A14																	
TA8220AH		DA1506																	
${ }^{\text {A A } 822224 H}$		A1	175p	A3410				tdab											
TA8225 ${ }^{\text {a }}$	47	15	p	tDA 3420															
TA8225L	475		Pp	A3501															
ta8227	250	A1514A	325p	A3502															
TA8229K		A1515A	200 p	A3504															
TA8400P	200	TDA1516	350																
Ta8810\%		tDA1517	150p	A3506															
TA8410P	20	TDA1519	20																
A8432		TDA1519a	200p	tDA3510		TDA4950													
605N		DA15	275	tDA3520		503													
606N	35	TDA1521	21	tDA 3530															
		TDA152		tDa35		TD		TDA	62	UPC	14	${ }_{2 S 4886}$	$45 p$	2 SA	Op	2587	35		950 p
TA86615N	${ }_{48}$	tDa 1526		TDA35	260	tDA53	15	tDab		UPC1198H			20p	2SA	5				
TA8628N	35	tDA1534				TDAS		TDAB	32	UPC		${ }^{2 S A 8}$	5	2SA	120 p	2 S	229		${ }^{2250}$
TA8631		TDA 15	${ }_{500}$	TDA3561A	${ }^{36}$			TDA880	30	UPC		${ }^{2 S A 8}$	${ }_{40}$	2SA12	55	2 SB 7	p	${ }_{2 S C 1013}$	170
TAB632N	55	TDA ${ }^{\text {TDA }}$	25	TDA356	36	TJA		TDAg	40	UPC	22	${ }_{2}{ }^{\text {SA9 }}$	45	2SA 1	P	258	p		
TA864	37	tdat		tDa3563	35	TD						2 S	${ }^{20}$	${ }^{25}$					
TA8653N	150	TDA155		tDA 3564	325	TD						${ }^{25} 5$		2SA	P		Op		
TAB659AN		TDA155		tDA 3565	${ }_{220 p}$	TDA5709		TD	750 p 550	UPC	70p	${ }^{\text {25A912 }}$	700	${ }_{2}{ }^{\text {SAA }}$	30 p	${ }^{258172}$	5	2SC1050	280
TA8690N	70	TDA 15550	${ }_{30}^{37}$	TDA3566	28	TDA58820	37		22			25 299	100 p	2SA1	30 P	258774	p		
TAB701A	275	TDA15580	300 p	TDA3569		Das	12		22		15	25A9	-	S					
TA8718N		tDa 156	675	tDa3570		TDA5850		TD					30p	${ }^{\text {2SA }}$ 2SA 268	759	${ }_{2}^{2 S 8}$	${ }^{100}$		5
		TDA 157	300		$300 p$ 7500		22						40p	2SA	110 p	2S8791	${ }^{30 \mathrm{jop}}$	2SC1079	
${ }_{\text {TA8872N }}$	450	TDA1572	125	TDA35	250p	A610		TEA06	30			25A	-	2SA1		${ }^{28}$	P	${ }^{25 C}$	225
tAA550		tDA1576	17	tDA35		tdag	22						30p	2SA1	${ }_{2009}^{280}$	${ }_{2}^{2 S 8}$	${ }^{45 p}$		p
		TDA1578A		TDA3592A		TDA	75	TEA				2SA	p	2SA12		${ }_{2}$	160	${ }_{2 S C 1106}^{25 C}$	180\%
TBA520	120p	TDA 5 T599	130 p 275 p	TDA3602	225p	TDA			10				P	2SA1	30 p	${ }^{258}$	175 p	$2 \mathrm{SC1114}$	
tBA5	100	TDA 1591		TDA36		TDA661		TEA	11			${ }_{2}^{254}$	140 p	${ }_{\text {2SA }}$		(${ }^{258819}$	p		
		d 1			35	TDAFO00	170p	TEA	13		p	25A	60p	${ }_{2}{ }^{\text {SA }}$	1509	${ }_{258824}$	60p	$2 \mathrm{SCl1124}$	270
TBA560		TDA 1598	${ }_{200 p}^{160}$	TDA3651	${ }_{200 p}$	tDA7020T	175	咗						2SA	110	$2 \mathrm{~S}^{2} 8$	5p		P
TBA810 ${ }^{\text {Tim }}$	40	TDA1602A	400	TDA3652	200	tDA 70217	200	TEA 1035	20		,					2S88		${ }^{25 C 1162}$	P
tBA820		TDA1670A	200	TDA3652		TDA7050	1000	TEA103			${ }_{115 p}^{320}$		600 300	${ }_{\text {2SA }}$	26	(2S8827	${ }_{2}^{2000}$	${ }_{2 S C}^{2 \mathrm{SC}}$	Op
${ }_{\text {TBA820 }}^{\text {TBA920 }}$	10	TDA1675		TDA36	${ }_{80}^{85}$	TDA7053	1209	TE					$60 p$	2SA		2SB8			
TBA950	${ }_{100}$	TDA1771	20	TDA36540		TDA7056	200 p	TE	17					2SA		${ }^{2} 888$	$75 p$	2 SC	P
tBA990	60	TDA 1870A	20	TDA3710	${ }^{300 p}$	TDA705	225							2SA		2SB8	80p		
		TDA1872A		tida3720	175	TDA7072	17	TEA10	${ }_{150}$				120p	2SA			220p	2 SC 11	10p
TC5081AP	80	TDA 1904		tDa3725		TDA7211	100	,	350				,			2 SB	5p	2SC1212	
5090A	${ }_{230}$	TDA ${ }^{\text {T } 1908 \mathrm{~A}}$		tDa3730		tDA7220	65	TEA 10	170		250p		25		¢	2SB8	8 P	2 SC 1213	
1258	410	TDA1910	16	TDA3740	400	tDA7222	100 p	TEA			13		55			${ }^{258888}$		2SC	
30			180	TDA3750	400	TDA ${ }^{\text {T }}$	1509	TEA101	46	UP	5	2 S	35	2SA1	25	${ }_{2}{ }^{\text {Sb }}$	25 p	$2 \mathrm{SC1}$	$200 p$
${ }_{\text {T }}$	${ }^{750}$	TDA 1941	300	TDA3760	35	TDA7233	60	TEA151	150			2 SA	25	2SA	45	2588	60 p	$2 \mathrm{SC1222}$	5 p
TC9 ${ }^{\text {chi }}$	125p	TDA2002		TDA 3765 V		tDA 7240		200								$2 \mathrm{SB9}$	P		P
138	15	tDa2003		tDa3771		TDA7241	250p	TEA201	30				25			2589	P		p
142	320	tDazoos	15	TDA3780	400	TDA72	225 p	TEA201	110 p	UPC		${ }_{2} 2$	${ }^{30}$			2S899	${ }_{180} \mathbf{6 0}$		
${ }_{4}$	300p	TDA2005	150	TDA3791	200	TDA7250	400	TEA201	${ }^{\mathbf{6 0 0}}$		${ }_{2509}^{4259}$	2SA	p	${ }_{2} 5$	${ }_{45 p}$	${ }^{\text {SSBg }}$	190	${ }^{25 C 1278}$	p
-	150	TDA2006	1200	TDA3803A	500	TDA72		TEA2028					60	2SA	100 p	2 SB	p		P
TC9149	225 p		100	tDa3910		TDA7262	${ }^{325 p}$	TEA2028	375				${ }^{\text {op }}$		100	2589	00p		Op
TC9150	${ }^{425 p}$	TDA2009	160	tDA3325	150	TDA72		TEA20	${ }^{6509}$	UP	P	${ }_{2}$	Op		55	2SB9	\%		P
TC9151P	${ }_{425 p}^{425 p}$	toazol0	15	TDPA3827	200\%	TDA7274	${ }_{45}$	TEA203	125		450p	2SA	125 p		30 p	258	10p		P
TC9153	300	tDA2030		TDA3842	200	TDA7275			200			2SA	${ }_{2200}^{200}$		${ }^{45 p}$	${ }_{2} 25810$	25p		P
TC99154	225	203		tDA3883	${ }_{225}^{200}$	TDA7282		TEA2	${ }_{450} 200$		2500	2SA	Op	2SA	25	2S81	${ }_{\text {Op }}$	${ }_{2 S C} 1342$	15 p
9156	${ }_{450}$	TDA2040	140	TDA3845	225	TDA7302	45		350\%		75p		85		Op	2581	130 p	$2 \mathrm{SC1343}$	
TC9162	275	tDA2051V	450	TDA3857		TDA7310		TEA216	160 p	UPC1484CA	300	2SA1	100 p	2SA	100p	288	$4{ }^{\text {P }}$		5p
	375	tdazo52	52	tda39	225	TDA7313	650	TEA2260	225	UPC1	15	2SA	Op		${ }^{30 \mathrm{p}}$		$130 p$	2SC	
	400	tDA205	11	DAA00	25	${ }^{\text {TDA }}$ TDA 7338 A	550	TEA2	1859 2750	UP	40	2SA1	100p	${ }_{25} 5$	1000	${ }_{2} 58$	p	2 SC	5
TCC		tDA2107	${ }_{325 p}^{250 p}$	TDA4050	15	${ }_{\text {TDA }}$		TEA3717dP	${ }_{160 p}$	UPC1513HA	70 p	2SA1	30 p	25 A	120 p	${ }_{2}$	P	${ }_{2}{ }^{\text {SCl }}$	70 p
TC917aP	32	TDA2151	37	tDA4060	500	TDA7359		TEA37	175p	UPC1514	200	2 SA1	35p	2 SA	p	258	160	2 SCl	$25 p$
TC9176P	50	TDA2170	260	TDA4092	25	TDA73	700 175	TEA	135p	UPC1515	250p	${ }_{\text {2SA1 }}$	${ }^{60}$	2 SA	${ }^{4}$	2581	Op	2SC1	75 p
17940	225	TDA2220	250	${ }^{\text {TDAA100 }}$	1529	TDP7370V		A5	175p	UPC152	120p	2SA1	60	2 SA	P	${ }_{2 S 8}$	75 p	${ }^{2 S C 1}$	5
TCEP 100	100p	tDA2320	8	tDA4180	14	TDA7374V	35	tea511	175 p	10	550	${ }_{\text {2SA }}$	608	2SA1	25	$2 \mathrm{SB1}$	40 p		20
	20	tDa25	30	TDA4190		tida770	14	TEAS114A	20	2SA329	75 p	2SA	50 p	2SA	p	2 SB	Op	2SC	
${ }_{\text {TD6 }}{ }_{\text {TD623526 }}$	200	TDA2502		TPA4200		TDA8114		TEAS	${ }_{2200}^{220 p}$	2SA46	29 p	2SA	25	2SA	35	2SB	65		55
TD	250	tDa 2504	20	TDA4260		TD	35	TEA5	2200	25A483	98	${ }_{25}^{25}$,	2SA	100 1100	${ }^{258}$	${ }^{5}$		
TD6304AP	30	TDA 2505	22	TDA4280	32	TDA81208	400p 2500	TEA	${ }_{2}^{325 p}$	${ }_{\text {2SA489 }}$	${ }_{50 \mathrm{p}}^{80}$	${ }_{2}^{2 S A}$	P	${ }_{2 S A}^{2 S A}$	1130 p	${ }_{2 S 81}^{251}$	${ }_{40 p}$	2 SC	500%
	2350	TDA2506	45	tDa4282		${ }^{\text {Tj }}$ TDA88134		TEA	${ }^{2250}$	${ }^{25 A 49}$	45 P	2 2SA1	300	2 2SA	p	258	-	${ }_{2} 2 \mathrm{SC}$	P
	300	tDa2507T	45	tDA4290	125 p	TDA8135	22	TEAS	1300	25A	25	2SA	${ }^{1509}$	2SA	5	2S8			op
TD	200 p	TDA2510	45	tDa4400	${ }^{1750}$	TDAB	225 p 200	TEA	${ }_{1659}$	${ }_{2}{ }_{2} 5$	${ }_{30}^{40}$	25A10	${ }_{\text {230p }}$	2SA	$100 p$	${ }_{2 S 81}$	50	${ }_{2 S}$	\%00p
${ }^{\text {TJPA100 }}$	${ }^{200 \%}$	tidati4a		TDA442	${ }_{3} \mathbf{3 0 0 p}$	t'das 138	2009		20	2SA505	120 p	2SA10		2SA1	95p	258	Op	$2 \mathrm{2SC}$	P
TDA 1005A	175	TDA2530	30	TDA4422	170	TDAB138A	13			25A50	35	2SA	${ }_{8}^{125 p}$	2SA1			${ }^{50 p}$		5p
TD	${ }_{70 \mathrm{P}}^{80}$	TDA 2532	100 p	TDA4427	20	${ }^{\text {TDA }}$ TDA81388	200p	TEEA	3250	${ }_{2}{ }_{2}$	${ }_{20 p}$	25A10	8	2SA	225p	${ }^{2} 51$	$45 p$	${ }_{2 S C}$	Op
TDA10	120p	tDa 2541	70 p	TDA4433	10	TDA8140	200	TEA	7509	254	650	2SA10	20 p	2SA1	p	25	45	$2 \mathrm{2SC}$	p
TDA1013A	11	TDA2542	1	TDA4437	125	TDAB143	16	TE	650p	${ }^{25 A}$	${ }_{\substack{300}}^{1500}$	${ }^{25 A 1}$	${ }^{100 p}$	2SA	5600		${ }_{60 p}$	${ }_{2 S C}$	
TDA1015	85p 140 p		21	TDA443	220p	TDAB	12	TE	${ }_{35}$	2	5p	${ }_{2}{ }^{25 A}$	100	2SA	450	${ }_{2 S 8}^{2 S}$	40 p	${ }_{25 \mathrm{C}}^{2}$	200
TDA1020	110	TDA2545	120	tDA44	2	toab	12		22	2SA5	650 p	2SA109	$180 p$	2 SA1	280	${ }^{258127 a}$	${ }^{40 p}$	${ }^{25 C}$	${ }^{250}$
TDA	330	tapa 5	20	tDA4443	25	TDA	17		425p	${ }^{2 S A}$	${ }_{200 p}^{100 p}$	2SA10	300p	-	${ }_{45 p}$	-	40p	${ }_{2 S C}^{2 S C}$	${ }_{40 \mathrm{p}}^{20 \mathrm{p}}$
${ }^{\text {TPA }}$ TDA1023	130 150	TDA ${ }^{\text {Ti 2548 }}$	30	TDA44450	22	tDAB	17		425	${ }_{2}{ }^{\text {Sab }}$	15 p	2SA10	80 p	2SA1535	175p	2 SB 1375	45p	2 SC 1	P
TDA1025	320	tDA 2555	175	TDA4452	250	TDA	20	TE	52	${ }_{2}{ }^{\text {SAG }}$	1509	2 2SA1	130 p	2SA1	55	2 SB 1	$5{ }^{50 p}$	${ }^{25 C}$	45p
TDA1028	175	TDA 2556	23	TDA4453	27	TDA	65	TE		2SA		2SA11	1300	2SA1	2209	${ }^{2} \mathrm{SC}$	75		P
TD	${ }_{100}$	TPA25	${ }^{2250}$	TDA448	28	TDAB		TEAB172	12	${ }_{2 S A}$		${ }_{2}{ }^{\text {SA }} 111$	250 p	${ }_{2 S A 15}$	220	2 LC 3	25 p	${ }_{2 S C}$	45p
TDA	500p	${ }_{\text {TDA2574V }}$	35	TDA44	200	TDAB		TL49	100	2SA		2SA11	160 p	25A1	250	${ }_{2}{ }_{2}{ }^{\text {SC3 }}$	10 P	${ }^{25 C}$	5 p
TDA	250p	TDA2575A	10	tDa4	300	TD		TL				2SA11	150p	2SA	${ }_{40}^{2009}$		60p		$35 p$ $\mathbf{6 0 p}$
TDA1041P	${ }^{180 p}$	TDA2577A	${ }_{200 p}^{200 p}$	tDa4		TDA	20	TLO	38 p	2SA	25 p	$25 A 11$	30 p	2SA1	90	2 LC	25 p	2 SC 1	45p
TDA	200	tDA2579A	2100	TDA 4503	250	TDA8196	120 p	TLO		${ }^{2546}$	${ }^{15 p}$	2 2SA11	${ }^{40 p}$	2SA1	00p	${ }_{2}^{25}$	15		10p
TDA	${ }_{3}^{2000}$	TDA 2582	130	TDA4505A	${ }_{275}^{300}$	TDAB205	${ }^{125}$	TLO	${ }^{550}$	${ }^{\text {2SAG }}$	26	2SA1124	${ }_{60 p}$	${ }_{\text {2SA }}$	175	2 SC	p		${ }_{40 \mathrm{p}}$
TDA1053		TDA25		TDA4505	45	${ }^{\text {TD }}$	22			${ }_{2 S A}$		${ }^{2} 541127$	50	2SA1	1818	$2 \mathrm{2S}$	$15 p$	2SC	$\begin{array}{r}\text { 35p } \\ \mathbf{5 5 P} \\ \hline\end{array}$
TDA1057		TDA25910	15	TDA4505M		TDA8215	30	TP		${ }_{2 S} 2$		${ }_{2}^{2 S A 11}$	${ }_{1}^{1200}$	2SA	310p 4250	${ }_{2 S}$			-
${ }^{\text {TDA }}$ TDA 10598 S	${ }_{140 \mathrm{p}}^{40}$	TDA2593	30	TDA4510	20	TDA8217	25		${ }_{\text {coiop }}^{500}$	${ }^{2 S A}$	10	${ }^{2 S A 11}$	${ }_{\text {200p }}^{1300}$	2SA1	${ }_{40 \mathrm{p}}^{425}$	2SC49	25p	${ }_{2 S C}{ }^{2} 571$	50p
TDA 1062	140 p	TDA2595		TDA4555	27	TDAB304		U	80 p	2SA	140 p	2SA11	$100 p$	2SA	${ }^{25}$	2 CC 5			
${ }^{\text {TPA }}$ TDA068	15	TDA260		TDA4556		TDAB305	15		${ }^{1250}$	2SA7	280p	2SA11	${ }_{40}{ }^{\text {app }}$	2S83	\%	2SC5	${ }_{20 p}$	2 SC	600\%
TDA10	280	tDa2616	25	TDA 5650	270	tDA			220	2 2SA		2SAA145	2000	2583	150	${ }_{2} 2 \mathrm{SC}$	1000	${ }_{2 \mathrm{SC}}^{2 \mathrm{~S}}$	5
${ }^{\text {TDA }}$ TD1077	2509	TDA2630	${ }_{35}$	TDA4565	150 250 20	tiabisya	${ }_{27} 3$		${ }_{\text {130p }}^{130}$	2SA7	50p	2SA11	30p	2584	${ }^{80 p}$				
TDA1083	275p	TDA2653A		TDa45	22	T0A8351	20	UPC556		$25 A$		2 2SA1	$3{ }^{30 p}$	2585	55	${ }^{25 C 644}$	P	2sc	730p
TDA1085	17	TDA 2654	20	tDA4	20	TDAB360		UPC571	22	2SA726		2SA11	${ }_{\text {20p }}^{22 \mathrm{p}}$	${ }^{2585}$	130p	${ }_{2 S 6}^{2 S C 6}$	-		S0p
TDA ${ }^{\text {TDA }} 1097$	1	TDA2658		TDA4		TDAB	20		90 p	2SA740	90 p	2SA1162	30p	258531	400p	${ }^{25 C 683}$	35 p	2 SC	55 p
TOA 1097	4759	tDA2690	$100 p$	TD	16		1200 p		695	254742	45	${ }^{2 S A} 1163$	15 p	${ }^{25885}$	80 p		90p		5p
TDA1151	-	TDA2710.1		TD	12	TD		UPC592	1959	25A747A		${ }^{\text {2SA }}$ 2SA1170	500p	25	${ }_{22 p}$	2SC	${ }_{5} 5$	${ }_{2 S C 1634}$	
TDA1170		tDA2730		${ }^{T}$		tDab380	20	UPC596	190	25A764	200 p	2SA11	60	258546	45	2 SC 7	p	${ }_{2 S \text { SC1667 }}$	${ }^{\text {P }}$
$\begin{aligned} & \text { TDA } 1170 \mathrm{~N} \\ & \text { TDA1175 } \end{aligned}$	${ }_{17}^{88}$	tDA2740	${ }_{200}^{30}$	TOA4650	300p	TDAB385	650	UPC1001	130	2SA769	200	2SA1174	25p	258560 25860	25p	$2 \mathrm{SC735}$	40p	2SC1674	15p

JAPANESE TRANSISTORS

Part	Price	Part	Price	Part	Price.	rt	Price	Part	Price	Par	Price								
$2 \mathrm{SC1675}$	90	2SC2261	700p	$2 \mathrm{SC27}$	25p	$2 \mathrm{SC3}$	280p	2 S	p	2 SD	19	2SD880	40p	2SD13	Op	2SD1763A	Op	2SK312	Op
${ }^{2 S C 1678}$		2SC2267		2 SC 2721	120 p	2SC3	p	${ }^{2 S C 3807}$	$20 p$	25028	250p	2SD88	25p	2SD1328	p	2SD1764	Op	315	Op
2SC 1683	100p	$2 \mathrm{SC2270}$	60p	2SC2724	15p	$2 \mathrm{SC3269}$	50p	2SC3808	70 p	2SD291	250p	$2 \mathrm{SD88}$	35p	2SD1330	50p	2SD1765	Op	2SK320	120p
2SC 1684	30p	2SC2271	25p	2SC2738	200p	$2 \mathrm{SC3270}$	50p		Op	2 2D313	25 p	2SD8	75 p	2SD13	\%p	2SD1769	110 p	2Sk320	120p
2 SC1685	${ }^{30}$	$2 \mathrm{SC2274}$	15p		350p	$2 \mathrm{SC32}$	75p	2SC3	250p	2 2531	75p	2SD894	35p	2SD134	65 p	2SD1773	100p	2SK323	${ }^{130 p}$
2SC1729	900p	$2 \mathrm{SC2276}$	50p	2SC2750	300p	$2 \mathrm{SC3277}$	280p	2SC3832	135p	2 20325	30 p	2SD895	100p	2 SD1350	150p	2SD1776	70 p	$2 S K 332$	175p
2SC1730	10p	$2 \mathrm{SC2278}$	70p	2SC2751	270p	2SC3279	30p	2SC3833	250p	${ }^{2 S D 330}$	65p	$2 \mathrm{SD896}$	200p	2 SD	60 p	2SD1783	70 p	2SK	40p
2 SC1735	70	${ }^{25 C 2283}$	Op	2SC275		$2 \mathrm{SC3} 2$	20p		100p	2 SD 348	300p	2SD8988	225p	2SD1378	60 p	2SD1785	160p	2SK363	ap
2 2SC1740	10 p	$2 \mathrm{SC2290}$	1800p	2SC2767	300p	$2 \mathrm{SC3281}$	200p	2SC3852	80 p	$2 \mathrm{SD350}$	320p	2SD900	400p	2 SD1379	100 p	2SD1789	210	2SK364	40p
${ }^{2 S C} 1741$	33 p	2 25c2291	${ }^{40}$	2 SC 2769	${ }_{700}$	${ }^{2 S C 3284}$	600 p	${ }_{2 S C 3853}$	220p	${ }^{250357}$	40 p	${ }^{2 S D 905}$	450 p	2SD138	100p	2SD1796	120p	67	P
${ }^{2 S C 1755}$	90	${ }^{25 c 2298}$		${ }^{25 C 2773}$	P	${ }^{25 C 3293}$	S	${ }^{2 S C 38}$	220 p	${ }^{250358}$	40 p	$2 \mathrm{SD916}$	130p	2SD1382	60 p	2SD1802	75 p	2SK369	Op
${ }^{2 S C 1756}$	35 p	$2 \mathrm{SC2307}$	300 p	2SC2774	500p	$2 \mathrm{SC3298}$	50p	2SC3857	500p	${ }^{2 \text { SD359 }}$	50 p	2 2S917	300p	2SD1384	P	2SD1806	75p	2SK373	40p
$2 \mathrm{SC1758}$	30p	2SC2308	${ }^{10} \mathrm{p}$	${ }^{25 C 2785}$	40 p	${ }^{2 S C 3299}$	120 p	${ }^{25 C 3858}$	${ }^{550 p}$	2 25361	100 p	${ }^{25 \mathrm{~S}} 922$	320p	2SD1390	350p	2SD1812	45 p	2SK374	45p
${ }^{2 S C 1760}$	70 p	2SC2312	300p	2SC2786	20	2SC3300	400p	2 SC 386	${ }^{275 p}$		100p	$2 \mathrm{SD923}$	360p	2SD1391	250p	2SD1815	50		
${ }^{2 S C 1775}$	10p	2SC2314	70p	2SC2787	Op	2SC3303	100 p	$2 \mathrm{SC3868}$	100p	2SD371	240p	2SD946	120p	2SD1392	5p	2SD1825	P	25k38	${ }^{600 p}$
${ }^{2 S C 1781}$	20p	${ }_{2 S C 2316}$	150p	2 LC 2791	5009	${ }_{2 \text { SC3306 }}$	P	2 2S3870	00p	${ }^{25 D 380}$	650 p	2 SD947	100p	2SD1395	P	2SD1827	120p	${ }^{25 K} 389$	115 p
$2 \mathrm{SC1789}$	100p	$2 \mathrm{SC2320}$	10p	2SC2792	20	$2 \mathrm{SC3307}$	P	2SC388A	25p	2 SD 38	50p	2 SD950	300	2 SD 13	120 p	2SD1843	70 p	2SK	p
2 2C1809	40 p	$2 \mathrm{SC23}$	120 p	2SC27	0 P	${ }^{25 C 3309}$	150 p	$2 \mathrm{SC3883}$	210p	${ }^{250382}$	75 p	2SD95	200	2 SD1397	100p	2SD1846	350p	2SK405	450p
2 2C1810	250p	2SC2328A	50p	2SC2808	Op	2SC3310	125p	2SC3884A	200p	2 SD 3	P	2SD957A	520p	2SD1398	120p	2SD1847	275p	2SK414	550p
$2 \mathrm{SC1815}$	10	2SC2310		$2 \mathrm{SC2810}$		$2 \mathrm{SC3316}$		2SC38	250p	2SD38	150p	2SD958	\%	25013	300 p	2SD1849	280p	15	Op
$2 \mathrm{SC1819}$	P	2SC2315	17	$2 \mathrm{SC2812}$		${ }^{2 \mathrm{C} C 331}$	350p	2SC3885A	290p	2 S0389	60 p	2SD965	35p	2SD14	280	2SD1850	325p	123	5 p
2 2SC1826	60p	$2 \mathrm{SC2329}$	480p	${ }^{25 C 2814}$	40 p	${ }^{25 C 3326}$	50	${ }^{2 S C 3886 A}$	275p	2 S	4 p	2SD970	170p	250	120p	2SD1853	40p	${ }_{2 S K} 427$	p
$2 \mathrm{SC1827}$	60p	2Sc2230	300p	$2 \mathrm{SC2824}$	75	$2 \mathrm{SC3327}$		$2 \mathrm{SC3890}$	15	2 S	P	2 SD972	40 p	2SD14	225p	$2 \mathrm{SD1856}$	40 p		
${ }^{2 S C 1829}$	500p	${ }^{2 S C 2331}$	500	2SC2825		${ }^{2 S C 332}$	${ }_{200} \mathbf{5 0}$	2SC3892 2SC389	225		${ }^{20 \mathrm{p}}$	2SD973 2SD973	${ }_{70 \mathrm{p}}^{60}$	${ }^{2 S D 14}$		${ }^{2 S D 18}$	75 p	2SK511	200p
${ }^{2 S C C 1833}$	270	-	${ }_{80 \mathrm{p}}$	2SC2826	${ }_{130} 200 \mathrm{p}$	${ }_{\text {2SC3331 }}$	20p	2SC33895	325p	2SD414	45p	2SDD983	${ }^{70 \mathrm{p}}$	2SD140 2SD 140	60p	2SD1858		${ }^{\text {2SK513 }}$	5p
$2 \mathrm{SC1841}$	12p	2SC2335	-	$2 \mathrm{SC2832}$	300 p	2SC3333	120p	$2 \mathrm{SC3896}$	400p	2SD42	350p	2SD98	120 p	${ }_{2 S D 14}$	125p	2SD186	85p	2SK526	p
2 SC 1844	50 p	2SC2336A	125p	$2 \mathrm{SC2834}$	280 p	$2 \mathrm{SC3345}$	100p	$2 \mathrm{SC3897}$	400p	2SD426	150p	$2 \mathrm{SD986}$	120p	2SD140	170p	2SD1877	175p	2 Sk531	P
${ }^{2 S C 1845}$	15 p	${ }^{25 C 2344}$	\%	${ }^{25 C 2837}$		${ }_{2} \mathrm{SC} 3346$	${ }^{\text {p }}$	$2 \mathrm{SC3907}$	50 p	2SD427	50 p	2SD9	70 p	2SD	5	2SD1878	160p	SK	p
2SC1845	35p	2SC2347		2 Sc 2839		2 SC 3352	200p	$2 \mathrm{SC3927}$	250p	2SD4	35p	2SD1010	40p	2SD14	$75 p$	2SD1879	275p	2SK537	p
- ${ }_{\text {2SCl }}$	45p	${ }_{\text {2SC2350 }}$	120 p	2SC2853 2SC2873	700	${ }_{2 S C 3353}^{2 S C 355}$	280p	${ }^{25 C 394}$	40p	2SD4	15p	2SD1012	40p	2 2SD14	60 p	2SD1880	${ }^{360}$	${ }^{2} 5 \mathrm{~K} 538$	p
${ }^{2 S C C 1855}$	85p	2sc2360	120 p	2SC2873	120p	2SC3355	-50p	2SC3944	75p	${ }^{\text {2SD468 }}$	15p	2SD1020	40p	${ }^{\text {2SD141 }}$	750p	2SD1		25K539	00p
$2 \mathrm{SC1865}$		$2 \mathrm{SC2362}$		${ }^{2 S C 2878}$	20 p	2SC3358	50 p	2 CC 39	120 p	2SD4	100p	2SD102	250	2SD14	260 p	2SD188	300 p	2SK544	30 p
		$2 \mathrm{SC2365}$	280p	$2 \mathrm{SC2879}$	3200p	2SC3376	300p	$2 \mathrm{SC395}$	50	2SD525	50 p	2SD1024	850	2SD142	135 p	2SD188	225p	SK552	p
${ }^{2 S C 1871}$	425 p	${ }^{25 C 2369}$		2SC2882	${ }^{60}$	2SC3377	P	$2 \mathrm{SC39}$	60p	2 SD	70 p	2SD1027	850 p	2S	160p	2SD1894	300p	2SK55	P
${ }^{2 S C 1875}$	220p	2 2SC2371	${ }^{25 p}$	${ }^{25 C 2883}$	${ }^{60}$	2SC3378	120 p	${ }^{2 S C 396}$	100p	2SD5	${ }_{8 p}$	2SD1030	75p	2SD142	18	2SD	225p	2SK	p
2SC1881	70p	2 SC 2373	210 p	2 SC	200p	2 SC 3379	200	$2 \mathrm{SC39}$	250p	2SD5	120p	2SD1031	70p	2SD143	28	2SD191	175p	2SK556	500p
$2 \mathrm{SC1890}$	15p	${ }^{2 S C 2383}$	50p	$2 \mathrm{2SC2899}$	50p	$2 \mathrm{SC3381}$	130p	$2 \mathrm{SC3973}$	210p	2SD	300p	2SD10	p	2SD14		2SD1911	300p	2SK557	p
${ }^{2 S C 1895}$	Pp	${ }_{2}$ SC2389	,	${ }^{25 C 2909}$	60 p	${ }^{25 C 3383}$	80 p	$2 \mathrm{SC3975}$	10 p	2 2SD	${ }^{225 p}$	2 2SD1046	2000	2SD1433	400p	${ }^{2 S D 1913}$	50 p	2SK559	00p
2SCL1904 2SC1906	$125 p$ $15 p$	${ }^{25 C 2407}$	110 p 1200	-	250	${ }_{2 S C 3393}^{251}$	${ }_{20 \mathrm{p}}^{80 \mathrm{p}}$	2SC398 2SC399	160	2SD5	500p	2SD104 2SD 105	188	${ }_{2} 2 \mathrm{SD} 143$	${ }_{300}$	${ }^{2 S D 1929}$	50 p	${ }^{25 K 560}$	580
$2 \mathrm{SC1907}$	20 p	${ }_{2 S C 2412 K}$	p	2SC2912	120p	25C3399	${ }^{20 p}$	2SC3997	1250p	${ }^{2 S D 555}$	${ }_{2}^{200 p}$	2SD1055	${ }^{130 \mathrm{p}}$	${ }^{\text {2SDD }} 1438$	60p	$\begin{aligned} & \text { 2SD1930 } \\ & \text { 2SD1933 } \end{aligned}$		2SK566	475p
2 SC 1909	250p	${ }^{25 C 2440}$	200 p	2 2C2921	650 p	2SC3400	35p	2SC3998	800	2SD56	50	2SD1060	130 p	2SD14	220 p	$2 \mathrm{SD193}$	0p	2SK	70 p
2SC1913	90p	$2 \mathrm{SC2458}$	10p	2 Sc 2922	480p	$2 \mathrm{SC3401}$	50p	2SC4006	100p	2SD57	20p	2SD1062	150p	2SD144	80 p	2SD1941	350 p	SK612	${ }^{30}$
2 SC 1914	30 p	${ }_{2 S C 2459}$		${ }^{\text {2SC2923 }}$	75	2 SC3402	${ }^{40} \mathrm{p}$	$2 \mathrm{SC4020}$	${ }^{150}$	2 25575	530p	2SD1063	200p	2SD14	200p	2SD1944	50p	2SK684	${ }^{950}{ }^{\text {p }}$
2 SC 1921	15p	$2 \mathrm{SC2466}$	p	${ }^{25 C 2928}$	550p	2 SC3405	130 p	$2 \mathrm{SC4023}$	325p	2SD592	25p	2SD106	250p	2SD14	300p	2SD	80p	2SK685	1150p
2 SC	175	${ }^{2 S C 24}$	275	${ }^{25 C 2929}$	${ }^{280}$	2 SC3409	400p	${ }^{25 C 4029}$	350p	2SD596	25p	2SD10	160p	2SD145		2SD1959	210p	2SK699	
${ }^{25 C 1923}$	10p	2 SC2492	50p	2SC2934	75p	$2 \mathrm{SC3416}$	P	$2 \mathrm{SC4043}$		2SD600	30 p	2SD109	50p	2SD145	200p	2SD1978	50p	2Sk7	300p
2SC1929	180p	2 SC2470		${ }^{2 S C 2937}$	250	2 SC 3417	p	$2 \mathrm{SC4046}$	P	${ }^{251501}$	40p	${ }^{2 S D 10}$	350p	2 SD 145	275p	2 2SD1984	${ }^{60 p}$	2Sk7	500 p
2 SC 1940	110p	$2 \mathrm{SC2481}$	120p	$2 \mathrm{SC2939}$	40	$2 \mathrm{SC3419}$	120p	$2 \mathrm{SC405}$	200 p	${ }^{25060}$	60 p	2SD10	150p	2SD14	140p	2SD19	P		Op
2 SC 1941	27p	${ }^{2 S C 2482}$	20 P	${ }^{2 S C 2944}$	300 p	${ }^{25 C 3420}$	80	C4059	400 p	2SD612	P	2 SD 1094	375p	2SD14	P	2SD	P		
${ }_{2}{ }^{\text {SCCC1942 }}$	350p	${ }^{2 S C 2483}$		${ }^{25 C 2958}$	800	${ }^{2 S C 3421}$	75	${ }^{25 C 4064}$	140 p	${ }_{2}$ 2SD13	p	${ }^{2 S D 1110}$	${ }^{225}$	${ }^{2 S D 145}$	${ }^{165 p}$	${ }^{25191969}$	45p	2SK727	$4{ }^{455 p}$
2SC1944 2SC 1945	3500 3500	2SC2484	185 p 4000	${ }^{\text {2SC2962 }}$	800 p	${ }^{2 S C 3422}$	75 p	${ }^{2 S C 4106}$	150p	2SD617	300p	${ }^{2 S D 1111}$	20 p	2SD145	50 p	2 2SD2001	5 p	2SK727 2Sk739	475p
${ }_{2} \mathrm{SC} 19$	15	2 SC	20	2 SC	25	2S5	665	${ }^{2 S C}$	175	250633	70p	2	225	${ }^{2 S D}$	60	2 L	250		3000
2SC194		2SC2498		2SC2988	150p	${ }^{2 S C 3446}$	150p	${ }^{25 C 4124}$	200	${ }_{2 S 637}$	15 p	2SD1133	65 p	${ }_{2}$ SD148	2250	2SD2012	50 p	${ }_{2 S K} \mathbf{S} 769$	00p
2 SC 1953	45p	2SC2500	25p	2SC2995		$2 \mathrm{SC3447}$	130p	2SC4125	275 p	2SD63	15p	2SD11	75p	2SD14		2SD20	65	Sk786	
	70p	$2 \mathrm{SC2502}$	140p	2 SC 2999	\%	2SC3456	200p	$2 \mathrm{SC4137}$	Op	2SD639	20p	2SD1138	40 p	2SD149	300	2SD20	30	2S	800 p
2 2S 1959	10p	2 2C2503		${ }^{\text {2SC3001 }}$	1400p	${ }^{25 C 3457}$	125p	${ }^{25 C 4138}$	${ }^{200}$	${ }^{2 S D 640}$	350p	2SD140	P	${ }^{2 S D 1497}$	230	2SD206	100p		
2SC 1962	175 p	${ }^{25 C 2512}$	${ }^{20}$	${ }^{\text {2SC3019 }}$	320p	${ }^{25 C 3459}$	80p	${ }^{2 S C 457}$	400 p	2 2SD65	18p	2SD1442	350 p	2SD1497-		2SD20	250p	2SK	
${ }_{2}$ 2SC1967	1300	$2 \mathrm{SC2517}$	12	2SC3020	14	2 SC 3460	130p	2 SCa	100	2SD66	60p	2SD114	25p	2SD1505		2SD21	180p		
$2 \mathrm{2SC} 196$	160	2SC2519	60p	$2 \mathrm{SC3022}$	185	${ }^{2 S C 3461}$	${ }^{275 p}$	$2 \mathrm{SC4151}$	125p	${ }^{25 D 666}$	25p	2SD1148	175p	2SD150	P	2SD2136		2SK	
${ }^{2 S C} 197$		${ }^{\text {2SC2527 }}$		${ }^{2 S C 3025}$		${ }^{25 C 3466}$	25p	${ }^{2 \mathrm{2C4}} \mathbf{2} 169$	${ }^{600}$	${ }^{251567}$	20p	${ }^{\text {2SD1 }} 1153$	${ }^{30} \mathrm{P}^{5}$	${ }^{2 S D 150}$	\%	2SD22	35 p	${ }^{\text {2SK794 }}$	15p
${ }^{25 C 1971}$	400	${ }^{2 S C 2534}$	150	${ }^{2 S C 3026}$	450	${ }^{25 C 3468}$	70p	${ }^{2 \mathrm{SC4} 499}$	400p	$2 \mathrm{SD669}$	35p	2SD115	65	2SD15	100p	2SD2	175 p	2Sk7	0p
		2SC2535	30	2 Sc 30	300	$2 \mathrm{CC3481}$	300p	2SC4204	60p	2SD673	350p	${ }^{\text {2SD1160 }}$	150p	2SD1511	75p	2SD2255	175p	2SK809	850 p
${ }^{2 S C} 1973$	150 p	2 2SC2538	100 p	${ }^{25 C 3037}$	${ }^{125 p}$	${ }^{25 C 3482}$	275	${ }^{25 C 4231}$	${ }^{250}$	${ }^{2 S 8676}$	250p	2SD1163A	220p	2SD1519	250p	250233	50 p	Sk812	
${ }^{25 \mathrm{SC1} 1975}$	p	${ }^{2 S C 2540}$	${ }^{19009}$	${ }^{25 C 3038}$	25p	${ }^{2 S 53486}$	275p	${ }^{2 \mathrm{SC} 4235}$	${ }^{300}$	${ }^{25 D 717}$	${ }^{180}$	2SD164	75p	2SD15	70p	2SD233	150 p	2SK	325p
- ${ }_{\text {2SC1980 }}$		2SC2542	300p	$2 \mathrm{2C3039}$		$2 \mathrm{SC3502}$		$2 \mathrm{SC4236}$	450	2SD7	85 p	2SD116	270p	2SD152	450	2SD23	225 p	,	
${ }^{2 \mathrm{2SC} 198}$	75p	${ }^{2 S C 2545}$	55	2 2Sc3040	260 p	${ }^{25 C 3503}$	50 p	${ }_{2}{ }^{2 S C 4237}$	500 p	2SD722	240 p	2SD1169	280 p	${ }^{2 S D 152}$	100 p	$2 \mathrm{LS448}$	225p	2Sk	p
${ }^{2 \mathrm{SC}} 1988$	150p	- ${ }^{2 S C 2546}$ 2SC547	255	-	300p	2SC3505	120p	2SC4278	$120 p$ 1750	${ }_{\text {2SD726 }}$		${ }^{\text {2SDD11 }}$	50	2SD15		2SJ56		2Sk875	475p
${ }^{25 C 13}$	100 p	${ }^{2 S C 2550}$	$5{ }^{5}$	${ }^{2 S C 3057}$	150p	$2 \mathrm{SC3506}$	250 p	2SC4288A	650p	250731	250p	2SD118	400	2SD1546	35	2S. 76	220p	2SK903	Op
${ }^{25 C 2001}$	15 p	${ }^{2 S C 2551}$	$7{ }^{7}$	${ }^{2 S C 3068}$	${ }^{60}$	${ }^{25 C 3507}$	650	${ }^{25 C 4300}$	${ }^{200}$	${ }^{2 S D 732}$	15	2SD1189	${ }^{55 \mathrm{p}}$	${ }^{2 S D 1548}$	17	2S.	350 p	2SK904	500p
${ }_{2 \text { 2SC2002 }}$	5	${ }_{2}^{2 S C 2552}$		${ }^{2 S C 3070}$	35p	${ }^{25 C 3509}$	750 p	2 SC4301	300p	2SD734	15p	2SD191	120 p	2SD155	170p	2S. 79	225p	2SK951	275p
${ }_{2 S C 2004}^{2 S C 2003}$	20p	2SC2553	200p	2 SC3071	26	2 Sc 35	170p	2 SC 43	225	2SD74	120p	2SD1192	P1	2SD155	150p	${ }^{25} 103$	75p	2SK952	275p
- ${ }_{\text {2SC2004 }}^{2 \text { SC2022 }}$	20p	${ }^{2 S C 2555}$	120 p	${ }^{25 C 3073}$	100 p	${ }^{2 S C 3518}$	120 p	${ }^{25 C 4313}$	600p	${ }^{251473}$	120	${ }^{2 S D 1196}$	150p	${ }^{2 S D 1556}$	25p	${ }^{2 S J 109}$	200p	2Sk955	
$\left\lvert\, \begin{aligned} & 2 \mathrm{SC} 2022 \\ & 2 \mathrm{SC} 2023 \end{aligned}\right.$	$110 p$ 180	(2SC2563	200 p	2SC3074	150	2SC3519	450p	2SC4381	200	${ }_{2}^{2 S D 757}$	120p	2SD197	150p	${ }_{2}^{2 S D 15651}$	75p	${ }_{\text {2SJ113 }}^{2 S .114}$	1050p	${ }^{25 K 956}$	600p
$2 \mathrm{SC2}$	P1	${ }^{2 S C 2568}$	120 p	2 2C3077	120	${ }^{25 C 3528}$	750 p	2 2C4386	275	${ }_{2}$ 2S762	100 p	2SD1207	${ }_{40 \mathrm{p}}$	${ }_{2} 25157$	170 100p	${ }^{2 S J 114}$	${ }^{11500 p}$	2Sk9	700p
${ }^{25 C 2027}$	200 p	${ }^{25 C 2570}$	${ }^{30} \mathrm{p}$	$2 \mathrm{SC3086}$	150 p	${ }^{2 S C 3531}$	225p	${ }^{25 C 4387}$	$425 p$	$2 \mathrm{SD763}$	140	2SD1210	280p	${ }^{2 S D 157}$	200p	${ }_{2 S J 117}$			
${ }^{2552036}$	50 p	${ }^{\text {2SC2571 }}$	330 p	${ }^{\text {2SC3089 }}$	${ }_{750} 130$	${ }^{2 S C 3549}$	200 p	${ }^{25 C 4408}$	50p	$2 \mathrm{SD768}$	180 p	2SD1211	${ }^{2200}$	2SD15	150p	2SJ119	700	${ }_{2}^{2 S K}$	\%
${ }_{25}^{2 S}$		25 C 2577	110	2 2S310	750	2SC355	270	$2 \mathrm{SC44}$	275p	2SD7	200 p	2SD121	220p	2 2SD15	25	2SJ162	680p		
2SC2055	120 p 150 p	- $\begin{aligned} & \text { 2SC2578 } \\ & \text { 2SC2579 }\end{aligned}$	${ }_{110}^{170 p}$	${ }^{2 S C 3112}$	35 p	- $\begin{aligned} & \text { 2SC3568 } \\ & \text { 2SC3577 }\end{aligned}$	${ }^{200 p}$	2SC4431	325	${ }_{2 S D 774}^{2 S 573}$	20p	2SD1218	75p	2SD1579 2SD1589	60 p	${ }_{2 S J 11}^{2 S}$	15	2SK 1058	
$2 \mathrm{SC2056}$	20	2SC2580	175p	2 2C3116	75	2SC3584	200 p	2 SC 4467	175	2SD77	400 p	2SD1225	70p	2SD159	100 p	2SJ2	625	2SK 1082	Op
${ }^{25 C 206}$	40 p	$2 \mathrm{SC2581}$	225p	$2 \mathrm{SC3117}$	120p	2 Sc 3591	200	2 SC 446	250 P	2SD78	650 p	2SD1227	40p	2SD1591	310p	2SJ307	175p	2SK1102	375p
${ }_{\text {2SC2061 }}^{\text {2SC2068 }}$	75 p	${ }^{\text {2SC } 2588}$	${ }^{0}$	$2 \mathrm{SC3122}$		${ }^{25 C 3595}$	${ }^{220}$	${ }^{2 S C 4517}$	200 p	${ }^{250786}$	100 p	${ }^{25 D 1229}$	250p	2SD1593	125p	${ }_{2 S 19}^{2 S 19}$	45p	2SK	250
${ }^{\text {2SC2068 }}$	-60p	2SC2590	40p 50p	2SC3148	145 p 180 p	${ }_{\text {2SC3597 }}$	75 p 140 p	2SC4517A	225p	2518787 2S0788	${ }_{30 \mathrm{p}}^{20 \mathrm{p}}$	2SD1237 2SD1238	300p	2SD1595 2S0160	70p	${ }_{\text {2SK33 }}$	40 p	2SK11	225p
${ }^{25 C 2073}$	40 p	${ }^{2 S C 5592}$	200 p	2 2SC3150	100 p	${ }^{25 C 3600}$	175 p	2SC4532	1000p	${ }_{\text {2SD789 }}$	20p	2SD1244	300p 25p	2SD1609	210p	2SK40	-50p	2SK1120	550p
${ }^{25 C 2075}$	65	2SC2603		$2 \mathrm{2SC3151}$	175p	2SC3606	100p	2SC4542	400p	2SD792	400p	2SD1246	20p	2SD1632	320 p	2SK68	1000	2SK1190	350p
${ }^{25 C 2078}$	95p	${ }^{2 S C 2610}$	${ }^{60}$	${ }_{2 S C 3152}$	130 p	${ }^{2 S C 3507}$	150 p	25 C 4742	275p	${ }^{25 D 794}$	33 p	2SD124	40p	2SD1637	50p	2SK73	75p	${ }^{2 S K 191}$	800p
${ }^{2 S 5 C 2085}$	100 p	${ }^{2 S C 2611}$	30p	2 Sc 315	175	2 2SC3608	65p	$2 \mathrm{SC474}$	350	2SD795	140p	2SD1251	180p	2SD1647	40 p	2 Sk 7	200p	2SK121	700
${ }^{2 S C 2086}$	60p	${ }^{25 C 2621}$	70 p	2 2S3156	35	${ }^{2 S C 3516}$		${ }^{25 C 4745}$	55	${ }^{2 \text { 2S7798 }}$	175	${ }^{2 S D 1254}$	55	2 2SD1649	260p	2SK106	40p	2SK122	200p
${ }_{2}^{2 S C 20929}$	1200p	${ }^{\text {2SC2625 }}$	90p	${ }^{2 S C 3157}$		2SC3636	${ }_{225}^{280}$	2SC4747 2 SC 457	${ }_{2}^{375}$	2SD79	150p	2SD1263	90p	${ }^{250165}$	${ }_{150} 15$	${ }^{2 \mathrm{SK}} 1$	45 p	2SK1275	275p
${ }^{25 C 2097}$	${ }^{2300}$	${ }^{2 S C 2630}$	1800p	$25 C 3159$	200 p	2 2C3657	400p	${ }_{2} \mathbf{5 C 4 7 6 2}$	300p	2SD811	450	2SD1265	75 p	${ }_{\text {2SD } 1656}$	250p	${ }_{\text {2SK117 }}$	50p	${ }^{2 S K 1296}$	
2SC2099 2SC2118	2500p	${ }^{2 S C 2631}$	20p	${ }^{25 C 3164}$	270p	${ }^{2 S C 3659}$	6^{600}	${ }^{25 C 4769}$	220p	${ }^{25 \mathrm{SD} 19}$	300p	2SD1266	180p	2SD1663	350p	2SK118	50p	2SK1317	450p 900 p
2SC2118 2SC2120	$1100 p$ $10 p$	2SC2632	35p	2 SC3169	150 p	2SC3668	120	$2 \mathrm{SC4770}$	250p	$2 \mathrm{SD820}$	250p	${ }^{2 S D 1267}$	55p	2SD166	5	${ }^{25125}$	100p	2SK1338	900p
${ }^{2} \mathbf{2 S C 2 1 2 2}$	\%op	2SC2636	40 p	${ }^{\text {2SC3173 }}$	${ }^{300 p}$	2sc3678	280 p	${ }_{2 S C 4826}$	2250	${ }_{\text {2SD822 }}$	290p	${ }_{2 S D 1271 /}$	\%55p	${ }_{\text {2SD1667 }}$	$\begin{array}{r}120 \\ 900 \\ \hline 0\end{array}$	2SK147	650p 160p	${ }_{2 S K 134}$	500p
${ }_{2}^{2 S C 2131}$	550	${ }^{25 C 2637}$	1800	${ }_{2}^{2 S C 3175}$	150 p	${ }_{2}^{25 C 3679}$	$140{ }^{\text {p }}$	${ }_{2} 2$ SC4891	800 p	${ }^{2 \text { 2SD826 }}$	30p	2 25D1272	2009	2 2S1669	$85 p$	2SK152	40p	2SK1342	500p
${ }_{\text {2SC214 }}^{2 \text { 2SC2153 }}$	60 p	2SC2640	1800p	$2 \mathrm{SC3178}$	125p	2SC3680	380	$2 \mathrm{SC4923}$	400	2SD829	375p	2SD1273	50p	2SD1677	200p	2SK161	30p	2SK1350	200 p
$\underset{\text { 2SC2153 }}{2 \text { 2S216 }}$	40p	${ }^{25 C 2653}$	100 p	2SC3179	70p	${ }^{25 C 3685}$	45	${ }^{25 C 4924}$	25	${ }^{25 D 836}$	${ }^{50}$	${ }^{2 S D 1274}$	80 p	2S0168	225p	${ }^{25 K 1}$	40 p	2SK1356	225p
${ }_{2 S C 2168}$	120p	2SC2655	$\begin{array}{r}\text { 180p } \\ \mathbf{5 0} \\ \hline\end{array}$	${ }^{2 S C 3180}$	175 p 200 p	- ${ }_{\text {2SC3687 }}$	350	${ }_{\text {2Sc5002 }}$	500 p 300 p	2SD836A	50p	${ }^{2 S D 1275}$	50p	${ }_{\text {2SD }}^{2 \text { SD } 1683}$	45p	2SK168 2K 170	40p	${ }^{25 K 1357}$	$350{ }^{\text {P }}$
${ }^{\text {2SC2188 }}$	70p	2SC2656	550p	$2 \mathrm{SC3182}$	120p	$2 \mathrm{SC3692}$	150	$2 \mathrm{SC5003}$	350	2SD83	500p	2SD1277	190p	2SD1706	325p	2SK184	35p	2SK1358	
${ }_{2 S}^{2 S C 2200}$	${ }^{250}$	${ }^{25 C 2660}$	100 p	${ }^{25 C 3198}$	30 p	${ }_{2}^{25 C 3715}$	480 p	${ }^{2 S C 5527}$	100 p	${ }^{2 S D 841}$	${ }^{110}$	2SD1279	600 p	2 2SD1707	400p	${ }^{25 \mathrm{Kk} 192}$	45 p	2SK1377	150 p $\mathbf{2 5 0}$
2SC2209 2SC2216	50p	${ }^{2 \text { 2SC2665 }}$	200p	2SC33992	25p	2SC3717	${ }^{120 p}$	2SC5048	300 p 250	2SD844 2SD850	200 p 170	2SD1288	175p	${ }_{2 S D 1708}^{2 S D 1710}$	375p 200p	2SK193 2SK195	40p	2SK1400	250p 290p
${ }^{2 S C 2221}$	650p	$2 \mathrm{SC2671}$	100 p	$2 \mathrm{SC3209}$	120p	2SC374	100	2 2S5086	250	2 SD856	48p	2SD1291	280p	2SD1718	275p	2SK197	140p	2SK146	220p
${ }_{2 S}^{2 S C 2228 A}$	$6{ }^{\text {p }}$	${ }^{25 C 2681}$	1700	${ }_{2 S C 3210}^{2 s}$	${ }^{650}$	${ }_{2 S C 3747}$	120 p	${ }^{25 C 5129}$	300 p	2SD858	250p	${ }^{\text {2SD } 1292}$	60 p	2SD1729	230p	2 KK 212	35p	2SK1462	5p
2SC2229	15p	${ }^{2 S C 2682}$	70p 27p	${ }_{2 S C 3211}^{2 S}$	220p	${ }^{2 S C 3748}$	100 p 250	2 2SC5148	300 p	2SD863	23p	2SD1293	70p	2SD1730	275p	${ }^{25 \times 214}$	170p	2SK1487	250p
${ }^{25 C 2233}$	100p	$2 \mathrm{SC2690}$	60 p	2SC3225	50 p	${ }_{2} 5$ C3781	150p	2SC5250	300p	${ }^{2 S D 8}$	120p	2SD1302	$\begin{array}{r}300 \\ \mathbf{2 0 p} \\ \hline\end{array}$	${ }_{\text {2SD1739 }}$	${ }^{250 p}$	2SK223	200p	K150	700
2 SC 223	60p	2SC2694	3500p	2SC3242	30p	$2 \mathrm{SC3782}$	75p	2SD188	350 p	2SD866A	140p	${ }_{2 S D 1306}$	$45 p$	2 SD1740	125p	${ }_{2 S K} 240$	40p	${ }_{\text {2SK1523 }}$	700p
${ }_{2}^{2 S C 223}$	20p	2SC2705	40p	$2 \mathrm{SC3244}$	45p	$2 \mathrm{SC3783}$	300p	2SD198	140	2SD867	350p	2SD1308	80	2SD1748	90p	2SK2	30p	2SK1537	
($\begin{aligned} & \text { 2SC2237 } \\ & \text { 2SC2238 }\end{aligned}$	540p	${ }_{2}^{25 C 27}$	250	${ }_{2 S C 32}$	50p	${ }^{2 \mathrm{SC}} 3$	100p	${ }^{2 S D 19}$	195 p	$2 \mathrm{SD86}$	260p	2SD1309	140 p	${ }^{25 S 1755}$	275p	${ }_{2}^{251246}$	30p	2SK1544	900p $\mathbf{2 7 5 p}$
2SC2238 2SC2240	45p	2SC2710	50p	2SC3259	320p	(esc3789	60p	2SD200 2SD201	180p	${ }_{\text {2SD869 }}$	150p 140 p	${ }^{2 S D 1310}$	140p	2SD1758	60p	2SK301	25p	2SK2038	295p
${ }_{2 S C 2258}$	30p	$2 \mathrm{SC2714}$	20 p	${ }_{2 S C 3261}$	230p	${ }_{2 S C 3790}$	20p	2SD213	250 p	2SD8	260p	2SD1313	1000	2SD1		${ }_{2}$	409	2SK2039	750
$2 \mathrm{SC2259}$	60p	2SC2716	50p	2SC3262	280p	2SC379	14	2SD2	90 p	2SD87	60	2SD1326	200	2SD1762	50p	2SK304	25p	2SK213	300

REPLACEMENT VIDEO HEADS

VCR BELTKITS					
Model Price	Model Price	Model Pric	Model	Model	
AKAI	$\begin{aligned} & \text { TX3650, VCR3000, VCR3002. } \\ & \text { VCR9500 } \\ & \hline \end{aligned}$		N830, N831, N832, N833	V1710, 730, 750, 970, VX710,712,720, $970,971,972$	
	FISHER			vx9880	
	VBS57000 VBS 9000			$\frac{\text { SX7121. }}{\text { SANYO }}$	
	FVHP520, FVH		DX1000, 1600, 1800, 2000, 3000, N9012, 9013 , 9014, 9016, N9033, 9034, 9053, 9054, 9055, 9056, 9066, 9096, 9110,9120 .	VTC5000, $5150,6000,6500$, VTCM 10, 11, 20, 21, 30, 31, 50	
250.512.	FVHP6 15, 618, 620,622, 710, 711, 715, 720,		9056, 9066, 9096, 9110, 9120. $80 p$		
			NATIONAL PANASONIC NV300. NV330PX, NV332, NV333 NV340,		
VS22,	FVHP995, 906, 907, 908, 910, 911, 915, 916,			VTC9100, vTC9300	
VS55, VS66 ${ }^{\text {VS4 }}$ VS6 , VSE VS9					
				VTC1100, 1300, 1500, VHR1100, 1110, 1150,	
VSS99		VXLL. VXL6		VHR1500, 2370 , MVR220 ${ }^{\text {V }}$	
ALbA		L3, VXL20	NV230, 250, 280, 430, 431. 433. 450, 460, 465, $470,650,730, \mathrm{NV} 770,810,870,890,970$, AG 1000, 1050		
VC		HTTACHI			
VCR5000. VCR600	FVHD230, 250, 270, 370, FVHP1100, 1200,				
			NV370, NV380, NV480, NV630, NV780, NV830, CV 850		
O, VCR8000 VCR8800	FVH	VT7000, V V8000, VTB630, VT8040, vT8300, 60 \%	NV600, NV688, AG6010. AG6015 85p	154, 15, 16, 171, VHR 194, 220, 23, 235, 240,	
VCR700	210, 23				
ITR		VT680. VT6500, VT6800, VT9300, VT9500. VT9700, 9900			
	FVHP5000, 500			VH1R4770, 5080, $51000,5200,5300,5350.57700$,	
			NVM 1 , ${ }^{\text {VVM3, }}$ NVM5	$7500,7520,7530,7530$, VHR7540, 7700, 774 . $7800,7810,8000.8100 .8200,8250$, 8500, VHR8800, 8801, VHRD4400, 4410, 4500	
100		VT100, 11			
	$80 p$	VF145, 150, 168, 70, 175, 220, 225. 250, 255, 6 60p	VR6540V6442, VR6542V24,	VTR1000 TC6010 70p	
9244,9340 ,	GOLDSTAR				
8990		J.v.c.		SHARP ${ }_{\text {SC200, } 381,384, ~ 385, ~ 386, ~ 388, ~ 390, ~ 393, ~ 838, ~}^{\text {a }}$	
95000					
				VC7300, VC7700, VC7750, VC7800,	
Aupu		350, HR7600,	21D. V3, 25801, 25802, 11, 12, 302, 303, 305,310VI, 310V2, 310, V3, 3SB11, 3SB12. 3SE13,	VC8300	
RTV200, RTV222, RTV224					
	4325,4326	HRD110, 111, 120, 121, 220, 225.			
V306, 307, 309, 310, 311, 312, 328,		MRD140. 141, 143, 150, 152, 157, 158, 160	925B3, VR6180, $6182,6185,6285$, 6290VR6291, VR6293, 6362, 6367,		
434,444,			VR6390, 6391, 6393, 6467, 6468, 6470, 6561 , 6570, 6581, 6670, VR6676, 6710, 6760, 6761 6762, 6870, 6970, 6975, VR68SB4, 86SBI,	VC108, 405, 408, 550, 600, 651, 674, 681, 682. 682, 684, 685, 693	
				VC700, 750, 783, VC6F3, VC6V3, ${ }^{\text {che }}$	
315 RT/316. RTV319. RTV320,			92 SB3 6843,6843 VR6943		
$\begin{aligned} & 1315,1 \\ & 1317 \end{aligned}$		530, 700, 550,950,		VC208, 67, ,72, 7 ,79, 780, $781,782,785,786$,	
RTV301, RTV333, RTV338, RTV404,		HRS5000, 5500, 8000, 9000, BR9060, 8RS600,			
			VKR6850, VKR6855VR551VKG6	502, 602, 5011, VCB311, 36i, VCD801, 802. VCH851, 852, 882, VCM73, VCT72	
RGU				VCA10, 103, 105, 106, 113, 11613, 211, 234 . $244,254,30,33,35, ~ V C A 36,37,40, ~ 43, ~ 454 . ~$	
, 32, 3von		HRD840, HRDX20, 22, HRJ200, 205, 300. 305,	VR5501, VKR6800, VKR6810, VKR6820	244, 254, 30, 33, 35, VCA36, 37, 40, 43, 454, $48,50,505,51,52,53,54,55,56,57,58$.	
			SE4104, VR231, 2310, 2319, 231, 232, 2329, 237. 23, 241, 2410, 2419, 242, 243, 245, 2469,	VCBS97, VCD805, VCD806, 810, 815, VCH80.	
,					
8931, 8933,		910, 960, 980. HROX20, 25, HRJ2 10 10.		81, 85, 865, 910, VC51000. VCT212, 310, 410, 610, VCT 1314, VCTS 312,	
,		411, 415, 416, 507, HRJJG 10, 615, 715, 97. HRS4700, 5800, SR3200, SRS368E HRJ600	4479, 451, 452, 457, 458, 459, 512, 522, 5229, 6379. 642, 647, 722, 7229, 723, 7379, 747.		
5, 3V36. 3V38, 3V39, 3V49, 8943,				$\xrightarrow{\text { sony }}$	
3v43, 3V44, 3V45, 3V48, 3V53, 3V					
		$\xrightarrow{\text { LOGIK }}$ VR955	SAISHO ${ }_{\text {VHL3 }}$		
V43, 3V44, 3V59, 3664, 3V6,	,	MATSUI VX600, 730, 735, 750, 755, 765, 850, 6000,			
			VR3800, 3200, 3300, 3500, 3600, 3650 . VRS4400, 5000 VR3400	SLV255, 125, 213, 225, 262, SLVX1. 20,3	
		$\mathrm{V} \times 1000, \mathrm{~V} \times 2000, \mathrm{~V} \times 2500, \mathrm{~V} \times 3000$. V $\times 6000^{\circ}$ VX800		TOSHIBA V55, V57 85p	
			SA		
FV61L FV62, FV67, FV68, FV70, FV71, FV72,				V33, V31, V32, V51, V52, V53. V9600, V9680 V61, V63. V65, V66, V67	
		${ }_{\text {M M }}$	v×617. v×679, X626, vx627, v×629, Vx734		
6T, Fv5					
3 5 52		HS 300, 301, 302, 307, 310, 337, 338, 347, 349, 411, 412, 421, 480, HSB10, 20, 30, HSE 10, 20,	$629, \mathrm{~V} 1510,520, \mathrm{~V} 1611,616,621,626, \mathrm{v} \times 510$, 511, 520, VT320, 5600	$\begin{array}{l}86 \\ \text { viob, 109, 110, } 120,130,140, ~ i 99, ~ 209, ~ \\ \text { 210, } \\ 80 \mathrm{p}\end{array}$	
FV41R, FV42L			VB900, ve910, v1900, v1910 1100	211, 220, 223, 411,V421, 609, 610, 611, 659.	
o, v		30,70, HS 304, HS306, HS307, HS330, HS400 HS 303,	Px980, 981, 982, SE9001, SV9001, Svx307.		
		HS700 HS3 $518, \mathrm{HS} 319, \mathrm{HS} 410$ HSL	319, 322, VB750, 770, 8220, 8225, V1770, 790, 8220, 8225, VK8220. VPX31, VX750, vx770. $790,8220,8225$, SE 9000,9001	$\left\lvert\, \begin{aligned} & \text { V91 G, V95G } \\ & \text { v212, 213, 22-2, 3i2, 322, 403, 412, 413, 610, } \\ & \text { 703, } 115 \mathrm{sin}, \end{aligned}\right.$	
1000, VTR1001 100	2, 400, 401, 4010, 402, 403. 404, 405,	,57, 58, 59,68	301, v87		

REPLACEMENT IDLERS \& PULLEYS

Make	Models	Description
Hitachi Order Code:	VT11, 14, 17, 19, 33, 34, 35, 38, 39, 52, 57, 61, 62, 63, 64, 65, 85, 86, 330, 350, 640, 16S, 5030 IDL01	FF Rew Idler 6886792 Price 100p
Hitachi Order Code:	VT680, 6500, 6800, 9300, 9500VT9700, 9900 IDL02	Play Idler 68614826861481 Price: 180p
Blaupunkt	RTV 301, 306, 307, 309, 311, 312, 315, 316, 317, 319, 320, 404, 414, 424, 434, 444, 478, 707	Idler
Goldstar	GHV1221, 1232, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, GHV1248, 8000, 8200, 8210, 8215, GVHP51, VCP4100, 4130	
Grundig National	MVS 400,440 , VS $400,410,440 V S 450,460$ NV230, 250, 260, 280, 370, 380, NV430, 431, 433, 450, 460, 465, $470,480,630,650,730,780$, NV810, $830,850,870,890$, , NVG7, $9,10,11,12,14,15,16,18,30,130,400, A G 1000$, AG1050, 1200, 1500, 1810, AG2100, 2200, NVH65, 70	Ider Ider Arm VXP 0521
Philips Order Code:	VR5460, VR6520, VR6920 IDL08	Idler Arm 40340162 Price 100p
Amstrad Sharp	VCR7000 VC200, 381, 383, 384, 385, 386, VC388, 390, 393, 3300, 8381, 9100,9300,9500, 9700	\|diler 150280 Idier NIDLO005GEZZ
Order Code:	1 DL10	Price: 100p
Philips	VR6540	Idiler
Sharp Order Code:	VC300, 387, 402, 471, 473, 477, VC481, 482, 483, 486, 488, 496, 500, 571, 573, $581,582,583,584,585,8481,5 F 3,5 \mathrm{~W} 20 \mathrm{E}$ IDL11	Idler NIDLOOO6GEZZ Price: 100p
Akai	VS10	Reel Idler
Ferguson	$3 \mathrm{~V} 23,3 \mathrm{~V} 29,3 \mathrm{~V} 30,3 \mathrm{~V} 31,3 \mathrm{~V} 323 \mathrm{~V} 35,8923,8924,8929,8930$, 8931, 8940, 8941, 8942	Reel Idler PU48967
J.V.C.	HR7200, 7300, 7350, 7600, 7610, 7650, 7655, 7700	Reel Idler PU48967
Ferguson	3V39, 3V30, 3V31, 3V32, 3V353V36, 3V38, 3V39, 3V49, 8930, 8931, 8933, 8940, 8941, 8942, 8943, 8944	Take Up ldier PU 51402
J.v.c.	HR7200, $7600,7650,7655,7300,7350,7610$, HRD110, 111, 120, 121. 225	Take Up Idiler PU 51402A
Order Code:	1 L 22	Price 100p

PINCH ROLLERS

Model
Price ${ }^{\text {M }}$ Model
Price Mode
AKAI
VS10, VS9300, VS9500, VS9700, VS9800 VS1, VS2, VS3, VS4, VS5, VS6, VS8, VS9, ${ }^{14}$ VS12, VS15
VS105, 112, 115, 116, 120, 125, 126, 155, 165, 205, 220, 240, 244, 245, VS247,
VSX9
VS201
VS201, 301, 303, 304, 603, 606, 607, VSP8, 140p VSP82, VP58, VP82
VS125, VS 155, VS165, VS220, VS240, VS250, S512
VS22, 23, 25, 35, 37, 38, 53, 66, 75, 422, 425, $426,427,462,465,467$
VS485, 765, 766
VSA77, VSA650
VSF $10,11,12,15,180,190$
$221,222,230,240,30,33$
VS $330,4,20,550$, VSP $200,210,220$. 450,470
VSF260, 261, 262, 265, 270, 274, 275, 280 140p 290, $340,350,410,420,43 \mathrm{C}$
VSF $441,440,450,455,480$, $560,580,590,599,600$,
VSG20, 21, 23, 24, 25, 30, 33 $55,60,64,65,70,73,74,75$
VSP110, VS $\times 60$ VSP110, VSX560, VSX580 $\begin{aligned} & \text { VS17, 20, 22, 23, 24, 25, 26, 27, 35, 37, 38,53, } \\ & \text { 775p } \\ & \text { 55, VSA7 }\end{aligned}$ PINCA ROLLER ASSEMBLY VS422, 425, 426, 427, 462, 465, 467, 485, 498, $765,766,767,768,865$.
$867,965,967$, vSA
867, 965, 967, VSA650, VSF10, 11, 12, 14, 15, $180,190,200,210,220$,
$221,222,230,240,30,3$
221, 222, 230, 240, 30, 300, 301, 310, 320, 33, VSR110, VS $\times 100,400,450$, PINCH ROLLER ASSEMBLY
VSS99 VSS99
ALBA
VCR3000X, VCR4000
VCR5000, VCR6000
VCR7000, VCR7800, VCR8000
VCR8800
V10
AMSTRAD
2000, 450
VCR100, 200, 4500, 4600, 4700, 5200, 6000, $6100,6200,8600$,
VCR8602, 8603, 8604, 8700, 8704, 8714, 8800, VCP9244, 9340, DD8900, 8904,
TVR1,2,3,4
VCR7000 DC8900, DDB904, VCR6000, 6100, 6200, 8600 $8602,8603,8604$,
VCR8700, 8800, $900>9,9140,9244$,
9340
PINCH ROLLER ASSEMBLY PART NO: 153148
700 TX 3650 , UF20, VCR3000, VCR3002, VCR 4000 vCR9500 300 PINCH ROLLER ASSEMBLY PART NO 2554966
DD9900, 9904, TX3650, UF20, 22. 24 ,
VCR3000, 3002, 9500
FERGUSON

FERGUSON

$3 \mathrm{~V} 00,3 \mathrm{~V} 01,3 \mathrm{~V} 16,3 \mathrm{~V} 22,3 \mathrm{~V} 23,3 \mathrm{~V} 24,3292$
8900, 8901, 8902, 8903, 8904, 8906, 8909, $8912,8922,8923,8924,8925,8929140 \mathrm{p}$
$3 \mathrm{~V} 2,3 \vee 30,3 \mathrm{~V} 31,3 \mathrm{~V} 32,3 \mathrm{~V} 52,8930,8931$. 8933, 8940, 8941, 8942 $3 \vee 35,3 \vee 36,3 \vee 38,3$
$3 \vee 45$
$3 V 48,3 \vee 42,3 \vee 43,3 \vee 44$,
$3 V 49$, $3 \vee 45,3 \vee 48,3 \vee 49,3 \vee 53,3 \vee 54,3 \vee 55$, 3V56,
$3 \vee 57,3 \vee 56,3 \vee 59,3 \vee 65, ~ F V 10, ~ F V 11, ~ F V 12, ~$ FVI4, $8943,8944,8945,8947,8948 \quad 140 \mathrm{p}$ $3 \vee 52$
$3 \vee 52$
8950
8950, 8951, FV10B, 11R, 13H, 14T, 20B, 21R, 22LL, $26 \mathrm{DL}, 31 \mathrm{R}, 32 \mathrm{~L}, \mathrm{FV} 33 \mathrm{H}, 39 \mathrm{~S}, 4 \mathrm{R}, 42 \mathrm{~L}, 50 \mathrm{~B}$,
$51 \mathrm{R}, 52 \mathrm{~L}, \mathrm{VC141L}$ 51R, 52L, VC14,
FV37H, FV44L, FV46T, FV43H

FV57H

FV3 3 V 354 894 3V36, 3V38, 3V39, 3V49, 8943

${ }^{89}$ PINCH ROLLER ASSEMBLY

3V55, 3V56, 3V57, 8945, 8947, 8948 1350p
PINCH ROLLER ASSEMBLY
FV37, FV57, FV58
PINCH ROLLER ASSEMBLY FV31R
FVV1LL FV42L
PINCH ROLLER ASSEMBLY
PINCH ROLLER ASSEMBLY
$3 V 58,3 V 59,3 V 64,3 V 65, ~ F V 10,11,12,13,14$
$30,21,22,26,30,32,33$

FV39, VC141L

PINCH ROLLER ASSEMBLY FV43H, FV44L, FV45X, FV46T
PINCH ROLLER ASSEMEHY PINCH ROLLER ASSEMBLY
FV61, FV62 FV67 FV68, FV61, FV 62, FV67, FV68, FV70, FV71, FV72,
FV74, FV77 PINCH ROLLER ASSEMBLY
FISHER
FVHP420, 520, 530

720, 721, 722, 725, 730,

72, $221,722,725,730$
FVHP10, 830,840 FVHP810, 830, 840
FVHP905, $906,907,908,910,911,915,916$, 918,970, $975,980,990$, FVHP 5000, 5005, $5050,5075,5100$
VBR 330, VBS $3500,7000,7100,7500,7600$. VBR330, VBS $3500,7000,7100,7500,7600$,
9000,9900 9000,9900
FVHD230, 250, $250,300,310,1100$ FVHP 1200, 1250, 130, 132, 1340, 1340, 1400.
1410, 1440, 1500, 200. 1410, 1440, 1500, 200 .

200,
430,440, FVHP320410, 420, 430 FVSP290S 495 2905, 440, 445, 470, 475, FVHD140, FVHD40, FVHD55, FVHP1, FVHP10 FVHP20
FVHD140, 40,55, FVHP1, $10,25,30,40,4000$ FVHS10, 30

PINCH ROLLER ASSEMBLY

GOLDSTAR

GHV51, 1221, 1232, 1233, 1240, 1241, 1242, 1243, 1244, 1245, 1246, 140p $1290,1291,1295$ 1296, 1392, 1393,
GHV1891, 1900, 2145, 3000, 3010, 4400, 4410 . 51, 8000, 8200 , GHV8210, 8215,8430 GHVP 1240, 1241, 1247, 1248, 1290, 1291.
GHVP1295, 1296, VCP4000, 4100, 4130, 4200, GHVP 1295, 1296, VCP4000, 4100, 4130,4200 ,
$4300,4301,4305, V C P 4306,4310,4311,4315$, $4300,4301,4305$, VCP4306, 430, 4311, 4311,
$4316,4320,4321,4325,4326,4350$, GE 1290 . 1291, 1295, 1296, 1297, 1891, 1910, 20005, $\frac{2000}{\text { HITACHI }}$
VT7, 11, 14, 16, 17, 18, 19, 33, 34, 35, 350, 38, 39, 88, 330, 680, 4200, VT5000, 5030, 5500, $6500,6800,7000,8000$ $8300,8500,8700,930$, VT9500, 9700,9900, VT8, 5 110, 111, 113, 115, $118,64,65,85,86,88,100$,
18, VT $120,122,125,128,130,135,138,145,150$, 168, 170, 175, 220, 225. VT250, 255, 258, 260, 400, 405, 410, 413, 414 , 415, 416, $418,420,425$ $515,517,518,520,525$. $575,576,580,585,588$ VT640, 830 , VF $660,665,70,770,774,775$, $780,785,860,861,865$ $\begin{aligned} & \text { 780, 785, } 860,861,865, \\ & V T L 30,1000,2000, ~ V T L C 50, ~ V T M 598, ~\end{aligned} 20$, VL230, 1000, 2000, VTLC50, VTM598, 620, V22,
VMG366,
7 $727,728,730,731,735$,
VTM736, 740, 744,
V44, VTM736, $740,745,746,748,753,754,820$,
$821,822,825,830,831$, 821, 822, 825, 830, 831,
VTMB35, 838, 840, 841, 845, 920, 921, 922.
925, $930,931,935$,
3280,500, VMS 7200 VT3000
V $410,420,428,430,450,498,518,520,522 \mathrm{p}$ 530, VTF770, 780, VMM598,622, 722,740,748,753 650p VTF150, 155, 180, 185, 250, 255, 260, 265, 280 285, 350, 351, 355, VFF360, 365, VTM140, 141, 145, 145, 210, 211, 212, 215, 220, 221,
VTM230, 231, 235, 284, VTS390 140p HINARI
V20H, VXL5, VXL6, VXL7, 8, 9, 10, 11, 19, 90, H13V, VTV100, 200
VXL4, VXL20, VXL35 VTV100, VXL10, VXL11, VLX9, VXL90 PINCH ROLLER ASSEMBLY V20H, VXL5, VXL6 MOD KIT
HR.V.C. $3200,3300,3330,3360,3660,4100$
HR2650, 7200, 7300, 7350, 7600, 7610, 7650, 140p 7655
HRD $110,111,120,121,140,141,142,143$, 150, 152, 156, 157, 158, HRD 160, 220, 225, 250, 257, 445, 455, 565, $566,725,755$, HRP50, BP5000, BR7000.
BRS611, 811, HRD5 $20,540,550,560,580,600,610,620$, $637,640,641,650,660$.
HRD $670,720,730,70$.
$63 R, 640,641,650,660,770,820,830,840$.
HRD $860,870,880,910,960$,
HRD980,
HRD980, HRDX20, 22, 25, HRJ200, 205, 210,
215, 300, 315, 316,318, $215,300,315,316,318$
HRJ $400,405,407,410$, $600,605,610,615,715,81515,416,507$. 600, 605, 610, 615, 7115, 815
HRJ97, HRS
SR SR3200, 330, 368
HRD170, 171, 280, 210, 211, 217, 230, 300, 320, 321, 330, 337, 350, $700,750,950$. HRS5000, 5500, 8000, 9000, BR7030, 7040,

HRS10

HRS5000. HRD110, 111, 120, 220, 225, BP55
PINCH PINCH ROLLER ASSEMBLY
HRD140, 141 , 152,152, HRD 140, 141, 142, 143, 150, 152, 157, 158, HRP50 1350p PINCH ROLLER ASSEMBLY
HRD $1520,510,520,521,522,525,527,560$, HRD 1520, 510, 520, 521, 600, $610,620,537,641$,
HRD650, $720,830,840,910$, HRJ205, HRD650, 720
HRS5800
HRS5800 350p BR7030, BRS600, HRD 160, 170, 171, 180, 190. 210, 211, 217, 227.
HRD230, 271, 300, 310, 320, 321, 330, 337, $350,400,430,440,441$,
HRD470, 500, $530,700,750,950$. HRS5000, 5500,9000
PINCH ROL
HRD540, HRD550, HRD580, HRD660, HRD860 HRD960
PINCH ROLLLER ASSEMBL
HRJ600, HRJ605, HRJ815,

HRS9200

$\xrightarrow{\text { MATSUI }} \quad 875 \mathrm{p}$
VK6000, 730, 735, 750, 755, 765, 800, 850, VX1000, V $\times 2000$, VX2500, V $\times 3000 \quad 140 \mathrm{p}$ VX6000A MITSUBISHI
HS12, 5300, 5424, 5600, $31,32,41,51,52,82$,
HSE 12, 16, 17, 21, 22, 27, 31, 32, 41, 51, 52, 82, HSM1000. 110, 120, i5
$8,16,170,190,210,23,25,250,27,33,34,35$,
$36,37,370,380,45,450$, $36,37,37,380,45,450,5$
$4,55,555,57,58,59,68$, HSMS2, 9, HSS111, 14, 15, 17, 19, 25, 5600, HV F125, 150, 303,85, SVE900, 8930 750
PINCH ROLLER ASSMBIY PART NO: PINCH ROLLER ASSEMBLY PART N

948D020010

HSE11, 12, 16, 17, 21, 22, 27, 31, 32, 41, 51, $52,5300,5424,5600$, HSB11, 12, 16, 21, 27, HSM16, 170, 18, 190, 210, 23, 25, 250, 27, 30. 33, 34, 35, 36, 37, 370, 38, HSM380, 40, 45, 450, 50, 54, 55, 555, 57, 58, 59, 60, 68, HSMS2, 9, HSMX1, 18, 19, 2, HSS
$1517,12,14$,
19, 15, 17, 19, 21, 25, 5600, HVF125, HVF150, 303,
85 SV8900, , 930 , HS200, HS300, HS301, HS302, HS303, HS304, HS310, HS320, HS330, HS360, HS700
HS 306
HS 306, HS307, HS 318, HS319, HS337, HS 1438 HS347, HS349, HS400, HS410, HS411, HS412 HS421, HS480,
HSE 10, 20 .

HSE 10, 20 30,70

NATIONAL PANASONIC 140 m
NV $100,180,300,330 \mathrm{PX}, 332,333,340,366$, $600,688,777,788,3321$,
AG6010, 6015, 6100, 6200, 6400,6800 , 7450
NV $230,250,260,280,370,380,430,431,433$ $450,460,465,470,480$ NV630, $550,730,770$
890, 2000, 2010, 3000, 89V, 2000, 2010, 3000,
NV7000, $7200,7800,8050,8150,8170,8200$, $8300,8400,8500,8600$
NV8610, 8620, NVG11, 14, 16, NVG7, 10, 12.
$15,18,30,130,400$
AG 1000, 1050, 1200, 1500, 2100, 2200, 6500,
$6810,7500,7510$, 6810, 7500,7510
NVH
NVG9, NVG120
AG6840, 6720, 7150, 7330, 7350
7355, 7650. NVH65, 75, NVJ30, NVL20, 23, 25,
28, NVG300 NVF65, NVF70, NVFS1 NVFS 100 , NVG $19,20,25,33,40$, 50 ,
NW8000
$\begin{array}{ll}\text { NVD48, NVD80, NVG21 NVG45 } & 14 \mathbf{1 0 p}^{\boldsymbol{p}}\end{array}$ NV, 700 PX
NVHD100.
NVHD100, NVHD101, NCHD90, NVSD30, ${ }^{140}$ NVSD40 AG5150, 5250, 5750, 5024, NVD38, 48, 80 , AVF55, 65, 70, 75,77,
NVFS1, 100, 200, 88, 90 , NVG 19, 20, 21, 22, $25,28,300,33,40,45,46$,
NVG50, NVH65, 75, 77, NVJ30, 33, 35, 37, 40, 42, 45, 47, NVL20, 23, 25, 28, NVW 1
PINCH ROLLER ASSEMBLY
N.E.C.
N.E.C.
N830, $831,832,833,895$
PVC2300, 2408, 740,

PVC2300, 2400, 740, 744, 746, 760, 764, ${ }^{140}$
766
DX1000, 1600, 1800, 2000, 3000, N9012, 9013 p 9014, 9016, 9033
9110, 9120, 9510, 9520
N9530, 9610, PX 1200 ,
DS600G, DX4000, N9077

\section*{| Price | Model |
| :--- | :--- |
 Model}

ORION VH1, VH2
 $\mathrm{VH} 1, \mathrm{VH} 2$

VC150, 180, VH3, 33, 200, 201, 205, 212, 250, 254, 288, 300, 303, 312,
VH $404,555,700,704,712,770,780,844,900$, VH404, 555, 700, 704, 712, 770, 780, 844, 900
$1000,2948,3030,3312$ VHF2A, VP2948, VHF2A, VP2948
COMB 15000,16000 , HV03, LVH50, NEVH, NEVHM, NEVHML,
TVP230RC, VCP, VH04, 30, 103, 300, 358, 360, $362,400,416,512$,
VH530, $532,535,53$
$735,75,745$,
VH530, 532, 535, 536, 600, 630, 635, 640, 666, $730,735,744,774,790$
VH800, $820,850,888,893$
Vh80, 1012, 1040, 1050, 893, 900, 930, 940, 942, $974,1012,1040,1050$,
$V H 1060,1070, ~ V H 1100$, 1500, 1660, 1800, 2004, VH2 151 , 2308, 204240, 250, 260, VH2960, 2970, 3050 , 2500, 2600, 2700, VH2960, 2970, 3050, VH3060, 4000, 4008, 4010, 4012, 4015, 4015. 4020, 4300, 5020,
VP 10, 200, 220, 225, 245, VR821, 925, 1032. VP 10, 200, 220, 225, 245, VR821, 925, 1032,
2949, 2959, 2957, 2966, 2979, 2980, VTV300, VXL20, 25,30
PHILIPS
PHILIPS
VR6460 VR6920
VR2020, VR2021, VR2022, VR2023,
VR2024
VR6540

| 140 p |
| :---: | :---: | :---: |
| DV856, 586, VR702, 703, 6485, 6585, 659 |

6785, 6880, 6948 VR445, VRG6442, VR6542, VR6643, VR6843, 140 p
VR6943, 44589,1 VR6943, 44SB9 DV464, 662, VR2222, 2300, 2324, 2330, 2334,
$2340,2350,2414$, VR2480, 2485, 2486, 2489, $2440,2498,2840,6462,6463,6464,6560$. VR6660, $6860,6861,6862,6863$ N-1700, VR2870 VR2025, VR6580, VR6581 49SB6, VR3260, 6349, $6448,6449,6548$, 6648
PRESSURE ROLLER ASSEMBLY PS403-40205 DV186, 190, VR211, 2115, 212, 213, 223, 286, 291, 292, 311, 312, 313,
VR3210, 3219, 322, 3229, 323, 535BO, 486, 471, 562, 582, 571, 761. VR201, 202, VR203, 302, 303, 305, 6180, 6182, 6185, 6285,6290,
VR6291, 6293,6362 VR6291, 6293, 6362, 6367, 6390, 6391, 6393,
$6467,6468,6470,6561$ VR6570, 6581VR6670, 6576, 6710, 6760, 6761 $6762,6870,6970$,
VR6975, 86B1, 63SB7, 68SB4, 71SB4, 71SB5, 72SB8, $72 \mathrm{SB8}, 92 \mathrm{SB31,20DV1,20VV2}$, 20RW7, $21 \mathrm{DVI}, 21 \mathrm{DV} 2,2 \mathrm{2SB01}, 2 \mathrm{2SB02,2} 2 \mathrm{2SB11}$ 3S803, 3SB05 3 SB11 358123 SB13 VR231, 232, 332, 422, 4229, 512, 5229, 722, 280 p 7229, 723
VR501 VR501 \quad PR38 140p SANYO 2300, 2370, 2500 ,
2300, 2370,2530 ,
VHR2700, 3330 , MVR
 6010, 6500, 9100,
6TC9300, VTCM10. 20, 11, 21, 30, 31, 40, 50,
VPP VPR5800

VHR3100.3300, 3310, 3400, 3500, 3700, 3800, | VHRD500, |
| :--- |
| VTC |
| |

VHR120, 130, 14, 141, 143, 14, 150, 151, 153, 154, 15, 16, 171, 194, 22 OVHR23, 235, 240, 244, 250, 251, 274, 27, 297, $310,330,335,350,390$, VHR4 $100,4105,4150$, VHO, 430, 4300, 4350, 4400, 474, 4777, 5080,
VHR5100, $5200,5300,5350,5600,5700,6850$. 7100, 7200, 7250, VHR7260, 7300, 7400, 7440, $7500,7520,7530,7540,7700,774,780$,
OVHR $7810,8000,8070,8100,8200,8250$ OVHR7810, 8000, 8070, 8100, 8200, 8250 8500,8800 , VHRD $4400,4410,4500,4600$, 4610, 4710
VCR100
VHR120, 135, 150, 190, 4150, 4160, 4350 140p VHR120, 135, 150, 190, 4150, 4160, 4350,
$5200,5240,5350,7200,7250,7260,7700$. VRRD4410. 4610, 4710, 4890, 5450, VHRS700
 VHR $3100,3200,3300,3310,3400,3700,3800$,
VHRD500, 7000
1350. PINCH ROLLER ASSEMBLY SHARP
VC200, 381, 383, 384, 385, 386, 388, 390, 393, $800,2300,3300,6000$,
VC6200, $6300,7300,7700,7750,7800,8300$, VC6200, $6300,7300,770$
$838,9100,9300,9400$.
$838,9100,9300,9700,9800$
VC5500, 9600,979
VC9500, 9600, 9700, 9800
VC300, 387, 402, 471, 473, 477, 481, 482, 483, $486,488,496,500,571$,
$573,581,582,58$,
$573,581,582,583,584,585,8481$, VC5F3
VC5W2OE, VCA1031, VC5W2OE, VCA1031
VC108, 208, 405, 408,550, 600, 651, 671, 674,

VC699, 700, 772, 750, 779, 780, 781, 7810, 782, 782MK2, 7822, 783
VC785, 786, 787, 793, 800, 7810, 7822, VCT72, VC6F3, VC6V3, VCA 100, 102, 104, 131, 140 $170,202,203,211,234,303,501,502$,
VCA502 5011 VCDB01, $802,851,852$ VCA602, 5011, VCD7801, B72,
882, VCM73, VCT73, VCT72.

VCB361

140p
140 p
VC220 VCA10, 30G, 60, 103,105 ,
$211,244,254,33,35,36$,
VCA37, 39, 40, 42, 454, 46, 47, 48, 50, 505, 51, 52, 53, 54, 55, 57, 58, 505,
VCA60, 605, 615, 62, 63, 67,68, 1031, 11613, VCB311, 320, VCBS97, VCDB05, 806, 810, 815

VIDEO SERVICE KITS

REPLACEMENT VIDEO CASSETTE HOUSINGS

MODE SWITCE	
NV2000, 2010, 7000, 7200, 7800 (VS50048	
NV230, 260, 430, 810, 870, 2300, 4300	¢3.50
(VSS0110)	£2.25
NV830 (VSS0091)	£2.10
NV300, 333, 340, 366, 688, 777, 778	
IVSS0060	£3.75
NVG21, 25, NVH65, NVD80 (VSS0175A)	£2.00

AUDIO CONTROL HEADS

AMSTRAD ORIGINAL NO: 150751
Used on: AMSTRAD TVR1, 2, 3, VCR4600, 4600MKII, 4700, FUNAI VS2, VCR4600, 4800, 5200, 5600, 6600, VIP3000, 5000 Also fits: FIDELITY, FUNAI, HINARI, PROLINE, SCHNEIDER TOWADA, UNIVERSUM ORDER CODE: AH01 PRICE: 1350p

AMSTRAD ORIGINAL NO: 153134
Used on: AMSTRAD DD8900, 8904, VCR2000, 6000, 6100, 8600, 8602, 8603, VCR8604, 8700, 8704. 8714, 8800, 9005, 824
Also fits: ANTECH, BONDSTEC, CASIO, CROWN, FIDELITY, GOLDhand, granada, hinari, Marquant, omege, profex, schnelDER, SEG, SENTRA, SHINTOM, TASHIKO, TATUNG, TOWADA, UNIVERSUM ORDER CODE: AH02 PRICE: 1450p

Replacement Audio Control Video Sound Head for National Panasonic

PART NUMBER	MODELS	PRICE
VBR 0091	NVG7 etc	$875 p$
VBR0050	NV300, NV340 etc	$875 p$
VBR0061	NV77 etc	$875 p$
VBR0103A	NV250, NV450 etc	$625 p$
VBR0125		$625 p$

VIDEO TOOLS

VIDEO CLEANING STICKS

Price 17p each 15p each pack of 10 pcs 13 p each pack of 25 pcs Order Code: SP14 VIDEO MAINTENANCE TOOLS

Set of 8 Allen keys packed in a plastic wallet Order code: TOOL 9, Price 125p Specifically designed for video maintenance UNIVERSAL HEAD EXTRACTOR
Hand tool designed for extracting hard to remove heads without damage to either the head or the mounting assembly. Adjustable so as to suit various heads. Order code: TOOL 8, Price 600p

VCR ALIGNMENT KIT

CONTAINS: SET OF 7 HEAD \& TAPE PATH ALIGNERS

- RCA TYPE AUDIO \& CONTROL HEAD POSITIONING TOOL - RCA ADJUSTMENT TOOL FOR TAPE GUIDE POSTS - RCA TYPE BACK TENSION TOOL
- TENSION ADJUSTMENT TOOL FOR VARIOUS USES - VCR ADJUSTMENT TOOL

CREVERSIBLE SCREWDRIVERS | CIRCLIP PLIERS |
| :---: |
| SPRING HOOK \quad MICRO SCREWDRIVER |
| VCR HEAD EXTRACTOR |
| Order code: TOOL 10, Price 2900p |

TRANSPARENT REPAIR/ADJUSTMENT CASSETTE

This transparent videocassette replaces a normal videotape during measurements, adjustments and inspection. The mechanical parts come into sight and become accessible. Order code: TOOL 23, Price 500p

BACK UP BATTERIES

PHILIP'S

Part Nos: 138-101138, 138-10313 1.2v 90mAH Order Code: BB01
Part Nos: $138-10229,2.4 \mathrm{v} 100 \mathrm{mAH}$
Order Code: BB02

FERGUSON

Part No: 00E6-067-0011.2V 100mAH
Order Code: BB03
Part Nos: 00E6-606-8001 2.4V 100 mAH
Order Code: BB04

SET OF 8 ALLEN KEYS
$0.77 \mathrm{~mm} \quad 0.90 \mathrm{~mm}$
$1.27 \mathrm{~mm} \quad 1.50 \mathrm{~mm}$
$1.60 \mathrm{~mm} \quad 2.00 \mathrm{~mm}$
$2.40 \mathrm{~mm} \quad 3.00 \mathrm{~mm}$
CIRCLIP PLIERS MICRO SCREWDRIVER

SATELLITES

MAKE \& MODEL	CODE	PRICE
PACE PRD800, PRD900	SATPSU1	600 p
PACE SS9000, 9200, 9010, 9210, 9220	SATPSU2	550 p
AMSTRAD SRD510, SRD520	SATPSU3	600 p
AMSTRAD SRD500	SATPSU4	600 p
AMSTRAD SRX340, SRX345, SRX350	SATPSU5	600 p
PACE D100/150	SATPSU6	650 p
CHURCHILL D2MAC	SATPSU7	650 p
PACE MSS100	SATPSU8	730 p

SATELLITE TUNERS

PACE PRD800/MSS200 2Ghz (221-2077062)
ORDER CODE: TUNER01 PRICE: 1400p + VAT
PACE PRD900/MSS 1000 2Ghz (221-21770112)
ORDER CODE: TUNER02 PRICE: 1400p + VAT

SWITCH MODE TRANSFORMERS
 PACE 9000

ORDER CODE: PACE9000 PRICE: 800 p
PRD800/PRD900
ORDER CODE: PRD800 PRICE: 550p

MAKE \& MODEL	CODE	PRICE
PACE MSS200/300 APPOLL	SATPSU9	900 p
PACE MSS500/1000	SATPSU10	1230 p
FERGUSON SRD4	SATPSU11	650 p
ECHOSTAR SR5500	SATPSU12	1600 p
ECHOSTAR 6500/7700/8700	SATPSU13	2750 p
AMSTRAD SRD600	SATPSU14	2600 p
MIMTEC (Surensen)	SATPSU15	700 p
AMSTRAD SRD700, SR950, SRX100, 301, 501, 502, 1002, 2001, SRD2000 SAT250	SATPSU16	650 p

SATMETER

The Satmeter is a professional portable satellite strength meter designed for the installation and maintenance of satellite TV systems. The Satmeter can be used as stand alone with powering the LNB as well as in loop.
Through operation with satellite RX powering the LNB.

* Acoustical signal: On signal strength *LED indicator: Vert/Hori
* Frequency Range: 900 to 2050 Mhz *Input impedence: 70 Ohm
* Power amplifier: 18db *Detection Range: -60 to -10 DBM
* Max. input signal: - 10 DBM

ORDER CODE: TOOL22
PRICE: 8500p

REPLACEMIENT TV SWITCHIES

GRUNDIG

PART NO: 29703, 29102
USED ON:
C7500, C8500. C8502, C8712 . . .ETC
Price: 140p

PHILIPS

USED ON:
K30, K35, K40, KT3, KT4
Order Code: SW13
Price: $95 p$

SONY
USED ON:
KV1612, KB1612, KV1614, KV2052, V2056
KV2062, KV2067, KV2212 . . .ETC
Order Code: SW5
Price: 150p

USED ON:
KV1400, KV1440, KV2040, KV2060
(POWER SWITCH 26mm)
Order Code: SW12

Price: 125 p
SONY

USED ON:
KV2020
(POWER SWITCH $21 \mathrm{~mm}+$ Remote)
Order Code: SW6
Price: 200 p

SONY 2 PIN FUNCTION SWITCH

Order Code: SW9
Price: 35p

\because : CERA	PIU	
CURRENT RATING	ORDER CODE	PRICE
3A	FUSE33	100p
5A	FUSE34	100 p
13A	FUSE35	100p
CURRENT RATING	ORDER CODE	PRICE
8A	FUSE44	185p
10A	FUSE45	185p
15A	FUSE46	185p
20A	FUSEA7	210p

NB. All fuses are made in the UK and fully meet BS4265 \& BS1362 safety standards and should not be compared with cheap imported types

\section*{20mm CERAMIC TIME LAG
 | CURRENT RATING | ORDER CODE | PRICE |
| :---: | :---: | :---: |
| 6.3 A | FUSE38 | 100 p |
| 8 A | FUSE39 | 100 p |
| 10 A | FUSE40 | 100 p |
| 315 A | FUSE41 | 85 p |
| 4 A | FUSE42 | 85 p |
| 5 A | FUSE43 | 85 p |}

38mm CERAMIC TIME LAG
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">CURRENT RATING</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">ORDER CODE</td>
<td style="text-align: center; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; ">PRICE</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: center; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">10 A</td>
<td style="text-align: center; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">FUSE48</td>
<td style="text-align: center; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">825 p</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| CURRENT RATING | ORDER CODE | PRICE |
| :---: | :---: | :---: |
| 10 A | FUSE48 | 825 p |</table-markdown></div>

** ALL THE ABOVE PRICES ARE FOR PACKS OF 10 FUSES **

SPRING HOOK

Spring Hook, to unlock springs in audio tape recorders \& VCRs ORDER CODE: TOOL20

PRICE: 265p

FAULT FINDING / COMPARISON BOOKS

Satellite Fault Finding Guide Issue 1 Listing about 1,000 faults for over a range of 24 different brands. Order Code: BOOK05.
Price $\mathbf{£ 8 . 5 0 - N o ~ V A T . ~}$

Video Recorders Edition 51997
Over 300 pages packed with more than 5500 faults for different brands
Price $£ 15.00$ - No VAT. Order Code: BOOK01

SERVICEAIDS			
DESCRIPTIDN	VDLUME	CODE	PRICE
VIDEO HEAD CLEANER	75ML	SP01	125p
SWITCH CLEANER	176 ML	SP02	140p
SILICONE GREASE	200ML	SP03	170p
FREEZE IT	170ML	SP04	280p
FREEZEIT	400ML	SP16	570p
FOAM CLEANER	400ML	SP05	155p
ANTI-STATIC	150ML	SP06	155p
AEROKLEANE	135ML	SP07	185p
AERO DUSTER	150ML	SP08	290p
AERO DUSTER	400ML	SP17	550p
PLASTIC SEAL	200ML	SP09	230p
GLASS CLEANER	250 ML	SP10	155p
COLDKLENE	250ML	SP13	225p
EXCEL POLISH 80	250 ML	SP18	145p
ADHESIVE 120	400 ML	SP19	190p
LABEL REMOVER 130	200ML	SP20	240p
REFURB 140	400ML	SP21	240p
TUBE SILICON GREASE	50GRAMMES	SP11	200 p
TUBE SILICON SEALANT WHITE	75ML	SP22	250p
TUBE SILICON SEALANT CLEAR	75 ML	SP23	250p
TUBE HEAT SINK COMPOUND	25 GRAMMES	SP12	140p
DRIVE CLEANER	200 ML	SP24	130 p
SCREEN CLEANER	200 ML	SP25	145p
COMPUTER CARE KIT	-	SP26	2100p
All the above items are manufactured by Servisol If you purchase more than one Servisol Product, postage \& package will be charged as follows:			
300p for 2 - 5 cans 50		p for more than 5 cans	

TELEVISION Edition 6

Lists more than 8,450 faults with 460 pages covering 58 different brands Price: 1600 p only - no VAT. Order Code: BOOK02

Satellite Repair Manual Edition 4

A comprehensive guide to receiver reviewing, featuring stock faults and installation tips.
Price $£ 15.00$ Only No VAT Postage 100p Order Code: BOOK03
SOLDERING
ACCESSORIES

DESCRIPTION. CODE PRICE ANTEX SOLDERINGIRONS

15 WATT 240 VAC ($\times S 15 W 240 \mathrm{~V})$
25 WATT SPARE ELEMENT
15 WAT SPARE ELEMENT
SOLDERING STAND \& SPONGES
SOLDERNG STAND (MADE BY ANTEX)
SPARE SPONGE
SPARE SPONGE
SOLDER
18 SWG 500 GRAMMES
22 SWG 500 GRAMMES
desoldering alds
SOLDER MOP STANDARO GAUGE $1.2 \mathrm{MM} \times 1.5 \mathrm{M}$
SOLDER MOP 1.2MM X 10 M
SPARE NOZZLE

$\quad \mathrm{S} 106 \quad 60 \mathrm{o}$

SEMICONDUCTOR COMPARISONS 1997/8 Listing more than 31,600 Semiconductors with suitable alternative complete with descriptions and base information.
Price: $f 15.50$ - No VAT. Order Code: B00K04.
SEMICONDUCTOR COMPARISONS 1997
The new 1997 Jaeger Semiconductor with 952 pages packed with information on over 80,000 semiconductors in much greater detail plus mar keting data on SMD devices and a separate
generic table of all type designations.
Price: $£ 40.00$ only - No VAT (+ £5 Postage). Order Code: BOOKO6

I.C. PROTECTORS

ICPF10, ICPF15, ICPF20, ICPF25, ICPF38, ICPF50, ICPF75
ICPN5, ICPN10, ICPN15, ICPN20, ICPN25, ICPN 38, ICPN50, ICPN75

PRICE: 30p EACH ONLY

CASSETTE DC MOTORS

6V MOTOR	170 p
9 V MOTOR	170 p
12 V CW MOTOR	170 p
12 V CCW MOTOR	170 p
13.2 V MOTOR	290 p

CASSETTE TAPE HEADS

MONO HEAD 90p
STEREO HEAD 110p
MINI HEAD
150p
AUTO REVERSE HEAD 200 p

WE STOCK REMOTE CONTROLS FOR OVER 5,000 DIFFERENT MODELS RING FOR MODELS NOT LISTED ABOVE ON 01819002329

8 way Preprogrammed Universal Remote Control

A single remote control to operate Televisions, Videos and Satellite Receivers
Plus Auxiliary Options!

- Replaces up to 8 remotes with one - Simple 4 digit setup routine
- Controls 1000 s of models. Teletext functions with Fastext
- Clear (large key) layout - Code Search Facility
- Original remote not required

Order Code: 8 WAY

2 way Preprogrammed Universal Remote

- Replaces up to 2 remotes- Simple key arrangementOrder Code: 2 WAYPRICE: 925p

NTRODUCING

The world's first TV Simulator for Diode Split Transformers diagnosis

Features \& Functionality:

- Real simulation of the low voltage horizontal deflection stage
- Analysis of Diode Split Flyback Transformers without the TV set
- Deferred measurement of the HIGH VOLTAGE
- Tests transformers without having to remove it from the TV set
- Monitor the waveform shape on any winding
- Facility to release measurements without applying high voltage
- LED warns of fault condition
- Aid for diagnostic at TV repair
- Digital readout identifies actual fault condition
- Compact, functional unit

ORDER CODE: LOTMETER. PRICE: $\ddagger 75$ + VAT POSTAGE: £5 + VAT

[^1]
HELP WANTED

The help wanted column is intended to assist readers who require a part, circuit etc. that's not generally available. Requests are published at the discretion of the editor. Send them to the editorial department - do not write to or phone the advertisement department about this feature.

Wanted: A Panasonic NV430 VCR, also a TDA5651 IC. Peter Ward, Petgra, Forest Corner, Ringwood, Hants BH24 3JW. 01425475445.

Wanted: Name, address and phone/fax number for a UK distributor of spares for Gelhard products, believed to be of German manufacture. Eddie Cox 01489782885 (phone/fax).
Wanted: Information/spares to rectify white video dropouts present before and after head replacement with a Sony SLC9 Beta VCR. Also, can anyone help identify a GoldStar VHS VCR model badged as the Susumi XR1. Alan Stubbings, 7 Church Road, Saxilby, Lincoln LN1 2HH. 01522702601 (evenings/weekends), 01522583 373 (daytime).
Wanted: Service manual/circuit diagram for the Shivaki TV/VCR Model VT14, also a tuner. Am trying to convert this unit to PAL I format. Robert Crawford, 44 Castle Park Drive, Fairlie, Ayrshire KA29 0DG. 01413327777.
Wanted: Three video boards and one logic board for the Sony VO2630 U-Matic VCR; a Sony SLC30 Beta VCR; and a Sanyo VTC-M3 Beta VCR, Japanese home market version, or circuit diagram in English for this. N.D.
Wenham, 17 Sheringham Court, Swindon, Wilts SN3 6HJ. 01793 526744.

Wanted: Chopper transformer for the Zanussi Model 22ZT505 or complete power supply panel. G.R. Goldsmith, 2 Stanley Close, Verwood, Dorset BH31 6EX. 01201824398.

Wanted: Working power supply PCB (in good condition) for the Amstrad SRD500 satellite receiver. Also copies of Television for January to December 1994. John Whittle, 12 Manet Square, Fairlands, Bognor Regis, Sussex PO22 9BC
Wanted: Lower head drum motor for the Sony SLO1700 industrial

Betamax VCR, or information on a source of supply for this item. P.R. Marshall, MVS Video Productions, Rehoboth, Alkham Valley Road, Folkstone, Kent CT18 7EH. 01303 891468.

Wanted: DC-to-DC converter for the Sony Betamax C9 VCR, or a fully-working C9 with handset! Also interested in servicing/repair manuals for any or all Betamax machines (photocopies would do). Lee Lewis, Glanhowy House, Park Place, Tredegar, Gwent NP2 4LD. 01495722446 (evenings) or e-mail I.lewis@rocketmail.com.uk

Wanted: Service manual for the Mitsubishi Model CT3701TX. J.H. Roberts, Roughlee, Bull Bay, Anglesey LL68 4DF. 01407832 229.

Wanted: 22in. TV set fitted with the Ferguson TX100 chassis, working or not. Can collect in the S. London/Surrey area. Paul Farnfield, 24 Hillside Road, Ashtead KT21 1RX. 01372275351.
Wanted: Circuit diagram/service manual, copy or loan, for the Philips PM3212R $0-25 \mathrm{MHz}$ oscilloscope. F. Bathurst, 75 Lisher Road, Lancing, Sussex BN15 9EY. 01903752163.

Wanted: IC type TLP581Y (IC602) for the Sony Model KV27XRTU or a complete power supply board. Colin Tooze, 8 Pear Tree Close, Bell Green, Coventry CV2 1JL. 01203685085
Wanted: Remote control and teletext (Fastext) board 1637-001, using an MAB8461 chip (IC1806), for the Ferguson TX100 chassis.
Also front control flap for the same TV (Model 59G3). R. Walton, Rogers Television Service, 44 Johnson Street, Cleethorpes, NE Lincs DN35 7NA. 01472362071. Wanted: Secam board 6911-19-35, PAL board 6911-29-02 and text decoder board 6911-19-54/82 for the ITT Compact 80 chassis. Also any information on upgrading the Philips CTU900 D2-MAC decoder for a better picture. I. Mackintosh
(Mac), 7 Wellington Court,
Trearddur Bay, Holyhead LL65
2LJ. 01407860864.
Wanted: JVC HRD660/540/520 or Ferguson FV37H or similar VCR with VPT facility: timer-display, syscon and PSU must be working Ian Jackson, Flat 6, The Grange, 5 Harlow Oval, Harrogate HG2 0DS. 01423508197.

Wanted: Can anyone suggest alternatives for the Y1044 (SCR1) and Y1043 (SCR2) thyristors used in the early version (PC1001) of the Ferguson TX9 chassis. Also require a TDA1035T sound chip (IC53). Roy Bailey, 22 Grebe Close, Waterlooville, Hants PO8 9UT. 01705783811.

For disposal: ITT CVC40 type TV for spares or repair; Ferguson 9653 TV for spares or repair plus box of 9600 series panels; Ferguson 24in. 1500 chassis set in working order but tube rather soft; two mechanical tuners for the Ferguson 1500 chassis; about 30 elliptical TV speakers, various sizes, ex-equipment. Token payment please and prospective owner(s) to collect. M.K. Hayter, 24A St. Albans Road, Moseley, Birmingham B13 9AS. 0121449 5508.

Wanted: SBX-M904A IT055 control module for the JVC Model CS2180EK. Also a chopper transformer for the Hitachi Model CPT2508 (G7P chassis). Good salvaged components OK. R. Waller, 25 Laceby Close, Bramley, Rotherham, S. Yorkshire S66 0YF. 01709544079.

Wanted: Service manual and operator's manual for the Philips PM3211 oscilloscope, photocopy OK. J. Southwell, Aquarius Electronics, 125 Honeysuckle Road, Bassett, Southampton, Hants S016 3BT. 01703396567.
Wanted: Circuit diagram or service information for the Orla Prestige Electronic Organ. Donald McIntosh, 11F Colonsay Terrace Soroba, Oban, Argyll PA34 4YN. 01631563337.

Reports from
Pełe Gurney, LCGI
Stephen Leatherbarrow
Bob McClenning
V.W. Cox

Brian Storm
Michael J. Cousins
Michael Dranfield
P.J. Roberts and

Chris Watton

JVC HRD820

The original fault had been no playback picture. So someone had fitted new heads. This hadn't cured the fault and in addition there was now no colour with prerecorded tapes.
The colour problem was the easiest one to deal with - the heads had been fitted 180° out. These drums have an index hole in both the head and the lower cylinder boss. They don't align next to each other. If in doubt, look at the mounting surface when the head is removed: there is usually a ring of dust where the index hole had been.

I was now back to square one, with what admittedly looked like a head problem at first glance. The picture sometimes returned however, and when it did the head switching varied between its correct point and somewhere half way up the picture. I've had similar problems before, caused by the lower drum specifically C 6 , which is a $3 \cdot 3 \mu \mathrm{~F}$ surface-mounted capacitor. A dose of freezer proved its guilt. Once a replacement had been fitted and the head switching had been set up the machine produced a good picture.

Note that the lower drum drive PCB is common to quite a few JVC Models. P.G.

Alba VTV10

This little TV/VCR combination kept on trying to load a tape that wasn't there, then shut down. It looked like a mode switch problem,

VCR Clinic

which is becoming increasingly common with the type of deck this model uses. As the deck is not the easiest to work on without an extension lead set I replaced the mode switch on spec. No luck. After a lot of searching about I eventually discovered that there was an end-stop sensor fault - no illumination because of a hairline crack around the IR-emitting diode D01. Resoldering cured the problem.

Note that any faults which result in deck shut down will also switch the TV to standby.
I've also had several loading motors go open- or short-circuit, with the result that the TV switches off after ten seconds or so because the deck is unable to initialise. The same deck is used in the Matsui VX735A/Saisho VR3300 and related models. P.G.

Sharp VCH841

This machine came in several times over a period of a month or so with the complaint that it would shut down, refuse to respond to the controls and trap a cassette inside. But each time it appeared in the workshop it would reset then work faultlessly.

Clutching at straws, I replaced the mode switch. This made no difference. Eventually the machine came to a complete halt: the cause was immediately traced to a seized capstan motor. A strip down and clean cured the problem. P.G.

Ferguson FV82

This dead machine had no functions or clock display. There were no shorts or obvious open-circuits in the power supply, so I decided to check the two electrolytics on the primary side. As is so often the case, the cause of the problem lay here. CP007 ($10 \mu \mathrm{~F}, 50 \mathrm{~V}$) had gone very low in value. I decided to replace CP008 ($100 \mu \mathrm{~F}, 25 \mathrm{~V}$) for good measure. Capacitors rated at $105^{\circ} \mathrm{C}$ were used. They are asso-
caited with pins 9 and 11 respectively of the power supply chip IP001 (U4616B). S.L.

Baird 8940/JVC HR7350

Following a service this venerable machine produced no E-E or playback sound. After checking for any obvious switch position sillies I traced the audio output from the IF strip to the AN6394 chip IC2. The signal was present here but got no farther because this chip's supply at pin 14 was missing. It's derived from Q11 (2SC2673). There was no 11 V supply at its emitter because of an open-circuit junction. S.L.

Hitachi VTF860E

This VCR failed to start up after disconnection from the mains supply. I found that $\mathrm{C} 6(1 \mu \mathrm{~F}, 250 \mathrm{~V})$ which supplies the kick-start to Q1 in the power supply was low in value. B.McC.

Grundig V55 10

If the machine is dead with the solenoid clicking, replace C1325 $(1 \mu \mathrm{~F})$ in the start-up circuit. B.McC.

Aiwa FX1500

There were no record problems but occasionally the playback disappeared, as though the head amplifiers had failed. The fault would come and go with the slightest movement but, despite this, the cause was tricky to find. There are some straggling wired-on extras close to the LA7449 video processor chip. One, a resistor, was only in contact and had never been soldered. V.W.C.

Panasonic NVHD605

This machine would accept a tape then go straight into the rewind mode. Apart from tape ejection that's all it would do. Suspecting a faulty end sensor I removed the main PCB and found that the $0.1 \mu \mathrm{~F}$ capacitor fitted across the end-sen-
sor transistor Q6003 was leaky. B.S.

Panasonic NVFS90

This S-VHS machine's E-E pictures were over-white and distorted. Oscilloscope checks brought me to the ceramic module IC303, which had become damaged by capacitor leakage. A new module, part no. VCR0389, cleared the fault. B.S.

Panasonic NVHD650

This machine produced neither menus nor a test signal. When a tape was inserted F05 was displayed, indicating loss of reel drive. The 2SD1996STTA 5V regulator transistor Q1002 in the power supply had failed. A replacement restored the missing functions. B.S.

Panasonic NVHS 1000

This machine was completely dead. There was no display - nothing at all. Fearing extensive component failure in the power supply, I gloomily removed the module. Fortunately all that had failed was the 2SD1996STTA transistor Q1102 in the 5V regulator circuit. B.S.

Ferguson FV67/77HV

This Nicam VCR was dead, with no display and no functions. Power supply checks revealed that the voltages on the secondary side of the circuit were very low. So the capacitors on the primary side were checked. CP11 in the start-up supply to the chip, IP01, was low in value at $90 \mu \mathrm{~F}$ instead of $220 \mu \mathrm{~F}$. A replacement restored normal operation. M.J.C.

Daewoo DVR5172P

This machine wouldn't come out of standby. As the 5V supply to the microcontroller chip was OK I checked the power control pin 41 , which was stuck high - it should go low at switch on. The 12 MHz clock (pins 31-32) was running, but a check at the reset pin 29 produced a low-voltage reading of 2.5 V instead of 5 V . Replacing the three-pin reset chip IC603 made no difference however.

This left only two items that could be faulty, either the microcontroller chip itself or C515 (10 nF) which decouples its reset pin. C515, which is a small brown disc capacitor, turned out to have a $1.6 \mathrm{k} \Omega$ leak. M.Dr.

Samsung VI621

This machine wouldn't switch on. The clock was OK, but pressing the power button did nothing. As a first
step I removed the front panel - a stuck-down button can cause this fault. Not this time however. The cause was R7 (1.5k Ω), which was open-circuit. It's in the power supply and is part of the power control circuit. M.Dr.

Ferguson FV10

There was low playback sound. The E-E sound was also low, though it was OK via the scart socket. Checks revealed that the modulator was at fault: the $0.1 \mu \mathrm{~F}$ nonpolarised audio coupling electrolytic capacitor C3 had failed. M.Dr.

Panasonic NVG10

There was a chroma fault - the symptom varied between flashing colours and no colour. Luckily I remembered a similar fault we'd had with a Matsui VCR. The item to replace is $\mathrm{C} 2(100 \mu \mathrm{~F}, 35 \mathrm{~V})$ in the power supply. It's next to the power regulator chip on the main board - no wonder it dries out. M.Dr.

Aiwa HVGX350

This VCR wouldn't play tapes. While testing it on the bench I noticed that it would occasionally lock up. After this it would work only when the mains supply had been disconnected then reconnected. As the cause of the trouble seemed to be a reset fault, I replaced the KIA7033P reset chip IC504. The machine then worked normally.

Next day it failed again. This time the machine was dead with no outputs from the power supply. The fuse was intact, and there was 320 V across the mains bridge rectifier's reservoir capacitor and at pin 7 of the chopper transformer. A scope check on the drive waveform at the gate of the chopper transistor FEPOI showed that its frequency was very low $(50 \mathrm{~Hz})$. At this point I noticed a very fine break in the PCB track between RP04 (0.47Ω) and FEP01. Once this had been repaired the machine sprang back to life. After a good soak test it was returned to the customer. P.J.R.

Aiwa VXT1420

This tele-video wouldn't play tapes. I stripped the unit down and noticed that once a tape had been threaded up the machine would shuffle it back and forth then eject it - I was using a prerecorded tape. While this was going on the drum and the capstan rotated. So a new mode switch was fitted and the deck alignments were checked. This failed to cure the problem.

The power supplies and reset etc. were next checked and found to be OK , and replacing the reel sensor made no difference. As the syscon chip's drum, capstan and reel sensor inputs were fine, the chip itself (IC1001) seemed to be the culprit. When a replacement (part no. SE-C90-28B-8BO, type OEC6025A) was obtained and fitted the machine worked normally. P.J.R.

Amstrad TVR2

The VCR section appeared to be stuck in the forward search mode, but was actually in the play mode with the capstan motor running too fast. A check showed that there was no capstan motor FG signal at pin 1 of connector CL-FG on the main PCB. There should be a 250 Hz (approximately) sinewave at about 0.5 V p-p here. As a new motor is expensive, I prised the lid off and checked the coil. The enamelled wire inside wasn't connected, so a repair was possible. C.W.

Ferguson FV30

"Can't set the clock" was the complaint with this elderly VCR. All other functions were fine, and the playback picture and sound were good. They don't make them like that now! The cause of the fault was glue beneath the tuner/timer PCB, where a disc capacitor is fixed to the foil side. Correct operation was restored when the glue had been removed. Manufacturers should surely know about the effects of this type of glue, so why do they still use it? Who knows?! C.W.

Panasonic NVJ40

The card said that this machine was dead. In fact it came on for about a minute, and during this time a tape could be played. There was no picture however, though the sound was all right. The E-E picture was also OK. I noticed that the drum was running slowly, and when I tried the machine again the E-E picture was covered with swirling lines of white dots. Then the machine went dead.

The power supply seemed to be the obvious place to look. C1110 $(10 \mu \mathrm{~F}, 400 \mathrm{~V})$ and $\mathrm{C} 1127(330 \mu \mathrm{~F}$, 10 V) were both found to be low in value. After replacing them the machine seemed to work all right, but further checks revealed that $\mathrm{C} 1131(330 \mu \mathrm{~F}), \mathrm{Cl} 126(10 \mu \mathrm{~F})$ and C1125 $(680 \mu \mathrm{~F})$ were faulty - they all read about half the correct value. After replacing them I put the machine on test for a day. The symptoms had all been cured. C.W.

Reports from
Alan J. Roberts
John C. Priest
Hugh Cocks and Michael Dranfield

Philips STU3601

The customer complained about this receiver's poor pictures. It was only about a year old. On test I found that after several hours the picture started to develop a jitter and shadows appeared. Tapping anywhere produced interference.

Resoldering dry-joints in the power supply didn't seem to make much difference. It looked like a modulator fault, which was confirmed by the fact that reception via the scart socket was OK. So I removed the modulator and had a look inside. There was an earthing plate that had cracked solder at one end. After resoldering this and some other suspicious-looking joints I replaced the modulator and gave the receiver a long soak test. Everything was now OK. A.J.R.

Pace PRD800+

If the channel number and identification displays tear and appear for only a couple of seconds at channel change, and the menu graphics tear and go off after a second menu, suspect the sync separator transistors Q23, Q24 and Q25. In the most recent case Q25 (ZTX314) was leaky. J.C.P.

SVAI Sky Decoder

The problem with this unit was intermittent decoding. While checking around the power supply I noticed that, judging by their condition, the two presets had already been twiddled (sorry, adjusted!). PP02 fell to bits when I tried to set it up for 5 V at TP01. Replacing them both restored normal operation. For good measure I also replaced the two large electrolytics CP01 and CP03 as they were rather discoloured.

The decoder had been installed in a cabinet with little room for ventilation - a sure way to get trouble! H.C.

Dish Sharing

A number of our customers share a dish. Installation is usually no problem, but difficulties can arise with horizontal/vertical polarisation switching - more often than not a Pace SS9000/9200 receiver is the cause of the trouble.

The situation is as follows: the two receivers work fine when they are both operating with verticallypolarised signals, but when one receiver selects the higher $17-18 \mathrm{~V}$ horizontal-polarisation voltage the other one won't receive the vertical ly-polarised channels. If the verti$\mathrm{cal} /$ horizontal selection is reversed however the results are as they should be. The receivers generally share a twin-output LNB, and are not connected to a 'magic switch'.

The cause of the trouble is that the higher horizontal-polarisation voltage from one receiver results in loss of vertical-polarisation reception by the other one. The cure is simple enough: insert two silicon diodes in series in the offending receiver's feed to the LNB. This will reduce the supply by just over 1 V : normal operation should then be resumed.

After doing this, check all permutations and combinations of channels with both receivers. Make sure that the horizontal-polarisation voltage from the modified receiver is about 17 V .

With SS9000/9200 receivers the easiest way to add the two diodes is to cut link LK210, which is adjacent to crystal X7 near the front of the board, and fit them here with
their cathodes pointing towards the tuner assembly. Note that fitting them here will reduce both the hori-zontal- and vertical-polarisation supplies, though I've never found that this affects the vertical-polarisation performance. You could however fit the diodes in series with the supply to Q3, reducing only the horizontal-polarisation supply.

The problem can come and go with LNB temperature variation. If the problem returns in the evening, a third diode can be added. I had to do this recently with an SS9200 that was paired with a Bang and Olufsen satellite receiver.

In another recent case a Pace SS9000 and an SS9200 shared the dish, the source of the problem being the SS9000 receiver. Two diodes in series put things right.

The effect doesn't, in my experience anyway, show up with multiple receiver IF distribution systems. In this case the problem is more often lack of the horizontallypolarised channels. What usually happens is that only one receiver is in operation, the LNB is a 'twin' type (with horizontal and vertical output at each socket) and the magic switch fails to provide approximately 17 V at its horizontal output to make the LNB switch over. It's much better to use a 'dual' type LNB (with the horizontalpolarisation supply at one socket and the vertical-polarisation supply at the other). It then doesn't matter, within reason, what voltage is passed to the LNB from the magic switch. The receiver will generally provide enough voltage to make the switch select the horizontal signals.

With a large IF system, it's better to install a DC power injector so that the LNB is powered indepen-
dently. This avoids trouble - some older receivers don't like to supply too much LNB current.

When installing a new receiver and an older one together we sometimes use the original 10 GHz LNB oscillator frequency. The older receiver can then be used in the normal way, the new Pace receiver being used to tune down to 700 MHz to provide Astra 1D reception. Sometimes Channel 5 is a requirement with the older receiver. In this case the LNB's local oscillator is adjusted to give Channel 5 at an IF of around 955 MHz , Sky Sports 3 appearing at around $1,700 \mathrm{MHz}$.

With the IF shifted by some 30 MHz and the local oscillator frequency at about 9.97 GHz , I assumed that it would be simple to key this frequency in the new Pace receiver's LNB oscillator frequency selection menu. But life isn't that simple, because in the 'variable-frequency mode' the receiver's tuner won't go below 950 MHz . The answer to this is to keep the receiver set to the 10 GHz oscillator frequency and increase each channel frequency by some 30 MHz . This sounds like a lot of work, but I keep 'offset-frequency files' for the purpose in the memory of my Pacelink receiver PC tuning system, so immediate downloading of the channel-frequency information is available.

With a multiple-receiver system and distribution via a magic switch, the $700-950 \mathrm{MHz}$ IF may not be passed by the switch. So keep to a standard 9.75 GHz enhanced LNB. If an older receiver is connected, use a frequency extender to convert the $1,750-2,000 \mathrm{MHz}$ IF so that it is within the receiver's tuning range. H.C.

Pace PRD800

Reception of the horizontallypolarised channels was intermittent, together with some patterning. The 18 V supply's reservoir capacitor C23 $(2,200 \mu \mathrm{~F})$ was open-circuit and bulging. H.C.

Digital Upgrade

The Dutch digital package via Astra has been available for more than a year now. Not so long since the national terrestrial Netherlands 1,2 and 3 channels were added, also a "summer TV" channel aimed at Dutch expatriates and holidaymakers around Europe. A Pace DVR500 is generally used for reception, but strangely enough its on-screen menus and subscription
messages are all in English.
While at a customer's house recently I checked the "software upgrade" message box and saw that one is available. On-screen advice told me that it would take eleven minutes to complete and asked me whether I wanted to continue - it didn't however say what the nature of the upgrade was. As the customer was keen to see what it was, 'OK' was pressed to start the upgrade procedure.

The receiver then turned off its video output, and the display at the front went repeatedby from 1 through to 7, accompanied by a circular movement beside the number (this is similar to the default frequency search display but is more rapid).

True to its word, after exactly eleven minutes the receiver went back to the standby mode. When it was switched back on the channels reappeared, though in a different order to that prior to the upgrade (they are easily set in the preferred order however). But the main change was that the menus and onscreen messages were now all in Dutch, while the main menu had had a Canal Plus logo added to it. This used to be Filmnet in the Benelux and Scandinavian areas, but they have now merged. Receiver operation is otherwise exactly as before.

It was always odd that the DVR500 didn't have a Dutch menu option - the Italian version has English/Italian switchable language facilities. H.C.

Shift from 601

BBC TV Prime and its predecessors have in the past been available via Intelsat 601 at $27.5^{\circ} \mathrm{W}$. This satellite is now ending transmissions, but BBC Prime in MAC continues via Intelsat 707 at $1^{\circ} \mathrm{W}$ - frequency around 11.67 GHz , with horizontal polarisation. A new MAC-D2 viewing card is being issued, by a Norwegian company. It allows only those viewers outside Scandinavia to receive BBC Prime.

A lot of old, fixed dishes were in use for $27.5^{\circ} \mathrm{W}$ reception. It has sometimes been quite a battle to persuade a rather corroded 1.8 m dish support structure to move around to the new position. In some cases the ancient coaxial cable, which was quite happy coping with the relatively low (approximately 1 GHz) IF from the old satellite, fails miserably with the new IF at just under 1.7 GHz (assuming that the original 10 GHz local oscillator

LNB is still in use). The highest IF that this cable would previously have been required to handle would have been CNN at around $1 \cdot 15 \mathrm{GHz}$. CNN left Ku band via 601 when it moved to Astra back in 1991 (it's still available in C band at $27.5^{\circ} \mathrm{W}$ however). So it's essential to take new coaxial cable along to these jobs - plus plenty of WD40 to free the dish support! H.C.

BT SVS300

Poor video with rolling was the complaint with one of these receivers. I found that the pictures from the video and decoder scart sockets were OK, but the picture from the TV scart socket was bad. The cause was C207 ($0.47 \mu \mathrm{~F}$, 50 V), which had dried up. It couples the video input to the onscreen display chip. M.Dr.

Pace SS9000

At power up the standby and stereo lights came on together. Apart from this the receiver remained lifeless. Checks at the microcontroller chip's clock and data pins 15 and 38 revealed that they were both at 0 V . As a first step the chip's reset capacitor C146 ($1 \mu \mathrm{~F}$) was replaced, but this made no difference. The 5.62 MHz clock (pins 2 and 3) was OK , and there was 5 V at pin 1 . The next step was to disconnect the clock and data lines. Disconnecting the clock line brought back some activity , and the disconnected data line was found to be at 5 V . The culprit was in fact the Z86E21 microcontroller chip U4.

I feel that the repair kits for these receivers are becoming a bit of a waste of money. To do a quality repair, you need twice as many capacitors as are included in the kits. When we repair one of these receivers we replace all the electrolytic capacitors on the primary and secondary sides of the power supply plus a handful around the tuner. Cost is not a problem when you get your electrolytics from Farnell Electronic Components in Leeds (01132 636 311) who do a bulk discount on a hundred $10 \mu \mathrm{~F}$, $105^{\circ} \mathrm{C}$ capacitors made by Panasonic. In general we use $105^{\circ} \mathrm{C}$ electrolytics for replacement purposes. To improve reliability, we replace both the electrolytics associated with the Pace satellite tuner: in the $2 \cdot 2 \mu \mathrm{~F}$ position we use a solid aluminium type rated at $125^{\circ} \mathrm{C}$, Farnell part no. $577-406$; for the $47 \mu \mathrm{~F}$ subminiature type we use Farnell part no. 490-738 which is rated at $105^{\circ} \mathrm{C}$. M.Dr.

Thomson TX805 Technology

The Thomson TX805 small-screen TV chassis is used in Ferguson and Goodmans models. J. LeJeune takes a look at the technology and circuitry employed

The Thomson TX805 chassis is used in the Ferguson Models D14R and T14R, also the Goodmans Model 1410. It has similarities to the older, successful TX80, and follows that design in having a 'hot' chassis and a combined line output/chopper power supply of the Wessel type. The tuner therefore has an isolated aerial socket.
Much of the circuitry is contained in two large ICs, the TMP47C834-47C634 microcontroller IR01 and the M52038-SP (PAL) signal processor chip IL01. The latter incorporates the IF strip, the colour decoder and the sync and field timebase generator sections. It provides luminance and colour-difference outputs which are matrixed extemally to produce RGB signals to drive the output stages on the CRT base panel. There's a discrete component audio driver/output stage, while for field output an LA7830 chip (IF01) is used. Fig. 1 shows a block diagram of the chassis.

The Tuner

We'll begin with the tuner, which is a Thomson type MTP-BG-2024. A block diagram is shown in Fig. 2. The original version has a VHF section, which is omitted for UK sets. There are four stages, starting with a BF998 MOSFET RF amplifier. The input to this is fairly broadband: there's bandpass tuning in its output circuit, using varicap diodes. The following mixer stage is based on an earthed-base transistor, with the local oscillator and UHF input signals both being applied to its emitter circuit. Earthed-base operation is also used in the local oscillator stage, with feedback from a capacitive tap across the oscillator coil. The mixer transistor's collector feeds a bottom-coupled bandpass filter. This is followed by an emitter-follower buffer stage (TH93).
The tuner uses a voltage swing of $0 \cdot 5-30 \mathrm{~V}$ to cover the

Fig. 1: Block diagram of the Thomson TX805 chassis.

range $470-860 \mathrm{MHz}$. It's a variant of the tuner used in the Thomson IKC2 chassis.

The IF Strip

The tuner's IF output is fed to a SAWF driver transistor, T102 (BF959), which uses selective feedback in its emitter circuit to provide frequency compensation. The SAWF, QI01, provides a balanced output which is fed to pins 8 and 9 of the signal processing chip IL01, see Fig. 3.
Within the IC a differential amplifier converts the signal to the normal unbalanced state. This is followed by a gaincontrolled (AGC) amplifier then a linear amplifier, after which the signal is at a suitable level for application to the

Fig. 2: Block diagram of the tuner.

Fig. 3: Block diagram of the IF section of the signal processor chip ILOI.
synchronous demodulator. Demodulation of this type is basically a switching process: the signal is sampled at the IF carrier peaks to extract the video information. The demodulator therefore requires a second, switching input. For this purpose the IF carrier drives a 'tank' coil, LI03, which produces a pure sinewave at the carrier frequency. LI03 should normally be left well alone: if adjustment is needed, it should be done using a good oscilloscope to observe the sharpness of the video transients at pin 51 of LL 01 .
The IC produces, at pin 52, a negative-going AGC voltage for the MOSFET RF amplifier transistor in the tuner. This is effective up to high-level inputs. The internal AGC system is of the forward type and can be monitored at pin 5 which is connected to the filter capacitor CI07.
The demodulated output at pin 51 of IL01 is filtered by LV01. It also contains the 6 MHz FM sound signal. The latter is fed via CI18 to the 6 MHz ceramic filter Q 102 , reentering the chip at pin 48.

Luminance Signal Processing

The video component of the signal is fed via filter QV01/LV02 (to remove the 6 MHz signal) to TV04 which drives the comb filter VV01. This separates the luminance and chrominance components of the video signal, providing separate feeds to pins 38 (chroma) and 41 (luminance) of

IL01. VV01 also provides the luminance signal delay required.
The first process when the luminance signal re-enters LO1 is sharpness control. For this purpose an HF filter (CV36 and RV41) provides a second input at pin 40 . The arrangement is shown in Fig. 4. It involves three voltagecontrolled amplifiers. Amplifier A receives the full bandwidth luminance signal, amplifier B a signal with reduced HF content and amplifier C the HF input at pin 40 . This pin also receives the DC sharpness control voltage, which is obtained from pin 6 of the microcontroller chip IR01. The outputs from the three amplifiers are added then fed to the following contrast control stage. The gain-control characteristics of the three amplifiers are tailored to provide a smooth transition from a 'soft' picture to a sharp, somewhat overshot one, over the range of the electronic sharpness control.
Sharpness control is followed by contrast control then brightness control. A simple video amplifier whose gain is controlled by the DC voltage applied to pin 36 of LL 01 is used for contrast control. Brightness is controlled by adjusting the clamp potential on which the video signal sits - the clamp reservoir capacitor is connected to pin 39 , while the DC brightness control voltage is applied to pin 38 . Note that pins 36 and 38 both serve two purposes: pin 36 is also used

Fig. 4: The sharpness control arrangement.

Fig. 5: Block diagram of the sync/timebase generator section of ILOI.

Fig. 6: The field output stage.
for the burst filter while pin 38 is also the chroma input pin. The IC's 'official' brightness control pin is pin 42: beam current limiting is applied here, also to the contrast control pin.
The luminance signal is finally fed via an open-emitter buffer stage to output pin 22 - by open-emitter we mean that the emitter load resistor is an external component, RV25. There is also a further, external emitter-follower buffer transistor here, TV05, which provides current amplification and impedance matching to the RGB matrixing stages. On-screen display (OSD) blanking is also applied to the base of TV05, to insert a rectangular black box for the graphics. The OSD blanking originates at pin 25 of the microcontroller chip, and is shaped by the circuitry around TR02 and TR13 to enhance the edge sharpness.

Colour Decoding

$\amalg 01$ also incorporates the PAL colour decoder, which operates in the conventional manner. The chroma input is at pin 38. Pin 34 provides an output to the chroma delay line circuit which in turn provides $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ inputs at pins 27 and 28 respectively. The $4 \cdot 433 \mathrm{MHz}$ crystal is connected to pin 32.
The only slightly unusual thing here is the origin of the pulses for the ident switch. They are obtained from the heater winding on the line output transformer and fed via $\mathrm{CP} 61(1 \mu \mathrm{~F})$ and RP46 ($39 \mathrm{k} \Omega$) to pin 26, where they are fed to a flip-flop circuit.

More ILOI Functions

L01 also contains the 6 MHz FM sound detector, volume control and audio preamplifiers stages, with output at pin 4, and the sync and field timebase generator system, see Fig. 5.

The heart of the sync and field timebase generator section is a voltage-controlled 500 kHz crystal oscillator - the crystal is connected to pin 14. Division by 16 then 2 provides line-frequency $(15.625 \mathrm{kHz}$) pulses at pin 20 . We will see how these are used when we come to the Wessel circuitry. The sync separator receives a video input from the collector of TV04 at pin 44. It provides a sync pulse output to the field sync integrator at pin 43 and in addition feeds pulses to the comparator stage. This also receives the line-frequency pulses, generating an output to control the VCO. In the absence of a video input at pin 44 the receiver will free-run at frequencies very close to normal. The sync output at pin 43 is also fed to pin 36 of the microcontroller chip to control the OSD.
The integrated field sync pulses return to IL01 at pin 45 , where they are applied to a trigger circuit which resets a divide-by-625 counter. This in turn restarts a ramp generator connected to pin 16. CF08 is charged via JP41 from an internal current source to produce the ramp. Linearity feedback from the field output stage is applied to the junction of CF08 and JP41. The linear ramp is fed to a driver stage which also receives feedback for height control at pin 17. The field drive output appears at pin 18.

The Field Output Stage

An LA7830 chip is used in the field output stage. As usual with such devices, it contains a drive amplifier, an output stage and a flyback boost circuit - see Fig. 6. A 22 V supply that's derived from the line output transformer is fed to pin 6. This is inadequate to produce the flyback, hence the boost circuit which operates as follows, see Fig. 7.
A pulse drive is applied to the bases of transistors Qf and Qs. During the scan period Qs is held conductive and boost capacitor C charges via D from the 22 V rail. During the flyback period Qf is switched on and Qs switches off. The 22V supply thus appears at the negative plate of capacitor C ,
which retains its 22 V charge, and diode D switches off. The supply to the output stage is now approximately 44 V - the 22 V supply plus the charge across C . In the TX805 circuit C is CF09 $(100 \mu \mathrm{~F})$ and has a 680Ω resistor in series (JP20) to provide current limiting.
DC can be fed to the scan coils to provide shift adjustment. A three-position switch gives either no shift, slightly upwards or slightly downwards shift selection.
Protection for the field scan coils is provided by transistor TF01. Should the field scan coupling capacitor CF01 go short-circuit, a negative voltage will be developed across RF01. This will forward bias TF01, applying the negative voltage to the protection (PROT^{\prime}) line. This line is connected to the base of TR07, whose role is described below.

Signal Output Stages

The RGB and audio output stages are quite conventional. Colour-difference signal and luminance signal matrixing is carried out by the BC546A transistors TV101/2/3 on the main panel: they receive colour-difference signals at their bases and the luminance signal at their emitters, where the RGB OSD signals are also applied. TV101/2/3 drive the emitters of the BF422 RGB output transistors on the tube base panel.
The complementary-symmetry audio output stage (a pair of pnp/npn transistors, TA03/4) delivers 1.5 W to the 16Ω speaker. TA05 is connected between the bases of the audio output pair to stabilise their operating points. Bootstrap feedback is applied to the driver transistor's load circuit.

The Microcontroller Chip

The dedicated microcontroller chip IR01 fulfils several functions: it decodes the infra-red remote control commands and the front panel key operations; it supplies onscreen graphics to accompany operation of the receiver controls; it provides pulse-width modulated outputs for brightness, sharpness, colour and contrast control; it provides audio muting; and it carries out channel selection using a phase-locked loop for tuning.
Fig. 8 shows the system control circuitry associated with IR01. When the set is switched on at the mains, LED DK01 lights and the 'LED2' supply (at the earthy side of DK01) appears at the collector of TR08, whose base is forward biased by RR50 and DR05. TR08's emitter then provides an output voltage for the microcontroller's power supply pin 42, via DR01, and the IR receiver's power supply pin, via RR91. This is the standby state, with IR01's on/standby pin 20 at 5 V .
When an on command is received, the voltage at pin 20 of IR01 falls to zero. This controlls the emitter of transistor TP12 in the power supply. It switches on, in turn switching TP11 on. The chopper/line output circuit then starts up. This circuitry will be shown in Part 2 next month.
When the mains supply is disconnected, there is no longer a voltage feed to the collector of TR08. TR08, zener diode DR04 and TR07 switch off, while TR06 switches on (CR20 is still charged). As a result, the 'start' line goes low. CR14 discharges, switching TR12 off momentarily. IR01's reset pin 33 goes.high for 1 msec , allowing it to store the user settings before the 5 V supply decays.
TR07 is normally on, being forward biased via DR04 and RR48. Thus TR06 is held cut off. As a result IR01's hold pin 34 and the start line, which is connected to the base of TP12 in the power supply, are in the high state. TR07's base is also connected to the PROT line. When this goes low; TR07 switches off and TR06 switches on. The start line goes low, switching off TP12 with the result that the receiver shuts down.
The PROT ${ }^{\prime}$ line is linked to TF01 (see above) and the excess-current detection circuit in the power supply. It goes

Fig. 7 : Operation of the field flyback boost circuit.

Fig. 8: System control circuitry associated with the microcontroller chip IROI.
negative when a fault is detected, overriding the bias via DR04. Thus TR07 switches off and TR06 switches on, with the results described above.
There's no mains switch at the front of the receiver, but a substantial rocker-type switch is fitted at the rear for mains switch-off if required.

Next Month

The main section of the receiver not so far touched on is the combined power supply/line timebase circuit. We will be dealing with it in the concluding instalment next month.

We wekome letters from our readers and try to publish as many as we can. You can send them fyped, handwritten, or on disc. Address them to the
Letters Edifor, Room 1302,
Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.

Electrical Safety

C.N. Cory (Letters, November) raised the subject of the electrical safety of consumer electronic products. It should be of concern to the general public and service personnel alike. Some reduction in the level of safety can be blamed on the effects of CENELEC harmonisation of the various European standards and the introduction of certain EEC directives. The main cause however is poor design and a lack of understanding of basic safety principles.

Products made by major manufacturers generally exceed the legal safety requirements by a good margin, but some products from Asia and other developing countries are downright dangerous. A good example is a pair of Chinese-made 'Multi-Media' speakers, in which the only insulation between the live mains supply and the audio connectors was the varnish on the transformer wires!

All electrical products sold in Europe and the UK are covered by The Low Voltage Directive, which requires the product to comply with the "essential" safety requirements of an appropriate CENELEC standard such as EN60065 (BS415). It's up to the manufacturer or importer to decide which parts of the standard are "essential", and the company can then self-certify its product(s) if it thinks that they comply. This is obviously open to abuse.

Reputable companies normally

Letters
have their products tested by an independent test house to ensure that they comply with the whole of the relevant standard, and will also have a good quality-control system in place. Organisations such as BEAB in the UK, TÜV in Germany and UL in the USA also offer an approvals and production monitoring service. This ensures that a high safety level is maintained.
Unfortunately there is no compulsion in Europe to join such schemes.

So why are modern TV receivers designed without earthing or aerial isolators? The EN60065 safety standard accepts either Class I construction, with an earthed chassis, or Class II construction, with double insulation. There are several reasons why only Class II is in practice used.

John Woodgate's letter
December) pointed out a problem in Germany, with circulating currents that can melt aerial leads. This is because of the widespread use of TN-C or TN-C-S mains supply systems, with a combined neutral and earth that can float above 'true earth' by a significant amount. When a TV set is connected to a communal aerial system which is grounded to 'true earth', or to another part of the supply system at a different earth potetial, high circulating currents can arise.

Another problem in Continental Europe is the lack of a standard three-pin plug. The two-pin "Europlug" will fit any socket in Europe. There are at least seven different and non-compatible three-pin plug systems in use however, and the correct plug or adaptor would have to be supplied with each set. There are some combinations of plugs and sockets that can cause a potential hazard, such as exposed pins or no earth connection.

The other factor that affects the design of sets is the EEC directives. One requires that all mains-powered sets are fitted with a scart (Peritel) socket. Because of this the designer has to use an isolated, non-live chassis (it would be very difficult to
isolate all the signal and switching connections if the chassis was live).

The EMC directive also imposes restrictions on the mains cable and aerial socket. For reasons of safety EMC filters, whether part of the chassis or incorporated in the mains plug, usually don't filter the earth conductor. Computer monitors are usually earthed, and it is surprising how much interference can travel down the earth lead unless expensive countermeasures are taken.

The aerial socket must pass the aerial immunity test, which means that it must be located close to the tuner and that any aerial isolator unit is well screened. The easy way to guarantee compliance is to use a tuner with an integral aerial socket. J.R. Allison,

Bradford, West Yorkshire.
I am encouraged by John Woodgate's response (December) to my letter (November) and hope that other influential readers have taken note. I can now report on developments since I originally wrote to you.

In the first receiver the degaussing coil had been tightly tiewrapped to the CRT rimband. When the tie-wraps were cut, it was found that the PVC tape on the coil bore deep grooves made by the tiewrap's ratchet profile and that cuts had been made by the sharp metal edge. The outcome of this method of construction is inevitable, bearing in mind the enegetic vibration of the coil each time the AC mains supply is applied. In this case a static test during manufacture is clearly irrelevant.The aerial socket was not isolated, which was one of the concerns raised in my first letter.

The retailer has replaced the receiver with a brand new model of the customer's choice. I have been told that the defective set is now being investigated by Trading Standards officers. The importer does not have BEAB approval for his TV sets; and I was surprised to learn that this is not mandatory. The importers are reluctant to discuss the matter - I have still had no writ-
ten response from them.
The second receiver was exactly as John Woodgate predicted, the problem being caused by faulty reassembly following a cabinet change. It is unlikely that we will be able to trace the person responsible, though this is being attempted. I shall certainly in future inspect the degaussing coils in all sets brought to me for repair.

There is quite a lot of exposed metalwork involved in this case. The TV set's loop aerial, a metalcased aerial changeover switch, and of course the aerial plugs/sockets in the system. Don't forget that the covers of VCRs and satellite receivers are usually metal and are connected electrically by springs or contact-screw arrangements to the chassis and aerial socket. The customer mentioned that her daughter had reported receiving a tingle from the VCR. I still get a knot in my stomach when I think about it.

If an aerial cable melts because of an earth loop, this surely indicates that there is a serious installation problem. It should not result in us throwing away our safety earth.

The isolation provided by a
mains or chopper transformer is bypassed by the degaussing system, to which equal importance must be attached. If there are two insulated paths in parallel and failure of either can result in a lethal hazard, is the product really double-isolated?

I see no reasonable excuse for the use of non-isolated aerial sockets. All the TV sets in my workshop have been fitted with simple ferrite transformers. At UHF these are small, virtually lossless, simple to make and of little cost.

Finally, in my experience coincidences regularly occur. This is however the first time I've lost sleep over one.
Chris Cory, T.Eng., MIQA,
Tekelex, Thatcham, Berks.

Microwave Oven Problem

The following problem caused us so much trouble that I think it's worth a mention. It involved a Thorn Multiwave MH1080 microwave oven with twin halogen grill. When it was plugged in the cavity light came on, also the magnetron cooling fan which ran continuously. A time could be entered, but there was no response to the start button.

We had no service information, so a lot of time was spent on finding the cause of the fault: the $1 \mathrm{M} \Omega$ resistor R6 on the power PCB was open-circuit. It's connected to the lower latch switch, and tells the microcontroller chip whether the door is open or closed. When R6 is open-circuit the oven assumes that its door is open, disables the cook button and turns the fan and light on. Michael Dranfield,
Buxton, Derbyshire.

Doming

I was recently asked to look at a Panasonic TX212V TV set, the problem being very bad purity at the centre of the left half of the screen. It seems that the tube's shadowmask is buckled. A note written by another service engineer said the fault is "doming". He suggested keeping the contrast and brightness at minimum to prevent overheating the shadowmask. Shouldn't the beam limiter have prevented this? It seems that a lot of work has already been done on the set. Any comments?
Jim Littler, Wigan, Lancs.

Is looking for . . .
 ICs TRANSISTORs SEMIs an up hill struggle?

A phone call to us could get a result. We stock a very wide range . . . and with a World-wide database at our fingertips we are able to source even more. We specialise in devices with the following prefix (to name but a few): 2N 2SA 2SB 2SC 2SD 2 P2s

 BUW BUX Pry BUZ CA CD CX, XA DAC DG DM DS DTA DTC dar GM HA HCF HD 户̈fer ICL icM IRF J KA KIA L LA LBLCCLD LF LM M Meg MA MAB MAX MB MC MDA J M Je mar.MM MN MPS MPSA PSH MPSU MRF NJM NE OM OP PARAL PIC PN RG S S^{3} AA SAB SAD SAJ SAS SDA SG Si SL SN 80 STA STK SVR STRD STRM STRS SVI T TA TAAYAGTBA TC TCA TDA TDB TEA TIC TIP TIPL TEA TL TLC TMR TMS TPU U UA UAA UC UDN ULN UM UPA UPC UPD VN X XR Z ZN ZTX + others.
We can also offer equivalents (at customers'risk). We also stock a full range of other electonic components. Mail, Phone, Fax, Credit Card orders \& callers welcome

P.V. TUBES

104 ABBEY STREET, ACCRINGTON, LANCS. BB5 1EE Tel: 01254 390936/236521 Fax: 01254395361
TRADE COUNTER OPEN MON-FRI 9-5. SAT 9.30-12 NOON. CLOSED ALL DAY WED. Piense add VAT 17.5% to all prices. We accept payment by cheque, Cash, Access, Visa. Add $£ 2$ pp for orders up day we receive your order If we nee out of stock we will inform you ASAP. Plense allow up to 28 days delivery

PV Tubes has been established for $20(0)$ years and has supplied the TV and electronics trade with components and service aids since il began. In a continuing effort to maintain the industries requirements it is our intention to make available an increasing range of specialised service aids and skills. The PV1 multi-purpose degaussing coil is an example of our commitment to supply quality product at competitive prices. The PV1 degaussing coil is intended for use with a 240 v mains supply, although a 120 v version is available upon request. This compact and cost effective unit will have major interest to TV Service Departments, TV manufacturers, TV Sales and Rental Companies, TV Broadcasting Authorities, Universities and Colleges, The Armed Forces, Aviation and Computer Companies. Specialised degaussing systems can be designed and manufactured to suit specific applications within many enginecring environments. As part of the strategy in supplying specialised skills within the electronics industry, we are able to offer design, consultancy, and manufacture of electronic products, specific to those larger customer requirements.	SILLY CLEARANCE SALE THE FOLLOWING PARCELS ARE OFFERED IN COMPLETE LOTS AND ARE ALL SUBJECT TO AVAILABILITY UNTIL FEB 28TH 1998
IF WHAT YOU NEED I	

Long-distance Television

Terrestrial DX and satellite news and reception, the Hot Bird 3 line up, 1998 meteor shower dates and a Band I notch filter design. Roger Bunney reports

The main event during November was the Leonids Meteor Shower peak on the 17 th. When I checked early in the day I found that Band I, particularly ch. E4, was very active, with many signal pings and some more sustained reception. Signals from Scandinavia predominated, with PM5534/44 test patterns alternating and floating with each other. It was not unlike a minor Sporadic E opening, though less intense.

As I had to leave for work I was unable to continue monitoring Band I. Subsequently Cyril Willis (King's Lynn) commented that the Leonids event "wasn't as good as expected". He received an SpE signal in ch. R2 at 1035 that day.

Peter Schubert (Rainham) laments the poor conditions during the month. Apart from his usual ch. E4 reception from Lopik, the Netherlands, he had no tropospher-

CNCT - Rabat received via Eutelsat. Photo from John Locker. ic reception. SpE reception was limited to an unidentified signal on the 8th.

In all, a very poor month for ter-

restrial DX-TV reception.
Down under, on November 7th Robert Copeman (Victoria) logged a ch. C1 signal (49.75 MHz vision carrier) during the period 19101950 local time. As no other signals were present, this suggests TE (transequatorial skip) rather than multi-hop SpE reception. On the theme of TE and the increasing solar activity, Six News reports several cases of cross-equator signal hops, mainly northwards to the Mediterranean area. As yet, the density of F2 layer ionisation has not been sufficient for signal reflection to the southern UK, but hopefully we'll see traces of ch. E2 signals from Ghana/Nigeria/Zimbabwe during the early evening period sometime this winter.

As solar activity increases with the start of the new cycle, check for flares and other disturbances. On November 6th for example there was the fourth largest flare ever recorded, leading to signal fadeouts and other problems over the following two-three days. It's always worth checking 27 days later, when the sun has rotated, to see whether more solar radiation produces further effects such as an aurora.

Satellite Sightings

Despite the increased use of digital transmission, there has been an upsurge of analogue signals from the satellite belt. You often find anything up to four clear analogue Ku -band feeds via Intelsat K ($21.5^{\circ} \mathrm{W}$) east-bound to Europe. PAS-3R $\left(43^{\circ} \mathrm{W}\right)$ is another favourite for analogue reception. There was a lot of transatlantic activity during late November, thanks in part to spectacular skiing reports from British Columbia. The
snow-clad slopes of the Rockies look fantastic. Sports feeds for Europe were noted via both PAS3R and K. Identifications indicate that several uplink companies were active at a number of sites. For example on the 20th Sky Sports carried "BC - Park City" (via K) and on the 27th "PSSI NYBC Mammoth CA". I'm uncertain about the significance of the latter.

Did anyone see the "Shell Test" on November 12th at 0730 via Intelsat 803 at $27.5^{\circ} \mathrm{W}(11.680 \mathrm{GHz}$ vertical, with sound at 6.6 MHz)? I did, but had to leave for work before the transmission came off colour bars.

On November 21st the United Nations "Symposium on TV" from New York was carried in clear analogue form via PAS-3R (at $12 \cdot 64 \mathrm{GHz}$ horizontal). Some of the big guns of the broadcast TV world, including Dan Rather and Rupert Murdoch, presented their views. The programme consisted of recorded highlights from a TV Forum that lasted over a three-day period. Interesting that the 6.2 MHz sound carrier was in English and the 6.8 MHz one in Spanish.

Cyril Willis saw the Telethon on November 27th via Intelsat K (at 11.62 GHz horizontal - not the UK version but the "Armenian Telethon Fund '97'. Various presenters and a scrolling caption at the bottom of the picture provided details of the latest pledges. The carrier ceased abruptly at 2000 hours: little charity from Intelsat!

I hope some of you manage to see the 1997 SatFest, a veritable feast of informal and informative TV on satellites and broadcasting. Line up and rehersals are to be on January 16th, followed by program-
ming from 0900-2100 during the next two days via the newlylaunched Sirius 2 satellite at $5^{\circ} \mathrm{E}$ (it's a high-power satellite). SatFest (Satellite Festival) is organised by TESUG (01227 265 222) and is supported by most satellite operators, equipment makers and broadcasters.

Dean Rogers (Abbeywood, London SE2) watched most of the EEFA football cup/champions league during late October via Telecon 2C and Eutelsat II F4. The European Cup Winners game was carried, for Channel 5, by Eutelsat II F3 $\left(16^{\circ} \mathrm{W}\right)$, in the clear from a snowy and freezing Norwegian pitch! Dean mentions that Sky Sports often uses the $11 \cdot 163 \mathrm{GHz}$ horizontal transponder aboard this satellite ($16^{\circ} \mathrm{W}$) for clear analogue feeds.

There has been a little more information on the sighting, mentioned last month, of unmanned surveillance aircraft via Intelsat 803. Roy Carmen comments that the type of aircraft, though slow, is almost impossible to detect and for missile systems to lock on to. They can also downlink information up to five times faster than conventional aircraft. My sightings were of a new type of aircraft however, not the American Bronco unmanned craft. Apparently satellite surveillance can now locate missile launch sites to within 6 mm of true grid!

So there's plenty going on in the analogue satellite world, even during quiet months.

Terrestrial News

UK: There have been thirty one applications from across the UK to operate Restricted Service Licence (RSL) TV stations. They range from single-town coverage to larger areas such as the Isle of Wight. Licence periods will be for either 56 days or two years. Decisions from the ITC are due in the spring. Hungary: Two commercial TV stations are now in operation. The first was TV2, Budapest, which came on-air in early October. It was followed a few days later by RTL Klub.
Denmark: The plan to sell off TV2 has been shelved for at least four years.
Mexico: TV Azteca plans to expand its network to Costa Rica, Nicaragua, Panama, the Dominican Republic, Honduras and Peru during 1998 and expand farther to Chile, Colombia, Ecquador and Venezuela by the year 2000. It now
claims over a third of viewers in Mexico itself and generated profits of nearly $\$ 300 \mathrm{~m}$ last year.

Digital TV

In the USA the FCC has announced the likely closure of all analogue TV services in the year 2007. The Harris Corporation has just transmitted a live digital outside broadcast, via terrestrial transmitters WHD-TV and WETA-TV in Washington. It's thought to have been a world first.

Sweden's Teracom has installed digital terrestrial broadcast transmitters (DVB-T) at Stockholm, Goteborg and Norrkoping. They should now be on-air with full-time broadcasting. Teracom started DVB-T tests back in 1995.

The European Union is discussing a timetable for the end of analogue TV transmissions across Europe. It seems likely that Brussels rather than individual European countries will decide on the analogue TV switch-off timetable. The idea is to ensure a smooth start to European digital transmissions.

Noich Filier

The fight against interference in Band I is never ending. Robert Copeman recently came across a filter circuit (see Fig. 1) on the

Fig. I: Bridged-T notch filter design for Band I, noted on the internet by Robert Copeman.
internet. The details provided there relate to US channels: the Video Media page originates in Florida, access being at
http://www.tvfilter.com/video-media/notch-dir/fkits-info

Otherwise the address is PO Box 93/6025, Margate, FL 33093, USA. Complete filter kits can be purchased at $\$ 20$ each one off (\$7 each in quantities of twenty plus).

The kit PCB is designed around F connectors. No component values are given. I suggest 120 pF for $\mathrm{C} 1 / 2,100 \Omega$ for R1 (miniature carbon preset) and 30 pF maximum for C3 (sub-miniature preset). Coil turns listed are 26 for ch. 2, 24 for ch. 3,20 for ch. 4,15 for ch. 5 and

14 for ch. 6, wound on a quarterinch coil former. Remember that these are US channels, i.e. ch. 2 is $55 \cdot 25 \mathrm{MHz}$. But C 3 should tune down to ch. E2, or rather the rubbish at 49 MHz . The internet details don't include performance figures. Let us know how you get on!

The Dr Dish TV programme which is broadcast on the second Friday of each month via Kopernikus 2 (28.5° E). Photo from John Locker.

-AC mains powered

f449.00

NEW 'BRDADCAST QUALTTY' MODEL NOW AVAILABLE WITH 8M BIT FHELD MEMORY AND S-VIDED TERMINALS f699 (SAE for details)

Unidentified
EBU feed via Eutelsat II F4 (7° E). Photo from John Locker.

Satellite News

Sirius 2 is now in orbit at $5^{\circ} \mathrm{E}$. It's a high-power satellite which is operated by GE Americom to provide analogue and digital TV transmissions to Europe. England is within the 50 dBW vertical footprint, which extends to the Black Sea in the east and from Germany in the north to Sicily in the south, the frequency coverage being $11 \cdot 747-12 \cdot 687 \mathrm{GHz}$. The horizontal footprint, with 55 dBW , is centred on Scandinavia, the frequency coverage being $11.727-12.729 \mathrm{GHz}$. The Swedish SVT International channel is one of the first that should be available, with programming that's a combination of material from the terrestrial SVT-1 and SVT-2 channels.

Eutelsat's Hot Bird 3 is now up and running. The transponder line up is shown in the accompanying table. Eutelsat has signed a contract to launch a fourth satellite in the W series: W4 is due to be in operation in early 1999 at $36^{\circ} \mathrm{E}$. The Eutelsat TDF2 satellite started TV transmissions from $36^{\circ} \mathrm{E}$ in November. Its SESAT craft is due to enter service at the same orbital position at the same time as W4.

Intelsat reckons that the 605 craft can continue to be used despite the intermittent/partial loss of telemetry. The fault relates to the pointing accuracy of the solar panels: since the satellite is built to spin upright, the panels receive constant solar illumination and the telemetry information is thus not essential.

Hughes Aircraft has produced a higher efficiency solar panel that's based on a twin-layer, dual-junction gallium arsenide solar cell. Its sun energy conversion efficiency is 21.6 per cent, which compares with the $12 \cdot 3$ per cent efficiency of a standard solar cell. The double-

Hot Bird 3 Transponders

No.	Frequency (GHz)	Channel	Type*
71	12.13026	MTV-2 (Hungary)	A
72	12.14944	TPS (France)	D
73	12.16862	Nethold Hellas (Greece)	D
74	12.18780	BT (UK)	-
75	12.20698	CME (Central Europe)	D
76	12.22616	German digital service	D
77	12.24534	MCM (France)	D
78	12.26452	German digital service	D
79	12.28370	ET1 (Greece)	A
80	12.30288	Slovenian/Croatian TV	D
81	12.32206	Polish digital service	D
82	12.34124	D+ (Italy)	D
83	12.36042	Polish digital service	D
84	12.37960	French digital service	D
85	12.39878	SSR (Switzerland)	D
86	12.41796	D+ (Italy)	D
88	TBA	D+ (Italy)	D
A $=$ analogue, $D=$ digital.			

layer cell fabrication can react selectively to long and short wavelengths.

Iridium has now launched 39 low Earth orbiting satellites - the eventual total (66) should be in service this autumn, providing global coverage.

The merger of Kirch and Bertelsmann has been completed: as a result, the DF1 and Premiere TV programme packages now operate as Premiere. Several Italian digital TV packages have merged: RAI, Canal Plus, Fininvest and Ceechi have formed a single digital system called Stream - the Telepiu name has been dropped.

Chinasat 8 is to be launched later this year, with 3637 W C band transponders and 16125 W Ku band transponders.

The digital Canal Plus Polska service is due to start in April/May. Rival Entertainment is expected to start in April.

Armstrong Electronics (Dublin) and Videocom (Boston, USA) have set up a digital TV link to relay Irish news and sports programmes to Celtic Vision's cable systems around Boston and New York five times a week. Israeli company Tadiran Scopus has provided the MPEG-2/DVB equipment.

The Gardiner stand-alone Ku band LNB is apparently to be discontinued: the company will continue to produce the LNBF, an LNB with a feed horn/polariser for an offset dish. The stand-alone LNB for prime-focus dishes required a separate polariser and feed horn.

Main Meteor Shower Dates - 1998

Our thanks to the British Astronomical Association, Meteor Branch, for the following 1998 MS details. Neil Bone, the director, thinks that 1998/9 could be a "big one" for the Leonids shower in November.

Shower

Lyrids
May Aquarids
Cetids
Delta Aquarids
Perseids
Giacobinids
Orionids
Taurids
Leonids
Geminids
Ursids

Overall period

April 19-25th
April 24th-May 20th
May 7th-June 9th
July 15th-August 20th
July 20th-August 20th
October 7-10th
October 16-27th
Oct. 20th-Nov. 30th
November 15-20th
December 7-16th
December 17-25th

Main peak

April 22nd
May 4-5th
May 14-25th
July 29th and August 6th
August 12th (late evening)
October 8th (late evening)
October 20-22nd
November 3rd
November 17th (about 2200)
December 13-14th
December 22-23rd

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline ELC EAST LONDON COMPONENTS AUDIO TELEVISION VIDEO \& \multicolumn{3}{|l|}{LINE OUTPUT TRANSFORMERS OVER 100 MODELS AT LOW PRICES} \& \multicolumn{4}{|l|}{VIDEO HEADS FROM 16.99 OVER 200 MODELS} \& \multicolumn{2}{|l|}{NIKKAI BABY 10 REGULATORS \(£ 11.00\)} \& DEGUSSING ROD
£29.99 \\
\hline 0181-472 4871 FAX:0181-503 5926 \& \multirow[t]{2}{*}{\[
\begin{array}{ll}
\hline \text { AKAA } \& \\
\text { CT2569E } \& 16.99 \\
\text { CT28992E } \& 16.89
\end{array}
\]} \& \multirow[t]{2}{*}{NEI 1451R NIKKAJ} \& 16.98 \& \({ }^{\text {An5512 }}\) \& \[
\begin{aligned}
\& 1.09 \\
\& 1.98
\end{aligned}
\] \& \multirow[t]{2}{*}{TDA15530 TDA15140} \& \& TAA72 \& 2.50
2.50 \& \multirow[t]{2}{*}{VHS ALIGNMENT TAPE} \\
\hline \multirow[t]{3}{*}{4 WAY UNIVERSAL REMOTE} \& \& \& \& \({ }_{\text {ANAS591 }}\) \& \multirow[t]{2}{*}{\({ }_{\text {12.98 }}^{12.98}\)} \& \& 3.99 \& TA7279 \& \begin{tabular}{l}
3.99 \\
3.75 \\
\hline
\end{tabular} \& \\
\hline \& \multirow[t]{2}{*}{} \& BABY
NT14
NTTO \& 10.99
10.99 \& \multirow[t]{2}{*}{\({ }^{\text {BA33928 }}\)} \& \& TDA15570 TDA1558 \& 1.70 \& TA7283 \& 2.75
3.00 \& \multirow[t]{2}{*}{BAND TRACKING, TAPE TRANSPORT, FM PICTU} \\
\hline \& \& \multicolumn{2}{|l|}{} \& \& \({ }_{4.90}\) \& TDA2005 \& 1.30 \& \& \begin{tabular}{l}
4.20 \\
3.80 \\
\hline
\end{tabular} \& \\
\hline nique illuminated \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{TLF14567 20.0} \& BA5410 \& \multirow[t]{2}{*}{\({ }^{3.50}\)} \& tionein \& \begin{tabular}{l}
1.70 \\
3 \\
\hline 80
\end{tabular} \& \({ }_{\text {TA8214 }}\) \& \({ }_{3}^{3.60}\) \& CURVE, AUDIO SYNC HEAD \\
\hline key (TV, VCR, SAT, \& \& TLF14568 \& 20.00
20.00 \& \& \& \({ }_{\text {T }}^{\text {TDA2052 }}\) \& \& TAB215 \& \& \multirow[t]{2}{*}{PLAYBACK SWITCHING} \\
\hline CD/HI \& 3114 T \& \& \multirow[t]{2}{*}{22.00} \& \({ }_{\text {BA6109 }}\) \& \& TDA2579A \& 2.80 \& - \({ }_{\text {TAB216 }}^{\text {TA8217 }}\) \& \[
\begin{aligned}
\& 4.28 \\
\& 2.28
\end{aligned}
\] \& \\
\hline \& ON8652 16.90 \& ¢ \& \& \multirow[t]{2}{*}{- \({ }_{\text {BA626219 }}\)} \& \begin{tabular}{l}
1.99 \\
1.90 \\
\hline
\end{tabular} \& TDA2653A \& \[
\begin{aligned}
\& 3.25 \\
\& 3.40
\end{aligned}
\] \& \& \[
\begin{aligned}
\& 7.60 \\
\& 8.090
\end{aligned}
\] \& \multirow[t]{2}{*}{\(¢ 39.99\)} \\
\hline Macro function key \& \begin{tabular}{ll}
Dr9476 \& 10.99 \\
DV9499 \\
\hline 16.99
\end{tabular} \& \multirow[t]{2}{*}{} \& \({ }_{28.00}^{22.00}\) \& \& (1.99 \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \({ }_{\text {TAB22 }}\) \& \& \\
\hline \multirow[t]{2}{*}{Mi procsor} \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{} \& \& \[
\begin{gathered}
2.99 \\
1.909 \\
\hline 109
\end{gathered}
\] \& \& \& \({ }_{\substack{\text { T }}}^{\text {TA8227P }}\) \& \& \\
\hline \& \& ¢ \& \& \({ }_{\text {BA6247 }}\) \& 3.00 \& \& 3.09
20.00 \& \multicolumn{2}{|l|}{} \& \multirow[t]{2}{*}{GENERATOR} \\
\hline 24 bit processor \& \({ }_{T \times 90}\) \& \multirow[t]{2}{*}{GRIAX GR2.2AA} \& 18.09
18.90 \& cNX62A \& \& \({ }_{\text {PAAL30298 }}\) \& \& TDA3560 tDA3561 \& 3.25 \& \\
\hline Ergonomically \& T1100 \& \& 22.00 16.9 \& \& 1.98
1.09 \& STK465 \& \[
10.00
\] \& \& 3.99 \& Colour bar, Cross hatch, \\
\hline \multirow[t]{2}{*}{Ergonomically designed keypad} \& \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{\({ }_{\substack{\text { CNT65 } \\ \text { HA11423 }}}\)} \& 1.99 \& STK4121111 \& \({ }_{\text {e. }}^{8.50}\) \& \multirow[t]{2}{*}{TDAS340} \& \multirow[t]{2}{*}{3.90} \& \multirow[t]{2}{*}{Staircase. COMPACT PORTABLE} \\
\hline \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{\(\underset{2.28}{\substack{\text { 2.29 }}}\)} \& STK4131"11 \& \({ }_{8}^{6.50}\) \& \& \& \\
\hline designed keypad \& \& \& \& HA13001
HA13108 \& \& STK414111 \& \& \& \begin{tabular}{l}
1.70 \\
1.09 \\
1.09 \\
\hline
\end{tabular} \& £84.99 only \\
\hline \multirow[t]{2}{*}{Replaces up to 4} \& \({ }_{\text {coldar }}^{2482}\) \& \multicolumn{2}{|l|}{CTIA9TXA \({ }^{\text {SAMSUNG }}\)} \& HA13117 \& \({ }^{3.00}\) \& \multirow[t]{2}{*}{STK4141 Vil} \& \& tDAA550 \& \multirow[t]{2}{*}{li.99
3.29
c.} \& \\
\hline \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \& \& \& \multirow[t]{2}{*}{\begin{tabular}{l}
2. 2.00 \\
0.00 \\
\hline .00
\end{tabular}} \& \multirow[t]{2}{*}{TDA4505E} \& \& \multirow[t]{2}{*}{Capacitance Meters Capacitance Meter PG015} \\
\hline remore conrols \& \& \& \& HA13119
HAI3128 \& \({ }_{4.99}^{2.99}\) \& STK4151 II STK4152 \& \& \& 4.09 \& \\
\hline hild security feaur \& \multirow[t]{2}{*}{} \& SANYO \& \[
\begin{aligned}
\& 16.08 \\
\& 22.00
\end{aligned}
\] \& HA13130 \& 18.99 \& \& \({ }_{8.50}^{8.00}\) \& TDA4600 \& 1.09 \& \multirow[t]{2}{*}{} \\
\hline Child security feat \& \& \multirow[t]{2}{*}{SHARP} \& \& \& 14.89 \& STK417 \& 9.00 \& TOAA605 \& \({ }^{2.90}\) \& \\
\hline \multirow[b]{2}{*}{Fastext/teletext} \& \({ }_{\text {GRUNDIG }}^{\text {Nranc }}\) \& \& 31.00 \& \& 2.99 \& STK \& \& TTA4950 \& \({ }^{1.09}\) \& \multirow{3}{*}{,*} \\
\hline \& CuC2401
CUC3900
21.50 \& OV54015 \& 16.99
20.00 \& La4 \& 3.99 \& STK54 \& 7.00 \& TDAB 138 \& 3.98 \& \\
\hline 012.99 \& \& SoNY \& \& LA \& 2.28
2.60 \& STK \& 8.80 \& TDABAB \& \({ }_{2.89}^{3.89}\) \& \\
\hline 41299 \& \({ }_{\text {CT20日 }}\) \& KV2096ub \& \({ }_{18}^{16 .}\) \& \& \({ }_{2,09}\) \& STK72 \& 8.00 \& TDAB \& \({ }_{7.80}\) \& \\
\hline \& H/T \& \({ }_{\text {KV21x }}\) \& \& \& \(\stackrel{1.00}{1.00}\) \& STK730 \& 4.80 \& TDAB175 \& \({ }_{2.89}\) \& \\
\hline REPLACEMENT REMOTE \& \begin{tabular}{ll}
C2114T \\
\({ }_{\text {C218T }}\) \& 24.09 \\
\hline 8.09
\end{tabular} \& \({ }_{\text {kV2252 }}\) \& \& \({ }_{\text {L La46 }}\) \& 2.89 \& STK7348
STK73605 \& \({ }_{12.90}^{4.50}\) \& \({ }_{\text {TDAB177 }}\) \& \({ }^{3.50}\) \& \\
\hline CONTROLS FROM £5.99 \& \({ }_{\text {C2118226 }}\) \& KV27X \& \& La447 \& 2.09
2.99 \& STK73410 \& 8.99 \& \({ }_{\text {TIAAB179 }}\) \& 7.29 \& n accurate, capacitance meter \\
\hline \& \({ }^{\text {C2558T }}\) \& \({ }^{\text {KV27664 }}\) \& 18.9 \& Lats \& 2.09 \& STR42 \& 8.89 \& TDAB3 \& \({ }_{\text {cose }}^{10.00}\) \& ery wide range. \\
\hline ELC EAST LONDON COMPONENT \& \begin{tabular}{ll}
CPT2158 \\
\hline 18.09
\end{tabular} \& kvox \& 16.98 \& LA449 \& 3.98 \& STRG620 \& 4.50 \& тоАвз \& 2.80 \& \\
\hline 63 PLASHET GROVE, EAST HAM, \& \& KVM21 \& 16.98 \& \& 2.809 \& STR10006 \& 6.00
0.00 \& TEA103 \& \begin{tabular}{l}
1.09 \\
1.00 \\
\hline 100
\end{tabular} \& \({ }_{\text {C29.89 }}\) \\
\hline LONDON E6 1AD. TEL. 0181 \& \& KVX254 \& \& LA4S \& 2.09 \& STR50020
STR50105 \& \({ }^{8.80}\) \& TEA20 \& 1.98 \& \\
\hline LONDON E6 1AD. TEL: 0181-472 4871 \& \& \(\times 1 \times 29410\) \& \& La470 \& 10.00 \& STT54041 \& 0.80 \& TEA2031 \& 1.80 \& Transparent Service/Cassette \\
\hline two minutes walk from Upton Park Tube Station
visr our Shop \& \& \({ }_{\text {Treshiba }}\) \& \& LA7800
Li780 \& \({ }^{1.80}\) \& STR58041 \& \({ }^{8.50} 8.80\) \& TEA2, \& \({ }^{2.09}\) \& 50 Pwnty \\
\hline VISTT OUR SHOP \& ST3
T 3 S37 \& \({ }_{140078 \mathrm{~T}}\) \& \({ }_{16,09}^{20.00}\) \& \({ }^{\text {La783 }}\) \& \({ }_{1.98}^{1.05}\) \& STRM6545 \& \({ }^{10.00}\) \& TEAR260 \& \({ }_{2.09}\) \& \\
\hline PEN MON-SAT 9AM-7 \& \({ }^{\text {NSC }}\) \& 1433548 \& \& La78 \& 3.90
3.90

ar \& STRD1706 \& 7.99 \& ${ }_{\text {TEA2251 }}^{\text {TEAS }}$ \& ${ }^{2.99}$ \&

\hline 100's OF TOOLS, COMPONENTS \& C2IENE 16.00 \& +1455782 \& ${ }^{20.00}$ \& LA7839 \& 3.00 \& STRD1816 \& 8.09 \& TLP62t \& $\stackrel{\text { 2.00 }}{ }$ \&

\hline INSTRUMENTS, REPAIR KITS, \& ART 1.18 .009 \& \& | 18.99 |
| :--- |
| 20.00 | \& ${ }_{\text {LiA7833 }}^{\text {LA783 }}$ \& 2.99

2.90 \& STRD420 \& ${ }^{6.00}$ \& UC3842 \& 1.89 \& (era Mains Switch

\hline BOOKS \& CABLES TO CHOOSE FROM \& PROFIS 2816.09 \& ${ }_{2151588}$ \& 11.90 \& LА7838 \& ${ }_{6.09}^{2.09}$ \& STRD5541 \& 7.09 \& UPC1288 \& ${ }_{3.08}$ \& lora Mains Swit

\hline ADD £1.50 P/P + 17.5\% VAT \& matsul \& ${ }_{\substack{221448 \\ 2812085}}$ \& 30.00
30.00 \& \& ${ }_{8.50}^{2.89}$ \& STRDS008 \& 8.00 \& UPC12988 \& ${ }^{3.90}$ \&

\hline ll goods despatched same day \& \& ${ }_{\text {AT207e/25 }}$ \& 30.00 \& tabiolan \& ${ }_{2}$ \& STRD6202 \& 7.99 \& UPCT1335V \& 8.98 \&

\hline PRICES SUBJECT TO CHANGE WITHOUT \& ${ }^{\text {MTISUBISHI }}$ \& ${ }_{\text {ATT2079/123 }}$ \& ${ }^{16.909}$ \& ${ }_{\substack{\text { a }}}^{\text {TAAB7 } 18}$ \& ¢, \& ${ }_{\text {TAB211 }}^{\text {TARS205 }}$ \& 3.80
2.60 \& ${ }_{4}^{4 P C C 1379 C}$ \& 2.28
1.80 \&

\hline NOTICE VISA ACCESS ACCEPTED. \& CT2146LM 16.00 \& AT2079/40 \& 16.09 \& toaissea \& ${ }_{6.98}^{2.80}$ \& TAB210 \& 3.60 \& UPC1488 \& 2.80 \&

\hline MIN ORDER ES.00 \& $$
\begin{aligned}
& \text { TDA81 } \\
& \text { REPLACEMEN }
\end{aligned}
$$ \& \& \& E TESTER \& \[

$$
\begin{aligned}
& \mathbf{8 1 4 . 9 9} \\
& \mathrm{R} \text { KIT } \mathrm{E}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { PT TESTEF } \\
& \hline 9 \text { MICRO }
\end{aligned}
$$

\] \& \[

R £ 29 .
\]

OWAVE \& FREQUEN K DETEC \& $$
\begin{aligned}
& \mathrm{CYCOU} \\
& \mathrm{OR} \mathrm{\varepsilon},
\end{aligned}
$$ \& SOR C89 SOLDERING STATION E80.00 99 DIGITAL MULTIMETER FROM $£ 8.99$

\hline
\end{tabular}

MARAPET ELECTRONIC COMPONENTS Tel: (01452) 532253 Fax: (01452) 549514

QUALITY SPARES for the CONSUMER ELECTRONICS SERVICING TRADE THIS IS JUST A VERY SMALL SAMPLE OF OUR STOCK. We can supply spares for a vast range of Makes \& Models. Please contact us with your requirements, we'll be pleased to offer a 'PRICE \& AVAILABILITY'. Many General Components and obsolete Home Computer Spares also available. Telephone or write for a Selected Spares Guide.

REMOTE CONTROLS
AMSTRAD SRD5 $10 / 520 / 600 \cdot$ Replacement ANSTRAD SRD5 10/520/600. -
GEC V4001HN4005-Genuine ITT IFB-13-14-15-Replacement Many other Genuine and altemative types avaliable P.O.A. TV FLYBACK TRANSFORMERS FERGUSON TX90 90 (RED SPOI) FERGUSON TX100 51CM FST We can supply many other LOPTX's, for ALBA \& $£ 16$ EKO through to TOSHIBA \& ZANUSSI. Please supply model mo and full information from original par SELECTED VIDEO HEADS ANSTRAD TVR1NCR4500/5200 FISHER FV HP420/615/720/721/722 GOLDSTAR GHV12XX seri
SHARP VC381 to VC388
These are quality heads - Phone for models not shown

7 VIDEO PARTS UNAVAILABLE ? TOO EXPENSIVE ? SECOND HAND PARTS TESTED \& GUARANTEED

 (Complete boards, head motors, loading motors, capstan motors, mechanisms, panels, etc.) CALL/FAX 01349884804 EASI-SPARES (at RADCOM UK) 10 Averon Road, Alness IV17 OPT Overseas customers welcomeWhen calling, please quote any numbers on the part itself, as this will help us locate the right part or any equivalents
Payment by cheque with order (no credit cards) to RADCOM; prices on application plus p\&p for all orders. Email on user@wardrop.dial.netmedia.co.uk

SATHELITE RLOWHOWH \checkmark INSTALL DIGITAL RECEIVERS! \checkmark GET SATELLITE IN ALL ROOMS! \checkmark FIND ALL THE SATELLITES! \checkmark DESIGN YOUR OWN SYSTEMS!

THIS 800K IS SO GOOD THAT WE WILL REFUND ITS FULL COST IF YOU ARE NOT TOTALLY SATISFIED. WITH IT IN EVERY WAY!

Some of the contents of Satellite Know How!

Geostationary Satellites, Footprints and
Frequencies
Geostationary orbit, orbital velocity, broadcast satellites, transponder configurations, EIRP footprints, downlinks, transponder plans, launch sequence, geostationary orbit conditions. centripetal force, Universal Gravitational Constant, sub-satellite positions, geo-arc.
Techniques, Knowledge and Skills
Downlink, azimuth and elevation, latlong, site survey, magnetic corrections, polarisation offset, waterproofing, sparklies, dish size, set-ups, tracking geo-arc, polar elevation angle, declination, apex angle, correction modifier, inclined orbit, solar transit, finding true south, angle setting, actuators, actuator triangulation, lateral alignment, offset angle, troubleshooting, subcarriers, universal LNB, satellite switching, multi-focus dish, DiSEqC switch. Signals, Dishes, Cables and Connectors C and Ku Band, twin and dual LNBs, noise, OMT, polarisers, polarisation offset, satellite cant angle, parabolic antennas, offset focus,
centre focus, primary and secondary feed dishes, dish beamwidths and gain, cables, cable attenuation, dish fixing systems, types of mounts, wind loading on $\mathrm{H}-\mathrm{H}$ dish mount.
Installing Digital Receivers, SCART,
Distribution and Peripherals
Indoor units, IRD receiver, VideoCrypt technique, Macrovision copy protection, connectors, UHF loop-through, SCART, digital and analogue receiver, UHF distribution system, IF distribution, extended remote control, two-channel viewing \& recording, installation checklist, dB ratio table, glossary of terms, analogue worldwide TV systems, satellites above horizon, link analysis, dual feed tables, dish gain dual feed tables, dish gain, temperature conversion tables. And more...
SBN 1872567126
 Postage:UK: £3 Europe: £5 R of W: £10

17 Pittsfield, Gricklade, Wilts, SN'G 6AN, England Tel 44 (0) 1793750620 Fax 44 (0) 1793752393
 $3121 / 13$ (normally $£ 20$) This PC software (worth (20) calculates the magnetic correction angle required for anywhere on Earth... exactly to the day! li's yours FREE but only when you order it with the Sateliite Know How! book @ E22. Subject to availability

P.O. BOX 142 , NOTTINGHAM, NG9 3RX, ENGLAND

Tel: +44 (6$) 1159320152$ Fax : +44 (6)1159444004 E-Mail : tony@iche.com WEB SITE: http://www.iche.com

MONITOR PROCESSOR ICs: ZILOG: UX051B311Z, z@8662の4PSC etc. TOSHIBA : UX663B219B,etc. MOTOROLA XC86224B, etc. IBM PLUTO14/15-A/C

"MONITOR WIZARD II" COMPUTER MONITOR PATTERN GENERATOR

Answer to Test Case 422

- see page 241 -

Before we proceed any further, Sage wishes it to be known that he has some goods for disposal: the three bottles of red wine that remain, a slightly worn but perfectly functional ACE head suitable for a Toshiba V411, and a faulty IC that was the real cause of the trouble with the VCR. Offers to Resident Workshop Sage Esq., Test Case Workshop, c/o Television magazine!

You cannot monitor the control pulses at the ACE head during playback - they are of too low amplitude for a conventional oscilloscope. So Sage checked them at output pin 11 of IT10, the U2561B control-pulse amplifier chip. He found a nasty waveform here. It looked as if mains hum was superimposed on the squarewave control-pulse signal. He decided to check the voltage at the chip's supply pin (Vcc, pin 20) to see whether it was of correct amplitude and smooth. It was. He also checked the decoupling capacitor CT18 in the CTL return line. It was OK, likewise the two resistors associated with the chip's input pin 8.

The obvious conclusion was that IT10 was faulty. This was confirmed by fitting a new U2561B IC, after which the Toshiba V411 worked perfectly. It all goes to show that you should never jump to conclusions, no matter how many times you've known a symptom to be caused by a particular component.

NEXT MONTH IN TELEVISION

PC Piffalls

Work on PCs can provide a useful source of extra income for the service engineer. One possible line is carrying out PC upgrades. It may be thought that this is simply a matter of fitting parts and installing drives, but there are many pitfalls that can result in wasted time and money and a poorly performing PC. Colin McCormick describes some of the problems he has encountered.

Servicing the Toshiba 2505/2805DBT

John Coombes provides a fault-finding guide.
VCR/CCTV Trigger Timer
Closed-circuit TV equipment for basic surveillance is now readily available and cheap. But the ability to record events using a time-lapse VCR is still very expensive. To resolve this problem, Ian Rees has devised a way of using an ordinary domestic VCR to record short bites of scenes. The recording process can be triggered by sensors.

The Wessel Circuit

The idea of the Wessel circuit is to simplify design: a single switching transistor acts as both the chopper and line output device. But the control arrangements can be quite complex. J. LeJeune on the basic circuit and its implementation in the TX805 chassis.

TELEVISION INDEX/DIRECTORY AND FAULTS DISCS

 PLUS HARD COPY INDEXES \& REPRINTS SERVICE
INDEX DISC

Version 6 of the computerised index to TELEVISION magazine covers Volumes 38 to 47 (1988-1997). It has thousands of references to TVNCR fault reports and articles, with synopses. A TVNCR spares guide, an advertisers list and a directory of trade and professional organisations are included. The software is easy to use and very quick. It runs on any IBM or compatible PC with 640K RAM and a hard disc. Price $£ 35$ ($3.5^{\prime \prime} \mathrm{HD}$, alternatively 3.5 DD ") Those with previous versions can obtain an upgraded version for $£ 15$. Please quote the serial number of the original disc.

FAULT REPORT DISCS

Each disc contains the full text for Television VCR, monitor, camcorder, satellite TV and CD fault reports published in individual volumes of TELEVISION, giving you easy access to this vital information. Note that the discs cannot be used on their own, only in conjunction with the Index disc: you load the contents of the Fault Report disc on to your computer's hard disc then access it via the Index disc. Fault Report discs are now available for

> Volume 38 (November 1987 - October 1988); Volume 39 (November 1988 - October 1989); Volume 40 (November 1989 - October 199); Volume 41 (November 1990 - October 1991); Volume 42 (November 1991 - October 1992); Volume 43 (November 1992 - October 1993); Volume 44 (November 1993 - October 1994); Volume 45 (November 1994 - October 1995); Volume 46 (November 1995 - October 1996); Volume 47 (November 1996 - October 1997).

Price $£ 15$ each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime} \mathrm{DD}$ if required).

NEW - FAULT FINDING GUIDE DISC

This disc is packed with the text of the TELEVISION Test Cases, What a Life!, Service Briefs and other vital fault finding information. It is accessed via the Index disc. Price £15 each ($3.5^{\prime \prime} \mathrm{HD}$, alternatively $3.5^{\prime \prime} \mathrm{DD}$ if required).

REPRINTS \& HARD COPY INDEXES

Reprints of articles from TELEVISION back to 1986 are also available: ordering information is provided with the index, or can be obtained from the address below. Hard copy indexes of TELEVISION are available for Volumes 38 to 47 at $£ 3.50$ each.

All the above prices include UK postage and VAT where applicable. Add an extra $£ 1$ postage for overseas EC orders, or $£ 5$ for non-EC overseas orders. Cheques should be made payable to SoftCopy Ltd. Access, Visa or MasterCard Credit Cards are accepted. Allow 28 days for delivery (UK).

> SoftCopy Limited, 1 Vineries Close, Cheltenham, GL53 ONU, UK. Telephone 01242241455

I.C.H.E.

P.O. BOX 142, NOTTINGHAM, NG9 3RX, ENGLAND TEL: +44 (0)115 9320152 FAX: +44 (0) 1159444004 E-MAIL tony@iche.com http://www.iche.com

Pat Bunce

"TELEVISION"
Reed Business Information
Quadrant House,
The Quadrant,
Sutton,
Surrey
SM2 5AS 09/12/97

Dear Pat,

Just a short note to express my thanks for the coverage that "Television" magazine has given my products.

I have had more responses from my advertisements in your magazine than any other.
With those responses my sales of the "Monitor Wizard" pattern generator and "Capacitor Wizard" ESR meter have increased by leaps and bounds as well as the monitor schematics, flyback transformers, Weltrend IC's etc. etc.!
It reaches the engineers and technicians other magazines don't and not just from the UK, but from Southern Ireland, Europe, Scandinavia and as far away as Borneo, Australia and New Zealand!

Your magazine is the most cost effective advertising medium that I use, bringing in more sales per pound outlay than any other.

Again many thanks and kind regards

Tony Bailey.

mooine...

C.T.V.

UNIT 5, THE PHOENIX BUILDING, RUSHOCK TRADING ESTATE, DROITWICH ROAD, DROITWICH WR9 ONR TELEPHONE: 01299-251522 0589-888021/0850 486147 (24HR)

SUPPLIERS OF HIGH QUALITY

GRANADA AND THORN

EX-RENTAL TELEVISIONS AND VIDEOS

LARGE STOCKS ALWAYS AVAILABLE

ALL AT COMPETITIVE PRICES

Satellite Receivers
Complete Range of Hand Sets EXPORT ENQUIRIES WELCOME OPEN: MON-FRI - 9.30-5.30

TEL: 01299-251522

Fax: 01299-251543

IS YOUR RENTAL BUSINESS EMPAMDDMGP

Broughfame Ltd.

can help to expand your television/video rental business and increase your profitability.
Our rental Finance Plan offers you financial facilities from £1,500 upwards.
Block Discounting finance also available.

For further details ring or write to: Broughfame Ltd. 115A St John's Hill, Sevenoaks, Kent TN13 3PE

Tel: (01732) 743400
Fax: (01732) 743335
E-Mail: R@Broughfame.Tel Me.com

vista electronics
 Manufacturers of television tube and video heads

FOR PERSONAL SERVICE RING THE 'SAS'
SUSAN
ANN SANDRA
WE DARE TO PLEASE

beTTER VALUE

THOUSANDS OF NEW, B GRADE, AND REGUNS IN STOCK

SPECIAL OFFERS

WHILE STOCKS LAST

A59-JJZ	$£ 60.00$
A51-EFS	$£ 50.00$
A59-EAK	$£ 69.50$
A66-EAK	$£ 72.00$

A51-EAL £55.00
A51-JAR £55.00
A51-AEZ £45.00
A68-EGD
£78.00
A66-EGW
$£ 72.00$
A34-EFU
£24.50
A33-LPE
£24.50
A34-EAC
£24.50
ALL NEW TUBES
Carriage Extra
12 MONTHS GUARANTEE
Enquire for types not listed

| telephone COMPONENTS 01429838057 | FAX | |
| :---: | ---: | :---: | :---: |
| TUBES | 01429837100 | 01429837101 |

AIWA PRODUCTS

NSX-VHS ...PRO-LOGIC MINI HIFI REMOTE NSXV70.MINI HIFI 3 CD SURROUND SOUND Z2300PRO-LOGIC MIDI HIFT REMOTE L/CX100 \qquad .CD MICRO SYSTEM NSXV7 50 \qquad .MINI HIFI CD PLAYER NSX640..MINI HIFI 3CD SURROUND SOUND

EX-RENTAL TVS \& VIDEOS ALWAYS AVAILABLE PHONE NOW FOR BEST PRICES
PHILIPS, PANASONIC, SHARP, SANYO, FINLANDIA ETC...

PHONE FOR BEST PRICE

ON THESE 'A' GRADED STOCK
PLUS MANY MORE MODELS AVAILABLE

AMSTRAD SRX 100 AT ONLY $£ 2.00$ A PIECE AMSTRAD SRX 200 AT ONLY $£ 10.00$ A PIECE BT 250 AT ONLY $£ 7.00$ A PIECE (QUANTITIES OF 10 + ONLY) PLUS VIDEO CRYPT DECODERS NOW AVAILABLE

PHONE FOR DELIUERY DAYS ON DTB7-8DE DHCN

UNT E23, HARBET ROAD, (OFA Amol Rood), STONEHIL BUSNESS PARK,
 DELIVERY SERVICE AVAILABLE

W.M.T.V.

THE LARGEST INDEPENDENT WHOLESALERS IN WALSALL - SUPPLIERS OF HIGH QUALITY EX-RENTAL

TVs AND VIDEOS TO THE TRADE AT COMPETITIVE PRICES
ALSO AVAILABLE: NEW B-GRADE PRODUCTS - TVs, VIDEOS, AUDIO \& MICROWAVES ALL TESTED \& BOXED
Satellite Receivers and Export Enquiries Welcome 1/2 Mile off Junction 10 M6. Easy Parking Facilities UNIT 3, BENTLEY LANE BUSINESS PARK BENTLEY LANE, WALSALL WS 2 8TL
Tel: 01922-724542. Fax: 01922-722208 Mobile: 0831-246622 (24 hours) Visit our website: WWW.WMTV.MIDWEB.CO.UK

OPEN: MON-SAT,
9-6pm SUNDAY BY APPOINTMENT DELIVERY SERVICE
THROUGHOUT THE COUNTRY

WILTSCROVE LTD

28-29 RIVER STREET, DIGBETH, BIRMINGHAM B5 5SA

* PICTURE IN PICTURE - NICAM STEREO WAS - FASTEXT $£ 899$ - 2 SCART SOCKETS - FRONT AV CONNECTORS - UHF/VHF - A.I.P. SYSTEM COMPPIETE WITH HANDSET \& INSTRUCTION BOON BRAND NEW \& BOXED PAIPUS WDEECREEN 16:9 WTHDOLBYPPOLOGCC7CM (327) PAANOBLCK RNSH NOW: ontr	NOKIA WIDESCREEN TV mos:LFFN7296PP * NICAM STEREO * 28 in Widescreen * Paiplus * Plct. in Pict. * Zoom \& More... $£ 599-99$

		EX-RENTAL VCR's 5 for $\underset{4}{2} 40$ 10 for 5399

Replacement Remotes

 FERGUSONFV31R FERGUSON 20E2 FERGUSON 37141 FERGUSON 37371 FERGUSON 57971 FERGUSON 57981 FEGUSON 14C2 £4.95 14D2,4J2,14L2,16A2 16C2,20A2,20C2 2000,22B2,36141 THOPN 6171 THORN 67971 THORN 7971$£ 4.95$
$£ 4.95$
£4.95
£5.95
£. 95
£5.95 $£ 5.95$ $£ 5.95$ $£ 4.95$ $£ 4.95$ £4.95 £4.95 £4.95 $£ 4.95$ $£ 4.95$ $£ 4.95$ $£ 4.95$ $£ 4.95$ $£ 4.95$

THORN 9500	$£ 4.95$
THORN 9600	$£ 4.95$
THORN 2251	$£ 4.95$
THORN 2256	$£ 4.95$
THORN 2261	$£ 4.95$
THORN 2282	$£ 4.95$
THORN 4094	$£ 4.95$
THORN 4290	$£ 4.95$
TEL-FUNK SP141	$£ 4.95$
LOGK 4094	$£ 4.95$
BUSH 1511RD	$£ 4.95$
APOUO SR1900	$£ 4.95$
BEKO IRD2000	$£ 4.95$
FERGUSON SAP4S	$£ 4.95$
FERGUSON SAP5S	$£ 4.95$
FERGUSON SAP6S	$£ 4.95$
FERGUSON SAP7S	$£ 4.95$
FERGUSON SRD16	$£ 4.95$
FERGUSON SRD5	$£ 4.95$
FERGUSON ASTRA SR44.95	

HITACH 1010D	$£ 4.95$
MANHATTAN 850	$£ 4.95$
MANHATTAN 950	$£ 4.95$
MASPRO SRE250S	$£ 4.95$
MASPRO SRE350S	$£ 4.95$
NOKIA SAT1600	$£ 4.95$
NOKIA SAT1602	$£ 4.95$
NORNENDE SRD1000 $£ 4.95$	
PACE PRD800	$£ 4.95$
PACE PRD900	$£ 4.95$
PACE PSR800	$£ 4.95$
PACE PSR900	$£ 4.95$
PACE SS9000IRD	$£ 4.95$
PACE SS9090XT	$£ 4.95$
PANSONC TUSD200	$£ 4.95$
PHLIPS 05G	$£ 4.95$
PHLIPS 05M	$£ 4.95$
SABA SSR850	$£ 4.95$
TEL-FUNK SR1000Z	$£ 4.95$
THOMSON SRD11	$£ 4.95$

PACE MSS100	$£ 3.35$
HTACH SR2070D	$£ 5.75$
PACE MSS500	$£ 5.75$
PACE MSS1000	$£ 5.75$
PACE MSS SERIES	$£ 5.75$
APOLO 120	$£ 5.75$
PACE MSS100IP	$£ 5.75$
PACE MSS1008	$£ 5.75$
PACE MSS1038	$£ 5.75$
PACE MSS138	$£ 5.75$
PACE MSS238	$£ 5.75$
PACE MSS290	$£ 5.75$
PACE MSS300	$£ 5.75$
PACE MSS348	$£ 5.75$
PACE MSS508	$£ 5.75$
PACE MSS538	$£ 5.75$
FERGUSON 22B5	$£ 4.95$
THORN 2423	$£ 4.95$
THORN 2453	$£ 4.95$
THORN 2463	$£ 4.95$

TRADE ONLY ALL STOCK SUBJECT TO AVAILABILITY, CARRIAGE \& V.A.T FREEFAX ORDERLINE: 0500550505

Universal

 The Amstrad Service Centre

 The Amstrad Service Centre}

Audio Television Video Telecommunication

The 'Amstrad Service Centre' is the exclusive returns centre for all standard customer returns on behalf of Amstrad and Betacom. For the first time we are offering to supply genuine Standard Customer Returns direct at market competitive prices. All of the products we offer for sale are supplied in original manufacturer cartons, both picture print and full colour gift type. All product is 'virgin' and has not been serviced by the Amstrad Service Centre or any other outside service agent. If you would like to receive a colour product catalogue and an up to date stock and price list please fax your full company details through to the facsimile number listed below.
Currently we have over 90 lines throughout the consumer electronics range starting with walkmans, clock radios, portable stereos, portable CD stereos, personal CD players, micro systems, CD micro systems, mini hi-fi, midi hi-fi, $14^{\prime \prime}$ television, $20^{\prime \prime}$ television, $28 "$ television, non videoplus VCR, videoplus VCR and fans and, approximately 40 different telecom products.
There are no restrictions on the sale of these products but if any are exported it is your legal responsibility to check the goods meet all electrical requirements and relevant regulations for the country of export. Export enquiries welcome.

Please mark all references from this advertisement for the attention of Mr T James, Operations Manager.

(U.K.) Ltd

UNBEATABLE PRICES NEW COLOUR TVS FROM £99 FASTEXT TVs FROM £119 VIDEO PLUS L/P FROM £119 NICAM VIDEO £159
Happy New Year to everybody DIRECT PRICES TO THE TRADE TV, Video, Hi-Fi, Camcorder Brand new ' B ' grade available

Excellent Mail Order Service available. Next day delivery on most items

We also require a fully qualified TV, video and hi-fi engineer to work in the Oxford area. Send your cv to:

TECHNOVISION

 216 Cowley Road, Oxford OX4 1UQ Tel: 01865202627 Fax: 01865202655Opening Times: Monday to Saturday, 9.00 am to 6.00 pm Sundays, by appointment only

We have moved to bigger premises

NEW 'B' GRADE

Major Brands ONLY. TV's - Video - Audio. Microwaves, Satellite Receivers, Decoders. Camcorders - Phones/Fax COMPLETE BOXED - WITH STAND - HANDSET - BOOK ETC MINT LATEST NICAM FASTEXT F.S.T.
EXPORT AGENTS FOR THE FOLLOWING TV, VIDEO, HI-FI, CAMCORDERS, SATELLITE WHITE GOODS, HEATING EQPT., VACUUM CLEANERS, KITCHEN APPLIANCES, GARDEN EQUIPMENT, POWER TOOLS

FERGUSON - DECCA - TATUNG - AMSTRAD

FULL RANGE - ALL CURRENT MODELS OF TV-VIDEO IN STOCK
No minimum quantity
NATION-WIDE NEXT DAY DELIVERY SERVICE - VISITORS BY APPOINTMENT Phone 0121-359 7020 FAX 0121-359 6344 PHOENIX HOUSE, 190 BRIDGE ST. WEST, BIRMINGHAM B19 2YT

H\| F\| H\| F\| H\| F\| H\|F\| H\| F\| 100s OF UNITS IN STOCK!!

Large stocks available A and B grade:
makes include: Kenwood, Aiwa, JVC, Sanyo, Akai, Pioneer, Panasonic, Goodmans, Alba etc.
Alba/Bush Ghetto Blasters, CD, Radio, Tape boxed £25
Alba/Bush CD Micro Systems boxed £35 - Alba/Bush CD Midi Systems boxed £40 most goods under half price
VIDEOS/TV's: A and B Grade
Bush/Alba long play boxed £60 - Roadstar long play boxed £50 Akai, Sanyo, JVC, Toshiba, Aiwa less than half price 21" Remote Control Crown/Bush, Alba boxed £60
EX-RENTAL TV/VIDEO ALL TESTED, SEEN WORKING
Philips complete with remote $£ 45$
Salora all models with remote £65, Grundig from £65 many other makes/models in stock
Cheaper Video/front loading from £25
ALL MAKES, MODELS \& SIZES OF TV IN STOCK
Brown cabinet working TVs from $£ 12$ - Videos off the pile from $£ 10$ We stock Camcorders, Car Stereo, portable radio/CD, kettles, irons, toasters etc, etc.

ALL PRICES INCL. VAT. TERMS - CASH ONLY

* DISCOUNT ON BULK PURCHASES *

Send S/A Envelope for price list or call 01274308186
Walker House, 16 Bottomley Street, Manchester Road, Bradford BD5 7LJ Tel: (01274) 308186 Fax: (01274) 722229

STARVISION

SUPPLIERS OF HIGH QUALITY EX RENTAL - EX DISPLAY TV \& VIDEO

ALL SETS ARE FULLY SERVICED WITH REMOTE CONTROLS AND ARE READY FOR RETAIL SALE

MOST POPULAR MAKES ALWAYS IN STOCK AT PRICES THAT WON'T SHOCK

ALL PRICES INCLUDE V.A.T. NO MINIMUM QUANTITY

RING TODAY FOR LATEST PRICES TELEPHONE
0121502 3016-01215051033

STARVISION
 UNIT A, BRUNSWICK PARK ROAD WEDNESBURY, WEST MIDLANDS WS10 9QR

NOW OPEN
IN NORTH EAST - W.TREE TRADE WAREHOUSE
UNIT 9A/9B CARRMERE RD, LEACHMERE IND ESTATE, SUNDERLAND SR2 NTE TEL 01915211500
GRADED STOCK ALL BOXED TESTED + WORKING
B GRADE TV/S BOXED WORKING NOW
WAS NOW

14" R/C
14" Text £89 £85
14" Tele Video Combinations £175 £159
20" Tele Video Combinations £235 £200
20" R/C T/N
£99 £95
20" Nicam Fastext £139 £129
28" Widescreen Nicam £450 £375
32" Widescreen Nicam
£700 £650

JOB LOTS OF CAMCORDERS

Sony, Panasonic, Cannon etc...(In lots of 20) $£ 50_{\text {each }}^{00}$

EX DEMO CURRENT MODELS

29" Sony Nicam
$£ 270$
29" Hitachi Prologic
£350

SPECIAL OFFER - 'B' GRADE

Boxed \& Fully Tested L/P
with instructions Nicam
£129
W.TREE TRADE WAREHOUSE

Unit 1, Sunshine Mills, Wortley Rd, Leeds Tel: (0113) 2638804 Fax: 2310275

Stock clearance of tubes for current models

14" narrow neck

48ECR...... 48EEV......

51AEZ......
51EAL......
51EBV.....
51EFS.....
510UFB......

66ECY......
66EAS......
LOTS, LOTS MORE RING Irene or Jane

Carriage and VAT extra
 EXPRESS TV

The Mill, Mill Lane, RUGELEY, Staffs WS15 2JW Tel: 01889-577600 Fax: 01889-575600

OPENING SHORTLY IN

 Traders . . . You must register with me NOW to qualify for these prices. Fill in the coupon below and post it with your letterhead or business card. Dear Mike, I am interested in buying good, reliable stock cheaply. Please register my name and keep me informed of your opening in Scotland. I enclose my letterhead/business card.Signed

SUPERSCREEN
12 Cannon Park Rd Cannon Park Ind Estate MIDDLESBROUGH TS1 5JP CLEVELAND

Most makes and models available
TVs from £3.00 • Satellites from £8.00
Videos from £15.00
Prices Ex-VAT
VIDEOS AND
Free Delivery Service to most areas of the UK
U.K.s Largest Export Wholesaler
Specialists in conversions to most countries systems
UNIT 75, BARRACKS ROAD,
SANDY LANE INDUSTRIAL ESTATE,
STOURPORT-ON-SEVERN,
WORCESTERSHIRE DY13 9QB
Just 10 Mins from M5 Junct. 6 Worcs North
O12g9-879642 (3 lines)
FAX: 01299 827984

DARTEL ELECTRONICS
 8 Heather Park Drive, Alperton, Wembley, Middlesex HA0 1SL Tel: 01817951735 Fax: 01817951736
 > SUPPLIERS OF HIGH QUALITY AUDIO VIDEOITV EQUIPMENT-GRADE A STOCK WITH WARRANTY

 SUPPLIERS OF HIGH QUALITY AUDIO

 SUPPLIERS OF HIGH QUALITY AUDIO VIDEO/TV EQUIPMENT - GRADE A VIDEO/TV EQUIPMENT - GRADE A STOCK WITH WARRANTY

 STOCK WITH WARRANTY}Popular brand names at competitive prices, eg:
Video Recorder, LP/SP, from..................£85.00
Video Recorder, LP/SP, VideoPlus from $£ 95.00$
Twin Deck Video Recorders................£145.00
20in TV/Video Combi£235.00
14in TV/Video Combi£180.00
Microwaves, Digitouch, from£47.00
Camcorders, from................................£165.00
Triple Disc HiFi Systems from 120.00 Televisions, all sizes including Prologics, Nicam, VCRs etc
PHONE OR FAX FOR FULL LIST
We Are Not Ex-Rental Dealers
ALL PRODUCTS SUPPLIED ARE CURRENT LINES all prices subject to vat plus carriage and avallablity

No other consumer magazine in the country can reach so effectively those readers who are wholly engaged in the television and affiliated electronics industries. They have a need to know of your products and services.

PHONE 0181-652 8339

The prepaid rate for semi display setting is $£ 14.50$ per single column centimetre (minimum 4 cm). Classified advertisements $£ 2.15$ per word (minimum 20 words), box number $£ 22.00$ extra. All prices plus $171 / 2 \%$ VAT. All cheques, postal orders etc., to be made payable to Reed Business Information. Advertisements, together with remittance, should be sent to Television Classified, I Ith Floor, Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS

TEST EQUIPMENT

TRANSFORMERS

TV LINE OUTPUT TRANSFORMERS
 PHONE: 0181-948 3702 FAX: 0181-332 0583

ALBA • AMSTRAD • BUSH • DECCA • DORIC • BLAUPUNKT \cdot FERGUSON • FIDELITY • GEC • GRUNDIG • GRANADA. HITACHI • HINARI - INDESIT • ITT • KIMARA • NIKKAI MATSUI • MURPHY - OSAKI • NORDMENDE - LOEWE-OPTA PANASONIC • PYE • PHILIPS • SANYO • SAISHO • SHARP . SONY - SOLOVOX • SUSUMU • TANDBERG • TELEFUNKEN • THORN • TRIUMPH • THOMSON • GOLDSTAR • BINATONE -

FULL RANGE OF KONIG: VIDEO HEADS, BELT KITS, IDIERS, PINCH ROLLERS, TENSION BANDS.
LARGE RANGE OF REMOTE CONTROLS IN STOCK

$$
\begin{aligned}
& \text { TIDMAN MAIL ORDER LTD } 236 \text { SANDYCOMBE ROAD } \\
& \text { RICHMOND } \cdot \text { SURREY } \cdot \text { TW9 2EQ } \\
& \text { Approx. } 1 \text { mile trom Kew Bridge. }
\end{aligned}
$$

LINAGE

[^2]avo multimeter Model 8: £45.00. 500 volt megers: $£ 30.00$. Prices plus VAT and p\&p. Send SAE for lists of Surplus Instruments and Scopes, etc. A. C. Electronics, 17 Appleton Grove, Leeds LS9 9EN. Tel: 01132496048.
OCHRE MILL Technical Services, Grundig TV spares for most models to 1985. Fast, friendly, helpful, sensible prices. Gt Lype Farm, Charton, near Malmesbury, Wilts SN16 9DR. Tel: 01666823228.

SPARES \& COMPONENTS

H.S.WHOLESALE Unit B3. Citadel Irading Park, Garrison Road, Hull Hug ita Tel: 01482 222295/Fax: 222213		
	SCART/SCART 21 PIN LEADS	SAT SYSTEMS ALL PACE
AERIALS FROM 1-99	89p	RECEIVERS POA
	2M FLY LEADS	LNB'S FROM £ 16.95
	35p	STOCKISTS FOR:
	CABLE CLIPS	ANTIFERENCE
	'F'	COASTAL
	CONNECTORS	LABGEAR
	COAX PLUGS	LENSON HEATH
	POLES	MERCURY TELEVES
CABLE FROM$8-95$	BRACKETS	TRIAX
	LASHING KITS	TOWER
	BOLTS	BLAKES
RG6 SAT CABLE FROM 1-95	SADELTA	PACE WOLSEY
	TV/SATELLITE	UNIFIX
	METERS	PHILEX
	NOW IN STOCK	\& MANY MORE
call for catalogue of full range ALL PRICES + VAT + CARRIAGE + CREDIT CHARGE IF APPLICABLE		

SPARES \& COMPONENTS

SURPLUS / REDUNDANT ELECTRONIC COMPONENTS WANTED
ICs - Tuners - Transistors Valves - Diodes Etc
Any quantity considered
NJM General Trading
Tel: 01902429022
Fax: 01902429052

- Service Manuals MTS Less than $£ 1$ each when purchased on CD-ROM

We now have 3 CD-ROM's covering a vast range of Colour Televisions. The full set contains between them over 3600 models from 133 makes and over 80 full workshop service manuals. Each CD is normally $£ 24.95$ + VAT (total £29.31) making the set of 3 £90.89 inclusive of VAT \& p/p. As a special introductory offer the full set of 3 can be purchased for just $£ 75.00$ fully inclusive. Order your set TODAY. Order code MP-380.

Monitor alignment disc with all orders for MP-380

Order Form Please supply (circle items required)

 MP-380 TVCD-ROM set of $3 @ £ 75.00$ inclusive plus FREE monitor alignment disc. MP-285 Index of Manuals available on PC Disc @ $£ 5.00$ inclusive FD-35 Catalogue of Books \& CD-ROM's available for 4 x lst class stamps.Name \qquad
Address \square
Postcode
Card No. Expiry Date \qquad Signed

Mauritron Technical Services

8 Cherry Tree Road, Chinnor, Oxfordshire, OX9 4QY
Tel: 01844-351694. Fax: 01844-352554. email: sales@mauritron.co.uk
Web Site at: http://dialspace.dial.pipex.com/mauritron/

RIPPAIR DATABASES \& INDEXES

NEW FAULT GUIDES NOW AVAILABLE FOR 98 NEW II Kwik tips on disk V1.0
First time release: KWIK TIPS on DISK now available. Based on the forthcoming 2nd Edition Kwik Tips publications the program also includes current Ist edition repair information. Altogether a vast fault \& remedy database of TV \& VIDEO reparr information for an extensive range of makes \& models.

Kwik Tips V1.0 Excellent value at only $£ 27.95$

New Editions Faulf Indexes in book format

Just released - Edition 19 of the Television Magazine Index, Covers over 14,000 Television, Video, Satellite, Camcorder \& Compact Disc faults, Large easy to read A4 format, The newest addition to a highly acclaimed series. In daily use in workshops across the UK (And beyond).
ISBN 1898394229 Edition 19: Complete set $£ 14.75$
New version Fault indexes on disk - VI. 5
Our largest ever fault index database on disk, Covering a massive 18,300 !! Television, Viden, Camcorder, Satellite, CD \& Monitor faults listed in 17 years of Television.

Version 1.5: Indexes on Disk (price held) \$17.50 Low cost updates are availahlc for all fault indexcs.
LAIEST RELEASE - Equivalents guides - 2nd Edition.
The long awaited 2nd Edition of our equivalents guides now available, Over 6,300 entries - Equivalents covering Video, TV, Camcorder \& satellites plus TV model-chassis guide. This single comprehensive book contains all FIVE guides. Edition 2: Equivalents guides $\mathbf{\$ 5} 5.95$ All disks require PC or compatible (Supplied on $3^{\prime} / 2^{\prime \prime} \mathrm{HDs}$)

Technical Publisfing

316, Upton Road, Noctorum, Wirral, Merseyside. L43 9RW. Tel / Fax 01515220053

Please add $£ 1.75 \mathrm{P}$ \& P to total (Europe 82.75 . r.0.w please enquire).

Technical Information Services

76 Church St, Larkhall, Lanark ML9 1HE N.B.: There is a $£ 2.50$ Post/Handing Charge on all orders Send an SAE For Your Free Quote \& Catalogue We have the world's Largest Selection of
SERESTCE:

VCR CIRCUITS $\mathbf{£ 8 . 0 0 ~ C T V ~ C I R C U I T S ~} £ 6.00$

CTV CIRCUIT COLLECTIONS

Ferguson from 1980's till present @ $£ 45.00$ • Bush $£ 22$
Hitachi $£ 45$ - Mitsubishi $£ 38$ - Panasonic $£ 30$...etc...
Call for full list \& prices of all 27 collections
Tel: 01698 883334/884585 口 Fax: 01698884825

TOP SELLING BOOKS
PRACT'VCR or TV REPAIRS
$£ 16.95$ each (or $£ 30$ for Both) MICROWAVES: ENERGY \& OVENS £ 12.95
Data Reference Guide (Chassis/X-Ref) 19.95

KUXO' SCRAMB' SYS' (New 5th Edn.) $£ 35.00$
Buy, Sell \& Service Used CTV/VCR/CD 59.95 each

IC DATA BOOKS - Various Titles f12.95 cach
With 100's of Titles, send SAE for Full List

SERVICE MANUAL

LIBRARY

BUY ANY MANUAL FOR $£ 10.00$ or Swap at $£ 5.00$ Each (plus p\&p) Initial Joining Fee $\AA_{6} 65.00$
($£_{20}$ /annum, thereafter)
\qquad

NEW RELEASES:

3.5" Disk Drives
(Installation \& Circs):
Data Ref' on 3.5" Disk:

Servicing Books

February Special Offers

U-VIEW
Technical Publishers

Television Servicing Books

1989/90 ...Now £69
Satelite Servicing Books 1991/92 \& 1993/94 £39 each Video Servicing Books 1989/90 (to clear)Now £49
1991/92 £186 ..Now £97.50 1993/94 £.2 20 ..Now £150 *NEW EDITION* Satellite Servicing Book Four

Contains New Satellite Cross Reference Guide

Professionally Produced with the Manufacturers Full Co-operation

All Books Available

Satellite Servicing 1991-92 Satellite Servicing 1993-94 Satellite Servicing Book 4 Television Servicing 1989-90 Television Servicing 1991-92 Television Servicing 1993-94 Television Servicing 1995-96 Video Servicing 1989-90 Video Servicing 1991-92 Video Servicing 1993-94
39.00 . Covers 251 Models. £39.00 Covers 316 Models. $£ 69.00$ $£ 95.00$ $\$ 95.00$ 199.00
$£ 49.00$ $£ 97.50$
£79.00 Covers 320 Models. Covers 307 Models. Covers 307 Models. Covers 629 Models. Covers 400 Models. Covers 247 Models. hree Volume Set. Three Volume Set.

ISBN: 0951389785 SBN: 0898598053 SBN: 1898598126 ISBN: 0951389718 ISBN: 0951389777 ISBN: 1898598037 ISBN: 1898598118 ISBN: 0898598045 ISBN: 0951389793 ISBN: 089859807 X

All prices include UK postage, packing \& insurance Interest Free Credit Available - Phone for Details

To qualify for this otfer please quote T0298 when ordering. Olfer is limited to one book per customer. Offer ends 28298

All Books Contain:

 Circuit Diagrams, Scope Readings, Voltage Tables, Part No's, Alignments \& Adjustments Trouble Shooting Guides. Send for brochure with full model list
SERVICE MANUALS

 AND CIRCUIT DIAGRAMSThousands of different models available For most U.K. European, Far East \& USA makes

	Service Manual	Circuits
B/W TV	$£ 6.00$	$£ 3.00$
CTV/VCP	$£ 10.00$	$£ 5.00$
VCR	$£ 14.00$	$£ 7.00$

Audio/Satellite/Microwave also available - P.O.A. Cheque/PO with order only please.
Add $£ 2.00 \mathrm{P} / \mathrm{P}$ etc. to order total. Do not add any VAT

D-TEC

PO BOX 1171, FERNDOWN, DORSET BH22 9YG Tel: 01202870656

Fryerns

Service FES Circuit Information Diagrams TV's, VCR's SATELLITE AUDIO \& HI-FI

Most models/makes old \& new covered Also fault guidance service available Prices are from $£ 3.75+£ 2.50 \mathrm{P} / \mathrm{P}$
i.e. I item - total $£ 6.25 \mathrm{inc}$

2 items - total $£ 10.00$ inc
3 items - total $£ 13.75 \mathrm{inc}$
4 items - total $£ 17.50$ inc Payment by credit card or Postal Order for next day delivery. Cheques to clear Tel/Fax: 01268470899
Answerphone outside office hours P.O. Box 5830 Basildon, Essex SSI 3 3RX
please note new prices

REPAIRS

accént

 TECHNICCAMCORDER REPAIRS
Collection and delivery anywhere in the UK.
All makes, fast service.
Phone free for details.
Fax: 01905796385

$$
\mathrm{L}
$$

FEBRUARY SPECIALS

Pace Remotes

SS9000/9200 Pro 800/900 MSS Series Pace Prima All one price $£ 7.50+$ VAT (cheque with order)
PRD 800 Tuners
± 12
New catalogues available
Suppliers of Electronic
Components Jo The IV Jrade

FOR SALE

Trade Only

Televisions
Teletext
Videos
from $£ 5.00$
from $£ 20.00$

Minimum quantity - 10 units
BOURNEMOUTH
Wholesalers
01202470443

Faxback and Postal 'Repair Information Services

Whether you are a hobbyist or a professional engineer
You will save time and money by joining this service
To find out more, send a SAE
to
Translink Int.
Box 17505
London SE18 7ZJ

BILLINGTON Billngshurst, West Export -a Intite Sussex RH14 9EZ

VALVES WANTED FOR CASH (KT88, PX4, PX25, DA100, EL34, EL37, CV4004, ECC83)
Vaives must be Mullard/GECNest European to achieve top prices

Ask for our free Wanted List. WE SUPPLY VALVES, C.R.T., VIDICONS ETC
Visitors, please phone for an appointment we're a very busy export warehouse.

Tel: (01403) 784961
Fax: (01403) 183519

Visual FX TV VIDEO HI FI Service Centre require

Field Service Engineer
Based in Romford we require suitable candidate to be located in the Cheimsford area.
Relevant trade qualifications and multi brand experience preferred. Full clean driving licence
Company Car plus benefits
Bench Service Engineer
Audio/Video Romford Based
Excellent Salary on both positions For further information contact: Gary Hall on

01708381896

DUE TO FURTHER EXPANSION
SERVICESPEED SLOUGH Require
FIELD/BENCH TECHNICIAN
and technical installers
For the repair and installation of CTV/VCR/Audio and Camcorder products

Top rates of pay
Tel: 01753692408
For further details

PROPERTY

We are looking to add two more experienced TV engineers to our existing team, working in our recently extended workshop you will be given maximum support, we see our engineering team as an asset not an expense and we expect all staff to smile three times a day in addition to outbursts of laughter which we expect twice daily. You will be well paid and treated with respect. In return we ask you to fix things like TV's or microwaves etc. So if you want to join a winning team and enjoy your work please write, fax or
Email to the below and we'll be in touch.

PRO VISION

 Electronics LtdUnit 94, Pinnacle Storage Depot, Cat \& Fiddle Lane, West Hallam, Derbys DE7 6HE
Tel: 01159447134 Fax: 01159444646
E-Mail: Provision@Enterprise.Net

AUDIO AND/OR VIDEO ENGS

TV, Radio, VCR Video, Type CD
Test/Repair component level \& SMT
Long Term contract BERKS
Contact Francesca Palmer (0181) 5696199

FOR SALE

T.Vs, VCRs HI FIs COMPUTERS

MAJOR RETAILER RETURNS
DISCOUNT FOR QUANTITY TEL: 01384411414IF YOUR COMPANY HASA VACANCY
For Experienced TECHNICIANS or ENGINEERS etc
Why not let TELEVISION help you find the right person by placing your recruitment advertising with us For Further Information Call: PAT BUNCE on
Tel: 01816528339
Fax: 01816528931

＇

Repair Service la or ast of warnanty Free Collectien f Free Delivery Available 0800－801978

シリリリ｣りリ」゙

」 」

 ふ」

TEL－ 01604787888
Fax－ 01604787999
E－mail－sales＠satsol．co．uk E－mail－support＠satsol．co．uk Internet Site－www．satsol．co．uk

ジvexini
ل！ ，

[^0]: 32 Temple Street, Wolverhampton, WV2 4AN, UK Tele ++ 44 (0) 1902773122 Fax ++ 44 (0)1902 29052

[^1]: GRANDATA LIMITED
 K.P. HOUSE, UNIT 15, POP IN COMMERCIAL CENTRE, SOUTHWAY, WEMBLEY, MIDDLESEX, ENGLAND. HA9 0HB
 Telephone: 01819002329 Fax: 01819036126 E-Mail: grandata.ltd@btinternet.com OPEN Monday to Friday 09:00-17:30 Saturday 09:00-14:00

[^2]: DECODER TO COMPUTER interface card with smart card connectors and diagram: $£ 9$ E.M.O., 62 Bridge Street, Ramsbottom, Lancs BLO 9AG. Tel: 01706823036. PRIVATE RETAILER has excellent part exchange colour televisions and videos to clear. Tel: 01494814317.

